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Abstract
Topological insulators and topological superconductors are characterized by edge
states that evade disorder-induced localization. The number of these states is de-
termined by a topological invariant. Whether a topologically non-trivial phase is
possible depends on the symmetries and the dimension of the system. The topo-
logical invariant relevant for one-dimensional systems with chiral symmetry is the
winding number.

In this work, we perform a statistical analysis of the winding number in the frame-
work of random matrix theory. Random matrix theory is known to produce universal
results for systems with a sufficient degree of complexity in the limit of large ma-
trix dimensions. In the context of solid state physics, this complexity corresponds
to disorder, i.e. spatially inhomogeneous perturbations of the system parameters.
In order to conduct our study, we first set up a parametric random matrix model
with chiral symmetry for the Bloch Hamiltonian. In addition to chiral symmetry,
we also classify our model based on the presence or absence of time reversal in-
variance. Specifically, we calculate the correlations of the winding number density,
which yield the statistical moments of the winding number upon integration, as well
as the distribution of the winding number.

On a technical level, we trace the topological problem back to a spectral one,
which renders the toolbox of random matrix theory applicable. In doing so, we
encounter the spherical ensemble of random matrices, which, unlike the classical
ensembles of random matrix theory, does not follow a Gaussian matrix probability
distribution. We employ different methods of random matrix theory to carry out
the ensemble averages. In particular, we work with a technique that is related to
the supersymmetry method of random matrix theory. It exploits supersymmetry
structures without reformulating the problem in superspace and is therefore also
referred to as supersymmetry without supersymmetry.



Zusammenfassung
Topologische Isolatoren und topologische Supraleiter zeichnen sich durch Randzu-
stände aus, die sich der durch Unordnung verursachten Lokalisierung entziehen. Die
Anzahl dieser Zustände wird durch eine topologische Invariante bestimmt. Ob eine
topologisch nicht-triviale Phase möglich ist, hängt von den Symmetrien und der Di-
mension des Systems ab. Die für eindimensionale Systeme mit chiraler Symmetrie
relevante topologische Invariante ist die Windungszahl.

In dieser Arbeit führen wir eine statistische Analyse der Windungszahl im Rah-
men der Zufallsmatrixtheorie durch. Zufallsmatrixtheorie ist in der Lage universelle
Ergebnisse für Systeme mit einem ausreichenden Grad an Komplexität im Limes
großer Matrixdimensionen zu liefern. Im Falle der Festkörperphysik entspricht diese
Komplexität der Unordnung, d.h. räumlich inhomogenen Störungen der Systempa-
rameter. Zur Durchführung unserer Analyse stellen wir zunächst ein parametrisches
Zufallsmatrixmodell mit chiraler Symmetrie für den Bloch-Hamiltonian auf. Neben
der chiralen Symmetrie klassifizieren wir unser Modell auch anhand der Zeitum-
kehrinvarianz bzw. der Abwesenheit dieser. Wir berechnen die Korrelationen der
Windungszahldichte, deren Integrale die statistischen Momente der Windungszahl
ergeben, sowie die Verteilung der Windungszahl.

Auf technischer Ebene führen wir das topologische Problem auf ein spektrales
Problem zurück, so dass die Methoden der Zufallsmatrixtheorie anwendbar werden.
Dabei stoßen wir auf das sphärische Ensemble von Zufallsmatrizen, welches anders
als die klassischen Ensembles der Zufallsmatrixtheorie keiner Gaußschen Matrix-
wahrscheinlichkeitsverteilung folgt. Wir verwenden verschiedene Methoden der Zu-
fallsmatrixtheorie um die Ensemblemittelwerte zu berechnen. Insbesondere arbeiten
wir mit einer Methode, die mit der Supersymmetriemethode der Zufallsmatrixtheo-
rie verwandt ist. Diese Methode nutzt Strukturen der Supersymmetrie aus, ohne das
Problem auf den Superraum abzubilden, und wird daher auch als Supersymmetrie
ohne Supersymmetrie bezeichnet.
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Chapter 1
Introduction

Topology is the branch of mathematics that studies spatial objects beyond
geometric concepts like angles and lengths [4]. Instead, it is concerned with

properties that do not change under continuous deformations, called topological
invariants. Figuratively speaking, these transformations correspond to bending or
stretching the object, whereas tearing or gluing are not allowed. In figure 1.1 an
example of such a transformation is depicted. A conventional cup with one handle
can be continuously deformed into a torus. In this case, the topological invariant is
the number of holes in the object.

Figure 1.1: The prime example of topological invariance: The amount of holes is
unchanged when deforming the torus into a cup or vice versa. Figure
taken from [5] via [6].

Topology appears in various physical theories. This ranges from Hamiltonian
mechanics, where the topology of the phase space provides information about the
dynamics of the system [7], to yet unsolved questions in cosmology about the topol-
ogy of spacetime [8,9]. In recent years, topology has experienced a wave of renewed
attention, originating from the discovery of topological condensed matter [10–15].
This is also the motivation for the present work.

The starting point for this field was the discovery of the quantum Hall effect [16–
19]. The Hall resistance of a two-dimensional electron gas at low temperature does
not exhibit the classically expected proportional growth in the external magnetic
field, but is quantized instead. This peculiarity is explained by the formation of
electronic states, that are localized to the edges of the sample [20–22]. While the
edge states allow for dissipationless electronic transport, the interior states cannot
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1 Introduction

contribute to a current. One speaks of a topological insulator, a material that is
conducting on its boundary, but insulating in its interior. Varying the magnetic
field may change the number of edge states, which can be measured as an increase
or decrease in Hall resistance.

But where is the link to topology? To uncover this link, one has to distinguish
between the system with open boundary conditions, in which edge states can occur,
and the corresponding system with closed boundary conditions, commonly referred
to as the bulk. As it turns out, the number of edge states in the open system is
determined by a topological invariant, which is defined for the bulk system. Al-
though real space representations for the topological invariant exist [23–26], the
bulk Hamiltonian is commonly considered in momentum space. In the presence of
discrete translation invariance, Bloch’s theorem applies, and the Hamiltonian de-
pends parametrically on the crystal momenta in the Brillouin zone. The eigenstates
of the Bloch Hamiltonian form a vector bundle over the Brillouin zone, which may
be topologically non-trivial. The topological characterization of vector bundles has
been a long-standing achievement of mathematics, culminating in general methods
for computing topological invariants, such as Chern-Weil theory [4]. Once topo-
logical non-triviality is established, one finally has to argue that the topological
invariant, defined for the bulk Hamiltonian, is related to the number of edge states
in the open system. This relation is known as bulk-boundary correspondence, which
has only recently been shown to hold under general conditions [27,28].

Symmetry considerations play a pivotal role for the existence of a non-trivial topol-
ogy. In the quantum Hall effect, time reversal invariance is broken by the external
magnetic field. In contrast, for a related topological phenomenon, the quantum
spin Hall effect, in which a quantized spin current, but a vanishing net electronic
current is observed, time reversal invariance must be preserved [29, 30]. Excluding,
for the time being, all spatial symmetries like inversion or discrete rotations, we are
left with three fundamental symmetries: time reversal invariance, the particle-hole
constraint and chiral symmetry. The particle-hole constraint is present for instance
in superconductors. Chiral symmetry arises as a combination of the former with
time reversal invariance. The Altland-Zirnbauer classification distinguishes between
ten symmetry classes on the basis of these fundamental symmetries and is there-
fore also known as the tenfold way [31, 32]. In this framework, a periodic table of
topological insulators and topological superconductors can be established [33–36],
which predicts whether a non-trivial topology is possible, depending on the sym-
metry class and the dimension of the system, and which is valid for Fermionic
systems that are non-interacting except for a mean-field theory. While topological
insulators are characterized by electronic edge states, their superconducting counter-
parts host collective electron-hole excitations, so-called Bogolyubov quasiparticles,
on their boundary [13,36–38].
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1 Introduction

Generally, topological invariants may change when varying the system parameters,
such as the external magnetic field in the quantum Hall effect. Assuming that the
symmetries are preserved, this coincides with a closing of the insulating energy gap.
This is a topological phase transition, which differs from an ordinary one in that
there is no symmetry breaking involved [39]. In other words, two Hamiltonians with
identical symmetries belong to the same topological phase if they can be deformed
into each other while maintaining the gap. However, the topological invariant may
also change while maintaining the gap. To do this, one has to break the symmetry,
temporarily destroying the topological state, and then restoring it, obtaining another
topological phase [14].

In light of this, a heuristic explanation for bulk-boundary correspondence can be
given. The energy gap necessarily has to close at the interface of two materials
in different topological phases, for instance between a topological insulator and air
(which is a trivial insulator). This leads to the emergence of states at the Fermi
level that are localized to the interface, i.e. the boundary of the topological phase.
These are precisely the aforementioned topological edge states.

Disorder plays a special role in topological condensed matter. Spatially inhomoge-
neous perturbations of the system parameters break all spatial symmetries, render-
ing the Altland-Zirnbauer classification exhaustive. At the same time, it prevents
the definition of the topological invariant via the Bloch Hamiltonian. Furthermore,
disorder usually leads to localization [40,41], putting the previously established con-
ductive properties of topological matter into question. Nevertheless, topological edge
states turn out to be stable against disorder as long as symmetries are protected,
and the energy gap stays finite [27,42,43].

The latter property is also what makes topological matter interesting for novel
technological applications, most notably in quantum information [44–48]. Thus, the
field of topological matter extends beyond theoretical considerations. Topological
insulators and their electronic edge states have been studied extensively in numerous
experiments [49–53]. Surprisingly, these materials have even been found to occur
naturally in the Earth’s crust [54]. However, in the case of topological supercon-
ductors and their quasiparticle edge states, it seems to be more difficult to obtain
direct evidence, and research here is still ongoing [55,56].

The present work contributes to the field of disordered topological matter. We con-
sider one-dimensional systems with chiral symmetry, for which the above-mentioned
periodic table predicts a non-trivial topology. The relevant topological invariant
in these symmetry classes is the winding number [14, 26, 35, 36]. In general, the
topological invariant is sensitive to the disorder configuration, which motivates a
statistical description in which the invariant becomes a random variable. We realize
the disorder by a random matrix model for the Bloch Hamiltonian. Our justification
to stick to the Bloch Hamiltonian despite the presence of disorder is that we may

3



1 Introduction

assume that the disorder is itself periodic with a large period, so that the disordered
system remains periodic with a large disordered unit cell. Under this assumption,
the winding number can still be defined as a property of the Bloch Hamiltonian,
eventually taking the limit of a large disorder period.

The idea of random matrix theory is to substitute the Hamiltonian (or other opera-
tors relevant for the description of the system) with an ensemble of random matrices.
The only information about the system entering the model are its symmetries. It is
a versatile tool for the description of complex systems and the long-standing expe-
rience is that it is often capable of modeling universal statistical properties in the
limit of large matrix dimensions [57, 58]. It found application in various areas of
physics such as condensed matter physics [31, 37, 59, 60], quantum chaos [61] and
quantum chromodynamics [62–68]. Since the Bloch Hamiltonian depends on the
crystal momenta we employ a parametric random matrix model. Such random ma-
trix models have been considered before in the context of disordered systems under
the influence of a magnetic flux, where spectral properties instead of topological
ones were examined [69–72]. Furthermore, there are studies, some of which were
partly developed in parallel and in close communication with us, which carry out
a statistical analysis of the Chern number, the topological invariant relevant to the
quantum Hall effect [73–75]. To our knowledge, a statistical analysis of the winding
number in the context of random matrix theory has not been performed before.

The outline of this thesis is as follows. Chapter 2 covers the aspects of topological
matter required for the later chapters. In detail, this is the tenfold way symme-
try classification of topological insulators and topological superconductors and the
winding number as the topological invariant for one-dimensional chiral symmetric
systems. We illustrate the concepts developed using the example of the Kitaev
chain, a toy model of a one-dimensional superconductor. Chapter 3 is an introduc-
tion to random matrix theory. We present its role in physics and define some basic
concepts. We develop these using the example of random matrix ensembles, which
we encounter in the later chapters. In addition, we discuss random matrix models
with parametric dependence and a method that we use to evaluate certain ensemble
averages later on. Chapter 4 is based on [1]. We define our random matrix model
and map the topological problem of the winding number statistics to a spectral
problem concerning a certain random matrix ensemble, referred to as the spherical
ensemble. This ensemble has been analyzed in several works and does not follow a
Gaussian matrix probability distribution like the ensembles of classical random ma-
trix theory [76–79]. We calculate the probability distribution of the winding number
and the correlation functions of the winding number density, which yield the mo-
ments of the winding number upon integration over the Brillouin zone. Chapter 5 is
based on [2] and [3]. We generalize the random matrix model from chapter 4 to two
further symmetry classes with time reversal invariance. We formulate a generating
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function for the correlation functions of the winding number density, which allows
us to map the topological problem to a spectral one in the same fashion as before.
We achieve exact expressions for the ensemble averages by employing a method that
is related to the supersymmetry method of random matrix theory [80, 81]. It ex-
ploits supersymmetry structures without mapping the integrals to superspace, and
thus has been coined supersymmetry without supersymmetry [82, 83]. In chapter 6
we provide a conclusion of the new developments and put them into context with
contemporary work and future research objectives.

5



Chapter 2
Symmetry and Topology

This chapter offers a brief review on the tenfold symmetry classification and the
periodic table of topological insulators and topological superconductors. In

section 2.1 we specify the systems we consider, for which the prediction of non-
trivial topological phases via the symmetry classification is valid. Before we turn to
the tenfold way in section 2.2, it is necessary to introduce the symmetry operations
in which it is formulated. In section 2.3 we define the winding number, which is the
relevant topological invariant for one-dimensional chiral systems. Finally, in section
2.4 we illustrate the concepts introduced by means of a prominent toy model of a
topological superconductor with chiral symmetry, the Kitaev chain.

2.1 Free Fermion Hamiltonian
A common situation in condensed matter physics is that of electrons subject to the
spatially periodic potential of a crystal. Furthermore, the electrons interact with
each other. This can be due to Coloumb interaction or due to indirect mechanisms
such as phonon coupling. We assume that the latter is well described by a mean-
field approximation, i.e. the electrons are free of many-particle interactions except
for the mean field of all electrons. This leads to the concept of a free Fermion
model [31, 33,36]. The general second quantized Hamiltonian is

Ĥ =
∑
µ,ν

(
Ξµν ĉ

†
µĉν + 1

2∆µν ĉ
†
µĉ

†
ν − 1

2∆∗
µν ĉµĉν

)
, (2.1)

where ĉ
†
µ, ĉµ are the creation- and annihilation operators for electrons with the

combined index µ, containing all relevant quantum numbers. The normal part Ξµν

describes all single-particle terms such as a hopping between sites or an on-site
potential and the pairing potential ∆µν results from the mean-field approximation.
Due to the Hermiticity of Ĥ , the following must apply

Ξµν = Ξ∗
νµ, ∆µν = −∆νµ. (2.2)

6



2.2 Symmetry Classification

Since the Hamiltonian (2.1) contains the creation- and annihilation operators only
in second order, it can be written as a sesquilinear form

Ĥ = 1
2Ψ̂†

HΨ̂ (2.3)

in the vectors

Ψ̂ =
[
ĉ1 · · · ĉN ĉ

†
1 · · · ĉ†

N

]T
, Ψ̂† =

[
ĉ

†
1 · · · ĉ†

N ĉ1 · · · ĉN

]
. (2.4)

The Hermitian 2 × 2-block matrix

H =
[

Ξ ∆
−∆∗ −ΞT

]
(2.5)

is referred to as the Bogolyubov-de Gennes Hamiltonian or first quantized Hamil-
tonian. In case there is no pairing potential, we omit the 2 × 2-structure and work
with the normal part alone.

We may represent the Hamiltonian in momentum space by a discrete Fourier
transform from the crystal lattice to the reciprocal lattice [15]. In the presence of
discrete translation symmetry this leads to the Bloch Hamiltonian

H(p) =
∑

r

e−ipr

[
Ξ(r) ∆(r)

−∆∗(r) −ΞT (r)

]
, (2.6)

where we write the site indices as a functional argument, because they are affected
by the transformation. We want to consider them on the scale of the lattice constant,
such that r ∈ Zd for a d-dimensional system. The crystal momentum is denoted by
p instead of k as is usual due to an overlap of notational conventions appearing in
the later chapters. We assume a continuity limit, such that p ∈ [0, 2π)d is on the
Brillouin torus.

2.2 Symmetry Classification
Since we want to consider disordered systems, it is reasonable to exclude all spatial
symmetries. In this section we first want to shed some light upon the three remain-
ing fundamental symmetries: time reversal invariance, the particle-hole constraint
and chiral symmetry. Subsequently, we introduce the Altland-Zirnbauer symmetry
classes and the periodic table of topological insulators and topological superconduc-
tors.

To begin with, let us clarify which operators are suitable for describing symme-
tries. A symmetry operation V should leave the overlap between quantum states
unchanged ∣∣∣⟨φ|V†V|χ⟩

∣∣∣2 = |⟨φ|χ⟩|2 . (2.7)

7



2 Symmetry and Topology

A theorem of Wigner states that there are only two possibilities [84]. Either V is
unitary

⟨φ|V†V|χ⟩ = ⟨φ|χ⟩ (2.8)
or antiunitary

⟨φ|V†V|χ⟩ = ⟨φ|χ⟩∗ . (2.9)
An antiunitary operator can be written as

V = UVK, (2.10)

where UV is unitary and K is the complex conjugation of all objects to its right.
Next, we will introduce the above-mentioned symmetry operations, place them in
one of these two classes, and examine their effect on the Hamiltonian.

2.2.1 Time Reversal
A reversal of the arrow of time is accompanied by a reversal of various other quanti-
ties, such as the velocity, while others, such as the position are left unchanged. This
naturally carries over to quantum theory, although we have to pay special attention
to the spin, which has no classical analogue. Nevertheless, it can be argued, for
instance when considering the Einstein-de Haas effect, that the spin, just like the
angular momentum, is odd under time reversal. In equations, we may denote for
position, momentum and spin

T r̂T −1 = r̂ , T p̂T −1 = −p̂ , T ŜT −1 = −Ŝ (2.11)

with the time reversal operator T . These should be understood as a general set of
rules, valid also for the operators creating or annihilating a particle at position r or
with momentum p. The Hamiltonian of a time reversal invariant system commutes
with this operator

T ĤT −1 = Ĥ . (2.12)
Applying (2.11) to the commutation relation between position and momentum

T [r̂ , p̂ ]T −1 = T iT −1 = −i (2.13)

it is quickly inferred that T is antiunitary. Furthermore, we require that T is an
involution on the projective Hilbert space, which means applying it twice can yield
at most a phase

T 2 = eiφ. (2.14)
Since T is antiunitary, applying it once from the left and once from the right shows
that the phase is real

T 3 = e−iφT = eiφT , (2.15)

8



2.2 Symmetry Classification

so that there are only two possibilities for its square

T 2 = ±1. (2.16)

The case, where T squares to positive unity contains systems without spin. Here,
we have only a complex conjugation

T = K, T 2 = +1. (2.17)

According to the commutation relation (2.12), this results in a real Hamiltonian.
Taking its Hermiticity into account, it is consequently real symmetric. In spinful
systems, we have to add a unitary rotation in spin space

T = UT K, UT = 11 ⊗ exp (iπSy) (2.18)

for the reversal of the spin. The square of T depends on the Fermion parity. For an
odd number of Fermions it squares to negative, and for an even number to positive
unity. The tensor product with the unit matrix is a reminder on the remaining
degrees of freedom, which are not affected by time reversal. The choice of the
canonical y-axis as the rotational axis is indeed not arbitrary, as can be shown by
the requirement (2.11), see [61]. In the case of Fermionic single-particle systems like
the free Fermion models (2.1), we obtain

T = 11 ⊗ exp
(
i
π

2σy

)
K = (11 ⊗ iσy) K, T 2 = −1, (2.19)

where σy is the second Pauli matrix acting on spin space. Each 2 × 2-block of a
matrix commuting with this operator can be parametrized by[

z w
−w∗ z∗

]
= Re z 112 + i Imw σx + iRew σy + i Im z σz (2.20)

with z, w ∈ C and is referred to as a real quaternion. Indeed, the anti-Hermitian
Pauli matrices together with the unit matrix {112, iσx, iσy, iσz} satisfy the multi-
plication table of the quaternions, and the prefactors {Re z, Imw,Rew, Im z} are
real numbers. In combination with its Hermiticity, a real quaternion Hamiltonian
is referred to as a quaternion self-dual matrix [58, 61, 85]. An important property
of such a Hamiltonian is that each eigenenergy is evenfold degenerate, which is the
well-known Kramers’ degeneracy.

Since we carry out our investigation in momentum space, it remains to consider
the action of the time reversal operator on the Bloch Hamiltonian (2.6). We see
directly that due to its antiunitarity the crystal momentum p is reversed

T H(p)T −1 = H(−p). (2.21)

9



2 Symmetry and Topology

Consequently, a time reversal invariant Bloch Hamiltonian does not have a real
structure in general. Only for the time reversal invariant momenta, where p corre-
sponds to −p due to the periodicity of the Brillouin zone, we find H(p) to be real
symmetric or quaternion self-dual. We will return to this in chapter 5 when defining
our random matrix model, where this is seen more clearly.

2.2.2 Particle-Hole Conjugation
The Bogolyubov-de Gennes Hamiltonian (2.5) satisfies the constraint

PHP−1 = −H (2.22)

with the particle-hole conjugation

P = (11 ⊗ τx) K, P2 = +1. (2.23)

In the presence of spin rotation symmetry, the Hamiltonian decomposes into two
equivalent subblocks, giving rise to a new structure [31, 36], obeying the anticom-
mutation under

P = (11 ⊗ iτy) K, P2 = −1, (2.24)
where τx and τy are the first and second Pauli matrix now acting on particle-hole
space, i.e. the 2 × 2-structure of the Hamiltonian (2.5). Just like the time reversal
operator, particle-hole conjugation is antiunitary and therefore it squares to either
positive or negative unity. The eigenstates of a Hamiltonian fulfilling the anticom-
mutation relation (2.22) form pairs of positive and negative energies

H |φj⟩ = Ej |φj⟩ ⇒ HP |φj⟩ = −PH |φj⟩ = −EjP |φj⟩ , (2.25)

rendering its spectrum symmetric around zero energy. On the Bloch Hamiltonian
particle-hole conjugation acts as

PH(p)P−1 = −H(−p), (2.26)

where, as in the case of time reversal, the crystal momentum is reversed due to the
antiunitary of the operator.

Prior, when discussing time reversal, we started from physical requirements on
the observables and then deduced the time reversal operator from them. Here, we
instead identified particle-hole conjugation from the structure of the Bogolyubov-de
Gennes Hamiltonian. However, particle-hole conjugation can as well be defined ad
hoc as an exchange of creation operators, the "particles", and annihilation operators,
the "holes"

P ĉ†
µP−1 = ĉµ, P ĉµP−1 = ĉ

†
µ. (2.27)

10



2.2 Symmetry Classification

Naturally, any traceless Fermionic Hamiltonian anticommutes with this operation.
Therefore, what (2.22) and (2.26) encode is simply the Fermionic anticommuta-
tion relation. There have been discussions about the terminology [86], as it is not
uncommon in contemporary literature to refer to this property as particle-hole sym-
metry [34–36]. However, it is clear that it is a property of the Bogolyubov-de
Gennes formalism for free Fermions rather than a symmetry of the underlying phys-
ical system. Other terminological suggestions are Fermi constraint or particle-hole
constraint and particle-hole conjugation for the operator P , where the latter is what
we adopted in this work.

2.2.3 Chiral Symmetry
Finally, we obtain the chiral operator as a combination of time reversal and particle-
hole conjugation

C ∼ PT ∼ T P . (2.28)
As a combination of two antiunitary operators, the chiral operator itself is unitary.
The order of T and P does not matter as they act in different subspaces and thus
commute up to a phase factor. Any unitary involution can be rescaled such that it
squares to positive unity

C2 = +1, (2.29)
which is the usual convention for the chiral operator. A chiral symmetric Hamilto-
nian obeys the anticommutation relation

CHC−1 = −H. (2.30)

We point out that such a Hamiltonian does not have to be invariant under time
reversal and particle-hole conjugation individually. It may also be the case that
only their combination is invariant. Since C squares to positive unity, its eigenvalues
are ±1. Thus, its diagonal form is

C =
[
11N 0
0 −11M

]
(2.31)

with N positive and M negative eigenvalues. In the diagonal basis of the chiral
operator, the Hamiltonian assumes a block off-diagonal form

H =
[

0 K
K† 0

]
. (2.32)

The N × M -matrix K is a priori arbitrary, since Hermiticity is ensured by the
2×2-block structure. Similar to the particle-hole constraint, the spectrum of such a

11



2 Symmetry and Topology

Hamiltonian is, due to the anticommutation relation (2.30), symmetric around zero
energy. In the case of rectangular K, the Hamiltonian necessarily has pairs of zero
energy eigenvalues, whose number is given by the rectangularity

ν = |N −M | . (2.33)

In quantum chromodynamics, this parameter is commonly referred to as the topo-
logical charge [87].

In some systems, chiral symmetry can be understood from a geometrical perspec-
tive and is then also referred to as sublattice symmetry. One example of such a
system is graphene with nearest-neighbour hopping. Generally, the Hilbert space of
a chiral system consists of two subspaces (e.g. sublattices) with eigenvalues ±1 of
the chiral operator. The Hamiltonian swaps states between these two blocks. The
anticommutation relation (2.30) transfers directly to the Bloch Hamiltonian

CH(p)C−1 = −H(p), (2.34)

and therefore it assumes a block off-diagonal form like (2.32) as well.

2.2.4 The Tenfold Way
We addressed three fundamental symmetry operations and are now in the position
to formulate the Altland-Zirnbauer symmetry classes, also known as the tenfold
way. There are three possibilities for behaviour under time reversal and particle-
hole conjugation: invariances are either absent or their operators square to positive
or negative unity. Chiral symmetry, on the other hand, comes only in one flavour
and is present when the system is both T - and P-invariant, but may also appear
by itself. This results in a total of ten symmetry classes, which are summarized in
table 2.1.

The symmetry classes are grouped therein according to historical context. Inter-
estingly, all of them were discovered in works on random matrix theory. Dyson’s
threefold way distinguishes three symmetry classes based only on the behaviour un-
der time reversal [58, 61, 85]. As mentioned above, time reversal invariance assigns
a real structure to the Hamiltonian. It is either symmetric with real entries (β = 1)
or quaternion self-dual (β = 4). In the absence of time reversal invariance the
Hamiltonian is Hermitian with complex entries (β = 2). The Dyson index β is the
dimension of the corresponding number field and is used to label these three cases
in random matrix theory.

The chiral classes have been identified in works on quantum chromodynamics [88],
where the chiral symmetry of the anti-Hermitian Dirac operator is broken by the
quark masses and is restored in the high temperature limit. The so emerging chiral
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2.2 Symmetry Classification

Cartan label C P T Symmetric space
A U(N)

Dyson classes AI 1 U(N)/O(N)
AII -1 U(2N)/Sp(N)
AIII 1 U(N +M)/U(N)× U(M)

Chiral classes BDI 1 1 1 O(N +M)/O(N)× O(M)
CII 1 -1 -1 Sp(N +M)/Sp(N)× Sp(M)
D 1 SO(2N)

Superconducting C -1 Sp(N)
classes DIII 1 1 -1 SO(2N)/U(N)

CI 1 -1 1 Sp(N)/U(N)

Table 2.1: The Altland-Zirnbauer symmetry classes, also known as the tenfold way.

random matrix theory turned out to be a fruitful approach in quantum chromody-
namics [62–68]. Again, one distinguishes between three classes with real, complex
or quaternion entries, which amounts to the threefold classification of Hamiltonians
in terms of time reversal.

The remaining four classes were introduced in works on normal-superconductor
interfaces [31,89,90], which yield the possibility for Andreev reflection [91]. An elec-
tron in the normal conductor is not ideally reflected at the normal-superconductor
interface, instead it passes into the superconductor, forming a Cooper pair, and a
hole is retroreflected into the normal conductor, obeying charge conservation.

It is more common in the condensed matter community to use the Cartan label
than the Dyson index, as it comprises all ten symmetry classes. It stems from a
classification of symmetric spaces, a task already undertaken by Cartan in the 1920s
[92, 93]. Simply put, these spaces contain the time evolution operators exp(−itH)
of the corresponding Hamiltonians. As an example, consider the classes A and
AI. A class A Hamiltonian has no symmetries at all and is therefore a complex
Hermitian N × N -matrix. The complex exponential maps these matrices to the
unitary group U(N), being the symmetric space of class A. Imposing spinless time
reversal invariance invokes the real symmetric Hamiltonians of class AI, which are
mapped onto the coset space U(N)/O(N) by the complex exponential, which is
the symmetric space of class AI. In addition to the symmetric spaces found in
the tenfold way, Cartan’s classification includes spaces involving exceptional Lie
groups [94], which feature a fixed dimension and are therefore not suited to describe
Hamiltonians.

The periodic table of topological insulators and topological superconductors is
shown in table 2.2. It is formulated in the tenfold symmetry classification and
predicts whether a topological phase is possible in dependence of the symmetry class
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2 Symmetry and Topology

Symmetry class C P T d=0 1 2 3 4 5 6 7
A Z Z Z Z

AIII 1 Z Z Z Z
AI 1 Z 2Z Z2 Z2

BDI 1 1 1 Z2 Z 2Z Z2
D 1 Z2 Z2 Z 2Z

DIII 1 1 -1 Z2 Z2 Z 2Z
AII -1 2Z Z2 Z2 Z
CII 1 -1 -1 2Z Z2 Z2 Z
C -1 2Z Z2 Z2 Z
CI 1 -1 1 2Z Z2 Z2 Z

Table 2.2: The periodic table of topological insulators and topological superconduc-
tors.

and the dimension d of the parameter manifold. In the case of a Bloch Hamiltonian,
this manifold is the Brillouin zone and d is equal to the real space dimension of the
system. The entries indicate whether the topological invariant is binary Z2, integer
Z, or an even integer 2Z. An empty field means that a topological phase is not
possible.

