
Integrated E-Assessment

Habilitationsschrift

im Fach Informatik

vorgelegt an der

Fakultät für Wirtschaftswissenschaften

der Universität Duisburg-Essen
Campus Essen

vorgelegt von
Dr. Michael Striewe
im Mai 2022

Datum der mündl. Habilitationsleistung: 30. Januar 2024

Abstract: Assessments are an important part of many teaching and learning activities.
Since several decades, electronic aids are involved in planning, conducting and evaluating
such assessments. However, there are still many scenarios in which electronic assessments
cannot be smoothly integrated into teaching and learning due to organizational or
technical issues. Although there is a large body of research on the educational aspects of
electronic assessments, there seems to be a lack of research on the connections between
organizational and technical aspects as well as on the integration of technical innovation
into a larger context. This thesis aims to reduce that lack and to create a map that
defines, explains and covers electronic assessment as a subject of study that brings together
research results from process modeling, software engineering, educational technology and
educational data analysis. This thesis summarizes and advances the state-of-the-art in
these four areas by creating structured catalogues and conceptual frameworks. In addition,
it maps these theoretical results back to practice in several case studies. The result is
an integrated view on various aspects of electronic assessments and their connections
between each other and a larger context, which is intended to prepare the ground for
future research.

i

Acknowledgements: There are many people who deserve my warmest thanks and
gratefulness for their support through all the years that I worked on this publication:
Michael Goedicke for leading a great research group that allowed me to evolve my skills,
pursue my scientific interests and shape my academic profile; all my colleagues in that
group for many discussion on almost each and every aspect of e-assessment, as well as
for picking up some of my duties when I needed time for research and writing; Marco
Konersmann for being a great office mate and for sharing lots of brilliant groaners; Sven
Strickroth for many thoughts on educational technology in general and e-assessment in
computer science in particular, as well as for co-organizing several workshops; Eric Ras
for valuable conversations on automatic item generation; Peter Hubwieser, Marc Berges,
Johannes Krugel and Mike Talbot for their collaboration in the field of computer science
education and competency measurement; Justin Timm und Thilo Schramm for their
collaboration on e-assessment in biology; Carolin Eitemüller and Florian Trauten for
their collaboration on e-assessment in chemistry; Till Massing and Christoph Hanck for
their collaboration on learning analytics; Meike Ullrich and all colleagues at KIT, DFKI
and UP for launching the KEA-Mod research project; all students who supported my
research with their work in seminars, projects and theses; all organizers of the German
“E-Prüfungs-Symposium” who allowed me to run several workshops and to deliver a
keynote talk; all anonymous reviewers who accepted my papers, but even more all
anonymous reviewers who rejected my papers with valuable advice on how to improve
them; and finally my family, my wife and my son for every encouraging and supportive
smile.

ii

Contents

1. Introduction 1
1.1. Scientific Questions and Contributions 2
1.2. Structure of this Thesis and Previous Work 3

I. The Educational Assessment Process 5

2. Educational Assessment as a Matter of Organization 7
2.1. Literature Study . 8

3. The Essence of Educational Assessment Processes 19
3.1. A Kernel for Educational Assessment . 19
3.2. Process Phases of Educational Assessment 38

4. Case Studies 41
4.1. Case 1: A Traditional Oral Exam . 41
4.2. Case 2: A Summative E-Assessment . 43
4.3. Case 3: A Distributed Formative E-Assessment 45
4.4. Case 4: A Lightweight Ad-hoc Assessment 47

5. Results 49
5.1. Contributions to Integrated E-Assessment 49
5.2. Contributions beyond the Scope of this Publication 51

II. Engineering E-Assessment Systems 53

6. Design of Technology-Enhanced Learning Systems 55
6.1. System Components . 56
6.2. Technical Standards for Technology-Enhanced Learning Systems 66

7. Architectural Patterns for E-Assessment Systems 75
7.1. General Remarks on Architecture Style and Focus 75
7.2. Behavioural Patterns . 78
7.3. Structural Patterns . 85
7.4. Functional Patterns . 93
7.5. Pattern Summary . 97

iii

Contents

8. Case Studies 101
8.1. Case 1: JACK . 101
8.2. Case 2: ActiveMath . 103
8.3. Case 3: The “Ultimate” E-Assessment System 104
8.4. Case Study Summary . 105

9. Results 107
9.1. Contributions to Integrated E-Assessment 107
9.2. Contributions beyond the Scope of this Publication 108

III. Domain-specific Item Handling 111

10.The Core of E-Assessment 113

11.Input Editors and Data Formats 117
11.1. Classes of Data Formats . 118
11.2. Classes of Input Editors . 123

12.Automated Item Generation 129
12.1. An Anatomy of Assessment Items . 130
12.2. Item Generation Process . 132
12.3. Item Generation Techniques . 133
12.4. Summary . 138

13.Automated Evaluation of Test Item Responses 141
13.1. Basic Concepts of Automated Evaluation 141
13.2. Preprocessing, Postprocessing and Derived Artifacts 143
13.3. Evaluation Techniques . 144
13.4. Summary . 148

14.Case Studies 151
14.1. Case 1: Math . 151
14.2. Case 2: Chemistry . 155
14.3. Case 3: Computer Programming . 159

15.Results 165
15.1. Contributions to Integrated E-Assessment 165
15.2. Contributions beyond the Scope of this Publication 166

IV. Data-focused E-Assessment 169

16.Data Produced by E-Assessments 171
16.1. Literature Study . 172

iv

Contents

16.2. Legal Issues, Trust and Privacy . 178

17.Competency Measurement 181
17.1. Item Response Theory . 182
17.2. Adaptive Testing . 185

18.Learning Analytics and Outcome Prediction 187
18.1. Regression Analysis . 188
18.2. Naive Bayes . 189
18.3. Artificial Neural Networks . 191
18.4. Support Vector Machines . 193
18.5. Decision Trees . 193

19.Item and Answer Analysis 195
19.1. Plagiarism and Authorship . 195
19.2. Item Alignment and Answer Diversity 200
19.3. Meta-Data Analysis . 202

20.Case Studies 205
20.1. Case 1: Learning Effort and Final Grade Prediction 205
20.2. Case 2: IRT on Programming Items . 212

21.Results 217
21.1. Contributions to Integrated E-Assessment 217
21.2. Contributions beyond the Scope of this Publication 218

V. Conclusions 221

22.An Integrated View on E-Assessment 223
22.1. Integration within E-Assessment . 223
22.2. Integration of E-Assessment into Context 225
22.3. The Final Picture . 226

23.Achievements 229

24.Future Research Directions 233

25.Concluding Remarks 237

A. Tables 239

Bibliography 245

v

List of Figures

1.1. Integrated E-Assessment and its Context 2

3.1. Overview on the Kernel for Educational Assessment. 20

4.1. Assessment process for a traditional oral exam. 42
4.2. Assessment process for a summative e-assessment. 44
4.3. Assessment process for a distributed formative a-assessment. 46
4.4. Assessment process for a lightweight ad-hoc assessment. 48

7.1. Sequence diagram for the synchronous push pattern. 81
7.2. Sequence diagram for the asynchronous push pattern. 81
7.3. Sequence diagram for the asynchronous pull pattern. 82
7.4. Sequence diagram for the asynchronous push and pull pattern using direct

delivery of results. 83
7.5. Schematic representation for parallel or sequential processing of jobs over

time. 84
7.6. Component diagram for the encapsulated plug-in pattern. 87
7.7. Component diagram for the unrestricted plug-in pattern. 87
7.8. Component diagram for the external tool pattern. 88
7.9. Component diagram for a plug-in-free extension. 88

8.1. Architectural overview of JACK . 102

11.1. Sample UI of an input field with a formula editor. 125

12.1. The process for automatic domain-specific item generation. 132

14.1. Sample item “Equation of a line”. 152
14.2. Sample item “Equation of a parabola”. 153
14.3. Sample item “Estimation theory”. 154
14.4. Sample item “Reaction Equations”. 155
14.5. Sample item “Orbital Schemas”. 157
14.6. Sample item “Chemical Compounds”. 158
14.7. Sample item “Coding Exercise”. 160
14.8. Sample item “Code Analysis”. 162

16.1. Overview on the classification process applied in this literature review. . 173
16.2. Number of papers per year that have been included in the analysis. . . . 175

vii

List of Figures

19.1. 2D-plots for size and complexity of submissions to programming items. . 201

20.1. Logit regression grade on submissions (statistics course). 207
20.2. Logit regression grade on exercise credit (statistics course). 207
20.3. Logit regression grade on attestation credit (statistics course). 208
20.4. Logit regression grade on exercise credit (programming course). 208
20.5. Logit regression grade on attestation credit (programming course). . . . 209
20.6. Learning progress over time (statistics course). 211
20.7. Learning progress over time (programming course). 211
20.8. Item characteristic curves from IRT on Programming Items. 215
20.9. Person parameter distribution for the group of items related to the for-

statement. 216

22.1. The final picture of integrated e-assessment and its connections. 227

viii

List of Tables

2.1. Different actors found in formal assessment process descriptions in litera-
ture. 12

2.2. Different objects or concepts found in formal assessment process descrip-
tions in literature. 13

2.3. Different activities found in formal assessment process descriptions in
literature. 14

3.1. State and checkpoint overview for alpha “Test Items” 25
3.2. State and checkpoint overview for alpha “Test” 26
3.3. State and checkpoint overview for alpha “Grades and Feedback” 28
3.4. State and checkpoint overview for alpha “Organizers” 29
3.5. State and checkpoint overview for alpha “Candidates” 31
3.6. State and checkpoint overview for alpha “Authorities” 32
3.7. State and checkpoint overview for alpha “Location” 34
3.8. State and checkpoint overview for alpha “System” 36

6.1. Different types of user interface components for e-learning and e-assessment
systems found in literature. 59

6.2. Different types of educational components for e-learning and e-assessment
systems found in literature. 60

6.3. Different types of knowledge representation and storing components for
e-learning and e-assessment systems found in literature. 62

6.4. Different types of management components for e-learning and e-assessment
systems found in literature. 64

6.5. Summary table for the literature review on system components 65
6.6. Mapping from components listed in the IMS-QTI standard to the terms

used in section 6.1. 69
6.7. Mapping from components named in the assessment-centered view in the

IEEE LTSA standard to the terms used in section 6.1. 73

7.1. Summary table for behavioural patterns for e-assessment systems 98
7.2. Summary table for structural patterns for e-assessment systems 99
7.3. Summary table for functional patterns for e-assessment systems 100

8.1. Summary table for the three case studies from chapter 8. 106

11.1. Summary of key characteristics and capabilities of different data formats
used in e-assessment systems. 122

ix

List of Tables

11.2. Summary of key characteristics of different classes of input editors used in
e-assessment systems. 127

12.1. Summary of different generation techniques and examples for their usage
throughout the automated part of the item generation process. 139

13.1. Summary of key characteristics and examples for different evaluation
techniques. 149

16.1. Number of papers per label for excluded papers (left) and included papers
(right). 174

16.2. Overview on examples for typical scenarios using e-assessment data along
the two dimensions of data usage. 178

A.1. Mapping from components listed in the IMS-AF standardto the terms
used in section 6.1. 239

x

1. Introduction

Modern education makes use of electronic aids in many different forms. Educational
technology can help in many places in the teaching and learning process. Some technology-
enhanced teaching or learning systems may only help in very specific situations, while
others may be of broader interest. Technology-enhanced assessment systems (called
“e-assessment systems” for short) can be considered to be one of the latter kind, since
assessments appear in many places throughout teaching and learning activities: Diagnostic
assessments can help to plan learning activities, formative assessments can steer learning
activities, and summative assessments can check the learning outcome. One can thus
assume that e-assessment plays a central role in modern education and deserves some
deeper consideration in research to ensure a high quality of solutions.

Indeed, e-assessment is a subject of research for more than 60 years in some domains
[124]. Recent literature has confirmed that there seems to be no major difference between
assessments with and without electronic aids [294] and that students have a positive
attitude towards e-assessment [68]. However, the oldest publications on e-assessment
report about e-assessment systems using punchcards, which is obviously not what we
use today. Hence, we should have a look on how the current state-of-the-art in software
system design can help to design e-assessment systems and connect them to other systems
that are relevant in the context of teaching and learning. Similarly, some publications
report on organizational issues that arise from the introduction of electronic tools into
assessments and thus we should also have a look at the organizational processes of
assessments to find out how electronic aids are integrated in that area. Other aspects
may come up with similar questions and we must also consider that there may be
differences between different domains of study. For example, we can speculate that
e-assessments could be integrated very well into teaching and learning of algebra, but
less integrated into teaching and learning of archaeology. These examples also point out
that the different aspects cannot be viewed solely in isolation. Different domains may
have different traditions in the way they conduct assessments and thus also have different
processes and thus different organizational issues. In turn, they may also require different
technical solutions. Thus viewing each of these aspects in isolation cannot advance the
field of e-assessment in the same way as an integrated view can do.

Recent research also notes “that much research and innovation happens in silos, where
policy, research and practice on assessment, technology enhanced assessment and ethical
and political concerns are not linked up” [294]. However, it is quite obvious that a close
integration between research on educational technology on the one hand and particularly
software engineering research on the other hand is necessary to create actually usable
systems. Algorithms and methods that realize high quality educational support will not
help, unless they are integrated in systems that are dependable, scalable, secure and

1

1. Introduction

Figure 1.1.: Integrated E-Assessment and its Context

extensible. At the same time, systems with these quality characteristics are only truly
helpful in breadth and depth of education if the allow to integrate very specific needs of
some domain of study or educational scenario.

Figure 1.1 shows four different areas in the context of e-assessment and all of them
are relevant to the question of integration. Any of these areas has its own experts, its
own core of research and its own state-of-the-art. An e-assessment system can contribute
to each of these areas and can also reuse results existing in any of these areas. Thus it
seems to be beneficial to connect research from all these areas and to define a joined
view on e-assessment, which in turn can hence be integrated seamlessly into all these
areas. This is what this thesis aims to do. The idea is to create a kind of a map or
picture of connections between various aspects of e-assessment, to see all the connections
that actual make up the integration. In that sense, this thesis does neither ask a single
question nor try to find a final answer. Instead, it is guided by an array of questions and
tries to define a starting point for future research efforts.

1.1. Scientific Questions and Contributions
The goal of this thesis is to create scientific connections between studies on the general
and domain-specific use of e-assessments as a means of higher education on the one hand
and computer scientists working on e-assessment systems and features as a subject of
software development and engineering on the other hand. The aim is to define, explain
and cover e-assessment as a subject of study that brings together research results from

2

1.2. Structure of this Thesis and Previous Work

process modeling, software engineering, test item design and educational data analysis.
Only joining these views allows to integrate e-assessment seamlessly into the every-day
duties of teachers and assessors to make it usable exactly in the way and to the extent it
is needed.

From the scientific point of process design and modeling, this thesis asks the question
on what change to traditional assessment processes is necessary if e-assessment options
are integrated. Before this can be answered, this thesis first defines a notation for
expressing assessment processes based on extensive literature research. This helps to
unify the terminology from current scientific discussions, and to find a way to structure
and compare scientific contributions to different aspects of assessments.

Software engineering mostly contributes to the development of e-assessment systems
based on general findings on aspects like performance, security or usability, but without
considering educational technology as a dedicated domain of software engineering. This
thesis answers questions about the specific characteristics of e-assessment systems as one
kind of educational technology. In particular, it creates catalogues of typical designs of
e-assessment system or features. This helps to sharpen the understanding of essential
qualities e-assessment systems must ensure by design and thus to identify aspects that
need further research. Moreover, it allows to compare design decisions within educational
technology with other domains in which similar catalogues are available.

Independent of processes and systems, test items are still the heart of educational
assessment in any of its forms. So even if e-assessment is integrated seamlessly into existing
processes and systems, it may not be applicable in domains in which no appropriate test
items exist to represent the important contents and competences of that domain. Hence
this thesis also looks at the available techniques to create test items that represent the
contents and competences of these domains as accurate and complete as possible. At
the same time, the question is asked how domain-specific data sources and tools can be
used for automated generation or evaluation of test items. This helps to ensure that
e-assessment is not decoupled from data and tools actually used in a particular domain
and contributes to an integration of research and teaching in the respective domains.

Finally, modern competence-oriented assessments are based on psychometric analysis
of data which is collected during the assessments. Many other applications like learning
analytics rely on data from e-assessment system as well. Thus it is of interest which
data can be generated and provided by e-assessment systems in order to ensure and
improve assessment and education quality. This thesis thus investigates how statistical
methods can be used to interpret assessment data and how that is embedded into the
context of actual assessments. This helps to understand e-assessment as an enabler for
evidence-based improvement of education and raises some remarkable legal and ethical
issues about personal data at the same time.

1.2. Structure of this Thesis and Previous Work
This thesis will discuss the topic of integrated e-assessment from four different points of
view along the following path:

3

1. Introduction

• First, part I takes an organizational perspective that discusses the abstract process
of conducting educational assessments and the possibilities and dependencies for
integrating electronic tools into that process. It is to a large extent based on a
previously published book chapter [272] and a conference paper [276], but provides
much more details.

• Second, part II takes a technical perspective that discusses software engineering
questions with respect to the integration of e-assessment tools into general e-learning-
systems or learning-management-systems. Preliminary results of that research have
been published earlier on workshops and conferences [271, 274, 275]. One of the
case studies has also been used in a slightly different context [269], while research
results from that part have also influenced the development of another e-assessment
system [284].

• Third, part III takes the perspectives of different domains to discuss the various
ways of formulating domain-specific problems in a suitable way for e-assessment. A
particular focus of that part is on the automated generation or evaluation of item
types based on domain-specific data sources or tools. It includes results from various
joint and independent research projects that have published individually as journal,
conference or workshop papers (i. e. [248, 154, 282, 270, 273, 216, 217, 293, 283]
amongst others).

• Fourth, part IV takes the perspective of data analysis to discuss how e-assessment
can help to elicit, identify or analyse data which is necessary for statistical and
psychometric approaches in education. That part includes a literature review
that has been published as a conference paper [277]. It also partially builds upon
experiences from joint and independent research projects that have published
their results earlier as journal, conference or workshop papers (i. e. [126, 186, 150]
amongst others).

Each of the four parts applies a general research method: In a first step, existing
literature is gathered and structured to create an overview on the state-of-the-art or to
create catalogues and classifications of existing approaches. In a second step, selected
aspects are studied in depth to fill missing gaps, advance the field and create meaningful,
directly applicable contributions to e-assessment systems. As a final step, each of the
four parts is concluded by a summary of results with respect to integrated e-assessment
as well as with respect to a wider scope beyond the focus of this thesis.

The final part V of this thesis concludes the results seen so far to create a final big
picture of integrated e-assessment. It also reviews the achievements of this thesis as well
as the future research that can be started from these results.

4

Part I.

The Educational Assessment Process

5

2. Educational Assessment as a Matter of
Organization

Preparing and conducting educational assessments is not an easy thing. First of all, the
contents have to be created carefully to make sure that the assessment considers right
what is right and wrong what is wrong. Second, test pedagogy and psychometry have
to be considered to make sure that the assessment really measures what it is supposed
to measure. Finally, a lot of organizational aspects concerning the when and where
have to be considered even for informal low-tech assessments, where neither assessment
authorities nor electronic assessment tools are involved.

The first two aspects are at least to a larger extent covered in the domain specific or
general education of educators, respectively. Similar to the organizational issues, they are
relevant for any kind of assessment. Moreover, they are not supposed to get significantly
worse when using electronic assessments instead of non-electronic ones. Teachers might
need to take limitations of electronic devices into account, but as traditional ways of
conducting written or oral exams have their limitations, too, this is no specific obstacle.
In contrast to that, organizational issues indeed tend to get worse when using electronic
systems. Although using electronic systems may help to reduce effort or automate steps,
it also adds other steps to do or people to involve in the process of assessment. Thus
one aspect of integrated e-assessment is to integrate the use of electronic systems into
the organizational process of assessment. This is the aspect discussed in this part of this
publication.

To do so, it first defines a way of modelling assessment processes that can be used both
for electronic and non-electronic assessments (chapter 3). Then several cases are discussed,
where some of them use electronic systems and some not (chapter 4). This leads to
the desired analysis on what change to traditional assessment processes is necessary if
e-assessment options are integrated (chapter 5).

Formal process models for educational assessment cannot only be used to define the
differences between electronic and non-electronic assessments. Similar to process models
in other domains, they can be used as a means of quality and risk management or
as a means of comparison and assessment. The former does not only involve general
technical or organizational risks like failing assessment systems or late delivery of printed
exam sheets, but relates also to the legal aspects of educational assessments. Formalized
processes can help to document the proper and law-abiding conduction of assessments,
which is relevant at least in the context of some summative assessments like final exams.

With respect to comparison and assessment, educators may be faced with decisions on
which kind of assessment they construct and conduct (e. g., whether they use a written
or oral exam) or which technical assessment tools or systems they use. In order to make

7

2. Educational Assessment as a Matter of Organization

an informed decision between different options, educators need to compare different
attributes such as efficiency or reliability. Formal process descriptions can help in that
case, too, as they can be used to estimate costs (not necessarily in terms of money, but
in terms of activities to be performed) or identify the number of steps that bear the risk
of having negative influence on the reliability.

Consequently, the idea of defining an universal way of modelling assessment processes
is not only relevant in the context of integrated e-assessment, but also creates a benefit
for the general handling of educational assessment. Hence this part of this publication
also contributes to a much wider scientific discussion beyond the scope of this publication.

2.1. Literature Study
Before we can start to design and describe a general process of educational assessment,
some things have to be verified or checked by literature study. First, some evidence
is needed that educational assessment is indeed seen as a process by researchers and
educators. Second, existing process descriptions have to be analyzed and compared to
find out whether they qualify as components for a general process description. Third,
a suitable notation has to be identified that is both easy enough to use and powerful
enough to allow to express and compare all relevant properties.

2.1.1. Process Properties of Educational Assessments
In general, there is no doubt in recent literature that educational assessment is a process
[227, 135]. Typical terms related to processes in general such as “phases”, “cycles”, “time
line” or “matrix of activities” can also be found in literature on educational assessment
[24]. They are even more common for the more general area of Instructional System
Design [74, 226]. Hence it can be assumed that it is in general suitable to describe
educational assessment by means of process modeling.

However, it has to be recognized that the notion of a model or process as found in the
literature in conjunction with educational assessment is not necessarily used in the meaning
of a concrete and formal process model. It can also refer to more abstract and informal
models such as the one defined in [59]. Literature studies such as the one presented in
[304] analyse different assessment process models and identify common features. These
models and analyses demonstrate that in educational assessment some activities happen
repeatedly following some definition, although it is only weakly formalized. Some authors
also use the term “process” as a synonym for an activity that takes both time and
preparation without referring explicitly to the organizational aspects of an assessment.
Examples for this are definitions like “Assessment is a multidimensional process of
judging the individual in action” [166] or “assessment is the process of defining, selecting,
designing, collecting, analyzing, interpreting, and using information to increase students’
learning and development” [83]. These definitions that do not refer to organizational
aspects in any way are not considered in this literature study.

It is also common in the domain of education to understand training and instruction
as a system which follows not only a process definition, but also has input and output

8

2.1. Literature Study

[158]. If input is divided into “people”, “material”, “technology” and “time”, this can also
be applied specifically to educational assessment: People consist of at least organizers
and participants of the assessment, materials are the functional contents which reflect
the scientific or professional domain of the assessment, and technology may refer to the
physical way of delivering the assessment.

2.1.2. Specific Aspects of Educational Assessments
Besides the general notion of a process, literature on educational assessment frequently
also reports on specific challenges in the course of preparing and conducting an assessment,
that are closely related to processes. In each of the cases discussed below, process models
can be used as formal means to support in tackling these challenges successfully. Notably,
none of these cases is special to educational assessment in the sense that it does only occur
in that context. Instead, these cases illustrate challenges that are commonly tackled with
support of process models also in other domains, but that are particularly interesting in
the context of educational assessment.

Team Management and Communication

In many cases, more than one person is involved in organizing an educational assessment
[227, 24, 135] and a single person may act in many different roles [249]. Consequently,
persons have to communicate and collaborate in order to prepare and conduct an
assessment and also have to be aware of the different responsibilities they have due to
their respective roles. Case studies such as [173] list several issues that may occur when
using a new way of assessment in practice and a large amount of these issues is concerned
with staff communication. Also explicit advice to create a written plan for an assessment
to be able to track progress can be found in literature [24, 13]. Hence we can assume
that a proper process model can be used in this domain to support communication,
assignment of tasks, and process monitoring.

Quality Improvement

As educational assessments are conducted quite often and at least some assessments may
have fundamental impact on the future of the assessment candidates, quality goals like
efficiency or high reliability and validity of exams exist [255]. In this case, formal process
descriptions are used as a means of quality improvement as they allow to document
necessary steps and thus help to define and keep a successful way of working.

Risk Management

As educational assessments deal with personal data and might be subject to malicious
attempts, risk management techniques can be applied to handle these issues. As part
of an analysis on the state-of-the-art in risk management an information reference
model according to ISO/IEC 23988 has successfully been created for computer-assisted
assessments [50]. Another formal risk analysis has been published earlier, identifying just

9

2. Educational Assessment as a Matter of Organization

risks but no process steps and focusing more on the transition from classical assessments to
computer-assisted assessments [120]. Both publications provide evidence that educational
assessments or at least computer-assisted assessments have several similar properties
as classical business processes with respect to risks and the suitability of using risk
management techniques.

2.1.3. Existing Formal Process Descriptions
As mentioned at the beginning of this section, not only informal but also formal process
descriptions can be found in literature. The following subsections exemplarily discuss
models for local situations as well as generic process models. The purpose of this review
is to create a list of process elements that are common to both kinds of models. This list
will be summarized towards the end of this section and be used as an input for chapter 3.

Process Models for Local Situations

An attempt to model the process of conducting paper-based exams in detail can be
found in [145], which is based on a master thesis [310]. The process model is used
as a means of requirements engineering in the context of software support for large
paper-based exams. A graphical modelling language for detailed modeling of business
processes is used. Besides course-grained actions like “Klausur erstellen” (eng.: Author
exam) or “Korrektur der Bewertung” (eng.: Grade exam) also fine-grained actions such
as “Klausuren und Deckblätter austeilen” (eng.: Hand-out exams and cover sheets) or
“Daten auf Deckblatt schreiben” (eng.: Write data on cover sheet) are listed in the model.
The model also makes a distinction between roles by naming e. g. “Prüfungsamt” (eng.:
Exam Authorities) and “Studenten” (eng.: Students). Finally, the model divides the
process into five phases for the creation of the exam, preparation of the assessment,
conduction of the assessment, post-processing (i. e. evaluation), and review and archiving.
Although the study only aims to model the situation in a particular department, we can
use it in two ways: First, we can pick roles, activities and phases used there and compare
to other models to find out what is general and what is specific. Second, we can use the
model as evidence that process models for educational processes are considered helpful
in the context of software design for supporting systems and that using distinct roles is
considered useful in this context.

The same is true on a slightly more abstract level for the process models presented
in [62], which are related to a university-wide process, but still limited to a particular
existing tool. Again we can identify roles like “Exam Office” or “Students” in conjunction
with their activities. In addition, we can use the publication as an evidence, that model
are not only used in requirements engineering for new tools, but also for documenting
the use of existing assessment tools.

General or Generic Process Models

As part of the FREMA (Framework Reference Model for Assessment) project a domain
definition for assessment in the context of e-learning was created. One part of this domain

10

2.1. Literature Study

definition is a concept map for e-learning assessment processes [190, 309]. This map is
based on interviews within the assessment community and lists activities that turned
out to be relevant based on these interviews. It covers several didactic aspects such as
authoring of assessment items, checking solutions for plagiarism or creating feedback to
students, but also organizational issues such as checking the availability of candidates
and staff or preparing digital and physical environments. In a second step, the domain
model has been mapped against existing software to find out which are covered to what
extent by educational software. Independent of these mapping results, which are hardly
usable more than 10 years later, the concept map for e-learning assessment processes is
another valuable evidence that explicit process modelling is considered useful and that
practitioners are aware of a lot of different didactic and organizational activities related
to assessment.

An approach to create generalized process descriptions for educational processes by
reverse engineering from e-learning tools is presented in [117]. The result of the approach
are activity-oriented workflows that are created by mapping tool-specific activities and
actors to generic descriptions. The purpose of the models is to define educational cloud
services in which actors such as teachers can do their work in terms of process steps
independent of the implementation of these steps in an actual e-learning system. A
similar goal is pursued in [169], but the approach there is to define business flow diagrams
and data flow diagrams in a top-down manner and to derive key system modules from
these models later on. In both cases, the resulting models are less fine-grained than
the one discussed above, but also make a distinction between actors such as “Teacher”,
“Learner” or “E-Assessment System”. Hence we have some more evidence that process
models for educational processes are considered helpful for designing educational software
services and that distinct roles are considered useful in this context. The same conclusion
is supported by the process analysis presented in [170].

The IMS Question and Test Interoperability specification also provides a partially
formal process description of their understanding of assessment processes during the
introduction of their standard [131]. The standard does not define process steps of any
kind, but actors and use cases relevant to the standard.

Another example is the process model for the preparation and processing of program-
ming assignments as presented in [296]. In fact, the model is not specific to programming
assignments, but summarizes the main steps starting from the composition of an assign-
ment up to the review of the marked assignment by the student on a course-grained
level.

Other Formal Models for Assessment

There is also some amount of research which is not concerned with modeling the whole
assessment process on a rather abstract level, but modeling parts of it in detail. An
example for this is the graph-based modeling of admission criteria for exams, which
is based on activities, categories and rules [264]. It allows to formalize fulfillment of
admission criteria from an operational point of view. It is thus on the one hand a formal
model for a particular detail of the assessment process (i. e. the activity to find out who

11

2. Educational Assessment as a Matter of Organization

Actor Name and Syn-
onyms

Short Description References in
Literature

Student (also: Candi-
date, Learner, Test-
taker)

A person who is supposed to sit the
exam and to answer questions in the
test.

[135] [24] [255]
[249] [145] [309]
[117] [50] [227]
[115] [156] [170]
[138] [212] [131]
[296] [193] [169]

Teacher (also: Author,
Examiner, Faculty, In-
structor, Professor)

A person who prepares and conducts
assessments and decides about grades
and feedback. May also be the one
who creates assessment items and de-
signs tests.

[135] [24] [255]
[249] [145] [309]
[117] [227] [115]
[170] [138] [212]
[131] [296] [193]
[169]

Exam Authorities (also:
Exam Office, Depart-
mental Secretary)

An institution responsible for formal or
organizational aspects of assessments.

[255] [249] [145]
[309]

Table 2.1.: Different actors found in formal assessment process descriptions in literature.

may take part in an assessment) and on the other hand a model which is able to connect
different assessments with each other (i. e. to relate assessment outcomes) independent
of their individual processes.

Summary of Process Elements

From the different existing formal process descriptions a list of concrete elements and
element types can be compiled which occur in at least some of the descriptions. These
elements and types are candidates for elements to be included in a generalized and
universal process model for educational assessment that will be developed in chapter 3.

Table 2.1 lists three different actors that commonly appear in literature. They are
listed with synonyms for their names that can be found in various publications. Some
sources in literature make stronger differences between more actors which are aligned
here to a more general set. The most important distinction is the one between people
developing tests and people using tests, that can be found for example in [227] and [131].
The idea is that domain experts create assessment items and compose meaningful tests
from them, while teachers may use these tests to assess their students. Although there
are surely many assessments conducted this way, there are also many in which teachers
themselves author assessment items or at least amend items they picked from an item
pool. Moreover, there are also assessments in which teachers use items or complete
assessments they authored years ago. In these cases it is nearly impossible to draw a

12

2.1. Literature Study

Concept Name and
Synonyms

Short Description References in
Literature

Question (also: Assess-
ment Item, Test Item,
Assignment)

A single item within an exam which
can be answered by a student indepen-
dently of other items.

[135] [24] [249]
[309] [50] [227]
[170] [138] [131]
[296] [193] [169]

Exam (also: Test,
Question Set, Assess-
ment, Quiz, Test pa-
per)

A collection of questions that is deliv-
ered to the students.

[135] [24] [255]
[249] [145] [309]
[117] [227] [156]
[170] [138] [131]
[193] [169]

E-Assessment System
(also: Digital Envi-
ronment, Tool, Exam
Server)

An electronic system used in the as-
sessment process mainly for delivering
exams, collecting responses or creating
feedback.

[13] [309] [50]
[138] [212] [131]
[193] (also in
[117] and [156]
as actor)

Room (also: Physical
Environment)

The location where students are sup-
posed to be while sitting the exam.

[255] [309] [310]
[170] [138]

Feedback (also: Grade,
Score, Results)

The pieces of information produced to
describe and inform about the exam
results.

[135] [24] [255]
[309] [310] [117]
[50] [138] [212]
[131] [296] [193]

Table 2.2.: Different objects or concepts found in formal assessment process descriptions
in literature.

sharp border between people developing tests and people using tests. However, one could
define both roles but having only one actor in some processes filling out both of them. In
this case one could argue that teachers frequently include pictures or diagrams created by
someone else into an assessment, but that would not make the original artist or illustrator
an actor in the assessment process. Following this argumentation a person just creating
questions and tasks but not directly using them for assessment is also not an actor in the
actual assessment process. Consequently, it seems to be sufficient to have one actor who
prepares and conducts the assessment and who may or may not be the author of the test
items as well.

Other actors than the ones listed in the table appear also in the literature. However,
they seem to be passive and only acting on demand of one of the actors named above. This
includes staff like proctors or invigilators monitoring assessments, tutors helping students
to review their results or technical staff helping to set up the assessment environment.

13

2. Educational Assessment as a Matter of Organization

Table 2.2 lists five different concepts or objects that commonly take part in formalized
assessment processes in literature. They are listed with synonyms for their names that
can be found in various publications. There are more concepts that can be found in
literature, but they do not appear to be common for assessment processes. This applies
in particular to concepts related to physical objects such as exam sheets, which do neither
appear in electronic assessments nor in oral assessments.

Table 2.3 lists activities that appear in formalized assessment processes in the literature.
They are listed with synonyms for their names that can be found in various publications.
A lot more activities can be found in the literature, but not all of them appear to be
universal. This applies in particular to activities that are related to concepts or objects
that are not of universal relevance, such as copying question sets for preparing exam
sheets (as found in [255] and [145]) or maintaining e-assessment software (found in [249]).
The latter is also a bit out of scope for this summary, as software maintenance is an
ongoing duty of an IT-department and not an activity specifically related to assessment
processes.

Activity Name and
Synonyms

Short Description References in
Literature

Describe goal of assess-
ment

Document the intended scope, con-
tent and outcomes of the assessment.

[24] [13]

Prepare grading
schemas

Create rules for grading answers and
deciding on pass and fail.

[145] [309]

Author items (also:
compose assignment)

Create assessment items and related
materials.

[135] [24] [249]
[309] [227] [170]
[138] [296] [193]
[169]

Author tests Compose tests by combining assess-
ment items.

[255] [249] [145]
[309] [227] [170]
[138] [193]

Assure test quality
(also: Control and sign)

Verify tests to conform to the goals
of the assessment.

[255] [249] [309]

Schedule Define where and when the assess-
ment will be conducted.

[145] [309] [170]
[138]

Register students Create a list of candidates allowed
and supposed to take part in the as-
sessment.

[145] [309] [156]

Table 2.3.: Different activities found in formal assessment process descriptions in literature
(continued on next page).

14

2.1. Literature Study

(Table continued from previous page)
Activity Name and
Synonyms

Short Description References in
Literature

Allocate staff Make sure that teachers, administra-
tors, assessors, invigilators or similar
join the assessment as needed.

[309] [310]

Prepare environment Set-up physical or electronic devices
used for the assessment.

[309] [193]

Authenticate students Ensure only authorized candidates
take part in the assessment.

[145] [309] [50]
[156] [170] [138]
[193]

Distribute and collect
exams (also: Transport,
Hand-Out, Deliver)

Make tests available to candidates
and collect their answers.

[255] [145] [309]
[117] [50] [156]
[138] [296] [193]

Sitting tests (also:
Writing to exam sheets,
Answering tests)

Respond to assessment items by cre-
ating answers.

[255] [249] [310]
[117] [227] [170]
[138] [296] [193]
[169]

Monitor exams Observe candidates taking part in
the assessment to detect malicious
attempts.

[145] [170]

Check answers for pla-
giarism

Analyse answers given be candidates
to detect malicious attempts.

[309]

Create feedback (also:
Grade answers, Mark)

Analyse answers given be candidates
to judge and comment them.

[135] [24] [255]
[249] [145] [309]
[117] [50] [170]
[138] [296] [169]

Report grades Provide feedback on answers to candi-
dates.

[255] [145] [309]
[117] [50] [138]
[296] [193]

Handle grades review
(also: Moderate, Ap-
peals)

Reply to complaints about poten-
tially misjudged answers.

[145] [309] [117]
[50]

Analyse assessment
results (also: Access
statistics)

Check for conformance of the assess-
ment results with the goals of assess-
ment.

[24] [13] [249]
[309] [117] [50]
[170] [193] [169]

Table 2.3.: Different activities found in formal assessment process descriptions in literature
(continued on next page).

15

2. Educational Assessment as a Matter of Organization

(Table continued from previous page)
Activity Name and
Synonyms

Short Description References in
Literature

Improve assessment Draw conclusions from results to be
used in the next assessment.

[24]

Table 2.3.: Different activities found in formal assessment process descriptions in litera-
ture.

2.1.4. Available Process Notations
The purpose of this section is to identify a formal process notation which is suitable
for expressing educational assessment processes. The notation should be usable in a
descriptive manner as well as in a prescriptive manner. In particular, it should be possible
to derive concrete tasks for conducting an assessment from the process description and
also to monitor the state of an ongoing assessment process. Moreover, process descriptions
should be customizable with respect to the actors or concepts included in the process, so
that it is possible to describe e-assessments as well as assessment involving no e-assessment
systems. Finally, it should be able to support agile and informal assessments in which no
specific time constraints exist or in which some activities can happen in arbitrary order.

There is a wide range of notations for processes focusing on different aspects and
being either general or domain specific. One of the earliest and still popular graphical
notations are Gantt charts [94, 51], that organize activities in a timeline. More recent
notations like process flowcharts [247], event-driven process chains [300] and similar focus
on dependencies by showing activities as nodes in a graph. Some also add decision and
processing nodes to the graph. There exist diverse variants of flowcharts, for instance,
used for decision making in medical applications [303] or tailored to business process
visualization [230]. However, all these notations focus on strict and precise scheduling of
tasks or strict sequences of activities in a highly automated or constraint context. Hence
they do not meet the requirements for a process notation for educational assessment
processes with respect to support of agile assessments. Support for these can be found in
Kanban boards known from software engineering [128], but these in turn focus solely on
monitoring and informal planning of tasks. Thus they do not support a structured and
prescriptive documentation of processes.

The ESSENCE standard [2] origins also from the domain of software engineering
and extends some of the ideas from Kanban boards to tackle process related aspects of
software engineering projects. It defines both a notation for software engineering process
descriptions as well as a so-called kernel of key elements (named “alphas” and “activity
spaces”) that are supposed to be relevant in any software engineering project. Each alpha
defines a set of states with checklists, which allow to track project progress. An alpha state
is considered achieved when all items on its checklist are done and all preceding states of
the alpha have also been achieved. Simple process descriptions can be created by forming
groups of states from several alphas and thus defining project phases or milestones. More

16

2.1. Literature Study

details can be added to a process description by assigning definitions of documents called
“work products” to alpha states (e. g., to represent the alpha “Requirements” by a work
product named “Use Case Documentation”) or definitions of tasks called “activities” to
activity spaces. Hence a process description using the ESSENCE notation can be used
prescriptively as well as descriptively. In a descriptive way, checklist items of states can
be ticked off to determine the current state of the process and activities that are already
completed. In a prescriptive way, activities to be performed next can be derived from
checklist items that are not yet checked. At the same time, the notation still supports
agile enactment of processes as it makes no restriction on the order in which checklist
items are ticked off.

Although the ESSENCE standard defines both kernel and notation, these parts do not
strictly depend on each other. While its kernel contains elements relevant in the context
of software development processes, its general notation and notions are usable for a much
wider range of processes. Hence it is possible to use the ESSENCE notation also in other
domains by defining a different kernel. As the ESSENCE standard expresses the state
of concepts and objects (such as “Requirements” or “Software System”) as well as the
state of actors (such as “Stakeholders” or “Team”) as alphas, it is possible to map the
contents of table 2.1 and table 2.2 to alphas. Contents of table 2.3 can then be mapped
to activities. Thus it seems to be possible to define a kernel for educational assessment
using ESSENCE.

With respect to the integration of electronic systems into assessment processes this
is also an interesting choice because of the concept of “work products” mentioned
above. Considering a written assessment, the same exam (as a conceptual entity) can be
represented by an exam sheet (as physical representation) or via the user interface of an
e-assessment system (as digital representation). In ESSENCE this is reflected by the fact
that a kernel may contain an alpha “Exam” representing the conceptual entity, while
detailed information on how to represent this entity are added later.

It is interesting to note that ESSENCE was already chosen as a means of modeling
educational practices in other contexts. In [287] an extension to the standardized
ESSENCE kernel is presented in which a learning environment and related learning and
teaching activities are considered for teaching embedded systems design.

17

3. The Essence of Educational Assessment
Processes

The goal of this chapter is to elicit a list of core concepts and terms that are required to
describe the process of educational assessment. It is based on the findings from literature
that are summarized in section 2.1.3. These concepts and terms are presented in form of
a so-called “kernel”. This way of presentation follows the ESSENCE standard which does
the same for software engineering as discussed in section 2.1.4.

3.1. A Kernel for Educational Assessment
The ESSENCE Kernel for Educational Assessment is intended to form a common base
for all kinds of educational assessment processes. It is neither limited to a particular
didactic purpose of the assessment (e. g. diagnostic, formative or summative) nor to a
particular form of assessment (e. g. written assessment, oral assessment or electronic
assessment). However, a particular focus of the following sections will be to demonstrate
how the specific needs of e-assessments integrate into the general process of educational
assessment.

In order to achieve full but flexible coverage of all kinds of processes in educational
assessment, the Kernel consists of eight Alphas from which two are optional. The kernel
also contains Activity Spaces, which are discussed later in section 3.1.3. Alphas and
Activity Spaces can be grouped into three Areas of Concern somewhat similar to the
original ESSENCE Standard. Notably, the decision to use an electronic system in the
assessment just adds a particular alpha to the process, but does not necessarily change
the whole process. An overview of the kernel alphas and their main relationships is shown
in figure 3.1. The relationships shown in this figure are those that are used throughout
the following sections when explaining the meaning of the different alphas in more detail.
Nevertheless, additional relationships may possibly exist, but are not discussed here.

Following the original ESSENCE specification, the kernel does neither include Work
Products associated with the Alphas nor Activities associated with Activity Spaces.
These can be added later to cover practices on how to conduct assessments in a particular
domain or in a specific manner. They are out of the scope for a universal kernel and
hence only discussed by example in the case studies in chapter 4.

3.1.1. The Areas of Concern
As discussed in section 2.1.1, one can divide the input to a process into the categories
“people”, “material”, “technology” and “time”. We can apply this in order to create areas

19

3. The Essence of Educational Assessment Processes

Figure 3.1.: Overview of the eight alphas in the Kernel for Educational Assessment and
some of their relationships. Optional alphas are shown with a dashed border.

of concern for educational assessment processes in the following way: People concerns
the alphas representing the actors of the process (i. e. one alpha for each entry from table
2.1 in the previous chapter), materials concerns the alphas representing the functional
contents reflecting the scientific or professional domain of the assessment (i. e. one
alpha for the entries “Question”, “Exam” and “Feedback” from table 2.2 in the previous
chapter), and technology concerns alphas representing the physical way of delivering the
assessment (i. e. one alpha for the entries “E-Assessment System” and “Room” from table
2.2 in the previous chapter). The following subsections provide more detailed definitions
of the areas and its alphas, while section 3.1.2 will describe and discuss each alpha in
detail.

Area of Concern “Content”

Probably the most important parts of an assessment are its functional contents, which are
represented by this area of concern. The contents of an assessment reflect its professional
or scientific domain. Typically, experts in the particular domain are responsible for
creating and maintaining these contents and to assure that they are right. Failure
in reaching the desired quality of content in an assessment most likely causes useless
assessment results. In general, contents of an assessment are assumed to be independent of
the form of the assessment. It is assumed that there is no conceptual difference between
assessment contents for an oral exam, a traditional written exam, or an electronic
exam. However, the specific presentation of contents may indeed depend on the form
of assessment. For example, asking students to draw a complex diagram may be less
appropriate for oral exams, while asking students to perform some physical exercise is
less usual in written exams.

20

3.1. A Kernel for Educational Assessment

This area of concern consists of three alphas, representing the different bits an assess-
ment and its results are composed of:

Test Items: The questions and tasks that are potentially used in the assessment.
These test items may form a general item pool or several distinct item pools. The name
“Test Items” is preferred over other synonyms, as it is concise and corresponds to the name
of the next alpha. The name uses the plural form as the alpha refers to the whole amount
of test items. Tracking the process of development for individual test items is beyond
the scope of a general kernel, but can be added by defining a sub-alpha representing an
individual test item.

Test: The actual collection of test items that is delivered to the participants of the
assessment. A test may be the same for all participants or may be composed individually
from one or more item pools. The name “Test” is preferred over other synonyms, as
“Assessment” may be confused with the whole process, “Exam” is inappropriate for
formative assessments and “Question Set” may be confused with item pools. The name
uses the singular form as it refers to the test as a concept rather than to the test as a
particular instance of elements from an item pool. Thus it also covers all variants of a
test that may potentially exist. Tracking variants separately is beyond the scope of a
general kernel, but can be achieved by adding a sub-alpha “test variant” or similar.

Grades and Feedback: The set of marks, scores, texts or anything else which
expresses the result of a test and is used to inform the participants of the assessment
about their performance. The name “Grades and Feedback” is preferred over other
synonyms to make clear that it includes both textual and numerical descriptions of
the participants’ performance. A more specific separation can be achieved by adding
sub-alphas for grades and textual feedback separately, but as these are usually closely
related, it seems useful to stick to a common parent-alpha for them as in this definition.

Area of Concern “People”

The previous area of concern already mentioned domain experts as the authors of
assessments contents. As discussed in the summary of section 2.1.3, these are, however,
not the people in the focus of an assessment. Hence the focus of this area of concern
lays on those people who are more directly concerned with an assessment and who have
been identified as the three main actors of assessment processes: The organizers running
the assessment (who may of course also author test items as part of their duties while
preparing the assessment), the candidates taking part in the assessment and optionally
the authorities responsible for the legal aspects of the assessment. If either of these
parties fails to fulfill their role within the assessment process, there is no guarantee that
the process will produce the desired outcome.

This area of concern consists of three alphas, each representing one of the parties
named above:

Organizers: The persons who set up and conduct the assessment. As already discussed
earlier, there may be a distinction between people who author test items and design
tests and those who use tests in order to assign grades to their students. This alpha
makes no assumption on what the actual duties of the organizers are, but assumes a wide

21

3. The Essence of Educational Assessment Processes

range from the ones named above up to mere organizational ones like inviting candidates,
defining time and place of the assessment or preparing e-assessment systems. The name
“organizers” is preferred over other synonyms, because it is a neutral term covering the
intended broad range of duties. From the alternatives “teachers” is too unusual for
institutions other than schools, “examiners” or “authors” are too restrictive in excluding
other duties and “faculty” is even more general than “organizers” and thus bears the risk
of being too unspecific.

Candidates: The persons who take part in the assessment by answering test items
and thus solving a test. The name “candidates” is preferred over other synonyms like
“students” or “learners”, as these do not necessarily indicate that persons take part in
an assessment. Another alternative is “test-takers”, which appears to be less usual than
“candidates”.

Authorities [optional]: The official party that is formally responsible for any legal
issues related to conducting the assessment and hence may control the actions of the
organizers or archive some of the documents produced during the assessment process.
The name “authorities” is preferred over other synonyms, since “exam office” refers less
direct to persons as the other alpha names in this area of concern do, while “departmental
secretary” is much too specific for a particular organizational structure.

All names use the plural form as each alpha may represent a group of people, where all
members of the respective group may or may not have the same duties. For candidates
one would typically expect that all of them are treated equally, while organizers or
authorities may share their duties among their members. However, it is not the idea
of a general kernel to keep track of individuals. Nevertheless, tracking for individual
persons or roles can be added by introducing sub-alphas refining the existing alphas.
This can in particular be useful if authorities can be split into “internal” authorities of
the institution hosting the assessment and “external” authorities like a governmental
office. It can also be used to make distinctions between the different duties of organizers
that were discussed above. One of the specific sub-alphas can in this case represent the
system administrator for an e-assessment system.

Area of Concern “Logistics”

Besides contents and people, there is also a demand for physical or technical facilities
to conduct an assessment. In any case, there are one or many physical locations where
candidates are located while taking the assessment. Optionally, they are also using a
dedicated technical system for doing so, which is the most important aspect which tells
a traditional assessment from an e-assessment. The fact that the technical system gets
no special handling but is an optional alpha amongst other ones strengthens the idea
of seamlessly integrated e-assessment, which is the theme of this publication. It also
strengthens the point that the kernel for educational assessment is universal and not
limited to e-assessments.

This area of concern consists of two alphas for the physical and technical aspects of
assessment organization:

22

3.1. A Kernel for Educational Assessment

Location: The place or places where the participants are supposed to appear for
taking part in the assessment. The name “location” is preferred over the terms from
table 2.2, as “room” excludes assessments that happen outside buildings and “physical
environment” seems to be too unspecific. The term uses the singular form but also
covers multiple places, as these typically need similar treatment. If specific aspects of the
location need to be tracked separately (such as preparing a room and moving equipment
to that room), sub-alphas can be used.

System [optional]: The electronic system used to conduct the assessment by admin-
istering the test items, accepting submissions and associating grades and feedback to
submissions. The system may also perform grade and feedback generation automatically.
The term “system” is preferred over other synonyms, as it directly refers to the usual
term “e-assessment system”, while “digital environment” seems to be too general and
“tool” seems to be a bit more colloquial. Moreover, “system” naturally includes situations
in which several tools are used in conjunction and thus form a complex system. Tracking
of individual parts of a system can be added via sub-alphas, but is beyond the scope of a
general kernel.

One can imagine to add a third optional alpha for materials needed during the
assessment in case the candidates have to perform physical experiments in natural
sciences, artistic or musical exercises using instruments or requisites, or similar. However,
the states and checkpoints necessary for this kind of alpha are very likely to vary from
domain to domain. Thus they are out of scope for a domain independent kernel. Instead,
they can be added as domain specific extensions to the kernel, very much like the domain
specific extensions that are defined in the original ESSENCE standard for software
engineering. Another solution would be to handle them as sub-alphas to “Location” as
already mentioned above.

3.1.2. The Alphas
In each of the following subsections, one of the alphas introduced above will be discussed
in detail. Following the ESSENCE notation, for each alpha a set of states will be defined
as well as a set of checkpoints for each of these states. States and checkpoints will be
summarized in a table per alpha, while the text presents the rational for each of these
states.

Alpha “Test Items”

A test item is the smallest consistent unit within an assessment that allows candidates
to demonstrate their competencies. For the purpose of this kernel, it is assumed that a
test item contains some kind of task description and that the candidates are expected
to respond to it in some way, e. g. by ticking answer options, writing a short essay,
performing some specific activity, or answering orally. Whether answering a test item
requires a single competency or a complex set of competencies according to current
theories of competency measurement is not relevant here, but discussed later in this
publication (see part IV).

23

3. The Essence of Educational Assessment Processes

The Alpha “Test Items” covers all items potentially used in the assessment and does
not ask how an actual test is composed from these items. For practical reasons, the test
items may form a general item pool or several distinct item pools from which a certain
amount of items is used in the actual assessment. However, it is assumed that all test
items that are potentially used need to be prepared in the same way.

A list of states and checkpoints for alpha “Test Items” is provided in table 3.1. The
first three states are named “scoped”, “designed” and “verified” and are concerned with
the different stages of preparation for test items. The alpha particularly reflects the
observation that test items have some formal properties (such as an item type, language
and intended difficulty) which are defined in the first state, while their functional
properties (such as a task description and a sample solution) are defined in the second
state. Notably, the name “designed” of the second state does not imply that test items are
necessarily designed from scratch right before reaching this state. They can also be drawn
from an already existing item bank in which they where inserted earlier. Nevertheless,
organizers will first have to define which types and forms of items will be used, before
they can “design” them by drawing from an item bank.

As legal regulations may explicitly require a second author to do a review of all proposed
test items, the third state handles verification and double-checking. This is also in line
with the literature study, in which goal description, authoring and quality assurance
appeared as distinct activities. The fourth state of the alpha is named “outcome reviewed”
and reflects the didactic practice to review the outcomes of a test with respect to test
item performance in order to identify test items with unexpected results (e. g. ones that
were often answered wrong by good candidates or ones that were answered right by
anybody). This is also an activity found during the literature study.

None of the checkpoints from the four states refers to e-assessments explicitly. However,
the form of assessment to be used surely influences that choice of test items to be used.
This is reflected by the first two checkpoints of the first state. An e-assessment system
may pose some requirements on what types of test items can be used (checkpoint 1) and
which form of presentation (textual, graphical, use of special characters, and so on) can
be used (checkpoint 2). Notably, it depends on the actual assessment process whether
this may stop organizers from using an particular test item: If the decision for using a
particular e-assessment system comes early in the process, its requirements with respect
to test items may limit the choice. In other cases, the choice of test items to be used can
also come first, possibly limiting the choice of systems or forms of assessment that can
be used.

Alpha “Test”

A test is the actual collection of test items that is delivered to the candidates of the
assessment in some way, e. g. by handing out papers, displaying on a screen or asking
questions orally. The alpha refers to the test as an abstract construct and hence does not
ask whether a candidate actually sees the whole test at once or only can see and answer
the test items within the test one after another. There is also no assumption made on
whether the test is a static composition of test items or generated adaptively like in

24

3.1. A Kernel for Educational Assessment

Test Items: The test items that are potentially used in the assessment. The test items may form a
general item pool or several distinct item pools.
States and Short Description Checkpoints
Scoped: The types and forms
of test items to be used are
clear.

• The allowed types of test items to be produced are clear.
• The outer form of test items to be produced (e. g. language) is

clear.
• The intended average size of test items is clear.
• The expected characteristics (e. g. relative difficulty) of the

test items are clear.

Designed: A sufficient
amount of meaningful test
items is available.

• There are at least as much test items available as the test
consists of.

• Texts and any resources belonging to a test item are available
for each of them.

• A sample solution is available for all test items.
• Suitable metrics for computing characteristics of the test

items without using them have been applied.

Verified: All test items have
been checked to fit the pur-
pose of the assessment and are
ready for use.

• It is assured that there is a correct solution to all test items.
• It is assured that all sample solutions are correct.
• It is assured that there is no unwanted interference between

test items.
• Test items with unexpected characteristics are eliminated.

Outcome reviewed: Non-
optimal items are identified by
analyzing test outcomes.

• Suitable metrics for computing characteristics of the test
items after using them have been applied.

• Test items with unexpected characteristics are identified.
• Causes for unexpected characteristics are identified.

Table 3.1.: State and checkpoint overview for alpha “Test Items”

computer adaptive testing. Consequently, a test may be the same for all candidates or
may be composed individually from one or more item pools.

A list of states and checkpoints for alpha “Test” is provided in table 3.2. The first and
second state are named “goals clarified” and “designed” and correspond to the first two
states of the alpha for test items, as also the whole test needs both a definition of its
formal and functional properties. The third state is named “generated” and is fulfilled
when an actual instance of the test is created for each candidate. As already mentioned
above, this may be a physical representation such as some pieces of paper, but it may
also be the specific sequence of questions asked to one particular candidate in an oral
exam. The fourth state is named “conducted” and is fulfilled when all candidates have
completed their tests. Notably, in a written exam this state may be reached days or even
weeks after “generated” (depending on how long before the day of the test the exam
sheets are printed), while in an oral exam it may be reached minutes or even seconds

25

3. The Essence of Educational Assessment Processes

Test: The actual collection of test items that is delivered to the candidates of the assessment. A test
may be the same for all candidates or may be composed individually from one or more item pools.
States and Short Description Checkpoints
Goals clarified: The purpose
of the assessment is clear. • It is clear whether the assessment is diagnostic, formative or

summative.
• The relevant topics for the assessment are clear.
• The expected characteristics of the test are clear.

Designed: The size and con-
tent of the test as well as its
outer form of presentation is
defined.

• A set of potential test items for each topic in the test exists.
• The number of test items to be included in the test is clear.
• The mode of choosing test items for an actual test instance is

clear.
• It is clear how the test items will be presented to the partici-

pants and how submissions will be collected.

Generated: Actual instances
of the test are available for
each candidate.

• Individual test items are available for each candidate.
• It is clear which test items an individual participant has to

answer to.
• The outer form of presentation for the test has been produced.
• It is assured that each individual test conforms to the goals of

the assessment.

Conducted: All submissions
from all candidates are col-
lected.

• All participants have made a submission or explicitly stated
that they don’t want to make one.

• There are no submissions left that are not yet collected.

Evaluated: Grades and feed-
back have been assigned to all
submissions.

• All submissions have been evaluated.
• Grades and feedback have been generated for each submission.
• Suitable metrics are applied to analyze the actual characteris-

tics of the test.

Table 3.2.: State and checkpoint overview for alpha “Test”

after the last question is posed. The fifth state represents the fact that a test needs to be
evaluated and also includes the retrospective analysis of test item performance as above.

The alpha makes no explicit reference to e-assessment in any of its checkpoints,
but several implicit ones. In state “Designed”, both the mode of choosing test items
(checkpoint 3) and the way of presenting test items (checkpoint 4) may be subject to
requirements from an e-assessment system. As already discussed for the previous alpha,
an early decision for a particular e-assessment system may limit the choice here, while a
late choice of an e-assessment system is limited by the decisions made during test design.
In state “Generated”, at least the production of the outer form of presentation (checkpoint
3) relates to e-assessment systems, as this is one of their primary duties. Similar is true
for the generation of grades and feedback (checkpoint 2 of state “Evaluated”), but only in
case the e-assessment system supports automated grading, which is not necessarily true

26

3.1. A Kernel for Educational Assessment

for complex exercises. Hence the number of checkpoints in this alpha that are influenced
by conducting an e-assessment instead of a non-electronic assessment clearly depends on
the capabilities of the e-assessment system used.

Alpha “Grades and Feedback”

Each response to a test item can be evaluated in order to produce the actual test result.
Depending on the didactic setting of the assessment, these results may consist of marks,
scores, credit points, texts or anything else which is used to inform the participants of the
assessment about their performance. Results can be assigned both to single test items
and to the whole test (or arbitrary parts of it). The alpha covers all these different kinds
of feedback and makes no assumption on whether participants have access to results
during the assessment or only afterwards.

A list of states and checkpoints for alpha “Grades and Feedback” is provided in table
3.3. Again, the first two states are concerned with preparations: State “granularity
decided” reflects the fact that there are many ways of how to give feedback and that
the didactic purpose of the assessment determines the choice. State “prepared” refers to
the creation of appropriate marking schemes or alike as well as organizational set-up of
grading sessions. The preparation of grading schemas is also one of the activities found
explicitly in the literature study. The third state is named “generated” and is fulfilled if
all grades and feedback are created. Grading answers and marking tests was the activity
with the most occurrences in the literature study.

The final state is fulfilled when grades and feedback are available to the candidates
and is thus named “published”. Notably, in a written exam it may take some time after
the submission to reach state “generated” and it may also take some more time to reach
“published”, while in an oral exam feedback is often generated right after a candidate
answered a question and is also published immediately by responding to the candidate’s
answer. However, as the alpha refers to grades and feedback in general, state “published”
may nevertheless be fulfilled later, as grades are typically not mentioned after every
answer, but only at the end of an exam or even at some later point in time. In the
literature study the reporting of grades has been identified as separate activity, which
also motivates to make a distinction between the generation of grades and its reporting.

Again there are no explicit but some implicit references from the checkpoints of the
states to the use of e-assessment systems. First, the kind of grades and style of feedback
(checkpoints 1 and 2 in state “Granularity decided”) can depend on the e-assessment
system, if it is used to generate or present grades and feedback. The preparation
of marking schemas (checkpoint 1 in state “Prepared”) is a crucial point when using
automated grading features of e-assessment systems, as grading and feedback rules need
precise definitions in this case. In manually marked assessments, marking schemas may
omit some corner cases, which will then be discussed and solved individually later if
they actually occur. This may not be possible when using an e-assessment system which
will consequently require more effort to reach state “Prepared”. On the other hand,
the resource allocation for grading mentioned in the same state (checkpoint 3) can be
easier when using an e-assessment system with automated grading capabilities. In state

27

3. The Essence of Educational Assessment Processes

Grades and Feedback: The set of marks, credit points, texts or anything else which is used to
inform the participants of the assessment about their performance.
States and Short Description Checkpoints
Granularity decided: The
kind and style of grades and
feedback is clear.

• It is clear which kind of grades will be used.
• It is clear which style of feedback will be used.
• It is assured that the kind and style of grades and feedback fit

the purpose of the assessment.

Prepared: Criteria are clear
for when to generate which
grades and feedbacks.

• Proper marking schemas, rubrics or alike are available.
• Resources are allocated to review submissions in order to

create grades and feedback.
• The time frame for creating grades and feedback is clear.
• The risk of solving the test by guessing is under control.

Generated: Grades and
feedback for all submissions
are created and assigned.

• All submissions have been reviewed.
• Grades and feedback are created for all submissions.
• Grades and feedback have been checked to be assigned cor-

rectly to submissions.

Published: Candidates have
access to grades and feedback
for their submissions.

• Grades and feedback are available for review by the candi-
dates.

• The time frame and process for placing complaints is clear.

Table 3.3.: State and checkpoint overview for alpha “Grades and Feedback”

“Generated” the double-checking of generated grades and feedback (checkpoint 3) can
gain specific legal relevance when using e-assessment systems with automated grading
capabilities. Depending on the laws applicable in a specific case, it may be necessary that
each and every feedback that was generated automatically must be reviewed manually
before it gets published. However, laws may also require double-checking for manual
grades but not for automated grades, if feedback rules and grading schemas have been
double-checked before.

Alpha “Organizers”

For each assessment there is at least one person responsible for organizing it and thus
managing the assessment process. For larger assessments it can be assumed that more
people are involved in setting up and conducting the assessment, including test item
authors, assessors and technical staff. Each of them picks up parts of the responsibility for
conducting the assessment and is thus responsible for some part of the assessment process.
People how just assist in conducting the assessment but do not have a final responsibility
with respect to the process are not considered as organizers, but are included indirectly
by mentioning them in the checklists.

28

3.1. A Kernel for Educational Assessment

Organizers: The persons who set up and conduct the assessment.
States and Short Description Checkpoints
Identified: It is clear which
persons need to be involved in
organizing the assessment.

• The required persons are known by name and role.
• It is clear how to contact and involve the persons.

Working: Organizers have
picked up their individual
tasks.

• Organizers know their individual role and duty in the assess-
ment.

• Organizers know what they have to prepare for the start of
the assessment.

• Organizers know the deadlines for their individual tasks.

Satisfied for Start: Orga-
nizers are ready to start the
assessment.

• Organizers agree that preparation is successfully finished.
• Organizers or their representatives are available for monitoring

the assessment.

Satisfied for Closing: Or-
ganizers have no more open
duties.

• All post-processing of the assessment by the organizers has
been completed.

• Didactic evaluation of the assessment has been done.
• Hints for improving future assessments have been docu-

mented.

Table 3.4.: State and checkpoint overview for alpha “Organizers”

A list of states and checkpoints for alpha “Organizers” is provided in table 3.4. The
first state is named “identified” and thus represents the fact that it may require some
work to find out who needs to be involved into the assessment for which tasks. The
second state is named “working” and is fulfilled when all responsible persons have picked
up their duties. This also strengthens the use of processes as means of coordinating
people. Once they have done everything that is required to start the actual assessment,
state “satisfied for start” is reached. Similarly, the final state “satisfied for closing” is
reached when all evaluation and post-processing is done and the organizers have no more
open duties. Neither of these states can directly be deduced from the activities identified
in the literature study. Instead, these states follow the rational the states of alphas
“Stakeholders” and “Team” from the ESSENCE Kernel of Software Engineering.

Different to the alphas discussed so far, there is only an implicit relationship between
the states and checkpoints of this alpha and the use of an e-assessment system. This
relationship is established by the fact that a system administrator for an e-assessment
system may be counted among the organizers of the assessment. However, none of the
checkpoints of this alpha gains new characteristics due to that choice.

Alpha “Candidates”

The largest group of people concerned with an assessment are usually the candidates,
which are the persons who take part in the assessment by answering a test. Although

29

3. The Essence of Educational Assessment Processes

they are involved personally in the assessment process for a relatively short period of
time, the proposed kernel includes an alpha with seven states to represent all essential
aspects related to candidates.

A list of states and checkpoints for alpha “Candidates” is provided in table 3.5. The
first two states are named “scoped” and “selected” and refer to the part of the process in
which it is first defined who is allowed to take part in the assessment and secondly the
actual persons are identified. Both states may belong to activity “register students” as
found in the literature study. The third state “invited” is fulfilled when candidates know
how to prepare themselves for the assessment.

The following two states “present” and “dismissed” refer to the physical presence of
the candidate at the location where the assessment takes place. Notably, that does not
mean that all candidates will be at the same place at the same point in time. They are
also considered “present” if they are in different locations and it is also possible that
some candidates are already dismissed, before the last one is present, as it is usual in oral
exams. The sixth and seventh state are named “informed” and “satisfied” and reflect the
fact that candidates need explicitly to be informed about their results (which corresponds
to state “published” for grades and feedback) and then often have some time frame to
place complaints before the grades formally count as accepted. The latter has also been
identified as an activity in the literature study.

None of the states of this alpha has any specific relationship to using an e-assessment
system, neither explicitly nor implicitly. Candidates always have to respond to test items
in a specific way in any form of assessment, so using an e-assessment system is only one
way among others and does not change the process from the candidates’ point of view.
The same is true for review of results, which may or may not happen using an electronic
system.

Optional Alpha “Authorities”

Depending on the didactic and formal setting of the assessment some official party may
be formally responsible for any legal issues related to conducting the assessment. As this
may introduce additional process steps or dependencies between states, authorities are
introduced as an additional optional alpha in the kernel. This alpha is only relevant for
formal assessments.

A list of states and checkpoints for alpha “Authorities” is provided in table 3.6. The
first state is named “Identified” and covers the same aspects as the corresponding state
of alpha “Organizers”. The second state is named “Involved” and is fulfilled when all
assessment information relevant to the authorities have been provided. The naming of
the state is different from the second state of alpha “Organizers”, as authorities are
supposed to play a less active role in the assessment process. Hence they may be involved
in terms of providing information or verifying documents, but do not necessarily work in
terms of creating contents or making design decisions.

The third and fourth state are named “Satisfied for Start” and “Satisfied for Closing”,
which is again similar to the states of alpha “Organizers”. They are reached when there

30

3.1. A Kernel for Educational Assessment

Candidates: The persons who take part in the assessment by solving a test.
States and Short Description Checkpoints
Scoped: The criteria for
being allowed to take part in
the assessment are clear.

• Criteria exist on how to select candidates for the assessment.
• The criteria fit the purpose of the assessment.
• It is clear how to apply the criteria in order to identify rele-

vant persons.

Selected: The individual
persons who are allowed to
take part in the assessment
are identified.

• Individual persons allowed to take part in the assessment are
identified by name or some other proper measure.

• It is clear why these persons are allowed to take part in the
assessment.

• It is clear why no other persons are allowed to take part in the
assessment.

Invited: The persons who
are allowed to take part in the
assessment are informed about
all relevant circumstances of
the planned assessment.

• Candidates know where and when they are expected to ap-
pear.

• Candidates know what they must and must not bring along
for the assessment.

• Candidates know about any other relevant circumstances of
the planned assessment.

Present: The persons who
are allowed to take part in the
assessment are present at the
assessment location.

• Candidates are physically present where they are expected to
be.

• It is clear that these persons are indeed the ones that were
invited to take part in the assessment.

• It is made sure that no unauthorized person is present.

Dismissed: The persons who
took part in the assessment
have finished their on-site
duties.

• Candidates have submitted their solutions.
• Candidates have left the assessment location.

