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Abstract. In the first part of this thesis (chapters 1 to 5), we generalize and simplify
the constructions of [DR14] and [Hsi21] of an unbalanced triple product p-adic L-function
L f
p (f ,g,h) attached to a triple (f ,g,h) of p-adic families of modular forms, allowing

more flexibility for the choice of g and h.
Assuming that g and h are families of theta series of infinite p-slope, we prove a

factorization of (an improvement of) L f
p (f ,g,h) in terms of two anticyclotomic p-adic

L-functions. As a corollary, when f specializes in weight 2 to the newform attached to an
elliptic curve E over Q with multiplicative reduction at p, we relate Heegner points on E to
p-adic partial derivatives of L f

p (f ,g,h) evaluated at the critical triple of weights (2,1,1).
In the second part (chapters 6 to 9, we generalize the p-adic explicit reciprocity laws

for balanced diagonal classes appearing in [DR17] and [BSV20] to the case of geometric
balanced triples (f, g, h) of modular eigenforms where f is ordinary at p, while g and h are
supercuspidal at p. This allows to obtain a geometric interpretation of the specializations
of the p-adic L-function L f

p (f ,g,h) in the so-called geometric balanced region, when g
and h are families of theta series of infinite p-slope.

Zusammenfassung. Im ersten Teil dieser Arbeit (Kapitel 1 bis 5) und verein-
fachen wir die Konstruktionen einer unausgewogenen Tripelprodukt p-adischen L-Funktion
L f
p (f ,g,h) von [DR14] und [Hsi21], die einem Tripel (f ,g,h) von p-adischen Familien

von Modulformen zugeordnet ist, und ermöglichen dabei mehr Flexibilität bei der Wahl
von g und h.

Unter der Annahme, dass g und h Familien von Theta-Reihen unendlicher p-Steigung
sind, beweisen wir eine Faktorisierung von (einer Verbesserung von) L f

p (f ,g,h) als Pro-
dukt von zwei antizyklotomischen p-adischen L-Funktionen. Falls die Spezialisierung von f
in Gewicht 2 der Modulform einer elliptischen Kurve E über Q mit multiplikativer Reduk-
tion bei p entspricht, erhalten wir als Korollar, dass Heegner-Punkte auf E in Beziehung zu
p-adischen partiellen Ableitungen von L f

p (f ,g,h) in dem kritischen Tripel von Gewichten
(2,1,1) stehen.

Im zweiten Teil (Kapitel 6 bis 9) verallgemeinern wir die p-adischen expliziten Reziproz-
itätsgesetze für ausgewogene diagonale Klassen, die in [DR17] und [BSV20] auftreten,
auf den Fall geometrisch ausgewogener Tripel (f, g, h) von Eigenformen, bei denen f bei
p gewöhnlich ist, während g und h bei p superkuspidal sind. Dies ermöglicht eine ge-
ometrische Interpretation der Spezialisierungen der p-adischen L-Funktion L f

p (f ,g,h) im
sogenannten geometrisch ausgewogenen Bereich, wenn g und h Familien von Theta-Reihen
unendlicher p-Steigung sind.
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Introduction and statement of the main results

The unbalanced triple product p-adic L-function. Let p ≥ 3 be a rational prime.
We fix an algebraic closure Q̄ of Q, an algebraic closure Q̄p of Qp together with an em-
bedding ιp ∶ Q̄ ↪ Q̄p extending the canonical inclusion Q ↪ Qp. All algebraic extensions
of Q (resp. Qp) are viewed inside the corresponding fixed algebraic closures. We extend
the p-adic absolute value ∣ ⋅ ∣p on Qp (normalized so that ∣p∣p = 1/p) to Q̄p in the unique
possible way. We denote by Cp the completion of Q̄p with respect to this absolute value.
It is well-known that Cp is itself algebraically closed. We also fix an embedding ι∞ ∶ Q̄↪ C
extending the canonical inclusion Q↪ C and we often omit the embeddings ιp and ι∞ from
the notation.

Let L/Qp be a finite extension and let Λ ∶= OL[[1+pZp]] be the corresponding Iwasawa
algebra (OL being the ring of integers of L). Consider a new, L-rational, Hida family

f =
+∞

∑
n=1

an(f)q
n ∈ Sord(Nf , χf ,Λ)

of tame level Nf (p ∤ Nf ) and tame character χf of conductor dividing Nf .

Let also

g =
+∞

∑
n=1

an(g)q
n ∈ SΩ1(M,χg,Rg) and h =

+∞

∑
n=1

an(h)q
n ∈ SΩ2(M,χh,Rh)

be two generalized normalized Λ-adic eigenforms with χf ⋅ χg ⋅ χh = ω
2a for some integer

a, where ω denotes the Teichmüller character modulo p and Nf ∣M .
Our notion of generalized Λ-adic forms takes inspiration from [DR14, Definition 2.16].

For a precise definition and for the explanation of the notation we refer to chapter 1.
Here we just mention that we are not imposing any condition on p-slopes and that we are
allowing the rings of coefficients Rg and Rh to be complete local noetherian flat Λ-algebras
(not necessarily finite as Λ-algebras), having the same residue field as OL.

If g and h are Hida families, the works of Darmon-Rotger [DR14] and Hsieh [Hsi21]
attach to the triple (f ,g,h) a so-called f -unbalanced square-root triple product p-adic
L-function. It arises as an element

L f
p (f ,g,h) ∈ Rfgh ∶= Λ⊗̂OL

Rg⊗̂OL
Rh ,

whose square interpolates the central values of the triple product L-functions attached to
the specializations of (f ,g,h) at f -unbalanced triples of weights.

More precisely, given two primitive Hida families g# and h# of respective tame level
Ng and Nh, Hsieh associates to the triple (f ,g#,h#) a preferred choice of test vectors
(f∗,g∗,h∗) of tame level Nfgh = lcm(Nf ,Ng,Nh) and then performs the construction
of the p-adic L-function for this choice of test vectors, which grants some control on the
nonvanishing of the local zeta-integrals at primes dividing Nfgh appearing in Ichino’s
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formula (cf. [Ich08, theorem 1.1]). In our applications finding the correct test vector will
not be a problem, so the reader is invited to think of our generalized families g and h fixed
above as test vectors for families of tame level dividing M .

We show in chapter 2 that the costruction of L f
p (f ,g,h) can be extended to our more

general setting.

Proposition 0.1 (cf. definition 2.2, proposition 2.6 and proposition 2.11): Assume that
the residual Galois representation Vf of the big Galois representation Vf attached to f is
absolutely irreducible and p-distinguished. Then there is an element L f

p (f ,g,h) ∈ Rfgh

such that for every f -unbalanced triple of meaningful weights w = (x, y, z), the following
formula holds:

(L f
p (f ,g,h)(w))

2 =
L∗(fx × gy ×hz,

k+l+m−2
2 )

ζQ(2)2 ⋅Ω
2
fx

⋅I unb
w, p ⋅

⎛

⎝
∏
ℓ∣M

Iw,ℓ

⎞

⎠

where:
(i) L∗ denotes the completed L-function (including the archimedean local factor);
(ii) Ωfx is a suitable period attached to fx, essentially given by its Petersson norm;
(iii) I unb

w,p (resp. Iw,ℓ) is a suitable normalized local zeta integral at p (resp. at ℓ).

Remark 0.2: Here we group some observations elucidating the relations between our
construction of L f

p (f ,g,h) and the existing literature on the subject.
(i) As already pointed out, we adapt Hsieh’s construction to our setting, following a

method that essentially already appears in [Hid93, chapters 7 and 8]. The theory of
generalized Λ-adic forms developed in chapter 1 allows us to simplify the construction.
In particular, we show that the theory of ordinary parts carries over in this generalized
setting (cf. proposition 1.18) and thus we do not need to prove the equivalent of [Hsi21,
lemma 3.4].

(ii) The (only) novelty of our p-adic L-function consists in allowing g and h to be gener-
alized families in the sense described above. A natural question to ask is whether in
our generalized setting one can find more naturally families which are not captured by
Hida-Coleman theory.

(iii) In [Fuk22] the author provides a similar generalization of Hsieh’s work to the case in
which g and h are not necessarily Hida families. Yet, Fukunaga’s notion of general p-
adic families of modular forms does not allow our generality for the rings of coefficients.
Moreover, in the framework of [Fuk22] one cannot view the Fourier coefficients of such
families as continuous/analytic function on a suitable weight space in general.

(iv) It should not be too hard to extend our results to the case where f is a Coleman family
(i.e., to the finite p-slope case), adapting the techniques of [AI21] (cf. also the recent
preprint [GPJ23]).

(v) As already observed, we do not perform a general and careful level adjustment as in
[Hsi21]. It is clear that one could mimic Hsieh’s recipes to achieve more generality in
the construction.

▲

Factorization of triple product p-adic L-functions. In the second part of the
paper, we discuss some arithmetic applications in the setting the we now describe.
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Assume that p ≥ 5 and let f be a Hida family of tame level Nf with trivial tame
character. Fix K/Q a quadratic imaginary field of odd discriminant −dK and two ray class
characters η1 and η2 of K, that we can view as valued in L.

The following assumptions are in force:
(A) p is inert in K;
(B) Nf is squarefree, coprime to the discriminant of K and with an even number of prime

divisors which are inert in K (Heegner hypothesis);
(C) ηi has conductor c prOK , with r ≥ 1 and c ∈ Z≥1, (c , p ⋅ dK ⋅Nf) = 1, c not divisible by

primes inert in K.
(D) η1 and η2 are not induced by Dirichlet characters and the central characters of η1 and

η2 are inverse to each other, so that φ = η1η2 and ψ = η1ησ2 are ring class characters of
K (here ⟨σ⟩ = Gal(K/Q)).

A classical theorem of Hecke and Shimura attaches to the character η1 (resp. η2) a
cuspidal newform g (resp. h) of weight 1, namely the theta series attached to η1 (resp. η2).
In chapter 3 we describe how to realize g (resp. h) as the weight 1 specialization of a p-adic
family g (resp. h) of theta series of tame level dK . Note that our notion of generalized
Λ-adic form is taylored to include families such as g and h as non-trivial examples and
that the specializations of g (resp. h) will always be supercuspidal at p (hence of infinite
p-slope).

After fixing a choice of test vectors g∗ (resp. h∗) of tame level Nf ⋅ dK ⋅ c
2, in chap-

ter 4 we define an improved version Lfp(f ,g,h) of L f
p (f ,g

∗,h∗), satisfying a simplified
interpolation property. This relies on Hsieh’s computations of local zeta integrals (and on
Fukunaga’s generalizations of Hsieh’s results in [Fuk22]).

Let Hn denote the ring class field of K of conductor cpn for every n ∈ Z≥0 and let H∞
be the union of all the Hn’s. Let G∞ ∶= Gal(H∞/K). We can identity the maximal Zp-free
quotient Γ− of G∞ with the Galois group of the anticyclotomic Zp-extension of K and there
is an exact sequence 0 → ∆c → G∞ → Γ− → 0 of abelian groups with ∆c a finite group and
Γ− ≅ Zp. We fix a non-canonical isomorphism G∞ ≅∆c × Γ

− once and for all.
Then φ (resp. ψ) factors through G∞ and we write it as (φt, φ−) (resp. (ψt, ψ−))

according to the fixed isomorphism G∞ ≅∆c × Γ
−.

For k ∈ Z≥2∩2Z, let Xcrit
p,k denote the set of continuous characters ν̂ ∶ Γ− → C×p such that

the associated algebraic Hecke character ν ∶ A×K/K
× → C× has infinity type (j,−j) with

∣j∣ < k/2.

The main result of chapter 4 is the following factorization theorem for the anticyclo-
tomic projection Lfp,ac(f ,g,h) of Lfp(f ,g,h) (cf. definition 4.24). This factorization is a
counterpart of [Hsi21, proposition 8.1] (which assumes p split in K) and an upgrade of
[BSV22a, theorem 3.1] to the case of Hecke characters with non-trivial p-part.

Theorem 0.3 (cf. theorem 4.25): In the above setting, it holds:

Lfp,ac(f ,g,h) = ±Afgh ⋅ (φ
− (ΘHeeg

∞ (f , φt)) ⊗̂ ψ
− (ΘHeeg

∞ (f , ψt))) .

This equality takes place in the ring

R− = (RΓ−⊗̂ΛRΓ−) [1/p] , where RΓ− ∶= Λ⊗̂OL
OL[[Γ

−]]

and the notation is as follows.



4 Introduction and statement of the main results

(i) ΘHeeg
∞ (f , φt) ∈ RΓ− (resp. ΘHeeg

∞ (f , ψt) ∈ RΓ−) is (a slight generalizations of) a so-called
big theta element constructed by Castella-Longo in [CL16], building up on works by
Bertolini-Darmon (cf. [BD96],[BD98],[BD07]) and Chida-Hsieh (cf. [CH18]). These
p-adic L-functions interpolate (the square root of the algebraic part of) the special
values L(fk/K,φtν, k/2) (resp. L(fk/K,ψtν, k/2)) for k ∈ Z≥2 even and ν̂ ∈ Xcrit

p,k .
(ii) φ−(τ) (resp. ψ−(τ)) for τ ∈ RΓ− denotes the image of the element τ via the OL-linear

automorphism of RΓ− uniquely determined by the identity on Λ and the assignment
[γ] ↦ φ−(γ)[γ] (resp. [γ] ↦ ψ−(γ)[γ]) on group-like elements on OL[[Γ−]].

(iii) The element Afgh ∈ R
− is defined in proposition 4.23 and satisfies the crucial property

that, for all ν̂, µ̂ ∈ Xcrit
p,2 , Afgh(2, ν̂, µ̂) ≠ 0.

The proof of theorem 0.3 follows from the decomposition arising in our setting at the
level of Galois representations (cf. lemma 4.7) and from a careful comparison of the Euler
factors at p (or p-adic multipliers) appearing in the interpolation formulae for the various
p-adic L-functions. In particular, this requires an explicit computation of the normalized
local zeta integral at p (denoted above by I unb

w, p ), carried out in proposition 4.14.

p-adic formulas for Heegner points. In chapter 5 we apply theorem 0.3 to the
study and the construction of Heegner points on elliptic curves. In what follows, we keep
the notation as above and we let E/Q be an elliptic curve with multiplicative reduction at
p. Let fE ∈ S2(Γ0(NE)) be the cuspidal newform of level NE attached to E via modularity.
Note that this implies that NE = p ⋅N

○
E with p ∤ N○E . Assume now that f denotes the

unique primitive Hida family in Sord(N○E ,1,Λ) of tame level N○E and trivial tame character,
such that f2 = fE .

We also impose an extra condition on the characters η1, η2 (cf. assumption 5.1):
(E) φ = η1η2 has conductor prime to p and ψ = η1η

σ
2 has non-trivial anticyclotomic part

(i.e., ψ− is non-trivial).

In particular it follows that φ− is trivial and that we can identify φ = φt as a character
of the finite group ∆c. Let Hφ denote the abelian extension of K cut out by φ and observe
that p splits completely in Hφ.

Upon fixing a primitive Heegner point P ∈ E(Hφ) ⊗Q and setting α ∶= ap(E) ∈ {±1},
one can define:

Pφ ∶= ∑
σ∈Gal(Hφ/K)

φ(σ)−1P σ ∈ (E(Hφ) ⊗Q)φ

P ±φ,α ∶= Pφ ± α ⋅ P
Frobp
φ ∈ E(Hφ) ⊗Q .

One can show that P ±φ,α does not depend on the choice of prime p of Hφ above p. In what
follows we fix the choice induced by our fixed embedding ιp ∶ Q̄ ↪ Q̄p and we view the
points Pφ and P ±φ,α as elements of E(Qp2) ⊗Q under such an embedding.

As E has multiplicative reduction at p, we can take advantage of Tate’s parametrization
of E to define a logarithm logE ∶ E(Qp2) ⊗Q→ Qp2 at the level of Qp2-rational points.

Relying on theorem 0.3 and on previous results by Bertolini-Darmon (cf. [BD98] and
[BD07]), we deduce the results summarized in the following statement.
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Proposition 0.4 (cf. corollaries 5.4, 5.8 and 5.9): In the above setting, assume moreover
that L(E/K,ψ,1) ≠ 0. Then the restriction Lfp(f , g, h) of Lfp(f ,g,h) to the line (k,1,1)
vanishes at k = 2 and

d

dk
Lfp(f , g, h)∣k=2 =

cE
2
⋅ logE(P

+
φ,α)

for some explicit constant cE ∈ Q̄×p .
Similarly, the restriction Lfp,ac(fE ,gh) of Lfp,ac(f ,g,h) to the line (2, ν̂, ν̂) vanishes at

ν̂ = 1 (the trivial character) and
d

dν̂
Lfp,ac(fE ,gh)∣ν̂=1 = cE ⋅ logE(P

−
φ,α)

for the same constant cE.
In particular, if φ is a quadratic (or genus) character, the following are equivalent:

(i)

(
d

dk
Lfp(f , g, h)∣k=2 ,

d

dν̂
Lfp,ac(fE ,gh)∣ν̂=1) ≠ (0,0)

(ii) The point Pφ is of infinite order.

Remark 0.5: In [BSV22a] (cf. also [DR22]) the authors study a setting similar to ours,
but require the characters η1 and η2 to have conductor coprime to p. As a consequence,
the order of vanishing of the restriction Lfp(f , g, h) to the line (k,1,1) of the corresponding
triple product p-adic L-function is at least 2. From a factorization in the style of theorem
0.3, they deduce a formula for the second derivative of Lfp(f ,g,h) at k = 2 in terms of the
product of logarithms of two Heegner points (respectively related to the characters that
we denoted φ and ψ). Our construction allows instead to pin down a single Heegner point
from the study of Lfp(f ,g,h) around the triple of weights (2,1,1). ▲

The explicit reciprocity law. The second part of this thesis is devoted to the proof
of a p-adic explicit reciprocity laws for balanced diagonal classes, which extends those
appearing in [DR17] and [BSV20] to the setting that we now describe.

Fix a positive integer M coprime to p and a positive integer t such that Mpt ≥ 5.
We let Yt ∶= Y1(Mpt)Q denote the open modular curve over Q of level Γ1(Mpt) and
Xt ∶=X1(Mpt)Q denote the compactified modular curve of that level. We consider a triple
of cuspidal modular forms

f ∈ Sk(Mpt, χf), g ∈ Sl(Mpt, χg), h ∈ Sm(Mpt, χh).

We assume that the triple (f, g, h) satisfies the following requirements:
(i) For ξ ∈ {f, g, h}, we assume that ξ is a normalized eigenform (for the level Mpt) and

that ξ is an eigenform for the Up operator.
(ii) The triple (f, g, h) is self-dual, i.e., χfχgχh is the trivial character modulo Mpt (in

particular k + l +m is an even integer).
(iii) The triple of weights (k, l,m) is balanced and geometric, i.e., (k, l,m) are the sizes

of the edges of a triangle and ν ≥ 2 for ν ∈ {k, l,m}.
We fix a finite and large enough extension L of Qp (with ring of integers OL) containing

the Fourier coefficients of f, g, h (and a primitive Mpt-th root of 1) and we write r =
(k − 2, l − 2,m − 2) ∈ (Z≥0)3 and r = (k + l +m − 6)/2.

In part 3 of [BSV22b], the authors associate to the triple (f, g, h) a Galois cohomol-
ogy class κ(f, g, h) ∈ H1(Q, V (f, g, h)) where V (f, g, h) is essentially a suitable twist of
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the tensor product of the (duals of the) Deligne representations attached to f, g, h (more
precisely the direct sum of some copies of this tensor product). These cohomology classes
are realized as the (f, g, h)-isotypical projection of the pushforward along the diagonal
dt ∶ Yt ↪ Y 3

t (p-adic Abel-Jacobi map) of an invariant Detétr depending only on the triple
of weights (k, l,m) (or equivalently, as shown in [BSV22b, section 3.2], the pushforward
of a so-called generalized Gross-Kudla-Schoen diagonal cycle on the corresponding prod-
uct of Kuga-Sato varieties, again only depending on the triple of weights (k, l,m)). The
construction of κ(f, g, h) is recalled in more detail in chapter 6.

The setting in which we will work is characterized by the two following assumptions.
(ford) There exist a positive integer M1 ∣ M such that f ∈ Sk(M1p,χf) is the ordinary

p-stabilization of a newform of level M1 ≥ 5
(SC) The forms g and h are supercuspidal at p and lie in the kernel of Up.

Remark 0.6: The above assumption (ii) will be relaxed in chapter 6 (cf. assumption 6.11).
Similarly, f will be allowed to be a p-ordinary newform of level M1p

s for some s ≤ t (not
necessarily s = 1). In this introduction we impose stronger assumptions in order to obtain
cleaner statements and to avoid inessential technicalities. ▲

Note that the reciprocity laws proven in [DR17] and [BSV20] always require some finite
slope (or ordinarity) assumption on g and h. To the author’s knowledge, the case of g and
h supercuspidal has not been addressed in the literature so far.

A first complication introduced by assumption (SC) is that one can only hope that the
class κ(f, g, h), viewed as a local class in H1(Qp, V (f, g, h)), becomes crystalline over a
non-trivial finite extension of Qp. Nevertheless, in chapters 7 and 8 we explain (at least
when the weight k of f is at least 3) how to view the Bloch-Kato logarithm of κ(f, g, h)
as a linear functional

logfghBK (κ(f, g, h)) ∶ Fil
0(V ∗dR(f, g, h)) → L

Here V ∗(f, g, h) arises as the Kummer dual of V (f, g, h) (and by the self-duality assump-
tion on (f, g, h) it is actually isomorphic to V (f, g, h) itself).

One can find a distinguished element

η
φ=ap
f ⊗ ωg ⊗ ωh ⊗ tr+2 ∈ Fil

0(V ∗dR(f, g, h))

which is defined more precisely in section 7.2. The explicit reciprocity law alluded to in
the title of this section describes the value of logfghBK (κ(f, g, h)) at ηφ=apf ⊗ωg ⊗ωh⊗ tr+2 as
follows.

Theorem 0.7 (cf. theorem 9.2): Let (f, g, h) be a triple satisfying assumptions (ford) and
(SC) as above. If, moreover, the weight k of f is at least 3, then

logfghBK (κ(f, g, h))(η
φ=ap
f ⊗ ωg ⊗ ωh ⊗ tr+2)

is equal to
(−1)k−2(r − k + 2)! ⋅ a1(ef̆(TrMpt/M1pt(g × d

(k−l−m)/2h))) .

The notation appearing in the theorem goes as follows. We let a1(ξ) denote the first
Fourier coefficient of the q-expansion at ∞ of a modular form ξ. The modular form f̆ is
the normalized eigenform which is a scalar multiple of wM1(f) (where wM1 is a suitably
defined Atkin-Lehner operator) and ef̆ denotes f̆ -isotypical projection.
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Finally, d denotes Serre’s derivative operator, which acts as q ddq on q-expansions. Note
that for a negative integer t (here (k − l −m)/2 < 0 since the triple of weights (k, l,m) is
balanced), we define dt as the p-adic limit of the operators dt+(p−1)p

m
for m→ +∞. Then dt

is an operator sending p-adic modular forms of weight ν to p-adic modular forms of weight
ν +2t. In particular one can interpret g×d(k−l−m)/2h as a p-adic modular form of weight k.
Since the operator ef̆ includes an ordinary projection, Hida’s classicality theorem shows
that

ef̆(TrMpt/M1pt(g × d
(k−l−m)/2h))

is given by the q-expansion of a classical modular form of weight k and level M1p
t.

The proof of theorem 0.7 follows closely the steps of the proof of theorem A in [BSV20]
(namely a p-adic reciprocity law for triples of eigenforms of level coprime to the fixed prime
p) and, more generally, the recipe for the computation of the cohomological triple symbol
described in [BLZ16]. However, in our setting we had to face some further difficulties. In
particular, since the forms g and h inevitably have non-trivial level at p, we are forced to
work over modular curves (or products of such) which do not have good reduction at p
and only admit a semistable model over the ring of integers of a finite (typically ramified)
extension of Qp. In this setting cohomology theories such as Hyodo-Kato cohomology
and syntomic cohomology - that typically allow this kind of computations - are more
complicated to handle.

In chapter 8 we introduce the necessary facts concerning syntomic and finite-polynomial
cohomology for semistable varieties and we describe a syntomic version of the p-adic Abel-
Jacobi map. The proof of theorem 0.7 is the subject of chapter 9.

Cohomological description of L f
p (f ,g,h) and further directions. We complete

this introduction by underlying the close link between the p-adic L-function L f
p (f ,g,h)

and the explicit reciprocity law of theorem 0.7. Indeed, when g and h are generalized
p-adic families whose classical specializations are supercuspidal at p (and p-depleted) - as
it happens in the case of families of theta series of infinite p-slope considered in proposition
0.4 above - we have that, essentially by construction,

L f
p (f ,g,h)(w) = γfx ⋅ a1(ef̆x

(TrMpt/M1pt(gy × d
(k−l−m)/2hz))) .

for every balanced triple of meaningful weights w = (x, y, z), where γfx denotes the spe-
cialization at x of the congruence number γf of the Hida family f (see the discussion in
section 2.2). Assuming that (fx,gy,hz) satisfies the self-duality condition (ii) described
above, we deduce immediately the equality

(0.1) L f
p (f ,g,h)(w) =

(−1)k−2 ⋅ γfx
(r − k + 2)!

⋅ logfghBK (κ(fx,gy,hz))(η
φ=ap
fx

⊗ ωgy
⊗ ωhz ⊗ tr+2)

Such a result is consistent with the fact that one expects to interpolate p-adically in
a meaningful way the objects appearing in the RHS of formula (0.1), in particular the
classes κ(fx,gy,hz). Following [DR17] and [BSV22b], there should exist a big diagonal
class κ(f ,g,h) interpolating p-adically the diagonal classes κ(fx,gy,hz).

Motivated by results of [BSV22a], one expects to provide a relation between the special-
ization at (2,1,1) of κ(f ,g,h) (or a suitable improvement) to suitable p-adic derivatives of
L f
p (f ,g,h) evaluated at (2,1,1). In the arithmetic setting of proposition 0.4, this result
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would provide a link between Heegner points and (p-adic limits of) diagonal classes. The
author plans to address these sort of questions in the coming future.

Notation and conventions

If F is any field, we denote by GF the absolute Galois group of F (defined after fixing a
suitable separable closure) and we denote F ab the maximal abelian extension of F (inside
such a separable closure).

If Γ is a profinite group and R is a topological ring we denote by R[[Γ]] the completed
group algebra with coefficients in R (with the profinite topology) and we write [γ] for γ ∈ Γ
to denote the corresponding group element in the ring R[[Γ]].

We denote by A the ring of adéles of Q and if B is a finite separable Q-algebra we let
AB ∶= A⊗Q B denote the corresponding ring of adéles of B.

For every number field E, we let the Artin reciprocity map

recE ∶ A×E/E
× → Gal(Eab/E)

to be arithmetically normalized, i.e., if v is a finite place of E the compatible local Artin
reciprocity map

recEv ∶ E
×
v →Dv ≅ Gal(Eabv /Ev)

is the unique map such that for every uniformizer π of Ev it holds that recEv(π) acts as the
Frobenius morphism on the maximal unramified extension of Ev (inside Eabv ). We write
Frobv to denote an arithmetic Frobenius element at the place v in GE .

If K is a quadratic imaginary field and η ∶ GK → R× (here R can be any ring) is a
character, we let ησ to denote the conjugate of η, i.e., ησ(γ) = η(σγσ−1) for γ ∈ GK , where
σ ∈ GK is any element such that σ∣K generates Gal(K/Q) (one possible explicit choice for
σ is the complex conjugation induced by the fixed embdedding ι∞).

If χ ∶ A×K/K
× → C× is an algebraic Hecke character of K, we say that χ has ∞-type

(a, b) if for all z ∈ C× it holds χ(z ⊗ 1) = z−az−b.

Given a smooth function f on the upper-half plane H ∶= {τ ∈ C ∣ Im(τ) > 0} and
ω = ( a bc d ) ∈ GL2(R)+ (invertible 2 × 2 matrices with positive determinant) and k ∈ Z, we
set

f ∣kω(τ) ∶= det(ω)
k/2 ⋅ (cτ + d)−k ⋅ f (aτ+bcτ+d

) τ ∈ H

If Γ ⊆ SL2(Z) is a congruence subgroup and k ∈ Z≥1, we let Mk(Γ) (resp. Sk(Γ)) be the
C-vector space of (holomorphic) modular forms (resp. cusp forms) of weight k and level
Γ. For Γ = Γ1(N) for some N ≥ 1 and χ a Dirichlet character modulo N , we let Mk(N,χ)
(resp. Sk(N,χ)) denote the spaces of modular forms (resp. cusp forms) of weight k, level
Γ1(N) and nebentypus χ. Unless otherwise specified, we refer to [Miy06] for the all the
basic facts concerning the analytic theory of modular forms which are mentioned freely
without proof.

We refer to the notes [BC] for the basic facts concerning p-adic Hodge theory and for
the definition of Fontaine’s period rings BdR, Bcris and Bst.
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CHAPTER 1

Generalized Λ-adic modular forms and ordinary projection

In this chapter, we define a generalized notion of Λ-adic forms and we extend Hida’s
theory of the ordinary projector to this setting.

1.1. First definitions and examples

Let L be (as in the introduction) a finite extension of Qp, with ring of integers OL,
uniformizer ϖL and and residue field FL ∶= OL/ϖLOL.

Recall that Λ ∶= OL[[1 + pZp]] is the completed group algebra for the profinite group
1 + pZp. It is a complete local OL algebra of Krull dimension 2, with maximal ideal
mΛ = (ϖL, T ) and residue field FL. We fix once and for all the isomorphism

Λ ≅ OL[[T ]]

uniquely determined by sending [1+p] ↦ 1+T and sometimes we write Λ to denote directly
OL[[T ]] via this identification.

In this section, we will denote by (R,φ) a complete local noetherian Λ-algebra (here
we also mean that φ ∶ Λ → R is a continuous local homomorphism of OL-algebras) with
maximal ideal mR (also denoted m when it is clear from the context) and residue field
R/mR isomorphic to FL. We let ĈΛ to be the category of such Λ-algebras, with arrows
given by (continuous) homomorphisms of Λ-algebras. Similarly we have a category ĈOL

and viewing Λ as OL-algebra in the obvious way, we get a functor ĈΛ → ĈOL
by pullback.

Sometimes we just write R instead of (R,φ) to simplify the notation, although the
structure morphisms are going to play an important role in what follows.

Definition 1.1: For R ∈ ĈΛ and any complete subring OL ⊆ A ⊆ Cp, we write

WR(A) ∶= Hom
cont
OL−alg

(R,A) ,

endowed with the topology of uniform convergence on compact sets (which is essentially
the p-adic topology). The elements of WR(A) will be called (A-valued) R-weights (or
R-specializations).

Remark 1.2: Let L′ be a finite extension of L inside Cp with ring of integers OL′ . Then
for every w ∈ Homcont

OL−alg
(R,L′) it holds OL ⊆ w(R) ⊆ L′, but w(R) cannot be a field. This

forces w(R) ⊆ OL′ , so that we can identify WR(L
′) = WR(OL′) = HomĈOL

(R,OL′) in our
setting. ▲

We fix an embedding Zp ↪WΛ(L), given by sending k ∈ Zp to the unique OL-algebra
homomorphism sending T ↦ (1 + p)k − 1.

