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The distribution of passenger vehicles is a complex task and a high cost factor for automotive original
equipment manufacturers (OEMs). On the way from the production plant to the customer, vehicles travel
long distances on different carriers such as ships, trains, and trucks. To save costs, OEMs and logistics service
providers aim to maximize their loading capacities. Modern auto carriers are extremely flexible. Individual
platforms can be rotated, extended, or combined to accommodate vehicles of different shapes and weights
and to nest them in a way that makes the best use of the available space. In practice, finding feasible
combinations is done with the help of simple heuristics or based on personal experience. In research, most
papers that deal with auto carrier loading focus on route or cost optimization. Only a rough approximation
of the loading sub-problem is considered.

In this paper, we present two different methodologies to approximate realistic load factors considering the
flexibility of modern auto carriers and their height, length, and weight constraints. Based on our industry
partner’s process, the vehicle distribution follows a FIFO principle. For the first approach, we formulate the
problem as a mixed integer quadratically constrained assignment problem. The second approach considers the
problem as a two-dimensional nesting problem with irregular shapes. We perform computational experiments
using real-world data from a large German automaker to validate and compare both models with each other
and with an approximate model adapted from literature. The simulation results for the first approach show
that on average for 9.37% of all auto carriers it is possible to load an additional vehicle compared to the
current industry solution. This translates to 1.36% less total costs. The performance of the nesting approach

is slightly worse, but as it turns out it is well suited to check load combinations for feasibility.
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1. Introduction

According to the annual report of the German association of the automotive industry, VDA (2020),
more than 80 million passenger vehicles were sold worldwide in the year 2020. Despite constantly
evolving sales channels and retail models, the physical distribution of finished vehicles has not
changed significantly over the last decades. On their way to the end users, new vehicles are trans-
ported across multiple continents via trucks, trains, and ships. Due to the complexity, weight,
and value of new passenger vehicles, their distribution is a large, but essentially non-value-adding
cost factor for automotive companies. When choosing the transport carrier, car manufacturers try
to opt for train or ship transportation because of economies of scale. Despite the higher costs,
transportation by trucks, or so-called auto carriers, is often required because of their flexibility.

In research, the problem of distributing finished vehicles via truck is known as the auto carrier
transportation problem (ATP), and was first considered by Agbegha, Ballou, and Mathur (1998).
The ATP consists of two sub-problems:

e (1) The vehicle routing problem (VRP) in the scope of the ATP is the problem of how to
efficiently route the auto carrier along a road network to deliver vehicles to one or multiple
dealers.

o (2) The auto carrier loading problem (ACLP) is a combinatorial problem that searches for a
feasible set (and arrangement) of vehicles for a specific auto carrier.

Problem (1) is studied extensively in various research fields t hat i nvolve t raveling s alesman or
other VRP problems. Most of the literature in the domain of auto carrier transportation focuses
on VRPs with route, scheduling, or cost optimization from the view of logistics service providers.
Usually, the goal is to distribute a large number of vehicles from a single depot to multiple dealers
at different 1 ocations w ith m ultiple a uto c arriers a t m inimum c osts or a long t he s hortest route.
Regarding the loading sub-problem (2), the vehicles are to be allocated on the truck in such a way
that the load is feasible according to the restrictions of the auto carrier. Ideally, the vehicles are
sorted last-in-first-out a ccording t o t he o rder in w hich t he d ealers a re s upplied. T his minimizes
reloading along the route.

The ACLP is not trivial and is dissimilar to loading and packing problems from other research
fields. M any r esearchers s implify t he A CLP or c onsider s pecial ¢ ases s uch a s a uto c arriers with
static loading planes which makes them similar to Ro-Ro ships or auto trains. In reality, auto
carriers are highly flexiblein t erms o f1l oading c apabilities. T hey u sually h ave m ultiple loading
planes and platforms that can be moved horizontally and vertically. Some platforms can even be
rotated or physically extended. Car manufacturers aim to minimize costs by achieving high load
factors. The load factor is the maximum number of vehicles of one or of multiple different types

that fit on a single auto carrier. It is no easy task to determine optimal load factors because of
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the flexibility o ft he loading p lanes and p latforms, t he d ifferent ty pes of trucks, and the varying
geometries and weights of the cars. In practice, automotive OEMs and logistics service providers
usually rely on experience or simple heuristics. A common approach is to cluster the vehicles in
multiple categories according to their height and length. Each category is assigned a coefficient that
indicates how many vehicles of this category will fit on a single truck. A combination of vehicles
of one or multiple categories is assumed feasible, as long as the sum of their coefficients is below
a certain threshold. Within these categories the actual vehicle dimensions or individual vehicle
properties are not considered. This simple knapsack approach often results in combinations that
do not fully utilize the available capacity of the auto carrier or in combinations that are infeasible.
In this paper, we focus on the ACLP from the perspective of an automotive OEM. In this paper
we develop two different methods for approximating realistic load factors and compare them with

contributions of existing literature, the current industry solution and historic data.

1.1. Problem Statement

The decision maker is an automotive OEM (BMW Group) with a yearly production of about 2.5
million vehicles who aims to minimize distribution costs by utilizing the loading capabilities of
the auto carrier trucks. Because of the great variances in vehicle dimensions, and weights and due
to the complexity of modern auto carriers, the current heuristic is not sufficient fo r calculating
optimal feasible load factors. The decision maker has detailed information about the cars as well
as two different t ypes of auto carriers t hat are common a mong 1 ogistics s ervice p roviders i n the
European market. Because the storage capacity (parking space) in the factories is quite limited,
the vehicles should be shipped as fast as possible. This means that as soon as there are enough
vehicles available to build a single load for a specific d estination, t he O EM s ends t he transport
order to a logistics service provider. Because of that it is not possible to pool a larger number of

vehicles to build multiple loads simultaneously. A single auto carrier can load up to ten vehicles.

1.2. Contributions

We make the following contributions to the existing literature: (1) We formulate the ACLP as an
assignment problem and model it using a mixed integer, quadratically constrained linear program
(MILP). We recognize that auto carriers are highly flexible. Vehicles can be stacked on top of each
other with the help of rotational platforms. We consider the resulting height and length effects
within the model. This model also provides a feasible vehicle to slot assignment, thus, a guide on
how to allocate the vehicles on the auto carrier. (2) We propose a new approach for solving the
loading problem utilizing a geometric algorithm. For that, we adapt a classic nesting algorithm
for irregular shapes based on the No-Fit Polygon (NFP) that uses a limited look-ahead greedy

heuristic to generate realistic loading patterns. (3) We benchmark both of our methods with one
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of the more sophisticated approaches from literature (Dell’Amico, Falavigna, and Iori (2014)), the

current practice in industry, and historic real-world data sets.

1.3. Outline

The remainder of this paper is structured as follows. Section 2 provides an overview of relevant
literature. Section 3 explains the considered problem and its parameters. In Sections 4 and 5,
the MILP and nesting approaches are presented in detail. Section 6 evaluates the approaches in
comparison to benchmarks from literature and industry using real-world data. Section 7 provides

a discussion and managerial insights before Section 8 concludes.

2. Literature Review

A general overview of finished v ehicle d istribution a nd r elated p roblems t hat 1 argely f ocuses on
the ATP has been given recently by Sun, Kirtonia, and Chen (2021). The ATP consists of two
sub problems. The auto carrier loading problem (ACLP) revolves around assigning a given set
of vehicles to auto carriers. The routing problem describes the decision-making process of finding
the optimal sequence and route on which to deliver the vehicles to multiple dealers. Researchers
either focus on one of the problems or consider the combination of both problems in different
degrees of detail. The most common optimization objectives for studies that focus on routing is
to minimize costs by reducing total travel distance, time, or the number of required auto carriers
for a given set of vehicles (e.g. Tadei, Perboli, and Della Croce (2002), Dell’Amico, Falavigna, and
Tori (2014) or Chen and Wang (2020)). Since in this paper we are only concerned with the ACLP,
in Section 2.1 we concentrate on corresponding literature. Section 2.2 provides a brief introduction

to two-dimensional nesting problems for irregular shapes and relevant literature.

2.1. The auto carrier loading problem

The ATP was first a ddressed by A ghegha ( 1992) a nd | ater p ublished a s a r esearch p aper by
Agbegha, Ballou, and Mathur (1998). The authors focus exclusively on loading decisions and
propose a so-called loading network with nodes representing possible placement slots on the auto
carrier. These nodes are connected by arcs which define a certain unloading preference depending
on the type of the auto carrier (A vehicle can not be unloaded if it is blocked by a vehicle with lower
precedence). The optimization objective was to minimize the number of reloads given a specific
sequence of dealers. Thus, vehicles that are to be delivered to the first d ealers should b e on slots
with low precedence. The only loading constraints the authors include are single car constraints
that restrict certain slots for certain types of cars. They formulate the problem as an assignment
problem and solve it with a heuristic branch-and-bound algorithm. Chen (2016) expanded this

precedence network approach by allowing vehicles to be reloaded to any slot after unloading. He
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also introduced pairwise limitations to restrict certain slots due to larger types of vehicles occupying
two neighboring slots.

Literature that deals with the combination of loading and routing tends to not include vehicle-
to-slot assignments. Instead, the loading problem is formulated as a simple knapsack or bin packing
problem. Numerous authors of recent studies such as Bonassa, Cunha, and Isler (2019) or Chen
and Wang (2020) group vehicles of different d imensions in a fi xed number of classes. Ea ch class
is assigned a specific s ize c oefficient. As lon g as the sum of the coe flicients of a load is below a
certain threshold, the load is considered feasible. This is how the loading problem is commonly
approached in practice. Tadei, Perboli, and Della Croce (2002) formulated the ATP as a mixed
integer linear program. They clustered the different target destinations into regions. The algorithm
assigns vehicles to auto carriers and auto carriers to regions. The capacity of an auto carrier is
defined by t he combined available length of all loading planes. Vehicles are grouped into multiple
classes based on their size. Each class is assigned a certain coefficient, si milar to th e approaches
of Bonassa, Cunha, and Isler (2019) and Chen and Wang (2020). This coefficient is multiplied by
the actual vehicle length to approximate the equivalent length of the vehicle on the auto carrier
accounting for the flexibility o ft he ]l oading p lanes. T he a Igorithm d oes n ot s pecify individual
vehicle-to-slot assignments but checks whether the equivalent length of the set of vehicles is less
than the available length. Dell’Amico, Falavigna, and Iori (2014) propose an iterative local search
algorithm for the routing, combined with an advanced feasibility check for the loading. They adapt
the formulation for the ACLP of Tadei, Perboli, and Della Croce (2002) by considering the loading
planes individually. They also take the height and length effects o f d ifferent ve hicle ty pes into
consideration (e.g. large vehicles on a lower loading plane reduce the available space on the loading
plane above). A LIFO policy is imposed to avoid reloading when possible. A common feature among
the models that consider vehicle dimensions is the utilization of coefficients to approximately model
geometries or to account for the flexibility of the auto carrier. In reality, obtaining such coefficients
is a laborious and impractical task. It requires extensive analysis of historic data and constant
maintenance due to the continuously changing dimensions of the vehicles and changing properties
of the auto carriers. None of theses approaches includes detailed weight restrictions. This can lead
to infeasible loads in practice.

