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Berichte des Instituts für Mechanik, Universität Duisburg-Essen

Nr. 30

Herausgeber:

Prof. Dr.-Ing. habil. J. Schröder
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Abstract

The simulation of porous media with full resolution of the heterogeneous microstructure
is challenging because of its complexity. This leads to exceeding computational costs
in case the investigated domain is way larger than the length scale of the microscopic
heterogeneities. Homogenization approaches as the Theory of Porous Media (TPM) can
be applied to address this problem. Nevertheless, the system of equation can still be to
large to solve within the classical Finite Element Method (FEM) in case of remaining
macroscopic scale heterogeneities.
In this context, this thesis presents the TPM within the framework of the Mesh-in-
Element (MIEL) multiscale approach. The goal is to benefit from the classical homoge-
nization within the TPM but still being able to cover lower level effects in a strong
scale coupling multiscale approach at reasonable computational costs. The theoretical
concepts are elaborated for the TPM, the FEM as well as the MIEL method. The latter is
first applied to pure elasticity in solid mechanics within academical numerical examples
to reveal the basic characteristics of the MIEL method without the higher complexity
of the TPM. Subsequently, the fusion of TPM and MIEL method is investigated for
academical as well as more realistic problems to determine its performance and range
of application. The focus therein lies on the comparison to single scale computations in
terms of information loss and numerical efficiency.

Zusammenfassung

Die Simulation poröser Medien bei voller Auflösung der heterogenen Mikrostruktur
ist aufgrund ihrer Komplexität eine Herausforderung. Dies führt zu einem sehr ho-
hen Rechenaufwand, falls der untersuchte Bereich viel größer als die Längenskala der
mikroskopischen Heterogenitäten ist. Homogenisierungsansätze wie die Theorie Poröser
Medien (TPM) können zur Lösung dieses Problems eingesetzt werden. Dennoch kann
das Gleichungssystem zu groß bleiben, um es mit der klassischen Finite Elemente Metho-
de (FEM) zu lösen, falls Heterogenitäten auf der makroskopischen Ebene verbleiben.
In diesem Zusammenhang präsentiert die vorliegende Arbeit die TPM im Rahmen des
Mesh-in-Element (MIEL) Multiskalenansatzes. Das Ziel ist, von der klassischen Ho-
mogenisierung in der TPM zu profitieren, aber dennoch in der Lage zu sein, Effekte auf
niedrigerer Ebene in einem Multiskalenansatz mit starker Skalenkopplung unter vertret-
barem Rechenaufwand abzubilden. Die theoretischen Konzepte werden für die TPM,
die FEM sowie die MIEL Methode erarbeitet. Letztere wird zunächst auf die reine Elas-
tizität in der Festkörpermechanik in akademischen numerischen Beispielen angewandt,
um die grundlegenden Eigenschaften der MIEL Methode ohne die höhere Komplexität
der TPM aufzuzeigen. Anschließend wird die Kombination von TPM mit MIEL Metho-
de sowohl für akademische, als auch für realitätsnähere Probleme untersucht, um ihre
Leistungsfähigkeit und ihren Anwendungsbereich zu bestimmen. Der Schwerpunkt liegt
dabei auf dem Vergleich mit Einskalenberechnungen in Bezug auf Informationsverluste
und numerische Effizienz.
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1 Introduction and Motivation

Porous media are heterogeneous materials which consist of a solid skeleton filled by at
least one liquid. Several geomaterials as clay but as well human tissue and also industrially
manufactured materials like foams belong to this class. Problems arise if these complex
structures are to be simulated at larger scale than a small detail. Even today, such a
simulation with full resolution of the microstructure is almost impossible due to exceeding
computational costs.

One possibility to circumvent this problem is the application of a macroscopic ho-
mogenization approach as the Theory of Porous Media (TPM). Its fundamentals are
given by the classical continuum mechanics to describe a single component material,
which is discussed in detail in e.g. Holzapfel [2000], Stein and Barthold [1996],
Truesdell and Noll [2004] or Schröder et al. [2024]. The Theory of Mixtures
(TM) extends this principle to a compound of miscible, interacting constituents
homogenized as a smeared model, see exemplary Truesdell and Toupin [1960],
Bowen [1976] and Truesdell [1984]. Based on this, Bowen [1980; 1982] combined the
Theory of Mixtures with the Concept of Volume Fractions, see e.g. Biot [1941; 1956],
to investigate immiscible constituents which allows tracking the evolution of the different
phases at every point within the domain. For an overview on the TPM, see Ehlers [1989],
Bluhm [2002], Ehlers [2002] and de Boer [2005] while an extensive work on the his-
torical development of the approach can be found in de Boer [2000].

But even after applying the TPM to the simulation of heterogeneous materials, the discrete
macroscopic system of equations can get too large for a single scale computation due to
remaining heterogeneities within the boundary value problem. Such a problem can be in-
terpreted as a three scale problem of micro-, meso- and macroscale. At this point, adding
a multiscale scheme seems promising. In literature exists a large amount of multiscale
approaches which could be considered, see e.g. Fish [2014], Efendiev and Hou [2009]
and Geers et al. [2010] for an overview. These strategies can roughly be divided into
two groups, depending on whether the coupling of the scales is weak or strong. A weak
coupling of the scales, often called scale separation, assumes that the size of the hetero-
geneities is way smaller than the investigated structure. Following this argumentation,
the effective properties necessary for computations on macroscopic level are determined
by solving microscale problems on a unit cell or a representative volume element (RVE),
see Nemat-Nasser and Hori [1999].

One class of multiscale methods including scale separation is based on asymptotic
expansion, see Bensoussan et al. [1978] and Sanchez-Palencia [1980]. This mathe-
matically motivated method relies on the assumption of periodic structures and fields on
the microscale. Another option at hand which originally considers scale separation is the
so-called FE2 method, see exemplary Smit et al. [1998], Miehe et al. [1999b],
Miehe et al. [1999a], Terada et al. [2000], Feyel and Chaboche [2000],
Kouznetsova et al. [2001] and Schröder [2014]. The crucial assumption of
this method is the equivalence of the macroscopic internal power with its microscopic
counterpart, commonly known as macro-homogeneity or Hill-Mandel condition, going
back on Hill [1965] and Mandel [1972]. This condition defines the scale transition
and leads to consistent boundary conditions on the RVE. A noteworthy possible third
option within the framework of scale separation is the Heterogeneous Multiscale Method
(HMM), cf. E and Engquist [2003] and Abdulle [2005]. Even if the motivation for
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the methods varies, they often lead to similar problems to solve. This has been shown
exemplary in Eidel and Fischer [2018] for the HMM with respect to the FE2 scheme.

All of these methods have been applied to various problems, but the treatment of the The-
ory of Porous Media or similar approaches to consider fluid-solid interactions within such
a scheme is comparatively rare. Within a first order FE2 scheme, where constant gradients
are passed from the macroscale to drive the microscale response, Jänicke et al. [2015]
applied the TPM at the mesoscale, but a single phase medium on the macroscale. TPM
on both FE2 scales, denoted as TPM2, was applied by Ricken et al. [2022]. Therein,
the application of the preferable periodic boundary conditions remains an open challenge.
This issue has been a part of the early stages of research leading to this thesis.

To get further insights into the topic of lower level boundary conditions, the consid-
eration of volume or inertia loads in single phase elasticity within the FE2 method
can be taken into account. This is motivated by the fact that the fluid pressure gra-
dient acts on the solid phase within the TPM similar to a volume load in single
phase elasticity, briefly outlined in Chapter 4. In literature, the volume load is of-
ten at the most considered on the macroscale but neglected on the microscale. This
approach is commonly justified by the assumption of scale separation. In contrast to
this, volume and inertia loads have been taken into account within the frameworks
of Irving-Kirkwood statistical mechanics by Mandadapu et al. [2012] and extended
Hill-Mandel conditions by Ricker et al. [2009], de Souza Neto et al. [2015] and
Tamsen and Balzani [2021]. While the work of Ricker et al. [2009] leads to self-
equilibrated volume loads, de Souza Neto et al. [2015] set up a theory which allows
arbitrary distributions with help of the introduction of a kinematic constraint on the
microscopic fluctuations which has been adopted by Tamsen and Balzani [2021]. Nev-
ertheless, the classical FE2 scheme remains limited in resolving the response of vector
valued loading types as a body force due to the scale separation. For example, a constant
body force on microscopic level does not trigger any fluctuations for the simplest case of
a homogeneous material following the approach by de Souza Neto et al. [2015]. This
leads to constant strain over the RVE even though the analytical solution would be linear.
That effect, discussed in detail in Chapter 4, can be justified by the assumption of scale
separation but redirects interest for such problems, in this work for poroelastic mediums
described by the TPM, towards methods with a strong coupling between the scales. For
the sake of completeness, please note that there exist numerous strategies to improve the
performance of homogenization techniques with scale separation for applications where
the classical approaches are limited. For example the consideration of higher order gradi-
ents, respectively generalized continua, e.g. Kouznetsova et al. [2002], Forest [2002]
and Jänicke and Diebels [2010] is of great interest in current research. Furthermore,
Larsson and Runesson [2011] developed an approach named Scalebridging Variational
Multiscale Strategy (SVMS) where the intensity of scale coupling is a model parameter.

A huge variety of multiscale methods with strong scale coupling have been developed
during the last decades, for an overview see Efendiev and Hou [2009] and Fish [2014]
and the references therein. In contrast to the scale separation for weak coupling strate-
gies, the physical size of the microscale problem is directly connected to the correspond-
ing domain on the macroscale. An approach which has been adopted and extended by
great extend was introduced by Hou and Wu [1997] as the Multiscale Finite Element
Method (MsFEM). Therein, the macroscopic basis functions are enhanced with help of
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pre-computed microscopic problems. In the initial work, they chose a larger microscopic
problem domain than the corresponding macroscopic element to reduce the influence of
the applied boundary conditions on the microscopic scale. Another significant contri-
bution was made by Hughes [1995] who introduced the Variational Multiscale Method
(VMM), where the problem on the macroscale is solved within the Finite Element Method
(FEM), but each element contains a microscopic problem which is solved analytically to-
wards a Green’s function. The method is based on the additive split into coarse and fine
scale displacements. The scale transition requires that the fine scale displacements vanish
at the boundary of the microscopic problem. This rather strict constraint on the scale
transition has been softened subsequently to exemplary take into account cracks within
the microscopic problem boundary, cf. Hund and Ramm [2007]. Please note that such
phenomena are not in the scope of this work since the TPM is already a homogenized
continuum theory. An approach similar to the VMM but with the FEM on both scales was
made by Ibrahimbegović and Markovič [2003]. They relaxed the constraint of fixing
the degrees of freedom at the microscopic problem boundary according to the macroscopic
counterparts by defining the transition within a variational concept with help of Lagrange
multipliers in Markovič and Ibrahimbegović [2004]. This enhancement comes with
the cost of an additional iteration loop at microscopic level. They adopted this strat-
egy from Park and Felippa [2000] who introduced it within domain decomposition to
model the interface between disjunct parts of the domain. One major advantage of such
a multiscale approach with FE models on both scales compared to a single scale FE com-
putation with a fine mesh density is the parallelizability of the microscopic problems, cf.
Markovič et al. [2005] and Niekamp et al. [2009].

The approach by Markovič and Ibrahimbegović [2004] has been adopted recently
by Zupan and Korelc [2018] as Mesh-in-Element (MIEL) method investigating finite
elasticity where they restrict themselves again to the direct scale coupling solely depending
on the macroscopic degrees of freedom. The comparatively straight forward scheme allows
a nearly general-purpose theory which can be applied to wide range of problems. They
deviate from the initial work in terms of the method for extracting the macroscopic ele-
ment tangent and residual from the respective microscopic problem by using a sensitivity
analysis instead of a combination of static condensation and subsequent transformation.

The MIEL method is chosen to be applied to the TPM within this thesis. This strong
scale coupling approach avoids the discussed remaining issues on the scale separation for
weak coupling schemes of such problems. Numerical efficiency seems promising due to a
robust scheme including easy parallelizability of the microscopic problems. Additionally,
the rather strict interface condition can be improved by increasing the interpolation or-
der of the macroscopic element, see Chapter 7. The finite element implementations and
computations within this thesis have been done using the AceGen and AceFEM package
(version 7.403), see Korelc [2009] and Korelc and Wriggers [2016] of Mathemat-
ica (version 12.3), see Wolfram Research, Inc. [2021]. Some parts of this thesis have
been published in Maike et al. [2023].

This thesis is organized as follows. Chapter 2 starts with the introduction of the general
framework of the TPM. Subsequently, a few simplifying assumptions lead to a binary
model. The chapter closes with some remarks on linear theory for a single solid phase
material which is taken as first example to analyze the MIEL method. The Finite Ele-
ment Method is outlined in Chapter 3, starting with finite elasticity before turning to the
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TPM. Afterwards, both formulations are covered by a generalized notation which enables
a neat notation for the following MIEL method. Additionally, the algorithmic treatment is
outlined and the used finite element formulations within this thesis are presented. A slight
detour is taken in Chapter 4 where the mentioned model deficit of the classical FE2 scheme
with respect to body forces in elasticity on the microscale is discussed. These findings are
transferred to the TPM as well. The MIEL method is derived in Chapter 5 which consists
of the definition of the microscopic problem, the subsequent derivation of the macroscopic
problem, the construction of the scale transition matrix and the algorithmic treatment.
The performance of this framework is first investigated with numerical examples for elas-
ticity in Chapter 6 to allow for an simpler analysis of the arising effects compared to the
more complex TPM model. The obtained findings are validated and extended with the
aid of additional numerical examples of the TPM within the MIEL method in Chapter 7.
The thesis in concluded in Chapter 8 with a summary and an outlook.
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2 Theory of Porous Media

The following fundamentals of the Theory of Porous Media (TPM) in this chapter are
based on Ehlers [2002] and Bluhm [2002]. Most of the derivations are given with respect
to the current configuration. The pull back on the reference configuration, which is often
favorable for the implementation in the framework of the FEM, is outlined at the end of
the chapter after deriving the set of equations to solve. Overall, the theory in this chapter
is limited to the scope of the thesis. In general, the TPM can be applied to numerous
alternative equations requiring additional field quantities.

This chapter starts with an introduction into the Theory of Mixtures (TM) and the Con-
cept of Volume Fractions before the continuum mechanical basics as kinematics, concept
of stresses and balance principles with respect to the TPM are presented. Based on this, a
binary model is derived and prepared towards an efficient numerical implementation. The
chapter is closed by some remarks on the application to single solid phase materials and
linear theory which is relevant for the first numerical examples within the MIEL method.

2.1 Theory of Mixtures

A real multi-phase structure consists of a set of k constituents ϕα with α = {1, ..., k}.
Investigating this usually complex structure in full resolution is computational too ex-
pensive for many applications. The Theory of Mixtures circumvents this problem as a
homogenization approach which superimposes continua by assuming that every material
point x within the body B is occupied by each constituent ϕα at time t, see Figure 2.1
for a binary model consisting of a solid and a liquid phase.

real structure smeared model

−→
homogenization

Figure 2.1: From real structure to smeared model.

In this context, B is the observed control space on which all the constituents are statisti-
cally distributed as a smeared model. Throughout this thesis, the control space is chosen
to be the domain of the solid BS. As a consequence, the solid phase is not able to leave
or enter the control space while the remaining liquid or gaseous phases can.

Please note that the classical Theory of Mixtures assumes miscible constituents. Towards
the Theory of Porous Media, the concept of volume fractions is added resulting in the
investigation of immiscible phases.

2.2 Concept of Volume Fractions

The volume fraction nα is given as a function of the position x and the time t as

nα = nα(x, t) =
dvα

dv
(2.1)
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with the volume element dvα of the constituent ϕα and the volume element dv of the
mixture. With this definition of the volume fraction, the partial volume of the constituent
ϕα within the control space BS is defined as

vαS =

∫
BS

dvα =

∫
BS
nα dv . (2.2)

The total volume of the control space BS can be written as the sum of all partial volumes
as

vS =

∫
BS

dv =
k∑

α=1

vαS . (2.3)

As a direct consequence of Eq. (2.2) and (2.3), the saturation condition

k∑
α=1

nα = 1 (2.4)

holds for saturated mixtures with no vacant space. Additionally, following the concept of
volume fractions leads to two different density functions for each constituent with the real
material density ραR and the partial density ρα as

ραR =
dmα

dvα
and ρα =

dmα

dv
. (2.5)

While the real material density is the ratio of the local mass dmα of the constituent with
respect to its partial volume dvα, the partial density is defined as the ratio of the local
mass dmα with respect to the total volume dv. The partial density can be expressed in
terms of the volume fraction and the real density as

ρα = nα ραR . (2.6)

Please note that an incompressible material (ραR = constant) does not imply a constant
partial density since the volume fraction can still change. The overall density of the
mixture is given by

ρ =
k∑

α=1

ρα =
k∑

α=1

nα ραR . (2.7)

2.3 Kinematics

The kinematics within the TPM which originate from the TM are taken to describe a sat-
urated porous solid as an immiscible mixture of k constituents ϕα with α = {1, ..., k}. For
this purpose, each constituent is assigned an own motion function, given in the Lagrangian
form as

x = χα(Xα, t) , (2.8)

where x is the position vector in the current configuration at time t while the position
vector of a particle of constituent ϕα in the reference configuration at time t0 is denoted
by Xα. This implies that a particle of each phase occupies the same position x within
the control space BS in the current configuration but has in general different positions in
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reference configuration current configuration

0

XS

XL

x

B0S

∂B0S

BS

∂BS

χS

χL

Figure 2.2: Motions of a solid and liquid particle in a binary model.

the reference or any future configurations. This framework is schematically depicted in
Figure 2.2 for a binary model consisting of a solid and a liquid phase as α = {S,L}.
Please note that the reference positionXα of any other but the solid phase does not require
to be an element of the control space in reference configuration B0S. This analogously holds
for any later than the current configuration as well.

If the motion function χα in Eq. (2.8) is unique and uniquely invertible at any time, there
exists a motion function in Eulerian form as

Xα = χ−1α (x, t) . (2.9)

The displacement uα of the constituent ϕα is defined as

uα = x−Xα (2.10)

while the velocity x′α and the acceleration x′′α can be written as

x′α =
∂χα(Xα, t)

∂t
and x′′α =

∂2χα(Xα, t)

∂t2
=
∂x′α
∂t

. (2.11)

For the following derivations it is reasonable to define the difference velocity of a liquid
phase ϕβ to the solid phase ϕS, denoted as seepage velocity, as

wβS = x′β − x′S . (2.12)

The deformation gradient of the constituent ϕα is defined as

Fα =
∂χα(Xα, t)

∂Xα

=
∂x

∂Xα

= Gradα(x) (2.13)

leading to its inverse as

F−1α =
∂χ−1α (x, t)

∂x
=
∂Xα

∂x
= grad(Xα) . (2.14)

The differential operator Gradα(•) denotes a partial differentiation with respect to the
position vector in reference configuration Xα, respectively grad(•) with respect to the
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position vector in current configuration x. The mathematical requirement for the existence
of the inverse of the deformation gradient in Eq. (2.14) as well as the inverse of the motion
function in Eq. (2.9) is a nonzero Jacobian determinant

Jα = det(Fα) . (2.15)

With the initial undeformed shape resulting in Fα(t0) = 1 follows Jα > 0 as a further
constraint on the magnitude of the Jacobian determinant.

The fundamental transport theorems of classical continuum mechanics for line, area and
volume elements can be adopted as

dx = Fα · dXα ,

da = Jα F
−T
α · dAα = Cofα(Fα) · dAα ,

dv = Jα dVα .

(2.16)

There exists a variety of strain measures in continuum mechanics. Two important ex-
amples, applied to the constituent ϕα, are the right Cauchy-Green tensor Cα and the
Green-Lagrange strain tensor Eα. Both have the property to be independent from rigid
body motions. Additionally, they are symmetric which is favorable for the implementation
and computation. The right Cauchy-Green tensor is given

Cα = F T
α · Fα (2.17)

which can be identified by using the line element transport theorem in Eq. (2.16) on the
square of the line element in current configuration as

dx · dx = (Fα · dXα) · (Fα · dXα) = dXα ·Cα · dXα . (2.18)

On the other hand, the Green-Lagrange strain tensor is defined by

Eα =
1

2
(Cα − I) (2.19)

which is obtained by taking the difference of the square of the line elements in the current
and reference configuration and inserting once more Eq. (2.16) leading to

dx · dx− dXα · dXα = 2 dXα ·Eα · dXα . (2.20)

Please note that the Green-Lagrange strain tensor is zero in the undeformed state. The
material velocity gradient is defined as

(Fα)′α =
∂

∂t

(
∂χα(Xα, t)

∂Xα

)
=

∂

∂Xα

(
∂χα(Xα, t)

∂t

)
=

∂x′α
∂Xα

= Gradα(x′α) (2.21)

while the spatial velocity gradient is given by

Lα = (Fα)′α · F−1α =
∂x′α
∂Xα

· ∂Xα

∂x
=
∂x′α
∂x

= grad(x′α) . (2.22)

The spatial velocity gradient can be split additively as

Lα = Dα +Wα (2.23)
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into a symmetric part Dα called rate of deformation tensor and a skew-symmetric part
Wα also known as spin tensor yielding to

Dα =
1

2
(Lα +LTα) and Wα =

1

2
(Lα −LTα) . (2.24)

The material time derivative of the right Cauchy-Green tensor is given by

(Cα)′α = (F T
α · Fα)′α = (F T

α )′α · Fα + F T
α · (Fα)′α

= F T
α ·LTα · Fα + F T

α ·Lα · Fα = 2F T
α ·Dα · Fα

(2.25)

leading to the material time derivative of the Green-Lagrange strain tensor as

(Eα)′α =
1

2
(Cα)′α = F T

α ·Dα · Fα . (2.26)

Important for the following derivations of the balance equations in Section 2.5 is the
material time derivative of the Jacobian determinant which can be written with Eq. (2.21)
and (2.22) as

(Jα)′α =
∂Jα
∂Fα

:
∂Fα
∂t

= Jα F
−T
α : (Fα)′α = Jα F

−T
α : (Lα · Fα) = Jα tr(Lα) = Jα div(x′α) ,

(2.27)
where

∂Jα
∂Fα

= Jα F
−T
α . (2.28)

Additionally, the material time derivative of an arbitrary scalar quantity depending on
the current position vector and the time such as γα(x(t), t) is defined as

(γα)′α =
∂γα

∂t
+ grad(γα) · x′α . (2.29)

2.4 Tractions and Stresses

The application of an arbitrary mechanical load to a body results in internal forces.
To investigate these forces and the consequential stresses, the body is imaginary cut
into two parts. The internal forces have to be transmitted across the cutting plane to
preserve equilibrium. This results in the partial Cauchy traction vector tα = tα(x, t,n)
of constituent ϕα which acts at the position x on an infinitesimal surface element of the
cutting plane da under the unit outward normal n in the current configuration at time t.
The corresponding partial first Piola-Kirchhoff traction vector tα0 = tα0 (Xα, t0,Nα) relates
to the position Xα on the surface element on the cutting plane dAα in the reference
configuration with the unit outward normal Nα at time tα0 . With this the resulting partial
forces df̂α on the respective surface elements are given by

df̂α = tα da = tα0 dAα . (2.30)

Cauchy’s theorem states the existence of second-order tensor fields for linear mappings as

tα(x, t,n) = σα(x, t) · n (2.31)
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and
tα0 (Xα, t0,Nα) = P α(Xα, t0) ·Nα . (2.32)

Therein, the Cauchy stress σα is solely based on the current configuration evaluating the
current force on the current cutting plane leading to the term of the true stress. In contrast
to this, the first Piola-Kirchhoff stress tensor P α is a two-point tensor with one basis in
the current and one in the reference configuration. From a physical point of view, it relates
the current force to the geometry in reference configuration. The relation between these
two stress tensors can be deduced by inserting their definitions into Eq. (2.30) and utilize
the transport theorem in Eq. (2.16)2 leading to

P α = Jα σ
α · F−Tα and σα =

1

Jα
P α · F T

α . (2.33)

An additional stress tensor is the second Piola-Kirchhoff stress tensor

Sα = F−1α · P α (2.34)

which is purely related to the reference configuration and often used due to its inherent
symmetry. In contrast to the other presented stress tensors, the second Piola-Kirchhoff
stress tensor has no physical interpretation.

2.5 Balance Principles

A set of four balance laws and one inequality which are required within this thesis is
presented in this section. They have their origin in classical continuum mechanics but are
extended to take into account the different constituents and their interactions within the
mixture in the framework of the TPM. These equations, which have to be fulfilled at each
point in the body, have axiomatic character as they are based on observation rather than
being deduced from other laws.

In classical one-component continuum mechanics, the considered balance equations have
the structure

K̇ = L (2.35)

with K and L as placeholders for the internal quantity to balance and their external
counterpart. In contrast to this, the balance equations for the constituent ϕα within the
mixture have the structure

(Kα)′α = Lα +Mα (2.36)

where Kα and Lα are the corresponding placeholders to the single phase formulation. Ad-
ditionally,Mα denotes the total production term of the constituent ϕα which is introduced
to take the interaction between the phases into account.

