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1. Introduction

It is nowadays univocal that climate change poses a major challenge for all of hu-
mankind and life on earth. The number of extreme weather events increases year
by year and temperatures have risen at a rapid rate. The summer of 2023 has been
the hottest summer on record globally (EEA, 2023) and given the current temperature
trajectory, this probably was not the last summer of its kind. On the other hand, in-
tergovernmental institutions and governments all over the world implement different
legislation to curb the emission of carbon and achieve the goal of being carbon-neutral
by 2050. In response to these developments, people are adjusting their behavioral pat-
terns and mindsets. From a financial perspective, which will be the main scope of this
thesis, all these events display severe risks which can incur significant costs for firms.

Typically, the financial risks associated with the climate change events outlined above
materialize through three main channels: physical risk, transition risk and carbon risk.
Physical risk comprises risks due to physical changes in climate such as droughts, wild-
fires or temperature rise. Transition risk refers to the risks associated with the low-
carbon transition pathway, while carbon risk, as a subcategory of transition risk, incor-
porates only the risks related to emissions. From a firm’s perspective, all risk types can
profoundly affect business models and generate sizable costs. Unquestionably, these
costs could significantly affect firms’ cash flows and valuations, undermining their
ability to service and repay their debt, and eventually leading to higher probabilities
of default and higher credit risks (Aiello and Angelico, 2022; BIS, 2021; Carbone et al.,
2021; Reznick and Viehs, 2018; Virgilio et al., 2022; Billio and Giacomelli, 2022; Caicedo,
2022). Hence, it is of utter importance for firms to understand how these climate risks
translate financially and contribute to their credit risk.

Given these observations, it is important to have theoretical frameworks at hand which
are able to capture these effects. This is where we make our first contribution. Build-
ing on the seminal, structural Merton (1974a) model, we propose a new model that
introduces a random growth adjustment factor in the firm value dynamics to reflect the
depreciation due to climate risks. Within this model, we find that higher exposure to cli-
mate risk implies higher probabilities of default and, ultimately, higher credit spreads.
In addition, we also provide a comprehensive overview of competing structural credit
models. Different approaches on how to incorporate climate risk in structural mod-
els of credit have already been suggested. Bouchet and Guenedal (2020) investigate
the sensitivity to transition risk by transmitting carbon price shocks to the firm value
process. Kölbel et al. (2022) and Agliardi and Agliardi (2021) acknowledge the unpre-
dictability of some climate risk types and argue for the incorporation of a jump-type
component. Last, Le Guenedal and Tankov (2022) introduce a Bayesian approach in a
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1. Introduction

first-passage-time credit model to account for scenario uncertainty.

Empirical literature establishing the link between climate change and credit risk is
growing as well. Looking at the physical risk channel, various studies examine the
effect of natural disasters on different credit instruments (Rajhi and Albuquerque, 2017,
Kölbel et al., 2022, Bats et al., 2023). The vast majority finds evidence of deteriorating
effects for firms vulnerable to physical climate events. On the transitional dimension,
several researchers have investigated the effects on credit risk through the lens of the
cost of debt (Kleimeier and Viehs, 2018, Jung et al., 2018, Delis et al., 2018), corporate
bonds (Duan et al., 2023 Seltzer et al., 2022), distance-to-default (Capasso et al., 2020),
options (Ilhan et al., 2020) and credit default swaps (Kölbel et al., 2022, Barth et al., 2022,
Christ et al., 2022; Zhang and Zhao, 2022). The overall consensus is that firms more ex-
posed to the risks associated with the low-carbon pathway exhibit higher financing and
protection costs than firms well prepared for the transition.

Despite the comprehensive evidence on the relationship between climate risk and credit,
most of the used climate risk proxies in these existing studies are insufficient. This is
because most of them rely on historical information when it comes to quantifying cli-
mate risk. Climate risks, however, are future risks and hence relying on past data is
usually not the appropriate choice. Instead, it is important to incorporate the forward-
looking aspect of climate risk into the measurement. We contribute on this dimension
by proposing a market-based, frequently observable risk metric that incorporates this
important characteristic. For that, we concentrate on the measurement of carbon risk in
this thesis, recognizing the relative prominence of carbon among transition risks, and
given its wide coverage across countries, markets and sectors.

Motivated by the theoretical models, we utilize the information contained in the spreads
of Credit Default Swap (CDS) contracts to construct a market-implied, forward-looking car-
bon risk (CR) factor. CDSs offer several advantages over other commonly used credit
risk measures, such as corporate bonds (or ratings). First, CDSs respond more quickly
to changes in market conditions than alternative financial debt and credit products, be-
cause CDS contracts are traded on standardized terms (Blanco et al., 2005; Zhu, 2006;
Norden and Weber, 2009). Second, CDSs are usually more liquid than corporate bonds
(Longstaff et al., 2005; Ederington et al., 2015). Third, since there are CDS contracts with
varying tenors up to 30 years, they allow us to incorporate lenders’ collective forward-
looking considerations.

The carbon risk factor is constructed as the daily difference between the median CDS
spreads of high emission intensity (polluting) firms and low emission intensity (clean)
firms. This difference is used to identify shocks that affect polluting and clean firms
differently. When policy changes (e.g. announcement of tighter regulations) trigger a
rise in carbon risk, lenders to more (less) exposed firms demand increased (decreased)
protection, widening the CDS wedge, i.e. the distance between the price of default
protection for polluting and clean firms. Conversely, if a loosening of regulation is ex-
pected, there is a narrowing of the wedge (or even a negative wedge). The CR thereby
represents changes in perceived exposure to carbon risk. It mimics the dynamics of a
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lending portfolio in which default protection is bought for a polluting firm and sold for
a clean firm. We also utilize various adaptations of the CR factor to assess exposure to
carbon risk within sectors, countries, and across different term structures. Additionally,
we introduce a generalized version of the CR, the carbon tail risk (CTR), designed to
comprehensively capture the entire distribution of carbon risk, with a particular em-
phasis on its extreme parts.

Following upon this, we make a series of hypotheses and study how carbon risk af-
fects firms’ creditworthiness by examining whether firms’ exposure to carbon risk is
reflected in the market prices of their CDS contracts. Specifically, we investigate how
firms’ CDS spread returns change in response to variations in the CR factor. Our find-
ings are consistent with the hypothesis of a positive relationship between carbon risk
and CDS spread returns. We show that even under ordinary conditions (i.e. for median
returns in CDS spreads), carbon risk is a determinant of credit risk. Specifically, since
the carbon risk factor reflects the collective (market-wide) expectation of carbon risk,
an increase in the carbon risk is accompanied by lenders demanding more credit pro-
tection. We use quantile regressions to examine the effect of credit risk when credit
conditions are extraordinary, namely when firms experience large shifts in their CDS
spreads. The quantile regression describes the entire conditional distribution of the de-
pendent variable, and thus has the potential to uncover differences in the response of
the dependent variable across different quantiles. We find that the effect of carbon risk
is significantly amplified at the tail ends of the credit spread distribution. These find-
ings are especially relevant for the regulatory framework of carbon risk. In particular,
they highlight the relevance of assessing whether carbon risk is adequately accounted
for in prudential standards.

We conduct further analyses to test for geographical, regulatory and sectoral depen-
dencies. While an increase in the perceived carbon risk exposure is generally associated
with an increased cost of default protection, the size of this positive effect differs signif-
icantly across regions. In Europe, where climate policies are more stringent, there is a
very strong positive relationship, whereas the effect is comparatively weaker in North
America, which has generally had more ambiguous climate policy signals in recent
years. Employing data from the Carbon Disclosure Project (CDP), we discover addi-
tional evidence indicating that the significance of carbon risk is contingent upon the
extent to which firms fall under the purview of an Emissions Trading Scheme (ETS).
Firms that are subject to an ETS and whose regulated emissions are a substantial part
of their total emissions experience more pronounced effects than their non-regulated
counterparts. On a sectoral level, we find that carbon-intensive sectors (e.g. Energy)
are more affected than less carbon-intensive industries (e.g. Healthcare). This suggests
that the market recognizes which sectors are better positioned for a transition to a low-
carbon economy.

We also find that the effect of carbon risk on CDS contract prices is even stronger during
times of heightened public attention to climate change. Lenders appear to be more sen-
sitive to carbon risk when market-wide concern about climate change risk is elevated.
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1. Introduction

Finally, we provide a comprehensive analysis of the temporal dimension of the effect of
carbon risk. Using information from the entire CDS spread curve, we show that a shift
in the expected temporal materialization of carbon risk positively affects the steepness
of the CDS curve slope. In Europe, the effect on the CDS term structure is particularly
salient for shorter time horizons, suggesting that the market perceives carbon risk to be
a short- to medium-term risk.

The remainder of this thesis is organized as follows. Chapter 2 introduces the differ-
ent types of climate risk: physical risk, transition risk and carbon risk. We focus on
the financial, particularly credit-related, impact of these risk types and describe com-
mon ways to measure them. In Chapter 3, we continue with an introduction to credit
risk. We specifically introduce relevant credit products and sketch their pricing via
structural credit models. The chapter closes with a presentation of multiple climate-
adjusted models that incorporate the risk stemming from climate change. Serving as a
foundation for the remaining parts of this thesis, Chapter 4 describes the relevant data
(CDS spreads, control variables) as well as our methodological framework necessary
to investigate the effects of carbon risk on credit. Chapter 5 presents our approach in
quantifying the exposure to carbon risk. Particularly, we review the literature on exist-
ing metrics and introduce the CR factor. Aside from the general CR, we also propose
various different alternative CRs that identify exposures at the sectoral, geographical,
term structure and distributional level. In Chapter 6, we present the empirical results
of the effect of carbon risk on CDS spread returns. We investigate the general impact,
but also conduct further analyses to examine the effects with respect to different ge-
ographies, regulatory frameworks, sectors, attention regimes and term structures. Ad-
ditionally, we run a multitude of robustness checks to substantiate our findings. Last,
in Chapter 7, we resume our findings and outline possible future research paths.
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2. Climate risk

Climate risk encapsulates all risks that can be attributed to alterations resulting from
climate change. Generally, these risks materialize through three main channels: the
physical risk channel, the transition risk channel and the carbon risk channel. In the
following, all risk types, their financial impact as well as their measurement will be
described in more detail. In our exposition, we will mainly follow Hellmich and Kiesel
(2021).

2.1. Physical risk

Physical risks pertain to alterations in the climate’s physical characteristics, resulting
in shifts in climate patterns and variations in the frequency and intensity of extreme
weather events. In general, physical risks stem from two major sources. The first refers
to the potential harm caused by extreme weather events, such as heatwaves, droughts,
floods, and storms. These events can have a wide range of consequences for human
communities and natural ecosystems, including damage to infrastructure, loss of life,
and disruption of food and water supplies. The second source comes from the gradual
change of climate patterns over time, such as sea level rise or the expansion of deserts
in dry regions. Former habitable regions like coastal areas could become uninhabitable
making it impossible for firms to continue their production in the region and hence
they need to relocate their business.

As illustrated in Figure 2.1, physical risks can have a significant impact on a firm’s fi-
nancial performance, as these risks can disrupt the normal operations of their business
and lead to financial losses. For instance, a heatwave could cause a power outage that
halts production at a factory, or a flood could damage a firm’s supply chain and dis-
rupt its ability to get products to market. Additionally, physical risks can also lead to
increased costs for a business, such as higher insurance premiums or the need to invest
in resilience measures like sea walls or cooling systems. Firms with high exposure to
physical risks will also likely be assigned a higher credit risk by investors and lenders,
as their operations and financial performance may be more vulnerable to disruption.
This can make it more difficult for these firms to access capital sources, and could also
lead to higher interest rates on loans or bonds. The following real-world example of the
Californian utility PG&E illustrates the potentially severe and adverse effects physical
risk can have for firms.
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2. Climate risk

Figure 2.1.: Transmission channels of physical risk drivers. Source: NGFS (2021).

Example: The bankruptcy of Pacific Gas & Electric (PG&E)

On January 29, 2019, California’s largest utility PG&E filed for Chapter 11 bankruptcy
after facing $30 billion in potential liabilities from wildfires linked

Figure 2.2.: Headline of the Forbes article
“PG&E Is Just The First Of Many Climate
Change Bankruptcies” from Jan 24, 2019.
Source of photograph: Ross Stone (retrieved
from Unsplash under the Unsplash license).

to their power lines. It is suspected that the fire
originated from a PG&E power line coming into
contact with nearby trees. Prior to the blaze’s on-
set, PG&E had reported an outage on a transmis-
sion line in the vicinity. In the extensive burnt re-
gion, PG&E discovered power equipment and a
fallen power pole, both of which exhibited bul-
let holes. Furthermore, a string of wildfires in
2017, many of which were attributed to PG&E,
resulted in $10 billion in damages and claimed
44 lives. State investigators identified 11 of those
fires where the firm had violated regulations per-
taining to brush clearance around its power lines
or committed related infractions. The bankruptcy
of PG&E is widely considered the first climate
change bankruptcy and highlights the importance
for firms to thoroughly identify and mitigate vul-
nerabilities to physical climate risk events.

Empirical literature establishing the link between physical risks and financial risk is
growing. In the realm of equity research, Hong et al. (2019) conduct a study to assess
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2.2. Transition / carbon risk

whether food stocks accurately account for the long-term drought risk. Their find-
ings indicate that the prices of food stocks exhibit an insufficient reaction to climate
change risks. Similarly, Gostlow (2022) employs a factor-based analysis and concludes
that physical climate risks do not elucidate variations in stock returns. Additionally,
utilizing a text-based factor approach, Faccini et al. (2021) fail to identify substantial ev-
idence suggesting the integration of news concerning natural disasters into the market.
Looking at the credit dimension, various studies examine the effect of natural disasters
on different credit instruments (Rajhi and Albuquerque, 2017, Kölbel et al., 2022, Bats
et al., 2023). The vast majority finds evidence of credit-deteriorating effects for firms
vulnerable to physical climate events.

Measuring physical climate risk involves a multifaceted approach that combines obser-
vational data, climate modeling, and vulnerability assessments. The Intergovernmental
Panel on Climate Change (IPCC) provides valuable guidelines and sources for under-
standing the methodology. Initial steps include collecting historical climate data from
meteorological observations and satellite records. The World Meteorological Organiza-
tion (WMO) and the National Oceanic and Atmospheric Administration (NOAA) offer
comprehensive datasets for this purpose. Climate models, such as those developed by
the National Center for Atmospheric Research (NCAR), simulate future climate scenar-
ios based on various greenhouse gas emission trajectories. Vulnerability assessments
consider the exposure, sensitivity, and adaptive capacity of physical assets and sectors,
as outlined in the IPCC’s assessment reports.

2.2. Transition / carbon risk

Transition risk refers to the risks associated with the transition to a more sustainable
and low-carbon economy. These risks typically comprise three major components: reg-
ulatory risks related to changes in policy and legislation, technological risks associated
with investing in new technologies and market risks due to changing demand pref-
erences. Managing these risks involves careful planning and assessment, as well as
the development of strategies to address potential challenges. Carbon risk, on the other
hand, narrows the definition down to risks related to greenhouse gas (GHG) emissions.
Typical examples comprise implemented policies to curb emissions, such as emission
trading schemes or taxes. Additionally, past emissions of firms may also be subject to
litigation risks if they fail to comply with their targets.

With transition risk affecting a firm’s ability to generate revenue and profits in the fu-
ture, it also represents a non-negligible driver of financial risk (see Table 2.3). If a firm’s
business model becomes less profitable or relevant in a low-carbon economy, the firm
may struggle to meet its financial obligations, such as repaying debt or paying divi-
dends to shareholders. This can lead to a downgrade in the firm’s credit rating, making
it more difficult and expensive for the firm to access capital markets. Additionally,
if a firm is heavily reliant on fossil fuels and does not have a strategy to transition to
cleaner energy sources, it may be at a higher risk of defaulting on its debt as regulations
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2. Climate risk

Figure 2.3.: Transmission channels of transition risk drivers. Source: NGFS (2021).

and policies aimed at reducing carbon emissions become more strict. However, firms
that are able to proactively manage their transition risk by diversifying their revenue
streams, investing in low-carbon technologies and aligning their strategy with the regu-
latory framework, may be seen as less risky and have more favorable credit conditions.
The following example of the EU phaseout of combustion engine cars demonstrates
how transition risk (specifically regulatory risk) can act on firms’ credit state percep-
tion.

Example: EU phaseout of combustion engine cars

On July 14, 2021 the European Commission proposed an effective ban on the sale of
new petrol and diesel cars from 2035 with the aim to speed up the transition to zero-
emission electric vehicles. Although initially blocked by Germany demanding excep-
tions for hybrid vehicles, German environment minister Lemke eventually agreed to
the plan on March 16, 2022. Following upon this, the EU’s environment ministers fi-
nally struck a deal on the ban of combustion engine cars on June 29, 2022.

Figure 2.4.: Daily evolution of 5-year CDS spreads of
BMW (blue), Volvo (orange) and Volkswagen (red)
from Jan 1, 2021 until Dec 31, 2022. The vertical
lines indicate the announcement of the EU proposal
(darkgreen), Germany’s decision to finally back up
the phase out (darkblue) and the final EU agreement
(magenta). Own illustration based on CDS data from
Refinitiv.

As a result of these policy decisions, the costs
of default protection for automotive manu-
facturers (proxied by their CDS spread) sig-
nificantly went up. Figure 2.4 displays the
daily evolution of 5-years CDS spreads of
three major European automotive manufac-
tures (BMW, Volvo and Volkswagen) from
2021 until 2022 as well as three vertical lines
highlighting the relevant policy events out-
lined above. While the reaction to the EU
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2.2. Transition / carbon risk

proposal (darkgreen) is mild given the sub-
sequent temporal blockade by Germany, the
protection costs severely increased once the
German government finally agreed to the
phaseout (darkblue). With the final decision
by the EU’s environment ministers to imple-
ment the ban (magenta), these costs spiked to its maximum. Although the CDS spreads
reverted back afterwards, the overall costs – starting from the first EU proposal – sig-
nificantly leveled up, illustrating the influential effect of regulatory changes on firms
credit risk.

Recent works have focused on the effect of a low-carbon transition on the equity mar-
ket (Bolton and Kacperczyk, 2021; Cheema-Fox et al., 2020; Görgen et al., 2020; Hsu et
al., 2022; Lioui, 2022) and the capital structure (Nguyen and Phan, 2020; Kleimeier and
Viehs, 2018). Using firms’ carbon emissions to codify their exposure to carbon risk, and
the effort required to successfully transition to a low-carbon economy, these papers doc-
ument that firms with an emissions-intensive business model have disproportionately
higher transition costs than their low-carbon peers. There is an also growing body of
empirical work investigating the effects of transition risk on credit risk through the lens
of the cost of debt (Kleimeier and Viehs, 2018; Jung et al., 2018; Delis et al., 2018), cor-
porate bonds (Duan et al., 2021; Seltzer et al., 2022), distance-to-default (Capasso et al.,
2020), options (Ilhan et al., 2020), and CDSs (Barth et al., 2022; Christ et al., 2022; Kölbel
et al., 2022; Zhang and Zhao, 2022). This literature tends to find increased financing
and protection costs for firms that are relatively more exposed to the low-carbon tran-
sition. Several of these studies document a strengthening of the effect after the Paris
Agreement.

When it comes to quantifying a firm’s exposure to carbon (and also transition) risk, the
general strategy is to look at their total emissions. The simple rationale is that firms
with more emissions need to undertake more measures to become a net-zero aligned
firm compared to their low-carbon peers. The current standard of measuring total emis-
sions is specified by the GHG Protocol, which was jointly established by the World Re-
sources Institute (WRI) and the World Business Council for Sustainable Development
(WBCSD). The GHG Protocol distinguishes between three sources of emissions:

• Scope 1 emissions cover direct emissions from establishments that are owned or
controlled by the firm, including all emissions from fossil fuel used in production.

• Scope 2 emissions come from the generation of purchased heat, steam and elec-
tricity consumed by the firm.

• Scope 3 emissions are caused by the operations and products of the firm but are
generated by sources not owned or controlled by the firm.

9



2. Climate risk

One drawback of using total emissions is that it does not take into account the size of
firms and with it their operational efficiency regarding emissions. To circumvent this
issue and have a comparable metric, normalization by a firm-specific financial metric
(usually from the balance sheet) is done. The Task Force on Climate Related Financial
Disclosures (TCFD) recommends to use the following:

Emissions intensity =
Total emissions (in tonnes CO2e)

Revenues (in mil. $)
.

While this metric allows to draw comparisons between firms, it may still be sensitive to
the denominator, which, however, is not related to climate aspects whatsoever. Addi-
tionally, emissions intensities tend to be higher for larger firms, which can induce a bias
towards those firms. Consequently, a sector-specific normalization may be preferable.

Another prominent measure to quantify exposure to carbon risk are ESG (Environmen-
tal, Social, and Governance) ratings. These ratings are a set of metrics and evaluations
used by investors, firms, and other stakeholders to assess a firm’s environmental, social,
and governance performance. Their purpose is to provide an indication of how well a
firm is managing its impact on the environment, its relationships with society, and the
quality of its corporate governance. Focusing on the environmental part, these assess-
ments apply not only to firms’ carbon footprint, but also cover aspects such as environ-
mental management, supply chain practices, innovation or stakeholder engagement.
To conduct the assessment, vendors, like Refinitiv, MSCI, Sustainalytics and others, use
a combination of publicly available data, firm disclosures, and proprietary method-
ologies to provide scores for each of those aspects. Afterwards, they use a weighted
combination to come up with an aggregate rating that reflects a firm’s performance in
managing these risks.
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3. Credit risk

The quantification of a firm’s ability to fulfill its financial obligations lies at the heart of
credit risk. In the following, we will provide an introduction to credit risk and present
some of the most important credit instruments. Following upon that, we will introduce
structural models of credit risk and sketch the pricing of the aforementioned instru-
ments. Last, we will illustrate how these models can be augmented to account for the
climate risk part.

3.1. A brief introduction

Credit risk incorporates all risks associated to credit-linked events of an entity. These
events can include for example variations in the credit quality (rating upgrades or
downgrades), changing (re)financing costs or the bankruptcy of the entity (default
event). All these events can have financial consequences for the entity in question or an
insurer assuring the entity. To rigorously introduce the concept of credit risk, it is thus
important to quantify the expected costs associated to those events. For that, we first
need a proper notion of (expected) loss. Typically, loss comprises three components:
the probability of default (PD), the loss given default (LGD) and the exposure at de-
fault (EAD). Hence, we define the loss of an obligor as the random variable (see Bluhm
et al., 2002)

L̃ = EAD× LGD× L, (3.1)

where L = 1D is a Bernoulli-distributed random variable with P(D) = PD. Following
this definition, the expected loss (EL) is now naturally given by

EL = E[L̃] = EAD× LGD×P(D), (3.2)

where we use E[1D] = P(D) and for simplicity assume that EAD and LGD are constant
values.1 In the following, we will describe each component of the expected loss in more
detail.

The PD constitutes the likelihood that the obligor defaults on its debt within a pre-
specified time horizon. It is a crucial concept in the risk management of financial in-
stitutions, serving as a key component in credit risk analysis. The PD is expressed in
percent and is typically calibrated from market data or credit ratings such as Standard
& Poor’s (S&P), Fitch or Moody’s. A higher PD indicates a greater risk of default, and

1Equation (3.2) still holds if EAD and LGD are assumed to be random, but all components are jointly
independent. In this case, EAD and LGD represent the expectations of the introduced random variables.
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financial institutions use this metric to make informed decisions about lending, invest-
ment, and risk management.

The EAD quantifies the level of risk a bank faces from its borrowers. Typically, this
exposure is comprised of two primary components: outstandings and commitments.
Outstandings represent the portion of the exposure that the obligor has already uti-
lized. In the event of the borrower’s default, the bank is at risk for the entire outstand-
ing amount. Commitments can be divided into two categories: undrawn and drawn,
up until the point of default. The total commitments represent the amount that the
bank has committed to lend to the obligor upon their request. Historical data reveals
that borrowers often tap into their committed lines of credit during financial hardships.
Consequently, in the event of obligor default, the commitments are also exposed to po-
tential losses, but only the drawn portion of commitments prior to default contributes
to the loan loss. The proportion of commitments divided into drawn and undrawn seg-
ments is a random variable, reflecting the optional nature of commitments. Hence, it is
immediate to define the EAD as:

EAD = Outstandings + ξ ×Commitments,

where ξ ∈ [0, 1] is the expected portion of the commitments likely to be drawn prior to
default.

The LGD quantifies the portion of loss the bank will really suffer in case of default.
It represents the portion of the exposure that remains unrecovered after the default
and subsequent recovery efforts, expressed as a percentage of the initial exposure. In
essence, LGD provides insight into the severity of financial loss in a default scenario,
taking into account factors like collateral, guarantees and recovery processes. A lower
LGD indicates a higher likelihood of recovering a significant portion of the exposure,
while a higher LGD implies a more substantial loss upon default, which is a crucial
consideration in risk assessment, portfolio management, and capital provisioning for
financial institutions.

3.2. Credit instruments

This section provides an overview of relevant credit instruments. We will focus on two
main instruments: corporate bonds and credit default swaps (CDSs). Corporate bonds
are the most commonly known credit product and serve as the main tool for firms to
finance their business via debt. CDSs are popular default insurance products and will
be comprehensively used later on in this thesis. In our exposition, we will mainly follow
Bielecki and Rutkowski (2004) and Augustin et al. (2014).

3.2.1. Corporate bonds

Corporate bonds represent debt instruments issued by firms, constituting a fundamen-
tal component of a firm’s capital structure. When a firm issues bonds, it commits to
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making predetermined payments to bondholders at specified future dates, charging a
fee for this obligation. Nevertheless, a risk of default exists, wherein the firm may fail
to fulfill its commitment, leading to a partial loss for bondholders. This default risk is
relevant only during the bond’s existence, spanning from its issuance to maturity.

A corporate bond exemplifies a defaultable claim, with its notional amount, or face
value, set at F units of currency, such as US dollars, and a fixed maturity date denoted
as T. Key elements of every bond are:

• Recovery rules: Recovery rules refer to the process by which bondholders may
recover their investment in the event of a default by the issuer. Recovery is usually
achieved through bankruptcy proceedings or asset liquidation. Recovery rules
can vary widely between bonds and may be governed by the bond’s indenture,
which is a legal document outlining the terms and conditions of the bond.

• Safety covenants: Safety covenants are protective clauses included in the bond’s
indenture to safeguard bondholders’ interests. They may include restrictions on
the issuer’s actions, such as limiting additional debt issuance, specifying financial
reporting requirements, or defining collateral for secured bonds. Safety covenants
enhance the security of the bond by reducing the risk of default.

• Credit spread: A credit spread quantifies the additional return offered by a cor-
porate bond compared to an equivalent Treasury bond, assumed to be devoid of
credit risk. Depending on the context, a credit spread can be expressed as the dis-
parity between their respective yields to maturity or as the divergence between
their corresponding instantaneous forward rates.

• Coupon: The coupon rate of a bond is the annual interest rate paid to bondhold-
ers. It is typically a fixed percentage of the bond’s face value and determines the
periodic interest payments. Coupons can be fixed, floating (adjusted periodically
based on market interest rates), or zero-coupon (no periodic interest payments,
with the entire return realized at maturity).

3.2.2. Credit default swaps (CDSs)

Introduced by J.P. Morgan in 1994 to transfer credit risk, credit default swaps (CDSs)
are insurance contracts allowing the protection buyer to purchase insurance against a
contingent credit event on an underlying reference entity. For the insurance, the buyer
pays an annuity premium to the protection seller. The so-called CDS spread, is paid
either until the reference entity defaults or the maturity of the contract. The spread
is typically quoted as a percentage of the insured notional amount (basis points) and
can be paid in quarterly or semi-annual schemes. If the reference entity is unable to
meet its debt obligations, i.e. a credit event occurs, the protection seller is obliged to
make a payment of the difference between the notional principal and the value of the
underlying reference obligation (LGD) to the protection buyer. Figure 3.1 illustrates the
basic features of a CDS contract with a simple example.
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Figure 3.1.: Basic features of a CDS contract. Source: Bomfim (2005).

CDS contracts are traded over-the-counter (OTC) and set up in a standardized structure
which was laid out by the International Swaps and Derivatives Association (ISDA) via
master agreements. The reference entity can comprise obligors, such as firms, countries
or an underlying credit product issued by the respective obligor (e.g. bonds). CDS
contracts have different tenors ranging from 6 months up to 30 years with 5 years being
the most commonly traded tenor in the market. Events that classify as a credit event in
a CDS contract are typically the following:

• bankruptcy

• failure to pay

• obligation of default or acceleration

• repudiation or moratorium

• restructuring.

For the latter event, multiple tradable clauses exist:

• Full Restructuring (CR): Restructuring is defined as a credit event in its original
form. Standard clause in the sovereign CDS market.

• Modified Restructuring (MR): Restructuring is still defined as a credit event, but
the deliverable obligations are limited to those with tenors within 30 months of
the CDS contract’s remaining tenor. Standard clause in the North American CDS
market until 2009.

• Modified-Modified Restructuring (MM): Restructuring is still defined as a credit
event, but the deliverable obligations are restricted to those with tenors of up to
60 months within the CDS contract’s remaining tenor for restructured debt, and
30 months for other obligations. Standard clause in the European CDS market.

• No Restructuring (XR): Restructuring is not defined as a credit event. Standard
clause in the North American CDS market.
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CDS contracts can be settled in two ways: cash settlement or physical delivery of a
specific set of reference obligations. In a cash settlement scenario, the financial ex-
change only covers actual losses incurred, with the claimant retaining the debt claim
on the reference entity’s balance sheet. Conversely, in a physical delivery settlement,
the claimant transfers the referenced obligation as per the contract to the insurer and,
in return, receives the full notional amount of the underlying contract. Subsequently,
the protection seller may seek to maximize the resale value of the received debt claim
or choose to retain it.

3.3. Structural models of credit risk

The modeling of credit risk follows two main approaches: structural and reduced-form
models. Structural models explicitly describe the firm value and define a credit event
as an event triggered by movements of the firm value relative to some (random) de-
fault barrier. Reduced-form models instead represent credit events as a result of some
exogenously specified jump process and disregard firm characteristics (value, capital
structure) completely. In this thesis, we will focus on structural models as we want to
understand the economic mechanism of climate risk on credit. Specifically, we present
the original Merton model and discuss relevant extensions of it. In our exposition, we
will mainly follow Bielecki and Rutkowski (2004) and Lando (2004).

3.3.1. Merton model

Structural credit models have been introduced by Merton (1974b) using a framework
relying on the standard Black-Scholes assumptions. Here, the firm is financed by equity
St and a single zero-coupon bond Bt with face value F and maturity T. Consequently,
the total value of the firm’s assets at time t is Vt = St + Bt. The risk-free interest rate is
r > 0. Under an equivalent martingale measure P∗, the firm value Vt is governed by
the following dynamics

dVt = (r− γ)Vtdt + σVVtdW̃t (3.3)

with volatility σV > 0, constant dividend rate γ and W̃t a Brownian motion under P∗.
Default only takes place at maturity T and happens if the the total firm value VT is less
than the face value of the bond F. For equity owners the terminal payoff is then

ST = (VT − F)+ ,

whereas the terminal cash flow BT received by the bond owner is

BT = F− (F−VT)
+ =

{
F, if VT ≥ F
VT if VT < F.

Consequently, equity can be viewed as a call option on the firm value and bonds can be
viewed as a portfolio long a risk-free payment and short a put option on the firm value.
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A straightforward calculation in the Black-Scholes-Merton framework then yields the
value of equity

St = Vte−γ(T−t)Φ(d1)− Fe−r(T−t)Φ(d2) (3.4)

and the bond price

Bt = Vte−γ(T−t)Φ (−d1) + Fe−r(T−t)Φ (d2) (3.5)

with Φ(·) denoting the cumulative standard normal distribution, and

d1 =
log (Vt/F) +

(
r− γ + σ2

V/2
)
(T − t)

σV
√

T − t
,

d2 = d1 − σV
√

T − t.

Risk-neutral probabilities of default (conditional on Ft) are given by

p∗t = P∗(VT < F|Ft) = Φ (−d2) . (3.6)

Thus, we can give the following alternative representation for the bond price

Bt = Fe−r(T−t)(1− p∗t ) + Fe−r(T−t)p∗t δ∗t ,

where

δ∗t =
EP∗

[
VT1{VT<F}|Ft

]
FP∗(VT < F|Ft)

=
Vte−γ(T−t)Φ(−d1)

Fe−r(T−t)Φ(−d2)

is the conditional risk-neutral expected recovery rate upon default. The credit spread,
defined as the difference between the yield of a defaultable bond and a default-free
bond, is given by

yt = −
1

T − t
log
(

Vte−γ(T−t)Φ(−d1) + Fe−r(T−t)Φ(d2)
)

.

Typically, the time t firm value Vt and its volatility σV are unobservable. To overcome
this issue and obtain these parameters, the nonlinear system of equations comprising
equation (3.4) and the identity2

σS =
Φ(d1)e−γ(T−t)VtσV

St
, (3.7)

with St and σS the observable equity value and its volatility, has to be solved. Once the
tuple (Vt, σV) is known, we can obtain bond prices and (actual) probabilities of default.
For the latter, let us assume that under the historical measure P

dVt = (µ− γ)Vtdt + σVVtdWt (3.8)

2(3.7) is obtained by applying Itô’s formula to obtain the stock price dynamics.
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for some constant µ and Wt a P-Brownian motion. The actual probability of default is
then given by

P(VT < F|Ft) = Φ (−DDt) , (3.9)

where

DDt =
log (Vt/F) +

(
µ− γ− σ2

V/2
)
(T − t)

σV
√

T − t

is the distance-to-default. DDt measures the distance of the expected total value of the
firm’s assets from the default point F at time t (scaled inversely by the volatility of the
firm’s assets).

3.3.2. Extensions

While the Merton model provides a very useful framework to think about implications
and relations of the capital structure and defaultable bond prices, practical applications
require to relax some of the model assumptions. For instance, the continuity of the
value process Vt implies that credit spreads will either tend to zero or infinity as matu-
rity approaches, which contradicts empirical evidence. Also, the capital structure of a
firm is fixed in the Merton model and we obtain only the prices of equity and corporate
bonds in a given capital structure. In practice, firms optimize their capital structure and
models should accommodate this. Below, we will discuss these extensions. For further
extensions, such as allowing default prior to maturity or stochastic interest rates, we
refer to Bielecki and Rutkowski (2004) and Lando (2004).