Definition 1.3: An element w ∈ WΛ(Cp) is an arithmetic weight if it is uniquely deter-
mined by the assignment T ↦ ε(1+p)⋅(1+p)k−1, where k ∈ Z≥1 and ε ∶ 1+pZp → µp∞ ⊂ C×p is
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a finite order character. In this case we write w = (k, ε) and we denote the set of arithmetic
weights by War

Λ .
We say that w = (k, ε) is classical if k ≥ 2 and we denote the set of classical weights

by Wcl
Λ . Clearly Zp ∩Wcl

Λ = Z≥2 ⊂ W
cl
Λ via the embedding Zp ↪WΛ(L).

Definition 1.4: Let (R,φ) ∈ ĈΛ. We define the set of classical R-weights as

Wcl
R ∶= {w ∈ WR(Cp) ∣ w ○ φ ∈ Wcl

Λ }

and the set of integral classical R-weights as

Wcl
R,Z ∶= {w ∈ WR(Cp) ∣ w ○ φ ∈ Z≥2}.

For every w ∈ Wcl
R we define (kw, εw) ∶= w ○ φ and, if w ○ φ ∈ Wcl

R,Z, we simply write
w ○ φ = kw. For any subset V ⊂ WR(Cp) we set φ∗(V ) = {w ○ φ ∣ w ∈ V }.

Definition 1.5: We say that a subset Ω ⊆ Wcl
R,Z is (Λ,R)-admissible if the following

conditions are satisfied:
(i) the closure of φ∗(Ω) inside Zp ⊆ WΛ(L) contains a non-empty open subset of Zp;
(ii) the intersection of prime ideals ⋂w∈ΩKer(w) is the trivial ideal in R.

We will need the following result later.

Lemma 1.6: Let R ∈ ĈΛ and let S ⊆ Wcl
R be a countable infinite set. Let B denote the set of

ideals in R that can be written as a finite intersection of pairwise different primes of R of
the form q = Ker(w) for w ∈ S. For every J ∈ B, consider R/J with the quotient topology.
Let I = ⋂w∈S Ker(w) and consider R/I with the quotient topology. Then the natural map
R/I → lim

←ÐJ∈B
R/J induces an isomorphism of topological rings R/I ≅ lim

←ÐJ∈B
R/J .

Proof. For every J ∈ B, R/J is a complete noetherian local ring with maximal ideal
mR/I. Note that the quotient topology and the mR/J-adic topology on R/J coincide and
that the natural projection R → R/J is open and continuous (the same applies to R/I).

We claim that such topology on R/J is the same as the ϖL-adic topology. It is clear
that for every n ≥ 1 it holds that (ϖn

LR+J)/J ⊆ (m
n
R +J)/J . We are left to show that, for

every n ≥ 1, R/(J,ϖn
L) is a quotient of R/mm

R for m ≫ 1 (in particular it is a finite ring).
Indeed writing J = q1 ∩ ⋅ ⋅ ⋅ ∩ qs one checks that

√
(J,ϖn

L) =

¿
Á
ÁÀ

s

⋂
i=1

(qi,ϖn
L) =

s

⋂
i=1

√
(qi,ϖn

L) =
s

⋂
i=1

√
(qi,ϖL) = mR.

The first equality follows from (⋂si=1(qi,ϖ
n
L))

s ⊆ (J,ϖn
L) ⊆ ⋂

s
i=1(qi,ϖ

n
L). The second and

the third equalities are obvious. The last one follows from the fact that
√
(qi,ϖL) = mR

for all i = 1, . . . , s, since R/qi is (algebraically isomorphic to) a finite extension of OL inside
Q̄p and R/mR = FL by assumption. In particular it follows that mm

R ⊆ (J,ϖ
n
L) for some

m ≥ 1 large enough, proving our claim. Hence we have natural topological isomorphisms
for all J ∈ B

R/J ≅ lim
←Ð
n

R/(J,ϖn
L).

Arguing as above it also follows that a fundamental system of open neighbourhoods of
0 in R/I is given by the open ideals {(ϖn

L + J)/I)}n≥1,J∈B.
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This shows that we can realize the natural map R/I → lim
←ÐJ∈B

R/J as a chain of topo-
logical isomorphisms

R/I ≅ lim
←Ð
J∈B, n

R/(J,ϖn
L) ≅ lim←Ð

J∈B

R/J

proving the proposition. □

We are ready to give the key definition of this section.

Definition 1.7: Let N ∈ Z≥1 be an integer with p ∤ N , let χ be a Dirichlet character
modulo Npt for some t ∈ Z≥1 with values in O×L. We say that a generalized Λ-adic form
of tame level N and character χ is a couple ((R,φ), ξξξ) where:
(i) (R,φ) is an object of ĈΛ, which is also flat as Λ-algebra and an integral domain,
(ii) ξξξ ∈ R[[q]] is a formal q-expansion,
such that the set of integral weights

Ωξξξ,Z ∶= {w ∈ W
cl
R,Z ∣ ξξξw ∈Mkw(Np

t, χω2−kw ,Cp)}

is (Λ,R)-admissible in the sense of definition 1.5, where ξξξw denotes the q-expansion ob-
tained applying w to the coefficients of ξξξ. We say that ((R,φ), ξξξ) is cuspidal if, moreover,
ξξξw is cuspidal for all w ∈ Ωξξξ,Z.

Given a generalized Λ-adic form ((R,φ), ξξξ) and a (Λ,R)-admissible set of integral
classical weights Ω ⊆ Ωξξξ,Z, we say that ((R,φ), ξξξ) is Ω-compatible. Often we shorten the
notation and we simply write ξξξ to denote the Λ-adic form ((R,φ), ξξξ).

Definition 1.8: Given a generalized Λ-adic form of tame level N and character χ with
coefficients in (R,φ), we set

Ωξξξ ∶= {w ∈ W
ar
R ∣ ξξξw ∈Mkw(Np

ew , χω2−kwεw,Cp)}
where the exponent ew ≥ 1 depends on the p-part of χ and on w.

Definition 1.9: We let MΩ(N,χ, (R,φ)) (respectively SΩ(N,χ, (R,φ))) denote the R-
modules of generalized Λ-adic forms (resp. cuspidal generalized Λ-adic forms) of level
N and character χ, with coefficients in (R,φ) and Ω-compatible (where Ω is a (Λ,R)-
admissible set of classical integral R-weights). When all the inputs are clear from the
context (or when it is not necessary to specify them) we simply write M and S to denote
such R-modules, which we view as submodules of R[[q]] in the obvious way. We endow all
such R-modules with the m-adic topology.

Remark 1.10: The noetherianity of R implies that R[[q]] is m-adically separated and
complete. ▲

Remark 1.11: On M = MΩ(N,χ, (R,φ)) and S = SΩ(N,χ, (R,φ))) there is an action of
Hecke operators Tℓ for ℓ ∤ Np prime, Uℓ for ℓ ∣ N prime and Up. Those operators can
be defined directly on the q-expansions in such a way that the specialization maps are
Hecke-equivariant morphisms. More precisely, there is a character ⟨ ⋅ ⟩Λ ∶ Z×p → Λ× given
by ⟨s⟩ = [s ⋅ ω−1(s)]. For (R,φ) ∈ ĈΛ we then let ⟨ ⋅ ⟩R ∶ Z×p → R× to be the composition of
⟨ ⋅ ⟩Λ with φ. Then, for every ξξξ = ∑n=0 an(ξξξ)qn ∈ M and for every prime ℓ ≠ p the Hecke
operator Tℓ acts as follows

Tℓ(ξξξ) =
+∞

∑
n=0

an(Tℓ(ξξξ))q
n , where an(Tℓ(ξξξ)) = ∑

d∣(n,ℓ)

⟨d⟩R ⋅ χ(d)d
−1anℓ/d2(ξξξ),
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with the convention that χ(ℓ) = 0 if ℓ ∣ N . If ℓ ∣ N , we write Uℓ to denote the Tℓ operator

We are particularly interested about the Up operator, whose action on q-expansions is
the familiar one:

Up (
+∞

∑
n=0

anq
n) =

+∞

∑
n=0

anpq
n .

We end this remark recalling the action of the Vp operator on q-expansions, given by

Vp (
+∞

∑
n=0

anq
n) =

+∞

∑
n=0

apq
np .

This operator will appear later in the paper. Recall that Up ○ Vp is the identity on q-
expansions, while 1 − Vp ○Up defines the so-called p-depletion operator. ▲

Definition 1.12: Let N , χ, (R,φ) and Ω be as above. The notation TΩ(N,χ, (R,φ))
will denote the R-subalgebra of EndR(SΩ(N,χ, (R,φ)) generated by the Hecke operators
Tℓ for ℓ ∤ Np prime, Uℓ for ℓ ∣ N prime and Up. When all the inputs are clear from the
context we simply write T or TΩ to denote such Hecke algebra.

Definition 1.13: An element ξξξ ∈M is called a generalized Λ-adic eigenform (of given
tame level N , character, branch, coefficients) if it is a simultaneous eigenvector for the
Hecke operators Tℓ (ℓ ∤ Np prime) and for the Hecke operator Up.

Example 1.14: Let ξξξ1 ∈MΩ1(N,χ1,R1) and ξξξ2 ∈MΩ2(N,χ2,R2). Set R ∶= R1⊗̂OL
R2. If

mi ⊂ Ri denotes the respective maximal ideal for i = 1,2, then recall that by definition

R = lim
←Ð
m,n

(R1

mn
1
⊗OL

R2

mm
2
) .

R is then identified with the m̃-adic completion of R1 ⊗OL
R2 where

m̃ = m1 ⊗OL
R2 +R1 ⊗OL

m2 ⊂ R1 ⊗OL
R2

is a maximal ideal of R1 ⊗OL
R2 such that (R1 ⊗OL

R2)/m̃ ≅ FL (thanks to our strict
conditions on the residue fields of R1 and R2).

For every a ∈ R1, b ∈ R2 we let a⊗̂b denote the image of a⊗b ∈ R1 ⊗OL
R1 inside R via

the natural map. We endow R with the following canonical Λ-algebra structure φ ∶ Λ→ R
uniquely determined by OL-linearity and the assignment

φ(T ) ∶= φ1(T )⊗̂1 + 1⊗̂φ2(T ) + φ1(T )⊗̂φ2(T )

where φi are the structure morphisms for Ri, i = 1,2 (notice that this is well-defined).

We refer to [GD71, section 0.7.7] for the needed properties of completed tensor prod-
ucts. In particular it follows that R ∈ ĈΛ and R is an integral domain. Note that R is a
flat Λ-algebra via φ. This can be seen easily factoring φ as composition of flat morphisms
as

Λ→ Λ⊗̂OL
Λ
(φ1,φ2)
ÐÐÐÐ→ R,

where the first arrow sends T ↦ T ⊗̂1 + 1⊗̂T + T ⊗̂T .

By the universal property of completed tensor product it follows that, for every com-
plete subring A of Cp containing OL ,WR(A) = WR1(A) × WR2(A) (also as topological
spaces) and, by our definition of φ, it also follows that under this identification we get an
inclusion

Wcl
R1,Z ×W

cl
R2,Z ⊂ W

cl
R,Z
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such that
k(w1,w2) = (w1,w2) ○ φ = (w1 ○ φ1) + (w2 ○ φ2) = kw1 + kw2

Let Ω = Ω1 ×Ω2, viewed as a subset of Wcl
R,Z as above. It is easy to see that Ω is (Λ,R)-

admissible.

It follows that ξξξ1 × ξξξ2 ∈MΩ(N,χ1χ2ω
2,R), where as usual if

ξξξ1 =
+∞

∑
n=0

anq
n, ξξξ1 =

+∞

∑
n=0

bnq
n

we let

ξξξ1 × ξξξ2 =
+∞

∑
n=0

⎛

⎝

n

∑
j=0

aj⊗̂bn−j
⎞

⎠
qn ∈ R[[q]].

Indeed it is clear that, for all (w1,w2) ∈ Ω1 ×Ω2, it holds

(ξξξ1 × ξξξ2)(w1,w2) = ξξξ1,w1 × ξξξ2,w2 ∈Mk(w1,w2)
(Npt, χ1χ2 ⋅ ω

4−k(w1,w2) ,OL)

▲

1.2. The ordinary projector

We want to check that also in our generalized setting one can attach to the operator
Up an idempotent operator eord obtained as

eord = lim
n→+∞

Un!p

where the limit is taken in the m-adic topology. The theory of locally finite operators
developed in [Pil20] simplifies our task.

Proposition 1.15: There exists a unique ordinary projector eord ∈ EndR(M) attached to
the Hecke operator Up, such that
(i) eord(ξξξ) = limn→+∞U

n!
p (ξξξ) (limit taken in the m-adic topology)

(ii) eord and Up commute and the module M carries a Up-stable decomposition M = eordM⊕
(1 − eord)M where Up is bijective on eordM and topologically nilpotent on (1 − eord)M.

(iii) eord commutes with Tℓ for all ℓ ∤ Np and is compatible with every meaningful arithmetic
specialization.

(iv) the formation of eord is compatible with inclusions MΩ ⊆ MΩ′ induced by inclusions
Ω′ ⊆ Ω of (Λ,R)-admissible sets of classical integral weights.

The analogue assertions for S hold.
Proof. We only give the proof for M (the proof for S is identical). Thanks to lemmas
2.1.2 and 2.1.3 of [Pil20], in order to define an ordinary projector eord = eord(Up) on M, it
suffices to check the following facts:
(a) M is m-adically complete and separated.
(b) M/mM is a finite dimensional R/m-vector space.

It is clear that M is m-adically separated, being a submodule of R[[q]] (which is m-
adically complete and separated by remark 1.10). An element (ξξξn)n≥1 ∈ lim

←Ðn
M/mnM

defines (by left exactness of lim
←Ðn

) a unique element

ξξξ ∈ R[[q]] = lim
←Ð
n

R[[q]]/mnR[[q]] .
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If for every n ≥ 1 we fix a lift ξξξn ∈ M of ξξξn we know that for every w ∈ Ω it holds
ξξξn,w ∈Mkw(Np

t, χω2−kw ,OL) and by the continuity of the specializations and the fact that
Mkw(Np

t, χω2−kw ,OL) is a finite and free OL-module (thus complete), we deduce that

ξξξw = lim
n→+∞

ξξξn,w ∈Mkw(Np
t, χω2−kw ,OL),

so that indeed ξξξ ∈M and (a) follows.

For every w ∈ Ω, M/Ker(w)M is a submodule of Mkw(Np
t, χ,OL). This shows that

M/Ker(w)M is a finite free OL-module surjecting onto M/mM, which is thus a finite
dimensional R/m-vector space, proving (b). □

We are then led to the following definition:

Definition 1.16: We say that a generalized eigenform ξξξ ∈ MΩ(N,χ,R) (respectively ξξξ ∈
SΩ(N,χ,R)) is a generalized Hida family (resp. a cuspidal generalized Hida family) if
eord(ξξξ) = ξξξ.

We define the R-modules Mord
Ω (N,χ,R) ∶= e

ord(MΩ(N,χ,R)) (resp. in the cuspi-
dal case SordΩ (N,χ,R) ∶= e

ord(SΩ(N,χ,R))) to be the submodules of MΩ(N,χ,R) (resp.
SΩ(N,χ,R)) of ordinary generalized Λ-adic forms. When the inputs are clear from the
context we simply write Mord or Mord

Ω (resp. Sord or SordΩ ).
We let Tord

Ω (N,χ,R) to denote the R-subalgebra of EndR(SordΩ (N,χ,R)) generated by
the Hecke operators Tℓ for ℓ ∤ Np prime, Uℓ for ℓ ∣ N prime and Up. When all the inputs
are clear from the context, we simply write Tord or Tord

Ω to denote such Hecke algebra.

Remark 1.17: Equivalently one could define generalized Hida families asking that every
meaningful classical specialization is a p-ordinary eigenform in the usual sense. ▲

The following proposition shows that generalized Hida families are actually essentially
the same as classical Hida families.

Proposition 1.18: For any R ∈ ĈΛ which is Λ-flat and an integral domain and any
(Λ,R)-admissible set of classical integral weights Ω, the R-modules Mord

Ω (N,χ,R) (resp.
SordΩ (N,χ,R)) are free R-modules of finite rank. Moreover (assuming that χ takes values
in O×L), there are canonical isomorphisms

Mord(N,χ,Λ) ⊗Λ R
≅
Ð→Mord

Ω (N,χ,R), Sord(N,χ,Λ) ⊗Λ R
≅
Ð→ SordΩ (N,χ,R) .

Proof. We will omit the proof of the cuspidal case because the proof does not change.
In this proof, we write Mord

Λ = Mord(N,χ,Λ) and Mord
R = Mord(N,χ,R) to simplify the

notation. In order to prove that Mord
R is R-free of finite rank we adapt Wiles’s proof for

classical Hida theory (cf. [Hid93, section 7.3]). We recall the main ideas for the convenience
of the reader. Let M be a finite free R-submodule of Mord

R , with R-basis {ξξξ1, . . . , ξξξr}. Write

ξξξi =
+∞

∑
n=0

an(ξξξi)q
n

for i = 1, . . . , r. Then there is a sequence of integers 0 ≤ n1 < n2 < ⋅ ⋅ ⋅ < nr such that
the r × r matrix (anj(ξξξi))i,j,=1,...r has non-zero determinant d ∈ R. Since by assumption
∩w∈ΩKer(w) = (0), we deduce that there exists w ∈ Ω such that d ≠ 0 mod Ker(w),
so that the specializations {ξξξ1,w, . . . , ξξξr,w} would still be OL[w]-linearly independent in
Mord
kw
(Npt, χω2−kw ,OL[w]). It is well-known (and established by Hida) that the rank of
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Mord
kw
(Npt, χω2−kw ,OL[w]) is independent on w if kw ≥ 3. Hence there exists r∗ ∈ Z≥0 such

that Mord
R admits finite free R-submodules of rank r∗, but not of rank r∗+ 1. Assume now

that M is such a finite free R-submodule of Mord
R of rank r∗. One checks easily that, with

the notation as above, d ⋅Mord
R ⊆M . Hence, by the noetherianity of R, it follows that Mord

R
is finitely generated as R-module. In particular it is a compact R-module (equivalently
a profinite R-module). The topological Nakayama’s lemma (cf. [Hid12, lemma 3.2.6] for
instance) implies that Mord

R is generated by r ∶= dimFL
(Mord

R /mRMord
R ) elements (a lift of

an FL-basis of Mord
R /mRMord

R ).
Now note that (using the flatness of R over Λ) Mord

Λ ⊗Λ R can be naturally seen as an
R-free submodule of Mord

R of R-rank r. We define the quotient

Q ∶=
Mord
R

Mord
Λ ⊗Λ R

and we claim that Q = 0. This would conclude the proof of the proposition, since it is
well-known that Mord

Λ is a free Λ-module of rank r∗.
Picking w ∈ Ω with kw ≥ 3, one has Q⊗RR/Ker(w) = 0, since both Mord

Λ ⊗ΛR and Mord
R

project ontoMord
kw
(Npt, χω2−kw ,OL[w]) via w (to see this one uses the trick of twisting with

a suitable family of Eisenstein series, cf. [Hid93, pag. 199]). Hence a fortiori Q⊗RR/m = 0
and, since also Q is a profinite R-module, it follows again from the topological Nakayama’s
lemma that Q = 0. □

Remark 1.19: Proposition 1.18 shows that the R-modules Mord
Ω (N,χ,R) (respectively

SordΩ (N,χ,R)) actually does not depend on Ω, so that in the ordinary setting we will omit
the (Λ,R) admissible set of weights from the notation from now on. ▲
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CHAPTER 2

The unbalanced triple product p-adic L-function

In this chapter we carry out the construction of a generalized unbalanced triple prod-
uct p-adic L-function, closely following the method appearing in [Hsi21]. Having defined
the ordinary projector eord in wider generality and having proved proposition 1.18, the
construction simplifies remarkably. For instance we do not need the equivalent of [Hsi21,
lemma 3.4].

2.1. Remarks on the Atkin-Lehner involution

Recall that given ξ ∈ Sk(M,χ), one has an Atkin-Lehner involution wM ∶ Sk(M,χ) →
Sk(M,χ−1) given by wM(ξ) = ξ∣k(

0 −1
M 0 ). For our constructions we will need a Λ-adic

version of the Atkin-Lehner involution. This entails considering more general Atkin-Lehner
operators.

Let N be a positive integer coprime to p and t ∈ Z≥1. If d is an integer coprime to Np,
we write ⟨d⟩ = ⟨a; b⟩ for the diamond operator corresponding to d ∈ (Z/NptZ)×, where the
convention is that d ≡ a mod N and d ≡ b mod pt.

For ξ ∈ Sk(Npt, χ) we define the Atkin-Lehner operator wN on ξ as

(2.1) wN(ξ) ∶= ⟨1;N⟩(ξ∣k ωN) ωN ∶= ωN,pt ∶= (
N −1
Nptc Nd

) ,

where we require that det(ωN) = N . Write χ = χptχN in a unique way for χpt a character
modulo pt and χN a character modulo N .

Then (cf. [AL78, §1], where they define an operator which is the inverse of ours) wN
is an operator

wN ∶ Sk(Np
t, χ) → Sk(Np

t, χNχpt)

such that for all primes ℓ ∤ N it holds that wN ○ Tℓ = χN(ℓ)(Tℓ ○ wN) and (when t ≥ 1)
that wN ○Up = χN(p)(Up ○wN). One can also check that if s > r ≥ 0, the action of wN on
Sk(Γ1(Np

r)) is the restriction of the action of wN on Sk(Γ1(Np
s)), by our choice of the

matrices ωN,pt , so that it makes sense to drop pt from the notation.

In particular, if ξ ∈ Sk(Npt, χ) is a normalized newform, then wN(ξ) = λN(ξ) ⋅ ξ̆ where
λN(ξ) is an algebraic number of complex absolute value 1 (a so called pseudo-eigenvalue)
and ξ̆ is a normalized newform such that if

ξ =
+∞

∑
n=1

anq
n ξ̆ =

+∞

∑
n=1

bnq
n

then

bℓ =

⎧⎪⎪
⎨
⎪⎪⎩

χN(ℓ)aℓ if ℓ ∤ N
χpt(ℓ)aℓ if ℓ ∣ N.
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Moreover if ξ ∈ Sk(N,χ) is a p-ordinary newform with k ≥ 2 and ξα ∈ Sk(Np,χ) is its
ordinary p-stabilisation, then λN(ξ)−1 ⋅wN(ξα) coincides with the ordinary p-stabilisation
of the newform ξ̆, so we will write

ξ̆α ∶= λN(ξ)
−1 ⋅wN(ξα).

Note that in this case it is well-known that ξ̆ is the modular form obtained applying
complex conjugation to the Fourier coefficients of ξ.

Now let

ξξξ =
+∞

∑
n=1

an(ξξξ)q
n ∈ Sord(Nξξξ, χξξξ,Λξξξ)

be a classical new Hida family of tame level Nξξξ with character χξξξ of conductor dividing
Nξξξ ⋅ p, i.e., the classical specializations at integral weights of ξξξ are either newforms of level
Nξξξ ⋅p or ordinary p-stabilizations of newforms of level Nξξξ. Here Λξξξ is a finite flat Λ-algebra
in ĈΛ and we assume that L contains a primitive Nξξξ-th root of unity. We require that
ξξξ is normalized (i.e., a1(ξξξ) = 1). Note that we can omit the admissible set of integral
classical weights in the notation here, since classical Hida theory shows that for classical
Hida families it always happens Ωξξξ,Z = W

cl
Λξξξ,Z.

Following [Hsi21, section 3.3], there is a unique new Hida family ξ̆ξξ ∈ Sord(Nξξξ, χ−1ξξξ ,Λξξξ)
which is characterised by the fact that, for all x ∈ Wcl

Λξξξ

(ξ̆ξξ )x = ˘(ξξξx) = λN(ξξξx)
−1 ⋅wN(ξξξx).

2.2. Construction of the p-adic L-function

We fix a Hida family f

f =
+∞

∑
n=1

an(f)q
n ∈ Sord(Nf , χf ,Λf)

primitive of tame level Nf , tame character χf of conductor dividing Nf ⋅ p.
We also let

g =
+∞

∑
n=1

an(g)q
n ∈ SΩ1(M,χg,Rg) and h =

+∞

∑
n=1

an(h)q
n ∈ SΩ2(M,χh,Rh)

be two generalized normalized Λ-adic eigenforms with χf ⋅χg ⋅χh = ω
2a for some integer a,

where as usual ω denotes the mod p Teichmüller character. Assume that Nf ∣M . In the
language of [Hsi21], we are implicitly thinking about g and h as test vectors for families
of tame level dividing M . We also assume that L contains a primitive M -th root of unity
from now on.

For s ∈ Z×p and R ∈ ĈΛ we always write ⟨s⟩1/2R = ⟨s̃⟩R where s̃ is the unique root of the
polynomial X2 − s ⋅ω−1(s) lying in 1+ pZp. We also write ⟨s⟩−1/2R = ⟨s−1⟩

1/2
R (note that this

does not create ambiguity).

Let Rfgh ∶= Λf ⊗̂OL
Rg⊗̂OL

Rh and set

(2.2) Θfgh ∶= Θ ∶ Z×p → R×fgh Θ(s) ∶= ω−a−1(s) ⋅ ⟨s⟩
1/2
Λf
⊗̂⟨s⟩

−1/2
Rg
⊗̂⟨s⟩

−1/2
Rh

.

View Rfgh as Λ-algebra via [s] ↦ ⟨s⟩Λf
⊗̂1⊗̂1 for s ∈ 1 + pZp.



The unbalanced triple product p-adic L-function 19

We define a Θ-twist operator on q-expansions given by

(2.3) ∣Θ ∶ Rfgh[[q]] → Rfgh[[q]] Z =
+∞

∑
n=0

anq
n ↦ Z ∣Θ = ∑

p∤n

Θ(n)anq
n .

Now let ΞΞΞ ∶= g × (h∣Θ) and define

Ω0
fgh ∶= {w = (x, y, z) ∈ Ωf ×Ωg ×Ωh ∣ kx = ky + kz, kz ≥ 2}

One checks that for w = (x, y, z) ∈ Ω0
fgh it holds

(h∣Θ)w = hz ⊗ ψw ∈ Skz(Mp?, χhω
2−kzεzψ

2
w,Cp) ,

where (for (n, p) = 1) we set

ψw(n) = ω
−a−1(n) ⋅ εx(nω

−1(n))1/2 ⋅ εy(nω
−1(n))−1/2 ⋅ εz(nω

−1(n))−1/2 .

It follows that
ΞΞΞw = gy × (hz ⊗ ψw) ∈ Skx(Mp?, χ−1f ω

2−kxεx,Cp) .
Notice that by our definition of Λ-algebra structure on Rfgh, for w = (x, y, z) ∈ Ωf ×Ωg×Ωh

it holds kw = kx. It follows easily that Ω0
fgh is a (Λ,Rfgh)-admissible set of classical integral

weights.
Looking at integral classical weights specializations w ∈ Ω0

fgh ∩ (Ωf ,Z ×Ωg,Z ×Ωh,Z) it
is easy to deduce that, according to our definitions, it holds

ΞΞΞ ∈ S(M,χ−1f ,Rfgh) .

Thanks to proposition 1.15, we can thus consider the ordinary projection

ΞΞΞord ∶= e(ΞΞΞ) ∈ Sord(M,χ−1f ,Rfgh) = Sord(M,χ−1f ,Λf) ⊗Λf
Rfgh ,

where the last equality follows easily from proposition 1.18 and we emphasize (again) that
the structure of Λf -algebra on Rfgh is given by a↦ a⊗̂1⊗̂1 for a ∈ Λf .

We can proceed as in [Hsi21] to define the triple product p-adic L-function. We will
need an assumption on our f .

Assumption 2.1 (CR): The residual Galois representation V̄f of the big Galois represen-
tation Vf attached to f is absolutely irreducible and p-distinguished.

Let TrM/Nf
∶ Sord(M,χ−1f ,Λf) → Sord(Nf , χ

−1
f ,Λf) be the usual trace map.

By the primitiveness of f and assumption 2.1, it follows that the so-called congruence
ideal C(f) ⊂ Λf of f is principal, generated by a non-zero element ηf , called the congruence
number for f (it is unique up to units). One can prove that f̆ is primitive as well and
that f and f̆ have the same congruence number.

Since f is primitive, we also get an idempotent operator ef lying in Tord
mf
⊗Λf

Frac(Λf),
where mf the maximal ideal of Tord ∶= Tord(Nf , χf ,Λf) corresponding to f and Tord

mf
is

the localization of Tord at such maximal ideal. Morally, ef plays the role of a projection
to the f -Hecke eigenspace. A similar discussion applies to f̆ .

Then we can let ef̆ act on Sord(Nf , χ
−1
f ,Λf) ⊗Λf

Frac(Λf) and, by definition of con-
gruence number, one has that ηf ⋅ ef̆ (ξξξ) ∈ S

ord(Nf , χ
−1
f ,Λf) for all ξξξ ∈ Sord(Nf , χ

−1
f ,Λf).
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We refer to [Hsi21, section 3.3] and to [Col20, section 3.5] for a more detailed discussion
concerning congruence numbers and idempotents attached to primitive Hida families.

Definition 2.2: With the above notation, the generalized f -unbalanced triple product
p-adic L-function L f

p (f ,g,h) attached to the triple (f ,g,h) is defined as

L f
p (f ,g,h) ∶= a1 (ηf ⋅ ef̆ (TrM/Nf

(ΞΞΞord))) ∈ Rfgh.

Remark 2.3: We view L f
p (f ,g,h) as a function on WΛf

(Cp) ×WRg(Cp) ×WRh
(Cp). In

particular for w = (x, y, z) ∈ Ωfgh one gets that the evaluation of L f
p (f ,g,h) at w is given

by
L f
p (f ,g,h)(w) = ηfx ⋅ a1(ef̆(TrM/Nf

(ΞΞΞord
w ))).

Recall that (h∣Θ)w is in the image of the m = (kx−ky −kz)/2-th power of Serre’s derivative
operator d = q ddq acting on p-adic modular forms of weight kz, where if m is negative
one defines the m-th power of d as a p-adic limit. We can conclude that (h∣Θ)w is the
q-expansion of a p-adic modular form of weight kx−ky and tame level M . Hence by Hida’s
classicality theorem for ordinary forms, we deduce that

ΞΞΞord
w = e(gy × d

m(hz ⊗ ψw)) ∈ S
ord
kx (Mpt, χ−1f ω

2−kxεx,Cp)

where ψw = ω−a−1−mε
1/2
x ε

−1/2
y ε

−1/2
z and t ≥ 1 depends on w, χg and χh (and it is always

chosen to be large enough). ▲

2.3. The p-adic L-function and Petersson products

Definition 2.4: We set our conventions for the Petersson inner product on the spaces
Sk(N,χ) of complex modular forms of level N and character χ to be

⟨ξ1, ξ2⟩Pet ∶=
1

Vol(H/Γ0(N))
∫
D0(N)

ξ1(τ)ξ2(τ)v
k dudv

v2

for ξ1, ξ2 ∈ Sk(N,χ) where we write τ = u + iv ∈ H (the upper half-plane) and D0(N) is a
fundamental domain for the action of Γ0(N) on H.

Remark 2.5: Note that by the above definition our Petersson inner product is linear in
the first variable and conjugate linear in the second variable. Moreover, it is normalized
so that it does not depend on the level N considered. ▲

Proposition 2.6: Pick w = (x, y, z) ∈ Ωfgh and set

C ∶= CNf ,M ∶= [Γ0(Nf) ∶ Γ0(M)] =
M
Nf
⋅ ∏
ℓ∣M
ℓ∤Nf

(1 + 1
ℓ
) ∈ Z≥1.

