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Abstract: Radiation therapy is an essential component of present-day cancer management, utiliz-
ing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by
generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among
them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes
have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ),
homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA).
These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies
but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute
unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight
regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum
possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge
on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and
HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms
steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA
end resection in this process. Most importantly, however, we point out the strong preference for HR at
low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further
explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone
repair pathways and analyze the coordination and consequences of this transition on cell viability
and genomic stability. Finally, we elaborate on how these advances may help in the development of
improved cancer treatment protocols in radiation therapy.

Keywords: DNA double strand breaks (DSBs); ionizing radiation (IR); homologous recombination
(HR); RAD51; cancer therapy; radiation therapy

1. Introduction

In addition to surgery and chemotherapy, radiation therapy is a key regimen in modern
cancer treatment that utilizes various ionizing radiation (IR) modalities to mitigate cancer
progression. IR generates ionizations and ionization clusters that hold enough energy to
evict electrons from water or DNA, thus generating a plethora of DNA lesions with a wide
spectrum of complexity [1]. The most detrimental DNA lesion that is induced by IR is
the double strand break (DSB). IR-induced DSBs contribute considerably to the efficacy
of radiotherapy applications [2–4]. If left unrepaired or incorrectly repaired, DSBs result
in enhanced levels of chromosomal abnormalities that are associated with increased cell
lethality, and are also considered a hallmark of cancer development [5–8].
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In cells of higher eukaryotes, four DSB repair pathways operate in concert to coun-
teract the adverse effects of IR. Indeed, classical non-homologous end joining (c-NHEJ),
homologous recombination (HR), alternative end joining (alt-EJ), and single strand anneal-
ing (SSA) function to restore genome integrity and DNA sequence around the break [3,9,10].
Notably, DSBs are frequently repaired inaccurately by these repair pathways, leading to cell
death or mutagenesis. Recent studies suggest that “processing accidents” directly caused
by the engagement of a specific DSB repair pathway underpin many of the adverse effects
of DSBs on cell survival or the induction of genomic alterations [3,4]. This perspective
challenges the notion that the four DSB repair pathways represent equivalent options for
repair and highlights the importance of better understanding the evolutionary significance
of their mechanistic diversity and their considerable differences in accuracy, efficiency, and
speed.

There is evidence that the upregulation of certain DSB repair pathways in the ge-
nomically altered background of cancer cells can increase their radioresistance [11–14].
Consequently, several studies have explored means to improve radiotherapy by antago-
nizing key DSB processing factors, thereby suppressing DSB repair or shifting the balance
between DSB repair pathways [14–17]. A widely accepted premise in the field is that a
mechanistic understanding of the molecular principles driving the hierarchical coordina-
tion in the engagement of DSB repair pathways will highlight powerful means to improve
radiotherapy.

2. Molecular Mechanisms of DSB Repair in Higher Eukaryotes

DNA DSBs are endogenously induced randomly in the genomes of higher eukaryotes
as a result of increased oxidative stress or accidents during DNA replication [18,19]. Despite
the potentially detrimental nature of DSBs, their site-specific, enzymatic induction is pro-
grammed in defined cell types of the immune system and serves essential functions, e.g., in
V(D)J and class switch recombination (CSR) [20–22]. Moreover, Spo11-mediated DSBs are
introduced at specific locations in germ cells to induce meiotic recombination between two
homologous chromosomes [23]. In addition, recent studies suggest that DSBs occur as inter-
mediates during neurobiological processes related to memory development [24–26]. From
an evolutionary perspective, DSBs are also thought to provide opportunities for genetic
rearrangements and the integration of DNA fragments into the genome [27]. Therefore, it
is not surprising that vertebrate cells are equipped with a sophisticated DSB repair network
that forms an integral part of the general DNA metabolism; it operates as a competent
guardian of the genome against endogenous and exogenous insults but also facilitates the
above mentioned essential biological processes.

Multiple chemical and physical agents interact with DNA and generate DSBs, often
almost randomly. From the plethora of such agents, IR takes a special place. It has been
documented that even a single unrepaired DSB can trigger cell death. Therefore, the
potential of DSBs to induce cell death is exploited in radiation therapy that utilizes IR to
target the viability of cancer cells [12,28].

Innately, cancer cells encounter a higher endogenous DSB burden in comparison
with normal cells, owing to oncogene-induced replication stress, increased metabolic
activity, and acquired defects in major DSB repair, as well asDNA damage response (DDR)
mechanisms [29,30]—all components of the carcinogenesis. As a consequence of this,
hyper-proliferating cancer cells are forced to rely on altered pathway balance in their DSB
repair pathway network that may include the suppression of some repair pathways and the
promotion of the others. Such shifts frequently alter the cancer cell response to radiation,
which may facilitate or hamper eradication during radiation therapy [31].

Inherited DNA repair defects can predispose an individual to develop certain types of
cancer and the very same susceptibility may be therapeutically exploited to preferentially
eradicate cancer cells in tumors [32,33]. Therefore, a molecular understanding of DSB repair
mechanisms and their control are important prerequisites for the development of improved
radiotherapy treatment protocols.
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The four DSB repair pathways mentioned above have distinct cell cycle and DNA se-
quence homology dependencies and operate with different fidelity and kinetics throughout
the cell cycle [4,19,34,35]. The engagement of a particular DSB repair pathway is predicated,
to a large extent, on DNA end resection, a process of 5′- to 3′- degradation of one DNA
strand to generate a single strand DNA-overhang with a free 3′-OH terminus. These sin-
gle strand DNA intermediates are essential entities that trigger homology-directed repair
mechanisms.

