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Abstract
The present application note summarizes an advanced methodology that allows
for deriving potential-dependent volcano curves for energy storage and conver-
sion processes. The conventional approach relies on the combination of density
functional theory calculations and scaling relations for a single mechanistic
pathway as well as a discussion of electrocatalytic activity by means of the
potential-determining step, determined at the equilibrium potential of the reac-
tion. Herein, it is illustrated how several reaction mechanisms can be factored
into the volcano curve and how the rate-determining step based on the descrip-
tor Gmax(U) can be derived by a rigorous thermodynamic analysis of adsorption
free energies fed by a data-inspired methodology.
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1 INTRODUCTION

Electrocatalysis has attributed a central role in the scenario
of a sustainable energy economy, following the idea that
energy production from intermittent renewables can be
stored in chemical bonds without the depletion of nonre-
newable resources.[1–3] Important electrochemical devices
for energy storage and conversion are electrolyzers to pro-
duce the energy vector gaseous hydrogen (H2), fuel cells,
and various types of batteries, ranging from lithium-based
to post-lithium approaches or air-based and sulfur-based
batteries.[4–7] The electrochemical processes taking place
at the electrodes in these devices are, however, neither
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entirely understood relating to their mechanistic picture
nor fully optimized for a large-scale operation in terms
of cost-effectiveness, considering that these electrodes are
often coated with scarce noble metals such as platinum,
iridium, or ruthenium serving as the electrocatalyst.[8,9] A
major challenge in this field refers to the identification of
economical electrocatalysts consisting of earth-abundant
elements that have the potential to replace platinum- or
iridium-based materials in fuel cells and electrolyzers in
the long run.[10–12]
While the theoretical description of electrocatalytic pro-

cesses is inherently complex by considering the dynamic
nature of the aqueous electrolyte, the occurrence of
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adsorption and desorption processes on the electrode, and
the presence of coupled or decoupled electron-proton or
electron-cation transfer steps within multi-step reaction
mechanism, it is noteworthy that in the last decade, theory
has made major contributions relating to the identifica-
tion of material motifs for electrocatalytic processes.[13–15]
Most of these works rely on the methodology introduced
by Koper or Nørskov, Rossmeisl, and coworkers in that
the binding energies of adsorbates on electrode surfaces
are determined by density functional theory (DFT) cal-
culations and are analyzed by the framework of scaling
relations to construct volcano plots, which enable differ-
entiation between active and inactive electrocatalyst.[16–19]
With the rise of artificial intelligence (AI) and machine-
learning approaches, material optimization for thousands
of potential material motifs can be performed by the vol-
cano curve as a guideline, aiming to climb the volcano
apex to reach superb electrocatalytic activity.[20,21] While
this procedure has been firmly established in the theo-
retical electrocatalysis community, I would like to outline
the disadvantages of this method. On the one hand, the
construction of volcano plots by using scaling relations
commonly relies on the assumption of a single reaction
mechanism, for instance, the mononuclear description via
the *OH, *O, and *OOH adsorbates for the oxygen evolu-
tion or reduction reactions.[22] Presuming a single reaction
mechanism for all materials in a homologous series is yet
a major restraint because this precondition is likely not
met.[23] On the other hand, the volcano legs are based on
the determination of the so-called potential-determining
step (PDS), which refers to the limiting reaction step in the
thermodynamic picture at the equilibrium potential of the
reaction. It has been demonstrated though that the PDS
may not coincide with the rate-determining step (RDS)
which governs electrocatalytic activity, and thus, the pre-
diction of electrocatalytic activity based on the concept
of PDS may be erroneous.[24,25] Also, the applied overpo-
tential, serving as the driving force for an electrocatalytic
process, has a non-negligible impact on the location of the
volcano apex, considering that an increase in the applied
overpotential can displace the volcano top toward stronger
or weaker bonding of a reaction intermediate.[26–28]
In the present application note, I summarize a tech-

nique that has been recently established in my lab.[29–33]
There, we make use of a different strategy in that we do
not follow the conventional scheme of DFT followed by
scaling relations and volcano plots based on the PDS for
a single reaction mechanism, and AI or data-science tech-
niques to steer electrocatalytic activity, but rather we start
from the opposite side: we make use of the already known
scaling relations from literature and first, we describe a
variety of mechanistic pathways by a rigorous thermody-
namic treatment. Linking this thermodynamic analysis to

