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Abstract

We investigate non-stationarity in the mutual correlations of wind turbine data
and to some extent its effect on existing analysis methods. Our data stems from
Supervisory Control and Data Acquisition (SCADA) systems, with which all modern
utility-scale wind turbines are equipped.

First, we evaluate Pearson correlation matrices for a variety of observables at a
single turbine with a moving time window. We show that a clustering algorithm
applied to the correlation matrices reveals distinct states. We develop the method
on a single turbine and then show that it easily transfers to multiple turbines.
Thereby, we find that the state is primarily determined by wind speed. This is in
accordance with known turbine control systems. Our analysis shows that for high
frequency data the control mechanisms of a turbine lead to automatically detectable
non-stationarity in the correlation matrix. The presented methodology allows an
automated distinction of the operational states solely based on SCADA data.

Moreover, we combine the clustering analysis with a construction of a stochas-
tic process to study the dynamics of those states in more detail. Calculating the
distances between correlation matrices we obtain a time series that describes the
behavior of the complex system in a collective way. Assuming this time series
to be governed by a Langevin equation, we estimate the deterministic (drift) and
stochastic (diffusion) components of the dynamics to understand the underlying
non-stationarity. After adapting our method to specific features of our data, we are
able to study the dynamics of operational states and their transitions as well as to
resolve hysteresis effects.

Next, we study the influence of the measured non-stationarity on the established
method of Langevin power curves. The estimation of drift and diffusion for the
power output conditioned on wind speed is improved by accounting for the identi-
fied operational states. The operational states effectively separate between distinct
dynamics. Thereby, we show that for each operational state only one fix point in
the power output exists for each wind speed.

Non-stationarity also affects change detection. We study the sensitivity of princi-
pal components to changes in arbitrary correlated systems that display non-
stationarity. We perform a numerical study to analyze changes that occur in mean
values, standard deviations or correlations of the system’s observables. Running
Monte Carlo simulations for different system dimensions and numbers of normal
states, we clearly show that knowledge about the non-stationarity of the system
greatly improves change detection sensitivity for all principal components. We il-
lustrate our results with an example using real traffic flow data.

Lastly, we study correlations of a whole wind farm instead of single turbines. The
operational data of two offshore wind farms are analyzed. For the correlations of the
active power between turbines over an entire wind farm, we find a dominant collec-
tive behavior. We manage to subtract the collective behavior and find a significant
dependence of the correlation structure on the spatial structure of the wind farms.
Our method provides a tool for aggregated assessment of turbine interactions in a
wind farm.
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Zusammenfassung

Wir untersuchen die Nichtstationarität in den wechselseitigen Korrelationen von
Windturbinendaten und in Teilen ihre Auswirkungen auf bestehende Analysemetho-
den. Die verwendeten Daten stammen aus Überwachungs- und Datenerfassungssys-
temen (Supervisory Control and Data Accquisition, kurz SCADA), mit denen alle
großen, modernen Windenergieanlagen im ausgestattet sind.

Zunächst werten wir Pearson-Korrelationsmatrizen für eine Vielzahl von Beobach-
tungsgrößen an einer einzelnen Turbine auf einem gleitenden Zeitfenster aus. Wir
zeigen, dass ein Clustering-Algorithmus unterschiedliche Zustände erkennen lässt.
Die entwickelte Methode ist problemlos auf mehrere Turbinen übertragbar. Wir
zeigen, dass der Zustand primär durch die Windgeschwindigkeit bestimmt wird.
Dies passt zu bekannten Turbinenkontrollsystemen. Die vorgestellte Methodik er-
laubt eine automatisierte Unterscheidung der Betriebszustände allein auf Basis von
SCADA-Daten.

Wir erweitern die Clustering-Analyse mit der Konstruktion eines stochastischen
Prozesses, um die Dynamik der Zustände genauer zu untersuchen. Der Abstand der
akutellen Korrelationsmatrix zu einem Clusterzentrum erweist sich als Zeitreihe, die
das Verhalten des komplexen Systems auf kollektive Weise beschreibt. Unter der An-
nahme, dass diese Zeitreihe durch eine Langevin-Gleichung bestimmt wird, schätzen
wir die deterministischen (Drift) und stochastischen (Diffusion) Komponenten der
Dynamik. Nach Anpassung unserer Methode an die spezifischen Merkmale unserer
Daten sind wir in der Lage, die Dynamik der Betriebszustände und ihrer Übergänge
sowie Hystereseeffekte zu untersuchen.

Weiterhin analysieren wir den Einfluss der identifizierten Nichtstationarität auf
die etablierte Methode der Langevin-Leistungskurven. Die Schätzung von Drift
und Diffusion für die von der Windgeschwindigkeit abhängige Leistungsabgabe wird
durch die Berücksichtigung der Betriebszustände verbessert. Diese trennen effektiv
zwischen verschiedenen Dynamiken. Wir zeigen, dass es für jeden Betriebszustand
nur einen Fixpunkt in der Leistungsabgabe pro Windgeschwindigkeit gibt.

Nichtstationarität wirkt sich auch auf die Erkennung von Systemveränderun-
gen aus. Wir untersuchen die Empfindlichkeit der Hauptkomponenten gegenüber
Veränderungen in beliebigen korrelierten Systemen, die Nichtstationarität aufweisen.
Mithilfe einer numerischen Studie analysieren wir Änderungen in Mittelwerten,
Standardabweichungen oder Korrelationen der Beobachtungsgrößen des Systems.
Monte-Carlo-Simulationen zeigen deutlich, dass Wissen über die Nichtstationarität
eines Systems die Erkennung von Änderungen mit Hauptkomponenten erheblich
verbessert. Wir veranschaulichen unsere Ergebnisse anhand eines Beispiels mit
realen Verkehrsflussdaten.

Zuletzt untersuchen wir die Korrelationen innerhalb von zwei vollständigen Wind-
parks. Für die Korrelationen der Wirkleistung zwischen den Turbinen in einem
Windpark finden wir ein dominantes kollektives Verhalten. Es gelingt uns, das
kollektive Verhalten zu subtrahieren. Danach identifizieren wir eine signifikante
Abhängigkeit der Korrelationsstruktur von der räumlichen Struktur der Windparks.
Unsere Methode bietet ein Instrument zur aggregierten Bewertung der Wechsel-
wirkungen zwischen den Turbinen in einem Windpark.
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CHAPTER 1

Introduction

Wind energy, being a widely available resource, was a popular driver for economic
development throughout history [7, 8]. With the invention of steam power and the
use of fossil fuels, wind – at first – became less popular. However, fossil fuels were
never as readily available. Furthermore, their supply chain is prone to crisis [8].
We see peaks in the development and use of wind energy (among other renewable
sources) in times of fossil related uncertainty [8]. Today we live in the era of climate
change. Fighting this crisis necessitates a change in our energy production on a
global scale [9]. At the same time the amount of energy consumed by humanity
is ever increasing [10]. Additionally, oil and gas retain their supply chain prob-
lems. Recently, this was made all too clear by the Russian invasion of Ukraine [11].
Many countries now acknowledge the problems that come with their dependence
on fossil supplies from other – and often less democratic – countries. Unsurpris-
ingly, renewable energy sources are more popular than ever [10]. In this context,
the main sources of green energy are solar, water and wind. They all have their
own advantages and problems. Therefore, all of them are part of a successful energy
transformation.

Focusing on wind, we see an accordant rise in the capacity of wind energy pro-
duction globally and locally [12]. This, in turn, drives innovation and development
ranging from physical and technical issues to sociological and economic ones [13].
Researchers aim for improved understanding of atmospheric flows and the interac-
tions of wind turbines within a wind farm, optimal design (including materials) of
wind turbines, optimized control strategies for wind turbines and a strategy for the
integration of wind energy into the power grid [14]. One outcome of these efforts
is a variety of types and sizes of wind turbines. These range from small devices,
which are primarily designed for private use, over mid-size turbines powering re-
mote locations or small businesses to large turbines generating multiple Gigawatts,
which serve as public power stations [7, 8, 15, 16]. While local solutions are some-
times reasonable, in general the efficiency of large turbines is much higher. This
leads to an ever increasing size of turbines [16, 17]. Apart from size there are dif-
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ferences in the employed business models. Some private cooperatives run only a
few or even just one large turbine. Other big energy companies run whole farms
of large wind turbines. These are generally divided again into onshore and offshore
turbines. The first term refers to any wind turbine being built on land, the second
to those built within the sea. While onshore is, rather obviously, easier in terms of
building, accessibility and maintenance, it brings along a whole range of problems.
From a technical viewpoint there are many obstacles that reduce the wind speed
on land ranging from mountains to trees. Politically, setting up new wind turbines
is desired in general, but locally hindrances appear as turbines produce noise and
moving shadows. Furthermore, some people feel that they disfigure the landscape.
Many of these problems are solved with the use of offshore turbines built in the
sea. The wind speeds are higher and steadier, obstacles are rare and no people live
close-by. Of course, especially construction and maintenance are more complicated
and costly offshore. Together with the harsh environmental conditions, this makes
operation and maintenance one of the main cost drivers for offshore wind energy
[18]. Accordingly, research efforts are undertaken both in the scientific and commer-
cial community to reduce these costs. One way is to make the machines themselves
more robust and reliable on a material level [19, 20]. Another approach has become
possible due to increasing amounts of data from the turbine’s own Supervisory Con-
trol and Data Acquisition (SCADA) system: optimization of control and operating
strategies for single turbines as well as for whole farms and the predictive analysis of
possible failures [18, 21, 22]. While the first increases efficiency of running turbines,
the latter allows for better planning of service missions and helps to reduce costly
downtimes.

The possible improvements to clean energy production provide enough societal
motivation to tackle the optimization challenges in wind energy. Additionally, the
system itself is quite interesting from a physics point of view. Traditional disciplines,
like aerodynamics and fluid dynamics, are obviously connected to wind energy gen-
eration. Early on, scientists such as Gottfried Wilhelm Leibniz, Daniel Bernoulli,
Leonhard Euler and Charles Augustin de Coloumb studied windmills and their ro-
tors [8]. Moreover, modern wind turbine systems also display many interesting
qualities that make a study worthwhile from a statistical physics viewpoint. Wind
turbines operate in complex environments where external conditions change contin-
uously. They are subjected to various stochastic processes such as turbulent wind
flow on short time scales [16]. Simultaneously, weather changes and seasonal effects
create non-stationarity on mid-term and long-term scales. In these conditions a
modern wind turbine is a complex machine in itself. Many mechanical and electri-
cal parts are governed by a control system, which tries to ensure optimal efficiency
depending on the current conditions [23]. This further increases the complexity of
the total system. In fact, multiple operational states are created in which the sys-
tem behaves differently. Such a behavior might be compared to different phases in
a physics system, where transitions are induced by changes in the external condi-
tions. Looking past the individual turbine, complexity is further increased as the
operation of turbines in a wind farm is not independent from each other. Wind
turbines interact with each other through wake effects, usually described in research
by complex fluid dynamics [24]. Incorporating randomness, multi-agent interaction,
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non-linearity and non-stationarity, it is well justified to consider wind turbines as
an example of a complex system in the physics-sense.

The interdisciplinary field of complex systems touches upon various scientific do-
mains, engineering fields, and the social sciences. While it originates from statistical
physics and non-linear dynamics, where phenomena such as magnetization in spin
systems and phase transitions are studied [25–28], the developed analytical and com-
putational tools were soon adopted to other fields – usually those that exhibit ran-
domness, non-linearity, non-stationarity and other complicated phenomena. Those
tools have proven useful to analyze systems containing many interacting individual
components or agents. The focus lies on uncovering collective dynamics, often re-
sulting in phenomena that cannot be easily predicted by examining the components
in isolation [29]. In biology, the applications range from understanding the flocking
behavior of birds and schooling patterns of fish to the complex organization of cells
and evolutionary processes [30–32]. Geophysicists also employ complex systems the-
ory to understand natural phenomena like earthquakes and weather patterns, which
result from the interplay among subsystems like tectonic plates or atmospheric lay-
ers [33–36]. Thus, complex system science also plays an important role in the study
of Earth’s climate system [37–40]. Important work in this field was honored with
the Nobel prize “for groundbreaking contributions to our understanding of com-
plex physical systems” in 2021 further underlining the importance of the discipline.
Syukuro Manabe and Klaus Hasselmann were awarded half of it “for the physical
modelling of Earth’s climate, quantifying variability and reliably predicting global
warming”. The other half went to Giorgio Parisi “for the discovery of the interplay
of disorder and fluctuations in physical systems from atomic to planetary scales”
[41]. Furthermore, complex system science have proven their applicability also in
initially less physics-related fields. Econophysics leverages its concepts to better un-
derstand the intricate dependencies in economic systems such as the stock market
[42–45]. Finance tools like risk assessment and portfolio management now rely on
results from complex systems theory [46, 47]. Sociology applies complex system
models to study social networks, opinion dynamics, and even collective decision-
making [48–50]. In traffic, a system influenced by many agents and their individual
behavior, the complex systems approach helps to understand the resulting traffic
flow phenomena and model whole urban environments [51–54]. The list goes on
to epidemiology [55, 56], linguistics[57], neuroscience [58, 59] and many more. Not
least among the common denominators of these systems is non-stationarity. Eco-
nomic relations change, traffic jams from and dissolve again, and even the naming
of biological evolution and climate change contradicts stationarity.

Similar to these systems, wind turbines and farms are also subject to non-
stationarity. The conditions, in which they operate, change constantly on short
and long time scales. Hence, as a collective result from external factors such as
wind speed and internal processes turbine behavior changes as well. Changing the
view from individual to multiple turbines in a wind farm, the collective behavior
is also non-stationary. The availability of high-frequency SCADA data from wind
turbines now facilitates the study of wind turbine systems with complex systems
methods. Thereby, we gain a deeper understanding of the interactions and behav-
iors of the different observables. In this thesis we especially focus on the analysis
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of non-stationarity in wind turbine systems as well as its consequences for other
analyses, such as failure detection. We study cross-correlations between different
available data channels. The analysis of correlation matrices has proven to be a
useful tool in other complex systems like financial markets or traffic [42, 51]. It has
helped to understand stability and non-stationarity in these systems. We therefore
explore how it can help to classify and understand wind turbine behavior without
additional external input. This includes, on the one hand, correlations between dif-
ferent measurements for single turbines and, on the other hand, correlations between
different turbines in one wind farm.

1.1 Outline of this Thesis

We start by establishing some basic knowledge about wind energy and especially
wind turbines in Ch. 2. We present a brief history of wind energy, describe the
sophisticated machines they have become today and discuss their importance. In
Ch. 3 we present the theory needed throughout this thesis. This includes correlation
matrices, whose analysis has been helpful in many other complex and interconnected
systems to characterize the mutual dependencies and identify non-stationarity. We
also look at Principal Component Analysis, a data analysis technique that is closely
connected to the correlation matrices via their eigenvectors. It helps us to under-
stand the meaning of the eigenvectors and their connection to finding and predicting
failures in correlated systems.

In this thesis, we focus on analyzing non-stationarity in high frequency wind
turbine data through the mutual correlations of observables. We first study the
correlation matrices of different observables measured at individual wind turbines.
We characterize their non-stationarity on time scales of several minutes and explore
its influence on other data analysis methods in the field. Furthermore, we show
how the analysis of correlations between all turbines in a farm provides a statistical
assessment of the total interactions between multiple turbines.

The analysis of non-stationarity in the correlation matrices of single turbines is
carried out in Ch. 4. It lays the ground for any subsequent analysis thereof. Apply-
ing a clustering algorithm to a time series of correlation matrices allows the distinc-
tion of multiple distinct clusters. These are shown to be linked to the control system
of the turbine. We characterize their main dependency on the current wind speed.
The clusters represent different operational states of the turbine. In subsequent
chapters, the terms clusters and states are often used somewhat interchangeably.
During our analysis this is no problem as we identify clusters with states, but gen-
erally speaking the term cluster rather refers to the mathematical group while the
term state characterizes the condition of the analyzed system corresponding to the
grouping. The method is shown to be transferable onto multiple wind turbines. It
effectively allows an automatic distinction of different operational states, which can
be used as an input for other analysis methods. Applying stochastic process analysis
in Ch. 5 facilitates an understanding of the state dynamics. For this, we construct a
measure based on correlation matrix distances, which describes the behavior of the
system in an collective way. Langevin drift maps and resulting potential landscapes
for this measure reveal the state transition dynamics. An adaptation of the drift
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estimation process allows us to resolve hysteresis in the dependency of operational
states on wind speed.

After analyzing the non-stationarity directly, we study how it affects other anal-
yses. First, we once again combine the non-stationarity analysis with Langevin
analysis in Ch. 6. Here, we study how Langevin power curve analysis, i.e. stochas-
tic analysis of the produced power output versus wind speed, might be improved by
accounting for the different operational states. Some regions of the Langevin power
curve are shown to exhibit different properties per individual state. The traditional
analysis that does not take the non-stationarity into account, only reveals the av-
erage of these separate behaviors. Second, we study in Ch. 7 how non-stationarity
influences change (or novelty / anomaly / failure) detection in arbitrary correlated
systems. We shift the focus from wind energy to correlated systems in general with
a theoretical and systematic analysis. Based on earlier results for stationary sys-
tems, we carry out a simulation analysis of the effect of non-stationarity on change
detection with Principal Component Analysis. The results clearly show that in a
system with multiple possible states – as we find it for wind turbines in Ch. 4 – the
detectability of small changes is hindered if no knowledge about the non-stationarity
exists. The chapter ends with a traffic system example of how the results transfer
into real data analysis. This concludes the exploration of non-stationarity in single
wind turbine correlation matrices and its effect on existing methods.

In Ch. 8 we return to wind energy systems, but broaden our view to whole
wind farms. The correlations of active power outputs measured at all turbines
in two wind farms are studied. After subtracting the collective behavior, distinct
correlation structures emerge. We show that they depend on wind direction. The
analysis provides a statistical tool to quickly assess the total interaction between
multiple turbines, which arise from complicated processes such as the wake effect.

To conclude this thesis, we summarize and discuss our findings in Ch. 9.
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CHAPTER 2

Wind Energy

This chapter gives a brief introduction into the field of wind energy. We do not
attempt to cover all aspects of this broad topic. Since the statistical analyses per-
formed in this thesis are not primarily specific to wind turbines, it is not necessary
to become familiar with all the details of how wind turbines and farms operate.
However, to understand the results, their interpretation and the motivation behind
the presented analyses, it is important to have a basic grasp of the topic. Hence, the
focus in this chapter lies on familiarizing the reader with the general concept of wind
energy and the used technology as well as highlighting its importance. Thereby, we
aim to pave the way for understanding of the environment in which the present
study is carried out.

2.1 The Wind Resource

Wind energy is an abundant yet highly variable resource. It is subject to both
geographical and temporal fluctuations. The amount of available energy in the
wind is proportional to the cube of the wind speed, making the predictability and
understanding of wind patterns crucial for efficient energy harvesting. We provide
a brief outline of the different aspects based on the more extensive description by
Burton et al. [16].

Geographically, wind energy is influenced by a variety of factors, primarily driven
by the sun’s energy. The sun heats the Earth’s surface unevenly, leading to the
rise of warm air in some areas and the descent of cooler air in others. Coriolis
forces, due to Earth’s rotation, further shape these airflows, resulting in a large-scale
global circulation pattern. This produces different climatic regions with varying
wind conditions. Medium-scale variations exist due to the physical geography of
a region, including the ratio of land to sea, the presence of mountains, and other
landscape features. On a smaller scale, topographical elements such as hills, valleys,
and even man-made structures like buildings or trees can have a substantial impact
on wind speed.
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Temporal wind variability occurs on multiple scales. Over long timescales of years
or decades, wind patterns can shift in ways that are not fully understood, compli-
cating the assessment of potential sites for wind farms. At subannual timescales
seasonal changes are typically predictable, as are weather-induced variations over
the span of days. However, precise prediction for extended periods remains challeng-
ing. Diurnal variations, occurring within a single day, can be strong. These depend
on the location, but are often predictable enough to allow for efficient integration of
wind energy systems into the electricity grid.

On the shortest timescales, wind is turbulent. Turbulence occurs over minutes,
seconds, or even shorter intervals. It is largely caused by friction between the air and
Earth’s surface as well as thermal effects and has a significant impact on the design
and performance of individual wind turbines. Theoretically, the complex processes
behind turbulence could be described by a set of differential equations that take
into account factors like temperature, pressure, density, humidity, and air motion.
However, the process is highly chaotic, i.e. slight variations in initial conditions
might lead to vastly different outcomes. Hence, in practice, statistical descriptions
are often employed instead.

While this topic, and especially turbulence, is of high interest from a statistical
physics point of view, they are not the prime subject of the present study. Burton
et al. [16] and Gasch & Twele [7] are recommendable for further reading on this
topic from a wind energy viewpoint. For the sake of this study the main take away
is that wind turbines operate in a highly variable and stochastic, non-stationary
environment.

2.2 A Brief History of Wind Power

The use of wind energy by humanity dates back to the first sails billowing in the
wind. However, the generation of mechanical power from wind also has a history
that starts with ancient civilizations, such as the Persians [7, 8, 60]. The codex
of Babylonian King Hammurabi, who reigned from 1792 to 1750 BC, mentions the
plan to apply wind power in irrigation projects. However, it is unsure if this was
implemented [61]. Similarly, some researchers claim to have found remains of 3000
years old windmills in Egypt near Alexandria [62]. Later on, in the same location
Heron of Alexandria put down a detailed description of a wind powered organ in the
first century. While this is primarily a toy, the design already features a horizontal
axis windmill [63].

The first practically used windmills, of which we are sure, were Vertical Axis Wind
Turbines (VAWTs) or rather Vertical Axis windmills. They consisted of a vertical
driveshaft with six to twelve rectangular sails [64]. They made their appearance
in Persia on the modern day territories of Iran, Pakistan and Afghanistan between
the 7th and 9th century [8, 65]. Their primary functions were to grind grain and
pump water. Later, an arguably separate development took place in Middle Age Eu-
rope. Here, windmills with a horizontal driveshaft and cloth-covered wooden blades
make their appearance. They were among the first Horizontal Axis Wind Turbines
(HAWTs). Historical documents point to early sunk-post mills in the province of
Brabant (1119) and Normandy (1180). While the dates on these documents are
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subject of uncertainty, we have definite documentation of a windmill dated 1185
in Weedley, Yorkshire [8]. The horizontal driveshaft made yawing necessary. For
sunk-post mills this was realized by mounting the whole wooden building on a post
sunk into the earth around which the building was rotated.

In contrast to water power, wind could be harvested anywhere instead of only
at fast-flowing streams and was not hindered by freezing temperatures. This lead
to a fast adaptation across Europe [66]. As in the Middle East, the mills were
primarily used for milling grain and pumping water. A famous large-scale use of
such pumps are the polders of the Netherlands, where wind power was used to claim
land from the sea [8]. This necessitated the transmission of power to fixed machines
such as scoop wheels for pumping water. With the moving buildings of post mills
this was impractical. The hollow post mill was invented in the early 15th century:
a stationary pyramid shape building on top of which the windmill was fixed via a
hollow post. Through this post ran a vertical shaft powering a machine in the base
building. In the Mediterranean regions the tower windmill became popular. A fixed
stone tower with a wind wheel consisting typically of triangular sails. Rough yawing
was sometimes achieved by manually moving the whole rotor to a different position
of the tower. The need for ever more powerful windmills sparked the development
from hollow post windmill to the typical Dutch windmill: A fixed, stone mill house
with a rotating cap. The rotors typically consisted of four wooden blades with cloth
sails. Many of these are still seen around the countryside in Europe today.

Unsurprisingly with such prominent machines, they became subject to systematic
study as soon as physical-mathematical thinking established itself in the 17th and
18th century [8]. Gottfried Wilhelm Leibniz involved himself in the topic and wrote
about the ”Wind Arts”. In his works he suggested new designs as well as improved
constructions for windmills [67, 68]. After formulating the basic laws of fluid dy-
namics, Daniel Bernoulli soon applied them to improve the design of windmill sails
[8]. The twist of the sails was calculated correctly for the first time by Leonhard
Euler [8, 69]. The scientific interest in windmills was, however, not only theoretical.
Two Scotsmen, Meikle and Lee, invented automatic yawing with a fantail for the
Dutch mill in 1750. In 1792 Meikle again improved the Dutch windmill: Till then
the sailcloth on the blades had to be reefed by hand during storms. Meikle replaced
the sails with hinged shutters connected by a rod. These could be opened and closed
easily. The wooden – and later sheet metal – shutters were sometimes even con-
nected with springs to the surrounding frame, effectively automating the process.
A crude speed and power regulation of the windmill became possible for the first
time [8]. Later systematic aerodynamic experiments in 1821 by Charles Augustin
de Coloumb showed that the new blade design was, however, less efficient than tra-
ditional sailcloth blades [70]. With all these efforts, the Dutch windmill was refined,
so that it became the dominant windmill type in the middle of the 19th century,
when wind power, in general, was an important economic factor with around 200,000
mills in Europe [71]. In 1920 Albert Betz, director of the Aerodynamische Ver-
suchsanstalt Göttingen (Aerodynamical Research Institute Göttingen), which
is today’s Deutsches Zentrum für Luft- und Raumfahrttechnik (DLR,
German Aerospace Center), investigated the rotor blades further. He established
the physics behind wind-energy conservation and found Betz’s law: No machine
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can capture more than 59.3% of the kinetic energy of the wind. Although named
after Betz, it was derived by two more scientists, Lanchester and Joukowsky, of
that era independently [72]. This research, together with advancements in modern
airfoil design from aircraft engineering, lead Major Kurt Bilau to undertake the last
large improvement on the Dutch windmill. He partnered with Betz and developed
the ”Ventikanten” sail [8]. When looking at a Dutch windmill equipped with these
aluminum airfoil blades, it is hard to think of it as a traditional windmill. They
resemble a fusion of modern and traditional technology.

A different development took place on the American continent in the early 19th
century, where rapidly moving settlers and railroad constructions were in need of
lighter windmills to pump water as they moved westward. Additionally, settlers
complained about the first available wind wheels with sailcloth blades, which needed
constant supervision to avoid damage during strong winds. Around 1850 Daniel Hal-
laday invented a solution: the Westernmill [73]. Inspired by safety valves in steam
engines, which were opened by flywheel governors, he designed a self-regulating wind
wheel. The wooden blades were loosely suspended on a ring and connected by a
second movable ring collar. This, in turn, was triggered by flyweights. Further-
more, the wheel was divided into six areas, that could be pitched out of the wind
separately. Covering the whole surface of the wheel with thin blades, very different
aerodynamic characteristics compared to the classical European mills were achieved.
The wheel starts turning at low speeds and turns relatively slow while generating
high torque. Ideal conditions for operating the water pumps. The only problem
remained in the complexity of the machine. Reverend Leonhard R. Wheeler soon
developed a simpler solution [8]. Instead of multiple areas the wind vane responsible
for yawing was suspended with springs and a second fixed vane was installed parallel
to the wheel surface. In strong winds this would cause the whole wheel to turn out
of the wind. These mills soon became popular with the production total adding up
to 6 million by 1930. Wind energy was a mass-produced article for the first time [8].

After the dawn of electricity, it did not take long until wind turbines were adapted
to generate electrical power. While big power plants were soon installed in cities,
the electrification of rural areas was a slow process. It is likely that innovative farm-
ers, for example in America, were among the first to equip their existing windmills
with small generators [8]. The first documented turbine to produce electricity was
installed at the Vienna Electrical Exhibition in 1883 by Josef Friedländer [74]. A
few years later in 1887 James Blyth, an electrical engineering professor in Glasgow,
powered electrical installations at his holiday cottage with a small vertical axis tur-
bine in the garden [75]. A bigger project was undertaken one year later in Cleveland,
Ohio, by Charles F. Brush. His turbine had a 17m rotor, produced up to 12 kW and
was used to charge batteries [76]. A key figure in the transition to modern wind en-
ergy technology was Danish scientist Poul la Cour. First, researching and perfecting
traditional windmills, he then turned to producing electricity with wind turbines.
While his early turbines are designed much like a traditional windmill for simple
use in rural areas, he focused much of his research on aerodynamics. He carried
out wind tunnel experiments, likely the first ones, and founded the Association
of Danish Wind Power Engineers [8, 77]. Even though La Cour’s design was
manufactured industrially by the Lykkegard company and used to power rural
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homes, the interest in wind energy was waning during the early 20th century. The
growth and adoption of fossil fuels, coupled with the advent of steam engines, pushed
wind energy to the margins of energy production. Only when fossil resources be-
came problematic and expensive during World War 1 and 2 did interest arise again.
This led, for example, to the construction of a first really large turbine in 1941 in
the USA: The Smith-Putnam wind turbine with a rotor diameter of 53m and a
rated output of 1250 kW [78]. Other early examples include the 100 kW Balaclava
wind turbine in the USSR in 1931 with a rotor diameter of 30m, the 200 kW 24m
diameter Gedser machine built in 1956 in Denmark, a 1.1MW test turbine in France
with a diameter of 35m and the 1942 MAN-Kleinhenz project with 10MW using a
130m diameter rotor [8, 16]. Fascinating because of its different technology is the
Andrea Enfield 100 kW turbine constructed in the UK during the 1950s. It’s 24m
diameter rotor consisted of hollow blades with openings at the tip. Centrifugal forces
created an air stream through the turbine, which powered an air turbine sitting in
the tower [8]. Some influential designs right to this day were developed by Ulrich
Hütter, who also had a part in founding the Studiengesellschaft Windkraft
e.V. (Research Association Wind Energy) in 1949. In 1958 he started to develop
the W-34, which had a rotor diameter of 34m and a rated power of 100 kW. Here,
the aerodynamically refined airfoil rotor blades were made of advanced fibre-glass
material and connected to the rotor shaft via a teetering hub, which allowed for
compensation of asymmetrical aerodynamic loads [79].

It took the 1970s oil crisis to reignite broad interest in wind power as an alterna-
tive and sustainable energy source. Oil prices were up and Western countries were
made painfully aware of their dependency on imports. Various states provided ex-
tensive funds to researchers and industries for large scale prototype turbines. There
was no consensus yet as to which type of turbine and which number of rotor blades
would be most efficient. This led to very different prototypes all over. In the USA,
NASA, the National Aeronautics and Space Administration, was tasked
with this problem. In cooperation with industrial companies two bladed prototypes
from the 100 kW Mod-0 with a 38m rotor diameter in 1975 to the 2.5MW Mod-5B
with a 97.5m rotor diameter in 1987 were built [8]. The USA also tried vertical axis
turbines. A 34m diameter Darrieus type was built in the Sandia Vertical Axis Test
Facility. A 4MW turbine of the same type was constructed in Canada under the
name Éole [16]. Operation was, however, not promising and the project was decom-
missioned soon after. In Denmark, original government-funded research was focused
on overhauling the 200 kW three-bladed Gedser turbine in cooperative efforts with
NASA. Other three-bladed turbines were erected such as the Tvind turbine with
2000 kW power output and 52m rotor diameter and the Nibe A and B turbines
with 630 kW each and rotor diameters of 40m. In Germany, subsidised work on
wind energy dates back to 1974. The DLR and the FWE, Forschungsinstitut
für Windenergie (Research Institute for Wind Energy), both worked on a study
assessing the possibilities of wind energy. The study finds that the previously con-
structed W-34 turbine with two rotor blades of Ulrich Hütter provided appropiate
technology for modern turbines. Even though the study suggested a smaller test,
politics called for an upscale model of the W-34 with a rotor diameter of 113m and
3MW power output. The project was titled Growian (Große Windkraft-Anlage).
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Many technical problems were encountered and subsequently bad press followed.
However, the final success in wind energy utilization could not be stopped anymore
[8]. Further experimental turbines in Europe followed in the late eighties, but were
of smaller dimensions. Also, the focus had shifted from national programs to coor-
dinated programs of the EU Commission. In the WEGA-I program a large number
of operating wind turbines, among others the so-called Growian 2 with 1.2MW
on Helgoland, were evaluated [80]. Strategic studies were performed concerning the
relationship of turbine size and economic feasibility as well as development in the
MW-range. The subsequent WEGA-II program already focused on commercial pro-
totypes [81]. All in all, the first generations of large prototypes did not meet the
political expectations in terms of economic energy generation. However, they laid
the foundations for modern wind turbines. A scientific and industrial basis was
formed for present-day wind energy technology [8].

Commercial use at that time was restricted to smaller turbines. Denmark was
able to promote small wind turbines for private use. Earlier developments were
picked up again and, by 1990, 2500 turbines with an approximated total of 200MW
had been installed [8]. Some companies such as Vestas, which were formerly active
in different fields, took to building small wind turbines after the original Danish
concepts with three rotor blades and grid-connected induction generators. The
first units were relatively small with only about 60 kW power output and 16m
rotor diameter. Apart from single private turbines, here also for the first time
community installations consisting of multiple turbines owned by groups of people
were built [8]. The first large wind farms were erected in the state of California,
USA around 1980. This was sparked by additional state subsidies for regenerative
energies, which offered large tax benefits to investors. While some of the early farms
were constructed with American built turbines, the more refined Danish turbines
were soon in demand here as well [8].

2.3 Modern Wind Turbines

Today, wind energy has transcended its status as merely an alternative source of
power. It has become a mainstream and indispensable element in the global energy
landscape. The isolated prototypes and small-scale systems have largely been re-
placed by big, grid-connected wind farms for commercial electricity production. The
installed worldwide capacity of wind energy is steadily rising [82]. Advancements in
materials science enable us to build larger and more efficient wind turbines, signifi-
cantly increasing the megawatts generated per installation. Turbines are no longer
restricted to being built on land (onshore), but large wind farms are being built
offshore in the water. Here, more steady and higher wind speeds can be harvested.

Simply spoken, the goal of modern turbine design is to increase the power output
P . Its dependence is well known:

P =
1

2
cP (λ)ρAu

3, (2.1)

where cP is the power coefficient, ρ is the density of air, A is the area swept by
the rotor and u is the wind speed. The power coefficient is dependent on the tip
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Figure 2.1: Global averages of offshore turbine rotor diameters, hub-heights and
capacity. The mean is capacity-weighted, i.e. each installation contributes to this
mean weighted according to its capacity. Figure taken from [17]

speed ratio λ (rotor tip speed divided by wind speed) in such a way that always one
maximum exists [16].

The increase of the power coefficient is one way to make turbines more efficient.
This is achieved by improved aerodynamics and other detailed changes to the tur-
bine. Operation at variable speed ensures that the maximum power coefficient is
maintained over a wide range of wind speeds. However, the Betz limit gives a the-
oretical maximum value of 0.593 of the power coefficient [72, 83]. The basis for this
are conservation of mass and energy. Basically, one cannot extract all energy from
the wind, because this would mean a standstill behind the turbine blocking new
inflow.

Another lever to increase power output is the enlargement of the rotor swept area
A. Doubling the rotor diameter leads to quadrupled power output. Hence, in the
last years turbines have been getting larger and larger. A trend, which is expected
to continue on. In Fig. 2.1, one clearly sees the steady increase in rotor diameter
and subsequently also in capacity and hub-height. Some prototypes of the large
expected turbines are already built [17].

The last possibility to increase power output according to Eq. (2.1) is to utilize
higher wind speeds. Here, a doubling of wind speed even leads to an eight-fold in-
crease in power output. Not surprisingly, considerable efforts are underway to ensure
optimal locations of wind turbines [16]. One obvious development is the increasing
amount of offshore turbines, where less obstacles are present and wind speed is gen-
erally higher. Onshore, the hub-height is not only increased to accommodate larger
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rotors, but also to take advantage of stronger winds in high altitudes.
The following sections provide a brief introduction to modern wind turbine tech-

nology. It is in large parts based on the more detailed overview of Ritschel & Beyer
[23]. Even more extensive descriptions are found, for example, in Hau [8] and Gasch
& Twele [7].