Write f = fx, f̆ = (f̆ )x, Ξ = ΞΞΞord
w ∈ Sord

kx
(Mpt, χ−1f ω

2−kxεx,Cp) to simplify the notation, so
that f̆ = λN(f)−1 ⋅wN(f) as before. Assume that t ≥ 1 is large enough (in particular larger
that the p-order of the exact level of f). Then the evaluation of L f

p (f ,g,h) at w can be
described as follows, depending on two mutually exclusive cases.
(A) Assume f is a newform in Sk(Nf p

s, χfω
2−kε,L). Then:

(2.4) L f
p (f ,g,h)(w) =

ηf ⋅C ⋅ p
k(t−s)

ap(f̆)t−s
⋅
⟨Ξ, V t−s

p (f̆)⟩Pet

∥f∥2Pet
.
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(B) Assume that f is the ordinary p-stabilization of a newform f○ ∈ Sk(Nf , χ
○
f , L) (where

χ○f is the Nf -part of χf ). Set f# ∶= wNfp(f̆
ρ), where f̆ρ is obtained from f̆ applying

complex conjugation to the Fourier coefficients. Then

(2.5) L f
p (f ,g,h)(w) =

ηf ⋅C ⋅ p
k(t−1)

ap(f̆)t−1
⋅
⟨Ξ, V t−1

p (f#)⟩Pet

⟨f̆ , f#⟩Pet
.

Proof. This follows directly from [Hid85, proposition 4.5] (note that our conventions for
the Petersson inner product differ from those of Hida, so we have to adjust the result
accordingly). □

Remark 2.7: In case (B) of the above proposition (with the notation as above), assume
that t = 1 and that we can write

ef̆(TrMpt/Nfpt(Ξ)) = ξ − βkχ
○
f(p)

−1 ⋅ Vp(ξ)

for some ξ ∈ Sk(Nf , (χ
○
f)
−1). Then one can check that

⟨Ξ,wN(f
#)⟩Pet

⟨f, f#⟩Pet
=
⟨ξ,wN(f

○)⟩Pet
⟨f○, f○⟩Pet

=
⟨Ξ,wN(f)⟩Pet
⟨f, f⟩Pet

.

In particular, assume that g and h are classical Hida families of tame level Nf with
χfχgχh = 1 and w = (k, l,m) ∈ Ωfgh is a triple of classical integral weights such that
gl and hm are ordinary p-stabilizations of forms g○ ∈ Sl(Nf , χ

○
g) and h○ ∈ Sm(Nf , χ

○
h)

respectively. Then the hypothesis made on Ξ is verified (cf. [BSV20, section 4.4]) and we
recover the p-adic periods which are denoted by Ip(f○, h○, g○) in [BSV20, section 1.1] and
by L f

p (fα, hα, gα) in [BSV22b, section 3.1]. Note that we have switched the role of g and
h in our construction, compared to what happens in [BSV20] and [BSV22b]. ▲

2.4. Comparison with the complex L-values

In this section we compare the values of our square root triple product L-function with
the central values of the Garret-Rankin triple product L-function associated to a triple
of modular forms. Most of the material contained in this section is derived from [Hsi21,
section 3].

In this section we fix positive integers N,M coprime to p such that N ∣M . We consider
a triple of cuspidal modular forms

f =
+∞

∑
n=1

an(f)q
n, g =

+∞

∑
n=1

an(g)q
n, h =

+∞

∑
n=1

an(h)q
n

with

f ∈ Sk(Np
e1 , χfω

2−kε1), g ∈ Sl(Mpe2 , χgω
2−lε2), h ∈ Sm(Mpe3 , χhω

2−mε3),

where ei ≥ 1 and εi are Dirichlet characters of p-power order for i = 1,2,3, while χf (resp.
χξ for ξ ∈ {g, h}) is a Dirichlet character defined modulo Np (resp. Mp).

Assumption 2.8: (i) f, g, h are normalized eigenforms, i.e., for ξ ∈ {f, g, h} it holds
a1(ξ) = 1 and ξ is an eigenform for all the Hecke operators Tℓ for all primes ℓ ∤ N
(resp. ℓ ∤ M if ξ ∈ {g, h}). We also assume that f, g, h are eigenforms for the Up
operator.

(ii) The triple (f, g, h) is tamely self-dual, i.e., χf ⋅ χg ⋅ χh = ω2a for some integer a.
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(iii) The triple of weights (k, l,m) is arithmetic and f -unbalanced, i.e., ν ≥ 1 for ν ∈
{k, l,m}, k + l +m is even and k ≥ l +m.

(iv) The form f is a p-stabilized ordinary newform, i.e., either the ordinary p-stabilization
of a p-ordinary newform f○ of level N or an ordinary newform of level Npe1 .

(v) The tame level N is a squarefree integer.

When f is the ordinary p-stabilization of a newform f○ of level N , we write αf , βf for
the roots of the Hecke polynomial at p for f○ and we always assume that ∣αf ∣p = 1.

Let r = (k + l +m)/2 and let χA be the adèlization of the Dirichlet character

χ ∶= ωa−r(ε1ε2ε3)
1/2.

Let π1 = πf ⊗ χA, π2 = πg, π3 = πh, where for ξ ∈ {f, g, h} we denote by πξ the irreducible
automorphic representation of GL2(A) associated to ξ as in [Bum97, chapter 3].

It is well-known that there is a decomposition πξ = ⊗ℓ≤∞ πξ,ℓ into local representations.

Finally let Π ∶= π1 × π2 × π3 denote the corresponding automorphic representation of
GL2(AE) where E = Q × Q × Q is the split cubic étale algebra over Q. Thanks to our
choices one can verify that the central character of Π is trivial, so that Π is isomorphic to
its contragradient.

We let L(Π, s) denote the triple product complex L-function attached to Π (cf. for
instance [PR87]). It is known (cf. for instance the summary in [Ike92, pagg. 225-228] and
the references therein) that L(Π, s) is given by a suitable Euler product converging for
Re(s) ≫ 0 and that it admits analytic continuation to an entire function with a functional
equation of the form

L∗(Π, s) = ε(Π, s) ⋅L∗(Π,1 − s)

Here L∗(Π, s) = L(Π, s) ⋅L(Π, s)∞ with

L(Π, s)∞ = ΓC(s + r − 3/2) ⋅ ΓC(s − r + k + 1/2) ⋅ ΓC(s + r − l − 1/2) ⋅ ΓC(s + r −m − 1/2)

and ΓC(s) = 2(2π)
−sΓ(s) (Γ(⋅) being Euler’s gamma function). This explicit description

of the archimedean L-factor is proven in [Ike98].

Moreover, ε(Π, s) = ∏ℓ≤∞ εℓ(Π, s) is an invertible function satisfying the property that
εℓ(Π,1/2) ∈ {±1} and εℓ(Π,1/2) = 1 for almost all ℓ. In particular, it is known that:
(a) ε∞(Π,1/2) = 1 in our case (this depends on the fact that the triple of weights (k, l,m)

is unbalanced);
(b) εℓ(Π,1/2) = 1 if ℓ ∤ pM .

We are then led to the following further assumption.

Assumption 2.9: In what follows we assume that εℓ(Π) = 1 for all ℓ ∣M .

Definition 2.10: If π is an irreducible smooth representation of GL2(Qℓ) for a rational
prime ℓ and Vπ is a realization of π, we let c(π) denote the smallest integer (which exists,
by smoothness) such that VU1(ℓ

c(π))
π ≠ 0, where for all m ∈ Z≥0 we set

U1(ℓ
m) ∶= {( a bc d ) ∈ GL2(Zℓ) ∣ ordℓ(c) ≥m, ordℓ(d − 1) ≥m} .

Now we connect this discussion to the triple product p-adic L-function, assuming that
f = fx, g = gy, h = hz are suitable specializations of families of the types considered in
section 2.2 with w = (x, y, z) ∈ Ωfgh so that kx = k, ky = l, kz =m (with k ≥ l+m as we have
assumed before). Write Πw for the corresponding automorphic representation of GL2(AE).
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Following Harris-Kudla ([HK91]) and Ichino ([Ich08]), Hsieh proved in [Hsi21] the fol-
lowing fact.

Proposition 2.11: Under assumptions 2.8 and 2.9, the following formula holds:

(2.6) (L f
p (f ,g,h)(w))

2 =
L∗(Πw,1/2)

ζQ(2)2 ⋅Ω
2
f

⋅I unb
Πw,p ⋅

⎛

⎝
∏
ℓ∣M

IΠw,ℓ

⎞

⎠

where
(i)

(2.7) Ωf ∶= 2
k+1 ⋅ ∥f○∥2Pet ⋅ Ep(f,Ad) ⋅ η

−1
f ⋅ [SL2(Z) ∶ Γ0(Nf)]

with

f○ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

f in case (A) of prop. 2.6
the newform of level Nf associated to f in case (B) of prop. 2.6

and

(2.8) Ep(f,Ad) = ap(f)
−c(πf,p) ⋅ pc(πf,p)(k/2−1) ⋅ ε(πf,p,1/2) ⋅ σf ,

where

σf ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 in case (A) of prop. 2.6
(1 −

βf
αf
) (1 −

βf
pαf
) in case (B) of prop. 2.6, equiv. if c(πf,p) = 0

(ii) I unb
Πw,p

is the normalized local zeta integral defined as [Hsi21, equation 3.28];
(iii) IΠw,ℓ is the normalized local zeta integral defined as in [Hsi21, equation 3.29];
(iv) ζQ(⋅) = π−1ζ(⋅) where ζ(⋅) is the usual Riemann zeta function, so that ζQ(2) = π/6.

Proof. This is essentially a restatement of proposition 3.10 and corollary 3.13 in [Hsi21].
Note that our normalization for the Petersson inner product is different from Hsieh’s. This
explains the appearance of the factor ζQ(2)2 in our formula and the slight changes in the
definition of the period Ωf . □

Remark 2.12: One can compute directly that, if we are in case (B) of proposition 2.6, it
holds that

∥f○∥2Pet ⋅ σf ⋅
(−1)k ⋅ αf ⋅ χ

○
f(p)

−1

λN(f) ⋅ pk/2 ⋅ (1 + 1/p)
= ⟨f̆ , f#⟩Pet.

We refer [Col20, proposition 5.4.1] for a very similar computation, where the form denoted
h
^ there should be thought as a constant multiple of our f#. This explains the appearance

of the factor σf and allows an even more direct comparison (in the f -unbalanced region)
between the formula given by equation 2.6 and the formulas appearing in the statement of
proposition 2.6. ▲
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CHAPTER 3

Families of theta series of infinite p-slope

3.1. Setup for the interpolation

We fix an odd prime p and we let K be an imaginary quadratic field where p is inert.
Denote byNK/Q the norm morphism on fractional ideals inK. Let −dK be the discriminant
of K (so that p ∤ dK) and let εK denote the central character of K, i.e., more explicitly

εK(n) = (
−dK
n
) if (n, dK) = 1

where ( ⋅
⋅
) denotes the Jacobi symbol.

Definition 3.1: For a ⊂ OK an integral ideal in OK , we let IK(a) denote the group of
fractional ideals of K prime to a and we set

PK(a) ∶= {(α) ∈ IK(a) ∣ α ≡ 1 mod ×a} , ClK(a) ∶= IK(a)/PK(a).

The group ClK(a) is the so-called ray class group modulo a.

Remark 3.2: It is well-known that ClK(a) is a finite group. ▲

We fix a finite order character η ∶ GK → Q̄× with conductor c (a non-trivial proper
integral ideal in OK). Via class field theory we will freely view η as a ray class character
η ∶ ClK(c) → Q̄× or a finite order character η ∶ A×K/K

× → Q̄× (note the slight abuse of
notation here). Moreover, we assume that η is not the restriction of a character of GQ.

Denote by η∣Q the Dirichlet character defined modulo NK/Q(c) and given by

η∣Q(n) ∶= η((n)) for (n,NK/Q(c)) = 1

It is then a classical theorem of Hecke and Shimura (cf. [Miy06], theorem 4.8.2) that the
q-expansion (where as usual q = exp(2πiτ) for τ ∈ H)

(3.1) g(τ) ∶= θη(τ) ∶= ∑
(a,c)=1

η(a)qNK/Q(a)

defines a cuspidal modular form of weight 1 (the theta series attached to the character η).
Here the sum runs over the integral ideals in OK prime to c.

More precisely, g ∈ S1(dK ⋅NK/Q(c), εK ⋅ η∣Q) and since we assume that η is of exact
conductor c, g is also a newform of level dK ⋅ NK/Q(c). From now on, we set Ng ∶=
dK ⋅NK/Q(c) and χg ∶= εK ⋅ η∣Q.

The Fourier coefficients of g generate a finite extension of Q. We can thus view g as
a modular form whose q-expansion at ∞ has coefficients in a finite extension L of Qp (via
the embedding ιp), i.e., g ∈ S1(Ng, χg, L). As in the previous sections, we assume that L
is large enough. In particular, here we assume that L contains the completion of K inside
Cp (which we will denote by Kp with ring of integers OK,p).
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We would like to find a p-adic family of modular forms - all with complex multiplication
by K - of varying weights (in the sense of Hida-Coleman) having g (or a slight modification
of g) as a specialization in weight 1. We will see that this can actually be done explicitly.

Remark 3.3: Since the fixed prime p is inert in K, prOK ∣ c if and only if p2r ∣ NK/Q(c).
Hence we should distinguish two cases:
(a) (pOK , c) = 1, or equivalently p ∤ Ng

(b) ordp(Ng) = 2r for some r ∈ Z≥1
In both cases it holds that ap(g) = 0, or equivalently that Tp(g) = 0 in case (a) (resp.
Up(g) = 0 in case (b)). This is usually described as g having infinite p-slope. ▲

Remark 3.4: While case (a) can be reinterpreted in the realm of Hida theory (as in this
case g admits one or two ordinary p-stabilizations), case (b) is instead more genuinely
a problem in infinite slope. This dichotomy is also reflected in the fact that the local
component at p of the automorphic representation associated with g is a principal series
in case (a) and a supercuspidal representation in case (b). ▲

Assumption 3.5: From now on in this section we will always assume that pOK ∣ c and we
will write c = c0 ⋅ p

rOK with c0 coprime to pOK and r ≥ 1.

Remark 3.6: When p splits in K one can explicitly write down families of theta series,
specializing to (p-stabilizations) of modular forms of the shape described in (3.1). See, for
instance, [BDV22, section 4.2] for a discussion about this construction, which - again - is
well-understood within Hida theory. ▲

In what follows, we try to adapt such construction to our setting. Notice that Kp/Qp

is the unique degree two unramified extension of Qp inside our fixed algebraic closure Q̄p,
so we will identify Kp = Qp2 (with ring of integers Zp2). Moreover we have a decomposition

Z×p2 = µp2−1 × (1 + pZp2)

induced by the Teichmüller lift. Note that 1+pZp2 does not contain p-power roots of unity.

Let Gp be the subgroup of the idèlic class group CK ∶= A×K/K
× over K defined by

Gp ∶=K
× ⋅ (C× ⋅ µp2−1 ⋅ ∏

l≠pOK

O×l )/K
× .

Set moreover IK,∞ ∶=K×⋅ (C× ⋅∏lO
×
l )/K

× and let Pic(OK) denote the classical ideal class
group of K.

The snake lemma applied to the following diagram with exact rows

0 Gp CK CK/Gp 0

0 IK,∞ CK Pic(OK) 0

identifies 1 + pZp2 ≅ Ker(CK/Gp↠ Pic(OK). We can thus consider the diagram

1 1 + pZp2 CK/Gp Pic(OK) 1

Q̄×p

ι
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where the horizontal row is an exact sequence of abelian groups, ι is given by ι(u) = u−1
and the dashed arrow is any (continuous) extension of ι to the quotient A×K/Gp, obtained
using the divisibility of Q̄×p . Finally we let λ(p) to be the following composition:

λ(p) ∶ A×K/K
× A×K/Gp Q̄×p .

We associate to λ(p) an algebraic Hecke character of K of ∞-type (1,0) as follows:

λ(∞) ∶ A×K/K
× → C× x = [(xν)ν] ↦ (ι∞ ○ ι

−1
p (λ

(p)(x) ⋅ xp)) ⋅ x
−1
∞ .

Finally, writing λ(∞) = ⊗vλ
(∞)
v one gets a character at the level of fractional ideals

λ ∶ IK(pOK) → Q̄× a↦∏
l∣a

λ
(∞)
l (ϖl)

ordl(a) ,

where ϖl is a uniformizer at l. One can verify that λ((α)) = α whenever α ≡ 1 mod ×pOK .

Definition 3.7: In the above setting, we will say that λ(p) is the p-adic avatar of λ and
that λ(∞) is the complex avatar of λ.

Remark 3.8: We will also look at λ(p) as a p-adic Galois character λ(p) ∶ GK → Q̄×p via
global class field theory. ▲

Up to enlarging L, we can assume that λ(a) ∈ L for all a ∈ IK(pOK) and η(a) ∈ L for
all a ∈ IK(c).

Definition 3.9: We let ⟨ ⋅ ⟩ ∶ O×L → O
×
L to be the projection onto the free units (note that

now O×L might contain p-power roots of unity). By slight abuse of notation we will write
⟨λ(a)⟩ to denote ι−1p (⟨ιp(λ(a))⟩) (notice that this makes sense).

Definition 3.10: For k ∈ Z≥1, let ηk ∶ IK(c) → Q̄× be the character a ↦ η(a) ⋅ ⟨λ(a)⟩k−1,
so that

gk ∶= ∑
(a,c)=1

ηk(a)q
NK/Q(a) ∈ Sk(Ng, χk)

where Ng = Ng and χk = χg ⋅ ω
1−k = χg ⋅ ω

2−k where ω is the Teichmüller character and
clearly χg = χg ⋅ ω

−1. We will also write N○g ∶= Ng/p
2r in the sequel.

Remark 3.11: Note that, since p is inert in K, the p-part of the conductor of χk is at
most pr for all k ≥ 1, so that χk will never be p-primitive as a Dirichlet character modulo
Ng. This is a typical feature for newforms of infinite p-slope and level divisible by p. It is
well-known, on the other hand, that if the p-order of N and of cond(χ) of a normalized
newform f ∈ Sk(N,χ) coincide, then ap(f) must have euclidean absolute value p(k−1)/2 (cf.
theorem 4.6.17 of [Miy06]). ▲

Remark 3.12: Recall the (unique) continuous Zp-action on U1 ∶= {z ∈ Cp ∣ ∣z − 1∣p < 1}
extending the natural structure of U1 as a multiplicative abelian group, namely

zs ∶=
∞

∑
n=0

(
s

n
)(z − 1)n z ∈ U1, s ∈ Zp.

We thus view U1 as a topological Zp-module. One can show that µp∞(Cp) (i.e., the
subgroup of roots of unity of p-power order) is dense inside U1. It follows that the natural
action of GQp on U1 given by the p-adic cyclotomic character ε(p)cyc ∶ GQp → Z×p is compatible

with the action of Z×p , in the sense that σ(z) = zε
(p)
cyc(σ) for z ∈ U1, σ ∈ GQp . ▲
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Definition 3.13: We define WK to be the smallest closed Zp-submodule of U1 containing
⟨λ(a)⟩ for all a ∈ IK(pOK).

Remark 3.14: Note that the notation WK makes sense, since different choices for λ (i.e.,
different choices for the dashed arrow in the diagram above) differ by a finite order char-
acter, so that WK only depends on K and not on λ. ▲

Lemma 3.15: WK is a free Zp-module of rank 2. If a ∈ Z≥0 is such that pa =#(ClK(pOK)⊗
Zp), then wp

a
∈ 1 + pZp2 for all w ∈ WK . In particular, if p ∤ #(Pic(OK)), we have

WK = 1 + pZp2.
Proof. Let m = #ClK(pOK). Since λ((α)) = α for all α ≡ 1 mod ×pOK we deduce that
⟨λ(am)⟩ ∈ 1 + pZp2 for all a ∈ IK(pOK), whence W (m)

K = {wm ∣ w ∈WK} ⊆ 1 + pZp2 .
Raising to the m/pa-th power is an automorphism of WK as Zp-module, hence W (pa)

K =

{wp
a
∣ w ∈ WK} ⊆ 1 + pZp2 . Finally, it is also clear that 1 + pZp2 ⊆ WK , which proves the

statment concerning the rank of WK . □

Remark 3.16: Denote by ⟨λ⟩ ∶ GK ↠ WK the corresponding Galois character (given
by the composition ⟨ ⋅ ⟩ ○ λ(p)) and let K∞ denote the (unique) Z2

p-extension of K. It
follows from the construction that ⟨λ⟩ factors through Γ∞ ∶= Gal(K∞/K), inducing an
isomorphism Γ∞ ≅WK . We will consider WK as a GQ-module via this isomorphism (and
the GQ-action on Γ∞ by conjugation). In particular we have Γ∞ = Γ

+ × Γ− where
(i) Γ+ is the Galois group of the cyclotomic Zp-extension of K, denoted by K+∞, where

complex conjugation acts as the identity;
(ii) Γ− is the Galois group of the anticyclotomic Zp-extension of K, denoted by K−∞, where

complex conjugation acts as taking the inverse.
We will write WK =W

+
K ×W

−
K for the corresponding decomposition of WK . ▲

3.2. Construction à la Coleman

As above, let a ∈ Z≥0 be such that pa = #(ClK(pOK) ⊗ Zp). Since ∣Zp2 ∣p = ∣Zp∣p, we
have group isomorphisms

1 + pZp2 pZp2 Zp2 .

logp

≅

expp

≅ ⋅ logp(1+p)

≅

Lemma 3.17: For every α ∈ Zp2 the formal power series

(1 + T )α = exp(α log(1 + T )) =
+∞

∑
n=0

(
α

n
)Tn ∈ Qp2[[T ]]

actually lies in the ring Zp2[γ][[Tγ ]], where γ ∈ Cp is a (fixed) p − 1-th root of p.

Proof. It is well-known that for n ≥ 1 one has ∣n!∣p > p
− n

p−1 . It follows immediately that
γn ⋅ (αn) ∈ Zp2[γ] for all n ≥ 0 (the case n = 0 being trivially checked). □

For a ∈ IK(pOK), we define

(3.2) s(a) ∶=
logp(⟨ιp(λ(a))⟩)

logp(1 + p)
∈ Cp
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and observe that, by lemma 3.15, we know that pa ⋅ s(a) ∈ Zp2 for all a ∈ IK(pOK). As we
did above, we define power series

(1 + T )s(a) ∶= exp(s(a) ⋅ log(1 + T )) ∈ Qp2[[T ]]

and one can check using the above lemma that (1 + T )s(a) ∈ Zp2[γ][[ Tpaγ ]]. In particular,
this series converges to ⟨λ(a)⟩hp

a
when evaluating at T = (1 + p)hp

a
− 1 for ∈ Z≥0.

Definition 3.18: Assuming γ ∈ L, we define

(3.3) g
Col
∶= ∑
(a,c)=1

η(a) (1 + T−p
p+1 )

s(a)
⋅ qNK/Q(a) ∈ (OL[[

T−p
paγ ]]) [[q]] .

Lemma 3.19: The power series g
Col

satisfies the interpolation property

(3.4) g
Col
(1 + hpa) ∶= g

Col
((1 + p)1+hp

a

− 1; q) = g1+hpa ∈ S1+hpa(Ng, χ1+hpa , L)

for all h ∈ Z≥0 and moreover g
Col
(1) = g.

Proof. This follows immediately from the construction. □

Definition 3.20: We will write ΛCol ∶= OL[[
T−p
paγ ]] and OCol ∶= ΛCol[

1
p] in what follows.

Remark 3.21: The Λ-algebra ΛCol (resp. OCol) is the ring of analytic functions bounded
by 1 (resp. bounded) on the open ball of radius ∣paγ∣p centered at the weight w = 1 in the
weight space WΛ (cf. section 1). ▲

For k ∈ Z≥1 we have Hecke characters ηk as defined above (definition 3.10) and, passing
to p-adic avatars and via class field theory, we can consider them as Galois characters
η
(p)
k ∶ GK → L× unramified outside c such that η(p)k (Frobl) = ηk(l) for all l ⊂ OK prime

ideals, l ∤ c.
It is well-known that Vk ∶= IndQK(η

(p)
k ) is a 2-dimensional (over L) Galois representation

isomorphic to the dual of the p-adic Galois representation of GQ attached (by the work of
Shimura and Deligne) to the modular form gk when k ≥ 2. More precisely, this means that

(3.5) det(1 − Frobℓ∣Vk ⋅X) = 1 − aℓ(gk)X + χk(ℓ)ℓ
k−1X2

for every prime number ℓ ∤ Ng, where as usual aℓ(gk) denotes the ℓ-th Fourier coefficients
of the q-expansion of gk at ∞.

We also have a big Hecke character

(3.6) ηηηCol ∶ IK(c) → O
×
Col, a↦ η(a) ⋅ (1 + T−p

p+1 )
s(a)

satisfying for all k ∈ Z≥1, k ≡ 1 mod pa the property (ηηηCol(a))((1+ p)
k − 1) = ηk(a). Then,

again via class field theory, one gets a big Galois character ηηηCol ∶ GK → O
×
Col.

Definition 3.22: We set

(3.7) Vg
Col
∶= IndQKηηηCol

and we call it the big Galois representation associated with the family g
Col

.
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3.3. Construction à la Hida

It is possible to realize the families of theta series of infinite p-slope considered above
in another way, as suggested in Hida’s blue book [Hid93, pagg. 236-237].

Definition 3.23: We define the Λ-algebras ΛHida ∶= OL[[WK]] and OHida ∶= ΛHida[1/p],
with Λ-algebra structure induced by the natural inclusion 1 + pZp ⊂WK .

Definition 3.24: We define

g
Hida
∶= ∑
(a,c)=1

η(a)

⟨λ(a)⟩
[⟨λ(a)⟩] ⋅ qNK/Q(a) ∈ ΛHida[[q]] ,

where recall that [ ⋅ ] denotes group elements in WK .

Let w ∶ ΛHida → Cp be a continuous OL-algebra homomorphism. Assume that there
exists integers aw ≥ 1 and kw ≥ 1 such that w sends group elements in [u] ∈ 1+pawZp2 ⊆WK

to ukw ∈ Cp. Then

ηw ∶ IK(c) → C×p a↦
η(a)

⟨λ(a)⟩
⋅w([⟨λ(a)⟩])

is a primitive Hecke character of infinity type (kw − 1,0) with conductor pe(w,η)c for a
suitable integer e(w,η) ≥ 0 (depending on aw and the p-part of η), so that

(3.8) g
Hida
(w) ∶= ∑

(a,c)=1

ηw(a) ⋅ q
NK/Q(a) ∈ Skw(Nw, χw,OL[w]) ,

where
(i) Nw = dK ⋅NK/Q(c) ⋅ p

2e(w,η)

(ii) χw = εK ⋅ η∣Q ⋅ ω1−k ⋅ εw = χg ⋅ ω
2−k ⋅ εw, where εw is an explicit character valued in

µp∞(Cp), depending on w.
(iii) OL[w] is the finite extension of OL generated by the values of w (one can assume that

it is a cyclotomic extension of OL generated by a p-power root of unity).
When w acts on group elements [u] ∈ WK as w([u]) = uk for some k ≥ 1, we recover

the specialisations g
Hida
(w) = gk. If, moreover, k ≡ 1 mod pa (notation as in lemma 3.15),

we get back all the classical specializations of g
Col

.

Remark 3.25: The family g
Hida

admits more general classical specializations than the fam-
ily g

Col
(in particular ramification at p is allowed), but one has to allow Fourier coefficients

in the larger ring ΛHida. ▲

One can then again produce a big Hecke character

(3.9) ηηηHida ∶ IK(c) → O
×
Hida a↦

η(a)

⟨λ(a)⟩
⋅ [⟨λ(a)⟩]

with associated Galois character ηηηHida ∶ GK → O
×
Hida. Note that, by construction, ηηηHida

factors through the Galois group of the ray class field modulo c0p
∞ over K.

Definition 3.26: We set Vg
Hida
∶= IndQKηηηHida and we call it the big Galois representation

associated with the family g
Hida

.
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Remark 3.27: By construction, it follows that for any w as above, the 2-dimensional (over
L[w] = Frac(OL[w])) GQ-representation obtained as

Vg
Hida
(w) ∶= Vg

Hida
⊗OHida,w L[w]

is the dual of the Deligne representation attached to the specialization g
Hida
(w). ▲

3.4. Families of theta series as generalized Λ-adic eigenforms

Now we are ready to prove that the families of the form g
Col

and g
Hida

fit in the
framework of generalized Λ-adic modlar forms, as defined in section 1.

Lemma 3.28: The families g
Col

and (resp.) g
Hida

constructed as in equations (3.3) and
(resp.) (3.24) satisfy (with the notation introduced in section 1 and above)

g
Col
∈ SΩCol

(N○g , χg,ΛCol) and g
Hida
∈ SΩHida

(N○g , χg,ΛHida) ,

where ΩCol ∶= W
cl
ΛCol,Z and ΩHida ∶= Ωg

Hida
,Z. Moreover, g

Col
and g

Hida
are generalized

Λ-adic eigenforms, both lying in the kernel of Up.
Proof. As far as g

Hida
is concerned, it is enough to check that Ωg

Hida
,Z is (Λ,ΛHida)-

admissible. Condition (i) of definition 1.5 is clearly satisfied. For condition (ii), for every k ≥
2 let wk ∶ ΛHida → Cp denote the weight uniquely determined by the assignment wk([u]) =
uk−1 on group elements. We know that wk ∈ Ωg

Hida
,Z and we claim that I ∶= ⋂k≥2Ker(wk) =

(0). Since ϖL ∉ Ker(wk) for every k ≥ 2, one can prove the assertion working in ΛHida[1/p],
where it is easy to show that ⋂mk=2Ker(wk)[1/p] = ∏

m
k=2Ker(wk)[1/p] for all m ≥ 2. Using

that ΛHida[1/p] is a UFD (since ΛHida is such), one concludes that indeed it must be I = (0).

As far as g
Col

is concerned, we are left to prove that

Ωg
Col

,Z = W
cl
ΛCol,Z

φ∗Col
ÐÐ→
∼
(1 + paZ) ∩Z≥2

is a bijection (then the lemma immediately follows). Recall that (ΛCol = OL[[X]], φCol)
is a Λ-algebra via φCol(T ) = p

aγX + p, with γ a fixed (p − 1)-th root of p. Let pk =
(T + 1 − (1 + p)k) ⊂ Λ (for some k ≥ 2) be the kernel of the specialization to weight k. To
give w ∈ Wcl

ΛCol,Z with w ○ φCol = k is equivalent to give a prime ideal of ΛCol lying over pk
and with residue field a finite extension of L, i.e., to give a prime ideal of

ΛCol ⊗Λ
Λpk

pkΛpk

≅
ΛCol[

1
p]

(X −
(1+p)((1+p)k−1−1)

paγ )

with residue field a finite extension of L. Given α ∈ L it is clear (look at the inverse of
X − α in L[[X]] when α ≠ 0) that

ΛCol[
1
p]

(X − α)
≅

⎧⎪⎪
⎨
⎪⎪⎩

L ⇔ α ∈ϖLOL

0 otherwise

so that for us there exists a unique w ∈ Wcl
ΛCol,Z such that w○φCol = k if and only if pa ∣ k−1.

This proves the claimed bijection. □

Remark 3.29: The families g
Col

and g
Hida

are examples of Λ-adic forms admitting classical
specializations also for arithmetic weights w with kw = 1. ▲
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CHAPTER 4

Factorization of triple product p-adic L-functions

4.1. Remarks on complex L-functions

In this section we recollect some facts concerning Hecke L-functions and Rankin-Selberg
convolution that will be needed in the sequel.

