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Abstract

The present work is devoted to the numerical analysis of magneto-mechanically cou-
pled mesostructures in the framework of the finite element method. Magnetic materials
are used in many industrial applications, thus the demand for environmentally friendly
magnets with improved efficiency is continuously increasing. To meet this demand, al-
ternative methods and more environmentally friendly chemical compositions need to
be investigated in addition to current process routes. The objective in this work is the
numerical analysis of magnetic materials based on a continuum mechanical formulation.
On the one hand, the focus is on the development of new algorithms for the efficient
treatment of open boundary problems in magnetostatics and their numerical implemen-
tation. On the other hand, the implementation of the micromagnetic equations in the
framework of the finite element method and the validation of this numerical model is
forced. After completion of the validation, polycrystalline magnetic microstructures are
numerically analyzed.

Zusammenfassung

Die vorliegende Arbeit widmet sich der numerischen Analyse von magneto-mechanisch
gekoppelten Mesostrukturen im Rahmen der Finite-Elemente-Methode. Magnetische
Materialien finden in vielen industriellen Bereichen Anwendung, sodass der Bedarf an
umweltfreundlichen Magneten mit gesteigerter Effizienz kontinuierlich zu nimmt. Um
diesen Bedarf decken zu können, müssen neben den aktuellen Prozessrouten auch alter-
native Methoden und umweltverträglichere chemische Zusammensetzungen untersucht
werden. Das Ziel in dieser Arbeit ist die numerische Analyse von magnetischen Materi-
alien basierend auf einer kontinuumsmechanischen Formulierung. Der Fokus liegt zum
einen auf der Entwicklung von neuen Algorithmen zur effizienten Behandlung von offe-
nen Randproblemen in der Magnetostatik sowie deren numerischer Umsetzung. Zum
anderen wird die Implementierung der mikromagnetischen Gleichungen im Rahmen
der Finite-Elemente-Methode und die Validierung dieses numerischen Modells forciert.
Nach Abschluss der Validierung werden polykristalline magnetische Mikrostrukturen
numerisch analysiert.
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1 Introduction and Motivation

Important challenges as the "green" energy transition, the mobility transformation as well
as the ongoing digitization require particularly powerful and efficient magnetic materials.
To address the resulting growing demand for efficient magnetic materials, researchers
from engineering sciences, mathematics, physics, and materials sciences have formed an
interdisciplinary consortium in terms of the collaborative research center Hysteresis Design
of Magnetic Materials for Efficient Energy Conversion (CRC TRR 270 HoMMage). This
work shows the results of the subproject A07 "Scale-bridging of magneto-mechanical
mesostructures of additive manufactured and severe plastically deformed materials" in
HoMMage after almost four years of research work. The focus of this project is on the
numerical characterization of magnetic materials with the goal of providing simulation-
based material compositions and microstructure textures that will eventually lead to
improved magnetic properties.

What types of magnetic materials exist?
In general, magnetic materials can be subdivided into two classes, the so-called hard
and soft magnetic materials. Both types of magnetic materials exhibit different proper-
ties and thus also different fields of application. The hard or permanent magnetic ma-
terials generate intrinsically strong magnetic fields and posses high resistance to exter-
nal magnetic fields. On the one hand, particularly powerful permanent magnets have
fields of applications in hard disk drives, hybrid and electrical vehicles (Fig. 1.1a)) as
well as wind power plants (Fig. 1.1b)), among others, cf. Constantinides [2016] and
Kovacs et al. [2020]. Especially the last two applications play a crucial role in the
"green" energy transition, as efficient transportation in electric cars or energy conversion
by means of wind generators/turbines can contribute to the reduction of climate-damaging
greenhouse gases.

a) b) c)
Figure 1.1: Strong and efficient permanent magnets can be used to enhance a) the electric
transportation (Kemp [2021]) and b) the energy conversion (Vorwerk [2023]), since they
are c) important components of electric motors (one magnet highlighted in blue circle)
(Baumeister [2020]).

Soft magnetic materials on the other hand, generate very low magnetic fields on their
own and are, unlike permanent magnets, not particularly resistant to external magnetic
fields. These properties make soft magnetic materials to ideal components in transform-
ers (Gutfleisch et al. [2011]), where they are used for the low-loss transformation of
energy, and in the write heads of hard disk drives (Comstock [2002]).
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Why is there research interest in magnets?
The current gold standard in the field of permanent magnets, in terms of performance, are
Neodym-Iron-Boron (NdFeB) magnets. Due to many industrial applications, the demand
for NdFeB permanent magnets has increased enormously within the recent years. Fig. 1.2
shows the current consumption of NdFeB-based permanent magnets as well as the esti-
mated future demand. Accordingly, the increasing consumption is likely to be continued
within the coming years.

Figure 1.2: The world wide consumption of NdFeB permanent magnets. The automotive
sector is expected to be the fastest growing consumer market. This chart is adapted from
Ara [2019].

To meet this growing demand, the efficiency of currently available permanent magnets
must be significantly improved. Potential for improving magnetic performance can be
derived from the so-called Brown’s paradox, cf. Brown [1945]. Brown’s paradox iden-
tifies a difference between the theoretically possible and the practically available effi-
ciency of hard magnets. Reasons for the gap between theoretical and practical values
are numerous. These can include impurities or non-magnetic inclusions, as well as mis-
oriented grains in the grain structure, which can lead to drastic losses in performance,
as stated in Kronmüller [1987]. Hence, the underlying microstructure has a decisive
influence on the magnetic behavior. New process routes, such as severe plastic defor-
mation (SPD) or additive manufacturing (AM), are intended to better control the pro-
duction and targeted influence of these microstructures in the future. Besides the mi-
crostructural influence, the stoichiometric composition of the materials is also of great
importance. NdFeB magnets currently deliver the highest energy product, but are prone
to corrosion and higher temperatures, at which they quickly suffer high performance
degradation, see Gutfleisch et al. [2011]. The material properties can be enhanced
by supplementary added heavy rare earths (HRE) elements, such as Dysprosium (Dy)
or Terbium (Tb), cf. Soderžnik et al. [2017]. These HRE additions improve the be-
havior of the NdFeB magnets in terms of coercivity as well as temperature resistance,
cf. Soderžnik et al. [2016] and Herbst and Croat [1991]. However, they give rise
to new problems. The extraction of HRE is usually carried out under highly invasive
interventions in nature with serious consequences for the environment. In addition to
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these environmental disadvantages, the market price of HRE is subject to strong fluc-
tuations due to the availability on the world market, see Mcguiness et al. [2015]. A
global distribution of HRE production and its resources is shown a Fig. 1.3. According
to this, China currently accounts for the largest share of HRE on the world market and
also has the most HRE reserves, followed by Russia. To minimize the environmental foot-
print of permanent magnets as well as dependencies on individual countries, one goal is
to reduce the proportions of these critical components or replace them with other earth
abundant elements. Substitute materials should be harmlessly degradable to humans and
the environment and be sourced from countries with guaranteed continuous accessibility
to prevent dependencies that can be used as political leverage.

a)

HRE production in %

b)

HRE reserves in %

Figure 1.3: World wide heavy rear earth a) production and b) resources in percent. The
graphics are adapted from Rostek-Buetti [2019].

How can simulations support?
Mathematical equations can be used to represent physical processes. Hence, it is possible to
observe local phenomena such as nucleations, domain wall motions or grain interactions on
very fine time scales and with high resolution. Experiments can be time consuming, but the
actual reaction might pass quickly and occur on very fine scales. However, simulations can
be used to better focus and/or time experiments (where and/or when can crucial processes
happen?), to get to the core of certain mechanisms in detail (e.g. finer spatial and/or time
discretization as in experiment) and thus to optimize the entire experimental process.
In this context, finite-element-based simulations may help to analyze the properties and
the performance of the considered magnets. The theoretical framework is provided by
the micromagnetic theory, that models the behavior of the magnetization vectors in the
context of the phase field theory. It allows to study local domain wall motions and pinning
mechanisms, based on competing energy contributions.

The present work deals with the numerical characterization of magnetic materials in the
framework of the finite element method (FEM). A special interest is thereby set on the
efficient simulation of magnetic stray fields emitted by magnets and the modeling of the
non-linear magnetization behavior within magnetic solids, also considering mechanical
interactions. Hence, this contribution is structured as follows:

Chapter 2 explores the origin of effectively measurable magnetism. Starting at the
atomistic scale with quantum mechanical fundamentals, through the continuum descrip-
tion of the single magnetic moments, up to domain motions at the micrometer level, the
mechanisms and properties of magnetic materials are reviewed. On the continuum level,
Maxwell’s equations are introduced, which are of central importance in this work, since
they define the fundamental basis for electro-magnetic relations.
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Chapter 3 introduces the continuum mechanical foundations, restricting the concept on
the limitations of the linear elastic theory. After the definition of selected fundamental
kinematical relations as well as the introduction of the strain tensor, the mechanical
balance equations are derived. Subsequently, the evaluation of the second law of thermo-
dynamics enables the formulation of a thermo-magneto-mechanical material law.

Chapter 4 explains the procedure of the finit element method for the magnetic Gauss
law, starting with the initially defined magnetostatic boundary value problem to eventu-
ally obtain the required local and global systems of equations for an isoparametric finite
element as well as a fully discretized magnet. Since magnetic materials emit magnetic
fields in their direct proximity, numerical simulations must be capable to represent them
in order to avoid errors. These fields decrease rapidly with increasing distance from
the magnet, but it is not obvious when they exactly vanish. Therefore, two numerical
methods are introduced to efficiently handle open boundary problems. The first is based
on a static condensation and the second on the scaled boundary finite element method
(SBFEM).

Chapter 5 presents the micromagnetic theory stating with the micromagnetic energy
functional, followed by the derivation of Browns equations and the derivation of the
Landau-Lifshitz-Gilbert equation. Based on the previous preparations, the finite element
formulation is derived, focusing on the numerical implementation of different methods to
constrain the length of the magnetization vectors on the unit sphere and their subsequent
evaluation.

Chapter 6 shows the results of micromagnetic simulations of polycrystalline hard
magnetic Nd2Fe14B materials. The first simulations are devoted to the investigation of
defect structures within severe plastically deformed specimens, while the last example
investigates the magnetization reversal of a three dimensional heterogeneous microstruc-
ture.

Chapter 7 concludes the work and gives an outlook to future investigations in the field
of magnetic simulations.
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2 Magnetic foundations

This work addresses primarily the description and characterization of magnetic ma-
terials in the context of a continuum theory. Since magnetism in general happens on
different size scales, which are all interrelated, some basic phenomena, terminology
and definitions are discussed in this section to give a general overview of the sub-
ject. This includes the origin of the magnetic moment and its contributions (spin
and orbit magnetic moment), the properties and laws of magnetic fields, different
types of magnetism as well as the nature of magnetic domains. For a more com-
prehensive introduction to the basics of magnetism, compare to Bertotti [1998],
Chikazumi and Charap [1978], Hubert and Schäfer [1998], Coey [2010],
Cullity and Graham [2009], Getzlaff [2008] and Coey and Parkin [2021].

2.1 Origin of magnetism

The macroscopically measurable magnetism in ferromagnetic materials results from the
sum of all atomic magnetic moments. This in turn means that the individual components
(atoms) of the macroscopic body must already have an independent magnetic moment
to contribute to the collective magnetic moment. A magnetization within these atoms
is caused by the unpaired electron magnetic moment. Unpaired, in this context, implies
that there exists an electron on an outer shell, generating a magnetic moment that is not
compensated by an other electron moment within the same shell. If the atoms under con-
sideration have magnetic moments, their macroscopic sum must not be zero. Unless this
is the case, a macroscopically measurable collective magnetization arises. However, before
macroscopic effects are considered, their origin must be examined in more detail. In gen-
eral, the origin of magnetization can be described in a clearly simplified way. In each atom
several electrons move in their orbits and rotate around their own axis generating a vector
valued magnetic moment. These motions give rise to magnetic moments of which the sum
(spin and orbital moment) represents the moment of the atom as a vector quantity. Pauli’s
exclusion principle states that two electrons within an orbital generate magnetic moments
of identical amount but with opposite orientation, such that they cancel each other out.
Hence, the magnetization within an atom results of an unpaired electron magnetic mo-
ment. This oversimplified description of the origin of a net magnetic moment undergoes
indeed some restrictions. Hence, the classical model of the electronic magnetic moments
is shortly described, followed by an excursus into the quantum mechanical approach.

Classical model In the classical model, a relation is established between the angular mo-
mentum (orbital and spin) of an electron and the magnetic moment. The total electronic
magnetic moment

mtot = m0 +ms (2.1)

consists of two contributions, i.e. the magnetic moment due to the orbital angular moment
m0 as well as the spin magnetic moment ms. The orbital magnetic moment is caused by
the motion of an electron within its orbitals that can be stated as

m0 = − e

2me

p0, (2.2)

where p0 indicates the orbital angular momentum, while e and me denote the charge and
the mass of an electron. The spin magnetic moment caused by the spin angular momentum
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ps follows the similar relation
ms = − e

me

ps, (2.3)

but appears, compared to Eq. 2.2, twice as large as the orbital magnetic moment.

Quantum mechanical approach The classical approach presented above allows arbi-
trary values for the orbital and spin angular moments p0 and ps. This assumption does not
match reality, since angular momentum contributions are constrained by quantum me-
chanics. The exact contribution of the angular moments depends on the configuration of
the electrons within the atom. For the full description of the electron states, the so-called
quantum numbers are used. This is the principal quantum number n1.), the orbital angular
momentum number l2.), the magnetic moment quantum numberml and the magnetic spin
quantum number ms. The principal quantum number n = 1, 2, 3, ... indicates on which
electron shell the electron is located and thus the corresponding energy level. The orbital
quantum number l = 0, 1, 2, ..., (n − 1) describes the geometry of the orbital 3.) in which
the electron is located. Due to Pauli’s exclusion principle electrons cannot posses the same
values for all four quantum numbers. Assuming two electrons posses same values for the
first three numbers (principal- (n), orbital angular- (l) and magnetic quantum number
(ml)) the spin quantum number (ms = ±1

2
) must differ for both electrons, indicating

antiparallel orientations of the resulting electron magnetic moment. Hence, these paired
electrons posses magnetic moments that cancel each other out and do not contribute to
the collective magnetic moment. Only unpaired electrons contribute to this effect. The
orbital angular momentum can be defined as

p0 =

(
h

2π

)
l. (2.4)

To describe the electron spin, the spin quantum number s is defined. This always corre-
sponds to s = 1/2 and can thus be used to define the spin angular momentum as

ps =

(
h

2π

)
s. (2.5)

The magnetic orbital moment quantum number ml = −l,−(l−1), ..., l−1, l describes the
orientation of the orbital angular momentum vector. Strictly speaking, this is a projec-
tion of the orbital angular momentum onto a quantization axis depending on the Planck
constant h. The quantization axis in the case considered here is the z-axis, which also
corresponds to the direction of an externally applied magnetic field. Thus, for the orbital
angular momentum along the z-component the following is obtained

p0 z =

(
h

2π

)
lz, with lz =

h

2π
ml. (2.6)

Analogously, the magnetic spin quantum number ms can be the projection of the electron
spin on a quantization axis. Electron spin moments can occur exclusively parallel (spin-up,

1.)Defined by the danish physicist Niels Bohr.
2.)Defined by the german physicist Arnold Sommerfeld.
3.)In quantum mechanics, orbitals indicate a probability of where the electron can be found at a location

r = r̂(x, y, z). Orbitals of different shapes accordingly indicate a different probability of residence.
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i.e. 1/2) or antiparallel (spin-down, i.e. -1/2) to a magnetic field. This gives the following
quantization

ps z =

(
h

2π

)
sz, with sz =

h

2π
ms and ms = ±1/2. (2.7)

The quantities introduced above can now be used to fit Eq. 2.2 and Eq. 2.3. Hence, the
orbital angular momentum results in

m0 =
−e
2me

p0 =
−e
2me

h

2π
l =

−e
4πme

l = −µB l, (2.8)

where µB = −e
4πme

≈ 9.27 · 10−24Am2 is known as the Bohr magneton. Analogously the
spin angular momentum yields

ms =
−e
me

ps =
−e
me

h

2π
s =

−2 e

4πme

s = −2µB s. (2.9)

Taking quantum mechanics (Eq. 2.8 and Eq. 2.9) into account, Eq. 2.1 leads to the total
magnetic moment

mtot = m0 +ms = −(µB l + 2µB s). (2.10)

However, the macroscopic description of magnetic materials within the framework of a
continuum theory requires to consider the magnetization of a body per unit volume as

M =
∑
i

1

Vi

∫
Vi

mtot dV. (2.11)

The parallel alignment of many magnetic moments into one direction leads to the for-
mation of so-called magnetic domains (cf. Sec. 2.5). Nevertheless, the net magnetization
of the magnetic material is zero, since all domains pointing in different directions cancel
each other out. The application of an external magnetic field leads to an increase in the
net magnetization in the material, since the field aligns the magnetization parallel to itself
until all domains are reversed and aligned. This state corresponds to the upper limit of the
magnetization within the considered material that is given by the material-specific mag-
netization saturation Ms = ‖M‖. This process of domain shifting leads to the magnetic
hysteresis loop described in more detail in section 2.5.

2.2 Properties of magnetic fields and Maxwell’s equations

Amagnetic fieldH is generated whenever electrically charged particles move, changing the
energy within a reference volume and consequently creating an energy gradient. Ampère4.)

came to this conclusion when he read about Oersted’s5.) discovery that compass needles
can be influenced by electrical currents. Thereby, it is not important what kind of charged
particles are involved; it can be an electrical current flowing through a coil, but also
electrically charged particles moving inside a permanent magnet (orbital and spin motion).
Hence, the unit of the magnetic field is defined in amperes per meter (A/m).

4.)André-Marie Ampère was a french physicist.
5.)Hans Christian Ørsted was a danish physicist.
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conductor Bc

∂Bc

I

H

r

Figure 2.1: Magnetic field pattern obtained from an infinitely long current carrying con-
ductor.

For simplified cases the strength of the magnetic field H can be analytically calculated.
Starting from an infinitely long electric conductor Bc carrying a current I, a magnetic
field H is generated in the form of closed loops around the conductor, cf. Fig. 2.1. This
current I can be obtained by integrating the current density j over the cross-sectional
area ∂Bc of the conductor as I =

∫
∂Bc
j da. The current within this conductor is found to

be proportional to the sum of the components of the magnetic field along a defined closed
curve. The relation between the current and the magnetic field can be mathematically
expressed in terms of ∮

S
Hdx = I, (2.12)

which requires the evaluation of a line integral along the magnetic field lines. Since the
magnetic field lines shown in Fig. 2.1 follow circular paths, the line integral can be calcu-
lated over the circumference of a circle with radius r as

2πrH = I  H =
I

2πr
. (2.13)

The magnetic induction B in free space is closely related to the magnetic field and can
be obtained via the linear relation

B = µ0H , (2.14)

where µ0 = 4π × 10−7 H/m indicates the magnetic permeability of vacuum. Since µ0 is a
constant valued parameter, Eq. 2.12 can be modified to∮

S
Bdx = µ0 I. (2.15)

Applying Stokes theorem, the line integral in Eq. 2.15 can be transferred into a surface
integral. This enables to give both, the equation in integral form as well as in its local
form as ∫

∂B
curlB da = µ0

∫
∂B
j da or curlB = µ0j. (2.16)

Commonly, both expressions in Eq. 2.16 are known as Ampère’s circuital law. However,
Eq. 2.16 can be extended to also consider the change in time of the dielectric displacement
∂D/∂t, leading to

curlB = µ0 j +
∂D

∂t
(2.17)
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as one of Maxwell’s equations. Another Maxwell equation, also referred to as magnetic
Gauss law, states that the magnetic field must have no sources or sinks, as illustrated
exemplarily in Fig. 2.1. Here, the magnetic field forms circular trajectories around the
electrical conductor without an origin or end. Mathematically, this property can be ex-
pressed by

divB = 0. (2.18)

As repeatedly shown in this section (e.g. in Eq. 2.17), a clear connection between the
electrically charged particles and the origin of magnetic fields exists. Therefore, the last
two of Maxwell’s equations, which deal with the behavior of electric fields, are briefly
introduced in the following. These involve Faraday’s law of induction

curlE = −∂B
∂ t

, (2.19)

which relates the time change of magnetic induction to the resulting electric field E and
the electric Gauss law

divD = ρf , (2.20)

which states that the electric field lines diverge in the presence of electric charges. Thus,
the electric charge is a source of the electric field.

2.3 Magnetism in matter

In Sec. 2.1 and Sec. 2.2 the magnetization M and the magnetic field H have been con-
sidered separately. However, the connection of the two quantities can be established via
the magnetic induction

B = µ0(H +M), (2.21)

that is composed of the magnetic fieldH and the magnetizationM . Fig. 2.2 presents ex-
emplarily the relation between the magnetic field and the magnetic induction for different
types of magnetic materials.

m
ag

ne
ti
c
in
du

ct
io
n
B

magnetic field H

µF

µP

µ0

µD

Figure 2.2: The magnetic induction B within different magnetic materials as a response
of an externally applied magnetic field H. Adopted from Labusch [2018].

In different materials, the magnetization may be present to different extents, so that in
some cases no macroscopic magnetization is available. In paramagnetic or diamagnetic
materials, a connection between the induction and the magnetic field is formed by the
corresponding permeabilities µP and µD (red and black curve in Fig. 2.2). For magnetic
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fields in vacuum the linear relation introduced in Eq. 2.14 is valid, because there is no
magnetization attainable. Ferromagnetic materials in general posses a non-linear relation
µF between the magnetic field and the induction as indicated in Fig. 2.2 as the blue curve.

2.4 Different types of magnetism

The different properties of the most important magnetic materials are briefly introduced
in this section. Here, this includes diamagnetic, paramagnetic, ferromagnetic, and anti-
ferromagnetic materials.

H = 0

H =

a) b) c) d)
Figure 2.3: A rough sketch of four types of magnetism: a) diamagnetism, b) paramag-
netism, c) ferromagnetism, d) antiferromagnetism. Adopted from Lacovacci et al. [2016]
and Labusch [2018].

Diamagnetism
Diamagnetic materials have the property to generate a magnetization opposed to the
externally applied field. The reason for this phenomenon can be explained as follows: The
external field causes an orbital motion of electrons around the nuclei and thus generates
a current. These electrically charged particles in motion, generate their own magnetic
field, which opposes the externally applied magnetic field. However, in the absence of an
external magnetic field no magnetization can be measured.

Paramagnetism
Paramagnetic materials usually consist of atoms or molecules with odd numbers of elec-
trons. Hence, the net magnetic moment arises from an unpaired electron spin. However,
the absence of exchange interactions (compare to Sec. 5.2) leads to random orientations of
the magnetic moments (Fig. 2.3b)) and no effective magnetization, since they cancel each
other out. This unstructured orientation becomes aligned parallel to externally applied
magnetic fields. Thermal influences on a paramagnet cause the magnetic moments to re-
main unstructured and further complicate the parallel alignment induced by an external
magnetic field. Paramagnetic materials are e.g. Platinum, Aluminium and Oxigen, among
others.

Ferromagnetism
In ferromagnetic materials the magnetic spin moments are aligned parallel to each other
(Fig. 2.3c)). This results of the strong exchange interactions between those spins. A par-
allel spin orientation minimizes the exchange energy introduced in Sec. 5.2. Even minor
deviations from this orientation lead to an additional energy contribution and an unfa-
vored state. Ferromagnetic materials also exhibit strong temperature dependencies. Above
the so-called Curie temperature Tc they behave paramagnetic, below they posses their
typical ferromagnetic characteristics. However, their effective magnetization equals zero in
the unmagnetized state, since ferromagnetic materials form so-called magnetic domains.
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These domains are regions of equally oriented magnetization, but cancel each other out
macroscopically. Magnetic domains are discussed in more detail in Sec. 2.5.

Antiferromagnetism
In analogy to ferromagnetic materials, antiferromagnetic materials are paramagnetic
above a critical temperature, the so-called Néel temperature TN . Below this tempera-
ture point the material behaves antiferromagnetic, with an antiparallel orientation of the
magnetic moments as given in Fig. 2.3d). This alignment is caused by the magnetic ex-
change interactions and the negative exchange coefficient Jij, that favors the antiparallel
orientated state of the spins. While ferromagnetic materials posses domains with distinct
orientations, that can be summed up to an effective magnetization of this particular do-
main, antiferromagnetic materials also posses magnetic domains, but their magnetization
sums up to zero due to the antiparallel alignment.

2.5 Magnetic domains and domain walls

Magnetic domains are fundamental properties of materials exhibiting collective magnetic
order. Thus, they are important components of sensors as well as other engineering ap-
plications. The domains consist of areas with the same magnetization patterns possessing
the same magnetization orientation, caused by the magnetic exchange energy. They can
be stimulated by internal (e.g. demagnetizing fields) as well as external influences (e.g.
magnetic fields, mechanical loads or electrical currents) always striving for an energet-
ically appropriate and stable state. Such a stable state can be obtained by the mini-
mization of various competing energies, that form the magnetic energy functional of the
system, including contributions to magnetostatics, exchange interactions and the under-
lying anisotropic lattice. The magnetostatic contribution with the external magnetic field
and the demagnetization/stray field exhibits a dominant influence. This sensitivity to
magnetic fields (comp. Fig. 2.6), in this case especially to external fields, is one of the
origins of the hysteresis properties. External magnetic fields may shift the energetic min-
ima and thus cause a rearrangement of the domains, eventually leading to the magnetic
hysteretic behavior.

a) b) c)
Figure 2.4: Possible domain patterns of different magnetic materials: a) NiFe, b) Fe-film
and c) FeSi-sheet. Compare Hubert and Schäfer [1998] and Coey and Parkin [2021]
for images obtained by Kerr microscopy.

In general, domains are defined as regions of equal magnetization, that spontaneously ap-
pear in unstructured ferro- or ferrimagnetic media Hubert and Schäfer [1998]. Their
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arrangement within a sample strongly dependents on the material, the predominant
magneto-crystalline anisotropy, defect structures, and external stimuli such as voltages,
stresses and external fields. In general, the arrangements of domains can vary widely
from material to material, as illustrated exemplarily in Fig. 2.4. These magnetic do-
mains are separated by transition zones, called domain walls. In general, two types of
domain walls are possible, that can be distinguished as Bloch and Neél walls, depending
on the thickness of the considered material. Bloch walls can occur in any bulk mate-
rial, whereas Neél walls can only occur in thin film materials with thickness below the
domain wall thickness, cf. Coey [2010]. The magnetization orientation within Bloch do-
main walls changes parallel to the wall plane (assuming here the yz-plane) leading to
divergence free magnetization patterns. Since no component of the magnetization vectors
points into the x-direction (rotation only takes place within the yz-plane), the equation
divM = ∂xMx + ∂yMy + ∂zMz = 0 holds. This circumstance prohibits the evolution of
magnetic stray fields, since there are no interference sources, which could cause them.
An illustration of the spatial change in orientation of the magnetization within a Bloch
wall is given in Fig. 2.5a). In contrast to Bloch walls, where the magnetization vectors
are always parallel to the domain wall, the entire reorientation of the vectors within Neél
walls takes place in a plane, as presented in Fig. 2.5b). As a result, at least components
of the magnetization vectors are orthogonal to the plane of the domain wall, resulting in
a source of interference and maximizing the stray field energy. Thus, Neél walls present
themselves as energetically inferior to Bloch walls.

a) b)

Figure 2.5: Two different types of domain walls exist. a) the Bloch domain wall is a full 3D
rotation around a certain axis, while b) the Neél type domain wall is a pure 2D rotation.

If an external magnetic field H is applied to a domain formation as shown in Fig. 2.6a),
the domains pointing approximately in the same direction of the H-field begin to grow,
whereas the contrarily oriented domains shrink. This process is illustrated in Fig. 2.6b).
The domain, grows until the domain wall vanishes, which means the unification of the
two domains. The resulting domain is magnetized to its saturation Ms and completely
aligned parallel to its magneto-crystalline easy-axis, but not parallel to the external field
(comp. Fig. 2.6c)). For higher intensities of H , the magnetization will eventually align
parallel to the external field, as illustrated in Fig. 2.6c).

2.6 Soft and hard magnetic materials

In general, magnetic materials can be roughly classified into soft and hard magnetic ma-
terials. Both types have different properties and thus fundamentally different fields of
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H H H H

a) b) c) d)

θ

Figure 2.6: Process of magnetization of a specimen with six exemplary domains: a)M = 0,
b) M > 0, c) M = MS cos θ, and d) M = MS .

application. Soft magnetic materials are often associated with electrical circuits, because
they are able to amplify the magnetic flux induced by electrical currents. Thus, it is rea-
sonable for soft magnetic materials to have intensive use in applications such as electrical
power generators, inductors or relays. Contrarily, hard or permanent magnetic materials
are passive tools, that generate magnetic fields without electrical currents flowing in a
coil. The property of hard magnetic materials to emit magnetic fields is utilized within
electric motors, wind turbines or other power conversion equipment.

Saturation magnetization
The upper limit of the magnetization of a magnetic material is described by the so-called
saturation magnetization Ms. While the net magnetization of the considered ferromagnet
is zero in its initial state, it increases with growing external magnetic fields. Once a
material specific field strength is reached, all magnetic moments within the magnet are
aligned parallel to the applied field and the magnetization is maximized or saturated.

Remanence
If the magnetic field is successively reduced in intensity, measurable magnetization may
also decrease. To determine the remanence Rr of a material, the field must be reduced to
zero. The remaining magnetization corresponds to the remanence, which is qualitatively
indicated in Fig. 2.7 for a hard magnetic material.

Coercivity or coercive field strength
The magnetization can be reduced to zero if reversed magnetic fields are applied to the
magnetic material. The field strength that is necessary to reduce the magnetization of
a saturated magnet exactly to zero is denoted as coercive field strength or coercivity
Hc. The coercivity can be strongly affected by the condition of the sample, like internal
distortions or external heat influences. A qualitative location of Hc is given in Fig. 2.7
for a hard magnetic material. A distinction between hard and soft magnetic materials
can be made by means of the coercivity introduced above. Magnetically soft materials
are in general easy to demagnetize and posses a coercivity below Hc ≤ 1000 A/m. In
contrast to that, a magnet is considered to be magnetically hard, if the coercivity is
greater or equal than Hc ≥ 10, 000 A/m, indicating greater resistance against externally
applied magnetic fields, cf. Jiles [2015]. To highlight the differences between both types
of magnetic materials Fig. 2.7 shows the sketch of a soft (red) and a hard (blue) magnetic
hysteresis loop. Hard magnetic materials are supposed to be a stable permanent source
of magnetic fields, that do not become demagnetized easily. Contrarily, soft magnetic
materials are supposed to be easy to demagnetize.
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Hc

Rc Ms

Figure 2.7: A hard (blue) and a soft (red) magnetic hysteresis loop are plotted within the
same coordinate system. Characteristic values for the description of a magnetic material
are indicated for the hard magnetic hysteresis, starting from left to right: Coercivity Hc,
remanence Rc and magnetic saturation Ms.
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3 Continuum mechanical foundations

A close analysis of the materials, i.e. even more precise than visible with a microscope,
shows that every material consists of atomistic particles. These particles can individually
exhibit a different behavior than a cluster consisting of innumerable atoms. Therefore,
both length scales are described by different theories: the atomistic and the continuum
theory. The atomistic theory thus describes the behavior of single to very few atoms,
while the continuum theory always assumes a certain volume average. In the context
of this work, however, only continuum theories are considered. Hence, this chapter ad-
dresses continuum mechanical basic features as kinematics of solids, the concept of stress
and balance principles. While kinematics describe the motion and deformation of bod-
ies, the concept of stress and the balance equations form the basis of the fundamen-
tal physical laws. Detailed treatments of continuum mechanics are available in standard
textbooks such as Holzapfel [2000], Wriggers [2008], Stein and Barthold [1996],
Schröder et al. [2023] or Trusdell and Noll [2004].

3.1 Kinematics, deformations, and stresses

An arbitrary body B ⊆ IR3 can be considered as the summation of infinite material points.
These points can be described by the position vector X in their initial position (reference
configuration) and x in their actual position (current configuration). If B undergoes a
deformation, the mapping of the reference configuration into the current configuration
can be described by x = ϕ(X, t). Based on these two configurations, the displacements u
can be calculated as u = x−X. The so-called deformation gradient

F =
∂x

∂X
=
∂X

∂X
+
∂u

∂X
= I + ∂Xu = I + Gradu (3.1)

represents the starting point of most deformation measures. It is thus an essential quantity
for the mapping of infinitesimal line elements dX, area elements dA as well as volume
elements dV of the reference configuration into their corresponding actual configuration.
These different elements can be converted between the configurations as follows

dx = F · dX, da = JF−T dA, and dv = J dV, (3.2)

where J = detF > 0 denotes the so-called Jacobi determinant. For later use, the time
derivative of the Jacobi determinant is introduced at this point as

J̇ = J div ẋ. (3.3)

In the context of this work only very small mechanical deformations and rotations are
considered. Therefore, it is sufficient to introduce the linear strain tensor as

ε =
1

2

(
∇u+ (∇u)T

)
, (3.4)

that results of a linearization of non-linear strain measurements, like the Green-Lagrange
strain tensor. For a deeper insight into the topic of non-linear strain measures the reader
is referred to standard works as Wriggers [2008] and Korelc and Wriggers [2016]
among others. If a statically supported body B is subjected to external traction vectors t
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on its surface ∂B, the existence of a Cauchy stress tensor σ can be postulated by the
Cauchy theorem via the relation t = σ ·n. In this case, n represents the outward surface
vector normal to ∂B. Since the Cauchy stress tensor is related to the current configuration,
it is often referred to as true stress. Since this work deals strictly with small deformations
and stress analyses plays a rather subordinate role, further stress measures are omitted.

3.2 Balance principles

The balance equations of continuum mechanics are axioms which apply independently to
individual properties of a material under consideration and are therefore independent of
materials or material laws. In the following, the properties of the balance of mass, the
balance of linear momentum, and the balance of moment of momentum are described and
their equations are derived.

