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Abstract 

Background We present FHIR-PYrate, a Python package to handle the full clinical data collection and extraction 
process. The software is to be plugged into a modern hospital domain, where electronic patient records are used to 
handle the entire patient’s history. Most research institutes follow the same procedures to build study cohorts, but 
mainly in a non-standardized and repetitive way. As a result, researchers spend time writing boilerplate code, which 
could be used for more challenging tasks.

Methods The package can improve and simplify existing processes in the clinical research environment. It collects 
all needed functionalities into a straightforward interface that can be used to query a FHIR server, download imaging 
studies and filter clinical documents. The full capacity of the search mechanism of the FHIR REST API is available to 
the user, leading to a uniform querying process for all resources, thus simplifying the customization of each use case. 
Additionally, valuable features like parallelization and filtering are included to make it more performant.

Results As an exemplary practical application, the package can be used to analyze the prognostic significance of 
routine CT imaging and clinical data in breast cancer with tumor metastases in the lungs. In this example, the initial 
patient cohort is first collected using ICD-10 codes. For these patients, the survival information is also gathered. Some 
additional clinical data is retrieved, and CT scans of the thorax are downloaded. Finally, the survival analysis can be 
computed using a deep learning model with the CT scans, the TNM staging and positivity of relevant markers as 
input. This process may vary depending on the FHIR server and available clinical data, and can be customized to cover 
even more use cases.

Conclusions FHIR-PYrate opens up the possibility to quickly and easily retrieve FHIR data, download image data, and 
search medical documents for keywords within a Python package. With the demonstrated functionality, FHIR-PYrate 
opens an easy way to assemble research collectives automatically.
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Introduction
The HL7 (Heath Level Seven) FHIR (Fast Healthcare 
Interoperability Resources) standard [1] is steadily devel-
oping into the healthcare standard for semantic inter-
operable data exchange [2]. Clinical routines are not 
exempt from the digitalization process that the world is 
currently experiencing [3, 4]. As a consequence, hospitals 
are evolving and adapting. Many hospitals and healthcare 
organizations are already using EHRs (Electronic Health 
Records) to store and manage patient health informa-
tion [5]. The ONC (Office of the National Coordinator for 
Health Information Technology) estimated that in 2021 in 
the US “nearly 4 in 5 office-based physicians (78%) and 
nearly all non-federal acute care hospitals (96%) adopted 
a certified EHR” [6]. EHRs can help to improve the quality 
and safety of patient care by providing healthcare provid-
ers with access to up-to-date and accurate patient infor-
mation [7–9]. However, EHRs can also create challenges 
for data exchange between different healthcare systems, 
as there are often multiple EHR systems in use [10]. To 
address these challenges, healthcare organizations may 
use a variety of systems and standards for data exchange, 
such as HL7 v2 [1], HL7 v3 [1], HL7 CDA (Clinical Docu-
ment Architecture) [11], openEHR [12] or HL7 FHIR [1]. 
However, FHIR is the newest and most widely used one 
[1, 2, 13]. The ONC estimated that in 2019 “84% of hospi-
tals and 61% of clinicians adopted and implemented 2015 
Edition certified API technology enabled with FHIR” and 
that the trend is expected to continue [14]. Furthermore, 
FHIR is not only utilized in clinical practice but is also 
a subject of ongoing research and development [15–
20]. One of the main advantages of FHIR is its uniform 
structure and reproducibility for all information created 
within clinical workflows. This strive for standardization 
is especially needed in the world of hospital data, which 
includes multiple manufacturers, standards, and ways 
to store the overall complex clinical data. Because of the 
considerable success of this standard, manufacturers of 
medical applications have already started integrating it 
into their tools. Notable examples are the AI-Pathway 
Companion [21] and the Azure Health Data Services API 
(Application Programming Interface) [22], but other well-
known companies also rely on open interfaces such as 
FHIR to facilitate interoperability [23, 24].

Together with the popularity of FHIR, machine learn-
ing applications and studies in clinical context have also 
steadily increased [25]. For the year 2022, 13,931 articles 
can be found on PubMed by searching for results includ-
ing both "machine learning" or "artificial intelligence" and 
"healthcare" or "clinical", a number that is higher than 
any of the previous years. Thus, it is not only important 
to have a standard for the data format (FHIR), but also to 
build a uniform way to easily extract data and to transfer 

them into formats preferred for machine learning. As 
technology advances, multimodal models (i.e., accepting 
both images, unstructured text and structured informa-
tion) are also becoming more and more relevant [26], 
yielding that FHIR is also going to be part of previously 
only image-based pipelines.