As a consequence, DSB repair pathways are frequently classified as resection depen-
dent (HR, alt-EJ, and SSA) and resection independent (c-NHEJ) (Figure 1). DNA end
resection-dependent DSB repair pathways are characterized by a pronounced cell cycle de-
pendence, which may be harnessed to increase the efficacy of radiation therapy (Figure 1).
In contrast, c-NHEJ is renowned for being active throughout the entire cell cycle and there
are no major documented differences in the availability, accessibility, and efficiency of its in-
tegral components at different cell cycle stages (Figure 1) [9,36]. Notably, DNA end resection
is reduced in the G1- and especially in the G0-phase of the cell cycle, which renders c-NHEJ
essential in quiescent and terminally differentiated cells. Although, there is evidence that
limited DNA end resection occurs in G0- and G1-cells, and that this could promote a form
of c-NHEJ that relies on resection to operate [37–39], it is clear that resection is actively sup-
pressed in pre-replicative cell cycle phases by a complex regulatory network acting on DNA
end resection activities, and regulating their expression and ubiquitination-mediated degra-
dation [40–43]. Therefore, DNA end resection-dependent DSB repair pathways generally
gain activity during S- and G2-phase of the cell cycle (Figure 1).
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Figure 1. DSB repair pathways and their activity throughout the cell cycle. DNA end resection is the
main delimiter of DSB repair pathway engagement. Thus, DSB repair pathways are categorized as
DNA end resection independent (c-NHEJ) and DNA end resection dependent (HR, alt-EJ, and SSA).
C-NHEJ operates with similar efficiency throughout the entire cell cycle, while HR, alt-EJ, and SSA
are more active in S- and G2-phase, where resection activities are typically higher.

Both initial and long-range DNA end resection are extremely important for the initia-
tion of HR and SSA, as the formation of sufficiently long 3′-single strand DNA overhang
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intermediates is essential for the initiation of homology-directed DSB repair [44,45]. How-
ever, it remains open whether alt-EJ requires DNA end resection, and whether certain
alt-EJ sub-pathways are resection independent. Recent evidence indicates that long-range
resection suppresses alt-EJ repair, while short-range resection promotes its activity [46,47].
Moreover, pioneer studies report that, under certain conditions, alt-EJ could engage in the
repair of non-resected DSBs or DSBs that undergo limited DNA end processing [48–51].
These observations emphasize the plasticity of this repair pathway, a property that en-
dows it with interesting “back-up” functions, whenever other repair pathways engage
first at a DSB but somehow fail to completely restore DNA integrity. Consistently, it
was shown that alt-EJ activity is detectable during the G1-phase of the cell cycle and that
it becomes enhanced in the G2-phase, where the abundance of end resection factors is
at a maximum [52,53]. In line with these results, our studies also indicate that alt-EJ is
strongly suppressed in the stationary phase of growth where cells are predominantly in the
G0-phase [54,55].

The accumulated data on DSB repair pathway activity in mitosis remain controversial
(Figure 1). There are reports indicating no active DSB repair in mitosis [56,57], while other
reports highlight the role for HR, SSA, and c-NHEJ [58,59]. Recent results have identified
the 9-1-1 complex (RAD9A-HUS1-RAD1) and its interacting partner, RHINO, as critical
factors of microhomology mediated end joining (MMEJ) during mitosis [60]. RHINO
has been shown to play an essential role during the mutagenic alt-EJ repair in mitosis by
interacting with polymerase theta (POLθ) and facilitating its recruitment to DSBs [60]. Our
current work also shows that POLθ contributes to mitotic DSB repair and rejoins a fraction
of DSBs in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), an
essential factor of c-NHEJ (unpublished results).

Importantly, the functional interplay between major DSB repair pathways, in combina-
tion with their cell cycle requirements, offers therapeutic opportunities to selectively target
repair-compromised tumors, based on the concept of synthetic lethality [28,61,62]. In the
following section, we will outline the basic principles of DSB repair processes identified in
higher eukaryotes, with emphasis on newly characterized factors involved in c-NHEJ and
HR. We will also outline the main control mechanisms utilized by cells to modulate the
activity of certain repair mechanisms and therefore increase their survival.

2.1. Classical Non-Homologous end Joining (c-NHEJ)

The major pathway implicated in DSB repair in both actively proliferating and qui-
escent cells is c-NHEJ (Figure 1). The efficiency of c-NHEJ remains relatively constant
throughout the cell cycle and is essential for the elimination of DSBs in the majority of
cells, particularly when they enter quiescence or become terminally differentiated [63,64].
C-NHEJ is initiated by the binding of KU70/80 heterodimer to DSB ends, followed by the
recruitment of DNA-PKcs, to form an active DNA-PK holoenzyme [65–68].

DNA-PKcs, a member of the PIKK family of protein kinases, has been originally
discovered in human cells as a protein kinase that is stimulated after interaction with
double-stranded DNA. DNA-PKcs is absent in bacteria and many lower eukaryotes, and
the prevailing assumption was that it is a vertebrate-specific PIKK [69]. However, a recent
study reports that protein sequences and structural motifs, similar to those of DNA-PKcs,
have been detected in invertebrates, fungi, plants, and protists [69].

The DNA-PK holoenzyme is reported to serve as a landing pad for the recruitment
of other c-NHEJ factors. A commonly accepted model is that, prior to DNA ligation,
DNA-PKcs must be displaced from DNA ends by autophosphorylation to free them up
for ligation [70]. However, new data suggest that DNA-PKcs could remain bound to DNA
ends and help coordinate the overall repair reaction including the transfer of DNA ends for
processing by HR [71].

The generation of ligation-compatible DNA ends requires DNA end processing, which
can include enzymatic modification, excision, or addition of nucleotides. This is particularly
important for IR-induced DNA ends that contain damaged nucleotides and are typically
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incompatible for direct ligation [72,73]. Activities contributing to DNA end processing
include the Artemis nuclease, the polymerases of the POL X family, POL µ and POL λ, the
tyrosyl-DNA phosphodiesterase 1 (TDP1), and the polynucleotide kinase 3′-phosphatase
(PNKP) [74]. The chemistry of the DNA end determines which of these factors are required
for the preparation of ligatable DNA ends.

Ligation of the broken DNA termini is catalyzed by the DNA Ligase 4, X-ray cross
complementing protein 4 (LIG4/XRCC4) complex, whose efficiency is facilitated by the
XRCC4-like factor (XLF), and/or by the paralogue of XRCC4 and XLF (PAXX) [63]. It has
been shown that PAXX acts as a stabilizing molecule for the main NHEJ components but
could also redirect DNA end processive enzymes to the DSB [75].