Jump-diffusion models

As stated above, the continuity of the firm value process Vt prevents unexpected events
(e.g. a sudden default) from happening. Thus, the Merton model cannot replicate the
empirically observed positive credit spreads for very short-term maturities. To circum-
vent this problem, Zhou (2001) extends the firm value process to a jump-diffusion pro-
cess.
For the jump component, they introduce a Poisson process Nt with intensity λ under
the risk-neutral measure P∗. Additionally, let (Ỹi)i≥1 be a sequence of i.i.d. random
variables with mean ν < ∞ that will represent the jump sizes. Now, under P∗ the
dynamics of the firm value (with γ = 0) are given by

dVt = Vt−((r− λν)dt + σVdW̃t + dL̃t),

where

L̃t =
Nt

∑
i=1

Ỹi
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is a marked Poisson process that governs the discontinuous changes in the firm value.
The processes W̃t, Nt and (Ỹi)i≥1 are assumed to be mutually independent under P∗.
The firm value is now given by

VT = Vt exp
((

r− 1
2

σV − λν

)
(T − t) + σV(W̃T − W̃t)

) Nt

∏
i=1

(1 + Ỹi).

To obtain semi-analytic results, the jump size distribution is assumed to be log-normal3,
that is, log(Yi + 1) ∼ N (µ, σ2). Then

ν = exp
(

µ +
1
2

σ2
)
− 1.

The risk-neutral probability of default is now given by

P∗(VT < F|Ft) =
∞

∑
i=0

e−λ(T−t) (λ(T − t))i

i!
Φ(−d2,i(Vt, T − t)), (3.10)

where

d2,i(Vt, T − t) =
log(Vt/F) + µi(T − t)

σi(T − t)

with

µi(T − t) =
(

r− 1
2

σ2
V − λν

)
(T − t) + iµ,

σi(T − t) = σ2
V(T − t) + iσ2.

With the introduction of the jump component in the firm value dynamics, the finan-
cial market at hand becomes incomplete and the specification of a market premium is
required. Assuming no jump-risk premium, the bond price equals

Bt = Fe−r(T−t)

{
1−

∞

∑
i=0

e−λ(T−t) (λ(T − t))i

i!
Φ (−d2,i (Vt, T − t))

+
Vt

F

∞

∑
i=0

eµi(T−t)+σ2
i (T−t)/2−λ(T−t) (λ(T − t))i

i!
Φ (−d1,i (Vt, T − t))

}
. (3.11)

Optimal capital structure models

A straightforward approach to allow optimizing the capital structure is to include bankruptcy
costs and tax advantages from issuing debt. The model needs to accommodate for a
dynamic capital choice and default events are associated with the first passage time
of some pre-specified barrier. In the following, we will focus on models suggested by

3An alternative is to use the double-exponential distribution advocated by Kou and Wang, 2004.
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Leland (1994) and Leland and Toft (1996), in which stockholders choose a bankruptcy
policy in such a way that the value of equity will be maximized (or, equivalently, the
value of debt will be minimized).4 To introduce a standard setting, assume that the
firm has a stationary debt structure and issues a coupon bond with face value F, matu-
rity T and constant coupon rate c. That is, the face value is uniformly distributed over
[t, T] and the firm constantly issues new bond principal at rate f = F/T per year with
coupon rate c = C/T per year. Given the solvency of the firm, the total outstanding
principal and the total coupon paid by all outstanding bonds are thus F and C per year,
respectively. With that, the total debt service payments remain constant over time and
equal C + f .

Default happens if the firm value falls below the constant default barrier v̄. Hence, the
default time is given by

τ = inf{t ≥ 0 : Vt ≤ v̄}.

In case of default bondholders will receive a recovery payment at default of βv̄, where
β ∈ [0, 1]. Consequently, (1− β)v represents the costs upon bankruptcy. Tax benefits
arise from the tax-sheltering effects of debt financing. These benefits can be interpreted
as constant coupon rate c̄ which can be claimed as long as the firm does not default.
Incorporating these two components yields the following total value of the firm at time
t

T(Vt) = Vt +
c̄
r

(
1−

(
v̄
Vt

) 2r
σ2

v

)
− (1− β)v̄

(
v̄
Vt

) 2r
σ2

v . (3.12)

In the setting of the Merton model, the value of the firm’s debt is then given by

Bt(Vt) =
C
r
+

1
r(T − t)

(
F− c

r

) ∫ T

t
e−rug(u)du +

1
T − t

(
βv̄− c

r

) ∫ T

t
h(u)du,

where

g(u) = Φ (k1(u))−
(

v̄
Vt

)2ã

Φ (k2(u)) ,

h(u) =
(

v̄
Vt

)ã+ζ̃

Φ (g1(u)) +
(

v̄
Vt

)ã−ζ̃

Φ (g2(u))

with

ν̃ = r− γ− 1
2

σ2
V , ã = ν̃σ−2

V , ζ̃ = σ−2
V

√
ν̃2 + 2σVr,

4These models build on Black and Cox (1976) and require the calculation of various functionals of
Brownian motion.
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and

k1(u) =
log (Vt/v̄) + ν̃u

σV
√

u
, k2(u) =

log (v̄/Vt) + ν̃u
σV
√

u
,

g1(u) =
log (v̄/Vt) + ζ̃σ2

Vu
σV
√

u
, g2(u) =

log (v̄/Vt)− ζ̃σ2
Vu

σV
√

u
.

The optimal default barrier v∗ can now endogenously be determined by maximizing
the equity value St(Vt). Observing that St(Vt) = T(Vt) − Bt(Vt) and invoking the
smooth-pasting condition ∂St

∂Vt
|Vt=v∗ = 0 yields

v∗ =
C
r

(
A

r(T−t) − B
)
− AF

r(T−t) −
c̄(ã+ζ̃)

r

1 + ã(ã + ζ̃)− (1− ã)B
,

where

A = 2ãe−r(T−t)Φ
(

ãσV
√

T − t
)
− 2ζ̃Φ

(
ζ̃σV
√

T − t
)

− 2
σV
√

T − t
φ
(

ζ̃σV
√

T − t
)
+

2e−r(T−t)

σV
√

T − t
φ
(

ãσV
√

T − t
)
+ ζ̃ − ã,

B = −
(

2ζ̃ +
2

ζ̃σV(T − t)

)
Φ
(

ζ̃σV
√

T − t
)
− 2

σV
√

T − t
φ
(

ζ̃σV
√

T − t
)

+ ζ̃ − ã +
1

ζ̃σV(T − t)
,

where φ(·) denotes the density function of the standard normal distribution. Finally, it
is now possible to determine the optimal leverage ratio that maximizes the firm value
for different debt maturities.

3.4. Climate-adjusted models of credit risk

In order to analyze and model the impact of climate change risks (physical, transition
and carbon risk), standard credit models are adjusted to include climate risk. In the
following, we introduce a model to incorporate these risks. Furthermore, we outline
and comment on various alternative approaches brought forward in the literature.

3.4.1. Growth adjustment

As climate risks (and opportunities) will affect the value of a firm, a straight-forward
way to incorporate climate risk is to adjust the growth rate of the value process. This can
explicitly be done in the structural model by introducing a growth adjustment factor δt.
Depending on a firm’s exposure (or opportunities) the factor adjusts the dynamics of
the value process and allows to assess the effect of climate risk on the credit risk of
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a firm. Let us illustrate the effect in terms of calculations regarding the distance-to-
default process5 of a firm.

Including a growth factor, the dynamics of the firm value are given by

dVt = Vt

(
(r− δt)dt + σVdW(1)

t

)
, (3.13)

where W(1)
t is a Brownian motion. In the case of a constant carbon rate (δt = δ), the

formulation is equivalent to the Merton model with dividend rate γ = δ and all the
results coincide with the ones obtained in Section 3.3.1. However, we may also assume
that δt itself follows a random process

dδt = µδdt + σδdW(2)
t ,

for some constants µδ, σδ > 0 and W(2)
t another Brownian motion with dW(1)

t dW(2)
t =

ρdt. Hence, we allow the growth adjustment factor to increase over time due to rising
climate risk exposure.

In this framework, the bond price and credit spread are now given by

Bt = Vte
− 1

2

(
µδ(T−t)− 1

3 σ2
δ (T−t)2− 2√

3
σV σδρ

)
(T−t)Φ (−d1) + Fe−r(T−t)Φ (d2) (3.14)

resp.

yt = −
log
(

Vte
− 1

2

(
µδ(T−t)− 1

3 σ2
δ (T−t)2− 2√

3
σV σδρ

)
(T−t)Φ(−d1) + Fe−r(T−t)Φ(d2)

)
T − t

,

where

d1 =
log(Vt/F) +

(
r−

(
µδ(T − t) + σ2

V
)

/2 + σ2
T
)
(T − t)

σT
√

T − t
, d2 = d1 − σT

√
T − t,

with

σT =

√
σ2

V +
1
3

σ2
δ (T − t)2 +

2√
3

σVσδρ(T − t).

Assuming the same P-dynamics as in (3.8) the distance-to-default in the model reads

DDt =
log (Vt/F) +

(
µ−

(
µδ(T − t) + σ2

V
)

/2
)
(T − t)

σT
√

T − t
,

5The distance-to-default is a measure based on the relation of the value process and the default bound-
ary and widely used in variants of the Merton model, see Lando, 2004 for further discussion.
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and it is easy to see that

∂DDt

∂µδ
= − (T − t)3/2

2σT
< 0.

That is, the distance of the expected firm value from the default point decreases with
a steeper slope in the growth adjustment factor which makes the occurrence of default
more likely.

The continuity of the adjustment of the firm value relates nicely to the incorporation
of transition risks. A firm’s exposure to transition risk is usually related to the size
of its CO2 emissions (sometimes in relation to its sector). The rationale is that high-
emitting firms have to take significantly more measures to reduce their emissions and
hence comply with climate policies than their low-carbon counterparts. Therefore, the
growth adjustment reflects the adjustment costs of a firm either directly in terms of a
direct carbon price, which materializes via a trading scheme or a tax rate, or indirectly
through higher energy cost, supply costs, changed costumer behavior or related fac-
tors. Observe, that the latter may well be opportunities (new low-carbon products or
technologies).

3.4.2. Shocking the value process

Of course, it is possible to be more specific about the nature of the growth adjustment.
A possibility is to define an exogenous shock that affects the growth-rate of the value
process of the firm. This approach was developed by Bouchet and Guenedal (2020)
which we will now discuss in detail.

Assume k different policy scenarios where Ck
t represents the scenario-dependent costs

that will materialize in scenario k. Further, let k = 0 be the baseline scenario in which
no additional costs for the firm accrue. The shock on the value process is given by

ξk
t =

Ck
t

V0
, (3.15)

which is then transmitted to the value process as follows

Vk
t = (1− ξk

t )V0. (3.16)

Once the adjusted firm value is determined, bond prices and default probabilities can
be calculated within a Merton model framework. Identification of the initial values for
V0 and σV is done similarly to the Merton model and independent of scenario k. Thus
one can calculate the following scenario-adjusted distance-to-default

DDk
t =

log
(
(1−ξk

t )V0
F +

(
µ− γ− σV

2

)
(T − t)

)
σV
√

T − t
(3.17)
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and actual probability of default (PD)

PDk
t = P(VT < K|Ft) = Φ

(
−DDk

t

)
. (3.18)

In their original form, Bouchet and Guenedal (2020) use this approach to investigate the
impact of transition risk. Following the same narrative as above, a firm’s exposure to
transition risk is commonly quantified in the literature in terms of emissions (intensity).
Here, the approach is to use the carbon price directly and incorporate its effect on the
firm value for each transition scenario k using the firm value adjustment.

Formally, let CEt(j) be the firm’s emitted CO2 emissions in region j at time t. Each
region j is assumed to have a representative carbon price CPk

t (j) for each scenario k
under consideration. The baseline scenario k = 0 now refers to the case of a non-
changing carbon price, i.e. CP0

t (j) = CP0
0(j). The firm’s carbon costs (CC) at time t in

scenario k are then

CCk
t = ∑

j∈M
CEt(j)×CPk

t (j),

where M is the set of regions the firm has reported direct emissions. Bouchet and
Guenedal (2020) model the impact on the cash flow (EBITDA) and relate it to the firm
value adjustment.6 Incorporating these costs hence yields a shock to EBITDA

ξk
t =

CCk
t

EBITDA0
.

This shock is now transmitted to the firm value analogously to (3.16) and credit metrics
of interest can be obtained accordingly. Additionally, in order to better understand how
vulnerable a firm is to the level of a specific carbon price, an average price corridor
or margin can be determined depending on the probability of default. This so-called
carbon price margin (CPM) is the model-driven maximum average emission price at
which the firm’s default probability does not exceed a certain threshold S:

CPMt = max {CPt : PDt ≤ S} .

Solving Equation (3.18) for CP then yields

CPMt =

[
1− exp

(
σV
√

T − tΦ−1(1− S)−
(

µ− γ− σ2
V
2

)
(T − t)

)
F
Vt

]
EBITDA0

CEt
,

where CEt denotes the firm’s average emissions and we assume that the total emissions
are uniformly distributed across all regions.

Although the approach at hand has initially been introduced to investigate the effect of
transition risks on credit, it may also be applied to examine the impact of physical risks.
For that purpose, the firm-specific costs of physical events such as natural disasters
have to be integrated into the shock from (3.15). These may be retrieved from economic
damage projections that depend on the physical severity of scenario k.

6Using the EBITDA relies on the assumption that the proportionality to the firm value stays constant
over time.
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3.4.3. Discontinuous climate impacts

The setting of section 3.3.2 allows to incorporate abrupt changes in the value process
motivated by physical climate risk, e.g. extreme weather events disturbing production
or supply chains. Kölbel et al. (2022) and Agliardi and Agliardi (2021) argue for the
incorporation of climate-related risks that can cause significant adjustments in corpo-
rate earnings resulting in a revaluation of the firm. While Kölbel et al. (2022) adopt
precisely the framework presented in Section 3.3.2, Agliardi and Agliardi (2021) relate
the jumps to transition risk (through a rapidly changing regulatory framework) and
feed the jump-diffusion model in a Leland-type (Leland, 1994) structure to analyze the
effects on framework bond prices. As we discuss a variant of the Leland model below,
we focus on the former approach.

The model setup of Kölbel et al. (2022) is the same as in Section 3.3.2, but now the
jump component solely models abrupt firm value changes arising from climate risks.
Consequently, default probabilities and credit spreads can be directly read off from
Equations (3.10) and (3.11). Using Equation (3.10), we can further see that

∂P∗(VT < F|Ft)

∂µ
< 0

and

∂P∗(VT < F|Ft)

∂λ

∣∣∣
µ<0

> 0.

Hence, the severity of climate risks can be modeled through both the magnitude and
frequency of the jumps. For the physical risk channel, different jump size distributions
and intensities may be determined using cost projections associated with the physical
state of the scenario under consideration. For the transition risk channel, this approach
can be used as well. An example of it will be provided in the next subsection.

3.4.4. Climate scenario uncertainty

While the use of scenarios is a straightforward way to analyze the impact of different
climate pathways on firms’ credit profile, it suffers from the inherent static nature that
comes with each scenario. That is, in applications, a finite number of scenarios with
known trajectories is assumed. Ex-ante, however, it is far from clear which scenario will
eventually materialize and different scenarios may be assigned different probabilities
of occurrence. Additionally, the static approach usually also omits any updating and
hence the incorporation of new information arriving in the market. For that purpose,
Le Guenedal and Tankov (2022) introduce a Bayesian approach that accounts for both
the uncertainty and updating feature of scenario analysis.

Let Vt be the value of the firm that will be impacted by the economic consequences
associated with different scenarios. Similar to Section 3.3.2 and 3.4.3, we model the
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3.4. Climate-adjusted models of credit risk

costs originating from these scenarios by a jump process which reads

Lt =
Nt

∑
i=1

Yi,

where Nt is now a doubly stochastic Poisson process with a scenario-dependent inten-
sity and (Yi)i≥1 is a sequence of i.i.d. random variables that are independent from Nt.
The additional layer of stochasticity in the Poisson process models the uncertainty re-
garding the true scenario. For that purpose, let us assume that there are n scenarios
with increasing environmental stringency and let I ∈ {1, . . . , n} be the unobservable
random variable representing the true scenario unknown to the agent. The varying
degrees of stringency are incorporated by allowing for scenario-dependent intensities
0 < λ1 < . . . < λn making the process jump more frequently for more economically
severe scenarios. Conditional on I the process Nt is hence a Poisson process with in-
tensity λI . However, as the true scenario is unknown to the agent, the intensity will
be a mixture of multiple scenario intensities weighted by their respective probability
of occurrence. For model tractability, the jump sizes (Yi)i≥1 are assumed to exhibit the
same distribution in every scenario. That is, the impact of climate risks is only modeled
through the frequency of events, but not their magnitude.

The firm value dynamics are now given by

dVt = Vt− (rdt + σdWt − dLt) ,

where Wt is a Brownian motion independent from I and Nt, and (Yi)i≥1 is a sequence
of i.i.d. random variables with mean ν < ∞ that are independent from Wt, I and Nt.

To integrate the Bayesian learning, let Ft = σ(W̃s, Ns, s ≤ t) be the observation filtra-
tion that contains all the information about the trajectories of the firm value and jump
process until t. Further, we denote by p̂i

t = E[I = i|Ft] the posterior probability of
the occurrence of scenario i given the available information at time t. With that, the
intensity of Nt is given by

λ̂N
t =

n

∑
i=1

λi p̂i
t

with the filtered probabilities

p̂i,N
t =

e−λitλNt
i p̂i

0

∑j e−λjtλNt
j p̂j

0

which gives

λ̂N
t =

∑i e−λitλNt+1
i p̂i

0

∑j e−λjtλNt
j p̂j

0

.
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We now consider a simplified version of the model from Section 3.3.2 without any
bankruptcy costs and tax benefits. Further, we are not interested in the optimal struc-
ture, but only want to determine bond prices and the optimal default barrier for a fixed
capital structure. Considering a coupon bond with face value F, constant coupon rate c
and maturity T, the value of the firm at time t is given by

V̂t = E

[∫ ∞

t
e−r(s−t)Vsds

]
=

n

∑
i=1

P [I = i | Ft]E

[∫ ∞

t
e−r(s−t)Vsds

∣∣∣Ft, I = i
]

= Vt

n

∑
i=1

p̂i
t

r + νλi − µ
= Vtα

Nt
t ,

where

αN
t :=

n

∑
i=1

1
r + νλi − µ

e−λitλN
i p̂i

0

∑j e−λjtλN
j p̂j

0

.

The equity value at time t, provided that default resp. restructuring did not happen
before t, is given by

UN(t, V) = sup
τ∈T ([t,T])

E

[∫ τ∧T

t
e−r(s−t)

(
Vt,V,N

s − c
)

ds

+e−r(T∧τ−t)
(

V̂t,V,N
T∧τ − K

)+]
,

where the superscript t, V, N means that the Markov process (Vs, Ns) is started at time
t with initial values (Vt, Nt), and T ([t, T]) is the set of (Ft)-stopping times in [t, T] with
respect to the filtration generated by (Vt,V,N

s , Nt,V,N
s )s≥t.

The optimal default resp. restructuring time at time t is now defined as

τ∗ = inf
{

s ≥ t : SNt,N
s

t

(
Vt,V,N

s

)
=
(

Vt,V,N
s − F

)+}
,

and the bond price equals

Bt = E

[∫ τ∗∧T

t
e−r(s−t)cds + e−r(τ∗∧T−t)V̂t,V,N

τ∗∧T ∧ F
]

.

Alternatively, using Vt = St + Bt, we can also represent the bond price as follows

Bt = Vtα
N
t − sup

τ∈T ([t,T])
E

[∫ τ∧T

t
e−r(s−t)

(
Vt,V,N

s − c
)

ds

+e−r(T∧τ−t)
(

V̂t,V,N
T∧τ − K

)+]
= inf

τ∈T ([t,T])
E

[∫ τ∧T

t
e−r(s−t)cds + e−r(T∧τ−t)V̂t,V,N

T∧τ ∧ K
]

.
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This last equation can be used to approximate the bond price. For that two (integro-
differential) variational inequalities have to be solved, see Sections 3 and 4 of Le Guenedal
and Tankov (2022) for details.

Le Guenedal and Tankov (2022) use the model to implement transition risks. For that,
they assume Lt to be a carbon price process Ct that randomly jumps over time depend-
ing on different possible climate policies. To calibrate, they first match the deterministic
carbon price trajectories in each scenario with their stochastic model. In particular, they
first pre-specify the jump size ∆C and estimate the scenario-dependent intensity for the
time period [T1, T2] as

λ̂i =
Ci

T2
− Ci

T1

∆C(T2 − T1)
.

For the scenario probabilities a uniform prior is assumed, although a different prior
may be assigned if more information about future regulation is available. To use the
model for physical risks, a similar calibration to the one outlined in Section 3.4.3 may
be applied. However, the assumption of scenario-independent jump size distribution
(and hence the sole calibration based on frequency) seems hard to justify here.
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In this section, we describe the data and methodological framework that will be used
in the upcoming Chapters 5 and 6. First, we describe the CDS data and its character-
istics. Second, we introduce known CDS determinants that have been identified in the
literature. Third, we report some summary statistics for the variables of interest. Last,
we introduce our panel quantile regression approach.

4.1. CDS spreads

We obtain CDS spread data in daily frequency from Refinitiv for the period January
1, 2013 to December 31, 2020. The dataset covers single-name CDS spreads across
tenors of 1, 3, 5, 10 and 30 years for publicly listed European1 and North American
(US & Canada) entities. Each CDS is denominated in US dollars and refers to senior-
unsecured debt. For Europe, we use CDSs with the "modified modified restructur-
ing" clause (MM), whereas North American CDSs contain the "no restructuring" clause
(XR).2 We exclude all firms that have defaulted during the sample period or that exhibit
illiquid CDSs, but in general retain firms with large CDS spreads.3 To account for pos-
sible distorting effects from the COVID-19 pandemic, we exclude the year 2020 from
our sample. Additionally, we exclude financial firms from the sample because of their
special business models (Hasan et al., 2016). In total, our sample contains 227,294 Eu-
ropean and 437,072 North American CDS spreads-day observations for an unbalanced
panel covering 136 European and 275 North American firms, respectively.

In Figure 4.1, we depict the regional distribution of the firms in the European (top)
and North American (bottom) sample. In Europe, the big three European countries
France, the United Kingdom and Germany dominate the sample with a share of approx.
24%, 24% and 14%, respectively. On the other hand, countries like Austria, Belgium,

1The European countries included in the sample are: Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Russia, Spain, Sweden,
Switzerland and the UK.

2As outlined already before, MM and XR represent the standard clauses within their respective region
and as such provide the best coverage of CDSs.

3Illiquid CDSs are those contracts where no spread movement is recorded for a minimum of 245 con-
secutive trading days. We acknowledge that this condition is rather lax, but we still use it to ensure a
significant number of entities in our samples. Appendix 6.3.2 applies a much more stringent filtering con-
dition, and shows that for both Europe and North America, the results remain unchanged with respect to
the baseline findings reported in the Results section. Some studies also exclude firms with CDS spreads
exceeding specific thresholds (Zhang et al., 2009; Kölbel et al., 2022; Barth et al., 2022). Our robust mod-
eling approach allows us to dispense with this exclusionary criterion by eliminating exclusively illiquid
CDSs.

29



4. Data and methodological framework

(a) Europe

(b) North America

Figure 4.1.: Regional distribution in the European (top) and North American (bottom) sample.

Denmark, Greece, Poland, Portugal and Russia are only represented once in the sample.
In North America, the sample is heavily dominated by the United States of America
(USA) with a share of approx. 94%, while Canada only has a share of approx. 6%.
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4.1. CDS spreads

(a) Europe (b) North America

Figure 4.2.: Sector distribution in the European (left) and North American (right) sample.

Figure 4.2 shows the sectoral distribution (using Refinitiv’s 9-sector business classifica-
tion (RBC)) of the firms in the European (left) and North American (right) sample.4 In
Europe the sectors Consumer Cyclicals (CCGS), Industrials and Basic Materials (BM)
dominate with a share of approx. 19%, 16% and 15%, respectively. Contrary, in North
America, CCGS outweighs the rest by a margin with a share of approx. 22% followed by
Industrials (13%) and Technology (12%). On the lower end in Europe, the sectors Real
Estate (1.47%), Energy (5%) and Healthcare (5%) have the smallest shares. In North
America, Real Estate also exhibits the smallest share (6%). Overall, the sectoral distri-
bution in North America looks much more balanced than the European one.

The emerging consensus in the literature is that (log) CDS spread levels tend to be
non-stationary (Collin-Dufresne et al., 2001; Avramov et al., 2007; Ericsson et al., 2009;
Galil et al., 2014; Huang, 2019; Koutmos, 2019). In line with the majority of previous
studies, we find that (log) CDS spread series are not level-stationary, so we analyze
first-differences. Following Koutmos (2019), we thus calculate the daily CDS spread
log returns as:

sm
i,t = log(CDSm

i,t)− log(CDSm
i,t−1),

where CDSm
i,t is the m-year CDS spread of firm i at day t. sm

i,t quantifies the daily relative
change in a firm’s CDS spread. The relative change allows for a straightforward com-
parison of credit improvement (or credit deterioration, respectively) across all firms.

When investigating the term structure of CDS spreads, we consider the slope of the
CDS curve. Namely, we first calculate the CDS slope as the difference between two
CDS spreads of differing maturities m 6= n

4A detailed description of the sector classification of the Refinitiv Business Classification (RBC) is
available here.
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CDSSlopemn
i,t = CDSm

i,t −CDSn
i,t.

Second, due to the nonstationarity of the CDS slope time series, we calculate the change
in the CDS slope as

∆CDSSlopemn
i,t = CDSSlopemn

i,t −CDSSlopemn
i,t−1.

Note that log transformation of the time series is not possible. Although the CDS curve
is typically upward-sloping, and consequently the CDS slopes are positive, we occa-
sionally observe hump-shaped term structures denoting negative slopes.

4.2. Control variables

To isolate the impact of carbon risk on CDS spreads, we employ a comprehensive list
of firm-specific and market-specific variables that have commonly been identified in
the literature as determinants of CDS spreads. Following structural credit risk mod-
els, particularly Merton (1974a), firm-specific measures include stock return and stock
volatility. Market-specific measures include general market conditions, interest rates
and the term structure of interest rates. These have been shown to adequately account
for the general behavior of CDS spreads, largely outperforming alternative models that
consider the inclusion of further firm-level fundamental determinants (Galil et al., 2014;
Han and Zhou, 2015; Koutmos, 2019).5 By controlling for these variables, we can isolate
the effect of carbon risk on the probability of default.

Stock return (Return) is calculated as the difference of the natural log of daily stock
prices; ri,t = log (Si,t)− log (Si,t−1) where Si,t denotes the stock price of firm i at time
t (obtained from Refinitiv). By measuring the relative change in a firm’s market value
of equity, the stock return is considered to be one of the main explanatory variables
of a firm’s probability of default (Galil et al., 2014; Koutmos, 2019). Model-based ex-
pectations indicate that default probability decreases with the firm’s past stock returns.
Consequently, we expect a negative relationship between CDS spread and stock return
ri,t. Additionally, we include the stock volatility (Vol) measured as the annualized vari-
ance of a firm’s returns (estimated on a 245-day rolling window). The volatility of a
firm’s assets captures the general business risk of a firm and provides crucial infor-
mation about the firm’s probability of default. Theoretical results indicate that default
probability increases with stock return volatility, and hence we expect a positive rela-
tionship between CDS spread and changes in stock volatility ∆σi,t.

We also include information capturing the current state of the CDS market. Specifically,
we include a market condition variable, the Median Rated Index (MRI), that captures

5Additionally, the construction of a daily carbon factor, as well as our quantile regression approach
(which requires a lot of data), automatically excludes all variables that are not reported on a daily basis.
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the perceived general economic climate. The general assumption is that improvements
in market-wide conditions decrease firms’ probability of default and automatically lead
to lower credit spreads. We follow Galil et al. (2014) and measure the current business
climate using the change in the MRI ∆MRIm

i,t. The MRI is defined as the median CDS
spread of all firms in the S&P rating supercategories “AAA/AA”, “A”, “BBB” and “BB+
or lower”. It has been documented that the MRI has a positive relationship with CDS
spreads (Galil et al., 2014).

Moving beyond CDS spreads, we consider the term structure of CDS spreads that re-
flects the shape of the conditional default probability over different time horizons (Han
and Zhou, 2015). Following Collin-Dufresne et al. (2001) and Han and Zhou (2015),
we include the risk-free interest rate (IR). Specifically, we measure the change in the
10-year constant maturity Treasury yield (∆IRt) using data collected from the St Louis
Federal Reserve (FRED). Our initial observation is that an increase in the IR reduces
risk-adjusted default probabilities, and hence the CDS spread falls. Therefore, we ex-
pect a negative relationship between the slope of the CDS spreads and the IR.

Finally, following Han and Zhou (2015), we include the market’s view on the future
interest rate proxied by the change in the difference between short- and long-term risk-
free interest rates. We calculate the change of the slope of the risk-free yield curve
∆Termt as the difference between the 10-year and 1-year constant maturity Treasury
yields. An upward-sloping curve reflects the market’s expectation of lower future inter-
est rates. Consequently, an increase in the change of ∆Termt increases default probabil-
ities, and hence CDS spreads rise. We therefore expect a positive relationship between
the slope of the CDS spreads and the risk-free yield curve.

4.3. Descriptive statistics

To gain more insights about the data under investigation, Table 4.1 presents descriptive
statistics for all dependent and independent variables under consideration in both re-
gions.6 Average CDS spread returns are negative and slightly increase towards longer
tenors. The corresponding standard deviations indicate a relatively large dispersion
with values ranging between 1.6% and 7.3%. CDS spread returns with tenors ≥ 3 years
exhibit large outliers with maximum (minimum) returns from 85% (-67%) to 300% (-
220%). The shortest tenor of 1 year even reaches maximum (minimum) returns of over
550% (-550%) and 370% (-310%), for Europe and North America, respectively. The CDS
spread return distributions are slightly right-skewed and characterized by heavy tails
(with a kurtosis ranging from 47 to more than 1,000). These extreme CDS spread statis-
tics are in line with those reported in the existing literature and illustrate the unconven-
tional characteristics of CDS data (Pires et al., 2015).7

6We omit descriptive statistics for the variables used in term structure models (e.g. CDSSlopem,n
i,t , IRt,

etc.). They resemble the statistics shown here.
7Compared to previous literature, these descriptive measures are even smaller in magnitude by some

margin. Also, due to the financial crisis, the data of Han and Zhou (2015) (for example) are interspersed
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Variable Mean Q25 Median Q75 SD Min Max Skew Kurt

Europe

Dependent variables

s1
i,t (%) -0.05 -1.02 0.00 0.24 7.31 -555.00 554.96 0.78 1035.52

s3
i,t (%) -0.06 -1.04 0.00 0.20 3.74 -93.02 123.19 1.55 46.84

s5
i,t (%) -0.05 -0.65 0.00 0.11 2.20 -85.00 103.68 1.75 81.66

s10
i,t (%) -0.03 -0.44 0.00 0.13 1.62 -67.49 89.16 1.66 144.62

s30
i,t (%) -0.02 -0.42 -0.01 0.19 2.15 -74.53 85.84 0.60 100.22

Independent variables

ri,t (%) 0.01 -0.79 0.00 0.84 1.64 -44.33 28.98 -0.66 18.88
∆σi,t (%) -0.00 -0.03 -0.00 0.03 0.24 -19.80 15.28 -0.64 960.59
∆MRI1

i,t -0.01 -0.20 0.00 0.15 1.14 -54.69 60.06 1.42 144.78
∆MRI3

i,t -0.03 -0.41 -0.00 0.26 1.86 -113.32 128.25 2.36 404.38
∆MRI5

i,t -0.04 -0.48 -0.01 0.25 2.29 -179.56 174.67 0.93 872.50
∆MRI10

i,t -0.04 -0.50 -0.01 0.30 2.52 -226.28 213.96 -2.08 1385.98
∆MRI30

i,t -0.04 -0.51 -0.02 0.38 2.96 -235.35 220.58 -1.27 809.32
∆CR1

t -0.00 -0.27 0.00 0.25 1.06 -7.46 13.83 0.88 27.89
∆CR3

t -0.01 -0.50 0.00 0.51 1.32 -9.95 7.58 0.15 10.27
∆CR5

t -0.02 -0.52 0.00 0.49 1.61 -9.75 11.79 0.38 13.21
∆CR10

t -0.01 -0.51 0.00 0.52 1.73 -24.38 10.66 -1.85 35.73
∆CR30

t 0.00 -0.53 0.00 0.54 2.02 -22.06 23.23 -0.55 31.02

North America

Dependent variables

s1
i,t (%) -0.03 -0.14 0.00 0.10 7.08 -314.63 371.68 0.96 165.07

s3
i,t (%) -0.03 -0.12 0.00 0.07 3.42 -151.15 149.83 0.40 140.39

s5
i,t (%) -0.03 -0.12 0.00 0.05 2.40 -84.93 108.81 1.42 95.77

s10
i,t (%) -0.02 -0.11 0.00 0.05 2.58 -164.77 167.00 1.25 252.18

s30
i,t (%) -0.01 -0.13 0.00 0.06 3.16 -218.32 292.52 2.32 499.67

Independent variables

ri,t (%) 0.03 -0.70 0.01 0.81 1.73 -42.79 43.14 -0.36 26.38
∆σi,t (%) 0.00 -0.03 0.00 0.03 0.27 -25.81 24.89 -0.84 1082.45
∆MRI1

i,t -0.01 -0.15 0.00 0.09 0.82 -34.63 38.21 1.45 110.59
∆MRI3

i,t -0.02 -0.25 0.00 0.13 1.50 -88.44 90.83 -0.20 393.00
∆MRI5

i,t -0.03 -0.36 0.00 0.16 2.10 -159.06 170.63 -0.17 947.99
∆MRI10

i,t -0.03 -0.47 0.00 0.30 2.56 -178.57 189.77 -0.27 958.66
∆MRI30

i,t -0.03 -0.51 -0.01 0.37 2.64 -174.64 197.60 -0.70 859.71
∆CR1

t 0.01 -0.21 0.00 0.24 0.70 -3.64 6.80 0.62 12.68
∆CR3

t 0.01 -0.35 0.00 0.37 1.18 -9.30 10.53 0.28 19.43
∆CR5

t 0.01 -0.49 0.00 0.49 1.58 -10.83 16.18 0.59 17.53
∆CR10

t 0.01 -0.73 0.00 0.77 2.31 -15.33 16.60 -0.03 12.41
∆CR30

t 0.01 -0.89 -0.01 0.81 3.21 -20.17 23.51 0.12 12.30

Table 4.1.: This table presents descriptive statistics (mean, 1st quartile, median, 3rd quartile, standard deviation, mini-
mum, maximum, skewness, kurtosis) for all independent and dependent variables (except term structure variables) in
our sample.
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4.4. Methodology

While linear regression has served as the standard workhorse in empirical finance, sev-
eral researchers have identified its limitations in only focusing on the center of a depen-
dent variable’s conditional distribution (Barnes and Hughes, 2002; Baur et al., 2012).
Moreover, in the CDS literature, various analyses reveal ambiguous results concern-
ing fundamental drivers, hinting at heterogeneous effects across the conditional dis-
tribution of CDS spreads (Collin-Dufresne et al., 2001; Pereira et al., 2018; Kölbel et al.,
2022). As such, a standard linear conditional mean regression framework would not ad-
equately describe the full distributional relationship between CDS spread returns and
firms’ carbon exposure. In particular, distributionally varying signs and magnitudes of
explanatory variables may remain concealed within the data. For this reason, we use
a quantile regression (QR) approach, which allows us to (i) provide a more complete
description of how carbon risk is linked to the entire conditional distribution of CDS
spread returns and (ii) capture the marginal impact of carbon risk above and beyond
known determinants. Introduced by Koenker and Bassett (1978), QR extends the clas-
sical conditional mean model to a series of models for different conditional quantile
functions, allowing us to dissect and test the effects of different variables on the condi-
tional distribution of the dependent variable. This is especially relevant for credit risk,
where understanding the effects on the tails of the distribution is essential.

