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Abstract

Blood pressure is an important clinical parameter that is used to assess cardiovas-
cular health. Deviations from the normal range can lead to severe organ damage
and increased mortality, while sudden changes can indicate cardiovascular events.
Therefore, a regular ambulatory blood pressure measurement as well as a reliable
monitoring in clinical settings are essential for an accurate diagnosis and treat-
ment of such cardiovascular diseases and events. However, the commonly used
cuff-based measurement devices exhibit several limitations regarding accuracy,
temporal resolution and measurement comfort.

Therefore, this thesis investigates new methods for camera-based beat-to-beat
blood pressure monitoring. Such methods rely on the extraction of remote Pho-
toplethysmogram (rPPG) signals from skin pixels of the video. To overcome
illumination and movement artifacts as well as an insufficient Signal-to-Noise Ra-
tio (SNR) for darker skin tones, various colour model transformations and rPPG
extraction algorithms are evaluated with respect to the application for remote
blood pressure measurement. The experiments show that Plane Orthogonal to
Skin (POS) performs best under difficult measurement conditions and that con-
sidering skin pixels of the palm as opposed to the face significantly improves SNR
for darker skin.

Moreover, a method based on hand-crafted rPPG features and a Random
Forest Regression (RFR) model is proposed. To obtain a light-weight model and
increase prediction accuracy, a Sequential Forward Selection (SFS) is performed.
The prediction accuracy could be improved to an Mean Absolute Error (MAE)
˘Standard Deviation (SD) of 11.91 ˘9.66 mmHg for Systolic Blood Pressure
(SBP) and 7.92 ˘6.02 mmHg for Diastolic Blood Pressure (DBP) on a wide
range of blood pressure values outperforming comparable studies. An analysis
of the feature selection results is provided to enhance model interpretability for
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medical applications and aid future developments.
Next, based on the ResNet-50 architecture, a more complex Convolutional

Neural Network (CNN) is developed to automatically extract features from the
raw rPPG signals. Due to the small size of the rPPG data set, the model is devel-
oped and pre-trained on the MIMIC III waveform data base. This Photoplethysmogram
(PPG)-based beat-to-beat prediction method reaches an MAE ˘SD of 8.73 ˘7.36
mmHg for SBP and 8.07 ˘6.86 mmHg for DBP which is comparable to related
studies that rely on longer PPG sections or an additional ECG signal.
Further analyses underline the potential of model personalisation and the im-
portance of a balanced fine-tuning data set, since the results of personalisation
strongly depend on the selected tuning data and is prone to overfitting when
using sequential tuning samples. Therefore, different strategies are derived for
balancing the tuning data set in real-world applications.
Finally, transfer-learning from the PPG domain to the rPPG domain is assessed
and shows encouraging results on the rPPG data set with prediction errors close
to the feature-based method.
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Zusammenfassung

Der Blutdruck ist ein wichtiger klinischer Vitalparameter, der häufig zur Beurtei-
lung der kardiovaskulären Gesundheit herangezogen wird. Starke Abweichungen
vom Normalbereich führen zu schweren Organschäden und erhöhter Sterblichkeit,
und plötzliche Schwankungen können auf kardiovaskuläre Ereignisse hinweisen.
Daher sind eine regelmäßige ambulante Blutdruckmessung sowie eine zuverlässige
Überwachung im klinischen Umfeld für eine genaue Diagnose und Behandlung sol-
cher Herz-Kreislauf-Erkrankungen unerlässlich. Die gemeinhin verwendeten, auf
Blutdruckmanschetten basierenden Messsysteme weisen jedoch einige Einschrän-
kungen hinsichtlich Genauigkeit, zeitlicher Auflösung und Messkomfort auf.

Daher werden in dieser Arbeit neue Methoden zur kamerabasierten Beat-to-
Beat-Blutdruckmessung untersucht. Diese Methoden beruhen auf der Ableitung
von kontaktlosen Photoplethysmogramm-Signalen (rPPG) aus Hautpixeln des Vi-
deos. Um Beleuchtungs- und Bewegungsartefakte zu reduzieren sowie ein unzurei-
chendes Signal-zu-Rausch-Verhältnis für dunklere Hauttöne zu beheben, werden
verschiedene Farbmodelltransformationen und rPPG-Extraktionsalgorithmen hin-
sichtlich der Anwendung zur kontaktlosen Blutdruckmessung evaluiert. Die Ex-
perimente zeigen, dass POS unter schwierigen Messbedingungen am besten ab-
schneidet und dass die Berücksichtigung von Hautpixeln der Handfläche im Ge-
gensatz zu denen des Gesichts das SNR für dunklere Haut deutlich verbessert.

Außerdem wird eine Methode entwickelt, die auf manuell definierten rPPG-
Merkmalen und einem Random-Forest-Modell basiert. Um ein leichtgewichtiges
Modell zu erhalten und die Vorhersagegenauigkeit zu erhöhen, wird ein sequentiel-
le Merkmalsselektion durchgeführt. Die Vorhersagegenauigkeit konnte auf einen
MAE ˘SD von 11,91 ˘9,66 mmHg für systolischen Blutdruck und 7,92 ˘6,02
mmHg für diastolischen Blutdruck verbessert werden und übertrifft damit die
Ergebnisse vergleichbarer Studien. Zusätzlich wird eine Analyse der Ergebnisse
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der Merkmalsauswahl durchgeführt, um die Interpretierbarkeit des Modells für
medizinische Anwendungen zu verbessern und zukünftige Entwicklungen zu un-
terstützen.

Anschließend wird auf Grundlage der ResNet-50-Architektur ein komplexeres
Faltungsnetzwerk entwickelt, um automatisch Merkmale aus den rohen rPPG-
Signalen zu extrahieren. Aufgrund der geringen Größe des rPPG-Datensatzes
wird das Modell auf der MIMIC-III-Signaldatenbank entwickelt und vortrainiert.
Diese PPG-basierte Beat-to-Beat-Prädiktion erreicht einen MAE ˘SD von 8,73
˘7,36 mmHg für systolischen Blutdruck und 8,07 ˘6,86 mmHg für diastolischen
Blutdruck, was vergleichbar ist mit verwandten Studien, die auf längere PPG-
Abschnitte oder eine zusätzliches EKG-Signal angewiesen sind.
Weitere Analysen belegen das Potenzial der Modellpersonalisierung und die Re-
levanz eines ausgeglichenen Finetuning-Datensatzes: So sind die Ergebnisse der
Personalisierung stark von den ausgewählten Tuning-Daten abhängig und bei der
Verwendung sequenzieller Tuning-Samples zeigt sich eine hohe Anfälligkeit für
eine Überanpassung des Modells. Daher werden verschiedene Strategien für einen
ausgeglichenen Finetuning-Datensatz in realen Anwendungen abgeleitet.
Eine abschließende Bewertung des Transfer-Lernens von der PPG-Domäne auf
die rPPG-Domäne zeigt vielversprechende Ergebnisse auf dem rPPG-Datensatz
mit Vorhersagefehlern, die nahe an denen der merkmalsbasierten Methode liegen.
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Chapter 1

Introduction

Blood Pressure (BP) is a vital biosignal of the human body and a biomarker for
many diseases. High BP significantly increases the risk for strokes, heart attacks,
ischaemic heart disease, dementia and chronic kidney disease [1]. With over
25% of adults suffering from hypertension (i.e., Systolic Blood Pressure (SBP)
ě 140 mmHg or Diastolic Blood Pressure (DBP) ě 90 mmHg), it is a major
contributor to cardiovascular diseases which are the leading cause of premature
death worldwide [1]. Hypertension is also called "the silent killer" since it comes
without symptoms and slowly damages organs and the cardiovascular system.
According to the World Health Organisation, 46% of adults with elevated BP
are unaware of their condition and only one in five affected adults have their
hypertension under control [2].

Moreover, in the clinical setting, changes in BP can indicate a hypovolemic
shock, hypoxemia, infections or other conditions that require immediate treat-
ment. Therefore BP is closely monitored especially during surgeries and in the
Intensive Care Unit (ICU). During these high risk situations, an invasive measure-
ment is employed which is considered to be the gold-standard. For the invasive
measurement, a catheter with a pressure sensor is introduced into the patient’s
artery such that BP can be monitored continuously and at various locations along
the arterial tree. Despite the high accuracy and continuity of these measurement
systems, they are limited to critical clinical applications since they entail a high
risk for thrombosis and infections.

Hence, for common BP monitoring and ambulatory BP measurement, aus-
cultatory and oscillometric cuff-based devices are employed instead, which come
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without complications but exhibit inferior accuracy. Moreover, cuff-based sys-
tems are discontinuous with measurement durations up to a minute and cause
discomfort in many patients.

Other less established methods are vascular unloading, tactile sensors and
volume clamps, each with their own set of disadvantages.

1.1 Motivation

In order to overcome drawbacks of existing methods, recent research investigated
surrogate-based BP measurement approaches that take other biosignals such as
Photoplethysmogram (PPG) and Electrocardiogram (ECG) into account. PPG
is a non-invasive optical technique that measures changes in blood volume in pe-
ripheral tissues. For BP estimation, PPG has proven to be the most practical
surrogate signal due to the close physiological relationship with BP and the re-
quirement of only a single sensor [3]. However, conventional contact-based PPG
sensors apply constant pressure to ensure skin contact, which in the long term
changes the blood flow in the affected tissue.

In contrast, remote Photoplethysmogram (rPPG), a contactless approach based
on the same optical measurement principle, could enable a comfortable and safe
beat-to-beat BP monitoring in clinical settings. Further, contactless measure-
ment is more hygienic as no physical contact is required between patient, device
and clinician, reducing the risk of cross-contamination and infection transmission.
It reduces time and effort needed for BP measurement especially for patients in
isolation rooms since clinicians can avoid changing into and out of protective
clothing. This allows medical staff to allocate their time more efficiently to other
critical tasks.

Moreover, ambulatory BP monitoring would be facilitated. Camera-based
methods can be integrated into smartphone applications enabling ubiquitous BP
screening without the need for assistance or a healthcare professional. Such con-
tactless methods might encourage more regular measurements and enable better
management of chronic conditions like hypertension.

Contact with healthcare professionals or the physical sensation of a tight cuff
can induce anxiety in some individuals leading to elevated BP readings, a phe-
nomenon known as white coat hypertension. By minimising the factors that
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contribute to stress, contactless devices can help patients feel more at ease dur-
ing the measurement process, resulting in more accurate readings and reducing
the risk of misdiagnosis or overtreatment.

Hence, the development of contactless novel BP measurement techniques holds
great potential for overcoming the limitations of existing methods and revolution-
izing the field of clinical and ambulatory BP monitoring.

1.2 Scope of Work and Contributions

The work at hand aims at advancing such non-invasive camera-based BP mea-
surement from rPPG signals. This includes the generation of a suitable data set
for developing and testing the proposed methods, as well as analyses and opti-
misations of the contactless PPG measurement as the basis for subsequent signal
processing. The work aims at enhancing the rPPG signal for BP prediction while
considering difficult measurement conditions.

The main interest lies in the development of suitable machine learning models
for estimating BP from these rPPG signals. A leight-weight feature-based model
as well as a deep CNN are developed and tested on the acquired data set. Both
models are further used to analyse relevant PPG waveform characteristics for
BP prediction in order to increase model interpretability. Finally, fine tuning for
model personalisation is investigated to compensate the influence of individual
cardio-vascluar physiology.

All analyses are carried out under consideration of an application in real clin-
ical practice and target a beat-to-beat BP measurement from a single rPPG
signal. Although the focus is a camera-based method, the development of pre-
diction models on conventional PPG signals is used as a stepping stone for the
contactless approaches. Chapter 3.6 elaborates the specific research questions.

The contributions of this thesis are as follows:

• Conducting a comprehensive comparative analysis of multiple rPPG meth-
ods and colour models to refine rPPG extraction for accurate BP prediction
across various measurement conditions.

• Exploring and comparing skin regions to determine the most suitable ROIs
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for rPPG extraction, enhancing BP prediction accuracy across several mea-
surement conditions.

• Developing hand-crafted features and employing feature selection techniques
to create a lightweight regression model for BP prediction.

• Analysing the results of feature selection to gain deeper understanding of
underlying relevant PPG characteristics.

• Creating, training, and testing a CNN for beat-to-beat BP prediction from
raw PPG signals, achieving state-of- the-art results with reduced input in-
formation.

• Conducting analysis and evaluation of fine tuning to personalise the model
and account for individual physiological differences, enhancing its predictive
capabilities.

• Deriving several strategies to enhance the personalisation process, mitigat-
ing overfitting on the tuning dataset.

• Increasing transparency of the model’s decision-making process by analysing
layer activation patterns and correlations between PPG waveforms.

• Investigating and evaluating the potential of transfer learning from the PPG
to rPPG domain, enabling the application of knowledge learned from one
domain to enhance performance in the other domain.

1.3 Structure

Chapter 2 introduces relevant physiological and technical topics related to BP es-
timation from rPPG signals using machine learning methods. This is followed by
Chapter 3 which outlines previous studies and related work in this field. Chap-
ter 4 details the first approach of this thesis. It entails information about the
recorded rPPG data set, the image processing pipeline with the comparison of
detection and tracking algorithms as well as the development and results of the
feature-based BP measurement. In Chapter 5, the analyses and selection of rPPG
extraction methods and skin regions with respect to BP estimation performance
are described. Next, Chapter 6 comprises the CNN-based approach which is used
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for investigating model personalisation and transfer learning between PPG and
rPPG models. Finally, Chapter 7 provides a summary and discussion of the thesis
and its results as well as an outline of future work.
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Chapter 2

Theoretical Background

In this chapter, relevant biomedical and methodical background information is
provided. Generally, BP is an important physiological parameter which belongs
to and strongly depends on the cardiovascular system. Hence, in Section 2.1 the
cardiovascular system will be outlined with respect to its interrelations with and
influences on BP. In Section 2.2, the measurement principle of photoplethysmog-
raphy and related optical effects are described. This is followed by methodological
background on deployed signal processing (Section 2.3), machine learning (Sec-
tion 2.4) and image processing algorithms (Section 2.5).

2.1 Cardiovascular System

The cardiovascular system is a self-contained transport system which is driven
by the heart. A distinction is made between the two primary circulatory loops,
i.e., the pulmonary circulation loop and the systemic circulation loop [4]. The
larger systemic circulation loop connects the left ventricle with the right atrium to
supply the entire body (except heart and lungs) with oxygenated blood and at the
same time to remove waste products from body tissues. The de-oxygenated blood
is then returned to the heart where it is pumped to the pulmonary circulation.
Here, de-oxygenated blood is transported through the lungs where it picks up
oxygen and returns to the left side of the heart, i.e., the start of the systemic
circulation. The transportation of blood is essential for the supply, detoxification
and hormonal communication of all organs and cells in the body.

In the following Subsection 2.1.1, fundamentals of BP are introduced, followed

7



Chapter 2. Theoretical Background

by Subsection 2.1.2 and 2.1.3 in which the impact of the cardiac system on the BP
is described along the vascular tree and at the level of blood vessels, respectively.

2.1.1 Blood Pressure

The muscle contraction of the four-chambered heart results in simultaneous pump-
ing of both sides of the heart. Each heart beat consists of the contraction phase,
the systole, and the relaxation phase, the diastole. During systole, the heart
pumps out the blood from the ventricles into the circulatory loops. This is fol-
lowed by the diastole in which the heart fills with blood again. Due to inertia
of the blood already contained in the aorta, the ejection of the cardiac blood
volume produces a pressure wave which is propagated through the whole arterial
system [4]. Thereby, BP is defined as the pressure that is imposed by the blood
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Figure 2.1: Schematic image of a BP waveform.

on the walls of the vessels [5]. Due to the pumping of the heart, the arterial
pressure Pa changes periodically and thus, is typically indicated by two values as
illustrated in Figure 2.1. These BP values are commonly quantified in the unit
mmHg (millimetres of mercury). It originates from the use of mercury columns
in early sphygmomanometers, where the height of the mercury column indicated
the pressure in the cuff and hence, the arteries.

The SBP represents the peak value of the pressure pulse during systole while
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the DBP value refers to the minimum pressure during diastole. The difference
between these two values is referred to as Pulse Pressure (PP) [6]. For healthy
adults, normotensive arterial pressure values lie below 120/80 mmHg, while values
up to 140/90 mmHg are considered pre-hypertensive and above latter limit hy-
pertensive [7]. In contrast, hypotension is defined as pressure values below 90/60
mmHg. Deviations from normotensive pressure values can impact the health neg-
atively by damaging organs due to increased stress on their blood vessels, or, in
case of hypotension, caused by insufficient blood perfusion. In clinical settings,
the Mean Arterial Pressure (MAP) is used as well to assess BP levels and organ
perfusion [5]. From the arterial pressure curve Pa, the MAP Pmap within a cardiac
cycle Tc is derived as:

Pmap “
1
Tc

ż Tc

0
Paptqdt (2.1)

Individual variations in BP result from the combination of heart rate, stroke
volume, blood viscosity and the peripheral resistance of the vascular system [5].
For every person, the BP exhibits natural fluctuations throughout the day and
reacts to postural changes, stress, activity, drugs and disease [8]. Moreover, SBP
and DBP change along the arterial tree as detailed in Subsection 2.1.2. Therefore,
medically relevant BP values are measured at the arteries.

2.1.2 Vascular Tree

Blood circulates through the body or the circulatory loops via the vascular tree,
which consists of three general vessel types, the arteries, veins and capillaries.
The arteries and arterioles carry blood away from the heart. In the systemic
circulatory loop, this blood is highly oxygenated, whereas in the pulmonary loop,
it is de-oxygenated. Arterioles are smaller vessels branching off from the end of
arteries and connecting them to capillaries. Since in the circulation loop, arteries
are located right after the heart followed by arterioles, they have to withstand
high levels of BP. Therefore, these arterial vessels including the left ventricle are
defined as the high-pressure system [4]. Due to the force they are subjected to,
they are more elastic and have thicker walls than other vessel types. By dialation
during systole, the aorta and arteries are able to absorb around half of the cardiac
stroke volume which is released again during diastole due to the restoring force
of the elastic vessel walls [4]. Hence, the discontinuous blood flow produced by
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the heart is transformed into a continuous one by the so-called Windkessel effect.
The corresponding Windkessel model describes the cardiovascular system as

a closed hydraulic system. An analogy is drawn to a closed circuit with a water
pump connected to a chamber. The chamber is filled with water and air such
that pumping of the water compresses the air, which in turn continuously pushes
the water into the connected tube [9].

Capillaries are the smallest and most highly branched blood vessels. They
are running through almost every tissue in order to exchange nutrients, gases,
hormones and waste products. At the end of capillaries, venules begin and connect
them to veins. Veins return blood to the heart acting as a counterpart to arteries.
Since arteries, arterioles and capillaries absorb most of the pressure pulse, veins
and venules do not have to withstand the same force. Thus, they belong to the
low-pressure system together with the capillaries [4].

Pulse Pressure Amplification along the Arterial Vascular Tree

The arterial vascular tree is a complex network with branchings and taperings
where reflection occurs at arterial terminations and sites of impedance mismatch
[10]. At the end of the arteries, the pressure wave is reflected and reflection at
both ends will occur until extinction of the wave. Therefore, the pressure wave at
a given location appears as the sum of all forward and backward travelling waves.
The backward wave is related to the forward wave by the reflection coefficient
[10]

Γpfq “ Zlpfq ´ Zc
Zlpfq ` Zc

(2.2)

where load impedance Zl depends on frequency f , and the tube characteristic
impedance Zc is described as Zc “ pI{Cq1{2 with C denoting compliance of the
vessels and I being a constant representing arterial inertance. Superposition
of the backward wave and the forward wave increases peripheral BP, since at
the reflection sites, there is no time delay between both waves. On the other
hand, central BP is less affected, since the backward wave is shifted by 2 ¨ tPTT ,
where tPTT is the transit time of the pulse between heart and observed reflection
site. Hence, the BP waveform is undergoing amplification with increasing dis-
tance to the heart as shown in Figure 2.2. This process is called pulse pressure
amplification, where the pressure levels change along the vascular tree. During
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amplification, first, the SBP increases and the DBP decreases gradually towards
the smaller arteries, then both values drop and end up around 15mmHg at the
capillaries [5]. The MAP falls slowly but the pulse pressure increases until the
saphenous artery as illustrated in Figure 2.2.

Figure 2.2: The arterial pressure undergoes amplification along the arterial tree
caused by superposition of reflected pressure waves. SBP increases while MAP
slowly decreases. [11]

Pressure Waveform Distortion along the Arterial Vascular Tree

Further, amplification leads to morphological changes of the pressure pulse along
the arteries. Thereby, the shape of the waveform strongly depends on the distance
to the reflection sites and the arterial wall elasticity. Figure 2.3 depicts invasively
measured BP waves at various distances from the aortic arch visualising the
spatial dependency of the waveform morphology. At the end of the systole, the
pressure in the ventricle drops below the aortic pressure and briefly causes a
blood reflux which is immediately stopped by the cardiac valves [11]. As shown
in Figure 2.3, close to the heart, this leads to a small notch called incisura, which
disappears with increased distance from the heart. However, it is replaced by the
dicrotic notch which emerges due to superposition of reflected pulse waves.

Distortion in shape can further be attributed to BP-dependent compliance C
and arterial wall elasticity [10]. Compliance C “ dA{dPa is defined as the change
in cross-sectional area A divided by change in BP Pa, and generally decreases as
Pa increases following [10]

CpPaq “
As

πP1

„

1`
´

Pa´P0
P1

¯2
 (2.3)

for central arteries. Thereby, P0, P1 and As are subject-specific constants. Hence,
pressure wave morphology depends on BP along with subject-specific parameters.
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Figure 2.3: The arterial waveform changes along the arterial tree due to super-
position of reflected pressure waves. Whereas in the ascending aorta, the incisura
is distinct, at larger distances, it is attenuated by arterial wall elasticity. Instead,
the dicrotic notch appears. Its position depends on the distance from the heart
since it is caused by reflection off the aortic valve. [11]

2.1.3 Blood Vessels

Arterial walls consist of four layers which are responsible for hemodynamic regu-
lation of the BP: Endothelium, elastin, collagen and Smooth-Muscle (SM). The
innermost layer, endothelium, serves as a boundary for the blood flow, but its
effects on arterial wall mechanical properties are neglegible [12]. Elastin is a
highly elastic tissue which is responsible for tension and arterial elasticity at low
BP levels as soon as the arterial wall expands. Collagen, on the other hand,
is about 400 times [10] stiffer than the elastin layer and produces tension only
when the arterial wall is stretched, i.e. at higher pressure values. SM tissue is
mechanically relevant mainly in the peripheral arteries where it can modulate the
arterial elasticity dynamically [12]. The SM of arterioles and smaller arteries can
contract (vasoconstriction or stenosis) to regulate blood flow to different parts of
the body to adapt to varying circumstances. This regulation also affects BP since
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contracted arterioles decelerate blood flow out of the arteries and thus, increase
pressure on arterial walls.

Figure 2.4: BP and blood flow in a human artery during a Valsalva manoeuvre.
The BP waveform varies at different pressure values. [13]

During a Valsalva manoeuvre, vasoconstriction and vasodialation lead to a
brief increase in BP followed by a significant drop and an overshoot above baseline
after releasing. Mills et al. [13] recorded ABP during a Valsalva manoeuvre
capturing pressure waveforms at various BP levels as depicted in Figure 2.4.
Different morphologies can be observed in the waveform for different BP levels
which is caused by elastic properties of arterial vessel walls.

Arterial Wall Elasticity Model

Due to their different tissue layers, blood vessels have highly non-linear elastic
properties [14]. The force on the arterial wall is mainly carried by collagen, elastin
and SM. In this context, their combined Young’s elastic modulus E represents the
overall stiffness of the vessels. To better understand the arterial wall elasticity,
Mukkamala et al. [10] model the elastic properties under consideration of arterial
wall mechanics and wave propagation in the arteries.

Central arteries are sparse in SM and without the influence of SM serial colla-
gen is not recruited. Hence, central arterial elasticity is mainly influenced by BP,
where for low BP, only elastin determines the elastic modulus E of the arterial
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walls, and for high BP, parallel collagen contributes in addition to elastin.
In contrast, peripheral arterial elasticity is influenced by BP as well as by SM

contraction. During SM contraction, serial collagen is recruited. Again, parallel
collagen plays a roll in high-extension states only, hence, for high pressure, E is
determined by elastin Ee and serial collagen Esc, and for low pressure, by elastin,
serial collagen and parallel collagen Epc [10].

Further, their model considers viscous properties based on several in vitro and
in vivo studies [10]. A variable viscosity ηsm is introduced in the SM model in
parallel with the spring, such that for SM contraction, the arterial wall is vis-
coelastic, i.e., its elastic modulus is frequency-dependent. ηsm increases with SM
contraction. Increased strain is immediately carried by elastin and all recruited
collagen, but then, SM gradually expands until the stress is equally distributed
between SM and serial collagen. Thus, the elastic modulus E of any artery can
be described as a function of frequency, where elasticity at low frequencies Elf

Elf “ Ee ` Epc ` Esc ¨
Esm

Esc ` Esm
(2.4)

is smaller than elasticity at high frequencies Ehf

Ehf “ Ee ` Epc ` Esc (2.5)

Due to the low Esc in central arteries, frequency changes have a relatively low
impact on its elastic modulus. However, in the peripheral arteries, Esc is large
and depends strongly on frequency [10].

Blood Pressure Propagation Model

Considering the mechanical properties of the arterial walls, the vascular system
and the propagation of the BP wave can be modelled by the propagation of a
pressure wave in a cylindrical elastic tube network [6]. The energy coming from
the heart is transformed into elastic energy resulting in the periodic dilation of
the vessel walls which travels along the arteries. Looking at the longitudinal
coordinate X along the artery, the radial dilation r of the arterial vessel can be
described as a function of coordinate X and time t, rpX, tq, where r0 denotes the
inner radius of the vessel in the static condition. h is the thickness of the vessel
wall. A small element of the vessel tube of length ∆X and circumferential angle
dθ is considered. The following forces and moments are acting on the element
[15]:
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1. The restoring force FN is exerted from the deformation of the vessel wall
and acts in the radial direction.

FN “ ´EN
∆r
r0

∆Ordθ (2.6)

where elasticity modulus EN denotes the elasticity of vessel walls in radial
and circumferential directions.

2. The shear force FS is acting parallel to the X-axis restoring the wall ele-
ments orientation.

FS “ ErX
dr

dX
hrdθ (2.7)

where ErX denotes the shear modulus of the vessel wall.

3. The resistance force Ff caused by the blood viscosity ηi and the adherent
vessel wall and acts in the radial direction. Ff is considered to be propor-
tional to radial velocity vr “ dr{dt.

Ff “ ´ηi∆Xrdθ
dr

dt
(2.8)

4. The momentum M of the element in the radial direction is

M “ µ∆Xrdθdr
dt

(2.9)

with µ describing the density of arterial wall and adherent blood.

Based on Newton’s second law, from Equations 2.6 - 2.9 follows [15]

M “ FN ` FR ` FS ` Ff (2.10)

such that [15]

dθµ∆Xr d
dt
pr
dr

dt
q “ dθ

ˆ

´
EN
r0

∆Xr∆r ` pErXhr
dr

dX
q ´ ηi∆Xr

dr

dt

˙

(2.11)

With cancelling dθ in Equation 2.11 and further manipulations, for ∆X Ñ dX

in a uniform elastic vessel follows [6]

µ
d2Pa
dt2

` ηi
dPa
dt

` Pa
EN
r0
“ ErXh

d2Pa
dt2

(2.12)

Equation 2.12 approximates the propagation of the BP wave in the arterial system
considering uniform elastic vessels. When further introducing radial oscillation
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of the elastic wall with N harmonics ωn of fundamental vibratory frequency ω0,
Equation 2.12 can be solved by separating spatial and temporal dependences [6]

PapX, tq “
N
ÿ

n“0
PnpXq cospωntq (2.13)

The dominant oscillation frequency ω0 in Equation 2.13 of the pressure pulse
follows the heart rate, whereas the pressure waveform consists of other-order
harmonics which result from pressure wave reflections and modulations due to
respiration. To account for pressure pulse modulation and amplification, adoption
of amplitude modulation of propagating radio signals has been suggested [6].
Hence, while satisfying Equations 2.12 and 2.13, BP at different sites in the
arterial system Xi and Xi`1 is described by [6]

PapXi`1, tq “ PapXi, tq rβ cospωHRtq ` p1´ βqs (2.14)

where β lies between 0 and 0.5 and indicates the magnitude of amplitude modu-
lation of the pulse pressure.

2.1.4 Blood Pressure Surrogates

From the described physiological properties and relationships of BP, surrogate
parameters can be derived to measure BP indirectly. Some common surrogates
are derived from the Pulse Wave Velocity (PWV), such as the Pulse Arrival
Time (PAT) and Pulse Transit Time (PTT). The relation between PWV vPWV

and BP is described by the Moens-Korteweg relation [16]

vPWV “

d

E ¨ h

2r ¨ ρ (2.15)

where E denotes the combined Young’s elastic modulus of the vessel wall, h
denotes the wall’s thickness, r refers to the vessel radius and ρ is the blood
density. Thereby, elasticity modulus E is a function of BP (see Section 2.1.3).
In an in vitro study, Hughens et al. [17] investigated the relationship between E
and the transmural arterial pressure Pa and published the widely used empirical
formula

E “ E0e
αPa (2.16)
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where E0 and α ą 0 are constants that depend on the measurement location
and individual subject. A different modelling approach by other research groups
[18, 19] can be summarised as [14]

E “ p1´ σ2
q ¨
r2

0
h0
¨
BPa
Br0

(2.17)

where σ is a subject-specific constant, h0 denotes the thickness of the vessel wall
and r0 denotes the mean radius of the blood vessel. Equation 2.16 and 2.17 both
show that elasticity modulus E increases with BP Pa.

PTT tPTT represents the propagation time of the pressure pulse travelling with
PWV vPWV along an arterial segment of length γ [5].

tPTT “
γ

vPWV

(2.18)

Equation 2.15 and 2.18 show that tPTT decreases with increasing elastic modulus
E. In turn, elastic modulus E increases as BP increases (see Equation 2.16 and
2.17). From Equations 2.15, 2.16 and 2.18 the relationship between BP and PTT
can be derived as [16]

Pa “ α1 ln tPTT ` α2 (2.19)

where α1 and α2 are subject specific constants depending on the individual’s
physiology. In contrast to PTT, PAT comprises the Pre-Ejection Periode (PEP)
since it is measured between the electric excitation of the heart and the arrival
of the pressure pulse at an arterial site.

Some studies have been developing and investigating surrogate parameters
that are not derived from the PWV but rely on the PPG waveform analysis [20],
heart sound characteristics, impedancecardiography or ballistocardiography [5].
Relevant approaches related to the PPG waveform analysis are presented and
discussed in Chapter 3.

The previous sections have established the relationship between BP level and
BP waveform, where the waveform also strongly depends on individual physio-
logical factors such as the compliance of the vessels, arterial elasticity and the
distance of reflection sites to the heart (see Section 2.1.3). Further individual
influences on the PPG waveform as a BP surrogate emerge from the optical mea-
surement principle of the PPG signal which are detailed in the following Section
2.2.

17



Chapter 2. Theoretical Background

2.2 Photoplethysmography

Photoplethysmography is a method to optically measure blood volume changes
in subcutaneous tissue by taking advantage of reflective and absorbent properties
of skin tissues and blood components. Thereby, the local blood volume strongly
correlates with the BP pulse due to their direct physiological relationship. In this
section, the measuring principle is explained (2.2.1) and the optical properties of
human skin are detailed with respect to PPG measurement (2.2.2).

2.2.1 Measuring Principle

A PPG is typically obtained using a pulse oximeter which consists of a Light
Emitting Diode (LED) (red, infrared and/or green light) and corresponding photo
diodes. There is the transmissive method, often applied at the finger or earlobe,
where the LEDs and photo diodes are placed on opposite sides of the tissue to
measure the intensity of transmitted light. In contrast, for the reflective method,
the photo diode is placed next to the LED to measure reflected photons. Thereby,

Figure 2.5: Absorption of light in tissue components. [21]

the intensity of light returned to the skin surface strongly depends on the amount
of blood, since haemoglobin is one of the main absorbers and fluctuating with
every pressure pulse. This changing part of blood volume is mainly caused by the
pulsation of BP in the arteries and dilation of the vessels as described in Section
2.1.2. Figure 2.5 illustrates the absorption of light by tissue components over
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time. The relationship between BP Paptq and light intensity sensed by the photo
diode Q is established as [6]

Qptq “ ´κCPaptq `Q0 (2.20)

where κ is the modulus of absorbed energy during vessel dilation, C is the com-
pliance of the vessel and Q0 a fitting constant for reflections at tissue layers.