Fix K/Q a quadratic imaginary field and let χC ∶ A×K/K
× → C× be an algebraic Hecke

character of ∞-type (a, b). Let ∣ ⋅ ∣AK
denote the adèlic norm. Then χC = χ0 ⋅ ∣ ⋅ ∣

(a+b)/2
AK

is a unitary Hecke character (i.e. taking values in {z ∈ C× ∣ ∣z∣ = 1}) and the completed
L-function L∗(χ0, s) attached to χ0 has meromorphic continuation and functional equation
with center s = 1/2 (cf. Tate’s thesis). Note that L∗(χ0, s) is actually an entire function if
χ0 is not of the form χ0 = ν ○NK/Q for some Dirichlet character ν.

As explained in [JL70, theorem 11.3 and proposition 12.1], one can attach to χC an
automorphic representation π(χ) of GL2(AQ) such that L∗(π(χ), s) = L∗(χ0, s). Note
that if b = 0 and a ≥ 0, then π(χ) is the automorphic representation attached to the theta
series θχ and L∗(θχ, s) = L∗(π(χ), s + a/2).

Given two automorphic representations π1 and π2 of GL2(A) with central characters
ω1 and ω2, one can construct - via the so-called Rankin-Selberg method - an L-function
L∗(π1 × π2, s), prove its meromorphic continuation and functional equation of the form

L∗(π1 × π2, s) = ε(π1 × π2, s) ⋅L
∗(π̃1 × π̃2,1 − s)

where π̃ denotes the contragradient representation of π. The poles of L∗(π1 × π2, s) are
those of L(ω1ω2,2s − 1). Moreover, the ε-factor ε(π1 × π2, s) is an invertible function.

We refer to the standard reference [Jac72] for this construction and for the definition
of the local L-factors and ε-factors of such L-functions. The local theory is also nicely
summarized in [GJ78, section 1]). For the definition of the local ε-factors we always use
the standard additive character of the corresponding local field and the self-dual Haar
measure with respect to the standard character.

Starting from two cuspidal eigenforms f ∈ Sk(Nf , χf) and g ∈ Sl(Ng, χg), one can
also define the L-function L(f × g, s) more classically via an Euler product expansion (cf.
[Kat04, section 7]). If f and g are newforms and k ≥ l, it holds

L(f × g, s) ⋅ ΓC(s) ⋅ ΓC(s − l + 1) = L
∗(πf × πg, s −

k+l−2
2 ).

Finally, if f ∈ Sk(Nf , χf) and ψ ∶ A×K/K
× → C× is an algebraic Hecke character of ∞-type

(a, b), we set
L∗(f/K,ψ, s) ∶= L∗(πf × π(ψ), s −

k−1+a+b
2 ).

One can write L∗(f/K,ψ, s) = L∞(f/K,ψ, s) ⋅ L(f/K,ψ, s) with archimedean L-factor
given by

L∞(f/K,ψ, s) = ΓC(s −min{a, b}) ⋅ ΓC(s −min{k − 1, ∣a − b∣} −min{a, b}).
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Assume now that we are given f ∈ Sk(Nf , χf) a Hecke eigenform and two Hecke
characters ψ1, ψ2 of K of ∞-type (l − 1,0) and (m − 1,0) respectively (here l ≥ 1,m ≥ 1),
which are not induced by Dirichlet characters. Then g = θψ1 and h = θψ2 are cuspidal
newforms, say g ∈ Sl(Nl, χg) and h ∈ Sm(Nh, χh). Assume that χf ⋅χg ⋅χh = 1 and consider
the Garret-Rankin triple product L-function

L∗(f × g × h, s) = L∗(πf × π(ψ1) × π(ψ2), s −
k+l+m−3

2 ) .

If one looks at the corresponding ℓ-adic Galois representations for ℓ any rational prime,
one easily deduces the following decomposition

Vℓ(f) ⊗ Vℓ(g) ⊗ Vℓ(h) ≅ Vℓ(f) ⊗ (Ind
Q
Kψ1ψ2 ⊕ IndQKψ1ψ

σ
2 ) ≅

≅ (Vℓ(f) ⊗ IndQKψ1ψ2) ⊕ (Vℓ(f) ⊗ IndQKψ1ψ
σ
2 ) .(4.1)

For the sake of precision, here Vℓ(ξ) denotes the dual of the Deligne representation
attached to ξ and we look at ψ1 and ψ2 as Galois characters attached to the ℓ-adic avatars
of ψ1 and ψ2 via class field theory.

The decomposition (4.1) corresponds to the following factorization of L-functions

(4.2) L∗(f × g × h, s) = L∗(f/K,ψ1ψ2, s) ⋅L
∗(f/K,ψ1ψ

σ
2 , s) .

4.2. Study of the big Galois representations

As usual, we let L denote a (large enough) finite extension of Qp, containing all the
needed coefficients.

Setting 4.1: We work in the following setting.
(i) We fix f ∈ Sord(Nf ,1,Λf) a primitive Hida family with trivial tame character, square-

free tame level Nf and coefficients in Λf (a ring in ĈΛ, which is also finite flat over
Λ = OL[[1 + pZp]]), satisfying assumption 2.1.

(ii) We let K/Q denote a quadratic imaginary field of odd discriminant −dK (i.e. we have
dK ≡ 3 mod 4) coprime to pNf such that the fixed odd prime p is inert in K and does
not divide the class number of K. Writing Nf = N

+
f ⋅N

−
f where N+f is the product of

prime factors of Nf which are split in K, we assume that N−f is the product of an odd
number of prime factors (Heegner hypothesis).

(iii) We fix two ray class characters η1 and η2 of GK , both of conductor cprOK with c
a positive integer with (c, pNf) = 1 and r ≥ 1. We then let g and (respectively) h
denote the generalized Λ-adic eigenforms attached to η1 and (respectively) η2 via the
construction explained in section 3.3.

(iv) We assume that the central characters of η1 and η2 are inverse to each other (self-
duality condition).

(v) We assume that the prime divisors of the integer c are all split in K.

Remark 4.2: Let ⟨εcyc⟩ ∶ GQ → 1 + pZp be the character g ↦ εcyc(g) ⋅ ω(εcyc(g))
−1, where

εcyc ∶ GQ → Z×p is p-adic cyclotomic character. We then get automatically a universal
weight character (cf. remark 1.11 for the notation):

⟨εcyc⟩Λ ∶ GQ → Λ× g ↦ [⟨εcyc(g)⟩] = ⟨ ⋅ ⟩Λ ○ εcyc(g)

and, for (R,φ) ∈ ĈΛ, we set ⟨εcyc⟩R = φ ○ ⟨εcyc⟩Λ = ⟨ ⋅ ⟩R ○ εcyc ∶ GQ → R×.
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Since we assume that p does not divide the class number of K, we have WK = 1+ pZp2
(cf. lemma 3.15) and moreover (with the notation of remark 3.16)

(4.3) ⟨εcyc⟩∣GK
= ⟨λ⟩ ⋅ ⟨λ⟩σ.

▲

By the work of Hida and Wiles, it is known that one can attach to f a big Galois
representation Vf , which can be realized as a free module of rank 2 over Λf [1/p] equipped
with a continuous action of GQ, specializing for all x ∈ Wcl

Λf
to the dual Vp(fx) of the p-adic

Deligne representation attached to fx (or, in case fx is the p-stabilization of a newform
of level Nf , to the dual of the representation attached to such newform). In particular
it holds that det(Vf) = ωcyc ⋅ ⟨εcyc⟩Λf

. We refer to [BSV22b, section 5] for a detailed
discussion concerning such Galois modules.

We defined a big Galois representation Vg (resp. Vh) attached to g (resp. h) as

Vg = Ind
Q
Kηηη1 (resp.Vh = Ind

Q
Kηηη2),

where ηηη1 (resp. ηηη2) is the big Galois character valued in ΛHida[1/p] constructed as in
section 3.3.

Notation 4.3: We will write RK ∶= ΛHida in what follows, to simplify the notation. We
will also write ⟨λ⟩RK

∶ GK → R×K for the big Galois character given by g ↦ [⟨λ(g)⟩].

Lemma 4.4: We have

det(Vg) = εK ⋅ η
cen
1 ⋅ ⟨εcyc⟩ ⋅ ⟨εcyc⟩RK

, det(Vh) = εK ⋅ η
cen
2 ⋅ ⟨εcyc⟩ ⋅ ⟨εcyc⟩RK

.

Proof. It follows easily form equation (4.3). □

Consider the Galois representation V ∶= Vf ⊗̂LVg⊗̂LVh. It is a free R ∶= Rfgh[1/p]-
module of rank 2 and it follows immediately from the above discussion and our assumptions
that

det(V) = ω6
cyc ⋅ ε

−3
cyc ⋅ (⟨εcyc⟩Λf

⊗̂⟨εcyc⟩RK
⊗̂⟨εcyc⟩RK

).

Since p is odd, there exists a character χχχfgh = χχχ ∶ GQ → R
× such that εcyc ⋅χχχ2 = det(V),

i.e. we can write

χχχ = ωcyc ⋅ ⟨εcyc⟩
−2 ⋅ (⟨εcyc⟩Λf

⊗̂⟨εcyc⟩RK
⊗̂⟨εcyc⟩RK

)1/2.

If we define
V† ∶= V⊗RR(χχχ−1) ,

then one checks easily that such representation is Kummer self-dual, i.e.

(V†)∨(1) = HomR(V†,R)(1) ≅ V†.

We want to study the specializations V†(w) for a suitable w ∈ Ωfgh.

Definition 4.5: We define the following big Galois characters

(4.4) φφφ ∶= η1η2⟨λ⟩
σ⟨λ⟩−1 ⋅λλλac and ψψψ ∶= η1η

σ
2 ⋅λλλac ,

where
λλλac ∶ GK → R×K λλλac ∶= ⟨λ⟩

1/2
RK
⋅ (⟨λ⟩σRK

)−1/2 .

Remark 4.6: Note that WRK
(Cp) ≅ Homcont

grp (WK ,C×p) has a natural group structure, so
it makes sense to multiply or invert weights. ▲
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Lemma 4.7: Let w = (x, y, z) ∈ Ωfgh with k = kx even and let f○ be the newform associated
to fx (as in proposition 2.6). Then there is a decomposition

V†(w) ≅ ((Vp(f̃○) ⊗L[w] Ind
Q
Kφφφy⋅z) ⊕ (Vp(f̃

○) ⊗L[w] Ind
Q
Kψψψy/z)) (−

k
2
) ,

where f̃○ ∶= f○ ⊗ ωk/2−1ε−1/2x .
Moreover, setting l = ky and m = kz, the Hecke character of K attached to φφφy⋅z (resp.

to ψψψy/z) is anticyclotomic and has ∞-type ( l+m−22 , 2−l−m2 ) (resp. ( l−m2 , m−l2 )).
Proof. This is an easy computation. The only passage when one has to be slightly
careful consists in observing that for a GK-character η and an even GQ-character χ it
holds ((IndQK(η)) (χ) = Ind

Q
K(η ⋅ χ∣GK

). □

4.3. Improvement of the triple product p-adic L-function

We let M ∶= c2 ⋅ dK ⋅Nf in what follows.

Inspired by the level adjustment performed by Hsieh in [Hsi21, section 3.4], we are led
to consider the following test vectors associated to our families g and h, namely we set

(4.5) g∗ ∶= g(qNf ) ∈ SΩHida
(M,χg,RK) , h∗ ∶= h(qNf ) ∈ SΩHida

(M,χh,RK).

One can check that our adjustment matches Hsieh’s more general version, in view of the
following facts concerning the local automorphic types for the specializations of the families
f , g and h.

Proposition 4.8: Let ℓ be a prime different from p. Let w = (x, y, z) ∈ Ωfgh and write
(f, g, h) = (fx,gy,hz). Denote by πξ,ℓ the local component at ℓ of the automorphic repre-
sentation πξ attached to ξ ∈ {f, g, h}. Then the following facts hold.
(i) The automorphic type of πξ,ℓ does not depend on the chosen specialization for ξ ∈
{f, g, h} (rigidity of automorphic types).

(ii) If ℓ ∤M , then πξ,ℓ is an unramified principal series representation for ξ ∈ {f, g, h}.
(iii) If ℓ ∣ Nf , then πf,ℓ is special, while πg,ℓ and πh,ℓ are unramified principal series.
(iv) If ℓ ∣ c2dK , then πf,ℓ is an unramified principal series, while πg,ℓ and πh,ℓ are ramified

principal series.

Proof. All the assertions regarding πf,ℓ are well-known for Hida families and for the choice
of squarefree tame level Nf and trivial character in our setting. The assertions regarding
πg,ℓ and πh,ℓ follow from the explicit description of the Weil-Deligne representations which
correspond to them via the local Langlands correspondence. Here we use the assumption
that dK is odd and that the prime divisors of c split in K to grant that the restriction of
Vp(g) and Vp(h) to a decomposition group at ℓ is reducible when ℓ ∣ dK . □

Along the lines of [Hsi21, proposition 6.12], we can thus define the so-called fudge
factors at the primes dividing M .

Proposition 4.9: For each ℓ ∣ M , there exists a unique element ffgh,ℓ ∈ R
×
fgh such that

for all w ∈ Ωfgh it holds
(ffgh,ℓ)w = IΠw,ℓ ,

with IΠw,ℓ as in proposition 2.6.
Proof. This is proven (adapting Hsieh’s methods) in the same way as in [Fuk22, section
5.1]. □
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Definition 4.10: We define the element

Lfp(f ,g,h) ∶=L f
p (f ,g

∗,h∗) ⋅ ∏
ℓ∣M

f
−1/2
fgh,ℓ ∈ Rfgh

and call it the square root f -unbalanced p-adic triple product L-function attached to our
triple (f ,g,h).

Corollary 4.11: With the above notation, for all w ∈ Ωfgh lying in the f -unbalanced
region, it holds

(4.6) (Lfp(f ,g,h)(w))
2 =

L∗(Π,1/2)

ζQ(2)2 ⋅Ω
2
f

⋅I unb
Πw,p .

Proof. Obvious from the formula (2.6) and the definition of Lfp(f ,g,h). □

We are left to find a more explicit description of the local integral I unb
Πw,p

. We will fix
a triple of weights w = (x, y, z) ∈ Ωfgh which is f -unbalanced. Write k = kx, l = ky,m = kz
as usual, so that k ≥ l +m. Assume furthermore that k is even.

Let (f, g, h) = (fx,gy,hz) as above and, only for this section, set

π1 ∶= πf,p ⊗ χ̃1 , π2 ∶= πg,p , π3 ∶= πh,p.

where
χ̃1 = ω

(k+l+m−6)/2 ⋅ (εxεyεz)
−1/2

Let χ1 = αf,p ⋅ χ̃1, where αf,p denotes the unramified character of Q×p such that αf,p(p) =
ap(f)p

(1−k)/2.

Then πi is an irreducible smooth representations of GL2(Qp) for i = 1,2,3 and, by our
assumptions, we know the following.

Lemma 4.12: The representations π2 and π3 are always supercuspidal. The representation
π1 satisfies one of the following:
(a) π1 is the principal series π1 = χ1 ⊞ ν1 with ν1 = ωf,pχ−11 where ωf,p is the p-component

of the central character of πf,p;
(b) π1 is the special representation π1 = χ1∣ ⋅ ∣

−1/2St.
The latter case happens if and only if x = 2 and f = f2 is p-new.
Proof. All the assertions concerning π1 are well-known for Hida families. The fact that
π2 and π3 are always supercuspidal follows from the fact that g and h are theta series
attached to a Hecke character of K ramified at p (recall that the prime p is inert in K by
assumption). □

Proposition 4.13: In the above setting, we have that

I unb
Πw,p =

L(π2 ⊗ π3 ⊗ χ1,1/2)

ε(π2 ⊗ π3 ⊗ χ1,1/2) ⋅L(π2 ⊗ π3 ⊗ ν1,1/2) ⋅L(π1 ⊗ π2 ⊗ π3,1/2)
.

Proof. This follows adapting [Hsi21, proposition 5.4] in the same way as it is suggested
in [Fuk22, remark 3.4.8]. □
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We can give an even more explicit description of I unb
Πw,p

. Write φ (resp. ψ) to denote
- again only in this section - the p-component of φφφy⋅z (resp. ψψψy/z) seen as Hecke character
of K. Let also µ1 and µ2 denote the characters of Qp2 given by

µ1 = (αf,p ⋅ ω
−1/2
f,p ) ○NQp2/Qp

, µ2 = (α
−1
f,p ⋅ ω

−1/2
f,p ) ○NQp2/Qp

and set π′1 = πf,p ⊗ ω
−1/2
f,p .

Proposition 4.14: With the above notation, it holds I unb
Πw,p

= Iφ,w ⋅ Iψ,w, where for
η ∈ {φ,ψ} we set

(4.7) Iη,w ∶=
L(π(ηµ1),1/2)

ε(π(ηµ1),1/2) ⋅L(π(ηµ2),1/2) ⋅L(π′1 ⊗ π(η),1/2)
.

Moreover one can compute Iη,w as follows.
(1) Assume that we are in case (a) of lemma 4.12 and that the character ηµ1 is unramified,

then

Iη,w = (1 −
pk−2

ap(f)2
)

2

.

(2) Assume that we are in case (b) of lemma 4.12 and that the character ηµ1 of Q×p2 is
unramified, then

Iη,w = 1 −
pk−2

ap(f)2
= 1 − ap(f)

−2 .

(3) Assume that the character ηµ1 of Q×p2 is ramified of level n, then

Iη,w = (
p

ap(f)2
)

n

⋅
pn(k−2)

W (η̃)
,

where η̃ is the unitary character of Qp2 given by ηµ1 on Z×p2 and such that η̃(p) = 1

and W (η̃) denotes the root number of η̃, defined as

W (η̃) = ε(η̃,1/2) ,

which is an algebraic integer of complex absolute value 1.

Proof. The factorization I unb
Πw,p

= Iφ,w ⋅Iψ,w follows directly from the corresponding fac-
torization at the level of Galois representations given in lemma 4.7 and the local Langlands
correspondence for GL2(Qp). Hence we know that

Iη,w =
L(ηµ1,1/2)

ε(ηµ1,1/2) ⋅L(ηµ2,1/2) ⋅L(π′1 ⊗ π(η),1/2)
.

Now note that for η ∈ {φ,ψ} we have that ηµ1 is a unitary character Q×p2 → C×, since φφφy⋅z
and ψψψy/z are anticyclotomic and µi is unitary for i = 1,2. The fact that φφφy⋅z and ψψψy/z are
anticyclotomic also implies that η(p) = 1.

We can proceed depending on the three cases, applying the known facts from Tate’s
thesis for the definition local L-factors and ε-factors attached to Hecke characters.
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(1) If ηµ1 is unramified, then ε(ηµ1,1/2) = 1. Moreover, if π′1 is the unramified principal
series π′1 = αf,p ⋅ω

−1/2
f,p ⊞α

−1
f,p ⋅ω

−1/2
f,p , then L(π′1 × π(η), s) = L(ηµ1, s) ⋅L(ηµ2, s). Hence

Iη,w = L(ηµ2,1/2)
−2 = (1 − ηµ2(p)⋅

−1 )
2
= (1 −

pk−2

ap(f)2
)

2

.

(2) If π′1 = αf,p ⋅ ω
−1/2
f,p ∣ ⋅ ∣

−1/2St, then L(π′1 × π(η), s) = L(ηµ1, s). Hence

Iη,w = L(ηµ2,1/2)
−1 = 1 − ηµ2(p)p

−1 = 1 − ap(f)
−2 ,

where we used that this situation can only occur with x = k = 2.
(3) If ηµ1 is ramified of level n (so that necessarily also ηµ2 is ramified), all the L-factors

involved are equal to 1, so that Iη,w = ε(ηµ1,1/2)
−1 and by Tate’s thesis we know

ε(ηµ1,1/2) = ηµ1(p)
n ⋅ ε(η̃,1/2). Hence

Iη,w = ε(ηµ1,1/2)
−1 = ηµ1(p)

−n ⋅W (η̃)−1 = (
p

ap(f)2
)

n

⋅
pn(k−2)

W (η̃)
.

□

Remark 4.15: We observe that the results of the above computation match perfectly the
shape of the modification of the Euler factor at p (for the Galois theoretic side) described
in [Coa91, pagg. 162-163], also in the cases of bad reduction at p. ▲

We have some control on the root numbers appearing in proposition 4.14 (case (3)).

Lemma 4.16: With the notation introduced above, if x = k ≡ 2 mod (p − 1) and the char-
acter η ∈ {φ,ψ} is ramified, then W (η̃) = W (η) ∈ {±1}. Moreover the sign W (φ) (resp.
W (ψ)) depends only on the parity of j1 = (l +m − 2)/2 (resp. j2 = (l −m)/2).
Proof. Note that under our assumptions the character denoted µ1 above is unramified
and η = η̃ is of finite order and trivial on Q×p . We can thus apply [MS00, proposition 3.7] to
a suitable twist of η to deduce that W (η) = η−1(α), where α ∈ Q×p2 is a primitive 2(p−1)-th
root of unit, so that 1 = η(−1) = η(α)−2. In particular this shows that W (η) ∈ {±1}.

Recall that Z×p2 = µp2−1 × (1 + pZp2). Thus the only way one can affect the sign W (η)

is changing the weights l,m. More precisely, one can check (cf. remark 4.2) that

φ∣µp2−1 = η1η2∣µp2−1 ⋅ (−)
(p−1)(l+m−2)

2 , ψ∣µp2−1 = η1η
σ
2 ∣µp2−1 ⋅ (−)

(p−1)(l−m)
2 .

Writing α = ζ(p+1)/2 for ζ a primitive (p2−1)-th root of 1, we see that the sign W (φ) (resp.
W (ψ)) depends only on the parity of j1 = (l +m − 2)/2 (resp. j2 = (l −m)/2). □

4.4. Anticyclotomic p-adic L-functions

As in the introduction, let Hn denote the ring class field of K of conductor cpn and let
H∞ be the union of all the Hn’s. It follows that the big characters φφφ and ψψψ (defined in
equation 4.4) factor through G∞ ∶= Gal(H∞/K). With the same notation as in remark 3.16,
we can identify Γ− = Gal(K−∞/K) (the Galois group of the anticyclotomic Zp-extension of
K) with the maximal Zp-free quotient of G∞, i.e. there is an exact sequence

0→∆c → G∞ → Γ− → 0

of abelian groups with ∆c a finite group and Γ− ≅ Zp. We fix a non-canonical isomorphism
G∞ ≅∆c × Γ

− once and for all. Notice that λλλac will factor through Γ−.
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As in lemma 4.16, set j1 ∶= l+m−2
2 and j2 ∶= l−m

2 . If we assume moreover that the triple
of weights w = (k, y, z) is f -unbalanced (i.e. k ≥ l +m), then it follows immediately that
∣ji∣ <

k
2 for i = 1,2.

Building up on previous work of Bertolini-Darmon ([BD96], [BD98]) and Chida-Hsieh
([CH18]), Castella and Longo in [CL16] have constructed so-called big theta elements,
denoted

(4.8) ΘHeeg
∞ (f) ∈ Rf ,Γ− ∶= Λf ⊗̂OL

OL[[Γ
−]]

attached to the Hida family f and the quadratic imaginary field K (satisfying a suitable
Heegner hypothesis relative to the tame level of f). The two variables are given by the
weight specializations for f and by continuous characters ν̂ ∶ Γ− → C×p such that the
associated algebraic Hecke character ν ∶ A×K/K

× → C× has infinity type (j,−j) with ∣j∣ <
k/2. We let Xcrit

p,k to denote the set of characters ν̂ satisfying such requirement for a fixed k.
The specializations of the square of ΘHeeg

∞ (f) at (k, ν̂) with k ≥ 2 even integer and ν̂ ∈ Xcrit
p,k

interpolate the (algebraic part of the) special values L(f○k /K,ν, k/2).

Following the strategy of Castella and Longo applied to the more general construction
of Hung ([Hun17]), one can construct a big theta element ΘHeeg

∞ (f , χt) ∈ Rf ,Γ− associated
with the Hida family f and a branch character χt of conductor c (i.e. a character of the
finite group ∆c).

Remark 4.17: The construction of ΘHeeg
∞ (f , χt) depends on the following choices that we

fix from now on:
(a) a factorization N+fOK = N+ ⋅N+, where recall that N+f is the product of the prime

divisors of Nf that split in K;
(b) a family of quaternionic modular forms Φ associated to f , with the property that

there exists an open neighbourhood Uf of 2 in WΛf
(OL) such that for all k ∈ Uf ∩Z≥2

it holds
Φk = λB,k ⋅ φk ,

where λB,k ∈ L× and φk corresponds to f○k via a version of the Jacquet-Langlands
correspondence.
We can (and will) choose the following normalizations for Φ:

(i) λB,2 = 1;
(ii) ηf○k ,N− = 1 for k ∈ Uf ∩Z>2.
The period ηf○k ,N− (appearing in the following proposition) is defined as a suitable Petersson
norm of φk, which we can normalize to be 1 (this will determine φk up to sign). We refer
to [BD07, theorem 2.5] for the existence of Φ and its properties and to [CH18, equations
3.9 and 4.3] for the description of ηf○k ,N− as Petersson norm (Chida-Hsieh’s notation is
⟨fπ′ , fπ′⟩R). ▲

Proposition 4.18: Fix an even integer k ∈ Uf ∩Z≥2 and a character ν̂ ∈ Xcrit
p,k of conductor

pn. Write f = fk and f○ = f○k (with the usual conventions). Then:

(4.9) (ΘHeeg
∞ (f/K,χt))

2
(k, ν̂) = λB(k)

2 ⋅Cp(f,χtν) ⋅ ep(f,χtν) ⋅
L(f○/K,χtν, k/2)

Ωf○,N−

where:
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(i) setting uK =
#O×K

2 and δK ∶=
√
dK , one has

Cp(f,χtν) ∶= (−1)
2+2j−k

2 ⋅ Γ(k/2 + j) ⋅ Γ(k/2 − j) ⋅ c ⋅ δk−1K ⋅ u2K ⋅ ε(πf,p,1/2) ⋅ χtν(N
+);

(ii)

ep(f,χtν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
p

ap(f)2
)

n

⋅ pn(k−2) if n > 0

(1 −
pk−2

ap(f)2
)

2

if n = 0 and f is p-old

1 −
pk−2

ap(f)2
if n = 0 and f is p-new

;

(iii) Ωf○,N− is Gross’s period, that we can write as

(4.10) Ωf○,N− =
(4π)k ⋅ ∥f○∥2Pet ⋅ ζQ(2) ⋅ [SL2(Z) ∶ Γ0(Nf)]

2 ⋅ ηf○,N−
.

Proof. This follows from the work of Chida-Hsieh [CH18], Hung [Hun17] and Castella-
Longo [CL16]. We refer in particular to [CL16, section 4.2] and to [Hun17, theorem 5.6]
for the interpolation formula. □

Remark 4.19: We keep the notation of proposition 4.18. The Heegner hypothesis (iii) on
Nf in assumption 4.1 implies that the sign of the functional equation for L(f○/K,χ, s)
is +1 for every anticyclotomic Hecke character χ of K of conductor coprime to Nf ⋅ dK
(unless k = 2, f2 is p-new and χ is unramified at p), i.e. we are in the so-called definite
setting. One of the main results of [Hun17] (namely theorem C in the introduction),
generalizing work of Vatsal [Vat02] and Chida-Hsieh [CH18], implies that in our setting it
holds L(f○/K,χtν, k/2) ≠ 0 for all but finitely many ν̂ ∈ Xcrit

p,k . ▲

4.5. Factorization of the triple product p-adic L-function

We consider the automorphism s of RK⊗̂OL
RK in ĈOL

given by the assignment

[γ] ⊗ [δ] ↦ [γ1/2δ1/2] ⊗ [γ1/2δ−1/2]

on group-like elements (note that again it is important that p ≠ 2 for this to be a well-
defined automorphism).

Let again K∞ denote the (unique) Z2
p-extension of K. Recall (remark 3.16) that the

character ⟨λ⟩ induces an isomorphism Γ∞ ≅WK . The natural projection Γ∞↠ Γ− can be
described as γ ↦ γ1/2(γσ)−1/2. Accordingly, we get a morphism

(4.11) τ ∶ RK ↠OL[[Γ
−]] .

Notation 4.20: We set φt ∶= η1η2∣∆c and ψt ∶= η1η
σ
2 ∣∆c . With respect to the chosen

isomorphism G∞ ≅ ∆c × Γ
−, we also define the characters of Γ− given by φ− ∶= η1η2∣Γ− and

ψ− ∶= η1η
σ
2 ∣Γ− .

Note that the assigments [γ] ↦ φ−(γ)[γ] (resp. [γ] ↦ ψ−(γ)[γ]) define OL-linear
automorphisms φ− ∶ OL[[Γ−]] ≅ OL[[Γ−]] (resp. ψ− ∶ OL[[Γ−]] ≅ OL[[Γ−]]), since ∣φ−(γ) −
1∣p < 1 (resp. ∣ψ−(γ) − 1∣p < 1) for γ ∈ Γ−. By slight abuse of denote by φ− (resp. ψ−) the
automorphism of Rf ,Γ− given by the identity on Λ and φ− (resp. ψ−) on OL[[Γ−]].
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Lemma 4.21: Consider the composition

prac ∶ Rfgh
1⊗s
ÐÐ→
≅

Rfgh
1⊗τ⊗τ
ÐÐÐ→ Λf ⊗̂OL

OL[[Γ
−]]⊗̂OL

OL[[Γ
−]] .

Given a specialization (k, ν̂, µ̂) ∈ Wcl
Λf ,Z × X

crit
p,k × X

crit
p,k (with k ≥ 2 even integer), then the

specializations in Ωfgh which lift (k, ν̂, µ̂) are f -unbalanced triples w = (k, y, z) with the
property that

(4.12) ν̂ = (yz)∣Γ− ⋅ ⟨λ⟩
σ⟨λ⟩−1 , µ̂ = (y/z)∣Γ− .

Moreover, we can always find such y ∈ Ωg and z ∈ Ωh for given ν̂ and µ̂ such that w =
(k, y, z) is f -unbalanced.
Proof. This is an easy exercise. □

Notation 4.22: Now let σN+ ∈ G∞ denote the projection to G∞ of the element of GK
corresponding to N+ by class field theory. We write (σc, γ−2N+) ∶= σN+ ∈ ∆c × Γ

− ≅ G∞ to
denote the components of σN+ according to the fixed isomorphism ∆c × Γ

− ≅ G∞ (note
that such γN+ ∈ Γ

− is well-defined). We also choose an element αc ∈ Q̄ such that α−2c =
φt(σc) ⋅ ψt(σc). We will also write

R− ∶= (Λf ⊗̂OL
OL[[Γ

−]]⊗̂OL
OL[[Γ

−]]) [1/p]

in what follows.

Proposition 4.23: There exists an element Afgh ∈ R
− such that

(i) for infinitely many k ∈ Uf ∩Z>2 and for all ν̂, µ̂ ∈ Xcrit
p,k , it holds (with f = fk as usual)

Afgh(k, ν̂, µ̂) =
ηf

λB(k) ⋅ Ep(f,Ad) ⋅ δk−1K

⋅ φ−ν̂(γN+) ⋅ ψ
−µ̂(γN+) ⋅

αc
c ⋅ u2K

,

(ii) for all ν̂, µ̂ ∈ Xcrit
p,2 , Afgh(2, ν̂, µ̂) ≠ 0.

Proof. It follows from [BSV22a, lemma 3.3] that there exists an element Af ∈ Λf [1/p]
such that for infinitely many k ∈ Uf ∩Z>2 it holds

Afk =
ηf

λB(k) ⋅ Ep(f,Ad) ⋅ δk−1K

.

and such that Af(2) ≠ 0. We now set

u ∶=
αc ⋅ φ

−(γN+) ⋅ ψ
−(γN+)

c ⋅ u2K
∈ L× .