Balance of mass: The present work only considers mass-conserving processes. Hence,
the mass

m =

∫
B
ρ dv (3.5)

of a considered continuum B must remain constant over time, while evolving from initial
to current configuration. ρ indicates the density of the considered material. Consequently,

ṁ =
d
dt

∫
B
ρ dv = 0 (3.6)

holds for the time derivative of the mass. As described in Eq. 3.2 the mapping of any
volume from its initial to its current configuration is described by dv = J dV. Applying
the volume mapping and Eq. 3.3 to the rate of m, the balance of mass can be stated as∫

B
ρ̇+ ρ div ẋ dv = 0 and ρ̇+ ρ div ẋ = 0 (3.7)

in its global and local formulation. The local representation of the balance of mass is
reasonable, since it applies not only to a total body, but also to any (local) material
point.

Balance of linear momentum: The balance of momentum relates the change in time
of a linear momentum l to the sum of all external forces k as

l̇ = k. (3.8)

Thereby, the linear momentum and the external force contributions are defined as

l =

∫
B
ρ ẋ dv and k =

∫
B
ρ b︸︷︷︸
f

dv +

∫
∂B
t da, (3.9)

where ẋ denotes the velocity of a material point, f refers to the body force vector resulting
from the integral of the local external force ρ b over the current volume of B and t = σ ·n
indicates the stress or traction vector acting on the surface ∂B. The divergence theorem∫

∂B
σ · n da =

∫
B

divσ dv (3.10)
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allows to rewrite the external contribution of the forces in terms of volume integrals as

k =

∫
B

(f + divσ) dv. (3.11)

With the help of the balance of mass, the material time derivative of the linear momentum
appears as

l̇ =

∫
B
ρ ẍ dv, (3.12)

where ẍ indicates the acceleration of a specific material point. Inserting both, Eq. 3.11
and Eq. 3.12, into Eq. 3.8 yields the strong form of the balance of linear momentum as

ρ ẍ = f + divσ. (3.13)

However, in the context of this work only mechanically static processes, i.e. ẍ = 0 as well
as zero body force will be considered, what simplifies Eq. 3.13 to

divσ = 0. (3.14)

Balance of angular momentum: The balance of angular momentum

ḣ0 = i0 (3.15)

relates the angular momentum h0 to the net moment of all forces i0 that are acting on
the body B with respect to a spatially defined point 0. Both can be expressed in terms of

h0 =

∫
B
x× ρ ẋ dv and i0 =

∫
B
x× f dv +

∫
∂B
x× t da. (3.16)

Taking the time derivative of Eq. 3.161 and recalling the local statement of the balance
of mass (Eq. 3.7), the time rate of the angular momentum appears as

ḣ0 =

∫
B
x× ρ ẍ dv. (3.17)

Applying Cauchy’s theorem t = σ · n and the divergence theorem
∫
B x × σ · n da =∫

B x× divσ +∇xx× σT dv with ∇xx = I to Eq. 3.162 yields

i0 =

∫
B
{x× (f + divσ) + I × σ} dv. (3.18)

Insertion of Eq. 3.18 and Eq. 3.17 into Eq. 3.15 gives the balance of angular momentum∫
B
x× (f + divσ − ρẍ)︸ ︷︷ ︸

=0withEq.3.13

dv +

∫
B
I × σ dv = 0  I × σ = 0. (3.19)

The local statement in Eq. 3.19 postulates the symmetry of the Cauchy stress tensor, i.e.

σ = σT. (3.20)
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3.3 Balance of energy/first law of thermodynamics

The energy balance, also referred to as the first law of thermodynamics, equates the time
rates of the kinetic K as well as the internal energy U with the sum of all internal and
external energy contributions (mechanical, thermal, magnetic, etc. ) acting on the body
B. In the context of this work only mechanical, magnetic and, thermal processes are
considered. Hence, the balance of energy reads as

K̇ + U̇ =Wmec +Wmag +Q, (3.21)

with the kinetic and the internal energies

K =
1

2

∫
B
ρ ẋ · ẋ dv and U =

∫
B
ρU dv (3.22)

as well as the specific internal energy density U . Their corresponding time rates appear
as

K̇ =

∫
B

(ρ ẋ · ẋ dv)· =

∫
B
ρ ẋ · ẍ dv and U̇ =

∫
B

(
ρ U̇ dv

)·
=

∫
B
ρ U̇ dv (3.23)

by recalling Eq. 3.3 and the balance of mass. The energy entering or leaving the system
can be of mechanical, magnetic or thermal nature. These contributions can be stated as

Wmec =

∫
B
ẋ · f dv +

∫
∂B
ẋ · t da,

Wmag =

∫
B
Ḃ ·H dv,

and Q =

∫
B
ρ r dv−

∫
∂B
q · n da,

(3.24)

with the internal heat source r and the heat influx q. The relation t = σ · n as well as
the divergence theorem allow to convert the surface integral in Eq. 3.241 into a volume
integral as ∫

∂B
ẋ · (σ · n) da =

∫
∂B

(σT · ẋ) · n da =

∫
B

div(σT · ẋ) dv. (3.25)

The divergence theorem is also applied to Eq. 3.243. Hence, the reformulation of Eq. 3.241

and Eq. 3.243 yield

Wmec =

∫
B
(f + divσ) · ẋ dv +

∫
B
σ : L dv and Q =

∫
B
(ρ r − div q) dv, (3.26)

where L = ∇ẋ = D +W denotes the spacial velocity gradient, that can be additively
decomposed into a symmetricD = 1

2
(L+LT) and a non-symmetric partW = 1

2
(L−LT).

Since σ : W = 0, only the symmetric part contributes to the following. Inserting Eq. 3.23,
Eq. 3.24, and Eq. 3.26 into Eq. 3.21 yields the total balance of energy as∫

B
ρ U̇ dv =

∫
B
(f − ρ ẍ+ divσ︸ ︷︷ ︸

=0withEq.3.13

) · ẋ dv +

∫
B
σ : D dv

+

∫
B
Ḃ ·H dv +

∫
B
(ρ r − div q) dv.

(3.27)
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Since only small deformations are considered, the relation ε̇ = D holds and the balance
of energy can be stated in its local form as

ρ U̇ = σ : ε̇+ Ḃ ·H + ρ r − div q. (3.28)

3.4 Entropy inequality/second law of thermodynamics

The second law of thermodynamics is not a conservation law, but an inequality that
determines a physically driven process direction. While the first law of thermodynamics
describes the lossless transformation of energy from one state to another, the second law
of thermodynamics gives a direction for this conversion. These conditions are strongly
related to the thermal energy within a body B and can be expressed by the physical
concept of entropy S defined by

S =

∫
B
ρ η dv, (3.29)

where η is the entropy density. Energetically non-dissipative processes are generally re-
ferred to as reversible and accompanied by a constant amount of entropy. This contrasts
with energetically dissipative processes. These are referred to as irreversible processes and
characterized by the generation of entropy. An annihilation of entropy is physically im-
possible, thus entropy within a system can either remain constant or increase. This can
be summarized as: The change in entropy over time is always greater than or equal to
the contribution added to the system by an internal heat source or heat influx across the
surface ∂B. Mathematically follows

Ṡ ≥
∫
B

ρ r

ϑ
dv−

∫
∂B

q · n
ϑ

da, (3.30)

where ϑ represents the absolute temperature of the body. Application of the divergence
theorem enables the representation of the local form

ρ η̇ ≥ ρ r

ϑ
− div

(q
ϑ

)
. (3.31)

Utilizing the product rule div
(
q
ϑ

)
= 1

ϑ
div q − q · 1

ϑ2 ∇ϑ the divergence term can be
reformulated so that the entropy inequality yields

ϑρ η̇ ≥ ρ r − div q + q · 1

ϑ
∇θ. (3.32)

Reformulating and inserting the local form of the balance of energy Eq. 3.28 in Eq. 3.32
and assuming isothermal processes yields

ρ (ϑ η̇ − U̇) + σ : ε̇+B · Ḣ ≥ 0. (3.33)

3.5 Constitutive relations

In the following, magneto-mechanical constitutive relations are derived. For this purpose,
thermodynamic potentials are analyzed and examined for their consistency according to
the second law of thermodynamics. Thereby, the internal energy U is taken as a starting
point. In general, there exist other thermodynamic potentials. A selection of these can be
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taken from Tab. 3.1. It has to be noted, that these can be derived in terms of the internal
energy. The internal energy is formulated in terms of extensive variables. These exten-
sive variables depend on the size of the system under consideration (e.g. the volume V,
strains ε, ...) and thus contrast with intensive variables, which are independent of size
(e.g. temperature ϑ, density ρ, ...). A pairing of an extensive and an intensive variable
is called a work conjugate pair. For magneto-mechanical materials the internal energy
U := U (ε,B, η) is based on the mechanical strains ε, the magnetic induction B as well
as the entropy η. Its time rate yields

U̇ =
∂ U

∂ ε
: ε̇+

∂ U

∂B
· Ḃ +

∂ U

∂ η
η̇. (3.34)

Insertion of Eq. 3.34 into Eq. 3.32 allows the reformulation into(
σ − ∂ U

∂ ε

)
: ε̇+

(
H − ∂ U

∂B

)
· Ḃ +

(
ϑ− ∂ U

∂ η

)
η̇ ≥ 0. (3.35)

Evaluation of Eq. 3.35 indicates the stresses, the magnetic field, and the entropy

σ =
∂ U

∂ ε
, H =

∂ U

∂B
, and ϑ =

∂ U

∂ η
(3.36)

as partial derivatives of the internal energy. These quantities can be identified as the
intensive counterparts to the extensive expressions. A reinsertion of these relations into
the rate of the internal energy Eq. 3.34 yields

U̇ = σ : ε̇+H · Ḃ + ϑ η̇. (3.37)

However, in the analysis of magneto-mechanical processes it is reasonable to formulate
the thermodynamic potential in terms of the process variables ε and H , since it is more
convenient to derive the equilibrium conditions in terms of the displacements u and the
magnetic scalar potential ϕ. Therefore, a Legendre transformation based on the product
rule H · Ḃ = ˙H ·B −B · Ḣ is applied, so that the reformulation of Eq. 3.37 yields

U̇ = σ : ε̇+ ˙H ·B −B · Ḣ + ϑ η̇  ˙U −H ·B︸ ︷︷ ︸
:= Ḣ2(ε,H , η)

= σ : ε̇−B · Ḣ + ϑ η̇, (3.38)

what can be given as the magnetic enthalpy potential as

H2 = U −H ·B. (3.39)

Hence, the constitutive relations of the thermodynamically consistent, magneto-
mechanically coupled material model appear as

σ =
∂ H2

∂ ε
, B =

∂ H2

∂H
, and ϑ =

∂ H2

∂ η
. (3.40)

Since only isothermal processes are considered, Eq. 3.40 is already sufficient for the pur-
poses of this work. For completeness, the material model is subsequently subjected to a fur-
ther reformulation of Eq. 3.403, again using a Legendre transformation as ϑ η̇ = ˙ϑ η − ϑ̇ η,
yielding

Ḣ2 = σ : ε̇−B · Ḣ + ˙ϑ η − ϑ̇ η  ˙H2 − ϑ η︸ ︷︷ ︸
:= Ġ2(ε,H , ϑ)

= σ : ε̇−B · Ḣ + η ϑ̇. (3.41)
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Based on Eq. 3.41 the magnetic Gibbs energy can be introduced as

G2 = U −H ·B − ϑ η. (3.42)

Thus, the entropy can be represented as a function of temperature as

η =
∂ G2

∂ ϑ
, (3.43)

defining the whole set of constitutive relations based on Eq. 3.40 as

σ =
∂ G2

∂ ε
, B =

∂ G2

∂H
, and η =

∂ G2

∂ ϑ
. (3.44)

In direct analogy to the potentials derived above, many other potentials and their associ-
ated rate equations can be given. An overview of the basic thermodynamic potentials is
given in Tab. 3.1, cf. Lupascu et al. [2018] and Labusch [2018].

Table 3.1: Thermodynamic potentials and corresponding rate equations. Adopted from
Labusch [2018].

Thermodynamic Natural Rate of thermodynamic
potential variables potential

Internal energy
U ε, B, η U̇ = σ : ε̇+H · Ḃ + ϑ η̇

Free enegry
ψ = U − ϑ η ε, B, θ ψ̇ = σ : ε̇+H · Ḃ − η ϑ̇

Enthalpy
H = U − σ : ε−H ·B σ, H , η Ḣ = −ε : σ̇ −B · Ḣ + ϑ η̇

Elastic enthalpy
H1 = U − σ : ε σ, B, η Ḣ1 = −ε : σ̇ +H · Ḃ + ϑ η̇

Magnetic enthalpy
H2 = U −H ·B ε, H , η Ḣ2 = σ : ε̇−B · Ḣ + ϑ η̇

Magnetic energy
G = U − σ : ε−H ·B − ϑ η σ, H , θ Ġ = −ε : σ̇ −B · Ḣ − η ϑ̇

Elastic Gibbs energy
G1 = U − σ : ε− ϑ η σ, D, θ Ġ1 = −ε : σ̇ +H · Ḃ − η ϑ̇

Magnetic Gibbs energy
G2 = U −H ·B − ϑ η ε, H , θ Ġ2 = σ : ε̇−B · Ḣ − η ϑ̇
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4 Magnetostatic problems

In many scientific fields, physical phenomena and their underlying mechanisms are stud-
ied. To obtain an in-depth understanding of those phenomena, mathematical models can
be applied in a supportive way. These models are generally based on differential equations
depending on the considered variables. Within the context of magnetostatic problems the
magnetic Gauss law is applied to describe the evolution of magnetic fields. In magnetism
the interaction between the magnetic solid and its surrounding free space is of crucial
importance for the correct description of the most important magnetic mechanisms. The
so-called demagnetization fields inside a magnet and the stray fields outside the magnet
are directly affected by the magnetic solid. Stray fields evolve in the immediate surround-
ing of a magnet but loose intensity with increasing distance. Here, the question of the
required distance between the magnet and the vanishing of the stray field sets the prereq-
uisites for an open boundary value problem. Besides the introduction into magnetism and
magnetic materials given in Sec. 2 a general overview can be found in standard literature
as Bertotti [1998], Jiles [2015], and Coey [2010]. For simple geometries analytical so-
lutions of the differential equations are often available, but as soon as these geometries
become complex, a numerical approximation of the solution is required. A particularly
flexible approximation scheme for differential equations on complex but finite geometries
is provided by the finite element method (FEM). Over the last decades, the FEM has
become a reliable tool that can be found in pure research codes but also in commercially
distributed programs. A fundamental overview on the FEM is given in standard litera-
ture such as Wriggers [2001], Bathe [1986], Zienkiewicz and Taylor [2005], and
Korelc and Wriggers [2016].
This chapter starts with an introduction to the FEM fundamentals for the governing field
equation in magnetostatics, which is the Gauss law. Subsequently, an overview on numer-
ical methods that are able to treat the magnetostatic open boundary value problem is
given. Afterwards, an FE-based method for the treatment of open boundary value prob-
lems is presented, which utilizes the Schur complement. Finally, a hybrid FEM-SBFEM
formulation is proposed.

Parts of this chapter are published in:
J. Schröder, M. Reichel and C. Birk, An efficient numerical scheme for the FE-approximation
of magnetic stray fields in infinite domains, Computational Mechanics, 70:141-153, (2022).

C. Birk, M. Reichel and J. Schröder, Magnetostatic simulations with consideration of exterior
domains using the scaled boundary finite element method, Computer Methods in Applied
Mechanics and Engineering, 399:115362, (2022), Copyright Elsevier.

4.1 Finite element method for magnetostatic problems

In this section the general procedure of solving differential equations using the finite
element method based on the example of the magnetic Gauss law is described. Initially,
the complete boundary value problem is defined, including the magnetic Gauss law as well
as the corresponding essential (Dirichlet) and natural (Neumann) boundary conditions for
an arbitrarily shaped body B. Subsequently, the introduced boundary value problem is
transferred into its discrete analog using the FEM. This leads to an algebraic expression,
that can be solved using, e.g. Newton-like iteration methods.
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4.1.1 Magnetostatic boundary value problem

The governing field equation within the considered boundary value problem is the mag-
netic Gauss law

divB = 0 with B = µ · (H +M ) on B, (4.1)
where B indicates the magnetic induction, M the magnetization and µ the magnetic
material tensor. Eq. 4.1 is also referred to as strong form of the magnetic Gauss law.
Let ϕ denote a magnetic scalar potential then the magnetic field can be derived via its
negative gradient

H := −∇ϕ. (4.2)
A full description of the boundary value problem requires the definition of suited boundary
conditions on ∂B = ∂Bϕ∪∂BB, with ∂Bϕ∩∂BB = ∅ corresponding to the scalar potential

ϕ = ϕ0 on ∂Bϕ and B · n = ζ0 on ∂BB (4.3)

as essential (Dirichlet) or natural (Neumann) boundary conditions.

Weak formulation of the magnetostatic boundary value problem
The strong form of the magnetic Gauss law (Eq. 4.1) is transferred into its weak form
by applying the standard Galerkin method, being a weighted residual approach. This
requires the preliminary definition of the function spaces and their associated norms to
fully describe the unknown field variable ϕ and its corresponding virtual counterpart ϕ.
Let a ∈ IR denote a scalar-valued function, a ∈ IR3 a vector-valued function, andA ∈ IR3×3

a matrix-valued function. The L2(B)-space can be formally expressed as

L2 :=
{
a : ‖a‖L2(B) < ∞

}
, with ‖a‖L2(B) =

√∫
B
|a|2 dv (4.4)

being the corresponding L2(B)-norm for scalar valued functions a on the domain B ∈ IR3.
Vector- and matrix-valued functions a ∈ [L2(B)]

3 and A ∈ [L2(B)]
3×3 require the norms

‖a‖L2(B) =

√∫
B
a · a dv and ‖A‖L2(B) =

√∫
B
A : A dv (4.5)

on the domain B ⊆ IR3. With the definition of Eq. 4.5 the L2(B)-space of the vector-valued
function a as well as matrix-valued function A the can be defined as

L2 := {a : ‖a‖L2 < ∞} and L2 := {A : ‖A‖L2 < ∞} . (4.6)

The definition of the L2(B)-space allows to express the function space H1 for scalar
functions a, vectorial functions a, and matrix functions A as

H1
a(B) :=

{
a ∈ L2(B) : ∇a ∈ L2(B)

}
,

H1
a(B) :=

{
a ∈ L2(B) : ∇a ∈ L2(B)

}
,

and H1
A(B) :=

{
A ∈ L2(B) : ∇A ∈ L2(B)

}
.

(4.7)

Subsequently, the functions of the solution ϕ ∈ H1 and their virtual counter parts δϕ ∈ H1

(also called test functions) can be specified as

Φ = {ϕ : B → IR | ϕ ∈ H1(B); ϕ|∂Bϕ = ϕ0}
and δΦ = {δϕ : B → IR | δϕ ∈ H1(B); δϕ|∂Bϕ = 0}.

(4.8)
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Eq. 4.1 is multiplied by the test functions δϕ and integrated over the volume B of the
considered body, resulting in

Gϕ =

∫
B

divB δϕ dv = 0. (4.9)

Since the induction depends on the magnetic field, which is obtained by taking the deriva-
tive of the scalar potential ϕ, Eq. 4.9 requires the double derivative of ϕ. Applying the
product rule div(Bδϕ) = divBδϕ+B·∇ϕ, rearranging it to divBδϕ = div(Bδϕ)−B·∇ϕ
and considering the virtual magnetic field to be defined as δH := −∇δϕ the weak form
yields

Gϕ =

∫
B
B · δH dv +

∫
B

div(Bδϕ) dv = 0. (4.10)

Finally, the volume integral in Eq. 4.10 can be transferred into a surface integral by using
Gauss’s theorem

∫
B div(Bδϕ) dv =

∫
∂B δϕ(B · n) da and Cauchy’s theorem B · n = ζ as

Gϕ = Gϕ(ϕ, δϕ) =

∫
B
B · δH dv︸ ︷︷ ︸
Gint
ϕ

+

∫
∂B
ζ0δϕ da︸ ︷︷ ︸
Gext
ϕ

= 0, (4.11)

where Gint
ϕ and Gext

ϕ represent the internal and external magnetic work, respectively.

Linearization of the weak formulation
Arbitrary non-linear problems often depend on iterative solution procedures like Newton’s
method, which requires the linearization of Eq. 4.11 for a given point ϕ = ϕ̂ following

LinGϕ(ϕ̂, δϕ, ∆ϕ) := Gϕ(ϕ̂, δϕ) + ∆Gϕ(ϕ̂, δϕ, ∆ϕ). (4.12)

Using the directional derivative of Gϕ(ϕ, δϕ) at ϕ̂ into the direction of ∆ϕ the linear
increment yields

∆Gϕ(ϕ̂, δϕ, ∆ϕ) =
d

dε
[Gϕ(ϕ̂+ ε∆ϕ, δϕ)]

∣∣∣∣
ε=0

= DGϕ(ϕ̂, δϕ) ·∆ϕ, (4.13)

where ∆ϕ denotes the incremental scalar potential and ε ∈ IR a scalar parameter. Conser-
vative behavior of the external loading ζ0 is assumed, i.e. the directional derivative yields
∆Gext

ϕ = 0. Hence, the linear increment of Eq. 4.11 can be given as

∆Gϕ =

∫
B
δH ·∆B dv =

∫
B
δH · ∂B

∂H
·∆H dv =

∫
B
δH · µ ·∆H dv, (4.14)

with ∆H and µ indicating the incremental magnetic field and the magnetic material
tensor.

4.1.2 Discretization and assembly procedure

Discretization of the variables, weak formulations, and increments
A numerical approximation of the weak form in an arbitrarily formed continuum B requires
the transformation of B into a discrete counterpart Bh. This discrete continuum consists
of numele sub-domains the so-called finit elements, i.e.

B ≈ Bh =

numele⋃
e=1

Be, (4.15)
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where Be denotes the individual finite elements. This discretization step, from a continuous
to a discrete continuum, is sketched in Fig. 4.1.

B

∂B Bh

Be

∂Bh
∂B

Increasing mesh densitya) b)

Figure 4.1: a) a continuum B is transferred into b) its discrete counterpart Bh, which is a
composition of finite elements Be.

The discrete FEM formulation is presented in matrix-vector notation. In detail both
first- and second-order tensors are structured in vectors ∈ IR1×n, whereas higher-order
tensors are structured in matrices ∈ IRn×m. In contrast to tensors, matrices and vectors
are indicated by an underline •. The domain B, the associated position vector x, and the
unknown variable ϕ are approximated by the same interpolation functions INI. In this case,
nnodes indicates the number of existing nodes in the element and I indicates the current
node. This approach, known as the isoparametric concept, leads to the approximated
quantities by multiplying the interpolation functions node-wise by the corresponding nodal
position vector xI or the degree of freedom dI as

x =

nnodes∑
I=1

INI(ξ)xI and ϕ =

nnodes∑
I=1

INI(ξ)dI
ϕ. (4.16)

The interpolation functions are defined within the so-called isoparametric space described
by the natural coordinates ξ := {ξ, η, ζ}. Hence, a transformation from the isoparametric
to the physical space needs to be executed. This is achieved by applying the chain rule

∂ INI(ξ)

∂ x
=
∂ INI(ξ)

∂ ξ

∂ ξ

∂ x
= J−T

∂ ξ

∂ x
, (4.17)

with J denoting the Jacobian matrix.

By applying the isoparametric concept to the virtual δdI and incremental ∆dI degrees of
freedom, the interpolations yield

δϕ =

nnodes∑
I=1

INI(ξ)δdI
ϕ and ∆ϕ =

nnodes∑
I=1

INI(ξ)∆dI
ϕ. (4.18)

Analogously to Eq. 4.18 the approximation of the corresponding gradients results in

−H =

nnodes∑
I=1

IBI
ϕ(ξ)dI

ϕ, −δH =

nnodes∑
I=1

IBI
ϕ(ξ)δdI

ϕ, and −∆H =

nnodes∑
I=1

IBI
ϕ(ξ)∆dI

ϕ,

(4.19)
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with IBI
ϕ indicating a vector that contains the spatial derivatives of the interpolation

functions as

IBI
ϕ =

INI
,1

INI
,2

INI
,3

 . (4.20)

With all these definitions at hand, the discrete counterparts of Eq. 4.11 and Eq. 4.14 can
be expressed as

Gh
ϕ =

nnodes∑
I=1

δdI
ϕ

∫
B
(IBI

ϕ)TB dv +

∫
∂B

INI
ϕζ0 da︸ ︷︷ ︸

IRI
ϕ

= (δde
ϕ)T IRe

ϕ (4.21)

and

∆Gh
ϕ =

nnodes∑
I=1

nnodes∑
J=1

δdI
ϕ

∫
B
(IBI

ϕ)Tµ IBJ
ϕ dv︸ ︷︷ ︸

IKIJ
ϕϕ

∆dI
ϕ = (δde

ϕ)T IKe
ϕϕ ∆de

ϕ, (4.22)

where IRe
ϕ and IKe

ϕϕ indicate the element residual and system matrix associated to the
virtual and incremental element degree of freedom vectors δde

ϕ and ∆de
ϕ.

The evaluation of the integrals, appearing in this formulation, is obtained by a numerical
approximation, i.e. in the context of this work a five-point Gaussian quadrature. For more
information on quadrature rules the reader is referred to Korelc and Wriggers [2016].

Assembling procedure of the global system of equations
The global boundary value problem is defined by the global counterparts of the residual
vector IR and the system matrix IK. These can be formed by assembling Eq. 4.21 and
Eq. 4.22 over all elements as

IK =
numele

A
e = 1

IKe
ϕϕ and IR =

numele

A
e = 1

IRe
ϕ. (4.23)

Together with the global counter parts of the virtual and incremental degree of freedom
vectors δD 6= 0 and ∆D the global system of equations

δDT (IK ∆D + IR) = 0  IK ∆D = −IR (4.24)

yields the global degree of freedom vector D by solving Eq. 4.24 using Newton’s method
and applying the update procedure D ←D + ∆D. This procedure is repeated until the
norm of the residual vector ||IR|| fulfills a predefined error criterion.



28 Magnetostatic problems

4.2 Motivation of magnetostatic open boundary problems

Ferromagnetic materials emit the so-called stray field in proximity to the magnetic solid.
Within the magnet, this field is denoted as demagnetizing field, since it opposes the
magnetization. Both contributions to the field, i.e. stray and demagnetizing field, are
denoted as the magnetstatic field H̃ in the following and strongly depend on the geometry
of the magnet under investigation. Therefore, certain effects which can be assigned to this
field are called shape anisotropy. These magnetostatic fields and thus the magnetosatic
energy can be minimized by the formation of magnetic domains. A selection of possible
formations is shown in Fig. 4.2 together with the magnetostatic field in the outer space.

a) b) c)

H̃

H̃

Figure 4.2: Subdivision of a magnet into magnetic domains such that the magnetostatic
field H̃ can form closed loops and minimize the magnetostatic energy, with a) a single
domain, b) double domains, and c) a closure domain, also known as Landau pattern.

Since the field contributes significantly to the magnetic behavior, the correct numerical
representation of a magnet requires the consideration of the surrounding external space,
as illustrated exemplarily in Fig. 4.3 for an Ni-thin film in terms of a finite element
discretization.

20
00

3000

50
0

x1

x3
x2

in nm

Ni-thin film: 1000 nm×500 nm×50 nm
Figure 4.3: An Ni-thin film of the dimensions 1000 nm×500 nm×50 nm is embedded within
a free space matrix (3000 nm×2000 nm×500 nm). The dimensions of the free space are not
true to scale for presentation purpose.

The Ni-thin film (Fig. 4.3) is fully magnetized by an external magnetic field along the
x1-axis. The resulting magnetization configuration is superimposed with the corresponding
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stray field distribution in Fig. 4.4. This stray field distribution within the free space shows
the typical cloud-like patterns, that originates from the magnetization distribution within
the magnet. Removing the external magnetic field initiates a rearrangement of the magne-
tization into the so-called closure domain configuration presented in Fig. 4.5, which is also
known as Landau pattern. This closure domain configuration indicates that the domain
formation allows for a self-contained (divergence-free) representation of the magnetostatic
field and thus there is no stray field around the magnet, cf. Cullity and Graham [2009]
and Jiles [2015]. However, in order to find this configuration, the stray and demagnetizing
fields must be correctly represented.

m
1

H̃

Figure 4.4: The magnetic single domain configuration of an Ni-thin film superimposed with
the stream lines of the magnetostatic field H̃ within the surrounding free space.

m
1

Figure 4.5: A closure domain pattern of an Ni-thin film that does not emit stray fields.

The H̃ field is derived from the negative derivative of a scalar potential ϕ̃ with boundary
conditions ϕ̃0 = 0 prescribed on a boundary ∂Bϕ̃ located at infinity6.). Although the
intensity of the stray field decreases with increasing distance from the magnetic solid, its
vanishing distance cannot be predicted. This circumstance describes the general situation
of a so-called open boundary problem, which makes the discrete representation of such
an outer space difficult, since numerical methods like finite elements are only suitable for
finite domains. Therefore, in each of the following two sections, a novel method for the
efficient treatment of the magnetostatic open boundary problem is presented.

6.)More information on the exact prescription of the boundary conditions and the derivation of the
stray/demagnetizing field as well as the external magnetic field are provided in the following sections.
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4.3 Overview on numerical methods for open boundary problems

A simple way to approximate the stray fields can be realized by defining a sufficiently
large but finite exterior space around the magnetic solid and discretize it with finite
elements. Since this technique cuts a "box" out of the infinite space and therefore intro-
duces artificial boundaries, it is also known as truncation method and has been applied
in the context of micromagnetic-mechanical simulations by Miehe and Ethiraj [2012],
Reichel et al. [2022; 2023c] and Keip and Rambausek [2016; 2017]. A comprehen-
sive overview of finite element open boundary techniques can also be found in
Chen and Konrad [1997]. Here, the authors divide the various techniques into 12 sub-
groups, such as truncation of outer boundaries, ballooning, infinite elements, infinitesimal
scaling, absorbing boundary conditions, and others. Chen and Konrad [1997] also in-
troduce a useful rule of thumb for the domian of the truncation method to be at least
five times larger than the interior domain. To ensure well-posedness of the problem, the
Gaussian law requires for the considered case the boundary condition prescribed at in-
finity. Hence, error estimates have been developed by Bayliss et al. [1982] for several
applications. Since a finite-element-based approach requires the replacement of the in-
finity condition by a boundary condition on a finite surface, they refer to those but
also to higher-order boundary conditions. An electromagnetic wave absorbing layer based
on a finite-difference time-domain free-space simulation method has been developed by
Berenger [1994] for unbounded electromagnetic problems. Givoli [1991] reviewed local
and non–local boundary conditions to solve wave problems numerically.
The Boundary Element Method (BEM) has proven to be well suited for the numeri-
cal treatment of linear magnetostatic problems consisting of homogeneous magnets sur-
rounded by a free space. It requires only the discretization of the solid magnetic surfaces
to accurately capture the influence of the surrounding free space as well. To consider non-
linear material behavior within the magnetic solid a hybrid FEM-BEM coupling can be
applied, cf. Buchau et al. [2003]. Other hybrid methods based on FEM-BEM couplings
have been developed by Aiello et al. [2003] to simulate time-harmonic eddy current
problems in three-dimensional unbounded domains. However, due to large numbers of
degrees of freedom, standard hybrid FEM-BEM couplings often lead unacceptable nu-
merical costs. To lower the required memory demand and thus the computational effort
Hertel et al. [2019] and Knittel et al. [2009] applied special hierarchical matrices.
In a comparative study on numerical stray field computations Abert et al. [2013] an-
alyzed finite-difference-based fast Fourier transform methods, tensor-grid methods, and a
shell transformation-based finite element method with respect to their complexity, stor-
age requirements, and accuracy. Depending on the task, the different methods have their
advantages and disadvantages.
Another method that is well suited for modeling open boundary value problems is
the so-called scaled boundary finite element method (SBFEM), which goes back to
Wolf and Song [1994], Song and Wolf [1997] and Wolf and Song [2000]. For a
comprehensive and up-to-date introduction into the theory of the SBFEM the reader
is referred to Song [2018]. The SBFEM unifies the advantages of the FEM and the
BEM. Its semi-analytical representation makes it particularly suited for modeling radi-
ation damping in acoustics or dynamic problems in unbounded domains compare e.g.
Birk et al. [2016], and Chen et al. [2015]. Electrostatic fields were calculated in 2D
using the SBFEM by Liu and Lin [2012], where a special focus was placed on modeling
prescribed potentials along side faces of bounded domains. Static and dynamic analyses
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of magneto-electro-elastic plates and cylindrical shells within the context of the SBFEM
have been published by e.g. Liu et al. [2016] and Ye et al. [2020]. Further applica-
tions of the SBFEM are the determination of effective properties in voided structures
(Sladek et al. [2016]) as well as the crack analysis of magneto-electro-mechanically
coupled materials (Nguyen et al. [2022]).

4.4 An efficient numerical scheme for the FE-approximation of magnetic
stray fields in infinite domains

In this section, a simple and efficient method for the stray field approximation is
derived and its functionality is demonstrated by numerical examples. The presented
method formally belongs to the group of truncation methods and has been published
in Schröder et al. [2022].

4.4.1 Magnetostatic open boundary problem

The domain of interest, already introduced in Eq. 4.15 as a continuum B, is subdivided
into an interior domain Bint and an exterior domain Bext. This subdivision is sketched
in Fig. 4.6. Here, the light grey circular body depicts the outer domain, while the inner
domain is a composition of the yellow circular body Bint

vac and the orange ellipse Bint
sol .