The paper has the following structure. First, the “Back-
ground” section defines and introduces basic FHIR ter-
minology, resources, and components. In addition, an 
overview of the current number of FHIR resources is 
given using the example of the University Hospital Essen, 
comparable tools are discussed and the advantages of 
FHIR-PYrate are explained. Subsequently, all important 
components and functions of the package are presented 
in the "Implementation" section. Subsequently, in the 
"Results" section, an application-oriented example of a 
cohort compilation of metastatic breast cancer patients 
with the help of FHIR-PYrate is presented. Finally, in the 
"Conclusion" and "Discussion" sections advantages of the 
tool are described and a final conclusion about the capa-
bilities of the package is drawn.

Background
Since many FHIR-related terms are used in this paper, 
the FHIR specification will be introduced first. The 
FHIR standard builds an abstraction layer on top of one 
or many databases, where healthcare-related data are 
stored. This abstraction provides an intuitive and seman-
tically interoperable data exchange, where every single 
entity can be described as one object or, in FHIR terms, 
one resource. In general, FHIR (in version R4B) includes 
140 different resource definitions [27]. Based on these 
definitions, all types of hospital data collected within 
the clinical routine can be categorized and stored in a 
structured way. This includes, for example, patient data, 
image data, laboratory values, ward assignments, proce-
dures, medications, medical documents, and many more. 
In the following, we will briefly describe four resources: 
Patient, DiagnosticReport, ImagingStudy, Observation, 
and Bundle.

Almost every data point created within the clinical rou-
tine is associated with a patient. Thus, the Patient resource 
is often the basis for creating and collecting cohorts. This 
resource contains relevant data such as gender, age, date 
of birth, or addresses, and also information about the 
vital status. Attributes can, in turn, have further nested 
attributes to describe a specific setting more precisely. For 
example, the patient’s multiple addresses could be repre-
sented by a list with attributes such as city, address line, 
and postal code. This yields that a resource might have 
an arbitrarily complex structure but still conform to the 
standard. Another essential resource is DiagnosticReport, 
which includes medical documents such as radiological 
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findings, pathological findings, doctor’s letters, and many 
more. In addition, FHIR offers the possibility to map all 
imaging data in the form of the ImagingStudy resource. 
This means that all types of imaging modalities such as 
CT  (Computed Tomography), MRI  (Magnetic Resonance 
Imaging), ultrasound, or X-ray are available in a struc-
tured way, and entire studies, including the corresponding 
series, can be mapped. It is important to note though, that 
the image payload, in particular the pixel data, is not con-
tained in the ImagingStudy resource but normally pro-
vided via references to a specialized service like a DICOM 
(Digital Imaging and Communications in Medicine)  or 
DICOMweb server. Finally, Observation is a versatile 
resource, which offers a structure for any measured value, 
such as laboratory values but also short text like clinical 
notes. All resources in FHIR have their own unique ID 
but can be combined per patient via the associated patient 
ID. The communication with the FHIR server is carried 
out with a standardized REST (REpresentational State 
Transfer) protocol [1], which allows for creating, reading, 
replacing, modifying or deleting data. The server returns 
a FHIR Bundle, which is a collection of FHIR resources 
matching the search parameters with additional meta-
data related to the search results. Other uses of Bundles 
include transactionally modifying multiple resources, or 
grouping multiple related resources into a coherent view. 
Thus, FHIR provides the basic framework to retrieve clin-
ical data in a structured way. While the FHIR specification 
itself allows many degrees of freedom with respect to the 
type and cardinality of the attributes of FHIR resources, 
so-called FHIR profiles are used to concretize the seman-
tically interoperable exchange data.

At our institution, the FHIR servers store over 1 billion 
FHIR resources (see Fig.  1). These encompass approxi-
mately 4.6 million imaging studies, 45 million fully 
indexed clinical text documents, and 389 million clinical 
observations from more than 3 million patients, as pre-
sented in Fig. 1. Thus, it is particularly relevant to have a 
fast, simple, parallelizable tool that lets the client lever-
age the capabilities of the FHIR REST API and handle the 
most expensive steps server-side.