Additionally, QR can mitigate some of the typical empirical problems frequently en-
countered in the CDS literature (e.g. the presence of outliers, non-normality), which
also apply to our data. In particular, the descriptive measures in Table 4.1 illustrate
that CDS returns tend to be interspersed by occasional influential outliers and their
distributions are extremely heavy-tailed, making the normality assumption very prob-
lematic. While these empirical features would pose a threat to the validity of Ordinary
Least Squared (OLS) estimates and their standard errors, QR is robust to these data
characteristics and thus a viable option.

The use of QR is rather scant in the credit risk literature, although Pires et al. (2015)
and Koutmos (2019) are notable exceptions. Since several researchers report that the
presumed explanatory variables actually have varying degrees of explanatory power
on the center of the distribution of CDS spreads and CDS spread changes, both these
studies adopt a QR framework documenting a varying degree of sensitivity on parts
of the CDS spread distribution. In particular, Pires et al. (2015) show that the impacts
of the explanatory variables on CDS spreads vary according to whether firms have
conditionally high or low credit risk. Koutmos (2019) finds that the impacts of the
explanatory variables on CDS spread changes depend on the overall conditions of the
credit market.

We adopt the QR framework for a panel setup with firm-specific fixed effects. Formally,
let yi,t be the response of firm i at time t and xi,t the m-dimensional covariate vector
where i = 1, . . . , N and t = 1, . . . , T. For a fixed quantile level τ ∈ (0, 1), the conditional

with many more outliers and move on a relatively larger scale in general.
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quantile of yi,t given xi,t is

Qyi,t (τ|xi,t) = ατ,i + x
′
i,tβτ + ε i,t,

where ατ,i are the firm-specific fixed effects parameters and ε i,t is the error term. Note
that this model cannot be straightforwardly estimated using the standard centering de-
composition, as conditional quantiles are not linear operators. Consequently, numerous
estimation techniques have been established over the past two decades (Koenker, 2004;
Canay, 2011; Kato et al., 2012; Galvao and Wang, 2015; Galvao and Kato, 2016).8 We
follow Zhang et al. (2019) and implement a two-stage approach to estimate the param-
eter vector βτ.9 In a first stage, we run firm-specific quantile regressions to estimate the
fixed effects αt,i (

α̃τ,i, β̃τ,i

)
= argmin

a∈Aτ ,b∈Θτ

1
T

T

∑
t=1

ρτ

(
yi,t − a− x′i,tb

)
,

whereAτ ∈ R, Θτ ∈ Rm and ρτ(u) = u
(
τ − 1{u<0}

)
denotes the quantile loss function.

Provided T is sufficiently large, α̃τ,i is
√

T-consistent estimate of ατ,i and so yit− α̃τ,i can
be considered a proper approximation of yit − ατ,i. In a second stage, we estimate

β̂τ = argmin
b∈Θτ

1
NT

N

∑
i=1

T

∑
t=1

ρτ

{
yi,t − x′i,tb− α̃τ,i

}
.

The estimator at hand is easily implemented and, due to the dimensionality reduction,
computationally inexpensive. However, to get reliable fixed effects estimates in the first
stage, it is crucial to have sufficient data on the T dimension. Hence, most previous
studies relying on lower frequency data, instead apply a pooling approach or consider
a quantile-independent αi.

To gauge the significance of the estimates, we rely on the asymptotic normality of βτ.
Specifically, inference within the panel QR framework is based on the asymptotic result

√
NT

(
β̂τ − βτ

)
d→ N

(
0, Λ−1

τ VτΛ−1
τ

)
,

where Λ−1
τ VτΛ−1

τ is the sandwich formula for the variance–covariance matrix. To esti-
mate Λ−1

τ VτΛ−1
τ we follow Yoon and Galvao (2016) and estimate robust variants of Λτ

and Vτ that account for heteroscedasticity and serial correlation.10

8A comprehensive overview of QR methods can be found in Koenker et al. (2017).
9Initially introduced to model different effects across subgroups, Zhang et al. (2019) propose a cluster-

based fixed effects estimator for the group-specific slopes. Imposing the homogeneous slope assumption
results in an estimator with quantile-specific fixed effects.

10An alternative approach for the estimation of standard errors in a panel QR setting is bootstrapping
(see Hagemann, 2017). This is commonly used when the data sample is small, as convergence rates of the
asymptotic estimates can be slow. This is not the case for the sample at hand.
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Before investigating the financial impacts of carbon risk, it is important to have a proper
quantification of the risk in question. In this chapter, we first provide a literature review
of existing carbon risk metrics. Afterwards, we introduce our own carbon risk (CR)
factor which utilizes the credit-linked and forward-looking information contained in
CDS spreads. Last, we present a generalization of the CR – the carbon tail risk (CTR)
factor – that also incorporates the tails of the carbon risk distribution.

5.1. Existing metrics

The quantification of carbon risks has traditionally been conducted using readily avail-
able data such as current emissions (intensities) or ESG metrics. The reasoning is that
firms with high emissions and/or bad ESG ratings naturally face higher costs when
policies accelerating the low-carbon transition are implemented. However, while these
data are a natural proxy for exposure to carbon risk and are easy to access, they come
with several drawbacks. First, emissions and ESG variables are typically only available
in an annual frequency making it hard to assess the exposure intra-yearly. Second, both
metrics, but especially ESG variables, have been shown to be dependent on the data
vendor causing reliability issues when choosing a specific data provider (Busch et al.,
2018; Berg et al., 2021; Berg et al., 2022). Third, emissions data and ESG scores mostly
rely on past information that already realized, making it an backward-looking variable
by construction. However, when trying to measure carbon risk and with it the financial
impacts of the low-carbon transition, the exposure to future risks cannot be neglected.
For this reason, a metric appropriately accounting for all these features is essential.

In general, the quantification of carbon risk can either be conducted on a firm level
or even broader levels such as sectors, regions or entire markets. Whereas firm-specific
metrics serve to depict the idiosyncratic risk of a firm to carbon, broader metrics such as
a market-wide risk factor characterize the systemic carbon risk inherent to the market.
Furthermore, carbon risk metrics can typically be divided into two main categories:
textual metrics and market-based metrics. Textual metrics analyze publicly available
textual data (e.g. newspaper articles, (legal) corporate documents, etc.) to extract infor-
mation related to carbon aspects. Depending on the legal stringency of the documents
as well as the coverage and tone used in the texts, a textual risk metric of carbon can
then be constructed. Market-based metrics instead rely on assets traded on financial
markets and extract the risk component from the observed prices. This approach im-
plicitly assumes that market participants are able to incorporate the risk into the price
formation process.
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Textual metrics first arose with the work from Engle et al. (2020). Using articles from
the Wall Street Journal, they build a monthly index that tracks the market-wide atten-
tion towards climate change. However, as one of the first metrics of this kind, it does
not distinguish between the multiple facets of climate risk. Improving on this, Ar-
dia et al. (2022) extract information from major U.S. newspapers to construct various
theme-dependent metrics (available in daily frequency) that account for the different
components of climate risk (incl. carbon risk). In a similar vein, Bua et al. (2022) pro-
vide a corresponding risk metric for Europe. Another strand of literature focuses on the
incorporation of textual analysis to measure the exposure to carbon risk on a firm level.
Here, a firm-specific climate risk metric is constructed that builds on the extraction of
relevant keywords from earnings call transcripts (Sautner et al., 2023; Li et al., 2023).

For the market-based metrics, the concept of a carbon risk factor has been thoroughly
investigated in the equity literature. Adopted from the classical asset pricing approach,
the idea is to build a market-wide environmental factor that captures the difference in
returns of firms with high versus low exposure to carbon. Famous examples of such fac-
tors include the pollution premium (Hsu et al., 2022), the pollutive-minus-clean (PMC)
factor (Huij et al., 2021) and the brown-minus-green (BMG) factor (Görgen et al., 2020).
Whereas the division of firms into high versus low carbon exposure is based on corpo-
rate emissions for the first two factors, the latter relies on ESG scores to assign firms to
these groups. Building upon these factors, a metric of firm-specific exposure to carbon
risk can also be extracted by regressing individual stock returns on these environmental
factors (see e.g. Faccini et al., 2021 and Huij et al., 2021).

While the literature on the construction of an appropriate factor in the equity space has
been growing in recent years, the measurement of carbon risk via credit instruments is
still scant. To the best of the authors knowledge, no such carbon risk metric has been
proposed yet. Such a factor, however, would be of importance in order to quantify
the credit-deteriorating effects of carbon risk. The risk metric we propose in the next
subsection will be a factor based on the general, market-wide perception of carbon risk.
However, following the approach suggested by Faccini et al. (2021) and Huij et al. (2021)
this factor could also be extended to a firm-level metric.

5.2. Carbon risk (CR) factor

In this section, we introduce the construction of our carbon risk factor. First, we build
the general factor that proxies for the market-wide perception of carbon risk. After-
wards, we construct several variants that also account for risk exposures on a sectoral,
regional and temporal dimension.

5.2.1. Market-wide perception of carbon risk

Examining how the market perceives firms’ exposures to carbon risk requires a mea-
surement of firms’ carbon profiles. This is commonly proxied by firms’ current emis-
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sions and emission intensity (Bolton and Kacperczyk, 2021; Azar et al., 2021; Görgen
et al., 2020; Nguyen and Phan, 2020), although academics and practitioners recognize
that this should be supplemented by firm-specific information on future emissions re-
duction targets (Carbone et al., 2021; ECB, 2022). This acknowledges firms’ forward-
looking plans, and their commitment and strategy to reduce carbon emissions.

Motivated by the theoretical relationship between carbon risk and credit spreads, our
approach to measuring carbon risk relies on analyzing the changes in the credit spreads,
which reflect the evolution in the market’s perception of carbon risk. To do this, we uti-
lize the information contained in the spreads of CDS contracts. CDS contracts have
three crucial advantages. First, they are typically traded on standardized terms, elimi-
nating distortions due to differences in contractual arrangements or liquidity concerns
(Longstaff et al., 2005; Ederington et al., 2015).1 Furthermore, CDS spreads respond
quickly to changes in credit and market (and arguably policy) conditions (Blanco et al.,
2005; Zhu, 2006; Norden and Weber, 2009). Finally, since there are CDS contracts with
varying tenors up to 30 years, they allow us to (i) incorporate the collective forward-
looking considerations of lenders, and (ii) shed light on the expected degree of carbon
risk within distinct time horizons. As such, CDS spreads provide a unique window for
viewing the effect of carbon risk through the lens of lenders’ perceptions.

This is clearly illustrated in Figure 5.1, where we plot the evolution of the CDS spreads
for two pairs of firms (with the same credit rating) before and after the Conference
Of the Parties in Paris in 2015 (COP21), which culminated in the landmark Paris Agree-
ment. In this figure, we provide data on two exemplary polluting firms (ConocoPhillips
and Holcim AG) and two exemplary clean firms (Deere & Company and Philips NV)
in North America and Europe. Beginning with the North American examples, Cono-
coPhillips is a multinational firm engaged in hydrocarbon exploration and production,
and was ranked 21st among the World’s Top 100 Polluters (CDP, 2017). Deere & Com-
pany, the world’s largest agricultural equipment manufacturer, has demonstrated lead-
ing practice in controlling and reducing their emissions in recent years. For Europe,
Holcim AG is a global manufacturer of construction materials, including emissions-
intensive cement and concrete (IEA, 2021). Philips is a diversified global healthcare
firm that has effected emissions reductions through increased use of renewable energy.

Figure 5.1 illustrates that the difference in CDS spreads is approximately constant until
the occurrence of a policy-relevant event. Post-Paris Agreement, however, the spreads
diverge, which we interpret as the result of lenders expecting higher carbon impacts
for high-emitting firms. They seek higher protection, demanding more of the CDSs of
relatively more carbon-exposed firms (in this example, ConocoPhillips and Holcim), ul-
timately paying higher spreads. Following this argument, we use the information con-
tained in the CDS spreads themselves to construct a proxy that captures firms’ evolving
carbon risk, representing variation in lenders’ concerns over time about carbon-related

1Standard contractual characteristics include pre-specified maturity, default event and debt seniority.
Corporate bonds, for example, may be embellished with additional idiosyncrasies such as embedded
options or specific guarantees.
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aspects (especially climate regulations) that can impact firms’ credit risk profiles.2

(a) North America (b) Europe

Figure 5.1.: Evolution of the 5Y-CDS spreads of ConocoPhillips (blue) and Deere & Co (orange) on the left diagram, and
Holcim AG (blue) and Koninklijke Philips NV (orange) on the right diagram. The time period spans from 02 November
2015 to 29 February 2016. The gray-shaded area indicates the time period of COP21 (30th Nov 2015 – 12th Dec 2015).

To date, the finance literature on climate change has approached the pricing of carbon
risk by focusing on how various financial assets reflect investor concerns about carbon
risk. In most studies, firms’ exposure to carbon risk is codified using their emission
intensity data and it is argued that high-emitting firms may incur greater costs from
changes in policy – through emissions abatement and the adoption of new technologies.
This literature asserts that the size of these costs and the consequent size of carbon risks
are proportional to the size of firms’ emissions and to the growth rate of these emissions
(Bolton and Kacperczyk, 2021; Azar et al., 2021; Cheema-Fox et al., 2020; Görgen et al.,
2020; Hsu et al., 2022; Nguyen and Phan, 2020).

As with this literature, we construct firms’ carbon profiles using yearly emissions in-
tensities (Scope 1 & 2 emissions normalized by revenue) from Refinitiv as our primary
dataset.3 In order to avoid a look-ahead bias, we use emission intensities lagged by one
year as emission data are typically only available at the end of the fiscal year. Emissions
are estimated where no actual emissions were reported. These data have been shown to
be sufficiently consistent across different data providers (Busch et al., 2018). The emis-
sions of firms in our CDS sample account for a significant fraction – approximately 30%
– of the total emissions in the universe of firms represented in the Refinitiv database.
We chose firms’ emission because other prominent metrics (e.g. environmental ratings
provided by Asset4, MSCI, etc.) have been shown to deliver mixed signals, seriously
weakening their reliability in terms of constructing the carbon risk classification (Gör-
gen et al., 2020; Berg et al., 2021; Berg et al., 2022; Dimson et al., 2020).

Our approach to constructing a carbon risk factor relies on tracking how firms’ expo-

2While factors constructed in the equity space (e.g. the ‘Brown-Minus-Green’ factor by Görgen et al.
(2020) or the ‘Pollutive-Minus-Clean’ factor by Huij et al. (2021)) encapsulate many different types of risk,
the consideration of the CDS market concentrates on the credit risk component.

3Refinitiv firm-level carbon emissions data follow the Greenhouse Gas Protocol, which sets the stan-
dards for measuring corporate emissions.
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sure to carbon risk changes. This change reflects one of two things: changes in lenders’
expectations about the carbon exposure of different firms or changes in lenders percep-
tion of carbon risk for a specific firm over time. To that end, we follow the standard ap-
proach used in empirical asset pricing for factor construction (Fama and French, 1992).
Specifically, we partition the universe of firms into quintiles according to the one-year
lagged emission intensity profile of each firm.4 We use the groups to form portfolios
meant to mimic the underlying risk factor in returns related to carbon.5 In fact, this
grouping allows us to capture the gradient of carbon intensity per unit of revenue while
retaining a sufficient number of firms within each group. We then define firms below
the first quintile as "clean" and gather their CDS spreads in the set Cm

t . Analogously, we
define firms above the last quintile as "polluting" and gather their CDS spreads in the
set Pm

t .

We then obtain the median cost of default protection of clean and polluting firms by
calculating the median m-year CDS spread level for each tenor m ∈ {1, 3, 5, 10, 30} at
every time t:

Cm
t = Med (Cm

t ) ,
Pm

t = Med (Pm
t ) ,

where Med(·) denotes the median function. Table 5.1 displays all firms that were con-
stituents of the clean and polluting class, respectively, at some point during our sample
period of 2013 to 2019. Firms in bold are those that represent the median firm (based
on the 5Y CDS spread) at least once within their respective group. In total, 34 (35) firms
entered the clean (polluting) class in Europe, whereas 82 (73) firms entered the clean
(polluting) class in North America. In Europe, the majority of clean firms is in the In-
dustrials sector with a share of approximately 35% of the sample, while the majority of
polluting firms comes from the Basic Materials and Utilities sectors, respectively, with
a share of 40% each. In North America, the majority of clean firms is in the Consumer
Cyclicals (CCGS) sector with a share of approximately 38% of the sample, while the ma-
jority of polluting firms comes from the Utilities sector with a share of approximately
29%.

Finally, we calculate the difference between the median CDS spreads of polluting and
clean firms. This difference, or wedge, represents the differential credit risk exposure
of polluting versus clean firms. We call this the carbon risk (CR) factor:

CRm
t = Pm

t −Cm
t .

Essentially, CR mimics the dynamics of a portfolio in which default protection is bought
for a representative (median) polluting firm and sold for a representative (median)

4We perform numerous robustness checks by extending the univariate portfolio sorts (based on emis-
sion characteristics) to bivariate sorts that also consider size, book-to-market ratio, and leverage. See
Section 6.3.4 for details.

5We refer to Fama and French (1992), Fama and French (1993) and Hou et al. (2017) for a detailed
description of the construction of factors.
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Europe
Polluting Clean
Accor SA, Anglo American PLC, ArcelorMittal SA, Carnival PLC, Deutsche
Lufthansa AG, E.ON SE, EDP Energias de Portugal SA, Edison SpA, Elec-
tricite de France SA, Endesa SA, Enel SpA, Engie SA, Eni SpA, Fortum Oyj,
Gazprom PAO, HeidelbergCement AG, Holcim AG, Iberdrola SA, Konin-
klijke DSM NV, L’Air Liquide Societe Anonyme pour l’Etude et l’Exploitation
des Procedes George, Lafarge SA, Lanxess AG, Linde AG, National Grid
PLC, Naturgy Energy Group SA, RWE AG, Repsol SA, Rio Tinto PLC,
SSE PLC, Solvay SA, Svenska Cellulosa SCA AB, Tate & Lyle PLC, UPM-
Kymmene Oyj, Veolia Environnement SA, thyssenkrupp AG

Adecco Group AG, Airbus SE, Alstom SA, Atlas Copco AB, Bayerische
Motoren Werke AG, Compass Group PLC, Daily Mail and General Trust
PLC, Experian Finance PLC, ITV PLC, Imperial Brands PLC, Kering SA,
Koninklijke KPN NV, Koninklijke Philips NV, LVMH Moet Hennessy Louis
Vuitton SE, Nokia Oyj, Pearson PLC, PostNL NV, Publicis Groupe SA, SES
SA, Scania AB, Schneider Electric SE, Siemens AG, Sodexo SA, Svenska
Cellulosa SCA AB, Swisscom AG, Telecom Italia SpA, Telefonaktiebolaget
LM Ericsson, Television Francaise 1 SA, Telia Company AB, Thales SA,
Vivendi SE, Volvo AB, Wendel SE, Wolters Kluwer NV

North America
Polluting Clean
AES Corp, Air Products and Chemicals Inc, Alliant Energy Corp, Ameren
Corp, American Airlines Group Inc, American Electric Power Company
Inc, Anadarko Petroleum Corp, Avis Budget Group Inc, Avnet Inc, Barrick
Gold Corp, CMS Energy Corp, Canadian National Railway Co, Canadian
Natural Resources Ltd, Carnival Corp, CenterPoint Energy Inc, Chevron
Corp, Conocophillips, DTE Energy Co, Delta Air Lines Inc, Devon En-
ergy Corp, Dominion Energy Inc, Domtar Corp, Dow Chemical Co, E I
Du Pont De Nemours and Co, Eastman Chemical Co, Encana Corp, En-
tergy Corp, Exelon Corp, Exxon Mobil Corp, FirstEnergy Corp, Glatfelter
Corp, Hess Corp, Husky Energy Inc, International Paper Co, JetBlue Air-
ways Corp, Kinder Morgan Energy Partners LP, Legacy Vulcan Corp, Linde
Inc, Marathon Oil Corp, Marriott International Inc, Martin Marietta Materi-
als Inc, Murphy Oil Corp, NRG Energy Inc, Newmont Corporation, Nextera
Energy Inc, Noble Energy Inc, Norbord Inc, Nucor Corp, ONEOK Inc, Oc-
cidental Petroleum Corp, Olin Corp, PPL Corp, Pepco Holdings LLC, Pio-
neer Natural Resources Co, RPM International Inc, Republic Services Inc,
Royal Caribbean Cruises Ltd, Sempra Energy, Southern California Edison
Co, Southern Co, Southwest Airlines Co, Suncor Energy Inc, TECO Energy
Inc, TransAlta Corp, Transcanada Pipelines Ltd, USG Corp, Union Pacific
Corp, United States Steel Corp, Waste Management Inc, Westrock MWV
LLC, Williams Companies Inc, Xcel Energy Inc, Yellow Corp

Advanced Micro Devices Inc, Agilent Technologies Inc, Allergan Inc, Al-
tria Group Inc, Amerisourcebergen Corp, Amgen Inc, Anthem Inc, Applied
Materials Inc, Arrow Electronics Inc, Avon Products Inc, Bath & Body Works
Inc, Beazer Homes USA Inc, Belo Corp, Best Buy Co Inc, Biomet Inc, Boe-
ing Co, Bombardier Inc, Boston Scientific Corp, Bristol-Myers Squibb Co,
Brunswick Corp, Bunge Ltd, CA Inc, Cablevision Systems Corp, Cardinal
Health Inc, Cincinnati Bell Inc, Cisco Systems Inc, Comcast Corp, Costco
Wholesale Corp, D R Horton Inc, DST Systems Inc, Danaher Corp, Deere
& Co, Deluxe Corp, Dillard’s Inc, EMC Corp, Estee Lauder Companies Inc,
First Data Corp, HP Inc, Hasbro Inc, Health Net Inc, Humana Inc, Inter-
national Business Machines Corp, International Game Technology, Inter-
public Group of Companies Inc, Intuit Inc, Johnson & Johnson, KB Home,
Kate Spade & Co, L3harris Technologies Inc, Lennar Corp, Lockheed Mar-
tin Corp, MDC Holdings Inc, Masco Corp, Mattel Inc, Mckesson Corp,
Meritage Homes Corp, Microsoft Corp, Motorola Solutions Inc, New York
Times Co, Nike Inc, Nordstrom Inc, Northrop Grumman Corp, Omnicom
Group Inc, Oracle Corp, Prologis Inc, Pultegroup Inc, RR Donnelley & Sons
Co, Raytheon Co, Rogers Communications Inc, Sandisk LLC, Sysco Corp,
Tenet Healthcare Corp, Thomson Reuters Corp, Time Warner Cable Inc,
Time Warner Inc, Toll Brothers Inc, United States Cellular Corp, United-
Health Group Inc, VF Corp, Viacom Inc, ViacomCBS Inc, Western Union
Co

Table 5.1.: This table displays all firms that were constituents of the polluting resp. clean class at some point time (2013-
2019) in Europe (top) and North America (bottom). Firms in bold are firms that represent the median firm (based on
the 5Y CDS spread) at least once within their respective group.

clean firm.6 When policy events trigger a rise in carbon risk (e.g. expectation of a
tighter future regulatory framework), the demand for protection of more (less) exposed
firms increases (decreases), resulting in a widening of the wedge. Conversely, if the
market expects a loosening of the regulatory framework, there is a narrowing of the
wedge (or possibly even a negative wedge).7 These changes in perceived exposure to
carbon risk are aptly represented by the behavior of CR. As such, we consider CR to be
an observable proxy for lenders’ perception of carbon risk exposure.

To illustrate the relevance of CR, we examine its behavior in response to events that
affect firms’ exposure to carbon risk. Figure 5.2 displays the evolution of the CR over
time, for tenors of 1, 5 and 30 years for the universe of CDS of firms listed in Europe
(top) and North America (bottom), respectively.8 In these graphs we also identify two

6A long-short portfolio is similarly constructed in Meinerding et al. (2020) by sorting firms on their
carbon footprints. Combined with a climate news index, Meinerding et al. (2020) use these portfolios to
identify the differential effect of carbon risk. Essentially, portfolios are used to identify shocks that affect
clean and polluting firms differently.

7This case corresponds to the situation where expected profits of actively compliant firms are ham-
pered by a policy reversal. The increased costs associated with earlier tighter regulation are perceived as
unnecessary expenditure.

8We relegate to Figure A.1 in Appendix A.1 that plots all available tenors (including 3Y and 10Y).
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(a) Europe

(b) North America

Figure 5.2.: Evolution of the CR over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for Europe (top) and
North America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and Trump election (brown),
respectively.

events, identified in Meinerding et al. (2020), that oppositely affected market percep-
tions of carbon risk: the Paris Agreement and the election of Donald Trump in the US;
these events are represented in Figure 5.2 with vertical solid dark green and brown
lines, respectively.

We first examine the European case and observe that all CR time series (CRs) are non-
negative. This is in stark contrast with the CRs in North America, where all CRs (except
1Y tenor) continuously swing between positive and negative values, denoting a situ-
ation where lenders’ perceptions of carbon risk exposure are unclear and constantly
evolving. Notwithstanding CRs irregularity (discussed below), lenders continually de-
mand more (less) protection for European firms that are perceived to be more (less)
exposed to carbon risk. In this case, a polluting-minus-clean credit protection port-
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folio, constructed using CR, would have delivered a positive premium. Second, the
CR squarely reflects changes in lenders’ demand for default protection in response to
policy-relevant events, such as COP21, which called for more ambitious policies and
plans to reduce emissions. It is reasonable to argue that policies following this event
can increase expected costs for firms that are less prepared for a transition to a low-
carbon economy and benefit firms that are more adequately prepared. Nevertheless,
the polluting-minus-clean outlook in North America was unclear until mid-2015. Only
in the lead-up to COP21 did CRs turn positive, indicating a surge in perceived expo-
sure to carbon risk. However, this trend reverts almost immediately after the election
of Donald Trump – a notorious climate change denier – indicating that this event is
associated with a decline in carbon risk. The impact of this election was geographi-
cally limited, however, reflecting the limited effect of US climate policies on European
firms. In summary, we observe that, conditional on the relevance of the event, lenders
will demand more or less protection according to their perception of a firm’s ability to
absorb the costs associated with carbon regulations, resulting in a continuous adjust-
ment of the CDS spread wedge. Essentially, this is what makes CR an observable and
market-implied proxy for carbon risk exposure.

The CR replicates a credit insurance portfolio and as such represents an investable risk
factor. However, one major drawback in the initially proposed construction is the daily
grouping mechanism. This procedure implies a daily rebalancing of the portfolio which
may incur significant trading costs. For that reason, we also consider a ’monthly’ CR
factor where the grouping is conducted only once at the beginning of a month and fixed
for the remainder of it. That is, once we fix the median clean and polluting firm, the
movement of the CR during the remainder of the month will solely be governed by the
CDS spreads of those two firms. Using this construction, however, ensures a portfolio
with reasonable rebalancing costs and hence a more realistic setup.

Figure 5.3 depicts the movement of the CR with the adjusted monthly restructuring
for both Europe (top) and North America (bottom). Overall, the ’monthly’ CR exhibits
the same patterns indicating that even under more realistic replication assumptions
the directional features of the CR factor persist. There are also differences however. In
particular, the CR sometimes rapidly rises and shows irregularities. This is likely due to
the dominance of one particular entity governing the CR during that month. Therefore,
if a specific firm exhibits an idiosyncratic CDS spread shock (which may not necessarily
be related to carbon risk), this immediately translates to the CR factor. The observed
effect only vanishes after another rebalancing one month later. The inclusion of more
realistic replication features hence comes with the cost of more irregularities in the CR
factor. A possible improvement could be the selection of multiple entities and setting
up an equally-weighted portfolio with them (that is, computing the mean CDS spread
of the selected entities). However, while this procedure smooths out the irregularities,
it may further increase rebalancing costs as multiple CDS spreads enter the portfolio.
In the following, we will always use the daily construction of the CR described in the
beginning of this section.
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(a) Europe

(b) North America

Figure 5.3.: Evolution of the ’monthly’ CR over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for Europe (top)
and North America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and Trump election
(brown), respectively.

5.2.2. Sectoral exposures

While the CR is constructed on the entire sample and thus provides an idea about the
perception of carbon risk on a broad market level, it disregards the heterogeneity of sec-
toral exposures. Sectors can face vastly different challenges depending on the emission
intensity of their business model, their degree of exposure to regulatory frameworks or
varying consumer patterns. For this reason, we also construct sector-specific CR factors
based on the Refinitiv Business Classification (RBC) that take the sectoral nuances into
account. In particular, we apply the same CR construction from Subsection 5.2.1, but
do it separately for each RBC sector which yields a CR for each sector in the end.

Similar to Figure 5.1, we first provide two additional examples of firm pairs who op-
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(a) Europe (b) North America

Figure 5.4.: Evolution of the 5Y-CDS spreads of Rio Tinto (blue) and Svenska Cellulosa (orange) on the left diagram, and
Anadarko Petroleum (blue) and Valero Energy (orange) on the right diagram. The time period spans from 02 November
2015 to 29 February 2016. The gray-shaded area indicates the time period of COP21 (30th Nov 2015 – 12th Dec 2015).

erate in the same industry, but are still exposed to carbon risk differently. Figure 5.4
depicts the evolution of the CDS spreads of two pairs of firms operating in the same
industry (with the same credit rating) in North America (left) and Europe (right) be-
fore and after COP21. The selected firms in North America (Anadarko Petroleum and
Valero Energy) operate in the Energy sector, whereas the selected firms in Europe (Rio
Tinto and Svenska Cellulosa) operate in the Basic Materials sector.

Anadarko Petroleum (acquired by Occidental Petroleum in 2019) was a US-based en-
ergy firm engaged in hydrocarbon exploration and was ranked 47th among the World’s
Top 100 Polluters (CDP, 2017). On the other side, Valero Energy – an international, US-
based manufacturer and marketer of transportation fuels – is among the firms with
the lowest emission intensity in their industry, albeit a carbon-intensive industry. Rio
Tinto is a multinational, UK-based firm mainly engaged in mining and production of
metals. It was ranked 24th among the World’s Top 100 Polluters (CDP, 2017). Sven-
ska Cellulosa – a Swedish forestry firm producing wood-based products and biofuel –
is Europe’s largest private forest owner. With its large-scale provision of lease of land
for wind farm operators it is considered an environmental forerunner within the Basic
Materials sector.

Analogously to the examples provided in Figure 5.1, we see that the CDS spreads
move on a similar level before COP21 and start to diverge afterwards. Post-COP21
the spreads diverge even further creating a bigger difference in default protection costs
for more exposed firms vis-a-vis well prepared firms. So again, this example serves to
illustrate that exposure to carbon risk can also be extracted on a sectoral level using
CDS data.

Figure 5.5 depicts the evolution of the sectoral CRs over time for tenors of 1, 5 and 30
years in the European sample. Within the construction we excluded the sector Real
Estate as well as the first year of the sector Energy due to lack of sufficient data. In
general, these subfigures unveil entirely different sectoral carbon risk exposures. The
sectors Basis Materials (BM), Consumer Cyclicals (CCGS) and Energy, albeit on dif-
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ferent levels, indicate a very similar behavior to the market-wide CR from Subsection
5.2.1. That is, their temporal evolution is comparable to the market-wide perception
of carbon risk, although these sectors exhibit different magnitudes of carbon risk. This
could be an indication that carbon policy events (e.g. COP21) are relevant in the same
way for these sectors. Contrary, the sectors Healthcare and Utilities feature clear up-
wards, respectively, downwards trends in their CR and do not or only weakly react to
events such as COP21. For these sectors, it seems that a clear direction for carbon risk is
observable without being significantly affected by policy events. The remaining sectors
(Industrials, Consumer Non-Cyclicals (NCGS) and Technology) do not provide a clear
picture. In fact, their CRs seem to erratically fluctuate around zero and hence do not
give a clear hint on how the market perceives the risk of carbon in these sectors.