To select the optimal wavelength for a rPPG measurement, the optical prop-
erties of the different skin layers are considered in the following subsection.

2.2.2 Optical Properties of Human Skin

On the stratum corneum, the surface of the skin, approximately 4 to 7% of the
light is lost due to specular reflection caused by the refractive index change at
the air skin interface [22]. The remaining light is further affected by absorption,
scattering and diffuse reflection, whereby the magnitude of these events depend
on the tissue characteristics and light source (e.g. wavelength, polarisation).
The following paragraphs describe these optical events in more detail and outline
further influences on optical parameters of skin.

Light Absorption

The main absorbers in superficial skin tissue are melanin, haemoglobin and subcu-
taneous lipids [22]. The highest melanin absorption occurs at wavelengths below
510nm. While the absorption is still significant for red light, it exponentially de-
creases towards the Near Infrared (NIR) spectrum [23]. In contrast, maximal lipid
absorption takes place at longer wavelengths around 760 and 930nm [22]. An-
other dominant absorber is haemoglobin with three peaks in the visible spectrum,
the most dominant one in the blue region and the other two between 500 and
600nm wavelength [25]. Further, water in skin tissue absorbs light increasingly
at wavelengths above 800 nm [23]. Figure 2.6a depicts the absorption spectra
of melanin and blood components, while Figure 2.6b shows that absorption in
deeper skin layers is highly related to the absorption coefficient of haemoglobin.

Light Scattering

Light scattering describes changes in direction, polarisation or phase of photons
[25] and is caused by differences in refraction indices of the tissues and their
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(a) Absorption coefficients of melanin,
oxyhaemoglobin, deoxyhaemoglobin
and water. [24]

(b) Simulated absorption coefficients
of skin layers: (1) stratum corneum, (2)
living epidermis, (3) papillary dermis,
(4) upper blood net dermis, (5) reticu-
lar dermis, (6) deep blood net dermis,
(7) subcutaneous lipid layer. [24]

Figure 2.6: Absorption coefficients of 2.6a melanin and blood components, and
2.6b of skin layers as a function of wavelength.

surroundings. Cell membranes, melanin, haemoglobin, platelets, blood vessels
and fat cells are forward scattering elements. This means, that photons which
return to the skin surface have undergone a large number of scattering events. Due
to the wavelength dependence, on average, red and NIR light will have travelled
deeper than blue and green light [25]. Therefore, deeper lying blood vessels only
absorb light with longer wavelengths. Cellular organelles and collagen fibre, on
the other hand, scatter in all directions. In general, scattering in human skin
layers is greater for red light than for NIR wavelengths [22]. Scattered photons
may eventually be absorbed by one of the skin compounds, or after multiple
scattering events, may escape from the skin surface as diffuse reflection [23].

Influences on Optical Parameters

Nussbaum et al. [23] examined factors that affect the light penetration of skin.
They showed that in contrast to 840 nm light, the transmittance of 660nm light
significantly decreases with increasing skin darkness, i.e. density of melanin par-
ticles. However, this impact diminishes with target depth and increasing wave-
length [22]. Whereas the transmission rate of red light is not significantly affected
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by age and gender, for NIR (840 nm) the average transmission rate is only 66.4%
for females compared to that of males [23]. Further, Nussbaum et al. [23] showed
that the transmission rate is almost halved when having a 2-mm distance between
skin and light source compared to contact-based irradiation using pressure. As
a possible reason for the last effect, they suggest an reduction in blood volume,
but also the reflection at the air interface.

Figure 2.7: Reflectance pulsation spectrum relative to mean reflectance of the
skin, measured at the lower leg. [26]

Cui et al. [26] measured in vivo reflectance of blood and skin tissue at various
wavelengths. They observed a maximum in the reflectance pulsation spectrum
around 575nm with a peak 10 times larger than the modulation for red and NIR
light. Skin colour does not significantly affect the shape of the reflectance pul-
sation spectrum, but reduces the total reflectance pulsation magnitude. Another
study [24] confirms those results with a simulation of the reflectance spectra for
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0% and 40% blood volume in the upper blood net dermis.

2.3 Signal Processing

For this work, an additive noise model is assumed where the user signal is super-
imposed by noise. Most biomedical signals have small amplitudes and thus, are
sensitive to inferences of other signals and artifacts. In biomedical signals, noise
can originate from thermal noise due to vibration of electrons within the electrical
conductor [27]. Thermal noise is proportional to temperature and can be mod-
elled as white noise. In contrast to thermal noise, flicker noise inversely correlates
with frequency and is caused by non-constant flow of electrons at interfaces of two
materials. Another common source of noise is the power-line interference which
introduces a 50-60 Hz frequency due to electromagnetic fields of nearby electrical
equipment. CMOS image sensors suffer from thermal noise in the output ampli-
fier and flicker noise as well [28]. Further, noise is introduced as photo detector
shot noise which is caused by the random generation and flow of electrons and
relates to the discrete nature of electronic charge. Lastly, Analog Digital Con-
verter (ADC) can create quantisation noise at each pixels sensory input, where
it is assumed to be stochastic and uncorrelated with the user signal.

This section outlines signal processing fundamentals including filters, spectral
analysis as well as the multi-variate analysis method of Independent Component
Analysis (ICA).

2.3.1 Filters

A Finite Impulse Response (FIR) filter is a discrete time filter, where the output
y is computed as the sum of weighted past input values x [29]

yrns “
K
ÿ

k“0
bkxrn´ ks (2.21)

where bk is the weight coefficient assigned to the k-th previous input. Hence, the
FIR transfer function Hrzs can be described as

Hrzs “
K
ÿ

k“0
b´kk (2.22)
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An advantage of FIR filters is their linear phase response, since they have a zero-
phase distortion. Therefore, they are well suited for removing artifacts and noise
from biomedical signals.

A common frequency domain filter is the Butterworth filter [30] due to its
close-to-linear phase response and sharp frequency roll-off for high filter orders.
It’s amplitude response is defined as

|Hpjωq| “
1

b

1` pω{ωcq2n
(2.23)

with ωc being the cut-off frequency and n the filter order.

2.3.2 Fourier Analysis

Fourier analysis is the study of the frequency spectrum of a signal based on the
Fourier transform [31]. Mathematically, the Fourier series F pfq as a function of
frequency f is defined as

F pfq “

ż T

0
xptqe´2πiftdt (2.24)

where xptq is the input signal as a function of time t, and i denotes the imaginary
unit. Respectively, the Discrete Fourier Transform (DFT) for discrete periodic
signals is

F rks “
N
ÿ

n“1
xrnse´2πikn{N (2.25)

where k is the counter of frequencies in the signal. Thereby, the highest frequency
fmax in signal xptq must be lower than half of the sampling frequency fs. Hence,
the frequency resolution fr is

fs
N
ď fr ă

fs
2 (2.26)

The Fast Fourier Transformation (FFT) [32] is an algorithm for computation
of the DFT which reduces complexity by recursively breaking DFT down into
smaller parts such that complexity is reduced from OpN2q to OpN ¨ logNq.

2.3.3 Independent Component Analysis

ICA [33] is a signal processing method that aims at separating a multivariate
signal into its additive components, hence following the general objective of blind
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source separation. It is based on the assumption that these components are
statistically independent and non-Gaussian.

The j input signals xjptq are assumed to be a linear combination of the n
original independent signals sn, where j “ n. Dropping the time index, xj “
aj1s1 ` aj2s2 ` ... ` ajnsn are weighted sums of n independent components. For
an input matrix X “ px1, x2, ...xjq

T and independent component matrix S “

ps1, s2, ...snq
T , the generative model is given as

X “ AS (2.27)

with A being the mixing matrix that defines how the independent components
S are combined to form the input signals in X. Thereby, the model assumes
linear combinations of the sources of X. To reconstruct the original signals in S,
a unmixing matrix W is computed which is the inverse of mixing matrix A.

S “WX “ A´1X (2.28)

2.4 Machine Learning

Machine learning is a branch of artificial intelligence that enables algorithms to
improve automatically by the use of data. Machine learning algorithms optimise a
model based on training data by using statistical methods or exploiting recurrent
patterns. A trained model then can make decisions or predictions for unknown
input data without being explicitly programmed. Since training data are the basis
from which the algorithms deduce their models, it is essential to have a relevant,
well balanced and pre-processed data set prepared. In this section, Artificial
Neural Network (ANN)s and Random Forest Regression (RFR) are described
followed by feature selection and dimensionality reduction methods.

2.4.1 Artificial Neural Networks

ANNs are a subset of machine learning which emulate biological neural networks.
It consists of multiple processing elements, called neurons or perceptrons, that
receive an input and produce an output depending on a pre-defined activation
function. Typically, these neurons are arranged in layers such that outputs of one
layer serve as inputs to the subsequent layer. Each neuron typically receives mul-
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Figure 2.8: A single neuron of an ANN. All weighted inputs to a neuron are
aggregated and passed onto its activation function.

tiple inputs from previous layers. All n input values in of a neuron are multiplied
by its associated connection weights Wn and then aggregated (e.g. summation,
averaging, maximum) to a single input value ia for the neuron (see Figure 2.8).
From this input value, the neuron computes its output om by using an activation
function facti, such as a sigmoid, hyperbolic-tangent or other non-linear activation
function. This process takes place in each neuron of a layer and is propagated
through every layer until the output layer is reached.

A traditional feed forward neural network consists of an input layer where the
signal is received, an arbitrary number of hidden layers that learn the mapping
of input to output and can approximate any continuous function, and finally the
output layer which returns the prediction result. A neuron is usually connected
to all or multiple neurons of the previous and of the subsequent layer. As for
all network types, the size and dimension of the input dictates the number of
neurons in the input layer. Architectures made of these three types of layers and
a forward data flow are commonly referred to as Multi-Layer Perceptron (MLP).

The neurons are trained with a back-propagation learning algorithm. During
the forward phase of the training process, the weights are fixed and input data
is propagated through the network. From the predicted output and the ground
truth output, an error signal is computed with respect to the defined loss function
LpD,W q with D being a training sample andW being the set of all weights. Sub-
sequently, this error signal is propagated through the ANN in backward direction
while the weights are adjusted to minimise the error. By calculating the change
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in error with respect to the weight, the algorithm can determine how much each
weight Wn needs to be adjusted:

Wn “ Wn ´ a
BLpD,W q

BWn

(2.29)

where a denotes the learning rate. For every batch, the error is propagated
through the ANN updating the weights until the model stops converging.

While the described fully-connected layers are the most common type, there
are various other layer types as well. For image processing, convolutional layers
are deployed. Here, an n-dimensional set of weights, called kernel, is applied
to the input in a sliding-window fashion. At each position, an element-wise
multiplication with the input is performed and the output is then obtained by
summation of these products. The kernels describe the probabilities of a given
pattern of pixels representing a feature. Convolutional layers are usually paired
with pooling layers to reduce the size of the passed data.

When designing a neural network, several aspects need to be considered. The
network type depends on the input data (e.g. separate features, time series, signal,
image etc.) and the task that should be accomplished (e.g. time series prediction,
classification, regression, sequence to sequence prediction, image to text etc.).
These networks can become arbitrarily complex and for each task there may be
many different approaches that could lead to the desired result. In general, when
deciding for an architecture, performance and computational complexity play a
role. For feed-forward ANNs or MLPs, it has been mathematically proven that
with a single hidden-layer, any continuous function can be learned. The optimal
number of hidden layers and neurons has to be determined empirically. Whereas
too few neurons or layers limit learning capabilities, too many neurons or layers
produce overfitting. This consideration is also known as the bias-variance trade-
off and depends on the complexity of the relationship to be learned and the quality
and size of training data. The data set plays an essential role in the successful
training of an ANN and has to be representative of all target output values. More
hyper-parameters to be tuned in search of the best MLP model are listed and
explained in Table 2.1.
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Table 2.1: Hyper-parameters of MLPs.

Hyper-parameter Description
Number of hidden layers More hidden layers can model more complex functions, but tend to overfit.
Neurons per layer More neurons per layer can model more complex functions, but tend to overfit.
Activation functions Activation function of the neurons, where om “ ia ¨ facti

Regularisation Reduces overfitting, but limits learning capabilities if too strong.
Optimiser Learning algorithm. Each has its strengths and weaknesses.
Loss function For calculating the loss in the training process after the final layer.
Learning rate Step size for updating the weights in the learning process.
Batch size Number of data samples passed through the ANN at once.
Number of epochs Number of times the ANN sees the whole data set (if steps per epoch = number of batches).

2.4.2 Random Forest Regression

RFR is a supervised machine learning algorithm and belongs to the ensemble
learning methods which consist of multiple weaker models [34]. In ensemble
learning, the results of multiple weaker classifiers or regressors is averaged in
order to form a single strong model. The assumption for this is that the errors
of each model are independent and cancel each other out.

A RFR deploys decision trees as base models which resemble a tree-like struc-
ture. Each of these decision tree starts with a single node which splits into two
paths (branches) based on a specific feature’s value. This structure is repeated
recursively until a terminal node (leaf) is reached. The leaf nodes hold the deci-
sion trees’ output values which finally are aggregated among all trees forming the
overall output. All calculations are performed in parallel and the decision trees
are build independently from each other.

For training, the data set is split into randomly sampled subsets for each of the
decision trees to build. At each new node for the decision tree, the feature out of
a random feature subset is chosen as criterion that minimises the prediction error
most. This recursive partitioning process is repeated until a stopping criterion is
met. Due to the ensemble learning technique, RFR has a low risk of overfitting.
Further, it can handle missing values and non-linear parameters efficiently while
beeing robust to outliers and noise.
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2.4.3 Feature Selection

In most data sets, not all features contribute to prediction accuracy of the model.
Therefore, feature selection algorithms are deployed which find those features
that are most relevant for predicting the target variable. Thereby, they remove
irrelevant and redundant features which may decrease the model’s accuracy. In
general, fewer features are desirable due to a reduced model complexity and
hence, less training data is required. There are three types of feature selection
algorithms: filter, wrapper and embedded methods.

Filter methods use statistical measures to assign scores and rank the features.
These methods usually are univariate and consider each feature independently or
with respect to the target variable. Therefore, they do not remove multicollinear-
ity or redundant features [35].

Wrapper methods select features by evaluating combinations of features on a
prediction model. Different methodical, stochastic or heuristic search processes
can be used to add or remove features iteratively, and each combination is eval-
uated based on model accuracy. This makes wrapper methods computationally
very expensive, but enables them to find the best feature subset. Sequential For-
ward Selection (SFS) is a wrapper method where features are sequentially added,
starting with a single feature and terminating when no further improvement is
obtained by adding more features. In every iteration, model accuracy is evaluated
with each of the remaining features as addition into the selected feature subset.

Finally, embedded methods select features while the model is being created
[35]. A popular example is to introduce regularisation to penalise complex models
by discarding irrelevant features. Another example for embedded methods is
feature importance in tree-based algorithms.

Feature selection as well as dimensionality reduction methods reduce the num-
ber of features that will be used as input to the model. However, feature selection
algorithms pick the most relevant features without changing them, whereas in
dimensionality reduction, the information of all features are condensed by com-
bining them into new features.
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2.4.4 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction method for
a data set with interrelated variables, where the coordinate space is transformed
such that the new hyperspace maximises the variance of the data [36]. Thereby,
the first Principal Component (PC) PC1 is the line that best approximates all
data in the original coordinate space. Respectively, the second PC PC2 is the line
that best approximates the data’s variation on an axis orthogonal to PC1, and so
on. Hence, the PCs represent a new set of uncorrelated features (or dimensions)
each consisting of a linear combination of the original features (or dimensions).

To obtain these PC, a covariance matrix B “ f ˆ f (where f is the number
of original features) is created from the standardised data set and describes the
covariance of each possible combination of two features Bx,y. From this, the
eigenvectors and eigenvalues of B are computed. The eigenvectors then indicate
the directions of variance in the data set and the eigenvalues their magnitude.
Consequently, the eigenvector belonging to the highest eigenvalue is PC1. To
reduce dimensionality, eigenvectors with low eigenvalues are eliminated.

2.5 Image Processing

BP estimation methods in this work are based on image data. Therefore, im-
age processing forms an essential part in the methodology and is described in
this section. Specifically, theory of object detection and tracking algorithms are
outlined in subsections 2.5.1 and 2.5.2, respectively, followed by colour models in
subsection 2.5.3.

2.5.1 Object Detection

Object detection refers to the localisation (typically indicated by a bounding box
around the object) and classification of objects in images. In general, object
detection methods employ a type of feature descriptor to compress the image
information and characterise objects. Based on these feature descriptors and
their typical values for each object, a classification algorithm is trained and can
be deployed for object detection in new images. Feature descriptors are usually
applied to small image patches of various sizes to enable detection of objects at
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different scales. In this subsection, five object detection algorithms are briefly
described which are considered or deployed for detecting a hand or face for rPPG
extraction from video data.

Viola-Jones Object Detector

The Viola-Jones face detection method [37] was one of the first approaches on
digital pattern recognition and face detection in the machine learning domain and
takes an ensemble approach. The method employs a cascade of weak classifiers,
where each classifier is based on Haar features. Haar features are pre-defined con-
volution kernels represented by subdivided rectangles. The difference between the
sums of pixel intensities within these subregions form the convolution’s output.

Histogram of Oriented Gradients

In contrast, Histogram of Oriented Gradients (HOG) [38] is a feature descriptor
which considers occurrences of different gradient orientations. For small image
sections, histograms are computed that detail the distribution of gradient mag-
nitudes for the angles from 0° to 180° (with a step size of 20°) within this region.

YOLO

You Only Look Once (YOLO) [39] and Single-Shot Detection (SSD) [40] are
CNN-based one-stage object detectors which compute bounding boxes and class
labels at once. For YOLO, the input image is divided into uniform subregions,
for each of which an object class together with its probability and bounding box
position is computed. Since multiple subregions might produce differing bounding
boxes for the same object, Non-Maximum Suppression is performed selecting only
the one with the highest probability. Subsequently, those bounding boxes are
eliminated that have the highest overlap with the currently selected one until the
final predictions are obtained.

Single-Shot Detector

SSD [40] is a CNN-based multi-box object detector, too, but consists of more con-
volutional layers. These are used as multi-scale feature maps to obtain a varying
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number of subregions and thus bounding boxes at multiple scales. Unlike meth-
ods that require an additional object proposal stage, SSD eliminates this proposal
generation and subsequent pixel or feature resampling stage by encapsulating all
computations in a single network.

SSD defines the output space of bounding boxes as a set of standard boxes
across different aspect ratios and scales per feature map location. During predic-
tion, the network generates scores for the presence of each object category in each
standard box and produces adjustments to the box to better represent the object’s
shape. In addition, the network combines predictions from multiple feature maps
with different resolutions to handle objects of different sizes in a natural way.
To remove redundant detections, Non-Maximum Suppression (NMS) is applied.
NMS retains the bounding box with the highest confidence score and removes all
other bounding boxes that exceed a certain overlap threshold with this box.

Hand Landmarks

Whereas the previously described object detection algorithms are trained to de-
tect entire objects, landmark detection [41] is designed to find the positions of
several unique feature points of a non-rigid object. Therefore, it is well suited for
facial feature (mimic) tracking or for classification of hand gestures and poses. It
is based on CNNs as well.

2.5.2 Object Tracking

Object tracking is the localisation of a specific image region over a sequence of
video frames. This image region might be an object of which the position in the
first image is given. In this subsection, five object tracking algorithms are briefly
described which are considered for the BP estimation from video data.

MIL

The Multiple Instance Learning (MIL) tracker [42] uses the "tracking by de-
tection" approach. Such methods consist of a discriminative classifier which is
trained online on the specific object by extracting positive and negative examples
from the current frame. Thereby, the MIL tracker overcomes the problem of drift-
ing due to slight inaccuracies in previous frames by employing a MIL classifier.
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A MIL classifier uses labelled bags of instances (where the positive labelled bag
contains at least one positive instance) instead of individually labelled instances,
and thus, is more robust against incorrect class assignments.

Median Flow

In contrast, the median flow tracker [43] is based on optical flow, i.e. a vec-
tor field of apparent motion of objects relative to the scene. The Lucas-Kanade
method [44] estimates optical flow under the assumption that the intensity of
pixels remains constant for small movements and short time periods. Based on
this, they approximate trajectories of 3 ˆ 3 pixel patches using the least square
method. Considering an object, the median flow tracker estimates its movement
by the median x-shift and median y-shift of its feature points. For the calculation
of this median trajectory, those feature points are used that exhibit the lowest
forward-backward errors. The forward-backward error is computed by compar-
ing the feature points’ trajectories in forward direction and the trajectories in
backward direction of the image sequence.

MOSSE

Another group of object tracking algorithms is based on adaptive correlation fil-
ters. Here, the correlation is used to compute the similarity between two images,
specifically, between the object to be tracked in the previous frame and possible
new object locations in the current frame. Hence, these methods aim at finding
the pixel in the new frame that maximises correlation ρ between the object’s filter
matrix H and the intensity matrix J of the new image section. For efficiency,
correlation is performed in the frequency domain, where according to the convo-
lution theorem, a convolution can be performed by element-wise multiplication.
For transformation of the image matrices an FFT is used [45]:

ρpJ,Hq “ FFT´1
pFFT pJq ¨ FFT pHqq (2.30)

The Minimum Output Sum of Squared Error (MOSSE) algorithm [45] employs
the correlation filter H on a gray scale version of the image. In the first frame,
this adaptive filter matrix H is initialised by the image section to be tracked by
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minimising the error between the current prediction and ground truth [45]:

min
H˚

ÿ

i

|FFT pJiq ¨ FFT pH˚
q ´ FFT pGiq|

2 (2.31)

where Gi is the ground truth tracking output of the i-th training sample. In
subsequent frames, correlation filter H is adapted to the new appearance of the
depicted object. This way, the method is robust against changes in illumination,
size, orientation and non-rigid transformations.

KCF

The Kernelized Correlation Filter (KCF) method [46] is based on correlation
filters as well, but it uses kernel trick and circulant matrices. In circulant matrices,
rows of pixels in the image section of the object are shifted and thus, can be used
as negative training samples. Further, KCF trackers additionally apply HOG
features to improve prediction.

CSRT

Another correlation filter-based tracker is the Channel and Spatial Reliability
Tracker (CSRT) [47] which adjusts the filter map to focus on the part of the object
that is suitable for tracking. Thereby, the reliability score considers channel-wise
quality of the learned filters and is employed to weight the corresponding features
during tracking.

2.5.3 Colour Models

Colour videos usually are recorded and saved in the Red Green Blue (RGB) colour
model which is an additive model, i.e. red, green and blue light intensities are
added together in different ratios to obtain the whole visual colour spectrum.
Corresponding RGB cameras use Complementary Metal-Oxide-Semiconductor
(CMOS) or Charge-Coupled Device (CCD) sensors and operate with some vari-
ation of the RGB model where its grid consists of arrangements of red, green
and blue light detectors. Based on this, digital RGB images are saved in three
channels, red, green and blue with each colour’s intensity represented by a 8-bit
value from 0 to 255, 0 being the lowest intensity. This colour representation is
related to the human eye. The human visual system, or more specifically the
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retina, consists of three types of cone cells which respond to light of different
wavelengths.

However, there are several other colour models that introduce dimensions for
brightness or lightness separating them from colour information [48]. This sub-
section describes some alternative colour models which are relevant to this work.

CMYK

In contrast to the RGB model, the Cyan Magenta Yellow Key (CMYK) colour
representation is a subtractive model commonly used for printing. The idea of
this colour model is based on the absorption of certain wavelengths to obtain
the target colour in the reflected light. The four parameters Cyan C, Magenta
M , Yellow Y and Black K can range from 0 to 100 where white is obtained by
C “M “ Y “ K “ 0.

CIE Lab and CIE Luv

The colour model CIE Lab is represented in a three-dimensional coordinate sys-
tem, where L represents lightness, with L “ 0 being black and L “ 100 referring
to white [48]. The values a P r´128, 127s and b P r´128, 127s indicate colour,
where a ą 0 is red and a ă 0 is green. Accordingly, b ą 0 refers to yellow and
b ă 0 to blue. The CIE Luv colour model is similar to the CIE Lab model,
however, it exhibits a reduced green area and an increased blue area. Further,
CIE Luv deploys Judd-type white point adaptation, whereas CIE Lab uses a Kies
transform. The Lab and Luv colour model can be transformed from the Carte-
sian coordinates into polar coordinates as the cylindrical models CIE LCh(ab)
and LCh(uv). These CIE LCh colour models are different from HSV or HSL,
since LCh models are perceptually uniform and use four instead of three colours.

HSL and HSV

HSL and HSV colour models use cylindrical models represented by polar coor-
dinates, where for both models, the angular dimension H indicates the hue and
S P r0, 1s the saturation of the colour [48]. L P r0, 1s in HSL corresponds to
lightness, while V in HSV stands for "value" and can be interpreted as bright-
ness. The difference between these two colour models is that in HSL, a colour
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with maximum lightness is pure white regardless of the other two values, whereas
in HSV, a colour with maximum value has maximum brightness in the sense of
shining a strong light on a coloured object. Hence, pure saturated colours in HSL
have lightness L “ 0.5, whereas in HSV they have value V “ 1.

YCrCb, YUV and YIQ

YCrCb is a three-dimensional Cartesian colour model often deployed in video and
digital photography. Y P r0, 1s indicates the luma, i.e. brightness in videos, and
the chromaticity values Cr P r´1, 1s and Cb P r´1, 1s correspond to red/cyan and
blue/yellow components [48]. YUV deploys a similar colour model representation,
however, U and V indicate blue-luminance and red-luminance respectively. Like-
wise, the YIQ colour model can be derived from YUV by rotating 33° along the
Y -axis. Hence, I P r´1, 1s represents the orange/blue range and Q P r´1, 1s
indicates the purple-green range.

2.5.4 Camera-based PPG extraction methods

There are several methods for extraction of PPG signals from videos, i.e. rPPG.
Two of the currently most advanced techniques are the Plane Orthogonal to
Skin (POS) algorithm [49] and the Chrom algorithm [50].

Chrom Algorithm

The Chrom algorithm [50] was specifically designed for rPPG measurement. It
models the pulse as a linear combination of the three RGB channels and oper-
ates under the assumption of a standardised skin colour profile to achieve white
balancing of the video frames.

The algorithm constrains all colour variations to the pulsatile direction by
expressing its chrominance signals as a projection of C̃nptq onto the plane or-
thogonal to the variation direction of specular reflection. To handle variations
caused by different lighting conditions, Chrom adopts a standardized skin-tone
vector uskin “ M´1

“ r0.77, 0.51, 0.38sT for white balancing, ensuring indepen-
dence from the colour of illumination and lighting conditions. Here M represents
the diagonal mapping matrix for C̃nptq. Furthermore, the algorithm incorporates
a 2 ˆ 3 projection matrix PChrom to define a plane orthogonal to the variation
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direction of specular reflection within the temporally normalized RGB space:

PChrom “

˜

3 ´2 0
1.5 1 ´1.5

¸

(2.32)

The two resulting signals, denoted as S1ptq and S2ptq, are generated through
this projection matrix, revealing motion-induced and pulse-induced variations in
anti-phase:

Sptq “ PChrom ¨M ¨ C̃nptq (2.33)

Finally, an estimate of the pulse signal pptq is computed using the formula pptq “
S1ptq ´ α ¨ S2ptq, where α is a parameter derived from the standard deviations of
S1ptq and S2ptq.

Notably, the algorithm strategically eliminates specular reflection by relying on
illumination intensity for alpha tuning, thus, effectively minimising the impact of
lighting conditions and enabling the precise estimation of pulse-induced variations
in colour information.

Plane Orthogonal to Skin Algorithm

In contrast to Chrom, the POS algorithm [49] operates by creating a virtual plane
in the temporally normalized RGB space that is orthogonal to the skin tone. This
strategic placement facilitates the isolation and removal of reflections from the
skin. POS defines its projection matrix PPOS in such way that it identifies two
axes that directly compute in-phase signals:

PPOS “

˜

0 1 ´1
´2 1 1

¸

(2.34)

Based on this, it employs a two-step process to enhance signal quality. Initially, it
eliminates distortions caused by light intensity, and subsequently, it utilizes spec-
ular reflections for alpha-tuning to improve the algorithm’s performance. Hence,
while POS is intentionally designed to be less affected by movement, it exhibits
a higher sensitivity to variations in lighting conditions compared to the Chrom
method.

To further refine the analysis, POS initially divides the input signal into over-
lapping subsequences to be processed, resulting in the synthesis of a final sig-
nal. This approach significantly contributes to improving the Signal-to-Noise
Ratio (SNR), enhancing the overall robustness of the algorithm.
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Related Work

In recent years, increased attention is paid to new approaches on cuff-less BP
measurement based on surrogate parameters. The most investigated methods
consider the PWV by measuring PAT or PTT. However, with the rise of Machine
Learning, also more complex models based on signal morphology were proposed.
This chapter outlines the state-of-the-art related work on methods for optical
BP estimation. Although there are many approaches on BP estimation from
PPG and ECG signals, the work at hand focuses on methods that are only PPG
based. This allows completely contactless BP estimation methods when mea-
sured by camera, whereas ECG requires multiple electrodes with skin contact.
The chapter is divided into contactless PTT-based approaches in Section 3.1,
contactless feature-based approaches in Section 3.2 and contactless deep-learning-
based methods in Section 3.3, followed by methods for remote photoplethysmog-
raphy in Section 3.4 and BP estimation from PPG signals in Section 3.5.

3.1 PTT-based Blood Pressure Estimation from
rPPG

PTT that is based on two different skin locations, i.e. the difference in arrival
time of the pressure pulse between two distal locations, is also referred to as
differential Pulse Transit Time (dPTT). Most methods employing dPTT are fol-
lowing camera-based approaches, since only a single sensor is required for both
PPG signals. The rPPG (in literature also image PPG (iPPG) or camera PPG
(cPPG)) is based on the same measuring principle as a pulse oxymeter by cap-
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turing the reflected light from the skin tissue (see Section 2.2).

For dPTT calculation, a large distance between the two skin areas is beneficial.
Previous studies often extract the signals from the face and hand [16, 51, 52, 53],
since these locations are not covered normally. Though, Murakami et al. [54] take
advantage of a larger distance between wrist and ankle. They obtain mean peak-
to-peak dPTT values of 128.1 ˘ 6.2 ms for healthy subjects compared to 97.2
˘ 10.6 ms for hypertensive subjects and attain a correlation coefficient RSBP “

´0.88 on SBP estimation. In contrast, Nakano et al. [16] obtain dPTTs between
face and palm of 48 to 17 ms and a correlation coefficient RSBP “ ´0.79 for SBP
estimation with logarithmic regression.

Whereas Murakami et al. [54] and Nakano et al. [16] only apply a band-pass
filter and then base the dPTT on the time difference between two PPG minima
[16] or peaks [54], Fan et al. [51] reconstruct the true peak from the filtered
signal. Due to the application of a strong filter, the dicrotic notch of the rPPG
wave is often buried into the main peak and causes a so called peak shift. Hence,
Fan et al. [51] construct an adaptive Gaussian model to obtain the true peak
location. They show that linear regression performs better with the adaptive
Gaussian model.

Khong et al. [55] perform a Haar wavelet decomposition to eliminate the high
frequency noise and scale the measured chest-to-forehead peak-to-peak PTTs by
the person’s height. With a polynomial model, they obtain Pearson’s correlation
coefficients of RSBP “ 0.89 and RDBP “ 0.82.

Since there is no public data base available with video data and BP reference,
all studies are conducted on their own data sets. These data sets are usually
very small, ranging from five [16] to ten [54] subjects. Huang et al. [52] address
this limit by enabling incorporation of the MIMIC data set [56] into the training
process. The MIMIC data set is a large public database comprising biosignals
from ICU patients such as ECG, PPG and a reference ABP signal. Huang et
al. propose a transfer learning approach where the ABP signal of the MIMIC
data is used as a proximal PPG signal and the MIMIC PPG as the distal signal,
respectively. Transfer learning could reduce RMSE from 16.5 mmHg to 14.0
mmHg for SBP test data.

