
Surrogate Gradient Methods
for Data-Driven

Scrap Procurement Optimization

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Maschinenbau und Verfahrenstechnik der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades

eines

Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

von

Shikun Chen

aus

Fujian, China

Tag der Disputation: 26.04.2024

Erstgutachter: Prof. Dr. rer. nat. Robert Martin

Zweitgutachter: Prof. Dr. Ing. Rüdiger Deike

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/81909
URN: urn:nbn:de:hbz:465-20240503-075110-9

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/81909
https://nbn-resolving.org/urn:nbn:de:hbz:465-20240503-075110-9

Acknowledgments

Pursuing a Doctor of Engineering Sciences degree is a long and challenging journey. I couldn’t
have done it without the strong help and support from my teachers, family, and friends.

I’m really thankful to my main teacher, Prof. Dr. rer. nat. Robert Martin from the University
of Duisburg-Essen’s Chair of Math for Engineers. Throughout my research, he was always there
to guide, inspire, and give great advice. His knowledge and how he supports new researchers like
me can’t be simply put into words.

I also want to say a big thank you to, Prof. Dr. rer. nat. Johannes Gottschling. His skills and
advice were so important in making this research a success. His helpful tips and encouragement
were very important in my studies. Also, a shoutout to my colleagues in the Chair of Math for
Engineers, including Dr. Sebastian Tewes, Saad Alvi, Torben Disselhoff, Philine Kerst, Annika
Tonnius, and Tim Kaufmann.

I also want to mention Prof. Dr. Ing. Hartmann Dierk, who was my mentor when I first
started researching at Kempten University of Applied Sciences.

Lastly, a big thank you goes to my parents, Chen QingLiang and Lin LiLing, my dear sisters,
and my wife, Chen XiaoHong. Their love, constant support, and understanding were always
there for me during this academic journey. All the things they did to support my dream are the
main reasons I could finish this thesis. I know how important their role has been in helping me
grow personally and professionally. I couldn’t have done it without their belief in me.

Chen Shikun
2023

1

2

Abstract

The foundry industry, a fundamental element of modern industrialization, faces significant chal-
lenges in scrap procurement and energy consumption, impacting both operational costs and en-
vironmental sustainability. This work presents a threefold approach to address these challenges,
aiming to bridge the theoretical concepts of machine learning (ML) and numerical optimization
with practical applications in the foundry sector. Initially, two user-friendly ML software tools,
EidoData desktop and EidoData web, are developed to democratize ML applications, enabling
individuals with limited ML expertise to leverage data-driven insights for informed decision-
making. Furthermore, a novel surrogate gradient method is introduced to simplify the opti-
mization process of scrap purchasing, making it more efficient and practical. This method uses
smooth surrogate functions to approximate non-smooth cost functions, enhancing computational
efficiency in deriving optimal scrap purchasing strategies more effectively. Lastly, an integration
of the developed software tools and the optimization method is employed to simulate real-world
scrap purchasing scenarios. Through a virtual environment mirroring real-world scrap trading
dynamics, this integrated framework provides a powerful tool for decision-makers in the foundry
industry, facilitating a detailed understanding of the complex interplay between scrap procure-
ment, energy consumption, and overall operational cost. By employing user-friendly software,
introducing a new optimization method, and demonstrating their practical application in real-
world scenario simulations, the presented work contributes to the development of cost-effective
and environmentally sustainable practices in the foundry industry.

3

Zusammenfassung

Die Gießereiindustrie, ein grundlegendes Element der modernen Industrialisierung, steht vor er-
heblichen Herausforderungen bei der Beschaffung von Schrott und dem Energieverbrauch, die so-
wohl die Betriebskosten als auch die Umweltverträglichkeit beeinflussen. Diese Arbeit stellt einen
dreigliedrigen Ansatz zur Bewältigung dieser Herausforderungen vor, mit dem Ziel, die theore-
tischen Konzepte des maschinellen Lernens (ML) und der numerischen Optimierung mit prakti-
schen Anwendungen im Gießereisektor zu verbinden. Zunächst werden zwei benutzerfreundliche
ML-Softwaretools, EidoData desktop und EidoData web, entwickelt, um ML-Anwendungen zu
demokratisieren und Personen mit begrenzten ML-Kenntnissen zu ermöglichen, datengetriebe-
ne Erkenntnisse für informierte Entscheidungen zu nutzen. Darüber hinaus wird eine neuartige
Surrogate-Gradient-Methode vorgestellt, um den Optimierungsprozess des Schrottkaufs zu ver-
einfachen und praktikabler zu gestalten. Diese Methode erstellt glatte Ersatzfunktionen, um
nicht-differenzierbare Kostenfunktionen anzunähern und die Recheneffizienz bei der Ermittlung
optimaler Schrottkaufstrategien zu verbessern. Schließlich wird eine Integration der entwickelten
Softwaretools und der Optimierungsmethode verwendet, um reale Szenarien für den Schrottkauf
zu simulieren. Durch eine virtuelle Umgebung, die die realen Dynamiken des Schrotthandels
widerspiegelt, bietet dieses integrierte Framework ein leistungsstarkes Tool für Entscheidungs-
träger in der Gießereiindustrie und erleichtert ein detailliertes Verständnis der komplexen Wech-
selwirkungen zwischen Schrottbeschaffung, Energieverbrauch und den gesamten Betriebskosten.
Durch den Einsatz benutzerfreundlicher Software, die Einführung einer neuen Optimierungs-
methode und die Demonstration ihrer praktischen Anwendung in Echtzeitszenariosimulationen
trägt diese Arbeit zur Entwicklung kosteneffizienter und umweltverträglicher Praktiken in der
Gießereiindustrie bei.

5

6

Contents

Acknowledgments 1

Abstract 3

Zusammenfassung 5

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and contributions . 4
1.3 Thesis structure . 5

2 Background 7
2.1 Foundations of the metal casting process . 7
2.2 Metal recycling . 10
2.3 Challenges of scrap procurement optimization . 14
2.4 Machine learning . 15

2.4.1 Supervised regression learning . 15
2.4.2 Regression algorithms . 20
2.4.3 Hyperparameter tuning . 26
2.4.4 AutoML . 29

2.5 Numerical optimization . 31
2.5.1 Sequential quadratic programming . 32
2.5.2 Derivative-free optimization . 40
2.5.3 Derivative-based optimization . 43
2.5.4 Surrogate-based optimization . 45

2.6 Cloud computing . 46
2.6.1 Docker containers . 46
2.6.2 Kubernetes . 48

2.7 Summary . 51

3 Platform for scrap procurement 53
3.1 Introduction to the platform . 53
3.2 Software architecture . 55
3.3 Implementation details . 59

3.3.1 AutoML system . 59
3.3.2 Software deployment . 61

3.4 Summary . 63

7

8 CONTENTS

4 Scrap procurement optimization 65
4.1 Traditional methods for scrap purchase optimization 66
4.2 EidoData desktop . 68

4.2.1 Implementation details . 68
4.2.2 Features of EidoData desktop . 70

4.3 EidoData web . 73
4.3.1 Implementation details . 73
4.3.2 Features of EidoData web . 76

4.4 Summary . 78

5 Surrogate gradient methods for optimization 81
5.1 Gradient-based optimization of surrogate models 82

5.1.1 General problem description . 83
5.1.2 Application to machine learning . 84
5.1.3 Main objective . 85

5.2 Numerical experiments . 85
5.2.1 Rosenbrock function . 85
5.2.2 Foundry dataset . 93

5.3 Summary . 94

6 Real-world scrap procurement simulations 97
6.1 Validation of the algorithm in real-world scenarios 97

6.1.1 Preliminary results . 99
6.2 Time discrete simulations . 100
6.3 Summary . 104

7 Conclusions 105
7.1 Thesis summary . 105
7.2 Thesis contributions . 105
7.3 Future works . 106

References 109

Chapter 1

Introduction

1.1 Motivation

The foundry industry, fundamentally instrumental to our contemporary living standards and the
advancement of industrialization, has a far-reaching impact that affects many facets of our life.
The scope of its application extends to a broad spectrum of sectors, including, but not limited
to, the automotive industry, mechanical manufacturing, and agricultural equipment production,
serving as a cornerstone for these integral industries.

At the core of foundry operations lies the process of metal casting, wherein metals are sub-
jected to high temperatures until they transition into a molten state. This liquefied metal is
subsequently poured into molds of varying materials, such as sand, ceramic, or metal. The
molds, crafted with intricate geometric complexity, facilitate the formation of uniquely shaped
parts. Following the pouring, the metal is given time to cool, leading to the solidification of the
previously liquid metal. The resultant shaped metal, referred to as a casting, can be utilized
in the manufacturing of products or parts exhibiting complex designs and unique shapes that
would otherwise be challenging to produce.

However, the operations of foundries are not without their environmental consequences. They
stand as significant contributors to environmental degradation, impacting the environment in
two primary ways: through the extensive consumption of energy and the emission of harm-
ful air pollutants. The substantial demand for energy in foundry operations and the resultant
environmental implications highlight the pressing need for energy conservation and efficiency im-
provement. It presents a overwhelming challenge to the foundry industry, necessitating concerted
efforts towards reducing energy consumption and enhancing energy efficiency.

Parallel to these operations, the foundry processes generate a voluminous amount of data.
This data, when subjected to rigorous analysis and interpretation, holds the potential to unravel
valuable insights. Turning this basic data into useful information is key for making good deci-
sions. It could potentially guide optimal decision-making processes, thus playing a vital role in
addressing the challenges faced by the foundry industry.

Machine learning (ML) represents a dynamic collection of algorithms that recognize patterns,
describe rules, and integrate knowledge, thereby facilitating automation and optimizing the man-
ufacturing process [4]. In data-driven applications and Artificial Intelligence (AI) services, ML
algorithms help improve and often replace old rule-based methods [145]. They boost work re-
sults and make outcomes better. With more computer power and big model development, ML
has made considerable progress in numerous fields, such as robotics [76], healthcare [57], and
autonomous driving [22].

1

2 CHAPTER 1. INTRODUCTION

On the other hand, using ML in the foundry industry is a complex and challenging task. This
is mainly because of several issues [139, 155]:

• Many foundries have been collecting data without a clear strategy over the years. The
common method starts with a plan to link many data sources and then pull out new
insights. Buying decisions are often based on whether equipment can be connected or
fitted with a sensor. As a result, data is collected without much thought and organizing
it becomes difficult. This leads to a lot of data being collected, but most of it isn’t used
because it’s hard to combine and understand.

• Secondly, the data collection process often suffers from the negative effects of unstructured
methods or spatial constraints. This frequently leads to the early termination or overwriting
of the data collection process, or worse, the incorrect recording of information. The data
collected in these conditions often lacks usefulness for later steps, making it mostly useless.

• Third, to make an effective ML solution work, several steps need to be completed correctly.
This includes data preprocessing, feature engineering, model selection, hyperparameter
tuning, model evaluation, and model deployment. Absent a robust understanding of this
complicated ML workflow, it becomes a near impossible task to leverage ML effectively
within the foundry industry.

To overcome these challenges, the foundry industry must adopt a more structured approach to
data collection and management, invest in building ML expertise, and develop a comprehensive
understanding of the ML workflow. This can open up new avenues for optimizing operations and
driving innovation in the industry.

The production of high-quality castings necessitates the investment of multiple resources, each
of which acquires a distinct cost. The primary cost determinant in this process is typically the
expenditure related to the procurement of materials. The material cost is inherently dependent
on the price at which scrap metal is purchased from external sources for integration into the
casting process.

The cost per kilogram of castable metal, or the unit spout cost, is consequently a cumulative
measure of multiple constituent costs. These include the aforementioned material cost (which is
subject to the cost of scrap), the energy cost required for the operation of casting machinery, the
demand for electricity which is a significant factor in determining overall energy cost, the cost of
labor in terms of wages for employees engaged in the casting process, and the cost of consumable
material that is expended in the production process.

To explain further, the cost of the material is influenced by the fluctuations in the global metal
market, availability of quality scrap metal, and the costs associated with transporting and storing
the scrap metal. The energy cost accounts for the expenditure on power required for melting the
scrap metal, maintaining the operation of the casting machinery, and other associated processes.

Consequently, it is crucial to optimize the procurement of scrap material while simultaneously
trying to reduce the overall cost. The consumption of energy, a significant component of the
overall cost structure, can be predicted through the application of trained ML models. These
ML models primarily utilize the quantity of scrap material and specific furnace parameters as
input features, effectively mapping the relationship between scrap quantity and energy usage.

Numerical optimization techniques can play a pivotal role in fine-tuning this relationship.
By employing these mathematical strategies, it becomes possible to devise an optimal plan for
scrap procurement. This can potentially lead to a reduction in energy consumption, thereby
contributing to cost reduction. Importantly, this optimization process must be carefully managed
to ensure that the quality of the final production is not compromised. To elaborate, numerical

1.1. MOTIVATION 3

optimization techniques can be used to find the optimal selection of scrap that minimizes energy
consumption. These techniques can explore the solution space defined by the ML models and
find the point that yields the lowest energy consumption.

However, the complication associated with scrap optimization is a direct consequence of the
numerous of process parameters, control parameters, and control variables. Furthermore, it is
challenging to optimize data-driven models to address such complex issues, in large part because
the majority of existing models exhibit strong irregularity, which hinders the application of
conventional optimization techniques, such as gradient descent. For instance, ML models that are
frequently utilized, like gradient boosting and random forests, may not possess differentiability,
and might even show discontinuities.

Since traditional optimization methods, such as gradient descent, operate on the assump-
tion of smooth, differentiable functions, and leverage the gradient or derivative information
to iteratively reach the function’s minimum, they are not immediately applicable to such ML
models. This dilemma necessitates the use of alternative strategies, specifically derivative-free
optimization techniques. These techniques do not rely on derivative information but rather
employ direct search, stochastic, or evolutionary strategies to find the optimal solution. By do-
ing so, derivative-free optimization techniques offer a viable route to tackle the irregularities and
non-differentiability inherent in many modern machine learning models, thereby enabling the op-
timization of these models for complex tasks such as scrap optimization. For many applications,
however, the performance offered by derivative-free optimization is simply insufficient.

Overall, the main problem is to optimize the total cost of the foundry process, with a par-
ticular focus on reducing energy consumption, which is a significant factor in the cost structure.
The total cost function, denoted as f(x) = p(x)+m(x)+ l(x), depends on the scrap procurement
strategy x and is composed of three main components:

1. Scrap purchasing cost (p(x)): The cost incurred in acquiring scrap metal, which is a key
raw material for the casting process.

2. Energy consumption cost (m(x)): This cost is directly influenced by the amount and type
of scrap metal used. The energy consumption for melting and processing the scrap is
modeled using a machine learning approach, specifically a gradient boosting model, which
is inherently non-differentiable.

3. Transport cost (l(x)): The expenses associated with transporting the scrap metal to the
foundry.

The challenge lies in the fact that the energy consumption component of the cost function (m(x))
is predicted by a non-differentiable ML model (gradient boosting). This characteristic of the
model complicates the application of traditional optimization methods that rely on derivatives,
such as gradient descent.

The research aims to investigate the effectiveness of surrogate optimization as an alternative to
derivative-free optimization techniques in this context. Surrogate optimization involves creating
a differentiable model that approximates the behavior of the non-differentiable ML model. This
surrogate model can then be optimized using traditional methods. The investigation will assess
whether this approach offers advantages, particularly in terms of accuracy and efficiency, over
standard derivative-free methods in optimizing the total cost function in the foundry industry,
considering the constraints and characteristics of the ML model used.

4 CHAPTER 1. INTRODUCTION

1.2 Goals and contributions

A major contribution of this thesis is the systematic investigation of differentiable surrogates
functions that serve as viable approximations for non-smooth functions, preserving their core
properties while enhancing their tractability for optimization purposes.

Differentiable surrogates act as mathematical stand-ins for the original non-smooth functions
in the optimization process. This surrogate-based method simplifies the optimization, allowing
for the application of conventional optimization algorithms, which are typically well-suited for
smooth, differentiable functions.

The steps in the optimization process using differentiable surrogates are as follows: Firstly,
a differentiable surrogate function that approximates the original non-smooth function is con-
structed. This surrogate function is then subjected to optimization utilizing standard algorithms
designed for differentiable functions. The optimized surrogate function subsequently serves as a
means to extract an approximate solution for the initial non-smooth function.

While these surrogate functions might not perfectly represent the actual process due to the
inherent simplifications introduced during their construction, they provide substantial benefits
when derivative-based optimization techniques are employed. The primary advantage is the
marked improvement in computational efficiency, as these techniques generally perform better
with smooth, differentiable functions. This advantage can significantly reduce the time and
computational resources required for the optimization process, thus making the surrogate-based
approach a practical choice for large-scale or complex optimization problems.

Based on the aforementioned methodology, a specialized simulation software has been de-
veloped. This software is designed to encapsulate the comprehensive process of scrap trading,
specifically from the viewpoint of the foundry industry. It seeks to provide a virtual environment
that closely mirrors the complexities and dynamics of real-world scrap trading.

This simulation system capitalizes on the solution provided by differentiable surrogate models
to ascertain the optimal combination of scrap purchases. The optimality here refers to minimizing
the total cost incurred in the scrap procurement process. By utilizing differentiable surrogates,
the software can efficiently navigate the search space of possible purchasing combinations. It does
so by approximating the cost function, which might be non-smooth due to the employment of
ML models such as gradient boosting, with a smooth surrogate function. This surrogate function
can then be optimized using standard optimization algorithms, resulting in an efficient solution
for the original cost function.

The incorporation of differentiable surrogates into the simulation software allows for a stream-
lined and efficient approach to the complex task of scrap procurement optimization. The software
can handle a variety of scenarios and constraints, adapting to changes in the market conditions,
availability of scrap types, and other variables. This makes it a valuable tool for decision-makers
in the foundry industry, enabling them to make informed and cost-effective decisions about scrap
procurement.

Together with the development of the simulation software, two additional ML software tools
have been created to speed up the process of ML model training and deployment. These tools
are designed to lower the barriers to entry for ML applications in the foundry industry, enabling
non-experts to leverage the power of ML for their specific needs.

The first tool is the EidoData desktop version, which is designed with user-friendliness at its
core. EidoData desktop offers a straightforward graphical user interface (GUI) that simplifies
the process of ML for non-ML experts. Users can easily import data for ML training and
preprocessing. It extends a wide array of state-of-the-art ML algorithms for users to select
from, thereby offering flexibility and customization based on the specific task at hand. EidoData
desktop has been designed with a focus on accessibility and ease of use, allowing users without a

1.3. THESIS STRUCTURE 5

deep understanding of ML to train and deploy ML models effectively. This tool has the potential
to accelerate the adoption of ML solutions in the foundry industry, as it bridges the gap between
complex ML algorithms and practical industry applications.

In addition to the desktop version, an EidoData web version has been developed to provide
even greater accessibility. This web-based software eliminates the need for local installation,
allowing users to access ML services directly through their browser from anywhere with internet
access. The EidoData web version further streamlines the ML process by providing Automated
Machine Learning (AutoML) services. AutoML represents a significant advancement in the
democratization of ML, as it enables users with limited ML expertise to train high-quality models
that are tailored to their specific needs. Through the use of AutoML, the EidoData web version
automates various stages of the ML process, including feature selection, model selection, and
hyperparameter tuning. This allows users to focus more on their specific business problems and
less on the intricacies of ML model development.

These software tools—EidoData desktop and EidoData web—represent significant strides in
bringing ML solutions to the foundry industry. By making ML more accessible and user-friendly,
they have the potential to significantly impact the industry, enabling businesses to harness the
power of ML for their specific needs.

In conclusion, in conjunction with numerical optimization, these programs can serve as pow-
erful tools for decision-making and strategy formulation in the foundry industry. They enable
a more detailed understanding of the complex interplay between scrap procurement, energy
consumption, and production quality, leading to more efficient and cost-effective operations.

1.3 Thesis structure

This thesis addresses challenges in the foundry industry, emphasizing the optimization of scrap
procurement and energy consumption using ML and numerical optimization. Chapter 2 delves
into the foundry and metal recycling sectors, pinpointing the critical challenge of scrap purchas-
ing optimization and introducing ML and numerical optimization as potential solutions. Chapter
3 presents a scrap procurement platform based on differentiable surrogates ML models, simpli-
fying the optimization process for cost-effective scrap purchasing strategies. In chapter 4, two
software tools, EidoData Desktop and EidoData Web, are introduced which make ML accessible
to individuals in the foundry industry, facilitating data import, ML algorithm selection, and
model deployment. Chapter 5 explains the mechanics of differentiable surrogates optimization,
validating its effectiveness through numerical experiments and paving the way for real-world
applications. Chapter 6 extends the validation to real-world scenarios, showcasing how the opti-
mization method simulates real-world scrap purchasing behavior, thus providing a practical tool
for decision-makers in the foundry industry. The final chapter 7 concludes the thesis, summa-
rizing the contributions and discussing future work, highlighting the potential for more efficient
and environmentally responsible operations in the industry through the developed methods and
tools.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Climate policies and sustainability requirements have an immense effect on the current industrial
landscape. The most visible aspect of this shift is the requirement to reduce atmospheric carbon
dioxide (CO2) emissions, a major contributor to global climate change. Considering that metal
castings form the backbone of approximately 90% of all manufactured goods [144], this devel-
opment has profound implications for the foundry industry. This suggests that foundries have a
growing obligation to improve the sustainability of their operations, laying the groundwork for
the manufacturing industry’s sustainable growth. The foundry industry has historically made
significant contributions to sustainability, particularly through the recycling of scrap iron and
steel [68]. However, when it comes to energy efficiency and resource utilization, there is adequate
scope for further enhancements.

The following introduction provides some basic background of the foundry industry and
related subjects. Initially, sections 2.1 and 2.2 explain the foundational aspects of foundry
operations and metal recycling, respectively, laying the groundwork for the subsequent discussion.
Section 2.3 then depicts the complexities involved in scrap procurement. Afterwards, section 2.4
introduces the underlying principles of machine learning (ML), with a particular emphasis on
supervised learning and AutoML. Subsequently, section 2.5 describes the core principles of the
numerical optimization methods used in this study. Finally, section 2.6 provides a thorough
examination of cloud computing concepts and their applications relevant to this research.

2.1 Foundations of the metal casting process

A foundry is an industrial setting created exclusively to produce metal castings, which are created
by melting a certain metal, pouring the molten metal into a precisely designed mold, and then
enabling the solidified metal to take on a brand-new, custom geometric form. In case of iron and
steel casting, the molds are typically made out of sand, binder and other additives. This intricate
process, known as foundry work, results in the production of a casting through a complex,
multi-stage workflow, which includes pattern-making, molding, melting, pouring, solidification,
removal of the casting from the mould, cleaning, fettling, and inspection. This process sequence
is depicted in Figure 2.1.

The eventual shape of the casting is a direct replica of the mold cavity into which the liquid
metal was poured, thus necessitating the careful crafting of the mold. Molds are created based on
a pattern, which is a replica of the object to be cast, typically constructed from materials such as
wood or metal. The production of a precise pattern forms an integral step in the casting process,

7

8 CHAPTER 2. BACKGROUND

Raw Material
(Metals, sand, wood,

binders, ect)

Raw Material
(Matals, sand, wood,

chemicals binders, ect)

Melting process
(metal melting, molten metal holding,

 molten melt treatment)

Melting process
(metal melting, molten metal holding,

 molten metal treatment)

Mould preparation and core
production

Casting

Casting
Solidi�cation and

 cooling

Melting process
(metal melting, molten metal holding,

 molten metal treatment)

Finishing
(shake out, shot blasting, grinding,
deburring, thermal treating, etc)

Packaging

Metallic returns

Figure 2.1: Process flow diagram of a foundry industry.

as it sets the foundation for the subsequent manufacturing steps and ultimately determines the
final form of the casting.

Predominantly, silica sand is used as the material for molds, owing to its high refractory
properties and cost-effectiveness. However, the choice of mold material is not limited to silica
sand and can be varied based on several factors including the type of metal being cast, the specific
casting method employed, and the unique requirements of the casting process. For example, in
certain high-precision casting methods, alternative materials such as ceramics or metals might
be used for the construction of molds. The decision regarding the selection of an appropriate
mold material plays a critical role in the foundry process and has significant implications for the
quality of the final casting, process efficiency, and overall economic viability of the operation.

2.1. FOUNDATIONS OF THE METAL CASTING PROCESS 9

Metal melting is the key procedure in the foundry and is frequently referred to as the core of
the business. This procedure turns solid metals into liquids by applying heat above the melting
point of the metal in a machine fittingly called the melting furnace. The process of melting
metal is characterized by several key steps, including the determination of metal mixture ratio,
preparation and loading of the metal, melting, refining, and treatment of the molten metal, and
the transportation of molten metal [30].

Typically, the metal mixture, comprising predominantly of ingots and scrap metal, is carefully
calculated to yield the desired mechanical properties of the final product. This mixture often
contains additives such as alloys of Zinc (Zn), Manganese (Mn), Copper (Cu), Silicon (Si), etc.,
to enhance certain properties [116]. The furnace is charged with this mixture and a fuel source,
which could be charcoal, natural gas, or electricity. The metal is loaded continuously throughout
the heating process to optimize energy consumption and work efficiency [115].

Once the molten metal has reached a certain temperature, it is transported from the melting
furnace to the moulding line, where it is manually or automatically poured into the moulds.
The metal then cools and solidifies, and the casting is removed from the mold and cleaned [37].
The entire process significantly influences the physical and chemical characteristics of the final
casting products and consumes a considerable amount of energy, accounting for about 55% of
the energy consumption in the metalworking industry[37].

Foundries are generally distinguished by whether they work with ferrous or non-ferrous met-
als. Ferrous metals contain iron, while non-ferrous metals do not. The global production of
metal is dominated by ferrous metallurgy, with gray iron being the most commonly cast metal
in foundries [13]. The exact type of furnace utilized in these foundries is contingent on the metal
they work with. For instance, electric arc furnaces (EAF) are optimal for steel processing, while
foundries specializing in copper are more likely to employ an induction furnace [101].

In addition to the type of metal being melted, the choice of melting furnace technology can also
influence the process. Traditional methods include the use of crucible and cupola furnaces, while
modern advanced melting technologies employ induction and EAF. These different technologies
have a direct impact on the effectiveness of the melting process.

Foundries indeed leverage metal recycling as a sustainable and cost-effective source of raw
material. The inherent ability of metals, including but not limited to steel, iron, aluminum,
and copper, to withstand recycling cycles without loss of metallic properties makes them ideal
candidates for repeated melting and casting.

Broadly, foundries purchase raw materials from two main sources. Firstly, there is home scrap,
or Kreislaufschrott in German, which includes trimmings, pigged metal, and rejects originating
from mill or foundry production. The known chemical properties of this type of scrap allow
for easy integration with other raw materials and reprocessing on site. Secondly, foundries
acquire external scrap, or Fremdschrott in German, from the scrap metal recycling industry.
This industry refines both obsolete and prompt scrap into commodity-grade material. Obsolete
scrap, collected from diverse sources such as scrap metal dealers, auto salvage facilities, and
industrial manufacturers, is typically processed at large-scale recycling facilities. Prompt scrap,
on the other hand, is generated during the fabrication of metal products and, akin to home scrap,
is quickly returned to the mill for reprocessing due to its known chemical properties.

Following procurement, the scrap metal is classified into ferrous, non-ferrous, and non-metallic
materials. This necessitates shredding the scrap metal into smaller pieces for efficient and thor-
ough separation.

The core challenge of this research is the optimization of the charge material for melting.
One of the most crucial steps in preparing for the production of liquid casting alloys in foundry
furnaces is the burden calculation. These calculations, often complex due to the multitude of
input materials and chemical elements, are typically realized through numerical methods imple-

10 CHAPTER 2. BACKGROUND

mented in spreadsheets, universal mathematical programs, or specialized programs for foundry
engineering [144].

2.2 Metal recycling

Globally, each day witnesses the generation of substantial volumes of waste materials, often in the
guise of scrap from production processes or demolition activities [21]. Despite first appearances,
this waste material is actually a resource of great worth that can be repeatedly reintroduced
into the material economy without losing any of its quality. Within the realm of recycling, a
distinction is drawn among various categories of metals, namely industrial metals, minor metals,
and noble metals [66].

Industrial metals, owing to the sheer volume involved in global trade, command a position of
exceptional importance. This category encompasses a wide range of metals, including iron (Fe),
aluminum (Al), copper, zinc, nickel (Ni), and tin (Sn), among others. These metals are often used
in large-scale industrial applications, such as construction, manufacturing, and transportation,
and their recycling plays a critical role in resource conservation and sustainable development.

Minor metals, on the other hand, constitute a group that includes elements traded in quan-
tities significantly lower than industrial metals. Despite their relatively smaller trade volumes,
these metals often command much higher prices, attributable to their specialized applications
and often limited supply. Minor metals are frequently used as alloying elements. An alloy is a
mixture of two or more chemical elements, at least one of which is metal. For instance, steel
is compound of iron, and carbon (C) and other elements. Important alloying elements in steel
and minor metals are manganese, silicon, chromium (Cr), molybdenum (Mo), tungsten (W),
vanadium (V), cobalt (Co), titanium (Ti), niobium (Nb), boron (B) and bismuth (Bi).

Noble metals, such as gold (Au), silver (Ag), and platinum (Pt), represent a distinct group,
characterized by their resistance to corrosion and oxidation. While their use in jewelry is well-
known, they also find important applications in various industries, such as electronics, catalysis,
and medicine [103]. The recycling of noble metals is particularly valuable, given their high market
prices and significant environmental impact associated with their mining and refining.

The first industrial metal to be highlighted in this discussion is iron, a versatile element that
serves as the foundation for two main materials: steel and cast iron, each of which has unique
properties. Steel is a general term for a variety of alloys that are mostly made of iron, displaying
high deformability, and have a maximum carbon content of 2.06% [111]. This highlights the
complex interaction between iron and carbon, which results in the production of an alloy with
special qualities that make it a vital component in several industrial applications.

As per the statistical data released by World Steel Association [160], the global production
of crude steel was estimated to be 1,878 million metric tons in the year 2020. Focusing on Ger-
many, a significant player in the global steel industry, it is noteworthy that the nation produced
35.7 million metric tons of crude steel in the same year. Interestingly, the production process
incorporated 19.76 million tons of scrap, thereby indicating that, on average, each ton of steel
was constituted by approximately 55.3% of recycled material [14]. This suggests a considerable
level of metal recycling, effectively reintegrating iron back into the material cycle in the form of
scrap.

Additionally, German steel melt shop reportedly procured an estimated 12.55 million tons of
scrap during the year 2020 [14]. The part of the discrepancy of procured and utilized scrap can
be attributed to the generation of scrap within the steel mill itself, thereby negating the necessity
for external procurement. This observation provides valuable insights into the integral role of
recycling within the industrial operations, contributing to resource efficiency and sustainability.

2.2. METAL RECYCLING 11

In the domain of industrial metals, aluminum manifests a significant presence, occupying the
second rank in terms of volume. There are two unique routes that the aluminum manufacturing
process takes: the production of primary aluminum, derived directly from mined ore, and the
production of recycled aluminum, a category also known as secondary aluminum. In the year
2020, German aluminum industry’s production data revealed an output of 1.1 million tons of
raw aluminum, a decrease by ten percent compared to the preceding year [93]. This decrease
underscores the cyclicality and responsiveness of metal production to the prevailing economic
conditions and market demands.

Upon dissecting the composition of raw aluminum production, it was found that 529,000 tons
constituted primary aluminum, while 548,000 tons were contributed by recycled aluminum. This
data implies that in the year 2020, secondary aluminum accounted for approximately 51 percent
of the total raw aluminum output, hinting at the considerable role of recycling in the aluminum
industry [93]. This proportion not only reflects the industry’s emphasis on sustainable practices,
but also underlines the economical and environmental benefits derived from metal recycling.

In the hierarchy of industrial metals in Germany, copper is positioned alongside iron and
aluminum as one of the top three metals, highlighting its critical importance in the industrial
sphere. The data for the year 2020 reveals that Germany produced 639,000 metric tons of
refined copper and copper alloys [93].This fact not only highlights how important copper is to
the German industrial environment, but it also illustrates how important Germany is to the
worldwide copper supply chain. It is important to consider these figures in light of the various
applications of copper in diverse industries, which include but are not limited to electrical wiring,
construction, and electronics. Such extensive utilization of copper underlines the significance of
its production data, as it provides valuable insights into the state of these industries and the
economy at large .

Within the industrial sector of Germany, each transaction involving scrap metal is subject
to individual negotiation between the scrap dealer and the procurement officer of the steel mill.
This process of price determination, however, is typically not as arbitrary as it may seem, being
influenced by an array of diverse factors. On a broad level, scrap metal, irrespective of its
composition, can be categorized into three distinct groups.

The first category, commonly referred to as home scrap, comprises waste material that is
generated directly within the industrial plant or smelter. This scrap is typically an offshoot
of the manufacturing process itself, a byproduct of the primary production activities. Such
scrap can often be reintroduced into the production cycle, given its relatively uncontaminated
state and proximity to the manufacturing process. The second category, often termed new
scrap or post-production scrap, is the waste material that accumulates in industries involved in
processing metal. This category encompasses the scrap generated during the shaping, forming,
and finishing of metal products, for instance, the offcuts, shavings, and trimmings that result
from machining and fabricating operations. The third and final category, designated as collective
scrap, is produced after the end of use of goods. This category includes a wide range of metal
garbage, from outdated infrastructure and construction rubbish to abandoned consumer goods
and worn-out machinery. Unlike the other two categories, collective scrap is typically more
heterogeneous and contaminated, necessitating additional processing before it can be recycled.

These categorizations are crucial for understanding the diverse origins and properties of scrap
metal, providing a framework for its evaluation and pricing. The German Steel Association
(Wirtschaftsvereinigung Stahl WV Steel) [148], for instance, releases the average purchase prices
of steel scrap delivered to the plants on a monthly basis, classified into seven distinct grades.
The basis for pricing between foundries and scrap traders often employs the price publication of
WV Steel for grade 2, with an additional surcharge [148].