So far, very few authors have explored more advanced or alternative methods for solving the
ACLP. In an unpublished working paper Venkatachalam and Sundar (2016) proposed a branch-
and-price algorithm and claimed to solve the loading problem exactly. Indeed, their approach is
the most sophisticated so far, considering numerous height, weight and length constraints, length
and height effects o f angling c ertain p latforms a nd p recise v ehicle t o s lot a ssignments. However,

they only consider a type of auto carrier that does not allow to angle inner platform structures. In



Jack, Gonsch, and D6rmann Osuna: Load factor optimization for the ACLP
6 Article submitted to Transportation Science; manuscript no.3

their model it is only possible to reduce the effective height of vehicle p airs on vertical platform
pairs by adjusting the platforms’ angles. Vehicles are reduced to a single value for length, height
and weight respectively. Because of that, the calculation of length and height effects c aused by
angling the platforms is not exact. Two research groups have tried to consider the actual intricate
vehicle shapes. Liu, Smith, and Qian (2016) converted the shapes of the vehicles into polygons to
calculate length and height effects when vehicles are angled. However, they considered the loading
planes of the auto carrier separately and allowed to angle every vehicle on certain loading planes.
Hu et al. (2015) combined a geometric bin-packing algorithm with a learning procedure to discover
loading patterns from historic data. They present the only geometric bin packing approach so far
within the ATP research area. They did not develop a new approach but implemented one of the
heuristic algorithms proposed by Valle et al. (2012). They neither provide information about which
specific heuristic they used nor if t hey adapted the algorithm.

2.2. Nesting Problems

According to the typologies proposed by Dyckhoff (1990) and W dscher, Haufiner, and Schumann
(2007), nesting problems belong to the family of cutting and packing problems. They appear in
a wide variety of industries. Cutting and packing problems occur when we try to cut (place) a
predefined set of objects from (into) larger objects while respecting specific constraints. Examples of
industries where cutting problems arise are garment, sheet metal cutting, and furniture industries.
Packing problems appear for example in transportation or warehousing, where items are packed
on shelves or truck beds. The problem variants involving irregular shapes are often referred to
as nesting problems. Bennell and Oliveira (2008) provide a general overview of nesting problems
and their applications. In the domain of transportation, research is mostly limited to packing
regular shapes such as two-dimensional rectangles or three-dimensional boxes. Numerous papers
deal with capacitated vehicle routing problems or vehicle routing problems with loading constraints
for rectangle items. For surveys of integrated routing and packing problems, we refer the reader to
Tori and Martello (2010) and Guastaroba, Mor, and Speranza (2022). To create an understanding
for the complexity of the problem type we refer the reader to a notable publication from Iori,
Salazar Gonzalez, and Vigo (2007). They presented an exact approach for a vehicle routing problem
with two-dimensional loading constraints for rectangle items. They partition customers into routes
of minimum cost and take the weight and space constraints of the carrier into account. In the case
of rectangular items, it is easy to divide a stock sheet or a rectangular container into a limited
discrete set of possible locations. Irregular shapes, without orthogonal edges, with concavities or
holes, pose a much greater challenge. The possible positions on the stock sheet or within the

container are continuous, so there are infinitely many possible locations. Due to the increased
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complexity of the solution space, calculating good solutions is computationally intensive. The
scientific w ork o n ¢ utting a nd p acking p roblems w ith i rregular s hapes f ocuses p rimarily o n the
development of heuristic algorithms to solve large strip cutting or packing problems. Guo et al.
(2022) provide a review for algorithms and strategies that have been proposed for the problems
in recent years. A strip is a continuous sheet of material with a fixed height. In case we deal with
a strip cutting problem, the objective is to cut out as many items as possible and at the same
time minimize wasted material. The same problem can be applied to packing items into containers
with fixed height and length. Critical for t he p erformance and t he results of a nesting algorithm
is the so called geometric tool. Providing a comprehensive overview of tools for representing the
geometric problems and algorithms for solving irregular packing problems is not within the scope
of this paper. For that we refer the reader to Bennell and Oliveira (2008) or Leao et al. (2020).
The geometric tool chosen to deal with the problem affects s olution p recision, c omputing time
and the complexity of implementation. According to Bennell and Oliveira (2008), frequently used
geometric tools are for example the raster point method, direct trigonometry, phi-functions and
No-Fit Polygon (NFP). Raster point and NFP are popular tools for geometric packing operations
with irregular shapes. In recent publications, researchers have started combining both tools to
build more efficient hy brid he uristics. Mundim et al. (2 018) pr oposed th e No-Fit Raster (NFR)
approach based on the dotted-board model by Toledo et al. (2013). They transform polygons into
binary matrices and pre-calculate NFPs and inner-fit polygons (IFPs) by generating a discrete list
of feasible points within a container. To solve the optimization problem, for every new item, they
iterate through this list to find t he b est p osition for the item within t he container according to a
variety of placement rules. Souza Queiroz and Andretta (2020) improved the efficiency of the NFR
approach by combining it with a biased random key genetic algorithm and a variable neighborhood
search. Al Theeb, Hayajneh, and Jaradat (2021) built a mathematical programming model based
on the dotted-board model and the NFR to solve the problem with a commercial solver. In this
paper, we use the NFP because it combines the efficiency of th e ra ster po int me thod wi th the
high accuracy of the direct trigonometry approach. Burke et al. (2007) provides a comprehensive

algorithm for the creation of NFPs.

3. Problem description

The following section describes the investigated real-world problem in detail. First, we define our
problem, derive assumptions for modeling the problem and state the objective. Next, we explain
the features of modern European auto carriers and passenger vehicles, as well as the parameters

and constraints of our problem.
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3.1. Problem definition, assumptions and objective

We consider a vehicle distribution problem of a single automotive OEM (other players in the
industry face similar restrictions). Automotive OEMs often need to transport large quantities of
passenger vehicles from one hub to another along fixed routes (i.e., from a specific plant to a storage
facility). When there is no rail network available, auto carriers are used. Logistics companies carry
out the transports. Each transport is requested individually by the OEM. Remember, it is not
possible to accurately predict at what time which cars will be available for which location. Also the
storage capacity (parking space) is limited. Therefore, the process follows a FIFO principle, which
is visualized in the flow chart in Figure 1. Vehicles are provided by a source (plant, previous logistics
hub, or maintenance workshop) and parked in a large distribution storage facility. In this facility,
vehicles are parked in rows. Each row is reserved for vehicles destined for one specific location.
Once there are enough vehicles to build a full load in one row (green vehicles in the parking area in
Figure 1), the logistics provider is notified, and a transport order is sent. The maximum number of
cars in one load varies depending on the size and weight of the vehicles. Once the transport order
is sent, the row is closed. If a new vehicle for the same destination arrives, a new row is opened up.
The logistics service provider sends an auto carrier to pick up the vehicles. The row is now empty
and a new load can be formed. Even if there are multiple rows with vehicles for the same location,

the truck driver is not allowed to take vehicles from another row.
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Figure 1 Flowchart of the current real world process

Based on these real-world constraints we make the following assumptions for our model formula-

tions:
e Because the storage area is limited at all locations, vehicles are to be shipped as fast as possible.
As soon as there are enough vehicles available to form a load for a specific destination, the

transport order is shipped (FIFO).
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e When the vehicles of one row are loaded on the auto carrier the truck driver can decide where
to position which vehicle on his auto carrier. For every destination, we always only consider a
single auto carrier, that has to be filled before the next auto carrier is considered.

e Since it is not relevant for the current problem of our industry partner, for our computational
experiments we do not consider split deliveries (dealer deliveries). All vehicles are shuttled
in batches on fixed routes from one location to another. Locations can be production plants,
compounds, or transportation hubs such as ports.

e The decision maker has complete information about the shape, dimension, and weight of the
vehicles and about the dimensions and restrictions of the auto carriers.

Our objective is to find a feasible arrangement for a given set of vehicles that respects all loading
constraints to maximize the loading capacities of a given auto carrier in order to reduce outbound

logistics cost.

3.2. Features of European auto carriers

Figure 2 Example for an auto carrier

European auto carriers usually consist of a truck and a trailer, each holding a loading structure
with two parallel horizontal loading planes. Every loading plane can hold a specific n umber of
vehicles depending on its maximum length. Loading planes can be lifted vertically and certain
loading planes are horizontally extendable. Loading planes can be static levels or they can consist
of multiple independent platforms. Some of these platforms can be moved horizontally or can even
be angled with the help of hydraulics. Figure 2 shows a typical auto carrier with four loading
planes and ten possible vehicle positions. We refer to these positions as platforms. Some of these
platforms (e.g. 2, 3, 5, 8 and 9) can be rotated (angled) in order to stack vehicles. When a platform
is rotated, the effective length oft he vehicle on t hat p latform r educes w hile t he e ffective height
increases. These effects d epend on t he r otation angle o f t he p latform. T he r otation angle o f the
platform in turn depends on the height of the vehicle on the neighbouring platform. Vehicles can
stand in a forward or backward position and shift forward or backward along the platform.
Several constraints limit the capacity of auto carriers. Governmental regulations only allow

a certain length, height, and total weight for auto carriers (i.e. 20.75m maximum length, 4m
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maximum height and 40t maximum weight in Germany). In addition, every auto carrier has certain
constraints regarding the weight of the vehicles. There are weight limits for the truck and trailer
and for every level of the auto carrier. On top of that, every single platform also has a weight
constraint depending on its position. If it is angled, it can hold less weight due to unfavorable
weight distribution. Because of that, the weight constraints play a major role in the final allocation
of the vehicles. Since some passenger vehicles are very heavy (up to 3t), they have to be positioned
on two platforms to distribute their weight. The weight limitations are becoming more relevant as
more electric vehicles are built. Electric vehicles are heavier than similar vehicles with combustion

engines.

3.3. Parameters

Every auto carrier consists of multiple loading planes and every loading plane has a certain number
of platforms that can hold a vehicle. Typical auto carriers have a set of up to ten platforms P,
indexed by p and can load between four and ten vehicles. To check the feasibility of a certain set
of currently available vehicles K, indexed by k, we must consider individual platforms, but also
the interrelation of multiple platforms. For example, if we want to check the total weight on the
upper loading plane of the truck, we must combine the weight of the vehicles on platforms (1), (2)
and (3). To express these relationships, we define the following sets (where P(P) is the power set
of P):

Pr: Set L € P, CP(P) represents a loading plane with platforms that have a common
limitation on length (e.g. Pr ={{1, 2, 3}, {4, 5}, {6, 7}, {8, 9, 10}} for the auto carrier
in Figure 1).
For each set L there is a set of horizontally neighbouring platforms h(L) (e.g.,
h({1,2,3})={6,7} and h({4,5}) = {8,9,10} for the auto carrier in Figure 1)

Py:  Set H € Py CP(P) represents a set of platforms that have a common limitation on

height (e.g. Py = {{1, 4}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {6, 8}, {6, 9}, {7, 9}, {7, 10}}
for the auto carrier in Figure 1).