F IGURE 1 (a) Conventional approach in the literature for
materials optimization (framed by a black box): density functional
theory (DFT) calculations are conducted to derive scaling relations
that translate to a volcano plot for a single reaction mechanism,
discussing the potential-determining step (PDS) as activity
descriptor. Artificial intelligence (AI) or data-science (DS)
techniques are commonly applied for materials optimization to
obtain catalysts with higher intrinsic activity in the approximation
of the PDS. (b) Method derived in the Exner lab: instead of applying
DFT calculations first, a variety of potential mechanistic
descriptions are assessed by rigorous thermodynamic analysis, and
the thermodynamic theory is linked with the already existing
scaling relations from the literature and the activity descriptor
Gmax(U) by a data-science (DS) approach to obtain
potential-dependent volcano plots, thereby discussing the
free-energy span of Gmax(U) referring to the rate-determining step
(RDS) as activity descriptor. Thereafter, DFT calculations or AI can
be used to conduct materials optimization based on the enhanced
mechanistic picture of the volcano curve.

the descriptor Gmax(U)[34,35] enables factoring overpoten-
tial and kinetic effects into the analysis to identify limiting
reaction steps that scale with the RDS rather than the PDS,
and the available material space is defined by a basis set of
adsorption free energies. Our data-inspired methodology
culminates into the construction of potential-dependent
volcano curves, which can be compiled at any arbitrarily
chosen overpotential, and thusmay serve as a guideline for
subsequent DFT calculations or AI investigations to opti-
mize electrode materials. A summary of this approach is
given in Figure 1.

2 MATHEMATICAL ORIGIN OF
DATA-DRIVEN VOLCANO PLOTS

In the following, the scheme of Figure 1 is further
explained with a general example. Let us assume a proton-
electron coupled mechanism of reactant X2 (for instance,
O2 or N2 relating to the oxygen reduction or nitrogen
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reduction reactions, respectively) to form the desired
product, e. g., 2 H2X:

X2 + 4H+ + 4e− → 2H2X, 𝑈
0 = 𝑈X2∕H2X𝑣𝑠. reversible hydrogen electrode (RHE) (1)

In the first step, potential mechanistic pathways are
formulated for the above reaction. While electrochemical
reactions may contain both electrochemical and chemical
steps, let us start the discussion with a mechanism where
all steps are of electrochemical nature (cf. Equations (2)–
(5)):

M+ X2 + H+ + e− → M− XXH Δ𝐺a (2)

M− XXH +H+ + e− → M− X +H2X Δ𝐺b (3)

M− X +H+ + e− → M− XH Δ𝐺c (4)

M− XH +H+ + e− → M+H2X Δ𝐺d (5)

In Equations (2)–(5), the four free-energy changes relat-
ing to the elementary steps of the mechanism are indi-
cated by ΔGX (X = a, b, c, d). The sum of these four
free-energy changes needs to fulfill the criterion of Equa-
tion (6), considering the fundamental laws of equilibrium
thermodynamics:

Δ𝐺a + Δ𝐺b + Δ𝐺c + Δ𝐺d = −4 ⋅ 𝑒 ⋅ 𝑈X2∕H2X@𝑈 = 0Vvs.RHE

(6)

Consequently, the free-energy change ΔGd can always
be referred to as Equation (6) so that only the free-energy
changes ΔGa, ΔGb, and ΔGc are independent variables.
One of these free-energy changes is used as a descriptor in
the volcano analysis, e. g., ΔGa. The free-energy changes
ΔGb and ΔGc are correlated by scaling relations to the
descriptor ΔGa, as exemplified by Equations (7) and (8):

Δ𝐺b = f1(Δ𝐺a, SR1) (7)

Δ𝐺c = f2(Δ𝐺a, SR2) (8)