Informed: The persons who
took part in the assessment
know their results.

• Candidates know the grades assigned to their submissions.
• Candidates know any feedback that was intended to be di-

rected to them.
• Candidates know the procedure for placing complaints.

Satisfied: The persons who
took part in the assessment
agreed that the assessment
results are valid.

• Candidates had a suitable opportunity to review grades and
feedback.

• Candidates had a suitable opportunity to ask questions about
their results and articulate disagreement.

• Any conflicts are resolved.

Table 3.5.: State and checkpoint overview for alpha “Candidates”

31

3. The Essence of Educational Assessment Processes

Authorities: The official party that is formally responsible for any legal issues related to conducting
the assessment. This alpha is only relevant for formal assessments.
States and Short Description Checkpoints
Identified: It is clear which
authorities need to be involved
in the assessment.

• The required authorities are known by name and role.
• It is clear how to contact and involve the authorities.

Involved: Authorities have
access to assessment informa-
tion relevant to them.

• Each authority is represented in the assessment process by an
appropriate person.

• Authorities had a suitable opportunity to place their questions
and requests about the assessment process.

• Assessment organizers have targeted their questions towards
the authorities.

Satisfied for Start: There
are no more legal obstacles to
start the assessment.

• All required documents about the preparation of the assess-
ment are available and complete.

• Permissions from the authorities are present.

Satisfied for Closing: All
legal files for the assessment
are complete and ready to be
closed.

• All required documents about the actual process of the assess-
ment are available and complete.

• All required documents about the results of the assessment are
available and complete.

Table 3.6.: State and checkpoint overview for alpha “Authorities”

are no more legal obstacles to start the assessment or the legal files for the assessment
are ready to be closed, respectively.

As the authorities are considered to be less actively involved in the process compared
to the organizers, they also consider the assessment process from an more abstract
perspective. Consequently, they have no implicit or explicit relationship to the potential
use of e-assessment systems. The required documents that have to be prepared or
reviewed by the authorities may differ between electronic and non-electronic assessments,
but that does not change the characteristics or importance of the checkpoints and states.

Alpha “Location”

It is assumed that each assessment needs some physical location where candidates will be
located while taking part in the assessment. Depending on the kind of size of assessment,
this may be a single room for all candidates (at the same time or one single candidate
or group after another) or a set of distributed locations. As no further assumptions
are made by this alpha, this may also cover for example field tests during excursions or
informal assessment situations in which candidates take their tests on a mobile device
while sitting in a bus or train.

A list of states and checkpoints for alpha “Location” is provided in table 3.7. Quite
similar to the states for candidates, the first two states for the location are named

32

3.1. A Kernel for Educational Assessment

“defined” and “selected” and refer to the fact that first some abstract requirements are
formulated towards the properties of the assessment location and then an actual room or
set of rooms is selected. As rooms are physical resources that may cause conflicts with
other assessments happening at the same time, state “reserved” is explicitly introduced
to cover the necessary communication and also the calculation of set-up time. In the
literature study, these states were at least partially covered by the activity of scheduling
an assessment.

If all set-up is done, the location is considered “prepared”, which is the fourth state
corresponding to “satisfied for start” for the organizers and also to the respective activity
identified in the literature study. The final two states are named “in use” and “left” and
correspond to some extent to “present” and “dismissed” for the candidates but also cover
the fact that the location needs to be restored after the assessment.

Since the assessment location is the physical place where candidates come in contact
with the assessment, it may also establish relationships to an e-assessment system. In
state “Defined” the required technical equipment (checkpoint 2) directly depends on
whether an e-assessment system is used or not. Typically, this decision will be made
first and thus pose requirements towards the location. The opposite case in which the
location is decided first and the decision on whether an e-assessment system is used or
not comes second (and is constrained by the choice of location) can be considered to
occur very rarely. Which technical equipment is required depends on the specific mode of
electronic assessment and is beyond the discussion of a general kernel. On can imagine
both fully-equipped computer pools as well as just providing wireless network access so
that candidates can use their personal mobile devices.

In state “Reserved”, both the planning of preparations (checkpoint 2) and the planning
of clean-up efforts (checkpoint 3) possibly refer to the use of e-assessment system and the
required time may be very different for electronic assessments compared to non-electronic
ones. In the remaining states, any mentioning of technical equipment may relate to the
use of e-assessment systems as already discussed for the first state.

Optional Alpha “System”

In case a computer-aided assessment system or similar electronic system is used to
conduct the assessment, it can be represented by an additional optional alpha. The
alpha covers all possible duties of this system such as administering the tests, accepting
submissions, associating grades and feedback to submissions and performing grade and
feedback generation automatically. This alpha is only relevant for electronic assessments.

A list of states and checkpoints for alpha “System” is provided in table 3.8. Similar to
the previous alpha, the first two states are named “Defined” and “Selected”. This again
reflects the fact that (at least in an ideal scenario) one would first define some abstract
requirements towards the assessment system and then select and actual system fulfilling
these requirements. In reality, organizers sometimes have no choice, as they must use
the system provided by their institution. In this case, these two states are fulfilled by
default and the features of the available system may restrict organizers in the selection
of test item formats they can use. Since the ESSENCE notation does not require to

33

3. The Essence of Educational Assessment Processes

Location: The place(s) where the candidates will be located while taking part in the assessment.
States and Short Description Checkpoints
Defined: The requirements
towards a proper location for
conducting the assessment are
clear.

• The required overall size of the location is clear.
• The required technical equipment in the location is clear.
• Any requirements regarding reachability and accessibility of

the location are clear.

Selected: It is clear which
actual location is the preferred
one that fulfills all require-
ments.

• An actual physical location is known by room name (or alike)
that fulfills all requirements.

• An alternative location is possibly also known.

Reserved: It is assured that
the location is available for
all participants at the time of
assessment.

• It is clear to all relevant persons that the location will be used
for assessment at the planned time.

• It is clear which preparations are pending and how much
setup time they require.

• It is clear which cleanup effort is required after the assessment
and how much time it requires.

Prepared: The location and
all required facilities are set
up and ready for use.

• The required technical equipment or materials at the location
are ready for use.

• The location is reachable and accessible for all candidates.
• A sufficient amount of organizers or their representatives is

present at the location.

In Use: The candidates have
taken their seats at the loca-
tion.

• The location is populated with candidates.
• Technical equipment or materials are in use.
• Proper use of the location by the candidates is monitored.

Left: The candidates have left
the location and everything is
restored.

• No candidates or organizers are left at the location.
• All technical equipment or materials used during the assess-

ment are restored or removed.
• All cleanup is done.

Table 3.7.: State and checkpoint overview for alpha “Location”

define dependencies between states from different alphas explicitly, processes for both
orders can be defined and monitored using this kernel. As already discussed earlier, this
also points out that from a process point of view the introduction of a computer-aided
assessment system does not necessarily restrict organizers in the freedom of test design.

The third state is named “Available” and refers to the fact that the selected system
also needs to be accessible to continue preparation. This in turn will lead to the fourth
state, which is named “Ready for Start”. The fifth state is named “In Use” and depicts
the period of time in which candidates interact with the system and also the period
of time in which it performs tasks like automated grading on its own. The final state
is named “Ready for Closing”. The state makes no assumptions on whether the whole

34

3.1. A Kernel for Educational Assessment

system will actually be closed or whether it is just the assessment that is closed and
archived. However, it is assumed that any remaining steps of the process will not require
any more interaction with the assessment system.

3.1.3. The Activity Spaces
Defining and using activity spaces is not necessary in any case, as processes can also be
defined just on top of alphas and alpha states. However, the definition of alphas and
states as performed so far did not systematically cover all activities summarized in table
2.3 in section 2.1.3. Hence it can be considered useful to include activity spaces into
the Kernel of Educational Assessment as the ESSENCE standard does in the Kernel
for Software Engineering. Some of the activity spaces can directly be derived from the
activities found during the literature study. On the other hand, the definition of alphas
and states was not entirely based on the identified activities, but also reused concepts
from the ESSENCE Kernel for Software Engineering. Hence it must also be considered
to refer to some of the activity spaces defined there. This applies in particular to the
area of concern “People”, as its alphas also used some of the alpha states known from
the ESSENCE Kernel for Software Engineering.

The definition and discussion of the Activity Spaces is again organized according to
the three areas of concern.

Area of Concern “Content”

The activities concerned with handling the contents of an assessment can be grouped
into four activity spaces:

Scope the Assessment: Two activities have been identified in the literature study
that are concerned with defining the goals of the assessment independent of the concrete
content. Besides direct goal definitions, also the definition of a grading schema or at
least the definition of thresholds for pass and fail have to be counted here, as these are
typically defined independent from the actual assessment contents. Moreover, general
decisions like deciding on the language or duration of the assessment can be considered
as part of this activity space, although not identified explicitly in the literature study.
The activities within this activity space may be constrained by previous decisions on
using an e-assessment system or they may constrain the later choice of an appropriate
way of delivering the assessment.

Create the Assessment: Creation of assessment involved various activities concerned
with authoring of items and tests as well as with verification and double-checking. These
activities can typically only be started when the scope of the assessment is clear and
must in turn be completed before the assessment can be conducted, so this defines a
separate activity space. If an e-assessment is used, activities within this activity space
will involve interaction with the e-assessment system.

Conduct the Assessment: Several activities have been identified in the literature
study that are concerned with the core steps for conducting the assessment, such as
distribution and collection of tests, answering to test items or monitoring the assessment.

35

3. The Essence of Educational Assessment Processes

System: The electronic system used to conduct the assessment by administering the tests, accepting
submissions and associating grades and feedback to submissions. The system may also perform grade
and feedback generation automatically. This alpha is only relevant for electronic assessments.
States and Short Description Checkpoints
Defined: The requirements
towards a proper system for
conducting the assessment are
clear.

• Required test item types and ways of submission are clear.
• Required grading and feedback generation features are clear.
• Required management features are clear.
• Requirements regarding access to the system are clear.

Selected: It is clear which
actual system is the preferred
one that fulfills all require-
ments.

• A system fulfilling all requirements is known by name.
• It is clear how to proceed to make the selected system avail-

able.
• It is clear whether training on the system is necessary for any

of its users.

Available: It is assured that
the system is available for
preparing and conducting the
assessment.

• Organizers can access the system for preparation.
• Organizers know how to use the system.
• It is assured that candidates will be able to access the system

during the assessment.

Ready for Start: All system
settings are ready to start the
assessment.

• Test items are available in the system.
• Required grading and feedback generation features are set up.
• A dummy assessment has successfully been conducted on the

system.
• Candidates know how to use the system.

In Use: The system is used
by the candidates of the as-
sessment or is running auto-
mated tasks.

• The system is accessible to all candidates.
• Tests are delivered by the system.
• Submissions are recorded by the system.
• Automated tasks are performed by the system.
• Critical system behavior is monitored or recorded for further

inspection.

Ready for Closing: The
system is ready to be shut
down.

• No more submissions are made to the system.
• No more grading and feedback generation tasks are open on

the system.
• Any data required for future access is exported from the sys-

tem.
• Any suspicious system behaviour has been documented.

Table 3.8.: State and checkpoint overview for alpha “System”

36

3.1. A Kernel for Educational Assessment

In contrast to the other activity spaces, activities in this one typically only take a short
period of time, as conducting an assessment usually only takes some hours or even less,
while preparations or grading can take days or even weeks. Consequently, interruptions
for activities in the other activity spaces are not as critical as they can be in this one.
Similar to the previous activity space, activities in this one will also involve interaction
with the e-assessment system in case of electronic assessments.

Post-process the Assessment: This activity space contains all activities to be
performed after all answers from the candidates have been received. Besides the actual
task of grading answers in order to assign feedback, the literature study also identified
checking for plagiarism as another potential activity in the post-processing of assessments.
Also the analysis of the overall assessment result in order to improve the next iteration of
the assessment is part of this activity space. Even in case of electronic assessments, the
activities within this activity space may require little interaction with an e-assessment
system. It very much depends on the features of a system whether grading is an automated
or manual task within that system or whether submissions are exported and graded
externally.

Area of Concern “People”

The activities related to managing people involved in the assessment process can be
grouped into three activity spaces:

Identify Stakeholders: All three alphas in this area of concern had starting states
concerned with identifying that actual persons that are involved in the assessment.
Following the terms from the ESSENCE standard we can refer to them as the stakeholders
of the assessment. Identifying them seems to be an important effort according to the
states of the alphas and hence justifies to define an activity space for the necessary
activities. With “register students” at least one activity belonging to this space has
been identified in the literature study. When using an e-assessment system, a particular
activity in this activity space can be to identify the responsible system administrator.
This activity can be omitted if no e-assessment system is used.

Coordinate People: The literature study also revealed that communication among
the stakeholders of an assessment is a crucial point. This is also reflected by the fact that
each alpha in this area of concern has at least one state that checks that the respective
stakeholder is involved, knows their duties and also has enough information to fulfill
their duties. Consequently, we can assume a lot of communication activities filling this
activity space. During the literature study, staff allocation was found as one example
for activities filling this activity space. Similarly, activities related to communication
with system administrators may be placed in this activity space in case of electronic
assessments.

Satisfy Stakeholders: This activity space complements the post-processing of assess-
ments from the “content” area of concern in that it is concerned with the dissemination
of the results produced during post-processing. As particular activities in this activity
space the literature review identified the reporting of grades and the handling of appeals
during the review of results. Even when using an e-assessment system there may be

37

3. The Essence of Educational Assessment Processes

no need for specific activities related to that system within this activity space, if no
extensive post-processing for system clean-up or archiving the results is required.

Area of Concern “Logistics”

The activities related to the handling and preparation of the physical and technical
environment of an assessment can be grouped into four activity spaces:

Plan Logistics: Both alphas in this area of concern start with states that tackle
planning of logistics in terms of defining and selecting the required resources. Hence we
can also assume that there is a relevant amount of activities that can be grouped into
this activity space, although only one activity on scheduling the assessment has been
identified explicitly in the literature study. Using an e-assessment system will contribute
specific activities to this activity space.

Prepare the Environment: The preparation of the environment was also only
reflected by one activity in the literature study, but it can be assumed that more
activities will be necessary depending on the domain and thus the kind of assessment.
Notably, activity spaces are defined in the kernel, but may be filled by domain specific
extensions. As mentioned earlier, one could think of a third alpha representing physical
materials needed during the exam and the necessary activities to prepare those would
also fit into this activity space. Also preparing an e-assessment system may add specific
activities to this activity space in case of electronic assessments.

Operate and Monitor the Environment: The same as before is also true for this
activity space, as the environment may need no specific monitoring in the general case,
but may also need special attention in some domains. For e-assessments it can be at
least considered necessary to monitor system operation and network connectivity.

Restore the Environment: Similar to the preparation of the assessment environment
it may also be necessary to restore things that have been set up specifically for the
assessment. This applies as well to electronic systems, in which it may be necessary to
remove data no longer needed for the purpose of the assessment.

3.2. Process Phases of Educational Assessment
While the kernel defines alphas independent both of the domain and the process they are
used in, there is also a need to identify a generic model for process descriptions based on
this kernel. The activity spaces in the kernel cannot be considered sufficient here, as they
only provide chronologically ordered slots to group activities, but they are not intended
to express dependencies between activities or alpha states from different areas of concern.
However, both strict process definitions in terms of sequences of activities and more agile
process definitions in terms of milestones need to relate activities or alpha states from
different areas of concern to each other.

One way of expressing these relationships and thus describing processes based on
alphas is to chain alpha states in the order they have to be reached. This chaining
can be done without additional information or by defining activities that list the actual
things to do while proceeding from one state to another. However, this is a very strict

38

3.2. Process Phases of Educational Assessment

way of modelling a process and does not allow for more abstract definitions or the agile
enactment of processes. Hence a more generic model of process phases is used here, which
is also illustrated by example in the appendix of the original ESSENCE specification.
This model groups states from several alphas into one phase and defines the process as a
linear sequence of phases. One phase can cover more than one state of a single alpha, but
there may also be alphas that do not contribute one of their states for a particular phase.
In terms of the original ESSENCE standard for software engineering, these phases can
be expressed as patterns, which are generic constructs that relate some kernel elements
to each other. The idea of using phases as a means of structuring a process model has
also been used in some of the papers from the literature study (i. e. [310, 170, 193]).

For the cases studies presented in the next chapter, up to five different phases are used
and thus described in the following. Neither of them has to be considered mandatory
for assessment process descriptions. Similarly, a process description may also add an
additional phase if necessary.

3.2.1. Phase “Planning”
The planning phase is intended to contain all the alpha states that will be considered
while creating a conceptual plan for the assessment. While scope, shape or the number
of people involved in the assessment are not clear at the beginning of this phase, most of
these bounds and circumstances should be made clear during this phase. However, alpha
states dealing with details that are considered of minor importance in the actual process
can be deferred to later phases. On the other hand, any state bearing major decisions
about cancelling the assessment should be included into this phase, as cancelling later
will result in wasting significant amounts of work.

3.2.2. Phase “Construction”
The construction phase is concerned with all alpha states that relate in some way to the
production of resources and artifacts needed during the assessment. It also is intended to
assemble states concerned with the organizational, legal, or physical setup of prerequisites
for conducting the assessment. Any state that is considered to be completed before
the actual assessment can start should be placed in this phase at the latest. It can be
assumed that a significant amount of time will be spent on tasks arising from this phase.

For small processes it can be meaningful to combine planning and construction phase
into one if activities in there happen more interwoven and less bureaucratic. In any case,
both phases are concerned with the preparation of the assessment.

3.2.3. Phase “Conduction”
The conduction phase represents the – possibly very short – time frame in which the
actual assessment is conducted. Thus all states related to delivering tests, collecting
submissions and monitoring the assessment should be grouped in this phase. In particular,
this is most likely the only phase in which all of the candidates have direct contact with
the assessment.

39

3. The Essence of Educational Assessment Processes

For assessments that are created in an “on the fly” manner caused by direct interaction
between candidate and assessor it can be meaningful to combine construction and
conduction phase into one. This would imply that the actual contents of the assessment
are not entirely known at its beginning, but are created spontaneously. This may be
particularly suitable for assessments in extensively creative domains in which unplanned
events are likely to occur, but also in any other kind of assessment in which the organizers
wish to interact very closely with the candidates. It is likely that some states that are
considered to be part of the construction phase in other processes are moved to the
planning phase in these cases.

3.2.4. Phase “Evaluation”
The evaluation phase is concerned with all activities related to assessing submissions or
answers from the candidates and generating feedback. Hence all states that are related to
the evaluation of the candidates’ performance should be grouped in this phase. From the
didactic point of view this is one of the most important phases, as this phase produces
the actual outcome of the assessment and thus contributes much to its overall value.
Depending on the domain of the assessment, the test item types used and the mechanisms
applied for grading, this phase can consume a lot of time in the whole assessment process.

From a technical perspective, one can distinguish between synchronous and asyn-
chronous feedback generation or grading. In the latter case, feedback is generated at
some point in time after submitting an answer to the test item, while in the former case
feedback is generated as soon as an answer is submitted. In particular, asynchronous
feedback generation can defer grading until all answers from a single candidate or all
answers from all candidates have been handed in. On the other hand, synchronous
grading can be used to let the next test item depend on the correctness of the answer to
the previous one. This also has consequences on the design of the assessment process:
If only asynchronous grading is used, conduction and evaluation can form two distinct
phases. If synchronous grading is used at least in some cases, conduction and evaluation
happen in parallel and thus form a joined phase.

3.2.5. Phase “Review”
The review phase is considered to be the final phase in the assessment process. It
is intended to cover all tasks the remain after the assessment is both conducted and
evaluated. Thus it should cover both legal and organizational post-processing and also
tasks on documenting how well the assessment process actually worked. It is likely that
some people who have been involved in the assessment process so far have no duties in
this phase and thus can leave the process early. Consequently, some alphas may have
reached their final state already in an earlier phase and do thus not contribute to the
review phase.

40

4. Case Studies
This chapter illustrates how to use the kernel and process phases defined so far and thus
demonstrates that they are indeed suitable to model the process of different kinds of
educational assessments. We will look on four examples that represent assessments from
different contexts. The resulting process descriptions vary both in the number and kind
of alphas as well as phases that are used to describe the processes. After presenting and
discussing the phase model for each case, there is also a discussion of activities occurring
in the respective process and on how they fit into the activity spaces defined in the kernel.
Additionally, we will discuss which work products are likely to occur in the process. Both
the discussion on activities and the discussion on work products are not meant to be
exhaustive, but serve as illustrations on how to add information in an actual process
beyond the concepts taken from the kernel.

4.1. Case 1: A Traditional Oral Exam
The first case study considers a traditional oral exam, in which an assessor asks questions
to a single candidate who in turn answers these questions immediately.

With respect to the kernel and process phases defined in the previous chapter, this case
has two remarkable characteristics: First, it does not make use of any electronic system
and hence we do not need to consider the alpha “System” in our process description.
Second, during the assessment the assessor will iteratively pose questions, evaluate the
answer and generate new questions. Consequently, conduction and evaluation of the
assessment can be considered to form one joined phase. One could even think of joining
this phase with the construction phase, because an assessor may be able to create new
questions during the exam. However, it is very likely that an assessor will have some
amount of “standard” questions constructed earlier as well as some kind of plan on which
topics to handle in which order during the exam. As these are arguments in favor of a
separate construction phase, there is one in this case study. Another option would be to
join planning and construction phase, which is nevertheless not examined in this case
study. The resulting process description in terms of alpha states assigned to phases is
depicted in figure 4.1.

Following the general reasoning of the process phases, the first phase contains only
the first state for each of the alphas, as it is concerned with planning but not with
actual preparations. Some of the checkpoints of these states may be fulfilled right from
the beginning, such as the language used in the assessment or the organizers that are
involved. Depending on the habits in a particular institution it may also happen that
some checkpoints or even states from the next phase are also fulfilled right from the
beginning. This may in particular be true for the alpha “Location”, as oral exams often

41

4. Case Studies

Figure 4.1.: Overview on the assessment process for a traditional oral exam using four
phases. As this exam is no e-assessment, the alpha “System” is not used in
the process description.

take place in the assessor’s office, which needs no specific reservation. However, there is
no immediate need to shift the respective states to the first phase for that reason, as the
ESSENCE standard allows for agile enactment of processes and thus does not forbid to
have some states in one phase already fulfilled before other states in a previous phase are
fulfilled as well.

The construction phase also follows that general reasoning of the process phases and
also has contributions from all seven alphas in the process. When all states in this phase
are fulfilled, everything is ready to start the actual assessment. The reasoning for joining
conduction and evaluation into one phase was already discussed above. Notably, only
four out of the seven alphas contributed to that joined phase. This is not surprising,
as test items, organizers and authorities are not supposed to change their state while
the assessment is conducted. From the four alphas contributing to this phase, three also
reach their final state in this phase. This also matches the expectation that test, grades
and feedback, and location will not change their state after the assessment has been
conducted and evaluated. Hence the remaining review phase only contains the final states
of the remaining alphas. It depends again on the habits within a particular institution
whether the final state for alpha “candidates” can also be shifted to the third phase. This
is the case when all discussion about the final grade is done within the assessment session
of the individual candidates. If – from a legal point of view – leaving the assessment

42

4.2. Case 2: A Summative E-Assessment

location means to accept the final grade, then this state can be moved. However, as this
is not the general case for oral exams, it is placed in the fourth phase in this case study.

Following the idea of the ESSENCE standard, one can enrich this process description
by naming work products referring to alphas and activities filling the abstract activity
spaces. Considering the former, a relatively small amount of work products is involved
in the process of an oral exam. Most likely, a list of candidates will be used that also
contains information about the schedule. Potentially the same list or at least a very
similar one can be used to report grades to the authorities. For legal reasons, writing
a log record for each assessment may be mandatory, which would be another kind of
work product. Concerning the activity spaces, the space for creating the assessment may
contain only very few activities, as creation of physical artifacts such as exam sheets is
not necessary. In turn, the spaces on coordinating people and satisfying stakeholders will
involve activities related to communication with the exam authorities. The spaces in the
logistics area of concern may in general contain less activities, as oral exams are often
conducted in a normal office and thus need only few specific preparations.

4.2. Case 2: A Summative E-Assessment
The second case study considers a summative e-assessment such as an electronic exam.
It is assumed that candidates come to the exam hall which is equipped with computers
and appropriate systems for the purpose of publishing the test and collecting submission.
Furthermore it is assumed that there is no need to provide direct feedback to the
candidates while they are present in the exam hall. Grading of the solutions can thus
happen asynchronously. Hence with respect to kernel and process phases, this case
has the following significant characteristics: First, all alphas including the optional
ones need to be used, as we employ an electronic system and have to involve the exam
authorities. Second, we can use all five phases suggested in the previous chapter, as
we can clearly separate the conduction phase from the evaluation phase. The resulting
process description in terms of alpha states assigned to phases is depicted in figure 4.2.

The first phase does not differ from the one shown in case study 1, as the same
argumentation applies here as well. However, in the case of a summative e-assessment
it is less likely that checkpoints from alpha “Location” in later phases are already
fulfilled right from the beginning. Instead, this may be true for alpha “Test Items”,
if the assessment is based on a predefined item pool. This is no particular feature of
e-assessments, but also applies to traditional written exams in which existing item sets
are reused. Nevertheless this case study assumes a less specific case and thus handles
preparation of the item pool among other states in the second phase. Different to case
study 1, state “Generated” of alpha “Test” is also placed in the construction phase, as it
is assumed that the test is not created dynamically for each individual candidate in this
scenario. To handle such e-assessments, the state needs to be moved to the conduction
phase as case study 3 will show.

The conduction phase has only contributions from four out of the eight alphas in the
process. The same arguments as in case study 1 apply here, as test items, grades and

43

4. Case Studies

Figure 4.2.: Overview on the assessment process for a summative e-assessment using five
phases. The process assumes the application of asynchronous grading, so
evaluation happens in a separate phase after conduction.

feedback, organizers and authorities are not expected to change their state during the
conduction of the assessment. Also similar to case study 1, alpha “Location” already
reaches its final state, as the location is not supposed to be involved in asynchronous
grading or review. Consequently, the evaluation phase also has contributions from just
four alphas. Three of them also reach their final state in this phase. One of them is the
e-assessment system, as we assume that it is not needed for the review of results. For
scenarios in which this assumption is not true, the final state can be shifted to the review
phase. The same is true for the state “Informed” for alpha “Candidates”. In this case
study we assume that dissemination of evaluation results is part of the evaluation phase,
but it can also be declared to be part of the review phase. Otherwise, the review phase
is the same as in case study 1.

Notably, we can skip the alpha “System” from the process and retain a process that
represents a traditional written exam which is graded manually after conduction. This
stresses the point that integration of e-assessment is primarily a matter of introducing
additional steps or stakeholders into a process, but does not require to change existing
processes in general. Moreover, this observation proves the point that it can be meaningful
to design e-assessment systems by trying to replace traditional manual tasks by automated
actions one-to-one.

Work products that are potentially involved in this process include lists of candidates,
test item sets, tests, submissions and feedback reports. This is a considerably larger

44

4.3. Case 3: A Distributed Formative E-Assessment

amount of work products than in case study 1. Most of them will exist only electronically,
but are nevertheless considered to be work products. Test items and tests will be created
by activities that contribute to the activity space for creating the assessment, while
the creation of submissions contributes to the space for conducting the assessment.
Feedback reports are created by activities contributing to the space for post-processing
the assessment. The activity space for coordinating people will contain activities for
communication with authorities as well as with system administrators, as an e-assessment
system is involved in this scenario. For the same reason, the activity spaces in the logistics
area of concern will contain various activities related to the e-assessment system as well.
This is also a considerable difference to case study 1, in which only few activities were
expected in this are of concern.

4.3. Case 3: A Distributed Formative E-Assessment
The third case study considers a less formal setting than the others before by looking at
an e-assessment where participants can work from at home using a web-based system.
This scenario applies to many kinds of homework exercises, but not to formal exams
that can be taken from at home due to special situations like a pandemic. The latter is
already covered by the previous case studies, as the alpha “location” makes no assumption
that participants and assessors or proctors actually sit in the same physical location.
Hence, the main difference in this case study is not the location but the assumption
that candidates receive immediate feedback from the system after they have made a
submission and can improve their previous answers or proceed with subsequent tasks
based in their answers so far. We also assume that the content of the exercises is to some
extent generated dynamically, e. g. by randomization of variables or by reacting to input
in previous steps of an exercise.

Again we can identify specific characteristics of this scenario with respect to kernel and
phases: As this scenario does not represent a formal exam, we do not need to include the
alpha “Authorities” in our process description. As we use direct feedback and possibly
questions that are generated instantly based in previous submissions, it is suitable to
join conduction and evaluation phase again as we already did for the oral exam (case 1
above). Notably, we do not need to pay special attention to alpha “Location”, although
the scenario does not define a single physical location in which the candidates will meet.
Instead, we make use of the fact that “Location” is defined abstract enough to represent
a physically distributed location which virtually consists of the private workplaces from
where the candidates take part in the assessment. The resulting process description in
terms of alpha states assigned to phases is depicted in figure 4.3.

Again the planning phase is the same as it was in the previous cases. The construction
phase also looks very similar, but shows two differences: State “Generated” for alpha
“Test” has been moved to the next phase, while it was member of the construction phase
in case study 2. As already mentioned there and discussed above, this reflects the fact
that contents of the test are generated individually for each participant. Notably, that
does not mean that the test items change their state during conduction of the assessment.

45

4. Case Studies

Figure 4.3.: Overview on the assessment process for a distributed formative a-assessment
using four phases. The formative setting allows to skip the alpha “Authori-
ties” from the process description. Alpha “Location” is included, although
candidates are not required to show up at the same physical location.

The second difference concerns state “Prepared” of alpha “Location”. The fact that this
scenario considers a physically distributed location is the reason for placing this state
in the conduction phase, whereas it was placed in the construction phase for the oral
exam (case 1 above). In a distributed formative assessment, there is no possibility to
ensure that all candidates have completed to set up their personal workspace before the
assessment starts. Hence individual workspace preparations may happen while other
candidates are already submitting solutions or even have finished the test. This is in
particular true for assessments in which there is some time frame in which the individual
assessment can be started.

Besides this change in the “Location” alpha, the arrangement of the non-optional
alphas that are present in both in this process description and the one for the traditional
oral exam (case 1 above) is exactly the same. Hence from a process point of view there
seems to be little difference whether there is a human assessor who iteratively asks
questions and evaluates answers or whether this is done by an e-assessment system.

Work products considered in this scenario are almost the same as in the previous
case study. Consequently, also the same activities can be expected to fill the activity
spaces, but without the need for communication with authorities. Another difference can
be found when asking who has to perform some of the activities. In a formal setting,
organizers will most probably be responsible for preparing the assessment location and

46

4.4. Case 4: A Lightweight Ad-hoc Assessment

hence perform the related activities in the logistics area of concern. However, in this less
formal setting, candidates can work from at home and hence they are also responsible
for preparing their work place. Consequently, the activities may stay the same, but they
are performed by candidates instead of organizers.

4.4. Case 4: A Lightweight Ad-hoc Assessment
So far, all case studies only differed slightly in the number of alphas and phases they
include and in the arrangement of some of the states into phases. Hence even the less
formal setting in case study 3 created a considerably large process description. However,
the kernel and the phase model can also be used to represent much more lightweight
processes by skipping not only alphas, but also some states of alphas. Thus this case study
considers a scenario in which an assessor interacts spontaneously with some candidates
just where they are. It is very unlikely that a process description for this scenario will
be used to guide the assessor in this process, but it can be used descriptively to explain
what is going on.

The process differs in several points from the ones discussed so far: First, we can
exclude alphas “Authorities”, “System” and also “Location”, as the assessment is informal,
includes no e-assessment system and can happen anywhere. Second, we can exclude
several states of some of the involved alphas: As the assessor interacts with the candidates
who are just present, we can exclude the first two stages of alpha “Candidates”. Thus
“Present” is the first state for candidates to be considered in this process. With similar
arguments, we can also exclude state “Identified” for alpha “Organizers”. Third, the
scenario poses less strict requirements with respect to verification and review of assessment
contents. Hence we can exclude the last two states for alpha “Test Items” as well as the
final state for “Organizers”. The resulting process description in terms of alpha states
assigned to phases is depicted in figure 4.4.

The remaining states of the five alphas can then be grouped into just two phases. The
construction phase consequently contains the first two states for “Test Items”, “Test”,
“Grades & Feedback” and “Organizers”. It thus describes the time frame in which the
organizer thinks about doing the assessment and plans what to ask. As we assume
this scenario to be a spontaneous assessment, no preparations have happened before.
Candidates are not involved in this phase. The other phase is the conduction phase
in which only “Test”, “Grades & Feedback” and “Candidates” are involved in terms of
changing states. This phase is rather similar to the ones in the other case studies besides
the fact that state “Satisfied” for alpha “Candidates” is also included here. The idea is
that in an ad-hoc assessment any appeals are handled directly (possibly by asking just
another question if a candidate is dissatisfied with the previous one) and thus no formal
review phase is needed. As already discussed above, the organizer is also not interested
in detailed verification and review and thus the respective states from the review phases
in the other case studies are simply skipped here.

One could think of making the process description even smaller by skipping state
“Dismissed” for alpha “Candidates”. This would stress the point that the assessment can

47

4. Case Studies

Figure 4.4.: Overview on the assessment process for a lightweight ad-hoc assessment
using just two phases. The very informal setting allows to skip the alphas
“Authorities” and “Location” from the process description. Also “System”
can be skipped as this assessment is not considered to be an e-assessment.

happen anywhere and candidates are not required to come to a certain location (and
consequently leave it later). On the other hand, one can understand the state “Dismissed”
also in a less literal way and consider a candidate dismissed once the organizer stopped
asking questions to the candidate. Notably, the ESSENCE standard allows to make
customizations to states in terms of adding or removing checklist items. Consequently,
one could define a even more fine-grained adoption of the kernel for this particular
scenario by changing the checklists but keeping the overall idea of each of the alpha
states included in the process description.

Similar to skipping alphas and states, this scenario can also skip several work products
and activities that were used in the other case studies. If the assessment is conducted
orally and results are not reported in any way, there may be no formal work products in
this process at all. There may also be no need to perform any activities in the activity
space for identifying stakeholders or coordinating people. Finally, as no alpha from the
logistics area of concern is involved in this process, also all activity spaces for that are
can be ignored.

48

5. Results
The previous chapters were guided by the question on what changes to traditional
assessment processes are necessary if e-assessment options are integrated. On the way
towards an answer for that question, we defined a notation for assessment process models
and used it in some exemplary case studies. These efforts now allow us to answer the
original question, characterize integrated e-assessment from a process point of view and
also discuss some findings beyond the scope of this publication.

5.1. Contributions to Integrated E-Assessment
First of all, the universal kernel made one explicit reference to e-assessment by providing an
alpha dedicated specifically to e-assessment systems. Moreover, the concept of ESSENCE
allows to add more specific aspects like tracking states of a system administrator as one
of the organizers by adding a sub-alpha. These observations can be interpret in two ways:
First, we can conclude that electronic assessments add some amount of complexity to
the general concept of assessments by introducing new entities to interact with and new
duties to be picked up. Second, we can conclude that integrating these new elements into
the existing collection of concepts, entities and duties related to assessments is possible
without problems. In particular, the new entities can be added as alphas or sub-alphas
as needed and thus integrate smoothly into existing structures by extending them but
not breaking them.

This smooth integration does not only apply to the kernel as such, but also to the
process descriptions that are based on this kernel. In particular, the comparison of case
study 1 and 3 showed that there is not necessarily much difference between a traditional
oral exam and an e-assessment besides the fact that a alpha “System” was included in one
case but omitted in the other. Hence from a process point of view there is indeed no need
for major changes to existing processes when switching from non-electronic assessments
to e-assessments. Instead, the e-assessment system can be added and pick up some of the
duties that were performed manually earlier. At the same time, adding the additional
alpha to the process also adds additional activities related to e-assessment systems, so
that processes involving e-assessment tend to be larger in terms of the number of activities
than processes for non-electronic assessments. However, this does not necessarily mean
that the processes get more complex or more expensive in terms of time consumed by
the activities, as automated activities may also help to save time or reduce the need for
communication.

Most of the activities added by introducing e-assessments related to the logistics area
of concern, which is not surprising as the respective alpha is also located there. The
people area of concern was less affected, which can be interpret the following way: Using

49

5. Results

electronic assessment systems does not primarily change what to do (besides adding
some activities as mentioned above), but the way how it is done. Putting it this way,
e-assessment systems are hence tools that are integrated into the assessment process and
allow to do certain things in a certain way, just as any other tool does as well. This
implies a strong demand towards the development of e-assessment systems that these
should produce as few limitations to the assessment process as possible, as one would
expect a tool to be helpful but not limiting.

Besides adding alphas, sub-alphas or activities to kernel and processes, some checkpoints
also change their characteristics if e-assessment systems are used. Hence we can conclude
that there are not only explicit relationships, but also some implicit ones. The amount of
those depends on the features of the selected e-assessment system used in an actual process,
as not all e-assessment systems can perform the same activities. This is particularly true
for the aspect of grading the assessment. Hence the question of integrating e-assessment
does not only influence processes by using an e-assessment system at all, but may also
influence processes when changing from one system to another.

The phase model used for process descriptions deliberately made no strict assumptions
about sequencing activities. Also activity spaces do only provide a very course-grained
view on the order in which activities will be performed. However, when it comes to
enacting processes in an actual institution, the order of activities can have some important
effects. The most important question in this context is the question on whether to choose
test item types first or to choose the system first. From a didactic point of view the
preference would be to first scope the assessment and decide on appropriate test item types
and then select an appropriate e-assessment system to be used. However, in practice there
is often a very limited set of e-assessment systems available at a particular institution
and organizers have to decide whether these offer a sufficient selection of test item types
for the purpose of the assessment. Consequently, integration of e-assessment happens by
adapting the form of assessment to the available systems instead of adapting the choice
of systems to the desired form of assessments. As changing the form of assessment is
neither desirable nor possible in some cases, we can conclude that extending the features
of e-assessment systems in terms of available test item types or feedback mechanisms is
an important driver for the successful adoption and integration of e-assessment.

A similar problem is the question on when to choose the location of the assessment. In
the same way in which the choice of the system may limit the choice of test item types,
the choice of location may limit the choice of available systems or vice versa. Hence
another driver for the successful adoption and integration of e-assessment is to develop
e-assessment systems that can be used as independent from locations as possible. That
challenge became particularly urgent in the time of a global pandemic when it was not
possible to conduct assessments in specific locations that were prepared for that purpose.
Nevertheless, the choice of location may also be constrained by other factors such as the
availability of additional lab equipment, which in turn may result in some implications
on the available computer infrastructure.

In summary, we can state that the use of e-assessment systems can be integrated
seamlessly into existing assessment processes in general and that the features offered by a

50

5.2. Contributions beyond the Scope of this Publication

particular e-assessment system are the key factors that may ease or limit the integration
in a particular process or institution.

5.2. Contributions beyond the Scope of this Publication
As the results so far show that e-assessment requires neither entirely different processes
nor major changes to existing processes, we can conclude that the kernel for educational
assessment is indeed universal. Hence it contributes to a much wider discussion as it helps
to unify the terminology and to structure and compare scientific contributions to different
aspects of assessments. Using the kernel and the phase model, any scientific contribution
can clearly state which aspect of the educational assessment process it addresses in terms
of alphas, alpha states or phases. One could also use the kernel as basis for a systematic
literature review to find out whether there are alpha states that are only rarely covered
by research and that are hence potentially less well understood in the scientific discussion.

Moreover, practices on how to plan, prepare, conduct and evaluate assessments can
now be described in a structured but still flexible way in order to be evaluated and
compared. This can ease research as well and also help assessment organizers in finding
ways to share knowledge and improve their assessments. This particular contribution is
strengthened by the fact that tool support for process definitions is available.

Despite these achievements, this publication did not dig deeper into the business of
defining and analyzing assessment processes. The case studies discussed in chapter 4 are
thus only starting points that can be extended and refined in order to create full process
descriptions that represent the specific habits of a particular institution. There are also
a lot more than the four different kinds of assessments that can be described and among
these there are possibly many interesting corner cases that require very sophisticated
modeling. This opens the door for the definition of domain-specific alphas that may
extend the kernel and help to cover more details. However, it can be assumed that the
general way of modeling assessment processes based on a kernel is stable enough to realize
all these extensions without the need for rethinking assessment process descriptions in a
fundamental way.

51

Part II.

Engineering E-Assessment Systems

53

6. Design of Technology-Enhanced Learning
Systems

Software designers have many choices where and how to implement e-assessment features.
There are systems existing specifically just for the purpose of e-assessment, there are
e-learning systems offering some e-assessment features explicitly, there are e-assessment
components that can be embedded into other systems, there are systems that provide
some e-assessment features implicitly, and there may be even more mixtures of these and
other ways of implementing e-assessment features.

This wide range exists due to the fact that technology-enhanced learning systems can
have different scopes and duties. For instance, a general purpose learning management
system offers features for the handling of courses, the dissemination of learning materials,
the discussion among students and possibly also for training and exercise. In this case,
e-assessment features are optional, as a learning management system can also be used
in a meaningful way without having these features. On the other hand, an intelligent
tutoring system must have some implicit e-assessment features as it would otherwise not
be able to gather information about a student’s capabilities and thus would also not be
able to give meaningful tutoring advice. Finally, in an exam students or teachers may
wish to use a system which focuses solely on the purpose of the assessment and does not
disturb them with additional features.

On a general level, this wide range also exists for other classes of systems. For example,
computer games are typically known for their emphasis on high-quality graphics and user
experience, but often also include features from social media or e-commerce platforms.
Consequently, a strict distinction whether an online platform is a social media platform
also offering games or a games platform also offering social media services is not always
possible. Hence, having a closer look on separate components offering specific features
and also looking on possible ways to integrate these with each other seems to be a suitable
way to look at systems not only in the domain of education.

This part of the publication first examines the specific features of technology-enhanced
learning systems in more detail in the following sections. These sections also include
several topics related to software architecture for e-learning and e-assessment systems
as found in the literature and technical standards. The purpose of these sections is to
elicit a list of typical building blocks of e-assessment systems. Based on that, chapter
7 provides several static and dynamic views on e-assessment systems, that can be used
as a conceptual framework in terms of architectural patterns while discussing seamless
technical integration of e-assessment. The use of this framework is demonstrated in
several case studies in chapter 8. Conclusions with respect to the essential qualities

55

6. Design of Technology-Enhanced Learning Systems

e-assessment systems must ensure by design and aspects that need further research both
in integrated e-assessment and beyond are summarized in chapter 9.

Besides the different scope and duties of technology-enhanced learning systems also
the domains they are used in may influence system’s design. The more domain-specific a
particular e-assessment feature is, the less useful will it be to include it into a domain-
independent system. From a software engineering point of view this can be solved by
embedding domain-specific components into more general architectures (e. g. by using
service-oriented architectures as suggested in [5]) or by designing domain-specific system
variants. Both ideas will be touched throughout this chapter from a software engineering
point of view, while the discussion of actual domain-specific requirements is deferred to
part III of this publication.

6.1. System Components
Following a general trend in system design and system architectures in recent decades,
technology-enhanced learning systems transformed in three generations from monolithic
blocks via modular systems to service oriented frameworks [61]. This is a comprehensible
development due to the many similarities between technology-enhanced learning systems
and other software products. Consequently, there is also a trend in very recent years to
move forward to cloud based solutions in e-learning and e-assessment, which is considered
a fourth generation by some authors [115]. These trends were not only driven by purely
technical innovations, but also by actual requirements in the context of these systems.
Service oriented architectures were in particular introduced due to the need for sharing
materials or assessments across courses and teachers or even institutions [63, 18]. A
similar need for sharing expert systems and knowledge modules also led to modularization
in the area of Intelligent Tutoring Systems (ITS) [80], which usually also include some
kind of assessment features. Learning management systems (LMS) also included a rising
amount of e-assessment features. Especially those systems that are developed (as open
source projects) by a distributed community (such as Moodle or Ilias) benefit from
modularization. With rising numbers of students and in particular rising numbers of
electronic assessments, scalability became an crucial issue for e-assessment systems in
particular and thus put arguments in favour of cloud solutions to the front [231].

While the notion of different generations of systems according to their architecture
refers to the internal structure of these systems in the first place, modularization also
is a necessary prerequisite for constructing integrated systems. Integrated e-assessment
as the main theme of this publication is not possible from the software engineering
perspective without understanding technology-enhanced learning systems as a composition
of components and services. Although situations might exist in which a system offering
only e-assessment features is appropriate to use, ITS or LMS can be expected to integrate e-
assessment capabilities either as own components or as external services. As a consequence,
there will be no strict definition on how to tell an LMS with e-assessment features from an
e-assessment system with LMS features and alike. The following subsections hence report
on different kinds of components found in the literature, that typically appear in the

56

6.1. System Components

context of technology-enhanced learning systems and that may be integrated with other
components in a system offering e-assessment features. The goal of this section is hence to
compile an overview including a rough description of component interfaces as a baseline
for subsequent considerations on architectural patterns in the next chapter. The literature
study particularly included (amongst other sources) a systematic review of papers from
the International Conference on Technology Enhanced Assessment (TEA) (formerly
known as International Conference on Computer Assisted Assessment (CAA)), the IEEE
Global Engineering Education Conference (EDUCON), the International Conference
on Intelligent Tutoring Systems (ITS), the IEEE Transactions on Learning Technology
(TLT) and the Special Issue on eLearning Software Architectures issued by Science of
Computer Programming.

6.1.1. Introductory Remarks on Component Design
There are at least two fundamentally different ways on how to split a system into
components, which may depend on general design decisions as well as technical constraints
such as the programming language used. A simple example is the architecture of the
Learning Management System Moodle: The system is implemented in PHP and
structured in a core, modules and plug-ins. Within this architecture, each module or
plug-in realizes the full stack from user interface to database queries as far as necessary
[46]. Hence the system is divided primarily into vertical slices, where each slice is a larger
component that may be subdivided into small components by horizontal slices to make
some bits reusable. This is somewhat similar to the ECMA “Toaster” model [78].

Different to that, a classical three-tier architecture as used in many information systems
divides a system primarily into horizontal slices (often called layers). Each slice has an
abstract duty such as user interface, business logic or data storage. Typically, each slice
is subdivided into several components realizing or contributing to different features of
the system [43]. The organization of presentation in the following subsections is biased
towards the latter style for practical reasons, but does not exclude components from
systems following the former style explicitly. A more detailed discussion of these two
ways of component design is deferred to section 7.1.1.

A specific security problem in e-assessment that is not relevant in all domains is
the execution of student source code as it happens in the automated assessment of
programming exercises. Malicious code can be submitted by student intentionally to
attack the grading system, but also unintentionally by flaws or naive experiments. A
typical general solution to this problem is to design a separate system component for
grading untrusted code and to apply sandbox mechanisms and tools to that component
[177, 182]. A particular technical solution in this context is to use Docker as a universal
technological framework in this approach [318]. These specific run-time environments
that may be beneficial when including certain components in a system are not in the
focus of the following subsections and are thus only discussed where appropriate.

57

6. Design of Technology-Enhanced Learning Systems

6.1.2. Overview
During the literature review, a total amount of 38 publications from conferences or
journals has been identified as relevant. This does not imply that only 38 technology-
enhanced learning systems exist that are relevant in the context of the research. Instead,
it means that only these publications included sufficient information on the system
architecture to be useful in a literature review on system components. 23 publications
also included some sort of diagram of the architecture, which was considered helpful
but not mandatory for an analysis of the presented architecture. There is also a high
probability that there are more publications available from sources that have not been
scanned for this literature review. While each of them will add an additional data point
to the findings, not having included them does not diminish the value of the results from
the literature review. However, all information on quantity of publications given in the
following subsections should be understood as rough estimates and not as an empirical
classification.

Components found during the literature review have been grouped in four categories,
where each category contains three to five components, resulting in a total set of 15
components. As there is no common terminology used throughout the publications, there
is also a list of synonyms for most of the components. Each category of components is
discussed in one of the following sections. Each section contains a short introduction to the
category, a description of the contained components and a table listing the components,
their definitions and the references in literature. A summary table is presented in the
summary section after discussing all categories.

6.1.3. User Interface Components
As technology-enhanced learning systems need to receive input from users, user interfaces
of various kinds occurred in the literature review and naturally formed a category, which
has also been identified earlier by other authors (e. g. [73]). In the literature review,
three main user interface components could be identified, where one of them faces the
students and two face the educators or administrators. An overview on these components
is given in table 6.1.

A student frontend (also called student LMS, student VLE, student CMS, student
agent, or learning interface) offers features to display assessments to the students and
to retrieve their answers. The student frontend is thus typically highly interactive and
the amount of different item types supported by an e-assessment system is typically
determined by the amount of different types of interactions the student frontend is able
to offer. This in turn explains the large amount of papers on student interfaces, as
publishing new features in this area appears highly attractive for the community. Systems
often provide one single student frontend component, which is extensible by plug-ins (see
section 7.3.1). However, there may also be cases in which a system offers more than one
student frontend component, such as one browser-based frontend for general purpose and
one app-based frontend specifically designed for mobile devices.

58

6.1. System Components

Component Name and Synonyms Features / Functionality References in
Literature

Student frontend (also: student
LMS, student VLE, student CMS,
student agent, or learning inter-
face)

get and display assess-
ments, retrieve and store
answers

[11] [18] [39] [48]
[58] [80] [106]
[108] [115] [116]
[121] [140] [156]
[183] [184] [198]
[228] [229] [253]
[306]

Teacher frontend (also: teacher
LMS, teacher VLE, teacher CMS,
or admin agent)

administration, authentica-
tion, assessment scheduling

[11] [115] [168]

Authoring tool (also: item bank
user interface)

create contents [5] [58] [63] [116]
[168] [181] [184]
[198] [228] [253]
[187]

Table 6.1.: Different types of user interface components for e-learning and e-assessment
systems found in literature.

Notably, the student frontend is not limited to inputs via keyboard and mouse, but
may also be able to process speech input. It may also include sub-components that create
reactions on that speech input on the client side independent of the further processing of
input within the underlying technology-enhanced learning system [144]. More details on
the different ways of distributing functions between client and server are discussed in
section 7.4 in the next chapter.

A teacher frontend (also called teacher LMS, teacher VLE, teacher CMS, or admin
agent) offers features for administration, authentication, and assessment scheduling. It
thus aggregates the features related to the organizational aspects of assessments. As
these are in the focus of research more rarely, publication counts for these interfaces are
lower than for student interfaces, which does not imply that these interfaces are offered
more rarely by e-assessment systems.

More often, an authoring tool is discussed explicitly in literature. It offers features
required to create contents, which in particular refers to assessment items, item pools,
and grading schemas. It thus aggregates the features related to the educational aspects
of assessment and is related more closely to the student interface and its features. Thus
it is more in the interest of research and thus mentioned more often in literature, but also
remarkably often by commercial tool. Notably, the naming difference between between
the teacher frontend and the authoring tool is intentionally. While the former is often
designed as a closely coupled component within an technology-enhanced learning system,
the latter is often designed and perceived as a standalone tool. Nevertheless it can also be

59

6. Design of Technology-Enhanced Learning Systems

Component Name and Synonyms Features / Functionality References in
Literature

Assessment generator (also: in-
structional manager, curriculum
agent, task selector, tutoring com-
ponent, or steering component)

create assessments from
item pool, individualize
training

[18] [48] [73] [80]
[106] [108] [115]
[121] [155] [169]
[181] [183] [201]
[229] [306] [315]

Item generator (also: problem gen-
erator, item constructor, exercise
generator)

generate items/problems [18] [39] [97]
[106] [181] [184]
[229] [187] [315]

Pedagogical module (also: hint
generator, tutoring engine)

provides advice like teach-
ers or hints

[73] [72] [80]
[106] [108] [121]
[183] [184] [198]
[229] [306]

Evaluator component (also: back-
end, checker, diagnose module, as-
sessor, grader, marks calculator)

analyse submissions and
mistakes, create feedback

[5] [11] [18] [39]
[48] [58] [79] [97]
[106] [108] [116]
[121] [127] [140]
[155] [169] [183]
[184] [198] [228]
[229] [253] [306]
[187] [315]

Domain-specific Expert System
(also: problem solver, domain com-
ponent, knowledge agent)

perform domain-specific
operations or analyses

[5] [39] [58] [73]
[106] [181] [187]

Table 6.2.: Different types of educational components for e-learning and e-assessment
systems found in literature.

understood as a loosely coupled component within a (distributed) technology-enhanced
learning system.

6.1.4. Educational Components
The core of e-assessment systems are their educational qualities and thus the algorithmic
power they offer for generating contents, providing advice, and evaluating answers.
Components that are concerned with these features are grouped in this category. The
literature study identified five components that relate to this area. An overview is
provided in table 6.2. They are discussed here in the order of appearance during an
assessment.

60

6.1. System Components

An assessment generator is concerned with preparing an assessment for delivery to
the student. This often includes selecting appropriate items from an item pool in case
of adaptive system behaviour in order to individualize training or assessment, but can
also appear in non-adaptive context in which nevertheless a particular exam needs to be
retrieved from a database to be delivered to a student. As the former case attracts a lot
of research, it is highly present in the literature.

An additional item generator is concerned with filling item templates with actual
content, for example by creating random numbers. Consequently, it is not used in
context in which fixed items are used and in which any adaptations are performed by the
assessment generator mentioned above. This explains the lower number of occurrences in
the literature. Different patterns on how the item generation process is organized are
discussed in the next chapter in section 7.4.2.

A pedagogical module is concerned with providing advice as a human teacher or tutor
is expected to do based on a didactical analysis of an actual situation. A typical action
triggered by a pedagogical module is to provide hints to students while they work on an
assessment item. Consequently, these components primarily occur in assessments that
focus on learning, training, or tutoring instead of formal evaluation of student performance.
Notably, a literature review from 2009 [210] explicitly makes a distinction between plain
feedback on correctness (which would refer to a evaluator component discussed in the next
paragraph) and more intelligent analysis as required by a pedagogical module. Although
one would expect the latter to be a crucial part of intelligent tutoring systems, that
literature review reports a low occurrence rate of components for intelligent analysis of
student solutions in intelligent tutoring systems (3 out of 34).

An evaluator component is concerned with analyzing submissions from students and
identifying mistakes that may occur in these submissions. As part of that, it is also
concerned with the generation of feedback that is presented to the student. It is hence
somewhat similar to the pedagogical module mentioned above (and may be used by these
modules), but it may be much simpler in that it basically just applies a grading schema
to a solution but is not able to provide any hint on how to improve a wrong solution. As
this seems to be sufficient in several situations, an evaluator component is mentioned
much more often in the literature than a pedagogical module.

A domain-specific expert system is an external component that is not specific for
the purpose of e-learning or e-assessment, but is able to solve general problems in a
particular domain. Computer-algebra-systems (CAS) are typical examples of this type of
components. Domain-specific expert systems may be connected to evaluator components
to enable complex analyses or to item generators to allow for sophisticated generation
mechanisms. Notably, some system architectures include components with “expert” in
their names, but not in the meaning of domain-specific expert systems. Instead, they
refer to expert capabilities in terms of pedagogical interventions that are covered by
pedagogical module as defined above or grading capabilities that are covered by evaluator
components. Similarly, [72] include a “problem solver” in their architecture, but use it for
“inferencing, case-based reasoning, student model evaluation, and other tasks normally
associated with learning and teaching activities”, which is considered to be the duty of a
pedagogical module in this publication.

61

6. Design of Technology-Enhanced Learning Systems

Component Name and Syn-
onyms

Contents and structure References in
Literature

Item bank (also: Question
Bank, Repository of Ques-
tions, Exercise Database)

assessment items including rules
on how to grade responses and
generate feedback or hints

[63] [108] [121]
[140] [155] [169]
[181] [229] [306]

Domain knowledge model
(also: Knowledge base)

information on the domain of
the assessment such as facts and
concepts, organized by relations
or rules

[58] [73] [72] [80]
[106] [183] [198]
[229]

Student model (also: Learner
model)

information on a particular stu-
dent such as competency levels
or overall scores, organized as
records referring to an underly-
ing competency structure

[48] [58] [73] [72]
[80] [106] [121]
[140] [155] [183]
[198] [201] [229]
[306]

Table 6.3.: Different types of knowledge representation and storing components for e-
learning and e-assessment systems found in literature.

6.1.5. Knowledge Representation and Storing Components
Virtually any e-assessment system contains a component for general data storage for
users, assessment items, and solutions. These very basic features are common to almost
every information processing systems and are thus largely out of scope for this literature
study. However, there are also components for storing more specific data, which are
often mentioned in the context of intelligent tutoring systems or adaptive assessment
systems. Thus an extra category for data-storage components is helpful. An overview of
the components contained in this category is provided in table 6.3.

An item bank stores assessment items including rules on how to grade responses and
generate feedback or hints. Authoring tools are typically the only components that have
write access to an item bank, while problem generators and assessment generators may
have read access. The internal structure of an item bank may vary a lot, ranging from a
simple list of items to sophisticated catalogues that are searchable via elaborated meta
data.

A domain knowledge model is responsible for storing information on the domain of
the assessment that is not specific to a certain assessment item, but reflects facts or
competencies of the particular domain. Domain knowledge models are mentioned most
often in conjunction with expert modules that are able to evaluate a submission by using
domain knowledge, but without knowing the correct answer to the particular assessment
item explicitly. The same goes for connections to pedagogical modules that use domain
knowledge to generate hints.

62

6.1. System Components

A student model is responsible for storing information on a particular student that
again is not specific to a particular assessment item. Instead, a student model reflects
competencies or similar properties that relate to the person and his or her capabilities or
performance. Student models are mentioned most often in conjunction with adaptive
system behaviour, where adaptivity is based on the information stored in the student
model.

Additional domain-specific data storage is mentioned only rarely in the literature
[156, 127]. It is relevant only in domains in which submissions to assessment items are
large or complex objects, such as program code in the domain of programming assessment.
Consequently, specific components for this purpose are explored only in conjunction with
these domains and almost never as part of general assessment systems.

Specifically for the domain of intelligent tutoring systems it is common to use three
models: domain knowledge model, student model and tutoring model (see e. g. [64]). The
latter may contain information about different pedagogical approaches or similar. As this
is not discussed outside the community of intelligent tutoring system, this specific kind
of data storage is not included in the survey explicitly. However, it can be considered as
part of a pedagogical module as mentioned in section 6.1.4.

A special case of a data store that is not focused on a particular kind of data and not
limited to a single technology-enhanced learning system is introduced in [119]. It combines
a composite data structure with tool specific adapters to synchronize data stores between
different systems in real-time. Hence it can be considered an additional component
explicitly designed for the purpose of integrating different technology-enhanced learning
systems. Although not explicitly mentioned in the original publication, this can also
include e-assessment systems.

6.1.6. Management Components
The core features and requirements of e-assessment systems motivate the categories and
components discussed so far. However, some components are introduced due to additional
requirements or for the sake of better software architectures. They are collected in this
category. An overview on these kinds of components is given in table 6.4. In general,
these components are far less present in the literature.

A reservation service realises an additional feature of e-assessment systems reported
sometimes in the literature and by commercial tools. It is responsible for registering
students for assessments and thus covers an additional part of the organizational process
around assessments that is not necessarily covered by the teacher frontend discussed in
section 6.1.3 above.

A queue is explicitly mentioned in discussions of system architectures only. It can occur
in several directions: (1) It may forward data from some frontend or steering components
to evaluator components that may run in parallel on separate systems for performance or
security reasons. (2) It may forward data from evaluator components to frontends. While
this component does not add any particular feature or educational value to a system, it
may be crucial for several architectural patterns on how to connect other components.
Details on that will be discussed in sections 7.1.2 and 7.2.2 in the next chapter.

63

6. Design of Technology-Enhanced Learning Systems

Component Name and Synonyms Features / Functionality References in
Literature

Reservation service (also: Schedul-
ing)

Register students for as-
sessments

[5] [156] [168]
[181]

Queue (also: Spooler, Middleware,
Service Broker)

connects frontend compo-
nents to evaluator com-
ponents or the other way
round for continuous data
transfer

[5] [11] [79] [97]
[127] [228]

Data transfer component (also:
Notify and announce, Reporting
agent, Assessment commit agent)

bulk transfer of data, such
as publishing results or
archiving assessments

[18] [115]

Infrastructure agent starting and shutting down
instances

[115]

Table 6.4.: Different types of management components for e-learning and e-assessment
systems found in literature.

A data transfer component is also only mentioned in discussions of system architectures.
When used, there may be several components of that kind for a specific purpose rather
than one abstract general purpose component. Different to a queue, a data transfer
component is not concerned with continuous forwarding of data, but performs bulk transfer
of data between components. It may also be introduced to a system for performance or
security reasons and is of particular interest in conjunction with distributed data storage
(as discussed in section 7.3.2 in the next chapter).

An infrastructure agent is reported for cloud-based solutions only. It is responsible
for starting and shutting down instances of other components to adjust the size of the
running system to the current needs. It is only necessary in systems which are aware of
being a cloud system. Different to that, components can also be deployed as services in a
cloud based or container based environment in which the underlying cloud or container
infrastructure is responsible for starting and shutting down additional instances.

6.1.7. Summary
The findings from the literature review and component classification are summarized in
table 6.5. Besides the plain numbers of occurrences, the literature review also showed that
there is not always a strict distinction between components. This applies in particular
for the category of educational components, where the same functionality can e. g. be
understood as part of a pedagogical module or an evaluator component. At the same
time it can be stated that the review revealed no additional and fundamentally different
components than the ones discussed so far. Thus, it can be concluded that the list is

64

6.1. System Components

User Interface Educational Knowledge Repr.
/ Storing

Management

Ref. St
ud

en
t

Fr
on

te
nd

Te
ac

he
r

Fr
on

te
nd

A
ut

ho
rin

g
To

ol

A
ss

es
sm

en
t

G
en

er
at

or

It
em

G
en

er
at

or

Pe
da

go
gi

ca
lM

od
ul

e

Ev
al

ua
to

r
C

om
po

ne
nt

D
om

ai
n-

sp
ec

ifi
c

Ex
pe

rt
Sy

st
em

It
em

B
an

k

D
om

ai
n

K
no

w
le

dg
e

St
ud

en
t

M
od

el

R
es

er
va

tio
n

Se
rv

ic
e

Q
ue

ue

D
at

a
Tr

an
sf

er
C

om
po

ne
nt

In
fr

as
tr

uc
tu

re
A

ge
nt

[3]

[5]

[11]

[18]

[39]

[48]

[58]

[63]

[72]

[73]

[79]

[80]

[97]

[106]

[108]

[115]

[116]

[121]

[127]

[140]

[156]

[155]

[168]

[169]

[181]

[182]

[183]

[184]

[187]

[198]

[201]

[205]

[212]

[228]

[229]

[253]

[306]

[315]

Table 6.5.: Summary table for the literature review on system components

65

6. Design of Technology-Enhanced Learning Systems

exhaustive in the sense that it contains all kinds of components that commonly appear
in educational software systems.

6.2. Technical Standards for Technology-Enhanced Learning
Systems

Besides system developers and researchers designing e-learning and e-assessment systems
and creating components as needed, there are also people working on generalization and
unification of such results by standards. Several benefits can potentially be achieved by
establishing standards: System designers need not to start from scratch but can make use
of a stable base. Interoperability gets more easy by using common interfaces. Comparison
of tools also gets more easy by checking conformance to standards. On the downside,
standards limit the space for experiments in research prototypes and may thus slow down
innovation. There is also a risk of covering not the right range of aspects for a larger
audience, potentially resulting in a set of competing standards in the same area. Hence
standards were not used as the entry point for the study on system components, but can
nevertheless be neglected.

In the area of e-learning and e-assessment systems the most relevant set of standards
of issued by the IMS Global Learning Consortium. The following sections thus discuss
the IMS Abstract Framework as an umbrella to their various standardization activities
as well as the IMS Learning Tool Integration standard and the IMS Question and Test
Interoperability standard as these are particularly relevant with respect to e-assessment
and system integration.

6.2.1. IMS-AF
The Abstract Framework (AF) specification issued by IMS Global Learning Consortium
is designed to describe the general context of various other specification documents issued
by IMS as well [129]. It is organized in four layers: Application Layer, Application
Services Layer, Common Services Layer and Infrastructure Layer. Additionally, it defines
a so-called “Sea of Components”, which is a catalogue of components that provide services
or contain data structures relevant to the domain of e-learning systems. There is no
mapping defined in the standard between the services described within the layers and
the components defined in the component catalogue. Neither the list of elements for the
layers nor the list of elements in the component catalogue is meant to be exhaustive, but
to represent a list of typical examples. Although the only available version “1.0 Final” of
the standard has a lot of details marked as “to be done”, it is worthwhile to look into
these list of examples and to compare them to the findings from the literature study
discussed in the previous section.

The application layer lists applications that may use the services and components
defined within the IMS-AF. In other words, this is a list of applications that can be
considered to be part of the domain of e-learning systems. The list includes very general
applications such as “Learning Management System”, “Student Information System”

66

6.2. Technical Standards for Technology-Enhanced Learning Systems

and “Portal”, but also more specific ones such as “Assessment System” and “Content
Authoring Tool”. The list does no include intelligent tutoring systems as they were
considered in the literature study in section 6.1. On the other hand, it also includes
applications like “Bulletin Board Tool” and “News Tool” that also occur in domains
other then e-learning and that were not covered in the literature study.

The application services layer lists coarse-grained features that can be offered by
applications in the e-learning domain. For some of these features, core components are
listed. For example, the “Assessment” feature has “Assessment”, “Item”, “Object-bank”,
“Section” and “Result Report” as its core components, where all these names refer to
elements from the “Sea of Components”. Again the list contains features which are not
specific to the domain of e-learning and have not been considered in the literature study,
for example “Calendar” and “Group Management”.

The common services layer is organized very similar, but explicitly contains only
features that are generic in nature and are thus not specific for the domain of e-learning.
This distinction seems to be quite unclear, as the application services layer also contained
services that seem to be more generic than specific. However, it is explicitly not the
intention of IMS to work on specifications for features included in the common services
layer.

The “Sea of Components” is the most interesting part of the specification with respect
to this publication. It contains the description of 30 components for each of which
IMS intends to develop further specifications. A summary of these components and a
mapping to the terms used in section 6.1 of this publication is provided in table A.1 in
the appendix. A closer inspection of the component descriptions reveals that most of
the components are designed from a data management point of view: The majority of
components (11 out of 30) cannot be mapped properly as they are concerned with data
details that are out-of-scope for the literature study. Examples include the affiliations
or hobbies of the learners. Another set of 9 components can be mapped to the general
data storage that was used to summarize the storing of business data that is related very
directly to assessments and individual items. Finally, there are 4 components that can
be mapped to the student model component, and 2 components that can be mapped
to the domain knowledge model. Consequently, there are only 4 components remaining,
where one can be identified as a data transfer component and three can be mapped to an
assessment generator, evaluator component, or both. Notably, 3 out of 30 components
refer to presentation of some content, so they can be mapped to a student interface in
addition to the mappings discussed so far.

It can be concluded that the IMS Abstract Framework provides a different point of
view on components for technology-enhanced learning systems than the one used in
this publication. Nevertheless, the design of the framework with different layers, and
components as a main design principle stress the importance of studies on architectural
patterns that can be used to create system architectures based on the well-known or even
standardized building blocks.

67

6. Design of Technology-Enhanced Learning Systems

6.2.2. IMS-QTI
The Question and Test Interoperability (QTI) specification issued by IMS Global Learning
Consortium is designed to define a data model for test items, tests and test results [131].
The goal of the standard is to enable data exchange between various tools and systems
involved in the process of creating, conducting and evaluating assessment. The standard
has evolved through various versions, where version 2.2.1 from 2016 is the current one at
the time of writing this publication.

During the literature study of part I in section 2.1.3 it was already mentioned that the
QTI standard presents actors and use cases as part of its overview. This also includes a list
of tools or systems involved in these use cases, that can be mapped to the ones identified
in the literature study as shown in table 6.6. Several observations can be made from this
mapping: First, there is a match for all tools and systems named in the standard, which
confirms the results from the literature study. Second, the standard is not concerned about
the details of assessment system design, as it refers to a assessment delivery systems only
as a whole but not as their individual parts (user interface, infrastructure and educational
components). Third, the standard seems to assume a certain process model in which
item authoring and test construction are kept separate. In addition, this process model
considers adaptive system behavior only in a limited way. The specification explicitly
states that adaptive test behavior is only supported due to branching and preconditions
for test items. Adaptive behaviour based on student models is not supported. However,
the standard also defines the notion of an adaptive item, that is a test item that allows
for different scoring in subsequent attempts.