In North America (Figure 5.6), the sectoral CRs reveal different patterns. First, we
observe that all but the CR for the Energy sector behave markedly dissimilar to the
market-wide CR. It seems that these other sectors exhibit very unique exposures to car-
bon risk compared to the aggregate market. The direction, however, remains unclear
as most of the CRs fluctuate erratically around zero. The only exceptions to this are the
sectors Healthcare and NCGS which show a clear upward resp. downward movement
over time. In terms of reactions to relevant policy events such as the Paris Agreement,
we see certain sectors (Energy, Technology, Utilities) that experience an increase in the
perception of carbon risk, while others (BM, CCGS) exhibit a significant drop in their
respective CR. The remaining sectors (Healthcare, Industrials, NCGS) do not react in
any notable fashion.
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(a) Basic Materials (b) Consumer Cyclicals

(c) Energy (d) Healthcare

(e) Industrials (f) Consumer Non-Cyclicals

(g) Technology (h) Utilities

Figure 5.5.: Evolution of the sector-specific CRs over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for Europe.
The first year (2013) in the sector Energy as well as the entire sector Real Estate are excluded due to a lack of enough
data for the construction of the CR. The vertical solid lines refer to the Paris Agreement (dark green) and Trump election
(brown), respectively.
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(a) BM (b) CCGS

(c) Energy (d) Healthcare

(e) Industrials (f) NCGS

(g) Technology (h) Utilities

Figure 5.6.: Evolution of the sector-specific CRs over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for North
America. The vertical solid lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively.
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5.2.3. Country-specific risk perceptions

The previous two subsections already illustrated that exposure to carbon risk can vastly
differ across sectors and continents (Europe vs. North America). For the latter, we
may also want to go a level further and look at the intra-continental (i.e. country-
specific) differences in the exposure to carbon risk. Countries may experience very
different exposures depending on their implemented national policies or the peoples
mindset towards climate change (and with it demand patterns). For that reason, we
also construct CRs for specific countries.

We follow the same procedure for constructing the CRs as in the sectoral case, but do
it separately for every country under consideration. We omit North America in this
analysis, as we only have a few Canadian firms in our sample and hence do not expect
to see big differences to the pure North American CR from Subsection 5.2.1. Also, given
the small number of available firms, the CRs are likely to exhibit a very erratic behavior
or cannot even be constructed due to a lack of sufficient data. In Europe, we focus on
the three big countries France, Germany and United Kingdom (UK), as they account
for more than 60% of all firms in our sample and we mostly cannot build CRs for the
remaining sample countries.

Figure 5.7 depicts the evolution of the French (top), German (center) and British (bot-
tom) CR over time for tenors of 1, 5 and 30 years in the European sample. Starting with
the French CRs, we see very high CRs at the beginning of the sample period which drop
slowly afterwards. After the Paris Agreement, the CRs spike up to their initial level
again which, however, is short-lived. In the end, the mid- and long term CRs move to
negative values. Contrary to that, in Germany, the perception of carbon risk evolved
continuously over time and peaks around COP21 after which it slowly decreases again.
In addition, the CRs are greater than zero for the most part and exhibit an upwards
trend over the entire sample period (except 1Y). The CRs for the UK exhibit the least
straightforward movements, in that most of their evolution look ambiguous. Only after
the referendum to leave the European Union on June 23, 2016 (Brexit), a small effect is
observable, in that the CR moves down and ends up in large negative regions.
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(a) France

(b) Germany

(c) United Kingdom

Figure 5.7.: Evolution of the country-specific CRs over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for
France (top), Germany (center) and United Kingdom (bottom). The vertical solid lines refer to the Paris Agreement
(dark green) and Trump election (brown), respectively.
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5.2.4. Term structure

So far, we focused on a particular tenor providing information about the carbon risk
exposure with respect to a specific future point in time. Additionally, we can extract
valuable information about carbon risk over a specific time horizon by considering the
difference between two CRs with differing tenors. This difference constitutes the slope
of the CR factor, which is constructed as

CRSlopemn
t = CRm

t −CRn
t ,

where the relationship between tenors is m > n. Conceptually, starting from a carbon
risk exposure over the next n years, CRSlopemn

t provides valuable information by de-
scribing how the exposure to carbon risk is perceived over the remaining m− n years.
CRSlopemn

t can take positive and negative values, depending on how the market’s per-
ception of carbon risk evolves. Compared to the next n years, a positive (negative) CR
slope reflects expectations of an increasingly tighter (looser) carbon regulatory frame-
work in the later m− n years.

Figure 5.8 depicts the 5Y-1Y (blue) and 30Y-5Y (orange) CR slopes for Europe and North
America. Similar to the CR, the figures again suggest distinct conditions for Europe and
North America. Both CR slopes are mostly positive for Europe, indicating a collective
perception of continuously, albeit erratic, growing exposure to carbon risk. In other
words, the longer the time horizon, the larger the perceived exposure to carbon risk
in Europe. Conversely, the perceived future exposure to carbon risk in North America
varies continuously and is less clear-cut. For example, contrasting the 5Y-1Y versus 30Y-
5Y CR slopes and focusing on the period immediately following COP21, the CR slopes
show that the market anticipated a surge in exposure to carbon risk in the four subse-
quent years, as opposed to the successive 25 years. This indicates that lenders in North
America expected most of the risks associated with COP21 to materialize between 2017
and 2021.
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(a) Europe

(b) North America

Figure 5.8.: Evolution of the CR slope over time for 5Y-1Y (blue) and 30Y-5Y (orange) for Europe (top) and North
America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and Trump election (brown),
respectively.
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5.3. Carbon tail risk (CTR) factor

We restricted our focus so far on the measurement of the median risk associated to car-
bon. In particular, we chose the median polluting (clean) firm in our construction and,
with it, depicted the CDS spread movements of firms in the center of each class. Addi-
tionally, we may also want to look at the CDS spread behavior of firms in the extremes
of each group which – after computing the wedge – would portray the perception of
carbon tail risks. The relevance of such a metric is immediate as CDSs are credit insur-
ance products making them of utter importance for risk management purposes.

For the construction of the tail risk factor, we start with the same sets Cm
t and Pm

t com-
prising the CDS spreads of the clean and polluting class introduced in Section 5.2.1.
From these sets, we then compute the quantile of default protection costs of clean and
polluting firms by calculating the m-year CDS spread level at quantile level τ for each
tenor m ∈ {1, 3, 5, 10, 30} at every time t:

Cm
t (τ) = Qτ (Cm

t ) ,
Pm

t (τ) = Qτ (Pm
t ) ,

where Qτ(·) denotes the quantile function for some quantile level τ ∈ (0, 1). Conse-
quently, the carbon tail risk (CTR) factor for some τ is defined as:

CTRm
t (τ) = Pm

t (τ)−Cm
t (τ).

The proposed CTR factor is a generalization of the initial CR factor and can be con-
structed for every quantile level τ of interest. However, to capture the risk perception
of adverse tail events, the CTR factor for τ > 0.5 (upper part) is more useful to look
at than the case τ < 0.5 (lower part). This is because the CTRs with τ > 0.5 capture
the differential exposure to carbon risk of those firms in both classes with already high
CDS spreads. Therefore, contrary to the CR, any CTR in the upper part computes the
CDS spread wedge between polluting and clean firms with more adverse credit states.
As such, we have a metric that incorporates the tail part of the carbon risk distribution.
In what follows, we will first discuss a specific upper CTR factor (τ = 0.9) and after-
wards describe the overall (approximate) distributional behavior of carbon risk over
time (τ = (0.1, . . . , 0.9)′).

Figure 5.9 shows the evolution of the CTR factor for the ninth decile τ = 0.9 over time
for the tenors of 1, 5 and 30 years in both Europe (top) and North America (bottom).9 In
Europe, we observe a similar behavior of the CTR to the CR. Specifically, the CTR factor
is mostly positive (except from mid 2017 to mid 2018) and reacts to the events around
COP21. However, the spike after the Paris Agreement is markedly larger than the one
from the CR (Figure 5.2a). That is, the tail risk of carbon was significantly more relevant
for lenders during that period. For North America, we observe the stark reaction to
COP21 as well. In fact, compared to the European case, the CTR spikes even further to

9We relegate to Figure A.2 in Appendix A.1 that plots all available tenors (including 3Y and 10Y).
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(a) Europe

(b) North America

Figure 5.9.: Evolution of the tail CR (9th decile) over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for Europe
(top) and North America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and Trump election
(brown), respectively.

values beyond 400 basis points. This showcases that, although median carbon risk was
only mildly perceived after COP21, the tail risk was a much more relevant part of the
market’s risk perception. From a levels perspective, we observe that the CTR in North
America mostly exhibits negative values pre-COP21 and positive values post-COP21.
This is also in contrast to the erratic behavior of the CR over the entire sample period.

Figure 5.10 displays the evolution of the 5-years tail CR for all deciles in Europe (top)
and North America (bottom). Essentially, these graphs depict the (approximate) dis-
tributional behavior of carbon risk over time. The graph for Europe showcases that
the distributional distance (i.e., the difference between two CTRs with varying τ) con-
stantly evolves, in particular for CTRs with τ > 0.5. While this difference is particularly
large in the beginning of the sample period and during COP21, it decreases for the re-
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(a) Europe

(b) North America

Figure 5.10.: Evolution of the 5-years tail CR over time for all deciles in Europe (top) and North America (bottom). The
vertical solid lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively.

maining periods. This indicates that the distribution of carbon risk, in particular the
right tail, is not constant but varies over time. In North America, the distributional
differences for the right tail are also a distinct feature. Additionally, we observe little
movements of the CTRs with τ < 0.5 which further substantiates the previous finding
of a stark difference in lenders perception of median carbon risk vis-a-vis tail carbon
risk in North America.
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6. The effects of carbon risk on credit
risk

In this chapter, we empirically investigate the impact of carbon risk (proxied by our
CR factor) on CDS spreads. We first develop testable hypotheses that are based on
theoretical expectations. Afterwards, we run different models to test aforementioned
hypotheses. Last, we provide some additional analyses and robustness checks to sub-
stantiate our empirical findings.

6.1. Hypothesis development

In the previous section, we argued that CR represents the general perception of carbon
risk exposure, such that a higher CR corresponds to a higher perceived carbon risk.
We also argued that a firm with high exposure to carbon risk can see a decline in its
valuation, a higher probability of default and, therefore, a higher CDS spread. We thus
propose the first hypothesis:

Hypothesis 1. There is a positive relationship between carbon risk and CDS spread returns.

Recent studies suggest that carbon risk differs across regions due to the varying degrees
of ambition of environmental regulations and diverse restrictions on carbon emissions
(Huij et al., 2021).1 While Europe has generally been considered a global forerunner
in the implementation of stringent carbon policies, North American countries – in par-
ticular the US – consistently fall short in their efforts to regulate and reduce carbon
emissions. Consequently, the prospect of carbon risks materializing is stronger in Eu-
rope than in North America, yielding higher expected CDS spreads for firms located
and operating predominantly in Europe vs. North America. This is already reflected
in Figures 5.2 and 5.8, which indicate a decidedly larger response to policy-relevant
events in Europe vs. North America. It has not been investigated, however, whether
the prospect of carbon risks materializing is stronger in Europe than in North Amer-
ica due to the difference approach to carbon pricing. Europe’s more aggressive stance
on carbon pricing, through mechanisms like the European Union Emissions Trading
System, has created a clear and explicit price for carbon emissions. In contrast, the
lack of a consistent carbon pricing mechanism in North America may lead to less ur-
gency among firms to reduce emissions. This difference in approach to carbon pricing

1There are currently 68 carbon pricing instruments in operation today (36 carbon taxes and 32 Emis-
sions Trading Systems), spanning a broad range of carbon tax rates and carbon caps (Aiello and Angelico,
2021).
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could partially explain the variations in carbon risk and CDS spreads between the two
regions. We thus propose the second hypothesis, as follows:

Hypothesis 2. The effect of carbon risk on CDS spread returns is stronger in Europe than in
North America.

Emission pricing regulation, particularly in its explicit form, can have profound and im-
mediate implications for businesses. Europe stands out in this regard, having adopted
a market-based approach to price carbon, namely the European Union Emission Trad-
ing System, EU ETS for short. Such explicit carbon pricing mechanisms can be seen as a
direct financial signal to companies, indicating the tangible costs associated with their
carbon emissions. When companies are faced with a quantifiable price tag on their
emissions, it can lead to more predictable and immediate shifts in their operational
strategies and financial planning. Lenders, being astute observers of risk, are likely to
pick up on these shifts. Thus, the presence of an explicit carbon price can serve as a clear
indicator of a firm’s potential financial liabilities related to carbon emissions. This, in
turn, can influence lenders’ perceptions of a company’s creditworthiness. CDS spreads
can thus be directly impacted by these perceptions. In essence, when a firm is subject
to explicit carbon pricing, the associated costs and risks become more transparent and
immediate, leading to more pronounced reactions in the CDS market. On the other
hand, nonprice regulations, while important, might not have the same immediate and
transparent financial implications. Such regulations might lead to indirect costs, the
magnitude and timing of which might be less predictable. Given this backdrop, our
third hypothesis emerges:

Hypothesis 3. The presence of explicit carbon regulation has a discernible influence on how
carbon risk impacts CDS spread returns.

The realm of explicit carbon regulation is multifaceted and its influence on firms ex-
tends beyond a mere dichotomy of being regulated or not. While the presence of regu-
lation matters, the depth and breadth of its impact are contingent upon the proportion
of a firm’s emissions that are actually under the purview of these regulations.
Imagine two firms, both subject to carbon pricing regulations. However, one firm has
90% of its direct emissions regulated, while the other only has 30%. The financial im-
plications for the former are likely to be far more pronounced than for the latter. This is
because the firm with a higher percentage of regulated emissions will face more direct
costs associated with its carbon footprint, leading to a more substantial impact on its
financial health and operational strategies. Furthermore, from a lender’s perspective,
the extent of a firm’s regulated emissions can serve as a barometer for potential finan-
cial liabilities. A firm with a larger share of its emissions regulated is more exposed to
the financial ramifications of carbon pricing, making it potentially riskier from a credit
standpoint. This nuanced understanding goes beyond the simplistic view of just being
’regulated’ and delves into the intricacies of how deeply a firm is embedded within the
regulatory framework. Given this context, our fourth hypothesis emerges:
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Hypothesis 4. The influence of carbon risk is not solely determined by the presence of regula-
tion: the more a firm’s emissions are regulated, the more pronounced the financial implications
of carbon risk become.

The exposure to carbon risk is not uniformly distributed across all sectors of the econ-
omy, as highlighted by Dietz et al. (2020). While every firm, on average, might grapple
with the implications of carbon risk, the intensity of this exposure is markedly pro-
nounced in certain sectors, especially those that are inherently carbon-intensive. Their
operational nature not only puts them at the forefront of regulatory scrutiny, but also
amplifies the financial risks they face due to carbon pricing. As carbon regulations
tighten, these sectors could see escalating operational costs, which in turn can impact
their financial stability and creditworthiness. Lenders, with their pulse on these evolv-
ing dynamics, are likely to perceive heightened risks associated with firms operating
in these carbon-intensive sectors. This heightened perception of risk can lead them to
seek additional credit protection, manifesting as increased CDS spreads. It is a clear in-
dication of the market’s response to the potential financial vulnerabilities of these firms
in the face of carbon risk. Hence, we posit our fifth hypothesis as follows:

Hypothesis 5. The extent to which a sector’s emissions are subject to price regulation intensi-
fies the impact of carbon risk on CDS spread returns.

Climate policies continually evolve within a rapidly changing social and policy envi-
ronment, as attested to by frequent revisions to national climate policies around the
world (Aiello and Angelico, 2021). The inherent uncertainty of climate and carbon reg-
ulations may cause a vacillating perception of the associated carbon risk. As new infor-
mation arrives in the market (e.g. conversations about tighter emissions constraints),
lenders update their expectations accordingly. Specifically, when concerns about car-
bon risks increase during times of heightened attention to climate change in the news,
lenders will demand more credit protection, thus increasing CDS spreads. Thus, we
state the next hypothesis, as follows:

Hypothesis 6. The effect of carbon risk on CDS spread returns is stronger during times of
heightened attention to climate change.

Last, we examine whether carbon risk also depends on the speed at which a transi-
tion to a low-carbon economy is expected to occur. Essentially, carbon risk depends
on both the stringency and the deadline of the policy. For example, if a new carbon
regulation with a more pressing deadline is introduced, one would expect the costs as-
sociated with transitioning to be higher in the short-term than in the long-term. This
should be noticeable in the term structure of the CDS spreads. The relative adjustment
in the spread of the CDS with shorter tenor would be higher (steeper sloped) than in
the spread of the CDS with longer tenor. We therefore propose the following testable
hypothesis:

Hypothesis 7. There is a positive relationship between the term structure of carbon risk and
CDS spread slopes.
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6.2. Empirical results

In this subsection, we present our empirical results to test the hypotheses posited in the
previous subsection. First, we focus on the general and regional effects of carbon risk
on CDS spreads. Second, we investigate the role of explicit carbon pricing. Third, we
examine the effects across different sectors. Fourth, we look at the effect of the CR factor
during heightened attention to climate change. Last, we use the CR slope to examine
the impact on the CDS term structure.

6.2.1. The general and regional impact of carbon risk

In this subsection, we examine the relationship between the CR factor (proxy for the
general perception of carbon risk exposure) and CDS spread returns. Following prior
literature on CDS (Collin-Dufresne et al., 2001; Ericsson et al., 2009; Galil et al., 2014;
Pereira et al., 2018) we include key known determinants of CDS spread returns in the
baseline quantile regression, as follows:

Qsm
i,t
(τ|xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIi,t + βτ,4∆CRt + ε i,t,

where, for the CDS issued by firm i, day t, we consider firm-specific factors (i.e. stock
return ri,t and volatility ∆σi,t), a common factor (i.e. the market condition ∆MRIi,t) and,
finally, the market-implied proxy for carbon risk exposure ∆CRt, which encapsulates
an aggregate of all changes in carbon-related concerns.

The regression is run for every decile τ ∈ {0.1, . . . , 0.9} to model the effect of each
explanatory variable on the entire conditional distribution of CDS spread returns. In
this way, we are able to model the relationship between CDS spread returns and the
CR factor for firms that behave according to the median of the conditional distribution,
as well as for firms that overperform and underperform relative to the median.2 Note
that (i) an increase in the CDS spread {τ > 0.5} reflects a deterioration in a firm’s
creditworthiness (credit deterioration), (ii) a decrease in the CDS spread {τ < 0.5}
reflects an improvement in a firm’s creditworthiness (credit improvement), and (iii)
the mid decile {τ = 0.5} corresponds to the unchanged CDS spread case (invariable
credit). In essence, the quantile regression allows us to distinctly examine the effect
of each explanatory variable along the entire distribution of credit spread returns and,
at the same time, to investigate the marginal impact of carbon risk above and beyond
these explanatory variables.

Table 6.1 reports the estimated coefficients at different deciles for every tenor under in-
vestigation for Europe. First, across all maturities, we observe a positive relationship
between CDS spread returns and the CR factor. That is, an increase in market’s percep-
tion of carbon risk is associated with a rise in CDS spread returns. The coefficients are

2It is important to note that the notion of performance here refers to the credit dimension, and does not
include unobserved firm-specific fundamental factors – these are incorporated in the fixed effects. Instead,
it may be thought of as an idiosyncratic shock (e.g. good or bad news) causing a change in a firms’ credit
performance.
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statistically significant at the 1% level and are also economically significant. For exam-
ple, considering the 5Y tenor, a one standard deviation increase in the perceived carbon
risk exposure (1.6112) is associated with a rise of 0.134 (= 1.61× 0.0834) percentage
points in the median CDS spread return. This increment accounts for a remarkable
6.1% of the standard deviation of CDS spread returns. To put this number into perspec-
tive, we look at the stock return, one of the key determinants of CDS spreads. A one
standard deviation increase in the stock return (1.64%), merely decreases the median
CDS spread return by 0.071 (= 1.64× (−0.0435)) percentage points, equivalent to 3.2%
of the CDS spread return standard deviation.

1 2 3 4 5 6 7 8 9
1Y

StockReturn −278.16∗∗∗ −247.33∗∗∗ −176.63∗∗∗ −110.96∗∗∗ −59.85∗∗∗ −97.00∗∗∗ −174.14∗∗∗ −268.26∗∗∗ −311.87∗∗∗

(14.08) (8.36) (6.48) (4.19) (2.74) (3.57) (5.89) (10.94) (21.64)
∆Volatility −375.35∗∗∗ −372.85∗∗∗ −224.13∗∗∗ −84.19∗∗∗ 20.90∗ 269.47∗∗∗ 545.53∗∗∗ 825.54∗∗∗ 975.80∗∗∗

(41.79) (41.96) (34.52) (19.47) (10.08) (18.66) (24.60) (22.82) (32.19)
∆MRI 1437.23∗∗∗ 1443.18∗∗∗ 1387.76∗∗∗ 1303.93∗∗∗ 1245.62∗∗∗ 1266.45∗∗∗ 1362.81∗∗∗ 1495.83∗∗∗ 1594.38∗∗∗

(39.21) (35.39) (30.11) (39.00) (32.90) (34.68) (36.11) (46.43) (81.48)
∆CR 384.46∗∗∗ 326.22∗∗∗ 227.68∗∗∗ 154.43∗∗∗ 107.22∗∗∗ 135.10∗∗∗ 202.51∗∗∗ 315.84∗∗∗ 480.56∗∗∗

(21.50) (15.09) (11.65) (8.83) (8.05) (9.62) (14.33) (23.72) (39.69)
3Y

StockReturn −217.31∗∗∗ −201.59∗∗∗ −162.06∗∗∗ −106.81∗∗∗ −62.13∗∗∗ −92.18∗∗∗ −159.05∗∗∗ −213.95∗∗∗ −276.32∗∗∗

(6.84) (5.95) (4.84) (3.73) (2.62) (3.11) (4.79) (7.82) (13.64)
∆Volatility −395.17∗∗∗ −287.29∗∗∗ −193.72∗∗∗ −73.81∗∗∗ 21.73∗ 234.92∗∗∗ 471.69∗∗∗ 640.70∗∗∗ 893.79∗∗∗

(36.32) (42.15) (28.06) (18.65) (10.42) (16.18) (21.52) (13.23) (20.76)
∆MRI 568.36∗∗∗ 607.75∗∗∗ 608.98∗∗∗ 584.70∗∗∗ 569.69∗∗∗ 577.40∗∗∗ 612.69∗∗∗ 653.08∗∗∗ 690.62∗∗∗

(12.43) (11.91) (13.99) (13.13) (13.65) (13.55) (15.41) (20.71) (34.12)
∆CR 256.14∗∗∗ 211.88∗∗∗ 171.98∗∗∗ 119.20∗∗∗ 82.30∗∗∗ 98.46∗∗∗ 149.62∗∗∗ 202.54∗∗∗ 245.41∗∗∗

(10.43) (8.20) (6.90) (5.90) (5.08) (5.30) (7.29) (10.40) (17.56)
5Y

StockReturn −146.61∗∗∗ −127.23∗∗∗ −100.80∗∗∗ −68.45∗∗∗ −43.49∗∗∗ −57.68∗∗∗ −94.86∗∗∗ −132.60∗∗∗ −176.02∗∗∗

(4.69) (3.53) (2.94) (2.32) (1.79) (1.98) (2.73) (4.41) (8.36)
∆Volatility −280.24∗∗∗ −206.68∗∗∗ −141.63∗∗∗ −64.69∗∗∗ 7.67 127.34∗∗∗ 267.89∗∗∗ 418.30∗∗∗ 580.47∗∗∗

(28.84) (27.19) (18.84) (13.11) (6.47) (11.31) (12.18) (3.22) (7.72)
∆MRI 304.89∗∗∗ 329.09∗∗∗ 333.79∗∗∗ 332.65∗∗∗ 329.42∗∗∗ 328.44∗∗∗ 341.31∗∗∗ 353.96∗∗∗ 360.95∗∗∗

(7.97) (8.10) (8.01) (7.84) (7.66) (7.57) (8.50) (9.89) (14.27)
∆CR 174.66∗∗∗ 161.78∗∗∗ 132.05∗∗∗ 103.33∗∗∗ 83.40∗∗∗ 94.73∗∗∗ 129.70∗∗∗ 168.38∗∗∗ 218.94∗∗∗

(7.28) (5.10) (5.04) (4.53) (4.63) (4.80) (5.41) (6.63) (11.22)
10Y

StockReturn −115.48∗∗∗ −91.52∗∗∗ −72.30∗∗∗ −49.62∗∗∗ −31.60∗∗∗ −42.32∗∗∗ −68.71∗∗∗ −95.80∗∗∗ −135.12∗∗∗

(3.31) (2.42) (2.04) (1.61) (1.22) (1.41) (1.90) (3.04) (5.46)
∆Volatility −208.94∗∗∗ −159.73∗∗∗ −102.22∗∗∗ −42.59∗∗∗ 7.29∗ 92.50∗∗∗ 201.50∗∗∗ 308.16∗∗∗ 426.82∗∗∗

(18.14) (13.37) (12.23) (8.61) (3.39) (7.26) (6.42) (4.26) (6.32)
∆MRI 231.97∗∗∗ 245.74∗∗∗ 246.05∗∗∗ 241.57∗∗∗ 239.52∗∗∗ 239.20∗∗∗ 249.82∗∗∗ 261.89∗∗∗ 270.74∗∗∗

(6.29) (4.30) (5.46) (5.22) (5.24) (4.86) (4.90) (5.93) (9.77)
∆CR 63.81∗∗∗ 58.61∗∗∗ 49.43∗∗∗ 39.78∗∗∗ 28.82∗∗∗ 34.57∗∗∗ 49.56∗∗∗ 68.68∗∗∗ 96.56∗∗∗

(2.47) (2.59) (2.49) (2.30) (1.97) (2.23) (2.85) (3.80) (5.02)
30Y

StockReturn −103.86∗∗∗ −84.69∗∗∗ −67.29∗∗∗ −48.32∗∗∗ −36.14∗∗∗ −44.23∗∗∗ −67.51∗∗∗ −92.05∗∗∗ −125.43∗∗∗

(3.08) (2.24) (1.86) (1.50) (1.32) (1.37) (1.91) (3.19) (6.37)
∆Volatility −218.27∗∗∗ −155.69∗∗∗ −94.78∗∗∗ −42.29∗∗∗ 10.88· 95.48∗∗∗ 201.66∗∗∗ 290.80∗∗∗ 398.44∗∗∗

(16.70) (9.52) (12.94) (9.20) (5.71) (6.85) (7.68) (6.98) (6.66)
∆MRI 257.21∗∗∗ 251.06∗∗∗ 242.74∗∗∗ 240.79∗∗∗ 240.96∗∗∗ 240.47∗∗∗ 247.23∗∗∗ 263.92∗∗∗ 289.59∗∗∗

(4.60) (4.61) (4.53) (5.11) (5.39) (5.65) (5.31) (6.28) (10.66)
∆CR 70.21∗∗∗ 58.65∗∗∗ 50.55∗∗∗ 40.71∗∗∗ 33.21∗∗∗ 36.48∗∗∗ 47.44∗∗∗ 63.48∗∗∗ 79.93∗∗∗

(1.84) (2.20) (1.85) (1.82) (1.80) (2.12) (2.76) (3.81) (6.53)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.1.: This table reports the coefficient estimates of the base panel quantile regression model for 1-year (top), 3-year
(upper center), 5-year (center), 10-year (lower center) and 30-year (bottom) CDS spread returns. The sample includes
data of 136 European firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-
differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles.
All estimates are scaled by factor 1e03.
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6. The effects of carbon risk on credit risk

Second, starting from the median, we observe that the coefficients are increasingly
larger toward the first and ninth deciles. Essentially, the more the state of the firms
credit deteriorates or improves, the larger the effect of CR. Notably, the effect increases
symmetrically (i.e. the coefficients are virtually the same moving from the median to-
ward the extremes). While a decrease in the CR particularly helps firms experiencing a
negative CDS spread shock, an increasing CR and with it more exposure to carbon risk
leverages the already worsening effect if the firm is exposed to an extreme positive CDS
spread shock. These results are consistent with Hypothesis 1: there is a positive rela-
tionship between carbon risk and CDS spread returns. The relationship is exceptionally
strong in the extremes of the conditional distribution of CDS spread returns.

We next examine Hypothesis 2, which posits that the effect of carbon risk on CDS
spread returns is stronger in Europe than in North America. We re-estimate our base-
line QR separately for each North American tenor. Consistent with the prediction of
Hypothesis 2, Table 6.2 shows a substantially weaker relationship between CDS spread
returns and the CR factor for the North American sample. For example, considering
the 5Y tenor, the coefficient estimate of CR for the median CDS spread return (0.0004) is
more than 200 times smaller than its European counterpart (0.0834). Not only are esti-
mates considerably smaller, but they are also only occasionally statistically significant.
While the heterogeneity in the magnitudes of the CR effect persists, the symmetry in
the effect of CR breaks off in the North American sample. In fact, the long-term tenors
(10Y, 30Y) apart, the effect on the ninth decile is at least twice as high as the effect on
the first decile, suggesting that in North America, credit risk exposure is particularly
relevant when firms’ CDS spreads deteriorate.

In delving deeper into the pronounced difference between Europe and North America,
it is essential to consider the regulatory landscape of carbon emissions in both regions.
Europe has been at the forefront of implementing explicit carbon pricing mechanisms,
most notably through the EU ETS. This system mandates companies to pay for their
carbon emissions, effectively introducing a direct cost for emitting carbon dioxide and
other greenhouse gases. Such explicit carbon pricing can have a more immediate and
pronounced effect on firms’ financials, which is likely reflected in the CDS spread re-
turns. On the other hand, North America, especially the US, has predominantly relied
on non-price emissions regulations. These regulations might not impose a direct cost
on emissions, but rather set limits or standards on the amount of emissions a com-
pany can produce. While these non-price regulations can still impose costs on firms,
such as compliance and operational adjustments, they do not have the same direct and
immediate financial implications as an explicit carbon price. This difference in the reg-
ulatory approach could be a significant factor behind the observed weaker relationship
between CDS spread returns and the CR factor in North America compared to Europe.
In essence, the explicit carbon costs borne by European companies might lead to more
immediate and discernible changes in their perceived credit risk, as captured by CDS
spreads, than the more indirect costs faced by North American firms under non-explicit
price regulations. This is what we explore next.
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1 2 3 4 5 6 7 8 9
1Y

StockReturn −31.05∗∗∗ −17.78∗∗∗ −4.95∗∗∗ −0.87∗∗∗ −0.21∗∗∗ −1.15∗∗∗ −8.16∗∗∗ −29.27∗∗∗ −59.91∗∗∗

(4.24) (1.48) (0.51) (0.09) (0.03) (0.11) (0.76) (3.02) (5.80)
∆Volatility −136.38∗∗∗ −60.30∗∗∗ −8.90∗∗∗ −0.23 0.16∗∗∗ 6.10∗∗∗ 48.36∗∗∗ 167.30∗∗∗ 401.72∗∗∗

(19.83) (6.70) (1.68) (0.31) (0.04) (0.86) (4.17) (16.68) (18.75)
∆MRI 149.99∗∗∗ 96.57∗∗∗ 32.39∗∗∗ 10.03∗∗∗ 3.16∗∗∗ 12.21∗∗∗ 51.77∗∗∗ 164.50∗∗∗ 419.40∗∗∗

(30.27) (10.56) (4.28) (1.24) (0.39) (1.34) (6.03) (20.88) (42.51)
∆CR 5.60∗∗∗ 5.12∗∗∗ 1.63∗∗∗ 0.34∗∗∗ 0.09∗∗∗ 0.52∗∗∗ 4.24∗∗∗ 18.37∗∗∗ 60.65∗∗∗

(1.50) (0.69) (0.25) (0.06) (0.02) (0.08) (0.50) (2.23) (6.49)
3Y

StockReturn −48.27∗∗∗ −26.37∗∗∗ −14.96∗∗∗ −8.44∗∗∗ −3.63∗∗∗ −8.87∗∗∗ −16.90∗∗∗ −31.87∗∗∗ −59.76∗∗∗

(4.09) (1.61) (0.85) (0.55) (0.23) (0.51) (0.97) (2.53) (5.98)
∆Volatility −186.93∗∗∗ −79.42∗∗∗ −28.74∗∗∗ −4.98∗∗ 0.56 32.87∗∗∗ 82.77∗∗∗ 175.39∗∗∗ 372.26∗∗∗

(17.89) (8.29) (3.60) (1.82) (0.66) (2.96) (4.79) (11.57) (23.40)
∆MRI 99.95∗∗∗ 76.18∗∗∗ 45.56∗∗∗ 28.76∗∗∗ 14.17∗∗∗ 30.05∗∗∗ 53.50∗∗∗ 103.95∗∗∗ 204.25∗∗∗

(11.45) (5.73) (3.76) (2.69) (1.23) (2.42) (3.74) (8.26) (17.02)
∆CR 4.85∗∗∗ 3.06∗∗∗ 2.03∗∗∗ 1.28∗∗∗ 0.51∗∗∗ 0.87∗∗∗ 1.63∗∗∗ 3.50∗∗∗ 10.07∗∗∗

(0.64) (0.25) (0.19) (0.12) (0.06) (0.11) (0.20) (0.56) (1.79)
5Y

StockReturn −46.77∗∗∗ −23.72∗∗∗ −13.73∗∗∗ −9.21∗∗∗ −4.79∗∗∗ −9.11∗∗∗ −15.37∗∗∗ −26.61∗∗∗ −51.12∗∗∗

(3.02) (1.26) (0.78) (0.50) (0.26) (0.46) (0.88) (1.95) (4.58)
∆Volatility −179.77∗∗∗ −68.21∗∗∗ −22.68∗∗∗ −4.19∗∗ 1.02· 33.57∗∗∗ 74.12∗∗∗ 152.18∗∗∗ 328.31∗∗∗

(13.14) (6.14) (3.96) (1.46) (0.54) (2.55) (3.47) (7.67) (11.78)
∆MRI 58.12∗∗∗ 42.50∗∗∗ 26.84∗∗∗ 19.75∗∗∗ 11.03∗∗∗ 21.32∗∗∗ 34.80∗∗∗ 63.75∗∗∗ 115.69∗∗∗

(5.77) (3.06) (2.36) (1.51) (0.88) (1.57) (2.48) (4.60) (6.74)
∆CR 2.39∗∗∗ 1.81∗∗∗ 1.27∗∗∗ 0.89∗∗∗ 0.35∗∗∗ 0.87∗∗∗ 2.02∗∗∗ 4.53∗∗∗ 11.91∗∗∗

(0.39) (0.18) (0.14) (0.11) (0.05) (0.13) (0.25) (0.52) (1.32)
10Y

StockReturn −40.51∗∗∗ −20.65∗∗∗ −11.58∗∗∗ −7.23∗∗∗ −3.67∗∗∗ −6.56∗∗∗ −11.34∗∗∗ −20.13∗∗∗ −41.42∗∗∗

(1.87) (0.93) (0.55) (0.34) (0.18) (0.30) (0.59) (1.53) (3.61)
∆Volatility −145.14∗∗∗ −60.48∗∗∗ −20.30∗∗∗ −4.44∗∗ 1.40∗∗∗ 24.92∗∗∗ 56.88∗∗∗ 117.40∗∗∗ 256.77∗∗∗

(7.08) (3.92) (2.52) (1.40) (0.28) (1.60) (2.61) (6.23) (10.60)
∆MRI 38.97∗∗∗ 27.58∗∗∗ 17.12∗∗∗ 12.15∗∗∗ 7.03∗∗∗ 11.72∗∗∗ 19.09∗∗∗ 34.37∗∗∗ 63.50∗∗∗

(2.68) (1.60) (1.15) (0.70) (0.42) (0.69) (1.19) (2.75) (4.76)
∆CR 2.29∗∗∗ 0.87∗∗∗ 0.48∗∗∗ 0.24∗∗∗ 0.08∗ 0.19∗∗ 0.58∗∗∗ 1.30∗∗∗ 3.44∗∗∗

(0.34) (0.16) (0.09) (0.06) (0.04) (0.06) (0.12) (0.24) (0.59)
30Y

StockReturn −47.31∗∗∗ −25.44∗∗∗ −15.37∗∗∗ −9.78∗∗∗ −5.36∗∗∗ −8.41∗∗∗ −14.31∗∗∗ −24.48∗∗∗ −47.92∗∗∗

(1.99) (0.93) (0.58) (0.40) (0.24) (0.36) (0.68) (1.70) (3.93)
∆Volatility −157.03∗∗∗ −72.20∗∗∗ −27.27∗∗∗ −7.75∗∗∗ 2.87∗∗ 29.97∗∗∗ 66.49∗∗∗ 131.28∗∗∗ 272.80∗∗∗

(6.48) (5.55) (3.72) (1.69) (0.97) (1.99) (3.03) (6.37) (10.52)
∆MRI 37.30∗∗∗ 26.00∗∗∗ 17.65∗∗∗ 12.87∗∗∗ 8.82∗∗∗ 12.45∗∗∗ 18.88∗∗∗ 31.55∗∗∗ 56.22∗∗∗

(2.49) (1.31) (0.92) (0.70) (0.47) (0.65) (0.92) (2.29) (3.85)
∆CR 2.98∗∗∗ 1.15∗∗∗ 0.73∗∗∗ 0.38∗∗∗ 0.13∗∗ −0.02 0.01 0.34 2.07∗∗

(0.32) (0.16) (0.10) (0.07) (0.05) (0.06) (0.10) (0.26) (0.69)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.2.: This table reports the coefficient estimates of the base panel quantile regression model for 1-year (top), 3-year
(upper center), 5-year (center), 10-year (lower center) and 30-year (bottom) CDS spread returns. The sample comprises
of data for 275 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are
in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1e03.