2.3.1 Turbine Types and Geometry

Many of the different concepts for turbines still exist today. VAWTs with different
designs are still being built and used. They have advantages in certain applications.
For example, there is no necessity for wind direction alignment and electrical com-
ponents can easily be housed on ground-level [8]. However, their power coefficients
are usually lower than those of HAWTs. Furthermore, the structural parts needed
to construct a rotor comparable in size to modern HAWTs are large and heavy.
Hence, almost everybody immediately thinks of a typical three-bladed HAWT when
it comes to modern wind turbines. Some turbines with different numbers of rotor
blades are used, but three blades are the lowest number, which realizes the same
inertia along any axis perpendicular to the rotational axis. This makes the rotor
dynamically more balanced than designs with less blades. Designs with less blades
also need higher tip speeds for the same efficiency making them louder and environ-
mentally challenging. Hence, while other forms are present, the HAWT with three
blades is clearly dominant in today’s large wind turbines.

For a HAWT two geometries are typically feasible: the rotor can either be down-
wind or upwind from the tower. While the downwind position has some advantages,
the strong tower shadow is responsible for all commercial turbines to be built with
upwind geometry. However, this results in the blades of the rotor bending towards
the tower due to the wind. The simplest solution to this problem is sufficient horizon-
tal distance between the rotor and the tower. Such a rotor overhang is structurally
challenging and expensive. The prominent solution is therefore to tilt the rotor axis
slightly (approximately 5 degrees) upward from the horizontal axis. Further distance
from the tower is achieved by curving the blades away from the tower, effectively
tilting them about 3 degrees out of the rotor plane.

2.3.2 Structure and Components

A wind turbine consists of many different components working together. Figure 2.2
shows the most frequent ones and their location in a typical HAWT. While some
components are more crucial for the operation of the turbine and others might be
considered rather auxiliary, all are part of different systems that are common in
almost all modern wind turbines. Of course, the overall system is the wind turbine
itself.

Looking at it from the outside, one easily distinguishes tower, nacelle and rotor.
The tower rests on some form of foundation, which can either be a classical one
on land or some more complicated construct for offshore turbines in the water. It
provides the height necessary to hold the rotor, which in turn consists of the blades
connected to the hub. This connection is not static, but rather allows for the turning
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of the rotor blades around their axis via a pitch system. The hub itself is connected
at the main bearing to the nacelle. Here, the rest of the drive train system is hosted:
main shaft, most often a gearbox, the generator and a brake. Grid integration of
the created electrical energy makes further electrical systems, such as converter and
transformer, necessary. Many of these components are temperature controlled by
one or more cooling systems. As with the blade’s pitch system, the mounting of the
whole nacelle on the tower is not static either. A yaw system, consisting of bearing,
drives and brakes, makes sure that the turbine can follow the wind direction.

All these systems are managed by a control system. Here, information is gathered
by sensors and turned into instructions for the other systems by controller hardware
and system. A stand-alone safety system is also in place to ensure stopping of the
turbine in case of danger.

2.3.3 Rotor

Rotor blades are key to aerodynamic efficiency and mechanical robustness in wind
energy systems. They are designed to optimize the power coefficient, but must at
the same time regulate power and generate minimal noise. Aerodynamically, the
blades are akin to aircraft airfoils but adapted for the specific requirements of wind
turbines. These adaptations include a variable angle of attack and chord length
across the blade’s radius. This is necessary as the relative wind speed changes along
the radius due to the rotational speed.

Of course, theoretical designs must make the transition into reality. Here, struc-
tural integrity is paramount. An interplay between modern materials and sophisti-
cated engineering ensures that the blade can handle both static and dynamic loads,
including the vibrations that might arise during operation. The outer shell is made of
sandwich materials. Nowadays the predominant base material is Fiber-Reinforced
Plastic (FRP). For large parts the fibers used are glass. Carbon fibers, though
stronger and more suitable for highly stressed components, are generally more ex-
pensive and thus used sparingly. Internally most blades feature shear webs and spar
caps above them, which create a sort of backbone that imparts stability to the blade.
Here, stronger materials such as carbon fibers are often used.

The trend in rotor blade design leans towards slimmer profiles. This shift to
lower solidity (blade area divided by rotor swept area) has not compromised the
power performance of the blades. It necessitates higher rotational speeds to maintain
efficiency, but this is somewhat desired as the same generator speed is then obtained
with reduced gearbox ratios [16].

Lastly, attaching the blades to the hub is a non-trivial challenge. The blade-to-
hub connection must be able to transfer high mechanical loads securely. This is
usually achieved through a series of threaded rods. Various types of connections,
from laminated bushings to T-bolts, are employed. Given that composite materials
like FRP are considered less reliable than metals like steel, each new blade design
undergoes rigorous testing to ensure its stability under extreme conditions.
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Figure 2.2: Common components in a Horizontal Axis Wind Turbine. Figure taken
from [84]
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2.3.4 Tower

Wind turbines are typically built using one of three main types of towers: tubular
steel towers, lattice towers, and concrete towers. In general, a large diameter of the
tower is desirable as it provides the highest stability. This is especially true at the
bottom of the tower where bending moments are largest. In consequence, many
towers are – at least in parts – conical. The heavy weights and large dimensions
make the tower one of the most expensive components in a wind turbine.

Tubular steel towers are the most widely used and are constructed from steel
plates that are bent and welded together. For onshore turbines however, they are
restricted in size as their parts must be transported on roads. This effectively
limits the onshore hub-height on a tubular steel tower to 140m. No such restriction
exists for offshore construction. Another steel-based option are lattice towers. They
consist of main beams connected by a lattice of thinner steel beams. These towers
are easier to transport and offer flexibility in terms of size, but their assembly is
time-consuming. Moreover, many find them aesthetically unpleasing, limiting their
popularity. Concrete towers offer a third alternative. Their on-site construction
lessens the transport restrictions. However, while concrete comes with the ability to
withstand large pressure loads, it can only endure very limited tensile stress. This
can be overcome by pre-stressing the tower, so that the concrete always remains
under pressure no matter the current bending moment. A popular option for new
large scale installations on land is a hybrid version with a concrete base and a tubular
steel top.

2.3.5 Drive Train and Electrical Generation

Converting the mechanical energy harnessed from the wind to electricity is key for
modern wind turbines. The process of this conversion occurs between the generator’s
rotor and stator. The turning rotor induces voltage in the stator coils mediated via
the magnet field. Two primary types of generators are commonly used in wind
turbines: synchronous and induction (also called asynchronous) machines. Both
produce 3-phase Alternating Current (AC) but differ in their rotor circuitry. The
terms ”synchronous” or ”asynchronous” refer to whether the rotor speed matches
that of the rotating magnetic field in the stator. In synchronous generators, these
speeds are the same, while in asynchronous generators, they differ slightly allowing
more adaptation of the rotational speed.

As the frequency of the produced AC is dependent on the rotational speed, this
speed must be fixed by the frequency of the electrical grid, if the turbine is directly
connected to it. While this was the case in older turbines, modern machines over-
come this constraint by the use of converters. These converters enable variable-speed
operation, allowing the wind turbine to operate at speeds that maximize power out-
put (cf. Sec. 2.3.6). The idea is to use two converters in sequence: the rectifier and
the inverter. In a fully-fed setup the total AC current from the generator is con-
verted into Direct Current (DC) by the rectifier. The inverter then turns it back into
AC but at the grid’s frequency. This allows seamless integration of the generated
electricity into the grid.

Another popular variant is known as the Doubly-Fed Induction Generator (DFIG).
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It also allows for variable speed but requires only a partial-rating (usually about
30%) converter, often making it a more economical choice. The stator of such a gen-
erator is directly connected to the electrical grid, while the rotor current’s frequency
is adjusted independently through the converter. This allows the wind turbine to
operate within a certain speed range, albeit narrower than that of fully-fed systems.
The analyzed turbines in, for example, Ch. 4 are of the DFIG-type.

The final necessary part is a transformer. It increases the voltage from the gener-
ator level (around 700V) to higher voltages suitable for long-distance transmission
(around 30 kV), minimizing energy loss during transportation without the need for
massive cable cross-sections. Converters and transformers are sometimes found at
the base of the wind turbine tower for easier maintenance. However, this necessitates
large cable cross-sections in the tower. The trend therefore leans toward integration
of these components into the nacelle.

2.3.6 Control Systems

Modern wind turbines are highly automated machines, which can handle various
operating conditions on their own. They automatically align with the wind direc-
tions, regulate rotor speed and adjust the pitch angle of the blades. The detailed
control mechanisms are complicated, differ between turbine types and are often kept
secret by the manufacturer. However, the general concepts are the same among all
modern utility-scale turbines.

Below rated power – the maximum power output, for which the turbine is designed
– the aim is to extract as much power from the wind as possible. Here, variable speed
control is a crucial feature that enables optimal power extraction from varying wind
speeds in modern turbines. The fundamental concept relies on the dependency
of the power coefficient cP on the tip speed ratio λ. For optimal performance,
the wind turbine aims to operate at a specific design tip speed ratio λD, where
the power coefficient is at its maximum. To achieve this, the turbine uses torque
control, which involves measuring the rotational speed of the rotor and setting the
generator’s torque accordingly. If the rotor’s rotational speed leads to a tip speed
ratio smaller (higher) than λD, the aerodynamic torque will be higher (lower) than
the generator’s counteracting torque, causing the rotor to speed up (slow down).
This ensures self-regulating optimized power generation. This process is known as
maximum power point tracking. It allows the turbine to follow a pre-defined optimal
power curve, even under variable wind conditions. The system is flexible enough
to allow for minor deviations from this optimal curve due to technical or physical
limitations, such as system inertia or wind turbulence.

Above rated wind speed, i.e. the wind speed at which the rated power can
be produced, it is important to limit the power production to avoid damages. The
common method used in almost all current utility-scale turbines is pitch control. The
blades are rotated along their axis to change the angle of attack of the wind. Thereby,
the local aerodynamic forces, namely lift and drag coefficients, and consequently the
effective power coefficient cp of the rotor are changed. Usually the dynamic control
of the pitch angle is based on the rotor speed. The deviation between measured rotor
speed and the desired rated rotor speed are used to calculate the necessary changes
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in pitch angle. This allows the system to keep the produced power almost constant.
Another – nowadays less used – concept to limit the power output is through stall
control. Here, the blade’s design favors stall effects, i.e. the onset of turbulence at
the rotor blades, at high wind speeds. While this effectively reduces the torque, the
thrust is not decreased. Hence, this control approach is unsuited for large turbines
as their structures would become too expensive.

As mentioned above, the individual control of a turbine usually employs more
complex variants of these basic ideas. Additionally, for an individual turbine design
slight changes to this general control concept are always possible. For example, in
Ch. 4 we show that the analyzed turbine has an intermediate state, where power
still increases with higher wind speeds, but the rotation is kept constant for optimal
performance of the generator. Furthermore, the objective of a controller might
be changed in certain situations. For example, restrictions in the electricity grid
sometimes make curtailment, i.e. the reduction of the maximum power produced
by a turbine, necessary.

2.3.7 Wind Farms

Today, many turbines do not operate on their own, but in so called farms, which
consist of many turbines. This allows operation of multiple turbines with only one
connection into the main electrical grid. Furthermore, maintenance measures can
be pooled, which reduces costs.

However, many aspects must be considered when designing a wind farm, among
them also the complicated task of wind farm layout [85]. Each turbine influences the
wind stream downwind of itself creating wakes with lesser wind speeds. If another
turbine is hit by such a wake, its power production is reduced. Therefore, the setup
of turbines inside a farm must be carefully considered, even using very detailed fluid
dynamics simulations to find the best layout considering dominant wind directions
[24, 86]. Furthermore, farm control strategies are being researched. Here, the goal is
not to maximize power output of individual turbines, but often to maximize power
output from the total farm [22]. This can be done by slightly rotating the turbines
in such a way that their wakes steer clear of other turbines, but this of course means
that they are not perfectly aligned with the wind direction. Other objectives of farm
control include minimizing mechanical loads and complying with grid requirements
[87].

2.3.8 New Concepts

New concepts and technologies are still being developed to improve efficiency, re-
duce costs, and address specific challenges in wind power generation. Airborne wind
energy involves using tethered flying devices to capture wind energy at higher al-
titudes. Offshore floating concepts explore the use of floating platforms to harness
wind energy in deep waters. Smart rotors incorporate sensors and actuators to op-
timize the performance of wind turbine blades. Unconventional power transmission
systems aim to improve the efficiency of transmitting power from wind turbines
to the grid. Multi-rotor turbines utilize multiple smaller rotors instead of a single
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Figure 2.3: The worldwide change in primary energy consumption by fuel. Figure
taken from [10]

large rotor to increase efficiency and reduce loads. Alternative support structures
explore new designs and materials for wind turbine towers and foundations. Innova-
tive blade manufacturing techniques, such as automated manufacturing and additive
3D printing, offer cost reduction and improved performance. Wind-induced energy
harvesting devices capture energy from aeroelastic phenomena, such as vibrations
and flutter, to generate electricity. These technologies are at various stages of de-
velopment with interesting future outlooks. Most still require further research and
funding to realize their full potential. For a more detailed review on the prospects
of these new technologies we refer to Watson et al. [88].

2.4 Significance of Renewable Energy

In recent years the reality of climate change has become ever more apparent with
an increasing amount of natural disasters and weather extremes. Science has proven
humanity’s influence in this [9, 38]. Thus, the focus on renewable sources of energy
has surged, becoming a global priority amid an ever-growing global demand for
energy. Already 174 countries have set renewable energy targets, with 37 aiming for
100% renewable energy in their electricity [12].

While global primary energy consumption saw a modest 1% increase in 2022, with
fossil fuels accounting for 82% of primary energy consumption [10], the data in Fig.
2.3 clearly shows that the increase in energy consumption is steady (2020 marking
the exception caused by the COVID-19 pandemic) with Renewables gaining more
shares. Green energy is making gradual but significant inroads, reaching a 14.2%
share in the primary energy sector in 2022 [10].
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Focusing on electrical power generation, the system is undergoing similar changes.
Global electricity generation rose by 2.3% in 2022, with wind and solar achieving
a record high with a 12% share in global electricity generation [10]. This upswing
in renewable energy is further supported by the will to become independent from
fossil imports in many countries and the increase in their prices. Natural gas prices
reached record levels in Europe and the Asia Pacific regions in 2022 [10]. Renewable
energy technologies, particularly solar and wind, are scaling up at an impressive
pace. In 2021 84% of total capacity additions to worldwide electricity production
were from Renewables, emphasizing their increasing importance [89]. The following
year brought newly installed renewable energy capacity of 348GW, another 13%
more than in 2021. About 70% and 22% of this new capacity came from solar and
wind power, respectively [12]. Already in 2020 eleven countries met over 20% of
their electricity demands through wind energy and photovoltaics [90]. Globally, the
share of of Renewables in the energy mix reached 12% in 2022 while some countries
exceed this by far such as Denmark with 61%, Uruguay with 36% or Germany with
32% [12]. Two years earlier during the COVID-19 pandemic Germany produced
more electricity from renewable sources (44%) than from all fossil energy sources
(40%) for the first time [90]. Here, wind power is the leading electricity producer at
27% of the electricity mix, 78% of which was offshore wind [90]. Globally, the total
wind energy capacity in 2022 stood at 899GW, with Europe hosting 252GW and
Germany taking the lead in Europe with 66GW. The recorded growth of electricity
generation by wind power in 2022 was 13.5% [10].

Despite these positive trends, the challenge to achieve a sustainable energy future
is daunting. The International Energy Agency’s Net-Zero plan by 2050 demands
increases in the annually installed capacity [91]. To achieve net-zero emissions by
2050, newly installed renewable capacity needs to be 2.5 times larger by 2030 than
it was in 2022. Specifically for wind power, annual additions must increase by 3.7
times by then.

In conclusion, given the urgent need to reduce greenhouse gas emissions in the
face of climate change, wind energy stands out as one important player among other
renewable energy sources in shaping a sustainable future. Wind turbines have al-
ready become a significant source of renewable energy[92], but further improvement
and research of wind energy technology is paramount for meeting global energy
demands in a sustainable manner [13, 14].

2.5 Operational Challenges

While the Levelized Cost Of Energy (LCOE) of eletricity from wind energy is com-
petitive [93], operation and maintenance of wind turbines is challenging. Maldonado-
Correa et al. [18] list various authors claiming that Operation and Maintenance
(O&M) costs account for 20-35% of the total expenditure for offshore wind farms.
The corresponding numbers are lower but still significant (approx. 10-15 %) for
onshore turbines [21, 94]. Thus, the advantage of steady and high wind speeds at
offshore locations comes at the cost of harsh environmental conditions and increased
difficulties for O&M [95]. For example, offshore turbines cannot be reached every
day for maintenance measures due to unsuitable weather conditions.
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Not surprisingly, among the many topics to be studied in the wind turbine field
[13, 14], O&M is on focus for researchers and industry alike. They undertake in-
creased efforts to effectively optimize O&M procedures for wind turbines and thereby
reduce this cost factor [96–101]. Improved understanding of wind turbine behavior
is key to achieving this goal. Data driven methods are developed to control prob-
lems such as, for example, yaw misalignment or under-performance [102, 103]. In
general, increasing the reliability of turbines is important [104]. However, failures
or problems will always occur. Hence, another prominent topic is the prediction of
failures in wind turbines with sufficient lead time to react and carry out preemptive
maintenance instead of correctional maintenance. This reduces not only the money
lost in turbine downtime, but also enables cheaper maintenance. The idea is to op-
timize assets by replacing components exactly when needed [105]. The wind energy
branch follows a general trend in most industries, aiming at moving from scheduled
maintenance towards condition-based maintenance to reduce costs and efforts [106].

2.6 WiSAbigdata Project

Clearly, improving operation and maintenance of wind turbines through the use of
available operational data is critical in optimizing the performance of wind energy
systems. The WiSAbigdata (Wind farm virtual Site Assistant for O&M decision
support — advanced methods for big data analysis) project, in which this study
was carried out, tackles this problem. Researchers and industry have partnered up
to develop an assistance system based on enhanced data analysis methods. The goal
is to leverage the data potential with existing and new methods to provide useful
information for the daily operations of wind farms. One focus of the project lies
on predictive analysis. This means the capability to predict turbine behavior – and
especially turbine failures and faults – before they happen. If such a system could be
reliably employed, it would strongly benefit the planning of maintenance activities.

Overall, the project aims at a better and thorough understanding of the (statisti-
cal) information contained in high frequency wind turbine data. Various approaches
to big data analysis are tested by an interdisciplinary team and directly evaluated
with industry.

2.7 Data

A plethora of data are gathered in modern wind turbines. A Supervisory Control
and Data Acquisition (SCADA) system is installed in all major wind turbines since
commission. It is comprised of many sensors gathering various information from
wind speed to electrical measurements as well as component temperatures. The
exact set of observables contained in the SCADA data are turbine dependent, but
Tab. 2.1 lists common data channels. Usually, the set of observables is primarily
defined by what is necessary for turbine control. However, singular turbines, e.g. for
research purposes, can be equipped with many further sensors [107]. Additionally,
many operators choose to install Condition Monitoring Systems (CMS) in their
turbines. These are typically multiple vibration sensors placed on different parts of
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the turbine. Their signals are used to monitor the turbine and, if possible, predict
failures. However, such additional sensors have their own inherent costs, which can
be problematic if the goal is to reduce the O&M costs. They will not be considered
in this study, but we recommend Stetco et. al [108] for a review on approaches using
such CMS data.

The different data serve multiple purposes. In operation they are necessary for
the controller of the wind turbine to ensure optimal operating conditions (cf. Sec.
2.3.6). On a larger scale, aggregated data from multiple turbines can be used to
make informed decisions about energy storage and grid distribution [109]. Further-
more, remote monitoring and assessment of the turbine becomes possible. Recorded
historical data are used to analyze and optimize the operation of wind turbines.

While many observables are measured with high frequency, some even multiple
times in one second, the recorded historical SCADA data is usually averaged over
10 minute intervals. Some further statistical measures, such as standard deviation
in the 10 minute interval, are often recorded as well. Many developed methods try
to employ them for different types of analysis. The reader is referred to Maldonado-
Correa et al.[18] and Tautz-Weinert et al.[110] for reviews. Common methodolo-
gies include neural networks, physical models and statistical analysis [99, 111–118].
These authors also raise two important points: First, it is often complicated or
impossible to reliably label events in the data due to scarcity of available log and
maintenance data. Second, Ulmer et al. [98], who apply convolutional neural net-
works for failure detection, mention that the 10 minute averaging process naturally
leads to a loss of information. This effect is specifically studied by Beretta et al.
[119]. Some researchers have tried to avoid these problems by using simulated high
frequency data [116, 120].

For this study we have, as part of the WiSAbigdata project, access to high fre-
quency SCADA data from three industry partners. It was immediately clear that,
while all are SCADA data, they are very different. The recorded observables, the
recording frequency, the accuracy of measurements and the data format are inhomo-
geneous. Sometimes the recording frequency is even different within one dataset. For
example, temperatures, which are considered to be rather slowly changing observ-
ables, are measured a lot less frequently than other observables. The inhomogeneity
between different data sets becomes even more pronounced for the alarm logs and
maintenance data, which were also provided by the industry partners. These consist
of automated alarms as well as service reports written by personnel. Standardization
of operational and maintenance data would greatly improve usability in science and
allow easier testing of developed methods. We employed a semi-automatic process
to transform the service data into a combination of Zustands-Ereignis-Ursachen-
Schlüssel (Condition-Event-Cause-Key – ZEUS) [121] and Reference Designation
System for Power Plants (RDS-PP) [122]. The ZEUS-Code allows us to understand
how the state of the turbine (or a single component) is influenced and what mainte-
nance measure was carried out. The RDS-PP-Code specifies which component was
afflicted.

While this event data is present, its usage is problematic. First, the translation
into the ZEUS- and RDS-PP-Code is not always sufficiently clear. Some service
reports do not contain the necessary information for this sort of classification. Sec-
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Table 2.1: Common SCADA data observables as stated by Tautz & Weinert [110]

Environmental
Electrical
characteristics

Part
temperatures

Control
variables

wind speed active power gearbox bearing pitch angle

wind direction power factor
gearbox
lubricant oil

yaw angle

ambient
temperature

reactive power
generator
winding

rotor shaft
speed

nacelle
temperature

generator
voltages

main bearing generator speed

generator phase
current

rotor shaft
fan speed /
status

voltage
frequency

generator shaft
cooling pump
status

generator slip
ring

number of yaw
movements

inverter phase
set pitch angle /
deviation

converter
cooling water

number of starts
/ stops

transformer
phase

operational
status code

hub controller

top controller

converter
controller

grid busbar

ond, the present data are of limited use in establishing when exactly a turbine is
faulty or not. One easily understood example for this problem is the following: The
replacement of a subsystem indicates that this component was faulty, but it is en-
tirely unclear since when the component showed faulty behavior. Hence, even with
operator provided event data, the ground truth needed for the development and
evaluation of analysis methods – especially failure detection and prediction methods
– is hard to establish. The service documentation kept by the industry rather cover
economic points than those needed from a research viewpoint. Such problems are
also identified by Tavner [94].

A detailed description of the explicitly used data in any analysis is given in the
corresponding chapters.
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CHAPTER 3

General Theory

While specific theory and calculations are introduced in the chapters when needed,
some general concepts are useful for the understanding of all chapters and their
connections in this thesis. We introduce these in this chapter.

First, we will discuss the way our data is structured. Then, the Pearson correla-
tion, as a measure for the linear dependency of two different observables, is intro-
duced. It will play a central role in this thesis, especially in the form of correlation
matrices, which measure multiple dependencies between observables. Furthermore,
we introduce the eigenvalue analysis of these matrices and the connection to Prin-
cipal Component Analysis (PCA).

3.1 Time Series Data

The data used for analysis in this thesis are in the form of time series. Such data
consists of a sequence of numerical data points indexed in successive order. Time
series data can arise from a wide range of scientific disciplines such as physics, eco-
nomics, biology, and engineering, among others. The main objective of their analysis
is to uncover the underlying structure of the data, which could consist of trend com-
ponents, inter-dependencies, seasonality, and noise. The mathematical framework
for analyzing time series often involves stochastic processes, statistical tests, corre-
lations and various forms of regression models. Understanding the characteristics of
a time series is critical for both descriptive and predictive analysis of many systems.
[123]

For this thesis, an observable (or signal) k, for example wind speed or active
power output, is measured at multiple discrete times t = 1, . . . , Tend. We assume
that the times are given as unit free steps. This is possible as the interval between
measurements is constant. With multiple measured signals k = 1, . . . , K each time
series is denoted as a sequence of data points

Xk(t), k = 1, . . . , K , t = 1, . . . , Tend. (3.1)
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To analyze this data in an aggregated form, we arrange multiple time series into
rectangular K × Tend data matrices

X =


X1(1) . . . X1(Tend)

...
...

Xk(1)
. . . Xk(Tend)

...
...

XK(1) . . . XK(Tend)

 , (3.2)

where each row is the time series of observable k.
Quite often the different time series consist of values that range on inhomogeneous

scales. This makes an objective comparison between different signals k difficult. To
circumvent this problem it is useful to normalize each time series to a mean value
of zero and a standard deviation of one. This allows us to treat all observables on
equal footing. The mean value of a time series is calculated as

µk =
1

Tend

Tend∑
t=1

Xk(t) (3.3)

and the standard deviation as

σk =

√√√√ 1

Tend

Tend∑
t=1

(Xk(t)− µk)2 . (3.4)

Then, the normalized time series Mk(t) are given by

Mk(t) =
Xk(t)− µk

σk

, k = 1, . . . , K. (3.5)

Analogous to Eq. (3.2) we define the normalized data matrix

M =


M1(1) . . . M1(Tend)

...
...

Mk(1)
. . . Mk(Tend)

...
...

MK(1) . . . MK(Tend)

 . (3.6)

While for Chs. 4 to 6 the different k denote different measurements at one
turbine, in Ch. 8 they differentiate between turbines in one wind farm. In the
general analysis of an arbitrary system in Ch. 7 no explicit meaning is given to
k except for the presented traffic data example, where k denotes different street
sections.

3.2 Pearson Correlation Matrices

For the analysis of multiple time series, i.e. K > 1, the mutual dependencies
represent essential information. One linear measure of such dependencies is the
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Pearson correlation coefficient. It provides information on the relationship between
different observables and plays a central role in this thesis. Using the normalized
time series for two observables k and l it is defined as

Ckl =
1

Tend

Tend∑
t=1

Mk(t)Ml(t). (3.7)

The values of Ckl lie in the range between −1 and +1. Positive values indicate that
the two observables tend to move in the same direction, whereas negative values in-
dicate that they tend to move in opposite directions. If Ckl = 1, the two time series
of observables k and l are completely correlated, i.e. they are identical under nor-
malization. On the other hand, Ckl = −1 indicates complete anti-correlation. Two
time series are uncorrelated (in terms of the Pearson correlation), if the coefficient
is equal to zero.

An aggregated view onto multiple time series is provided by the Pearson correla-
tion matrix C. The elements of the matrix are the Pearson correlation coefficients
Ckl. It can be calculated using the normalized K × Tend data matrices defined in
Eq. (3.6). The time average of Eq. (3.7) is realized as a matrix product

C =
1

Tend

MM †, (3.8)

where M † denotes the transpose of M . This K×K matrix C is positive-semidefinite
and real symmetric. It contains the correlation coefficients between all K signals
and the diagonal values are one by definition.

Another closely related measure is the covariance matrix Σ. Instead of the corre-
lation coefficients it contains the variances of each time series on the diagonal and
the covariances

Σkl =
1

Tend

Tend∑
t=1

Xk(t)Xl(t)− µkµl (3.9)

in the off-diagonal elements. It is related to the correlation matrix by

Σ = σCσ, (3.10)

where σ = diag(σ1, . . . , σK) is the diagonal matrix of the standard deviations.
Figures 3.1 and 3.2 contain examples of correlation matrices. In Fig. 3.1 we see

matrices calculated for one wind turbine over time periods of 30 minutes. Figure
3.2 shows correlations between all wind turbines in a wind farm for the measured
active power output over time periods of 12 hours.

Sometimes the use of the Pearson correlation matrix is problematic. Its entries
are averaged over times, which might include trends or other variations. This non-
stationarity could lead to estimation errors. In general, many complex systems, for
example financial markets [42] and traffic systems [51], exhibit non-stationarity in
the correlation matrix. With the varying outside conditions and different control
strategies it is plausible to expect the correlations of wind turbine SCADA data to be
non-stationary as well. This fact is also already visible in the example correlation
matrices in Figs. 3.1 and 3.2. One way to deal with the average over such non-
stationarities is to calculate the correlation matrices in intervals instead of for the
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Figure 3.1: Two example correlation matrices for one turbine with multiple mea-
sured signals. The signals are the same on the x- and y-axis: generated active power
(ActivePower), generated current (CurrentL1), rotation per minute of the rotor (Ro-
torRPM), rotation per minute of the high speed shaft at the generator and wind
speed (WindSpeed). The value of the matrix entries, i.e. the Pearson correlation
coefficients, is indicated by the color. Each matrix is calculated over the indicated
30 minute interval.
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Figure 3.2: Two example correlation matrices for the active power output of all
turbines in the Thanet wind farm. The x- and y-axis are the same and display
the different turbines. We list only the first (01) turbine of each row (indicated by
a letters A-G) for readability. The value of the matrix entries, i.e. the Pearson
correlation coefficients, is indicated by the color. Each matrix is calculated over the
indicated half day interval.
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whole time series. This also allows us to study how the correlation matrix changes
in time. We refer to these intervals as epochs and label them with the new time
variable τ equal to the starting time of the epoch. Their length is denoted by T .
The total time series is then divided into Tend/T non-overlapping intervals with a
possibly occurring rest at the end being omitted. For each of these intervals, the
normalization is done separately with mean value µ(τ) and σ(τ) calculated during
the epoch. This allows us to calculate a time series of correlation matrices

C(τ), τ = 1, T + 1, 2T + 1, . . . , (Tend/T − 1)T + 1. (3.11)

The correlation coefficients Ckl(τ) in these matrices then signify the correlation
strength between the observables k and l only in the epoch τ , i.e. for time t ≥ τ
and t < τ + T . We analyze the non-stationarity of wind turbine and wind farm
correlation matrices in chapters 4, 5 and 8.

When choosing the length T of the epochs, we have to compromise. To best
distinguish non-stationarities in the correlation structure of a system, the epoch
length should be short. As wind changes constantly, even on the time scale of
seconds and minutes, this holds true for wind turbine data. However, the finite
length of the time series during an epoch introduces measurement noise to the
correlation coefficients. Considering K different time series, the correlation matrix
contains K(K − 1)/2 entries. They are calculated from K time series of length T .
With smaller T the calculated correlations become noisy. If T is smaller than K
the correlation matrix will be singular. In conclusion, there is a trade-off between
choosing T large enough to keep noise at low levels and small enough to resolve
non-stationarities. Such compromises are common when dealing with correlation
matrix time series [43, 124].

Another important fact to keep in mind, when analyzing Pearson correlation
matrices, is that they only contain information on linear dependencies. In fact, it is
a good correlation measure only for elliptical distributions such as the multivariate
normal distribution. A common measure, that also includes non-linear dependencies
is Spearman’s ranked correlation. However, while non-linear dependencies definitely
exist in wind turbine data, for example the power is dependent on the third power
of wind speed according to Eq. (2.1), we find that the Pearson correlation measure
reveals much about the existing dependencies and yields good results during our
analyses. Nonetheless, some calculations from Ch. 4 are repeated with Spearman’s
ranked correlation in App. B, but no significant differences are found.

3.3 Eigenvalue Analysis

In the context of correlation matrices, it is often useful to analyze their eigenvalues
λj, j = 1, . . . , K and eigenvectors vj, j = 1, . . . , K. It is important to note that the
numbering is not in the same order, i.e. j ̸= k. Only the number of possible values
K is equal for both. The eigenvalues and eigenvectors are defined via

Cvj = λjvj, (3.12)

i.e. an eigenvector of C does not change its direction under multiplication with C,
only its length is modified by the corresponding eigenvalue.
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As the correlation matrix is real symmetric and positive-semidefinite, the eigen-
values must be non-negative real numbers. Therefore, we can sort them and assume
λ1 ≥ · · · ≥ λK . The sum of eigenvalues is

K∑
j=1

λj = K. (3.13)

This is because the trace of a matrix (sum of its diagonal elements) remains in-
variant under a change of basis, and the eigenvalues represent the variances of the
observables in the new basis defined by the eigenvectors. Employing the eigenvec-
tors as a basis is possible as they must be orthogonal as long as the eigenvalues are
non-degenerate, because C is real symmetric. Furthermore, they can be normalized
to length one, because eigenvectors are only defined up to a multiplicative factor.
Hence, we can assume that the set of vj, j = 1, . . . , K is orthonormal:

vT
i vj =

{
0, if i ̸= j

1, if i = j.
(3.14)

This poses an obvious and interesting question: Does the basis defined by the eigen-
vectors have a special meaning?

In a classical physics interpretation, the eigenvalues of the correlation matrix can
be thought of as revealing the ’modes’ of the system. In the context of vibrational
modes of a molecule, for example, the eigenvectors indicate the direction and manner
in which atoms vibrate, and the eigenvalues provide the associated energy or strength
of that vibration. From this example, we already learn one important fact about the
eigenvector basis: The size of the eigenvalue indicates the importance or strength of
the behavior identified by the corresponding eigenvector for a given system.

Now, we look at what the eigenvectors and eigenvalues would look like in a ran-
dom system, i.e. one where all mutual dependencies are random and not determined
by systematic coupling of any sort. In such a system, we do not expect any dom-
inant behaviors of the total system. We find such examples in Random Matrix
Theory (RMT). RMT is the study of large matrices, i.e. large K, with random
variables as entries. After such matrices were introduced by by John Wishart in
multivariate statistics in 1928 [125], RMT became popular in nuclear physics when
Eugene Wigner used it to explain the energy levels of complex nuclei in the 1950s
[126]. Nowadays, RMT is also applied in many other scientific disciplines, for exam-
ple quantum physics [127, 128] and statistics [129]. In finance, as an example of a
complex system, RMT has become an important tool [44, 130, 131]. In the context
of our question about the meaning of the eigenvector basis, we can learn from RMT
what the eigenvalue density would look like, if our system was random. Then, for

large K and Tend the density of eigenvalues of a correlation matrix C =
1

Tend

AA†

calculated from randomK×Tend data matrices A with Gaussian-distributed random
entries is given by the Marchenko-Pastur distribution

ρ(λ) =
β

2πσ2

√
(λ+ − λ)(λ− λ−)

λ
, (3.15)
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where β = Tend/K, σ2 is the variance of the random entries in A and λ± = σ2(β− 1
2 ±

1)2 [132]. Hence, for a random system, the eigenvalues would all lie in a bulk of small
values. In real world complex systems, for example finance, we often find that such
a bulk exists, but that there are some eigenvalues which are significantly larger.
Sticking with our finance example, we usually observe one very large eigenvalue,
which is connected to an eigenvector with homogeneous entries, that fluctuate only
little. This describes a behavior, where all measured observables – usually price
changes in finance – tend to move in the same direction. In finance this is a collective
market mode [133, 134]. For wind farms we find in Ch. 8 that such a farm mode
also exists, when comparing measured active power values from all turbines in a
wind farm. Other large eigenvalues, i.e. larger than λ+, which are smaller than the
market eigenvalue, usually signify branches in financial stocks. For general systems,
this translates to groups of observables that behave similarly.