Recent studies identified new proteins that are important for the c-NHEJ function, such
as the modulator of retroviral infection (MRI)/cell cycle regulator of NHEJ (CYREN) [76,77],
the transactivation response DNA binding protein (TARDBP) of 43 kDa (TDP-43), RNase
H2, and the intermediate filament family orphan (IFFO1) protein [66]. There is evidence that
MRI/CYREN plays a dual role in DSB repair by stimulating c-NHEJ in the G1-phase, while
suppressing c-NHEJ efficiency in the S- and G2-phases [66,78]. TDP-43 has been shown to
recruit LIG4/XRCC4 complex to DSB sites and to stimulate ligation in neuronal cells, while
RNase H2 has been revealed as the ribonuclease that excises ribonucleotides inserted during
DNA synthesis by DNA POLµ/TdT [66]. IFFO1 is a nuclear matrix-associated protein,
involved in the immobilization of broken DNA ends and the suppression of structural
chromosomal abnormalities (SCAs) formation during DSB repair by c-NHEJ [79]. This
protein also acts as a scaffold mediating the XRCC4/LMNA complex formation involved
in the immobilization of the broken DNA ends to the nuclear lamina [79].

In addition to the above factors, the C2H2-type ZnF protein, ZNF384, has been de-
scribed as an important DSB repair component essential for the repair of DSBs by c-
NHEJ [80]. During the initial steps of c-NHEJ repair, PARP-1/PAR-mediated chromatin
expansion initiates the recruitment of ZNF384 to the sites of DNA damage, which catalyzes
the physical interactions between the N-terminus of ZNF384 and KU heterodimer. The
interaction of ZNF384 with both DNA and KU70/KU80 is critical for the processive loading
of KU and the subsequent recruitment of DNA-PKcs [80].

Recently, a new factor stimulating the recovery from an IR-induced G2-checkpoint was
found to promote DSB repair by c-NHEJ [81]. PHD finger protein 6 (PHF6) is encoded by a
gene mutated in Börjeson–Forssman–Lehmann syndrome and many leukemic cancers. It is
rapidly recruited to the sites of DSBs in a PARP-dependent manner and its recruitment is
essential for the efficient function of c-NHEJ [81]. The number of essential factors involved
in DSB repair by c-NHEJ continuously increase, suggesting that c-NHEJ is endowed with
an elaborate, highly coordinated protein apparatus that is well-integrated in the overall
machinery regulating the overall DSB repair program and pathway choice.

2.2. Homologous Recombination (HR)

HR is the only DSB repair pathway that results, owing to its templated function (sister
chromatid homology), in the faithful restoration of both DNA integrity and the original
DNA sequence at the DSB [82,83]. HR can accommodate a wide spectrum of structural
DNA end configurations, such as variations in the 3’-overhang length, DNA end sequence
permutations, and DNA end chemistry. HR is an elaborate process, which strongly depends
on homology. Therefore, its activity is restricted to the late S- and G2-phase of the cell cycle,
where the homologous sister chromatid is present [82,83] (Figure 1). HR is suppressed in
the G1-phase, where only homologous chromosomes are available. It is speculated that
the HR preference for the sister chromatid as substrate is founded on its proximity, which
is ensured by proteins such as condensins, cohesins, and to some extent, CTCF [84–86].
There is also evidence that unscheduled HR may be initiated in the G1-phase, which in
many situations results in the formation of abortive recombination intermediates and the
accumulation of genomic alterations [87].
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HR is divided into three major stages: pre-synaptic, synaptic, and post-synaptic
stage. The initial step of HR is characterized by the MRN (MRE11-RAD50-NBS1)-mediated
detection of the DSB, followed by the recruitment of the CtBP-interacting protein (CtIP)
(Figure 2) [88,89]. Initially, CtIP generates a nick in one of the DNA strands near the 5′-
end and initiates MRE11 dependent 3′- to 5′-nucleolytic degradation to create short single
strand 3′-overhangs [85,86]. This short-range resection is followed by long-range resection
mediated by the recruitment of multiple nucleases like Bloom syndrome helicase/DNA
replication ATP-dependent helicase/nuclease 2 (BLM/DNA2) complex, and exonuclease
1 (EXO1) (Figure 2). In addition to the BLM/DNA2 complex, recent studies implicate
the activities of Werner syndrome helicase (WRN) and RECQL helicase in the resection
of degraded nascent DNA strands during the restart of blocked or collapsed replication
forks [90,91]. These findings indicate that the above helicases may play a role in radiation-
induced long-range resection, as well.

Long-range resection forms an extended tract of single strand DNA with a regular
length of hundreds to couple of thousands nucleotides [92]. DNA end resection is a decisive
point in the regulation of DSB repair pathway choice [92]; therefore, its regulation will be
discussed in detail in the next sections.

The single strand 3′-tails are rapidly covered by the replication protein A (RPA)
heterotrimeric complex, which protects the single strand DNA from nucleolytic degradation
and mitigates the formation of secondary structures [93–95]. In the following stages, the
BRCA2 mediator protein, in coordination with PALB2 and the BRCA1/BARD1 complex,
displaces RPA from ssDNA and facilitates the loading of the RAD51 recombinase, a central
and essential activity of HR. The formation of RAD51 nucleoprotein filament marks the
pre-synaptic stage of HR. This process is additionally facilitated by the group of proteins
indicated as RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) [96–98]
and is also promoted by the RAD54 and RAD54B proteins [99–101].

During the synaptic stage of HR, the RAD51 nucleoprotein filament initiates a ho-
mology search in the sister chromatid. When it is found, it invades the double strand
DNA to form a Holliday junction—a key intermediate in HR [102]. Subsequently, RAD54
functions to promote DNA synthesis and branch migration by dislocating RAD51 from
heteroduplex DNA. In the post-synaptic steps, the extended Holliday junction is resolved
in a variety of ways that define specific HR sub-pathways [103]. It is believed that the
synthesis-dependent strand annealing (SDSA) is the most relevant sub-pathway in the
repair of IR-induced DSBs by HR. In this final step, the newly synthesized DNA strand
anneals with the similarly processed second DNA strand to restore integrity in the molecule,
and the process is completed by DNA synthesis and ligation [104].