Jeong and Finkelstein [53], however, observed different slopes of the dPTT-
vs.-SBP regression curve for their subjects, which they attribute to individual
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characteristics of cardiovascular systems and pulse wave propagation. They con-
clude that individualised calibration procedures are required for such methods
shifting the issue from the lack of data for universal models to individualised
models.

Besides the problem of individual calibration, dPTT-based methods suffer from
orthostatic dependencies. The relative positional relationship between the two
skin areas needs to be maintained in order not to influence pulse propagation
properties. Further, with a regression based on a single input value, only one
linearly independent target value, i.e. SBP or DBP, can be estimated. Zhang et
al. [57] showed that PTT predicts DBP and MAP significantly better that SBP.

3.2 Feature-based Blood Pressure Estimation from
rPPG

Feature-based approaches consider various characteristics of the PPG morphol-
ogy and are therefore able to create more complex models than the PTT-based
methods. Table 3.1 gives a comparative overview of BP prediction methods from
a single rPPG including feature-based approaches. Again, a major limitation
is an impeded comparability of the studies due to the lack of public data sets.
The proprietary data sets used instead exhibit large differences in size, number
of subjects and BP range as well as recording frame rate and resolution.

Jain and Subramanyam [58] published one of the first feature-based estimation
methods using only a camera for rPPG extraction. Features are extracted from
the best part of the signal and include mostly time domain features and the dom-
inant frequency. With a polynomial kernel regression on data of 45 normotensive
subjects, they obtain a MAE of 3.9 ˘ 5.4 mmHg for SBP and 3.7 ˘ 5.1 mmHg
for DBP.

Fang et al. [66] integrate a palm-to-cheek dPTT into a feature-based method.
A total of 24 features are extracted from both signals and fed to a three-layered
feed-forward ANN. For SBP, Fang et al. obtain a RMSE of 11.2 mmHg. By using
all hand-crafted features as input to the ANN, also irrelevant information might
be fed to the model, thus hindering the training process and limiting prediction
performance.

Lou et al. [59] published a similar method in which 126 rPPG features are
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Table 3.1: Related work on video-based BP prediction from a single rPPG area.

Reference Input Type Regression
Model

Data Set Result

Jain and Subra-
manyam, 2016
[58]

time domain features, dominant
frequency

polynomial ker-
nel regression

proprietary: 45 nor-
motensive subjects

MAE: 3.9 ˘ 5.4 mmHg
(SBP), 3.7 ˘ 5.1 mmHg
(DBP)

Luo et al., 2019
[59]

126 time and frequency domain
features; dPTTs between differ-
ent facial regions; 29 external
features

PCA, MLP proprietary: 1328 nor-
motensive subjects

ME: 0.4 ˘ 7.3 mmHg
(SBP), -0.2 ˘ 6 mmHg
(DBP)

Sugita et al.,
2019 [20]

degree of distortion of rPPG -

Tran et al., 2020
[60]

face and palm rPPG signals, 9
external features

MLP proprietary: 164 videos
from 82 subjects

ME: 3.1 ˘7.3 mmHg
(SBP), 2.6 ˘7.5 mmHg
(DBP)

Schrumpf et al.,
2021 [61]

raw rPPG segments adapted
AlexNet [62]
and ResNet [63]

MIMIC-III: 1.5 million
PPG data samples from
>4000 subjects, propri-
etary: videos of 25 sub-
jects

MAE: 13.0 ˘10.6
mmHg (SBP), 9.8 ˘9.9
mmHg (DBP)

Wu et al., 2022
[64]

three facial rPPG signals, 7 ex-
ternal and signal features

MLP and CNN proprietary: videos of
1143 subjects

MAE: 11.54 ˘10.57
mmHg (SBP), 8.09
˘6.65 mmHg (DBP)

Zhuang et al.,
2022 [65]

raw rPPG segments adapted ResNet
and Long Short-
Term Mem-
ory (LSTM)

proprietary: videos of
124 subjects

MAE: 12.4 mmHg
(SBP), 10.0 mmHg
(DBP)

extracted such as pulse amplitude, shape and frequency related features. This fur-
ther comprises dPTTs between different facial regions. Additionally, they include
29 external features of subjects’ physical characteristics and ambient information
such as room temperature and light intensity. Then, Lou et al. [59] employ PCA
for dimensionality reduction producing 30 eigenvectors as input for an MLP. On
a large dataset of 1328 normotensive subjects, they obtain a ME of 0.4 ˘ 7.3
mmHg (RSBP “ 0.67) for SBP and -0.2 ˘ 6 mmHg (RDBP “ 0.47) for DBP.
However, the meta-data on physical characteristics and ambient information can
be difficult to access limiting the practicality of the method. Further, a PCA re-
duces dimensionality by compressing all information into a smaller feature space.
Hence, irrelevant information is still not eliminated from the dataset.

Another camera-based approach was proposed by Sugita et al. [20]. They
calculate the degree of distortion of the rPPG signal as a time difference between
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the minima of the raw and the band-pass filtered rPPG signal. This feature shows
the highest correlation coefficient with BP when measured at the palm compared
to forehead and cheek. However, the correlation exhibited large inter-subject
differences.

In general, the studies on remote feature-based BP prediction define their own
sets of hand-crafted features which are then used as model input without evalu-
ation of feature relevance or redundancy. Especially since hand-crafted features
are employed instead of an automatically learned feature representation, selection
of these features with respect to model performance is necessary and might even
provide new insights for an advanced waveform analysis.

3.3 Deep-Learning-based Blood Pressure Esti-
mation from rPPG

Deep-Learning-based methods usually consist of deeper ANNs which take a seg-
ment of the rPPG signal as input and automatically extract the relevant features
for BP estimation.

Tran et al. [60] use an MLP with 9 layers. Their method requires two rPPG
signals, from face and palm, and 9 external subject-specific features. For BP
estimation, they obtain a ME ˘ SD (RMSE/MAE) of 3.1 ˘7.3 mmHg (7.9/6.6)
for SBP and 2.6 ˘7.5 mmHg (7.9/6.4) for DBP on a data set of 164 videos from
82 subjects. The authors do not describe the input data in more detail and do
not specify if the selection of the test data guarantees a strict separation between
training and test subjects. Further, the requirement of signals from face and hand
reduces usability of the method and suffers from orthostatic dependencies.

Schrumpf et al. [61] adapted the AlexNet [62] and ResNet [63] architectures
to the BP regression task to study the effect of signal length on the prediction
accuracy. These analyses were performed on MIMIC-III PPG data from more
than 4000 subjects. The input segment length did not influence the performance
and they further showed that the use of the first and second derivative of the PPG
signal does not significantly improve their predictions. Finally, the ANNs trained
on PPG data are fine-tuned on rPPG signals of 25 subjects. ResNet obtained the
overall best results with a MAE ˘ SD of 13.0 ˘10.6 mmHg for SBP and 9.8 ˘9.9
mmHg for DBP. With personalisation of the model by including test subjects’
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data in the training set, the ResNet model improved by 0.5 and 1.29 mmHg for
SBP and DBP, respectively.
In an extension of their study, Schrumpf et al. [67] investigated different data
split configurations for personalisation and transfer learning from PPG to rPPG
signals. With a random sample-based data split instead of a subject-based split,
they obtain a significantly improved model performance, and suggest that some
previous studies report overestimated prediction performance due to data leakage
between training and test set. Further, they show that after training on PPG
data, fine-tuning the model with rPPG data improves prediction accuracy for the
video-based signals.

Wu et al. [64] employ the POS method [49] (see Section 2.5.4) for rPPG
extraction from three ROIs on the forehead, cheek and nose. The three signals
are band-pass filtered and serve as input to an ANN consisting of six residual
blocks with 2D convolution layers. A second ANN with fully connected residual
blocks is trained to predict BP values from 7 physiological indicators such as
heart rate, PTT and BMI. Both models are combined to a single network with
two auxiliary loss functions. To optimise the training process, Wu et al. [64] filter
the rPPG signals with different cut-off frequencies for the bandpass filter (0.5-3
Hz, 0.5-5 Hz, 0.5-7 Hz and 0.5-10 Hz) obtaining signals with various amounts of
useful information and noise. They show an improvement in prediction accuracy
for their proposed model as well as for the models proposed by Schrumpf et al.
[61] using this training data augmentation method. The authors tested their
model on a data set containing video records from 1143 subjects with a mean
SBP (˘ SD) of 120.8 ˘17.7 mmHg and a mean DBP of 73.4 ˘11.3 mmHg and
obtained a MAE ˘ SD of 11.54 ˘10.57 mmHg for SBP and 8.09 ˘6.65 mmHg
for DBP.

Zhuang et al. [65] transfer the ROI data to the YUV colour model to mitigate
signal contamination caused by external illumination changes. Then, the ROI
is divided into several subregions in order to form a new spatio-temporal repre-
sentation of the image sequence. To do so, the V-channel is spatially averaged
for each subset of ROIs. Zhuang et al. designed a deep ANN with the ResNet
architecture as backbone. Its outputs are fed to a subsequent LSTM obtaining
features that are used for BP classification. The classification result is integrated
with the final predictor of the BP values. The proposed method was trained and
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tested on a data set of 124 subjects containing 1-minute videos at a frame rate
of 30 fps. In order to deal with the unbalanced distribution of BP values in their
data set, an oversampling strategy was adopted. With a signal length of t “ 15s,
they obtained a MAE of 12.4 mmHg for SBP and 10.0 mmHg for DBP during a
5-fold cross validation.

Deep-learning-based methods show promising results for BP estimation from
video data as feature representations are learned automatically by the ANNs.
However, the presented results should be considered carefully since many previ-
ous studies suffer from data leakage due to sample-based data splits and thus
overestimate prediction performance. A common issue in many studies are the
small sizes of the rPPG data sets as well as low rPPG signal quality. The transfer
learning approach adopted by Schrumpf et al. [67] could mitigate the problem of
small training data while providing high quality signals during the source domain
training process.

3.4 Remote Photoplethysmography

Especially morphology-based methods rely on a clear PPG with well preserved
signal morphology. However, rPPG captured by camera is very sensitive to il-
lumination changes, movement and sensor noise. Therefore, various approaches
have been proposed in order to extract and reconstruct the rPPG signal.
Wang et al. [49] describe the reflection of a skin pixel p in a RGB image sequence
as

cpptq “ Qptq ¨ pbsptq ` bdptq ` bnptqq (3.1)

where cpptq is the column vector containing RGB values of the pth skin pixel.
Qptq is the luminance intensity level which depends on the distances between
light source, skin tissue and camera sensor, and it is modulated by specular re-
flection bsptq and diffuse reflection bdptq. Both components are time dependent
due to movement and pulsatile blood, respectively. bnptq denotes quantisation
noise of the image sensor. Whereas specular reflection usually is the largest com-
ponent by far [49], only diffuse reflection is associated with the pulsatile blood
volume changes in rPPG. The amount of haemoglobin and melanin in blood
tissue lead to a specific chromaticity for bdptq, that is to be determined for rPPG
extraction.
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Most studies rely on spatial averaging of the green channel’s pixel values [54,
53, 52, 20] which coincides with the absorption spectrum of haemoglobin and was
proven to contain the strongest reflection pulsation (compare to Section 2.2.2)
but does not specifically consider specular reflection and diffuse reflection. By
spatially averaging a sufficiently high number of pixels, the quantisation error of
the camera sensor bnptq can be reduced.
Fan et al. [51] average the intensities in the red Qr and the green channel Qg

over each frame, and normalise them by dividing them by their temporal average
Q̄r and Q̄g. Their rPPG is defined as

rPPG “
QgQ̄

´1
g

QrQ̄´1
r

´ 1 (3.2)

The rPPG extraction task can be represented as a linear mixture model of
a stationary signal, a movement induced signal and the pulse signal [49] which
suggests the application of a Blind Source Separation (BSS) technique.
Oiwa et al. [68] spatially average each channels’ pixels and then apply ICA to R,
G and B channel signals for BSS. The independent component with the highest
power between 0.7 and 2.0 Hz in the frequency spectrum was chosen as rPPG.
These methods, however, cannot deal with periodic motions, e.g. during exer-
cising, as they rely on determining the rPPG signal as the most periodic ICA
component. Jain and Subramanyam [58] use the red channel for spatio-temporal
BSS. Red channel information of all frames in the video is transformed and
stacked, such that a matrix A P RUˆK is obtained, where U is the total number
of frames and K is the number of pixels in the Region of Interest (ROI). A PCA
is applied to matrix A. They obtain the rPPG signal as the reconstruction error
between A and the reconstructed matrix A1.
Lou et al. [59] transformed the RGB channels, which are encoded in an 8-bit
colour stack, into 8 separate bit layers. For pulse signal extraction, they isolate
layers where the bits fluctuate along with the reference BP.

In contrast to the BSS-based techniques, model-based methods [50, 49, 16]
apply knowledge about the colour vectors and signal components in order to
control the demixing. By temporal normalisation of the RGB signals, the average
skin reflection colour, i.e. specular reflection, is eliminated while preserving the
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signal’s AC components. Nakano et al. [16] transform RGB components into
skin chromophore concentrations: melanin concentration cm, oxygenated blood
concentration cob and de-oxygenated blood concentration cdob. For this purpose,
RGB values are transformed into CIE XYZ tristimulus values under standard
illuminant D65 by using a multiple regression analysis to determine the RGB-to-
CIE XYZ transformation matrix. Next, they transform these CIE XYZ values
into the skin chromophore concentrations by computing a second transformation
matrix considering a Monte Carlo simulation of light-skin tissue interaction. From
this, the total blood volume is obtained as the sum of cob and cdob.

The chrominance-based method Chrom [50] introduced in Section 2.5.4 is re-
stricting all colour variations to the pulsatile direction by defining its chrominance
signals as a projection of C̃nptq onto the plane orthogonal to the variation direc-
tion of specular reflection. To be independent of the colour of illumination, a
standardised skin-tone vector uskin “ M´1

“ r0.77, 0.51, 0.38sT is employed for
white balancing the images, with M denoting the diagonal mapping matrix for
C̃nptq. Further, Chrom uses a 2ˆ3 projection matrix PChrom (see Eq. 2.32) to de-
fine a plane in the temporally normalised RGB space. As a result, two projected
signals Sptq are created, where motion-induced and pulse-induced variations ap-
pear in anti-phase (see Eq. 2.33) These properties can be used to compute an
estimate of the pulse signal p̂ptq as

p̂ptq “ S1ptq ´ α ¨ S2ptq (3.3)

with α “ σpS1q
σpS2q

. p̂ptq is a good estimate for the pulse signal as long as standard
deviation σpS1q ‰ σpS2q.

Similarly to Chrom, the POS algorithm [49] (detailed in Section 2.5.4) cre-
ates a plane orthogonal to the skin tone in a temporally normalised RGB space
to eliminate specular reflection bsptq. One difference compared to Chrom is the
projection matrix PPOS (see Eq. 2.34), as POS finds two projection axes that
directly compute in-phase signals. Whereas Chrom removes specular reflection
vsptq and uses intensity for alpha tuning, POS first eliminates intensity distor-
tions and uses specular reflections for alpha tuning. That makes Chrom more
vulnerable to changes in direction of specular reflection, i.e. movement, and POS
more sensitive to inhomogeneous illumination spectra. Furthermore, the input
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signal of POS is divided into sub-sequences such that the final signal is obtained
by overlapping of these shorter segments and exhibits an improved SNR.

Wang et al. [49] compared various rPPG methods such as the green RGB
channel, PCA, ICA, Chrom and POS in terms of SNR and obtain the overall best
performance for the POS method across different skin tones, changing luminance
and movement. Also Fang et al. [66] compared the green channel to POS, Chrom
and motion resistant rPPG [69], where POS yielded the best SNR. Moreover,
several comparative analyses of rPPG methods have been conducted for heart
rate estimation [70, 71, 72]. Tsouri and Li [70] and Ernst et al. [71] compared
channels of seven and eight different colour models, respectively, and both found
the best heart rate estimation accuracy for the hue channel of the HSV model.
Boccignone et al. [72] consider the same rPPG extraction methods as Wang et
al. [49] across 15 datasets and showed that performances of POS, Chrom, PCA
and Spatial Subspace Rotation (SSR) [73] are statistically not different.

For BP estimation from rPPG data, preservation of a more detailed signal
morphology is necessary than for heart rate measurement. Therefore, it should
be considered that the proposed rPPG extraction methods and colour models
might perform differently for this use case, and further experiments with respect
to BP estimation should be conducted.

3.5 Blood Pressure Estimation from PPG

Whereas BP estimation from video data still remains a challenging task, there
have been some advances in BP prediction from conventional PPG signals. How-
ever, many studies suffer from methodological drawbacks such as data leakage
[74] or unspecified sample-based data splits [75, 76, 77, 78, 79, 80]. Some remain-
ing publications present approaches that incorporate a calibration procedure to
overcome the generalisation issues of universal regression models.

Haddad et al. [81] perform an individual calibration of their Multiple Linear
Regression (MLR) model by computing the offset between the predicted BP of
the calibration signal with the true BP and explicitly adding this offset value to
all subsequent predictions of the same subject.

Schlesinger et al. [82] perform personalisation by employing a Siamese network
architecture, where one network predicts feature values from the current PPG
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signal and the other one computes calibration values from the patient’s example
PPG. With an MAE ˘SD of 6.0 ˘6.7 mmHg for SBP and 3.4 ˘4.0 mmHg for
DBP they show improved results compared to the same base network without
calibration. However, their approach requires a 30-second signal in form of a
spectrogram and therefore, does not allow a beat-to-beat measurement.

Zhang et al. [83] developed a Domain-Adversarial Neural Network (DANN)
which uses an adversarial training approach to extract domain-invariant features
from bioimpedance sensors. The model is personalised for each patient using 5
minutes of beat-to-beat data, and obtains an RMSE of 6.8 mmHg for SBP and
4.5 mmHg for DBP. Even though the final results are not comparable due to
the narrow BP range in their proprietary data set, Zhang et al. showed that
an DANN approach can overcome overfitting for models with very few training
subjects.

Qin et al. [84] and Ibtehaz et al. [85] both proposed an ANN for signal trans-
lation from PPG to ABP waveforms. Qin et al. [84] employ domain-adversarial
training for an auto-encoder network which is subsequently fine-tuned for indi-
vidual patients with one quarter of the patients test signal. Their results show
that this training strategy only marginally improves generalisation capabilities of
the model whereas fine-tuning for individual calibration can further reduce MAE
by -2.5 mmHg to 5.4 mmHg for SBP and by -1.0 mmHg to 3.1 mmHg for DBP.
Ibtehaz et al. [85] presented a two-stage model consisting of two U-nets, where
the first one approximates the BP signal and the second one refines its waveform.
Using 8-second signals, they obtain an MAE ˘SD of 5.7 ˘9.2 mmHg for SBP
and 3.4 ˘6.1 mmHg for DBP. Their data split remains unclear since in an earlier
arXiv preprint version [86] of their paper with exactly the same results, a random
sample-based split is described whereas in the newer publication, they claim to
split the sequentially ordered data set in such way that training and test patients
remain separate.

These PPG-based models show significant improvements in prediction perfor-
mance after individual model calibration. The most promising method is fine
tuning with data of the new subject. However, while all studies compare their
overall results to the AAMI and BSH standards, more extensive analyses of pre-
diction errors for different BP levels are missing to evaluate the personalisation
results.
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3.6 Research Gaps

This review of related work shows that there has been substantial research on PAT
and PTT-based BP estimation, however, these studies revealed several drawbacks
of this approach, particularly the generalisation problem of its models. In con-
trast, feature-based and deep-learning-based methods allow more complex models
since they are considering the entire rPPG/PPG waveform. Whereas studies on
rPPG data are difficult to evaluate and compare due to large differences in data
sets regarding size, BP range and video specifications, comparable feature-based
and deep-learning-based approaches for conventional PPG signals show promis-
ing results on public data sets. However, in both domains, most published studies
suffer from data leakage and unsuitable sample-based data splits leading to over-
estimated model performances [67]. Hence, subject-based data splits are required
to conduct fair and realistic model evaluations that reflect prediction accuracy
for real-world applications. Considering this data handling strategy, in the work
at hand, the following research gaps will be addressed.

Can feature selection improve BP prediction and provide a deeper
understanding of relevant rPPG characteristics? What are relevant
rPPG features and waveform characteristics for BP estimation?
Previous remote feature-based methods use the entire hand-crafted feature set
as input to the model, thus not eliminating any irrelevant information and ham-
pering the training process. In addition to improving prediction performance, a
feature selection could also provide insight into relevant rPPG waveform charac-
teristics and interrelations with SBP and DBP.

Which method and location for rPPG extraction can enhance rPPG
signal quality for BP estimation?
For contactless BP estimation, the rPPG measurement still poses a large prob-
lem, since measuring from a distance degrades the PPG signal significantly. Due
to illumination and movement artifacts as well as sensor noise, additional sig-
nal processing steps are required and regression methods need to be adapted to
the amount of information which is preserved from the original PPG. Whereas
several rPPG extraction methods have been proposed, extensive comparisons of
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these algorithms have been performed only for heart rate estimation. Further,
these studies consider either only colour model transformations or only specific
rPPG extraction methods. As BP estimation relies on more details of the signal
waveform, performances of both the rPPG models and colour model transforma-
tions need to be evaluated for BP specifically. An additional aspect in rPPG
measurement that has not been investigated with respect to BP prediction per-
formance is the optimal skin location from which the signal is to be extracted.

Is fine tuning for model personalisation also applicable in the rPPG
domain and can it improve prediction results of beat-to-beat data?
Another unresolved issue in BP estimation from rPPG and PPG data are sig-
nificant inter-individual differences in signal morphology [12, 20, 77, 87]. There-
fore, universal models still do not reach medical standards and some PPG-based
methods try to mitigate these morphological differences by integrating an indi-
vidual personalisation process. Especially fine-tuning for personalisation shows
improved prediction performance compared to general models, but the number
of studies on this topic is still very small and it has not yet been applied to
rPPG models or beat-to-beat data. Hence, it needs to be evaluated if beat-to-
beat information and rPPG signal quality suffice to derive the relevant individual
characteristics for personalisation from a small data subset. An analysis of inter-
and intra-individual waveform correlations could be helpful to understand the
results of model personalisation.

Can large public PPG data bases enable more complex rPPG-based
models by providing a suitable source domain for transfer learning?
Does pre-training on PPG data improve model convergence for rPPG-
based BP estimation?
Due to the lack of a publicly available rPPG data set, a common limitation of
self-recorded rPPG data sets is the small sample size. However, the MIMIC III
waveform data base [56] provides a large number of records including PPG and
ABP signals. Despite significant morphological differences between rPPG and
PPG data [88], both signals capture the same blood volume changes. Thus, their
basic behaviour with respect to BP is comparable, and the larger PPG data base
could be employed as source domain for transfer learning from PPG to rPPG.
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This might overcome limitations of small sample sizes and enable more complex
models.
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Chapter 4

Feature-based Blood Pressure
Measurement

The first approach of this thesis on contact-less BP prediction is based on hand-
crafted features that are extracted from the rPPG signal. Hand-crafted features
are beneficial to reduce input size to machine learning models, especially if a large
input signal contains few useful information, or if the relevant characteristics of
the input are known. Since the waveforms of PPG and BP are closely related as
established in Section 2.2.1, and BP signal morphology changes with the pres-
sure level (see Section 2.1.3), rPPG waveform morphology is expected to contain
useful information for deduction of the current BP. Under this condition, feature
selection of the hand-crafted features can then provide further insight into the
BP dependent characteristics of rPPG waveforms.
In Section 4.1, the proposed feature-based method is outlined, followed by de-
tailed descriptions of each processing step and its analyses in Sections 4.1.1 to
4.1.5. Subsequently, in Section 4.2, the self-recorded rPPG data set is described,
and in Section 4.3, results of the different BP prediction models are analysed and
discussed.

4.1 Feature-based Method

The pipeline of the proposed method is visualised in Figure 4.1. It starts with
an image processing part to obtain the rPPG signal from the video. To do so,
the signal is extracted from skin pixels whose position is determined by face (or
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Figure 4.1: Complete pipeline for feature-based contact-less BP estimation. [89]

hand) detection and tracking. Next, the pixels’ colour information is spatially
averaged and further processed in order to obtain an rPPG signal over time.
After rPPG extraction, BP is to be predicted from the signal waveform. For
this, 120 morphological features are computed from the rPPG signal in the time
and frequency domain as input candidates for the regression model. Since not all
of these features might contain relevant information for BP estimation, feature
selection is performed. Finally, a regression model is trained to predict BP based
on the selected features. These processing steps are described in more detail in
the following Sections.

4.1.1 Face/Hand Detection and Tracking

rPPG information can be extracted from image pixels which are associated with
the skin of the subject. To determine which pixels are, face and hand detection
algorithms are employed. Hand and face are the two skin regions which are
most commonly exposed and therefore suitable for this task. Once the object is
detected, tracking of this region instead of re-detection might improve processing
time and performance.

As the rPPG signal is obtained by spatial averaging of the determined skin
region, it is important for the detection algorithm to be accurate and for the object
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tracking or re-detection not to exhibit large displacements. Strong shifts in the
determined skin region could create artifacts due to different illumination of this
area or overlap with non-skin pixels such as background, eyes or hair. Therefore,
we compare three pre-trained face detection and five hand detection algorithms
in terms of processing time, detection accuracy and detection failures, as well as
five tracking algorithms in terms of processing time, stability and tracking failures
on our specific task. For detection, we consider the Viola-Jones face detection
[37], HOG [38], YOLO [39], Hand Landmarks [41] and SSD [40], and for tracking,
we compare Median Flow [43], MOSSE [45], KCF [46], MIL [42] and CSRT [47]
which are described in Sections 2.5.1 and 2.5.2.

Experimental Setup for Detection and Tracking Assessment

For evaluation of these detection and tracking algorithms, we recorded a total
of 80 videos of five subjects (three female, two male). Eight videos per subject
were captured by an Allied Vision Manta G-201-30fps RGB camera and further 8
videos were recorded in the NIR spectrum with an Allied Vision Alvium 1800 U-
501m NIR. For both cameras, the resolution was set to 352 x 198 pixels. Whereas
the RGB videos were taken in a naturally illuminated room, for the NIR videos,
we mounted two 850 nm lamps in a dark room with 1.5 m distance to the sub-
ject. The subjects were seated in front of the camera in the same way the BP
measurement would be conducted. They were asked to sit still and raise the right
hand next to their heads with the palm facing the camera as shown in Figure 4.4.

For evaluation of the detection algorithms, we used 30 frames per recording
which results in 1200 frames per image type. For each frame, a ground truth
bounding box GT for face and hand was defined manually, to which the algo-
rithm’s bounding boxes BB are compared using the Jaccard coefficient J which
measures the Intersection over Union (IoU) [90].

JpGT,BBq “
|GT XBB|

|GT YBB|
(4.1)

The tracking algorithms were evaluated on 150 frames per recording resulting
in 6000 frames per image type. For the first frame, the ground truth bounding
boxes for hand and face are given as the regions to be tracked. The tracking sta-
bility is calculated as the Jaccard coefficient between the new and the previous
bounding box. Since subjects are sitting still, the tracked bounding box should
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rarely move as well. Further, we introduced one video of 150 frames at a frame
rate of 5 fps, where the subject was moving randomly in all directions while face
and palm were facing the camera at all times. For this video, tracking stability
is evaluated against a manually defined ground truth bounding box in each frame.

In the following, face and hand detection algorithms are compared in terms
of processing time t, detection accuracy Jd and detection failures ed, as well as
the tracking algorithms in terms of processing time t, tracking stability Jt and
tracking failures et on the specific task. For this, RGB and monochrome (NIR)
images are evaluated separately.

Assessment of Object Detection Algorithms

Table 4.1 for face detection and Table 4.2 for hand detection detail the average and
Standard Deviation (SD) for each of the evaluation criteria. For both RGB and
NIR images, the SSD algorithm [40] obtains the highest face detection accuracy
with Jd “ 85.1% and Jd “ 86.8%. However, it has to be noted, that for NIR
images, SSD exhibits a high failure rate of ed “ 75.6%. There are no face detection
failures for the RGB images in our setup, but all three algorithms show difficulties
performing face detection on the monochromatic NIR images since these models
are trained on the three RGB colour channels.

For RGB images, HOG [38] exhibits the lowest processing time with t “ 16.7
ms followed by the Viola-Jones method [37] which almost doubles the time. In
contrast, for NIR images, HOG takes the longest processing time while Viola-
Jones performs best with t “ 22.5 ms.

Since hand detection always fails on the NIR images with the Viola-Jones and
SSD algorithms, additional two models are evaluated for hand detection. Whereas
YOLO [39] is not able to detect the hands in the NIR images either, the hand
landmarks [41] succeed in each frame with a detection accuracy of Jd “ 71.8%.
For RGB images, hand landmarks perform best as well and obtain an accuracy
of Jd “ 84.2% without any failures. However, this algorithm takes over t “ 7s
for processing a single frame and thus, is not suitable for any real-time prediction
task.

Small variations in detection accuracy can be denoted to different sizes of
bounding boxes. Since the predicted bounding boxes are compared to the ground
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Table 4.1: Evaluation results of the face detection algorithms

Detection
Algorithm

Image type
Processing
Time [ms]

Detection
Accuracy [%]

Detection
Failures [%]

t SDt Jd SDJ ed

Viola-Jones [37]
RGB 32.2 5.6 75.31 4.64 0
NIR 22.5 5.2 57.89 5.74 66.3

HOG [38]
RGB 16.7 0.5 70.50 5.88 0
NIR 82.2 2.9 67.37 5.90 11.1

SSD [40]
RGB 69.5 3.2 85.09 3.42 0
NIR 73.5 8.5 86.79 3.85 75.6

truth box using the Jaccard coefficient, a prediction with the exact same centre
as the ground truth might not reach the highest value of Jd “ 100% if it is sized
differently. Bounding boxes by the Viola-Jones face detection model tend to be
bigger, whereas those by the HOG face detection model are comparatively small.
For the hand detection models of these two algorithms, the effect is reversed. The
Viola-Jones bounding box only spans the fingers and half of the palm, and the
HOG bounding box contains a lot of free space above and below the hands in
many cases. Both are not ideal for the next step of defining the ROI since their
properties make the relative positioning of the ROI sensitive to the hand’s pose
and rotation.

Assessment of Object Tracking Algorithms

Table 4.3 details the average and SD for each of the tracking evaluation criteria.
All tested algorithms exhibit an acceptable tracking stability of J t ą 98% and
tracking failures only occur occasionally for Median Flow [43] and KCF [46] on
NIR images. The high values for tracking stability indicate that there are no
abrupt displacements or changes in position of the bounding box. Although, this
evaluation method (except for the video with movement) does not consider if the
tracking algorithm follows the target object correctly, we assume that the object
to be tracked is not changing position since the subjects are sitting relatively still.
Hence, a stable tracking reduces the risk of a corrupted rPPG due to tracking
inaccuracies. Despite the static measurement scenario, one video with substantial
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Table 4.2: Evaluation results of the hand detection algorithms

Detection
Algorithm

Image type
Processing
Time [ms]

Detection
Accuracy [%]

Detection
Failures [%]

t SDt Jd SDJ ed

Viola-Jones [37]
RGB 5.0 0.7 53.94 9.23 16.7
NIR 13.5 1.2 - - 100

HOG [38]
RGB 14.6 0.6 65.95 10.17 13.7
NIR 72.5 2.1 66.15 10.01 7.7

SSD [40]
RGB 52.8 3.1 69.85 9.09 0
NIR 56.5 6.6 - - 100

YOLO [39]
RGB 282.9 15.1 59.55 13.53 6.3
NIR 332.5 36.6 - - 100

Hand Landmarks [41]
RGB 7666.6 290.2 84.24 5.12 0
NIR 7028.2 227.3 71.79 24.04 0

movement and per-frame ground truth annotations was included to account for
movement robustness. Moreover, to rule out a drift in the tracking bounding box,
a visual inspection of the last frame of the image series is conducted. None of
the compared algorithms exhibited a noticeable drifting. The largest differences
between the algorithms can be found in terms of processing time which for RGB
images ranges from t “ 1.6ms with MOSSE [45] up to t “ 128.0ms with MIL
[42].

Selection of Object Detection and Tracking Algorithms

Based on the presented evaluation results, we can select the hand and face de-
tection and tracking algorithm best suited for our setup. For face detection on
RGB images, SSD has proven to be the most precise and without failures. It
takes longer to process the image, but detection is needed only in the first frame
and after a tracking failure, whereas for subsequent frames, object tracking takes
over. Considering the high failure rate of the SSD model on NIR images, HOG
will be employed for face detection in NIR videos.