P4:  Set of platforms P, C P that can be angled (e.g. 2, 3, 5, 8 and 9 for the auto carrier in
Figure 1).
For each platform p € P, there is also a platform v(p) that holds the vehicle nested
below platform p when p is angled (e.g. v(2) =1,v(3) = 2,v(5) = 4,v(8) = 9,v(9) = 10
for the auto carrier in Figure 1)

Psp: Set of sets of platforms Psp C P(P) that can be combined to a split platform @ € Psp

to hold a single heavier vehicle (e.g. Psp = {{1, 2}, {4, 5}, {6, 7}, {8, 9}, {9, 10}} for
the auto carrier in Figure 1).

Pr:  Platforms T' € Pr C P(P) are either part of the truck or the trailer, with Urcp, = P
(e.g. Pr=1{{1, 2,3, 4,5}, {6,7,8,9, 10}} for the auto carrier in Figure 1).
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Every vehicle k € K has a certain length [, height h;, weight w; and is of a certain type ¢;. For
every set of platforms, or collection of sets, there are certain restrictions in order to comply with
legal requirements and the technical limitations of the auto carrier:

Ly: Length of loading plane L € Pp,

Eprer: Maximum extension of loading plane L € Py,

Byt Maximum total extension of neighbouring loading planes L € P, and h(L) (maxi-
mum extension before the loading planes touch)

Hipe: Maximum allowed height of the vehicles on vertical platform pairs H € Py

Wwmaz, Maximum allowed total weight of the payload

wp,"**: Maximum allowed weight on platform p € P

wa,'**: Maximum allowed weight on platform p € Py if the platform is angled

weg®®: Maximum allowed weight if platforms p are combined to build a larger platform
Q€ Psp

w7 Maximum allowed weight on truck and trailer 7' € Pr

wl7 ™ Maximum allowed weight on loading plane L € P,

4. MILP model

In this section, we present a mixed integer quadratically constrained assignment problem formula-
tion for the ACLP ((1) to (19)). The MILP formulation finds a feasible load configuration for a given
number of vehicles and a specific type of auto carrier. Similar to the formulation of Venkatachalam
and Sundar (2016), we generate a precise vehicle to slot assignment and consider height, length,
and weight constraints. We expand the concept by considering flexible loading planes and flexible
inner platforms. The concept of split-platforms which inspired constraints (4) and (8) was intro-
duced by Venkatachalam and Sundar (2016). Constraints (6) and (7) regarding continuous level
extensions are taken over from the model formulation of Dell’Amico, Falavigna, and Iori (2014).

Besides the standard assignment constraints (2) and (3) the remaining constraints are original.

4.1. Decision variables.
We now define the decision variables used in the MILP. Let xy, be a binary decision variable that

is equal to 1, if vehicle k € K is positioned on platform p € P and 0 otherwise.

1 if vehicle k is positioned on platform p

xkp = .
0 otherwise

Let a, be a binary decision variable that is equal to 1, if platform p € Py is angled and 0 otherwise:

1 if platform p € P, is angled
a, =
b 0 otherwise
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Let spy be a binary decision variable that is equal to 1, if platforms @ € Psp are combined to a
split-platform @, to hold a heavier vehicle:

o — 1 if Q is used
Po= 0 otherwise

Let d, be a binary decision variable that is equal to 1, if the vehicle on platform p is oriented in a
forward direction (in respect to the orientation of the truck) and 0, if the vehicle is oriented in the

opposite direction.

d, =

P

1 if the vehicle on platform p is oriented forwards
0 otherwise

Finally, we define a continuous variable e; that defines the extension of the loading plane L € P;.

The maximum extension is limited by parameter E7*** for every loading plane L € Py, i.e. e, <

max
Emas,

4.2. Objective function.

Our goal is to find a feasible combination for loading the set K of currently available vehicles k
on the platforms p € P of the auto carrier. Thus, we maximize over our decision variable xj, to
determine the best possible load factor. Based on our problem definition we repeatedly solve the
problem for every new vehicle that arrives. If the new vehicle does not fit, which is the case if
our objective value is smaller than the cardinality of K, we terminate this process. The load is

completed and the new vehicle that did not fit becomes the first vehicle in the next set for the

maxz Zxk,} (1)

following load.

peEP keK
4.3. Assignment constraints.

> Ty <l Wpe P @)

keK
Z Tpp <1 Vke K (3)

peEP
> 2w <1QI (1= spg) +5pq VQ € Psp (4)

keK peQ
2-a,< Zxkp+2xkv(p) Vp € Py (5)

keK keK

Constraints (2) ensure that every platform can only hold a single vehicle. Constraints (3) ensure
that every vehicle can only be positioned on one platform. Constraints (4) restrict using a platform
p when it is occupied by a vehicle on a neighbouring platform (split platform). The respective
platform p € @ € Psp can hold heavier vehicles if combined with another platform (sp, = 1).
Constraints (5) ensure platforms are only allowed to be angled when required (only if there are

vehicles on p and v(p)).
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4.4. Length constraints.

If a platform p € P4 C P is angled, the effective length of the vehicle on that platform is reduced
by a specific length reduction factor. The size of the length reduction factor of a vehicle k£ on a
platform p depends on the orientation, class, and original size of the vehicles on p and on v(p),
respectively. The total available length of a specific loading plane L € Py, depends on the length of
the loading plane L; and the value of the additional extension ey.

Because of the irregular shapes of the vehicles and because the loading planes are not perfectly
horizontal levels, there is no linear relationship between the angle and the length and height effects.
Because of that, we developed a procedure that approximates discrete angles and height- and
length effects. Since the calculation is quite complex, here we only provide a short summary of
the procedure. The calculations are detailed comprehensively in Appendix A. Figure 3 shows an
outline of the procedure for two facing sedans k; and k,. First, we calculate the required lifting
angle a. This angle depends on the height of the bonnet (Hp x2) of vehicle ky on the neighboring
platform. We assume that vehicle k; is angled so that its front wheel-axis is directly above the front
wheel-axis of the neighboring vehicle k,. Next, based on the lifting angle «, the original length of
the angled vehicle Ly, and the height of its bonnet Hp ;1 we approximate the height gain for the
angled vehicle. Since we always angle the vehicle so that its wheel-axis aligns with the wheel-axis

of the neighboring vehicle, its effective length can be approximated to the length of its wheelbase.

height gain

original height

effective length
original length

Figure 3 Calculation of the effective length and height if a vehicle is angled

ZZ ’Z“((")): Length reduction factor depending on the class (c,, ¢,()) of the vehicles on p and
""" neighbouring v(p) and their orientation d,,, dy(p)- The calculation of the length reduc-
tion factor is detailed in Appendix A.
lip: Effective length of vehicle k on platform p € P, if the platform is angled

0< e, < Emas VLe P, (6)
er +enr) < E7 VL € Pp, : max(L) < max(h(L)) (7)
Z GPS|Q’(1_SPQ) VQ € Psp (8)

PEQNPy
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Z Z lkpxkp—kz Z lkxkngL—i—eL \V/LEPL (9)
k€K peLNPy kEK peL\Py

Cp,Cy
lp = b= leap Ay, ) Vp € Py (10)

Constraints (6) limit the maximum extension of individual loading planes and constraints (7)
limit the maximum extension of neighboring loading planes. Constraints (8) ensure that if multiple
platforms are combined to hold a heavier vehicle, none of these individual platforms can be angled.
Constraints (9) restrict the available length on loading plane L € Py. If a platform is angled, the
effective length of the vehicle on that platform is reduced by a certain amount that depends on
the length reduction factor. The reduction amount is calculated in equation (10).

Note that for ease of understanding we write the problem as a mixed integer quadratically con-
strained problem. In the computational study, this is also our input to the solver, which obviously
efficiently handles our problem instances. The only quadratic constraints are Conditions (9) and

(11), which are straightforward to linearize with the help of auxiliary binary variables.

4.5. Height constraints.

The effective height of an angled vehicle is calculated in the same way the effective length is
calculated. Instead of reducing the effective length due to the gained space for the vehicle nested
beneath the angled platform on v(p), we must account for the height increase of the vehicle on

platform p e P, C P.

SZ ’Z““’): Height increase factor depending on the class, size and orientation of the vehicles
" on p and v(p). The calculation for the height increase factor is detailed in Appendix
A.
Pep: Effective height of vehicle k on platform p € P, if the platform is angled

ST g, + Y Y hiw, < HR VH € Py (11)

keK pcHNPy keEK pcH\Py

hiy = hic+ hiay 6, ) Vpe Py (12)

Constraints (11) limit the height of vertical platform pairs. If one of the platforms is angled, the

new effective height is calculated in the equations (12).

4.6. Weight constraints.

A variety of weight constraints restrict positions for certain cars or certain combinations of cars.
In addition to weight constraints for the truck, trailer and the individual loading planes, there are
also restrictions for each individual platform. There are different restrictionsifthe platformisin

a horizontal or angled position or if multiple platforms p are combined to a split-platform Q. To
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model this fact, we introduce an auxiliary variable v, that represents the weight limit according to

p’s current configuration.

Z WZrp < Yp Vp e P\ Py (13)
kEK
Z Wi Trp < apway ™ + (1 —ap)y, Vip € Py (14)
kEK

wey® if 3Q € Psp:peQAspg=1

where 7y, = { N (15)

wp, otherwise

Constraints (13) and (14) ensure that the weight on platform p is not exceeding the maximum
weight allowed on p in horizontal and angled position. If p € P4 is not angled, and a combined
platform @ is used, in equation (15) the maximum allowed weight is increased to wcg®*. This
means that each platform p € P4, N Psp has three possible weight limits, depending on the decision

if p € P, is angled or not and if p is combined with another platform to a split platform @ € Psp.

Z Z Wiy, < wlp ™ VL e P, (16)
keK pelL
SN wiay, <wtper VT € Py (17)
keK peT
Z Z wyxy, < WM (18)
keK peP

Constraints (16) limit the maximum weight on each loading plane, (17) limit the weight on the

truck and the trailer and (18) limits the total maximum payload.