The influence of group correlated behavior on the eigenvalues and eigenvectors
can be analyzed by employing factor models. Guhr & Kälber [135] employed a 1-
factor model to construct time series, which are purely group correlated, i.e. their
correlation matrix has non-zero values only on diagonal blocks:

C =



b1 b1

b1 b2

b3

b3 b3 b3

b3 b3 b3

b3 b3 b3
...


, with white indicating zero and black non-zero.

(3.16)
Correlations exist within groups of observables, but no correlations exist outside
of these groups in the limit of large Tend. Here, they find that for each group in
the observables one large eigenvalue exists with a value proportional to the size
of the group. The matching eigenvector has homogeneous values for all entries
corresponding to the group and zero otherwise. Further eigenvectors with small
eigenvalues then represent relative motion inside of these groups.

In summary, a correlated system of large but finite T often shows two types of
eigenvalues and eigenvectors. Large eigenvalues that, together with the correspond-
ing eigenvectors, represent common behavioral patterns of the observables and small
eigenvalues that represent (random) fluctuations and less common behavioral pat-
terns. If one’s interest lies with the detection of anomalies or failures in a system, it
might be that the small eigenvalues become the important ones. The separation of
common and uncommon behavior is also exploited in Principal Component Analy-
sis (PCA), which provides us with another viewpoint on the meaning of correlation
matrix eigenvalues and eigenvectors in the following section.
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3.4 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used tool in the context of statis-
tics, machine learning and data science. Its primary objective is dimensionality
reduction and feature extraction. It was first developed by Karl Pearson in 1901
[136] – a first clue to its close connection to the Pearson correlation matrix. In the
1930s Harold Hotelling developed it independently and named it [137, 138]. Today,
it is a common technique in many disciplines [139, 140].

The basic idea is to transform a set of possibly correlated observables into a new
set of observables called the principal components. These new observables are cho-
sen in such a way that the first one is the direction of maximum variance in the
K-dimensional data set. The second one is chosen the same way with the additional
condition that it must be orthogonal to the first one. This continues on, so that each
new component lies in the direction of maximum variance under the condition of
orthogonality with all previously chosen components. We can imagine PCA as the
fitting of a K-dimensional ellipsoid to the data set comprised of our K observables.
The axes of the ellipsoid then form the principal components. In mathematical terms
this is equivalent to the calculation of the eigenvectors of the covariance matrix, if
the data is centralized to mean value zero in each observable before the fitting of
the ellipsoid. If the data are also normalized to one before the fitting, the principal
components are equivalent to the eigenvectors of the correlation matrix. Both ap-
proaches are common and the choice depends on the analyzed observables. As the
different measurements at wind turbines range on very different scales, we use the
second, correlation matrix related approach, unless stated otherwise.

The first principal component is the same as the eigenvector to the largest eigen-
value. As mentioned in Sec. 3.3, the eigenvalues represent the variance of the data
along the directions specified by the eigenvectors. Therefore, due to λ1 ≥ · · · ≥ λK

the sorting of principal components and eigenvectors of the correlation matrix is
equivalent.

When performing PCA, the original data is projected into the basis of the prin-
cipal components. Each normalized data point

M (t) =


M1(t)

...
Mk(t)

...
MK(t)

 , (3.17)

which is a single column of the normalized data matrix in Eq. (3.6), is projected
onto the eigenvectors vj:

M ′
j(t) = vT

j M (t), j = 1, . . . , K. (3.18)

If one then keeps all K projections, no information is lost and we have simply per-
formed a coordinate transformation into the basis of the eigenvectors. However,
the interpretation in PCA is that axes with large variances represent the normal,
dominant behavior of the system. Hence, for dimensionality reduction not all K
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projections are kept, but only the first few. The number of kept dimensions is usu-
ally based on the total explained variance, i.e. one chooses the number of principal
components that together explain, for example, 95% of the total variance in the
data. Here, we have a more direct interpretation of the eigenvectors of the correla-
tion matrix, which is nonetheless very similar to the one we found in the previous
section. Eigenvectors with large eigenvalues represent normal, dominant behavior
in a correlated system. In consequence, eigenvectors with small eigenvalues, referred
to as minor components, represent abnormal, non-occurring behavior.

We have already discussed that the correlation matrix is often non-stationary
in complex systems in Sec. 3.2. Hence, its eigenvectors must also change in time.
Therefore, in systems with non-stationarity one has to be careful when applying
PCA. This serves as a good example of how non-stationarity influences a common
method, which usually assumes stationarity. After characterizing non-stationarity
in wind turbines, we will study how knowledge about it improves stochastic process
analysis and PCA to some extent in Ch. 6 and Ch. 7, respectively.

3.4.1 Variants

Many variants of PCA exist. They were developed to tackle different specific prob-
lems. Their detailed understanding is not necessary for this thesis, but some better
known ones include static and dynamic robust PCA [141, 142], kernel PCA [143],
dynamic kernel PCA [144], moving window PCA [145], recursive PCA [146] and
incremental PCA [147]. The latter three tackle the important problem of non-
stationarity. We refer the reader to the review by Ketelaere et al. [148] for an
introduction to PCA on time-dependent data. A performance comparison for sys-
tem monitoring was undertaken by Rato et al. [149].

3.4.2 Change Detection with Principal Components

An important use case for PCA is novelty, change or failure detection, which is also
one of the goals of the WiSAbigdata project, see Sec. 2.6. PCA might be applied in
this context for its original purpose: dimensionality reduction in a data set before
the application of an arbitrary other method. It might also be applied more directly.
The original, non-changed data is projected into the system of principal components
to calibrate what values are normal for these projections. New data is then projected
and compared to the normal space using, for example, Hotelling T 2-statistics or the
sum of squared prediction error together with a threshold [116, 150]. It has been
applied to change detection in many different systems, including wind turbines [117],
wastewater treatment plants [151], healthcare institutions [152] and traffic [153]. An
important question is which of the principal components to look at. For the use-
case of dimensionality reduction one generally employs a projection onto the major
components [140]. However, the residual subspace, i.e. the minor components, is
often most useful for outlier and change detection [154–156]. This underlines our
earlier conclusion that abnormal behavior is represented in the minor components.
Shyu et al. [157] proposed a method combining the components relating to the
largest and the smallest eigenvalues for novelty detection. Tveten [158] studied the
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sensitivity of different principal components in a more structured and complete way
confirming the high sensitivity of minor components to changes. In Ch. 7 we analyze
how the presence of non-stationarity in a system influences this sensitivity.

36



37



38



CHAPTER 4

Operational States in Wind Turbine Correlation Matrices

A big challenge for wind turbine analysis and monitoring is presented by the varying
external (e.g. wind speed, temperature) and internal (e.g. turbine control, curtail-
ment) operation conditions. We studied this in paper [1], of which this chapter is
a modified version. Non-stationarity is important also in many applications aside
from wind turbines [147, 159–163]. We show in Ch. 7 that non-stationarity in corre-
lated systems is important for the detection of anomalies. For wind turbines, it has
been shown to have an effect on failure detection [164, 165]. Furthermore, different
states in frequency data measured by a CMS system have been identified due to
operational regimes [166]. Different behavior of the SCADA data for such regimes is
to be expected also due to the turbine control mechanisms [96]. In general, complex
systems containing many different observables, mechanisms and external influences
show non-stationarity in their cross-correlations. The stability of correlations in
financial stock market data was analyzed, for example, by Buccheri et al. [167].
Münnix et al. [42] shows that the correlation matrix of this data inhabits different
states over time by using cluster analysis. The stability of these states was further
analyzed by Rinn et al. [168] and Stepanov et al. [169]. Similar studies were also
done for traffic data [51]. Some general correlation analysis for wind turbine data
was carried out by Braun et al. [170].

In this chapter, we aim to quantify the non-stationarity in correlation matrices
for high frequency SCADA data from real wind turbines during normal operations.
To this end, we apply cluster analysis to the correlation matrices of different SCADA
signals calculated over 30 minute time intervals. Distinct states with significantly
different structures in the correlations matrices are found. We show that the prime
cause for this is the turbine’s own control mechanism. This allows us to develop a
criterion based on wind speed to separate the cluster states. Such an automated
distinction would, in principle, enable the usage of multiple normal states in ap-
plications via pre-processing. It is an important step towards accounting for the
non-stationarity due to the operational states in an analysis such as failure detec-
tion with principal components.
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This chapter is structured as follows: In Sec. 4.1 we will introduce the dataset we
work with before moving on to the theoretical background of clustering correlation
matrices in Sec. 4.2. Then we will present our clustering results for a single turbine
in Sec. 4.3. We find proof of non-stationarity and identify the turbine control
mechanism as the prime influence. Afterwards, we model the boundary wind speeds
between the states in Sec. 4.4. Finally, we will show that the established method
works for multiple turbines without further problems and can even be improved by
the increase in available data in Sec. 4.5. We present our conclusions in Sec. 4.6.

4.1 Data

Our dataset includes 100 Vestas V90-3.0 MW wind turbines from the Thanet
offshore wind farm south-east of Great Britain. It contains observables that are
measured at approximately 5 second time intervals. To obtain aligned, synchronized
data, we average the time series on 10 second time intervals resulting in a data
frequency ν = 1/10 s. This ensures continuity in the data even when the actual
measurement frequency fluctuates around 5 s. This does not hinder the calculation
of correlations for our purposes. In fact, it is rather similar to any measurement
process: Every sensor will in reality average over a short time span to obtain a
value. Taking the mean over 10 s seems therefore more natural than, for example,
using only the last value from each interval. If at some time the deviation from the
5 s interval becomes stronger or if there are actually missing data points, data points
will be missing in our averaged data as well. This might occur if there was a problem
with, for example, sensors or communications. Another reason is simply a decreased
measurement frequency when the turbine is switched off. This is underlined by the
majority of missing values occurring in the very low wind speed regime beneath the
turn-on wind speed. As the turbines are not running during these times, this wind
range is not of interest for us. These missing values do not pose a problem for our
analysis. For these reasons, we decided to transfer missing values from the original
dataset into the 10 s data instead of replacing them by other means.

We are interested in identifying changes in the correlation structure, which emerge
while the turbine is operating normally, in contrast to changes caused by failures.
Therefore, in our main analysis we look at the following basic observables:

� generated active power (ActivePower)

� generated current (CurrentL1)

� rotation per minute of the rotor (RotorRPM)

� rotation per minute of the high speed shaft at the generator (GeneratorRPM)

� wind speed (WindSpeed)

As there are no deviations between the three current phases in our data, we simply
choose one of them. The presented observables provide a good picture of the main
turbine systems. Wind speed makes the rotor move. Its rotation is transmitted
via gears to the rotation of the high speed shaft at the generator. This, in turn,
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generates electrical current and power. Two pairs of strongly correlated observables
exist in this set. Deviations between generated active power and current could
only occur, if large amounts of reactive power are generated. The low and high
speed rotation of rotor and generator are directly coupled as well. These expected
results are confirmed during our analysis. We include these pairs in our analysis
as examples for group structures in the correlations. Knowledge of such structures
is indispensable for monitoring a complex system: Are the groups stable? Do they
break up? Do correlations across groups exist? In the presence of anomalies, such
correlations, which are deemed normal and obvious, might be the structures which
break up. Grouping is, in general, an important aspect in the study of complex
systems [43, 51, 171–173].

While measurements of temperatures are very common and useful for failure
analysis [18, 110, 111], they are rather slowly changing observables. Hence, in our
data they are not measured at high frequency and without decimals, which makes the
calculation of short-term correlations impossible. Furthermore, it seems reasonable
to assume that their behavior in normal states is strongly coupled to mechanical
observables, e.g. higher rotation speeds will lead to increased bearing temperatures.
Of course, they would also be influenced by, for example, seasonality or cooling
mechanisms. Thus, while excluded from the study at hand, further analysis of
temperature correlations is nevertheless desirable for future work.

Two additional important control observables are the pitch angle of the rotor
blades (BladePitchAngle) and the ratio between the blade tip speed and the current
wind speed (TipSpeedRatio). Our data does not contain three separate measure-
ments for the blades, but only one. We assume this to be a mean of the three
individual blades. The pitch angle is excluded in our main analysis due to many
missing values that hinder the calculation of correlation matrices. The tip speed
ratio is not directly present in the data, but results from easy linear calculation

TipSpeedRatio =
2πRotorRPM · RotorRadius

WindSpeed
. (4.1)

It is disregarded in the main analysis, because we study linear correlations and it is
also linearly derived from two already present observables. As both omissions are
prominent observables when studying wind turbines, we include additional results
with consideration of the pitch angle of the blades and the tip speed ratio for the
basic cluster analysis in Sec. 4.3. To do this we had to fill the missing values for
the pitch angle. A possible explanation for the missing values is a data acquisition
system that only writes values whenever a new measurement is different from an
old measurement, i.e. if the value changed. We could not establish whether this
is actually the case in our data, but it seems reasonable. Thus, for the additional
results including the pitch angle observable we treated the data as if this assumption
were true. This means we filled any missing values in the 10 s data with the last
measured value before. Of course, thereby we also fill in any values that might
actually be missing instead of being left out for data storage reasons. Furthermore,
with the pitch angle being a rather slowly changing observable compared to the other
observables, the filling sometimes leads to stable values over long time periods. This,
of course, hinders once again the calculation of short-term correlations. Therefore,
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one must be cautious when considering these additional results and we did not
consider pitch angle or tip speed ratio directly for the analysis following the basic
clustering in the present work.

We used approximately three weeks of data from 5 March 2017 to 24 March
2017. The data from such a time span are still easy enough to handle while provid-
ing enough data points to obtain reasonable clustering results. In view of possible
practical applications, three weeks is a short enough time span to make it easily
usable. There would be no need to collect huge amounts of operational data before-
hand. However, it is of course necessary that the data used for identifying different
operational states covers all possible states. In practice it turns out later that this
means, we need a wide range of wind speeds in our data. The actual time span
was chosen, because for at least one wind turbine there are no manual or automatic
alarms or services during this period (cf. Sec. 4.3). Two turbines have no recorded
data for this time span, effectively reducing our data set to 98 turbines.

Due to confidentiality agreements we will never show absolute values of any ob-
servable. In fact, only wind speed is shown directly and is then presented in units
of the nominal wind speed ũnom at which the turbine starts to produce its nominal
power output according to the manufacturer. The tilde is introduced to mark it as
the rated value provided by the manufacturer as we will later on try to infer this
value also from the data.

As we are looking at K different observables per turbine and also L different
turbines, we introduce an additional identifier l to the notation of Sec. 3.1 to
indicate the turbine. Each of the measured signals k for each turbine l yields a
time series of data points X

(l)
k (t), k = 1, . . . , K, l = 1, . . . , L, t = 1, . . . , Tend. In

the case of our dataset we have K = 5, L = 98 and - assuming complete data -
Tend = 20 · 24 · 60 · 6 = 172800. The data is arranged into L rectangular K × Tend

data matrices X(l) according to Eq. (3.2).

4.2 Theoretical Background

Our analysis to distinguish different states is based on identifying differences in the
correlation matrix of observables listed in Sec. 4.1. In Sec. 4.2.1 we define the way
in which we are calculating the correlation matrices.

To identify non-stationarity in the time series of these matrices we will use a
distance measure and a clustering algorithm. These are introduced in Sec. 4.2.2.

4.2.1 Correlation Matrix Time Series

To identify changes over time in the correlation structure, the correlation matrices
are calculated with a moving time window of 30 minute as explained in Sec. 3.2.
The time intervals do not overlap. We effectively create a time series of matrices.
To this end, the signal time series X

(l)
k (t) are divided into disjoint intervals of 30

min, i.e. the lengths of the intervals is T = 180 in our dimensionless time variable.
We refer to these intervals as epochs. Hence, we have Tend/T = 960 epochs. To
avoid notational confusion, we use the new time variable τ for labeling the epochs.
We reserve the notation X

(l)
k (t) for the original time series and write X(l)(τ) for
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the K × T data matrix containing the different time series for turbine l from τ to
τ +T −1. The length of 30 minutes represents a compromise as already discussed in
Sec. 3.2. Longer time spans would provide more data points per correlation matrix
and would thereby decrease noise. However, we want to distinguish different states
in time. Considering external conditions, e.g. wind, changing on short time scales
of several minutes to hours, we have to choose relatively short epochs to ensure
resolution of the non-stationarity.

During each of the epochs, we calculate the correlation matrix C(l)(τ) for each
turbine l according to the procedure described in Sec. 3.2. This matrix then contains
information on the linear dependency of the different observables at turbine l during
the epoch τ .

While the dependency of observables in a wind turbine is not always linear, which
is already seen in the well-studied power curve, the linear Pearson correlation yields
important and good results for the structure of the mutual dependencies. We have
repeated our analysis with Spearman’s rank correlation, which also measures non-
linear dependencies, but did not find substantial differences. Results for the case
with five observables are shown for comparison in App. B.

4.2.2 Clustering

We will now introduce the clustering, which allows us to sort the correlation matrices
into groups (clusters) and check, whether different typical states do exist. If we can
identify these, we will refer to them as operational states. An integer will be
assigned to each of them and the algorithm will label each matrix in the time series
with one such integer. Instead of a time series of correlation matrices, we then have
a new integer time series s(τ) with the range s ∈ {1, . . . , S} when S is the number
of clusters created.

The first outcome will then be as follows: If any decent clustering solution can
be found, it is proof that typical states of the correlation structure exist. Then,
analyzing the resulting integer time series s(τ) can much easier reveal dependencies
of the state on time or other factors.

Any method separating objects into groups needs a distance measure defined
between those objects. For the correlation matrices we choose the euclidean distance
[43]. The reader can imagine that all matrix entries are written into a vector,
effectively arranging the columns of the matrix underneath each other, so that the
standard euclidean distance between vectors can be applied. The distance between
the correlation matrices for the epochs starting at τ and τ ′ of turbine l is then

d(l)(τ, τ ′) =

√∑
i,j

(C
(l)
ij (τ)− C

(l)
ij (τ

′))2 = ||C(l)(τ)− C(l)(τ ′)|| . (4.2)

We choose the bisecting k-means algorithm to perform our clustering [174, 175].
This is the algorithm that was also used to determine states in the financial markets
by [42] and [43]. It can be described as a hybrid of standard k-means clustering
[176, 177] and hierarchical clustering [178]. While the former directly divides the
whole set of objects into k groups (cf. App. A), the latter is performed step-wise.
In each step either two groups are merged (agglomerative) or one group is divided
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into two (divisive). Bisecting k-means is a divisive clustering algorithm, meaning
that at the start all objects belong to one big cluster and during each step one of
the existing clusters is split into two new clusters. This bisection is performed by
running a standard k-means on all objects within the group to be split with k = 2.
Which of the S̃ currently existing clusters is split during a step, is decided based on
the average internal distance of all objects in a cluster zs , s = 1, . . . , S̃

d(l)s =
1

|z(l)s |

∑
τ∈z(l)s

||C(l)(τ)− ⟨C(l)⟩s|| . (4.3)

Here, |z(l)s | denotes the number of objects in cluster z
(l)
s and ⟨C(l)⟩s is the centroid

of cluster z
(l)
s defined by the element-wise mean:

⟨C(l)
ij ⟩s =

1

|z(l)s |

∑
τ∈z(l)s

C
(l)
ij . (4.4)

Each step the cluster with the largest average internal distance is bisected. The
algorithm is terminated when a set number S of clusters is reached.

This is slightly different from the approach used in former works by [42], [168],
[169] and [43], where a threshold is introduced and all clusters are bisected until
no single existing cluster has an average internal distance larger than the threshold.
However, the threshold is then set based on the number of clusters wanted. It can
easily be understood that the resulting clustering will be the same if one either uses
our approach to produce S clusters or chooses the threshold in such a way that S
clusters are produced.

Applying this algorithm, we split the set Z(l) = {C(l)(1), C(l)(1+T ), . . . , C(l)(Tend−
T )} of all correlation matrices into S subsets {z(l)1 , . . . , z

(l)
s , . . . , z

(l)
S }. The centroid

of each cluster according to Eq. (4.4) is interpreted as the mean correlation matrix
of a cluster representing its typical correlation structure. Thereby, we only need to
look at S matrices and a series of Tend/T integers s(τ) instead of as many matrices.

Later on we will see that the emerging typical correlation matrices correspond
to different control settings of the turbines. This explains in a simplified way, why
the hierarchical k-means works better than a normal k-means in our case. Approx-
imately, we can describe the controller of a wind turbine as a mechanism fixing
certain signals to a fixed value. This means the correlation of that signal with other
non-fixed signals should vanish. The divisive clustering will first extract a group
where signal A might be fixed. Then this group might be further divided into sub-
groups where signal B is either fixed or not. And in theory this could go on. Such
a problem is very well suited for divisive clustering.

In order to check, if our clustering is sensible, we will do two things. Firstly, we
will just look at the cluster centroids and see, if we can interpret them and if they
are substantially different from each other. Secondly, we will calculate silhouette
coefficients [179]

ζ(l)(τ) =

{
b(τ)−a(τ)

max(b(τ),a(τ))
, |zs(τ)| > 1

0 , |zs(τ)| = 1
(4.5)
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with the average distance to all other matrices in the same cluster

a(τ) =
1

|zs(τ)| − 1

∑
τ ′∈zs(τ),τ ′ ̸=τ

d(l)(τ, τ ′) (4.6)

and the smallest average distance to a single other cluster

b(τ) = min
r ̸=s(τ)

(
1

|zr|
∑
τ ′∈zr

d(l)(τ, τ ′)

)
. (4.7)

This coefficient will take values between −1 and +1 with larger positive values
representing matrices that are well clustered and negative values showing matrices
that are closer to another cluster than to their own. To get an indicator for the
overall clustering we will use the average silhouette coefficient

ζ̄(l) =
T

Tend

∑
τ

ζ(l)(τ) . (4.8)

4.3 State Identification via Clustering

In the following, we analyze the correlation matrix time series of one turbine, which
will henceforth be referred to as turbine 1 (WT1). We are singling out this wind
turbine, because the time frame of the total dataset was selected in such a way that
for WT1 no problems were listed in the automatic alarm logs and manual service
reports. The idea is that this will make analysis and definition of normal states
easier as there was no (reported) unusual behavior.

The correlation matrices are calculated for non-overlapping epochs of 30 minutes
each. This results in 960 matrices per turbine. However, due to several reasons
there might be missing data in the time series. In such a case, any time stamp
missing one or more of the measured observables is excluded from the calculation of
the correlation matrix. Hereby, no estimation of values, which could influence the
actual correlation coefficient, is necessary. More data could be used by calculating
the correlation coefficients pair-wise, i.e. for any two observables just remove the
time stamps where one of them is missing data. However, this does not result in a
well defined positive semi-definite correlation matrix. For further analysis only those
matrices, for which at least half of the expected data points (90 out of 180) exist,
are considered. Furthermore, epochs in which the standard deviation σk(τ) = 0 for
any signal k have to be disregarded as they cannot be normalized.

We will first provide extensive results for the five considered observables in Sec.
4.3.1 and afterwards repeat some analysis including the pitch angle and tip speed
ratio in Sec. 4.3.2.

4.3.1 Main Results for Five Observables

Without pitch angle no epoch includes a time series k, for which the standard
deviation becomes zero. The disregarding of epochs with too many missing values is
not a problem when looking at the five main observables as missing measurements
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Table 4.1: Minimum, first quartile, median, mean, third quartile and maximum of
silhouette coefficients for the clustering solutions with 2-5 clusters for correlation
matrices of WT1.

clusters min 1st Qu. median mean 3rd Qu. max

2 -0.046 0.473 0.571 0.540 0.664 0.734
3 -0.157 0.379 0.537 0.491 0.640 0.718
4 -0.262 0.343 0.508 0.465 0.631 0.716
5 -0.352 0.314 0.479 0.439 0.626 0.707

usually stem from turbines being operational but switched off during times of very
low wind speeds u smaller than turn-on wind speed uon. For WT1 the average
wind speed for 746 epochs with enough data is 10.01 ms−1, while the average for
214 epochs where no correlation matrix could be calculated is only 4.34 ms−1. It
is obvious that these times where a wind turbine is not operating are unsuited
for an identification of operational states. Of course, there might also be other
reasons causing the missing data, e.g. a problem with the measurement of a signal.
However, as for WT1 there are no alarms or services logged, we would not know what
happened in those cases anyway. Any estimation of missing values would therefore
need considerable guessing. As our results show that using only the epochs with
enough data points is sufficient to reach a good differentiation of operational states,
we are confident that just excluding missing values instead of estimating them is a
good approach for our purposes.

When applying the hierarchical k-means algorithm described in the previous sec-
tion to the set of matrices, the first step is to decide how many clusters provide a
good solution. To this end, we calculate the silhouette coefficients for solutions with
2-5 clusters. The silhouette plots can be found in Fig. 4.1. The fifth cluster is almost
imperceptible as it consists only of 3 matrices. Some descriptive statistics for these
silhouette coefficients are shown in Tab. 4.1. The mean corresponds to the average
silhouette coefficient from Eq. (4.8). All statistics provided decrease with increas-
ing cluster number, implying that a few different states are sufficient to describe
the dynamics of the analyzed correlation matrices. In the plots we can see some
negative coefficients implying elements that would fit better into a different cluster.
Such imperfections are to be expected when using heuristics like clustering algo-
rithms. It is however clear, that all solutions provide a good grouping with largely
positive silhouette coefficients. This is a strong indication that non-stationarities
influence the correlation matrix. The influence is strong enough to be detected via
simple clustering. Here, we observe that the assumption of a stationary correlation
structure, for e.g. principal component analysis, is not justified.

As mentioned before, we also look at the cluster centroids to see if the matrices
show indeed different behavior and if this distinction facilitates clear identification.
Figure 4.2 shows the matrices calculated via Eq. (4.4) in a dendogram for the hier-
archical clustering. The solutions for two and three clusters show distinctly different
structures in the matrices, whereas the fourth cluster stems from cluster three, but
is structurally very similar to cluster one, only differing in the strength of the mean
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Figure 4.1: Silhouette plots for clustering solutions with 2-5 clusters. Each clus-
tered element (matrix) is represented by a horizontal line the length of which is the
silhouette coefficient for that element. Different clusters are color coded.

correlation. The introduction of a fifth cluster only produces a very small cluster
with only three elements. The algorithm does not identify new groups, but rather
starts to classify outliers. While the average silhouette coefficient favors two clusters,
we continue our analysis with three clusters as we have seen that up to this point
structural differences in the matrices occur and we will later see that these can be
interpreted very reasonably. Here, we also point out that structural differences in
the matrix have a stronger influence on the structure of the eigenvectors, i.e. princi-
pal components, than differences in average correlation strength. They are therefore
more important to distinguish when using methods like principal components and
Mahalanobis distance.

The classification of the matrices for three clusters is shown as an integer time
series in Fig. 4.3. All three states appear to have a certain stability. Consecutive
epochs often belong to the same cluster. However, there is no obvious behavior in
dependency of the time. State 3 appears far less often than states 1 and 2. There
is no emergence of new or disappearance of old states over time as is sometimes
seen in other complex systems [42]. To get a better idea what each state might
represent, we look at the matrices for the cluster centroids calculated according to
Eq. (4.4) once more. They are seen in the third row of Fig. 4.2. Generally, as
the differences between the matrices are quite clear we can conclude - in accordance
with the silhouette coefficient - that the clustering does indeed separate the matrix
time series into meaningful groups. The correlation matrices are non-stationary and
automatically separable with a clustering algorithm.

In every cluster the strongest correlations are clearly visible between the observ-
able pairs ActivePower-CurrentL1 and RotorRPM-GeneratorRPM. This was to be
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Figure 4.2: Cluster centroids as calculated in Eq. (4.4) for WT1 for different numbers
of clusters. The color indicates the value of the correlation coefficient. Black lines
connect child and parent clusters of the hierarchical algorithm and the number of
cluster elements is given as |zs|. Each cluster solution is ordered from low wind
speeds (left) to high wind speeds (right) according to the average wind speed in a
cluster.
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Figure 4.3: Cluster identifier s over time for WT1. Each dot represents a 30 minute
epoch.

expected as these pairs are very directly linked. Apart from this we can see that for
cluster 1 both of these pairs and the WindSpeed are all correlated with each other.
Put differently, higher wind speed leads to faster rotation and thus to higher power.
In cluster 2 this changes and the observables RotorRPM and GeneratorRPM, while
still being closely correlated with each other, decouple from the other observables.
Cross-correlations between these two and any other measurement vanish. The re-
maining cross-correlation between WindSpeed and the two observables ActivePower
and CurrentL1 also vanish in cluster 3. Clearly, the three different states of the
correlation structure identified via clustering are meaningful: They show distinctly
different correlation behavior between different observables.

To interpret the meaning of the clustering solution, it is helpful to look at turbine
control systems. The basic functionality of such a system is, for example, described
by [180]. The specific functionality varies for individual turbine types, so it is likely
that not all turbine types will show the same operational states. The turbine control
system of theVestas V90 turbines analyzed here is one with variable pitch (Vestas
OptiTip� ) and variable speed (Vestas OptiSpeed� ). We can connect the three
clusters to different operational states of this turbine type, which are separated by
boundary wind speeds uon, u1, u2 and unom. For very low wind speeds just above
the turn-on wind speed uon ≤ u < u1 the generator rotation is kept constant at the
lowest possible value defined by the maximum slip in the generator. This results
in a correlation structure as seen in cluster 2. Already for slightly higher wind
speeds u1 ≤ u < u2 the system controls the rpm proportional to the wind speed
to operate at maximum aerodynamic efficiency of the rotor. This corresponds to
cluster 1. With even more wind, but still not enough to reach nominal power
output u2 ≤ u < unom the turbine operates at fixed nominal rpm by controlling the
torque. The rotational observables decouple again as for very low wind speeds and
the correlation structure corresponds to cluster 2 again. Of course, fluctuations in
wind speed will cause the rotation to fluctuate around the nominal value leading
to some noise in the correlation structure. If wind speed is high enough to allow
full power output unom ≤ u the nominal power output is reached and therefore kept
constant alongside the rpm. This results in correlations as seen in cluster 3. All
boundary wind speeds uon, u1, u2, unom are turbine dependent and usually not public
knowledge.

We can see that our reasoning for the turbine at hand is correct by plotting the
cluster state over the mean wind speed of the epoch instead of the time stamp in
Fig. 4.4. For now disregarding the interval uon ≤ u < u1 due to lack of enough data,
cluster 1 represents low wind speeds, cluster 2 intermediate wind speeds and cluster
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Figure 4.4: Cluster identifier s over wind speed for WT1. Each dot represents a 30
minute epoch.

3 high wind speeds, where nominal power output can be reached. Some exceptions
are to be expected due to either wrong sorting during the clustering or wind speeds
changing during the 30 minute epoch. Another, but probably less important factor is
the finite response time of a wind turbine controller. It ranges in seconds or minutes
and therefore the correlation structure does not respond instantly to fluctuations
and changes in wind speed [181]. One example are the epochs sorted into cluster 3
whose wind speeds seem to lie in the range of cluster 1. They are all moved into the
fourth cluster if we take another step in the algorithm. Its centroid is shown in the
dendogram Fig. 4.2 and exhibits a structure very close to cluster 1. Such mismatches
occur due to the heuristic nature of the algorithm and noise and fluctuations in the
data, which results in matrices lying on the edge between two clusters. We will see
in the following section that we can use the silhouette coefficient to identify them.
One might also imagine high turbulence intensities, i.e. the standard deviation of
wind speed divided by the mean wind speed in an epoch, leading to strange behavior
in an epoch. We have tested filtering the epochs based on this turbulence intensity
and did not find significant changes in the results. The dependency on wind speed
is also in accordance with the stability in time as periods with stable wind speeds
are common [182].

We have seen that the correlation matrix is non-stationary in time. The clustering
has confirmed a primary influence of the control strategies in dependence of the wind
speed. While the existence of different control regimes is not new, our analysis proves
that they have strong influence on the structure of the correlation matrix. This
automatic separation of states is a vital first step to account for non-stationarities
when performing any analysis on high frequency SCADA data.

4.3.2 Additional Results with Pitch Angle and Tip Speed
Ratio

The inclusion of the tip speed ratio does not affect the number of calculable epochs
as it is directly derived from two other observables. Including the pitch angle ob-
servable, we only get 623 epochs, for which it is possible to calculate a correlation
matrix. This is 123 epochs less than before. As missing values in the time series
of pitch angle were filled as described in Sec. 4.1 this can only be due to standard
deviations in the pitch angle being zero for the pitch angle data. We want to point
out that this can be a direct result of the filling mechanism used for missing values.
This goes to show that the results with pitch angle while being interesting have to
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Figure 4.5: Silhouette plots for clustering solutions with 2-6 clusters with pitch
angle. Each clustered element (matrix) is represented by a horizontal line the length
of which is the silhouette coefficient for that element. Different clusters are color
coded.

be treated with caution.
The calculation of matrices and the clustering are carried out in exactly the same

way as before.
As we cannot assume that the number of relevant clusters stays the same when

looking at a different set of observables, we look again at silhouettes in Fig. 4.5 and
Tab. 4.2 and the cluster dendogram in Fig. 4.6.

The silhouette coefficients are again largely positive with some expected negative
values from imperfect clustering heuristics. On average the values of the silhouette
coefficients are smaller than in the analysis with only five observables. They still
indicate a good grouping. The minimum and first quartile even increase in compar-
ison to before, which indicates less poorly sorted matrices. A slight overall decrease

Table 4.2: Minimum, first quartile, median, mean, third quartile and maximum of
silhouette coefficients for the clustering solutions with 2-6 clusters for correlation
matrices of WT1 with pitch angle.

clusters min 1st Qu. median mean 3rd Qu. max

2 0.071 0.521 0.631 0.580 0.672 0.706
3 -0.183 0.380 0.500 0.461 0.609 0.668
4 -0.129 0.239 0.396 0.353 0.490 0.587
5 -0.133 0.270 0.418 0.366 0.495 0.582
6 -0.429 0.243 0.402 0.347 0.479 0.569
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Figure 4.6: Cluster centroids as calculated in Eq. (4.4) for WT1 for different num-
bers of clusters with pitch angle. The color indicates the value of the correlation
coefficient. Black lines connect child and parent clusters of the hierarchical algo-
rithm and the number of cluster elements is given as |zs|. Each cluster solution is
ordered from low wind speeds (left) to high wind speeds (right) according to the
average wind speed in a cluster.
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in silhouettes is to be expected when clustering larger matrices as more pairs of sin-
gle correlation coefficients need to be compared and each of them adds fluctuations.
Once again, we see decreasing silhouette coefficients for larger numbers of clusters
while still indicating that the grouping is reasonable.

Looking at the centroids in Fig. 4.6 we see that with four clusters the three
cluster solution for with five observables has reemerged. Only cluster one from the
previous solution is already split again because of the pitch angle. The numbering
of clusters is done based on the average wind speed in each cluster, i.e. a low cluster
number indicates low wind speeds.

Interestingly, with pitch angle and tip speed ratio considered we cannot stop
at three clusters. The four and five cluster solution still show centroids that are
structurally different. The sixths cluster distinguishes stronger and weaker values
(mainly in the pitch angle) of the same type of structure and is already quite close
to outsider classification with only nine inhabitants. Considering this as well as the
sharply falling minimal value of silhouette coefficients from the five cluster solution
to the one with six, we will take a closer look at five clusters. The cluster number
over wind speed is shown in Fig. 4.7.