For hand detection, hand landmarks perform best with respect to accuracy
and detection failures. However, due to its extremely long processing time of
t “ 7.35s, we select SSD for RGB images and HOG for NIR images instead.

Finally, MOSSE will be employed for object tracking since it is fast with t “
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Table 4.3: Evaluation results of the tracking algorithms

Tracking
Algorithm

Image type
Processing
Time [ms]

Tracking
Stability [%]

Tracking
Failures [%]

t SDt J t SDJ et

Median Flow [43]
RGB 1.7 0.1 99.78 0.04 0
NIR 4.7 0.4 99.30 0.25 8.2

MOSSE [45]
RGB 1.6 0.2 99.98 0.01 0
NIR 9.2 1.3 99.99 0.01 0

KCF [46]
RGB 15.2 6.8 98.12 1.38 0
NIR 169.9 143.3 99.39 0.55 1.6

MIL [42]
RGB 128.0 4.5 99.73 0.27 0
NIR 155.2 29.9 99.88 0.10 0

CSRT [47]
RGB 58.6 4.0 98.59 0.70 0
NIR 133.1 26.3 98.37 0.63 0

5.4ms and exhibits a high tracking stability without any failures on both RGB and
NIR videos. Based on the tracking evaluation results, we can assume that artifacts
and noise in the rPPG signal are not caused by tracking inaccuracies but originate
from subsequent processing steps or external influences. Such influencing factors
and the effect of difficult measurement conditions on the quality of the rPPG
signal will be investigated in Chapter 5.

4.1.2 Definition of the Region of Interest

Based on the bounding boxes obtained by SSD and MOSSE, we define the ROI
from which the rPPG will be extracted. The ROI is shifted and sized relatively to
the bounding box ensuring the right size and position of the ROI independently
of the patient’s size or distance to the camera. On the one hand, the ROI has to
contain only skin pixels and should be universally applicable to each subject. On
the other hand, the ROI should be as large as possible to reduce the effect of the
camera’s sensor noise.
The ROI is defined by the position of the upper left corner pxROI , yROIq and

its width wROI and height hROI . Equivalently, the bounding box is given by the
position of the upper left corner pxBB, yBBq and its width wBB and height hBB.
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Figure 4.2: The ROI in red is computed relatively to the position and size of
the bounding box in blue.

Empirical analysis led to the following definition of the facial ROI:

xROI,face “ xBB,face ` p0.35 ¨ wBB,faceq (4.2a)

yROI,face “ yBB,face ` p0.15 ¨ hBB,faceq (4.2b)

hROI,face “ 0.3 ¨ hBB,face (4.2c)

wROI,face “ 0.1 ¨ wBB,face (4.2d)

And the ROI on the palm is defined as

xROI,palm “ xBB,hand ` p0.35 ¨ wBB,handq (4.3a)

yROI,palm “ yBB,hand ` p0.5 ¨ hBB,handq (4.3b)

hROI,palm “ 0.3 ¨ hBB,hand (4.3c)

wROI,palm “ 0.3 ¨ wBB,hand (4.3d)

An example of the resulting ROIs for forehead and palm is given in Figure 4.2
where the bounding boxes are depicted in blue and the corresponding ROIs in
red.

4.1.3 Signal Extraction and Pre-processing

Once the position of the ROI has been computed, the rPPG signal is extracted
from the green channel of the ROI pixels, since for haemoglobin, the absorption
of the light peaks in the green spectrum (see Section 2.2.2). For this reason, the
signal is obtained as the average pixel intensity Q̂Gptq of the green channel G of
all K pixels i within the ROI over time t:

Q̂Gptq “
1
K

ÿ

iPROI

IG,iptq (4.4)
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Figure 4.3: The upper plot shows the raw rPPG signal while the lower one
depicts the filtered and inverted signal which serves as the basis for subsequent
processing steps. [89]

The obtained raw rPPG signal contains a lot of noise and the blood volume
pulses are modulated by the respiratory signal as shown in Figure 4.3. To reduce
noise and level the signal, we apply an FIR band-pass filter with filter order
k “ 64. The lower cut-off frequency is set to flow “ 0.3 Hz such that the
respiration signal up to 20 breaths per minute is eliminated, and the upper cut-
off frequency of fhigh “ 6.0 Hz removes high-frequency noise while preserving the
rPPG waveform.

4.1.4 Feature Extraction and Selection

To reduce the ANN input size and gain insight into BP related characteristics of
the rPPG waveform, a total of 120 hand-crafted features are defined to describe
the rPPG morphology. For time domain features, feature extraction is performed
for each rPPG cycle, whereas for frequency domain features, 5-second segments
are considered. Cycle segmentation is based on the steepest points of the systolic
up-slopes, which are determined by the maxima positions of the first derivative
rPPG’. From the dominant frequency fd in the Fourier-transformed signal, a
sliding window of size 1.5{fd ensures that only the largest maxima in the neigh-
bourhoods are kept. Thus, detection of diastolic peaks or potential double peaks
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are suppressed. Finally, the minimum before the selected systolic rise is defined as
the start of a cycle and the following maximum as the systolic peak, respectively.
The dicrotic notch is identified as the last minimum previous to the beginning of
the next cycle. Alternatively, if no minimum is found for inflection type dicrotic
notches, it is determined as last maximum in the second derivative of the rPPG
signal. For further processing, only those cycles are chosen that exhibit a dicrotic
notch and whose length is between 0.67{fd and 1.67{fd, in order to eliminate
corrupted pulses. The values are chosen empirically.

After cycle segmentation, features are extracted. The defined features can be
categorised into pulse widths, amplitudes, areas under the curve, FFT magni-
tudes, maximum power frequencies and body features. Pulse widths comprise
the systolic and diastolic width, the width of the whole cycle and ratios between
those. Moreover, systolic and diastolic pulse widths at various heights between
the minimum and the systolic peak are considered, as well as their ratios. Ampli-
tudes and their ratios are computed from the rPPG signal as well as from its first
and second derivative. The areas under the curve are defined as the integral of
the signal for the systolic and diastolic area, the whole cycle and ratios between
them.

Frequency domain features include amplitudes in the signal’s frequency spec-
trum up to 4.6 Hz and the frequencies with the highest spectral densities in de-
scending order. Finally, body features are retrieved as well, such as the subject’s
sex, height, weight and age. The complete list of features and their descriptions
can be found in Table A.1.

Since not all of the defined rPPG features contribute relevant information for
BP estimation, a sequential forward feature selection is performed. In the process,
SBP and DBP are considered separately for training single-output regression
models, but also to gain insight into overlaps or differences in relevant rPPG
waveform characteristics.

4.1.5 Regression Models

Firstly, joined regression models with two outputs are compared to separate
single-output models for SBP and DBP. Additionally, MLP and RFR are con-
sidered as regression methods for this feature-based approach. In a grid search
for the SBP single-output MLP, we obtain a model of 25 inputs and four hidden
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layers with two layers of 500 neurons followed by two layers of 100 neurons, and
for DBP, the same architecture with 22 inputs performed best. The RFR mod-
els have a maximal depth of 200 nodes and are limited to 25 features and 100
estimators.

All models are trained and tested in a nested Leave-One-Subject-Out Cross
Validation (LOSO CV). To do so, one subject’s data is reserved as test data. The
remaining data is used for feature selection, where for each number of selected
features, grid search is performed with a LOSO CV. The best hyper-parameter
combination from the inner LOSO CV is subsequently evaluated on the test data
of the outer loop.

4.2 Remote PPG Data Set

For developing methods on remote optical BP estimation, a large data set is re-
quired comprising videos of the patients’ skin and reference BP. However, no
relevant public data sets are known at the time of project initiation. Each re-
search group conducts studies on their own recorded data set, but publication
of this data is usually not possible due to privacy issues. Therefore, a new data
set was acquired for the work at hand containing videos and reference measure-
ments. This section outlines the experimental setup and data acquisition and
subsequently details the statistics of the obtained data set.

4.2.1 Experimental Setup and Data Acquisition

For training and testing of the proposed methods, a data set was created con-
taining video data and simultaneously recorded PPG reference signals as well as
reference BP values. Overall, a total of 118 videos of 30 subjects were acquired.
The videos were captured using an Allied Vision Manta G-040C RGB camera,
with an exposure time of 4 ms and a resolution of 600ˆ388 pixels. Each video has
a duration of 20 s, sampled at a rate of fs “ 240 fps. The measurement setting
was artificially illuminated at approximately 1100 lux. During the recording of
the videos, the subjects were seated in front of a plain wall at 1.5 m distance to
the camera, while holding their right hands next to their faces. Figure 4.4 depicts
a single frame from a video from the data set.
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Figure 4.4: Example frame of the recorded videos.

Before and after every recording, reference BP was measured using a sphygmo-
manometer boso medicus X by BOSCH+SOHN GmbH. This sphygmomanometer
has been clinically validated according to protocol by the European Society of
Hypertension (ESH) and exhibits a SD of ˘3 mmHg [91]. Further, simultane-
ously to the videos, reference PPG signals were recorded from the finger and from
the forehead of the subjects. For this, a NeXus-10 MKII by Mind Media BV was
employed which samples the signals at a rate of fs “ 128 Hz.

All subjects (17 male, 13 female) were healthy and without diagnosed (pre-
)hypertension. The represented age groups range from 20 to 61 years with an
average ˘ SD of 29.0 ˘ 5.4 years. Additionally, the subjects’ weight and height
were queried. Age, weight and height values were quantified in steps of 5, 5 and
10, respectively, in order to reduce the risk of ANN models recognising individual
subjects, i.e. overfitting.
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Figure 4.5: Spatially averaged pixel values of an example video with illumination
changes.

Each subject has undergone the measurement four times, where the first iter-
ation consisted of a regular measurement, and in the second one, the aperture
of the camera was manipulated in order to simulate illumination changes. The
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illumination changes can be characterised by an average overall intensity change
in pixel values of ´37% with intensity reductions of up to 57%. Figure 4.5 visu-
alises the spatially averaged pixel values of an exemplary video with illumination
changes. To achieve a wider range of BP values, in the third measurement, the
subjects were instructed to focus on deep and slow breathing. These breathing
exercises have been shown to lower BP immediately by an average of 6.4 mmHg
for normotensives and 9.6 mmHg for hypertensives [92]. Moreover, prior to the
final measurements, the subjects had to do physical exercise (1 min plank or
squats) to increase BP.

4.2.2 Data Set Statistics

Figure 4.6: Distribution of measured BP values in the recorded data set. Hy-
potensive BP (SBP < 90 mmHg and DBP < 60 mmHg) is depicted in blue,
normotensive BP (90 mmHg ď SBP < 120 mmHg and 60 mmHg ď DBP < 80
mmHg) in green, pre-hypertensive BP (120 mmHg ď SBP < 140 mmHg and 80
mmHg ď DBP < 90 mmHg) in yellow and hypertensive BP (140 mmHg ď SBP
and 90 mmHg ď DBP) in red.

As a result, the recorded dataset includes DBP values from 65 to 122 mmHg
with an average ˘ SD of 87.3˘9.0 mmHg and SBP values from 102 to 204 mmHg
with an average ˘ SD of 136.0˘ 14.7 mmHg, respectively. Figure 4.6 shows the
distribution of SBP and DBP in the data set. The data set does not comprise
any hypotensive BP sample but exhibits 9.5% normotensive records, 39.7% pre-
hypertensive records and 50.7% hypertensive records. The Pearson correlation
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between systolic and diastolic pressure is R “ 0.77. Both, SBP and DBP appear
to be strongly correlated with sex (RSBP “ 0.54 and RDBP “ 0.47), height
(RSBP “ 0.49 and RDBP “ 0.46) and weight (RSBP “ 0.48 and RDBP “ 0.46),
however, to a lesser extend with Body Mass Index (BMI) (RSBP “ 0.30 and
RDBP “ 0.30).

4.3 Results and Discussion

Based on this data set, in the following, results of the feature selection are given
and analysed in Section 4.3.1 and performances of the regression models for BP
estimation are assessed and discussed in Section 4.3.2.

4.3.1 rPPG Features Selection Results

Feature selection results can provide insight into the relevant characteristics of
rPPG signals based on ranking and order of the selected hand-crafted features.
The SFS for rPPG features is performed in a LOSO CV , and the number of
selected features for SBP and DBP lie between 21 and 25. The complete set of
selected features is listed and described in Table 4.4 for DBP and Table 4.5 for
SBP.

For DBP estimation, the first features being selected are amplitudes in the
Fourier-transformed signal and maximum power frequencies. The frequencies in-
cluded lie between 0.8 and 1.6 Hz. This frequency range might indicate the overall
pulse shape and the heart rate which has been shown to influence peripheral BP
and central diastolic pressure [93]. In the time domain, the systolic time and
ratios between time and area under the curve are selected. These area-time ratio
features represent the average amplitude during the considered time period. For
the closely related BP waveform, this is the definition of MAP which typically
is closer to DBP than to SBP [94]. Moreover, systolic and diastolic pulse width
at 75% of the total amplitude is considered as well as their sum and ratio. The
diastolic width contains information about the temporal position of the dicrotic
notch where a delay is related to low DBP [95]. Further, a shortening of the
systolic time indicates vasodilation and thus decreased DBP [94]. Next, the first
two amplitudes of the first and second derivative, i.e. velocity and acceleration
of the blood volume changes, are chosen. A steep slope of the pressure pulse can
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Table 4.4: Full list and description of the selected rPPG features for DBP
prediction.

Feature Name Description

Ts duration of the systole (systolic time)
SysWidth_75 systolic pulse widths at 75% of pulse amplitude
DiaWidth_25,
DiaWidth_75,
DiaWidth_90

diastolic pulse widths at 25%, 75% and 90% of pulse
amplitude

PulseWidth_75 pulse width at 75% of pulse amplitude
Div_SysDiaWidth_75 ratio of systolic and diastolic pulse widths at 75% of pulse

amplitude
Div_AsTs,
Div_AT

ratio of systolic area and systolic time,
ratio of cycle area and cycle time

Amp_FFT0,
Amp_FFT4

amplitudes of the Fourier-transformed signal at indices 0
and 4, i.e. 0.8 and 1.6 Hz

MaxPow_FFT1,
MaxPow_FFT3,
MaxPow_FFT6,
MaxPow_FFT8

frequencies of the 1st, 3rd, 6th and 8th highest ampli-
tudes in the Fourier-transformed signal

d1_HPIP_width time between first peak to following inflection point in
the first derivative of the rPPG signal

d1_Amp1,
d1_Amp2

amplitudes of the first and second peak in the first deriva-
tive of the rPPG signal

d2_Amp1,
d2_Amp2

amplitudes of the first and second peak in the second
derivative of the rPPG signal

Amp_DN amplitude of the dicrotic notch
weight weight of the subject

reflect vessel stiffness [95]. Finally, the amplitude of the dicrotic notch is added
as well.

In contrast to DBP, SBP estimation relies on higher frequencies from 2.0 to 4.0
Hz which contain information about systolic peak and dicrotic notch morphology.
In general, frequency features show a comparatively strong correlation with both
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Table 4.5: Full list and description of the selected rPPG features for SBP pre-
diction.

Feature Name Description

T,
Ts

duration of a whole cycle (cycle time),
duration of the systole (systolic time)

A,
Ad

area under the curve for whole cycle (cycle area),
area under the curve for diastole (diastolic area)

Div_AsAd,
Div_AAd,
Div_AAs

ratio of systolic area and diastolic area,
ratio of cycle area and diastolic area,
ratio of cycle area and systolic area

SysWidth_10,
SysWidth_25,
SysWidth_33,
SysWidth_50

systolic pulse widths at 10%, 25%, 33% and 50% of pulse
amplitude

Div_SysDiaWidth_10,
Div_SysDiaWidth_50,
Div_SysDiaWidth_67

ratios of systolic and diastolic pulse widths at 10%, 50%
and 67% of pulse amplitude

Amp_FFT6,
Amp_FFT7,
Amp_FFT10,
Amp_FFT15,
Amp_FFT16

amplitudes of the Fourier-transformed signal at indices
6, 7, 10 and 15, i.e. 2.0, 2.2, 2.8, 3.8 and 4.0 Hz

MaxPow_FFT0,
MaxPow_FFT1

frequencies of the highest and second highest amplitudes
in the Fourier-transformed signal

d1_HPIP_height height difference between first peak and following inflec-
tion point in the first derivative of the rPPG signal

d2_Div_Amp1Amp2 ratio of the first and second amplitude in the second
derivative of the rPPG signal

d2_Sum_Amp1Amp2 sum of the first and second amplitude in the second
derivative of the rPPG signal

age, height age and height of the subject

DBP and SBP which is in accordance with the work by Luo et al. [59]. For SBP,
further, multiple systolic pulse widths and ratios between systolic and diastolic
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width are chosen from the lower half of the pulse at 10, 25, 33 and 50% of
the amplitude. Finally, the cycle time and area as well as ratios between the
systolic, diastolic and whole cycle area are selected. Area and width features
comprise indicators for stroke volume and vascular capacitance, which are the
major influences on SBP [95].

In the SFS results for a joint model, time domain features are mostly similar
to the selected features for DBP. The results comprise diastolic area under the
curve and time, the ratio between cycle area and diastolic area, and various
diastolic widths. Moreover, amplitudes of the first and second derivative as well
as the dicrotic notch height are chosen. In return, selected frequency domain
features resemble the selection results for SBP prediction as they include higher
frequencies between 2.0 and 4.0 Hz besides the most dominant frequency, i.e.
heart rate.

4.3.2 BP Prediction Accuracy

Table 4.6 shows the LOSO CV results on the dataset described in Section 4.2 for
all regression models as well as further error metrics. SDMAE and SDRMSE refer to
the SD of MAE and RMSE among all iterations in the LOSO CV, i.e. among all
subjects. For SBP, the separate RFR model performs best with an MAE ˘SD
of 11.91 ˘9.66 mmHg, and for DBP, the joint RFR model outperforms other
configurations with an MAE ˘SD of 7.92 ˘6.02 mmHg.

Comparing the results from MLP and RFR, all RFR models perform slightly
better than their MLP counterparts. This can be attributed to the embedded
feature selection which occurs during the learning process of each RFR model.
In contrast to SFS for MLP which was performed for all LOSO CV models, RFR
integrates a new feature selection into each training process. Furthermore, the
ensemble learning strategy followed by RFR enables the regression trees to reduce
variance and compensate each others prediction errors. In general, RFR is very
robust against outliers.

For MLP, the joint model performs better for both SBP and DBP than the
single-output architectures. The joint model seems to benefit from the additional
backpropagated output information and the correlation between the two output
variables. In contrast, the SBP prediction error of the joint RFR model increases
compared to the separate model. With both regression methods, SBP and DBP
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Table 4.6: Prediction results from the MLP and RFR for rPPG features ex-
tracted from the forehead.

DBP
Separate Models Joint Model

MLP RFR MLP RFR Mean Reg.
ME ˘SD 0.15 ˘11.78 0.12 ˘10.02 -0.37 ˘10.26 -0.18 ˘9.94 0.46 ˘12.31
MAE ˘SD 8.19 ˘8.46 7.81 ˘6.27 8.12 ˘6.29 7.92 ˘6.02 8.58 ˘8.83
SDMAE among subjects ˘3.87 ˘4.40 ˘4.47 ˘4.45 ˘5.17
RMSE 11.77 10.01 10.27 9.95 12.31
SDRMSE among subjects ˘4.12 ˘4.76 ˘4.69 ˘4.73 ˘5.59
Pearson coeff. 0.37 0.36 0.32 0.37 -0.26
BSHa Grade D C D C D

SBP
Separate Models Joint Model

MLP RFR MLP RFR Mean Reg.
ME ˘SD -1.67 ˘17.78 0.44 ˘15.34 -2.3 ˘17.04 0.64 ˘15.40 -1.50˘19.41
MAE ˘SD 13.61 ˘11.54 11.91 ˘9.66 13.48 ˘ 10.67 11.96 ˘9.72 14.29 ˘13.19
SDMAE among subjects ˘7.18 ˘5.27 ˘6.22 ˘5.27 ˘15.89
RMSE 17.84 15.33 17.20 15.41 19.43
SDRMSE among subjects ˘7.84 ˘5.86 ˘6.83 ˘5.85 ˘16.51
Pearson coeff. 0.41 0.54 0.41 0.54 0.59
BSHa Grade D D D D D
aBritish Society of Hypertension

need to share each decision node or neuron in a joint model. However, in RFR,
decision trees follow one path for both variables using the splitting criteria that
reduces the average reduction across both outputs. Hence, only in the leave nodes,
the two output variables are differentiated, whereas in MLP, the output variables
can be decoupled at an earlier layer by adjusting the weights accordingly. In case
of the RFR BP prediction model at hand, DBP benefits from the correlation with
SBP, but hinders optimisation for SBP.

Overall, the BP estimation still exhibits large deviations from the reference
values with only a small advantage over the mean regressor. None of the results
is within the standard set by the US Association for the Advancement of Medical
Instrumentation (AAMI) of a maximum mean error ă 5 mmHg and standard
deviation ă 8 mmHg [96] and most models obtain grade D (see Table 4.6) ac-
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cording to Criteria of British Society of Hypertension (BSH) [97]. These are the
two most widely used protocols which are also referenced and employed by the
ESH. However, state-of-the-art methods from related works obtain similar er-
rors, though, comparability is limited since each study uses their own dataset for
training and validation of the proposed methods. Older literature [58, 59] even
uses data only from normotensive subjects (DBP from 60 to 90 mmHg and SBP
from 100 to 140 mmHg [59] or from 95 to 130 mmHg [58]). If we reduce the BP
range to 60 to 90 mmHg for DBP and 100 to 140 mmHg for SBP as well, the
errors decrease as expected since training data and BP predictions are limited
to a smaller range accordingly. Moreover, the sparsely represented range in our
data set of DBP ą 105 mmHg and SBP ą 170 mmHg is excluded. We obtain an
MAE ˘SD of 6.27 ˘4.58 mmHg for SBP and 3.91 ˘2.79 mmHg for DBP, and
an ME ˘SD of -0.11 ˘7.76 mmHg and 0.45 ˘4.78 mmHg, respectively. These
error values are comparable to the results obtained by Jain and Subramanyam
[58] and Luo et al. [59], even though different BP distributions of the proprietary
data sets need to be considered.

The proposed approach in this chapter is based on hand-crafted features and
RFR, and shows improved performance compared to previous studies. While
models based on hand-crafted features may benefit from a reduced input size and
previous domain knowledge, important features and signal characteristics might
be missed. In contrast, an automated feature extraction by employing convolu-
tional layers on the raw signal input has the potential of finding new relevant
features. Still, with this method, the feature extraction and selection process
revealed relevant characteristics of the rPPG signal. Especially the frequency
domain showed to contain important information for BP prediction and should
be considered for the CNN-based approach as well.

Furthermore, rPPG signals of videos with changing illumination were strongly
corrupted such that after automatic selection of appropriate pulses, the number
of rPPG cycles was significantly reduced. Hence, rPPG extraction needs to be
improved. For this purpose, transformations of the RGB colour space will be
analysed in the following chapter. Moreover, the forehead might not be an ap-
propriate measurement site for rPPG-based BP since blood circulation in the
face is subject to sympathetic and parasympathetic activation [20]. The palm
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will be considered as an alternative which exhibits a high vessel density [26] and
is commonly exposed.
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Chapter 5

Optimizing Remote
Photoplethysmography

The first processing step for camera-based BP estimation is the extraction of the
rPPG signal from the video. This signal is the basis for all further processing and
thus, should be as clear and noise-free as possible. The signal is extracted from
skin pixels whose position is determined by hand or face detection as described
in Chapter 4. Next, the pixels’ colour information is spatially averaged and
further processed in order to obtain an rPPG signal over time. While in the
previous Chapter 4.1.1, selection of a suitable tracking algorithm ensures a stable
ROI, in this chapter, various colour representations of the images are analysed for
different measurement scenarios in order to increase robustness against movement
and illumination artifacts (Section 5.2), and signal quality is compared for ROIs
at the hand and face (Section 5.3).

5.1 Interfering Factors in rPPG Measurement

As established in Section 2.2, light with a wavelength around 575 nm is suited
best for rPPG measurement due to the strong reflectance pulsation magnitude
[26]. For RGB cameras, this usually corresponds to the spectrum of the green
channel as shown in Figure 5.1 which depicts the quantum efficiency of the Allied
Vision Manta G-040C RGB camera used in this work. In this section, the quality
of the rPPG signal extracted from the green channel is evaluated as a baseline,
where also non-ideal measurement conditions are considered.
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Figure 5.1: Quantum efficiency of the Allied Vision Manta G-040C RGB cam-
era. The optimal wavelength for rPPG measurement (575 nm) falls into the green
RGB channel. [98]

Depending on the target application of the rPPG-based BP estimation, dif-
ferent interfering factors might influence signal quality. In this work, four major
factors are considered: Illumination changes, dark skin, overlap and movement.
When employed in a naturally illuminated environment, illumination changes
cannot be avoided and lead to alterations in the intensity values of all three
RGB channels. When only looking at the green channel signal, such illumina-
tion changes cannot be differentiated from absorption changes caused by pulsatile
blood.
Next, a darker skin poses the challenge of a lower mean reflectance and a lower
reflectance pulsation accordingly (see Chapter 2.2.2), such that the rPPG signal
quality is more sensitive to noise. The rPPG extraction method should produce
acceptable signal quality across all skin colours to enable an application for a
diverse population.
Further, although the ROI is adjusted relatively to the position and size of the
bounding box corresponding to face or hand, it might overlap with non-skin pix-
els such as hair, eyebrows, glasses or textile. By spatially averaging all pixel
values in the ROI, this can strongly influence the resulting signal. Overlap with
overexposed regions and skin reflections will have a similar effect since skin pixels
are replaced by pixels that do not exhibit rPPG information.
Finally, movement of subjects might be the most complex case: Even if the track-
ing of the ROI is exact, the movement can introduce other interfering factors such
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as illumination changes due to a new relative orientation of the face to the light
source. Hence, there might be alterations in specular reflection, as well as appear-
ances of new or disappearances of current overexposed regions and skin reflections
within the ROI. Moreover, faces are not perfectly spherical and non-rigid, such
that movement can lead to changes in the skin (and maybe non-skin) region that
corresponds to the ROI pixels.

In the following, the signal quality of the green-channel rPPG is established as
a baseline taking into account the previously described interfering measurement
situations.

5.1.1 Experimental Setup

Based on correlation and SNR, the quality of the green-channel rPPG signal is
analysed for the whole dataset as well as separately for videos with different inter-
fering factors. The considered conditions are changing illumination, darker skin

Table 5.1: Investigated rPPG measurement scenarios and their definitions.
These conditions are visually assessed in the recorded videos.

Measurement
category

Definition

illumination changes purposefully introduced illumination changes during the
whole video. Illumination changes were achieved by ma-
nipulating the aperture of the camera during recording
resulting in an average overall intensity change in pixel
values of ´37% with intensity reductions of up to 57%
(see Chapter 4.2).

dark skin skin tone ě 4 on the Fitzpatrick scale [99] as opposed to
light skin tones ď 3.

overlap significant overlap (ě 10%) of the ROI with hair, glasses,
headband or eyebrows during at least half of the video,
or same conditions for overexposed regions and skin re-
flections within the ROI

movement at least five clearly visible head movements in any direc-
tion
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colour, videos with noticeable head movement and videos where the ROI creates
overlap with eyebrows, hair, the PPG head band or overexposed regions due to
skin reflections. The measurement scenarios with the different interfering factors
are defined in Table 5.1. The videos are visually assessed after face detection and
positioning of the ROI to assign these measurement categories.

Correlation Analysis

For evaluation of robustness against the interfering factors, the recorded videos
are compared to the corresponding PPG references from the forehead (see Chap-
ter 4.2). For the rPPG signals, face detection and tracking is performed with
HOG and MOSSE, respectively, according to the results in Section 4.1.1. After-
wards, the ROI is defined as described in Section 4.1.2. Then, both rPPG and
PPG signals are re-sampled to fs “ 100Hz and filtered with a 32-order low-pass
at fhigh “ 6.0Hz and a 512-order high-pass at flow “ 0.3Hz. Finally, a cross
correlation pprPPG ˚ pPPGq between rPPG and PPG is calculated as

pprPPG ˚ pPPGqrns “
N
ÿ

m“0
p˚rPPGrms ¨ pPPGrm` ns (5.1)

with p˚rPPG being the complex conjugate of prPPG. Since rPPG and PPG were
measured by two separate systems which were triggered manually, the temporal
synchronicity of the two signals is not ensured. Hence, to account for a time
delay between the PPG and rPPG signal, correlation R between the two signals
is defined as

R “ maxppprPPG ˚ pPPGqrnsq (5.2)

for ´0.5s ˚ fs ă n ă 0.5s ˚ fs.

Signal-to-Noise Ratio

Moreover, the SNR of the extracted rPPG signal is assessed. Since the noise level
for an ROI at a skin area cannot be measured without the rPPG signal and since
the original signal is not available, the spectral method by De Haan and Van
Leest [100] is employed. To estimate the SNR, the ratio of the energy around
the fundamental heart rate frequency as well as its second harmonic (in-band
frequencies) and the remaining energy (out-of-band frequencies) within flow “ 0.8
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Hz and fhigh “ 5.0 Hz is computed, as defined by:

SNR “ 10 log10

˜

řfhigh“5.0
flow“0.8 pUtpfqS̃pfqq

2

řfhigh“5.0
flow“0.8 p1´ UtpfqS̃pfqq2

¸

(5.3)

where S̃pfq denotes the spectrum of the raw rPPG signal and Utpfq is a binary
window to pass in-band frequencies while blocking out-of-band frequencies.

Blood Pressure Prediction Accuracy

BP prediction performance is evaluated for all measurement scenarios, using the
model obtained in Chapter 4.3. To do so, a LOSO CV is performed on the data
set presented in Chapter 4.2.

Rejection Rate

Requirements for passing the quality assessment for rPPG pulses are a wave-
length similar to the rest of the signal section, a dominant systolic peak and a
dicrotic notch in form of another peak or inflection point (see Chapter 4.1.4).
If any of these criteria is not met, the rPPG cycle is discarded and not used
for BP estimation. Hence, as another quality measure, the percentage of signal
sections that passed these quality criteria is evaluated for the different types of
measurement scenarios.

5.1.2 Baseline Performance during Interfering Conditions

Figure 5.2 depicts the cross-correlation results and SNR for the baseline green-
channel rPPG signal. The correlation between reference PPG and rPPG is low
in general with RRGB,all “ 0.52. While the videos with dark skin, overlap or
movement obtain slightly lower Pearson correlation coefficients, rPPG signals for
videos with illumination changes exhibit a strongly reduced correlation with the
reference signals of RRGB,i “ 0.16. This can be attributed to the dependence of
each RGB colour channel with overall brightness leading to strong artifacts in
the rPPG signal.

This limitation of the RGB representation in dealing with changing illumina-
tion is also reflected by the low SNR. For RGB signals, the noise level is above
the signal’s energy level for all interfering measurement conditions where SNR

75



Chapter 5. Optimizing Remote Photoplethysmography

All

Illu
min

atio
n

Dar
k Sk

in
Ove

rlap

Movem
ent

0

0.2

0.4

Pe
ar
so
n
C
oe
ffi
ci
en
t
R

All

Illu
min

atio
n

Dar
k Sk

in
Ove

rlap

Movem
ent

´6

´4

´2

0

Si
gn

al
-t
o-
N
oi
se

R
at
io

[d
b]

Figure 5.2: Cross-correlation results between reference PPG and green-channel
rPPG signals (left) and SNR of the green-channel rPPG signal (right). Both
quality assessments are performed for the entire data set as well as for the different
interfering measurement scenarios separately.

is reduced most significantly for videos with illumination changes, but also for
dark skin and movement. The high photon absorption by melanin leads to a
low reflection rate for darker skin causing a low SNR. Melanin is mainly present
in superficial skin tissue, thus reducing light intensity for photons entering the
skin and again, reducing photons that were reflected by other skin components,
such that noise levels in specular reflection exceed the rPPG signal. Moreover,
movement can introduce artifacts of different sources, most importantly from
variations in specular reflection due to changes in the relative angle to the light
source. All measurement scenarios exhibit a strongly reduced SNR compared to
the reference PPG with SNRref “ 4.17db.