Usually, the extra for particular grades results from special delivery requirements set by the

12 CHAPTER 2. BACKGROUND

foundries. These requirements may limit the types or sizes of scrap that are accepted, demand
that the scrap be delivered completely dry, or specify the analytical requirements that the scrap
must meet. As a result, the purity of the scrap as well as its physical and analytical composition
determine its value to a certain consumer and, consequently, the compensation the scrap dealer
can demand. However, the price of scrap is not solely determined by its intrinsic value but
also by a host of external factors. These include the costs associated with logistics, such as
transportation and handling, the costs related to financing, and the costs incurred in storing
the scrap. Thus, the price of scrap metal is a complex interplay of its inherent properties, the
specific requirements of the customer, and the various costs involved in its collection, storage,
and delivery.

The successful introduction and sustenance of a product in the commercial marketplace neces-
sitates the deployment of cost-effective manufacturing strategies. The selection of an appropriate
manufacturing process is therefore critically influenced by considerations of economic viability.
For a myriad of commodities, the expense associated with procuring raw materials constitutes a
substantial proportion of the overall production costs. The concept of recycling gains prominence
in this context, wherein the transformation of waste or discarded materials into secondary raw
materials presents a cost-efficient alternative, provided the newly generated materials match, or
closely approximate, the mechanical and analytical properties of primary raw materials.

The operational flexibility of an industrial installation in terms of raw material utilization
directly impacts the procurement of resources and scrap. This connection is best illustrated
by the oxygen steelmaking process used in the manufacture of steel. In the converter, scrap
is combined with pig iron, which is obtained from a blast furnace and is characterised by its
relatively high purity. The presence of accompanying materials is diminished as a result of the
addition of scrap. However, it is crucial to note that steel produced via the oxygen steelmaking
process necessitates strict adherence to defined limits on trace element contents [153].

Conversely, the electric steelmaking route, characterized by the capacity to utilize up to
one hundred percent scrap, dispenses with the dilution effect associated with pig iron [26]. This
process, however, restricts the potential use of oxygen solely to the metallurgical stages within the
furnace, given the absence of a distinct refining process analogous to the converter. Subsequent
metallurgical operations are conducted in the realm of secondary metallurgy.

Despite the inherent flexibility offered by the electric steelmaking process, particularly with
respect to the precise regulation of chemical composition through the coordination of furnace and
secondary metallurgy, the fabrication of specific steel grades necessitates the targeted selection
of appropriate high-quality scrap grades. This selection may be complemented by potential
dilution effects achieved through the use of solid, pure pig iron or sponge iron. Therefore, the
strategic selection and utilization of raw materials and manufacturing processes, underpinned by
the principles of recycling and resource efficiency, play an instrumental role in optimizing the
economic viability of product manufacturing.

Contrarily, the foundry, an entity engaged primarily in the heating of raw materials, possesses
a comparatively lower degree of flexibility due to its inherent limitations in the removal of disrup-
tive elements [6]. This limitation is largely attributable to the absence of dedicated metallurgical
procedures designed specifically to attenuate trace element concentrations during the melting
operations. In the contemporary manufacturing landscape, foundries employ a diverse spectrum
of furnace technologies, each tailored to meet specific requirements of the casting process [29].
The primary goal of these foundries is to purchase furnaces that can enable the manufacture of a
wide range of metal alloys and additives, providing a variety of casting characteristics to satisfy
a wide range of industrial uses.

In the context of prevalent furnace technologies, induction furnaces and cupola furnaces are
the predominant choices for foundries [102]. Induction furnaces, leveraging the principles of elec-

2.2. METAL RECYCLING 13

tromagnetic induction, harness the power of alternating electric currents to attain the requisite
melting temperatures for various metals. These furnaces have gained substantial traction in the
foundry sector owing to their high operational quality, intuitive control mechanisms, and energy
efficiency. A noteworthy feature of induction furnaces is their adaptability across wide opera-
tional scales, possessing the capability to melt quantities from less than 1 kilogram to volumes
scaling up to 100 tons, thus accommodating the diverse requirements of different foundries.

On the other hand, cupola furnaces represent a more traditional approach to metal melting,
having been an integral part of foundry operations for a considerable length of time. These
furnaces are characterized by their towering cylindrical chimneys, which are lined with protective
materials such as clay, bricks, and blocks. This lining is essential to shield the interior of the
furnace from the intense thermal energy, abrasion, and oxidation that occur during the melting
process. The operational methodology of cupola furnaces entails the placement of several layers
of ferroalloys, coke, and limestone in the furnace prior to the addition of the metal [157]. This
layered configuration initiates a series of chemical reactions which facilitate the segregation of
impurities within the furnace, resulting in the impurities ascending to the surface of the molten
metal.

The elemental makeup of the scrap, particularly the inclusion of noble elements like copper
and nickel, has a considerable impact on the value proposition of scrap utilization in the context
of steel manufacturing [104]. The metallurgical techniques implemented within the steel mill
are sufficiently resilient to allow a certain degree of compositional diversity, hence permitting a
certain amount of analytical flexibility, provided that the scrap is not contaminated with excessive
concentrations of these components. This capability is, in part, a function of the comprehensive
processing systems deployed within these facilities, which can effectively manage a diverse range
of input materials.

This operational flexibility extends to the procurement of scrap material. Given the large-
scale nature of steel mill operations, there is an increased capacity to integrate varying scrap
dimensions and types within the production process. As a consequence, steel mill purchasers
have a broader market from which to source scrap, often translating into more competitive
procurement prices.

Contrastingly, purchasers associated with foundries often encounter more strict constraints in
their scrap procurement activities. Owing to the smaller scale of foundry operations, the ability
to process diverse scrap dimensions is inherently limited. This necessitates the procurement of
scrap that aligns with specific dimensional parameters.

Furthermore, the nature of foundry operations, particularly those utilizing induction furnaces,
necessitates that procured scrap is devoid of moisture. This requirement, driven by occupational
safety considerations, imposes an additional constraint on the types of scrap that can be used
within the foundry environment. Consequently, the confluence of these factors – a need for
dimensionally specific, dry scrap often results in foundries incurring higher scrap procurement
costs relative to their steel mill counterparts.

Scrap metal smelting has potential for sustainability, but the practical implementation is
complex due to cost and logistical challenges. Costs arise from handling and segregating scrap
metal, ensuring its quality and composition, and storing different types of scrap. However, these
costs can be offset by savings from using scrap metal containing desired alloy elements, reducing
the need for additional elements during smelting. The economic viability of scrap-based smelting
depends on the elemental composition of the scrap metal, with the value of recovered elements
needing to outweigh handling and storage costs.

The melting rate in an EAF, or tap-to-tap times, is a key parameter influenced by factors
like the density of the raw material [153]. High packing density scrap offers advantages, but
other factors like market rates for scrap grades and logistics also play a role. Logistics, includ-

14 CHAPTER 2. BACKGROUND

ing transportation distance and mode, are crucial. Within Germany, trucks are preferred for
distances under 100 kilometers, while maritime transport is cost-effective for larger batch sizes,
given suitable transshipment facilities. Thus, the efficiency of the EAF operation is tied to mul-
tiple factors, from scrap metal characteristics to logistics, impacting overall productivity and
profitability.

2.3 Challenges of scrap procurement optimization

Most foundries use some sort of scrap mix optimization tool. The goal is to select the most cost-
effective scrap mix for each production grade while maintaining steel quality within specified
limitations. The complexity of these optimization programs varies by plant. The easiest option
is to use a few standard scrap recipes that are based on standard purchase prices for scrap grades,
volume restrictions in the scrap buckets and furnace, and quality requirements for the chemical
analysis of the liquid steel. To prevent cave-ins, electrode breakage, and damage to the furnace
lining and wall panels during charging, the placement of the various scrap grades in the baskets
is often also taken into consideration.

A more complex solution is to choose the standard scrap mixtures while taking the energy
consumption and metallic yield into account. The ”value in use” for each scrap grade must
then be determined by considering the precise energy consumption and yield coefficients of the
scrap grades. The arrangement of the scrap grades in the furnace also has an impact on the
effectiveness of various energy inputs (such as electrodes, burners, and lances).

Utilizing ”dynamic” scrap recipes might make the scrap optimization more complicated.
Then the parameters in the optimizer, (like cost, density, chemical composition, specific energy
consumption and yield) are not constant, but they are updated on a regular basis. The settings
of the majority of scrap optimizing systems are updated when specifications from scrap suppliers
reveal altered scrap characteristics. When a new delivery of scrap comes, melting tests may be
performed to estimate the scrap’s qualities.

The price and quality of steel scrap fluctuates and therefore requires regular determination
of the relative usage rate for each batch of steel produced in a given period. The determination
of the utilization rate leads to an optimization problem aimed at minimizing the scrap purchase
cost. The solution to the programming problem should specify from which scrap supplier, which
type of scrap, and in which batches to use with scrap in order to fulfill customer orders and
maintain desired inventory levels for the steel producer [34].

Important feed stocks for the manufacturing of steel include iron ore and scrap steel. Various
suppliers sell scrap steel on the open market as a commodity. To guarantee that overall pro-
duction and quality goals are reached, the scrap commodity is periodically acquired. In order
to create steel that is cast into solid forms and subsequently rolled, processed, and supplied to
consumers, scrap steel is typically processed in EAF, where it is combined and melted batch by
batch [87, 129, 56]. The most vital source of feed stock for an EAF is purchased scrap steel.
Costs associated with manufacturing, purchases, and electrical energy are all heavily impacted.
To produce the appropriate physical and chemical qualities of the completed product to meet
customer requirements, different types of scrap steel can be mixed in various ratios.

The availability from each scrap provider, the market price, and the quantity of trace metals
like copper, tin, sulphur, and phosphorus all have an influence on how economically recovered
steel scrap may be used. To guarantee that the steel material qualities are consistent and to
satisfy customer criteria like weldability and hardness, it is crucial to control the amount of these
elements. The quantity of scrap steel utilized to make each batch of steel must occasionally
be adjusted due to the volatility in the price and quality of scrap steel. With the use of a

2.4. MACHINE LEARNING 15

magnet, the metal is charged by being lifted from particular heaps and placed in a bucket before
being sent to the EAF. To consolidate similar qualities and residual metal content, the scrap
piles are segregated [96]. To guarantee that the scrap fed into the EAF is of the expected
grade, manufacturing processes periodically test the scrap quality. These tests are based on
measurements of the product steel quality and on analyses of the scrap feed stocks. The quality
constraints are satisfied thanks to this procedure.

2.4 Machine learning

Machine Learning (ML) focuses on the use of data and algorithms to emulate the way that
humans learn, gradually improving accuracy [72]. ML is an important component of the growing
field of data science. Through the use of statistical methods, algorithms are trained to make
classifications or predictions, uncovering key insights within data mining projects. These insights
subsequently drive decision making within application to expand and grow [165]. Within data
science, ML can be divided into three primary categories. Supervised learning is defined by its
use of labeled datasets to train algorithms that classify data or predict outcomes accurately [18].
Unsupervised learning uses ML algorithms to analyze and cluster unlabeled datasets. These
algorithms discover hidden patterns or data grouping without the need for human intervention
[8]. Semi-supervised learning offers an appropriate medium between supervised and unsupervised
learning; during training, it uses a smaller labeled dataset to guide classification and feature
extraction from a larger, unlabeled dataset [166]. Semi-supervised learning can solve the problem
of having not enough labeled data to train a supervised learning algorithm.

This work focuses on the supervised regression problem, although many of the contents
also apply for the general field of ML. It is important to understand the basics of ML and its
typical challenges in order to be able to design practically useful and robust systems. We begin
with a description of supervised learning, which includes an explanation of workflow involved
in supervised learning. Next, some ML algorithms implemented in this work will be explained.
Finally, an overview of AutoML will be presented.

2.4.1 Supervised regression learning

Supervised learning occurs when a ML model learns from sample data and associated target
response that can consist of numeric values or string labels, such as classes or tags, to later predict
the correct response when posed with new examples [100]. Supervised learning is frequently
applied in applications where historical data predict likely future event. Generally, supervised
learning problems are categorized into classification and regression. In regression problem, the
model tries to predict results within a continuous output based on the continuous functions. For
example, it can anticipate the price of a house according to the size and the living area. In
contrast to regression, in classification outputs is predicted in discrete value such as yes or no,
true or false, positive or negative, etc. In this work, we will focus on regression problem. For a
regression problem, a feature vector X contains m components, i.e.

X = [x1, x2, . . . , xm] ∈ Rm (2.4.1)

If feature vectors appear in a list or dataset, they are usually denoted with an index x(i). In this

case the j-th scalar component of the i-th feature vector is written as x
(i)
j . By y we denote the

output vector, and the goal is to find a function

f : X 7→ y ∈ R (2.4.2)

16 CHAPTER 2. BACKGROUND

which is considered as the regression model. This model is adapted to the learning task by
training data in form of a ground truth dataset D ⊂ R(n+1)×n of n labeled feature vectors:

D =
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} (2.4.3)

Raw Data

Features and
Labels

Features
Extraction

Validation Dataset

Training Dataset

Testing Dataset

Training Validation

 Train

Tuning

Model

Evaluate

Predict New
DatasetModel Selection

Hyperparamter Tuning
Raw Data

Features and
Labels Validation Dataset

Training Dataset

Testing Dataset

Training Validation

 Train

Tuning

Model

Evaluate

Predict New
DatasetModel Selection

Hyperparamter Tuning

Preprocessing

Figure 2.2: Machine Learning workflow

ML workflows define which phases are implemented during a ML project. The typical phases
include data collection, building dataset, data preprocessing, model training and selection, eval-
uation, and deployment to production, as shown in Figure 2.2.

2.4.1.1 Gathering data

Gathering data is one of the most important stages of ML workflows. During data collection,
the potential usefulness and accuracy of the project are determined by the quality of the data
gathered. To accumulate data, it is essential to identify the sources and aggregate data from
these sources into a unified dataset. This might involve streaming data from Internet of Things
sensors, acquiring open-source datasets, or constructing a data lake from diverse files, logs, or
media.

2.4.1.2 Data preprocessing

Data preprocessing in ML is a crucial step that helps enhancing the quality of data to promote
the extraction of meaningful insights from data. Data preprocessing in ML refers to the tech-
nique of preparing the raw data to make it suitable for a building and training ML models, it
transforms raw data into an understandable and readable format. Typically, real-world data is
incomplete, inconsistent, inaccurate, and often lacks specific attribute values [163]. This is where
data preprocessing comes into play; it aids in the cleaning, formatting, and organization of the
raw data, making it ready for use by ML models.

• Data Cleaning is particularly done as part of data preprocessing to clean the data by
filling missing values, smoothing the noisy data, resolving the inconsistency, and removing
outliers. These missing values need to first be handled to optimally leverage available
data. A fundamental strategy to use incomplete datasets is to discard entire rows or
columns containing missing values. However, this comes at the price of losing informative

2.4. MACHINE LEARNING 17

data which may be valuable for model training. By contrast, imputation tries to infer
the missing values from the known part of the data. Some well-known methods include
replacing missing values with zero, mean, median or mode. Noisy data involves removing
a random error or variance in a measured variable. Binning is the technique that works on
sorted data values to smoothen any noise present in it. The data is divided into equal-size
bins, and each bin is dealt with independently. All data is a segment can be replaced by
its mean, median or boundary values. Another method is clustering, it is a creation of
groups from data having similar values. The values that don’t lie in cluster can be treated
as noisy data and can be removed.

• Data transformation consolidates the quality data into alternate forms by changing the
value, structure, or format of data using the below-mentioned strategies. The very first one
is feature scaling. Different columns can be present in varying ranges. For example, there
can be a column with a unit of distance, and another with the unit of temperature. Those
columns will have strongly different ranges, making it difficult for many ML models to reach
an optimal computational state. Some useful methods are often addressed to solve these
issues. Normalization is the process of scaling individual samples to have unit norm. Each
sample with at least one non zero component is rescaled independently of other samples
so that its norm (L1 or L2) equals one. Standardization scales features by removing the
mean and scaling to unit variance. The standard score z of a sample x is calculated by

z =
(x− µ)

σ
, (2.4.4)

where µ is the mean and σ is the standard deviation of training samples. Centering and
scaling happen independently on each feature by computing the relevant statistics on the
samples in the training set. An alternative standardization is scaling features to lie between
a given minimum and maximum value, often between zero and one, or so that the maximum
absolute value to each feature is scaled to unit size.

Dimension reduction is another common way to transform data, it obtains a reduced rep-
resentation of the dataset that is much smaller in volume but produces the same quality of
analytical results. Principal component analysis (PCA) using singular value decomposition
(SVD) of the data to project it to a lower dimensional space [152]. There are many vari-
ants for PCA, like kernel PCA [141], which achieves non-linear dimensionality reduction
through the use of kernels. It has many applications including denoising, compression and
structured prediction.

In many cases, data is in a format that cannot be processed by algorithms. For instance, a
column with string values or text will mean nothing to a model that only accepts numerical
values as input. Therefore, it is necessary to convert categorical features to integer codes
to help the model interpret it. This method is called categorical encoding. Some popular
methods include ordinary encoding, which embeds values from 1 to k in an ordinal manner,
where k is the number of samples in the column. For example, if a column has 3 sizes of
shoes, ordinal encoding will assign values 1, 2 and 3 to the different sizes. One-hot encoding
can be used when data has no inherent order. One-hot encoding generates one column for
every category and assigns a positive value 1 in whichever row that category is present,
and 0 when it is a absent, as demonstrated in Figure 2.3.

Feature engineering is the process of using domain knowledge of the data to create features
that make ML algorithm work. If feature engineering is done correctly, it increases the
predictive power of ML algorithm by creating features from raw data that help facilitate

18 CHAPTER 2. BACKGROUND

Figure 2.3: One hot encoding converts each categorical value into a new categorical column and
assigns a binary value of 1 or 0 to those columns. Each integer value is represented as a binary
vector. All the values are zero, and the index is marked with a 1.

the ML process [164]. For instance, the day, month and year can be extracted from a
date time column. This gives a new perspective to the model, which can now detect a
brand new relation between time and the target variable. In a similar way, discretization
is the process to partition continuous features into discrete values. Certain datasets with
continuous features may benefit from discretization, because it can transform the dataset
of continuous attributes to one with only nominal attributes. Adding complexity to the
model by considering nonlinear features of the input data could also be useful. An intuitive
and common way is to use polynomial features, which can get features’ high-order and
interaction terms.

2.4.1.3 Model selection and training

Training a ML model is actually a process of learning the relevant parameters of a prediction
function [154]. Training model and testing it on the same data is a methodological mistake: a
model that would just ”remember” the labels of the samples that it has just seen would have a
perfect score but would totally fail to predict unseen data. This is so called overfitting. Besides
the model selection, the settings of hyperparameters of the model have to be determined. Since
these hyperparameters control the behavior and measure the performance of the model, however,
the values of hyperparameters are not adopted by the learning algorithm itself [52]. To state more
precisely, the primary intention of model selection is to choose the setting of the hyperparameter
in such a way, that the best predictive performance on new data is achieved [32].

A widely used strategy is to divide the dataset into three parts, see Figure 2.4. The first
part is the training set, where the algorithm runs on, and the model is trained within it. The
parameters will be fitted, and it has to be the massive set. The second part is called the validation
set, it is used in the model building process for hyperparameter tuning, feature selections and
make other decisions regarding the learning algorithm. It can, therefore, be regarded as a part
of the training set. Specifically, the training data can be split into two disjoint subsets. One of
these subsets is used to learn the parameters. The other subset is the validation set, used to
estimate the generalization error during or after training, allowing for the hyperparameters to be
updated accordingly [52]. Once a model is entirely trained by using the training and validation
sets, the testing set is generally to evaluate the competing models, this is a third part of the
dataset. It is crucial that the test set only used to access the performance, it must not be used
in the model building process.

However, by partitioning the available data into three sets, we drastically reduce the number

2.4. MACHINE LEARNING 19

Figure 2.4: Depending on the scale of the dataset, the dataset can be split into two different
ways. First, if the size of the dataset is 100 to 1000000, according to the recommendation, the
ratio of splitting the dataset should be 70/20/10. For the large-scale dataset, the trend on the
ratio of splitting tends to be 98/1/1 or 99.5/0.25/0.25 [105].

of samples which can be used for learning in the model, and the results can depend on a particular
random choice for the pair of training or validation sets. One approach to overcome this problem
is resample procedure used to evaluate models on limited data sample. Cross-validation (CV)
repeats the training and testing computation on different randomly chosen subsets of the original
dataset. A typical procedure has a single parameter called k that refers to the number of subsets
that a given original dataset is to be divided into. Therefore, the approach is often called k-fold
cross-validation. A model is trained using k−1 of the folds as training data, the resulting model
is validated on the remaining part of the data. For example, the Figure 2.5 shows the workflow
of cross-validation when k = 5.

The performance measure reported by k-fold cross-validation is then the average of the values
computed in the loop. This method can be computationally expensive, but does not waste too
much data, which is a major advantage in problem such as inverse inference where the number
of samples is very small. Cross-validation provides a more accurate measure of model quality, it
merely trade-offs between computational time and the fraction of training-testing split. Every
individual sample point gets to be in a testing set exactly once and gets to be in training set
k − 1 times.

2.4.1.4 Model evaluation

Once the model is trained, there are some measurements to evaluate the performance for regres-
sion task.

• The Mean Absolute Error (MAE) is a loss metric corresponding to the expected value
of the absolute error loss. If ŷi is the predicted value of the i-th sample, and yi is the
corresponding true value, the MAE estimated over n samples is defined as

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi| . (2.4.5)

• The Mean Squared Error (MSE) is a loss metric corresponding to the expected value of
the squared error. The MSE estimated over n samples is defined as:

MSE(y, ŷ) =
1

n

n−1∑
i=0

(yi − ŷi)
2 . (2.4.6)

20 CHAPTER 2. BACKGROUND

Figure 2.5: 5-folds cross-validation, each time, one of the subset is used as the testing set, and
the other four subsets are put together to form a training set [114].

• The Root Mean Square Error (RMSE) is the square root of value obtained from MSE:

RMSE(y, ŷ) =
√
MSE . (2.4.7)

• The Median Absolute Error (MedAE) is particularly interesting because it is robust to
outliers. The loss is calculated by taking the median of all absolute difference between the
target and the prediction:

MedAE(y, ŷ) = median(| y1 − ŷ1 |, . . . , | yn − ŷn |) . (2.4.8)

• The R2-score represents the proportion of variance of y that has been explained by the
independent variables in the model. It provides an indication of fitting goodness and
therefore a measure of how well unseen samples are likely to be predicted by the model:

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
. (2.4.9)

2.4.2 Regression algorithms

Regression is a technique for investigating the relationship between independent variables or fea-
tures and a dependent numerical variable or outcome. Solving regression problems is one of the

2.4. MACHINE LEARNING 21

most common applications for ML models, especially in supervised ML. Algorithms are trained
to understand the relationship between independent variables and an outcome. The model can
then be leveraged to predict the outcome of new and unseen data, or to fill a gap in missing
data. There are a variety of approaches used in ML to perform regression. Various popular algo-
rithms are employed to achieve ML regression. These techniques may include varying numbers
of independent variables or process diverse types of data. Unique types of ML regression models
may also assume a varied relationship between the independent and dependent variables. For
instance, linear regression is one of most simplest algorithm, which assume that the relationship
is linear, so would not be effective with datasets with nonlinear relationships. Some of the most
common regression algorithms used in this thesis will be introduced below.

2.4.2.1 XGBoost

XGBoost [23], which stands for Extreme Gradient Boosting, represents an advancement in super-
vised learning algorithms, conceived as a modification of the Gradient Tree Boosting algorithm
[47]. This method utilizes an iterative process wherein a learning algorithm is trained with the
objective of predicting the output values from a model. This prediction process is optimized
by minimizing the MSE across a sequence of weak learners, with each successive stage refin-
ing the prediction of its predecessor. A significant characteristic of the Gradient Tree Boosting
algorithm is its incorporation of a learning rate. This metric quantifies the magnitude of the
correction factor that each tree applies relative to its underlying counterpart, thereby influencing
the algorithm’s capacity to adjust and improve its predictive ability.

For a single tree model, the predicted output ŷ is obtained by the sum of K additive functions
[23]:

ŷi =

K∑
k=1

fk(xi) , fk ∈ F , (2.4.10)

where
F = {f : f(x) = wq(x) with q : Rm → {1, . . . , T} , w ∈ RT } .

In this context, F represents the space of regression trees, q delineates the architecture of each
tree, providing a mapping from an input sample to its respective leaf index, and T signifies the
total count of leaves withing a given tree. Each fk is associated with a distinct tree configuration
q and corresponding leaf weightings w. The objective function for the above model is given by

obj(θ) =

n∑
i=0

l(yi, ŷi) +

K∑
k=1

Ω(fk) , (2.4.11)

where the first term is the loss function and the second term is the regularization parameter.
Instead of learning the tree all at once, which would make the optimization harder, the addi-
tive strategy is applied, which aims to minimize the loss of previously acquired knowledge and
incorporating a new tree:

ŷ
(0)
i = 0 ,

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

....

ŷ
(t)
i =

t∑
k=1

= ŷ
(t−1)
i + ft(xi)

(2.4.12)

22 CHAPTER 2. BACKGROUND

The objective function of the above model can be defined as

obj(t) =

n∑
i=1

l(yi, ŷ
(t)
i) +

K∑
k=1

Ω(fk)

=

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + constant .

(2.4.13)

XGBoost iteratively trains an ensemble of shallow decision trees, with each iteration using
the error residuals of the previous model to fit the next model. The final prediction is a weighted
sum of all of the tree predictions. With XGBoost, trees are built in parallel, following a level-wise
strategy, scanning across gradient values and using these partial sums to evaluate the quality
of splits at every possible split in training set. Due to the ensembling of decisions, trees can
sometimes lead to very complex models. XGBoost uses both Lasso and Ridge regularization
to penalize such highly complex models. Furthermore, XGBoost incorporates a sparsity-aware
split finding algorithm to handle different types of sparsity patterns in the data. Most existing
tree-based algorithms can find the split points when the data points are of equal weights. How-
ever, they are not equipped to handle weighted data. XGBoost employs a distributed weighted
quantile sketch algorithm to effectively handle weighted data. Furthermore, for faster comput-
ing, XGBoost can make use of multiple cores on the CPU or GPU. This is possible because of a
block structure in its system design. Data is sorted and stored in in-memory units called blocks.
Unlike other algorithms, this enables the data layout to be reused by subsequent iterations, in-
stead of computing it again. This feature also serves useful steps like split finding and column
sub-sampling. In XGBoost, non-continuous memory access is required to get the gradient statis-
tics by row index. Hence, XGBoost has been designed to make optimal use of hardware. This is
done by allocating internal buffers in each thread, where the gradient statistics can be stored.

There are two commonly used variants of XGBoost. The first one is LightGBM (Light
Gradient Boosting Machine) [73]. LightGBM uses histogram-based algorithm [127, 71, 82],
which bucket continuous feature values into discrete bins. This speeds up training and reduces
memory usage. LightGBM applies Gradient-Based One-Side (GOSS) sample to exclude the
significant portion of data instance with small gradients and only uses the remaining data to
estimate the information gain. Since the data instance with large gradients play a more important
role in the computation of information gain, GOSS can obtain quite accurate information gain
with a relatively much smaller dataset. In addition, LightGBM benefits from Exclusive Feature
Bundling (EFB), which bundles mutually exclusive features with nothing, but it rarely takes
non zero values simultaneously to reduce the number of features; this results in effective feature
elimination without hurting the accuracy of the split point.

CatBoost [123] (Category Boosting) is another popular variant of XGBoost. It builds sym-
metric, balanced trees, unlike XGBoost and LightGBM. In every step, leaves from the previous
tree are split using the same condition. The feature-split pair that accounts for the lowest loss is
selected and used for all the leave’s nodes. This balanced tree architecture aids in efficient CPU
implementation, decrease prediction time, makes swift model appliers, and control overfitting
as the structure serves as regularization. Classic boosting algorithms are prone to overfitting
on small or noisy datasets due to a problem known as prediction shift. When calculating the
gradient estimate of a data instance, these algorithms use the same data instance that the model
was built with, thus having no chances of experiencing unseen data. CatBoost, on the other
hand, uses the concept or ordered boosting, a permutation-driven approach to train model on a
subset of data while calculating residuals on another subset, thus preventing target leakage and
overfitting.

2.4. MACHINE LEARNING 23

2.4.2.2 Neural networks

The concept of the neural network (NN), also known as artificial neural network (ANNs), draws
inspiration from biological neural systems to model and understand complex patterns within data
[2]. These models constitute a central component in the field of ML and have been instrumental
in driving advancements in areas such as image recognition, natural language processing, and
autonomous vehicles [33].

A NN is composed of interconnected units or nodes, termed “neurons” or “perceptrons”.
These units are organized into layers, including an input layer, one or more hidden layers, and
an output layer, as shown in Figure 2.6. Each connection between the units carries an associated
weight, which is adjusted during the training process to minimize the error in the network’s
output.

Figure 2.6: Structure of a NN, the inputs are marked with yellow circles, whereas the blue circles
and green circles illustrate the hidden neurons, the final output is marked with red circles. Each
layer is fully connected with the neuron of the subsequent layer [107].

The structure shown in Figure 2.6 is a multi-layer fully connected net, since every neuron in
one layer is connected to every other neuron in the next layer. Inputs to a neuron can either be
features from a training set or outputs from a previous layer’s neurons [107]. A neuron takes the
weighted sum of its inputs and passes it through a non-linear activation function. The output of
a neuron, which then becomes the input of another neuron in the next layer, is thus given by

z = f(b+ x · w) = f
(
b+

m∑
i=1

xiwi

)
, (2.4.14)

where f is a non-linear activation function, w is a weight vector and b is the bias. The final

24 CHAPTER 2. BACKGROUND

output is calculated by performing this procedure recursively for all neurons.
Activation functions are used to convert an input signal of a neuron in a NN to an output

signal. Specifically, in NN, by giving a linear combination of inputs and weights from the previous
layer, the activation function controls the way how the information passes on to the next layer.
An ideal activation function for NN is both non-linear and differentiable. However, the Rectified
Linear Unit (ReLU) activation function

f(x) = max(0, x) (2.4.15)

has become very common in the context of NN in recent years [1]. The ReLU function and its
derivative are shown in Figure 2.7

Figure 2.7: ReLU function and its derivative.

The discrepancy between the linear identity function and a ReLU is that a ReLU outputs
zero when x < 0. This makes the derivatives through a ReLU unit remain large whenever the
unit is active [52]. Its derivative at x ̸= 0 given by

f ′(x) =

{
1 : x > 0 ,

0 : x < 0 .
(2.4.16)

The derivative of ReLU is 1 everywhere that the unit is active (i.e. attains a non-zero value).
Notice that the function is not differentiable at x = 0; for convenience, however, it is convention
to define f ′(0) = 0. Furthermore, the input of ReLU is usually the result of a number of summed
products, so the probability for it be exactly 0 is low.

The power of NNs comes from their ability to learn complex patterns and representations from
data. This is achieved through a process called backpropagation and an optimization algorithm,
typically a variant of gradient descent. Backpropagation calculates the gradient of the cost
function with respect to the weights of the network, and gradient descent then uses this gradient
to update the weights and minimize the cost function. Backpropagation is a very common NN

2.4. MACHINE LEARNING 25

learning algorithm because it is conceptually simple, computationally efficient, and because it
often works [81].

The goal of backpropagation is to find the partial derivatives of the loss function regarding
all of the weights and biases in a NN. Ultimately, this means computing

∂J

∂wl
jk

,
∂J

∂blj
,

where wl
jk is the weight from the kth neuron in the (l − 1)th layer to the jth neuron in the lth

layer and blj is the bias of the j
th neuron in the lth layer. Figure 2.8 gives an intuitive illustration

of backpropagation.

Figure 2.8: Backpropagation [107].

However, computing gradients through recursive application of chain rule is oftentimes more
effective. By applying forward propagation, the cost function of the model can be determined.
The cost function is J(aL1 , a

L
2 , . . . , a

L
m, y) where L represents the last layer which has m output

neurons. To make partial derivatives easier, the intermediate quantity

δlj ≡
∂J

∂zlj

is introduced, which is the rate of change of the cost function with respect to the jth neuron in
the lth layer. By using chain rule, the above equation can be extended as

δlj ≡
∂J

∂zlj
=
∑
k

∂J

∂alk

∂alk
∂zlj

.

Since each ali is a function of zli, namely ali = δ(zli), the expression of δlj can be simplified to

δlj =
∂J

∂alj
σ′(zlj)

The first term ∂J
∂al

j

denotes how fast the cost is changing as a function of the jth output activation.

The second term σ′(zlj) measures rate at which the activation function σ is changing at zlj . For

the backpropagation algorithm, by using chain rule a representation for δl in terms of δl+
1

can
be derived, i.e. from the very end layer of a NN, computing the way backward, all the values δs
can be found. So analogously,

δlj =
∑
k

∂J

∂zl+1
k

∂zl+1
k

∂zlj
.

26 CHAPTER 2. BACKGROUND

In particular,

δlj =
∑
k

∂zl+1
k

∂zlj
δl+

1

k .

Now, zl+1
k can be explicitly written as

zl+1
k =

∑
j

wl+1
kj alj + bl+1

k =
∑
j

wl+1
kj δ(zlj) + bl+1

k .

The derivative of zl+1
k with respect to zlk is given by

∂zl+1
k

∂zlj
= wl+1

kj δ′(zlj) ,

so the equation of the weight derivative with respect to cost function is

∂J

∂wl
jk

= al−1
k δlj .

Thus backpropagation provides a way to compute the derivative of the cost function; the deriva-
tive with respect to weights and biases can be immediately used with gradient-based optimization
methods.