This implies that the internal domain is allowed to be inhomogeneous. The boundary
between the inner and outer regions is denoted as ∂Bb and the boundary of the outer
region as ∂Bext. The discrete boundary of the interior domain ∂Bint is associated to nint

describing the outward normal vector. Analogous to the internal domain Bint, a normal
vector next := n can also be defined for the inner surface ∂Bext,i of the external domain.
For both normal vectors on the joint surface ∂Bb the convention nint = −next emerges.

di

db

da

Bint

∂Bb

∂Bext

Bext

a)

Bint
vac

Bint
sol

nint

∂Bint

Bint = Bint
vac

⋃
Bint

sol

b)

Bext

∂Bext,a

∂Bext,i

next

Total domain B Interior domain Bint Exterior domain Bext

c)

Figure 4.6: Visualization of the discrete subdivided domains and the definitions of the
inner and outer boundaries. a) shows the total domain of interest B containing the interior
and exterior subdomains, while b) defines the interior domain Bint = Bint

vac

⋃
Bint

sol and c) the
exterior domain Bext. Taken from Schröder et al. [2022].

Recalling Eq. 4.1, Eq. 4.2, and Eq. 4.3, the here considered magnetostatic boundary value
problem must be adapted to the subdivided continuum at this point. The definition of
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the Gauss law with the induction and the magnetic field

divB = 0 with B = B̂(H) and H = −∇ϕ (4.25)

remains unaltered, whereas the definition of the surface of the boundary conditions is
slightly modified to ∂Bext,a = ∂Bext,a

ϕ ∪ ∂Bext,a
B with ∂Bext,a

ϕ ∩ ∂Bext,a
B = ∅. Hence, the

corresponding boundary conditions can be specified as

ϕ = ϕ0 on ∂Bext,a
ϕ and B · n = ζ0 on ∂Bext,a

B . (4.26)

Thus, the volume integral of the weak form must also be adjusted to

Gϕ =

∫
Bint∪Bext

δH ·B dv +

∫
∂Bext

B

ζ0δϕ da. (4.27)

In the exterior domain a linear material behavior is assumed with the constitutive relation

B = µ ·H with µ = µ0 I, (4.28)

where µ, µ0, and I denote the magnetic free space material tensor, the constant vacuum
permeability, and the identity tensor. Thus, Eq. 4.27 and Eq. 4.28 allow to formulate a
weak form for each of the internal and external domains as

Gint
ϕ =

∫
Bint

δH · B̂(H) dv

Gext
ϕ =

∫
Bext

δH · µ ·H dv +

∫
∂Bext,a

B

ζ0δϕ da.
(4.29)

At this point some general considerations about the behavior of magnetic fields in ho-
mogeneous and heterogeneous continua are given, cf. Schmitz-Antoniak [2012/2013]
and Coey [2010]. A constant magnetic field H is applied over the entire domain B with
vacuum permeability µ0. If there are no other bodies with different magnetic permeability
µ in the considered domain, the magnetic field remains undisturbed. Thus, no interference
fields arise and the resulting induction yields B = µ0H . Additionally, it holds divH = 0.
If a magnetic body Bsol with deviating magnetic permeability is positioned in the do-
main B and exposed to the external field H , a magnetization M occurs inside Bsol. This
causes sources and sinks on the surface of Bsol. However, according to Maxwell’s equations,
these must not exist, since the magnetic induction must be divergence-free, as requested
in divB = 0. Thus, the sources (sinks) of magnetization must be interpreted as sinks
(sources) of a magnetic field H̃ (which is caused by the magnetization M ). Mathemati-
cally this condition can be expressed by

divM = − div H̃  div
(
H̃ +M

)
= 0. (4.30)

Apparently, this leads to a magnetic field H̃ which opposes the magnetization within the
magnetic solid under consideration. Thanks to the linearity of Maxwell’s equations, the
total magnetic field H can be expressed as the sum

H = H̃ +H (4.31)



Magnetostatic problems 33

of the external and interference field. This interference field is better known as demag-
netization field (inside the magnet) or stray field (outside the magnet). Hence, the total
magnetic induction yields

divB = µ0 div(H +M ) = µ0 div(H̃ +H +M ) = 0. (4.32)

From the above requirements, the following general considerations can be derived. The
magnetic potential can be subdivided into a constant and external field related part as
well as a fluctuation or demagnetizing part as

ϕ = ϕ̃+ ϕ = ϕ̃(x)− λH · x (4.33)

where λ ∈ [−1, 1] indicates a load parameter that can be used e.g. for cycling fields over
time. Hence, an analogous split of the magnetic field into the external magnetic field as
well as the demagnetization field follows as

H(x) := −∇ ϕ̃(x) + λH = H̃(x) + λH . (4.34)

These assumptions lead to the substitutions

δϕ(x) → δϕ̃(x) and δH(x) → −∇ δϕ̃(x) =: δH̃(x) (4.35)

of the virtual magnetic potential and magnetic field. With these modifications, the weak
forms result in

Gint
ϕ̃ =

∫
Bint

δH̃ · B̂(λH + H̃) dv

Gext
ϕ̃ =

∫
Bext

δH̃ · µ · (λH + H̃) dv +

∫
∂Bext,a

B

δϕ̃ ζ0 da .
(4.36)

The external magnetic field H is considered as a constant quantity in the simulations,
while the fluctuation field H̃ depends on it. Hence, the corresponding degree of freedom
is the magnetic fluctuation field with the boundary conditions

ϕ̃ = 0 on ∂Bext,a
ϕ (4.37)

prescribed on the complete outer boundary ∂Bext,a; thus ∂Bext,a = ∂Bext,a
ϕ and ∂Bext,a

B = ∅.
Before the discrete formulations are introduced, the linearization of Eq. 4.36 is given as

∆Gint
ϕ̃ =

∫
Bint

δH̃ · µtan(H) ·∆H̃dv with µtan = ∂HB̂(λH + H̃)

∆Gext
ϕ̃ =

∫
Bext

δH̃ · µ ·∆H̃ dv
(4.38)

following the procedure already described in Eq. 4.12.
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4.4.2 Discrete variables

The discretization procedure of a continuum B can be considered analogue to the stan-
dard discretization with finite elements Be described in Eq. 4.15. However, additional
subdivisions are introduced as

B = Bh,int
⋃
Bh,ext

with Bint ≈ Bh,int =

numint
ele⋃

e=1

Be,int and Bext ≈ Bh,ext =

numext
ele⋃

e=1

Be,ext

(4.39)

for the internal and external domains Bint and Bext. The number of elements in the exterior
and in the interior domain are denoted by numext

ele and numint
ele, respectively; thus, the total

number of elements is numele = numint
ele + numext

ele . Due to the substitution of the magnetic
potential by the sum of a basic affine component and a fluctuation field, only the real and
the virtual fluctuation field need to be discretized for a typical finite element Be as

ϕ̃ ≈
nnode∑
I=1

INI d̃I = INed̃e and δϕ̃ ≈
nnode∑
I=1

INIδd̃I = INeδd̃e , (4.40)

where nnode are the number of nodes per element, INI are the interpolation functions, INe

denotes a matrix of interpolation functions, d̃I the degrees of freedom, δd̃I the virtual
degrees of freedom, and (d̃e, δd̃e) are the associated element vectors of unknowns. The
following approximations are introduced for the magnetic fields

H̃ ≈ −
nnode∑
I=1

IBI d̃I = IBed̃e and δH̃ ≈ −
nnode∑
I=1

IBIδd̃I = IBeδd̃e (4.41)

where IBI and IBe respectively denote the node-wise and element-wise B-matrices, con-
taining the Cartesian derivatives of the interpolation functions.

Discrete interior domain Bint

Substituting Eq. 4.41 into the weak form and its linear increment the discrete counter
parts yield

Gh,int
ϕ =

∑
e∈Bh,int

δd̃e
T

∫
Be,int

IBeT B̂(H) dv =
∑

e∈Bh,int

δd̃e
T

IRe,int and

∆Gh,int
ϕ =

∑
e∈Bh,int

δd̃e
T

∫
Be,int

IBeT µtan(H) IBe dv ∆d̃e =
∑

e∈Bh,int

δd̃e
T

IKe,int ∆d̃e ,

(4.42)

with the element right-hand side IRe,int and the element stiffness matrix IKe,int. Applying
the following assembling procedure leads to the algebraic system of the inner domain

IKint = A
e ∈Bh,int

IKe,int and IRint = − A
e∈Bh,int

IRe,int , (4.43)

with the stiffness matrix IKint and the right-hand side IRint associated with the interior
domain. To prepare the total system for its subsequent reduction, the partition of the
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system proceeds subdividing the degrees of freedom into d̃i inside the interior domain
Bint \ ∂Bint and d̃b on the interphase ∂Bint between both domains (compare Fig. 4.6) as[

IKint
ii IKint

ib

IKint
bi IKint

bb

]∆D̃i

∆D̃b

 =

[
IRint
i

IRint
b

]
, (4.44)

with ∆D̃
T

= (∆D̃
T

i ,∆D̃
T

b ) indicating the incremental global vector of unknowns.

Discrete external domain Bext

Substituting the constant and a fluctuation component of the magnetic field into the
linear constitutive relation defined in Eq. 4.28, it can be reformulated as

B = µ (λH + H̃) =: λB + B̃ . (4.45)

For the exterior system Bext the weak formulation yields

Gh,ext
ϕ =

∑
e∈Bh,ext

δd̃e
T

∫
Be,ext

IBeT
(
λB + B̃

)
dv

=
∑

e∈Bh,ext

δd̃e
T

λ
∫
Be,ext

IBeT

ϕ B dv︸ ︷︷ ︸
λ IRe,ext

+

∫
Be,ext

IBeTµ IBe dv︸ ︷︷ ︸
IKe,ext

d̃e

 .

(4.46)

Since the load parameter λ and the given H-field (H and therefore B) are constant in
an incremental step, the linear increment results in

∆Gh,ext
ϕ =

∑
e∈Bh,ext

δd̃e
T

IKe,ext ∆d̃e. (4.47)

Hence, the algebraic system of equations rendering the external domain Bext appears as

IKext ∆D̃ = IRext , (4.48)

with the corresponding global matrices IKext and IRext, after carrying out the classical
assembly procedure for Bext as

IKext = A
e ∈Be,ext

IKe,ext and IRext = − A
e∈Be,ext

{
λ IRe,ext + IKe,ext d̃e

}
= λ IR

ext
+ IKextD̃ .

(4.49)

To shrink the total size of the system of equations, its degrees of freedoms are partitioned
analogously to the inner domain (cf. Eq. 4.44), i.e. the degrees of freedom on the interface
between Bext and Bint are denoted as d̃b and the degrees of freedom within the outer
domain Bext \ ∂Bint are denoted as d̃a leading to the system of equations of the external
domain as [

IKext
bb IKext

ba

IKext
ab IKext

aa

]∆D̃b

∆D̃a

 =

[
IRext
b

IRext
a

]
, (4.50)
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with ∆D̃ representing the global solution vector. To keep the formulations as general as
possible, non-linear material behavior within the interior domain is assumed. This requires
the use of an iterative solution procedure like Newton’s method to solve the system of
equations. It should also be noted that the field intensity can be increased by a load
parameter λ that is included within the right-hand side IRext(λ, D̃), which is a function
of the current fluctuation degrees of freedom.

Static condensation of the exterior domain
The next steps deal with the elimination of the degrees of freedom D̃a of Eq. 4.50, which
have to be taken explicitly into account for the right-hand side. With the partition of
the system of equations into degrees of freedom of the exterior domain d̃a as well as the
degrees of freedom of the surface between interior and exterior domain d̃b (Eq. 4.50) the
contributions of the right-hand side vector (Eq. 4.49) require the partition

[
IRext
b

IRext
a

]
= λ

IR
ext

b

IR
ext

a

 +

[
IKext
bb IKext

ba

IKext
ab IKext

aa

]D̃b

D̃a

 . (4.51)

Insertion of Eq. 4.51 into Eq. 4.50 leads to the system of equations[
IKext
bb IKext

ba

IKext
ab IKext

aa

]∆D̃b

∆D̃a

 =

λIR
ext

b + IKext
bb D̃b + IKext

ba D̃a

λIR
ext

a + IKext
ab D̃b + IKext

aa D̃a

 . (4.52)

Taking the last part of Eq. 4.52 in its full expression yields

IKext
ab ∆D̃b + IKext

aa ∆D̃a = λ IR
ext

a + IKext
ab D̃b + IKext

aa D̃a. (4.53)

The external degrees of freedom D̃a are eliminated from Eq. 4.52 by rearranging Eq. 4.53
to D̃a and following the prescription

D̃a = IKext
aa
−1
(

IKext
ab ∆D̃b + IKext

aa ∆D̃a − λ IR
ext

a − IKext
ab D̃b

)
= ILab(∆D̃b − D̃b) + ∆D̃a − λ IKext

aa
−1

IR
ext

a .

(4.54)

Since the symmetric matrices IKext
aa , IK

ext
bb , and the matrices IKext

ab = (IKext
ab )T are constant,

the algorithmic auxiliary matrices

ILab := IKext
aa
−1

IKext
ab and ILTba := IKext

ba IKext
aa
−1 (4.55)

can be defined. Substituting Eq. 4.542 into Eq. 4.521 yields

IKext
bb ∆D̃b + IKext

ba ∆D̃a = λ IR
ext

b + IKext
bb D̃b + IKext

ba D̃a[
IKext
bb − IKext

ba ILab
]

∆D̃b = λ
[
IR

ext

b − ILTba IR
ext

a

]
+
[
IKext
bb − IKext

ba ILab
]
D̃b.

(4.56)

With the constant matrices IK∞bb and IR∞b , Eq. 4.562 is further simplified to

[
IKext
bb − IKext

ba ILab
]︸ ︷︷ ︸

=:IK∞
bb

∆D̃b =

IR∞
b︷ ︸︸ ︷

λ
[
IR

ext

b − ILTba IR
ext

a

]
︸ ︷︷ ︸

=:IR
∞
b

+ IK∞bb D̃b . (4.57)
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Finally, the algebraic system of equations is assembled using the discrete inner and outer
domains described in Eq. 4.57 and Eq. 4.44. This yields the final representation[

IKint
ii IKint

ib

IKint
bi IKint

bb + IK∞bb

]∆D̃i

∆D̃b

 =

[
IRint
i

IRint
b + IR∞b

]
. (4.58)

The computational steps defining the whole procedure are summarized in Table 4.1.

Table 4.1: Computational steps. Taken from Schröder et al. [2022].

a) initialize D̃, H and load factor λ

b) discretization of interior and exterior domain: Bh,ext and Bh,int

computation of matrices IKext
aa , IKext

ab , IKext
bb , IR

ext

a , IR
ext

b , and

ILab := IKext
aa
−1

IKext
ab , IK∞bb = IKext

bb − IKext
ba ILab, IR

∞
b = IR

ext

b − ILTba IR
ext

a

store IK∞bb and IR
∞
b

c) increase load factor λ← λ+ ∆λ

c1) compute right-hand side

IR∞b = λ IR
∞
b + IK∞bb D̃b

c2) assemble condensed stiffness matrix using IRint and IKint from Eq. 4.43[
IKint
ii IKint

ib

IKint
bi IKint

bb + IK∞bb

]∆D̃i

∆D̃b

 =

[
IRint
i

IRint
b + IR∞b

]

c3) solve system of equations w.r.t. ∆D̃ and update solution vector D̃ ← D̃ + ∆D̃

c4) go to c1) until convergence

c5) go to c) until final load step is reached
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4.4.3 A simplified non-linear magnetic model

To verify the performance of the proposed numerical scheme, a simplified non-linear con-
stitutive law for the solid magnet inside the domain Bint is applied. Here, the non-linearity
enters the induction B = B̂(H), which is a function of H . In general, this relation can
be expressed via the magnetic permeability µ and thus via the magnetic susceptibility χ
in

B = µ ·H = µ0(H + χ ·H) = µ0(H +M), (4.59)
where M denotes the magnetization. The magnetic susceptibility is not constant in fer-
romagnets, but a non-linear function of the applied magnetic field strength and of the
history of the material, i.e. χ = χ̂(M , ...). In ferromagnetic materials, a so-called satura-
tion magnetization is generally observed, i.e. a material-dependent maximum value for the
magnetization is reached. If χ is considered as differential susceptibility, i.e. χ = ∂HM ,
this becomes zero when the saturation magnetization is reached. Here, for the sake of
simplicity, only magnetization curves without hystertic behavior are assumed, i.e. a char-
acteristic of soft magnetic materials. However, the proposed condensation procedure is also
valid for the simulation of hard magnets with distinct hysteresis properties. Of course,
this model also shows saturation. As a prototype for this, the function

B = µ0(H + M̂(H)) with M = MS tanh (β ‖H‖) nH (4.60)

is used, where MS denotes the saturation magnetization, β a slope parameter and
nH := H/‖H‖ for ‖H‖ 6= 0 otherwise nH = 0. For the linearization of the weak
form, cf. Eq. 4.42, µtan(H) = ∂HB̂(λH + H̃) = ∂HB̂(H) is needed; this appears for
‖H‖ > 0 in the explicit form

µtan(H) = µ0 1 + µ0MS

(
(f̂1(H)− f̂2(H))nH ⊗ nH + f̂2(H) 1

)
, (4.61)

with

f̂1(H) = β
(
1− tanh2 (β ‖H‖)

)
and f̂2(H) =

tanh (β ‖H‖)
‖H‖

, (4.62)

otherwise
µtan(H) = µ0 (1 +MS β) 1 (4.63)

is obtained. Note: This is a very simplified model to describe the magnetization in a solid.
Classically, the existence of a free energy function U(m1,m2,m3) is assumed, which is
formulated in series expansion of the direction cosines (mi|i = 1, 2, 3) of the magneti-
zation relative to the crystal axes. This consideration starts from the enthalpy function
H(H) = U(m)− µ0MSm ·H . For the chosen model the enthalpy function for the mag-
netization part is

H(H) =
1

2
µ0 ‖H‖2 + µ0

MS

β
ln(cosh(β ‖H‖)) . (4.64)

For the discussion of phenomenological models of hysteresis it is referred to Takács [2001]
and Szewczyk [2016]. To demonstrate the feasibility of the model presented above a
homogeneous boundary value problem is considered. The domain of interest corresponds
to a square with dimensions of 4 µm × 4 µm and the material parameters as defined in
Table 4.2. In order to generate a magnetic response, the area is subjected to the external
magnetic field H = λ 0.07 [1, 0]T A/ µm, where λ is a load factor alternating between
minus one and one. The corresponding response function can be found in Fig. 4.7, where
‖ · ‖ denotes the Euclidean norm.
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Table 4.2: Material parameters. Taken from Schröder et al. [2022].

Vacuum permeability µ0 Saturation magnetization Ms Slope parameter β

0.4 π (ng µm)/ A2 µs2 1.41 A/ µm 50 µm/ A

‖H̄‖

‖B
‖

Figure 4.7: The normalized response curve. Taken from Schröder et al. [2022].

4.4.4 Stray field calculation with heterogeneous exterior domain

The method presented above is well suited for approximating large outer domains, while
other well-established methods such as the BEM or the SBFEM provide solutions for
infinite domains. While the established methods can only provide solutions for outer
domains with a certain regularity, the proposed method has the crucial advantage of being
able to consider heterogeneous outer domains. This implies in detail that interference
fields from neighboring or nearby magnetic bodies can also be taken into account by
the presented method, which is further demonstrated in the following example. Three
magnetic inclusions, identified as Bext

1 (green), Bext
2 (blue), and Bint

2 (red), are considered in
direct proximity to one another. In the following, all distances are related to the coordinate
system shown in Fig. 4.8. The green inclusion Bext

1 is described by the center point P1

(-80 / -110) µm and the radius r1 = 35 µm. The blue inclusion Bext
2 is also characterized

by a centre point P2 (80 / -130) µm and the radii r2 = 70 µm and r3 = 30 µm. The
dimensions of the remaining colored domains can be found in the graphic in Fig. 4.8. All
three inclusions are surrounded by free space, here indicated by Bext

3 (light blue) and Bint
1

(orange). To generate a magnetic response the whole domain is treated with an external
magnetic fieldH2 = 6.3 ·10−3 A/ µm. Since the magnetic particles are very closely located,
their magnetic fields will influence each other. Due to the fact that the magnetic stray
field flattens out towards zero for large distances to the magnetic particles, a huge airspace
must be considered. In this contribution, the airspace is taken into account in two different
ways. Firstly, a reference solution was generated using the truncation method. Therefore,
the FEM is applied to approximate the whole boundary value problem as sketched in
Fig. 4.8, i.e. the airspace and the magnetic inclusions. Secondly, the static condensation is
applied to the outer domain Bext = Bext

1 ∪Bext
2 ∪Bext

3 of the boundary value problem given
in Fig. 4.8. This means that the outer domain is reduced onto the border of the interior
domain Bint = Bint

1 ∪ Bint
2 , so that no further discretization of Bext is required. Hence, the

area to simulate is reduced to Bint.
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Figure 4.8: The test setup for the analysis of the reduction method. Three differently shaped
inclusions Bext

1−2 and Bint
2 are embedded within a free space Bext

3 and Bint
1 . The external mag-

netic fieldH2 is applied in y direction. The green line framing Bint
1 and Bint

2 indicates the area
that is graphically presented during post-processing. Taken from Schröder et al. [2022].

The aim is to verify that both results match and to evaluate the performance of both
methods. For the following calculations, identical magnetic properties are assigned to the
magnetic inclusions, i.e. µmat = 1.25 · 105 (ng µm)/ (A2 µs2). The free space is considered
to be vacuum with µair = µ0 being the magnetic vacuum permeability.

a) b)

x2
x1

Bint
1Bint

2

Bext
1

Bext
2

Bext
3

100
250

200 200

Figure 4.9: Cut out of the boundary value problem given in Fig. 4.8 for the graphic
representation of the results, with a) the dimensions and b) the corresponding mesh density.
Taken from Schröder et al. [2022].
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The material behavior is approximated by a linear material model. Different numbers of
degrees of freedom are assigned to the inner and outer domain. The much smaller inner
domain has almost 9,000 degrees of freedom, while the outer domain has over 70,000
degrees of freedom. This corresponds to a total number of approximately 80,000 degrees
of freedom in the overall system. Of course, the reference simulation provides results for
the entire area, but since the outer space is very large, only a fraction of the boundary
value problem is used for graphical representation. The cut out used for graphic processing
includes the magnetic inhomogeneities and is shown below in Fig. 4.9.

a) b)
Figure 4.10: Contour plot of a) the fluctuation potential ϕ̃ and the streamline plot of H̃
and b) the bulk potential ϕ = ϕ+ ϕ̃ and the streamline plot of B on the domain depicted
in Fig. 4.9. Taken from Schröder et al. [2022].

Due to the close position of the inclusions to each other, the field lines corresponding
to H̃ show a strong swirling of the fluctuation field around the inclusions as shown in
Fig. 4.10a). In contrast to the fluctuation field H̃ , the external magnetic field H is a
spatially constant distributed quantity. It has the same amplitude in every spatial point
of the observed area B = Bext ∪ Bint. The external magnetic potential ϕ delivers a linear
distribution over B. For this reason, the external magnetic field is not shown graphically.
Since the fluctuation field evolves cloud-like and the external field is constant, the entire
magnetic field H = H̃ +H also changes spatially. The magnetic field H is derived from
the entire potential ϕ = ϕ̃ + ϕ. Hence, Fig. 4.10b) presents the potential ϕ as a colored
contour plot and the derived magnetic field H as streamlines.
The results of the reduced simulation must be identical to those of the reference solution
within the internal domain Bint. Since the outer space Bext has already been taken into
account in the preliminary static condensation, the domain to discretize with finite ele-
ments reduces to Bint, compare Fig. 4.11. Therefore, the plots in Fig. 4.12a) and b) only
show the evolution of the magnetic potentials (ϕ̃ and ϕ) and the corresponding fields (H̃
and H) for the inner domain Bint.
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a)

b)

Bint
1

Bint
2

A
A

B B

Figure 4.11: Reduced boundary value problem with a) the considered area Bint where the
lines indicate the intersections A-A and B-B and b) the corresponding mesh density. Taken
from Schröder et al. [2022].

a)

b)

Figure 4.12: Contour plots of the reduced domain of c) the fluctuation field ϕ̃ and the
streamline plot of H̃ and d) the bulk field ϕ = ϕ + ϕ̃ and the streamline plot of B. Taken
from Schröder et al. [2022].
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Similar to Fig. 4.10, the corresponding potentials are shown as colored contour plots and
the derived magnetic fields are superimposed as stream plots. It is obvious that these
variables behave analogously to those from the simulation that was calculated previously
(reference simulation). The magnetic inclusion Bint

2 colored in red in Fig. 4.11a) and b)
is responsible for most of the turbulence in the illustrations. However, the influences of
the adjacent inclusions (Bext

2 and Bext
3 ) are also clearly visible, since they were previously

taken into account by the static condensation.

a) b)

A-A B-B
A A/µm

x2 in µm x1 in µm
Figure 4.13: a) Shows the discrete values of the fluctuation potential ϕ̃ along the in-
tersection A-A, while b) presents the discrete values of the fluctuation field H̃2 along the
intersection B-B. Solutions obtained by calculations over the whole domain (see Fig. 4.8)
are presented as solid lines and the solutions of the reduced domain (Fig. 4.11) are given as
circular points. Taken from Schröder et al. [2022].

The comparison of the potentials and fields presented in Fig. 4.10 and Fig. 4.12 already
confirms a very good agreement of the observed quantities within the reduced domain. In
order to emphasize the accuracy of the proposed method, discrete values of the reference
solution (whole domain) and the solution obtained on the boundary value problem defined
by only the interior domain, are taken along the marked intersection lines A-A and B-B
(compare Fig. 4.11a)), see Fig. 4.13. The plots of the discrete values (Fig. 4.13) are con-
gruent and confirm the accuracy of the proposed scheme. A characteristic of classic FEM
stiffness matrices is a sparsely populated band structure. This is in complete contrast to
the stiffness matrices of the reduced systems, which are typically fully or very densely
populated matrices. In Fig. 4.14 both types of matrices are shown. In order to emphasize
the differences between these two matrix types, the sparsely populated matrix of the pure
FEM calculation is shown together with the significantly smaller, but dense, reduced ma-
trix in Fig. 4.14a). This reduced matrix can also be seen in scaled size in Fig. 4.14b).
In order to evaluate the performance of the presented method against the reference simu-
lation, the times required for solving the system of equations are compared. All following
calculations are done using a standard laptop with an i5 processor and 16 GB of RAM.
The full system of equations described above (Fig. 4.14a)) was condensed in less than
ten seconds to the reduced system of equations (Fig. 4.14b)). Since this reduction of the
outer space was carried out as a preliminary calculation, it does not affect the actual
solution procedure of the finite element simulation. Hence, the time needed for the re-
duction procedure is not included in the timings carried out subsequently. Time savings
are particularly noticeable in dynamic calculations, therefore the magnetic field applied
to the boundary value problem described above is increased from zero to H2 within 100
load steps. Since the system of equations is solved repeatedly, the time difference adds
up.
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a) b)

reduced matrix

Figure 4.14: The population of the stiffness matrix corresponding to the full FEM solution
is presented in a) together with the stiffness matrix corresponding to the reduced calculation
marked by a red frame. The population of the reduced stiffness matrix is presented in b) as
a scaled plot. Taken from Schröder et al. [2022].

The results obtained for both the reduced and the full FEM simulation are presented
in Table 4.3. A large difference in time and therefore a significant gain of efficiency is
obtained.

Table 4.3: Required times for solving the linear system of equations. Taken from
Schröder et al. [2022].

Steps Reduced Reference Factor

100 10.0523 s 35.2083 s 3.5

Although the performance advantage can already be seen for the linear simulations, the
reduction will probably be of even greater advantage, especially for non-linear and time-
dependent calculations that require the consideration of an external area. In the case of a
non-linear simulation, several Newton iterations are usually required to solve the existing
system of equations. Since each individual iteration takes longer for large systems of
equations compared to reduced ones, the time savings for serial evaluations of systems of
equations, as it is the case with time-dependent problems, are obvious. At this point, the
same boundary value problem as utilized for the linear case is used, but the non-linear
material behavior, which is introduced in Sec. 4.4.3, is considered in Bint

3 . Similar to the
previous simulations, a reference solution is created with the truncation method, which
is compared to the reduced method afterwards. For this purpose, the external magnetic
field H2 is increased within 100 load steps in the y direction. The required times of the
truncation and the reduced method for solving the systems of equations serially are given
in Table 4.4.

4.4.5 3D stray field calculation with homogeneous exterior domain

The method presented above cannot only be applied to two-dimensional boundary value
problems, but also to three-dimensional problems. Since large extended domains in three
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Table 4.4: Required times for solving the non-linear system of equations. Taken from
Schröder et al. [2022].

Steps Reduced Reference Factor

100 12.4677 s 42.1152 s 3.3

dimensions can lead to extremely large systems of equations, their reduction is particu-
larly useful. In this example, a magnetic dodecahedron-shaped grain is treated with three
externally applied magnetic fields of the strength ‖H‖ = 795.78 ·10−3 A/ µm within a
free space. The directions of the three fields correspond to the Cartesian coordinate axes.
The considered outer domain Bext possesses a radius of 1000 µm, while the radius of the
inner domain Bint = Bint

1 ∪ Bint
2 is 150 µm. The magnetic inclusion Bint

2 has an approx-
imated radius of 70 µm. In this example, the domains Bext and Bint

1 are considered to
represent vacuum, while a permeability of µmat = 1.25 · 105 (ng µm)/ (A2 µs2) is assigned
to the magnetic inclusion. The exact geometry, including the dimensions, can be found
in Fig. 4.15. The radii of the extended outer domain Bext, and the inner domain Bint are
presented in Table 4.5 with the corresponding numbers of degrees of freedom within the
domains and on the surfaces. By means of this comparison, the size difference between
the two systems is emphasized.

Bext

Bint
1

Bint
2

H2

Full FEM discretization: Reduced FEM discretization:

plotted area

850 300 850

80 140 80

x1

x2

x3

in µm
Figure 4.15: The test setup for the analysis of the reduction method in three dimensions.
A magnetic, dodecahedral inclusion Bint

2 is surrounded by free space Bint
1 . The full FEM

discretization also considers an extended exterior domain Bext. The results are plotted for
the volume framed by the blue line. Taken from Schröder et al. [2022].

Because a single inclusion is considered to be placed within a free space of vacuum,
no adjacent sources of interference are obtained. Therefore, the externally applied field
H only generates a reaction within the magnetic inclusion Bint

2 , so that the magnetic
potentials (ϕ̃ and ϕ) and fields (H̃ andH) can propagate without being disturbed. Since
the results of the static condensation show good agreement with those of the truncation
method, only the field curves in the reduced area Bint are shown below.
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Table 4.5: Comparison of radii and degrees of freedom. Taken from
Schröder et al. [2022].

Rad Bext Rad Bint
1 DOF Bext DOF Bint

1 ∪ Bint
2 DOF on ∂Bint

1

Full FEM 1000 nm 150 nm 160,787 34,973 1538

Reduced FEM 0 150 nm 0 34,973 1538

x1x2

x3

a) b) c)

Figure 4.16: Contour plots of a) the fluctuation potential ϕ̃, b) the fluctuation field H̃1 with
streamlines, and c) the magnetic induction B1 with streamlines resulting from an external
magnetic field H1.

x2

x1

x3

a) b) c)

Figure 4.17: Contour plots of a) the fluctuation potential ϕ̃, b) the fluctuation field H̃2 with
streamlines, and c) the magnetic induction B2 with streamlines resulting from an external
magnetic field H2. Taken from Schröder et al. [2022].

x1x2

x3

a) b) c)

Figure 4.18: Contour plots of a) the fluctuation potential ϕ̃, b) the fluctuation field H̃3 with
streamlines, and c) the magnetic induction B3 with streamlines resulting from an external
magnetic field H3.
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The fluctuation potential shown in Fig. 4.16a) results of an externally applied magnetic
field in x1-direction and shows the typical cloud-like curves. Hence, the fluctuation field H̃
in Fig. 4.16b) results in a spatially non-linear distribution. Thus, the overall magnetic field
H in Fig. 4.16c) also results in a spatially non-linear distribution, which is particularly
pronounced within the area of the inhomogeneity. The presented illustrations in Fig. 4.17
and Fig. 4.18 show the respective interaction of the magnetic grain with the external
magnetic field in x2 and x3 directions. To determine the time gain of a dynamic simulation
through static condensation, the magnetic field is increased within 100 load steps, from
zero to the maximum field strength of H2. Both simulations are timed and the results
are compared in Table 4.6. The time advantage of the reduced simulation with a factor of
4.66 compared to the full FEM calculation is obvious. For larger systems an increase in
time for the static condensation can be seen. However, the time spent for this calculation
can be made up quickly, especially with dynamic simulations. That means, a reduction in
three dimensions can also be worthwhile, if results in the outer space are not necessarily
required.

Table 4.6: Required times for solving the system of equations. Taken from
Schröder et al. [2022].