After signal processing, individual pulses are segmented and assessed in terms
of wavelength and the existence of a dominant systolic peak and a dicrotic notch.
That way, corrupted pulses are sorted out and are not used for BP estimation.
Figure 5.3 shows the percentage of passed data samples for the green-channel
baseline in each of the interfering measurement scenarios. Despite the low SNR,
rPPG segments from videos with dark skin have the lowest rejection rate of 12.5%.
In contrast, movement and illumination changes produce the most unsuitable
signal sections with 31.8% and 31.7% rejected, respectively.

Finally, BP prediction accuracy is evaluated for each interfering factor. Figure
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Figure 5.3: Percentage of signal sections that passed the pre-processing quality
criteria. Evaluated for green-channel rPPG signals during different recording
scenarios.

5.4 details the RMSEs and MAEs for SBP and DBP. Note that due to the study
design, the different measurement scenarios are not equally distributed across the
BP values Illumination changes were introduced in the second of four recordings
per person such that mainly normal BP levels are included whereas the other
categories are distributed arbitrarily among all videos. Therefore, these values
serve as baseline for the rPPG extraction method under various measurement
conditions on this data set, but should not be compared among measurement
conditions.

5.2 Colour Model Transformation

As shown in the previous section, especially illumination changes but also move-
ment, overlap and dark skin degrade the signal quality of rPPG signals extracted
from the green RGB channel. This can be attributed to the RGB colour model
representing illumination changes by a simultaneous increase (or decrease) in
pixel values of all three channels.

Several other colour models, on the other hand, separate brightness, lumi-
nance or lightness parameter from chromaticity values by introducing different
dimensions. A transformation to such colour model might eliminate illumination
artifacts in the rPPG signal. Therefore, transformations of the ROI pixels to five
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Figure 5.4: RMSE in BP estimation from green-channel rPPG signals (left)
and MAE in BP estimation from green-channel rPPG signals (right). Both error
metrics are calculated for the entire data set as well as for the different interfering
measurement scenarios separately. For comparison, results are also given for a
model trained and tested on the reference PPG signals.

different colour models is performed. Besides RGB, we consider HSV, CMYK,
Lab, YCrCb and YUV (see Section 2.5.3) as well as Chrom [50] and POS [49]. The
rPPG signals are obtained by spatially averaging the new chromaticity channels
that are associated with the green colour dimension.

Subsequently, these signals are band-pass filtered to eliminate high-frequency
noise as well as respiration and movement artifacts. Finally, they are compared
to the corresponding PPG reference signals by cross correlation. Moreover, SNRs
are assessed and BP prediction performance for each of the colour representations
is evaluated on the RFR models of the feature-based approach of Section 4.3. All
results are compared to the green-channel rPPG baselines which were established
for the whole data set as well as for the different interfering factors in Section 5.1.

5.2.1 Experimental Setup

To evaluate robustness of the new colour channels and suitability for rPPG ex-
traction, the recorded videos and PPG references from the forehead (see Chapter
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4.2) are compared. The same processing steps are applied as for the RGB-based
rPPG signal extraction used in Section 5.1. After face detection and tracking
with HOG and MOSSE, respectively (see Section 4.1.1), the ROI is defined as
described in Section 4.1.2 and its pixel values are transformed to the colour models
HSV, Lab, YCrCb, YUV and CMYK. For each of the colour models, we com-
pute rPPG signals from the chromaticity channels that are associated with the
green colour component, i.e. HSV-H, Lab-a, YCrCb-Cr, YUV-V, and CMYK-M.
After re-sampling rPPG and PPG signals to fs “ 100Hz and eliminating high
frequency noise and modulation by the respiratory signal (see Section 5.1.1), cross
correlation pprPPG ˚ pPPGq is calculated according to Equations 5.1 and 5.2.

Moreover, the SNR of the extracted rPPG signal is assessed for each of the
colour models using the spectral method by De Haan and Van Leest [100]. The
method is described in Section 5.1.1 and the SNR is computed according to
Equation 5.3.

Analogous to the green-channel baseline in Section 5.1, the quality of the
rPPG signals of different colour models is analysed for the whole dataset as well
as separately for videos with the previously defined measurement scenarios (see
Table 5.1). The same process is performed for the rPPG extraction methods
Chrom [50] and POS [49]. Finally, BP prediction performance is evaluated for
all colour models across the measurement scenarios, using the model obtained in
Section 4.3.

The following section provides results and discussions which are divided into
the rPPG signal assessment regarding correlation with the reference signals and
SNR in Section 5.2.2, evaluation of the colour models considering BP prediction
accuracy in Section 5.2.3 followed by analyses of the number of usable signal
sections in Section 5.2.4.

5.2.2 rPPG Quality Assessment

Correlation Analysis

The correlation results between contactless measured rPPG and reference PPG
signals under the defined measurement conditions are shown in Figure 5.5. Trans-
formations to Lab, YCrCb and YUV do not improve correlation with the reference
signal in any video category, in contrast to HSV, CMYK, Chrom and POS. Most
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Figure 5.5: Cross-correlation results between reference PPG and rPPG signals
from different colour models or rPPG models.

All Illumination Dark Skin Overlap Movement
´6

´4

´2

0

2

Si
gn

al
-t
o-
N
oi
se

R
at
io

[d
b]

RGB HSV Lab YCrCb YUV CMYK Chrom POS

Figure 5.6: SNR of rPPG signals from different colour models or rPPG models.

significant is the improvement with latter transformation models for changing
illumination. Whereas the RGB signals exhibit a strongly reduced correlation
with the reference signals from RRGB,all “ 0.52 to RRGB,i “ 0.16, correlation
decreases for Chrom and POS only by 0.07 and 0.08, respectively. Least signal
degradation is observed for a colour transformation to the CMYK colour model
with RCMYK,all “ 0.58 and RCMYK,i “ 0.57.

The same trend is observable for ROIs overlapping with eyebrows, hair, head
band or reflections as well as for movement, since these two scenarios cause sud-
den changes in ROI pixel values and manifest as similar artifacts in the overall
rPPG signal. Overlap with hair, objects and reflections reduces the skin area
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Figure 5.7: rPPG signals from different colour models, recorded under illumi-
nation changes.

within the ROI and replaces a subset of the ROI pixels by constant values. Due
to minor head movements, the number of non-skin pixels is subject to small vari-
ations that introduce artifacts in the spatially averaged ROI values. Especially
skin reflection and overexposed regions but also most hair colours do not cause
significant changes in chromaticity, thus mimicking illumination changes in the
rPPG signal.
For overlap with coloured objects, the rPPG extraction methods Chrom and POS
have an advantage since they estimate the light intensity and colour of the specu-
lar reflection in order to separate this signal from the rPPG signal. Hence, overlap
with coloured objects will affect the estimated spectrum of specular reflection such
that its influence on chromaticity and on the rPPG is mostly eliminated.
Movement, on the other hand, causes changes in the direction of specular re-
flection and some minor morphological changes of the skin surface within the
ROI. Variations in direction of specular reflection lead to perceived illumination
changes, whose influence can be mitigated by colour model transformations.

However, across all colour models, rPPG signal quality is strongly reduced for
darker skin tones since absorption by melanin is increased and the proportion
of by haemoglobin reflected photons becomes even smaller. For these measure-
ments, RGB signals exhibit the strongest correlation with the reference PPG of
RRGB,s “ 0.47 and colour model transformations do not improve signal quality.
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Signal-to-Noise Ratio

Figure 5.6 depicts the SNRs for rPPG signals of all colour models and for different
measurement conditions. It is evident that the POS method obtains the highest
SNR across all measurement scenarios with the exception of darker skin tones,
providing an SNR closest to the reference PPG (SNRref “ 4.17db). CMYK and
Chrom, too, exhibit an SNR above 0.9 db for illumination changes, overlap and
movement. Also HSV shows a significant improvement over the RGB baseline
for all categories except dark skin. Figure 5.7 depicts an example signal with
illumination changes for different rPPG extraction methods. It illustrates the
limitations of the RGB representation in dealing with changing illumination due
to the dependence of each colour channel with overall brightness. Interestingly, in
terms of SNR, CMYK outperforms other colour models which separate brightness,
luminance or lightness from chrominance information, although it is a subtractive
colour model. Lab, YCrCb and YUV exhibit negative SNRs even for videos
without any noteworthy artifacts. These three colour models do not show any
improvement over the RGB colour representation regarding correlation with the
reference signal and SNR, and thus, will not be considered in further analysis.

As for RGB-based rPPG signals, the generally low photon reflection rate for
darker skin causes low SNRs across all colour models. In this case a transforma-
tion of the colour space does not improve signal quality. However, Shirbani et al.
[101] showed in their analysis of ambient light and skin tone for the estimation
of heart rate, that at brighter light intensity, the heart rate prediction error was
independent of the skin tone. Since the interaction of light intensity and skin tone
can not be investigated with the data set at hand, its assessment with respect to
BP estimation should be part of a future study.

It has to be noted that the employed SNR method only considers the heart
rate and second harmonic to belong to the rPPG signal. However, the rPPG
waveform also contains higher frequency components, e.g. belonging to the di-
crotic notch. Colour models that better preserve these higher frequency features
might obtain a reduced SNR.

In general, when comparing the contact-less measured rPPG to the reference
PPG signals, a different waveform morphology can be observed although both
measurement locations are right next to each other at the forehead. The pres-
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Figure 5.8: rPPG signals from different color models in comparison to the
reference PPG (black).

sure (and thus absorption) decrease during diastole is slower for the rPPG signal
resulting in a less pronounced dicrotic notch as shown in Figure 5.8. This could
be attributed to the rPPG originating from more peripheral vessels due to lower
light intensity at the measurement site and thus, an overall more shallow light
penetration of the skin. As covered in Section 2.1, arteries and arterioles absorb
around half of the cardiac stroke volume during systole such that peripheral arte-
rioles and capillaries exhibit less pronounced BP pulses. This might be reflected
by the rPPG signals. The differences in pulse morphology between PPG and
rPPG cause a generally low correlation coefficient. It is to be evaluated whether
rPPG signals still contain sufficient information about the underlying BP. For
further assessment of colour model transformed rPPG signals, prediction perfor-
mance is analysed for the colour models that provided the strongest correlation
with the reference signals and the highest SNR, i.e. RGB, CMYK, Chrom and
POS.

5.2.3 BP Prediction Accuracy

For each colour model, general BP prediction performance is evaluated in a
LOSO CV on the data set presented in Chapter 4.2. Table 5.2 for DBP and
Table 5.3 for SBP detail the corresponding evaluation results. For DBP predic-
tion, Chrom signals perform best and obtain an MAE ˘SD of 7.54 ˘6.12 mmHg
closely followed by POS and RGB with 7.73 ˘6.43 mmHg and 7.92 ˘6.02 mmHg
respectively. For SBP, RGB signals obtain the lowest MAE ˘SD with 11.91
˘9.66 mmHg, but in terms of RMSE, the Chrom method shows a slight advan-
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Table 5.2: DBP prediction results for separate and joint RFR and different
colour spaces. (Forehead)

Joint RFR (DBP)
RGB CMYK Chrom POS Mean Reg.

ME ˘SD [mmHg] -0.18 ˘9.94 0.39 ˘10.64 -0.07 ˘9.71 -0.12 ˘10.06 0.46 ˘12.31
MAE ˘SD [mmHg] 7.92 ˘6.02 8.02 ˘7.00 7.54 ˘6.12 7.73 ˘6.43 8.58 ˘8.83
SDMAE among subjects [mmHg] ˘4.45 ˘5.08 ˘5.14 ˘5.58 ˘5.17
RMSE [mmHg] 9.95 10.65 9.71 10.06 12.31
SDRMSE among subjects [mmHg] ˘4.73 ˘5.42 ˘5.83 ˘6.06 ˘5.59
Pearson coeff. 0.37 0.25 0.22 0.28 -0.26
BSHa Grade C D C C D

separate RFR (DBP)
RGB CMYK Chrom POS Mean Reg.

ME ˘SD [mmHg] 0.12 ˘10.02 -0.61 ˘10.29 0.15 ˘10.07 0.17 ˘10.26 0.46 ˘12.31
MAE ˘SD [mmHg] 7.81 ˘6.27 7.86 ˘6.67 7.84 ˘6.31 7.94 ˘6.48 8.58 ˘8.83
SDMAE among subjects [mmHg] ˘4.40 ˘4.59 ˘5.17 ˘4.81 ˘5.17
RMSE [mmHg] 10.01 10.30 10.06 10.25 12.31
SDRMSE among subjects [mmHg] ˘4.76 ˘4.95 ˘5.50 ˘5.21 ˘5.59
Pearson coeff. 0.36 0.30 0.14 0.25 -0.26
BSHa Grade C C D D D
aBritish Society of Hypertension

tage over RGB signals with 15.28 mmHg on the joint RFR model. In comparison,
when trained and tested with almost ideal signals, i.e. with the reference PPG
signals, the RFR model obtains an MAE ˘SD of 4.36 ˘3.42 mmHg for DBP and
7.68 ˘6.16 mmHg for SBP.

Based on the correlation results, the RGB representation was not expected to
exhibit lower prediction errors than any of the other rPPG extraction methods.
This outcome can be explained by the signal quality assessment that is performed
prior to feature extraction. Features are only extracted from rPPG cycles that
exhibit a similar wavelength as the rest of the signal section, a dominant sys-
tolic peak and a dicrotic notch in form of another peak or inflection point (see
Section 4.1.4). Hence, the influence of signal quality on the prediction perfor-
mance is reduced by these pre-processing and signal selection steps. Therefore,
the percentage of signal sections that passed these quality criteria is evaluated for
each of the rPPG extraction methods and for the different types of challenging
measurement scenarios in Section 5.2.4.
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Table 5.3: SBP prediction results for separate and joint RFR and different
colour spaces. (Forehead)

Joint RFR (SBP)
RGB CMYK Chrom POS Mean Reg.

ME ˘SD [mmHg] 0.64 ˘15.40 0.60 ˘15.62 0.59 ˘15.27 0.80 ˘15.37 -1.50˘19.41
MAE ˘SD [mmHg] 11.96 ˘9.72 12.27 ˘9.68 12.06 ˘9.39 12.36 ˘9.17 14.29 ˘13.19
SDMAE among subjects [mmHg] ˘5.27 ˘6.17 ˘5.88 ˘6.44 ˘15.89
RMSE [mmHg] 15.41 15.63 15.28 15.39 19.43
SDRMSE among subjects [mmHg] ˘5.85 ˘6.64 ˘6.28 ˘6.71 ˘16.51
Pearson coeff. 0.54 0.47 0.50 0.51
BSHa Grade D D D D D

separate RFR (SBP)
RGB CMYK Chrom POS Mean Reg.

ME ˘SD [mmHg] 0.45 ˘15.34 0.81 ˘15.77 0.35 ˘15.57 0.62 ˘15.32 -1.50˘19.41
MAE ˘SD [mmHg] 11.91 ˘9.66 12.35 ˘9.85 12.38 ˘9.46 12.17 ˘9.32 14.29 ˘13.19
SDMAE among subjects [mmHg] ˘5.27 ˘6.06 ˘6.10 ˘6.68 ˘15.89
RMSE [mmHg] 15.33 15.73 15.58 15.33 19.43
SDRMSE among subjects [mmHg] ˘5.88 ˘6.52 ˘6.52 ˘6.88 ˘16.51
Pearson coeff. 0.54 0.46 0.47 0.52 0.59
BSHa Grade D D D D D
aBritish Society of Hypertension

In general, the differences in BP prediction accuracy between the colour models
are very small when looking at performances on the whole data set. Thus, for
a more differentiated evaluation of the colour models, their performances are
considered separately for each of the different measurement conditions. For SBP,
the separate RFR model is employed, and for DBP, the joint RFR model is used,
based on the results in Section 4.3.

Table 5.4 shows the RMSE values of BP prediction on the colour model trans-
formed signals for illumination changes, darker skin, overlap with hair or textiles
and movement as well as the results on the whole data set. Table 5.5 contains
results of the same experiments in terms of MAE and SD. Whereas the error val-
ues on the whole data set are very similar for all colour models and do not allow a
clear decision, they exhibit significant differences within each of the measurement
scenarios.

The large differences in error values across the measurement scenarios can be
attributed to the distribution in BP values. Illumination changes were introduced
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Table 5.4: RMSE for BP prediction for different colour models and recording
scenarios. SBP is computed by an single-output RFR model, and DBP is obtained
by a joint RFR model.

SBP - RMSE in [mmHg]
RGB CMYK Chrom POS Mean Reg.

All 15.33 15.73 15.58 15.33 19.43
Illumination Changes 16.40 9.53 10.39 12.36 9.51
Dark Skin 13.56 13.31 13.29 13.68 13.38
Overlap 18.63 20.59 19.00 18.77 22.71
Movement 16.63 17.73 16.89 15.60 20.60

DBP - RMSE in [mmHg]
All 9.95 10.65 9.71 10.06 12.31
Illumination Changes 7.11 6.87 4.60 5.62 4.11
Dark Skin 8.22 6.73 6.16 6.61 5.21
Overlap 12.63 13.64 13.02 12.92 13.88
Movement 10.66 11.29 10.53 9.73 8.26

in the second of four recordings per person such that mainly normal BP levels
are included whereas the other categories are distributed arbitrarily among all
recordings. Therefore, error values are compared only within each recording
category.

For illumination changes, CMYK obtains the lowest RMSE for SBP with 9.53
mmHg closely followed by the Chrom model, while for DBP, Chrom performs best
with an RMSE of 4.60 mmHg. If considering the MAE instead, Chrom appears
to be most robust against illumination changes for both SBP and DBP. RGB
performs worst with an RMSE of 16.40 mmHg for SBP and 7.11 mmHg for DBP.
In contrast to RGB, who’s channels have no separation between chrominance and
brightness information, Chrom was specifically developed for rPPG extraction
and only considers intensity variations that are orthogonal to the direction of
specular reflection in the projection space [50].

For dark skin colour, there is not much difference between the results of the
colour models. Chrom exhibits a small advantage in both SBP and DBP mea-
surement, and RGB obtains a significantly higher RMSE and MAE for DBP than
the other options.

For overlap of the ROI with non-skin pixels, RGB and POS perform slightly
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Table 5.5: MAE for BP prediction for different colour models and recording
scenarios. SBP is computed by an single-output RFR model, and DBP is obtained
by a joint RFR model.

SBP - MAE ˘SD in [mmHg]
RGB CMYK Chrom POS Mean Reg.

All 11.91 ˘9.66 12.35 ˘9.85 12.38 ˘9.46 12.17 ˘9.32 14.29 ˘13.19
Illumination Changes 10.80 ˘12.34 7.47 ˘5.92 7.21 ˘7.49 9.67 ˘7.69 8.22 ˘4.79
Dark Skin 11.72 ˘6.82 11.92 ˘5.93 11.80 ˘6.12 12.22 ˘6.17 9.32 ˘9.61
Overlap 14.40 ˘11.81 16.23 ˘12.68 14.68 ˘12.05 14.14 ˘12.34 18.10 ˘13.71
Movement 13.40 ˘9.84 14.17 ˘10.68 13.74 ˘9.82 12.60 ˘9.20 15.89 ˘13.12

DBP - MAE ˘SD in [mmHg]
All 7.92 ˘6.02 8.02 ˘7.00 7.54 ˘6.12 7.73 ˘6.43 8.58 ˘8.83
Illumination Changes 6.11 ˘3.64 5.67 ˘3.57 4.08 ˘2.11 4.76 ˘2.99 3.68 ˘1.83
Dark Skin 6.54 ˘4.99 5.74 ˘3.52 4.94 ˘3.69 5.36 ˘3.87 4.41 ˘2.76
Overlap 9.54 ˘8.28 10.24 ˘9.01 9.31 ˘9.10 9.45 ˘8.80 10.26 ˘9.35
Movement 8.47 ˘6.46 9.18 ˘6.57 8.36 ˘6.40 7.64 ˘6.03 6.43 ˘5.19

better than Chrom, while CMYK exhibits the largest RMSEs with 20.59 mmHg
for SBP and 13.64 mmHg for DBP.

Finally, POS shows to be the most robust colour representation against move-
ment of the subject, while CMYK obtains the highest errors for both SBP and
DBP on these videos.

Overall, videos with ROI overlap obtain the highest errors compared to other
measurement scenarios. In contrast to illumination changes, overlap with hair or
textiles can introduce changes in chrominance depending on the colour of these
objects. Hence, this might be the most challenging measurement scenario for
the colour models, where they might not be able to compensate these artifacts.
However, a segmentation of skin pixels can eliminate this issue and should be
considered in future implementations.

Across all measurement conditions, Chrom appears to be the most robust
rPPGmodel closely followed by POS which exhibits the highest invariance against
movement of the subject. As discussed before, this performance assessment is
based on BP prediction errors for signal sections that passed the rPPG qual-
ity criteria before feature extraction. For a more holistic assessment, the ratio
of signal sections that are considered unsuitable and thus are not used for BP
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Figure 5.9: Percentage of signal sections that passed the pre-processing quality
criteria. Evaluated for rPPG signals from different colour spaces and for the
different recording scenarios.

estimation needs to be quantified.

5.2.4 rPPG Rejection Rate

Requirements for passing the quality assessment for rPPG pulses are a wavelength
similar to the rest of the signal section, a dominant systolic peak and a dicrotic
notch in form of another peak or inflection point (see Chapter 4.1.4). If any
of these criteria is not met, the rPPG cycle is discarded. Hence, in order to
determine which colour model is best suited for BP prediction from video data,
the percentage of signal sections that passed these quality criteria is evaluated for
each of the rPPG extraction methods and for the different types of measurement
scenarios.

The results are presented in Figure 5.9 and show the same trend as the sig-
nal correlation analysis in Section 5.2. On the whole data set, RGB signals are
discarded most often with 25 %, whereas POS signals are the most robust with
18 % rejected. Across all challenging measurement scenarios, CMYK keeps the
lowest number of signal sections. In contrast, POS signals are rejected the least
for videos with illumination changes and movement, while also performing well
for dark skin and ROI overlap. In latter two cases, RGB achieves the lowest
rejection rate with a small improvement over POS and Chrom.
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5.2.5 Conclusion on the Selection of the Colour Model

Overall, the colour model transformations can achieve an improvement over the
green-channel baseline in terms of signal quality and prediction performance for
the majority of investigated interfering measurement scenarios. Considering the
BP prediction errors from Section 5.2.3 and the rPPG rejection rates, POS is the
clear choice for videos containing movement since POS achieves the lowest pre-
diction errors while keeping the most signal sections. For the other measurement
scenarios, the decision is a trade-off between prediction accuracy on the current
model and rejection rate. Whereas Chrom leads in terms of accuracy, POS ap-
pears to provide a more stable signal quality. Taking the high SNRs of the POS
signals into account, POS is the rPPG extraction method that will be employed
for following experiments.

5.3 Region of Interest

So far, the ROI for rPPG extraction was defined at the forehead. A previous study
[102] compared various facial subregions and showed that the forehead and upper
cheeks provide the best rPPG signals. However, concerns were raised in a related
study [20] that the forehead might not be an appropriate measurement site for
rPPG-based BP due to the impact of sympathetic and parasympathetic activation
on the blood circulation in the face. Therefore, the palm will be considered as
an alternative measurement site which exhibits a high vessel density [26] and is
commonly exposed. Furthermore, the effect of the size of the ROI on the signal
quality is investigated.

5.3.1 Experimental Setup

The two ROIs (palm and forehead) are compared in terms of rPPG SNR and
BP prediction accuracy on the data set described in Chapter 4.2. A reliable
detection and stable tracking of the hand was ensured previously in Section 4.1.1
to provide the same preconditions as the ROI at the forehead. The definition of
the size and position of the ROI is described in Section 4.1.2. For comparison of
the prediction performance of the two skin regions, the POS method is utilised
for rPPG extraction from the video data, whereas SNR is also evaluated for
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Figure 5.10: SNR of rPPG signals from different colour models and ROIs.

RGB, CMYK and Chrom to confirm previous forehead-based results and avoid
selection bias. The SNR is computed according to Equation 5.1, while prediction
accuracy is evaluated by a LOSO CV on a single-output RFR for SBP and a joint
RFR for DBP, based on the outcomes in Section 4.1.5. To evaluate the effect of
the ROI’s size on the signal quality, ROIs spanning different numbers of pixels
200 ă Kpixels ă 600 are analysed regarding rPPG SNR.

In the following, this section is divided into the assessment of ROI positioning
in Section 5.3.2 and the analysis of ROI size in Section 5.3.3.

5.3.2 Comparison of ROI Positions

Figure 5.10 depicts the SNRs for the colour models RGB, CMYK, Chrom and
POS with the transparent colours representing the values for rPPG signals ex-
tracted from the forehead and the bold colours for signals from the palm. Only
the measurement scenarios with illumination changes and dark skin are analysed
since for these two categories, the contained artifacts are comparable between
the two ROIs. On the whole data set as well as on the videos with illumi-
nation changes, palm rPPG signals obtain a lower SNR for all colour models.
Only the RGB signal with illumination changes shows a small advantage over the
forehead-based rPPG, though the SNR is still at SNR “ ´4.0 db. For dark skin,
all colour models show a significant improvement with the palm-based rPPG sig-
nal. Whereas RGB and Chrom are still in the negative range, CMYK and POS
reach an SNR of 1.7 db and 2.4 db, respectively. This effect can be attributed
to the lower melanin concentration at the palm compared to the face [103], and
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Figure 5.11: rPPG signals from a subject with darker skin. In such cases,
signals from the hand exhibit a higher quality whereas signals from the forehead
suffer from a low SNR due to the higher concentration of light absorbing melanin.

Table 5.6: SBP and DBP prediction results from the RFR for rPPG signals
extracted from different ROIs.

SBP DBP
ROI position forehead palm forehead palm
ME ˘SD [mmHg] 0.62 ˘15.32 0.67 ˘16.84 -0.12 ˘10.06 -0.51 ˘9.55
MAE ˘SD [mmHg] 12.17 ˘9.32 13.28 ˘10.37 7.73 ˘6.43 7.14 ˘6.35
SDMAE among subjects [mmHg] ˘6.68 ˘7.23 ˘5.58 ˘4.61
RMSE 15.33 16.85 10.06 9.56
SDRMSE among subjects [mmHg] ˘6.88 ˘7.74 ˘6.06 ˘5.03
Pearson coeff. 0.52 0.32 0.28 0.36
BSHa Grade D D C C
aBritish Society of Hypertension

the results suggest to use the palm as ROI for rPPG extraction for persons with
darker skin. A set of example rPPG signals from palm and forehead of a subject
with darker skin are shown in Figure 5.11. Both signals were obtained with the
POS method. It is evident that the forehead-based signal is distorted by noise
such that the true rPPG pulses are not recognisable, whereas in the palm-based
signal, the rPPG waveform is clearly visible.

Prediction performance results for the palm and forehead ROIs on a single-
output RFR for SBP and a joint RFR for DBP are presented in Table 5.6. It
shows that SBP estimation exhibits lower errors with rPPG signals extracted
from the forehead whereas DBP estimation performs better on signals extracted
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Table 5.7: RMSE for BP prediction for rPPG signals extracted from different
ROIs.

SBP [RMSE in mmHg] DBP [RMSE in mmHg]
RFR MLP RFR MLP

Joint Sep. Joint Sep. Joint Sep. Joint Sep.
Forehead 15.40 15.33 16.27 18.32 10.06 10.25 10.51 10.10
Palm 16.11 16.85 16.41 17.23 9.56 9.96 9.95 9.99

Table 5.8: MAE for BP prediction for rPPG signals extracted from different
ROIs.

SBP - MAE ˘SD in [mmHg] DBP - MAE ˘SD in [mmHg]
RFR MLP RFR MLP

Joint Sep. Joint Sep. Joint Sep. Joint Sep.
Forehead 12.35 ˘9.19 12.17 ˘9.32 12.65 ˘10.23 14.44 ˘11.28 7.84 ˘6.45 7.94 ˘6.48 7.98 ˘6.84 7.74 ˘10.11
Palm 12.63 ˘10.00 13.28 ˘10.37 12.60 ˘10.52 13.11 ˘11.17 7.14 ˘6.35 7.44 ˘6.34 7.70 ˘6.30 7.58 ˘6.12

from the palm. To rule out the influence of the specific models’ properties, both
ROIs are further evaluated on the models tested in Section 4.1.5, i.e. a separate
(single-output) and joint (two-output) MLP as well as a separate and joint RFR.
The results of these tests are shown in Table 5.7 for RMSE values and in Table
5.8 for the corresponding MAE ˘SD. For all models, DBP prediction performs
better on rPPG signals at the palm. In contrast, the results for SBP are less
consistent. Both RFR models obtain better results with forehead-based rPPG
signals, whereas the separate MLP obtains lower errors on palm-based rPPG
signals. For the joint MLP, the outcome depends on the error metric.

Pasyk et al. [104] analysed cutaneous tissue of 20 different body areas, and
found the highest capillary density of the papillary dermis at the palms with 5.3
%, while the facial areas exhibit a value of only 3.6 %. Although facial areas
show a higher capillary density in the reticular dermis, the palm still exhibits the
highest density overall [104]. Therefore, this area might be best suited for rPPG
extraction as reflected by the prediction accuracies for DBP. However, the results
for SBP do not coincide. Especially SBP is affected by pressure amplification
along the arterial tree and might be more sensitive to subject-individual distances
of the measurement location to the heart. Thereby, the distance and variation
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Figure 5.12: SNR of rPPG signals extracted from differently sized ROIs.

in distance to the palm is greater than the distance to the forehead and could
explain the lower error on forehead-based rPPG signals.

Differences in signals from palm and forehead caused by sympathetic and
parasympathetic activation [20] could not be observed nor were they deliberately
provoked during data acquisition. Sympathetic activation leads to a systemic BP
increase which is mainly driven by vasoconstriction in cutaneous vessels in the ex-
tremities whereas facial vasoconstriction remains comparatively low [105]. It has
been shown that the fingers’ and other extremities’ sympathetic responsiveness
is more pronounced than the head’s sympathetic responsiveness [106, 107]. In
contrast, facial regions are subjected to parasympathetic vasodilation [20]. Their
influences on video-based BP measurement should be investigated in future stud-
ies.

5.3.3 Analysis of ROI Size

The influence of ROI size on the signal quality is presented in Figure 5.12. All
investigated colour models show an improvement with a higher number of pix-
els, e.g. POS obtains an SNR of SNR600 “ 1.80 db for 600 pixels compared to
SNR200 “ 0.88 db for 200 pixels. This shows that sensor noise is better averaged
out within a larger ROI. On the other hand, a too large ROI would contain rPPG
signals with big phase differences such that spatial averaging of these pixel values
would affect the waveform and signal level. Chen et al. [108] measured PWV
invasively and obtained values between 8 m

s and 30 m
s . Depending on the exact

distance to the camera, the ROIs spanning 600 pixels have an estimated height
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of 5 cm, such that a slow pulse wave with vPWV “ 8m
s would take 6.25 ms to

pass the ROI. Hence, even for a high heart rate of 160 bpm and a low PWV, the
phase difference is only 6° and thus not affecting the signal waveform significantly.

5.3.4 Conclusion on the Selection of the Region of Interest

Although forehead-based rPPG signals exhibit an overall lower SNR, prediction
errors show a clear preference of palm-based signals for DBP. In contrast, for
SBP prediction, mostly forehead-based rPPG signals perform better. Considering
the quality improvement with palm-based signals for darker skin tones, the palm
should be chosen as ROI to provide a BP estimation method applicable for a
diverse population. Further, a large ROI has proven to increase SNR and will be
applied in the following approach.
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Chapter 6

Convolutional Neural Networks
for Blood Pressure Estimation

To rule out possible error sources in BP estimation from rPPG data, the model
proposed in this chapter incorporates the following changes compared to the
feature-based model in Chapter 4:

1. A CNN is employed as regression method for automatic feature extraction
from rPPG signals. This allows finding more relevant features than the
hand-crafted ones.

2. To further rule out a negative impact of low rPPG signal quality, the pro-
posed method is first validated on conventional PPG signals. For this, the
MIMIC III data set [56] is used which offers a much larger data base with
more reliable, invasive BP references. The resulting PPG-based model is
finally used for transfer learning to the rPPG signals.

3. On the above mentioned large PPG data set, the generalisation capabilities
of a universal model are evaluated, and the effect of individual calibration
of such model is explored.