An important requirement which was formulated by Truesdell [1984] within the TM
implies that for each balance principle the sum over all constituents have to result in
the corresponding conservation law of one-component material from classical continuum
mechanics. One possibility to achieve this is to enforce

K̇ − L =
k∑

α=1

[(Kα)′α − Lα] (2.37)
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which yields that the sum over all constituents of the respective production term has to
vanish as

k∑
α=1

Mα = 0 . (2.38)

2.5.1 Balance of Mass

The balance of mass in the framework of the TPM for the constituent ϕ reads as

(mα)′α =

∫
Bα
ρ̂α dv (2.39)

where mα is the mass and ρ̂α is the total production term of mass of the constituent ϕα.
The comparison with the general structure in Eq. (2.37) with L = Lα = 0 yields

k∑
α=1

∫
Bα
ρ̂α dv = 0 (2.40)

which is in agreement with Eq. (2.38). The material time derivative of the mass can be
reformulated by using Eq. (2.16)3 and (2.27) as

(mα)′α =

(∫
Bα
ρα dv

)′
α

=

(∫
B0α

ραJα dVα

)′
α

=

∫
B0α

[(ρα)′α Jα + ρα(Jα)′α] dVα

=

∫
Bα

[(ρα)′α + ρα div(x′α)] dv

(2.41)

leading to the global form of the balance of mass∫
Bα

[(ρα)′α + ρα div(x′α)] dv =

∫
Bα
ρ̂α dv . (2.42)

The corresponding local form reads as

(ρα)′α + ρα div(x′α) = ρ̂α , (2.43)

where the condition
k∑

α=1

ρ̂α = 0 (2.44)

is postulated which is fulfilling Eq. (2.40).

2.5.2 Balance of Linear Momentum

The balance of linear momentum for the constituent ϕα within the mixture is given as

(lα)′α = kα +

∫
Bα
ŝα dv , (2.45)

where

lα =

∫
Bα
ρα x′α dv and kα =

∫
Bα
ρα bα dv +

∫
∂Bα

tα da . (2.46)
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The material time derivative of the linear momentum lα has to equal the external forces
kα and the volume integral over the total production term of linear momentum ŝα. The
external forces can be split in a part containing the external volume load fα = ρα bα and
a part including the external surface tractions tα. Applying Eq. (2.37) to the balance of
linear momentum results in the condition for the sum of all total production terms of the
momentum corresponding to Eq. (2.38) as

k∑
α=1

∫
Bα
ŝα dv = 0 . (2.47)

The material time derivative of the linear momentum can be rewritten with Eq. (2.16)3
and (2.27) in combination with the local form of the balance of mass in Eq. (2.43) as

(lα)′α =

(∫
Bα
ρα x′α dv

)′
α

=

(∫
B0α

ρα x′α Jα dVα

)′
α

=

∫
B0α

[
(ρα)′α x

′
α Jα + ρα x′′α Jα + ρα x′α (Jα)′α

]
dVα

=

∫
Bα

{[
(ρα)′α + ρα div(x′α)

]
x′α + ρα x′′α

}
dv

=

∫
Bα

(ρ̂α x′α + ρα x′′α) dv .

(2.48)

Employing the Cauchy theorem in Eq. (2.31) and the divergence theorem on the traction
term yields ∫

∂Bα
tα da =

∫
∂Bα

σα · n da =

∫
Bα

div(σα) dv . (2.49)

With this, the global form of the balance of linear momentum is written as∫
Bα

div(σα) dv +

∫
Bα
ρα (bα − x′′α) dv = −

∫
Bα
ŝα dv +

∫
Bα
ρ̂α x′α dv (2.50)

leading to the local form

div(σα) + ρα (bα − x′′α) = −p̂α (2.51)

with

p̂α = ŝα − ρ̂α x′α , (2.52)

where p̂α is the direct production term of linear momentum. The sum of the production
terms is constrained as

k∑
α=1

ŝα =
k∑

α=1

(p̂α + ρ̂α x′α) = 0 (2.53)

in accordance with Eq. (2.47).
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2.5.3 Balance of Angular Momentum

The balance of angular momentum for non-polar partial bodies demands equilibrium of
angular momentum with respect to a fixed reference point (0) for the constituent ϕα as

(hα(0))
′
α = mα

(0) + ĥα(0) (2.54)

with the angular momentum hα(0) and the angular momentum of the external forces mα
(0)

given by

hα(0) =

∫
Bα
x× ρα x′α dv and mα

(0) =

∫
Bα
x× ρα bα dv +

∫
∂Bα

x× tα da (2.55)

and the production term of angular momentum

ĥα(0) =

∫
Bα
x× ŝα dv . (2.56)

The constraint condition on the sum of the production terms of angular momentum reads
as

k∑
α=1

ĥα(0) =
k∑

α=1

∫
Bα
x× ŝα dv = 0 . (2.57)

in agreement with Eq. (2.38). Reformulating the material time derivative of the angular
momentum by inserting Eq. (2.16)3, (2.27) and (2.43) leads to

(hα(0))
′
α =

(∫
Bα
x× ρα x′α dv

)′
α

=

(∫
B0α
x× ρα x′α Jα dVα

)′
α

=

∫
B0α

[
x′α × ρα x′α Jα + x×

{
(ρα)′α x

′
α Jα + ρα x′′α Jα + ρα x′α (Jα)′α

}]
dVα

=

∫
Bα
x×

{[
(ρα)′α + ρα div(x′α)

]
x′α + ρα x′′α

}
dv

=

∫
Bα
x× (ρ̂α x′α + ρα x′′α) dv ,

(2.58)

where the characteristic has been exploited that the cross product of colinear vector equals
zero. The term containing the surface traction in the angular momentum of the external
forces in Eq. (2.55)2 is rewritten by applying the Cauchy theorem in Eq. (2.31) and the
divergence theorem as∫

∂Bα
x× tα da =

∫
∂Bα

x× (σα · n) da =

∫
Bα

[x× div(σα) + I × σα] dv . (2.59)

Inserting all reformulations into Eq. (2.54) yields∫
Bα
x× [div(σα) + ρα (bα − x′′α) + ŝα − ρ̂α x′α] dv +

∫
Bα
I × σα dv = 0 . (2.60)
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Including the local form of the balance of linear momentum from Eq. (2.51) and (2.52)
reduces the expression to the global form of the balance of angular momentum∫

Bα
I × σα dv = 0 (2.61)

leading to the local statement

I × σα = 0 (2.62)

which is fulfilled for

σα = (σα)T (2.63)

stating that the partial Cauchy stress tensor σα is symmetric.

2.5.4 Balance of Energy

The balance of energy (first principle of thermodynamics) for the constituent ϕα is given
by

(eα)′α + (kα)′α = wα + qα +

∫
Bα
êα dv (2.64)

with the total production term of energy denoted as êα. The internal energy eα is defined
as

eα =

∫
Bα
ρα εα dv (2.65)

including the internal energy density εα. The kinetic energy kα is given by

kα =

∫
Bα

1

2
ρα x′α · x′α dv . (2.66)

The mechanical and thermal power wα and qα are defined as

wα =

∫
Bα
x′α · ρα bα dv +

∫
∂Bα

x′α · tα da (2.67)

and

qα =

∫
Bα
ρα rα dv −

∫
∂Bα

qαH · n da (2.68)

with the external heat supply rα and the heat influx vector qαH.

Following the structure in Eq. (2.37) with respect to the balance of energy leads to the
condition for the sum of total energy production terms

k∑
α=1

∫
Bα
êα dv = 0 . (2.69)

which is in agreement with Eq. (2.38). Taking into account Eq. (2.16)3 and (2.27) as well
as the local form of the balance of mass in Eq. (2.43), the material time derivatives of the
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internal energy and the kinetic energy can be written as

(eα)′α =

(∫
Bα
ρα εα dv

)′
α

=

(∫
B0α

ρα εα Jα dVα

)′
α

=

∫
B0α

[
(ρα)′α ε

α Jα + ρα (εα)′α Jα + ρα εα (Jα)′α
]

dVα

=

∫
Bα

{
εα
[
(ρα)′α + ρα div(x′α)

]
+ ρα (εα)′α

}
dv

=

∫
Bα

[
ρ̂α εα + ρα (εα)′α

]
dv

(2.70)

and

(kα)′α =

(∫
Bα

1

2
ρα x′α · x′α dv

)′
α

=

(∫
B0α

1

2
ρα x′α · x′α Jα dVα

)′
α

=

∫
B0α

[
1

2
(ρα)′α x

′
α · x′α Jα + ρα x′α · x′′α Jα +

1

2
ρα x′α · x′α (Jα)′α

]
dVα

=

∫
Bα

{
1

2
x′α · x′α

[
(ρα)′α + ρα div(x′α)

]
+ ρα x′α · x′′α

}
dv

=

∫
Bα

(
1

2
ρ̂α x′α + ρα x′′α

)
· x′α dv .

(2.71)

The surface terms in the mechanical power and thermal power in Eq. (2.67) and (2.68)
can be transformed by the divergence theorem and the Cauchy theorem in Eq. (2.31) to∫

∂Bα
x′α · tα da =

∫
∂Bα

x′α · (σα · n) da =

∫
Bα

div
(
σα,T · x′α

)
dv

=

∫
Bα

[div(σα) · x′α + σα : Lα] dv

(2.72)

and ∫
∂Bα

qαH · n da =

∫
Bα

div(qαH) dv . (2.73)

Inserting all reformulations into the balance of energy in Eq. (2.64) leads to∫
Bα

[
ρ̂α εα + ρα (εα)′α

]
dv +

∫
Bα

(
1

2
ρ̂α x′α + ρα x′′α

)
· x′α dv

=

∫
Bα

[div(σα) + ρα bα] · x′α dv +

∫
Bα
σα : Lα dv

+

∫
Bα
ρα rα dv −

∫
Bα

div(qαH) dv +

∫
Bα
êα dv .

(2.74)

This equation is modified once more towards the global form of the balance of energy by in-
serting the local form of the balance of linear momentum from Eq. (2.51) and (2.52). In ad-
dition, the symmetry of the partial Cauchy stress is utilized such that σα : Lα = σα : Dα
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holds leading to

∫
Bα

[
ρ̂α εα + ρα (εα)′α

]
dv +

∫
Bα

1

2
ρ̂α x′α · x′α dv

=−
∫
Bα
p̂α · x′α dv +

∫
Bα
σα : Dα dv

+

∫
Bα
ρα rα dv −

∫
Bα

div(qαH) dv +

∫
Bα
êα dv .

(2.75)

The corresponding local statement can be written as

ρα (εα)′α − σ
α : Dα − ρα rα + div(qαH) = ε̂α (2.76)

with

ε̂α = êα − p̂α · x′α − ρ̂α
(
εα +

1

2
x′α · x′α

)
, (2.77)

where ε̂α denotes the direct production term of energy. It is postulated that the sum of
the total production term over all constituents vanishes as

k∑
α=1

êα =
k∑

α=1

[
ε̂α + p̂α · x′α + ρ̂α

(
εα +

1

2
x′α · x′α

)]
= 0 (2.78)

which fulfills Eq. (2.69).

2.5.5 Entropy Inequality

The treatment of the entropy inequality (second principle of thermodynamics) within the
TM has been discussed extensively within the 1960s. It was not clear whether the entropy
inequality has to be fulfilled for each constituent separately, as it is the case for the balance
laws, or just for the whole mixture, for details see e.g. de Boer and Ehlers [1986] and
Ehlers [1989]. The result is that fulfilling the entropy inequality for each constituent is
too restrictive such that the entropy inequality for the mixture is considered instead as

k∑
α=1

(hα)′α ≥
k∑

α=1

∫
Bα

1

Θα
ρα rα dv −

k∑
α=1

∫
∂Bα

1

Θα
qαH · n da (2.79)

with the absolute temperature Θα of the constituent ϕα and the respective entropy as

hα =

∫
Bα
ρα ηα dv , (2.80)
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where the specific entropy is denoted by ηα. The material time derivative of the entropy
can be reformulated with Eq. (2.16)3, (2.27) and (2.43) to

(hα)′α =

(∫
Bα
ρα ηα dv

)′
α

=

(∫
B0α

ρα ηα Jα dVα

)′
α

=

∫
B0α

[
(ρα)′α η

α Jα + ρα (ηα)′α Jα + ρα ηα (Jα)′α
]

dVα

=

∫
Bα

{
ηα
[
(ρα)′α + ρα div(x′α)

]
+ ρα (ηα)′α

}
dv

=

∫
Bα

[
ρ̂α ηα + ρα (ηα)′α

]
dv .

(2.81)

The entropy flux in Equations (2.79) can be transformed to a volume integral with the
divergence theorem as ∫

∂Bα

1

Θα
qαH · n da =

∫
Bα

div

(
1

Θα
qαH

)
dv (2.82)

Inserting both terms into Eq. (2.79) leads to the global form of the entropy inequality of
the mixture as

k∑
α=1

∫
Bα

[ρ̂α ηα + ρα (ηα)′α] dv ≥
k∑

α=1

∫
Bα

1

Θα
ρα rα dv −

k∑
α=1

∫
Bα

div

(
1

Θα
qαH

)
dv (2.83)

resulting in the corresponding local statement

k∑
α=1

[
ρ̂α ηα + ρα (ηα)′α −

1

Θα
ρα rα + div

(
1

Θα
qαH

)]
≥ 0 . (2.84)

The term containing the heat flux vector is transformed as

div

(
1

Θα
qαH

)
= grad

(
1

Θα

)
· qαH +

1

Θα
div(qαH) = − 1

(Θα)2
qαH · grad(Θα) +

1

Θα
div(qαH)

(2.85)
to rewrite the local form as

k∑
α=1

{
ρ̂α ηα + ρα (ηα)′α −

1

Θα
[ρα rα − div(qαH)]− 1

(Θα)2
qαH · grad(Θα)

}
≥ 0 . (2.86)

The existence of a Helmholtz free energy function for the constituent ϕα as

ψα = εα −Θαηα (2.87)

is assumed. This equation can be transformed such that

εα = ψα + Θαηα (2.88)

leading to the material time derivative of the internal energy as

(εα)′α = (ψα + Θαηα)′α = (ψα)′α + (Θα)′α η
α + Θα (ηα)′α . (2.89)
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These correlations are inserted into Eq. (2.86) along with a rearrangement of the local
statement of the balance of energy in Eq. (2.76) as

ρα rα − div(qαH) = ρα (εα)′α − σ
α : Dα − êα + p̂α · x′α + ρ̂α

(
εα +

1

2
x′α · x′α

)
(2.90)

leading to the local form of the entropy inequality for the mixture as

k∑
α=1

1

Θα

{
− ρα[(ψα)′α + (Θα)′α η

α] + σα : Dα −
1

Θα
qαH · grad(Θα)

+ êα − p̂α · x′α − ρ̂α
(
ψα +

1

2
x′α · x′α

)}
+ p (1−

k∑
α=1

nα)′S ≥ 0 .

(2.91)

Therein, the rate of the saturation condition following the trajectory of the solid multiplied
by the Lagrange multiplier p is added. The saturation condition is a constraint within
the framework of the TPM such that it has to be considered during the evaluation of
the entropy inequality. If all k phases are incompressible, the saturation condition is an
equation in excess leading to p as an unknown field. In case of at least one compressible
constituent, p is a constitutive quantity. The Lagrange multiplier is an unknown reaction
force whose physical interpretation is obtained by the evaluation of the entropy inequality.
The choice of the sign of the extension is in general arbitrary but will become reasonable
in accordance to the physical interpretation in Section 2.6.2.

2.6 Binary Model

Within this thesis, a simple binary model consisting of a solid and a liquid phase as
α = {S,L} is investigated. To focus on the capabilities of the TPM in combination with
the MIEL method, the following assumptions are included to reduce the complexity of
the model. Dynamic effects are neglected with x′′α = 0, the same external acceleration
is applied as bα = b and incompressible phases are assumed such that ραR = constant.
Furthermore, the model excludes mass exchange as ρ̂α = 0 and is restricted to isothermal
processes, i.e., rα = 0, qαH = 0 and Θα = Θ = constant.

2.6.1 Field Equations

The field equations are required to built the system of equations to solve. For the presented
binary model they consist of the balance of mass for the mixture and the solid phase, the
balance of linear momentum for the mixture and the liquid phase as well as the rate of the
saturation condition. In contrast to this, there is no need to solve the balance of energy
explicitly because of the restriction to isothermal processes. In addition, the conclusion
of the balance of angular momentum, i.e. σα = (σα)T , is included a priori.

Inserting the definition of the partial density in Eq. (2.6) into the local statement of the
balance of mass in Eq. (2.43) and considering the assumptions of a constant real density
and the neglection of mass exchange between the phases leads to

(nα)′α + nα div(x′α) = 0 (2.92)
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for the constituent ϕα. Applying this to the solid and the liquid phase yields for the
balance of mass of the mixture and the solid phase

(nS)′S + nS div(x′S) + (nL)′L + nL div(x′L) = 0 ,

(nS)′S + nS div(x′S) = 0 .
(2.93)

The local form of the balance of linear momentum in Eq. (2.51) is taken into account for
the mixture and the liquid phase including the assumption of the same volume load on
each phase as well as vanishing acceleration as

div(σ) + ρ b = 0 ,

div(σL) + ρL b = −p̂L
(2.94)

with the the Cauchy stress of the mixture σ = σS + σL and the overall density ρ = ρS + ρL

correspondent to Eq. (2.7). The balances of mass and momentum are both chosen once
with respect to the mixture instead of a specific phase because of the vanishing direct pro-
duction terms and the fact that the application of boundary conditions in experiments or
other real applications is most likely related to the mixture instead of single constituents.

Introducing the concept of volume fractions, compared to the TM, leads to the necessity
of an additional equation. The saturation condition, here in its rate formulation with
respect to the trajectory of the solid, constraints the rates of volumetric changes of the
constituents, see [de Boer 2000], as(

nS + nL − 1
)′
S

= 0 . (2.95)

Applying the material time derivative in Eq. (2.29) to the volume fraction of the liquid
leads to

∂nL

∂t
= (nL)′L − grad(nL) · x′L (2.96)

which can be inserted into the corresponding material time derivative with respect to the
trajectory of the solid as

(nL)′S =
∂nL

∂t
+ grad(nL) · x′S = (nL)′L − grad(nL) ·wLS , (2.97)

where wLS = x′L − x′S is the difference velocity between the liquid and the solid. With
this, the rate of the saturation condition in Eq. (2.95) can be reformulated to

(nS)′S + (nL)′L − grad(nL) ·wLS = 0 . (2.98)

2.6.2 Constitutive Theory

The previous section presented in total nine field equations for the binary model including
28 appearing quantities. This set is extended by the quantity p to in total 29 field quantities
as

F = {χS,χL,σ
S,σL, b, nS, nL, ρSR, ρLR, p̂L, p} . (2.99)
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The additional quantity p is necessary as an extra unknown field to close the system of
equation as a counterpart to the rate of the saturation condition which is an equation in
excess. This issue becomes evident by analyzing the five known field quantities

K = {b, ρSR, ρLR} (2.100)

and the required 15 constitutive and evolution relations

C = {σS,σL, p̂L} (2.101)

leading to the set of nine unknown quantities as

U = {χS,χL, n
S, nL, p} (2.102)

to close the system. To determine the required constitutive and evolution relations, the
entropy inequality is evaluated analogous to Coleman and Noll [1963]. For this pur-
pose, the entropy inequality in Eq. (2.91) can be rewritten by taking into account the
assumptions for the binary model as

−ρS
(
ψS
)′
S
− ρL

(
ψL
)′
L

+ σS : DS + σL : DL − p̂L ·wLS

− p
[
(nS)′S + (nL)′L − grad(nL) ·wLS

]
≥ 0 ,

(2.103)

where the constraint p̂S = −p̂L resulting from Eq. (2.53) is utilized.

A crucial step for the evolution of the entropy inequality is the choice of process variables.
The entropy inequality has to be fulfilled for fixed values of these process variable and
for arbitrary values for the free available quantities, which are the derivatives in time and
space of the aforementioned process variables. An important requirement for a reasonable
evaluation is that all process variables have to be independent from each other. Possible
dependencies have to be taken into account in the entropy inequality once again with the
concept of Lagrange multipliers or have to be eliminated beforehand. The latter is carried
out for the presented incompressible binary model as shown in the following.

Choosing the set of process variables

P = {CS,CL, grad(nL),wLS} (2.104)

yields DS and DL as free available quantities. A possibility to eliminate dependencies
within the entropy inequality is to reformulate as many variables as possible in terms of
the process variables and the free available quantities. In the present case, the balance of
mass in Eq. (2.92) is rewritten for both constituents with

div(x′α) =
∂x′α
∂x

: I = Lα : I = Dα : I (2.105)

as
(nα)′α = −nαDα : I . (2.106)

In addition, postulating dependencies for the Helmholtz free energy function as
ψS = ψS(CS) and ψL = ψL(−) leads with the relation in Eq. (2.25) to

(ψS)′S =
∂ψS

∂CS

: (CS)′S =
∂ψS

∂CS

:
(
2F T

S ·DS · FS

)
and (ψL)′L = 0 . (2.107)



Theory of Porous Media 21

Inserting both reformulations into Eq. (2.103) leads to

−ρS ∂ψ
S

∂CS

: (2F T
S ·DS · FS) + σS : DS + σL : DL − p̂L ·wLS

− p
[
−nSDS : I − nLDL : I − grad(nL) ·wLS

]
≥ 0 .

(2.108)

such that the entropy inequality can be rewritten to extract the constitutive relation and
the dissipation mechanism as

DS :

(
σS − 2ρSFS ·

∂ψS

∂CS

· F T
S + nS p I

)
+ DL :

(
σL + nL p I

)
− wLS ·

[
p̂L − p grad(nL)

]
≥ 0 .

(2.109)

The entropy inequality is fulfilled if the constitutive relations for the solid and liquid stress

σS = σS
E − nS p I ,

σL = −nL p I
(2.110)

with the solid effective stress

σS
E = 2ρSFS ·

∂ψS

∂CS

· F T
S (2.111)

hold and the dissipation is greater or equal to zero as

D = −wLS ·
[
p̂L − p grad(nL)

]
≥ 0 . (2.112)

As a result of the obtained constitutive relation, the Lagrange multiplier p can be in-
terpreted as a pore pressure from the physical point of view. The stress of the mixture
results in

σ = σS + σL = σS
E − p I (2.113)

under consideration of the saturation condition. Within this thesis, the free energy func-
tion for the solid phase is of Neo-Hookean type if not stated otherwise as

ψS = ψNH =
1

ρS0S

{
λS

2
[ln(JS)]2 − µS ln(JS) +

µS

2
[tr(CS)− 3]

}
(2.114)

with the first and second Lamé constants λS and µS. The ansatz to fulfill the requirement
on the dissipation mechanism is given in dependence of the material parameter βL as

D = wLS · βLwLS with βL ≥ 0 (2.115)

and

βLwLS = −p̂L + p grad(nL) . (2.116)
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2.6.3 Towards an Efficient Numerical Model

The set of field equations of the binary model in Section 2.6.1 can be reduced to develop
a simple and efficient formulation. At first, writing the time integrated form of of the
balance of mass in Eq. (2.43) for the solid phase and inserting the assumption of no mass
exchange and using Eq. (2.27) as∫ t

t0

1

ρS
(ρS)′S dt+

∫ t

t0

1

JS
(JS)′S dt = 0 (2.117)

executing the integration as

ln
[
ρS(t)

]
− ln

[
ρS(t0)

]
+ ln [JS(t)]− ln [JS(t0)] = 0 (2.118)

with ρS = ρS(t), ρS0S = ρS(t0), JS = JS(t) and JS(t0) = 1 leads to

JS =
ρS0S
ρS

. (2.119)

This rather general applicable relation becomes more specific for the binary model by
additionally including the incompressibility condition and the formula for the Jacobian
determinant leading to √

det(CS) = JS =
nS
0S

nS
. (2.120)

With this, the volume fractions of solid nS can be calculated from the solid deformation
and subsequently the one of the liquid nL with help of the saturation condition. Conse-
quently, it is not necessary to solve the balances of mass in Eq. (2.93) separately. Instead,
the rate of the saturation condition in Eq. (2.98) is inserted into the balance of mass of
the mixture such that

nS div(x′S) + nL div(x′L) + grad(nL) ·wLS = 0 . (2.121)

holds. Exploiting the saturation condition and

div(nLwLS) = grad(nL) ·wLS + nL div(wLS) (2.122)

leads to the modified balance of mass of the mixture

div(x′S + nLwLS) = 0 . (2.123)

Furthermore, the focus of the investigations is on the motion of the solid constituent χS

since the domain of the solid BS is considered as control space. Consequently the motion
of the liquid phase χL respectively the balance of momentum of the liquid in Eq. (2.94)2
does not need to be solved. Nevertheless, the equation is needed in the following to find
an expression for the seepage velocity wLS as part of the balance of mass of the mixture.
Inserting the constitutive relation for the liquid stress in Eq. (2.110)2 and the ansatz for
the dissipation in Eq. (2.116) into the balance of momentum of the liquid in Eq. (2.94)2
leads to

div
(
−nL p I

)
+ ρL b = βLwLS − p grad(nL) . (2.124)

This equation can be reformulated with

div
(
−nL p I

)
= −p grad(nL)− nL grad(p) (2.125)
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to

nLwLS = −(nL)
2

βL

[
grad(p)− ρLR b

]
, (2.126)

where the definition of the partial density in Eq. (2.6) is utilized. The Darcy parameter
kL as a material parameter describing the permeability of the porous solid with respect
to the liquid is introduced and postulated as

kL :=
(nL)

2

βL
= constant (2.127)

to simplify the relation. The combination of seepage velocity and volume fraction of the
liquid, also called filter velocity, is referred to as specific liquid flux q = nLwLS.