Steps Reduced Reference Factor

100 557.9 s 2598.8 s 4.66

Analogously to the two-dimensional FEM, the three-dimensional FEM also results in
sparsely populated stiffness matrices. Since the reduced matrix is very densely populated,
the advantage of sparse matrices is lost through the static condensation of the outer do-
main Bext onto the boundary of the interior domain ∂Bint as in the two-dimensional case.
However, this resulting disadvantage will be counterbalanced by the advantage of a sig-
nificantly smaller reduced stiffness matrix. To illustrate the size differences, a comparison
of the two matrices can be found in Fig. 4.19.

a) b)

reduced matrix

Figure 4.19: The population of the stiffness matrix corresponding to the full FEM solution
is presented in a) together with the stiffness matrix corresponding to the reduced calculation
marked by a red frame. The population of the reduced stiffness matrix is presented in b) as
a scaled plot. Taken from Schröder et al. [2022].
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4.5 An SBFEM-based approach for magnetostatic open boundary problems

In this section, another numerical method, the scaled boundary finite element method
(SBFEM), is addressed. This method was initially developed and applied to investigate
the dynamic behavior of unbounded domains with radiation condition at infinity. The
radiation condition states that no energy may be reflected from the boundary located at
infinity. Hence, the SBFEM allows to numerically consider the influence of an infinitely
large external space, while the static condensation of the external space presented in
Sec. 4.4 is limited to very large but finite areas. An overview of the efficient treatment of
so-called open boundary problems was discussed in Sec. 4.3. More precisely, the method
of interest is a hybrid SBFEM-FEM formulation. Consider, similar to Sec. 4.4, an interior
domain (near field) Bint = Bint

vac

⋃
Bint

sol that consists of a magnetic solid Bint
sol and a finite

portion of free space Bint
vac (Fig. 4.20b)). The material behavior of the solid Bint

sol as well as
the finite part of the free space Bint

vac are captured using the finite element method. The
behavior of the exterior/unbounded domain (far field) Bext of the free space, sketched
in Fig. 4.20c), is captured utilizing the SBFEM. The influence of the far field on the
near field can be considered via the coupling of the SBFEM to the FEM, as depicted
in Fig. 4.20a). Strictly speaking, the theory from Sec. 4.4.1 and partially from Sec. 4.4.2
can be applied in this chapter as well. The discretization of Bint follows the procedure
described in Sec. 4.4.2 analogously. However, the hybrid SBFEM-FEM formulation is
derived in detail in Birk et al. [2022] and the results within this section have already
been published therein.

di
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∞

∞ ∞

∞

Bint

∂Bb Bext

a) SBFEM-FEM

Bint
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Bint
sol

nint
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Bint = Bint
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⋃
Bint
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b) FEM

ξ
∞

∞∞

∞
Bext

SBFEM

∂Bext,i

next
O

Total domain B Interior domain Bint Exterior/infinit domain Bext

c)

Figure 4.20: The discrete subdivided domains and the definitions of the inner and outer
boundaries of a) the total domain of interest B, definition of the interior and exterior sub-
domains, b) the interior domain Bint = Bint

vac

⋃
Bint

sol (full FEM approximation), and c) the
exterior domain Bext (full SBFEM approximation).

As mentioned above, the SBFEM is used here to solve Eq. 4.25 semi-analytically in
the far field to include the influence of the magnetostatic fields. For this purpose, the
circumferential coordinates (η, ζ) as well as the radial coordinate ξ are introduced by
means of a coordinate transformation. This facilitates decoupling of the governing field
equation (Eq. 4.25) in the circumferential and radial directions. The SBFEM requires the
discretization of the surface ∂Bext,i by means of finite elements. In general, this surface
must satisfy a necessary criterion, the so-called scaling requirement, cf. Song [2018]. The
scaling criterion states that a position O, the so-called scaling center, must exist from
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which the entire surface ∂Bext,i can be seen. Accordingly, 1D line elements are used in a
2D boundary value problem and 2D surface elements are used in a 3D boundary value
problem. The positions of the element nodes (based on a Cartesian coordinate system) are
stored in the vectors xb,yb, and zb. Based on the isoparametric concept, these quantities
can be obtained by

x(ξ, η, ζ) = ξ INs(η, ζ)xb,

y(ξ, η, ζ) = ξ INs(η, ζ)y
b
,

and z(ξ, η, ζ) = ξ INs(η, ζ)zb,

(4.65)

where INs(η, ζ) are the interpolation functions of the surface elements and ξ, η, and ζ
represent the scaled boundary coordinates. For a more in-depth introduction to the fun-
damentals of the SBFEM, the monograph Song [2018] is recommended. Analogous to
Sec. 4.4, the constant H and fluctuation H̃ part of the magnetic field are inserted into
the linear constitutive relation Eq. 4.28, leading to a magnetic induction B = λB + B̃,
with a constant and a fluctuation contribution. For the resulting system of equations, the
structure of the global system of equations of the hybrid SBFEM-FEM formulation is
identical to that already introduced in Eq. 4.587.). Starting from Eq. 4.58 this system of
equations can be divided into a near field and a far field part as follows:IKint

ii IKint
ib

IKint
bi IKint

bb

∆D̃i

∆D̃b

 =

 IRint
i

IRint
b − IRSB

b


︸ ︷︷ ︸

Near field

and IRSB
b = IK∞bb ∆D̃b + IR∞b︸ ︷︷ ︸

Far field

.
(4.66)

Here, the system of equations of the near field is represented in the first part of Eq. 4.66.
The subindex i refers to the degrees of freedom within the internal domain Bint\∂Bint and
the subindex b indicates the degrees of freedom on the boundary ∂Bint. The contribution
IRSB
b within the right-hand side represents the influence of the far field on the near field.

The second part of Eq. 4.66 can be identified as the system of equations describing the far
field. Since the near field is already known and the far field is to be described by means of
the SBFEM, the focus is placed here. In the SBFEM formulation that is considered here,
the boundary conditions are defined on the interface between the near field and the far
field, thus ξ = 1 holds. Considering ξ = 1, Eq. 4.66b) can be reformulated as follows:

IRSB(ξ = 1) = IK∞bb ∆D̃b(ξ = 1) + IR∞b . (4.67)

The vector IR∞b corresponds to the nodal-flux due to the prescribed constant magnetic
field H (non-homogeneous term), while IK∞bb ∆D̃b(ξ = 1) is the nodal-flux due to the
magnetic stray fields. In the framework of the SBFEM, the constant nodal-flux and the
system matrix of the unbounded domain are calculated by

IR∞b = −Q
0
(ξ = 1)− (Ψ21 + IK∞bb ) ·w1 and IK∞bb = −Ψ22 [Ψ12]−1 , (4.68)

7.)In fact, the final global system of equations in the publications Schröder et al. [2022] Eq. 31 and
Birk et al. [2022] Eq. 87 differ by the sign of the superimposed external right-hand side IR∞b . This is
because the system of equations of the far field that has to be condensed (in Schröder et al. [2022])
is already assembled negative beforehand. Thus, the negative sign is already accounted for in the formu-
lation. However, in the following the minus is explicitly taken into account, based on the formulations in
Birk et al. [2022].
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where Q0(ξ = 1) represents the contribution of the externally applied magnetic field on
the interface for ξ = 1 and

Ψ =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
(4.69)

indicates a transformation matrix. w1 corresponds to the amplitudes of a particular solu-
tion as derived in Birk et al. [2022]. The hybrid SBFEM-FEM formulation results from
a collaboration. Therefore, the computation of the stiffness matrix K∞bb of the unbounded
domain is addressed in Appendix A, but for a complete derivation, the reader is referred
to the original paper Birk et al. [2022].

4.5.1 Numerical examples

When simulating magnetic materials, it is of crucial importance to consider their sur-
rounding free space as precise as possible to capture the evolving magnetic fields correctly.
Poor approximations using the truncation method or related procedures, e.g. due to the
selection of outer spaces that are chosen too small, can massively degrade accuracy of
the simulated results. In contrast to the latter methods, the hybrid SBFEM-FEM cou-
pling discussed above is very well suited for the approximation of infinite outer domains.
To verify the functionality of this method, numerical examples are given below. To this
end, the near field is approximated using the FEM while the influence of the surround-
ing free space (far-field) is approximated using the SBFEM. The hybrid SBFEM-FEM
coupling is implemented into the finite element framework of AceGen/AceFEM, compare
Korelc [1997], Korelc and Wriggers [2016], and Korelc [2002]. The following nu-
merical examples have been carried out on a 2020 M1 MacBook Pro with 16GB of RAM.

4.5.2 T-shaped inclusion

In this example, a principle study to validate the hybrid SBFEM-FEM coupling presented
above is performed using a magnetic T-shaped inclusion Bsol as depicted in Fig. 4.21.

x

y

z
Figure 4.21: The T-shaped magnet Bsol. Taken from Birk et al. [2022].

This T-shaped inclusion

• is computed with a fully FE-discretized outer space Bvac with a radius of 500 nm.
This is necessary to generate a fully FE-based reference solution. Magnetic fields
can be plotted all over the free space.
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• is surrounded by an FE-discretized outer space Bvac with 200 nm radius. The cou-
pling to the SBFEM is done on ∂Bvac. The boundary value problem corresponds to
Fig. 4.22. Here, the free space Bvac is only used to depict the magnetic fields in the
immediate vicinity of the magnet.

• is coupled directly on the edge ∂Bsol to the SBFEM to illustrate the advantages
of the SBFEM. The size of the boundary value problem reduces to the domain
presented in Fig. 4.21. Consequently, magnetic fields can only be represented within
the magnetic solid.

a) b)145 t t t 145

t = 36.6

in nm
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Figure 4.22: A T-shaped permalloy inclusion Bsol embedded within a vacuum space Bvac

and treated with an externally applied magnetic field Hy, with a) all relevant geometrical
dimensions and b) an overview of the 3D discretized sample. Taken from Birk et al. [2022].

The material permeability of permalloy µ1 = 1.25 · 10−1 H/m is assigned to the magnetic
inclusion Bsol while the surrounding free space Bvac is considered to be vacuum with
µ0 = 4π · 10−7 H/m, compare Coey [2010]. Since the SBFEM provides a solution for
the infinite space, that mimics vacuum, the material parameter µ0 is also used in the
calculations based on the SBFEM. To generate a material response, the boundary value
problem described above is treated sequentially with two externally applied magnetic fields
H = 1

4π
[−1, 0, 0]T A/nm andH = 1

4π
[0,−1, 0]T A/nm. The reaction of the magnetic solid

to the first external field is given by the fluctuation potential ϕ̃, that is shown as a contour
plot in Fig. 4.23a) and the magnetic fluctuation field shown in Fig. 4.23b). To highlight
the orientation of the fluctuation field, the contour plot of H̃x is depicted in Fig. 4.23c)
with superimposed stream lines of H̃ . Since the magnetic induction B can be derived
from the total magnetic potential ϕ, Bx is illustrated in Fig. 4.23d). The contour plot is
superimposed with stream lines of B to highlight the orientation of the induction.
The applied magnetic field H generates the fluctuation field H̃ shown in Fig. 4.23c),
which has the opposite orientation in the magnetic solid (compared to the applied field).
This fluctuation field is generated by the associated fluctuation potential ϕ̃, which is
shown in Fig. 4.23a). A similar response of the magnet results for a magnetic field parallel
to the y-direction. These responses are shown in Fig. 4.24 and demonstrate the ability of
this method to apply external fields in arbitrary directions.
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c) d)
Figure 4.23: Contour plots of a) the magnetic fluctuation potential ϕ̃ and b) the total
magnetic potential ϕ. The corresponding contour plots of c) the fluctuation field H̃x with
streamlines of H̃ and d) the magnetic induction Bx with streamlines of B.

Since the necessary boundary condition ϕ̃ = 0 of the fluctuation has to be prescribed
on a boundary existing at infinity (compare Bayliss et al. [1982]), an implementation
with the FEM is not possible. The SBFEM provides a semi-analytical solution, so that
the boundary conditions can be considered in advance. Hence, the hybrid SBFEM-FEM
coupling, can provide good approximations for so-called open boundary problems. The
magnetic induction B shown in Fig. 4.23d) is deflected by the fluctuations around the
inclusion and is therefore not unimpeded. To validate the results of the calculation, a
comparison with a pure FE reference simulation is carried out at this point. For this
purpose, the boundary value problem described in Fig. 4.22 is not coupled to the SBFEM,
but enclosed within a large but finite free space Ω discretized by finite elements. The free
space is chosen large enough so that truncation errors are negligibly small. Subsequently,
discrete values of the magnetic potentials ϕ, ϕ̃, and ϕ are evaluated along the intersection
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line A–A (compare Fig. 4.22), while the intersection line B–B provides the discrete values
of the magnetic fields Hy, H̃y, and Hy. These discrete values are plotted in Fig. 4.25 for
both, the hybrid SBFEM–FEM coupling and the pure FEM discretization. Since perfect
agreement can be observed, this example can be considered as a numerical proof that the
presented method delivers very good approximations without direct discretization of the
exterior space.
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-5.8×10-6-4.42×10-6-3.04×10-6-1.67×10-6
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Figure 4.24: Contour plots of a) the magnetic fluctuation potential ϕ̃ and b) the total
magnetic potential ϕ. The corresponding contour plots of c) the fluctuation field H̃y with
streamlines of H̃ and d) the magnetic induction By with streamlines of B. Taken from
Birk et al. [2022].
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Figure 4.25: The comparison of discrete values of a) the magnetic potentials ϕ, ϕ̃, and ϕ
evaluated along the intersection line A–A, and b) the fields Hy, H̃y, and Hy along B–B.
Taken from Birk et al. [2022].

To demonstrate the full potential of the hybrid SBFEM-FEM coupling, the free space dis-
cretization with finite elements around the T-shaped inclusion is completely omitted. The
SBFEM couples directly to the magnetic material so that no surrounding magnetic fields
is visible. The hybrid SBFEM-FEM coupling is compared with a full FEM calculation to
subsequently evaluate the presented method with respect to a reduction in computational
time. The advantage of classical FEM stiffness matrices is a mostly sparse populated band
structure, which can have very large dimensions due to the outer space. In contrast to
the typical FEM matrices, those of the SBFEM-FEM coupling are very densely occupied,
but by a multiple smaller in dimension, compare to the matrix plots shown in Fig. 4.26.
Fig. 4.26a) shows the full FEM matrix superimposed with the SBFEM-FEM coupled
matrix.

a) b)

SBFEM-FEM
matrix

Figure 4.26: The stiffness matrices of the described boundary value problems as matrix
plots. The system matrix of a) the fully FE-discretized boundary value problem and b) the
SBFEM-FEM coupled matrix. Taken from Birk et al. [2022].

The FEM reference system has a total of 115,907 DOF, of which the magnetic inclusion
claims 9,225 DOF. In the SBFEM-FEM coupling considered here, only the T-shaped in-
clusion exists and thus a total of only 9,225 DOF. The number of degrees of freedom on
the edge of the T-shaped inclusion is 2,946 DOF which, also corresponds to the number
of DOF considered by the SBFEM. The calculation of the SBFEM stiffness matrix took
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201,27 s. The SBFEM-FEM coupling has advantages especially in time-dependent calcula-
tions, which require a serial solution of the considered equation system. Therefore, in this
example the external magnetic field is increased within 10 steps to the maximum value
of H = 1

4π
[0,−1, 0]T A/nm. The required time is measured for both the FEM reference

problem and the reduced SBFEM-FEM problem to subsequently allow a direct compari-
son of the two methods. The entire solution process requires 101,30 s computational time
for the full FEM solution, while it takes 21,62 s for the hybrid formulation, as presented
in Table 4.7. Thus, the reduced boundary value problem considered here can be solved
about five times faster than the fully discretized FEM reference solution.

Table 4.7: Comparison of the degrees of freedom, the run-times for setting up
the SBFE stiffness matrix and the solution procedure of both methods. Taken from
Birk et al. [2022].

FEM reference Hybrid SBFEM-FEM
Degrees of freedom 115,907 9,225
Build up SBFE matrix in s not required 207.76
Solution time in s 101.30 21.62

The direct coupling of the SBFEM with the FEM on the boundary ∂Bsol generates for
the magnetic field applied in x-direction (H = 1

4π
[−1, 0, 0]T A/nm) and subsequently in

y-direction (H = 1
4π

[0,−1, 0]T A/nm) only reactions within the magnetic solid, since no
free space is available that allows post processing therein. Hence, the distributions of the
magnetic potential ϕ and the induction Bx at field strength H = 1

4π
[−1, 0, 0]T A/nm

is depicted in Fig. 4.27 and for a field strength H = 1
4π

[0,−1, 0]T A/nm in Fig. 4.28.
Since the agreement between the FEM reference solution and the SBFEM-FEM coupling
is exact, only the contour plots of the latter are presented below.

φ A Min: 1.98e-2 Max: 1.98e-2
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Bx T Min: -2.69e-5 Max: -5.47e-7

-2.03e-5 -1.37e-5 -7.14e×10-6

a) b)

Figure 4.27: Contour plots of a) the magnetic potential ϕ and b) magnetic induction Bx. To
highlight the orientation of the induction it is superimposed with the corresponding stream
lines of B.
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φ A Min: -4.01e-6 Max: 4.01e-6
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By T Min: -2.02e-5 Max: -6.93e-7
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Figure 4.28: Contour plots of a) the magnetic potential ϕ and b) magnetic induction By. To
highlight the orientation of the induction it is superimposed with the corresponding stream
lines of B. Taken from Birk et al. [2022].

4.5.3 Magnetic particles in free space

The considered domain is reduced onto the boundary of two magnetic particles Bsol
1 and

Bsol
2 that are only separated by a gap consisting of vacuum Bvac. The exact dimensions of

the particles and the separating free space are shown in Fig. 4.29. In this example, the
coordinate origin corresponds to the center of mass. The magnetic particles are charac-
terized by different permeabilities. Namely the permeability of Bsol

1 corresponds to µ1 =
1.25·10−1 H/m, while it is µ2 = 1 · 10−1 H/m for Bsol

2 . The vacuum permeability of µ0 =
4π · 10−7 H/m is assumed for the separating gap Bvac .

Bsol
1 Bvac Bsol

2

40 80 80
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25

H
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Figure 4.29: Two magnetic particles Bsol

1 and Bsol
2 of different size separated by an air

gap Bvac and treated by an external magnetic field H = 1
4π [−1, 0, 0]

T A/nm. Taken from
Birk et al. [2022].

In this case, the influence of the surrounding space, the far field, is approximated by
the SBFEM. Its material behavior is the same as for the air gap Bvac, thus also corre-
sponding to vacuum. To generate a reaction of the system, an external magnetic field
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H = 1
4π

[−1, 0, 0]T A/nm is applied. This example is intended to show that the coupling
of the SBFEM and the FEM presented above can result in a strong reduction of the size
of the overall system. For this purpose, the presented boundary value problem is reduced
as far as possible, so that no surrounding free space is considered. However, this strong
reduction also means that the results are calculated exclusively in the discretized region
B = Bsol

1 ∪ Bsol
2 ∪ Bvac and therefore, can only be displayed there.

Htilx A/nm Min: -1.93e-3 Max: 7.96e-4
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-1.89e-5 -1.45e-5 -1.01e-5 -5.7e×10-6

a) b)
Figure 4.30: The contour plots of a) the magnetic fluctuation field H̃x superimposed with
the corresponding stream plot of the fluctuation field H̃ and b) the total magnetic induction
Bx as well as the corresponding stream plot of B. Taken from Birk et al. [2022].

To clarify the graphical representations, only two dimensional plots are presented showing
values of the x–y plane at height z= 0 nm. The evolution of the magnetic fluctuation field
H̃ is depicted in Fig. 4.30a). The contour plot shows the x-component of the fluctuations
that are superimposed with the corresponding stream lines of H̃ . Here, the typical contra
orientation of the magnetic fluctuation field within the magnetic solids Bsol

1 and Bsol
2 can

be observed, while the orientation within the free space Bvac follows the direction of
the externally applied field H . The contour of the magnetic induction Bx is plotted in
Fig. 4.30b). In this plot, the stream lines of the induction B highlight that an unhindered
flow through the free space gap is possible and only the magnetic solids force a deviation
from the applied field.
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Figure 4.31: a) the contour plot of the magnetic fluctuation potential ϕ̃ with b) the corre-
sponding evolution of all magnetic potentials ϕ, ϕ̃, and ϕ along the intersection line C–C.
Taken from Birk et al. [2022].

As already described in the previous example, ϕ̃ = 0 must hold for the fluctuation poten-
tial in a surrounding space Ω at infinity. However, in the vicinity of magnetic inclusions,
it is not zero and certainly not within an inclusion. This also means that the potential
on the boundary of B must be different to zero. This is confirmed in the contour plot of
the potential ϕ̃ presented in Fig. 4.31. Nevertheless, the plots of the discrete values of
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all magnetic potentials ϕ, ϕ̃, and ϕ taken along the intersection line C–C, in Fig. 4.31b)
show their evolution and the difference to zero on ∂B.
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5 Micromagnetic theory

Magnetic materials can generally be divided into magnetically "hard" and "soft"
materials, referring to the switching resistance of magnetic materials in the presence of
externally applied magnetic fields. Magnetically hard materials posses wide hysteresis
loops with larger energy products, while magnetically soft materials are typically featured
by narrow hysteresis loops, cf. Inoue and Kong [2020]. These differently pronounced
characteristics inherently lead to different fields of application of the materials. Both
hard and soft magnetic materials make a significant contribution to further increase
the efficiency of power generators (wind turbines), conversion equipment (transformers),
sensors and means of transportation (electromobility) or data storage devices, as dis-
cussed in Gutfleisch et al. [2011], Gauß et al. [2021], and Khan et al. [2021].
Significantly enhanced properties of these magnetic materials are a key to improv-
ing energy efficiency, contributing substantially to flexible and intelligent designs of
industrial applications as well as reducing their environmental impact. To obtain an
in-depth understanding of the governing physical phenomena finite-element-based
micromagnetic simulations are applied. Through the competition of different energy
contributions magnetic domains are formed which are the origin for the hysteretic
behavior, cf. Brown [1945]. These domains are variable in space and time and can
be influenced by external stimuli like external magnetic fields or mechanical stresses,
cf. Jiles [2015], Kittel [1949], and Hubert and Schäfer [1998]. Relying on the
findings of Landau and Lifshitz [1935], Brown [1963] was eventually able to lay the
foundations for micromagnetism. Later, Gilbert [2004] phenomenologically motivated
the magnetic loss via a dissipation term. Today, Landau-Lifshitz-type equations are
used within the most micromagnetic simulation tools. These can be applied to numer-
ically investigate the impact of microstructure compositions onto magnetic properties,
cf. Bolyachkin et al. [2022], DeSimone et al. [2006], Soderžnik et al. [2017],
and Fischbacher et al. [2018] or the evolution of domain structures over time,
cf. Alvandi-Tabrizi and Schwartz [2018] and Fidler et al. [2004].
For completeness it should be mentioned that micromagnetism is only one possibility to
simulate magnetic materials. Out of a large number of available methods, a small selection
is presented below. A very simple method for simulating the magnetic hysteresis loop is to
apply a phenomenologically motivated model that uses a trigonometric function to fit the
response to the physical behavior, as presented in Jiles and Atherton [1983; 1986]
and Takács [2001]. Another very simple approach to simulate the behavior of
magnetic single-domain particles minimizing the magnetic energy is known as the
Stoner-Wohlfarth model, cf. Stoner and Wohlfarth [1948]. More complex in the
numerical implementation, but still widely used, is the possibility to represent hysteresis
of arbitrary shape by means of the so-called Preisach model, cf. Preisach [1935].
Thus, Adly et al. [1991] used a Preisach model to represent magnetostrictive hys-
teresis loops, Labusch et al. [2019] to simulate magneto-electro-mechanically coupled
composites, and Sarker et al. [2020] to numerically analyze Fe-based alloys. In the
context of numerical methods for magnetic simulations an overview is also provided by
Bertotti and Mayergoyz [2005]. However, to take into account the microstructural
influences in simulations of macroscopic components, homogenization methods such as
the FE2 method can provide a suitable numerical framework, cf. Schröder [2014].
Recently, Keip and Rambausek [2016] applied an FE2-based homogenization proce-
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dure to magnetorheological elastomers, while Schröder et al. [2016] took advantage
of the FE2 method during the simulation of magneto-electro-mechanically coupled
composite materials. For a more comprehensive overview on the topic of homogenization
of magneto-mechanical and magneto-electro-mechanical materials, the reader is referred
to Labusch et al. [2018].

Parts of this chapter are published in:
M. Reichel, B.X. Xu and J. Schröder, A comparative study of finite element schemes for
micromagnetic mechanically coupled simulations, Journal of Applied Physics, 132:183903,
(2022), AIP Publishing.
M. Reichel, J. Schröder and B.X. Xu, Efficient micromagnetic finite element simulations
using a perturbed Lagrange multiplier method, Proceedings in Applied Mathematics and
Mechanics, 22:1 e202200016, (2022), Wiley.
M. Reichel, R. Niekamp and J. Schröder, Efficient micromagnetic-elastic simulations based
on a perturbed Lagrangian function, Journal of Applied Physics, 134:103901, (2023), AIP
Publishing.

In this chapter an overview of numerical methods in micromagnetic simulations is given,
focusing on the conservation of the magnetization unit constraint. Subsequently, the
magneto-elastic energy functional including all necessary energy contributions is intro-
duced. Based on this energetic contribution, the main micromagnetic equations are de-
rived. Afterwards, the micromagnetic-mechanical boundary value problem is transformed
into its continuous and discrete weak forms. Thereby, the focus lies on different numerical
schemes to preserve the magnetization amplitude. The general workability of these dif-
ferent schemes, as well as their individual advantages and disadvantages, are compared.
Finally, the results, with respect to the benefits and drawbacks of the approaches, are
summarized.

5.1 Overview on micromagnetic approaches

In 1935 Landau and Lifshitz published a work that is thematically focused on the
description of magnetic moments, domains, and their boundaries, the so-called do-
main walls, cf. Landau and Lifshitz [1935]. Later, this work is revisited by Gilbert
and extended by a phenomenologically motivated damping approach of the mag-
netic moments, cf. Gilbert [1956]. A few years later, this is followed by Brown’s
work "Micromagnetics", which introduces the present name, cf. Brown [1963].
This theory is quite early taken up by Döring [1968]. With increasing com-
puter power, the field of numerical micromagnetism is emerging. The growth
of this field increases rapidly, particularly since the late 1990s. A selection of
early work includes Fredkin and Koehler [1987; 1988], Kronmüller [1973],
and Chen et al. [1993]. Different numerical methods are used to dis-
cretize the governing equations. The most popular methods are proba-
bly the finite difference method (cf. Donahue and McMichael [1997],
McMichael et al. [2001], d’Aquino et al. [2005], Miltat and Donahue [2007],
and Vansteenkiste et al. [2014]), which proves to be very perfor-
mant in terms of computational time, and the finite element method
(cf. Kronmüller et al. [1996], Hertel and Kronmuller [1998],
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Fidler and Schrefl [2000], Tsiantos et al. [2001], and Scholz et al. [2003]),
which is particularly notable for its very flexible discretization of strongly heterogeneous
structures. For micromagnetic simulations, the application temperature of magnetic
materials is assumed to be far below the Curie temperature. This implies that the
amplitude of a magnetization vector, denoted byM = Msm, must satisfy the constraint
that ‖M‖ = Ms and ‖m‖ = 1, where Ms represents the saturation magnetization andm
represents the unit magnetization director. This condition, which can be computationally
difficult to handle, leads to various methods for approximating the unit director. The
most straight forward approach to consider the unit constraint within the simulation is to
apply a projection scheme to the magnetization vectors as done by, cf. Prohl [2001] and
Kružík and Prohl [2006]. This procedure involves the solution of the system of equa-
tions without considering the unit constraint and the subsequent projection of the nodal
magnetization vectors back onto the unit sphere after each converged time step. A slightly
different projection scheme was more recently introduced by Sridhar et al. [2015],
where the proposed method relies on a staggered solution procedure. Another very simple
approach to fulfill the constraint is to incorporate a penalty term into the weak form,
cf. Prohl [2001], Landis [2008], Wang and Zhang [2013], and Zhang et al. [2016].
This penalty term penalizes any deviation of the magnetization vectors from the Euclidean
norm depending on the intensity of a penalty parameter. A slightly different way to
enforce the constraint was applied by Szambolics et al. [2008], Ohmer et al. [2022],
and Ohmer [2022]. They introduced (perturbed) Lagrange multipliers as additional
degrees of freedom, to recalculate the required penalization intensity within each
iteration step. Reichel et al. [2023c] and Reichel et al. [2023b] reduced the system
of equations to the size of the penalty method by applying a static condensation
on element level to the Lagrange multiplier. Each of the mentioned approaches adds
something to the total energy, e.g. by adding a penalty term, or subtracts energy, e.g. by
renormalizing the vectors. This can lead to energies of the considered magnetic systems
that may deviate from the real magnetic energy. To circumvent this, a priori length
conserving methods might be a choice. One possibility is to apply spherical coordinates
as done by Fidler and Schrefl [2000], Süss et al. [2000], and Yi and Xu [2014]
since they preserve Euclid’s norm by construction. Furthermore, the local system
of equations is reduced by one degree of freedom from three to two, since only the
polar and azimuth angle need to be considered as primary variables. This reduced
system of equations allows in principle for faster simulations compared to Cartesian
coordinates, cf. Scholz et al. [2003]. The work of Yi and Xu [2014] was extended
in Dornisch et al. [2018] by a restriction of the azimuth angle onto its defined
domain (−π, π] on the interpolation level. Miehe and Ethiraj [2012] proposed a
rotational exact and length preserving scheme based on an exponential map combined
with an incremental update formulation. Another finite-element-based approach was
presented by Alouges [2008]. The author preserved the length of the magnetization
vectors by restricting the interpolation functions onto the tangent space of the solution.
A clever reformulation of the Landau-Lifshitz-Gilbert (LLG) equation utilizing the
mid-point rule also enables to preserve the magnetization amplitude by construction,
cf. d’Aquino et al. [2005].
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5.2 Micromagnetic free energy

A competition of different energy contributions within a ferromagnetic free energy indi-
cates the origin of magnetization patterns, better known as magnetic domains. Minimizing
the free energy of the magnetic solid yields the most stable and favorable domain forma-
tion, cf. Landau and Lifshitz [1935]. In general, the individual parts of the energy are
expressed in terms of the strains ε, the magnetic fieldH , the magnetization unit director
m and its gradient ∇m. The considered total magnetic free energy H is an assemblage
of

H(ε,H ,m,∇m) = Hela(ε,m) +Hmag(H ,m) +Hexc(∇m) +Hani(m), (5.1)

where Hela is the magneto-elastic energy, Hmag the magnetostatic energy, the exchange
energy Hexc and the anisotropic energy Hani. All these energy terms contribute to
the overall magnetization behavior and are eventually responsible for the macroscopic
hysteresis loops, cf. Brown [1945]. In the following, the individual energy contribu-
tions are introduced as continuum mechanical expressions, i.e. their local energies h
are integrated over the whole body B. A general overview on possible energy contri-
butions can also be found in standard literature as Bertotti [1998], Coey [2010], and
Hubert and Schäfer [1998].

Magneto-elastic energy
The elastic energy includes the magnetostrictive and inverse magnetostrictive (Villari)
effects, that relate mechanical and magnetic behaviors to each other. It is expressed in
terms of the linear elastic strains εe, a magnetization-induced initial strain tensor ε0, and
the total strains ε as

Hela(ε,m) =

∫
B
hela(ε,m) dv =

∫
B

1

2
εe : C : εe dv, (5.2)

with εe = ε̂e(ε,m) = ε(u)−ε0(m), where C denotes the 4th-order elasticity tensor. The
magnetization induced strains can be given for a cubic crystal lattice structure as

ε0(m) =
3

2

λ100

(
m1m1 − 1

3

)
λ111m1m2 λ111m1m3

λ111m2m1 λ100

(
m2m2 − 1

3

)
λ111m2m3

λ111m3m1 λ111m3m2 λ100

(
m3m3 − 1

3

)
 , (5.3)

with the magnetostrictive coefficients λ100 and λ111 as well as the individual magnetization
componentsm = [m1,m2,m3]T. A fully isotropic modulation can be obtained by defining
these constants to be equal λ100 = λ111.

Magnetostatic energy
The magnetostatic energy Hmag is composed of two different energetic contributions.
These contributions are the so-called demagnetizing energy HDem and the Zeeman energy
HZee. The demagnetizing energy takes into account the influence of stray and demagnetiz-
ing fields H̃ , which are formed according to the distribution of the magnetization within
a magnetic body Bsol. Without the influence of an external magnetic field, this energy can
be represented as

HDem(H̃ ,m) =

∫
B
hDem(H̃ ,m) dv

= −1

2

∫
B
µ0 H̃ · H̃ dv−

∫
Bsol

µ0Msm · H̃ dv.
(5.4)
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Self-contained magnetization patterns minimize this demagnetization energy. The Zeeman
energy

HZee(H ,m) =

∫
Bsol

hZee(H ,m) dv = −
∫
Bsol

µ0Msm ·H dv (5.5)

considers the interaction of an external magnetic fieldH with the magnetizationM inside
a magnetic solid Bsol. Connecting Eq. 5.4 and Eq. 5.5, taking into account a constant
external magnetic fieldH distributed over the whole domain B (this includes the magnet
as well as the surrounding free space), allows the representation of the magnetostatic
energy8.) of the whole domain as

Hmag(H ,m) =

∫
B
hmag(H ,m) dv = −

∫
B

1

2
µ0H ·H dv−

∫
B
µ0Msm ·H dv, (5.6)

where H = H + H̃ represents the total magnetic field.

Magnetic exchange energy
A close examination of paramagnetic materials (compare to Sec. 2.4) reveals that the
magnetic moments without the presence of an aligning magnetic field are disordered and
do not posses any effectively measurable magnetization. However, in other magnetic ma-
terials, such as ferromagnets and antiferromagnets, these moments may be present in
ordered structures of equally oriented magnetization. Thus, the difference between these
materials must be an internal force that aligns the magnetic moments parallel to each
other. This internal force, based on the Pauli principle and the Coulomb exchange, is also
known as the exchange interaction. In consequence of the interaction of two spins (spin-
spin coupling), the Heisenberg Hamiltonian operator can be constructed, which describes
their interaction and ultimately the occurrence of the magnetic order. Mathematically
this Hamiltonian can be expressed as

IHexc = −2
∑
i>j

Jij si · sj =
∑
i 6=j

Jij si · sj, (5.7)

where Jij represents the exchange integral between the i-th and the j-th spin. In this con-
text, the sign of the exchange integral indicates the orientation of the spins. Here J > 0
implies a parallel alignment of the spins, while J < 0 causes an antiparallel alignment
of the spins, indicating ferromagnetic order and antiferromagnetic order. This exchange
between spins can also be expressed on the continuum level. Inhomogeneous orientation
patterns within the magnetization distribution, indicated by existing magnetization gra-
dients ∇m, lead to an increased energy contribution. Hence, the exchange energy

Hexc(∇m) =

∫
B
hexc(∇m) dv =

∫
B
Aexc∇m : ∇m dv, (5.8)

aims to minimize these inhomogeneous patterns by aligning the magnetic moments, de-
pending on the influence of the exchange coefficient Aexc. Concluding this, the exchange
energy prefers to minimize the amount of small individual domains and instead tries to
facilitate the formation of very large domains.