Then the element Afgh ∶= u ⋅ (Af ⊗̂[γN+]⊗̂[γN+]) ∈ R
− visibly satisfies the required inter-

polation property (cf. notation 4.22). □

Definition 4.24: In the setting 4.1, the image of Lfp(f ,g,h) under the map prac of lemma
4.21 is denoted by Lfp,ac(f ,g,h) and called the anticyclotomic projection of Lfp(f ,g,h).

Theorem 4.25: Under the natural identification

R− = (Λf ⊗̂OL
OL[[Γ

−]]⊗̂OL
OL[[Γ

−]]) [1/p] ≅ (Rf ,Γ−⊗̂Λf
Rf ,Γ−) [1/p] ,

we have that

(4.13) Lfp,ac(f ,g,h) = ±Afgh ⋅ (φ
− (ΘHeeg

∞ (f , φt)) ⊗̂ ψ
− (ΘHeeg

∞ (f , ψt)))

as elements of R−.
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Proof. It is enough to check that squares of both sides of equation 4.13 agree, when
specialized to (k, ν̂, µ̂) for infinitely many k ∈ Uf ∩ Z>2 and for every ν̂ and µ̂ finite order
characters of Γ− (so that φ−ν̂ and ψ−µ̂ lie in Xcrit

p,k for every such k).

We have
Lfp,ac(f ,g,h)(k, ν̂, µ̂) = L

f
p(f ,g,h)(k, y, z)

for any y, z satisfying condition 4.12.

On the other hand we have that

φ− (ΘHeeg
∞ (f , φt)) (k, ν̂) = Θ

Heeg
∞ (f , φt)(k,φ

−ν̂)

and
ψ− (ΘHeeg

∞ (f , ψt)) (k, µ̂) = Θ
Heeg
∞ (f , ψt)(k,ψ

−µ̂) .

The result follows putting together the following ingredients:
(i) the factorization of the corresponding complex L-functions (cf. equation (4.2) and

lemma 4.7);
(ii) the comparison formulas (4.6) and (4.9);
(iii) our explicit computations for the local factor I unb

Πw,p
(cf. proposition 4.14 and lemma

4.16);
(iv) the control on the factor Afgh, as described in proposition 4.23.

□
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CHAPTER 5

Derivatives of triple product p-adic L-functions and Heegner
points

In this chapter we describe some applications of theorem 4.25. We keep the notation
as in the previous section (cf. setting 4.1).

5.1. Heegner points and Tate’s parametrization

Let p > 3 denote our fixed prime and let E/Q be an elliptic curve with multiplicative
reduction at p. This means that the conductor of E is of the form NE = N

○
E ⋅p with p ∤ N○E .

We let fE ∈ S2(Γ0(NE)) to denote the cuspidal newform associated to E via modularity,
whose q-expansion at ∞ will be denoted

fE =
+∞

∑
n=1

an(E)q
n .

In particular we have an(E) ∈ Z for all n ≥ 1 and ap(E) = 1 (resp. ap(E) = −1) if E has
split (resp. non-split) multiplicative reduction at p. We write α ∶= ap(E) ∈ {±1} in the
sequel.

Hida theory shows that there exists a unique primitive Hida family

f ∈ Sord(Nf ,1,Λf)

of tame level Nf ∶= N
○
E and trivial tame character, such that f2 = fE .

This family will play the role of the Hida family f of the previous section. As for
the rest, we keep working in the setting 4.1 and, possibly, add further restrictions. In
particular, the conductor NE of our elliptic curve E is squarefree and to satisfies a suitable
Heegner hypothesis with respect to the fixed quadratic imaginary field K.

For our applications, we are led to impose one further condition throughout this section.

Assumption 5.1: φ = η1η2 has conductor prime to p and ψ = η1ησ2 has non-trivial anticy-
clotomic part ψ−.

With the notation of section 4, it follows that φ− is trivial and that we can identify
φt = φ.

Following the discussion in [BD07, section 4.3], one can define a Heegner point

(5.1) Pφ ∈

⎧⎪⎪
⎨
⎪⎪⎩

E(Hφ)
φ if φ ≠ 1

E(K) ⊗Q if φ = 1

associated with φ, essentially coming from a parametrisation of E in terms of the Jacobian
of a suitable Shimura curve. Here Hφ is the field cut out by φ. Note that, since p is inert
in K and Hφ is contained in the Hilbert class field of K, it follows that p splits completely
in Hφ, so that we can fix an embedding Hφ ⊂ Qp2 and view the point Pφ as a point
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in E(Qp2) ⊗Q. Under this identification, the Galois actions on Pφ of the Frobenius (as
generator of Gal(Qp2/Qp)) and of any Frobenius element for the abelian extension Hφ/Q
coincide. It follows that the points

P ±φ,α ∶= Pφ ± α ⋅ P
Frobp
φ ∈ E(Hφ) ⊗Q .

do not depend on the choice of prime p of Hφ above p. In what follows, we fix the choice
induced by our fixed embedding ιp ∶ Q̄ ↪ Q̄p and we view the points Pφ and P ±φ,α as
elements of E(Qp2) ⊗Q under such an embedding.

Since E has multiplicative reduction at p, it admits a Tate parametrisation, i.e., there
is an isomorphism of rigid analyitic varieties

(5.2) ΦTate ∶ Grig
m,Qp2

/qZE
≅
Ð→ Erig

Qp2
.

One can define the branch logqE ∶ C
×
p → Cp of the p-adic logarithm, uniquely determined

by the condition logqE(qE) = 0, where qE ∈ pZp is Tate’s p-adic period associated with E.
This yields a logarithm

(5.3) logE ∶= logqE ○Φ
−1
Tate ∶ E(Qp2) → Qp2

at the level of Qp2-rational points.

5.2. Restriction to the line (k,1,1)

We now restrict our attention to the line (k,1,1). Recall that y = 1 (or z = 1) means
that we consider the specializations given by y([u]) = z([u]) = u on group-like elements
u ∈WK . For the first variable, we let k vary in Uf ∩Z≥2 (same notation as in remark 4.17).
The corresponding characters of Γ− via equation 4.12 are clearly both the trivial character
1Γ− .

An easy check shows that, with this choice of specializations, the square of the element

Lp(f/K,φ) ∶= Θ
Heeg
∞ (f , φt)( ⋅ ,1Γ−) ∈ Λ

interpolates the algebraic part of the special values L(f○k /K,φ, k/2), at least when k > 2.
For k = 2 the p-adic multiplier ep(fE , φ) (cf. proposition 4.18) vanishes, as a manifestation
of a so-called exceptional zero for our p-adic L-function.

Moreover, we see that the element Lp(f/K,φ) coincides with the square-root Hida-
Rankin p-adic L-function attached to f and φ in [BD07]. This follows comparing the above
stated interpolation formula 4.9 and the one of [BD07, theorem 3.8].

We can now state one of the main results of [BD07] (extended to the case of not
necessarily quadratic characters φ = η1η2).

Theorem 5.2: ([BD07, theorem 4.9]) In the setting described above, it holds

d

dk
Lp(f/K,φ)∣k=2 =

logE(P
+
φ,α)

2
.

Definition 5.3: We set Lp(f/K,ψ) ∶= ψ− (Θ
Heeg
∞ (f , ψt)) ( ⋅ ,1Γ−) ∈ Λf and we define the

restriction to the line (k,1,1) of Lfp(f ,g,h) as

Lfp(f , g, h) ∶= L
f
p(f ,g,h)( ⋅ ,1,1) = L

f
p,ac(f ,g,h)( ⋅ ,1Γ− ,1Γ−) ∈ Λf .
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Corollary 5.4: In the above setting (in particular under assumption 5.1), assume that
L(fE/K,ψ,1) ≠ 0. Then Lfp(f , g, h)(2) = 0 and

d

dk
Lfp(f , g, h)∣k=2 =

cE
2
⋅ logE(P

+
φ,α) ,

where cE = ±Afgh(2, ν̂1,1, µ̂1,1) ⋅ Lp(f/K,ψ)(2) ∈ Q̄×p .
In particular, d

dkL
f
p(f , g, h)∣k=2 = 0 if and only if the point P +φ,α is of infinite order.

Proof. This follows immediately from the above theorem 5.2, the running hypothesis,
lemma 4.23 and the factorization proven in theorem 4.25. Note that

Lp(f/K,ψ)(2) = Θ
Heeg
∞ (f , ψt)(2, ψ

−) ≠ 0 .

Indeed, by assumption 5.1, we have that ψ− is non-trivial, so that the p-adic multiplier
ep(fk, ψtψ

−) of the interpolation formula 4.9 never vanishes for k ∈ U ∩Z≥2. □

Remark 5.5: Note that (cf. remark 4.19) the condition L(fE/K,ψ,1) ≠ 0 is generically
expected to be satisfied. ▲

5.3. Restriction to the line (2, ν, ν)

In this section we fix the weight k = 2 and we let the anticyclotomic twists vary along
the diagonal of Xcrit

p,2 ×X
crit
p,2 . In this situation, Xcrit

p,2 is given by finite order characters of Γ−.

Definition 5.6: We define the restriction of Lfp(f ,g,h) to the line (2, ν, ν) as

Lfp,ac(fE ,gh) ∶= L
f
p,ac(f ,g,h)∣k=2,ν̂=µ̂ ∈ OL[[Γ

−]] .

We also set
θ∞(E/K,φ) ∶= Θ

Heeg
∞ (f , φt)∣k=2 ∈ OL[[Γ

−]]

and
θ∞(E/K,ψ) ∶= ψ

− (ΘHeeg
∞ (f , ψt))∣k=2 ∈ OL[[Γ

−]] .

One can check that, under our assumptions, the element θ∞(E/K,φ) coincides with the
theta-element defined by Bertolini-Darmon (cf. [BD96, section 2.7]) in the case of trivial
tame character and in more generality by Chida-Hsieh ([CH18]) and Hung ([Hun17]).
Similarly, the element θ∞(E/K,ψ) is essentially a shift a such a theta-element.

Any choice of topological generator γ0 ∈ Γ− gives rise to a topological isomorphism

(5.4) OL[[Γ
−]] ≅ OL[[T ]]

sending γ0 to 1 + T . One of the main results of [BD98] can be stated as follows.

Theorem 5.7: (cf. [BD98, theorem B]) The element θ∞(E/K,φ) lies in the augmentation
ideal of OL[[Γ−]]. Equivalently, viewing θ∞(E/K,φ) as an element of OL[[T ]] via the above
identification 5.4, we have

θ∞(E/K,φ) ∈ T ⋅ OL[[T ]] .

Moreover, taking derivatives we obtain
d

dT
θ∞(E/K,φ)∣T=0 = logE(P

−
φ,α),

This formula does not depend on the choice of a topological generator of Γ−.

This leads to the following result concerning our triple product p-adic L-function.
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Corollary 5.8: In the above setting (in particular under assumption 5.1), assume that
L(fE/K,ψ,1) ≠ 0. View Lfp,ac(fE ,gh) as an element of OL[[T ]] via (5.4). Then

Lfp,ac(fE ,gh)∣T=0 = 0

and
d

dT
Lfp,ac(fE ,gh)∣T=0 = cE ⋅ logE(P

−
φ,α) ,

where cE ∈ Q̄×p is the same explicit constant as in corollary 5.4.
Proof. This follows essentially from the above theorem 5.7, the factorization of theorem
4.25 and the running hypothesis, in the same way as corollary 5.4. □

5.4. A corollary

Keeping the same setting as in the previous sections (in particular assumption 5.1, we
impose moreover that φ = φt is a quadratic (or genus) character of K.

As explained in [BD07, section 3.1], if the quadratic character φ is non-trivial, it cuts
out a biquadratic extension Hφ = Q(

√
d1,
√
d2) where di is a fundamental discriminant

for i = 1,2 and d1d2 = −dK . If we define φi to be the Dirichlet character attached to the
quadratic extension Q(

√
di) for i = 1,2, one sees that φ1φ2 = εK . In particular we get

φ1(−NE)φ2(−NE) = εK(−NE) = −1

where the last equality follows from our Heegner assumption.
When φ is trivial, one sets Hφ = K (this situation corresponds to the case {d1, d2} =

{1,−dK}).

If λE ∈ {±1} denotes the eigenvalue relative to fE for the Atkin-Lehner involution wNE
,

we can always assume (up to reordering) that

φ1(−NE) = λNE
, φ2(−NE) = −λNE

.

Moreover, it follows from [BD07, corollary 4.8] that

(5.5) P
Frobp
φ = φ1(p)Pφ .

Here is a corollary combining the discussion of the previous sections.

Corollary 5.9: In the setting described by assumptions 4.1 and 5.1, assume that φ = φt
is quadratic and that L(fE/K,ψ,1) ≠ 0. Then the following facts are equivalent:
(i)

(
d

dk
Lfp(f , g, h)∣k=2 ,

d

dT
Lfp,ac(fE ,gh)∣T=0) ≠ (0,0)

(ii) The point Pφ is of infinite order.

Proof. Equation 5.5 shows that, under our assumptions,

P ±φ,α =

⎧⎪⎪
⎨
⎪⎪⎩

2 ⋅ Pφ if φ1(p)α = ±1

0 if φ1(p)α = ∓1

Then the result follows immediately from corollaries 5.4 and 5.8 and the fact that the
kernel of logE is given by finite order points in E(Qp2). □



46

CHAPTER 6

Balanced diagonal classes and the étale Abel-Jacobi map

Fix a prime number p. In this chapter we introduce the facts about étale and de
Rham cohomology of modular curves with p-adic coefficients which are needed to define
the balanced diagonal classes and the étale Abel-Jacobi map alluded to in the title above.
Most of the material is covered in more detail in [BDP13, section 1] and/or in [BSV22b,
sections 2 and 3] and in the references given therein.

6.1. De Rham of modular curves

For every integer N ≥ 5, we let Y1(N) denote the open modular curve of level Γ1(N),
defined over Z[1/N], classifying isomorphism classes of pairs (E,P ) where E is a family
of elliptic curves over a Z[1/N]-scheme S and P ∈ E(S) is a section of exact order N . The
curve Y1(N) is affine and smooth over Z[1/N]. The universal elliptic curve arising from
this moduli problem will be denoted u1(N) ∶ E1(N) → Y1(N).

As explained in [KM85, chapter 8], the normalization of the projective j-line in Y1(N)
is a smooth projective curve over Z[1/N], usually denoted by X1(N). The curve X1(N)
contains Y1(N) as an open subscheme and the complement C1(N) of Y1(N) in X1(N),
with the reduced subscheme structure, is finite and étale over Z[1/N]. It is usually called
the subscheme of cusps. Indeed, over Z[1/N, ζN ] (where ζN is a fixed primitive N -th root
of unity in Q̄), the scheme C1(N) is simply given by a disjoint union of points (usually
one refers to those as the cusps).

For any Z[1/N]-algebra R, we let Y1(N)R (resp. X1(N)R), C1(N)R) denote the base
change of Y1(N) (resp. X1(N), C1(N)) to R.

In what follows, F will be a field of characteristic zero and we write Y ∶= Y1(N)F ,
X ∶= X1(N)F , C ∶= C1(N)F . We let, moreover, u ∶ E → Y denote the universal elliptic
curve.

The notation (Tate(q), PTate)/F ((q1/d)) will denote the Tate elliptic curve Gm/q
Z, with a

Γ1(N)-level structure PTate defined over F [ζN ]((q1/d)) for some d ∣ N . We let ωcan denote
the canonical differential ωcan ∶= dT /T over F ((q)), where T is the parameter on Gm. The
level structure PTate corresponds (over F [ζN ]((q1/d))) to a point of order N on Tate(q),
i.e., a point of the form ζiNq

j/d for some i ∈ {1, . . . ,N − 1} and j ∈ {1, . . . , d − 1} with
(i,N) = 1 and (j, d) = 1.

We let ω ∶= u∗Ω1
E /Y be the line bundle of relative differentials on E /Y and we let

H = R1u∗(Ω
●
E /Y ) be the relative de Rham cohomology sheaf on Y . The latter is a rank 2

vector bundle over Y , equipped with Hodge filtration

(6.1) 0→ ω →H → ω−1 → 0 .
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The vector bundle H is also equipped with the so-called Gauss-Manin connection

(6.2) ∇ ∶H →H ⊗Ω1
Y .

The Kodaira-Spencer map is the composite

(6.3) KS ∶ ω →H
∇
Ð→H ⊗Ω1

Y → ω−1 ⊗Ω1
Y

induced by the Gauss-Manin connection and the Hodge filtration. It turns out that KS
is an OY -linear isomorphism of sheaves, giving rise to an identification ω2 ≅ Ω1

Y of line
bundles on Y .

One can extend ω and H to sheaves on the projective curve X, which will be again
denoted (resp.) ω and H . One way to proceed is to view X as moduli space for a suitable
moduli problem involving generalised elliptic curves. Since these constructions are well-
known and appear often in the literature, we only introduce the facts which are needed in
this work.

The sheaf ω on X is essentially characterised by the fact that for F = C there is an
identification H0(X,ωk) = Mk(Γ1(N)) (where Mk(Γ1(N)) denotes the C-vector space
of holomorphic modular forms of level Γ1(N)). The local sections of ω in the (formal)
neighbourhood Spec(F [ζN ][[q

1/d]]) of the cusp attached to the pair (Tate(q), ζNq1/d) are
expressions of the form h ⋅ ωcan with h ∈ F [ζN ][[q

1/d]] and ωcan the canonical differential
on the Tate curve.

The extension of H is then determined by the extension of ω and the Hodge filtration
(6.1). The Gauss-Manin connection ∇ extends to a connection with logarithmic poles at
the cusps

(6.4) ∇ ∶H →H ⊗Ω1
X⟨C⟩

The local sections of H in a neighbourhood of (Tate(q), ζNq1/d) are F [ζN ][[q1/d]]-
linear combinations of ωcan and the local section ηcan, which is defined by the equation

(6.5) ∇ωcan = ηcan ⊗
dq

q

Over Spec(F [ζN ][[q
1/d]]), the Gauss-Manin connection is completely determined by the

above equation and by ∇ηcan = 0.

The Kodaira-Spencer map gives rise to an isomorphism σ ∶ ω2 ≅Ð→ Ω1
X⟨C⟩, which over

Spec(F [ζN ][[q
1/d]]) is simply described by σ(ω2

can) =
dq
q .

A possible definition of modular forms of weight k ≥ 2 and level Γ1(N) with F -
coefficients is then given by

Mk(Γ1(N), F ) ∶=H
0(X,ωk) =H0(X,ωk−2 ⊗Ω1

X⟨C⟩)

with subspace of cusp forms defined as

Sk(Γ1(N), F ) ∶=H
0(X,ωk−2 ⊗Ω1

X) .

We now let, for r ≥ 1, Hk ∶= Sym
r(H ) (which we view as a sheaf on Y or X, depending

on the context). The sheaf Hr is endowed with a Hodge filtration

Hr ⊃Hr−1 ⊗ ω ⊃ ⋯ ⊃ ω
r

induced by the filtration (6.1). We will set FiliHr ∶=Hr−i ⊗ ω
i for i = 0, . . . , r.
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The Gauss-Manin connection 6.4 extends to a connection ∇r ∶Hr →Hr⊗Ω
1
X⟨C⟩ which

satisfies Griffiths transversality

∇(Fili+1Hr) ⊆ Fil
iHr ⊗Ω1

X⟨C⟩ (0 ≤ i ≤ r − 1)

and induces isomorphisms on the graded pieces

Gri+1Hr ≅ GriHr ⊗Ω1
X⟨C⟩ (0 ≤ i ≤ r − 1) .

We let L ∶= HomOX
(H ,OX) be the dual of H and for r ≥ 1 we set Lr ∶= Tsym

r(L )
(the notation Tsym refers to the submodule of symmetric tensors). We use the same
notations for the restrictions of these sheaves to Y . Also L (and consequently Lr) is
equipped with an induced Hodge filtration and integrable connection. For F ∈ {H ,L }
we finally define the de Rham cohomology groups

(6.6) H i
dR(X,Fr) ∶= Hi(X,Fr

∇r
Ð→Fr ⊗Ω1

X⟨C⟩) ,

where H denotes hypercohomology. These de Rham cohomology groups are naturally
endowed with a two-step descending filtration. In particular, one has an identification

FiliH1
dR(X,Hr) ⊗F F [ζN ] =Mr+2(Γ1(N), F ) ⊗F F [ζN ] i = 1, . . . , r + 1 .

Since we are working with connections with logarithmic poles at the cusps, the de Rham
cohomology groups defined above can actually be defined on the open modular curve Y ,
i.e., there is a natural isomorphism of filtered F -vector spaces

(6.7) H i
dR(X,Fr) ≅H

i
dR(Y,Fr ∣Y ) .

One can similarly define de Rham cohomology with compact support H i
dR,c(Y,Fr).

Over Y , there is a perfect pairing (essentially coming from Poincaré duality on the
universal elliptic curve E )

( , ) ∶H ⊗OY
H → OY [−1] .

Here OY [n] is the sheaf OY , with trivial connection and shifted filtration (i.e., FiljOY [n] =
OY if j ≤ −n and FiljOY [n] = 0 if j ≥ 1 − n). Such a pairing induces a perfect duality

(6.8) ( , )r ∶Hr ⊗OY
Hr → OY [−r] ,

which at the level of de Rham cohomology becomes a perfect duality

(6.9) ( , )dR,Y,r ∶H
1
dR(Y,Hr) ⊗F H

1
dR,c(Y,Hr) →H2

dR,c(Y,OY [−r]) ≅ F [−r − 1] .

6.2. Étale cohomology of modular curves

The sheaves Hr (resp. Lr) admit (Kummer) pro-étale versions. One can work in the
more classical setting of [FK88, §12] and obtain locally constant p-adic sheaves Hr (resp.
Lr) on Y1(N), so that it makes sense to study the cohomology groups Hj

ét(Y1(N)R,Hr)

(resp. Hj
ét(Y1(N)R,Lr)) for any Q-algebra R (cf. [BSV22b, section 2.3] and the references

therein). In this section, we prefer to focus on the rigid analytic (or better adic) setting
and to adopt the more modern approach of [Sch13] (and its various generalizations, for
instance [Dia+23]).

In this section we denote by F a complete discretely valued field of mixed characteristic
(0, p) with perfect residue field and fixed algebraic closure F̄ .



Balanced diagonal classes and the étale Abel-Jacobi map 49

Notation 6.1: For a rigid analytic variety S over F , we write Ẑp,S (resp. Q̂p,S) to denote
the constant sheaf on Sproét associated to Zp (resp. Qp) and for a Zp-local system L (resp.
Qp-local system) on Sét, we let L̂ to denote the lisse Ẑp,S-module (resp. Q̂p,S-module) on
Sproét associated with L (cf. the discussion in [Sch13, section 8.2]). We let Hj

ét(S,L) (resp.
Hj

ét(SF̄ ,L)) denote the p-adic étale cohomology groups.
For A a complete subring of Cp and F a Ẑp,S-module, we also set FA ∶= F ⊗Ẑp,S

ÂS ,

where ÂS is the constant pro-étale sheaf attached to A.

Remark 6.2: According to [Sch13, proposition 8.2], the association L → L̂ defines an
equivalence between the category of Zp-local systems on Sét and the category of lisse Ẑp,S-
modules on Sproét. ▲

In what follows we view the algebraic varieties Y,X,E introduced in section 6.1 as
rigid analytic varieties over Qp (or better locally noetherian adic spaces over Spa(Qp,Zp)),
without changing the notation.

Definition 6.3: We let H1(E ) ∶= R1u∗Ẑp,E to be the first relative pro-étale cohomology
sheaf of the family u ∶ E → Y . We also let Tp(E ) ∶= HomẐp,Y

(H1(E ), Ẑp,Y ) denote the
relative p-adic Tate module of the family u ∶ E → Y .

The sheaves H1(E ) and Tp(E ) are (pro-étale versions of) rank 2 Zp-local systems. The
perfect relative p-adic Weil pairing can then be seen as a perfect pairing

(6.10) Tp(E ) ⊗Ẑp,Y
Tp(E ) → Ẑp,Y (1) ,

under which one obtains an isomorphism Tp(E ) ≅ H1(E )(1).
Here Ẑp,Y (1) is the Tate twist of Ẑp,Y (one can obtain it as usual as lim

←Ðn
µpn,Y with

Galois action given by the p-adic cyclotomic character). More generally for a lisse Ẑp,Y -
module and every n ∈ Z, we let F(n) ∶= F ⊗Ẑp,Y

Ẑp,Y (n) (with the usual conventions on
higher Tate twists).

Definition 6.4: For every integer r ≥ 0, we define Ẑp,Y -modules Hr ∶= Sym
r(H1(E )) and

Lr ∶= Tsym
r(Tp(E )) on Yproét.

Clearly, the relative Weil pairing (6.10) induces for all integers r ≥ 0 an isomorphism

(6.11) sr ∶Hr,Qp

≅
Ð→Lr,Qp(−r)

(we have to invert p to obtain an isomorphism when we pass to Symr and Tsymr).
The careful reader will immediately notice the abuse of notation for the symbols Hr

and Lr. This is justified in the following remark.

Remark 6.5: Let S be any smooth rigid analytic variety over Qp (or any smooth locally
noetherian adic space over Spa(Qp,Zp)). As explained in [Sch13] (and extended in [Dia+23]
to the case of not necessarily proper varieties), when a Zp-local system L on Sét is de
Rham (cf. [Sch13, definition 8.3], [LZ17, theorem 3.9]), one can attach to it a pair (E ,∇),
where E is a filtered vector bundle on S and ∇ ∶ E → E ⊗ Ω1

S is an integrable connection
satisfying Griffiths transversality, in such a way that for all integers j ≥ 0 there is a canonical
isomorphism

(6.12) BdR ⊗Zp H
j
ét(SQ̄p

,L) ≅ BdR ⊗Qp H
j
dR(S,E) ,
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implying that

DdR(H
j
ét(SQ̄p

,L)) ∶=H0 (Qp,BdR ⊗Zp H
j
ét(SQ̄p

,L)) ≅Hj
dR(S,E) .

Let us mention here two more features of this kind of results.
(i) One can extend such result to a comparison between Kummer-étale cohomology and

de Rham cohomology with poles along a divisor, considering the datum of S as above
together with a normal crossing divisorD ⊂ S. More precisely one can define a notation
of de Rham Kummer-étale Zp-local system on (S,D) and, given such a local system
L, one can attach to it a pair (E ,∇), where E is a filtered vector bundle on S and ∇
is an integrable log connection (same as 6.4 above) satisfying Griffiths transversality
(cf. [DF23, theorem 1.7]). We will need this when S = X1(N)Qp and D = C1(N)Qp

(the cusps).
Moreover, the étale analogue of the isomorphism 6.7 holds, i.e., there are canonical

identifications

(6.13) H i
két(X1(N)Q̄p

,Fr(n)) ≅H
i
ét(Y1(N)Q̄p

,Fr(n))

for F ∈ {H ,L }, r ∈ Z≥0 and n ∈ Z (note that abusively we do not change the notation
for the coefficients on the Kummer étale side).

(ii) The whole picture extends also to the case of cohomology with compact support. We
refer to [LLZ23] for this generalization.

It is clear that, under the association L ↦ (E ,∇), the Ẑp-local system H1(E ) is sent to
(H ,∇), whence the choice of keeping the same notation for Hr and Lr for r ∈ Z≥0. ▲

We conclude this section recalling the needed facts concerning the Hecke action on
cohomology groups.
(i) For F ∈ {H ,L } one can define the action of Hecke operators Tℓ for primes ℓ ∤ N

and Uℓ for ℓ ∣ N and of dual Hecke operators T ′ℓ for ℓ ∤ N and U ′ℓ for ℓ ∣ N on
the cohomology groups Hj

ét(Y1(N)R,Fr) for any Q-algebra R. We refer to [BSV22b,
section 2.3] (where H is denoted S ) for the precise definition of these operators (as
usual they arise from the suitable Hecke correspondences).

(ii) One can also define, for every unit d ∈ (Z/NZ)×, a diamond operator ⟨d⟩ and a dual
diamond operator ⟨d⟩′ on Hj

ét(Y1(N)R,Fr) for any Q-algebra R. An Atkin-Lehner
operator wN (and its dual w′N ) acts on Hj

ét(Y1(N)R,Fr) for any Q[ζN ]-algebra R,
where ζN is a fixed N -th root of unity in Q̄. We refer to [BSV22b, paragraph 2.3.1]
for more details.

(iii) The action of Hecke and diamond operators can also be defined on compactly supported
cohomology and on the corresponding de Rham cohomology groups.

(iv) Assume that N = N○pn with p ∤ N○ and n ∈ Z≥1. In the sequel we will also need
Atkin-Lehner operators wN○ and wpn acting on modular forms and more generally on
the cohomology of Y1(N○pn) (where p ∤ N○). The action of wN○ on a cuspidal modular
form ξ ∈ Sk(Γ1(N

○pn)) has already been described in equation (2.1). Concerning wpn ,
we define:

(6.14) wpn(ξ) ∶= ⟨p
n; 1⟩(ξ∣kωpn) ωpn ∶= ωpn,N○ ∶= (

pn −1
N○pnc pnd

) ,
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where we require that det(ωpn) = p
n and the diamond operator ⟨pn; 1⟩ is the one

corresponding to the unique element of (Z/N○pn)× which is congruent to 1 modulo pn
and to pn modulo N○.

The operators wN○ and wpn are the inverses of the corresponding operators ap-
pearing in [AL78]. One can also define a geometric version of such operators (and of
their duals w′N○ and w′pn) on H1

ét(Y1(N)R,Fr) for F ∈ {H ,L } and for any Q[ζN ]-
algebra R (where ζN is a fixed primitive N -th root of unity in Q̄). We refer again to
(cf. [BSV22b, paragraph 2.3.1]) for more details.

(v) The isomorphisms sr and Poincaré duality induce perfect pairings ⟨ , ⟩r:

(6.15)

H1
ét(Y1(N)Q̄,Lr(1))Qp ⊗Qp H

1
ét,c(Y1(N)Q̄,Hr)Qp

H2
ét,c(Y1(N)Q̄,Zp(1))Qp ≅ Qp .

⟨ , ⟩r

The operators Tℓ and T ′ℓ (resp. T ′ℓ and Tℓ) are adjoint to each other under the pairing
(6.15). The same applies to the operators Uℓ and U ′ℓ for ℓ ∣ N .

(vi) After fixing an algebraic embedding Qp ↪ C, the classical Eichler-Shimura isomor-
phism

(6.16) H1
ét(Y1(N)Q̄,Hr) ⊗Zp C ≅Mr+2(Γ1(N)) ⊕ Sr+2(Γ1(N))

commutes with the action of Hecke and diamond operators on both sides. If N = N○pn
with p ∤ N○, the isomorphism 6.16 commutes also with the action of wpn on both sides.

Remark 6.6: In chapter 9 we will need a more explicit geometric description of some of
the operators mentioned above. Fix an integer N ≥ 5 and a prime p. In this remark we
write Xt ∶= X1(Np

t)Q and we view it as (the compactification of) the curve classifying
triples (E, ιN , ιpt) where E is a family of (generalized) elliptic curves over a Q-scheme S
and ιN ∶ µN,S → E and ιpt ∶ µpt,S → E are embeddings of group schemes.

For every t ≥ 0, one can define two degeneracy maps:

(6.17) prt1 ∶Xt+1 →Xt , prt2 ∶Xt+1 →Xt .

The map prt1 is described as the map which, at the level of the moduli problem of level
Γ1(Np

t+1) and Γ1(Np
t), sends (E, ιN , ιpt+1) to (E, ιN , p ⋅ ιpt+1). On the other hand, prt2

sends a triple (E, ιN , ιpt+1) to (E, ιN , ιpt+1)/Cp, where Cp = ιpt+1(µp,S). One checks that
for i = 1,2 the maps prti have degree p2 if t ≥ 1 and degree p2 − 1 if t = 0.