Although this standard has excellent capabilities for 
exchanging data in a semantically interoperable manner, 
it is not optimal for statistical data analysis or machine 
learning in its primary form. Recent studies and tools 
use preprocessing on FHIR resources to limit and select 
the input for statistical analysis [28–30]. However, there 
also exist deep learning pipelines that use preprocessing 
and tokenization of FHIR resources to make predictions 
[31]. Nonetheless, this is still not feasible for statistical 
software or for purely clinical studies. FHIR resources 
are typically nested, and their degree of complexity is 
usually unbounded, while data structures used for data 

science (e.g., pandas’ DataFrames [32, 33] for Python, 
data frames in R) are often tabular data. This mismatch 
calls for a fast, simple, and easy-to-use tool that acts as 
a bridge between FHIR and the data science world. We 
aim to build a simple Python abstraction utilizing the 
existing FHIR REST API functionalities, giving the user 
complete control over the queries and providing results 
as pandas DataFrames. The desire for an easy-to-use 
package for interacting with FHIR servers and data is 
not new. For example, the fhircrackr [30] package was 
built to provide an interface for the automated extraction 
of FHIR data in the R programming language. In addi-
tion, several Python-based packages exist. The client-py 
[34] package has a query functionality and builds FHIR 
resources as object classes, but does not deal with Data-
Frames. Similarly, the fhir.resources [35] package builds 
object classes from the FHIR resources and validates 
them against the FHIR standard requirements, which can 
sometimes cause problems, as not all FHIR servers follow 
the standard strictly. Another package, fhir-py [36], per-
forms asynchronous calls and allows for saving resources, 
but is also more focused on data retrieval from the FHIR 
server. Finally, fhirpack [37] has the same purpose as our 
package but with a different focus and structure in mind.

Three of the mentioned tools offer an interface for 
FHIR data extraction, but client-py and fhir-py are more 
focused on pure data extraction. In addition, the tools 
mentioned have no support for structured data export, 
e.g., into pandas DataFrames. Only fhirpack also tries to 
save the data in a structured way. However, this tool is 
more interested in an abstraction of the FHIR logic, and 
thus many FHIR mechanisms are not made accessible to 
the user.

The key features of our tool are:

• Easy to use, as the examples present on the project 
website can be easily customized to cover any use case.
• Works with all FHIR resources and does not need 
customization.
• The user has control over the attributes that will be 
extracted. They can either extract the entire resource 
or have multiple options to select which attributes 
are relevant.
• Supports FHIRPath [38], which is a standardized 
syntax similar to the one of JSONPath [39]. The rel-
evant information can be selected by specifying the 
attribute path, or by enforcing conditions such as 
existence or equality.
• Combines clinical data as well as DICOM support 
(if a connection to a DICOMweb compliant imaging 
storage is available).
• Text mining support for medical documents.
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The tool is supposed to integrate into a modern hos-
pital’s broader healthcare infrastructure, as described in 
Fig.  2. In this architecture, the clinical data comes from 
multiple sources, and can, for example, be transformed 
using ETL (Extract, Transform and Load) processes 
before being imported into the FHIR server. The clini-
cal data may come from different systems, such as: LIS 
(Laboratory Information System), CIS (Clinical Infor-
mation System), VCF (Variant Call Format) files, SAP 
(System Analysis Program development) and medication 

workflow solutions. The imaging data is stored in a RIS 
(Radiology Information System) or in a PACS (Picture 
Archiving and Communication System), which usu-
ally also have a DICOMweb interface [40]. The research 
domain is a separated system where the FHIR data is 
anonymized or pseudoanonymized, and can thus be used 
for cohort management of clinical studies and to build 
machine learning solutions. Using these, multiple AI 
(Artificial Intelligence)  applications can be implemented 
for research purposes, for example, to compute automatic 

Fig. 1 Resource statistics at our institution. The plot shows the distribution of the 1,498,863,142 resources present on our FHIR server as of 
2023–03-13. The most common resource is ServiceRequest, which is used for records of requests for procedures, diagnostics, or any other service. 
The second most common is Observation, which stores measurements like lab values, vital parameters but also small texts like clinical notes
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segmentations [41, 42], or for risk analysis [43]. Addition-
ally, commercial AI software may also be included into the 
infrastructure [44], which can in turn be used to optimize 
the clinical workflows and for additional clinical studies.

The package is of aid for researchers to implement 
machine learning solutions and statistical analysis and for 
doctors to build cohorts of patients for studies. A cohort 
is a collection of patients that can be grouped according 
to a particular characteristic. A cohort can be built only 
with clinical data (e.g., Observation, Condition) but also 
with imaging data. For example, it is often the case that 
there is interest in collecting all patients based on a cer-
tain diagnosis or treatment. Then, for example, all CT 
scans of the abdomen could be collected and downloaded 
for these patients. This process is exactly one of the 
strengths of the package: Being able to build any cohort, 
regardless of the resource or even chain of resources. If 
the CT scans should also be downloaded for further anal-
ysis, it is also essential to have direct communication to 
the FHIR server and to a PACS, where the imaging stud-
ies are stored.