Summarizing, the remaining equations to solve are the balance equations of momentum
and mass of the mixture as

div(σ) + ρ b = 0 ,

div
[
x′S − kL grad(p) + kL ρ

LR b
]

= 0
(2.128)

with the motion of the solid χS, respectively the displacement of the solid uS, and the
pore pressure p as unknown fields.

This set of equations is solved with the FEM which is presented in Chapter 3. Within this
framework, it is often beneficial to formulate the equations with respect to the reference
formulation. For this purpose, the corresponding global form of the balance of momentum
of the mixture in Eq. (2.128)1 is transformed by using the divergence theorem and the
transport theorems in Eq. (2.16) such that∫

B
[div(σ) + ρ b] dv =

∫
∂B
σ · n da+

∫
B
ρ b dv

=

∫
∂B0S

σ ·
(
JS F

−T
S ·NS

)
dAS +

∫
B0S

JS ρ b dVS

=

∫
∂B0S

P ·NS dAS +

∫
B0S

ρ0S b dVS

=

∫
B0S

[DivS(P ) + ρ0S b] dVS

(2.129)

with the density of the mixture with respect to the reference configuration solid

ρ0S = JS ρ (2.130)

and the definition of the first Piola-Kirchhoff stress tensor in Eq. (2.33) applied to the
stress of the mixture as

P = JS σ · F−TS = JS (σS + σL) · F−TS = P S + P L . (2.131)

The operator DivS indicates that the divergence is taken with respect to the position
vector of the solid constituent in the reference configuration as

DivS(•) =
∂(•)
∂XS

: I . (2.132)
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The reformulation of the balance of mass of the mixture starts with the global form of
Eq. (2.123) without including the relation for the specific liquid flux nLwLS for the sake of
clarity. Using once more the divergence theorem and the transport theorems in Eq. (2.16)
leads to∫

B

[
div(x′S + nLwLS)

]
dv =

∫
B

div(x′S) dv +

∫
∂B
nLwLS · n da

=

∫
B0S

JS div(x′S) dVS +

∫
∂B0S

nLwLS ·
(
JS F

−T
S ·NS

)
dAS

=

∫
B0S

JS (ES)′S : C−1S dVS +

∫
∂B0S

nLwLS0S ·NS dAS

=

∫
B0S

[
DivS(nLwLS0S) + JS (ES)′S : C−1S

]
dVS

(2.133)

with the shifted seepage velocity

wLS0S = JS F
−1
S ·wLS . (2.134)

Additionally, Eq. (2.26) and (2.105) are used to show the identity

(ES)′S : C−1S = (F T
α ·Dα · Fα) : (F−1α · F−Tα ) = Dα : I = div(x′α) . (2.135)

In summary, the set of equations to solve in (2.128) is reformulated to the local forms of
the balance of momentum of the mixture and the balance of mass of the mixture with
respect to the reference configuration as

DivS(P ) + ρ0S b = 0 ,

DivS(nLwLS0S) + JS (ES)′S : C−1S = 0
(2.136)

which will serve as starting point for the FEM derivations.

2.7 Remarks on the Single Solid Phase Model and Linear Theory

In the course of this chapter, the TPM is presented at first for the general case of k
constituents before it is reduced to a binary model which is investigated within this thesis.
In contrast to this, the FEM is presented in Chapter 3 at first for a single component solid
material to introduce the procedure and notation as convenient as possible. This reduces
the problem to solving the balance of linear momentum of the solid phase

DivS(P S) + ρS0S b = 0 respectively Div(P ) + ρ0 b = 0 (2.137)

for the unknown displacement of the solid uS, respectively u.

In addition to this, the first numerical example of the MIEL method in Chapter 6 investi-
gates linear elasticity to get deeper insights into the method before switching to the more
complex TPM. Towards a linear theory, a St. Venant-Kirchhoff material law is assumed



Theory of Porous Media 25

with S = C : E where the fourth order elasticity tensor C is constant. With this, the
balance of linear momentum in Eq. (2.137) is reformulated to

Div [F · (C : E)] + ρ0 b = 0 . (2.138)

Furthermore, the Green-Lagrange strain tensor in Eq. (2.19) can be rewritten for a single
solid constituent to

E =
1

2

(
F T · F − I

)
=

1

2

(
Gradu+ GradT u+ GradT u ·Gradu

)
. (2.139)

Introducing the assumption of small deformations as |Gradu| � 1 makes the non-linear
term in this expression negligible leading to the infinitesimal strain tensor ε as

ε =
1

2

(
Gradu+ GradT u

)
. (2.140)

The same assumption has the effect that F ≈ 1 and J ≈ 1. As a consequence there
are no longer distinguishable configurations which allows to write the balance of linear
momentum as

div(σ∗) + ρ∗ b = 0 (2.141)

with the density ρ∗ and the stress obeying Hooke’s law which can be written as

σ∗ = ρ∗
∂ψH

∂ε
(2.142)

in accordance to Eq. (2.111) with the strain energy function given by

ψS = ψH(ε) =
1

ρ∗

{
λS

2
[tr(ε)]2 + µS tr(ε · ε)

}
. (2.143)
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3 Finite Element Method

The Finite Element Method is introduced in this chapter with focus on the ap-
plied models within this thesis and to introduce a generally applicable notation to al-
low for a simple derivation of the MIEL method in Chapter 5. For further details
on the FEM, the reader is referred to well known textbooks on this method, e.g.
Zienkiewicz et al. [2013], Bathe [1996], Wriggers [2008].

The chapter starts with the derivation of the FEM for finite elasticity to introduce the
procedure and notation at a comparatively simple model. Subsequently, the same strategy
is applied for the binary TPM approach. Afterwards, both models are unified in a general
notation before the numerical treatment is presented. This chapter closes with an overview
on all selected element formulations within this thesis.

3.1 FEM for Finite Elasticity

As an introduction into the FEM in terms of structure and notation, the problem of finite
elasticity is discussed. For this purpose, a simple pure displacement formulation has been
chosen.

3.1.1 Weak Form and its Linearization

Starting point is the balance of momentum in Eq. (2.137) as

− {Div[P (u)] + ρ0 b} = 0 (3.1)

including the indication that the stress P only depends in the displacement u. The sign of
the equation is chosen as minus even though this is irrelevant from the mathematical point
of view. Nevertheless, this choice is reasonable with respect to the solution procedure since
it leads to a positive definite system matrix. Applying the standard Galerkin method by
multiplying a test function δu which satisfies δu = 0 on ∂B0u and integrating over the
domain leads to

−
∫
B0

[Div(P ) + ρ0 b] · δu dV = 0 . (3.2)

Reformulating the first term

−Div(P ) · δu = −Div(P T · δu) + P : Grad(δu) (3.3)

and applying Gauss theorem as

−
∫
B0

Div(P T · δu) dV = −
∫
∂B0t

(P ·N ) · δu dA (3.4)

leads to ∫
B0
P : Grad(δu) dV −

∫
B0
ρ0 b · δu dV −

∫
∂B0

(P ·N ) · δu dA = 0 . (3.5)

Inserting the Cauchy theorem t0 = P ·N and δF = δ(I + Gradu) = Grad(δu) yields∫
B0
P : δF dV −

∫
B0
ρ0 b · δu dV −

∫
∂B0t

t0 · δu dA = 0 . (3.6)
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Here the boundary has been decomposed as ∂B0 = ∂B0u ∪ ∂B0t with ∂B0u ∩ ∂B0t = ∅
such that Dirichlet and Neumann boundary conditions are applied as u = u on ∂B0u and
t0 = t0 on ∂B0t.
In case of a hyperelastic material behavior, it can be described by a strain energy density
function ψ(C). For this case, the second Piola-Kirchhoff stress tensor S and the elasticity
tensor C are defined in agreement with Eq. (2.111) and (2.34) as

S := 2 ρ0
∂ψ

∂C
and C := 2

∂S

∂C
= 4 ρ0

∂2ψ

∂C ⊗ ∂C
. (3.7)

The choice of the symmetric S and C as appearing quantities is in general advanta-
geous compared to the unsymmetric P and F . Therefore, the first term in Eq. (3.6) is
reformulated as

P : δF = (F · S) : δF = S : (F T · δF ) = S : sym(F T · δF ) = S :
1

2
δC . (3.8)

leading to the weak form

G(u, δu) :=

∫
B0
S :

1

2
δC dV −

∫
B0
ρ0 b · δu dV −

∫
∂B0t

t0 · δu dA = 0 . (3.9)

An equivalent way to derive these equations for hyperelastic problems is starting from the
potential

Π(u) :=

∫
B0
ρ0 ψ dV −

∫
B0
ρ0 b · u dV −

∫
∂B0t

t0 · u dA . (3.10)

The first variation of this potential with respect to the displacement leads exactly to the
weak form in Eq. (3.9).

A simple and very robust possibility to solve such nonlinear equations is Newton’s method.
For this procedure, the linearization of the weak form is needed

LinG(u, δu,∆u) = G(u, δu) + ∆G(u, δu,∆u) . (3.11)

For the sake of simplicity, the volume load ρ0 b and surface traction t0 are assumed to be
conservative, respectively independent from the displacements. With this, the increment
∆G is given by

∆G(u, δu,∆u) :=

∫
B0

∆S :
1

2
δC dV +

∫
B0
S :

1

2
∆δC dV . (3.12)

3.1.2 Discretization

The key idea of the FEM is the approximation of the physical domain B0 by Bh0 . The
approximated domain Bh0 consists of an assembly of (non-overlapping) element domains
as

B0 ≈ Bh0 =
ne⋃
e=1

Be0 , (3.13)

where ne denotes the number of finite elements. Within these elements, the geometry
and the unknown field, respectively its variation and increment, are approximated with
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help of nodes and their corresponding shape functions. The number and positions of
these nodes depend on the type of the element. The different types of finite elements
which are used throughout this thesis are described in Section 3.5. The most commonly
used isoparametric concept applies the same shape functions for the approximation of the
geometry as well as the displacement, such that in general

X ≈Xh =
nn u∑
I=1

N I
u(ξ)XI = N̂u · X̂ ,

u ≈ uh =
nn u∑
I=1

N I
u(ξ)dIu = N̂u · du ,

δu ≈ δuh =
nn u∑
I=1

N I
u(ξ) δdIu = N̂u · δdu ,

∆u≈ ∆uh =
nn u∑
I=1

N I
u(ξ) ∆dIu = N̂u ·∆du

(3.14)

holds for a typical element. The number of nodes per element for the interpolation of
the displacement is stated as nn u. The shape function for the displacement at node I
is denoted with N I

u(ξ), defined in the parameter space ξ. The displacements at node I,
their variation and increment are given by dIu, δd

I
u and ∆dIu. This notation allows the

handling of multiple unknown fields at the same node. As an alternative arrangement,
the quantities at the nodes are listed one after another for the entire element as

X̂ := {X̂1
1 , X̂

1
2 , X̂

1
3 , ..., X̂

nn u
1 , X̂nn u

2 , X̂nn u
3 } ,

du := {d1u1, d1u2, d1u3, ..., dnn uu1 , dnn uu2 , dnn uu3 } ,

δdu := {δd1u1, δd1u2, δd1u3, ..., δdnn uu1 , δdnn uu2 , δdnn uu3 } ,

∆du := {∆d1u1,∆d1u2,∆d1u3, ...,∆dnn uu1 ,∆dnn uu2 ,∆dnn uu3 } .

(3.15)

The matrix N̂u contains the shape functions of all nodes in a compatible manner. Please
observe that along with this quantity the notation switched from tensor notation in a phys-
ical sense to a more general array notation. This array notation uses the same operators as
before but allows arbitrarily shaped arrays as N̂u = (N̂u)ij with i ∈ {1, ..., ndimensions} and
j ∈ {1, ..., ndu} where ndu is the number of displacement degrees of freedom per element.
Even though the classical matrix notation would be sufficient for this specific array, it
lacks the ability of handling arrays of higher dimensions which will arise in the following.

The classical way of deriving the system of equation to solve, namely the right-
hand-side vector and system matrix, includes the incorporation of Voigt’s notation
and strain matrices. These matrices, such as the B-matrix, are frequently used for a
neat notation and implementation, exemplary δCh = B · δdu. For more details, see e.g.
Zienkiewicz et al. [2013]. The implementations related to this thesis are realized with
the software AceGen which is capable of automatic differentiation and code optimization.
Because of that, the complexity reduction, classically achieved by Voigt’s notation, can
be omitted and the notation will focus on the discrete degrees of freedom.

After inserting the discretization, the weak form in Eq. (3.9) can be written for a typical
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element e in array notation as

Ge
u(du, δdu) =

∫
Be0
Sh :

1

2
δCh dV −

∫
Be0
ρ0 b · δuh dV −

∫
∂Be0t

t0 · δuh dA

= δdu ·

{∫
Be0

1

2

[(
∂Ch

∂du

)13
T ]23

T

: Sh dV

−
∫
Be0
N̂T

u · ρ0 b dV −
∫
∂Be0t

N̂T
u · t0 dA︸ ︷︷ ︸

ru

}
.

(3.16)

The transformation of the term in the first integral is more evident in index notation as

(Sh)ij
1

2
(δCh)ij = (Sh)ij

1

2

∂(Ch)ij
∂(du)k

(δdu)k . (3.17)

The expression ∂Ch/∂du contains the same information as the classical B-matrix, here
in its unmodified version, stored in a three dimensional array. The specific structure is
omitted at this point. The element right-hand side vector corresponding to the unknown
field u is identified as ru. Applying the discretization to Eq. (3.12) leads for a typical
element e to

∆Ge
u(du, δdu,∆du) =

∫
Be0

∆Sh :
1

2
δCh dV +

∫
Be0

Sh :
1

2
∆δCh dV (3.18)

The expression in the first integral is reformulated as

∆Sh :
1

2
δCh =

(
∂Sh

∂Ch
:
∂Ch

∂du
·∆du

)
:

(
1

2

∂Ch

∂du
· δdu

)

= δdu ·

{
1

2

[(
∂Ch

∂du

)13
T ]23

T

: Ch :
∂Ch

∂du

}
·∆du

(3.19)

while the expression in the second integral leads to

Sh :
1

2
∆δCh = Sh :

1

2
∆

(
∂Ch

∂du
· δdu

)
= δdu ·

(
1

2
Sh :

∂2Ch

∂du ⊗ ∂du

)
·∆du . (3.20)

Inserting both expressions into Eq. (3.18) yields

∆Ge
u = δdu ·

{∫
Be0

1

2

((
∂Ch

∂du

)13
T)23

T

: Ch :
∂Ch

∂du
dV +

∫
Be0

1

2
Sh :

∂2Ch

∂du ⊗ ∂du
dV︸ ︷︷ ︸

kuu

}
·∆du ,

(3.21)
where kuu is the element matrix corresponding to the unknown field u. This rather com-
plex formulation of the element right-hand side vector and element matrix by including
the indirect way via the chain rule is only outlined to show the resemblance to the clas-
sic notation. Observe that for this single field formulation δd = δdu, ∆d = ∆du, r = ru
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and k = kuu holds. With this, the linearization of the discretized weak form of a typical
element e can be written as

LinGe = δd · (r + k ·∆d) . (3.22)

It is noteworthy that the element matrix and consequently the system matrix is symmetric
in pure elasticity. The assembly of the element contributions and the solution procedure
of the global system of equation is discussed within a generalized notation in Section 3.3.

3.2 FEM for the Theory of Porous Media

The FEM within the TPM is in general a bit more demanding compared to pure elasticity,
which is presented in Section 3.1. This is due to the fact that the TPM always includes
multiple equations and consequently multiple degrees of freedom to solve. Additionally, a
time discretization scheme has to be included.

3.2.1 Weak Form and its Linearization

The equations to solve for the derived binary model are given in Eq. (2.136) where the
local statement of the balance of momentum of the mixture can be written as

− {DivS[P (uS, p)] + ρ0S b} = 0 (3.23)

and the local statement of the balance of mass of the mixture as

DivS[nL(uS)wLS0S(uS, p)] + JS(uS) [ES]′S(uS) : C−1S (uS) = 0 (3.24)

where for each quantity the dependencies on the unknown fields, namely the solid displace-
ment uS and the pore pressure p, are attached. It is apparent that both equation depend
on both unknown fields. In agreement with Section 3.1.1, the signs of both equations are
chosen to enable a straight forward derivation leading to a positive definite system matrix
in the following. Applying the standard Galerkin method to both equations by multiply-
ing the test function δuS with uS = 0 on ∂B0Su to the balance of linear momentum of the
mixture, respectively δp with δp = 0 on ∂B0Sp to the balance of mass of the mixture, and
integrating over the control space of the solid in reference configuration leads to

−
∫
B0S

[DivS(P ) + ρ0S b] · δuS dVS = 0 (3.25)

and ∫
B0S

[
DivS(nLwLS0S) + JS (ES)′S : C−1S

]
δp dVS = 0 . (3.26)

Equation (3.25) is transformed analogous to Eq. (3.3)-(3.4) leading to the weak form

Gu(uS, p, δuS) :=

∫
B0S
P : δFS dVS−

∫
B0S

ρ0S b · δuS dVS−
∫
∂B0St

t0S · δuS dAS = 0 (3.27)

with δFS = GradS(δuS) and t0S = P ·NS as the traction vector acting on both con-
stituents. Additionally, the boundary is decomposed as ∂B0S = ∂B0Su ∪ ∂B0St with
∂B0Su ∩ ∂B0St = ∅ such that Dirichlet boundary conditions on the solid displacement are
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applied as uS = uS on ∂B0Su and the corresponding Neumann boundary conditions as
t0S = t0S on ∂B0St. Eq. (3.26) is reformulated in a similar fashion with

DivS(nLwLS0S) δp = DivS(nLwLS0S δp) − nLwLS0S ·GradS(δp) (3.28)

and ∫
B0S

DivS(nLwLS0S δp) dVS =

∫
∂B0S

nLwLS0S δp ·NS dAS (3.29)

towards the weak form

Gp(uS, p, δp) := −
∫
B0S

nLwLS0S ·GradS(δp) dVS +

∫
∂B0Sq

q0S δp dAS

+

∫
B0S

JS (ES)′S : C−1S δp dVS = 0

(3.30)

with q0S = (nLwLS0S) ·NS as the specific liquid flux over the surface of B0S. Here, the
boundary has been decomposed as ∂B0S = ∂B0Sp ∪ ∂B0Sq with ∂B0Sp ∩ ∂B0Sq = ∅ such
that Dirichlet and Neumann boundary conditions on the pressure field are applied as
p = p on ∂B0Sp and q0S = q0S on ∂B0Sq. The total weak form is given by

G(uS, p, δuS, δp) := Gu(uS, p, δuS) +Gp(uS, p, δp) = 0 . (3.31)

To solve this nonlinear equation, Newton’s method can be applied which requires the
linearization of the weak form, see Eq. (3.11), as

LinG(uS, p, δuS, δp,∆uS,∆p) = G(uS, p, δuS, δp) + ∆G(uS, p, δuS, δp,∆uS,∆p) (3.32)

with ∆G := ∆Gu + ∆Gp. Assuming a conservative volume load ρ0S b, surface traction t0S
and fluid flux q0S leads to

∆Gu :=

∫
B0S

∆P : δFS dVS (3.33)

and

∆Gp := −
∫
B0S

∆
[
nLwLS0S

]
·GradS(δp) dVS +

∫
B0S

∆
[
JS (ES)′S : C−1S

]
δp dVS (3.34)

for the increments of the weak form. Please note that the increments are written quite
general at this point. They will be further investigated after introducing the discretization.

3.2.2 Discretization

The basic structure of the discretization scheme for a multi-physical problem as within
the TPM is nearly identical to pure elasticity in Section 3.1.2 such as the presented array
notation. Because of this, the general explanations here focus on the differences to the
single field formulation. The approximation of the control space of the solid in reference
configuration is written in agreement with Eq. (3.13) as

B0S ≈ Bh0S =
ne⋃
e=1

Be0S . (3.35)
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In contrast to this, an extension of the approximations of the geometry, the unknown
fields, their variations and increments is needed compared to finite elasticity in Eq. (3.14)
due to the pressure p as second unknown field such that

XS ≈Xh
S =

nn u∑
I=1

N I
u(ξ)XI

S = N̂u · X̂S ,

uS ≈ uhS =
nn u∑
I=1

N I
u(ξ)dIu = N̂u · du ,

δuS ≈ δuhS =
nn u∑
I=1

N I
u(ξ) δdIu = N̂u · δdu ,

∆uS ≈ ∆uhS =
nn u∑
I=1

N I
u(ξ) ∆dIu = N̂u ·∆du ,

p ≈ ph =

nn p∑
I=1

N I
p (ξ)dIp = N̂p · dp ,

δp ≈ δph =

nn p∑
I=1

N I
p (ξ) δdIp = N̂p · δdp ,

∆p ≈ ∆ph =

nn p∑
I=1

N I
p (ξ) ∆dIp = N̂p ·∆dp ,

(3.36)

with the element vectors in the style of Eq. (3.15) as

X̂S := {X̂1
1 , X̂

1
2 , X̂

1
3 , ..., X̂

nn u
1 , X̂nn u

2 , X̂nn u
3 } ,

du := {d1u1, d1u2, d1u3, ..., dnn uu1 , dnn uu2 , dnn uu3 } ,

δdu := {δd1u1, δd1u2, δd1u3, ..., δdnn uu1 , δdnn uu2 , δdnn uu3 } ,

∆du := {∆d1u1,∆d1u2,∆d1u3, ...,∆dnn uu1 ,∆dnn uu2 ,∆dnn uu3 } ,

dp := {d1p, ..., d
nn p
p } ,

δdp := {δd1p, ..., δd
nn p
p } ,

∆dp := {∆d1p, ...,∆d
nn p
p } .

(3.37)

It is important that the number of nodes per element with respect to the unknown fields,
denoted as nn u and nn p, do not have to be equal. This means that different interpolations
can be used for the different unknown fields, leading to varying numbers of degrees of
freedom for the different fields within the same element. As a consequence, it is necessary
to define the nodal shape functions for the displacements N I

u and those for the pressure
N I
p separately. More details on a reasonable choice of shape functions and those used

within this thesis are given in Section 3.5 after deriving the structure of the system of
equations to solve in the following.

As a final piece it is necessary to define the relation between the solid velocity x′S which is
part of the appearing material time derivative of the Green-Lagrange strain (ES)′S and the
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unknown field uS. For this purpose the implicit Euler method is chosen as time integration
scheme such that

x′S = (uS)′S :=
uS − u(n)

S

∆t
(3.38)

holds with u
(n)
S as the solid displacement at the previous time step and the current time

increment ∆t.

Inserting the discretization into the weak form of the balance of momentum of the mixture
in Eq. (3.27) leads for a typical element e to

Ge
u(du,dp, δdu) =

∫
Be0S
P h : δF h

S dVS −
∫
Be0S

ρ0S b · δuhS dVS −
∫
∂Be0St

t0S · δuhS dAS

= δdu ·

{∫
Be0S

[(
∂ F h

S

∂ du

)13
T ]23

T

: P h dVS

−
∫
Be0S
N̂T

u · ρ0S b dVS −
∫
∂Be0St

N̂T
u · t0S dAS︸ ︷︷ ︸

ru

} (3.39)

with the element right-hand side vector related to the displacement degrees of freedom
ru. The corresponding element right-hand side vector with respect to the pressure degrees
of freedom rp is derived by inserting the discretization into the weak form of the balance
of mass of the mixture in Eq. (3.30) such that

Ge
p(du,dp, δdp) = −

∫
Be0S

[nLwLS0S]h · [GradS(δp)]h dVS +

∫
∂Be0Sq

q0S δp
h dAS

+

∫
Be0S

[JS (ES)′S : C−1S ]h δph dVS

= δdp ·

{
−
∫
Be0S

(
∂[GradS(p)]h

∂dp

)T
· [nLwLS0S]h dVS

+

∫
∂Be0Sq

N̂p q0S dAS +

∫
Be0S
N̂p [JS (ES)′S : C−1S ]h dVS︸ ︷︷ ︸

rp

}
.