Multiple novel HR-related factors have been identified. This new group of proteins
expands the mechanistic understanding of DSB repair by HR and provides a new layer of
complexity that is thought to fine-tune HR. Thus, topoisomerase 1-binding arginine/serine-
rich protein (TOPORS) [105], nuclear ubiquitous casein kinase and cyclin-dependent kinase
substrate 1 (NUCKS1) [106], RAD51-associated protein 1 (RAD51AP1) [107], HOP2-MND1
heterodimer [108], the SWI5-MEI5 (C9orf119-C10orf78) complex [109], RAD51-binding pro-
tein fidgetin-like 1 (FIGNL1) [110,111], the SWS1–SWSAP1-SPIDR multimer complex [112],
and the product of the DEK proto-oncogene [113,114] have been reported to directly modu-
late and positively regulate HR in eukaryotic cells.

In the same context, TOPORS has been found to mediate the SUMOylation of RAD51
at L57 and L70, which is critical for the association of RAD51 to BRCA2 and the formation
of RAD51 nucleoprotein filament [105]. On the other hand, NUCKS1 is a novel RAD51AP1
paralog, which stimulates the ATPase activity of RAD54 and the RAD51–RAD54-mediated
strand invasion step during HR [106]. The HOP2-MND1 heterodimer promotes the DNA
strand exchange activities of RAD51 and helps to load RAD51 on single strand DNA
by restraining its double strand DNA-binding activity. However, during the homology
search, HOP2-MND1 switches gears and facilitates the binding of RAD51 to double strand
DNA [108]. SWI5-MEI5, FIGNL1, and DEK have been found to directly interact with
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RAD51 and possibly to mediate and stabilize the formation of the RAD51 nucleoprotein
filament.
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Figure 2. Proteins involved in the regulation of DNA end resection. DNA end resection is initiated
by DSB recognition through the MRN complex, comprised of MRE11, RAD50, and NBS1, which
subsequently recruits BRCA1-activated CtIP to initiate short-range DNA end resection. The c-NHEJ
factors, KU70/80 and DNA-PKcs, are thought to inhibit DNA end resection. Multiple factors regulate
CtIP recruitment and activation at DSBs. Newly identified positive and negative regulators of
DNA end resection are depicted. Long-range resection is initiated by the recruitment of EXO1 and
BLM/DNA2 activities and may be further promoted by the WRN/RECQL complex. Long-range
resection results in the generation of long single strand 3′-overhangs, coated by RPA, that promote
RAD51 nucleoprotein filament formation and HR. Accidents in the initiation of long-range resection
or RAD51 filament formation may cause shifts in DSB repair to mutagenic pathways.

Recently, PTEN has also surfaced as a factor whose deficiency severely impairs RAD51
foci formation, as well as the efficiency of HR [115,116]. Moreover, along with the above
presented studies, there is a report identifying HR-related factors by a high-throughput
assay [117]. However, for the majority of the above HR proteins, the mode of action
is elusive, as there are no clearly defined molecular mechanisms for their functions in
HR. Nevertheless, the identification of such proteins may turn out to be important for
understanding the overall control of the DSB repair pathway choice.
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2.3. Alternative End-Joining (Alt-EJ)

When c-NHEJ or/and HR are compromised, or when accidents in DSB processing by
c-NHEJ or HR occur that compromise ultimate repair, an alternative form of DSB repair
comes to the fore, alt-EJ. Alt-EJ, also known as backup non-homologous end joining (B-
NHEJ) [118,119], microhomology-mediated end joining (MMEJ) [120], or theta-mediated
end joining (TMEJ) [46,121], often benefits from short (2 to 20 nt) stretches of microhomology
that are exposed following limited processing of DSB ends. The accumulated evidence
on the topic suggests that the term alt-EJ refers to different subpathways with central
proteins and engagement characteristics that remain to be fully elucidated. In the following
paragraphs, the roles of proteins implicated in alt-EJ are discussed without an attempt to
systematically organize them in sub-pathways. However, there are excellent reviews on
the topic [122–126].

It is thought that an initial step in alt-EJ is DSB recognition by PARP-1 [127,128] that
may promote short-range DNA end resection by CtIP and the MRN complex. Repair may
continue with the annealing of 2–20-nt (most often 3–8-nt) microhomologies in 3′-tails, and
may be facilitated by DNA polymerase θ (POLθ); unpaired non-homologous 3′-tails are
digested by the ERCC1/XPF nuclease (Figure 1). Gaps within the DNA strands may be
filled-in by POLθ-mediated DNA synthesis [129], and DSB ends are rejoined by the DNA
Ligase 3 (LIG3)/XRCC1 complex [130,131]. In the absence of the more efficient LIG3, DNA
Ligase 1 (LIG1) can also take over to catalyze the final step of DNA ligation [132].

Alt-EJ operates with slower kinetics in all phases of the cell cycle, but its activity peaks
in the G2-phase and is dramatically reduced in the stationary phase of growth when cells
enter the G0-phase [54] (Figure 1). Alt-EJ operates with lower efficiency than c-NHEJ and is
considered markedly error-prone. Thus, deletions and other modifications at the junction
occur more frequently when compared with c-NHEJ. It is also relevant that during the
processing of DSBs by alt-EJ, the joining probability of unrelated DNA ends is markedly
increased. Consistently, alt-EJ is a dominant source of SCAs formation [133].