Implementation
The package is open source and available under the fol-
lowing link: https:// github. com/ UMEss en/ FHIR- PYrate. 
It can be installed with the pip Python package manager 

and all relevant information for installation and usage are 
reported on GitHub. The package is built on four main 
classes: Ahoy, Pirate, DICOMDownloader, and Miner, 
as presented in Fig. 3. In the following, we will describe 
their implementation and explain our stylistic choices. 
Most FHIR servers require authentication to access clini-
cal data as a prerequisite for data extraction. The Ahoy 
class was implemented for this eventuality, supporting 
basic HTTP and token authentication. Its primary pur-
pose is to create an HTTP object with the necessary 
headers for a later connection to a specific FHIR server. 
Additionally, this class ensures that the token stays up-to-
date by either refreshing or reauthenticating the session.

Pirate
The Pirate class is the main interaction point for the 
data collection and handles all the communication with 
the FHIR server. The main idea of this class is to allow 
an easy collection and handling of clinical cohorts for 
researchers and doctors by using common data struc-
tures such as tabular data, which can, in turn, be con-
verted to Excel files. In general, with an instance of the 
Pirate class, it is possible to access all FHIR resources (as 
shown in Fig. 4) and to use all implemented FHIR search 
parameters. The user has full control over the queries and 
can decide which operations should be done server-side 

Fig. 2 Overview of the tool’s role in the healthcare/machine learning picture. Presentation of an exemplary hospital infrastructure including 
multiple apps: a FHIR server, a DICOM Web capable PACS (or alternatively an app that handles the communication to the medical imaging storage), 
and various AI applications. Within the research domain, the FHIR-PYrate package handles the communication between the FHIR server and the 
PACS (DICOM Web). The package also helps with creating the data prerequisites needed for implementing machine learning solutions and for 
creating cohorts

https://github.com/UMEssen/FHIR-PYrate
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Fig. 3 A schematic view of the package structure. The Ahoy class handles the user’s authentication and creates an HTTP session, which the other 
classes will then use to interact with the FHIR server. The Pirate class handles the communication with the REST API, collects Bundles, and builds the 
DataFrames. The Miner class is to be used on a DataFrame (normally the result of a DiagnosticReport query), and it will output a report on whether 
a particular regular expression is present in a text, and in which particular parts of the documents. The DICOMDownloader class is used to download 
medical imaging scans in bulk and store information about them. The Miner and the DICOMDownloader class are connected with dashed lines, as 
they can be used as an optional step after retrieving the initial data

Fig. 4 Schematic view of the process within the Pirate class. The Pirate class can be used with any existing resource, and data retrieval processes 
remain unchanged. In this figure, the querying process for the pictured resources is always the same: First, a query has to be defined and run, then, 
a FHIR Bundle is returned, and finally, the Bundle is transformed into a DataFrame 
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by the FHIR server and which ones should be done cli-
ent-side within the Python program. The Pirate class can 
handle all search parameters supported by the server, 
allowing for easy customization since each FHIR server 
may designate different parameters. Additionally, the 
user can also request a Bundle containing the edit history 
of a particular resource.

The functions contained in the Pirate class have one of 
three objectives:

1. Request to Bundle: They handle the communication 
with the FHIR server, run the query and return the 
FHIR resources in the form of a list of Python objects 
representing the Bundles.

2. Bundle to DataFrame: They map the data in the 
obtained Bundles to DataFrames. In our schema, a 
row usually represents one resource.

3. Facade functionality: They combine the functionali-
ties of 1 and 2 to make querying and obtaining Data-
Frames more convenient.

Additionally, the functions can either:

a run a query only according to the resource type and 
request parameters, or

b run a query according to the resource type, request 
parameters, and constraints given by an existing 
DataFrame.

The Pirate class has  seven main data retrieval func-
tions. The steal_bundles function takes the input 
request parameter and runs one single query on the 
FHIR server and collects the returned data as Python 
objects. The sail_through_search_space function uses 
concurrent processes to speed up the data retrieval. 