Notably, the last system name “assessmentSystem” listed in the standard might be an
error and should read “learningSystem” instead, which would better fit the description.
In comparison to the IMS Abstract Framework, “assessmentDeliverySystem” is almost
the same as component “Assessment” from IMS-AF, but it remains unclear whether the
difference in naming is by intention. The “itemBank” is a special case of the “Object-bank”
from IMS-AF, which explicitly names items as one of the objects to be grouped in a
data-bank.

The “Assessment, Section and Item Information Model” specification of QTI contains
a more extensive list of nomenclature and definitions, which partly repeats entries from
the overview. In particular, it also names an Authoring System as well as an Assessment
Delivery System. In addition to that, it also introduces Cloning Engine defined as “a
system for creating multiple similar items (Item Clones) from an Item Template”. This
can be mapped to the problem generator identified in section 6.1. The standard allows
this component to be a separate tool with no specific position within the assessment
generation process or a part of the delivery system. The “Assessment, Section and
Item Information Model” specification also names a Scoring Engine as the “part of the
assessment system that handles the scoring based on the Candidate’s responses and the
Response Processing rules”. This can be mapped to the evaluator component identified
in section 6.1.

However, naming and definition of components is just a prerequisite in the QTI standard
for the actual content, which is a data structure definition for different kinds of test

68

6.2. Technical Standards for Technology-Enhanced Learning Systems

Tool or System Name in
IMS-QTI Overview

Tool or System Description in IMS-
QTI

Mapping to
section 6.1

authoringSystem A system used by an author for creat-
ing or modifying an assessment item.

Authoring
tool

itemBank A system for collecting and managing
collections of assessment items.

Item bank

testConstructionTool A system for assembling tests from
individual items.

Assessment
generator

assessmentDeliverySystem A system for managing the delivery of
assessments to candidates. The system
contains a delivery engine for deliver-
ing the items to the candidates and
scores the responses automatically
(where applicable) or by distributing
them to scorers.

Student
frontend,
Queue, Eval-
uator compo-
nent

assessmentSystem A system that enables or directs learn-
ers in learning activities, possibly coor-
dinated with a tutor. For the purposes
of this specification a learner exposed
to an assessment item as part of an in-
teraction with a learning system (i. e.,
through formative assessment) is still
described as a candidate as no formal
distinction between formative and sum-
mative assessment is made. A learning
system is also considered to contain a
delivery engine though the administra-
tion and security model is likely to be
very different from that employed by a
DeliverySystem.

Student
frontend

Table 6.6.: Mapping from components listed in the IMS-QTI standard Overview [131] to
the terms used in section 6.1.

69

6. Design of Technology-Enhanced Learning Systems

items and tests. The standard defines a mapping to XML for these data structures and
thus implicitly introduces exchange of XML data as a suitable interface for component
communication. In particular, this supports the assumption that rendering of test items
and tests based on XML data is a specific task for a frontend component, while other
components work on test or response data in XML. The details of the data structure are
of less relevance here, but will be revisited in part III of this publication.

Another contribution of the standard is the definition of a life cycle for student
interaction with a test item and a submission model for student interaction with an
assessment. These are relevant to identify components that are closely related to each
other by performing work within the same interaction. The life cycle breaks the total
amount of interaction between a student and a test item into several “Item Sessions”,
where each Item Session can contain several “Attempts” and each Attempt can be split
into one or more “Candidate Sessions”. Candidate Sessions are only relevant to the
student frontend component, as they start when an item is displayed to a student and
end when a student switches to another items for any reason. The first Attempt is started
when the item is presented to a student for the first time. Each time, a student submits
a response to the assessment system, this terminates the current Attempt and starts
a new one. Submitting a response involves both the student frontend component and
an evaluator component in order to create feedback to that submission. Finally, a new
Item Session starts each time a student encounters a test item for the first time in a
new context, such as in different tests. Item Sessions are mostly relevant to educational
components such as assessment generators or problem generators, as they may decide on
when to display an item and thus when to start e new Item session or how to generate
contents for the item at the beginning of the Item Session.

The submission model may limit the number of possible transitions within the Item
Sessions. It provides a mode for simultaneous submission of responses from several items
within the same part of an assessment. This implies that students do not receive feedback
to individual items until they have submitted their responses to the whole part of the
assessment. Typically, this also implies that they are not allowed to make additional
attempts.

In conclusion, the brief analysis of the QTI standard proofs that the system components
identified during the literature study are sufficient to match and explain both the structural
and behavioral aspects of the IMS-QTI specification.

6.2.3. IMS-LTI
The Learning Tools Interoperability (LTI) specification issued by IMS Global Learning
Consortium is designed to allow for integration of remote tools and content into learning
management systems [130]. The specification assumes a web-based environment in which
a student interacts with systems via a web browser. The standard has evolved through
various versions, where version 1.1.1 from 2012 is the current one at the time of writing
this publication. Several learning management systems like Moodle or Ilias implement
the Tool Consumer’s part of the LTI specification.

70

6.2. Technical Standards for Technology-Enhanced Learning Systems

The specification is very generic in terms of components that are connected, referring
to them just as “Tool Consumer” and “Tool Provider”. The Tool Consumer typically
would be a learning management system (LMS), while the tool provider can be any
system that is supposed to contribute features to the LMS. The specification defines two
aspects of communication between both partners: The “basic launch” and the “basic
outcome services”.

The basic launch defines a model on how to establish a trusted connection between
Tool Consumer and Tool Provider which allows the Tool Consumer to redirect users to
the Tool Provider without passing sensitive information like log-in credentials. The idea
is to provide a link that can be clicked by students within the Tool Consumer’s student
interface that opens the Tool Provider’s student interface in the same browser window or
a new one, just as if the Tool Provider would be a component within the Tool Consumer’s
system. The Tool Provider is informed both about the user and the link that was clicked,
as well as possibly additional information associated with the link. The Tool Provider
can then offer its features through its own student interface and receive interactions,
as long as the student closes the browser window or uses any other appropriate way to
navigate back to the Tool Consumer’s interface.

The basic outcome services define three services to be implemented by the Tool
Consumer that receive plain XML messages in order to receive results, delete results or
report the current result. Each result only contains a grade from 0.0 to 1.0 as the only
piece of information related to the student’s performance. The result also contains a
reference to the link the student has used during the basic launch.

While the specification defines a technically solid way of connecting different tools to
form a interacting system, the very limited amount of data that can be passed over this
connection limits the value of the standard. If the Tool Provider offers a complex feature,
such as presenting and grading a complete test, the response send back to the Tool
Consumer is still just one single grade between 0.0 and 1.0. Nevertheless the existence of
the specification and its quite broad use by learning management systems stresses the need
both for a modularized view on components to be integrated into technology-enhanced
learning systems and for well-defined architectural patterns to describe the technical way
of integration.

A non-standardized alternative has been developed by Fontenla González [109, 302]
and offers richer options for information exchange between a learning management system
and an external tool. However, this approach assumes that the tool servers offers an
appropriate API which just needs to be mapped to a generic tool interface via user-defined
binding rules. Consequently, this approach is not suited for general purpose standalone
tools, but only for tool servers that are meant to be used in a service oriented way by
design.

6.2.4. IEEE LTSA
The Learning Technology Systems Architecture (LTSA) issued by IEEE in 2003 specifies a
high level system design and a list of components for a wide range of technology-enhanced
learning systems [1]. It is designed to provide a framework for describing existing and

71

6. Design of Technology-Enhanced Learning Systems

future systems and to promote interoperability between systems and components. The
standard is no longer maintained by IEEE and thus considered withdrawn. Nevertheless
it provides some interesting insights.

The main contribution of the standard is a set of four processes (learner entity,
evaluation, coach, delivery) and two data stores (learner records, learning resources) that
are interconnected by a large set of different data and control flows. The intention is to
define a high-level framework of components and connections, while each concrete system
in the educational domain may implement an appropriate subset of this framework. The
annex of the standard illustrates the intended usage of the framework by several so-called
stakeholder mappings that indicate which components and flows are considered most
relevant in a given context. One of these stakeholder mappings is named “assessment-
centered” and highlights three processes and one data store. A mapping from these
elements to the terms used in section 6.1 is provided in table 6.7 alongside a brief
definition or description of each component.

The mapping provides a distinction between LTSA design priorities and additional
aspects outside the focus of LTSA. For both categories, it distinguishes between primary
and secondary aspects. Evaluation and Learner Records are considered primary aspects
within the design priorities of LTSA. This also includes the data flow from the Learner
Entity to the Evaluation, the data flow from Evaluation to Coach and the bi-directional
data flow between Evaluation and Lerner Records. The standard does not use terms like
“user interface” or “frontend” explicitly in this place, but names protocols and formats
for the data flow from Learner Entity to Evaluation as part of the concerns. Thus the
primary aspects can be mapped without limitation to the components Student frontend,
Evaluator component and Student model as identified in section 6.1.

The secondary aspects within the design priorities of LTSA include Learner Entity
and Coach as well as bi-directional data flows between these two to exchange learning
parameters and also bi-directional data flows from Coach to Learner Records to exchange
learner information. Different to what was discussed above, the secondary aspects also
include the interface to the learner entity explicitly. This supports the decision to include
the mapping to Student frontend. The secondary aspects also explicitly include the
functionality of the coach. Due to the different activities that can be performed by the
Coach according to its description, it can be mapped both to an Assessment generator
and a Pedagogical module.

The standard also mentions two more interesting aspects that are outside the focus of
LTSA. The list of primary aspects outside the LTSA focus contains an entry for reporting
systems. These were discussed in section 6.1 as one particular kind of data transfer
components that can be found in some literature references. By mentioning it here, the
standards provides another piece of evidence that these components are a common part
of system architectures. The list of secondary aspects outside the LTSA focus refers to
adaptive system behaviour. Different to IMS-QTI it refers explicitly to adaptivity based
in assessment results and not to predefined branching behaviour within tests or single
test items.

In summary, the standard provides a view on assessment systems that handles the
core duties of such systems in a very similar way as it is done in this chapter. While the

72

6.2. Technical Standards for Technology-Enhanced Learning Systems

Component name in
IEEE-LTSA

Definition or description in IEEE-LTSA Mapping to
section 6.1

Learner Entity An abstracted process that represents
an abstraction of a human learner. The
learner entity may represent a single
learner, a group of learners learning in-
dividually, a group of learners learning
collaboratively, a group of learners learn-
ing in different roles, and so on.

—

Coach A process that performs amongst other
the following activities: (1) Negotiates/ex-
changes learning parameters for optimum
learning experience. (2) Receives current
assessment information from evaluation.
(3) Searches and retrieves learner informa-
tion relevant to the current learning expe-
rience. (4) Searches learning resources via
queries for appropriate learning content

Assessment
generator,
Pedagogical
module

Evaluation An abstracted process that may produce
measurement(s) of the learner entity.

Student
frontend,
Evaluator
component

Learner Records A data store of learner information, such
as performance, preference, and other
types of information. The learner records
may store information (which may be
later retrieved) about the past (e. g., his-
torical learner records), but may also hold
information about the present (e. g., cur-
rent assessments for suspending and re-
suming sessions) and the future (e. g.,
pedagogy, learner, or employer objec-
tives).

Student
model

Table 6.7.: Mapping from components named in the assessment-centered view in appendix
D.3.2 of the IEEE LTSA standard [1] to the terms used in section 6.1. Entry
“—” indicates that there is no proper mapping.

73

6. Design of Technology-Enhanced Learning Systems

standard covers a much wider range of technology-enhanced learning systems, it does
not dig deeper into the details of the particular class of assessment systems and such
misses details like problem generators or several kinds of management components.

74

7. Architectural Patterns for E-Assessment
Systems

The previous chapter reported on a large list of properties, common components and
standards for technology-enhanced learning systems that have been found in recent
literature. Based on these findings, this chapter now connects these bits in order to
form patterns that can be considered useful when designing and engineering e-assessment
systems. A particular focus of these considerations is on questions regarding integration
and thus also on well-defined interfaces that describe suitable connections.

The idea of this chapter is to some extent inspired by the similar idea of architectural
patterns for intelligent tutoring systems (ITS) explored by Andreas Harrer et al. 10
to 15 years ago [72, 118]. Unlike in that work, this chapter does not focus on the
decomposition of a complete system into parts, but on the discussion of system parts that
can be integrated with each other or with other systems in order to create meaningful
e-assessment features. To ensure a broader exploration of the design space, it is not
limited to patterns found directly in the literature. In more detail, section 7.2 discusses
system behaviour and design consequences from integrating different components to
realize a single desired behaviour. Section 7.3 discusses patterns for structural aspects of
system design, that are not primarily driven by required system behaviour. Section 7.4
finally discusses patterns for functional behaviour of single components that may not
necessarily influence general system design.

There is some principle work on general patterns for software architecture [43] as well
as on different aspects of system integration in the domain of e-learning [119, 95, 224].
The latter differ from this chapter, as they do not specifically consider e-assessment
systems and components. The former provides an important basis on how to describe and
catalog architectural patterns, but naturally does not consider the domain of e-learning
and e-assessment specifically.

7.1. General Remarks on Architecture Style and Focus
Prior to the discussion of different classes of patterns in the subsequent sections, this
section provides an overview on architectural styles and component structures that occur
in e-assessment systems. The assumption is, that a system will only use one particular
style or component structure (or at least only one particular style for each part of the
system, if it consists of several loosely coupled parts), but may use several pattern within
the boundaries created by the former decision.

75

7. Architectural Patterns for E-Assessment Systems

7.1.1. Architectural Styles
As already mentioned earlier in the previous chapter, there are some fundamentally
different ways on how to split a system into components [288]. Among those, two are
used particularly often on the domain of e-assessment systems: Vertical slicing following
a shared memory blackboard style and horizontal slicing into layered virtual machines.
However, also peer-to-peer architectures can be considered useful in this domain.

Layered Virtual Machines

According to [288], layered virtual machines can be summarized as a system in which
one layer offers services to layers above it.

This principle is often used as a two-tier or three-tier architecture in many types of
information systems and can also be found in intelligent tutoring systems (e. g. [265])
and e-assessment systems (e. g. [315]). Each layer has an abstract duty such as user
interface, business logic or data storage. Typically, each layer is subdivided into several
components realizing or contributing to different features of the system. If components
are used that offer only very specific functionality, these are often called microservices
[202].

Integrating e-assessment features into an existing system that employs the layered
virtual machines style usually means to touch most of the existing layers. Considering a
three-tier architecture with separate layers for frontend, business logic and data storage,
adding e-assessment features for the first time requires several changes: First, new forms
of user input must be added to the frontend layer. Second, some logic for grading
submissions must be added to the business logic. Third, assessment items and results
must be made available on the data storage layer. However, integrating a new item type
that can reuse existing grading mechanisms or integrating a new grading mechanism
for an existing item type may only require changes to one of the layers. Finally, it is
also possible to realize new functionality by creating new connections between already
existing components in different layers.

Shared Memory Blackboard

According to [288], a shared memory blackboard architecture can be summarized as inde-
pendent programs that access and communicate exclusively through a global repository
known as blackboard.

An example using this principle is the architecture of the Learning Management System
Moodle: The system is implemented in PHP and structured in a core, modules and
plug-ins. The core provides basic functionality to access the database and thus the shared
memory. Each module realizes a larger feature such as a forum, lessons or assignments.
Plug-ins may add specific features to a module such as a single item type. Within this
architecture, each module realizes the full stack from user interface to database queries
as far as necessary and is not intended to rely on services from other modules [46]. Hence
the system is divided primarily into vertical slices, where each slice is a larger component

76

7.1. General Remarks on Architecture Style and Focus

that may be subdivided into small components by horizontal slices to make some bits
reusable.

As just mentioned in the example, integrating e-assessment features for the first time
into a system using a shared memory blackboard architecture means to add a new module.
Adding a new grading mechanism or a new item type can possibly be realized by creating
a plug-in for an existing module, but it may also require to create a new module that
duplicates some of the existing behaviour. The shared memory blackboard architecture
is not intended to realize new functionality by creating connections between existing
modules.

Peer-to-Peer

According to [288], a peer-to-peer architecture can be summarized as a system in which
components hold state and behavior and can act as both clients and servers.

No well-known example of an e-learning or e-assessment system exists that solely uses
a peer-to-peer architecture. Nevertheless, parts of such systems can follow this principle
when using different agents that are connected to each other. Integrating e-assessment
features into such a system for the first time means to add another component to the
network of peer-to-peer connection. The same is true for any further extensions, that are
also realized by adding new components or at least new peer-to-peer connections.

7.1.2. Architectural Focus
As already discussed at the beginning of section 6.1, there is a general trend in the design
of e-assessment systems to move from monolithic systems to modular systems. At the
same time, there is a choice on whether a system runs on a server, a client or as an
distributed system involving both servers and clients. Notably, a distributed system is
necessarily modular, but a modular system is not necessarily distributed.

It seems to be a dedicated design choice on whether one constructs a server-focused
system (which may or may not defer some less important UI logic to a client component),
a client-focused system (which may or may not use some central server solely for sharing
data) or a module-focused system in which the emphasis is on designing well-defined and
loosely coupled modules. The TEx-Sys model for building intelligent tutoring systems
[265] is an useful example to illustrate these differences in the architectural focus. Three
systems were build using this model: The first one is a Windows application and thus a
client-centered system that actually does not involve any server component. The second
one uses a web-browser as client and thus moves all business logic and data management
to a server. The third one offers an own web client application that makes calls to web
services located on a server. Thus the first one is purely client-focused, while the second
one is clearly server-focused. The third one involves both sides while decoupling the
server-side into single web services and can thus be considered module-focused.

This design choice is also relevant for integration, as module-focused development may
put an special emphasis on re-usability or integration. For example, Wiris provides no
complete system, but components to be integrated into systems to handle mathematical

77

7. Architectural Patterns for E-Assessment Systems

input an evaluation [187]. Similar, the Grappa middleware provides no complete system,
but a component for integrating different e-learning frontends with different grading
components [97]. On the other hand, there are standards like IMS-LTI that deal with
integration of systems on tool level and thus enable integration also for client-focused
or server-focused systems that do not provide well-defined integration interfaces on
component level.

Notably, some key features of an e-assessment system may also have an impact on the
architectural focus. For example, many ITS have an emphasis on using several different
agents or expert systems that act in parallel and independent of each other. The same
is true for e-assessment systems in the domain of programming that are able to grade
assignments in different programming languages. Having many conceptually independent
components within one system is a strong argument for a module-focused development.
At the same time, some e-assessment systems promote mobile access as one of their most
important features. This is an argument for client-focused development, as much effort is
needed to support different mobile devices and to make functionality available on the
client side even if the connection to a server gets lost.

7.2. Behavioural Patterns
For the purpose of this chapter, behavioural patterns are patterns that define which
components are callers and callees or which components are used to (re-)direct calls from
one component to another. Furthermore we assume that a particular required system
behaviour is the main driver for decisions on behavioural patterns for a given scenario.
Note that required system behaviour may also cause the use of functional patterns that
have a slightly different focus and that are discussed later on in section 7.4.

7.2.1. General Component Behaviour
As an interactive system, any e-assessment system is supposed to react specifically to a
users input instead of delivering the same content all the time for all users. The most
obvious example for this behaviour is the grading of a response, which will therefore be
discussed in more detail later on in section 7.2.2. However, there are many additional
ways in which an e-assessment system can adapt its behaviour to a specific user or
the amount of users in general. Components like an assessment generator or problem
generator can adjust the difficulty of their output according to the capabilities of a
student. A pedagogical module can generate hints based on insufficient tries from a
student. An infrastructure agent can start additional instances of other components to
adjust system capabilities to a rising number of requests, e. g. during an exam. For these
and other cases one can identify two different types of general component behaviour that
will be discussed in the following sections. Every system will at least use one of these
patterns, but it is also possible that a system uses both for different components.

78

7.2. Behavioural Patterns

Passive Services

Passive services are waiting for requests that are directly or indirectly cause by user
interactions. They perform some actions upon these requests and then wait for the next
request to process. Using this pattern can be considered a standard way of designing
business information systems and some literature mentions it as a general principle of
system design [11, 61]. The general concept makes no limitation on the granularity of
the service or the number of computing resources used. While older realizations tend
to define few larger services on a single server, more recent system designs favor small
microservices distributed across multiple servers [315, 65].

There are some well-understood benefits in using passive services, i. e. if these services
can be implemented in a stateless manner. This allows to handle many user requests with
little resources. A specific drawback of passive services in the context of e-assessment
is that fact that students may not be aware that they can trigger a particular feature
of an e-assessment system. For example, students may not know what to do to request
a hint on how to complete an incorrect exercise solution and consequently a passive
hint generation service does not do anything. In addition, some other patterns like the
asynchronous pull pattern from section 7.2.2 below require active components to be
functional, so that it is not necessarily possible to construct an e-assessment system using
only passive services. On the other hand, at least the user interface of every system can
be considered to be a passive service that waits for user request, so that virtually any
system will use this pattern.

Active Agents

In contrast to passive services, active agents have their own agenda on what to do and
thus they perform their actions potentially even without any user input. They can be
used both for educational components (such as agents that generate hints or exercise
suggestions without explicit request from the user) and management components (such
as agents adjusting the cloud infrastructure to the current load). They are particularly
common in the domain of intelligent tutoring systems [58, 201]. They overcome the
above mentioned drawback that students may not know how or when to trigger a certain
feature. On the downside, running active agents requires more system resources than
just reacting to user input, which may induce scaling issues on systems used by a large
amount of students.

Interoperation between Active and Passive Components

If a system uses both passive services and active agents, there is often a service broker
component designed as a queue included in these systems. This queue can be used in both
directions: (1) Services can push elements to the queue upon request (e. g. submissions
as they are handed in), while agents pop elements from the queue as they like (e. g. a
grading agent as soon as it is ready to handle a job). (2) Agents can push to the queue as
they like (e. g. results as a grading agent has finished its job), while services pop elements

79

7. Architectural Patterns for E-Assessment Systems

from the queue upon request (e. g. a student interface when a student wants to review
results). More details on this will be discussed in the next section below.

7.2.2. Component Communication for Grading a Response
This section reflects one of the most crucial features of e-assessment systems. A response
to an assessment item is entered by a student via some user interface component and
then needs to be processed by some evaluator component in order to produce a grade or
some other kind of feedback. This connection between the user interface and an evaluator
component can be realized in many different ways. All patterns from the following
subsections are independent of the number of evaluator components involved. Hence, if
two or more different evaluator components are invoked to retrieve two or more separate
results for a single submission, each invocation can follow one of the following patterns.
Notably, this is only one possible way of parallel grading, while another option is to split
the control flow internally within the evaluator. This will be discussed in section 7.2.3
below. While system designers are free to use more than one of the following patterns
within one system, they will surely use at least one.

Synchronous Push

One pattern is that of a synchronous push, which basically corresponds to a plain method
call in many programming languages. In this pattern, user interaction directly triggers
the grading process and the user has to wait until the input is processed (see fig. 7.1).
Consequently, either a queue or an evaluator component used in this pattern needs to be
a passive service that waits for synchronous push requests. Systems in which grading
tasks are short running and in which the next step depends on the previous result can
employ this pattern. Web-based e-learning systems that are implemented in scripting
languages like PHP also can employ this pattern in order to handle each request in a
single thread. Thus, the specific benefit of this pattern is its simplicity, as it does not
require parallelism for single users and also no additional components. However, its
simplicity is also its drawback, as it is not suited for complex grading tasks that may be
long-running or consume many resources. In these cases, students may have to wait a
long time for a system response or may even overload the server with requests.

Asynchronous Push

An alternative is the asynchronous push pattern, which also triggers the grading process
directly, but without blocking user interaction by waiting. Instead, the actual grading
task is started in a new thread that runs in parallel to processing further user interactions
(see fig. 7.2). An example can be found in [315] with components offering interfaces to
trigger grading and sending back grades, respectively. As for the previous pattern, either
a queue or an evaluator component used in this pattern needs to be a passive service
that waits for synchronous push requests.

The pattern has two variants, depending on how the system proceeds after the grading
task has finished. One option is to push the result to the user interface component, which

80

7.2. Behavioural Patterns

Figure 7.1.: Sequence diagram for the synchronous push pattern.

Figure 7.2.: Sequence diagram for the asynchronous push pattern.

may not be possible e. g. in a web-based system that does not support push notifications.
The other option is to just store the result and deliver it upon a later request issued
by the user interface component. Independent of the choice of a variant, the benefit of
this pattern is that response times to students can be kept low. However, if the next
meaningful page displayed to the student depends on the grading results, students will
just receive a message asking them to wait. In addition, a risk of system overload still
exists, as many students can trigger grading processes at the same time.

Asynchronous Pull

A third alternative is the asynchronous pull pattern, in which user input is stored in
a queue and pulled from there by the evaluator component. This pattern requires to
introduce an additional component to handle the queue of waiting student responses (see
fig. 7.3). It also requires the evaluator component to be an active agent that can perform
pull requests to the queue. Examples of this pattern can be found in [11, 269, 228], but
also in many other places. Slight variants exist where one option is to put the whole
submission to the queue and another option is to generate grading tasks and put those
to the queue. Independent of the variant, the same two possibility as above exist on

81

7. Architectural Patterns for E-Assessment Systems

Figure 7.3.: Sequence diagram for the asynchronous pull pattern.

how to proceed after a grading task is finished. Notably, if grading is split into tasks, a
push notification to the user interface can be triggered after completion of each task or
after completing all tasks. Benefits and limitations are also very similar to the previous
pattern: Response times are kept low, but students may just receive a waiting message
as initial response. However, there is an additional benefit in that many responses at the
same time are less likely to overload server resources. Instead, they will just fill the queue
and increase wait times until they are processed. Notably, this pattern requires at least
one active component within the system that frequently checks the queue for waiting
grading tasks. The other patterns discussed before do not need such component and can
thus also be used in systems that are composed of passive services and thus solely react
on user input.

Asynchronous Push and Pull

A fourth alternative is the asynchronous push and pull pattern that combines the
previous push and pull approaches to realize fully asynchronous communication. It
introduces the queue component as a standalone element that is neither integrated
into the business component nor the evaluation component: The business component
pushes jobs asynchronously to the queue, and evaluator components retrieve jobs from it
asynchronously as well (see fig. 7.4). Results can be delivered to the business component
directly or stored in another queue and retrieved from it in a similar way. While that
pattern has no impact on the performance in comparison to the previous pattern, it
allows for flexible reuse of evaluator components in different contexts. Several business
components (i. e. several instances of the same e-assessment system) can use a single
queue. Evaluator components can thus serve different sources of submission and push
their results back into the queue. This is particularly beneficial if there are specialised
evaluator components which are only used rarely in peek times. Instead of providing

82

7.2. Behavioural Patterns

Figure 7.4.: Sequence diagram for the asynchronous push and pull pattern using direct
delivery of results.

several evaluator components that are idle most of the time, a single one may be sufficient
to handle jobs from several e-assessment systems.

7.2.3. Internal Evaluator Component Behaviour
The same structure of an evaluator component can be used in multiple ways with respect
to parallel calls or parallelism within evaluation processes. The following patterns show
solutions and their consequences that help to tackle more general challenges when used
in combination with the other patterns in this catalogue. Some of the patterns are only
relevant if the evaluator component uses sub-components that will be discussed in section
7.3.3 below.

Figure 7.5 provides a schematic representation of the four possible combinations of
the patterns from this section. Boxes with vertical overlap represent parallel execution.
As can be seen, variant (a) employs no parallelism and thus takes the most time, while
variant (d) makes heavy use of parallelism and consumes the lowest amount of time.

Single-Threaded Evaluator

In the single-threaded evaluator pattern, the evaluator component handles only one
evaluation job at once. In the simplest case, it is invoked in a loop over the list of waiting
submission (as e. g. in [163]) that makes sure that there is only one call at a time. If the
evaluator component can be invoked from different places, it may reject further requests
or store them in a queue for later processing, depending on the communication pattern
used (see section 7.2.2 above). This pattern provides a sufficient solution if an evaluator
component handles only one job at a time and if the evaluation process is either fast in
general or there is no need to make a complex process as fast as possible. No special
attention needs to be paid to the use of shared resources when implementing the evaluator

83

7. Architectural Patterns for E-Assessment Systems

Job 1 Sub-Component 1 Sub-Component 2 Job 2 Sub-Component 1 Sub-Component 2

Job 1 Sub-Component 1 Sub-Component 2

Job 2 Sub-Component 1 Sub-Component 2

Job 1
Sub-Component 1

Sub-Component 2
Job 2

Sub-Component 1

Sub-Component 2

Job 1
Sub-Component 1

Sub-Component 2

Job 2
Sub-Component 1

Sub-Component 2

time

(a)

(b)

(c)

(d)

Figure 7.5.: Schematic representation for parallel or sequential processing of jobs over
time with the four possible combinations of patterns for evaluator behaviour.
Variant (a) employs a single-threaded evaluator with sequential evaluation.
Variant (b) uses a single-threaded evaluator with parallel evaluation. Variant
(c) combines a multi-threaded evaluator with sequential evaluation. Variant
(d) uses a multi-threaded evaluator and parallel evaluation.

or any of its sub-components following this pattern. It thus helps if strict isolation is
required for security reasons.

In turn, the pattern limits the solution-space for speeding up the process, as it requires
to deploy several evaluator instances to achieve parallel evaluation of multiple submissions.
An example of automatic scaling by spawning additional instances of overloaded evaluator
components is mentioned in [315]. The pattern also requires to implement some queue
for waiting submissions if it cannot be guaranteed that there is always an idle evaluator
instance available for each incoming evaluation job.

Multi-Threaded Evaluator

An alternative to the parallel deployment of evaluator component instances is the use of
the multi-threaded evaluator pattern. In this pattern the evaluator can handle multiple
evaluation jobs at once (as e. g. in [93]). It may either spawn a new thread for each
incoming evaluation job or use a thread pool. Similar to the previous pattern, it may
reject further requests or store them in a queue for later processing. The pattern requires

84

7.3. Structural Patterns

to consider the use of shared resources during the implementation and reduces the degree
of isolation. In turn, it allows to speed up the evaluation process by handling several
submissions at once. The actual effect of that measure depends on the underlying
computing infrastructure and their capability to do efficient parallelisation. It may still
be necessary to implement some queue for waiting submissions if it cannot be guaranteed
that there is always the possibility to spawn another thread for a newly arriving evaluation
job.

Sequential Evaluation

Independent of the choice for one of the previous patterns, an evaluator may have sub-
components, that may or may not run in parallel even if the evaluator only processes
one grading job at a time. In the sequential evaluation pattern, the evaluation process is
organized in such a way that only one sub-component will be active at the same time.
For example, [212] describes a system in which a sequence of sub-components is applied
to a submission during the evaluation process. Notably, the actual decision which sub-
component to invoke next can depend on the results from the previous sub-component.
Thus, this pattern can particularly be considered if there are dynamic dependencies
between several activities in the evaluation process. Each sub-component will know the
full results of all preceding evaluation steps and can thus react accordingly. Moreover, the
evaluation process can be adapted dynamically, potentially skipping steps if preceding
steps meet specific conditions. On the downside, sequential evaluation can result in large
wait-times for students if the evaluation process contains many time-consuming steps.
Even running several processes in parallel will only increase the overall throughput, but
not lower the time needed for processing one evaluation job.

Parallel Evaluation

Individual wait-times can be reduced with the parallel evaluation pattern, if there are
several sub-components within the evaluator component. In this pattern, the evaluator
invokes all or at least some required sub-components in parallel, waits for all of them
to be finished and returns the collected results. This is possible, if there are little or no
dependencies between the activities in the evaluation process. The main benefit of this
pattern is to speed up the evaluation process for a single submission and thus lowering
the wait-time for the student. On the downside, not all evaluation processes may be
suitable for being split up into parallel tasks due to potential dependencies between
sub-components. In addition, using parallel evaluation in an evaluator that also uses
multi-threaded evaluation may result in a total amount of too much parallel threads so
that actually no additional performance benefit is gained from multi-threading.

7.3. Structural Patterns
For the purpose of this chapter, structural patterns are patterns that define possible
connections between components or the number of occurrences of components of a

85

7. Architectural Patterns for E-Assessment Systems

particular type within an architecture. Furthermore we assume design clarity to be the
main driver for decisions on structural patterns, where no decision should limit required
system behaviour.

7.3.1. System Extensions
The most prominent way of extending an existing e-assessment system with new features
is adding new types of assessment items. This usually requires to extend the existing
user interface to allow for new interactions. In many cases, this also requires to extend
the evaluation capabilities of the system in order to handle the new types of responses.
In a component-oriented system, these extensions are not only possible by extending
an existing component, but also by adding a new one and connecting it properly to the
existing components. There are several ways of how to perform this integration.

One way of using components that offer specific features from other components is to
use plug-in mechanisms. In a general plug-in mechanism, a host component H defines a
plug-in API and interface. Another component P can implement the interface and make
calls to the API. As a consequence, P can be used as a plug-in to H. It is left to H when
to make calls to P and when to hand over control to P. Once control has been handed
over to P, it may make calls to the plug-in API and of course may hand back control
later. For example, H is a general learning management system which would like to offer
specific exercise types suitable for assessments. In this example, P can be a component
offering at least an user interface for one or more of the desired exercise types. H can
then include P as a plug-in and call it whenever an user interface including the specific
exercise types is requested. However, it heavily depends on the design of the plug-in API
how tight the integration between H and P is.

Systems that do not allow for extensions will not use any of the patterns that are
discussed in the following sections. If systems allow for extensions, they are not restricted
in the number of ways they can offer and thus a system may use more than one of the
following patterns. However, understanding a system’s architecture becomes harder the
more different patterns for system extensions are used.

Encapsulated Plug-In

One pattern is that of an encapsulated plug-in, which implements the full feature set of
the new component. It is written in the same language as the existing system and uses
the data storage and other components provided by the existing system. Usually there is
one core component in the existing system offering an appropriate API to be used by
plug-ins (see figure 7.6). This is the standard way of implementing plug-ins in learning
management systems like Moodle (cf. [46]) or Ilias. The benefit of this pattern is that
a well-written plug-in API can ease plug-in development and assure a close integration.
At the same time, the API may also limit the plug-ins in what they do, which can protect
the whole system and its users from malicious components. On the other hand, this may
also be a downside if some sophisticated features cannot be implemented that way, e. g.
if they require specific resources. In addition, a badly-written plug-in API may allow

86

7.3. Structural Patterns

Figure 7.6.: Component diagram for the encapsulated plug-in pattern.

Figure 7.7.: Component diagram for the unrestricted plug-in pattern.

plug-ins to pollute the data storage of the system (e. g. by not cleaning up temporary
data) and thus may cause problems in system maintenance or performance.

Unrestricted Plug-In

An alternative pattern is that of an unrestricted plug-in, which only implements a subset
of the desired features directly. Besides connecting to the plug-in API of the existing
system, it also connects to an own backend component or other external resources that
implement the missing part of the feature set and that may also have its own data
storage mechanism (see figure 7.7). This pattern can be found in learning management
systems as with the Moodle External API [46]. It can also be found in systems in
which evaluator components are connected via an API but are allowed to access external
systems (as e. g. in [269]). This pattern overcomes the drawbacks mentioned above,
as the backend component may be implemented in a different programming language,
have access to additional resources, and store data in a separate place. This pattern
can thus be used to integrate expert components (such as computer algebra systems)
into e-learning and e-assessment system. A drawback of this solution is that potentially
critical data may leave the system and remain in foreign places, even if it is deleted from
the original system. There is also a risk that the backend component may become a
bottleneck with respect to system performance, as increasing system resources for the
e-assessment system does not necessarily also increase system resources for the external
backend component.

87

7. Architectural Patterns for E-Assessment Systems

Figure 7.8.: Component diagram for the external tool pattern.

Figure 7.9.: Component diagram for a plug-in-free extension.

External Tool

The third alternative is that of an external tool. In this pattern, the existing system
redirects the user to an external tool via some standard API and receives a callback
when the user has finished their duties there (see figure 7.8). This mechanism can be
realized in learning management systems via the IMS-LTI standard [130]. This pattern
actually avoids extending an existing system, but adds functionality by coupling it with
another system. Consequently, a potential benefit of this pattern is a minimal amount of
integration work if both sides are already ready for integration via standardized protocols.
The pattern also enforces a quite strict separation of data between the two sides. This can
be beneficial and a limiting factor at the same time: On the one hand, it improves privacy
and simplifies data management. On the other hand it requires to establish a trusted
connection between the tools so that one tool accepts the user sign-ins from the other
tool. In addition to these security and privacy issues, the drawback of a performance
bottleneck mentioned above also exists in this pattern. Moreover, it is less likely to
achieve a good visual integration of user interfaces via this pattern, as different tools may
follow different user interface design principles.

Plug-in-free Extensions

Notably, there may also be situations in which a system can be extended without using
any of these patterns. For example, a system may use the asynchronous pull pattern
from section 7.2.2 and require all evaluator components reading from the queue to be
active agents according to section 7.2.1. In this case, an additional agent can simply be
added without the need for any kind of dedicated plug-in API offered by some component
(see figure 7.9). Instead, having a queue from which other components can read forms
an implicit plug-in API in this case. This is for example the way the xQueue from the
MOOC platform edX works [79].

88

7.3. Structural Patterns

7.3.2. Data Storage
Potentially leaking critical data to external places or pollution of data storage by careless
plug-ins (as discussed in the previous section) are not the only issues with respect to
data storage that can occur in e-assessment systems. There is a general question on
how to store data in such a system for several reasons. First, nature and structure of
data may be very different. An e-assessment system may store user profiles, assessment
items and responses, domain-specific knowledge used for grading and hint generation,
and management or administrative data. Second, most data may be irrelevant for most
features and components. An authoring tool will most likely only access assessment items,
while domain-specific knowledge is only relevant to the respective evaluator component,
pedagogical module, or problem generator. Third, there may be time-based restrictions
on when to access which data. Changing assessment item may be prohibited while an
exam is running, while teachers may be allowed to inspect student specific data only for
a limited period due to privacy reasons. Consequently, there are different ways of how to
handle data storage and system designers must decide which one to use.

Central Data Storage

The simplest way is to employ the pattern of a central data storage that accumulates data
for all components. This is particularly useful when using several components that are
supposed to work on the same data. Moreover, data storage can be centralized in cases
in which a common service for data storage exists, as e. g. shown in [269, 315, 108]. A
particular drawback of this pattern is the need for a generalized storage technology that
is sufficient for all different kinds of data. This may lead to non-optimal solutions and
potentially in a decrease of storage performance. On the other hand, a centralized data
storage is easy to manage and can be replicated to multiple server nodes by standard
technologies. Moreover, it allows to apply privacy concepts like differential privacy [76]
that would be more complex to apply when multiple data sources are used.

Distributed Data Storage

An alternative pattern is that of a distributed data storage, which is used when components
typically process specific data that is of no meaning to other components. Examples
include separate storage for assignments, grades and general student data [212], the
separation of learning repository and user model components [61] or the separation
between a relational database for general data and a repository for submitted program
code [87]. Another example similar to the latter is shown in [156], where different storage
backends are sketched. The main benefit of this pattern is an increased performance, as
each storage node can be optimized with respect to storage format and system resources.
As a downside, this makes system management more complex. With respect to privacy,
this pattern can enforce certain properties on system level (instead of application level),
as data that must not be combined can be stored in different places.

89

7. Architectural Patterns for E-Assessment Systems

Duplicate Data Storage

A third pattern is that of a duplicate storage, where data is prepared and stored in one
place but copied to another place on demand. This is used for example when item pools
are stored in one place for authoring and copied to another place when running an actual
assessment as shown in e. g. [115]. Benefits and drawbacks of this pattern are similar to
the ones for a distributed data storage. In addition, data synchronisation can become an
issue when using duplicate storage. On the other hand, the pattern also allows for even
more fine-grained control over which data is accessible by which component and when,
so that even more privacy properties can be assured on system level. The pattern can be
used in combination with a distributed data storage.

7.3.3. Evaluator Granularity
The most common educational component within an e-assessment system is an evaluator
module that is responsible for grading responses and producing feedback. Section 7.2.2 al-
ready discussed different ways to invoke this component synchronously or asynchronously.
This section deals with different patterns for structuring the evaluator component inter-
nally. Each evaluator component within a system will follow one of the patterns, but if
there are many evaluator components, each of them may use a different one.

Monolithic Evaluator

A simple pattern is to design the evaluator component as a single block and thus as a
monolithic evaluator. It receives a submission as input and returns grades and feedback
as output. This is typically sufficient for short running synchronous grading tasks (e. g.
[48, 108]). The complete behaviour of the component can be modelled as a single process
in this case. To speed up grading in scenarios with high load, several of these processes
can run in parallel, which will increase the overall throughput, but not lower the time
needed for grading one submission. If entirely different grading procedures are necessary,
two or more completely independent evaluator components can be employed following this
pattern, as it is for example sometimes used for grading solutions in different programming
languages [11, 205, 97].

However, if several different grading procedures are required that share some common
elements, this pattern is not suitable, as it will either require to merge the grading
procedures into one complex process or to duplicate code to use it in different independent
components.

Evaluator with Sub-Components

A solution to the aforementioned problem is the use of sub-components within the
evaluator component and thus forming an evaluator with sub-components. An example
for this pattern can be found in [212], where the assignment database contains the
sequence of modules to be applied to the submission upon reception by the grading
server. Another example of this pattern with a different reasoning can be found in

90

7.3. Structural Patterns

[182]. In this case, the evaluator contains one sub-component that runs as a sandbox
system for security reasons. A special case of this pattern occurs when domain-specific
expert systems are used as sub-components for the evaluator (as e. g. in [106]). In
this case, this pattern does not only determine the internal structure of the evaluator,
but potentially also influences the connection between the e-assessment system and an
external component. However, expert systems may also be available as libraries to be
included into the evaluator component.

The pattern allows to build flexible evaluation processes in which sub-components can
be used in different orders and combinations. It may also be sufficient to fulfill security
requirements, but it offers less strict isolation than the monolithic evaluator pattern. The
pattern may help to speed up the evaluation process, if sub-components can be invoked
in parallel. However, this is subject to the use of respective behavioural patterns (see
section 7.2.3 below). Notably, an evaluator with sub-components can be deployed in
several instances without including the same sub-components in all instance. This allows
to deploy dedicated instances e. g. for fast or memory-consuming evaluation steps, which
also may help to speed up the evaluation process.

Evaluator as Re-director

A third alternative is the evaluator as re-director pattern, which is a mixture of the
previous solutions. In this pattern the evaluator component has many sub-components
but only uses exactly one of those for each evaluation job. An example of this pattern
can be found in [269]. The pattern allows for more flexibility than a monolithic evaluator,
since universal steps that are part of all evaluation processes can be implemented once in
the evaluator component instead of multiple times in each sub-component. This can be
particular beneficial in conjunction with some of the communication patterns discussed
in section 7.2.2 above. In turn, isolation is less strict and the pattern does not help to
distribute the evaluation processes over different nodes.

Similar to an evaluator with sub-components, not all instances need to include the
same sub-components. Using such deployments is particularly advisable if some sub-
components bear a risk of causing system crashes under some circumstances. Such
crashes may stop the evaluator component from working at all and thus also stop all of
its sub-components from delivering results. If there are several evaluator components
and not all of them have the same risk of crashes, a higher overall availability can be
achieved.

7.3.4. Input Processing
One of the most obvious functions of an e-assessment system is to process user input in
order to provide feedback. Typically, evaluator components and pedagogical modules are
the responsible components for this purpose and it may well happen that more than one
such component is present in a system. In conjunction with the fact that an e-assessment
system may or may not be client-focused or server-focused, there are several patterns
that define the connections to those components.

91

7. Architectural Patterns for E-Assessment Systems

Server-side Processing

For general distributed systems, server-side processing is a usual pattern, as input
processing is typically associated with business logic functionality and business logic
components in turn are typically located on the server-side of a distributed system. In
the case of e-assessment systems, this means that at least one evaluator component or
pedagogical module is only available on the server side of the system and is designed as
a passive service. User input is forwarded from the client to the server and that invokes
the appropriate component. Results from this component are then transferred back to
the client. While this pattern is used in many systems as a plain design choice, it is the
foundation of service-based and cloud-based e-assessment systems [11, 115, 315].

Several benefits arise from using this pattern. First and most important, this pattern
is the only one suitable for strict, legally relevant e-assessment situations, as any grading
operations on the client side must be considered inherently insecure. Second, this pattern
is very helpful when grading and feedback generation requires to run specific software
that may not be available on the client side at all or cannot be integrated in the client
components of an e-assessment system. This is particularly relevant if grading requires
large amounts of system resources but the system must be accessible from mobile devices
with limited resources or if grading requires to access large repositories or databases that
are not available online. Third, server-side processing makes grading and feedback data
immediately accessible to teachers, potentially even in a larger extent than for students.

On the downside, scalability may become an issue if a large amount of users must
be served with limited server resources. In this case, server-side processing can create
a serious bottleneck. Moreover, server-side processing limits the options to use the
client components of the system offline. While it may be possible to work offline on
the actual assignment, every request for feedback requires an online connection to the
server. Depending on the scenario, privacy may also be an issue for server-side grading,
because sending submissions and grades via a network may expose personal data, even if
no grades are stored in a server-side database.

Client-side Processing

Inversely to the previous pattern, client-side processing in the context of e-assessment
systems means that grading or feedback generation for user input happens by invoking an
evaluator component or pedagogical module directly on the client-side without forwarding
user input to the server. Results from the grading process may be forwarded to the server
as well for later analysis by a teacher, but this may be an optional function. There even
may be no server at all, as for example in a peer-to-peer e-learning framework with some
feedback agents on every peer application [201].

Benefits and drawbacks are also inversely to the previous pattern. As a first benefit,
server resources cannot cause bottlenecks, when client-side processing is used. This applies
both to computing resources and to delays from a slow or unstable network connection.
Consequently, this pattern is particularly useful when fast and direct response to a user

92

7.4. Functional Patterns

input is required as for example in a listening agent [144]. Second, less issues with privacy
have to be expected, as only limited data or even no data at all leaves the client.

However, this may also be a serious drawback of this pattern, as detailed analysis of
assessment results by a teacher looking at the server data may not be possible if some
data is only available on the clients. Moreover, any data produced on the client side
may be subject to manipulations before it is send to the server, and so any reliable data
analysis is not possible when this pattern is used. Finally, client-side processing may
result in too high or complex requirements for the client system to be efficient.

Mixed Processing

Some of the drawbacks of client-side or server-side processing can be avoided without
introducing all the drawbacks of the opposite pattern by using mixed processing. In the
mixed processing pattern, one grading or feedback generation process is split in a way
that it is handled partially on the client side and partially on the server side. Notably,
this is not the same as having both patterns applied to the same system for different
processes.

Mixed processing can be used to perform simple but mandatory process steps on
the client, while the server is only invoked for some optional, but complex or resource
demanding operations. This reduced the risk of overloading the server with simple task
and at the same time reduces the need for powerful computing resources on the client
side. Similarly, this can be used to perform some calculations on the server to avoid
manipulations, but at the same time keep some data on the client to avoid privacy issues.
As a general drawback, mixed processing increases system complexity. Hence it may be
worth the effort to consider splitting a larger grading or feedback generation process into
smaller ones where each of those can be realized either using client-side or server-side
processing. This is a similar decision as about using one multi-threaded evaluator or
invoking several single-threaded evaluators in parallel.

7.4. Functional Patterns
For the purpose of this chapter, functional patterns are patterns that define the actual
behaviour of specific components and which components need to be present and intercon-
nected to realise a particular feature. As for the behavioural patterns discussed earlier, we
again assume that a particular required system behaviour is the main driver for decisions
on functional patterns for a given scenario.

7.4.1. Adaptive Behaviour
Adaptive behaviour is particularly common in intelligent tutoring systems, but also used
in e-assessment systems, e. g. to make assessments more efficient or more motivating.
Adaptation in e-assessment systems can happen in several different places: (1) The
system can present different items within an assessment by assembling the assessment
dynamically using an assessment generator component; (2) the system can present the

93

7. Architectural Patterns for E-Assessment Systems

same items with different content using an item generation component; (3) the system
can present the same item but offer different interactions if the item itself is adaptive.
This section focuses on the mechanisms for adaptivity that decide when to adapt and
which data to use for the decision on how to adapt. The actual process of adapting item
content is considered in the next section below.

Path-based Adaptivity

The basic concept of the path-based adaptivity pattern is to use a state machine model
where some events trigger transitions that change the current state. The system behaviour
is fixed for each state and hence the transitions and their trigger events determine the
adaptive capabilities of the system. While this can directly be used to branch system
behaviour based on user interactions, this also implies some history mechanism. Let
state S have several outgoing transitions to different states T1 to Tn, that all show the
same behaviour. Then from a short-term user perspective, any interaction i with state S
causes the same system reaction. However, T1 may be followed by state U , which is not
reachable by T2 to Tn. So the fact that a users reaches U after T1 is not determined by
the interaction with T1, but by the previous interaction i in state S.

An example on how to apply path-based adaptivity while using a rule-based reasoning
system can be found in [244], where multiple-choice and single-choice items are modeled
as finite state machines. In very simple cases, this only defines different behaviour for right
and wrong answers, which is the expected default behaviour for e-assessment systems
and can hardly be considered adaptive behaviour. However, this can also be used to
react differently to the first try and a second try (as e. g. realized by the adaptive item
format in the QTI standard [131]) or to proceed or grade differently depending on user
input in multi-step items [248, 23]. The pattern cannot only be applied on item level zo
present different steps within one item, but also on test level to present different items
within one test. It can also be used on even higher levels to present different tests or
to recommend different learning materials based on the outcome of a test. In that case,
path-based adaptivity happens on the level of a system that has integrated e-assessment
as one of its features as for example with the learning paths in Moodle.

If rules for triggering transitions are kept simple in the sense that they only evaluate
data which is available anyway, no sophisticated additional components need to be
introduced in the system to apply this pattern. Instead, item definitions, test definitions
or alike need to be extended by appropriate state machine descriptions. A limitation
of this pattern is the necessity to foresee possible different interactions to create proper
triggering events for transitions. A system using path-based adaptivity will thus never
show behaviour that has not been explicitly described.

Matching-based Adaptivity

Different to modeling explicit states, the matching-based adaptivity pattern models student
properties and target properties as separate (mostly numeric) models and then adapts
system behaviour based on appropriate proximity metrics using such models. For example,

94

7.4. Functional Patterns

student capabilities can be modeled as numeric values in one or more dimensions and item
difficulties can be modeled the same way. An assessment generator can then select the
most appropriate next item dynamically in an adaptive assessment [301, 114]. Student
modeling and matching-based adaptivity is not limited to capabilities and competencies,
but can also include other factors such as affective states [232, 261, 201].

Using this pattern requires not only to have an assessment generator or problem
generator component to perform adaptivity, but also to have a student model component
to store and manage the necessary data following one of the various possibilities of doing
so [40, 71]. The main benefit of this pattern is that there is no need to foresee and
encode all possible ways to adapt. Instead, the matching algorithm will find the best
possible match even in unexpected situations. However, creating an useful student model
and difficulty model usually requires a large amount of data. Hence, this pattern is not
appropriate in situations where only a small data base is available.

Similar matching techniques as the ones used for adaptivity can also be used for
feedback generation in some domains where solution spaces exist that can be represented
as models. A more detailed discussion of this feature is deferred to part III of this
document, as it influences the internal design of domain-specific evaluator components
but has no direct implications for the general system architecture.

7.4.2. Item Generation
Item generation (also named “problem generation” in some contexts) is the process
of producing individual assessment items dynamically instead of selecting static items
from an item bank. If an e-assessment system should be able to do so, usually an item
generator component is included in the system. The following sections discuss several
patterns on how the item generation process can be designed from a purely technical
perspective. Part III of this document digs deeper into the details of the domain-specific
creation of item contents from other perspectives such as usage of specific tools or data
formats. All patterns discussed in this section can be used both for closed or open-ended
questions and hence do not make any implications for the grading of a dynamically
generated item. For illustration, single-choice-items will be used to explain the different
patterns throughout this section.

Templates with Selections

In the templates with selections pattern, items consist of content templates that contain
placeholders and lists of possible values for each of these placeholders. In a slight variant,
single-choice-items and multiple-choice-items can draw their answer options randomly
from a pool. For some types of values such as numbers it is possible to define a range
instead of listing all possible values [100]. Besides using this technique to replace words
or numbers within a text as done by many systems, it can also be used more creatively
to fill tables or change size scales in technical drawings [139]. The list of possible values
needs not to be encoded directly in the item definition, but can also be retrieved from
an external data source [88]. Generating an item instance means to select one of the

95

7. Architectural Patterns for E-Assessment Systems

possible values for each of the placeholders. This selection can happen purely random or
based on some rules that express dependencies between different placeholders.

A sample single-choice-item using templates with selections may name a country and
ask for its capital by offering several city names as answer options. The country name
and the city names will be placeholders in this case, each associated with appropriate
lists of names. Selecting a country name can happen purely random, while selecting city
names includes dependencies to assure that the correct city is shown among the answer
options and no city appears twice. In some cases using fill-in items it may not even be
necessary to define dependencies for correct answers, as an evaluator component might
be able to deduce them directly from the item parameters [41].

The main benefit of this pattern is its universal applicability. As the selection process
is random or follows some simple rules, it does not need to know anything about the
item content and hence can be used in any domain. There is also no need to include
additional components in the item generation process. Moreover, item templates are easy
to understand as long as the lists of options and dependencies are not too large. This
in turn is also a limitation of this pattern, as not all scenarios can be expressed in a
manageable way using lists of values and dependencies. For example, it is at least tedious
to express the random generation of a polynomial via random selection of coefficients
and the generation of its first derivation via dependent placeholders.

Templates with Computation

As an alternative to purely random selection and the evaluation of dependencies, the
templates with computation pattern can be used to introduce arbitrary computations when
determining placeholder values. These computations may include domain-independent
operations such as string concatenation or basic mathematical operations [131, 23], but
also complex operations performed by external domain-specific expert systems such as
encrypting a text [213], computing a graph layout [39] or computing the derivation of a
polynomial.

In a sample single-choice-item this may result in providing a randomly generated
polynomial and offering one correct and some wrong derivations as answer options.
Assuming that an appropriate expert system or domain knowledge repository is available,
virtually any problem generation technique can be used with this pattern, including
those that were originally not created in the context of e-assessment (such as [251]
for DFA construction problems, [113] for statistics, or [4] for the general generation of
multiple-choice items from semantic relations).

This pattern avoids the limitations for templates with selections and thus makes item
generation more powerful. It also requires more domain knowledge from an item author,
but this is not a limitation. Instead, it can actually be a benefit as an item author
can express content generation directly using computation concepts from the domain
(possibly supported by a domain-specific notation such as in [295]) instead of transforming
them into a set of selection dependencies. The potential need to use external expert
systems such as computer-algebra-systems may cause limitations in terms of performance

96

7.5. Pattern Summary

if computing resources for such systems are limited and item generation requires many
calls to those systems.

Content Construction

Instead of using item templates defined by an item author, there is also the possibility
to use the content construction pattern. This pattern uses more general item templates
and fills those based on a domain knowledge models [6, 132] or some other appropriate
input [161, 153]. As a result, it is not just some portion of the item content that looks
differently for several item instances, but the item may only keep its form. For example,
the content construction process for a single-choice-item may use a domain knowledge
model on ancient Roman emperors and ask “How was the successor of emperor X?” in
one case and “At what age did emperor Y die?” in another case.

This pattern reduces the necessary size of an item definition to a minimum. In
particular, it enforces a separation between the definition of items and the encoding of
actual facts. Consequently, it requires to have a domain model component or a parser
for other appropriate domain artifacts available within the e-assessment system or as
an external service. As for the templates with computation pattern, this may cause
limitations in terms of system performance.

7.5. Pattern Summary
A total amount of 28 patterns for eight different aspects in three categories have been
discussed in this chapter. Tables 7.1 to 7.3 provide overviews on all patterns and name
the participating components for each pattern according to the component names from
section 6.1. While some of the different aspects are independent of each other, some
others have dependencies. Choosing a particular pattern for one aspect may thus narrow
the space for design decisions on another aspect. The tables thus also list possible
dependencies or restrictions between different patterns.

The fact that the patterns Passive Services and Active Agents can be applied to any
component and imply no dependencies or restrictions supports the fact that they were
classified as patterns for general component behaviour. The same unlimited use can be
observed for the patterns Encapsulated Plug-Ins and Unrestricted Plug-Ins which is also
conclusive, as they represent very general mechanisms for extending systems. Finally,
client-side processing can also be used with any component and without any restrictions
which is also conclusive, as it basically means to develop an e-assessment system as a
standalone application.

Besides some self-evident connections between specific components and groups of
patterns (such as the involvement of the evaluator component in all patterns for grading
a response and evaluator granularity) there are also some connections that allow to
refer back to the discussion on some specific components. In particular, a data transfer
component, which occurred rarely in the literature review, is mandatory for the Duplicate
Data Storage pattern and hence it can be concluded that this pattern is also used rarely.

97

7. Architectural Patterns for E-Assessment Systems

Aspect Pattern Name Participating Compo-
nents

Dependencies and
Restrictions

General
Component
Behaviour

Passive Services any none

Active Agents any none

Component
Communi-
cation for
Grading a
Response

Synchronous Push Student Frontend
or Queue, Evaluator
Component

Queue or Evaluator
Component as Pas-
sive Service

Asynchronous Push Student Frontend
or Queue, Evaluator
Component

Queue or Evaluator
Component as Pas-
sive Service

Asynchronous Pull Student Frontend
or Queue, Evaluator
Component

Evaluator Compo-
nent as Active Agent

Asynchronous Push
and Pull

Student Frontend,
Queue, Evaluator
Component

Student Frontend
and Evaluator Com-
ponent as Active
Agent

Internal
Evaluator
Component
Behaviour

Single-Threaded
Evaluator

Evaluator Compo-
nent

none

Multi-Threaded Eval-
uator

Evaluator Compo-
nent

none

Sequential Evalua-
tion

Evaluator Compo-
nent

Evaluator with Sub-
Components

Parallel Evaluation Evaluator Compo-
nent

Evaluator with Sub-
Components

Table 7.1.: Summary table for behavioural patterns for e-assessment systems

98

7.5. Pattern Summary

Aspect Pattern Name Participating Compo-
nents

Dependencies and
Restrictions

System
Extensions

Encapsulated Plug-
Ins

any none

Unrestricted Plug-Ins any May imply Dis-
tributed Data Stor-
age

External Tool any Enforces Distributed
Data Storage

Plug-in-free Exten-
sions

any Extensions as Active
Agents

Data
Storage

Central Data Storage any storing compo-
nent

none

Distributed Data
Storage

any storing compo-
nent

none

Duplicate Data Stor-
age

any storing compo-
nent, Data Transfer
Component

none

Evaluator
Granularity

Monolithic Evaluator Evaluator Compo-
nent

none

Evaluator with Sub-
Components

Evaluator Compo-
nent, Expert System
(optional)

none

Evaluator as Re-
director

Evaluator Compo-
nent, Expert System
(optional)

none

Input
Processing

Server-side Process-
ing

any At least one Passive
Service on the server-
side

Client-side Process-
ing

any none

Mixed processing any At least one Passive
Service on the server-
side

Table 7.2.: Summary table for structural patterns for e-assessment systems

99

7. Architectural Patterns for E-Assessment Systems

Aspect Pattern Name Participating Compo-
nents

Dependencies and
Restrictions

Adaptive
Behaviour

Path-based Adaptiv-
ity

Student Frontend or
Assessment Genera-
tor

none

Matching-based
Adaptivity

Student Frontend or
Assessment Genera-
tor, Student Model

none

Item
Generation

Templates with Selec-
tions

Item Generator none

Templates with Com-
putation

Item Generator, Do-
main Knowledge
Model or Expert Sys-
tem (optional)

none

Content Construction Item Generator, Do-
main Knowledge
Model or Expert Sys-
tem

none

Table 7.3.: Summary table for functional patterns for e-assessment systems

Similarly, the existence of a student model component is directly coupled to the usage of
the Matching-based Adaptivity pattern for adaptive behaviour.

Most dependencies and restrictions refer to the patterns Passive Services and Active
Agents and thus implicitly encode a decision on which component is the leading part
in a process. The only exception to that observation is the External Tool pattern for
system extensions, which enforces to use the Distributed Data Storage pattern and thus
explicitly defines that there is no leading system in terms of data storage.

100

8. Case Studies
The purpose of this chapter is to apply the pattern catalogue and conceptual framework
developed in the previous chapters to some e-assessment system architectures that are
documented in literature. The goal is to describe these architectures using the terms
and concepts developed above. A particular focus within these case studies is put on
integration aspects to be in line with the overall topic of this publication.

8.1. Case 1: JACK
JACK is an e-assessment system that has been started as a system for assessing program-
ming exercises in Java in the year 2006. It has evolved to a multi-domain e-assessment
system in recent years with some involvement of this publication’s author in the ar-
chitecture development and system implementation. The architecture of the system is
primarily documented in [268] and [269].

The general architecture of JACK (see fig. 8.1) is a layered architecture with a design
focus on the server-side. The client-side is realized via web-pages delivered by the
server and a single plug-in for the IDE Eclipse that only eases downloading assignments
and uploading submissions for students in specific exam situations. All relevant input
processing happens on the server-side. The server-side is logically split up into a core
server and a worker server, where multiple instances of the latter can connect to one
instance of the former. The core server consists of passive services organized in two main
layers, where one layer connects to the frontend (web and web service for the Eclipse
plug-in) and the other one offers business logic capabilities and connects to the data
storage. The data storage follows the Centralized Data Storage pattern and uses a single
relational database.

With respect to grading, JACK employs the Asynchronous Pull pattern in combination
with a Evaluator as Re-director for grading programming assignments. The worker server
employs an active agent called “worker core” that has a set of different sub-components
as so-called “checker plug-ins”. The grading process for a single submission is split up
into several jobs right after submission by the business logic component of the server
core. The worker core thus is able to fetch one of these jobs from a queue and forward
it to an appropriate checker plug-in. If necessary, one checker plug-in can call another
one. Once the checker plug-in has finished, the worker core returns the result and has
thus finished the grading process for the respective job. If a single submission produced
several jobs, these can either be processed by one worker core one after another or by
several worker cores in parallel in no guaranteed order.

In addition to that, JACK also uses the Synchronous Push pattern in combination
with a Evaluator with Sub-Components for some short-running grading tasks. This

101

8. Case Studies

Figure 8.1.: Architectural overview of JACK showing all main components. One core
server can serve multiple worker servers and one worker server can connect
to multiple core servers.

combination is used for so-called “form-based” assignments, such as multiple choice or
fill-in items in which only a moderate complexity for evaluations exist. In particular,
the evaluator components for these exercise types may connect to expert systems such
as computer-algebra-systems to perform evaluations. The evaluator component is a
Multi-Threaded Evaluator that performs Sequential Evaluation. The same mechanism
with calls to the same expert systems is also used for item generation for these types of
assignments, where JACK uses the Templates with Computation pattern. JACK does
not maintain an explicit domain knowledge model, but uses an item generator within the
business logic that can connect to the same computer-algebra-systems that are used for
evaluation. In addition, JACK uses the Path-based Adaptivity pattern on these types of
assignments and thus allows to dynamically adapt the sequence of steps in a complex
multiple-choice and fill-in item.

Several different patterns are relevant for JACK’s capabilities in system extensions
and system integration. The worker server uses the Unrestricted Plug-In pattern for the
checker plug-ins that realize different checks on programming assignments. Each plug-in
may realize a particular kind of check for a particular programming language and is
allowed to invoke arbitrary sub-components or external resources to do so. In particular,
each checker plug-in has to be written in Java and to implement an Java interface defined
by the worker core, but may invoke other components that are compatible with the target

102

8.2. Case 2: ActiveMath

programming language of the submission under test. This is for example used when
checking programming assignments in C++ [122].

As the worker core within the worker server part of the architecture is an active agent,
it can also be used as a Plug-in-free Extension to systems offering an appropriate API.
An actual example that has been used with JACK in this configuration is the xQueue
from the MOOC-platform EdX [79]. Finally, the server core of JACK implements the
tool provider part of the IMS LTI standard and can thus be used within other systems
following the External Tool pattern.

In summary, JACK is a system that makes some efforts to provide a clearly defined
architecture and to use and offer appropriate integration mechanisms. Grading for
form-based exercises and programming exercises is implemented in an entirely different
way and with different features so that the integration mechanisms seem to work well at
least for practical purposes. A variety of patterns could be identified and used to describe
the key concepts of the system, so that also the pattern catalogue and the conceptual
framework seems to be sufficient for this case study.

8.2. Case 2: ActiveMath
ActiveMath is an intelligent tutoring system for mathematics that includes an extensive
exercise subsystem that is documented in many details in several publications [105, 106,
107].

The general architecture of ActiveMath is a layered architecture with a focus on the
server-side. A presentation engine on the first layer provides several views as browser-
based user interfaces. An “exercise subsystem”, a “tutorial component” and some data
stores form the second layer of the general architecture. All components are passive
services that are triggered by user interactions to perform grading solely on the server-
side. Within that architecture, the Distributed Data Storage pattern is used to separate
between a knowledge base for domain knowledge, a storage for learning materials called
“books” and stores for strategies used within the exercise subsystem. Notably, a visual
authoring tool for exercises in ActiveMath is available, but as there is no automated
data transfer or synchronization between that tool and the core system there is no reason
to assume the existence of a duplicate data storage.

Grading in ActiveMath happens according to the Synchronous Push pattern and
employs a Evaluator with Sub-Components. The user interface forwards an user response
to an item via the “exercise controller” and the “exercise manager” to the “diagnoser”
that is the main evaluator component within ActiveMath. The diagnoser can use a
“query broker” to issue calls to external expert systems such as computer-algebra-systems
or domain reasoners to analyse the student input. Although it is not described explicitly
in any of the publications, the evaluator component seems to be a Multi-Threaded
Evaluator that uses Sequential Evaluation. This is also a reasonable assumption, because
performance data of ActiveMath allows for 100 to 150 parallel users, which is similar
to Jack that uses the same combination of patterns for a similar task. Anyway, the
result of the evaluation process is returned to the exercise manager that in turn decides

103

8. Case Studies

on how to proceed in the exercise presentation. In particular, it may involve an “exercise
generator” that consults a student model and thus allows both for Path-based Adaptivity
and Matching-based Adaptivity.

The exercise generator in ActiveMath is a very important component that not only
allows for adaptation of steps in complex exercises, but also is able to generate hints
based on domain knowledge provided by domain reasoners. For that part of its features
it uses the Content Construction pattern, although it is not able to generate entire items
based on a domain model. For example, it can use a domain reasoner for linear, quadratic
and higher order equations to automatically construct a sequence of correct steps to
solve a particular problem defined by an exercise author. The same domain reasoner is
then also used in grading a response to find out whether a student input is a correct step
towards a complete solution. For the generation of item contents, ActiveMath also
uses the Templates with Selections pattern with simple randomization.

ActiveMath offers no specific interfaces or patterns with respect to system extension.
Any external systems such as computer-algebra-systems and domain reasoners are included
by explicit connections via the query broker and no patterns are present that define
a unified way of adding additional systems. ActiveMath also does not offer specific
interfaces to be included into other environments.

In summary, ActiveMath is a system that has been developed with a clear focus
on a sophisticated feature set and extensive use of domain-specific tools, but without
considering integration as a key characteristic on the architecture level. That gets clearly
visible by the fact that almost every functional pattern from the pattern catalogue can
be found in the system, but none of the patterns for system extension. At the same time,
the pattern catalogue and the conceptual framework that were created with the focus on
integrated e-assessment in mind turned out to be sufficient to describe large parts of a
more closed tutoring system as well in this case study.

8.3. Case 3: The “Ultimate” E-Assessment System
In 2009, Armenski and Gusev provided thoughts on the architectural style and a con-
ceptual description of the overall architecture of an “ultimate” e-assessment engine
[19]. The publication was driven by the ideas of service-oriented architectures and a
perceived need for a better integration of e-assessment systems into general web-based
technology-enhanced learning systems such as learning management systems.