4.7. Alternative objective function for split-deliveries.

In case a single auto carrier supplies multiple dealers, the vehicles on the auto carrier should be
ordered in a way that minimizes reloading along the route. This means that ideally the vehicles
destined for the first dealers can be unloaded more quickly than vehicles destined for later dealers.
For publications dealing solely with the problem of ordering the vehicles to reduce reloading we
refer the reader to Agbegha, Ballou, and Mathur (1998) and Chen and Wang (2020). We will
focus on improving the initial load according to a given dealer sequence. Our formulation builds
on the basic idea proposed by Agbegha, Ballou, and Mathur (1998). A precedence graph defines
the unloading costs for a specific slot on the auto carrier. We display the precedence graph of the
auto carrier from Figure 2 in Figure 4. We model the costs of reloading vehicles as a reward within

the objective function. First, we introduce two new parameters:
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Figure 4 Precedence graph for the auto carrier from Figure 2 when every platform is occupied.

i Priority of vehicle k € K. A higher priority means earlier delivery. g, € N

Cp: Unloading cost for unloading a vehicle from platform p € P. The cost is equal to
the total number of platforms that must be unloaded to access the desired vehicle
according to the precedence graph. ¢, € N

maxz Zwkp—i— ! (19)

pEP kEK ZPEP Zk‘EK xkpgkcp

The alternative objective function is displayed in function (19). The reward is the product of
the priority and cost vectors as a fraction of one. Since it is a maximization problem, we add the
reward to the original objective value. Ideally, high-priority vehicles are positioned on low-cost
platforms in order to minimize the value in the denominator of the reward term. Of course, using
this formulation the reward varies greatly with the number of dealers. However, the magnitude
of the reward does not matter since it is always less than one and because our objective value is
discrete. Ideally, the vehicles are ordered lexicographically according to their priorities. Vehicles
with low priorities are positioned on higher cost platforms and vehicles with higher priorities occupy

lower cost platforms.

5. Nesting approach

In the MILP approach in Section 4 we include detailed assignment constraints as well as relation-
based constraints between auto carrier platforms. Vehicle weights and weight restrictions are exact.
The calculation of the height and length effectsis approximate b ecause o f t heir n on-linear rela-
tionship. We do not consider the vehicle in its original, intricate shape but simplify it to length
and height parameters as well as approximate values for the required lifting angle and the corre-
sponding effect. In t his section, we propose a geometric approach that respects t he actual vehicle
shapes and the dimensions of the auto carrier.

We transfer the ACLP to a geometrical nesting problem by considering the vehicles as irregular
polygons which we pack inside an irregular container (the cargo area of the auto carrier). Vehicles
above a certain width can simply not be loaded on the auto carrier. Thus, we can reduce the shape
of the vehicles and the container to their two-dimensional lateral profile. Thegoalistofinda

feasible arrangement of vehicle polygons within the container so that:
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e All vehicle polygons are completely inside the container

e The vehicle polygons do not overlap with each other

Since the container area is continuous we do not generate vehicle to slots assignments. Therefore,
we cannot exactly assign the polygons to individual platforms. Instead, we aim to indirectly satisfy
the constraints from the MILP by including certain conditions within our nesting algorithm. The
following sections describe the geometric tool, the selection and placement heuristics, and the lim-
ited look-ahead placement algorithm. The geometric tool explains how we represent the different
geometric objects and how the geometric objects interact with each other. The nesting heuristic
explains the assumptions, rules and objective of our nesting approach (nesting algorithm). The
selection and placement heuristic is divided in a pre-layout phase and the limited look-ahead algo-
rithm. In the pre-layout phase we decide the initial ordering of the items. The limited look-ahead
algorithm determines the positions and orientations of the geometric objects within the container
using the framework of our geometric tool while following the rules and objective described in the

nesting heuristic.

5.1. Geometric tool

One of the key elements to design a geometric nesting algorithm is the choice of the so called
geometric tool. The geometric tool refers to a method to describe geometric objects and their
behavior in a way that can be understood by computers. In the domain of irregular packing
problems with non-convex shapes and containers, the No-Fit-Polygon (NFP) and raster methods
are the most common approaches due to their flexibility and performance.

The N F Psp between two polygons (A) and (B) can be generated by orbiting polygon (B) around
the boundary of polygon (A) while tracing a reference point of polygon (B). The resulting shape,
the NFP, is the original static polygon (A) aggregated with the path of the reference point of
polygon (B). This reference point can be any vertex of polygon (B). Therefore, there is no single
unique NFP for two polygons. Since the reference vertex of polygon (B) can move along the edges
of polygon (A) continuously, the position of polygon (B) is continuous. For the so-called Inner-Fit-
Polygon (IFP), a polygon (D) is positioned inside another polygon (C). IF Pcp is generated by
moving polygon (D) along the inner boundary of polygon (C) while tracing the path of a reference
point of polygon (D). Examples for the NFP and IFP are displayed in Figure 5 and Figure 6.

/e /BN |
A IFPco
A LA S A LA | NFPe
/ N\ \, / \ "
ya N %
B" / B\ )
Reference point h——— R Ittt Reference point

Figure 5 Example for NFP of two polygons Figure 6 Example for IFP of two polygons
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The main advantage of the NFP is that it can be pre-calculated. Through pre-calculation the
otherwise computationally intensive algorithm becomes a fixed cost in terms of computation time
(Toledo et al. (2013)). A recent concept, the No-Fit-Raster (NFR), combines the NFP with the
raster approach. Like the NFP, the NFR also allows pre-calculation. Both methods differentiate
between No-Fit (NF) and Inner-Fit (IF). We compared both, the raster and the NFP approach
in terms of accuracy and computational time for our application. For generating the No-Fit and
Inner-Fit polygons we used the approach provided by Burke et al. (2007). Generating the NF- and
IF- raster (IFR) is quite straightforward. A description of an algorithm can be found in Mundim
et al. (2018). The results of the comparison and a deeper analysis of NFP versus raster methods
for our application can be found in Appendix B. The comparison shows that pre-calculating the
IFP and IFR is feasible and can be done in less than an hour for all vehicles at nine different angles
and varying degrees of detail of the geometric representation. Neither for the NFP nor the NFR,
it is practical to pre-calculate the No-Fit relations due to a very high number of combinations
(53 vehicle types in two orientations at nine different angles). P erformance-wise, o n average the
raster method is slightly faster than the NFP approach for our application. However, for the NFP
approach, we can use a workaround for avoiding costly dynamic NFP calculations which we explain

in the next section.

5.2. Nesting heuristic

The assumptions and requirements stated in Subsection 1.1 also apply for the geometric nesting
approach. We need detailed information about the dimensions of the vehicles and the auto carriers.
In particular, for the auto carriers we know the minimum and maximum length of the levels and
the height at certain characteristic points. Based on these measurements and the legally allowed
limitations we generated polygons that represent the loading areas (containers) of the auto carriers.
The outlines of the vehicles are extracted from product images and scaled to the correct size
using a software tool. Instead of allowing continuous rotation, which would require much larger
computational efforts, we d etermined multiple discrete angles based on A ppendix A and through
experimentation. We pre-calculated the IFPs for all vehicle polygons at nine discrete angles in
forward and backward orientation for the containers of two auto carrier types. All IFP relations are
stored in a look-up table. The IFP relations include every discrete position of the vehicle polygon
inside the container, along with the translation vector that points toward the next position. To
further reduce computation time and simplify the inclusion of weight constraints, we take advantage
of the fact that the auto carriers only have two levels. We exploit that aspect in our heuristic by
splitting the containers into two semi-connected zones mimicking the top and bottom levels of the

auto carriers. Polygons are either inserted at the top or bottom level and must always touch either
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the top or bottom edge of the containers with at least one vertex. This also prevents polygons from
floating between the levels which is not realistic considering our application. Usually, the objective
of packing problems is to pack the items as tightly as possible in order not to waste any space. We
do not only focus on finding an arrangement of items that is tightly packed but that also considers
the constraints of our use case. We do not aim to minimize the height of the auto carrier but
consider the maximum allowed height as a constraint. Because of that, we do not gain anything
by leaving space above the polygons in the upper level. By splitting the container into zones, we
can indirectly include additional constraints. For each level, we know the maximum number of
platforms that can be angled as well as the weight constraints depending on the platform positions
(see Section 4.6).

Another big advantage of splitting the levels is that we do not have to calculate any NFPs. Every
polygon moves around the inner edges along the top or bottom of the container until it reaches
the end of the level or until it touches another polygon that is already placed in the container.
These movements are not calculated dynamically. Instead, we use the look-up table to find the
currently best position within the container (i.e. the leftmost feasible position from the table) and
the next translation vector. Now we only have to move the polygon for the appropriate amount
along the translation vector (towards the first infeasible p osition) until it reaches the last possible
position. The final position is either the end of the level or the point where the polygon touches but
does not intersect a polygon that is already inside the container. The polygon does not move any
further along the outer exterior boundaries of the other polygons that are already in the container.
Instead, the same polygon is inserted two times, once on the top and once on the bottom level.
On both levels, the polygons should be positioned as far to the left as possible. This means we
iterate between a left-top fill rule on the top and a left-bottom fill rule on the bottom level. This
placement rule is inspired by the zig-zag rules proposed by Mundim et al. (2018). In case there are
multiple positions with the same performance we choose the top-most position on the upper and the
bottom-most position on the lower level. In our application, the best position among all positions
is where the largest x-coordinate of the new polygon is the smallest (i.e. the rightmost point is as
far left as possible). We have also tested a right-fill rule but o bserved a worse p erformance. The
area of the truck (on the left) is more restrictive and intricate than the area of the trailer (on the
right). Because of that the algorithm struggles to find good arrangements to fill the area above the
driver’s cab of the truck. Additional tests showed that top and bottom fill ruleslead to big gaps
on the left and right ends of the auto carrier container. A visual scheme and further explanations

of the individual steps of the algorithm and placement rules are provided in Section 5.3.2.
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5.3. Selection and placement heuristic

The objective of the placement heuristic is to find the currently best possible position within
the container (considering the polygons that are already inside the container) for each vehicle
polygon. The algorithm takes one vehicle polygon at a time and determines the most favorable
angle, direction and position on the top or bottom level of the container using a limited look-ahead

algorithm following the top / bottom left-fill principle.

5.3.1. Pre-layout phase. As defined in the problem description in 1.1, the vehicles are pro-
vided on-line in a fixed sequence, and we follow a FIFO principle. In the pre-layout phase, we
determine an initial set of vehicles according to multiple acceptance criteria:

e The sum of the individual vehicle weights in the initial set is below the maximum allowed

weight limit of the payload

e The total surface area of bounding boxes around the vehicles in the initial set (minimum
enclosing rectangle around the vehicle polygon) is less than the surface area of the container.

e The maximum number of “heavy” vehicles is not reached yet. Heavy vehicles have to stand
on two platforms simultaneously due to their weight.