Usually, the user is interested in resources coming 
from a particular time frame. This function divides the 
desired time frame into as many time spans as there 
are processes available, and runs one query for each 
span. The trade_rows_for_bundles function also uses 
concurrent processes, but this time by spawning one 
process for each row of the input DataFrame. In fact, 
this function can be used when, for example, a cohort 
definition is already defined in a DataFrame, and we 
would like to retrieve information related to each sin-
gle row. The function uses the given request param-
eters together with the constraints that are given by 
the DataFrame to build as many queries as there are 
rows, that are then run concurrently. The bundles_
to_dataframe function takes the input of the previous 
functions and transforms it into a DataFrame by trans-
forming the Bundles into rows. As per default, all FHIR 
attributes are stored in the final DataFrame, but some 
filtering mechanisms can also be used, which will be 
described later.

The steal_bundles_to_dataframe, sail_through_
search_space_to_dataframe and trade_rows_for_data-
frame are functions that combine their non-DataFrame 
variant with the bundles_to_dataframe function and 
perform both operations together. The trade_rows_for_
dataframe function also has the option to add the origi-
nal columns as columns to the final DataFrame to make 
further processing easier. A summary of the functions 
and their roles is presented in Table 1.

For example, a specific use case for the applica-
tion of FHIR-PYrate would be the extraction of all CT 
scans from patients with a certain disease. One way 
to address this problem is to first find all Observation 
resources with a certain ICD (International Classifica-
tion of Diseases) code [45], then use these resources to 

Table 1 Overview of the Pirate functions and of their capabilities. The functions of type 1 handle the conversion from query to 
Bundle, while the ones of type 2 build DataFrames from the Bundles. The functions of type 3 are facade functions that combine 
the functionalities of type 1 and 2 for convenience. Additionally, we have functions that only retrieve data according to the request 
parameters (type a), and functions that take a DataFrame as input and process all the rows (type b). Furthermore, we also support 
concurrent querying and computing for all functions but one, which is not parallelizable, as it only runs one query

Function Type Constraints on 
DataFrame

Parallel

Queries DataFrame 
Building

steal_bundles 1a. Request to Bundle No No /

sail_through_search_space 1a. Request to Bundle No Yes /

trade_rows_for_bundles 1b. Request to Bundle Yes Yes /

bundles_to_dataframe 2. Bundle to DataFrame / / Yes

steal_bundles_to_dataframe 3a. Facade (1 + 2) No No Yes

sail_through_search_space_to_dataframe 3a. Facade (1 + 2) No Yes Yes

trade_rows_for_dataframe 3b. Facade (1 + 2) Yes Yes Yes
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retrieve the Patient resources, and finally collect all the 
ImagingStudy resources for these patients. This can be 
achieved with two FHIR-PYrate queries, which are pre-
sented in Fig. 5.

The first query is of type 3a, as we just need to spec-
ify the kind of resource (Observation), and the required 
ICD code as a parameter. Each Observation has a refer-
ence to the corresponding Patient resource that has a 
diagnosis. The second query is of type 3b, and takes the 
kind of resource (ImagingStudy) and the DataFrame that 
we obtained from the previous query as input. Now, a 
query on ImagingStudy will be run for each row of the 
DataFrame of Observation resources, where the query’s 
Patient reference will be constrained on the subject of the 
Observation.

However, it often happens that the FHIR server con-
tains multiple instances of the same patient, as they 
might be identified by multiple accounts on the hospital’s 
systems. If the server implements a heuristic that links 
the Patient resources with the Patient.link attribute (e.g. 
such as having the same name and date of birth assumes 
being the same person), then one additional query of type 
3b on the DataFrame of Observation resources can be 
used to retrieve all the Patient resources.

As we previously mentioned, FHIR resources can be 
arbitrarily complex, and thus it is important to implement 

mechanisms to filter only the needed information. The 
filtering is run while building the DataFrames, so all 
functions that have DataFrames as output support filter-
ing. We offer two kinds of filtering, all Bundle-based:

1. Filter using FHIRPath: FHIRPath [38] is a standard-
ized query syntax that accesses the desired attributes 
and performs simple operations such as replacing 
strings, simple mathematical operations, and check-
ing for existence. The advantage of this is that it is 
rather easy to store any needed attribute with a small 
amount of code (as shown in Fig. 5). In this case, each 
row of the DataFrame represents one resource. We 
implement this feature with the help of fhirpath-py 
[46], a Python package built exactly for this purpose.

2. Filter using processing functions: Another option 
is to use a processing function, which can be given 
as input to the functions that transform the Bun-
dles into DataFrames. These functions are always 
run for each Bundle and can implement any desired 
logic (example in Fig. 6). In this case, the DataFrame 
structure can be built arbitrarily, and each row does 
not necessarily represent one resource.