The overall architecture is designed as a layered architecture consisting of a presentation
layer to connect to frontend components, a common services layer that connects to
external services e. g. for authorization, an e-assessment services layer representing the
business logic and a composite services layer. The latter manages connections to external
content provides and also offers services to systems that want to include e-assessment
services from the “ultimate” e-assessment system. Consequently, the architecture uses the
Passive Services pattern and assumes all grading activities to happen on the server-side.
The common services layer allows to use the Distributed Data Storage pattern and the

104

8.4. Case Study Summary

architecture includes an additional “content repository”, thus distributed data storage
seems to be the intended strategy.

Among the common services sketched in the overall architecture there is also a “service
registry”. This allows to use the Plug-In-free Extensions pattern to add additional
functionality via additional services that register themselves and are discovered by other
services as needed. At the same time, the composite services layer may offer appropriate
services to other systems so that the e-assessment system can be used by these systems
following the External Tool pattern.

Since the publication only provides an overall architecture, no details are given about
the design of the evaluation processes and the design of evaluator components. Hence
no patterns for evaluator granularity and grading a response can be identified from the
architecture description. The same is true for functional patterns, which is not surprising
as a conceptual description of an architecture is not expected to include functional details.

In summary, the architecture for the “ultimate” e-assessment engine presents a good
complement to the architecture of ActiveMath as discussed in the previous section. The
“ultimate” e-assessment engine is explicitly designed with interoperability and integration
aspects in mind and thus presents no functional details. Notably, the design is primarily
based on the concept of independent services and all patterns that could be identified are
direct derivations from that principle. The system design does not explore the needs of
different possible functionality and thus also does not answer the question on whether the
“ultimate” design is able to fulfill all possible needs. As the design thus does not include
some new or rarely discussed ideas, the pattern catalogue and conceptual framework was
again sufficient to describe most of the architecture in this case study.

8.4. Case Study Summary
In this chapter, three different system architectures have been described using the pattern
catalogue and the conceptional framework that was developed in chapter 7. In all three
cases, the existing set of patterns was sufficient to describe the core characteristics of the
architectures. Hence, it can be concluded that the pattern catalogue indeed covers most
of the important patterns that are used in the design of e-assessment systems. Table 8.1
provides a summary of the different patterns found in the three case studies.

Although three case studies can hardly represent the full state-of-the-art in the design
of e-assessment systems, several observations can be made from this table. First, using
server-side processing and passive services seems to be a dominant design choice that
was made in all three cases. Second, two systems (JACK and ActiveMath) are already
enough to encounter all three possible patterns for item generation. Third, integration
and extensibility are polarizing aspects, as JACK uses three out of four possible patterns
for that aspect, while ActiveMath uses none. That stresses the intention of this
publication to look at the design of technology-enhanced learning systems primarily from
the perspective of integration.

105

8. Case Studies

Aspect JACK ActiveMath The “Ultimate” e-
Assessment System

General
Component
Behaviour

Passive Services, Ac-
tive Agents

Passive Services Passive Services

Component
Communi-
cation for
Grading a
Response

Synchronous Push,
Asynchronous Pull

Synchronous Push none

Internal
Evaluator
Component
Behaviour

Single-Threaded
Evaluator, Multi-
Threaded Evaluator,
Sequential Evalua-
tion

Multi-Threaded Eval-
uator, Sequential
Evaluation

none

System Ex-
tensions

Unrestricted Plug-
Ins, External Tool,
Plug-in-free Exten-
sions

none External Tool, Plug-
in-free Extensions

Data Stor-
age

Central Data Storage Distributed Data
Storage

Distributed Data
Storage

Evaluator
Granularity

Evaluator as Re-
director, Evalu-
ator with Sub-
Components

Evaluator with Sub-
Components

none

Input Pro-
cessing

Server-side Process-
ing

Server-side Process-
ing

Server-side Process-
ing

Adaptive
Behaviour

Path-based Adaptiv-
ity

Path-based Adaptiv-
ity, Matching-based
Adaptivity

none

Item Genera-
tion

Templates with Com-
putation

Templates with Se-
lection, Content Con-
struction

none

Table 8.1.: Summary table for the three case studies from chapter 8. The table indicates
which patterns are used by which system for the different aspects of system
architecture.

106

9. Results
The goal of the previous chapters was to elicit specific features and typical building blocks
of e-assessment systems and to provide several static and dynamic views on e-assessment
systems that can be used as a conceptual framework in terms of architectural patterns.
Two catalogues are the main results from this effort. Since these results have been
validated by three case studies, this chapter can now draw some conclusions with respect
to the essential qualities e-assessment systems must ensure by design and aspects that
need further research both in integrated e-assessment and beyond. In addition, some
connections to part I of this publication can be drawn.

9.1. Contributions to Integrated E-Assessment
Two catalogues have been developed in the previous chapters: One catalogue of compo-
nents for e-learning and e-assessment systems and one catalogue of patterns on how to
integrate these components with each other. Both catalogues can be used to discuss the
integration of e-assessment capabilities into other systems based on a unified terminology
with respect to the purpose of the components. They can also be used to describe the
technical integration within an architecture based on a unified terminology with respect
to software design. Finally, they can be used to identify suitable places for integration
interfaces within an existing system architecture that has originally not been designed
with integration capabilities in mind. All these actions can be considered helpful to
improve the design of e-assessment systems and to promote research and development in
the area of e-assessment integration.

Three small case studies were sufficient to demonstrate how necessary more research in
this area is indeed. On the one hand, one system analyzed in these case studies showed a
rich amount of sophisticated functional features, but no characteristics for being integrated
into other systems or offering interfaces for easy system extension by integrating other
systems. On the other hand, conceptual ideas for e-assessment architectures exist and
have also been discussed in the case study that focus on integration without digging into
the details of e-assessment functionality. However, these architectural concepts may be
too focused on a particular style and thus miss the capability to integrate sophisticated
features. This is another lesson from the case studies, in which the analysis of two systems
was sufficient to identify a total amount of five different patterns for functional aspects
such as adaptive behaviour and item generation. Integrated e-assessment architectures
will thus most likely always need to be open for integrating emerging approaches that
add valuable features to existing e-assessment systems.

In turn, the results from the previous chapters can help to classify upcoming research
results and provide silos in terms of well-defined components in which specific functionality

107

9. Results

can be realized independent of the surrounding system. This can help to shape the design
of new features and make them more universally applicable right from the beginning.
New features should not be defined and understood as additions or amendments to a
single existing system, but designed as improvements or evolutions of existing components
or as completely new components not yet covered by the component catalogue. This
way, it is much easier to estimate the benefits of these features and identify all potential
context in which they can be used.

This also makes a strong connection to the results from part I of this publication.
Components like “assessment generator” and “evaluator component” from table 6.2
directly link to activities such as “author tests” and “create feedback” from table 2.3 and
even more closely to the states “generated” and “evaluated” for the alpha “Test” (see
table 3.2). Consequently, the results from the previous chapters help to relate system
features and behaviour to states and activities in the assessment process. This helps
to identify system components or features that must be included into a system that is
supposed to support a particular type of assessment process. In turn, this also helps to
identify missing interfaces or patterns for component integration, if states are grouped in
a process model that refer to components with limited integration capabilities. Similarly,
we found commonly used user interfaces for participants and organizers, but got no
commonly used interface component for authorities. This is in line with the fact that
the latter are optional in the process, but also indicates that there might be a lack of
integration of software components into the actual processes.

All these potential use cases for the two catalogues point to the same general findings: To
enable integrated e-assessment, e-assessment systems must provide well-defined interfaces
both on the level of system integration with external systems and on the level of feature
integration within a system. The component- oriented view on system design made it
possible to define patterns on how to integrate specific features like adaptivity, item
generation or hint generation into a larger system context. The same design principles
also explain how to integrate a particular system offering these features into the larger
context of a learning management system or similar. If the goal is to integrate specific and
sophisticated e-assessment features into general purpose learning systems, an approach
based on well-defined components and reusable patterns seems to be a promising way to
go.

9.2. Contributions beyond the Scope of this Publication
The component and pattern catalogues from the previous chapters are not strictly limited
to the aspect of e-assessment integration. Instead, they can be used as a starting point
for a general decomposition of an existing system into components. This can be helpful
for describing an existing architecture that is already component based. It can also serve
as a starting point for the re-design of an existing system that is not yet designed in
terms of well-defined components.

The component and pattern catalogues can also be used as a universal basis to describe
and compare e-learning and e-assessment systems in various types of research such

108

9.2. Contributions beyond the Scope of this Publication

as literature studies or comparative analyses. The same is true for the connections
between system architecture and assessment processes from part I of this publication.
These connections also cannot only be explored with respect to e-assessment integration,
but also more generally with respect to tool support and automation in e-assessment
processes. For example, a mapping from activities to components can be created to find
out whether some common activities are not yet supported by typical components of
technology-enhanced learning systems.

On a more general level, this publication provides a sample case of domain-specific
software engineering and architecture analysis. The same procedure for finding compo-
nents and defining patterns can surely be applied to other domains as well to provide
an overview on the state-of-the-art in system architecture in that domain. If several of
such studies exist, comparisons between different domains become possible. Notably, this
publication already used several ideas and concepts from general software engineering, e. g.
for the discussion on architectural styles in section 7.1.1 and also in some of the patterns.
This way it helps to understand which general concepts from software architecture are in
actual use in a particular domain. This in turn helps to compare software systems from
different domains on a conceptual level for the sake of software engineering research.

109

Part III.

Domain-specific Item Handling

111

10. The Core of E-Assessment

Receiving students’ input for assessment items and producing grades and feedback for that
input is surely the most important duty of e-assessment systems. While the previous parts
of this publication tackled organizational and technical aspects that allow many design
choices, item handling tackles the core of assessment. Design choices are still possible
in that area, but they are now supposed to be primarily determined by the domain of
the assessment and not by the process. The purpose of this part is to examine how
domain-specific data sources and tools can be used to generate, represent and evaluate
assessment items. The focus is thus on the conceptual integration of domain-specific
aspects into e-assessment. Pure technical aspects have been discussed in the previous part
and can also be found in other places (such as discussions of service-oriented architectures
for flexible e-assessment systems [5]).

Different two the first two parts of the publication, the current part is not based
on a literature survey, which is due to the enormous mass of research that has been
produced in that area in recent decades. Even for the very specific topic of automated
grading systems for assessment items on writing program code, more than 100 different
systems have been published in recent years [141]. The total amount of literature that
examines domain-specific item handling in some way is surely much higher. Hence the
current part of the publication will summarize tools and techniques on a rather abstract
level to provide a good coverage of the field without running through lengthy lists of
details. Instead, chapter 14 is dedicated to detailed case studies from one particular
e-assessment system that implements several techniques. Where appropriate, references
to other systems or literature reviews will be made throughout all chapters of the current
part of the publication.

Assessment items can be divided into different categories depending on the amount
of different responses that is possible and that is considered correct. The first category
are closed, convergent items. In that category, only a limited amount of responses is
possible, and consequently only a limited amount is considered correct. Typical examples
include multiple choice and multiple response questions, but also items in which elements
must be ordered or dragged to a set of predefined positions. In any of these cases, simple
mathematical calculations determine the number of possible responses in terms of possible
combinations or permutations. Automated evaluation of item responses consequently
requires no domain-specific knowledge or techniques in the first place, as all correct
responses can be defined during item authoring. An e-assessment system hence only
needs to compare an answer with the sample solution and can return the feedback and
grade associated with that particular case. However, domain-specific item handling may
be necessary when automated generation of item content is used. For example, an item
may ask students to order political parties by their result in an election. Both the names

113

10. The Core of E-Assessment

of the elements to be ordered and the expected outcome depends on which election is
used during item generation. Consequently, the rule for determining the correctness
of a response needs to be adjusted every time new content is generated for the item.
Nevertheless, each instance of the item is still a closed, convergent item in which the
number of parties determines the number of possible responses and in which exactly one
ordering is the correct answer.

The second category are open, convergent items. In that category, the number of
possible responses is virtually unlimited (with some practical limitation for technical
reasons), but the number of correct responses is still limited to a reasonable small number.
Typical examples include cloze texts or calculations where a student is requested to
enter a single number. In general, each input field in such items allows to type in
any sequence of characters or numbers, but only one is considered correct. Tolerance
with respect to different representations of an answer (such as ignoring case or allowing
both fractions and decimal numbers) may extend the set of accepted answers, but will
still keep it small. However, e-assessment systems may need to perform a lot more
domain-specific item handling in comparison to closed items. First, the inputs may not
only be plain texts or numbers, but any artifact that can be consumed by an electronic
system. Examples include mathematical or chemical formulas, images, drawings, and
files formatted in domain specific languages like programming or modelling languages.
Although it is usually possible to create string representations for any of these contents,
determining the correctness of a solution may involve much more domain knowledge than
simply comparing the string representations of a student’s solution and a sample solution.
Domain-specific item handling may also be necessary when generating open, convergent
items. In particular, it may depend on the domain what item content is allowed in order
to keep the item property of being convergent. For example, a linear function has at
most one root, but a sinus function can have an infinite number of roots. Consequently,
the following scenario is possible: Students are asked to enter a root of a given function
and the item generator may present them a linear function or a linear function combined
with a sinus function, but no plain sinus function. The correct answer can be determined
directly from the selected function and thus grading and feedback generation just needs
to compare the input with the correct answer. However, if the item generator would also
use plain sinus functions, there are infinite many correct answers. This requires different
techniques for checking the correctness of the input and the item is no longer convergent.

Instead, it belongs to the third category of items, that consists of open, divergent
items. In that category, both the number of possible responses and the number of correct
responses is virtually unlimited. Typical examples include essays and programming
exercises. In this category, an item author can only provide a list of properties a response
must have in order to be acceptable as a correct solution. Similarly, properties can be
defined that trigger specific feedback or result in grade reductions. The process of finding
out whether a given solutions holds a certain property can be arbitrarily complex and
will require domain-specific tools in any non-trivial case.

The current part of the publication examines the involvement of domain-specific data
sources and tools into the item handling in the following way: Domain-specific input
tools and data representations are discussed in chapter 11. These aspects are relevant for

114

any open item types, regardless of being convergent or divergent. Chapter 12 discusses
the use of domain-specific data sources and tools for automated item content generation,
which is relevant for all three categories of assessment items. Chapter 13 discusses the
same for automated grading and feedback generation, which is primarily relevant for
divergent assessment items. Notably, the ordering of chapters deliberately does not
follow the appearance of the steps in the assessment process, in which item generation
comes first and is followed by user input and item evaluation. Instead, the ordering of
the chapters is defined from a technical perspective: Input editors and data formats
are defined solely based on domain knowledge and are independent of the mechanisms
used for item generation or evaluation. Item generation in turn may use domain-specific
data formats to express parts of the item content. Finally, item evaluation may do the
same and may additionally benefit form information or mechanisms used during item
generation.

In all three chapters, techniques, tools and data sources will be reported from literature
and compared with each other in order to produce a structured view on how domain-
specific elements can be integrated into item handling in e-assessment system. Chapter
14 presents four case studies to wrap up the results from exemplary domain perspectives.

Notably, the current part does not discuss the question whether it is better to formulate
a particular question or exercise as an open or closed item. Although this is also a very
interesting and important question, it is mainly a matter of instructional design, goals of
an exam or exercise and conditions of the target audience. In particular, it is a question
that needs to be answered for any kind of assessment, not just for e-assessments. Hence it
also does not contribute much to the discussion on how to integrate domain-specific data
sources and tools into e-assessments and is thus out of scope for the current publication.

115

11. Input Editors and Data Formats

As already mentioned earlier, the question of input editors and data formats is primarily
important for open questions in which student do not choose from a predefined set of
possible answers. Consequently, an item must provide some kind of input fields (at least
one) that will naturally only be able to accept input in a specific format. More precisely,
each input field will define two aspects: The mode of input and the format in which the
input is delivered to the e-assessment system for further processing.

In the general case of domain-independent formats, both aspects may be the same. For
example, an input field can accept any sequence of characters from a given encoding and
can also pass it to an evaluator component or database. Similarly, an item may accept
pictures uploaded as files (thus essentially being a bit string) and send them to other
components without changes. However, an item may also contain an input field that
accepts free-hand drawings by mouse, gestures or digital pen. Depending on the domain,
it can then be appropriate to pass on these drawing as an image or as a formal description
of its content. If this decision is deferred to the evaluation step, the input editor and
data format stay domain-independent, but if the frontend component displaying the item
is already aware of the most appropriate choice, it makes a domain-specific decision.

The decision whether to use a domain-specific input editor or data format is not only
a technical design choice, but implies major consequences for the assessment itself: Using
a domain-specific format implies the option to reject user input for formal reasons before
the actual grading process starts. In particular, it is possible that proper grading is not
possible at all, if the input is not understandable for the grading algorithm due to a
wrong format. Similarly, providing domain-specific input editors can ensure that the
correct format is used but at the same time they may require the user to have specific
knowledge on how to use these editors. In that case, users with missing competencies in
using the editor may not even be able to make a proper submission at all and will thus
receive no grades or detailed feedback. In turn, using a domain-independent format with
a generic input editor allows any user to provide any input, including to option to answer
correctly by pure guessing. Even if the latter is not seen as a relevant risk, instructional
design plays an important role in the decision on which editors are considered sufficient
and which are not. Literature reports on cases in which receiving free-hand drawings
of mathematical formulas as images was seen as sufficient [215] as well as on cases in
which free-hand drawings of chemical formulas as images were not considered appropriate
[134]. Notably, some systems may involve multiple ways to submit answers and complex
conversions between data formats to allow for a maximum of flexibility in the input [56].

Notably, the discussion of data formats and input modes is a quite old one. It has
been mentioned explicitly for the first time not later than 1972: Chemistry students were

117

11. Input Editors and Data Formats

asked to turn in their homework in scientific notation on a standard answer sheet that
was then transferred to punchcards for automated grading on an IBM 360 Model 50 [55].

11.1. Classes of Data Formats
In general, computers process data in terms of byte sequences. While the individual
bytes represent single characters, the ordering of these characters is important to convey
the actual information encoded in the data. In the case of e-assessment systems, the
most prominent information to be stored is the answer a student provided for an item.
The complexity of that information can be very different: In a multiple choice item, the
complete answer may be a single character that represents the selected answer option. In
an item on business process modelling, the answer may consist of model elements, their
connections, textual labels associated with each of them, and layout information for all
elements named so far. In the same way, item generation may use item templates to be
filled with arbitrary character sequences in a simple case and complex data structures for
for the automated creation of large artifacts in other cases. Hence, it may be appropriate
for some items to use domain-independent formats to store information of low complexity,
while it may be appropriate for other items to use domain-specific formats that are able
to encode complex information in a convenient way.

From a technical point of view, defining a data format is equivalent to defining a
grammar for a formal language that accepts all byte sequences that adhere to the desired
format and rejects all others. Such languages can be either specific for a problem or a
domain, or they can be of general use. Moreover, languages may be textual, where any
relevant artifact is created directly in that format, or they may be graphical with one or
more additional textual representation schemas. Examples for all these cases and their
characteristics will be discussed in the following subsections.

11.1.1. Plain Text Format
The most common data format that can be found in many e-assessment systems is plain
text. In particular, it can be used with fill-in-the-gap items and any kind of essay tasks.
The data format contains no information about the domain of the item and thus the
answer for two completely unrelated items from different domains may look the same.
Any answer will be subject to grading, as the format itself does not allow to make any
distinctions between a meaningful answer and a meaningless one. The only thing that
can be ruled out safely is an empty answer.

Plain text can also be used during item generation e. g. to store contents to be inserted
into placeholders in an item template. It allows for great flexibility as it can contain
virtually any content, but implies limited control about the generated item. For example,
the character sequence “1/2” may have the same meaning as “2/4” in the domain of
mathematics, but a different meaning if it is meant to be a house number. Thus any
domain-specific logic that allows for validations, simplifications or unifications needs to
be encoded in the item generator that knows the domain, as it is not visible from the
format.

118

11.1. Classes of Data Formats

11.1.2. General Purpose Data Formats
Another common feature of e-assessment systems is the use of general purpose data
formats for parts of the items and also for encoding answers. One available option are
various file formats for encoding images or drawings, like JPEG, PNG or SVG. These can
obviously be used in many contexts to include images into items during item generation
and they can also be used to submit answer as scans of free-hand drawings on paper.
Similarly, a system may request a specific file format for textual input as an alternative
to plain text [316]. Proprietary formats may fall into the same group of data formats,
even if they were designed with a specific domain in mind. For example, a format that
was designed for free-body diagrams in mechanics teaching [299] is most likely usable
also for many other kinds of drawings or sketches as well.

Proprietary formats for domain-independent closed items are also an example for
general purpose data formats. For example, the choice made by a student in an multiple
response item can be encoded as a sequence of 0 and 1. While the resulting character
sequence is plain text from a technical point of view, it is based on a simple formal
language. That language restricts the choice of possible characters in the answer and also
its length. Similarly, a proprietary format can be used to encode choices made during
the item generation process.

Different to plain text, general purpose data formats allow to reject answers if they
are in the wrong format. However, that decision is in no way related to the domain of
the item and thus equivalent to the decision on whether a plain text is empty or not. For
example, even a completely black or white image will be accepted for grading, as long
as it is in the correct file format. Hence, again the very same content can be submitted
to completely different items from different domains and will be handed over to the
respective evaluator components. The only way to ensure that the answer is meaningful is
to use input interfaces that create some restrictions like the checkboxes mentioned above.
In that case, the answer adheres to a specific format due to the way it was created. In
fact, this is the usual way of using general purpose data formats, as students are usually
not asked to write the correct file format by hand or encode there answers themselves.
Instead, an appropriate input editor is used or students are asked to upload files that
have been created with a suitable tool.

Similarly to answer grading, contents produced during item generation can only be
rejected in an automated validation for formal reasons. Since item generators can use
standard libraries in many cases (e. g. for image generation [217]), rejecting created
content for formal reasons is a largely hypothetical case.

11.1.3. Textual Domain-specific Languages
Many domains make use of domain-specific languages and in some cases it may even be
the aim of an assessment item to expose students to that particular language. A typical
example are assessment systems for programming, where students are expected to submit
program code [141]. In that case, answers that do not adhere to the expected format are
not necessarily rejected. Instead, feedback can be given on syntactical errors, which is in

119

11. Input Editors and Data Formats

fact a very common class of feedback for programming items. However, there is no clear
border between meaningful answers that contain a large amount of syntax errors and a
meaningless answer in the wrong format. Hence, any answer must be processed by the
domain-specific format check and it must be decided on the basis of that result whether
feedback is created or the answer is rejected.

Also other systems that do not specifically aim for training students in a particular
language make use of domain-specific languages to capture complex input in a convenient
way. Most prominent is the use of the LATEX language in e-assessment systems for
mathematics [236]. Instead of implementing domain-specific logic in the evaluation
component to find out that “1/2” might be a fraction with numerator 1 and denominator
2, it is left to the student to write that fraction in LATEX code and thus directly mark
the numerator and denominator. That is a method that is also applicable to larger and
more complex artifacts. Similar to the case of programming languages, it allows to reject
answers that contain no LATEX code and it allows to give precise feedback on syntax errors
before it comes to actually grading the answer. Similar is possible for other formats for
mathematical input that follow the syntax of mathematical software tools [214].

Since domain-specific languages allow for feedback on syntax errors, the use of format-
specific input editors has important consequences. The editor may be non-intrusive, like
most IDEs for programming are. In that case, it marks syntax violations and hence
gives some kind of feedback, but it does not prevent uses from saving their wrong input.
Consequently, syntax errors can also be detected during the grading process, which allows
to trigger respective feedback. However, the input editor may also be intrusive and thus
hinder users in creating artifacts that violate the grammar of the domain-specific language.
For example, an input editor may try to render the LATEX input and reject any input that
is not in correct syntax. In that case, any answer that reaches the evaluator component
is syntactically correct. While that may be beneficial by simplifying the grading process,
it may also be a drawback as no feedback can be produced for a particular class of errors.

Domain-specific languages can also be used to store data during item generation. In that
case, standard tools for that language can be used to validate the generated constructs or
to perform simplifications and unifications, like doing some pretty-printing for generated
program code fragments or flagging LATEX commands with empty mandatory parameters.

11.1.4. Domain-specific Languages with Additional Representation Schemas
Besides textual languages, many domains make use of graphical languages. Since parsers
for graphical representations are rare, additional textual representation schemas for most
of these languages have been defined. The graphical representation encodes information
in a human readable way that is often convenient to read and edit by using the concrete
syntax of the language. At the same time, the textual representation encodes the same
information using the abstract syntax of the language within a different representation
schema, including extra information like layout positions and alike.

Probably the most common domain-specific language of that kind is the language
used in mathematics. It uses various text markups and special symbols (like indices,
superscripts, or the sum symbol with all its various annotations) as well as artifacts

120

11.1. Classes of Data Formats

that require position information (like vectors and matrices). Although many systems
use the LATEX language to encode mathematical formulas and expressions as discussed
above, that language does not qualify as an additional representation schema for the
mathematical language. Admittedly, LATEX provides some commands that are named
and formed directly after the mathematical constructs they are used for (such as the
LATEX command for fraction), but in general LATEX is just a markup language that reflects
the optical properties of mathematical formulas and expressions but not their semantics.
Instead, domain-specific languages such as OpenMath1 and MathML2 can be used in
e-assessment system [53, 248, 285]. These languages are based on XML and are designed
specifically to capture the abstract syntax of mathematical formulas and expressions in a
machine readable way. Similarly, OpenChem and ChemML3 can be used for chemical
formulas [216], XMI for UML models [206] and Music XML4 for musical scores. For
the latter, VexTab5 is an alternative that is not based on XML.

Different to textual domain-specific languages, syntax errors can occur in languages
with additional representation schemas on two levels: First, there could be a violation of
the grammar of the representation schema (e. g. XML). If that occurs in an answer, it
can be ruled out as invalid. Second, there could be a violation of the grammar of the
actual language (e. g. UML). If that occurs in an answer, it can be considered in the
feedback. Thus domain-specific languages with additional representation schemas allow
for a better distinction on when to reject an answer for formal reasons and when to give
feedback. That is also compatible with format-specific input editors, as these can be
designed in a way that they ensure the correct use of the representation schema, but
allow to make syntax errors in the domain-specific language. However, that benefit can
only rarely be used to full extent for two reasons: First, many universal input editors
that are not specifically designed for educational purposes prevent users from making
at least a large amount of syntax errors. Moreover, many standardized representation
schemas are only able to represent syntactically correct artifacts. Hence, the creation of
editors and representation schemas that explicitly allow to create and store artifacts with
errors is sometimes an explicit requirement for e-assessment systems to allow teachers to
inspect those errors and use them for teaching [292].

Domain-specific languages with additional representation schemas can also be used
for item generation. Similar to pure textual domain-specific languages they allow for
validation, simplification and unification of the generated artifacts without the need to
implement specific logic for that in the item generator. Instead, standard tools for the
particular language can be used that are able to e. g. turn the fraction 2

4 into 1
2 or to

find a neat layout for a generated UML diagram.

1https://www.openmath.org/
2https://www.w3.org/Math/
3http://cml.sourceforge.net/
4https://www.musicxml.com/
5http://vexflow.com/vextab/

121

11. Input Editors and Data Formats

Format Formal check Format-
specific input
editors

Domain-
specific oper-
ations during
item genera-
tion

Usage exam-
ples

Plain text not possible not possible not possible Essays

General pur-
pose language

reject typically used
to enforce for-
mat

only format
validation

Images, MC
indices

Textual
domain-specific
language

reject or feed-
back

can help but
may suppress
feedback

possible Programming

Domain-specific
language with
additional rep-
resentation
schema

reject or feed-
back

can help and
allow feedback

possible Mathematics,
Conceptual
modelling

Table 11.1.: Summary of key characteristics and capabilities of different data formats
used in e-assessment systems.

11.1.5. Summary
As a result from analyzing the examples of domain-specific and domain-independent
formats in the previous sections, we can conclude the following definition: A data format
is domain-specific, if assumptions about the format or content of an item or submission
can be made that go beyond technical specifications (like file format or character encoding)
and that may rule out answers as invalid before it comes to answer evaluation. When using
a domain-specific data format, an invalid submission is not considered a wrong submission
with respect to the goal of the assessment and for the purpose of giving elaborate feedback.
The use of domain-specific formats allows for validations, simplifications and unifications
as an automated step during item generation. In contrast to that, a data format is
domain-independent, if there are at most assumptions about the technical specification
of the format or content of the item or submission. All submissions are evaluated and
problems in understanding a submission are causing it to be considered wrong, potentially
triggering elaborated feedback.

The different possibilities for formal checks, use of format-specific input editors and
domain-specific operations during item generation are summarized in table 11.1. The
choice of examples stresses that the two top lines in the table contain domain-independent
formats, since the refer to item and content types rather than domains. In turn, the

122

11.2. Classes of Input Editors

examples in the two bottom lines indeed refer to domains and thus point out that the
respective formats are domain-specific.

11.2. Classes of Input Editors
The discussion of data formats in the previous section directly triggered a related
discussion on input editors. Whenever a data format other than plain text is used,
input editors can help students to make proper input. At the same time, input editors
that enforce certain properties of the format can simplify the development of evaluation
components, since less checks for correct formats are necessary. As already mentioned
above, that may in turn hide student errors from the evaluator component and thus
limit the capabilities to give feedback. In turn, domain-specific editors may produce
feedback on syntactical errors on their own without involving any other components. If
the grading is split up that way as a deliberate design choice, that is a concrete example
of the mixed processing pattern that was discussed in section 7.3.4 in part II.

Closely related to the possibility to produce feedback are the user’s competencies that
are required to use the input editor. For example, a simple drag-and-drop editor may be
usable for anyone with reasonable skills in using a computer, but it is only able to provide
information on the positions of dragged elements in a general purpose data format. In
turn, a sophisticated editor may produce a formally correct diagram of a conceptual
model in some standardized representation schema, but at the same time it requires the
user to know at least some rules on how to combine available elements.

For most standardized data formats there are also editor components available that
can be integrated into an e-assessment system. As already mentioned above, that has
serious consequences on the feedback. Most available input editors are not designed with
educational purposes in mind. They thus may simply prevent users from making some
types of errors without giving elaborate feedback on why some editing step is not possible.
While that can be helpful during practice and training, it may be limiting in the context
of assessment. With such editors in use, it cannot be distinguished whether students did
not make a particular error because of their competencies or because the editor did not
allow to make that error.

If no appropriate input editors are available, e-assessment systems need to implement
own components for that purpose. These editors may include extra features for educational
purposes that go beyond producing output in the desired data format. In particular,
input editors may store log information on how the editor was used to include it into the
grading process for a deeper analysis [28]. In turn, e-assessment systems may want to
offer specific editors for some item types and thus also need to introduce an appropriate
data format. Since these item types may or may not be domain-specific, the resulting
data formats also may or may not be domain-specific.

Notably, input editors are not necessarily integrated into the student interface. Also
external tools qualify as input editors, even if students need to export their contents from
their as files and upload them into the e-assessment system. However, these external tools
create no separate class of input editors and the following sections make no distinction on

123

11. Input Editors and Data Formats

whether a particular editor is offered as an integrated feature within the student interface
or as an external tool. Similar is true for the integration of input editors into other parts
of an e-assessment system, i. e. into teacher interfaces or authoring tools. Although the
following sections are phrased from the student perspective, similar considerations apply
for teachers and item authors.

11.2.1. Examples of Domain-independent Input Editors
One typical class of domain-independent input editors are plain keyboard based text input
fields, such as in fill-in-the-gaps or (short) essay items. They are often used in conjunction
with plain text data format and thus offer no support for avoiding syntactical errors or
giving feedback on any aspect of the content. They can also be used in conjunction with
general purpose data formats and offer feedback or comfort features related to that format
such as syntax highlighting or spell checking. It can be expected that any student with
reasonable competencies in using a computer is able to perform meaningful interactions
with these kinds of input editors and it can also be expected that they are usable on a
very large range of devices. In turn, students will at most get some convenient comfort
in doing their inputs, but they will not be able to learn anything about the domain of
the item just by using the input editor and observing how it handles their input.

The same is true for pointer-based interactions as another common class of domain-
independent input editors. They occur in cases where students have to point and click
on select boxes or where they have to drag and drop elements into place. Also editors in
which free-hand drawings can be made that are stored in a general purpose data format
as raster or vector images belong to that category. Even sophisticated interfaces that
allow students to pan and zoom images on which they have to place markers belong
to that category, since the editors only store plain coordinates. In fact, the very same
technical framework can be used in completely different domains [134].

11.2.2. Examples of Domain-specific Input Editors
Probably the most prominent class of domain-specific input editors is the class of editors
for line-oriented graphical notations. They are typically used for mathematical formulas
[236], but examples also exist for other domains like chemical formulas [216] or musical
scores [203]. Different technical solutions exist to allow for the correct placement of
the various formula elements, including the definition of control keys on the keyboard
(such as automatically turning “xˆ2” to x2 and “x_2” to x2), the definition of control
sequences (such as selecting a note by mouse click and then use “Shift+Arrow Keys” to
move it on the lines) or the provision of template palettes as shown in figure 11.1. A
common characteristic of all these features is that they support students in making their
inputs by rejecting constructs that are not possible in the respective domain-specific
language. In cases in which plain rejection is not possible (e. g. because partially compete
constructs must be possible due to technical reasons), these editors can at least give
some feedback on their own on the formal correctness of the input without involving any
other component. Different to plain text input fields, these editors require a bit more

124

11.2. Classes of Input Editors

Figure 11.1.: Sample UI of an input field with a formula editor. The palette provides
elements for some typical mathematical notations for roots, exponents,
fractions, and alike. They can be added to the input field by mouse clicks.

competencies to be used correctly. In turn, even students with no prior knowledge will be
able to learn at least some bits of information on the correct usage of the domain-specific
notation just by using the editor and observing which input is possible and which is not.
That immediately raises the question on whether using such editors is necessary or not.
The answer depends on the expected data format. If input can be stored in a general
purpose data format, a domain-specific editor is optional. Instead, a general purpose
graphical editor that allows students to create e. g. formulas as drawings is sufficient
[215]. However, if a domain-specific data format must be used, but students should still
have the opportunity to see the usual graphical representation, an editor that is able to
handle two representation schemas at once is mandatory.

Editors for textual domain-specific languages are another class of domain-specific input
editors. They are common in the domain of computer science for items on writing
program code, but can also appear in other contexts. Similar to domain-independent
textual editors they may offer features like syntax highlighting or autocomplete based
in the language grammar. However, they have to be counted as domain-specific input
editors if these features are used in cases in which knowing the domain-specific language
is part of the required competencies to answer an assessment item. In particular, students
without any prior knowledge in the domain of the item are again able to learn about
the domain-specific language just by observing how the editor understands their input.
Hence, also spell checkers for plain text input can be counted here, if the domain of the
item is language training and the essay they write is on an arbitrary topic. However, the
very same editor is not considered domain-specific, if the domain of the item is the topic
of the essay, while students are expected to know the grammar of the language they use
anyway. Different to the class of editors for line-oriented graphical notations discussed
above, editors for textual domain-specific languages can be considered an optional comfort
feature in any case, as there is only one representation schema that is written directly by
the students.

A third major class of domain-specific input editors covers any kind of graphical
notations that is not considered among the line-oriented ones. Similar to those, it is also
intended to be used with domain-specific languages with additional representation schema.
However, control keys and template palettes are not enough for graphical languages in
which students are free to arrange elements in an arbitrary layout. Instead, editors usually
offer mouse control to place and resize elements. Additionally, they may accept keyboard

125

11. Input Editors and Data Formats

input to add texts to diagrams and to make layout modifications via control keys or
sequences. Using such editors usually requires not only knowledge in the domain-specific
language they support, but often also in the features of the actual editor, as different
editors may offer very different ways to achieve the same result. In turn, these editors
may contain sophisticated features that reject illegal constructs or give feedback on how
to improve them to conform to the grammar of the respective domain-specific language.

11.2.3. Summary
Similar to the discussion on data formats, also the discussion on input editors allows
to conclude some kind of definition for the different input mechanisms: The input
mechanisms to an item are domain-specific, if at least one element to interact with in the
item presentation requires competencies that go beyond general competencies in using
computer interfaces. People with insufficient competencies in the particular domain of
the assessment may not be able to interact with the item in a meaningful way. In turn,
a domain-specific input editor can enforce domain-specific data formats and can give
feedback on syntactical errors on its own. In contrast to that, input mechanisms to an
item are domain-independent, if the elements to interact with in the item presentation
require not more than general competencies in using computer interfaces. Even people
with no competencies in the particular domain of the assessment can create a correct
submission by guessing without learning about any syntactical rules. In turn, a domain-
independent input editor can at most enforce general purpose data formats and cannot
provide any meaningful feedback on syntactical errors.

The relations between the different classes of input editors and the use of domain-
specific or domain-independent data formats are provided in table 11.2 in conjunction
with key characteristics and usage examples.

126

11.2. Classes of Input Editors

Class of editors Typical data
format

Integrated or
external tool

Exemplary
means of sup-
port and inte-
grated feedback

Usage
examples

Domain-
independent
keyboard
based

Plain text Typically inter-
nal

Spell checking Fill-in-
the-gaps,
Essays

Domain-
independent
pointer based

General purpose Typically inter-
nal

none Multiple
choice,
Drawings

Domain-
specific textual
notation

Textual domain-
specific lan-
guage

Both Syntax high-
lighting, spell
checking, auto-
complete

Program
code

Domain-
specific line-
oriented graph-
ical notations

General purpose
or DSL with
add. representa-
tion schema

Typically inter-
nal

Templates, re-
jection of illegal
input

Formulas,
Musical
scores

Domain-
specific arbi-
trary graphical
notations

General purpose
or DSL with
add. representa-
tion schema

Both Rejection of
illegal input

Diagrams

Table 11.2.: Summary of key characteristics of different classes of input editors used in
e-assessment systems. (DSL = Domain-specific language)

127

12. Automated Item Generation

A major challenge in preparing an assessment is the generation of a set of assessment
items that is sufficiently large and where each item has a sufficient quality. Section 3.1.2
in part I already discussed that challenge from a process point of view and section 7.4.2
in part II named several technical patterns for item generation on a rather abstract
level. The current chapter now tackles the question how domain-specific data sources
and tools can be integrated into the process of automated item generation. While most
examples throughout the chapter use classical examples from automatic item generation
based on item models [101, 100], the general techniques of integration can also be
applied to other content construction approaches like the cognitive design approach.
Differences between these different approaches exist from the psychological perspective of
test and item design: The item model approach requires a fairly low cognitive foundation
and can thus be used for item generation relatively quickly. In contrast to that, the
cognitive design approach also quantifies the level and the source of cognitive complexity
in an item and thus makes construct validity more explicit [82]. The current chapter
acknowledges these discussions and the many results on psychometric properties and
item quality (e. g. [15, 123, 16, 17, 21]), but takes a technical perspective on automated
item generation. That focus does not imply any conceptual drawbacks, since research
has shown that automated item generation can produce items in the same quality as
manual item generation [220]. Further details on the psychometric use of assessment
items are discussed to some extent in part IV of the current publication.

There has been much research on automatic item generation in recent years. In
particular, there is a lot of results on automated item generation for multiple choice
questions. That is not surprising, as the psychometric properties of that item type are
well understood and different models (as mentioned above) can be applied. Automated
item generation for multiple choice items appears in many domains, including but not
limited to medicine (e. g. [4, 104, 157, 102, 252]), language training (e. g. [286]), math
(e. g. [295]), biology (e. g. [8, 293]), and computer science (e. g. [137, 282]).

However, there are also many cases of automated item generation for other item types
across various domain, including but not limited to math (e. g. [113, 186]), computer
science (e. g. [251, 54]), and electrical engineering (e. g. [258, 174]). Automated item
generation is thus suitable for all kinds of items and not limited to closed or convergent
ones.

The aim of the current chapter is to summarize and organize knowledge about the
technical process of domain-specific item generation in a more abstract way than on
the level of individual cases for a single domain. At the same time, it aims to stay as
close to the practical problems of generation algorithms as possible to come up with a
description in which the need for the integration of domain-specific tools or data-sources

129

12. Automated Item Generation

is still visible. Hence, any description that considers each case of domain-specific item
generation as an individual case that can be solved by a straight-forward, monolithic
item generation algorithm is too narrow, while any description that handles the creation
of item content as an atomic step within a larger process is too abstract.

12.1. An Anatomy of Assessment Items
The basic idea in all cases of item generation is that an item consists of one or more
structural elements (such as words, sentences, numbers, pictures and anything alike) and
that there is at least one dependency either between these elements or to some external
source of knowledge. For example, an item may consist of a text and a question that asks
for one of the facts contained in the text. There are surely several texts that can be used
in such an item and there are also several questions that can be asked. However, the
item is only meaningful if the question can be answered by reading the text and hence
there is a dependency between those two elements. Even in a simpler case, in which the
item contains just a question for some fact a student is supposed to know, there is a
dependency between the question and some knowledge base. Even if that knowledge
base is external, the dependency is also encoded in the item, if a grading rule is included
in the item that allows to decide on the correctness of the answer. That rule may either
make an explicit reference to the external knowledge base, or it may contain a copy of
the relevant piece of information from there. Details on how such grading rules can be
defined are discussed in chapter 13. Regardless of the actual mechanism, item generation
has to make sure that the dependency is established correctly and is encoded correctly
within the item. That is true even in cases in which there is neither a direct dependency
between the element nor an explicit dependency to a knowledge base: In an item asking
for the sum of two integer numbers, these two numbers are completely independent.
There is also no knowledge base where one can look up some numbers. Nevertheless, the
answer obviously depends on the numbers and hence any grading rule must encode a
relationship between these numbers and the answer.

Notably, there is no unified or standardized way on how to encode the elements of
an item and their dependencies in a technical item description. Standardized formats
like QTI [131] not only allow to define fixed items, but also allow to use templates and
placeholders and thus encode variable elements. Besides that, there are also system-
specific formats like for example the ones in the e-assessment systems JACK [154] and
PILOT [39] or in the SARAC framework [165].

For the specific case of multiple-choice items, Gierl et al. [103] created at least a
precise taxonomy of the different elements of an item and their relationships. In that
taxonomy, a multiple-choice item consists of a stem and options. A stem can consist of
either (1) independent element(s), (2) dependent element(s), (3) mixed independent/de-
pendent element(s), or (4) fixed element(s). Options are either (1) randomly selected,
(2) constrained, or (3) fixed. Optionally, an item may also include auxiliary information
that may be either (1) dependent or (2) fixed. The taxonomy paper also reports on a
study in item generation in which 331,371 items where generated. The vast majority

130

12.1. An Anatomy of Assessment Items

of 202,860 items falls into the category of dependent stem elements and constrained
options. Additionally, the category of mixed stem elements and constrained options
accounts for 122,880 elements. Hence, the details on how elements are dependent and
constraint by each other deserve a closer observation. Notably, the taxonomy is designed
for multiple-choice items only and thus does not explicitly cover the fact that in a
multiple-response item two different properties can be true for answer options, e. g. two
constrained correct answers and three random wrong answers within the same item. In
a similar way, the taxonomy can be extended for any kind of closed item. In turn, the
classification of the options can be skipped for open items. Instead, these items may
contain grading rules which may show the same four properties than the item stem.

The mere fact that most of the items reported in the taxonomy paper contain con-
strained options does not imply that these constraints are domain-dependent. In the
case of a mathematical item it is quite obvious that a generation algorithm must be
familiar with the domain of mathematics to be able to generate a correct grading rule. In
the example given above, the generation algorithm must be able to perform an addition
on the two independent numbers in the question to create the sample solution for a
grading rule. However, not all cases are that clear and the dependency on a domain
is not always given. In particular, there are several approaches to automatic question
generation that make use of algorithms for natural language processing [153]. These
algorithms are able to generate meaningful questions (including a correct sample answer)
for virtually any text from any domain. In that case, the generation process can be
seen as domain-independent, as it basically only transforms input into output without
knowing anything about the semantics of the input. In [4] it is explicitly mentioned
that their approach needs no prior knowledge in semantic relations. Many approaches
to question generation via natural language processing make use of machine learning
learning approaches. Some of these approaches might benefit from models that are
trained for a particular domain, so that the generation is no longer domain-independent.
However, even in these cases that actual algorithm is still domain-independent and it
will also work with domain-independent data. The only difference is, that the quality of
output will be lower.

Different to that, approaches that use ontologies instead of text as input are really
domain-dependent. Although the algorithms included in the process may still make
simple transformation, the input itself is domain-dependent in the way that ontologies
capture the semantics of the relationships between entities in a particular domain. While
the grammatical structure of two texts on different topics may be identical, the structure
of two ontologies from different domains is not. In particular, an approach that is
designed to work on a particular ontology may fail to produce any result on a different
one. Different to the machine learning approaches named above, the input decides not
only about the output quality, but it decides whether there is meaningful output at all.

Hence the following sections will deal with cases in which domain-specific knowledge is
encoded in the generation algorithms (like in a mathematical item) as well as with cases
in which domain-specific data sources like ontologies are used as an input. Moreover, also
cases in which plain natural language generation algorithms are used are considered for the
specific case of item from the domain of language training. For the algorithmic approaches,

131

12. Automated Item Generation

Automatic stepsManual steps

Define item
template with
placeholders

Provide input
(artifact or data

set)

Make choices
from input

Make additional
choices

Compute or
derive remaining

values

Figure 12.1.: The process for automatic domain-specific item generation.

two sub-sections will distinguish between approaches that rely on domain-specific general
purpose software that is re-used for item generation and specific algorithms that are
designed exclusively (or at least primarily) for the purpose of item generation.

12.2. Item Generation Process
The remainder of the current chapter considers an abstract process for automatic domain-
specific item generation. That process consists of five steps in two phases (see Fig. 12.1):
A manual phase is dedicated to the item model creation and consists of two steps, while
an automated phase performs the actual item generation and consists of three steps.
The process assumes that a cognitive model structure has been created beforehand, so
that the structure of the respective domain as well as the relevant facts and data sources
are known. Actual approaches to automatic item generation may use variants of the
process in several ways. First, some steps are optional and can be omitted if they are not
necessary for a particular class of items or a domain. Second, one conceptual step may
be broken into two or more sub-steps for technical reasons and the order of such steps
may be exchangeable. Examples of such variations will be discussed in more detail in the
case studies in chapter 14.

In the first step, an item template is designed by creating text skeletons for item stem
and answer options that may contain an arbitrary number of placeholders. In particular,
answer options may consist of placeholders only, while the item stem typically contains at
least some fixed pieces of text. Answer options are not necessarily handled in an uniform
way, so that there might be a set of answer options with placeholders and another set of
fixed answer options.

In the second step, a data source or artifact to be used during the generation process is
provided by the item author. That can be done either by providing a suitable document
directly or by providing a reference such as e. g. a repository URL and a SPARQL-query
to retrieve data from that repository. In any case, data must be provided in a structured
and machine-readable format, as it is analyzed during the generation process. Hence,
the artifact or data set provided is not exactly the same as the “auxiliary information”
named in the taxonomy by Gierl et al.. Notably, up to here nothing domain-specific has
been done in the process.

The third step is then the first automated step in the generation process. It is an
optional step that makes a (possibly constraint) random choice from the provided artifact
or data set to choose the contents that are actually included in the item. For example,
the provided data set contains some statistical data for all European countries, so that

132

12.3. Item Generation Techniques

the generation algorithm can randomly choose two or three of those to be used in an
actual item instance. Constraints may be formulated by the item author to ensure that
the selected elements of the data set are different in some way. Both the way how to
select data from the data set and the potential constraints are domain-specific.

In the fourth step additional random parameters are chosen by the generation algorithm,
which is again an optional step. The choice for each parameter may be constraint in
some way by the respective domain or by the data selected in the previous step (or both).
However, the choice may also refer to other elements of the item template. For example,
the item template may define that there are four groups of statements to be used as
answer options, where each group contains several templates with placeholders. The
fourth step can then randomly chose one statement from each group to be included in
the actual item instance.

In the fifth step, the values for all placeholders in the templates are computed, if they
are not filled with values produced in the previous steps. This may involve arbitrarily
complex domain-specific operations that analyse the given artifact or data set and make
any computations that are necessary to create values, texts, or even graphics.

Since the process is meant to describe an abstract schema for automatic item generation,
it makes no assumptions on when the steps from the second phase are actually performed.
In particular, the process is valid for “offline” generation where a complete item instance
is generated within an item generator software and stored in an item bank for later use as
well as for “online” generation where an item is created on demand within an e-assessment
system. Any mixture of these two approaches is possible as well. That also includes
cases in which input to the item generation process is derived from previous inputs from
students. Since the item generator component consequently deals with students’ input
similar to an evaluator component, there are some aspects that can be discussed in
the current chapter and in the following one on answer evaluation. To avoid duplicate
discussions, appropriate references will be made throughout both chapters.

12.3. Item Generation Techniques
Each of the steps three to five in the generation process bears the possibility to perform
domain-specific activities or to work on domain-specific data. The different possible ways
of data handling and computation are discussed in the following sub-sections.

12.3.1. Generation with Ontologies
Items that ask for factual knowledge form a large class of items that can be used in
many different assessment scenarios. Moreover, factual knowledge can be assessed in
many different item types, including closed item types as well as open, convergent item
types. Consequently, there is a high demand for such items. Several approaches to item
generation for these types of items make use of ontologies, because these offer a way to
encode facts from virtually any domain in a machine-readable way. These ontologies are
then the input artifacts used in step two of the item generation process and data from
the ontologies is selected in step three.

133

12. Automated Item Generation

In the easiest case, there is only the need to retrieve some single facts from the ontology
with quite simple queries to complete all elements of the item template [6, 88, 317]. The
domain-specific dependency between these elements is hence encoded completely in the
data source and no additional choices or computations need to be made in the subsequent
steps four and five. The quality of information in the data source and the way the data is
retrieved has nevertheless an important impact on the quality of the generated item. For
example, a classical multiple-choice item may need one correct answer option and three
distractors. These distractors must be carefully chosen to ensure a high item quality and
thus the domain-specific relation between the correct answer and the potential distractors
must be considered. In particular, it might not be sufficient to rely on general properties
of ontologies, such as using random entities that all share a common parent class [8].

This way of item generation is not only suitable for closed items, where both the correct
answer option(s) and some distractors are taken from the ontology. Instead, it can also
be employed to generate open items in structured domains like SQL databases [125]. In
that case, the ontology is itself subject of the item and a generated query problem is
given in natural language in the item, while a sample solution in terms of a SQL query
can be generated automatically.

Notably, an ontology may contain references to other data sources and provide semantic
information on the contents that are available there. For example, an image repository
can be used to generate items for medical training, where an image used as part of the
item stem is related to information on diseases in an ontology that provides answer
options and distractors [252]. Similarly, an ontology can provide information on chemical
compounds, while images showing the respective structures are located in a separate
repository [270]. Nevertheless, the key to domain-specific information in that case is
the ontology, while the separate images only serve as auxiliary information. They may
contain relevant and necessary information for answering the item correctly, but they are
not central to domain-specific item generation.

Automatic item generation from ontologies is not limited to factual knowledge. The fact
that ontologies are structured along domain-specific relationships between elements can be
exploited to create items that ask students to analyse and classify objects or statements.
For example, entities that belong to different concepts can be retrieved from an ontology
(possibly enriched by images or alike from an additional data source) and students are
asked to classify these entities according to a given criterion (e. g. classification of ancient
pottery in archaeology [273]). While the necessary mechanisms for item generation are
similar to the ones discussed above, such items require the competencies to analyse
entities or apply classification methods and do thus target higher competency levels than
items that require to remember facts.

Item authors can use a wide range of different data sources for automatic item generation
with ontologies. There are general purpose data sets available such as Wikidata1 and
DBpedia2 that provide concepts from many different domains and that are extensible
for virtually any facts. There are also many domain-specific data sources that provide

1https://www.wikidata.org/
2https://wiki.dbpedia.org/

134

12.3. Item Generation Techniques

structured data based on fine-grained ontologies for a particular domain, such as the
British Museum3 provides for data from their collection. Finally, there are approaches
that provide an ontology-based access to other data sources like the Sophox-project4

does for geographical data from the OpenStreetMap-project. In any case, item authors
must make themselves familiar with the ontologies. In particular, not all data sources are
appropriate for all kinds of items [89]. Moreover, item authors must potentially explore
the possibilities to make combined queries from more than one data source. Consequently,
there will not only be domain-specific knowledge encoded in the data sources, but there
will also be domain-specific knowledge in the queries use to access these data sources in
step three of the item generation process.

12.3.2. Generation with other Semantic Sources
Since ontologies are not the only means to capture information on semantics in a structured
way, other approaches have also been explored for item generation. The linguistic concept
of Frame Semantics can be used to create questions in natural language without using
fixed templates [66]. The reasoning behind that idea is the fact that e. g. mathematical
problems have a different level of difficulty depending on the way they are phrased. While
fixed templates require at least a uniform sentence structure for all possible instance
and only allow to exchange words and numbers, Frame Semantics allows to generate
sentences with different structures that have the same semantics. Each semantic frame
in that theory provides an encoding of a domain-specific set of entities, operations and
the relations between them, along with typical words used to express statements about
these elements in natural language. Hence, a domain-specific item generator is able to
express e. g. the same mathematical problem in the wording of different domains. In fact,
that can be used in two ways: First, it allows to use the same semantic frame (e. g. the
domain of time-distance-travel-problems) to find wordings for problems from different
domains (such as mathematics or geography). Second, it allows to express problems
from on domain (e. g. mathematics) in different semantic frames (such as medicine or
economics). In both cases, the approach is applied in step five of the item generation
process, after all relevant contents have been derived from other sources (step three) or
have been chosen randomly (step four).

12.3.3. Generation with Domain-Specific General Purpose Software
Whether or not a domain-specific data source has been provided in step two of the
process to choose data from it in step three, steps four and five are concerned with
additional (constraint) choices and computations, respectively. One option to automated
these steps is to integrate software components that are capable of performing some
domain-specific operations, but that are not specifically designed for item generation.
The most prominent example of such systems are computer algebra systems (CAS), that

3https://collection.britishmuseum.org/sparql
4https://wiki.openstreetmap.org/wiki/Sophox

135

12. Automated Item Generation

are of general use (not only) for teaching mathematics [160] and that can be found in
many e-assessment systems (e. g. [241, 107, 36, 248]).

A CAS typically is able to perform complex mathematical operations that go far beyond
simple arithmetic operations that are provided by most programming languages. They
can thus be used for example to create the correct derivation for a random polynomial to
be used as an answer option in a multiple choice item or as a sample solution in an open
item type. Notably, in the latter case a CAS can also be used to evaluate the answer,
which is why it will also be mentioned in chapter 13 below.

Similar to computer algebra systems are natural language generation (NLG) systems,
that are able to create grammatically correct sentences for a particular language from
some input parameters. Different to the general use of natural language generation
techniques used for domain-independent item generation from input texts, NLG systems
can be used for example in the context of language training to create sentences with
specific grammatical properties [216].

In structured domains like computer science, appropriate general purpose software can
be used in very specific cases. For example, constraint solvers that are typically used
for formal methods in software verification can be used to generate sample instances of
object diagrams for given class models and thus create content for items on software
modeling [137].

12.3.4. Generation with Generic or Domain-Specific Algorithms
Whenever general purpose software is not available for a particular domain or does not
offer the necessary functions, specific solutions must be implemented. That typically
results in monolithic item generators that may allow for some kind of parameterization,
but that are in general specific for a particular item type in a particular domain. Both
the complexity of the involved algorithms and their actual duties depends very much on
the individual case.

In simple cases, the algorithms just reflect the actual concepts an item is about. For
example, answer options in a multiple choice item on a Caesar cipher can be generated
exactly by applying the cipher algorithm to a random input sentence [213]. No additional
implementation is necessary in that case and thus the domain-specific part of the item
generation just happens in step five of the generation process. A similar situation for
step three of the process can be found in cases in which the input provided in step
two requires a domain-specific and item-specific analysis. For example, UML models
can be analysed automatically to identify the elements contained in these models and
subsequently chose some of these elements to include them in an item template [217].
In that case, all relevant operations are encoded in a domain-specific algorithm for step
three of the process, while the other steps can work in the same way as they would do
with simpler input.

Slightly more complex are cases in which some variance must be included, since there
is not a single correct solution. In that case, the item generator must generate all possible
solutions in step five of the process. For example, an item on advanced algorithms on data
structures can ask students to sort elements in an array following a specific algorithm.

136

12.3. Item Generation Techniques

While the final result is similar in all cases, the intermediate steps may depend on the
chosen variant of the algorithm [148]. In that case, the item generator must simulate
all variants to allow the grading component to compare a student’s solution with any of
them. A different option is to generate only one of several correct answers automatically
and defer the identification of syntactically different but semantically equivalent solutions
to the answer evaluation [222].

Even more complex are cases in which an algorithm produces more output than just
a set of uniform elements (such as encrypted sentences, model elements or possible
solutions in the examples discussed above). For example, specific algorithms for electrical
engineering can be used to generate circuit diagrams and also do all computations that
are necessary to compute some properties of the circuits [257, 174, 256]. Similarly, a
tree-based algorithm can be used in an generator for computer science that generates an
expression and its correct interpretation [149]. Such algorithms may thus span all three
automated steps of the generation process: They may take some input parameters that
constrain the design of the resulting circuit; they may make some additional, subsequent
choices; and they do domain-specific calculations to come up with the correct results to
be used in answer options for closed item variants or grading rules for open item variants.
Obviously, the process can be simplified by skipping the last step if only a problem is
generated but no sample solution for automated grading [251].

There are also cases in which less steps are involved, but the necessary operations are
more complex. For example, the generation of programming exercises including some
code templates requires little input and thus no complex algorithms for step three and
four. However, automatic generation of the necessary test cases that are involved in the
grading process is a highly domain-specific task. It can be automated in the way that an
item author provides an abstract test specification (i. e. possible inputs and expected
outputs), while the actual test code is generated automatically [54]. The latter can even
happen in different programming languages, so that several variants of an item can be
generated from the same input.

Even more domain-specific knowledge is involved in the generation algorithms if the
input also needs domain-specific analysis. In the case of programming exercises, an
item generator can analyse a piece of source code as input, detect appropriate sections
of that code to be replaced, compute meaningful replacements for these sections and
finally compare the output of the modified code (based on random but meaningful call
parameters) with the original output [282]. Based on these computations, a multiple
choice item can be generated that asks which replacements do not change the original
behaviour. That particular item will be discussed in more detail in section 14.3.2 below.
It involves domain-specific operations in step three to analyse the input, in step four
to make meaningful choices on random replacements and in step five to compute the
correctness for each answer option.

137

12. Automated Item Generation

12.4. Summary
The discussion of the item generation process and the actual techniques that can be used
in each of the process steps provide a good insight into the differences of domain-specific
and domain-independent item generation. An item is generated using domain-independent
means if all variable elements in the item can be filled by independent random choices
and the answer evaluation is done by plain comparisons with a sample solution. Thus
only steps one and four in the item generation process are used in that case. No analysis
of input artifacts is performed during the generation process and no constraint choices
or additional computations are made. In terms of the taxonomy by Gierl et al., the
stem is independent or fixed and answer options are randomly-selected or fixed as
well. In contrast to that, an item is generated using domain-specific means if there are
dependencies between the variable elements in the item and the rules, master solutions or
sample solutions used during the answer evaluation. These dependencies can result from
input artifacts, constraint choices or computations based on previous choices. Thus any
step in the item generation process can occur during the generation of a domain-specific
item, although none of the steps three to five is mandatory. In terms of the taxonomy
by Gierl et al., the stem of a domain-specific item is dependent or mixed or the answer
options are constrained.

A summary of the different item generation techniques and their usage in steps three to
five of the item generation process is given in table 12.1. Not all techniques are applicable
in steps three and four of the process, but make at least a contribution to step five.
However, no technique is usable exclusively in that step.

138

12.4. Summary

Generation
Technique

Examples for
Usage in Step 3

Examples for
Usage in Step 4

Examples for
Usage in Step 5

Example Item
Types

Ontologies Select entities — Select distrac-
tors

Factual
knowledge
questions,
Classification
tasks

Other se-
mantic
sources

— Choose random
wording for
given context

Generate sen-
tences

Mathematical
word prob-
lems

General pur-
pose soft-
ware

— Apply con-
straint solver
to find random
instance

Perform com-
plex mathemat-
ical or linguis-
tic operations

Mathematical
formula prob-
lems, Gram-
matical analy-
sis tasks

Individual
algorithms

Analyse source
code, models,
or alike

Generate mean-
ingful random
circuits or trees

Generate or ex-
ecute program
code; analyse
generated arti-
facts

Analytical
engineering
tasks

Table 12.1.: Summary of different generation techniques and examples for their usage
throughout the automated part of the item generation process.

139

13. Automated Evaluation of Test Item
Responses

The evaluation of test item responses is one of the most prominent duties of e-assessment
systems and has triggered a lot of research in recent decades. The current chapter
will provide an overview on the available techniques with a focus on the integration of
domain-specific data sources and tools in the process of grading and feedback generation.
Despite the fact that answer evaluation is a very different use case than item generation,
many of the techniques discussed in the previous chapter are relevant also in that context.

13.1. Basic Concepts of Automated Evaluation
From the perspective of answer evaluation, divergent assessment items are of particular
interest, but also open, convergent ones can require serious effort to generate grades
and feedback. Closed items are less interesting, as they have a finite number of possible
answers and each of those can be associated with grades and feedback manually. The
remaining automated task is then to compare an item response with the list of possible
responses, which is a trivial task and requires no knowledge about the domain of the
item.

Plain comparisons may also be sufficient in some cases of open, convergent items. If an
item asks e. g. for the year in which some historic event took place, then there is usually
only one correct answer. Unless the input editor is not very restrictive in accepting other
inputs than numbers, then there is nevertheless a virtually unlimited number of possible
answers including those that are no year dates at all. For such items, plain comparison is
still a sufficient option when it comes to determining the correctness of an answer and if
we ignore the usage of “BC” and “AD” in year dates for a moment. But already in these
cases it is not sufficient if elaborate feedback should be generated as well. There are
several classes a wrong answer can belong to, including a year that is too early, a year
that is too late, a year that is in the future, a number that is not suitable to represent a
year (such as a decimal number), and anything that contains letters. It is easy for an
algorithm to find out which class is the right one for a given answer, but to do so it must
be aware of the fact that the answer is meant to be a year date. Hence it must encode
domain-specific knowledge about the concept of year dates and also about the current
year to sort out years that are in the future.

Following that idea, the generation of grades and feedback is basically a classification
task. In particular, there is typically only a limited amount of different possible grades
and it must be decided which grade is associated with a given answer. In psychometry,
dichotomous items that only know the two possible results “pass” and “fail” are preferred,

141

13. Automated Evaluation of Test Item Responses

but psychometric models also exist for polytomous items [164] that allow for partial
credit in face of answers that are partly correct and partly wrong or incomplete. In
formative settings such fine-granular marking schemas may be more beneficial [84] and
thus the classification task must possibly deal with a large number of classes. The
approach mentioned in the previous paragraph above is a rule-based approach to solve
the classification problem. It defines a set of rules that refer to characteristics of the
answer. In theory, classification can then use the power set of all rules to define possible
classes. In practice, the number of classes is typically lower as some rules may be designed
in a way that they rule out all other ones. In the example above the rule for answers
that are not a number is of that kind. If that rule matches, all other rules do not
match, because they expect the answer to be a number. Different to that, rules can
also be designed in a way that more than one rule matches for a given answer. In the
example above, an answer may be wrong because it lays in the future, but at the same
time it is obviously also too late. Nevertheless it is possible to define a mapping that
tells which grade is generated for each set of matching rules. That mechanism also
works in cases in which rules cannot be provided explicitly. In such cases methods from
artificial intelligence such as deep learning with neuronal networks can be used to train
a classification model with a set of manually graded answers. The model then learns
properties of answers and thus is able to classify also newly arriving answers without
using explicit rules.

Some subtle difference can be noticed about the focus of different classification ap-
proaches. If only two classes are used, the evaluation checks for correctness and thus
classifies into “correct” and “incorrect”. If more classes are used, there can be different
meanings. Classes can represent some measure of similarity between an answer and a
sample solution. This is a quite neutral meaning, but implies that any part of an answer
that is not similar to a sample solution is wrong. More explicit is that meaning if classes
are understood as measure of completeness. Different rules can be used to check the
presence of some required element and thus an answer can be classified as more or less
complete. Again, this implicitly assumes that the presence of some expected part of the
answer is a sufficient criterion. Another interpretation of classes can be the meaning of
quality. Different properties of an answer can be measured and the classification is based
on the difference between a measured value and an ideal one. Concrete examples for each
of these different understandings will be discussed in section 13.3 below.

Things can get even more complex if elaborate feedback must be generated that
explains the grade. In that case, explicit references to properties of the answer must be
included in the feedback, such as quoting a wrong part of the answer or at least naming
a specific rule that decided on the grade. Consequently, elaborate feedback needs some
kind of parameterized templates or some means of natural language generation similar to
the concepts discussed for item generation in the previous chapter. Moreover, additional
implicit or explicit rules may be necessary to gather enough information on the answer
to create the feedback, which is the basic idea of constraint-based tutoring systems [192].
In the example above, additional rules may check for common confusions of year dates
and thus allow to include a proper hint on such a mistake in the feedback. That in turn

142

13.2. Preprocessing, Postprocessing and Derived Artifacts

means to include even more domain-specific knowledge in the evaluation process up to
connecting to an external data source to look up year dates and historic events.

13.2. Preprocessing, Postprocessing and Derived Artifacts
Independent of the way in which grades and feedback are produced, preprocessing of the
answer may be necessary depending on the data format used by the e-assessment system.
Chapter 11 already mentioned the example input “1/2” that may or may not have the
same meaning as “2/4” depending on the context and thus the domain. A specific input
format can help to clarify the domain, e. g. by using LATEX markup to make clear that
both input are meant to be fractions. However, the LATEX format might not be the right
format to forward that input to a computer algebra system that is able to compare these
inputs with each other or with a sample solution. In turn, the sample solution might look
even different, such as like “0.5”. While a computer algebra system can easily determine
that “0.5” is indeed equal to the fractions “1/2” and “2/4”, it may require to transform
the input into a different format. Hence, with proper transformation of the data formats,
the correctness of an answer can be checked with one single rule in that example. In
turn, several rules that check for equality to “0.5”, “1/2” and “2/4” separately are needed
if less information on the domain is available. Some intermediate processing may be
possible as well, e. g. using a tool that is able to shorten all fractions and thus help to
solve the case with less rules.

Preprocessing may even be mandatory if general purpose data formats are used. For
example, sketch recognition engines can be used to identify shapes in free-hand drawings
that are stored in a general purpose format for drawings. Using domain-information
during the recognition process can improve the results [9]. The actual grading process
then happens on the recognized artifacts and not on the original data format [299]. The
strategy to grade derived artifacts instead of the original answer can also be helpful in
other cases. For example, answers to items on computer programming can be evaluated
by comparing simplified pseudo code or UML models derived from the answers with
pseudo code or UML models derived from a sample solution [221, 37]. Additional feedback
can be generated by comparing traces from program execution [279]. It may even be
necessary to create derived artifacts, if a particular property of the answer cannot be
assessed directly, such as the execution semantics of a behavioural model in computer
science [280].

Evaluation techniques that work on derived artifacts often can only produce meaningful
results, if the input fulfills at least some basic requirements. This observation leads to
dependencies between different techniques, where one technique is used to check some
basic properties and a second technique is used later on for more sophisticated checks only
if the basic checks were passed. The easiest way to cope with that problem is to define a
strict sequence of evaluation steps and implement these in a monolithic or single-threaded
evaluator (as discussed in section 7.3.3). However, such solutions may be slow if there are
many steps that actually have no dependencies. Instead of following a strict sequence,
these can be executed in parallel in an multi-threaded evaluator component.

143

13. Automated Evaluation of Test Item Responses

Independent of using evaluation techniques in parallel, postprocessing of the results
may be necessary. Different techniques may result in different classifications of the
submission and a final grade as well as a final set of feedback messages must thus be
compiled. For grades, simple or complex calculations can be used, that do not only use
mathematical operations, but may also include conditions and thresholds [96]. Textual
feedback can often be merged into a single list of messages. However, in some domains it
may be useful to relate messages back to the original answer artifact, e. g. by highlighting
wrong parts of the answer. In that case, the individual evaluation technique must produce
enough output to precisely locate the correct position for an error annotation.

13.3. Evaluation Techniques
There are several concrete techniques that can be applied to realize the general concept of
rule-based tests. As discussed in section 7.3.3 there are several patterns on how to design
evaluator components and thus there are many option to combine different techniques.
Hence, non of the techniques discussed in the following subsections is meant to be used
exclusively and it is in general no drawback if any specific technique is not sufficient to
produce the desired feedback completely on its own. Moreover, the same technique can
in general be applied in different variants for grading different aspects of an answer.