2.4.3 Hyperparameter tuning

A hyperparameter for a ML algorithm is defined as a variable to be set prior to the actual
application of the algorithm to the data, one that is not directly learned from the training process
[70]. Hyperparameter selection is crucial for the success of ML architecture since they profoundly
impact the behavior of the learned model. For any hyperparameter influences the valid capacity
of a model, it is significantly to select its value based on a validation set. Hyperparameters
represent the numerous decisions that the user must make while building a ML model, such
as data processing steps, NN architecture, and the optimizer utilized during training. Each
hyperparameter has a complex impact on the model’s ability to predict, and more advanced
models (like deep NN) have an increasing number of hyperparameters to adjust. Modifications
to the hyperparameters may have a significantly influence on the model’s quality. In the following,
three main strategies to optimize the ML hyperparameter will be introduced.

2.4.3.1 Grid search

Grid search is a naive and straightforward algorithm that can be used for hyperparameter op-
timization. With this method, a set of parameter values should be defined to train the model
for all possible parameter combinations, evaluating each model and then selecting the architec-
ture which produces the best results. Grid search is an exhaustive algorithm that spans all the
combinations, so it can actually find the best point in the domain. The great drawback is that
it is very slow. Checking every combination of the searching space requires a lot of time that,
sometimes, is not available [10].

2.4.3.2 Random search

Grid search thoroughly explores through the entire hyperparameter space and is not feasible in
high dimension scenarios. By contrast, a random search is a valid approach, which samples the

2.4. MACHINE LEARNING 27

search space randomly, and is broadly used in practice. One of the primary theoretical backings
to motivate the use of random search is the fact for most cases that hyperparameters are not
equally important [10]. Random search suggests configurations randomly from the subset of
the hyperparameter space, where each configuration is sampled from a distribution over possi-
ble parameter values and then evaluate them. Therefore, it requires less computational time.
Besides, a budget can be chosen independently of the number of hyperparameters and possible
values. The drawback of random search, however, is that it does not use information from prior
experiment to choose the next possible setting. This is particularly impermissible when the cost
of running is enormous, and it doesn’t guarantee that an optimal set of hyperparameters can be
found.

2.4.3.3 Bayesian optimization

Bayesian optimization employs the Bayesian theorem of setting a prior over the target function
and combining it with evidence to get a posterior function [12]. It is a robust strategy for search-
ing the extrema of objective functions that are extraordinarily expensive to evaluate. Bayesian
inference derives that the posterior probability of a model H given current evidence of data D
is proportional to the likelihood of D given H multiplied by the prior probability of H:

P (H |D) =
P (D |H) · P (H)

P (D)
. (2.4.17)

In Bayesian optimization, the prior indicates the belief about the hyperparameter space of pos-
sible objective function. The posterior distribution captures the updated beliefs and will be
computed over the objective function based on the data. There are a few different algorithms
for this type of optimization. In the next, these algorithms will be discussed.

By definition, a Bayesian optimization depends on a prior distribution over objective function.
That is, the beliefs about f(x) for each x should be determined, where f is a stochastic function.
A Gaussian Process (GP) is well-suited to the task which contains continuous hyperparameters
and the prior is homogeneous [98]. GP is a generalization of Multivariate Gaussian Distributions
to an infinite-dimension stochastic process, which means that for each input x, GP has defined
a mean function m and covariance function k: [12]

f(x) ∼ GP (m(x), k(x, x′)) . (2.4.18)

The basic assumption behind GP is that if vectors x and x′ are similar, then f(x) and f(x′)
should be similar, too. The mean function m(x) encodes a prior expectation of the unknown
function. In most cases, the prior mean is set to zero m(x) = 0. The covariance function k(x, x′)
returns a measure of the similarity of x and x′, i.e. encodes how similar f(x) and f(x′) should
be. The selection of covariance function for the GP is important, as it defines the smoothness
of samples drawn from it [12]. In general, the covariance function k is a positive definite kernel
function. Typically, the default covariance function is the Squared Exponential Kernel (RBF or
Gaussian kernel)

k(x, x′) = exp

(
− 1

2θ2
∣∣|x− x′|

∣∣2) , (2.4.19)

where θ is the hyperparameter length-scale that controls the width of the kernel. Another critical
kernel of GP is Maltérn kernel. It is a generalization of the RBF kernel, which has an additional
parameter ν that controls the smoothness of the resulting function. It is parameterized by a
length-scale parameter θ > 0, which can either be a scalar or a vector with the same dimension

28 CHAPTER 2. BACKGROUND

as the input x:

k(x, x′) =
1

Γ(ν)2ν−1

(√
2ν
∣∣|x− x′|

∣∣
θ

)ν

Kν

(√
2ν
∣∣|x− x′|

∣∣
θ

)
, (2.4.20)

where Γ and K are the Gamma function and the Bessel function of order ν, respectively. Hence,
given the data {x1:t, f1:t} from previous iterations, by using GP to decide what data point xt+1

should be next, and ft+1 = f(xt+1):[
f1:t
ft+1

]
∼ N

(
0,

[
K k

kT k(xt+1, xt+1)

])
, (2.4.21)

where the kernel matrix K is given by

K =

k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt, x1) · · · k(xt, xt)

 . (2.4.22)

and

k = [k(xt+1, x1), k(xt+1, x2), . . . , k(xt+1, xt)] . (2.4.23)

More precisely, we use the Sherman-Morrison-Woodbury formula [79] for covariance matrix in-
verse

P (ft+1 | D1:t, xt+1) = N(µt(xt+1), σ
2
t (xt+1)) , (2.4.24)

where D1:t is the first t observations. And µt, σ
2
t are expressed by:

µt(xt+1) = kTK−1f1:t (2.4.25)

σ2
t (xt+1) = k(xt+1, xt+1)− kTK−1k (2.4.26)

Since the predicted value is distributed as a Gaussian, and this Gaussian has two central statis-
tical mean and variance, to search for the optimal predicted value while trading off high mean
(exploitation) and large variance (exploration), a new component called the Acquisition Function
for Bayesian optimization is introduced. This quantity provides a single measure of how useful it
would be to try any given point. The point that maximizes the acquisition function will chosen.

The first option is Probability of Improvement (PI). This acquisition function chooses the
next query point as the one which has the highest probability of improvement over the current
max f(x+). Mathematically, the selection of next point can be defined by

xt+1 = argmax(αPI(x)) = argmax(P (f(x) ≥ (f(x+) + ϵ))) , (2.4.27)

where P (·) indicates probability, and ϵ is a small positive number, x+ = argmaxxi∈x1:t
f(xi)

where xi is the location queried at ith time step. PI uses ϵ to strike a balance between exploration
and exploitation. Increasing ϵ results in querying locations with a large σ as their probability
density is spread.

However, PI only examines the likelihood of improvement, but does not consider the extent
of potential enhancement. The next criterion, called Expected Improvement (EI), does exactly
that. It is defined as

EI(x) = E
[
max

{
0, f(x)− f(x+)

}]
, (2.4.28)

2.4. MACHINE LEARNING 29

Figure 2.9: The visualization above shows the calculation of αPI(x). The orange line represents
the current max (plus an ϵ) or f(x+)+ ϵ. The violet region shows the probability density at each
point. The gray regions shows the probability density below the current max. The ”area” of the
violet region at each point represents the probability of improvement over current maximum [3].

where x+ is the current optimal set of hyperparameters. Maximising this quantity will yield the
point that, in expectation, improves upon f the most. Furthermore, the EI can be evaluated
analytically by using a GP [46]:

EI(x) =

{
(µ(x)− f(x̂))Φ(Z) + σ(x)ϕ(Z) : σ(x) > 0 ,

0 : σ(x) = 0 ,

Z =
µ(x)− f(x̂)

σ(x)
,

(2.4.29)

where Φ(z), and ϕ(z), are the cumulative distribution function (CDF) and probability density
function (PDF) of the standard normal distribution. Intuitively, if the EI is maximal, then the
points which are expected a higher value of f will be sampled, or points in a region of f that
haven’t explored yet (σ(x) is high). In other words, EI provides a trade-off between exploitation
and exploration.

2.4.4 AutoML

Automated machine learning, also referred to as AutoML, is the process of automating the time-
consuming, iterative tasks of ML model development [168]. Traditional ML model development
is resource-intensive, requiring significant domain knowledge and time to produce and compare

30 CHAPTER 2. BACKGROUND

dozens of models. With AutoML it is possible to accelerate ML model development with great
ease and efficiency. Naturally, the AutoML’s high level of automation enables non-experts to use
ML models and approaches without extensive prior familiarity with ML.

AutoML aims to automatically compose and parameterise ML algorithms into ML pipelines
with the objective of optimizing a certain given metric. Typically, the algorithms are connected
to preprocessing or to the main functionality, like classification or regression. A supervised
AutoML system can be described as

f(x) = υθυ
(
ΦθΦ(X)

)
, (2.4.30)

where f is the task’s best generalization. The function f is also identical to a full model or pipeline
[36]. The pipeline is described by υ, which denotes the supervised learning algorithm (e.g., XG-
Boost, Random Forest, etc.) and θυ, which denotes the hyperparameters of the supervised
learning algorithm. Moreover, Φ is the processing technique (e.g., feature imputation/feature se-
lection, etc.), and, if applicable, θΦ(X) is the hyperparameters associated with the preprocessing
technique chosen. Finally, an AutoML system will attempt to identify the optimal combination
of preprocessing technique and learning algorithm, as well as their respective hyperparameters.

In a nutshell, an AutoML search optimization system aims to perform the optimization of
estimators and predictors (i.e., algorithm selection) [132]; the optimization of learning algorithms
and their hyperparameters [36, 55, 150, 151], and the optimization of meta-learning algorithms
[40, 143]. Meta-learning in ML refers to learning algorithms that learn from other learning algo-
rithms. Most commonly, this means the use of ML algorithms that learn how to best combine
the predictions from other ML algorithms in the field of ensemble learning. Preprocessing tech-
niques are subject to the same optimization process but based on a subset of techniques designed
specifically for preprocessing.

To reach the mail goal of AutoML, there are some subproblems must be addressed firstly.
Combined Algorithm and Hyperparameter Selection (CASH) problem [151] involves autonomously
selecting a learning algorithm and its parameters, while the Hyperparameter Optimisation (HPO)
problem involves offering the best model instance from a vector of selected techniques. Com-
bining HPO with CASH encodes all viable learning algorithms and associated hyperparameter
combinations. The CASH and HPO problems involve testing a huge number of hypotheses and
selecting the most interesting one as the best predictive model for the training set.

Sequential Model-based Algorithm Configuration (SMAC) [40, 39, 60] is a versatile HPO
tool that helps algorithm creators optimize hyperparameters. This promising strategy builds a
promising configuration using tree search, compares all possible configurations using a Random
Online Adaptive Racing (ROAR) method [65], and then reveals the most accurate hyperparam-
eter combination discovered for the algorithm and the given dataset.

Dataset

Meta-learning Data
Preprocessing

Feature
Preprocessing Regressor Build Ensemble Prediction

ML Framework

Bayesian
Optimization

AutoML System

Figure 2.10: The architecture of an AutoML system [40].

The AutoML pipeline accepts the training dataset as input. The meta-learning phase is then

2.5. NUMERICAL OPTIMIZATION 31

executed, which is one of the greatest advancements of the framework in the AutoML field as
it, broadly speaking, uses the similarity of dataset to some already known from the literature
or web, and if there is a match, a list of techniques that performed well on such a dataset is
passed as the priority to investigate them through the pipeline. Then, regardless of whether
the meta-learning step outputs, a data preprocessing method, a feature preprocessing method,
a regression algorithm is randomly selected. The Bayesian optimizer is then used to optimize
the hyperparameters until the sub-pipeline threshold is attained. This cycle is repeated for
every available regressor until the overall threshold is reached. Note that there are two unique
thresholds: one for the search of a particular sub-pipeline, such as after the process has gone
through a, b, and c to optimize the hyperparameters; and a second, more global threshold that
applies to all searches simultaneously. As soon as the overall threshold is hit, the pipeline stops
and builds an ensemble of all sub-pipeline combinations, ranking them from most accurate to least
accurate based on a user-defined metric, and provides the user with the best model. An AutoML
system could not only find the best performance model, but also provide some post-analysis.
Post-analysis include interpretation, explanation, and visualization of the analysis process and
the output model, model production, model monitoring, and model updating.

AutoML is important because it represents a milestone in the fields of ML and AI. AI and
ML have been subject to the black-box criticism, meaning that ML algorithms can be difficult
to reverse engineer [161]. Although they improve efficiency and processing power to produce
results, it can be difficult to track how the algorithm delivered that output. Consequently, this
also makes it difficult to choose the correct model for a given problem, because it can be difficult
to predict a result if a model is a black box. AutoML helps to make ML less of a black-box
by making it more accessible. This process automates parts of the ML process that apply the
algorithm to real-world scenarios. A human performing this without need to understanding of
the algorithm’s internal logic and how it relates to the real-world scenarios. It learns about
learning and makes choices that would be too time-consuming or resource-intensive for humans
to do with efficiency at scale.

2.5 Numerical optimization

This study concentrates on the evolution from strictly predictive to prescriptive analysis, an
approach that incorporates data-driven models for process optimization within the context of
scrap optimization in the foundry industry. It requires the identification of optimal control
variable values that enhance the output quality in alignment with the process model. For data-
driven prediction algorithms, this represents a restricted optimization problem that calls for
the identification of the best control variable values that satisfies the process constraints while
minimizing the objective function.

In this context, numerical optimization becomes instrumental in locating the optimal solution.
The following introduction will provide a detailed explanation of essential numerical optimization
methodologies. These will include both derivative-based and derivative-free methods, and will
also introduce surrogate-based optimization.

In general, optimization refers to the investigation of extremal points and values intrinsic to
mathematical functions. The primary objective of optimization is to minimize or maximize a
real-valued function, designated as objective function, within a defined set of points Ω ⊂ Rn,
commonly referred to as the feasible set. It is widely acknowledged in the academic commu-
nity that pivotal information requisite for optimization is encapsulated within the (potentially
generalized) derivatives of the concerned functions. Nevertheless, in practical applications, the
computation of such derivatives may be fraught with unreliability or might involve expensive

32 CHAPTER 2. BACKGROUND

computational costs, if they are available at all. This practical challenge prompts the study of
Derivative-Free Optimization (DFO) as referenced in [27, 5], where the resolution of problems is
executed exclusively through the use of function values.

In this work, the constrained optimization problem

argmin
x∈Rn

f(x) (2.5.1a)

s.t. ci(x) ≤ 0 ∀ i ∈ I , (2.5.1b)

ci(x) = 0 ∀ i ∈ E , (2.5.1c)

lk ≤ xk ≤ uk ∀ k ∈ {1, . . . , n} (2.5.1d)

is considered, where the f : Rn → R is the objective function, I and E are disjoint finite index
sets, ci : Rn → R are the constraint functions and lk, uk denote the lower and upper bounds on
xk, respectively. By defining the feasible set

Ω = {x ∈ Rn | ci(x) ≤ 0 , cj(x) = 0 , lk ≤ xk ≤ uk ∀ i ∈ I, j ∈ E , k ∈ {1, . . . , n}} ,

problem (2.5.1) can be stated as

argmin
x∈Ω

f(x) .

In particular, the Lagrangian function of this problem is defined by

L(x, λ) = f(x) +
∑

i∈I∪E
λici(x), for x ∈ Rn and λi ∈ R,with i ∈ I ∪ E , (2.5.2)

where λ = [λi]
T
i∈I∪E is the dual variable of the considered problem.

2.5.1 Sequential quadratic programming

The Sequential Quadratic Programming (SQP) algorithm works by generating steps by solving
quadratic subproblems, and is recognized for its effectiveness in resolving nonlinearly constrained
optimization. The versatility of the SQP methodology allows its application within both line-
search and trust-region frameworks, rendering it suitable for problems of varying scales, from
small to large.

2.5.1.1 Overview of the SQP method

The SQP method is widely recognized as a highly effective approach for addressing the problem
as defined by Equation (2.5.1), particularly when derivatives of f and ci for i ∈ I ∪ E , are
accessible. A depiction of the traditional SQP method can be found in Algorithm 1.

The new iterate is given by (xk + dk, λk+1), where dk and λk+1 are the solution and the cor-
responding Lagrange multiplier of Equation (2.5.3). A local SQP method for Equation (2.5.1)
is thus given by Algorithm 1 with the modification that the step is computed from Equation
(2.5.3). The initial mention of a similar methodology can be traced back to [159], wherein Hk

was defined as ∇2
x,xL(xk, λk). Han introduced a methodology that aligns with the context,

as documented in his works [62, 63]. However, his approach was confined to approximating
only the Hk = ∇2

x,xL(xk, λk). In contrast, Garc̀ıa-Palomares and Mangasarian [113] extended
this by implementing quasi-Newton approximations to the entirety of the second derivative ma-
trix of the Lagrangian. Furthermore, Han proposed a line-search methodology to ensure both
global convergence and local Q-superlinear convergence rate. This strategy necessitates the

2.5. NUMERICAL OPTIMIZATION 33

Algorithm 1: Traditional SQP method

Data: Objective function f , constraint functions {ci}i∈I∪E , initial guess x
0 ∈ Rn, and

estimated Lagrange multiplier λ0 = [λ0
i]

T
i∈I∪E .

1 for k = 0, 1, . . . do
2 Define Hk ≈ ∇2

x,xL(xk, λk)

3 Generate a step dk ∈ Rn by solving approximately

min
x∈Rn

∇f(xk)T d+
1

2
dTHkd (2.5.3a)

s.t. ci(x
k) +∇ci(xk)T d ≤ 0, i ∈ I , (2.5.3b)

ci(x
k) +∇ci(xk)T d = 0, i ∈ E , (2.5.3c)

4 Update the iterate xk+1 ← xk + dk

5 Estimate the Lagrange multiplier λk+1 = [λk+1
i]Ti∈I∪E

6 end

condition that the second-order directional derivative, denoted as Hk = ∇2
x,xL(x∗, λ∗), is pos-

itive definite at the solution point (x∗, λ∗) [62]. Powell conducted extensive research on the
method in the same direction, specifically proposing the application of the damped BFGS (Broy-
den–Fletcher–Goldfarb–Shanno) quasi-Newton formula to update Hk [118, 119, 121]. This ap-
plication of the BFGS quasi-Newton formula represents a significant advancement in the field,
demonstrating a novel approach to address this computational challenge.

The interpretation of the SQP subproblem is that at each iteration, the method approximates
the original non-linear problem by a quadratic programming problem (the subproblem), and then
solves this problem to get a direction for a step. The quadratic approximation relates to the
Lagrangian associated with the given problem, and the constraints have been linearized for the
sake of simplification and analytical tractability. Subsequent to this point, attention is focused
on a single iteration of Algorithm 1, with a constant value for k. The rationale behind updating
xk via a solution to Equation (2.5.3) will be described, reinforcing the validity of this approach
within the given context.

Bilinear approximation of the KKT (Karush-Kuhn-Tucker) conditions is the most classical
interpolation of the SQP subproblem. In alignment with [109], given that x∗ ∈ Rn is a local
solution to the problem delineated in Equation (2.5.3), and under the consideration of specific
moderate assumptions, a Lagrange multiplier λ∗ = [λ∗

i]
T
i∈I∪E with λ∗

i ∈ Rn for all i ∈ I ∪ E can
be identified:

∇xL(x∗, λ∗) = 0 , (2.5.4a)

ci(x
∗) ≤ 0 ∀ i ∈ I , (2.5.4b)

ci(x
∗) = 0 ∀ i ∈ E , (2.5.4c)

λ∗
i ci(x

∗) = 0 ∀ i ∈ I , (2.5.4d)

λ∗
i ≥ 0 ∀ i ∈ I . (2.5.4e)

Considering Equation (2.5.4) as a nonlinear system constituted by a combination of inequalities
and equalities, and perceiving (xk, λk) as an approximation to the optimal solution (x∗, λ∗),
the objective is to solve this system using the Newton-Raphson method [124, 134]. To initiate
the method from the starting point (xk, λk), the objective is to identify a step (d, µ) which
conforms to the system that provides a linear approximation of Equation (2.5.4) at the point

34 CHAPTER 2. BACKGROUND

(xk, λk). This approach is inherently associated with the Newton-Raphson method’s iterative
process for refining approximate solutions to the system of nonlinear equations and inequalities.
Nonetheless, as highlighted by Robinson [133], there exists a critique against such a method due
to its inability to solve a linear program in a single iteration. To address this limitation, the pair
(d, µ) solves the bilinear approximation

∇xL(xk, λk + µ) +∇2
x,xL(xk, λk)d = 0 , (2.5.5a)

ci(x
k) +∇ci(xk)T d ≤ 0 ∀ i ∈ I , (2.5.5b)

ci(x
k) +∇ci(xk)T d = 0 ∀ i ∈ E , (2.5.5c)

λk
i [ci(x

k) +∇ci(xk)T d] + µici(x
k) = 0 ∀ i ∈ I , (2.5.5d)

λk
i + µi ≥ 0 ∀ i ∈ I . (2.5.5e)

of Equation (2.5.4). We also consider the system

∇xL(xk, λk + µ) +∇2
x,xL(xk, λk)d = 0 , (2.5.6a)

ci(x
k) +∇ci(xk)T d ≤ 0 i ∈ I , (2.5.6b)

ci(x
k) +∇ci(xk)T d = 0 i ∈ E , (2.5.6c)

(λk
i + µi)[ci(x

k) +∇ci(xk)T d] = 0 i ∈ I , (2.5.6d)

λk
i + µi ≥ 0 i ∈ I ; (2.5.6e)

note that the sole difference between (2.5.5) and (2.5.6) lies in the condition stipulated by Equa-
tion (2.5.6d), which encapsulates the bilinear term µi∇ci(xk)T d. If the problem delineated by
Equation (2.5.1) constitutes a linear program, then Equation (2.5.6) accurately represents its
KKT system, whereas Equation (2.5.5) merely approximates it. It is noteworthy that the bilin-
ear system expressed by Equation (2.5.6) essentially encompasses the KKT conditions of the SQP
subproblem, as defined by Equation (2.5.3), with λk + µ functioning as the Lagrange multiplier.

Consequently, a KKT pair for the SQP subproblem Equation (2.5.2) bears a resemblance to
a Newton-Raphson step for the KKT system of the problem Equation (2.5.1). Furthermore, it
exceeds the latter in efficacy in that the resultant method is capable of resolving a linear program
within a single iteration. Observe that the incongruity between system (2.5.5) and system (cf.
Equation 2.5.6) dissolves when I = 0 within problem (cf. Equation 2.5.1). Finally, under these
circumstances, a KKT pair for the SQP subproblem (cf. Equation 2.5.2) precisely corresponds
to a Newton-Raphson step for the KKT system of problem (cf. Equation 2.5.1).

The approximation of a modified Lagrangian is another common used approach [133]. Let L̃
denote the function

L̃(x, λ) = f(x) +
∑

i∈I∪E
λiδi(x), for x ∈ Rn and λi ∈ R,with i ∈ I ∪ E ,

where δi, for i ∈ I ∪ E , is defined by

δi(x) = ci(x)− ci(x
k)−∇ci(xk)T (x− xk), for x ∈ Rn.

The term δi is often designated as the deviation from linearity for ci at the point xk as presented
in [49, 50]. The SQP subproblem expressed by Equation (2.5.3) with Hk = ∇2

x,xL(xk, λk)
can thus be interpreted as the process of minimizing the second-order Taylor approximation of
the Lagrangian function L̃. This minimization is subject to the linear approximations of the
constraints specified in Equations (2.5.1b) and (2.5.1c) evaluated at the point (xk, λk), implying

2.5. NUMERICAL OPTIMIZATION 35

that

min
d∈Rn

∇xL̃(xk, λk)T d+
1

2
dT∇2

x,xL̃(xk, λk)d

s.t. ci(x
k) +∇ci(xk)T d ≤ 0, i ∈ I ,

ci(x
k) +∇ci(xk)T d = 0, i ∈ E .

The SQP method, upon clarifying its subproblem in this particular format, can be viewed as a
specific instantiation of Robinson’s method as delineated in [134]. It is well-documented that
Robinson’s method possesses a local R-quadratic convergence rate, thereby implying the SQP
method inherits this characteristic under these conditions.

In the following, we consider the SQP subproblem’s Lagrangian and the Augmented La-
grangian. First, we will examine an alternative to problem (cf. Equation 2.5.1). This will involve
the contemplation of the problem

min
x∈Rn

f(x) (2.5.7a)

s.t. h(x) = 0 , (2.5.7b)

x ≥ 0 , (2.5.7c)

with h : Rn → Rm. Recall that the Lagrangian of (2.5.7) is given by

L(x, λ) = f(x) + λTh(x), for x ≥ 0 and λ ∈ Rm .

The corresponding SQP subproblem of the problem (cf. Equation 2.5.7) with assumptions that
xk ≥ 0 and λk ∈ Rm are given, can be expressed as

min
d∈Rn

f(xk) +∇f(xk)T d+
1

2
dTHkd (2.5.8a)

s.t. h(xk) +∇h(xk)d = 0 , (2.5.8b)

xk + d ≥ 0 , (2.5.8c)

with Hk ≈ ∇2
x,xL(xk, λk). It is essential to observe that the constant term f(xk) in Equation

(2.5.8a) could potentially be omitted, as demonstrated in Equation (2.5.3a).
The Augmented Lagrangian [64, 117] of the problem (cf. Equation 2.5.7) is

LA(x, λ) = L(x, λ) + γ

2
||h(x)||2, for x ≥ 0 and λ ∈ Rm , (2.5.9)

where γ ≥ 0 is a penalty parameter. The Lagrangian of the SQP subproblem (cf. Equation 2.5.8)
can be expressed as

L̃(d, λ) = f(xk) +∇f(xk)T d+
1

2
dTHkd

+λT [h(xk) +∇h(xk)d], for d ≥ −xk and λ ∈ Rm ,

and the Augmented Lagrangian L̃ of the SQP subproblem (cf. Equation 2.5.8) is given by

L̃A(d, λ) = L̃(d, λ) + γ

2
||h(xk) +∇h(xk)d||2, for d ≥ −xk and λ ∈ Rm .

Assume now that f and h are twice differentiable. Then by direct calculation,

∇xLA(x
k, λk) = ∇xL(xk, λk) + γ∇h(xk)Th(xk)

36 CHAPTER 2. BACKGROUND

and

∇2
x,xLA(x

k, λk) = ∇2
x,xL(xk, λk) + γ

[
∇h(xk)T∇h(xk) +

m∑
i=1

hi(x
k)∇2hi(x

k)
]
.

Therefore, the second-order Taylor expansion of LA(x
k + d, λk) with respect to d at 0 is

LA(x
k, λk) +∇xLA(x

k, λk)T d+
1

2
dT∇2

x,xLA(x
k, λk)d

= L(xk, λk) +∇xL(xk, λk)T d+
1

2
dTHkd+

1

2
||h(xk) +∇h(xk)||2 ,

where Hk = ∇2f(xk) +
∑m

i=1[λ
k
i + γhi(x

k)]∇2hi(x
k). Note that the Augmented Lagrangian

method, which is utilized for addressing the problem outlined in Equation (2.5.7), conventionally
updates the dual variable, denoted as λk, by:

λk+1 = λk + γh(xk) .

Consequently, one may interpret the second-order Taylor expansion of the Lagrange multiplier
LA as the Augmented Lagrangian of the SQP subproblem expressed by Equation (2.5.8), where
the Hessian matrix is Hk = ∇2

x,xL(xk, λk+1).

Various potential configurations for Hk have been suggested in the literature [108, 158]. For
instance, Hk could be assigned the value of ∇2

x,xL(xk, λk) or a suitable approximation thereof.

2.5.1.2 Merit functions for the SQP method

The merit function is a key component of SQP methods and other optimization algorithms [84].
It is used to guide the search direction and to determine the step size in each iteration. The
merit function combines the objective function and the constraint violation into a single scalar
quantity that can be minimized. The merit function takes into account not only the value of the
objective function, but also the extent to which the constraints are violated. This helps to ensure
that the optimization algorithm makes progress towards a solution that satisfies the constraints.
The forthcoming discussion will describe several merit functions commonly used in the field.

The Courant function [28] is the most classical merit function, defined by

φγ(x) = f(x) + γ
(∑

i∈I
[ci(x)]

2
+ +

∑
i∈E

ci(x)
2
)

for x ∈ Rn and γ ≥ 0 .

Here, the operator [·]+ = max{·, 0} signifies the positive component of a given numerical value.
The merit of such a function lies in its differentiability, provided that f and ci, for i ∈ I ∪ E ,
are differentiable. However, under typical circumstances, a global minimizer of φγ does not
constitute a solution to Equation (2.5.1) when γ is finite. This observable behaviour can be
demonstrated through the elementary case of minimizing x, given the constraint that x ≥ 0.

The category of non-smooth merit functions serves as an illustrative case of the broader class
of ℓp merit functions, given by

φγ(x) = f(x) + γ
(∑

i∈I
[ci(x)]

p
+ +

∑
i∈E
|ci(x)|p

)1/p
for x ∈ Rn and γ ≥ 0 .

These merit functions possess the attribute of exactness under certain conditions. In a generalized
sense, this implies that a resolution to the constrained problem (cf. Equation 2.5.1) can be
retrieved by minimizing φγ , provided that γ is sufficiently large [61, 90].

2.5. NUMERICAL OPTIMIZATION 37

A notable limitation of ℓp-merit functions is their potential lack of differentiability. Specifi-
cally, even in instances where both f and ci are differentiable for i ∈ I ∪ E , the function φγ may
not possess differentiability at points x ∈ Rn where ci(x) = 0 for i ∈ I ∪ E . Nevertheless, the
existence of smooth merit functions exhibiting the property of exactness has been demonstrated,
a point that will be elaborated upon in the following section.

The Augmented Lagrangian merit function can be simplified when I = ∅. The Augmented
Lagrangian [64, 117, 135] of the problem (cf. Equation 2.5.1) can be defined as

LA(x, λ) = L(x, λ) + γ

2

∑
i∈E

ci(x)
2, for x ∈ Rn and λ = [λi]

T
i∈E ,

where L is the Lagrangian function of the problem (cf. Equation 2.5.1). The Augmented La-
grangian merit function is then denoted as

φγ(x) = LA(x, λ
LS(x)) ,

where λLS is the least-norm solution to

min
λ

∥∥∥∇f(x) +∑
i∈E

λi∇ci(x)
∥∥∥ , (2.5.10)

where λ = [λi]
T
i∈E . Given that x∗ is a solution to the problem defined in Equation (2.5.1), it

follows that the pair (x∗, λ(x∗)) forms a KKT pair. In the scenario where I ≠ ∅, to ensure the
equivalent property, it becomes essential to incorporate the complementary slackness conditions
within the constraints outlined in Equation (2.5.10).

An evident disadvantage of using such a merit function lies in its high computational cost.
A single evaluation requires the resolution of a linear least-squares problem, which necessitates
the computation of gradients for both the objective function f and the constraint function ci,
where i ∈ E . This intensifies the computational demand, thereby increasing the expense of the
evaluation process.

Another merit function is called second-order correction. In practical applications, the SQP
method necessitates globalization to ensure global convergence. This is typically achieved through
the employment of a merit function, which serves to adjudicate the acceptance or rejection of a
step. Nevertheless, the utilization of the merit function could potentially compromise the swift
local convergence characteristic of the SQP method. This particular phenomenon is referred to
within the academic community as the Maratos effect [88]. The observed phenomenon, wherein
the SQP method generates a step leading to the augmentation of both the objective function
and constraint violation, can occur for certain problem sets irrespective of the proximity of the
current iteration to the solution. This step would be excluded by any merit function merging
the objective function and the constraint violation, given its tendency to elevate with respect to
both parameters [88, 118].

A potential strategy to address the Maratos effect involves the implementation of second-
order correction steps. The underlying principle of the second-order correction is to adjust the
current step, denoted as dk ∈ Rn, by incorporating a term rk ∈ Rn. Consequently,{

[ci(x
k + dk + rk)]+ = o(||dk||2) , i ∈ I ,

|ci(xk + dk + rk)| = o(||dk||2) , i ∈ E .

Nonetheless, it is crucial to maintain the magnitude of step dk within a reasonable range, thereby
necessitating the condition ||rk|| = o(||dk||2) to be concurrently satisfied. Perhaps the simplest

38 CHAPTER 2. BACKGROUND

of these steps, is the least-square solution [91].

min
r∈Rn

∑
i∈I

[ci(x
k + dk) +∇ci(xk + dk)T r]2+ +

∑
i∈E

[ci(x
k + dk) +∇ci(xk + dk)T r]2 .

A multitude of additional second-order correction procedures may also be established within this
framework [24, 25, 41, 48].

2.5.1.3 The trust-region SQP method

Trust-region SQP methodologies exhibit numerous desirable characteristics. Notably, these in-
clude their capability to operate independently of the requirement for the Hessian matrix ∇2

x,xLk

in Equation (2.5.3) to be positive definite. Additionally, they possess the ability to regulate the
quality of steps even when Hessian and Jacobian singularities are present. Furthermore, they
incorporate a mechanism that ensures the enforcement of global convergence.

For the remainder of this discussion, the merit function under consideration will be the ℓ2
norm merit function, as defined by

φγ(x) = f(x) + γ

√∑
i∈I

[ci(x)]2+ +
∑
i∈E
|ci(x)|2 , for x ∈ Rn and γ ≥ 0 ,

where γ is the penalty parameter. The subsequent algorithm outlined in this study maintains
a penalty parameter, denoted as γk ≥ 0, at the k-th iteration. Further, the function φγk is
represented as φk for convenience. The ℓ2-merit function φ̂k computed on the SQP subproblem
(cf. Equation 2.5.3)

φ̂k(d) = ∇f(xk)T d+
1

2
dT∇2

x,xL(xk, λk)d+ γkΦ(d) , for d ∈ Rn ,

where Φ is defined by

Φ(x) =

√∑
i∈I

[ci(xk) +∇ci(xk)T d]2+ +
∑
i∈E

[ci(xk) +∇ci(xk)T d]2 , for d ∈ Rn .

It is important to clarify that while φk is fundamentally a function of x, for convenience, φ̂k is
characterized as a function of d. As indicated in [42], this function serves as a quadratic approx-
imation of φk at the point xk. This approximation is particularly appropriate for application
within the context of a trust-region SQP method. The basic algorithm is given in Algorithm 2.