Here, SR1 and SR2 denote two different scaling rela-
tions that connect the respective free-energy change to
the descriptor ΔGa. The scaling relations SR1 and SR2 can
be taken from the literature and can also be treated as
data ranges in that one is studying the impact of a vary-
ing scaling relation on the volcano curve.[29,30] Applying
the outlined procedure, only one (ΔGa) of the initial four

free-energy changes (cf. Equations (2)–(5)) remains as a
variable in the analysis. This variable serves as a descriptor

in the volcano approach, for which a data range is defined
that represents the material space, thereby referring to
DFT studies from the literature.[31–33]
In the next step, the free energies of the reaction inter-

mediates of the mechanistic description in Equations (2)–
(5) are expressed by means of the above free-energy
changes:

𝐺M+X2(𝑈) = 0 (9)

𝐺M−XXH(𝑈) = Δ𝐺a +1 ⋅ 𝑒 ⋅ 𝑈 (10)

𝐺M−X(𝑈) = Δ𝐺a + Δ𝐺b +2 ⋅ e ⋅ 𝑈 (11)

𝐺M−XH(𝑈) = Δ𝐺a + Δ𝐺b + Δ𝐺c +3 ⋅ e ⋅ 𝑈 (12)

𝐺M+H2X(𝑈) = Δ𝐺a + Δ𝐺b + Δ𝐺c + Δ𝐺d + 4 ⋅ e ⋅ 𝑈

(13)

By referring to the above discussion,we can replaceΔGb,
ΔGc, and ΔGd with the scaling relations or the equilibrium
potential, respectively:

𝐺M+X2(𝑈) = 0 (14)

𝐺M−XXH(𝑈) = Δ𝐺a +1 ⋅ e ⋅ 𝑈 (15)

𝐺M−X(𝑈) = Δ𝐺a + f1(Δ𝐺a, SR1) +2 ⋅ e ⋅ 𝑈 (16)

𝐺M−XH(𝑈) = Δ𝐺a + f1(Δ𝐺a, SR1) + f2(Δ𝐺a, SR2) + 3 ⋅ e ⋅ 𝑈

(17)

𝐺M+H2X(𝑈) = −4 ⋅ e ⋅ 𝑈X2∕H2X +4 ⋅ e ⋅ 𝑈 (18)

To approximate electrocatalytic activity and to identify
limiting reaction steps, we do not apply the concept of
PDS, but rather make use of the descriptor Gmax(U)[34,35]
that relies on the idea of a free-energy span model by ana-
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lyzing all possible free-energy spans between the reaction
intermediates[36,37]:

𝐺M−XXH (𝑈) − 𝐺M+X2 (𝑈) ; 𝐺M−X (𝑈) − 𝐺M+X2 (𝑈) ; 𝐺M−XH (𝑈) − 𝐺M+X2 (𝑈) ;

𝐺M−X (𝑈) − 𝐺M−XXH (𝑈) ; 𝐺M−XH (𝑈) − 𝐺M−XXH (𝑈) ; 𝐺M+H2X (𝑈) − 𝐺M−XXH (𝑈) ;

𝐺M−XH (𝑈) − 𝐺M−X (𝑈) ; 𝐺M+H2X (𝑈) − 𝐺M−X (𝑈) ; 𝐺M+H2X (𝑈) − 𝐺M−XH (𝑈)

(19)

The largest free-energy difference among the set of avail-
able spans is extracted because this span has been shown
to correlate with the RDS of the overall reaction[34,35]:

𝐺max (𝑈) = max{𝐺M−XXH (𝑈) − 𝐺M+X2 (𝑈) ; 𝐺M−X (𝑈) − 𝐺M+X2 (𝑈) ; 𝐺M−XH (𝑈) − 𝐺M+X2 (𝑈) ;

𝐺M−X (𝑈) − 𝐺M−XXH (𝑈) ; 𝐺M−XH (𝑈) − 𝐺M−XXH (𝑈) ; 𝐺M+H2X (𝑈) − 𝐺M−XXH (𝑈) ;

𝐺M−XH (𝑈) − 𝐺M−X (𝑈) ; 𝐺M+H2X (𝑈) − 𝐺M−X (𝑈) ; 𝐺M+H2X (𝑈) − 𝐺M−XH (𝑈)}

(20)