The periodic table is constructed in the framework of topological k-theory [33,95]
or by a homotopy classification of Dirac Hamiltonians [36,96] describing phase tran-
sition points. It is periodic in the truest sense of the word. The complex classes A
and AIII, whose Hamiltonians are not constrained by an antiunitary operator, have
a periodicity of two in the dimension d, while the remaining real classes have a peri-
odicity of eight in d. This property is known as Bott periodicity. Topological phases
with d > 3 are not fictitious, because parameter spaces with additional dimensions
exist [97], for example in quasicrystals [98]. Furthermore, the symmetry classes are
arranged in a different order than in table 2.1, uncovering a diagonal structure. The
reason for this structure is the Bott clock mechanism [36, 99]. Topological non-
triviality can be maintained while making specific changes to the symmetries and
adding a dimension to the parameter space.

Taking spatial symmetries into account leads to a wealth of new symmetry classes
to which the periodic table can be extended [36, 100–103]. In this context, a dis-
tinction is made between strong and weak topological insulators and topological
superconductors. The former are stable against disorder and their phases are cat-
egorized in table 2.2, while the latter are not stable against disorder and thus rely
on additional spatial symmetries.
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2.3 Winding Number

2.3 Winding Number
The topological invariant relevant for the one-dimensional chiral classes AIII, BDI
and CII is termed winding number. The Bloch Hamiltonian of a chiral symmetric
system obeys the anticommutation relation (2.34) and therefore can be cast into a
block off-diagonal form

H(p) =
[

0 K(p)
K†(p) 0

]
. (2.35)

From now on, we assume that K(p) is a square matrix of dimension N . In the
case of rectangular K(p) the number of zero modes is given by the rectangularity
parameter, see (2.33). Due to the periodicity in p, the determinant of K(p) is a
closed curve in the complex plane. The winding number is the number of times
this curve winds around the origin, where counterclockwise revolutions are counted
positively and clockwise revolutions negatively. It is given by

W = 1
2πi

∮
det K(p)

dz

z
= 1

2πi

2π∫
0

dpw(p). (2.36)

This expression evaluates to an integer as can be verified quickly by invoking
Cauchy’s argument principle [104]. The winding number density is the logarith-
mic derivative of the determinant

w(p) = d

dp
ln detK(p) = 1

detK(p)
d

dp
detK(p) = trK−1(p) d

dp
K(p), (2.37)

which is well defined only for invertible K(p). In the case of non-invertibility for
some p the system undergoes a topological phase transition during which the winding
number changes its value. Indeed, this coincides with a closing of the band gap. If
detK(p) = 0, it must also be detH(p) = 0, and because of chiral symmetry, there
must be at least one pair of zero energy modes at this point.

In the following chapters we work with expression (2.37), as it is particularly
suitable for calculations within random matrix theory. Nevertheless, it is worthwhile
to consider also an alternative expression for the same quantity. We define the
projection on the N eigenstates with positive resp. negative energy

P±(p) =
N∑

n=1
|n±(p)⟩ ⟨n±(p)| (2.38)

and the flat band Hamiltonian

Q(p) = 112N − 2P−(p) = P+(p) − P−(p) =
[

0 q(p)
q†(p) 0

]
, (2.39)
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2 Symmetry and Topology

for which the eigenvalues ±En(p) are deformed to ±1. It has the same eigenbasis as
H(p) and thus assumes a block off-diagonal form as well. The matrix q(p) is unitary
because Q2(p) = 112N . The eigenstates of H(p) and Q(p) have the block form

|n±(p)⟩ =
[
un(p)

±vn(p)

]
(2.40)

and the chiral operator C maps an eigenstate to its chiral partner with energy of
opposite sign

C |n±(p)⟩ = |n∓(p)⟩ . (2.41)
The eigenstates form an orthonormal system

⟨n±(p)|m±(p)⟩ = ⟨un(p)|um(p)⟩ + ⟨vn(p)|vm(p)⟩ = δmn,

⟨n±(p)|C|m±(p)⟩ = ⟨un(p)|um(p)⟩ − ⟨vn(p)|vm(p)⟩ = 0,
(2.42)

which yields
⟨un(p)|um(p)⟩ = ⟨vn(p)|vm(p)⟩ = δnm

2 . (2.43)

By considering the eigenvalue equations

H(p) |n±(p)⟩ = ±En(p) |n±(p)⟩ , Q(p) |n±(p)⟩ = ± |n±(p)⟩ (2.44)

we find
K(p) = 2

N∑
n=1

En(p) |un(p)⟩ ⟨vn(p)| = ε(p)q(p) (2.45)

with

q(p) = 2
N∑

n=1
|un(p)⟩ ⟨vn(p)| , ε(p) = 2

N∑
n=1

En(p) |un(p)⟩ ⟨un(p)| . (2.46)

Inserting this into (2.37), we obtain two contributions to the winding number density

w(p) = trK−1(p) d
dp
K(p) = tr ε−1(p) d

dp
ε(p) + tr q−1(p) d

dp
q(p). (2.47)

The first contribution is the real part of the winding number density and corresponds
to the radial part of the determinant. Thus, it integrates to zero over a whole period

2π∫
0

dp tr ε−1(p) d
dp
ε(p) =

2π∫
0

dp
N∑

n=1

1
En(p)

d

dp
En(p) =

N∑
n=1

lnEn(p)
∣∣∣∣∣∣
p=2π

p=0

= 0. (2.48)

16
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The second is the imaginary part and corresponds to the angular part of the deter-
minant. It becomes

tr q−1(p) d
dp
q(p) = 2

N∑
n=1

⟨un(p)| d
dp

|un(p)⟩ − ⟨vn(p)| d
dp

|vn(p)⟩ =
2N∑
n=1

⟨n(p)|C d

dp
|n(p)⟩

(2.49)

and the winding number may be achieved as an integral over this quantity instead
of (2.37). From this expression it is clear that the winding number is indeed a
property of the eigenvector bundle of the Bloch Hamiltonian and not of its bands.
Furthermore, similarities to other topological invariants like the Chern number and
the Chern-Simons invariant are revealed, see [14,15,36].

2.4 Example: Kitaev Chain
We want to illustrate the concepts introduced in the last section by means of a
well-studied toy model of a one-dimensional superconductor. It is a chain of N
electrons located at sites j with a chemical potential µ, a superconducting pairing
potential ∆ and nearest-neighbour hopping with amplitude t [105]. The electrons
are considered "spinless". Physically, this corresponds to a strongly polarized chain
for which we project the Hamiltonian onto the lowest energy subspace, in which all
spins are parallel [37]. The second quantized Hamiltonian is

Ĥ =
N∑

j=1

[
t

2
(
ĉ

†
j ĉj+1 + ĉ

†
j+1ĉj

)
− µ ĉ

†
j ĉj + 1

2
(
∆∗ĉ

†
j ĉ

†
j+1 − ∆ĉj ĉj+1

)]
. (2.50)

If the chain has closed boundary conditions, j is defined modulo N , and if it has
open boundary conditions, terms containing operators at the (non-existent) site
N + 1 are omitted. The pairing potential ∆ can be assumed real without loss of
generality, since one can always apply the gauge transformation ĉj → eiφĉj with an
appropriate phase. We additionally assume t ∈ R so that the system is time reversal
invariant. Consequently, its Bogolyubov-de Gennes Hamiltonian is real and there
is chiral symmetry as well. Applying (2.6) we find the Bloch Hamiltonian. In the
eigenbasis of the chiral operator it reads

H(p) =
[

0 µ− t cos p+ i∆ sin p
µ− t cos p− i∆ sin p 0

]
. (2.51)

The off-diagonal block describes an ellipse in the complex plane

K(p) = µ− t cos p+ i∆ sin p. (2.52)
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2 Symmetry and Topology

For a higher-dimensional Bloch Hamiltonian we would have to take its determinant
to obtain a closed curve and define a winding number. The center point of the ellipse
is determined by µ and the semiaxes by ∆ and t. In figure 2.1 we depict K(p) and
the eigenvalues of H(p) as functions of p for t = ∆ = 1, so that K(p) is a circle, and
µ ∈ {1/2, 1, 3/2}. We find the winding number to be W = 1 for |µ| < 1 and W = 0
for |µ| > 1. For |µ| = 1 the winding number is undefined as K(p) crosses the origin
and the energy gap closes, marking the topological phase transition.

In figure 2.2 we depict the eigenvalues of the Bogolyubov-de Gennes Hamiltonian
for a chain with N = 20 sites and closed resp. open boundary conditions as functions
of the chemical potential µ. Again, we fix t = ∆ = 1. The spectra are symmetric
around zero due to invariance under particle-hole conjugation resp. chiral symmetry.
For the closed chain a pair of modes crosses zero energy at µ = 1, where the gap has
to close due to the topological phase transition. For the open chain, on the other
hand, a pair of zero modes persists until some value µ < 1. These are the edge
states of the topological superconductor. They do not persist exactly until µ = 1
due to the finite size of the chain.

Next, we want to consider the wave functions of the edge states. For this we need
to provide some more details. Just like in (2.40), but now sticking to the position
basis, we write the eigenstates of the Bogolyubov-de Gennes Hamiltonian in a block
form

|n⟩ =
[
un

vn

]
. (2.53)

When diagonalizing the Bogolyubov-de Gennes Hamiltonian the second quantized
Hamiltonian (2.3) can be written as

Ĥ = 1
2

2N∑
n=1

Enγ̂
†
nγ̂n (2.54)

with the eigenenergies En and new Fermionic operators

γ̂n =
N∑

j=1
unj ĉn + vnj ĉ

†
n, (2.55)

which embody particle-hole excitations and are referred to as Bogolyubov quasipar-
ticles. Note that, unlike the electrons in (2.50), their number is conserved. The
probability to find a particle in state n at site j is

|unj|2 + |vnj|2 . (2.56)

In figure 2.3 we plot the discrete probability distribution for finding the Bogolyubov
quasiparticle belonging to the eigenstate of one of the topological zero modes at
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Figure 2.1: The curve K(p) (left) describing a circle for t = ∆ = 1 and corresponding
dispersion relation E(p) (right). Topological phase with W = 1 for
µ = 1/2 (top), topological phase transition with undefined W for µ = 1
(center) and trivial phase with W = 0 for µ = 3/2 (bottom).
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Figure 2.2: Energy spectrum of a Kitaev chain with closed (top) and open (bottom)
boundary conditions in dependence of the chemical potential µ. The
chain has N = 20 sites and the remaining system parameters are set to
t = ∆ = 1.
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site j. In the topological regime (µ = 1/2) it is localized to the edges, whereas in
the trivial regime (µ = 3/2) the wave function is delocalized over the whole chain.
This is in accordance with bulk-boundary correspondence: the winding number,
defined for the chain with closed boundary conditions, determines the number of
states localized to one of the edges in the open chain.

Bogolyubov quasiparticles have the Majorana property, i.e. they are their own
antiparticles [106]. Majorana Fermions have been proposed as elementary particles
already in the 1930s, but so far no such particle has been identified. However,
Majorana quasiparticles turned out to be a rewarding concept in condensed matter
physics [13,36,37,105]. Due to their real wave function they are particularly resistant
to decoherence and therefore of interest for quantum information applications [38,
44,45,47,48].
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Figure 2.3: Position probability distribution of a Bogolyubov quasiparticle eigen-
state in the Kitaev chain with open boundary conditions in the topo-
logical regime (µ = 1/2) and in the trivial regime (µ = 3/2). It is the
eigenstate that corresponds to one of the zero modes in the topological
regime. The probability distribution of its chiral partner is identical and
therefore not represented. The chain has N = 20 sites and the remaining
system parameters are set to t = ∆ = 1. The discrete plot is smoothed
for visual reasons.
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Chapter 3
Random Matrix Theory

This chapter serves as an introduction to random matrix theory. Section 3.1
covers the main aspects and motivates the use of random matrices in physics.

In section 3.2 we introduce three families of random matrix ensembles that we
will encounter in the later chapters. In section 3.3 we briefly discuss applications
and universality aspects of random matrix models with an additional parametric
dependence. In section 3.4 we introduce the supersymmetry without supersymmetry
technique, which we use in chapter 5.

3.1 Main Aspects
A random matrix ensemble is a collection of matrices whose entries are random
variables [58]. Such ensembles were first considered in mathematics [107] and became
popular in physics through Wigner, who used them to describe the spectra of nuclear
reactions involving heavy nuclei [108–110]. Over the years, random matrix theory
spread to other areas of physics [57,111], such as quantum chaos [61,112], quantum
chromodynamics [62–68] and condensed matter [31, 37,59,60].

In the study of many-body systems, the overwhelming complexity of the inter-
actions renders the Hamiltonian virtually unknown. Therefore, complexity is often
approached by statistical methods, such as disorder averaging. The problem to be
faced is the exponential growth of the Hilbert space dimension with the particle
number, making the diagonalization of the Hamiltonian a difficult task.

The idea of random matrix theory is to replace the Hamiltonian by a random
matrix so that the only information about the system entering the model are its
symmetries. The trade-off is that it is only able to describe universal properties
that appear in the random matrix model as well as in the physical reality. This,
however, turns out to work surprisingly well. On a technical level, the main difficulty
is to evaluate high-dimensional integrals, which appear as averages over the matrix
ensemble. Accordingly, random matrix theory has developed a diverse toolbox of
methods to deal with this problem [57,58,61]. During the calculation, a finite dimen-
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sional Hilbert space is assumed, eventually taking the limit of an infinite dimension
at the end. Although in the present context we only work with the Hamiltonian
as a random matrix, we want to mention that any other matrix important for the
description of the system can be modeled by random matrices as well, for example
the scattering matrix or the Floquet operator of a time-discrete system [61,113–115],
both being unitary rather than Hermitian.

The simplest and most ubiquitous symmetry classification is Dyson’s threefold
way, which is based on time reversal invariance [58, 61, 85]. It has been discussed
in more detail in section 2.2. There are two symmetry classes with time rever-
sal invariance featuring real symmetric (β = 1) and quaternion self-dual (β = 4)
Hamiltonians. On the other hand, when time reversal invariance is broken, the
Hamiltonian is complex Hermitian (β = 2). The Dyson index β is the dimension
of the corresponding number field and is used to label these three cases in random
matrix theory. In the tenfold way classification, see section 2.2, the classes are la-
beled AI (β = 1), A (β = 2) and AII (β = 4). The dimension of the Hilbert space
is N resp. 2N in the presence of Kramers’ degeneracy (β = 4).

Since we are looking for universal properties, there is a certain freedom of choice
regarding the distribution of the matrix entries [116]. It is convenient to choose a
Gaussian distribution. The joint probability distribution of all independent entries
can be summarized as a matrix probability distribution [57,58,61]

P̃
(β,N)
Gaussian(H) =

(
2πσ2

)−N/2 (
πσ2

)−βN(N−1)/4
exp

(
− 1

2σ2γ
trH2

)
. (3.1)

The parameter

γ =
1 β ∈ {1, 2}

2 β = 4
(3.2)

takes care of a double counting of variables in the quaternion case. The random
variables are centered and σ controls their variance. It is the only parameter of
the model, but as we will see below, it is fixed when considering scales where the
universal properties of the matrix model are visible. These three ensembles are also
called the Gaussian orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4)
ensembles, abbreviated as GOE, GUE and GSE, respectively. The adjective refers to
the group of matrices U which diagonalize H and under which the symmetries of the
Hamiltonian are preserved. For example, if H is real symmetric and U orthogonal,
then the matrix UHU † is also real symmetric. The matrix distributions (3.1) are
invariant under these transformations and therefore basis independent.

Let f(H) be some quantity that depends on the Hamiltonian. Its ensemble average
is

⟨f(H)⟩ =
∫
d[H]P̃ (N,β)

Gaussian(H)f(H), (3.3)
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where d[H] is the flat measure of all independent matrix entries. If f(H) is also
basis independent, i.e. depends only on the eigenvalues of H, it may be preferable
to integrate over the eigenvalues instead of the matrix elements. This amounts to
the diagonalization of the Hamiltonian

H = UEU †, (3.4)

where E is the diagonal matrix of all eigenvalues and U is a member of the diago-
nalizing group. Upon this variable transformation, the measure changes according
to

d[H] = ∆β
N(E)dµ(U)d[E] (3.5)

with the Vandermonde determinant

∆N(E) =
∏

1≤n<m≤N

(Em − En) = det
[
En−1

m

]
1≤m,n≤N

(3.6)

and the invariant Haar measure of the diagonalizing group dµ(U), see [58]. If the
integrand is invariant under transformations in this group, integration over the Haar
measure simply gives the group volume. Thus, we may write the expectation value
(3.3) as

⟨f(H)⟩ =
∫
d[E]P (N,β)

Gaussian(E)f(E) (3.7)

with the joint probability distribution of eigenvalues

P
(β,N)
Gaussian(E) = CNβ∆β

N(E) exp
(

− 1
2σ2

N∑
n=1

E2
n

)
,

CNβ = σ−N−βN(N−1)/2

(2π)N/2
ΓN(1 + β/2)∏N

n=1 Γ(1 + βn/2)
.

(3.8)

The Vandermonde determinant (3.6) introduces a repulsion between levels, whose
strength is governed by the Dyson index β. This is, in fact, the only source of
correlation between the eigenvalues. Since the Vandermonde determinant results
from the diagonalization of the Hamiltonian, we find this level repulsion in any
ensemble, which is invariant under the respective group. The level repulsion suggests
that the eigenvalues can be thought of as a gas of charged particles. This Coloumb
gas analogy can be helpful in the calculation of various quantities in invariant random
matrix ensembles [117,118].

Since the advent of random matrix theory, spectral correlations have been the
focus of interest. However, different physical systems may have different energy
scales, so their spectra cannot be directly compared. Furthermore, the level density
of a physical system

ρ(E) =
N∑

n=1
δ(E − En) (3.9)
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3 Random Matrix Theory

often grows with increasing energy, while the level density of the Gaussian ensembles
(3.1) for large N is given by

ρ(E) =


2
π

√
N

2βσ2

√
1 − E2

2βNσ2 |E| ≤
√

2βNσ2

0 |E| >
√

2βNσ2

, (3.10)

which is known as the Wigner semicircle law (although it does not describe an exact
semicircle in general) [57, 58, 61]. The mean level spacing is given by the inverse
of the level density ∆(E) = 1/ρ(E) and is thus of order O(N−1/2). In passing,
we would like to point out that there is also another convention for the Gaussian
ensembles (3.1), where the energy is scaled with

√
N so that the Wigner semicircle

has finite support even in the limit N → ∞.
To compensate for these differences, we consider the spectra on a new scale

ξ(E) =
E∫

−∞

dE ′ ρ(E ′) (3.11)

for which both the average level density and the mean level spacing are one. This
step is referred to as the unfolding of the spectrum and is performed also in the case
of experimentally or numerically obtained data, see [57]. Only after this rescaling,
universal spectral correlations are revealed.

Next, we will discuss an example of a spectral correlation function. Let

sn = ξn+1 − ξn ≥ 0 (3.12)

be the distance between adjacent levels. The level spacing distribution p(s) is the
probability distribution of finding two adjacent levels at distance s. On the stan-
dardized scale (3.11) it is normalized to

∞∫
−∞

ds p(s) = 1,
∞∫

−∞

ds s p(s) = 1, (3.13)

i.e. the mean level spacing is one. There is no exact expression for the level spac-
ing distribution of the Gaussian ensembles (3.1). In the limit N → ∞ they are
approximated by

p(β)(s) =



π

2 s exp
(

−π

4 s
2
)

β = 1

32
π2 s

2 exp
(

− 4
π
s2
)

β = 2

262144
729π3 s

4 exp
(

− 64
9πs

2
)

β = 4

, (3.14)
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0 1 2 3
0

1

Figure 3.1: Wigner-Dyson distributions p(β)(s) and the Poisson distribution p(s) =
exp(−s).

which are also referred to as the Wigner-Dyson distributions. For small spacings
s the distributions go as p(β) ∼ sβ, which corresponds to the strength of the level
repulsion that we observed in the eigenvalue distributions (3.8). They are plotted
in figure 3.1 together with the Poisson distribution p(s) = exp(−s), which arises
as the level spacing distribution of uncorrelated eigenvalues present in regular, i.e.
non-complex, systems.

Figure 3.2 shows the level spacing distributions of various physical systems. The
experimentally resp. numerically obtained data show good agreement with the
Wigner-Dyson distributions (3.14). Some of the spectra are not of quantum me-
chanical origin, showing that universality also holds for classical wave equations.
What the systems have in common is a certain degree of complexity or irregularity,
which can be quantified in particular by the absence of symmetries.

The universal spectral correlations obtained from random matrix theory play a
central role in quantum chaos [61, 112]. In classical mechanics, chaos is defined by
the sensitivity of phase space trajectories to their initial conditions. The distance
between two phase space trajectories that differ only by a small perturbation in their
initial conditions, initially grows exponentially in time. The lack of trajectories in
quantum mechanics demands an alternative definition. This definition is based on
spectral statistics. A quantum system that exhibits the spectral statistics of random
matrix theory is said to be chaotic. Conversely, the spectrum of a quantum system
with chaotic classical analogue shows universal statistics as well. The last state-
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3 Random Matrix Theory

Figure 3.2: Level spacing distributions of various physical systems: (a) chaotic quan-
tum billiard [119], (b) hydrogen atom in a strong magnetic field [120],
(c) excitation spectrum of a NO2 molecule [121], (d) resonance spec-
trum of an irregular shaped quartz block [122], (e) spectrum of a chaotic
microwave cavity [123], (f) vibration spectrum of an irregular shaped
plate [124]. The histograms represent experimental resp. numerical
data and show well agreement with the Wigner-Dyson distribution in
all cases. Figure taken from [112].
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3.2 Three Families of Random Matrix Ensembles

ment is the content of the Bohigas-Giannoni-Schmit conjecture [119]. In contrast,
the spectrum of a quantum system with an integrable classical analogue, i.e. the
presence of symmetries imposes some regularity on the phase space trajectories [7],
shows no correlation and therefore its level spacing distribution is of Poisson type.

3.2 Three Families of Random Matrix Ensembles
In the last section we discussed the Gaussian ensembles of Hermitian matrices,
which are divided into three symmetry classes based on their behaviour under time
reversal. In this section we introduce further random matrix ensembles that we
will encounter in the course of the next chapters. Let us first venture into systems
with an additional chiral symmetry. According to our discussion in section 2.2, the
Hamiltonian of a chiral symmetric system reads

H =
[

0 K
K† 0

]
(3.15)

in the diagonal basis of the chiral operator

C =
[
11N 0
0 −11M

]
. (3.16)

Since Hermiticity is ensured by the block off-diagonal structure, the matrices K
are generic with real (β = 1), complex (β = 2) or real quaternion (β = 4) entries.
Once again choosing a Gaussian distribution gives rise to the Ginibre ensembles
[58,125–127]

P̃
(β,N)
Ginibre(K) =

(
2πσ2

)−βN2/2
exp

(
− 1

2σ2γ
trKK†

)
, (3.17)

where, for the sake of simplicity, we assume square matrices, i.e. the rectangularity
ν = |N −M | is zero. The ensembles of such Hamiltonians are referred to as the chi-
ral Gaussian orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4) ensemble,
commonly abbreviated as chGOE, chGUE and chGSE, respectively.

Chiral symmetry imposes a reflection symmetry on the spectrum of the Hamilto-
nian around zero energy, which affects the spectral statistics. Put simply, the zero
energy acts as a mirror, introducing an additional level repulsion. Away from this
chiral anomaly, in the bulk of the spectrum, the spectral statistics resemble those of
the classical Gaussian ensembles. The joint probability distribution of eigenvalues
in the chiral Gaussian ensembles is

P
(β,N)
Chiral(E) ∼ ∆β

N(E)
N∏

n=1
Eβ−1

n exp
(

− E2
n

2σ2

)
. (3.18)
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It is actually more refined when considering non-zero rectangularity, see [88].
The eigenvalue joint probability distribution of the Ginibre ensembles is a more

difficult matter [125, 128]. Since the matrices are non-Hermitian, the eigenvalues
are generally complex. In the complex case, the eigenvalues are independent up to
a level repulsion that we have already seen in the Hermitian ensembles (3.8). In
the time reversal invariant cases, however, the real structure introduces a pairing
between eigenvalues. The eigenvalues of a real quaternion matrix come in complex
conjugated pairs, and the eigenvalues of a real matrix are either real or come in
complex conjugated pairs as well. This makes the real cases technically more de-
manding than the complex one. This statement applies in general to ensembles of
non-Hermitian matrices. We will revisit this problem in section 3.4 and in chapter
5.

In the last section we mentioned Wigner’s semicircle law for the asymptotic level
density of the Gaussian ensembles. Its analogue for the level density of the Ginibre
ensembles is the circular law. It states that in the limit of large matrix dimensions the
eigenvalues are uniformly distributed over a circle in the complex plane. However,
there is a caveat in the two real cases. In the quaternion case, as mentioned above,
the eigenvalues form complex conjugate pairs. Thus, due to level repulsion, there is
a depletion of eigenvalues along the real axis. In the real case, on the other hand,
the eigenvalues accumulate along the real axis, which is due to the fact that the
average number of real eigenvalues is asymptotically given by

√
2N/π, see [129,130].

In [127] this is picturesquely referred to as the "Saturn effect". The circular law has
a wide range of validity and applies to more general ensembles than the Ginibre
ensembles [131].

Let us introduce yet another random matrix ensemble. It is the product ensemble
of matrices

Y = K−1
1 K2, (3.19)

where K1 and K2 are Ginibre matrices in the same symmetry class and with equal
scale parameter σ. These ensembles are referred to as spherical ensembles and they
have been analyzed in several works [76–79]. Their matrix probability distribution
is given by

G̃(β,N)(Y ) = π−βN2/2
N∏

j=1

Γ (β(N + j)/2)
Γ (βj/2)

1
detβN/γ (11γN + Y Y †)

(3.20)

and is independent of the scale parameter σ. As mentioned before, the eigenvalue
joint probability distribution of non-Hermitian matrices tend to be more compli-
cated. We will refrain from stating them here and postpone this to the later chapters,
where we will use them to calculate ensemble averages. In appendix A.3, we derive
the joint probability distribution of eigenvalues for the real spherical ensemble.
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3.3 Parametric Random Matrix Models

The name of the spherical ensembles originates in the spherical law, which is once
again a statement about the level density in the limit of large matrix dimensions. If
the complex plane is mapped onto a sphere by stereographic projection, the eigen-
values are uniformly distributed over the sphere in this limit. As in the case of
the circular law, there is a "Saturn effect", i.e. a depletion resp. accumulation of
eigenvalues along the great circle corresponding to the real axis for the quaternion
resp. real case.

Finally, we want to introduce a generalization of the spherical ensemble that will
be useful later in simplifying our integrals. This generalization is again the product
ensemble of Y = K−1

1 K2, but now we draw K1 and K2 from a deformed Ginibre
ensemble

P̃ (β,N)
µν (K) = π−βN2/2

N∏
j=1

Γ (βj/2)
Γ (β(j + 2µ)/2) exp

(
−1
γ

trKK†
)

detµ/γ KK† (3.21)

with µ ≥ 0. We omit the scale parameter as the spherical ensemble is insensitive
to it. These ensembles have been analyzed in [132–134]. Their matrix probability
distributions are given by

G̃(β,N)
µν (Y ) = π−βN2/2

N∏
j=1

Γ (βj/2) Γ (β(N + 2µ+ 2ν + j)/2)
Γ (β(j + 2ν)/2) Γ (β(j + 2µ)/2)

× detβν/γ Y Y †

detβ(N+µ+ν/γ) (11γN + Y Y †)
.

(3.22)

The ensembles (3.21) and (3.22) are also referred to as induced Ginibre and induced
spherical ensembles respectively, as they can be generated by a specific inducing
procedure, see [133–135]. There are also modified versions of the spherical law for
the induced spherical ensembles. We refer to the mentioned works for details.

3.3 Parametric Random Matrix Models
In some physical situations, additional parameters are required. We provide ex-
amples and show how parametric dependence is implemented in a random matrix
model. Furthermore, we discuss universality aspects that we want to tie in later on.

An extensively studied phenomenon is the transition between symmetry classes,
e.g. through symmetry breaking. In a random matrix model, this can be realized
by

H(p) = H0 + pH1 (3.23)
with a parameter p ∈ [0, 1]. In [136,137] the breaking of time reversal invariance was
studied. In this case, H0 is a Gaussian orthogonal matrix and H1 is imaginary anti-
symmetric with Gaussian distributed elements, such that H(p) interpolates between
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the Gaussian orthogonal ensemble (p = 0, β = 1) and the Gaussian unitary ensem-
ble (p = 1, β = 2). Similar models have been used in the study of isospin symmetry
breaking induced by Coloumb interaction in nuclei [138, 139]. Unlike time reversal
invariance, isospin symmetry is a true symmetry, described by a unitary operator
that commutes with the Hamiltonian. Thus, the matrices H0 and H1 are set up as
block diagonal and block off-diagonal, respectively.

The random matrix model may as well maintain its symmetry class for all pa-
rameters. Such a situation arises, for example, when studying the response of a
chaotic system to an external perturbation. In [69–72] disordered metals subject to
an Aharonov-Bohm flux were considered. A suitable model is

H(p) = cos(p)H1 + sin(p)H2, (3.24)

where the parametric dependence is periodic, p ∈ [0, 2π). The parametric depen-
dence of the model is chosen quite arbitrarily. The line of reasoning is, as before,
that random matrix theory is only useful to describe universal properties, which
justifies the choice of the simplest non-trivial parametric dependence. Equivalently,
one can also specify the two-point correlation function of the matrix elements

⟨Hij(p1)H∗
kl(p2)⟩ = S(p1, p2)δikδjl. (3.25)

If the entries of H(p) are Gaussian distributed at all points of the parameter mani-
fold, higher correlations follow by Isserlis’ theorem [140].