For t > s ≥ 0 and i = 1,2, we will also write prt,si = pr
s
i ○⋯○pr

t−1
i as morphisms Xt →Xs.

As explained in [DR17, section 1.2], one can show that for every t ∈ Z≥1 one has

p ⋅Up = (pr
t
2)∗ ○ (pr

t
1)
∗ = (prt−11 )

∗ ○ (prt−12 )∗

as operators on H1
dR(Xt,Hr). ▲

From now on in this section L will denote a finite extension of Qp.

Notation 6.7: If V is a Qp-vector space, we write VL ∶= V ⊗QpL and if M is a Zp-module,
we write ML ∶=M ⊗Zp L.

For an L-vector space H endowed with an action of the good Hecke operators of level N
and for ξ ∈ Sν(N,χ,L) an eigenform, we let H[ξ] denote the ξ-Hecke isotypical component
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of H (i.e., the maximal L-vector subspace where the Hecke operators act with the same
eigenvalues as on ξ).

Definition 6.8: Given ξ ∈ Sν(N,χ,L) with ν ≥ 2 a normalized eigenform, one can attach
to it two Galois representations.
(i) We let VN(ξ) be the maximal L-quotient of H1

ét(Y1(N)Q̄,Lν−2(1))L where the dual
good Hecke operators and dual diamond operators act with the same eigenvalues as
those of ξ.

(ii) We let V ∗N(ξ) ∶= H1
ét,c(Y1(N)Q̄,Hν−2)L[ξ] (cf. notation 6.7) be the maximal L-

submodule of H1
ét,c(Y1(N)Q̄,Hν−2)L where good Hecke and diamond operators act

with the same eigenvalues as those of ξ.
When the level N is understood, we simply write V (ξ) = VN(ξ) and V ∗(ξ) = V ∗N(ξ).

Remark 6.9: If ξ is new of level N , then V ∗N(ξ) is identified with the p-adic Deligne
representation associated to ξ and VN(ξ) is identified with its dual. In general VN(ξ) (resp.
V ∗N(ξ) is non-canonically isomorphic to finitely many copies of VNξ

(ξ○) (resp. V ∗Nξ
(ξ○)),

where ξ○ is the newform of level dividing N associated to ξ and Nξ ∣ N is the corresponding
level. ▲

Definition 6.10: For an eigenform ξ ∈ Sν(N,χ,L) (with ν ≥ 2) and ? ∈ {∗,∅}, we set

V ?
dR,N(ξ) ∶= DdR(V

?
N(ξ)) =H

0(Qp,BdR ⊗L V
?
N(ξ))

and we simply write V ?
dR(ξ) if the level N is understood.

The comparison isomorphism (6.12) yields canonical isomorphisms

(6.18) Fil0VdR(ξ) ≅ Sν(Γ1(N), L)[ξ
w] Fil1V ∗dR(ξ) ≅ Sν(Γ1(N), L)[ξ]

(where ξw ∶= wN(ξ) and we follow notation 6.7) and a perfect duality

(6.19) ⟨−,−⟩ξ ∶ VdR(ξ) ⊗L V
∗
dR(ξ) → DdR(L) = L

under which we get identifications

(6.20) V ∗dR(ξ)/Fil
1V ∗dR(ξ) ≅ (Sν(Γ1(N), L)[ξ

w])∨

and

(6.21) VdR(ξ)/Fil
0VdR(ξ) ≅ (Sν(Γ1(N), L)[ξ])

∨

where (−)∨ denotes the L-dual of an L-vector space.

6.3. The étale Abel-Jacobi map

In this section we fix a positive integer M coprime to p and a positive integer t and we
assume that Mpt ≥ 5. We consider a triple of cuspidal modular forms

f =
+∞

∑
n=1

an(f)q
n, g =

+∞

∑
n=1

an(g)q
n, h =

+∞

∑
n=1

an(h)q
n

with

f ∈ Sk(Mpt, χfω
2−k+k0εf), g ∈ Sl(Mpt, χgω

2−l+l0εg), h ∈ Sm(Mpt, χhω
2−m+m0εh).

Here, ω is the Teichmüller character modulo p, χξ is a character defined modulo M and εξ
is a character valued in µp∞ for ξ ∈ {f, g, h}.
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Assumption 6.11: (i) For ξ ∈ {f, g, h}, we assume that ξ is a normalized eigenform, i.e.,
it holds a1(ξ) = 1 and ξ is an eigenform for all the Hecke operators Tℓ for all primes
ℓ ∤M (i.e., the good Hecke operators). We also assume that ξ is an eigenform for the
Up operator.

(ii) There exist a positive integer M1 ∣ M and a non-negative integer s ≤ t such that
f ∈ Sk(M1p

s, χfω
2−kεf , L) is a normalized p-ordinary newform of level M1p

s ≥ 5 or
the ordinary p-stabilization of a newform of level M1 ≥ 5.

(iii) The triple (f, g, h) is tamely self-dual, i.e., χfχgχh is the trivial character modulo M
and k0 +m0 + l0 ≡ 0 mod (p − 1).

(iv) The triple of weights (k, l,m) is balanced and geometric, i.e., (k, l,m) are the sizes of
the edges of a triangle and ν ≥ 2 for ν ∈ {k, l,m}.

Notation 6.12: (i) We fix a finite extension L of Qp containing the Fourier coefficients
of f, g, h (and a primitive Mpt-th root of 1) via the fixed embedding ιp.

(ii) From now on in this section, we write Yt ∶= Y1(Mpt)Q (modular curve over Q), with
corresponding universal elliptic curve Et

ut
Ð→ Yt.

Definition 6.13: With the above notation, we set r1 ∶= k − 2, r2 ∶= l − 2, r3 ∶= m − 2,
r ∶= (r1 + r2 + r3)/2, r ∶= (r1, r2, r3). We also define the Dirichlet characters of conductor a
power of p given by:

(6.22) χfgh ∶= ω
r ⋅ (εfεgεh)

−1/2, ψfgh ∶= ω
(r2+r3−r1−2k0)/2 ⋅ (ε−1f εgεh)

−1/2 .

Applying [AL78, theorem 3.2]), we can give the following definition.

Definition 6.14: We let f ′ denote the unique normalized newform of level dividing M1p
2s

such that f ⊗ ωk−2+k0ε−1f = f
′[p] (p-depletion, i.e., f ′[p] = f ′ − Vp ○Up(f ′)).

Remark 6.15: It holds that f ′ ∈ Sk(M1p
s, χfω

k−2−k0ε−1f , L). More precisely:

(i) if f is the ordinary p-stabilization of a newform f○ of level M1, then f ′ = f○ (we have
k ≡ 2 mod p − 1 and εf trivial in this case);

(ii) if f ∈ S2(M1p,χf , L) is a newform, then f ′ = f ;
(iii) if f is new of level M1p

s with s ≥ 1 and it is p-primitive (i.e., the conductor of ωk−2+k0εf
is exactly ps), then f ′ is the normalized eigenform given by a suitable multiple of
wps(f) (this follows looking at the action of the good Hecke operators and knowing
that wps(f) is new of level M1p

s).
▲

Write h′ ∶= h ⊗ ψfgh. Since we are not assuming that g and h are newforms, it is
harmless to impose that f is new of level M1p

s with s ∈ Z≥0 such that s < t/2. In this
way it follows that h′ ∈ Sm(Mpt, χhω

2−mεhψ
2
fgh) (i.e., that the p-part of the level is not

increased by the twist).

Definition 6.16: We define

(6.23) V (f, g, h) ∶= VMpt(f
′) ⊗L VMpt(g) ⊗L VMpt(h

′)(−1 − r)

and

(6.24) V ∗(f, g, h) ∶= V ∗Mpt(f
′) ⊗L V

∗
Mpt(g) ⊗L V

∗
Mpt(h

′)(r + 2) .
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Remark 6.17: (i) The representations V (f, g, h) and V ∗(f, g, h) are Kummer self-dual
by design and moreover they are canonically isomorphic to the Kummer dual of each
other (essentially by the pairing (6.15)).

(ii) Note that if the character of f has trivial p-part (e.g. cases (i) and (ii) in remark
6.15 above) and if we assume that the triple (f, g, h) is self-dual (i.e., the product of
the characters of the three forms is the trivial character), then V ?

Mpt(ξ
′) = V ?

Mpt(ξ) for
ξ ∈ {f, h} and ? ∈ {∗,∅}.

▲

In [BSV22b, section 3], the authors associate to the triple (f, g, h) a Galois cohomology
class κ(f, g, h) ∈H1(Q, V (f, g, h)).

Here is a diagram depicting the situation.

Detétr ∈H
0
ét(Yt,Hr(r)) H4

ét(Y
3
t ,H[r](r + 2))

H1 (Q,H3
ét(Y

3
t,Q̄,L[r](2 − r))) H1 (Q,H3

ét(Y
3
t,Q̄,H[r](r + 2)))

κ(f, g, h) ∈H1(Q, V (f, g, h))

dt,∗

AJét
HS

prfgh
ét

sr
≅

Remark 6.18: The following discussion explains the diagram above.
(i) dt ∶ Yt ↪ Yt × Yt × Yt is the diagonal embedding and dt,∗ is the corresponding Gysin

map.
(ii) For F ∈ {H ,L } and r = (r1, r2, r3) as above, the Zp-local system Fr on Yt is defined

as
Fr ∶=Fr1 ⊗Zp Fr2 ⊗Zp Fr3

and the Zp-local system F[r] on Y 3
t is defined as

F[r] ∶= p
∗
1Fr1 ⊗Zp p

∗
2Fr2 ⊗Zp p

∗
3Fr3

where pj ∶ Yt × Yt × Yt → Yt is the natural projection on the j-th factor. In particular,
it follows that d∗tF[r] =Fr.

(iii) The map HS is a morphism coming from the Hochschild-Serre spectral sequence

(6.25) H i(Q,Hj
ét(Y

3
t,Q̄,H[r](r + 2))) ⇒H i+j

ét (Y
3
t ,H[r](r + 2)) .

The existence of such a morphism is due to the fact that H4
ét(Y

3
t,Q̄,H[r](r+2)) = 0 (by

Artin vanishing theorem, as Yt is an affine curve).
(iv) The étale Abel-Jacobi map in this setting is defined as AJét ∶= dt,∗ ○HS.
(v) The isomorphism sr is induced by the isomorphisms srj for j ∈ {1,2,3} (cf. equation

(6.11)).
(vi) The projection prfghét is induced in Galois cohomology by viewing V (f, g, h) as a quo-

tient of H3
ét(Y

3
t,Q̄,L[r](2−r))L via Künneth formula and projection to the correspond-

ing Hecke isotypical component.
▲
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The class κ(f, g, h) is the image under the composition prfghét ○ sr ○AJét of the element

(6.26) Detétr ∈H
0
ét(Yt,Hr(r))L ,

which we now describe. Write Y = Yt till the end of this section.
We fix a geometric point y ∶ Spec(Q̄) → Y and we consider the étale fundamental group

πét1 (Y, y). Passing to the stalk at y induces an equivalence of categories

LocY (Zp) ≃ RepcontZp
(πét1 (Y, y)),

where:
(i) LocY (Zp) is the category of étale Zp-local systems on Y ;
(ii) RepcontZp

(πét1 (Y, y)) is the category of continuous representations of πét1 (Y, y) in finite
free Zp-modules.

In particular, the stalk Tp(E )y is a rank 2 free Zp-module. The p-adic Weil pairing
Tp(E )y⊗ZpTp(E )y → Zp(1) is well-known to be perfect, Zp-bilinear, alternating and Galois-
invariant (for the action of GQ). The construction recalled in appendix A applies to this
setting (with M = Tp(E )y), yielding an element

Detr ∈H
0
cont(AutZp(Tp(E )y), Sr ⊗Zp[r]) .

The action of πét1 (Y, y) on Tp(E )y is encoded in a continuous morphism πét1 (Y, y) →
AutZp(Tp(E )y). We thus obtain a functor

(−)ét ∶ RepcontZp
(AutZp(Tp(E )y) → RepcontZp

(πét1 (Y, y)) ≃ LocY (Zp) , N ↝ N ét .

It follows from the construction that, with the notation of appendix A, S ét
n = Hn for all

integers n ≥ 0 and Zp[m]ét = Zp(m) for all m ∈ Z. As a consequence, we obtain an inclusion
at the level of invariants

H0
cont(AutZp(Tp(E )y), Sr ⊗Zp[r]) ↪H0

cont(π
ét
1 (Y, y),Hr(r)y) ≅H

0
ét(Y,Hr(r)) .

The element Detétr is defined as the image of the invariant Detr inside H0
ét(Y,Hr(r))L via

the above inclusion (followed by extension of scalars to L).
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CHAPTER 7

Some p-adic Hodge theory

In this chapter we introduce the necessary tools from p-adic Hodge theory and we apply
them to the study of the Galois representation V (f, g, h), seen as a representation of GQp .
The main references are [BLZ16, section 1] and [GM09].

7.1. Filtered (φ,N)-modules and Galois representations

For the generalities on (φ,N)-modules with coefficients we refer to [GM09, section 2].
As in the previous chapters, we let L be a finite and large enough extension of Qp and we
denote by Qnr

p the maximal unramified extension of Qp (inside the fixed algebraic closure
Q̄p) and we let σ ∈ Gal(Qnr

p /Qp) denote the Frobenius (i.e., the unique lift to Qnr
p of the

Frobenius automorphism x↦ xp of F̄p)

Definition 7.1: A filtered (φ,N,GQp , L)-module D is a free (Qnr
p ⊗QpL)-module of finite

rank endowed with:
(i) the Frobenius endomorphism: a σ-semilinear, L-linear, bijective map φ ∶D →D;
(ii) the monodromy operator: a Qnr

p ⊗Qp L-linear, nilpotent endomorphism N ∶ D → D
such that N ○ φ = p ⋅ φ ○N ;

(iii) a σ-semilinear, L-linear action of GQp , commuting with φ and N ;
(iv) a decreasing, separated, exhaustive, GQp-stable filtration on Q̄p ⊗Qnr

p
D given by free

(Q̄p ⊗Qp L)-submodules.

There are similar definitions for filtered (φ,N,GF , L)-modules, where F is any finite
extension of Qp and one can view filtered (φ,N,GQp , L)-modules as filtered (φ,N,GF , L)-
modules by restriction.

Notation 7.2: We fix a filtered (φ,N,GQp , L)-moduleD and we let F be a finite extension
of Qp. Denote by F0 the maximal unramified subextension of F and let q = pd be the
cardinality of the residue field of F . We will always assume that F ⊆ L in what follows.
We set

Dst,F0 ∶=D
GF Dst,F ∶=D

GF ⊗F0 F, DdR,F ∶= (D ⊗Qnr
p

Q̄p)
GF , Dcris,F =D

N=0
st,F .

Assumption 7.3: Every p-adic Galois representation V of GQp appearing in the sequel
will be a de Rham (equivalently, potentially semistable) representation.

Definition 7.4: (i) If V is a p-adic Galois representation of GQp with coefficients in L,
F is a finite extension of Qp and ? ∈ {dR, st, cris}, we set

D?,F (V ) ∶= (B? ⊗Qp V )
GF .

We say that V is F -semistable (resp. F -crystalline) if Dst,F (V ) (resp. Dcris,F (V )) is
a free F0 ⊗Qp L-module of rank equal to dimL(V ).
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(ii) For V as in (i), we also define the (Qnr
p ⊗Qp L)-module attached to it as

(7.1) Dpst(V ) ∶= lim
Ð→
M/Qp

finite

(Bst ⊗Qp V )
GM .

Remark 7.5: If V is a p-adic Galois representation of GQp with coefficients in L, the
(Qnr

p ⊗QpL)-module Dpst(V ) inherits a natural structure of filtered (φ,N,GQp , L)-module.
The functor Dpst(−) provides an equivalence of categories between potentially semistable
Galois representations with coefficients in L and admissible filtered (φ,N,GQp , L)-modules.

▲

For later purposes, we define the so-called Bloch-Kato subspaces in first Galois coho-
mology group.

Definition 7.6: For V a (de Rham) p-adic Galois representation of GQp and F a finite
extension of Qp, one defines:

H1
g (F,V ) ∶= Ker (H1(F,V ) →H1(F,BdR ⊗Qp V )) ,

H1
f (F,V ) ∶= Ker (H1(F,V ) →H1(F,Bcris ⊗Qp V )) ,

H1
e (F,V ) ∶= Ker (H1(F,V ) →H1(F,Bφ=1cris ⊗Qp V )) .

One can study the cohomology of admissible filtered (φ,N)-modules and compare it
with the Galois cohomology of the associated Galois representation.

Definition 7.7: Let D be a filtered (φ,N,GQp , L)-module and F ⊆ L as above. The
cohomology groups H i

st(F,D) are given by the cohomology of the complex

(7.2)

C●st,F (D) ∶ Dst,F0 ⊕ Fil0DdR Dst,F0 ⊕Dst,F0 ⊕DdR,F Dst,F0

(u, v) ((1 − φ)u,Nu,u − v)

(w,x, y) Nw − (1 − pφ)x

concentrated in degrees 0, 1 and 2.

Theorem 7.8: The complex C●st,F (−) computes Ext groups Exti(Qnr
p ⊗QpL,−) for i = 0,1,2

in the category of ( admissible) filtered (φ,N,GF , L)-modules. If V is a p-adic representa-
tion of GQp with L-coefficients and D = Dpst(V ), the functor Dpst induces functorial maps
H i

st(F,D) →H i(F,V ) for every finite extension F ⊆ L of Qp. This maps are isomorphisms
for i = 0 and injective for i = 1. If V is F -semistable, then for i = 1 the image of the map
H1

st(F,D) →H i(F,V ) coincides with the subspace H1
g (F,V ) of definition 7.6.

Proof. This is well-known. Let us just note here that the fact that the image of the
inclusion H1

st,F (D) ↪ H1(F,V ) coincides with H1
g (F,V ) is a consequence of Hyodo’s

theorem (or a way of stating it). □

Definition 7.9: Let V be an F -semistable representation of GQp with L-coefficients. We
define the semistable Bloch-Kato exponential map for V as the isomorphism

expst,V ∶H
1
st(F,Dpst(V ))

≅
Ð→H1

g (F,V )

afforded by theorem 7.8.
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Now we describe slight generalizations/modifications of the complex C●st,F (D) for D a
filtered (φ,N,GQp , L)-module. We let Φ = φd, so that Φ is F0-linear on DGF and extends
to a linear endomorphism of Dst,F . For every polynomial Q(T ) ∈ 1+T ⋅L[T ] one can define
two variants of the above complex (7.2) given by

(7.3)

C●st,F,Q(D) ∶ Dst,F0 ⊕ Fil0DdR Dst,F0 ⊕Dst,F0 ⊕DdR,F Dst,F0

(u, v) (Q(φ)u,Nu,u − v)

(w,x, y) Nw −Q(pφ)x

and

(7.4)

C̃●st,F,Q(D) ∶ Dst,F ⊕ Fil0DdR Dst,F ⊕Dst,F ⊕DdR,F Dst,F

(u, v) (Q(Φ)u,Nu,u − v)

(w,x, y) Nw −Q(qΦ)x

and define cohomology groups H i
st,Q(F,D) and H̃ i

st,Q(F,D) (for i = 0,1,2) accordingly. In
particular, note that H i

st,1−T (F,D) =H
i
st(F,D) in our notation.

Lemma 7.10: Let P1, P2 ∈ 1+T ⋅L[T ] be two polynomials. Then there is a natural morphism
of complexes C●st,F,P1

(D) → C●st,F,P1P2
(D) given by

C●st,F,P1
(D) ∶ Dst,F0 ⊕ Fil0DdR,F Dst,F0 ⊕Dst,F0 ⊕DdR,F Dst,F0

C●st,F,P1P2
(D) ∶ Dst,F0 ⊕ Fil0DdR,F Dst,F0 ⊕Dst,F0 ⊕DdR,F Dst,F0

cP2 id⊕id P2(φ)⊕id⊕id P2(pφ)

which is a quasi-isomorphism if P2(φ) and P2(pφ) are bijective on Dst,F0.
Moreover the morphism cP2 always induces a short exact sequence of the form:

0→H0
st,P2
(F,D) →D

P2(φ)=0,N=0
st,F0

→ Ker(H1
st,P1
(F,D) →H1

st,P1P2
(F,D)) → 0

w ↦ [(w,0,0)]

Proof. This is also an easy exercise. The only point where one has to be a slightly careful
is to show that every class [(w,x, y)] inside Ker(H1

st,P1
(F,D) → H1

st,P1P2
(F,D)) can be

represented as [(w′,0,0)] for a suitable w′ ∈DP2(φ)=0,N=0
st,P2

.
But if (P2(φ)w,x, y) = (P1P2(φ)u,Nu,u−v) for some (u, v) ∈Dst,F0⊕Fil

0DdR,F , then
w′ = w − P1(φ)u does the job. □

Definition 7.11: An admissible (φ,N,GQp , L)-module D is (F,Q)-convenient if D is
F -crystalline (i.e., DdR,F =Dst,F =Dcris,F ) and Q(Φ) and Q(qΦ) are bijective on Dst,F .

Lemma 7.12: In the above setting, if D is (F,Q)-convenient, then the morphism of com-
plexes [Fil0DdR,F →DdR,F → 0] → C●st,F,Q(D) given by the obvious inclusions of Fil0DdR,F

inside Dst,F ⊕ Fil0DdR,F and of DdR,F inside Dst,F ⊕Dst,F ⊕DdR,F is actually a quasi-
isomorphism. If, moreover, we consider P (T ) ∈ 1 + T ⋅L[T ] such that P (T ) ∣ Q(T d), then
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we can actually identify
DdR,F

Fil0DdR,F

≅ H̃1
st,Q(F,D) ≅H

1
st,P (F,D) .

Proof. This is an easy exercise. One can check that the inverse to the isomorphism
DdR,F

Fil0DdR,F

≅
Ð→H1

st,P (F,D)

is given by [(w,x, y)] ↦ y − Q(Φ)−1w mod Fil0DdR,F . The identification H1
st,P (F,D) ≅

H̃1
st,Q(F,D) follows immediately from lemma 7.10, taking P1(T ) = P (T ) and P2(T ) =

Q(T d)/P (T ). □

For P,Q ∈ 1 + T ⋅ L[T ], we let P ∗Q ∈ 1 + T ⋅ L[T ] be the polynomial whose roots are
{αiβj} if {αi} and {βj} are the roots of P and Q respectively. We then have the following
proposition.

Proposition 7.13: Let D1,D2 be two filtered (φ,N,GQp , L)-modules. Then there are cup
products

C●st,F,P (D1) ×C
●
st,F,Q(D2) → C●st,F,P∗Q(D1 ⊗Qnr

p ⊗QpL
D2),

associative and graded-commutative up to homotopy, hence inducing well-defined products
on cohomology groups.
Proof. See [BLZ16], proposition 1.3.2. □

Remark 7.14: Here we include the table (taken from [BLZ16]) giving the recipe to com-
pute the pairing of the above lemma 7.13.

(7.5)

× (u′, v′) (w′, x′, y′) z′

(u, v) (u⊗ u′, v ⊗ v′) (
b(φ1,φ2)(u⊗w

′),
u⊗x′,

(λu+(1−λ)v)⊗y′
) b(φ1, pφ2)(u⊗ z

′)

(w,x, y) (
a(φ1,φ2)(w⊗u

′),
x⊗u′,

y⊗(λv′+(1−λ)u′)
)

−a(φ1, pφ2)(w ⊗ x
′)

+b(pφ1, φ2)(x⊗w
′)

0

z a(pφ1, φ2)(z ⊗ u
′) 0 0

In the table, we have fixed a(X,Y ), b(X,Y ) ∈ L[X,Y ] such that

P ∗Q(XY ) = a(X,Y )P (X) + b(X,Y )Q(Y )

and λ ∈ L. One can check that changing the polynomials a(X,Y ) and b(X,Y ) or changing
λ will change the product by a chain homotopy (i.e., the induced pairings on cohomology
groups are well-defined). ▲

7.2. Study of the relevant filtered (φ,N)-modules

Now we can go back to the setting of section 6.3 to study the filtered (φ,N)-modules
attached to the modular forms (f, g, h) more closely. Recall that

V ?
dR(f, g, h) ∶= DdR(V

?(f, g, h)) .

We let f̆ ∶= λM1(f)
−1 ⋅ wM1(f), where λM1(f) is the pseudo-eigenvalue for the action

of wM1 on f . It follows from [AL78, theorem 1.1] that λM1(f) is an algebraic number



60 Study of the relevant filtered (φ,N)-modules

of complex absolute value 1. We denote by ef̆ the idempotent corresponding to f̆ by the
theory of p-stabilized ordinary newforms (cf. [Hid85, chapter 4]).

Definition 7.15: (i) For ξ ∈ {g, h′} we let ωξ ∈ Fil1V ∗dR,Mpt(ξ) be the element corre-
sponding to ξ under the isomorphism (6.18).

(ii) Consider the GQ-representation V ∗Mps(f
′) (note that we are imposing s = 1, i.e., work-

ing on Y1(Mp)Q̄), if f is the ordinary p-stabilisation of a newform of level coprime to
p). We let ηf ′,s ∈ V ∗dR,Mps(f

′)/Fil1V ∗dR,Mps(f
′) be the element corresponding under the

isomorphism (6.20) to the linear functional

Sk(Γ1(Mps), L)[f ′w] Sk(M1p
s, χ−1f ω

2−k+k0εf , L) L

γ TrMps/M1ps(γ)

δ a1(ef̆(δ))

Note that this gives rise to a non trivial functional since f̆ ∈ Sk(Γ1(Mps), L)[f ′w].

Remark 7.16: The fact the such a linear functional actually takes values in L follows from
the work of Hida (cf. [Hid85, proposition 4.5]). ▲

Remark 7.17: Since f is p-ordinary, we know that V ∗Mps(f) is F1-semistable, where F1

is a cyclotomic extension of Qp generated by a pn-th root of unity for some n ≥ 0. More
precisely (cf. remark 6.15):
(i) if f is the ordinary p-stabilisation of a newform f○ of level M1, then V ∗Mps(f) is already

crystalline over Qp;
(ii) if f ∈ S2(M1p,χf , L) is a newform, then V ∗Mps(f) is semistable (but not crystalline)

over Qp;
(iii) if f is new of level M1p

s and p-primitive, then V ∗Mps(f) becomes crystalline over
Qp(ζps) (where ζps is a primitive ps-th root of unity).

The same remarks apply to V ∗Mps(f
′). ▲

Lemma 7.18: The filtered L-vector space V ∗dR,Mps(f
′) decomposes, as L-vector space, as

V ∗dR,Mps(f
′) = Fil1V ∗dR,Mps(f

′) ⊕ (F1 ⊗Qp Dst,F1 (V
∗
Mps(f

′))
φ=ap(f)

)
Gal(F1/Qp)

Proof. In order to simplify the notation, we write V = V ∗Mps(f
′), VdR = V ∗dR,Mps(f

′) and
Vst,F1 = Dst,F1 (V

∗
Mps(f

′)) in this proof.
It is possible to describe explicitly the structure of filtered (φ,N,Gal(F1/Qp), L)-

module of Vst,F1 . We refer to [GM09, sections 3.1 and 3.2], where the authors actually
describe the duals of our modules.

Combining everything, we can give the following explicit description of Vst,F1 . Such
module is non-canonically isomorphic to a finite number of copies of a two-dimensional
filtered (φ,N,Gal(F1/Qp), L)-module with Hodge-Tate weights {1−k,0}, which we denote
by D. Clearly, it is enough to prove the corresponding statement of the lemma for D.
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If V is F1-crystalline, then D has a basis {e1, e2} as L-vector space such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(e1) = χf(p)p
k−1ap(f)

−1 ⋅ e1

φ(e2) = ap(f) ⋅ e2

Fil1D = (F1 ⊗Qp L)(xfe1 + yfe2)

N = 0

g(e1) = (ω2−kεf) (g) ⋅ e1

g(e2) = e2

g ∈ Gal(F1/Qp)

where xf , yf ∈ F1 ⊗Qp L are elements such that either yf = 0 and xf ≠ 0 (the split case) or
they are both non-zero (the non-split case). These elements are unique up to multiplication
by elements of L×.

If V is not F1-crystalline (i.e., f ∈ S2(M1p,χf) newform, under our assumptions), then
we can choose F1 = Qp and D has a basis {e1, e2} as L-vector space

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(e1) = p ⋅ ap(f) ⋅ e1

φ(e2) = ap(f) ⋅ e2

Fil1D = (F1 ⊗Qp L)(e1 −Le2)

N(e1) = e2

N(e2) = 0

where L = Lp(f) is the L-invariant of f (defined as in [Maz94]).

From the explicit description of the filtration on D, it follows easily in all cases that

Fil1(D) ∩ (F1 ⊗Qp D
φ=ap(f)) = {0}

and that Dφ=ap(f) is one-dimensional (over L). We thus get a decomposition of F1 ⊗Qp D
as L-vector space given by

F1 ⊗Qp D = Fil
1D ⊕ (F1 ⊗Qp D

φ=ap(f))

and it follows that such a decomposition is stable for the action of Gal(F1/Qp) (cf. the
discussion in [GM09, section 3.2]) and gives an analogous decomposition for F1 ⊗Qp Vst,F1 .

Taking Gal(F1/Qp)-invariants yields

VdR = (F1 ⊗Qp Vst,F1)
Gal(F1/Qp)

=

= (Fil1VdR,F1
)
Gal(F1/Qp)

⊕ (F1 ⊗Qp D
φ=ap(f))

Gal(F1/Qp)
=

= Fil1VdR ⊕ (F1 ⊗Qp D
φ=ap(f))

Gal(F1/Qp)
,

as we wished to prove. □
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Remark 7.19: We observe that the decomposition proved in the above lemma 7.18 does
not depend on the choice of F1 ⊂ Qp(µp∞) (Galois over Qp) such that V ∗Mps(f

′) is F1-
semistable, i.e., if F2 is another such extension we can identify

(F1 ⊗Qp Dst,F1 (V
∗
Mps(f

′))
φ=ap(f)

)
Gal(F1/Qp)

= (F2 ⊗Qp Dst,F2 (V
∗
Mps(f

′))
φ=ap(f)

)
Gal(F2/Qp)

.

This follows easily from the fact that the action of φ and the Galois action commute and
from Hilbert Theorem 90. ▲

Definition 7.20: With the notation introduced above, we define

η
φ=ap
f ′,s ∈ (F1 ⊗Qp Dst,F1 (V

∗
Mps(f

′))
φ=ap(f)

)
Gal(F1/Qp)

⊂ V ∗dR,Mps(f
′)

as the unique lift of ηf ′,s to the subspace (F1 ⊗Qp Dst,F1 (V
∗
Mps(f

′))
φ=ap(f)

)
Gal(F1/Qp)

.

Definition 7.21: We let ηφ=apf ′ ∶= (prt,s2 )
∗(η

φ=ap
f ′,s ) ∈ V

∗
dR,Mpt(f

′) ⊆ H1
dR(Xt,Q̄p

,Hk−2)L

denote the pullback of the class ηφ=apf ′,s under the degeneracy map (prt,s2 )
∗.

Remark 7.22: Since the triple (k, l,m) is balanced, we have that

(7.6) η
φ=ap
f ′ ⊗ ωg ⊗ ωh′ ⊗ tr+2 ∈ Fil

0(V ∗dR(f, g, h)).