Another essential aspect is the possibility to run con-
current processes to more quickly process the queries. 
This, however, highly depends on the throughput of the 
FHIR server and on how many requests it can handle. 
The default number of processes is always one and can 
be increased freely according to the server’s capabilities.

We implement three kinds of parallelization. First, 
whenever multiple queries are generated from one Data-
Frame (functions of type a), this can be run in paral-
lel by setting the number of desired processes. Second, 
the conversion from Bundle to DataFrame can also be 
performed concurrently. Last, if the amount of data to 
retrieve concerns a vast time span, the time span can be 
broken into as many time frames as there are processes. 
For all facade functions supporting multiprocessing, the 
user can decide whether they want to run the queries 
first and then build the output DataFrame, or whether 
they want to alternate between running queries and 
transforming them using the filtering functions. A direct 
transformation after each bundle retrieval ensures that 
if a data point does not apply to the filtering schema, 
the run will stop. If the bundles are retrieved first and 
then transformed, any errors will occur at the very end. 
Another notable feature is the possibility to merge infor-
mation from multiple rows automatically after running a 
query. This may happen when a query includes resources 
of another type in the result. For example, a query 
on ImagingStudy may also want to return the Patient 
resources (as in Fig. 7), such that it is possible to process 

Fig. 5 Retrieval of all CT studies for patients with scoliosis. Two 
FHIR-PYrate queries can be used to obtain all CT studies belonging 
to patients which suffer from scoliosis. The first query is for the 
Condition resource, while the second one is for the ImagingStudy 
resource. The request parameters for the FHIR server are specified 
using the request_params parameter. The df_constraints parameter 
is used to specify request parameters that should be constrained 
according to each row of the input DataFrame. The fhir_paths 
parameter selects which attribute of the resource should be returned
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the studies and the patients together. In this case, since 
we usually expect one row to represent one resource, 
we would have rows corresponding to ImagingStudy 
resources, and rows corresponding to Patient resources. 
By specifying the merge_on flag with the name of the col-
umn that should be used for merging resources (in this 
case, with the same Patient ID), we obtain a DataFrame 
where each row represents an ImagingStudy and that has 
all the needed information about the patient.

Miner
Medical findings are often stored in an unstructured 
manner, especially as free text. Thus, whenever a piece 
of information is needed from a document, it has to be 
found manually among all existing documents. Increas-
ingly powerful NLP (Natural Language Processing) 

models have currently been used for named entity rec-
ognition to solve this exact problem [47–49]. However, 
they usually need some ground truth, are not available 
for all languages, and they must undergo stringent val-
idation processes to be admitted into the clinical rou-
tine. The Miner class is supposed to aid NLP pipelines 
by identifying which documents are possibly relevant to 
a particular research question.

The main idea of the class is to take a DataFrame con-
taining texts and find out whether a user-given regular 
expression is present in the document, as presented in 
Fig. 8. This is done by first converting the text into sen-
tences and then checking whether the regular expression 
is present in each sentence. As a result, the user is given 
a summary of the locations of the searched expression, 
and the number of viable instances. Additionally, it is also 
possible to give a secondary regular expression as input, 
and in such cases the result is the sentences that con-
tain the first regular expression and do not contain the 
secondary one. This process may be useful to find some 
particular keyword (e.g., sarcoma), but at the same time 
to remove specific cases that are not interesting for our 
research question (e.g., osteosarcoma). The sentences are 
created using the well-known NLP library SpaCy [50], 
while the regular expression matching is done with the 
Python standard library re [51].

Fig. 6 Using processing functions. The steal_bundles_to_dataframe 
retrieves the required Observation resources that contain information 
about the blood pressure panel. Then, the obtained bundles are 
transformed to rows by using the get_blood_panel_info function. 
This function iterates through the entries of a bundle and collects 
the resource IDs, and then iterates through the component attribute, 
which contains multiple pieces of information about the blood panel 
status, in this case, the systolic and the diastolic blood pressure. Each 
component attribute contains a display name (a natural language 
name of what is being evaluated), a quantity (the actual measured 
value) and a unit of measurement. For each piece of information, the 
display name becomes the column header, the quantity becomes 
the value, and the unit is stored in an additional column. The table 
below the figure presents an example output for this query

Fig. 7 Including secondary resources. ImagingStudy resources also 
contain a reference to the Patient resource they belong to, and using 
the _include parameter the corresponding Patient resources can 
be imported in the output Bundle. The attributes that should be 
added to the final DataFrame can be specified with the fhir_paths 
parameter, where it is also possible to specify from which resource 
the attribute should come from, to ensure clarity. Usually, one row of 
the output DataFrame represents one entry of a Bundle. By specifying 
the merge_on parameter, the rows which have the same patient_id 
are merged, producing a DataFrame similar to the table below the 
figure
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In many cases, clinical documents have a specific 
structure. For example, documents may always have a 
header, and the relevant part of the text may always start 
with the word “Findings”. In such cases, it is beneficial 
to remove the header, and this can be done by giving 
these specific keywords as input to the   nlp_on_data-
frame function (Fig.  9). This class function handles the 
entire described process, and if requested, the rows of 
the DataFrame can also be examined concurrently using 
multiple processes.