A variety of aspects can impact the computational intensity of a nesting algorithm. If the item
shapes are simple, if there are not many different types of items, if the rotation is limited, and if
the container is rather small, the computation times can be quite low. Because of that, researchers
often run hundreds or even thousands of iterations with random item orders and select the order
sequence with the best nesting performance. Another approach, which can be more suitable for
complex items, is the so-called best-fit approach. For the best-fit approach, the algorithm selects
the next item and its angle based on which item-angle combination displays the best performance.
This means, that for every new item, every single item and angle must be tested, and the order
is determined by the algorithm. An approach with a completely random selection of items and
random angles is not practical in our case due to the large differences between vehicle types and
the high number of angles and since we use a computationally more intensive limited look-ahead
algorithm (which will be further explained in the next Subsection 5.3.2). Considering that, we
propose the two following strategies to determine the order of the vehicle polygons:

e Limited look-ahead with increasing size: The vehicles are ordered in a single fixed sequence by
increasing size from the smallest to the largest vehicle according to the area of their bounding
box. The ascending order makes sense because the truck is more constrained regarding weight
and height than the trailer. In the real-world process, larger vehicles tend to stand further

back on the auto carrier.
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e Limited look-ahead with height consideration: The initial sequence is the same as in the
previous strategy. If there is a pair of vehicles that is too tall when stacked on top of each
other at any position of the truck or the trailer, one of the vehicles is moved forward in the
ordering. This process is repeated until every pair of consecutive vehicles in the order is below
the height limit. If the set does not allow such reordering due to many tall vehicles the process

is terminated.

5.3.2. Limited Look-ahead algorithm. The limited look-ahead algorithm is an adaption
of a best-fit approach with fixed order. Instead of evaluating the performance of a single polygon,
the algorithm always considers two polygons simultaneously. The motivation behind this approach
is that by always evaluating the performance of a polygon together with the next polygon in line

we can efficiently find matching pairs. Figure 7 shows a graphical scheme of the main steps of the

algorithm.
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Figure 7 Graphical scheme of steps 1. to 4. of the limited look-ahead algorithm

e Step 1: For the first polygon (1) we simply check all possible positions for the polygon at a
specific (arbitrary) angle within the container by accessing the pre-calculated look-up table.
We choose the position with the smallest maximum x-coordinate. Step one is displayed in the
first image in Figure 7. The blue polygons mark all possible locations, and the red polygon
shows the best position.

e Step 2: From the second polygon (2) onward, we separate the container in top and bottom
level. First, polygon (2) is inserted in the lower level (position (2.1)), then in the upper level
(position (2.2)). From right to left we check all possible positions within the container on both

levels. If at any position polygon (2) intersects polygon (1), it is considered infeasible. We then
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select the last feasible position in the sequence (which is one position prior to the infeasible
one) and apply the translation vector v, that points towards the infeasible position, to every
point of polygon (1). We also have to reverse the vector and apply it to every point of polygon
(2). We calculate the intersection points between polygon (1) and (2) along the translation
vector and trim the vector to a length so that the polygons touch but don’t intersect. After
applying the trimmed vector, we save the final position of polygon (2). After this is done for
every angle of polygon (2) at top and bottom level, we choose the angle that results in the
position with the smallest maximum x-coordinate. This position can either be at the top or
the bottom level. Step 2 is displayed in the second image in Figure 7, where polygon (2) marks
the final position. Blue polygons symbolize feasible, and grey polygons infeasible positions.
Step 3: Step 1 and step 2 are looped for every possible angle combination of polygon (1)
and polygon (2). For 9 angles that means 81 iterations in total. Out of all these combinations
we choose the angle combination with the best performance. This is the combination with
the left-most position of polygon (2). In case there are multiple combinations with similar
performances for polygon (2), among these we choose the combination that results in the best
performance for polygon (1). Now we permanently fix the angle of polygon (1). In order to test
whether it makes sense to reverse polygon (1), we temporarily reverse its orientation and once
more nest polygon (2) at all possible angles (another 9 iterations). If reversing the position
of polygon (1) only slightly affects the performance of polygon (2), we choose the reverse
orientation. Otherwise polygon (1) stays in a forward position. The position of polygon (1) is
now permanently fixed.

Step 4: For the next polygon, polygon (3), we must consider both, the fixed polygon (1) and
the still flexible polygon (2). Now we repeat step 1 to step 3 for Polygon (2) and polygon (3).
Since we now also have to consider polygon (1), whose position is fixed, for every angle of
polygon (2) we merge it with polygon (1) to a create a new polygon (1 + 2). We remove the
inner vertices of (1 + 2) which significantly reduces the computation time for the oncoming
polygons. This procedure is inspired by Oliveira, Gomes, and Soeiro Ferreira (2000). The
orange polygon in the third image in Figure 7 is the merged polygon. In this example, the
best position for polygon (3) considering the performance of the next polygon (4) is now on

the upper level.

Steps two to four are repeated for every polygon until the container is filled.

5.3.3. Indirect implementation of constraints. On top of the limited look-ahead algo-

rithm and the rules proposed in Subsection 5.3, we implemented further conditions to achieve

realistic vehicle polygon arrangements and to indirectly satisfy certain constraints of the MILP

model:
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In addition to the separation of upper and lower level we also separate the container into truck
and trailer area. For that we draw an imaginary line between truck and trailer. If a polygon is
more on the right side of the line it is considered to be on the trailer, if it is more to the left
it is considered to be on the truck. This allows us to respect the weight constraints for every
level. If a vehicle does not fit on a certain level due to its weight, it is forced to the level above
or below. If positioning the vehicle on the other level is also not possible, the vehicle stays on
the original level and the weight is added to the trailer instead of the truck. This process is
performed dynamically while the algorithm cycles through the different angles and polygons.
The separation of the levels and the separation of truck and trailer enables us to generate
vehicle-to-slot assignments with the nesting approach. On every level, we can just count the
polygons from left to right.

We only allow as many polygons to be rotated as there are platforms that can be angled.
Additional polygons, and polygons of vehicles above a certain weight limit are only allowed
to be angled to adapt to the slope of the top or bottom levels. Since we know which level a
vehicle is standing on, we can also consider the weight limits of the individual platforms which
can depend on whether the platforms are angled or not.

If the performance of forward and reverse orientation of a vehicle polygon is similar, we select
the reverse orientation because it will be easier to match with one of the following vehicles.
This is decided by a threshold value.

At predefined positions within the container the set of allowed angles is restricted. L.e. it is

not allowed to angle a vehicle if it is positioned directly behind the drivers cab.

Figure 8 shows the final result after running a full cycle of the limited look-ahead algorithm

considering the indirect constraints. The dashed line marks the imaginary separation between truck

and trailer.

Figure 8 Fully loaded auto carrier following the limited look-ahead algorithm

6.

Computational Experiments

We conducted a series of computational experiments using real-world data. In Section 6.1, we

present the approaches considered. In 6.2, we explain the procedure we use to evaluate the feasibility
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of the generated auto carrier loads and Section 6.3 informs about the test instances. In Section
6.4 we compare the different layout and nesting strategies proposed in 5.3.1. In Section 6.5 we
compare the results of the ACLP for randomly generated test loads based on route specific vehicle
volumes. Finally, in Section 6.6, we evaluate all approaches by using large sets of vehicles with fixed
sequences based on historical data to estimate potential savings. The sequences of the vehicles are
taken directly from real world data (the respective transport calendar for each route).

All experiments were performed on a PC with an AMD Ryzen 5 3600 CPU at 3.6 GHz and 16
GB of RAM. We implemented the algorithms in Python 3.9.10 and used Gurobi 9.5.1 for solving

linear programs.

6.1. ACLP approaches

In the following, we introduce the ACLP heuristics which we used for our benchmarks. For more
detailed information, we refer the reader to the cited literature and to the respective sections of
this paper.

e Industry Solution (IS): The current IS is based on an on-line knapsack approach with very
simple capacity constraints. The different vehicle types are clustered in five groups (nicknamed
T-shirt sizes in the industry) depending on their size. A coefficient is assigned to each of these
groups. Vehicles are allowed to be added to the current auto carrier load, as long as the sum
of their coefficients is below a certain threshold.

e ACLP model formulation by Dell’Amico, Falavigna, and Iori (2014) (DFI): The DFI heavily
relies on coefficients. Vehicles are clustered into 14 groups and every group has up to eight
coefficients for length and height effects. The levels of the auto carrier are constrained by
length. Large vehicles can reduce the available length on the level above or below based on their
groups’ height coefficient. The effective length of a vehicle on its own level is calculated based
on the actual length of the vehicle and the length coefficient of its group. We did not change
anything within the model formulation. The authors provided data on the categories and the
corresponding coefficients. We were able to assign most of our vehicle types to one of these
categories. Only very large limousines did not seem to fit in any of the groups. Because of that
we added another category and determined suitable coefficients. We did that by calculating
the average height and length of the vehicles in a similar category (i.e. mid-sized limousines)
and then scale up the coefficients to better represent very large limousines. The DFI does not
consider weight constraints.

e The MILP formulation presented in Section 4 (MILP).

e Nesting algorithm (NA): We investigate the two strategies presented in Subsection 5.3.1 and
denote them as limited look-ahead with increasing size (NA-LAH) and limited look-ahead
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with height consideration (NA-LAS). Furthermore, we also compare a basic best-fit with
random order approach (NA-Rand), which is common in the literature. Remember, basic best-
fit strategies find the best position and angle for the current item without considering the
next items. In our case the best position is the left-most feasible position in the container. We
propose the following best-fit strategy with random order: We randomly generate the order of
the vehicles. For each vehicle polygon, we determine the angle with the best performance using
the best-fit rule. That means for every polygon we evaluate 9 different angles. We compare
these three strategies in regards to solution quality and computation time with one-another.
Following, we choose the best strategy for our benchmark with the other ACLP approaches.
In Subsection 5.3.3 we explained that we use a threshold value for deciding if a vehicle should
be oriented forward or reverse. Based on experiments we have decided that if the performance
of a vehicle polygon in forward direction is only 5% better than in reverse direction, we choose

reverse direction.

6.2. Check load procedure.

We are not aware of any research group that considered checking the loads generated by their
ACLP heuristic for feasibility. However, this should be a decisive criterion, especially for integrated
loading and route optimization. Infeasible loads caused by the ACLP can disrupt the calculated
routing plan and schedule or can cause additional costs due to unplanned emergency transports.
Manually checking the loads using real vehicles and auto carriers is not economically feasible.
Because of that, we validate our results with a two-step validation procedure. First, we check if the
same set of vehicles was transported on this route by a single auto carrier in the past. If this is not
the case, we check the load using a combination of the MILP model and the NA. The MILP checks
whether the platform-related constraints are complied with and generates several feasible load
arrangements. This is done by using the "PoolSolutions” feature of the Gurobi optimization suite.
Since our objective function is discrete, by using this feature we can obtain multiple solutions with
the same objective value that fit within t he c onstraints oft he M ILP m odel. T'o avoid symmetry
issues (interchanging two vehicles of the same type), we filter out solutions with different ty pe to
platform arrangements. The ordering of the generated arrangements are used as the input sequence
for the NA. Because of the first step (checking against historic data), we presumably only have to
check a part of the original set of loads. This allows us to extend the set of discrete angles from
seven to twelve for the nesting algorithm without increasing the total computing time too much.
A load is declared infeasible if the nesting algorithm does not find any arrangement to be feasible.
By combining the MILP with the nesting approach we check for position related constraints and

geometric validity simultaneously.
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Figure 9  Vehicle distribution for the outgoing routes from plants P1, P2 and compound C3. The data relates to
the last quarter of 2021.