13.3.1. Evaluation with Domain-Specific General Purpose Software
A nearby solution for the task of evaluating item responses is to formulate the necessary
rules as a domain-specific problem and then use an appropriate software to solve it. As
already mentioned in section 12.3, many e-assessment systems use computer algebra
systems for mathematical items. Most answers to a mathematical item can be understood
as a mathematical expression. Computer algebra systems are designed specifically to
handle such expressions and to determine the properties of such expressions or the equality
of two syntactically different expressions. Thus even in cases in which there are infinite
many ways to answer an item with a correct expression computer algebra systems are
able to identify these answers and generate appropriate grades and feedback. Moreover,
computer algebra systems cannot only produce Boolean results on the correctness of
an expression, but can also produce other output that can be used to fill parameters
in feedback templates. Consequently, elaborate feedback can even be produced for an
infinite number of wrong answers without specific rules by including e. g. an individual
counterexample based on the student’s input in the feedback.

In some cases, it might be necessary to define a specific way in which answers must
be written and it might also be necessary to define complex operations to evaluate the
answer. An example for that is the automated evaluation of results from a lab exercise
in chemistry [199] where MathLab is used as the underlying general purpose software.
Nevertheless the general principle stays the same and elaborate feedback can be given
also for the infinite set of inconsistent experiment results, including precise indications
for the wrong numbers.

144

13.3. Evaluation Techniques

There are also cases in which domain-specific software is designed specifically for the
purpose of checking the correctness of an artifact. One of the most prominent cases in
that class are coding exercises in computer science, where standard tools for software
testing are frequently used for grading submissions [141, 308]. Writing rules for testing
certain aspects of an artifact and associating feedback with individual test results is
the natural use case of such software tools. Hence they also usually generate elaborate
feedback automatically, including counterexamples for failed test cases.

However, the use of domain-specific general purpose software is not always sufficient
or helpful, since the software is not designed for educational purposes. For example, in
computer science many standard tools exist that perform static checks on source code.
These checks do not always produce error messages that are understandable to students
and in some cases the techniques used by these tool are even not sufficient to create
feedback on the desired level of detail [281].

13.3.2. Evaluation with Generic or Domain-Specific Algorithms
When the use of general purpose software is not sufficient, individual solutions must
be created. In fact, it is not possible to draw a hard line between those solutions and
the use of general purpose software. Complex operations during grading as mentioned
above can be performed with general purpose software, but the more complex these
operation get, the more likely is it that they represent a grading-specific algorithm that
could be realized in any programming language. In turn, many capabilities of domain-
specific software can of course be re-implemented in some programming language. The
following paragraphs thus only provide an overview on different option for realizing answer
evaluation with general or domain-specific algorithms, while virtually any self-contained
evaluator component in any e-assessment system may serve as an additional example.

As it was mentioned earlier above, comparison of a student’s answer with a sample
solution can be a useful strategy for grading and feedback generation. With some
preprocessing, plain textual comparisons with some domain-specific tweaks may be
sufficient, e. g. to compare source code based on a simplified representation as pseudo
code [221]. If answer artifacts have some graph structure, they can possibly be compared
even without preprocessing [262]. However, the more complex an answer artifact or
a relevant derived artifact is, the more complex gets the comparison. The necessary
comparison strategies and similarity measures can then be implemented in domain-specific
algorithms. They can draw from general algorithms e. g. for sequence alignment from
bioinformatics [279] or for model matching [290]. Comparisons to a sample solution are
especially able to point out omissions in an answer and can thus generate elaborate
feedback for an infinite number of wrong answers by listing what is missing. If there is
more than one way to answer an item, several sample solutions can be used and the one
with a best match with a particular answer is typically used for feedback generation.

A specific issue in comparing textual answers with model solutions can be tolerance
in face of typos or grammar issues. In many domains, using the correct spelling is not
in the focus of an assessment and hence answers should be accepted as correct, even
if they contain spelling errors. In other cases, it may be appropriate to use the same

145

13. Automated Evaluation of Test Item Responses

word in different grammatical forms. There are several different approaches to measure
the similarity of words and to identify variants that can be implemented individually
or based on existing software libraries [133]. Even more work is required to cope with
synonyms, as it may depend on the domain whether two words are considered to have
the same meaning [260]. Such techniques are typically used as preprocessing steps before
another technique is applied to do the actual answer evaluation. Nevertheless, they can
help to reduce the answer space significantly.

In some cases, answer artifacts may be too complex or the variety of possible correct
answers too large to create sample solutions and comparison algorithms that compare
the answer as a whole. Instead, partial comparisons with larger bits of samples can
be used in a rule-based manner. One particular technique that can primarily be used
in domains with answers in structured languages with a formal grammar is to use a
domain-specific mapping from the answer to a general graph structure as a preprocessing
step. It is nearby to do so for answers given in domain-specific languages, since the
respective parsers produce a parse tree anyway and can thus be used in a preprocessing
step. Once an answer representation as graph exists, graph pattern matching can be
used to check for the occurrence of desired or undesired properties (e. g. [291, 268, 225]).
Even for natural language that does not follow a formal grammar it is possible do use
rule-based approaches, since at least some structures can be detected automatically [162].
The focus of the technique is hence not on similarity with a single sample solution, but
on completeness with respect to a list of features that are encoded as individual rules.
That typically allows also to accept answers that are an unexpected combination of
two different correct solutions. In any case, such approaches require to create more or
less extensive rule sets and assign partial credit and individual feedback to each rule.
Depending on the complexity of the answer artifacts, it can be hard for item authors to
predict all necessary rules. Semi-automated evaluation algorithms can be used in these
cases, that present unknown cases to human graders and learn iteratively and adaptively
from their decisions [28]. Alternatively, rules can be generated automatically from a
corpus of manually graded answer and validated by experts, before they are used in
automated grading [312].

Individual algorithms for evaluation are also used in cases in which the actual evaluation
task is simple in comparison to the necessary preprocessing or creation of derived artifacts.
For example, metrics can be computed for a wide range of artifacts to provide numeric
values that represent some characteristics of the artifact [14, 316, 180]. Computing these
metrics is the complex steps in that case, while comparing the values to some threshold
is easy. Depending on the domain, appropriate thresholds can either be encoded directly
in the evaluation algorithms or they must be provided by the item author individually
for each item. Notably, the results cannot only be used for explicit classification via
thresholds, but also implicitly for the creation of visualisations. Such visualisations
can depict the relation between the actual answer and the space of possible answers or
the set of correct answers. They can thus be part of an elaborate feedback that is less
concerned about an absolute grade but more about the direction in which an answer can
be improved [307].

146

13.3. Evaluation Techniques

13.3.3. Evaluation with Classification Models
In some domains, artifacts are too complex or are too unstructured to create meaningful
results by rule-based checks or systematic comparisons. The most prominent type of
artifact that falls into that group are essays. Natural language does not follow a formal
grammar and there are very much different ways to express the same meaning even
for short texts. In such cases, machine learning techniques can be used successfully
[298, 86, 49, 238, 33, 237]. Applications also exist in other areas such as computer
programming [111]. In that case, each answer was transferred into a simplified pseudo
code representation as a preprocessing step. The general idea in all application areas and
independent of some preprocessing is to train a classification model by using a corpus of
already graded answers. If that corpus is large enough, the machine learning algorithm
can derive implicit rules from it and thus learn to classify unknown texts as well.

While there is much successful research on text classification in general, the use of
machine learning techniques for answer evaluation is still limited due to several problems.
First, classification based on machine learning works well for a small set of different
classes, e. g. a handful of different grades. Precise feedback on errors or omissions in the
answer is much harder, as there are typically a lot more classes of different reasons for
each particular grade. A classification is thus based primarily on similarity and less on
completeness, omissions or particular characteristics. Second, machine learning usually
requires a large number of examples for each class and may result in bad models if some
classes are heavily overrepresented in the training data set. However, grades are often
not equally distributed so that even from large cohorts of students only a smaller set
of manually graded answers can be used for training, which makes the process more
expensive and time consuming. That also is an obstacle for fine-grained classification, as
each class gets smaller the more classes are used. Third, machine learning models cannot
by transferred in a simple way from one item to another. Even a minor change in the
item task may require to train a completely new model. The same is true for grading
with different aspects, where individual models must be trained for each of those. That
again makes the used of machine learning models expensive.

To avoid machine learning algorithms to be trapped by irrelevant deviations between
different answers, preprocessing may be a very helpful step. Especially for texts in
natural language a wide range of techniques can be applied to eliminate typos, different
grammatical forms and alike.

13.3.4. Evaluation with Ontologies
In some cases it may not be feasible or even possible to encode all relevant domain-
knowledge for answer evaluation within an item. For example, an open item may ask
for the name of the current governor or capital city of a given state or country. While
it is easy to compare the answer with a sample solution for correctness, it is hard to
encode elaborate feedback for all possible wrong, but understandable answers. These
include names of former governors/capitals, confusion with neighbour states/countries
and confusion with similar but slightly different names. In all of these cases, it may be

147

13. Automated Evaluation of Test Item Responses

worthwhile at least in formative assessments to explain these errors. Ontologies can thus
be used to look up additional information for the wrong answer and then draw conclusions
on why that wrong answer was chosen. That can also be used to generate partial credit
during grading, if e. g. the answer contained a correct family name but wrong given name
[270]. Item authors must encode the necessary domain-specific knowledge that makes an
error understandable as queries to an appropriate data source. These queries will contain
placeholders that are filled with the actual answer during the evaluation process.

13.4. Summary
In conclusion, there is a wide range of different techniques that can be used for the
evaluation of item responses. Closed item types are of minor interest in answer evaluation,
as the number of possible answers is finite and all possible feedback can be triggered by
domain-independent comparison of the response with a sample solution for plain equality.
In contrast to that, open item types have an infinite number of possible answers and
answer evaluation is thus a classification problem that needs to be solved by domain-
specific approaches. Sample solutions can be used here again, but in many different forms:
As complete solutions in complex comparison processes, as partial solutions in rule-based
checks and as input for training machine learning models. In any case, checking the
correctness of an answer to award credits is the simpler task, while the generation of
elaborate feedback is harder.

A summary of the different answer evaluation techniques and their key characteristics
as well as examples for their usage is given in table 13.1. The focus of each technique
mainly determines the cases in which it is useful, while the necessary inputs and helpful
preprocessing steps determine the effort needed during item preparation and run-time.

148

13.4. Summary

Evaluation
Technique

Focus Input from
item author

Possible Prepro-
cessing

Usage Exam-
ples

Domain-
specific gen-
eral purpose
software

Correctness,
Counterexam-
ples

Rule-like ex-
pression

Optional; e. g.
conversion be-
tween data for-
mats

CAS for
open math
items

Domain-
specific test-
ing software

Correctness,
Counterexam-
ples

Test case speci-
fication

— Software
testing
tools for
code writ-
ing items

Comparison
with com-
plete sample
solution

Similarity,
Omissions

Sample solu-
tion(s)

Optional; e. g.
spelling correc-
tion, replace-
ments of syn-
onyms

Similarity
tests for
items on
conceptual
modeling

Comparison
with partial
sample solu-
tions

Completeness Rules, partial
sample solu-
tion(s)

Optional; e. g.
spelling correc-
tion, replace-
ments of syn-
onyms

Rule-based
checks on
essays

Comparison
of metrics

Quality, Visuali-
sations

Optional;
Thresholds

Mandatory to
derive metrics

Feedback on
quality of
text, code or
models

Classification
models

Similarity Classification
model trained
by manually
graded answers

Advisable at
least for texts;
e. g. spelling
correction,
stemming

Machine
learning for
natural lan-
guage grad-
ing

Look-up in
ontologies

Correctness,
Elaborate feed-
back

References and
queries for ex-
ternal data-
sources

— Look-up of
relations be-
tween wrong
answer and
sample solu-
tion

Table 13.1.: Summary of key characteristics and examples for different evaluation tech-
niques.

149

14. Case Studies

This chapter provides in-depth studies of three different cases of domain-specific item
handling within a particular domain. For each domain, a small set of sample items is
analyzed that demonstrates the relevance of the four aspects discussed in the previous
chapters. Each sample item tackles at least one of those aspects and all items within
one case together cover all four aspects. All examples used throughout this chapter refer
to sample exercises realized in the e-assessment system JACK that provides substantial
implementations for all aspects of domain-specific item handling.

14.1. Case 1: Math
Math education and assessment is a common topic for the use of e-learning systems
in general and for e-assessment systems or features in particular. Several systems and
components exist that focus solely on math education and assessment (e. g. [188, 187,
241, 110, 235]). Examples of particular architectures and features of such systems have
already been discussed throughout part II and part III of the current publication. For
the e-assessment system JACK math assessment is one of its main applications and many
features have been designed with math applications in mind in the first place [154]. For
the following case study, three sample items are examined in detail to demonstrate the
relevance of all four aspects discussed in the previous chapters.

14.1.1. Item 1: Equation of a line
The first item in this case study is a quite short item that simply asks students to provide
the equation for a line that runs through a given point as shown in fig. 14.1. The
item is a typical example of items that are used in analysis in schools. The item has a
parameterized stem in which the point is a variable element. It has been implemented in
JACK as an showcase for answer evaluation for items that allow for an infinite number
of correct solutions. Since the input is already split into two fields that will only contain
numbers, no domain-specific input editor or data format is required.

Item generation for that item happens online within JACK right before an item instance
is displayed to a user. The only action that needs to be performed by the item generator
is to make two constraint choices for the coordinates of the point P . For both coordinates,
a range of integer values is defined in the item configuration. No additional calculations
are necessary. In particular, there is no possibility to compute a sample solution, since
there are infinite many lines that run through a given point.

Consequently, the answer evaluator cannot compare the input to a sample solution.
Instead, it has to insert both the random values from the item template and the user

151

14. Case Studies

Figure 14.1.: Sample item 1 in case 1. Students are asked to provide an equation for a
line through a given point. The answer is evaluated by calculating whether
the given point is indeed on the line defined in the answer.

input into an equation of a line and determine whether the equation is fulfilled. Although
the resulting expression is easy to resolve for a computer algebra system, it demonstrates
that domain-specific operations are necessary due to that fact that the item is open and
divergent. Since the answer evaluation only has two possible outcomes (either the line
runs through the given point or it does not), no partial credit or additional feedback is
given in this item.

14.1.2. Item 2: Equation of a parabola
The second item is somewhat similar to the first one, because students again have to
provide an equation. However, the item stem now not only contains text but a plot of
the parabola and the input is entered via a formula editor as shown in fig. 14.2. The
parabola shown in the item stem is based on random parameters similar to the point in
item 1. The plot is created dynamically and the display is interactive, so that students
can pan and zoom the coordinate system to gather all detailed information they would
like to see.

The item generation happens again online within JACK, but the process is a bit more
complex than for item 1. It starts with two constraint random choices of two integer
values for the apex of the parabola. From these, several additional values are derived,
including factor b and y-axis intercept c for a parabola in main form. Hence, a complete
sample solution is generated in this case. It is not only required for answer evaluation,
but also as input for the dynamic generation of the plot included in the item stem.

Answer evaluation also performs several steps. First, the answer can be compared
to the sample solution. That is not done as plain string comparison, but through a
computer algebra system that checks two equations for equality. Hence, also answers
that use an alternative form are recognized. Different feedback and partial credit can
be provided if the answer is semantically correct, but not in the requested main form.
Similarly, different properties of a wrong answer are checked and elaborate feedback is
given for errors like a wrong degree and a wrong y-axis intercept. The former specifically
requires to use a computer algebra system that can return the degree of a given equation.

Using a computer algebra system as a prerequisite for the generation of elaborate
feedback is not the only remarkable property of the item. The item also stresses the
importance of using a domain-specific data format. On the one hand, the answer is
represented in proper mathematical notation within the formula editor and on the other
hand, it is represented in a tool-specific syntax during answer evaluation. Similarly, the

152

14.1. Case 1: Math

Figure 14.2.: Sample item 2 in case 1. Students are asked to provide the equation for
a given parabola. Elaborate feedback and partial credit is given based on
various properties of the answer.

sample solution is used in two tool-specific variants: One for answer evaluation and one
for generating the plot in the item stem. Without integration of domain-specific data
formats and tools, that kind of item would not be possible.

14.1.3. Item 3: Estimation theory
In this case study domain-specific tools have so far only been used for answer evaluation
and for plotting a graph in the item stem. The third item in the case study now discusses
the use of domain-specific tools also for item generation. The item is part of a larger
sequence of items on estimation theory and asks students to computer the maximum
likelihood estimate for a given sample as shown in fig. 14.3.

The important aspect for item generation here is the fact that the sample needs to
be based on a geometric distribution. It is thus not possible to draw the values for the
sample with a standard random generator that uses a rectangular distribution. One
option would be to simulate the geometric distribution via a domain-specific algorithm
that is implemented within the item generator. Another option, that is actually used
in that item, is to request the sample from an external domain-specific tool. In case of
JACK, the evaluator component can call the statistics software R that allows to request
a sample with a single call. Similarly, the same software can be called to calculate the
maximum likelihood estimate for a given sample to be used as sample solution.

153

14. Case Studies

Figure 14.3.: Sample item 3 in case 1. The random sample in the item stem is generated
via the domain-specific software package R. Answer evaluation allows for
rounding differences by using an error margin.

Since all complex calculations have been performed during item generation, answer
evaluation just needs to compare the given answer with the sample solution. Since
answers may diverge from the sample solutions due to rounding differences, an error
margin is used in this item that allows to accept answers that are slightly different from
the sample solution.

14.1.4. Summary of Observations
All four aspects of domain-specific item handling have been discussed in this case study
by looking at just three items. Random item generation is used in all three items with
increasing complexity: In the first item, simply two random integer values were required.
In the second item, additional calculations were required after drawing to random integer
values. Finally, the third item required to use domain-specific software to derive a proper
random sample.

Since all items are open items, answer evaluation and feedback generation is also an
important issue in all of them. However, complexity is decreasing rather than increasing:
The first item is open and divergent, so that a domain-specific evaluation is necessary
in any case to determine the correctness of the answer. The second item is open, but
convergent. Hence, the correctness is mainly a matter of comparison, but additional
domain-specific checks are used to create elaborate feedback for various cases. Finally,
the third item is also open and divergent, but the answer evaluation simply needs to
check whether the answer is equal to the sample solution plus some error margin.

The use of domain-specific data formats and input editors depends much on the
situation. While all items include some output in mathematical notation, only one
requires a domain-specific input editor.

154

14.2. Case 2: Chemistry

Figure 14.4.: Sample item 1 in case 2. User input is possible via a formula editor that
has been designed specifically for chemical formulas. Answers are stored
in a domain-specific data format. An evaluator component can evaluate
arbitrary expressions that are defined by the item author and that work on
the data format.

14.2. Case 2: Chemistry
The second case study is dedicated to the domain of chemistry. As a natural science,
it requires a rich variety of competences as well as factual knowledge. Moreover, it
deals with several types of domain-specific artifacts and notations. Although the use
of e-assessment systems in chemistry education is not as wide-spread as it is in math
education, the oldest known system in that context dates back to at least the 1970s
[55]. Within the e-assessment system JACK some of its math capabilities have been
extended specifically to cover chemical aspects as well, while other features have been
added specifically for that domain. Moreover, the assessment of factual knowledge can
make use of general capabilities of the system.

14.2.1. Item 1: Reaction Equations
The first item in this case study looks somewhat similar to the ones discussed for the
domain of mathematics. Students receive the description of a redox reaction and are
asked to provide the chemical formulas that describe the oxidation, the reduction and
the whole reaction. Figure 14.4 shows a sample answer to that item. The item has no
variable elements, so that item generation is not considered in this case study.

Despite the fact that the input looks similar to a mathematical formula in some way,
there are remarkable differences that actually require to use a different data format
and hence a modified input editor. Many elements that are known from mathematical
notation like subscripts and superscripts occur in chemical formulas as well, but they have
different meanings. Hence, the domain-specific language OpenChem has been created for
JACK that follows the same principles than OpenMath does for mathematical notations.
It thus provides a structured representation schema that can be parsed for processing
the input in an evaluator component and an additional representation schema to allow
for display and editing in an input editor.

155

14. Case Studies

Answer evaluation for the item must be able to analyse several ways in which an
answer in any of the input fields can deviate from a sample solution. First, answers can
simply be wrong, e. g. by omitting an atom or giving a wrong number. Second, atoms
within a molecule can be given in different order, which may violate conventions but
is not actually wrong in the first place. Third, the inputs in the last line for the redox
reaction may include arbitrary extension factors as long as they are consistent with the
other inputs. Hence, an additional check must ensure that not only each input is correct
on its own, but also the relation between different parts of the answer is correct.

To achieve that, the evaluator component within JACK has been extended to provide
some domain-specific functions. Different to math, they do not represent general relations
like “equals”, but relations that have specifically been defined for the purpose of checking
the correctness of an answer. For instance, the functions allow to compare the number of
atoms between two molecules or check whether two formulas contain exactly the same
atoms. Based on these functions, rule-based checks are implemented within the item that
assess specific features of the answer and provide feedback for any error or partial credit
for any correct aspect.

14.2.2. Item 2: Orbital Schemas
The second item in this case study is concerned with a domain-specific diagram form,
namely orbital schemas. These diagrams provide a graphical notation for the electron
configuration of an atom, i. e. the number of shells and orbits as well as the position and
spin of electrons on these orbits. The electron configuration of an atom follows some
fundamental laws and principles and hence it is an important goal in basic studies in
chemistry to develop the necessary competences to create and understand orbital schemas.
JACK has been extended to support that goal via the realization of a specific editor and
evaluation module for items on that type of diagram. Similar to the first item in this
case study, item generation is not relevant here. Figure 14.5 shows a screenshot of the
editor displaying the electron configuration for Oxygen. Groups of grey boxes with lower
case annotations denote orbits, while rows with upper case letters denote shells. The
position of an orbit on the vertical axis denotes its energy level. Electrons are depicted
as yellow arrows within a grey box with different directions according to their spin.

The range of functions for the editor is relatively small. Users can add and remove
shells and orbits and it is possible to place electrons in existing orbits and select their spin.
Furthermore, it is possible to remove electrons. For didactic reasons, some simplifications
were made with respect to the freedom in diagram layout. This concerns in particular
the positioning of the orbits, so that it is not be possible for users to position orbits and
shells in a wrong order, nor to assign a wrong energy level to them. Instead, all shells
and orbits added to the diagram get automatically assigned to a correct location in terms
of energy level. However, it is still possible to add orbits that do not exist in reality
(e. g. d-orbits in the K-shell). These orbits also get a conclusive position in the diagram
automatically. In order to be uniformly operable on as many browsers and devices as
possible, it is possible to operate the editor almost exclusively by "point-and-click", so
that neither multiple mouse buttons nor complex mouse movements or finger gestures

156

14.2. Case 2: Chemistry

Figure 14.5.: Sample item 2 in case 2. A domain-specific editor allows to manipulate a
data structure that has been designed specifically for this item on atom
orbital schemas. An evaluator component is able to analyse the data format
and provide feedback based on a fixed set of rules.

are necessary. The only exception are two input fields for numbers that require keyboard
input. This in turn implies some defaults in that the naming of shells (K, L, M, ...) and
orbits (s, p, d, ...) is available in selection fields and thus a completely wrong naming is
basically impossible.

Technically, the interaction with the editor manipulates an object structure that
represents the atomic orbital scheme. This object structure is then represented graphically
in the diagram area on the one hand, and serialized in the form of a JSON string and
written into a hidden input field on the web page on the other hand, in order to be sent
to the server in this way when a submission is made. The data structure is then analyzed
there for automatic feedback generation.

In order to check the correctness of an answer, only the atomic number of the represented
element has to be known and some chemical laws have to be considered. It is therefore
not necessary for item authors to define individual checking rules for different elements.
It should be noted, however, that in general there can be several correct solutions to
a task. For this purpose it is only necessary to reverse all spins of all electrons in a
given, correct atomic orbital scheme in order to obtain a second, correct diagram. On
the other hand, reversing the spin in a subset of the electrons can also lead to incorrect
solutions. In certain constellations it is also possible to place single electrons at different
positions, all of which are correct. Therefore, different rules must indeed be checked when

157

14. Case Studies

Figure 14.6.: Sample item 3 in case 2. Names of chemical compounds are retrieved from
Wikidata, while the figure is retrieved from Wikimedia.

generating feedback and it is not possible to simply compare them with a sample solution.
In addition, detailed feedback is generated that names the existing error as accurately
as possible, for example by naming the violated chemical law. All necessary rules are
implemented directly in the evaluator component. They thus form a domain-specific
algorithm for answer evaluation that is defined specifically for that type of item and that
operates directly on the domain-specific data format mentioned above.

14.2.3. Item 3: Chemical Compounds
The aspect of item generation has so far been ignored in this case study. Hence, the third
item focuses particularly on that aspect. Basic competencies in chemistry include the
ability to identify chemical compounds by looking at a graphical representation of their
molecule structure. Training sessions thus include items showing molecule structures
and asking for the name of the chemical compound like the one shown in fig. 14.6. As
it is a tedious task to encode all possible chemical compounds and all their graphical
representations manually within an item template or a set of static items, item generation
from ontologies is used for that item in JACK. In particular, it makes use of JACK’s
capability to issue queries to a SPARQL endpoint during the item generation process
to retrieve data from an external data source. Wikidata and Wikimedia are used as
data sources in this item. The ontology of Wikidata offers entities representing the
concepts of chemical compounds, as well as properties describing their chemical structure.
However, the graphical representation of the chemical structure is not provided directly
by Wikidata, but as a link to an image resource hosted in the Wikimedia Commons
project.

The item contains a short question including the graphical representation and offers
four answer options, from which one is correct. To achieve that, a SPARQL query asks

158

14.3. Case 3: Computer Programming

for all available chemical compounds and retrieves a list of tuples containing the name
and chemical structure. Drawing randomly directly from this list in step three of the
item generation process may result in four compounds with very different structures that
are too easy to distinguish. Hence, the query retrieves an additional representation of
each chemical structure in the canonical SMILES notation. Results are then filtered to
only include elements with the same size of the SMILES representation with a predefined
length in the range of 6 to 12. This simple heuristic limits the list of query results to
ones that are more similar to each other. From this filtered list, the e-assessment system
finally randomly draws four elements in step four of the automated generation process.
The first of them is selected as the correct answer and hence only for that a reference to
the graphical representation is included in the item template.

The heuristic described above may be insufficient to create items of the desired didactical
quality in terms of selecting good distractors. For example, the heuristic does not look
for molecules including a least some similar atoms. This limitation can be avoided by
including more sophisticated, domain-specific filter functions in the item definition to
get more fine-grained control of the selected data. Even with very restrictive filters,
the number of possible item instances is high, since there exist hundreds of chemical
compounds. For each of the possible lengths of the SMILES representation mentioned
above, the list of compounds contains 89 to 151 entries. Any combination of four elements
out of one of these lists forms a distinct item instance.

14.2.4. Summary of Observations
The three items discussed in this case study cover a wide range of domain-specific concepts
and also make use of all four aspects of domain-specific item handling. The first two
items share the same three aspects, but incorporate completely different solutions for
input, data format and answer evaluation. Both items make use of a rule-based answer
evaluation strategy to cope with the problem of multiple possible correct answers. The
first item offers flexibility to item authors via manually defined rules, while the second
item allows for a fully automated feedback generation based on minimal input by the
item author.

In both cases, domain-specific knowledge is encoded directly within the item or the
e-assessment system. Different to that, the third item in this case study makes use of
an external data source for domain-specific knowledge. In fact, it would be possible to
use that strategy also in the second item and hence create an item in which no explicit
domain-specific knowledge is provided by the item author at all.

14.3. Case 3: Computer Programming
The third and last case study deals with programming as part of a computer science
curriculum. Despite the fact that programming is also taught in other contexts (e. g.
data science or physics), the ability to write meaningful programs and to analyse given
program code is primarily considered one of the core competencies of computer scientists.
As already mentioned earlier, there are more than 100 e-assessment systems just for the

159

14. Case Studies

Figure 14.7.: Sample item 1 in case 3. Results are returned by different evaluator
components and a total result is computed by an individual rule. Textual
feedback from each component is shown one below the other. Additional
feedback is available from the second component via the hyperlink provided
in the feedback.

facet of writing program code [141] and the oldest known system for that aspect dates
back to 1960 [124]. They are accompanied by a lot more system for other aspects of
computer programming, such as code analysis, bug finding and understanding specific
algorithms on data structures. The e-assessment system JACK was originally designed
also solely for grading items on writing program code and has been expanded later on
to cover the other domains discussed above and also other items related to computer
programming.

14.3.1. Item 1: Coding Exercise
The item in this case is taken from a programming lecture within a computer science
curriculum. The item is one typical example for a multitude of items on code writing that
are used during the lecture. The item provides a code skeleton and a task description
that asks students to implement some portion of code within the skeleton that causes
the program to create a character string that follows a given pattern. The item has
no variable elements and thus item generation is not relevant here. Instead, answer
evaluation is the most prominent aspect of that item, as JACK is able to produce different
kinds of feedback. A sample feedback for an incomplete answer is shown in fig. 14.7.

The e-assessment system JACK provides no integrated source code editor for that item
type. Instead, students must use an external editor to open the provided code skeleton
and make their additions to it. They can then upload the answer as a source code file.
That process can be automated to some extent via a software interface between JACK
and the IDE Eclipse, but that IDE is nevertheless an external editor. Consequently,

160

14.3. Case 3: Computer Programming

students have the opportunity to use an appropriate editor that makes sure their answer
is at least syntactically correct source code, but they are nevertheless free to submit any
kind of file with any content.

Hence, the first step in answer evaluation is to check whether the submitted answer is
syntactically correct source code. Any errors encountered in that step are reported as
error messages to the student and any subsequent checks are skipped. In fact, that check
happens twice, as JACK allows to run evaluator components in parallel, but without
dependencies. For the evaluation of this item it uses two component, where one is
concerned with static code analysis and one with dynamic testing. Only the component
for static checks reports errors during the syntax check, while the other aborts silently.

If the answer is syntactically correct, the first evaluator component applies a static
rule-based check for code structures. For that purpose it parses the submitted source
code into a parse tree and enriches it with additional information to form a slightly more
complex graph. A graph query language is then used to execute queries that have been
defined by the item author and that are associated with individual feedback. Feedback
can be generated either on the presence or absence of some code structure. Elements
of the code can be used as parameters within the feedback, e. g. to refer to a specific
variable name or a specific line of code.

The second evaluator component compiles the syntactically correct code into executable
byte code and performs a series of test cases. Similar to the static checks, each test
case is associated with an individual feedback. The actual test results can be included
in the feedback, e. g. to show both the expected value and the actual value for a given
program call. In addition to that, execution traces of all test cases are created. If a test
fails, the respective trace is appended to the feedback message as an additional means of
feedback. If the item author also provided a sample solution, difference in the trace of
the submission and the trace of the sample solution can be highlighted by an algorithm
based on sequence alignment.

14.3.2. Item 2: Code Analysis
The item in this case has also been designed for a programming lecture within a computer
science curriculum, but deals with the understanding of source code rather than with its
creation. The item is a multiple-response item that presents a piece of object-oriented
Java source code in the item stem and four alternative lines of code as answer options (see
fig. 14.8). The item stem also includes actual call parameters for the given source code
and asks which of the alternative lines of code do not change the program output for that
particular call. Hence, the competence students need to demonstrate when answering
that item is the ability to analyse program code, deduce program behaviour and compare
different behaviours for the similarity of output.

Since the item is a closed item, answer evaluation is of minor interest. In addition,
input editors are not relevant, as the item can be answered by ticking checkboxes. The
most interesting aspect of the item is its automated generation that involves Java source
code as an artifact in a domain-specific language. It is thus also interesting with respect
to data formats. The item generation process is split into two stages, where one stage

161

14. Case Studies

Figure 14.8.: Sample item 2 in case 3. Source code is provided in the item configuration,
answer options are generated automatically during the generation process.

happens offline within a dedicated item generator outside the e-assessment system, while
the other stage happens online right before the item instance is displayed to a student.

The template for the item is straightforward: The item stem consists of just two lines of
text with a placeholder for the actual program call including its parameters. In addition,
the source code provided by the item author is displayed in the stem. All answer options
are placeholders to be filled with a generated alternative line of code. Thus the first
automated step in the generation process analyses the provided program code to identify
lines that are candidates for meaningful replacements. That is a highly domain-specific
task that relies on a rule-based approach to static code analysis encoded in the generation
algorithm. For that purpose, the source code provided by the item author is parsed into
a parse tree and queried for specific structures. Each of those structures may result in
a candidate line for creating a question. From all candidates, the generator randomly
picks one or more (belonging to the same method) to be used for generating the actual
item. After that decision has be made, the generator knows the corresponding program
call and its parameters. Hence, it can assign random actual values to these parameters
and execute the code to produce a first output. That is again a domain-specific action.
The generator can then create alternatives for the selected lines by making (random)
meaningful changes, e. g. switching operands or replacing operators. For each alternative,
the modified code is executed again to produce another output. Comparing these outputs
with the first one decides whether an answer option is considered right or wrong. Hence,
that part of the generation process mimics exactly the same domain-specific behaviour
students need to demonstrate when answering the item.

Once all possible alternatives have been created, the offline stage of the generation
process is completed. The online stage is much simpler, as it only needs to select four
out of the multiple generated alternatives and use them to populate the answer options

162

14.3. Case 3: Computer Programming

in the item template. The number of item instances that can be produced from a single
configuration depends on the provided source code, but is typically high. For example, if
the source code contains at least one loop-statement (for or while-loop), several dozen
alternative lines can be created for the loop header. Selecting four of them as answer
options consequently results in several hundred individual item instances. Notably, not
all variants are of equal difficulty, so that results from a careful empirical validation
additionally need to be fed into the generation process if item instances with specific
psychometric properties are required.

14.3.3. Summary of Observations
Although the two items in this case study are substantially different in the competences
they assess, they are strongly connected to each other from a technical point of view by
using the same type of data format. In both cases, source code is the central artifact
that follows a domain-specific language and can thus be analysed automatically. The fact
that the very same mechanisms of pattern matching on the syntax graph and dynamic
execution of program code with predefined call parameters is used in both cases stresses
that point that the proper integration of domain-specific tools and algorithms is highly
beneficial and flexible.

Notably, the both exercises from this case study can be directly connected to each
other from the conceptual point of view. The source code submitted by a student as an
answer to the first item can be used as input for item generation for the second item.
Evaluation results from the first item can be used to make sure that the second item is
meaningful, i. e. by selecting an appropriate item template for the second item based
on static code analysis results. However, an actual combination of these items would
require to realize the item generation process for the second item completely within
JACK instead of performing the first stage of the item generation offline in an external
generator component.

163

15. Results
The previous chapters provided an in-depth analysis of the use of domain-specific data
sources and tools for input and data storage, automated generation of test item content
and automated evaluation of test item responses. The analysis results were also illustrated
from a domain-specific perspective by three case studies. Now some conclusions will
be drawn to summarize the findings and put them into the context of this publication.
Moreover, some connections to the previous parts on processes (part I) and systems (part
II) can be drawn.

15.1. Contributions to Integrated E-Assessment
Using domain-specific systems within an e-assessment system is one clearly identifiable
aspect of integrated e-assessment. The previous chapters demonstrated that there are
different points at which domain-specific data sources and tool can be integrated into
e-assessments. Not each of them is relevant for all types of items or all domains. However,
all integration points can be used to enrich the capabilities of e-assessment systems. Some
cases could be identified in which domain-specific e-assessment is not possible without
using domain-specific systems. As a consequence, integrated e-assessment turns out to be
a necessary prerequisite for meaningful e-assessment at least in those domains. In turn,
integrating domain-specific data sources and tools is an easy way to significantly increase
the capabilities of e-assessment systems without adding actual e-assessment features.

This directly relates to the technical perspective of integrated e-assessment that was
examined in more detail in part II of this publication. Components like “item generators”
and “domain-specific expert systems” that were discussed in that part directly relate
to the integration of domain-specific aspects into a general e-assessment system. The
results from this part help to identify conceptual interfaces between the generic and
domain-specific parts of an assessment item which in turn also help to design proper
technical interfaces between system components. The same is also true for the design
of data storage within an e-assessment system that may respect the different structures
of domain-specific data formats. Finally, the discussion on domain-specific evaluation
of item responses strongly advocates for modular design patterns for graders in which
domain-specific tools are combined as needed in order to assess different details of a
student response.

However, there is not only a technical contribution. For each of the four aspects (input,
formats, generation, evaluation) summary tables provided an overview on different classes
of techniques or occurrences of the respective aspects. They can be used to classify
assessment items or assessment systems and compare them to each other based on their
domain-specific capabilities or demands. The results on several integration points can

165

15. Results

thus be used as a starting point for a systematic analysis of domain-specific e-assessment
systems and their capabilities. For each domain, a first step is to check whether it actually
uses specific input and data storage formats, general purpose software, or information
systems. A second step is to check whether e-assessment items make use of them as
well. A third steps is to identify domain-specific tools that can be used as content or
question generators or response processors. Any gaps between availability and actual
usage identified in the second and third step can then be used as direct triggers for
further development towards more evolved e-assessment items and systems that reflect
the full capabilities of a particular domain.

While this procedure for advancing e-assessment systems for a specific domain is a
process on its own, there are also additional connections to the general assessment process
discussed in part I of this publication. The use of domain-specific data sources, formats
and tools is clearly coupled to specific alpha states from the Assessment Kernel. In
particular, state “Designed” of alpha “Test Items” refers to resources belonging to a
test item and may thus include data in domain-specific formats. Moreover, the state
“Designed” may be the one that is reached after domain-specific automated generation of
items has been done. Similarly, state “Generated” of alpha “Grades & Feedback” may
be reached after domain-specific methods for automated evaluation have been applied.
Finally, also state “Defined” of alpha “System” is coupled to domain-specific aspects, since
the connection to external, domain-specific systems may be an important requirement
when defining which e-assessment system is used for a particular assessment. As a
consequence it can be stated that the use of domain-specific data sources, formats and
tools has a direct connection to several phases of the assessment process.

15.2. Contributions beyond the Scope of this Publication
There are much more applications to domain-specific data sources, formats and tools than
their use in e-assessment systems. The structured discussion in the previous chapters
can thus also be used as a starting point to analyse the same aspects for other types of
e-learning systems. In particular, virtual laboratories and similar training systems may be
of interest here, as they are also supposed to make use of highly domain-specific data. The
four summary tables provided above can thus serve as blueprints for similar classifications
of domain-specific and domain-independent features and demands in related systems and
environments.

At the same time, the structured discussion may even be of interest for system
developers in areas other than education, as long as template-based content generation
or domain-specific input and data formats are concerned. For example, the generation
of quests and riddles within a virtual world of an adventure game can use the same
techniques. The insights from any deeper analysis on using the same techniques across
systems and application areas can then be used to improve the robustness of formats and
tools and to ensure their universal use, which in turn also improves their usability for
integrated e-assessment. In conjunction with the connections to system design from part
II this can also be used to define and realize middleware components that are specifically

166

15.2. Contributions beyond the Scope of this Publication

designed to fill the gap between e-assessment systems or other technology-enhanced
learning systems on the one hand and domain-specific general purpose systems on the
other hand.

The results from this part of the publication may also be used to compare domains with
each other from a data perspective and identify similarities and differences. Based on that,
data formats and generation mechanisms can be generalized and unified independent
of their actual use in the context of a specific e-assessment system. This in turn helps
to identify clear interfaces and components for the system design and helps to improve
the overall software quality. More specifically, it helps to identify which concepts and
constructs are the same in different domains and which can complement each others. For
example, different natural sciences make use of basic mathematical concepts, but extend
or apply them in a specific way, as it has been shown in one of the case studies in the
previous chapter.

167

Part IV.

Data-focused E-Assessment

169

16. Data Produced by E-Assessments

It is quite obvious that e-assessment systems do not only receive data in terms of tasks
and configurations provided by item authors as well as answers submitted by students,
but also produce data in terms of grades and feedback. The mechanisms for the latter
as well as the system components involved in the related processes have been discussed
in the previous parts of the publication. Moreover, the conceptual view on grades and
feedback as main data elements has already been explored earlier in part I. However,
there is no need to restrict the creation of grades and feedback to a direct computation for
each single item with a subsequent simple aggregation to compute a score for the whole
test. Psychological research has come up with a lot of procedures to gather insight into a
person’s capabilities and competences by using well-designed tests, in which the feedback
generation for an individual item is less important. Hence, one of the topics in the
current part of the publication will be the integration of such methods into the context of
e-assessments and how to use them for sophisticated approaches such as adaptive testing.

The discussion on the educational assessment process also revealed that there might
be more data of interest to teachers or learners. Consequently, the use of suitable metrics
to compute characteristics of test items or tests had been included in the checkpoints for
alpha “Test Items” (see table 3.1) and alpha “Test” (see table 3.2). While that refers to
the use of data within the assessment process, i. e. to improve the assessment quality,
there might also be interest in using data from a single assessment in a wider context
and thus outside the actual assessment process. Examples include the improvement of
lectures or learning materials [70], the selection of courses to take in the next term, or
the prediction of success. Moreover, teachers might be interested in simply exploring
detailed results from several assessments, viewing the performance of different students
in comparison or query data for aggregated results of specific groups of items within an
assessment.

A fundamental difference in both topics can be made by the scope of data usage: One
scope is to gather and analyse data to learn more about a single person or a group of
persons, while another scope is to gather and analyse data to learn more about a single
item or a group of items. However, the underlying data is always produced by individual
persons and many methods produce results that reveal insights about persons as well
as about items. Hence, each of the following chapters discusses groups of methods that
share the same approach or that are connected to each other in some way.

Even more than the previous parts of the publication, the current part is concerned
with the integration of e-assessment into a larger context. Psychological research has
already been mentioned above and provides a lot of results that can be integrated with e-
assessment on the application level, i. e. for adaptive assessments. Similarly, the research
area of “learning analytics” and “educational data mining” has produced a lot of results

171

16. Data Produced by E-Assessments

on how to use data from various e-learning systems and thus naturally also covers the
use of e-assessment data [7]. There are also approaches for “assessment analytics”, that
can be organized in a conceptual framework with input, processes, output and feedback
[81, 211]. The most important idea in that framework is the fact that assessment happens
in some context that determines what needs to be analysed, why, when and where it
needs to be analysed, and who needs the analysis results. Consequently, assessment
analytics can be seen as some kind of interface that integrates the actual assessment
process that happens within an e-assessment system with the educational context in
which the assessment is embedded. However, integration is not only an aspect on the
conceptual level of contexts, but also a plain technical issue. Entirely different concepts
for storing data (such as relational databases, XML data, and RDF stores) might be
used across different systems and hence data export or transformation is necessary before
data from different sources can be used [178].

Additional aspects that cannot be neglected in any of the different context facets are
trust and legal issues of data privacy. When students take part in an assessment, they
reveal explicitly and implicitly private data and thus must trust the assessment system
and the assessors to handle that data properly. In turn, assessments can be used to
certify knowledge or competences and thus must make sure that accurate and detailed
data on individual persons is available, which usually involves to record and store private
data. It is not possible within the current part of the publication to dig into legal issues,
since they may depend on national laws and local regulations. However, a brief summary
of the main aspects of using private data is included before the details of data usage are
discussed. Finally, this involves also ethical aspects. Again, the following sections will
only report on some main aspects that are discussed in more detail and with a broader
scope than just e-assessment in other publications (e. g. [259, 147]).

16.1. Literature Study
To get a clearer picture of the various contexts in which data from e-assessment systems
can be used, a simple, systematic search in the Scopus literature database has been
performed. The search terms (e-assessment OR “computer aided assessment“ OR
“technology enhanced assessment”) AND data have been used for that purpose. Additional
terms like automatic assessment have been tested as well, but produced too much
irrelevant results from areas other than educational assessment.

Search terms were applied to titles, abstracts and keywords of the papers in the database.
In addition, the search was limited to articles, conference papers, book chapters, and
reviews. A first run of the search was performed in March 2021, followed by a second
run in October 2021 to include more up-to-date results. Since data for 2021 cannot
be complete before the end of the year, only papers published in 2020 or earlier are
considered.

Figure 16.1 provides an overview on the classification process that has been applied
to the search results. Classification of all papers was done based on the content of title,
abstract and keywords. Classifications were recorded by assigning at most two labels

172

16.1. Literature Study

Initial search
n = 314

Check
relevance

Off-topic publications (n = 113)

Publications with different focus (n = 111)

Relevant publications
n = 90

Classify

Publications using data in studies only (n = 24)

Publications using data for feedback only (n = 15)

Publications using data primarily to counter exam fraud (n = 21)

Publications using data primarily for classification (n = 22)

Publications using data primarily for competencies measurement (n = 5)

Publications on general data handling (n = 3)

Figure 16.1.: Overview on the classification process applied in this literature review.

to each paper, denoting the primary topics of each paper. Papers that did not cover
the topic of data usage in or from technology-enhanced assessment or even were not
concerned with educational assessment at all were labeled with label “off”. These papers
are excluded from any further investigations. Five additional labels were used for papers
that covered technology-enhanced assessment, but did not focus on data usage:

• Label “study on e-assessment” was used for papers that discussed studies on e-
assessment where data was not taken from the e-assessment systems, but solely
from other sources such as surveys or interviews. A different label “data use in
study” was used for papers that discussed studies on e-assessment where data was
indeed taken from the e-assessment systems and that where thus considered relevant
for the review.

• Label “system design” was used for papers that only presented and discussed system
design but not specifically data handling. A different label “data handling” was
used for papers in which system design was discussed with an emphasis on data
handling, which was considered relevant for the review.

• Label “review” was used for papers that presented reviews of other publications
but did not originally report on the use of data within some system.

• Label “theory on e-assessment” was used for papers that discussed general and
abstract theories on e-assessment or process models for e-assessment, but did not
discuss the actual use of data.

173

16. Data Produced by E-Assessments

Label Papers Label Papers

off 113 data use in study 24
study on e-assessment 46 feedback 18
system design 44 plagiarism 8
theory on e-assessment 9 authentication 8
review 6 quality 8
domain-specific item handling 6 privacy 7

improvement 6
prediction 6
dishonesty 5
competency measurement 5
adaptivity 5
classification 5
data handling 3

Table 16.1.: Number of papers per label for excluded papers (left) and included papers
(right). Note that papers from the right-hand part could be labels with more
than one label and thus the sum of all labels is larger than the total amount
of papers.

• Label “domain-specific item handling” was used for papers that are concerned with
domain-specific e-assessment in domains that involve the term “data”, such as
“data structures” in the context of computer science.

For the remaining papers, at most two labels were assigned the describe best the
primary kind of data or means of data handling contained in that paper. There was no
pre-defined list of possible labels before starting the review, but new labels were defined
as necessary. To decide which label(s) can be applied to a paper, title and abstract were
read first. In most cases, these contained sufficient information to select one or two
appropriate labels. In case of doubt, the full paper was read to make a decision.

The search returned a total amount of 314 publications. From those, 224 publications
were excluded with the labels listed in the left-hand part of table 16.1. The remaining 90
papers were assigned with labels as listed in the right-hand part of the same table.

16.1.1. Bibliometric Data
Publication years (see figure 16.2) seem to reveal an increasing interest in the topics that
are considered relevant for the review. The oldest publication is from 2005 and thus fairly
new (at least in comparison to the oldest excluded search result which is from 1948) and
there were not more than two relevant publications per year until 2010. Different to that,
there were at least 6 relevant publications per year since 2014 and more than 50% of all
relevant publications have been published within the last four years.

174

16.1. Literature Study

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

N
u
m

b
e
r

o
f
P

u
b
li
c
a
ti
o
n
s

0
5

1
0

1
5

Figure 16.2.: Number of papers per year that have been included in the analysis.

The most frequent publication venue among the relevant papers is the IEEE Global
Engineering Education Conference (EDUCON) with five papers. It is followed by two
journals (British Journal of Educational Technology and International Journal of Emerging
Technologies in Learning) and two proceedings series (Lecture Notes in Computer Science
and Lecture Notes on Data Engineering and Communications Technologies), each with
four publications.

16.1.2. Findings on Contexts and Forms of Data Usage
The 90 relevant publications that were included in the study can be divided into several
groups. These will be discussed in the following paragraphs in decreasing order of their
size.

The largest group contains 24 publications that report on some research study on
e-assessment, where at least a part of the data used in the study comes directly from
an e-assessment system. In comparison to the large body of research in the field of
technology-enhanced assessment this seems to be a small number. It may thus not
be representative, but only a random sample that contains all search terms by chance.
Nevertheless, it can be concluded that using data from an e-assessment system for
research purposes is at least a very relevant use case, if not indeed the most frequent
one. Common to most of the studies is that data is usually extracted once. The focus of
research is usually not an individual person, so that anonymous or aggregated data can
be used. However, persons must remain identifiable if data from e-assessment systems
should be combined with data from other sources such as interviews or questionnaires.

A major group of 21 papers is concerned with measures to detect or prevent exam
fraud. A significant share of the publications in that category origin from the recent
“TeSLA”-project1. Both aspects are related closely to each other, but can be distinguished
by the way they use data: One aspect is the detection of plagiarism and other forms of
academic dishonesty. A total amount of 11 publications tackle that topic and discuss
approaches on how to detect dishonesty from e-assessment data. The topic is not specific

1https://cordis.europa.eu/project/id/688520/

175

https://cordis.europa.eu/project/id/688520/

16. Data Produced by E-Assessments

to technology-enhanced assessment but also relevant for paper-based exams. However,
technology-enhanced assessments make it easier to analyse solutions (cf. e. g. [209]) and
to collect additional information like keystroke characteristics [26] to reveal dishonesty.
At the same time, unproctored e-assessments may make it easier for students to commit
exam fraud (cf. e. g. [12]). With the respect to data usage, anonymous data can be
sufficient to check for indicators for exam fraud and personal data must only revealed
in conjunction with actually suspicious cases. Some mechanisms combine data from e-
assessment systems with other data (e. g. previous submissions of coursework or resources
from the internet; [30]). Moreover, checks can be run once (e. g. after an exam) and need
no constant access to data.

The other aspect is authentication and privacy, which can be used to prevent exam
fraud. It is discussed by a total amount of 14 publications. The important trade-off here
is how much personal data must be revealed to ensure a proper authentication and how
much data can be kept anonymous [207, 196]. Different to the previous aspect, data
is usually used continuously (e. g. to make sure that the person who logged in for an
exam or enrolled for a course is indeed the person that works on the exam/course) and
in conjunction with external data sources (e. g. for single sign-on mechanisms).

An almost equally large group of 22 publications is concerned with data classification
approaches that employ mathematical or statistical models. There is a wide range
of application areas: Adaptive e-assessments (e. g. [239, 34, 99]), prediction of exam
results or completion time (e. g. [45, 297, 92]), or quality measurement and improvement
(e. g. [263, 22, 69]). Pure classification can also be used as a means of data aggregation
for feedback generation [200, 240]. Besides adaptive e-assessment, these aspects are
mentioned in the papers several times in conjunction with the term “learning analytics”.
Different to the research studies on e-assessment mentioned above, the focus of the
publications is not on a detailed measurement that is performed once in the context of
academic research, but on continuous or frequent use of data for the respective purposes.

Although the mathematical or statistical methods might be similar for different pur-
poses, the kind of data is not. Adaptivity clearly requires continuous use of individual
data, since such systems adapt their contents based on individual responses while learners
are working on an assessment or assignment. In contrast to that, prediction is usually
performed frequently and can also involve data from other sources such as learning
management systems. Data used for quality measurement and improvement is usually
aggregated and anonymous, while data that should help students to improve their way
of learning in personalized systems clearly needs to be related to that person [243].

The next group contains 15 publications that are concerned solely with giving feedback
on individual items (while there are two papers that are not only concerned with feedback,
but also with classification and another paper that tackles feedback and plagiarism).
Since 15 papers is a rather low number given the fact that most e-assessment systems are
primarily designed to give feedback, these papers can hardly be considered representative
for the way in which e-assessment data is used for feedback generation. Nevertheless,
these papers already show that feedback generation requires continuous usage of data. If
feedback is solely directed towards the learners, feedback mechanisms can use anonymous
data. Feedback for teachers that reports about a larger group of learners can use

176

16.1. Literature Study

aggregated data, but feedback in exams obviously is related directly to individual,
identifiable persons.

A special aspect of feedback generation is competency measurement, for which 5
publications could be discovered that are explicitly related to that topic. Similar to the
low number of papers on general feedback generation, it is possible that much research
on that topic is published without direct relation to e-assessment and has thus not been
discovered by the search terms used for this simple survey. An interesting aspect with
respect to data handling is the fact, that competency measurement not only uses data
from e-assessment systems, but also produces data (i. e. measured competency levels)
that may be stored as additional data directly associated with individual persons in some
kind of learner model [42, 85].

Finally, 3 publications discuss general topics of data handling within e-assessment sys-
tems independent of a particular use case. The discussions cover meta-data management
[242], conversion between data formats [179] and approaches to data visualization [191].

16.1.3. Discussion of findings
The results prove that there are various views on e-assessment data that all get remarkable
attention in current research. Notably, no time constraint was used during the literature
search and most papers have been published fairly recently. The oldest publication
included in the results is from 2005 and there are only four publications at all that have
been published before 2010. Given the fact that e-assessment systems are known for
much longer, the focus on data use appears to be a relatively new topic.

The results of the survey are similar to the results of a broader survey on artificial
intelligence applications in higher education [313]: In that survey, profiling and prediction
was identified as a major use case (58 out of 146 studies), followed by assessment and
evaluation (36 studies), intelligent tutoring (29 studies), and adaptivity and personalisa-
tion (27 studies). Hence only the aspect of authentication and privacy was not covered
in that survey, which is not surprising as these topics are usually not associated with the
use of artificial intelligence.

Besides a classification into topics, that literature survey can also help to identify
characteristics of data usage along different dimensions. One dimension that was already
mentioned above is the frequency of data use. Data can be extracted from an e-assessment
system one time for single use, i. e. in the context of a research study. It can also be
extracted or used frequently. This is the case for example when solutions are checked
for plagiarism at the end of an exam or when data is extracted at the end of a course
for quality assurance. Finally, data can also be used continuously, e. g. for adaptivity,
competency measurement, or during authentication.

Another dimension is the granularity and richness of data. For many studies or for
quality assurance it is sufficient to use anonymous or aggregated data that does not reveal
too much individual details. Also grading and feedback generation can often be performed
without revealing personal data of the answer’s author. Anonymous data is particularly
beneficial with respect to data privacy. Aggregated data is more compact to handle
than detailed data and thus e. g. easier to visualize. Other scenarios like competency

177

16. Data Produced by E-Assessments

Type of data Cases with one-
time use

Cases with frequent
use

Cases with continu-
ous use

Anonymous or
aggregated data

research studies quality assurance feedback

Individual, identi-
fiable data

— plagiarism check adaptivity, compe-
tency measurement

Data merged
with external
sources

research studies plagiarism check,
prediction

authentication

Table 16.2.: Overview on examples for typical scenarios using e-assessment data along
the two dimensions of data usage.

measurement or adaptivity nevertheless require individual, identifiable data since they
concern individual students. Using anonymous or aggregated data is not possible in
that case, although that means to involve more sophisticated algorithms to handle large
amounts of data and to ensure data privacy. In very specific cases, particularly in
conjunction with extensive research studies, but also for prediction, plagiarism checks
or some ways of authentication it may be necessary to combine e-assessment data with
data from other sources. That can be achieved by contributing data to a general data
repository. The resulting data is very rich and detailed, but also very sensitive with
respect to data privacy.

An overview on the two dimensions of data usage and some scenarios is given in table
16.2.

16.2. Legal Issues, Trust and Privacy
In the first place, e-assessment systems gather sensitive personal data. Even a small set
of answers given by a student can reveal much about his or her competences. Judgements
based on that data may have remarkable consequences for the future life of that student.
Consequently, handling e-assessment data has not only technical and didactical implica-
tions, but also implications with respect to laws on data privacy (such as the European
General Data Privacy Regulations (GDPR)) and trust into e-assessment systems. A
usual procedure in that context that is required by many laws is to ask data subjects
(i. e. students) for informed consent in using their data. Data controllers (i. e. teachers
or technical units providing e-assessment facilities) must provide the data subjects with
complete and understandable information on the purpose of data processing, data types,
storing period, data controllers and processors, and the data subject’s rights. Blueprints
exist for a structured presentation of these information [197]. However, more legal
requirements have to be taken into account, especially if it is not voluntary for students

178

16.2. Legal Issues, Trust and Privacy

to provide some personal data. In particular, e-assessment systems are neither allowed
to collect any data that is possible, nor are teachers allowed to use the collected data for
any purpose they like. Moreover, collecting, processing and storing data implies some
obligations for the data controllers and processors.

16.2.1. Technical and Organizational Considerations
A first and probably quite obvious aspect in that context is data security. E-assessment
systems and its users must make sure that data cannot be manipulated within the system
or leaked to unauthorised users outside the system. Both technical and organisational
measures can be implemented for that purpose and they are in general not different than
in other systems that deal with sensitive personal data. Suitable measures thus include
the use of TLS to secure the communication between components within the e-assessment
system’s distributed architecture, the use of a PKI to avoid transmission of passwords
through the network, or the strict use of authentication between all components within
the architecture, as suggested for the architecture created within the TeSLA project
[143]. In addition, block chain technology can be used to save exam results and resulting
certificates from manipulations, even if they leave the system [112]. Notably, system
architecture can also have an impact on data security as we already discussed in section
7.3.1 in part II: The unrestricted plug-in pattern bears that risk that critical data may
leave the system and thus data security cannot be guaranteed when that pattern is used.

A second and more delicate aspect is the balance between authentication and privacy.
Teachers must make critical decisions based on e-assessment data and thus naturally want
to make sure as much as possible that students cannot cheat the system and produce
data that does not reflect their actual competences. The problem of ensuring identity
authentication can be considered to be the main challenge to be addressed for remote
e-assessment [143]. Complex authentication mechanisms, collection of additional data
besides the actual answers to assessment items and online proctoring can be used for that
purpose to prevent exam fraud. However, that in turn implies to collect and process a
very large amount of personal data and students may not agree with the appropriateness
of that data collection. In fact, students may expect that an e-assessment system is
as neutral as possible and thus will grade answers anonymously. Indeed, there is no
technical reason to store any other personal data than the actual answers within an
e-assessment system for the purpose of assessment and competency measurement. The
problem can partially be solved via technical means like pseudonymous identifications,
where standards like OpenID, SAML or Shibboleth are used [159, 143]. However, that
only allows to keep personal data local during the authentication process, but does
not remove the need for further data collection by online proctoring or other means of
authorship verification.

A third aspect is that of data usage beyond actual assessment. As reported above,
there is a large amount of research studies that make at least partial use of data from
e-assessment systems. While it is nearby to do so in research on e-assessment, there
is no automatism that this is also legal. In particular, a signed consent form for all
students is only usable if it indeed informed about their actual use of the data. Hence,

179

16. Data Produced by E-Assessments

any use of data that is not mentioned at the time a student gives consent is not allowed.
Consequently, teachers, researchers, and operators of e-assessment systems must decide
and publish what they want to do with data before they collect it. Otherwise, they can
only use anonymized and aggregated data, that may be sufficient for many but not all
types of research studies.

16.2.2. Ethical Considerations
Besides technical and organizational considerations, processing and storing personal
data also implies ethical aspects. Two major ethical aspects have been explored within
the TeSLA project [147]: A first aspect is the freedom of giving consent. A consent in
processing personal data is only free, if a true alternative is offered. If students for example
do not trust in an e-assessment system that uses face recognition for authentication, it is
not a true alternative to offer voice recognition for those student who give no consent
in taking pictures of them. On the other hand, offering them the alternative to take
a classical face-to-face exam without an e-assessment system bears the risk of unequal
treatment in two completely different types of exams. In addition, there are possibilities
to allow students to give partial consent, so that their data can e. g. be used in scientific
studies (where an individual cannot be identified from aggregated data), but not for
personalized learning [259]. The idea here is to create a balance that allows to use
anonymized data for the benefit of the majority, but also allows individuals to protect
themselves from potential harm.

A second aspect is transparency and feedback. The way personal data is processed
within an e-assessment system must be understandable to students and also to teachers.
Students must be able to understand the algorithms that process their personal data
within the e-assessment system to be able to challenge decisions made by the system.
In particular, it must be transparent to them which decisions are actually made by a
system based on which data, and which decisions are made by teachers using the system.
Similarly, it must be clear to teachers how far data processing results produced by the
e-assessment system (e. g. a plagiarism warning) can be understood as evidence or just
as a hint. It also must be clear for which purpose the feedback produced by the system
is actually intended to prevent teachers from over-interpreting data or using it in context
for which it is not suitable.

Another important ethical aspect is that of the temporal nature of student identity
and performance [259]: Each assessment or other recording of student data can only
provide a snapshot for a specific time and context. Consequently, longitudinal data is
necessary to come to more stable conclusions that do not overestimate the value of a
single observation. At the same time, storing of data should be limited, so that older
and possibly outdated data can only have an limited impact.

180

17. Competency Measurement

In most cases, the main goal of an assessment is to make the (intermediate) result of
a learning process measurable in some way. The easiest way to do so is to count the
number of assessment items that were solved correctly within an assessment and use that
number directly as measurement result. Since that barely reflects the fact that items
can be of different complexity or difficulty, a common approach is to assign some kind
of weights to each item. In any case, the underlying assumption is that an assessment
item allows to capture a direct, representative picture of the actual abilities of the test
taker. This is what classical test theory (cf. e. g. [204]) is about. Besides the assumption
that a person’s psychometric construct can be directly measured it also acknowledges
that errors can occur in a test and that thus only an observed score can be measured.
Consequently, classical test theory analyses the relations between the actual score, the
observed score, and the error of a person.

A more modern view assumes that learning results in a gain of competences, where a
single competence is defined in [305] as “the cognitive abilities and skills possessed by
or able to be learned by individuals that enable them to solve particular problems, as
well as the motivational, volitional and social readiness and capacity to use the solutions
successfully and responsibly in variable situations.” A subsequent assumption in [146]
is, that “Competencies cannot be reflected by or assessed in terms of a single, isolated
performance. Rather, the range of situations in which a specific competence takes effect
always spans a certain spectrum of performance. Narrow assessments cannot meet the
requirements of competency models. [...] Competence must be assessed by an array of
tasks and tests that do more than simply tap factual knowledge”.

Consequently, sophisticated item preparation and data analysis is necessary if e-
assessment systems should be used for proper competence measurement. In turn, data
produced within e-assessment systems can easily be used to analyse assessment items
more closely and thus come to detailed conclusions about the actual competences that are
related to a particular item. For example, it must be assured that the items within one
particular assessment that is supposed to measure a single competence or a set of closely
related competences requires predominantly certain levels of these competences. This
requirement closely resembles the criterion of Internal Consistency known from classical
test theory, which can be calculated by Cronbach’s Alpha Coefficient [60]. Alpha will
be negative whenever there is greater within-subject variability than between-subject
variability. The common rule of thumb for Internal Consistency is “excellent” for α ≥ 0.9,
“good” for α ≥ 0.8 and “acceptable” for α ≥ 0.7. Another example is the fact that
competence measurement establishes a relation between the competence level of a person
and a difficulty of an item. That implies that it is no longer sufficient to assign random

181

17. Competency Measurement

weights to items, but to calculate mathematical models that ensure a proper alignment
of item difficulties.

The following sections first summarize basic knowledge about competency measurement
using item response theory (IRT). It then shows how that can be used for adaptive testing
within an e-assessment system.

17.1. Item Response Theory
In contrast to the classical test theory, item response theory assumes a psychometric
construct to be latent and only observable through responses on items that are solved by
a particular probability related to the person’s ability. In general, item response theory
assumes that the difference between a person’s ability and the difficulty of an item is a
predictor for the probability of an individual’s response [223].

A basic assumption in IRT is that an item is dichotomous, which means that an answer
is either right or wrong. The probability for a correct answer (an outcome of “1” in the
following) can then be expressed by a function of the item difficulty (β) and the person’s
ability (θ):

P (X = 1|θ, β) = f(θ, β) (17.1)

The difficulty of an item is hence assumed to be the value a person’s ability must have
to have a 50% chance to solve the item. Moreover, the chance decreases monotonically
with decreasing ability and increases monotonically with increasing ability. A typical
approach to characterize the required function is to use so-called “logistic model” where
the calculation is based on the transformed logit function:

p(z) = ez

1 + ez
(17.2)

where z has to be specified more exactly.

17.1.1. One-dimensional Logistic Models
As mentioned above, the probability of solving an item is determined by the difference of
a person’s ability θ and the difficulty of the item (β). This leads to a formula representing
the probability of a response of 1 as a function of item and person parameter.

p(xj = 1|θ, βj) = e(θ−βj)

1 + e(θ−βj) (17.3)

p(xj = 1|θ, βj) is the probability of a response of 1 on the jth item with regard to
a person parameter θ and the item difficulty βj . The model is called one-dimensional,
because difficulty and ability are each considered to be a single value.

Obviously, neither the difficulty of an item nor the ability of a person are known a
priori. Instead, both values can only be computed if the answers of a group of persons to
a set of items is known. This is why item response theory is particularly interesting in
conjunction with e-assessment systems, as all data is available digitally. Data can thus

182

17.1. Item Response Theory

easily be exported in a data format suitable for popular statistical software, which offers
the necessary functionality to perform all required calculations (e. g. the “Psychometric
Models and Methods” for R1).

The first and simplest form of the test models related to the item response theory is
a model where only one parameter is to be estimated. This model only differs in the
difficulty of the items and is called the 1PL model or Rasch model. Additionally, it is
assumed that the latent variable is one dimensional. The first step in the calculation
process is then to fit the model to the data, i. e. compute β for all items based on the
given answers.

If the interest is only in fitting a logit function to empirical data, it is necessary to
change the discrimination value α of the item characteristic curve (ICC) to better fit the
data. Nevertheless, for the 1PL model the discrimination value has to be the same for all
ICCs of the investigated items. Including the discrimination value into Equation 17.3
leads to the general formula describing the 1PL model.

p(xj = 1|θ, α, βj) = eα(θ−βj)

1 + eα(θ−βj) (17.4)

The 1PL model has several assumptions concerning the items. They have to be locally
stochastically independent, homogeneous and have to fulfill specific objectivity. Besides
these assumptions and the restriction on one parameter, the resulting person and item
parameters are versatile. Thus, the complete set of parameter values can be shifted
without changing the probability of solving an item. Because of that, comparing the
person’s parameters among different tests is not applicable.

Provided that the 1PL model is applicable, some very convenient simplifications can be
made. For example, the sum of the scores of all individual items is a sufficient statistics,
which means that the (estimated) person parameter depends only on the total number of
correct answers of this person. It does not matter, which items the person had responded
to correctly.

In addition to the 1PL model, there are other models that, as a commonality, do not
require the presumptions of the 1PL model. In the 2PL model – also called the Birnbaum
model after its author (cf. [35]) – a second parameter δ is introduced for each item. It
describes the gradient of an item and thus its discriminability. Discriminability describes
how well an item is able to discriminate between persons with different ability levels. If
discriminability is low, a person with low ability has only a slightly lower chance to answer
the item correctly than a person with higher ability. If discriminability is high, persons
with insufficient ability clearly have a low chance to answer correctly, while persons with
sufficient ability clearly have a high chance. The Birnbaum model is described by the
following formula, which introduces the parameter δj for α in Equation 17.4:

P (uij = 1|θi, βj , δj) = eδj(θi−βj)

1 + eδj(θi−βj) (17.5)

1https://cran.r-project.org/web/views/Psychometrics.html

183

https://cran.r-project.org/web/views/Psychometrics.html

17. Competency Measurement

Different values for item discriminability are reflected in the steepness of the slope of
the item characteristic curves. Consequently, the item characteristic curves can intersect
each other and there is no longer specific objectivity. This would mean that the difficulty
order of the regarded items depends on the person parameter.

One of the assumptions so far is that the chance to answer an item correctly is close
to zero for persons with low ability. While this may be true for open items, it is usually
not true for closed items that can be answered by guessing. To correct for that factor, a
third parameter can be introduced, resulting in a 3PL model. That parameter basically
changes the y-intercept of a curve and thus defines a lower bound for answering the item
correctly that is substantially larger than zero.