For low wind speeds the five main observables and the tip speed ratio are always
correlated, while the pitch angle is either anti-correlated to all other observables or
decouples from them. For the second case, it is likely that it simply stays constant in
this regime as the intake of energy from the wind does not need to be reduced here.
The anti-correlations might stem from a turbine being turned on underlined by wind
speeds being slightly lower for cluster 1 than cluster 2. While it is turned off, large
pitch angles are used to minimize strain on a still standing rotor and must then be
reduced as wind speed increases above the cut-in point. It is not clear, however, if
this effect is strong enough to produce anti-correlations for a period of 30 minutes.
Cluster 3 of the five cluster solution appears to be an intermediate state, where the
rotations are already decoupled from the rest of the system, but the pitch angle is
not changed. Tip speed ratio is now anti-correlated to wind speed, active power
and current as the rotation - and therefore the tip speed - does not increase any
longer. Contrary to the average wind speed sorting cluster 3 shares a parent cluster
with cluster 5 instead of 4. This might be because the decoupling of pitch angle
from active power and current is a clearer distinction than the decoupling of the
rotations from the rest. As the turbine controller tries to keep rotation constant, it
still fluctuates creating some weak correlations whereas the pitch angle usually stays
constant when it is decoupled from everything else. For intermediate wind speeds
in cluster 4 the pitch angle is coupled to wind speed, active power and current. In
cluster 5 at high wind speeds active power and current decouple from wind speed
and pitch angle as well. In both states, the pitch angle is used to decrease the intake
of power of the turbine. The tip speed ratio behaves as expected from Eq. (4.1).

Figure 4.7 shows that the clusters are not as clearly separated over wind speed
alone as with only five observables. This is mainly true for low wind speeds. The
three regimes we identified in our main analysis can again be distinguished. Fur-
thermore, we see in Fig. 4.8 that the small range intermediate cluster 3 can be
distinguished from cluster 4 when looking not only at the average wind speed in
the epoch but also at the standard deviation of wind speed in the epoch. Cluster
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Figure 4.7: Cluster identifier s over wind speed for WT1 and included pitch angle.
Each dot represents a 30 minute epoch.

3 exists for small standard deviations. One possible explanation is that the wind
changed so little that the controller did not change the pitch angle even though it
would already do so in this regime as seen in cluster 4. There could also be a small
wind speed regime where the controller already tries to keep rotation constant, but
does not change the pitch angle to this end. We must also mention that the amount
of filled missing values for the pitch angle time series is quite high in cluster 3 as
can be seen in Fig. 4.9. This is also true for the overlapping clusters 1 and 2, for
which we did not find a clear distinction criterion. The high amount of filled missing
values in clusters 2 and 3 could be reasonable as the pitch angle is decoupled from
other observables. This would lead to a constant value which would lead to many
missing values in the time series, if the reasoning in Sec. 4.1 is correct. However,
without knowing for certain that this reasoning is correct, the decoupling of pitch
angle from the rest that we find could also be an artifact of the data manipulation.

In conclusion, we have seen that non-stationarity can also be detected with our
clustering when including pitch angle and tip speed ratio. The primary influence
still stems from the control strategies in dependence of the wind. In general, it can
be necessary to have more than one observable, on which the distinction between
clusters is based. It could also happen that some overlap cannot be distinguished
and more than one normal state would need to be considered for analysis of the
system under those operating conditions.

Further analysis of matrices with more and different observables as well as an
attempt to distinguish other influencing factors is interesting for future work. Regu-
latory impacts on the correlation structure as, for example, curtailment should also
be considered. We will continue the current work with an analysis of the possibility
to predict the state solely based on wind speed for our five main observables.

4.4 Cluster Prediction by Wind Speed

Having established a strong influence of the control system on the structure of the
analyzed correlation matrices, we will now try to predict which correlation matrix
state, i.e. operational state, the turbine should be in based on the wind speed. We
have seen in the analysis with additional observables that overlaps between states
can happen when differentiating solely based on wind speed. In such cases, more
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Figure 4.8: Cluster allocation as colored points over the average wind speed in an
epoch on the x-axis and the standard deviation of wind speed during an epoch on
the y-axis.
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Figure 4.9: Cluster allocation as colored points over the average wind speed in an
epoch on the x-axis. The y-axis shows the proportion of filled missing values in the
pitch angle time series relative to all values in an epoch.
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Figure 4.10: Probability density functions for the 30 minute epoch mean wind speed
per cluster. The width of bins is 0.05ũnom.
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Figure 4.11: Probability density functions for the 30 minute epoch mean wind speed
per cluster using only epochs with a silhouette coefficient above the first quartile of
all silhouette coefficients. For each cluster a normal distribution was fitted. Then
black vertical lines indicate the intersections of these distributions and thereby the
boundary wind speeds. The width of bins is 0.05ũnom.

observables or external parameters might be necessary for state prediction. For the
current work, we will stick with the simpler example of five observables. Here, we
are confident when separating the clusters solely based on wind speed and show that
such a distinction can, in general, work. This makes the example easy to follow.
Also, this way we do not need to worry about the filled in pitch values. We now
present a method that allows separation of the three states found based on wind
speed. To this end, we look at the distribution of wind speeds in the different states,
analyze them and then predict the boundary wind speeds that separate the distinct
groups. This will show that it is possible to account for found non-stationarity,
even though small adaptations are likely to be necessary when considering different
sets of observables or turbines. In Fig. 4.10 one can see the empirical probability
density functions (pdf) for wind speeds per cluster state. As already expected from
Fig. 4.4, we can clearly distinguish the different regimes. However, we identify much
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more clearly what we are calling mismatches: epochs that are sorted into cluster
3, but have mean wind speeds in the range associated with cluster 1. They make
up the left peak of the distribution for cluster 3. Furthermore we can see a small
peak in the probability density function for cluster 2 lying at very low wind speeds
beneath the distribution for cluster 1. These could be reasonable as the rotation of
the generator shaft is kept at a minimum rotational speed needed for operation of
the turbine for very low wind speeds as discussed in the previous section. However,
the data in the very low wind regime is sparse and not as reliable as the turbines
often move in and out of operation during these times due to shutting off below a
certain minimal wind speed, therefore we will disregard this first boundary u1 for
now.

Before modeling the boundaries between the distributions, we try to compensate
for mismatches due to matrices lying at the edge of two clusters, matrices being
wrongly sorted, or singular outliers. This can easily be done by using the silhouette
coefficient we have introduced before. It gives an indication of how good a member
of a cluster fits into this cluster compared to the other clusters. This means that any
30 minute epoch that has been sorted into cluster s but should rather be in cluster
r will have a very small or negative silhouette coefficient. We can use this fact and
remove from the calculation of the probability density function all epochs with a
silhouette coefficient below the first quartile of all silhouette coefficients, which can
be seen in Tab. 4.1. The resulting probability density functions can be seen in Fig.
4.11. The second peak at low wind speeds for cluster 3 disappears. This indicates
that our reasoning of a mismatch was correct. The persistence of the small peak at
very low wind speeds for cluster 2 on the other hand shows that it indeed points
toward a control of the rotational speeds in this regime.

The empirical distributions are noisy due to the finite amount of data points.
This is especially true for cluster 3, which contains the least epochs. However, it is
very clear that every cluster is representing a wind speed regime. There are now two
basic approaches to defining the boundaries between these regimes. One can simply
look at the empirical data and define for each value of wind speed the maximum
likelihood state based on the empirical probability density function. Secondly, one
can fit a distribution to the data and calculate the intersections of these, which
represent the boundaries. For now, we choose to fit distributions as it turns out
that a normal distribution is a good choice for each wind speed regime (see Fig.
4.11) and the other method could be heavily influenced by noisiness in the empirical
data. Of course, this will dismiss the smaller peak of cluster 2. It should be taken
into account if enough data exists in this regime (cf. Sec. 4.5). For now, cluster
1 has a mean of 0.603ũnom and a standard deviation of 0.101ũnom. Clusters 2 and
3 are centered at 0.943ũnom and 1.255ũnom with standard deviations of 0.101ũnom

and 0.071ũnom respectively. These values lead to boundaries at u2 = 0.774ũnom

and unom = 1.118ũnom. Interestingly, the last value shows that unom as calculated
in our analysis is larger than ũnom. The reason for this discrepancy lies in realistic
operational conditions. The power curve (active power in dependency of wind speed)
as given by the manufacturer is one line. Accordingly, there is exactly one value ũnom

which marks the starting point for nominal power production. In reality, especially
when looking at high-frequency data, there will always be an area around this line
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Figure 4.12: Matrices corresponding to the group centroids after sorting with the
epochs according to the calculated boundaries for WT1. The mean matrices were
calculated for all epochs, not only those used to determine the boundaries. The
color indicates the value of the correlation coefficient.

which is realized. The value ũnom lies in the middle of this smeared out power
curve. At this wind speed nominal power output can be reached but is not yet
constant. With even higher wind speeds, it becomes less and less likely that the
actual power produced lies beneath the nominal value. Only when this probability
nearly vanishes, a change in correlation structure is detectable by our method. It is
therefore reasonable that our value unom lies higher than ũnom. While our value is
therefore well suited to distinguish correlation states, it cannot be directly compared
with the nominal wind speed given by the manufacturer of a turbine. We have
confirmed this by looking at scatter plots of our data but cannot show them in this
thesis due to data confidentiality.

We want to point out two things. First, when using our method as a pre-
processing for an analysis it needs to be run on the same observables that are to be
considered in the analysis (compare Sec. 4.3.2). Some adaptations for additional
influences from the external conditions, regulatory influences (e.g. curtailment, de-
ration) or overlaps of clusters might be necessary. Second, it is not proven that a
normal distribution will always provide the best fit. For example, if much larger
wind speeds exist in the data set, the distribution for cluster 3 would have much
heavier tails in the large wind speed regime unless cut off by the cut-out wind speed
of the turbine.

In the current case for WT1 the model fitted works very well. Compared to the
clustering solution we have 9.9% of changes in group assignment. If one only looks
at epochs with silhouettes above the first quartile this number reduces to 3.7%. This
is clear as the epochs previously characterized as mismatches obviously change their
cluster allocation when applying the model to all epochs. The mean correlation
matrices of the states as sorted by the model are shown in Fig. 4.12. They clearly
exhibit the different structures discussed above produced by the control system of
the turbine showing that our state prediction works. This state prediction is an
essential first step for using the different operational regimes as a pre-processing for
data analysis. Using the fitted criterion, one can predict what state the turbine
should be in and run the analysis for the corresponding operational regime. This
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is necessary if the analysis itself (e.g. principal components) directly involves the
correlation matrix. Otherwise, it is also possible to make direct use of the clustering
and simply identify the state by comparing the current correlation matrix to the
previously identified cluster centers. A direct application of both that we want to
test in the future is monitoring the correlation structure. Using the fitted criterion
we predict a correlation matrix and compare it to the current one. With sufficiently
labelled data we plan to analyze if deviations might signify operational problems or
failures.

As we have seen in our analysis with additional observables in Sec. 4.3.2 for low
wind speeds, large overlaps between multiple states can occur when differentiating
by wind speed. If this is the case in an analysis at hand, one could look for other
distinguishing factors. However, it is not a given that these exist. Another possibility
is to accept that more than one control state is normal for the given conditions and
compare new data to all possible states. If for example the goal is to minimize
false alarms in a failure detection procedure, one could run failure analysis in all
likely states and then choose the one that gives the least indication for failure. An
alternative could be weighing the failure indicators with the likeliness calculated for
each state under the given conditions.

4.5 Application to Multiple Turbines

For a single wind turbine we identified different operational states in the correlation
structure and presented a model to distinguish these states based on wind speed. To
be useful for applications, our findings need to be general characteristics and not be
specific for one turbine. We proceed and test our methodology for all turbines in the
data set. We want to emphasize that in a first step this does not mean assuming one
model with fixed wind speed boundaries and applying it to all turbines. Rather, we
test if the procedure described in previous chapters can be automatically transferred
to other turbines without supervision. Hence, we perform cluster analysis and fit
the boundaries for each turbine separately.

An easily comparable indicator for the quality of the proposed methodology is
the relative numbers of cluster allocation changes from the model compared to the
clustering itself. We already discussed that for WT1 at the end of the previous
section. This number will drastically increase if either of the two steps in the calcu-
lation does not work well on a turbine: If the clustering algorithm returns a solution
that is not grouped by wind speed, sorting on the basis of wind speed will change
the allocation of many epochs. If they are clustered according to wind speed, but
the boundaries are less sharp than for WT1, it will again result in many changed
allocations.

A histogram over all calculated allocation changes for the 98 turbines is shown in
Fig. 4.13. We can see that the changes for WT1 lie in the lower end of changes, as
expected due to it not showing any alarms or failures in the chosen time span. This
does not hold true for the other turbines, most of which exhibit a few more changes.
However, there are multiple turbines which show no more changes than WT1. Also,
for those that do the fitted boundaries still work remarkably well. Some allocation
changes are always expected for the reasons discussed above and especially near the
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Figure 4.13: Histogram counts showing the frequency of relative changes in state
allocation when comparing clustering and individual models per turbine.
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Figure 4.14: Histogram counts showing the frequency of relative changes in state
allocation per turbine when comparing the clustering solution and the maximum
likelihood model based on data from all turbines.

boundaries the distinction between two states is not always perfect. Concluding
that our proposed method works well for all turbines in our dataset, we proceed
with an optimization.

It stands to reason that the probability density functions for wind speeds per
cluster should be much smoother, if we look at all turbines at the same time. Com-
bining the data from all turbines before fitting the model, we have approximately
98 times more data points than for a single turbine. The resulting distributions are
shown in Fig. 4.15. They are indeed much smoother. Furthermore, we can see that
the previously assumed Gaussian fit would not work well anymore. Especially the
distribution shown for cluster 1 is skewed. Also, the peak in the distribution for
cluster 2 beneath wind speeds of 0.4ũnom becomes more explicit. This second point
is explained in sections 4.3 and 4.4 and actually underlines our reasoning: For very
low wind speeds rotation is kept constant and with more data from all turbines we
can distinguish this regime more clearly than before.

At a first glance, the skewness of the probability density functions does not fit
our theory so well. If the controller would work perfectly and instantly and the wind
speeds were constant during each epoch, we would expect the distinctions between
the operational states to be represented by rectangular functions as probability
densities. In non-perfect conditions these would overlap and smooth out to be
something similar to a Gaussian distribution as assumed before, but they should not
become skewed. However, the reason can be found in the underlying distribution
of wind speeds in the inlay in Fig. 4.15. It follows roughly the expected Weibull
distribution. The deviations could be explained by combinations of influences in
the environment of the wind farm, overlying of different Weibull distributions for
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different wind directions or maybe even measurement effects due to the sensor being
placed behind the rotor. Some differences might also be introduced by the removal of
low silhouette coefficients as these will appear often in the regimes of the boundaries
between states where two correlation structures might be mixed during an epoch.
This is of interest for future studies. For now, we can take away that the skewness
of this underlying distributions might lead to the skewness in the cluster probability
density functions. To check this we replace the histogram count of epochs hs(uw)
for wind speed uw and cluster s with the rescaled count

h̃s(uw) =
hs(uw)

htotal(uw)

by dividing with the total histogram count of epochs htotal(uw) for that wind speed
and all clusters. This basically removes the effect of the underlying wind speed
distribution by transforming it into an equal distribution. The resulting probability
density functions for each cluster can be seen in Fig. 4.16. Indeed, we can now see
symmetric areas, showing behavior very similar to rectangular functions for cluster 1
and 3 with cluster 2 being smoothed out to a more Gaussian curve, because its wind
regime is quite narrowly bounded by overlaps with the other states. This strongly
underlines the existence of three regimes corresponding to operational states of the
turbines.

As the functions for all turbines are much smoother and the bin size can be
reduced, we can apply the direct maximum likelihood method instead of fitting a
continuous curve to decide cluster allocation based on the epoch wind speed. This
leads to three instead of the previous two boundary wind speeds to account for the
appearance of cluster 2 in the very low wind regime. The values of the boundaries
are u1 = 0.38ũnom, u2 = 0.80ũnom and unom = 1.10ũnom. The resulting histogram
of changes due to model allocation compared to the clustering is presented in Fig.
4.14 and shows less changes compared to Fig. 4.13. One reason for this is the
taking into account of the very low wind speed regime in cluster 2. Such a method
without need for fitting could be easily transferred to other data and turbine types
providing high usability as a pre-processing step for data analysis. It will need to be
tested in future work, how best to deal with wind speeds where the clusters overlap.
The simplest method proposed above is an all-or-nothing approach choosing the
likeliest cluster. Contrary to that, if one wants to minimize false alarms in a failure
detection for example, it could be useful to compare current data to all clusters
which are possible for the current wind speed and choose the one indicating the
least likelihood for a failure. Additional filters alongside the current wind speed can
also be necessary as seen in Sec. 4.3.2 where the standard deviation of wind speed
helped separating clusters. Also, operating measures such as curtailment might lead
to temporary changes in the boundaries between clusters and thereby create the
need for an additional filter. In general, when applying this method, one should
always check the clustering results beforehand.

Overall we conclude that the results formerly shown for WT1 are easily trans-
ferred to multiple wind turbines. Furthermore, the model to decide state allocation
based on wind speed can be optimized by taking into account more turbines and
thereby more data.
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Figure 4.15: Probability density functions for the 30 minute epoch mean wind speed
per cluster considering all turbines. Only those epochs with a silhouette coefficient
above the first quartile of all silhouette coefficients for each turbine were used (cal-
culated separately per turbine). The underlying wind speed distribution without
cluster separation is shown as inlay. The width of bins is 0.02ũnom.
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Figure 4.16: Probability density functions for the 30 minute epoch mean wind speed
per cluster considering all turbines after dividing by the total number of counts per
wind speeds to rescale the underlying distribution to an equal one. Only those epochs
with a silhouette coefficient above the first quartile of all silhouette coefficients for
each turbine were used (calculated separately per turbine). The width of bins is
0.02ũnom.
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4.6 Conclusions

Using a matrix distance measure and clustering algorithm formerly applied to other
complex systems we were able to identify different operational states in 30 minute
correlation matrices of high frequency wind turbine data without prior knowledge
of the control system. This demonstrates the non-stationarity of the correlation
matrix for wind turbines and its automated detectability. While the states quite
often exhibit stability over a certain time period, the real dependency lies with wind
speed. This is expected for wind turbine control regimes. In the analysis with
additional observables, the standard deviation of wind speed during a 30 minute
epoch was also shown to have an influence. Furthermore, it was possible to model
the boundary wind speeds between the different states for the main analysis of five
observables - again without knowledge about the actual parameters used in the
control system. This allowed us to recreate the cluster allocation solely based on
the 30 minute average wind speeds. Being developed on one turbine, the method
is transferred easily to multiple turbines. Results were improved by this increased
amount of data. Our study shows clearly that the control system causes detectable
non-stationarity in the correlation structure of high frequency wind turbine SCADA
data. The automatic separation of states is important to account for this non-
stationarity when analyzing such data, for example to monitor a turbine during
operation.

While it is of course known that the control system of the turbine changes its
operational behavior based on the external influences, our analysis proves that the
influence on the correlation structure of the SCADA data is significant and an auto-
matic distinction based on the correlation matrix is possible. Therefore, assuming a
stationary correlation matrix, e.g. when applying principal component analysis for
dimensionality reduction on a dataset, is unjustified.

Furthermore, it could potentially be important for monitoring with high fre-
quency SCADA-data, e.g. when applying failure detection. Especially methods di-
rectly dependent on the correlation matrices such as principal components [140] and
Mahalanobis distance [183] might benefit from the definitions of multiple, distinct
normal states in the correlation behavior as they usually assume stationarity. They
are commonly applied to wind turbines [99, 111, 116–118, 184], see also the reviews
mentioned at the beginning of this chapter. We show in Ch. 7 that for generic corre-
lated systems with distinct normal states, the knowledge of these states increases the
sensitivity of change detection based on principal components. Incorporating this
knowledge into an analysis is possible via pre-processing: Using a criterion based
on historical data – wind speed in the presented case – new or live data could be
compared to the respective operational states. Charmingly, the proposed ansatz
does not require changes in established techniques, it just requires their application
to multiple subgroups and is therefore easily implemented.
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CHAPTER 5

Dynamics of Operational States

We have seen in the previous chapter that SCADA data and their correlations are
significantly influenced by the turbine’s control system. In Sec. 2.3.6 we discussed
the basics of wind turbine control. The complex turbines of today each have their
own variation of sophisticated control strategies to regulate their operation [180,
185]. Menezes et. al. [186] provides a general review of common control strategies.
Several studies have explored the analysis of such control systems in wind turbines,
including both theoretical and experimental investigations [96]. One approach to
analyze wind turbine control systems is by means of modeling and simulation. For
example, Pustina et al. [187] presented a nonlinear predictive model approach for
power maximization and tested it in simulations using the OpenFAST environment.
Another approach is the usage of optimization techniques. For example, Fernandez-
Gauna et al. [188] proposed a control strategy for wind turbines based on a pre-
dictive machine learning model. The authors managed to combine control of the
pitch system and the generator torque in one optimization problem. In addition
to modeling and simulation, experimental studies have also been put forward to
analyze wind turbine control systems. For example, Pöschke et al. (2022) [189]
conducted a validation study of a model based control strategy in a wind tunnel.
Some control strategies are also developed and analyzed for specific types of wind
turbines. For example, Lopez-Queija et. al. [190] review state of the art control
systems for floating offshore turbines.

In this chapter we pursue a new approach. The presented research is a modified
version of paper [2]. We study the dynamics of operational states based on real
SCADA-data (Supervisory Control And Data Acquisition). We introduce a method
based on short-term Pearson correlation matrices and Langevin analysis that two of
the present authors developed for financial data [168, 169]. In Ch. 4 we showed that
clustering Pearson correlation matrices calculated over short time periods facilitates
automatic distinction between operational states of the wind turbine controller. This
requires the usage of high-frequency SCADA-data. Langevin analysis is a powerful
approach that uses a combination of deterministic and random processes to model
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the dynamics of a system. It is already used in the wind energy field to study power
curve behavior [191]. By employing Langevin analysis on the correlation matrices,
we gain a direct way to analyze the dynamics of the control system during real
operation. We test the applicability of the method by analyzing data of one year
from an offshore Vestas wind turbine.

We present the methodology in Sec. 5.1. Here, we first very shortly reiterate
the calculation of a correlation matrix time series in 5.1.1 and then illustrate the
Langevin analysis thereof in 5.1.2. Afterwards, we introduce the data set used for
our analysis in Sec. 5.2. We present the results from applying the introduced
methodology on our dataset in Sec. 5.3. Here, we will also adapt the Langevin
analysis to better resolve hysteresis features observed in our dataset. In Sec. 5.4 we
discuss the applicability of the presented method to wind turbines and the findings
on our data.

5.1 Theoretical Background

5.1.1 Correlation Matrix Clustering

To obtain the operational states, whose dynamics we want to study, we proceed
exactly as described in Ch. 4. We calculate Pearson correlation matrices in epochs
of 30 minutes, i.e. on a moving time window. Thereby, we obtain a time series
of matrices C(τ) with τ labeling the epoch as before. Then, we perform cluster
analysis using a bisecting k-means algorithm. We sort the matrices into groups
that are alike according to the distance measure defined in Eq. (4.2)and obtain
S = 3 clusters. The center matrix for each cluster s is denoted Cs according to Eq.
(4.4). We have dropped the turbine identifier l in the notations as it is not needed
any longer. For each cluster, we define a dynamical observable describing the total
current correlation structure, i.e. operational state, of the turbine as

ds(τ) = ||C(τ)− Cs|| . (5.1)

It is the distance between the matrix for epoch τ (current operational state) and
the center for cluster s (operational state expected for a given cluster s).

5.1.2 Langevin Analysis

To analyze the time series ds(τ) we utilize Langevin analysis. We assume that the
time evolution of ds(τ) is described by

d

dτ
ds

∣∣∣∣
x(τ)=x

= D(1)(ds, x) +
√
D(2)(ds, x) · Γ(τ), (5.2)

with conditioning on an arbitrary additional observable x. The first Kramers-Moyal
coefficient is the drift, denoted D(1)(ds, x), and the second Kramers-Moyal coefficient
the diffusion, denoted D(2)(ds, x). Additionally, we introduce a delta-correlated
Gaussian noise Γ(τ) with a variance of two. We focus on the drift estimation for
ds conditioned on the placeholder x (representing the time and wind observables
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in later analysis). If we had an infinite number of measurements at every point
(ds, x) and any possible time increment ϑ, we would be able to compute the related
increments

∆ϑds(τ) = ds(τ + ϑ)− ds(τ). (5.3)

and use these to calculate the n-th order conditional moment

M(n)(ds, x, ϑ) = ⟨(∆ϑds(τ))
n⟩|ds(τ)=ds,x(τ)=x, (5.4)

where ⟨.⟩ indicates the expectation value over all measurements at this point [192,
193]. Then, the n-th Kramers-Moyal coefficient would be given by

D(n)(ds, x) = lim
ϑ→0

M(n)(ds, x, ϑ)

n! · ϑ
. (5.5)

However, the dataset retrieved from the correlation analysis described in Sec.
5.1.1 only consists of a finite number of equidistantly sampled data points with a
sample interval of T . We use this as the smallest possible time step ϑ = T for the
stochastic analysis. Moreover, we define ϑq = q · ϑ, where q = 1, . . . , Q, allowing us
to compute the increments of the observable ds over a time lag ϑq as

∆ϑqds(τ) = ds(τ + ϑq)− ds(τ). (5.6)

Then, with our finite number of points (ds, x), we employ the Nadaraya-Watson
[194, 195] estimator to approximate the n-th conditional moment M̂(n)(ds, x, ϑq) at
the point (ds, x) over a time lag ϑq. We use the hat to indicate quantities estimated
from data.

M̂(n)(ds, x, ϑq) =

Tend−ϑq∑
τ=1

(
∆ϑqds(τ)

)n · κa,b

(
ds(τ)−ds

hd
, x(τ)−x

hx

)
Tend−ϑq∑

τ=1

κa,b

(
ds(τ)−ds

hd
, x(τ)−x

hx

) (5.7)

Here, κa,b(y1, y2) represents a two-dimensional kernel, and hd and hx correspond to
the bandwidths utilized for the estimation. We calculate the two-dimensional kernel
as the product of two one-dimensional kernels, i.e. a D-kernel,

κa,b(y1, y2) = κa(y1) · κb(y2). (5.8)

There are plenty of different kernel functions which are useful for different scenarios.
The Epanechnikov, Gaussian, and rectangular kernels are three commonly used ker-
nel functions in non-parametric estimation and smoothing techniques [196]. Each
of these kernels has distinct properties that impact their use and the resulting esti-
mation or smoothing outcomes. An overview is shown in Tab. 5.1.

The choice between these kernels depends on the specific characteristics of the
data and the desired properties of the estimation or smoothing procedure [197].
The Gaussian kernel is popular for its smoothness and computational efficiency.
The Epanechnikov kernel is often favored when efficiency and a localized smoothing
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Table 5.1: Description of different kernel functions

Kernel Shape Efficiency Tails and Robustness

E
p
an

ec
h
n
ik
ov flat and symmetric

shape resembling a
parabola, with its
maximum value at
the center

considered efficient,
providing accurate
estimates with the
same amount of
data

finite tails, making it
more robust to outliers
and extreme values

G
au

ss
ia
n

bell-shaped curve,
characterized by a
smooth and
continuous decline
in values away from
the center

mathematically
tractable and
computationally
efficient, especially
in high-dimensional
problems

infinite tails, making it
sensitive to outliers
and potentially leading
to issues when extreme
values are present

R
ec
ta
n
gu

la
r constant value

within a fixed
interval and drops
abruptly to zero
outside that interval

computationally
efficient due to its
simple shape and
properties

finite tails but a
constant value within
the fixed interval,
making it less robust
to outliers and extreme
values towards the
edges of the interval

effect are desired. The rectangular kernel is suitable when simplicity and computa-
tional efficiency are prioritized, but it may not handle outliers or extreme values as
effectively as the other kernels. We use a Gaussian kernel function

κG(y) = e−
1
2
y2 . (5.9)

for the one-dimensional kernels [197, 198].
The bandwidth associated with the kernel function is just as crucial as the ker-

nel function itself. When examining large-scale structures, it is useful to employ
wider bandwidths. However, larger bandwidths may hamper resolution of small-
scale structures. For the analysis of our data we found that the following values give
good results and used them unless stated otherwise:

� for wind speed hWindSpeed = 0.5m/s

� for time ht = 1.6h

� for the inter matrix distance hds =
max

τ
(ds(τ))

30
.

We make the assumption that for small time increments ϑq, the conditional mo-

ments M̂(n)(ds, x, ϑq) exhibit linearity, and there is no additional measurement noise,

implying M̂(n)(ds, x, 0) = 0 [199]. By averaging the conditional moments divided
by the employed time increment ϑq, as depicted in Eq. (5.10), we estimate the n-th
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Kramers-Moyal coefficients based on the provided estimations of the n-th conditional
moments: [192, 193]

D̂(n)(ds, x) =
1

Q

Q∑
q

M̂(n)(ds, x, ϑq)

n! · ϑq

(5.10)

As the minimal time step ϑ already is 30 minutes, we only consider Q = 1, so that ϑq

will not be too large. Here, again a shorter epoch length T = ϑ would be desirable,
but is not feasible due to the correlation matrix calculation.

Sometimes a more intuitive description is the potential

Φ̂(ds, x) = −
∫

D̂(1)(ds, x)dds (5.11)

calculated from the first Kramers-Moyal coefficient. Local minima of the potential
correspond to stable fixed points in the system. When looking at the drift, which
is the derivative of the potential, these points are indicated by values of zero and a
negative slope at the zero crossing. Throughout our analysis, we will use whichever
is best suited for understanding a particular issue.

5.2 Data

The data we use stems from the Supervisory Control and Data Acquisition (SCADA)
system of a Vestas turbine. It is situated in an offshore wind farm off the coast of
Great Britain. The data were measured approximately every 5 second for the year
2017. To obtain consistent time stamps and a stable frequency, i.e. a consistent
sampling interval ∆t, the data were aggregated on 10 second time intervals by
averaging. If no data were measured in the original 5 second set during a 10 second
time interval, then there will also be missing data in our aggregated set.

The analyzed data contains measurements of five observables:

� generated active power (ActivePower)

� generated current (CurrentL1)

� rotation per minute of the rotor (RotorRPM)

� rotation per minute of the high speed shaft at the generator (GeneratorRPM)

� wind speed (WindSpeed)

As there are no deviations between the three phases of the generated current, we
simply choose one of them. We expect from the Vestas turbine a control shift
from a low wind speed regime with variable rotation speed to an intermediate regime
with constant rotation to a rated region with constant rotation and produced power.
The studied observables are suitable to analyze these changes. The two rotational
speed observables as well as current and active power are usually strongly coupled
observables. We include all of them in our study as group correlations are important
for the characterization of correlation structures. When trying to detect anomalies,
for example, such structures might break up. It is also consistent with Ch. 4.

69



Dynamics of Operational States

Figure 5.1: Cluster centers of Pearson correlation matrices calculated according to
Eq. (4.4). The x- and y-axes are identical and display the different observables,
for presentation we only labeled the y-axis. The matrix entries are represented by
color.

5.3 Results

5.3.1 Correlation Matrix States

As a first step to analyze the operational dynamics of wind turbines, we must auto-
matically distinguish the different operational states of the wind turbine. We apply
the method developed in Ch. 4. For each epoch, we calculate the Pearson corre-
lation matrix. The resulting set may be viewed as a time series of matrices. After
applying clustering to this set, we obtain the three cluster centers shown in Fig. 5.1
according to Eq. (4.4). Their number is decided based on visual inspection as well as
the silhouette coefficient. They represent different operational states of the turbine:
At low wind speeds exists a regime where stronger winds lead to faster rotation,
which in turn leads to more generated power. This is represented by Cluster 1. In-
termediate wind speeds are best used by keeping the rotation at a constant, optimal
value. This is indicated by the vanishing correlations of the rotational observables
in Cluster 2. Here, more power is generated by increasing the torque. For high wind
speeds, the turbine operates at rated power output, i.e. it has reached its upper
power production limit. This is seen in Cluster 3. Rotation and produced power
are both decoupled from the wind speed. The clustering procedure and wind speed
distributions for each cluster were presented in detail in Ch. 4. When choosing
different observables, the clusters and possibly their number will change.

The cluster centers represent typical operational states. However, with switching
between different states and constantly changing external conditions, the correlation
matrix for any epoch will usually fluctuate around the identified states. The current
correlation structure is described in an aggregated way by the distance between the
current correlation matrix and a chosen cluster center as calculated in Eq. (5.1).
Thereby, we effectively look at the system from the viewpoint of one cluster center.
An example time span for this matrix distance measure is shown in Fig. 5.2. We
only plot d1 as an example. This time series appears to be a stochastic process
with noise fluctuating around fixed points (the cluster centers). Therefore, we now
try to extract the deterministic components of its behavior to study the switching
dynamics of the operational states.
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Figure 5.2: Matrix distance d1 versus time τ for an arbitrary time span.
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Figure 5.3: Drift D̂(1)(ds, t0) and corresponding potential Φ̂(d1, t0) versus matrix
distance d1 at time τ = τ0. Here, the bandwidth for the distance is chosen as
hd1 = max

τ
(d1(τ))/10. Red lines approximately indicate the values of d1 where the

drift crosses zero and thus stable or unstable fixed points, also seen in the potential.

5.3.2 Dynamics versus Time

Combining the identified clusters with the Langevin analysis as described in Sec. 5.1,
we are now able to analyze the dynamics of operational states and their transitions.
First, we look at the dynamics versus time, i.e. x=̂τ . At a fixed point in time
τ = τ0, we obtain a drift D̂(1)(ds, τ0) and corresponding potential Φ̂(ds, τ0) versus
matrix distance ds. As an example, we show this for the matrix distance d1 to
Cluster 1 in Fig. 5.3. Any positive value in the drift means that the system tends to
move to larger d1, a negative value means the opposite. Therefore, a zero crossing
in the drift with negative slope indicates a stable fixed point. In the potential this
is represented as a minimum. If the drift crosses zero, but with a positive slope, the
potential has a local maximum indicating, in general, an unstable fixed point. Here,
one deep minimum exists representing the dominating operational state at τ = τ0.
The second, less deep, minimum indicates the presence of a second operational state
in the vicinity (cf. the bandwidth in Eq. (5.7)) of t = t0.

Now, we look at the non-stationarity over time. In Fig. 5.4 the potential is shown

71



Dynamics of Operational States

Figure 5.4: Potential Φ̂(d1, τ) versus matrix distance d1 and time τ . The shown
total time span is approximately two days. The range of shown values is restricted
for increased readability. Here, the bandwidth for the distance is chosen as hd1 =
max

τ
(d1(τ))/10.

for a time span of two days. We see that it changes quite quickly over time. As
expected the correlation matrix, i.e. the operating state, is not stable over time and
therefore the potential changes. It is clear that the transitions between the states
happen quite often (here, about 5 times in two days). However, we see that for the
short periods where no changes happen, a clear minimum in the potential exists,
indicating stability during these periods.