The spectral statistics of parametric random matrix models include correlations
between levels at different points of the parameter manifold [141]. In [69–72,142] it
was shown that parametric correlations become universal when not only the spec-
trum is considered on a local scale, see section 3.1, but also the parametric depen-
dence

ψ = p/ℓ. (3.26)
This scale is given by the correlation length

ℓ = ∆√√√√〈( d

dp
En(p)

)2〉 (3.27)

and can be motivated as follows. On average, perturbing the system by ℓ should
change the energy of a level by the mean level spacing ∆. We therefore require that
the root mean square of the difference is√〈

(En(p) − En(p+ ℓ))2
〉

= ∆. (3.28)
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3.4 Supersymmetry without Supersymmetry

Suppose ℓ becomes small, eventually in a large N limit, (3.27) follows. The mean
squared level velocity in (3.27) depends only on the two-point correlation S(p1, p2)
of the matrix model, see [72]. If this function is N -independent, then the correlation
length ℓ is of the same order in N as the mean level spacing ∆, namely O(N−1/2).
We will draw on these insights in chapter 4.

Parametric random matrix models such as (3.24) are also suitable for the Bloch
Hamiltonian, see chapter 2, allowing an analysis of topological properties. In [73–75]
the statistics of the Chern number, the relevant topological invariant of the unitary
class A, in random matrix models with two-dimensional parametric dependence were
studied. In the next chapters 4 and 5 we aim for a similar study of the winding
number.

3.4 Supersymmetry without Supersymmetry
In this section we discuss the supersymmetry without supersymmetry technique,
which we will employ in chapter 5 and which was developed in [82, 83]. It aims to
compute ensemble averages over ratios of characteristic polynomials. These quanti-
ties are of wide interest in physics and mathematics, see the by far non-exhaustive
list [82, 83, 143–153]. They play an important role, for example, as generators of
spectral correlations [57, 61] or of scattering matrix elements [114]. As the name
suggests, this technique is related to the supersymmetry method of random matrix
theory. Therefore, we first want to provide a sketch of the latter.

Supersymmetry originated in particle physics as a possible resort to the no-go
theorem of Coleman and Mandula [154–156], which states that the symmetries of a
physical system and the symmetries of spacetime, described by the Poincaré group,
cannot be subgroups of a larger non-trivial group, only their product group is pos-
sible. Following the arguments of supersymmetry implies the possibility of Bosons
and Fermions transforming into each other. Nowadays, this hypothetical symmetry
is notorious for its lack of experimental evidence.

Efetov adopted the mathematical framework of supersymmetry and applied it
to the random matrix theory of disordered systems [80, 157]. The supersymmetry
method is used to compute ensemble averages such as〈

k∏
j=1

det (H − Jj2)
det (H − Jj1)

〉
, (3.29)

where H is a Hermitian random matrix and J1j and J2j are real numbers. The
limitation is that the determinants in the denominator must be real, which is satisfied
by our assumptions.

The supersymmetry method proceeds as follows. First, a finite number of anticom-
muting variables ζ = (ζ1, . . . , ζn), also called Grassmann variables, are introduced.
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The combination of ζ with the same number of commuting variables z = (z1, . . . , zn),
i.e. the tupel

Ψ = (z1, . . . , zn, ζ1, . . . , ζn) (3.30)
is called a supervector and is an element of the n|n-dimensional superspace. The
vertical bar notation indicates the number of commuting and anticommuting vari-
ables, which are also referred to as Bosonic and Fermionic variables, respectively.
This is an artefact of the particle physics origin of this description and, in the
last consequence, it is due to the commutation resp. anticommutation relations of
Bosonic and Fermionic fields. The transformations between commuting and anti-
commuting variables, i.e. Bosons and Fermions, are represented by supermatrices.
A supermatrix has a 2 × 2-block structure

σ =
[
σ11 σ12

σ21 σ22

]
. (3.31)

The diagonal blocks σ11 and σ22 have commuting entries and describe transforma-
tions within the Bosonic and Fermionic blocks of the superspace, while the off-
diagonal blocks σ12 and σ21 have anticommuting entries and describe transforma-
tions between the Bosonic and Fermionic blocks. The definition of further structures
such as supertraces, superdeterminants and supergroups is necessary. Accordingly,
the field of mathematics dealing with these structures is called supermathematics,
see [57, 80,81,157] for an overview.

The introduction of the superspace allows a facilitation of the ensemble average
(3.29) in the following way. The determinants in the denominator and numerator
are mapped to integrals over commuting and anticommuting variables, respectively.
Assuming a Gaussian probability distribution in H, the ensemble average can be
readily performed and one is left with an integral over a supermatrix model. A major
advantage is that the dimension of the superspace is independent of the dimension
N of the matrix ensemble. There are different ways to deal with the supermatrix
model. Again, we refer to [57,80,81,157] for details.

In section 3.1 we discussed integrals over ordinary random matrix models. When
diagonalizing the matrix we obtain the Vandermonde determinant (3.6) as the Ja-
cobian of this transformation. A similar transformation is possible in superspace,
where the analogue of the Vandermonde determinant is the Berezinian. In the uni-
tary case [158], it is given by√

Ber(2)
k|l (κ1;κ2) = ∆k(κ1)∆l(κ2)∏k

m=1
∏l

n=1 (κm1 − κn2)
. (3.32)

The superscript indicates the Dyson index β = 2, and the subscript the dimension
of the underlying superspace, i.e. the length of the tupels κ1 = (κ11, . . . , κk1) and
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κ2 = (κ12, . . . , κl2). A similar structure arises for β = 1 and β = 4, where the
superspace has a real structure [82,159]. In the present context, however, we require
only β = 2. Setting k = 0 or l = 0 recovers the Vandermonde determinant. Setting
k = l yields the determinant of a Cauchy matrix√

Ber(2)
k|k(κ1;κ2) = (−1)k(k−1)/2 det

[ 1
κm1 − κn2

]
1≤m,n≤k

. (3.33)

Generally, the Berezinian can be written as a determinant [82]. For k ≤ l one obtains

√
Ber(2)

k|l (κ1;κ2) = (−1)k(k−1)/2+k(l+1) det



 1
κa1 − κb2


1≤a≤k
1≤b≤l[

κa−1
b2

]
1≤a≤l−k
1≤b≤l

 , (3.34)

which is a mixture of a Cauchy- and a Vandermonde matrix.
Just as with the "true" supersymmetry method, the aim of supersymmetry without

supersymmetry is to calculate ensemble averages over ratios of characteristic poly-
nomials. In this technique, we use supersymmetry structures, namely the Berezinian
just introduced, to reformulate ensemble averages without mapping the integrals to
superspace. This coins the term supersymmetry without supersymmetry.

We define
Z

(β,N)
k|l (κ1, κ2) =

〈∏l
j=1 det (K − κj2)∏k
j=1 det (K − κj1)

〉
, (3.35)

where the superscript is again the Dyson index β and the matrix dimension N . In
this case, there are no constraints concerning the reality of the determinants.

Let us first assume a random matrix ensemble with unitary symmetry, i.e. β = 2.
The joint probability distribution of eigenvalues is

P (2,N)(K) = |∆N(z)|2

c(2,N)

N∏
j=1

g(2,N)(zj) (3.36)

with an ensemble dependent function g(2,N)(z) and a normalization constant c(2,N).
Although arbitrary k and l are possible, we will only discuss the case k = l, which
is also the one we consider in chapter 5. We refer to the original work [82] for the
general case k ̸= l. In eigenvalue coordinates, the ensemble average becomes

Z
(2,N)
k|k (κ1, κ2) = 1

c(2,N)

∫
CN

d[z] |∆N(z)|2
N∏

n=1

g(2,N)(zn)
k∏

j=1

zn − κj2

zn − κj1

 . (3.37)
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The first crucial step is to identify a part of the integrand as a quotient of Berezinians√
Ber(2)

k|k+N(κ1;κ2, z)√
Ber(2)

k|k(κ1;κ2)
= (−1)Nk∆N(z)

N∏
n=1

k∏
j=1

zn − κj2

zn − κj1
. (3.38)

This identity can be quickly verified following (3.32). Inserting it yields

Z
(2,N)
k|k (κ1, κ2) =(−1)Nk

c(2,N)
1√

Ber(2)
k|k(κ1;κ2)

×
∫
CN

d[z] det
[
(z∗

a)b−1g(2,N)(za)
]

1≤a,b≤N

√
Ber(2)

k|k+N(κ1;κ2, z),
(3.39)

where we wrote the factors g(2,N)(zn) into the remaining Vandermonde determinant.
Writing the Berezinian in the integrand in the determinant form (3.34) leaves us
with an integral over the product of two determinants in which the integration vari-
ables zn are separated row by row (or column by column). According to Andréief’s
theorem, the solution is again a determinant [160,161]. In this case, we need a gener-
alized version of this theorem because some rows are independent of the integration
variables [82]. This yields

Z
(2,N)
k|k (κ1, κ2) = (−1)NkN !

c(2,N)
1√

Ber(2)
k|k(κ1;κ2)

det
[
[C(κb1, κa2)]1≤a,b≤k [V (κa2)]1≤a≤k

[F (κb1)]1≤b≤k M

]
,

(3.40)
which is an (N + k) × (N + k)-determinant with the blocks

C(κb1, κa2) = 1
κb1 − κa2

, F (κb1) =
∫
C

d[z]g
(2,N)(z)(z∗)a−1

κb1 − z


1≤a≤N

, (3.41)

V (κa2) =
[
κb−1

a2

]
1≤b≤N

, M =
∫
C

d[z]g(2,N)(z)(z∗)a−1zb−1


1≤a,b≤N

.

Thus, the ensemble average is reduced to calculating the integrals over the complex
plane in (3.41) and evaluating the determinant. Often, this task is not feasible when
N is large. However, we may apply the identity

det
[
A B
C D

]
= det [D] det

[
A−BD−1C

]
(3.42)
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in order to reduce the dimension of the determinant. This yields a k×k-determinant
for the ensemble average

Z
(2,N)
k|k (κ1, κ2) =(−1)NkN !

c(2,N)
det [M ]√

Ber(2)
k|k(κ1;κ2)

× det
[
C(κb1, κa2) − V (κa2)M−1F (κb1)

]
1≤a,b≤k

= (−1)Nk√
Ber(2)

k|k(κ1;κ2)
det

[
C(κb1, κa2) − V (κa2)M−1F (κb1)

]
1≤a,b≤k

.

(3.43)

In the second step we inserted

c(2,N) = N ! det[M ], (3.44)

which is a consequence of Andréief’s theorem as well. An evaluation of the function
inside the determinant might be possible in certain situations, e.g. if M is diagonal.
However, we can also identify this function with the left-hand side of the equation
by setting k = 1

C(κ1, κ2) − V (κ2)M−1F (κ1) = (−1)N

√
Ber(2)

1|1(κ1;κ2)Z(2,N)
1|1 (κ) (3.45)

and write the ensemble average as

Z
(2,N)
k|k (κ1, κ2) =

det
[
K(κb1, κa2)

]
1≤a,b≤k√

Ber(2)
k|k(κ1;κ2)

(3.46)

with the determinant kernel

K(κ1, κ2) =
Z

(2,N)
1|1 (κ)
κ1 − κ2

, (3.47)

where we inserted the Berezinian for k = 1. This is the final expression resulting
from supersymmetry without supersymmetry for k = l in the unitary case. The
problem of calculating the ensemble average for general k is reduced to k = 1. This
function can often be evaluated with other methods of random matrix theory. In
chapter 5 we use a certain symmetry of our random matrix model to simplify this
average.
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Let us now move on to the symplectic and the orthogonal case. The eigenvalue
joint probability distribution of a random matrix ensemble with symplectic symme-
try (β = 4) is

P (4,N)(z) = ∆2N(z)
c(4,N)

N∏
j=1

g(4,N)(z2j−1, z2j). (3.48)

There are 2N eigenvalues which come in complex conjugate pairs. This is described
by the antisymmetric two-point measure

g(4,N)(z1, z2) = g
(4,N)
C (z1, z

∗
1)δ(z∗

1 − z2), (3.49)

where we use a Dirac delta function for complex numbers. Its antisymmetry guar-
antees the permutation invariance of the eigenvalues. In the orthogonal case (β = 1)
we have to distinguish between even and odd N

P (1,N)(z) = ∆N(z)
c(1,N)

N/2∏
j=1

g(1,N)(z2j−1, z2j),

P (1,N)(z) = ∆N(z)
c(1,N) h(zN)

(N−1)/2∏
j=1

g(1,N)(z2j−1, z2j).
(3.50)

Here, the eigenvalues are either real or complex conjugate pairs. Therefore the
antisymmetric two-point measure is

g(1,N)(z1, z2) = g
(1,N)
R (z1, z2)δ(y1)δ(y2) + g

(1,N)
C (z1, z

∗
1)δ(z∗

1 − z2). (3.51)

We denote the complex eigenvalues as zj = xj + iyj with xj, yj ∈ R. In the odd
case, there is an unpaired eigenvalue which is always real and is described by the
function h(z).

For the sake of simplicity, we assume N even when dealing with the orthogonal
case. We refer to [83] for the general case. Although we need only the case k = l,
we have to consider k ̸= l here. The reason for this will become clear later on. In
eigenvalue coordinates, the ensemble average is

Z
(β,N)
k|l (κ1, κ2) =

〈∏l
j=1 det (K − κj2)∏k
j=1 det (K − κj1)

〉

= 1
c(β,N)

∫
CN

d[z]∆N(z)
N/2∏
n=1

g(β,N)(z2n−1, z2n)
N∏

n=1

∏l
j=1(zn − κj2)∏k
j=1(zn − κj1)

= (−1)Nk

c(β,N)
1√

Ber(2)
k|l (κ1;κ2)

∫
CN

d[z]
N/2∏
n=1

g(β,N)(z2n−1, z2n)
√

Ber(2)
k|l+N(κ1;κ2, z).

(3.52)
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In the last step we inserted the identity for k ̸= l√
Ber(2)

k|l+N(κ1;κ2, z)√
Ber(2)

k|l (κ1;κ2)
= (−1)Nk∆N(z)

N∏
n=1

∏l
j=1(zn − κj2)∏k
j=1(zn − κj1)

, (3.53)

which can again be verified following (3.32). The Berezinian can again be written in
the determinant form (3.34), while tacitly assuming l+N ≥ k. In this determinant
all integration variables are separated row by row (or column by column). However,
the function g(β,N)(z1, z2) couples two rows, making a row wise integration not possi-
ble. The solution of this integral is given by de Bruijn’s theorem [162]. In this case,
too, we have to resort to a generalized form of this theorem since the determinant
has rows that do not dependent on the eigenvalues [82]. The result is a Pfaffian

Z
(β,N)
k|l (κ1, κ2) =(−1)k(k−1)/2+l(l−1)/2+k(l+1)(N/2)!

c(β,N)
1√

Ber(2)
k|l (κ1;κ2)

× Pf


0 [C(κb1, κa2)]1≤a≤l

1≤b≤k

[
V T (κa2)

]
1≤a≤l

[−C(κa1, κb2)]1≤a≤k
1≤b≤l

[G(κa1, κb1)]1≤a,b≤k

[
F T (κa1)

]
1≤a≤k

[−V (κb2)]1≤b≤l [−F (κb1)]1≤b≤k D(d),


(3.54)

of an (N + 2l) × (N + 2l)-matrix. The blocks are

C(κb1, κa1) = 1
κb1 − κa2

, V (κb2) =
[
κa−1

b2

]
1≤a≤d

,

G(κa1, κb1) =
∫
C2

g(β,N)(z1, z2)
( 1
κa1 − z1

1
κb1 − z2

− 1
κb2 − z1

1
κa1 − z2

)
,

F (κb1) =
∫
C2

g(β,N)(z1, z2)
(

za−1
2

κb1 − z1
− za−1

1
κb1 − z2

)
1≤a≤d

,

D(d) =
∫
C2

d[z]g(β,N)(z1, z2)(za−1
1 zb−1

2 − zb−1
1 za−1

2 )


1≤a,b≤d

(3.55)

and we define the parameter d = N + l − k.
The Pfaffian is ubiquitous in random matrix theory and important to our results

in chapter 5. It is a function of an antisymmetric matrix with even dimension. Let
A be an antisymmetric 2n× 2n-matrix. Its Pfaffian is given by

Pf[A] = 1
2nn!

∑
σ∈S2n

sgnσ
n∏

j=1
Aσ(2j−1)σ(2j), (3.56)
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which is a polynomial in the matrix entries and takes the value

PfA =
√

detA. (3.57)

In other words, the determinant of an antisymmetric even-dimensional matrix is the
square of a polynomial in the matrix entries. This polynomial is given by (3.56).
Because of the square, it remains to fix a sign convention. For (3.56) we have

Pf [11n ⊗ iτ2] = +1 (3.58)

with the second Pauli matrix τ2.
We continue by employing the decomposition

Pf
[
A B

−BT C

]
= Pf[C]Pf[A+BC−1BT ] (3.59)

in (3.54). Just as in the unitary case, we do this to reduce the dimension. For this
step we need to assume that d is even, which is satisfied when k = l. We obtain a
(k + l)-Pfaffian with a 2 × 2-block structure

Z
(β,N)
k|l (κ1, κ2) =(−1)k(k−1)/2+l(l−1)/2+k(l+1)(N/2)!

c(β,N)
Pf[D(d)]√

Ber(2)
k|l (κ1;κ2)

× Pf


[
K(d)

1 (κa2, κb2)
]

1≤a,b≤l

[
K(d)

2 (κb1, κa2)
]

1≤a≤l
1≤b≤k[

−K(d)
2 (κa1, κb2)

]
1≤a≤k
1≤b≤l

[
K(d)

3 (κa1, κb1)
]

1≤a,b≤k

 .
(3.60)

The kernels are given by

K(d)
1 (κa2, κb2) = V T (κa2)

[
D(d)

]−1
V (κb2),

K(d)
2 (κa1, κb2) = C(κa1, κb2) + V T (κb2)

[
D(d)

]−1
F (κa1),

K(d)
3 (κa1, κb1) = G(κa1, κb1) + F T (κa1)

[
D(d)

]−1
F (κb1).

(3.61)

We note that the matrix in the Pfaffian is antisymmetric which can be verified
following (3.55) and (3.61). Instead of computing these expressions we determine
the kernels by consecutively setting k = 0, l = 2 and k = l = 1 and k = 2, l = 0 and
comparing with the left-hand side of the equation. This gives the expressions

K(d)
1 (κa2, κb2) = − c(β,d−2)

[(d− 2)/2]!
κb2 − κa2

Pf[D(d)] Z
(β,d−2)
0|2 (κa2, κb2),

K(d)
2 (κa1, κb2) = c(β,d−2)

(d/2)!
1

κa1 − κb2

1
Pf[D(d)]Z

(β,d)
1|1 (κa1, κb2),

K(d)
3 (κa1, κb1) = c(β,d+2)

[(d+ 2)/2]!
κb1 − κa1

Pf[D(d)] Z
(β,d+2)
2|0 (κa1, κb2).

(3.62)
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Therefore, the problem of finding the ensemble average is reduced to averaging only
two characteristic polynomials. For k = l we obtain

Z
(β,N)
k|k (κ1, κ2) = 1√

Ber(2)
k|k(κ1;κ2)

Pf
[

K̂1(κa2, κb2) K̂2(κb1, κa2)
−K̂2(κa1, κb2) K̂3(κa1, κb1)

]
1≤a,b≤k

(3.63)

with

K̂1(κa2, κb2) = − c(β,N−2)

[(N − 2)/2]!
κb2 − κa2

Pf[D(N)] Z
(β,N−2)
0|2 (κa2, κb2),

K̂2(κa1, κb2) = c(β,N−2)

(N/2)!
1

κa1 − κb2

1
Pf[D(N)]Z

(β,N)
1|1 (κa1, κb2),

K̂3(κa1, κb1) = c(β,N+2)

[(N + 2)/2]!
κb1 − κa1

Pf[D(N)] Z
(β,N+2)
2|0 (κa1, κb2).

(3.64)

Here we used
c(β,N) = (N/2)! Pf

[
D(N)

]
, (3.65)

which is a consequence of de Bruijn’s theorem.
The Pfaffian (3.63) together with the three ensemble dependent kernel functions

(3.64) is the final expression of supersymmetry without supersymmetry for k = l
in the symplectic case and the orthogonal case for even matrix dimensions. The
ensemble average for general k is reduced to k+ l = 2. We use this result in chapter
5. There we compute the kernel functions using a symmetry of our random matrix
model and other methods such as skew-orthogonal polynomials.

There is a deeper reason why we arrive at the determinantal expression (3.46) for
the ensemble average in the unitary case. It reflects that the spectrum is described
by a determinantal point process, meaning that the eigenvalue correlations can be
written as a determinant of an ensemble dependent kernel [58, 163]. On the other
hand, the symplectic and the orthogonal case follow a Pfaffian point process, which
leads to Pfaffian expressions (3.63) for the ensemble average.
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Chapter 4
Winding Number Statistics of a
Parametric Chiral Unitary Random
Matrix Ensemble

This chapter deals with the winding number statistics in systems with broken
time reversal invariance belonging to the chiral unitary class AIII. It is based

on [1]. In section 4.1 we deepen our motivation for a statistical analysis of topological
invariants in disordered systems. In section 4.2 we set up the random matrix model
and define the goals of this chapter. Section 4.3 contains the main idea of our
calculations and our results. More involved derivations are relegated to section 4.4.
We conclude in section 4.5.

4.1 Introduction
Translationally invariant one-dimensional chiral systems are characterized by the
winding number. Systems with non-zero winding number W are topologically non-
trivial, and therefore, according to bulk-boundary correspondence, have |W | modes
localized to each boundary [27,164,165].

When (discrete) translation invariance is broken by disorder obeying chiral sym-
metry, crystal momentum is no longer a good quantum number. Nevertheless, it is
possible to express the winding number in position representation and calculate it
for a system with closed boundary conditions. It is then found in weakly disordered
systems that the winding number is self-averaging and robust in the thermodynamic
limit [25,166]. On the other hand, if disorder is strong, the winding number may no
longer be calculated by spatial averaging. Instead, one can assume that the disorder
is itself periodic with a large period, so that the disordered system remains periodic
with a large disordered unit cell. With this assumption, eventually taking the limit
of a large disorder period, the winding number can be defined as a property of the
Bloch Hamiltonian, see section 2.3, and becomes a random variable.
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4.2 Posing the Problem

The probability distribution of the winding number in periodic systems with a
disordered unit cell depends on that of the disorder, but like the spectral statistics,
it may turn out that the winding number statistics becomes universal when the unit
cell becomes large, and moreover that the universal distribution can be reproduced
by random matrix models. This question has not yet been addressed in the chiral
classes, but there are precursors in the unitary class A, where Hamiltonians with
two-dimensional parametric dependence are topologically classified by the (first)
Chern number. Random matrix models defined on compact two-dimensional pa-
rameter spaces were studied in [73–75], showing that the Chern number distribution
is Gaussian with a universal covariance.

In [74] the Chern number covariance was calculated as an integral of the cor-
relation function of the adiabatic curvature, the analogue of the winding number
density, which is universal as well. The two-point correlation function of the adia-
batic curvature follows a scaling form, with a scale parameter equal to the density of
states multiplied by the correlation length of the elements of the random matrices in
parameter space, and with a universal scaling function. Universal scaling behaviour
of this kind has been known for a long time in parametric correlations of spectral
properties of random matrices, such as the density and current of energy states [72].
Furthermore, the universal properties of parametric spectral correlations of random
matrices agree with those of disordered systems [69–71], motivating the universality
hypothesis for the correlations of the adiabatic curvature and its chiral class ana-
logue, the winding number density, and a fortiori the probability distributions of
Chern numbers and winding numbers.

In this chapter we first propose a minimal parametric random matrix model for the
chiral Hamiltonian. We conjecture that it captures universal properties of the wind-
ing number and the winding number density. We next aim to calculate the discrete
probability distribution of the winding numbers as well as its first two moments,
showing that the width of the winding number distribution grows as the fourth root
of the matrix size. We also wish to compute the parametric correlation functions of
the winding number density. Furthermore, we discuss aspects of universality for the
two-point function by identifying an unfolding procedure.

4.2 Posing the Problem
Following the discussion in chapters 2 and 3, the lack of time reversal invariance
causes the Hamiltonian to be a complex Hermitian matrix. Adding chiral symmetry
we end up in the symmetry class AIII of the tenfold way, also referred to as the
chiral unitary class. In the chiral classes, the Hamiltonian can be brought into a
block off-diagonal form, when considered in the diagonal basis of the chiral operator.
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This is directly inherited by the Bloch Hamiltonian

H(p) =
[

0 K(p)
K†(p) 0

]
, (4.1)

where we take K(p) as an N × N -matrix. In our interpretation above, N is the
dimension of the unit cell. The winding number of such systems is discussed in
section 2.3. For ease of reference, we write the relevant expressions once again. The
winding number is given by

W = 1
2πi

∮
det K(p)

dz

z
= 1

2πi

2π∫
0

dpw(p) (4.2)

with the winding number density

w(p) = d

dp
ln detK(p) = 1

detK(p)
d

dp
detK(p) = trK−1(p) d

dp
K(p) (4.3)

as the logarithmic derivative of the determinant.
To set up a concrete random matrix model for the Bloch Hamiltonian, we recall

the discussion in section 3.3 about the universality in the spectra of parametric
random matrix ensembles. In random matrix models with N independent scale
parameter, the mean level spacing is of order O(N−1/2). Likewise, the correlation
length, the scale on which energy levels lose correlation, is also of order O(N−1/2).
Considering that universality can only emerge on these local scales, it is justified to
study simplest generic models. We therefore choose the parametric dependence in
the explicit form

K(p) = cos(p)K1 + sin(p)K2, (4.4)
where the matrices K1 and K2 are N × N -dimensional complex matrices with in-
dependently Gaussian distributed elements, i.e. members of the complex Ginibre
ensemble

P̃ (2,N)(K) = π−N2 exp
(
−trKK†

)
, (4.5)

see section 3.2. The correlation of matrix elements is given by〈
K∗

ij(p1)Kkl(p2)
〉

= 2 cos (p1 − p2) δikδjl, (4.6)

which depends only on the distance |p1 − p2|. We refer to this property as translation
invariance on the parameter manifold. The associated Hamiltonians

H(p) = cos(p)H1 + sin(p)H2 with Hm =
[

0 Km

K†
m 0

]
, m = 1, 2, (4.7)
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Figure 4.1: A realization of an AIII Hamiltonian with K(p) = cos(p)K1 + sin(p)K2
and some fixed 4 × 4 complex matrices K1 and K2. The top left plot
shows the real eigenvalues of H(p), the top right one shows the gener-
ically complex eigenvalues of K(p), and the bottom plot depicts the
determinant detK(p). All plots show the parametric dependence in
p ∈ [0, 2π), where we have employed the step size 2π/100 and a B-Spline
to obtain the curves. In both of the parametric plots the starting points
p = 0 are marked by black points and the directions are marked by a
color gradient resp. arrows.
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can be viewed as a parametric combination of two chiral Gaussian unitary ensembles.
We also refer to K(p) and H(p) as the random matrix field. Our random matrix
model is the chiral version of the model proposed in [73] to study statistics of Chern
numbers in the unitary class, justified in a similar manner.

In figure 4.1 we illustrate the spectral flow of the matrix field with generic complex
K1, K2 ∈ C4×4. We show the eight eigenvalues of H(p), the four complex eigenvalues
of K(p), and the determinant detK(p). Two important observations can be made,
which hold true also for matrix fields other than (4.4). The order of the eigenvalues
ofH(p) remains the same for all p when level repulsion governs the spectral statistics,
which implies that each eigenvalue of H(p) is a 2π-periodic function. In contrast, the
eigenvalue spectrum of K(p) may experience a permutation, meaning when running
once from p = 0 to p = 2π, a chosen eigenvalue can become another one. Thence,
the eigenvalues of K(p) might have a different period than 2π and are therefore not
suitable for a topological classification. The determinant detK(p) is more suitable
as this quantity must be 2π-periodic. For the specific choice of the parametric
dependence (4.4), we have K(p + π) = −K(p), which manifests itself as a point
symmetry around the origin of the curves describing the eigenvalues of K(p). It also
restricts the amount of times detK(p) winds around the origin to be an even resp.
odd number for even resp. odd matrix dimensions.

With the random matrix model prepared, we now define our goals. We calculate
the k-point correlation function of the winding number density

C
(2,N)
k (p1, . . . , pk) = ⟨w(p1) · · ·w(pk)⟩ (4.8)

as a random matrix ensemble average. The superscript refers to the Dyson index
β = 2, i.e. it labels the symmetry class, and to the matrix dimension N . The precise
meaning of the angular brackets indicating the ensemble average will be given in the
next section. The arguments p = (p1, . . . , pk) ∈ [0, 2π)k are the different points
on the parameter manifold. Furthermore, we compute the distribution of winding
numbers P (W ). An exact expression for its moments

〈
W k

〉
=
∑

W ∈Z
W kP (W ) = 1

(2πi)k

2π∫
0

dp1 · · ·
2π∫
0

dpk C
(2,N)
k (p1, . . . , pk) (4.9)

is given in terms of the k-point correlation function.
We would like to point out that the random matrix field (4.4) is equally well suited

to describe any other complex system in the chiral unitary class. One example are
disordered system subject to an Aharanov-Bohm flux, taking the role of the param-
eter p. The universal spectral statistics of such systems has been studied in [69–72].
Furthermore, chiral random matrix theory is a fruitful approach to low temperature
quantum chromodynamics [62–68,88] and our calculations could be relevant in cases
where a quantum chromodynamical system depends on a parameter.
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4.3 Results
In section 4.3.1 we sketch the strategy for our calculation of the k-point correla-
tion function. The details of the derivations are collected in section 4.4. Quite
remarkably, we arrive at closed-form results for arbitrary k and particularly simple
expressions for k = 1 and k = 2. In section 4.3.2 we discuss aspects of universality
and unfold the parametric dependence of the two-point function. We conjecture the
resulting limit to be universal. The winding number distribution and its moments
are addressed in section 4.3.3.