6.3. Test instances

Our industry partner BMW Group provided us with recent historic data for six high-volume
transport routes which are served by auto carriers. Four of these routes connect two plants (P1 and
P2) with two compounds each (C1 and C2). The two remaining routes are from another compound
(C3) to compounds (C4) and (C5). The compositions of the vehicle type mixes on the routes from
the plants are rather homogeneous. These routes mostly serve to transport vehicles manufactured
within the respective plant. The vehicle mixes on the routes from C3 to C4 and C5 are more
heterogeneous. This is because C3 is used to distribute vehicles from all over the world to the local
markets. Figure 9 shows the vehicle mix for each of the six routes. To display their variety in terms
of size, Figure 9 also includes information about the dimensions of the vehicle types. The dimension
of a vehicle type is expressed by the surface area of its lateral profile. F or o ur s imulations, we
have implemented two types of auto carriers for all of the considered ACLP approaches. The first
auto carrier type is very similar to the one considered by Dell’Amico, Falavigna, and Iori (2014).
It also matches the one displayed in Figure 2. The second auto carrier has a shorter truck and

a longer trailer. Based on the information provided Dell’Amico, Falavigna, and Tori (2014) and
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historical data, we adjusted the coefficients of the IS and the DFI for the second auto carrier type.
Adjusting the coefficients is quite simple because the auto carriers only differ in terms of the length
of the individual levels and the number of platforms that can be angled. In the case of the DFI,
we changed the length coefficients by comparing the number of rotational platforms. For example,
if there are three rotational platforms instead of two on one level, the length reduction coefficient
is multiplied by 3/2. If there are no rotational platforms the length reduction factor is zero. We
further adjusted both length- and height coefficients very slightly by trying out different values

and checking against historical data.

6.4. Comparison of different layout and nesting strategies

We randomly created 300 loads of 10 vehicles each, based on the vehicle mixes on the different
routes from the previous subsection. For the NA-Rand strategy we try one version with 10 iterations
and another one with 100 iterations. For every strategy we calculate the average number of cars
that fit inside the container (average load factor (ALF)) and the average computing time (Avg.
Time) for all 300 loads. Table 1 shows the results for each strategy. Strategy NA-LAS and NA-

Table 1 Comparison for different nesting strategies.

NA-Rand (10) | NA-Rand (100) | NA-LAS NA-LAH
ALF 6.72 6.83 7.04 7.08
Avg. Time [s] |2.91 27.83 4.28 4.33

LAH outperform the best-fit with random order approach with 10 iterations by 4.76% and 5.35%
respectively with a small increase in computation time. Increasing the iterations from 10 to 100
substantially increases the computation time. Even with 100 iterations the performance of NA-
Rand is worse than NA-LAS and NA-LAH which rely on the limited-look ahead algorithm. Since
both limited look-ahead strategies require the same amount of time (marginal difference mostly
due to varying CPU load) we will go ahead with NA-LAH. NA-LAH performs 0.56% better than
NA-LAS. For our test set there was not a single case where NA-Rand outperformed strategies
NA-LAS or NA-LAH. Figure 10 displays an example where the three strategies lead to deviating
load factors. Only NA-LAH could find an arrangement w here all vehicles fit within the container.
For the other strategies, the red polygon did not fit i nside t he c ontainer. A mong t he strategies
that failed to find a feasible arrangement, N A-LAS showed the best p erformance (least amount of

overlap).
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Figure 10 Visual comparison of the performance of the different strategies for an example load.

6.5. Comparisons and evaluation for randomly generated loads

For the first comparison, we r andomly g enerated 500 loads o f 10 vehicles each for all six routes.
The vehicle mix of in total 5000 vehicles is based on the extrapolation of historical data for the
respective routes. The individual loads are run through independently. Vehicles that do not fit in
the current load are not considered in the next load. For all ACLP approaches, we calculate the
average load factor (ALF) and the percentage of infeasible loads (INF) according to the check
load procedure. For the calculation of the ALF, every load that is not feasible is corrected first.
We indicate the performance increase (Perf) of the DFI, MILP, and NA in comparison to the
IS in percent. To show the significance oft he p erformance i ncrease ofthe A LF, we provide the
95% confidence i ntervals f or t he a bsolute d ifference be tween me ans (9 5% CI AL F). Evaluating
the performance of the ALF is useful to quantify potential monetary savings. However, the mean
value only expresses the actual improvement to a limited extent because the variance of the load
factors is very small. The decision that one more vehicle fits on the auto carrier, e.g., 7 instead of
6, has little effect on the ALF. If we consider optimization not at vehicle level but at auto carrier
level the impact is much greater. At auto carrier level we evaluate the absolute number of times
that an additional vehicle can be loaded in comparison to the IS. This is highly relevant for our
optimization problem because for the first 6 vehicles t he d ecision w hether t he vehicles will fit is
significantly easier t han for the additional vehicle 7. We introduce another p erformance indicator
that states the total number of cases in which the load factor is larger in comparison to the IS
(LF+) and 95% confidence i ntervals ( 95% CIL F+) for t he n umber o f c ases among a1l s ets in
percent. The calculation time (Time) refers to the entire set of 500 loads and is given in minutes.
Tables 2 to 5 show the simulation results for all ACLP approaches for each of the sets.

It turns out, that the MILP outperforms the other approaches on all sets in regards to Perf and
the number of infeasible loads. On average, the MILP performs 1.36% better and causes 33.33% less
infeasible loads compared to the IS. It appears, that none of the approaches performs significantly
better than the IS on homogeneous sets (1 and 2). On more heterogeneous sets, the DFI, MILP
and NA show significantly better results than the IS. The performance of the NA is 0.98% better
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than the IS, which places it between DFI and MILP. The performance of the NA also decreases
with the increasing heterogeneity of the vehicle sets, especially on Route 6. Looking at the Cls for
the ALF, the significance of the results is not entirely clear. However, by evaluating the utilization
through the percentage CI of the total number of load factor improvements we observe an increase
of up to 16.2% for the MILP. An increase in utilization rate of 16.2% means that every 6.17 auto
carriers an additional vehicle can be loaded. On average, the DFI increases the utilization of the
IS by 3.37%. The MILP increases the utilization of the IS by 9.37% and the utilization of the DFI
by another 6.00%. The NA increases the utilization of the IS by 6.63%. In terms of computing
time, the approaches differ g reatly. T he ¢ omputation t ime d oes n ot o nly i nclude t he t ime for
optimization but also the time to import the parameters and the time to construct the models in
case of the DFI and the MILP. The NA takes the longest for the 500 test loads with an average of
34.18 minutes. Even though we do not reconstruct the complete model in every iteration, the time
for constructing the model for the MILP is around twenty times slower than for the DFI. Model
construction refers to the time Gurobi needs to import all parameters and generate the constraints.

In terms of optimization, the MILP is on average fifteen times slower than t he DFI.

6.6. Comparisons and evaluation for historic loads

To evaluate the economic effect o ft he A CLP a pproaches, w e d o f urther s imulations b ased on
historical vehicle sequences. We no longer simulate the loads independently but based on a fixed
vehicle order. The performance of the respective optimization approach is indicated by the number
of auto carriers that are required to transport the complete sequence of vehicles. Unlike in the
previous simulation, vehicles that no longer fit into the current load are moved back to the beginning
of the queue and have to be considered in the next load. The results of the simulations can thus
be directly compared with historical data (HD). Performance indicators are the load factor (LF),
the performance increase (Perf) in comparison to HD, and the number of required auto carriers
(AC) for the given sets of vehicles. In practice, the IS is currently only used for routes 1 and 2 and
for loads that contain vehicle types that are manufactured in P1 (approximately 90% of all loads).
All other loads for routes 1 to 6 are created manually by employees based on personal experience.
Even though one of the approaches might perform worse, or only slightly better than the manual
process, it might still be worth it to use the approach. This is because the automation with the
help of optimization software can save costs (salaries) for the required employees. We again use
the check load procedure (see Section 6.2) to evaluate the feasibility of the loads. Table 6 shows
the historic data along with the simulation results for all ACLP approaches. It appears, that only
the MILP approach can match or improve the manually created loads for each of the six routes.

The NA performs slightly worse (-0.12%) on Route 4 and the DFI performs worse on Route 3 and
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Table 2 Simulation results for the IS

Route | ALF | Inf [%] Time [min]

1 7.064 | 1.00 0.01

2 7.022 | 0.00 0.01

3 6.586 | 2.60 0.01

4 6.768 | 0.00 0.01

5 [6.854| 4.20 0.01

6 7.418 | 1.20 0.01
AVG | 6.952 | 1.50 0.01

Table 3 Simulation results for the DFI in comparison to the IS

Route | ALF Perf [%] 95% CI ALF | LF+ 95% CI LF+ [%] | Inf [%] Time [min]

1 7.074 0.14 0.010£0.034| 5 1.00 £ 0.87 0.80 0.32
2 7.028 0.09 0.006 £0.019| 3 0.60 + 0.68 0.00 0.24
3 6.624 0.58 0.038 £ 0.061 | 19 3.80 + 1.68 2.00 0.21
4 6.814 0.68 0.046 &= 0.050 | 23 4.60 + 1.84 0.00 0.21
5 6.880 0.38  0.026 £ 0.057 | 13 2.60 + 1.39 3.00 0.36
6 7494 1.02  0.076 £ 0.069 | 38 7.60 & 2.32 1.80 0.30
AVG |6.98  0.48  0.039 + 0.044 | 16.83 3.37 £ 1.46 1.27 0.27

Table 4 Simulation results for the MILP in comparison to the IS

Route | ALF Perf (%] 95% CI ALF | LF+ 95% CI LF+ [%] | Inf [%] Time [min]

1 7.094 042  0.030 £ 0.036 | 15 3.00 £ 1.50 1.20 6.31
2 7.028 0.09 0.006 £0.019| 3 0.60 £+ 0.68 0.00 5.76
3 6.748 246  0.162 £ 0.058 | 81 16.20 £+ 3.23 1.00 5.64
4 6.898  1.92  0.130 £ 0.046 | 65 13.00 £ 2.95 0.00 4.45
5 6.962 1.58 0.108 & 0.068 | 54 10.80 + 2.72 2.00 6.11
6 7.544 170  0.126 £ 0.070 | 63 12.60 + 2.91 1.80 5.98
AVG | 7.046 1.36  0.091 £ 0.053 | 46.83 9.37 £+ 2.33 1.00 5.71

Table 5 Simulation results for the NA (Strategy 2) in comparison to the IS
Route | ALF  Perf [%] 95% CI ALF | LF+ 95% CI LF+ [%] | Inf [%] Time [min]

1 7.090 037 0.026 £ 0.027| 12 240 £ 1.34 1.40 33.31
2 7.028 0.09 0.006 £0.019| 3 0.60 + 0.68 0.00 35.80
3 6.701 1.75  0.125 £ 0.072 | 56 11.20 + 2.76 1.40 23.98
4 6.867 1.46  0.102 + 0.063 | 48 9.60 + 2.58 0.20 29.00
5 6.929 1.09 0.082 £ 0.045| 36 7.20 £ 2.27 1.20 44.21
6 7502 1.13  0.084 £ 0.052| 44 8.80 £ 2.48 2.60 38.75

AVG | 7.020 098 0.080 = 0.046 | 33.17 6.63 + 2.02 1.13 34.18

Table 6 Simulation results for ordered vehicle sets from historic data.