8.)Since it is evident that magnetization can only be found in a magnetic body, the index sol is omitted
in the following.
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5.3 Magnetocrystalline anisotropy

Many magnetic materials have preferred directions along that the magnetization is pref-
erentially oriented. These directions are also referred to as easy-axes and originate from
the crystallographic nature of the material under consideration. This behavior is com-
monly known as magnetocrystalline anisotropy. In 1929 the Russian physicist N.S. Akulov
showed that the energy hani in the crystal lattice can be represented in the form of a series
expansion of the direction cosines of the magnetizationM , which corresponds to the com-
ponents of the magnetic unit directors m = [m1,m2,m3]T, cf. Akulov [1929]. Within
cubic crystal systems the anisotropy can be represented by the energetic expression

hani
cub = Kcub

0 +Kcub
1

(
m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
2

)
+Kcub

2

(
m2

1m
2
2m

2
3

)
+ ... , (5.9)

where Kcub
0 , Kcub

1 , and Kcub
2 are the material specific anisotropy constants and m1, m2,

and m3 the direction cosines of the magnetization. Fig. 5.1b) shows the cubic unit cell of
iron. Its corresponding energy surface is shown in Fig. 5.1c) for the parametersKcub

0 = 0.1,
Kcub

1 = 1, and Kcub
2 = 0, taken from Bertotti [1998]. Starting from such an energy, the

expected magnetization curves of a single crystal can be calculated for different directions.
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Figure 5.1: a) comparison of the experimentally and theoretically obtained magnetiza-
tion curves of an iron single crystal for the hard-, medium-, and easy-axis, adopted from
Williams [1937] and Kneller et al. [1962]. Note that the results given in a) do not apply
Si-units, to make a comparison with older literature more convenient. b) the cubic crystal
cell of iron and c) the corresponding cubic anisotropy surface (for parameters Kcub

0 =0.1,
Kcub

1 =1, and Kcub
2 =0, cf. Bertotti [1998]).

The following considerations are based on the works Akulov [1929; 1931a;b] and
Becker and Döring [1939] and serve as a starting point for the analysis of an iron
single crystal subjected to an external magnetic field Hext as outlined below. This field
results from the energetic contribution

hext = Msm ·Hext with m = [sin θ cosφ, sin θ sinφ, cosφ]T, (5.10)

with that the total energy can be formulated as

htot(m) = hani(m)− hext(m). (5.11)
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Additionally, the iron single crystal is assumed to be fully saturated along its easy-axis
closest to the external field, cf. Becker and Döring [1939]. As shown in Fig. 5.1b),
the easy-axis of iron corresponds to the direction [100]. This implies no further increase
in magnetization for the case of an externally applied magnetic field parallel to the [100]
direction, presented in Fig. 5.2a), since it is already saturated along the [100] direction.
If there are several energetically equivalent easy-axes, i.e. the magnetic field is applied
exactly centered along the axes considered, the saturation is distributed evenly along
these axes, see Figs. 5.2b) and c). To illustrate the magnetization distribution, the octant
of the coordinate system between the positive x1-, x2-, and x3-axis is shown here for an
external magnetic field:

Case [100]: Hext
[100] parallel to the [100] direction given in Fig. 5.2a),

Case [110]: Hext
[110] parallel to the [110] direction given in Fig. 5.2b), and

Case [111]: Hext
[110] parallel to the [111] direction given in Fig. 5.2c).

This means that for Case [100] the amount of magnetization ‖M[100]‖ = Ms can be com-
pletely assigned to one orientation, see Fig. 5.2a). In Case [110] the part of the magnetiza-
tion is distributed on two axes (x1- and x2-axis) such that ‖M[100]‖ = ‖M[010]‖ = Ms/

√
2

holds for the magnitude in each case. In Case [111] the result is a distribution of the magne-
tization onto the x1-, x2-, and x3-axis with the corresponding magnetization magnitudes of
‖M[100]‖ = ‖M[010]‖ = ‖M[001]‖ = Ms/

√
3. Thus, the initial magnetizations along the cor-

responding field directions [100], [110], and [111] are ‖M[100]‖ = Ms, ‖M[110]‖ = Ms/
√

2,
and ‖M[111]‖ = Ms/

√
3.
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x1 x2
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Figure 5.2: Octant between the x1-, x2-, and x3-axis with the directions of the magne-
tization (blue) and the external magnetic field (red). a) the external magnetic field and
magnetization align parallel to the [100] direction (x1-axis), b) the external field points in
[110] direction and the magnetization aligns to the x1- and x2-axis, and c) the external field
points in [111] direction and the magnetization aligns to the x1-, x2-, and x3-axis.

As the external field increases, the preferred position of the magentization shifts from the
easy-axis towards the externally applied field. This can be calculated by minimizing the
energy given in Eq. 5.11 as

d htot

d θ
=

d

d θ

[
hani −Msm ·H

]
= 0. (5.12)
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Since only a constant magnetization results for Case [100], the interest in the following is
on Case [110] and Case [111].
To simplify the calculation for Case [110] some assumptions follow. The process is con-
sidered only within the x1-x2 plane, which means that m3=0, hence m1 = cos θ, and
m2 = sin θ.

x2

x3 x1

θ

θ′=45◦

Hext
[110]

M = Ms

[
cos θ
sin θ

]

Figure 5.3: Representation of the magnetization process for a magnetization vector (blue),
already rotated out of the easy-axis, within the x1-x2 plane and the external field (red).

For symmetry reasons, only the rotation from the positive x1-axis in the direction of the
field Hext

[110] is considered for the derivation, as shown in Fig. 5.3. From Fig. 5.3 it can
be seen that the magnetization projected in the direction of the magnetic field can be
represented as a function of the angle θ formed between Hext

[110] and the magnetizationM
as

M = Ms η, with η = cos θ. (5.13)

Since the angle θ decreases from θ′=45◦ to 0◦ during the rotation ofM towards the [110]
position, an intermediate position can be defined by

m1 = cos(s− θ) =
1√
2

(cos θ+ sin θ) and m2 = cos(s+ θ) =
1√
2

(cos θ− sin θ). (5.14)

By inserting Eq. 5.14 in Eq. 5.9, reformulating and neglectingKcub
0 , the anisotropic energy

for the direction [110] is given by

hani
cub = Kcub

1 (
1

2
− cos2 θ)2 = Kcub

1 (
1

2
− η2)2. (5.15)

Since the position of the magnetization is directly related to the position of the external
field, the external field can now be expressed as its scalar field strength H = ‖Hext

[110]‖, see
Fig. 5.3. Thus, Eq. 5.12 shown above, can be given as a function of η as

d htot

d η
=

d

d η

[
Kcub

1 (
1

2
− η2)2 −MsH η

]
= 4Kcub

1 η (η2 − 1

2
)−MsH = 0. (5.16)

Minimizing η in Eq. 5.16 (as well as in Eq. 5.20 later on) proceeds iteratively for each
newly applied or increased external magnetic field H , such that an optimal orientation
of the magnetization M , expressed in terms of η, results as a function of H . The mag-
netization curve resulting from the minimization of htot, see Eq. 5.16, i.e. for a field
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applied in the [110] direction, is presented in Fig. 5.1a). The used material parameters
Kcub

1 = 2.8× 104 J/m3 and Ms = 0.16 T are taken from Kneller et al. [1962].
For Case [111], the initial magnetization corresponds to the value ‖M[111]‖ = Ms/

√
3.

Increasing the external magnetic field Hext
[111] along the [111] direction causes the shift of

the preferred position from the easy-axis towards the external field. Thus, the rotation
of the magnetization in the direction of the magnetic field leads to an increase in satura-
tion along this direction up to full saturation. In the following, for reasons of symmetry,
only the rotation from the positive x1-axis in the [111] direction is considered. Hence,
the rotation takes place within the plane spanned by the positive x1-axis and Hext

[111], see
Fig. 5.4. The angle between these two vectors (x1-axis and Hext

[111]) is β = 54.736◦, yield-
ing cos β = 1/

√
3 and sin β =

√
2/3. Thus, analogous to the procedure of Case [110], an

intermediate position can be defined as

m1 = cos(β − θ) =
1√
3

cos θ +

√
2

3
sin θ, (5.17)

which can be reformulated to

m2
1 =

1

3
(2− η2 + 2

√
2 η
√

1− η2) and m2
2 = m2

3 =
1

2
(1−m2

1) (5.18)
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M = Ms cos θ

Figure 5.4: The magnetization process for a magnetization vector already rotated out of
the easy-axis (light blue), within the x1-Hext

[111] plane, with the external field (red) and the
initial magnetization (dark blue). The angle θ (green) spans between the external field and
the rotated magnetization and the angle β (dark blue) spans between the external field and
the initial magnetization.

using the abbreviation η = cos θ. For Kcub
0 = 0, Eq. 5.9 can be represented as

hani
cub =

Kcub
1

4
(1 + 2m2

1 − 3m4
1)2 + Kcub

2 m2
1m

2
2m

2
3 (5.19)

for the case of an external magnetic field along the [111] direction. This results in
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d htot

d η
=

d

d η

[
Kcub

1

4
(1 + 2m2

1 − 3m4
1)2 −MsH η

]
= 0. (5.20)

The magnetization curve resulting from the minimization of Eq. 5.20, i.e. for a field
applied in [111] direction, can be taken from Fig. 5.1a). The used material parameters
Kcub

1 = 2.8 × 104 J/m3, Kcub
2 = 1.0 × 104 J/m3, and Ms = 0.16 T are taken from

Kneller et al. [1962]. Indeed, there exist more magnetocrystalline energy contribu-
tions hani depending on the different crystal systems, cf. Hubert and Schäfer [1998].
However, the focus of this work remains on two variants of Hani, namely the uniaxial
anisotropy Hani

uni that is introduced as

Hani
uni(m) =

∫
B
hani

uni(m) dv =

∫
B
Kuni

1 (1−m · a) dv, (5.21)

with the anisotropy constant Kuni
1 and the easy-axis vector

a = [sin θ cosψ, sin θ sinψ, cos θ]T as well as the cubic anisotropy Hani
cub that yields

the form

Hani
cub(m) =

∫
B
hani

cub(m) dv

=

∫
B

[
Kcub

1

(
m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3

)
+Kcub

2

(
m2

1m
2
2m

2
3

)]
dv,

(5.22)

with Kcub
1 and Kcub

2 as corresponding anisotropy constants for the cubic crystal system.
Therefore, the preferred energetically minimum depends on the underlying crystal lattice.

5.4 Micromagnetic equations

Within this section, the most fundamental equations for the magnetization states and their
corresponding evolution in the micromagnetic theory are derived. Starting with Brown’s
equations of equilibrium, stable magnetization states in an energetically preferred configu-
ration can be described, cf. Brown [1963]. However, these equations cannot describe how
a non-equilibrium system can reach this equilibrium state. Landau and Lifshitz [1935]
have been the first to propose a model that is able to describe the way of such a non-
equilibrium system towards a stable equilibrium state by incorporating precessional mo-
tion and dissipation of the magnetization vectors into a continuum framework. This ap-
proach has been adapted by Gilbert [2004], who has introduced a phenomenological
damping term to incorporate the dissipation motion to describe the magnetization evo-
lution. On the following pages Brown’s equations of equilibrium and the magnetic equa-
tion of motion, which is a Landau-Lifshitz-type evolution equation, are derived. This is
done by a minimization principle applied to the free energy, following the fundamental
work of Gilbert [1956]. The derivations within this section are also strongly inspired by
the works of Bertotti [1998] and d’Aquino et al. [2005]. Hence, for a more detailed
derivation of these equations, the reader is referred to Gilbert [1956], Bertotti [1998],
and d’Aquino et al. [2005].
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5.4.1 Functional derivatives

In micromagnetism, the so-called effective fieldHeff plays a crucial role. It differs from an
external magnetic field, because it combines contributions of external magnetic fields, crys-
talline anisotropy, exchange interactions and other types of energetic contributions. Thus,
it is not necessarily parallel to an external magnetic field. The calculation is obtained by a
functional derivative of the micromagnetic free energy (Eq. 5.1) with respect to the mag-
netization degrees of freedom. The foundations of variational calculus dates back to the
Swiss mathematician Leonhard Euler who published his findings in the fundamental works
Euler [1744] and Euler [1766]. In addition to Euler, the Swiss mathematician Johann
Bernoulli, the French mathematician Joseph-Louis Lagrange, the German mathematicians
Karl Weierstraß and David Hilbert, and many others made important contributions to
the calculus of variations. For a historical overview on the invention and the development
of variational calculus over the centuries the work of Mariano [2021] is recommended.
Therefore, the subject of functional derivatives is introduced by means of a generic ex-
ample, based on the work of Bolza [1904], Szabó and Sauer [1967], and Fox [1987].
Starting with any functional of the form

H(m) =

∫
B
h (x,m(x),∇m(x)) dv, (5.23)

the task is to find the extrema with respect to the unknown vector-valued functionm ∈ IR3

and its derivatives ∇m. This may require prescribing boundary conditions of the form

m = m on ∂B, (5.24)

with respect to the function m and the derivative ∇m. Thus, the main task is to find
an unknown function m for which the functional H(m) becomes extremal. Assuming
sufficient smoothness of all functions considered, the construction of a comparable function
or test function is performed as

m̃ = m+ εη, with m̃ ∈ IR3, (5.25)

where ε is an arbitrarily small number and η ∈ IR3 is a continuous function vanishing at
the boundary (η = 0 on ∂B). As a variation of the extrema

δm = m̃−m = εη with δm = 0 on ∂B (5.26)

can be introduced. Substitution of m by the test function m̃ in Eq. 5.23 leads to an
extremum at the position ε = 0. Formally, this can be determined with the help of the
so-called Gâteaux derivative or (first) variation

δH(m,η) =
d
dε
H(m+ εη)

∣∣∣∣
ε=0

ε =

∫
B

d
dε
h (x, m̃,∇m̃)

∣∣∣∣
ε=0

dv ε

=

∫
B

d
dε
h(x,m+ εη,∇m+ ε∇η)

∣∣∣∣
ε=0

dv ε,

(5.27)
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for which the necessary criterion δH(m,η) = 0 holds. Further transforming the last part
of Eq. 5.27 using the chain rule as∫

B

[
∂ h

∂ m̃
· ∂ m̃
∂ε

+
∂ h

∂∇m̃
:
∂∇m̃
∂ε

]∣∣∣∣
ε=0

dv ε

=

∫
B

[
∂ h

∂ m̃
· η +

∂ h

∂∇m̃
: ∇η

]∣∣∣∣
ε=0

dv ε

(5.28)

and taking advantage of the relations δm = εη and ∇δm = ε∇η allows the following
expression: ∫

B

[
∂ h

∂m
· δm+

∂ h

∂∇m
: ∇δm

]∣∣∣∣
ε=0

dv. (5.29)

In order to finally obtain the corresponding Euler-Lagrange differential equation • from
the variational problem, first a few reformulations have to be made, so that, considering
δH(m) = 0 the following is directly evident∫

B
[•] · δm dv = 0 −→ [•] = 0. (5.30)

Accordingly, the last term inside the parentheses in Eq. 5.28 must be rewritten so that it
becomes of the form [•] · δm as well. Applying partial integration

∂ h

∂∇m
: ∇δm = div

(
∂ h

∂∇m

T

· δm
)
− div

∂ h

∂∇m
· δm (5.31)

gets the expression closer to that required form. On that basis the Gauss integral theorem
allows to express the volume integral in terms of a surface integral∫

B
div

(
∂ h

∂∇m

T

· δm
)

dv =

∫
∂B

(
∂ h

∂∇m

T

· n
)
· δm da, (5.32)

so that the latter yields with δm = 0 on ∂B (Eq. 5.26)∫
∂B

(
∂ h

∂∇m

T

· n
)
· δm da = 0. (5.33)

Thus, the resulting Euler-Lagrange equation becomes∫
B

[
∂ h

∂m
− div

∂ h

∂∇m

]
· δm dv = 0 −→

[
∂ h

∂m
− div

∂ h

∂∇m

]
= 0. (5.34)

This section is intended to provide an understanding of the calculus of variations and
to provide clarification for the derivation of Brown’s equations of equilibrium, which is
performed in the following but is significantly shorter.

5.4.2 Brown’s equations of equilibrium

While in the previous section a generic functional is varied, this section refers to the
functional of micromagnetism presented in Eq. 5.1 and following, which can be represented
in its local form as follows

h(ε,H ,m,∇m) = hela(ε,m) + hmag(H ,m) + hexc(∇m) + hani(m), (5.35)
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consisting of the mechanical, magnetostatic, exchange, and anisotropy contributions. Re-
calling Eq. 5.33 and Eq. 5.34 the variational reads as

δH =

∫
B

[
∂ h

∂m
− div

∂ h

∂∇m

]
︸ ︷︷ ︸

:=−Heff

· δm dv +

∫
∂B

(
∂ h

∂∇m

T

· n
)
· δm da = 0, (5.36)

whereHeff denotes the effective field. The sign of the effective field, which corresponds to
the negative variational of the functional as Heff = − δH

δm
, has to be noted. Nevertheless,

the norm constraint of the magnetization vector ||m|| = 1 must always be satisfied. A
variational satisfying this constraint yields

δm = m× δθ, (5.37)

with δθ defining a small and arbitrary vector that defines the direction of an arbitrary
axis in space and the rotation of m around it. Applying Eq. 5.37, the triple product
a · (b× c) = (a× b) · c and the rule a× b = −b× a to Eq. 5.36 yields

δH =

∫
B

(m×Heff) · δθ dv−
∫
∂B
m×

(
∂ h

∂∇m

T

· n
)
· δθ da = 0 (5.38)

resulting in Brown’s equations

m×Heff = 0 and m×
(

∂ h

∂∇m

T

· n
)

︸ ︷︷ ︸
=0

= 0, (5.39)

if δH = 0 holds true for any arbitrary variation of δθ, cf. Brown [1963]. Eventually, this
indicates an extremum. Since any derivative ofm must be perpendicular tom itself, the
short expression of Eq. 5.392 can be given as

(
∂ h
∂∇m

T · n
)

= 0. Whether the extremum is a
minimum can only be determined by considering the second variation ofH. Eq. 5.391 holds
for the whole body B, while the Eq. 5.392 only accounts for the surface ∂B if no anisotropy
is considered. In that case the second equation might differ to zero, cf. Bertotti [1998].

5.4.3 Magnetization dynamics

Brown’s fundamental equations (Eq. 5.39) specify the conditions that must be fulfilled
when the magnetic system remains in equilibrium, but they do not give any suggestions
how a non-equilibrium system can approach this. In quantum mechanics, a single magnetic
spin momentum mq can be directly related to its corresponding angular momentum Jq

via
mq = γ0J

q, (5.40)

where the gyromagnetic ratio γ0 is the proportionality factor between both quantities. The
change of an angular momentum over time J̇q9.) can be expressed by the torque/angular
force N that is defined as a magnetic field H acting on a magnetic spin moment mq as

J̇q = µ0m
q ×H ⇔ ṁq = µ0γ0m

q ×H . (5.41)

9.)In this work, a point over a given quantity indicates the time derivative of that quantity as •̇ = ∂t•.
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Precessional dynamics: This behavior can be transferred into a continuum mechanical
context as

ṁ = µ0γ0m× Ĥeff , (5.42)

where the effective field Ĥeff is the driving force acting on the magnetization, incorporat-
ing influences as the lattice spacing (anisotropy) and magnetization distribution (magnetic
exchange). For a zero magnetic rate ṁ = 0, Eq. 5.42 exactly fulfills Brown’s equilibrium
equation Eq. 5.391. If the considered magnetic system is not initially in its equilibrium
position (i.e. ṁ 6= 0), Eq. 5.42 describes a pure precession of the magnetization vectors
around the effective field. Since Eq. 5.42 does not involve any dissipation, the considered
system will never approach an equilibrium state, cf. Bertotti [1998].

Damped dynamics: To avoid the system start to precess without ever approaching a
stable equilibrium state, dissipation should be involved. This can be done by introducing
a dissipation potential to Eq. 5.1 as

Hdis(ṁ) =

∫
B
hdis(ṁ) dv =

∫
B

η

2
ṁ · ṁ dv =

∫
B

α

2 γ0Ms

ṁ · ṁ dv, (5.43)

where η denotes the so-called Gilbert damping parameter and ṁ the time rate of the
magnetization unit director. The Gilbert parameter can be expressed in terms of the more
common α damping parameter as η = α/(γ0Ms). Now the local form of the functional
containing the dissipation potential can be stated as

h(ε,H ,m,∇m) = hela(ε,m) + hmag(H ,m) + hexc(∇m) + hani(m) + hdis(ṁ). (5.44)

Neglecting the surface term, which is zero as shown in Eq. 5.392, the functional can now
be varied analogously to Eq. 5.36, yielding

δH =

∫
B

[
∂ hdis

∂m
−Heff

]
· δm dv = 0 with Heff =

∂ h

∂m
− div

∂ h

∂∇m
. (5.45)

Likewise, the partial derivative of the dissipation potential, using the chain rule, can be
expressed as

∂ hdis

∂ ṁ

∂ ṁ

∂m
= ṁ. (5.46)

Considering the norm constraint in the variational (Eq. 5.37) leads to the representation

δH =

∫
B
m× (Heff − α

γ0Ms

ṁ) · δθ dv = 0 (5.47)

that can be expressed in its local form as

m× (Heff − α

γ0Ms

ṁ) = 0 with Ĥeff = Heff − α

γ0Ms

ṁ. (5.48)

The newly defined effective field Ĥeff can already be found in Eq. 5.42 and is identical to
the effective field Heff for a system at rest and α = 0.

Damped precessional dynamics: Inserting Eq. 5.48 into Eq. 5.42 leads to the so-called
Gilbert equation

ṁ = µ0γ0m×Heff︸ ︷︷ ︸
precession

−αm× ṁ︸ ︷︷ ︸
damping

, (5.49)

with the clearly indicated precessional and damping parts. A graphical interpretation of
those is presented in Fig. 5.5.
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Precession Damping Damped precession
Heff

m

Heff

m

Heff

m

a) b) c)

Figure 5.5: The effective fieldHeff makes the magnetization vector a) precess if no damping
is considered or b) align parallel if no precession is considered. If both modes are considered,
the switching yields a damped precession, as sketched in c).

5.5 Summary of the coupled problem: Field equations and boundary condi-
tions

The properties of ferromagnetic materials can be stimulated by external influences. In ad-
dition to the external magnetic field, mechanical strains and stresses can also have a great
influence on the magnetic response. Accordingly, it is reasonable to couple the magnetic
field equations (magnetic Gauss law and LLG equation) with the mechanical field equa-
tion (balance of linear momentum). Therefore, the complete micromagnetic-mechanically
coupled boundary value problem is presented below. The governing field equation, that
reproduces a mechanical quasi-static state, is the balance of linear momentum (Eq. 3.14)
which yields

divσ = 0 in B, with σ = C : ε and ε =
1

2

[
∇u+ (∇u)T

]
, (5.50)

where σ is the symmetric Cauchy stress tensor, C the material tensor, ε the linear strain
tensor and u denotes the displacement vector. The solution of Eq. 5.50 requires boundary
conditions on ∂B = ∂Bu ∪ ∂Bσ, with ∂Bu ∩ ∂Bσ = ∅ prescribed in terms of Dirichlet-
and Neumann-type as

u = u0 on ∂Bu and σ · n = t0 on ∂Bσ, (5.51)

where u0 denotes a prescribed displacement and t0 an acting traction force vector. The
evolving magnetic fields are governed by the magnetic Gauss law

div B = 0 in B, (5.52)

with
B = µ0 (H +M ) , H (x) := −∇ϕ, and M := Msm, (5.53)

where the magnetic induction B consists of the magnetic field H , the magnetizationM ,
and the magnetic permeability of vacuum µ0, see Eq. 2.18. The saturation magnetization
Ms is material specific and m the magnetic unit director. The boundary conditions for
the scalar potential on ∂B = ∂Bϕ ∪ ∂BB with ∂Bϕ ∩ ∂BB = ∅ can be specified as

ϕ = ϕ0 on ∂Bϕ and B · n = ζ0 on ∂BB. (5.54)
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The time and space evolution of the magnetization vectors requires the consideration of
a Landau-Lifshitz-type equation, in this case the so-called Gilbert equation

ṁ = −γ0µ0m×Heff + αm× ṁ. (5.55)

For its derivation compare to Sec. 5.4.

5.6 Finite-element-based micromagnetism

The magnetic Gauss Law (Eq. 2.18), the balance of linear momentum (Eq. 3.14) as well
as the Gilbert equation (Eq. 5.49) are later approximated using finite elements. Hence,
the weak forms and their corresponding linear increments needs to be derived, following
the procedure presented extensively in Sec. 4.1. Within this chapter, five different ways
to enforce the magnetization constraint are compared against each other. This implies,
that the corresponding parts in the coupled system of equations differ for the compared
approaches. Since the weak forms of the balance of momentum and the Gaussian law
remain the same for all five considered systems, they are introduced firstly, followed
by the weak form of the Gilbert equation corresponding to the projection method, the
penalty method, Lagrange as well as perturbed Lagrange approaches, and the spherical
coordinates.

Weak forms of the magnetic and mechanical balance laws
The derivation of the weak forms of the balance of momentum (Eq. 3.14) and the magnetic
Gauss law (Eq. 4.1) follow Galerkin’s method presented in Sec. 4.1. Multiplication with
the test functions, i.e. the virtual displacements δu and the virtual scalar potential δϕ,
the subsequent application of the divergence and Cauchy’s theorem yield the weak forms
as

Gu = −
∫
B
δε : σ dv +

∫
∂B
δu · t0 da

and Gϕ = −
∫
B
δH ·B dv +

∫
∂B
δϕ ζ0 da.

(5.56)

The virtual magnetic strains are denoted as δε = 1
2

(
∇δu+ (∇δu)T

)
and the virtual

magnetic field is denoted as δH = −∇δϕ, while the mechanical traction vector and the
magnetic flux are introduced as t0 and ζ0. The approximation of the independent variables
u and ϕ, their virtual counterparts δu and δϕ as well as their increments ∆u and ∆ϕ is
realized in terms of a finite element implementation

u ≈
nnode∑
I=1

INIdI
u, δu ≈

nnode∑
I=1

INIδdI
u, ∆u ≈

nnode∑
I=1

INI∆dI
u,

and ϕ ≈
nnode∑
I=1

INIdI
ϕ, δϕ ≈

nnode∑
I=1

INIδdI
ϕ, ∆ϕ ≈

nnode∑
I=1

INI∆dI
ϕ,

(5.57)

with INI denoting standard Lagrangian interpolation functions and the index I indicates
the current node number. The nodal degrees of freedom are represent by dI

u and dI
ϕ, while

their variational counterparts yield δdI
u and δdI

ϕ, and their incremental counterparts ∆dI
u
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and ∆dI
ϕ. As introduced in Sec. 4.1.2, • indicates matrix notation of the corresponding

quantity. This notation is not applied to scalars. While the structure of the discretized
magnetic induction B as well as the discretized magnetic field H keep their dimensions,
the discrete mechanical strains ε and stresses σ adopt the matrix notations

ε = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε12]T and σ = [σ11, σ22, σ33, σ12, σ23, σ13]T . (5.58)

Analogously to Eq. 5.57, the discrete strains ε as well as the magnetic field H , their
variations and increments are approximated as

ε ≈
nnode∑
I=1

IBI
ud

I
u, δε,≈

nnode∑
I=1

IBI
uδd

I
u, ∆ε ≈

nnode∑
I=1

IBI
u∆d

I
u

and −H ≈
nnode∑
I=1

IBI
ϕd

I
ϕ, −δH ≈

nnode∑
I=1

IBI
ϕδd

I
ϕ, −∆H ≈

nnode∑
I=1

IBI
ϕ∆dI

ϕ.

(5.59)

Thereby, the cartesian derivatives of the interpolation function INI are sorted into the
so-called IB–matrices as

IBI
u =



INI
,1 0 0

0 INI
,2 0

0 0 INI
,3

INI
,2 INI

,1 0

0 INI
,3 INI

,2

INI
,3 0 INI

,1


and IBI

ϕ =

INI
,1

INI
,2

INI
,3

 (5.60)

for the displacements and the scalar potential respectively. Inserting Eq. 5.57 and Eq. 5.59
into Eq. 5.56 yields the residual vectors and the corresponding stiffness matrices

IRI
u = −

∫
Be

(IBI
u)

T σ dv +

∫
∂Be

σ

INI t da, IKIJ
uu = −∂IRI

u

∂dJ
u

=

∫
Be

(IBI
u)

T C IBJ
u dv and

IRI
ϕ = −

∫
Be

(IBI
ϕ)T B dv +

∫
∂Be

B

INI ζ0 da, IKIJ
ϕϕ = −

∂IRI
ϕ

∂dJ
ϕ

= −
∫
Be

(IBI
ϕ)T µ IBJ

ϕ dv.

(5.61)

5.7 Enforcement of the unity constraint

In this section, the constraint of the magnetization vectors onto a unit length is ad-
dressed. Therefore, different approaches are introduced and compared. These approaches
involve different ways of constraining the length of the vectors based on renormalizations,
penalty expressions, variational methods, and rotational exact methods. After detailed
analyses, these different methods are evaluated and their advantages and disadvantages
are discussed.

5.7.1 Projection method

The probably most easiest way to consider the unit length constraint ‖m‖ = 1 of the
magnetization vectors is to apply a renormalization or projection scheme. Such schemes
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Predictor step Projection step

mn

mn+1
v mn+1

v ∆mn+1
v

mn+1

a) b)

Figure 5.6: a) a unit magnetization vector mn from the latest time step n evolving in
time and space to mn+1

v at time n+1. This configuration violates the unit constraint. The
violation ∆mn+1

v is corrected via a projection step, depicted in b) back onto the unit sphere
as mn+1, cf. Cimrák [2007]. Taken from Reichel et al. [2022].

in general apply two steps, which are sketched in Fig. 5.6. Within a first step, the so-called
predictor step, the LLG equation is solved without fulfilling the unit constraint (Fig. 5.6a)
for simplicity utilizing a 2D circle). Thus, the length of the magnetization vectors can de-
viate from Euclid’s norm. Subsequently, after the considered time step has converged, the
nodal magnetization degrees of freedom are renormalized and projected back onto the unit
sphere. This projection is depicted in Fig. 5.6b). The procedure is applied at each node I as
dI
m = dI

m/‖dI
m‖. The algorithmic projection procedure is highlighted in Table 5.1. Such a

pure projection method was applied among others by Kružík and Prohl [2006]. How-
ever, it has been critically evaluated by Cimrák [2007] and Lewis and Nigam [2003],
among others. The projection of the magnetization back onto the unit sphere indicates a
non-linear modification of the solution, what can lead to seriously erroneous results. To
obtain better results within this scheme small time increments should be applied for the
costs of a massive increase in computational time. Hence, the weak form yields

Gm = −
∫
B

{[
Ms

γ0

(α ṁ+m× ṁ) + (I −m⊗m) · ∂mH
]
· δm

+Π : ∇δm} dv = 0,

(5.62)

with the virtual magnetization δm and its virtual gradient ∇δm. The discrete magneti-
zationm as well as the corresponding variation and increment are interpolated node-wise
using the interpolation functions INI, and the nodal degrees of freedom dI

m as

m ≈
nnode∑
I=1

INIdI
m, δm ≈

nnode∑
I=1

INIδdI
m, and ∆m ≈

nnode∑
I=1

INI∆dI
m. (5.63)

The gradient related quantities of the magnetization are analogously to Eq. 5.59 approx-
imated as

∇m ≈
nnode∑
I=1

IBI
md

I
m, δ∇m ≈

nnode∑
I=1

IBI
mδd

I
m, and ∆∇m ≈

nnode∑
I=1

IBI
m∆dI

m, (5.64)
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utilizing the structured matrix IBI
m containing the derivatives of the interpolation functions

(
IBI
m

)T
=

INI
,1 INI

,2 INI
,3 0 0 0 0 0 0

0 0 0 INI
,1 INI

,2 INI
,3 0 0 0

0 0 0 0 0 0 INI
,1 INI

,2 INI
,3

 . (5.65)

Thus, the gradient of the magnetization in matrix notation results in

Π = 2Aexc [m1,1,m1,2,m1,3,m2,1,m2,2,m2,3,m3,1,m3,2,m3,3]T . (5.66)

The residuals IRI
ϕ and IRI

u of the displacements and the scalar potential as well as their
corresponding system matrices IKIJ

ϕϕ and IKIJ
uu can be taken from Eq. 5.56. The discrete

residual corresponding to Eq. 5.62 appears as

IRI
m = −

∫
Be

{
INI

[
Ms

γ0

(α ṁ+m× ṁ) + IP · ∂mH
]

+ (IBI
m)T Π

}
dv = 0, (5.67)

with IP = (I −m⊗m). The approximation of the rate of the magnetization vectors ṁ
is realized by applying a backward Euler time integration scheme as ṁ = (m−mn)/∆t,
where m denotes the actual magnetization configuration at time n + 1, mn the former
configuration at time n, and ∆t the time step between both configurations. The iteration
matrix IKIJ

eff resulting of the residuals given in Eq. 5.61 and Eq. 5.67 consists of the system
matrices and a damping matrix IDIJ as

IKIJ
eff = IKIJ +

1

∆t
IDIJ, (5.68)

with the individual parts

IKIJ
mm = −∂IRI

m

∂dJ
m

=

∫
Be

{
INI

[
Ms

γ0

Ω[ṁ] +

∂mIP ∂mH + IP ∂mmH] INJ + (IBI
m)T

∂Π

∂∇m
IBJ
m

}
dv,

IKIJ
mϕ = −∂IRI

m

∂dJ
ϕ

=

∫
Be

INI(µ0MsI IP) IBJ
ϕ dv,

IKIJ
mu = −∂IRI

m

∂dJ
u

= −
∫
Be

INIIP
∂ ε0

∂m
C IBJ

u dv,

IKIJ
ϕm = −

∂IRI
ϕ

∂dJ
m

=

∫
Be

(IBI
ϕ)T (µ0MsI) INJ dv,

IKIJ
um = −∂IRI

u

∂dJ
m

= −
∫
Be

(IBI
u)
T C

∂ ε0

∂m
INJ
m, dv,

(5.69)
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and the damping part

IDIJ
mm = −∂IRI

m

∂ḋ
J

m

=

∫
Be

INI
(
α I + Ω[m]

)
INJ dv. (5.70)

The definition of the skew-symmetric matrix Ω, for an exemplarily chosen magnetization
vector m, yields the form

Ω[m] = −ΩT
[m] =

 0 −m3 m2

m3 0 −m1

−m2 m1 0

 (5.71)

and allows the substitution of the cross product as

m×m = Ω[m]m. (5.72)

The nodal residuals, the system matrices, and the damping matrices can be sorted into
the system of equations asIRI

ϕ

IRI
m

IRI
u

 =

IKIJ
ϕϕ IKIJ

ϕm 0

IKIJ
mϕ IKIJ

mm + 1
∆t

IDIJ
mm IKIJ

mu

0 IKIJ
um IKIJ

uu


∆dI

ϕ

∆dI
m

∆dI
u

 . (5.73)

To obtain the element residual IRe and system matrix IKe
eff the procedure introduced in

Sec. 4.1.2 can be applied to Eq. 5.73. With this the element vector and the system matrix
can be assembled into a global residual IR and system matrix IKeff , using Sec. 4.1.2.