Here, for all n ∈ Z, tn denotes a (canonical) generator of Qp(n) (on which the Frobenius φ
acts as multiplication by p−n). ▲

The idea is now to associate to κ(f, g, h) an element in Fil0(VdR(f, g, h))
∨, so that we

can pair it with ηφ=apf ′ ⊗ωg⊗ωh′⊗tr+2. We are led to study the Bloch-Kato local conditions
for the Galois representation V (f, g, h).

Definition 7.23: A triple (f, g, h) satisfying assumption 6.11 is called F -exponential if
the equality

H1
e (F,V (f, g, h)) =H

1
f (F,V (f, g, h)) =H

1
g (F,V (f, g, h))

holds (for an appropriate F depending on (f, g, h)).
We say that a triple (f, g, h) satisfying assumption 6.11 is (F,Q)-convenient for a

finite extension F /Qp and Q ∈ 1+ T ⋅L[T ] if the (φ,N,GQp , L)-module Dpst(V (f, g, h)) is
(F,Q)-convenient, in the sense of definition 7.11.

Remark 7.24: It is easy to check that if (f, g, h) is (F,1 − T )-convenient, then it is F -
exponential. ▲

As already explained in the introduction, in the sequel we will be mostly interested in
the following setting.

Assumption 7.25: The forms g and h are supercuspidal at p and lie in the kernel of Up. In
particular (since p is odd), the Galois representations VMpt(g) and VMpt(h), seen as local
Galois representations of GQp , are isomorphic to (finitely many copies of) the induced
representations of a character of a quadratic extension of Qp (which is not the restriction
of a character of GQp).
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Remark 7.26: Asking that g and h are supercuspidal at p implies directly that g and h
lie in the kernel of Ump for some m large enough, since we are not assuming that g and
h are new of level Mpt. The slightly stronger assumption 7.25 will be needed to simplify
some arguments in what follows. ▲

Remark 7.27: As explained in [GM09, sections 3.3 and 3.4], under our assumption we
can find a finite Galois extension of Qp, which we denote by F , such that:
(i) the maximal unramified subextension of F is of the form F0 ∶= Qp2a for some a ∈ Z≥1;
(ii) F contains the cyclotomic extension F1 of remark 7.17;
(iii) F is contained in our field of coefficients L (up to extending L if necessary);
(iv) VMpt(g), VMpt(h) and VMpt(h

′) are F -crystalline.
Moreover, one can describe the filtered (φ,N,Gal(F /Qp), L)-modules associated to

VMpt(ξ) for ξ ∈ {g, h, h′} as follows (always relying on [GM09, sections 3.3 and 3.4]). Such
modules are given by (finitely many copies of) a rank 2 free F0⊗QpL-module Dξ with basis
{vξ,wξ} and such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(vξ) = µξ ⋅ vξ

φ(wξ) = µξ ⋅wξ

N = 0

µξ ∈ L×

ordp(µξ) = 1−ν
2

where ν denotes the weight of the form ξ. Note that µh = µh′ since h′ is a twist of h by a
character of order a power of p.

One could also give a more explicit description of the Galois group Gal(F /Qp) and of
its action on such modules, but we will not need it for the moment. The same remark
applies to the filtration on F ⊗F0 Dξ.

Recall that the Frobenius endomorphism φ is F0-semilinear, so that if we want to look
at it as a linear operator on Dξ, we have to view Dξ as an L-vector space of dimension
4a. ▲

Proposition 7.28: Under assumptions 6.11 and 7.25, we have that:
(a) if the form f has weight k > 2, then the triple (f, g, h) is (F,1 − T )-convenient (for F

as in remark 7.27),
(b) if the form f is a newform in S2(M1p,χf , L), then the triple (f, g, h) is F -exponential.

Proof. The inclusions

H1
e (F,V (f, g, h)) ⊆H

1
f (F,V (f, g, h)) ⊆H

1
g (F,V (f, g, h))

are always true. Since V (f, g, h) is Kummer self-dual (by design), in order to show that
(f, g, h) is F -exponential, it is enough to prove that H1

e (F,V (f, g, h)) =H
1
f (F,V (f, g, h)).

As a consequence of [BK90, corollary 3.8.4], we are then reduced to show that

Dcris,F (V (f, g, h))
φ=1 = {0} .

We will write
Dfgh ∶=Df ′ ⊗L̃Dg ⊗L̃Dh′ ⊗L̃ (L̃ ⋅ t−1−r) ,

where L̃ ∶= F0 ⊗Qp L and recall that r = (k + l +m − 6)/2 and that φ(t−1−r) = pr+1t−1−r.
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Here Df ′ is, up to extending scalars to F0, the dual of the module D appearing in the
proof of lemma 7.18. We can fix an L̃-basis of Df ′ given by {vf ,wf} (essentially passing
to the dual basis of the one described in the proof of lemma 7.18), such that

φ(vf) = χf(p)
−1p1−kap(f) ⋅ vf , φ(wf) = ap(f)

−1 ⋅wf , N = 0

if V (f) is F1-crystalline and

φ(vf) = ap(f)
−1 ⋅ vf , φ(wf) = (pap(f))

−1 ⋅wf , N(vf) = −wf N(wf) = 0

if f is a newform in S2(M1p,χf , L).

Since Dst,F (V (f, g, h)) is isomorphic to a finite direct sum of copies ofDfgh, it is enough
to prove that Dφ=1,N=0

fgh = {0}. We will look at Dfgh as an L-vector space of dimension 16a

where φ-acts L-linearly.
We fix α ∈ L, a primitive p2a − 1-th root of 1, so that F0 = Qp(α) and the arithmetic

Frobenius σ (i.e., the generator of Gal(F0/Qp) inducing the arithmetic Frobenius modulo
p) acts on α simply as σ(α) = αp.

By our previous discussion we know that a basis B of Dfgh as L-vector space can be
described as follows:

B ∶= {(αp
j

⊗ 1) ⋅ eτ ∣ j = 0, . . . ,2a − 1, τ ∈ {v,w}{1,2,3}}

where for τ ∶ {1,2,3} → {v,w} we let

eτ = τ(1)f ⊗ τ(2)g ⊗ τ(3)h′ ⊗ t−1−r

Now we prove assertion (a) in the statement. Since k > 2, VMpt(f) is F -crystalline (so
that V (f, g, h) is F -crystalline) and we have

φ((αp
j

⊗ 1) ⋅ eτ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

α(p−1)p
j
⋅ pr+2−kχf(p)

−1 ⋅ ap(f) ⋅ µgµh′ ⋅ ((α
pj ⊗ 1) ⋅ eτ) if τ(1) = v,

α(p−1)p
j
⋅ pr+1 ⋅ ap(f)

−1 ⋅ µgµh′ ⋅ ((α
pj ⊗ 1) ⋅ eτ) if τ(1) = w.

If we let λj,τ to be the φ-eigenvalue relative to (αp
j
⊗ 1) ⋅ eτ as described above, we can

immediately compute that

∣λj,τ ∣p =

⎧⎪⎪
⎨
⎪⎪⎩

pk/2 if τ(1) = v,
p1−k/2 if τ(1) = w.

so that if we assume k > 2 it cannot happen that λj,τ = 1 or λj,τ = p−1. We have thus
proven that (f, g, h) is (F,1 − T )-convenient (and in particular F -exponential).

For assertion (b), note that N((αp
j
⊗ 1) ⋅ eτ) = 0 if and only if τ(1) = w. Assuming

τ(1) = w we get

φ((αp
j

⊗ 1) ⋅ eτ) ∶= α
(p−1)pj ⋅ pr ⋅ ap(f)

−1 ⋅ µgµh′ ⋅ ((α
pj ⊗ 1) ⋅ eτ) .

and one checks that
∣α(p−1)p

j

⋅ pr ⋅ ap(f)
−1 ⋅ µgµh′ ∣p = p,

so that also in this case Dφ=1,N=0
fgh = {0} and the proof is complete. □



Some p-adic Hodge theory 65

When (f, g, h) is F -exponential, [BK90, corollary 3.8.4] shows that the Bloch-Kato
exponential map

(7.7) expBK,F ∶
DdR,F (V (f, g, h))

Fil0DdR,F (V (f, g, h))
→H1

e (F,V (f, g, h)) =H
1
g (F,V (f, g, h))

is an isomorphism.

The perfect duality (6.19) induces a perfect duality

(7.8) ⟨−,−⟩fgh ∶ VdR(f, g, h) ⊗L V
∗
dR(f, g, h) → DdR(L(1)) = L,

under which one has an identification

VdR(f, g, h)/Fil
0(VdR(f, g, h)) ≅ Fil

0(V ∗dR(f, g, h))
∨.

Moreover, note that we have identifications

DdR,F (V (f, g, h)) = F ⊗Qp VdR(f, g, h) , Fil0DdR,F (V (f, g, h)) = F ⊗Qp Fil
0VdR(f, g, h)

yielding an isomorphism

(7.9)
DdR,F (V (f, g, h))

Fil0DdR,F (V (f, g, h))
≅ F ⊗Qp

VdR(f, g, h)

Fil0(VdR(f, g, h))
.

Definition 7.29: Let (f, g, h) be an F -exponential triple (for some finite Galois extension
F /Qp). We define the Bloch-Kato logarithm

logfghBK ∶H
1
g (Qp, V (f, g, h)) → Fil0(V ∗dR(f, g, h))

∨

as the following composition (we write V = V (f, g, h) for simplicity):

H1
g (Qp, V ) H1

g (F,V )
Gal(F /Qp) VdR

Fil0(VdR)
≅ Fil0(V ∗dR)

∨
ResF /Qp

≅

1
[F ∶Qp]

⋅exp−1BK,F

Remark 7.30: The first isomorphism ResF /Qp
above follows from the Hochschild-Serre

spectral sequence in continuous group cohomology and the fact that the representations
involved are vector spaces over characteristic zero fields (BdR is a field). Note that the
map logfghBK is actually independent of F (i.e., if F ′ is another finite Galois extension of
Qp such that V (f, g, h) is F ′-semistable, we obtain the same map via our construction).
Note, moreover, that we are crucially using the isomorphism (7.9) and the fact that the
exponential map (7.7) is equivariant for the action of Gal(F /Qp) (so that it induces and
isomorphism between the Galois invariants on both sides).

In the next chapter, we will show that κ(f, g, h) ∈ Hg(Qp, V (f, g, h)), so that one can
indeed view logfghBK (κ(f, g, h)) as a linear functional on Fil0(V ∗dR(f, g, h)) and study its
value at

η
φ=ap
f ′ ⊗ ωg ⊗ ωh′ ⊗ tr+2 ∈ Fil

0(V ∗dR(f, g, h)) .

▲
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CHAPTER 8

The syntomic Abel-Jacobi map

This chapter develops the formalism of syntomic and finite polynomial cohomology,
with the aim of giving a syntomic description of the Abel-Jacobi map in our setting. We
also recall the needed facts about the Coleman’s study of the geometry of modular curves
as rigid analytic spaces.

8.1. Syntomic and finite-polynomial cohomology

In this section we recollect some facts concerning syntomic (and finite-polynomial)
cohomology and we postulate some properties for syntomic (and finite-polynomial) coho-
mology with coefficients that will be assumed in the sequel, trying to motivate why we
expect such properties to hold.

We will have to consider recent extensions of the original theory (due, among others, to
Besser, cf. [Bes00]), since the modular curves X1(Mpt) (for t ≥ 1) only admit a semistable
model over the ring of integers of a (large enough) finite extension of Qp.

As in the previous chapters, let F denote a fixed finite extension of Qp, with ring
of integers OF and residue field kF . We fix a choice of a uniformizer ϖ ∈ OF . Let
F0 =W (kF )[1/p] denote the maximal unramified subextension of Qp inside F .

The theory of syntomic cohomology for trivial coefficients and general smooth rigid
varieties over F (without specific requirements on the existence of semistable models over
OF ) is established in [NN16] (cf. also [BLZ16]).

We will refer to the work of Ertl and Yamada (cf. [EY21] and the preprints [EY22],
[EY23]) for a version of Hyodo-Kato cohomology for strictly semistable log-schemes over
k0F (where k0F denotes the log-scheme Spec(kF ) with the log structure associated with the
monoid homomorphism N → kF , 1 ↦ 0). Building up on the aforementioned works, the
preprints [Yam22] and [HW22]) develop versions of syntomic (and finite polynomial) co-
homology with coefficients for strictly semistable log schemes over OϖF (where OϖF denotes
the scheme Spec(OF ) with canonical log structure associated with the monoid homomor-
phismm N→ OF , 1↦ϖ).

We let X denote a proper strictly semistable log scheme over OϖF , with horizontal
divisor D ⊂ X (cf. [EY23, definition 4.16]) and open complement U = X ∖D. Denote by X0

the special fiber of X (which is a strictly semistable log-scheme over k0F ) and by D0 ⊂ X0

the corresponding horizontal divisor. Finally, we denote X = XF , D = DF , U = UF the
corresponding generic fibers.

Given a filtered overconvergent isocrystal (E ,Φ,Fil) over X , [Yam22] constructs a
Hyodo-Kato map in the derived category of F0-vector spaces (dipending on the choice of
the uniformizer ϖ ∈ OF and of a branch of the p-adic logarithm log ∶ F× → F )

Ψϖ,log,F0 ∶ RΓHK(X0,E ) → RΓdR(X,EdR) .
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The notations is as follows:
(i) RΓHK(X0,E ) is a complex of F0-vector spaces with F0-semilinear Frobenius φ and F0-

linear monodromy N such that Nφ = pφN which computes Hyodo-Kato cohomology;
(ii) RΓdR(X,EdR) = RΓ(X,EdR⊗Ω

●
X⟨D⟩) is the complex of F -vector spaces with filtration

which computes de Rham cohomology of X with coefficients in EdR (the de Rham
realization of E ) and log poles along D (or equivalently the de Rham cohomology of
U with coefficients in EdR).

Analogously, [EY23] in the compactly supported case constructs a map

Ψϖ,log,F0,c ∶ RΓHK,c(X0,E ) → RΓdR,c(X,EdR)

Here RΓHK,c(X0,E ) computes Hyodo-Kato cohomology with compact support and

RΓdR,c(X,EdR) ∶= RΓ(X,EdR ⊗Ω●X⟨−D⟩)

computes compactly supported de Rham cohomology of U with coefficients in EdR.

Assuming that E is unipotent (i.e., an iterated extension of the trivial isocrystal)
makes sure that the map Ψϖ,log,F,? ∶= Ψϖ,log,F0,? ⊗F0 F (for ? ∈ {c,∅}) is an isomorphism
(cf. [Yam22, proposition 8.8] and [EY23, corollary 3.9]).

On the other hand (cf. [HW22, section 6]), if one was able to prove that Ψϖ,log,F,?

(for ? ∈ {c,∅}) is an isomorphism also for an isocrystal (E ,Φ,Fil) which is not necessarily
unipotent, then the definition of syntomic (and finite polynomial) cohomology via a suit-
able mapping fiber and the subsequent formalism would work in the same way as in the
unipotent case.

From now on we will suppress the dependance on ϖ and of log ∶ F× → F from the
notation and we fix a polynomial P ∈ 1 + T ⋅Qp[T ] (one can also make the whole theory
L-linear for any finite extension L of Qp and work with P ∈ 1+ T ⋅L[T ], but we will avoid
it here for simplicity). Moreover, we will assume that ΨF,? is an isomorphism for ? ∈ {c,∅}
and for every log overconvergent filtered isocrystal considered. Provided this assumption,
one can define the complex computing syntomic P -cohomology of X with coefficients in
(E ,Φ,Fil) twisted by any n ∈ Z formally as in [EY21, definition 4.5], where the authors
work with trivial coefficients and P (T ) = 1 − T .

Since we are assuming that X is proper, this complex can be defined directly as the
homotopy limit (cf. [EY21, section 1.2] for the conventions on the notation):

(8.1)

RΓsyn,P,?(X ,E , n)

∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RΓHK,?(X0,E ) RΓHK,?(X0,E ) ⊕RΓdR,?(X,EdR)/Fil
n

RΓHK,?(X0,E ) RΓHK,?(X0,E )

(P (p−nφ),Ψ−1F )

N (N,0)

P (p1−nφ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We will write simply RΓsyn,P,?(X , n) when (E ,Φ,Fil) is the trivial filtered isocrystal.

Remark 8.1: In this remark we axiomatize some features of syntomic P -cohomology that
we will need in the sequel (in the setting described above).
(i) Assume that a filtered isocrystal (E ,Φ,Fil) is such that EdR is the de Rham realization

of a Kummer étale Zp-local system L on (X,D). Then, for P ∈ 1 + T ⋅Qp[T ], n ∈ Z
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and ? ∈ {c,∅}, there is a spectral sequence

(8.2) Ei,j2 ∶=H
i
st,P (F,Dpst(H

j
ét,?(UQ̄p

,L(n))) ⇒H i+j
syn,P,?(X ,E , n) .

(ii) (cf. [HW22, section 4.2]) Given P,Q ∈ 1 + T ⋅ Qp(T ) and log overconvergent filtered
isocrystals (E1,Φ1,Fil1) and (E2,Φ2,Fil2), one has for every n,m ∈ Z a natural map

(8.3) RΓsyn,P (X ,E1, n) ⊗K0 RΓsyn,Q,c(X ,E2,m) → RΓsyn,P∗Q,c(X ,E1 ⊗ E2, n +m) ,

inducing cup products

(8.4) H i
syn,P (X ,E1, n) ×H

j
syn,Q,c(X ,E2,m)

∪
Ð→H i+j

syn,P∗Q,c(X ,E1 ⊗ E2, n +m) .

The spectral sequence (8.2) is compatible with this cup product and the cup product
of proposition 7.13.

(iii) If P ∈ 1 + T ⋅ Qp(T ) is such that P (1) ≠ 0 ≠ P (p−1) and X has dimension dX , then
there is a trace map

(8.5) TrX ,syn,P ∶H
2dX+1
syn,P,c(X , dX + 1) ↠H1

st,P (F,Q
nr
p (1)) ≅ F

whose kernel is the second step Fil2 of the 3-step filtration induced on the cohomology
group H2dX+1

syn,P,c(X , dX + 1) by the spectral sequence 8.2.
The isomorphism H1

st,P (F,Q
nr
p (1)) ≅ F is explicitly given by sending a class

[(w, z, y)] ∈H1
st,P (F,Q

nr
p (1)) to y − P (p−1)−1w.

(iv) (cf. [HW22, section 4.2]) Assume that ι ∶ Z ↪ X is a closed immersion of proper
strictly semistable log schemes of codimension j such that Z (the generic fibre of Z)
is smooth over K. Then for every i ∈ Z≥0, P ∈ 1 + T ⋅ Qp(T ), n ∈ Z and every log
overconvergent filtered isocrystal (E ,Φ,Fil) on X , there are pushforward maps

(8.6) ι∗ ∶H
i
syn,P (Z, ι

∗(E ), n) →H i+2j
syn,P (X ,E , n + j) .

It follows from the construction of such pushforward maps that the following projection
formula holds:

(8.7) ι∗α ∪ β = ι∗(α ∪ ι
∗β)

for every α ∈ H i
syn,P (Z, ι

∗(E1), n) and every β ∈ Hj
syn,P,c(X ,E2,m), where the cup

product is the syntomic cup product defined in (8.4) (on X and Z respectively).
▲

Remark 8.2: The results discussed in (i)-(iv) in the above remark are well-known in the
case of trivial coefficients, as established in [NN16] (cf. also [BLZ16] for the P -syntomic
case and [EY21, section 5] for the comparison between Nekovář-Nizioł and Ertl-Yamada
syntomic cohomology in our setting). Thanks to the so-called Lieberman’s trick (cf. for
instance [BSV22b, section 3.2] and/or [BSV20, paragraph 4.1.3]), we will always be able to
assume that the relevant cohomology groups for (products of) modular curves appearing in
the sequel are direct summands of cohomology groups of (products of) suitable Kuga-Sato
varieties with trivial coefficients. Hence we will use freely the properties (i)-(iv) in the
sequel.

On the other hand, it is still an interesting problem (cf. [HW22, section 1.3]) to single
out a nice and not too restrictive category of syntomic coefficients for which the properties
(i)-(iv) can be proven. As already noted in [HW22, section 1.3], the category of syntomic
coefficients introduced in [Yam22] looks a bit too restrictive, since one is allowed to consider



The syntomic Abel-Jacobi map 69

only unipotent log overconvergent isocrystals (while for instance the isocrystals associated
with the local systems Hr or Lr of section 6.1 are not unipotent, but satisfy the property
that the Hyodo-Kato map ΨK,? for ? ∈ {c,∅} is an isomorphism, as it was already shown
in [CI10]). ▲

Remark 8.3: As explained in [BLZ16, section 2.4] (cf. also [EY21, section 4.2]), a class
η ∈H i

syn,P,?(X ,E , n) can be represented by a sextuple (u, v;w,x, y; z), where

u ∈ RΓiHK,?(X0,E ) , v ∈ FilnRΓidR,?(X,EdR) ,

w, x ∈ RΓi−1HK,?(X0,E ) , y ∈ RΓi−1dR,?(X,EdR) ,

z ∈ RΓi−2HK,?(X0,E )

and the following relations are satisfied (where d denotes the differential in the respective
complex):

du = 0 , dv = 0 ,

dw = P (p−nφ)u , dx = Nu ,

dy = ΨK(u) − v , dz = Nw − P (p1−nφ)x .

One can give explicit formulas for the cup products (8.4) introduced above in terms of this
description. We refer to [BLZ16, proposition 2.4.1] for that. ▲

8.2. De Rham cohomology and overconvergent modular forms

In this section we recall some facts concerning the geometry of X1(Mpt) (for t ≥ 1 and
p ∤ M) as a rigid analytic variety over Qp (or a suitable extension of Qp). One can find
a more detailed treatment in [Col97], [BE10, section 4.4] and [DR17, section 4.1]. Recall
that L denotes a large enough finite extension of Qp as usual.

Set Kt ∶= Qp(ζpt) (where ζpt denotes a primitive pt-th root of unity). It is well-
known that X1(Mpt)Kt admits a proper flat regular model X1(Mpt) over OKt = Zp[ζpt]
(cf. [KM85, chapters 12-13]). If the integer M considered is large enough (which we
can always ensure), we can assume that the irreducible components of the special fiber of
X1(Mpt) are all smooth of genus at least 2. It is known that exactly two of the irreducible
components of X1(Mpt)0 (the special fiber of X1(Mpt)) are isomorphic to the Igusa curve
usually denoted Ig(Mpt) as curves over Fp. Usually this two irreducible components are
denoted Ig∞(p

t) and Ig0(p
t), as Ig∞(p

t) contains the cusp ∞, while Ig0(p
t) contains the

cusp 0.

Up to extending scalars to a finite extension F ⊆ L of Qp(ζpt), one can construct a
regular stable model Xt of Xt,F ∶= X1(Mpt)F over Spec(OF ), together with a birational
map Xt → X1(Mpt)OF

. This maps identifies two irreducible components of Xt,0 (the special
fiber of Xt) with Ig∞(p

t)kF and Ig0(p
t)kF (where kF is the residue field of F ).

We can look at Xt,Kt (resp. Xt,F ) as a rigid analytic space Xan
t,Kt

(resp. Xan
t,F ) over

Kt (resp. F ). We define two so-called wide open subspaces W∞(pt) and (resp.) W0(p
t)

of Xan
t,kT

as the preimages of Ig∞(pt) and (resp.) Ig0(p
t) under the reduction map. The

preimage of the smooth locus of Ig∞(pt) (resp. Ig0(pt)) is an affinoid subset of Xan
t,Kt

which
will be denoted by A∞(pt) (resp. A0(p

t)).



70 De Rham cohomology and overconvergent modular forms

SinceXt,Kt is proper overKt, rigid de Rham cohomology agrees with algebraic de Rham
cohomology. In particular we can consider for every ν ≥ 2 and for ? ∈ {∞,0} restriction
maps

Res? ∶H
1
dR(Xt,Kt ,Hν−2)L →H1

dR(W?(p
t),Hν−2)L .

According to [BE10, lemme 4.4.1], one can equip the groups H1
dR(W?(p

t),Hν−2) with an
action of Hecke and diamond operators away from Mp in such a way that the restriction
maps are Hecke equivariant.

Since Xt,F admits a stable model over OF , we can consider (up to fixing once a for all
a uniformizer ϖ ∈ OF and a branch of the p-adic logarithm) the Hyodo-Kato cohomology
H1

HK(Xt,0,Hν−2).

Recall that the F0-vector space H1
HK(Xt,0,Hν−2) is endowed with the structure of

(φ,N)-module. We let Φ ∶= φd (where d = [F0 ∶ Qp]) so that, extending scalars from F0 to
F , we can endow, via the isomorphism Ψϖ,log,K of the previous section, H1

dR(Xt,F ,Hν−2)

with an F -linear Frobenius Φ and monodromy operator N such that N ○Φ = pd ⋅Φ ○N (cf.
also the discussion in remark 8.2).

One can endow the F -vector spaces H1
dR(W?(p

t)F ,Hν−2) with an F -linear Frobenius
Φ? such that the restriction map Res? is Frobenius equivariant for ? ∈ {∞,0}, as explained
in [Col97]. One of the main results of [Col97] (namely theorem 2.1) can be stated as follows.
The restriction maps induce an isomorphism

(8.8) H1
dR(Xt,F ,Hν−2)

prim
L

≅
Ð→H1

dR(W∞(p
t)F ,Hν−2)

∗
L ⊕H

1
dR(W0(p

t)F ,Hν−2)
∗
L

Here H1
dR(Xt,F ,Hν−2)

prim
L denotes the p-primitive subspace, i.e., the subspace spanned

by the common eigenspaces for the action of Hecke and diamond operators relative to
systems of eigenvalues coming from p-primitive modular eigenforms of exact level dividing
Mpt (recall that a modular newform is p-primitive if the p-part of the conductor of its
nebentypus equals the p-part of its level).

The notationH1
dR(W?(p

t)F ,Hν−2)
∗
L denotes the so-called pure classes, i.e., those whose

restriction to supersingular annuli is trivial.

One can show that the action of Φ on overconvergent modular forms of weight ν, seen
as sections of ων in a wide open neighbourhood of A∞(pt) insideW∞(pt), can be described
by the d-th power of the operator p(ν−1)⟨p ; 1⟩V . Here (cf. the end of section 6.1) ⟨a ; b⟩
denotes the diamond operator corresponding to the unique class in (Z/MptZ)× which is
congruent to a modulo M and to b modulo pt, while V acts on q-expansions sending q ↦ qp

as usual.
This yields an operator Φ∞ on H1

dR(W∞(p
t)F ,Hν−2)L which is the F -linear extension

of the d-th power φd∞ of an operator φ∞ on H1
dR(W∞(p

t),Hν−2)L. One can define the
corresponding operator φ0 on H1

dR(W0(p
t),Hν−2)L simply as φ0 = (w

−1
pt )
∗ ○ φ∞ ○wpt .

The isomorphism (8.8) is equivariant for the action of Φ on H1
dR(Xt,F ,Hν−2)

prim
L and

the action of (Φ∞,Φ0) on H1
dR(W∞(p

t)F ,Hν−2)
∗
L ⊕H

1
dR(W0(p

t)F ,Hν−2)
∗
L, where clearly

Φ0 ∶= (w
−1
pt )
∗ ○Φ∞ ○wpt . One can also show that on H1

dR(W∞(p
t),Hν−2)L it holds U ○V =

V ○U = 1, where U is the usual Up operator.

For these facts we refer again to [BE10, section 4.4] and to [DR17, section 4.1]
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8.3. The syntomic Abel-Jacobi map

In the above section 8.2 - after possibly replacing the field F of remark 7.27 by a
finite extension and enlarging M - we fixed stable model Xt of Xt,F over Spec(OF ). Using
the recipes of [Har01], one can also obtain a regular strictly semistable variety Wt over
Spec(OF ), together with a morphism of OF -schemes (obtained by successively blowing up
the products of irreducible components of the special fiber of Xt) bt ∶ Wt → Xt×OF

Xt×OF
Xt.

The morphism bt, after base change to F , induces an identificationWt,F =X
3
t,F . Moreover,

there is a unique factorization

Wt

Xt Xt ×OF
Xt ×OF

Xt

bt

dt

δt

afforded by the universal property of blow-ups, where dt is the diagonal embedding. By
[GW20, proposition 13.96], it also follows that the lift δt is still a closed embedding.

The following diagram summarizes the étale and the syntomic versions of the Abel-
Jacobi maps over F . Note that, by abuse of notation, we use the same symbol for the
syntomic coefficients and their étale counterparts. Here (f, g, h) is again a triple of modular
forms satisfying assumption 6.11.

H0
syn(Xt,Hr, r) ≅H

0
ét(Yt,F ,Hr(r))

H1
st (F,Dpst(H

3
ét(Y

3
t,Q̄p

,H[r](r + 2))L)) H1
g (F,H

3
ét(Y

3
t,Q̄p

,H[r](r + 2))L)

H1
st (F,Dpst(H

3
ét(Y

3
t,Q̄p

,L[r](2 − r))L)) H1
g (F,H

3
ét(Y

3
t,Q̄p

,L[r](2 − r))L)

H1
st(F,Dpst(V (f, g, h))) H1

g (F,V (f, g, h))

AJsyn,F

AJét,F

sr ≅

expst
≅

sr≅

prfghst

expst
≅

prfgh
ét

expst
≅

Remark 8.4: Some remarks are in order.
(i) The isomorphism H0

syn(Xt,Hr, r) ≅ H
0
ét(Yt,F ,Hr(r)) can be realized as the composi-

tion of the following canonical isomorphisms:

H0
syn(Xt,Hr, r) ≅H

0
st(F,Dpst(H

0
ét(Yt,Q̄p

,Hr(r)))

≅H0(F,H0
ét(Yt,Q̄p

,Hr(r))

≅H0
ét(Yt,F ,Hr(r))

The first isomorphism follows from the corresponding spectral sequence 8.2, the third
isomorphism follows from theorem 7.8 and the third isomorphism is afforded by the
Hochschild-Serre spectral sequence.

(ii) The construction of the syntomic Abel-Jacobi map AJsyn,F follows the same ideas as
for the étale counterpart (cf. the diagram above remark 6.18 and the remark itself).
The fact that δt is a closed immersion gives rise to pushforward map

δt,∗ ∶H
0
syn(Xt,Hr, r) →H4

syn(Wt,H[r], r + 2) .
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Set Dj ∶= Dpst (H
j
két(X

3
t,Q̄p

,H[r](r + 2)L)). Then the spectral sequence

(8.9) Ei,j2 ∶=H
i
st(F,D

j) ⇒H i+j
syn(Wt,H[r], r + 2))L

induces a surjective morphism H4
syn(Wt,H[r], r + 2)L ↠ H1

st(F,D
3), whose kernel is

the second step filtration Fil2(H4
syn(Wt,H[r], r+2)L). The syntomic Abel-Jacobi maps

is the composition

AJsyn,F ∶H
0
syn(Xt,Hr, r)

δt,∗
ÐÐ→H4

syn(Wt, δt,∗(Hr), r + 2) ↠H1
st(F,D

3)

▲

Corollary 8.5: The class κ(f, g, h) ∈ H1(Qp, V (f, g, h)) defined in section 6.3 always
belongs to the subspace H1

g (Qp, V (f, g, h)).

Proof. The above discussion shows that the image of κ(f, g, h) inside H1(F,V (f, g, h))
belongs to the subspace H1

g (F,V (f, g, h)) and it is Gal(F /Qp)-invariant. We conclude
recalling that restriction induces an isomorphism (cf. remark 7.30)

H1
g (Qp, V (f, g, h))

ResF /Qp
ÐÐÐÐ→
≅

H1
g (F,V (f, g, h))

Gal(F /Qp) .

□
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CHAPTER 9

The explicit reciprocity law

In this chapter we state and prove the main result of the second part of this thesis.