5.3.3 Dynamics versus Wind Speed with Standard Drift Es-
timation

In Ch. 4 we found that the operational states primarily depend on wind speed.
Hence, another way to look at our system is by studying the non-stationarity not
versus time, but versus wind speed, i.e. x=̂u. Thereby, we do not find the quick
changes due to environmental conditions any longer. We rather see the transitions
between operating states as they change with wind speed. Figure 5.5 shows the drift
as viewed from cluster centers 1, 2 and 3. In Fig. 5.6 we also show the corresponding
potentials for comparison. Essentially, at all times the drift is zero and the crossing
occurs with negative slope, we find a minimum in the potential. These are the points
where the system is stable. For a given wind speed, the system usually drifts to the
matrix distance where the drift is zero. As the matrices in each cluster still fluctuate
around their center, the stable fixed point for a cluster s when analyzing the matrix
distance ds in relation to that same cluster does not lie at zero, but at small positive
values.
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Figure 5.5: Color profile of drift D̂(1)(ds, u) versus matrix distance ds and rescaled
wind speed. For panels a), b) and c) the cluster s is chosen to be 1, 2, and 3,
respectively. The conditional moments M̂(1)(ds, u, ϑq) for the drift estimation were
calculated according to Eq. (5.7). The range of shown values is restricted for
increased readability. The black line indicates where the drift is zero. Red lines
indicate the distance to the other two cluster centers.

Figure 5.6: Color profile of potential Φ̂(ds, u) versus matrix distance ds and rescaled
wind speed. For panels a), b) and c) the cluster s is chosen to be 1, 2, and 3,
respectively. The conditional moments M̂(1)(ds, u, ϑq) for the drift and potential
estimation were calculated according to Eq. (5.7). The range of shown values is
restricted for increased readability. The white area indicates the minimum of the
potential, i.e. Φ̂(ds, u) < 0.0005. Red lines indicate the distance to the other two
cluster centers.
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While the zero values of the drift do not exactly coincide with the distances be-
tween clusters at all times, the qualitative behavior is generally as expected. Clusters
1, 2 and 3 develop from low to high wind speeds. Cluster 1 dominates for rescaled
wind speeds (RWS) between 0.3 and 0.7. Cluster 2 is the system’s desired state
between 0.85 and 1.15 on the RWS axis as is Cluster 3 between RWS=1.05 and
RWS=1.6. We see, that Cluster 2 and 3 share the interval from RWS=1.05 to
RWS=1.15. Here, the transition between these two clusters is visible. Clusters 1
and 2 do not seem to overlap. Their transition appears more complicated. When
viewed from Cluster 1 in Fig. 5.5 a) it seems, there might be another, not yet defined
state in the region from 0.6 to 0.9 on the RWS axis. It appears close to Cluster 1
in the matrix distance values, but shows a rather sharp transition into Cluster 2 at
around RWS=0.9. However, viewed from Cluster 2 in Fig. 5.5 b) it appears to be
the other way around. The intermediate state is close to Cluster 2 and shows a sharp
transition to Cluster 1 at around RWS=0.7. Here, the state seems to also exist for
higher RWS up to 1. Viewed from Cluster 3 in Fig. 5.5 c) one is inclined to infer
two intermediate states between Cluster 1 and 2. Using the clustering algorithm to
distinguish more than three states does not reveal such intermediate states, rather,
smaller clusters of outliers with very few matrix elements split off Cluster 3.

One possible explanation is the occurrence of changing environmental conditions
during the 30 minute intervals used for the calculation of the correlation matrices.
This might then lead to correlation structures, which represent an average between
different clusters. It is unclear if they are prominent enough to cause the appearance
of a new intermediate stable point in the Langevin analysis. Another possibility
is hysteresis in the control behavior, i.e. depending on previous conditions the
controller does not always choose for the same operational conditions the same
system behavior. Coming from low wind speeds, the turbine does not switch from
State 1 to State 2 quickly, rather only if higher wind speeds persist for a certain
amount of time. It is the other way for a transition from higher to lower wind
speeds. This might lead to two fixed points for the same wind regime. Usually, this
is resolved in Langevin analysis. However, in our case these two fixed points do not
coexist at the same time. At any given time, depending on the operational state
and its hysteresis, only one fixed point is present. If so, in the averaging process
over the single increments in the data as calculated in Eq. (5.7) these two different
behaviors are mixed. That this is true - at least to a certain extent - is seen in Fig.
5.7. We show three smooth kernel probability density functions for the increments
in different regions of the RWS and matrix distance space. The overlap of different
drift behaviors is obvious. In Fig. 5.7 we see for small matrix distances d1 (blue
curve) a large peak at approximately zero, which stems from the fixed point for
Cluster 1. However, large values for the increments exist also, which result from
times when the controller tries to realize operational state 2. The mean of the
distribution therefore lies at small positive values as seen in Figs. 5.5 a) and 5.6
a). The distribution in Fig. 5.7 for large d1 (green curve) shows the same effect,
but the other way around. For intermediate d1 (red curve) we see positive and
negative values of the increments in Fig. 5.7, which lead to an average close to zero.
Effectively, each of these probability densities is an overlap of two different densities
stemming from the two different clusters.
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Figure 5.7: Kernel probability density functions (pdf) of increments in matrix dis-
tance d1 measured in the data. The distributions are calculated for the RWS area:
0.65 < RWS < 0.75. The covered area of matrix distance d1 is indicated by color.

5.3.4 Dynamics versus Wind Speed with Modified Drift Es-
timation

To better resolve the issue of overlapping increment densities stemming from differ-
ent clusters, we introduce a new estimation method for the drift. We attempt to
determine the drift associated only with the density of the cluster, whose fixed point
is closest in the space of matrix distance and wind speed. This cluster should be
more likely to appear at this point as, in general, a system might be more frequently
around its fixed point than very far away from it. Therefore, this cluster should
be the origin of the highest peak in the pdf as seen in Fig. 5.7. In fact, Fig. 5.7
indicates that the hysteresis might be better visible if one estimated the drift as the
maximum of the shown distributions instead of the average. This means we effec-
tively trim the densities by excluding outliers to a symmetric distribution around
the highest peak. Then, mean value and highest peak occur at the same value,
which should be close to the drift value associated with only one cluster. Thus, we
proceed from the estimation of conditional moments in Eq. (5.7) to a new method.
For the estimation at point (ds, x), we consider all increments of ds to the power n
over a time lag ϑq such that(

∆ϑqds(τ)
)n

, τ = 1, . . . , Tend − ϑq. (5.12)

For these quantities, we calculate a smooth kernel probability density function con-
sidering the same Gaussian weights as before in Eq. (5.7). We choose its maximum
as the new M̂(n)(ds, x, ϑq). As we are interested in the deterministic drift, we set
n = 1. All remaining calculations to derive the drift and potential remain as before.
We display results for this new estimation of the drift in Fig. 5.8. We see that the
general behavior is similar to the standard drift estimation shown in Fig. 5.5, but
we resolve more details.

At very low wind speeds, we identify a regime, where Cluster 2 appears to be
dominant. This was not seen before at all in Fig. 5.5. However, for the analyzed
turbine this behavior is correct. A non-vanishing probability for Cluster 2 to occur
in this regime was also seen in the extended cluster analysis in Ch. 4. The system
tries to keep the rotation constant at a minimal viable rotation frequency for very
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low wind speeds. In the correlation structure this looks the same as the later on
appearances of Cluster 2 even if the fixed value of the rotation is different here.

For higher wind speeds, between RWS≈ 0.3 and RWS≈ 0.8 Cluster 1 is dominant.
We see good alignment of the distance to the cluster center (red lines) and the zero
values of the drift when viewed from Clusters 2 or 3 in Figs. 5.8 b) and c). Viewed
from Cluster 1 the drift is zero at small positive values in the matrix distance
d1. This is because the distance can only take positive values and the system still
fluctuates around the center of the cluster. Starting from RWS≈ 0.77 to RWS≈ 0.99
we now resolve the complicated transition between Clusters 1 and 2. This is best
seen when the system is viewed from Cluster 1 in Fig. 5.8 a). Here, a bistable
region exists where both clusters exist for the same wind speeds due to hysteresis.
We show this transition in detail in Fig. 5.9. We see that for RWS=0.77 one clear
minimum exists representing Cluster 1. With increasing wind speed a second local
minimum appears, which represents Cluster 2. At the beginning of transition the
global minimum lies clearly at Cluster 1. For these low wind speeds State 2 is
possible, but most often the turbine will be in State 1. Then, at RWS= 0.87 both
minima have approximately the same depth, before with even higher wind speeds
the first minimum representing Cluster 1 starts to become less deep than the one for
Cluster 2. Here, at higher wind speeds, Cluster 1 might appear when the turbine did
not yet switch to Cluster 2, but it becomes ever less likely. The potential minimum
associated with Cluster 1 finally vanishes at RWS= 0.99.

Next, Cluster 2 is dominant at around RWS= 1.0. This is best seen when viewed
from Cluster 2 in Fig. 5.8 b), but there is also a clear overlap between the zero
values of the drift with the distance to Cluster 2 in Fig. 5.8 a). It does not take
much higher wind speeds for the system to start shifting to Cluster 3. Interestingly,
this transition is apparently not affected by hysteresis. We see a steady shift in the
drift, also found in the potentials shown in Fig. 5.9. In a physics interpretation, the
transitions from Cluster 1 to 2 and from 2 to 3 resemble phase transitions of first
and second order, respectively. From RWS≈ 1.25 onward, the system operates in
State 3, i.e. with nominal power output. The drift values of zero and the distance
to Cluster 3 coincide well, especially viewed from Cluster 1 in Fig. 5.8 a).

Overall, the regimes seem to be best resolved when viewed from Cluster 1, where
the distances to Clusters 2 and 3 match the drift values of zero. When looking at
matrix distances d2 and d3, Cluster 1 is resolved well whereas it appears hard to
resolve the other cluster. This might be due to cluster centers 2 and 3 not being very
far apart and the necessity for a non-vanishing bandwidth due to limited amounts of
data. The qualitative behavior is visualized and estimated well in all cases. In the
hyperspace of the correlation matrices, the different cluster centers apparently do
not lie on a straight line. This means that the matrix distances ds contain different
information for each s. For example, the hysteresis between States 1 and 2 is best
seen from Cluster 1.

76



Dynamics of Operational States

Figure 5.8: Color profile of drift D̂(1)(ds, u) versus matrix distance ds and rescaled
wind speed. For panels a), b) and c) the cluster s is chosen to be 1, 2, and 3,
respectively. The conditional moments M̂(1)(ds, u, ϑq) for the drift estimation were
calculated according to our newly proposed peak determination. The range of shown
values is restricted for increased readability. The black line indicates where the drift
is zero. Red lines indicate the distance to the other two cluster centers. Black,
dashed lines indicate the bistable region in panel a) for s = 1 between RWS=0.77
and RWS=0.99 according to Fig. 5.9.
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Figure 5.9: Potential Φ̂(d1, τ) versus matrix distance d1. Each subplot represents the
potential at the indicated RWS. From upper left to lower right the RWS increases.
The vertical line represents the distance to the center of Cluster 2. The individual
plots are vertical slices of the potential corresponding to Fig. 5.8 a).
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5.4 Conclusions

We studied the dynamics of operational states in wind turbines on the basis of real
data. First we calculated Pearson correlation matrices on a moving time window,
which facilitates studying the non-stationarity of wind turbine systems. Cluster-
ing the correlation matrices for one year of an offshore wind turbine, we identified
three main operational states analogously to Ch. 4. Then, we combined our cluster
analysis with Langevin analysis. The distance between a correlation matrix at any
time t and one of the cluster centers proved to be a good indicator of the current
operational status. Hereby, we effectively reduced the multidimensional system, in
our case correlations of five different observables, to a one-dimensional time series.
Langevin analysis of this new time series provided information on the operational
dynamics. Hence, it was possible to describe the complex dynamics of the multi-
dimensional system in a simplified way. This is, in general, also possible for more
observables and larger systems. We visualized the drift and corresponding potential
for an intuitive interpretation of the system dynamics.

For our data, a Vestas turbine and five observables, we found three correla-
tion matrix clusters, i.e. operational states of the wind turbine. The Langevin
analysis allowed us to identify the wind regimes, where these states are stable.
Furthermore, the regimes where transitions happen are also identified. While the
presented method was previously applied in Econophysics [168, 169], we developed
some adaptations of the method to the peculiarities of wind turbine data. Thereby,
we succeeded in studying the nature of the state transitions. Between the states
with constant rotation and operation at rated power we saw a smooth transition.
The transition at lower wind speeds from a variable rotation state to constant rota-
tion on the other hand, shows hysteresis behavior. In a physics interpretation they
resemble second and first order phase transitions, respectively. We identified the
existence of multiple fixed points in the low wind speed transition regime due to
control hysteresis. Here, two fixed points exist in the system, but they never occur
at the same time. This effectively leads to an overlap of different drift fields. With
our new estimation method we were able to resolve these two fields. Thereby, we
resolved the hysteresis effect as a bistable wind speed regime. Our new method is
suited for analyzing transitions with hysteresis, where the potential minima never
coexist at the same time.

Overall, while the control systems of a specific turbine are known at least to the
manufacturer, our approach allows the analysis and visualization of their dynamics
during real operation. The method is transferable to other wind turbine models
and different choices of observables. Two caveats are in order: First, the observed
operational states can also depend on more external factors than the wind speed.
It might be necessary to study the drift and potential conditioned on multiple ob-
servables, but this does not constitute a problem in principle. Second, one has to
carefully consider the number of states. Here, the Langevin analysis is helpful. We
saw in the present study that it potentially reveals states that were not identified in
the clustering. In Sec. 5.3 we saw the possibility for another state between Clusters
1 and 2, which we identified as a transition regime with hysteresis.

Apart from a direct study of non-stationary dynamics in turbine operation, our
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results are interesting also for normal behavior modeling in the context of failure
prediction. Here, if one wants to detect anomalies, one must first define what is
normal. This, of course, includes different behaviors introduced by the controller.
Our analysis helps with the identification of wind speed regions where one can be
sure of what is normal and transition periods where this is potentially unclear.
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CHAPTER 6

Including Non-Stationarity: Langevin Power Curve Analysis

After having seen, that non-stationarity is surely present in high-frequency SCADA
data, we now make use of that knowledge. In this chapter we employ the suggested
pre-processing and run an established analysis method per cluster state. This has
been done in paper [3], of which this chapter is a modified version.

Recently, the Langevin equation approach has been used to study the dynamics
of wind turbines [200] [201] [202]. This approach utilizes temporally highly re-
solved measurements of wind speed and power output to determine the drift and
diffusion coefficients of the energy conversion process, which characterize the deter-
ministic and stochastic behavior of the system. However, this approach assumes a
quasi-stationary system and does not account for the potential impact of different
operational states.

As we have seen in Ch. 4, this assumption is not generally true. By clustering
Pearson correlation matrices we identified different operational states. These states
distinguish non-stationary behavior in the mutual dependencies and represent differ-
ent turbine control settings. In this chapter, we employ the same clustering methods
– including the pitch angle observable – to identify five operational states, which
are then used to condition the Langevin analysis. The analysis reveals unique be-
havior patterns in the power conversion process corresponding to each operational
state. The study also successfully resolves hysteresis effects commonly observed in
the dynamics of wind turbines [201] [203].

In Sec. 6.1 we introduce the data used for this chapter. Then, we quickly sum-
marize the methodology for calculating the correlation matrix states in Sec. 6.2.1.
While the general concept of the Langevin analysis is the same as presented in Ch.
5, we introduce it nonetheless in Sec. 6.2.2 as this chapter can be read and un-
derstood independently from Ch. 5. Furthermore, we present the methodology for
conditioning Langevin analysis on the cluster states in Sec. 6.2.3. Then, we present
the results in Sec. 6.3 before drawing conclusions in Sec. 6.4.
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6.1 Data

The data utilized in this study is sourced from the SCADA system of a Vestas
wind turbine located in an offshore wind farm off the coast of Great Britain. These
measurements were recorded at approximately 5 second intervals throughout the
year 2017. To ensure consistent time stamps and a stable frequency, i.e. a consis-
tent sampling interval ∆t, the data were aggregated by averaging over 10 second
intervals. It is important to note that if no measurements were obtained within the
original 5 second interval, the aggregated dataset may contain missing data during
the corresponding 10 second interval.

The dataset under analysis comprises six observables, namely:

� generated active power (ActivePower)

� generated current (CurrentL1)

� rotation per minute of the rotor (RotorRPM)

� rotation per minute of the high speed shaft at the generator (GeneratorRPM)

� pitch angle of the blades (BladePitchAngle)

� wind speed (WindSpeed)

As there are no deviations between the three current phases in our data, we
simply choose one of them. Our expectation for the present turbine is a shift in
control strategy as the wind speed changes. This shift includes transitioning from
a low wind speed regime with variable rotation speed, to an intermediate regime
with constant rotation, and finally to a rated region with constant rotation and
produced power. The selection of these observables allows us to effectively analyze
these operational state changes.

In our figures, we explicitly only show the wind speed u and the active power
output P . To comply with confidentiality agreements, we rescale their values when
displaying them. The wind speed u is divided by the nominal wind speed unom of
the turbine. This yields the rescaled wind speed (RWS) already used in previous
chapters. The active power output is divided by its maximal value. Hence, in the
figures it only takes values between zero and one.

6.2 Theoretical Background

6.2.1 Correlation Matrix States

In order to automatically calculate the operational state of a turbine, we employ
the method presented in Ch. 4. Pearson correlation matrices are calculated for
non-overlapping time intervals of 30 minutes called epochs to obtain a time series of
correlation matrices. These are clustered to find structurally different operational
states and thereby a time series s(τ), which labels the current operational state for
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every epoch. It is easily extended onto all times t by s(t) = s(τ) for τ ≤ t < τ + T ,
i.e. all times in an epoch receive the same state label as the epoch.

Here, we use for this calculation the channels presented in Sec. 6.1. Therefore,
the results of the clustering in terms of centroid matrices look very similar to Fig.
4.6. In the context of the Langevin analysis it is more relevant to visualize the states
in the power curve, i.e. in the dependency of the power output on the wind. This
is shown in Fig. 6.1.

Figure 6.1: Rescaled active power P versus rescaled wind speed u. The color in-
dicates the operational state as identified via clustering. Lines indicate the area of
each operational state based on the density of data points (see App. C for details).

6.2.2 Estimation of the Kramers-Moyal Coefficients

The underlying methodology is the same as described in Sec. 5.1.2. We start with
the traditional approach to model the power conversion process

d

dt
P (t)

∣∣∣∣
u(t)=u

= D
(1)
P (P (t), u) +

√
D

(2)
P (P (t), u) · Γ(t) (6.1)

of a wind turbine in terms of stationary Langevin equation [191–193]. Here, the
power output P (t) is modeled as a one-dimensional stationary stochastic process for
a fixed wind speed u. We assume a Gaussian distributed, delta correlated noise Γ(t)
with a mean value of zero and a variance of two. The analytical considerations are
the same as in Sec. 5.1.2. However, again we only have a limited set of data and
proceed analogously to Sec. 5.1.2.

Here, we consider a two-dimensional dataset (P , u) from t = 1 to t = Tend

with an equidistant sample interval ∆t. Furthermore, we define ϑq = q ·∆t, where
q = 1, . . . , Q, allowing us to calculate the increments of the power output P over a
time lag ϑq as

∆ϑqP (t) = P (t+ ϑq)− P (t). (6.2)
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To estimate the n-th conditional moment M
(n)
P (P, u, ϑq), we again employ the

Nadaraya-Watson estimator with a two-dimensional D-kernel Ka,b(y1, y2) = ka(y1) ·
kb(y2) [196, 198, 204]. This D-kernel is represented as the product of two one-
dimensional kernels. Effectively, the Nadaraya-Watson estimator functions as a
means of calculating the weighted, data-driven average of increments. In our specific
case the weights and increments are determined by the states P and u, as well as the
kernel functions ka(y) and kb(y), along with the bandwidths for power output (hP )
and wind speed (hu). For the first conditional moment, we calculate the weighted
average of the power output increments using

M̂(n)(P, u, ϑq) =

Tend−ϑq∑
t=1

(
∆ϑqP (t)

)n · κa,b

(
P (t)−P

hP
, u(t)−u

hu

)
Tend−ϑq∑

t=1

κa,b

(
P (t)−P

hP
, u(t)−u

hu

) . (6.3)

Different possible kernel functions were introduced in Sec. 5.1.2. Here, we employ
an Epanechnikov kernel function

κE(y) =

{
1− y2 , |y| ≤ 1

0 , |y| > 1)
. (6.4)

At least as important as the kernel function is the related bandwidth. For the
analysis of large structures (macro-scale structures), large bandwidths should be
used. However, with larger bandwidths, the small structures (micro-scale struc-
tures) are no longer visible. To estimate the Kramers-Moyal coefficient of our spe-
cific dataset, we used the bandwidths according to the IEC 61400-12-1 [205]. The
bandwidth hu for the wind speed is 1m/s, and the bandwidth for the power hP is
100 kW. These bandwidths should be adjusted based on the given dataset (larger
bandwidths for a smaller dataset, smaller bandwidths for a larger dataset). For the
dataset we used, we found that these bandwidths, in conjunction with the Epanech-
nikov kernel, yield sensible results.

We assume that the n-th conditional moments M(n)(P, u, ϑq) are linear for small
time steps ϑq. We estimate the Kramers-Moyal coefficients

D̂
(n)
P (P, u) =

1

Q

Q∑
q=1

M̂(n)(P, u, ϑq)

n! · ϑq

. (6.5)

by averaging the n-th conditional moments divided by the used (small) time step
ϑq times n factorial [200]. We choose Q = 3 in our calculations.

Furthermore, we can determine the fixed points P0(u) of the system [191]. These
fixed points correspond to values of P at which the drift term becomes zero

D̂
(n)
P (P0, u) = 0, (6.6)

indicating an equilibrium state. In order to assess the stability of these fixed points,
we examine the derivative of the drift at the fixed point. If the derivative is negative,
it signifies that the fixed point is stable:

d

dP
D̂P (P0, u) < 0 (6.7)
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The derivative of the drift at the fixed point plays a crucial role in understanding
the stability of the fixed point as well as providing valuable insights into the mean
reversal time.

When studying the stability of a fixed point, we are interested in how the system
responds to small perturbations from its equilibrium state. The derivative of the
drift provides information on the local behavior of the system near the fixed point.
As said before, if the derivative of the drift evaluated at the fixed point is negative,
it indicates that the fixed point is stable. In this case, any small disturbances from
the equilibrium will eventually dampen out, and the system will return to its steady
state. On the other hand, if the derivative is positive, it suggests that the fixed point
is unstable, and even the slightest perturbations will cause the system to diverge
from the equilibrium. Additionally, the derivative of the drift defines the mean
reversal time of a system, i.e the average duration it takes a perturbed system to
return to its equilibrium state.

6.2.3 Separation per Operational State

The operational states s(t) of the wind turbine can only take discrete values in
our analysis, specifically s(t) ∈ [1, 2, 3, 4, 5]. Furthermore, we consider that both
the drift and diffusion coefficients depend on the turbine’s operational state. By
incorporating this additional condition, we reformulate the Langevin equation for
the power conversion process to

d

dt
P (t)

∣∣∣∣
u(t)=u,s(t)=s

= D
(1)
P (P (t), u, s) +

√
D

(2)
P (P (t), u, s) · Γ(t). (6.8)

The numerical approach is derived analogously to the case without states. The
only distinction is that we employ a 3-dimensional Kernel κa,b,c(y1, y2, y3) = κa(y1) ·
κb(y2) · κc(y3). Due to the discrete values of the operational state, we can utilize a
dedicated Boolean kernel function

κB(y) =

{
1 y = 0

0 y ̸= 0
(6.9)

We apply

M̂
(n)
P (P, u, s, ϑq) =

Tend−ϑq∑
t=1

(
∆ϑqP (t)

)n · κa,b,B

(
P (t)−P

hP
, u(t)−u

hu
, s(t)− s

)
Tend−ϑq∑

t=1

κa,b,B

(
P (t)−P

hP
, u(t)−u

hu
, s(t)− s

)
(6.10)

to estimate the n-th conditional moment at a specific state (P, u, s). With these
conditional moments we are able to obtain the Kramers-Moyal coefficients in a
similar manner as shown above.
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6.3 Results

In this section, we present the outcomes of our investigation into the wind turbine
power conversion process using the Kramers-Moyal coefficients, considering both
scenarios with and without separation per operational state. We focuson analyzing
the drift and diffusion values governing the power output of a wind turbine. To
deepen our understanding, we extend the analysis to include the computation of
fixed points, their associated stability and the diffusion values at these fixed points.
Thereby, we reveal the nuanced dynamics intrinsic to distinct operational states.

The calculated drift values of the power output, as depicted in Fig. 6.2, reveal fa-
miliar patterns observed in prior studies without operational state separation [191,
201, 202]. The top-left plot illustrates typical behavior of the power conversion
process. Significant differences emerge when comparing drift maps for distinct op-
erational states. A clear contrast is evident when comparing State 2 and State 4,
particularly at rescaled wind speeds u (RWS) of approximately 0.7 − 0.9. We also
observe variations when comparing State 4 and State 5.
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Figure 6.2: Color profile of drift D
(1)
P (P (t), u, s) versus rescaled active power output

P and rescaled wind speed u. The upper left panel shows the drift without differ-
entiation per cluster. The others show the drift for each cluster separately.

To deepen our analysis we calculate stable fixed points and their derivatives. Fig-
ure 6.3 depicts stable fixed points per wind speed. We see disparities across different
operational states, particularly at RWS values around 0.6−1.2. Multiple stable fixed
points are identified for a given wind speed, with States 1 and 2 displaying relative
similarity. In contrast, significant differences are observed in other states, confirm-
ing the presence of hysteresis effects within the system dynamics [201, 203]. This
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also corroborates the results of Ch. 5. The absence of multiple fixed points per
wind speed without operational state separation is attributed to the choice of a
relatively high bandwidth during the estimation of the Kramers-Moyal coefficients.
This, coupled with the use of a kernel function and the distribution of operational
states, may have led to a more aggregated representation of the system dynamics.
Here, also the effects discussed in Ch. 5 that led us to change the drift estimation
might play a role.
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Figure 6.3: Rescaled fixed points P0 of the active power output versus rescaled wind
speed u. The colors distinguish different clusters as well as the solution without
clusters.

We further explore the stability of these fixed points through the derivatives of
the drift at the fixed points. Figure 6.4 illustrates the derivatives of the drift at
the stable fixed points per wind speed. Negative values signify stable fixed points,
with larger absolute values indicating a shorter mean reversal time towards the fixed
point. Comparing derivatives for different operational states reveals similarities for
States 1, 2, 3, and 4 across RWS values of approximately 0.0 − 1.1. However, a
significant change occurs for State 4 around RWS≈ 0.25, aligning it with State 5.
At RWS ≈ 0.9 − 1.25, State 5 shows distinctly lower values in the derivative than
the other states.

We extend our analysis from the deterministic parts of the behavior the calcula-
tion of diffusion coefficients. The results are shown in Fig. 6.5. Without operational
state separation, diffusion values are generally smaller near fixed points than further
away from them. Small diffusion values are observed at rated wind speed (rescaled
u > 1.0) and lower power values (rescaled P < 0.3). Differences in the diffusion
values for different states are identified across various wind speeds. States 1 and 2
exhibit qualitative similarities. In Fig. 6.6 we display diffusion values at the stable
fixed points conditioned on wind speed. Here, the diffusion values for the same wind
speeds might represent different power values. States 1 and 2 exhibit similarity with
a slightly steeper increase for State 2. Significant differences are observed across all
other states, especially for RWS values between 0.75 and 1.2. The diffusion values
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Figure 6.4: Derivative of the drift d
dP

D
(1)
P at the stable fixed points of the power

output versus rescaled wind speed u. The colors distinguish different clusters as well
as the solution without clusters.

are especially small for State 5 in comparison to other states.
The diffusion analysis further underscores distinctions in the behavior of State 5

compared to other states already seen in the derivatives of the drift. The smaller
diffusion values for State 5, coupled with the reduced derivatives at the fixed points,
contribute to diminished fluctuations around these stable fixed points of the power
time series of State 5. In contrast, State 2 exhibits higher diffusion values at the fixed
points for RWS values between 0.4 and 0.55 than the other states. Having higher
diffusion values at the fixed points coupled with similarities in derivative values with
States 3 and 5 result in higher fluctuations for these wind speeds in State 4.

6.4 Conclusions

In this chapter we successfully extended a method to estimate the dynamics of the
power conversion process by taking non-stationarity into account. This was done
by accounting for the different operational states identified according to Ch. 4. Our
analysis revealed distinct dynamics associated with each operational state in the
power conversion process. The operational states have a significant influence on the
deterministic and stochastic behavior of the system. This highlights the importance
of accounting for non-stationarity – here operational states – when studying and
optimizing systems such as wind turbines.

We successfully resolved hysteresis effects within the power conversion process.
When separating per operational state distinct fixed points per wind speed are
visible. Without accounting for states, these are averaged out into one fixed point
per wind speed.

The presented analysis also allows to identify differences in the dynamic behavior
of states. State 5, representing rated power production, displayed a much more
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P (P (t), u, s) versus rescaled active power

output P and rescaled wind speed u. The upper left panel shows the drift without
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stable behavior with less fluctuations than other states. This remained true even
for wind speed values where State 5 overlaps with other states.

The results in this chapter clearly show that it is possible to enhance existing
methods by considering the described operational states. The analysis concept does
not need to change much, but rather only takes the automatically detected oper-
ational state as a distinction parameter for multiple subanalyses with the original
method.
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CHAPTER 7

Detecting Changes with Principal Components in the Presence

of Non-Stationarity

While we have now shown that at least one established analysis method is enhanced
by consideration of the found non-stationarity, we have not actually performed fail-
ure detection on wind turbines. To do this, we would need to be able to reliably label
time periods as healthy and faulty in our data. If faulty, it would be even better
to know the nature of the fault. As discussed in Sec. 2.7 this is problematic in our
dataset. Therefore, we present in this chapter a modified version of paper [4], in
which we study how non-stationarity influences change detection with PCA in gen-
eral correlated systems. Thereby we also analyze the importance of non-stationarity
for change detection in any given system, apart from providing an indication of
how failure detection in wind turbines could be improved by the results from pre-
vious chapters. This is important as the detection of changes, novelty, failures or
faults is a crucial task in numerous real world systems, such as industrial monitor-
ing, energy generation, IT- and road-traffic, sensor networks, image processing and
many more [154, 206–208]. Early or even preemptive detection can help operations,
avoid down-times and reduce costs in general. Techniques for such analysis can
be roughly categorized into three groups: model-based methods, knowledge-based
methods and data-driven methods [151]. While a lot of research is done in all direc-
tions, the first two groups require extensive knowledge about the monitored system
and are therefore challenging and time-consuming. This has made the data-driven
methods especially interesting for researchers in all fields [147].

The problem of non-stationarity is also of on-going interest for other novelty
detection methods [159–164].

Non-stationarity exists in different forms. First, a system can slowly evolve due to
influences such as climate [161] or economic situation [42]. On the other side, exter-
nal conditions can vary on shorter time-scales causing non-stationarity without an
evolutionary trend [1, 51, 164]. Some systems also exhibit periodic non-stationarity
[162]. A second distinction can be made in the type of non-stationarity: changes
can occur in the absolute values of measured observables, their individual distri-

95



Detecting Changes with Principal Components in the Presence of Non-Stationarity

bution or the relation between different observables. In simple terms these three
categories represent novelty as changes in mean values, standard deviations or cor-
relation structure respectively. Of course, this does not capture all possibilities. For
example, distribution changes can also effect higher moments only. Furthermore,
relations can be non-linear. However, this simplification already provided valuable
insights in the sensitivity of principal components in stationary systems [158]. We
study the importance of non-stationarity accordingly.

Of those three categories non-stationarity in the correlation structure is especially
important for PCA (or any other method depending directly on the covariance or
correlation matrix). The purpose of PCA is to find new coordinates that already
incorporate the linear correlations in the system. If they change, i.e. the eigenvectors
of the correlation matrix change their structure, the projections into PCA space are
substantially different. Such a non-stationarity in the correlation matrix has been
thoroughly investigated, for example, in financial markets [42, 43] and road traffic
[51, 209]. In Ch. 4 we have found it also for wind turbine data. We assume that
such a distinction into well-separated individual states is most likely to happen for a
difference in correlation structure. At a certain point internal or external causes lead
to a behavioral change. Changes in mean or standard deviation of observables might
also exhibit such distinct states, but are more likely than a correlation structure to
change continually. Therefore, our analysis will focus on correlation changes, but
we will nevertheless study all types of change.

We aim with this study for a structured and comprehensive analysis of the sen-
sitivity of principal components in the presence of non-stationarity, while trying
to keep it simple enough that mechanisms can be easily understood. The non-
stationarity is modeled as multiple possible normal states of the system. We study
all three types of possible changes, but do not mix them. This means, if the change
occurring at a certain point in time is of a certain type (mean value, standard de-
viation, correlation structure), the states will also differ in that same type. We
base the study framework on the one used by Tveten [158] and extend it to incor-
porate non-stationarity. This facilitates comparison with the stationary case. We
analyze the sensitivity of the principal components under the assumption that we
know about the non-stationarity and compare it to the results obtained, if we did
not know about the non-stationary behavior. Thereby, we can study how important
knowledge about such a state-wise non-stationarity is for novelty detection with
PCA.

The main focus of our study is a general analysis of the influence of non-stationarity
on change detection with PCA as well as the presentation of a method to account
for this non-stationarity. Additionally, we illustrate our simulation results with an
example using real traffic flow data. Thereby, we show how the proposed method-
ology can be applied to measured data. In traffic, the non-stationarity is common
knowledge: traffic volumes are not at all constant during a day. Furthermore, traffic
is very different on workdays as compared to weekends or bank holidays. These
well known facts make traffic a good example to understand the application of the
method. We first classify the non-stationarity during single work days. Then, we
define weekends and the onset of a bank holiday as a change and try to detect these
with and without taking the classified non-stationarity into account.
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We describe the idea of the experiment with a metaphor in Sec. 7.1. In Sec.
7.2 we introduce the problem and notations and set up the simulation framework
in a general form. Section 7.3 contains the results of our simulation studies divided
into sections for the different change types. In these we also present the detailed
simulation set up for each case. We apply the method to real data by working out
the traffic example in Sec. 7.4. A summary of results and findings is found in Sec.
7.5.

7.1 Analysis Concept

To facilitate easy understanding of the concept of our analysis before going into
detail, we outline the simulation experiment with a simple example. Imagine a
lamp with a light bulb that is burning with a certain color. Let us say it emits blue
light. At a certain point in time t = t1 the light bulb changes its color slightly and
we study from which viewing angle we can best detect this change. As a measure we
take a color chart and estimate the difference h in points between the color before
and after the change. Then we repeat this experiment time and again with different
bulbs, different colors and different color changes while keeping track of the change
detectability from each viewing angle. This is an easily imagined example for the
stationary simulation experiment.

Now, let us assume that before t = t1 the light bulb burns with S different colors.
At random intervals it changes its color, but all colors are equally likely over time.
This represents non-stationarity in the way we are going to analyze. At time t = t1
a change occurs once again. However, the light bulb can be in any state s ∈ 1, ..., S,
i.e. burn with one of the possible colors. If we know of the non-stationarity and
have a criterion to determine which color the lamp should have, we detect the change
compared to the realized color s∗. Once again we use our color scale and determine
a point score h1 from different viewing angles. However, we want to analyze how
much improvement in the detectability of that change is caused by our knowledge
about this non-stationarity. Therefore, we also calculate a detectability without it:
We compare the color after the change occurs with the average color before the
state. So, if our lamp would normally burn with either blue or red, we compare to a
violet light. Again we take the color chart and note difference h2 in points between
changed color and average color before change from each angle.