The procedure of Equations (2–20) allows compiling
a volcano curve for the electrocatalytic process of Equa-
tion (1) by varying the descriptor ΔGa in its considered data
range. This methodology, however, is not only carried out
for the mechanistic pathway of Equations (2)–(5) but also
for other conceivable mechanisms. For instance, another
potential mechanism for the reaction of Equation (1) is
reconciled with Equations (21)–(25):

M+M+ X2 + H+ + e− → M− XXH +M Δ𝐺e (21)

M− XXH +M → M− X +M− XH Δ𝐺f (22)

M− X +M− XH +H+ + e− → M− XH +M− XH Δ𝐺g (23)

M− XH +M− XH +H+ + e− → M− XH +M+H2X Δ𝐺h (24)

M− XH +M+H+ + e− → M+M+H2X Δ𝐺i (25)

A third option refers to Equation (26)–(29):

M+M+ X2 + H+ + e− → M− XXH +M Δ𝐺j (26)

M− XXH +M+H+ + e− → M− XH +M− XH Δ𝐺k (27)

M− XH +M− XH +H+ + e− → M− XH +M+H2X Δ𝐺l (28)

M− XH +M+H+ + e− → M+M+H2X Δ𝐺m (29)

Here, I want to refrain from a longmathematical deriva-
tion of the reaction intermediates’ energetics for the other

two mechanistic pathways because they can be found in
previous publications of the author.[38,39] The essence of
this procedure refers to the combination of the volcano

curves for the dissimilar mechanisms into a single plot
to identify the preferred mechanism and limiting steps
depending on the descriptor ΔGa.
While so far, the discussion relies on a general exam-

ple of converting X2 into an energetically favored product
under the application of a cathodic potential, let us
exemplify this framework by a concrete electrocatalytic
process. For the oxygen reduction reaction (ORR), X2
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F IGURE 2 (a) Volcano plot of the mononuclear, chemical *OOH dissociation, and electrochemical *OOH dissociation mechanisms with
a scaling-relation intercept of 3.2 eV for the four-electron oxygen reduction reaction at U = 0.7 V versus reversible hydrogen electrode (RHE).
The energetically favored pathway in each regime of the descriptor ΔG1 is indicated. (b) Limiting reaction steps based on the free-energy span
of Gmax(U = 0.7 V vs. RHE) for the respective mechanism in dependence of ΔG1. Panel (a) is adopted with permission.[39]

refers to O2, UX2/H2X amounts to 1.23 V versus reversible
hydrogen electrode (RHE), and the mechanistic path-
ways of Equations (2)–(5), (21)–(25), and (26)–(29) are
reconciled with themononuclear, chemical OOHdissocia-
tion, and electrochemical OOH dissociation mechanisms,
respectively.[40–44] Relating to the descriptor ΔGa, the
adsorption-free energy of the *OH adsorbate, ΔG1, is
chosen, corresponding to the reverse reaction of Equa-
tion (5). Two scaling relations are considered, namely the
adsorption-free energy of the *O adsorbates is about twice
the *OH intermediate, and the *OOH and *OH adsorbates
scale with an offset of about 3.2 eV.[17,18] Given that basi-
cally all relevant materials to the oxygen electrocatalysis
are within ΔG1 = [–0.50, 2.50] eV,[45] this value range is
used to derive the volcano curve using Gmax(U = 0.7 V
vs. RHE) as activity descriptor on the y axis. The obtained
results are depicted in Figure 2.
Figure 2a illustrates that in different regimes of the

descriptor ΔG1, dissimilar mechanistic descriptions are
energetically preferred, and thus govern activity in the vol-
cano curve. While for strong and weak binding of the *OH
adsorbate, the OOH dissociation mechanism controls the
shape of the volcano curve, the mononuclear mechanism
is preferred for 0 eV< ΔG1 < 0.7 eV. Near or at the volcano
top (0.8 eV<ΔG1 < 1.2 eV), however, all threemechanisms
compete. This finding illustrates that highly active ORR
catalysts benefit from the fact that not only one pathway
is operative, but rather these catalysts have the advantage
of reducingO2 to water via differentmechanisms. Though,
so far, it is common consensus to the approximate activity
of highly activeORR catalysts by testing a singlemechanis-
tic description,[38,40] which, based on the derived volcano
curve, is too simplistic.
Figure 2b indicates the limiting reaction steps in the