6.1 Method

By applying transfer learning from the PPG to the rPPG domain, we can take
advantage of large amounts of data while benefiting from a higher signal quality
in PPG signals as well as in the BP references. Since the MIMIC III data set
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[56] used for this purpose consists of raw biosignals from ICU patients, it also
comprises pathological BP and PPG signals. Moreover, many signals suffer from
defective sensor attachment or movement artefacts. Therefore, an extensive sig-
nal filtering and preprocessing is performed as detailed in Section 6.1.1 which is
adapted to the shortcomings of this data set. Further, different time and fre-
quency domain representations of the segmented PPG pulses are considered as
input to the ANN.

The regression ANN is described in Section 6.1.2 and consists of several convo-
lutional layers to learn a feature representation of the input automatically. The
network is first trained as a universal model on the data of the training subjects.
Then, the resulting model is calibrated individually on held off fine-tuning data
from the test subjects. This calibration process is analysed for PPG signals and
finally also adopted to test the performance of the proposed method on rPPG
data by transfer-learning. To do so, the last layers need to be fine-tuned due to
the differences in signal morphology between PPG and rPPG (see Section 5.2.2).

6.1.1 Signal Preprocessing

As a real world data set, the MIMIC III waveform data base [56] contains a
large part of unusable signals due to technical issues, such as sensor attachment
problems and movement artifacts, as well as pathological alterations of the signals
caused by the medical condition or drugs. Since these influences each manifest
differently, a more extensive preprocessing is performed compared to the rPPG
data set. Figure 6.1 shows the signal processing pipeline for the MIMIC III
waveform data.

First, the PPG signal is smoothed by applying a Savitzky-Golay filter [109]
with a window length of 31 and a polynomial order of three. In contrast to
other filters, the Savitzky-Golay filter does not cut off high frequency components
of the signal, but includes them into the calculation. Therefore, extrema are
well preserved and do not suffer from flattening and shifting as caused by other
methods. Subsequently, plateaus that are longer than 19 samples are deleted
from the PPG and ABP signals, which can be caused by PPG sensor detachment
or ABP sensor issues. To do so, a plateau is defined as no change up to the first
decimal digit for ABP signals and up to the fourth decimal digit for PPG signals.
With the sampling rate of fs “ 125 Hz, 19 samples denote 152 ms and have shown
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     Savitzky-Golay filter

     deletion of plateaus

     segmentation into pulses

     limitation of the blood pressure range

     filtering correlation with previous PPG pulses

     filtering SQI skewness of PPG pulses

1.

2.

3.

5.
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     computing SBP and DBP from ABP signals4.

     preparing different PPG representations as ANN input8.

resampled PPG signal

zero-padded PPG signal

2nd derivative of PPG

Wavelet transformed PPG signal

FFT transformed PPG signal

Figure 6.1: Complete pipeline for MIMIC PPG and ABP signal processing.

good accuracy in an empirical evaluation. The remaining signal is segmented into
separate PPG pulses and corresponding ABP signal sections based on the PPG
minima, i.e. diastoles.

In the next step, these ABP sections are examined for the correct number
of peaks and for physiologically possible BP values. Pulses are discarded that
exhibit more than one global minimum or maximum or BP values of SBP <
60 mmHg, SBP > 200 mmHg, DBP < 50 mmHg or DBP > 120 mmHg. This
allowed BP range is larger than in comparable studies [83, 82, 84]. Further, each
PPG pulse is correlated with its three predecessors and must meet an average
correlation coefficient of RPPG ě 0.3.

A Signal Quality Index (SQI) based on skewness is the final criterion to eval-
uate signal quality, as increased skewness was found to be associated with cor-
rupted PPG signals [110]. In a comparative study, Elgendi et al. [111] showed
that skewness is the best metric to assess the quality of PPG signals compared
to perfusion, relative power, kurtosis and entropy. Therefore, the SQI is defined
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as

SQI “
1
l

l
ÿ

i“1
rui ´ µ̂u{σs

3 (6.1)

where l denotes the number of samples in the PPG signal, and µ̂u and σ are
mean and standard deviation of all samples u, respectively. Based on empirical
analysis and a previous study [111], the SQI threshold is set to SQIPPG “ 0.0
for the MIMIC data. All remaining pulses are used for the data set. For rPPG
signals, the threshold is relaxed to SQIrPPG “ 0.2 to avoid elimination of too
many samples in the already small data set.

To find the best input representation for the ANN, the PPG pulses undergo
further processing. Since all pulses need to have the same length for the input
layer of the ANN, the two employed options are either to re-sample all pulses to
a length of l “ 100 samples or to maintain the same sampling rate for all signals
and zero-pad the pulses such that all input data have the same length (l “ 100
samples).

Another variation of the PPG pulses is their second derivative PPG” which
represents the acceleration of changes in blood volume, thus possibly amplifying
alterations in the PPG waveform. Finally, the PPG pulses are also transformed
to the frequency domain using a single-level Discrete Wavelet Transform (DWT)
with Haar wavelets and an FFT. In the feature selection in Chapter 4.3 as
well as in previous studies [14, 59], the frequency domain has been shown to
contain valuable information for BP prediction. Whereas a Fourier-transformed
signal only provides the overall frequency composition, a Wavelet-transformation
extracts both spectral and temporal information.

6.1.2 Neural Network

In two comparative studies on ANN architectures for PPG-based BP estimation
[67, 64], ResNet architectures obtained superior results than AlexNet [62], LSTM
networks and an MLP. A large model with three parallel ResNet architectures
proposed by Slapnicar et al. [87] did not outperform the original ResNet-50
structure, and an additional use of derivatives did not improve performance [61].
Hence, for the proposed method, a ResNet-50 architecture is adapted to one-
dimensional input signals, and the number of layers is reduced to avoid overfitting
[112].
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Figure 6.2: Deployed ANN architecture [112]. The proposed network consists
of convolutional layers for an automatic feature extraction from the PPG signals
and is structured in eight residual blocks.

For an automatic feature extraction, the ANN comprises one-dimensional con-
volutional layers. The layers are organised in residual blocks, as they have shown
favourable convergence behaviours for deep neural networks [63]. The central
idea of residual networks is to learn the additive residual function H with respect
to the identity mapping mpilq “ il, such that

ol “ mpilq `Hpil,Wlq (6.2)

where il and ol are input and output of the l-th residual unit, and Wl its set of
weights. This is realised by skip connections which create a direct propagation
path from one residual unit to any other unit. He et al. [113] found that us-

99



Chapter 6. Convolutional Neural Networks for Blood Pressure Estimation

ing identity mappings as skip connections and after-addition activation further
improve training and generalisation of the model. Hence, their proposed resid-
ual unit structure is adopted in the ANN as shown in the network architecture
illustrated in Figure 6.2. tanhpxq is selected as activation function for convolu-
tional layers and activation layers in the residual blocks, whereas for the last fully
connected layer, a linear activation function is used.

The first convolutional layer in each residual block has a kernel size of K̂ “

1ˆ1ˆg1, and the second convolutional layer as well as those in the skip connection
exhibit K̂ “ 3 ˆ 1 ˆ g2, with g1 and g2 being the numbers of input channels,
respectively. Whereas 3 ˆ 1 ˆ g2-kernels learn spatial relationships, 1 ˆ 1 ˆ g1-
kernels are used to reduce dimensions by combining cross-channel information
into fewer channels. Only in the convolutional blocks, 1 ˆ 1 ˆ g1-kernels do
not reduce the number of channels but serve as a cross-channel projection layers
refining the already extracted features. In the proposed architecture, 3ˆ 1ˆ g2-
kernels are used as a bottleneck layer to calculate features from the condensed
low-dimension input and increase the number of channels again. Further, for all
layers, stride is set to s “ 1 to avoid loss of spatial resolution, and zero-padding
is performed evenly on both sides such that each output has the same size as the
corresponding input data, except the last pooling layer which exhibits s “ 2.

The following loss function Lpô, oq and Adam optimiser are employed with a
start learning rate of lr “ 0.0001 and decay ε “ 0.001:

Lpô, oq “
1
n

n
ÿ

i“1
logpcoshpoi ´ ôiqq (6.3)

where ô is the expected output and o the predicted output of the ANN, and n

denotes the batch size. The model is trained with batches of size n “ 128 until
the loss stops decreasing. Hyperparameter tuning is performed in a 5-fold cross-
validation for the batch size, learning rate, dropout rate and pooling size as well
as for the selection of the activation function and loss function.

The effect of fine tuning is analysed (1) for personalisation of the model for
MIMIC test subjects and (2) for transfer learning from PPG to rPPG data. The
best universal model is used for personalisation on test subjects by fine-tuning the
last layers on a small part of the test subject’s data. For fine tuning the network,
the first layers and residual blocks are frozen such that only the weights of the last
three fully connected layers are further adjusted during training. Hence, 251,700
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parameters remain trainable. The initial learning rate is set to lr “ 0.00001 as
the layers have already been trained, and the batch size is reduced to n “ 60 to
account for the few tune data.

Finally, for transfer learning from the PPG to the rPPG domain, the same fine-
tuning process is performed with the rPPG data set and four trainable layers,
i.e., 3,452,002 trainable parameters. The weights of all fully connected layers
are adjusted while the weights and kernels in the convolutional layers remain the
same. The initial learning rate is defined as lr “ 0.00001, and the batch size is
set to n “ 60. For further personalisation of this rPPG model, three layers are
fine-tuned with a batch size of n “ 3 due to the small number of rPPG tune data
per patient.

6.2 Experimental Setup

The previously described method and ANN model are first trained and tested
on the MIMIC III waveform data base described in Section 6.2.1. Subsequently,
transfer learning is performed with the rPPG data set detailed in Section 6.2.2.
To do so, the optimisation process described in Section 6.2.3 is followed.

6.2.1 PPG Data Set

After preprocessing 483 records of the MIMIC III waveform data base, 854,073
samples from 180 patients are obtained with a mean BP ˘ SD of 164.6 ˘ 23.25
mmHg for SBP and 78.8 ˘ 17.6 mmHg for DBP. The number of samples per
patient was limited to 20,000 to reduce the influence of single patients.

The data set is split into 116 training and 64 test subjects as illustrated in
Figure 6.3 obtaining 383,185 and 415,888 samples, respectively. Both subsets are
further divided into 20% validation subjects and 80% actual training and test
subjects. This split with two validation sets is chosen to account for the training
and validation of the universal model as well as a subsequent optimisation of
the fine-tuning process. The data set is split at patient-level, such that all data
of each patient only appear in the training set, validation set A, validation set
B or test set. In the sequentially ordered records, the first 300 PPG pulses of
each test (and validation B) subject are held off for fine tuning of the model, and
the subsequent 300 pulses are eliminated from the data set to avoid too much
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Training
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Time
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Figure 6.3: Split of PPG data set. Training and validation set A are used for
development of the universal model, tune and validation set B are used for fine
tuning and development of the calibrated models, and the test set is employed for
evaluation of both. A subject-based data split is conducted, and the tune data is
selected as the first 300 samples of each test subject.

similarity between tune and test data and to simulate a real-world application.
The rest of the test subjects’ PPG pulses form the test set.

6.2.2 rPPG Data Set

For evaluation of transfer learning capabilities from PPG to rPPG signals, the
previously acquired data set described in Chapter 4.2 is used. The same signal
processing pipeline (Section 6.1.1) is followed to ensure maximal input similarity.
After pre-processing, a total of 709 samples from 28 subjects remain. Due to the
very small number of samples per subject, the first 40% of each subject’s samples,
but at least 8 samples, are employed for tuning and the rest is assigned to the
test data set.
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(a) training data

(b) tune data

(c) test data

Figure 6.4: Histogramm and distribution of BP values in the PPG data set.
Hypotensive BP (SBP < 90 mmHg and DBP < 60 mmHg) is depicted in blue,
normotensive BP (90 mmHg ď SBP < 120 mmHg and 60 mmHg ď DBP < 80
mmHg) in green, pre-hypertensive BP (120 mmHg ď SBP < 140 mmHg and 80
mmHg ď DBP < 90 mmHg) in yellow and hypertensive BP (140 mmHg ď SBP
and 90 mmHg ď DBP) in red.
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6.2.3 Model Optimisation

A 5-fold cross-validation is performed on the training data set for determining
the optimal configuration of the ANN in a grid search. Further, performances
for different input representations of the PPG signals are compared. For this,
the PPG and its second derivative are considered, where for each, a zero-padded
and a resampled version is tested, as well as frequency domain representations
obtained by an FFT and a single-level DWT.

For interpreting the results, layer activation of the ANN is analysed for various
input samples. Moreover, a correlation analysis of PPG waveforms is performed.
To do so, PPG pulses are grouped according to their reference BP in intervals of
5 mmHg, and the Pearson correlation is computed between the PPG waveforms
for all combinations of BP levels. This analysis is conducted for inter-individual
combinations as well as intra-individual ones.

To investigate the impact of individual calibration on the prediction accuracy,
the best universal model according validation set A is fine-tuned individually on
each subject’s tune data and tested on the latter part of the signal, i.e., the test
data. Different numbers of layers are fine-tuned.

Next, transfer learning from PPG signals to the rPPG domain is performed.
To do so, a LOSO CV is conducted where the universal PPG model is fine-tuned
on the rPPG data of 27 subjects and subsequently tested on the test data of the
remaining subject. Again, different numbers of layers are tested for fine-tuning.
In the next iteration, these new universal rPPG models are further personalised
for each corresponding individual by fine-tuning on the subject’s tune data.

6.3 Results and Discussion

In the following sections, the results of the previously described experiments are
presented and analysed. First, Section 6.3.1 details the results of the universal
model trained on the MIMIC III data set, where obtained results are compared
to other state-of-the-art BP prediction models and an example record is assessed.
Further, the CNN layer activation is analysed to increase understanding of the
model’s decision making and of relevant PPG features.

Subsequently, in Section 6.3.2, personalisation of the universal PPG model is
investigated and analysed based on a detailed error distribution and predictions
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of example records. The results are evaluated in comparison to the current state
of research and strategies for enhancing the personalisation process are derived.

Finally, the results for transfer learning from the PPG to the rPPG domain
are presented in Section 6.3.3, including an universal model as well as model
personalisation.

6.3.1 Universal PPG Model

After grid search for hyperparameter optimisation, the best ANN on the vali-
dation set A is further tested for the different input representations. Table 6.1
details BP prediction errors on the test data set. Best prediction accuracies are
achieved with zero-padded time domain signals, where the second derivative of
the PPG (PPG”) has a slight advantage over the PPG signal itself. The PPG”
data representation obtains an MAE ˘SD of 8.73 ˘7.36 mmHg for SBP and 8.07
˘6.86 mmHg for DBP. Although both signals contain the same information, the
second derivative amplifies differences in signal morphology.

Resampled signals and frequency domain representations on the other hand,
exhibit prediction errors similar to the mean regressor with an MAE ˘SD of
18.24 ˘11.73 mmHg for SBP and 16.10 ˘10.65 mmHg for DBP. This shows
that the ANN relies on information about cycle lengths and heart rate which are
lost during resampling the signal to a standardised length. Moreover, predictions
based on frequency domain signals might suffer from the low frequency resolution
due to the short signal sections. Xing et al. [14] showed that the frequency
domain of PPG signals is well suited for BP estimation from longer input signals.
However, for the purpose of beat-to-beat prediction, the resolution appears to be
insufficient. The second derivative of the PPG further exhibits the lowest SD in
prediction errors among subjects.

The obtained results are not within the AAMI standard [96] and obtain BSH
[97] grade C for DBP and D for SBP. Still, the prediction errors of this work are
lower than the results of [87, 114] as well as all four models tested by Schrumpf et
al. [67] with their best results being MAESBP “ 16.4 mmHg and MAEDBP “ 8.5
mmHg. Qin et al. [84] report significantly lower errors for DBP prediction with
MAESBP “ 7.9 mmHg and MAEDBP “ 4.1 mmHg, however, it has to be noted
that they use 10-second signal sections as model input. Similarly, Schlesinger
et al. [82] consider 30-second intervals and obtain MAESBP “ 7.3 mmHg and
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Table 6.1: Prediction results (in mmHg) from the universal CNN for different
PPG input representations.

DBP
zero-padded resampled

PPG PPG” FFT DWT PPG PPG” Mean Reg.
ME ˘SD -1.22 ˘11.28 -1.95 ˘10.41 -2.15 ˘18.81 3.36 ˘17.92 -3.06 ˘18.33 -0.36 ˘18.02 -6.98 ˘18.00
MAE ˘SD 8.73 ˘7.25 8.07 ˘6.86 15.50 ˘10.88 14.54 ˘10.49 15.09 ˘10.84 14.65 ˘10.50 16.10 ˘10.65
SDMAE among subjects ˘3.10 ˘2.82 ˘4.41 ˘4.34 ˘4.31 ˘4.10 ˘5.85
RMSE 11.35 10.59 18.93 17.93 18.58 18.02 19.31
SDRMSE among subjects ˘3.41 ˘3.18 ˘4.37 ˘4.49 ˘4.47 ˘4.30 ˘5.90
BSHa Grade D C D D D D D

SBP
zero-padded resampled

PPG PPG” FFT DWT PPG PPG” Mean Reg.
ME ˘SD -0.54 ˘11.92 -0.77 ˘11.39 -0.21 ˘20.79 -2.10 ˘20.96 -0.23 ˘21.92 -1.33 ˘20.80 3.01 ˘21.47
MAE ˘SD 9.16 ˘7.65 8.73 ˘7.36 16.76 ˘12.31 16.89 ˘12.60 17.51 ˘13.19 16.73 ˘12.44 18.24 ˘11.73
SDMAE among subjects ˘2.87 ˘2.89 ˘3.82 ˘4.33 ˘4.34 ˘3.89 ˘7.24
RMSE 11.94 11.42 20.79 21.07 21.92 20.85 21.68
SDRMSE among subjects ˘3.43 ˘3.33 ˘4.16 ˘4.67 ˘4.66 ˘4.26 ˘7.97
BSHa Grade D D D D D D D
aBritish Society of Hypertension

MAEDBP “ 3.9 mmHg. Longer signal sections reduce the impact of noisy pulses
in reference ABP and input PPG but do not allow a beat-to-beat measurement.
Further, many related studies use proprietary data sets [83] or data with a smaller
BP range [82, 83, 84]. SBP prediction with the proposed approach shows compet-
itive results, even compared to methods that consider ECG in addition to PPG
signals [12, 115, 116, 117].

Figure 6.5 depicts the true and predicted BP values of test patient 3403232
in the correct sequential order. The patient’s ABP exhibits strong fluctuations
over time with a drop of 80 mmHg within a few heart beats. Even though the
predicted and true BP levels are not perfectly aligned with discrepancies of up to
20 mmHg in some sections, the plot shows that the predicted values follow the
changes in the true ABP curve closely.

However, the plot of the true ABP values exhibits substantial noise as well.
Smaller low-frequency variations, which can be observed in Figure 6.5 between
sample 200 and 400, can be attributed to normal breathing. Respiration changes
intratoracic pressure, thus affecting cardiac output and systemic pressure and
leading to an inspiratory decrease in ABP of up to 10 mmHg [118]. Further influ-

106



6.3. Results and Discussion

0 250 500 750 1000 1250 1500 1750 2000
sample

60

80

100

120

140

160

180

200

bl
oo

d 
pr

es
su

re
 [m

m
Hg

]

SBP true
SBP predicted
DBP true
DBP predicted

Figure 6.5: True and predicted BP values of a test patient in sequential order.
[112]

ences on invasive ABP measurement are movement artefacts (patient or tubing
system), disturbances of the sensor system by other electrical devices [118], inap-
propriate damping [119] and the employed filtering methods of the sensor system
[120]. Other published methods on BP estimation from PPG signals mostly con-
sider longer signal sections ranging from 8-second [85] to 30-second intervals [82].
Longer sections eliminate high-frequency noise and variance in the ABP reference
signal and cancel out beat-to-beat variations in the predicted BP. Hence, these
methods obtain lower prediction errors as opposed to the beat-to-beat approach
presented in this work.

It should be noted that the model used in this work does not consider the
temporal relation of adjacent PPG pulses but predicts each new pulse indepen-
dently from previous input information. The time series nature of the BP signal
suggests taking advantage of the predecessor information by employing recurrent
neural networks. This could further improve BP prediction and smooth its noisy
curve.
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Figure 6.6: Layer activations (heat maps) of the 50th layer for inputs (line
plots) with increasing SBP from left (SBP = 115 mmHg) to right (SBP = 180
mmHg).

108



6.3. Results and Discussion

0 20 40 60 80 100
temporal index [n]

1

0

1

PP
G 

[a
rb

itr
ar

y 
un

it]
   

  

0 20 40 60 80 100
temporal index [n]

1

0

1

PP
G 

[a
rb

itr
ar

y 
un

it]
   

  

0 20 40 60 80 100
temporal index [n]

1

0

1

PP
G 

[a
rb

itr
ar

y 
un

it]
   

  

0 20 40 60 80
temporal index [n]

0

20

40

60

80

100

120

ch
an

ne
ls 

[n
]

4

2

0

2

4

ac
tiv

at
io

n 
m

ag
ni

tu
de

0 20 40 60 80
temporal index [n]

0

20

40

60

80

100

120

ch
an

ne
ls 

[n
]

4

2

0

2

4

ac
tiv

at
io

n 
m

ag
ni

tu
de

0 20 40 60 80
temporal index [n]

0

20

40

60

80

100

120

ch
an

ne
ls 

[n
]

4

2

0

2

4

ac
tiv

at
io

n 
m

ag
ni

tu
de

0 20 40 60 80 100
temporal index [n]

1

0

1

PP
G 

[a
rb

itr
ar

y 
un

it]
   

  

0 20 40 60 80 100
temporal index [n]

1

0

1

PP
G 

[a
rb

itr
ar

y 
un

it]
   

  

0 20 40 60 80 100
temporal index [n]

1

0

1

PP
G 

[a
rb

itr
ar

y 
un

it]
   

  

0 20 40 60 80
temporal index [n]

0

20

40

60

80

100

120

ch
an

ne
ls 

[n
]

4

2

0

2

4

ac
tiv

at
io

n 
m

ag
ni

tu
de

0 20 40 60 80
temporal index [n]

0

20

40

60

80

100

120

ch
an

ne
ls 

[n
]

4

2

0

2

4

ac
tiv

at
io

n 
m

ag
ni

tu
de

0 20 40 60 80
temporal index [n]

0

20

40

60

80

100

120

ch
an

ne
ls 

[n
]

4

2

0

2

4

ac
tiv

at
io

n 
m

ag
ni

tu
de

Figure 6.7: Layer activations (heat maps) of the 50th layer for inputs (line
plots) with increasing DBP from left (DBP = 65 mmHg) to right (DBP = 103
mmHg).
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To better understand the models decision making, Figure 6.6 and 6.7 display
the activations of layer 50 for test samples at various SBP and DBP levels. Figure
6.6 shows the layer activation for inputs of increasing SBP from left to right where
DBP is kept almost constant. The output of each filter in the visualised layer is
stacked on top of each other, with yellow representing strong positive activations
and blue representing strong negative activations. In the process, the spatial
information in preserved such that a direct connection can be made between the
signal and the filter activation at the same index. In the first convolutional layers,
a CNN learns to detect coarse-grain features like edges and gradients, and in the
deeper layers, it learns more complicated features by combining features of earlier
layers. The displayed activations of layer 50 show the outputs of the sixth ResNet
block. It is evident that for lower SBP, a strong activation occurs along the whole
PPG pulse, whereas for higher SBP, activation becomes sparser after the systolic
peak. Figure 6.7 shows the layer activation for inputs with increasing DBP,
respectively, where SBP is kept nearly constant. Differences in layer activation
are mostly limited to the systolic upstroke, where activation becomes stronger
with larger DBP values.

It seems counter-intuitive that DBP prediction relies on the systole, whereas for
SBP prediction, the differences in filter activation are located in the diastole part
of the PPG. However, this finding is in accordance with the feature selection
results in Section 4.3, where the DBP features considering the systole can be
related to the MAP, vasodilation and vessel stiffness. All three properties are
strong indicators for the DBP level [94, 95]. On the other hand, area under the
curve and similar features describing the whole waveform comprise indicators for
stroke volume and vascular capacitance, which are the main influences on SBP
[95].

Figure 6.8 displays the average Pearson correlation coefficients between two
PPG pulses corresponding to different BP levels. The correlation was calculated
between pulses of the same subjects as well as pulses of different subjects. It can
be observed that when considering the whole waveform, inter-individual PPG
correlation is moderate across all combinations of BP levels. This shows that the
same BP does not manifest as the same PPG waveform in different subjects, and a
similar PPG morphology in two subjects might represent a very different BP level.
Although an ANN will focus on more generally applicable characteristics, the
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(b) inter-individual correlation
sorted by DBP
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(c) intra-individual correlation sorted by SBP
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sorted by DBP

Figure 6.8: Correlation between PPG pulses of different persons sorted by SBP
(a) and DBP (b), and correlation between PPG pulses of the same person sorted
by SBP (c) and DBP (d).

intra-individual correlations in Figures 6.8c and 6.8d suggest that a personalised
model might benefit from overall more distinctive waveforms for different BP
levels and thus a clearer differentiation for the model.
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Table 6.2: Prediction results (in mmHg) from the individually calibrated CNN
for different PPG input representations.

DBP
PPG (zero-padded) PPG” (zero-padded)
universal calibrated universal calibrated Mean Reg.

ME ˘SD -1.22 ˘11.28 1.41 ˘11.14 -1.95 ˘10.41 1.12 ˘10.87 -6.98 ˘18.00
MAE ˘SD 8.73 ˘7.25 8.72 ˘7.08 8.07 ˘6.86 8.42 ˘6.88 16.10 ˘10.65
SDMAE among subjects ˘3.10 ˘2.74 ˘2.82 ˘2.66 ˘5.85
RMSE 11.35 11.23 10.59 10.92 19.31
SDRMSE among subjects ˘3.41 ˘3.03 ˘3.18 ˘2.96 ˘5.90
BSHa Grade D D C D D

SBP
PPG (zero-padded) PPG” (zero-padded)
universal calibrated universal calibrated Mean Reg.

ME ˘SD -0.54 ˘11.92 -0.87 ˘11.26 -0.77 ˘11.39 -0.82 ˘10.71 3.01 ˘21.47
MAE ˘SD 9.16 ˘7.65 8.76 ˘7.13 8.73 ˘7.36 8.26 ˘6.86 18.24 ˘11.73
SDMAE among subjects ˘2.87 ˘3.19 ˘2.89 ˘2.94 ˘7.24
RMSE 11.94 11.29 11.42 10.74 21.68
SDRMSE among subjects ˘3.43 ˘3.77 ˘3.33 ˘3.39 ˘7.97
BSHa Grade D D D D D
aBritish Society of Hypertension

6.3.2 Personalised PPG Models

All models from Section 6.3.1 are calibrated individually by fine tuning of the
universal model on the test subject’s corresponding tune data. Table 6.2 contains
the results for zero-padded time domain signals.SBP prediction from PPG” is
improved by individual calibration by a difference in MAE of -0.45 mmHg to 8.26
˘6.86 mmHg. For DBP however, the prediction error increases slightly to an
MAE ˘SD of 8.42 ˘6.88 mmHg, and the bias shifts from an underestimation of
MEDBP,uni “ ´1.95 mmHg to an overestimation of MEDBP,calib “ 1.12 mmHg
while the SD between subjects decreases to SDMAE “ 2.66 mmHg. The same
tendency can be observed in the prediction accuracy of the original PPG signal.
This can be explained by differences in the rather unbalanced data distributions of
the training, tune and test sets that cause biases in the corresponding directions.

Figure 6.9 depicts the absolute prediction errors for different BP levels before
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Figure 6.9: MAE for different BP levels before and after individual calibrations
of the PPG-based model. [112]

and after individual calibration and in comparison to the mean regressor. The
plot breaks down the overall error values into 5-mmHg steps of the corresponding
BP reference values for a more detailed understanding of the error distribution.
In general, the errors increase for the outer bounds of BP values in the data set
since the number of samples strongly decreases in these ranges as indicated by
the green lines in Figure 6.9, and a dependency of the prediction accuracy and
data distributions can be observed.

To optimise the model personalisation process, different numbers of layers
were frozen during fine-tuning. Overall best results are obtained with 3 trainable
layers which includes the last fully connected layers resulting in 251,700 trainable
parameters of a total of 3,986,242 parameters. The filters in the convolutional
layers are not modified after optimisation on the training data set. If more than
four layers are set trainable, convolutional layers are fine-tuned as well. Whereas

113



Chapter 6. Convolutional Neural Networks for Blood Pressure Estimation

SBP slightly improves for a fine-tuning of 10 to 15 layers, DBP obtains the best
results for the universal model without any fine-tuning at all.
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Figure 6.10: True and predicted BP values of a test patient before (upper plot)
and after (lower plot) personalisation. [112]

To better understand the effect of model personalisation, BP predictions be-
fore and after fine-tuning of the model are compared. Figure 6.10 shows the true
ABP and corresponding predicted values of test patient 3017781, where the pre-
dictions in the upper plot are obtained by the universal model and the lower plot
shows the outputs after personalisation. The effect of personalisation can be best
observed in DBP. For the first 280 samples, the offset between reference ABP
and predicted DBP is eliminated after fine-tuning. However, the same baseline
shift causes a larger discrepancy between the two curves for the next 400 samples
where the signal exhibits a significantly lower ABP. By fine-tuning of the fully
connected layers, the model adapts its PPG-BP mapping to the presented tune
data. Despite the 300-sample distance between tune and test data (see Section
6.2.1), the tune samples most likely are in the same ABP range as the beginning
of the test signal. Since the tune data are selected as consecutive pulses of a
patient’s signal and due to the small sample size, the tune data sets tend to be
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very unbalanced. Hence, fine-tuning might introduce bias in un(der)-represented
BP ranges.

Related studies that report successful personalisation of their general models
employ proprietary data sets of healthy subjects who are less likely to show large
changes in BP [83, 84] or eliminate signal intervals that comprise BP values which
deviate more than 40 mmHg from the tune signal [82]. Therefore, these studies
obtain higher prediction accuracies with their personalised models, since their test
and tune data exhibit a lower BP variability. Zhang et al. [83] proposed a domain
adversarial training specifically to overcome overfitting on new patients with few
training data. Nevertheless, they report that for subjects with low variability, the
model does not follow changes in BP. Thus, performance of their model strongly
depends on the tune data set as well, and the reported prediction errors are lower
due to low signal variability.

Overall, other published methods performing personalisation of their mod-
els report larger improvements over the universal model than the ones obtained
in this work. Most of them employ the same fine-tuning strategy [83, 67, 84].
While the previously discussed BP variability greatly influences the personalisa-
tion outcome, also the data distribution, filtering, pre-processing and input length
are factors that can have a large impact on a model’s performance and vary a
lot among those studies. Especially longer signal sections could be beneficial as
they reduce the variance in reference BP and PPG waveform. A low variance
and reduced noise are essential for the small tune data sets to provide conclusive
and relevant data to the model. More comparable study set-ups are required
to draw meaningful conclusions about the importance of each of the factors for
personalisation in BP estimation.

Depending on the use case, different strategies could improve the personalisa-
tion process by balancing the tune data set: (1) If a beat-to-beat reference mea-
surement is possible during acquisition of the tune data, a Valsalva manoeuvre
could be performed to cover a larger range of ABP values. (2) During long-term
monitoring, regular reference measurements could be included in the tune data
set to continuously update the model until a sufficiently balanced data set is ob-
tained. This would assimilate a random sampling of tune data from test subjects
for which Schrumpf et al. [67] showed an improved performance compared to
the sequentially split data set. (3) ABP values that are under-represented in the
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subject’s tune data set could be supplemented by the training data set of the
universal model. Even though this might slow the personalisation process down,
overfitting will be prevented. (4) Since arterial stiffness is a major contributor to
changes in ABP waveform [121] and is strongly related to age, personal informa-
tion could improve the universal model and possibly the personalised models as
well.

Schrumpf et al. [67] showed that the personalisation success further depends
on the chosen ANN architecture and is not correlated with the model’s per-
formance before fine-tuning. Also Qin et al. [84] obtained better personalised
predictions when using a DANN as source model instead of a conventional ANN
despite only marginal differences in prediction accuracy of these universal models.
Hence, in the future, other architectures should be investigated with respect to
personalisation.

6.3.3 Performance on rPPG Data

Estimating BP from rPPG data using the universal model trained on PPG signals
results in a large overestimation of SBP with an ME ˘SD of 40.91 ˘21.55 mmHg
and an underestimation of the DBP of -26.05 ˘14.52 mmHg. It is evident that
the PPG-based model is not suitable for the rPPG characteristics.