6.2.2. Explicit carbon pricing matters

The disparity in the regulatory landscape between Europe and North America is fur-
ther underscored by the data from our sample. According to the responses from the
CDP questionnaires, only 20% of the North American firms in our sample are subject
to an ETS, whereas in Europe, that figure rises to over 50%, as illustrated in Figure 6.1.
The CDP, a global disclosure system that enables companies to measure and manage
their environmental impacts, has been instrumental in shedding light on how firms are
affected by and respond to carbon pricing regulations. Their questionnaire has evolved
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6. The effects of carbon risk on credit risk

over time to capture not just whether companies are under mandatory carbon pricing
regulations, but also if they are currently regulated by any form of carbon pricing sys-
tem, be it carbon markets or taxation.

(a) Europe (b) North America

Figure 6.1.: Breakdown of European (left) and North American (right) firms based on whether they are subject to carbon
price regulation, compared to those not under carbon price regulation or who did not provide a response to the survey.

This stark difference in the proportion of firms under an explicit carbon pricing regime
between the two regions offers a clear insight into the varying degrees of regulatory
pressures they face. European firms, with over half of them being subject to an ETS, are
more directly impacted by the costs associated with carbon emissions. These costs can
have immediate financial implications, affecting everything from operational costs to
investment decisions. On the other hand, the majority of North American firms, with
80% of them not being under an explicit price emissions regulation, might not face the
same direct financial pressures from carbon pricing. Instead, their primary concerns
might revolve around compliance with nonprice emissions regulations, which, while
still impactful, do not have the same immediate financial ramifications as an explicit
carbon price.

Diving into the details of regulatory exposure, we sought to understand its potential
influence on the CDS spread returns in relation to carbon risk. This exploration forms
the crux of our Hypothesis 3. To achieve this, we turned to the CDP questionnaire,
specifically question C11.1, which inquires: ”Are any of your operations or activities
regulated by a carbon pricing system (i.e. ETS, Cap and Trade or Carbon Tax)?”. This
question not only captures the current regulatory landscape but also anticipates future
shifts, as it has evolved to encompass both present regulatory frameworks and expected
future regulations. Companies affirming their regulation under a carbon pricing system
are further probed to specify the exact systems they fall under. This data allows us to
categorize companies based on their current and anticipated regulatory environments,
offering a more detailed perspective on their exposure to explicit carbon pricing. From
the responses, we classify companies into four distinct categories. First, there are those
that did not provide any feedback, labeled as ”No response”. Next, we have companies
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6.2. Empirical results

that confirmed they are not under any carbon regulation, categorized as ”No”. Another
group consists of companies that are not currently regulated but expect to be in the
future, termed ”No but anticipation”. Lastly, companies that are actively regulated or
subject to emission pricing are grouped under ”Yes”. With this refined classification in
hand, we proceeded to re-estimate our baseline QR for each European tenor. By doing
so, we aimed to discern patterns or variations in CDS spread returns that might be
attributable to the differences in carbon pricing regulations. Our model now reads:

Qsm
i,t
(τ|xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIm

i,t + βτ,4∆CRm
t

+
8

∑
k=5

βτ,kETSi +
11

∑
k=9

βτ,k∆CRm
t ETSi + ε i,t,

where ETSi denotes firm i’s response to question C11.1 from the CDP questionnaire.

1 2 3 4 5 6 7 8 9
Europe

∆CR× ETS (No response) 67.86∗∗∗ 56.71∗∗∗ 46.87∗∗∗ 33.21∗∗∗ 19.17∗∗∗ 26.01∗∗∗ 46.50∗∗∗ 61.29∗∗∗ 81.80∗∗

(13.30) (6.66) (9.65) (7.26) (5.64) (6.62) (9.59) (14.46) (27.39)
∆CR× ETS (No) 42.30∗∗ 47.14∗∗∗ 42.13∗∗∗ 30.95∗∗ 27.29∗∗ 26.97∗∗ 26.88· 45.86∗ 60.78·

(15.27) (14.01) (12.77) (10.54) (9.12) (10.24) (14.12) (19.15) (36.55)
∆CR× ETS (No but anticipation) 52.23∗∗ 21.15 27.10 24.17 34.17· 32.40· 25.81 43.41∗ 69.38·

(16.06) (50.38) (23.13) (17.09) (18.73) (17.34) (18.02) (20.90) (38.96)
∆CR× ETS (Yes) 252.51∗∗∗ 217.93∗∗∗ 184.61∗∗∗ 157.81∗∗∗ 144.74∗∗∗ 147.56∗∗∗ 177.23∗∗∗ 226.78∗∗∗ 286.73∗∗∗

(16.28) (11.11) (13.84) (11.79) (10.17) (11.25) (13.75) (19.63) (33.39)
North America

∆CR× ETS (No response) 2.74 3.06∗∗∗ 1.40∗∗∗ 0.75∗∗∗ 0.38∗∗∗ 0.76∗∗∗ 2.48∗∗∗ 8.80∗∗∗ 33.21∗∗∗

(2.08) (0.75) (0.23) (0.15) (0.09) (0.18) (0.40) (1.25) (3.49)
∆CR× ETS (No) 2.70 −0.25 −0.24 −0.11 −0.09 −0.06 −0.57 −2.04 −8.94·

(2.88) (0.95) (0.33) (0.18) (0.11) (0.22) (0.56) (1.66) (4.78)
∆CR× ETS (No but anticipation) 10.01 4.62∗ 2.54 0.65 −0.03 0.32 1.95 8.12 17.10

(9.99) (1.83) (2.27) (0.95) (0.36) (0.65) (2.65) (9.10) (21.62)
∆CR× ETS (Yes) 5.65∗ 2.71∗ 1.11∗ 0.91∗∗ 0.17 0.85∗ 0.95 0.93 2.47

(2.29) (1.22) (0.48) (0.33) (0.19) (0.38) (0.76) (2.32) (6.58)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.3.: This table presents estimates of the panel quantile regression model (with ETS interaction terms) for 5-year
CDS spread returns in Europe (top) and North America (bottom). The sample comprises of data from 136 European
firms resp. 275 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model
are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all
nine deciles. All estimates are scaled by factor 1e03.

Table 6.3 reports the coefficient estimates of the interaction terms for the 5-year sec-
tor model of the European and North American sample. Note that the estimate of
∆CR× ETS (No response) serves as a reference coefficient. All remaining interaction
term estimates should be considered in reference to this coefficient. For example, the co-
efficient for the first decile ∆CR× ETS (No but anticipation) interaction term is 67.86 +
52.23 = 120.09. In line with the expectations set forth by Hypothesis 3, the data pre-
sented in Table 6.3 reveals a notably smaller relationship between CDS spread returns
and the CR factor for European firms that either are not governed by carbon pricing
regulations or chose not to respond to the survey. This observation is particularly in-
sightful when contrasted with the coefficient estimate for companies that, while not
currently regulated, anticipate impending carbon pricing regulations. For these firms,
the coefficients of most deciles are larger, suggesting that the mere anticipation of fu-
ture regulations can have a pronounced effect on perceived carbon risk. However, the
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most significant impact is observed for companies that are already operating under
explicit carbon pricing. Their coefficient estimates are approximately double in mag-
nitude compared to firms not subject to explicit price regulation. This stark difference
underscores the heightened financial implications these companies face in the present,
as they grapple with the tangible costs and complexities of adhering to current carbon
pricing mandates. The lenders’ market, in its characteristic forward-looking manner,
appears to be acutely sensitive to these nuances in regulatory exposure, adjusting its
perception of carbon risk accordingly. In North America, however, we mostly do not
find significant differences between the baseline estimates of ”No response” and the
remaining ETS dummies. This suggests that the mere presence of an ETS does not play
a role. In fact, the small share of North American firms even subject to a carbon pricing
system probably makes it a less influential part of lenders’ considerations.

The influence of explicit carbon regulation on firms in Europe is evident, but it is not
just a binary matter of whether a firm is regulated or not. The depth of this impact
is also determined by the percentage of a firm’s direct emissions that fall under these
regulations. Essentially, it is not just about being regulated, but how much of a firm’s
emissions are actually regulated. For instance, two firms might both be subject to car-
bon regulation, but if one has a higher proportion of its emissions regulated than the
other, the financial implications could be vastly different. This brings into focus the per-
ton cost of carbon price regulation, which can provide a more granular understanding
of the financial burden on firms. With Hypothesis 4, we delve deeper into this aspect,
seeking to understand how the effect of the CR factor evolves based on the percentage
of a firm’s direct emissions that are regulated. This exploration aims to provide a more
nuanced understanding of the financial implications of carbon regulations on firms,
beyond just the binary case of being regulated or not.

To that end, we compute the ratio between verified emissions and total global direct
emissions. This ratio serves as a measure of the proportion of a firm’s emissions that
have been officially verified and are therefore subject to regulation. To derive this, we
source our data for verified emissions from the CDP questionnaire. The global emis-
sions profile of a firm is sourced from Refinitiv data, which offers insights into total
global direct emissions, our scope 1 emissions. These are emissions that come directly
from sources owned or controlled by the firm, such as its factories or facilities. By com-
paring these two data points - the verified emissions from the CDP questionnaire and
the total direct emissions from Refinitiv – we can gauge the extent to which a firm’s
emissions are under regulatory scrutiny and, by extension, the potential explicit cost
implications of carbon regulations on the firm. With that, our model now looks as fol-
lows:
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Qsm
i,t
(τ|xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIm

i,t + βτ,4∆CRm
t +

8

∑
k=5

βτ,kETSi

+
11

∑
k=9

βτ,k∆CRm
t ETSi + βτ,12∆CRm

t ETSi(Yes)ETS Sharei + ε i,t,

where ETSi(Yes) and ETS Sharei denote firm i’s Yes/No reponse to question C11.1 from
the CDP questionnaire and ratio of verified emissions to total direct emissions, respec-
tively.

1 2 3 4 5 6 7 8 9
Europe

∆CR× ETS (No response) 68.48∗∗∗ 56.93∗∗∗ 46.92∗∗∗ 33.21∗∗∗ 19.24∗∗∗ 26.01∗∗∗ 46.60∗∗∗ 61.74∗∗∗ 82.12∗∗

(13.09) (6.63) (9.66) (7.26) (5.64) (6.62) (9.59) (14.47) (27.26)
∆CR× ETS (Yes)× ETS Share 88.11∗ 77.88∗∗ 107.45∗∗∗ 139.10∗∗∗ 123.43∗∗∗ 132.57∗∗∗ 112.78∗∗∗ 76.27∗ 47.70

(34.25) (25.99) (28.87) (33.18) (33.78) (35.10) (29.77) (36.28) (56.04)
∆CR× ETS (No) 41.84∗∗ 47.26∗∗∗ 42.42∗∗∗ 31.23∗∗ 27.24∗∗ 26.97∗∗ 26.91· 46.13∗ 60.56·

(15.21) (13.99) (12.79) (10.53) (9.12) (10.25) (14.12) (19.07) (36.36)
∆CR× ETS (No but anticipation) 51.67∗∗ 20.99 27.17 23.97 34.26· 32.68· 26.37 42.95∗ 68.32·

(15.88) (50.08) (23.09) (17.10) (18.74) (17.42) (17.85) (21.09) (38.15)
∆CR× ETS (Yes) 220.88∗∗∗ 188.67∗∗∗ 149.13∗∗∗ 112.47∗∗∗ 103.30∗∗∗ 105.71∗∗∗ 134.99∗∗∗ 201.13∗∗∗ 268.93∗∗∗

(19.45) (12.12) (13.79) (13.14) (12.27) (13.19) (15.85) (22.75) (36.93)
North America

∆CR× ETS (No response) 2.75 3.07∗∗∗ 1.40∗∗∗ 0.75∗∗∗ 0.38∗∗∗ 0.76∗∗∗ 2.49∗∗∗ 8.77∗∗∗ 33.20∗∗∗

(2.08) (0.74) (0.23) (0.15) (0.09) (0.18) (0.40) (1.26) (3.48)
∆CR× ETS (Yes)× ETS Share 14.38 −2.00 −1.03 −1.20 0.37 −0.52 −3.50 −10.43∗ −7.23

(19.80) (3.08) (1.00) (0.98) (0.65) (1.21) (2.28) (5.26) (56.00)
∆CR× ETS (No) 2.67 −0.26 −0.24 −0.11 −0.09 −0.06 −0.57 −2.03 −8.96·

(2.85) (0.95) (0.33) (0.18) (0.11) (0.22) (0.56) (1.67) (4.81)
∆CR× ETS (No but anticipation) 9.79 4.58∗ 2.54 0.65 −0.03 0.32 1.95 8.15 17.04

(9.76) (1.88) (2.27) (0.95) (0.36) (0.65) (2.65) (9.06) (21.80)
∆CR× ETS (Yes) 5.07· 2.93∗ 1.21∗ 1.08∗∗ 0.15 0.91∗ 1.31 2.32 3.04

(2.86) (1.20) (0.55) (0.38) (0.21) (0.43) (0.84) (2.48) (7.26)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.4.: This table presents estimates of the panel quantile regression model (with ETS× ETS share interaction terms)
for 5-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises of data from 136
European firms resp. 275 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the
model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported
for all nine deciles. All estimates are scaled by factor 1e03.

In Table 6.4, we present the key coefficient estimates, specifically focusing on the double
interaction terms, denoted as ∆CR×ETS (Yes)×ETS Share, for the 5-year sector model
within the European and North American sample. Notably, the coefficients for Europe
are substantial and exhibit strong positive signs. This suggests a clear relationship:
as the proportion of a firm’s total scope 1 emissions that are subject to carbon price
regulation increases, the impact of CR also intensifies. In other words, firms with a
higher percentage of their emissions under carbon pricing regulation are more sensitive
to changes in the CR factor. This underscores the importance of understanding the
extent of a firm’s emissions that fall under regulatory purview, as it has a direct bearing
on how the firm’s credit profile responds to perceived carbon risks. For North America,
we do not find any evidence of the ETS share variable in conjunction with the CR. Given
the previously observed weak effect of CR for firms subject to an ETS, this finding
however does not surprise. If carbon risk does not even play a significant role for ETS-
compliant firms, it is unlikely that the ETS share of those firms matters.
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6.2.3. Sectoral effects

Building on the previous observations, we are led to a logical progression in our analy-
sis. It is evident that the typical firm is not immune to carbon risk, especially in Europe.
However, this exposure is not uniformly distributed across all sectors. In fact, certain
sectors, especially those that are inherently carbon-intensive, rely heavily on processes
that emit significant amounts of carbon and can face an increased level of risk.3 This
risk could amplify even further in combination with an explicit price on carbon, as
those firms would face higher financial costs for the large amount of their emissions.
Figure 6.2 depicts the share of firms subject to an ETS per sector (blue bars) as well
as the average ETS share of those compliant firms (red line). Focusing on the three
emission-intense sectors BM, Energy and Utilities, it is apparent that most of the firms
in these sectors are subject to an ETS, especially in Europe. In conjunction with it, we
also see that these sectors exhibit the highest ETS share among all sectors. That is, these
sectors are not just regulated but a huge share of their emissions has an actual price tag.
Consequently, due to their operational nature, these sectors may experience amplified
financial repercussions from carbon risk.

(a) North America (b) Europe

Figure 6.2.: Proportions of firms subject to an ETS per sector (bars) and the average share of emissions (verified emis-
sions/scope 1 emissions) for those firms subject to an ETS per sector (red line).

To empirically validate these findings, develop a more nuanced picture of differential
sectoral exposure and test Hypothesis 5, we re-estimate our baseline QR, regrouping
the firms by the RBC classification. In particular, we include sector dummies and inter-
action terms with our CR in the baseline regression as follows:

Qsm
i,t
(τ|xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIm

i,t + βτ,4∆CRm
t

+
12

∑
j=5

βτ,jSectori +
20

∑
k=13

βτ,kSectori∆CRm
t + ε i,t,

3A growing body of empirical literature identifies activities directly related to the production of en-
ergy and emissions-intensive goods, especially steel and cement (Dietz et al., 2020), as the most exposed
categories.
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where Sectori indicates firm i’s RBC classification.

1 2 3 4 5 6 7 8 9
Europe

BM× ∆CR 265.45∗∗∗ 215.77∗∗∗ 168.24∗∗∗ 141.18∗∗∗ 120.40∗∗∗ 129.32∗∗∗ 181.69∗∗∗ 236.53∗∗∗ 317.17∗∗∗

(12.25) (12.54) (13.35) (12.61) (11.85) (12.51) (13.94) (14.24) (21.18)
CCGS× ∆CR −155.99∗∗∗ −87.87∗∗∗ −64.52∗∗∗ −66.30∗∗∗ −65.34∗∗∗ −62.94∗∗∗ −82.30∗∗∗ −102.64∗∗∗ −155.88∗∗∗

(13.31) (17.19) (16.98) (15.90) (14.89) (16.49) (18.80) (20.19) (43.16)
Energy× ∆CR 365.55∗∗∗ 406.66∗∗∗ 440.12∗∗∗ 422.91∗∗∗ 417.00∗∗∗ 408.92∗∗∗ 408.97∗∗∗ 470.55∗∗∗ 504.94∗∗∗

(16.08) (25.47) (27.70) (38.02) (36.59) (41.81) (38.61) (37.03) (42.15)
Healthcare× ∆CR −68.69· −59.74∗∗ −72.80∗∗ −84.12∗∗∗ −84.19∗∗∗ −86.29∗∗∗ −106.23∗∗∗ −92.59∗∗∗ −96.75∗

(35.13) (20.54) (23.40) (21.92) (17.38) (19.38) (24.44) (27.42) (40.14)
Industrials× ∆CR −159.91∗∗∗ −141.44∗∗∗ −104.47∗∗∗ −98.56∗∗∗ −95.04∗∗∗ −97.49∗∗∗ −129.44∗∗∗ −156.70∗∗∗ −191.28∗∗∗

(13.24) (19.43) (16.87) (15.44) (13.70) (14.75) (17.37) (23.10) (38.80)
NCGS× ∆CR −113.99∗∗∗ −79.09∗∗∗ −69.96∗∗∗ −74.72∗∗∗ −72.78∗∗∗ −74.18∗∗∗ −87.80∗∗∗ −84.47∗∗∗ −90.86∗

(16.72) (19.65) (17.20) (15.85) (14.45) (15.35) (17.39) (22.03) (36.02)
Real Estate× ∆CR −52.16 −78.71∗∗∗ −72.01∗ −80.97∗∗ −76.25∗∗∗ −77.20∗∗∗ −110.98∗∗∗ −117.42∗∗∗ −129.30∗∗∗

(65.28) (20.93) (29.56) (28.56) (23.00) (22.79) (21.29) (21.16) (21.89)
Technology× ∆CR −142.11∗∗∗ −100.09∗∗∗ −60.11∗∗ −57.18∗∗∗ −53.54∗∗∗ −55.47∗∗∗ −82.94∗∗∗ −111.28∗∗∗ −162.18∗∗∗

(19.99) (20.55) (20.46) (16.75) (15.74) (15.95) (19.90) (22.56) (40.22)
Utilities× ∆CR 56.81∗ 92.06∗∗∗ 121.45∗∗∗ 115.99∗∗∗ 105.04∗∗∗ 110.76∗∗∗ 92.80∗∗∗ 82.79∗ 39.00

(23.14) (26.86) (24.39) (24.97) (26.62) (25.25) (25.00) (35.92) (50.25)
North America

BM× ∆CR 18.38∗∗∗ 13.55∗∗∗ 5.81∗∗∗ 2.93∗∗∗ 1.50∗∗∗ 3.73∗∗∗ 8.36∗∗∗ 22.92∗∗∗ 78.80∗∗∗

(1.60) (2.31) (0.92) (0.57) (0.33) (0.62) (1.47) (4.84) (15.76)
CCGS× ∆CR −16.18∗∗∗ −9.49∗∗ −3.24∗∗ −0.97 −0.95∗ −2.19∗ −5.01∗∗ −11.43∗ −44.89∗

(3.51) (3.31) (1.17) (0.75) (0.42) (0.87) (1.84) (5.62) (18.06)
Energy× ∆CR 16.15· 3.28 0.16 −0.15 −0.20 −0.76 −1.36 0.12 13.08

(8.50) (3.25) (1.31) (0.73) (0.44) (0.79) (1.92) (6.05) (21.57)
Healthcare× ∆CR −23.09∗ −12.68∗∗∗ −5.65∗∗∗ −2.36∗∗∗ −1.21∗∗ −3.23∗∗∗ −6.29∗∗∗ −16.56∗∗ −38.64·

(11.00) (3.68) (1.14) (0.66) (0.41) (0.74) (1.78) (5.33) (22.53)
Industrials× ∆CR −14.28∗∗∗ −10.26∗∗∗ −4.46∗∗∗ −2.26∗∗∗ −1.20∗∗∗ −3.19∗∗∗ −6.63∗∗∗ −15.48∗∗ −49.43∗∗

(3.41) (2.34) (0.95) (0.58) (0.35) (0.65) (1.58) (5.08) (16.33)
NCGS× ∆CR −13.09∗∗∗ −10.99∗∗∗ −4.66∗∗∗ −2.28∗∗∗ −1.34∗∗∗ −3.45∗∗∗ −7.45∗∗∗ −19.24∗∗∗ −63.57∗∗∗

(2.05) (2.59) (1.00) (0.59) (0.36) (0.68) (1.55) (5.18) (16.96)
Real Estate× ∆CR −6.37∗∗ −10.85∗∗∗ −5.17∗∗∗ −2.65∗∗∗ −1.21∗∗∗ −3.14∗∗∗ −6.62∗∗∗ −16.54∗∗ −45.09∗∗

(2.00) (2.45) (0.95) (0.60) (0.35) (0.68) (1.54) (5.05) (16.92)
Technology× ∆CR −21.38∗∗∗ −13.92∗∗∗ −5.70∗∗∗ −2.75∗∗∗ −1.40∗∗∗ −3.45∗∗∗ −7.47∗∗∗ −19.76∗∗∗ −67.85∗∗∗

(3.14) (2.59) (1.00) (0.59) (0.35) (0.67) (1.52) (5.01) (16.61)
Utilities× ∆CR −12.09∗∗∗ −11.55∗∗∗ −5.10∗∗∗ −2.49∗∗∗ −1.36∗∗∗ −3.08∗∗∗ −6.92∗∗∗ −16.70∗∗ −57.52∗∗∗

(1.76) (2.37) (1.02) (0.61) (0.35) (0.65) (1.55) (5.13) (16.22)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.5.: This table reports the coefficient estimates of the interaction terms of the sector panel quantile regression
model for 5-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises of data from
136 European firms resp. 275 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables
in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are
reported for all nine deciles. All estimates are scaled by factor 1e03.

Table 6.5 reports the coefficient estimates of the interaction terms for the 5-year sec-
tor model of the European and North American samples, respectively.4 Note that
the estimate of BM× ∆CR serves as a reference coefficient. All remaining interaction
term estimates should be considered in reference to this coefficient. For example, the
unscaled coefficient for the CCGS (consumer cyclicals) interaction term in Europe is
0.1164− 0.0374 = 0.079. Consistent with Hypothesis 5 that there is a strong relation-
ship between regulated emissions and sectoral carbon risk exposure, Table 6.5 shows
that the coefficients on the interaction term between the sector and ∆CRt is positive
and highly significant for Basic Materials (BM), Energy and Utilities. These sectors ex-
hibit the largest effect sizes within their respective regions. For the remaining sectors,

4The estimation results for short-term (1Y) and long-term tenors (30Y) do not differ qualitatively, as
reported in Table A.1 and A.2, respectively, in Appendix A.2.
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the coefficient estimates are significantly smaller and – in the North American sample
– can even be negative or insignificant. These findings support the observations in re-
cent literature: carbon risk impacts firms’ valuation differently, and it is concentrated in
specific sectors. Therefore, a growing difference in carbon risk exposure could translate
into higher credit risk for firms in carbon-intensive sectors like construction materials
(Basic Materials), fossil fuels (Energy) and Utilities. Conversely, businesses in sectors
like industrial and commercial services (Industrials), technology equipment (Technol-
ogy) and Healthcare are seen as capable of providing the innovation and technologies
necessary to facilitate a low-carbon transformation. As such, they are less affected by a
growing difference in carbon risk exposure.

1 2 3 4 5 6 7 8 9
Europe

BM× ∆CRS 155.07∗∗∗ 145.90∗∗∗ 137.31∗∗∗ 138.45∗∗∗ 139.49∗∗∗ 139.01∗∗∗ 142.81∗∗∗ 150.05∗∗∗ 164.18∗∗∗

(10.33) (6.80) (10.14) (9.63) (11.04) (9.92) (9.37) (8.85) (12.82)
CCGS× ∆CRS −36.49· −5.04 −18.20 −35.29∗ −53.40∗∗ −41.55∗∗ −28.99 −34.28 −44.22∗

(20.52) (13.16) (16.06) (15.90) (19.27) (14.68) (17.78) (22.10) (21.15)
Energy× ∆CRS 249.29∗∗∗ 225.23∗∗∗ 223.22∗∗∗ 199.46∗∗∗ 186.84∗∗∗ 181.53∗∗∗ 209.27∗∗∗ 243.09∗∗∗ 239.90∗∗∗

(13.99) (22.48) (29.29) (26.37) (24.38) (22.63) (39.33) (25.57) (29.61)
Healthcare× ∆CRS −42.77· 1.20 12.76 −16.32 −22.33 0.23 58.85∗ 146.22∗∗∗ 240.58∗∗∗

(24.95) (35.33) (35.01) (26.11) (29.93) (36.36) (29.00) (37.70) (60.64)
Industrials× ∆CRS −137.13∗∗∗ −130.84∗∗∗ −126.19∗∗∗ −134.68∗∗∗ −138.61∗∗∗ −136.47∗∗∗ −136.00∗∗∗ −140.73∗∗∗ −155.21∗∗∗

(11.74) (7.52) (10.49) (9.73) (11.06) (10.06) (9.83) (10.20) (29.32)
NCGS× ∆CRS 125.54∗∗∗ 61.27∗ 9.30 −46.41∗ −70.02∗∗∗ −62.68∗∗∗ −50.23∗ −40.15 −32.58

(31.96) (24.14) (24.11) (20.24) (17.55) (16.55) (22.86) (26.57) (29.84)
Technology× ∆CRS −157.80∗∗∗ −151.60∗∗∗ −144.38∗∗∗ −142.50∗∗∗ −140.06∗∗∗ −140.34∗∗∗ −145.65∗∗∗ −156.44∗∗∗ −177.89∗∗∗

(10.74) (8.96) (12.38) (10.01) (11.09) (9.95) (9.39) (8.87) (13.12)
Utilities× ∆CRS −126.90∗∗∗ −161.70∗∗∗ −158.52∗∗∗ −159.00∗∗∗ −149.16∗∗∗ −156.55∗∗∗ −178.07∗∗∗ −212.97∗∗∗ −235.46∗∗∗

(24.45) (26.20) (23.01) (17.84) (14.24) (15.50) (21.22) (23.14) (29.82)
North America

BM× ∆CRS 4.75∗∗∗ 2.64∗∗∗ 1.22∗∗∗ 0.63· 0.24 0.27 0.69 1.71∗ 1.41
(0.41) (0.39) (0.26) (0.34) (0.19) (0.32) (0.58) (0.79) (5.83)

CCGS× ∆CRS −36.91∗∗∗ −23.27∗∗∗ −12.26∗∗∗ −5.97∗∗∗ −2.01∗∗∗ −3.90∗∗∗ −7.31∗∗∗ −15.60∗∗∗ −28.12∗∗∗

(2.41) (1.28) (0.98) (0.70) (0.31) (0.57) (0.84) (1.52) (6.30)
Energy× ∆CRS 7.25∗∗∗ 2.77∗∗∗ 1.01 0.36 0.03 0.25 1.03 5.50∗ 22.53∗∗

(0.90) (0.79) (0.85) (0.57) (0.21) (0.36) (1.07) (2.25) (7.56)
Healthcare× ∆CRS 23.12∗∗∗ 3.90∗ 3.20∗ 1.79 1.15 2.28∗ 6.78∗ 14.60∗ 37.73∗∗

(1.86) (1.69) (1.29) (1.35) (0.70) (1.13) (2.77) (6.12) (14.30)
Industrials× ∆CRS −3.32∗∗∗ −1.38∗∗∗ −0.72∗ −0.33 −0.14 −0.18 −0.48 −1.13 0.81

(0.44) (0.41) (0.31) (0.37) (0.19) (0.33) (0.59) (0.80) (5.85)
NCGS× ∆CRS −17.72∗∗∗ −10.18∗∗∗ −6.61∗∗∗ −4.12∗∗∗ −2.77∗∗∗ −4.94∗∗∗ −9.40∗∗∗ −20.08∗∗∗ −47.84∗∗∗

(3.81) (2.31) (1.35) (1.00) (0.68) (0.96) (1.82) (3.32) (12.47)
Technology× ∆CRS 11.26∗∗∗ 5.81∗∗∗ 2.99∗∗∗ 1.90∗∗∗ 1.32∗∗∗ 2.06∗∗∗ 3.33∗∗∗ 7.77∗∗∗ 26.41∗

(2.35) (1.11) (0.76) (0.55) (0.34) (0.48) (0.96) (1.86) (10.82)
Utilities× ∆CRS −1.54∗∗ −0.66 −0.27 −0.14 −0.08 −0.05 −0.05 −0.39 4.79

(0.56) (0.47) (0.28) (0.35) (0.19) (0.33) (0.60) (0.89) (5.87)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.6.: This table reports the coefficient estimates of the interaction terms of the sector panel quantile regression
model for 5-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises of data
from 133 European firms resp. 259 North American firms from 2014/01/01 to 2019/12/31 (Europe) resp. 2013/01/01
to 2019/12/31 (North America) in daily frequency. All variables in the model are in first-differences due to present
nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by
factor 1e03.

So far, we focused our analysis on the sectoral effects of the market-wide CR factor. While
this investigation is useful to understand how the general market perception of carbon
risk acts within each sector, it disregards the unique features of each sector. Sectors such
as BM, Energy or Utilities naturally emit more emissions than other low-carbon indus-
tries. This, however, does not necessarily imply that these firms are all ill-prepared
for a low-carbon transition. There will be firms or even entire sectors that – despite
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being currently emission-intensive – have a clear pathway to net-zero. The original,
market-wide CR factor would not be able to capture this aspect, as it focuses on the en-
tire universe of firms. For that reason, we also examine the effects of the sector-wide CR
factor (CRS). This risk factor, which we introduced in Subsection 5.2.2, is constructed
for each sector and hence incorporates these sectoral peculiarities.