(3.40)

The increments of the weak form ∆Gu and ∆Gp in Eq. (3.33) and (3.34) are split at
element level as

∆Ge
u = ∆uG

e
u + ∆pG

e
u and ∆Ge

p = ∆uG
e
p + ∆pG

e
p (3.41)

to simplify the derivation of the element matrix. The operator ∆u implies that the incre-
ment is evaluated with respect to the solid displacement field respectively the pressure
field in case of ∆p. For the analysis of the different terms and their dependencies it would
be beneficial to write everything straight forward in terms of the unknown fields. But
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this would lead to rather lengthy expressions within the framework of the TPM. As a
consequence the introduced fields as the seepage velocity are used further on but their
dependencies on the unknown fields are given in Eq. (3.23) and (3.24). The increments of
the weak forms with respect to the different unknown fields read as

∆uG
e
u =

∫
Be0S

∆uP
h : δF h

S dVS = δdu ·

{∫
Be0S

[(
∂ δF h

S

∂du

)13
T ]23

T

:
∂P h

∂du
dVS︸ ︷︷ ︸

kuu

}
·∆du , (3.42)

∆pG
e
u =

∫
Be0S

∆pP
h : δF h

S dVS = δdu ·

{∫
Be0S

[(
∂ δF h

S

∂du

)13
T ]23

T

:
∂P h

∂dp
dVS︸ ︷︷ ︸

kup

}
·∆dp , (3.43)

∆uG
e
p = −

∫
Be0S

∆u[n
LwLS0S]h · [GradS(δp)]h dVS +

∫
Be0S

∆u[JS (ES)′S : C−1S ]h δph dVS

= δdp ·

{
−
∫
Be0S

(
∂[GradS(δp)]h

∂dp

)T
· ∂[nLwLS0S]h

∂du
dVS

+

∫
Be0S
N̂p

∂[JS (ES)′S : C−1S ]h

∂du
dVS︸ ︷︷ ︸

kpu

}
·∆du

(3.44)

and

∆pG
e
p = −

∫
Be0S

∆p[n
LwLS0S]h · [GradS(δp)]h dVS

= δdp ·

{
−
∫
Be0S

(
∂[GradS(δp)]h

∂dp

)T
· ∂[nLwLS0S]h

∂dp
dVS︸ ︷︷ ︸

kpp

}
·∆dp

(3.45)

with the submatrices of the element matrix kuu, kup, kpu and kpp. With this, the lineariza-
tion of the discrete weak for for a typical element can be written as

LinGe =

δdu
δdp

 ·
ru
rp

+

kuu kup

kpu kpp

 ·
∆du

∆dp


= δd · (r + k ·∆d) .

(3.46)

Please note that the structure of the linearized weak form is similar to the one in finite
elasticity in Eq. (3.22). A generalization in notation in combination with the assembly
and solving the global system of equations is presented in Section 3.3. Taking a closer
look at the element matrix, it is important to state that in contrast to the pure elasticity
formulation in Section 3.1 the element matrix and consequently the system matrix is non-
symmetric since kup 6= kTpu. In addition to that, even if the submatrices are non-zero from
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the equation point of view, the matrix kpp tend to zero for several applications. The reason
is the dependence on the seepage velocity wLS and therefore on the Darcy parameter kL
which is often close to zero, e.g. kL = 10−7 m4

Ns
or lower. This fact has influence on choosing

the interpolation order of the unknown fields which is addressed in Section 3.5.

3.3 Generalization

This section deals with a generalized notation of the weak form leading to the derivation
and the solution algorithm of the global system of equations. The notation is applicable to
a wide range of problems which can be approximated with the FEM and therefore covers
the pure elasticity formulation in Section 3.1 as well as the formulation in the framework
of the TPM in Section 3.2.

At first, element vectors are introduced following the concept of Eq. (3.15) and (3.37) as

d =
⋃
{dα,dβ,dγ, ...}

δd =
⋃
{δdα, δdβ, δdγ, ...}

∆d =
⋃
{∆dα,∆dβ,∆dγ, ...}

(3.47)

where α, β and γ indicate possible distinct unknown fields. With these vectors, con-
taining all degrees of freedoms, their variations and increments of a typical element, the
corresponding weak form can be written in general as

Ge := δd · r(d) . (3.48)

The element right-hand side vector r can be identified with help of the standard Galerkin
method as shown at the formulations above or alternatively, if a potential Π exists, directly
by r(d) = ∂Π/∂d. The increment follows to

∆Ge :=
∂Ge

∂d
·∆d = δd · ∂r

∂d
·∆d = δd · k(d) ·∆d (3.49)

with the element matrix k. Towards the system of equations to solve, the element contri-
butions are assembled to the system right-hand side vector and system matrix as

R =
ne

A
e=1

r and K =
ne

A
e=1

k . (3.50)

During the assembly procedure, the element contributions are inserted into their global
counterparts at the correct location, depending on the position of the element degrees of
freedom in d within the global degrees of freedom in D. After this, we may write the
global discretized linearized weak form as

LinGh = Gh + ∆Gh = δD ·
(
R(D) +K(D) ·∆D

)
= 0 . (3.51)

Formally, the system matrix can be derived directly from the system right-side vector as
K = ∂R/∂D. To be able to solve the boundary value problem, the Dirichlet boundary
conditions have to be imposed. For this purpose, a split of the set of degrees of freedom is
introduced as D = Df ∪Db with Df ∩Db = ∅. Therein, Df are free degrees of freedom
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and Db those with imposed Dirichlet boundary conditions. With this, the linearization of
the weak form can be rewritten to

δDf ·
(
Rf +

∂Rf

∂Df

·∆Df +
∂Rf

∂Db

·∆Db

)
+ δDb ·

(
Rb +

∂Rb

∂Df

·∆Df +
∂Rb

∂Db

·∆Db

)
= 0

(3.52)

or δDf

δDb

 ·
Rf

Rb

+

Kff Kfb

Kbf Kbb

 ·
∆Df

∆Db

 = 0 . (3.53)

The definition of the variations include that they vanish on the parts of the boundary
occupied by Dirichlet boundary conditions, respectively δDb = 0. Thus, the second term
in Eq. (3.52) is irrelevant for the solution of the boundary value problem problem. Using
the arbitrariness of δDf , the increments of the real degrees of freedom are computed as

∆Df = (Kff )
−1 · (−Rf −Kfb ·∆Db) . (3.54)

3.4 Algorithmic Treatment

The algorithmic treatment for a single scale FEM simulation in summarized in Table 3.1.
It is applicable for time-dependent problems as well as for quasi-static ones. The general
notation allows for a constant or flexible time incrementation ∆t while tn is the time at
the last converged time step. The load application factor λload is introduced as a function
of time t to enable a stepwise application of nonzero Dirichlet and Neumann boundary
conditions. The end time of the simulation is denoted by tend. For quasi-static investiga-
tions, the time t represents a pseudo-time which is used to define the load stepping. The
residual for each time step has been defined according to Eq. (3.54) as

Rs(D, λload) := −Rf (D, λload)−Kfb(D) ·∆Db(Db, λload) , (3.55)

where Rf contains the applied Neumann boundary conditions while ∆Db represents the
current increment on the Dirichlet boundary conditions, both dependent on the load factor
λload.

The iteration loop continues until the ratio of current energy E and reference energy
Eref is smaller than the predefined tolerance tol = 10−16. The current energy is defined
as E = Rs ·∆Df . In general, the reference energy Eref is the initial energy at the first
iteration of the current step. But since many boundary value problems within the TPM
converge against a steady state, the definition of the reference energy requires a special
treatment. Close to steady state, the initial residuum and consequently the initial degrees
of freedom increment vector within a step is that small that the standard energy ratio
criterion can not be met due to limited computer precision. Because of that, for such
simulations the reference energy Eref is kept constant for all following steps during the
simulation starting from the first iteration within the step after the whole external load
has been applied. This handling of the termination criterion of the Newton iteration loop
follows Taylor and Govindjee [2020].
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Table 3.1: Algorithmic treatment for single scale FEM.

LOAD-/ TIME-STEPPING

While t < tend

Set current time: t = tn + ∆t

Set current load: λload = λload(t)

ITERATION LOOP

While E/Eref > tol

ELEMENT LOOP

Do e = 1, ..., ne

Compute r and k

End do

Assembly: R =
ne

A
e=1

r, K =
ne

A
e=1

k

Solve Kff ·∆Df = Rs for ∆Df

Update D = D + ∆D

End

End

3.5 Selection of Finite Element Formulations

This section introduces the different element formulations which are chosen for the numer-
ical examples within this thesis. But the focus is on getting an overview on the different
topologies rather than details on specific shape functions. The latter are listed in Ap-
pendix A. Since the chosen approaches are quite standard, please consult typical FEM
literature as mentioned in the beginning of this chapter for more information than pro-
vided.

The first numerical examples in Chapter 6 investigate the MIEL method for small strain
elasticity, introduced in Section 2.7. The purpose of this choice is to gain insights on effects
which are induced by this multiscale approach at a rather simple problem compared to
the TPM. A wide range of elements is applied on both scales of the MIEL method to
gather as many information as possible. These elements are presented in Figure 3.1 along
with their respective number of degrees of freedom nd.

A black bullet indicates a node related to the displacement where each node corresponds
to two degrees of freedom in the two dimensional case. The first letter within the element
label denotes the shape of the respective element, Q for quadrilateral and T for triangular.
The following number represents the interpolation order within the shape functions. The
optional letter S after the interpolation order stands for a Serendipity element formulation
while the remaining ones are of Lagrange type. All elements but the T2 element are applied
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Q1 (nd = 8) Q2 (nd = 18) Q3 (nd = 32) Q4 (nd = 50)

T2 (nd = 12) Q2S (nd = 16) Q3S (nd = 24)

Figure 3.1: Finite element formulations for computations with single solid phase model.

on both scales within the examples. The T2 element is chosen as microscopic element for
an analysis of elliptical heterogeneities.

The element choice within the TPM itself and especially within the MIEL method de-
mands a little more effort compared to a single solid phase model. All microscopic ele-
ments are chosen to be Taylor-Hood elements where the solid displacement is interpolated
quadratically while the pressure is approximated with a linear interpolation, going back
on Taylor and Hood [1973]. This element formulation is proven to be stable from a
mathematical point of view for the challenging case of a saddle point problem in linear
elasticity within mixed FEM, see Boffi et al. [2013]. Even though the problem aris-
ing from the binary model leads to a fully populated and unsymmetric system matrix
by theory, it tends towards a saddle point problem for very small Darcy parameters.
Nevertheless, there is no theoretical proof for stability in finite strain theory but the el-
ement formulation is favorable within the TPM with small Darcy parameters compared
to standard elements which assume equal interpolation order for all unknown fields to
avoid pressure oscillations, cf. Markert et al. [2010] and Bertrand et al. [2022].
The macroscopic elements are of generalized Taylor-Hood type which indicates that the
displacement interpolation is always one order higher than the pressure interpolation.
Since it is beneficial for the MIEL method to only allow macroscopic element degrees of
freedom on the boundary of the elements, serendipity interpolation functions are applied
for higher orders. All elements which are used in the numerical examples in Chapter 7 are
shown in Figure 3.2 along with their label and number of degrees of freedom.

Once more, each black bullet represents a node corresponding to the solid displacement
with two degrees of freedom while the square with grey background indicates a pressure
node with a single degree of freedom. The labels are built in a similar fashion as before
but with the additional information corresponding to the interpolation of the pressure as
second unknown field. The Q2Q1 and T2T1 element are used as microscopic and single
scale elements while the Q2SQ1 and Q3SQ2S serve as macroscopic elements. The reduced
amount of different microscopic scale element options compared to above is in agreement
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Q2Q1 (nd = 22) T2T1 (nd = 15) Q2SQ1 (nd = 20) Q3SQ2S (nd = 32)

Figure 3.2: Finite element formulations for computations with binary TPM model.

with the findings in the first numerical examples of small strain elasticity. Higher order
macroscopic elements with Serendipity approach are not reasonable within the MIEL
method because of appearing inner nodes which is outlined in more detail in Chapter 5.

Please note that the line elements which are used to apply nonzero Neumann bound-
ary conditions are not depicted separately. They are always chosen conforming to the
interpolation on the corresponding edge of the respective single or microscopic scale ele-
ment. More details on the application of Neumann boundary conditions within the MIEL
method are given in Chapter 5.
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4 Discussion on FE2 for TPM and Body Loads in Elasticity

As mentioned in Chapter 1, the treatment of the Theory of Porous Media or similar ap-
proaches considering fluid-solid interactions are comparatively rare within the FE2 scheme.
Early stages of research leading to this thesis investigated the behavior of unit cells within
the TPM, see Maike et al. [2016]. It revealed that the typical assumption for periodic
responses on microscopic level in case of periodic boundary conditions does not hold in
case of an applied macroscopic flux. The vector valued flux applied to the microscopic
problem induces an unidirectional deformation of the solid phase. This is in contrast to
the effect of exemplary a solid strain as a second order tensor. With this, the microscopic
response is no longer periodic and directly dependent on the size of the microscopic do-
main. This leads to the impression to require a special treatment or additional constraint
in case of such a loading.

To gain further insights on these effects, body loads in elasticity within the FE2 scheme
are considered rather than the TPM because of a lower complexity of the equations. That
is a suitable step since a body load in elasticity acts comparable to a pressure gradient on
the solid displacement within the TPM. This becomes evident by inserting the mixture
stress in Eq. (2.113) into the balance of momentum in Eq. (2.128) such that

div(σS
E − p I) + ρ b = div(σS

E)− grad(p) + ρ b = 0 . (4.1)

Based on this, the next section presents a framework for the treatment of body forces in
elasticity within the classical first order FE2 scheme including a consistent derivation of
the lower level boundary conditions. In the last section of this chapter, this framework is
discussed at a simple model problem to investigate its applicability and limitations.

4.1 Theoretical Framework

The following derivation is meant to highlight the differences to the common first order
FE2 scheme such that some details are omitted for the sake of clarity. If the reader is
not familiar with this multiscale approach, an overview article such as Schröder [2014]
is recommended. Additionally, the structure of the following derivation is outlined in a
similar fashion. The strategy to include body forces into the scheme follows the idea by
de Souza Neto et al. [2015].

Starting point is the balance of momentum in Eq. (2.137) with f0 = ρ0 b such that the
equation on macroscopic scale respectively its microscopic scale counterpart are given by

DivXM(PM) + fM
0 = 0 and DivXm(Pm) + fm

0 = 0 (4.2)

where the index M indicates a macroscopic quantity and the index m a microscopic one.
An extended macro-homogeneity condition to define the scale transition including body
loads is introduced as

PM : δFM − fM
0 · δuM =

1

V m

∫
Bm0
Pm : δFm − fm

0 · δum dV m (4.3)

with V m as the volume of the corresponding RVE. Therein, the consideration of the body
forces in addition to the stresses as in the classical approach is straight forward. They
are added on both scales multiplied with the respective virtual displacement as their
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conjugated quantity of virtual work. The ansatz for the microscopic displacement is given
as a first order approach by

um := uM +
(
FM − I

)
·Xm + ũm (4.4)

with the displacement fluctuations on the microscopic scale ũm and the macroscopic
deformation gradient

FM = I +
∂uM

∂XM
. (4.5)

In general, all macroscopic quantities, here uM and FM, are independent of the microscopic
position Xm. The microscopic deformation gradient follows to

Fm = I +
∂um

∂Xm
= FM +

∂ũm

∂Xm
= FM + F̃m (4.6)

such that it consists of a constant macroscopic part and the microscopic fluctuation gra-
dient as

F̃m :=
∂ũm

∂Xm
. (4.7)

In comparison to the common first order FE2 scheme, the ansatz for the microscopic
displacement in Eq. (4.4) differs by the inclusion of the macroscopic displacement. The
consideration of this rigid body motion of the corresponding RVE is unnecessary in the
absence of body forces since the weak forms of the balance equations, respectively the
macro-homogeneity condition, only include the gradient of the microscopic displacement.
Consequently, the ansatz has to be adjusted if the microscopic displacement appears in
the governing equations as in the present case. To close the framework, relations between
the macroscopic and microscopic counterparts have to be introduced. The macroscopic
displacement is defined as

uM :=
1

V m

∫
Bm0
um dV m =

1

V m

∫
Bm0
uM +

(
FM − I

)
·Xm + ũm dV m

= uM +
(
FM − I

)
· 1

V m

∫
Bm0
Xm dV m +

1

V m

∫
Bm0
ũm dV m .

(4.8)

Postulating the origin of the RVE at its geometric center such that∫
Bm0
Xm dV m = 0 (4.9)

leads to the constraint on the microscopic displacement fluctuations∫
Bm0
ũm dV m = 0 . (4.10)

While this constraint is fulfilled a priori in the absence of body forces in elasticity within
the FE2 scheme for suitable boundary conditions on the RVE, it has to be enforced sepa-
rately for nonzero body forces. The consequences on the solution space of the microscopic
problem have a major impact on the discussion in Section 4.2. The macroscopic deforma-
tion gradient is defined as

FM :=
1

V m

∫
Bm0
Fm dV m =

1

V m

∫
Bm0
FM + F̃m dV m = FM +

1

V m

∫
Bm0
F̃m dV m (4.11)
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which leads to ∫
Bm0
F̃m dV m =

∫
∂Bm0

ũm ⊗Nm dAm = 0 (4.12)

as further constraint. In contrast to Eq. (4.10), this constraint is fulfilled automatically
by choosing one of the lower level boundary conditions derived in the following. With all
these relations, the macro-homogeneity condition in Eq. (4.3) can be reformulated as

PM : δFM − fM
0 · δuM =

1

V m

∫
Bm0
Pm :

(
δFM + δF̃m

)
− fm

0 ·
(
δuM + δFM ·Xm + δũm

)
dV m

=
1

V m

∫
Bm0
Pm − fm

0 ⊗Xm dV m : δFM − 1

V m

∫
B0
fm
0 dV m · δuM

+
1

V m

∫
Bm0
Pm : δF̃m − fm

0 · δũm dV m .

(4.13)

The condition is fulfilled if the microscopic problem is solved with respect to the fluctua-
tions as ∫

Bm0
Pm : δF̃m − fm

0 · δũm dV m = 0 (4.14)

and if the macroscopic stress and body load are computed by

PM :=
1

V m

∫
Bm0
Pm − fm

0 ⊗Xm dV m (4.15)

and

fM
0 :=

1

V m

∫
Bm0
fm
0 dV m . (4.16)

Different sets of consistent boundary and constraint conditions for the microscopic prob-
lem can be derived by rearranging Eq. (4.14). The first reformulation utilize the additive

split of the stress Pm = PM + P̃m and the body load fm
0 = fM

0 + f̃m
0 as well as Eq. (4.4)

and Eq. (4.6) for the microscopic displacement and deformation. Additionally, the con-
straints in Eq. (4.10) and Eq. (4.12) on the microscopic displacement fluctuation and mi-
croscopic deformation fluctuation are exploited. With this, the first transformation of
Eq. (4.14) reads as∫

Bm0

(
PM + P̃m

)
: δF̃m −

(
fM
0 + f̃m

0

)
· δũm dV m = 0

⇔
∫
Bm0
P̃m : δF̃m − f̃m

0 · δũm dV m = 0

⇔
∫
Bm0

(
Pm − PM

)
:
(
δFm − δFM

)
−
(
fm
0 − fM

0

)
·
(
δum − δuM − δFM ·Xm

)
dV m = 0 .

(4.17)
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This equation leads to the possible constraint combinations

Pm = PM and fm
0 = fM

0 ∀Xm ∈ Bm
0 (4.18)

and

Fm = FM and um = uM + FM ·Xm ∀Xm ∈ Bm
0 . (4.19)

The assumption of constant stress combined with constant body load on the microscopic
problem is associated to the estimate of Reuss while a constant deformation gradient
respectively a linear displacement defined by macroscopic quantities corresponds to the
estimate of Voigt. The second line in Eq. (4.17) can be transformed as well to∫

Bm0
P̃m : GradXm (δũm)− f̃m

0 · δũm dV m = 0

⇔ −
∫
Bm0

DivXm

(
P̃m
)
· δũm − f̃m

0 · δũm dV m +

∫
∂Bm0

(
P̃m ·Nm

)
· δũm dAm = 0

⇔
∫
∂Bm0

(
tm0 − PM ·Nm

)
·
(
δum − δuM − δFM ·Xm

)
dAm = 0 ,

(4.20)

where the divergence theorem, the differential equation on microscopic scale in Eq. (4.2)
and the constraint in Eq. (4.10) have been utilized. The reformulation reveals that the
macro-homogeneity condition can be fulfilled by either Neumann boundary conditions

tm0 = PM ·Nm ∀Xm ∈ ∂Bm
0 (4.21)

or Dirichlet boundary conditions

um = uM + FM ·Xm ∀Xm ∈ ∂Bm
0 . (4.22)

For the derivation of periodic boundary conditions, the boundary of the microscopic
problem is decomposed into two parts as ∂Bm

0 = ∂Bm+
0 ∪ ∂Bm−

0 where every point
Xm+ ∈ ∂Bm+

0 has a corresponding point Xm− ∈ ∂Bm−
0 with outward unit normals Nm+

and Nm−. With this, the last line in Eq. (4.20) can be rewritten as∫
∂Bm0

(
tm0 − PM ·Nm

)
· δũm dAm = 0

⇔
∫
∂Bm+

0

(
tm+
0 − PM ·Nm+

)
· δũ+m dAm +

∫
∂Bm−0

(
tm−0 − PM ·Nm−) · δũ−m dAm = 0

⇔
∫
∂Bm+

0

(
tm+
0 − PM ·Nm+

)
· δũ+m dAm +

∫
∂Bm+

0

(
tm−0 + PM ·Nm+

)
· δũ+m dAm = 0

⇔
∫
∂Bm+

0

(
tm+
0 + tm−0

)
· δũm+ dAm = 0

(4.23)
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including the assumption of periodic displacement fluctuations as ũm+ = ũm−. The ex-
pression is fulfilled in case of antiperiodic tractions tm+

0 = −tm−0 .

The derived constraint and boundary conditions are very similar to those in the classical
first order FE2 scheme without body loads, cf. Schröder [2014]. An important difference
is the additional kinematic constraint on the fluctuations in Eq. (4.10) which has to be
enforced on the microscopic problem.

4.2 Limitations on Accuracy on Microscopic Scale

All sets of derived boundary and constraint conditions in the previous section satisfy
the macro-homogeneity condition and are therefore energetically admissible within this
multiscale approach. Nevertheless, they lead to limitations for the achievable accuracy on
the microscopic level in case of applied body forces. This effect is investigated in a simple
model problem of a block of homogeneous material without lateral contraction which is
loaded by a constant unidirectional body load, illustrated in Figure 4.1.

∆X2

t+0

t−0

f0 ∆X2

X2

X1

Figure 4.1: Hanging block with constant body load.

The analytical solution of this quasi one-dimensional problem results in a linear strain
distribution and accordingly a quadratic displacement response in 2-direction. Therein,
each material point experiences a displacement in negative 2-direction. By definition,
none of the derived boundary and constraint conditions is able to cover that analytical
solution of a linear strain respectively stress on the microscopic scale. Even the usually
superior periodic boundary conditions lack of this capability which becomes evident by
comparing the requirement of antiperiodic tractions with the balance equation at a small
volume element of the body, depicted in Figure 4.1, revealing t+0 = t−0 + f0 ∆X2. To solve
this conflict, the assumption of scale separation can be included where the RVE size
is very small compared to the overall body such that ∆X2 tends towards zero. With
this, the influence of the body load can be identified as small or even negligible on the
microscopic scale. Nevertheless, it reveals that the size of the RVE is not arbitrary for
such a formulation, even for homogeneous materials.

A closer look is taken at the expected microscopic responses for the derived sets of bound-
ary and constraint conditions. In case of any remaining degrees of freedom on the RVE
after applying the boundary conditions, as exemplary valid for the Dirichlet or periodic
version, each material point would tend to displace in direction of the uniform body force,
here the negative 2-direction. But for such cases, the kinematic constraint in Eq. (4.10)
prevents any fluctuation. As a consequence, the microscopic problem can only capture
the deformation state which is prescribed macroscopically, here a constant strain at the
most. The effect of a constant body load, analytically leading to a linear strain, can not
be represented on the microscopic scale within a first order FE2 scheme. Submitting the
macroscopic strain gradient to the microscopic problem within a higher order FE2 ap-
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proach is promising for a constant body load but would lead to analogous limitations in
case of a more complex body load.

Transferring these findings to the TPM by considering the structure of Eq. (4.1), the ef-
fect of microscopic fluid flux, respectively the microscopic pressure gradient, on the solid
displacement cannot be captured if not prescribed by macroscopic counterparts. Neverthe-
less, the presented framework for the treatment of body load in elasticity is energetically
consistent but the observed limitation is inherent to this multiscale approach. Conse-
quently, if capturing these effects on the microscale is important for a specific application,
considering a framework without scale separation is reasonable.
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5 Mesh-in-Element Method

The Mesh-in-Element method is a multiscale approach which is based on the discretization
of the domain into finite elements. It can be applied to any type of problem which fits in the
generalized FEM framework introduced in Section 3.3. But in contrast to single scale FEM,
an additional discretization layer is added such that each element on the macroscopic scale
contains an underlying microscopic problem. In the following derivations, an M is added
to the labels of macroscopic quantities and an m to those corresponding to microscopic
ones.

The physical domain, here B0S as the most general case within this thesis, is approximated
by the domain BM,h

0S . This domain is discretized by nM
e macroscopic elements as

B0S ≈ BM,h
0S =

nM
e⋃

e=1

BM,e
0S . (5.1)

In addition to that, every macroscopic element is approximated by the microscopic domain
Bm,h
0S which consists of nm

e microscopic elements as

BM,e
0S ≈ B

m,h
0S =

nm
e⋃

e=1

Bm,e
0S . (5.2)

With this distinction between macroscopic and microscopic domains, their discretizations
and approximations in can be introduced independent from each other. Compared to
Chapter 3, every quantity which has been defined there exists twice within the MIEL
method, once belonging to the macroscopic scale and once to the microscopic problem.
This leads to the different vectors of degrees of freedom as DM for the macroscopic
problem, dM for one macroscopic element, Dm for one microscopic problem and dm for
one microscopic element. The same holds analogously for the variations and increments
of the degrees of freedom.

The strong coupling between the scales within the MIEL method is depicted in Figure 5.1.
Different element colors in the illustration of the microscopic scale problem indicate dif-
ferent material definitions.