Hence, using the best universal PPG-based model, a LOSO CV is performed
to evaluate suitability of transfer learning from the PPG to the rPPG domain.
To do so, different numbers of trainable layers are compared. SBP benefits from
retraining the whole network, thus adapting the weights of all filters to the target
domain obtaining an MAE of 12.90 mmHg. In contrary, with an MAE of 7.55
mmHg, DBP obtains best results after adjusting only the 4 fully connected layers
at the end of the ANN. This behaviour might be attributed to the significantly
smaller DBP range and number of samples in the rPPG data set compared to
the PPG data set, in addition to the high variability in rPPG waveform due to
noise and artifacts. SBP and DBP both show only a small improvement over the
mean regressor.

Next, the new rPPG models are personalised for each corresponding individual
by fine-tuning on the subject’s tune data. Since there are only an average of 39
data samples per subject, fine-tuning is performed just for the last three fully
connected layers in order to reduce the risk of overfitting. Instead, the models
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Figure 6.11: MAE for different BP levels before and after individual calibrations
of the rPPG-based models.

of the previous LOSO CV with different numbers of rPPG-fine-tuned layers are
used as initialisation. Models for which the last 40 layers were adjusted to the
rPPG domain, exhibit the best SBP prediction error after personalisation with
an MAE ˘SD of 10.59 ˘8.82 mmHg. With fine-tuning of 40 layers, the high-level
features in the early convolutional layers remain the same while the fine-grain and
more domain specific features in later convolutional layers are adapted. Again,
DBP prefers the original filters and a transfer-learning only of the fully connected
layers and obtains an MAE ˘SD of 4.85 ˘4.32 mmHg.

Figure 6.11 depicts the error distribution for the rPPG-based models (40 train-
able layers during transfer learning) before and after personalisation as well as a
mean regressor. It shows that overall the universal models obtain the same DBP
prediction errors as the mean regressor and only slightly better results in SBP
prediction. After personalisation, fine-tuning evens out the error distribution in
SBP reducing prediction errors significantly in the lower range between 100 and
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125 mmHg and above 160 mmHg. For DBP, fine-tuning improves prediction
across all BP levels.

Although the overall error values look promising for BP estimation from rPPG,
analysis of individual prediction and ground truth signals show that the universal
rPPG model constantly predicts values close to DBP “ 85 mmHg and SBP “ 140
mmHg. This indicates that the model could not learn any underlying pattern
to reliably estimate BP, but predicting an almost constant value reduced the
loss most effectively. Subsequent personalisation of the model reduces the offset
between predicted and true BP like in the personalisation process of the PPG-
based model in Section 6.3.2, but the predictions do not follow changes in the
reference BP.

Due to the lack of a standardised data set, prediction errors are very difficult
to compare between studies on rPPG-based BP estimation. Still, related work
on this topic shows similar difficulties regarding generalisation capabilities of the
model. Many studies do not give details about the error distribution [58, 60,
64, 61] and obtain only minor improvements over their reported mean regression
accuracy [61, 64]. Schrumpf et al. [61] show large intra-individual differences in
their results even after personalisation of the model. Further, the Bland-Altman
plot by Zhuang et al. [65] indicates a prediction of the mean BP value, and the
plot by Luo et al. [59] shows almost no correlation between predicted and true
values for DBP and only a weak correlation for SBP.

Many environmental influences such as lighting conditions, movement and skin
properties cause distortions and artifacts in the rPPG waveforms that cannot be
fully eliminated by existing rPPG extraction methods (see Chapter 5). Hence,
rPPG pulses exhibit a larger variation in waveforms than PPG signals. Finding
relevant patterns in the training data that contain information about BP is there-
fore more difficult for ANNs and too many faulty or noisy samples can prevent a
successful training process.

Moreover, the small data set and low number of samples per subject in com-
bination with the high variance in rPPG waveform appear to be insufficient to
learn the complex task at hand. Especially in the hypo- and hypertensive BP
ranges, the samples are sparse. Another major drawback of the used rPPG data
set is the low frequency of reference measurements and the comparatively high
bias of the reference device.
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The proposed method should be tested with a larger rPPG data base. Even
though rPPG signals constitute a more difficult domain for BP prediction as
opposed to conventional PPG signals, a pre-trained model can overcome ini-
tialisation problems and convergence starts closer to the global minimum than
when training a model from scratch. However, a careful data acquisition and
pre-processing has to be performed such that for the training data set, variance
in rPPG waveform caused by noise is reduced. That way, it is more likely for
the model to find relevant hidden patterns in the data, and if successful, more
challenging samples can be presented.
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Chapter 7

Summary and Discussion

This chapter provides a comprehensive summary and discussion of the results
and findings presented in this thesis. Additionally, it offers insights into potential
directions for future research and applications in the field of BP estimation from
video data.

7.1 Summary and Contributions

After introduction of the theoretical background in Chapter 2 and an extensive
review of related work in Chapter 3, Chapter 4 describes the first approach of
this thesis. It comprises the development of an image processing pipeline where
several face and hand detection and tracking algorithms were evaluated for the
specific measurement set-up to ensure a stable ROI placement and rule out any
rPPG signal distortions due to tracking failures. SSD [40] has proven to be
the most robust and precise face and hand detection algorithm while exhibiting
an acceptable processing time. For tracking, MOSSE [45] was selected since it
obtains the highest tracking stability as well as the lowest computation time
among the compared methods.
Building on this, a BP prediction model was proposed which is based on 120
hand-crafted rPPG features and a small RFR regression model. The method was
validated in a LOSO CV on a self-recorded data set containing videos and BP
reference values of 30 subjects. By employing a SFS for selecting only the most
relevant features for BP estimation, the prediction accuracy could be improved
beyond the results of comparable studies with an MAE ˘SD of 6.27 ˘4.58 mmHg
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for SBP and 3.91 ˘2.79 mmHg for DBP on the reduced data set.
Moreover, an analysis and interpretation of the feature selection results for SBP
and DBP was provided to aid future developments and enhance explainability of
the model to potentially increase acceptance of such machine learning methods
in clinical practice.

Whereas this first method considers the green channel of the RGB images, in
Chapter 5 various other colour models and rPPG extraction methods were eval-
uated for BP estimation to overcome illumination and movement artifacts while
increasing signal quality for persons with darker skin. Among these, Chrom [50]
and POS [49] obtained similar results regarding correlation, SNR, BP prediction
accuracy and signal rejection rate across most video recording conditions, but
POS was shown to exhibit higher SNR and better performance for videos with
movement.
Furthermore, dark skin was shown to benefit from an ROI selection at the palm
reaching a significantly improved SNR due to a lower melanin concentration and
higher vessel density. Also DBP prediction in general reached a higher accuracy
with rPPG signals from the palm as opposed to the face. Depending on the suit-
ability for the specific use case, the palm should be considered as an advantageous
alternative to a measurement site in the face.

Under consideration of these findings, Chapter 6 introduced a CNN-based ap-
proach for BP estimation. To overcome the small size of the rPPG data set, this
CNN model was developed and trained on the public MIMIC III waveform data
base [56] and then used for transfer learning to the rPPG domain. In contrast to
many related studies, a subject-based data split was followed.
After an extensive signal processing, different PPG representations from the time
and frequency domain were tested as input to the CNN. Pulse length appeared
to be an important feature since zero-padded PPG pulses obtained significantly
better performance than resampled ones, and the resolution of frequency domain
representations was shown to be insufficient for beat-to-beat data. The proposed
method reaches an MAE ˘SD of 8.73 ˘7.36 mmHg for SBP and 8.07 ˘6.86
mmHg for DBP and showed a good fit across a large range of BP levels. The fact
that the obtained results are comparable to other PPG-based studies that rely
on longer signal sections or an additional ECG signal shows that the proposed
beat-to-beat prediction method is well suited to this task.
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A layer activation analysis for inputs corresponding to different BP values was
conducted to increase transparency of the model’s decision making. The results
were in accordance with the findings of the SFS analysis in Chapter 4. Moreover,
an inter- and intra-individual correlation analysis of PPG waveforms of different
BP levels showed that among different persons, the PPG waveforms are not dis-
tinctive for specific BP levels suggesting personalisation of the model.
Hence, fine tuning was employed for model personalisation. Despite an overall
improved prediction accuracy, closer evaluation of the test results revealed ten-
dencies for overfitting of the models due to the naturally unbalanced tune data
set. We have shown that the outcome of model personalisation through fine-
tuning is highly dependent on the selected tuning data and that there is a high
risk of overfitting when a limited number of sequential tuning data are used.
Model personalisation can be further improved by ensuring a balanced tune set
across all BP levels, for which several strategies were proposed.
Finally transfer learning from the PPG to the rPPG domain was performed and
evaluated by retraining several layers of the PPG model with rPPG data. With
an MAE of 12.90 mmHg for SBP and 7.55 mmHg for DBP, the accuracy was
comparable to the results of the feature-based method in Chapter 4. While the
small rPPG data set was not sufficient to fully assess the capabilities of the pro-
posed methods, both methods improved upon the mean regressor and delivered
encouraging results for video-based BP estimation.

7.2 Discussion and Future Work

The following section provides insights and analysis regarding the findings and
limitations of this work, highlighting valuable areas for further research.

The remotely measured rPPG signals still show significant degradations com-
pared to the conventional PPG signals. Whereas dominant frequencies such as
the heart rate and respiration are well preserved in various colour models, BP
estimation relies on more fine-grain details in the rPPG waveform that are very
susceptible to noise.

Differences in skin colour across individuals can affect the quality and consis-
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tency of rPPG measurements. While this work has demonstrated that the posi-
tioning of the ROI can positively influence the rPPG quality, a study by Shirbani
et al. [101] has shown that skin tone dependencies can be further reduced by
applying a higher light intensity to the measurement site.

Movement and illumination artifacts, on the other hand, cannot be fully elim-
inated by existing rPPG extraction methods. The sensitivity of rPPG to these
conditions arises from the fact that the technique relies on subtle changes in
skin reflectance caused by blood volume variations. The modulation of ambient
lighting and direction of specular reflection can interfere with these reflectance
changes and introduce artifacts into the rPPG signal.

In conclusion, the current rPPG signal quality raises doubts regarding the
feasibility of utilising rPPG signals for accurate BP estimation. Hence, to enable
a reliable contactless BP estimation, rPPG signal quality needs to be enhanced
further.

This could be achieved by more advanced signal processing methods, such as
deep-learning-based PPG reconstructions from rPPG signals proposed by Song
et al. [122] or Bousefsaf et al. [123]. While they show promising results, it needs
to be evaluated if BP-relevant features are preserved. Moreover, these methods
come with an increased computational cost, potentially imposing limitations on
the real-time applicability.

Another approach could be the usage of Laser Speckle Imaging (LSI) for
Speckleplethysmogram (SPG) measurement instead of rPPG. In contrast to PPG
and rPPG signals that describe blood volume changes, SPG measures the flow
rate of red blood cells and exhibit a much larger SNR [124, 125]. Herranz et al.
[125] have shown a very high correlation between rPPG and remote SPG signals,
but due to the difference in measured parameter the applicability for BP estima-
tion needs to be evaluated first.

Comparing the CNN to the feature-based BP prediction approach proposed in
this work, their results show that both methods improve upon the mean regressor
baseline accuracy providing encouraging results in regard to the feasibility of BP
estimation from rPPG signals. However, the small rPPG data set is not sufficient
to determine which method is most accurate or feasible. In DBP prediction, the
universal models of both methods exhibit comparable error values and obtain
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BSH grade C. In SBP prediction, the feature-based method has a slightly lower
MAE and a smaller SD among subjects, thus showing a minor advantage for this
method. Despite the lack of a definite conclusion in the comparison of the two
methods due to the limited data set, results suggest that further investigation of
these methods might be beneficial.

The feature-based method may be computationally more efficient and could
provide a preferable solution for resource limited systems while still obtaining
comparable performance. On the other hand, the CNN is a more powerful tool
for extracting features from the signals and therefore has more potential for im-
proving on a larger data set. More data and further research is needed to fully
evaluate the capabilities of both approaches.

Using a PPG data set, the proposed CNN for beat-to-beat BP estimation
obtained good results across a large range of BP values and demonstrated re-
markable accuracy in following strong and abrupt BP changes when observed
over time, indicating its potential for tracking dynamic variations in BP.

Still, Chapter 6 has shown that even in BP estimation from conventional PPG
signals, prediction accuracy needs to improve to comply with clinical standards.
Related studies consider longer signal sections benefiting from reduced variance
and noise in the reference values in addition to the increased amount of input in-
formation. To maintain the beat-to-beat resolution of the proposed model while
achieving similar effects, a recurrent network architecture, e.g. LSTM, could be
employed, allowing for the incorporation of temporal dependencies from both
PPG and BP signals. Thus, the features extracted by the proposed CNN archi-
tecture could be further utilised in subsequent LSTM layers to enhance overall
performance of the prediction model.

Moreover, transfer learning is a promising approach to leverage knowledge from
the PPG domain to improve performance for rPPG signals since both signals are
obtained by the same measurement principle capturing blood volume changes. It
can enable overcoming differences in signal morphology of the two domains while
taking advantage of the larger PPG data base.

Nevertheless, in the present work, the investigation and evaluation of trans-
fer learning from PPG to rPPG was limited due to the small size of the rPPG
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dataset. PPG and rPPG signals have shown significant differences in their pulse
morphology and therefore, the features and patterns learned from PPG may not
directly translate to rPPG. Moreover, the sensitivity of rPPG signals to noise
and artifacts leads to a greater waveform variation compared to PPG signals.
This increased variation makes it more challenging for ANNs to identify relevant
patterns in the training data that contain information about BP. As a result, a
larger data set might be required to adapt and fine-tune existing knowledge to
the new domain.

The process of model personalisation has shown to be prone to overfitting
on sequentially acquired tuning-data, since typically no major BP changes are
captured within this short time period. Consequently, the personalised CNN
models in this work do not outperform the general CNN model they are based on.
To address this limitation, we proposed several strategies that can be implemented
in real-world scenarios to obtain a more balanced tuning data set. Evaluating
the effectiveness of these strategies in improving the performance of personalised
models should be a focus of future investigations.

Alternatively, it may be worthwhile to explore the development of general
models tailored to specific population groups. For instance, investigating whether
there are differences in the relationship between BP and PPG waveforms among
various groups such as males/females, different age groups, or individuals with
specific pathological conditions could provide insights into the potential benefits
of using separate regression models for each group. Existing research indicates
that men and women have different aortic compliances [126, 127] generally lead-
ing to an underestimation of SBP in women and an overestimation of DBP if
measured with cuff-based devices [128]. Additionally, Picone et al. [129] describe
four BP amplification phenotypes characterised by different levels of amplifica-
tion along the arterial tree. Since cuff-based devices usually measure brachial
or radial BP, this causes large deviations in the estimation of the more relevant
central BP. PPG- and rPPG-based BP prediction is probably impacted by the
same phenomenon due to the peripheral measurement and could benefit from the
identification of different population groups and development of separate regres-
sion models.
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Although many studies have been working on rPPG-based BP estimation,
there is still a lack of public data sets and standardised protocols for validation
and comparison across different methods and devices. Consequently, for the work
at hand, a new data set had to be generated to address this issue. However,
limited resources have resulted in certain limitations associated with this data
set, including its small size, sparse representation in the hypo- and hypertensive
BP ranges, and a limited number of reference values. These factors need to be
acknowledged as constrains that influenced the findings and conclusions of the
study.

Moreover, discrepancies in the represented BP range, demographic, ethnicities
and underlying health conditions in the data sets of different studies, as well as
technical properties such as the recording frame rate, image resolution and con-
trolled measurement conditions make it impossible to conduct reliable and fair
comparisons between the proposed methods of different research groups. Further-
more, the majority of published studies on rPPG-based BP estimation does not
follow a subject-based data split, leading to overly positive results that are not
applicable for real-world scenarios. Hence, creating public data sets and estab-
lishing validation procedures and benchmarks will be crucial for evaluating the
reliability and accuracy of rPPG-based BP estimation methods.

Due to the absence of a standardized dataset, comparing prediction errors in
studies focusing on rPPG-based BP estimation is challenging. However, similar
difficulties related to the generalization capabilities of the models as encountered
in this work have been observed in related research. Many rPPG-based studies
lack details regarding the error distribution, but those who do provide informa-
tion report only marginal improvements over the mean regression accuracy. While
this work has shown good results on conventional PPG signals, enhancing rPPG
signal quality will be essential for achieving a comparable prediction performance
on video data.

In summary, the findings in this work have shown new state-of-the-art results
for beat-to-beat BP estimation from a single PPG signal. Integrating this novel
approach into devices such as pulse oximeters, smartwatches, or medical sensor
patches could facilitate clinical and ambulatory BP monitoring. This advance-
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ment has the potential to enhance early detection of hypertension and related
diseases while enabling beat-to-beat BP monitoring in standard hospital wards.

The integration of PPG-based BP estimation capabilities into widely available
devices holds significant implications for healthcare. Pulse oximeters, commonly
used for measuring oxygen saturation levels, could now provide additional valu-
able information about a patient’s BP. Smartwatches, worn on a daily basis,
could enable continuous and unobtrusive BP monitoring, enhancing the under-
standing of BP patterns and aiding in personalised disease management. Medical
sensor patches, designed for long-term monitoring, could offer a non-invasive so-
lution for patients requiring extended BP monitoring, improving patient comfort
and adherence to the monitoring process.

Although the feasibility of BP-prediction from video data remains question-
able and may be limited by the low rPPG signal quality, this thesis has shown
some encouraging new results in this field. Due to its contactless nature, rPPG-
based BP monitoring could provide several advantages over PPG-based methods.
By eliminating the need for additional sensors or devices to be attached to the
patient’s body, the potential for contamination and associated infection would
be significantly reduced. This aspect is crucial in healthcare environments where
patients may already be vulnerable to infections.

Moreover, the absence of additional sensors on the patient’s body alleviates
any discomfort and eliminates concerns regarding sensor displacement or detach-
ment. This would make the method also applicable to special patient populations.
Neonates, individuals with sensitive skin, or burn victims may have difficulties
wearing sensors directly on their skin, such that a rPPG-based measurement could
be a suitable alternative for these specific groups.

Additionally, rPPG-based BP estimation enables accessibility and cost-effectiveness.
As nearly everyone has access to a smartphone, leveraging rPPG through smart-
phone applications would make BP monitoring accessible and affordable to a
larger population.

These benefits highlight the potential of rPPG-based BP estimation as a valu-
able tool in healthcare, enabling contactless, continuous and convenient monitor-
ing of BP for various applications, ranging from clinical settings to personal health
management. Hence, further research, along with the acquisition of large data
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sets, will be essential in fully realizing the capabilities of the proposed approach
and its potential for enhancing healthcare practices.

7.3 List of Publications

7.3.1 Journal Articles

Wuerich, C.; Wiede, C.; Grabmaier, A. "A comparative analysis of fall risk fac-
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Appendix A

Implementation Details

Table A.1: Full list and description of all rPPG features.

Feature Name Description

T,
Ts,
Td

duration of a whole cycle (cycle time),
duration of the systole (systolic time),
duration of the diastole (diastolic time)

A,
As,
Ad

area under the curve for whole cycle (cycle area),
area under the curve for systole (systolic area),
area under the curve for diastole (diastolic area)

Div_TsTd,
Div_TTd,
Div_TTs

ratio of systolic time and diastolic time,
ratio of cycle time and diastolic time,
ratio of cycle time and systolic time

Div_AT,
Div_AsTs,
Div_AdTd

ratio of cycle area and cycle time,
ratio of systolic area and systolic time,
ratio of diastolic area and diastolic time

Div_AsAd,
Div_AAd,
Div_AAs

ratio of systolic area and diastolic area,
ratio of cycle area and diastolic area,
ratio of cycle area and systolic area
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Appendix A. Implementation Details

Table A.1: Full list and description of all rPPG features.

Feature Name Description
SysWidth_10,
SysWidth_25,
SysWidth_33,
SysWidth_50,
SysWidth_67,
SysWidth_75,
SysWidth_90

systolic pulse widths at 10%, 25%, 33%, 50%, 67%,
75% and 90% of pulse amplitude

DiaWidth_10,
DiaWidth_25,
DiaWidth_33,
DiaWidth_50,
DiaWidth_67,
DiaWidth_75,
DiaWidth_90

diastolic pulse widths at 10%, 25%, 33%, 50%, 67%,
75% and 90% of pulse amplitude

Div_SysDiaWidth_10,
Div_SysDiaWidth_25,
Div_SysDiaWidth_33,
Div_SysDiaWidth_50,
Div_SysDiaWidth_67,
Div_SysDiaWidth_75,
Div_SysDiaWidth_90

ratios of systolic and diastolic pulse widths at 10%,
25%, 33%, 50%, 67%, 75% and 90% of pulse ampli-
tude
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Table A.1: Full list and description of all rPPG features.

Feature Name Description
Amp_FFT0, Amp_FFT1,
Amp_FFT2, Amp_FFT3,
Amp_FFT4, Amp_FFT5,
Amp_FFT6, Amp_FFT7,
Amp_FFT8, Amp_FFT9,
Amp_FFT10,
Amp_FFT11,
Amp_FFT12,
Amp_FFT13,
Amp_FFT14,
Amp_FFT15,
Amp_FFT16,
Amp_FFT17,
Amp_FFT18,
Amp_FFT19

amplitudes of the Fourier-transformed signal at in-
dices 0 to 19, i.e. 0.8 to 4.6 Hz

MaxPow_FFT0,
MaxPow_FFT1,
MaxPow_FFT2,
MaxPow_FFT3,
MaxPow_FFT4,
MaxPow_FFT5,
MaxPow_FFT6,
MaxPow_FFT7,
MaxPow_FFT8,
MaxPow_FFT9

frequencies of the highest amplitudes in the Fourier-
transformed signal

d1_Amp1,
d1_Amp2,
d1_Amp3

amplitudes of the first, second and third peak in the
first derivative of the rPPG signal

d2_Amp1,
d2_Amp2,
d2_Amp3

amplitudes of the first, second and third peak in the
second derivative of the rPPG signal
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Table A.1: Full list and description of all rPPG features.

Feature Name Description
d1_HPIP_height,
d1_HPIP_width

height difference between first peak and following in-
flection point in the first derivative of the rPPG sig-
nal, time between first peak and following inflection
point in the first derivative of the rPPG signal

d2_HPIP_height,
d2_HPIP_width

height difference between first peak and following in-
flection point in the second derivative of the rPPG
signal, time between first peak and following inflec-
tion point in the second derivative of the rPPG signal

d1_time_Amp1Amp2,
d2_time_Amp1Amp2

time between first and second peak in the first deriva-
tive of the rPPG signal, time between first and sec-
ond peak in the second derivative of the rPPG signal

d1_Div_Amp1Amp2,
d2_Div_Amp1Amp2,
d2_Div_Amp1Amp3

ratio of the first and second amplitude in the first
derivative of the rPPG signal, ratio of the first and
second amplitude in the second derivative of the
rPPG signal, ratio of the first and third amplitude
in the second derivative of the rPPG signal

d1_Sum_Amp1Amp2,
d2_Sum_Amp1Amp2,
d2_Sum_Amp1Amp2Amp3

sum of the first and second amplitude in the first
derivative of the rPPG signal, sum of the first and
second amplitude in the second derivative of the
rPPG signal, sum of the first, second and third am-
plitude in the second derivative of the rPPG signal

d1_Sum_Amp1Amp2,
d2_Sum_Amp1Amp2

sum of the first and second amplitude in the first
derivative of the rPPG signal, sum of the first and
second amplitude in the second derivative of the
rPPG signal

Amp_DN amplitude of the dicrotic notch
sex, height, weight, age biological sex, height, weight and age of the subject

134



Bibliography

[1] Zhou, Bin ; Perel, Pablo ; Mensah, George A. ; Ezzati, Majid: Global
epidemiology, health burden and effective interventions for elevated blood
pressure and hypertension. In: Nature Reviews Cardiology 18 (2021), Nr.
11, S. 785–802

[2] Vision, Allied (Hrsg.): Hypertension. https://www.who.int/news-room/

fact-sheets/detail/hypertension. Version: 2021, Abruf: 13.02.2023
(fact-sheets)

[3] Chao, Paul C-P ; Wu, Chih-Cheng ; Nguyen, Duc H. ; Nguyen, Ba-Sy
; Huang, Pin-Chia ; Le, Van-Hung: The machine learnings leading the
cuffless PPG blood pressure sensors into the next stage. In: IEEE Sensors
Journal 21 (2021), Nr. 11, S. 12498–12510

[4] Grissmer, S: Blutkreislauf. In: Physiologie 2 (2010), S. 111–162

[5] VDE DGBMT: Surrogate Based Continuous Noninvasive Blood Pressure
Measurement. (2020)

[6] Huang, Sheng-Chieh ; Hung, Pei-Hsuan ; Hong, Chung-Hung ; Wang,
Hui-Min: A New Image Blood Pressure Sensor Based on PPG, RRT,
BPTT, and Harmonic Balancing. In: IEEE Sensors Journal 14 (2014),
Nr. 10, S. 3685–3692. http://dx.doi.org/10.1109/JSEN.2014.2329676.
– DOI 10.1109/JSEN.2014.2329676. – ISSN 1530–437X

[7] Elliott, William J. ; Black, Henry R.: Prehypertension. In: Nature
Clinical Practice Cardiovascular Medicine 4 (2007), Nr. 10, S. 538–548

[8] Guyton, Arthur C. ; Coleman, Thomas G. ; Cowley, Allen W. ;
Scheel, Konrad W. ; Manning, R. D. ; Norman, Roger A.: Arte-

135

https://www.who.int/news-room/fact-sheets/detail/hypertension
https://www.who.int/news-room/fact-sheets/detail/hypertension
http://dx.doi.org/10.1109/JSEN.2014.2329676


Bibliography

rial pressure regulation:: Overriding dominance of the kidneys in long-term
regulation and in hypertension. In: The American Journal of Medicine 52
(1972), Nr. 5, S. 584–594

[9] Catanho, Marianne ; Sinha, Mridu ; Vijayan, Varsha: Model of aortic
blood flow using the Windkessel effect. In: University of California of San
Diago, San Diago (2012)

[10] Mukkamala, Ramakrishna ; Hahn, Jin-Oh ; Inan, Omer T. ; Mestha,
Lalit K. ; Kim, Chang-Sei ; Töreyin, Hakan ; Kyal, Survi: Toward
Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory
and Practice. In: IEEE transactions on bio-medical engineering 62 (2015),
Nr. 8, S. 1879–1901. http://dx.doi.org/10.1109/TBME.2015.2441951.
– DOI 10.1109/TBME.2015.2441951

[11] Vlachopoulos, Charalambos ; O’Rourke, Michael ; Nichols,
Wilmer W.: McDonald’s blood flow in arteries: theoretical, experimental
and clinical principles. CRC press, 2011

[12] Kachuee, Mohammad ; Kiani, Mohammad M. ; Mohammadzade, Hoda
; Shabany, Mahdi: Cuffless Blood Pressure Estimation Algorithms for
Continuous Health-Care Monitoring. In: IEEE transactions on bio-medical
engineering 64 (2017), Nr. 4, S. 859–869. http://dx.doi.org/10.1109/

TBME.2016.2580904. – DOI 10.1109/TBME.2016.2580904

[13] Mills, CJ ; Gabe, IT ; Gault, JH ; Mason, DT ; Ross Jr, J ; Braun-
wald, E ; Shillingford, JP: Pressure-flow relationships and vascular
impedance in man. In: Cardiovascular Research 4 (1970), Nr. 4, S. 405–
417

[14] Xing, Xiaoman ; Sun, Mingshan: Optical blood pressure estimation with
photoplethysmography and FFT-based neural networks. In: Biomedical
optics express 7 (2016), Nr. 8, S. 3007–3020. http://dx.doi.org/10.