4.3.1 Expressions and Results for the k-Point Correlation
Function

For the specific form of our random matrix field (4.4), noting that detK1 ̸= 0 with
probability one, we can evaluate the logarithm appearing in (4.3) as

ln detK(p) = ln detK1 +N ln sin p+ ln det
(
cot p+K−1

1 K2
)

= ln detK1 +N ln sin p+
N∑

n=1
ln (cot p+ zn) ,

(4.10)

where zn are the complex eigenvalues of the matrix K−1
1 K2, we also use z =

(z1, . . . , zN). Taking the derivative yields the (unaveraged) winding number den-
sity

w(p) = N cot p− 1
sin2 p

N∑
n=1

1
cot p+ zn

. (4.11)

Here and below, intermediate singularities at p = 0 and p = π cancel to yield analytic
correlations functions for all values of p. The matrices K−1

1 K2 form the complex
spherical ensemble [76,77], see also our discussion in section 3.2. The corresponding
joint eigenvalue distribution is known

G(2,N)(z) = |∆N(z)|2

c(2,N)

N∏
n=1

1
(1 + |zn|2)N+1

,

c(2,N) = πNN !
N∏

n=1
B(n,N − n+ 1).

(4.12)

Again, the superscript refers to the Dyson index β = 2 and to the matrix dimension
N . Furthermore, B(n,m) = Γ(n)Γ(m)/Γ(n + m) is the Euler Beta function [167]
and

∆N(z) =
∏

1≤n<m≤N

(zm − zn) = det
[
zm−1

n

]
n,m=1,...,N

(4.13)
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is the Vandermonde determinant. With the volume element over the combined N
complex planes

d[z] =
N∏

n=1
d[zn], where d[zn] = dRezn dImzn, (4.14)

we eventually arrive at a precise definition for the ensemble average of a function
F (z) = F (z1, . . . , zN) as

⟨F (z)⟩ =
∫
CN

d[z]G(2,N)(z)F (z)

=
∫
C

d[z1] · · ·
∫
C

d[zN ]G(2,N)(z1, . . . , zN)F (z1, . . . , zN).
(4.15)

In particular, for (4.8), we find that

C
(2,N)
k (p1, . . . , pk) =

∫
CN

d[z]G(2,N)(z)w(p1) · · ·w(pk) (4.16)

is the integral we have to compute. For convenience, we suppress the z-dependence
in the argument of the function w(p).

To proceed with the calculation of the integral (4.16), we observe that the wind-
ing number density w(p) according to (4.11) features a term independent of the
eigenvalues zn. We subtract this term by defining

y(p) = w(p) −Nq = − 1
sin2 p

N∑
n=1

1
q + zn

,

q = cot p
(4.17)

and calculate the correlation functions

⟨y(p1) · · · y(pk)⟩ = (−1)k∏k
i=1 sin2 pi

〈
k∏

i=1

N∑
n=1

1
qi + zn

〉
(4.18)

from which the correlation functions (4.8) can always be reconstructed. Expanding
the k-fold product over the w(pi) = y(pi) +Nqi, we arrive at

C
(2,N)
k (p1, . . . , pk) =

k∑
i=0

∑
ω∈Sk

Nk−i

i!(k − i)!

(
k−i∏
l=1

qω(l)

)〈
k∏

l=k−i+1
y
(
pω(l)

)〉
. (4.19)

The second sum runs over all elements ω(l) in the permutation group Sk of k objects.
It enters the formula, because the correlation functions (4.18) appear in all orders i
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up to k, comprising different subsets of {p1, . . . , pk} with cardinality i. Thus, the k-
point correlation function C(2,N)

k can be determined from all lower order correlation
functions (4.18).

Performing the product, the average (4.18) becomes a complicated sum of terms.
In some of them, only one of the eigenvalues zn appears, these are the disconnected
parts of the average to be performed. All other terms contain at least two different
eigenvalues and may thus be referred to as connected. However, in section 4.4 we
will rewrite the ensemble average in (4.18) in such a way that all terms can be
obtained from the average of the N -point completely connected average〈

N∏
n=1

1
qn + zn

〉
, (4.20)

which is, due to its very definition as an average, invariant under all permutations
of the N arguments (q1, . . . , qN). Our correlation functions, however, only depend
on k of those arguments (q1, . . . , qk), where we assume k ≤ N . We find the proper
k-point connected average by taking the limit〈

k∏
n=1

1
qn + zn

〉
= lim

qk+1,...,qN →∞

 N∏
m=k+1

qm

〈 N∏
n=1

1
qn + zn

〉
, (4.21)

over the N − k excess variables (qk+1, . . . , qN). For this N -point connected average
(4.20) we derive in section 4.4 the result〈

N∏
n=1

1
qn + zn

〉
= 1
c(2,N)

∑
ω∈SN

det
[
Lnmω(n)(qω(n))

]
n,m=1,...,N

(4.22)

with the function

Lnml(ql) = (−1)m−nπ

qm−n+1
l

B(m,N −m+ 1)
um(N, q2

l ) m ≥ n

−vm(N, q2
l ) m < n

. (4.23)

The functions um(N, q2
l ) and vm(N, q2

l ) are given by

um(N, q2
l ) = 2

B(m,N −m+ 1)

ql∫
0

dρ
ρ2m−1

(1 + ρ2)N+1

vm(N, q2
l ) = 2

B(m,N −m+ 1)

∞∫
ql

dρ
ρ2m−1

(1 + ρ2)N+1

(4.24)

and may be viewed as normalized incomplete Beta functions with the property

um(N, q2
l ) + vm(N, q2

l ) = 1. (4.25)
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We will come across these functions also in the distribution of the winding number
to be discussed in section 4.3.3. Taking the limit (4.21), the result (4.22) yields the
k-point connected average〈

k∏
n=1

1
qn + zn

〉
= πN−k

c(2,N)

∑
ω∈SN

 N∏
l=k+1

B(ω(l), N − ω(l) + 1)


× det
[
Lω(m)ω(n)n(qn)

]
n,m=1,...,k

,

(4.26)

which is a k × k determinant, as derived in section 4.4.
From the general formulae (4.19) and (4.26), we obtain in section 4.4 for the first

two correlation functions

C
(2,N)
1 (p1) = 0,

C
(2,N)
2 (p1, p2) = −1 − cos2N (p1 − p2)

1 − cos2 (p1 − p2)
.

(4.27)

We notice that the two-point function depends only on the distance between the
points p1 and p2 on the parameter manifold, which is a consequence of the translation
invariance of our random matrix field (4.4). It turns out that for all k one of the
parameters can be set to zero (or any other arbitrary point) without losing any
information.

4.3.2 Universality Aspects and Unfolding of the Two-Point
Function

The power of random matrix theory lies in the universality of its statistical pre-
dictions in the limit where the matrix dimensions tend to infinity. When studying
the spectral properties of a single matrix, the universal statistics emerge when the
energy levels are measured on the the local scale of the mean level spacing ∆ for
all probability distributions of random matrices that do not have scales competing
with the mean level spacing [57,58]. The required rescaling procedure is referred to
as unfolding. When studying parameter-dependent matrix ensembles, universality
is obtained if energies are still unfolded on the scale of ∆, and the parameter(s) are
unfolded using the typical scale in parameter space [72]

ℓ = ∆√√√√〈∑
i

(
∂

∂pi

En(pi)
)2〉 . (4.28)

Inspired by these results, we search for universal regimes in our correlation func-
tions. To this end, we rescale the parameters pi appearing as arguments in the
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0 1

-20

0

0 2 4 6
-1

0

Figure 4.2: Unfolded two-point function after the rescaling (4.29) for dif-
ferent values of N (blue). In the top plot we use N ∈
{5, 10, 20, 50, 100, 150, 200, 300, 1000} and α = 1/6, in the bottom plot
N ∈ {2, 5, 7, 10, 15, 20, 50, 100} and α = 1/2. For comparison the limit
(4.30) (red).
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correlation functions C(2,N)
k with a positive power of N according to

ψi = Nαpi. (4.29)

We consider positive powers because we want to zoom into the parametric depen-
dence to observe it on a proper local scale in the limit N → ∞. Naturally, all
physical systems that we want to compare with our random matrix theory should
be considered on the same scale.

We turn to the two-point function (4.27). In the limit of large N the rescaled
arguments ψi/N

α become small, allowing us to expand the cosines. We find

lim
N→∞

C
(2,N)
2

(
ψ1

Nα
,
ψ2

Nα

)
dψ1

Nα

dψ2

Nα
= f

(α)
2 (ψ1, ψ2)dψ1dψ2 (4.30)

with the function

f
(α)
2 (ψ1, ψ2) =



− 1
(ψ1 − ψ2)2 α < 1

2

−1 − exp [−(ψ1 − ψ2)2]
(ψ1 − ψ2)2 α = 1

2

0 α > 1
2

. (4.31)

The case p1 = p2 or ψ1 = ψ2, respectively, is subject to interpretation. As obvious
from (4.27), we have C(2,N)

2 (p1, p1) = −1. Hence, we must assume that the arguments
are not equal, ψ1 ̸= ψ2, when taking the limit for arbitrary α.

We observe different regimes in the result (4.31). Since ⟨(∂En(p)/∂p)2⟩ = 1 in
our model, as can be shown following [72], the regime with α = 1/2 amounts to an
unfolding of p with the typical parameter scale (4.28) discovered in the works on
parametric level correlations [69,70]. In figure 4.2 we show our result for two choices
of α and various values of N . As can be seen, the unfolded two-point function
approaches the limit (4.31) when N increases. We conjecture that the function
f

(α)
2 (ψ1, ψ2) is universal.

4.3.3 Winding Number Distribution
For the discussion to follow, it is useful to cast the random matrix field (4.4) into
an equivalent, but different form. Introducing s = eip as a complex variable on the
unit circle, we have

K(s) = s

2(K1 − iK2) + 1
2s(K1 + iK2). (4.32)
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For the determinant we have

detK(s) = 1
(2s)N

det
[
K1 + iK2 + s2(K1 − iK2)

]
= det(K1 − iK2)

(2s)N

N∏
n=1

(
s2 + z′

n

)
,

(4.33)

where the z′
n are the solutions of the generalized eigenvalue problem

(K1 + iK2)vn = z′
n (K1 − iK2) vn (4.34)

with eigenvectors vn. The matrices K1 ± iK2 are again Ginibre matrices, implying
that the joint probability distribution of the z′

n is the one of the spherical ensemble
(4.12). In the sequel, we thus always write zn. The winding number in terms of
(4.32) is

W = 1
2πi

∮
|s|=1

ds
1

detK(s)
d

ds
detK(s) = 1

2πi

∮
|s|=1

ds
d

ds
ln detK(s). (4.35)

Obviously, det(K1 − iK2) drops out in the integrand. The contour integral yields
the difference of zeros and poles of detK(s) inside the unit circle. This result is also
known as Cauchy’s argument principle [104]. From (4.33) we infer that it has a pole
of order N at zero and that its zeros come in pairs, making their number even. Let
m be the number of solutions of (4.34) that lie inside the unit circle, then

W = 2m−N (4.36)

is the winding number. The number m takes values from 0 to N , thus the winding
number lies between −N and N . The probability that m eigenvalues are inside the
unit circle and the remaining ones outside is

r(m) =
∫

|z1|<1

d[z1] · · ·
∫

|zm|<1

d[zm]
∫

|zm+1|>1

d[zm+1] · · ·
∫

|zN |>1

d[zN ]G(2,N)(z). (4.37)

In section 4.4 we show that

r(m) = 1
N !

∑
ω∈SN

(
m∏

i=1
uω(i)(N, 1)

) N∏
i=m+1

vω(i)(N, 1)
 , (4.38)

where the expressions ui(N, 1) and vi(N, 1) follow from the functions (4.24). Tak-
ing into account the permutation invariance of the eigenvalues inside, respectively
outside, the unit circle and using (4.36), we find the discrete probability distribution

P (W ) = r
(
W +N

2

)(
N

(W +N)/2

)
(4.39)
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on the integers W between −N and N as the winding number distribution for
arbitrary, finite matrix dimension N .

Let us now turn to the moments (4.9) of this distribution. Since the one-point
function (4.27) vanishes, the mean winding number is zero

⟨W ⟩ = 0. (4.40)

To arrive at a closed form for k = 2 we calculate, instead of directly applying
the definition (4.9), the difference in the winding number variance of systems with
(N + 1) × (N + 1) and N ×N dimensional chiral subblocks. The second moment is
given by

〈
W 2

〉 ∣∣∣∣
N

= − 1
4π2

2π∫
0

dp1dp2 C
(2,N)
2 (p1, p2) = 1

2π

2π∫
0

dφ
1 − cos2N φ

1 − cos2 φ
, (4.41)

where we indicate the N dependence. For the difference we find
〈
W 2

〉 ∣∣∣∣
(N+1)

−
〈
W 2

〉 ∣∣∣∣
N

= 1
2π

2π∫
0

dφ cos2N φ

= (2N − 1)!!
(2N)!! = (2N + 1)!!

(2N)!! − (2N − 1)!!
(2N − 2)!! ,

(4.42)

and with ⟨W 2⟩ |1 = 1 we obtain
〈
W 2

〉
= (2N − 1)!!

(2N − 2)!! ≃ 2
√
N

π
. (4.43)

The last expression holds for large N . Hence, the second moment grows with
√
N .

The results (4.40) and (4.43) suggests to look at the distribution of P (W ) as a
function of W 2/

√
N for large N . Numerically, we find that it is well described by

P (W ) = 1
2(πN)1/4 exp

(
−1

4

√
π

N
W 2

)
, (4.44)

i.e. by a Gaussian distribution.

4.4 Derivations
In section 4.4.1 we reformulate the quantity to be ensemble averaged in the k-point
correlation function (4.18). We calculate the N -point and the k-point connected
ensemble averages in sections 4.4.2 and 4.4.3, respectively. The explicit expressions
for the one and two-point functions are worked out in section 4.4.4. In section
4.4.5 we compute the probability (4.37) appearing in the discrete winding number
distribution (4.39).
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Figure 4.3: Examples for paths on a 3 × 4 lattice. Paths a and b both have the
multiindex (2, 1, 0, 0) and are thus equivalent up to permutations in i.
Path c = (1, 1, 1, 0) is the completely connected path along the angle
bisector of the lattice. Path d = (0, 0, 2, 1) is equal to path b as the
integration variables zn are permutation invariant.

4.4.1 Reformulation of the Key Expression to be Ensemble
Averaged

To perform the calculation of the correlation function (4.18), it is helpful to rewrite
the expression to be ensemble averaged, namely〈

k∏
i=1

N∑
n=1

1
qi + zn

〉
, (4.45)

by extracting the sums from the angular brackets, i.e. to cast the average (4.45)
into a sum of terms containing only products to be averaged. This requires some
work. We use the permutation invariance of the distribution (4.12) and think of the
product of sums as a k×N lattice. Let the rows be labelled by i = 1, . . . , k and the
columns by n = 1, . . . , N . As depicted in figure 4.3 for some examples, each term
in the product is a path through the lattice, obeying the following rules:

• Each row is visited once and only once. This amounts to each qi appearing
only once in each of the terms.

• Two paths are considered equal if they visit the same lattice points, irrespective
of order. The points on the lattice are coupled via multiplication, which is
commutative.
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To each path we assign a multiindex l = (l1, . . . , lN) ∈ NN
0 of length |l| = ∑N

n=1 ln =
k. It describes how many times ln the path has visited the n-th column and therefore
how many factors including zn appear in the associated term. However, this mapping
is not unique. In total there are (

k

l

)
= k!
l1! · · · lN ! (4.46)

paths sharing the same l. In the matrix average these terms are equal up to permu-
tations in the qi. We take care of this by setting qi → qω(i) and summing over all
permutations 〈

k∏
i=1

N∑
n=1

1
qi + zn

〉
= 1
k!

∑
ω∈Sk

∑
|l|=k

〈
k∏

i=1

1
qω(i) + zgl(i)

〉
. (4.47)

Here, we introduce the step function

gl(i) = 1 +
N∑

n=1
Θ
i−

n∑
j=1

lj

 , with Θ(0) = 0, (4.48)

employing the Heaviside unit step function Θ, to select the correct variables zn for
the integration of the corresponding product. We distinguish between different types
of paths. In the disconnected paths only one zn appears, which amounts to ln = k
for one n and ln = 0 for all other n. We refer to all other paths as connected. Out of
the connected paths the ones with ln ∈ {0, 1}, where each zn may appear only once,
stand out. To these paths we refer as completely connected and their contributions
may be evaluated via (4.21).

Next we consider the permutation invariance of the zn. Let hl(i) be the function
that tallies up the number of integers i appearing in l. There are

N !∏k
i=1 hl(i)!

(4.49)

possible ways to permute the zn without changing the ensemble average. We choose
the ordered multiindex l with l1 ≤ . . . ≤ lN as a representative of all these paths.
On the k × N lattice, this amounts to paths below the angle bisector. We thus
finally arrive at〈

k∏
i=1

N∑
n=1

1
qi + zn

〉
= 1
k!

∑
ω∈Sk

∑
l1≤...≤lN

|l|=k

(
k

l

)
N !∏k

i=1 hl(i)!

〈
k∏

i=1

1
qω(i) + zgl(i)

〉
. (4.50)
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Indeed, this is a sum over ensemble averages of products only. Generally, any zn

may appear l times. To handle this, we use the partial fraction expansion
l∏

i=1

1
qi + zn

=
l∑

i=1

1∏
j ̸=i(qj − qi)

1
qi + zn

, (4.51)

which reduces the corresponding averages to a sum of completely connected averages.
Thus, the resulting expression can again be treated with (4.21).

4.4.2 Calculation of the N -Point Connected Ensemble Average
As already pointed out in section 4.3.1, all connected k-point ensemble averages can
be, via proper limits, obtained from the connected N -point average〈

N∏
n=1

1
qn + zn

〉
=
∫
CN

d[z]G(2,N)(z)
N∏

n=1

1
qn + zn

, (4.52)

where G(2,N)(z) is the joint eigenvalue probability distribution (4.12) of the spherical
ensemble. We use

|∆N(z)|2 = ∆N(z)∆∗
N(z) = ∆N(z)∆N(z∗) (4.53)

and expand the Vandermonde determinant ∆N(z) in the Laplace form. This yields〈
N∏

n=1

1
qn + zn

〉
= 1
c(2,N)

∑
ω∈SN

sgnω
∫
CN

d[z]∆N(z∗)
N∏

n=1

zω(n)−1
n(

1 + |zn|2
)N+1

(qn + zn)

= 1
c(2,N)

∑
ω∈SN

∫
CN

d[z]∆N(z∗)
N∏

n=1

zn−1
n(

1 + |zn|2
)N+1 (

qω(n) + zn

) ,
(4.54)

where the second equation follows from renaming the integration variables zn → zω(n)
for each permutation ω ∈ SN . The sign sgnω of the permutation ω is canceled by the
same sign appearing in ∆N(z∗) when changing the integration variables. Inserting
the remaining Vandermonde determinant and integrating row by row we obtain
(4.22) with the function

Lnml(ql) =
∫
C

d[z] (z∗)m−1 zn−1(
1 + |z|2

)N+1
(ql + z)

=
∞∫

0

dρ
ρm+n−1

(1 + ρ2)N+1

2π∫
0

dϑ
ei(n−m)ϑ

ql + ρ eiϑ
,

(4.55)
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where we employ polar coordinates z = ρ eiϑ in the second equation. The angular
integral yields, by virtue of the residue theorem,

2π∫
0

dϑ
ei(n−m)ϑ

ql + ρ eiϑ
=



2π
ql

(
− ρ

ql

)m−n

m ≥ n, ρ < ql

2π
ρ

(
− ρ

ql

)m−n+1

m < n, ρ > ql

0 else

. (4.56)

Thus, we arrive at (4.23).

4.4.3 Reduction to the k-Point Connected Ensemble Average
To take the limit (4.21) we need as an intermediate result a proper limit involving
the function Lnml(ql). As the limit ql → ∞ of the incomplete Beta functions (4.24)
gives either unity or zero, the total limit is only non-vanishing if m = n,

lim
ql→∞

qlLnml(ql) =
πB(m,N −m+ 1) m = n

0 m ̸= n
. (4.57)

We apply this result to reduce the k-point connected average, which is, according to
(4.21) and (4.22), a limit of an N × N -determinant. The limit makes all elements
in the ω−1(n)-th row vanish except the diagonal element, which is πB(ω−1(n), N −
ω−1(n) + 1). We expand the determinant in these elements〈

k∏
n=1

1
qn + zn

〉
=π

N−k

c(2,N)

∑
ω∈SN

 N∏
l=k+1

B(ω−1(l), N − ω−1(l) + 1)


× det
[
Lnmω(n)(qω(n))

]n,m ̸=ω−1(l),l=k+1,...,N

n,m=1,...,N
.

(4.58)

Interchanging row n with row ω−1(n) and column m with column ω−1(m) yields for
the right hand side

πN−k

c(2,N)

∑
ω∈SN

 N∏
l=k+1

B(ω−1(l), N − ω−1(l) + 1)
 det

[
Lω−1(n)ω−1(m)n(qn)

]
n,m=1,...,k

= πN−k

c(2,N)

∑
ω∈SN

 N∏
l=k+1

B(ω(l), N − ω(l) + 1)
 det

[
Lω(n)ω(m)n(qn)

]
n,m=1,...,k

.

(4.59)

We also used that the order in the sum over the permutations ω is invariant due to
the group property of SN . Thus, we arrive at the result (4.26).
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4.4.4 Explicit Expressions for the One- and Two-Point
Correlation Functions

For k = 1 there are no connected terms. According to (4.19) and (4.50) the one-point
function is given by

C
(2,N)
1 (p1) = ⟨y(p1)⟩ +Nq1 = − N

sin2 p1

〈
1

q1 + z1

〉
+Nq1. (4.60)

The average follows from (4.26),〈
1

q1 + z1

〉
= 1
Nq1

N∑
n=1

un(N, q2
1). (4.61)

The incomplete Beta functions (4.24) may be rewritten using integration by parts,
we find

vm(N, q2
1) =

m−1∑
l=0

(
N − 1 − l

m− 1 − l

)
(q2

1)m−l−1

(1 + q2
1)N−l . (4.62)

Using the property (4.25), the sum in (4.61) can be evaluated by means of the
binomial theorem, implying〈

1
q1 + z1

〉
= 1
q1

− 1
q1(1 + q2

1) = sin p1 cos p1. (4.63)

In the last step we reinserted q1 = cot p1. Altogether we arrive at the first of the
results (4.27).

For k = 2 we apply (4.19) and (4.50) and use the vanishing of the one-point
function

C
(2,N)
2 (p1, p2) = ⟨y(p1)y(p2)⟩ −N2q1q2

= 1
sin2 p1 sin2 p2

〈 2∏
i=1

N∑
n=1

1
qi + zn

〉
−N2q1q2.

(4.64)

With (4.50) we find〈 2∏
i=1

N∑
n=1

1
qi + zn

〉
= N

〈
1

q1 + z1

1
q2 + z1

〉
+N(N − 1)

〈
1

q1 + z1

1
q2 + z2

〉
. (4.65)
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The connected average is given by (4.26) and reads

〈
1

q1 + z1

1
q2 + z2

〉
= 1
N(N − 1)

1
q1q2

 N∑
n,m=1
n̸=m

un(N, q2
1)um(N, q2

2)

+
N∑

n,m=1
n>m

(
q2

q1

)n−m

un(N, q2
1)vm(N, q2

2) +
(
q1

q2

)n−m

vn(N, q2
1)um(N, q2

2)

 .
(4.66)

This expression is readily simplified by using the translation invariance on the pa-
rameter manifold. We set p2 = π/2 which amounts to q2 = 0 and find〈

1
q1 + z1

1
z2

〉
= 1
N(N − 1)

1
q2

1

N∑
n=2

un(N, q2
1)

= 1
(N − 1)q2

1

(
1 − 1

1 + q2
1

+ 1
N(1 + q2

1)N
− 1
N

)
.

(4.67)

For the disconnected average we employ the partial fraction expansion (4.51) and
(4.63), 〈

1
q1 + z1

1
z1

〉
= − 1

q1

(〈
1

q1 + z1

〉
−
〈 1
z1

〉)
= − 1

1 + q2
1
. (4.68)

Reinserting q1 = cot p1 yields

C
(2,N)
2

(
p1,

π

2

)
= −1 − cos2N p1

1 − cos2 p1
(4.69)

or, equivalently, the second of the results (4.27).

4.4.5 Calculation of the Probability r(m)

For the discrete winding number distribution (4.39) we need to compute the prob-
ability (4.37). The calculation is similar to the one in section 4.4.2. Inserting the
eigenvalue distribution (4.12), we have

r(m) = 1
c(2,N)

∑
ω∈SN

∫
|zω(1)|<1

d[zω(1)] · · ·
∫

|zω(m)|<1

d[zω(m)]

∫
|zω(m+1)|>1

d[zω(m+1)] · · ·
∫

|zω(N)|>1

d[zω(N)]∆∗
N(z)

N∏
n=1

zn−1
n(

1 + |zn|2
)N+1 .

(4.70)
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Like in section 4.4.2 we expanded one of the Vandermonde determinants and re-
named the integration variables zn → zω(n), which cancels the sign of the first
determinant. When integrating in polar coordinates zn = ρne

iϑn we find Kronecker
deltas for the angular integrals,

2π∫
0

dϑne
i(n−ω(n))ϑn = 2πδnω(n). (4.71)

Therefore, for the second determinant only the diagonal terms contribute and we
obtain

r(m) = (2π)N

c(2,N)

∑
ω∈SN

1∫
0

dρω(1) · · ·
1∫

0

dρω(m)

∞∫
1

dρω(m+1) · · ·
∞∫

1

dρω(N)

N∏
n=1

ρ2n−1
n

(1 + ρ2
n)N+1

= 1
N !

∑
ω∈SN

(
m∏

i=1
uω(i)(N, 1)

) N∏
i=m+1

vω(i)(N, 1)
 .

(4.72)

The radial integrals are given by the incomplete Beta functions (4.24) for ql = 1.
Altogether we arrive at formula (4.38).

4.5 Summary
In this chapter we studied the winding number statistics in the chiral unitary class
AIII. We set up an appropriate random matrix model with one-dimensional paramet-
ric dependence as a combination of two chiral Gaussian unitary matrices. Within
this model, we analytically calculated the discrete probability distribution of the
winding number as well as the k-point correlation functions of the winding number
density. We derived a closed formula for the former and arrived at explicit deter-
minant expressions for certain correlation functions of arbitrary order for the latter,
which allow for a construction of the winding number density correlation functions.
We constructed the one- and two-point functions explicitly and used them to calcu-
late the first and second moment of the winding number.

We found that our random matrix model is intimately connected to the complex
spherical ensemble of random matrices, which has been analyzed in earlier works
[76,77]. We used these results to address the new questions of statistical topology. In
our calculations we integrated over the joint probability distribution of eigenvalues
of the complex spherical ensemble. In all our results we obtained incomplete Beta
functions, which are fairly simple.

Since random matrix theory is widely known to provide universal results for spec-
tral statistics, including parametric spectral statistics, we are confident that our
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results hold universal information as well. In order to reveal it, we carried out an
unfolding procedure similar to the one in the above contexts. Remarkably, we found
different scaling limits that we expect to be universal. Furthermore, our result for
the discrete probability distribution of the winding number indicates that it becomes
Gaussian in the large N limit. These observations are analogous to the ones obtained
numerically in the case of the adiabatic curvature and the Chern number [74,75].
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Chapter 5
Averaging Ratios of Parametric
Determinants

In this chapter we take a different approach to the winding number statistics in-
volving generating functions. It is based on [2] and [3]. We extend our study to a

general two-matrix model, including also the time reversal invariant classes. In sec-
tion 5.1 we briefly outline our intentions, and in section 5.2 we mathematically define
the goals of this chapter. In section 5.3 we summarize our results, while we give
their derivation in section 5.4. Some details are postponed to several appendices.
We conclude in section 5.5.

5.1 Introduction
It is a fruitful approach in statistical physics to work with a generating function
that yields the desired quantities upon taking the derivative with respect to a source
parameter. We establish such a function for the k-point correlation of the winding
number density. Within this scope, we generalize our examinations to arbitrary
two-matrix models. Furthermore, we include also the time reversal invariant chiral
classes BDI and CII in our considerations. In doing so, we encounter the real and
quaternion spherical ensemble in addition to the complex one.

The generating function is given by the ensemble average over ratios of characteris-
tic polynomials in the corresponding spherical ensemble. In section 3.4 we discussed
the supersymmetry without supersymmetry method, which aims to compute such
ensemble averages. Using this method we obtain a determinantal expression in the
chiral unitary class AIII and Pfaffian expressions in the chiral orthogonal class BDI
and the chiral symplectic class CII.

The remaining task is to compute the ensemble dependent kernel functions, which
are given by ensemble averages over only two characteristic polynomials. This is by
no means an easy endeavour and we have to resort to various techniques to solve
these integrals. In particular, we exploit an inherent symmetry of our two-matrix
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model to reduce the number of characteristic polynomials by one. Subsequently, the
averages can be evaluated by methods of classical random matrix theory such as
orthogonal and skew-orthogonal polynomials.

5.2 Posing the Problem
As pointed out in chapters 2 and 3, time reversal invariance assigns a real structure
to the Hamiltonian. It is then either a real symmetric (β = 1) or a quaternion self-
dual (β = 4) matrix, whereas in the absence of time reversal invariance it is complex
Hermitian (β = 2). Assuming chiral symmetry as well, we distinguish between the
chiral orthogonal class BDI (β = 1), the chiral symplectic class CII (β = 4) and
the chiral unitary class AIII (β = 2). The winding number statistics of the latter
were considered already in chapter 4. Here, we will first set up a parametric random
matrix model, similar to the one used there, which is valid also for the time reversal
invariant cases.