BM,e
0S

dM

rM, kM

macroscopic scale microscopic scale

Bm,e
0S

Figure 5.1: Concept and scale transition of the MIEL method.

The size, shape and deformation of the microscopic problem is determined by the respec-
tive macroscopic element. In detail, the degrees of freedom on the boundary of the micro-
scopic problem and potential inner degrees of freedom corresponding to inner macroscopic
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element nodes are prescribed such that they match the interpolation of the macroscopic
element. This leads to the coupling condition for a single macroscopic element and its
underlying microscopic problem as

Dm
b = T · dM ∀ Xm,J

S ∈ (XM,I
S ∪ ∂Bm,h

0S ) (5.3)

with Dm
b as degrees of freedom on the microscopic problem with Dirichlet boundary

conditions, T as scale transition matrix, dM as degrees of freedom of the corresponding
macroscopic element, Xm,J

S as initial position vector of the node J of the microscopic
problem, XM,I

S as initial position vector of the macroscopic element node I and ∂Bm,h
0S

as the discretized boundary of the microscopic problem in reference configuration. The
scale transition matrix T = T (NM,I

α (Xm,J
S )) contains the nodal shape functions NM,I

α

for the interpolated field α of the macroscopic element evaluated at the position of the
microscopic node which corresponds to the respective microscopic degrees of freedom.
More details on this matrix follow in Section 5.3.

The scale coupling strategy within the MIEL method is a very intuitive, ro-
bust and numerically efficient possibility. On the other hand, it is rather restric-
tive tending to resulting in too stiff responses in elasticity as pointed out in
Markovič and Ibrahimbegović [2004]. However, they investigated macroscopic ele-
ments of linear interpolation order such that the impact of the scale coupling condition
can be reduced by a higher order macroscopic element interpolation as analyzed in the nu-
merical examples in Chapter 6. In general, the scale coupling condition in Eq. (5.3) enables
a free choice of macroscopic element interpolation order. Nevertheless, it is reasonable for
many applications to focus on interpolations with exclusively nodes on the boundary of
the element. With this, no constraint is applied to any inner degree of freedom of the
microscopic problem which is favorable in case of heterogeneities. In addition to that, an
eventual inner macroscopic element node requires a coinciding node on the microscopic
problem for a straight forward application of the coupling condition. If this is not the case,
an advanced method to spread the constraint to nodes in the vicinity of the macroscopic
node position is required which is not in the scope of this thesis. Furthermore, this thesis
only uses quadrilateral macroscopic elements and consequently quadrilateral microscopic
problems since this shape is dominant within the literature review on multiscale methods
within this thesis.

This chapter continues with the derivation of the microscopic and macroscopic problem
based on the notation of the generalized FEM framework in Section 3.3. First, the struc-
ture of the microscopic problem is outlined before the extraction of the macroscopic system
of equation is described. The chapter is completed by an explanation of the construction
of the scale transition matrix and the algorithmic treatment of the method.

5.1 Microscopic Problem

The derivation of the microscopic problem to solve is quite straight forward. The dis-
cretized weak form of a microscopic problem corresponding to a single macroscopic ele-
ment can be written in terms of the microscopic degrees of freedom Dm and the their
variations δDm as

Gm,h := δDm ·Rm(Dm) , (5.4)
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where Rm is the right-hand-side vector of the microscopic problem which can be built up
in standard fashion by an assembly over all microscopic element contributions rm. The
increment of the discretized linearized weak form follows formally to

∆Gm,h :=
∂Gm

∂Dm
·∆Dm = δDm · ∂R

m

∂Dm
·∆Dm = δDm ·Km ·∆Dm , (5.5)

where Km is the microscopic problem system matrix which is assembled by the mi-
croscopic element matrices km. A split of the set of microscopic degrees of freedom is
introduced as Dm = Dm

f ∪Dm
b with Dm

f ∩Dm
b = ∅. Therein, Dm

f are free microscopic
degrees of freedom and Dm

b those with imposed Dirichlet boundary conditions. This split
is illustrated for a small microscopic problem example in Figure 5.2 for a case where both
unknown fields are interpolated by linear quadrilateral elements and the corresponding
macroscopic element does not include inner nodes.

nodes contributing to Dm
f

nodes contributing to Dm
b

Figure 5.2: Split of microscopic problem degrees of freedom into two sets.

With this and the analogous split for the variations and increments, the linearization of
the weak form can be rewritten to

δDm
f ·

(
Rm
f +

∂Rm
f

∂Dm
f

·∆Dm
f +

∂Rm
f

∂Dm
b

·∆Dm
b

)

+ δDm
b ·

(
Rm
b +

∂Rm
b

∂Dm
f

·∆Dm
f +

∂Rm
b

∂Dm
b

·∆Dm
b

)
= 0

(5.6)

or δDm
f

δDm
b

 ·
Rm

f

Rm
b

+

Km
ff Km

fb

Km
bf Km

bb

 ·
∆Dm

f

∆Dm
b

 = 0 . (5.7)

With the classical requirement on the variation at positions with Dirichlet boundary
conditions δDm

b = 0 and the arbitrariness of δDm
f , the increments of the real microscopic

degrees of freedom are computed as

∆Dm
f = (Km

ff )
−1 ·

(
−Rm

f −Km
fb ·∆Dm

b

)
(5.8)

which is the same system of equations to solve as for a single scale computation. This
reveals that from an implementational point of view, the microscopic problem can be
solved with a standard finite element and does not require any modifications at this
point.
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5.2 Macroscopic Problem

In contrast to the microscopic problem, the derivation of the macroscopic problem in
terms of the macroscopic right-hand-side vectorRM and system matrixKM requires more
attention. The goal is to rewrite the discretized linearized weak form of the microscopic
problem in terms of the degrees of freedom of the corresponding macroscopic element.
The coupling between the scales is defined by Eq. (5.3) including the microscopic degrees
of freedom with Dirichlet boundary conditions Dm

b . Because of that, static condensation
following Guyan [1965] is applied by inserting Eq. (5.8) into the system of equations
resulting from Eq. (5.7)

Rm
b +Km

bf ·∆Dm
f +Km

bb ·∆Dm
b = 0 (5.9)

leading to

Rm
b +Km

bf ·Km
ff
−1 ·

(
−Rm

f −Km
fb ·∆Dm

b

)
+Km

bb ·∆Dm
b = 0 . (5.10)

A condensed discretized weak form of the microscopic problem can be written in terms
of the increments of the degrees of freedom with Dirichlet boundary conditions as

Gm,h
c := δDm

b · (Rm
c +Km

c ·∆Dm
b ) = 0 (5.11)

with
Rm
c = Rm

b −Km
bf ·Km

ff
−1 ·Rm

f (5.12)

and
Km

c = Km
bb −Km

bf ·Km
ff
−1 ·Km

fb , (5.13)

where Rm
c and Km

c denote the condensed microscopic system right-hand side vector and
system matrix. Please note, that even if δDm

b = 0, this condition is not employed at this
point because the equation is not to be solved but used for the coupling between the
scales. A subsequent application of the coupling condition in terms of

δDm
b = T · δdM and ∆Dm

b = T ·∆dM (5.14)

leads to
(δdM · T T ) ·

(
Rm
c +Km

c · T ·∆dM
)

= 0 . (5.15)

This equation can be interpreted as the linearized discretized weak form of the corre-
sponding macroscopic element as

LinGM,e = GM,e + ∆GM,e = 0 (5.16)

with
GM,e := δdM · rM (5.17)

and
∆GM,e := δdM · kM ·∆dM . (5.18)

With this in hand, the element right-hand-side vector and element matrix of the macro-
scopic element corresponding to the respective microscopic problem can be written as

rM = T T ·Rm
c (5.19)
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and
kM = T T ·Km

c · T . (5.20)

From this point, the macroscopic system of equations with the right-hand-side vector RM

and system matrix KM can be assembled and solved in usual manner.

Please observe that the macroscopic element right-hand-side vector and element matrix
are extracted from the corresponding quantities of the microscopic problem. This implies
that the macroscopic element is only used for the correct transfer of the macroscopic
element degrees of freedom to the microscopic scale and the assembly of the macroscopic
system of equations. All remaining field quantities are only computed on microscopic level
where the material formulation and constitutive relations are evaluated As a consequence,
integration over the domain has only to be done on the microscopic scale but not on the
macroscopic scale.

Noteworthy is the proper application of external surface loads. If the macroscopic and
microscopic element interpolation do not coincide, more specific if the macroscopic inter-
polation order is higher than its microscopic counterpart, an application of external forces
on the macroscopic problem can lead to a non-conforming macroscopic right-hand-side
vector RM resulting in non-physical solutions. They have to be applied to the microscopic
problem instead even though they do not alter the microscopic problem solution itself
since all degrees of freedoms on the boundary of the microscopic problem are occupied by
Dirichlet boundary conditions in case of microscopic problems without holes. But the sur-
face loads are considered during the extraction of the macroscopic element right-hand-side
vector within Rm

b .

As a concluding remark on the extraction of the element right-hand-side vector and
the element matrix of the macroscopic element, it should be stated that there exists
at least one further possibility which deviates from the presented procedure in this sec-
tion. Zupan and Korelc [2018] do the extraction with aid of a sensitivity analysis and
show that their approach is numerically more efficient for larger microscopic problems.
This is due to the fact that their strategy does not rely on building a Schur complement as
within static condensation which becomes more and more demanding with an increasing
microscopic problem size.

5.3 Scale Transition Matrix

The scale transition matrix T ensures that the degrees of freedom with Dirichlet boundary
conditions on the microscopic problem are set to the magnitude of the respective interpo-
lated macroscopic field in agreement with Eq. (5.3). To investigate the specific structure
of the matrix, the interpolation of a single degree of freedom of type U is written as

Dm,J
b,U =

nM
n U∑
I=1

NM,I
U (ξM(Xm,J

S )) dM,IU = N̄M
U · dM

U . (5.21)

This relation appears to be the standard interpolation within the isoparametric concept
but with one important difference. Compared to the mapping within the typical FEM
procedure, the parametric coordinates ξM are not known a priori as exemplary in case
of numerical integration. They have to be determined first dependent on the position of
the microscopic node in focus Xm,J

S before the shape functions can be evaluated. Before
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this procedure is discussed in detail, the structure of the transition matrix is investigated.
The vector N̄M

U consists of the macroscopic shape functions which are evaluated at ξM

corresponding to Xm,J
S . Consequently, these values are used to build one row in the

transition matrix T . Since the vector dM usually contains multiple degrees of freedom
varying in direction or field, the vector N̄M

U can not just be copied into the matrix but its
entries have to be put in the matching positions. Depending on the macroscopic element
type, this can lead to many zeros in the transition matrix. Therefore, the size of the matrix
T depends on the interpolation order of the macroscopic element and the mesh density of
the microscopic problem, i.e. the number of degrees of freedom with Dirichlet boundary
conditions on the microscopic problem equals the number of rows, while the degrees
of freedom of the corresponding macroscopic element defines the number of columns.
Since the transition matrix is evaluated with respect to the coordinates Xm,J

S in reference
configuration, it is sufficient to calculate it once at the beginning of the simulation.

An example for the construction of the scale transition matrix is given with respect to the
discretization depicted in Figure 5.3. The scalar unknown fields α and β are interpolated
by linear quadrilateral elements on both scales. The chosen discretization is the simplest
possibility to show all aspects of the matrix at the smallest possible size.

6

987

31 2

54

1 2

4 3

{dM,Iα , dM,Iβ } at each

macroscopic element node I

{Xm,J
S , Dm,J

α , Dm,J
β } at

each microscopic mesh node J

macroscopic element microscopic mesh

Figure 5.3: Exemplary discretization within the MIEL method.

The vectors of all degrees of freedom of the macroscopic element dM and of those along
the boundary of the respective micro problem Dm

b are within this example given as

dM,ex = {dM,1α , dM,2α , dM,3α , dM,4α , dM,1β , dM,2β , dM,3β , dM,4β } ,

Dm,ex
b = {Dm,1

α , Dm,2
α , Dm,3

α , Dm,4
α , Dm,6

α , Dm,7
α , Dm,8

α , Dm,9
α ,

Dm,1
β , Dm,2

β , Dm,3
β , Dm,4

β , Dm,6
β , Dm,7

β , Dm,8
β , Dm,9

β } .

(5.22)

This leads to the scale transition matrix in (5.23), where the abbreviated notation
N I
U(XJ) = NM,I

U (ξM(Xm,J
S )) is applied for the sake of clarity, cf. Eq. (5.21).

The structure of the matrix implies that it is beneficial to store the submatrices with
respect to the different unknown fields separately in case of large micro problems to reduce
the memory requirement. In addition to that, after evaluation, each row has at the most
two non-zero entries in case of a linear macroscopic element. That is because only two
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T ex =



N1
α(X1) N2

α(X1) N3
α(X1) N4

α(X1) 0 0 0 0

N1
α(X2) N2

α(X2) N3
α(X2) N4

α(X2) 0 0 0 0

N1
α(X3) N2

α(X3) N3
α(X3) N4

α(X3) 0 0 0 0

N1
α(X4) N2

α(X4) N3
α(X4) N4

α(X4) 0 0 0 0

N1
α(X6) N2

α(X6) N3
α(X6) N4

α(X6) 0 0 0 0

N1
α(X7) N2

α(X7) N3
α(X7) N4

α(X7) 0 0 0 0

N1
α(X8) N2

α(X8) N3
α(X8) N4

α(X8) 0 0 0 0

N1
α(X9) N2

α(X9) N3
α(X9) N4

α(X9) 0 0 0 0

0 0 0 0 N1
β(X1) N2

β(X1) N3
β(X1) N4

β(X1)

0 0 0 0 N1
β(X2) N2

β(X2) N3
β(X2) N4

β(X2)

0 0 0 0 N1
β(X3) N2

β(X3) N3
β(X3) N4

β(X3)

0 0 0 0 N1
β(X4) N2

β(X4) N3
β(X4) N4

β(X4)

0 0 0 0 N1
β(X6) N2

β(X6) N3
β(X6) N4

β(X6)

0 0 0 0 N1
β(X7) N2

β(X7) N3
β(X7) N4

β(X7)

0 0 0 0 N1
β(X8) N2

β(X8) N3
β(X8) N4

β(X8)

0 0 0 0 N1
β(X9) N2

β(X9) N3
β(X9) N4

β(X9)



,

(5.23)

nodes of the macroscopic element contribute to the interpolation of any degree of freedom
on the boundary of the microscopic problem. With this, the scale transition matrix ends
up sparse which enables for an efficient use of memory. The simplest case can be shown
within this example by assuming that the meshes on both scales only consist of square
shaped elements in the reference configuration as implied in Figure 5.3. The corresponding
scale transition matrix is given in (5.23). The determination of these entries is easy for
this example but more compex in general.

The challenge is the determination of the macroscopic parametric coordinates in depen-
dence on the position of the respective microscopic node as ξM(Xm,J

S ). Following the
macroscopic approximation of the geometry corresponding to Eq. (3.36)1 based on the
shape functions of the macroscopic displacement N̂M

u , the occurring system of equations
with the unknown ξM for a microscopic node at Xm,J

S can be written as

Xm,J
S = N̂M

u (ξM) · X̂M
S with ξM ∈ IRd (5.25)

with d as the number of spatial dimensions of the problem. This, in general non-linear,
system of equation can be solved with an iterative procedure as Newton’s method.

Even though this method is quite fast and robust for such an application, building the
matrix T can be accelerated significantly for macroscopic elements which only have nodes
along its boundary. The procedure is explained for quadrilateral two-dimensional macro-
scopic elements, but is adaptable for other element formulations or three dimensions as
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T ex =



1 0 0 0 0 0 0 0

0.5 0.5 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0.5 0 0 0.5 0 0 0 0

0 0.5 0.5 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0.5 0 0 0.5

0 0 0 0 0 0.5 0.5 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0.5 0.5

0 0 0 0 0 0 1 0



(5.24)

well. Along an edge of a Lagrange or Serendipity quadrilateral element, only the nodes
along this specific edge contribute to the interpolation. Therefore, it is valid to just use
a line element of the same interpolation order as the macroscopic element along each
edge. With this, the complexity compared to Eq. (5.25) reduces since the dimension of
the unknown ξM is decreased by one. This leads to two equations and one unknown for
the case of the introduced line element as

Xm,J
S = N̂M,red

u (ξM) · X̂M,red
S with ξM ∈ IRd−1 , (5.26)

where N̂M,red
u and X̂M,red

S are the reduced sets of macroscopic element shape functions and
coordinates. Within this thesis, these equations have been solved analytically in advance
for shape functions of polynomial degree up to four, leading to a set of formulas. For
an efficient implementation, these resulting equations have been optimized within the
capabilities of Mathematica and implemented inside of multiple if-statements to choose
the correct formula for the respective situation. This approach leads to a speed up about
factor ten compared to Newton’s method. This effect vanishes for computations including
a large number of load or time steps since the scale transition matrix is built only once
at the beginning of the simulation.
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5.4 Algorithmic Treatment

The algorithmic treatment of the MIEL method is summarized in Table 5.1 and Table 5.2.
The strategy is outlined for problems which might contain microscopic sub-steps. The
global time t is taken to define the load application factor λload. This factor controls the
application of the nonzero Dirichlet boundary conditions on the macroscopic scale and
the nonzero Neumann boundary conditions. The macroscopic problem residual is given
by

RM
s (Dm, λload) := −RM

f (DM, λload)−KM
fb(D

M) ·∆DM
b (DM

b , λload) , (5.27)

where RM
f contain the applied Neumann boundary conditions and ∆DM

b denotes the
increment on the Dirichlet boundary conditions. The microscopic problem residual is
defined as

Rm
s (Dm, λmload, λ

m
dbc) := −Rm

f (Dm, λmload)−Km
fb(D

m) ·∆Dm
b (Dm

b , λ
m
dbc) . (5.28)

Comparing these residuals with the single scale version in Eq. (3.55), the existence of
the additional load factor λmdbc is noteworthy. The load factor λmload depends directly on
the global load factor λload(t) which controls the application of the Neumann boundary
conditions and the nonzero macroscopic Dirichlet boundary conditions. In contrast to
this, the factor λmdbc becomes relevant in case of microscopic sub-stepping for the stepwise
application of the change in Dirichlet boundary conditions on the microscopic problem
which is redefined each macroscopic iteration by the scale transition. The time on mi-
croscopic level tm is important for the microscopic sub-stepping as well since it enables
the time incrementation on microscopic level via ∆tm. The subscript n at (Dm

b )n and dM
n

refers to the state of the field after the last converged macroscopic step. The focus within
the algorithmic treatment is on the nested type of the two iterative solution schemes, the
application of the microscopic boundary conditions in terms of the macroscopic degrees
of freedom and the extraction of the macroscopic tangent and residual. Please note that
solving the microscopic problem is not necessary in case of no microscopic sub-stepping
to extract the macroscopic element right-hand side vector and element matrix.

The convergence criteria on both scales correspond to the introduced single scale en-
ergy criterion in Section 3.4. The macroscopic iteration loop continues until the ratio of
current macroscopic energy EM and reference macroscopic energy EM

ref is smaller than
the predefined tolerance tolM = 10−16. The current macroscopic energy is defined as
EM = RM

s ·∆DM
f . Following the single scale argumentation in Section 3.4, the reference

macroscopic energy EM
ref is in general the initial energy at the first macroscopic iteration

of the current macroscopic step. In contrast to this, the macroscopic reference energy
EM

ref is kept constant for all following steps during the simulation starting from the first
macroscopic iteration within the step after the whole external load has been applied for
problems which converge against steady state. The criterion is nearly analogous for the
microscopic iteration loop which continues until the ratio of current microscopic energy
Em = Rm

s · ∆Dm
f and reference microscopic energy Em

ref is smaller than the predefined
tolerance tolm = 10−16. But in contrast to its macroscopic counterpart, the microscopic
reference energy Em

ref is kept constant for all following steps during a simulation towards
steady state starting from the second macroscopic iteration within the step after the whole
external load has been applied. This modification is necessary since there is no change
in microscopic boundary conditions in the first macroscopic iteration. Additionally, the
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Table 5.1: Algorithmic treatment for MIEL: Macroscopic scale.

MACROSCOPIC LOAD-/ TIME-STEPPING

While t < tend

Set current time: t = t+ ∆t

Set current load: λload = λload(t)

MACROSCOPIC ITERATION LOOP

While EM/EM
ref > tolM

MACROSCOPIC ELEMENT LOOP

Do eM = 1, ..., nM
e

Load microscopic problem at state of last converged macroscopic step

Pass dM, ∆t and ∆λload to microscopic problem

SOLVING MICROSCOPIC PROBLEMS

See Table 5.2

Extraction of rM and kM

rM = T T ·Rm
c with Rm

c = Rm
b −Km

bf ·Km
ff
−1 ·Rm

f

kM = T T ·Km
c · T with Km

c = Km
bb −Km

bf ·Km
ff
−1 ·Km

fb

End do

Macroscopic assembly: RM =

nMe

A
eM=1

rM, KM =

nMe

A
eM=1

kM

Solve KM
ff ·∆DM

f = RM
s for ∆DM

f

Update: DM = DM + ∆DM

End

Save states of all microscopic problems

End

reference energy Em
ref is chosen to be the maximum of the energies obtained from all micro-

scopic problems at this state. This is enforced because some microscopic problems might
be close to a steady state at the first time steps after load application in case of large
dimensions or low Darcy parameters within the TPM which became evident during the
simulation of the numerical examples in Section 7.
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Table 5.2: Algorithmic treatment for MIEL: Microscopic scale.

MICROSCOPIC LOAD-/ TIME-STEPPING

While tm < t

Set current time: tm = tm + ∆tm

Set current load: λmload = λload(tm)

Set Dm
b = (Dm

b )n + λmdbc T · (dM − dM
n )

MICROSCOPIC ITERATION LOOP

While Em/Em
ref > tolm

MICROSCOPIC ELEMENT LOOP

Do em = 1, ..., nm
e

Compute rm and km

End do

Microscopic assembly: Rm =

nme

A
em=1

rm, Km =

nme

A
em=1

km

Solve Km
ff ·∆Dm

f = Rm
s for ∆Dm

f

Update Dm = Dm + ∆Dm

End

End



58 Numerical Examples - MIEL Method for Elasticity

6 Numerical Examples - MIEL Method for Elasticity

Before the MIEL method is applied to the Theory of Porous Media, the approach is in-
vestigated in detail for small strain elasticity, see Section 2.7. The simpler structure of the
system of equation to solve helps to get a first impression of the capabilities and limita-
tions of the MIEL method. As a first example, a hanging block of homogeneous material
under different loading scenarios is investigated. The application of a multiscale scheme is
not advantageous compared to single scale computation for homogeneous materials. Nev-
ertheless, the boundary value problem is chosen due to the available analytical solution
which allows to obtain reliable insights with respect to the different element formulations
and mesh densities on both scales. Cook’s Membrane serves as the second example, again
with a homogeneous material definition. The focus is on a comparison of the MIEL method
to a single scale computation in terms of the convergence of the tip displacement and the
occurring stress distributions for different element formulations and mesh densities. The
third example is a tensile test where a heterogeneous material behavior is applied. The
single scale computation of the more complex structure is taken as a reference solution
to investigate the deviations introduced by the MIEL method in terms of the appearing
field quantities. The findings obtained by this set of numerical examples should help to
develop general guidelines for the application of the MIEL method before switching to
the more demanding Theory of Porous Media.

6.1 Hanging Block

This first numerical example has the purpose to analyze the basic characteristics of the
MIEL method. To achieve this, an academic boundary value problem is chosen where
an analytical solution is at hand. Therein, no unit system is introduced to focus solely
on the numerical effects of the presented multiscale approach compared to the analytical
solution.

6.1.1 Boundary Value Problem

The investigated problem is a hanging block with an edge length of 10, clamped at the
top which is shown in Figure 6.1.

10

10

X1

X2

Figure 6.1: Hanging Block: Body and Dirichlet boundary conditions.
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The material is homogeneous and obeys Hooke’s law with a Young’s modulus of E = 2000,
a Poisson’s ratio of ν = 0 and a density of ρ = 20. Please note, that there is no need for a
multiscale method for such a simple problem since a single scale approach would always
be superior without material heterogeneities. Nevertheless, the MIEL method is applied
to gain a first understanding of this approach. For this purpose, four different load cases
are applied, as depicted in Figure 6.2 and summarized in Table 6.1.

load case 2load case 1 load case 3 load case 4

Figure 6.2: Hanging Block: Load case 1, load case 2, load case 3 and load case 4.

load case description loading function

1 constant traction at the bottom t2 = −200
2 constant volume load f2 = −1 ρ
3 linear volume load f2 = −0.2 ρX2

4 quadratic volume load f2 = −0.03 ρX2
2

Table 6.1: Hanging Block: Definition of load cases.

The loading amplitudes are chosen in a way, that the total applied force in 2-direction is∑
F2 = −2000 while F1 = 0 holds at any point within the domain for each load case.