Route | HD IS DFI MILP NA
LF AC |LF Perf[% AC |LF Perf[% AC |LF  Perf[%] AC |LF  Perf[%] AC

6.880 297 6.973 1.35 294 7.003 1.79 292 7.045 2.39 291 7.039 2.31 291
7.060 298 7.077 0.24 297 7.077 0.24 297 7.077 0.24 297 7.077 0.24 297
6.719 186 6.642  -1.15 188 6.699  -0.30 187 6.724 0.07 186 6.721 0.03 186
6.787 178 6.711  -1.11 180 6.754  -0.49 179 6.787 0.00 178 6.779  -0.12 179
6.840 331 6.808 -0.47 333 6.852 0.18 331 6.912 1.05 328 6.877 0.54 329
7.344 249 7.335  -0.12 249 7.386 0.57 247 7.447 1.40 245 7.401 0.78 246

UL W N

AVG | 6.938 256.5|6.924 -0.21 256.8 | 6.961 0.33 255.6 | 6.998 0.86 254.1 | 6.982 0.63 254.7




Jack, Gonsch, and D6rmann Osuna: Load factor optimization for the ACLP
Article submitted to Transportation Science; manuscript no.3 31

route 4. By using the MILP it is possible to save up to six auto carriers on route 1. Since the data
only refers to one quarter of a year, the annual savings in complete auto carriers loads can amount
to up to 24 for route 1. On route 2, which is the most homogeneous, the performance differences
between the approaches are negligible. On route 4, only the MILP matches or slightly improves the
results compared to the manually created loads. It shows that the current IS on average performs

worse than the manually created loads.

7. Discussion and managerial insights

In this chapter we first discuss the simulation results of every approach individually. We evaluate
the performance in comparison to the current industry solution and identify possible influencing
factors. Following, we make more general observations on the advantages and disadvantages of the
approaches in regards to solution quality, performance, and applicability. We also comment on the

relevance of accuracy of the ACLP in regards to combined loading and routing problems.

7.1. Individual evaluation of the ACLP approaches
e Current industry solution (IS)
Remember, for the IS vehicles are clustered into a few groups and every group is assigned a certain
coefficient. Determining these coefficients is no easy task since it requires in-depth analysis of
historic data. Even small changes to the coefficients can greatly alter the results. It should be
possible to improve these coefficients, and thus the load factor, using learning algorithms. However,
an analysis of the simulation results shows that the main cause for infeasible loads is the violation
of weight restrictions. Since the weight is not considered in the IS, this approach will always lead to
a certain number of errors. In practice, this will become increasingly problematic with the ramp-up
of battery electric vehicle production because electric vehicles are usually heavier than vehicles
with combustion engines (Currently on the considered routes only around 3% are electric vehicles).
Simply adding weight as a constraint for the knapsack heuristic will not be enough since there are
weight restrictions not only for the auto carrier as a whole but also for individual platforms.
e The ACLP approach by Dell’Amico, Falavigna, and Iori (2014) (DFI)

The DFT is considerably more accurate than the IS but suffers from similar problems. Since length
restrictions are taken into account, adapting the model to new auto carrier types is more straightfor-
ward. Every vehicle group has eight coefficients to model length and height effects for the different
auto carrier levels. Thus, there are more adjustable parameters to calibrate the load factor com-
pared to the IS. Large vehicles on the lower or upper level reduce the available length of the level
above or below. Therefore, height and length coefficients must often be calibrated in parallel, which
requires a lot of work and experience. In practice, doing this manually for new types of vehicles

and auto carriers is undesirable in the long run. Similar to the IS, the DFI neglects important
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weight restrictions. This results in a considerable number of infeasible loads. Neither the IS nor
the DFI include precise vehicle to position assignments. As such, they cannot simply be expanded
to include all of the important weight restrictions. The weight restriction are a decisive factor in
where a vehicle can be positioned on the auto carrier. This is a major drawback of the DFI. It
also affects the LIFO formulation proposed by the authors which orders the vehicles according
to the order of dealers. In practice, the LIFO policy proposed by Dell’Amico, Falavigna, and Tori
(2014) will simply not be feasible considering the ramp-up of electric vehicle production. Since their
formulation simply does not include exact assignments it is not possible to accurately calculate
potential error rates. The main advantage of the DFI compared to the approaches proposed in this
paper is lower computing time.
e Mixed integer linear programming approach (MILP)
The MILP approach improves the DFI in two ways. First, since the vehicles are assigned to indi-
vidual slots on the auto carrier, weight restrictions can be adhered to very precisely. Second, the
coefficients for length and height effects are calculated based on the actual vehicle geometries.
Although this approach requires more input parameters, it saves a lot of effort since the coefficients
do not have to be determined manually. Even though compared to the other approaches the MILP
approach creates less infeasible loads, there are still errors. To ensure the replicability of the results,
we calculated the coefficients as shown in Appendix A. For the practical application, there is of
course the possibility to manually adjust the coefficients. This will slightly reduce the performance
but will lead to less or even no infeasible loads.
e Nesting algorithm (NA)

The performance of the nesting algorithm in terms of solution quality is right between the DFT and
the MILP. As shown in Section 6.4, the ordering of the vehicles and the nesting algorithm itself
have a significant impact on the solution. T he relevance of t he ordering is also further illustrated
by the performance increase of the NA when using the check load procedure which was presented
in Section 6.2. This is because, in contrast to loading the vehicles ordered by increasing size, the
loading sequence generated by the MILP considers the properties and respects the constraints of
the auto carrier. Because the auto carrier was separated into four zones, mimicking the different
levels, and because of the other constraints proposed in Subsection 5.3.3 only a handful of errors
were due to violation of weight constraints. Most of the errors, especially on route 6, are caused
by loads that consist of many small vehicles. For these loads, the NA tends to fit more vehicles on

the auto carrier than what is feasible in the real world.

7.2. General observations
None of the approaches can significantly i mprove t he 1 oad factor for homogeneous 1 oads. T his is

somewhat expected. In the development phase of a new vehicle type, the load factor of a completely
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homogeneous load only consisting of vehicles of that type is determined manually. Thus, it is
easier to maximize the capacities of the auto carrier and it is more straightforward to calculate
the loading coefficients for homogeneous loads. Following, there is not much room to optimize the
load factor. If the load does not consist of the same but very similar types, this advantage persists.
The more heterogeneous a load, the more difficult it is to balance the co efficients and determine
the best possible load factor. Compared to the other approaches, the NA is the only approach that
generates tangible, visual results that can easily be analyzed by human operators. The results of
the MILP are accurate regarding the vehicle to slot assignments, but the pre-calculated angles are
approximate and the natural shape of the auto carrier is not taken into account. Since the DFI does
not generate any concrete assignments, the results are very vague regarding the actual positions
of the vehicles and rotational angles of the platforms. The computational experiments show that
a combination of the MILP with the NA, such as the check load procedure, can significantly
increase capacity utilization while producing fewer errors compared to only using the MILP. At the
same time, the visual output generated by the NA gives the operators an inclination on how and
where to position the vehicles. However, a combination of both approaches can require up to three
minutes of computing time for a single load. In the future, it might make sense to develop a new
approach that combines the advantages of the MILP, which are precise vehicle to slot assignments
and consideration of loading constraints, with the geometric assessment provided by the NA in a
more integrated approach.

For the problem we address, computing time is a minor factor. This is because in practice we
have to follow a given production sequence and because the vehicles stand in a holding zone for
several minutes before they are assigned to a load. If the ACLP is to be combined with routing
optimization, computing times are of major concern. This is when it can be desirable to use a
quicker approach.

What is common among all the ACLP approaches is that the error rate increases with increasing
heterogeneity of the vehicle mix. Since the decision maker in our problem statement is a single
OEM, the total number of different v ehicle t ypesislimited. From t he p erspective o f a logistics
service provider working with multiple OEMs, there is a higher risk of infeasible loads since the
vehicle mix can be much more heterogeneous. This shows that an efficient ye t low er ror ACLP
approach is a critical success factor for the performance of integrated auto carrier loading and
routing problems. Researches usually assume that their loading algorithm always produces feasible
combinations. Errors are therefore not taken into account in the optimization. In reality, however,
errors lead to increased overhead and can even affect the entire t ransport schedule.

Transporting six vehicles with a single truck even though seven vehicles could have fit has

significant impact on transportation costs. E.g., on route 5, the costs to transport a single load are
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around 800€. When only six vehicles are transported instead of seven, the cost per vehicle is 133€
instead of 114€. For some vehicles this route is only one of many on their journey to the customer.
Based on the data provided by our industry partner, an increase of 1.36% in capacity utilization of
auto carriers can amount to seven digit savings year over year. In terms of sustainability, increasing
the load factor by 1.36% means the avoidance of over 500 tons of CO2 per year considering the

auto carrier transport volume for only Germany.

8. Conclusion

In this paper, we presented two approaches for solving the auto carrier loading problem for a
real-world transportation problem. The goal of the ACLP is to find a feasible arrangement for a
given set of vehicles on a single auto carrier. First, we improved current state-of-the-art model
formulations by modeling the ACLP as a mixed integer linear program with quadratic constraints
and binary decision variables. Second, we adapted and implemented a nesting algorithm that solves
the problem geometrically.

We have shown that the MILP approach outperforms the current industry solution and a state-
of-the-art approach from the literature. In comparison with the industry solution on average, we
can increase the load factor by 1.36%, increase the utilization in 9.37% of cases and decrease errors
by 33.33%. That increase of utilization means that on average every tenth auto carrier can load
an additional vehicle.