DICOMDownloader
In recent years, deep learning for medical imaging has 
become a very active field of research, resulting in a 
great need for direct and automatable access to image 
data by data scientists. Most imaging studies conducted 
within the clinical routine are stored in a PACS using the 
DICOM  format. In our system, the DICOM studies are 
referenced as resources on a DICOMweb endpoint by 
ImagingStudy resources on the FHIR server. Each Imag-
ingStudy references a DICOM study, which can refer-
ence multiple series (i.e., the actual scans). In the DICOM 
standard, each scan has a SeriesInstanceUID and a 
StudyInstanceUID.

The  DICOMDownloader class aims at automating 
the downloading process of DICOM studies or specific 
series. As a prerequisite, we need a pandas DataFrame 
containing the StudyInstanceUID of the study we want 

to download. In the event that only certain series are to 
be downloaded, a SeriesInstanceUID can also be sup-
plied. Once the cohort of series has been identified, 
a call to download_data_from_dataframe stores the 
downloaded series in the desired folder. Optionally, the 
series may be stored according to a hierarchical folder 
structure, which reduces the number of files per folder 
and may be beneficial to avoid overloading the file 
system.

Fig. 8 An overview of the process to identify whether a text contains relevant sentences using the Miner class. First, if the document has a specific 
structure, all the information before a known keyword (e.g., “Findings”) is removed. Then, the sentences are identified using the SpaCy library. 
For each sentence, the input regular expression is matched against the text and if the sentiment of the sentence is not negative, the sentence is 
considered a match

Fig. 9 Example Miner Query. The Miner class is first initialized, then, 
a DataFrame containing the text documents in a specified column is 
processed using the nlp_on_dataframe function. However, the data 
may not be stored as readable text on the FHIR server (e.g. may be 
stored as HTML, encoded). For this purpose, a processing function to 
preprocess the text may be specified, in this case, decode_text
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The communication with a PACS is handled by the 
DicomWebClient package [52]. This assumes that 
the PACS is able to handle the DICOMweb stand-
ard [40]. Once the series have been downloaded, the 
download_data_from_dataframe function returns two 
DataFrames (Fig.  10), one containing the series that 
could be successfully downloaded and the name of the 
folder where they are stored, and the other contain-
ing the IDs of the series that failed, and the error that 
caused them to fail. This process is also depicted in 
Fig. 11.

Results
To demonstrate the practical applicability of this package, 
a real-world scenario is presented to analyze the prognos-
tic significance of routine CT imaging and clinical data in 
breast cancer patients with pulmonary metastases. Since 
triple negative breast cancer is known to have a poor 
prognosis [53], ER (Estrogen Receptor), PR (Progesterone 
Receptor), and HER-2 (Human Epidermal growth factor 
Receptor 2) are highly relevant markers. In this example, a 
survival analysis will be performed using a deep learning 
model with the CT of the thorax, age, TNM stage, ER, 
PR, and HER-2 status of the selected patients.

The first step is to find all patients with metastatic breast 
cancer. The patients can be identified using the Condition 
resource with the ICD-10 code “C50” for breast cancer, and 
“C78.0” for pulmonary metastases, and by selecting the 
patients that have both. For the remaining patients, some 
demographic information is retrieved, such as age and date 
of death. For the survival analysis, the samples are going to 
be censored if the patient has died, and uncensored other-
wise. The time to death will be specified as the number of 
days between the diagnosis date of the metastases and the 
death of the patient, or a specific date to be chosen as the 
end of the study. Additionally, the clinical data is retrieved 
using the Observation resource and the respective LOINC 
(Logical Observation Identifiers Names and Codes) codes 
[54] and by checking that the date of the Observation is 
at most 30 days before or after the diagnosis of the metas-
tases. The resulting table contains the ER (LOINC code 

Fig. 10 Example DICOMDownloader Query. The DICOMDownloader 
class is initialized with the desired output format, and the data is 
downloaded to the desired output directory using the download_
data_from_dataframe function