1364/BOE.7.003007. – DOI 10.1364/BOE.7.003007. – ISSN 2156–7085

[15] Wang, Yuh-Ying L. ; Chang, CC ; Chen, JC ; Hsiu, H ; Wang, WK:
Pressure wave propagation in arteries. A model with radial dilatation for

136

http://dx.doi.org/10.1109/TBME.2015.2441951
http://dx.doi.org/10.1109/TBME.2016.2580904
http://dx.doi.org/10.1109/TBME.2016.2580904
http://dx.doi.org/10.1364/BOE.7.003007
http://dx.doi.org/10.1364/BOE.7.003007


Bibliography

simulating the behavior of a real artery. In: IEEE Engineering in Medicine
and Biology Magazine 16 (1997), Nr. 1, S. 51–54

[16] Nakano, Kazuya ; Ohnishi, Takashi ; Nishidate, Izumi ; Haneishi,
Hideaki: Noncontact sphygmomanometer based on pulse-wave transit time
between the face and hand. In: Coté, Gerard L. (Hrsg.): Optical Di-
agnostics and Sensing XVIII: Toward Point-of-Care Diagnostics, SPIE,
27.01.2018 - 01.02.2018. – ISBN 9781510614871, 34

[17] Hughes, DJ ; Babbs, Charles F. ; Geddes, LA ; Bourland, JD: Mea-
surements of Young’s modulus of elasticity of the canine aorta with ultra-
sound. In: Ultrasonic imaging 1 (1979), Nr. 4, S. 356–367

[18] Bergel, DH: The static elastic properties of the arterial wall. In: The
Journal of physiology 156 (1961), Nr. 3, S. 445

[19] Peterson, Lysle H. ; Jensen, Roderick E. ; Parnell, John: Mechanical
properties of arteries in vivo. In: Circulation Research 8 (1960), Nr. 3, S.
622–639

[20] Sugita, Norihiro ; Yoshizawa, Makoto ; Abe, Makoto ; Tanaka, Akira
; Homma, Noriyasu ; Yambe, Tomoyuki: Contactless Technique for Mea-
suring Blood-Pressure Variability from One Region in Video Plethysmog-
raphy. In: Journal of Medical and Biological Engineering 39 (2019), Nr.
1, S. 76–85. http://dx.doi.org/10.1007/s40846-018-0388-8. – DOI
10.1007/s40846–018–0388–8. – ISSN 1609–0985

[21] Chatterjee, Ayan ; Roy, Uttam K.: Algorithm To Calculate Heart Rate
& Comparison Of Butterworth IIR and Savitzky-Golay FIR Filter. In: J
Comput Sci Syst Biol 11 (2018), S. 171–177

[22] Souza-Barros, Leanna ; Dhaidan, Ghaith ; Maunula, Mikko ;
Solomon, Vaeda ; Gabison, Sharon ; Lilge, Lothar ; Nussbaum,
Ethne L.: Skin color and tissue thickness effects on transmittance, re-
flectance, and skin temperature when using 635 and 808 nm lasers in low
intensity therapeutics. In: Lasers in surgery and medicine 50 (2018),
Nr. 4, S. 291–301. http://dx.doi.org/10.1002/lsm.22760. – DOI
10.1002/lsm.22760

137

http://dx.doi.org/10.1007/s40846-018-0388-8
http://dx.doi.org/10.1002/lsm.22760


Bibliography

[23] Nussbaum, Ethne L. ; van Zuylen, Jeff: Transmission of photother-
apy through human skin: dosimetry adjustment for effects of skin color,
body composition, wavelength, and light coupling to skin. In: Hamblin,
Michael R. (Hrsg.) ; Waynant, Ronald W. (Hrsg.) ; Anders, Juanita
(Hrsg.): Mechanisms for Low-Light Therapy, SPIE, 2006 (SPIE Proceed-
ings), S. 61400H

[24] Meglinski, Igor V. ; Matcher, Stephen J.: Quantitative assessment of
skin layers absorption and skin reflectance spectra simulation in the visi-
ble and near-infrared spectral regions. In: Physiological measurement 23
(2002), Nr. 4, S. 741–753. http://dx.doi.org/10.1088/0967-3334/23/

4/312. – DOI 10.1088/0967–3334/23/4/312. – ISSN 0967–3334

[25] Lister, Tom ; Wright, Philip A. ; Chappell, Paul H.: Optical prop-
erties of human skin. In: Journal of biomedical optics 17 (2012), Nr. 9,
S. 90901–1. http://dx.doi.org/10.1117/1.JBO.17.9.090901. – DOI
10.1117/1.JBO.17.9.090901

[26] Cui, Weijia ; Ostrander, Lee E. ; Lee, Bok Y.: In vivo reflectance of
blood and tissue as a function of light wavelength. In: IEEE transactions
on biomedical engineering 37 (1990), Nr. 6, S. 632–639

[27] AlHinai, Noura: Chapter 1 - Introduction to biomedical signal process-
ing and artificial intelligence. Version: 2020. http://dx.doi.org/https:

//doi.org/10.1016/B978-0-12-818946-7.00001-9. In: Zgallai, Walid
(Hrsg.): Biomedical Signal Processing and Artificial Intelligence in Health-
care. Academic Press, 2020 (Developments in Biomedical Engineering
and Bioelectronics). – DOI https://doi.org/10.1016/B978–0–12–818946–
7.00001–9. – ISSN 25897527, 1-28

[28] Tian, Hui: Noise analysis in CMOS image sensors. Stanford University,
2000

[29] Zgallai, Walid A.: Biomedical Signal Processing and Artificial Intelli-
gence in Healthcare. Academic Press, 2020

[30] Butterworth, Stephen u. a.: On the theory of filter amplifiers. In:
Wireless Engineer 7 (1930), Nr. 6, S. 536–541

138

http://dx.doi.org/10.1088/0967-3334/23/4/312
http://dx.doi.org/10.1088/0967-3334/23/4/312
http://dx.doi.org/10.1117/1.JBO.17.9.090901
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-818946-7.00001-9
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-818946-7.00001-9


Bibliography

[31] Cochran, William T. ; Cooley, James W. ; Favin, David L. ; Helms,
Howard D. ; Kaenel, Reginald A. ; Lang, William W. ; Maling,
George C. ; Nelson, David E. ; Rader, Charles M. ; Welch, Peter D.:
What is the fast Fourier transform? In: Proceedings of the IEEE 55 (1967),
Nr. 10, S. 1664–1674

[32] Cooley, James W. ; Tukey, John W.: An algorithm for the machine
calculation of complex Fourier series. In: Mathematics of computation 19
(1965), Nr. 90, S. 297–301

[33] Jutten, Christian ; Herault, Jeanny: Blind separation of sources, part
I: An adaptive algorithm based on neuromimetic architecture. In: Signal
processing 24 (1991), Nr. 1, S. 1–10

[34] Breiman, Leo: Random forests. In: Machine learning 45 (2001), S. 5–32

[35] Kumar, Vipin ; Minz, Sonajharia: Feature selection: a literature review.
In: SmartCR 4 (2014), Nr. 3, S. 211–229

[36] Abdi, Herve ; Williams, Lynne J.: Principal component analysis. In:
Wiley interdisciplinary reviews: computational statistics 2 (2010), Nr. 4, S.
433–459

[37] Viola, Paul ; Jones, Michael J.: Robust real-time face detection. In:
International journal of computer vision 57 (2004), Nr. 2, S. 137–154

[38] Dalal, Navneet ; Triggs, Bill: Histograms of oriented gradients for
human detection. In: 2005 IEEE computer society conference on computer
vision and pattern recognition (CVPR’05) Bd. 1 Ieee, 2005, S. 886–893

[39] Redmon, Joseph ; Divvala, Santosh ; Girshick, Ross ; Farhadi, Ali:
You only look once: Unified, real-time object detection. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016, S.
779–788

[40] Liu, Wei ; Anguelov, Dragomir ; Erhan, Dumitru ; Szegedy, Christian
; Reed, Scott ; Fu, Cheng-Yang ; Berg, Alexander C.: Ssd: Single shot
multibox detector. In: European conference on computer vision Springer,
2016, S. 21–37

139



Bibliography

[41] Simon, Tomas ; Joo, Hanbyul ; Matthews, Iain ; Sheikh, Yaser: Hand
keypoint detection in single images using multiview bootstrapping. In: Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion, 2017, S. 1145–1153

[42] Babenko, Boris ; Yang, Ming-Hsuan ; Belongie, Serge: Robust object
tracking with online multiple instance learning. In: IEEE transactions on
pattern analysis and machine intelligence 33 (2010), Nr. 8, S. 1619–1632

[43] Kalal, Zdenek ; Mikolajczyk, Krystian ; Matas, Jiri: Forward-
backward error: Automatic detection of tracking failures. In: 2010 20th
international conference on pattern recognition IEEE, 2010, S. 2756–2759

[44] Lucas, Bruce D. ; Kanade, Takeo u. a.: An iterative image registration
technique with an application to stereo vision Vancouver, 1981

[45] Bolme, David S. ; Beveridge, J R. ; Draper, Bruce A. ; Lui, Yui M.:
Visual object tracking using adaptive correlation filters. In: 2010 IEEE
computer society conference on computer vision and pattern recognition
IEEE, 2010, S. 2544–2550

[46] Henriques, Joao ; Caseiro, Rui ; Martins, Pedro ; Batista, Jorge:
High-speed tracking with kernelized correlation filters. In: IEEE trans-
actions on pattern analysis and machine intelligence 37 (2014), Nr. 3, S.
583–596

[47] Lukezic, Alan ; Vojir, Tomas ; Cehovin Zajc, Luka ; Matas, Jiri ;
Kristan, Matej: Discriminative correlation filter with channel and spatial
reliability. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, S. 6309–6318

[48] Ibraheem, Noor A. ; Hasan, Mokhtar M. ; Khan, Rafiqul Z. ; Mishra,
Pramod K.: Understanding color models: a review. In: ARPN Journal of
science and technology 2 (2012), Nr. 3, S. 265–275

[49] Wang, Wenjin ; Den Brinker, Albertus C. ; Stuijk, Sander ; De Haan,
Gerard: Algorithmic principles of remote PPG. In: IEEE Transactions on
Biomedical Engineering 64 (2016), Nr. 7, S. 1479–1491

140



Bibliography

[50] De Haan, Gerard ; Jeanne, Vincent: Robust pulse rate from
chrominance-based rPPG. In: IEEE Transactions on Biomedical Engi-
neering 60 (2013), Nr. 10, S. 2878–2886

[51] Fan, Xijian ; Ye, Qiaolin ; Yang, Xubing ; Choudhury, Sruti D.:
Robust blood pressure estimation using an RGB camera. In: Journal
of Ambient Intelligence and Humanized Computing 11 (2020), Nr. 11, S.
4329–4336. http://dx.doi.org/10.1007/s12652-018-1026-6. – DOI
10.1007/s12652–018–1026–6. – ISSN 1868–5137

[52] Huang, Po-Wei ; Lin, Chun-Hao ; Chung, Meng-Liang ; Lin, Tzu-Min
; Wu, Bing-Fei: Image based contactless blood pressure assessment using
Pulse Transit Time. In: 2017 International Automatic Control Conference
(CACS), IEEE, 112017. – ISBN 978–1–5386–3900–9, S. 1–6

[53] Jeong, In C. ; Finkelstein, Joseph: Introducing Contactless Blood
Pressure Assessment Using a High Speed Video Camera. In: Journal of
medical systems 40 (2016), Nr. 4, S. 77. http://dx.doi.org/10.1007/

s10916-016-0439-z. – DOI 10.1007/s10916–016–0439–z

[54] Murakami, Kenta ; Yoshioka, Mototaka ; Ozawa, Jun: Non-contact
pulse transit time measurement using imaging camera, and its relation to
blood pressure. In: 2015 14th IAPR International Conference on Machine
Vision Applications (MVA), IEEE, 52015. – ISBN 978–4–9011–2214–6, S.
414–417

[55] Khong, Wei L. ; Rao, Nittala Surya Venkata K. ; Mariappan, Mu-
ralindran: Blood pressure measurements using non-contact video imaging
techniques. In: 2017 IEEE 2nd International Conference on Automatic
Control and Intelligent Systems (I2CACIS) IEEE, 2017, S. 35–40

[56] Moody, B ; Moody, G ; Villarroel, M ; Clifford, G ; Silva III, I:
MIMIC-III Waveform Database (version 1.0). 2020

[57] Zhang, Guanqun ; Gao, Mingwu ; Da Xu ; Olivier, N. B. ; Mukka-
mala, Ramakrishna: Pulse arrival time is not an adequate surrogate
for pulse transit time as a marker of blood pressure. In: Journal of

141

http://dx.doi.org/10.1007/s12652-018-1026-6
http://dx.doi.org/10.1007/s10916-016-0439-z
http://dx.doi.org/10.1007/s10916-016-0439-z


Bibliography

applied physiology (Bethesda, Md. : 1985) 111 (2011), Nr. 6, S. 1681–
1686. http://dx.doi.org/10.1152/japplphysiol.00980.2011. – DOI
10.1152/japplphysiol.00980.2011

[58] Jain, Monika ; Deb, Sujay ; Subramanyam, A V.: Face video based
touchless blood pressure and heart rate estimation. (2016), S. 1–5

[59] Luo, Hong ; Yang, Deye ; Barszczyk, Andrew ; Vempala, Naresh ;
Wei, Jing ; Wu, Si J. ; Zheng, Paul P. ; Fu, Genyue ; Lee, Kang ;
Feng, Zhong-Ping: Smartphone-Based Blood Pressure Measurement Us-
ing Transdermal Optical Imaging Technology. In: Circulation. Cardiovas-
cular imaging 12 (2019), Nr. 8, S. e008857. http://dx.doi.org/10.1161/

CIRCIMAGING.119.008857. – DOI 10.1161/CIRCIMAGING.119.008857

[60] Tran, Quoc-Viet ; Su, Shun-Feng ; Tran, Quang-Minh ; Truong, Vi:
Intelligent Non-Invasive Vital Signs Estimation From Image Analysis. In:
2020 International Conference on System Science and Engineering (ICSSE)
IEEE, 2020, S. 1–6

[61] Schrumpf, Fabian ; Frenzel, Patrick ; Aust, Christoph ; Osterhoff,
Georg ; Fuchs, Mirco: Assessment of deep learning based blood pressure
prediction from PPG and rPPG signals. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, S. 3820–
3830

[62] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: Imagenet
classification with deep convolutional neural networks. In: Advances in
neural information processing systems 25 (2012)

[63] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep resid-
ual learning for image recognition. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, S. 770–778

[64] Wu, Bing-Fei ; Wu, Bing-Jhang ; Tsai, Bing-Ruei ; Hsu, Chi-Po: A
Facial-Image-Based Blood Pressure Measurement System Without Cali-
bration. In: IEEE Transactions on Instrumentation and Measurement 71
(2022), S. 1–13

142

http://dx.doi.org/10.1152/japplphysiol.00980.2011
http://dx.doi.org/10.1161/CIRCIMAGING.119.008857
http://dx.doi.org/10.1161/CIRCIMAGING.119.008857


Bibliography

[65] Zhuang, Jialiang ; Li, Bin ; Zhang, Yun ; Zheng, Xiujuan: InsightNet:
non-contact blood pressure measuring network based on face video. In:
arXiv preprint arXiv:2203.03634 (2022)

[66] Fang, Yu-Fan ; Huang, Po-Wei ; Chung, Meng-Liang ; Wu, Bing-Fei: A
feature selection method for vision-based blood pressure measurement. In:
2018 IEEE International Conference on Systems, Man, and Cybernetics
(SMC) IEEE, 2018, S. 2158–2163

[67] Schrumpf, Fabian ; Frenzel, Patrick ; Aust, Christoph ; Osterhoff,
Georg ; Fuchs, Mirco: Assessment of non-invasive blood pressure predic-
tion from ppg and rppg signals using deep learning. In: Sensors 21 (2021),
Nr. 18, S. 6022

[68] Oiwa, Kosuke ; Bando, Shizuka ; Nozawa, Akio: Contactless blood
pressure sensing using facial visible and thermal images. In: Artificial Life
and Robotics 23 (2018), Nr. 3, S. 387–394. http://dx.doi.org/10.1007/

s10015-018-0450-1. – DOI 10.1007/s10015–018–0450–1. – ISSN 1433–
5298

[69] Feng, Litong ; Po, Lai-Man ; Xu, Xuyuan ; Li, Yuming ; Ma, Ruiyi:
Motion-resistant remote imaging photoplethysmography based on the opti-
cal properties of skin. In: IEEE Transactions on Circuits and Systems for
Video Technology 25 (2014), Nr. 5, S. 879–891

[70] Tsouri, Gill R. ; Li, Zheng: On the benefits of alternative color spaces for
noncontact heart rate measurements using standard red-green-blue cam-
eras. In: Journal of biomedical optics 20 (2015), Nr. 4, S. 048002

[71] Ernst, Hannes ; Scherpf, Matthieu ; Malberg, Hagen ; Schmidt,
Martin: Color spaces and regions of interest in camera based heart rate
estimation. In: 2020 11th Conference of the European Study Group on
Cardiovascular Oscillations (ESGCO) IEEE, 2020, S. 1–2

[72] Boccignone, Giuseppe ; Conte, Donatello ; Cuculo, Vittorio ;
d’Amelio, Alessandro ; Grossi, Giuliano ; Lanzarotti, Raffaella: An
open framework for remote-PPG methods and their assessment. In: IEEE
Access 8 (2020), S. 216083–216103

143

http://dx.doi.org/10.1007/s10015-018-0450-1
http://dx.doi.org/10.1007/s10015-018-0450-1


Bibliography

[73] Wang, Wenjin ; Stuijk, Sander ; De Haan, Gerard: A novel algorithm
for remote photoplethysmography: Spatial subspace rotation. In: IEEE
transactions on biomedical engineering 63 (2015), Nr. 9, S. 1974–1984

[74] Liu, Mengyang ; Po, Lai-Man ; Fu, Hong: Cuffless blood pressure estima-
tion based on photoplethysmography signal and its second derivative. In:
International Journal of Computer Theory and Engineering 9 (2017), Nr.
3, S. 202

[75] Kurylyak, Yuriy ; Lamonaca, Francesco ; Grimaldi, Domenico: A
Neural Network-based method for continuous blood pressure estimation
from a PPG signal. In: 2013 IEEE International instrumentation and
measurement technology conference (I2MTC) IEEE, 2013, S. 280–283

[76] Hassani, Atefe ; Foruzan, Amir H.: Improved PPG-based estimation of
the blood pressure using latent space features. In: Signal, Image and Video
Processing 13 (2019), Nr. 6, S. 1141–1147

[77] Mousavi, Seyedeh S. ; Firouzmand, Mohammad ; Charmi, Mostafa
; Hemmati, Mohammad ; Moghadam, Maryam ; Ghorbani, Yadollah:
Blood pressure estimation from appropriate and inappropriate PPG signals
using A whole-based method. In: Biomedical Signal Processing and Control
47 (2019), S. 196–206

[78] Hsu, Yan-Cheng ; Li, Yung-Hui ; Chang, Ching-Chun ; Harfiya, Lat-
ifa N.: Generalized deep neural network model for cuffless blood pressure
estimation with photoplethysmogram signal only. In: Sensors 20 (2020),
Nr. 19, S. 5668

[79] El Hajj, Chadi ; Kyriacou, Panayiotis A.: Cuffless and continuous blood
pressure estimation from PPG signals using recurrent neural networks. In:
2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC) IEEE, 2020, S. 4269–4272

[80] El Hajj, Chadi ; Kyriacou, Panayiotis A.: Recurrent Neural Network
Models for Blood Pressure Monitoring Using PPG Morphological Features.
In: 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC) IEEE, 2021, S. 1865–1868

144



Bibliography

[81] Haddad, Serj ; Boukhayma, Assim ; Caizzone, Antonino: Continu-
ous ppg-based blood pressure monitoring using multi-linear regression. In:
IEEE Journal of Biomedical and Health Informatics 26 (2021), Nr. 5, S.
2096–2105

[82] Schlesinger, Oded ; Vigderhouse, Nitai ; Eytan, Danny ; Moshe,
Yair: Blood pressure estimation from PPG signals using convolutional
neural networks and Siamese network. In: ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP)
IEEE, 2020, S. 1135–1139

[83] Zhang, Lida ; Hurley, Nathan C. ; Ibrahim, Bassem ; Spatz, Erica ;
Krumholz, Harlan M. ; Jafari, Roozbeh ; Bobak, Mortazavi J.: De-
veloping personalized models of blood pressure estimation from wearable
sensors data using minimally-trained domain adversarial neural networks.
In: Machine Learning for Healthcare Conference PMLR, 2020, S. 97–120

[84] Qin, Keke ; Huang, Wu ; Zhang, Tao: Deep generative model with
domain adversarial training for predicting arterial blood pressure waveform
from photoplethysmogram signal. In: Biomedical Signal Processing and
Control 70 (2021), S. 102972

[85] Ibtehaz, Nabil ; Mahmud, Sakib ; Chowdhury, Muhammad E. ; Khan-
dakar, Amith ; Salman Khan, Muhammad ; Ayari, Mohamed A. ;
Tahir, Anas M. ; Rahman, M S.: PPG2ABP: Translating Photoplethys-
mogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms. In:
Bioengineering 9 (2022), Nr. 11, S. 692

[86] Ibtehaz, Nabil ; Mahmud, Sakib ; Chowdhury, Muhammad E. ; Khan-
dakar, Amith ; Ayari, Mohamed A. ; Tahir, Anas ; Rahman, M S.:
Ppg2abp: Translating photoplethysmogram (ppg) signals to arterial blood
pressure (abp) waveforms using fully convolutional neural networks. In:
arXiv preprint arXiv:2005.01669 (2020)

[87] Slapnicar, Gasper ; Mlakar, Nejc ; Lustrek, Mitja: Blood pressure
estimation from photoplethysmogram using a spectro-temporal deep neural
network. In: Sensors 19 (2019), Nr. 15, S. 3420

145



Bibliography

[88] Wu, Bing-Fei ; Chiu, Li-Wen ; Wu, Yi-Chiao ; Lai, Chun-Chih ; Chu,
Pao-Hsien: Contactless Blood Pressure Measurement via Remote Photo-
plethysmography with Synthetic Data Generation Using Generative Adver-
sarial Network. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, S. 2130–2138

[89] Wuerich, Carolin ; Humm, Eva-Maria ; Wiede, Christian ; Schiele,
Gregor: A Feature-based Approach on Contact-less Blood Pressure Esti-
mation from Video Data. In: 2022 30th European Signal Processing Con-
ference (EUSIPCO) IEEE, 2022, S. 1343–1347

[90] Jaccard, Paul: The distribution of the flora in the alpine zone. 1. In:
New phytologist 11 (1912), Nr. 2, S. 37–50

[91] Co. KG, Bosch + Sohn G. (Hrsg.): BOSO Medicus X. https:

//www.boso.de/fileadmin/common/pdf/gebrauchsanweisungen/boso_

medicus_X.pdf. Version: 2019, Abruf: 22.05.2023 (Gebrauchsanweisun-
gen)

[92] Mori, Hisao ; Yamamoto, Hareaki ; Kuwashima, Masaomi ; Saito,
Saburo ; Ukai, Hiroshi ; Hirao, Kouichi ; Yamauchi, Mikio ; Umemura,
Satoshi: How does deep breathing affect office blood pressure and pulse
rate? In: Hypertension research 28 (2005), Nr. 6, S. 499–504

[93] Wilkinson, Ian B. ; MacCallum, Helen ; Flint, Laura ; Cockcroft,
John R. ; Newby, David E. ; Webb, David J.: The influence of heart rate
on augmentation index and central arterial pressure in humans. In: The
Journal of physiology 525 (2000), Nr. Pt 1, S. 263

[94] Bos, Willem J. ; Verrij, Elisabeth ; Vincent, Hieronymus H. ; West-
erhof, Berend E. ; Parati, Gianfranco ; Van Montfrans, Gert A.:
How to assess mean blood pressure properly at the brachial artery level.
In: Journal of hypertension 25 (2007), Nr. 4, S. 751–755

[95] Nirmalan, Mahesh ; Dark, Paul M.: Broader applications of arterial
pressure wave form analysis. In: Continuing Education in Anaesthesia,
Critical Care & Pain 14 (2014), Nr. 6, S. 285–290

146

https://www.boso.de/fileadmin/common/pdf/gebrauchsanweisungen/boso_medicus_X.pdf
https://www.boso.de/fileadmin/common/pdf/gebrauchsanweisungen/boso_medicus_X.pdf
https://www.boso.de/fileadmin/common/pdf/gebrauchsanweisungen/boso_medicus_X.pdf


Bibliography

[96] Association for the Advancement of Medical Instrumentation
and others: American national standard. Electronic or automated sphyg-
momanometers. In: ANSI/AAMI SP10-1992/A1 (1996)

[97] OBrien, Eoin ; Petrie, James ; Littler, WA ; Swiet, Michael de ;
Padfield, Paul L. ; Altman, Douglas ; Bland, Martin ; Coats, Andrew
; Atkins, Neil u. a.: The British Hypertension Society protocol for the
evaluation of blood pressure measuring devices. In: J hypertens 11 (1993),
Nr. Suppl 2, S. S43–S62

[98] Allied Vision (Hrsg.): Manta G-040. https://www.alliedvision.

com/en/camera-selector/detail/Manta/G-040#. Version: 2022, Abruf:
10.06.2022 (Datasheet)

[99] Fitzpatrick, Thomas B.: The validity and practicality of sun-reactive
skin types I through VI. In: Archives of dermatology 124 (1988), Nr. 6, S.
869–871

[100] De Haan, Gerard ; Van Leest, Arno: Improved motion robustness of
remote-PPG by using the blood volume pulse signature. In: Physiological
measurement 35 (2014), Nr. 9, S. 1913

[101] Shirbani, Fatemeh ; Hui, Nicholas ; Tan, Isabella ; Butlin, Mark ;
Avolio, Alberto P.: Effect of ambient lighting and skin tone on estimation
of heart rate and pulse transit time from video plethysmography. In: 2020
42nd Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC) IEEE, 2020, S. 2642–2645

[102] Kim, Dae-Yeol ; Lee, Kwangkee ; Sohn, Chae-Bong: Assessment of ROI
Selection for Facial Video-Based rPPG. In: Sensors 21 (2021), Nr. 23, S.
7923

[103] Firooz, Alireza ; Sadr, Bardia ; Babakoohi, Shahab ; Sarraf-Yazdy,
Maryam ; Fanian, Ferial ; Kazerouni-Timsar, Ali ; Nassiri-Kashani,
Mansour ; Naghizadeh, Mohammad M. ; Dowlati, Yahya: Variation of
biophysical parameters of the skin with age, gender, and body region. In:
The Scientific World Journal 2012 (2012)

147

https://www.alliedvision.com/en/camera-selector/detail/Manta/G-040#
https://www.alliedvision.com/en/camera-selector/detail/Manta/G-040#


Bibliography

[104] Pasyk, Krystyna A. ; Thomas, Steven V. ; Hassett, Cheryl A. ;
Cherry, George W. ; Faller, Richard: Regional differences in capil-
lary density of the normal human dermis. In: Plastic and reconstructive
surgery 83 (1989), Nr. 6, S. 939–45

[105] Pape, HC ; Kurtz, A ; Silbernagl, S: Physiologie. 8., unveränderte
Auflage. 2018

[106] Awad, Aymen A. ; Ghobashy, M Ashraf M. ; Ouda, Wagih ; Stout,
Robert G. ; Silverman, David G. ; Shelley, Kirk H.: Different responses
of ear and finger pulse oximeter wave form to cold pressor test. In: Anes-
thesia & Analgesia 92 (2001), Nr. 6, S. 1483–1486

[107] Budidha, Karthik ; Kyriacou, Panayiotis A.: Photoplethysmography
for quantitative assessment of sympathetic nerve activity (SNA) during
cold stress. In: Frontiers in Physiology 9 (2019), S. 1863

[108] Chen, Yan ; Wen, Changyun ; Tao, Guocai ; Bi, Min: Continuous and
noninvasive measurement of systolic and diastolic blood pressure by one
mathematical model with the same model parameters and two separate
pulse wave velocities. In: Annals of biomedical engineering 40 (2012), Nr.
4, S. 871–882

[109] Savitzky, Abraham ; Golay, Marcel J.: Smoothing and differentiation
of data by simplified least squares procedures. In: Analytical chemistry 36
(1964), Nr. 8, S. 1627–1639

[110] Krishnan, Rajet ; Natarajan, Balasubramaniam ; Warren, Steve:
Two-stage approach for detection and reduction of motion artifacts in pho-
toplethysmographic data. In: IEEE transactions on biomedical engineering
57 (2010), Nr. 8, S. 1867–1876

[111] Elgendi, Mohamed: Optimal signal quality index for photoplethysmo-
gram signals. In: Bioengineering 3 (2016), Nr. 4, S. 21

[112] Wuerich, Carolin ; Wiede, Christian ; Schiele, Gregor: Cuffless
Beat-to-Beat Blood Pressure Estimation from Photoplethysmogram Sig-
nals. (2023), S. 305–310

148



Bibliography

[113] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Identity
mappings in deep residual networks. In: European conference on computer
vision Springer, 2016, S. 630–645

[114] Aguirre, Nicolas ; Grall-Maës, Edith ; Cymberknop, Leandro J. ;
Armentano, Ricardo L.: Blood pressure morphology assessment from
photoplethysmogram and demographic information using deep learning
with attention mechanism. In: Sensors 21 (2021), Nr. 6, S. 2167

[115] Slapničar, Gašper ; Mlakar, Nejc ; Luštrek, Mitja: Blood pressure
estimation from photoplethysmogram using a spectro-temporal deep neural
network. In: Sensors 19 (2019), Nr. 15, S. 3420

[116] Baek, Sanghyun ; Jang, Jiyong ; Yoon, Sungroh: End-to-End Blood
Pressure Prediction via Fully Convolutional Networks. In: IEEE Access
7 (2019), S. 185458–185468. http://dx.doi.org/10.1109/ACCESS.2019.

2960844. – DOI 10.1109/ACCESS.2019.2960844

[117] Thambiraj, Geerthy ; Gandhi, Uma ; Mangalanathan, Umapathy ;
Jose, V Jeya M. ; Anand, M: Investigation on the effect of Womersley
number, ECG and PPG features for cuff less blood pressure estimation
using machine learning. In: Biomedical Signal Processing and Control 60
(2020), S. 101942

[118] McGhee, Beate H. ; Bridges, Elizabeth J.: Monitoring arterial blood
pressure: what you may not know. In: Critical care nurse 22 (2002), Nr.
2, S. 60–79

[119] Rook, WH ; Turner, JD ; Clutton-Brock, TH: Analysis of damping
characteristics of arterial catheter blood pressure monitoring in a large in-
tensive care unit. In: Southern African Journal of Critical Care 33 (2017),
Nr. 1, S. 8–10

[120] Pasma, Wietze ; Peelen, Linda M. ; Van Buuren, Stef ; Van Klei,
Wilton A. ; De Graaff, Jurgen C.: Artifact processing methods influence
on intraoperative hypotension quantification and outcome effect estimates.
In: Anesthesiology 132 (2020), Nr. 4, S. 723–737

149

http://dx.doi.org/10.1109/ACCESS.2019.2960844
http://dx.doi.org/10.1109/ACCESS.2019.2960844


Bibliography

[121] Wu, Hsien-Tsai ; Lee, Chun-Ho ; Liu, An-Bang ; Chung, Wei-Sheng ;
Tang, Chieh-Ju ; Sun, Cheuk-Kwan ; Yip, Hon-Kan: Arterial stiffness
using radial arterial waveforms measured at the wrist as an indicator of
diabetic control in the elderly. In: IEEE Transactions on Biomedical engi-
neering 58 (2010), Nr. 2, S. 243–252

[122] Song, Rencheng ; Chen, Huan ; Cheng, Juan ; Li, Chang ; Liu, Yu ;
Chen, Xun: PulseGAN: Learning to generate realistic pulse waveforms in
remote photoplethysmography. In: IEEE Journal of Biomedical and Health
Informatics 25 (2021), Nr. 5, S. 1373–1384

[123] Bousefsaf, Frédéric ; Djeldjli, Djamaleddine ; Ouzar, Yassine ;
Maaoui, Choubeila ; Pruski, Alain: iPPG 2 cPPG: reconstructing
contact from imaging photoplethysmographic signals using U-Net archi-
tectures. In: Computers in Biology and Medicine 138 (2021), S. 104860

[124] Dunn, Cody E. ; Lertsakdadet, Ben ; Crouzet, Christian ; Bahani,
Adrian ; Choi, Bernard: Comparison of speckleplethysmographic (SPG)
and photoplethysmographic (PPG) imaging by Monte Carlo simulations
and in vivo measurements. In: Biomedical optics express 9 (2018), Nr. 9,
S. 4306–4316

[125] Herranz Olazábal, Jorge ; Wieringa, Fokko ; Hermeling, Evelien ;
Van Hoof, Chris: Camera-Derived Photoplethysmography (rPPG) and
Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive
Mode at Various Integration Times Using LEDs and Lasers. In: Sensors
22 (2022), Nr. 16, S. 6059

[126] Gatzka, Christoph D. ; Kingwell, Bronwyn A. ; Cameron, James D. ;
Berry, Karen L. ; Liang, Yu-Lu ; Dewar, Elizabeth M. ; Reid, Chris M.
; Jennings, Garry L. ; Dart, Anthony M. u. a.: Gender differences in the
timing of arterial wave reflection beyond differences in body height. In:
Journal of hypertension 19 (2001), Nr. 12, S. 2197–2203

[127] Hayward, Christopher S. ; Kelly, Raymond P.: Gender-related differ-
ences in the central arterial pressure waveform. In: Journal of the American
College of Cardiology 30 (1997), Nr. 7, S. 1863–1871

150



Bibliography

[128] Picone, Dean S. ; Stoneman, Elif ; Cremer, Antoine ; Schultz, Mar-
tin G. ; Otahal, Petr ; Hughes, Alun D. ; Black, J A. ; Bos, Willem J. ;
Chen, Chen-Huan ; Cheng, Hao-Min u. a.: Sex differences in blood pres-
sure and potential implications for cardiovascular risk management. In:
Hypertension 80 (2023), Nr. 2, S. 316–324

[129] Picone, Dean S. ; Schultz, Martin G. ; Peng, Xiaoqing ; Black, J A.
; Dwyer, Nathan ; Roberts-Thomson, Philip ; Chen, Chen-Huan ;
Cheng, Hao-Min ; Pucci, Giacomo ; Wang, Ji-Guang u. a.: Discovery of
new blood pressure phenotypes and relation to accuracy of cuff devices used
in daily clinical practice. In: Hypertension 71 (2018), Nr. 6, S. 1239–1247

151


	Introduction
	Motivation
	Scope of Work and Contributions
	Structure

	Theoretical Background
	Cardiovascular System
	Blood Pressure
	Vascular Tree
	Blood Vessels
	Blood Pressure Surrogates

	Photoplethysmography
	Measuring Principle
	Optical Properties of Human Skin

	Signal Processing
	Filters
	Fourier Analysis
	Independent Component Analysis

	Machine Learning
	Artificial Neural Networks
	Random Forest Regression
	Feature Selection
	Principal Component Analysis

	Image Processing
	Object Detection
	Object Tracking
	Colour Models
	Camera-based PPG extraction methods


	Related Work
	PTT-based Blood Pressure Estimation from rPPG
	Feature-based Blood Pressure Estimation from rPPG
	Deep-Learning-based Blood Pressure Estimation from rPPG
	Remote Photoplethysmography
	Blood Pressure Estimation from PPG
	Research Gaps

	Feature-based Blood Pressure Measurement
	Feature-based Method
	Face/Hand Detection and Tracking
	Definition of the Region of Interest
	Signal Extraction and Pre-processing
	Feature Extraction and Selection
	Regression Models

	Remote PPG Data Set
	Experimental Setup and Data Acquisition
	Data Set Statistics

	Results and Discussion
	rPPG Features Selection Results
	BP Prediction Accuracy


	Optimizing Remote Photoplethysmography
	Interfering Factors in rPPG Measurement
	Experimental Setup
	Baseline Performance during Interfering Conditions

	Colour Model Transformation
	Experimental Setup
	rPPG Quality Assessment
	BP Prediction Accuracy
	rPPG Rejection Rate
	Conclusion on the Selection of the Colour Model

	Region of Interest
	Experimental Setup
	Comparison of ROI Positions
	Analysis of ROI Size
	Conclusion on the Selection of the Region of Interest


	Convolutional Neural Networks for Blood Pressure Estimation
	Method
	Signal Preprocessing
	Neural Network

	Experimental Setup
	PPG Data Set
	rPPG Data Set
	Model Optimisation

	Results and Discussion
	Universal PPG Model
	Personalised PPG Models
	Performance on rPPG Data


	Summary and Discussion
	Summary and Contributions
	Discussion and Future Work
	List of Publications
	Journal Articles
	Conference Proceedings


	Implementation Details