Table 6.6 displays the coefficient estimates of the interaction between the sector dummy
and the CRS factor for the 5-year sector model of the European and North American
sample, respectively. Similar to the model with the CR factor, we find evidence for a
strong positive effect of the CRS for the sectors BM and Energy in Europe. Interest-
ingly, however, the Utilities sector shows converse effects compared to the results we
obtained using the market-wide CR. It seems that lenders perceive the impact of car-
bon risk specific to the Utilities sector very different from the impact of market-wide
carbon risk. Given that Utilities is the most affected sector in Europe in terms of explicit
carbon regulation (Figure 6.2), this may seem odd at first. However, most of the utility
companies in Europe are subject to the EU ETS since its inception and hence needed to
adjust their abatement strategies much earlier than others. In fact, many companies in
this sector (e.g. Enel, Engie, Iberdrola, etc.) are now considered to be at the forefront
of providing solutions for the net-zero transition (Hawcock, 2023). Other sectors such
as Technology and Industrials also exhibit similar effects and seem to be considered
solution providers as well. In North America, most of the estimates are insignificant
and only become significant towards the tails. Exceptions to this are the sectors CCGS
and NCGS that exhibit negative coefficients as well as the Technology sector that shows
positive effects.

6.2.4. Attention to climate change

Next, we empirically examine Hypothesis 6, which postulates that the perceived expo-
sure to carbon risk surges when attention to climate change is high. For Europe, we
adopt the Transition Risk Concern (TRC) index of Bua et al. (2022) as our aggregate
attention measure. The TRC scans Reuters News to detect items with a European re-
gional focus that relate to the introduction of new regulations to curb emissions. For
North America we use the Media Climate Change Concerns (MCCC) index of Ardia
et al. (2022). For each day, the MCCC index generates an aggregate score based on the
number of articles related to climate change in major US newspapers and their tone.
Because the aggregate MCCC index includes news relating to physical climate risk,
we use a variant that only incorporates topics belonging to the superordinate themes
“Financial and Regulation”, “Agreement and Summit” and “Public Impact”.5 The ad-
justed MCCC index thereby provides daily information on the coverage and sentiment
of North American carbon-related news and excludes any physical climate component.

Figure 6.3 depicts the evolution of the TRC index (left) and MCCC index (right). Both
indices exhibit strong volatile behavior and react to significant carbon-related events.

5See Table 4 (p. 30) in Ardia et al. (2020) for details.
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(a) Europe (b) North America

Figure 6.3.: Evolution of the TRC index (left) and MCCC index (right) from 2013/01/01 – 2018/06/29.

However, we can also see that both indices move on different levels. To have compara-
ble indices later on, we thus normalize both indices by subtracting the respective sam-
ple mean and dividing by the sample standard deviation for each observation. Also for
comparability reasons, we restrict our entire sample period to mid-2018 as the MCCC
index is only available until June 29th, 2018.

In our empirical approach, we interact Newst with our CR factor and re-examine the
baseline QR by including both the interaction term Newst × ∆CRt and Newst:

Qsm
i,t
(τ|xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIi,t + βτ,4∆CRt

+ βτ,5Newst + βτ,6Newst × ∆CRt + ε i,t.

We first discuss the estimation results for Europe, as shown in Table 6.7. Consistent
with the prediction in Hypothesis 6, Table 6.7 shows that the coefficient on the inter-
action term between News and CR is positive and significant, especially for the mid-
and long-term tenors (5Y, 10Y and 30Y) indicating a strengthening effect of carbon risk
when attention to climate change is high. This observation is largely persistent across
all deciles and the effects are more pronounced at the extremes of the conditional distri-
bution. The short-term tenors of 1Y and 3Y, however, do not show any positive effect.
In fact, for most coefficients we observe a significant negative estimate showing that,
on a short time horizon, carbon risk has a decreasing impact when attention to climate
change increases.

Table 6.8 reports the estimation results for North America. These findings are even
less clear-cut. While the CR in conjunction with attention seems to have some weak
effect on 5Y and 30Y tenors, we mostly find no significant effects for the remaining
tenors. Contradicting Hypothesis 6 and similar to the European results, news about
adjustments in European carbon policies do not amplify the effect of carbon risk in
the very short-term. When market-wide concern about carbon risk is elevated, lenders
appear to only be more sensitive to carbon risk for longer tenors (except 10Y).
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1 2 3 4 5 6 7 8 9
1Y

∆CR 354.15∗∗∗ 311.12∗∗∗ 214.16∗∗∗ 150.30∗∗∗ 105.45∗∗∗ 145.91∗∗∗ 214.90∗∗∗ 350.44∗∗∗ 496.21∗∗∗

(20.79) (17.18) (12.97) (10.01) (8.95) (10.77) (16.10) (23.93) (48.71)
News −78.53∗∗∗ −66.81∗∗∗ −51.35∗∗∗ −27.37∗∗∗ −2.96· 12.73∗∗∗ 36.26∗∗∗ 51.90∗∗∗ 32.28∗

(15.31) (11.22) (6.41) (3.06) (1.72) (2.44) (4.65) (10.18) (13.96)
∆CR×News −150.35∗∗∗ −98.70∗∗∗ −54.45∗∗∗ −27.11∗∗∗ −15.57∗ −25.25∗∗ −38.87∗∗ −65.86∗∗∗ −85.15∗

(17.00) (13.43) (11.52) (8.05) (6.84) (8.89) (12.88) (17.22) (35.00)
3Y

∆CR 296.42∗∗∗ 218.47∗∗∗ 170.20∗∗∗ 123.27∗∗∗ 91.27∗∗∗ 111.55∗∗∗ 168.34∗∗∗ 236.33∗∗∗ 298.13∗∗∗

(11.64) (7.77) (7.32) (6.79) (5.77) (6.31) (7.52) (10.48) (22.55)
News −48.49∗∗∗ −37.70∗∗∗ −36.93∗∗∗ −27.83∗∗∗ −7.79∗∗∗ 7.43∗∗ 24.10∗∗∗ 34.77∗∗∗ 35.71∗∗∗

(10.09) (6.83) (4.52) (2.40) (1.46) (2.28) (4.15) (6.12) (10.25)
∆CR×News −36.38∗∗∗ −20.12∗∗ −2.06 9.30∗ 5.67 6.43 −7.65· −24.12∗∗∗ −57.18∗∗∗

(11.05) (6.77) (4.85) (4.55) (3.66) (4.10) (4.29) (4.55) (6.78)
5Y

∆CR 159.75∗∗∗ 149.82∗∗∗ 121.43∗∗∗ 93.72∗∗∗ 76.37∗∗∗ 88.48∗∗∗ 124.18∗∗∗ 162.05∗∗∗ 212.61∗∗∗

(7.50) (6.02) (4.99) (4.87) (4.70) (4.82) (6.04) (6.94) (11.65)
News −42.26∗∗∗ −29.89∗∗∗ −28.73∗∗∗ −18.07∗∗∗ −3.15∗∗ 6.79∗∗∗ 17.75∗∗∗ 25.11∗∗∗ 29.57∗∗∗

(5.35) (3.98) (2.92) (1.80) (1.11) (1.59) (2.94) (4.73) (7.48)
∆CR×News 31.63∗∗∗ 15.91∗∗∗ 11.22∗∗∗ 13.31∗∗∗ 16.19∗∗∗ 14.52∗∗∗ 11.69∗∗ 7.66· −12.94∗

(5.04) (3.11) (2.58) (3.19) (2.99) (2.87) (3.85) (4.31) (5.54)
10Y

∆CR 77.28∗∗∗ 59.39∗∗∗ 47.47∗∗∗ 35.62∗∗∗ 26.84∗∗∗ 31.31∗∗∗ 46.29∗∗∗ 64.67∗∗∗ 88.83∗∗∗

(2.79) (2.36) (1.93) (1.77) (1.58) (2.18) (2.91) (4.01) (6.91)
News −27.98∗∗∗ −18.40∗∗∗ −17.07∗∗∗ −11.81∗∗∗ −2.26∗∗∗ 6.11∗∗∗ 18.00∗∗∗ 29.95∗∗∗ 42.86∗∗∗

(4.65) (2.74) (1.94) (1.15) (0.68) (0.93) (1.81) (3.03) (5.32)
∆CR×News 26.17∗∗∗ 22.23∗∗∗ 19.18∗∗∗ 15.13∗∗∗ 11.13∗∗∗ 12.27∗∗∗ 18.02∗∗∗ 18.72∗∗∗ 14.42∗∗∗

(2.06) (1.80) (1.48) (1.28) (1.20) (1.48) (1.67) (1.96) (2.01)
30Y

∆CR 68.52∗∗∗ 54.81∗∗∗ 45.45∗∗∗ 36.26∗∗∗ 31.45∗∗∗ 36.72∗∗∗ 47.34∗∗∗ 64.96∗∗∗ 80.74∗∗∗

(2.60) (2.14) (1.84) (1.90) (2.00) (2.34) (3.02) (4.18) (7.84)
News −24.28∗∗∗ −18.26∗∗∗ −15.74∗∗∗ −9.60∗∗∗ −0.86 7.79∗∗∗ 19.68∗∗∗ 30.85∗∗∗ 39.73∗∗∗

(4.69) (2.81) (2.16) (1.29) (0.83) (1.08) (2.18) (3.70) (6.24)
∆CR×News 7.89∗∗∗ 9.59∗∗∗ 9.61∗∗∗ 8.43∗∗∗ 8.29∗∗∗ 8.97∗∗∗ 11.91∗∗∗ 11.79∗∗∗ 5.92∗∗

(1.95) (1.57) (1.52) (1.46) (1.51) (1.52) (2.09) (2.45) (2.21)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.7.: This table reports the coefficient estimates of ∆CR and ∆CR×News of the climate attention panel quantile
regression model for 1-year (top), 3-year (upper center), 5-year (center), 10-year (lower center) and 30-year (bottom)
CDS spread returns. The sample comprises of data from 136 European firms from 2013/01/01 to 2019/12/31 in daily
frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and standard
errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1e03.

6.2.5. Term structure

The previous sections provide evidence of CR being a relevant determinant of CDS
spread returns across different tenors, geographies, regulatory regimes and sectors. We
now examine lenders’ different expectations about how fast the transition to a low-
carbon economy needs to occur. A revision of the expected pace of transition could af-
fect companies differently, depending on their location and the nature of their business.
To empirically test Hypothesis 7, we examine how a change in the expected temporal
materialization of carbon risk affects the term structure of a firm’s credit risk. We do
this by extracting information about carbon risk over a specific time horizon using the
slope of the CR factor, namely the difference between CR over different time horizons
(see Section 5.2.4). Following Han and Zhou (2015), we set up a model similarly to
the base model from Section 6.2.1, replacing the relevant variables with the appropriate
slope measures ∆CDSSlopemn

i,t and ∆CRSlopemn
t . Regarding the relevant slopes, we se-

lect the following slopes: 3Y-1Y, 5Y-1Y, 10Y-5Y and 30Y-5Y. This collection allows us to
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6. The effects of carbon risk on credit risk

1 2 3 4 5 6 7 8 9
1Y

∆CR 4.28∗∗∗ 2.73∗∗∗ 0.28∗∗∗ 0.02∗∗∗ 0.00∗ 0.05∗∗∗ 0.73∗∗∗ 10.19∗∗∗ 41.84∗∗∗

(1.30) (0.46) (0.05) (0.01) (0.00) (0.01) (0.13) (1.53) (7.80)
News 2.15∗ −0.67∗∗ −0.07∗∗ −0.00∗ −0.00 −0.00 −0.01 0.22 −1.38·

(0.91) (0.23) (0.02) (0.00) (0.00) (0.00) (0.02) (0.26) (0.82)
∆CR×News 13.30∗∗∗ 3.35∗∗∗ 0.19∗∗∗ 0.01 0.00 0.01 0.03 1.60· 6.59·

(1.88) (0.60) (0.05) (0.01) (0.00) (0.01) (0.08) (0.84) (3.47)
3Y

∆CR 3.76∗∗∗ 1.80∗∗∗ 1.11∗∗∗ 0.55∗∗∗ 0.12∗∗∗ 0.39∗∗∗ 0.92∗∗∗ 2.03∗∗∗ 6.76∗∗∗

(0.69) (0.20) (0.13) (0.07) (0.03) (0.06) (0.15) (0.42) (1.27)
News 1.89∗ −0.25 −0.32∗ −0.09 −0.00 0.08 0.78∗∗∗ 1.70∗∗∗ 2.23∗∗∗

(0.83) (0.33) (0.15) (0.06) (0.03) (0.07) (0.15) (0.32) (0.35)
∆CR×News −2.13∗∗ −0.80∗∗∗ −0.46∗∗∗ −0.18∗ −0.04 0.10 0.49∗∗ 0.77∗ 3.10∗∗∗

(0.74) (0.22) (0.13) (0.07) (0.03) (0.07) (0.15) (0.35) (0.80)
5Y

∆CR 1.43∗∗ 1.50∗∗∗ 0.92∗∗∗ 0.49∗∗∗ 0.14∗∗∗ 0.46∗∗∗ 1.31∗∗∗ 3.28∗∗∗ 11.97∗∗∗

(0.49) (0.19) (0.10) (0.06) (0.03) (0.07) (0.19) (0.42) (1.56)
News 1.72∗ −0.46 −0.36∗ −0.20∗∗ −0.04 0.01 0.37∗ 1.42∗∗∗ 3.55∗∗∗

(0.77) (0.30) (0.14) (0.07) (0.03) (0.08) (0.15) (0.27) (0.51)
∆CR×News 3.19∗∗∗ 1.61∗∗∗ 0.69∗∗∗ 0.37∗∗∗ 0.11∗ 0.40∗∗∗ 0.72∗∗∗ 1.70∗∗∗ 5.85∗∗∗

(0.62) (0.26) (0.13) (0.08) (0.05) (0.09) (0.19) (0.36) (1.08)
10Y

∆CR 4.40∗∗∗ 1.70∗∗∗ 0.92∗∗∗ 0.48∗∗∗ 0.19∗∗∗ 0.41∗∗∗ 0.84∗∗∗ 1.76∗∗∗ 5.53∗∗∗

(0.45) (0.17) (0.09) (0.06) (0.04) (0.05) (0.11) (0.22) (0.82)
News 1.51· −0.73∗ −0.57∗∗∗ −0.23∗∗ −0.00 0.37∗∗∗ 1.08∗∗∗ 2.58∗∗∗ 5.90∗∗∗

(0.79) (0.31) (0.15) (0.08) (0.05) (0.08) (0.14) (0.26) (0.58)
∆CR×News −1.76∗∗∗ −0.54∗∗ −0.27∗∗ −0.13∗ −0.03 −0.10· −0.06 0.08 0.39

(0.46) (0.17) (0.10) (0.06) (0.04) (0.06) (0.13) (0.16) (0.44)
30Y

∆CR 5.05∗∗∗ 2.08∗∗∗ 1.28∗∗∗ 0.72∗∗∗ 0.31∗∗∗ 0.22∗∗∗ 0.46∗∗∗ 1.23∗∗∗ 4.65∗∗∗

(0.51) (0.16) (0.10) (0.07) (0.05) (0.06) (0.12) (0.30) (0.79)
News −0.68 −2.24∗∗∗ −1.13∗∗∗ −0.57∗∗∗ −0.04 0.40∗∗ 1.04∗∗∗ 3.23∗∗∗ 8.34∗∗∗

(0.99) (0.50) (0.27) (0.16) (0.11) (0.14) (0.21) (0.38) (0.89)
∆CR×News −0.31 0.35∗ 0.24∗ 0.27∗∗∗ 0.14∗∗ 0.18∗∗ 0.39∗∗ 1.06∗∗∗ 3.98∗∗∗

(0.46) (0.18) (0.12) (0.08) (0.05) (0.07) (0.12) (0.27) (0.67)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.8.: This table reports the coefficient estimates of ∆CR and ∆CR×News of the climate attention panel quantile
regression model for 1-year (top), 3-year (upper center), 5-year (center), 10-year (lower center) and 30-year (bottom)
CDS spread returns. The sample comprises of data for 275 North American firms from 2013/01/01 to 2018/06/29
in daily frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and
standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1e03.

examine the short-, mid- and long-term effects of carbon risk on the CDS spread curve.
We thus estimate the model with the inclusion of the term structure control variables:

Q∆CDSSlopemn
i,t
(τ|xi,t) = ατ,i + βτ,1∆σi,t + βτ,2∆MRISlopemn

i,t + βτ,3∆IRt + βτ,4∆IR2
t

+ βτ,5∆Termt + βτ,6∆CRSlopemn
t + ε i,t.

Table 6.9 reports the estimation results of the term structure model for the four CR
slopes (3Y-1Y, 5Y-1Y, 10Y-5Y and 30Y-5Y) in Europe. Before proceeding with the dis-
cussion of the results, we recall that a positively sloped term structure indicates higher
costs of default protection for the longer tenors. Following this logic, a positive CR
slope reveals the incremental (positive) exposure to carbon risk for the longer term vis-
a-vis the shorter term.

The results in Table 6.9 show that an increase in the CR slope – a shift in the relative cost-
impact of carbon regulation toward future cash flows – steepens the CDS curve. This
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6.2. Empirical results

relationship is especially strong (i) in the extremes of the movements of the credit risk
term structure and (ii) for the short-term slopes (3Y-1Y and 5Y-1Y) versus the mid-term
slope (10Y-5Y). Compared to the estimated coefficients of the MRI slope, the effects are
also economically relevant, in particular for the 5Y-1Y slope. The results for the 30Y-
5Y slope do not provide any evidence for an effect of the CR slope on the CDS term
structure. These results confirm Hypothesis 7 for all but the long-term slope in Europe.
A rapid acceleration of the transformation is likely to have significant and relatively
larger financial impacts in the near future and, consequently, a faster decline in credit
quality in the shorter versus longer term.

The case of North America (Table 6.10) is less clear-cut: While we find mild effects for
the two short-term slopes, coefficients for the mid- and long-term slopes are virtually
zero6 and insignificant. The 5Y-1Y CR slope exhibits the largest effects across all mod-
els, although, compared to the MRI slope, the magnitude of the effects is still marginal.
The 3Y-1Y CR slope shows ambiguous effects, where some coefficients (e.g. median or
right tail) are insignificant but others show some (albeit small) effect. The remaining
CR slopes 10Y-5Y and 30Y-5Y show no relevant effect for the central deciles. Merely to-
wards the tails, the CR slopes become a relevant driver of the CDS curve slope. Overall,
these results align with the findings from Section 6.2.1 showing no real effect of carbon
risk on the CDS term structure in North America.

6Overall, the coefficients of all variables in the model of the central deciles move on much a smaller
scale. However, they are not exactly zero but lie in the region of 10e-9.
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6. The effects of carbon risk on credit risk

1 2 3 4 5 6 7 8 9
3Y-1Y

∆Volatility −5.33∗∗ −1.72∗∗∗ −0.54∗∗∗ −0.12∗ 0.08· 0.57∗∗∗ 1.99∗∗∗ 6.87∗∗∗ 15.50∗∗∗

(1.69) (0.21) (0.12) (0.05) (0.04) (0.03) (0.17) (0.39) (0.62)
∆MRISlope 13.60∗∗∗ 9.84∗∗∗ 5.03∗∗∗ 2.30∗∗∗ 1.47∗∗∗ 1.72∗∗∗ 3.42∗∗∗ 8.57∗∗∗ 14.59∗∗∗

(0.49) (0.50) (0.41) (0.15) (0.09) (0.11) (0.27) (0.61) (1.04)
∆IR −168.86∗∗∗ −96.39∗∗∗ −42.60∗∗∗−25.94∗∗∗−18.84∗∗∗−21.61∗∗∗ −36.59∗∗∗ −114.73∗∗∗ −240.55∗∗∗

(13.00) (6.85) (2.81) (1.20) (0.86) (0.97) (2.69) (9.62) (25.11)
∆IR2 −2676.08∗∗∗−1103.76∗∗∗−178.75∗∗∗ 20.69∗∗∗ 50.77∗∗∗ 100.08∗∗∗ 389.22∗∗∗ 2850.58∗∗∗ 7494.32∗∗∗

(235.65) (77.87) (25.07) (6.13) (5.03) (8.23) (45.99) (224.73) (543.41)
∆Term 84.13∗∗∗ 52.28∗∗∗ 24.63∗∗∗ 16.20∗∗∗ 11.67∗∗∗ 10.60∗∗∗ 7.35∗∗∗ −2.81 −27.25∗

(12.19) (6.50) (2.58) (1.15) (0.81) (0.87) (1.83) (4.38) (11.31)
∆CRSlope 2.60∗∗∗ 1.44∗∗∗ 0.56∗∗∗ 0.25∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.27∗∗∗ 0.67∗∗∗ 1.37∗∗∗

(0.18) (0.09) (0.05) (0.02) (0.01) (0.01) (0.03) (0.09) (0.20)
5Y-1Y

∆Volatility −9.12∗∗∗ −3.14∗∗∗ −1.17∗∗ −0.34∗ 0.08 1.17∗∗∗ 3.50∗∗∗ 9.64∗∗∗ 19.46∗∗∗

(1.02) (0.46) (0.40) (0.14) (0.09) (0.13) (0.07) (0.40) (0.98)
∆MRISlope 15.38∗∗∗ 12.32∗∗∗ 7.91∗∗∗ 4.00∗∗∗ 2.51∗∗∗ 2.89∗∗∗ 5.21∗∗∗ 10.50∗∗∗ 16.96∗∗∗

(0.66) (0.54) (0.56) (0.30) (0.19) (0.19) (0.36) (0.35) (0.79)
∆IR −212.94∗∗∗ −123.41∗∗∗ −68.10∗∗∗−40.19∗∗∗−29.41∗∗∗−32.22∗∗∗ −55.16∗∗∗ −129.52∗∗∗ −238.05∗∗∗

(19.65) (9.94) (4.92) (2.17) (1.50) (1.73) (3.82) (11.14) (25.87)
∆IR2 −3659.67∗∗∗−1473.52∗∗∗−436.52∗∗∗ 40.28∗∗ 98.31∗∗∗ 152.24∗∗∗ 646.33∗∗∗ 3335.92∗∗∗ 9503.33∗∗∗

(419.92) (97.01) (56.45) (12.55) (8.66) (11.62) (64.84) (258.20) (678.84)
∆Term 102.06∗∗∗ 61.00∗∗∗ 33.97∗∗∗ 19.17∗∗∗ 11.93∗∗∗ 9.44∗∗∗ 5.45∗ −17.10∗∗ −75.58∗∗∗

(18.99) (9.51) (4.43) (1.95) (1.35) (1.52) (2.55) (5.66) (14.41)
∆CRSlope 4.90∗∗∗ 3.00∗∗∗ 1.52∗∗∗ 0.71∗∗∗ 0.43∗∗∗ 0.52∗∗∗ 1.02∗∗∗ 2.51∗∗∗ 4.63∗∗∗

(1.99) (1.67) (1.11) (0.52) (0.32) (0.36) (0.83) (1.77) (3.79)
10Y-5Y

∆Volatility −2.03∗∗∗ −1.23∗∗∗ −0.73∗∗∗ −0.40∗∗∗ −0.03 −0.03 0.16∗∗ 0.60∗∗∗ 1.46∗∗∗

(0.15) (0.09) (0.08) (0.06) (0.03) (0.05) (0.06) (0.06) (0.19)
∆MRISlope 0.52∗∗∗ 0.14∗∗∗ 0.09∗∗∗ 0.07∗∗∗ 0.01· 0.09∗∗∗ 0.13∗∗∗ 0.27∗∗∗ 0.58∗∗∗

(0.04) (0.03) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03) (0.06)
∆IR 18.26∗∗ 24.51∗∗∗ 18.17∗∗∗ 18.51∗∗∗ 2.03∗∗∗ 14.14∗∗∗ 14.49∗∗∗ 23.54∗∗∗ 31.79∗∗∗

(5.96) (1.75) (1.21) (0.88) (0.49) (0.94) (1.23) (1.85) (5.20)
∆IR2 −946.47∗∗∗ −367.10∗∗∗−194.42∗∗∗−110.18∗∗∗ −9.22∗ 26.68∗∗∗ 76.18∗∗∗ 197.01∗∗∗ 801.62∗∗∗

(85.63) (19.51) (11.37) (7.81) (3.75) (4.53) (7.46) (16.79) (85.80)
∆Term −30.22∗∗∗ −22.62∗∗∗ −16.67∗∗∗−18.95∗∗∗ −2.08∗∗∗−14.61∗∗∗ −13.92∗∗∗ −22.48∗∗∗ −33.30∗∗∗

(5.53) (1.80) (1.28) (0.92) (0.51) (0.98) (1.17) (1.64) (4.23)
∆CRSlope −0.06 0.03∗∗∗ 0.04∗∗∗ 0.05∗∗∗ 0.08· 0.35∗∗ 0.71∗∗ 0.70· 0.32

(0.07) (0.03) (0.02) (0.02) (0.01) (0.02) (0.03) (0.05) (0.11)
30Y-5Y

∆Volatility −4.83∗∗∗ −2.60∗∗∗ −1.64∗∗∗ −0.86∗∗∗ −0.26 0.05 0.57∗∗∗ 1.43∗∗∗ 3.52∗∗∗

(0.74) (0.23) (0.16) (0.12) (0.10) (0.13) (0.13) (0.17) (0.34)
∆MRISlope 5.80∗∗∗ 2.59∗∗∗ 1.68∗∗∗ 1.32∗∗∗ 1.18∗∗∗ 1.31∗∗∗ 1.58∗∗∗ 2.46∗∗∗ 5.73∗∗∗

(0.24) (0.12) (0.09) (0.07) (0.08) (0.08) (0.10) (0.16) (0.47)
∆IR 48.61∗∗∗ 46.68∗∗∗ 38.00∗∗∗ 34.21∗∗∗ 28.23∗∗∗ 33.13∗∗∗ 38.41∗∗∗ 42.28∗∗∗ 45.66∗∗∗

(10.68) (3.74) (2.57) (1.98) (1.82) (1.90) (2.36) (3.34) (10.16)
∆IR2 −1604.68∗∗∗ −624.35∗∗∗−333.25∗∗∗−160.09∗∗∗−30.71∗∗∗ 59.52∗∗∗ 169.26∗∗∗ 439.76∗∗∗ 1559.03∗∗∗

(122.74) (34.92) (20.35) (14.00) (6.69) (8.11) (13.36) (30.07) (154.85)
∆Term −92.98∗∗∗ −57.36∗∗∗ −42.09∗∗∗−35.23∗∗∗−28.34∗∗∗−31.91∗∗∗ −35.38∗∗∗ −35.21∗∗∗ −43.11∗∗∗

(11.64) (3.80) (2.71) (1.94) (1.08) (2.06) (2.44) (3.43) (8.89)
∆CRSlope −0.06 0.01 0.00 0.01 0.02 0.09∗ 0.17∗∗ 0.17· 0.08

(0.08) (0.03) (0.02) (0.02) (0.01) (0.02) (0.03) (0.05) (0.14)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.9.: This table reports the coefficient estimates of the term structure panel quantile regression model for 5Y-1Y
and 30Y-5Y CDS spread slope changes in Europe. The sample comprises data for 136 European firms from 2013/01/01
to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity.
Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by a factor of 1e2.
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1 2 3 4 5 6 7 8 9
3Y-1Y

∆Volatility −3.17∗∗∗ −0.84∗∗∗ −0.25∗∗∗ −0.01 0.00 0.19∗∗∗ 0.79∗∗∗ 2.71∗∗∗ 7.26∗∗∗

(0.25) (0.12) (0.05) (0.01) (0.00) (0.03) (0.06) (0.17) (0.50)
∆MRISlope 1.02∗∗∗ 0.55∗∗∗ 0.24∗∗∗ 0.07∗∗∗ 0.00 0.11∗∗∗ 0.28∗∗∗ 0.86∗∗∗ 2.36∗∗∗

(0.11) (0.03) (0.02) (0.01) (0.00) (0.01) (0.02) (0.08) (0.27)
∆IR −79.69∗∗∗ −28.34∗∗∗ −14.03∗∗∗ −3.25∗∗∗ −0.07 −6.94∗∗∗ −15.96∗∗∗ −46.42∗∗∗ −124.82∗∗∗

(4.33) (1.20) (0.69) (0.25) (0.04) (0.39) (0.68) (3.23) (11.52)
∆IR2 −837.20∗∗∗ −136.67∗∗∗ −23.21∗∗∗ −6.35∗∗∗ 0.48· 48.50∗∗∗ 87.15∗∗∗ 385.06∗∗∗ 1954.06∗∗∗

(62.58) (9.16) (2.91) (0.89) (0.25) (25.72) (44.21) (390.96) (2423.91)
∆Term 32.30∗∗∗ 16.10∗∗∗ 9.06∗∗∗ 2.02∗∗∗ 0.04 2.94∗∗∗ 7.92∗∗∗ 18.29∗∗∗ 31.78∗∗∗

(2.59) (1.04) (0.60) (0.21) (0.02) (0.26) (0.46) (1.13) (2.25)
∆CRSlope 0.08∗∗∗ 0.04∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.00 0.01∗∗∗ 0.02∗∗ 0.00 −0.02

(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.02)
5Y-1Y

∆Volatility −6.11∗∗∗ −1.42∗∗∗ −0.37∗∗∗ −0.04 0.05∗∗ 0.59∗∗∗ 1.91∗∗∗ 6.00∗∗∗ 18.28∗∗∗

(0.73) (0.23) (0.08) (0.03) (0.02) (0.07) (0.12) (0.34) (1.29)
∆MRISlope 2.31∗∗∗ 1.27∗∗∗ 0.60∗∗∗ 0.29∗∗∗ 0.16∗∗∗ 0.30∗∗∗ 0.68∗∗∗ 1.97∗∗∗ 5.52∗∗∗

(0.27) (0.09) (0.04) (0.02) (0.01) (0.02) (0.04) (0.24) (0.63)
∆IR −147.16∗∗∗ −56.13∗∗∗ −25.38∗∗∗−12.76∗∗∗ −5.80∗∗∗−13.26∗∗∗ −28.77∗∗∗ −85.37∗∗∗ −255.57∗∗∗

(6.99) (2.22) (1.06) (0.68) (0.41) (0.66) (1.28) (5.83) (24.13)
∆IR2 −1712.49∗∗∗ −379.33∗∗∗ −64.58∗∗∗ 6.90∗ 32.38∗∗∗ 70.14∗∗∗ 154.40∗∗∗ 887.79∗∗∗ 4753.97∗∗∗

(82.93) (25.09) (5.38) (2.83) (1.97) (3.30) (8.34) (77.17) (504.42)
∆Term 57.47∗∗∗ 28.23∗∗∗ 15.22∗∗∗ 7.81∗∗∗ 2.98∗∗∗ 6.28∗∗∗ 13.97∗∗∗ 29.84∗∗∗ 64.04∗∗∗

(4.73) (1.68) (0.96) (0.58) (0.31) (0.49) (0.87) (2.18) (6.49)
∆CRSlope 0.25∗∗∗ 0.11∗∗∗ 0.05∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.02∗∗ 0.04∗ 0.16∗∗∗

(0.06) (0.02) (0.01) (0.01) (0.00) (0.01) (0.02) (0.08) (0.23)
10Y-5Y

∆Volatility −2.96∗∗∗ −1.30∗∗∗ −0.37∗∗∗ 0.00 0.00 0.00 0.49∗∗∗ 1.93∗∗∗ 5.19∗∗∗

(0.41) (0.15) (0.05) (0.00) (0.00) (0.00) (0.04) (0.19) (0.65)
∆MRISlope 0.69∗∗∗ 0.29∗∗∗ 0.07∗∗∗ 0.00 0.00 0.00 0.03∗∗∗ 0.17∗∗∗ 0.45∗∗∗

(0.04) (0.02) (0.01) (0.00) (0.00) (0.00) (0.01) (0.02) (0.06)
∆IR −5.08 −1.89 0.26 0.00 0.00 0.00 −0.13 −5.54∗∗∗ −27.38∗∗∗

(4.71) (1.35) (0.32) (0.00) (0.00) (0.00) (1.81) (10.61) (49.23)
∆IR2 −462.24∗∗∗ −87.27∗∗∗ −27.06∗∗∗ 0.00 0.00 0.00 15.75∗∗∗ 75.03∗∗∗ 475.15∗∗∗

(75.30) (11.25) (3.85) (0.00) (0.00) (0.00) (29.09) (133.03) (841.64)
∆Term 3.47 2.25· 0.16 0.00 0.00 0.00 0.93 30.40∗∗∗ 138.99∗∗∗

(3.95) (1.33) (0.29) (0.00) (0.00) (0.00) (1.61) (8.85) (37.00)
∆CRSlope 0.12∗∗∗ 0.03∗∗∗ 0.02 0.00 0.00 0.00 0.01 0.09∗ 0.16∗∗

(0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (0.16)
30Y-5Y

∆Volatility −5.63∗∗∗ −2.42∗∗∗ −0.89∗∗∗ −0.12∗ 0.00 0.00 1.31∗∗∗ 3.90∗∗∗ 10.23∗∗∗

(0.35) (0.24) (0.14) (0.05) (0.00) (0.00) (0.12) (0.25) (0.66)
∆MRISlope 1.18∗∗∗ 0.58∗∗∗ 0.22∗∗∗ 0.05∗∗∗ 0.00 0.00 0.13∗∗∗ 0.40∗∗∗ 1.06∗∗∗

(0.06) (0.03) (0.02) (0.01) (0.00) (0.00) (0.01) (0.04) (0.12)
∆IR −31.94∗∗∗ −6.67∗ −0.67 0.22 0.00 0.00 −0.62 −14.07∗∗∗ −56.74∗∗∗

(7.75) (3.01) (1.18) (0.41) (0.00) (0.00) (0.64) (2.38) (10.93)
∆IR2 −890.17∗∗∗ −233.00∗∗∗−108.30∗∗∗−25.81∗∗∗ 0.00 0.00 65.69∗∗∗ 251.93∗∗∗ 1256.56∗∗∗

(90.30) (23.02) (9.85) (34.84) (0.00) (0.00) (82.89) (293.63) (1555.57)
∆Term 21.94∗∗ 6.23∗ 1.93· 0.23 0.00 0.00 0.72 8.35∗∗∗ 30.37∗∗∗

(7.79) (2.95) (1.15) (0.38) (0.00) (0.00) (5.53) (19.45) (81.97)
∆CRSlope 0.25∗∗∗ 0.11∗∗∗ 0.04∗∗∗ 0.01∗∗ 0.00 0.00 0.03 0.31∗ 1.27∗∗

(0.03) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.14) (0.47)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.10.: This table reports the coefficient estimates of the term structure panel quantile regression model for 5Y-1Y
and 30Y-5Y CDS spread slope changes in North America. The sample comprises of data for 275 North American firms
from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present
nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by
factor 1e02.
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6. The effects of carbon risk on credit risk

6.3. Additional analyses and robustness checks

In this section, we conduct additional analyses and perform a number of robustness
checks to substantiate and confirm our baseline findings. First, we present ordinary
least squares (OLS) regression results for selected models to illustrate the superiority
of the QR methodology. Second, we examine whether the varying degree of liquidity
of CDS contracts poses an issue for our analysis. Third, we investigate the dominance
of certain sectors within the CR construction which may potentially bias our empirical
results. Last, we consider alternative specifications for the construction of our CR factor.