17.1.2. Item Information Curves and Test Information Function
In the previous subsection the item characteristic curve (ICC) was used to depict the
chance of a person with a given ability to correctly answer an item with a given difficulty.
The first derivative of an ICC is called item information curve (IIC). It shows how much
new information can be learned about a person with a given ability by knowing their
answer about that item. Item information curves have their peak at the difficulty value
and thus at the point where the item has the highest discrimination. A person with
that ability has a 50% chance to answer that item correctly and thus both outcomes are
equally likely. In turn, a person with much lower or higher ability has a much lower or
higher chance to answer that item correctly. Thus it is more likely that the expected
answer is indeed the actual one and thus the gain of information is lower to both sides of
the difficulty value. This is the core mechanism used for adaptive testing that will be
discussed in section 17.2 below.

Item information curves can be used by assessment authors to optimize their tests.
Two items with the same IIC are redundant for the purpose of competence measurement.
Instead, one would try to have items in the test that have difficulty values that are
equally distributed over a wider range of abilities. The sum of all IICs can be used to
visualize the coverage as the test information function. One would expect that function
to have its peak around the expected average ability and to be moderately decreasing to
both sides.

17.1.3. Beyond One-dimensional Models
In the case that there is more than one psychometric construct to be measured within a
single item, multidimensional models have to be applied [234]. Another approach can
be to split complex answers into segments that are locally stochastically independent
and hence handle one assessment item implicitly as a set of individual items, where each
of those measures only one psychometric construct. An example on that is discussed in
section 20.2 below.

184

17.2. Adaptive Testing

17.2. Adaptive Testing
A classical exam presents a predefined set of items to the participants. Depending on the
context, the order of the items may be random for each participant (if an e-assessment
system is used that allows to shuffle items) or participants can at least work on the items
in random order. E-assessment systems may also draw items randomly from a larger
item pool so that participants do not only get the same items in different order, but also
different but similar items. However, these mechanisms still do not take into account
how a student has answered the items. Given the fact that each item provides most
information about a person’s ability if its difficulty is equal to the person’s ability, that
implies that many participants may answer items that actually do not help much in
measuring their competences [151, 90]. Moreover, in an assessment that covers a large
range of ability or difficulty levels, it can be expected that the easiest items will be
answered correctly by most participants, while the hardest ones will be answered wrong
by most participants. This may have a negative impact of the performance for many
participants, as they are either bored by the easy items or demotivated by the hard ones.

A solution to that problem are adaptive tests, in which each participant receives an
individual sequence of items based on the performance during the test. In adaptive
testing, based on previous answers, the participants selectively see only those items from
a larger item pool that match their ability level and that are necessary to measure a
desired competence as accurately and validly as possible. The central goal of adaptive
testing is thus to limit the testing to those items that are informative for the desired
ability measurement [151]. In adaptive testing, students are thus confronted as little as
possible with items that are significantly above or significantly below their individual
learning level and thus provide little diagnostic information. Using adaptive testing
tailored to individual learners in assessments or exercises also offers opportunities to
respond to a relatively heterogeneous groups of students in a course by offering individual
learning support [189]. Hence, adaptive testing can be used both in summative scenarios
for a final exam and in formative scenarios for exercises or informative self-assessments.
Due to the increased test efficiency of adaptive tests, such self-assessments can be short
but still reliable, which may increase the motivation of learners, as they receive quick
and individual feedback [47].

In order to cope with the extensive statistical evaluation when selecting questions,
adaptive tests are often carried out digitally by using an e-assessment system. They are
commonly called “Computerized Adaptive Tests” (CAT) in that case. The statistical
test evaluation approach of the item response theory (IRT) as discussed in section 17.1 is
primarily used here and in fact the term “adaptive testing” is almost directly associated
with that method [151]. With this approach, one is able to determine item difficulty and
personal ability parameters of an item, which are the basis for the adaptive selection
of items in the test. However, items that can be evaluated automatically are required,
which is why closed item formats are particularly suitable. This can lead to restrictions
in the measurement of certain psychometric constructs or competence facets, e. g. with
regard to performance for the independent creation of solutions. In that case, open
items are more suitable, but also more challenging from the perspective of psychometry.

185

17. Competency Measurement

In addition, adaptive testing requires a sufficiently large number of scaled items. In
particular, this type of testing requires extensive item pools that cover the full range
of expected abilities with a large number of item to measure an ability in a way that
is appropriate for the model. Moreover, an extensive calibration sample is required to
estimate the corresponding item parameters sufficiently accurately and reliably [90].

These psychometric requirements are often difficult to meet in the case of complex
tasks and specific target groups. This variant of adaptive testing, also known as “tailored
testing”, is based on an elaborate calculation to estimate the ability parameter and to
select the next task that provides maximum information. Above all, this approach also
requires the fulfilment of the above-mentioned prerequisites (extensive task pool and
extensive calibration sample) in order to be able to perform corresponding calculations of
the parameters. A variant that provides less demanding prerequisites for the development
of adaptive test items or tasks are “branched testings”, in which the performance-related
item selection is made according to a previously defined branching structure [152]. This
variant of adaptive testing places significantly lower demands on the statistical evaluation
and calculation of item parameters during the test procedure. The basis of such test
variants is a decision structure for the adaptive assignment of individually appropriate
items, which is elaborated in a subject-related didactic or learning theoretical manner. It
is nevertheless based on the individual performance during the assessment, as each item
is seen as a decision point that may lead to a different, predefined branch based on the
correctness of the answer.

186

18. Learning Analytics and Outcome
Prediction

Besides measuring competences with calibrated assessments according to psychometric
theories, teachers or students may also be interested to get other insights into a learning
process. In particular, they might be interested in measuring learning progress without
performing a psychometric valid assessment every day or week. E-assessment systems
offer the opportunity to gather more low-level data such as the performance in individual
exercise tasks and to export that data to make connections with data from other sources.
Teachers and students can use that data either to analyse the actual learning progress
within a specific group of students or to come to more general conclusions about the
appropriateness of some learning activities in a given course. That in turn can e. g. be
used by students to predict whether their own learning effort is sufficient to reach their
goals or by teachers to see whether their class is on track. For a simple approach to that
task, dashboard or analysis tools are sufficient that allow to explore data from various
sources, e. g. based on an ontology framework [136] or as a detailed dashboard with both
numerical and textual information [245, 98].

Statistical methods for performing more sophisticated analyses and predictions instead
of ad-hoc inspection of data are summarized as “Learning Analytics” [142, 254], sometimes
also mentioned in conjunction with the term “Educational Data Mining” [7]. These
methods are concerned with a statistical analysis of data from learning processes as well
as with its visualisation. Learning analytics are not limited to data from e-assessment
systems, but can include virtually any data that can be recorded throughout a learning
process. However, assessment scores are used by about a half of all current approaches to
learning analytics according to a recent literature survey [250]. Another study specifically
on predictions using Support Vector Machines recorded six (out of ten) cases in which a
final mark was predicted from previous marks [20].

The following sections thus focus on learning analytics methods that can be used to
analyse or visualise assessment data. Other methods like interaction data and social
network analysis or text mining from student contributions to chats or discussion boards
are not considered here. These can be used e. g. for gathering insights into structure
and behaviour of learning groups [194] or for predicting whether students will complete
their assignments on time [75]. Although the latter is related to assessments, it is out
of scope here as it predicts events within an assessment but solely uses data from the
context. Instead, we focus on cases in which data from assessments is used. Hence,
statistical methods are summarized that allow to cluster students based on their as-
sessment performance and to predict learning outcome at the end of a course by early
assessment results. Two classes of methods that are used particularly often are clustering

187

18. Learning Analytics and Outcome Prediction

and regression [250, 7]. The purpose of clustering is to predict the class assignment of
objects (or persons) based on some observed properties. The number of classes or clusters
is typically substantially smaller than the number of elements to be placed in these
classes. In contrast to clustering, regression can also predict a continuous size or floating
point number and can thus assign an individual value to each element. Nevertheless,
it can also be used for classification. In both case, a mathematical model must be
created from training data that contains both the input values and the desired output
values for a sufficiently large sample. The required model can be created with classical
statistical methods or with artificial intelligence, i. e. neural networks or other forms of
learning systems. Frameworks exist that implement several classification methods and
thus allow teachers to explore data and choose the most appropriate method [175]. Once
an appropriate model is in place, predictions can be made for a new data set.

The techniques described in the following sections are the ones that are commonly used
in several studies (see e. g. [233]). Specifically, a recent survey on artificial intelligence
applications in higher education lists several studies that use artificial neural network (see
section 18.3), decision trees and random forest (see section 18.5), support vector machines
(see section 18.4), naive Bayes (see section 18.2), and regression analysis (see section 18.1)
to predict admission decisions, student academic performance, drop-out undergraduate
students, and student engagement [313]. Notably, that survey names logistic regression
to be conventional and counts all other techniques as machine learning algorithms.
Another recent survey lists twelve different categories of data mining techniques in higher
education, where the four techniques classification, clustering, statistics, and regression
are the techniques used in 72% of the reviewed studies [7].

18.1. Regression Analysis
Regression analysis is a classical statistical analysis method with many application areas.
The two main variants are multiple linear regression and logistic regression. The latter
is also called binary logit model. Both methods attempt to determine the relationship
between one dependent variable and several independent variables. With multiple linear
regression, the assumption is made that the relationship is linear. Furthermore, the
dependent variable must be interval-scaled and the independent variables must be interval-
scaled or dichotomous variables. In a graphical visualisation of the method, each element
is considered a vector in a vector space (where the number of dimensions is equal to
the number of variables). Within that space a straight line is sought that describes
the relationship between dependent and independent variables in such a way that the
distances between the straight line and the independent variables are minimized. To
do this, the squared deviations of the straight line from the independent variables are
minimized - this procedure is also known as the "method of least squares" or "Ordinary
Least Squares" (OLS). The resulting regression model is described using regression
coefficients:

y = β0 + β1 ∗ xi + β2 ∗ x2 + ... + βk ∗ xk + ϵ

188

18.2. Naive Bayes

In this equation, y is the dependent variable, xk are the independent variables , βk are
the regression coefficients for each xk, and ϵ is an error term. The equation thus directly
expresses a linear correlation such that an increase of xk directly causes a change of y in
the magnitude of βk, provided all other independent variables did not change.

If the dependent variable is categorical data, that is, the variable can only take a limited
number of instances, linear regression cannot be used. In this case, logistic regression is
used. In contrast to multiple linear regression, the dependent variable in logistic regression
has only two instances, while the independent variables can be both interval-scaled and
dichotomous variables. Similar to multiple linear regression, a function curve is sought
to describe the relationship between dependent and independent variables. However, in
logistic regression, a logistic function is used instead of a straight line. Here, the logistic
sigmoid function is used for the probability estimation so that a high or low probability
is output for one of the two instances of the dependent variable. This is based on the
method of “maximum likelihood estimation” (MLE), in which the regression parameters
are determined in such a way that the desired high or low probabilities are calculated. In
contrast to multiple linear regression, which predicts a concrete value of the dependent
variable, logistic regression thus predicts the probability of the occurrence of one of the
two possible values for the dependent variable. However, there are two other variants of
logistic regression analysis. Namely, ordinal logistic regression and multinominal logistic
regression, which can be used for ordinally scaled dependent variables and for nominal
dependent variables with more than two values.

The results of a regression analysis are usually easy to interpret and visualize. In
addition, it is offered as standard functionality in many statistics programs or even
simple office software, which makes it easier to perform regression analyses. However,
regression analysis does not always provide high-quality prediction results. For example,
individual outliers can have a strong influence on results and independent variables
with a high collinearity also decrease stability of results [289]. Furthermore, complex,
non-linear relationships are difficult to capture using regression analysis. Nevertheless,
the regression analysis is sufficiently understandable, so that it is often used for prediction
and visualization in the field of Learning Analytics. A detailed case study on that is
included in section 20.1.

18.2. Naive Bayes
Naive Bayes or the Bayes classifier is an algorithm for classification problems and is based
on Bayes’ probability theorem. The algorithm is mostly used for object classification by
using probabilities to predict the assignment of a new object to one of several known
classes. For this purpose, relevant properties of the objects are seen as random variables.
The distribution of the properties within a training sample with known classes for each
object can then be observed. Hence, the Bayes’ Theorem can be used to determine the
probability P (A|B) that an object belongs to class A if it has property B by observing
the general probabilities P (A) (the share of objects in class A) and P (B) (the share of

189

18. Learning Analytics and Outcome Prediction

objects having property B) as well as the probability P (B|A) for finding property B on
an object of class A within the training sample:

P (A|B) = P (B|A) ∗ P (A)
P (B)

Notably, the assumption that all attributes or properties of the objects are stochastically
independent is rarely true in reality. Nevertheless, the assumption is used in order to
reduce the complexity of the problem. Because of this naive assumption, the Bayes
classifier was named Naive Bayes. Another assumption is that numerical properties follow
a normal distribution, which is also a quite strict requirement that cannot always be
fulfilled in reality.

Nevertheless, Naive Bayes is an algorithm that is often used in practice, as it offers
numerous advantages. It can be calculated quickly and can easily deal with missing
attributes or properties of objects. In addition, the algorithm can be implemented with
little effort. If the assumption about the stochastic independence of the object attributes
is valid, Naive Bayes can perform even better than logistic regression, but requires less
training data at the same time. In addition, good results can be achieved with Naive
Bayes if input data sets are available as categorical variables that have a limited number
of instances. Finally, Naive Bayes learns incrementally, which means that a more accurate
prediction can be made with each newly classified data set. Additionally, this algorithm
can be used to predict the probability of multiple classes of target variables.

The main disadvantage of the approach is that it is based on an assumption of stochastic
independence of the object properties. Thus, if there are in fact strong dependency
between attributes of the classified objects that are neglected, the resulting classification
is less meaningful. Nevertheless, meaningful results can be obtained by using Naive
Bayes, as long as object attributes are not too strongly correlated. For high-dimensional
problems with many object properties, the method also becomes inefficient. Moreover,
the completeness of the training data with respect to all possible values of categorical
variables must be observed. Assigning a value to a categorical variable that did not occur
in the training data set leads to the ’Zero Frequency’ problem because the probability is
assigned a value of zero and hence no prediction can be made.

The Bayes classifier is often used to identify the behavioral patterns of learners. For
this purpose, user profiles can be included, which contain information about the number
of exercises performed, online times, topics covered of learning content, exam results, and
chat and forum participation [246].

Baysian classifiers can be somewhat hard to understand and interpret for students due
to the concept of conditional probabilities. Bayesian networks can be used to represented
the classifier as a network structure that makes the model understandable for the learners.
For example, Bayesian networks can be used with log data from an e-assessment system
to predict whether a question is answered correctly or incorrectly in the system [311].

190

18.3. Artificial Neural Networks

18.3. Artificial Neural Networks
Artificial neural networks are a method of artificial intelligence inspired by the structure
of the human brain. They are based on simple arithmetic units, which are supposed to
correspond to the neurons of the human brain and which are organized in several layers.
Each neuron receives a vector of input data and calculates an output value that is part
of the input vector for the next layer. Thus, artificial neural networks are essentially
based on matrix calculation and are thus suitable in principle for all problems where
the input data can be organized in the form of matrices or vectors and a vector can be
interpreted as an output, which is particularly true for classification problems. Artificial
neural networks can be used to solve a wide range of application problems in statistics,
engineering and economics. In contrast to Naive Bayes, which is used exclusively for
classification purposes, artificial neural networks are also used for regression analyses.

Neurons form the main component of artificial neural networks and are also called
units or nodes. A distinction is made between input, hidden and output neurons. Input
neurons can be used to record input data in the form of signals, stimuli or patterns.
Hidden neurons are positioned between input and output neurons to represent the internal
information pattern. The number of hidden layers can be varied, although in practice
networks with only one hidden layer are often used. Output neurons transmit the results
obtained to the outside world. The neurons are connected by edges from one layer to the
next, thus creating a layer architecture. The structure of artificial neural networks can
be organized in different ways, which is why a fundamental distinction is made between
feedforward networks and recurrent networks (also called feedback networks). In the
first approach, information from input to output neurons can be processed exclusively
in a forward direction. In contrast, in recurrent networks the information can flow in
a backward direction; i. e., the nodes already visited can be traversed again. In any
case, each edge is assigned an individual weight, which determines how strongly the
information conveyed via it influences the respective target neuron. Since the actual
behavior of the neurons is trivial and identical for all, these individual weights are the
decisive factor by which the artificial neural network builds the classification or regression
model.

During the training of neural networks, the weighting of connections between neurons
is therefore changed by means of learning rules or algorithms. The training can take
place as supervised or unmonitored learning. In supervised learning, a certain output
is specified and the weighting of neurons is adjusted based on the comparison between
target and actual state. In contrast, in non-monitored learning, no output is specified
and the weighting is optimized based on different inputs. A training phase is followed by
a test phase in which the learning success of the artificial neural network is determined.

The fields of application of neural networks are manifold, but they are used partic-
ularly often in cases where a strictly mathematical modelling (such as via conditional
probabilities in the case of Naive Bayes) is not possible, either because there is not
enough knowledge about the structure of the problem or solution, or because the input
data are usually fuzzy or incomplete. The most common applications of artificial neural
networks therefore include in particular image, pattern, script and speech recognition as

191

18. Learning Analytics and Outcome Prediction

well as early warning systems or prediction models that operate on particularly large
and high-dimensional data sets. Here artificial neural networks can achieve good results
in complex or non-linear problems. A major advantage of the method is the high general-
ization capability of the networks, which means that after a successful training phase
even unknown inputs can usually be processed well. Furthermore, neural networks have
a certain error tolerance, so that despite internally occurring errors the functionality is
maintained. Furthermore, artificial neural networks are capable of learning and adapting
due to their training capabilities.

However, training also shows the disadvantage of the approach. In order to train
artificial neural networks sufficiently and thus achieve reliable results, a large amount
of training data sets is required. In particular, these data sets must cover the width
of the problem or the solution space as evenly as possible, since otherwise an artificial
neural network runs the risk of systematically excluding underrepresented areas. With
unsuitable training data, artificial neural networks can thus develop bias in favor of
overrepresented properties. Furthermore, there is the risk of over-adaptation by storing
exactly the training patterns and not abstracting them anymore, which makes the
method lose its ability to achieve useful results even on unknown inputs. As another and
more general drawback, the decisions made by artificial neural networks are difficult to
reproduce and explain, since the networks behave predominantly like a black box. In
addition, the training of artificial neural networks often requires powerful computers and
multiple, time-consuming training runs. In contrast to direct implementations of a strict
mathematical model, artificial neural networks are also significantly slower and more
ineffective in performing their calculations.

In the context of e-assessment, artificial neural networks are suitable methods for
recognising patterns in the learning behaviour of students. For example, artificial neural
networks can be used to predict students’ success in a course by using log data and
exercise results from a learning management system. In particular, grades, number and
length of online times and their percentage over a certain period of time can be included in
the analysis [44] and missing values for single students cause no substantial problems [91].
On the one hand, this procedure allows to determine with a high statistical probability
which user profiles are successful and which are not. On the other hand, the procedure is
so complex that it is difficult for teachers to understand, making it also difficult for them
to provide personalised feedback to learners [311]. As mentioned above, there is a risk
of a systematical bias within an artificial neural network if training data is not evenly
distributed. As grades and other performance related indicators tend to follow a Gaussian
distribution, extremely good and extremely bad students are usually underrepresented in
the data. However, these students may be the ones who would benefit at most from clear
hints about their predicted performance. Moreover, courses that require a characteristic
learning behaviour (e. g. due to the way in which learning materials and exercises are
published throughout the course) but have a low number of participants often do not
produce enough data at all for using artificial neural networks.

192

18.4. Support Vector Machines

18.4. Support Vector Machines
Support Vector Machines (SVM) are mathematical algorithms for classification or re-
gression analysis. Basically, the method is used to divide a large number of objects
into two classes, for which the objects are represented as vectors in a vector space.
The method then attempts to place a separation plane in this vector space that runs
exactly between the objects of the two classes and maximizes the distance to the objects
closest to the plane. To do this, SVM is first trained using training objects for which
the class assignment is already known, to determine the separation plane of the two
classes. The vectors closest to the parting plane are called support vectors and give the
method its name. Vectors further away from the plane do not have to be considered
for the calculation, so that only a small part of a large amount of training data has to
be considered. In reality, however, objects are rarely linearly separable, which is why a
separation plane cannot always be calculated. To be able to use the method nevertheless,
the non-linearly separable data is artificially extrapolated to a higher-dimensional vector
space, in which a suitable separation plane can be inserted.

Typical examples for the use of SVM in practice are image, font and face recognition,
spam filtering, handwriting recognition and applications in the field of bioinformatics.
An important advantage of SVM is its high generalization capability, thanks to which
the support vector machines can be used to solve practical problems and overfitting of
the model can be avoided. Support vector machines allow a quick classification based on
parameters based on a few support vectors instead of entire training data sets. In doing
so, the functionality of SVM can be represented geometrically, which is why the results
are transparent compared to the black box results of neural networks.

Nonetheless, SVMs have significant disadvantages. For example, it is not possible to
extend existing results. Therefore, a new training is required as soon as new input data
sets are available. Furthermore, the SVM method is comparatively slow and requires
a lot of memory in the learning process. The larger the number of classes, the more
memory is required. In addition, knowledge of the necessary dimensional size is assumed
when converting non-linearly separable data in higher-dimensional hyperspace.

Similar to artificial neural networks, support vector machines are complex methods
for recognizing certain learning patterns based on user profiles. For example, SVMs can
be used to classify learners into two groups (pass/fail). Good predictive results could
be obtained based on important factors such as attendance, learning time, number of
errors and preliminary grades [172, 311]. It is also possible to use SVM as a classifier for
several classes. In this case, for example, for predicting grades, where each grade should
be considered as a class, so training data is needed for each class [20].

18.5. Decision Trees
Decision trees are a method by which a large number of objects is divided into classes with
regard to a predefined target value and according to their properties. If the dependent
target value is available as a nominally scaled variable, the method is referred to as a

193

18. Learning Analytics and Outcome Prediction

classification tree. If, on the other hand, the target variable is a quantitative variable, it
is referred to as a regression tree [167]. In both cases a decision tree has a hierarchical
structure consisting of a single root, several inner nodes, leaves (also called outer nodes)
and edges. The root and all inner nodes each represent a decision, which usually refers
to exactly one property of the objects to be classified. The basic idea of decision trees is
therefore to make a tree run, starting at the root and making a decision at each inner
node, until a leaf is reached that specifies the classification of the object.

Different algorithms can be used to generate a decision tree. One example is the
Classification and Regression Trees (CART) algorithm, which was already presented in
1984 by Breiman et al. as a univariate, binary decision tree [38]. A CART algorithm is
used to generate a binary decision tree, which divides the training set into two disjoint
subsets based on a pair of values. Since the classification is based on a few instances,
there is usually a high variance of the decision tree.

The CART algorithm has both advantages and disadvantages. The decisive advantage
of the method results from the ability to distinguish relevant from non-relevant properties
of the objects to be classified. For this purpose, a preprocessing is performed to calculate
the relevance of each property. This makes it possible to create decision trees for objects
with many properties that come to a decision with little depth. CART is also easy to
understand and interpret, which is why the results are transparent, unlike the black
box results of neural networks. The algorithm is stable against exceptional cases and
can also handle incomplete input data. However, CART also has disadvantages, for
example by generating unstable decision trees, since even a small change in training data
leads to enormous changes in the decision tree. Furthermore, splits are only performed
one-dimensionally. This means that only the comparison between a variable and a
threshold value is made in inner nodes for decision making.

Problems with the high variance of a decision tree have a negative effect on the ability
to generalize. Therefore, in practice, an extension of the traditional decision tree model
such as Random Forests is often used, which is based on a multitude of decision trees. For
this purpose, the training data is divided into arbitrarily chosen subsets and the decision
trees are trained individually. To classify the objects, they are first classified individually
from all decision trees. Finally, the class assignment is made following the majority of
classifications or the average of the probabilities of a class assignment. Random Forests
thus provides a more stable prediction result and delivers more meaningful results than
traditional models such as decision trees or SVM. However, this requires more training
data to be able to create a sufficient amount of decision trees.

In practice, the number of students in a course may actually be too small to make
meaningful use of the procedure [176, 311]. Nevertheless, if the amount of training data is
sufficiently large, the method provides good results, for example, in identifying students
at risk in time and evaluating their performance. Information such as grades, attendance,
lab work, and submissions can be collected to predict exam performance at the end of
the semester [208].

194

19. Item and Answer Analysis
The previous chapters discussed aspects of data processing that are directly related to
learning and assessment. Besides these aspects, data collected by e-assessment systems
can also be used for other purposes that are not directly related to the performance
of an individual student. Closely related to the quality of a submission is the question
whether that submission was indeed produced by the student. While electronic systems
make cheating and dishonesty easier, they also make it easier to apply algorithms to
e-assessment data to detect plagiarism.

Competency measurement and learning analytics also implied to measure some proper-
ties of assessment items to produce valid mathematical models. Item analysis can continue
on these ideas and use e-assessment data to gain further insight into characteristics of
assessment items and thus help teachers to produce better learning materials. While
most of these analyses are not limited to e-assessments, electronic systems help to collect
required data automatically and speed up calculations. Notably, the fast availability
of these analyses can even change the character of an assessment: If teachers can for
example easily see that a significant amount of students struggles with a particular
assessment item, that does not necessarily tell much about the individual students, but
a lot about that item and the associated lessons. Hence, additional data analysis can
shift the focus of an assessment from assessing individual persons to an assessment of
educational quality that allows to correct issues in the educational design early.

19.1. Plagiarism and Authorship
Plagiarism in terms of including some part of an other person’s work into the own
submission is probably one of the most common forms of dishonesty in assessments.
Different types of plagiarism can be identified [10]: In “literal” plagiarism, students include
an exact copy, a near copy (some sentences are deleted, inserted, joined or split) or a
restructured copy from another document into their own work. In “intelligent” plagiarism,
they use more sophisticated text manipulations like paraphrasing or summarizing texts,
using automatic or manual translations from documents in another language, or adopt
ideas. Notably, it depends on the actual assessment task whether all these cases are
indeed considered plagiarism. In particular, if students are e. g. asked to present a well-
known theory with their own words, they are actually asked to adopt an idea and hence
that is not considered plagiarism. Moreover, not all types of plagiarism are applicable
to any type of artifact. While plagiarism of source code is a well-known problem in
programming assignments [57], source code cannot be plagiarized by summarizing or
paraphrasing. Also restructuring needs to be done very carefully and is thus somewhat
harder to perform on source code than on natural language texts.

195

19. Item and Answer Analysis

While copying, restructuring or translating larger portions of text or any other kind of
artifact manually in a hand-written exam at least requires some time, copying digital
texts or other pieces of work as well as using automated translation tools is quite easy
and thus even more appealing to students in electronic assessments. At the same time,
it is also easier to check digital submissions to assessment items for plagiarism than
hand-written documents. Hence, checks for plagiarism can easily be integrated into the
grading process of e-assessment systems.

If plagiarism detection is performed on a set of documents by comparing each to the
others, it is also known as “external” or “extrinsic” plagiarism detection, while finding
suspicious sections within a document based on some properties or characteristics is also
known as “intrinsic” plagiarism detection [218, 10]. The latter is also known as “forensic
analysis” [171]. The following subsections discuss both types of analyses in more detail.

Most approaches to tackle dishonesty by plagiarism detection are only applicable
to open, divergent assessment items that allow students a large degree of freedom in
designing their answer. They are thus well suited for (short) essay items and can partially
be applicable to items in some formal languages like programming or modelling tasks.

19.1.1. Extrinsic Plagiarism Detection
Extrinsic plagiarism detection is based on the pair-wise comparison of submissions. The
goal is to detect similarities between documents and thus allow to judge whether one can
be considered a copy of the other. Consequences and limitations depend on the context:
If a copy within two submissions by different students is found, plagiarism detection
cannot tell which one is the original. If a copy between a submission and an external
document (such as an article in an online encyclopedia) is found, the case is more obvious.
However, in both cases it must also be checked whether similarities between documents
can also occur coincidentally. The latter is more likely, the more submissions to an item
are available and the shorter these submissions are.

In general, the pair-wise comparison with other submissions means that a new submis-
sion is compared to all already existing submissions and a rating is produced that tells
how suspicious the new submission is with respect to plagiarism. Notably, that does not
only produce a plagiarism rating for the new submission, but can also change the rating
for the existing ones. A typical process for extrinsic plagiarism detection as e. g. sketched
by [10] consists of several steps: In the first step, some filter is used to select those
documents from the set of existing submissions that should be compared with the new
submission. Since the number of comparisons and thus the run-time grows exponentially
in the number of submissions, any reduction is helpful. In the context of e-assessment,
filtering is quite easy because submissions are clearly associated with assessment items
and there is usually no need to compare submissions from different items with each other.
In some contexts students are also allowed to make multiple submissions to an item
and it can save some comparisons if only the latest submission per student is used or at
least only those that show a remarkable delta to the previous one. On the other hand,
filtering becomes more complex if also external sources (i. e. arbitrary documents from

196

19.1. Plagiarism and Authorship

the internet) are considered. In that case, heuristics are required to find a reasonable
small but sufficiently large set of candidate documents that are used in the second step.

In the second step, a detailed comparison between the new submission and all older
ones that passed the filter process is performed. The simplest possible comparisons are
based on lexical or syntactic features that either split a document into n-grams (blocks
of n characters or words) or based on some syntactic properties on the level of sentences
or below. While character n-grams can be used on virtually any document, they are less
suitable for submissions in some formal, domain-specific language that requires a large
amount of fixed elements (e. g. XML or HTML tags). Word n-grams are only useful
for natural language texts. Syntactic features require to use at least a tokenizer and
potentially other tools like a parser for some formal language or a part-of-speech tagger
for natural language. These assign labels to the tokens based on their syntactical meaning
and thus allow to find plagiarism also in cases where minor changes on character level has
been applied to a copy without changing the syntactical structure. More sophisticated
comparison techniques can also look for semantic or structural features, potentially
involving parsers for natural language or specialized dictionaries.

In the final third step, the individual results from the second step are combined to
identify larger passages of a submission that are a copy from another one. The step can
then compute a final rating based on the length of the suspicious passages divided by the
total length of the submission and possibly include other factors into the rating such as
some confidence score.

The simple approach is able to find any kind of literal plagiarism and also intelligent
plagiarism that is based on text manipulation. It is not able to find plagiarism that
is based on translation. For that type, a more sophisticated process is necessary that
involves machine translation [219].

19.1.2. Intrinsic Plagiarism Detection
Another approach to tackle dishonesty in e-assessment is intrinsic plagiarism detection.
That approach basically tries to identify lexical, syntactic, and semantic patterns in
documents submitted by students. The assumption is that each student will produce
an individual set of these characteristics and that he or she will do that consistently
throughout a document. Consequently, a change in the characteristics of different passages
within a document can be expected if they are copies from different sources. If the entire
document is copied, that cannot be detected. In that case, authorship verification might
be a better technique, that will be discussed in section 19.1.3 below.

The general approach to intrinsic plagiarism detection is somewhat simpler than the
one for extrinsic plagiarism detection. In particular, there is no exponential growth in
run-time with growing numbers of submissions, since every submission is analysed on its
own. A typical process as e. g. sketched by [10] based on [218] is as follows: In a first step,
the document is divided into smaller parts such as sections, paragraphs, or sentences.
Then stylometric features of different types are calculated for each part. Lexical features
include the frequency of characters or n-grams on the character level and various metrics
on the word level. The latter include the average length of words or sentences, vocabulary

197

19. Item and Answer Analysis

richness, frequency of (specific) words, and the occurrence of lexical errors. Syntactic
features include sentence and phrase structure, characteristics based on part-of-speech
tagging, and occurrences of syntactic errors. Even more sophisticated analyses can also
include semantic and context-specific characteristics, including synonyms, homonyms,
semantic dependencies, or context-specific or language-specific keywords. As already
mentioned for the extrinsic plagiarism detection, syntactic features require to use a part-
of-speech tagger for natural language, while lexical features require at least a tokenizer.
Since formal languages allow less freedom in the lexical and structural design of an
answer, intrinsic plagiarism detection is much harder to apply on documents in formal
languages than in natural language. However, some features may also be detectable
there, such as different styles in using line-breaks, indentations and in naming variables
in programming assignments.

Based on the stylometric features, a style model can be constructed and outliers can
be considered in a post-processing step [266]. The resulting model allows to identify
passages of the document that are inconsistent with the style of the remaining document.
Different to extrinsic plagiarism detection, where an identified copy as is quite sure sign
of plagiarism (although it might be unclear who is the culprit), any passage flagged by
intrinsic plagiarism detection still requires further manual inspection. In particular, it is
not clear from intrinsic plagiarism detection, which of the passages of the document are
actually created by the student and which are copied from other sources. That problem
can be tackled by authorship verification.

19.1.3. Authorship Verification and Attribution
Authorship verification and attribution are more specific problems than intrinsic plagia-
rism detection, but basically use the same techniques in terms of stylometric features
and style models [10]. The goal of authorship verification is to find out whether a given
document (or part of it) was authored by a specific author, from whom some sample
documents are known [171]. In authorship attribution, several candidate authors are
known and a new document should be assigned to the correct author.

Authorship verification can be particularly useful in scenarios in which students make
several submissions throughout some period of time (e. g. a term). If there is doubt
whether one of these submissions (e. g. in the final exam) has indeed been made by
the same person who made all the other submissions throughout the term, authorship
verification techniques can be used to find out whether all submissions conform to the
same style model. If the suspicious submission shows remarkable differences according to
the style model, that can be used as an indication that the submission was created by a
different person. The reasoning is thus basically the same as with intrinsic plagiarism
detection, but with comparing several submissions to each other instead of comparing
different passages within the same submission.

Authorship attribution goes a step further and can be particularly helpful in scenarios
in which already some indication for plagiarism has been found. If for example extrinsic
plagiarism detection has identified submissions from three different students as almost
similar, authorship attribution can be used to find out who of the three students is the

198

19.1. Plagiarism and Authorship

most likely author of the original passage that was then copied and altered by or for
the other two students. However, a requirement for successful authorship attribution is
to have a set of sample submissions from each candidate where there is no doubt that
these samples were indeed created by the respective students. Otherwise, authorship
attribution can only produce indications that two submissions or passages have been
authored by the same person, but it still remains unclear who that person is.

19.1.4. Involving additional data
The approaches discussed so far operate solely on the actual submissions made by students.
They thus only consider material that has actively been prepared by the students for the
purpose of assessment. That implies, that students could have made an effort to remove
traces of plagiarism as good as they can. One approach to counter these efforts is to
collect additional data within an e-assessment system, that are less easy to manipulate
for students. In particular, biometric data can be used for that purpose. Some useful
biometric data can be collected with standard sensors available on many computers.
Typical options are face recognition (requires a camera), voice recognition (requires a
microphone) and keystroke dynamics (requires a keyboard, but also works on mobile
devices [314]), while other options like fingerprints or iris scans require special sensors
and are thus not typically available [27].

The basic idea is that students provide a probe (an image, voice sample or an input
sequence on the keyboard) during an enrollment phase. Feature extraction converts that
probe into a set of vectors that represent characteristics of the probe that are considered
to be individual for each student. The process is thus similar to the one used for the
analysis of writing style. However, it cannot be manipulated that easy, because biometric
features correspond to physical capabilities and characteristics of a person and thus
cannot be changed deliberately.

Not all techniques are equally reliable and applicable. Face recognition produces
excellent results [27], but cannot be used in scenarios in which students cannot be forced
to use their camera. Keystroke dynamics produce good results [27, 314] but can only be
used in a meaningful way in scenarios in which texts are produced in a way similar to
the creation of the initial probe. Since keystroke dynamics can also be used for short
inputs like passwords, length of the text is not necessarily a problem, but other context
factors may be. In particular, keystroke dynamics for a student writing a text in English
may be remarkably different from the keystroke dynamics for the same person writing
a text in German or writing program code. Moreover, keystroke dynamics cannot be
used at all in scenarios in which most of the inputs is created via mouse input. Finally,
voice recognition produces less reliable results (i. e. in case of background noise) [27] and
suffers even more than face recognition from the problem that students usually are not
required to turn on their microphone for the actual purpose of the assessment.

A more basic approach on using additional data is thus to involve metadata like
submission timestamps or similar events. Time series analysis can be applied to these
data to look for correlations of events between the submissions from different participants
[52]. These can be used as indicators that these participants worked closely together.

199

19. Item and Answer Analysis

Hence, e-assessment systems in general offer ample opportunities to involve additional
data that cannot be recorded in traditional assessments that easy. Both simple sensors
and useful algorithms are available to involve that data into the authorship verification
process. However, legal and ethical problems arise, if the specific sensor (i. e. microphone
or camera) is not actually used during the assessment and is thus only required to record
additional, personal data. Moreover, these is still the problem that the person sitting in
front of a camera or microphone is not necessarily the person who is actually producing
the inputs received by the system via keyboard and mouse.

19.2. Item Alignment and Answer Diversity
In several scenarios it might be interesting to use a set of items that are similar or evenly
distributed over a range of values with respect to a specific property, such as difficulty
or time required for answering the item. In particular, teachers might be interested
in having several different items with the same properties or having a pair of items
where one item is a simpler variant of the other item. Hence, items must be aligned to
each other. Section 17.1 already explained how IICs and alike can be used to check the
characteristics of items with respect to the competences they measure. Nevertheless,
there might be other properties of interest.

For example, items on computer programming may ask students to create some piece
of program code. So-called software metrics can then be used to measure the size and
the complexity of the program code. Comparing the results of these measurements over
a larger number of submissions per item as well as over submissions from different items
can help to gain insights into the characteristics of the items. For example, the minimum
or average size or complexity of a correct solution can be determined, which can help
teachers to get a realistic estimation of the workload required by the item. Figure 19.1
shows examples of 2D-plots that visualize such information for some programming items
[278].

Such visualisations allow for different comparisons. The left-hand column in figure
19.1 shows data from three different homework items. While the submissions to item 4
(figure 19.1a) are clustered closely together and thus show a low variance on both axes,
homework items 5 and 6 (figures 19.1c and 19.1e) open up a much larger design space.
Moreover, in homework item 6 there seems to be less correlation between the two axes
than in homework item 5. Figures 19.1b and 19.1d show two attestation items that are
supposed to be similar to each other and to be smaller versions of homework item 4. The
2D-plots provide indications that these assumptions are met. In particular, the plots
for both items look almost similar, as they cover the same design space. Moreover, the
covered space is smaller, but with almost the same center as homework item 4. Hence,
they seem to give the students less room for variations or alternatives and can thus
indeed be considered smaller. Similarly, figure 19.1f shows an attestation item that is
supposed to be a smaller version of homework item 6. Indeed, the item seems to be much
smaller with the same reasoning as above. However, it can also be seen that the average
value on the x-axis seems to be similar for both items, while the attestation item shows a

200

19.2. Item Alignment and Answer Diversity

(a) Homework item 4 (b) Attestation item 4, variant 1

(c) Homework item 5 (d) Attestation item 4, variant 2

(e) Homework item 6 (f) Attestation item 6, variant 1

Figure 19.1.: 2D-plots for size and complexity of submissions to programming items [278].
The axes provide two different software metrics, while the size of the circles
indicates the number of submissions with the respective characteristics.
Green circles are passed submissions, while red circles are failed submissions.

201

19. Item and Answer Analysis

lower average value on the y-axis. That means that the item is of similar complexity, but
of lower size, which is probably indeed the intended relation between the items.

Another similar metric can be found in literature as “diversity rate” that can be applied
more generally to complex artifacts and not just to program code. In that approach,
a complex answer (such as a diagram) is divided into smaller components. Similar
components across answers from different students are grouped into blocks. The diversity
rate is then calculated by dividing the number of component groups by the total number
of components. Hence, the diversity rate is low if answers are similar to each other and
high otherwise. This can help item authors to judge the quality of their items, as answers
for items providing e. g. similar scenarios should have the same rate [29].

19.3. Meta-Data Analysis
Most of the opportunities for item and answer analysis that have been discussed in the
current chapter so far are actually not limited to e-assessments. Although it might require
some additional effort to transfer non-digital submissions into the right format, most
techniques for plagiarism detection or item alignment analysis can also be applied to
submission from traditional exams. The only exception so far was the additional data
that could be involved in plagiarism detection in terms of keystroke dynamics and alike.
However, there is more additional data that can be collected by an e-assessment system
and that can be relevant for further analysis. Since the additional data is not part of
the actual submission (i. e. it is not created intentionally by the students) but can be
used to learn more about the submission or an assessment item, is is called meta-data
in the following. In general, there are two different types of meta-data: Data that is
collected while a student is working on an item and data that is collected during or after
the grading process.

19.3.1. Student Data
Even in the case of very simple assessment items, students will need some time to create
or prepare their answer and they will perform at least a very small amount of interactions
with the e-assessment system (e. g. at least tick a checkbox). In more complex items,
much more events can be recorded, e. g. frequent changes between phases in which
students type and phases in which they (presumably) think, or actions with which they
partially delete what they have entered before. Although these events are not relevant
for the actual grading, they can help teachers to understand the difficulty of items or
analyse the way in which students work on these items.

For example, e-assessment system that are used in formative assessments may provide
feedback for wrong answers and offer students the opportunity to submit another answer.
The time between the first submission and the second submission can at least partially
be considered as “feedback study time”. Depending on the actual design of the student
interface, it may also be possible to measure that time exactly, if students need to click
some button to dismiss the feedback and before they can enter a new answer. This kind

202

19.3. Meta-Data Analysis

of meta-data collection is not easily possible without e-assessment systems, but can be
very valuable in education research (e. g. [67, 195]).

Depending on the domain of the assessment, submissions may be complex artifacts that
answer several sub-tasks at once as e. g. program code in assessment items on computer
programming can do. E-assessment systems may allow students to make an unlimited
number of submissions and thus allow them to improve their answer step-by-step by
solving one sub-task after another. Besides that fact that students may receive feedback
between these steps and thus may spent some time studying that feedback as discussed
above, one can also observe the number of solved sub-tasks in each submission. Different
to a paper-based assessment, in which it is not easy to see how much time a student
spent on each sub-task, that allows not only to measure time, but also makes it visible if
a student made more than one try to solve a sub-task. While that is typically irrelevant
for the final grade, it can again help teachers to understand the way how students work
on the assessment items and also help to judge the difficulty of items or the underlying
concepts (see e g. [150]).

19.3.2. Grading Data
In part III of the current publication, different mechanisms for grading submissions have
been discussed. Some of these mechanisms involve complex procedures like applying
large rule-sets or executing test cases. For these procedures, data can be collected in
terms of e. g. time needed for grading an individual submission or the frequency each
rule matched on a larger set of submissions. While meta-data on individual submissions
might be used for direct feedback, meta-data on grading can also be used to analyse the
items.

In items on computer programming, measuring execution time is quite simple, as the
program code submitted by students is executed anyway. The measurement can be
performed in time units or in program steps, which both have individual advantages
and disadvantages. A measurement in time units requires that the tests for different
submissions are performed always on the same or at least an identical system and always
under the same conditions. Deviations in system load or system performance inevitably
lead to different results for identical submissions, which makes the results less meaningful.
A measurement in program steps is not subject to this risk, but is much more difficult to
interpret, since individual program steps do not have to be equivalent and no general
statement can be made as to whether a solution with fewer steps is better than a solution
with more steps.

Besides providing feedback to students, the meta-data on execution time can in
particular be used to determine the quality of the test cases. For example, a study on
the execution times for test cases from six different exercises revealed that one of the
exercises required remarkably more time for grading [267]. In fact, that deviation could
be traced back to unfavorably formulated test cases, which led to long run times without
improving the actual test quality. As a consequence, the test cases could be improved,
which in turn led to faster feedback for the students. Hence, checking and improving the

203

19. Item and Answer Analysis

quality of individual items cannot only improve the quality of grades or feedback, but
also the quality of the general system behaviour.

204

20. Case Studies

This chapter presents two cases in which assessment data was used in various combination
and for different purposes. Both case studies are related to the e-assessment system
JACK, but the actual topics and goals of each study are independent from that system.
The aim of the chapter is to demonstrate and explain examples on how to integrate
assessment data into a didactical analysis.

20.1. Case 1: Learning Effort and Final Grade Prediction
The first case study demonstrates how to use aggregated data from an e-assessment
system in conjunction with external data from final exams to gain insights into the
relation between learning effort and outcome. The study thus focuses on data on people,
but it also produces data that can be used to judge assessment items. It summarizes
results from two earlier publications [186, 185] and a bachelor’s thesis by Maria Berski
[31], that apply the same methods to data from two different courses (an introductory
course on statistics and an introductory course on programming). In both cases, data has
been extracted from the e-assessment system JACK once for the purpose of a research
study, but the analysis based on that data can easily be repeated frequently, e. g. every
term. Data sources in both courses are exercises offered continuously during the term,
mandatory attestations that have to be taken frequently during the term, and a final
exam at the end of the term. Students can gain up to 100 credit point for each exercise
and attestation. Final exam grades are translated as “100” (best grade), “200”, “300”,
“400” and “500” (failed) in both studies. However, the methods of data analysis used
in the studies are also applicable to data that differs in detail, but follows the same
structure.

The studies made use of several statistical analyses to answer the question whether there
is a significant correlation between the learning effort of students during the term and
the results they achieve in a final exam. In particular, one can make several assumptions
related to learning effort: There may be a correlation between the mere effort (e. g. the
number ob submissions to exercises) and the final grade or there may be a correlation
between the exercise or attestation results and the final grade. Moreover, a typical
observation of teachers is that some students work continuously during the term, while
others only work hard short before the exam. Hence, it could be possible to prove or
disprove these observations based on assessment data.

205

20. Case Studies

20.1.1. Learning Effort
Ordinal logistic regression was used to analyse the relation between learning effort and
final grade. Three different regressions were used:

• Final grades on number of exercise submissions.

• Final grades on total sum of exercise credit.

• Final grades on total sum of attestation credit.

The introductory course on statistics had 493 participants and included 151 different
exercises, resulting in a total amount of 131,426 individual exercise submissions. Due
to these large numbers, a strongly significant prediction model could be reached, with
p < 10−13 for the first regression and p < 10−16 in the other cases (Wald-test). Figure
20.1 shows the predicted probabilities to obtain each grade against the number of the
exercise submissions. For example, the red long-dashed curve on the left-hand side is
the estimated probability to fail the exam. The probability is about 55% if a student
has no submissions at all and it decreases monotonically in the number of submissions.
On the other hand, the probability for the best grade is increasing and the modes of the
three other curves are ordered in increasing order of the grades. Figure 20.2 shows very
similar curves for the predicted probabilities to obtain each grade against the total sum
of exercise credit. The modes are ordered in the same way and maximum probabilities
are slightly higher than in the previous figure. In conclusion, it is significantly worth both
to invest time in many exercise submissions and to attain more points in these. Finally,
figure 20.3 shows another set of quite similar curves for the predicted probabilities to
obtain each grade against the percentage of obtained attestation credit.

For the introductory course on programming, 242 participants produced a total amount
of 17,108 submissions in 66 exercises. Since these numbers are substantially lower, no
significant prediction model could be achieved with the first regression. However, using
the total sum of exercise credit produced a very significant model (p < 10−3) and for
the attestation the model is also strongly significant (p < 10−8). Figure 20.4 shows the
predicted probabilities to obtain each grade against the total sum of exercise credit. The
curves are much flatter than the ones for the statistics course, but nevertheless show the
same general characteristics. The curves for the predicted probabilities to obtain each
grade against the total sum of attestation credit in figure 20.5 look slightly different,
because the x-axis starts at 330 points of attestation credit, which is the minimum credit
to take part in the final exam in that course. Nevertheless, the characteristics of the
curves are similar to the previous one.

Students may potentially use such prediction models directly to compare their effort
with the one that is most likely required for the desired outcome. Notably, the prediction
models only use aggregated data and publishing these models thus involves no serious
privacy issues. Students can then do the analysis of their personal effort on their own
and thus do not expose additional personal data.

The fact the the curves for the programming course are flatter than the one for the
statistics course allows for interpretation and requires further investigations. One possible

206

20.1. Case 1: Learning Effort and Final Grade Prediction

Figure 20.1.: Logit regression grade on submissions. The figure shows the predicted
probabilities to obtain each grade against the number of the submissions
for the statistics course. [186]

Figure 20.2.: Logit regression grade on exercise credit. The figure shows the predicted
probabilities to obtain each grade against the total sum of exercise credit
for the statistics course. [186]

207

20. Case Studies

Figure 20.3.: Logit regression grade on attestation credit. The figure shows the predicted
probabilities to obtain each grade against the percentage of obtained attes-
tation credit for the statistics course. [186, Supplementary material]

Figure 20.4.: Logit regression grade on exercise credit. The figure shows the predicted
probabilities to obtain each grade against the total sum of exercise credit
for the programming course. [31]

208

20.1. Case 1: Learning Effort and Final Grade Prediction

Figure 20.5.: Logit regression grade on attestation credit. The figure shows the predicted
probabilities to obtain each grade against the total sum of attestation credit
for the programming course. [31]

explanation is that in the programming course a minimum of 330 points of attestation
credit was required to take part in the final exam. Hence, the group of students taking
part in that exam is more homogeneous in terms of exercise and attestation performance
and hence other factors become of larger importance. Another possible interpretation
is that the final exam in the statistics course is more aligned with the exercises and
attestation and thus the results can be predicted more precisely. If that is the case, the
data analysis does not only produce useful data for students to judge their own learning
effort, but it also helps teachers to check whether their exercises and attestations are
suitable to prepare their students for the final exam.

20.1.2. Learning Progress
The previous section demonstrated the possibility to predict exam results from exercise
and attestation results. While this is helpful to judge individual learning effort, some open
questions remain. In particular, students probably do not make any substantial learning
progress, if they repeatedly submit several correct submissions to a single exercise. It
nevertheless increases their total sum of credit and thus the predicted probability for a
better grade. Moreover, it might be interesting to see whether there are differences in
progress over time between students with higher and lower grades.

An estimation of the individual learning progress can be made by tracking each
student’s sum of points of the last submissions to every exercise. This sum increases

209

20. Case Studies

with every exercise that is solved for the first time or every attempt that is better than a
previous one, but decreases with unsuccessful attempts that follow a more successful one.
Hence, if a student got 100 points in an exercise at the first attempt but only 50 points
at the second, the sum decreases by 50 points from the first to the second try. These
sums can then be averaged within groups of students that received the same grade in
the final exam. The changes in these values over time can then be plotted to depict the
learning progress of the different groups.

Figure 20.6 shows the average progression of the student score for each grade group in
the statistics course throughout the term. Additionally, the solid black line describes the
average progression for all students. Vertical lines represent the four exam dates for that
course. Since there were 151 exercises offered and each is worth at most 100 points, the
maximum reachable credit would be 15,100, but even the students with the best grades
only reached about a half of that value on average. The general tendency in the curves
is, that the better the final grades, the better the students have developed according to
their score. Notably, the curves for students with a moderate exam (“400”) and those
who failed (“500”) are similar at the beginning of the term. However, the “moderate”
students made substantial progress in July, while the failing students barely improved.
Hence, both groups are moderately successful in the beginning, but the passing students
improve shortly prior to the exams.

A similar observation can be made in figure 20.7, that shows the respective curves
for the programming course. Only the vertical line on the right-hand side represents
an exam data in this case, while the others represent the dates of the attestations. A
remarkable difference to the statistics course is the fact that the curve for moderate
students (“400”) is similar to the curve for satisfactory students (“300”) for about a
half of the term and then is even above that curve. A proper interpretation of that fact
requires further investigations.

Several other observations can be made that may lead to additional hypotheses about
learning behaviour and progress. In particular, both graphs show curves for different
grades that are closes to each other in the beginning and then split remarkably shortly
before an exam or attestation date. Since all curves rely on aggregated data, they can
be used to demonstrate the effects of steady learning progress without causing much
data security issues by revealing individual, sensitive data. As in the previous section,
individual students can use that data to compare their individual progress with the
progress of their peer group.

20.1.3. Exercise Relevance
Decision trees have been tested in both courses as an additional means for predicting final
exam results from previous exercise and attestation results. In both courses, a correct
prediction could be made in 85% of the cases [185, 31]. An interesting side-product of
using decision tress (e. g. with the CART algorithm) is the fact that a relative importance
of the available variables within the model needs to be computed (see section 19.2).

For the statistics course, the most important variables turned out to be the attestation
credit in the last two (of five) attestations and the sum of exercise credit until the third

210

20.1. Case 1: Learning Effort and Final Grade Prediction

Figure 20.6.: Learning progress over time. The figure shows the average sum of exercise
credit for the statistics course grouped by students who received the same
grade in the final exam. [186]

Figure 20.7.: Learning progress over time. The figure shows the average sum of exercise
credit for the programming course grouped by students who received the
same grade in the final exam. [31]

211

20. Case Studies

attestation. This is somewhat reasonable with the following interpretation: If one assumes
that the later attestations require more competences, they should be more aligned with
the final exam than the earlier ones. In turn, individual results from earlier attestations
should be of low importance, while a general lack of learning progress in the first half of
the term (as expressed by a low total sum of exercise credit) makes it hard to follow the
second half of the course. Consequently, there seems to be a good alignment between the
exercises and the attestations on the one hand and the final exam on the other hand.
Additionally, there seems to be a good balance in the relevance of the exercises in the
first half of the term and the attestations of the second half of the term, as both are
relevant for predicting the final exam result.

Different results could be reported for the programming course. In that course, the
attestations were in general of higher importance than any exercise score. Moreover, the
attestations from the middle of the term were much more important than the ones from
the last third. Hence, the exam seems to be much more aligned with material from the
middle of the course. Moreover, the dominance of attestation results possibly reflects the
fact that a minimum sum of attestation credit is required to take part in the final exam.
In particular, students who practice hard in the exercises but fail in the attestations
are not admitted to take the final exam, while there might well be students that pass
the attestations without any substantial work on the exercises (e. g. due to previous
knowledge from school). Further investigations are necessary on these hypotheses and
results can help teachers to improve their course and to offer more relevant exercises. In
turn, the results from the statistics course prove that attestation credit may be indeed a
relevant admission criterion to make sure that only students who have a good chance to
pass are allowed to take the final exam.

20.2. Case 2: IRT on Programming Items
The second case study deals with a combination of domain-specific item handling for
items on computer programming on the one hand, and classical item response theory
(IRT) on the other hand. The goal of using that combination is to gather insights into
the difficulty of programming constructs and to use that for competency measurement.
The case studies thus deals with data on items as well as with data on people. Data has
been used once for a research study, but the results can easily be re-used for continuous
use for adaptivity or competency measurement.

The general procedure in the research study was as follows: In a first step, items
(in terms of IRT) are defined in form of arbitrarily complex structures that are either
present or absent in the source code artifacts submitted by the students in response to an
assessment items. In the second step, these items are formalized to allow for automated
detection by means of domain-specific item handling, similar as they are used for direct
feedback generation. The result of the automated detection is a rating of occurrence or
non-occurrence for each item in each artifact. In the third step, the item set is checked
for homogeneity and potential violations are solved by removing items. In the fourth step,
methods of classical IRT can be applied to the remaining homogeneous item set. The

212

20.2. Case 2: IRT on Programming Items

approach thus integrates the automated analysis of artifacts from e-assessment systems
with a psychometric analysis.

20.2.1. Rule-based Static Code Analysis
The rule-based static code analysis applied in the approach is based on TGraphs, which
were invented for graph-based modeling [77]. They are based on a schema definition,
describing legal graph structures and thus representing the structure of the underlying
grammar. Queries on TGraphs can be expressed using a query language named GReQL
[32]. This language is somewhat similar to SQL and thus well suited to implement
rule-based checks: Queries in this language allow searching for elements of particular
type, that are connected in a specific way, and own specific attributes. It allows to
formulate graph queries of the following types:

• Existence of graph elements based on their type;

• Existence of graph elements based on the value of their attributes;

• Existence of tuples of elements based on the connections between them.

Executing queries of these types via the graph query engine returns either a list of
elements matching a specified condition, or an empty list. It is also possible to combine
different graph queries by logical operators to allow for alternatives. For example, all
pieces of code containing a for-loop or a while-loop (or both) are found trivially by
combining several queries via the logical OR.

20.2.2. Code Analysis with Item-Response Theory
Usually, in item response theory, a test with several evaluated items is conducted on a
particular population. Afterward, the items are checked, and parameters are calculated
for the items and the individuals of the test. As programming, in general, is a complex
task and refers to several cognitive (and, therefore, latent) processes, the item response
theory is applicable. In a classic setting, small programming tasks on a particular concept
or code element are provided to the participants of a programming or coding assessment.
However, if the coding ability – in the sense of a competency – must be evaluated, the
tasks have to be more complex. The complexity causes difficulties in separating latent
constructs and in assigning an ability to a particular task. Nevertheless, the resulting
program code contains the responses to those tasks. This is the reason why the code items
can be assumed to be the tasks posed to the participants, even though they were not.
Notably, the tasks assumed here are primarily about using a particular code construct in
a syntactically correct way. They are not about using code in a semantically meaningful
way in the first place.

After all the items are rated with either “yes” (1) or “no” (0), the non-parametric test
on homogeneity is applied to the resulting matrix. The output of the test is a set of
item pairs that violate the homogeneity assumption. The number of violations orders
the items. Afterwards, one item of the list after another is eliminated from the original

213

20. Case Studies

item set until the list of violations is empty. This process is repeated until there are no
violations anymore. The remaining subset is homogeneous. However, this method only
finds one possible subset. There might be others, but as the probabilistic approach is
very resource consuming, this limitation is accepted.

20.2.3. Experiment
In the research study a small experiment dealing with the nesting of control structures
was conducted. The aim of the experiment is to reveal item characteristics for different
kinds of nestings of control structures. Based on that, learners can be classified according
to the type of nestings they use. The data was collected in a voluntary, preliminary
course for the first-year students studying Computer Science (CS).

The students were asked to implement either a “Mastermind” game, a tool for managing
results from a sports tournament (e. g., a football league), or a version of the dice game
“Yahtzee”. The assumption was that these three projects have different difficulty levels.
The projects are described in a way that the implementation can be as complex as the
participant can do it. All three projects have in common that they encourage using
nested control structures. Nevertheless, all projects can be solved without using nesting
and also no project’s complexity is dominated by the requirement of nesting of control
structures.

For the detailed analysis, static analysis rules were used that detect single and nested
control structures (i. e. if-, for- and while-statements). To conform to the Rasch model,
all rules need to detect independent structures. Hence, single control structures are only
considered if they are isolated, while nested ones count in separate categories.

20.2.4. Results and Interpretation
In total, the program code produced by 350 students was investigated. All provided
program code was syntactically correct and thus runnable. In order to find homogeneous
item sets within the data set, all combinations of items containing three to five items
(because of the limited number of participants) were checked using the non-parametric
tests. Three homogeneous subgroups could be identified that have a semantic correlation
of the items: The first group of items consist of all combined elements related to the for-
statement (hence, a for-statement within a while-statement, a while-statement within
a for-statement, an for-statement within an if-statement, an if-statement within a
for-statement, and a for-statement within a for-statement). The second group contains
all items related to combined conditionals, i. e. combinations of conditions in while-
loops and conditional statements (hence, an if-statement within a while-statement, a
while-statement within an if-statement, an if-statement within an if-statement, and a
while-statement within a while-statement). The third group contains all three isolated
statements.

For all three groups, a simple Rasch model is calculated to get the person scores.
According to a Goodness-of-Fit test [25] the model fit is satisfactory. Figure 20.8 presents
the item characteristic curves (ICCs) of the first group. For better readability, the item

214

20.2. Case 2: IRT on Programming Items

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ability

P
ro

ba
bi

lit
y

FF WFFWIF FI

Figure 20.8.: Item characteristic curves for the item group containing items “if-statement
within a for-statement” (IF), “for-statement within a for-statement” (FF),
“for-statement within an if-statement” (FI), “for-statement within a
while-statement” (FW), and “while-statement within a for-statement”
(WF).

parameters are normalized, to sum up to 0. The item “if-statement within a for-
statement” is the most left one (difficulty: -0.26), followed by the items “for-statement
within a for-statement” (difficulty: 0.36) and “for-statement within an if-statement”
(difficulty: 0.63) where the curves are very close together. Items “for-statement within
a while-statement” (difficulty: 1.47) and “while-statement within a for-statement”
(difficulty: 1.64) are the items rated most difficult are close together as well. Similar
curves can be obtained for the other groups.

The data allows to draw conclusions on the items (in terms of IRT) and from those
to come to insights into the structure of the assessment items. The data from Figure
20.8 allows to conclude that the implementation of a conditional statement within a
for-statement is the combination that is preferred by the students and that is hence
probably the most suitable one in the context of the tasks. The next pair of two items
have in common that a loop is nested in another structural element. The last pair of items
contains the cases where two different types of loops have to be combined. That allows to
argue that an assessment item requiring a conditional statement within a for-statement

215

20. Case Studies

−0.8 −0.1 0.4 0.9 1.3 1.8

Person Parameter

R
el

. F
re

q.

5%

10%

15%

20%

25%

30%

35%

40%

Figure 20.9.: Person parameter distribution for the group of items related to the for-
statement.

is truly different from an assessment item that requires the nesting of two types of loops.
In turn, it can be argued based on that data that it is not that relevant in which way
two different types of loops are nested.

The data also allows to draw conclusions on the persons, since person parameters
corresponding to the item parameters can be computed. These reflect the ability a person
has regarding the latent construct. The distribution for the six possible person parameters
for the combinations of for-statements can be seen in Figure 20.9. The person parameter
-0.8 has the biggest proportion of 38%. The last person parameter is only reached by a
few participants while the middle four ones are reached by 10% to 20% each. The median
of the person parameters is at -0.1 while the mean value is 0.08. The distribution has its
peak on the left side. So, most participants only use simple items in this category and
have therefore a low ability. The item rated as easy is a conditional statement inside a
for-statement, which is a quite common construct in programming. So, the majority of
the participants only used this construct and no others. In the end, the characteristic of
the participants can be found in the variety of combinations they use. While those with
low ability stick to only one or two combinations, the ones with high ability use a broad
variety of control structures. A more detailed analysis of possible correlations with other
factors (like previous knowledge or experience) is of course necessary to come to better
conclusions on what the actual latent competency behind the data is.

216

21. Results
The previous chapters had the goal to provide an overview on the different kinds of data
that are produced in and by e-assessment systems as well as the different mechanisms used
to process them. The chapters were roughly structured by the goal of data processing,
starting from competency measurement as the goal most directly linked to educational
assessment, followed by other analyses focused on learner achievement and performance,
finally ending with analyses that help to judge and improve the integrity and quality of
assessments. The overview allows to summarize some results and draw connections to
the earlier parts of the current publication.

21.1. Contributions to Integrated E-Assessment
Using the data produced in and by e-assessment systems as good as possible is an
important aspect of a proper integration of e-assessments into a larger context. E-
assessment systems do not operate in an isolated manner, in which they receive some
input by students and only produce grades and feedback related to these submissions.
Instead, the various types of data form several interfaces via that e-assessment systems
communicate with the surrounding context: Data from previous assessments or enrollment
systems can be used to verify authorship and fight plagiarism; data collected across
several submissions by a single student can be used to create a competence profile of that
student; data collected across several students for a single item can be used to assess and
improve the quality of assessment items; and data collected across multiple students and
assessment items can be used to predict success rates. All of these goals relate to the
context of an assessment, in which a single assessment is not an isolated event, but an
event with consequences on the future development of persons, learning materials and
assessment items.

At the same time, any data processing related to these goals is subject to legal and
ethical issues. Although e-assessments are integrated into a context, the main purpose of
an e-assessment system is still to conduct assessments. Any data processing that goes
beyond that purpose needs a proper justification and transparency about the ways in
which data is stored, combined, processed and forwarded to persons other than the one
who is responsible for the assessment.

Some of the methods and goals for processing e-assessment data that were discussed in
the previous chapters directly relate to some of the states in the assessment process models
presented and discussed in part I of this publication. In particular, state “Outcome
reviewed” for alpha “Test Items” (see table 3.1) and state “Evaluated” for alpha “Test”
(see table 3.2) both refer to a deeper analysis of assessment data. Both state explicitly
mention the application of suitable metrics for test items and test, as they have been

217

21. Results

discussed for example for IRT in section 17.1. Similarly, item alignment as discussed in
section 19.2 can be a suitable technique to identify the causes of unwanted characteristics
as mentioned in the last state for alpha “Test Items”. Hence, the previous chapters
provide a rich tool set that can help to reach the checkpoints for the states in the kernel
for educational assessments and fill the related activity spaces with actual activities and
techniques.

At the same time, some of the techniques from the previous chapters demonstrate
why domain-specific item handling as discussed in part III is so important: Some
methods for learning analytics and outcome prediction rely on detailed and fine-grained
outcomes from many exercises, and competency measurement for complex artifacts via
item response theory is even only possible if domain-specific techniques are available
that can decompose such artifacts into smaller, meaningful units. Hence, the availability
of domain-specific techniques that allow for the fine-grained automated evaluation of
test item responses allows for much richer data processing and thus more applications
of assessment data analyses. In turn, domain-specific item generation can benefit from
detailed data processing, i. e. in case of adaptive systems where results from competency
measurement or item alignment can help to generate items with a specific difficulty.

The connections to part II of this publication are less strong. This is not surprising, if
the various types of data are considered as interfaces between e-assessment systems and
their context. Many questions that can be answered by learning analytics or item and
answer analysis can be handled outside and actual e-assessment system, if the data is
available for export. In particular, learning analytics often does not only rely on data
from e-assessment systems but also includes data from learning management systems
and other sources. Hence, e-assessment systems are not the systems in which the related
data processing actually happens and thus no components specific for that purpose
were identified in part II. The only remarkable exception is the use case of adaptive
e-assessment, where results from competency measurement has a direct influence on the
assessment. Consequently, student models that reflect the competence profile of a student
had been identified as one of the storing components in section 6.1.5 and directly relate
to data handling. However, several important legal and even ethical issues related to data
processing cannot be handled solely on the level of plain data, but require appropriate
measures for authorization or pseudonymization on the system level. And even more
trivially, data can only be analysed if system design has provided the necessary means to
collect data, which is specifically important in the case of meta-data on the submission
creation process that require a fine-grained log of all student activities.

21.2. Contributions beyond the Scope of this Publication
Many of the techniques discussed in the previous chapters are not limited to the narrow
scope of e-assessment systems. Actually, most techniques exist in that broader scope
anyway and are just applied to e-assessments, but have not been invented specifically
for that purpose. For example, competency measurement via item response theory is
not limited to the use of computers at all, but can also be performed with paper based

218

21.2. Contributions beyond the Scope of this Publication

assessments. The same is true for the problem of plagiarism detection and authorship
verification, which is of course also relevant in any assessment that is conducted without
using an e-assessment system. However, most aspects of e-assessment data at least benefit
from the fact that e-assessment systems can record and process data more easily than it
is possible in traditional, non-electronic scenarios.

Nevertheless, most goals and methods for data processing can be used in a much wider
context. As already mentioned above, learning analytics usually also draws data from
other data sources and hence the summaries on different techniques apply to scenarios
without e-assessment data as well. Moreover, the same techniques cannot only be used
with different input data, but can also be used for prediction goals other than assessment
outcomes. Similarly, the techniques used for item alignment and meta-data analysis can
also be used to compare artifacts in other context, e. g. to find out whether activities
that are supposed to be of similar difficulty (like cooking different meals following given
receipts or assembling different pieces of furniture following given instructions) are indeed
similar. Actually, the only difference would be that people are not performing these
activities for the purpose of assessing their skills or competences, but for the purpose of
using the resulting product. However, the number of steps to be performed, the time
between steps, the number of errors made and so on can be recorded and analysed in
these scenarios exactly as it can be done in e-assessments.

In any case, the discussion on legal and ethical issues also applies to a much wider
context than the one of e-assessments, since they are based on very fundamental laws
and considerations. It has become clear that there is no way to use data just because it
is available or can be made available. However, the previous chapters also demonstrated
that there are indeed several good reasons for collecting specific data and that it is
possible to precisely name the purpose of processing that data. These discussions thus
help to argue why certain data is needed and at the same time help to find out which
data possibly needs not to be collected at all. The discussion on data produced by and
in e-assessment systems can thus contribute to a much wider discussion on the general
use of fine-grained personal data in higher education and beyond.

219

Part V.