We do not have to rely on historical loading data to determine loading coefficients. Instead, we
developed a procedure that calculates height and length effects based on objective input parameters
(vehicle geometry and size). The presented methodology refers to the German market. Because of
the replicable modular modeling approach, the MILP model formulation can be easily extended
to other markets and different t ypes of auto carriers. T he nesting algorithm p erforms worse, but
still increases the load factor by 0.98% and the utilization by 6.63% compared to the current
industry solution. Both approaches perform better than the state-of-the-art ACLP formulation
from literature and produce less errors because they include weight constraints. As passenger cars
are becoming more heavy, this is an important aspect. The increase in performance comes with
a cost in terms of higher computation time. Since we isolated the ACLP due to our problem
statement, we did not require fast computing times. We acknowledge that our proposed algorithms
might be less suitable for application in integrated routing and loading problems with large data
sets. However, with the help of simulations, we have shown that more approximate approaches can
lead to solutions which are often infeasibile. Based on these findings we propose t hat future work
on the ACLP and ATP should be more attentive to real-world constraints and the complexity of

modern auto carriers. In case the solution approach is supposed to be implemented for day-to-day
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operation, and not only for occasional strategic decisions, it is very important to also consider the
effects on an operational level. A more visual approach, such as the nesting algorithm presented in
this paper, can help decision makers such as transport planners or even truck drivers to perform
their tasks.

Future work might evaluate the effect of relaxing the strict LIFO requirements so vehicles can
be pooled to build multiple optimal loads for the same destination at once. This can increase the
load factor but at the same time will require more storage capacity (a bigger parking lot). As a
next step, future work may assess the performance of integrated routing and loading problems
considering a more sophisticated ACLP formulation such as the MILP approach proposed in this
paper. Another future contribution could be to expand or adjust the MILP formulation to be more
accurate in terms of geometric precision. With the correct outputs, it might be possible to create
a visualization that is close to the actual arrangement of vehicles on the auto carrier in the real
world. An accurate visualization could not only support planning decisions but also support the
truck drivers on an operational level. With the check load procedure in Section 6.2, we pitched a
first idea to combine a MILP formulation with a nesting algorithm. A more integrated approach
may leverage the benefits of both approaches while avoiding their drawbacks. Another research
direction, albeit in a different field, could be to use ACLP modeling approaches to improve the

designs and features of new auto carrier types.
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Appendix A: Calculation of the loading coefficients

The coefficients for the effective height increase Heoe!/ and effective length decrease LS°/7 are calculated

Gain
for a vehicle k; that is on a platform angled above a second vehicle k5. In the following we explain how these
coefficients are calculated for the application in this paper. We only use the height, length and type of a
vehicle as an input. Thus, the calculations are approximate. We assume that k; is at an angle so that the
facing wheel axle of k7 is centered above the facing wheel axle of ko. Every vehicle is of a certain type t. There
are four types of vehicles, displayed in Figure 11: Limousine, Hatch, SUV and compact cars. Every vehicle
has a certain height H, length L and wheelbase Ly;,. The wheelbase is either known or can be approximated
to 60% of the total length for limousines and hatches and 70% for SUVs and compact cars. To determine
the required angle o we also need to know the height of the bonnet Hg and rear Hy of vehicle ks above its

wheel axles. This value depends on the total height and type of vehicle k5. Figure 12 shows the measuring

points Hp and Hy and Table 7 informs about their relative height according to H.

Figure 11 Vehicle types from left to right: Limousine, Hatch, SUV, Compact

Hgain, k1

Hj

LReduc, k1

x

Figure 12 Calculation of the coefficients for effective height increase and length decrease

Table 7 Calculation coefficients for the height of bonnet and rear for the different types of vehicles

Type Limousine Hatch SUV Compact

Hg 0.55 0.55 0.60 0.50
Hp 0.80 1.00 1.00 1.00

For the example displayed Figure 12 the required angle a can be calculated using Ly, and Hp ,:
o= sin? (H) (20)
Lw i,
Based on the vehicle types considered in this paper « is between 16° and 22° if k5 is facing k1 and between 25°
and 37° if k5 is not facing k;. The orientation of both vehicles k; and ks, is decided by the decision variables
d, and d,,. For calculating the approximate height gain coefficient Hé‘:;’;f x, for vehicle k;, we need the length
and height of vehicle k; and angle «. As displayed in Figure 12, angle « describes the lifting angle of the

wheel axle of vehicle k;. If we now want to calculate the effective height of vehicle k;, we have to apply angle
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a for the full length L, of vehicle k;. Additionally, we define a value to model the orientation and original
height of vehicle k;. As shown in Figure 13, this value amounts to approximately half of the height of the
bonnet or rear of vehicle k1, depending on its orientation. The length reduction is approximated based on
the length of vehicle k; and its wheelbase Lyy , . Since the facing axles of both vehicles are centered, the new
effective length of vehicle k; is approximately its wheelbase. The equation for the calculation of the height
gain coefficient Hg /!, for facing vehicles is displayed in (21) (If the vehicles do not face each other, Hp 41

is replaced by Hgy, ). The length reduction coefficient Lipcs/. ,  is calculated in equation (22).

~0.5*Hrn

Figure 13 Further calculations of the coefficients for effective height increase and length decrease

sin (a) - Ly, +0.5- Hg s,

coeff

HGain,kl ~ Hkl (21)

coe L
LRedfvjc,kl ~ L - (22)

k1

Adjusted for the model formulation in Section 4:

Height increase factor 5;22":((’:) = Hg‘z{f Ky (23)
length reduction factor )\,Cf; Z‘(‘; ’) =1- L%’:JJQ ke (24)

This approximation assumes that the vehicles are standing on perfectly horizontal levels. The slope of levels
or platforms of the auto carrier that are not horizontal are taken into account indirectly within the height

restrictions.

Appendix B: Comparison of No-Fit-Polygon vs. Raster approach
Raster methods are approaches that divide a continuous container area into discrete zones. The geometric
information of the container and the item shapes are transformed into binary matrices. In contrast to the
NFP and IFP, this means that there is a limited number of positions for every item inside the container. In
the most basic application, a reference point on the boundary of the item is positioned on every discrete point
within the container. The matrix of the item is added on top of the matrix of the container. If every point
of the item is inside the container the position is considered feasible. An example is displayed in Figure 14.
The resolution of the grid influences the accuracy of raster methods. A high resolution yields high accuracy
but is more costly in terms of computation time.

In the following sections of this appendix, we will compare different aspects of the No-Fit-Polygon approach

and the raster approach regarding solution quality and computation time for their application on the ACLP.
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Figure 14 Overlap test for rasterized polygons.

The comparisons include shape representation, No-Fit and Inner-Fit pre-calculation, and nesting perfor-
mance. For the polygon approach, the items are represented as a set of vertices connected by lines. For the
raster approach the items are converted to binary matrices. The accuracy of the geometries increases with
more vertices in the case of the polygons and higher mesh resolution in the case of the raster representation.
Figure 15 shows the effect of reducing the number of vertices of a polygon on the left and decreasing the
resolution of the matrix on the right. The initial image of the vehicle has a resolution of one pixel per cen-
timeter. We observe that reducing the number of vertices decreases the accuracy of the overall shape while

reducing the resolution decreases the accuracy of the representation of the edges.

36 vertices 2:1 resolution
22 vertices 5:1 resolution
15 vertices 10:1 resolution

Figure 15 Comparison of geometries NFP vs. Raster approach

B.1. Computation times for pre-calculating all NFP/NFR and IFP/IFR relations

There are 53 different types of vehicles and each vehicle should be rotated at nine different angles. Vehicles
can also be oriented forward or backward. For the IFP/IFR that means we have to pre-calculate a total
of 53 -2 -9 =954 combinations for a single auto carrier. For NFP/NFR we must calculate the relations
between all types of vehicles in both orientations, at all nine angles. This results in 53-53-4-81 =910.116
combinations. Table 8 informs about the computing times for NFP/NFR and IFP/IFR for 15, 22, and 36
vertices and a resolution of 10:1, 5:1, and 2:1 respectively. In total, we have computed 50 different NFPs /
NFRs and 50 different IFPs / IFRs. The average time is given in seconds.

Even though the computing times are rather short individually, looking at the number of combinations for
the No-Fit relations shows that pre-calculation is not practical. Even for the raster approach with a resolution
of 10:1 (which is a very rough representation of the item), the total theoretical calculation time for all NFR
relations amounts to more than 70 hours. Pre-calculating the IFP and IFR is much more promising with

computing times between 10 and 60 minutes depending on the detail of shape representation.
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Table 8 Computing time for IF and NF at different levels of detail.

Polygon (vertices) Raster  (resolution)
15 22 36 10:1 o:1 2:1

Inner-Fit [s] | 0.86 1.95 3.78 0.61 1.02 2.32
No-Fit [s] 0.88 4.02 56.31 0.28 1.76 9.03

B.2. Computation time and accuracy of the nesting algorithm

Figures 16 and 17 show a direct comparison of the results of the NFP and raster approach using the limited
look-ahead algorithm described in Subsection 5.3.2. Without pre-calculation, for nine different angles and
vehicles in forward and backward orientation, the algorithm requires 89 seconds for the NFP approach with
15 vertices and 65 seconds for the raster approach with a 10:1 resolution. For 22 vertices and a 5:1 resolution,
the algorithm requires 211 seconds and 147 seconds respectively. However, compared to the NFP approach,
looking at the figures the raster approach suffers much more from the decrease in resolution than the NFP
approach from reducing the number of vertices. For neither approach, it is practical to calculate the NFP
and NFR relations. However, if we consider the workaround of splitting the auto carrier into an upper and
lower level, which is proposed in Section 5.2, we do not need to calculate any NFPs. Instead, we only have to
do intersection tests. For the NFP approach, this means checking if any of the exterior lines of polygon (A)
intersect with any of the exterior lines of polygon (B), which is simple algebra. For the raster method, we
have to check if both polygon matrices overlap at one or more points. This means every time we move one
of the polygons a single step we have to loop through the matrices of both polygons to check for overlaps.
Rather than checking all possible positions within the container grid, we only check cells that are within the
polygon matrices. For example, this can be achieved by first identifying the bounding box of each shape and
then only checking the cells within these bounding boxes. Assuming a 5:1 grid resolution on average we would
require anywhere between 80 and 400 checks for every new item if we go through the feasible IFR positions
pixel by pixel resulting in 0.04 to 0.16 seconds of computing time for every intersection test. In comparison,
testing for line intersection requires 0.003 to 0.006 seconds. Even if we would reduce the resolution of the

raster or use a heuristic to reduce the number of checks by a factor of ten, the NFP approach still outmatches

the raster approach in terms of computing times.

Figure 16  Nesting with 5:1 resolution vs. 22 vertices

Figure 17 Nesting with 10:1 resolution vs. 15 vertices
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