To measure the increase in detectability with knowledge of the non-stationarity
we have to compare the two measurements h1 and h2. The first one is easy enough,
because it should produce the same results as the stationary case if our knowledge
about the original state, i.e. color, of the light bulb is perfect. When measuring
without knowledge about the non-stationarity we have to take into account that even
without a change we will detect deviations from our assumed normal (the average
state): At any given time the light will be red or blue, but we will compare it to
violet and observe a difference hs,norm between state s and the average state. This
means that changes at t = t1 are detectable only if they differ stronger from the
violet than our normal states (blue and red) do. We have to correct our measurement
of difference by subtracting the maximum difference we measure without a change
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present: hcorr
2 = h2 − max

s
(hs,norm). As in the stationary case we perform multiple

Monte-Carlo simulations. The importance of knowledge about non-stationarity for
change detection is then measured as h1 − hcorr

2 .

7.2 Theory and Setup

In our analysis, the light bulb from the example above is a K-dimensional system
with Tend observations X(t) ∈ RK at times t = 1, . . . , Tend. We do not look at the
time series themselves, but rather describe the system with mean values, standard
deviations and Pearson correlations. This description is complete only for Gaussian
systems. We assume this to be the case for our study. At the time t = t1 a
change occurs in the system, that can either influence mean, standard deviation or
correlation structure of the observables. This is analogous to the change in color
of the light bulb. For the stationary case the sensitivity to change in principal
components was already analyzed by Tveten [158]. We extend it by the inclusion
of non-stationarity. We assume that the system has S possible states and at every
time is in one s ∈ {1, . . . , S} of them. For each of these states s we have a vector of

means µ
(s)
0 , a vector of standard deviations σ

(s)
0 and a correlation matrix C

(s)
0 . The

index 0 indicates that these values refer to the system before the change at t = t1
occurs. In our example with the light bulb these three values together describe
the color of the state. For further analysis, we standardize each state separately to
mean zero and standard deviation one and denote standardization with a hat. This
results in µ̂

(s)
0 = 0 and σ̂

(s)
0 = 1. Without knowledge about the S different states,

two ways of measurement present themselves. One either measures just one set of
parameters for the time span t = 1, . . . , t1 as was assumed in [158] or one measures
the parameters in epochs of a length T < t1 and takes the averages. The second
option offers the advantage that new data, in which one wants to test for change,
is most likely also only available for a time span Tnew < t1. The comparability of
new and old data is therefore increased if epoch length and time span of the new
data coincide, i.e. T ≈ Tnew. Correlations, for example, might be largely positive
on a large time scale due to a global trend in values, but show more structure when
measured on shorter time spans. Therefore we define the average state (analogous
to the violet light of the light bulb example) as averages over epochs. Without loss
of generality, we assume that each state s occurs for the same amount of time before
the change and define the parameters of the average state as element-wise averages,

µ0 =
S∑

s=1

µ
(s)
0 , σ2

0 =
S∑

s=1

σ
2(s)
0 , C0 =

S∑
s=1

C
(s)
0 . (7.1)

We average the variance instead of the standard deviation. The average over the
correlation matrix is also meant element-wise and is according to the centroid cal-
culation in real data clustering in e.g. [42, 43, 51] or Ch. 4. Standardization with
the mean value and standard deviation of this average state will be denoted with a
tilde: µ̃0 = 0 and σ̃0 = 1.

When the change happens at time t = t1, it will affect the values we currently
measure. In the light bulb example this would be the slight change of color. We
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denote these new values with an index 1 as µ1, σ1 and C1. Next, we need to decide
how the data after the change should be standardized. In reality this questions
is, how the new (or possibly live) data of a system should be standardized before
comparing it to the usual behavior. This is independent of whether or not non-
stationarity has been accounted for. One can either standardize with the known
pre-change values of the usual behavior or with the newly measured ones. If one
measures only a single new data point, only the first option is feasible. Without loss
of generality, we normalize with pre-change values. However, the correlation matrix
after the change will not be a well-defined correlation matrix. Especially the entries
on its diagonal will not be one. This does not present a problem for our analysis.

Including non-stationarity in the way of multiple pre-change states, we need to
know what normal state the system would have been in after the change at t = t1
to make the right comparison. We will denote this state with s∗. In reality this
means that after having found multiple normal states, we need one criterion (or
possibly several criteria) marking the states. For the current, theoretical analysis
we assume that we simply know the state s∗ in the epoch after the change. We can
then standardize with the pre-change state parameters to get µ̂1, σ̂1 and Ĉ1. The
hat denotes standardization with state parameters. To compare the sensitivity of
principal components with knowledge of non-stationarity to the case, in which we
do not know about the different states, we will also calculate µ̃1, σ̃1 and C̃1, where
the tilde denotes standardization with the average state parameters.

To analyze the sensitivity of principal components, we study the projections of
the system onto the eigenvectors before and after the change. This is analogous
to looking at the light bulb from different angles. For a state s we calculate the
eigenvalues λ

(s)
j and normalized eigenvectors v

(s)
j , j = 1, . . . , K of the correlation

matrix C
(s)
0 . Ordering is assumed from largest to smallest eigenvalue, i.e. λ

(s)
1 ≥

· · · ≥ λ
(s)
D . Note that the eigenvectors are equivalent to the principal components as

discussed in sections 3.3 and 3.4. The projection of a data point X(t) onto the j-th
component is then calculated according to Eq. (3.18) with inclusion of the state

as X ′
j(t) = v

(s)T
j X(t). Furthermore, we want to compare projections onto these

components for epochs rather than a single data point. If we know the vector of
means µ and the correlation matrix C of said epoch, we calculate the mean µ′

j and
standard deviation σ′

j of the projection onto the j-th eigencomponent by

µ′
j = v

(s)T
j µ and σ′

j =

√
v
(s)T
j Cv

(s)
j . (7.2)

We have dropped the state identification (s) on the left side. This is possible,
because projections are only ever needed into the average system and the system
of s∗ so that no confusion with other states is possible. This allows us to keep the
identifier, if it is actually the mean vector or the correlation matrix of the state,
which is being projected. For example, the mean of projection onto component j of
the of the original state mean µ

(s)
0 would read µ

′(s)
j,0 , whereas the projection of the

changed state means µ1 would simply be µ′
j,1. Then also the overline of an average

state would translate into an overline on the projected notation. If standardization
notation is necessary it will also translate. For comparison without knowledge about
the non-stationarity projections into the eigensystem λj and vj, j = 1, . . . , S of the
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average state are also necessary. We denote these in the same way with a double
prime,

µ′′
j = vT

j µ and (7.3)

σ′′
j =

√
vT
j Cvj. (7.4)

We now have all projections into the eigenvector system, i.e. onto the principal
components, we need. In short, we have for every component j the projections of

� the original state into the correct state µ
′(s∗)
j,0 , σ

′(s∗)
j,0 ,

� the changed state into the correct state µ′
j,1, σ

′
j,1,

� the original state into the average state µ
′′(s∗)
j,0 , σ

′′(s∗)
j,0 and

� the changed state into the average state µ′′
j,1, σ

′′
j,1.

Having established the mean and standard deviation projections, we must now com-
pare them. Therefore, we define the sensitivity for change as the Hellinger dis-
tance [210] between the marginal distributions before and after the change. In the
light bulb example this is the difference in points on the color chart. In general,
the squared Hellinger distance between two probability measures P and Q on the
Lebesque-measurable space Z with probability densities p(z) and q(z) is defined as

H2(P,Q) =
1

2

∫
Z

(√
p(z)−

√
q(z)

)2
dz = 1−

∫
Z

√
p(z)q(z)dz. (7.5)

For our case, it is easily calculated for two normal distributions N (µ1, σ
2
1) and

N (µ2, σ
2
2) as

H2(µ1, σ1, µ2, σ2) = 1−
√

σ1σ2

σ2
1 + σ2

2

exp

{
−1

4

(µ1 − µ2)
2

σ2
1 + σ2

2

}
. (7.6)

For this theoretical study it is more feasible than a data distribution comparison
such as Hotelling T 2-statistics. For the Hellinger distance to be applicable - under
the assumption of normal distributions - we do not need the actual distributions.
This allows us to simulate mean values, standard deviations and correlation matrices
without having to generate the underlying data.

In Eq. (7.6) we have already adopted a notation that is easy to use for our
application by writing the Hellinger distance as a function of the means and standard
deviations of the normal distributions to compare. The projected µ and σ are
calculated as described above and fully describe the comparison. For example, the
Hellinger distance between the pre-change projection of the state s∗ onto itself and
the projection of the changed state into that same system with standardization with
state pre-change parameters would read

H(µ̂
′(s∗)
j,0 , σ̂

′(s∗)
j,0 , µ̂′

j,1, σ̂
′
j,1) = Hj(µ̂

′(s∗)
0 , σ̂

′(s∗)
0 , µ̂′

1, σ̂
′
1). (7.7)
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For the right side we have simply taken the index j, which must always be equal
for all arguments in H, and moved it from the arguments to the function for better
readability.

We carry out different Monte Carlo simulations for changes in the correlation
structure, the mean and the standard deviation. Each time we will assume that the
other factors stay constant and the change type is the same for the occurring change
at t = t1 and in between the states. The detailed scheme for the simulation will
always be given in the sections dealing with the results as these differ for the different
change types. In general we will simulate normal states, calculate the average state
and then simulate a change at t = t1. We will always perform this for a multitude
of normal states and for each of these for a multitude of change scenarios. The
after-change data will be standardized and projected into the corresponding state
eigensystem as well as the average eigensystem, Hellinger distances are calculated
respectively. We then take the expectation value Hj over the Monte Carlo runs.

While in real data some fluctuations are always expected, which lead to non-zero
Hellinger distances even without a change occurring, this is true for both the state
and the average case and can therefore be neglected in a comparison. Remembering
our light bulb example however, we have to correct the result without knowledge of
the non-stationarity. In a non-stationary system with states there is an additional
non-zero part of the Hellinger distance, if we do not know about the states. This
is because the system would be in a state s∗, which is unequal to the average state
even without change, but projected into the average eigensystem and compared to
the average state. This would be additional noise in our change detection, that
only occurs when not knowing about the non-stationarity. In our example this
was the blue and red light already being different from the average violet color
without a change. We therefore calculate the projections of the different states
s = 1, . . . , S into the eigensystem of the average state. Of course, to do this, we
need to standardize the state observables with the pre-change average parameters.
We then calculate the Hellinger distances this would cause even without a change.
The maximum of these distances is the threshold distance up to which we have to
assume that the system behaves normally. We can only detect a real change at
t = t1 if it causes a Hellinger distance larger than the maximum one the states
themselves cause. This maximum is subtracted from the Hellinger distance between
the system with a change and the average state as only the difference between
these two measures the detectability of a change in a non-stationary system without
knowledge about this non-stationarity. As detectability can never be less than zero,
we set negative values to zero. The subtraction is done inside the Monte Carlo runs.
This ensures that the actual noise created by the state average comparison is taken
as it can vary strongly depending on how different the original normal states are.
We denote this corrected Hellinger distance with Hj .

7.3 Results

The focus of our analysis lies in the difference between knowing and not knowing
about the non-stationarity of the system. We present our results separately for the
different types of change. This way it is easier to describe the simulation procedure
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Figure 7.1: Monte Carlo estimates for the sensitivity to changes of the different
eigenvectors in a stationary system. The sensitivities are the Hellinger distances
between the distributions of data projections onto the eigenvectors before and after
the change. Different types of changes are shown as different colors.

including necessary standardization. We have tested our implementation to produce
the same results as given by Tveten [158] for the stationary case, i.e. if we assume
the number of states S to be one. The results are shown in Fig. 7.1. It shows
the sensitivity of the different eigenvectors to changes in the stationary system. As
described in Sec. 7.2, the sensitivity is given by the Hellinger distance between
the distributions of data projections onto eigenvectors before and after the change.
A higher value of the expectation value for the Hellinger distance on the y-axis
therefore indicates a higher sensitivity to changes. Clearly, the minor components,
i.e. the eigenvectors with small eigenvalues, display a higher sensitivity to change.
This type of plot is used frequently in the following analysis including non-stationary.
The interpretation of the values on the y-axis stays the same. Here, we show results
for the three different types of changes in one plot. The simulation procedures used
for each different change type are described in the following sections.

We present the simulation and its results for correlation structure, mean value
and standard deviation in Sec. 7.3.1, 7.3.2 and 7.3.3, respectively.

7.3.1 Change in Correlation Structure

We explore the sensitivity of principal components to a change in the correlation
structure of the simulated observables. We think that this is the prominent use-
case for PCA as changes in mean and standard deviation can also be detected by
comparing their values directly. In contrast to the other scenarios, we do not have
to worry about standardization issues as mean and standard deviation always stay
the same. This is so, because we assume that the change does not influence these
parameters and the normal states only differ in correlation structure. Hence, the
vector of means µ

(s)
0 and the vector of standard deviations σ

(s)
0 are equal for all

states. We will therefore refrain from using the standardization notation in this case
for the sake of readability.

To obtain results for different combinations of dimension K, number of normal
states S and change sparsity Y , we perform Monte Carlo simulations with various
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change scenarios. Thereby we get the estimate Hj as an average over all simulation
runs. We simulate two scenarios, which differ in the method to create the different
states s that exist before the change. For one scenario they are random and unrelated
to each other. For the second one we draw one random correlation matrix and obtain
the other S − 1 states by changing the first state in the same way that change is
introduced at t = t1 later on.

In the case of unrelated random states, our simulation follows the steps:

1. Draw S random correlation matrices C
(s)
0 , s = 1, . . . , S of dimension K using

the method described in [211].

2. Calculate the element-wise average correlation matrix C0 before the change.

3. Calculate the Hellinger distances Hj(µ
′′
0, σ

′′
0, µ

′′(s)
0 , σ

′′(s)
0 ), j = 1, . . . , K , s =

1, . . . , S between the occurring states and the average state, which gives the
discussed base noise for detection.

4. Draw a change sparsity Y uniformly as an integer number between 2 and K.
This gives the number of change affected dimensions.

5. Determine which dimensions are affected by randomly drawing Y integer num-
bers uniformly between 1 and K.

6. Randomly draw the normal state s∗ the system is in after the change at time
t = t1 from the available states S states.

7. Draw a multiplicative change in correlation a uniformly between 0 and 1. Then
multiply the correlations between all observables i and k from the affected
dimensions K with this change a for i ̸= k.

8. Calculate Hj(µ
′(s∗)
0 , σ

′(s∗)
0 , µ′

1, σ
′
1), j = 1, . . . , K between changed state and

state, which gives the sensitivity for change detection with knowledge about
the non-stationarity.

9. Calculate Hj(µ
′′
0, σ

′′
0, µ

′′
1, σ

′′
1), j = 1, . . . , K between changed state and average

state.

10. Calculate the corrected Hellinger distance. This is done by subtracting the
occurring additional noise (the maximum over all the distances between the
states and the average state) from the Hellinger distance between changed
state and average state:
Hj(µ

′′
0, σ

′′
0, µ

′′
1, σ

′′
1) = max(Hj(µ

′′
0, σ

′′
0, µ

′′
1, σ

′′
1)−max

s
(Hj(µ

′′
0, σ

′′
0, µ

′′(s)
0 , σ

′′(s)
0 )), 0),

j = 1, . . . , K.
This gives the sensitivity for change detection without knowledge about the
non-stationarity.

11. Repeat steps 4 to 10 for 103 times.

12. Repeat steps 1 to 11 for 103 times.
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In step 7. we only apply decreases in correlation. We do this to avoid many
indefinite changed matrices [158]. One can easily imagine that a multiplicative
increase could often lead to correlation coefficients larger than one. If any indefinite
matrices still occur, we use Higham’s algorithm [212] to find the closest positive-
definite one. The results of such a simulation for K = 20 and S = 3 are seen in
Fig. 7.2. As mentioned before, correction of the Hellinger distance for the change
detection with the average state is done inside the Monte Carlo runs. To obtain
the single green line representing the correction values, we average over the Monte
Carlo simulations.

To compare states that emerged by applying changes to one random state, we
simply change step 1. to the following substeps and present the results in Fig. 7.3:

a) Draw one random correlation matrix C
(1)
0 of dimension K using the method

described in [211].

b) Draw a change sparsity Y uniformly as an integer number between 2 and K.
This gives the number of change affected dimensions.

c) Determine which dimensions are affected by randomly drawing Y integer num-
bers uniformly between 1 and K.

d) Draw a multiplicative change in correlation a uniformly between 0 and 1. Then
multiply the correlations between all observables i and k from the affected
dimensions K with this change a for i ̸= k.

e) Repeat steps b) to d) S− 1 times and use the changed correlation matrices as

C
(s)
0 , s = 2, . . . , S.

In both scenarios the sensitivity is greatest for the minor components in the
changed state to state comparison. This is, of course, in accordance with the non-
stationary results (see Fig. 7.1) as we always compare to the correct normal state.
The changed state to average state distance is larger than the one to the actual
state for major components and a crossing point between the two appears towards
minor components. This point lies with larger j for the case of related original
states. However, as pointed out before, we need to correct this Hellinger distance
by the maximum distance between the actual states and the average state. This
corrected Hellinger distance indicates the sensitivity of the change detection without
knowledge about the non-stationarity. Its values are smaller than the ones with that
knowledge for all principal components. In fact, they often lie below zero indicating
no possible detection at all. The knowledge about non-stationarity greatly increases
the possibility to detect changes.

For the case of unrelated states the blue and green line seem to be almost flat,
indicating that all components possess the same sensitivity. This is an inherent
feature of the averaging. If the correlation matrices of the states are all entirely
random, the correlation structures tend to cancel each other out. Simply put, the
off-diagonal elements of the average matrix tend towards zero. This results in mean-
ingless eigenvector structures. This is further underlined by Fig. 7.4 showing the
same results for S = 7. With more states the average matrix is closer to zeros on
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Figure 7.2: Monte Carlo estimates for the Hellinger distances of projections onto
the different eigenvectors in presence of a change in correlation structure for K = 20
and S = 3. The original system states are created randomly and unrelated to each
other. In color code the results for change sensitivity with knowledge of the non-
stationarity (red), the uncorrected change sensitivity without knowledge (blue), the
additional base noise induced by the system being in a state but comparing to the
average state (green) and the corrected change sensitivity without knowledge (black)
are shown. They correspond to the calculation steps 8, 9, 3 and 10 in the simulation,
respectively.
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Figure 7.3: Monte Carlo estimates for the Hellinger distances of projections onto
the different eigenvectors in presence of a change in correlation structure for K = 20
and S = 3. In the original system, one state is created randomly and the others are
obtained from it by applying a change. In color code the results for change sensitivity
with knowledge of the non-stationarity (red), the uncorrected change sensitivity
without knowledge (blue), the additional base noise induced by the system being in a
state but comparing to the average state (green) and the corrected change sensitivity
without knowledge (black) are shown. They correspond to the calculation steps 8,
9, 3 and 10 in the simulation, respectively.

105



Detecting Changes with Principal Components in the Presence of Non-Stationarity

the off-diagonal and the blue and green line are even flatter. It is one of the reasons
for the introduction of the scenario with related states. Another, more application
oriented, reason is that many systems will not change or reverse their entire behav-
ior, but rather change the behavior of certain groups of observables. In this case,
we see in Figs. 7.4 and 7.5 that with an increased number of states the detection
without knowledge about the non-stationarity becomes impossible, i.e. the cor-
rected Hellinger distances is always smaller than zero. For S = 3 some detectability
was given for minor principal components knowing just the average state, but this
vanishes completely for S = 7.

In general, the increase in change detectability with knowledge about non-stationarity
compared to without is measured by the difference between the changed state to
state distance and the corrected value for the average state. Results for this dif-
ference are shown in Figs. 7.6 and 7.7. With non-stationarity present in the anal-
ysis, the minor components remain the most sensitive. Knowledge about the non-
stationarity enables a more sensitive change detection for different numbers of nor-
mal states and different dimensions. As expected, the increase in sensitivity is larger
for more states. It is also larger for unrelated normal states. Basically, these states
are more different from each other than in the related case, so it is reasonable that
the knowledge is more helpful here. We see, however, that for S = 7 for the largest
j, where detectability is highest in general, the increase is larger for related normal
states. As seen in Figs. 7.4 and 7.5 for S = 7 the corrected state to average state dis-
tance is always zero for both scenarios. So any difference in the sensitivity increase
between the scenarios can only stem from a difference in the changed state to state
distance. This difference exists purely due to a technicality: Because correlation
coefficients cannot be larger than 1 the changes applied here are multiplicative be-
tween 0 and 1, i.e. they only reduce correlation. As this is also true for the changes
performed to obtain the related states, the related normal states have weaker corre-
lations on average than in the scenario with random states. This leads to a change
of the sensitivity in the changed state to state scenario in Figs. 7.3 and 7.5. Here,
the results are different from the stationary case, because the underlying set of ma-
trices is changed. In general however, as long as different normal states exist, the
knowledge about non-stationarity increases change detection sensitivity. As this is
the main interest of the current study, we did not pursue this effect further, but it
is interesting for future studies. Moving on, the difference in K does not change
the overall results. For small j the increase is a bit larger for smaller dimensions,
whereas a for large j it is the other way around. With the sensitivity for change
being greatest for the minor components, the knowledge about non-stationarity is
very important also in high-dimensional systems. It is noteworthy that an increase
in the dimension of the matrix to K = 100 means that the relative change sparsity
can be much higher as the smallest value of changed dimensions remains at two
independent of K. Our results are also valid for sparse changes.

In summary, the knowledge about state-wise non-stationarity is important for the
detection of changes. The sensitivity increase with knowledge is largest for the minor
components, where change detection without non-stationarity is already most sen-
sitive. For the major components the increase is still detectable, but much smaller.
We could speculate that PCA for dimension reduction in a system is therefore still
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Figure 7.4: Monte Carlo estimates for the Hellinger distances of projections onto
the different eigenvectors in presence of a change in correlation structure for K = 20
and S = 7. The original system states are created randomly and unrelated to each
other. In color code the results for change sensitivity with knowledge of the non-
stationarity (red), the uncorrected change sensitivity without knowledge (blue), the
additional base noise induced by the system being in a state but comparing to the
average state (green) and the corrected change sensitivity without knowledge (black)
are shown. They correspond to the calculation steps 8, 9, 3 and 10 in the simulation,
respectively.

quite possible without knowing about the non-stationarity, but this cannot be tested
or verified in our setup and is not in the scope of this thesis.

7.3.2 Change in Mean Values

We now analyze the effect of changes in the mean values of observables. Again, we
perform Monte Carlo simulations with various change scenarios to obtain results.
The procedure in general is similar to the one used for changes in correlation, but
the details change. We also simulate two different scenarios of normal states again:
related and unrelated. In the case of unrelated, random states our simulation follows
the steps:

1. Draw a random correlation matrix C0 of dimension K using the method de-
scribed in [211], which is the same for all states.

2. Draw S vectors of means µ
(s)
0 , where each element is uniformly drawn as a

non-integer value between −3 and 3.

3. Calculate the element-wise average vector of means µ0 before the change.

4. Assume standardization with average pre-change parameters and calculate
Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′(s)
0 , σ̃

′′(s)
0 ), j = 1, . . . , K , s = 1, . . . , S between the states and the

average state, which gives the discussed base noise for detection.

5. Draw a change sparsity Y uniformly as an integer number between 2 and K.
This gives the number of change affected dimensions.
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Figure 7.5: Monte Carlo estimates for the Hellinger distances of projections onto
the different eigenvectors in presence of a change in correlation structure for K = 20
and S = 7. In the original system, one state is created randomly and the others are
obtained from it by applying a change. In color code the results for change sensitivity
with knowledge of the non-stationarity (red), the uncorrected change sensitivity
without knowledge (blue), the additional base noise induced by the system being in a
state but comparing to the average state (green) and the corrected change sensitivity
without knowledge (black) are shown. They correspond to the calculation steps 8,
9, 3 and 10 in the simulation, respectively..
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Figure 7.6: Sensitivity increase for a change in the correlation structure when knowl-
edge about the state-wise non-stationarity is available compared to without that
knowledge. Results are shown for different, color coded dimensions K, S = 3 and
unrelated random states (simulation scenario 1) as well as related states, that were
generated from one random state (simulation scenario 2).
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Figure 7.7: Sensitivity increase for a change in the correlation structure when knowl-
edge about the state-wise non-stationarity is available compared to without that
knowledge. Results are shown for different, color coded dimensions K, S = 7 and
unrelated random states (simulation scenario 1) as well as related states, that were
generated from one random state (simulation scenario 2).

6. Determine which dimensions are affected by randomly drawing Y integer num-
bers uniformly between 1 and K.

7. Randomly draw the normal state s∗ the system is in after the change at time
t = t1 from the available states S states.

8. Draw an additive change in mean ∆µ uniformly between −3 and 3. To obtain
µ1, i.e. the vector of means after the change, from the vector of means of
the original state µ

(s∗)
0 the change value ∆µ is added to the elements of the

affected dimensions.

9. Assume standardization with known state pre-change parameters,
i.e. µ̂

(s∗)
0 = 0 and

(µ̂1)k =

{
∆µ, if k is an affected dimension

0, otherwise
,

and calculate Hj(µ̂
′(s∗)
0 , σ̂

′(s∗)
0 , µ̂′

1, σ̂
′
1), j = 1, . . . , K between changed state and

state. This gives the sensitivity for change detection with knowledge about
the non-stationarity.

10. Assume standardization with average pre-change parameters, i.e. µ̃0 = 0 and

(µ̃1)k =

{
(µ

(s∗)
0 )k − (µ0)k +∆µ, if k is an affected dimension

(µ
(s∗)
0 )k − (µ0)k, otherwise

,

and calculate Hj(µ̃
′′
0, σ̃

′′
0, µ̃

′′
1, σ̃

′′
1), j = 1, . . . , K between changed state and av-

erage state.

11. Calculate the corrected Hellinger distance. This is done by subtracting the
occurring additional noise (the maximum over all the distances between the
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states and the average state) from the Hellinger distance between changed
state and average state:
Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′
1, σ̃

′′
1) = max(Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′
1, σ̃

′′
1)−max

s
(Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′(s)
0 , σ̃

′′(s)
0 )), 0),

j = 1, . . . , K.

12. Repeat steps 5 to 11 for 103 times.

13. Repeat steps 1 to 12 for 103 times.

To have states that emerged by applying changes to one random state, we simply
change step 2. to the substeps:

a) Draw one vector of means µ
(1)
0 , where each element is uniformly drawn as a

non-integer value between −3 and 3.

b) Draw a change sparsity Y uniformly as an integer number between 2 and K.
This gives the number of change affected dimensions.

c) Determine which dimensions are affected by randomly drawing Y integer num-
bers uniformly between 1 and K.

d) Draw an additive change in mean ∆µ uniformly between −3 and 3. To obtain

µ
(s)
0 , s ̸= 1, i.e. the vector of means of a state s, from the vector of means

of state 1 µ
(1)
0 the change value ∆µ is added to the elements of the affected

dimensions.

e) Repeat steps b) to d) S − 1 times and use the changed vectors of means as

µ
(s)
0 , s = 2, . . . , S.

As we saw in Sec. 7.3.1 the most interesting result is the increase in sensitivity
with knowledge about the non-stationarity compared to change detection without
said knowledge. These simulation results are shown in Figs. 7.8 and 7.9. We see
a clear increase in sensitivity for all simulated parameters. As before with changes
in correlation structure, the knowledge about non-stationarity is slightly more im-
portant when the original normal states are related to each other and therefore not
entirely different for S = 3. For S = 7 this difference is no longer visible. This is
because the corrected Hellinger distances are always zero here and the changed state
to state distances are not substantially different between the two scenarios. There
is no influential change in the underlying set of states in contrast to the one seen in
Sec. 7.3.1.

We again conclude that the non-stationarity is in general important for change
detection. The increase seems to be more important for small j, i.e. major com-
ponents, as compared to the results in Sec. 7.3.1. However, this is most likely due
to the fact that the change sensitivity without non-stationarity already exhibits the
same changes in their dependency on j (see Fig. 7.1).
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Figure 7.8: Sensitivity increase for a change in mean when knowledge about the
state-wise non-stationarity is available compared to without that knowledge. Results
are shown for different, color coded dimensions K, S = 3 and unrelated random
states (simulation scenario 1) as well as related states, that were generated from one
random state (simulation scenario 2).
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Figure 7.9: Sensitivity increase for a change in mean when knowledge about the
state-wise non-stationarity is available compared to without that knowledge. Results
are shown for different, color coded dimensions K, S = 7 and unrelated random
states (simulation scenario 1) as well as related states, that were generated from one
random state (simulation scenario 2).
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7.3.3 Change in Standard Deviations

Finally, we analyze the sensitivity for changes in standard deviation in the presence
of non-stationarity. The basic Monte Carlo process is the same, but once more the
details are different. We simulate related and unrelated normal states again. In the
case of unrelated, random states our simulation follows the steps:

1. Draw a random correlation matrix C0 of dimension K using the method de-
scribed in [211], which is the same for all states.

2. Draw S vectors of standard deviations σ
(s)
0 , where each element is uniformly

drawn as a non-integer value between 1/3 and 2.

3. Calculate the element-wise average vector of variances σ2
0 before the change.

Then take the square root to get the average standard deviations. (We dis-
cussed in Sec. 7.2 that simply taking the average is probably closest to a real
use case. In the case of non-changing means between the states and with ev-
ery state appearing for the same amount time, this actually gives the correct
variance over all states.)

4. Assume standardization with average pre-change parameters. Then C̃0 is a
well-defined correlation matrix with ones on its diagonal. To assume normal-
ization with average parameters in the state and calculate C̃

(s)
0 , we need the

state covariance matrix. It is obtained by undoing the correct normalization
of the state correlation matrix

Σ
(s)
0 = diag

(
σ

(s)
0

)
Ĉ

(s)
0 diag

(
σ

(s)
0

)
.

It is then wrongly normalized with the average pre-change parameters

C̃
(s)
0 = (diag (σ0))

−1Σ
(s)
0 (diag (σ0))

−1 .

C̃
(s)
0 is not a well-defined correlation matrix. We then calculate the Hellinger

distance Hj(µ̃
′′
0, σ̃

′′
0, µ̃

′′(s)
0 , σ̃

′′(s)
0 ), j = 1, . . . , K , s = 1, . . . , S between the states

and the average state, which gives the discussed base noise for detection.

5. Draw a change sparsity Y uniformly as an integer number between 2 and K.
This gives the number of change affected dimensions.

6. Determine which dimensions are affected by randomly drawing Y integer num-
bers uniformly between 1 and K.

7. Randomly draw the normal state s∗ the system is in after the change at time
t = t1 from the available states S states.

8. Randomly decide if the change increases or decreases the standard deviation.
Then, draw a multiplicative change in standard deviation ∆σ uniformly be-
tween 1 and 3 or between 1/3 and 1, respectively. σ1 is obtained by multiplying

the elements of σ
(s∗)
0 with ∆σ for the affected dimensions.
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9. Assume standardization with known state pre-change parameters. Then Ĉ
(s∗)
0

is a well-defined correlation matrix with ones on its diagonal and Ĉ1 is cal-
culated analogous to the description in step 4. Then calculate the Hellinger
distance
Hj(µ̂

′(s∗)
0 , σ̂

′(s∗)
0 , µ̂′

1, σ̂
′
1), j = 1, . . . , K between changed state and state. This

gives the sensitivity for change detection with knowledge about the non-
stationarity.

10. Assume standardization with average pre-change parameters. Then C̃0 is a
well defined correlation matrix and C̃1 can be calculated analogous to the pro-
cedure in step 4. Then calculate the Hellinger distance Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′
1, σ̃

′′
1), j =

1, . . . , K between changed state and average state.

11. Calculate the corrected Hellinger distance. This is done by subtracting the
occurring additional noise (the maximum over all the distances between the
states and the average state) from the Hellinger distance between changed
state and average state:
Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′
1, σ̃

′′
1) = max(Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′
1, σ̃

′′
1)−max

s
(Hj(µ̃

′′
0, σ̃

′′
0, µ̃

′′(s∗)
0 , σ̃

′′(s∗)
0 )), 0),

j = 1, . . . , K.

12. Repeat steps 5 to 11 for 103 times.

13. Repeat steps 1 to 12 for 103 times.

To have states that emerged by applying changes to one random state, we simply
change step 2. to the substeps:

a) Draw one vector of standard deviations σ
(1)
0 , where each element is uniformly

drawn as a non-integer value between 1/3 and 2.

b) Draw a change sparsity Y uniformly as an integer number between 2 and K.
This gives the number of change affected dimensions.

c) Determine which dimensions are affected by randomly drawing Y integer num-
bers uniformly between 1 and K.

d) Randomly decide if new state has increased or decreased standard deviation.
Then, draw a multiplicative change in standard deviation ∆σ uniformly be-
tween 1 and 3 or between 1/3 and 1, respectively. σ

(s)
0 , s ̸= 1 is obtained by

multiplying the elements of σ
(1)
0 with ∆σ for the affected dimensions.

e) Repeat steps b) to d) S − 1 times and use the changed vectors of standard

deviations as σ
(s)
0 , s = 2, . . . , S.

The results for detection sensitivity increase due to knowledge about the non-
stationarity are shown in Figs. 7.10 and 7.11. It seems to be small for a large
number of components j, especially the major components. As was the case with
a comparison between changes in mean and correlation structure, this is largely
due to the different sensitivity in the stationary case (see Fig. 7.1). The curve
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Figure 7.10: Sensitivity increase for a change in standard deviation when knowl-
edge about the state-wise non-stationarity is available compared to without that
knowledge. Results are shown for different, color coded dimensions K, S = 3 and
unrelated random states (simulation scenario 1) as well as related states, that were
generated from one random state (simulation scenario 2).
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Figure 7.11: Sensitivity increase for a change in standard deviation when knowl-
edge about the state-wise non-stationarity is available compared to without that
knowledge. Results are shown for different, color coded dimensions K, S = 7 and
unrelated random states (simulation scenario 1) as well as related states, that were
generated from one random state (simulation scenario 2).

of the increase always shows a similar behavior over j as the stationary sensitivity
itself shows. This underlines the importance of knowledge about non-stationarity
as one would use these components for practical applications. Changes in standard
deviation are almost impossible to detect for small j even in the stationary case.
Therefore, our results cannot show a large increase in that regime. For large j we
can again conclude that the knowledge about the non-stationarity of the system is
quite important and becomes even more so if the original states are similar to each
other. Again, as with results for changes in mean, the difference between related and
unrelated states is smaller for S = 7 and even vanished for large j in that case. This
is again due to a vanishing corrected Hellinger distance between state and average
stat in this regime.
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7.4 Application to Real Data: Traffic as an Ex-

ample

To demonstrate how the method works, we give an instructive example with real
data collected on German motorways. We look at 35 cross-sections (detectors) on
the Cologne orbital motorway in 2015. The measured values are flows of vehicles,
i.e. the number of vehicles passing a detector per time, in the counterclockwise
direction. The time resolution of the data is one minute. As the orbital motorway
consists of sections with different numbers of lanes, we do not look at a single lane,
but rather at the flow accumulated over all lanes. The flow at time t at cross-section
k is denoted Xk(t). The dataset is described in more detail in [51].