9.1. Statement and first consequences

We consider as before a triple (f, g, h) of modular forms satisfying assumption 6.11
and which is moreover F -exponential (cf. definition 7.23). In what follows we keep the
notation introduced in the previous chapters

Definition 9.1: We define the p-adic period

Ip(f, g, h) ∶= log
fgh
BK (κ(f, g, h))(η

φ=ap
f ′ ⊗ ωg ⊗ ωh′ ⊗ tr+2) ∈ L

attached to the F -exponential triple (f, g, h).

Note again that the definition of Ip(f, g, h) does not depend on F , but only on the
triple (f, g, h) (and possibly on the common level Mpt chosen).

Theorem 9.2: If the triple (f, g, h) satisfies assumption 7.25 (i.e., the forms g and h are
supercuspidal at p and killed by Up) and k > 2, we have

Ip(f, g, h) = (−1)
k−2(r − k + 2)! ⋅ a1(ef̆(TrMpt/M1pt(g × d

(k−l−m)/2h′))) ,

where d = q ddq denotes Serre’s derivative operator and a1(−) denotes the first Fourier coef-
ficient of the q-expansion at ∞.

The rest of this chapter is devoted to the proof of theorem 9.2.

9.2. Reduction to a pairing in de Rham cohomology

For ξ ∈ {g, h′} we have

F ⊗Qp V
∗
dR,Mpt(ξ) ⊆H

1
dR,c(Yt,F ,Hν−2)L

and this inclusion is compatible for the structure of (Φ,N,L)-module on both sides (recall
that Φ = φd, d = [F0 ∶ Qp]). In particular we deduce that

(9.1) ωξ ⊗ tν−1 ∈ Fil
ν−1H1

dR,c(Yt,F ,Hν−2)L ∩H
1
HK,c(Xt,0,Hν−2, ν − 1)

Pξ(φ)=0

L ,

where Pξ(T ) ∶= 1 − µξpν−1 ⋅ T ∈ 1 + T ⋅L[T ] and (as before) tn is a (canonical) generator of
Qp(n).

With the notation introduced in section 7.1, we can rephrase (9.1) as

ωξ ⊗ tν−1 ∈H
0
st,Pξ
(F,Dpst(H

1
ét,c(Yt,Q̄p

,Hν−2(ν − 1))L)) .
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Lemma 9.3: Assume ν > 2. Then for every P (T ) ∈ 1 + T ⋅L[T ] and every n ∈ Z there are
natural isomorphisms
(9.2)
H1

syn,P,c(Xt,Hν−2, n)L
≅
Ð→H0

st,P (F,D
1(n)) , H2

syn,P,c(Xt,Hν−2, n)L
≅
Ð→H1

st,P (F,D
1(n)) ,

where
Dj(n) ∶= Dpst (H

j
ét,c(Yt,Q̄p

,Hν−2(n))L)

Proof. Since in this case H0
dR(Yt,F ,Hν−2) = H

0
dR,c(Yt,F ,Hν−2) = 0 (cf. [BDP13, lemma

2.1]) and (by duality) H2
dR(Yt,F ,Hν−2) = 0 =H

2
dR,c(Yt,F ,Hν−2), then the spectral sequence

(cf. equation (8.2))

(9.3) Ei,j2 ∶=H
i
st,Pξ
(F,Dj(n)) ⇒H i+j

syn,Pξ,c
(Xt,Hν−2, n)L

has Ei,j2 = 0 unless j = 1 and i ∈ {0,1,2}. The required isomorphisms follow directly from
the degeneration of this spectral sequence. □

Proposition 9.4: For ξ ∈ {g, h′}, the class ωξ ⊗ tν−1 can be lifted to a class

ω̃ξ,ν−1 ∈H
1
syn,Pξ,c

(Xt,Hν−2, ν − 1)L .

Such a lift is unique if ν > 2 and it is unique up to an element of F ⊗Qp L if ν = 2.
Proof. This follows directly from lemma 9.2 when ν > 2, so we assume ν = 2.

The first four terms of the 5-term exact sequence associated to the spectral sequence
(9.3) (with n = ν − 1 = 1) look like

0→H1
st,Pξ
(F,D0(1)) →H1

syn,Pξ,c
(Xt,1)L →H0

st,Pξ
(F,D1(1)) →H2

st,Pξ
(F,D0(1)) ,

so that the existence of a lift ω̃ξ,1 is equivalent to the vanishing of ωξ ⊗ t1 under the knight
move H0

st,Pξ
(F,D1(1)) →H2

st,Pξ
(F,D0(1)). One can easily compute that

H2
st,Pξ
(F,D0(1)) ≅H2

st,Pξ
(F,Qnr

p (1) ⊗Qp L) ≅
F0 ⊗Qp L

Pξ(1)(F0 ⊗Qp L)
.

Looking at p-adic absolute values, one sees that Pξ(1) ≠ 0, showing that H2
st,Pξ
(F,D0) = 0

also if ν = 2. Hence in this case the required lift exists and it is unique up to an element
of H1

st,Pξ
(F,D0(1)) ≅ F ⊗Qp L. □

Definition 9.5: For ξ ∈ {g, h′} and with the notation of remark 8.3, we will represent the
class ω̃ξ,ν−1 afforded by proposition 9.4 as the sextuple (ωξ ⊗ tν−1, ωξ ⊗ tν−1;Fξ, xξ, yξ; 0),
where, by abuse of notation, we let ωξ denote the differential form or the section in Hyodo-
Kato cohomology affording the corresponding cohomology class ωξ.

Remark 9.6: Note that the natural map

H1
syn,Pξ,c

(Xt,Hν−2, n)L →H0
st,Pξ
(F,Dpst (H

1
ét,c(Yt,Q̄p

,Hν−2(n))L))

arising from the spectral sequence (9.3) clearly sends a class η = [(u, v;w,x, y; 0)] to the
class [(ū, v̄)] (where τ̄ denotes the cohomology class of the section τ).

Moreover, since by construction the differential forms ωξ⊗ν−1 for ξ ∈ {g, h′} lie already
in Filν−1RΓ1

dR(Xt,F ,Hν−2)L, it follows from the discussion in remark 8.3 that the section
yξ in definition 9.5 is a constant (and actually yξ = 0 if ν > 2). ▲
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Remark 9.7: Similarly, one lift ηφ=apf ′ ∈ V ∗dR,Mpt(f
′) ⊆ H1

dR(Xt,F ,Hk−2)L to a syntomic
class. One has that

η
φ=ap
f ′ ⊗ tk−2−r ∈ Fil

k−2−rH1
dR,c(Yt,F ,Hk−2)L ∩H

1
HK,c(Xt,0,Hν−2, k − 2 − r)

Pf (φ)=0

L ,

where Pf(T ) = 1− ap(f)−1 ⋅ pk−2−r ⋅T ∈ 1+T ⋅L[T ]. One can proceed as above to get a lift

(9.4) η̃
φ=ap
f ′,k−2−r ∈H

1
syn,Pf ,c

(Xt,Hk−2, k − 2 − r)

of ηφ=apf ′ ⊗ tk−2−r. Such lift is unique for k > 2. One can actually show that if k = 2 and
f ′ is p-primitive, then one still gets a unique lift, since Pf(pr) ≠ 0 ≠ Pf(pr+1) (one has to
use that the complex absolute value of ap(f) is p1/2 for every embedding Q̄ ↪ C in this
case). ▲

Proposition 9.8: Assume that (f, g, h) is (F,1 − T )-convenient. Then the p-adic period
introduced in definition 9.1 satisfies (with the notation introduced above):

(9.5) Ip(f, g, h) = TrXt,syn,Pfgh
(η̃

φ=ap
f ′,k−2−r⋃Υ(Detsynr ∪ ω̃g,l−1 ∪ ω̃h′,m−1))

The notation is as follows.
(i) Det

syn
r ∈ H0

syn(Xt,Hr, r) is the syntomic incarnation of Detétr (via the isomorphism
discussed in remark 8.4 (i)).

(ii) The cup products are taken in syntomic cohomology and the big cup product ⋃ arises
from the pairing

Hk−2(k − 2 − r) ⊗OXt,F
Hk−2(r + 2) → OXt,F

(2) ,

where recall that for all i ≥ 0 one has pairings Hi⊗OXt,F
Hi → OXt,F

(−i) (cf. equation
6.8), which we also use to produce the map

Υ ∶Hr(r) ⊗OXt,F
Hl−2(l − 1) ⊗OXt,F

Hm−2(m − 1) →Hk−2(r + 2) .

(iii) The syntomic trace map

TrXt,syn,Pfgh
∶H3

syn,Pfgh,c
(Xt,2)L↠ F ⊗Qp L

[F ∶Qp]
−1TrF /Qp⊗1

ÐÐÐÐÐÐÐÐÐÐ→ L

is defined since Pfgh ∶= Pf ∗ Pg ∗ Ph′ satisfies the conditions Pfgh(1) ≠ 0 ≠ Pfgh(p−1)
(by the assumption that (f, g, h) is (F,1 − T )-convenient).

Proof. Since we are assuming that Dpst(V (f, g, h)) is an (F,1 − T )-convenient quotient
of Dpst(H

3
ét(Y

3
t,Q̄p

,H[r](r + 2))L), the compatibility between cup products in the spectral
sequences of type 8.2 implies that

(9.6) Ip(f, g, h) = TrWt,syn,Pfgh
(δt,∗(Det

syn
r ) ∪[r] ω̃fgh) ,

The notation is as follows.
(i) The trace TrWt,syn,Pfgh

∶ H7
syn,Pfgh,c

(Wt,4)L ↠ L is defined in the same way as
TrXt,syn,Pfgh

.
(ii) The class ω̃fgh is any lift of the element

(η
φ=ap
f ′ ⊗ tk−2−r) ∪ (ωg ⊗ tl−1) ∪ (ωh′ ⊗ tm−1) ∈H

0
st,Pfgh

(F,Dpst(H
3
ét,c(Yt,Q̄p

,Hr(r + 2))L))

under the surjective map

H3
syn,Pfgh

(Wt,H[r], r + 2)L↠H0
st,Pfgh

(F,Dpst(H
3
ét,c(Yt,Q̄p

,Hr(r + 2))L))
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(note that we have implicitly used Künneth decomposition).
(iii) The cup product ∪[r] is induced by the pairing

H[r](r + 2) ⊗OX3
t,F

H[r](r + 2) → OX3
t,F
(4) .

Applying the projection formula (8.7), it follows that

(9.7) Ip(f, g, h) = TrXt,syn,Pfgh
(Detsynr ∪r (η̃

φ=ap
f ′,k−2−r ∪ ω̃g,l−1 ∪ ω̃h′,m−1))

where the cup product ∪r arises from the pairing Hr(r) ⊗OXt,F
Hr(r + 2) → OXt,F

(2),
obtained combining the pairings Hi ⊗OXt,F

Hi → OXt,F
(−i) for i ∈ {r1, r2, r3}.

Formula (9.5) in the statement of the proposition is essentially (9.7) after suitably
rearranging the pairings. □

Once obtained the formula in proposition 9.8, we move the computation to the rigid
analytic setting, where the objects involved can be made more explicit.

Assumption 9.9: From now on, we assume that the triple (f, g, h) satisfying assumptions
6.11 and 7.25 also satisfies k > 2 (in particular it is always (F,1 − T )-convenient).

Definition 9.10: We define

ξgh′ ∶= [(wgh′ , xgh′ , ygh′)] ∈H
1
st,Pgh′ (F,Dpst(H

1
ét(YQ̄p

,Hk−2(r + 2))L))

as the class corresponding to

Υ(Detsynr ∪ ω̃g,l−1 ∪ ω̃h′,m−1) ∈H
2
syn,Pgh′ (Xt,Hk−2, r + 2)L

under the isomorphism of lemma 9.3.

Fix polynomials a(X,Y ), b(X,Y ) ∈ L[X,Y ] such that

Pgh′(XY ) = a(X,Y )Pg(X) + b(X,Y )Ph′(Y ) .

For instance we can (and will) choose a(X,Y ) ∶= µh′pm−1 ⋅ Y and b(X,Y ) ∶= 1.

Lemma 9.11: With the notation of definition 9.5 and definition 9.10, the class [ygh′] ∈
H1

dR(Xt,F ,Hk−2[r + 2])L can be represented by the differential form ygh′ = Υ(Det
dR
r ⊗ y

′),
where

y′ = yg ∪ (ωh′ ⊗ tm−1) − (ωg ⊗ tl−1) ∪ yh′ .

In particular ygh′ is trivial in H1
dR(Xt,F ,Hk−2[r + 2])L if l > 2 and m > 2.

The class [wgh′] ∈ H1
HK(Xt,0,Hk−2, r + 2)L can be represented by the differential form

wgh′ = Υ(Det
dR
r ⊗w

′), where

w′ = a(φ,φ)(Fg ⊗ (ωh′ ⊗ tm−1)) − b(φ,φ)((ωg ⊗ tl−1) ⊗ Fh′) .

The notation DetdRr stands for the de Rham incarnation of Detétr via the natural identifi-
cations of remark 8.4 (i).
Proof. The proposition follows from the explicit description of the cup product in syn-
tomic cohomology given in [BLZ16, proposition 2.4.1]. A class in H2

syn,Pgh′
(Xt,Hk−2, r+2)L

is represented by a sextuple (u, v ;w,x, y ; z) as in remark 8.3. Analogously, the syntomic
classes ω̃g,l−1 and ω̃h′,m−1 are represented by sextuples described in definition 9.5.

It follows that the cup product ω̃g,l−1 ∪ ω̃h′,m−1 can be represented by the sextuple
(u′, v′ ;w′, x′, y′; z′), where in particular
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(i) y′ = yg ∪ (ωh′ ⊗ tm−1) − (ωg ⊗ tl−1) ∪ yh′ ;
(ii) w′ = a(φ,φ)(Fg ⊗ (ωh′ ⊗ tm−1)) − b(φ,φ)((ωg ⊗ tl−1) ⊗ Fh′).
The isomorphism of lemma 9.3 used to define ξgh′ sends the class [(u′, v′ ;w′, x′, y′ ; z′)]
to [(w̄′, x̄′, ȳ′)], where τ̄ denotes the cohomology class corresponding to τ . The statement
concerning the vanishing of ygh′ follows from remark 9.6. □

Lemma 9.12: Under assumption 9.9 and with the notation as in (6.9), we have

Ip(f, g, h) =
TrF /Qp

[F ∶Qp]
⊗ 1 (η

φ=ap
f ′ ⊗ tk−2−r, ygh′ −

1
Pfgh(p−1)

wgh′)
dR,Xt,F ,k−2

=
TrF /Qp

[F ∶Qp]
⊗ 1 (η

φ=ap
f ′,s ⊗ tk−2−r, (pr

t,s
2 )∗ (ygh′ −

1
Pfgh(p−1)

wgh′))
dR,Xs,F ,k−2

,

where we view wgh′ as a class in H1
dR(Xt,F ,Hk−2[r + 2])L.

Proof. The fist equality follows from the compatibility between cup product in syntomic
cohomology and the de Rham duality (6.9) (cf. [BLZ16, proposition 1.4.3 and proposition
3.4.1]) and the fact that, since φ(ηφ=apf ′ ) = ap(f) ⋅ η

φ=ap
f ′ by design, one has

Pgh′(p
−1 ⋅ ap(f)

−1pk−2−r) = Pfgh(p
−1) .

The second equality follows from the projection formula in de Rham cohomology. □

9.3. End of the proof

This section concludes the proof of theorem 9.2. We split the discussion into two cases:
(♡) f is new of level M1p

s for s ≥ 1, p-ordinary, with s < t/2 as prescribed by assumption
7.25;

(♢) f is the ordinary p-stabilization of a newform f○ of level M1 (p ∤M1).

In case (♡), we know that f ′ is essentially wps(f). Since f is p-ordinary, wpsf is
anti-ordinary. In particular the class ηφ=apf ′,s is fixed by the anti-ordinary projector e′ord.

In case (♢), one obtains the same conclusion due to the presence of the idempotent ef̆ in
the definition of ηφ=apf ′,1 as linear functional and the fact that f̆ is the ordinary p-stabilization
of f̆○.

Remark 9.13: The fact that we manage to reduce our computation to a pairing in de
Rham cohomology theoretically allows us to perform the computation over Qp, since the
cohomology classes appearing in the pairing are already defined over Xt,Qp . Hence the
trace TrF /Qp

appearing in the formulas of lemma 9.12 does not affect the computation and
can be safely removed. ▲

Lemma 9.14: We can perform the computation of Ip(f, g, h) after restricting to W∞(pt)
(as a rigid analytic space over Kt ∶= Qp(ζpt)) and the following formula holds:

(9.8) Ip(f, g, h) = (η
φ=ap
f ′ ⊗ tk−2−r , eord (ygh′ −

1
Pfgh(p−1)

wgh′))
dR,W∞(pt),k−2

.
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Proof. Since the anti-ordinary projector e′ord is adjoint under the given pairing to the
ordinary projector eord, we can compute (for every ω ∈H1

dR(Xt,F ,Hk−2[r + 2])L) that

(η
φ=ap
f ′,s ⊗ tk−2−r, (pr

t,s
2 )∗(ω))dR,Xs,F ,k−2

=(e′ord(η
φ=ap
f ′,s ⊗ tk−2−r), (pr

t,s
2 )∗(ω))dR,Xs,F ,k−2

=(η
φ=ap
f ′ ⊗ tk−2−r, eord ○ (pr

t,s
2 )∗(ω))dR,Xs,F ,k−2

=(η
φ=ap
f ′,s ⊗ tk−2−r, (pr

t,s
2 )∗ ○ eord(ω))dR,Xs,F ,k−2

=(η
φ=ap
f ′ ⊗ tk−2−r, eord(ω))

dR,Xt,F ,k−2
.

The chain of equalities follows observing that eord ○ (pr
t,s
2 )∗ = (pr

t,s
2 )∗ ○ eord. The latter

is a consequence of the fact that (p ⋅ Up)t−s = (pr
t,s
2 )∗ ○ (pr

t,s
1 )
∗ on H1

dR(Xs,F ,Hk−2) and
that (p ⋅Up)t−s = (pr

t,s
1 )
∗ ○ (prt,s2 )∗ on H1

dR(Xt,F ,Hk−2) (cf. remark 6.6).

The isomorphism (8.8) induces an isomorphism

H1
dR(Xt,F ,Hk−2)L[f

′] ≅H1
dR(W∞(p

t)F ,Hk−2)
∗
L[f

′] ⊕H1
dR(W0(p

t)F ,Hk−2)
∗
L[f

′] .

In case (♡), we observe that Up(wps(f)) = χf(p)pk−1ap(f)−1 ⋅wps(f), so that from the
explicit description of the action of Frobenius Φ∞ on W∞(pt) it follows that Φ acts as
multiplication by ap(f)d on H1

dR(W∞(p
t)F ,Hk−2)

∗
L[f

′] (recall d = [F0 ∶ Qp]).
The Frobenius action on H1

dR(W0(p
t)F ,Hk−2)

∗ is given by Φ0 = (w
−1
pt )
∗ ○ Φ∞ ○ w

∗
pt .

One can check that

(9.9) w∗pt ○ (pr
t,s
2 )
∗ = (prt,s1 )

∗ ○ ⟨ps−t; 1⟩ ○w∗ps

to deduce that actually

(9.10) (prt,s2 )
∗ ○Φ0 = Φ0 ○ (pr

t,s
2 )
∗

as maps
H1

dR(W0(p
s)F ,Hk−2)

∗
L →H1

dR(W0(p
t)F ,Hk−2)

∗
L .

One checks easily that Φ0 acts via multiplication by βp(f)d on H1
dR(W0(p

s)F ,Hk−2)
∗[f ′],

where βp(f) ∶= χf(p)pk−1ap(f)−1, whence Φ0 will act by multiplication by βp(f)d also on
H1

dR(W0(p
t)F ,Hk−2)

∗
L[f

′]. Since βp(f) is not a p-adic unit (as k ≠ 1), while ap(f) ∈ O×L,
it follows that the class ηφ=apf ′ restricts trivially to W0(p

t)F .

In case (♢) one has to be more careful, since the Φ-eigenspaces for the eigenvalues ap(f)d

and βp(f)
d intersect non-trivially with both the subspaces H1

dR(W∞(p
t)F ,Hk−2)

∗
L[f

′]

and H1
dR(W0(p

t)F ,Hk−2)
∗
L[f

′]. Again, looking at the definition of ηφ=apf ′,1 in this case,
one sees that, since for the dual operator U ′p (which is adjoint to Up under the pairing
(−,−)dR,X1,F ,k−2) we have ⟨p ; 1⟩ ○ U ′p = wpt ○ Up ○ w−1pt (and w2

pt = ⟨p
t;−1⟩), it follows that

U ′p acts on such class as multiplication by ap(f)χf(p)−1, so that

Up ○wp(η
φ=ap
f ′,1 ) = ap(f)wp(η

φ=ap
f ′,1 ) .

It follows that, restricting our attention to W0(p) and keeping track of the various defini-
tions, one obtains:

Φ0(η
φ=ap
f ′,1 ∣W0(p)F ) = (w

−1
p )
∗ ○Φ∞ ○wp(η

φ=ap
f ′,1 ∣W0(p)F ) = βp(f)

d ⋅ η
φ=ap
f ′,1 ∣W0(p)F
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Since by construction Φ(η
φ=ap
f ′,1 ) = (ap(f))

d ⋅ η
φ=ap
f ′,1 , we deduce that ηφ=apf ′,1 ∣W0(p)F = 0 also in

this case and, using again the equality (9.10), we conclude that ηφ=apf ′ ∣W0(pt)F = 0 as well.

Finally, the fact that we can forget the trace TrF /Qp
and that we can work on W∞(pt)

as a rigid space over Kt follows from the discussion of remark 9.13.
□

Now we turn our attention to the term appearing in the RHS of the pairing in the
formula (9.8) above and we try to make it more computable.

Lemma 9.15: Fix ξ ∈ {g, h′}. Then the restriction Fξ ∣W∞(pt) of the section Fξ (cf. defini-
tion 9.5) can be described around the cusp ∞ as

Fξ,∞ ∶=
ν−2

∑
j=0

(−1)jj!(
ν − 2

j
) ⋅ dν−2−j(Ξ) ⋅ ων−2−jcan ⊗ ηjcan ⊗ tν−1

where Ξ ∈ Z((q)) ⊗ L satisfies ξ − µξpν−1χξ(p)V ξ = dν−1Ξ as q-expansions and d = q ddq is
Serre’s derivative operator.
Proof. Let ξ denote either g or h′ and write ν for the corresponding weight and write Fξ,∞
for the restriction of Fξ to a formal neighbourhood of the cusp ∞, where by construction
(cf. remark 8.3 and definition 9.5) it satisfies

∇Fξ,∞ = (ξ(q) − µξp
ν−1χξ(p)ξ(q

p)) ⋅ ων−2can ⊗
dq

q
⊗ tν−1 .

Then the result follows formally as in [Col94, section 9]. □

Proof of theorem 9.2. Recall that U ○ V = V ○U = 1 on H1
dR(W∞(p

t),Hr)L for every
r ∈ Z≥0. The operator U = Up kills sections of the form ξ(q) ⋅ ωr−jcan ⊗ η

j ⊗ dq
q , where ξ(q)

is a p-depleted q-expansion (i.e. a q-expansion where the terms corresponding to integers
divible by p vanish). It follows that, when restricting to W∞(pt), such sections are exact
(hence trivial in H1

dR(W∞(p
t),Hr)L).

Assumption 7.25 implies that the q-expansions of g and h′ are p-depleted, so that the
differential forms ωg and ωh′ are exact when restricted to W∞(pt). Since (cf. remark 9.6)
the sections yg and yh′ are constants, we immediately deduce that (also if l = 2 or m = 2)
ygh′ ∣W∞(pt) = 0 in H1

dR(W∞(p
t),Hk−2[r + 2]).

It is easy to check that the product of a p-depleted q-expansion and of a q-expansion
of the form ∑+∞n=1 bnqnp is still p-depleted.

Note that the q-expansion G found in lemma 9.15 above can be described explicitly as

G =
+∞

∑
n=1

an(g)

nl−1
qn −

+∞

∑
n=1

µgχg(p)an(g)

nl−1
qnp = d1−lg − µgχg(p)V (d

1−lg) .

Given t ∈ Z≥1, recall that the operator d−t is the p-adic limit of the operators d−t+(p−1)p
k

for k → +∞. Hence the second equality above makes sense because the q-expansion of g is
already p-depleted. Similarly H ′ = d1−mh′ − µhχh(p)V (d1−mh′).
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Define, for ξ ∈ {g, h′}, the sections F ′ξ and F ′′ξ of Hν−2 over W∞(pt) which in a neigh-
bourhood of the cusp ∞ are described by:

F ′ξ,∞ =
ν−2

∑
j=0

(−1)jj!(
ν − 2

j
) ⋅ d−1−jξ ⋅ ων−2−jcan ⊗ ηjcan ⊗ tν−1

and

F ′′ξ,∞ ∶=
ν−2

∑
j=0

(−1)jj!(
ν − 2

j
) ⋅ p−1−j⟨p ; 1⟩V (d−1−jξ) ⋅ ων−2−jcan ⊗ ηjcan ⊗ tν−1 ,

so that Fξ = F ′ξ − µξp
ν−1 ⋅ F ′′ξ , ∇F ′ξ = ωξ ⊗ tν−1 and φ∞(F ′ξ) = F

′′
ξ .

The above discussion shows that in the cohomology group H1
dR(W∞(p

t),Hk−2[r+2])L
we have:

Υ(DetdRr ⊗w
′)∣W∞(pt) =

= Υ (DetdRr ⊗ a(φ∞, φ∞)(Fg ⊗ (ωh′ ⊗ tm−1)) − b(φ∞, φ∞)((ωg ⊗ tl−1) ⊗ Fh′))

= Υ (DetdRr ⊗ (Fg ⊗ µhp
m−1φ∞(ωh′ ⊗ tm−1) − (ωg ⊗ tl−1) ⊗ Fh′))

= Υ (DetdRr ⊗ (µgµhp
l+m−2(F ′′g ⊗ φ∞(ωh′ ⊗ tm−1)) + (F

′
g ⊗ (ωh′ ⊗ tm−1)))))

= Υ (DetdRr ⊗ Pgh′(φ∞ ⊗ φ∞)(F
′
g ⊗ (ωh′ ⊗ tm−1))))

= −Pgh′(φ∞)(Υ(Det
dR
r ⊗ (ωg ⊗ tl−1) ⊗ F

′
h′)) .

In the same way as in [BSV20, pagg. 1023-1024], over W∞(pt) one can compute that

eord(Υ(Det
dR
r ⊗ (ωg ⊗ tl−1) ⊗ F

′
h′)) = (−1)

k−2(r − k + 2)! ⋅ ωΞord(g,h′) ⊗ tr+2,

where Ξord(g, h′) ∶= eord(g × d
(k−l−m)/2h′). Combining everything we can conclude that

Ip(f, g, h) = (η
φ=ap
f ′ ⊗ tk−2−r , eord (−

1
Pfgh(p−1)

wgh′))
dR,W∞(pt),k−2

= (−1)k−2(r − k + 2)! ⋅
⎛

⎝
η
φ=ap
f ′ ⊗ tk−2−r ,

Pgh′(p
−2−rφ∞)(ωΞord(g,h′) ⊗ tr+2)

Pfgh(p−1)

⎞

⎠
dR,W∞(pt),k−2

= (−1)k−2(r − k + 2)! ⋅ η
φ=ap
f ′ (Ξ

ord(g, h′)) .

The first equality follows directly from the previous computations, while the second
follows from the fact that the functional ηφ=apf ′ includes a projection to the f̆ -isotypical
component. Indeed, having control on the action of U and ⟨p ; 1⟩ on f̆ , we can check that
on W∞(pt) it holds

Pgh′(φ∞)(ωf̆ ⊗ tr+2) = (1 − µgµhp
l+m−2φ∞)(ωf̆ ⊗ tr+2) = Pfgh(p

−1) ⋅ (ωf̆ ⊗ tr+2) .

This concludes the proof of the theorem. □
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APPENDIX A

Construction of the invariant Detr

In this section we let R denote either a local ring or a principal ideal domain and we
let M denote a free R-module of rank 2, with perfect alternating R-bilinear form

⟨ , ⟩M ∶M ×M → R .

Set G ∶= AutR(M) and let S ∶= HomR(M,R) denote the R-dual of M , which we consider
as a left-R[G] module in the usual way, i.e.

g ∗ λ(v) ∶= λ(g−1(v)) g ∈ G,λ ∈ S, v ∈M .

For n ≥ 0 we let Sn ∶= Symn(S) denote the n-th symmetric power of S, defined as the
maximal symmetric quotient of S⊗n. We view Sn as a R[G] module with the induced
action.

For m ∈ Z, we let R[m] denote the ring R, with G-action via the m-th power of the
determinant. We think of R[m] as the free R-module of rank one, with fixed generator
am = 1 ∈ R such that g ∗ am = det(g)m ⋅ am for all g ∈ G.

In particular, the pairing ⟨ , ⟩M can be viewed as a perfect alternating R-bilinear form
⟨ , ⟩M ∶M ×M → R[1], which is also G-equivariant, i.e. ⟨g ∗ v1, g ∗ v2⟩M = g ∗ ⟨v1, v2⟩.

We fix a triple of non-negative integers r ∶= (r1, r2, r3) such that:
(i) r ∶= (r1 + r2 + r3)/2 ∈ Z;
(ii) for every permutation of {i, j, k} of {1,2,3}, it holds ri + rj > rk.

We finally set Sr ∶= Sr1 ⊗R Sr2 ⊗R Sr3 , which we endow with the structure of R[G]-
module via the diagonal action on the three factors.

The aim of this section is to produce a canonical invariant element

Detr ∈H
0(G,Sr ⊗R[r]) .

In order to proceed more explicitly, we fix a symplectic R-basis {e1, e2} of M (i.e.
⟨e1, e2⟩M = 1, ⟨e2, e1⟩M = −1). We let {ε1, ε2} be the R-basis of S which is dual to {e1, e2}.

In this way we identify M = R ⊕ R (column vectors), S = R ⊕ R (row vectors) and
G = GL2(R), with the natural action of GL2(R) by matrix multiplication on column
vectors on M and the action of GL2(R) on S given by

g ∗ λ = λ ⋅ g−1 g ∈ GL2(R), λ ∈ S .

For every n ≥ 0 we can then identify Sn with the R-module of two-variable homogeneous
polynomials of degree n with R-coefficients, with GL2(R)-action given by

g ∗ P (x1, x2)) = P ((g
−1 ⋅ ( x1x2 ))

t
) ,

where (⋅)t denotes transposition.
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We view Sr as the R-module of polynomials in six variables (x1, x2, y1, y2, z1, z2) with
R-coefficients which are homogeneous of degree r1 with respect to (x1, x2), homogeneous
of degree r2 with respect to (y1, y2) and homogeneous of degree r3 with respect to (z1, z2).
The action of GL2(R) on Sr can then be explicitly described in terms of the variables.

We finally define an element Pr ∈ Sr as follows

Pr(x1, x2, y1, y2, z1, z2) ∶= det(
x1 x2
y1 y2

)

r−r3

⋅ det(
x1 x2
z1 z2

)

r−r2

⋅ det(
y1 y2
z1 z2

)

r−r1

and one can easily check that for every g ∈ GL2(R) it holds g ∗ Pr = det(g)
−r ⋅ Pr, so that

clearly Detr ∶= Pr ⊗ ar ∈ Sr ⊗R[r] is an invariant for the G = GL2(R)-action.
It is also clear that the element Detr depends only on M and the pairing ⟨ , ⟩M , but

not on the choice of a symplectic basis.
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