Table 5.1: Projection of magnetization degrees of freedom after each time step.

1) Given D =
[
DT

ϕ , D
T
m, D

T
u

]T the global DOFs at time tn

2) Compute global residuum IR and tangent IKeff

IR =
numele

A
e = 1

IRe and IKeff =
numele

A
e = 1

IKe
eff

3) Solve IKeff ∆D = IR and Update D ⇐D + ∆D

4) If ‖IR‖ ≤ 10−10 Go To 5 Else Go To 2

5) Project DOFs nodewise onto unit sphere dI
m ⇐ dI

m/‖dI
m‖

and Go To 1

5.7.2 Penalty approach

Besides the projection method introduced in Sec. 5.7.1, the penalty method is a very
straight forward way to limit the length of the magnetization vectors to the unit length



Micromagnetic theory 79

‖m‖ = 1. Penalization strategies have been analyzed within the framework of the micro-
magnetic theory, e.g. by Landis [2008], Prohl [2001], Wang and Zhang [2013], and
Zhang et al. [2016]. To satisfy the unit constraint, the weak form given in Eq. 5.62 is
extended by a penalization term that penalizes any deviation from the prescribed length
as

Gpen
m = Gm +Gpen = Gm − 2κ (‖m‖ − 1)

m

‖m‖
· δm = 0, (5.74)

where the intensity of the penalty can be controlled by the penalty parameter κ. The
residual and the system matrix change by adding the penalty as

IRI pen
m = IRI

m −
∫
Be

INI 2κ (‖m‖ − 1)
m

‖m‖
dv = 0 (5.75)

and

IKIJ pen
mm = −∂IRI pen

m

∂dJ
m

= IKIJ
mm +

∫
Be

INI 2κ

(
Ω[m] Ω[m]

(mm)3/2
+ I

)
INJ dv. (5.76)

The resulting system of equations does not differ in terms of dimensions from the system
of equations of the projection method shown in Eq. 5.73. Its structure remains similar as
well.

5.7.3 Lagrange and perturbed Lagrange approach

Another method to enforce the unit constraint of the magnetization vectors as ‖m‖ = 1
uses a Lagrange multiplier λ, that adds a new degree of freedom to the system of equations.
In contrast to the penalty method, the Lagrange multiplier fulfills the unit constraint
exact in a variational sense. Nevertheless, the additional degree of freedom in the system
of equations leads to additional computational costs. A Lagrange multiplier is introduced
in terms of an additional energy contribution as

ΠL =

∫
B
λ
[
‖m‖2 − 1

]
dv, (5.77)

which is a classical Lagrange multiplier approach, such as used in
Szambolics et al. [2008]. However, this formulation leads to singular system
matrices, since it contains zero entries on their main diagonal. Hence, this often
requires special and challenging treatments. In order to counteract this problem, a
so-called perturbed Lagrange multiplier can be used instead, cf. Simo et al. [1985] and
Carey and Oden [1982]. This method adds a quadratic part in λ to Eq. 5.77, so that
differentiating twice leads to non-zero entries on the main diagonal in the system matrix.
In the context of micromagnetism, such a perturbed Lagrange multiplier is applied by
Ohmer [2022] and by Ohmer et al. [2022] in the form of

Πp =

∫
B

(
λ
[
‖m‖2 − 1

]
− λ2

2kL

)
dv, (5.78)

where kL is a dimensionless scaling parameter, that is assumed to be in the range of
∼ 105. In the following, only the perturbed Lagrange multiplier method (Eq. 5.78) is con-
sidered for derivation, since it contains the derivations of the classical Lagrange multiplier
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(Eq. 5.77). To obtain an expression that can be solved by finite elements, Eq. 5.78 must
be varied according to the primary variables λ and m as

δΠp =
∂ Πp

∂ λ
δλ︸ ︷︷ ︸

δΠp
λ

+
∂ Πp

∂m
· δm︸ ︷︷ ︸

δΠp
m

, (5.79)

with

δΠp
λ =

∫
B

[
(‖m‖2 − 1)− λ

kL

]
δλ dv and δΠp

m =

∫
B

2λm · δm dv. (5.80)

The discrete Lagrange multiplier is obtained by multiplying the corresponding interpola-
tion functions INI and the nodal degrees of freedom dI

λ as

λ ≈
nnode∑
I=1

INIdI
λ, δλ ≈

nnode∑
I=1

INIδdI
λ, and ∆λ ≈

nnode∑
I=1

INI∆dI
λ. (5.81)

The residuals IRI
ϕ, IRI

u, and IRI
m as well as their corresponding system matrices can be

taken from Eq. 5.56 and Eq. 5.69. Of course, the here considered weak form does not
include the penalty contribution as used within section 5.7.2. The residuals IRI p

λ and IRI p
m

are obtained from Eq. 5.80, where the superscript p indicates that these terms can be
traced back to the perturbed Lagrange multiplier. Hence, the IR- and IK- matrices yield

IRI p
λ =

∫
Be

INI

[
(‖m‖2 − 1)− λ

kL

]
dv, IRI p

m =

∫
Be

INI 2mλ dv,

IKIJ p
mm = −∂ IRI p

m

∂ dJ
m

= −
∫
Be

INI 2λ INJdv, IKIJ p
mλ = −∂ IRI p

m

∂ dJ
λ

= −
∫
Be

INI 2m INJdv,

IKIJ p
λm = −∂ IRI p

λ

∂ dJ
m

= −
∫
Be

INI 2m INJdv, IKIJ p
λλ = −∂ IRI p

λ

∂ dJ
λ

= −
∫
Be

INI k−1
L INJdv.

(5.82)

The resulting system of equations appears as


IRI
ϕ

IRI
m + IRI p

m

IRI p
λ

IRI
u

 =


IKIJ
ϕϕ IKIJ

ϕm 0 0

IKIJ
mϕ IKIJ

mm + IKIJ p
mm + 1

∆t
IDIJ
mm IKIJ p

mλ IKIJ
mu

0 IKIJ p
λm IKIJ p

λλ 0

0 IKIJ
um 0 IKIJ

uu




∆dJ
ϕ

∆dJ
m

∆dJ
λ

∆dJ
u

 . (5.83)

To adapt Eq. 5.82 to a classical Lagrange multiplier, − λ
kL

= 0 needs to be defined. As
a consequence a zero on the main diagonal results at position IKIJ p

λλ = 0, see Eq. 5.83.
This may lead to instabilities during numerical solution procedures. By following the same
procedure as already described in Sec. 4.1.2, the element residual IRe and the corresponding
element system matrix IKe can be formulated.
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5.7.4 Condensed perturbed Lagrange approach

The system matrices derived above use the so-called perturbed Lagrange approach. This
method restricts the length of the magnetization vectors in a variational sense to the unit
length, to the drawback of additional degrees of freedom in the system of equations. Com-
pared to the penalty method, better results are obtained at longer calculation time. This
problem can be reduced by a static condensation of the Lagrange multiplier on element
level. Compared to the non-condensed Lagrange multiplier, this leads to shorter compu-
tation times with equivalent results. Using the definitions and requirements of function
spaces introduced in Sec. 4.1.1, statements on the function spaces of the primary vari-
ables are made in order to analyze and discuss the boundary value problem introduced in
Sec. 5.5. To keep the notation short, the abbreviation Ξ := {ϕ,m,u} is considered within
the context of the following section. The approximation of the displacements, the scalar
potential, the magnetization vector, and the Lagrange multiplier in the function spaces(

υh,µh
)
i

=
{
{u,m} ∈ H1 (B)3 : {u,m}|Be ∈ Pi (Be)

3 ∀ Be
}
,

Φh
i =

{
ϕ ∈ H1 (B) : ϕ|Be ∈ Pi (Be) ∀ Be

}
,

Λh
j =

{
λ ∈ L2 (B) : λ|Be ∈ P d

j (Be) ∀ Be
}
,

(5.84)

utilizes continuous and discontinuous Lagrangian type finite element interpolation func-
tions Pi(Be)3 and P d

j (Be)3, where i and j denote the considered interpolation orders.
The following considerations are based on the element system of equations that can be
formulated from Eq. 5.83 as


IKe,it
ϕϕ IKe,it

ϕm 0 0

IKe,it
mϕ IKe,it

mm IKe,it
mλ IKit

mu

0 IKe,it
λm IKe,it

λλ 0

0 IKe,it
um 0 IKe,it

uu


︸ ︷︷ ︸

IKe,it


∆de,it

ϕ

∆de,it
m

∆de,it
λ

∆de,it
u


︸ ︷︷ ︸

de,it

=


IRe,it
ϕ

IRe,it
m

IRe,it
λ

IRe,it
u


︸ ︷︷ ︸

IRe,it

, (5.85)

where the index "it" indicates the current iteration. To reduce the size of the system
of equations and thus the computational effort, it is convenient to form the Schur com-
plement and to perform further finite element simulations in the reduced form. In solid
mechanics it is a convenient and well known procedure, that has been utilized several
times, cf. Korelc and Wriggers [2016] and Wriggers [2008]. The local elimination
of the Lagrange multiplier is possible because λ ∈ L2 (B)3 holds and a discontinuous
approximation of it is feasible. Applying the Schur complement to Eq. 5.85 yields the
reduced system of equations

IKe,it
ϕϕ IKe,it

ϕm 0

IKe,it
mϕ IKe,it

cond IKe,it
mu

0 IKe,it
um IKe,it

uu


︸ ︷︷ ︸

IKe,it
red

∆de,it
ϕ

∆de,it
m

∆de,it
u


︸ ︷︷ ︸

de,it
red

=

 IRe,it
ϕ

IRe,it
cond

IRe,it
u


︸ ︷︷ ︸

IRe,it
red

, (5.86)
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with

IRe,it
cond = IRe,it

m − IKe,it
mλ IKe,it−1

λλ IRe,it
λ︸ ︷︷ ︸

ILe,it
λ

and IKe,it
cond = IKe,it

mm − IKe,it
mλ IKe,it−1

λλ IKe,it
λm︸ ︷︷ ︸

ILe,it
λm

.
(5.87)

An update of the condensed degrees of freedom for each iteration "it" can be achieved
via the relation

de,it+1
λ = de,it

λ + ILe,it
λ − ILe,it

λm∆de,it
m . (5.88)

Finally, the element matrices are available and the reduced global system of equations
yields

IKred ∆Dred = IRred, with IKred =
numele

A
e = 1

IKe,it
red and IRred = −

numele

A
e = 1

IRe,it
red

(5.89)

as the assembled system matrix and vector. The algorithmic steps are summarized in
Table 5.2.

Table 5.2: Static condensation of Lagrangian multipliers on element level.

1) de,it =
[
de,it,T
ϕ ,de,it,T

u ,de,it,T
m ,de,it,T

λ

]T

the element unknown vector at iteration "it"

And IRe,it
m , IRe,it

λ , IKe,it
mm, IKe,it

mλ, IKe,it
λm, IKe,it

λλ the decomposed system matrices

2) Computation of Matrices

ILe,it
λ := IKe,it−1

λλ IRe,it
λ , ILe,it

λm := IKe,it−1
λλ IKe,it

λm

3) Compute Condensed Right-Hand and Left-Hand Side

IRe,it
cond = IRe,it

m − IKe,it
mλ ILe,it

λ and IKe,it
cond = IKe,it

mm − IKe,it
mλ ILe,it

λm

4) Solve IKe,it
red ∆de,it

red = IRe,it
red

5) Update de,it+1
λ ⇐ de,it

λ + ILe,it
λ − ILe,it

λm∆de,it
m

5.7.5 Spherical coordinates

A method that restricts the magnetization vectors a priori on unit length, is pro-
vided by spherical coordinates, which have been widely used by e.g. Süss et al. [2000],
Fidler and Schrefl [2000], Yi and Xu [2014], and Dornisch et al. [2018]. Not
the magnetization vectors, but the polar and azimuth angles, exemplarily depicted
in Fig. 5.7, are considered as primary variables, which can be collected within
the array θ = [θ1, θ2]T. These can be used to describe the magnetization vector as
m = [sin θ1 cos θ2, sin θ1 sin θ2, cos θ1]T. Following the works of Yi and Xu [2014] and
Dornisch et al. [2018], the LLG equation can be expressed directly in terms of the
two angles
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m2

m1

m3

θ1

θ2

m

Figure 5.7: Representation of spherical coordinates defined by the polar angle θ1 ∈ [0, π]
(green) and the azimuth angle θ2 ∈ (−π, π] (blue).

div Π− ∂θH +Ms ζ
ext − Ms

γ0

L · θ̇ = 0, with L =

[
α − sin θ1

sin θ1 α sin2 θ1

]
, (5.90)

where Π =
∂ H
∂∇θ

is the derivative of the energy functional, the external forces ζext, and the

time derivative of the angles θ̇. For a detailed derivation of Eq. 5.90 the readers are referred
to Yi and Xu [2014]. The corresponding weak form can be gained by multiplication of
Eq. 5.90 with the virtual angles δθ = [δθ1, δθ2]T. Further reformulation delivers the final
weak form of the LLG equation in spherical coordinates as

Gθ = −
∫
B

{(
Ms

γ0

L · θ̇ +
∂H
∂θ

)
· δθ + Π : ∇δθ

}
dv +

∫
∂B

(
Π · n

)
· δθ da = 0. (5.91)

Since external magnetic loads can be considered by applying appropriate boundary condi-
tions of ϕ, ζext is neglected in Eq. 5.91. In contrast to the previous three sections, not the
magnetization vectors are discretized, but their angles and their virtual and incremen-
tal counterparts of the spherical coordinates. However, when approximating the angles
with finite elements, it is important to ensure that the definition ranges of the angles
θ1 ∈ [0, π] and θ2 ∈ (−π, π] are preserved. Yi and Xu [2014] applied a standard arith-
metic interpolation of the angles, what may lead to non-physical switching behavior when
exceeding the limit of the definition domain, compare Fig. 5.8b)–e) for a 1D interpolation
of this behavior denoted as "curly" switching. To prevent this, Dornisch et al. [2018]
used a so-called circular interpolation including an arctan210.) function. The correspond-
ing, physically sound switching of a 1D element is given in Fig. 5.8f)–i). The difference
within the switching behavior is clearly visible. Responsible for the curly behavior are
element interpolations between values of different definition domains. This point is shown
graphically in Fig. 5.9. There, the evolution of the azimuth angle at node 1 is shown.
It can be seen that the arithmetic interpolation (red dots) can take unlimited values,
while the circular interpolation (blue dots) alternates between (−π, π]. The virtual angles

10.)The arctan2 function is an extension of the arctan function, that appears the first time in the
programming language Fortran. The function is intended to provide unambiguous values for the angle
θ=arctan2(y,x), defined between the positive x-axis and the vector that is defined between the coordinate
origin and a point p(x,y). It is defined on −π < θ ≤ π.
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and their gradients are interpolated in the same way for both (arithmetic and circular)
interpolations, using the virtual discrete degrees of freedom δdI

θ as

δθ ≈
nnode∑
I=1

INIδdI
θ, ∇δθ ≈

nnode∑
I=1

IBI
θδd

I
θ, and IBI

δθ =
[
INI
,1 1θ, IN

I
,2 1θ, IN

I
,3 1θ

]T
, (5.92)

with 1θ denoting a 2 × 2 unit matrix. The virtual gradient yields in matrix represen-
tation ∇δθ = [θ1,1, θ2,1, θ1,2, θ2,2, θ1,3, θ2,3]T. The surface term is taken into account with
homogeneous Neumann boundary conditions Π ·n = 0 so that the residual form yields

IRI
θ = −

∫
Be

{
INI

(
Ms

γ0

L · θ̇ +
∂H
∂θ

)
+ (IBI

δθ)
T Π

}
dv. (5.93)

The rates of the angles are approximated by an implicit backward Euler

θ̇ ≈
nnode∑
I=1

INI(dI
θ − dI

θn)/∆t, (5.94)

where dI
θ denotes the angle degrees of freedom at the current time step n+1 and dI

θn

represents the angle degrees of freedom of the previous time step n. The time increment
is represented by ∆t. The difference between the arithmetic and the circular interpolation
is highlighted in the following two subsections, where both methods are shortly derived
and their advantages and disadvantages are discussed.

5.7.6 Arithmetic interpolation

The great benefit of the arithmetic interpolation presented by Yi and Xu [2014], is the
straight forward implementation into finite element environments. Since the virtual quan-
tities are already introduced within the section above, the remaining angles can be inter-
polated using the nodal degrees of freedom dI

θ as

θ ≈
nnode∑
I=1

INIdI
θ, and ∇θ ≈

nnode∑
I=1

IBI
θd

I
θ, with IBI

θ = IBI
δθ. (5.95)

To gain a closed form system of equations, the residuals in Eq. 5.61 and Eq. 5.93 needs
to be linearized. Together with the system matrices in Eq. 5.61, that have already been
derived, the entire system results in

IKIJ
θθ = −∂ IRI

θ

∂ dJ
θ

=

∫
Be

{
INI

[
Ms

γ0

∂(L θ̇)

∂dJ
θ

+
∂H

∂θ∂dJ
θ

]
+ (IBI

δθ)
T ∂Π

∂θ∂dJ
θ

}
dv,

IKIJ
θϕ = −∂ IRI

θ

∂ dJ
ϕ

=

∫
Be

INI (µ0MsA) IBJ
ϕ dv,

IKIJ
θu = −∂ IRI

θ

∂ dJ
u

= −
∫
Be

INI

(
∂ε0

∂θ

)T

C IBJ
u dv,

IKIJ
ϕθ = −

∂ IRI
ϕ

∂ dJ
θ

=

∫
Be

(IBI
ϕ)T

(
µ0MsA

T
)

INJ dv,

IKIJ
uθ = −∂ IRI

u

∂ dJ
θ

= −
∫
Be

(IBI
u)

TC
(
∂ε0

∂θ

)
INJ dv,

(5.96)
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Figure 5.8: The non-physical evolution of the magnetization vector using the arithmetic
interpolation within the azimuthal plane as well as the physically correct interpolation using
the arctan2 for the case of a one dimensional line element. a) the sign rotation convention
of the nodal values exemplarily for the nodal DOF d1

θ2
, b)–d) the interpolation between the

below given nodal values, that lead to the presented unphysical movements without fur-
ther restrictions as proposed by Yi and Xu [2014], while f)–i) presents the physically cor-
rect switching behavior utilizing the arctan2 function proposed by Dornisch et al. [2018].
Taken from Reichel et al. [2022].

with A = ∂θm and the damping matrix

IDIJ
θθ = −∂IRI

m

∂ḋ
J

m

=

∫
Be

INIL INJ dv. (5.97)

The structure of the system of equations can be given as

IRI
ϕ

IRI
θ

IRI
u

 =

IKIJ
ϕϕ IKIJ

ϕθ 0

IKIJ
θϕ IKIJ

θθ + 1
∆t

IDIJ
θθ IKIJ

θu

0 IKIJ
uθ IKIJ

uu


∆dI

ϕ

∆dI
θ

∆dI
u

 . (5.98)
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θ2=NI.dθ2
I (arithmetic)

θ2=arctan2 (circular)
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Figure 5.9: Evolution of the polar angle θ2 arithmetically interpolated and with restrictions
using the arctan2 function.

5.7.7 Circular interpolation

Compared to the arithmetic interpolation, the circular interpolation presented by
Dornisch et al. [2018], is not that trivial to incorporate into a finite element environ-
ment, but guarantees for the azimuthal angle the restriction onto its definition domain.
The interpolation of the angles follows the scheme

θ1 ≈
nnode∑
I=1

INIdI
θ1

and θ2 ≈ arctan2(cθ2 , sθ2), with θ = [θ1, θ2]T , (5.99)

where the arguments of θ2 are the nodal degrees of freedom dI
θ2

interpolated as

sθ2 ≈
nnode∑
I=1

INI sin(dI
θ2

) and cθ2 ≈
nnode∑
I=1

INI cos(dI
θ2

). (5.100)

This leads to different representations of the gradients and time derivatives of the az-
imuthal angle θ2, while the corresponding quantities of the polar angle θ1 are unaltered
compared to the arithmetic interpolation of Sec. 5.7.6. In the following the whole set of
discrete values, including the polar and azimuth angels, is given for completeness. The
gradients of the angles yield

∇θ1 ≈
nnode∑
I=1

IBI
θ1
dI
θ1

and ∇θ2 ≈
1

c2
θ2

+ s2
θ2

(
cθ2 ∇sθ2 − sθ2 ∇cθ2

)
, (5.101)

where the gradients of the sine and cosine are interpolated as

∇sθ2 ≈
nnode∑
I=1

IBI
θ2

sin(dI
θ2

) and ∇cθ2 ≈
nnode∑
I=1

IBI
θ2

cos(dI
θ2

), (5.102)

with the derivative matrices IBI
θ1

= IBI
θ2

= [INI
,1, IN

I
,2, IN

I
,3]T. The time discrete values of the

circular interpolation also increase the complexity of the whole formulation as

θ̇1 ≈
nnode∑
I=1

INIḋI
θ1

and θ̇2 ≈
cθ2 ċθ2 − sθ2 ṡθ2
c2
θ2

+ s2
θ2

, (5.103)



Micromagnetic theory 87

with the time discrete approximations of the sine and cosine as

ṡθ2 ≈ −
nnode∑
I=1

INI sin(dI
θ2

)ḋI
θ2

and ċθ2 ≈
nnode∑
I=1

INI cos(dI
θ2

)ḋI
θ2
. (5.104)

The structure of the coupled system is similar to the system of equations presented in
Eq. 5.98.

5.8 Numerical examples

To demonstrate the advantages and disadvantages of the methods presented above, dif-
ferent numerical examples are carried out within this section. All discretization methods
should give exactly the same results for each boundary value problem with the particular
set of material parameters. For the first examples the magnetostrictive material Galfenol
Fe81.3Ga18.7 is used. The material properties have been taken from Yi and Xu [2014] and
are listed in Table 5.3. A damping coefficient α = 1 is assumed if not mentioned differently.
In all simulations presented below, the build-in automatic time stepping procedure of Ace-
FEM was applied. For physically correct results the employed mesh density is of crucial
importance. To guarantee a sufficiently good resolution, the size of each finite element
should not fall below the characteristic length lc = min(lexc, δ0) = min

(√
2Aexc

µ0M2
s
,
√

Aexc

K1

)
,

where lexc is the exchange length and δ0 the Bloch parameter, cf. Forster et al. [2002].

Table 5.3: Material parameters of Fe81.3Ga18.7. Taken from Yi and Xu [2014] and
Reichel et al. [2022].

Parameter Value Parameter Value

anisotropy const. K1
J

m3 2× 104 anisotropy const. K2
J

m3 −4.5× 104

exchange const. Aexc
J
m

≈ 10−11 sat. magnetization Ms
A
m

1.432× 106

vac. permeability µ0
H
m

4π × 10−7 gyromagnetic ratio γ0
1

Ts
1.76× 1011

elastic const. C11
N

m2 1.96× 1011 elastic const. C12
N

m2 1.56× 1011

elastic const. C44
N

m2 1.23× 1011 mag. strictive const. λ100 2.64× 10−4

5.8.1 Rotation across the poles

In this first example, the critical points, also called singularities, within the above intro-
duced formulations are examined. For this purpose a single finite element cell with initial
magnetizationm = [1, 0, 0]T is considered (Fig. 5.10b)). The damping coefficient is set to
be α = 0 and an external magnetic field of H2 = 126157 A/m is applied. Since there is no
damping, the magnetization vectors will precess around the x2-axis without ever moving
in the direction of the effective field Heff . The spherical coordinates possess singularities
in the poles, i.e. at θ1 = 0 and θ1 = π, what corresponds to a position of the magnetization
vectors of m = [0, 0, 1]T and m = [0, 0,−1]T.

As soon as the magnetization vectors approach one of these poles, the simulation no
longer delivers correct results (Fig.5.10a)) or it leads to direct divergence of the entire



88 Micromagnetic theory

a)

b)

c)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

m1 Pert. Lag. m3 Pert. Lag. m1 Sph. Co. m3 Sph. Co.

In
it
ia
ls

ta
te
:

Si
ng

ul
ar

po
in
t:

t∗

x1

x2

x3

x1

x2

x3

Figure 5.10: a) the evolution of the magnetization vectors for the perturbed Lagrange
multiplier and the spherical coordinates. Starting from the initial configuration in b) the
spherical-coordinate-based simulation fails when approaching the singularity in the south
pol in c). Taken from Reichel et al. [2022].

simulation. Both, the penalty method and the Lagrange multipliers, do not suffer from
any of such singularities. The evolution of their magnetization vectors match perfectly.
For presentation purpose, only the evolution of the m1 and m3 components of the
magnetization vectors, described by the perturbed Lagrange method (green and blue
line) and the spherical coordinates (red circles and orange triangles), are plotted in
Fig. 5.10. The component m2 = 0 is neglected within this plot. The externally applied
magnetic field drives the magnetization vectors, starting from the initial configuration
m1 = 1, first into the direction of the south pole. That corresponds to the state m3 = -1
depicted in Fig. 5.10c). While the perturbed Lagrange-based simulation delivers correct
results, the results based on the spherical coordinates are wrong when the singularity is
reached. From this point in time, the data of the simulation no longer correspond to a
result that can be physically interpreted. The results shown in Fig. 5.10 highlight that
the use of spherical-coordinate-based micromagnetic simulations has to be considered at
least critically.

5.8.2 Domain formation in a thin film structure

Within this example, a magnetic nanostructure of dimensions 30×60×3 nm3 is discretized
with 10×20×1 hexahedron elements. This results in 2772, 3234, and 3896 degrees of free-
dom for the spherical coordinates, the penalty method as well as the perturbed Lagrange
method. The system is initialized with an energetically high, random distribution of the
magnetization vectors, as shown in Fig. 5.11a) and c). Without the influence of any exter-
nal source, the system is supposed to find its minimal and therefore energetically stable
configuration.

This means that the considered boundary value problem is free of any external mag-
netic fields and mechanical loads, which corresponds to Neumann boundary conditions
of ζ0 = B · n = 0 and t0 = σ · n = 0. The scalar magnetic potential is prescribed
as ϕ(x) = 0 at x = (0, 0, 0)T. No stray field influences are considered. Starting from
the random distribution, small domains begin to form. With proceeding time these areas
begin to merge and eventually form the vortex structures, shown in Fig. 5.11b) and d).
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a) b)

c) d)

m
1

Figure 5.11: Initial random magnetization distribution in a thin film of Galfenol in a) and
c) and the simulated self-equilibrium configuration in b) and d) known as diamond state. The
simulations have been done using circularly interpolated angles in the spherical coordinate
approach. Taken from Reichel et al. [2022].

As soon as the equilibrium is reached the simulation is terminated. After the nanostruc-
ture has reached the energetically most reasonable state, all magnetization vectors are
aligned within the x − z plane, except in the center of the vortex cores. The magneti-
zation vectors point orthogonal out of the x − z plane. The results of the simulations
are not merely in very good agreement with each other, but match the simulated results
of Yi and Xu [2014], Dornisch et al. [2018], and the experimental observations of
Wachowiak et al. [2002]. To verify the agreement of the results of the outlined meth-
ods, intersection lines through the vortex cores are shown in Fig. 5.12a). The respective
evolution of the considered components m1 and m2 is compared in Fig. 5.12b) and c), for
all methods and experimental results, over the length of the drawn intersection lines with
each other. The results are in very good agreement with each other as well as with the
experimental results.
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Figure 5.12: a) an energetically stable state of the Galfenol nano structure including inter-
section lines across the vortex cores. b) and c) the evolution of the m1 and the m2 component
along the intersection lines. The abbreviation "Sph. Co." indicate both, arithmetical and
circular interpolations. The simulated results are in good agreement with the experimental
results taken from Wachowiak et al. [2002]. Taken from Reichel et al. [2022].

5.8.3 Fitting of penalty parameters

While no preparations have to be made for the simulations with the spherical coordinates
and the Lagrangian methods, the penalty method requires a new fitting of the penalty
parameter within each new boundary value problem. Penalties that are set too weak
usually lead to a poorly fulfilled length condition, while a parameter that is defined too
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Figure 5.13: The normalized mean magnetization < ‖m‖ > a) in dependency of the
intensity of the penalty parameter κ. The blue line indicates a change in the resulting
domain patterns for weak and strong penalty parameters, denoted as transition intensity. b)
the final state of a simulation with κ = 1500 is and c) a stricter penalization with κ = 2000.
Taken from Reichel et al. [2022].

large can drive up the condition of the equation system. The consequences are either
wrong results or unsolvable systems of equations. To highlight the influence of the penalty
parameter on the results, the boundary value problem presented above is calculated for
different penalty values κ. The dependency of the results is displayed in Fig. 5.13 by the
penalty intensity versus the normalized mean magnetization < ‖m‖ >. The convergence
study also shows clearly that the final state splits from one vortex into two vortices for
penalty parameters κ > 1750, in the context of this work denoted as transition intensity.
Hence, the results presented in Fig. 5.13 stress the requirement of additional effort in
advance of the simulations, to deliver correct results.

5.8.4 Different stable states

In this example, the boundary value problem from section 5.8.2 was initiated for the
penalty method, the perturbed Lagrange multiplier, and the circular interpolated spherical
coordinates with different uniformly distributed random initial magnetization states. From
the different distribution states, the nanostructure is relaxed to its energetically stable
equilibrium state. Thus, a total of three different equilibrium states can be found, each
with a different number of domain formations. The possible domain formations have either
one, two or three vortices, whose direction of orientation can also vary. The three states
are shown in Fig. 5.14.

Each of the above discretization variants are initialized with a total of 100 different uni-
formly distributed initial states, subsequently then relaxed, and examined for the resulting
occurrence of the domain formations shown in Fig. 5.14. The results are summarized in
Table 5.4 below. As the evolution of the magnetic energy in Fig. 5.14d) shows, the single
vortex state possesses the lowest energy level and is thus the most stable configuration.
Both, the double and triple vortex states, are higher in terms of their energy contribution
within the system. However, while the single and double vortex states are energetically
very close to each other, the energy level for the triple vortex state is significantly higher.
For this reason, it can be assumed that the last pattern may be a local energy minimum,
that would rarely be obtained in nature. This can also be supported by the frequency of
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Figure 5.14: Three different self equilibrium states with a) one vortex core, b) two vortex
cores, and c) three vortex cores, obtained by the circular interpolated spherical coordinates.
d) the evolution of the magnetic energy of the systems over the normalized time. Taken from
Reichel et al. [2022].

occurrence of the triple vortex configuration, see Table 5.4. The appearance of the triple
vortex state is the least likely of all three states.

Table 5.4: Comparison of the absolute occurrence of the three different domain formations
in a sample of 100 simulations per material model. Taken from Reichel et al. [2022].

Number of Vortices Penalty Pert. Lag. Circ. Sph.Co.

1 28 37 44
2 64 54 48
3 8 9 8

5.8.5 Simulation of Permalloy nanodots

Magnetic nanoparticles have been a wide field of research within the last decades and
offer many opportunities to study their phenomena with magnetostatic and micromag-
netic simulations, cf. Cowburn et al. [1999]. The effects resulting from the shape
anisortopy should be placed in the same order of magnitude as the magnetocrystalline
and the magneto-elastic anisotropy, cf. Mahato et al. [2015]. In the present work,
round nanoparticles are considered, as they have already been studied in other works,
cf. Kuchibhotla et al. [2021], Scholz et al. [2003], and Sudsom et al. [2020].
The goal of this example is less the generation of new physical knowledge, but the com-
parison of the simulation results of the different methods and the elaboration of their
corresponding advantages and disadvantages. For this purpose, a disk made of Permalloy
with a radius of r = 120 nm and a height of h = 20 nm is considered (Fig. 5.15). To
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Figure 5.15: The nano disk in a) is placed within a free space matrix, to capture external
influences like stray fields. The sketched free space is shrunk only for presentation purpose,
but the dimensions used within the simulation correspond to the stated values. The hysteresis
loops in b) are gained by treating the disk with a magnetic field µ0H1 following the load
path. Taken from Reichel et al. [2022].

simulate the magnetostatic fields evolving around the magnetic solid, some surrounding
free space has to be included into the boundary value problem and hence needs to be dis-
cretized with finite elements (Fig. 5.15). The considered free space must not be to small,
since errors may occur due to the truncated boundaries. This results in wrong intensities
of the magnetic fields and therefore in incorrect magnetization behavior. An estimate for
the dimensions of the surrounding free space box is given in Chen and Konrad [1997].
These dimensions of the free space correspond to be at least five times larger than the
magnetic solid to minimize the truncation error of the magnetic fields. For this reason, the
nano disk is positioned in a free space with dimensions of 1200 nm×600 nm×1200 nm. All
subsequent simulations consider a homogeneous support of the mechanical properties on
the boundary of the magnetic solid ∂Bu. The discretization of the boundary value problem
considers ∼ 80, 000 linear tetrahedron elements, that result in ∼ 50, 000, ∼ 57, 000, and
∼ 65, 000 degrees of freedom for the simulations based on the spherical coordinates, the
penalty method, and the perturbed Lagrange multiplier. The number of degrees of free-
dom in the projection method is similar to the penalty method. The material parameters
can be taken from Table 5.5.