Conclusions

221

22. An Integrated View on E-Assessment
The previous parts of this publication tackled four major aspects of e-assessment. While
all of these parts have their own state-of-the-art and their own challenges, the ultimate
goal of this publication was to create an integrated view on e-assessment. As we have
seen in all four parts, there are many connections between these parts and there are also
many connections between e-assessment and the context in which it takes place.

22.1. Integration within E-Assessment
The first connection that we have explored is the integration (or the lack thereof) of
software components for e-assessment and the educational assessment process. The latter
forms a kind of a map of steps that have to be taken and thus implicitly names the
features software components must offer. In turn, software designers can derive states and
activities from the kernel of educational assessment and thus come to informed decisions
on what functional interfaces they have to create for their components. The component
catalogue showed some remarkable matches between software components and parts of
the process, but also some blind spots where there are no commonly used components
available yet. In turn, we have seen that the availability of software components can
also have an influence on the processes, if teachers cannot freely decide how to conduct
their assessment because certain software components are not available. Thus we can
conclude that there is a clear need for a close integration of educational processes and
software components, where the educational processes should be the driver for the
design of component features and interfaces. Unfortunately, the current situation also
knows scenarios in which existing components actually limit the execution of educational
processes.

The second connection that we encountered is the realization of domain-specific features
by specialized software components or domain-specific extensions to existing components.
We could identify some cases in which e-assessment can only be used in a meaningful way
if a system is able to handle domain-specific data formats, provide domain-specific editors
or run domain-specific algorithms for item generation or answer evaluation. In turn, we
have seen that there are already some commonly used components that are specifically
designed for the related tasks and that can thus be used in multiple instances for different
domains. In addition, we have seen several patterns (e. g. for the integration of grading
components) that help to obey the specific requirements of a particular domain. Finally,
the modular software design is an important prerequisite to be able to add domain-specific
services that offer no actual e-assessment capabilities, but increase the usability of a
system for that domain. Thus we can conclude that a modular software design with
well-defined interfaces eases the integration of domain-specific features into e-assessment

223

22. An Integrated View on E-Assessment

systems and thus makes e-assessment available to a broader group of users. In turn,
various domains can offer existing tools for integration and thus extend the feature set
and scope of existing e-assessment systems.

The third connection that we came across was somewhat weaker, but not less important.
It concerns the relation between educational processes and domain-specific data sources
and tools. While the elements in the kernel of educational assessment specify what to do
to prepare, conduct or grade an assessment, the domain-specific data-formats and tools
specify how to do it in a particular case. This is a quite valuable connection, since the
availability of e. g. tools for automated item generation or grading can have a remarkable
influence on the time each step in the educational process consumes, while the absence
of appropriate tools calls for the manual execution of the respective process steps. In
turn, the decisions made during the planning of an assessment drive the requirements for
domain-specific tools for e. g. user input or answer representation. At the same time,
the kernel for educational assessment is general enough to cover assessments from any
domain and it also allows for domain-specific extensions. Thus we can conclude that
the need for or the availability of domain-specific tools should be considered during the
creation of an assessment process. In turn, mapping an existing process to a specific
domain can help to identify the domain-specific tools that need to be in place and thus
require integration into an e-assessment system.

The fourth connection that we have identified also relates to assessment processes.
Several states in the kernel of educational assessment refer to a deep and detailed analysis
of assessment data and thus advocate for the integration of analytical capabilities into
processes and systems. Similar to the previous case, the kernel specifies what to do in
order the check and improve that quality of an assessment, while the integration of actual
analysis techniques specifies how to do it. The specific value of e-assessment in that case
is the fact that all data is already available electronically and thus analysis is much easier
than in traditional assessments. Hence we can conclude, that e-assessment itself is a
great driver for the integration of advanced analytics into educational processes with
benefits for both sides: Processes provide the questions to be answered by the data, and
automated continuous data analysis allows for much more agile assessment processes,
including (but not limited to) adaptive and personalized assessments.

The fifth connection that we could see concerned the integration between domain-
specific tools and data analysis. This is a very interesting connection, because on the
first glance data analysis starts when all items are graded and thus works on the abstract
level of aggregated data or general psychometric models, while domain-specific tools
have finished their job when an item is graded and thus work on a very concrete level of
individual items and answers. However, we have seen that some methods for learning
analytics and outcome prediction rely on detailed and fine-grained outcomes from many
exercises, and competency measurement for complex artifacts via item response theory is
even only possible if domain-specific techniques are available that can decompose such
artifacts into smaller, meaningful units. In turn, domain-specific item generation can
benefit from detailed data processing, i. e. in case of adaptive systems where results from
competency measurement or item alignment can help to generate items with a specific
difficulty. Hence we can conclude that the integration of results from domain-specific

224

22.2. Integration of E-Assessment into Context

grading into general assessment analysis allows for a deeper analysis, while the integration
of analysis results into domain-specific tools (e. g. for item generation) allows for an even
better control of the items.

The sixth and final connection within the aspects of e-assessment is thus the connection
between system design and data analysis. We have seen that this connection is less
strong than the others. Data analysis may involve other data than just data from e-
assessment and may thus happen outside an actual e-assessment system. Hence, designers
of e-assessment systems do not commonly include components for that purpose. The
only exception is the specific feature of adaptive e-assessment that relies quite much
on continuous data analysis and thus is represented by appropriate components in the
system design. Nevertheless, also the weak connection tells a lot about integration: To
be able to perform a detailed analysis of assessment data outside the actual e-assessment
system, appropriate data structures and interfaces must be built into the systems to
export the required data in an appropriate format. In turn, system design can encapsulate
analysis algorithms into well-defined components that can be used within an e-assessment
system but also in other systems that can benefit from the same kind of data processing.
Moreover, system design can help to tackle the legal issues that are connected to data
processing via appropriate measures for authorization and pseudonymization.

22.2. Integration of E-Assessment into Context
We have also seen a connection between assessment processes and the context. Depending
on the educational setting, assessments are more or less formal and thus involve more
or less activities or even stakeholders. In very informal settings, complete phases of
processes can be skipped, while formal settings may imply fixed decisions about e-
assessment systems or item formats and thus limit the freedom in process design. In
turn, the kernel of educational assessment treats organizers and authorities as rather
abstract entities and thus makes deliberately no assumptions about the processes these
stakeholders follow outside the actual assessment duties. Hence we can conclude that
assessment processes must always be understood as integrated into a larger context with
many additional processes. These processes may request and restrict certain features
of the assessment process on the one hand, but on the other hand they require the
assessment process to deliver the expected outcomes that are necessary to advance these
context processes.

Another connection between e-assessment and its context is based on system design.
We have seen that there is no strict border that allows to distinguish between e-assessment
systems and other systems that incorporate e-assessment features. Moreover, not all
e-assessment systems are the same, but include different components depending on the
context in which they are used. At the same time, e-assessment system offer a variety
of interfaces to access the system by human users for different purposes, as well as
different technical interfaces and patterns on how to transfer data or integrate additional
components. The need for integration into a context is thus a strong argument in favour of
modular system design. We can thus conclude that technical integration of e-assessment

225

22. An Integrated View on E-Assessment

systems into context allows to provide interfaces and components for using them in other
systems, while the context requests multiple ways to access existing e-assessment systems
for different purposes and by different users.

A somewhat similar connection on a more conceptual level exists with respect to
domain-specific data sources and tools. In that case, it is the context that provides a
multitude of components, interfaces, standards and tools that may be beneficial or even
necessary to be considered for the purpose of domain-specific e-assessment. Similarly,
generic algorithms may be interested in using general knowledge facts from the context in
order to process domain-specific assessment items. Domain-specific e-assessment is thus
very much concerned with the conceptual integration of existing domain-specific features
into e-assessment. In particular, we can conclude that the context provides standards
and tools that prescribe decisions to be made during the design of domain-specific e-
assessment features and algorithms. In turn, domain-specific data formats and tools
strive to integrate as much knowledge facts from the context to make e-assessment more
flexible and less dependant on hard coded rules and information that needs expensive
frequent updates.

Finally, we have identified data analysis as an interface that connects plain assessment
results with a context that cares about personal progress and improvements of educational
quality. Despite that fact that advanced analysis techniques for competency measurement
are also relevant for adaptive e-assessment, most analysis techniques have a much broader
scope and goals far beyond the actual assessment. In particular, these goals may go
beyond the questions asked by the educational assessment process itself, that were already
mentioned in the previous section. Instead, goals like outcome prediction or some goals
of item and answer analysis are concerned with the quality of educational processes in
which assessment is only one of many events. Notably, these goals may even change the
character of an assessment, if it becomes less important for assessing persons and more
important for assessing the educational context. Thus we can conclude that data analysis
is an interface between assessment and its context that provides additional value, while
the context may provide additional data but also legal or ethical rules.

22.3. The Final Picture
All the different connections between the four aspects of e-assessment as well as the
connections to the context can be summarized into one final picture as shown in figure
22.1. It details the idea that has been sketched in figure 1.1 in the introduction and thus
turns the illustrative nature of that figure into an usable map.

We can now pick individual uni-directional or bi-directional connections from that map
that we would like to explore in future research (see chapter 24 below) or that we would
like to discuss in a teaching lesson. We can also use the map to find paths. For example,
we can see that the context provides standards and tools to be used in domain-specific
e-assessment in the first place. This connection propagates further, as domain-specific
e-assessment prepares and offers those tools for integration into the general design of
e-assessment systems. At the end of this way, system design in turn provides interfaces

226

22.3. The Final Picture

Processes System design

Domains Data analysis

should drive development

actually limits

allow deeper analysis

allows better control on item properties

m
akes

secu
re

an
d

re-u
sab

le

asks
fo

r
d

ata
stru

ctu
res

an
d

in
terfaces

h
elp

to
id

en
tify

req
u

irem
e

n
ts

in
flu

en
ce

execu
tio

n
tim

e an
d

m
o

d
e

Context

Context

req
u

ests
an

d
restricts

d
eliver

req
u

ired
o

u
tco

m
es

req
u

ests
m

u
ltip

le w
ays

to
access

p
ro

vid
es

in
terfaces

an
d

co
m

p
o

n
en

ts

b
u

ild
u

p
o

n
 kn

o
w

led
ge

an
d

facts

p
ro

vid
es

stan
d

ard
s

an
d

to
o

ls

p
ro

vid
es

ad
d

itio
n

al valu
e

p
ro

vid
es

ad
d

itio
n

al d
ata

an
d

ru
les

Figure 22.1.: The final picture of integrated e-assessment and its connections.

227

22. An Integrated View on E-Assessment

and components that cannot only be used in e-assessment systems, but also in broader
context. That may also include variants or evolved versions of standards or tools that
originally came from the context and tickled their way through e-assessment applications.
As another example, we can also find circles in the map. We can start one of them
with the observation that the existence or absence of domain-specific data-sources and
tools influences the way in which processes can be executed. If a particular domain for
instance cannot integrate techniques for fully automated item generation, we may see
a remarkable amount of manual, time-consuming activities in an assessment process.
That in turn is a driver for system design, since such activities call for new components
that can help to reduce the manual effort. The circle is then closed if system design
achieves to find integration mechanisms or extensions to existing components that allow
to use new techniques for fully automated item generation that solve the problems of
that particular domain.

The idea of using the final picture as a kind of map also stresses another aspect of
integration: The different aspects of e-assessment are not only connected to each other
when we plan and conduct an actual e-assessment, but they are also connected to each
other when doing research to advance e-assessment. If we want to advance one of the
aspects, we should thus always look at all of its connection to see whether either one of
the connected aspects can support our endeavour or whether the progress in our research
can also advance connected aspects.

228

23. Achievements

The aim of this publication was to define, explain and cover e-assessment as a subject of
study that brings together research results from process modeling, software engineering,
test item design and educational data analysis. Four distinct parts have been created
that each tackle one of these four aspects. Each part summarizes its results and creates
connections to the results from its preceding parts. Finally, chapter 22 draws the final
picture of an integrated view on e-assessment. Based on that structure, this publications
has created several achievements on two different levels: On a more abstract level, it
has summarized the state-of-the-art in the four areas, and it has described and charted
connections between these areas. On the more concrete level, it has created models,
structures or catalogues as frameworks for orientation while solving actual challenges,
and it has applied these in several case studies.

With respect to assessment processes, we have created a notation for assessment process
models and used it in some exemplary case studies. The kernel of educational assessment
that is part of the model made one explicit reference to e-assessment by providing an
alpha dedicated specifically to e-assessment systems. Hence, we have seen that electronic
assessments add some amount of complexity to the general concept of assessments by
introducing new entities to interact with and new duties to be picked up. Moreover, we
have seen that integrating these new elements into the existing collection of concepts,
entities and duties related to assessments is possible without problems. Finally, we have
seen that the sequencing of activities within the phase model raises important questions
about the integration of tools into the educational process, since tools may restrict the
freedom of choice in some didactic questions. Hence, we came to the conclusion that not
the process activities but the features offered by a particular e-assessment system are the
key factors that may ease or limit the integration in a particular process or institution.

These results directly relate to the achievements in the area of software engineering
for e-assessment systems. Two catalogues have been developed in that area, that contain
components for e-learning and e-assessment systems and patterns on how to integrate
these components with each other, respectively. Components like “assessment generator”
and “evaluator component” directly link to activities such as “author tests” and “create
feedback”, so that we can use these results to relate system features and behaviour to
states and activities in the assessment process. This helps to identify system components
or features that must be included into a system that is supposed to support a particular
type of assessment process. In turn, this also helps to identify missing interfaces or
patterns for component integration. Since both catalogues are based on a large amount of
actual system descriptions from literature and have additionally been validated in three
case studies, they can also be used to discuss the integration of e-assessment capabilities

229

23. Achievements

into other systems as well as the technical integration within an architecture based on a
unified terminology.

Similar to the relation between process models and software components, there is
also a direct relation between software components and domain-specific item handling.
Components like “item generators” and “domain-specific expert systems” directly relate
to the integration of domain-specific aspects into a general e-assessment system. Thus, it
is another achievement to identify several conceptual interfaces between the generic and
domain-specific parts of an assessment item. This in turn helps to design proper technical
interfaces between system components as well as data storage within an e-assessment
system that may respect the different structures of domain-specific data formats. Besides
this technical contribution, we have also seen a structured overview of several classes of
techniques for input editors, data formats, item generation and answer evaluation. That
overview can be used to classify assessment items or assessment systems and compare
them to each other based on their domain-specific capabilities or demands.

Finally, we have seen that the various types of data that are created in and processed by
e-assessment systems form several interfaces via that e-assessment systems communicate
with the surrounding context. Many goals of data processing relate to the context of
an assessment, in which a single assessment is not an isolated event, but an event with
consequences on the future development of persons, learning materials and assessment
items. In order to illustrate the manifold ways in which different techniques can be
combined, we used two case studies. These demonstrate how advanced techniques can
be used to gain valuable insight into learning behaviour from assessment data. Process
models for assessment thus do not only describe the process itself, but also talk about the
context by naming the relevant data. We were able to provide a rich tool set of different
state-of-the-art techniques for data processing as well as an overview on the different
goals and contexts they are used in. These tools can help to reach various checkpoints for
the states in the kernel for educational assessments and fill the related activity spaces
with actual activities and techniques.

The insights into the various aspects of e-assessment allow to set up a teaching agenda
for courses on e-assessment as part of a curriculum on educational technology. The
process model from part I can serve both as an introduction and the guiding theme
within that curriculum. It illuminates the various aspects of e-assessment and allows to
get a broad overview without digging into the details too early. If there is no room for a
whole course but only a single lecture on e-assessment, the process model can be used as
well with additional explanation in the specific areas of interest of the students. Within
a course, the overview can be followed by a series of individual lectures that each tackle
one particular aspect of e-assessment by discussing the necessary software components
from part II, their (potentially domain-specific) algorithms from part III and the data
processed by them from part IV. Topics of such lectures can for example be “automated
grading”, “item generation” or “adaptive assessment”, where each of these topics may
contain enough material for more than one lecture. Such a course can be concluded
by assembling all pieces together, thus talking about the way the individual software
components can be combined to different types of e-assessment systems. Finally, the
different options to use assessment results and data for other purposes beyond assessment

230

and the resulting ethical and legal issues can be discussed, which connects such a course
to the broader field of educational technology.

231

24. Future Research Directions

Although this publication created some achievements, there are ample possibilities for
future research. In fact, several achievements were about structured overviews, catalogues
or similar fundamental work, that prepares the ground to start new endeavours. Some
of those may concern only one of the four major aspects, while others will use one or
more of the many connections we have found. The latter is not surprising, since the final
picture of integrated e-assessment clearly illuminates the idea that none of the aspects
can be advanced in isolation.

A vast space for further exploration and research is about the educational processes. So
far, only a notation and a kernel of educational assessment has been created. Systematic
studies based on literature as well as on interviews with practitioners, or observation
of actual processes can help to gather much more details about activities and work
products that occur when processes are enacted. The chosen notation allows to document
these as assessment practices and patterns in a formalized but flexible manner. The
resulting catalogue of assessment practices bears the potential to ease empirical studies
on educational assessment due to a unified and common nomenclature for describing the
actual scenarios. Moreover, practices and patterns can be used to explore the connections
to software components, domain-specific tools and data analytics more systematically.
The result of these research activities could be a rich map of assessment practices and
patterns, where each possible set of meaningful assessment activities is associated with
technical guidance on the one hand and empirical evidence on the other hand. Similar
could be achieved for the broader scope of educational technology beyond e-assessment,
by creating another kernel for teaching processes. Obviously, creating such a kernel is
not an easy endeavour, at least if it should be able to cover various processes from single
lessons up to complete courses. A reasonable starting point for that could be to create
structural and hierarchical features that allow to formalize re-occurring assessments
or complex assessments that are composed of several individual assessment events at
different points in time. This approach can on the one hand build closely on top of the
existing kernel and on the other hand help to structure long-running processes based on
frequent occurrences of well-known assessment events.

In a similar way, software design for e-assessment systems can be explored much further
than is has been done in this publication. In particular, the idea of design patterns
can be explored further to come up with a more formalized catalogue similar to other
examples of domain-specific software engineering. This will especially help to promote
the technical aspects of integrated e-assessment, as different patterns for integrating e. g.
domain-specific tools or data analysis algorithms can be explored. Similarly, different
ways to integrated e-assessment components into other systems can also be covered
by that research. In addition, more research on the design of individual e-assessment

233

24. Future Research Directions

systems can help to come up with more detailed descriptions of common components,
their interfaces and possible variants. This could help to unify documentation and
thus make it easier for system designers to choose appropriate components. It could
even lead to the creation of additional standards that fill the gap between high-level
standards like IMS-AF or (the withdrawn) IEEE LTSA on the one hand and low-level
standards for very specific problems like IMS-LTI or IMS-QTI on the other hand. But
even without new standards for the design of e-assessment systems, detailed descriptions
of common interfaces for e-assessment components can help in other areas to come up with
standardized ways to connect to those interfaces, e. g. for domain-specific e-assessment or
advanced data analysis. The latter is particularly interesting, since we have mentioned
earlier that system design can help to tackle legal issues in data analysis. There is already
a lot of fundamental research work on these issues independent of the actual design of
e-assessment systems, but little systematic research on how these features can actually
be integrated in a usable way into existing e-assessment systems.

The aspect of domain-specific e-assessment is probably the one that offers the most
opportunities for future research. We were only able to cover the most important aspects
of that area on an abstract level and looked at three exemplary domains in the case
studies. However, virtually any domain deserves a detailed mapping from the abstract
concepts for input editors, data formats, item generation and answer processing to the
actual needs and characteristics of that domain. We can expect to see challenging
characteristics at least for some of these topics in most domains. At the same time, it is
quite likely that individual solutions from one domain can be generalized to solve similar
problems in another domain, even if that does not look very similar on the first glance.
Most likely, a close collaboration between domain experts and assessment experts will be
necessary to come up with item designs that properly reflect the important aspects of
the domain, while item generation and answer evaluation can still be fully automated.
At the same time, generic ways to encode domain-specific knowledge via approaches like
ontologies need further investigations with regard to their use specifically in e-assessment.
It would probably be a great success for domain-specific e-assessment if robust ways can
be found to use arbitrary ontologies for item generation or answer evaluation. Similarly,
there is space for more research on the flexible integration or creation of domain-specific
input editors, that are a necessary prerequisite for assessment on higher competence
levels in some domains.

The latter aspect directly leads to the aspect of data analysis as fourth field of research.
In that area, we have seen a rich tool set of analysis techniques, that nevertheless
appeared somewhat unconnected to each other. In particular, competence measurement
is a quite old technique with a solid theory and known successful applications with fully
implemented adaptive assessment systems, while other techniques are much younger and
still experimental. Hence, there is a lot of space for more research on each of them and also
on possible connections. Particularly, the connection to domain-specific assessments seems
to be promising for future research. Domain-specific analysis techniques may allow to
come up with detailed data about answer artifacts that allow to connect low-level technical
properties to high-level concepts of competency measurement. Similarly, it is most likely
that assessment items from different domains require different techniques in order to

234

improve item quality by item and answer analysis. It would thus be worthwhile to come up
with domain-specific analysis algorithms that can be integrated into e-assessment systems
and thus help item authors to monitor the quality of their assessments continuously in
a detailed manner. At the same time, there seems to be little benefit in integrating
each and every possible analysis technique into e-assessment systems. Instead, research
towards standardized formats and interfaces for collecting and exchanging raw data from
different systems can help to establish more flexible analysis solutions. That in turn
stresses the need for answers to legal and ethical issues, if more data from different
systems is integrated with each other.

Finally, the connections to the context of integrated e-assessment can be explored
further. Integration means, that e-assessment is always just one piece of a larger picture:
Conducting assessments is just one activity during educational processes; e-assessment
systems are just one form of educational technology; domain-specific assessment items
are just one characteristic of a scientific or educational domain; and assessment data is
just the minor part of a large set of educational data. Hence, similar research as it has
been conducted for this publication can be done in other areas of educational technology
and the connections between these areas can be explored even further. It is most likely
that some of the insights into integrated e-assessment are also true for other areas of
educational technology and hence it would be interesting to find out whether one can
finally come up with a more general picture of integrated educational technology.

235

25. Concluding Remarks

As we have seen in the previous chapters, this publication has created several achievements,
but there are also many open questions that leave an open space for future research. In
fact, this publication has neither asked a single, precise question, not has it answered
one with scientific rigor. Nevertheless, this publication has created something useful: It
started with the vague idea that e-assessment is something that is quite normal nowadays
and thus integrated into teaching and learning in some way. Now there is a large map
of various aspects of e-assessments and a lot of connections between each of them as
well as to the context. That map may not always answer the question how strong a
particular connection is or how it can be improved or why it is there at all. But it allows
to see and name the connections and thus start to talk and research about them in a
more structured way. Thus the mission of this publication is fulfilled: It defines, explains
and covers e-assessment as a subject of study that brings together research results from
process modeling, software engineering, test item design and educational data analysis.

Although the final picture is surely the ultimate result of that particular research, it
must also be understood as a starting point. Since integrated e-assessment is now defined
as a field of study, we can start to advance and evolve it. The earliest e-assessment
systems on punch-cards do no longer exist today, and most likely today’s e-assessment
systems will no longer exist in 50 or 60 years. Teaching and learning may also see strong
or even disruptive changes as it has recently with a sudden growth in online and distance
learning – particularly due to a global pandemic, but also before. Since e-assessment
is already integrated into today’s practice, it has to advance and evolve as the context
evolves. That may even imply that the final picture will need an update because new
aspects come into play and new connections can be found. But that once again stresses
the point that this publication is a starting point for research on integrated e-assessment
rather than an ultimate result.

237

A. Tables

Component
Name in IMS-AF

Component Description in IMS-AF Mapping to
section 6.1

Accessibility
An Accessibility Component contains the data
structures and interfaces responsible for de-
scribing the cognitive, technical and physical
preferences for the learner, disability, eligibil-
ity and language capabilities. These describe
the learner’s capabilities to interact with the
learning environment.

Student
model

Activity An Activity Component contains the data struc-
tures and interfaces responsible for describing
the learning materials produced by the learner.
This may consist of the education/training,
work and service (military, community, vol-
untary, etc.) record and products (excluding
formal awards). This information may include
the descriptions of the courses undertaken and
the records of the corresponding assessment.

(General
data stor-
age)

Affiliation An Affiliation Component contains the data
structures and interfaces responsible for describ-
ing the organization affiliations associated with
the learner e. g., professional memberships.

(General
data stor-
age)

Assessment An Assessment Component contains all of the
necessary instructions to enable the presenta-
tion of the associated Items, variable sequencing
of the Items, the aggregated scoring for all of
the Sections/Items to produce the final score(s),
and the corresponding feedback. The Section
Component is used to construct the appropriate
hierarchical Section/Item groups. The results
from an Assessment can be reported using the
Result Report Component.

Student
frontend,
Assessment
generator,
Evaluator
component

Table A.1.: Mapping from components listed in the IMS-AF standard [129] to the terms
used in section 6.1. Entry “—” indicates that there is no proper mapping.
Entries in brackets indicate that the respective component has only been
discussed implicitly in section 6.1.

239

A. Tables

(Table continued from previous page)
Component
Name in IMS-AF

Component Description in IMS-AF Mapping to
section 6.1

Competency A Competency Component contains the data
structures and interfaces responsible for describ-
ing the skills the learner has acquired. These
skills may be associated with some formal or
informal training or work history (described in
the ’activity’) and formal awards (described in
the QCL Component).

Student
model

Content A Content Component contains the data struc-
tures and interfaces responsible for describing
the logical structure, physical layout and associ-
ated presentation styles of the learning material.
The material itself can take the form of text,
image, video, audio, applet and an executable
application. Alternative content issues are also
addressed to support multi-lingual systems and
to ensure the accessibility of the material.

(General
data stor-
age)

Course Catalogue A Course Catalogue Component contains the
data structures and interfaces responsible for
listing the set of courses available to a learner.
The catalogue contains at least the title, iden-
tifiers, and the start/end dates of the course.
Other information may also be made available
depending on the type of catalogue.

(General
data stor-
age)

Glossary A Glossary Component contains the data struc-
tures and interfaces responsible for defining a
glossary of key words and phrases. It is possible
to define different types of glossary and to have
hierarchical glossaries.

Domain
knowledge
model

Goal A Goal Component contains the data structures
and interfaces responsible for describing the
learner’s personal objectives and aspirations.
These descriptions may also include information
for monitoring the progress in achieving the
goals. A goal can be defined in terms of sub-
goals.

Student
model

Table A.1.: Mapping from components listed in the IMS-AF standard [129] to the terms
used in section 6.1. Entry “—” indicates that there is no proper mapping.
Entries in brackets indicate that the respective component has only been
discussed implicitly in section 6.1.

240

(Table continued from previous page)
Component
Name in IMS-AF

Component Description in IMS-AF Mapping to
section 6.1

Grade-book A Grade-book Component contains the data
structures and interfaces responsible for record-
ing the grades, comments, attendance, and
scores for a student or group.

(General
data stor-
age)

Group The Group Component contains the data struc-
tures and interfaces responsible for describing a
set of related objects. Each member of a group
will be unique. The type of relationship is im-
plicit in the type group.

—

Interest An Interest Component contains the data struc-
tures and interfaces responsible for describing
the hobbies and other recreational activities of a
learner. These interests may have formal awards
(as described in the associated ’QCL Compo-
nent’). Electronic versions of the products of
these interests may also be contained.

—

Item An Item Component contains all of the neces-
sary instructions to enable the presentation of
the associated question, the response processing
to produce the set of scores, and the correspond-
ing feedback. The results from an Item can be
reported using the Result Report Component.

Student
frontend,
(General
data stor-
age)

LOM A LOM Component contains the data struc-
tures and interfaces responsible for labelling
an associated resource. The way in which the
meta-data is associated with the resource is
established via the appropriate component defi-
nition.

—

Manifest A Manifest Component contains the data struc-
tures and interfaces responsible for constructing
a content package. A content package is the
IMS’s generic aggregation and packaging mecha-
nism and as such it can be used to package any
type of content.

—

Table A.1.: Mapping from components listed in the IMS-AF standard [129] to the terms
used in section 6.1. Entry “—” indicates that there is no proper mapping.
Entries in brackets indicate that the respective component has only been
discussed implicitly in section 6.1.

241

A. Tables

(Table continued from previous page)
Component
Name in IMS-AF

Component Description in IMS-AF Mapping to
section 6.1

Object-bank The Object-bank Component is used to enable
the grouping of Items and Sections in a data-
bank. This data-bank is then used as the repos-
itory that is referenced by Assessments and
Sections.

(General
data stor-
age)

Outcomes Pro-
cessing

An Outcome Processing Component contains
the data structures and interfaces that provide
the mechanism through which the scores from
any combination of Item Components and Sec-
tion Components can be combined using one
of the predefined algorithms. The set of algo-
rithms available for the aggregation are accessed
through the outcomes processing component
operators.

Evaluator
component

Party The Party Component defines the data struc-
tures and interfaces responsible for describing
an individual or an organization. The informa-
tion includes names, addresses, demographics,
agents, and contact information.

—

PLIRI The PLIRI Component defines the data struc-
tures and interfaces responsible for defining and
allocating globally unique and locally unique
identifiers.

—

Profile The Profile Component defines the data struc-
tures and interfaces responsible for constructing
and manipulating a learner’s profile. The pro-
file may vary from a detailed life long learning
log to a short summary of personal details. A
learner may have more than one profile and
each profile may be distributed across several
profile servers.

Student
model

Table A.1.: Mapping from components listed in the IMS-AF standard [129] to the terms
used in section 6.1. Entry “—” indicates that there is no proper mapping.
Entries in brackets indicate that the respective component has only been
discussed implicitly in section 6.1.

242

(Table continued from previous page)
Component
Name in IMS-AF

Component Description in IMS-AF Mapping to
section 6.1

QCL A QCL Component defines the data struc-
tures and interfaces responsible for describing
the qualifications, certifications and licenses
awarded to the learner i. e., the formally rec-
ognized products of their learning and work
history. This includes information on the award-
ing body and may also include electronic copies
of the actual documents.

—

Relationship A Relationship Component defines the data
structures and interfaces responsible defining
the relations between other Components. All of
the relationship information has been removed
from the other components to enable these
to be manipulated using a single independent
component. The relationship is defined using a
particular vocabulary and the components are
identified using the appropriate PLIRI.

—

Result Report The Result Report Component is used to report
the results from any form of assessment e. g.,
a Test, Quiz, etc. The assessment may or may
not be based upon the Assessment, Section or
Item Components. Any level of detail can be re-
ported from the assessment with the exception
of tracking level information.

Data trans-
fer compo-
nent

Section A Section Component contains all of the neces-
sary instructions to enable the presentation of
the associated Items, variable sequencing of the
Sections/Items, the aggregated scoring for all of
the Items to produce the Section score(s), and
the corresponding feedback. The Section is used
to construct hierarchical Section/Item groups
The results from a Section can be reported us-
ing the Result Report Component.

Student
frontend,
Assessment
generator,
Evaluator
component

Table A.1.: Mapping from components listed in the IMS-AF standard [129] to the terms
used in section 6.1. Entry “—” indicates that there is no proper mapping.
Entries in brackets indicate that the respective component has only been
discussed implicitly in section 6.1.

243

A. Tables

(Table continued from previous page)
Component
Name in IMS-AF

Component Description in IMS-AF Mapping to
section 6.1

SecurityKey The SecurityKey Component defines the data
structures and interfaces responsible for storing
the passwords and security codes that are to be
used when communicating with the learner.

(General
data stor-
age)

Sequencing A Sequencing Component defines the data struc-
tures and interfaces responsible for describing
the set of possible presentation sequences for
the collection of content resources.

—

Syllabus A Syllabus Component defines the data struc-
tures and interfaces responsible for representing
the syllabus for a course.

—

Table of Contents A Table of Contents Component defines the
data structures and interfaces responsible for
representing the table of contents of a list of
related objects e. g., a content package.

—

Transcript A Transcript Component contains the data
structures and interfaces responsible for de-
scribing a learner’s transcript i. e., the sum-
mary records of the academic performance at
an institution. This information may contain
an arbitrary level of detail and so there is no
proscribed structure for a transcript. This com-
ponent contains no layout information for the
transcript.

(General
data stor-
age)

Vocabulary A Vocabulary Component contains the data
structures and interfaces for representing a vo-
cabulary. This vocabulary may be constructed
as a simple list or a complex taxonomy.

Domain
knowledge
model

Table A.1.: Mapping from components listed in the IMS-AF standard [129] to the terms
used in section 6.1. Entry “—” indicates that there is no proper mapping.
Entries in brackets indicate that the respective component has only been
discussed implicitly in section 6.1.

244

Bibliography

[1] IEEE Standard for Learning Technology-Learning Technology Systems Architecture
(LTSA), 2003.

[2] Essence - Kernel and Language for Software Engineering Methods, Dec 2015. URL
http://www.omg.org/spec/Essence/1.1.

[3] A. Abelló, M. E. Rodríguez, T. Urpí, X. Burgués, M. J. Casany, C. Martín,
and C. Quer. LEARN-SQL: Automatic Assessment of SQL Based on IMS QTI
Specification. In Eighth IEEE International Conference on Advanced Learning
Technologies, pages 592–593, July 2008. doi: 10.1109/ICALT.2008.27.

[4] Naveed Afzal and Ruslan Mitkov. Automatic generation of multiple choice questions
using dependency-based semantic relations. Soft Computing, 18(7):1269–1281, Jul
2014. ISSN 1433-7479. doi: 10.1007/s00500-013-1141-4.

[5] M. Al-Smadi and C. Gütl. SOA-based architecture for a generic and flexible
e-assessment system. In IEEE EDUCON 2010 Conference, pages 493–500, April
2010. doi: 10.1109/EDUCON.2010.5492537.

[6] M. Al-Yahya. OntoQue: A Question Generation Engine for Educational Asses-
ment Based on Domain Ontologies. In 2011 IEEE 11th International Conference
on Advanced Learning Technologies, pages 393–395, July 2011. doi: 10.1109/I-
CALT.2011.124.

[7] Hanan Aldowah, Hosam Al-Samarraie, and Wan Mohamad Fauzy. Educational
data mining and learning analytics for 21st century higher education: A review
and synthesis. Telematics and informatics, (37):13–49, 2019. ISSN 0736-5853. doi:
10.1016/j.tele.2019.01.007.

[8] Tahani Alsubait, Bijan Parsia, and Ulrike Sattler. Ontology-Based Multiple Choice
Question Generation. KI - Künstliche Intelligenz, 30(2):183–188, 2016. ISSN
1610-1987. doi: 10.1007/s13218-015-0405-9.

[9] Christine Alvarado and Randall Davis. SketchREAD: A Multi-Domain Sketch
Recognition Engine. In ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07,
New York, NY, USA, 2007. Association for Computing Machinery. doi:
10.1145/1281500.1281545.

[10] Salha M. Alzahrani, Naomie Salim, and Ajith Abraham. Understanding Plagiarism
Linguistic Patterns, Textual Features, and Detection Methods. IEEE Transactions

245

http://www.omg.org/spec/Essence/1.1
http://dx.doi.org/10.1109/ICALT.2008.27
http://dx.doi.org/10.1007/s00500-013-1141-4
http://dx.doi.org/10.1109/EDUCON.2010.5492537
http://dx.doi.org/10.1109/ICALT.2011.124
http://dx.doi.org/10.1109/ICALT.2011.124
http://dx.doi.org/10.1016/j.tele.2019.01.007
http://dx.doi.org/10.1016/j.tele.2019.01.007
http://dx.doi.org/10.1007/s13218-015-0405-9
http://dx.doi.org/10.1145/1281500.1281545
http://dx.doi.org/10.1145/1281500.1281545

Bibliography

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2):
133–149, 2011.

[11] Mario Amelung, Katrin Krieger, and Dietmar Rösner. E-Assessment as a Service.
IEEE Transactions on Learning Technologies, 4:162–174, 2011. ISSN 1939-1382.
doi: doi.ieeecomputersociety.org/10.1109/TLT.2010.24.

[12] A. Amigud, J. Arnedo-Moreno, T. Daradoumis, and A.-E. Guerrero-Roldan. Open
proctor: An academic integrity tool for the open learning environment. In Lecture
Notes on Data Engineering and Communications Technologies, volume 8, pages
262–273, 2018. doi: 10.1007/978-3-319-65636-6_23.

[13] Heidi M. Anderson, Guadalupe Anaya, Eleanora Bird, and Deborah L. Moore. A
Review of Educational Assessment. American Journal of Pharmaceutical Education,
69(1), 2005. doi: 10.5688/aj690112.

[14] E. Araujo, D. Serey, and J. Figueiredo. Qualitative aspects of students’ programs:
Can we make them measurable? In 2016 IEEE Frontiers in Education Conference
(FIE), pages 1–8, Oct 2016. doi: 10.1109/FIE.2016.7757725.

[15] Martin E. Arendasy and Markus Sommer. Using automatic item generation to meet
the increasing item demands of high-stakes educational and occupational assessment.
Learning and Individual Differences, 22(1):112–117, 2012. ISSN 1041-6080. doi:
10.1016/j.lindif.2011.11.005.

[16] Martin E. Arendasy, Andreas Hergovich, and Markus Sommer. Investigating
the ‘g’-saturation of various stratum-two factors using automatic item generation.
Intelligence, 36(6):574–583, 2008. ISSN 0160-2896. doi: 10.1016/j.intell.2007.11.005.

[17] Martin E. Arendasy, Markus Sommer, and Friedrich Mayr. Using Automatic Item
Generation to Simultaneously Construct German and English Versions of a Word
Fluency Test. Journal of Cross-Cultural Psychology, 43(3):464–479, 2012. doi:
10.1177/0022022110397360.

[18] Goce Armenski and Marjan Gusev. E-Testing Based on Service Oriented Architec-
ture. In Proceedings of the 10th CAA Conference, 2006.

[19] Goce Armenski and Marjan Gusev. The Architecture of an “Ultimate” e-Assessment
System. In Association for Information and Communication Technologies ICT-ACT,
2009.

[20] Alexander Askinadze. Anwendung der Regressions-SVM zur Vorhersage studen-
tischer Leistungen. In Proceedings of the 28th GI-Workshop Grundlagen von
Datenbanken, Nörten Hardenberg, Germany, May 24-27, 2016, pages 15–20, 2016.

[21] Yigal Attali. Automatic Item Generation Unleashed: An Evaluation of a Large-
Scale Deployment of Item Models. In Carolyn Penstein Rosé, Roberto Martínez-
Maldonado, H. Ulrich Hoppe, Rose Luckin, Manolis Mavrikis, Kaska Porayska-
Pomsta, Bruce McLaren, and Benedict du Boulay, editors, Artificial Intelligence

246

http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TLT.2010.24
http://dx.doi.org/10.1007/978-3-319-65636-6_23
http://dx.doi.org/10.5688/aj690112
http://dx.doi.org/10.1109/FIE.2016.7757725
http://dx.doi.org/10.1016/j.lindif.2011.11.005
http://dx.doi.org/10.1016/j.lindif.2011.11.005
http://dx.doi.org/10.1016/j.intell.2007.11.005
http://dx.doi.org/10.1177/0022022110397360
http://dx.doi.org/10.1177/0022022110397360

Bibliography

in Education, pages 17–29, Cham, 2018. Springer International Publishing. ISBN
978-3-319-93843-1.

[22] J.M. Azevedo, E.P. Oliveira, and P.D. Beites. Using learning analytics to evaluate
the quality of multiple-choice questions: A perspective with classical test theory
and item response theory. International Journal of Information and Learning
Technology, 36(4):322–341, 2019. doi: 10.1108/IJILT-02-2019-0023.

[23] Richard Bacon. Assessing the Use of a New QTI Assessment Tool within Physics.
In Proceedings of the 7th CAA Conference, 2003.

[24] Trudy W. Banta and Catherine A. Palomba. Assessment Essentials.
John Wiley & Sons Inc, 2nd edition, 2015. ISBN 9781118903322. URL
http://www.ebook.de/de/product/22734250/trudy_w_banta_catherine_a_
palomba_assessment_essentials.html.

[25] David J. Bartholomew. Analysis of multivariate social science data. Chapman &
Hall/CRC statistics in the social and behavioral sciences series. CRC Press, Boca
Raton, 2nd edition, 2008. ISBN 978-1-58488-960-1.

[26] X. Baró, R. Muñoz Bernaus, D. Baneres, and A.E. Guerrero-Roldán. Biometric
tools for learner identity in e-assessment. In Lecture Notes on Data Engineering
and Communications Technologies, volume 34, pages 41–65, 2020. doi: 10.1007/978-
3-030-29326-0_3.

[27] Xavier Baró, Roger Muñoz Bernaus, David Baneres, and Ana Elena Guerrero-
Roldán. Biometric Tools for Learner Identity in e-Assessment. In Engineering Data-
Driven Adaptive Trust-based e-Assessment Systems, number 34 in Lecture Notes
on Data Engineering and Communications Technologies, pages 41–65. Springer,
2020. doi: 10.1007/978-3-030-29326-0_3.

[28] Firat Batmaz and Chris J. Hinde. A diagram drawing tool for semi-automatic
assessment of conceptual database diagrams. In M. Danson, editor, Proc. 10th Int.
Computer Assisted Assessment Conf. (CAA), Loughborough, England, pages 71–84.
Professional Development, Loughborough University, 2006.

[29] Firat Batmaz, Roger Stone, and Chris Hinde. Personalised Feedback With Semi-
Automatic Assessment Tool For Conceptual Database Model. Innovation in Teach-
ing and Learning in Information and Computer Sciences, 9, 2010. doi: 10.11120/i-
tal.2010.09010105.

[30] D. Bañeres, I. Noguera, M. Elena Rodríguez, and A. Guerrero-Roldán. Using an
intelligent tutoring system with plagiarism detection to enhance e-assessment. In
Lecture Notes on Data Engineering and Communications Technologies, volume 23,
pages 363–372, 2019. doi: 10.1007/978-3-319-98557-2_33.

[31] Maria Berski. Klausurprognose mittels Learning Analytics auf Basis von E-
Assessment-Daten. Bachelor’s thesis, Universität Duisburg-Essen, 2018.

247

http://dx.doi.org/10.1108/IJILT-02-2019-0023
http://www.ebook.de/de/product/22734250/trudy_w_banta_catherine_a_palomba_assessment_essentials.html
http://www.ebook.de/de/product/22734250/trudy_w_banta_catherine_a_palomba_assessment_essentials.html
http://dx.doi.org/10.1007/978-3-030-29326-0_3
http://dx.doi.org/10.1007/978-3-030-29326-0_3
http://dx.doi.org/10.1007/978-3-030-29326-0_3
http://dx.doi.org/10.11120/ital.2010.09010105
http://dx.doi.org/10.11120/ital.2010.09010105
http://dx.doi.org/10.1007/978-3-319-98557-2_33

Bibliography

[32] Daniel Bildhauer and Jürgen Ebert. Querying Software Abstraction Graphs. In
Working Session on Query Technologies and Applications for Program Comprehen-
sion (QTAPC 2008), collocated with ICPC 2008, 2008.

[33] L. Bin, L. Jun, Y. Jian-Min, and Z. Qiao-Ming. Automated Essay Scoring Using the
KNN Algorithm. In 2008 International Conference on Computer Science and Soft-
ware Engineering, volume 1, pages 735–738, Dec 2008. doi: 10.1109/CSSE.2008.623.

[34] M. Birjali, A. Beni-Hssane, and M. Erritali. A novel adaptive e-learning model
based on big data by using competence-based knowledge and social learner activities.
Applied Soft Computing Journal, 69:14–32, 2018. doi: 10.1016/j.asoc.2018.04.030.

[35] A. Birnbaum. Some latent trait models and their use in inferring an examinee’s
ability. In Statistical theories of mental test scores, pages 395–479. Addision-Wesley,
1968.

[36] Bill Blyth and Aleksandra Labovic. Using Maple to implement eLearning integrated
with computer aided assessment. International Journal of Mathematical Education
in Science and Technology, 40(7):975–988, 2009. doi: 10.1080/00207390903226856.

[37] K. Boussaha, F. Mokhati, and C. Zakaria. Architecture of a specific platform
for training practical works: Integration of learners’ assessment component. In-
ternational Journal of Technology Enhanced Learning, 7(3):195–220, 2015. doi:
10.1504/IJTEL.2015.072809.

[38] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Classifi-
cation and regression trees. CRC press, 1984.

[39] Stina Bridgeman, Michael T. Goodrich, Stephen G. Kobourov, and Roberto Tamas-
sia. PILOT: An Interactive Tool for Learning and Grading. In Proceedings of the
Thirty-first SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’00, pages 139–143, New York, NY, USA, 2000. ACM. doi: 10.1145/330908.331843.

[40] Peter Brusilovsky and Eva Millán. User models for adaptive hypermedia and
adaptive educational systems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl, editors, The adaptive web, pages 3–53. Springer-Verlag, Berlin, Heidelberg,
2007. ISBN 978-3-540-72078-2. URL http://dl.acm.org/citation.cfm?id=
1768197.1768199.

[41] Peter Brusilovsky and Sergey Sosnovsky. Individualized Exercises for Self-assessment
of Programming Knowledge: An Evaluation of QuizPACK. J. Educ. Resour.
Comput., 5(3), September 2005. ISSN 1531-4278. doi: 10.1145/1163405.1163411.

[42] S. Bull, B. Wasson, M. Kickmeier-Rust, M.D. Johnson, E. Moe, C. Hansen,
G. Meissl-Egghart, and K. Hammermueller. Assessing english as a second language:
From classroom data to a competence-based open learner model. In Proceedings of
the 20th International Conference on Computers in Education, ICCE 2012, pages
618–622, 2012.

248

http://dx.doi.org/10.1109/CSSE.2008.623
http://dx.doi.org/10.1016/j.asoc.2018.04.030
http://dx.doi.org/10.1080/00207390903226856
http://dx.doi.org/10.1504/IJTEL.2015.072809
http://dx.doi.org/10.1504/IJTEL.2015.072809
http://dx.doi.org/10.1145/330908.331843
http://dl.acm.org/citation.cfm?id=1768197.1768199
http://dl.acm.org/citation.cfm?id=1768197.1768199
http://dx.doi.org/10.1145/1163405.1163411

Bibliography

[43] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture, volume Volume 1, A System of
Patterns. Wiley, 1996. ISBN 978-0-471-95869-7.

[44] M. Delgado Calvo-Flores, E. Gibaja Galindo, M. C. Pegalajar Jiménez, and O. Pérez
Pineiro. Predicting students’ marks from Moodle logs using neural network models.
Current Developments in Technology-Assisted Education, 1(2):586–590, 2006.

[45] D. Carneiro, P. Novais, D. Durães, J.M. Pego, and N. Sousa. Predicting completion
time in high-stakes exams. Future Generation Computer Systems, 92:549–559, 2019.
doi: 10.1016/j.future.2018.01.061.

[46] María José Casany, Marc Alier, Enric Mayol, Jordi Piguillem, Nikolas Galanis,
Francisco J. García-Peñalvo, and Miguel Ángel Conde. Moodbile: A Framework to
Integrate m-Learning Applications with the LMS. Journal of Research and Practice
in Information Technology, 44(2):129–149, 2012.

[47] D. Challis. Committing to quality learning through adaptive online assessment.
Assessment & Evaluation in Higher Education, 30(5):519–527, 2005.

[48] Lilia Cheniti-Belcadhi, Nicola Henze, and Rafik Braham. Implementation of a
personalized assessment web service. In Sixth International Conference on Advanced
Learning Technologies (ICALT 2006), pages 586–590. IEEE, 2006.

[49] Martin Chodorow and Jill Burstein. Beyond essay length: Evaluating e-rater®’s
performance on TOEFL® essays. ETS Research Report Series, 2004(1):i–38, 2004.
doi: 10.1002/j.2333-8504.2004.tb01931.x.

[50] Hervé Cholez, Nicolaus Mayer, and Thibaud Latour. Information Security Risk
Management in Computer-Assisted Assessment Systems: First Step in Addressing
Contextual Diversity. In Proceedings of the 13th Computer-Assisted Assessment
Conference (CAA 2010), 2010.

[51] Wallace Clark, Walter Nicholas Polakov, and Frank W Trabold. The Gantt Chart:
A working tool of management. Ronald Press Company, 1922.

[52] Catherine Cleophas, Christoph Hoennige, Frank Meisel, and Philipp Meyer. Who’s
Cheating? Mining Patterns of Collusion from Text and Events in Online Exams.
Available online at SSRN, 2021. URL https://ssrn.com/abstract=3824821.

[53] Arjeh M. Cohen, Hans Cuypers, Dorina Jibetean, Mark Spanbroek, O. Caprotti,
E. Eixarch, D. Marques, and A. Pau. LeActiveMath Integrated CAS with Open-
Math, June 2005.

[54] Sébastien Combéfis and Guillaume de Moffarts. Automated Generation of Com-
puter Graded Unit Testing-Based Programming Assessments for Education. In
6th International Conference on Computer Science, Engineering and Information
Technology (CSEIT 2019), 2019. doi: 10.5121/csit.2019.91308.

249

http://dx.doi.org/10.1016/j.future.2018.01.061
http://dx.doi.org/10.1002/j.2333-8504.2004.tb01931.x
https://ssrn.com/abstract=3824821
http://dx.doi.org/10.5121/csit.2019.91308

Bibliography

[55] John W. Connolly. Automated homework grading for large general chemistry
classes. Journal of Chemical Education, 49(4):262, 1972.

[56] Alberto Corbí and Daniel Burgos Solans. Semi-Automated Correction Tools for
Mathematics-Based Exercises in MOOC Environments. International Journal of
Artificial Intelligence and Interactive Multimedia, 3(3):89–95, 2015.

[57] Georgina Cosma and Mike Joy. Towards a Definition of Source-Code Plagiarism.
IEEE Transactions on Education, 51(2):195–200, 2008.

[58] Evandro Costa, Priscylla Silva, Marlos Silva, Emanuele Silva, and Anderson Santos.
A Multiagent-Based ITS Using Multiple Viewpoints for Propositional Logic. In
Intelligent Tutoring Systems, pages 640–641. Springer, 2012.

[59] Bronwen Cowie and Beverley Bell. A Model of Formative Assessment in Science
Education. Assessment in Education, 6(1):101–116, 1999.

[60] L. J. Cronbach. Coefficient alpha and the internal structure of tests. Psychometrika,
16(3):297–334, 1951.

[61] Declan Dagger, Alexander O’Connor, Séamus Lawless, Eddie Walsh, and Vincent P.
Wade. Service-Oriented E-Learning Platforms: From Monolithic Systems to Flexible
Services. IEEE Internet Computing, 11(3):28–35, May 2007. ISSN 1089-7801. doi:
10.1109/MIC.2007.70.

[62] Myles Danson, Bryan Dawson, and Tim Baseley. Large Scale Implementation of
Question Mark Perception (V2.5) – Experiences at Loughborough University. In
Proceedings of the 5th Computer-Assisted Assessment Conference (CAA), 2001.

[63] Will M Davies, Yvonne Howard, Hugh C Davis, David E. Millard, and Niall
Sclater. Aggregating Assessment Tools in a Service Oriented Architecture. In 9th
International CAA Conference, 2005.

[64] Evandro de Barros Costa, Angelo Perkusich, and Edilson Ferneda. From a Tridimen-
sional View of Domain Knowledge to Multi-agent Tutoring System. In Advances
in Artificial Intelligence, pages 61–72. Springer Berlin Heidelberg, 1998. doi:
10.1007/10692710_7.

[65] F. S. de Oliveira and S. Santos. PBLMaestro: A virtual learning environment for
the implementation of problem-based learning approach in Computer education.
In 2016 IEEE Frontiers in Education Conference (FIE), pages 1–9, Oct 2016. doi:
10.1109/FIE.2016.7757388.

[66] Paul Deane and Kathleen Sheehan. Automatic Item Generation via Frame Seman-
tics: Natural Language Generation of Math Word Problems. Paper presented at the
Annual Meeting of the National Council on Measurement in Education (Chicago,
IL, April 22-24, 2003), April 2003. URL https://eric.ed.gov/?id=ED480135.

250

http://dx.doi.org/10.1109/MIC.2007.70
http://dx.doi.org/10.1109/MIC.2007.70
http://dx.doi.org/10.1007/10692710_7
http://dx.doi.org/10.1007/10692710_7
http://dx.doi.org/10.1109/FIE.2016.7757388
http://dx.doi.org/10.1109/FIE.2016.7757388
https://eric.ed.gov/?id=ED480135

Bibliography

[67] John V. Dempsey, Brenda C. Litchfield, and Marcy P. Driscoll. Feedback, Retention,
Discrimination Error, and Feedback Study Time. Journal of Research on Computing
in Education, 25(3):303–326, 1993. doi: 10.1080/08886504.1993.10782053.

[68] John Dermo. e-Assessment and the student learning experience: A survey of
student perceptions of e-assessment. British Journal of Educational Technology, 40
(2):203–214, 2009. doi: 10.1111/j.1467-8535.2008.00915.x.

[69] K. Derr, R. Hübl, and M.Z. Ahmed. Using test data for successive refinement of
an online pre-course in mathematics. In Proceedings of the European Conference
on e-Learning, ECEL, pages 173–180, 2015.

[70] Katja Derr, Reinhold Hübl, and Mohammed Zaki Ahmed. Using test data for
successive refinement of an online pre-course in mathematics. In 14th European
Conference on e-Learning ECEL, pages 173–180, 2015.

[71] Michel C. Desmarais and Ryan S. Baker. A Review of Recent Advances in Learner
and Skill Modeling in Intelligent Learning Environments. User Modeling and User-
Adapted Interaction, 22(1-2):9–38, April 2012. ISSN 0924-1868. doi: 10.1007/s11257-
011-9106-8.

[72] Vladan Devedzic and Andreas Harrer. Architectural Patterns in Pedagogical
Agents. In Intelligent Tutoring Systems (ITS 2002), volume 2363 of Lecture Notes
in Computer Science, pages 81–90, 2002. doi: 10.1007/3-540-47987-2_13.

[73] Vladan Devedzic, Danijela Radovic, and Ljubomir Jerinic. On the Notion of
Components for Intelligent Tutoring Systems. In Intelligent Tutoring Systems (ITS
1998), volume 1452 of Lecture Notes in Computer Science, pages 504–513, 1998.

[74] Walter Dick, Lou Carey, and James O. Carey. The Systematic Design of Instruction.
Pearson Education, 8th edition, 2014.

[75] Bogdan Drăgulescu, Marian Bucos, and Radu Vasiu. Predicting assignment sub-
missions in a multi-class classification problem. TEM Journal, 4(3):244, 2015.

[76] Cynthia Dwork. Differential Privacy. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming - Volume Part II, ICALP’06,
pages 1–12, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-35907-9, 978-3-
540-35907-4. doi: 10.1007/11787006_1.

[77] Jürgen Ebert and Angelika Franzke. A Declarative Approach to Graph Based
Modeling. In G. Tinhofer E. Mayr, G. Schmidt, editor, Graphtheoretic Concepts
in Computer Science, number 903 in LNCS, pages 38–50, Berlin, 1995. Springer
Verlag.

[78] ECMA TC33 Task Group and ISEE Working Group. Reference Model for
Frameworks of Software Engineering Environments. Technical Report ECMA
TR/55, European Computer Manufacturers Association, June 1993. URL https:
//www.ecma-international.org/publications/techreports/E-TR-055.htm.

251

http://dx.doi.org/10.1080/08886504.1993.10782053
http://dx.doi.org/10.1111/j.1467-8535.2008.00915.x
http://dx.doi.org/10.1007/s11257-011-9106-8
http://dx.doi.org/10.1007/s11257-011-9106-8
http://dx.doi.org/10.1007/3-540-47987-2_13
http://dx.doi.org/10.1007/11787006_1
https://www.ecma-international.org/publications/techreports/E-TR-055.htm
https://www.ecma-international.org/publications/techreports/E-TR-055.htm

Bibliography

[79] edX Inc. Documentation, Chapter 10.14. External Grader, 2017. URL
http://edx.readthedocs.io/projects/edx-partner-course-staff/en/
latest/exercises_tools/external_graders.html. last accessed 2017-12-15.

[80] Eman El-Sheikh and Jon Sticklen. Generating Intelligent Tutoring Systems from
Reusable Components and Knowledge-Based Systems. In Intelligent Tutoring Sys-
tems: 6th International Conference, ITS 2002, Biarritz, France and San Sebastian,
Spain, June 2-7, 2002. Proceedings, pages 199–207. Springer, 2002.

[81] Cath Ellis. Broadening the scope and increasing the usefulness of learning analytics:
The case for assessment analytics. British Journal of Educational Technology, 44
(4):662–664, July 2013. doi: 10.1111/bjet.12028.

[82] Susan Embretson and Xiangdong Yang. Automatic Item Generation and Cognitive
Psychology. In C. R. Rao and S. Sinharay, editors, Psychometrics, volume 26
of Handbook of Statistics, pages 747–768. Elsevier, 2006. doi: 10.1016/S0169-
7161(06)26023-1. URL http://www.sciencedirect.com/science/article/pii/
S0169716106260231.

[83] T. Dary Erwin. Assessing Student Learning and Development: A Guide to the
Principles, Goals, and Methods of Determining College Outcomes. Jossey-Bass,
1991.

[84] Nickolas Falkner, Rebecca Vivian, David Piper, and Katrina Falkner. Increasing
the Effectiveness of Automated Assessment by Increasing Marking Granularity
and Feedback Units. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, pages 9–14, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2605-6. doi: 10.1145/2538862.2538896.

[85] B.E. Florián G, S.M. Baldiris, and R. Fabregat. A new competency-based e-
assessment data model: Implementing the aeea proposal. In IEEE Education
Engineering Conference, EDUCON 2010, pages 473–480, 2010. doi: 10.1109/E-
DUCON.2010.5492538.

[86] Peter W. Foltz, Darrell Laham, and Thomas K. Landauer. The intelligent essay
assessor: Applications to educational technology. Interactive Multimedia Electronic
Journal of Computer-Enhanced Learning, 1(2):939–944, 1999.

[87] Daniela Fonte, Ismael Vilas Boas, Daniela da Cruz, Alda Lopes Gançarski, and
Pedro Rangel Henriques. Program analysis and evaluation using QUIMERA. In
ICEIS’2012-14th International Conference on Enterprise Information Systems,
volume 2, pages 209–219, 2012.

[88] Muriel Foulonneau. Generating Educational Assessment Items from Linked Open
Data: The Case of DBpedia. In Raúl García-Castro, Dieter Fensel, and Grigoris
Antoniou, editors, The Semantic Web: ESWC 2011 Workshops, pages 16–27.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-25953-1.

252

http://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/external_graders.html
http://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/external_graders.html
http://dx.doi.org/10.1111/bjet.12028
http://dx.doi.org/10.1016/S0169-7161(06)26023-1
http://dx.doi.org/10.1016/S0169-7161(06)26023-1
http://www.sciencedirect.com/science/article/pii/S0169716106260231
http://www.sciencedirect.com/science/article/pii/S0169716106260231
http://dx.doi.org/10.1145/2538862.2538896
http://dx.doi.org/10.1109/EDUCON.2010.5492538
http://dx.doi.org/10.1109/EDUCON.2010.5492538

Bibliography

[89] Muriel Foulonneau and Eric Ras. Using Educational Domain Models for Automatic
Item Generation Beyond Factual Knowledge Assessment. In Davinia Hernández-Leo,
Tobias Ley, Ralf Klamma, and Andreas Harrer, editors, Proceedings of EC-TEL
2013: Scaling up Learning for Sustained Impact, pages 442–447, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. ISBN 978-3-642-40814-4.

[90] A. Frey and N. N. Seitz. Multidimensional Adaptive Testing in Educational
and Psychological Measurement: Current state and future challenges. Studies in
Educational Evaluation, 35:89–94, 2009.

[91] J. Gamulin, O. Gamulin, and D. Kermek. The application of formative e-assessment
data in final exam results modeling using neural networks. In 2015 38th Interna-
tional Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 726–730, 2015.

[92] J. Gamulin, O. Gamulin, and D. Kermek. The application of formative e-assessment
data in final exam results modeling using neural networks. In 2015 38th Inter-
national Convention on Information and Communication Technology, Electron-
ics and Microelectronics, MIPRO 2015 - Proceedings, pages 726–730, 2015. doi:
10.1109/MIPRO.2015.7160367.

[93] Niels Gandraß and Axel Schmolitzky. Automatisierte Bewertung von Java-
Programmieraufgaben im Rahmen einer Moodle E-Learning Plattform. In Proceed-
ings of the Fourth Workshop "Automatische Bewertung von Programmieraufgaben"
(ABP 2019), pages 3–10, 2019. doi: 10.18420/abp2019-1.

[94] Henry Laurence Gantt. Work, Wages, and Profits. Engineering Magazine Company,
2 edition, 1913.

[95] Alicia García-Holgado and Francisco José García-Peñalvo. Architectural pat-
tern to improve the definition and implementation of eLearning ecosystems.
Science of Computer Programming, 129:20 – 34, 2016. ISSN 0167-6423. doi:
10.1016/j.scico.2016.03.010. URL http://www.sciencedirect.com/science/
article/pii/S0167642316300259. Special issue on eLearning Software Archi-
tectures.

[96] Robert Garmann. Ein Format für Bewertungsvorschriften in automatisiert bew-
ertbaren Programmieraufgaben. In Niels Pinkwart and Johannes Konert, editors,
DeLFI 2019 - Die 17. Fachtagung Bildungstechnologien, 16.-19. September 2019,
Berlin, volume P-297 of LNI, pages 103–114. Gesellschaft für Informatik e.V., 2019.
doi: 10.18420/delfi2019_73.

[97] Robert Garmann, Felix Heine, and Peter Werner. Grappa - die Spinne im
Netz der Autobewerter und Lernmanagementsysteme. In DeLFI 2015 - Die
13. e-Learning Fachtagung Informatik der Gesellschaft für Informatik e.V. (GI),
München, 1.-4. September 2015, pages 169–181, 2015. URL http://subs.emis.
de/LNI/Proceedings/Proceedings247/article20.html.

253

http://dx.doi.org/10.1109/MIPRO.2015.7160367
http://dx.doi.org/10.1109/MIPRO.2015.7160367
http://dx.doi.org/10.18420/abp2019-1
http://dx.doi.org/10.1016/j.scico.2016.03.010
http://dx.doi.org/10.1016/j.scico.2016.03.010
http://www.sciencedirect.com/science/article/pii/S0167642316300259
http://www.sciencedirect.com/science/article/pii/S0167642316300259
http://dx.doi.org/10.18420/delfi2019_73
http://subs.emis.de/LNI/Proceedings/Proceedings247/article20.html
http://subs.emis.de/LNI/Proceedings/Proceedings247/article20.html

Bibliography

[98] David Gañán, Santi Caballé, Robert Clarisó, Jordi Conesa, and David Bañeres.
ICT-FLAG: a web-based e-assessment platform featuring learning analytics and
gamification. International Journal of Web Information Systems, 13(1):25–54, 2017.

[99] V. Geetha, D. Chandrakala, R. Nadarajan, and C.K. Dass. A bayesian classification
approach for handling uncertainty in adaptive e-assessment. International Review
on Computers and Software, 8(4):1045–1052, 2013.

[100] Mark J. Gierl and Thomas M. Haladyna, editors. Automatic Item Generation.
Routledge, 2013. ISBN 9780415897501.

[101] Mark J. Gierl and Hollis Lai. The Role of Item Models in Automatic
Item Generation. International Journal of Testing, 12(3):273–298, 2012. doi:
10.1080/15305058.2011.635830.

[102] Mark J. Gierl and Hollis Lai. Using Automatic Item Generation to Create Solu-
tions and Rationales for Computerized Formative Testing. Applied Psychological
Measurement, 42(1):42–57, 2018. doi: 10.1177/0146621617726788.

[103] Mark J. Gierl, Jiawen Zhou, and Cecilia Alves. Developing a Taxonomy of Item
Model Types to Promote Assessment Engineering. The Journal of Technology,
Learning and Assessment, 7(2), Dec. 2008. URL https://ejournals.bc.edu/
index.php/jtla/article/view/1629.

[104] Mark J. Gierl, Hollis Lai, and Simon R. Turner. Using automatic item generation
to create multiple-choice test items. Medical Education, 46(8):757–765, 2012. doi:
10.1111/j.1365-2923.2012.04289.x.

[105] George Goguadze. Representation for Interactive Exercises. In Jacques Carette,
Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt, editors, Intelligent
Computer Mathematics, pages 294–309, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. ISBN 978-3-642-02614-0.

[106] George Goguadze and Erica Melis. Combining Evaluative and Generative Diagnosis
in ACTIVEMATH. In AIED, pages 668–670, 2009.

[107] Giorgi Goguadze. Active Math - Generation and Reuse of Interactive Exercises
using Domain Reasoners and Automated Tutorial Strategies. PhD thesis, Universität
des Saarlandes, 5 2011.

[108] Javier Gonzalez-Sanchez, Maria Elena Chavez-Echeagaray, Kurt VanLehn, Winslow
Burleson, Sylvie Girard, Yoalli Hidalgo-Pontet, and Lishan Zhang. A System
Architecture for Affective Meta Intelligent Tutoring Systems. In International
Conference on Intelligent Tutoring Systems, pages 529–534. Springer, 2014.

[109] Jorge Fontenla González, Manuel Caeiro Rodríguez, Martín Llamas Nistal, Elio
Sancristobal, and Manuel Castro. A middleware for the integration of third-party
learning tools in SOA-based Learning Management Systems: Supporting instance

254

http://dx.doi.org/10.1080/15305058.2011.635830
http://dx.doi.org/10.1080/15305058.2011.635830
http://dx.doi.org/10.1177/0146621617726788
https://ejournals.bc.edu/index.php/jtla/article/view/1629
https://ejournals.bc.edu/index.php/jtla/article/view/1629
http://dx.doi.org/10.1111/j.1365-2923.2012.04289.x
http://dx.doi.org/10.1111/j.1365-2923.2012.04289.x

Bibliography

management and data transfer. In IEEE EDUCON 2010 Conference, pages 869–877,
April 2010. doi: 10.1109/EDUCON.2010.5492487.

[110] Martin Greenhow and Mundeep Gill. Setting objective tests in mathematics using
QM Perception. In Proceedings of the 8th CAA Conference, 2004.

[111] Sebastian Gross, Bassam Mokbel, Barbara Hammer, and Niels Pinkwart. Feedback
Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution
Spaces. In Jörg Desel, Joerg M. Haake, and Christian Spannagel, editors, DeLFI
2012: Die 10. e-Learning Fachtagung Informatik, pages 27–38, Hagen, Germany,
2012. ISBN 978-3885796015.

[112] Wolfgang Gräther, Sabine Kolvenbach, Rudolf Ruland, Julian Schütte, Christof
Torres, and Florian Wendland. Blockchain for education: lifelong learning passport.
In Proceedings of 1st ERCIM Blockchain Workshop 2018. European Society for
Socially Embedded Technologies (EUSSET), 2018.

[113] Bettina Grün and Achim Zeileis. Automatic Generation of Exams in R. Journal of
Statistical Software, 29(1):1–14, 2009. ISSN 1548-7660. doi: 10.18637/jss.v029.i10.
URL https://www.jstatsoft.org/index.php/jss/article/view/v029i10.

[114] Marjan Gusev, Sasko Ristov, and Goce Armenski. Interactive adaptivity in Assess-
ment as a Service. In 2013 International Conference on Interactive Collaborative
Learning (ICL), pages 588–595, Sept 2013. doi: 10.1109/ICL.2013.6644660.

[115] Marjan Gusev, Sasko Ristov, Goce Armenski, Goran Velkoski, and Krste Bozinoski.
E-Assessment Cloud Solution: Architecture, Organization and Cost Model. iJET,
8(Special Issue 2):55–64, 2013.

[116] H5P.org. H5P Documentation. URL https://h5p.org/documentation. Last
accessed: 2017-12-01.

[117] Fahima Hajjej, Yousra Bendaly Hlaoui, and Leila Jemni Ben Ayed. A Generic E-
Assessment Process Development Based on Reverse Engineering and Cloud Services.
In 2016 IEEE 29th International Conference on Software Engineering Education
and Training (CSEET), pages 157–165, April 2016. doi: 10.1109/CSEET.2016.49.

[118] Andreas Harrer and Alke Martens. Towards a Pattern Language for Intelligent
Teaching and Training Systems. In Intelligent Tutoring Systems (ITS 2006), volume
4053 of Lecture Notes in Computer Science, pages 298–307, 2006.