In the chiral classes, the Bloch Hamiltonian assumes a block off-diagonal form

H(p) =
[

0 K(p)
K†(p) 0

]
. (5.1)

In the symplectic case the matrix elements are quaternions, effectively doubling the
matrix dimension. Therefore, K(p) is of dimension N × N for AIII and BDI and
of dimension 2N × 2N for CII. In chapter 2 we found that the Bloch Hamiltonian,
defined as the Fourier transform of the Hamiltonian from the crystal lattice to the
reciprocal lattice, behaves like

T H(p)T −1 = H(−p) (5.2)

under time reversal. Therefore, by inserting the time reversal operator, K(p) has to
fulfill

BDI : T K(p)T −1 = K∗(p) = K(−p),
CII : T K(p)T −1 = [τ2 ⊗ 11N ]K∗(p)[τ2 ⊗ 11N ] = K(−p),

(5.3)

where τ2 is the second Pauli matrix. This has the important consequence that,
unlike the chiral block form, the real structure is not simply passed on to the Bloch
Hamiltonian. Only at the time reversal invariant momenta p = 0 and p = π,
where K(p) = K(−p), due to the 2π-periodicity of p, it will be real symmetric resp.
quaternion self-dual. Hence, for a general p, we can expect that K(p) is a complex
matrix interpolating between real and imaginary numbers resp. real and imaginary
quaternions.
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Figure 5.1: A realization of a CII Hamiltonian with K(p) = cos(p)K1 + i sin(p)K2
and some fixed 4 × 4 real quaternion matrices K1 and K2. The top
left plot shows the real eigenvalues of H(p), the top right one shows the
generically complex eigenvalues of K(p), and the bottom plot depicts
the determinant detK(p). All plots show the parametric dependence in
p ∈ [0, 2π), where we have employed the step size 2π/100 and a B-Spline
to obtain the curves. In both of the parametric plots the starting points
p = 0 are marked by black points and the directions are marked by a
color gradient resp. arrows.
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In figures 5.1 and 5.2 we illustrate the spectral flow of the matrix field K(p) =
cos(p)K1 + i sin(p)K2 with generic real quaternion K1, K2 ∈ H2×2 ⊂ C4×4 for the
case CII and with generic real K1, K2 ∈ R4×4 for the case BDI, just as we did for
the corresponding AIII matrix field, see figure 4.1. We show the eight eigenvalues of
H(p), the four complex eigenvalues ofK(p) and the determinant detK(p). Again, we
observe that the order of the eigenvalues of H(p) remains the same for all p, whereas
the complex eigenvalues of K(p) may experience a permutation, meaning when
running once from p = 0 to p = 2π a chosen eigenvalue can become another one.
Therefore, only the determinant detK(p) is suitable for a topological classification
as it is generally 2π-periodic.

In the symplectic case, see figure 5.1, we find Kramers’ degeneracy in the spec-
trum of H(p) at the time reversal invariant points p = 0 and p = π, where K(p)
is real quaternion in general, and at p = π/2 and p = 3π/2, where it is imaginary
quaternion for our specific choice of K(p). In the unitary case we observed a point
symmetry around the origin of the curves describing the eigenvalues of K(p), which
was caused by K(p+ π) = −K(p), specific to our choice of K(p). In the orthogonal
and symplectic cases this point symmetry is raised to independent reflection sym-
metries around the real- and imaginary axis. The reflection symmetry around the
imaginary axis exists in general and is due to (5.3). The property K(p+π) = −K(p)
also restricts the amount of times detK(p) winds around the origin to be an even
resp. odd number for even resp. odd matrix dimensions. This symmetry does not
exist in general as we also illustrated in figure 5.2 by means of another random ma-
trix field K(p) = (a1 +a2e

ip +a3e
2ip +a4e

3ip)K1 +(b1 + b2e
ip + b3e

2ip + b4e
3ip)K2 with

generic real K1, K2 ∈ R4×4 and real coefficients aj and bj, belonging to class BDI.
In this example we find an odd winding number. In the symplectic case, however,
the winding number is generally even, as predicted by the tenfold way classification,
see table 2.2. The reason for this is that the matrix field K(p) is real quaternion
at the points p = 0 and p = π, so that its eigenvalues come in complex conjugated
pairs and its determinant is real positive, detK(0) > 0 and detK(π) > 0. This ob-
struction forces the winding number to be even and is not present in the orthogonal
case, where the determinant can have an arbitrary sign at these points. Physically,
this can be understood in terms of the edge states, which must arrive in pairs in the
symplectic case due to Kramers’ degeneracy.

The topological invariant describing this effect and classifying such subsets of
chiral Hamiltonians is the winding number. We discussed it thoroughly in section
2.3, but do not hesitate to state the relevant expressions once again. The winding
number is

W = 1
2πi

∮
det K(p)

dz

z
= 1

2πi

2π∫
0

dpw(p), (5.4)
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Figure 5.2: A realization of a BDI Hamiltonian with K(p) = cos(p)K1 + i sin(p)K2
and some fixed 4×4 real matrices K1 and K2. The top left plot shows the
real eigenvalues of H(p), the top right one shows the generically complex
eigenvalues of K(p), and the bottom left plot depicts the determinant
detK(p). The bottom right plot shows the determinant of a different
random matrix field K(p) = (a1 + a2e

ip + a3e
2ip + a4e

3ip)K1 + (b1 +
b2e

ip + b3e
2ip + b4e

3ip)K2 with fixed 4 × 4 real matrices K1 and K2 and
real coefficients aj and bj. All plots show the parametric dependence in
p ∈ [0, 2π), where we have employed the step size 2π/100 and a B-Spline
to obtain the curves. In the parametric plots the starting points p = 0
are marked by black points and the directions are marked by a color
gradient resp. arrows.
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where we integrate over the logarithmic derivative of the determinant

w(p) = d

dp
ln detK(p) = 1

detK(p)
d

dp
detK(p) = trK−1(p) d

dp
K(p), (5.5)

called winding number density.
The parametric dependence of the random matrix K(p) describes a random field

on [0, 2π), which has its values in GlC(N) for AIII and BDI or in GlC(2N) for CII.
To have an analytically feasible model we assume a centered Gaussian random field.
Thus, the model is fully controlled by its variance, which we assume to have the
only non-vanishing covariances〈

K∗
lj(p)Klj(q)

〉
= S(p, q) ̸= 0, S(p, p) ≥ 0 (5.6)

with p, q ∈ [0, 2π) and any l, j, where ⟨·⟩ is the ensemble average. As this choice
is independent of the matrix indices l and j, S(p, q) must be a scalar product on a
vector space because of

⟨K∗
lj(p) [λKlj(q1) + µKlj(q2)]⟩ =λS(p, q1) + µS(p, q2),
S∗(p, q) = ⟨K∗

lj(p)Klj(q)⟩∗ = ⟨K∗
lj(q)Klj(p)⟩ = S(q, p)

(5.7)

for any p, q, q1, q2 ∈ [0, 2π), µ, λ ∈ C, and l, j. Hitherto, we considered the most
general form for the covariance S(p, q). The easiest non-trivial choice is a scalar
product of a two-dimensional complex vector space, which can be realized by setting
up the random matrix field as the linear combination

K(p) = a(p)K1 + b(p)K2 (5.8)

with two scalar functions a(p) and b(p) that are smooth and 2π-periodic. Arranging
the two functions as a vector

v(p) = (a(p), b(p)) ∈ C2, (5.9)

the scalar product takes the form S(p, q) = v†(p)v(q). Furthermore, when inter-
preting our random matrix model as a Bloch Hamiltonian (i.e. p is the crystal
momentum), in the time reversal invariant cases the functions should satisfy

T v(p)T −1 = v∗(p) = v(−p) (5.10)

due to (5.3). However, the expressions for the ensemble averages derived in the
following hold true for arbitrary functions and are therefore valid also in the case that
our random matrix model is interpreted otherwise and condition (5.10) is relaxed.
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The matrices K1 and K2 are drawn from the complex Ginibre ensemble in the
case AIII, from the real Ginibre ensemble in the case BDI and from the real quater-
nion Ginibre ensemble in the case CII. We state the exact expressions for their
joint probability distributions P̃ (β,N)(K1, K2) further below, see also section 3.2. As
aforementioned, we denote the corresponding ensemble averages of an observable
F (K1, K2) with angular brackets,

⟨F ⟩ =
∫
d[K1, K2]P̃ (β,N)(K1, K2)F (K1, K2), (5.11)

where the flat measures d[K1, K2] are simply the products of the differentials of all
independent real variables. The structure of the random matrix field carries over
from K(p) to the Hamiltonian H(p) which becomes

H(p) = a(p)H1 + b(p)H2, Hm =
[

0 Km

K†
m 0

]
, m = 1, 2. (5.12)

This construction defines parametric combinations of two chiral Gaussian ensembles,
having unitary (β = 2), orthogonal (β = 1) and symplectic (β = 4) symmetry,
respectively.

Our goal is to calculate the ensemble averages for ratios of determinants with
parametric dependence

Z
(β,N)
k|l (q, p) =

〈∏l
j=1 detK(pj)∏k
j=1 detK(qj)

〉
(5.13)

for two sets of variables (p1, . . . , pl) and (q1, . . . , qk) in the case k = l. We introduce
the more general definition (5.13) for k and l being different for reasons that will
become clear in the sequel, see also section 3.4. We note that k and l are the numbers
of determinants in denominator and numerator, respectively.

These ensemble averages are closely related to averages over ratios of character-
istic polynomials, which are mathematically the key objects in the supersymmetry
method [80,81,157] since they serve as generators for correlation functions of opera-
tor or matrix resolvents. Similarly, we can compute the k-point correlation function

C
(β,N)
k (p1, . . . , pk) = ⟨w(p1) · · ·w(pk)⟩ (5.14)

of the winding number density as the k-fold derivative

C
(β,N)
k (p1, . . . , pk) = ∂k∏k

j=1 ∂pj

Z
(β,N)
k|k (q, p)

∣∣∣∣∣∣
q=p

(5.15)

of the generator (5.13). As pointed out earlier, the k-point correlations yield the
moments of the winding number upon integration

〈
W k

〉
= 1

(2πi)k

2π∫
0

dp1 · · ·
2π∫
0

dpk C
(β,N)
k (p1, . . . , pk). (5.16)
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5.3 Results
In sections 5.3.1, 5.3.2 and 5.3.3 we state the results for the unitary, symplectic and
orthogonal case, respectively. They are sorted by increasing complexity, with the
orthogonal case being the most difficult one.

As mentioned in section 3.4, the unitary case is described by a determinantal point
process, while the symplectic and the orthogonal case are described by a Pfaffian
point process [58, 163]. This means that the eigenvalue correlations can be written
as a determinant resp. a Pfaffian of ensemble dependent kernel functions. Indeed,
we find this also in the expressions resulting from the supersymmetry without su-
persymmetry method.

Regardless of which of the three cases, it is very useful to write the two coefficients
a(p) and b(p) in terms of the two-dimensional vector v(p). Only then certain inherent
symmetries are properly reflected in the results.

5.3.1 The Unitary Case (AIII)
The generating function, see (5.13), is invariant under the group SU(2) × GlC(1).
The part GlC(1) corresponds to the invariance under rescaling v(p) → s v(p) for all
s ∈ GlC(1) = C \ {0}. The scaling factor drops out in the ratio of the determinants.
The subgroup SU(2) reflects an invariance when rotating K1 and K2 into each
other. This carries over to an invariance for the vector v(p), see section 5.4.1 for
more details. Therefore, the result can only depend on the combinations v†(p)v(q)
and vT (p)τ2v(q) and their complex conjugates. We emphasize that vT (p)τ2v(q) is
also an invariant because U = τ2U

∗τ2 for any U ∈ SU(2). Additionally, Z(2,N)
k|l (q, p)

is a polynomial in v(pj) while it is quite likely to be not holomorphic in v(qj).
We derive the following result

Z
(2,N)
k|k (q, p) =

det
 1
vT (qm)τ2v(pn)

(
v†(qm)v(pn)
v†(qm)v(qm)

)N


1≤m,n≤k

det
[

1
vT (qm)τ2v(pn)

]
1≤m,n≤k

(5.17)

for the unitary case.

5.3.2 The Symplectic Case (CII)
As often, the symplectic and orthogonal cases CII and BDI, respectively, are consid-
erably more demanding and lead to Pfaffian structures. The symplectic case turns
out to be simpler in its computation and its results. However, the biggest obstruc-
tion is that it respects the smaller invariance group O(2) × GlR(1). The GlR(1) part
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is once more the simple rescaling of the two dimensional vector v(p) → s v(p) with
s ∈ GlR(1) = R \ {0}. Yet, the condition that the two matrices K1 and K2 must
be real quaternion only allows a rotation of one matrix into the other one via the
real orthogonal group O(2). Again, more details of this symmetry discussion can be
found in section 5.4.2.

We derive the following result

Z
(4,N)
k|k (q, p) =

Pf
 K̂(4,N)

1 (pm, pn) K̂(4,N)
2 (pm, qn)

−K̂(4,N)
2 (pn, qm) K̂(4,N)

3 (qm, qn)


1≤m,n≤k

det
[

1
ivT (qm)τ2v(pn)

]
1≤m,n≤k

(5.18)

with the kernel functions

K̂(4,N)
1 (pm, pn) =2N(2N + 1)[ivT (pn)τ2v(pm)]2N−1q

(N)
2N−2

(
vT (pm)v(pn)
ivT (pm)τ2v(pn)

)
,

K̂(4,N)
2 (pn, qm) = 1

ivT (qm)τ2v(pn)

(
vT (pn)v(pn)

ivT (qm)τ2v(pn)

)2N

×
(

1 − vT (qm)v(pn)v†(qm)v(pn)
vT (qm)τ2v(pn)v†(qm)τ2v(pn)

)−2N−1

×

( v†(qm)v(pn)
iv†(qm)τ2v(pn)

)2N+1
vT (qm)v(pn)
ivT (qm)τ2v(pn) + (2N + 1)q(N+1)

2N

(
v†(qm)v(pn)
iv†(qm)τ2v(pn)

) ,
K̂(4,N)

3 (qm, qn) =
(

iv†(qn)τ2v
∗(qm)

v†(qm)v(qm)v†(qn)v(qn)

)2N+1

q
(N+1)
2N

(
v†(qn)v∗(qm)
iv†(qn)τ2v∗(qm)

)

− ivT (qm)τ2v(qn)
(

v†(qm)v∗(qn)
v†(qm)v(qm)v†(qn)v(qn)

)2N+2

Φ(1)
2N+2

(
|vT (qm)v(qn)|2

v†(qm)v(qm)v†(qn)v(qn)

)
.

(5.19)

The block matrix in (5.18) has to be read such that one takes a k × k-matrix with
2×2-matrices of the shown form as matrix entries. We chose the sign of the Pfaffian
as

Pf[11n ⊗ iτ2] = +1. (5.20)
We find a special kind of Lerch’s transcendental function [167]

Φ(1)
n+1(z) = − 1

zn+1

ln(1 − z) +
n∑

j=1

zj

j

 (5.21)
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as well as the polynomial

q
(N)
2n (x) =

n∑
m=0

B(n+ 1, N − n+ 1/2)
B(m+ 1, N −m+ 1/2)x

2m

=2N + 1
2 B

(
n+ 1, 2N − 2n+ 1

2

) (
1 + x2

)n−1/2

− 2N − 2n− 1
2n+ 2 x2n+2

2F1

(
1, 3 + 2n− 2N

2 ;n+ 2; −x2
)
.

(5.22)

The function B(x, y) = Γ(x)Γ(y)/Γ(x+y) is Euler’s Beta function with the Gamma
function Γ(x). The polynomials are essentially truncated binomial series. The sec-
ond representation involves Gauss’ hypergeometric function 2F1. The polynomials
are actually the skew-orthogonal polynomials of even order corresponding to the
quaternion spherical ensemble, see appendix A.1 for their derivation. Having the re-
sult at hand, we again want to point out its invariance under O(2), which is checked
quickly by (5.18) and (5.19).

5.3.3 The Orthogonal Case (BDI)
The orthogonal case is the most challenging of the three cases. Therefore, for tech-
nical reasons exclusive to this case, we assume an even matrix dimension N . This
does not interfere with our actual goal to uncover universal behaviour in the large
N limit as is outlined in section 5.4.3. Just as in the symplectic case, we obtain
a Pfaffian structure. The symmetry group is again O(2) × GlR(1), where GlR(1)
corresponds to a rescaling and O(2) rotates the real matrices K1 and K2 into each
other.

We derive the following result

Z
(1,N)
k|k (q, p) =

Pf
 K̂(1,N)

1 (pm, pn) K̂(1,N)
2 (pm, qn)

−K̂(1,N)
2 (pn, qm) K̂(1,N)

3 (qm, qn)


1≤m,n≤k

det
[

1
ivT (qm)τ2v(pn)

]
1≤m,n≤k

(5.23)
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with the kernel functions

K̂(1,N)
1 (pm, pn) =N(N − 1)

4π ivT (pn)τ2v(pm)
[
vT (pm)v(pn)

]N−2
,

K̂(1,N)
2 (pn, qm) = 1

ivT (pn)τ2v(qm)
N(N − 1)

4π

(
vT (pn)v(pn)

ivT (pn)τ2v(qm)

)N

×
∫
C2

d[z] zN−2
1 g(1,N)(z1, z2)

(
z2 + vT (pn)v(qm)

ivT (pn)τ2v(qm)

)−1

,

K̂(1,N)
3 (qm, qn) = 1

[b(qm)b(qn)]N

 ∫
C2

d[z] g(1,N)(z1, z2)
(a(qm) + b(qm) z1)(a(qn) + b(qn) z2)

− N(N − 1)
4π

∫
C4

d[z] (z3 − z1)(z1z3 + 1)N−2

(a(qm) + b(qm) z2)(a(qn) + b(qn) z4)
g(1,N)(z1, z2)g(1,N)(z3, z4)

.
(5.24)

The antisymmetric function

g(1,N)(z1, z2) = |z2 − z1|
z2 − z1

× B(1/2, (N + 1)/2)δ(y1)δ(y2) + 2δ(x1 − x2)δ(y1 + y2)Q(z1, z
∗
1)

[(1 + z2
1)(1 + z2

2)](N+1)/2

(5.25)

directly emerges from our random matrix problem as the antisymmetric two-point
measure in the joint eigenvalue distribution of the real spherical ensemble. For the
complex integration variables we use the notation zj = xj + i yj with xj, yj ∈ R.
Furthermore, a lower incomplete Beta function appears in our results

Q(z, z∗) = B
(

4y2

|1 + z2|2 + 4y2
; 1/2, (N + 1)/2

)
,

B(x; a, b) =
1∫

x

dt ta−1(1 − t)b−1 = 2
∞∫

√
x

1−x

dt
t2a−1

(1 + t2)a+b
, with x ∈ [0, 1],

B(0; a, b) = B(a, b) = Γ(a)Γ(b)
Γ(a+ b) .

(5.26)
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Inserting (5.25) into the second and third kernel yields the full expressions

K̂(1,N)
2 (pn, qm) = 1

ivT (pn)τ2v(qm)
N(N − 1)

2π

(
vT (pn)v(pn)

ivT (pn)τ2v(qm)

)N

×

(−1)N/2πB
(
1/2, N+1

2

)
N − 1

(
N−1

2
N

)
2F1

1, N + 1
2 ;N + 1; 1 +

(
vT (pn)v(qm)
ivT (pn)τ2v(qm)

)2


+ i
∫
C

d[z]z
N−2 sgn(Im z)Q(z, z∗)

|1 + z2|N+1

(
z∗ + vT (pn)v(qm)

ivT (pn)τ2v(qm)

)−1


(5.27)

and

K̂(1,N)
3 (qm, qn) = 1

[b(qm)b(qn)]N

∫
R

dx
r(x, v(qn))

(a(qm) + b(qm)x) +
∫
C

d[z] s(z, z∗, v(qn))
(a(qm) + b(qm)z)


− N(N − 1)

2π[b(qm)b(qn)]N−1

 ∫
R2

d[x]r(x1, v(qm))r(x2, v(qn))(x2 − x1)(x1x2 + 1)N−2

+
∫
R

dx
∫
C

d[z] det
[
r(x, v(qm)) s(z, z∗, v(qm))
r(x, v(qn)) s(z, z∗, v(qn))

]
(z − x)(z x+ 1)N−2

+
∫
C2

d[z]s(z1, z
∗
1 , v(qm))s(z2, z

∗
2 , v(qn))(z2 − z1)(z1z2 + 1)N−2


(5.28)

with the functions

r(x, v(q)) = B(1/2, (N + 1)/2)
∫
R

dx′ sgn(x′ − x)
(a(q) + b(q)x′)[(1 + x2)(1 + x′2)](N+1)/2 ,

s(z, z∗, v(q)) = 2i sgn(Im z)Q(z, z∗)
(a(q) + b(q)z∗) |1 + z2|N+1 .

(5.29)

These expressions still contain integrals over up to four real dimensions. A further
analytic computation of them is difficult due to the singularities appearing at var-
ious points in the complex plane. As in the unitary and in the symplectic case,
the rotational invariance in v(p) can be checked from the final results (5.23) and
(5.24). Only the third kernel evades such an inspection because of its complicated
expression.
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5.4 Derivations
In sections 5.4.1, 5.4.2 and 5.4.3 we derive the results for the unitary, symplectic
and orthogonal class, respectively. We first analyze the symmetries of the generating
function (5.13), which become handy when simplifying the computations. Further-
more, we trace the ensemble average over the two independent Ginibre matrices
back to an ensemble average over the spherical ensembles that have been studied
in [76–79], see also section 3.2.

Using results from [82, 83], we make use of determinantal and Pfaffian structures
that reduce the problem of averaging over a ratio of 2k characteristic polynomials to
averages of only two characteristic polynomials. In combination with the techniques
of orthogonal and skew-orthogonal polynomials as well as some complex analysis
tools we find the results summarized in section 5.3.

5.4.1 The Unitary Case (AIII)
When the two matrices K1, K2 ∈ CN×N are independently drawn from a complex
Ginibre ensemble, i.e. their joint probability distribution is

P̃ (2,N)(K1, K2) = π−2N2 exp
(
−trK1K

†
1 − trK2K

†
2

)
, (5.30)

it is useful to write the two complex functions a(p), b(p) in terms of the two-
dimensional complex vector v(p). The reason is that this ensemble actually satisfies
an SU(2) symmetry given by

K̂ =
[
K1
K2

]
−→ [U ⊗ 11N ]

[
K1
K2

]
(5.31)

with U ∈ SU(2) acting on the two components of the matrix valued vector K̂. One
can readily verify P̃ (2,N)(K̂) = P̃ (2,N)([U ⊗ 11N ]K̂) for any U ∈ SU(2). This will
become handy when computing the generating function Z(2,N)

k|k (q, p) and recognizing
that

K(p) = a(p)K1 + b(p)K2 = vT (p)K̂. (5.32)
Surely this SU(2) invariance will carry over to the vectors v(pj) and v(qj).

Before we exploit this symmetry, we would like to draw attention to the relation
of this ensemble to the complex spherical ensemble for which we need to rephrase
the matrix K(p) as follows

K(p) = a(p)K1 + b(p)K2 = b(p)K1
(
κ(p)11N +K−1

1 K2
)

(5.33)

with
κ(p) = a(p)

b(p) . (5.34)
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This way of writing is only possible when b(p) ̸= 0. This is, however, not very
restrictive as the limit b(p) → 0 can be readily carried out in the results. The
generating function (5.13) for k = l, has then the form

Z
(2,N)
k|k (q, p) =

 k∏
j=1

b(pj)
b(qj)

N 〈
k∏

j=1

det(κ(pj)11N +K−1
1 K2)

det(κ(qj)11N +K−1
1 K2)

〉
. (5.35)

The random matrix Y = K−1
1 K2 describes the complex spherical ensemble, which

has been analyzed in [76,77]. Its matrix probability distribution is

G̃(2,N)(Y ) = π−N2
N−1∏
j=0

(N + j)!
j!

1
det2N (112N + Y Y †)

(5.36)

and the corresponding joint probability distribution of the N complex eigenvalues
(z1, . . . , zN) ∈ CN is

G(2,N)(z) = 1
c(2,N)

|∆N(z)|2∏N
j=1(1 + |zj|2)N+1 ,

c(2,N) = πNN !
N∏

j=1
B(j,N + 1 − j).

(5.37)

An important remark about the integrability of the generating function is in order.
We certainly make use of the fact that a simple pole like 1/(κ(qj) + z) is integrable
in two dimensions such as the complex plane. However, we need to assume that all
κ(qj) are pairwise distinct. In spite of this, it is rather remarkable that the final
result can be nonetheless analytically continued to these singular points without any
problems.

It is the structure of the joint probability distribution (5.36), which tells us that
this ensemble follows a determinantal point process [77, 163]. In particular, the k-
point correlation function is a k× k-determinant with a single kernel function. This
structure actually applies to the generating function (5.35) as well. In [82, 144] it
was shown for more general ensembles than the one we study that

Z
(2,N)
k|k (q, p) =

 k∏
j=1

b(pj)
b(qj)

N det
(b(qm)

b(pn)

)N Z
(2,N)
1|1 (qm, pn)

κ(qm) − κ(pn)


1≤m,n≤k

det
[

1
κ(qm) − κ(pn)

]
1≤m,n≤k

=

det
 Z

(2,N)
1|1 (qm, pn)

a(qm)b(pn) − b(qm)a(pn)


1≤m,n≤k

det
[

1
a(qm)b(pn) − b(qm)a(pn)

]
1≤m,n≤k

.

(5.38)
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The normalization can be checked by the asymptotic behaviour

lim
a(p),a(q)→∞

 k∏
j=1

a(qj)
a(pj)

N

Z
(2,N)
k|k (q, p) = 1. (5.39)

The denominator in the first line of (5.38) is a Cauchy determinant, see [168].
This factor appears in exactly the same way also in the ensemble averages of the
symplectic and orthogonal cases. It can be identified with a Berezinian, see [82] and
section 3.4, √

Ber(2)
k|k(κ(q);κ(p)) = det

[
1

κ(qm) − κ(pn)

]
1≤m,n≤k

, (5.40)

which is the superspace analogue to the Vandermonde determinant that is obtained
as the Jacobian of a diagonalization. This highlights the intimate link to a super-
symmetric formulation of the problem.

The advantage of the determinantal form (5.38) is that we actually need to com-
pute the generating function for k = 1. For this purpose, we finally make use of the
SU(2) symmetry we have mentioned previously. The generating function

Z
(2,N)
1|1 (qm, pn) = F (v(qm), v(pn)) (5.41)

can be understood as a function of the two vectors v(qm) and v(pn) and the SU(2)
symmetry tells us that F (v(qm), v(pn)) = F (UTv(qm), UTv(pn)) for all U ∈ SU(2).
Therefore, we can choose the unitary matrix

U = 1√
|a(qm)|2 + |b(qm)|2

[
a∗(qm) −b(qm)
b∗(qm) a(qm)

]
∈ SU(2) (5.42)

such that the generating function simplifies to

Z
(2,N)
1|1 (qm, pn) =

〈
det

(
v†(qm)v(pn)
v†(qm)v(qm)11N + b̃K−1

1 K2)
)〉

=
〈

det
(
v†(qm)v(pn)
v†(qm)v(qm)11N + b̃Y )

)〉
.

(5.43)

The coefficient b̃ = ivT (qm)τ2v(pn)/v†(qm)v(qm) ∈ C is not very important as the
U(1) invariance Y → eiφ Y of the complex spherical ensemble tells us that the
average of the characteristic polynomial det(x11N −Y ) only yields the monomial xN .
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Thus, the final result is

Z
(2,N)
k|k (q, p) =

det

 1(
|a(qm)|2 + |b(qm)|2

)N
(a∗(qm)a(pn) + b∗(qm)b(pn))N

a(qm)b(pn) − b(qm)a(pn)


1≤m,n≤k

det
[

1
a(qm)b(pn) − b(qm)a(pn)

]
1≤m,n≤k

(5.44)

and expressing it in terms of the vector v(p) yields

Z
(2,N)
k|k (q, p) =

det
 1
vT (qm)τ2v(pn)

(
v†(qm)v(pn)
v†(qm)v(qm)

)N


1≤m,n≤k

det
[

1
vT (qm)τ2v(pn)

]
1≤m,n≤k

. (5.45)

This result nicely reflects the SU(2) symmetry as it only depends on the SU(2)
invariants v†(q)v(q), v†(q)v(p), and vT (q)τ2v(p).

The SU(2) invariance is actually also reflected in the symmetry of the eigen-
value spectrum of the complex spherical ensemble. In [76] it was pointed out that
the complex spectrum is uniformly distributed on a two-dimensional sphere after
a stereographic projection. It is the adjoint representation of SU(2), which is the
special orthogonal group SO(3) that highlights the uniform distribution as it is the
invariance group of a two-dimensional sphere.

5.4.2 The Symplectic Case (CII)
In the symplectic case we cannot exploit an SU(2) invariance. Due to the reality
constraint of the real quaternion matrices K1, K2 ∈ HN×N ⊂ C2N×2N in the form

Kj = [τ2 ⊗ 11N ]K∗
j [τ2 ⊗ 11N ], (5.46)

we can only make use of the smaller invariance group O(2). The symmetry trans-
formation is given by

K̂ =
[
K1
K2

]
−→ [U ⊗ 112N ]

[
K1
K2

]
(5.47)

with U ∈ O(2). The joint probability distribution of two independent quaternion
Ginibre ensembles, i.e.

P̃ (4,N)(K1, K2) = π−4N2 exp
(

−1
2trK1K

†
1 − 1

2trK2K
†
2

)
, (5.48)
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respects this symmetry. Thence, it will have some impact in our computations and
will be visible in our results.