6.3.1. QR versus OLS

In our empirical approach, we use QR to investigate the impact of carbon risk on CDS
spread returns. This methodology has the straightforward advantage of providing
more information of the effects on the entire conditional distribution. Additionally,
it may also yield qualitatively different results regarding the central part (median) than
a simple conditional mean regression model would do. For example, previous litera-
ture finds ambiguous results on the effect of equity volatility on 5-years CDS spreads.
While some find positive effects (Das et al., 2009; Ericsson et al., 2009), others find no
or negative effects (Collin-Dufresne et al., 2001; Pereira et al., 2018). In a QR setting,
Koutmos (2019) finds no evidence for a relationship between equity volatility and CDS
spread changes for the median regression. This is in line with our findings (see Tables
6.1 and 6.2). To investigate whether this phenomenon is present for our CR factor as
well, we run the baseline model from Subsection 6.2.1 using OLS. We thus estimate the
following model:

sm
i,t = αi + β1ri,t + β2∆σi,t + β3∆MRIi,t + β4∆CRt + ε i,t.

Table 6.11 shows the OLS results of the baseline model for all tenors in Europe and
North America. Compared to the median regression results (Column 5 in Tables 6.1 and
6.2), we see significantly smaller estimates for the European sample and slightly larger
estimates for the North American sample. However, direction-wise, we still observe
positive effects which confirms the initial hypothesis for both regions.

So far, the OLS results for the baseline model indicate different effects in the center of the
conditional CDS spread return distribution. However, qualitatively, we still observe the
same relationship between the CR and CDS spread returns as posited in Hypothesis 1.
That is, although we observe different magnitudes of the effect, we can still confirm the
hypothesis. However, things can become even worse. We could for example unravel
an effect when, in fact, there is really no indication from the QR. To illustrate this issue,
we estimate the term structure model from Subsection 6.2.5 for the North American
sample using OLS. Consequently, we estimate the following term structure model:

∆CDSSlopemn
i,t = αi + β1∆σi,t + β2∆MRISlopemn

i,t + β3∆IRt + β4∆IR2
t

+ β5∆Termt + β6∆CRSlopemn
t + ε i,t.
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Europe
1 Y 3 Y 5 Y 10 Y 30 Y

StockReturn −4.44∗∗∗ −3.47∗∗∗ −2.26∗∗∗ −1.76∗∗∗ −1.43∗∗∗

(0.27) (0.19) (0.13) (0.11) (0.11)
∆Volatility 4.42∗∗∗ 3.26∗∗∗ 2.45∗∗∗ 1.68∗∗∗ 1.23∗∗∗

(0.92) (0.56) (0.43) (0.33) (0.32)
∆MRI 17.15∗∗∗ 6.04∗∗∗ 2.71∗∗∗ 1.79∗∗∗ 2.69∗∗∗

(1.41) (0.55) (0.26) (0.18) (0.25)
∆CR 5.64∗∗∗ 3.44∗∗∗ 2.85∗∗∗ 1.35∗∗∗ 1.05∗∗∗

(0.59) (0.24) (0.16) (0.09) (0.10)
North America

1 Y 3 Y 5 Y 10 Y 30 Y
StockReturn −3.14∗∗∗ −2.37∗∗∗ −2.09∗∗∗ −1.49∗∗∗ −1.36∗∗∗

(0.22) (0.16) (0.13) (0.10) (0.10)
∆Volatility 2.94∗∗∗ 2.06∗∗∗ 2.20∗∗∗ 1.70∗∗∗ 1.64∗∗∗

(0.68) (0.36) (0.33) (0.28) (0.28)
∆MRI 11.68∗∗∗ 3.65∗∗∗ 1.72∗∗∗ 1.10∗∗∗ 1.04∗∗∗

(0.68) (0.21) (0.11) (0.07) (0.07)
∆CR 2.90∗∗∗ 0.54∗∗∗ 0.31∗∗∗ 0.24∗∗∗ 0.17∗∗∗

(0.30) (0.06) (0.04) (0.04) (0.05)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.11.: This table presents estimates of the base OLS regression model for CDS spread returns (all tenors) in Europe
(top) and North America (bottom). The sample comprises of data from 136 European firms resp. 275 North American
firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to
present nonstationarity. Estimates and standard errors clusetered on the firm level (in brackets). All estimates are
scaled by factor 1e03.

Table 6.12 displays the estimates of the term structure OLS regression model for all
slopes under consideration. Recall that, for the QR regression, we virtually did not
observe any effect of the CR slope on the CDS curve (Table 6.10) indicating no relevance
of the term structure of carbon risk in North America. In contrast to the results obtained
from the QR regression, we now see significant positive coefficients for all but the 3Y-1Y
slope model. That is, the use of OLS now hints towards a relevant relationship between
the CR slope and the CDS curve, although the QR results clearly rejects this. Therefore,
this example illustrates the problems that can arise by using OLS regression.

6.3.2. Liquidity of CDS spreads

In the baseline analysis, we exclude CDS contracts from our sample when “no spread
movement for 245 days” is detected. We acknowledge this restriction is rather lax. Yet,
it ensures a sufficient number of contracts in our sample – 136 European firms and 275
North American firms. We now examine the effect of a significantly more stringent
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3Y-1Y 5Y-1Y 10Y-5Y 30Y-5Y
∆Volatility 2.06 24.11∗∗∗ 13.87∗ 19.44∗

(5.39) (7.31) (5.44) (7.94)
∆MRISlope 10.66∗∗∗ 16.69∗∗∗ 4.26∗∗∗ 6.25∗∗∗

(1.26) (1.40) (0.84) (1.04)
∆IR −320.88∗∗∗ −690.46∗∗∗ −74.47∗ −98.20·

(38.97) (67.68) (30.80) (51.89)
∆IR2 709.90∗∗∗ 1377.54∗∗∗ −185.36 −23.05

(176.18) (267.65) (179.28) (277.01)
∆Term 162.92∗∗∗ 383.09∗∗∗ 80.95∗ 94.46·

(38.49) (58.66) (35.86) (55.24)
∆CRSlope 0.02 1.81∗∗∗ 1.84∗∗∗ 1.68∗

(0.67) (0.55) (0.47) (0.80)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.12.: This table presents estimates of the term structure OLS regression model for CDS spread slope changes
(all tenors). The sample comprises of data from 275 North American firms from 2013/01/01 to 2019/12/31 in daily
frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and standard
errors clustered on the firm level (in brackets). All estimates are scaled by factor 1e02.

condition: “no spread movement for 25 days”.7 After applying this more stringent
condition, the number of firms in our sample decreases to 166 in North America and 120
in Europe. Especially in North America this more stringent filtering has a significant
impact on the sample size (42% decrease) which indicates that liquidity seems to be
particularly problematic for this region.

To examine whether liquidity causes problems in our empirical approach, we recon-
struct our CR factor using the smaller sample and rerun the baseline regression from
Subsection 6.2.1. Table 6.13 shows the ∆CR estimates for all tenors in both Europe and
North America. In both regions, we observe an increase in the magnitude of the esti-
mates due to the removal of less traded CDS contracts. In North America, the relative
increase is larger which seems plausible given the larger relevance of illiquidity in the
original sample. In total, we observe that the main findings remain unchanged with
respect to the baseline findings reported in Section 6.2.1.

6.3.3. Sector concentration

The list of CR constituents (Table 5.1) reveals the dominance of emission-intense sectors
like BM, Energy and Utilities in the polluting class. Although this composition is plau-
sibly explained by the high emission intensities of these sectors, it raises the question
whether the results are solely driven by stereotypical high emitters. Additionally, each
sector-wide CDS spread level is heavily influenced by external factors (e.g. commodity

7An augmentation of our model with an appropriate liquidity measure is not possible due to the lack
of available data.
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1 2 3 4 5 6 7 8 9
Europe

1Y
∆CR 510.07∗∗∗ 360.83∗∗∗ 269.14∗∗∗ 203.81∗∗∗ 158.42∗∗∗ 178.86∗∗∗ 253.62∗∗∗ 371.89∗∗∗ 583.46∗∗∗

(15.75) (14.18) (13.15) (11.18) (10.83) (11.99) (16.17) (22.44) (38.45)
3Y

∆CR 230.20∗∗∗ 193.71∗∗∗ 164.30∗∗∗ 129.86∗∗∗ 110.80∗∗∗ 125.50∗∗∗ 169.24∗∗∗ 220.72∗∗∗ 275.02∗∗∗

(6.03) (6.68) (6.72) (6.39) (6.15) (6.02) (7.22) (9.45) (14.28)
5Y

∆CR 148.86∗∗∗ 137.82∗∗∗ 111.89∗∗∗ 89.78∗∗∗ 74.64∗∗∗ 82.98∗∗∗ 108.83∗∗∗ 134.58∗∗∗ 174.86∗∗∗

(6.84) (5.03) (4.37) (4.37) (4.04) (3.97) (4.29) (5.25) (7.41)
10Y

∆CR 96.60∗∗∗ 76.15∗∗∗ 62.18∗∗∗ 50.24∗∗∗ 41.64∗∗∗ 45.53∗∗∗ 56.39∗∗∗ 71.10∗∗∗ 90.02∗∗∗

(3.07) (2.72) (2.47) (2.28) (2.27) (2.16) (2.26) (2.89) (3.22)
30Y

∆CR 58.97∗∗∗ 50.17∗∗∗ 40.31∗∗∗ 31.41∗∗∗ 26.51∗∗∗ 28.48∗∗∗ 34.68∗∗∗ 44.12∗∗∗ 56.23∗∗∗

(3.00) (2.29) (1.89) (1.81) (1.79) (1.94) (2.14) (2.88) (4.20)
North America

1Y
∆CR 26.71∗∗ 20.31∗∗∗ 18.14∗∗∗ 9.87∗∗∗ 3.00∗∗∗ 9.23∗∗∗ 26.46∗∗∗ 62.59∗∗∗ 134.40∗∗∗

(8.23) (3.92) (2.39) (1.40) (0.61) (1.15) (2.88) (6.50) (16.11)
3Y

∆CR 27.11∗∗∗ 12.13∗∗∗ 7.42∗∗∗ 3.17∗∗∗ 1.60∗∗∗ 2.80∗∗∗ 8.90∗∗∗ 18.84∗∗∗ 38.12∗∗∗

(3.22) (2.30) (1.94) (0.70) (0.36) (0.68) (1.81) (3.10) (5.89)
5Y

∆CR 14.44∗∗∗ 9.49∗∗∗ 6.93∗∗∗ 3.96∗∗∗ 1.42∗∗∗ 2.47∗∗∗ 5.39∗∗∗ 11.24∗∗∗ 21.91∗∗∗

(1.63) (1.28) (1.01) (0.63) (0.39) (0.48) (0.85) (1.77) (2.32)
10Y

∆CR 8.67∗∗∗ 5.84∗∗∗ 4.32∗∗∗ 2.87∗∗∗ 1.40∗∗∗ 2.20∗∗∗ 3.71∗∗∗ 5.93∗∗∗ 11.13∗∗∗

(0.84) (0.75) (0.41) (0.33) (0.21) (0.23) (0.40) (0.66) (0.92)
30Y

∆CR 8.91∗∗∗ 4.58∗∗∗ 3.29∗∗∗ 2.13∗∗∗ 1.14∗∗∗ 1.86∗∗∗ 3.35∗∗∗ 5.42∗∗∗ 7.69∗∗∗

(1.32) (0.59) (0.43) (0.30) (0.19) (0.22) (0.40) (0.73) (1.49)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.13.: This table reports the ∆CR coefficient estimates of the base panel quantile regression model for CDS spread
returns of all tenors in both regions. The sample now includes data for 166 European and 120 North American firms,
respectively, from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due
to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates
are scaled by factor 1e03.

price shocks) which possibly causes problems to attribute changes in the CR to a chang-
ing market perception of carbon risk. To investigate this issue, we rerun the base model
for the 5-year CDS spread returns without the aforementioned sectors. In particular,
we exclude all sectors individually and jointly from our sample, build a new CR and
conduct the same analysis from Subsection 6.2.1.

Figure 6.4 depicts the evolution of the CR for the tenors 1Y, 5Y and 30Y in Europe
without the sectors individually as well as jointly. The features observed for the original
CR (Figure 5.2) such as the non-negativity or the clear reaction to the Paris agreement
mostly remain observable for the new CRs as well. Depending on the excluded sectors,
however, the level of the CR significantly changes. But overall, the exclusion of certain
industries does not alter the CR qualitatively.

The analysis so far has been based on non-quantified visual analysis. To rigorously in-
vestigate whether the effects of carbon risks persist, we rerun the baseline model with
the newly adjusted CRs. Table 6.14 displays the corresponding results for 5-years CDS
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(a) Without BM (b) Without Energy

(c) Without Utilities (d) Without BM, Energy and Utilities

Figure 6.4.: Evolution of the CR over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for Europe without the
sectors BM (top left), Energy (top right), Utilities (bottom left) and all of them jointly (bottom right). The vertical solid
lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively.

spreads in the European sample. In terms of the general direction and significance
of the CR, no qualitative changes can be observed. Excluding utility firms slightly in-
creases the CR estimates for most deciles, while their size decreases when the remaining
two sectors or all three sectors together are excluded.

We now turn to the North American case. Figure 6.5 depicts the evolution of the ad-
justed CR for the tenors 1Y, 5Y and 30Y in North America. Contrary to the European
case, the exclusion of certain industries now matters for the general behavior of the
CR, especially around the Paris Agreement. While the exclusion of BM and Utilities
still causes a significant spike around COP21, the effect completely disappears when
removing the Energy sector or all three emission-intense sectors jointly. In fact, with
these exclusions the CRs look entirely flat with no significant movements or visible
pattern.

Again, we empirically investigate the robustness of the findings by rerunning the base-
line model with the new CRs. Table 6.15 shows the results for 5-years CDS spreads
in the North American sample. Similar to the European results, we observe consistent
estimates which become larger for the exclusion of Utilities and slightly smaller for the
exclusion of the BM sector. Surprisingly, the CR estimates without the Energy sector
remain positive and significant as well – despite showing weak movements in Figure
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1 2 3 4 5 6 7 8 9
Without BM

StockReturn −135.79∗∗∗ −117.56∗∗∗ −96.39∗∗∗ −63.95∗∗∗ −37.95∗∗∗ −53.90∗∗∗ −91.07∗∗∗ −126.61∗∗∗ −163.94∗∗∗

(4.94) (3.79) (3.27) (2.53) (1.75) (2.14) (3.07) (5.29) (8.64)
∆Volatility −273.17∗∗∗ −205.25∗∗∗ −139.27∗∗∗ −64.03∗∗∗ 7.37 113.34∗∗∗ 242.24∗∗∗ 379.69∗∗∗ 544.44∗∗∗

(16.51) (20.29) (21.23) (11.54) (7.34) (12.60) (13.45) (4.66) (9.88)
∆MRI 343.59∗∗∗ 374.46∗∗∗ 371.25∗∗∗ 361.62∗∗∗ 352.83∗∗∗ 348.79∗∗∗ 371.61∗∗∗ 394.86∗∗∗ 410.26∗∗∗

(8.69) (9.54) (9.77) (10.16) (10.39) (10.56) (11.18) (12.42) (22.07)
∆CR 175.21∗∗∗ 159.91∗∗∗ 130.77∗∗∗ 102.08∗∗∗ 77.50∗∗∗ 88.99∗∗∗ 115.52∗∗∗ 146.23∗∗∗ 166.51∗∗∗

(6.76) (6.30) (5.39) (4.95) (4.55) (4.74) (5.36) (7.11) (10.72)
Without Energy

StockReturn −145.14∗∗∗ −122.99∗∗∗ −97.99∗∗∗ −64.34∗∗∗ −36.99∗∗∗ −52.94∗∗∗ −91.19∗∗∗ −131.93∗∗∗ −174.54∗∗∗

(5.49) (3.80) (3.09) (2.38) (1.63) (1.90) (2.77) (5.02) (7.77)
∆Volatility −289.67∗∗∗ −205.60∗∗∗ −134.32∗∗∗ −72.22∗∗∗ 5.46 120.72∗∗∗ 262.36∗∗∗ 404.76∗∗∗ 579.40∗∗∗

(23.99) (25.09) (19.20) (12.36) (6.00) (10.74) (10.54) (3.76) (13.21)
∆MRI 313.78∗∗∗ 330.85∗∗∗ 332.43∗∗∗ 326.60∗∗∗ 324.23∗∗∗ 325.37∗∗∗ 338.58∗∗∗ 356.98∗∗∗ 367.18∗∗∗

(7.59) (6.76) (8.06) (8.10) (8.12) (7.56) (9.32) (10.18) (12.38)
∆CR 120.63∗∗∗ 103.44∗∗∗ 83.11∗∗∗ 61.69∗∗∗ 45.09∗∗∗ 54.12∗∗∗ 83.16∗∗∗ 113.45∗∗∗ 144.68∗∗∗

(4.00) (5.28) (4.19) (4.05) (3.40) (3.66) (4.44) (5.50) (9.28)
Without Utilities

StockReturn −147.88∗∗∗ −127.33∗∗∗ −104.36∗∗∗ −70.70∗∗∗ −45.25∗∗∗ −57.75∗∗∗ −93.91∗∗∗ −134.02∗∗∗ −174.64∗∗∗

(5.28) (3.80) (3.13) (2.53) (1.90) (2.06) (2.85) (4.66) (8.58)
∆Volatility −296.35∗∗∗ −224.27∗∗∗ −142.82∗∗∗ −67.85∗∗∗ 11.19 132.53∗∗∗ 278.36∗∗∗ 409.30∗∗∗ 561.77∗∗∗

(12.61) (27.19) (19.76) (14.02) (7.48) (12.44) (12.65) (8.86) (14.45)
∆MRI 278.67∗∗∗ 304.25∗∗∗ 309.84∗∗∗ 307.82∗∗∗ 305.22∗∗∗ 303.23∗∗∗ 312.63∗∗∗ 323.66∗∗∗ 328.41∗∗∗

(10.10) (6.75) (6.71) (7.37) (7.58) (8.09) (7.25) (8.53) (14.12)
∆CR 155.26∗∗∗ 138.51∗∗∗ 125.60∗∗∗ 111.33∗∗∗ 99.69∗∗∗ 110.44∗∗∗ 135.75∗∗∗ 165.74∗∗∗ 198.42∗∗∗

(4.60) (4.86) (4.42) (4.98) (4.53) (4.73) (4.44) (6.17) (8.71)
Without BM, Energy and Utilities

StockReturn −124.32∗∗∗ −110.03∗∗∗ −90.13∗∗∗ −58.30∗∗∗ −31.80∗∗∗ −46.95∗∗∗ −82.87∗∗∗ −123.80∗∗∗ −157.97∗∗∗

(5.97) (4.39) (3.51) (2.65) (1.72) (2.09) (3.31) (5.67) (11.60)
∆Volatility −245.19∗∗∗ −165.39∗∗∗ −120.15∗∗∗ −50.01∗∗∗ 10.25 124.09∗∗∗ 246.17∗∗∗ 372.82∗∗∗ 521.09∗∗∗

(34.46) (19.32) (13.42) (12.27) (8.26) (15.42) (13.55) (11.81) (14.10)
∆MRI 324.58∗∗∗ 347.66∗∗∗ 346.17∗∗∗ 331.04∗∗∗ 316.30∗∗∗ 320.66∗∗∗ 345.50∗∗∗ 371.48∗∗∗ 384.95∗∗∗

(11.51) (12.16) (12.34) (12.90) (12.77) (12.21) (11.28) (11.46) (17.74)
∆CR 103.65∗∗∗ 80.03∗∗∗ 63.74∗∗∗ 48.88∗∗∗ 34.83∗∗∗ 44.18∗∗∗ 70.73∗∗∗ 96.42∗∗∗ 132.00∗∗∗

(3.18) (3.73) (4.63) (4.50) (3.96) (4.51) (5.41) (7.70) (8.81)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.14.: This table presents estimates of the base panel quantile regression model for 5-year CDS spread returns
without the sectors BM (top), Energy (top center), Utilities (bottom center) and all of them jointly (bottom). The sam-
ple comprises of data from 115 (BM), 129 (Energy), 120 (Utilities) and 92 (all) European firms from 2013/01/01 to
2019/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity. Esti-
mates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1e03.

6.5. Only removing all three sectors jointly causes the estimates to switch directions. In
that case, the results are not robust and we cannot confirm Hypothesis 1.
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(a) Without BM (b) Without Energy

(c) Without Utilities (d) Without BM, Energy and Utilities

Figure 6.5.: Evolution of the CR over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for North America without
the sectors BM (top left), Energy (top right), Utilities (bottom left) and all of them jointly (bottom right). The vertical
solid lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively.
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1 2 3 4 5 6 7 8 9
Without BM

StockReturn −38.09∗∗∗ −18.92∗∗∗ −10.71∗∗∗ −6.84∗∗∗ −3.65∗∗∗ −6.83∗∗∗ −12.07∗∗∗ −22.41∗∗∗ −45.53∗∗∗

(2.14) (1.01) (0.58) (0.42) (0.22) (0.36) (0.73) (1.79) (4.21)
∆Volatility −154.95∗∗∗ −57.67∗∗∗ −18.54∗∗∗ −2.77∗∗ 0.72· 25.67∗∗∗ 59.35∗∗∗ 133.32∗∗∗ 297.03∗∗∗

(10.97) (5.16) (2.85) (0.86) (0.37) (2.10) (3.83) (9.81) (12.75)
∆MRI 44.09∗∗∗ 33.30∗∗∗ 20.10∗∗∗ 14.18∗∗∗ 7.94∗∗∗ 12.88∗∗∗ 20.90∗∗∗ 41.18∗∗∗ 74.01∗∗∗

(3.69) (2.30) (1.77) (1.33) (0.71) (1.09) (1.73) (3.66) (4.61)
∆CR 3.14∗∗∗ 1.57∗∗∗ 0.89∗∗∗ 0.45∗∗∗ 0.12∗∗ 0.04 0.17· 0.43· 1.07∗

(0.40) (0.20) (0.10) (0.07) (0.04) (0.03) (0.09) (0.25) (0.47)
Without Energy

StockReturn −41.73∗∗∗ −22.55∗∗∗ −13.80∗∗∗ −9.39∗∗∗ −4.79∗∗∗ −9.17∗∗∗ −14.97∗∗∗ −24.84∗∗∗ −45.21∗∗∗

(2.77) (1.29) (0.78) (0.56) (0.28) (0.48) (0.92) (1.73) (4.45)
∆Volatility −167.72∗∗∗ −67.11∗∗∗ −22.69∗∗∗ −5.72∗∗∗ 1.07· 31.89∗∗∗ 70.38∗∗∗ 143.00∗∗∗ 296.83∗∗∗

(16.30) (6.93) (3.62) (1.48) (0.60) (2.39) (4.51) (8.04) (9.73)
∆MRI 59.35∗∗∗ 47.58∗∗∗ 31.02∗∗∗ 22.80∗∗∗ 12.28∗∗∗ 23.47∗∗∗ 37.36∗∗∗ 66.78∗∗∗ 112.39∗∗∗

(5.33) (3.26) (2.63) (2.05) (1.10) (1.78) (2.48) (3.68) (9.86)
∆CR 2.18∗∗∗ 1.98∗∗∗ 1.20∗∗∗ 0.70∗∗∗ 0.26∗∗ 0.83∗∗∗ 1.65∗∗∗ 3.32∗∗∗ 6.61∗∗∗

(0.51) (0.28) (0.19) (0.13) (0.08) (0.14) (0.24) (0.50) (1.39)
Without Utilities

StockReturn −51.46∗∗∗ −26.99∗∗∗ −16.15∗∗∗ −11.30∗∗∗ −6.12∗∗∗ −10.77∗∗∗ −17.61∗∗∗ −29.43∗∗∗ −53.70∗∗∗

(3.50) (1.55) (0.93) (0.71) (0.35) (0.58) (1.05) (2.26) (4.74)
∆Volatility −191.32∗∗∗ −78.25∗∗∗ −28.11∗∗∗ −7.00∗∗∗ 0.90 37.71∗∗∗ 83.11∗∗∗ 162.70∗∗∗ 339.16∗∗∗

(14.50) (7.35) (4.43) (1.85) (0.79) (2.78) (4.20) (8.81) (11.70)
∆MRI 60.89∗∗∗ 47.64∗∗∗ 31.08∗∗∗ 23.22∗∗∗ 13.26∗∗∗ 23.48∗∗∗ 37.05∗∗∗ 62.98∗∗∗ 110.29∗∗∗

(6.05) (3.26) (2.64) (2.24) (1.23) (1.90) (2.51) (4.17) (8.08)
∆CR 13.69∗∗∗ 7.34∗∗∗ 4.57∗∗∗ 3.31∗∗∗ 1.83∗∗∗ 3.31∗∗∗ 5.98∗∗∗ 10.53∗∗∗ 22.03∗∗∗

(1.12) (0.51) (0.30) (0.25) (0.15) (0.23) (0.43) (0.95) (2.24)
Without BM, Energy and Utilities

StockReturn −37.42∗∗∗ −19.44∗∗∗ −11.75∗∗∗ −8.17∗∗∗ −4.49∗∗∗ −8.06∗∗∗ −12.72∗∗∗ −21.97∗∗∗ −41.09∗∗∗

(2.66) (1.15) (0.69) (0.52) (0.29) (0.49) (0.85) (2.02) (5.35)
∆Volatility −150.15∗∗∗ −56.30∗∗∗ −18.71∗∗∗ −3.60∗ 0.97 28.26∗∗∗ 59.37∗∗∗ 125.86∗∗∗ 272.75∗∗∗

(19.95) (5.39) (3.58) (1.59) (0.61) (2.74) (4.36) (9.49) (19.09)
∆MRI 40.55∗∗∗ 30.16∗∗∗ 17.32∗∗∗ 12.99∗∗∗ 7.26∗∗∗ 11.94∗∗∗ 19.05∗∗∗ 35.48∗∗∗ 59.00∗∗∗

(4.93) (2.46) (1.72) (1.40) (0.83) (1.26) (1.85) (4.22) (9.48)
∆CR −2.79∗∗∗ −1.60∗∗∗ −0.93∗∗∗ −0.57∗∗∗ −0.29∗∗ −0.18 0.06 0.67· 1.01

(0.46) (0.32) (0.19) (0.14) (0.09) (0.12) (0.20) (0.41) (0.96)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.15.: This table presents estimates of the base panel quantile regression model for 5-year CDS spread returns
without the sectors BM (top), Energy (top center), Utilities (bottom center) and all of them jointly (bottom). The sample
comprises of data from 245 (BM), 250 (Energy), 253 (Utilities) and 200 (all) North American firms from 2013/01/01
to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity.
Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1e03.
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6.3.4. Alternative specifications for factor construction

The baseline CR factor is constructed by a univariate sorting of firms with respect to
their emission profiles. That is, our CDS universe is sorted by emission intensity from
low to high. The use of firms’ emission intensity allows for a straightforward inter-
pretation of the CR factor. Such a construction, however, might have shortcomings.
Alternative emission classifications may be more suitable (absolute emissions vs. emis-
sion intensity). Also, univariate sorting might have its own limitations. Double sorting
helps control for the possibility that other firm-specific characteristics (size, leverage,
etc.) may consistently coincide with the firm’s emission profile. To investigate whether
the identification of carbon risk exposure via firms’ emission profiles is possibly mis-
specified, we examine alternative specifications for the construction of the CR factor
and rerun our base model.

Absolute emissions

While the classification of firms’ emission profiles via their emission intensities allows
for a straightforward comparison between firms’ carbon footprints, there is some evi-
dence that the absolute level of emissions is of the upmost importance. For example,
for stock returns, Bolton and Kacperczyk (2021) explain that a companies’ total level
of carbon emissions is what matters most. The rationale is that the total amount of
emissions is the only relevant metric for a net-zero transition to be successful. We now
also investigate this topic by dividing firms into groups based on their absolute level of
emissions within our CR construction and rerunning the baseline regression.

(a) Europe (b) North America

Figure 6.6.: Evolution of the CR (based on total absolute emissions) over time for maturities 1Y (blue), 5Y (orange) and
30Y (red) for Europe (left) and North America (right). The vertical solid lines refer to the Paris Agreement (dark green)
and Trump election (brown), respectively.

Figure 6.6 displays the evolution of the CR over time for the three tenors 1Y, 5Y and
30Y in Europe (left) and North America (right). While in Europe the CRs mostly main-
tain their features and only the levels decrease slightly compared to the original CR,
the North American CRs move entirely on a negative range. That is, using absolute
emissions instead of intensities paints a whole different picture in terms of carbon risk
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perception in North America. Polluting firms with a high amount of emissions are
considered less risky to default than clean firms who emit significantly less.

1 2 3 4 5 6 7 8 9
Europe

1Y
∆CR 462.09∗∗∗ 349.06∗∗∗ 238.21∗∗∗ 163.59∗∗∗ 122.68∗∗∗ 161.98∗∗∗ 248.93∗∗∗ 376.70∗∗∗ 521.56∗∗∗

(22.87) (16.30) (12.93) (9.89) (8.73) (10.70) (14.88) (24.00) (37.17)
3Y

∆CR 339.82∗∗∗ 288.41∗∗∗ 232.13∗∗∗ 174.15∗∗∗ 137.76∗∗∗ 156.03∗∗∗ 209.04∗∗∗ 270.16∗∗∗ 319.65∗∗∗

(12.10) (8.71) (7.29) (6.95) (6.45) (6.96) (7.99) (10.36) (17.33)
5Y

∆CR 224.84∗∗∗ 193.53∗∗∗ 158.53∗∗∗ 127.77∗∗∗ 103.60∗∗∗ 110.54∗∗∗ 142.22∗∗∗ 179.05∗∗∗ 215.70∗∗∗

(5.89) (5.83) (5.35) (4.97) (4.84) (4.59) (5.15) (6.57) (9.22)
10Y

∆CR 104.56∗∗∗ 85.20∗∗∗ 71.64∗∗∗ 57.69∗∗∗ 47.01∗∗∗ 51.12∗∗∗ 64.06∗∗∗ 81.32∗∗∗ 108.40∗∗∗

(3.25) (2.91) (2.95) (2.29) (2.23) (2.34) (2.64) (3.04) (3.51)
30Y

∆CR 52.56∗∗∗ 49.02∗∗∗ 43.00∗∗∗ 35.33∗∗∗ 28.05∗∗∗ 28.53∗∗∗ 33.37∗∗∗ 41.78∗∗∗ 43.52∗∗∗

(2.62) (2.19) (2.01) (1.64) (1.66) (1.71) (1.80) (2.54) (5.20)
North America

1Y
∆CR −19.88∗∗∗ −8.75∗∗∗ −2.19∗∗∗ −0.34∗∗∗ −0.09∗∗∗ −0.83∗∗∗ −5.42∗∗∗ −23.03∗∗∗ −71.85∗∗∗

(2.09) (0.94) (0.28) (0.05) (0.02) (0.10) (0.60) (2.42) (7.71)
3Y

∆CR −2.08∗∗∗ −0.93∗∗ −0.64∗∗ −0.27∗ −0.06 −0.38∗∗ −1.05∗∗∗ −2.90∗∗∗ −10.85∗∗∗

(0.55) (0.29) (0.20) (0.12) (0.07) (0.13) (0.24) (0.50) (1.53)
5Y

∆CR −3.10∗∗∗ −1.23∗∗∗ −0.64∗∗∗ −0.24∗∗∗ −0.08∗ −0.15∗∗ −0.33∗∗ −0.75∗ −2.77∗∗∗

(0.40) (0.18) (0.10) (0.06) (0.04) (0.06) (0.12) (0.29) (0.72)
10Y

∆CR −4.21∗∗∗ −1.98∗∗∗ −1.14∗∗∗ −0.68∗∗∗ −0.27∗∗∗ −0.47∗∗∗ −0.84∗∗∗ −1.56∗∗∗ −4.44∗∗∗

(0.26) (0.13) (0.08) (0.05) (0.03) (0.04) (0.08) (0.18) (0.56)
30Y

∆CR −0.84∗∗∗ −0.61∗∗∗ −0.51∗∗∗ −0.39∗∗∗ −0.31∗∗∗ −0.42∗∗∗ −0.68∗∗∗ −1.16∗∗∗ −2.70∗∗∗

(0.21) (0.13) (0.08) (0.05) (0.04) (0.06) (0.11) (0.20) (0.48)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.16.: This table reports the coefficient estimates of ∆CR (sorted on absolute emissions) of the base panel quantile
regression model for CDS spread returns of all tenors in both regions. The sample includes data for 136 European resp.
275 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-
differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles.
All estimates are scaled by factor 1e03.

Table 6.16 reports the results of the baseline model for the CR sorted by absolute emis-
sions in both Europe and North America. The results for Europe do not indicate rele-
vant qualitative differences to the original results. All effects stay highly significant and,
except the long-term of 30 years, also exhibit an increase in the size of the estimates. In
North America, however, the estimates either become insignificant or the sign reverses
to negative values. That is, again, we observe that the results for North America are not
robust and the selected emission metric within the CR construction seems to matter.