[119] Andreas Harrer, Niels Pinkwart, Bruce M. McLaren, and Oliver Scheuer. The
Scalable Adapter Design Pattern: Enabling Interoperability Between Educational
Software Tools. TLT, 1(2):131–143, 2008. doi: 10.1109/TLT.2008.18.

[120] Ian Harwood and Bill Warburton. Thinking the Unthinkable: Using Project Risk
Management when Introducing Computer-assisted Assessments. In Proceedings of
the 8th Computer Assisted Assesstment Conference (CAA 2004), 2004.

255

http://dx.doi.org/10.1109/EDUCON.2010.5492487
http://dx.doi.org/10.18637/jss.v029.i10
https://www.jstatsoft.org/index.php/jss/article/view/v029i10
http://dx.doi.org/10.1109/ICL.2013.6644660
https://h5p.org/documentation
http://dx.doi.org/10.1109/CSEET.2016.49
http://dx.doi.org/10.1109/TLT.2008.18

Bibliography

[121] Ioannis Hatzilygeroudis, Constantinos Koutsojannis, Constantinos Papavlasopoulos,
and Jim Prentzas. Knowledge-based adaptive assessment in a Web-based intelligent
educational system. In Sixth International Conference on Advanced Learning
Technologies (ICALT 2006)., pages 651–655. IEEE, 2006.

[122] Tom-Michael Hesse, Axel Wagner, and Barbara Paech. Automated assessment of
C++ programming exercises with unit tests. In Proceedings of the First Workshop
"Automatische Bewertung von Programmieraufgaben" (ABP 2013), Hannover, Ger-
many, October 28, 2013., 2013. URL http://ceur-ws.org/Vol-1067/abp2013_
submission_7.pdf.

[123] Heinz Holling, Jonas P. Bertling, and Nina Zeuch. Automatic item generation of
probability word problems. Studies in Educational Evaluation, 35(2):71–76, 2009.
ISSN 0191-491X. doi: 10.1016/j.stueduc.2009.10.004. Assessment of Competencies.

[124] Jack Hollingsworth. Automatic graders for programming classes. Commu-
nications of the ACM, 3(10):528–529, October 1960. ISSN 0001-0782. doi:
10.1145/367415.367422.

[125] Edmond Holohan, Mark Melia, Declan McMullen, and Claus Pahl. The Gener-
ation of E-Learning Exercise Problems from Subject Ontologies. In Sixth IEEE
International Conference on Advanced Learning Technologies (ICALT’06), pages
967–969, July 2006. doi: 10.1109/ICALT.2006.1652605.

[126] Peter Hubwieser, Marc Berges, Michael Striewe, and Michael Goedicke. Towards
Competency Based Testing and Feedback. In Proceedings of IEEE Global Engi-
neering Education Conference (EDUCON), pages 517–526, 2017. doi: 10.1109/E-
DUCON.2017.7942896.

[127] Lukas Iffländer, Alexander Dallmann, Philip Daniel-Beck, and Marianus Ifland.
PABS - a Programming Assignment Feedback System. In Proceedings of the Second
Workshop "Automatische Bewertung von Programmieraufgaben", 2015.

[128] Marko Ikonen, Elena Pirinen, Fabian Fagerholm, Petri Kettunen, and Pekka
Abrahamsson. On the impact of Kanban on software project work: An empirical
case study investigation. In Proceedings of the 16th IEEE International Conference
on Engineering of Complex Computer Systems, ICECCS, pages 305–314. IEEE,
2011. doi: 10.1109/ICECCS.2011.37.

[129] IMS-AF. IMS Abstract Framework: Applications, Services, and Components, 2003.
URL http://www.imsglobal.org/af/afv1p0/imsafascv1p0.html.

[130] IMS-LTI. IMS Learning Tools Integration Specification, 2012. URL https://www.
imsglobal.org/specs/ltiv1p1p1.

[131] IMS-QTI. IMS Question & Test Interoperability Specification, 2016. URL http:
//www.imsglobal.org/question/.

256

http://ceur-ws.org/Vol-1067/abp2013_submission_7.pdf
http://ceur-ws.org/Vol-1067/abp2013_submission_7.pdf
http://dx.doi.org/10.1016/j.stueduc.2009.10.004
http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1109/ICALT.2006.1652605
http://dx.doi.org/10.1109/EDUCON.2017.7942896
http://dx.doi.org/10.1109/EDUCON.2017.7942896
http://dx.doi.org/10.1109/ICECCS.2011.37
http://www.imsglobal.org/af/afv1p0/imsafascv1p0.html
https://www.imsglobal.org/specs/ltiv1p1p1
https://www.imsglobal.org/specs/ltiv1p1p1
http://www.imsglobal.org/question/
http://www.imsglobal.org/question/

Bibliography

[132] N. Iwane, C. Gao, and M. Yoshida. Question Generation for Learner Centered
Learning. In 2013 IEEE 13th International Conference on Advanced Learning
Technologies, pages 330–332, July 2013. doi: 10.1109/ICALT.2013.102.

[133] Ambikesh Jayal and Martin Shepperd. The Problem of Labels in E-Assessment
of Diagrams. J. Educ. Resour. Comput., 8(4):12:1–12:13, January 2009. ISSN
1531-4278. doi: 10.1145/1482348.1482351.

[134] Christoph Jobst. Potenziale neuer Fragetypen für die Naturwissenschaften. In
Grundfragen Multimedialen Lehrens und Lernens (GML2 2015), pages 145–152,
2015.

[135] David H. Johnson and Roger T. Johnson. Meaningful Assessment: A Manageable
and Cooperative Process. Pearson, 2002. ISBN 978-0205327621.

[136] Jelena Jovanović, Dragan Gašević, Christopher Brooks, Vladan Devedžić, and
Marek Hatala. LOCO-analyst: A tool for raising teachers’ awareness in online
learning environments. In European Conference on Technology Enhanced Learning,
pages 112–126. Springer, 2007.

[137] Violet Kafa, Marcellus Siegburg, and Janis Voigtlander. Exercise Task Generation
for UML Class/Object Diagrams, via Alloy Model Instance Finding. In SACLA
2019, number 1136 in CCIS, 2019. doi: 10.1007/978-3-030-35629-3_8.

[138] Mustafa Kaiiali, Armagan Ozkaya, Halis Altun, Hatem Haddad, and Marc Alier. De-
signing a Secure Exam Management System (SEMS) for M-Learning Environments.
TLT, 9(3):258–271, 2016. doi: 10.1109/TLT.2016.2524570.

[139] E. Kashy, B. M. Sherrill, Y. Tsai, D. Thaler, D. Weinshank, M. Engelmann, and D. J.
Morrissey. CAPA-An integrated computer-assisted personalized assignment system.
American Journal of Physics, 61:1124–1130, December 1993. doi: 10.1119/1.17307.

[140] Clauvice Kenfack, Roger Nkambou, Serge Robert, Ange Adrienne Nyamen Tato,
Janie Brisson, and Pamela Kissok. A Brief Overview of Logic-Muse, an Intelligent
Tutoring System for Logical Reasoning Skills. In Intelligent Tutoring Systems (ITS
2016), 2016.

[141] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A systematic literature review
of automated feedback generation for programming exercises. ACM Transactions
on Computing Education (TOCE), 19(1):1–43, 2018. doi: 10.1145/3231711.

[142] Mohammad Khalil and Martin Ebner. Learning Analytics: Principles and Con-
straints. In EdMedia+ Innovate Learning, pages 1789–1799. Association for the
Advancement of Computing in Education (AACE), 2015.

[143] Christophe Kiennert, Malinka Ivanova, Anna Rozeva, and Joaquin Garcia-Alfaro.
Security and Privacy in the TeSLA Architecture. In Engineering Data-Driven
Adaptive Trust-based e-Assessment Systems, number 34 in Lecture Notes on Data

257

http://dx.doi.org/10.1109/ICALT.2013.102
http://dx.doi.org/10.1145/1482348.1482351
http://dx.doi.org/10.1007/978-3-030-35629-3_8
http://dx.doi.org/10.1109/TLT.2016.2524570
http://dx.doi.org/10.1119/1.17307
http://dx.doi.org/10.1145/3231711

Bibliography

Engineering and Communications Technologies, pages 85–108. Springer, 2020. doi:
10.1007/978-3-030-29326-0_5.

[144] Hidemasa Kimura, Jumpei Hayashi, Yuichi Demise, Dai Hasegawa, and Hiroshi
Sakuta. The effects of listening agent in speech-based on-line test system. In IEEE
Global Engineering Education Conference, EDUCON 2015, Tallinn, Estonia, March
18-20, 2015, pages 366–370, 2015. doi: 10.1109/EDUCON.2015.7095998.

[145] Alexander Kiy, Volker Wölfert, and Ulrike Lucke. Technische Unterstützung zur
Durchführung von Massenklausuren. In Die 14. E-Learning Fachtagung Informatik
(DeLFI 2016), 2016.

[146] Eckhard Klieme, Hermann Avenarius, Werner Blum, Peter Döbrich, Hans Gruber,
Manfred Prenzel, Kristina Reiss, Kurt Riquarts, Jügen Rost, Heinz-Elmar Tenorth,
and Helmut Johannes Vollmer. The Development of National Educational Standards.
An Expertise. BMBF: education reform. Bundesministerium für Bildung und
Forschung, Bonn, 2004.

[147] Manon Knockaert and Nathan De Vos. Ethical, Legal and Privacy Considerations for
Adaptive Systems. In Engineering Data-Driven Adaptive Trust-based e-Assessment
Systems, number 34 in Lecture Notes on Data Engineering and Communications
Technologies, pages 267–296. Springer, 2020. doi: 10.1007/978-3-030-29326-0_12.

[148] Ari Korhonen and Lauri Malmi. Algorithm Simulation with Automatic Assessment.
In Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSEconference on Innova-
tion and Technology in Computer Science Education, ITiCSE ’00, pages 160–163,
New York, NY, USA, 2000. ACM. ISBN 1-58113-207-7. doi: 10.1145/343048.343157.

[149] Aravind K. Krishna and Amruth N. Kumar. A Problem Generator to Learn
Expression: Evaluation in CSI, and Its Effectiveness. In Proceedings of the Sixth
Annual CCSC Northeastern Conference on The Journal of Computing in Small
Colleges, CCSC ’01, pages 34–43, USA, 2001. Consortium for Computing Sciences
in Colleges. URL http://dl.acm.org/citation.cfm?id=378593.378659.

[150] Johannes Krugel, Peter Hubwieser, Michael Goedicke, Michael Striewe, Mike
Talbot, Christoph Olbricht, Melanie Schypula, and Simon Zettler. Automated
Measurement of Competencies and Generation of Feedback in Object-Oriented
Programming Courses. In 2020 IEEE Global Engineering Education Conference,
EDUCON 2020, Porto, Portugal, April 27-30, 2020, pages 329–338, 2020. doi:
10.1109/EDUCON45650.2020.9125323.

[151] Klaus D. Kubinger. Adaptive testing. In Karl Schweizer and Christine DiStefano,
editors, Principles and methods of test construction. Hogrefe Publishing Boston,
MA, 2016.

[152] Klaus D. Kubinger, Jan Steinfeld, Manuel Reif, and Takuya Yanagida. Biased
(conditional) parameter estimation of a Rasch model calibrated item pool adminis-

258

http://dx.doi.org/10.1007/978-3-030-29326-0_5
http://dx.doi.org/10.1007/978-3-030-29326-0_5
http://dx.doi.org/10.1109/EDUCON.2015.7095998
http://dx.doi.org/10.1007/978-3-030-29326-0_12
http://dx.doi.org/10.1145/343048.343157
http://dl.acm.org/citation.cfm?id=378593.378659
http://dx.doi.org/10.1109/EDUCON45650.2020.9125323
http://dx.doi.org/10.1109/EDUCON45650.2020.9125323

Bibliography

tered according to a branched testing design. Psychological Test and Assessment
Modeling, 54(4):450–460, 2012.

[153] Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and Salam Al-Emari. A
Systematic Review of Automatic Question Generation for Educational Purposes.
International Journal of Artificial Intelligence in Education, 30:121–204, 2020. doi:
10.1007/s40593-019-00186-y.

[154] Filiz Kurt-Karaoglu, Nils Schwinning, Michael Striewe, Björn Zurmaar, and Michael
Goedicke. A Framework for Generic Exercises with Mathematical Content. In
Proceedings of the International Conference on Learning and Teaching in Computing
and Engineering (LaTiCE 2015), pages 70–75, 2015.

[155] Maya Kurup, Jim E. Greer, and Gordon I. McCalla. The Fawlty Article Tutor. In
Intelligent Tutoring Systems (ITS 1992), 1992.

[156] Bastian Küppers, Marius Politze, and Ulrik Schroeder. Reliable e-Assessment
with GIT - Practical Considerations and Implementation. In EUNIS 23rd Annual
Congress, 2017.

[157] Hollis Lai, Mark J. Gierl, Claire Touchie, Debra Pugh, André-Philippe Boulais, and
André De Champlain. Using Automatic Item Generation to Improve the Quality
of MCQ Distractors. Teaching and Learning in Medicine, 28(2):166–173, 2016. doi:
10.1080/10401334.2016.1146608. PMID: 26849247.

[158] Dugan Laird, Elwood F. Holton, and Sharon S. Naquin. Approaches to Train-
ing and Development. BASIC BOOKS, 2003. ISBN 978-0738206981. URL
http://www.ebook.de/de/product/4242753/dugan_laird_elwood_f_holton_
sharon_s_naquin_approaches_to_training_and_development.html.

[159] Maryline Laurent and Samia Bouzefrane, editors. Digital identity management.
ISTE, London, 2015.

[160] Zsolt Lavicza. Examining the use of Computer Algebra Systems in university-level
mathematics teaching. Journal of Computers in Mathematics and Science Teaching,
28(2):99–111, April 2009. ISSN 0731-9258. URL http://www.editlib.org/p/
30303.

[161] Nguyen-Thinh Le, Tomoko Kojiri, and Niels Pinkwart. Automatic Question Gen-
eration for Educational Applications – The State of Art. In Tien van Do, Hoai
An Le Thi, and Ngoc Thanh Nguyen, editors, Advanced Computational Methods
for Knowledge Engineering, pages 325–338, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-06569-4.

[162] Claudia Leacock and Martin Chodorow. C-rater: Automated Scoring of Short-
Answer Questions. Computers and the Humanities, 37(4):389–405, 2003. ISSN
00104817. URL http://www.jstor.org/stable/30204913.

259

http://dx.doi.org/10.1007/s40593-019-00186-y
http://dx.doi.org/10.1007/s40593-019-00186-y
http://dx.doi.org/10.1080/10401334.2016.1146608
http://dx.doi.org/10.1080/10401334.2016.1146608
http://www.ebook.de/de/product/4242753/dugan_laird_elwood_f_holton_sharon_s_naquin_approaches_to_training_and_development.html
http://www.ebook.de/de/product/4242753/dugan_laird_elwood_f_holton_sharon_s_naquin_approaches_to_training_and_development.html
http://www.editlib.org/p/30303
http://www.editlib.org/p/30303
http://www.jstor.org/stable/30204913

Bibliography

[163] José Paulo Leal, Ricardo Queirós, and Duarte Ferreira. Specifying a Programming
Exercises Evaluation Service on the e-Framework. In Advances in Web-Based
Learning – ICWL 2010, pages 141–150, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[164] Petra Lietz, John C. Cresswell, Keith F. Rust, and Raymond J. Adams, editors.
Implementation of Large-Scale Education Assessments. John Wiley & Sons, 2017.

[165] Ben Liu. SARAC: A Framework for Automatic Item Generation. In 2009 Ninth
IEEE International Conference on Advanced Learning Technologies, pages 556–558,
2009.

[166] Georgine Loacker, Lucy Cromwell, and Kathleen O’Brian. Assessment in higher
education: to serve the learner. In National Conference on Assessment in Higher
Education, 1985.

[167] Wei-Yin Loh. Fifty Years of Classification and Regression Trees. International
Statistical Review, 82(3):329–348, 2014. doi: 10.1111/insr.12016.

[168] LPLUS GmbH. LPLUS: Portfolio. URL https://lplus.de/en/
lplus-portfolio/. Last accessed: 2017-12-01.

[169] Ronghua Lu, Haiying Liu, and Bingxiang Liu. Research and implementation
of general online examination system. Advanced Materials Research, 926-930:
2374–2377, 2014. doi: 10.4028/www.scientific.net/AMR.926-930.2374.

[170] Yu-Chun Lu, Yu-Sheng Yang, Ping-Chun Chang, and Chu-Sing Yang. The design
and implementation of intelligent assessment management system. In IEEE Global
Engineering Education Conference, EDUCON 2013, Berlin, Germany, March 13-15,
2013, pages 451–457, 2013. doi: 10.1109/EduCon.2013.6530144.

[171] A. Pastor López-Monroy, Hugo Jair Escalante, Manuel Montes y Gómez, and
Xavier Baró. Forensic Analysis Recognition. In Engineering Data-Driven Adaptive
Trust-based e-Assessment Systems, number 34 in Lecture Notes on Data Engineering
and Communications Technologies, pages 1–18. Springer, 2020. doi: 10.1007/978-3-
030-29326-0_1.

[172] Xiaofeng Ma and Zhurong Zhou. Student pass rates prediction using optimized
support vector machine and decision tree. In 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC), pages 209–215. IEEE,
2018.

[173] Don Mackenzie. Production and delivery of TRIADS Assessments on a university-
wide basis. In Proceedings of the 4th Computer-Aissisted Assessment Conference
(CAA), 2000.

[174] Mathias Magdowski. Personalisierbare Aufgaben und anonymer Peer-Review.
In Marlene Miglbauer, Lene Kieberl, and Stefan Schmid, editors, Hochschule

260

http://dx.doi.org/10.1111/insr.12016
https://lplus.de/en/lplus-portfolio/
https://lplus.de/en/lplus-portfolio/
http://dx.doi.org/10.4028/www.scientific.net/AMR.926-930.2374
http://dx.doi.org/10.1109/EduCon.2013.6530144
http://dx.doi.org/10.1007/978-3-030-29326-0_1
http://dx.doi.org/10.1007/978-3-030-29326-0_1

Bibliography

digital.innovativ | #digiPH Tagungsband zur 1. Online-Tagung, pages 327–340,
Books on Demand GmbH, Norderstedt, December 2018. ISBN 9783748120056.

[175] Wassim Mahfouz and Heinz-Dietrich Wuttke. Automatic Classifiers for Formative
Assessment. In 2019 IEEE Frontiers in Education Conference (FIE), pages 1–9.
IEEE, 2019.

[176] Uwe Maier, Carolin Ramsteck, and Kathrin Hoffmann. Formative Leistungsdi-
agnostik und Learning Analytics: Entwicklung, Nutzung und Optimierung eines
onlinebasierten Kurses für die Diagnostik und Förderung von Grundwissen im
Kompetenzbereich Sprachbetrachtung. Zeitschrift für Erziehungswissenschaft, 20
(4):728–747, 2017.

[177] David J. Malan. CS5 Sandbox: Secure Execution of Untrusted Code. In Pro-
ceedings of the 44th ACM Technical Symposium on Computer Science Education
(SIGCSE’13), 2013.

[178] Kaleem Razzaq Malik and Tauqir Ahmad. E-Assessment Data Compatibility Reso-
lution Methodology with Bidirectional Data Transformation. EURASIA Journal
of Mathematics, Science and Technology Education, 13(7):3969–3991, 2017.

[179] K.R. Malik and T. Ahmad. E-assessment data compatibility resolution method-
ology with bidirectional data transformation. Eurasia Journal of Mathematics,
Science and Technology Education, 13(7):3969–3991, 2017. doi: 10.12973/eura-
sia.2017.00767a.

[180] Sven Manske and Heinz Ulrich Hoppe. Automated Indicators to Assess the Creativ-
ity of Solutions to Programming Exercises. In IEEE 14th International Conference
on Advanced Learning Technologies (ICALT), pages 497–501, July 2014. doi:
10.1109/ICALT.2014.147.

[181] MapleSoft. Features in Maple T.A. URL https://www.maplesoft.com/products/
mapleta/mainfeatures.aspx. Last accessed: 2017-12-01.

[182] Martin Mares. Moe – Design of a Modular Grading System. Olympiads in
Informatics, 3:60–66, 2009.

[183] Alke Martens. Time in the Adaptive Tutoring Process Model. In Intelligent
Tutoring Systems. ITS 2006, volume 4053 of Lecture Notes in Computer Science,
pages 134–143, 2006. doi: 10.1007/11774303_14.

[184] Brent Martin. Authoring Educational Games with Greenmind. In Intelligent
Tutoring Systems (ITS 2008), volume 5091 of Lecture Notes in Computer Science,
pages 684–686, 2008.

[185] Till Massing, Natalie Reckmann, Benjamin Otto, Kim J. Hermann, Christoph
Hanck, and Michael Goedicke. Klausurprognose mit Hilfe von E-Assessment-
Nutzerdaten. In DeLFI 2018 - Die 16. E-Learning Fachtagung Informatik der

261

http://dx.doi.org/10.12973/eurasia.2017.00767a
http://dx.doi.org/10.12973/eurasia.2017.00767a
http://dx.doi.org/10.1109/ICALT.2014.147
http://dx.doi.org/10.1109/ICALT.2014.147
https://www.maplesoft.com/products/mapleta/mainfeatures.aspx
https://www.maplesoft.com/products/mapleta/mainfeatures.aspx
http://dx.doi.org/10.1007/11774303_14

Bibliography

Gesellschaft für Informatik e. V., volume 284 of Lecture Notes in Informatics, pages
171–176, 2018.

[186] Till Massing, Nils Schwinning, Michael Striewe, Christoph Hanck, and Michael
Goedicke. E-Assessment Using Variable-Content Exercises in Mathemati-
cal Statistics. Journal of Statistics Education, 26(3):174–189, 2018. doi:
10.1080/10691898.2018.1518121.

[187] Maths for More. WIRIS Quizzes - Technical description. URL http://www.wiris.
com/en/quizzes/docs. Last accessed: 2017-12-01.

[188] Erica Melis, Jeff Haywood, and Tim J. Smith. Leactivemath. In Wolfgang Ne-
jdl and Klaus Tochtermann, editors, Innovative Approaches for Learning and
Knowledge Sharing: First European Conference on Technology Enhanced Learn-
ing (EC-TEL 2006), pages 660–666, Be, 2006. Springer Berlin Heidelberg. doi:
10.1007/11876663_69.

[189] L. Michel, L. Görtz, S. Radomski, T. Fritsch, and L. Baschour. Digitales Prüfen
und Bewerten im Hochschulbereich. CHE Zentrum für Hochschulentwicklung, 2015.

[190] David E. Millard, Christopher Bailey, Hugh C. Davis, Lester Gilbert, Yvonne
Howard, and Gary Wills. The e-Learning Assessment Landscape. In Sixth IEEE
International Conference on Advanced Learning Technologies (ICALT’06), pages
964–966, July 2006. doi: 10.1109/ICALT.2006.1652604.

[191] C. Miller, L. Lecheler, B. Hosack, A. Doering, and S. Hooper. Orchestrating data,
design, and narrative: Information visualization for sense- and decision-making in
online learning. International Journal of Cyber Behavior, Psychology and Learning,
2(2):1–15, 2012. doi: 10.4018/ijcbpl.2012040101.

[192] Antonija Mitrovic, Brent Martin, and Pramuditha Suraweera. Intelligent Tutors
for All: The Constraint-Based Approach. IEEE Intelligent Systems, 22(4):38–45,
jul 2007. doi: 10.1109/mis.2007.74.

[193] Laurent Moccozet, Omar Benkacem, and Pierre-Yves Burgi. Towards a Technology-
Enhanced Assessment Service in Higher Education. In Michael E. Auer, David
Guralnick, and James Uhomoibhi, editors, Interactive Collaborative Learning, pages
453–467, Cham, 2017. Springer International Publishing. doi: 10.1007/978-3-319-
50340-0_40.

[194] Néstor Mora, Santi Caballe, and Thanasis Daradoumis. Providing a Multi-fold
Assessment Framework to Virtualized Collaborative Learning in Support for Engi-
neering Education. International Journal of Emerging Technologies in Learning
(iJET), 11(07):41–51, 2016. ISSN 1863-0383. doi: 10.3991/ijet.v11i07.5882. URL
https://online-journals.org/index.php/i-jet/article/view/5882.

262

http://dx.doi.org/10.1080/10691898.2018.1518121
http://dx.doi.org/10.1080/10691898.2018.1518121
http://www.wiris.com/en/quizzes/docs
http://www.wiris.com/en/quizzes/docs
http://dx.doi.org/10.1007/11876663_69
http://dx.doi.org/10.1007/11876663_69
http://dx.doi.org/10.1109/ICALT.2006.1652604
http://dx.doi.org/10.4018/ijcbpl.2012040101
http://dx.doi.org/10.1109/mis.2007.74
http://dx.doi.org/10.1007/978-3-319-50340-0_40
http://dx.doi.org/10.1007/978-3-319-50340-0_40
http://dx.doi.org/10.3991/ijet.v11i07.5882
https://online-journals.org/index.php/i-jet/article/view/5882

Bibliography

[195] Edna H. Mory. Adaptive Feedback in Computer-Based Instruction: Effects of
Response Certitude on Performance, Feedback-Study Time, and Efficiency. Journal
of Educational Computing Research, 11(3):263–290, 1994. doi: 10.2190/YM7U-
G8UN-8U5H-HD8N.

[196] E. Muravyeva, J. Janssen, K. Dirkx, and M. Specht. Students’ attitudes towards
personal data sharing in the context of e-assessment: informed consent or privacy
paradox? In Communications in Computer and Information Science, volume 1014,
pages 16–26, 2019. doi: 10.1007/978-3-030-25264-9_2.

[197] Ekaterina Muravyeva, José Janssen, Marcus Specht, and Bart Custers. Exploring
solutions to the privacy paradox in the context of e-assessment: informed consent
revisited. Ethics and Information Technology, 2000. doi: 10.1007/s10676-020-09531-
5.

[198] Tom Murray. Having it all, maybe: Design tradeoffs in ITS authoring tools. In
Intelligent Tutoring Systems (ITS 1996), 1996.

[199] Arsenio Muñoz de la Peña, David González-Gómez, David Muñoz de la Peña, Fabio
Gómez-Estern, and Manuel Sánchez Sequedo. Automatic Web-Based Grading
System: Application in an Advanced Instrumental Analysis Chemistry Laboratory.
Journal of Chemical Education, 90(3):308–314, 2013. doi: 10.1021/ed3000815.

[200] G.S. Nandakumar, V. Geetha, B. Surendiran, and S. Thangasamy. A rough set
based classification model for grading in adaptive e-assessment. International
Review on Computers and Software, 9(7):1169–1177, 2014.

[201] Mahmoud Neji and Mohamed Ben Ammar. Agent-based Collaborative Affective
e-Learning Framework. Electronic Journal of e-Learning, 5(2):123–134, 2007.

[202] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, 2015. ISBN 978-1491950357.

[203] Kia Ng and Paolo Nesi. i-Maestro Framework and Interactive Multimedia Tools
for Technology-Enhanced Learning and Teaching for Music. In 2008 International
Conference on Automated Solutions for Cross Media Content and Multi-Channel
Distribution, pages 266–269, 2008.

[204] Melvin R. Novick. The axioms and principal results of classical test theory. Journal
of Mathematical Psychology, 3(1):1–18, 1966. ISSN 0022-2496. doi: 10.1016/0022-
2496(66)90002-2.

[205] A. Núñez, J. Fernández, J. D. Garcia, L. Prada, and J. Carretero. M-PLAT:
Multi-Programming Language Adaptive Tutor. In Eighth IEEE International
Conference on Advanced Learning Technologies, pages 649–651, July 2008. doi:
10.1109/ICALT.2008.153.

263

http://dx.doi.org/10.2190/YM7U-G8UN-8U5H-HD8N
http://dx.doi.org/10.2190/YM7U-G8UN-8U5H-HD8N
http://dx.doi.org/10.1007/978-3-030-25264-9_2
http://dx.doi.org/10.1007/s10676-020-09531-5
http://dx.doi.org/10.1007/s10676-020-09531-5
http://dx.doi.org/10.1021/ed3000815
http://dx.doi.org/10.1016/0022-2496(66)90002-2
http://dx.doi.org/10.1016/0022-2496(66)90002-2
http://dx.doi.org/10.1109/ICALT.2008.153
http://dx.doi.org/10.1109/ICALT.2008.153

Bibliography

[206] Object Management Group, Inc. XML Metadata Interchange (XMI), v2.5.1 specifi-
cation, 2015. http://www.omg.org/spec/XMI/2.5.1/.

[207] A. Okada, D. Whitelock, W. Holmes, and C. Edwards. e-authentication for online
assessment: A mixed-method study. British Journal of Educational Technology, 50
(2):861–875, 2019. doi: 10.1111/bjet.12608.

[208] Abdulsalam Sulaiman Olaniyi, Saheed Yakub Kayode, Hambali Moshood Abiola,
Salau-Ibrahim Taofeekat Tosin, and Akinbowale Nathaniel Babatunde. Student’s
performance analysis using decision tree algorithms. Annals. Computer Science
Series, 15(1), 2017.

[209] J. Opgen-Rhein, B. Küppers, and U. Schroeder. Requirements for author verifica-
tion in electronic computer science exams. In 11th International Conference on
Computer Supported Education, CSEDU 2019, volume 2, pages 432–439, 2019. doi:
10.5220/0007736104320439.

[210] Alexandros Papadimitriou, Maria Grigoriadou, and Georgios Gyftodimos. Interac-
tive Problem Solving Support in the Adaptive Educational Hypermedia System
MATHEMA. TLT, 2(2):93–106, 2009. doi: 10.1109/TLT.2009.19.

[211] Zacharoula Papamitsiou and Anastasios Economides. An Assessment Analytics
Framework (AAF) for Enhancing Students’ Progress. In Santi Caballé and Robert
Clarisó, editors, Formative Assessment, Learning Data Analytics and Gamification,
Intelligent Data-Centric Systems, pages 117–133. Academic Press, Boston, 2016.
ISBN 978-0-12-803637-2. doi: 10.1016/B978-0-12-803637-2.00007-5.

[212] Abelardo Pardo. A Multi-agent Platform for Automatic Assignment Management.
In Proceedings of the 7th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’02, pages 60–64. ACM, 2002. ISBN 1-58113-
499-1. doi: 10.1145/544414.544434.

[213] Cristina Pérez-Solà, Jordi Herrera-Joancomartí, and Helena Rifà-Pous. On Im-
proving Automated Self-assessment with Moodle Quizzes: Experiences from a
Cryptography Course. In Eric Ras and Ana Elena Guerrero Roldán, editors, Tech-
nology Enhanced Assessment, pages 176–189, Cham, 2018. Springer International
Publishing. ISBN 978-3-319-97807-9.

[214] Christian Perfect. A demonstration of Numbas, an e-assessment system for mathe-
matical disciplines. In CAA Conference, 2015.

[215] Simon Perry, Igor Bulatov, and Edward Roberts. The use of e-assessment in
chemical engineering education. Chemical Engineering Transactions, 12:555–560,
2007.

[216] Sebastian Pobel and Michael Striewe. Domain-Specific Extensions for an E-
Assessment System. In Michael A. Herzog, Zuzana Kubincová, Peng Han, and

264

http://www.omg.org/spec/XMI/2.5.1/
http://dx.doi.org/10.1111/bjet.12608
http://dx.doi.org/10.5220/0007736104320439
http://dx.doi.org/10.5220/0007736104320439
http://dx.doi.org/10.1109/TLT.2009.19
http://dx.doi.org/10.1016/B978-0-12-803637-2.00007-5
http://dx.doi.org/10.1145/544414.544434

Bibliography

Marco Temperini, editors, Advances in Web-Based Learning – ICWL 2019, pages
327–331, Cham, 2019. Springer International Publishing. ISBN 978-3-030-35758-0.
doi: 10.1007/978-3-030-35758-0_32.

[217] René Ponto, Tobias Schüler, and Michael Striewe. Ansätze zur automatis-
chen Generierung von Aufgaben zum Modellverstehen am Beispiel von UML-
Sequenzdiagrammen (Approaches for Automatic Generation of Tasks for Model
Comprehension using UML Sequence Diagrams as an Example). In Companion
Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers
co-located with Modellierung 2020, Vienna, Austria, February 19-21, 2020, pages
77–88, 2020. URL http://ceur-ws.org/Vol-2542/MOHOL4.pdf.

[218] Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón-Cedeno, and Paolo
Rosso. Overview of the 1st International Competition on Plagiarism Detection.
In 3rd PAN Workshop. Uncovering Plagiarism, Authorship and Social Software
Misuse, pages 1–9, 2009.

[219] Martin Potthast, Alberto Barrón-Cedeno, Benno Stein, and Paolo Rosso. Cross-
language plagiarism detection. Language Resources & Evaluation, pages 1––18,
2010.

[220] Debra Pugh, André De Champlain, Mark Gierl, Hollis Lai, and Claire Touchie.
Can automated item generation be used to develop high quality MCQs that assess
application of knowledge? Research and Practice in Technology Enhanced Learning,
15(1):12, 2020. ISSN 1793-7078. doi: 10.1186/s41039-020-00134-8.

[221] Khirulnizam Abd Rahman, Syarbaini Ahmad, and Md Jan Nordin. The Design of an
Automated C Programming Assessment Using Pseudo-code Comparison Technique.
In National Conference on Software Engineering and Computer Systems, 2007.

[222] M. Ramamurthy, I. Krishnamurthi, and S. Mammen. Great evaluator: An au-
tomated assessment system for evaluating regular grammars in automata theory.
Global Journal of Pure and Applied Mathematics, 12(3):2085–2111, 2016.

[223] G. Rasch. Probabilistic models for some intelligence and attainment tests. University
of Chicago Press, Chicago, 1980. ISBN 0-226-70553-6.

[224] Miroslava Raspopović, Svetlana Cvetanović, Dušan Stanojević, and Mateja Opačić.
Software architecture for integration of institutional and social learning environ-
ments. Science of Computer Programming, 129:92 – 102, 2016. ISSN 0167-6423.
doi: 10.1016/j.scico.2016.07.001. URL http://www.sciencedirect.com/science/
article/pii/S0167642316300855. Special issue on eLearning Software Architec-
tures.

[225] Tobias Reischmann and Herbert Kuchen. Towards an e-assessment tool for advanced
software engineering skills. In 16th Koli Calling International Conference on
Computing Education Research, pages 81–90. Association for Computing Machinery,
2016. ISBN 9781450347709. doi: 10.1145/2999541.2999550.

265

http://dx.doi.org/10.1007/978-3-030-35758-0_32
http://ceur-ws.org/Vol-2542/MOHOL4.pdf
http://dx.doi.org/10.1186/s41039-020-00134-8
http://dx.doi.org/10.1016/j.scico.2016.07.001
http://www.sciencedirect.com/science/article/pii/S0167642316300855
http://www.sciencedirect.com/science/article/pii/S0167642316300855
http://dx.doi.org/10.1145/2999541.2999550

Bibliography

[226] Robert A. Reiser and John V. Dempsey. Trends and Issues in Instructional Design
and Technology. ALLYN & BACON, 2011. ISBN 978-0132563581. URL http:
//www.ebook.de/de/product/14065487/robert_a_reiser_john_v_dempsey_
trends_and_issues_in_instructional_design_and_technology.html.

[227] C.R. Reynolds, R.B. Livingston, and V.L. Willson. Measurement and Assessment in
Education. Alternative eText Formats Series. Pearson, 2009. ISBN 9780205579341.
URL https://books.google.de/books?id=Lh-MbwAACAAJ.

[228] Thomas Richter and David Boehringer. Towards electronic exams in undergraduate
engineering. In 2014 IEEE Global Engineering Education Conference, EDUCON
2014, Istanbul, Turkey, April 3-5, 2014, pages 196–201, 2014. doi: 10.1109/E-
DUCON.2014.6826090.

[229] Jeff W. Rickel. Intelligent Computer-Aided Instruction: A Survey Organized Around
System Components. IEEE Transactions on Systems, Man, and Cybernetics, 19
(1):40–57, 1989. doi: 10.1109/21.24530.

[230] SB Rinderle, Ralph Bobrik, Manfred Reichert, and Thomas Bauer. Business
process visualization – use cases, challenges, solutions. In Proceedings of the Eighth
International Conference on Enterprise Information Systems: Information System
Analysis and Specification, ICEIS, pages 204–211. INSTICC Press, 2006. URL
http://doc.utwente.nl/66217/.

[231] Sasko Ristov, Marjan Gusev, Goce Armenski, and Goran Velkoski. Scalable and
Elastic e-Assessment Cloud Solution. In IEEE Global Engineering Education
Conference (EDUCON), 2014.

[232] J. Robison, S. McQuiggan, and J. Lester. Evaluating the consequences of affective
feedback in intelligent tutoring systems. In 3rd International Conference on Affective
Computing and Intelligent Interaction and Workshops, pages 1–6, Sept 2009. doi:
10.1109/ACII.2009.5349555.

[233] Cristóbal Romero and Sebastián Ventura. Educational data mining: a review of
the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 40(6):601–618, 2010. doi: 10.1109/tsmcc.2010.2053532.

[234] J. Rost and C. H. Carstensen. Multidimensional Rasch Measurement via Item
Component Models and Faceted Designs. Applied Psychological Measurement, 26
(1):42–56, 2002.

[235] Vicki Roth, Volodymyr Ivanchenko, and Nicholas Record. Evaluating Stu-
dent Response to WeBWorK, a Web-based Homework Delivery and Grad-
ing System. Comput. Educ., 50(4):1462–1482, 2008. ISSN 0360-1315. doi:
10.1016/j.compedu.2007.01.005.

266

http://www.ebook.de/de/product/14065487/robert_a_reiser_john_v_dempsey_trends_and_issues_in_instructional_design_and_technology.html
http://www.ebook.de/de/product/14065487/robert_a_reiser_john_v_dempsey_trends_and_issues_in_instructional_design_and_technology.html
http://www.ebook.de/de/product/14065487/robert_a_reiser_john_v_dempsey_trends_and_issues_in_instructional_design_and_technology.html
https://books.google.de/books?id=Lh-MbwAACAAJ
http://dx.doi.org/10.1109/EDUCON.2014.6826090
http://dx.doi.org/10.1109/EDUCON.2014.6826090
http://dx.doi.org/10.1109/21.24530
http://doc.utwente.nl/66217/
http://dx.doi.org/10.1109/ACII.2009.5349555
http://dx.doi.org/10.1109/ACII.2009.5349555
http://dx.doi.org/10.1109/tsmcc.2010.2053532
http://dx.doi.org/10.1016/j.compedu.2007.01.005
http://dx.doi.org/10.1016/j.compedu.2007.01.005

Bibliography

[236] Peter James Rowlett. A partially-automated approach to the assessment of mathe-
matics in higher education. PhD thesis, Nottingham Trent University, 2013. URL
http://irep.ntu.ac.uk/id/eprint/309/.

[237] Lawrence M. Rudner and Tahung Liang. Automated Essay Scoring Using Bayes’
Theorem. The Journal of Technology, Learning, and Assessment, 1(2), June 2002.
URL https://ejournals.bc.edu/index.php/jtla/article/view/1668.

[238] Lawrence M. Rudner, Veronica Garcia, and Catherine Welch. An Evaluation
of IntelliMetric™ Essay Scoring System. The Journal of Technology, Learning
and Assessment, 4(4), 2006. URL https://ejournals.bc.edu/index.php/jtla/
article/view/1651.

[239] S. Runzrat, A. Harfield, and S. Charoensiriwath. Applying item response theory in
adaptive tutoring systems for thai language learners. In Proc. 11th International
Conference on Knowledge and Smart Technology, KST 2019, pages 67–71, 2019.
doi: 10.1109/KST.2019.8687462.

[240] M. Sainsbury and T. Benton. Designing a formative e-assessment: Latent class
analysis of early reading skills. British Journal of Educational Technology, 42(3):
500–514, 2011. doi: 10.1111/j.1467-8535.2009.01044.x.

[241] Chris Sangwin. Computer Aided Assessment of Mathematics. Oxford University
Press, 2013.

[242] S. Sarre and M. Foulonneau. Reusability in e-assessment: Towards a multifaceted
approach for managing metadata of e-assessment resources. In 5th International
Conference on Internet and Web Applications and Services, ICIW 2010, pages
420–425, 2010. doi: 10.1109/ICIW.2010.70.

[243] C. Saul and H.-D. Wuttke. Turning learners into effective better learners: The use of
the askme! system for learning analytics. In UMAP 2014 Posters, Demonstrations
and Late-breaking Results, volume 1181 of CEUR Workshop Proceedings, pages
57–60, 2014.

[244] Christian Saul and Heinz-Dietrich Wuttke. E-assessment meets personalization. In
IEEE Global Engineering Education Conference, EDUCON 2013, Berlin, Germany,
March 13-15, 2013, pages 200–206, 2013. doi: 10.1109/EduCon.2013.6530106.

[245] Christian Saul and Heinz-Dietrich Wuttke. Turning Learners into Effective Better
Learners: The Use of the askMe! System for Learning Analytics. In UMAP
Workshops, 2014.

[246] Silvia Schiaffino, Patricio Garcia, and Analia Amandi. eTeacher: Providing person-
alized assistance to e-learning students. Computers & Education, 51(4):1744–1754,
2008.

267

http://irep.ntu.ac.uk/id/eprint/309/
https://ejournals.bc.edu/index.php/jtla/article/view/1668
https://ejournals.bc.edu/index.php/jtla/article/view/1651
https://ejournals.bc.edu/index.php/jtla/article/view/1651
http://dx.doi.org/10.1109/KST.2019.8687462
http://dx.doi.org/10.1111/j.1467-8535.2009.01044.x
http://dx.doi.org/10.1109/ICIW.2010.70
http://dx.doi.org/10.1109/EduCon.2013.6530106

Bibliography

[247] Louis A Schultheiss and Edward M Heiliger. Techniques of flow-charting. Clinic
on Library Applications of Data Processing, 1963.

[248] Nils Schwinning, Melanie Schypula, Michael Striewe, and Michael Goedicke. Con-
cepts and Realisations of Flexible Exercise Design and Feedback Generation in
an e-Assessment System for Mathematics. In Joint Proceedings of the MathUI,
OpenMath and ThEdu Workshops and Work in Progress track at CICM, co-located
with Conferences on Intelligent Computer Mathematics (CICM 2014), 2014.

[249] Niall Sclater and Karen Howie. User Requirements of the "Ultimate" Online
Assessment Engine. Comput. Educ., 40(3):285–306, April 2003. ISSN 0360-
1315. doi: 10.1016/S0360-1315(02)00132-X. URL http://dx.doi.org/10.1016/
S0360-1315(02)00132-X.

[250] Stylianos Sergis and Demetrios G Sampson. Teaching and learning analytics to
support teacher inquiry: A systematic literature review. In Learning analytics:
Fundaments, applications, and trends, pages 25–63. Springer, 2017.

[251] Varun Shenoy, Ullas Aparanji, K. Sripradha, and Viraj Kumar. Generating DFA
Construction Problems Automatically. In International Conference on Learning
and Teaching in Computing and Engineering (LaTICE), pages 32–37, 2016. doi:
10.1109/LaTiCE.2016.8.

[252] Wei Shi, Kosuke Kaneko, Chenguang Ma, and Yoshihiro Okada. A Framework for
Automatically Generating Medical Quizzes with Multi-media Contents Based on
Linked Data. In Leonard Barolli, Fang-Yie Leu, Tomoya Enokido, and Hsing-Chung
Chen, editors, Advances on Broadband and Wireless Computing, Communication
and Applications, pages 147–158, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-02613-4. doi: 10.1007/978-3-030-02613-4_13.

[253] Raheel Siddiqi, Christopher J. Harrison, and Rosheena Siddiqi. Improving Teaching
and Learning through Automated Short-Answer Marking. TLT, 3(3):237–249, 2010.
doi: 10.1109/TLT.2010.4.

[254] George Siemens. Learning analytics: The emergence of a discipline. American
Behavioral Scientist, 57(10):1380–1400, 2013.

[255] Guttorm Sindre and Aparna Vegendla. E-exams and exam process improvement.
In Proceedings of the UDIT / NIK 2015 conference, 2015.

[256] Frano Skopljanac-Macina, Bruno Blaskovic, and Damir Pintar. Automated Gen-
eration of Questions for Basic Electrical Engineering Education. In Proceedings
of the 27th DAAAM International Symposium on Intelligent Manufacturing and
Automation, 2016. doi: 10.2507/27th.daaam.proceedings.056.

[257] B. J. Skromme, P. J. Rayes, B. E. McNamara, V. Seetharam, X. Gao, T. Thompson,
X. Wang, B. Cheng, Y.-F. Huang, and D. H. Robinson. Step-based tutoring system

268

http://dx.doi.org/10.1016/S0360-1315(02)00132-X
http://dx.doi.org/10.1016/S0360-1315(02)00132-X
http://dx.doi.org/10.1016/S0360-1315(02)00132-X
http://dx.doi.org/10.1109/LaTiCE.2016.8
http://dx.doi.org/10.1109/LaTiCE.2016.8
http://dx.doi.org/10.1007/978-3-030-02613-4_13
http://dx.doi.org/10.1109/TLT.2010.4
http://dx.doi.org/10.2507/27th.daaam.proceedings.056

Bibliography

for introductory linear circuit analysis. In Proceedings - Frontiers in Education
Conference, FIE, 2015. ISBN 9781479984534. doi: 10.1109/FIE.2015.7344312.

[258] B. J. Skromme, V. Seetharam, X. Gao, B. Korrapati, B. E. McNamara, Y.-F.
Huang, and D. H. Robinson. Impact of step-based tutoring on student learning in
linear circuit courses. In 46th Annual Frontiers in Education Conference (FIE),
2016. ISBN 9781509017904. doi: 10.1109/FIE.2016.7757638.

[259] Sharon Slade and Paul Prinsloo. Learning analytics: Ethical issues and dilemmas.
American Behavioral Scientist, 57(10):1510–1529, 2013.

[260] Neil Smith, Pete Thomas, and Kevin Waugh. Automatic Grading of Free-Form
Diagrams with Label Hypernymy. In Learning and Teaching in Computing and Engi-
neering (LaTiCE 2013), pages 136–142. IEEE, 2013. doi: 10.1109/LaTiCE.2013.33.

[261] Robert A. Sottilare and Michael Proctor. Passively Classifying Student Mood
and Performance within Intelligent Tutors. Journal of Educational Technology &
Society, 15(2):101–114, 2012. ISSN 11763647, 14364522. URL http://www.jstor.
org/stable/jeductechsoci.15.2.101.

[262] Rúben Sousa and José Paulo Leal. A structural approach to assess graph-based
exercises. In International Symposium on Languages, Applications and Technologies,
pages 182–193. Springer, 2015. doi: 10.1007/978-3-319-27653-3_18.

[263] A. Stack, B. Boitshwarelo, A. Reedy, T. Billany, H. Reedy, R. Sharma, and
J. Vemuri. Investigating online tests practices of university staff using data from a
learning management system: The case of a business school. Australasian Journal
of Educational Technology, 36(4), 2020. doi: 10.14742/AJET.4975.

[264] Patrick Stalljohann. Verwaltung universitärer Assessment-Szenarien am Beispiel
von Informatik-Vorlesungen. In DeLFI 2010 - 8. Tagung der Fachgruppe E-
Learning der Gesellschaft für Informatik e.V., 12.-15. September 2010, Univer-
sität Duisburg-Essen, pages 109–120, 2010. URL http://subs.emis.de/LNI/
Proceedings/Proceedings169/article5734.html.

[265] Slavomir Stankov, Marko Rosić, Branko Žitko, and Ani Grubišić. TEx-Sys model
for building intelligent tutoring systems. Computers & Education, 51(3):1017–1036,
2008. ISSN 0360-1315. doi: https://doi.org/10.1016/j.compedu.2007.10.002. URL
http://www.sciencedirect.com/science/article/pii/S0360131507001297.

[266] Benno Stein, Nedim Lipka, and Peter Prettenhofer. Intrinsic plagiarism analysis.
Language Resources and Evaluation, 45(1):63–82, 2011.

[267] Michael Striewe. Generierung von Zusatzinformationen in automatischen Systemen
zur Bewertung von Programmieraufgaben. In Proceedings of the First Workshop
"Automatische Bewertung von Programmieraufgaben" (ABP 2013), 2013. URL
http://ceur-ws.org/Vol-1067/abp2013_submission_6.pdf.

269

http://dx.doi.org/10.1109/FIE.2015.7344312
http://dx.doi.org/10.1109/FIE.2016.7757638
http://dx.doi.org/10.1109/LaTiCE.2013.33
http://www.jstor.org/stable/jeductechsoci.15.2.101
http://www.jstor.org/stable/jeductechsoci.15.2.101
http://dx.doi.org/10.1007/978-3-319-27653-3_18
http://dx.doi.org/10.14742/AJET.4975
http://subs.emis.de/LNI/Proceedings/Proceedings169/article5734.html
http://subs.emis.de/LNI/Proceedings/Proceedings169/article5734.html
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2007.10.002
http://www.sciencedirect.com/science/article/pii/S0360131507001297
http://ceur-ws.org/Vol-1067/abp2013_submission_6.pdf

Bibliography

[268] Michael Striewe. Automated Assessment of Software Artefacts - A Use Case in
E-Assessment. PhD thesis, University of Duisburg-Essen, 2014. URL https:
//nbn-resolving.org/urn:nbn:de:hbz:464-20150313-120503-7.

[269] Michael Striewe. An architecture for modular grading and feedback generation
for complex exercises. Science of Computer Programming, 129:35–47, 2016. ISSN
0167-6423. doi: 10.1016/j.scico.2016.02.009. URL http://www.sciencedirect.
com/science/article/pii/S0167642316300260.

[270] Michael Striewe. Dynamic Generation of Assessment Items Using Wikidata. In
Technology Enhanced Assessment - 21st International Conference, TEA 2018,
Amsterdam, The Netherlands, December 10-11, 2018, Revised Selected Papers,
pages 1–15, 2018. doi: 10.1007/978-3-030-25264-9_1.

[271] Michael Striewe. Towards a Pattern Catalogue for E-Assessment System Integration.
In Combined Proceedings of the Workshops of the German Software Engineering
Conference 2018 (SE 2018), Ulm, Germany, March 06, 2018., pages 62–65, 2018.
URL http://ceur-ws.org/Vol-2066/seels2018paper03.pdf.

[272] Michael Striewe. Lean and Agile Assessment Workflows. In David Parsons and
Kathryn MacCallum, editors, Agile and Lean Concepts for Teaching and Learning:
Bringing Methodologies from Industry to the Classroom, pages 187–204. Springer
Singapore, Singapore, 2019. ISBN 978-981-13-2751-3. doi: 10.1007/978-981-13-
2751-3_10.

[273] Michael Striewe. Automatische Aufgabengenerierung über Linked Open Data
am Beispiel der Archäologie. In Niels Pinkwart and Johannes Konert, editors,
DELFI 2019 - Die 17. Fachtagung Bildungstechnologien, pages 115–120, Bonn,
2019. Gesellschaft für Informatik e.V. doi: 10.18420/delfi2019_104.

[274] Michael Striewe. Components and Design Alternatives in E-Assessment Systems.
In Software Architecture - 13th European Conference, ECSA 2019, Paris, France,
September 9-13, 2019, Proceedings, pages 220–228, 2019. doi: 10.1007/978-3-030-
29983-5_15.

[275] Michael Striewe. Design Patterns for Submission Evaluation within E-
Assessment Systems. In 26th European Conference on Pattern Languages of
Programs, EuroPLoP’21, pages 32:1–32:10, 2021. ISBN 9781450389976. doi:
10.1145/3489449.3490010.

[276] Michael Striewe. A Lightweight Method for Modelling Technology-Enhanced
Assessment Processes. In 14th International Conference on Computer Supported
Education (CSEDU), 2022.

[277] Michael Striewe. Where does all the data go? – A Review of Research on E-
Assessment Data. In 14th International Conference on Computer Supported Educa-
tion (CSEDU), 2022.

270

https://nbn-resolving.org/urn:nbn:de:hbz:464-20150313-120503-7
https://nbn-resolving.org/urn:nbn:de:hbz:464-20150313-120503-7
http://dx.doi.org/10.1016/j.scico.2016.02.009
http://www.sciencedirect.com/science/article/pii/S0167642316300260
http://www.sciencedirect.com/science/article/pii/S0167642316300260
http://dx.doi.org/10.1007/978-3-030-25264-9_1
http://ceur-ws.org/Vol-2066/seels2018paper03.pdf
http://dx.doi.org/10.1007/978-981-13-2751-3_10
http://dx.doi.org/10.1007/978-981-13-2751-3_10
http://dx.doi.org/10.18420/delfi2019_104
http://dx.doi.org/10.1007/978-3-030-29983-5_15
http://dx.doi.org/10.1007/978-3-030-29983-5_15
http://dx.doi.org/10.1145/3489449.3490010
http://dx.doi.org/10.1145/3489449.3490010

Bibliography

[278] Michael Striewe and Michael Goedicke. Analyse von Programmieraufgaben durch
Softwareproduktmetriken. In SEUH, pages 59–68, 2013.

[279] Michael Striewe and Michael Goedicke. Trace Alignment for Automated Tutoring.
In Proceedings of International Computer Assisted Assessment (CAA) Conference
2013, Southampton, 2013.

[280] Michael Striewe and Michael Goedicke. Automated Assessment of UML Ac-
tivity Diagrams. In Proceedings of the 2014 conference on Innovation & tech-
nology in computer science education (ITiCSE 2014), page 336, 2014. doi:
10.1145/2591708.2602657.

[281] Michael Striewe and Michael Goedicke. A Review of Static Analysis Approaches
for Programming Exercises. In Proceedings of the International Conference on
Computer Assisted Assessment (CAA 2014), number 439 in CCIS, pages 100–113,
Zeist, Netherlands, 2014.

[282] Michael Striewe and Michael Goedicke. Automatische Generierung von Aufgaben
zum Codeverständnis. In DeLFI 2018 - Die 16. E-Learning Fachtagung Informatik
der Gesellschaft für Informatik e. V., volume 284 of Lecture Notes in Informatics,
pages 153–164, 2018.

[283] Michael Striewe, Florian Trauten, and Carolin Eitemüller. Aufgaben mit automa-
tischem Feedback zu chemischen Atom-Orbitalschemata. In Raphael Zender, Dirk
Ifenthaler, Thiemo Leonhardt, and Clara Schumacher, editors, DELFI 2020 – Die
18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V., pages
109–119, Bonn, 2020. Gesellschaft für Informatik e.V.

[284] Michael Striewe, Martin Forell, Constantin Houy, Peter Pfeiffer, Gunther Schiefer,
Selina Schüler, Chantal Soyka, Tobias Stottrop, Meike Ullrich, Peter Fettke, Peter
Loos, Andreas Oberweis, and Niclas Schaper. Kompetenzorientiertes E-Assessment
für die grafische, konzeptuelle Modellierung. HMD Praxis der Wirtschaftsinformatik,
58(6), 2021. ISSN 2198-2775. doi: 10.1365/s40702-021-00797-x.

[285] Wei Su, Paul Wang, and Lian Li. MathPASS: A Remedial Mathematics System
with Automated Answer Checking, 2010.

[286] Yuni Susanti, Ryu Iida, and Takenobu Tokunaga. Automatic Generation of En-
glish Vocabulary Tests. In 7th International Conference on Computer Supported
Education (CSEDU), 2015.

[287] Rubén Sánchez-Dams, Alexander Barón-Salazar, and Maria Clara Gómez-Álvarez.
An Extension of the SEMAT Kernel for Representing Teaching and Learning
Practices about Embedded Systems. In 2016 4th International Conference in
Software Engineering Research and Innovation (CONISOFT), pages 39–46, April
2016. doi: 10.1109/CONISOFT.2016.15.

271

http://dx.doi.org/10.1145/2591708.2602657
http://dx.doi.org/10.1145/2591708.2602657
http://dx.doi.org/10.1365/s40702-021-00797-x
http://dx.doi.org/10.1109/CONISOFT.2016.15

Bibliography

[288] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foun-
dations, Theory, and Practice. Wiley Publishing, 2009. ISBN 0470167742,
9780470167748.

[289] Dirk T. Tempelaar, Bart Rienties, and Bas Giesbers. Stability and sensitivity of
Learning Analytics based prediction models. In Proceedings of 7th International
conference on Computer Supported Education (CSEDU), pages 156–166, 2015.

[290] Tom Thaler, Constantin Houy, Peter Fettke, and Peter Loos. Automated Assessment
of Process Modeling Exams: Basic Ideas and Prototypical Implementation. In
Stefanie Betz and Ulrich Reimer, editors, Modellierung 2016 Workshopband, LNI,
pages 63–70, 2016.

[291] Pete Thomas, Neil Smith, and Kevin Waugh. Automatically assessing graph-based
diagrams. Learning, Media and Technology, 33(3):249–267, 2008.

[292] Pete Thomas, Kevin Waugh, and Neil Smith. A revision tool for teaching and
learning sequence diagrams. In Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications 2008, 2008. URL http://oro.
open.ac.uk/19241/.

[293] Justin Timm, Benjamin Otto, Thilo Schramm, Michael Striewe, Philipp Schmie-
mann, and Michael Goedicke. Technical Aspects of Automated Item Generation for
Blended Learning Environments in Biology. i-com, 1(19):3–15, April 2020. ISSN
1618-162X. doi: 10.1515/icom-2020-0001.

[294] Sue Timmis, Patricia Broadfoot, Rosamund Sutherland, and Alison Oldfield. Re-
thinking assessment in a digital age: opportunities, challenges and risks. British
Educational Research Journal, 42(3):454–476, 2016. doi: 10.1002/berj.3215.

[295] Ana Paula Tomás and José Paulo Leal. Automatic Generation and Delivery of
Multiple-Choice Math Quizzes. In Christian Schulte, editor, Principles and Practice
of Constraint Programming, pages 848–863, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-40627-0.

[296] G. Tremblay, F. Guérin, A. Pons, and A. Salah. Oto, a generic and extensible tool
for marking programming assignments. Software: Practice and Experience, 38(3):
307–333, 2008. doi: 10.1002/spe.839.

[297] M. Usman, M.M. Iqbal, Z. Iqbal, M.U. Chaudhry, M. Farhan, and M. Ashraf.
E-assessment and computer-aided prediction methodology for student admission
test score. Eurasia Journal of Mathematics, Science and Technology Education, 13
(8):5499–5517, 2017. doi: 10.12973/eurasia.2017.00939a.

[298] Salvatore Valenti, Francesca Neri, and Alessandro Cucchiarelli. An Overview of
Current Research on Automated Essay Grading. Journal of Information Technology
Education: Research, 2(1):319–330, January 2003. ISSN 1539-3585. URL https:
//www.learntechlib.org/p/111481.

272

http://oro.open.ac.uk/19241/
http://oro.open.ac.uk/19241/
http://dx.doi.org/10.1515/icom-2020-0001
http://dx.doi.org/10.1002/berj.3215
http://dx.doi.org/10.1002/spe.839
http://dx.doi.org/10.12973/eurasia.2017.00939a
https://www.learntechlib.org/p/111481
https://www.learntechlib.org/p/111481

Bibliography

[299] Stephanie Valentine, Francisco Vides, George Lucchese, David Turner, Hong hoe
Kim, Wenzhe Li, Julie Linsey, and Tracy Hammond. Mechanix: A Sketch-Based
Tutoring and Grading System for Free-Body Diagrams. AI Magazine, pages 55–66,
2013.

[300] W.M.P. van der Aalst. Formalization and verification of event-driven process chains.
Information and Software Technology, 41(10):639 – 650, 1999. ISSN 0950-5849. doi:
10.1016/S0950-5849(99)00016-6.

[301] Wim J. Van der Linden and Cees A. W . Glas. Computerized Adaptive Testing:
Theory and Practice. Springer, 2000.

[302] Mario Manso Vázquez and Martín Llamas Nistal. Distributed Personal Learning
Environments Towards a suitable architecture. In IEEE Global Engineering Edu-
cation Conference, EDUCON 2013, Berlin, Germany, March 13-15, 2013, pages
664–673, 2013. doi: 10.1109/EduCon.2013.6530178.

[303] C Wallace, P Dargan, and A Jones. Paracetamol overdose: an evidence based
flowchart to guide management. Emergency Medicine Journal: EMJ, 19(3):202,
2002.

[304] Emily H. Watts, Mary O’Brian, and Brian W. Wojcik. Four Models of Assistive
Technology Consideration: How Do They Compare to Recommended Educational
Assessment Practices? Journal of Special Education Technology, 19(1):43–56, 2003.
doi: 10.1177/016264340401900104.

[305] Franz E. Weinert. Concept of competence: A conceptual clarification. In Defining
and Selecting Key Competencies, pages 45–65. Hogrefe & Huber Publishers, 2001.

[306] Martin M Weng, Ireti Fakinlede, Fuhua Lin, Timothy K Shih, and Maiga Chang.
A conceptual design of multi-agent based personalized quiz game. In 11th IEEE
International Conference on Advanced Learning Technologies (ICALT 2011), pages
19–21. IEEE, 2011.

[307] Denise Whitelock, Alison Twiner, John T. E. Richardson, Debora Field, and
Stephen Pulman. What Does a ‘Good’ Essay Look Like? Rainbow Diagrams
Representing Essay Quality. In Eric Ras and Ana Elena Guerrero Roldán, editors,
Technology Enhanced Assessment, pages 1–12, Cham, 2018. Springer International
Publishing. ISBN 978-3-319-97807-9.

[308] Chris Wilcox. Testing Strategies for the Automated Grading of Student Programs.
In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, pages 437–442, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-3685-7. doi: 10.1145/2839509.2844616.

[309] Gary B. Wills, Christopher P. Bailey, Hugh C. Davis, Lester Gilbert, Yvonne
Howard, Steve Jeyes, David E. Millard, Joseph Price, Niall Sclater, Robert Sher-
ratt, Iain Tulloch, and Rowin Young. An e-Learning Framework for Assessment

273

http://dx.doi.org/10.1016/S0950-5849(99)00016-6
http://dx.doi.org/10.1016/S0950-5849(99)00016-6
http://dx.doi.org/10.1109/EduCon.2013.6530178
http://dx.doi.org/10.1177/016264340401900104
http://dx.doi.org/10.1145/2839509.2844616

Bibliography

(FREMA). In Proceedings of the 11th Computer-Assisted Assessment Conference
(CAA), 2007.

[310] Volker Wölfert. Technische Unterstützung zur Durchführung von Massenklausuren.
mathesis, Universität Potsdam, 2015.

[311] Wanli Xing, Rui Guo, Eva Petakovic, and Sean Goggins. Participation-based student
final performance prediction model through interpretable Genetic Programming:
Integrating learning analytics, educational data mining and theory. Computers in
Human Behavior, 47:168–181, 2015.

[312] Linting Xue. Intelligent argument grading system for student-produced argument
diagrams. In X. Hu, X. Hu, T. Barnes, A. Hershkovitz, and L. Paquette, editors,
Proceedings of the 10th International Conference on Educational Data Mining,
EDM 2017, pages 439–441. International Educational Data Mining Society, 2017.

[313] Olaf Zawacki-Richter, Victoria I. Marín, Melissa Bond, and Franziska Gouverneur.
Systematic review of research on artificial intelligence applications in higher educa-
tion – where are the educators? International Journal of Educational Technology
in Higher Education, 16(39), 2019. doi: 10.1186/s41239-019-0171-0.

[314] Yu Zhong and Yunbin Deng. A survey on keystroke dynamics biometrics: ap-
proaches, advances, and evaluations. In Recent Advances in User Authentication
Using Keystroke Dynamics Biometrics, pages 1–22. Science Gate Publishing, 2015.

[315] Steffen Zschaler, Sam White, Kyle Hodgetts, and Martin Chapman. Modularity
for Automated Assessment: A Design-Space Exploration. In Combined Proceedings
of the Workshops of the German Software Engineering Conference 2018 (SE 2018),
Ulm, Germany, March 06, 2018., Ulm, Germany, March 2018.

[316] Oliver Zscheyge and Karsten Weicker. Werkzeugunterstützung bei der Vermittlung
der Grundlagen wissenschaftlichen Schreibens. In Hochschuldidaktik der Informatik,
HDI 2016 - 7. Fachtagung des GI-Fachbereichs Informatik und Ausbildung / Didaktik
der Informatik, 13.-14. September 2016 an der Universität Potsdam, Germany,
pages 57–68, 2016.

[317] Imran A. Zualkernan and Maha Shouman. Towards Ontology-Driven Heuristic
Assessment Generation for Software Design Patterns. In Eighth IEEE International
Conference on Advanced Learning Technologies (ICALT), pages 922–924, July 2008.
doi: 10.1109/ICALT.2008.74.

[318] František Špaček, Radomír Sohlich, and Tomáš Dulík. Docker as Platform for
Assignments Evaluation. Procedia Engineering, 100:1665 – 1671, 2015. ISSN 1877-
7058. doi: 10.1016/j.proeng.2015.01.541. URL http://www.sciencedirect.com/
science/article/pii/S1877705815005688.

274

http://dx.doi.org/10.1186/s41239-019-0171-0
http://dx.doi.org/10.1109/ICALT.2008.74
http://dx.doi.org/10.1016/j.proeng.2015.01.541
http://www.sciencedirect.com/science/article/pii/S1877705815005688
http://www.sciencedirect.com/science/article/pii/S1877705815005688

This text is made available via DuEPublico, the institutional repository of the University of
Duisburg-Essen. This version may eventually differ from another version distributed by a
commercial publisher.

DOI:
URN:

10.17185/duepublico/81826
urn:nbn:de:hbz:465-20240412-110202-3

All rights reserved.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/81826
https://nbn-resolving.org/urn:nbn:de:hbz:465-20240412-110202-3

	Introduction
	Scientific Questions and Contributions
	Structure of this Thesis and Previous Work

	The Educational Assessment Process
	Educational Assessment as a Matter of Organization
	Literature Study

	The Essence of Educational Assessment Processes
	A Kernel for Educational Assessment
	Process Phases of Educational Assessment

	Case Studies
	Case 1: A Traditional Oral Exam
	Case 2: A Summative E-Assessment
	Case 3: A Distributed Formative E-Assessment
	Case 4: A Lightweight Ad-hoc Assessment

	Results
	Contributions to Integrated E-Assessment
	Contributions beyond the Scope of this Publication

	Engineering E-Assessment Systems
	Design of Technology-Enhanced Learning Systems
	System Components
	Technical Standards for Technology-Enhanced Learning Systems

	Architectural Patterns for E-Assessment Systems
	General Remarks on Architecture Style and Focus
	Behavioural Patterns
	Structural Patterns
	Functional Patterns
	Pattern Summary

	Case Studies
	Case 1: JACK
	Case 2: ActiveMath
	Case 3: The ``Ultimate'' E-Assessment System
	Case Study Summary

	Results
	Contributions to Integrated E-Assessment
	Contributions beyond the Scope of this Publication

	Domain-specific Item Handling
	The Core of E-Assessment
	Input Editors and Data Formats
	Classes of Data Formats
	Classes of Input Editors

	Automated Item Generation
	An Anatomy of Assessment Items
	Item Generation Process
	Item Generation Techniques
	Summary

	Automated Evaluation of Test Item Responses
	Basic Concepts of Automated Evaluation
	Preprocessing, Postprocessing and Derived Artifacts
	Evaluation Techniques
	Summary

	Case Studies
	Case 1: Math
	Case 2: Chemistry
	Case 3: Computer Programming

	Results
	Contributions to Integrated E-Assessment
	Contributions beyond the Scope of this Publication

	Data-focused E-Assessment
	Data Produced by E-Assessments
	Literature Study
	Legal Issues, Trust and Privacy

	Competency Measurement
	Item Response Theory
	Adaptive Testing

	Learning Analytics and Outcome Prediction
	Regression Analysis
	Naive Bayes
	Artificial Neural Networks
	Support Vector Machines
	Decision Trees

	Item and Answer Analysis
	Plagiarism and Authorship
	Item Alignment and Answer Diversity
	Meta-Data Analysis

	Case Studies
	Case 1: Learning Effort and Final Grade Prediction
	Case 2: IRT on Programming Items

	Results
	Contributions to Integrated E-Assessment
	Contributions beyond the Scope of this Publication

	Conclusions
	An Integrated View on E-Assessment
	Integration within E-Assessment
	Integration of E-Assessment into Context
	The Final Picture

	Achievements
	Future Research Directions
	Concluding Remarks
	Tables
	Bibliography

	Infobox DuEPublico