2.4. Single Strand Annealing (SSA)

Single strand annealing is a RAD51-independent homology-dependent mechanism
that bridges two homologous 3′-single-stranded DNA ends at tandem repeated regions,
resulting in the obligate deletion of the fragment between the repeats [134–136]. SSA
requires extensive DNA end resection and RPA displacement to reveal complementary
homologous sequences. SSA relies on RAD52 activity for the annealing step, the structure-
specific endonuclease XPF–ERCC1 for the removal of unpaired non-complementary tails,
and LIG1 for ligation of the remaining nick (Figure 1) [135]. SSA is inherently mutagenic
and results in the loss of multiple kilobases of genetic information [136]. Therefore, it
can be detrimental for the genome when it takes place in gene-rich regions but may be
tolerated, and indeed enhanced, in the repetitive regions of the genome. Owing to the
strong requirement of DNA end resection activities, SSA is probably active exclusively in
the S- and G2-phase of the cell cycle.

3. Determinants of DSB Repair Pathway Choice: Emphasis on Resection

The evolution of the above described mechanistically distinct DSB repair pathways
of varying fidelity suggests that, for the removal of all types of DSBs induced by IR at
random genome locations, throughout the cell cycle, an array of multiple repair pathways
is required. We postulate that optimal genome maintenance is best served when the
repair pathway choice is programmed for priority engagement of the highest fidelity
repair pathway available. Only when this engagement fails, or turns unproductive, lower
fidelity repair pathways engage to still ensure the removal of the DSB. In this case, the
associated infrequent errors are accepted as a compromise to the alternative of leaving the
DSB unrepaired. In the application of this logic, it is always necessary to consider that the
availability and relative activity of the different repair pathway changes throughout the
cell cycle (see above). Indeed, all resection-dependent repair pathways become more active
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as the cell moves from the G1- to G2-phase, in contrast to c-NHEJ, which retains similar
activity throughout the cell cycle [9,36,54,55].

In this framework of repair pathway choice, it is not necessary to postulate the induc-
tion of irreparable DSBs, as has frequently been done in the past in radiation biology to
explain cell death and carcinogenesis. Instead, it can be postulated that DSBs (actually
the vast majority of them) will be handled according to the above outlined logic, in a
cell autonomous way, with the chemical and biological characteristics of the DSB and the
available DSB repair pathways, deciding the ultimate repair pathway that will remove
this particular DSB from the genome. Lethal or carcinogenic effects are, in this scenario,
the rare byproducts of the inherent deficiencies of the repair pathway ultimately utilized.
Indeed, SCAs, which are highly consequential at all endpoints, derive mainly from the
engagement of c-NHEJ and alt-EJ at particular DNA lesions, as a result of processing
limitations that are being actively investigated. In the following paragraphs, we outline
candidate processing limitations and lesion characteristics with emphasis on the regulation
of DNA end resection.

Several studies and excellent reviews have emphasized IR quality, DNA end structures,
DSB complexity, and cell cycle stage, as key parameters, modulating the repair pathway
choice after the exposure of cells to IR [4,137–140]. Among the listed parameters, the cell
cycle phase has been recognized as a key determinant of DSB repair pathway selection. It
has been shown in several reports that the fluctuations in the protein levels of key DNA
damage signaling and repair factors can affect the normal cell cycle progression [141–143]
and thus the repair outcome. Moreover, these studies show that the chemical or genetic
ablation of essential repair factors results in the accumulation of unrepaired DNA lesions,
generating the replication stress and chronic activation of DNA damage response. Therefore,
it can be speculated that the accumulation of cells in a specific phase of the cell cycle
combined with impaired DNA damage signaling can also lead to a shift in the balance
between DSB repair pathway utilization.

In addition, the accessibility of particular repair factors to DSB is another determinant
of the repair pathway choice, which is particularly evident when DSB repair is investigated
in the different chromatin compartments (e.g., eu- or heterochromatin) [144–146]. However,
in the current review, we highlight the importance of DNA end resection and its control as
equally crucial components of DSB repair pathway selection (Figure 2).

Recently, multiple factors have been identified that control the choice between major
DSB repair pathways at the level of DNA end resection initiation. In this regard, it is
generally accepted that, once resected, a DSB can only be repaired by DNA end resection-
dependent mechanisms that block repair by c-NHEJ. The process of DNA end resection is
regulated at multiple levels but the most relevant mechanism promoting the initiation of
the process is through BARD1/BRCA1-dependent CtIP activation (Figure 2) [147].

Many other molecules that stimulate DNA end resection have also been identi-
fied [92,148]. A recent study recognizes BMI-1, a subunit of Polycomb repressive complex
1 (PRC1), as a factor promoting HR-mediated DSB repair by enhancing the efficiency of
DNA end resection. Mechanistically, BMI-1 mediates DNA end resection by facilitating
the recruitment of CtIP to damage sites [149]. Histone lysine demethylase PHF2 has also
been identified as a novel regulator of DSB repair pathway choice at the end resection level,
acting by assisting the localization of CtIP to DSBs [150]. Additionally, PAB-dependent
poly(A)-specific ribonuclease subunit 2 (USP52) directly interacts with CtIP and catalyzes
its deubiquitination, thus promoting end resection and HR—mainly by allowing CtIP
phosphorylation at T847 [151]. An interesting study further reports that the mismatch
repair complex MSH2-MSH3 interacts with a chromatin remodeling protein SMARCAD1
to form a complex that enhances EXO1 activity by facilitating its recruitment to DSBs for
long-range DNA end resection (Figure 2) [152].

Other data show that DNA end resection can be promoted by suppressing key compo-
nents of the c-NHEJ repair pathway. A small Cajal body-specific RNA 2 (scaRNA2) protein
has been found to promote end resection by inhibiting the interactions between DNA-PKcs
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and KU70/80 subunits, thus preventing the catalytic activation of the enzyme. As a result,
the inhibition of DNA-PKcs by scaRNA2 and its interaction with LINP1 lncRNA, stimulates
MRN/CtIP-dependent DNA end resection [153].