Table 5.5: Material parameters of Permalloy (Ni80Fe20). Taken from
Kuchibhotla et al. [2021], Miehe and Ethiraj [2012], and Reichel et al. [2022].

Parameter Value Parameter Value

exchange const. Ae
J
m

1.3× 10−11 sat. magnetization Ms
A
m

8× 105

vac. permeability µ0
H
m

4π × 10−7 anisotropy const. K1
J
m3 0

elastic const. C11
N
m2 1.27× 1011 elastic const. C12

N
m2 0.75× 1011

elastic const. C44
N
m2 0.52× 1011 mag. strictive const. λ100 7.0× 10−6
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The damping parameter of Permalloy is usually around α = 0.008. In order to repro-
duce the quasi-static states and replicate the switching of the magnetization vectors, a
slightly higher damping parameter of α = 0.5 is chosen. This practice, which is quite
common in micromagnetic simulations, does not lead to large deviations in the results,
cf. Sudsom et al. [2020] and Kuchibhotla et al. [2021].

5.8.6 Vortex state

In analogy to Section 5.8.2, the nanostructure is initialized with a randomized magnetiza-
tion distribution, as shown in Fig. 5.16a). The distinct and competing energy contributions
eventually lead, without externally applied magnetic fields or mechanical loads, to a vor-
tex whose core is located in the center of the disk. The relaxed nanodot, generated with
the penalty method, is shown in Fig. 5.16b). The magnetization in the vortex core points
out of plane orthogonal to the disk. The stable states of the other methods barely dif-
fer from the one shown in Fig. 5.16b). This vortex state marks the ground state for the
subsequent simulations.

a) b)

c) d)

Random state Final state

m
1

Figure 5.16: a) and c) the initial random magnetization distribution as well as b) and
d) the corresponding simulated self-equilibrium configuration in a nano disk of Permalloy
obtained by utilizing the penalty method. Taken from Reichel et al. [2022].

5.8.7 Comments on the projection method

The projection method is the simplest way to restrict the magnetization vectors onto
the unit length. However, it has several drawbacks regarding accuracy of the simulation
results especially when simulations in the dynamic regime, e.g. analysis of hysteresis, are
considered. Within this section, these drawbacks are highlighted utilizing the boundary
value problem outlined in Fig. 5.15. A source of error results from non-matching residuals.
The meaning of and the reason for this is explained in the following. Since Newton-like
methods are applied to solve the system of equations, the residual norm decreases within
each iteration step, as depicted in Tab. 5.6 (iteration table). A time step is considered to
be converged if the norm of the residual equals 10−10. Each nodal degree of freedom dI

m
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resulting from such a time step is projected back onto the unit sphere as dI
m ← dI

m/‖dI
m‖

within the next algorithmic step, presented in Tab. 5.6 (projection table). If these pro-
jected degrees of freedom are inserted into the previously calculated residual (Tab. 5.6
(iteration table)), the norm is significantly different to zero (Tab. 5.6 (projection table)).
This means that the projected degrees of freedom do not correspond to the actual solution
and, from a numerical point of view, the simulation results must be critically questioned.

Table 5.6: The cause of miss-match of the residuals for one time increment. The residual
norm within the iterative procedure decreases until 10−10 is reached. Subsequently, the
DOFs are projected onto the unit sphere. Re-inserting the projected DOFs into the resid-
ual shows that they do not match the real solution and the residual is non-zero. Taken
from Reichel et al. [2022].

Iteration table

Iteration Residual norm

1 1.085
2 0.705×10−3

3 2.249×10−7

4 1.713×10−14

=⇒ Projection table

Project DOF onto unit sphere:
dI
m ← dI

m/‖dI
m‖

Insert projected DOF in residuum:
Residual norm: 0.890 6= 0
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Furthermore, Lewis and Nigam [2003] show that a required divergence-free magnetic
induction cannot be divergence-free after a projection step. This means that the simulated
magnetic induction may have sources and sinks, which do not exist. Hence, a general
problem of this method is the reliability of the results. The projection method strongly
depends on the chosen time step size. Too large time steps end in wrong results, while very
small time steps give better results, but lead to a drastic increase of the computational
time. This is also the reason why no adaptive time stepping procedure is used for this
method, as it could lead to poorly chosen time steps. The nano disk is again initiated with
an energetically high random distribution of the magnetization vectors and subsequently
relaxes to its energetically more favorable self-equilibrium state. This relaxation procedure
is simulated using different time increments of 10−3 ns and 10−4 ns. Both vortices presented
in Fig. 5.17 should correspond to an in-plane vortex configuration with an out-of-plane
component in the center of the vortex core, as already shown in Fig. 5.12.

a) b)

c) d)

∆t = 10−3 ns ∆t = 10−4 ns

m
3

Figure 5.17: Top view and cut through the vortex configuration for the time increment
∆t =10−3 ns in a) and c) as well as for the time increment ∆t =10−4 ns in b) and d).
Taken from Reichel et al. [2022].

Such an out-of-plane component within the vortex core is a consequence of the constantly
enforced magnitude of the magnetization vectors, cf. Yi and Xu [2014]. If this constraint
is not constantly observed, as is the case with the projection method, the vortex core
can easily lead to points of near-zero out of plane magnetization (Fig. 5.17a)), which
is physically incorrect for magnetic materials. To obtain better simulation results this
problem can be treated with smaller time increments, leading to a more pronounced out-
of-plane magnetization within the vortex core (Fig. 5.17b)). In this work the hysteresis
properties of the nano disk using the projection method are not analyzed.

5.8.8 Hysteresis properties
Starting from the ground state shown in Fig. 5.16b), a magnetic field µ0H1=0.1T is
applied via a magnetic scalar potential, that is prescribed on the boundary of the free
space domain. The field intensity follows the load path given in Fig. 5.15b). The hystereses
are generated by a dynamic analysis of the magnetic material. This implies that the
variation of the magnetic field strength and the convergence of the simulation take place
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simultaneously, cf. Insinga et al. [2020]. Each time step is assumed to be converged
when the residual approaches zero, in this case 10−10. For circular nanoparticles, the
switching process usually involves the formation, motion, and decay of vortex structures.
They are formed as soon as the field strength of the external field falls below the so-called
nucleation field (Hn). If the vortex has already been formed and the external magnetic field
increases again, the vortex core moves from its (without external fields mostly central)
position to the edge of the nanodot. When the external field has exceeded a critical field
strength (Ha), the vortex annihilates and the nanodot is almost completely aligned parallel
to the external field. Further explanations of the magnetization reversal mechanism are
given in Cowburn et al. [1999] and Kuchibhotla et al. [2021]. Hence, the behavior
of the nanoparticle considered here is already well known and can therefore be used as a
comparative object for the different methods.
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Figure 5.18: The hysteresis loops of the nano disk, obtained from different discretiza-
tion methods framed by their most characteristic magnetization states a)–e). These
magnetization states correspond to the points indicated within the loops. Taken from
Reichel et al. [2022].

The hystereses of the different methods are depicted in Fig. 5.18 and are in
very good agreement with each other as well as with the results stated in
Kuchibhotla et al. [2021]. The corresponding distributions of the magnetization vec-
tors are assigned to the states a)-e) along the hystereses in Fig. 5.18. They are calculated
using the perturbed Lagrangian method. Starting from the initial vortex state (Fig. 5.18a))
with an increasing external magnetic field, the vortex core is displaced from the center
(Fig. 5.18b)) until the critical field strength Ha is reached. Subsequently the vortex decays
abruptly and the magnetization vectors align parallel to the external field (Fig. 5.18c)).
The magnetization remains aligned parallel to the external magnetic field until the nucle-
ation field strength Hn is reached. By falling below Hn the nano disk returns to the vortex
state. Decreasing the external magnetic field further leads to the renewed decay of the
vortex (Fig. 5.18d)), analogous to the steps just described. As a result, the magnetization
vectors align parallel to the external magnetic field (Fig. 5.18e)). The final state of the
magnetization distribution corresponds to the initial state (Fig. 5.18a)).
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5.8.9 Coordinate invariant issue in the arithmetic spherical coordinate ap-
proach

a) b)

c) d)
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Figure 5.19: A nano disk with a) non-physical vortex configuration within the x1-x2

plane, b) physical vortex configuration within the x1-x3 plane, c) physical vortex config-
uration within the x1-x2 plane, and d) the corresponding hysteresis loops. Taken from
Reichel et al. [2022].

Coordinate invariant material models are important, since they deliver always the same
simulation results regardless of spatial orientations of the considered boundary value prob-
lem. Depending on the chosen orientation of the coordinate system, arithmetically in-
terpolated spherical coordinates can lead to physically incorrect representations of the
magnetization vectors and their reversal, cf. Dornisch et al. [2018]. To highlight this
difficulty in more detail, the boundary value problem from Fig. 5.15 is simulated again
using its original orientation as well as an orientation rotated by 90◦ around the x1-axis.
Both, the arithmetic and circular interpolated spherical coordinates, are applied. In total,
the following four cases are considered:

Case A: Arithmetic interpolation of disk within x1-x2 plane,

Case B: Arithmetic interpolation of disk within x1-x3 plane,

Case C: Circular interpolation of disk within x1-x2 plane, and

Case D: Circular interpolation of disk within x1-x3 plane.
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All four cases are initialized with an energetically high random magnetization distribu-
tion and subsequently relaxed into their respective energetically most stable states. This
already reveals fundamental differences between both discretizations. All vortex configu-
rations should correspond to the pattern in Fig. 5.16b). However, the pattern resulting
from Case A does not match Fig. 5.16b). The vortex resulting from Case A (Fig. 5.19a))
shows a clear deviation due to a non-closed vortex, which corresponds to a non-physical
behavior. This non-physical behavior can be explained by the fact that the azimuth angle
is not limited to its definition range θ2 ∈ (−π, π] and exceeds this at the non-closed part
of the vortex. The interpolation of the values on the definition range with those outside
the definition range ultimately creates this physical anomaly. However, if the nano disk is
rotated by 90◦, as shown in Case B (Fig. 5.19b)), a closed vortex can form. This behavior
can be explained by the circumstance that the distribution of the magnetization vectors
arising from this orientation is mainly expressed by the change of the polar angle and the
azimuthal angle is of secondary importance. To generate a closed and physically correct
vortex within the x1-x2 plane using spherical coordinates, the circular interpolated spher-
ical coordinates are applied in Case C. The vortex of Case C is shown in Fig. 5.19c). Here
the function values of the azimuth angle are always restricted by means of the arctan2
function to the corresponding definition range, so that an unambiguous assignment of the
angle to the position of the vector within the Cartesian coordinates can take place. The
distribution of the magnetization vectors from Case D corresponds to that from Case B.
Starting from these self-equilibrium states, Cases A-C are subjected to an external mag-
netic field µ0H1 that follows in intensity the loadpath given in Fig. 5.15b). This is used to
calculate the corresponding hysteresis loops, which are superimposed in Fig. 5.19d). Be-
tween the evaluated hysteresis loops, the hysteresis that primarily attracts attention is the
one that can be assigned to Case A. While the different orientations of the magnetization
within the vortex equilibrium state typically cancel each other out, as it is present in equal
proportions in opposite directions, e.g. in Case A there is a significantly larger amount
of positive m1 oriented magnetization compared to negative m1 oriented magnetization
(Fig. 5.19a)). Thus, the computation of the volume average shows a non-zero remanent
behavior of the disk as shown in Fig. 5.19d) by means of the red hysteresis that exhibits
an incorrect prediction of the magnetization behavior. This problem can be solved by the
rotation of the nano disk considered in Case B, resulting in the blue dashed hysteresis
presented in Fig. 5.19d). The hysteresis agrees very well with the hysteresis resulting from
Case C depicted as green dots in Fig. 5.19d). However, it should be mentioned that re-
stricting the azimuth angle to the definition range for magnetization motions near the
poles, due to steeper tangents, has an overall negative effect on the convergence behav-
ior of the simulation. Significantly smaller time increments are required so that adaptive
time-stepping controls frequently need to be refined. For this reason, the calculation of
the hysteresis loop for Case D has been omitted. Based on these observations, the use
of spherical coordinates is not recommended for the investigation of complex magneti-
zation processes, where a rotation of the magnetization vectors into the poles cannot be
excluded.

5.8.10 Mechanical influences on hysteretic properties
Besides the ferromagnetic switching discussed above, ferroelastic switching is investigated.
External mechanical influences can have a huge effect on the magnetic properties of mate-
rials and the numerical models presented above must be able to provide the same results
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with this additional influence. This ability to analyze other properties of magnetic solids
distinguishes the phase-field models presented here from classical micromagnetic mod-
els, which are usually limited to magnetic effects. The boundary value problem shown
in Fig. 5.15 remains unchanged in terms of dimensions and applied external magnetic
fields. However, the shell surface of the disk is uniformly stretched by a displacement
of 1 nm acting normal on the surface, as presented in Fig. 5.20a). Mechanical coupling
can influence the magnetization vectors such that the switching behavior changes. Due
to the tension of the nano disk, differences in the hysteresis property compared to the
mechanically unstressed nano disk can be observed. The mechanically unstressed nano
disk has no remanent behavior, while the mechanically stressed nano disk shows rema-
nence (Fig. 5.20b)). The hysteresis of the mechanically unstressed nano disk is taken from
Fig. 5.18 and is simulated using the penalty method. However, it is used here only for a
direct comparison of the different effects of the boundary conditions on the hysteresis be-
havior. The hysteresis behavior of the mechanically stressed nano disk is simulated using
the perturbed Lagrange method, the penalty method as well as the circularly interpo-
lated spherical coordinates. The corresponding simulation results are presented in terms
of hysteresis loops in Fig. 5.20b) being in very good agreement with each other.
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Figure 5.20: a) the disk in its vortex configuration is subject to displacements applied
on the shell surface. b) the hysteresis loops of the mechanically stressed nano disk are
compared against each other and the loop obtained from the unstressed nano disk. Taken
from Reichel et al. [2022].
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5.8.11 Ni-thin film under magnetic and mechanical loads
In the following two sections, the functionality of the condensed Lagrange multiplier
method is demonstrated. This includes the preservation of the unit length during the
simulation, the physically correct representation of micromagnetic-mechanically cou-
pled effects, and the computational performance compared to the non-condensed La-
grange method. Hence, a magnetostrictive material such as Nickel (Ni) is investigated
at this point. The focus lies on the Villari or also called inverse magnetostrictive effect,
cf. Coey [2010]. While magnetostriction describes the change of the shape of the magnet
under varying magnetization, inverse magnetostriction describes the change of the mag-
netic properties under the influence of shape-changing effects, such as external stresses or
strains acting on the magnetic solid.
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Figure 5.21: The Ni nano structure and the carrier substrate surrounded by a free
space matrix to capture evolving external influences like stray fields. Taken from
Reichel et al. [2023b].

This phenomenon has been observed in nanowires by Muscas et al. [2021], among oth-
ers, who compared both experimental and numerical results. However, the numerical simu-
lations performed are purely micromagnetic in nature. In contrast, a fully micromagnetic-
mechanically coupled material model is used by Liang et al. [2014] to correctly incor-
porate the influence of the Villari effect. In a comparison Liang et al. [2014] show that
their numerical results agree well with the experimental results of Bur et al. [2011].
Hence, the boundary value problem described in Liang et al. [2014] is adopted within
this work to verify the method presented above, i.e. the magnetic Ni nano structure with
the dimensions 300×100×35 nm is fixed on top of a pure mechanical carrier substrate
with dimensions 1000×1000×100 nm. To consider the evolving stray fields surrounding
the magnetic mater, some of the surrounding space is discretized with finite elements. A
rule of thumb is that the outer space area to be discretized should be at least five times
larger than the actual inclusion, cf. Chen and Konrad [1997]. The Lagrange multi-
plier is approximated using constant interpolation functions, while the other degrees of
freedom are linearly interpolated. That corresponds to 61,099 finite elements and 49,099
degrees of freedom. A sketch of the boundary value problem is given in Fig. 5.21, while
the corresponding material parameters can be taken from Tab. 5.7. The Gilbert damping
parameter is set to be α = 0.5, cf. Liang et al. [2014].
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Table 5.7: Material parameters of Nickel. Taken from Liang et al. [2014] and
Reichel et al. [2023b].

Parameter Value Parameter Value

exchange const. Ae
J
m

1.05 · 10−11 sat. magnetization Ms
A
m

4.8 · 105

elastic const. C11
N

m2 2.5 · 1011 anisotropy const. K1
J

m3 0

elastic const. C12
N

m2 1.6 · 1011 mag. strictive const. λ100 −46 · 10−6

elastic const. C44
N

m2 1.18 · 1011 mag. strictive const. λ111 −24 · 10−6

To analyze the influence of mechanical strains on the Ni structure mechanical bound-
ary conditions are applied on the surface of the substrate such that the relative strain
µε = ε× 10−6 = (ε22 − ε11) within the substrate yields -1210µε, 0µε, and 1060µε, where
ε11 = −νε22 and ν = 0.2. This implies the homogeneous support of the substrate is pre-
scribed as ux(x = −500nm) = uy(y = −500nm) = uz(z = −100nm) = 0nm and the
mechanical loads correspond to the values given in Tab. 5.8, cf. Liang et al. [2014].

Table 5.8: Mechanical boundary conditions applied on the substrate. Taken from
Reichel et al. [2023b].

-1210µε 0µε 1060µε

ux(x = 500nm) in nm 0.21 - 0.06

uy(y = 500nm) in nm -1.00 - 1.00

To obtain hysteresis loops the Ni film is subjected to an alternating external magnetic
field following the load path shown in Fig. 5.22a) with a maximal field intensity of
µ0H = [0.1, 0, 0]TT. Initially, the mechanically unstressed nano structure is subjected
to the alternating field which generates a hysteresis, see Fig. 5.22b). Subsequently, the
carrier substrate is exposed to the mechanical displacements so that the Ni nanostruc-
ture also deforms. These deformed states are treated with the alternating magnetic field.
The corresponding hystereses are shown along with the hysteresis of the undeformed
structure in Fig. 5.22b) and indicate good agreement with the results from literature,
cf. Liang et al. [2014]. The influence of the mechanical loads on the hysteresis behav-
ior of the material can be clearly seen in the hystereses shown in Fig. 5.22b). Negative
relative strains produce a much more pronounced coercivity compared to an undistorted
structure, while positive strains have the opposite effect. The origin of this behavior lies
in the so-called Villari effect also known as inverse magnetostriction, cf. Coey [2010].

5.8.12 Computational time saving by condensation
The Lagrange multipliers considered here do not necessarily require continuity across el-
ement boundaries, thus these degrees of freedom can be approximated both continuously
or discontinuously. The discontinuity of the degrees of freedom ultimately allows their
condensation. Classical Lagrange multipliers can lead to numerical difficulties due to zero
entries on the main diagonal of the system matrix. In this work, the Lagrange multiplier is
extended by a quadratic perturbation term −λ2

2κ
, so that the main diagonal of the system
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Figure 5.22: The load path shown in a) defines the intensity of the externally applied
magnetic field governing the hystereses loops presented in b). The different characteris-
tics of the hystereses arise from varying induced strain states within the nanostructure.
Reference solution, see Liang et al. [2014]. Taken from Reichel et al. [2023b].

matrix contains non-zero entries. Thus, numerical difficulties in the solution process can
be circumvented, cf. Wriggers [2008] and Carey and Oden [1982]. In addition, the
number of constraints must be at least less than or equal to the number of quantities
to be constrained, i.e. number of dλ ≤ dm. Hence, different interpolation orders for the
Lagrange multiplier are examined in the following for their performance. The considered
discretization of the individual degrees of freedom Ξ := {ϕ,m,u} and λ are restricted
in this work to tetrahedral elements, denoted as T . The interpolation order of the tetra-
hedral elements is indicated as a subscript index as Ti with i=0,1,2 for constant, linear,
and quadratic polynomials. The degrees of freedom Ξ are be interpolated using linear
and quadratic interpolation functions and therefore denoted as TΞ

1 or TΞ
2 . Since the here

considered Lagrange multiplier can be interpolated continuously, discontinuously or dis-
continuously with condensation, additional subscript indices indicate their continuity as
T λi,c, T λi,d or T λi,d,cond.

Table 5.9: Relative simulation times of all schemes w.r.t the required time of
the condensed schemes, i.e. simulation time/simulation time of TΞ

i T
λ
i,c. Taken from

Reichel et al. [2023b].

Discontinuous condensed Discontinuous Continuous

linear TΞ TΞ
1 T

λ
0,d,cond TΞ

1 T
λ
0,d TΞ

1 T
λ
1,c

ratio: TΞ
1 T

λ
• /T

Ξ
1 T

λ
1,c 0.783 0.917 1.00

num. elem./ DOF 61,099/49,099 61,099/77,235 61,099/55,068

quadratic TΞ TΞ
2 T

λ
1,d,cond TΞ

2 T
λ
1,d TΞ

2 T
λ
2,c

ratio: TΞ
2 T

λ
• /T

Ξ
2 T

λ
2,c 0.708 0.828 1.00

num. elem./ DOF 30,269/86,285 30,269/162,316 30,269/116,697

This allows for some combinations of interpolations of the considered micromagnetic for-
mulation, if the interpolation order of the Lagrange multiplier is equal or an order below
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the other degrees of freedom. However, this contribution addresses only six different in-
terpolation combinations as shown in Tab. 5.9, to point out the workability of the pro-
posed method. The time comparison is performed using the undeformed Ni structure
from Sec. 5.8.11. All six variants of interpolation are used to calculate the demagnetiza-
tion branch of the hysteresis loop of the Ni stripe. The number of finite elements and
resulting degrees of freedom within each simulation is given in Tab. 5.9. The compari-
son between the condensed and non-condensed Lagrange multipliers shows a significant
speedup in the simulations of the condensed Lagrange multipliers in Tab. 5.9 while the
quality of the results remains the same.

5.9 Standard problem #4 – proof of dynamic capabilities of the model

A well known example to validate dynamic micromagnetism is the µMag
standard problem #4, cf. µMag [1995]. The considered boundary value problem corre-
sponds to a cuboid shaped thin film of dimensions 500 nm×125 nm×3 nm discretized with
100×30×3 quadratic tetrahedron elements resulting in 268,905 degrees of freedom. This
thin film is considered to mimic the material behavior of Permalloy with the following ma-
terial parameters assigned to the simulation: Aexc = 1.3×10−11 J/m, Ms = 8.0×105 A/m,
and Kani = 0 as well as α = 0.02.

m1 m2 m3
m1
ref m2

ref m3
ref

0. 0.2 0.4 0.6 0.8 1.
-1

-0.5

0.

0.5

1.

x1

x2x3

x1

x2x3

a)

b) c)
t in ns

Figure 5.23: a) the initial magnetization pattern, the so-called S-state and b) the mag-
netization distribution when the volume average of the m1 component exceeds zero for
the first time. c) the time evolution of the magnetization components. Reference val-
ues are provided by MagTense (Bjørk et al. [2021]) taken from the µMag homepage,
cf. µMag [1995]. Taken from Reichel et al. [2023b].

The initial magnetization configuration corresponds to the so-called S-state, compare
Fig. 5.23a). This S-state can be obtained by a full saturation along the [1,1,1] axis caused
by a magnetic field and a subsequent relaxation by slowly removing this field. After
the relaxation a constant magnetic field µ0H = [−24.6, 4.3, 0.0]T mT is applied to the
thin film causing an instantaneous reversal. The thin film is discretized with 100×30×3
quadratic tetrahedron elements along the corresponding axis. The time integration is
accomplished by applying time increments ∆t = 10−4 ns. For the comparison of the
time evolution of the averaged magnetization components the results generated by the
software MagTens (Bjørk et al. [2021]) provided on the µMag homepage are used.
Both results, the reference as well as the generated solution presented in Fig. 5.23c),
show good agreement with each other. Also the magnetization distribution in Fig. 5.23,



104 Micromagnetic theory

when m1 equals zero for the first time, indicates very good agreement with the patterns
provided on the µMag homepage, cf. µMag [1995]. Besides the validation of the dy-
namical properties of the proposed model, a comparison with the implicit Midpoint rule
(Bartels and Prohl [2006], d’Aquino et al. [2005], and Shepherd et al. [2019])
proves the proposed method to be equal for the convergence behavior and the re-
quired simulation time. A direct comparison of the relative residual norms of the con-
densed perturbed Lagrange method and the Midpoint rule is shown in Tab. 5.10 for
the time step no. 100 of 101 at time 0.1485 ns. The applied increment corresponds to
∆t = 0.15× 10−2 ns. After the respective iterations in the corresponding time step, the
direct comparison of these residual norms shows an equally good convergence behavior of
both methods.

Table 5.10: Comparison of relative residual norms during iterations of the proposed
method and the implicit Midpoint rule evaluated at time step no. 100 after 0.1485 ns for
the standard problem #4. Taken from Reichel et al. [2023b].

Iteration cond. pert. Lagrange Midpoint

1. 1.00×100 1.00×100

2. 5.56×10−4 7.63×10−5

3. 8.99×10−7 5.65×10−8

4. 9.47×10−12 3.14×10−12

5.10 Conclusion

In the present work, different micromagnetic models are compared with each other. The
characteristic of micromagnetic simulations is the conservation of the unit length of the
magnetization vectors during the simulations. This constraint is fulfilled in different ways
in the demonstrated models. The projection method is the simplest way to limit the length
of the magnetization vectors. During the Newton iteration of a time step the vectors are
not constrained in their length, but can evolve freely. After the iteration has converged,
the projection onto the unit sphere is done by renormalizing the vectors. Thus, at the
beginning of each time step all vectors correspond to the unit length. However, the disad-
vantages of this method compared to its simple implementation predominate. The iterated
residual does not match the projected magnetization vectors. Due to the projection of the
vectors, the induction may not be divergence-free and physically correct results can only
be achieved by very fine time stepping, which leads to a massive increase in computation
time. In general, but especially for longer simulations the use of a projection method is
not recommended due to the above mentioned uncertainties.
In the penalty method, a penalty term is added to the enthalpy functional, which pe-
nalizes the deviations of the magnetization vectors from the Euclidean norm depending
on a penalty parameter. This method is simple to implement, but the parameter must
be adjusted for each new boundary value problem considered. The more accurate the
constraint is to be satisfied, the larger penalty parameters are required. This can lead to
very stiff systems of equations and poor convergence.
A Lagrange multiplier is somehow similar to the penalty method in the sense that the
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deviation from the Euclidean norm is also penalized. The difference lies in the Lagrange
multiplier itself, which replaces the penalty parameter. The Lagrange multiplier is an
additional degree of freedom that recalculates the required penalization intensity in each
iteration depending on the actual deviation and distribution of the magnetization vec-
tors. This can be an advantage regarding the length conservation of the magnetization
vectors, but also implies longer computational times since another degree of freedom has
to be considered. Because a classical Lagrange multiplier leads to zero entries on the main
diagonal of the system matrix, additional measures have to be considered to solve the
system of equations. For this reason, a perturbed Lagrange multiplier can be applied,
which contains an additional quadratic term that generates non-zero entries within the
system matrix. To reduce the increased computational times, but still benefit from the
advantages of the Lagrange multiplier, a static condensation of the Lagrange parameter is
recommended. This can be done by means of the Schur complement at element level. The
condensation of the Lagrange parameter has shown a reduction of computational costs of
up to 29.8% for a comparison with the continuously discretized parameter.
The spherical coordinates fulfill the unit constraint a priori and do not require any ad-
ditional restrictions in that sense. Additionally, the degrees of freedom associated with
the magnetization are reduced by one, since not the components of the vectors are in-
terpolated, but their corresponding angles. Correct switching behavior may be obtained
by restricting the angles onto their defined definition domain considering the circular in-
terpolation proposed by Dornisch et al. [2018]. In general, the use of micromagnetic
formulations based on spherical coordinates requires caution as they have singular points
at the poles. A rotation of magnetization vectors through these points leads with very
high probability to an abortion of the simulation. Since for complex and very inhomoge-
neous microstructures the penalty parameters are often very difficult to adjust, it is also
hardly possible to exclude the possibility that magnetization vectors rotate through one
of the poles. The Lagrange multiplier has proven to be a particularly suitable method,
since it restricts the length of the magnetization vectors in a variational sense directly
to the unit length, to the disadvantage of additional degrees of freedom in the system of
equations resulting in a longer computational time. This additional computational effort
can be drastically reduced by their static condensation.
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6 Microstructure characterization

Magnetic materials contribute to the efficiency improvements of energy conversion
equipment (transformers), power generators (wind turbines), sensors and, electric
motors for E-mobility (electromobility) as outlined in Gutfleisch et al. [2011].
In order to meet the resulting increasing demand, the performance of the magnetic
materials themselves must be significantly improved. The addition of heavy rare earths
such as dysprosium (Dy) or terbium (Ty) can contribute to this desired increase in
performance, cf. Soderžnik et al. [2016] and Herbst and Croat [1991]. However,
this performance gain, i.e. the increase in coercivity in this particular case, implies a
dependence on materials that are mined under severe environmental as well as social
impact and originate from countries with markets that are not continuously accessible,
cf. Rostek-Buetti [2019]. In addition to the above-mentioned modification of chemical
compositions, microstructure engineering plays a very prominent and important role
as well. Particularly high-performance permanent magnets are characterized by a fine
grain structure with strongly pronounced uni-axial magneto-crystalline anisotropy,
cf. Kronmüller [1987]. Ideally, the ferromagnetic grains are magnetically separated
from each other by a paramagnetic grain boundary phase. This grain boundary phase
hinders the magnetic exchange interaction and can thus prevent a cascade-like reversal.
The diameter of such magnetic grains can often reach several µm, while the grain
boundary phase is usually a few nm thick. Since the exchange length of Nd2Fe14B
magnets is small ∼1.9 nm (cf. Coey [2010]), grain boundaries wider than this length can
already lead to an improvement of magnetic properties, cf. Soderžnik et al. [2017].
Consequently, a considerable research interest is to apply new techniques in the fabrica-
tion process that allow a more flexible manipulation of local microstructural properties,
as e.g. techniques based on additive manufacturing (AM), cf. Yang et al. [2023] and
Schäfer et al. [2021]. Besides the local tailoring of microstructures, energy consump-
tion during the manufacturing process is of course also a crucial factor. In addition to
the already mentioned AM, which is rather energy intensive, this brings up techniques
based on severe plastic deformation (SPD), as e.g. the continuous rotary swaging (CRS)
or the high pressure torsion (HPT), cf. Chi et al. [2019], Staab et al. [2023] and
Weissitsch et al. [2023]. The goal of this section is the numerical characterization of
permanent magnetic materials with polycrystalline microstructures resulting of different
underlying process routes.
In Sec. 6.1 the influence of different imperfections on the effective magnetization behavior
is investigated. The simulations are based on idealized microstructures that are expected
as a result of the CRS process, cf. Marr et al. [2011]. In addition to the analysis
of the influence of the grain size on the magnetic hysteresis, the influence of local
inhomogeneities, misorientations, and process-related defects is analyzed. In Sec. 6.2
the influence of different grain boundary phases on the effective behavior of a real
microstructure produced by the current industry standard - sintering - is investigated.
Sec. 6.3 is dedicated to the exact description of the demagnetization process in a 3D
polycrystalline microstructure.
Parts of this chapter are published in:
M. Reichel, P. Groche, O. Gutfleisch and J. Schröder, Impact of soft magnetic α-Fe in hard
Nd2Fe14B magnetic materials: A micromagnetic study, Proceedings in Applied Mathematics
and Mechanics, e202300104, (2023).
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Since all subsequent sections deal with the simulation of Nd2Fe14B, the material parame-
ters are defined below in Tab. 6.1. To capture the magnetic quasi static states, a damping
parameter of α = 1 is applied. This reduces the impact of the precession term within the
magnetic evolution equation.

Table 6.1: Material parameters of Nd2Fe14B, taken from Coey [2010].

Parameter Aexc
J
m

Ms
A
m

K J
m3

Nd2Fe14B 8 · 10−12 1.28 · 106 4.9 · 106

6.1 Study of influencing parameters on effective coercivity

In this section the focus remains on the analysis of factors impacting the effective prop-
erties (here coercivity and remanence) of permanent magnetic materials on the basis of
idealized microstructures, which are supposed to represent the final result of microstruc-
tures produced by CRS. For this purpose, boundary value problems with different kinds
of imperfections are investigated, such that a subsequent prognosis regarding ideal mi-
crostructures can be formulated. The analyzed material is Nd2Fe14B, a hard magnetic
material with particularly strong magnetic uniaxial anisotropy. The corresponding mate-
rial parameters are given in Tab. 6.1. In the following, magnetic single grains, but also
polygrain structures are considered, that are all surrounded by a free space to incorporate
the influence of magnetic stray fields. Within the free space, only the magnetic Gauss
law is considered. On the outer boundary of the free space the scalar potential ϕ0 = 0 is
prescribed, so that the external magnetic fieldH can be assumed to be constant over the
whole discrete domain. The applied load path for all simulations of this section is defined
in Fig. 6.1. Note that the intensity of the external magnetic field is not yet defined as a
numerical value in Fig. 6.1, but only plotted as a function of H at the y-axis. This is due
to the fact that although the time intervals in all subsequent simulations are identical to
each other, the field strengths may differ. All simulations within this section are done us-
ing quadrilateral bi-linear interpolation functions and the condensed perturbed Lagrange
multiplier.
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Figure 6.1: Load path of the externally applied magnetic field H.
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6.1.1 Influence of varying grain sizes
The size of the magnetic grains can have a significant influence on the magnetic properties
of the magnetic material under consideration. In the defined boundary value problem, a
single hexagonal magnetic grain is considered with varying size of diameter. Starting from
a diameter of d=25 nm at the first conducted simulation, it is increased up to a diameter
of d=3000 nm in the last simulation.
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Figure 6.2: a) the simulated hysteresis curves of the different grain diameters and b) the
resulting coercive field strengths Hc as a function of the grain diameter d.