In order to fulfill the stipulation outlined in Line 4 of Algorithm 2, the trial step dk is selected
in such a manner that there is γ̄ ≥ 0, where γ ≥ γ̄, the condition φ̂k(dk) ≤ φ̂k(0) is invariably
met. Based on the preceding definition of φ̂k, this outcome can be realized if the step dk adheres
to the condition∑

i∈I
[ci(x

k) +∇ci(xk)T dk]2+ +
∑
i∈E

[ci(x
k) +∇ci(xk)T dk]2 <

∑
i∈I

[ci(x
k)]2+ +

∑
i∈E

ci(x
k)2 .

To put it in more formal terms, the step dk serves to either enhance the feasibility of xk

for the SQP subproblem, or it serves to decrease the objective function of the SQP subproblem
without compromising the previously mentioned feasibility. In real-world applications, it may
occur that neither the constraint violation nor the objective function of the SQP subproblem
can be minimized. It is imperative that a practical algorithm is designed to accommodate such

2.5. NUMERICAL OPTIMIZATION 39

Algorithm 2: Basic trust-region SQP method

Data: Objective function f , constraint functions {ci}i∈I∪E , initial guess x
0 ∈ Rn,

estimated Lagrange multiplier λ0 = [λ0
i]

T
i∈I∪E , initial trust-region radius ∆0 > 0,

and parameters 0 < η1 ≤ η2 < 1 and 0 < θ1 < 1 < θ2
1 Set the penalty parameter γ−1 → 0
2 for k = 0, 1, . . . until convergence do
3 Set the trial step dk to an approximate solution to

min
x∈Rn

∇f(xk)T d+
1

2
dT∇2

x,xL(xk, λk) (2.5.11a)

s.t. ci(x
k) +∇ci(xk)T d ≤ 0, i ∈ I , (2.5.11b)

ci(x
k) +∇ci(xk)T d = 0, i ∈ E , (2.5.11c)

||d|| ≤ ∆k , (2.5.11d)

4 Pick a penalty parameter γk ≥ max{γk−1, ||λk||} providing φ̂k(dk) < φ̂k(0)
5 Evaluate the trust-region ratio

ρk ← φk(xk)− φk(xk + dk)

φ̂k(0)− φ̂k(dk)

6 if ρk ≥ 0 then
7 Update the trial point xk+1 ← xk + dk

8 else
9 Retain the trial point xk+1 ← xk

10 end

11 Estimate the Lagrangian multiplier λk+1 = [λk+1
i]Ti∈I∪E

12 Update the trust-region radius

∆k+1 ←

 θ1∆
k , if ρk ≤ η1 ,

∆k , if ρ1 < ρk ≤ ρ2 ,
θ2∆

k , otherwise

13 end

scenarios. However, from a theoretical perspective, such situations can be circumvented by
imposing some modest assumptions [122].

A pivotal aspect is subtly embedded within Line 3 of Algorithm 2: in the event of infeasibility
of the trust-region subproblem (cf. Equation 2.5.11), what should dk aim to approximate? Given
that constraints (cf. Equation 2.5.11b) and (cf. Equation 2.5.11d) are linear approximations of
constraints (cf. Equation 2.5.1b) and (cf. Equation 2.5.1c), the feasibility of subproblem (cf.
Equation 2.5.11) cannot be assured, even when the original problem is feasible. This underscores
a potential limitation in the approximation approach and warrants further consideration for
robust algorithm development. A potential resolution to this dilemma involves the formulation
of dk as a composite-step. This implies that dk constitutes the sum of two distinct steps. The
first of these, a normal step denoted as nk, is designed with the objective of mitigating the
violation of constraints. The second, a tangential step or tk, is targeted at reducing the objective
function as expressed in Equation (2.5.11a), whilst simultaneously avoiding an escalation in the

40 CHAPTER 2. BACKGROUND

violation of linearized constraints. More precisely, the normal step nk represents either an exact
or an approximate resolution of the normal subproblem

min
d∈Rn

∑
i∈E

[ci(x
k) +∇ci(xk)T d]2 (2.5.12a)

s.t. ||d|| ≤ ζ∆k (2.5.12b)

for some ζ ∈ [0, 1]. Additionally, the tangential step tk solves the tangential subproblem either
exactly or approximately. Let V represent a particular set with the property that for d ∈ V, the
term nk + d does not exceed the linearized constraint violation of nk. The precise formulation
of V is contingent on the method employed for quantifying the violation of constraints:

min
d∈Rn

[∇f(xk) +∇2
x,xL(xk, λk)nk]T d+

1

2
dT∇2

x,xL(xk, λk)d (2.5.13a)

s.t. ||nk + d|| ≤ ∆k , (2.5.13b)

d ∈ V . (2.5.13c)

Some methods that are covered by this composite-step framework include the Bryrd-Omojokun
approach [15, 112], the Vardi approach [156] and the Celis-Dennis-Tapia approach [19].

2.5.2 Derivative-free optimization

Derivative-free optimization algorithms constitute a vital component in the landscape of opti-
mization methodologies. Derivative-free algorithms, offer significant utility in situations where
gradient information is unavailable, such as when handling black-box functions. While it is
feasible to approximate gradients utilizing finite differences, these approximations might have
significant inaccuracies. Contrastingly, derivative-based algorithms necessitate a higher degree
of user expertise due to their inherent complexity [106]. The setup and execution of these
algorithms require a more detailed and effort-intensive approach. In general, derivative-free
algorithms possess a relative ease of implementation, facilitating expedited initiation of their
operation. However, they perform at lesser levels of efficiency, a trait that is more obvious as the
problem’s dimensionality increases [74].

A salient benefit of derivative-free algorithms is their ability to operate independently of the
assumption of function continuity. On the other hand, derivative-based algorithms necessitate the
presence of function smoothness, a prerequisite integral to the derivation of optimality conditions.
This requirement holds true for both unconstrained and constrained functions. More specifically,
the KKT conditions, necessitate that the function demonstrate continuity in its objective value,
Jacobian, and Hessian [54]. This continuity must be maintained at least within a minimal range
of the optimal point, ensuring the feasibility and validity of the optimization process.

In instances where the gradient at the optimal point is discontinuous and consequently un-
defined, the KKT conditions fail to hold validity. The requirement of gradient continuity is less
strict when considered away from optimal points [167]. While derivative-based algorithms oper-
ate under similar assumptions of continuity, they generally exhibit tolerance towards scattered
discontinuities, provided these are located away from an optimal point. However, for functions
characterized by excessive numerical noise and discontinuities, derivative-free algorithms may
represent the sole viable option [80].

The decision to employ a derivative-based or derivative-free algorithm demands an array of
factors, many of which are frequently misunderstood. A prevalent misconception pertains to the
characteristic of multimodality, often invoked as justification for selecting derivative-free methods
[85]. The multimodality of the design space may originate from an objective function that exhibits

2.5. NUMERICAL OPTIMIZATION 41

multiple local minima. Conversely, in a constrained problem scenario, multimodality can stem
from the imposition of constraints that delineate disconnected or nonconvex feasible regions.

Certain derivative-free optimization techniques incorporate a global search component, aug-
menting the probability of attaining the global minimum. This attribute designates these
derivative-free methods as prevalent choices for tackling multimodal problems [78]. However,
it is critical to note that not all derivative-free methods employ global search strategies; some
are limited to local search operations.

Moreover, while derivative-based methods inherently operate on local search principles, they
are frequently integrated with global search strategies. It is not universally accurate to assert that
a global search, derivative-free method is more likely to discover a global optimum than a multi-
start derivative-based technique. As with any analysis, problem-specific empirical evaluation is
indispensable.

The utilization of derivative-free methods frequently arises in scenarios involving discrete de-
sign variables. Given that the concept of a derivative concerning a discrete variable does not
hold validity, the direct application of gradient-based algorithms becomes infeasible [89]. Con-
sequently, the exploration of alternatives, such as derivative-free methods, becomes a necessary
step in such cases.

In the following, two derivative-free optimization methods utilized in this study are in-
troduced, namely COBYLA (Constrained Optimization BY Linear Approximation) [120] and
COBYQA (Constrained Optimization BY Quadratic Approximation) [126].

2.5.2.1 COBYLA

The COBYLA algorithm is applied to address the optimization problem denoted by Equation
(2.5.1), under the condition that the constraint functions, represented as ci for i ∈ I, are nonlin-
ear functions with unknown derivatives. This implies that solely the values of these constraint
functions are available for computation, precluding the use of derivative information in the op-
timization process.

During the k-th iteration, the COBYLA algorithm constructs linear interpolations of both
the objective and constraint functions. These interpolations are based on the interpolation set
Yk ∈ Rn. The set Y comprises of n + 1 points, which are iteratively updated as the algorithm
progresses.

Following the establishment of linear models, denoted as ĉi
k, for the constraint functions

ci, where i ∈ I, the subsequent phase requires the resolution of the associated trust-region
subproblem

min
x∈Rn

f̂k(x) (2.5.14a)

s.t. ĉi
k(x) ≤ 0 i ∈ I , (2.5.14b)

||x− xk|| ≤ ∆k . (2.5.14c)

The resolution of this problem can be achieved by replacing ∆k with a constant that is progres-
sively increasing from zero to ∆k. This approach will generate a piecewise linear path starting
from xk and ending at the solution of this problem. To accurately identify this solution, the
trust-region subproblem solver of COBYLA begins this path by iteratively updating the active
sets of the linear constraints as expressed in Equation 2.5.14b.

Nevertheless, potential contradictions may arise between the linear constraints (cf. Equation
2.5.14b) and the trust-region constraint (cf. Equation 2.5.14c). When such a contradiction arises,

42 CHAPTER 2. BACKGROUND

the trial point is selected to provide an approximate solution:

min
x∈Rn

max
i∈I

[ĉi
k(x)]+

s.t. ||x− xk|| ≤ ∆k .

The operator [·]+ is designed to extract the positive component of a given numerical input.
The utilization of this operator within the methodology aims to reduce the ℓ∞-norm constraint
violation that arises from the linearized constraints within the defined trust-region. This opera-
tion is integral to ensuring the constraints are adequately satisfied within the trust-region during
the optimization process.

Preserving the appropriate geometry of Yk is critical for the accuracy of model generation.
If the geometry of Yk proves insufficient in facilitating accurate models, the COBYLA algorithm
initiates a process of point substitution. Specifically, it removes a point from Yk and incorporates
a new one, selected along the direction orthogonal to the face of Yk. This face is construed as a
simplex, and it is counterpoised to the location of the point that was previously removed. This
substitution process is likely to increase the volume of the simplex generated by the interpolation
set, consequently enhancing the conditioning of the interpolation system.

2.5.2.2 COBYQA

COBYQA, a derivative-free, trust-region SQP method, is strategically engineered to manage
nonlinearly constrained optimization problems, which include both equality and inequality con-
straints [126]. A salient characteristic of COBYQA is its rigorous observance of bound constraints
during its iterative point exploration procedure, given the presence of such constraints. This as-
pect exhibits significant advantages, especially considering that objective functions pertinent to
applications with bounded constraints frequently become indeterminate when these constraints
are violated.

In reference to the foundational trust-region SQP approach, it typically constructs models of
the objective and constraint functions using their gradients and Hessian matrices. However, in
the absence of access to such information in this study, COBYQA employs interpolation-based
quadratic models for these functions. Specifically, COBYQA utilizes quadratic models derived
from underdetermined interpolation predicated on the derivative-free symmetric Broyden update
methodology.

At the k-th iteration, the objective function f is approximated by the quadratic model f̂k
that solves

min
Q∈P2,n

||∇2Q−∇2f̂k−1||F s.t. Q(y) = f(y), y ∈ Yk .

Here, P2,n represents the space of quadratic polynomials on Rn. The Frobenius norm, denoted
as || · ||F , serves as a matrix norm and y ∈ Yk refers to a finite interpolation set that undergoes
updates through iterative procedures. The requisite condition for this context is the fulfillment
of specific interpolation constraints, which are elaborated below. In general,

n+ 2 ≤ card(Yk) ≤ 1

2
(n+ 1)(n+ 2) .

Ensuring the well-definition of the quadratic model f̂k is crucial. Analogously, the quadratic
models ĉg

k and ĉh
k, belonging to cg and ch, are formulated. Here, the subscript g signifies the

inequality constraint, while h designates the equality constraint.

The Lagrangian form L̂k of COBYQA can be expressed as

2.5. NUMERICAL OPTIMIZATION 43

L̂k(x, λ, µ) = f̂k(x) + λT ĉg
k(x) + µT ĉh

k(x) .

Furthermore, given a penalty parameter γk ≥ 0, the ℓ2-merit function φk is given by

φk(x) = f(x) + γk
√
||[cg(x)]+||22 + ||ch(x)||22 .

Consequently, the quadratic form φ̂k is

φ̂k(d) = f̂k(xk) +∇f̂k(xk)T d+
1

2
dT∇2L̂k(x

k, λk, µk)d+

γk
√
||[ĉgk(xk) +∇ĉgk(xk)d]+||22 + ||ĉh

k(xk) +∇ĉhk(xk)d||22 ,

where xk ∈ Yk , represents the optimal interpolation point as determined by the merit func-
tion φk−1. Furthermore, the quantities λk and µk serve as approximate representations of the
Lagrange multipliers that correspond to the inequality and equality constraints, respectively.
Algorithm 3 demonstrates the framework of COBYQA.

2.5.3 Derivative-based optimization

Derivative-based optimization, as the name suggests, is a category of optimization methods
that make use of derivative information. These methods are powerful and efficient, especially for
smooth functions where derivative information is readily available. However, real-world optimiza-
tion problems often come with constraints, which lead to the field of constrained derivative-based
optimization. One of the most famous methods in constrained derivative-based optimization is
the SQP method (cf. Equation 2.5.1). Another popular method is the Interior Point Method
[92], which transforms the constrained problem into a series of unconstrained problems using
a barrier function. The barrier function is designed to tend to infinity as the constraints are
violated, thus ”forcing” the solution to remain within the feasible region [147].

The Sequential Least Squares Programming (SLSQP) algorithm is a versatile and widely
used method for constrained optimization [11]. It falls within the broader class of SQP meth-
ods, which are iterative techniques for solving nonlinear optimization problems, both with and
without constraints. The SLSQP algorithm is especially known for its ability to handle both
equality and inequality constraints. It does this by solving a sequence of optimization subprob-
lems, each of which optimizes a quadratic model of the objective subject to a linearization of
the constraints. The SQP method requires the solution of a generic quadratic programming
problem. This presents a considerable challenge, especially when integrating second derivative
information into the algorithm. To address this complexity, Schittkowski proposed a two-phase
computation approach for the step [140]. Specifically, Schittkowski suggested substituting the
quadratic programming subproblem with a linear least squares subproblem, facilitated by a ro-
bust LDLT -factorization [77] of the inverse of the Hessian matrix B:

min
d∈Rn

||(Dk)1/2(Lk)T d+ (Dk)−1/2(Lk)−1∇f(xk)|| ,

subject to Equations (2.5.11b) and (2.5.11d).
In more detail, SLSQP approximates the objective function and the constraint functions

using first-order Taylor series expansions. It then solves the resulting quadratic program to find
a direction of search. A line search is then conducted in this direction to find a new point that
improves the objective. The process is repeated until a solution is found that satisfies the KKT
conditions for optimality, or until a maximum number of iterations is reached.

44 CHAPTER 2. BACKGROUND

Algorithm 3: COBYQA algorithm

Data: Initial trust-region radius ∆0 > 0
1 Set the penalty parameter γ−1 → 0
2 Build the initial interpolation set Y0 ∈ Rn

3 Define x0 to a solution to min
y∈Y0

φ0(y)

4 Estimate the Lagrange multipliers λ0 and µ0

5 for k = 0, 1, . . . until convergence do

6 Compute the models f̂k, ĉg
k, ĉh

k

7 Set the trial step dk to an approximate solution to

min
d∈Rn

f̂k(xk) +∇f̂k(xk)T d+
1

2
dT∇2L̂k(xk, λk, µk)d (2.5.15a)

s.t. ĉg
k(xk) +∇ĉgk(xk)d ≤ 0 , (2.5.15b)

ĉh
k(xk) +∇ĉhk(xk)d = 0 , (2.5.15c)

l ≤ xk + d ≤ u , (2.5.15d)

||d|| ≤ ∆k (2.5.15e)

8 Pick a penalty parameter γk ≥ max{γk−1,
√
||λk||2 + ||µk||2} providing

φ̂k(dk) < φ̂k(0)
9 Evaluate the trust-region ratio

ρk ← φk(xk)− φk(xk + dk)

φ̂k(0)− φ̂k(dk)

10 if ρk > 0 then
11 Choose a point ȳ ∈ Yk to remove from Yk

12 else
13 Choose a point ȳ ∈ Yk \ {xk} to remove from Yk

14 end

15 Update the interpolation set Yk+1 ← (Yk \ {ȳ}) ∪ {xk + dk}
16 Update the current iterate xk+1 to a solution min

y∈Yk+1
φk(y)

17 Estimate the Lagrange multipliers λk+1 and µk+1

18 Update the trust-region radius ∆k+1

19 Improve the geometry of Yk+1 if necessary

20 end

The algorithm begins by determining a feasible point, which satisfies all the constraints. From
this point, it computes search directions by solving the quadratic subproblem. The algorithm
then updates the current point by moving along the search direction. This iterative process
continues until the algorithm converges to an optimal solution or until a stopping criterion is
met. One of the key features of SLSQP is its use of a trust-region strategy (cf. section 2.5.1.3),
which limits the step size in each iteration to ensure that the approximations remain valid. This
makes the algorithm robust and efficient for a wide range of optimization problems.

2.5. NUMERICAL OPTIMIZATION 45

2.5.4 Surrogate-based optimization

This work introduces a methodology that utilizes distinct, independently trained differentiable
ML models as surrogate substitutes during the optimization process. The forthcoming section
will delve into an in-depth discourse on surrogate-based optimization (SBO) [125, 142].

A surrogate model, alternatively termed a response surface model or a metamodel, serves as an
approximated representation of a functional output, mirroring a curve fit to an underlying dataset
[20]. The primary objective in constructing a surrogate model is to develop a computationally
efficient substitute for the original function, while ensuring the preservation of adequate accuracy
even in regions removed from known data points. This surrogate model thus provides a balance
between computational efficiency and model fidelity, facilitating expedited computations without
compromising the integrity of the predictive capability.

Within the context of optimization, the surrogate could encompass the entirety of the op-
timization model (that is, the inputs constitute design variables, and the outputs represent
objective and constraint functions), or alternatively, the surrogate may merely form a compo-
nent of the comprehensive model [99]. SBO exhibits a more targeted approach compared to the
expansive domain of surrogate modeling. Rather than striving for a globally precise surrogate,
the objective of SBO is to develop a surrogate model that possesses sufficient accuracy to guide
the optimization algorithm towards the true optimal solution.

Surrogate models serve a significant role in numerous circumstances. A prominent scenario
arises when the primary model faces substantial computational costs. Although the invoca-
tion of surrogate models is associated with minimal computational expense, their construction
necessitates multiple evaluations of the primary model. It is plausible that the number of eval-
uations required to construct a surrogate model with satisfactory accuracy is fewer than those
required for the direct optimization of the primary model [44]. Under such circumstances, SBO
might present a viable alternative. The construction of a surrogate model becomes even more
compelling when there is potential for its application across multiple optimization tasks [59].

Utilizing surrogate modeling has demonstrated effectiveness in addressing models character-
ized by intrinsic noise, as it synthesizes a refined representation of such noisy datasets. This
attribute holds particular utility in the context of gradient-based optimization. A situation use-
ful to both costly evaluation and noise-ridden output is the instance of experimental data. In
circumstances where the model data is experimental and the optimizer lacks the capacity for
automated querying of the experiment, the construction of a surrogate model predicated on the
experimental data becomes feasible. Subsequently, the optimizer may query this surrogate model
during the optimization process. Surrogate models also prove beneficial when an understanding
of the design space is desired, which involves discerning how the objective and constraints (out-
puts) fluctuate relative to the design variables (inputs). The construction of a continuous model
over discrete data yields functional relationships that can be visualized with enhanced efficacy.

The SBO process starts with the application of sampling techniques to designate initial points
for function evaluation or experimental conduction. These points are commonly known as train-
ing data. Following this initial step, a surrogate model is established utilizing the sampled points.

The subsequent stage involves executing optimization by interrogating the surrogate model.
The optimization outcome informs the inclusion of supplementary points in the sample and
consequent surrogate reconstruction - a process often termed as infill. This iterative sequence
persists until the attainment of a predefined convergence criterion or the execution of a maximum
number of iterations.

It is noteworthy that in some methodologies, the infill step is discarded; the surrogate model
is constructed in its entirety at the outset and is not updated thereafter.

Note that the methodology introduced in chapter 5 employs surrogates which are not directly

46 CHAPTER 2. BACKGROUND

fitted to the objective function as described above. Instead, we will consider the case that a
differentiable data-driven model can be obtained from the same observational training data as
the non-differentiable objective ML model, which is a common occurrence in cases where the best
available model – and thus the one used as the objective – is not sufficiently regular, whereas
differentiable models such as NNs are still available, even if they are less accurate.

2.6 Cloud computing

In the following, some tools for the development and deployment of software in cloud computing
will be discussed, including the general architecture of containers (a common option for deploying
and managing software in the cloud) and a description of Kubernetes, a container orchestration
tool that can be used to monitor and manage container lifecycles in more complex environments.
.

2.6.1 Docker containers

A container is a standard unit of software that packages up code and all its dependencies so the
application runs quickly and reliably from one computing environment to another [67]. Con-
tainers are made possible by process isolation and virtualization capabilities built into the Linux
kernel. These capabilities - such as control groups for allocating resources among process, and
namespaces for restricting a processes access or visibility into other resources or areas of the sys-
tem - enable multiple application components to share the resources of a single instance of the
host operating system in much the same way that a hypervisor enables multiple virtual machines
(VM) to share the CPU, memory and other resources of a single hardware server.

Figure 2.11: The comparison of containers and virtual machines. Containers are an abstraction
at the top layer that packages code and dependencies together. Multiple containers can run
on the same machine and share the OS kernel with other containers, each running as isolated
processes in user space. Virtual machines are an abstraction of physical hardware turning one
server into many servers. The hypervisor allows multiple VMs to run on a single machine. Each
VM includes a full copy of an operating system, the application, neccessary libraries [67].

As a result, container offers all the functionality and benefits of VMs. Containers can run
anywhere, as long as the container engine supports the underlying operating system - it is possible

2.6. CLOUD COMPUTING 47

to run containers on Linux, Windows, MacOs, and many other operating systems. Containers can
run in virtual machines, on bare metal servers, locally on a developer’s laptop. They can easily
be moved between op-premise machines and public cloud, and across all these environments,
continue to work consistently.

Containers do not require a separate operating system and therefore use few resources. VMs
are typically a few GB in size, but containers commonly weigh only tens of megabytes, making
it possible for a server to run many more containers than VMs [146]. Containers require less
hardware, making it possible to increase server density and reduce data center or cloud costs.

Multiple containers can be run on the same server, while ensuring they are completely isolated
from each other. When containers crash, or application within them fail, other container running
the same application can continue to run as usual. Container isolation also has security benefits,
as long as containers are securely configured to prevent attackers from gaining access to the host
operating system.

Containers are a lightweight package that everything needed to run, including its own oper-
ating system, code, dependencies and libraries. The lightweight design of containers ensures that
new applications can be released and upgraded easily. This often leads to a quicker development
process and speeds up the time to deployment.

Containers make it easy to horizontally scale distributed applications. Multiple, identical
containers can be added to create additional instances of the same application. Container or-
chestrators can perform intelligent scaling, running only the necessary number of containers to
serve application loads, considering the resources available to the container cluster. Containers
allow developers to create predictable runtime environments, including all software dependencies
required by an application component, isolated from other applications on the same machine.
From a development point of view, this guarantees that the component they are working on
can be deployed consistently, no matter where it is deployed. In a containerized architecture,
developers and operations teams spend less time debugging and diagnosing environmental dif-
ferences, and can spend their time building and delivering new product features. In addition,
developers can test and optimize containers, reducing errors and adapting them to production
environments.

Docker is one of the most widely used container tools. A docker uses a client-server model
and comprise of the following components: Docker daemon is responsible for all container related
actions and receives commands. A docker client is how user interact with docker. The docker
client can reside on the same host as the daemon or a remote host. Docker objects are used to
assemble an application. Apart from networks, volumes, services, and other objects the two main
requisite objects are: Images, the read-only template used to build containers. Images are used
to store and ship applications. Containers, are encapsulated environments in which applications
are run. A container is defined by the image and configuration options. At a lower level, we have
containerd, which is a core container runtime that initiates, and supervise container performance.
Finally, docker registries are locations from where we store and download images. Figure 2.12
shows the architecture of docker.

More specifically, every docker container starts with a simple text file containing instructions
for how to build the docker container. Dockerfile automates the process of docker image creation.
It is essentially a list of command-line interface instructions that docker engine will run in order
to assemble the image. Docker images contain executable application source code as well as the
tools, libraries, and dependencies that the application code needs to run as a container. Multiple
docker images can be created from a single base image, and they will share the commonalities of
their stack. Docker images are made up of layers, and each layer corresponds to a version of the
image. Whenever a developer makes changes to the image, a new top layer is created, and this
top layer replaces the previous top layer as the current version of the image. Previous layers are

48 CHAPTER 2. BACKGROUND

Figure 2.12: Docker architecture [110].

saved for rollbacks or to be re-used in other projects. Each time a container is created from a
docker image, yet another new layer called the container layer is created. Changes made to the
container - such as the addition or deletion of files - are saved to the container layer only and
exist only while the container is running. This iterative image creation process enables increased
overall efficiency since multiple live container instances can run from just a single base image,
and when they do so, they leverage a common task.

2.6.2 Kubernetes

As a powerful open-source orchestration technology, Kubernetes assists in managing containerized
applications and microservices over a distributed cluster of compute machines [17]. Through
the use of numerous crucial features, including REST APIs and declarative templates that can
handle the whole lifecycle, Kubernetes aims to hide the complexity of maintaining containers.
Client-server architecture is the cornerstone of the Kubernetes architecture. The server side of
Kubernetes is the known as the control plane. By default, there is a single control plane server
that acts as a controlling node and point of contact. This server consists of components including
the api server, storage, controller manager, scheduler and Kubernetes DNS server. The client
side of Kubernetes comprises the cluster nodes—these are machines on which Kubernetes can
run containers. Node components include the kubelet and kube-proxy on top of docker. A
Kubernetes cluster is a collection of nodes on which we can run workloads. A node can be a
physical machine, a VM, or managed by a serverless computing system. Clusters are managed
by the Kubernetes control plane, which coordinates container activity on nodes and moves the
cluster towards the user’s desired state.

A node is a Kubernetes worker machine managed by the control plane, which can run one
or more pods. Master note serves as the starting point for all administrative activities and is

2.6. CLOUD COMPUTING 49

Figure 2.13: High level Kubernetes architecture diagram showing a cluster with a master and
two worker nodes [162].

the charge of controlling the Kubernetes cluster architecture. A master node inside Kubernetes
has three main components. The first one is the Kubernetes API server, which is where all the
administrative tasks will be performed. Kubernetes delivers REST commands that will process
and validate the requests. Upon requests, the cluster’s resulting state will be stored based on
the distributed key value. The second component is the scheduler, which schedules the tasks
to specified worker nodes. Besides, each worker node will store resource usage information. All
the work will be scheduled in the form of services and pods. Before the tasks is scheduled, the
scheduler will consider the service requirements quality, affinity, anti-affinity, data locality, etc.
The control manager is a controller, which is the third component of a master node; it is a
daemon that adjusts the Kubernetes cluster. The Kubernetes cluster is used to manage multiple
non-terminating controls loops. Controller also handles node garbage collection, event garbage
collection and cascading-deletion garbage collection. It also provides lifecycle functions such as
namespace creation. A controller, in essence, examines the ideal state of a controlled object, but
it also employs an API server to monitor and manage its present state. If an object’s intended
state is not satisfied, the control loop will guarantee that the current and desired states are
leveled by taking precise measures to achieve this aim.

On the other hand, worker node runs applications via pods, and master node controls the
pods. A worker node consists of four components. The first one is container runtime, worker node
requires a container runtime like Docker to manage and run the container’s lifecycle. Kubelet

50 CHAPTER 2. BACKGROUND

interacts with the master node and runs on worker nodes. It retrieves pod specifications from
an API server. It also runs the corresponding containers indicated in healthy and active pods.
Advisor is the third component of a worker node. It serves to analyze all the metrics for network
usage, file, CPU, and memory for every container that runs on a specified node. Kube-proxy
operates on each node and interacts with each host sub-netting individually to ensure that all
services are accessible to external parties. It also works as a load balancer and network proxy for
any services running on a worker node. Furthermore, kube-proxy will handle network routing for
UDP and TCP traffic. For kube-proxy to reach service endpoints, it will create different routes.

A pod is the smallest unit of management in a Kubernetes cluster. It represents one or
more containers that constitute a functional component of an application. Pods encapsulate
containers, storage resources, unique network, and other configurations defining how container
should run. In Kubernetes, a service is an abstraction that represents a set of pods which
represent an application or component and includes access policies for those pods. Kubernetes
guarantees the availability of a given pod and its replicas, but the actual pod instances running
within a service are temporary and may be replaced by others. This means that other pods that
need to communicate with this application or component rely on the IP address of underlying
pod.

Similar to a container volume in docker, a Kubernetes volume applies to a whole pod and is
mounted on all containers in the pod. Kubernetes guarantees data is preserved across container
restarts. The volume will be removed only when the pod gets destroyed. Also, a pod can
have multiple volumes associated. Namespace is another important concept. It is a virtual
cluster intended for environments with many users spread across multiple teams or projects,
for isolation of concerns. Resources inside a namespace must be unique and cannot access
resources in a different namespace. Also, a namespace can be allocated a resource quota to avoid
consuming more than its share of the physical cluster’s overall resources. Finally, deployment in
Kubernetes describes the desired state of a pod or a replica set. The deployment controller then
gradually updates the environment until the current state matches the desired state specified in
the deployment file.

In practice, Kubernetes is the standard for container orchestration, commonly used to or-
chestrate docker containers. Kubernetes was designed to support the features required by highly
available distributed systems, such as auto-scaling, high availability, security and portability.

Kubernetes allows pods to be scaled horizontally based on CPU use. The CPU utilization
threshold can be set, and if it is achieved, Kubernetes will immediately start fresh pods. For
example, if the CPU utilization threshold is 70% but the application grows to 220%, three more
pods will be deployed gradually, bringing the average CPU utilization down to 70%. When a
single application has several pods, Kubernetes provides load balancing capacity across all of
them. Stateful pods can be horizontally scaled in Kubernetes. A stateful set is similar to a
deployment, but it ensures that storage is persistent and reliable even when a pod is removed.

Kubernetes aims to provide high availability for both applications and infrastructure. Replica
sets ensure that the desired number of stateless pod replicas are running for a given application.
Stateful sets and stateful pods serve the same purpose. Kubernetes provides a variety of dis-
tributed storage options at the infrastructure level. Adding a dependable, available storage
layer to Kubernetes ensures that stateful applications are always available. To achieve improved
availability, each of the master components can be set for multi-node replication.

Kubernetes protects clusters, applications, and networks on various layers. Transport layer
security is used to protect API endpoints (TLS). On the cluster, only authenticated users can
perform operations. Kubernetes secrets can store sensitive information per cluster at the appli-
cation level. It is worth noting that secrets can be accessed by any pod in the same cluster. In a
deployment, network policies for pod access can be defined. A network policy governs how pods

2.7. SUMMARY 51

communicate with one another and with other network endpoints.
Finally, Kubernetes’ portability presents itself in terms of operating systems, processor archi-

tectures, cloud providers, and the addition of other container runtimes other than docker. It can
also support workloads across hybrid or multi-cloud systems thanks to the federation concept.
Within a single cloud provider, this also offers availability zone fault tolerance.

2.7 Summary

Given the criticality of scrap procurement to the foundry industry’s operational efficiency and
sustainability, the complexities and challenges embedded in optimizing this process need to be
discussed. The task of scrap procurement optimization is multifaceted, encompassing aspects
such as cost minimization, quality assurance, and environmental sustainability. These intrica-
cies call for an advanced, data-driven approach, thereby introducing the concept of data-driven
optimization.

The suggested way to solve these problems is by using ML to get a strong grasp of this
approach. In the quest to optimize scrap procurement, the role of numerical optimization needs
to be brought into focus, i.e. the mathematical discipline that seeks to find the best solution – in
terms of a specified objective function – among a set of available alternatives, subject to certain
constraints. Whereas classical gradient-based methods can be considered very effective and, in
many cases, highly efficient, the challenges associated with gradient-free optimization motivate
the use of differentiable surrogates, if they are available.

Furthermore, current state-of-the-art techniques in cloud computing can simplify employing
and updating various kinds of software. In particular, cloud-based methods can be used for
providing software tools to end users in the foundry industry more easily.

52 CHAPTER 2. BACKGROUND

Chapter 3

Platform for scrap procurement

One of the many challenges in improving the efficiency of scrap procurement in the foundry
industry is the lack of unified supply data: in order to fully utilize ML and optimization techniques
to make an informed purchase decision, it is necessary to collect and compare the availability
and pricing of different scrap types across suppliers. As part of this work, an online platform
was developed which connects foundries and scrap suppliers, provides a unified interface for data
exchange and integrates ML and optimization tools that can automatically select the optimal
composition of scrap for a batch with respect to the total cost, including the transport and
energy cost, for a given chemical target composition of the steel that is to be produced. The
developed platform therefore represents a comprehensive solution serving the foundry industry’s
needs concerning the optimization of scrap procurement.

In the following, the key components of the platform as well as some of the implementation
details are presented. The described software was developed as part of the BMBF funded research
project OPTIRODIG (project ID 033R247C).