framework of Gmax(U = 0.7 V vs. RHE). It becomes evi-
dent that the limiting steps alter when the preferred
mechanism switches from the OOH dissociation to the
mononuclear description (ΔG1 = 0 eV). On the other

hand, it turns out that the limiting step can even be
changed in the free-energy regime of 0 eV < ΔG1 < 0.7 eV
where the mononuclear mechanism is operative: while
the free-energy span GM(U)—GM-O(U) governs Gmax(U)
for ΔG1 < 0.35 eV, its definition is given by the free-
energy difference GM(U)—GM-OH(U) for ΔG1 > 0.35 eV.
The observed change in the intermediate states govern-
ing Gmax(U) cannot be resolved by the conventionally
applied PDS concept in volcano plots but rather requires
a potential-dependent contemplation of the intermediate
states by the free-energy span model, which can also be
linked to the RDS if the Tafel slope is predetermined. Given
that for overpotentials exceeding 500 mV, it can be fairly
assumed that the first electrochemical step in the mecha-
nism (Tafel slope of 120 mV/dec) governs the rate,[34] the
different free-energy spans translate to a dissimilar RDS
at U = 0.7 V versus RHE, namely either *O → *OH or
*OH → * for ΔG1 < 0.35 eV and ΔG1 > 0.35 eV, respec-
tively. Further discussion on the U-dependence of the
ORR volcano plot based on the outlined methodology is
given.[38,39]
The above example illustrates that, without any ado, the

commonly made assumption that the limiting step is not
altered at the volcano legs does not hold true, which is
reminiscent of the discussion of Schmickler and cowork-
ers in reference.[46] Additionally, it is noteworthy that the
consideration of an insufficient number of mechanisms in
the approach can lead to an underestimation of electrocat-
alytic activity because in this case, the volcano curve traces
the electrocatalytic activity to a mechanism that is not
reconciled with the energetically favored pathway. These
findings underpin the importance of the advanced volcano
methodology based on the introduced scheme in Figure 1.
For the volcano curve of Figure 2, subsequently, DFT

calculations can be applied for potential ORR electrocat-
alysts to categorize these materials into active and inactive
and to quantify limiting reaction steps based on the pre-
ferredmechanistic description. Similar to the conventional
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approach, the volcano plot also allows the optimization of
materials with AI and data-science techniques by relying
on a different optimization scheme in that limiting steps
in the framework of the descriptor Gmax(U) rather than
the PDS are discussed (cf. Figure 1). The outlined concept
is universal and can therefore be applied to any proton-
electron transfer process of relevance to energy storage
and conversion, for which adsorption-energy scaling rela-
tions are already available.[47] Besides the ORR,[38,39]
further examples in the literature comprise nitrogen
reduction,[31,32] oxygen evolution,[30,33] and bifunctional
oxygen electrocatalysis[29] to which the interested reader
is referred.

3 CONCLUSIONS

Materials optimization for electrocatalytic processes has
been largely governed by a combination of DFT calcula-
tions to derive scaling relations and volcano plots. While
these considerations largely neglect the opportunity of sev-
eral mechanistic pathways in the analysis and are based
on a simplified description of electrocatalytic activity by
relying on thermodynamic considerations in terms of the
potential-determining step (PDS), the present applica-
tion note summarizes an advanced framework that goes
beyond volcano curves for a single mechanism and the
PDS as activity descriptor. Combining scaling relations
from the literature with a rigorous thermodynamic treat-
ment of various mechanistic pathways and a potential-
dependent activity descriptor, Gmax(U), volcano plots are
derived that allow unraveling mechanistic changes as well
as switches in the limiting steps referring to the RDS rather
than the PDS. Due to the universality of the introduced
methodology, I am confident that the outlined procedure
not only enhances our atomic scale understanding of elec-
trocatalytic processes but also contributes to the design
of catalytic materials for energy conversion and storage
processes.
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