Once again, we express the expectation value over the two quaternion matrices
K1, K2 as an expectation value over the random matrix Y = K−1

1 K2 ∈ HN×N ,
namely

Z
(4,N)
k|k (q, p) =

 k∏
j=1

b(pj)
b(qj)

2N 〈
k∏

j=1

det(κ(pj)112N + Y )
det(κ(qj)112N + Y )

〉
, (5.49)

with κ(p) = a(p)/b(p) defined as before. The matrix Y is now drawn from the
quaternion spherical ensemble, which has been studied in [79]. It follows the matrix
probability distribution

G̃(4,N)(Y ) = π−2N2
N∏

j=1

(2N + 2j − 1)!
(2j − 1)!

1
det2N (112N + Y Y †)

. (5.50)

Due to being quaternion the eigenvalues of Y come in pairs z and z∗, meaning the
complex conjugate of an eigenvalue is also an eigenvalue. The corresponding joint
probability distribution of the eigenvalues z = (z1, z

∗
1 , z2, z

∗
2 , . . . , zN , z

∗
N) ∈ [C\{0}]2N

is given by

G(4,N)(z) = 1
c(4,N) ∆2N(z)

N∏
j=1

zj − z∗
j

(1 + |zj|2)2N+2 ,

c(4,N) = (2π)NN !
N∏

j=1
B(2j, 2N + 2 − 2j).

(5.51)

Considering this explicit form, the question of integrability for the considered gen-
erating function can be raised anew. It is this time not evident even in the case
of pairwise distinct complex pairs (κ(qj), κ∗(qj)) as we encounter terms of the form
1/[(κ(qj) + zj)(κ(qj) + z∗

j )]. As long as κ(qj) is not real, the singularities are sim-
ple poles. However, when κ(qj) is real this term becomes a double pole of the
integrand, which is, in general, not integrable even in two dimensions. The for-
tunate fact that renders also this kind of pole integrable is the factor |zj − z∗

j |2
as it vanishes like a square when zj becomes real. Therefore, the combination
|zj − z∗

j |2/[(κ(qj) + zj)(κ(qj) + z∗
j )] is absolutely integrable even when κ(qj) becomes

real. The condition of pairwise distinct complex pairs (κ(qj), κ∗(qj)) can be anew
dropped for the final result where the limit κ(qa) → κ(qb) as well as κ(qa) → κ∗(qb)
is well-defined, see the summary of the results in section 5.3.

It is well known, see [79], that the quaternion spherical ensemble describes a
Pfaffian point process, and as before, this structure carries over to the generating
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function, which becomes, see [83,144],

Z
(4,N)
k|k (q, p) =

Pf
[

K(4,N)
1 (pm, pn) K(4,N)

2 (pm, qn)
−K(4,N)

2 (pn, qm) K(4,N)
3 (qm, qn)

]
1≤m,n≤k

det
[

1
κ(qm) − κ(pn)

]
1≤m,n≤k

, (5.52)

where the three kernel functions are

K(4,N)
1 (pm, pn) =[κ(pn) − κ(pm)][b(pm)b(pn)]2N Z̃

(4,N−1)
0|2 (pm, pn),

K(4,N)
2 (pn, qm) = 1

κ(qm) − κ(pn)Z
(4,N)
1|1 (pn, qm),

K(4,N)
3 (qm, qn) =κ(qn) − κ(qm)

[b(qm)b(qn)]2N
Z̃

(4,N+1)
2|0 (qm, qn).

(5.53)

We have employed the following definition for l − k even and M + (l − k)/2 ≤ N

Z̃
(4,M)
k|l (q, p) = 1

(2π)M+(l−k)/2M !∏M+(l−k)/2
j=1 B(2j, 2N + 2 − 2j)

×
∫

CM

d[z]∆2M(z)
M∏

r=1

zr − z∗
r

(1 + |zr|2)2N+2

M∏
j=1

∏l
n=1(κ(pn) + zj)(κ(pn) + z∗

j )∏k
m=1(κ(qm) + zj)(κ(qm) + z∗

j )
.

(5.54)

Let us highlight that the weight function g(4,N)(z) = (z− z∗)/(1 + |z|2)2N+2 remains
always the same in this definition, while the number M of integration variables
varies. The result (5.52) follows from [83] when identifying in a distributional way
the weight function g(4,N)(z) with the skew-symmetric two-point weight involving
the Dirac delta function for complex numbers

g̃(4,N)(z1, z2) = z1 − z2

(1 + |z1|2)N+1(1 + |z2|2)N+1 δ(z2 − z∗
1). (5.55)

The integration over every second variable yields the joint probability distribution
(5.51). The prefactor in (5.54) actually contains the Pfaffian of a moment matrix

D(4,d) =
[
D

(4)
ab

]
1≤a,b≤d

,

D
(4)
ab =

∫
C

d[z]g(4,N)(z)
[
za−1(z∗)b−1 − zb−1(z∗)a−1

]
= 2

∫
C

d[z]g(4,N)(z)za−1(z∗)b−1

= 2πB
(

2N + 2 − a+ b+ 1
2 ,

a+ b+ 1
2

)
(δa,b−1 − δa−1,b) ,

(5.56)
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where d is even. Since the matrix is tridiagonal, the Pfaffian can be conveniently
evaluated

PfD(4,d) = (2π)d/2
d/2∏
j=1

B(2j, 2N + 2 − 2j). (5.57)

In the ensuing three subsections we compute explicit expressions of the three kernels
(5.53).

The Kernel K(4,N)
1

The kernel function K(4,N)
1 (pm, pn) is expressed in terms of Z̃(4,N−1)

0|2 (κ(pm), κ(pn)).
We are in the lucky position that we can relate this function to Z(4,N−1)

0|2 (pm, pn) for
which we can exploit the O(2) symmetry. The limits

lim
κ(p)→∞

Z̃
(4,N−1)
0|2 (pm, pn)

[κ(pm)κ(pn)]2N−2 = 1
2πB(2N, 2) ,

lim
a(p)→∞

Z
(4,N−1)
0|2 (pm, pn)

[a(pm)a(pn)]2N−2 =
〈
detK2

1

〉 (5.58)

relate the normalization of the two kinds of functions. They are equivalent because
κ(p) = a(p)/b(p) is directly proportional to a(p). Therefore we obtain

Z̃
(4,N−1)
0|2 (pm, pn) = 1

2πB(2N, 2)
〈
detK2

1

〉 Z(4,N−1)
0|2 (pm, pn)

[b(pm)b(pn)]2N−2

=

〈
det(a(pm)K1 + b(pm)K2) det(a(pn)K1 + b(pn)K2)

〉
2πB(2N, 2)

〈
detK2

1

〉
[b(pm)b(pn)]2N−2

,

(5.59)

where we average over two independent (2N − 2)-dimensional quaternion Ginibre
matrices K1, K2.

The function Z
(4,N−1)
0|2 (pm, pn) is a polynomial in the complex functions a(pm),

b(pm), a(pn), and b(pn). Hence, we can also consider the average

Ξ(4,N−1)
1 =

〈
det(a1K1 + b1K2) det(a2K1 + b2K2)

〉
〈
detK2

1

〉 (5.60)

with only fixed real a1, b1, a2, b2 ∈ R variables satisfying b1a2 − a1b2 ̸= 0 and then
perform an analytic continuation in the result to the complex functions. We need
this detour via analytic continuation because we can only rotate real vectors with
the O(2) symmetry similar to what we have done in the unitary case AIII.
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We rotate with the special orthogonal matrix

U = 1√
a2

2 + b2
2

[
a2 −b2
b2 a2

]
∈ SO(2), (5.61)

obtaining for the average

Ξ(4,N−1)
1 =⟨det [(a1a2 + b1b2)K1 + (b1a2 − a1b2)K2] detK1⟩〈

detK2
1

〉
=(b1a2 − a1b2)2N−2

⟨detK2
1⟩

∫
d[K1]d[K2]P̃ (4,N−1)(K1, K2) detK2

1

× det
(
a1a2 + b1b2

b1a2 − a1b2
+K−1

1 K2

)
.

(5.62)

Up to the factor detK2
1 appearing in the integrand this is almost an integral over

the spherical ensemble. In fact, this type of measure leads to a generalized form
of the spherical ensemble of matrices K−1

1 K2, where one or both of K1 and K2 are
drawn from a deformed Ginibre ensemble

P (4,N)
µ (K) = π−2N2

N∏
j=1

Γ(2j)
Γ(2µ+ 2j) exp

(
−1

2trKK†
)

detµ KK†. (5.63)

These generalizations of the spherical ensemble are referred to as induced spherical
ensembles. They are well studied for β = 1, 2, 4, see [132–134]. In this case, the
presence of the additional factor detK2

1 causes the weight function to resemble that
of a 2N -dimensional quaternion spherical ensemble g(1,N)(z) = (z−z∗)/(1+|z|2)2N+2,
despite dealing with (2N − 2)-dimensional matrices. Therefore, the average is equal
to

Ξ(4,N−1)
1 = (b1a2 − a1b2)2N−2

(2π)N−1(N − 1)!∏N−1
j=1 B(2j, 2N + 2 − 2j)

×
∫

CN−1

d[z]∆2N−2(z)
N−1∏
r=1

zr − z∗
r

(1 + |zr|2)2N+2

×
N−1∏
j=1

(
a1a2 + b1b2

b1a2 − a1b2
+ zj

)(
a1a2 + b1b2

b1a2 − a1b2
+ z∗

j

)
.

(5.64)

Apart from the factor (b1a2 − a1b2)2N−2 this integral is the Heine-like formula, see
[169] as well as (A.4), for the monic skew-orthogonal polynomial q(N)

2N−2(x) of degree
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2N−2 corresponding to the weight function g(4,N). The skew-orthogonal polynomials
have been computed in appendix A.1.

Summarizing, the function Z
(4,N−1)
0|2 (pm, pn) has the form

Z
(4,N−1)
0|2 (pm, pn)〈

detK2
1

〉 =[b(pm)a(pn) − a(pm)b(pn)]2N−2q
(N)
2N−2

(
a(pm)a(pn) + b(pm)b(pn)
a(pm)b(pn) − b(pm)a(pn)

)

=
N−1∑
j=0

B(N, 3/2)
B(j + 1, N − j + 1/2)[a(pm)a(pn) + b(pm)b(pn)]2j

× [b(pm)a(pn) − a(pm)b(pn)]2N−2−2j.

(5.65)

We would like to underline that this formula is also true for the complex functions
a(p) and b(p) despite we have derived it for real coefficients due to being a polynomial
in these functions. The first kernel function is then

K(4,N)
1 (pm, pn) =κ(pn) − κ(pm)

2πB(2N, 2) [b(pm)b(pn)]2[b(pm)a(pn) − a(pm)b(pn)]2N−2

× q
(N)
2N−2

(
a(pm)a(pn) + b(pm)b(pn)
a(pm)b(pn) − b(pm)a(pn)

)

=b(pm)b(pn)
2π

N−1∑
j=0

B(N, 3/2)
B(2N, 2) B(j + 1, N − j + 1/2)

× [a(pm)a(pn) + b(pm)b(pn)]2j[b(pm)a(pn) − a(pm)b(pn)]2N−1−2j

=b(pm)b(pn)
2
√
π

N−1∑
j=0

N ! (2N + 1)
j! Γ(N − j + 1/2)[a(pm)a(pn) + b(pm)b(pn)]2j

× [b(pm)a(pn) − a(pm)b(pn)]2N−1−2j.

(5.66)

This sum is apart from a prefactor a truncated binomial series. Expressing it in
terms of the vector v(p) yields

K(4,N)
1 (pm, pn) = b(pm)b(pn)

2πB(2N, 2)[ivT (pn)τ2v(pm)]2N−1q
(N)
2N−2

(
vT (pm)v(pn)
ivT (pm)τ2v(pn)

)
, (5.67)

which is not entirely O(2) invariant. In the final result, the factor b(pm)b(pn) even-
tually drops out because of corresponding factors in the other two kernels. Further-
more, the combination vT (pm)τ2v(pn) is only invariant under SO(2) and achieves a
sign when v(p) is rotated with O(2) \ SO(2). However, this quantity appears only
in even powers such that the final result (5.23) is indeed O(2) invariant.
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The Kernel K(4,N)
2

For the second kernel function we need to evaluate

Z
(4,N)
1|1 (κ(qm), κ(pn)) =

〈
det(a(pn)K1 + b(pn)K2)
det(a(qm)K1 + b(qm)K2)

〉
, (5.68)

which is a polynomial in a(pn) and b(pn). With the very same arguments as in the
previous subsection we can exploit the analyticity in these two variables and replace
them by two fixed real variables a1, b1 ∈ R and analytically continue the result at
the end of the day. Unfortunately, we are not allowed to do the same trick for a(qn)
and b(qn) as the function is not holomorphic in these two variables. Actually, the
result will also depend on their complex conjugates such that we only replace them
by two generic but fixed complex variables a2, b2 ∈ C.

We are now allowed to apply an O(2) rotation. The average simplifies to

Ξ(4,N)
2 =

〈
det(a1K1 + b1K2)
det(a2K1 + b2K2)

〉

=
(
a2

1 + b2
1

)2N
〈

detK1

det [(a2a1 + b1b2)K1 + (b1a2 − a1b2)K2]

〉

= 1
(2π)NN !∏N

j=1 B(2j, 2N + 2 − 2j)

(
a2

1 + b2
1

b1a2 − a1b2

)2N

×
∫
CN

d[z]∆2N(z)
N∏

r=1

zr − z∗
r

(1 + |zr|2)2N+2

×
N∏

j=1

(
a1a2 + b1b2

b1a2 − a1b2
+ zj

)−1 (
a1a2 + b1b2

b1a2 − a1b2
+ z∗

j

)−1

,

(5.69)

where we rotated with

U = 1√
a2

1 + b2
1

[
a1 −b1
b1 a1

]
∈ SO(2). (5.70)

We abbreviate the ratio
κ̂ = a1a2 + b1b2

b1a2 − a1b2
(5.71)

and identify another Berezinian, see [82],

√
Ber(2)

2N |1(z; −κ̂) = ∆2N(z)∏N
j=1(zj + κ̂)(z∗

j + κ̂)
= − det


zb−1

a

1
za + κ̂

(z∗
a)b−1 1

z∗
a + κ̂


1≤a≤N
1≤b≤2N−1

,

(5.72)

84



5.4 Derivations

which is the mixture of a Cauchy determinant and a Vandermonde determinant, see
[168]. The notation with the vertical line highlights the last column, which consists
of rational functions, while the rows have to be understood in pairs, meaning the odd
rows consist of (z0

a, . . . , z
2N−2
a , 1/(za + κ̂)) and the even ones are ((z∗

a)0, . . . , (z∗
a)2N−2,

1/(z∗
a + κ̂)).

It is this determinantal form of the Berezinian, which is useful, as we can expand
it in the very last column. Due to the permutation symmetry of the integrand in the
integration variables zj as well as their conjugates, each expansion term yields the
very same contribution and, hence, an overall factor 2N so that we can also write

Ξ(4,N)
2 = −2

(2π)N(N − 1)!∏N
j=1 B(2j, 2N + 2 − 2j)

(
a2

1 + b2
1

b1a2 − a1b2

)2N

×
∫
CN

d[z]∆2N−2(z1, z
∗
1 , . . . , zN−1, z

∗
N−1)

N∏
r=1

zr − z∗
r

(1 + |zr|2)2N+2

∏N−1
j=1 (zj − zN)(z∗

j − zN)
z∗

N + κ̂

= − 2N(2N + 1)
π

(
a2

1 + b2
1

b1a2 − a1b2

)2N ∫
C

d[zN ] zN − z∗
N

(1 + |zN |2)2N+2
q

(N)
2N−2(zN)
z∗

N + κ̂
.

(5.73)
In the second equality we have identified the integral over (z1, . . . , zN−1) with the
Heine-formula (A.4) for q(N)

2N−2(zN).
In expression (5.73) it becomes immediate why the function cannot be holomorphic

in a(qm) and b(qm) anywhere in the complex plane. One can apply the standard
formula for the derivative in the complex conjugate κ̂∗ on the integral

∂

∂κ̂∗

∫
C

d[z]f(z, z∗)
z + κ̂

∝ f(−κ̂,−κ̂∗) (5.74)

for an arbitrary suitably integrable complex function f(z, z∗). Considering the in-
tegrand in (5.73) we notice that, apart from the real line, the integral must be a
function of both, κ̂ and κ̂∗, which is also what we find. Thus, the analyticity of the
integral in κ̂ is violated everywhere.

With the help of a similar argument, the remaining integral can be carried out,
namely by noticing

∂

∂zN

z2N+1
N z∗

N + (2N + 1)q(N+1)
2N (zN)

(1 + |zN |2)2N+1 = 2N(2N + 1)(zN − z∗
N)q(N)

2N−2(zN)
(1 + |zN |2)2N+2 (5.75)

as well as exploiting the following identity, which is a consequence of the generalized
Stokes’ theorem (Dolbeault–Grothendieck lemma in complex analysis),∫

C

d[zN ] ∂

∂zN

f(zN , z
∗
N)∏L

j=1(z∗
N + κ̂j)

= −π
L∑

l=1

f(−κ̂∗
l ,−κ̂l)∏L

j ̸=l(κ̂j − κ̂l)
(5.76)
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for L distinct κ̂j ∈ C and any differentiable measurable function f(z1, z2), which
vanishes at infinity in both arguments and where f(z, z∗) is singularity free.

Collecting everything, we find

Ξ(4,N)
2 =

(
a2

1 + b2
1

b1a2 − a1b2

)2N (κ̂∗)2N+1 κ̂+ (2N + 1)q(N+1)
2N (κ̂∗)

(1 + |κ̂|2)2N+1 (5.77)

with
κ̂ = a1a2 + b1b2

b1a2 − a1b2
, κ̂∗ = a1a

∗
2 + b1b

∗
2

b1a∗
2 − a1b∗

2
, (5.78)

where we have employed the fact that a1, b1 ∈ R are real while a2, b2 ∈ C are
complex. The point about which parameter is real or complex is crucial when rein-
serting the complex functions (a1, b1, a2, b2) → (a(pn), b(pn), a(qm), b(qm)) because
only a(qm) and b(qm) can be complex conjugated while a(pn) and b(pn) are analytic
continuations of a1 and b1. Therefore, the second kernel is equal to

K(4,N)
2 (pn, qm) =

Z
(4,N)
1|1 (pn, qm)

κ(qm) − κ(pn)

= b(pn)b(qm)
a(qm)b(pn) − b(qm)a(pn)

(
a2(pn) + b2(pn)

b(pn)a(qm) − a(pn)b(qm)

)2N

× κ̂2N+1
∗ (pn, qm)κ̂(pn, qm) + (2N + 1)q(N+1)

2N (κ̂∗(pn, qm))
(1 + κ̂(pn, qm)κ̂∗(pn, qm))2N+1

(5.79)

with

κ̂(pn, qm) = a(pn)a(qm) + b(pn)b(qm)
b(pn)a(qm) − a(pn)b(qm) ,

κ̂∗(pn, qm) = a(pn)a∗(qm) + b(pn)b∗(qm)
b(pn)a∗(qm) − a(pn)b∗(qm) .

(5.80)

We would like to underline that κ̂∗(pn, qm) is not the complex conjugate of κ̂(pn, qm),
in spite of how we have obtained the expression. It is not immediate from expression
(5.79) that the function Z

(4,N)
1|1 (pn, qm) is a polynomial in a(pn) and b(pn). We only

know this from the starting expression in terms of averages over a ratio of two
characteristic polynomials of the random matrix Y .
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Anew, one can express the kernel function in the vector v(p), obtaining

K(4,N)
2 (pn, qm) = b(pn)b(qm)

ivT (qm)τ2v(pn)

(
vT (pn)v(pn)

ivT (qm)τ2v(pn)

)2N

×
(

1 − vT (qm)v(pn)v†(qm)v(pn)
vT (qm)τ2v(pn)v†(qm)τ2v(pn)

)−2N−1

×

( v†(qm)v(pn)
iv†(qm)τ2v(pn)

)2N+1
vT (qm)v(pn)
ivT (qm)τ2v(pn) + (2N + 1)q(N+1)

2N

(
v†(qm)v(pn)
iv†(qm)τ2v(pn)

) ,
(5.81)

and check the O(2) invariance. Indeed, we find that Z(4,N)
1|1 (pn, qm) depends only on

the O(2) invariants vT (pn)v(pn), vT (qm)v(pn), v†(qm)v(pn) and the SO(2) invariants
vT (qm)τ2v(pn) and v†(qm)τ2v(pn), which appear in even powers only.

The Kernel K(4,N)
3

For computing the third kernel function, we need to evaluate the integral

Ξ(4,N+1)
3 = 1

(2π)N(N + 1)!∏N
j=1 B(2j, 2N + 2 − 2j)

×
∫

CN+1

d[z]∆2N+2(z)
N+1∏
r=1

zr − z∗
r

(1 + |zr|2)2N+2

×
N+1∏
j=1

1
(κ1 + zj)(κ1 + z∗

j )(κ2 + zj)(κ2 + z∗
j )

(5.82)

with two distinct complex numbers κ1, κ2 ∈ C. The Vandermonde determinant and
the product involving the κj times the difference κ2 − κ1 can be written in terms of
a Berezinian, see [82],√

Ber(2)
2N+2|2(z; −κ) = − (κ2 − κ1)∆2N+2(z)∏N+1

j=1 (κ1 + zj)(κ1 + z∗
j )(κ2 + zj)(κ2 + z∗

j )

= − det


zb−1

a

1
za + κ1

1
za + κ2

(z∗
a)b−1 1

z∗
a + κ1

1
z∗

a + κ2


1≤a≤N+1
1≤b≤2N

.
(5.83)

As before the vertical lines should highlight the two last columns, while the odd
rows only comprise za and the even rows z∗

a. We may choose the skew-orthogonal

87



5 Averaging Ratios of Parametric Determinants

polynomials qj(x) in the entries of this determinant instead of the monomials,

det


zb−1

a

1
za + κ1

1
za + κ2

(z∗
a)b−1 1

z∗
a + κ1

1
z∗

a + κ2


1≤a≤N+1
1≤b≤2N

= det


q

(N)
b−1(za) 1

za + κ1

1
za + κ2

q
(N)
b−1(z∗

a) 1
z∗

a + κ1

1
z∗

a + κ2


1≤a≤N+1
1≤b≤2N

.

(5.84)

This allows us to apply the generalized de Bruijn theorem to carry out the integral,
see [82], yielding

Ξ(4,N+1)
3 = 2

(κ1 − κ2) πN
∏N

j=1 B(2j, 2N + 2 − 2j)

× Pf



〈
q

(N)
a−1|q

(N)
b−1

〉 〈
q

(N)
a−1

∣∣∣∣ 1
z + κ1

〉 〈
q

(N)
a−1

∣∣∣∣ 1
z + κ2

〉
〈 1
z + κ1

∣∣∣∣ q(N)
b−1

〉
0

〈 1
z + κ1

∣∣∣∣ 1
z + κ2

〉
〈 1
z + κ2

∣∣∣∣ q(N)
b−1

〉 〈 1
z + κ2

∣∣∣∣ 1
z + κ1

〉
0


1≤a,b≤2N

,

(5.85)

where we have employed the skew-symmetric product

⟨f1|f2⟩ =
∫
C

d[z]f1(z)f2(z∗)g(4,N)(z) = −
∫
C

d[z]f1(z∗)f2(z)g(4,N)(z) = − ⟨f2|f1⟩

(5.86)
with the weight function

g(4,N)(z) = z − z∗

(1 + |z|2)2N+2 . (5.87)

This time the vertical and horizontal lines in (5.85) emphasize the last two rows and
columns. The index a is the row index for the first 2N rows and b the column index
for the first 2N columns. The skew-orthogonality of the polynomials simplifies the
upper left 2N × 2N block drastically, which becomes a 2 × 2 block-diagonal matrix.
This can be exploited in combination with the standard identity

Pf
[

A B
−BT C

]
= Pf[A] Pf[C +BTA−1B] (5.88)
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to simplify the expression to

(κ2 − κ1)Ξ(4,N+1)
3 = − 2

∫
C

d[z] z − z∗

(1 + |z|2)2N+2
1

(κ1 + z)(κ2 + z∗)

+ 2
N−1∑
j=0

1
hj

[〈
q

(N)
2j

∣∣∣∣ 1
z + κ1

〉〈
q

(N)
2j+1

∣∣∣∣ 1
z + κ2

〉
−
〈
q

(N)
2j+1

∣∣∣∣ 1
z + κ1

〉〈
q

(N)
2j

∣∣∣∣ 1
z + κ2

〉]
(5.89)

with hj = 1/[πB(2j + 2, 2N − 2j)] being the normalization of the skew-orthogonal
polynomials. Plugging in the explicit expressions of the skew-symmetric product
and the skew-orthogonal polynomials, we have

(κ1 − κ2)Ξ(4,N+1)
3 = − 2

∫
C

d[z] z − z∗

(1 + |z|2)2N+2
1

(κ1 + z)(κ2 + z∗)

+ 2
π

∫
C2

d[z] (z1 − z∗
1)(z2 − z∗

2)
(1 + |z1|2)2N+2 (1 + |z2|2)2N+2

×
N−1∑
j=0

j∑
m=0

(2N + 1)! j! Γ(N − j + 1/2)
(2j + 1)! (2N − 2j − 1)!m! Γ(N −m+ 1/2)

z2m
1 z2j+1

2 − z2m
2 z2j+1

1
(z∗

1 + κ1)(z∗
2 + κ2)

.

(5.90)
In appendix A.2, we evaluate the complex integrals and find

(κ1 − κ2)Ξ(4,N+1)
3 = − 2π

(
κ∗

2 − κ∗
1

(1 + |κ1|2)(1 + |κ2|2)

)2N+1

q
(N+1)
2N

(
κ∗

1κ
∗
2 + 1

κ∗
2 − κ∗

1

)

+ 2π(κ1 − κ2)
(

1 + κ∗
1κ

∗
2

(1 + |κ1|2)(1 + |κ2|2)

)2N+2

Φ(1)
2N+2

(
|1 + κ1κ2|2

(1 + |κ1|2)(1 + |κ2|2)

)
(5.91)

with Lerch’s trancendent Φ(1)
2N+2(z), see (5.21). Exploiting this result, the third

kernel function has the form

K(4,N)
3 (qm, qn) =2πb(qm)b(qn)

[(
b∗(qm)a∗(qn) − a∗(qm)b∗(qn)

(|a(qm)|2 + |b(qm)|2)(|a(qn)|2 + |b(qn)|2)

)2N+1

× q
(N+1)
2N

(
a∗(qm)a∗(qn) + b∗(qm)b∗(qn)
b∗(qm)a∗(qn) − a∗(qm)b∗(qn)

)

−
(

a∗(qm)a∗(qn) + b∗(qm)b∗(qn)
(|a(qm)|2 + |b(qm)|2)(|a(qn)|2 + |b(qn)|2)

)2N+2

× [b(qn)a(qm) − a(qn)b(qm))] Φ(1)
2N+2

(
|a(qm)a(qn) + b(qm)b(qn)|2

(|a(qm)|2 + |b(qm)|2)(|a(qn)|2 + |b(qn)|2)

)]
.

(5.92)
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Rewriting this expression in terms of the vector v(p) yields

K(4,N)
3 (qm, qn) = 2πb(qm)b(qn)

×

( iv†(qn)τ2v
∗(qm)

v†(qm)v(qm)v†(qn)v(qn)

)2N+1

q
(N+1)
2N

(
v†(qn)v∗(qm)
iv†(qn)τ2v∗(qm)

)

− ivT (qm)τ2v(qn)
(

v†(qm)v∗(qn)
v†(qm)v(qm)v†(qn)v(qn)

)2N+2

Φ(1)
2N+2


∣∣∣vT (qm)v(qn)

∣∣∣2
v†(qm)v(qm)v†(qn)v(qn)




(5.93)

and underlines the O(2) invariance as before.

5.4.3 The Orthogonal Case (BDI)
In the orthogonal case the matrices K1, K2 ∈ RN×N are drawn from the real Ginibre
ensemble. Their joint distribution is

P̃ (1,N)(K1, K2) = π−N2 exp
(
−trK1K

T
1 − trK2K

T
2

)
, (5.94)

which is invariant under O(2) transformations in the same fashion as in the sym-
plectic case.

Again, we rephrase the generating function

Z
(1,N)
k|k (q, p) =

 k∏
j=1

b(pj)
b(qj)

N 〈
k∏

j=1

det(κ(pj)11N + Y )
det(κ(qj)11N + Y )

〉
(5.95)

with κ(p) = a(p)/b(p) and obtain the random matrix Y = K−1
1 K2 ∈ RN×N . These

matrices define the real spherical ensemble, which has been analyzed in [78]. It
follows the matrix probability distribution

G̃(1,N)(Y ) = π−N2/2
N∏

j=1

Γ((N + j)/2)
Γ(j/2)

1
detN (11N + Y Y T )

. (5.96)

Unfortunately, in the literature the joint probability distribution of the eigenvalues
(z1, . . . , zN) ∈ CN exists only in a form, that is impractical for our purpose. In
appendix A.3 we find the following expression for N even

G(1,N)(z) = 1
c(1,N) ∆N(z)

N/2∏
j=1

g(1,N)(z2j−1, z2j),

c(1,N) = 2N/2πN/4(N/2)!
N∏

j=1

Γ(j/2)
Γ((N + j)/2)

N/2∏
j=1

Γ (N + 1/2 − j) Γ (N + 1 − j)
Γ ((N + 1)/2) Γ (N/2 + 1)

(5.97)
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with the skew-symmetric two-point weight

g(1,N)(z1, z2) = |z2 − z1|
z2 − z1

B(1/2, (N + 1)/2)δ(y1)δ(y2) + 2δ(z∗
2 − z1)Q(z1, z

∗
1)

[(1 + z2
1)(1 + z2

2)](N+1)/2 (5.98)

and the lower incomplete Beta function, see (5.26),

Q(z, z∗) = B
(

4y2

|1 + z2|2 + 4y2
; 1/2, (N + 1)/2

)
. (5.99)

We denote the eigenvalues as zj = xj + i yj with xj, yj ∈ R and make use of the
Dirac delta function for complex numbers.