3.1 Introduction to the platform

The first primary component of the platform is the Scrap Dealer. An important role of this
module, as depicted in Figure 3.1, pertains to the provision of an interface enabling users to
submit and modify data concerning their respective scrap dealers. This includes elements such
as the communication form and individualized records of cumulative scrap quantities pertaining
to each dealer. The component designated as the Scrap module functions as the underlying data
repository for the simulation process. This module encapsulates various types of scrap utilized
within the foundry sector, including but not limited to domestic scraps, external scraps, and
alloy-based scraps. In the case of external scraps, the Scrap module integrates additional details
such as associated costs, quantities, and affiliated merchants. Pertinent data regarding domestic
scraps specific to individual foundry industries are also incorporated within this component for
comparative purposes, as illustrated in Figure 3.2.

Of course, the most important task of foundry industry is to produce steel. In this context,
the metallic elements are subjected to high temperatures until they achieve a liquefied state.
Subsequent to this, the molten metal is transferred into a purposefully designed mold. The
process continues as the heated metal undergoes a transition from a liquid to a solid state
within the confines of the mold. Once solidified, the metal is extracted from the mold, resulting
in a finished product or component. These components can be incorporated into an array of
products, some of which are integral to contemporary life. Depending on the end product,

53

54 CHAPTER 3. PLATFORM FOR SCRAP PROCUREMENT

certain mechanical or chemical properties of the produced steel are desirable or even necessary.
In order to ensure these properties, the chemical composition of the steel needs to be controlled.
The target composition will act as the equality constraints for Equation (2.5.1c) in the cost
optimization described below.

Figure 3.1: The scrap dealer component of the platform.

Figure 3.2: The scrap component of the platform.

Some common types of steel and their chemical composition are listed in Table 3.1. Steel
of type 1.2379 represents a high-alloy steel variant that facilitates thorough hardening while
exhibiting moderate machinability characteristics. It is exceptionally resistant to wear and
demonstrates minimal distortion or warping. This steel also offers beneficial attributes such
as commendable dimensional stability, resilience, and the ability to harden throughout its mass.
The utilization of this steel extends to mold plates and inserts, in addition to wear plates and

3.2. SOFTWARE ARCHITECTURE 55

cutting dies, with an enhancement in their resistance to wear and tear. The material known as
steel 1.2344 is frequently utilized in various applications due to its distinctive characteristics. Its
composition, classified as a high-alloy hot-work steel, imparts notable heat resistance and wear
resistance, contributing to its longevity in demanding environments. Additionally, its hardness,
thermal conductivity, and resistance to hot cracks further enhance its desirability. In terms of
application, steel 1.2344 serves as the standard material for hot-work tools, lending itself partic-
ularly well to use in the manufacture of extrusion molds and dies. Moreover, it is prevalently used
in the fabrication of tools required for plastic processing, further broadening its scope of appli-
cation. The material designated as steel 1.3343 is frequently used in various applications due to
its distinctive characteristics. It’s a type of high-speed steel that exhibits exceptional resistance
to abrasive wear, complemented by high toughness and compressive strength. Additionally, this
material demonstrates high heat resistance, making it ideal for thorough hardening processes.
Steel 1.3343 is regularly utilized in the creation of blocks for erosion procedures. It also finds
use in the production of cold forming tools, including but not limited to cutting instruments,
fine blanking mechanisms, and punches and dies used in impact extrusion. Furthermore, this
material is incorporated into inserts that require significant wear resistance. The material iden-
tified as steel 1.2343 is frequently utilized due to its distinct properties. It is characterized by
its high-alloy composition which contributes to its hot-workability, exhibiting robust toughness
and superior resistance to heat. Moreover, it demonstrates resistance against hot cracks, sup-
plemented with commendable thermal conductivity. With regard to practical usage, the 1.2343
steel is principally utilized in the construction of mold plates and inserts, critical elements within
the machinery used for plastic injection molding. The variant of this steel produced through
Electroslag Remelting process is notably advantageous in the field of die casting.

Table 3.1: Chemical composition of 4 steels in %.

Steel C Si Mn Cr Mo V
1.2379 1.53 0.30 0.35 12.00 0.80 0.80
1.2344 0.40 1.00 0.00 5.30 1.40 1.00
1.3343 0.90 0.30 0.350 4.00 5.00 1.90
1.2343 0.38 1.00 0.40 5.30 1.20 0.40

Numerous additional chemical formulations of steels can be found in the component dedicated
to Steel on the platform.

3.2 Software architecture

In the process of developing the architecture of the platform, the primary hurdle lies in its
successful deployment within a cloud-based infrastructure. Given that the platform functions
as a Python-oriented web application, it requires the ability to manage an array of distinct
scenarios. These scenarios include, but are not limited to, handling the vital request/response
cycle that requires minimized latency, such as during user authentication procedures, as well as
managing longer duration background tasks, where an increased latency is permissible due to
the indirect effect on the user experience, such as during data processing and simulation tasks.
The web framework selected for this project is Django, a high-level Python framework known
for facilitating swift development and promoting a clean, pragmatic design [31].

Django benefits from a Model-View-Template (MVT) architecture, which is a software design
pattern. As the name suggests, it is made up of three key components: Model, View, and

56 CHAPTER 3. PLATFORM FOR SCRAP PROCUREMENT

Template. These three layers are responsible for multiple tasks and can be utilized independently.
Figure 3.3 illustrates the interactions of the MVT architecture in Django.

The Model helps to handle databases. It is a data access layer, which contains the required
fields and behaviors of the data should be stored. In this work, PostgreSQL [58] was used
as database. A model is a Python class that has no knowledge of the other Django layers.
The only way to interact across layers is through an application programming interface (API).
Models assist developers in creating, reading, updating and deleting items in the original database
(CRUD operations). They also store business logic, custom methods, properties, and other data
manipulation-related items.

The View is used to execute business logic, interact with a model, and render a template. The
view retrieves information from a model. Then, it either grants each template access to particular
data to be shown, or it processes data beforehand. It receives HTTP requests, implements
business logic given by Python classes and functions, and responds to client requests through
HTTP.

Figure 3.3: Django MVT architecture.

3.2. SOFTWARE ARCHITECTURE 57

Finally, the Template is a presentation layer that manages the whole user interface. These
are files that include HTML code is used to render data. These file’s contents might be static
or dynamic. A template is used to present data because it has no business logic. The MVT
architecture take cares of the separation of Django application development. The model will
work with data, the view will work with logic, and the template will work with layouts. In
addition, MVT architecture makes the whole process of transmitting over the internet simpler
and faster.

Django ORM (Object Relational Mapper) provides an intuitive and powerful object-oriented
mechanism to communicate with the database. ORM is a library automatically converts data
from databases into objects that can be utilized in application code. To create tables and insert
data, there is not need to write specialized structured query language (SQL) queries. When a
class is defined, ORM automatically generates a table for the class. This table includes fields for
all of the variables in the class. In addition, the table adds records automatically when objects are
created. ORM simplifies the construction of tables using classes and adds data using class objects.
The Django ORM’s ability to extract information speeds up the web application development
process. It also enables developers to quickly create functioning prototypes. The ORM in Django
allows developers to switch between relational databases with little code modifications. Django
allows you to migrate from one database to another and conduct typical operations without
having to write a lot of extra code.

The platform needs to manage some computation-intensive tasks, such as running ML training
and optimization works. As a result, background tasks are typically executed as asynchronous
processes outside the request/response thread. Celery [69] is a popular Python task queue library
with a focus on real time processing. Task queues are used to distribute work across threads
or machines. The input to a task queue is a unit of work known as a task. Task queues are
regularly monitored by dedicated worker processes for new work to accomplish. Celery interacts
by messages, with a broker commonly acting as a mediator for clients and workers. To initiate
a task, the client adds a message to the queue, which is subsequently sent to a worker via the
broker. Celery systems can include numerous workers and brokers, allowing for high availability
and horizontal scaling.

Celery utilizes the producer consumer design pattern where a producer creates the task. The
task is then placed in a messaging queue. Finally, consumers subscribe to the messaging queue
can receive the messages and process the tasks in a different queue. Celery is both a producer
and a consumer in the manner that it serves as a producer when an asynchronous task is called in
the request/response thread, adding a message to the queue, as well as listening to the message
queue and processing the message on a separate thread.

For Celery to work effectively, a broker is required for message transport. In this work, Redis
[131] is used as storage of tasks until consumed and to persist results of the task. Figure 3.4
shows a brief illustration of how celery and redis work in the application.

Redis is an in-memory data structure store. It is a disk-persistent key-value database with
support for multiple data structure or data types. This implies that, in addition to mapping
key-value based strings for storing and retrieving data (similar to the data model offered by
traditional types of databases), Redis supports additional complex data structure as lists, sets,
and so on. Redis works by mapping keys to values with a sort of predefined data model. All
Redis data is stored in memory, allowing for low latency and high throughput data access. In-
memory data storage, unlike traditional databases, do not require a trip to disk, decreasing engine
latency to microseconds. As a result, in-memory data storage can handle others of magnitude
more operations and respond faster. As a consequence, read and write operations take less than
a millisecond on average, and millions of operations per second are supported [131].

In the architectural design of Redis, a primary-replica configuration is employed, utilizing

58 CHAPTER 3. PLATFORM FOR SCRAP PROCUREMENT

Producer

Producer

DB

Task 1

Task 2

Message BrokerApplication

Celery Worke 1

Celery Worke 2

Result Backend

Step1 : Django app sends task message
to message broker

1

1

2

2

3

Step2 : Celery workers consumer task from message broker.
After the task finishes, it saves the task result to the result
backend and updates the task status

Step 3: After sending task to message broker, the Django
app can check the status and result from the result backend

Celery Flower

Flower can monitor celery by processing
messages on message broker.

Figure 3.4: The application acts as producers and workers as consumers waiting for tasks to be
put in a queue so they can be consumed. Redis acts as message broker and storage caching.
Flower is a web based tool for monitoring Celery workers and task progress.

asynchronous replication to facilitate the distribution of data across multiple replica servers.
This architectural choice enhances the system’s read performance by allowing the dispersion of
queries among the various servers, and it augments the recovery speed following a primary server
failure. The persistence of data is ensured by the feature of point-in-time backups in Redis,
which involves copying the Redis data set to disk. In the context of a high availability setup, the
fault tolerance provided by Redis contributes to robust system performance, and it offers rapid
data accessibility, which is particularly advantageous for systems experiencing high traffic loads.
A specific application of Redis is its role in storing messages produced by the application code,
which delineate the tasks awaiting execution in the Celery task queue. Moreover, Redis serves
as a storage medium for the results of the Celery queue, which are subsequently accessed by the
queue’s users.

To monitor and manage the Celery workers and task process, Flower [43] is used as the tool
to administrate the celery clusters. The Flower dashboard lists all Celery workers connected
to the message broker. Flower is able to monitor Celery events in real-time, it shows the task
process and history. Celery can control workers remotely - restart, revoke, or terminate worker
instances. Besides, it has ability to show task details (arguments, start time, runtime, and more)
with graphs and statistics.

With this setting, the software can run different computation-intensive tasks asynchronously.
Celery makes scheduling periodic tasks easy. If the application’s workflow includes a lengthy
procedure, Celery can be used to run that process in the background as resources become avail-
able, allowing the application to keep up with client requests. This keeps the task independent
of the context of the application. Figure 3.5 illustrates a screenshot of the Flower dashboard.

3.3. IMPLEMENTATION DETAILS 59

Figure 3.5: Flower can monitor all tasks and their status.

3.3 Implementation details

The architecture of the software provides a robust and flexible foundation of implementation
possibilities. The extension and new features can be added easily with this architecture. The
platform simulates the process of an end-to-end foundry system based on the combination of
ML and numerical optimization tools. The simulation systems contains three main components,
the first one is a dashboard that presents the available scrap information. The scrap dealers can
upload their scrap information, like quantity, price, chemical analysis results for specific scrap.
The second component is an AutoML (cf. section 2.4.4) system that allows user to train, evaluate,
and deploy ML models based on predefined metrics and target variables. The last component is
an optimization tool that integrates the data-driven methods and numerical optimization, which
is described in chapter 6.

3.3.1 AutoML system

The system was built to accepted ML models from many sources, which means that the system
can take trained ML models either from the software EidoData Desktop (cf. section 3.1) and
EidoData Web (cf. section 3.2) or user can train a ML model online. The AutoML system of the
software is implemented based on the open source Python library AutoGluon [35].

AutoGluon automates the time-consuming tasks for ML, such as data preparation, feature
engineering, validation splitting, missing value handling, model selection (cf. section 2.4.1.3) and
hyperparameter tuning (cf. section 2.4.3). AutoGluon automatically recognizes the data type in
each column for robust data preprocessing, including particular handling of text fields. It can fit
a variety of models, from pre-built boosted trees (cf. section 2.4.2.1) to unique neural network
models (cf. section 2.4.2.2). These models are ensembled in an approach that ensures raw data can
be converted into high-quality predictions within a certain amount of time, the models are stacked
in multiple layers and trained in a layer-wise fashion [35]. Specifically, AutoGluon simplifies
reuses all of its base layer model types as stackers, which with the identical hyperparameter
values. Unlike other approaches, the stacker of AutoGluon use the original data attributes
together with the predictions from the models at the preceding layer. Thus, during training,
the higher-layer stackers can check the initial data values. Through the use of all available
data for training and validation, as well as k-fold (cf. section 2.4.1.3) ensemble bagging of all
models at all layers of the stack, AutoGluon can further enhances its stacking performance. Each

60 CHAPTER 3. PLATFORM FOR SCRAP PROCUREMENT

model is asked to make out-of-fold predictions on the portion it did not view during training
after AutoGluon bags all the models. As every training example is out-of-fold for one of the
bagged model copies, this allows us to obtain out-of-fold predictions from every model for every
training example. Single individual models may have poorer accuracy but are computationally
advantageous, whereas training ensemble models typically results in computationally demanding
models but better results. AutoGluon also allows model distillation, which offers one way to
retain the computational benefits of a single model, while keeping some of the accuracy-boost
that comes with ensembling [38].

The AutoML provides many functions in terms of a production-ready ML system. An En-
tity Relationship Diagram (ERD) of the AutoML system is illustrated in Figure 3.6. Every ML
training project is an Experiment in the AutoML system. Experiment defines the target variable
of a ML task, it can be a classification problem or a regression problem (cf. section 2.4.1). An
experiment also provides evaluation metrics (cf. section 2.4.1.4) as objective function for Auto-
Gluon to optimize. Furthermore, experiment allows user to select best fit algorithms for different
scenarios. For instance, if algorithms is specified as best quality, which allows AutoGluon to au-
tomatically construct powerful model ensembles based on stacking or bagging, and will greatly
improve the resulting predictions if granted sufficient training time. On the other hand, medium
quality, which produces less accurate models but facilitates faster prototyping. If the training
and inference speed are more important than predictive performance, user can also choose the
algorithm optimize for deployment. In the experiment, a File object controls operations related
to files, such as uploading and downloading. FileMetaData object stores information of the data
type in each column that recognized by AutoGluon. Those information can be further used
for data visualization, feature engineering, model prediction and model evaluation. AutoGluon
saves the best predictive ML algorithm as an experiment Model. The model object contains the
validation score and testing score of the selected algorithm, and the feature importance of all
columns are stored in the model object as well.

Every ML related job can have multiple status during execution. The Task object is an
instance of Celery (cf. section 3.2) state. A task performs dual functions by defining what
occurs when a task is called (sends a message) and what happens when a worker receives that
message. Every task has a unique name, which is used in messages to help the worker identify
the appropriate function to execute. Until a worker has acknowledged a task message, it will
not be removed from the queue. A worker can reserve many messages in advance and even if
the worker is killed – by power failure or some other reason – the message will be redelivered to
another worker. Task functions should ideally be idempotent, which means they will not have
unintended consequences even if called repeatedly with the identical arguments. The worker’s
default action is to acknowledge the message in advance, just before it is executed, ensuring that
a task invocation that has already begun is never completed again. This is because the worker
cannot tell if the tasks are idempotent.

Celery can keep track of the tasks current state. The state also contains the result of a
successful task, or the exception and the traceback information of a failed task. During its
lifetime a task will transition through several possible states, and each state may have arbitrary
meta-data attached to it. When a task moves into a new state the previous state is forgotten
about, but some transitions can be deduced. There are six states that indicate the Celery task:

• Pending: waiting for execution or unknown task id;

• Started: a task has been started;

• Success: a task was executed successfully;

• Failure: a task execution resulted in exception;

3.3. IMPLEMENTATION DETAILS 61

Experiment
PK experiment_id

experiment_nam
description
features

FK target

Model
PK model_id
FK experiment
3 Value 3
3 Value 3

Predict
PK predict_id
FK model
FK file
FK task

predict_name File
PK file_id

file_name
file_path
is_delete

FileMetadata
PK file_metadata_id
FK file_id

column_name
data_type

Evaluation
PK evaluation_id
FK model

scores

EvaluationPredictActual
PK evaluation_predi
FK evaluation
3 Value 3
3 Value 3

EvaluationClass
PK evaluation_class
FK evaluation

EvaluationClassRocLift
PK evaluation_class
FK evaluation_class

EvaluationSubPopulation
PK evaluation_sub_
FK evaluation_class
3 Value 3
3 Value 3

Task
1 Value 1
2 Value 2
3 Value 3
3 Value 3

Explain
PK explain_id
FK model
3 Value 3
3 Value 3

ExplainPdp
PK explain_pdp_id
FK explain_id
3 Value 3
3 Value 3

Figure 3.6: ERD for the AutoML system.

• Retry: a task is being retried;

• Revoked: a task has been revoked.

The states information of every task will then be reported in Flower (cf. section 3.2). All ML
tasks such as file uploading, predictions, evaluations, are run in the background asynchronously,
these processes are passed off to a task queue and let a separate worker process deal with them.
The AutoML system works in conjunction with Celery to handle long-running processes outside
the normal request/response cycle. If a task is began, the information will be sent to server-side
via POST request. Within the route handler, a task is added to the queue and the task id is
sent back to the client-side. Using Django, the client continues to poll the server to check the
status of the task while the bask itself is running in the background. Figure 3.7 shows the whole
workflow as described above.

3.3.2 Software deployment

The schematic design of the software, as outlined in section (3.2), promotes effortless dockeriza-
tion (cf. section 2.6.1) of the Django application in conjunction with Redis, Celery, PostgreSQL,
and Flower (cf. section 3.3), thereby facilitating the management of asynchronous tasks. Pri-
marily, the conceptual model underlines the integration of Django with docker containers, with
particular emphasis on Redis and Celery. Ultimately, each docker container is earmarked for
deployment to Kubernetes, as discussed in (cf. section 2.6.2).

62 CHAPTER 3. PLATFORM FOR SCRAP PROCUREMENT

Client

Server

Web App
(Django)

Broker
(Redis)

Worker
(Celery)

Backend
(Redis)

POST /tasks/ (with a number)

Response with task ID

GET /tasks/<TASK_ID>/

Appropriate response

Enqueue a new
task to the broker

Check the status
of the task from

the broker

Workers picks up
task from queue

Update backend
with results

Get results from
the backend

Figure 3.7: The workflow of the asynchronous tasks in AutoML with Celery.

The Kubernetes secrete resource API can be utilized to handle credentials used by the Post-
gresSQL and Django pods. The PostgresSQL deployment is a database engine that would allow
storing the information of our software such as the ML tasks. The actual data coming from the
PostgresSQL application should be stored separately in a volume. This volume would need be
persistent so that if one or all of the pods running the PostgresSQL containers stops for any
reason the data is not lost. The PostgresSQL engine would run within a container in the ’post-
gres’ pod. To expose the ’postgres’ pod to other objects within the node, such as Django pods
in this case, an internal service called ’ClusterIP’ need to be created. The Django deployment
would create any defined number of Django pods, which together would constitute the backend
application that provides the ML and optimization functions to interact with our inputs from the
frontend. Just like the PostgresSQL application, the Django application has a ClusterIP service.
The ClusterIP services enables the Django backend API to interact with the frontend via the
browser. In a similar way, the Redis, Celery, and Flower are also dockerized as Kubernetes pods.

Each worker is booted with the docker container of the algorithmic repository. Once the
container is up and running, it connects to Celery and Redis. It then takes a task from the
queue and calculates it. The output is written by the worker to PostgresSQL. If the task was
completed successfully then the return value of the Celery task, is a JSON containing a URL
to the output saved to Flower and its metadata. That return value is automatically saved to
Redis by Celery and also save to PostgresSQL. If the task failed to finish, an exception is saved
to redis. The workflow of deployment is demonstrated in Figure 3.7. In the end, the software
can be deployed to any cloud provider, such as Google Cloud Platform, Amazon Web Services
or Microsoft Azure.

3.4. SUMMARY 63

3.4 Summary

In order to provide a unified framework for the exchange between foundries and scrap suppliers,
a web platform was developed which integrates the supply data with ML-based models of the
melting process for individual foundries in order to determine the actual costs (including energy
costs) of batches for any selected scrap composition. For producing any desired steel type, the
platform then allows for an automatic selection of the scrap composition which is optimal with
respect to the cost, using methods described in section 5.1. The architecture of this platform
is based on state-of-the-art design patterns and software libraries, with a focus on flexibility
and resilience. The feasibility of the developed solution will be demonstrated via time discrete
simulations in chapter 6.

64 CHAPTER 3. PLATFORM FOR SCRAP PROCUREMENT

Chapter 4

Scrap procurement optimization

The optimization of scrap materials for the foundry industry is an intricate process, necessitating
the consideration of numerous factors that influence the melting of scrap. This complexity arises
from the multifaceted nature of the industry and the diverse variables that come into play.

Primarily, an effective optimization program must incorporate the fluctuating market prices
of scrap materials. These prices are subject to constant change due to various economic factors,
including supply and demand dynamics, global economic conditions, and industry-specific trends.
Therefore, a robust optimization program should have the capability to adapt to these price
fluctuations and make purchasing decisions that are economically advantageous.

Secondly, the program should take into account the metallurgical and operational constraints
inherent in steelmaking. This includes considerations such as the chemical composition of the
scrap, its physical properties, and the operational parameters of the steelmaking process. These
factors can significantly influence the quality of the final product and the efficiency of the steel-
making process.

Finally, the exact scrap composition further influences the foundry process beyond the pure
chemical composition of the resulting steel. Achieving an optimal mix is essential not only
for ensuring the quality of the steel but also for reducing the energy consumption and thereby
managing production costs: The correct scrap mix can lead to a more efficient melting process,
thus lowering energy requirements and contributing to overall cost savings.

The ultimate objective of such a sophisticated and proprietary purchasing and melt-chemistry
optimization program is to determine the optimal scrap mix for every heat melt order. This
involves a delicate balance between economic considerations, operational constraints, and quality
requirements. The successful implementation of such a program can result in significant cost
savings, improved operational efficiency, and enhanced product quality.

In real-world scenarios, the implementation of such an optimization program can be challeng-
ing due to the inherent variability in scrap materials and the complex nature of the steelmaking
process. ML can be used to develop sophisticated optimization algorithms that can determine
the optimal mix of scrap for each melt order. These algorithms can consider a wide range of
factors, including the chemical composition of the scrap, operational constraints, and the desired
properties of the final product.

In the following section, the traditional methodologies utilized for scrap optimization are
systematically outlined. These traditional approaches, while having served the industry for a
considerable period, have certain limitations when faced with the intricate realities of scrap
optimization in the contemporary foundry industry.

Acknowledging the potential of ML as a pivotal instrument for scrap optimization, the ob-

65

66 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

jective is to proliferate its adoption among foundry industry stakeholders, especially those with
limited domain-specific knowledge. Consequently, two intuitive ML software applications have
been developed for this purpose. These tools have been designed with an intuitive interface and
robust capabilities, enabling users to leverage the power of ML for scrap optimization without
the need for in-depth technical knowledge.

These software applications represent the dedication to integrating advanced technology with
practical implementation. This facilitates the foundry industry in optimizing scrap utilization,
improving operational efficiency, and promoting sustainable growth.

4.1 Traditional methods for scrap purchase optimization

Purchased steel scrap serves as the principal input material for an EAF, playing a substantial role
in influencing production expenditures. The utilization of steel scrap, in varying proportions,
is instrumental in attaining the requisite physical and chemical attributes of the end product,
thereby fulfilling customer specifications. In the absence of considerations for energy pricing and
other operational constraints, the Simplex algorithm [75] emerges as a potentially viable method
for scrap purchase optimization. The Simplex algorithm, a well-established and widely utilized
method in the realm of linear programming, offers a straightforward approach to problem-solving.

In the context of scrap optimization, the primary objective is to minimize the cost of procured
scrap materials while adhering to the chemical composition requirements of the designated steel
materials and their final weight. This objective is inherently a linear programming problem,
where the cost of different types of scrap materials is minimized subject to the constraints of
the chemical composition requirements. The Simplex algorithm operates by iteratively moving
along the edges of the feasible region (defined by the constraints) towards the optimal solution.
In the case of scrap optimization, each point in the feasible region represents a possible mix of
scrap materials, and the algorithm seeks to find the mix that minimizes the total cost.

However, in real-world scenarios, the optimization of scrap materials is often more complex
and involves additional considerations. For instance, the energy cost associated with melting
different types of scrap materials can significantly impact the total cost. Similarly, operational
constraints such as the capacity of the furnace, the melting time, and the availability of different
types of scrap materials can also influence the optimal solution.

Moreover, the prices of scrap materials are often subject to fluctuations due to market dy-
namics, which adds another layer of complexity to the problem. Therefore, a more sophisticated
approach may be required to effectively optimize scrap material purchases in real-world sce-
narios. Despite these complexities, the Simplex algorithm provides a valuable foundation for
understanding the basic principles of scrap optimization and serves as a useful starting point for
developing more advanced optimization strategies.

A more complex model, employing mixed-integer nonlinear optimization techniques, has been
developed to assist in the procurement of scrap steel [97]. This advanced model is a demonstra-
tion of the intersection of mathematical optimization and industrial operations, specifically in
the context of the steel industry. Mixed-integer nonlinear optimization is a sophisticated math-
ematical method that allows for the inclusion of both discrete and continuous variables, as well
as nonlinear relationships, in the optimization problem. This makes it particularly suitable for
modeling complex industrial processes where certain decisions are binary (e.g., whether to pur-
chase a particular type of scrap or not), some variables are continuous (e.g., the amount of a
particular type of scrap to purchase), and the relationships between variables are not necessarily
linear.

The procurement expenses and energy consumption costs can be correlated to the quantities of

4.1. TRADITIONAL METHODS FOR SCRAP PURCHASE OPTIMIZATION 67

utilized scrap. This expression, constitutes the economic objective function for the scrap blending
optimization problem, serving as an approximation of the total operational expenditure, denoted
as c.

The procurement cost, represented as cp in Equation ((4.1.1)), encompasses the expenses
incurred for the inclusion of cpij [kg] of each scrap type i into an EAF batch j, in order to fulfill
production demand. Beyond the quantity of scrap incorporated into each produced batch, the
cost cp is associated with the volume of scrap procured from a specific supplier, the amount
extracted from inventory, and the integer decision variables employed to select the source and
the pricing option for the scrap.

The computation of energy expenditure within the context of steel production involves a
mathematical operation that multiplies the quantity of energy consumed, denoted as y [kWh]
, by the prevailing market price for electricity, represented as ce [$/kWh]. This calculation is
executed individually for each of the J batches, which are distinct production cycles within the
foundry operation. Each unique batch of steel necessitates its own specific inclusion of each
of the I types of scrap. The total number of batches, J , is manually determined in advance
of the optimization process. Simultaneously, the number I of accessible commodity types is
also established for a predetermined time frame that corresponds to a specific scrap purchase,
typically spanning a monthly period. The primary objective of the optimization process is to
minimize cost. This is accomplished by determining the optimal I × J scrap additions for
the designated purchase period, as well as the quantities to be procured from suppliers. This
process involves a complex interplay of variables and constraints, necessitating the application
of advanced mathematical techniques and a comprehensive understanding of the operational
parameters and market dynamics of the steel industry.

In a broader context, this mathematical representation of the scrap blending optimization
problem provides a framework for understanding and managing the complex trade-offs involved
in scrap procurement and usage in the steelmaking process. By quantifying the costs associated
with different aspects of the process, it enables decision-makers to make informed choices that
balance economic considerations with operational constraints and quality requirements. This, in
turn, can lead to improved operational efficiency, cost savings, and enhanced product quality in
the steelmaking industry.

c =

I∑
i=1

J∑
j=1

(cp ij) +

J∑
j=1

(ce · yj) . (4.1.1)

The electricity consumption y, for each batch (j = 1, . . . , J) is modeled through a regression
equation based on Partial Least Squares methodology [138]:

yj = β0 + β1m1j + . . .+ βImIj + βI+1q1j + . . . βI+QqQj . (4.1.2)

This approach facilitates the formulation of the relationship between the I scrap commodities
and operational variables q. These operational variables encompass the additions of chemical
reagents and temperature settings, which are integral to the steelmaking process. The opera-
tional variables q are established as constants for each optimization iteration, grounded on the
understanding of each specific batch type of steel. This knowledge is derived from the inherent
characteristics of the steel batch, including its chemical composition, physical properties, and the
specific requirements of the steelmaking process. Models such as the one represented in Equation
(4.1.2) can be fitted utilizing historical data sourced from production databases.

However, the linear regression model presented in Equation ((4.1.2)) may not adequately cap-
ture the detailed relationships between various types of scrap and specific furnace characteristics

68 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

during operations. To address this, a more comprehensive data-driven approach should be con-
sidered. This approach would utilize a wide range of collected data, encompassing elements like
the chemical composition of input materials, the duration of the melting process, and the energy
requirements for different melting operations. Such a method would allow for a more accurate
representation of the energy consumption associated with steel casting in a particular furnace,
taking into account multiple influencing factors. This approach is grounded in the analysis of
extensive data sets, aiming to develop a more precise model that reflects the complexities of the
steelmaking process.

The data-driven approach is instrumental in constructing a robust predictive relationship
between process data and energy consumption. This relationship is not merely linear or simplis-
tic; it is complex, reflecting the multifaceted nature of the steelmaking process. The predictive
model, therefore, needs to account for this complexity and variability, making it capable of ac-
curately predicting energy consumption under a wide range of operating conditions and input
parameters. In a real-world scenario, the implementation of such a data-driven model would
require a robust data infrastructure capable of handling large volumes of data, sophisticated
data processing and analysis tools, and a deep understanding of the steelmaking process and
ML workflow. In order to democratize the benefits of ML and make it accessible to non-experts,
two user-friendly machine learning software tools have been developed. These tools have been
designed with a focus on usability and simplicity, enabling individuals without a deep technical
background in ML to leverage its capabilities effectively.

4.2 EidoData desktop

One of the most common worries of a ML beginner is understanding how to code. EidoData
Desktop software attempts to bridge the gap between expertise ML skills and non-professional
ML users by offering an simple-to-use GUI and complete functionality for almost all aspects of
a ML project. EidoData Desktop automates ML tasks to enable people make fully informed
decisions based on massive amounts of data. The software displays all the details of a model’s
configuration so it is easy to understand how it generates predictions. Analysts who may not be
familiar with modeling or ML processes can quickly uncover insights to help solve complicated
problems. Users can fine tune model’s hyperparameters and develop highly sophisticated models
using an interface with no coding required. The software’s interactive GUI also allows users to
save enormous amounts of time developing complex models so they can begin delivering useful
predictions quickly.

The challenges in implementing the software EidoData Desktop is the fact that Python, as
the dominant ML programming language, has a versatile ecosystem consisting of millions of open
source libraries, but Python is not a suitable language for developing state-of-the-art Windows
GUI software. Meanwhile, languages such as Java, C++ or C# are good options for GUI software
development, but do not have direct access to powerful ML open source libraries as Python.

4.2.1 Implementation details

To make use of Python’s ML open source services and provide a state-of-the-art interface to user,
a separate software architecture was designed. More precisely, Python only takes responsibility
for all ML tasks; it plays the role of the backend worker for the software. On the other hand, C#
was chosen as the frontend programming language for developing the GUI, which only receives
the inputs and commands from user and sends them to backend. Finally, the frontend displays
the ML task’s results to the user.

4.2. EIDODATA DESKTOP 69

Frontend / Client Backend / Server

Port Port

Connection Request

Connection

Commands, Data

ML Results

SocketREST API REST API

Figure 4.1: The C# module acts as client, it sends the commands and data to the server-side.
The server-side processes the request and send back the decoded ML results to the client.

Figure 4.1 shows the basic architecture of the software EidoData. Since C# and Python are
two different programming languages, a communication mechanism via local sockets was used to
establish the connection between them. The socket API are used to send message across networks.
It provides a form of inter-process communication (IPC). The network can be a logical, local
network to the computer, or one that is physically connected to an external network, with its
own connections to other networks. In the case of EidoData, the network is the local computer,
which also implements the most common type of socket applications, namely the client-server
application. The default protocol is used is the Transmission Control Protocol (TCP). TCP is
reliable since it ensures that packets dropped in the network are detected and retransmitted by
the sender. TCP also enables in-order data delivery; data is read by the application in the order
it was written by the sender [7]. With TCP, there is no need to worry about packet loss, data not
arriving properly, and other problems that inevitably occur when communicating over a network
via other protocols such as UDP.