6.1.2 Analytical Solution

As the Poisson’s ratio is set to zero, there is no deformation in 1-direction from the
physical point of view. Because of this, the analytical solutions can be computed with the
theory of a one-dimensional truss under different loading scenarios. Due to the simplicity
of the problem, only these characteristics of the solutions which are important for the
interpretation of the computational results are condensed in Table 6.2. The maximum
strain max(ε22) always occurs at the clamping at the top while the maximum displacement
max(u2) arises at the bottom end of the block.

load case max(ε22) order(ε22) max(u2) order(u2)

1 0.1 constant 1 linear
2 0.1 linear 0.5 quadratic
3 0.1 quadratic 0.33 cubic
4 0.1 cubic 0.25 quartic

Table 6.2: Hanging Block: Analytical solutions.
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6.1.3 Discretization

Numerous MIEL simulations with varying discretizations on both scales are carried out
to get a broad overview on the effects of the element choice and number on the obtained
results. Quadrilateral elements from first to fourth order, including some serendipity for-
mulations, are chosen in every possible combination with respect to both scales. All meshes
used for this analysis are structured. Most of the meshes on the macroscopic scale consist
only of a single macroscopic element. The microscopic mesh density is chosen in depen-
dence on the specific microscopic element with the goal that the number of microscopic
degrees of freedom are in the same range. In detail, an 8× 8 mesh is used for the Q1 mi-
croscopic mesh, a 4× 4 for Q2, Q2S, Q3 and Q3S and a 2× 2 mesh for the Q4 microscopic
mesh. An exemplary discretization by one macroscopic Q2 element and 64 microscopic
Q1 elements, labeled as Q2MQ1m 1/64, is presented in Figure 6.3.

macroscopic mesh Q2M microscopic mesh Q1m

Q2MQ1m 1/64

Figure 6.3: Hanging Block: Exemplary macroscopic and underlying microscopic mesh.

The microscopic mesh has to contain more degrees of freedom on its boundary and in total,
compared to the associated macroscopic element. This is a minor restriction on the method
since such a multiscale approach should usually resolve microscopic heterogeneities which
need way more degrees on freedom in comparison to a single macroscopic element.

6.1.4 Results

For a first overview and analysis of the numerical results investigating simulations con-
taining a single macroscopic element, the following color code is introduced:

� The numerical results match the analytical solution.

� The numerical results match the analytical solution on the macroscopic scale but
lack of accuracy on the microscopic scale due to a too low microscopic interpolation
order.

� The numerical results on the macroscopic scale lack of accuracy due to a too low
macroscopic interpolation order. As a consequence, the results on the microscopic
scale reveal a non-physical response.

� Open problem: Non-physical response on both scales which can not be explained
with the other findings of this numerical example.
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The results in terms of the color code are shown in Table 6.3. Therein, each sub-table
covers one load case where the row indicates the macroscopic scale element type (M) while
the column denotes the microscopic element type (m). Before analyzing an example for
each color in detail, the overall results are outlined.

M
m Q1 Q2S Q2 Q3S Q3 Q4

Q1 � � � � � �
Q2S � � � � � �
Q2 � � � � � �
Q3S � � � � � �
Q3 � � � � � �
Q4 � � � � � �

Load case 1

M
m Q1 Q2S Q2 Q3S Q3 Q4

Q1 � � � � � �
Q2S � � � � � �
Q2 � � � � � �
Q3S � � � � � �
Q3 � � � � � �
Q4 � � � � � �

Load case 2

M
m Q1 Q2S Q2 Q3S Q3 Q4

Q1 � � � � � �
Q2S � � � � � �
Q2 � � � � � �
Q3S � � � � � �
Q3 � � � � � �
Q4 � � � � � �

Load case 3

M
m Q1 Q2S Q2 Q3S Q3 Q4

Q1 � � � � � �
Q2S � � � � � �
Q2 � � � � � �
Q3S � � � � � �
Q3 � � � � � �
Q4 � � � � � �

Load case 4

Table 6.3: Hanging Block: Color code results; macroscopic vs. microscopic elements.

At first, a closer look is taken at the green entries where the analytical solution is perfectly
matched on both scales. This is the case when the interpolation order of both, microscopic
and macroscopic element, is at least of the order of the analytical solution in terms of the
displacement. This is consistent with the theory of the Finite Element Method but not
very helpful in applications if the analytical solution, respectively its order, is unknown.
The second dominating color in the tables is red, where the order of the macroscopic
element is lower than the order of the analytical solution. Here, the incapability of the
single macroscopic element to describe the analytical solution leads to a non-physical
response on the microscopic scale. This effect is the crucial finding of this numerical
example and will be investigated in detail in the progression of this section. Please observe
that the effect can not be circumvented by choice of a higher order microscopic element.
Those cases where the macroscopic element interpolation order is equal or higher than the
analytical solution, but the microscopic element interpolation order is lower, are marked
in grey. Here, no non-physical responses arise but the accuracy on the microscopic scale
is not perfect due to the low interpolation order on the microscopic scale. This effect does
not need a special treatment within the MIEL method since it is due to the nature of
an approximating numerical method as the FEM. At last there are four entries in the
table of load case 4 which are marked blue even though they would be expected to be
grey with the findings beforehand. Here, unexpected non-physical responses arise on both
scales which is an effect which can currently not be explained.



62 Numerical Examples - MIEL Method for Elasticity

In the following, one example for each color will be analyzed in detail with focus on the
red case. All examples besides the blue one will be taken from load case two, representing
a constant volume load. Every example is investigated in terms of contour plots of the
microscopic quantities u1, u2 and ε22. The structure is plotted in its undeformed shape for
an easier comparison of the different examples. Additionally, diagrams of u2 and ε22 against
the coordinate X2 evaluated at fixed X1 = 0 and X1 = 5, representing the left boundary
and the vertical midline, are shown. There is no explicit investigation of the macroscopic
degrees of freedom enclosed since they are included in the microscopic displacements via
the scale coupling conditions and consequently do not offer any further insights.

Example �: Load case 2 - Q2MQ2m

This example examines the case when both, the macroscopic and the microscopic element
interpolation order, are at least of the order of the analytical solution of the displacement.
Figure 6.4 shows the desired contour plots, namely no displacement in 1-direction and no
X1 dependency in the displacement and strain in 2-direction. With this, the diagrams
in Figure 6.5 are only presented for the sake of completeness as they reveal that the
analytical solution solution is matched along the left boundary as well as on the vertical
midline.

Figure 6.4: Hanging Block, load case 2: Q2MQ2m 1/16 contour plots.

Q2M

Q2m

Figure 6.5: Hanging Block, load case 2: Q2MQ2m 1/16 line plots.

Example �: Load case 2 - Q2MQ1m

Here, the possibility of a sufficient interpolation order on the macroscopic scale but a too
low interpolation order on the microscale to represent the analytical solution is analyzed.
The contour plots in Figure 6.6 show the expected zero displacement in 1-direction. The
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vertical displacement does not perfectly match the analytical solution but the eight linear
elements over the height in this example cover the quadratic function quite well, as visible
in the line plot in Figure 6.7. The low interpolation order becomes more evident from the
piecewise constant ε22 strains which obviously do not cover the linear analytical solution.
But, as usual for the Finite Element Method, this effect tends to vanish with an increasing
number of microscopic elements and is no special characteristic of the MIEL method.
Please observe that all distributions are still independent from the X1 position as for the
green marked example beforehand.

Figure 6.6: Hanging Block, load case 2: Q2MQ1m 1/64 contour plots.

Q2M

Q1m

Figure 6.7: Hanging Block, load case 2: Q2MQ1m 1/64 line plots.

Example �: Load case 2 - Q1MQ1m

The most important finding at this numerical example is for the situation when the in-
terpolation order of macroscopic element is lower than the order of the corresponding
analytical solution. In the present example, the macroscopic linear Q1 element can not
capture the quadratic reference solution. For a single scale computation, this would just
lead to a poor approximation, but not to non-physical effects. In contrast to this, Fig-
ure 6.8 reveals displacements in 1-direction obtained by applying the MIEL method. To
understand this effect, the vertical displacements are analyzed, especially in the line plot
in Figure 6.9. The X1 position is no longer irrelevant for this distribution. Since the scale
coupling condition transfers the macroscopic degrees of freedom to the boundary of the
microscopic problem, the distribution is forced to be linear on the left edge at X1 = 0
in the presented example. On the contrary, the inner degrees of freedom are without this
constraint and tend to follow the quadratic behavior, imposed by the constant body force.
This mismatch between boundary and inner degrees of freedom leads to the non-physical
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displacements in horizontal direction as result of the scale coupling strategy used within
the MIEL method.

Figure 6.8: Hanging Block, load case 2: Q1MQ1m 1/64 contour plots.

Q1M

Q1m

Figure 6.9: Hanging Block, load case 2: Q1MQ1m 1/64 line plots.

This effect is examined in more detail for the constant volume load at load case 2 in the
following. However, the obtained results can be applied to any loading scenario. At first,
still a single macroscopic Q1 element is chosen while the microscopic discretization varies
in interpolation order and mesh density. The maximum magnitude of the displacement
in 1-direction max|u1| is taken as an error indicator which should tend to zero for the
present boundary value problem. Figure 6.10 shows a convergence study where max|u1|
is plotted against the number of equations of the microscopic problem for different types
of microscopic elements.

The graphs reveal that the maximum displacement converges against the same value,
independent from the microscopic element formulation. This is plausible in terms of the
theory of the Finite Element Method but still noteworthy with respect to the MIEL
method. It shows that possibly occurring non-physical effects can not be prevented or
reduced by the discretization of the microscopic problem. With this in hand, the focus is
now on the macroscopic discretization. It has already been shown that the choice of the
macroscopic element formulation can avoid non-physical effects but is not convenient if
the order of the analytical solution is not known beforehand. Consequently, the influence
of the macroscopic mesh density is investigated. Again, the second load case is used,
now with a fixed microscopic mesh of 64 Q2 elements which has proven to solve the
microscopic problem sufficiently accurate with 578 microscopic problem equations, see
Figure 6.10. A convergence study of the maximum magnitude of the displacement in 1-
direction max|u1| against the number of equations of the macroscopic problem for the
choice of Q1 macroscopic elements is shown in Figure 6.11.
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Figure 6.10: Hanging Block, load case 2: Q1MQxm 1/nme , microscopic convergence study.

Figure 6.11: Hanging Block, load case 2: Q1MQ2m nMe /64 macroscopic convergence study.

The graph reveals that the non-physical effect vanishes with an increasing number of
macroscopic elements. This is consistent since an increasing number of linear segments
leads to a better approximation of the quadratic analytical solution which holds for this
boundary value problem. Therefore, the effect of the restriction on the shape of the bound-
ary of the microscopic problem by the interpolation order of the macroscopic element
reduces with the number of macroscopic elements.

Example �: Load case 4 - Q4MQ2m

This numerical example is completed by an anomaly of load case 4. Comparing to the
other load cases, a sufficient interpolation order at the macroscopic element but a too weak
interpolation order on the microscopic problem with respect to the analytical solution
should not lead to non-physical effects, see the grey marked examples in Table 6.3. But
this observation does not hold for load case 4 with a single Q4 macroscopic element and
exemplary Q2 microscopic elements, as shown in Figure 6.12.

Even if the contour plots of the u2 displacement and the ε22 strain seem to match the
reference solution, the distribution of the horizontal displacement u1 differs from zero.
The magnitude of the horizontal displacement is not severe, but still to high to neglect. It
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Figure 6.12: Hanging Block, load case 4: Q4MQ2m 1/16 contour plots.

Q4M Q2m

Figure 6.13: Hanging Block, load case 4: Q4MQ2m 1/16 line plots.

converges towards zero for an increasing total number of microscopic equations, no matter
whether the increase is triggered by macroscopic or microscopic mesh refinement. To this
point, the reason for this effect is still an open problem. Most likely, it will vanish for
more advanced applications since the meshes will be fine enough.

6.2 Cook’s Membrane

The second numerical example for elasticity is Cook’s membrane with a homogeneous
material behavior. Even though this problem does not require a multiscale approach to
be solved sufficiently accurate, it is taken to investigate the convergence of the MIEL
method in terms of displacements and stresses in comparison to a single scale simulation.

6.2.1 Boundary Value Problem

The boundary value problem of the tapered cantilever beam called Cook’s membrane is de-
picted in Figure 6.14. The geometry is defined by its four corner points as P1 = (0/0) mm,
P2 = (48/44) mm, P3 = (48/60) mm and P4 = (0/44) mm. The membrane is clamped on
the left edge and a traction of t2 = 1 kN/mm2 is applied on the right edge. The material
is homogeneous with a Young’s modulus of E = 200 kN/mm2 and a Poisson’s ration of
ν = 0.35.
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X1

X2
t2

Figure 6.14: Cook’s Membrane: Body and boundary conditions.

6.2.2 Discretization

This boundary value problem is investigated with respect to quadrilateral elements of
first and second order of interpolation. The simulations with linear interpolations use
Q1 elements for the single scale computations as well as for the MIEL method on both
scales. An exemplary mesh for the MIEL method is shown in Figure 6.15. In contrast to
this, Q2S elements are chosen for the macroscopic problem while Q2 elements discretize
the microscopic one within the MIEL method for the analysis of quadratic elements. As
a consequence, both quadratic formulations are taken for the single scale computation,
depending on the respective focus.

macroscopic mesh Q1M microscopic meshes Q1m

Q1MQ1m 4/4

Figure 6.15: Cook’s Membrane: Exemplary macroscopic and microscopic meshes.

6.2.3 Results

The convergence behavior of the displacement of the top right corner of the membrane, in
the following referred as tip displacement, is evaluated. Since the MIEL method includes
two discretization levels, the comparison with the single scale computation is done twice.
At first with respect to the discretization of the macroscopic problem and afterwards with
focus on the discretization of the microscopic problem. Both strategies are not meant to
determine the performance of the MIEL method compared to a single scale computa-
tion. For this purpose, one would need to compare the computation time rather than the
mesh density to include the parallelizability of the MIEL method. Nevertheless, such an
analysis is not meaningful for such a simple boundary value problem with homogeneous
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material. Therefore, the following diagrams should give insights into the influence of the
discretizations on both scales on the overall results, here in terms of the tip displacement.
Figure 6.16 shows the tip displacement against the number of single scale elements, re-
spectively macroscopic elements within the MIEL method for linear elements (left) and
quadratic elements (right). The two orange symbols at each MIEL method discretization
level indicate the variance of the results depending on the mesh density of the microscopic
problem.

Q1 and Q1MQ1m Q2S and Q2SMQ2m

Figure 6.16: Cook’s membrane: Tip displacement convergence.

The tip displacement obtained by the MIEL method is always higher compared to the sin-
gle scale solution. This is a consequence of a softening effect induced by the higher number
of degrees of freedom on the microscopic problem compared to the single scale element.
Within the MIEL method the tip displacement increases for a constant macroscopic mesh
with finer microscopic meshes and converge against a specific value. For coarse macro-
scopic meshes, this value is still far of the converged overall tip displacement. Additionally,
the effect of improving the single scale solution vanishes for finer macroscopic meshes. A
different perspective on the same issues gives Figure 6.17 where the tip displacement is
plotted against the number of single scale elements, respectively this time total micro-
scopic elements for a fixed number of macroscopic elements within the MIEL method for
linear elements (left) and quadratic elements (right).

Both diagrams show the convergence of the MIEL method for a fixed number of macro-
scopic elements against a specific value of tip displacement with increasing number of
microscopic elements. This value is always lower in comparison to the single scale solu-
tion and therefore further away from converged overall solution. This indicates that the
MIEL method is not a good choice for such a problem. But that is no surprise since the
investigated homogeneous boundary value problem is not in the scope of application of
the method. Nevertheless, the diagrams could be redesigned in favor of the MIEL method
by not plotting against the total number of microscopic elements as presented. This is
because the total number of microscopic elements implies that the microscopic problems
have to be solved one after another which can be avoided by solving the different micro-
scopic problems fully parallelized. A closer look on the computational time will be taken
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Q1 and Q1MQ1m Q2 and Q2SMQ2m

Figure 6.17: Cook’s membrane: Tip displacement convergence.

at the numerical example within the TPM in Section 7.2.

To complete the investigation of the Cook’s membrane problem, the contour plots of
the displacement u1 and the stress σ11 on the undeformed structure are presented in
Figures 6.18 and 6.19. For this analysis, quadratic elements are used with a discretization
leading to 256 elements either on single scale or as sum of all microscopic problems within
the MIEL method. In each figure, the plots for single scale and MIEL simulations with 1,
4 and 16 macroscopic elements are arranged from left to right.

u1 in mm

Figure 6.18: Cook’s membrane: u1 for single scale with ne = 256 and for MIEL with
nMe = {1, 4, 16} and

∑
nme = 256.

The accordance between the results obtained by the MIEL method and the single scale
simulation which is taken as the reference increases with a higher number of macroscopic
elements. While the results for a single macroscopic element differ a bit in magnitude, there
is no difference apparent for the finest macroscopic discretization. These findings support
those from the diagrams discussed before. A more detailed analysis of the convergence of
the appearing quantities is given in the next, more complex example.
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σ11 in kN/mm2

Figure 6.19: Cook’s membrane: σ11 for single scale with ne = 256 and for MIEL with
nMe = {1, 4, 16} and

∑
nme = 256.

6.3 Tensile Test

The last numerical example for elasticity deals with a heterogeneous structure including
two different materials. The behavior of the MIEL method is compared in terms of the
appearing field quantities to a reference single scale computation.

6.3.1 Boundary Value Problem

The specimen has a rectangular shape with a width of w = 4 cm and a height of h = 12 cm
and consists of a matrix material with uniformly distributed elliptic inclusions, as depicted
in Figure 6.20.

The body can be divided into identical substructures as squares of edge length 1 cm with
a centric elliptic inclusion which is defined by(

X∗1
a

)2

+

(
X∗2
b

)2

= 1 (6.1)

with the half-axes a = 0.4 cm and b = 0.2 cm. The origin of the local X∗1 -X∗2 -coordinate
system is located in the center of the square. The elliptic inclusion is rotated by an angle
of α = 45◦ around this origin. The parameters for the material definitions of the matrix
and the inclusions are given in Table 6.4.

E in kN/cm2 ν

� Matrix 1000 0.3
� Inclusion 10000 0.3

Table 6.4: Tensile test: Material properties.

The specimen is loaded as a displacement driven tensile test. Dirichlet boundary con-
ditions are applied at the top edge as u = (0, 0.2)T cm and at the bottom edge as
u = (0,−0.2)T cm.
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X1

X2

12

4

u = (0, 0.2)T cm

u = (0,−0.2)T cm

Figure 6.20: Tensile Test: Body and boundary conditions.

6.3.2 Discretization

The boundary value problem is solved with a single scale approach and the MIEL method.
To be able to compare the numerical results in a reasonable way, the single scale mesh
coincides the assembly of all microscopic meshes within the MIEL method for all compu-
tation. To achieve this, the master mesh in Figure 6.21 is introduced which occupies the
region of one substructure which has been identified before.

Figure 6.21: Tensile test: Master mesh.

The master mesh consists of 620 quadratic triangular elements (T2). This leads to a total
number of 29760 elements if the master mesh is arranged in a 4 times 12 pattern to
match the shape of the boundary value problem as required for the single scale analysis.
As macroscopic elements for the MIEL method, quadrilateral serendipity elements of
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first, second and third order with no internal nodes, namely Q1, Q2S and Q3S elements
are investigated. For each element, three different macroscopic meshes are considered, as
depicted in Figure 6.22.

3/16MM 12/4MM 48/1MM

Figure 6.22: Tensile Test: Macroscopic and corresponding microscopic meshes.

The number of master meshes used to define the microscopic problem depends on the size
of the corresponding macroscopic element. Therefore, the coarsest mesh 3/16MM with 3
macroscopic elements contains 16 master meshes per microscopic problem. In contrast, the
second mesh 12/4MM with 12 macroscopic elements occupy 4 master meshes for each mi-
croscopic problem. Consequently, for the finest macroscopic mesh 48/1MM with 48 macro-
scopic elements, the microscopic problems only contain a single master mesh.

6.3.3 Results

The stress σ11 is taken as an exemplary quantity to investigate the convergence behavior
with respect to varying macroscopic element formulation and macroscopic mesh densities.
For each macroscopic element choice, the contour plot of the single scale computation is
presented as reference solution next to those corresponding to the the discretizations
3/16MM, 12/4MM and 48/1MM. In all contour plots, the deformed structure is shown with
a scaling factor of 10 to highlight the differences. The results for linear Q1 macroscopic
elements are presented in Figure 6.23.

The deformation of the specimen of the single scale solution differs significantly from
those obtained with the MIEL method. While the left and right boundary of the single
scale result is corrugated due to the softer matrix around the stiffer inclusions, the MIEL
method with linear macroscopic elements is not able to capture this effect. Beyond that, a
too coarse macroscopic mesh with linear elements is too restrictive to localize the necking
of the specimen in a accurate way. Only the discretization 48/1MM is able to reproduce
approximately the outer shape of the single scale solution but without the corrugation.
The distributions of the σ11-stress suffer from the restrictions on the deformation. The
plots of 3/16MM and 12/4MM are very different to the reference solution. Nevertheless, the
characteristics for 48/1MM are in good agreement with the single scale solution besides
that the regions of minimal and maximal amplitudes are slightly too large. Figure 6.24
shows the contour plots for the choice of quadratic Q2S macroscopic elements.
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T2 single scale Q1MT2m 3/16MM Q1MT2m 12/4MM Q1MT2m 48/1MM

σ11 in kN/cm2

Figure 6.23: Tensile Test: σ11 contour plots for T2 single scale and MIEL with Q1MT2m.

T2 single scale Q2SMT2m 3/16MM Q2SMT2m 12/4MM Q2SMT2m 48/1MM

σ11 in kN/cm2

Figure 6.24: Tensile Test: σ11 contour plots for T2 single scale and MIEL with Q2SMT2m.

In contrast to linear macroscopic elements, the Q2S elements are way more suitable for
such boundary value problems. Even the 3/16MM discretization can capture the necking
effect quite well due to the capability of a quadratic curve for the macroscopic element
edge. Additionally, the quadratic interpolation enables the fine macroscopic mesh 48/1MM



74 Numerical Examples - MIEL Method for Elasticity

to reproduce a slight corrugation at the left and right edge. As a consequence of the
better approximation of the displacement, the stress distributions for 3/16MM with the
Q2S element is superior to the Q1 macroscopic element at the corresponding macroscopic
mesh density. However, the difference vanishes for the finer macroscopic discretizations in
terms of the main characteristics. Only the regions of extrema are slightly smaller for the
quadratic interpolation compared to the linear one and therefore closer to the reference
solution. Conclusively, the contour plots for the cubic Q3S macroscopic elements are
presented in Figure 6.25.

T2 single scale Q3SMT2m 3/16MM Q3SMT2m 12/4MM Q3SMT2m 48/1MM

σ11 in kN/cm2

Figure 6.25: Tensile Test: σ11 contour plots for T2 single scale and MIEL with Q3SMT2m.

In accordance with the findings above, the cubic interpolation within the macroscopic ele-
ments enhance the performance compared to the Q1 and Q2S element. The necking effect
is well captured even by the coarsest macroscopic mesh. Therefore, the stress distribution
is in good agreement with the reference solution for all MIEL macroscopic mesh densities.
Again, the finest mesh stands out due to the capability to capture the corrugation even
though the interpolation order of the macroscopic element is still too low to completely
match the single scale solution.

In conclusion of the analysis of the contour plots, the linear Q1 macroscopic elements are
too restrictive for this boundary value problem. For the quadratic and cubic macroscopic
elements, the highest macroscopic mesh density 48/1MM is advantageous to the others in
terms of the resulting displacement fields and therefore as well with respect to the stress
distribution, even though this effect is hardly visible.

To analyze the effect of the different discretizations on the accuracy of the MIEL method
with respect to the reference single scale computation, a regularized norm for exemplary
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field quantity • is defined as

||(•)single scale − (•)MIEL||
||(•)single scale||

=

√∫
B ( (•)single scale − (•)MIEL )2 dV√∫

B ( (•)single scale )2 dV
. (6.2)

This value for the quantification of the overall deviation from the reference solution en-
ables an easier analysis than the slight differences appearing in the contour plots. This
norm is evaluated for all macroscopic element choices, macroscopic mesh densities and
appearing field quantities. The obtained results using Q1 macroscopic elements are shown
in Table 6.5.

3/16MM 12/4MM 48/1MM

u1 in cm 3.06 · 10−1 1.23 · 10−1 6.38 · 10−2

u2 in cm 2.69 · 10−2 1.00 · 10−2 8.98 · 10−3

ε11 3.44 · 10−1 2.26 · 10−1 2.19 · 10−1

ε22 7.52 · 10−2 7.46 · 10−2 8.93 · 10−2

ε12 5.64 · 10−1 5.94 · 10−1 6.77 · 10−1

σ11 in kN/cm2 9.93 · 10−1 6.17 · 10−1 5.58 · 10−1

σ22 in kN/cm2 6.60 · 10−2 7.22 · 10−2 8.53 · 10−2

σ12 in kN/cm2 5.86 · 10−1 5.98 · 10−1 6.54 · 10−1

Table 6.5: Tensile test: Regularized norms for Q1 macroscopic elements.

The norms of the displacements reduce with increasing mesh density as expected. The
initial value of the u1 displacement is higher and consequently improves more significantly
compared to the 2-direction. This can be explained by the boundary value problem itself
because the u2 displacements deflection is mainly predefined by the boundary conditions.
The derived quantities as strains and stresses reveal a slightly different behavior. While
the norms for ε11 and σ11 reduce with finer macroscopic meshes, those for the remaining
directions sometimes increase. This effect stays the same for the results in Table 6.6 for
the quadratic macroscopic element.