This example is chosen because it allows a simple definition of ”normal” and ”non-
normal”, i.e. changes in the system. These terms serve only as labels without further
interpretation. We consider as normal the workdays Monday through Thursday as
they present the typical rush hour behavior one expects from traffic. Fridays are
excluded as the afternoon rush hour is stretched in time due to a strong variation in
the ends of the working hours. Furthermore, we exclude the North Rhine-Westphalia
bank holidays. Accordingly, we can afterwards try to detect weekend or holiday
behavior as non-normal. Another advantage of this example is that everybody is
aware of the non-stationarity of the system. Traffic is very different depending on
the time of day. This means the non-stationarity in this system is not governed by
a fluctuating observable but simply by the time of day.

The first thing one has to do, to test the proposed method on real data is classify
the non-stationarity in the data. There is, of course, not only one way to do this.
Here, we proceed as described in Sec. 3.2 and Ch. 4. We calculate a time series of
correlation matrices and apply clustering to them. We restrict ourselves to normal
workdays and choose T = 1h for the epoch length. A day will thus contain 24
correlation matrices. Here, we choose to label the epochs with their end time instead
of their beginning as in Sec. 3.2 and Ch. 4. The matrix for time t = τ is calculated
from the data Xk(t), k = 1, . . . , 35 , τ − T < t ≤ τ . We write |T | to denote the
number of data points during this epoch.

For each epoch we proceed with the calculation of the correlation matrix time
series as described in Sec. 3.2 to obtain C(τ). This matrix contains as the element
at position i, j the Pearson correlation coefficient between Xi(t) and Xj(t) during
epoch τ . In case of missing values in the data, we disregard all values of that time
stamp to ensure the calculated matrix is a positive-definite correlation matrix. We
define a Euclidean distance measure between two matrices in the epochs τ and τ ′

d(τ, τ ′) =

√∑
i,j

(Cij(τ)− Cij(τ ′))2 = ||C(τ)− C(τ ′)|| . (7.8)

analogous to Sec. 4.2.2 and apply k-means clustering [175] with k = 2 to all calcu-
lated matrices. This yields the cluster centers (element-wise mean matrices) shown
in Fig. 7.12 and the distribution of the cluster appearances over daytime as shown
in Fig. 7.13. Clearly, cluster 1 shows times where the traffic flow at all cross-sections
is strongly correlated, whereas cluster 2 is mostly uncorrelated. Here, only close to
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the diagonal some correlations remain, which indicate similar flows on neighbor-
ing detectors. Splitting further yields only a separation of the strongly correlated
cluster based on the strength of the correlations, no structural differences are de-
tected. Furthermore, we applied also hierarchical k-means clustering [42], hierarchi-
cal clustering based on Ward’s optimization criterion [213, 214], complete-linkage
and single-linkage clustering [215] to the matrices. We have tested all algorithms for
solutions of two, three and four clusters. We studied the resulting cluster centers
and also calculated the silhouette coefficient [179] as defined in Eq. (4.5) for each
matrix. It takes values between −1 and +1 with larger positive values representing
matrices that are well clustered and negative values showing matrices that are closer
to another cluster than to their own. An indicator for the overall clustering is given
by the average silhouette coefficient. This is shown in Tab. 7.1 for all calculated
clusterings. The hierarchical clustering with k-means splits and the one based on
Ward’s criterion yield very similar results to the standard k-means. This is not sur-
prising as the optimization criteria for the algorithms are similar, but highlights that
the found solution provides a reasonable grouping. The complete-linkage clustering
gives a similar solution for two clusters, but starts to classify very small groups
from then on. It is noteworthy that the two cluster solution has a higher silhouette
coefficient than the k-means solution. However, the matrices and distribution over
daytime show no significant differences for two clusters. As one would expect, the
single-linkage clustering gives very different results, which do not separate the main
groups as well, but rather lead to the detection of outliers. This is, of course, be-
cause the optimization criterion is very different from the others. We stick with the
standard k-means solution for the following analysis. We have seen that its solution
is reasonable and stable. It does not diverge towards outsider characterization for
more than two clusters, which makes it a good first choice for this sort of classifi-
cation also in other systems. In general, one has to tailor the identification of the
non-stationarity to the problem at hand. We have found that correlation matrix
clustering is useful in many systems [1, 42, 51].

A closer look at Fig. 7.13 allows interpretation of the clusters. The shown
histogram counts reveal which cluster is dominant during which time of the day.
The strongly correlated times in cluster 1 are caused by an overall increase (5am
- 7am) and an overall decrease (8pm) in traffic volume. Another, less pronounced
decrease is found during the 0am epoch. While the first two are caused by the major
motion between low traffic flows during the night and high ones during the day, the
latter is explained by traffic shifts from late evening traffic with low volumes to night
time traffic with almost zero volume. As the 0am change is not as strong, cluster
2 remains dominant here. Generally, the appearance of cluster 1 marks transition
periods between times with low and high traffic volume. Therefore, we will further
split the two correlation clusters: Only consecutive times of a dominating correlation
cluster are considered to be one cluster, the next appearance of the same correlation
cluster is taken to be a new cluster. Thereby we achieve a good separation of times
with different mean values, standard deviations and correlation structures.
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(b) Cluster 2

Figure 7.12: Correlation matrix cluster centers calculated as element-wise means
over all matrices sorted into a cluster. X-axis and y-axis both show the different
traffic detectors, but labels were removed on the x-axis for better readability of the
figure. Each matrix element is the mean Pearson correlation coefficient between the
traffic flow signals of two detectors and its value is color coded.
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Figure 7.13: Histogram counts of the appearances of cluster 1 and 2 during the 24
hours of a day. The histogram is calculated over all used week days with a bin width
of 1 hour.

We arrive at five clusters:

1. 0am - 4am,

2. 5am - 7am,

3. 8am - 7pm,

4. 8pm,

5. 9pm - 11pm.

Of course, we could merge the first and last cluster, but for simplicity we leave the
division as it is.

Next, we project all the normal workday data points into the eigenvector systems
of the corresponding cluster state analogously to the mean projection in Eq. (7.2).
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Table 7.1: Silhouette coefficients for different clustering methods and solutions with
2, 3 and 4 clusters.

method 2 clusters 3 clusters 4 clusters

k-means 0.423 0.317 0.168
hierarchical k-means 0.423 0.354 0.327
Ward’s criterion 0.379 0.330 0.168
complete-linkage 0.451 0.452 0.345
single-linkage 0.446 0.235 0.219

This yields the reference normal distributions for the calculation of the Hellinger
distance.

We then choose a random normal workday and a random Sunday. The workday is
needed to establish which Hellinger distances appear even without any changes due
to fluctuations. Hence, each hour of the two days is projected into the corresponding
eigenvectors and the resulting distributions are compared to the reference normal
distributions by means of the Hellinger distance. Within each cluster s we get a
maximum appearing Hellinger distance for the normal data Hnorm

s . We define this
as the threshold a test data point needs to exceed to be called a system change.
This is a rather strict definition minimizing false positives for system changes or
anomalies. For the weekend data we calculate Hanom

s once as the maximum (case
(a)) and once as the mean (case (b)) over the daily Hellinger distances. Thus, we
introduce the exceedance of the threshold

Es = Hnorm
s −Hanom

s (7.9)

as a useful mesasure for detectability in cluster s. The overall detectability is then
taken as the maximum over all clusters. This yields a detectability performance for
each eigenvector. To determine if accounting for the non-stationarity is necessary,
we perform the same analysis, but without clustering, i.e. there is only one cluster.
The results for these calculations are shown in Figs. 7.14 and 7.15. Detection is
obviously easier with knowledge of the non-stationarity. Without, some eigenvectors
are not at all usable for detection (values below zero). This is especially true for
case (b). With clusters and a careful choice of the correct eigenvectors, we detect
the change not only in a single data point but in the average performance of at
least one cluster. In general, all eigenvectors show smaller detection performance
without clusters. This comparison is not always perfectly fair as there is no warranty
that eigenvector j in the no cluster analysis corresponds to the same behavior as
eigenvector j in the cluster analysis. This was neglected in the simulation study in
previous chapters as it does not matter in the Monte Carlo average. In Figs. 7.16
and 7.17 we show the same type of analysis once more, but instead of a random
weekend day, we have taken the start of the summer bank holidays. Here, the
mentioned fact is even more evident: For the system as a whole detectabilities are
higher with clusters, but for single eigenvectors it might not be so. For example,
in this case eigenvector 22 in the analysis with clusters and eigenvector 22 in the
one without clusters do not have the same structure, i.e. they represent different
behavior patterns of the multivariate system.
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Figure 7.14: Detectability of a weekend day in case (a), where detectability is defined
via a single exceedance of the detection threshold during the day. The detectability
is shown for each eigenvector (principal component) of the system. Results are
shown with knowledge about the non-stationarity during the day, i.e. with clusters,
and without.
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Figure 7.15: Detectability of a weekend day in case (b), where detectability is defined
as an average exceedance of the threshold in one cluster. The detectability is shown
for each eigenvector (principal component) of the system. Results are shown with
knowledge about the non-stationarity during the day, i.e. with clusters, and without.
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Figure 7.16: Detectability of the summer bank holiday onset in case (a), where
detectability is defined via a single exceedance of the detection threshold during the
day. The detectability is shown for each eigenvector (principal component) of the
system. Results are shown with knowledge about the non-stationarity during the
day, i.e. with clusters, and without.
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Figure 7.17: Detectability of the summer bank holiday onset in case (b), where
detectability is defined as an average exceedance of the threshold in one cluster.
The detectability is shown for each eigenvector (principal component) of the system.
Results are shown with knowledge about the non-stationarity during the day, i.e.
with clusters, and without.

All together, we see a much better change detection performance in this example
when the non-stationarity is accounted for. Especially, if we do not want to detect
the change only in single data points (case (a)), but rather with a consistently high
indicator (case (b)), it is impossible to detect without clusters. This is inferred from
all results for the detectability without clusters showing negative values in case (b),
cf. Figs. 7.15 and 7.17. While of course in the case with clusters, less data points
are used to calculate the mean per cluster, one can clearly identify the change in
one of them. Without clusters there might be single points exceeding the detection
threshold, but overall the Hellinger distances do not lie above the threshold.

The trend that changes are detected more easily in projections onto eigenvectors
with small eigenvalues cannot be confirmed by a single example system. Which
eigenvector is most suitable for detection depends on the interaction between cor-
relation structure and system change. The aforementioned trend is therefore only
true in the average over many systems.

7.5 Conclusions

We studied the sensitivity for change detection of principal components in non-
stationary, correlated systems with multiple time series measurements. The non-
stationarity was defined as the possibility for the system to be in multiple, distinctly
different normal states prior to the change. Our study was based on the one con-
ducted by Tveten [158] for stationary time series. Accordingly, the changes, which
should be detected, were either to correlation structure, mean values or standard
deviations of the time series. For simplicity, we constricted the study to those sce-
narios, where the normal states differ in the same property, in which the change also
occurred. We analyzed how the detectability of the change varied for each principal
component depending on the knowledge of the non-stationarity.

We found that in general the knowledge about the non-stationarity always in-
creases the sensitivity for change detection. The increase is dependent on the prin-
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cipal component on which the data was projected. This dependency is quite similar
to the one that was already found for the pure sensitivity for change detection in a
stationary system. This means that where sensitivity for change is highest, also the
increase gained by knowledge about the non-stationarity is highest. Usually this is
for the minor components, i.e. the eigenvectors associated with small eigenvalues.
This is reasonable as they represent behavior that is entirely unusual for a system
in its normal state. When a change occurs, it can be seen very easily in those pro-
jections. If they are mixed up due to multiple normal states, this clear possibility
to see changes is diminished. This underlines the importance of non-stationarity for
direct uses of PCA for change detection and is confirmed in the traffic flow example.

Usage of PCA for dimensionality reduction by keeping only projections on major
components will probably be less influenced by this. This is an interesting aspect to
study in the future. Other methods depending on eigenvectors for change detection
(e.g. Mahalanobis distance) were not directly studied, but we think it likely that
their sensitivity to change could also be increased by the consideration of multiple
normal states. Our results are true for all three different types of changes and
states. We further analyzed two scenarios: Unrelated and related normal states.
We found that the sensitivity increase is usually greater for unrelated states, which
is reasonable as the non-stationarity has a stronger effect in this case. We want to
point out once again, that the use of multiple normal states for change detection in
real applications is only possible, if a criterion can be found to identify which normal
states new data should be compared to. The purpose of the present study was mainly
to develop the concepts and to provide the necessary tools. The traffic flow data
example shows that it is possible to transfer the idea onto real world data. This
opens up applicability in many systems, where PCA and related methods are used
for change detection. While traffic is among these systems [153], other prominent
examples for fault detection are chemical plants [216] and industrial machinery [116,
217]. A first step to include multiple operational conditions in PCA-based failure
detection for heat pumps was already undertaken by Zhang et al. [218]. We intend
to test the proposed method on wind turbines, where multiple operational normal
conditions based on correlation matrix clustering have already been found [1] and
PCA is being used for fault detection [117].

Our results clearly show that non-stationarity should be taken into account if one
undertakes change, novelty or failure detection using principle component analysis.
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CHAPTER 8

Wind Farm Correlations and Spatial Structures

So far, we have explored the correlations and non-stationarities of data from single
wind turbines. Often however, wind turbines do not operate alone, but in wind
farms consisting of many turbines. In this chapter we delve into statistical analysis of
wind turbine data of whole wind farms, utilizing data from already installed SCADA
systems as a simple and cost-effective data source. The chapter is a modified version
of paper [5].

Wake effects and turbulences generated by the wind turbines are important for
the layout of wind farms. Many sophisticated efforts are undertaken to describe the
flows and incorporate them into wind farm design [24, 86]. Detailed physics based
Computational Fluid Dynamics (CFD) models are needed to accurately describe
the air flows within the wind farms. Models have been developed to calculate wake
effects and turbulence generated by the wind turbines themselves [219, 220]. How-
ever, these models are often computationally costly and need detailed information
on atmospheric flows as well as wind turbine and wind farm geometries. Therefore,
we focus on a statistical analysis that is input-free beyond the measured data itself.
Previously, data on wind conditions within the wind farm were often only based
on single measured values from separate measuring masts and model calculations
[221, 222]. Due to the availability of SCADA data, it is now possible to determine
electrical power production, wind speed and orientation individually for each wind
turbine [223–225]. Especially for large wind farms this might be a significant im-
provement for investigating wake effects, because the wind conditions may vary at
different locations and the measured value of a single separate measuring mast may
not be representative for the wind farm as a whole [226].

The interactions between wind turbines are relevant not only for the design but
also for control and monitoring of wind farms. To ensure optimal operation, current
operating data are evaluated and appropriate adjustments are made. For this, it
is essential to have fast analysis procedures that can process real-time data. Com-
puting time can be shortened, for example, by reducing the complexity of the data.
This can be done by aggregating several wind turbines, based on wind speed, wind
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direction and wind farm layout, taking into account wake effects [227–229]. Another
approach is to use correlation analyses by determining the correlation structure for
the wind farm at one time and comparing it to the structure at other times. This
was used in the examination of correlations for return time series in stock markets.
Recurring, consistent structures were identified, that can be understood as states
[42, 168, 169]. The dynamics can then be represented by the state time series.
This significantly reduces the complexity of the system and allows for rapid analy-
sis. Likewise, states in the correlation structure were found in analyses of highway
traffic flow [51, 209, 230].

Our goal is to investigate the correlation structure of wind farms. We apply
statistical methods to see which information can be gained on the interactions in
the wind farm from the SCADA data. We do this without additional input or
modeling assumptions. Our focus is on the electrical power production of individual
wind turbines and the collective behavior within the wind farm. First, we calculate
correlation matrices for the active power. Second, we apply clustering methods and
find different states in the correlation structure.

This chapter is organized as follows: In Sec. 8.1 we describe the data used. In
Sec. 8.2 we introduce our methods for the calculation of the correlation matrices and
the further analysis. In Sec. 8.3 we show our results for the correlation analysis for
the active power of the wind turbines for each wind farm. In Sec. 8.4 we summarize
our results and provide an outlook.

8.1 Data

We analyze SCADA operational data of the German offshore wind farm Riffgat
and the British offshore wind farm Thanet. We introduce the two wind farms and
datasets briefly in Sec. 8.1.1, in Sec. 8.1.2 we describe our data pre-processesing.

8.1.1 Description of Wind Farms and Data

The wind farm Riffgat was the first commercial North Sea wind farm when it was
built in August 2013 [231]. It is located about 15 km north-west of the island of
Borkum [232]. The wind farm consists of 30 Siemens SWT-3.6-120 wind turbines
with a rotor diameter of 120m and a rated electrical power of 3600 kW each. Thus,
the wind farm has a total rated electrical power of 108MW. The wind farm layout
is shown schematically in Fig. 8.1, top. It consists of three rows running from west
to east. Each row consists of ten wind turbines. The wind turbine spacing within
the rows is approximately 550m (4.6 rotor diameters). The spacing between rows
is approximately 600m (5 rotor diameters). The analyzed operational data span
a twelve month period from March 01, 2014 (one month after wind farm launch)
to February 28, 2015. The data includes measurements at the wind turbines (e.g.
wind speed, nacelle direction, pitch angle, generator speed), grid characteristics (e.g.
active and reactive power of the wind turbine, grid voltage, current) as well as status
values. The operational data are measured at high frequency, but recorded as the
mean values, the standard deviations and minimum and maximum values of ten
minute intervals.
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Figure 8.1: Top: Schematic layout of the wind farm Riffgat. Bottom: Schematic
layout of the wind farm Thanet. The adjusted wind directions are used in the
later analysis to align the wind farms with the eight wind directions (N, NE, E,
. . . ). For the wind farm Riffgat wind direction north corresponds to compass
direction 349°N. For the wind farm Thanet wind direction north corresponds to
compass direction 3°N.
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The Thanet wind farm was built in 2010 and was one of the largest offshore
wind farms in the world [233] at the time. It is located about 12 km off the coast
of Kent in the south-east of the United Kingdom [234]. The wind farm consists
of 100 Vestas V90-3.0 MW wind turbines with a rotor diameter of 90m and a
rated electrical power of 3000 kW each. In total, therefore, the wind farm has a
rated electrical power of 300MW. The wind farm layout is shown schematically in
Fig. 8.1, bottom. It consists of seven rows running from north-west to south-east.
The wind turbine number per row varies between 11 and 17. The wind turbine
spacing within the rows is approxiamtely 470m (5.2 rotor diameters). The spacing
between rows is approximately 720m (8 rotor diameters). However, spacing may
vary slightly for individual wind turbines. The various measured observables have
different time resolutions. Observables such as wind speed and active power are
measured in approximately 5 second increments. For synchronization, we average
them to 10 second increments for our studies. Temperature measurements, e.g., of
the generator, are made in 10 minute increments. Measured observables such as the
nacelle direction are transmitted in each case as changes occur. TheThanet dataset
is very large due to its high temporal resolution. This has a significant impact on
the handling of the dataset and the required computation times. Therefore, the
analysis in this chapter is limited to the operational data for February 2017.

For both datasets, the data do not have entries for all observables at all times.
The times without measurement vary per wind turbine and observable. Thus, there
may be a wind speed measurement for a wind turbine at one point in time, but not
its associated electrical power production. Missing points in the data are replaced
by NA (Not Available).

8.1.2 Data Pre-processing

The data analysis requires preparation. We sort out and correct erroneous values as
well as implausible data. We use different preparation steps for the low-resolution
Riffgat dataset and the high-resolution Thanet dataset.

The preparation of the Riffgat data is based on Refs. [235–238] and is done
according to the following steps: First, we discard data (replace it by NA) for which
the exact same measurement value was recorded for two consecutive measurements.
Two exactly equal measured values are highly unlikely for a specification with such a
high resolution (five decimal places). Therefore, we interpret this as a measurement
error. Second, we discard all data where the standard deviation for the respective
measurement interval has a value of zero. Last, we discard wind speeds above 30m/s
because they are well above the operating range of the wind turbines and are likely
to represent measurement errors.

For the Thanet dataset, data preparation does not involve any steps other than
transforming it into the format used for our analysis, because of its high temporal
resolution.

For the calculation of the correlation matrices, missing points in the data are a
major problem. Hence, they have to be handled in an appropriate manner. For the
Riffgat dataset all missing points in the data are replaced by the value 0 kW. We
do this because the overall number of missing values is low (2.25%) and the impact
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of this filling is therefore minimal. For the Thanet dataset, the handling of missing
points in the data is more complicated. First of all, the number of missing points
is much higher (13.03%). Furthermore, missing points in the data are not evenly
(randomly) distributed across all wind turbines and the entire time period. We
observe two main patterns. First, there are long periods with missing data points
for individual wind turbines. This is due to failures of these individual wind turbines
and is referred to below as failed wind turbines. Second, missing data points occur
more frequently for multiple wind turbines at the same time when electrical power
production and wind speed are low. This is due to shutdowns of the wind turbines
due to insufficient wind speeds and is referred to as wind turbines shut down in the
following.

Failures and shutdowns differ in particular in the fact that the former are indi-
vidual effects and the latter are collective effects. Therefore, to characterize failures
and shutdowns, we first consider the densities of missing data points in the time
series of individual wind turbines, NAdens, and the number of simultaneous missing
data points in the time series of all wind turbines, NAfarm. To ensure proper char-
acterization of failures and shutdowns, the following measures are taken: First, the
density of missing data points in the time series of individual wind turbines, NAdens,
is determined over a large, sliding time window of twelve hours. This gives greater
weight to the long duration of failures and less weight to short periods of shutdowns
with many missing data points. Second, to remove collective increases in the density
of missing data points, the deviation of the density of missing data points from the
mean density of missing data points for all wind turbines is determined and then
averaged for each wind turbine over a sliding time window of twelve hours

NAdens,dev =

〈
NAdens −

1

NWT

∑
WT

NAdens

〉
12 h

, (8.1)

with the number of wind turbines NWT. For the failed wind turbines, we observe
another effect in addition to the missing data points. Frequently, individual mea-
sured values occur between the missing data points, which deviate strongly from
the measured values of all other wind turbines. In our opinion, these are erroneous
measured values due to the failure of the respective wind turbine, which should also
be replaced. To determine such values, the deviation, Ψ, of the individual wind
turbine’s electrical power production from the mean electrical power production of
all wind turbines is averaged over a ten minute interval for each wind turbine

Ψ10 = ⟨Ψ⟩10min . (8.2)

If a wind turbine produces significantly less electrical power on average than all other
wind turbines over a time interval of 10 minutes, its measured values are considered
erroneous. The criteria and thresholds chosen to characterize failures and shutdowns
are explicitly summarized as:

1. A data point is interpreted as a failure,
if NAdens > 0.6 and NAdens,dev > 0.1 or
if Ψ10 < −1000 kW.
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2. A data point is interpreted as a shutdown,
if u < 4m/s and NAfarm > 20 and
it is not characterized as a failure.

A missing data point in the wind speed measurement is considered as a wind speed
u < 4m/s for the second condition. The thresholds for failure detection were chosen
based on how well they were able to identify short- and long-term failures for some
specific days. For the shutdowns, the threshold value for wind speed stems from the
operations handbook of the wind turbines. The number of wind turbines is chosen
as a fifth of the wind farm to reflect shutdowns as a collective phenomenon, the data
of the turbines being shutdown the earliest are kept until at least one fifth of the
wind farm is shut down. With this classification, of the 13.03% missing data points,
3.85% are due to shutdowns and 6.65% are due to failures. The remaining 2.53%
cannot be assigned to either category.

Having identified failures and shutdowns, the question is how to handle them.
Failures and shutdowns are fundamentally different and therefore their handling
should be different as well. Shutdowns occur at low wind speeds and low electrical
power productions. Consequently, the simplest option is to fill the shutdowns with
values of 0 kW. This is consistent with the logic that no electrical power is produced
during a shutdown. We neglect at this point that the wind turbines themselves need
a certain electrical power for their operation and the missing data points would have
to be filled with negative values accordingly. A second possibility is to fill the missing
data points with the last existing value in each case. This is especially suitable for
short series of missing data points. Both methods lead to the same qualitative
results, but the correlations are stronger in the second case. Hence, for our analysis
we use the second method. Failures occur for individual wind turbines. They do not
depend on wind speed or electrical power production. Filling the failures with a fixed
value such as 0 kW is therefore not useful. Using the last value before the failure
is also unsuitable as an option, since on the one hand it is not ensured that this is
not already faulty and on the other hand failures usually last for a longer period of
time and this value can thus become as unsuitable as a fixed value of 0 kW. Thus,
the simplest way to fill up the failures with a variable value is to use the respective
current average electrical power production of the remaining wind turbines. We will
do this in the following. Please note that the mean value of the wind turbines is
calculated after the missing data points due to shutdowns have been filled using the
aforementioned method.

8.2 Correlation Analysis

We analyze the correlation of the active power for all wind turbines of a wind farm.
Therefore, in accordance with Sec. 3.1 Xk(t), t = 1, . . . , T , is the time series of T
measurement of an observable X for a wind turbine k, k = 1, . . . , K, where K is
the number of turbines and T the length of the observed interval. By following the
further steps as described in sections 3.1 and 3.2 we calculate the correlation matrix
C.

As discussed in sections 3.3 and 3.4, in the eigenvectors to a given eigenvalue,
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entries with the same sign and comparable numerical value, indicate coherent, i.e.
collective, behavior of the corresponding time series. The largest eigenvalue of C
and its eigenvalue often measure the collectivity of the system as a whole. Further
large eigenvalues usually represent behavior of subgroups of observables [135]. In
our analysis we find that the correlation matrices are dominated by collective effects,
i.e., we find a large first eigenvalue with an eigenvector that consists of almost equal
values in all entries. This is consistent with other complex systems [42, 43, 51, 168,
169, 209, 230]. To subtract the collective part, we use a singular value decomposition,
which always exists [239] and has been used in a similar context by Heckens et al.
[43]. The normalized data matrix M is decomposed via

M = UΩV † with Ω =

ω1 0 0 0
. . . . . .

0 ωn 0 0

 . (8.3)

Here U is an orthogonal K ×K matrix with the eigenvectors of MM † as columns
and V is an orthogonal T × T matrix with the eigenvectors of M †M as columns.
The matrix Ω is a K×T matrix with the singular values ω on its main diagonal and
all other entries being zero. The number of nonzero singular values corresponds to
the rank of M . We notice that the K ×K matrix ΩΩ† and the T × T matrix Ω†Ω
contain the (non-negative) eigenvalues of MM † and M †M , respectively. By setting
one or more singular values to zero in Eq. (8.3), we generate reduced time series.
For these we calculate the associated reduced-rank correlation matrices with Eq.
(3.8). This procedure is equivalent to the construction of reduced-rank covariance
and correlation matrices in Heckens et al. [43].

8.3 Results

We first examine the correlation structures of the active power for all wind turbines
of each wind farm. Since these are strongly dominated by collective effects, we
analyze the correlation structure for the active power without the collective part
afterwards. Finally, we relate the correlation structure to the wind farm structure.
We perform the same analysis on both wind farms. In Sec. 8.3.1 we present our
results for the wind farm Riffgat. Afterwards, in Sec. 8.3.2 we present our results
for the wind farm Thanet.

8.3.1 Riffgat

To obtain a first impression of the correlation structure, correlation matrices for
the active power for periods of half a day, one day and one week are given in
Fig. 8.2. We do not use shorter time windows at this point, as the data basis is
too small to obtain reliable results for these due to the coarse temporal resolution
of the data. For the correlation matrices shown, it is striking that, besides for
Turbine 27 in the matrix over half a day, only positive correlations occur. Along the
main diagonals, blockwise associated structures of slightly increased correlations are
formed. However, single wind turbines show significantly lower correlations to all

129



Wind Farm Correlations and Spatial Structures

Figure 8.2: Correlation matrices for the active power over half a day (left), a day
(middle) and a week (right) for the wind farm Riffgat.

other wind turbines, forming stripes of lower correlations. Overall, the correlation
matrices are nevertheless dominated by a uniform positive correlation. The mean
correlation increases with the length of the observation period. This is plausible if
one considers the common dependence of each power series on one external trend:
the wind speed. For long time scales, the wind speed is not constant and the
power of all turbines changes strongly in dependence of this. Thus, strong positive
cross-correlations are created on these time scales due to trends in the wind speed.
With shorter time scales the wind speed varies less strongly allowing for individual
variations of the wind turbines to be observed in the correlations. Consequently,
the overall correlation for the active power of the wind turbines decreases and shows
more interesting structure. For our further analysis of the Riffgat data we only
consider correlation matrices over half a day.

The collective behavior observed for the correlation matrices can be illustrated
by an analysis of their eigenvalues. In Fig. 8.3, the eigenvalue spectrum and the
corresponding eigenvectors of the correlation matrix are shown. In the eigenvalue
spectrum, a particularly large eigenvalue with a value of 24 stands out. The as-
sociated eigenvector has, with some exceptions, approximately the same value in
each component (for each wind turbine). This provides a uniform correlation and
indicates a collective behavior for the active power of the wind turbines.

To remove the influence of the collective dynamics, we perform a singular value
decomposition of the correlation matrices and take out the contribution of the first
singular value/eigenvalue (see Sec. 8.2). Correlation matrices for the active power
reduced by the contribution of the first eigenvalue are shown in Fig. 8.4. Now, also
negative correlations appear in the correlation matrices. In the first matrix, there
are positive correlations in blocks along the main diagonal and otherwise mixed pos-
itive and negative correlations. The other two correlation matrices show structures
that can be interpreted based on the spatial structure of the wind farm. Positive cor-
relations are found between the first and last ten wind turbines (rows), respectively,
in conjunction with negative correlations towards the remaining wind turbines. For
correlation matrices other than the ones shown here, positive correlations between
the first three wind turbines of each row (1, 2, 3; 11, 12, 13; 21, 22, 23) together
with strong negative correlations of these with the last wind turbines of each row
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Figure 8.3: Top: Eigenvalue spectrum as histogram counts of the correlation matrix
for the active power for half a day. The inlay shows the large values, while the main
plot is zoomed in on small eigenvalues. Bottom: Corresponding eigenvectors of the
correlation matrix for the active power. Each column represents an eigenvector.
From left to right the corresponding eigenvalue decreases. For numerical values of
the entries, see color code.
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Figure 8.4: Correlation matrices for the active power without the contribution of
the first eigenvalue for three different times for the wind farm Riffgat.

(10; 20; 30) also occur. These structures can be interpreted based on the wind
farm structure. Depending on the wind direction, different wind turbines form the
foremost line, which is the front of the wind farm in the wind. The fluctuations of
the active power of these wind turbines are strongly correlated and anti-correlated
to the fluctuations of the active power of the wind turbines of the other rows. It
should be noted, however, that the wind direction measurement is slightly different
for all wind turbines, and can also change significantly over the observation periods
of half a day. Thus, it is only approximately possible to assign a wind direction to
each correlation matrix.

In order to investigate whether for these long time periods a dependence of the
correlation structure on the wind direction can be found in the correlation matrices,
we grouped them as a function of the mean wind direction of all wind turbines
over the respective observation period. The mean wind direction is calculated as
the circular mean of all wind directions. The wind direction is divided into eight
ranges of 45◦ each. The ranges are divided so that they are centered around the
wind directions that are orthogonal on the wind farm rows. The mean correlation
matrices for the 45◦ ranges of the wind direction, calculated elementwise, are shown
in Fig. 8.5. There are clear structural differences between the mean correlation
matrices of the wind directions. For the north direction, the northern wind turbines
1-10 show a strong positive correlation. The correlation for the first and second
half of the row is stronger among each other than across the row. The correlation
with the other wind turbines is significantly lower, often even negative. Thereby,
wind turbines 1-5, 11-15, 21-25 and wind turbines 6-10, 16-20, 26-30 are respectively
more strongly (positively) correlated with each other. Wind turbines 11-20 and wind
turbines 21-30 show a higher correlation with each other than with wind turbines
1-10. An analogous structure is even more pronounced for the south direction.
Here, wind turbines 21-30 show exclusively negative correlations with the other wind
turbines. For the east direction, wind turbines 10, 20, 30 are strongly correlated with
each other and show anti-correlations with the other wind turbines. Similarly, wind
turbines 1, 11, 21 are correlated with each other for the west direction. Overall it can
be seen that the wind turbines that are directly downwind have high correlations
with each other and have a weaker correlation or anti-correlation with the other
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Figure 8.5: Average correlation matrices for the active power without the contribu-
tion of the first eigenvalue for the different 45◦ ranges for the wind farm Riffgat.
The wind directions are from left to right N, NE, E, SE and S, SW, W, NW for the
two rows.

wind turbines. Thus, information on the spatial structure of the wind farm can be
derived from the correlation structure in combination with the wind direction. The
observed correlation structures display the total interaction between turbines as an
aggregation of complex dynamics such as the wake effect. In all these considerations,
it should be noted that the wind direction is still an average over half a day and all
wind turbines. The emergence of such a clear pattern despite this fact is noteworthy.
It is interesting to investigate to what extent these effects can be found in data with
a higher temporal resolution. This will be done in the analysis of the Thanet
dataset in the following section.

8.3.2 Thanet

The high temporal resolution of the Thanet dataset makes it possible to study ef-
fects on a short time scale. Compared to the Riffgat dataset, the electrical power
measurements of the Thanet dataset possess a 60 times higher time resolution.
Thus, much smaller observation periods can be chosen with a quantitatively equal
data basis. This makes it possible to analyze individual aspects about which no
statement could otherwise be made due to a lack of meaningfulness of the data. For
the calculation of correlations for the active power, the length of the observation pe-
riod (the length of the time series of active power) plays a significant role. For short
observation periods, the correlation is masked by noise due to individual statistical
fluctuations [135, 240].

Therefore, we first discuss the influence of the length of the observation period
using different time windows for an exemplary day. In Fig. 8.6 the correlation
matrices of the active power over periods of ten minutes, half an hour, one hour, six
hours, half a day, and a day are shown. In the correlation matrix over ten minutes,
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clear correlations and anticorrelations can be seen, forming a recognizable structure.
The proportions of correlations and anticorrelations are balanced. The correlation
matrix over half an hour holds significantly more correlations than anticorrelations.
Interrelated structures of correlations and anticorrelations become larger. They are
also more pronounced. The correlation matrix over one hour has essentially the
same structure as the matrix over half an hour but weaker anticorrelations. In the
correlation matrix over six hours there are only positive correlations. Here, however,
large differences for the different observation times emerge. For the example shown
all wind turbines are strongly positively correlated with each other. There is only
a slight block and stripe structure in the correlation matrix. For another day the
correlation is less strong. A stripe structure clearly shows up for it. In addition,
there are also some neutral correlations. Yet for another day the correlation matrix
consists to the largest part still of neutral correlations (see App. D Fig. D.1 and
Fig. D.2). The correlation matrix over half a day does not show much change for the
example shown. However, for the other examples mentioned before the matrix is now
also dominated by strong positive correlations (see App. D Fig. D.1 and Fig. D.2).
Finally, the correlation matrix over a day shows mainly strong positive correlations.
For even larger time periods, the correlation increases further and the correlation
matrices become more homogeneous. We observe that the correlation matrices all
tend towards a uniform structure with increasing length of the observation periods.
However, this happens for different observation periods on different time scales.
These differences emerge from the range of electrical power production (and wind
speed) values within each oberservation period. If the wind speed is similar during
the whole observation period, the active power has a narrow range of values and
individual fluctuations of the wind turbines dominate. Correlations are therefore
much smaller. For large changes in the wind speed during an observation period,
the active power has a much broader range of values. The values for all wind
turbines also show the same timely variation. Hence, a collective behaviour emerges
and dominates the individual fluctuations of the wind turbines. Correlations are
therefore much stronger.