In contrast, 53BP1 and its associated accessory factors (RIF1, PTIP, etc.) have been
demonstrated to actively suppress DNA end resection in the G1-phase and to promote
the repair of DSBs by c-NHEJ [154,155]. It is well documented that the repair of DSBs
in mammals is coordinated by the ubiquitin-dependent accumulation of 53BP1 at DSB-
flanking chromatin. Owing to its ability to limit DNA end processing, 53BP1 is thought to
promote c-NHEJ and to suppress HR. It has been shown that silencing 53BP1, or exhausting
its capacity to bind damaged chromatin, transforms limited DNA end resection to hyper-
resection, which results in a switch from RAD51-promoted error-free gene conversion to a
mutagenic SSA, dominated by the activity of RAD52. Thus, the role of 53BP1 at DSBs could
be extended from a simple protector of DSBs against unscheduled DNA end resection to a
factor that fosters HR fidelity [156].

These findings illuminate the causes and the consequences of synthetic viability ac-
quired through 53BP1 silencing in cells lacking the functional BRCA1 tumor suppressor
gene. In line with these results, a recent study demonstrated that such cells survive DSB as-
saults at the cost of increased reliance on RAD52-mediated SSA, which fuels the generation
of SCAs and reduces genome stability [157]. However, some findings suggest that, when
challenged by DSBs, BRCA1- and 53BP1-deficient cells may become hypersensitive to, and
be eliminated by, RAD52 inhibition [156].

Recently, an interesting molecular complex consisting of revertability protein 7 homo-
logue (REV7), a known 53BP1-pathway component, and three hitherto uncharacterized
proteins: C20orf196 (SHLD1), FAM35A (SHLD2), and CTC-534A2.2 (SHLD3) has been
found to interfere with a single-stranded DNA production during DNA end resection
(Figure 2) [158]. This complex, termed Shieldin [159], emerged as a strong candidate for
the role of ultimate effector of 53BP1-dependent end protection. The Shieldin complex has
not known enzymatic activities but promotes many 53BP1-associated processes, such as
the protection of DNA ends, c-NHEJ, and immunoglobulin CSR [160]. Consistent with its
role in protecting the DNA ends from nucleases, the Shieldin complex interacts with long
single-stranded DNA (longer than 60 nt) but not with double-stranded DNA [158,159,161].

Another study reveals the role of HELB as an additional factor antagonizing DNA end
resection [162]. HELB acts independently of 53BP1, and is recruited to single-stranded DNA
by interactions with RPA. HELB utilizes its 5’-3’- single strand DNA translocase activity
to inhibit EXO1- and BLM/DNA2-mediated long-range end resection. An interesting
report based on a loss-of-function CRISPR/Cas9 screen to identify factors responsible
for the recovery of DNA end resection in BRCA1-deficient cells identifies DYNLL1 as an
inhibitor of DNA end resection [149]. DYNLL1 limits the nucleolytic degradation of DNA
ends by interacting with the MRN complex, BLM helicase, and DNA2 endonuclease [163].
Additional activities that operate in the regulation of excessive DNA end resection are
BRCA1/BARD1 and RAP80. They form a multisubunit complex along with Abraxas that
includes the deubiquitinases BRCC36, BRCC45, and MERIT40, all crucial factors for the
retention of BRCA1 at the DSB. However, paradoxically, the complex negatively modulates
BRCA1-mediated HR function, counteracts illegitimate HR, and suppresses chromosomal
instability [164,165].

In the same context, our recent study identifies DNA-PKcs as a conductor of the overall
DNA repair program and a major regulator of DNA end resection, a function which is
beyond its role in c-NHEJ [71]. Indeed, our results show that all tested DNA-PKcs mutants
show hyper-resection in the G2-phase, while mutants with defects in other c-NHEJ activities
exhibit levels of resection close to those observed in the parental cell lines—thus ruling out
that c-NHEJ suppression underlies these observations. These results challenge the model
of simple competition between c-NHEJ and HR, and suggest an integration of DNA-PKcs
into the machinery regulating end resection. Our working hypothesis is that DNA-PKcs
plays a role in resection regulation and HR by remaining at the break site and assisting
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DNA end processing. In line with this hypothesis, some studies show a positive correlation
between DNA-PKcs activity and DNA end resection [38,166].

In addition to the above factors, a recent study from our group identified the load of
DSBs in the genome as a potential determinant of DSB repair pathway choice [157]. The
dose-dependent component of the repair pathway choice regulation is outlined in more
detail next.

4. Repair Pathway Choice by Gauging DSB Load: Suppression of HR with Increasing
IR Doses

As outlined in the preceding sections, whether a specific DSB undergoes processing via
c-NHEJ, HR, or alternative repair mechanisms is governed by various factors. Mounting
evidence highlights the importance of radiation dose in the regulation of DSB repair
pathway choice [157,167]. Interestingly, a study employing pulsed-field gel electrophoresis
(PFGE) in mutant chicken cell lines lacking critical HR factors, Rad51, Rad51B, Rad52, and
RAD54, allowed key insights into DSB repair regulation: there are no discernible differences
in DSB repair kinetics among the investigated cell lines despite the grave HR defects. This
observation hinted at the limited contribution of HR to the repair of DSBs when cells are
exposed to radiation doses ranging between 20 and 80 Gy, which are typically utilized in
PFGE investigations [168].

Moreover, DT-40 cells deficient in both Ku70 and Rad54 showed repair defects similar
to those observed in single Ku70 mutants, which additionally suggests that c-NHEJ is
the dominant repair pathway at IR doses typically used for PFGE [168]. Similar PFGE
experiments conducted with wild-type G2-phase-enriched cell lines, where HR activity
is at a maximum, demonstrate repair capacity similar to that of exponentially growing
cells [53]. The limited impact of HR on DSB repair in these experiments is further vali-
dated in experiments testing G2-phase cell populations exposed to a highly specific small
molecule inhibitor, VE-821, which impedes HR through the abrogation of ATR activity [167].
Furthermore, we have reported that actively growing mouse embryonic fibroblasts (MEF)
that are defective in HR repair, process DSBs with an efficiency similar to that of wild-type
cells [169]. The same also holds true for Chinese hamster mutant cells with defects in the
RAD51 paralog genes, XRCC2 or XRCC3, where even in the G2-phase of the cell cycle,
DSB repair measured by PFGE shows a similar rate to the repair measured in parental
cell lines. All of the above experiments suggest that IR dose may be a determinant of HR
utilization, as HR is of course known, to contribute to cell survival and the repair of DSBs
when analyzed at lower doses of IR.