3/16MM 12/4MM 48/1MM

u1 in cm 1.02 · 10−1 5.22 · 10−2 4.26 · 10−2

u2 in cm 7.14 · 10−3 5.14 · 10−3 7.27 · 10−3

ε11 1.93 · 10−1 1.83 · 10−1 1.74 · 10−1

ε22 5.43 · 10−2 6.43 · 10−2 8.38 · 10−2

ε12 4.59 · 10−1 4.84 · 10−1 5.56 · 10−1

σ11 in kN/cm2 5.40 · 10−1 4.85 · 10−1 3.97 · 10−1

σ22 in kN/cm2 5.20 · 10−2 6.14 · 10−2 7.37 · 10−2

σ12 in kN/cm2 4.62 · 10−1 4.67 · 10−1 5.25 · 10−1

Table 6.6: Tensile test: Regularized norms for Q2S macroscopic elements.

Overall, the norms are a little bit lower compared to the linear elements above. As ex-
pectable, this tendency proceeds for the results of the cubic macroscopic element in Ta-
ble 6.7.
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3/16MM 12/4MM 48/1MM

u1 in cm 4.61 · 10−2 4.20 · 10−2 1.33 · 10−2

u2 in cm 3.69 · 10−3 5.04 · 10−3 1.41 · 10−3

ε11 1.62 · 10−1 1.73 · 10−1 8.79 · 10−2

ε22 4.73 · 10−2 6.27 · 10−2 3.58 · 10−2

ε12 3.78 · 10−1 4.45 · 10−1 2.54 · 10−1

σ11 in kN/cm2 4.38 · 10−1 4.49 · 10−1 1.88 · 10−1

σ22 in kN/cm2 4.62 · 10−2 5.94 · 10−2 2.64 · 10−2

σ12 in kN/cm2 3.81 · 10−1 4.34 · 10−1 2.20 · 10−1

Table 6.7: Tensile test: Regularized norms for Q3S macroscopic elements.

The improvement from cubic to quadratic macroscopic elements in more significant than
from quadratic to linear macroscopic elements. Here, the coarsest macroscopic mesh
3/16MM with Q3S macroscopic elements has an overall lower deviation from the refer-
ence solution than the 48/1MM discretization with Q2S macroscopic elements. Analyzing
the results for the cubic macroscopic elements in detail, some norms increase from the
3/16MM to the 12/4MM macroscopic mesh density, but get all to their lowest overall value
for the finest discretization 48/1MM. Summarizing the investigation of the norms, more
macroscopic degrees of freedom help to reduce the deviation from the reference solution
with some exceptions. The influence of the restrictions on the microscopic problems by
the macroscopic element choice and therefore the overall results is dominant for such
coarse macroscopic meshes. To obtain a distinctive convergence for all quantities, a dif-
ferent boundary value problem would help which enables a way finer macroscopic mesh
and consequently higher numbers of macroscopic degrees of freedom. Nevertheless, the
presented investigation is sufficient to suggest the usage of higher order macroscopic el-
ements within the MIEL method to reduce the impact of the comparatively strict scale
coupling condition.
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7 Numerical Examples - MIEL Method for TPM

After first insights into the MIEL method were gained in Chapter 6, the multiscale ap-
proach is applied to the TPM in the following. Three numerical examples are chosen to
investigate the behavior and performance. All of them include consolidation which rep-
resent an important class of problems within the TPM. The first example starts with
a problem of homogeneous material to verify the findings from the previous numerical
examples. The second problem extends the first example towards heterogeneous mate-
rial to gain further insights on the performance for more complex material distributions
and is taken to examine a runtime analysis to evaluate numerical efficiency. The con-
cluding third numerical example aims for a more realistic and reasonable application of
the method compared to the previous academic problems including a significantly larger
number of total equations. Please note that for all numerical examples the notation of
the coordinate is simplified to X. On the one hand, the TPM model only includes the
reference configuration of the control space of the solid phase and on the other hand,
there is no need to distinguish between macroscopic and microscopic coordinates within
the analysis. In addition, external acceleration is neglected as b = 0 to allow for an easier
interpretation of the method based effects on the solution.

7.1 Homogeneous Consolidation Problem

A typical consolidation problem is chosen as a benchmark for the MIEL method within
the framework of the TPM. Focus is on the reproducibility of the insights within the
corresponding first examples of pure elasticity in Chapter 6.

7.1.1 Boundary Value Problem

The boundary value problem including the material parameters, which are given in Fig-
ure 7.1, is taken from de Boer et al. [1993] and Diebels and Ehlers [1996]. Homo-
geneous Neumann boundary conditions are applied to any degree of freedom along the
boundary unless explicitly specified in the picture.

As already mentioned solving this boundary value problem with a homogeneous material
definition does not require a multiscale approach. A comparatively coarse mesh within a
single scale finite element computation is the best choice for an sufficiently accurate and
efficient solution procedure. Nevertheless it is taken as sanity check for the applicability
of the MIEL method within the TPM. All computations are set to finish at t = 1500 s
where a steady state is reached while the full load is applied within the first time step.

7.1.2 Discretization

A single scale computation with constant time stepping of ∆t = 1 s and a structured
mesh consisting of 320 square shaped Q2Q1 elements serves as reference solution. The
element abbreviation indicates a quadrilateral element with quadratic shape functions for
the solid displacement and linear shape functions for the pressure. For a good compara-
bility of the results, all MIEL computations use the same constant time stepping with
∆t = 1 s and no microscopic sub-stepping. The domain is discretized in a way that the
Q2Q1 element formulation is used as microscopic element such that the total number of
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10 m

2 m
X1

X2

p = 0 kN
m2

t0S2 = 2000 kN
m2

µS 5583 kN
m2

λS 8375 kN
m2

nS
0S 0.67

kL 10−5 m4

kN s

ρSR 2000 kg
m3

ρLR 1000 kg
m3

Figure 7.1: Homogeneous consolidation: Boundary value problem and material parameters.

microscopic elements matches the 320 elements from the single scale computation. This
leads in combination with the requirement of only square shaped macroscopic and mi-
croscopic elements to the investigated MIEL mesh densities depicted in Fig. 7.2. The
coarsest macroscopic mesh, identified by 5/64, is discretized by nM

e = 5 macroscopic el-
ements where each microscopic problem consists of nm

e = 64 microscopic elements. The
same interpretation hold for the remaining two computations 20/16 and 80/4.

5/64 20/16 80/4

Figure 7.2: Homogeneous consolidation: Investigated mesh densities within MIEL method.

Since it is beneficial within the MIEL method to use macroscopic element formulations
which only have nodes on their boundaries, the generalized Taylor-Hood elements Q2SQ1
and Q3SQ2S are considered as macroscopic elements. Therein, the S indicates the usage
of serendipity shape functions.
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7.1.3 Results

At first, the computation with the coarsest macroscopic mesh combined with the lower
order macroscopic element Q2SQ1M 5/64 is compared to the single scale solution. The
evolution of the vertical displacement at the top mid point at X = (1, 10) m and of the
pressure at the bottom mid point at X = (1, 0) m over time are depicted in Figure 7.3.

Figure 7.3: Homogeneous consolidation: Top displacement and bottom pressure over time.

The graphs reveal a good agreement of the MIEL method with the single scale computa-
tion. This leads to the conclusion that the MIEL method in general is applicable within
the framework of the TPM. The graphs corresponding to finer macroscopic discretizations
or higher macroscopic element interpolation orders are omitted in this figure since both
variations only further improve the agreement.

Nevertheless, a corresponding effect to the the non-physical displacement in 1-direction in
Chapter 6 can be observed. It is most apparent after the first time step for this boundary
value problem since at this step the pressure gradients are the highest throughout the
simulation. This correspondence is discussed in the following. The pressure against the
X2 position is plotted in Figure 7.4 for all MIEL simulations in comparison to the single
scale reference solution.

While the pressure is independent from X1 for the single scale computation, it varies
for the MIEL computations, most apparent for coarse macroscopic discretizations. The
pressure comparison is carried out along the left boundary at X1 = 0 m and the vertical
mid-line at X1 = 1 m where the deviations are most apparent. This effect is due to the
constraints on the boundaries of the microscopic problems by the choice of the macroscopic
element, in this case a linear or quadratic interpolation of the pressure. While the pressure
on the boundary is forced to have a linear, respectively quadratic behavior, it has more
freedom to tend towards the reference solution of the single scale computation inside of
the microscopic problem. This difference is visible in particular for Q2SQ1M 5/64 as the
coarsest macroscopic mesh in combination with the lower macroscopic interpolation order.
Despite that effect, the nonphysical peaks in pressure over p = 2000 kN/m2 for the 5/64
meshes are common within the TPM in case of too coarse (macroscopic) discretizations.

Even though the restrictive boundary constraint is an inherent drawback of the MIEL
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Figure 7.4: Homogeneous consolidation: Pressure against X2 at t = 1 s.

method within the TPM, it can be well controlled by the two common methods to improve
accuracy in finite element methods. Figure 7.4 reveals that increasing the macroscopic
mesh density or the macroscopic element interpolation order reduces the impact by great
extent. In case of the discretizations 20/16 and 80/4, the pressure distributions appear
independent from X1 within the resolution of the presented graphs. In additions to that,
the results of the Q3SQ2SM computations are closer to the single scale reference solution
since the boundary constraint is less restrictive.

As a consequence of the deviations of pressure between the boundary and inner points
of the microscopic problem, nonphysical u1 displacements emerge as shown in Figure 7.5,
again for t = 1 s.

In accordance with the findings above with respect to the pressure, these displacements
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Q2SQ1M Q2SQ1M Q2SQ1M Q3SQ2SM Q3SQ2SM Q3SQ2SM

5/64 20/16 80/4 5/64 20/16 80/4

Figure 7.5: Homogeneous consolidation: u1 at t = 1 s .

are solely related to the MIEL method since they do not appear for the single scale compu-
tation which is reasonable for the chosen nearly one-dimensional boundary value problem.
Even though the contour plots only reveal displacements in the upper macroscopic ele-
ments, they are existent in the lower elements as well but of much lower magnitude. This
is in agreement with Figure 7.4 where the major deviations in pressure for the MIEL
computation occur between X2 = 6 m and X2 = 10 m. Supplementary to Figure 7.4,
Figure 7.5 highlights the major influence of the macroscopic mesh density on the model
induced error. The non-physical displacements reduce substantially with an increasing
number of macroscopic elements. In addition to that, a higher macroscopic interpolation
order at a constant level of macroscopic mesh density improves the result as expected.
Please observe that the pattern of the u1 displacements within one microscopic prob-
lem changes from Q2SQ1M to Q3SQ2SM due to the increased interpolation order and its
consequences on the boundary constraint.

To supports the previous findings, the maximum u1 displacements and the error eu2 of the
vertical displacement of the top mid point for varying MIEL computations with respect
to the reference computation are listed in Table 7.1 and Table 7.2. Therein, the error

eu2 =
uMIEL
2 − usingle scale

2

usingle scale
2

is based on the displacement usingle scale
2 = −4.58 · 10−2 m. Both of the error measures are

suitable for the chosen discretizations. The u1 displacements would be zero in the ideal
case and the u2 displacement can not be any more accurate than the single scale result
for the chosen set up of a constant number of single scale respectively total number of
microscopic problem elements, as shown in Section 6.2 for elasticity.

The analysis of the computation with Q2SQ1 as macroscopic element in Table 7.1 reveals
that the increase of macroscopic elements leads to a significant enhancement. But taking
into account the results for the Q3SQ2S macroscopic element in Table 7.2, it is appar-
ent that the choice of the macroscopic element interpolation order has an even greater
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Table 7.1: Homogeneous consolidation: max(u1) and eu2 for Q2SQ1M at t = 1 s.

nMe /nme 5/64 20/16 80/4

max(u1) in m 3.10 · 10−3 7.08 · 10−4 1.33 · 10−4

eu2 −1.87 · 10−1 −8.45 · 10−2 −1.93 · 10−2

Table 7.2: Homogeneous consolidation: max(u1) and eu2 for Q3SQ2SM at t = 1 s.

nMe /nme 5/64 20/16 80/4

max(u1) in m 1.01 · 10−3 9.39 · 10−5 6.98 · 10−7

eu2 −8.18 · 10−4 −4.51 · 10−3 3.81 · 10−6

influence on the chosen error measures. The undesired u1 displacements become nearly
negligible compared to the magnitude of the u2 displacements which again is in good
agreement with the reference solution itself. In general, the MIEL computations tend to
overestimate the vertical displacement at the top mid point compared to the reference
solution. This is in agreement with single scale simulations for coarse meshes and therefore
poor pressure interpolations within the presented TPM formulation. Please note that this
is contrary to the behavior of the pure elasticity model in Chapter 6.

Based on the results of the present numerical example, the MIEL method is well applicable
within the TPM. All findings match those from pure elasticity in the previous chapter.
The higher interpolation order of the macroscopic element is the better choice even though
its influence on the numerical costs have to be taken into account which is done in the
next example. The improvement of a higher mesh density on the microscopic problem is
limited by the macroscopic mesh density. On the other hand, the overall accuracy can be
enhanced by a finer macroscopic mesh which is in agreement with standard FEM theory.

7.2 Heterogeneous Consolidation Problem

The second numerical example is a modification of the previous consolidation problem to
a heterogeneous material distribution. It is taken to investigate the influence of micro-
heterogeneities on the performance of the MIEL method and to compare the computa-
tional costs with respect to the single scale computation.

7.2.1 Boundary Value Problem

The boundary value problem is defined in Figure 7.1. The previous example is extended
by a second material definition which reduces the Darcy parameter by a factor of 100.
The initial material definition is taken as matrix material while the modified one models
a horizontal elliptical inclusion within a master mesh shown in Figure 7.6.

7.2.2 Discretization

The master mesh consists of 676 triangular Taylor-Hood elements with quadratic dis-
placement and linear pressure interpolation (T2T1). It is arranged in an 8 by 40 grid to
model the single scale boundary value problem of the heterogeneous consolidation prob-
lem which is taken as reference solution. In total, 320 master meshes lead to 216 320 T2T1
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� matrix kL 10−5 m4

kN s

� inclusion kL 10−7 m4

kN s

Figure 7.6: Heterogeneous consolidation: Master mesh and Darcy parameter.

elements resulting in 974 240 degrees of freedom for the single scale computation. This
reference solution is compared to three different MIEL discretizations which are depicted
in Figure 7.7. These meshes are designed in a way that the total number of microscopic
elements matches the number of single scale elements. This exemplary leads to the MIEL
discretization 20/16MM which consists of 20 macroscopic elements while each macroscopic
element contains a microscopic problem built by 16 master meshes. Please note that the
number of degrees of freedom varies between the MIEL discretizations and the single
scale mesh in contrast to the number of elements because of the changing total number
of degrees of freedom with Dirichlet boundary conditions depending on the MIEL micro-
scopic problem number and size. All MIEL computations only use Q3SQ2S macroscopic
elements as a result of the previous analysis of the homogeneous consolidation problem.

20/16MM 80/4MM 320/1MM

Figure 7.7: Heterogeneous consolidation: Investigated mesh densities within MIEL method.

7.2.3 Results

Due to the resemblance with the previous consolidation problem, a few findings can be
exploited during the analysis. At first, the evolution of the vertical displacement u2 at the
top mid point X = (1, 10) m and the pressure p at the bottom mid point X = (1, 0) m
during the computation up to t = 1500 s are shown in Figure 7.8 for the single scale
computation and exemplary the MIEL Q3SQ2SM 80/4MM simulation.

Both graphs show a good agreement of the MIEL simulation with its single scale counter-
part. The overall diffusion process is slower compared to the homogeneous consolidation
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Figure 7.8: Heterogeneous consolidation: Top displacement and bottom pressure over time.

problem in Figure 7.3 which is reasonable due to the less permeable inclusions. Further-
more, the MIEL computation slightly overestimates the bottom pressure relaxation and
consequently the vertical top displacement during consolidation in comparison to the sin-
gle scale solution. This fact corresponds to the findings in the homogeneous consolidation
in Tables 7.1 and 7.2 concerning a poor pressure interpolation due to coarse macroscopic
meshes. This effect is more pronounced for the heterogeneous structure since the con-
straint on the degrees of freedom along the microscopic problem boundary is more severe
compared to the homogeneous case.

The effect of the boundary constraint on the overall response is further investigated in
terms of the vertical specific flux q2 = nLwLS2 , exemplary at time t = 10 s within the
MIEL simulation Q3SQ2SM. For this purpose, three vertical cutting lines throughout the
whole specimen with constant X2 values are defined in Figure 7.9. All cuts run through
the second column of macroscopic elements in case of the MIEL simulation.

A CB

Figure 7.9: Heterogeneous consolidation: Cutting lines for flux investigation.

Cut A runs only through matrix material in the middle of the microscopic problems,
cut B passes alternating matrix material and the 40 inclusions over the height and cut
C runs again only through matrix material but on the boundaries of the microscopic
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problems. The obtained flux distributions for the three cuts are compared for the single
scale computation and the MIEL simulation in Figure 7.10.
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Figure 7.10: Heterogeneous consolidation: Specific flux q2 against X2 at t = 10 s.

The single scale solution reveals the expected result where the flux is oscillating over the
height because of the heterogeneities while the flux in general gets greater towards the
top since the fluid can exit the control space of the solid there. Additionally, the lower
Darcy parameter in the inclusions leads to a smaller flux along the inclusions at cut B
resulting in a higher flux along the lines with only matrix material, cut A and C. The
MIEL computation is able to capture the described flux distribution of the single scale
reference solution well for cut A and cut B where the influence of the boundary constraint
on the microscopic problem vanishes. In contrast to this, the flux distribution along cut
C is not able to capture the oscillations. All degrees of freedom along cut C belong to
boundaries of microscopic problem which are restricted by the respective macroscopic
element interpolation. The flux oscillation depend mainly on the underlying pressure
gradient which is linear interpolated for the Q3SQ2S macroscopic element. Consequently,
the loss of such oscillations due to the microscopic heterogeneities along the boundary of
the microscopic problems is a discretization error which is inherent to the MIEL method.
This effect introduces another layer of complexity to the choice of macroscopic mesh
density. A finer macroscopic mesh enables for a better overall solution but adds more
boundary constraints to the numerical model.

One possibility to compensate this drawback is the reduction of computational time uti-
lizing parallelization of the microscopic problems. The presented model boundary value
problem with nearly one million degrees of freedom is still solvable with a single scale
computation on a single kernel. Nevertheless, the following runtime analysis is a good in-
dicator for larger problems where the single scale approach reaches its limits. For reliable
results, all computations have been solved three times and the obtained wall timings are
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averaged. To get these results in a reasonable amount of time, only the first ten seconds of
each computation are investigated. For the sake of clarity, the duration of pre-processing
is excluded for the analysis since it requires about 20% of the full simulation time for the
ten second simulation but is negligible with respect to 1500 seconds. Please note that the
possibility of multi-threading is omitted in all simulations. The diagram in Figure 7.11
shows the duration of the single scale computation on a single kernel as a reference line.
In contrast to this, the computational time required for solving the microscopic problems
for the different MIEL discretizations is depicted in dependence of the number of kernels.
Computing the solution of the microscopic problems includes distributing the current
state of macroscopic element degrees of freedom to their respective microscopic problem,
loading the last saved state of the microscopic problems from a file, solving them and
returning macroscopic element tangent and residual or saving the current state of the
microscopic problem in a file in case of a converged macroscopic step.

Figure 7.11: Heterogeneous consolidation: Runtimes of parallelized MIEL computations.

The diagram shows that the MIEL method is beneficial for this boundary value problem
over the single scale approach if at least five kernels are available. Below this number, the
computation time exceeds the reference time of the single scale simulation. In contrast to
this, the MIEL method is significantly faster in case of ten kernels or more. Comparing
the three MIEL discretizations reveals a slight advantage of the MIEL Q3SQ2SM 80/4MM

computation independent from the number of kernels. This discretization has the best
ratio of number of microscopic problems and degrees of freedom per microscopic problem.
The analysis shows that the available number of kernels is the crucial factor for the total
MIEL computation time compared to the number of macroscopic elements. Please note
that this interpretation is specific for the chosen discretization where the biggest micro-
scopic problem within MIEL Q3SQ2SM 20/16MM contains only around 50 000 degrees of
freedom. Significantly larger microscopic problems respectively number of total micro-
scopic elements would alter this interpretation towards the choice of more macroscopic
elements to reduce the microscopic problem size. In general, the MIEL method would
benefit within this runtime analysis if the computationally more efficient sensitivity anal-
ysis would be employed, as proposed by Zupan and Korelc [2020], in contrast to the
current implementation of static condensation with subsequent transformation. Addition-
ally a modified microscopic problem saving and loading strategy based on random access
memory rather than the hard disk drive may improve the overall efficiency.
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To conclude the analysis of MIEL microscopic problem parallelization, a closer look is
taken in Figure 7.12 at the strong scaling of exemplary the discretization MIEL Q3SQ2SM

80/4MM. In both diagrams, the scaling is compared to the ideal one which is constructed
by dividing the initial single kernel computation time by the number of kernels. The left
diagram shows the scaling of the procedure to solve the microscopic problems as described
above. The right one only includes the parallelized part of loading, solving and saving the
microscopic problems without the distribution of macroscopic degrees of freedom and
returning the microscopic problem responses to the corresponding macroscopic elements.

complete solving of microscopic problems only parallelized part of solving

Figure 7.12: Heterogeneous consolidation: Strong scaling analysis for Q3SQ2SM 80/4MM.

The efficiency of the scaling is defined as real computation time divided by the ideal
time. With this, the apparent performance loss of the full microscopic problem solution
procedure for an increasing number of kernels in the left diagram can be quantified by an
efficiency of 53% for 20 kernels. The loss is significantly smaller if only the parallelized
part is taken into account in the right diagram of Figure 7.12 leading to an efficiency of
81%. This analysis reveals that around 20% of the theoretical parallelization potential
is lost because of the used built in Mathematica routines for parallelization and roughly
additional 30% due to the required data transfer within the current implementation of
the MIEL microscopic problem solution procedure.

Summarizing this numerical example, the kernel parallelization is crucial for the MIEL
method to be competitive in terms of overall performance against the single scale approach
for problem sizes which are solvable within a single scale computation. For computations
with heterogeneous microscopic structures and moderate problem sizes as the presented
example, a single scale approach is favorable since there is no information loss due to
boundary constraints on the microscopic problems. Additionally, the computation time of
each single scale, macroscopic or microscopic problem can be reduced by multi-threading
in Mathematica if the machine is capable of it. This possibility has been omitted for this
analysis but the single scale computation would benefit the most from it. Consequently,
the MIEL method aims for total problem sizes a few orders of magnitudes larger than the
one in this example.
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7.3 Pile Wall

The last numerical example is a MIEL computation where the total number of microscopic
problem equations exceeds the reasonable problem size within a classical single scale
computation. The problem is designed closer to a realistic application compared to the
academic examples before which where used to describe the behavior of the TPM within
the MIEL method.

7.3.1 Boundary Value Problem

The investigated situation of consolidation along a pile wall next to a excavation pit is
shown on the left in Figure 7.13. The pile wall is supported by two beams to prevent its
bending. The surrounding buildings and soils, depicted in light grey, are assumed to be
rigid and impermeable to water. This leads to the boundary conditions of the numerical
model on the right in Figure 7.13 where only the soil is considered and the deformation of
the pile wall is assumed negligibly small. Again, all degrees of freedom along the boundary
with no Dirichlet boundary conditions applied and not specifically depicted otherwise in
the model, are occupied by homogeneous Neumann boundary conditions.

6 m

10 m 10 m0.4 m

6 m

2.8 m

X1

X2

t0S2 = 100 kN
m2 t0S2 = 100 kN

m2

u1 = 0

u1 = u2 = 0

mptop

mpmid

mpbottom

p = 0

Figure 7.13: Pile wall: Problem (left) and model (right).

The load is applied linear within the first simulated second and the resulting fluid flow and
vertical displacement are investigated. Three different types of soil are defined to model
the microscopic problems, loamy sand, clay sand and rock. Their material parameters
within the binary TPM model are given in Table 7.3.

The percentage of each soil is dependent on the X2 coordinate within the model, according
to Figure 7.14. In detail, the X2 coordinate of the center of each microscopic problem is
taken to identify its distribution. Subsequently, the elements in the structured mesh of
each microscopic problem are randomly assigned in agreement with the determined ratios.
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Table 7.3: Pile wall: Material definitions.

loamy sand clay sand rock

� � �

ES in kN/m2 2.5 · 104 1.25 · 104 6 · 107

νS 0.3 0.35 0.2

nS
0S 0.7 0.7 0.99

kL in m4/kN s 1 · 10−5 1 · 10−7 1 · 10−12

ρSR in t/m3 2.3 2.3 2.7

ρLR in t/m3 1.0 1.0 1.0

80%

70%

20%

10%

0%

20%

Figure 7.14: Pile wall: Material distribution depending on X2: loamy sand, clay sand, rock.