In a distributional sense (5.98) actually describes that the eigenvalues of a real
matrix are either real or come in complex conjugate pairs. Although the part of this
function concerning the complex eigenvalues is imaginary valued, the full joint eigen-
value probability distribution will be real as the phases drop out when considering
the product with the Vandermonde determinant.

Only in the odd dimensional case we have to supplement this with an additional
function for the unpaired eigenvalue that must be real. See appendix A.3, where we
derive the joint probability distribution of eigenvalues for arbitrary N . This would
complicate our already cumbersome expressions even more, which is why we limit
ourselves to the even case. This restriction is not an obstacle to our plan to deduce
universal statistics in the large N limit. This is also underlined by the fact that the
number of expected real eigenvalues is asymptotically given by

√
πN/2, regardless

of the parity of N [78].
A caveat is in order concerning the integrability of the generating function. We

obtain terms of the form 1/[(κ(qj) + z1)(κ(qj) + z2)], which are not integrable for
real κ(qj), irrespective of whether z1 and z2 are real or complex. In the following,
we treat integrals over singularities on the real axis as principal value integrals.

Like the symplectic case, the orthogonal case follows a Pfaffian point process [78].
This is also manifest in the result for the generating function, obtained by the
methods of [82,83]

Z
(1,N)
k|k (q, p) =

Pf
[

K(1,N)
1 (pm, pn) K(1,N)

2 (pm, qn)
−K(1,N)

2 (pn, qm) K(1,N)
3 (qm, qn)

]
1≤m,n≤k

det
[

1
κ(qm) − κ(pn)

]
1≤m,n≤k

, (5.100)
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where the three kernel functions are

K(1,N)
1 (pm, pn) = [κ(pn) − κ(pm)][b(pm)b(pn)]N Z̃(1,N−2)

0|2 (pm, pn),

K(1,N)
2 (pn, qm) =

(
b(pn)
b(qm)

)N Z̃
(1,N)
1|1 (qm, pn)

κ(qm) − κ(pn) =
Z

(1,N)
1|1 (qm, pn)

κ(qm) − κ(pn) ,

K(1,N)
3 (qm, qn) = κ(qn) − κ(qm)

[b(qm)b(qn)]N Z̃
(1,N+2)
2|0 (qm, qn).

(5.101)

They are completely analogous to the ones in the symplectic case (5.53). Similarly,
we define for l − k even and 2M + l − k ≤ N

Z̃
(1,2M)
k|l (q, p) = 1

M ! PfD(1,2M+l−k)

×
∫

C2M

d[z]∆2M(z)
M∏

j=1
g(1,N)(z2j−1, z2j)

2M∏
j=1

∏l
n=1(κ(pn) + zj)∏k
m=1(κ(qm) + zj)

.

(5.102)

The prefactor contains the Pfaffian of the moment matrix

D(1,d) =
[
D

(1)
ab

]
1≤a,b≤d

,

D
(1)
ab =

∫
C2

d[z]g(1,N)(z1, z2) (za−1
1 zb−1

2 − zb−1
1 za−1

2 ) = 2
∫
C2

d[z]g(1,N)(z1, z2) za−1
1 zb−1

2 ,

(5.103)

where d is even. In this case we cannot calculate the Pfaffian straightforwardly. In-
stead, we have to relate it to the normalization constant of the real induced spherical
ensemble, see appendix A.3. In the following we compute explicit expressions for
the kernel functions (5.101).

The Kernel K(1,N)
1

We proceed here exactly as in the symplectic case. The first kernel is determined
by Z̃(1,N−2)

0|2 (pm, pn), which is related to Z(1,N−2)
0|2 (pm, pn). For the latter function we

can use the O(2) symmetry to reduce the amount of determinants in the average by
one. We obtain the proper normalization via the limits

lim
κ(p)→∞

Z̃
(1,N−2)
0|2 (pm, pn)

[κ(pm)κ(pn)]N−2 = PfD(1,N−2)

PfD(1,N) ,

lim
a(p)→∞

Z
(1,N−2)
0|2 (pm, pn)

[a(pm)a(pn)]N−2 =
〈
detK2

1

〉
.

(5.104)
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Therefore the functions are related by

Z̃
(1,N−2)
0|2 (pm, pn) = PfD(1,N−2)

PfD(1,N)

Z
(1,N−2)
0|2 (pm, pn)

⟨detK2
1⟩ [b(pm)b(pn)]N−2

= PfD(1,N−2)

PfD(1,N)
⟨det (a(pm)K1 + b(pm)K2) det (a(pn)K1 + b(pn)K2)⟩

⟨detK2
1⟩ [b(pm)b(pn)]N−2 ,

(5.105)

where we average over (N − 2)-dimensional real Ginibre ensembles. Now let
a1, b1, a2, b2 ∈ R and

Ξ(1,N−2)
1 = ⟨det (a1K1 + b1K2) det (a2K1 + b2K2)⟩

⟨detK2
1⟩

. (5.106)

This function is a polynomial in a1, b1, a2, b2 and can thus be analytically continued
to the function Z

(1,N−2)
0|2 (pm, pn), that has, in general, complex coefficients. We are

now finally in the position to exploit the O(2) symmetry as we are allowed to rotate
only real vectors. We use the special orthogonal matrix

U = 1√
a2

1 + b2
1

[
a1 −b1
b1 a1

]
∈ SO(2) (5.107)

and obtain

Ξ(1,N−2)
1 = (a1b2 − b1a2)N−2〈

det2 K1
〉 ∫

d[K1]d[K2]P̃ (1,N−2)(K1, K2) det2 K1

× det
(
a1a2 + b1b2

a1b2 − b1a2
+K−1

1 K2

)
.

(5.108)

Once again, we find the factor det2 K1 in the integrand, which leads to an induced
spherical ensemble for K−1

1 K2, where K1 and K2 are drawn from deformed Ginibre
ensembles

P̃ (1,N)
µ (K) = π−N2/2

N∏
j=1

Γ(j/2)
Γ(µ+ j/2) exp

(
−trKKT

)
detµ KKT . (5.109)

In appendix A.2 we show that the characteristic polynomial of the real spherical
ensemble, induced or not, is given by a monomial. Thus, we find

Ξ(1,N−2)
1 = (a1a2 + b1b2)N−2 (5.110)
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and the function Z
(1,N−2)
0|2 (pm, pn) has the simple form

Z
(1,N−2)
0|2 (pm, pn)〈

det2 K1
〉 = [a(pm)a(pn) + b(pm)b(pn)]N−2, (5.111)

which is indeed O(2) invariant. The Pfaffians of the moment matrix can be related
to the normalization of an induced spherical ensemble. This is covered in appendix
A.1. We find

PfD(1,N−2)

PfD(1,N) = N(N − 1)
8π (5.112)

and altogether for the first kernel

K(1)
1 (pm, pn) =N(N − 1)

8π b(pm)b(pn)[a(pn)b(pm) − a(pm)b(pn)]

× [a(pm)a(pn) + b(pm)b(pn)]N−2

=N(N − 1)
8π b(pm)b(pn) ivT (pn)τ2v(pm)[vT (pm)v(pn)]N−2.

(5.113)

Again, we write this expression in terms of the vector v(p) to check on the O(2)
invariance. However, only the functions Z(1,N)

k|l (q, p) have this invariance such that
the non-invariant factors need to drop out when we compose the final result for
Z

(1,N)
k|k (q, p).

The Kernel K(1,N)
2

The second kernel is essentially the generator Z(1,N)
1|1 (qm, pn) of the one-point func-

tion. Once again we want to apply the O(2) symmetry to eliminate one of the
determinants. Similar to the symplectic case, we consider

Ξ(1,N)
2 =

〈
det (a1K1 + b1K2)
det (a2K1 + b2K2)

〉
(5.114)

for this purpose. This function is a polynomial in a1, b1 and non-holomorphic in
a2, b2. Therefore, we set a1, b1 ∈ R and a2, b2 ∈ C. We may rotate only in the real
variables a1, b1, for which we can use analytical continuation to complex values at
the end of the calculation.

We rotate with the same matrix (5.107) as for the first kernel and obtain an
integral over the spherical ensemble

Ξ(1,N)
2 =

(
a2

1 + b2
1

a1b2 − b1a2

)N ∫
d[Y ]G̃(1,N)(Y ) 1

det (κ̂+ Y ) (5.115)
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with
κ̂ = a1a2 + b1b2

a1b2 − b1a2
. (5.116)

We perform the integral in the joint probability distribution of the eigenvalues

Ξ(1,N)
2 = 1

c(1,N)

(
a2

1 + b2
1

a1b2 − b1a2

)N ∫
CN

d[z]∆N(z)
N/2∏
j=1

g(1,N)(z2j−1, z2j)
N∏

j=1

1
κ̂+ zj

.

(5.117)
First, we identify part of the integrand as a Berezinian

∆N(z)
N∏

j=1

1
κ̂+ zj

=
√

Ber(2)
N |1 (z; −κ̂) = (−1)N+1 det

[
zb−1

a

1
za + κ̂

]
1≤a≤N
1≤b≤N−1

(5.118)
that we write in its determinantal form [82]. We expand this determinant in the last
column. Using its skew-symmetry under row permutation and the antisymmetry of
g(1,N)(z2j−1, z2j) we find that each terms yields the same contribution, which is

Ξ(1,N)
2 = (−1)N+1N

c(1,N)

(
a2

1 + b2
1

a1b2 − b1a2

)N ∫
CN

d[z]∆N−1(z1, . . . , zN−1)
zN + κ̂

N/2∏
j=1

g(1,N)(z2j−1, z2j)

= −N(N − 1)
4π

(
a2

1 + b2
1

a1b2 − b1a2

)N ∫
C2

d[z] z
N−2
1

z2 + κ̂
g(1,N)(z1, z2).

(5.119)

The integral over (z1, . . . , zN−2) can be conceived as a characteristic polynomial of
an induced spherical ensemble in the variable zN−1, which gives up to a prefactor a
monomial. The details of this calculation are covered in appendix A.2.

The integral over the remaining two eigenvalues yields two contributions, one for
the case in which they are real and one for the case in which they are a complex
conjugate pair

Ξ(1,N)
2 = −N(N − 1)

4π

(
a2

1 + b2
1

a1b2 − b1a2

)N

[IR(κ̂) + IC(κ̂)] . (5.120)

The contribution of the real eigenvalues is

IR(κ̂) = B(1/2, (N + 1)/2)
∫
R2

d[x] sgn(x2 − x1)
[(1 + x2

1)(1 + x2
2)]

(N+1)/2
xN−2

1
x2 + κ̂

= B(1/2, (N + 1)/2)
∫

x2>x1

d[x] 1
[(1 + x2

1)(1 + x2
2)]

(N+1)/2

(
xN−2

1
x2 + κ̂

− xN−2
2

x1 + κ̂

)
,

(5.121)
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where we treat the sign function by splitting the integral into two terms, that we
calculate separately. In the first term we integrate x1 over (−∞, x2] yielding

∞∫
−∞

dx2

x2∫
−∞

dx1
1

[(1 + x2
1)(1 + x2

2)]
(N+1)/2

xN−2
1

x2 + κ̂

=
∞∫

−∞

dx2
1

(1 + x2
2)(N+1)/2

1
x2 + κ̂

(−1)N + xN−1
2 (1 + x2

2)(1−N)/2

N − 1

(5.122)

and in the second term we integrate x2 over [x1,∞)
∞∫

−∞

dx1

∞∫
x1

dx2
1

[(1 + x2
1)(1 + x2

2)]
(N+1)/2

xN−2
2

x1 + κ̂

=
∞∫

−∞

dx1
1

(1 + x2
1)(N+1)/2

1
x1 + κ̂

1 − xN−1
1 (1 + x2

1)(1−N)/2

N − 1 .

(5.123)

For both integrals the antiderivative is
∫
dx

xN−2

(1 + x2)(N+1)/2 = 1
N − 1

xN−1

(1 + x2)(N−1)/2 . (5.124)

Considering N even one of the terms drops out and (5.121) results in an integral
over the real axis

IR(κ̂) = 2 B(1/2, (N + 1)/2)
N − 1

∫
R

dx
xN−1

(1 + x2)N

1
x+ κ̂

. (5.125)

In the case that κ̂ is real it has to be understood as a principal value integral. We
continue by symmetrizing the integrand and substituting t = x2

IR(κ̂) = 2 B(1/2, (N + 1)/2)
N − 1

∞∫
0

dx
xN−1

(1 + x2)N

( 1
x+ κ̂

+ 1
x− κ̂

)

= 2 B(1/2, (N + 1)/2)
N − 1

∞∫
0

dt
t(N−1)/2

(1 + t)N

1
t− κ̂2 .

(5.126)

The last integrand has a branch cut along the negative real axis. It is equivalent to
an integral of the function

f(z) = z(N−1)/2

(1 − z)N

−1
z + κ̂2 (5.127)
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over a keyhole contour around the negative real axis. Applying the residue theorem
yields a truncated binomial series

IR(κ̂) =(−1)N/22πB(1/2, (N + 1)/2)
N − 1

×
[

N−1∑
l=0

(
(N − 1)/2

l

)
(−1)N−1−l

(1 + κ̂2)N−l
+ (−κ̂2)(N−1)/2

(1 + κ̂2)N

]

= (−1)N/22πB(1/2, (N + 1)/2)
N − 1

(
(N − 1)/2

N

)
2F1

(
1, (N + 1)/2;N + 1; 1 + κ̂2

)
.

(5.128)

The second representation involves the hypergeometric function [167]. The contri-
bution of the complex conjugated eigenvalues is

IC(κ̂) = 2i
∫
C

d[z] sgn(Im z) z
N−2

z∗ + κ̂

Q(z, z∗)
|1 + z2|N+1 , (5.129)

which is difficult to simplify further.
Therefore, we find for the second kernel

K(1)
2 (pn, qm) =N(N − 1)

2π
b(pn)b(qm)

ivT (pn)τ2v(qm)

(
vT (pn)v(pn)

ivT (pn)τ2v(qm)

)N

×

(−1)N/2πB
(
1/2, N+1

2

)
N − 1

( (N−1)
2
N

)
2F1

1, N + 1
2 ;N + 1; 1 +

(
vT (pn)v(qm)
ivT (pn)τ2v(qm)

)2


+ i
∫
C

d[z]sgn(Im z)z
N−2Q(z, z∗)
|1 + z2|N+1

(
z∗ + vT (pn)v(qm)

ivT (pn)τ2v(qm)

)−1
.

(5.130)

We immediately expressed it as a function in the vector v(p) = (a(p), b(p)) and
recover the O(2) invariance up to the prefactor that drops out in the end result
(5.100).
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The Kernel K(1,N)
3

The third kernel is determined by Z̃(1,N+2)
2|0 (qm, qn). Therefore, we need to evaluate

the following integral

Ξ(1,N+2)
3 = 1

(N/2 + 1)! PfD(1,N)

×
∫

CN+2

d[z]∆N+2(z)
N/2+1∏

j=1
g(1,N)(z2j−1, z2j)

N+2∏
j=1

1
(κ1 + zj)(κ2 + zj)

.

(5.131)

This time we cannot use the O(2) symmetry to simplify the integral, because it
cannot be traced back to the ensemble average (5.13). Instead, we proceed by
applying the identity

∆N+2(z)
N+2∏
j=1

1
(κ1 + zj)(κ2 + zj)

= 1
κ1 − κ2

√
Ber(2)

N+2|2 (z; −κ)

= 1
κ2 − κ1

det
[
zb−1

a

1
za + κ1

1
za + κ2

]
1≤a≤N+2
1≤b≤N

(5.132)

like in the symplectic case, see also [82], and expand the determinant in the last two
columns. Similar to (5.119), we use the antisymmetry of g(1,N)(z2j−1, z2j) to reduce
the amount of terms appearing in the integral

Ξ(1,N+2)
3 = 2(κ2 − κ1)−1

c(1,N)(N + 2)

∫
CN+2

d[z]
N/2+1∏

j=1
g(1,N)(z2j−1, z2j)

× det
[
zb−1

a

1
za + κ1

1
za + κ2

]
1≤a≤N+2
1≤b≤N

= 2
c(1,N)(κ2 − κ1)

 ∫
CN+2

d[z] ∆N(z)
(zN+1 + κ1)(zN+2 + κ2)

N/2+1∏
j=1

g(1,N)(z2j−1, z2j)

−N
∫

CN+2

d[z]∆N(z1, . . . , zN−1, zN+1)
(zN + κ1)(zN+2 + κ2)

N/2+1∏
j=1

g(1,N)(z2j−1, z2j)
.

(5.133)
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In the first term the pair of eigenvalues zN+1, zN+2 is decoupled from (z1, . . . , zN).
Integration over the latter yields only a constant

1
c(1,N)

∫
CN+2

d[z] ∆N(z)
(zN+1 + κ1)(zN+2 + κ2)

N/2+1∏
j=1

g(1,N)(z2j−1, z2j)

=
∫
C2

d[z] g(1,N)(z1, z2)
(z1 + κ1)(z2 + κ2)

.

(5.134)

In the second term we expand the Vandermonde determinant in the last two variables

1
c(1,N)

∫
CN+2

d[z]∆N(z1, . . . , zN−1, zN+1)
(zN + κ1)(zN+2 + κ2)

N/2+1∏
j=1

g(1,N)(z2j−1, z2j)

= 1
c(1,N)

∫
CN+2

d[z]∆N−2(z) (zN+1 − zN−1)
(zN + κ1)(zN+2 + κ2)

N/2+1∏
j=1

g(1,N)(z2j−1, z2j)

×
N−2∏
j=1

(zN+1 − zj)(zN−1 − zj).

(5.135)

This allows us to identify the integral over (z1, . . . zN−2) as the function Ξ(1,N−2)
1 , see

(5.106), that we calculated for the first kernel, resulting in

N − 1
4π

∫
C4

d[z] z3 − z1

(z2 + κ1)(z4 + κ2)
g(1,N)(z1, z2)g(1,N)(z3, z4)

× ⟨det (z1K1 −K2) det (z3K1 −K2)⟩〈
det2 K1

〉
=N − 1

4π

∫
C4

d[z] z3 − z1

(z2 + κ1)(z4 + κ2)
g(1,N)(z1, z2)g(1,N)(z3, z4) (z1z3 + 1)N−2.

(5.136)

Altogether the third kernel function is given by

K(1)
3 (qm, qn) = 2

[b(qm)b(qn)]N−1

 ∫
C2

d[z] g(1,N)(z1, z2)
(a(qm) + b(qm)z1)(a(qn) + b(qn)z2)

− N(N − 1)
4π

∫
C4

d[z] (z3 − z1)(z1z3 + 1)N−2

(a(qm) + b(qm)z2)(a(qn) + b(qn)z4)
g(1,N)(z1, z2)g(1,N)(z3, z4)

.
(5.137)

Unlike for the first and the second kernel, expressing this result in v(p) is not bene-
ficial. Thus, the O(2) symmetry cannot be checked. However, our final result must
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have this symmetry. We define the functions

r(x, v(q)) = B(1/2, (N + 1)/2)
∫
R

dx′ sgn(x′ − x)
(a(q) + b(q)x′) [(1 + x2)(1 + x′2)](N+1)/2 ,

s(z, z∗, v(q)) = 2i sgn(Im z)Q(z, z∗)
(a(q) + b(q)z∗) |1 + z2|N+1 .

(5.138)

Inserting (5.25) yields the cumbersome expression

K(1)
3 (qm, qn) = 2

[b(qm)b(qn)]N−1

∫
R

dx
r(x, v(qn))

(a(qm) + b(qm)x) +
∫
C

d[z] s(z, z∗, v(qn))
(a(qm) + b(qm)z)


− N(N − 1)

2π[b(qm)b(qn)]N−1

×

 ∫
R2

d[x]r(x1, v(qm))r(x2, v(qn))(x2 − x1)(x1x2 + 1)N−2

+
∫
R

dx
∫
C

d[z] det
[
r(x, v(qm)) s(z, z∗, v(qm))
r(x, v(qn)) s(z, z∗, v(qn))

]
(z − x)(z x+ 1)N−2

+
∫
C2

d[z]s(z1, z
∗
1 , v(qm))s(z2, z

∗
2 , v(qn))(z2 − z1)(z1z2 + 1)N−2


(5.139)

for the third kernel, which contains six integrals over at most four real variables.

5.5 Summary
In this chapter, we generalized the parametric random matrix model that we used
in chapter 4. Our generalization includes the time reversal invariant chiral classes,
i.e. the chiral symplectic class CII and the chiral orthogonal class BDI, besides the
chiral unitary class AIII with broken time reversal invariance. Moreover, it allows
for quite arbitrary parametric combinations of the respective Ginibre matrices in
the two-matrix model.

Within this model, we studied statistical aspects of the winding number. In partic-
ular, ensemble averages of ratios of determinants with parametric dependence were
computed and related to the k-point correlation functions of the winding number
density. We mapped this problem to averages of ratios of characteristic polynomi-
als for the respective spherical ensembles. We applied the supersymmetry without
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supersymmetry method to the ensemble averages of 2k characteristic polynomials,
which yields a determinant in the unitary case and a Pfaffian in the symplectic and
the orthogonal case, containing simplified ensemble averages of only two character-
istic polynomials as kernel functions. These simplified averages were computed by
exploiting the symmetries of the random matrix model and employing techniques
from orthogonal and skew-orthogonal polynomial theory. We verified our results
with numerical calculations.

The main difficulties occurred in the time reversal invariant classes. In the sym-
plectic case, we obtained ensemble averages over the quaternion spherical ensemble.
As such, all its eigenvalues come in complex conjugate pairs, leading to significantly
more complicated expressions than in the unitary case. However, we managed to
solve all integrals and find a closed-form result. In the orthogonal case, on the other
hand, we had to deal with characteristic polynomials of the real spherical ensemble.
The eigenvalues of real matrices are either real or come in complex conjugated pairs.
Moreover, an odd-dimensional real matrix has an unpaired eigenvalue that is always
real. Due to this splitting of eigenvalues, ensembles of real matrices are hard to
approach technically. We therefore restricted our calculation to even dimensional
matrices. Even though we did not arrive at a closed-form result, we drastically re-
duced the number of integrals. An evaluation of the k-point correlation functions
and the kth moment of the winding number in the large N limit should be feasible
also in these cases.
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Chapter 6
Conclusion and Outlook

In the present work, we studied statistical aspects of the winding number in chiral
random matrix models with one-dimensional parametric dependence. In partic-

ular, we derived closed-form expressions for the discrete probability distribution of
the winding number as well as for the k-point correlation functions of the winding
number density in the chiral unitary class, labeled AIII in the tenfold way classi-
fication. The latter give the kth statistical moments of the winding number upon
integration over the parameter manifold. Next to the chiral unitary class AIII, we
also considered the chiral symplectic class CII and the chiral orthogonal class BDI.
These symmetry classes have a real structure, typically caused by the time reversal
invariance of the underlying physical system. We set up a generating function for
the k-point correlations of the winding number density as the ensemble average of
ratios of determinants with parametric dependence. We traced this back to ratios
of characteristic polynomials of the corresponding spherical ensemble. Employing
the supersymmetry without supersymmetry technique, a method that exploits su-
persymmetry structures without mapping the integrals to superspace, together with
an inherent symmetry of our two-matrix model as well as other methods of random
matrix theory, we derived closed-form results for the generating function in the chi-
ral unitary and the chiral symplectic classes, and drastically reduced the number of
integrals in the chiral orthogonal class.

The motivation for our investigation lies in condensed matter physics, where the
winding number is the relevant topological invariant for one-dimensional chiral sym-
metric systems, and as such, predicts the number of edge states in a system with
open boundary conditions. Our random matrix model realizes the situation where
the system is disordered, so that the winding number becomes a random variable.
The chiral matrix plays the role of the Bloch Hamiltonian and the parameter that
of the crystal momentum in the Brillouin zone. Nevertheless, our results hold true
also if the model is interpreted otherwise.

In related works, a statistical analysis of the Chern number in the unitary class
A was performed [74, 75]. It was found that the two-point correlation of the adia-
batic curvature, the analogue of the winding number density in this class, follows
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a universal form when the parametric dependence is considered on a local scale.
The rescaling procedure established there is similar to the one we used in chapter
4 for the two-point correlation of the winding number density. Furthermore, the
distribution of the Chern number was found to be Gaussian in the limit of large ma-
trix dimensions when the correlation length of the matrix elements remains small.
Similarly, our results for the winding number distribution in the chiral unitary class
also suggest a Gaussian distribution in the large N limit.

In general, the topological invariant is a property of the eigenvector bundle of the
parametric Hamiltonian. When considering the statistics of topological invariants,
a major advantage of the winding number over the Chern number is that we are
able to map the topological problem to a spectral problem. The ensemble averages
of ratios of characteristic polynomials that we evaluated in chapter 5 for the chiral
classes AIII, CII and BDI contain all the information about the winding number
statistics. It remains to take the derivative of the generating function to obtain
the k-point correlation functions, and to integrate these functions over the Brillouin
zone to obtain the kth moment of the winding number. This approach is more
convenient than the recursive approach we followed in chapter 4, because we are
able to consider arbitrary k directly.

The success of random matrix theory in various branches of physics is based on the
fact that even simple Gaussian matrix models are able to describe universal results
in the limit of large matrix dimensions. Likewise, we expect our results to contain
universal information as well. However, a rigorous mathematical proof is in order.
First results are available for the chiral unitary class. In an unpublished work by
our collaborators [170] it was shown that in the limit of large matrix dimensions the
model depends only on the three quantities

Γ1 = ∂

∂p
lnS(p, q)

∣∣∣∣∣∣
q=p

, Γ2 = ∂2

∂p2 lnS(p, q)
∣∣∣∣∣∣
q=p

, Γ3 = ∂2

∂p∂q
lnS(p, q)

∣∣∣∣∣∣
q=p

,

(6.1)
which are the logarithmic derivatives up to second order in the two-point correlation
function of the matrix elements

S(p, q) =
〈
K∗

jl(p)Kjl(q)
〉
. (6.2)

These quantities can be realized by a two-matrix model with coefficient functions
a(p) and b(p) as we used it in chapter 5. The universality of our model follows
from this. These results were obtained within the framework of the supersymmetry
method.

In chapter 5 we used the supersymmetry without supersymmetry technique, de-
veloped in [82,83]. As a consequence, our results include supersymmetry structures,
namely a Berezinian as a prefactor. This suggests that an evaluation of the ensemble
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averages within the framework of the "true" supersymmetry method might be fea-
sible. So far, however, our attempts following the standard procedure [81, 114, 171]
remain fruitless.

Another future research objective is the experimental verification of a universal
winding number statistics. Besides our original motivation, the edge states of topo-
logical insulators and topological superconductors, analogue systems may come into
play here. In fact, random matrix theory has a rich history of experimental verifi-
cation in microwave cavities and in elastomechanics [112, 172]. The classical wave
equations of these systems correspond to the stationary Schrödinger equation, and
their spectra are well described by the Gaussian ensembles, provided that the mi-
crowave cavity resp. the solid body are irregularly shaped, i.e. have no geometric
symmetries. Furthermore, the spectral correlations of parametric random matrix
ensembles [141] were measured in various systems such as microwave cavities [173],
resonating quartz blocks [174] and quantum graphs [175–178]. Recently, the chiral
Gaussian ensembles were realized in a chain of coupled microwave resonators [179].
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A Appendix

The following appendices contain technical details of the calculations in chapter
5. Like the latter, they are based on [2] and [3].

A.1 Skew-Orthogonal Polynomials of the Quaternion
Spherical Ensemble

The skew-orthogonal polynomials q(N)
n are defined by choosing them of degree n and

the relations

⟨q(N)
2j |q(N)

2l ⟩ = ⟨q(N)
2j+1|q

(N)
2l+1⟩ = 0, ⟨q(N)

2j |q(N)
2l+1⟩ = h

(N)
j δjl (A.1)

for all j, l = 0, . . . , N−1, where we employ the skew-symmetric product (5.86). The
normalization constants

h(N)
n = πB(2n+ 2, 2N − 2n) (A.2)

are related to the normalization c(4,N) of the joint probability distribution (5.51) in
the standard way, see [58, 169], namely by

c(4,N) = 2NN !
N−1∏
j=0

h
(N)
j . (A.3)

It is well-known, see [58, 169], that there is some kind of gauging possible for the
polynomials of odd degree by adding a multiple of the even ones (q(N)

2j+1(z) →
q

(N)
2j+1(z)+ cjq

(N)
2j (z) for any cj ∈ C) without destroying the skew-orthogonality. This

creates an ambiguity even when choosing monic normalization q
(N)
j (x) = xj + . . .

like we will do.
This kind of ambiguity can be fixed by choosing the Heine-like formulae, see [169],
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for these polynomials, which are

q
(N)
2n (x) =

∫
Cn
d[z]∆2n(z)∏n

j=1 g
(4,N)(zj)

∏n
j=1(zj − x)(z∗

j − x)∫
Cn
d[z]∆2n(z)∏n

m=1 g
(4,N)(zm) ,

q
(N)
2n+1(x) =

∫
Cn
d[z]∆2n(z)∏n

j=1 g
(4,N)(zj)

(
x+∑n

j=1[zj + z∗
j ]
)∏n

j=1(zj − x)(z∗
j − x)∫

Cn
d[z]∆2n(z)∏n

m=1 g
(4,N)(zm) .