To evaluate the contribution of HR to the repair of DSBs at more physiological IR
doses, relevant to radiation protection and radiation therapy, we developed a cell-cycle
specific immunofluorescence analysis of γ-H2AX foci, an established surrogate marker
for DSB formation (Figure 3A) [170,171], in combination with the detection of RAD51 foci,
as a marker for ongoing HR (Figure 3B) [172]. Figure 3A,B illustrate an idealized data
set for γ-H2AX and RAD51 foci formation after IR exposure, based on our previously
generated immunofluorescence analysis in G2-phase cells [157], where all DSB repair
pathways are fully active [157,167,173]. Our results have shown that the maximum number
of γ-H2AX foci is reached early after radiation exposure, irrespectively of the applied dose.
Moreover, the number of γ-H2AX increases linearly with increasing the dose of radiation
(Figure 3A). In contrast, repair foci formed by RAD51 reach a maximum, at times increasing
with increasing the IR dose, and the number of RAD51 foci fails to increase linearly with
increasing radiation dose, but bends toward a plateau above 2 Gy (Figure 3B). This response
indicates a dose-dependent component of HR engagement that has not been previously
described by other groups, and suggests that HR is actively suppressed at doses where a
high DSB load is present in the genome.
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Figure 3. Dose-dependent regulation of DSB repair pathway choice. (A,B) Idealized dose response
curves of γ-H2AX and RAD51 foci formation depicting the linear increase of γ-H2AX foci with
increasing radiation dose and the saturation of RAD51 foci at higher IR-doses. The plots show fictive
data points based on previously published results. (C) The numbers of RAD51 and γ-H2AX foci are
used to calculate their ratio that indicates the fraction of DSBs processed by HR (HR repair, %). It is
evident that HR contributes more to DSB repair at low IR doses, while its contribution at high doses
is reduced. (D) Diagram showing estimates of the relative involvement of the different DSB repair
pathways with increasing DSB-load. It is evident that c-NHEJ is the dominant repair pathway at
medium and high DSB-loads, while HR is engaged at low DSB loads. Alternative forms of DSB repair
gain ground when HR is suppressed at high doses. Moreover, under conditions of excessive DNA
end resection (high-DSB load), SSA is promoted and significantly contributes to the repair of DSBs.

By calculating the ratio between RAD51 and γ-H2AX foci, we could evaluate the frac-
tion of DSB engaging HR at any given IR dose (Figure 3C). The generated data demonstrate
that at low DSB-loads, when about 20–25 DSBs are formed in a G2-phase cell, approximately
50% of the DSBs are repaired by HR. Notably, its contribution decreases to 30% at 50 DSBs
per genome, whereas at high DSB-loads (above 200 DSBs), the contribution of HR becomes
practically undetectable (Figure 3C). Our study also demonstrated an abundance of RAD51
and other HR-related enzymatic activities (MRE11 and RPA) at high radiation doses, thus
ruling out protein depletion as the cause for the effect—as has been previously shown for
RPA [174].

Results generated during the above study also support the notion that the suppression
of HR activity at high IR doses is a regulated process, delimited but not defined by the
53BP1 and RAD52 activities [157]. The suppression of HR at high IR doses is not an isolated
phenomenon, as a separate study utilizing a panel of somatic and lymphoblastic cell lines
also demonstrated a pronounced suppression of HR at doses above 2 Gy [167]. Our results
also indicated that the process of DNA end resection is uncoupled from HR in terms of IR
dose-dependent regulation, as RPA foci formation saturates at much higher doses (around
16 Gy). The excess of DNA end resection under these conditions promotes SSA [157].

The increased contribution of HR at low DSB-loads is confirmed by another study
following chromatid break repair as a function of IR dose [175]. When G2-phase cells
are exposed to IR, approximately 10% of the induced DSBs manifest as chromatid breaks,
visualized during mitosis [175]. This phenomenon allows the cytogenetic analysis of the
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processing of the specific subset of DSBs underpinning chromatid breaks. Notably, at
low radiation doses, chromatid breaks are almost exclusively processed by HR. Strikingly,
G2-phase-specific experiments with wild-type CHO cells exposed to a broad spectrum of
radiation doses demonstrated a pathway switch to c-NHEJ with increasing IR dose.

These results further consolidate the utilization of HR at low doses and demonstrate
switching to c-NHEJ with increasing dose [175]. Another intriguing piece of evidence that
HR is the preferred repair pathway at low IR doses comes from the observation that HR
deficient cells are not able to initiate proper DDR and to activate the G2-phase checkpoint
after exposure to IR doses below 4 Gy [176]. This observation, as well as the recently
reported strong ATR dependence of the IR-induced G2-phase arrest [173,177,178], strongly
supports the connection between checkpoint activation and HR efficiency and identifies
HR as the process, mainly benefiting from the checkpoint at low doses in the G2-phase of
the cell cycle.

5. Exploiting Weaknesses of DSB Processing to Improve Radiation Therapy

Defects in gene-encoding proteins implicated in the repair of DSBs by HR are fre-
quently found in various cancers. Numerous studies have demonstrated that germline
mutations in BRCA1- and BRCA2- tumor suppressor genes increase the lifetime risk of
breast or ovarian cancer development [179]. Mutations in BRCA1/2 genes have also been
found in many sporadic tumors including pancreatic [180] and prostate cancer [181]. In
addition to BRCA1/2 gene alterations, many other genes involved in HR repair such as
RAD51B, RAD51C, RAD51D, PALB2, and BRIP1, are mutated in many cancer types. Mu-
tational signatures associated with moderate to severe HR deficiency (HRD) also include
alterations in the RAD50 and the BLM helicase [182]. Counterintuitively, RAD51 is fre-
quently found overexpressed and has been associated with poor prognosis in patients with
solid tumors, thus potentially acting as a driver of illegitimate HR.