We again illustrate the collective behaviour observed for the correlation matrices
by an analysis of their eigenvalues. In Fig. 8.7, the eigenvalue spectrum and the
corresponding eigenvectors of the correlation matrix over half an hour are shown.
The correlation matrix over ten minutes was not chosen at this point because the
associated time series include only 60 measurements. This is less than the number
of wind turbines considered (100). The rank of the correlation matrix is thus limited
by the number of measurements. For this matrix, 41 eigenvalues have a value of
zero [43]. For the correlation matrix over half an hour, the associated time series
include 180 measurements. Accordingly, the correlation matrix is a full-rank ma-
trix. The eigenvalue spectrum shows many eigenvalues with values smaller than one.
Seventeen eigenvalues have values between one and three. However, there are three
significantly larger eigenvalues with values of 5.6, 10.1 and 30.5. In the components
of the first three corresponding eigenvectors, structures can be recognized that in-
dicate a collective behavior of small groups of wind turbines. The first eigenvector
has mostly positive entries of a similar magnitude, but also some neutral and even
negative entries. In the second and third eigenvectors, several small coherent groups
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Figure 8.6: Correlation Matrices for the active power over ten minutes (top left),
half an hour (top middle), an hour (top right) six hours (bottom left), half a day
(bottom middle) and a day (bottom right) for the wind farm Thanet.
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of positive and negative entries form. The entries of the remaining eigenvectors do
not show a clear structure, they seem to have randomly distributed positive and
negative values. The last three eigenvectors each have entries in only four compo-
nents. However, these are negligible because the associated eigenvalues have a value
of zero within machine precision.

Wind speed and wind direction change on short time scales. Long observation
periods thus may include phases of different wind speeds and wind directions. This
leads on the one hand to stronger correlations between wind turbines and on the
other hand to the mixing of possible wind speed and wind direction dependencies in
the correlation structure. In order to be able to resolve effects caused by wind speed
or direction, the observation period should therefore be chosen as short as possible.
The correlation matrices over ten minutes are based on a very small data set and
do not have a full rank. For that reason, the correlation matrices over 30 minutes
are used for the further analyses.

Despite the short observation period of half an hour, the structures of the corre-
lation matrices are in some cases still strongly characterized by collective effects. To
remove the contribution of the collective behavior of all wind turbines, we now con-
sider the time series Ψ of deviations for the individual wind turbines’ active power
from the mean active power of all wind turbines. A similar approach was used in
Ref. [241]. At this point, the active power is not reduced by the contribution of
the first singular value/eigenvalue as in Sec. 8.3.1, because the eigenvalue spectra
of the correlation matrices show huge differences for the different observation pe-
riods. While for some correlation matrices the first eigenvalue is very large and
describes the collective dynamics, for other correlation matrices it is smaller and
does not describe the collective dynamics. This indicates that sometimes there are
influences that are stronger than the collectivity. Taking out the contribution of the
first eigenvalue would thus have strongly different effects for the different correlation
matrices.

To investigate again a dependence on the wind direction, the correlation matrices
are grouped as a function of the mean wind direction of all wind turbines over
the respective observation period. For this purpose, the wind direction is divided
into eight ranges of 45◦ each. The ranges are divided so that they are centered
around the wind directions that are orthogonal on the wind farm rows. The mean
correlation matrices for the 45◦ ranges of wind direction are shown in Fig. 8.8. There
are clear structural differences between the mean correlation matrices of the wind
directions. For the structure to be formed in a manner analogous to the observations
for the Riffgat dataset (see Fig. 8.5), the first wind turbines of each row should be
correlated with each other for the north-west direction. This can be seen in the mean
correlation matrix. However, the correlations are only very weak. For the south-east
direction, the last wind turbines of the rows should be correlated with each other.
This can be found in the mean correlation matrix. Finally, for the south-west and
north-east directions, the first and last rows, respectively, should be correlated. For
the south-west direction, an increased correlation of the first rows can be seen, but
for the north-east direction, no increased correlation of the last rows can be found.
The stronger expression of the structure for the south-east to south-west direction
probably stems from the fact that this is the main wind direction for the observation
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Figure 8.7: Top: Eigenvalue spectrum as histogram counts of the correlation matrix
for the active power for half an hour. The inlay shows the large values, while the
main plot is zoomed in on small eigenvalues. Bottom: Corresponding eigenvectors of
the correlation matrix for the active power. Each column represents an eigenvector.
From left to right the corresponding eigenvalue decreases. For numerical values of
the entries, see color code.
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Figure 8.8: Average correlation matrices for the deviations, Ψ, of the individual
wind turbines’ active power from the mean active power for the different 45◦ ranges
for the wind farm Thanet. The wind directions are from left to right N, NE, E,
SE and S, SW, W, NW for the two rows.

period. Both the most and the largest wind speed measurements are available for
this direction. A transition between the structures of the south-east and south-west
directions can further be seen in the correlation matrix of the south direction. The
correlation matrix of the east direction shows strong correlations between the second
half of the wind turbines. The respective wind turbines are in a state of failure for
a large part of the observation period for that wind direction. The high correlations
therefore emerge from our data filling (see Sec. 8.1.2).

The spatial structures are less distinct for the Thanet dataset than for the
Riffgat dataset. On the one hand, this may be related to the fact that the distances
of the wind turbines for the Thanet wind farm are larger in relation to the rotor
diameter of the wind turbines (see Sec. 8.1.1). As a result, the wake effects by the
wind turbines are less strong and the wind turbines do not influence each other
as much. In particular, the distances between rows are much larger in the wind
farm Thanet and are in a range for which the influence of the wind turbines can
be considered small [224, 242–244]. On the other hand, the difference between the
wind farms may also be due to the different time resolutions of the data and the
different lengths of the observation periods. By reducing the temporal resolution of
the Thanet data to ten minute averages and calculating the correlation matrices
over a time window of half a day we are able to reveal spatial structures more
clearly (see App. D Fig. D.3). However, reducing the temporal resolution has again
the disadvantage that wind direction and other external circumstances can change
significantly within the observation periods, making it impossible for us to draw
clear conclusions about their influence.
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8.4 Conclusions

We analyzed the operational data of the offshore wind farm Riffgat for the pe-
riod from 01.03.2014 to 28.02.2015 and the operational data of the offshore wind
farm Thanet for February 2017. In both cases, a significant dependence on the
spatial structure of the wind farm could be found for the correlation structure of
the fluctuations of the active power for the wind turbines. Wind turbines that have
spatial proximity to each other show stronger correlations for the electrical power
fluctuations with each other. For the Riffgat dataset, a connection between the
structures of the correlation matrices and the prevailing wind direction was found.
This is surprising since the time periods considered for the correlation matrices were
half a day. Over such a long period of time, the wind direction is not constant and
can only be approximated to a specific direction. For the high resolution Thanet
dataset, this problem was circumvented by considering shorter time periods. It was
expected that the structures would be even more pronounced as a function of wind
direction for this case. This could not be confirmed in the analysis. Increased cor-
relations due to the spatial proximity of the wind turbines were again found, but
a clear correlation with wind direction could only be found for a certain range of
wind directions. Using the same time resolution and time periods for the Thanet
dataset as previously used for the Riffgat dataset resulted in an enhancement of
the structures as a function of wind direction. This is due to the fact that a high
temporal resolution leads to stronger noise. Therefore a trade-off between resolution
and noise has to be made.

One possible cause for the differences between wind farms is the wind turbine
spacing within the wind farms. Especially in relation to the rotor diameters of the
wind turbines, the distances between the wind turbines in the wind farm Thanet
are significantly larger than in the wind farmRiffgat. For theRiffgat wind farm,
the wind turbines within rows have a spacing of 550m (4.6 rotor diameter). The
distance between rows is 600m (5 rotor diameter). For the Thanet wind farm,
the wind turbines within the rows have a spacing of 470m (5.2 rotor diameter).
The spacing between rows is 720m (8 rotor diameter). Thus, the interactions and
wake effects of the wind turbines, especially between rows, are much weaker for the
Thanet wind farm than for the Riffgat wind farm. Hence, structures depending
on the wind direction are also significantly weaker pronounced. While the influence
of wake effects and their complex dynamics are the subject of many studies [24],
we have shown that they are intimately connected to the collective behavior. Their
influence is measurable without any further input in the cross-correlations of wind
farms once the collective behavior is accounted for.

The methods of this chapter are suitable to analyze a large number of existing
wind farm layouts with reasonable effort and input-free beyond the measured data.
The presented statistical approach complements existing methods to evaluate which
layouts minimize turbine interactions. Of course, it cannot replace complex analysis
such as fluid dynamics simulations for detailed analysis.

139



140



CHAPTER 9

Conclusions

Wind turbines operate in highly variable conditions. Their control system introduces
further non-stationarity into the system. We studied this non-stationarity with
a focus on mutual correlations between measured observables. Furthermore, we
explored some of its consequences for other analysis methods.

We began with the analysis of single wind turbine correlation matrices containing
multiple different observables. Applying a matrix distance measure and a bisect-
ing k-means clustering algorithm, previously used in complex systems analysis [42,
43], we successfully distinguished clusters in high frequency wind turbine data using
non-overlapping 30 minute correlation matrices. No additional information beyond
the data itself was needed for this distinction. Our method confirmed the non-
stationary nature of these matrices. We were able to identify the different clusters
with operational states induced by the control system of the turbine. While differ-
ent control states were expected, our analysis provided a tool for their automated
detection without prior knowledge. Stability of the states was shown to depend
predominantly on wind speed, aligning with expectations of wind turbine behavior.
Including the pitch angle as an additional observable into the matrices revealed the
standard deviation of wind speed within these intervals as another influential factor.
We established the transitional wind speeds separating different states. Thereby, we
were able to approximately replicate the cluster distribution using wind speeds aver-
aged over 30 minutes. The approach, initially developed for a single turbine, scaled
effectively to multiple turbines without additional effort. Our results underline the
significant impact of control dynamics on the correlation patterns in high frequency
wind turbine SCADA data. This emphasizes the necessity of considering these vari-
ations in operational analyses, such as performance monitoring. The presumption
of a static correlation matrix, for instance, when employing principal component
analysis for dimensionality reduction on a data set, is not justified by our findings.

The non-stationarity could be taken into account – for example when performing
failure analysis on high frequency SCADA data – as a pre-processing procedure. The
average wind speed in a time interval could be used to match new or live data to an
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operational state. Then, with any given method, the comparison to ”normal” data
could be done within the operational state. This does not require any modifications
to established methods, but only their application in subgroups. Given the necessary
data, an obvious and interesting extension of the presented analysis would be the
transfer onto different turbine types and observables to see how this affects the
identified clusters and their dependence on external conditions. Furthermore, the
current study is limited in its resolution by the 10-second-resolution of the underlying
data. Higher sampling rates would allow the calculation of correlation matrices on
shorter epochs. This might help to avoid problems of the current methodology such
as the merging of different operational states during one epoch due to changing
external conditions. The presented results are also limited to linear correlations,
which are shown to be suitable for the analyzed observables, but might not be
enough if other observables and turbine types are considered.

Expanding the analysis of operational states, we employed Langevin analysis to
study the deterministic and stochastic components of wind turbine control dynamics.
We applied the clustering approach to a whole year of wind turbine SCADA data and
used the proximity of any given correlation matrix to the observed operational states
as a reliable index of the turbine’s current control state. Our methodology, inspired
by financial market analyses [168, 169], adapted effectively to the wind turbine
domain. We performed necessary modifications to accommodate unique phenomena
such as control hysteresis, characterized by multiple non-coexisting fixed points.
Hereby, we reduced the study of multidimensional system to a one-dimensional time
series analysis. The Langevin analysis, including visualizations of drift and potential,
provided an intuitive means to comprehend system dynamics. We showed that the
complex dynamics of the multidimensional system are captured here in a simplified
way. Extensions to larger systems and more observable are possible. For the data at
hand, our study provided clarity on the stability of control states and the nature of
state transitions. Particularly, it highlighted the complexity of the transition from
variable to constant rotation states for the studied turbine. At first, with standard
drift estimation, it seemed like the analysis indicated an intermediate state not
identified in the clustering. This shows the potential of Langevin analysis to support
the determination of the correct cluster number. It may uncover additional states
not previously evident in clustering. In our case however, a modified drift estimation
method based on peak identification resolved the issue: no intermediate state exists,
but two different states might appear for the same wind speed. This is due to control
hysteresis. As these states never coexist at the same time, standard drift estimation
averages the two fixed points into one seemingly intermediate fixed point. The new
estimation method resolves the two different fixed points as a bistable region. This
method was specifically tailored to our use case, where an effective trimming of
the underlying data revealed the actual fixed points. The second transition from a
variable power production to constant power production happens smoothly. From
a physics point of view they resemble first and second order phase transitions.

Our results help to understand and evaluate turbine control – especially its dy-
namics – from measured data, i.e. in real life operation. Furthermore, the extension
of static clustering helps to identify wind speed regimes, in which only one cluster is
dominant, and (transition) regimes where this might not be the case. This further

142



Conclusions

increases the utility of automated state separation as a pre-processing procedure
for any analysis. Above and beyond such applications, there are many interesting
prospects to study here. First, shorter epochs for the calculation of the correlation
matrix are desirable requiring data of higher resolution. This might help to resolve
changing conditions during an epoch. Thereby, the resolution of the Langevin es-
timation could be increased. Given the required data, transfer to different wind
turbines models is possible and might facilitate comparison of systems in real oper-
ation. If data is available, it might also be interesting to study the dynamics under
different environmental conditions such as onshore and offshore. Lastly, our new
peak-based estimation of the drift is a stronger deviation from the theoretical de-
scription in Eq. (5.4) than the standard averaging. Further research on its general
applicability, maybe of a more theoretical nature, would be interesting.

Building on these findings, we improved the analysis of wind turbine dynamics
by integrating operational states into an existing framework: Langevin power curve
analysis. Here, the drift and diffusion of a turbine’s active power output based on
the current wind speed were analyzed. We demonstrated that results are enhanced
by considering the identified operational states. This was achieved by employing the
suggested pre-processing procedure to segment the data into multiple subgroups, on
which our analysis was performed. For the drift we established that the system’s
dynamics are not uniform but rather distinct across various states. This is corrobo-
rated by identifying different stable fixed point per operational state for similar wind
speeds, effectively confirming hysteresis in the controller dynamics. More detailed
analysis of this effect is desirable for the future. We also saw variations per opera-
tional state in the stochastic aspect of the system. These results clearly highlight
the necessity of incorporating operational states into the behavioral analysis of wind
turbines. While we limited our analysis to one existing analysis technique, a great
opportunity for future work is to analyze the effects of non-stationarity on other es-
tablished methods in the field. Additionally, future investigations could explore the
sensitivity of results to different kernel functions and bandwidth when estimating
drift and diffusion. Another interesting topic is the dependency of the behavior of
other observables in relation to the identified operational states. Such investigations
might contribute to a more comprehensive understanding of wind turbine behavior
and aid further optimizations.

An important topic in the behavior monitoring field is failure analysis. Here,
non-stationarity has already been shown to influence failure analysis for wind tur-
bines [164, 165]. Therefore, it would be desirable to test the benefit of our method
for this application in the future. One way to do this, would be the already de-
scribed pre-processing for an existing failure detection method. Handling of the
identified transition regimes and abnormal operating conditions such as curtailment
should then be studied as well. Additionally to using the proposed pre-processing
for failure analysis methods, we see also a more direct application: Predicting an
expected correlation matrix based on a fitted criterion and comparing it to the
current one. Subsequently, deviations might point towards operational problems.
For this, labeled data with a clear distinction between healthy and faulty periods is
indispensable. The currently studied dataset did not contain this information in suf-
ficient quality. Therefore, we have, for now, shown in a theoretical simulation of an
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arbitrary correlated system that change detection with PCA benefits strongly from
accounting for non-stationarity. Our study advanced the understanding of PCA in
the context of non-stationary, correlated systems with time series data. We found
that incorporating knowledge of a system’s potential to occupy multiple ”normal”
states significantly enhances the sensitivity for change detection. This improvement
is not uniformly distributed across all principal components but is most notable in
the minor components, which are also the ones most sensitive to changes in the first
place. We studied changes to the correlation structure, the mean values and the
standard deviations of the time series.

We showed that this technique of failure detection is transferable to real systems
with a traffic example. Accounting for the non-stationarity in traffic flow during
typical work days increased the ability to detect weekends or holidays with PCA. Our
analysis clearly shows that if state-wise non-stationarity is present, it is important to
consider it during change detection. The presented analysis is limited to PCA as a
change detection method and the simulation results are averaged over many Monte
Carlo runs. Therefore, individual systems may exist, where the effect is less strong
or stronger. While this is not proven, other change detection methods might also
profit from knowledge about non-stationarity. The underlying effect is always the
same: It is hard to detect small changes, if the system itself already behaves non-
stationary in an unknown way. This underlines the potential of incorporating our
results for high frequency wind turbine SCADA data into failure detection systems.

Lastly, we studied the cross-correlations between the active power measurements
of multiple turbines. In our analysis of operational data from the Riffgat and
Thanet offshore wind farms, we observed a distinct connection between the corre-
lations of power fluctuations at different turbines and their spatial structure. Prox-
imity within these farms corresponds to stronger power fluctuation correlations. The
half-day correlation matrices for Riffgat revealed a dependence on prevailing wind
directions, a notable finding given the variability of wind. The Thanet wind farm’s
higher resolution data, examined over shorter intervals, only revealed a wind direc-
tion dependent correlation within a specific range of wind directions. Examining it
on half-day intervals also enhanced the found structures. The deviations between
the two wind farms could be attributed to their respective turbine spacing. Riff-
gat’s turbines are closer (in units of the rotor diameter), with inter-row distances
allowing for stronger interaction and wake effects, which are less pronounced in the
more spaciously arranged Thanet wind farm. Our statistical method, while not
a substitute for detailed fluid dynamics simulations, offers an efficient approach to
evaluate turbine interactions within specific wind farm layouts. It is only capable of
capturing the aggregated interactions between turbines, not distinguish individual
effects. Further research is necessary into how collective dynamics in wind farms de-
pend on the observation period length and changes of external factors therein. The
statistical analysis might then become a complementary tool for optimizing wind
farm layouts and positioning.
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APPENDIX A

Standard k-means Clustering

The standard k-means algorithm sorts every object Oi, i = 1, . . . , N from a set
of N objects into k subsets {z1, . . . , zl, . . . , zk}. Every subset is called a cluster.
Generally, the optimal number k has to be determined by a separate method [177,
178].
The input for the algorithm are the objects Oi, i = 1, . . . , N and a distance measure
d(Oi, Oj) ≥ 0, i, j = 1, . . . , N as well as a method to compute the centroid of any
cluster zl. Note, that the distance measure must also be defined for the centroids.
Then the algorithm works as follows:

1. Select k objects as starting cluster centroids.

2. Assign every object to the nearest cluster based on the distance from the object
to the cluster centroid.

3. Calculate the new cluster centroids.

4. Repeat steps 2 and 3 until no allocation changes occur.

In Ch. 4 the objects are the correlation matrices of the subset we wish to split into
two in the hierarchical approach, therefore k = 2 always. The cluster centroids are
calculated according to Eq. (4.4) and the distance is calculated by Eq. (4.2).
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APPENDIX B

Clustering Results with Spearman’s Rank Correlations

The results presented in this study are based on the Pearson correlation coefficient
that has been proven useful to establish structural features in complex systems
[42, 43, 51, 230]. However, some of the observables used in our analysis, such as
wind speed and active power have a well known non-linear dependency. We have
therefore tested the robustness of our results, when applying the non-linear measure
of Spearman’s rank correlation coefficient.

To calculate the time series of Spearman correlation matrices, we rank the indi-
vidual time series X

(l)
k (t), k = 1, . . . , K, l = 1, . . . , L, t = τ, . . . , τ+T −1 for signal k

of turbine l for one epoch. Then we proceed by calculating the Pearson correlation
matrices for the ranked time series. The following clustering procedure and analysis
is carried out in exactly the same way as for the results in Sec. 4.3. We present
here results for the case of five observables, which can be directly compared to the
results with Pearson correlation coefficients in Sec. 4.3.1.

The silhouette coefficients shown in Fig. B.1 and Tab. B.1 indicate good group-
ing. They show on average marginally larger values than for the Pearson correlation.
Comparing the resulting cluster centers for Spearman correlations in Fig. B.2 with
those for simple Pearson correlations in Fig. 4.2, it is obvious that the differences
for the structural features revealed in this analysis are minimal. The number of
elements changes slightly for some clusters, but the overall result and interpretation
are the same for both correlation measures.

As expected from the similarity of the results, also the plots of the cluster alloca-
tion over time in Fig. B.3 and over wind speed in Fig. B.4 are very similar to their
counterparts in Sec. 4.3.1.

We conclude that for the analysis carried out in this study, the simple Pearson
correlation measure is sufficient. The structural differences in the correlation ma-
trices and thereby also the structural differences in the eigenvectors, i.e. principal
components, are well captured in the linear correlations.

149



Clustering Results with Spearman’s Rank Correlations

4 clusters 5 clusters

2 clusters 3 clusters

−0.4 0.0 0.4 0.8−0.4 0.0 0.4 0.8
silhouette coefficient

cluster

1

2

3

4

5

Figure B.1: Silhouette plots for clustering solutions with 2-5 clusters for Spearman’s
rank correlation matrices. Each clustered element (matrix) is represented by a
horizontal line the length of which is the silhouette coefficient for that element.
Different clusters are color coded.

Table B.1: Minimum, first quartile, median, mean, third quartile and maximum
of silhouette coefficients for the clustering solutions with 2-5 clusters for Spearman
ranked correlation matrices of WT1.

clusters min 1st Qu. median mean 3rd Qu. max

2 -0.040 0.479 0.579 0.550 0.677 0.751
3 -0.064 0.406 0.533 0.507 0.656 0.735
4 -0.274 0.365 0.510 0.476 0.649 0.735
5 -0.361 0.325 0.483 0.450 0.641 0.730
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Figure B.2: Spearman’s rank correlation matrix cluster centroids as calculated in
Eq. (4.4) for WT1 for different numbers of clusters. The color indicates the value
of the correlation coefficient. Black lines connect child and parent clusters of the
hierarchical algorithm and the number of cluster elements is given as |zs|. Each
cluster solution is ordered from low wind speeds (left) to high wind speeds (right)
according to the average wind speed in a cluster.
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Figure B.3: Cluster identifier s over time for WT1 and Spearman’s rank correlations.
Each dot represents a 30 minute epoch.
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Figure B.4: Cluster identifier s over wind speed for WT1 and Spearman’s rank
correlations. Each dot represents a 30 minute epoch.
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APPENDIX C

Contour Lines for Operational States

To represent the distribution of operational states visually, we utilize kernel density
estimation given by

ρ(u, P, S) =

Tend∑
t=1

κG,G,B

(
P (t)− P

hP

,
u(t)− u

uh

, S(t)− S

)
(C.1)

with Gaussian and Boolean kernels κG(y) and κb(y) given by

κG(y) = e−
1
2
y2 (C.2)

and

κB =

{
1 , y = 0
0 , else

(C.3)

Contour lines are then generated using the formula:

f(u, P, S) =

{
1 , ρ(u, P, S) ≥ ρ0
0 , else

(C.4)

Here, ρ0 is a predefined threshold set to an arbitrary value of 20.
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APPENDIX D

Further Wind Farm Correlation Matrices

D.1 Further Correlation Matrices Thanet

Figure D.1: Correlation Matrices for the active power over ten minutes (top left),
half an hour (top middle), an hour (top right) six hours (bottom left), half a day
(bottom middle) and a day (bottom right) for the wind farm Thanet, February 8.
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Further Wind Farm Correlation Matrices

Figure D.2: Correlation Matrices for the active power over ten minutes (top left),
half an hour (top middle), an hour (top right) six hours (bottom left), half a day
(bottom middle) and a day (bottom right) for the wind farm Thanet, February
27.

158



Further Wind Farm Correlation Matrices

D.2 Correlation matrices Thanet for Half a Day

Figure D.3: Average correlation matrices for the active power without the contri-
bution of the first eigenvalue for the different 45◦ ranges for the wind farm Thanet
over half a day. The wind directions are from left to right N, NE, E, SE and S, SW,
W, NW for the two rows.
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Acronyms

AC Alternating Current.
CFD Computational Fluid Dynamics.
CMS Condition Monitoring System.
DC Direct Current.
DFIG Doubly-Fed Induction Generator.
FRP Fiber-Reinforced Plastic.
HAWT Horizontal Axis Wind Turbine.
LCOE Levelized Cost Of Energy.
O&M Operation and Maintenance.
PCA Principal Component Analysis.
RDS-PP Reference Designation System for Power Plants.
RMT Random Matrix Theory.
RWS Rescaled wind speed.
SCADA Supervisory Control and Data Acquisition.
VAWT Vertical Axis Wind Turbine.
WiSAbigdata Wind farm virtual Site Assistant for O&M decision support — ad-

vanced methods for big data analysis.
ZEUS Zustands-Ereignis-Ursachen-Schlüssel – Condition-Event-Cause-

Key.
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[28] U. Schollwöck et al. Quantum Magnetism. Berlin, Heidelberg: Springer, 2004.

176

https://doi.org/10.5194/wes-1-1-2016
https://doi.org/10.1126/science.aau2027
https://doi.org/10.5194/wes-7-2003-2022
https://doi.org/10.5194/wes-7-2003-2022
https://doi.org/10.3390/en13123132
https://doi.org/doi.org/10.1016/j.matpr.2018.01.043
https://doi.org/10.1016/j.rser.2018.11.002
https://doi.org/10.1016/j.rser.2018.11.002
https://doi.org/10.3390/en10081210
https://doi.org/10.5194/wes-7-2271-2022
https://doi.org/10.1007/s10546-019-00473-0
https://doi.org/10.1103/PhysRevLett.50.1946
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[42] M. C. Münnix et al. Identifying states of a financial market. Scientific Reports
2 (2012), 644. doi: 10.1038/srep00644.

177

https://doi.org/10.1016/j.physrep.2012.01.007
https://doi.org/10.1016/j.physrep.2017.11.003
https://doi.org/10.1016/S0924-8099(07)80018-7
https://doi.org/10.1016/S0074-6142(02)80217-0
https://doi.org/10.1038/s41598-020-57897-9
https://doi.org/10.1007/s11831-021-09616-4
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/10.1007/s003820050185
https://doi.org/10.1007/s003820050185
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1073/pnas.1922872118
https://doi.org/10.1038/srep00644


[43] A. J. Heckens, S. M. Krause, and T. Guhr. Uncovering the dynamics of cor-
relation structures relative to the collective market motion. Journal of Sta-
tistical Mechanics: Theory and Experiment 2020.10 (2020), 103402. doi:
10.1088/1742-5468/abb6e2.

[44] J.-P. Bouchaud and M. Potters. “Financial applications of random matrix
theory: a short review”. The Oxford Handbook of Random Matrix Theory.
Oxford: Oxford University Press, 2015.

[45] L. Zhao et al. Stock market as temporal network. Physica A: Statistical Me-
chanics and its Applications 506 (2018), 1104–1112. doi: 10.1016/j.physa.
2018.05.039.

[46] T. A. Schmitt et al. Credit risk and the instability of the financial system: An
ensemble approach. Europhysics Letters 105.3 (2014), 38004. doi: 10.1209/
0295-5075/105/38004.
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[55] J. T. Matamalas, S. Gómez, and A. Arenas. Abrupt phase transition of
epidemic spreading in simplicial complexes. Physical Review Research 2.1
(2020), 012049. doi: 10.1103/PhysRevResearch.2.012049.

[56] H. N. Kouser, R. Barnard-Mayers, and E. Murray. Complex systems mod-
els for causal inference in social epidemiology. Journal of Epidemiology &
Community Health 75.7 (2021), 702–708. doi: 10.1136/jech-2019-213052.

178

https://doi.org/10.1088/1742-5468/abb6e2
https://doi.org/10.1016/j.physa.2018.05.039
https://doi.org/10.1016/j.physa.2018.05.039
https://doi.org/10.1209/0295-5075/105/38004
https://doi.org/10.1209/0295-5075/105/38004
https://doi.org/10.1371/journal.pone.0098030
https://doi.org/10.1371/journal.pone.0098030
https://doi.org/10.4236/ojapps.2016.67044
https://doi.org/10.4236/ojapps.2016.67044
https://doi.org/10.1177/0038038507087353
https://doi.org/10.1088/1742-5468/ABBCD3
https://doi.org/10.1088/1742-5468/ABBCD3
https://doi.org/10.1142/S0218202511400033
https://doi.org/10.1016/j.ecolind.2016.03.054
https://doi.org/10.1016/j.ecolind.2016.03.054
https://doi.org/10.1103/PhysRevResearch.2.012049
https://doi.org/10.1136/jech-2019-213052


[57] L. Cameron and D. Larsen-Freeman. Complex Systems and Applied Linguis-
tics. International Journal of Applied Linguistics 17.2 (2007), 226–240. doi:
10.1111/j.1473-4192.2007.00148.x.

[58] J. S. Kelso. Dynamic patterns: The self-organization of brain and behavior.
Cambridge: The MIT Press, 1997.

[59] J. Janarek et al. Investigating structural and functional aspects of the brain’s
criticality in stroke. Scientific Reports 13.1 (2023), 12341. doi: 10.1038/
s41598-023-39467-x.

[60] T. Padmanabhan and V. Padmanabhan. “The Thirst for Power”. The Dawn
of Science: Glimpses from History for the Curious Mind. Cham: Springer,
2019, 255–263.

[61] M. Sathyajith. Wind Energy: Fundamentals, Resource Analysis and Eco-
nomics. Berlin, Heidelberg: Springer, 2006.

[62] E. W. Golding. The Generation Of Electricity By Wind Power. New York:
E. u. F. N. Spon LTD, 1977.

[63] A. G. Drachmann. “Heron’s Windmill”. Renewable Energy: Four Volume Set.
Ed. by B. Sorensen. London: Routledge, 64–69.

[64] A. Y. al-Hassan and D. R. Hill. Islamic Technology: An Illustrated History.
Cambridge: Cambridge University Press, 1986, 52–54.

[65] A. Lucas. Wind, Water, Work: Ancient And Medieval Milling Technology.
Technology and change in history, v. 8. Leiden, Boston: Brill, 2006, 65.

[66] L. W. Jr. Medieval Technology and Social Change. Oxford: Oxford University
Press, 1968, 87.

[67] F.-W. Wellmer and J. Gottschalk. Leibniz’ Scheitern im Oberharzer Silber-
bergbau – neu betrachtet, insbesondere unter klimatischen Gesichtspunkten.
Studia Leibnitiana 42.2 (2010), 186–207.

[68] H. P. Münzenmayer. Leibniz’ Inventum Memorabile Die Konzeption einer
Drehzahlregelung vom März 1686. Studia Leibnitiana 8.1 (1976), 113–119.

[69] L. Euler. Recherches plus exactes sur l’effet des moulins à vent. Mémoires de
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[118] A. Pliego Marugán and F. P. Garćıa Márquez. Advanced analytics for detec-
tion and diagnosis of false alarms and faults: A real case study. Wind Energy
22.11 (2019), 1622–1635. doi: https://doi.org/10.1002/we.2393.

[119] M. Beretta et al. Quantification of the Information Loss Resulting from Tem-
poral Aggregation of Wind Turbine Operating Data. Applied Sciences 11.17
(2021). doi: 10.3390/app11178065.

182

https://doi.org/10.1007/s42524-020-0121-5
https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1016/B978-0-12-805343-0.00018-8
https://doi.org/10.1049/iet-rpg.2016.0248
https://doi.org/10.1109/TSTE.2020.2989220
https://arxiv.org/abs/1707.06497v1
https://doi.org/10.1088/1748-9326/3/1/015005
https://doi.org/10.1016/J.RSER.2021.110961
https://doi.org/10.1016/J.RSER.2021.110961
https://doi.org/10.1016/j.rser.2018.09.012
https://doi.org/10.1016/j.rser.2018.09.012
https://doi.org/10.3390/en11040749
https://doi.org/10.3390/en11113018
https://doi.org/10.3390/en11113018
https://doi.org/https://doi.org/10.1002/we.2393
https://doi.org/10.3390/app11178065


[120] P. F. Odgaard and K. E. Johnson. Wind turbine fault detection and fault
tolerant control - An enhanced benchmark challenge. 2013 American Control
Conference. IEEE, 2013, 4447–4452. doi: 10.1109/acc.2013.6580525.

[121] Technische Richtlinie für Erzeugungseinheiten: Teil 7: Instandhaltung von
Kraftwerken für Erneuerbare Energien: Rubrik D2: Zustands-Ereignis-Ursachen-
Schlüssel für Erzeugungseinheiten (ZEUS). Tech. rep. Fördergesellschaft
Windenergie und andere Erneuerbare Energien e. V., 2013.

[122] VGB-Standard RDS-PP: Application Guideline Part 32: Wind Power Plants.
Tech. rep. VGB Powertech e. V., 2014.

[123] J. D. Hamilton. Time Series Analysis. Princeton: Princeton University Press,
1994. doi: 10.1515/9780691218632.

[124] G. Marti et al. A review of two decades of correlations, hierarchies, networks
and clustering in financial markets. Progress in Information Geometry. Sig-
nals and Communication Technology. Ed. by F. Nielsen. Cham: Springer,
2021, 245–274.

[125] J. Wishart. The Generalised Product Moment Distribution in Samples from
a Normal Multivariate Population. Biometrika 20A.1/2 (1928), 32–52. doi:
10.2307/2331939.

[126] E. P. Wigner. Characteristic Vectors of Bordered Matrices With Infinite Di-
mensions. Annals of Mathematics 62.3 (1955), 548–564. doi: 10 . 2307 /

1970079.

[127] T. Guhr, A. Müller–Groeling, and H. A. Weidenmüller. Random-matrix the-
ories in quantum physics: common concepts. Physics Reports 299.4 (1998),
189–425. doi: 10.1016/S0370-1573(97)00088-4.

[128] B. Collins and I. Nechita. Random matrix techniques in quantum information
theory. Journal of Mathematical Physics 57.1 (2015), 015215. doi: 10.1063/
1.4936880.

[129] D. Paul and A. Aue. Random matrix theory in statistics: A review. Journal of
Statistical Planning and Inference 150 (2014), 1–29. doi: 10.1016/j.jspi.
2013.09.005.

[130] L. Laloux et al. Random Matrix Theory and Financial Correlations. Inter-
national Journal of Theoretical and Applied Finance 03.03 (2000), 391–397.
doi: 10.1142/S0219024900000255.

[131] V. Plerou et al. A random matrix theory approach to financial cross-
correlations. Physica A: Statistical Mechanics and its Applications 287.3
(2000), 374–382. doi: 10.1016/S0378-4371(00)00376-9.

[132] Vinayak and T. H. Seligman. Time series, correlation matrices and random
matrix models. AIP Conference Proceedings 1575.1 (2014), 196–217. doi:
10.1063/1.4861704.

[133] P. Gopikrishnan et al. Quantifying and interpreting collective behavior in
financial markets. Physical Review E 64.3 (2001), 035106. doi: 10.1103/
PhysRevE.64.035106.

183

https://doi.org/10.1109/acc.2013.6580525
https://doi.org/10.1515/9780691218632
https://doi.org/10.2307/2331939
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970079
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1063/1.4936880
https://doi.org/10.1063/1.4936880
https://doi.org/10.1016/j.jspi.2013.09.005
https://doi.org/10.1016/j.jspi.2013.09.005
https://doi.org/10.1142/S0219024900000255
https://doi.org/10.1016/S0378-4371(00)00376-9
https://doi.org/10.1063/1.4861704
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1103/PhysRevE.64.035106
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