7.3.2 Discretization

The domain is meshed by square shaped macroscopic elements of edge length 0.4 m lead-
ing to a number of 1490 macroscopic elements respectively microscopic problems. The
macroscopic element interpolation is chosen in accordance to the first numerical example
within the TPM as Q3SQ2S resulting in a macroscopic problem size of 19457 equations.
Each microscopic problem is discretized by 40 by 40 square shaped Q2Q1 elements lead-
ing to an initial microscopic element edge length of 1 cm. With this, every microscopic
problem consists of 14803 equations which results in a total number of microscopic scale
equations of 22 056 470. For comparison, three microscopic problems along the right edge
of the pile wall are selected, depicted on the right hand side in Figure 7.13. At first, the
one at the top macroscopic element layer, in the following referred to as mptop, with the
center point of the microscopic problem Xmpc = (10.6, 14.6) m. Second, the microscopic
problem next to the bottom of the pile wall with its center at Xmpc = (10.6, 5.8) m which
is labeled as mpmid. Third, the one at the bottom of the entire domain with the center
point Xmpc = (10.6, 0.2) m, denoted by mpbottom. The meshes respectively the material
distributions for these microscopic problems are shown in Figure 7.15. Therein, espe-
cially the increasing percentage of rock corresponding to an increasing soil depth becomes
visible.

To reduce the computational costs, the time incrementation is not constant as in the
previous examples. Since the changes within the field quantities are high at the beginning
of the consolidation but vanish over time, it is reasonable to increase the size of the time
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Xmpc = (10.6, 14.6) m Xmpc = (10.6, 5.8) m Xmpc = (10.6, 0.2) m

mptop mpmid mpbottom

Figure 7.15: Pile wall: Material distributions of chosen microscopic problems.

increment gradually. Here, the first ten time steps with ∆t = 0.1 s are used for the load
application. They are followed by 49 steps with ∆t = 1 s, 35 steps with ∆t = 10 s and eight
steps of ∆t = 50 s leading to a total simulation time of t = 800 s. No microscopic sub-
stepping is applied such that all time steps are identical on macroscopic and microscopic
scale.

7.3.3 Results

The simulation was run on 24 kernels leading to a computation time of 7 hours and
14 minutes. This includes saving microscopic problems states 153 470 times and loading
them 603 450 times. These numbers indicate that the total number of time steps as well
as the microscopic problem loading and saving procedure highly influence the numerical
efficiency of the method. As a consequence, future work could aim for a speed-up via an
adaptive time incrementation, the utilization of microscopic sub-stepping or a modified
microscopic problem saving and loading strategy as mentioned in the previous example.

The vertical displacement over time is shown in Figure 7.16 for three points along the top
surface of the soil.

Figure 7.16: Pile wall: Vertical displacement over time at different points.

Two points are within the region of load application. The first one directly at the right
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edge of the pile wall at X = (10.4, 14.8) m and the second one at the top right corner of
the investigated domain atX = (20.4, 14.8) m. Both points show the typical consolidation
behavior similar to the findings for the corresponding points in the previous examples.
Nevertheless, the final deformation of the point at the pile wall is a little less compared
to the outer point. This observation might be unexpected due to the additional drainage
possibility below the pile wall but can be explained by the applied TPM model. The
approach assumes a continuous solid skeleton such that the neighboring area on the left
hand side of the pile wall prevents a larger deformation of the observed point next to the
top of the pile wall. The third investigated point is at the top left corner of the domain at
X = (0, 8.8) m. The graph reveals that even this most distant surface point with respect
to the pile wall is lifted in the beginning of the computation due to the liquid which is
pressed into the left part of the domain. This effect vanishes over time with decreasing
liquid pressure.

Figure 7.17: Pile wall: Pressure over time at different points.

The pressure is compared for three points as well but at the bottom of the domain over
time in Figure 7.17. The graph corresponding to the bottom right point atX = (20.4, 0) m
shows a behavior similar to the bottom point within the initial homogeneous consolidation
problem in Section 7.1. The magnitude of the pressure nearly matches the applied load
at the first time steps before the pressure decreases over time. It converges towards zero
respectively steady state. The pressure at X = (14.8, 0) m below the right edge of the pile
wall shows a similar behavior but at a much lower magnitude since the liquid can easily
move to the left part of the domain in contrast to the situation at the bottom right point.
In addition, the maximum pressure is not reached just after applying the full load but
minimally after. This effect is visible more pronounced at point X = (0, 0) m at the left
bottom corner of the domain. It takes some time until the pressure adjusts in the regions
of the domain which are more distant with respect to the load application surface or where
the geometry is non-trivial. This observation is supported by the macroscopic specific flux
vector plots for three different timings in Figure 7.18. The vectors show the flux direction
while the underlying contour plot reveals its magnitude as ‖q‖ with q = nLwLS. Please
note that the plots are based on post-processing data which are evaluated at positions
of the macroscopic scale degrees of freedom such that not the full microscopic problem
information is utilized.
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‖q‖ in m/s

t = 1 s t = 10 s t = 100 s

Figure 7.18: Pile wall: Macroscopic flux at different times.

While the vectors seem rather unstructured just after applying the load at t = 1 s, they
appear well orientated at t = 10 s. Afterwards, the characteristic only changes slightly
towards draining the bottom right corner as at t = 100 s which stays similar until the
end of the computation. The magnitude of the flux is highest at the area of external
load application and at the bottom of the pile wall as expected. While the draining is
quite local at the top soil layer at t = 1 s, it expands to lower layers with progressing
simulation as visible at t = 10 s. At the same time, the magnitude decreases and tends
in the end against zero respectively steady state. A closer look is taken at the fluxes at
the exemplary microscopic problems in Figure 7.15 which are presented for the different
timings in Figure 7.19.

The macroscopic effects of higher amplitudes at the top and at the bottom of the pile
wall compared to the bottom of the domain as well as the overall decreasing amplitude
over time are visible on the microscopic plots as well. Additionally, further insights on
the draining process depending on the position of the microscopic problem can be gained.
Since the nearly impermeable rock is almost absent at mptop, the flux can adapt to its
preferred direction quite easily. This leads in this case to nearly parallel vertical flux
vectors. In contrast to this, the rock percentage is much higher at mpbottom including
more obstacles for the liquid flow preventing a homogeneous flux through the microscopic
problem. As a result, even though the overall flux is clearly orientated in horizontal
direction, the flux vectors often vary slightly from the horizontal alignment. The third
microscopic problem mpmid reveals the most informative plot since the flux just below
the pile wall is orientated diagonally and the percentage of less permeable soil induces
preferred drainage channels which become visible in the plots. Please observe that the
flux orientations are nearly independent from time for the chosen microscopic problems.
While slight differences between the timings can be detected for mpmid, it is very difficult
for for the other microscopic problems. But these observations are in agreement with
the distributions in Figure 7.18 in terms of nearly steady macroscopic flux orientations
near the specific microscopic problems. The analysis is completed by the comparison of
the maximum flux amplitudes of macroscopic scale and microscopic problems, given in
Table 7.4.

The list justifies the fine resolution of the microstructure since the amplitudes of the field
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Figure 7.19: Pile wall: Microscopic flux at chosen microscopic problems at different times.

Table 7.4: Pile wall: max(‖q‖) in m/s for macroscopic scale and chosen microscopic prob-
lems at different times.

t = 1 s t = 10 s t = 100 s

macroscopic scale 2.43 · 10−3 5.15 · 10−4 1.94 · 10−4

mptop 5.13 · 10−3 1.05 · 10−3 1.81 · 10−4

mpmid 2.37 · 10−3 9.13 · 10−4 2.35 · 10−4

mpbottom 5.61 · 10−4 2.49 · 10−4 9.99 · 10−5

quantities, here exemplary the magnitude of the flux vector, are in some situations higher
on the microscopic problem compared to the macroscopic scale. With this, the MIEL
method can exemplary help to resolve localization problems more accurate at reasonable
computational costs compare to a classical single scale approach. Summarizing, this sim-
ulation gives an impression how the TPM can be combined with the MIEL method to
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reduce the complexity of a fine resolved model by exploiting the parallelizability of the
microscopic problems.
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8 Summary and Outlook

This thesis dealt with the application and validation of the Theory of Porous Media within
the framework of the Mesh-in-Element method as a combination of a classical homoge-
nization scheme and a multiscale approach with strong scale coupling. The motivation of
this strategy was outlined based on the challenge of exceeding numerical costs in case of
the simulation of porous media with complex material heterogeneities. Besides the use-
fulness of the TPM for such problems, possible choices for additional multiscale schemes
were discussed. In this context, approaches with a strong scale coupling appear advanta-
geous since they avoid the discussion on the assumption of scale separation or possible
size effects. The MIEL method was chosen over others due to its robust algorithm which
only relies on the finite element discretization which makes it applicable to a wide range of
problems. The subsequent chapter derived the TPM in a general manner as combination
of the Theory of Mixtures and the Concept of Volume Fractions. The focus was set on
a binary model consisting of one solid and one liquid phase to keep the complexity of
the TPM model as low as possible to enable an undisguised investigation on its combi-
nation with the MIEL method. A reformulation was added towards a numerical efficient
model before remarks on a single phase model and linear theory concluded this chapter
in foresight of the first numerical examples. Subsequently, the Finite Element Method
was first derived for finite elasticity before switching to the TPM. This order allowed an
easy accessible introduction to the structure and notation within this thesis which differs
slightly from the classical derivation such that it fits the MIEL theory. Following this goal,
the FEM notation was generalized towards depending solely on degree of freedom vectors
respectively its variations and linearization. The chapter was concluded by an overview
on finite element formulations which were applied within this thesis. Afterwards, a short
detour was taken to investigate the applicability of the FE2 approach for TPM and body
loads in elasticity following the mentioned issue for the assumption of scale separation of
such problems within the introduction. The derivation of the lower level boundary con-
ditions within the FE2 scheme was shown for body loads in elasticity. All typical types
of boundary conditions can be derived energetically consistent but exemplary a constant
volume load can not trigger any microscopic fluctuation. This finding was interpreted
with respect to the TPM within this multiscale approach such that the effect of the mi-
croscopic pressure gradient on the microscopic solid displacement could not be captured,
supporting choosing of the MIEL method instead. The next chapter presented the theory
of the MIEL method within a general notation making it applicable to a variety of prob-
lems. Focus was on the scale coupling condition, the resulting scale transition matrix, the
extraction of macroscopic element right-hand-side vector and element matrix as well as on
the algorithmic treatment. First insights on the characteristics of the MIEL method were
gained by the analysis of numerical examples for elasticity. Besides an overall satisfying
performance, the importance of the choice of macroscopic discretization became evident.
Method induced non-physical effects could be significantly reduced by higher order inter-
polation functions or finer mesh densities on the macroscopic level. Additionally, higher
order macroscopic interpolations softened the comparatively strict scale coupling condi-
tion such that the effects of heterogeneities on the microscopic problem were captured
significantly better. The numerical examples of the MIEL method for TPM confirmed the
findings from elasticity. Displacements and pressures over time within the MIEL method
were in good agreement with the single scale reference solutions. Nevertheless, highly os-
cillating fields due to hetereogeneities were not captured well near microscopic problem
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boundaries because of the scale coupling constraint. In contrast to this, incorporation of
the parallelizability of the microscopic problem on multiple kernel enabled a considerable
speed-up in computation time. Within the last numerical example, the MIEL method was
able to solve a problem size above the capabilities of the single scale approach.

In summary, this thesis presented the combination of a homogenization approach with a
multiscale scheme. This strategy is beneficial for applications where even after applying
the TPM the problem remains too large for a single scale approach due to remaining het-
erogeneities. The numerical results are promising, even though the scale coupling condition
limits the response in case of highly oscillating fields. Finer macroscopic discretizations or
higher macroscopic interpolation functions reduce the impact of this microscopic problem
boundary constraint condition.

Future research should apply macroscopic element formulations with even more degrees
of freedom on their boundaries. This might imply the necessity of a special treatment for
interior degrees of freedom of the macroscopic element within the scale transition. Another
focus should be further reduction of computational costs. In this scope, time increment
adaptivity and exploiting the possibility of microscopic sub-stepping seem promising. Ad-
ditionally, using sensitivity analysis instead of static condensation and subsequent trans-
formation as proposed in Zupan and Korelc [2020] leads to a speed-up especially for
microscopic problems with many degrees of freedom. Further potential exists in a more
efficient saving and loading management of the states of the microscopic problem. After
these enhancements, the extension of the approach to the three dimensional case and the
application of more complex TPM models would be natural further steps. In addition
to that, comparing the performance and efficiency between the MIEL method presented
in this thesis and the FE2 method, cf. Ricken et al. [2022], for poroelastic materials
would give further valuable insights into the multiscale approaches at hand.
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A Details on Finite Element Selection

All element formulations which are used in this thesis are listed in this section. In detail,
the topologies are depicted along with the nodal coordinates and the corresponding shape
functions.
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Q1 =
1

4
(η + 1)(1− ξ)

T2 - Quadratic Triangular Lagrange Element

ξ

η

3 1

2

45

6

X1
T2 = (1, 0) N1

T2 = ξ(2ξ − 1)

X2
T2 = (0, 1) N2

T2 = η(2η − 1)

X3
T2 = (0, 0) N3

T2 = (η + ξ − 1)(2η + 2ξ − 1)

X4
T2 = (

1

2
,
1

2
) N4

T2 = 4ηξ

X5
T2 = (0,

1

2
) N5

T2 = −4η(η + ξ − 1)

X6
T2 = (

1

2
, 0) N6

T2 = −4ξ(η + ξ − 1)
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Q2 - Quadratic Quadrilateral Lagrange Element

ξ

η

1 5

6

7

8

2

34

9

X1
Q2 = (−1,−1) N1

Q2 =
1

4
(η − 1)η(ξ − 1)ξ

X2
Q2 = (1,−1) N2

Q2 =
1

4
(η − 1)ηξ(ξ + 1)

X3
Q2 = (1, 1) N3

Q2 =
1

4
η(η + 1)ξ(ξ + 1)

X4
Q2 = (−1, 1) N4

Q2 =
1

4
η(η + 1)(ξ − 1)ξ

X5
Q2 = (0,−1) N5

Q2 = −1

2
(η − 1)η

(
ξ2 − 1

)
X6

Q2 = (1, 0) N6
Q2 = −1

2

(
η2 − 1

)
ξ(ξ + 1)

X7
Q2 = (0, 1) N7

Q2 = −1

2
η(η + 1)

(
ξ2 − 1

)
X8

Q2 = (−1, 0) N8
Q2 = −1

2

(
η2 − 1

)
(ξ − 1)ξ

X9
Q2 = (0, 0) N9

Q2 =
(
η2 − 1

) (
ξ2 − 1

)
Q2S - Quadratic Quadrilateral Serendipity Element

ξ

η

1 5

6

7

8

2

34 X1
Q2S = (−1,−1) N1

Q2S = −1

4
(η − 1)(ξ − 1)(η + ξ + 1)

X2
Q2S = (1,−1) N2

Q2S =
1

4
(η − 1)(ξ + 1)(η − ξ + 1)

X3
Q2S = (1, 1) N3

Q2S =
1

4
(η + 1)(ξ + 1)(η + ξ − 1)

X4
Q2S = (−1, 1) N4

Q2S =
1

4
(ξ − 1)

(
−η2 + ηξ + ξ + 1

)
X5

Q2S = (0,−1) N5
Q2S =

1

2
(η − 1)

(
ξ2 − 1

)
X6

Q2S = (1, 0) N6
Q2S = −1

2

(
η2 − 1

)
(ξ + 1)

X7
Q2S = (0, 1) N7

Q2S = −1

2
(η + 1)

(
ξ2 − 1

)
X8

Q2S = (−1, 0) N8
Q2S =

1

2

(
η2 − 1

)
(ξ − 1)
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Q3 - Cubic Quadrilateral Lagrange Element

ξ

η

1 25 6

7

8

910

11

12 13 14

16 15

34

X1
Q3 = (−1,−1) N1

Q3 =
1

256

(
9η3 − 9η2 − η + 1

) (
9ξ3 − 9ξ2 − ξ + 1

)
X2

Q3 = (1,−1) N2
Q3 = − 1

256

(
9η3 − 9η2 − η + 1

) (
9ξ3 + 9ξ2 − ξ − 1

)
X3

Q3 = (1, 1) N3
Q3 =

1

256

(
9η3 + 9η2 − η − 1

) (
9ξ3 + 9ξ2 − ξ − 1

)
X4

Q3 = (−1, 1) N4
Q3 = − 1

256

(
9η3 + 9η2 − η − 1

) (
9ξ3 − 9ξ2 − ξ + 1

)
X5

Q3 = (−1

3
,−1) N5

Q3 = − 9

256

(
9η3 − 9η2 − η + 1

) (
3ξ3 − ξ2 − 3ξ + 1

)
X6

Q3 = (
1

3
,−1) N6

Q3 =
9

256

(
9η3 − 9η2 − η + 1

) (
3ξ3 + ξ2 − 3ξ − 1

)
X7

Q3 = (1,−1

3
) N7

Q3 =
9

256

(
3η3 − η2 − 3η + 1

) (
9ξ3 + 9ξ2 − ξ − 1

)
X8

Q3 = (1,
1

3
) N8

Q3 = − 9

256

(
3η3 + η2 − 3η − 1

) (
9ξ3 + 9ξ2 − ξ − 1

)
X9

Q3 = (
1

3
, 1) N9

Q3 = − 9

256

(
9η3 + 9η2 − η − 1

) (
3ξ3 + ξ2 − 3ξ − 1

)
X10

Q3 = (−1

3
, 1) N10

Q3 =
9

256

(
9η3 + 9η2 − η − 1

) (
3ξ3 − ξ2 − 3ξ + 1

)
X11

Q3 = (−1,
1

3
) N11

Q3 =
9

256

(
3η3 + η2 − 3η − 1

) (
9ξ3 − 9ξ2 − ξ + 1

)
X12

Q3 = (−1,−1

3
) N12

Q3 = − 9

256

(
3η3 − η2 − 3η + 1

) (
9ξ3 − 9ξ2 − ξ + 1

)
X13

Q3 = (−1

3
,−1

3
) N13

Q3 =
81

256

(
3η3 − η2 − 3η + 1

) (
3ξ3 − ξ2 − 3ξ + 1

)
X14

Q3 = (
1

3
,−1

3
) N14

Q3 = − 81

256

(
3η3 − η2 − 3η + 1

) (
3ξ3 + ξ2 − 3ξ − 1

)
X15

Q3 = (
1

3
,
1

3
) N15

Q3 =
81

256

(
3η3 + η2 − 3η − 1

) (
3ξ3 + ξ2 − 3ξ − 1

)
X16

Q3 = (−1

3
,
1

3
) N16

Q3 = − 81

256

(
3η3 + η2 − 3η − 1

) (
3ξ3 − ξ2 − 3ξ + 1

)
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Q3S - Cubic Quadrilateral Serendipity Element

ξ

η

1 25 6

7

8

910

11

12

34

X1
Q3S = (−1,−1) N1

Q3S =
1

32
(η − 1)(ξ − 1)

(
9η2 + 9ξ2 − 10

)
X2

Q3S = (1,−1) N2
Q3S = − 1

32
(η − 1)(ξ + 1)

(
9η2 + 9ξ2 − 10

)
X3

Q3S = (1, 1) N3
Q3S =

1

32
(η + 1)(ξ + 1)

(
9η2 + 9ξ2 − 10

)
X4

Q3S = (−1, 1) N4
Q3S = − 1

32
(η + 1)(ξ − 1)

(
9η2 + 9ξ2 − 10

)
X5

Q3S = (−1

3
,−1) N5

Q3S = − 9

32
(η − 1)

(
3ξ3 − ξ2 − 3ξ + 1

)
X6

Q3S = (
1

3
,−1) N6

Q3S =
9

32
(η − 1)

(
3ξ3 + ξ2 − 3ξ − 1

)
X7

Q3S = (1,−1

3
) N7

Q3S =
9

32

(
3η3 − η2 − 3η + 1

)
(ξ + 1)

X8
Q3S = (1,

1

3
) N8

Q3S = − 9

32

(
3η3 + η2 − 3η − 1

)
(ξ + 1)

X9
Q3S = (

1

3
, 1) N9

Q3S = − 9

32
(η + 1)

(
3ξ3 + ξ2 − 3ξ − 1

)
X10

Q3S = (−1

3
, 1) N10

Q3S =
9

32
(η + 1)

(
3ξ3 − ξ2 − 3ξ + 1

)
X11

Q3S = (−1,
1

3
) N11

Q3S =
9

32

(
3η3 + η2 − 3η − 1

)
(ξ − 1)

X12
Q3S = (−1,−1

3
) N12

Q3S = − 9

32

(
3η3 − η2 − 3η + 1

)
(ξ − 1)
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Q4 - Quartic Quadrilateral Element

ξ

η

1 5 6 7

8

9

10

111213

14

15

16

2

34

23

24

17 18

25

22

19

20

21

X1
Q4 = (−1,−1) N1

Q4 =
1

36
η
(
4η3 − 4η2 − η + 1

)
ξ
(
4ξ3 − 4ξ2 − ξ + 1

)
X2

Q4 = (1,−1) N2
Q4 =

1

36
η
(
4η3 − 4η2 − η + 1

)
ξ
(
4ξ3 + 4ξ2 − ξ − 1

)
X3

Q4 = (1, 1) N3
Q4 =

1

36
η
(
4η3 + 4η2 − η − 1

)
ξ
(
4ξ3 + 4ξ2 − ξ − 1

)
X4

Q4 = (−1, 1) N4
Q4 =

1

36
η
(
4η3 + 4η2 − η − 1

)
ξ
(
4ξ3 − 4ξ2 − ξ + 1

)
X5

Q4 = (−1

2
,−1) N5

Q4 = −2

9
η
(
4η3 − 4η2 − η + 1

)
ξ
(
2ξ3 − ξ2 − 2ξ + 1

)
X6

Q4 = (0,−1) N6
Q4 =

1

6
η
(
4η3 − 4η2 − η + 1

) (
4ξ4 − 5ξ2 + 1

)
X7

Q4 = (
1

2
,−1) N7

Q4 = −2

9
η
(
4η3 − 4η2 − η + 1

)
ξ
(
2ξ3 + ξ2 − 2ξ − 1

)
X8

Q4 = (1,−1

2
) N8

Q4 = −2

9
η
(
2η3 − η2 − 2η + 1

)
ξ
(
4ξ3 + 4ξ2 − ξ − 1

)
X9

Q4 = (1, 0) N9
Q4 =

1

6

(
4η4 − 5η2 + 1

)
ξ
(
4ξ3 + 4ξ2 − ξ − 1

)
X10

Q4 = (1,
1

2
) N10

Q4 = −2

9
η
(
2η3 + η2 − 2η − 1

)
ξ
(
4ξ3 + 4ξ2 − ξ − 1

)
X11

Q4 = (
1

2
, 1) N11

Q4 = −2

9
η
(
4η3 + 4η2 − η − 1

)
ξ
(
2ξ3 + ξ2 − 2ξ − 1

)
X12

Q4 = (0, 1) N12
Q4 =

1

6
η
(
4η3 + 4η2 − η − 1

) (
4ξ4 − 5ξ2 + 1

)
X13

Q4 = (−1

2
, 1) N13

Q4 = −2

9
η
(
4η3 + 4η2 − η − 1

)
ξ
(
2ξ3 − ξ2 − 2ξ + 1

)
X14

Q4 = (−1,
1

2
) N14

Q4 = −2

9
η
(
2η3 + η2 − 2η − 1

)
ξ
(
4ξ3 − 4ξ2 − ξ + 1

)
X15

Q4 = (−1, 0) N15
Q4 =

1

6

(
4η4 − 5η2 + 1

)
ξ
(
4ξ3 − 4ξ2 − ξ + 1

)
X16

Q4 = (−1,−1

2
) N16

Q4 = −2

9
η
(
2η3 − η2 − 2η + 1

)
ξ
(
4ξ3 − 4ξ2 − ξ + 1

)
X17

Q4 = (−1

2
,−1

2
) N17

Q4 =
16

9
η
(
2η3 − η2 − 2η + 1

)
ξ
(
2ξ3 − ξ2 − 2ξ + 1

)
X18

Q4 = (0,−1

2
) N18

Q4 = −4

3
η
(
2η3 − η2 − 2η + 1

) (
4ξ4 − 5ξ2 + 1

)
X19

Q4 = (
1

2
,−1

2
) N19

Q4 =
16

9
η
(
2η3 − η2 − 2η + 1

)
ξ
(
2ξ3 + ξ2 − 2ξ − 1

)
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X20
Q4 = (

1

2
, 0) N20

Q4 = −4

3

(
4η4 − 5η2 + 1

)
ξ
(
2ξ3 + ξ2 − 2ξ − 1

)
X21

Q4 = (
1

2
,
1

2
) N21

Q4 =
16

9
η
(
2η3 + η2 − 2η − 1

)
ξ
(
2ξ3 + ξ2 − 2ξ − 1

)
X22

Q4 = (0,
1

2
) N22

Q4 = −4

3
η
(
2η3 + η2 − 2η − 1

) (
4ξ4 − 5ξ2 + 1

)
X23

Q4 = (−1

2
,
1

2
) N23

Q4 =
16

9
η
(
2η3 + η2 − 2η − 1

)
ξ
(
2ξ3 − ξ2 − 2ξ + 1

)
X24

Q4 = (−1

2
, 0) N24

Q4 = −4

3

(
4η4 − 5η2 + 1

)
ξ
(
2ξ3 − ξ2 − 2ξ + 1

)
X25

Q4 = (0, 0) N25
Q4 =

(
4η4 − 5η2 + 1

) (
4ξ4 − 5ξ2 + 1

)
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