Normally, a server runs on a specific computer and has a socket that is bound to a specific
port number. The server just waits, listening to the socket for a client to make a connection
request. On the client-side, the client knows the hostname of the machine on which the server
is running and the port number on which the server is listening. To make a connection request,
the client tries to rendezvous with the server on the server’s machine and port. The client also
needs to identify itself to the server so it binds to a local port number that it will use during
this connection. This is usually assigned by the system. If everything goes well, the server
accepts the connection. Upon acceptance, the server gets a new socket bound the the same local
port and also has its remote endpoint set to the address and port of the client. An endpoint
is a combination of an IP address and a port number. Every TCP connection can be uniquely
identified by its two endpoints. The new socket is required so that the host can continue to listen
to the original socket for connection requests when tending to the needs of the connected client.
On the client side, if the connection is accepted, a socket is successfully created and the client

70 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

can use the socket to communicate with the server.
Once the connection between C# and Python is established, a data transfer mechanism is

needed so that they can exchange data. APIs are commonly used to retrieve data from other
resources. The API acts as a layer between client and server. The client send a certain command
and data and receive data in a predetermined format from server. A REST (Representation
State Transfer) API is a software architecture style that defines a pattern for client and server
communications over a network. This structure enables a web service to expose operations and
data through a series of well-defined endpoints. The requests that a client program sends to a
REST service to retrieve, modify or create, or delete data use a predefined set of actions. A
REST service responds to these requests in a standardized manner. This approach makes it
easier to construct client programs. REST provides a set of constraints for software architecture
to promote performance, scalability, simplicity, and reliability in the system. It handles HTTP
requests and routes them to the appropriate function in the application. To convert the state
of data or commands from the client into a form that can be persisted or transported, all the
inputs from client will be serialized in the JSON (JavaScript Object Notation) format and sent
to server-side. Once the ML tasks finished successfully, the client-side will convert the serialized
stream of data into the original object state. This process is called deserialization, ensures that
the original state is not altered and is recreated when needed.

Although the C# front-end only plays the role of a graphical interface, it still needs a robust
design principle to be scalable, modular and maintainable. Different architectures may vary in
their details, but they all have the same objective, the separation of concern. This separation
is achieved by dividing the application into layers. The main concept of clean architecture is
that application code or logic which is very unlikely to change, has to be written without any
direct dependencies [45]. In clean architecture, the Domain and Application layers remain at the
center of the design which is known as the Core of the system. The domain layer contains actual
enterprise logic and the application layer contains business logic. Enterprise logic can be shared
across many systems, but the business logic will typically only be used within the system. The
core will be independent of data access and other infrastructure concerns.

Business logic and the application model are at the heart of clean architecture. Instead of
business logic being dependent on data access or other infrastructure issues, this dependency
is inverted, with the application core being dependent on implementation and infrastructure
details. This functionality is achieved by defining abstractions, or interfaces, in the application
core, which are then implemented by types defined in the infrastructure layer. Figure 4.2 shows
a more traditional horizontal layer diagram that better reflects the dependency between the user
interface and other layers.

4.2.2 Features of EidoData desktop

The EidoData Desktop software adheres to a design principle that streamlines the ML process.
This section outlines its primary functions and features, which are categorized into four fun-
damental components: data exploration, data preprocessing, model training, and evaluation.
The initial stage in any ML task facilitated by this software is data importation. To this end,
the software is equipped with fundamental import functions that enable loading data from var-
ious sources. These sources include Excel or CSV files, text files, clipboard content, and data
from database systems like SQLite or MySQL. This functionality ensures versatility in handling
different data formats and origins, a crucial aspect in the initial stages of the ML workflow.

Once the data is imported, EidoData can immediately analyze the data. For each column in
the dataset, the corresponding statistics are displayed:

• type inference: recognize column types in a data frame.

4.2. EIDODATA DESKTOP 71

Figure 4.2: Clean architecture: the user interface layer uses interfaces declared at compile time in
the application core and, in theory, should not be aware of the implementation types provided in
the infrastructure layer. However, these implementation types must be present and connected to
the Application Core interfaces via dependency injection at runtime in order for the application
to execute. [95]

• key features: type, unique values, missing values.

• quantile statistics: minimum value, Q1, median, Q3, maximum, range and interquartile
range.

• descriptive statistics: mean, mode, standard deviation, sum, median absolute deviation,
coefficient of variation, kurtosis, skewness, process capability index.

• highlighting correlations of highly correlated variables, Spearman, Person and Kendall
matrices.

To utilize ML effectively, data preprocessing is a critical step, as detailed in section 2.4.1.2.
This preprocessing involves a series of operations, each designed to refine the raw data, thereby
enhancing the ML algorithms’ ability to construct more accurate predictive models. For struc-
tured data, EidoData incorporates a range of processing operations, which may include:

• data cleaning: removing or correcting records with broken or invalid values (outliers) from
raw data, as well as removing records that are missing a large number of columns.

• partitioning: select data points from the input dataset to create training, validation and
testing dataset (cf. section 2.4.1.2).

• data transformation: transforming categorical features into numerical representation.

• feature extraction: reducing the number of features by creating data representations with
fewer dimensions and higher performance. Methods such as PCA, SVD, KPCA are used
for this purpose (cf. section 2.4.1.2).

72 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

• feature scaling: improve the quality of a feature of ML, including scaling and normaliza-
tion of numerical values, input of missing values, adjustment of values with asymmetric
distribution (cf. section 2.4.1.2).

When the user is satisfied with the preprocessing result, training a ML model in EidoData can
become very straightforward. EidoData supports both classification and regression problems for
supervised learning. For a regression problem, EidoData provides 26 algorithms with extensive
parameter settings whereas 23 algorithms for classification problem are also implemented. There
is also an ensemble method called ”supervisor” for both regression and classification tasks. The
training result is displayed with many different metrics depending on the task. Figure 4.3 shows
the result of a random forest and its prediction on the test dataset. Users are then able to adjust
the hyperparameters and select the machine learning model that gives the best result.

Figure 4.3: Training a regression problem with random forest in EidoData.

To evaluate the training result, EidoData also provides various plots for visualization. For
the regression problem, there are ”Residual Plot” and ”Forecast Error Plot”. For classification
problems, EidoData supports the ”Confusion Matrix Heatmap”. With the help of these diagrams,
the result becomes more understandable.

The ability to understand how models generate their output is critical to building confidence
in the reliability and value of ML investments. With EidoData, it is easy for model designers,
analysts, and decision-makers to understand exactly how models work. The software’s highly
visual approach to model construction maintains high levels of ML performance and prediction
accuracy while allowing people to understand, trust, and manage their ML models. EidoData
provides two essential tools for model interpretation: feature permutation and SHAP values [86].
EidoData supports a transparent model-building process. Users, including people who are not
data scientists, can see how models gather and process data to generate predictions.

For each ML algorithm, EidoData provides an intelligent way for hyperparameter tuning (cf.
section 2.4.3). EidoData predefines some important hyperparameters for all ML models. To find
the best training result, a combination of hyperparameters can be determined easily. Finally,

4.3. EIDODATA WEB 73

EidoData can generate a report about the entire ML process, which contains information about
the original dataset, the methods used for preprocessing, the selected ML algorithms for training
and the corresponding results.

4.3 EidoData web

The limitation of EidoData Desktop is that the user has to install the software on a local Windows
machine. For some users, this could be problematic and inconvenient. To make the ML services
even more accessibly and reduce the cost of the learning curve, a web service could be an
alternative. The authorized user is then able to use the ML services without installing any
software. The rigorous tuning of hyperparameters offered by EidoData Desktop also call for
the user to have some ML expertise. EidoData Web provides a user-friendly interface without
addressing ML hyperparameters to make ML services more easily accessible for all users.

The benefits of using the web version of EidoData can be concluded as follows. First of
all, it enables experimenting and testing multiple models. The advantage of the web lies in
its capacity to facilitate the scalability of ML projects. Initiating with a limited dataset, there
exists the potential to incrementally incorporate more data points as confidence in predictions
increases. The web interface permits experimentation with ML functionalities, allowing for
expansion as projects transition to production and as demand intensifies due to fluctuating usage.
Furthermore, ML can be employed to assess multiple datasets to determine optimal performance.
Conversely, the establishment, operation, and maintenance of robust servers present significant
challenges. Leveraging cloud solutions mitigates much of the intricacy associated with these tasks,
as the cloud service provider assumes responsibility for a significant portion of these complexities.

4.3.1 Implementation details

To automate the EidoData Web development workflows and deploy better quality code, more
often, CI/CD (continuous integration and continuous delivery) is a very important tool. CI/CD
automates much or all of the manual human intervention traditionally needed to get new code
from a commit into production such as build, test, and deploy, as well as infrastructure provi-
sioning. Utilizing a CI/CD pipeline facilitates the automation of code modifications, ensuring
they undergo rigorous testing before proceeding to delivery and deployment stages.

Continuous integration refers to the systematic practice of validating each modification to
the source code by automatically initiating tests upon commit or merge. This process facilitates
the prompt and consistent amalgamation of code alterations into the primary branch of a shared
source code repository. Continuous integration makes it easier to find and fix bugs and security
problems, and it does so considerably earlier in the software development lifecycle. Even when
numerous developers are working on the same application, code conflicts may be minimized by
often merging changes and initiating automated testing and validation procedures. The expe-
dited response time and the capability to address bugs and security issues represent additional
advantages. A static code analysis that confirms the code’s quality is the first step in most
code validation methods. Once the static tests are passed, automated CI processes package and
compile the code in preparation for additional automated testing. A version control system that
monitors change should be utilized in CI procedures.

Continuous delivery (CD) automates the release of verified code to a repository after the
automation of builds and unit and integration testing in CI. Therefore, it is critical that CI is
already built into the development pipeline in order to have a successful continuous delivery
process. A code base that is constantly prepared for deployment to a production environment
is the aim of continuous delivery. In continuous delivery, every stage—from the merger of code

74 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

Figure 4.4: Continuous Integration (CI) is a phase in the software development cycle where code
from different team members or different features are integrated together. This usually involves
merging code (integration), building the application and carrying out basic tests all within an
ephemeral environment [130]

changes to the delivery of production-ready builds—involves test automation and code release
automation. At the end of that process, the operations team is able to deploy an app to produc-
tion quickly and easily. With continuous delivery, the software is built so that it can be deployed
to production at any time. The deployments can then be manually triggered or automated as
well.

The final stage of a mature CI/CD pipeline is continuous deployment. Continuous deployment
automates the release of an application to production as an extension of CD, which automates
the release of a production-ready build to a code repository. Continuous deployment heavily
relies on well-designed test automation as there is no manual gate at the pipeline level prior
to production. In practice, continuous deployment means that a developer’s change to a cloud
application could go live within minutes of writing it, assuming it passes automated testing. It has
thereby become much simpler to regularly receive and take into account customer input. When
all of these CI/CD techniques are used, deployment of an application becomes less hazardous,
making it easier to release application modifications incrementally rather than all at once. There
is also a lot of upfront investment, however, since automated tests will need to be written to
accommodate a variety of testing and release stages in the CI/CD pipeline.

Adopting CI/CD into software development tends to facilitate a number of positive changes.
First, the users and customers will have a better experience since fewer bugs and problems occur
in production. This leads to improved levels of customer satisfaction, confidence and reputation.
Second, CI/CD can accelerate time-to-value. The deployment of software has not limitation of

4.3. EIDODATA WEB 75

Figure 4.5: A CI/CD pipeline is a seamless way for us to make changes to code that are then
automatically tested and pushed out for delivery and deployment. The goal is to eliminate
downtime [51]

timing and location, which bring products and new features to the end-user faster. Ultimately,
this facilitates optimal efficiency and effectiveness in task execution by decreasing tedious and
time-consuming manual development work and legacy approval processes. Automation makes
processes predictable and repeatable so that there is less opportunity for error from human
intervention.

The idea behind the development of the EidoData web application was to enable its deploy-
ment in any public or private cloud. Several third-party services for CI/CD and public cloud
services will be shortly introduced before outlining the entire development process. GitHub Ac-
tions is a major player in the CI/CD market. It can easily replace most CI/CD tools, especially
if code is shipped as container images (cf. section 2.6.1). GitHub Actions offers a serverless
platform that can handle the majority of development operations, which makes automating jobs
easier. From a developmental perspective, transitioning between multiple services to diagnose
build errors can compromise efficiency. Minimizing the number of environments engaged on a
routine basis can optimize productivity. A workflow is an automated procedure that can be
configured to execute one or more operations. Workflows are defined by a YAML file that is
checked into the repository and performed when triggered by an event manually, or according to
a set schedule. Upon each new commit submission to GitHub, the system initiates the GitHub
Actions workflow process. GitHub Actions will build a docker image in its runner and push
that image to a container registry. GitHub Actions will then connect to a public cloud provider,
such as Google Cloud Platform, and deploy the image from the container registry to the cloud
Kubernetes engine. Figure 4.6 shows the pipeline of using GitHub Actions to build, test and
deploy a web application to the Google Cloud Platform.

76 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

Figure 4.6: GitHub Actions help us to build the image, push it to Google container registry and
trigger the deployment.

4.3.2 Features of EidoData web

Aside from running on the cloud, the EidoData web also provides some additional features, which
are presented in this section. In terms of feature engineering (cf. section 2.4.1.2), EidoData web
can combine two features through an arithmetic operation, which can be helpful in explaining
variances in data. Creating a new feature through the interaction of existing ones is known as
feature interaction. More specifically, feature interaction creates new features by multiplying two
variable (x1 · x2), while feature ratios create new features by calculating the ratios of existing
features (x1/x2). In ML experiments the relationship between the dependent and independent
variable is often assumed as linear. However this is not always the case: sometimes the rela-
tionship between dependent and independent variables is more complex. Creating polynomial
features sometimes might help in capturing that relationship which otherwise may go unnoticed.
EidoData web therefore also supports creating polynomial features from existing features. For
instance, if an input sample is two dimensional and of the form [x1, x2], the polynomial features
with degree 2 are: [1, x1, x2, x

2
1, x1 · x2, x

2
2].

When a dataset contains features that are related to each other in some way, for example
features recorded at some fixed time intervals, the new statistical features such as mean, median,
variance and standard deviation for a group of such features can be created from existing features
using the group features function in the EidoData web. Feature binning is a method of turning
continuous variables into categorical values using a predefined number of bins. It is effective when
a continuous feature has too many unique values or few extreme values outside the expected
range. Such extreme values influence on the trained model, thereby affecting the prediction
accuracy of the model. In EidoData web, continuous numeric features can be binned into intervals
using feature binning function. The number of bins can be determined following Sturges’ rules
[149] or using K-Means clustering to convert continuous numeric features into categorical features.

A categorical feature with a lot of levels might sometimes be encountered in a dataset; these
are known as high cardinality features. If these feature or features are encoded (cf. section 2.4.1.2)
into numeric features, the resulting matrix is sparse. Due to the manifold increase in the number

4.3. EIDODATA WEB 77

of features and resulting increase in dataset size, this not only slows down the computations but
also introduces noise. By merging the rare levels in the feature or features that have cardinality,
a sparse matrix can be avoided. This can be achieved in EidoData web using the combine rare
levels function. Creating clusters using the existing features from the data is an unsupervised
ML technique (cf. section 2.4) to engineer and create new features. It uses an iterative approach
to determine the number of clusters using a combination of the Calinski-Harabasz [16] and the
silhouette criterion [137]. Each data point with the original features is assigned to a cluster.
The assigned cluster label is then used as new feature in predicting target variable. This can be
achieved in EidoData web using the create clusters function.

The web version of EidoData offers feature selection, which is another important distinction
between it and the desktop version. Feature selection is a process used to select features in
the dataset that contributes the most in predicting the target variable. Working with selected
features instead of all the features reduces the risk of overfitting, improves accuracy, and decreases
the training time. In EidoData web, this can be realised using the feature selection option. It uses
a combination of several supervised feature selection techniques to select the subset of features
that are most important for modeling. Multicollinearity is a phenomenon in which one feature
variable in the dataset is highly linearly correlated with another feature variable in the same
dataset. Multicollinearity increases the variance of the coefficients, thus making them unstable
and noisy for linear models. One way to deal with multicollinearity is to drop one of the two
features that are highly correlated with each other. This can be achieved in EidoData web using
the remove multicollinearity function. Finally, a dataset may have a categorical feature with
multiple levels, where the distribution of such levels is skewed and one level may dominate over
other levels. In such cases, there is not much variation in the information provided by the feature.
For a ML model, such feature may not add a lot of useful information and thus can be ignored
for modeling. This can be done in EidoData web using the ignore low variance function. Figure
4.7 illustrates the interface of EidoData web for all aforementioned functions.

Figure 4.7: EidoData Web provides a friendly and intuitive interface for preprocessing, training
and deploying a ML project.

78 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

Without having to worry about the hyperparameter setting for each ML algorithm, EidoData
Web can train and evaluate the performance of almost all popular ML algorithms simultaneously.
Besides the ML algorithms that were introduced in section 2.4.2, EidoData web also supports
another 15 ML algorithms for regression. Figure 4.8 shows a list of available ML algorithms
of EidoData web and their results together with the related metrics on an example dataset.
Simultaneous execution of ML algorithms significantly speeds up the training process. It provides
the single model that performs best based on the predefined criteria.

Figure 4.8: A comprehensive variety of ML algorithms are offered by EidoData web. This graphic
displays the results of each ML algorithm’s training result together with the related metrics.

4.4 Summary

The investigation of traditional methodologies for scrap purchase optimization shows a number
of shortcomings. The constraints inherent to these methods motivate the progression towards a
data-driven paradigm. This new approach leverages the complex relationships between process
data and energy consumption, founded on the analysis of a substantial volume of historical data.

The traditional methods, while effective to an extent, often lack the flexibility and adaptability
necessary to handle complex variables and scenarios. This is particularly noticeable in the
context of energy consumption, where the interplay between different factors is intricate and
often unpredictable. Therefore, these traditional methods often reach their limits, emphasizing
the need for more sophisticated tools capable of unearthing insights from complex data sets.

This is where data-driven methodologies come into the picture. Using ML algorithms, these
methods are able to identify and quantify the relationships between process variables and energy
consumption, providing more accurate and nuanced insights. The approach uses historic collected
data to predict future outcomes, giving foundries a more efficient way to optimize their energy
usage based on their specific needs.

4.4. SUMMARY 79

To this end, two user-friendly ML software tools have been introduced, which demonstrate
significant utility for the foundry industry. These tools are designed to be easy to use, even for
non-experts, and provide a way to harness the power of ML without needing specialized knowl-
edge or training. This enables individuals and companies to leverage ML in their operations,
enhancing their ability to optimize their purchased scrap, reduce energy consumption, and ulti-
mately improve their bottom line. The software tools are a contribution to the democratization
of ML, opening up its vast potential to a wider user base and making its benefits more accessible.

80 CHAPTER 4. SCRAP PROCUREMENT OPTIMIZATION

Chapter 5

Surrogate gradient methods for
optimization

The widespread popularity of data-driven models is reflected in their expanding deployment
as alternatives to traditional analytical descriptions or simulations, as hinted at in chapter 4.
Within the context of the foundry industry, these models are instrumental in forecasting diverse
results such as energy consumption, correlated with specific quantitative traits that derive from
observed process parameters as well as control variables.

Transitioning from a purely predictive to a prescriptive analytics framework represents a
significant progression. The transition encompasses the utilization of data-driven models to
optimize processes. A key aspect of this procedure involves determining a control variable value,
for given process parameters, that would improve output quality in accordance with the process
model. Thus, prescriptive analytics, as an extension of predictive analytics, not only anticipates
outcomes, but also suggests the course of action for optimal results.

The progression of this task inherently necessitates the formulation of a constrained optimiza-
tion problem (cf. Equation 2.5.1) pertinent to data-driven predictive algorithms. Nevertheless, it
has been observed that a significant proportion of optimal models in the current research land-
scape exhibit a lack of consistency. Predominantly non-differentiable methods, such as gradient
boosting or random forest (cf. section 2.4.2.1), are frequent choices but they often demonstrate
discontinuities. The optimization of these models requires the application of derivative-free tech-
niques as discussed in section 2.5.2. Such a requirement recognizes the intrinsic complexities
associated with these methodologies. It further highlights the imperative to develop advanced
techniques to navigate the intrinsic challenges posed by these models and to capitalize on their
predictive capacities.

In the following, the utilization of surrogate models is explored (cf. section 2.5.4), specifi-
cally independently differentiable ML models (cf. section 2.4.2.2), during the optimization phase.
While it is generally acknowledged that these surrogate models may not be as precise in emu-
lating the actual process, their capacity to utilize derivative-based optimization techniques (cf.
section 2.5.3) offers significant benefits with regard to computational efficacy.

This exploration encompasses both theoretical frameworks, evidenced by traditional bench-
marks, and practical application, emphasized by the analysis of a dataset derived from an actual
industrial environment. Despite the increased model error observed in these surrogate models,
the computational benefits they provide may render them favorable, especially within the realm
of real-time applications. This is particularly evident when evaluating the cost-benefit analysis
of computational speed versus absolute accuracy, a factor of paramount importance in real-time

81

82 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

optimization scenarios.

5.1 Gradient-based optimization of surrogate models

In this study, the primary aim is to optimize the composition of procured scrap mixtures. Fun-
damentally, these scrap mixtures influence three key cost components in foundry operations.

The first cost component under consideration is the direct expenditure associated with the
acquisition of the scraps. This cost is determined by the market prices of the different types of
scrap materials, the quantity required, and the contractual terms with the scrap suppliers. This
necessitates an understanding of the metal scrap market dynamics and price fluctuations, which
can significantly influence the cost of procurement.

The second cost component pertains to the logistics and transportation of the acquired scraps
from the point of purchase to the foundry location. The transportation cost is typically a function
of the distance between the supplier and the foundry, the mode of transport, and the total weight
of the scrap materials.

The third and final cost component is related to the composition of purchased scraps that
are fed into the furnace for melting. This is of particular significance as it can have a substantial
impact on energy consumption and, consequently, energy costs. The energy required for melting
different types of scrap materials varies, and therefore, the composition of the scrap mix can
significantly influence the total energy cost. More energy-efficient scrap mixes can contribute to
lower overall production costs and promote sustainable foundry operations.

In the present study, ML methodologies were utilized to predict energy consumption related
to distinct instances of steel casting and particular furnaces. This attempt is of particular interest
as it facilitates better management of energy resources in foundry operations, contributing to
more sustainable and cost-effective practices. Specifically, in the context of structured, tabular
data applications, the XGBoost algorithm (cf. section 2.4.2.1) has exhibited superior performance
in specific instances when compared to NN (cf. section 2.4.2.2). XGBoost, a tree-based ensemble
method, can effectively handle heterogeneous features often present in tabular data and offers
robustness against overfitting, rendering it a promising tool for such predictive tasks. However,
the prediction function of XGBoost is inherently non-smooth and non-differentiable because it
is based on decision trees [23]. A decision tree, by its very nature, makes predictions using a
series of binary splits on the input features. Each of these splits introduces a discontinuity in
the prediction function, which makes it non-smooth. For instance, if a decision tree splits a
feature at a value of 0.5, the prediction for a value 0.4999 could be significantly different from
the prediction for a value of 0.5001.

Furthermore, the prediction function of XGBoost is unsuitable for derivative-based method
even locally because of its foundational structure in decision trees. These trees produce constant
outputs within the area of each leaf node. Therefore, within the area defined by any leaf node,
the output does not change regardless of changes in the input, until the input moves across a
decision boundary. This unchanging output results in a derivative value of zero. In other words,
the prediction function of XGBoost is piecewise constant, leading to its derivative being zero
almost everywhere, except at the decision boundaries where it’s not defined.

Contrarily, the architecture of a NN (cf. section 2.4.2.2) is structured as a combination of
operations that are inherently differentiable. Leveraging the principles of the chain rule in cal-
culus, the derivative of a composite function is computed as the product of the derivatives of
the constituent functions. Consequently, this implies that the prediction function of a NN is
inherently differentiable, both with respect to its inputs and the parameters that dictate the
network’s behavior.

5.1. GRADIENT-BASED OPTIMIZATION OF SURROGATE MODELS 83

In addition to employing the COBYQA (cf. section 2.5.2.2) and COBYLA (cf. section 2.5.2.1)
algorithms, this study also utilizes the NGOpt method and NGOptRW method [94], which are
supplied by the Nevergrad library [128], a comprehensive and advanced derivative-free optimiza-
tion framework. NGOpt is a meta-algorithm that adapts to the problem at hand by selecting
and combining various optimization algorithms available within Nevergrad. The primary goal
of NGOpt is to provide robust optimization performance across a diverse set of problems. To
achieve this, NGOpt employs a two-layer approach:

1. Algorithm selection: NGOpt starts by choosing a suitable algorithm (or a combination of
algorithms) from its pool of available optimizers. This selection process is based on the
performance of these optimizers on a set of benchmark problems, which are representative
of a wide range of real-world optimization challenges. By analyzing the problem features
and comparing them to the benchmarks, NGOpt selects the most promising algorithms for
the given task.

2. Algorithm adaptation: After selecting the appropriate algorithm(s), NGOpt fine-tunes the
chosen optimizer(s) to better adapt to the specific problem. This is achieved by adjusting
the optimizer’s parameters or through other problem-specific adaptations. The optimiza-
tion process then proceeds using the adapted algorithm(s).

Unlike NGOpt, which is optimized for artificial benchmarks, NGOptRW has been specifically
developed to better suit real-world applications. NGOptRW is adjusted to be more effective in
handling real-world problems, making its performance more suitable and practical for real-life
scenarios [9].

5.1.1 General problem description

In the following, we will assume that f, f̂ , f̃ : Ω×Φ→ R are functions on a domain D = Ω×Φ ⊂
RN such that

i) ∥f − f̂∥L2(Ω×Φ) < ∥f − f̃∥L2(Ω×Φ),

ii) f̃(·, ϕ) : Ω→ R is continuously differentiable.

In the given context, f denotes the theoretical function representing the actual process.
This function, in an idealized sense, captures the true relationship governing the process under
investigation. Meanwhile, f̂ is an approximation of f that is suitably close with respect to the
∥ . ∥L2(Ω×Φ). In other words, f̂ serves as a data-driven model whose mean square error (MSE, cf.
section 2.4.1.3), a measure of the model’s predictive performance, is sufficiently low.

Furthermore, f̃ ∈ C1(D), acts as a differentiable surrogate for f̂ . However, it is assumed
that while f̃ retains the differentiability property, it provides a less accurate approximation of
f compared to f̂ . This trade-off is often necessary when the original function or its direct
approximation is non-differentiable, and a differentiable representation is required for certain
analysis or optimization procedures.

For given parameters ϕ ∈ Φ, we would like to find

x∗ = argmin
x∈Ω

f(x, ϕ) .

In practice, of course, the functional relation f is usually unknown. As an approximation, we
try to determine

x̂∗ = argmin
x∈Ω

f̂(x, ϕ)

84 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

instead. However, if f̂ is not sufficiently regular, derivative-free methods are required to com-
pute a suitable approximation x̂ ≈ x̂∗. Due to the difficulties associated with derivative-free
optimization, a close approximation of x̂∗ would generally require a high amount of computa-
tional resources which, for example in real-time applications, might not be readily available. On
the other hand, using classical derivative-based methods, determining

x̃ ≈ x̃∗ = argmin
x∈Ω

f̃(x, ϕ)

proves a much simpler task due to regularity assumption ii), although according to i), a higher
deviation between f(x̃∗, ϕ) and f(x∗, ϕ) = min f(·, ϕ) needs to be expected. A simple example
of this method is shown Figure 5.1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1

2

3

4

5

6

x

F
u
n
ct
io
n
va
lu
e

Simple example of derivative-based optimization of surrogate models

(x∗, f(x∗))

(x̃∗, f̃(x̃∗))

(x̂∗, f̂(x̂∗))

Figure 5.1: A simple demonstration of using the differentiable surrogate model.The blue curve
represents the original function f . The green dashed curve represents the piecewise approxima-
tion f̂ . The red dash-dot curve represents the differentiable surrogate f̃ .

5.1.2 Application to machine learning

More specifically, as depicted in Figure 5.2, the methodology can be delineated into two primary
phases: training and optimization. In the training phase, two ML models, specifically XGBoost
(non-differentiable) and a NN (differentiable), are trained. Subsequent to this training, a com-
parative analysis is conducted based on the MSE to ascertain the relative performance of the two
models. Transitioning to the optimization phase, the procedure distinguishes two cases based

5.2. NUMERICAL EXPERIMENTS 85

on which is the superior model: if the NN exhibits a lower MSE, the optimization of the input
variable X is undertaken using derivative-based optimization techniques, such as SLSQP. The
objective function for this optimization is derived from the prediction function of the NN. The
final output is then the NN’s prediction on the optimized input feature, denoted as X∗.

Conversely, if XGBoost demonstrates a superior performance metric, the NN is leveraged
as a surrogate model. This is primarily due to the NN’s capability to furnish derivative in-
formation pertinent to the loss function. The optimization of X still employs derivative-based
optimization techniques with the NN’s prediction function serving as the objective. However,
post-optimization, the prediction on the optimized input X∗ is conducted using XGBoost, at-
tributed to its lower MSE.

5.1.3 Main objective

Our primary objective of to conduct a comprehensive examination of the consequential trade-off
between a model’s predictive accuracy and the computational resources necessitated for its op-
timization. Specifically, we seek to clarify whether within the paradigm of data-driven modeling
applied to industrial processes, circumstances can arise where it may be advantageous to utilize
a model characterized by lower accuracy but equipped with more regular, or smoothly varying,
behavior for the purposes of optimization. This balance between precision and computational
efficiency is a critical aspect of model selection in the context of real-world applications, where
resource limitations often constrain the complexity of the models that can be feasibly employed.
Our study seeks to provide valuable insights into these trade-offs, informing decision-making
in the practical application of data-driven models to industrial processes. This understanding
could guide the choice of modeling approach, potentially favoring simpler, more computationally
tractable models that may offer sufficient accuracy for the task at hand.

5.2 Numerical experiments

In this investigation, the proposed methodology was employed on two distinct datasets: one being
a popular benchmark dataset used in related studies, and the other being a dataset procured
from real-world operations in the foundry industry. The successful application of our method
across these diverse datasets highlights its robustness and proficiency in managing varied data
types and domains, thereby validating its suitability for broad application in different settings.

5.2.1 Rosenbrock function

The Rosenbrock function, as initially proposed by Rosenbrock in 1960 [136], represents a well-
established benchmark problem within the realm of numerical optimization. Since its inception,
this function has been extensively employed as a standard measure to evaluate and compare the
efficacy of various optimization algorithms. The initial definition of the function is as follows:

f(x1, x2) = (1− x1)
2 + 100(x2 − x2

1)
2,

with a global minimum at (1, 1), as shown in Figure 5.3. We will be using a multidimensional
extension of this problem [53], which is given by

f(x) = f(x1, x2, . . . , xn) =

n−1∑
i=1

[
(1− xi)

2 + 100(xi+1 − x2
i)

2
]
.

86 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

Train two ML models,
XGBoost and NN on

(X, Y)

No

YesXGBoost(MSE) >
NN(MSE)

Optimize X: derivative
(NN)-based

opimization (SLSQP)

Objective: NN's
prediction

NN as surrogate
model

Optimize X: derivative
(NN)-based

opimization (SLSQP)
Output: NN(X*)

Objective: NN's
prediction

Output: XGBoost(X*)

Figure 5.2: Flowchart for the derivative-based optimization of surrogate models method.

Additionally, we select m ∈ {5, 10}, with m representing the quantity of variables that are
randomly designated as constant. The corresponding equality constraints are

5∑
i=1

xi = 25 and

10∑
i=1

xi = 50 , (5.2.1)

respectively.

5.2. NUMERICAL EXPERIMENTS 87

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Contour Plot of the 2D Rosenbrock Function. Global Minimum at (1, 1)

0

500

1000

1500

2000

2500

Figure 5.3: Contour plot for 2D Rosenbrock function.

In the context of the Rosenbrock test function, we initially designate n = 10 as the number
of variables and choose m = 5 constant variables. The optimization of the input variables
is facilitated through the utilization of XGBoost model (f̂) and NN model (f̃) as objective
functions, implementing derivative-free (cf. section 2.5.2) and derivative-based optimization (cf.
section 2.5.3) methodologies respectively. Following the optimization process, we proceed to
compute the Rosenbrock function’s value using the optimized variables.

Subsequently, we extend our analysis to include the Rosenbrock function with n = 15, while
maintaining m = 5 or m = 10 constant variables. The intention behind varying the count
of variables and constants is to examine the performance of the optimization algorithms under
different complexities, which is critical in establishing their robustness and applicability in diverse
scenarios. To further strengthen the reliability and validity of our findings, we conducted 35
independent simulations for each configuration.

More specifically, we generate a synthetic dataset comprising 50,000 data points using a
truncated normal distribution within the range [0, 10]. Each dataset corresponds to a specific
dimensionality n. The Rosenbrock function values are then computed for each data point, and the
datasets are split into training and testing datasets with a ratio of 90% and 10%, respectively.
The training phase involves fitting both XGBoost and NN models to the training data. The
models are tuned to approximate the Rosenbrock function, learning the underlying patterns in
the data.

In this synthetic example, the Rosenbrock function itself represents the underlying functional
relationships within the simulated process, which is unknown in practice, with the m fixed
parameter values as the observable quantities influencing the process and the n − m variables
as the controllable parameters. The ML models, which were trained on the limited dataset
(representing observations from the process), exhibit significant differences in their accuracy,
with an MSE-measure of 23,296 for the XGBoost model and MSE = 117, 658 for the NN model.
Since the non-continuous XGBoost model provides a better fit to the data, these two ML models

88 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

can be used to investigate different combinations of optimization algorithms, as described in
section 5.1.

More specifically, the following optimization strategies are employed for comparison:

• the XGBoost model is optimized directly with the gradient-free methods NGOpt and
NGOptRW;

• the XGBoost model is optimized with SLSQP using the gradients of the NN model function;

• the NN model function is optimized with SLSQP;

• the original Rosenbrock function itself is optimized with SLSQP and NGOptRW.

The results derived from these numerical experiments are subsequently presented in Table
5.1. Figures 5.4 – 5.6 provide a comparative analysis of the results, employing both line plots
and box plots. Furthermore, Figures 5.7 – 5.9 illustrate the processing time associated with each
optimization method and deviations from the constraints, respectively. All computations were
performed using an Intel Xeon Gold 6140 Processor with 128GB and an NVIDIA GeForce RTX
3090.