Each of the simulations provides a complete hysteresis loop, enabling the comparison
of all results in Fig. 6.2a). The external magnetic field µ0H = [0, 5, 0]T T is applied
in an alternating form, as shown in Fig. 6.1. Applying spherical coordinates, the initial
magnetization can be defined in terms of angles as θ1 = 0.45π and θ2 = 0.5π for all cycles
to be captured, assuming a single domain state within each grain. The hysteresis loops
shown in Fig. 6.2a) exhibit a pronounced squareness. There are various possible reasons
for this characteristic. The orientation of the magneto-crystalline anisotropy is exactly
antiparallel to the external magnetic field and thus generates the greatest resistance to
initiate a magnetic reversal. Additionally, neighboring grains and defect structures, such as
inclusions, are missing, which can induce either a premature nucleation or the pinning of
a reversal. This implies that the simulation considered here has been strongly idealized.
However, the core statements of the simulations are still valid. The largest values in
coercivity can be obtained for the smallest grains. An increase in the size of the grains
results in a decrease in coercivity, as can be seen in Fig. 6.2b). It can be concluded that
smaller grains are of crucial importance in the synthesis of high performance magnets.

6.1.2 Magnetization reversal in heterogeneous microstructures
In this section, two different scenarios for microstructural compositions of Nd2Fe14B mag-
nets are considered. Thereby, the special focus of this scenarios is on the influence of α-Fe
impurities on the effective hysteresis properties of permanent magnetic materials. α-Fe
is a soft phase material that typically forms during the casting process in the form of
large dendritic grains within the Nd2Fe14B matrix grains and an excess of Nd-rich phases
(the latter are paramagnetic). Upon homogenization these phases recombine to form more
Nd2Fe14B matrix grains under elimination of Fe.
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Grain arrangement Discrete microstructure cut out

a) b)

dtot
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Figure 6.3: a) the microstructure of the ferromagnetic Nd2Fe14B grains within the de-
coupling paramagnetic interphase layer of thickness tint. The easy-axes of the individual
grains follow the orientation of the red vectors. b) a discrete cut out of the grain boundary
phase of the microstructure. Taken from Reichel et al. [2023a].

Soft magnetic materials have significantly lower resistance to external magnetic fields com-
pared to permanent magnetic materials, resulting in significantly lower coercivity. Since
the α-Fe is in direct contact with the hard magnetic Nd2Fe14B phase (no separation of
both materials by a paramagnetic grain boundary phase) it initiates a premature reversal
within the magnetically harder part of the magnet. The result is a significantly lower
coercivity of this magnet, compared to a magnet with no impurities. In the following, a
grain composition without α-Fe impurities is considered, see Fig. 6.3. It consists of seven
ferromagnetic grains with the material properties of Nd2Fe14B, cf. Tab. 6.1. The grains
are assumed to have a diameter of 500 nm (doubles the single domain particle size of
Nd2Fe14B ∼200-300 nm, cf. Gutfleisch [2000]) and are assumed to be magnetically
decoupled from each other by a 5 nm thick paramagnetic Nd-rich grain boundary. The
whole microstructure corresponds to the diameter dtot=1350 nm. The discrete microstruc-
ture involves 57,239 finite elements and 203,592 degrees of freedom. To obtain a typical
hysteresis loop and evaluate the effective magnetic behavior, an alternating external mag-
netic field µ0H = [0, 6, 0]T T is applied, following the load path defined in Fig. 6.1. In
the simulated hysteresis loop (Fig. 6.4f)) several kinks can be seen. These result from the
different switching times due to different anisotropy orientations of the individual decou-
pled grains. The grain boundary prevents reversal from one switching grain to another
and thus premature nucleation. The resulting coercivity of the considered microstructure
is obtained from the hysteresis in Fig. 6.4f) as ∼2.5 T. An improvement of this property
can be achieved mainly by a better alignment of the easy-axes of the grains. A fabrication
such that the easy-axes of the individual grains are oriented in one direction can lead to
a more rectangular hysteresis due to a later nucleation within the grains. Of course it is
a non-trivial task to obtain an perfect alignment. Hence, the latter statement implies an
alignment with slight variations. The reversal process given in Fig. 6.4a)–e) shows the
separate switching of the individual grains. The magnetization within each grain nucle-
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ates within the corners of the corresponding grain. Subsequently, the reversal propagates
cascade-like through the grain, leading to the characteristic kinks in the hysteresis.
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Figure 6.4: Evolution of the magnetization reversal a) – e) and its corresponding hys-
teresis loop f). a) the magnetization vectors are aligned parallel to the easy-axes of the
individual grains, b) the nucleation starts within the corners of the grains, and c) the
grains reverse. Taken from Reichel et al. [2023a].
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Figure 6.5: Microstructure with seven hexagonal Nd2Fe14B grains and α-Fe impurities.
Taken from Reichel et al. [2023a].
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In the case of impurified microstructures the behavior may be different. To investigate
this in more detail, the boundary value problem introduced in Fig. 6.3 is extended to
contain α-Fe impurities in the following example. The modified boundary value problem
with soft magnetic inclusions can be found in Fig. 6.5. Here, local impurities are taken into
account by defining additional regions within the permanent magnetic grains and assigning
soft magnetic properties such that the material response of α-Fe can be simulated. The
following material properties of α-Fe are taken from Sridhar et al. [2016]: exchange
constant Aexc = 1.0 ·10−12 J/m, saturation magnetizationMs = 5 ·106 A/m and magneto-
crystalline anisotropy K1 = 4 · 104 J/m3, and K2 = 6 · 103 J/m3.
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Figure 6.6: Evolution of the magnetization reversal a) – e) and its corresponding hys-
teresis loop f). a) the magnetization vectors are aligned parallel to the easy-axes of the
individual grains, b) the nucleation starts within the corner of the homogeneous grains
at triple junctions, and in c) within the α-Fe impurities. d) propagation of reversal into
the grain.

The hysteresis loop is obtained by applying the alternating external magnetic field
µ0H = [0, 6, 0]T T following the load path given in Fig. 6.1 to the microstructure pre-
sented in Fig. 6.5. The resulting hysteresis loop is about 10 times more slender compared
to the previously simulated loop (Fig. 6.4f)). The reason for this behavior can be identified
as the direct contact of the soft magnetic material with the permanent magnetic grain.
Since the α-Fe impurities have a significantly lower resistance (coercivity) to opposing
external magnetic fields, nucleation starts at these spots. Due to the fact that impurities



112 Microstructure characterization

collect at random locations within the grain matrix during the manufacturing process,
grain boundaries between the inclusions and the actual grain are missing. As a result,
soft and permanent magnetic materials are in direct contact with each other, i.e. they are
not exchange decoupled. After the reversal of the soft magnetic region (Fig. 6.6b)), this
leads to a fast transition of the reversal to the permanent magnetic material (Fig. 6.6c))
and thus to a premature switching of the entire grain (Fig. 6.6e)). A comparison of the
simulation results with the findings from Sepehri-Amin et al. [2019] gives rise to fur-
ther analysis, since here α-Fe phase inclusions about 100 nm in size appear to couple
effectively. However, the microstructures are different.

6.1.3 Impact of anisotropy orientations in polycrystalline microstructures

Grain arrangement Selected grains with different orientations

a)

b) c)

d) e)

Figure 6.7: a) a microstructure consisting of 12 ferromagnetic Nd2Fe14B grains. The red
arrows indicate the easy-axis of the respective grains. b) - e) different easy-axes orienta-
tions within the middle grains (1,2 and 7). The difference between c) and d) is a separating
Nd-rich grain boundary between the ferromagnetic grains in c), while d) assumes direct
contact of the grains (no grain boundary).

The effective properties of a magnet can be strongly influenced by a wide variety of local
defect structures such as large single grains within a finer grain matrix, in general defect
structures such as cracks, but also misoriented grains, cf. Kronmüller [1987]. This sec-
tion is primarily focused on the analysis of misoriented grains and the lack of separating
grain boundaries within the microstructure. In order to analyze the local influence of a few
misoriented grains on the overall behavior of the magnet, the considered microstructure
must be slightly larger than the previously considered structures in Fig. 6.3 and Fig. 6.5.
Thus, the microstructure given in Fig. 6.7 consists of 12 ferromagnetic grains. All consid-
ered grains have a diameter of d = 500 nm, while the thickness of the grain boundary is
idealized as tint = 5 nm. The grain boundary mimics the behavior of an Nd-rich layer that
prevents exchange interactions between individual ferromagnetic grains. Therefore, the
grains can be considered as magnetically decoupled. In the following, the microstructure
B shown in Fig. 6.7a) is subdivided into an outer rim consisting of the outer grains Bout

(3,4,5,6,8,9,10,11,12) and the inner grains Bint (1,2,7) as B = Bout
⋃
Bint. On the one hand,
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the orientations of the outer grains Bout are almost perfectly parallel to the x2-axis with a
deviation of ± 1◦ and remain unchanged in all subsequent considerations. The grains Bint,
on the other hand, are given different easy-axes orientations in the following simulations,
as described in the items below:

Case 1: An almost perfect orientation of the easy-axes is assumed. This also implies
a deviation of only ± 1◦ from the x2-axis. This case represents an ideally textured
microstructure and is obtained from Figs. 6.7a) and b). This assumption yields the
black hysteresis loop in Fig. 6.8.

Case 2: A randomly oriented easy-axes distributions in Bint that deviates strongly
from the x2-axis is assumed in Fig. 6.7c). This assumption yields the red hysteresis
loop in Fig. 6.8.

Case 3: No distinction is made between grain and grain boundary within Bint. This
means that Bint consists of three grains, which are in direct contact with each other
and thus cannot be considered as exchange decoupled. The corresponding easy-axes
orientations are sketched in Fig. 6.7d). This assumption yields the green hysteresis
loop in Fig. 6.8.

Case 4: Bint is considered to be decoupled by the Nd-rich grain boundary but with
only one easy-axis for all grains, i.e. the x1-axis, as shown in Fig. 6.7e). This as-
sumption yields the blue hysteresis loop in Fig. 6.8.
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Figure 6.8: The hysteresis loops of the ideal and distorted grain compositions.

The subsequent simulations involve ∼ 110, 000 quadrilateral finite elements with ∼350,000
degrees of freedom. Their resulting hystereses loops are shown in Fig. 6.8. For Case 1,
i.e. the case of almost perfect alignment of the anisotropy to the x2-axis, the hysteresis
depicted in black in Fig. 6.8 appears to be very square. Due to the almost identical
orientations of the anisotropy in all grains, the reversal starts simultaneously in most
grains leading to the highest value of coercivity, of all here considered cases. Another
advantage are the paramagnetic grain boundaries, which decouple the individual grain’s
switching process magnetically from the other grains. This hysteresis can thus be regarded
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as a kind of upper limit of this microstructure with respect to coercivity. Case 2 considers
arbitrarily defined easy-axes orientations of the inner grains Bint, leading to a clearly
deviating behavior compared to Case 1. The nucleation of the magnetization reversal
within the grains starts much earlier, which results in a lower coercivity. Likewise, many
grains switch separately, which for the middle grains can be explained in any case by their
strong deviations of the anisotropy-axis from the x2-axis. The surrounding grains switch
gradually, but much earlier compared to Case 1, leading to a distinct deviating coercivity
of the magnet, see Fig. 6.9a). Although the grains are separated from each other by a
paramagnetic Nd-rich layer, so that an early nucleation of the grains by direct contact
between reversed and non-reversed grains can be excluded, the reversed grains cause a
change in the demagnetization fields, which also affect the magnetization behavior of the
neighboring (non-reversed) grains.

-3 -2 -1 0
0.

0.25

0.5

0.75

1.

a) b) c)

d) e) f)

µ0H2 in T

m
2

c)

b)d)

e)

f)

m2

Figure 6.9: Case 2 delivers the demagnetizing branches given in a). The initial mag-
netization distribution is given in b), while c) shows the remanent distribution after a
full magnetization along the x2-axis. The demagnetization process is given in d)-f). The
reversal starts with a nucleation at the triple junction between grain 1, 6 and 7, shown in
d).

Due to the initial magnetization of the microstructure (cf. Fig. 6.7c)) the volume average
of the magnetization at the beginning of the simulation is clearly below the remanence
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of the magnet obtained after a complete parallel alignment of the magnetization to the
external field. The remanent distribution of the magnetization, in particular of grain 2,
does not correspond to the initial distribution as indicated in Fig. 6.7c), but is antiparallel
to it and the easy-axis of the grain. This behavior is evident in the second quadrant of the
hysteresis loop in Fig. 6.9a). Both, the initial and the remanent magnetization, are shown
in Fig. 6.9b) and c). Case 3 considers no separating Nd-rich layer between the grains Bint

(cf. Fig. 6.7d)). It follows that the ferromagnetic grains are in direct contact with each
other and an already switching grain leads to nucleation, or premature magnetization
reversal of the adjacent grain. Since no boundary hinders the propagation, a cascade-
like reversal of the magnetization within the adjacent grain is the outcome, as depicted
in Fig. 6.10d). After the magnetization reversal of the grains Bint, the magnetization
shows the same behavior as in Case 2 described above. For the difference between initial
magnetization and remanence the same explanation applies as for Case 2.
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Figure 6.10: Case 3 delivers the demagnetizing branches given in a). The initial mag-
netization distribution is given in b), while c) shows the remanent distribution after
magnetizing along the x2-axis. The demagnetization process is depicted in d)-f). The re-
versal starts with a nucleation at the triple junction between the grains 2, 7 and 10 and
propagates through d) grain 7 and e) grain 1. The distribution in f) is similar to Case 2.

Case 4 assumes an orientation parallel to the x1-axis within the internal grains Bint . As
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evident from the blue hysteresis, this is the orientation pattern of the anisotropy that
exhibits the least remanence. Since the magnetization is preferentially oriented along the
easy-axis, no contribution of the inner grains Bint can be considered for the volume aver-
age calculation at time t=0 s of the simulation and also after full saturation (remanence),
accordingly. Thus, the contributions to the remanence of three grains are omitted. Never-
theless, the coercivity is more pronounced than that of Case 2 and Case 3. An explanation
for this behavior is that the external field tends to magnetize the inner grains Bint along
their hard-axes, which is significantly more challenging than aligning the magnetization
along its easy-axes. Accordingly, this process occurs very slowly, the locally generated
demagnetization fields are smaller compared to the two previously considered cases, and
therefore have less influence on the reversal of the grains Bext.

6.1.4 Surface defects influencing the effective performance of magnets
Stresses, cracks or other defects induced by the manufacturing process can have a
strong negative influence on the magnetic properties of the entire magnet. These im-
perfections often appear within the region of the grain surfaces and have a locally re-
ducing effect on the anisotropy, cf. Hrkac et al. [2014a], Hrkac et al. [2014b], and
Hrkac et al. [2010]. To investigate this influence in more detail, a defect layer of some
few nm thickness is defined on the surface of the individual Nd2Fe14B grains, following
the approaches of Süss et al. [2000] and Helbig et al. [2017]. In the considered case
the defect layer is set to be 10 nm thick. Within this layer, a so-called surface anisotropy
is defined as Ksur = η Kani | η ∈ (0, 1), where η is a defect factor relating the defect
intensity to the crystalline anisotropy. In the performed numerical analysis, defect pa-
rameters of η = {1, 0.9, 0.8, 0.7, 0.6, 0.1} are considered. To obtain a comparison of the
resulting coercivities and remanences, an alternating magnetic field of µ0H = [0, 6, 0]T T,
that follows the load path presented in Fig. 6.1, is applied. The discretization of the mi-
crostructure involves ∼ 57, 000 finite elements and ∼ 200, 000 degrees of freedom. The
resulting hysteresis loops are shown in Fig. 6.11 and reveal a clear reduction in coercivity
and remanence for decreasing defect parameters.
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Figure 6.11: The hysteresis loops of the microstructure seen, taking into account surface
anisotropy in the surfaces of the grains.

The defect parameter η = 1 corresponds to no surface defect. Thus, the resulting hysteresis
matches the hysteresis presented in Fig. 6.4 with a coercivity of Hc = −2.44 T. However,
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already a small reduction of this parameter to η = 0.9 causes a significant decrease in
coercivity toHc = −1.70 T. An even stronger reduction of the defect parameter to η = 0.1,
considered to be associated with a severe damage at the surface of the grains, leads to
a reduction in coercivity of Hc = −0.28 T and in general a very slender curve. Besides
the reduction in coercivity, a reduction of remanence is obtained for defect parameters
η < 0.7. Above this defect level the remanence of the magnet is not effected. Nevertheless,
below this level the grains begin to posses multi domain states as shown in Fig. 6.12.
While the grains with a defect parameter above η = 0.7 correspond to single domain
states (e.g. cf. Fig. 6.12a)), grains with an increasing amount of defects, which implies a
decreasing of the defect parameter, can posses multiple domains within a grain. Those
domains can be two or more differently oriented areas within a grain, opposing at least
some of each other as depicted in Fig. 6.12b) and c). Hence, those opposing domains cancel
each other out and do not contribute to the remanence. These multi-domains within the
grains cannot only be associated to the strong decrease in remanence, but also to the poor
performance in values of coercivity associated to the parameter η = 0.1. To fully reverse
the magnetization of a multi-domain grain, a complete reversal, compared to the single
domain grains, of the entire grain magnetization is no longer necessary, since parts are
already oriented in different directions.

Remanent magnetization depending on η

a)
η = 1.0

b)
η = 0.6

c)
η = 0.1

m2

Figure 6.12: The remanent magnetization distribution of the microstructure for varying
defect parameters a) η = 1.0, b) η = 0.6, and c) η = 0.1 within the surface edges.
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6.2 Grain boundary analysis based on a realistic NdFeB microstructure

In this section, a sensitivity analysis of the effective magnetic properties of microstructures
with respect to different types of grain boundaries is performed. This analysis involves
the subsequent procedure. A distinction is made between:

Case A: a purely Nd-rich grain boundary phase, that behaves only paramagnetic
(magnetostatic) representing an ideally decoupled magnetic system,

Case B: a slightly ferromagnetic grain boundary phase material, that does not com-
pletely decouple but still slightly inhibits coupling, and

Case C: a direct contact of the grains with each other, which corresponds to a full
coupling.

The underlying simulation in this section is based on the microstructure11.) shown in
Fig 6.13a). The image of the microstructure was generated using a scanning electron
microscope (SEM). The dark areas represent magnetic grains, while the lighter (white)
lines indicate the grain boundary layers. These grain boundary layers range between 3 to
8 nm thickness. The two white triangular spots, each wedged between three ferromagnetic
grains are so-called triple junctions. Within the context of this work, a triple junction is
an accumulation of mostly paramagnetic Nd-rich interphase material, which also forms
the grain boundary phase. The grains consist of ferromagnetic Nd2Fe14B. The mostly
paramagnetic grain boundaries have a magnetically decoupling effect and, depending on
the thickness of the layer, can inhibit and even prevent the exchange interactions between
the grains. This can lead to an overall increase in the effective performance of the magnet.

SEM image Discrete microstructure

a) b)
3333

21
66

in nm
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x2

Figure 6.13: a) an SEM image of the Nd2Fe14B microstructure with the separating
grain boundaries and the corresponding triple junctions, taken with permission of Elsevier
from Khlopkov et al. [2004]. b) the discrete microstructure approximated with finite
elements and different mesh densities in the grains, the grain boundaries, and the triple
junctions.

In the following, a numerical study is performed on the effects of different interphases
between the grains of the magnetic microstructure. Therefore, the microstructure in
Fig 6.13a) is transformed into its discrete counterpart, presented in Fig 6.13b). The mi-
crostructure, covering 3333×2166 nm in total, is discretized with 17,788 quadratic tri-
angles, resulting in 179,045 degrees of freedom. In all simulations presented within this

11.)Fig 6.13a) is taken with permission of Elsevier from the publication Khlopkov et al. [2004].
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section, the magnetization magnitude is constrained via a perturbed Lagrange multiplier
and the magnetic field is generated by a magnetic scalar potential prescribed on the top
and bottom edges of the discrete microstructure. The resulting external magnetic field
µ0H = [0, 6, 0]T T follows the load curve described in Fig. 6.16a). The material parame-
ters of Nd2Fe14B can be found in Tab. 6.1. Furthermore, an external space is omitted, so
that no stray fields in the external space are considered. The orientation of the crystalline
anisotropy follows the direction of the vector a = [sin θ cosψ, sin θ sinψ, cos θ]T , where
the polar angle θ and the azimuth angle ψ can be taken from the corresponding grains
in Fig 6.13a). The initial magnetization distribution follows the direction of a, which
approximately corresponds to the x2-axis. For perfectly decoupled ferromagnetic grains
(Case A) resulting from an Nd-rich grain boundary of 8 nm behaving purely magneto-
static (i.e., MGB

s =0, AGB
exc=0, and KGB

1 =0), a magnetization reversal is observed as shown
in Fig. 6.14a)–c). The superscript GB indicates that the material parameters belong to
the region of the grain boundaries and triple junctions.

m2

a) b) c)

Figure 6.14: Magnetization reversal of the exchange decoupled microstructure with a)
the nucleation within the corner of the smallest grain, b) the nucleation at the center
triple point, and c) the almost fully reversed magnetization distribution within the mi-
crostructure.

The nucleation of the magnetization reversal starts in the area of the triple junctions,
which represent a weak spot, and propagates from there through the entire grain. This
cascade-like magnetization reversal is only stopped by the nearest grain boundaries,
such that a jump to another grain can be prevented. The corresponding hysteresis loop
(Case A: red, 8 nm) can be found in Fig. 6.16b).

m2

a) b) c)

Figure 6.15: Magnetization reversal of the exchange coupled microstructure with a) the
nucleation within the triple points and b)-c) the propagation into the surrounding grains.
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Nevertheless, if no perfect decoupling is assumed (Case B), but a thinner interphase of
3 nm, which additionally does not consist of pure paramagnetic material, but is slightly
ferromagnetic the propagation of the magnetization reversal cannot be stopped at the
grain boundaries as presented in Fig. 6.15. Thus, the demagnetization process deviates
strongly from Case A presented before in Fig. 6.14. The procedure is applied analo-
gously to Soderžnik et al. [2017]; the slightly ferromagnetic grain boundary phase is
assigned a significantly weakened saturation magnetization MGB

s = 0.64 × 106 A/m and
an exchange coefficient AGB

exc = 0.4 × 10−11 J/m. Moreover, it can be assumed that there
is no pronounced orientation dependence of the material in the interphase region, which
is equivalent to KGB

1 =0.
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Figure 6.16: a) loading path of the magnetic field and b) the hysteresis loops for different
grain boundaries.

Similar to the decoupled Case A, i.e. the red hysteresis loop in Fig. 6.16b), the nucleation
starts in the region of the triple points, see Fig. 6.15a). However, the crucial difference
in Case B is that the triple points reverse first and subsequently continue to propagate
into the ferromagnetic grains. This implies that, compared to the previous Case A, the
reversal spreads into all directions and thus leads to a significantly faster demagnetization
of the entire magnet. This can also be seen in the corresponding hysteresis in Fig. 6.16b)
(Case B: blue, 3 nm). A clear difference between the hysteresis of the decoupled and the
coupled system is apparent. This difference eventually illustrates the loss in performance
of the weakly ferromagneticaly coupled system compared to that of the perfectly decou-
pled system. If a microstructure without any grain boundaries is considered (Case C),
which means direct contact of the grains with each other, it is evident that even the
weak ferromagnetic coupling interphase of Case B can be useful in limiting magnetiza-
tion reversal. This is shown by comparing the hysteresis of this last case Fig. 6.16b)
(Case C: black, 0 nm) with the previous cases in Fig. 6.16b).
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6.3 Simulation of a 3D heterogeneous polycrystalline Nd2Fe14B microstruc-
ture

This example is devoted to the analysis of a polycrystalline Nd2Fe14B microstructure
consisting of 10 ferromagnetic grains that are magnetically decoupled from each other by
a 3 nm thick paramagnetic Nd-rich layer. Similar to the sections above, the paramagnetic
interphase indicates purely magnetostatic behavior. The material parameters of Nd2Fe14B
can be taken from Tab. 6.1. The easy-axes of the grains are almost parallel to the x3-axis
with a deviation of up to ±10◦. The initial magnetization distribution follows the direction
of the individual easy-axes within the grains. To analyze the magnetic properties of the
microstructure given in Fig. 6.17, a magnetic scalar potential is prescribed on the upper
and lower boundary (x3=0 and x3=200 nm) of the microstructure that induces a magnetic
field µ0H = [0, 0, 6]T T. This field cycles over time, following the load path presented in
Fig. 6.1, to generate the hysteresis loop presented in Fig. 6.18. For the generation of
the microstructure the software tool Neper was applied in combination with a script
written by C. Böhm12.) to generate the grain boundaries, cf. Quey et al. [2011] and
Quey and Renversade [2018].

in nm
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Figure 6.17: A polycrystalline microstructure consisting of hard magnetic Nd2Fe14B
grains and paramagnetic Nd-rich grain boundaries. The zoomed grain highlights the dis-
crete form of the grain to give an impression of the applied mesh density.

The primary variables are interpolated using ∼ 100, 000 linear tetrahedron elements
with ∼ 200, 000 degrees of freedom. The initial magnetization distribution is shown in
Fig. 6.18a). As the external magnetic field increases, the magnetization vectors turn aside
until a critical field is eventually reached, initiating the nucleation of the magnetization
reversal. The result of this process can be seen in Fig. 6.18b). The first ferromagnetic
grain changes the direction of magnetization. For now, the paramagnetic Nd-rich layer
between the individual grains prevents this process from continuing in the adjacent grains.
After the upper grain is almost completely switched, the neighboring grain of the first
reversed grain also begins to nucleate. The utility of the Nd-rich layer becomes evident in
Fig. 6.18c). Half of the magnetization of the polycrystal already points into the negative

12.)C. Böhm, Institute of Continuum Mechanics, Leibniz University Hannover.



122 Microstructure characterization

x3-direction, while the other still points into the positive x3-direction. Finally, the signs of
magnetization in all grains turn, as can be seen in Fig. 6.18d), such that the microstruc-
ture in Fig. 6.18e) is completely demagnetized. When the magnetic field increases again,
the process described above is repeated, but in reverse orientation of the magnetization
vectors. Thus, a complete hysteresis loop can be described.

m
3

µ0H3 in T

a)b)

c)

d) e) f)

g)

h)

Figure 6.18: The hysteresis loop of the considered polycrystalline microstructure with
its corresponding switching states a)-h).

The stepwise reversal of the magnetization in the individual grains can also be seen in the
demagnetization branch of the hysteresis in Fig. 6.19. The switching of one grain proceeds
very fast, but to generate further switching magnetization within subsequent grains an
increase of the magnetic field is necessary. This leads to the kinks in the demagnetizing
branch presented in Fig. 6.19. Since these kinks can be associated with inhibition of
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reversal, they are indicators of well-decoupled magnetic grains.
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Figure 6.19: The demagnetization branch of the considered polycrystalline microstruc-
ture with several kinks.
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7 Summary, conclusion, and outlook

Magnetic materials enhance the efficiency of conversion devices such as transformers,
power generators like wind turbines, sensors, and electric motors used in electromobility.
Due to their importance in optimizing performance in industrial applications, magnetic
materials are attracting increasing interest. Hence, this work deals with the numerical
characterization of magneto-mechanically coupled material behavior in the framework of
the continuum mechanical theory. Fundamental topics, such as the origin of collective
magnetism, but also an introduction to continuum mechanics are given first for a better
understanding of the subject. Subsequently, two novel numerical methods are developed
to omit the direct discretization of the external space in terms of finite elements, sur-
rounding the magnet and allowing for efficient simulations of magnetic stray fields.
The first method is based on static condensation of the exterior space discretized by fi-
nite elements onto the surface of the interior space to be analyzed. This approach allows
even the consideration of inhomogeneities within the outer space, but is limited to very
large but still finite outer regions. The advantage of this method is to select the area to
be condensed large enough so that errors due to too small outer spaces do not occur.
Due to the static condensation in the form of a preliminary calculation, the size of the
outer area does not influence the simulation time. The second method bases on the scaled
boundary finite element method and provides a semi-analytical solution for the magne-
tostatic problem within the outer domain on the surface of the inner domain. Therefore,
an SBFEM-FEM-based coupling allows better simulation results with smaller systems of
equations compared to fully discretized and non-condensed exterior domains. In contrast
to fully discretized geometries both methods provide a significant speedup in computa-
tional time by a factor of ≈5.0.
Based on the constitutive equations, i.e. the magnetic Gauss law, the Landau-Lifshitz-
Gilbert equation, and the balance of momentum, a fully coupled micromagnetic-
mechanically system of equations is derived. Since the magnetization vectors within mi-
cromagnetic simulations have to be restricted onto the unit sphere, what is not a priori
fulfilled, constraining methods are required. The considered system of equations, applying
several constraining methods, is eventually implemented and those methods are evaluated
for performance, with each other. Finally it can be stated that all methods have their ad-
vantages and disadvantages, but the perturbed and condensed Lagrange multiplier has
proven to be very robust and time efficient compared to all other implemented methods.
Consequently, all subsequent micromagnetic simulations are performed using this formula-
tion. Subsequently, micromagnetic simulations of more realistic structures are performed.
The first subsequent series of simulations is focused on the analysis of defect structures
in heterogeneous microstructures and their influence on the effective magnetic behav-
ior. These defect structures can be assigned to microstructures produced by continuous
rotary swaging. A clear correlation between a strong intensity of defect structures and
decreasing effective performance of the magnets is shown. Subsequently, the influence of
different grain boundaries on the efficiency of magnetic materials is investigated. Here, a
clear dependence between the composition of the grain boundary interphases, which have
a magnetic coupling or decoupling effect depending on the composition and coercivity is
shown. Finally, a 3D polycrystalline microstructure with the individual grains separated
by a grain boundary layer is investigated in this work. This example should rather serve
as a motivation for further simulations and demonstrate the workability of the presented
method also for large systems, i.e. large systems of equations as well as microstructures.
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The functionality of the formulations presented in this work has been demonstrated in
detail using representative examples. Consequently, these formulations serve as a starting
point for improvements and extensions. Some possible future topics are listed below:

• The perturbed and condensed Lagrange multiplier has proven to be quite robust
and performant. Nevertheless, further investigations concerning a priori length-
preserving methods without singular points should be carried out to obtain a nu-
merically even more robust formulation.

• The micromagnetic formulation of this work is based on the Landau-Lifshitz-Gilbert
equation, which contains a precession term in addition to the damping term. The
latter plays a negligible role in the analysis of hard magnetic materials. For this rea-
son, comparative studies between formulations on the bases of the Landau-Lifshitz-
Gilbert equation with strong damping and formulations based on the Allen-Cahn
(time dependent Ginsburg-Landau equation) should be performed. The Allen-Cahn
equation misses of a precession part and has the advantage of yielding symmetrical
system matrices which can be advantageous within the numerical solution proce-
dure.

• Extending the formulation with a more efficient time integration method can lead
to a significant gain in accuracy and a speedup in computational time.

• Currently, a significant gap exists between the theoretically calculated and the ex-
perimentally obtained magnetic properties. This can be caused by over-ideal mi-
crostructures, which take too few of the real defects into account. For this reason,
a direct comparison between experiment and simulation is necessary. This also re-
quires a real 3D microstructure as a basis for the simulation.
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A Computation of the system matrix IK∞bb of an unbounded domain by
SBFEM

To solve boundary value problems within the context of the FEM and SBFEM (among
others), second-order ordinary differential equations (ODE) have to be transformed into
first-order ODEs. Within this framework, the system of first-order ODEs that is able to
describe the evolving magnetic fields can be stated as

ξX,ξ = −ZX−
{

0
F(ξ)

}
, (A.1)

where the variable X in Eq. A.1 is defined as

X(ξ) =

{
ξ0.5ϕd(ξ)

ξ−0.5
(
Q(ξ)−Q

0
(ξ)
) } . (A.2)

Here, the first entry corresponds to N nodal scalar potential degrees of freedom ϕd and the
second entry to N contributions of the nodal flux at an interface ξ. Q is the internal nodal
flux and Q

0
the initially prescribed nodal flux due to the externally applied magnetic field.

Hence, X results in a total length of 2N . The coefficient matrix

Z =

[ [
E0
]−1

E1T − 0.5I −
[
E0
]−1

−E2 + E1
[
E0
]−1

E1T −(E1
[
E0
]−1 − 0.5I)

]
(A.3)

is a Hamiltonian matrix with the coefficients E0, E1 and E2 following the derivations given
in Birk et al. [2022]. A distinctive characteristic of this formulation is the additional
term on the right-hand side of the Eq. A.1. It contains the contribution of the externally
applied magnetic field F to the system of equations. In general, all necessary definitions
are now introduced to solve the scaled boundary finite element equation Eq. A.1 by means
of the eigenvalue method. Here, however, numerical difficulties can occur sinceeigenvectors
associated with multiple eigenvalues cannot be decoupled straightforwardly. According to
Song [2004], this problem can be avoided if instead of the eigenvalue method, a com-
bination of matrix exponential functions and a real-valued Schur decomposition of the
Hamiltonian matrix Z is performed. For more information on this method, it is referred
to Song [2004] and Birk et al. [2022]. The transformation matrix Ψ given in Eq. 4.69
is a result of this method and can be used to calculate the static system matrix

IK∞bb = −Ψ22(Ψ12)−1. (A.4)
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