(A.4)

The skew-orthogonal polynomials of even degree are evaluated as follows

q
(N)
2n (x) ∝

∫
Cn

d[z]∆2n+1(x, z, z∗)
n∏

j=1

zj − z∗
j(

1 + |zj|2
)2N+2 ∝ Pf

 0 xb−1

−xa−1 D
(4)
ab


1≤a≤2n+1
1≤b≤2n+1

,

(A.5)
where we have employed the generalized form of de Bruijn’s theorem, see [82, 162],
in the second expression and dropped the normalization, which can be reintroduced
at the end by employing the monic normalization. The vertical and horizontal
line underline the first row and column and a is the running index for the last
2n + 1 rows and b those of the columns. The Pfaffian involves an antisymmetric
(2n+ 1) × (2n+ 1)-kernel with the elements

D
(4)
ab =2

∫
C

d[z] (z − z∗)za−1(z∗)b−1(
1 + |z|2

)2N+2

=2πB
(

2N + 2 − a+ b+ 1
2 ,

a+ b+ 1
2

)
(δa,b−1 − δa−1,b) .

(A.6)

After expanding the Pfaffian in the last row and column we obtain a recursion
relation

Pf
 0 xb−1

−xa−1 D
(4)
ab


1≤a,b≤2n+1
1≤b≤2n+1

= − Pf
[
D

(4)
ab

]
1≤a≤2n
1≤b≤2n

x2n +D
(4)
2n,2n+1Pf

 0 xb−1

−xa−1 D
(4)
ab


1≤a≤2n−1
1≤b≤2n−1

= − (2π)n
n∑

m=0

m∏
j=1

B(2N + 2 − 2j, 2j)
n∏

j=m+1
B(2N − 2j + 1, 2j + 1)x2m

= − (2π)n
n∏

j=1
B(2N + 2 − 2j, 2j)

n∑
m=0

B(n+ 1, N − n+ 1/2)
B(m+ 1, N −m+ 1/2)x

2m,

(A.7)
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where we have used

Pf
[
D

(4)
ab

]
1≤a,b≤2n

=
n−1∏
j=0

h
(N)
j = (2π)n

n∏
j=1

B(2j, 2N + 2 − 2j). (A.8)

After proper normalization we find (5.22).
The calculation of the skew-orthogonal polynomials of odd degree works along the

same lines with the only difference of the need for the identity

∆2n+1(x, z, z∗)
x+

n∑
j=1

(
zj + z∗

j

) = det


zb−1

a z2n+1
a

(z∗
a)b−1 (z∗

a)2n+1

xb−1 x2n+1


1≤a≤n
1≤b≤2n

, (A.9)

where the vertical and horizontal line highlights the last column and row and the
first n odd and even rows comprise za and z∗

a, respectively. The polynomials of odd
degree are then

q
(N)
2n+1(x) ∝

∫
Cn

d[z]∆2n+1(x, z, z∗)
x+

n∑
j=1

(
zj + z∗

j

) n∏
j=1

zj − z∗
j(

1 + |zj|2
)2N+2

∝ Pf


0 xb−1 x2n+1

−xa−1 D
(4)
ab 0

−x2n+1 0 0


1≤a≤2n
1≤b≤2n

,

(A.10)

where we anew applied the generalized de Bruijn theorem [82, 162]. This time the
two vertical and horizontal lines underline the particular role of the first and last
columns and rows. The antisymmetric kernel is the same as in the even case (A.5)
for 1 ≤ a, b ≤ 2n. The integrals in the last row and column are the skew-symmetric
product ⟨za−1|z2n+1⟩ with a = 1, . . . , 2n and, thus, vanish. Expanding the Pfaffian
in the last row and column yields the monomial

q
(N)
2n+1(x) = x2n+1. (A.11)

These skew-orthogonal polynomials have to be seen in contrast to those derived
in [79] where the author has first mapped the spherical ensemble to a different matrix
ensemble. This is the reason why the author of [79] has found the monomials also
for the polynomials of even degree.
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A.2 Evaluating K(4,N)
3

To simplify expression (5.90), we pursue the same ideas as for the second kernel
function. One can show

∂2

∂z1∂z2

N∑
j=0

j∑
m=0

 (2N + 1)! j! Γ(N − j + 3/2)
(2j + 1)! (2N − 2j + 1)!m! Γ(N −m+ 3/2)

× z2m
1 z2j+1

2 − z2m
2 z2j+1

1
(1 + |z1|2)2N+1(1 + |z2|2)2N+1


=(z1 − z∗

1)(z2 − z∗
2)

N−1∑
j=0

j∑
m=0

 (2N + 1)! j! Γ(N − j + 1/2)
(2j + 1)! (2N − 2j − 1)!m! Γ(N −m+ 1/2)

× z2m
1 z2j+1

2 − z2m
2 z2j+1

1
(1 + |z1|2)2N+2(1 + |z2|2)2N+2

+ (2N + 1) (z∗
2 − z∗

1)(1 + z1z2)2N

(1 + |z1|2)2N+2(1 + |z2|2)2N+2 .

(A.12)

This derivative can be found by recognizing

(1 + |z1|2)2N+2 ∂

∂z1

z2m
1

(1 + |z1|2)2N+1 =2mz2m−1
1 − (2N − 2m+ 1)z∗

1z
2m
1 ,

(1 + |z2|2)2N+2 ∂

∂z2

z2j+1
2

(1 + |z2|2)2N+1 =(2j + 1)z2j
2 − (2N − 2j)z∗

2z
2j+1
2 ,

(A.13)

which leads to telescopic sums when taking the difference of the left hand side and
the first term on the right hand side.

The very first term is the integrand of the twofold integral apart from the factor
1/[(z∗

1 + κ1)(z∗
2 + κ2)]. Making use of identity (5.76) for both integration variables

z1 and z2 for the left hand side of the equation above, we find

(κ2 − κ1)Ξ(4,N+1)
3 = − 2

∫
C

d[z] z − z∗

(1 + |z|2)2N+2
1

(κ1 + z)(κ2 + z∗)

− 2(2N + 1)
π

∫
C2

d[z] 1
(z∗

1 + κ1)(z∗
2 + κ2)

(z∗
2 − z∗

1)(1 + z1z2)2N

(1 + |z1|2)2N+2(1 + |z2|2)2N+2

− 2π
N∑

j=0

j∑
m=0

 (2N + 1)! j! Γ(N − j + 3/2)
(2j + 1)! (2N − 2j + 1)!m! Γ(N −m+ 3/2)

× (κ∗
1)2m(κ∗

2)2j+1 − (κ∗
2)2m(κ∗

1)2j+1

(1 + |κ1|2)2N+1(1 + |κ2|2)2N+1

.

(A.14)

108



A.2 Evaluating K(4,N)
3

The double sum is, apart from the factor 1/[(1+|κ1|2)2N+1(1+|κ2|2)2N+1], equivalent
to an expectation value

N∑
j=0

j∑
m=0

 (2N + 1)! j! Γ(N − j + 3/2)
(2j + 1)! (2N − 2j + 1)!m! Γ(N −m+ 3/2)

×
[
(κ∗

1)2m(κ∗
2)2j+1 − (κ∗

2)2m(κ∗
1)2j+1

]
= κ∗

2 − κ∗
1

(2π)NN !∏N
j=1 B(2j, 2N + 4 − 2j)

×
∫
CN

d[z]∆2N(z)
N∏

r=1

zr − z∗
r

(1 + |zr|2)2N+4

N∏
j=1

(κ∗
1 + zj)(κ∗

1 + z∗
j )(κ∗

2 + zj)(κ∗
2 + z∗

j )

=(κ∗
2 − κ∗

1)
⟨det(κ∗

1K1 +K2)(κ∗
2K1 +K2)⟩

⟨detK2
1⟩

,

(A.15)

where we average over 2N × 2N real quaternion Ginibre matrices K1, K2 ∈ HN×N .
We emphasize that we can exploit the results of the first kernel function K(4)

1 (pm, pn),
see (5.66), with the difference that the matrix dimension is larger. Thus, it is

N∑
j=0

j∑
m=0

 (2N + 1)! j! Γ(N − j + 3/2)
(2j + 1)! (2N − 2j + 1)!m! Γ(N −m+ 3/2)

×
[
(κ∗

1)2m(κ∗
2)2j+1 − (κ∗

2)2m(κ∗
1)2j+1

]
=(κ∗

2 − κ∗
1)

N∑
j=0

B(N + 1, 3/2)
B(j + 1, N − j + 3/2) (κ∗

1κ
∗
2 + 1)2j (κ∗

2 − κ∗
1)

2N−2j

=(κ∗
2 − κ∗

1)2N+1

2N + 1

1 +
(
κ∗

1κ
∗
2 + 1

κ∗
2 − κ∗

1

)2
 q(N+1)

2N

(
κ∗

1κ
∗
2 + 1

κ∗
2 − κ∗

1

)
−
(
κ∗

1κ
∗
2 + 1

κ∗
2 − κ∗

1

)2N+2


=(κ∗
2 − κ∗

1)2N+1q
(N+1)
2N

(
κ∗

1κ
∗
2 + 1

κ∗
2 − κ∗

1

)
.

(A.16)

In addition, the remaining twofold integral can be simplified further. For that pur-
pose, we note that

∂

∂z1

(z∗
2 − z∗

1)(1 + z1z2)2N+1

(z∗
1 + κ1)(z2 − z∗

1) (1 + |z1|2)2N+1 = (2N + 1) (z∗
2 − z∗

1)(1 + z1z2)2N

(z∗
1 + κ1) (1 + |z1|2)2N+2 . (A.17)
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Therefore, we can also evaluate the respective integral for these derivatives along
(5.76) where we need to take into account the two poles at z1 = −κ∗

1 and z1 = z∗
2 ,

such that we arrive at

(κ2 − κ1)Ξ(4,N+1)
3 = − 2π

(
κ∗

2 − κ∗
1

(1 + |κ1|2) (1 + |κ2|2)

)2N+1

q
(N+1)
2N

(
κ∗

1κ
∗
2 + 1

κ∗
2 − κ∗

1

)

+ 2
∫
C

d[z] 1
(1 + |z|2)2N+2

z∗ + κ1

(z + κ1)(z∗ + κ2)

(
1 − κ∗

1z

1 + |κ1|2

)2N+1

.

(A.18)

Extending z∗ + κ1 = z∗ + κ2 + κ1 − κ2 in the numerator, it is straightforward to
show that the integral

∫
C

d[z] 1
(1 + |z|2)2N+2

1
(z + κ1)

(
1 − κ∗

1z

1 + |κ1|2

)2N+1

= 0 (A.19)

vanishes, for instance, with the help of Stokes’ theorem with

∂

∂z∗
(1 − κ∗

1z)2N+1

z(z + κ1) (1 + |z|2)2N+1 = −(2N + 1)(1 − κ∗
1z)2N+1

(z + κ1) (1 + |z|2)2N+2 , (A.20)

where the contributions at the poles z = 0 and z = −κ1 cancel each other.
What remains is essentially the integral

J =
∫
C

d[z] 1
(1 + |z|2)2N+2

1
(z + κ1)(z∗ + κ2)

(
1 − κ∗

1z

1 + |κ1|2

)2N+1

. (A.21)

Choosing polar coordinates z =
√
reiφ, we first integrate over the angle φ ∈ [0, 2π),

exploiting the partial fraction decomposition

1
(
√
reiφ + κ1)(

√
re−iφ + κ2)

= eiφ

r − κ1κ2

[
1

eiφ + κ1/
√
r

− 1
eiφ +

√
r/κ2

]
(A.22)

and employing the residue theorem, which leads to

J = π

∞∫
|κ1|2

dr

(1 + r)2N+2(r − κ1κ2)
− π

|κ2|2∫
0

dr

(1 + r)2N+2(r − κ1κ2)

(
1 + rκ∗

1/κ2

1 + |κ1|2

)2N+1

.

(A.23)
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3

The first integral is explicitly
∞∫

|κ1|2

dr

(1 + r)2N+2(r − κ1κ2)
= − 1

(1 + κ1κ2)2N+2

×

ln
(

1 − 1 + κ1κ2

1 + |κ1|2

)
+

2N+1∑
j=1

1
j

(
1 + κ1κ2

1 + |κ1|2

)j
 ,
(A.24)

which is Lerch’s transcendent (5.21). The second integral can be evaluated once one
has performed the Möbius transformation

s = (κ2 − κ∗
1)r

κ2 + κ∗
1r

⇔ r = κ2s

κ2 − κ∗
1 − κ∗

1s
. (A.25)

Then, the integral simplifies to

|κ2|2∫
0

dr

(1 + r)2N+2(r − κ1κ2)

(
1 + r κ∗

1/κ2

1 + |κ1|2

)2N+1

=
(|κ2|2−κ∗

1κ∗
2)/(1+κ∗

1κ∗
2)∫

0

ds

(1 + |κ1|2)2N+1 (1 + s)2N+2 [(1 + |κ1|2) s+ |κ1|2 − κ1κ2]
.

(A.26)

This integral can be carried out like the former one, yielding

|κ2|2∫
0

dr

(1 + r)2N+2(r − κ1κ2)

(
1 + r κ∗

1/κ2

1 + |κ1|2

)2N+1

= 1
(1 + κ1κ2)2N+2

ln
(

1 − 1 + κ1κ2

1 + |κ1|2

)
+

2N+1∑
j=1

1
j

(
1 + κ1κ2

1 + |κ1|2

)j


− 1
(1 + κ1κ2)2N+2

 ln
(

1 − |1 + κ1κ2|2

(1 + |κ1|2) (1 + |κ2|2)

)

+
2N+1∑
j=1

1
j

(
|1 + κ1κ2|2

(1 + |κ1|2) (1 + |κ2|2)

)j
.

(A.27)

As can be seen the first logarithm and sum cancel with the one from the first integral
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of J . Therefore, we arrive at

J = − π

(1 + κ1κ2)2N+2

×

ln
(

1 − |1 + κ1κ2|2

(1 + |κ1|2)(1 + |κ2|2)

)
+

2N+1∑
j=1

1
j

(
|1 + κ1κ2|2

(1 + |κ1|2) (1 + |κ2|2)

)j


=π
(

1 + κ∗
1κ

∗
2

(1 + |κ1|2)(1 + |κ2|2)

)2N+2

Φ(1)
2N+2

(
|1 + κ1κ2|2

(1 + |κ1|2)(1 + |κ2|2)

)
,

(A.28)

which is anew Lerch’s transcendent (5.21) apart from a prefactor. Despite that
some expressions of this integral has been in some intermediate steps not obviously
symmetric under κ1 ↔ κ2, this final result reflects this symmetry.

A.3 The Joint Eigenvalue Probability Distribution of
the Real Induced Spherical Ensemble

We consider the real induced spherical ensemble with the matrix probability distri-
bution

G̃(1,N)
µ,ν (Y ) = π−N2/2

N∏
j=1

Γ(j/2)Γ(µ+ ν + (N + j)/2)
Γ(ν + j/2)Γ(µ+ j/2)

det2ν Y

detN+µ+ν (11N + Y Y T )
.

(A.29)
It is the ensemble of matrices Y = K−1

1 K2, where K1 and K2 are distributed ac-
cording to deformed Gaussians

Pµ(K) = π−N2/2
N∏

j=1

Γ(j/2)
Γ(µ+ j/2) exp

(
−trKKT

)
detµ KKT (A.30)

for the real positive parameters µ resp. ν. In the body of the text we frequently
omitted these indices, implying that they are zero, e.g. G̃

(1,N)
0,0 (Y ) = G̃(1,N)(Y ),

which leads to the ordinary spherical ensemble. The induced spherical ensemble
is well-studied for β = 1, 2, 4, see [132–134]. Unfortunately, in the real case the
known joint eigenvalue probability distribution is available only in a form, that is
impractical for our purpose. For this reason we will reproduce this result once again.
In doing so, we adhere to methods employed in the aforementioned works.

Generally for real matrices, we have to distinguish between even (Ñ = N/2) and
odd (Ñ = (N − 1)/2) matrix dimensions. We apply a real Schur decomposition

Y = U(D + T )UT , (A.31)
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whereD is a diagonal matrix of Ñ real 2×2-blocksDj. In the odd case these are com-
plemented by a real 1×1-block D

Ñ+1. The matrix T is a real strict upper triangular
matrix and U is orthogonal, U ∈ O(N)/O(2)Ñ resp. U ∈ O(N)/(O(2)Ñ × O(1))
for even resp. odd N . Upon this transformation the measure changes according
to [130,180]

d[Y ] = ∆N(z)
Ñ∏

j=1

1
z−j − z+j

d[D]d[T ]dµ(U), (A.32)

where z+j and z−j are the eigenvalues of Dj and thus also of Y . First, one integrates
over the upper triangular matrix T . Only the denominator of the matrix distribution
(A.29) depends on T . The determinant is expanded and the free parameters are
integrated out column wise. In the even case this yields [78,133]∫

d[T ] det2ν Y

detN+µ+ν (11N + Y Y T )
=

Ñ∏
j=1

πN−2j Γ (N/2 + µ+ ν + 1/2) Γ (N/2 + µ+ ν + 1)
Γ (N + µ+ ν + 1/2 − j) Γ (N + µ+ ν + 1 − j)

×
Ñ∏

j=1

det2ν Dj

detN/2+µ+ν+1(11N +DjDT
j )

(A.33)

and in the odd case∫
d[T ] det2ν Y

detN+µ+ν (11N + Y Y T )
=

Ñ∏
j=1

πN−2j Γ (N/2 + µ+ ν + 1/2) Γ (N/2 + µ+ ν + 1)
Γ (N + µ+ ν + 1/2 − j) Γ (N + µ+ ν + 1 − j)

× h(N)
µ,ν

(
z2Ñ+1

) Ñ∏
j=1

det2ν Dj

detN/2+µ+ν+1(11N +DjDT
j )
.

(A.34)

Here, we obtain an additional factor

h(N)
µ,ν (z) = z2ν

(1 + z2)N/2+µ+ν+1/2 δ (y) , (A.35)

which effectively renders the variable z2Ñ+1 real. We use the notation zj = xj + i yj

with xj, yj ∈ R for the generally complex eigenvalues. Next, we work on the 2 × 2-
blocks. Gathering all factors depending on the eigenvalues of Dj, except those in
the Vandermonde determinant, we obtain

Aj = 1
z−j − z+j

det2ν Dj

detN/2+µ+ν+1(11N +DjDT
j )
. (A.36)
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Following [181], we start by diagonalizing the symmetric part

OT
j DjOJ =

[
λ1j ρj

−ρj λ2j

]
, Oj =

[
cosφj sinφj

− sinφj cosφj

]
∈ SO(2). (A.37)

The range of parameters is ρj ∈ R, φj ∈ [0, π) and λ1j, λ2j ∈ R with λ1j ≥ λ2j. The
flat measure of the four real independent variables transforms as

d[Dj] = 2(λ1j − λ2j)dφjdρjdλ1jdλ2j. (A.38)

Next, we want to change coordinates from the eigenvalues of the symmetric part
λ1j, λ2j to the eigenvalues z±j of the full matrix. They are related via

z±j = λ1j + λ2j

2 ±

√√√√(λ1j − λ2j

2

)2

− ρ2
j ,

λ1,2j = z+j + z−j

2 ±
√(

z+j − z−j

2

)2
+ ρ2

j .

(A.39)

According to the ordering of λ1 and λ2, the eigenvalues z±j also have to be ordered

z±j ∈ R : x+j ≥ x−j,

z±j = z∗
∓j : y+j = −y−j > 0,

(A.40)

where we distinguished between the cases of real and complex conjugated eigenval-
ues. However, in the following we will disregard this ordering, which is be compen-
sated by an overall factor 1/2. We obtain the Jacobian∣∣∣∣∣det ∂(z+j, z−j)

∂(λ1j, λ2j)

∣∣∣∣∣ = λ1j − λ2j

|z−j − z+j|
. (A.41)

The determinants in the new coordinates are

det
(
112 +DjD

T
j

)
= 4ρ2

j + (1 + z2
+j)(1 + z2

−j),
det Dj = z+jz−j.

(A.42)

We also need to consider that in the case, where z±j are complex conjugates, the
integration regime of ρj is confined to

ρ2
j ≥ −

(
z+j − z−j

2

)2
= y2

±j ⇒ |ρj| ≥ |y±j| . (A.43)
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This is due to the condition λ1,2j ∈ R. Gathering everything and integrating over
φj and ρj we obtain for (A.36)

2(λ1j − λ2j)dλ1jdλ2j

∫
R

dρj

π∫
0

dφj Aj

= π

2
(z+jz−j)2ν

[(1 + z2
+)(1 + z2

−)]N/2+ν+µ+1/2
|z−j − z+j|
z−j − z+j

×
[
B(1/2, N/2 + µ+ ν + 1/2)Θ(x+j − x−j)δ(y−j)δ(y+j)

+ 2 Θ(y+j)δ(x+j − x−j)δ(y+j + y−j)Q(N)
µ,ν (z+j, z−j)

]
dx+jdx−jdy+jdy−j,

(A.44)

where the function

Q(N)
µ,ν (z+j, z−j) = 2

∞∫
2|y±j|
|1+z2

±j|

dρj(
1 + ρ2

j

)N/2+µ+ν+1

= B
(

4y2

|1 + z2|2 + 4y2
; 1/2, N/2 + µ+ ν + 1/2

) (A.45)

emerges. Now only the integral over the Haar measure of the respective cosets
remains to be computed. It yields the constants

Vol
(

O(N)/O(2)Ñ
)

= Vol(O(N))
(4π)N/2 = 1

(4π)N/2

N∏
j=1

2πj/2

Γ(j/2) ,

Vol
(

O(N)/(O(2)Ñ × O(1))
)

= Vol(O(N))
2(4π)(N−1)/2 = 1

2(4π)(N−1)/2

N∏
j=1

2πj/2

Γ(j/2)

(A.46)

for N even resp. odd. We summarize this under
∫
dµ(U) = 1

(1 +N − 2Ñ)(4π)Ñ

N∏
j=1

2πj/2

Γ(j/2) . (A.47)

As we not only disregard the ordering of the eigenvalues z±j in each 2×2-block, but
also the ordering of the 2 × 2-blocks themselves, all of this has to be supplemented
with a factor 1/Ñ !.

Finally bringing everything together we obtain the correctly normalized joint
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eigenvalue distribution

G(1,N)
µ,ν (z) = ∆N(z)

c
(1,N)
µ,ν

Ñ∏
j=1

g(1,N)
µ,ν (z2j−1, z2j),

G(1,N)
µ,ν (z) =

∆N(z)h(1,N)
µ,ν (zN)

c
(1,N)
µ,ν

Ñ∏
j=1

g(1,N)
µ,ν (z2j−1, z2j)

(A.48)

for N even resp. odd with the antisymmetric function

g(1,N)
µ,ν (z1, z2) = (z1z2)2ν |z2 − z1|

z2 − z1

×
B(1/2, N/2 + µ+ ν + 1/2)δ(y1)δ(y2) + 2 δ(x1 − x2)δ(y1 + y2)Q(N)

µ,ν (z1, z
∗
1)

[(1 + z2
1)(1 + z2

2)]N/2+µ+ν+1/2 .

(A.49)

The antisymmetry of this function is due to us disregarding the ordering (A.40).
The normalization is

c(1,N)
µ,ν =23Ñ−NπÑ2−Ñ(N−1)+N(N−1)/4(1 +N − 2Ñ)Ñ !

N∏
j=1

Γ(ν + j/2)Γ(µ+ j/2)
Γ(µ+ ν + (N + j)/2)

×
Ñ∏

j=1

Γ (N + µ+ ν + 1/2 − j) Γ (N + µ+ ν + 1 − j)
Γ (N/2 + µ+ ν + 1/2) Γ (N/2 + µ+ ν + 1) .

(A.50)

Setting µ = ν = 0 one immediately finds the joint probability distribution of eigen-
values (5.97) of the ordinary real spherical ensemble.

The Pfaffian of the moment matrix (5.103) can be related to this constant. One
finds for the even case [181]∫

C2M

d[z]∆2M(z)
M∏

j=1
g(1,N)(z2j−1, z2j) = M ! PfD(1,2M), (A.51)

where M ≤ N/2. On the other hand by equations (A.48) and (A.49) this integral is∫
C2M

d[z]∆2M(z)
M∏

j=1
g

(1,2M)
(N−2M)/2,0(z2j−1, z2j) = c

(1,2M)
(N−2M)/2,0 (A.52)

and therefore

PfD(1,2M) =
c

(1,2M)
(N−2M)/2,0

M ! . (A.53)

We use this result at multiple points in the body of the text to evaluate the prefactors
of our integrals.
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A.4 Characteristic Polynomials of the Real Induced
Spherical Ensemble

We are interested in integrals of the type

IM =
∫

C2M

d[z]∆2M(z)
M∏

j=1
g(1,N)(z2j−1, z2j)

2M∏
j=1

(x− zj), (A.54)

where M ≤ N/2. Applying equations (A.48) we map them to integrals over a matrix
distribution

IM =
∫

C2M

d[z]∆2M(z)
M∏

j=1
g

(1,2M)
(N−2M)/2,0(z2j−1, z2j)

2M∏
j=1

(x− zj)

=c(1,2M)
(N−2M)/2,0

∫
d[Y ]G̃(1,2M)

(N−2M)/2,0(Y ) det(x− Y ).
(A.55)

The matrix distribution G̃(1,N)
µ,ν (Y ) is invariant under left and right actions of the

orthogonal group, see (A.29),

Y → O1Y O2 with O1, O2 ∈ O(N). (A.56)

Let us choose O1 = 11N and O2 and as diagonal with entries ±1. This effectively
changes the sign of Y column-wise, Yjl → ±Yjl for all l. Expanding the determinant
we see that only one term survives the average

⟨det (x− Y )⟩ =
∑

σ∈SN

sgnσ
〈

N∏
j=1

(
xδjσ(j) − Yjσ(j)

)〉
=

∑
σ∈SN

sgnσ xN
N∏

j=1
δjσ(j) = xN ,

(A.57)
which is a monomial of power N . Therefore we obtain

IM = c
(1,2M)
(N−2M)/2,0x

2M . (A.58)

This result corresponds to the skew-orthogonal polynomial of even degree [2, 169].

A.5 Alternative Expression of K(1,N)
3

Unlike in (5.133) we expand the determinant only in the last column

Ξ(1,N+2)
3 = 1

c(1,N)
2

κ2 − κ1

×
∫

CN+2

d[z] 1
zN+2 + κ2

N/2+1∏
j=1

g(1,N)(z2j−1, z2j) det
[
zb−1

a

1
za + κ1

]
1≤a≤N+1
1≤b≤N

(A.59)
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and apply the identity,see (5.118),

det
[
zb−1

a

1
za + κ1

]
1≤a≤N+1
1≤b≤N

= (−1)N+2∆N+1(z)
N+1∏
j=1

1
zj + κ1

= (−1)N+2 ∆N(z)
zN+1 + κ1

N∏
j=1

zN+1 − zj

zj + κ1
.

(A.60)

This allows us to identify the integral over (z1, . . . , zN) as the function Ξ(1,N)
2 , see

(5.114), that we calculated for the second kernel, resulting in

Ξ(1,N+2)
3 = 1

c(1,N)
2

κ2 − κ1

×
∫

CN+2

d[z] ∆N(z)
(zN+1 + κ1)(zN+2 + κ2)

N/2+1∏
j=1

g(1,N)(z2j−1, z2j)
N∏

j=1

zN+1 − zj

zj + κ1

= 2
κ2 − κ1

∫
C2

d[z] g(1,N)(z1, z2)
(z1 + κ1)(z2 + κ2)

〈
det (−z1K1 +K2)
det (κ1K1 +K2)

〉
.

(A.61)

Inserting our result (5.120) for the ensemble average we find the following expression
for the third kernel

K(1)
3 (qm, qn) = 2

[b(qm)b(qn)]N−1

×
∫
C2

d[z] g(1,N)(z1, z2)
(a(qm) + b(qm)z1)(a(qn) + b(qn)z2)

〈
det(−z1K1 +K2)

det(κ(qm)K1 +K2)

〉

= −N(N − 1)
2π[b(qm)b(qn)]N−1

∫
C2

d[z] g(1,N)(z1, z2)
(a(qm) + b(qm)z1)(a(qn) + b(qn)z2)

×

(−1)N/22πB(1/2, (N + 1)/2)
N − 1

(
(N − 1)/2

N

)

× 2F1

1, (N + 1)/2;N + 1; 1 +
(
κ(qm) − z1

κ(qm) + z1

)2


+ 2i
∫
C

d[z]z
N−2sgn(Im z)Q(z, z∗)

|1 + z2|N+1

(
z∗ + κ(qm) − z1

κ(qm) + z1

)−1
.

(A.62)
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A.5 Alternative Expression of K(1,N)
3

Furthermore inserting (5.25) yields

K(1)
3 (qm, qn) =−N(N − 1)b(qm)

2πbN−1(qn)

∫
R

dx
r(x, v(qn))

a(qm) + b(qm)x

(
x2 + 1

a(qm) + b(qm)x

)N

×

(−1)N/22πB(1/2, (N + 1)/2)
N − 1

(
(N − 1)/2

N

)

× 2F1

1, (N + 1)/2;N + 1; 1 +
(
a(qm) − b(qm)x
a(qm) + b(qm)x

)2


+
∫
C

d[z]s
(
z, z∗,

(
a(qm) − b(qm)x
a(qm) + b(qm)x

))
zN−2


+
∫
C

d[z1]
s(z1, z

∗
1 , v(qn))

a(qm) + b(qm)z1

(
z2

1 + 1
a(qm) + b(qm)z1

)N

×

(−1)N/22πB(1/2, (N + 1)/2)
N − 1

(
(N − 1)/2

N

)

× 2F1

1, (N + 1)/2;N + 1; 1 +
(
a(qm) − b(qm)z1

a(qm) + b(qm)z1

)2


+
∫
C

d[z2]s
(
z2, z

∗
2 ,

(
a(qm) − b(qm)z1

a(qm) + b(qm)z1

))
zN−2

2


(A.63)

with the functions (5.29). In this representation also a dependence solely in O(2)
invariants cannot be identified.
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