Table 5.1: Optimization outcome for the Rosenbrock function. The dataset comprises 50,000
data points, which were partitioned into a ratio of 90% for training and 10% for testing. The MSE
was assessed using the test dataset to evaluate the model’s performance. When the objective
function is defined as the Rosenbrock function, the optimization algorithms operate directly on
this function. In such scenarios, ML models do not contribute to the optimization process.

n m MSE Objective Gradient Optimizer Time (s) Rosenbrock
Constraint
deviations

10 5

23 296
XGBoost - NGOpt 35.89 650 579 0.5452 %
XGBoost - NGOptRW 13.18 555 887 0.5472%
XGBoost NN SLSQP 0.58 386 743 0.0002%

117 658 NN NN SLSQP 0.28 386 118 0.0003%

0
Rosenbrock Rosenbrock SLSQP 0.04 381 696 0.0%
Rosenbrock - NGOptRW 16.16 524 740 0.5233%

15 5

37 696
XGBoost - NGOpt 35.87 979 301 0.4834%
XGBoost - NGOptRW 13.96 801 651 0.4581%
XGBoost NN SLSQP 0.67 691 395 0.1376%

148 261 NN NN SLSQP 0.27 696 118 0.0006%

0
Rosenbrock Rosenbrock SLSQP 0.04 673 113 0.0 %
Rosenbrock - NGOptRW 15.37 835 557 0.5017%

15 10

37 696
XGBoost - NGOpt 36.00 1 466 969 0.5629%
XGBoost - NGOptRW 13.65 966 270 0.5391%
XGBoost NN SLSQP 1.25 532 398 0.0767%

148 261 NN NN SLSQP 0.34 536 971 0.0001%

0
Rosenbrock Rosenbrock SLSQP 0.10 494 890 0.0 %
Rosenbrock - NGOptRW 14.50 897 084 0.4879%

For n = 10 and m = 5, using the XGBoost model with the NGOpt optimization method
required a computational time of 35.89 seconds and yielded a Rosenbrock value of 650,579.

5.2. NUMERICAL EXPERIMENTS 89

Using NGOptRW, the computation time was reduced to 13.18 seconds, and the Rosenbrock
value improved to 555,887. However, a significant enhancement in performance was observed
when the SLSQP method was employed instead, using the gradients of the NN model function
for optimization: the computation time was reduced to 0.58 seconds, i.e., by more than an order
of magnitude. The Rosenbrock objective value at the found optimum was 386,743, again showing
a significant improvement over the derivative-free optimization using purely the (more accurate)
XGBoost model. A further reduction in time to 0.28 seconds – with a comparable Rosenbrock
value of 386,118 – was observed when using the NN model for the SLSQP target function,
in combination with its own gradients. For comparison, even the direct optimization of the
Rosenbrock function itself with SLSQP resulted in a comparable value of 381,696; however, the
computational time was only 0.04 seconds in this case. Finally, employing NGOptRW directly
on the Rosenbrock function took considerably longer (16.16 seconds) and resulted in a higher
Rosenbrock value of 524,740.

For n = 10 and m = 5, the XGBoost model with NGOpt required a computational time
of 35.87 seconds, yielding a Rosenbrock value of 979,301. When NGOptRW was applied with
XGBoost, the time decreased to 13.96 seconds, and the Rosenbrock value improved to 801,651.
The combination of XGBoost with NN gradients and SLSQP further optimized the performance,
reducing the time to 0.67 seconds and achieving a Rosenbrock value of 691,395. Utilizing NN
with its own gradients and SLSQP resulted in a time of 0.27 seconds and a Rosenbrock value of
696,118. As with the previous combination, the direct application of SLSQP to the Rosenbrock
function was the most effective, requiring only 0.04 seconds to achieve a Rosenbrock value of
673,113. The direct use of NGOptRW on the function, while less efficient than SLSQP, yielded
a Rosenbrock value of 835,557 in a time of 15.37 seconds.

In the final scenario with n = 15 andm = 10, the XGBoost model combined with NGOpt took
36.00 seconds and achieved a Rosenbrock value of 1,466,969. Using NGOptRW with XGBoost
reduced the time to 13.65 seconds, resulting in a Rosenbrock value of 966,270. Combining
XGBoost with NN gradients and SLSQP significantly improved efficiency, reducing the time to
1.25 seconds and yielding a Rosenbrock value of 532,398. When NN with its own gradients was
used with SLSQP, the optimization took 0.34 seconds, achieving a Rosenbrock value of 536,971.
Again, the direct application of SLSQP to the Rosenbrock function was highly efficient, requiring
only 0.10 seconds to reach a Rosenbrock value of 494,890. When NGOptRW was applied directly,
the Rosenbrock value was higher at 897,084, achieved in a time of 14.50 seconds.

Overall, The substantial difference in MSE values between XGBoost and the NN justifies the
use of the NN as a surrogate model for gradient information. The proposed method, particularly
when employing the NN for gradient information, offers a promising avenue for efficient and
effective optimization on problems like the Rosenbrock function.

To further validate the efficacy of the proposed approach, one can investigate the initial values
utilized by the optimization algorithms. For instance, one might initially employ XGBoost as
the objective function and NGOptRW as the optimization algorithm. During each optimization,
the NN is then used as the objective function, and the output x from the SLSQP serves as the
initial value for the SLSQP optimizer. Conversely, one might begin with the NN as the objective
function and SLSQP as the optimization algorithm. Subsequently, the generated x from SLSQP
is employed as the initial value when XGBoost is the objective function, and this x is input
into the NGOptRW optimizer. The final step involves a comparative analysis of the Rosenbrock
values and computational times from both procedures. The result is shown in Table 5.2.

Upon analyzing the results across different combinations, it is evident that the optimization
strategy employing initial values from SLSQP significantly influences the performance metrics.
Specifically, for all tested combinations, the second approach, which utilizes the optimized x
from SLSQP as the initial value, consistently demonstrates superior performance in terms of

90 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

Figure 5.4: Rosenbrock function losses for n=10, m=5

Figure 5.5: Rosenbrock function losses for n=15, m=5

Figure 5.6: Rosenbrock function losses for n=15, m=10

Table 5.2: Comparison of results for initial values across different combinations.

Combination Initial Value XGBoost + NGOptRW Initial Value NN + SLSQP

Losses Time (s) Losses Time (s)

(10, 5)
- 608 937.46 16.24 - 386 114.90 0.265

SLSQP 371 116.98 14.25 NGOptRW 386 118.35 0.269

(15, 5)
- 924 567.41 15.39 - 696 115.78 0.251

SLSQP 436 499.53 11.91 NGOptRW 696 118.40 0.265

(15, 10)
- 1 081 367.38 13.70 - 536 966.28 0.326

SLSQP 498 501.25 11.69 NGOptRW 536 971.13 0.318

5.2. NUMERICAL EXPERIMENTS 91

Figure 5.7: Processing time and deviations from constraint for n=10, m=5

Figure 5.8: Processing time and deviations from constraint for n=15, m=5

Figure 5.9: Processing time and deviations from constraint for n=15, m=10

both losses and computational time. For the combination (10, 5), the second approach reduced
the NGOptRW losses from 608,937.46 to 371,116.98. Similarly, the computational time was
reduced from 16.24 seconds to 14.25 seconds, indicating a more efficient optimization process.
The combination (15, 5) exhibited a reduction in NGOptRW losses from 924,567.41 to 436499.53.
The process time also saw a reduction from 15.39 seconds to 11.91 seconds. Lastly, for the

92 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

Figure 5.10: Derivative-free methods losses relative to SLSQP

combination (15, 10), the NGOptRW losses decreased from 1,081,367.38 to 498501.25. The
computational time was optimized from 13.70 seconds to 11.69 seconds.

NN, being differentiable, can provide gradient information. This gradient information is cru-
cial for optimization algorithms like SLSQP that leverage gradient-based methods. The gradient
essentially provides a direction in which the function increases most rapidly. By knowing this
direction, optimization algorithms can make more informed steps, leading to faster convergence
and potentially better solutions. The choice of initial values can determine which minimum the
optimization algorithm converges to. By using the output from one optimization process (SLSQP
in this case) as the initial value for another, we’re essentially providing a ”warm start”, which can
lead to faster convergence and potentially better solutions. The significant reduction in losses
when using initial values from SLSQP suggests that the optimization landscape (as modeled by
the NN surrogate) has regions of lower loss that are more easily accessible from these initial
values. Mathematically, this implies that the trajectory followed by the optimization algorithm,

5.2. NUMERICAL EXPERIMENTS 93

when started from these initial values, leads more directly to regions of the search space with
lower objective function values. The reduction in computational time can be attributed to faster
convergence. This faster convergence is likely due to the combination of gradient information
from the NN and the improved initial values from SLSQP. Derivative-based methods can take
larger, more informed steps, reducing the number of iterations required to converge to a solution.

5.2.2 Foundry dataset

For real-world foundry applications, the analysis of energy consumption during melting in a
medium sized steel foundry was conducted. The study employs a dataset of 3500 individual melts
comprising three distinct types of steel - cold work, tool, and high speed - with the target variable
of interest being energy consumption, measured in kilowatt hours (kWh). The dataset features
85 distinct attributes, classified into three groups - process data, batch data, and induction
furnace data. The batch data offers information on the scrap’s type and quantity used in the
melting process, along with its unique chemical composition. In the foundry, the raw materials
are divided into the various groups of alloys, purchased scrap and internal scrap. The induction
furnace data, on the other hand, offers insights into melting time, power and energy, while process
data identifies any obstacles that occurred during the melting process or given time periods in
the process, such as the time between finished melt and feedback from the spectral laboratory
regarding the measured chemical analysis. Sourcing scrap from various suppliers remains crucial
to the melting process, with the aim being to minimize the predicted energy consumption based
on the amount of each type of scrap used in a melt batch. For each batch, the scrap’s chemical
composition must adhere to specific chemical composition standards to achieve the desired steel
result. Moreover, the weight of the scrap used in the melting process should not exceed the final
steel weight.

As specified (cf. section 1.1), the total cost is the sum of three components,

f(x) = p(x) +m(x) + l(x) . (5.2.2)

We derive the energy expenditure function m(x) utilizing data-driven methodologies. The im-
mediate procurement cost p(x) is given by the product of scrap weights and their respective
market prices. To streamline our analysis within the context of this study, we incorporate the
transportation expenditure l(x), as follows:

lj(x) =

0,

∑
j xj ≤ 10,

2.5 · (xj − 10), 10 <
∑

j xj ≤ 50,

100, otherwise ,

(5.2.3)

where xj means the scrap purchasing weight from scrap provider j. The aim of this investigation
using the foundry data set was to optimize total cost f(x) by adjusting the quantities of pur-
chasing scrap materials present in a melt batch, while keeping process parameters and furnace
characteristics constant in the model. In this context, this means that parameters that are not
control variables are kept constant or within pre-defined ranges for optimization. Examples in-
clude the tapping temperature, which typically needs to be between 1550 and 1650°C depending
on the steel grade; the melt mass, which cannot exceed 7 tonnes due to the capacity of the
induction furnace used; the tapping mass, which depends on the type of semi-finished product
to be cast with the given melt; or time periods, such as the time frame described earlier between
the final melt and its chemical composition evaluation, which depends on how much time human
workers in the laboratory need to evaluate the melt sample. We also added constraints to the
model based on the stock of different types of scrap available in the foundry.

94 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

Due to the limited capability of NGOpt and NGOptRW in handling equality constraints
effectively, the foundry dataset optimization exclusively employs the COBYQA and COBYLA
optimizer for derivative-free optimization. This decision ensures a more reliable and efficient
optimization process tailored to the specific requirements of the dataset. The XGBoost algorithm
exhibits an MSE value of 120.85, while the NN model attains an MSE value of 163.11, signifying
a discrepancy in their predictive performance. To optimize the quantities of scrap and reduce
energy use, we first use derivative-free methods, specifically COBYLA and COBYQA, to adjust
the input parameters, using the XGBoost model as the objective function. Afterwards, the scrap
composition is optimized using SLSQP with the NN model (the differentiable surrogate model)
as the objective. In both cases, the final energy consumption is computed using the XGBoost
model as the best current available model for the actual energy consumption.

The findings of this analysis are illustrated in Table 5.3 and Figure 5.11. Overall, 600 inde-
pendent simulations were conducted to ensure the robustness of the results. Consistent with the
case of the Rosenbrock function, the NN model utilizing the SLSQP optimizer yields marginally
decreased total cost. The XGBoost model with the COBYQA optimizer showed no constraint
violations and a total cost of 4437.8153. However, it required a considerably longer processing
time of 491.787 seconds. When employing the COBYLA optimizer with the XGBoost model,
the processing time was reduced to 58.999 seconds, albeit at the cost of a slightly increased total
objective value of 4494.9615 and a small constraint violation of 0.00998%. On the other hand,
the NN model with the SLSQP optimizer demonstrated competitive results in terms of total cost
(4430.6569) and constraint violations (0.00291%). Moreover, it exhibited a significantly shorter
processing time of 15.731 seconds, showcasing its efficiency in terms of computational resources.

The two-sided t-test was performed to assess the equality of means between the SLSQP op-
timizer and both the COBYLA and COBYQA optimizers. The t-test resulted in a p-value of
7.037e-45 for the comparison between SLSQP and COBYLA, indicating a highly significant dif-
ference between the means of these two optimizers. In contrast, the p-value for the comparison
between SLSQP and COBYQA was 0.00769, which still suggests a statistically significant dif-
ference between their means, albeit less pronounced than that between SLSQP and COBYLA.
In conclusion, the results of the two-sided t-tests provide strong evidence that there are statis-
tically significant differences in the performance of the SLSQP optimizer compared to both the
COBYLA and COBYQA optimizers.

MSE RRMSE Objective Gradient Optimizer Time (s)
Energy

consumption
Constraint
deviations

P-value

120.85 0.0140
XGBoost - COBYQA 491.787 4437.8153 0.0% 0.0076
XGBoost - COBYLA 58.999 4494.9615 0.00998% 7.023e-45

163.11 0.0296 NN NN SLSQP 15.731 4430.6569 0.00291%

Table 5.3: Foundry dataset optimization result.

Upon examination, it is evident that the derivative-based surrogate modeling approach ex-
hibits superior performance in comparison to derivative-free data-driven methodologies, with
regard to both computational efficiency and the accuracy of the ultimate outcome.

5.3 Summary

The above analysis provides a detailed introduction to the concept of derivative-based optimiza-
tion of surrogate models, establishing the foundational principles. Two numerical experiments

5.3. SUMMARY 95

Figure 5.11: Foundry dataset optimization results.

are conducted to illustrate the practical applications of employing alternately trained, indepen-
dent differentiable ML models as surrogate models. These experiments utilize both benchmark
datasets and real-world foundry datasets, demonstrating the wide applicability of these tech-
niques.

While the results suggest that the trained differentiable data-driven models may display a
marginally lower level of accuracy, the advantages of using derivative-based optimization methods
significantly enhance computational performance. It is these performance improvements that
present a compelling case for the use of these methods, despite the potential for additional
model error, as shown by the significant differences in the MSE for the investigated cases.

In particular, for real-time applications, the benefits of improved computational performance
can outweigh the minor disadvantages in the attained objective values. This finding highlights
the value of these methods in practical, real-world applications where speed and efficiency are
often critical factors. The results thereby establish a promising avenue for future research and
application in the optimization of surrogate models.

96 CHAPTER 5. SURROGATE GRADIENT METHODS FOR OPTIMIZATION

Chapter 6

Real-world scrap procurement
simulations

Building on the insights collected from chapter 5, we further consider the practical implications
of the finding within the foundry industry. It is well-established that the foundry industry is
characterized by complex processes and systems that require efficient decision-making. Given the
findings of the previous chapter, while differentiable data-driven models may exhibit a slightly
reduced accuracy, their inherent computational efficiency makes them a viable alternative for
real-time applications in the foundry setting. The potential marginal increase in the ML model
error is outweighed by the speed and efficiency gains, which are crucial in an industry that
operates on tight timelines and thin margins.

In the following, simulations of real-world scenarios within the foundry scrap procurement
process are presented, exploring how derivative-based optimization methods can be integrated
into existing systems and processes. Thereby, we investigate specific use cases, demonstrating
how the benefits of improved computational performance can be harnessed to address real-world
challenges and reduce overall operational cost.

6.1 Validation of the algorithm in real-world scenarios

As described in section 5.2.2, the foundry dataset’s attributes can be divided into three groups:
process data, batch data and induction furnace data. The batch data consists of three raw
materials that are fed into the furnace, which are alloys, purchased scrap and internal scrap. In
the following, the remaining input variables will be considered fixed parameters which, depending
on their selected values, simulate the furnace conditions in a specific foundry. As previously, we
train both a non-differentiable XGBoost model and a differentiable NN model on the dataset,
with the output value given by the energy consumption.

As demonstrated in the previous chapter, any optimization involving data-driven models of
the foundry process can benefit from the additional efficiency provided by surrogate gradient
methods. In particular, these methods allow for a highly performant optimization of scrap
purchasing decisions, i.e. the intended use of the scrap procurement platform described in chapter
3. Since this market platform is not actively in use yet, we will consider a simulation of the
exchange between foundries and scrap providers in the following.

Recall that the general aim of using the ML models based on the foundry data described

97

98 CHAPTER 6. REAL-WORLD SCRAP PROCUREMENT SIMULATIONS

above is to minimize the cost function f with

f(x) = p(x) +m(x) + l(x) ,

where x is the scrap composition, p(x) denotes the total purchase price of the scrap metal, l(x)
denotes the transportation cost and

m(x) = c · m̂(x) , (6.1.1)

where m̂ is the data-driven model of the energy consumption (in kWh) and c is the effective
energy cost per kWh used in the process. The transportation cost l(x), which accounts for
varying transportation cost scenarios based on the total weight of scrap purchased from different
providers, is given by

l(x) =
∑
j

lj(x) , lj(x) =

0,

∑
i xji ≤ t1,

2.5 · (xji − t1), t1 <
∑

i xji ≤ t2,

t3, otherwise,

(6.1.2)

where xji is the amount of scrap of type i purchased from provider j. The individual transport
cost function lj transitions from a no-cost scenario (for negligible amounts of scrap, which are
assumed to be not actually purchased for computational reasons) to a linearly increasing cost,
and then to a flat rate cost as the weight of scrap purchased increases, as shown in Figure 6.1.

0 10 20 30 40 50 60

0

20

40

60

80

100

x

l j
(x
)

lj(x)

Figure 6.1: Plot of the function lj(x) for [t1, t2, t3] = [5, 50, 100].

The simulation is based on time-discrete interactions between the foundries and the scrap
suppliers: each foundry requests an optimal order of scrap from the suppliers, who offer differ-
ent stock at different prices. This process is repeated for multiple time steps. Each purchasing
decision is based on the current price and availability of scrap, the individual foundry’s opera-
tion conditions (simulated via different fixed parameter values for the data-driven model), the
transport costs, the energy price per kWh and, of course, the predicted energy consumption,
which depends on the scrap composition. Different optimization strategies are then employed
to make an optimal purchasing decision in each time step, minimizing f under the constraints

6.1. VALIDATION OF THE ALGORITHM IN REAL-WORLD SCENARIOS 99

given by the availability of scrap and the chemical composition required for the produced steel
type (which we will assume to be 1.2379 throughout this chapter.)

Additionally, constraints are placed on the quantity of total scrap, ensuring it does not surpass
7 tons. In the context of this study, acceptable quantities range between 5 to 7 tons. Factoring in
the prevailing electricity rates for the foundry industry in Germany in 2023, the electricity cost
is benchmarked at 40 cent/KWh [83]. To further enhance the fidelity of the simulation to real-
world dynamics, upon the determination of an optimal purchased scraps list by the algorithm,
subtractions are made from the relevant scrap providers. This approach ensures that the available
scrap and its corresponding quantity are updated in real-time throughout the simulation.

Obviously, a large-scale simulation of the interaction between foundries and scrap suppliers
requires a large number of purchasing decisions, each of which requires a full optimization of the
scrap composition. Therefore, a performant simulation is strongly dependent on a computation-
ally efficient optimization strategy.

6.1.1 Preliminary results

Due to the newly trained models and the weight factor c introduced into the objective function
in Equation (6.1.1), we again compare the performance of the two main algorithms from the
previous chapter in Table 6.1 and Figure 6.2. In total, a comprehensive set of 250 independent
simulations were executed to ascertain statistical significance. Note that once again, the sur-
rogate gradient method, i.e. the optimization based on the less accurate, but differentiable NN
model, outperforms the derivative-free optimization of the actual objective function given by the
XGBoost model.

Table 6.1: NN and XGBoost results in real-world scenarios.

R2 Objective Optimizer Time(s) Total Cost P-value

0.58 XGBoost COBYQA 38.38 1690.94 9.64e-15
0.49 NN SLSQP 7.09 1662.33

NN+SLSQP XGBoost+COBYQA

1,600

1,800

2,000

O
b
je
ct
iv
e
va
lu
e

Figure 6.2: Results for gradient-free and surrogate gradient optimization.

100 CHAPTER 6. REAL-WORLD SCRAP PROCUREMENT SIMULATIONS

Furthermore, in order to demonstrate that the optimization with respect to the full costs
(including the energy costs) provides an actual benefit over the pure minimization of the scrap
purchase price, we compare the final costs of a batch for two different scrap compositions: one
is obtained as the optimum for the full cost function itself, as computed with SLSQP and the
NN model; the other is calculated as the minimizer of the pure purchasing and transport costs.
Table 6.2 shows that the difference between the average resulting costs over 250 simulations,
while small, is indeed statistically significant.

Table 6.2: SLSQP optimize results in real-world scenarios with and without derivative informa-
tion.

Objective Optimizer Total Cost P-value

l(x) + p(x) +m(x) l(x) + p(x) 1864.28 1.97e-14
l(x) + p(x) +m(x) l(x) + p(x) +m(x) 1847.11

p(x) + l(x) p(x) + l(x) +m(x)

1,600

1,800

2,000

2,200

Optimization target

O
p
ti
m
iz
ed

fu
ll
p
ro
d
u
ct
io
n
co
st
s

Figure 6.3: Optimization of the cost function with and without the energy term and the resulting
full production costs.

6.2 Time discrete simulations

Table 6.3: Transport cost parameter settings for total energy consumption comparison.

Foundries Scrap providers [t1, t2, t3]

8 10 [0, 50, 80], [5, 50, 100], [80, 100, 100]

In all our simulations, a hypothetical scenario is considered wherein eight foundries and ten
scrap providers are interacting. Each foundry simultaneously forwards its purchasing requests to

6.2. TIME DISCRETE SIMULATIONS 101

the simulation program. It is noteworthy that process data and induction furnace data exhibit
variability among the different foundries. To efficiently manage and process these concurrent
requests, the simulation operates in parallel. This parallel operation facilitates the optimization
of external scrap purchasing lists. The optimization is conducted employing the derivative-based
surrogate model designed for the distinct operational and process characteristics of each foundry.

In the first simulation, the objective is to analyze how the optimization responds to higher
transportation costs, hypothesizing that an increase in transportation cost would correspondingly
drive the energy cost (i.e. the energy consumption) m(x) higher post-optimization. As listed in
Table 6.3, three sets of coefficients t1, t2, t3 for the transport costs (cf. Equation (6.1.2)) are
compared to study the effect of different transportation cost structures on the optimization
outcome.

During the simulation, the average total energy consumption per batch is computed for each
of the individual foundries over 50 requests. Figure 6.4 illustrates a clear trend: as the trans-
portation cost increases, there is a corresponding rise in energy consumption. As the optimization
is performed using SLSQP, which utilizes derivative information from f(x) (cf. Equation 5.2.2)
to find the optimal scrap purchase list x, the outcome should ideally balance out all three costs
involved. However, with higher values of transport cost coefficients [t1, t2, t3], the balance tilts,
and the optimizer has to navigate through a steeper cost gradient contributed by l(x). The
simulation result shows that a higher transportation cost could drive the system to select scrap
which is not optimal in terms of energy consumption to avoid the increased transportation cost.

In our next simulation, we investigate the impact of transportation costs on the number
of requests between foundries and scrap providers. Two extreme scenarios are considered for
comparison to understand the range of behaviors the system may exhibit. The transportation
cost parameters are organized in Table 6.4 with each foundry and scrap provider pair having
associated cost coefficients t1, t2 and t3. In this case, for 8 foundries and 10 scrap providers, the
coefficients are set at the extremes for t3([100, 1000]) to observe how the system responds to a
wide range of flat rate transportation costs after a certain threshold of scrap weight is surpassed.

Table 6.4: Transport cost parameter settings for average request comparison.

Foundries Scrap Providers [t1, t2, t3]

8 10 [0, 5, 100], [0, 5, 1000]

Again, the simulation is performed over a length of 50 requests. Figure 6.5 shows the sim-
ulation result. In the low transport cost scenario t3 = 100, the flat rate cost after the second
threshold might not significantly deter requests between the foundry and scrap provider. This
lower transportation cost could encourage a higher number of requests for scrap material between
the foundry and the scrap provider, as the total cost f(x) may still remain within a reasonable
range. However, with t3 = 1000 the substantial transportation cost could drastically reduce the
number of requests as the cost of transporting scrap becomes prohibitively expensive.

This comparative analysis between the two scenarios highlights the sensitivity of the request
frequency to the transportation cost structure, particularly the flat rate cost t3. A higher t3 value
seemingly discourages a higher number of requests due to the substantial cost implications, as
evidenced by the drop in average requests from 5.69 to 2.24 as t3 increases from 100 to 1000.
This showcases the critical role of transportation cost in influencing operational decisions and
interactions between the foundry and scrap provider within this system. In particular, increased
transport costs could lead to the environmentally preferable result that scrap is procured from
fewer distinct sources and additional transports are avoided.

102 CHAPTER 6. REAL-WORLD SCRAP PROCUREMENT SIMULATIONS

2 4 6 8

3,400

3,500

3,600

3,700

3,800

Foundry ID

T
o
ta
l
E
n
er
g
y
C
o
n
su
m
p
ti
o
n

Comparision of Total Energy Consumption

t1=0, t2=50, t3=80
t1=5, t2=50, t3=100
t1=5, t2=100, t3=100

2 4 6 8

200

300

400

Foundry ID

T
ot
al

T
ra
n
sp
o
rt

C
o
st

Comparision of Transport Cost

t1=0, t2=50, t3=80
t1=5, t2=50, t3=100
t1=5, t2=100, t3=100

Figure 6.4: Comparison of total energy consumption with respect to the transport cost.

Finally, we consider the impact of the electricity price on the optimal scrap purchase decision.
Since the energy cost is the product of electricity price and energy consumption, the electricity
price can be considered a penalty factor to the energy cost m(x), affecting the average energy
consumption in the system after cost optimization. We simulate how fluctuations of the electricity
price can affect the energy consumption of foundry processes by selecting the values shown in
Table 6.5.

The simulation result, averaged over 50 requests, is shown in Figure 6.6. As the electricity
price increases, it acts as a penalty factor to the energy cost m(x), thereby potentially increasing

6.2. TIME DISCRETE SIMULATIONS 103

1 2 3 4 5 6 7 8

2

2.5

3

3.5

4

4.5

5

5.5

Foundry ID

A
ve
ra
g
e
N
u
m
b
er

o
f
D
el
iv
er
ie
s

Comparision of Average Deliveries w.r.t Transport Cost

Transport cost 0 5 100, average deliveries: 5.69
Transport cost 0 5 1000, average deliveries: 2.24

Figure 6.5: Comparison of purchase request with respect to the transport cost.

Table 6.5: Electricity price parameter settings for average energy consumption comparison.

Foundries Scrap Providers Electricity Price (Euro/KWh)

8 10 0.4, 0.8, 1.0

the total cost f(x) if the energy consumption m(x) remains constant. This higher penalty for
energy consumption thus encourages the optimizer to look for solutions x that, among other
things, might lead to lower energy consumption to balance out the extra cost from higher elec-
tricity prices. The optimizer is therefore navigating the trade-off between the electricity price
penalty, transportation cost, and scrap procurement cost to find the most cost-effective scrap
list x under different electricity price scenarios. As the electricity price increases, the optimizer
should prioritize solutions that slightly reduce energy consumption to mitigate the higher penalty
associated with energy cost, thereby working towards minimizing the energy consumption m(x);
this assumption is confirmed by the simulation results shown in Figure 6.6.

104 CHAPTER 6. REAL-WORLD SCRAP PROCUREMENT SIMULATIONS

1 2 3 4 5 6 7 8

3,400

3,450

3,500

3,550

3,600

3,650

3,700

3,750

3,800

3,850

Foundry ID

T
o
ta
l
E
n
er
g
y
C
o
n
su
m
p
ti
o
n

Comparision of Total Energy Consumption w.r.t Electricity Price

Electricity price 0.4€/KWh, average: 3581.0

Electricity price 0.8€/KWh, average: 3563.0

Electricity price 1.0€/KWh, average: 3548.0

Figure 6.6: Comparison of average energy consumption with respect to the electricity price.

6.3 Summary

Using the optimization methods developed in chapter 5, it is feasible to perform large-scale
simulations of the market place platform introduced in chapter 3. In particular, we can investigate
the influence of factors like transportation cost and energy prices on the market participants’
behaviour, assuming the purchase decisions are made in an optimized way as described in chapter
5.

The simulations indicate that in this case, the energy price indeed influences the purchasing
decisions of the foundries. Including the predicted energy costs into the decision process therefore
would not only lower the production costs for the foundries, but could also lead to a more
sustainable production of steel due to the accordingly reduced energy consumption. Furthermore,
the transport costs are shown to have significant influence on the purchasing decision: whereas
higher transportation fees might lead to more responsible procurement strategies in terms of
avoiding multiple sources of raw materials, it may lead to higher energy consumption due to the
optimization trade-off between the energy costs and the transport costs.

Chapter 7

Conclusions

7.1 Thesis summary

This thesis aims to tackle challenges in the foundry industry, focusing on improving scrap pro-
curement and energy consumption through ML and numerical optimization techniques. Chapter
2 begins with an exploration of the foundry and metal recycling sectors, identifying the core
challenge of optimizing scrap purchasing. Basic concepts of ML and numerical optimization are
introduced as potential solutions to this challenge.

In chapter 3, a platform designed to aid in scrap procurement is presented. This platform is
built on ML models and a technique known as surrogate gradient optimization, which are used
for simulation purposes. These methods simplify the optimization process, making it easier to
find cost-effective scrap purchasing strategies.

We then introduce two additional software tools, EidoData desktop and EidoData web, in
chapter 4. These tools are developed to make ML more accessible to individuals in the foundry
industry, even without a deep understanding of ML concepts. They provide a user-friendly
interface for importing data, selecting ML algorithms, and deploying models, essentially lowering
the barrier to entry for ML applications in the industry.

In chapter 5, the aforementioned surrogate gradient methods are first discussed in the very
general setting of numerical optimization. Afterwards, their effectiveness in improving the perfor-
mance for the optimization of data-driven models is demonstrated on two examples: the classical
benchmark Rosenbrock function and a real-world dataset from a German foundry.

The effectiveness of the surrogate gradient methods is further demonstrated in chapter 6,
where the scrap procurement platform is simulated to investigate the influence of certain cost
parameters on the interaction between foundries and scrap suppliers. These simulations would
have be unfeasible in larger scales with classical derivative-free optimization techniques. Overall,
the simulations show the value of both the general concept of surrogate gradient optimization
and the inclusion of process parameters like the energy consumption into the scrap purchase
decision process.

7.2 Thesis contributions

This thesis aims to tackle some of the challenges in the foundry industry, particularly focusing
on scrap procurement and energy consumption. The work done in this thesis is broken down
into three main contributions:

105

106 CHAPTER 7. CONCLUSIONS

• Developing machine learning software (EidoData desktop and EidoData web): A major
part of this thesis is the development of two machine learning software tools named Ei-
doData desktop and EidoData web. These tools are designed to make machine learning
more accessible to people in the foundry industry. They provide a simple way for users to
bring in their data, choose machine learning algorithms, and use these algorithms to find
solutions to their problems. The main goal here is to make it easier for people who lack
experience with machine learning to use it in their work.

• Formulation of surrogate gradient optimization methods: Building on the theoretical scaf-
fold of ML and numerical optimization, a novel differentiable surrogate optimization method
is formulated. This method plays a crucial role in simplifying the optimization process,
thereby making it more tractable and applicable to the foundry industry’s scrap procure-
ment challenges. By constructing smooth surrogate functions that approximate the non-
smooth cost functions inherent in the optimization landscape, the method significantly
enhances the computational efficiency and practicality of deriving optimal scrap purchas-
ing strategies.

• Combining software and algorithms for real-world scrap purchasing optimization simula-
tions: Lastly, this thesis investigates the combination of the developed software tools and
the surrogate gradient optimization method to simulate real-world scrap purchasing opti-
mization. This integration offers a practical approach to navigating the complex decision-
making process associated with scrap procurement. The developed virtual environment
closely resembles the real-world dynamics of scrap trading and presents a powerful tool
for decision-makers, enabling a detailed understanding of the complex interactions be-
tween scrap procurement, energy consumption, and overall operational cost, and laying
the groundwork for more cost-effective and environmentally sustainable practices in the
foundry industry.

7.3 Future works

Based on the foundational contribution of this work, several directions for future work present
themselves that could significantly build upon and advance these initial achievements:

• For the software EidoData desktop and EidoData web: Firstly, we can further develop a
more intuitive GUI with features like drag-and-drop, real-time data visualization, and in-
teractive tutorials that can simplify user interactions. Second, we can incorporate advanced
AutoML algorithms to automate the ML process, making it accessible to individuals with
limited ML expertise. Third, we can provide options for customizable ML pipelines within
the software that can address a diverse range of use cases and user preferences, cover-
ing data preprocessing to model deployment. Furthermore, we can enhance cross-platform
compatibility that ensures seamless operation across various operating systems and devices,
extending the software’s usability.

• For the surrogate gradient optimization method: Firstly, we can enhance the algorithm
to manage a wider range of optimization problems and explore its potential to adapt to
other industrial areas besides foundry scrap procurement, which could broaden its ap-
plicability. Secondly, we can delve into the development of more precise or alternative
surrogate functions to improve the approximation of non-smooth cost functions, which
may lead to better optimization results. Thirdly, we can optimize the method to achieve
better scalability and efficiency, which is crucial for handling larger datasets and more

7.3. FUTURE WORKS 107

complex optimization landscapes common in real-world scenarios. Lastly, we can develop
real-time optimization capabilities to adapt to dynamic changes in problem parameters or
the operational environment, a feature that is often needed in industrial settings.