On the other hand, tumor types with defects in c-NHEJ are not very common, although
they are occasionally found in ovarian [183] and glioblastoma tumors [184]. Components of
c-NHEJ are indeed suggested targets in synthetic lethality approaches designed to increase
the effects of IR on HR-deficient tumors [185]. One of the most explored targets along these
lines is DNA-PKcs, as the abrogation of DNA-PKcs activity by small molecule inhibitors
triggers apoptosis in ATM-defective cells, both in vitro and in vivo [186]. The most potent
DNA-PKcs inhibitors, M3814, CC-115, and CC-122 are currently being investigated in
several clinical trials [187]. Together with ATM, ATR is also a preferred target in combi-
nation with a mitigation of DNA-PKcs activity. It has been reported that a combination
of KU-0060648, a potent DNA-PKcs inhibitor, with ATR inhibitor, AZD6738 potentiates
radiosensitization of head and neck squamous carcinoma cell lines [188].

The BRCA1 and BRCA2 proteins have essential physiological roles in maintaining
genome stability in rapidly proliferating tumor cells, not only by promoting DSB-repair via
HR but also by facilitating DNA replication. The latter is based on the capacity of BRCA1/2
to restart, stabilize, and protect stalled replication forks against nucleolytic degradation.
Therefore, loss of either BRCA1 or BRCA2 activity results in slow rates of replication fork
progression [143] and a high frequency of stalled replication forks that are susceptible to
degradation by cellular nucleases [189]. Indeed, several reports provide evidence that HR-
defective cells exhibit the abnormal accumulation of ssDNA as Okazaki fragments during
DNA replication. This phenomenon has been originally observed during DNA replication
in the absence of RAD51 [190] and subsequently confirmed under BRCA1/2-defective
conditions [191]. The function of HR proteins in DNA replication and the accumulation
of persistent ssDNA gaps in HR-deficient tumors have been linked to PARP inhibitor
sensitivity and platinum compounds-induced cell killing [192]. Various aspects of PARPi
sensitivity and acquired resistance in cancer therapy are reviewed elsewhere [193–195].

When arrested, DNA replication forks are extensively degraded and fail to restart,
resulting in replisome dissemblance and forks collapse, thus generating DSBs [196]. In the
context of BRCA1/2 deficiency and HR abrogation, replication-associated DSBs rely on the
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remaining highly efficient DSB repair pathways (c-NHEJ and alt-EJ) for joining the DNA
ends. This model also defines the synthetic lethality of PARP inhibition in HR-deficient
cells [197]. However, the whole genome sequencing of HR-defective tumors has uncovered
that multiple DNA rearrangements are partially due to POLθ-dependent alt-EJ [15]. In var-
ious cancers, HR-deficiency is frequently associated with POLθ-overexpression [198,199].
The enhanced engagement of POLθ-dependent alt-EJ represents a compensatory mecha-
nism to complement defective HR-mediated DSB repair. Consistent with this, the inactiva-
tion of POLθ-encoding gene POLQ is synthetically lethal with defects in genes controlling
HR [200,201].

Interestingly, a recent study revealed that, in addition to repairing DSBs, POLθ also
counteracts their formation by protecting replication forks from breakage, specifically at
the lagging strand during Okazaki fragment synthesis [202]. This function might limit DSB
accumulation in HR-deficient, and, to some extent, in HR-proficient, cells, explaining the
synthetic lethality induced by the loss of POLθ and either HR [198,201,202] or c-NHEJ [203]
defects.

Moderate expression in normal tissue compared with overexpression in a number of
cancer types defines POLθ as a promising therapeutic target. It provides strong rationale
for the development of highly specific inhibitors for POLθ pharmacological inactivation.
Recently, Artios Pharma has announced the development of the first selective, orally
bioavailable, small molecule inhibitor of the POLθ polymerase domain, ART4215. The
inhibitor was approved by the U.S. Food and Drug Administration (FDA) in July 2021
and is currently in phase I/IIa clinical trials for the treatment of patients with advanced or
metastatic solid tumors—as a monotherapy or in combination with talazoparib or niraparib.

BRCA1/2 mutations in PARP-inhibitor-resistant cells often display a TMEJ-specific
mutational signature, hence it is possible that POLθ might contribute to the acquisition
of PARP inhibitor resistance [204]. In addition, resistance to PARP inhibitors can occur
via the loss of 53BP1, a gene shown to be synthetically lethal with POLθ, thereby render-
ing these cells dependent on POLθ [205,206]. As a consequence, using POLθ inhibitors
in combination with PARP inhibitors, or as a second-line therapy, might prolong drug
response and suppress resistance acquisition [207]. It remains to be elucidated whether
POLθ inhibition will also be beneficial for the treatment of cells that acquire PARP inhibitor
resistance via other mechanisms, such as the loss of the Shieldin complex [161]. Further-
more, pharmacological targeting of major factors orchestrating DNA-end resection, as well
as of RAD51 recombinase offers attractive possibilities to suppress HR and generate PARP1
sensitivity [28,208].

Finally, it is widely accepted that genetic ablation or the targeted inhibition of HR
repair proteins offer a wide range of possible applications in cancer therapy with great
potential in radiotherapy as well. The increased contribution of HR at low doses of IR
significantly strengthens this rationale, as doses in the range of 2 Gy are routinely used in
the clinic. Moreover, combination therapy utilizing IR and some of the inhibitors described
above has the potential to further improve cancer management by IR.

6. Conclusions

The accumulated results in the literature and our recent study shed light on DSB
repair processes at IR doses, relevant to radiation protection and radiation therapy. They
point to DSB repair pathways that may be targeted with inhibitors to enhance tumor
radiosensitization and provide a rationale for searching for new molecular targets and for
developing novel DSB repair pathway-specific inhibitors. Cancer management by radiation
aims to maximize tumor response, while minimizing side effects on healthy tissue, often
in the form of fractionated radiotherapy. The reported dose-dependent regulation of DSB
repair pathways choice might provide a rationale for certain forms of fractionated radiation
therapy.
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