Fig. 11 An overview of the download of DICOM studies using the DICOMDownloader. A collection of StudyInstanceUID and SeriesInstanceUID is 
given as input to the DICOMDownloader (1), which uses them to communicate with a DICOMweb instance (2) and stores the results in a predefined 
folder (3). Additionally, two DataFrames are returned (3). The first one contains a list of all successfully downloaded series, while the second one has 
a list of all the failed series and the kind of error that was produced
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“16,112–5”), PR (LOINC code “16,113–3”) and HER-2 
(LOINC code “48,676–1”) markers and the TNM stadium 
(LOINC code “21,908–9”) for the selected patients. Simi-
larly, ImagingStudy resources referencing CTs of the thorax 
are retrieved using the same date constraints and are down-
loaded using the DICOMDownloader. This process is out-
lined in Fig. 12. It is important to notice that the available 
data and the use of particular codes (e.g., LOINC, ICD-10) 
may depend on the FHIR server and on the clinical data 
available at an institution. Additionally, some FHIR servers 
do not implement all search parameters, and there might 
be different approaches to obtain the same results.

The patient cohort can be then divided into a train and 
a test set, and a deep learning model can be trained to 
predict the survival of the patients using a Cox regres-
sion. Previous studies have already successfully used deep 
learning methods for survival analysis [55], and could be 
extended to also consider imaging information.

The described process can be used for any use case 
requiring both clinical and imaging data, and could also 
be extended to NLP by also retrieving the DiagnosticRe-
port relevant to the use case.

Discussion
The tool offers a connection between the well-structured 
and complex FHIR standard and the field of data sci-
ence, which is dominated by the use of tabular data. Its 

DataFrame output delivers an easy-to-understand, sim-
plified overview of the FHIR resources and can be used 
more easily for statistical analysis and machine learning. 
The filtering capabilities also ensure that the user is only 
provided with the data they need and that the output is 
not just a dump of the FHIR resources. Furthermore, 
the filtering allows the user to perform simple opera-
tions on the data (e.g., replacement, splitting) such that 
the final DataFrame does not require further modifica-
tion. An important criterion in the design of our pack-
age was not—by means of abstraction—to keep the user 
away from the FHIR standard, which in our view is well 
designed, very intuitive and at the same time powerful, 
but rather to allow the user efficient access to the data 
contained in a FHIR server while retaining full control 
over the underlying queries and data structures. The 
package is intended as a scripting tool, but a more user-
friendly graphical interface to be used with the tool as its 
core is already being planned. In this regard, the tool can 
also be used to build dashboards and monitors to display 
important FHIR metrics and data, and that can actively 
be used in patient care.

Conclusions
In this work, we presented FHIR-PYrate, a Python 
package for extracting and collecting all sorts of 
clinical data from FHIR servers. The proposed 

Fig. 12 Data collection using FHIR-PYrate for breast cancer patients. The process starts by collecting patients with specific ICD-10 codes (1), 
the results are filtered (2), and then the clinical (3) and imaging data (4) is retrieved. The resulting DataFrames can also be merged to obtain the 
complete cohort information. The code retrieval is simplified by omitting the URL of each system (i.e., LOINC instead of "http:// loinc. org")

http://loinc.org
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tool is essential for researchers, but also for tech-
nology-affine doctors, to rapidly build research 
cohorts and to combine clinical as well as imag-
ing data. The main Pirate class handles the com-
munication with the FHIR server and can be used 
for any resource type, which makes the creation of 
any dataset straightforward. Additionally, we pre-
sented two additional classes: The Miner class to fil-
ter attributes according to regular expressions and 
the  DICOMDownloader to download imaging stud-
ies directly from a PACS. With its simplicity and 
standardized mechanisms, the FHIR-PYrate uses all 
the advantages of the FHIR standard and combines 
it into one Python based API.

In future work, we plan to further analyze and test this 
package with FHIR servers from multiple institutions. 
Additionally, we aim at simplifying and streamlining the 
main package API to make it more accessible to users with 
various levels of programming experience. The newest 
developments will be posted on the GitHub page of the 
package (https:// github. com/ UMEss en/ FHIR- PYrate).

Availability and requirements
Project name: FHIR-PYrate.

Project home page: https:// doi. org/ 10. 5281/ zenodo. 
70252 26

Operating system(s): Platform independent.
Programming language: Python.
Other requirements: Python 3.7 or higher (for ver-

sion 0.1.0), Python 3.8 or higher.
License: MIT.
Any restrictions to use by non-academics: None.
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