• For the time discrete simulation of scrap procurement: There are multiple other impact
factors which have yet to be investigated, such as the number of participating foundries and
scrap suppliers and the frequency in which the scrap is re-stocked. The market dynamics
could, in particular, be investigated with respect to the stability of the economic process, i.e.
it could be determined under which conditions the demand of the foundries will generally
be met by the suppliers.

108 CHAPTER 7. CONCLUSIONS

References

[1] A. F. Agarap. “Deep learning using rectified linear units (relu)”. arXiv preprint
arXiv:1803.08375 (2018).

[2] S. Agatonovic-Kustrin and R. Beresford. “Basic concepts of artificial neural network
(ANN) modeling and its application in pharmaceutical research”. Journal of pharma-
ceutical and biomedical analysis 22.5 (2000). Pp. 717–727.

[3] A. Agnihotri and N. Batra. “Exploring Bayesian Optimization”. Distill (2020).
https://distill.pub/2020/bayesian-optimization. doi: 10.23915/distill.00026.

[4] A. Angelopoulos, E.T. Michailidis, N. Nomikos, P. Trakadas, A. Hatziefremidis, S. Vo-
liotis, and T. Zahariadis. “Tackling faults in the industry 4.0 era—a survey of machine-
learning solutions and key aspects”. Sensors 20.1 (2019). P. 109.

[5] C. Audet and W. Hare. Model-based methods in derivative-free nonsmooth optimization.
Springer, 2020.

[6] E. Ayerbe, M. Berecibar, S. Clark, A.A. Franco, and J. Ruhland. “Digitalization of battery
manufacturing: current status, challenges, and opportunities”. Advanced Energy Materials
12.17 (2022). P. 2102696.

[7] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, and R.H. Katz. “A comparison of mech-
anisms for improving TCP performance over wireless links”. IEEE/ACM transactions on
networking 5.6 (1997). Pp. 756–769.

[8] H.B. Barlow. “Unsupervised learning”. Neural computation 1.3 (1989). Pp. 295–311.

[9] P. Bennet, D. Langevin, C. Essoual, A. Khaireh-Walieh, O. Teytaud, P. Wiecha, and A.
Moreau. “An illustrated tutorial on global optimization in nanophotonics”. arXiv preprint
arXiv:2309.09760 (2023).

[10] J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimization.” Journal
of machine learning research 13.2 (2012).

[11] P.T. Boggs and J.W. Tolle. “Sequential quadratic programming”. Acta numerica 4
(1995). Pp. 1–51.

[12] E. Brochu, V.M. Cora, and N. De Freitas. “A tutorial on Bayesian optimization of expen-
sive cost functions, with application to active user modeling and hierarchical reinforcement
learning”. arXiv preprint arXiv:1012.2599 (2010).

[13] J. Brown. Foseco ferrous foundryman’s handbook. Butterworth-Heinemann, 2000.

[14] Bvse. Der Schrottmarkt 2020 - Rückblick auf ein schwieriges Pandemiejahr. https:
//www.bvse.de/fachbereiche-schrott-e-schrott-kfz/metallschrott/
marktbericht-stahlmetall.html. 2020.

109

https://doi.org/10.23915/distill.00026
https://www.bvse.de/fachbereiche-schrott-e-schrott-kfz/metallschrott/marktbericht-stahlmetall.html
https://www.bvse.de/fachbereiche-schrott-e-schrott-kfz/metallschrott/marktbericht-stahlmetall.html
https://www.bvse.de/fachbereiche-schrott-e-schrott-kfz/metallschrott/marktbericht-stahlmetall.html

110 CHAPTER 7. CONCLUSIONS

[15] R. Byrd. “Robust trust region methods for constrained optimization”. Third SIAM Con-
ference on Optimization, Houston, Texas. 1987.

[16] T. Caliński and J. Harabasz. “A dendrite method for cluster analysis”. Communications
in Statistics-theory and Methods 3.1 (1974). Pp. 1–27.

[17] C. Carrión. “Kubernetes scheduling: Taxonomy, ongoing issues and challenges”. ACM
Computing Surveys 55.7 (2022). Pp. 1–37.

[18] R. Caruana and A. Niculescu-Mizil. “An empirical comparison of supervised learning
algorithms”. Proceedings of the 23rd international conference on Machine learning. 2006,
pp. 161–168.

[19] M.R. Celis. A trust region strategy for nonlinear equality constrained optimization. Tech.
rep. 1985.

[20] S. Chakraborty, S. Adhikari, and R. Ganguli. “The role of surrogate models in the devel-
opment of digital twins of dynamic systems”. Applied Mathematical Modelling 90 (2021).
Pp. 662–681.

[21] R. Chandrappa and D.B. Das. Solid waste management: Principles and practice. Springer
Science & Business Media, 2012.

[22] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. “Deepdriving: Learning affordance for direct
perception in autonomous driving”. Proceedings of the IEEE international conference on
computer vision. 2015, pp. 2722–2730.

[23] T. Chen and C. Guestrin. “Xgboost: A scalable tree boosting system”. Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. 2016,
pp. 785–794.

[24] T. F. Coleman and A.R. Conn. “Nonlinear programming via an exact penalty function:
Asymptotic analysis”. Mathematical programming 24.1 (1982). Pp. 123–136.

[25] T. F. Coleman and A.R. Conn. “Nonlinear programming via an exact penalty function:
Global analysis”. Mathematical Programming 24.1 (1982). Pp. 137–161.

[26] H. Colpaert. Metallography of steels: interpretation of structure and the effects of process-
ing. Asm International, 2018.

[27] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to derivative-free optimization.
SIAM, 2009.

[28] R. Courant. “Variational methods for the solution of problems of equilibrium and vibra-
tions” (1943).

[29] S. Dalquist and T. Gutowski. “Life cycle analysis of conventional manufacturing tech-
niques: sand casting”. ASME International mechanical engineering congress and exposi-
tion. Vol. 47136. 2004, pp. 631–641.

[30] L. Dartnell. The knowledge: How to rebuild our world from scratch. Random House, 2014.

[31] Django Software Foundation. Django. Version 2.2. url: %5Curl % 7Bhttps : / /
djangoproject.com%7D (visited on 10/08/2022).

[32] P. Domingos. “A few useful things to know about machine learning”. Communications of
the ACM 55.10 (2012). Pp. 78–87.

[33] V. Dunjko and H. J. Briegel. “Machine learning & artificial intelligence in the quantum do-
main: a review of recent progress”. Reports on Progress in Physics 81.7 (2018). P. 074001.

%5Curl%7Bhttps://djangoproject.com%7D
%5Curl%7Bhttps://djangoproject.com%7D

7.3. FUTURE WORKS 111

[34] G. Dutta and R. Fourer. “A survey of mathematical programming applications in in-
tegrated steel plants”. Manufacturing & Service Operations Management 3.4 (2001).
Pp. 387–400.

[35] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola.
“AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data”. arXiv preprint
arXiv:2003.06505 (2020).

[36] H. J. Escalante, M. Montes, and L. E. Sucar. “Particle swarm model selection.” Journal
of Machine Learning Research 10.2 (2009).

[37] European IPPC Bureau. Best Available Techniques (BAT) Reference Document for the
Smitheries and Foundries Industry. url: %5Curl%7Bhttps://eippcb.jrc.ec.
europa.eu/sites/default/files/2022-02/SF_BREF_D1_web.pdf%7D.

[38] R. Fakoor, J.W. Mueller, N. Erickson, P. Chaudhari, and A. J. Smola. “Fast, Ac-
curate, and Simple Models for Tabular Data via Augmented Distillation”. Advances
in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 8671–
8681. url: https : / / proceedings . neurips . cc / paper / 2020 / file /
62d75fb2e3075506e8837d8f55021ab1-Paper.pdf.

[39] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. “Auto-sklearn 2.0:
Hands-free automl via meta-learning”. arXiv preprint arXiv:2007.04074 (2020).

[40] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. “Effi-
cient and robust automated machine learning”. Advances in neural information processing
systems 28 (2015).

[41] R. Fletcher. “Second order corrections for non-differentiable optimization”. Numerical
Analysis: Proceedings of the 9th Biennial Conference Held at Dundee, Scotland, June
23–26, 1981. Springer. 2006, pp. 85–114.

[42] R. Fletcher, N. I. Gould, S. Leyffer, P. L. Toint, and A. Wächter. “Global convergence of
a trust-region SQP-filter algorithm for general nonlinear programming”. SIAM Journal
on Optimization 13.3 (2002). Pp. 635–659.

[43] flower dev doc. Flower. url: %5Curl%7Bhttps://flower.readthedocs.io/en/
latest/%7D.

[44] A. I. Forrester, N.W. Bressloff, and A. J. Keane. “Optimization using surrogate mod-
els and partially converged computational fluid dynamics simulations”. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 462.2071 (2006).
Pp. 2177–2204.

[45] M. Fowler. Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch.
Addison-Wesley, 2012.

[46] P. I. Frazier and S.C. Clark. “Parallel global optimization using an improved multi-points
expected improvement criterion”. INFORMS Optimization Society Conference, Miami
FL. Vol. 26. 2012.

[47] J. H. Friedman. “Greedy function approximation: a gradient boosting machine”. Annals
of statistics (2001). Pp. 1189–1232.

[48] M. Fukushima. “A successive quadratic programming algorithm with global and super-
linear convergence properties”. Mathematical Programming 35.3 (1986). Pp. 253–264.

[49] P. E. Gill, W. Murray, and M.A. Saunders. “SNOPT: An SQP algorithm for large-scale
constrained optimization”. SIAM review 47.1 (2005). Pp. 99–131.

%5Curl%7Bhttps://eippcb.jrc.ec.europa.eu/sites/default/files/2022-02/SF_BREF_D1_web.pdf%7D
%5Curl%7Bhttps://eippcb.jrc.ec.europa.eu/sites/default/files/2022-02/SF_BREF_D1_web.pdf%7D
https://proceedings.neurips.cc/paper/2020/file/62d75fb2e3075506e8837d8f55021ab1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/62d75fb2e3075506e8837d8f55021ab1-Paper.pdf
%5Curl%7Bhttps://flower.readthedocs.io/en/latest/%7D
%5Curl%7Bhttps://flower.readthedocs.io/en/latest/%7D

112 CHAPTER 7. CONCLUSIONS

[50] P. E. Gill and E. Wong. “Sequential quadratic programming methods”. Mixed integer
nonlinear programming. Springer, 2011, pp. 147–224.

[51] Gitlab. What is CI/CD? https://docs.gitlab.com/ee/ci/introduction/
img/gitlab_workflow_example_11_9.png. 2022. (Visited on 12/07/2022).

[52] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. First. MIT press, 2016.

[53] J. Goodman and J. Weare. “Ensemble samplers with affine invariance”. Communications
in applied mathematics and computational science 5.1 (2010). Pp. 65–80.

[54] G. Goodwin, M.M. Seron, and J.A. De Doná. Constrained control and estimation: an
optimisation approach. Springer Science & Business Media, 2006.

[55] D. Gorissen, T. Dhaene, and F. De Turck. “Evolutionary model type selection for global
surrogate modeling”. Journal of Machine Learning Research 10 (2009). Pp. 2039–2078.

[56] M.G. Grant, K.C. Kaiser, S.M. Cantacuzene, and T. Chen. “Optimization of Oxy-
gen Steelmaking in Nonconventional EAF Operations”. AISTECH-CONFERENCE
PROCEEDINGS-. Vol. 1. Citeseer. 2005, p. 545.

[57] H. Greenspan, B. Van Ginneken, and R.M. Summers. “Guest editorial deep learning
in medical imaging: Overview and future promise of an exciting new technique”. IEEE
transactions on medical imaging 35.5 (2016). Pp. 1153–1159.

[58] T. P.G.D. Group. Documentation PostgreSQL 10.3. Ed. by T.P.G.D. Group. 2018.

[59] D.R. Gunasegaram, A. Murphy, A. Barnard, T. DebRoy, M. Matthews, L. Ladani, and D.
Gu. “Towards developing multiscale-multiphysics models and their surrogates for digital
twins of metal additive manufacturing”. Additive Manufacturing 46 (2021). P. 102089.

[60] I. Guyon et al. “Analysis of the AutoML challenge series”. Automated Machine Learning
(2019). P. 177.

[61] S. .-. Han and O. L. Mangasarian. “Exact penalty functions in nonlinear programming”.
Mathematical programming 17 (1979). Pp. 251–269.

[62] S.-P. Han. “Superlinearly convergent variable metric algorithms for general nonlinear
programming problems”. Mathematical Programming 11.1 (1976). Pp. 263–282.

[63] S.-P. Han. “A globally convergent method for nonlinear programming”. Journal of opti-
mization theory and applications 22.3 (1977). Pp. 297–309.

[64] M.R. Hestenes. “Multiplier and gradient methods”. Journal of optimization theory and
applications 4.5 (1969). Pp. 303–320.

[65] F. Hutter, T. Stützle, K. Leyton-Brown, and H.H. Hoos. “ParamILS: an automatic algo-
rithm configuration framework”. arXiv e-prints (2014). arXiv–1401.

[66] I. Ilankoon, Y. Ghorbani, M.N. Chong, G. Herath, T. Moyo, and J. Petersen. “E-waste in
the international context–A review of trade flows, regulations, hazards, waste management
strategies and technologies for value recovery”. Waste management 82 (2018). Pp. 258–
275.

[67] D. Inc. Package Software into Standardized Units for Development, Shipment and De-
ployment. https://www.docker.com/resources/what-container/. 2022.

[68] U.D. the Interior. Mineral Commodity Summaries, January 2021: Iron and Steel Scrap.
https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-iron-steel-
scrap.pdf. 2021.

https://docs.gitlab.com/ee/ci/introduction/img/gitlab_workflow_example_11_9.png
https://docs.gitlab.com/ee/ci/introduction/img/gitlab_workflow_example_11_9.png
https://www.docker.com/resources/what-container/
https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-iron-steel-scrap.pdf
https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-iron-steel-scrap.pdf

7.3. FUTURE WORKS 113

[69] Introduction to Celery. Celery. url: %5Curl%7Bhttps://docs.celeryq.dev/en/
stable/getting-started/introduction.html%7D (visited on 11/08/2022).

[70] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. International conference on machine learning. PMLR.
2015, pp. 448–456.

[71] R. Jin and G. Agrawal. “Communication and memory efficient parallel decision tree con-
struction”. Proceedings of the 2003 SIAM international conference on data mining. SIAM.
2003, pp. 119–129.

[72] M. I. Jordan and T.M. Mitchell. “Machine learning: Trends, perspectives, and prospects”.
Science 349.6245 (2015). Pp. 255–260.

[73] G. Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. Advances in
neural information processing systems 30 (2017).

[74] F. Kheiri. “A review on optimization methods applied in energy-efficient building geome-
try and envelope design”. Renewable and Sustainable Energy Reviews 92 (2018). Pp. 897–
920.

[75] V. Klee and G. J. Minty. “How good is the simplex algorithm”. Inequalities 3.3 (1972).
Pp. 159–175.

[76] J. Kober, J.A. Bagnell, and J. Peters. “Reinforcement learning in robotics: A survey”.
The International Journal of Robotics Research 32.11 (2013). Pp. 1238–1274.

[77] D. Kraft. “A software package for sequential quadratic programming”. Forschungsbericht-
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988).

[78] O. Kramer, D. E. Ciaurri, and S. Koziel. “Derivative-free optimization”. Computational
optimization, methods and algorithms. Springer, 2011, pp. 61–83.

[79] M. Kuss, C. E. Rasmussen, and R. Herbrich. “Assessing Approximate Inference for Binary
Gaussian Process Classification.” Journal of machine learning research 6.10 (2005).

[80] J. Larson, M. Menickelly, and S.M. Wild. “Derivative-free optimization methods”. Acta
Numerica 28 (2019). Pp. 287–404.

[81] Y. LeCun, L. Bottou, G.B. Orr, and K.-R. Müller. “Efficient backprop”. Neural networks:
Tricks of the trade. Springer, 2002, pp. 9–50.

[82] P. Li, Q. Wu, and C. Burges. “Mcrank: Learning to rank using multiple classification and
gradient boosting”. Advances in neural information processing systems 20 (2007).

[83] M. Lieberwirth and H. Hobbie. “Decarbonizing the industry sector and its effect on elec-
tricity transmission grid operation—Implications from a model based analysis for Ger-
many”. Journal of Cleaner Production 402 (2023). P. 136757.

[84] P.-L. Liu and A. Der Kiureghian. “Optimization algorithms for structural reliability”.
Structural safety 9.3 (1991). Pp. 161–177.

[85] I. Loshchilov. “LM-CMA: An alternative to L-BFGS for large-scale black box optimiza-
tion”. Evolutionary computation 25.1 (2017). Pp. 143–171.

[86] S.M. Lundberg and S.-I. Lee. “A unified approach to interpreting model predictions”.
Advances in neural information processing systems 30 (2017).

[87] R.D. MacRosty and C. L. Swartz. “Dynamic modeling of an industrial electric arc fur-
nace”. Industrial & engineering chemistry research 44.21 (2005). Pp. 8067–8083.

%5Curl%7Bhttps://docs.celeryq.dev/en/stable/getting-started/introduction.html%7D
%5Curl%7Bhttps://docs.celeryq.dev/en/stable/getting-started/introduction.html%7D

114 CHAPTER 7. CONCLUSIONS

[88] N. Maratos. “Exact penalty function algorithms for finite dimensional and control opti-
mization problems” (1978).

[89] J. R. Martins and A. Ning. Engineering design optimization. Cambridge University Press,
2021.

[90] D.Q. Mayne. “On the use of exact penalty functions to determine step length in optimiza-
tion algorithms”. Numerical Analysis: Proceedings of the 8th Biennial Conference Held at
Dundee, Scotland, June 26–29, 1979. Springer. 2006, pp. 98–109.

[91] D.Q. Mayne and E. Polak. A surperlinearly convergent algorithm for constrained opti-
mization problems. Springer, 1982.

[92] S. Mehrotra. “On the implementation of a primal-dual interior point method”. SIAM
Journal on optimization 2.4 (1992). Pp. 575–601.

[93] W. Metalle. GEMEINSAM AUFBRECHEN Der Geschäftsbericht der Nichteisen-
Metallindustrie. https://www.wvmetalle.de/index.php?eID=dumpFile&
t=f&f=282762&token=b83d45f6a5de8ba60c9bfde1e17e91a0851da87a. 2022.

[94] L. Meunier et al. “Black-box optimization revisited: Improving algorithm selection wizards
through massive benchmarking”. IEEE Transactions on Evolutionary Computation 26.3
(2021). Pp. 490–500.

[95] microsoft. Clean Architecture. https://docs.microsoft.com/en-us/dotnet/
architecture / modern - web - apps - azure / common - web - application -
architectures. 2022. (Visited on 07/07/2022).

[96] I. Miletic, R. Garbaty, S. Waterfall, and M. Mathewson. “Model-based optimization of
scrap steel purchasing”. IFAC Proceedings Volumes 40.11 (2007). Pp. 263–266.

[97] I. Miletic, R. Garbaty, S. Waterfall, and M. Mathewson. Steel scrap purchasing optimiza-
tion and supply management. American Institute of Chemical Engineers, 2006.

[98] J. Mockus. “Application of Bayesian approach to numerical methods of global and stochas-
tic optimization”. Journal of Global Optimization 4.4 (1994). Pp. 347–365.

[99] M. Moustapha and B. Sudret. “Surrogate-assisted reliability-based design optimization: a
survey and a unified modular framework”. Structural and Multidisciplinary Optimization
60 (2019). Pp. 2157–2176.

[100] J. P. Mueller and L. Massaron. Machine learning for dummies. Third. New York: John
Wiley & Sons, 2021.

[101] P. Mullinger and B. Jenkins. Industrial and process furnaces: principles, design and op-
eration. Butterworth-Heinemann, 2022.

[102] N. Nagesha and P. Balachandra. “Barriers to energy efficiency in small industry clusters:
Multi-criteria-based prioritization using the analytic hierarchy process”. Energy 31.12
(2006). Pp. 1969–1983.

[103] A.T. Nakhjiri, H. Sanaeepur, A. E. Amooghin, and M.M.A. Shirazi. “Recovery of pre-
cious metals from industrial wastewater towards resource recovery and environmental
sustainability: A critical review”. Desalination 527 (2022). P. 115510.

[104] J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, and S.
Nowak. “Recycling of lithium-ion batteries—current state of the art, circular economy,
and next generation recycling”. Advanced energy materials 12.17 (2022). P. 2102917.

[105] A. Ng. How large do the dev/test sets need to be? Tech. rep. ... DeepLearning AI, 2018.

https://www.wvmetalle.de/index.php?eID=dumpFile&t=f&f=282762&token=b83d45f6a5de8ba60c9bfde1e17e91a0851da87a
https://www.wvmetalle.de/index.php?eID=dumpFile&t=f&f=282762&token=b83d45f6a5de8ba60c9bfde1e17e91a0851da87a
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures

7.3. FUTURE WORKS 115

[106] A.-T. Nguyen, S. Reiter, and P. Rigo. “A review on simulation-based optimization meth-
ods applied to building performance analysis”. Applied energy 113 (2014). Pp. 1043–1058.

[107] M.A. Nielsen. Neural networks and deep learning. Vol. 25. Determination press San Fran-
cisco, CA, USA, 2015.

[108] L. Niu and Y. Yuan. “NEW TRUST-REGION ALGORITHM FOR NONLINEAR CON-
STRAINED OPTIMIZATION”. Journal of Computational Mathematics (2010). Pp. 72–
86.

[109] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

[110] a. Nordic. Docker architecture. https://nordicapis.com/. 2022.

[111] H. Oettel. “Ground, Polished and Viewed in Close-Up: the First Six Decades of ‘Schu-
mann’1”. Practical Metallography 50.9 (2013). Pp. 588–606.

[112] E.O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. University of Colorado at Boulder, 1989.

[113] U.G. Palomares and O. L. Mangasarian. “Superlinearly convergent quasi-Newton algo-
rithms for nonlinearly constrained optimization problems”. Mathematical Programming
11.1 (1976). Pp. 1–13.

[114] F. Pedregosa et al. “Scikit-learn: Machine learning in Python”. the Journal of machine
Learning research 12 (2011). Pp. 2825–2830.

[115] I. Polmear. Light alloys: from traditional alloys to nanocrystals. Elsevier, 2005.

[116] I. Polmear, D. StJohn, J.-F. Nie, and M. Qian. Light alloys: metallurgy of the light metals.
Butterworth-Heinemann, 2017.

[117] M. J. Powell. “A method for nonlinear constraints in minimization problems”. Optimiza-
tion (1969). Pp. 283–298.

[118] M. J. Powell. “Algorithms for nonlinear constraints that use Lagrangian functions”. Math-
ematical programming 14 (1978). Pp. 224–248.

[119] M. J. Powell. “The convergence of variable metric methods for nonlinearly constrained
optimization calculations”. Nonlinear programming 3. Elsevier, 1978, pp. 27–63.

[120] M. J. Powell. A direct search optimization method that models the objective and constraint
functions by linear interpolation. Springer, 1994.

[121] M. J. Powell. “A fast algorithm for nonlinearly constrained optimization calculations”.
Numerical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28–
July 1, 1977. Springer. 2006, pp. 144–157.

[122] M. Powell and Y.-X. Yuan. “A trust region algorithm for equality constrained optimiza-
tion”. Math. Program. 49.1 (1991). Pp. 189–211.

[123] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, and A. Gulin. “CatBoost:
unbiased boosting with categorical features”. Advances in neural information processing
systems 31 (2018).

[124] B. Pshenichnyi. “Algorithms for general mathematical programming problems”. Cyber-
netics 6.5 (1970). Pp. 677–684.

[125] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P.K. Tucker.
“Surrogate-based analysis and optimization”. Progress in aerospace sciences 41.1 (2005).
Pp. 1–28.

https://nordicapis.com/

116 CHAPTER 7. CONCLUSIONS

[126] T.M. Ragonneau. “Model-Based Derivative-Free Optimization Methods and Software”.
arXiv preprint arXiv:2210.12018 (2022).

[127] S. Ranka and V. Singh. “CLOUDS: A decision tree classifier for large datasets”. Proceed-
ings of the 4th knowledge discovery and data mining conference. Vol. 2. 8. 1998.

[128] J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad. 2018.

[129] L. Rathba. Model Fitting for an Electric Arc Furnace. 2004.

[130] redhat. Continuous Integration: A ”Typical” Process. https://developers.redhat.
com/blog/2017/09/06/continuous-integration-a-typical-process.
2022. (Visited on 12/07/2022).

[131] Redis Enterprise Software technical overview. Redis. url: %5Curl%7Bhttps://docs.
redis.com/latest/rs/technology-behind-redis-enterprise/%7D (visited
on 11/08/2022).

[132] J. R. Rice. “The algorithm selection problem”. Advances in computers. Vol. 15. Elsevier,
1976, pp. 65–118.

[133] S.M. Robinson. “A quadratically-convergent algorithm for general nonlinear programming
problems”. Mathematical programming 3 (1972). Pp. 145–156.

[134] S.M. Robinson. “Extension of Newton’s method to nonlinear functions with values in a
cone”. Numerische Mathematik 19.4 (1972). Pp. 341–347.

[135] R.T. Rockafellar. “A dual approach to solving nonlinear programming problems by un-
constrained optimization”. Mathematical programming 5.1 (1973). Pp. 354–373.

[136] H. Rosenbrock. “An automatic method for finding the greatest or least value of a func-
tion”. The computer journal 3.3 (1960). Pp. 175–184.

[137] P. J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation of clus-
ter analysis”. Journal of computational and applied mathematics 20 (1987). Pp. 53–65.

[138] E. Sandberg. “Energy and scrap optimisation of electric arc furnaces by statistical analysis
of process data”. PhD thesis. Lule̊a tekniska universitet, 2005.

[139] I. Santos, J. Nieves, P. Bringas, and Y. Penya. “Machine-learning-based defect prediction
in highprecision foundry production”. Structural Steel and Castings: Shapes and Stan-
dards, Properties and Applications (2010). Pp. 259–276.

[140] K. Schittkowski. “NLPQL: A FORTRAN subroutine solving constrained nonlinear pro-
gramming problems”. Annals of operations research 5 (1986). Pp. 485–500.

[141] B. Schölkopf, A. Smola, and K.-R. Müller. “Kernel principal component analysis”. Inter-
national conference on artificial neural networks. Springer. 1997, pp. 583–588.

[142] T. Simpson, V. Toropov, V. Balabanov, and F. Viana. “Design and analysis of computer
experiments in multidisciplinary design optimization: a review of how far we have come-
or not”. 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. 2008,
p. 5802.

[143] K.A. Smith-Miles. “Cross-disciplinary perspectives on meta-learning for algorithm selec-
tion”. ACM Computing Surveys (CSUR) 41.1 (2009). Pp. 1–25.

[144] A. F. Society. Castings in Our World Factsheet. https://afsinc.s3.amazonaws.
com/Documents/Marketing/Castings_Enduse.pdf. 2020.

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process
%5Curl%7Bhttps://docs.redis.com/latest/rs/technology-behind-redis-enterprise/%7D
%5Curl%7Bhttps://docs.redis.com/latest/rs/technology-behind-redis-enterprise/%7D
https://afsinc.s3.amazonaws.com/Documents/Marketing/Castings_Enduse.pdf
https://afsinc.s3.amazonaws.com/Documents/Marketing/Castings_Enduse.pdf

7.3. FUTURE WORKS 117

[145] D. Solomatine, L.M. See, and R. Abrahart. “Data-driven modelling: concepts, approaches
and experiences”. Practical hydroinformatics: Computational intelligence and technologi-
cal developments in water applications (2008). Pp. 17–30.

[146] S. Soltesz, H. Pötzl, M.E. Fiuczynski, A. Bavier, and L. Peterson. “Container-based op-
erating system virtualization: a scalable, high-performance alternative to hypervisors”.
Proceedings of the 2Nd ACM SIGOPS/EuroSys european conference on computer sys-
tems 2007. 2007, pp. 275–287.

[147] B. Srinivasan, L.T. Biegler, and D. Bonvin. “Tracking the necessary conditions of optimal-
ity with changing set of active constraints using a barrier-penalty function”. Computers
& Chemical Engineering 32.3 (2008). Pp. 572–579.

[148] W. Stahl. Rohstahlproduktion in Deutschland. https : / / www . stahl - online .
de/medieninformationen/rohstahlproduktion-in-deutschland-maerz-
2022/. 2022.

[149] H.A. Sturges. “The choice of a class interval”. Journal of the american statistical associ-
ation 21.153 (1926). Pp. 65–66.

[150] Q. Sun, B. Pfahringer, and M. Mayo. “Full model selection in the space of data mining
operators”. Proceedings of the 14th annual conference companion on genetic and evolu-
tionary computation. 2012, pp. 1503–1504.

[151] C. Thornton, F. Hutter, H.H. Hoos, and K. Leyton-Brown. “Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms”. Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining.
2013, pp. 847–855.

[152] M.E. Tipping and C.M. Bishop. “Mixtures of probabilistic principal component analyz-
ers”. Neural computation 11.2 (1999). Pp. 443–482.

[153] Y.N. Toulouevski and I. Y. Zinurov. “Innovation in electric arc furnaces”. Holland Land-
ing, Canada 2 (2010).

[154] P. Tüfekci. “Prediction of full load electrical power output of a base load operated com-
bined cycle power plant using machine learning methods”. International Journal of Elec-
trical Power & Energy Systems 60 (2014). Pp. 126–140.

[155] T.C. Uyan, K. Otto, M. S. Silva, P. Vilaça, and E. Armakan. “Industry 4.0 foundry
data management and supervised machine learning in low-pressure die casting quality
improvement”. International Journal of Metalcasting 17.1 (2023). Pp. 414–429.

[156] A. Vardi. “A trust region algorithm for equality constrained minimization: convergence
properties and implementation”. SIAM Journal on Numerical Analysis 22.3 (1985).
Pp. 575–591.

[157] J. Wang, Y. Zhang, K. Cui, T. Fu, J. Gao, S. Hussain, and T. S. AlGarni. “Pyromet-
allurgical recovery of zinc and valuable metals from electric arc furnace dust–a review”.
Journal of Cleaner Production 298 (2021). P. 126788.

[158] X. Wang and Y. Yuan. “An augmented Lagrangian trust region method for equality
constrained optimization”. Optimization Methods and Software 30.3 (2015). Pp. 559–582.

[159] R.B. Wilson. “A simplicial algorithm for concave programming”. Ph. D. Dissertation,
Graduate School of Bussiness Administration (1963).

[160] WorldSteelAssociation. 2021 World Steel in Figures. https://worldsteel.org/wp-
content/uploads/2021-World-Steel-in-Figures.pdf. 2021.

https://www.stahl-online.de/medieninformationen/rohstahlproduktion-in-deutschland-maerz-2022/
https://www.stahl-online.de/medieninformationen/rohstahlproduktion-in-deutschland-maerz-2022/
https://www.stahl-online.de/medieninformationen/rohstahlproduktion-in-deutschland-maerz-2022/
https://worldsteel.org/wp-content/uploads/2021-World-Steel-in-Figures.pdf
https://worldsteel.org/wp-content/uploads/2021-World-Steel-in-Figures.pdf

118 CHAPTER 7. CONCLUSIONS

[161] D. Xin, E.Y. Wu, D. J.-L. Lee, N. Salehi, and A. Parameswaran. “Whither automl? un-
derstanding the role of automation in machine learning workflows”. Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 2021, pp. 1–16.

[162] xteam. INTRODUCTION TO KUBERNETES ARCHITECTURE. https://x-team.
com/blog/introduction-kubernetes-architecture/. 2022.

[163] S. Zhang, C. Zhang, and Q. Yang. “Data preparation for data mining”. Applied artificial
intelligence 17.5-6 (2003). Pp. 375–381.

[164] B. Zhou, T. Pychynski, M. Reischl, E. Kharlamov, and R. Mikut. “Machine learning with
domain knowledge for predictive quality monitoring in resistance spot welding”. Journal
of Intelligent Manufacturing 33.4 (2022). Pp. 1139–1163.

[165] Z.-H. Zhou. Machine learning. Springer Nature, 2021.

[166] X. J. Zhu. “Semi-supervised learning literature survey” (2005).

[167] M. Zinkevich, M. Weimer, L. Li, and A. Smola. “Parallelized stochastic gradient descent”.
Advances in neural information processing systems 23 (2010).

[168] M.-A. Zöller and M.F. Huber. “Benchmark and survey of automated machine learning
frameworks”. Journal of artificial intelligence research 70 (2021). Pp. 409–472.

https://x-team.com/blog/introduction-kubernetes-architecture/
https://x-team.com/blog/introduction-kubernetes-architecture/

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goals and contributions
	Thesis structure

	Background
	Foundations of the metal casting process
	Metal recycling
	Challenges of scrap procurement optimization
	Machine learning
	Supervised regression learning
	Regression algorithms
	Hyperparameter tuning
	AutoML

	Numerical optimization
	Sequential quadratic programming
	Derivative-free optimization
	Derivative-based optimization
	Surrogate-based optimization

	Cloud computing
	Docker containers
	Kubernetes

	Summary

	Platform for scrap procurement
	Introduction to the platform
	Software architecture
	Implementation details
	AutoML system
	Software deployment

	Summary

	Scrap procurement optimization
	Traditional methods for scrap purchase optimization
	EidoData desktop
	Implementation details
	Features of EidoData desktop

	EidoData web
	Implementation details
	Features of EidoData web

	Summary

	Surrogate gradient methods for optimization
	Gradient-based optimization of surrogate models
	General problem description
	Application to machine learning
	Main objective

	Numerical experiments
	Rosenbrock function
	Foundry dataset

	Summary

	Real-world scrap procurement simulations
	Validation of the algorithm in real-world scenarios
	Preliminary results

	Time discrete simulations
	Summary

	Conclusions
	Thesis summary
	Thesis contributions
	Future works

	References