Possible confounding variables

We begin by noting the strong relationship documented in the literature between firms’
emissions and some key firm characteristics. High absolute emissions are related to
(log)size, high book-to-market ratios, and highly leveraged firms. Conversely, emis-
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sion intensities are weakly negatively related to size (Bolton and Kacperczyk, 2021;
Huij et al., 2021). Thus, sorting firms solely by emission intensities may result in an
inappropriate categorization of small firms as polluting firms and big firms as clean
firms. Double sorting helps control for this potential bias and inaccurate representation
of firms’ emission profiles, ultimately reducing the risk of over- or underestimating
exposure to carbon risk.

We therefore construct alternative, conditionally double-sorted versions of the CR fac-
tor. For every day t, we first divide the CDS sample into two groups X m

t and Ym
t based

on the median of the (one-year lagged) candidate variable (size, book-to-market ratio,
leverage, etc.). Then, we divide firms within each group into five additional groups
based on the quintiles of the one-year lagged emission intensities. Firms below the first
quintile are the clean subgroup (XCm

t or YCm
t ), whereas firms above the fifth quintile

are the polluting subgroup (XPm
t or YPm

t ). Then, we compute the median CDS spread
in each subgroup resulting in four different medians (XPm

t , XCm
t , YPm

t , YCm
t ) in total.

Finally, we compute the conditional, double-sort CR as follows

CRm
t =

1
2
(XPm

t + YPm
t )−

1
2
(XCm

t + YCm
t ) , (6.1)

and replace the original CR with the new CR in the base model from Section 6.2.1 to
check the robustness of our baseline CR.

First, we consider firms’ market capitalization – the size variable. We divide the CDS
sample into two groups based on the median market capitalization (lagged by one year)
to distinguish between small (S) and big firms (B). Dividing by emission intensities
afterwards, and computing the median CDS spread, leaves us with four medians for
each subgroup: small and polluting SPm

t , small and clean SCm
t , big and polluting BPm

t ,
and big and clean BCm

t . We can then straightforwardly obtain the size-adjusted CR by
using Equation (6.1) and replace X with small (S) and Y with big (B)

CRm
t =

1
2
(SPm

t + BPm
t )−

1
2
(SCm

t + BCm
t ) ,

Figure 6.7 depicts the evolution of the double-sorted CR over time for the three tenors
1Y, 5Y and 30Y in Europe and North America. Similarly to the case of absolute emis-
sions, we observe no significant changes in the movement of the European CRs while
the North American CRs display an erratic evolution with a mild reaction around
COP21. Table 6.17 reports the new estimates and shows that using the size-adjusted
CR leaves results virtually unchanged with respect to the baseline model for the Euro-
pean sample. For North America, however, the results are not robust as most estimates
become insignificant or switch signs.

Second, we consider the book-to-market ratio (B/M), defined as the book value of eq-
uity divided by the market value of equity (market cap). Pástor et al. (2022) docu-
mented that polluting firms tend to be disproportionately more represented by value
firms, whereas clean firms tend to be disproportionately more represented by growth
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(a) Europe (b) North America

Figure 6.7.: Evolution of the CR (double-sorted on size) over time for maturities 1Y (blue), 5Y (orange) and 30Y (red) for
Europe (left) and North America (right). The vertical solid lines refer to the Paris Agreement (dark green) and Trump
election (brown), respectively.

1 2 3 4 5 6 7 8 9
Europe

1Y
∆CR 528.60∗∗∗ 430.50∗∗∗ 321.71∗∗∗ 259.19∗∗∗ 207.47∗∗∗ 254.19∗∗∗ 345.97∗∗∗ 489.90∗∗∗ 693.25∗∗∗

(25.40) (17.98) (18.40) (15.07) (15.26) (16.14) (20.12) (27.57) (47.67)
3Y

∆CR 295.24∗∗∗ 280.36∗∗∗ 250.29∗∗∗ 201.32∗∗∗ 159.19∗∗∗ 185.81∗∗∗ 242.81∗∗∗ 301.14∗∗∗ 354.31∗∗∗

(9.73) (10.13) (9.02) (8.74) (9.13) (8.57) (10.07) (13.00) (19.44)
5Y

∆CR 162.33∗∗∗ 162.72∗∗∗ 145.93∗∗∗ 124.96∗∗∗ 111.58∗∗∗ 127.79∗∗∗ 163.15∗∗∗ 195.92∗∗∗ 227.36∗∗∗

(7.23) (7.40) (6.06) (5.37) (5.67) (5.56) (5.45) (7.07) (9.83)
10Y

∆CR 81.72∗∗∗ 78.38∗∗∗ 76.48∗∗∗ 65.83∗∗∗ 56.72∗∗∗ 65.53∗∗∗ 83.01∗∗∗ 102.28∗∗∗ 134.31∗∗∗

(3.51) (4.30) (3.56) (3.10) (3.04) (3.00) (3.22) (4.06) (5.43)
30Y

∆CR 62.81∗∗∗ 57.61∗∗∗ 55.41∗∗∗ 49.52∗∗∗ 44.64∗∗∗ 49.73∗∗∗ 60.52∗∗∗ 76.13∗∗∗ 99.96∗∗∗

(2.70) (2.53) (2.79) (2.48) (2.40) (2.39) (2.86) (3.70) (4.83)
North America

1Y
∆CR −5.88∗∗∗ −0.11 0.27· 0.09∗ 0.02 0.03 0.27 1.08 2.04

(1.32) (0.48) (0.14) (0.04) (0.02) (0.05) (0.22) (1.03) (2.60)
3Y

∆CR −7.38∗∗∗ −2.52∗∗∗ −0.96∗∗ −0.26∗∗ −0.13∗∗ −1.18∗∗∗ −2.04∗∗∗ −3.88∗∗∗ −9.80∗∗∗

(1.14) (0.51) (0.30) (0.08) (0.05) (0.17) (0.28) (0.59) (1.41)
5Y

∆CR −9.19∗∗∗ −3.91∗∗∗ −2.46∗∗∗ −1.56∗∗∗ −0.81∗∗∗ −1.32∗∗∗ −1.79∗∗∗ −2.57∗∗∗ −4.80∗∗∗

(0.97) (0.43) (0.24) (0.14) (0.08) (0.14) (0.23) (0.41) (0.80)
10Y

∆CR −4.27∗∗∗ −1.95∗∗∗ −1.09∗∗∗ −0.67∗∗∗ −0.31∗∗∗ −0.58∗∗∗ −0.97∗∗∗ −1.72∗∗∗ −3.95∗∗∗

(0.40) (0.19) (0.10) (0.07) (0.04) (0.06) (0.09) (0.20) (0.44)
30Y

∆CR 1.58∗∗∗ 0.35∗ 0.06 −0.02 −0.07· −0.35∗∗∗ −0.63∗∗∗ −1.26∗∗∗ −2.43∗∗∗

(0.29) (0.15) (0.09) (0.06) (0.04) (0.05) (0.09) (0.18) (0.39)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.17.: This table reports the coefficient estimates of ∆CR (double-sorted on size) of the base panel quantile regres-
sion model for CDS spread returns of all tenors in both regions. The sample includes data for 136 (275) European (North
American) firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences
due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates
are scaled by factor 1e03.

firms. Similarly to size, we use the median B/M (lagged by one year) to divide firms
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between value (H) and growth (L) firms – where now X=H and Y=L in Equation (6.1).

(a) Europe (b) North America

Figure 6.8.: Evolution of the CR (double-sorted on book-to-market ratio) over time for maturities 1Y (blue), 5Y (orange)
and 30Y (red) for Europe (left) and North America (right). The vertical solid lines refer to the Paris Agreement (dark
green) and Trump election (brown), respectively.

In Figure 6.8, we plot the evolution of the B/M-adjusted CR for both Europe and North
America. Contrary to the previous graphs, the CRs in Europe now slightly change
in that the reaction around COP21 is less pronounced. In North America, the CRs
now exhibit a completely flat pattern that fluctuates randomly around zero. Table 6.18
reports the estimates with the B/M-adjusted CR. Despite the change in the CR, the
results for Europe are still in line with Hypothesis 1. The results for North America,
again, hint towards non-robustness as most estimates change signs.

Third, we consider the leverage ratio, defined as the book value of debt divided by
the book value of assets, for the first sorting. Polluting firms tend to have dispropor-
tionately more tangible assets compared to clean firms (Iovino et al., 2021), hence we
control for the possibility that higher leverage ratios entirely capture the exposure to
carbon risk. We use the median leverage ratio (lagged by one year) to distinguish be-
tween firms with high (HL) and low (LL) leverage ratios; where now X=HL and Y=LL
in Equation (6.1).

Figure 6.9 displays the evolution of the leverage-adjusted CR in Europe (left) and North
America (right). The CRs in Europe display a qualitatively similar behavior to the origi-
nal CRs. For North America, the evolution looks similar to the size-adjusted CRs, as we
also observe some reaction towards the time period of COP21. Table 6.19 displays the
results of the base model using the leverage-adjusted CR for Europe and North Amer-
ica, respectively. Again, using the leverage-adjusted CR, results remain unchanged
with respect to the baseline model in Europe while in North America estimates turn to
negative values and are not robust.
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1 2 3 4 5 6 7 8 9
Europe

1Y
∆CR 369.88∗∗∗ 280.11∗∗∗ 218.97∗∗∗ 172.09∗∗∗ 131.28∗∗∗ 158.64∗∗∗ 245.88∗∗∗ 377.94∗∗∗ 565.10∗∗∗

(20.82) (17.19) (14.18) (11.43) (10.37) (11.43) (15.60) (23.06) (46.31)
3Y

∆CR 272.95∗∗∗ 234.97∗∗∗ 188.86∗∗∗ 139.09∗∗∗ 93.75∗∗∗ 114.95∗∗∗ 165.16∗∗∗ 206.45∗∗∗ 254.22∗∗∗

(12.83) (8.41) (8.34) (6.75) (5.49) (6.06) (8.21) (10.61) (12.77)
5Y

∆CR 162.40∗∗∗ 130.91∗∗∗ 107.89∗∗∗ 83.51∗∗∗ 62.48∗∗∗ 70.44∗∗∗ 102.26∗∗∗ 137.10∗∗∗ 173.71∗∗∗

(4.60) (4.25) (3.98) (3.54) (3.08) (3.25) (4.11) (5.94) (10.11)
10Y

∆CR 116.89∗∗∗ 92.30∗∗∗ 74.19∗∗∗ 58.33∗∗∗ 46.64∗∗∗ 52.62∗∗∗ 70.34∗∗∗ 87.55∗∗∗ 125.58∗∗∗

(3.72) (2.78) (2.50) (2.48) (2.05) (2.03) (2.59) (3.06) (3.61)
30Y

∆CR 90.61∗∗∗ 70.85∗∗∗ 59.64∗∗∗ 48.83∗∗∗ 42.45∗∗∗ 47.93∗∗∗ 59.24∗∗∗ 72.35∗∗∗ 105.55∗∗∗

(3.57) (2.60) (2.45) (2.31) (1.88) (2.07) (2.64) (3.22) (4.26)
North America

1Y
∆CR −13.08∗∗∗ −4.17∗∗∗ −0.31· 0.02 0.02 0.10· 0.46 0.79 −0.21

(2.04) (0.89) (0.18) (0.04) (0.02) (0.06) (0.29) (0.96) (1.58)
3Y

∆CR −7.91∗∗∗ −3.04∗∗∗ −1.35∗∗∗ −0.57∗∗∗ −0.25∗∗∗ −1.48∗∗∗ −2.84∗∗∗ −4.89∗∗∗ −11.51∗∗∗

(1.22) (0.62) (0.31) (0.14) (0.07) (0.20) (0.36) (0.76) (2.31)
5Y

∆CR −2.37∗∗∗ −1.13∗∗∗ −0.76∗∗∗ −0.47∗∗∗ −0.22∗∗∗ −0.49∗∗∗ −0.69∗∗∗ −0.93∗∗∗ −2.09∗∗

(0.49) (0.22) (0.13) (0.08) (0.05) (0.08) (0.14) (0.24) (0.70)
10Y

∆CR 1.72∗∗∗ 0.31∗ 0.11 0.01 −0.05 −0.16∗∗ −0.25∗∗ −0.55∗∗∗ −2.02∗∗∗

(0.31) (0.15) (0.09) (0.05) (0.03) (0.05) (0.09) (0.15) (0.42)
30Y

∆CR 0.98∗ −0.36· −0.11 −0.13 −0.16∗∗ −0.55∗∗∗ −0.79∗∗∗ −1.24∗∗∗ −1.70∗∗

(0.41) (0.19) (0.13) (0.09) (0.06) (0.09) (0.14) (0.24) (0.55)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.18.: This table reports the coefficient estimates of ∆CR (double-sorted on book-to-market ratio) of the base panel
quantile regression model for CDS spread returns of all tenors in both regions. The sample includes data for 136 (275)
European (North American) firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are
in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1e03.

(a) Europe (b) North America

Figure 6.9.: Evolution of the CR (double-sorted on leverage) over time for maturities 1Y (blue), 5Y (orange) and 30Y
(red) for Europe (left) and North America (right). The vertical solid lines refer to the Paris Agreement (dark green) and
Trump election (brown), respectively.
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1 2 3 4 5 6 7 8 9
Europe

1Y
∆CR 649.63∗∗∗ 483.81∗∗∗ 328.43∗∗∗ 222.79∗∗∗ 162.19∗∗∗ 203.31∗∗∗ 298.94∗∗∗ 459.84∗∗∗ 677.61∗∗∗

(26.17) (22.85) (17.90) (14.32) (12.96) (14.17) (19.50) (27.28) (33.88)
3Y

∆CR 317.12∗∗∗ 283.38∗∗∗ 247.58∗∗∗ 199.84∗∗∗ 158.24∗∗∗ 183.13∗∗∗ 240.93∗∗∗ 302.28∗∗∗ 354.94∗∗∗

(12.12) (8.61) (9.06) (8.28) (7.73) (7.94) (9.54) (11.78) (21.32)
5Y

∆CR 181.15∗∗∗ 160.50∗∗∗ 132.16∗∗∗ 107.91∗∗∗ 91.67∗∗∗ 98.75∗∗∗ 124.60∗∗∗ 155.24∗∗∗ 188.77∗∗∗

(5.97) (5.92) (5.26) (5.21) (4.99) (5.21) (5.28) (7.08) (9.58)
10Y

∆CR 90.74∗∗∗ 76.21∗∗∗ 66.39∗∗∗ 56.11∗∗∗ 47.28∗∗∗ 53.22∗∗∗ 67.93∗∗∗ 86.08∗∗∗ 108.92∗∗∗

(2.26) (3.41) (2.96) (2.85) (2.67) (2.81) (2.93) (3.70) (5.40)
30Y

∆CR 66.58∗∗∗ 59.44∗∗∗ 51.15∗∗∗ 42.38∗∗∗ 38.40∗∗∗ 42.42∗∗∗ 52.10∗∗∗ 66.27∗∗∗ 83.85∗∗∗

(1.94) (2.37) (2.16) (2.13) (2.19) (2.36) (2.57) (2.89) (3.87)
North America

1Y
∆CR −3.25∗∗ 0.73 0.56∗∗ 0.11∗ 0.03 0.11· 0.70∗ 3.50∗∗ 5.96·

(1.22) (0.59) (0.17) (0.05) (0.02) (0.06) (0.30) (1.19) (3.23)
3Y

∆CR −6.82∗∗∗ −2.79∗∗∗ −1.35∗∗∗ −0.34∗∗∗ −0.13∗ −0.42∗∗∗ −1.18∗∗∗ −2.68∗∗∗ −6.32∗∗∗

(0.94) (0.46) (0.26) (0.09) (0.05) (0.12) (0.28) (0.64) (1.37)
5Y

∆CR −11.17∗∗∗ −5.02∗∗∗ −3.06∗∗∗ −2.10∗∗∗ −1.17∗∗∗ −2.02∗∗∗ −3.28∗∗∗ −5.01∗∗∗ −9.05∗∗∗

(0.90) (0.40) (0.24) (0.16) (0.10) (0.15) (0.28) (0.54) (1.34)
10Y

∆CR −3.10∗∗∗ −1.58∗∗∗ −0.95∗∗∗ −0.59∗∗∗ −0.34∗∗∗ −0.66∗∗∗ −1.09∗∗∗ −1.72∗∗∗ −3.67∗∗∗

(0.41) (0.18) (0.12) (0.06) (0.04) (0.06) (0.10) (0.20) (0.64)
30Y

∆CR −0.63 −1.09∗∗∗ −0.91∗∗∗ −0.80∗∗∗ −0.59∗∗∗ −1.17∗∗∗ −2.08∗∗∗ −3.83∗∗∗ −8.97∗∗∗

(0.44) (0.22) (0.14) (0.10) (0.07) (0.09) (0.15) (0.29) (0.82)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6.19.: This table reports the coefficient estimates of ∆CR (double-sorted on leverage ratio) of the base panel quan-
tile regression model for CDS spread returns of all tenors in both regions. The sample includes data for 136 (275)
European (North American) firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are
in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1e03.
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7. Conclusions and outlook

Climate change significantly shaped the globe for the past two centuries and the eco-
nomic consequences associated with this development already unraveled and will con-
tinue to do so. Hence, it is important to comprehensively apprehend the financial con-
sequences that follow, particularly for vulnerable and exposed corporations. In this
thesis, we make several contributions to the understanding of the interplay between
climate risk and firm-specific credit risk – both theoretically and empirically.

First, we build a theoretical credit model that incorporates climate risk by adjusting
the firm value process through a random growth component. The model produces
higher default probabilities and credit spreads for more exposed firms. Additionally,
we provide an overview of further structural credit models and their adaption for cli-
mate risks. The model by Bouchet and Guenedal (2020) uses the seminal Merton model
as a starting point and integrates adjustments in the firm value process through car-
bon price shocks. Building upon this, another model with jump risks by Kölbel et al.
(2022) to account for the possibility of sudden adjustments is introduced. Last, using
the more elaborated model of Leland and Toft (1996), Le Guenedal and Tankov (2022)
take a Bayesian point of view to integrate scenario uncertainty.

Second, we propose a method for constructing a forward-looking metric of carbon risk
exposure. In particular, we utilize the information contained in CDS spreads to con-
struct the CR factor – a market-based measure of carbon risk. The constructed CRs
aptly react to policy-relevant events such as COP21 and, at least for Europe, are ro-
bust to different alternative specifications. We also adopt different variants of the CR,
that measure the exposure to carbon risk within sectors, countries and across the term
structure. Finally, we also introduce a generalization of the CR, the CTR, which is able
to capture the entire distribution of carbon risk, in particular the parts in the tail ends.

Third, we study how carbon risk, proxied by the CR, affects firms’ creditworthiness
and find a positive relationship between lenders’ perceived exposure to carbon risk and
firms’ cost of default protection. The relevance of the observed relationship is signifi-
cantly stronger in Europe – notably pro-carbon regulation – than in North America. In
addition, using QRs, we show that the magnitude of the exposure to carbon risk differs
considerably along the entire distribution of CDS spread returns. The marginal impact
of carbon risk is exceptionally pronounced when firms experience extraordinary credit
movements (i.e. when a firm’s credit improvement or deterioration is especially strong).
This speaks directly to the relevance of this work for the risk management practices of
institutional investors and regulators. Using CDP data, we unveil further evidence that
the relevance of carbon risk depends on whether and to what extend firms are subject to
an ETS. Firms with an actual price tag on their emissions, combined with a huge share
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of regulated emissions, exhibit larger effects than non-regulated firms. Exposure to car-
bon risk also varies substantially across industries. While we observe a high sensitivity
to carbon risk in the CDS spreads of the classical carbon-intensive sectors (e.g. Energy,
Basic Materials, Utilities), the market seems to regard other sectors (e.g. Industrials,
Technology, Healthcare) as capable of making the necessary adjustments to facilitate a
low-carbon transformation. These sectors therefore suffer less from a surge in carbon
risk. Further analysis suggests that the effect of carbon risk on CDS spread returns is
stronger during times of heightened attention to climate change news. When market-
wide concern about climate change risk is elevated, lenders demand more credit pro-
tection for those borrowers perceived to be more exposed to carbon risk. Finally, we
examine whether lenders’ expectations about the necessary pace of the transition affect
the CDS spread curve. We find that there is a positive relationship between the term
structure of carbon risk and the CDS spread slopes in Europe, effectively demonstrat-
ing that carbon risk is particularly salient for shorter time horizons, and confirming that
lenders expect adjustments in European carbon regulations to cause relatively larger
costs in the near future.

Overall, our results add to the growing evidence on the effect of carbon risk on CDS
spreads and provide some quantitative assessment of its economic impact. Our find-
ings also have important policy implications. They suggest that an improvement in the
quality and comparability of current carbon emissions disclosures and emissions reduc-
tion strategies would facilitate better assessment of firm-level carbon and credit risk.
Additionally, our results highlight the importance of large-scale carbon pricing mech-
anisms as financial markets seem to better incorporate the risks associated to carbon
when an observable and explicit price tag for emissions exists. As such, our findings
are relevant for the regulatory framework. In particular, they highlight the relevance
of a periodic and transparent disclosure practice in the market as well as the need for
explicit carbon pricing mechanisms to better reflect firm-level carbon and transition
risk.

Nonetheless, our research still leaves open questions for future research. The incorpo-
ration of climate aspects in structural credit models is still an ongoing field of research.
Most of the approaches presented here impose a simplified Merton-type model struc-
ture with default only possible at maturity. As such, those models are mainly useful
to gain qualitative insights on the effect of climate risks on credit, but should not be
used in practical pricing applications. An exception to this represents the model by
Le Guenedal and Tankov (2022) which assumes the more realistic setup of Leland and
Toft (1996) and integrates scenario uncertainty inherent to any climate analysis. Still,
more research is needed to address some shortcomings that remain unsolved. For in-
stance, even the model by Le Guenedal and Tankov (2022) seems not perfectly suitable
for the physical risk channel as the assumption of equal jump size distributions in each
scenario is too strict. Also, none of the approaches presented here attempts to address
both types of climate risk and couple them in one credit model.

Also, for the CR factor, there are several directions in which our research can be ex-
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tended. Note that the CR we propose can be constructed for any subsample provided
the sample size is sufficiently large. However, we cannot construct a firm-specific CR
within our approach. Future research may build on that, e.g. by combining the CR with
the approaches of Faccini et al. (2021) or Huij et al. (2021). Furthermore, risk factors that
capture more than just carbon risk could be of interest. By choosing appropriate vari-
ables to divide firms into distinctive groups, a factor for transition risk or the multiple
facets of physical risk could be built. In this case, a procedure to decompose the more
aggregated risk factors into multiple single risk factors would be useful as well.

With regards to the empirical analysis, we sketch additional ideas for future research.
First, we emphasize that we focused on the median CR factor when examining the im-
pact on CDS spreads. However, we omitted the CTR factor which could provide more
information on the effect of very adverse carbon events. Additionally, it would be inter-
esting to investigate the impact of the CR in different markets, e.g. the equity market.
Although factors derived from the equity space can be forward-looking as well, they
lack the ability of exactly pinpointing the risk with respect to a certain time horizon.
For that case, our CR has a competitive edge and could provide further insights on the
persistence of a carbon risk premium in the equity market.
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A.1. Additional figures

This section provides supplementary material in the form of additional figures. Figure
A.1 depicts the evolution of the CR for all tenors (1Y, 3Y, 5Y, 10Y, 30Y) in Europe (top)
and North America (bottom). Figure A.2 depicts the evolution of the CTR for all tenors
(1Y, 3Y, 5Y, 10Y, 30Y) in Europe (top) and North America (bottom).

(a) Europe

(b) North America

Figure A.1.: Evolution of the CR over time for maturities 1Y (blue), 3Y (orange), 5Y (red), 10Y (black) and 30Y (green)
for Europe (top) and North America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and
Trump election (brown), respectively.
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(a) Europe

(b) North America

Figure A.2.: Evolution of the tail CR (9th decile) over time for maturities 1Y (blue), 3Y (orange), 5Y (red), 10Y (black)
and 30Y (green) for Europe (top) and North America (bottom). The vertical solid lines refer to the Paris Agreement
(dark green) and Trump election (brown), respectively.

A.2. Additional tables

This section provides supplementary material in the form of additional tables. Table
A.1 and Table A.2 report the coefficient estimates of the interaction terms of the sector
model from Section 6.2.1 for the 1Y and 30Y tenors, respectively.
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1 2 3 4 5 6 7 8 9
Europe

BM× ∆CR 528.94∗∗∗ 365.15∗∗∗ 247.62∗∗∗ 202.90∗∗∗ 136.77∗∗∗ 154.93∗∗∗ 223.53∗∗∗ 318.46∗∗∗ 497.52∗∗∗

(58.07) (38.42) (27.76) (27.87) (23.21) (27.36) (35.05) (63.14) (125.63)
CCGS× ∆CR −226.41· −132.15∗ −77.46 −98.75∗ −62.09· −62.78 −70.05 −70.88 −123.99

(126.98) (67.13) (51.01) (42.99) (35.87) (40.69) (58.81) (86.63) (181.31)
Energy× ∆CR 987.47∗∗∗ 839.52∗∗∗ 776.47∗∗∗ 580.93∗∗∗ 547.64∗∗∗ 574.49∗∗∗ 635.36∗∗∗ 783.19∗∗∗ 921.54∗∗∗

(102.03) (70.01) (76.20) (94.23) (84.83) (102.29) (75.73) (72.59) (266.73)
Healthcare× ∆CR −124.66∗ −129.14· −171.39∗∗∗ −170.37∗∗∗ −123.05∗∗∗ −133.32∗∗∗ −172.64∗∗∗ −121.70 24.43

(61.56) (78.13) (51.56) (35.88) (27.71) (33.61) (52.29) (142.29) (173.92)
Industrials× ∆CR −230.98∗∗ −174.43∗∗∗ −131.81∗∗ −132.90∗∗∗ −77.00∗∗ −80.60∗ −83.40· −84.90 −107.92

(74.00) (52.96) (40.69) (32.48) (28.88) (33.93) (48.78) (84.66) (170.87)
NCGS× ∆CR 40.99 34.11 14.18 −45.25 −26.75 −16.26 33.34 121.34 157.84

(131.01) (62.57) (48.17) (38.74) (33.49) (37.22) (48.38) (90.58) (148.50)
Real Estate× ∆CR 274.95∗ 106.30 24.01 11.33 14.28 34.77 64.96 185.23 303.74

(117.50) (145.35) (102.34) (94.71) (95.55) (114.95) (100.22) (149.55) (253.25)
Technology× ∆CR −217.61∗∗ −81.18 −35.36 −47.05 −34.54 −24.82 −33.97 −92.62 −218.47

(73.67) (65.20) (58.67) (47.73) (38.10) (43.31) (54.66) (93.63) (159.85)
Utilities× ∆CR 495.94∗∗∗ 374.85∗∗∗ 353.01∗∗∗ 240.77∗∗∗ 231.30∗∗∗ 248.95∗∗∗ 322.94∗∗∗ 428.22∗∗∗ 460.96∗

(64.91) (77.71) (73.71) (68.29) (54.18) (59.44) (73.80) (112.78) (208.96)
North America

BM× ∆CR 93.36· 16.84∗∗∗ 4.33∗ 0.44· 0.18· 1.31∗∗ 11.77∗∗∗ 50.45∗∗∗ 214.81∗∗∗

(48.17) (4.94) (1.68) (0.24) (0.11) (0.49) (2.46) (11.83) (55.23)
CCGS× ∆CR −228.28∗∗∗ −40.73∗∗∗ −7.58∗∗∗ −0.46 −0.14 −1.08· −9.21∗∗ −31.90∗ −112.57·

(52.62) (6.77) (2.17) (0.32) (0.15) (0.60) (2.95) (13.40) (65.41)
Energy× ∆CR 16.25 14.95 5.16∗ 0.27 −0.02 0.05 0.52 3.07 −23.24

(51.98) (9.10) (2.46) (0.32) (0.13) (0.58) (3.28) (14.09) (64.49)
Healthcare× ∆CR −241.07∗∗∗ −26.50∗∗∗ −4.50∗ −0.43 −0.15 −1.12· −10.39∗∗∗ −30.12∗ −90.44

(54.87) (5.99) (1.93) (0.35) (0.18) (0.59) (2.87) (13.44) (71.06)
Industrials× ∆CR −92.66· −12.98∗ −2.32 −0.21 −0.11 −0.80 −6.68∗ −25.10∗ −112.59·

(48.92) (5.59) (1.83) (0.26) (0.11) (0.51) (2.65) (12.58) (62.86)
NCGS× ∆CR −97.79∗ −15.13∗∗ −2.41 −0.27 −0.13 −0.80 −6.35∗ −29.13∗ −118.63·

(48.91) (5.47) (1.83) (0.27) (0.12) (0.53) (2.85) (12.81) (65.40)
Real Estate× ∆CR −82.23 −17.05∗∗ −3.03· −0.16 −0.11 −0.94· −9.22∗∗ −35.20∗∗ −128.60∗

(50.12) (5.46) (1.84) (0.27) (0.12) (0.52) (2.86) (13.44) (58.36)
Technology× ∆CR −112.40∗ −20.14∗∗∗ −4.29∗ −0.33 −0.13 −0.75 −8.21∗∗∗ −32.55∗∗ −149.53∗

(48.46) (5.25) (1.75) (0.25) (0.11) (0.50) (2.48) (11.93) (59.78)
Utilities× ∆CR −44.78 −1.85 −0.24 0.02 −0.07 −0.56 −5.46∗ −24.95∗ −105.61·

(48.38) (5.28) (1.75) (0.25) (0.11) (0.50) (2.54) (11.93) (55.02)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table A.1.: This table reports the coefficient estimates of the interaction terms of the sector panel quantile regression
model for 1-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises of data from
137 European firms resp. 281 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables
in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are
reported for all nine deciles. All estimates are scaled by factor 1e03.
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A.2. Additional tables

1 2 3 4 5 6 7 8 9
Europe

BM× ∆CR 105.77∗∗∗ 87.55∗∗∗ 77.04∗∗∗ 63.19∗∗∗ 54.49∗∗∗ 57.28∗∗∗ 68.12∗∗∗ 87.47∗∗∗ 113.73∗∗∗

(6.33) (7.45) (5.76) (4.70) (4.40) (5.26) (5.16) (7.21) (11.83)
CCGS× ∆CR −60.03∗∗∗ −41.68∗∗∗ −31.91∗∗∗ −26.97∗∗∗ −25.69∗∗∗ −27.20∗∗∗ −31.07∗∗∗ −37.76∗∗∗ −57.50∗∗

(7.78) (10.15) (6.99) (6.39) (5.95) (6.44) (6.49) (8.83) (18.57)
Energy× ∆CR 196.98∗∗∗ 188.38∗∗∗ 169.60∗∗∗ 155.85∗∗∗ 152.47∗∗∗ 151.46∗∗∗ 163.80∗∗∗ 190.18∗∗∗ 228.31∗∗∗

(17.81) (18.29) (15.33) (25.77) (22.67) (22.92) (16.61) (16.95) (42.20)
Healthcare× ∆CR −8.84 −14.55 −24.71∗ −27.75∗∗ −30.48∗∗∗ −29.87∗∗∗ −28.54∗∗ −22.32∗ −12.13

(22.79) (14.23) (10.57) (10.55) (6.80) (7.68) (8.72) (10.96) (14.73)
Industrials× ∆CR −63.66∗∗∗ −56.91∗∗∗ −49.14∗∗∗ −42.98∗∗∗ −39.77∗∗∗ −40.38∗∗∗ −45.95∗∗∗ −55.95∗∗∗ −73.37∗∗∗

(7.08) (8.99) (6.98) (5.62) (5.11) (5.97) (5.77) (8.57) (13.04)
NCGS× ∆CR −48.34∗∗∗ −38.09∗∗∗ −36.99∗∗∗ −32.90∗∗∗ −30.47∗∗∗ −31.55∗∗∗ −35.56∗∗∗ −42.85∗∗∗ −42.31∗∗

(8.99) (8.00) (6.80) (5.71) (5.26) (5.91) (6.16) (8.79) (14.60)
Real Estate× ∆CR −19.41∗ −22.81 −33.82∗∗ −32.28∗∗ −28.30∗∗∗ −29.29∗∗∗ −33.75∗∗ −36.30∗∗ −32.94∗∗

(9.03) (14.74) (10.61) (10.24) (6.27) (6.77) (11.00) (13.30) (12.47)
Technology× ∆CR −61.04∗∗∗ −43.41∗∗∗ −36.75∗∗∗ −27.33∗∗∗ −26.33∗∗∗ −29.75∗∗∗ −34.46∗∗∗ −46.62∗∗∗ −63.98∗∗

(9.65) (9.45) (7.91) (6.65) (6.26) (7.21) (7.19) (11.20) (19.44)
Utilities× ∆CR 12.71 30.01∗ 30.24∗∗ 27.88∗∗ 30.17∗∗ 30.57∗∗ 32.06∗∗ 24.22 8.53

(10.39) (12.34) (10.99) (10.44) (9.98) (10.47) (11.71) (15.79) (21.73)
North America

BM× ∆CR 2.86∗ 2.38∗ 0.73· 0.21 0.30 0.82∗∗ 1.98∗∗∗ 5.48∗∗∗ 14.19∗∗∗

(1.25) (0.99) (0.44) (0.27) (0.19) (0.25) (0.47) (1.26) (3.40)
CCGS× ∆CR −0.21 −2.45· −0.61 −0.45 −0.46∗ −0.51 −0.96 −3.61∗ −11.02∗∗

(1.86) (1.35) (0.59) (0.34) (0.24) (0.33) (0.60) (1.55) (3.78)
Energy× ∆CR 15.82∗∗∗ 4.43∗∗ 2.44∗∗∗ 0.84∗ 0.12 0.10 0.60 3.55 12.81∗

(2.20) (1.45) (0.68) (0.40) (0.26) (0.35) (0.66) (2.23) (6.13)
Healthcare× ∆CR −5.04∗ −3.55∗ −1.22∗ −0.61· −0.51∗ −0.90∗∗ −1.74∗∗ −4.03∗ −13.03∗∗

(1.99) (1.48) (0.55) (0.31) (0.24) (0.32) (0.61) (1.65) (4.90)
Industrials× ∆CR 2.46 −0.94 −0.13 −0.07 −0.21 −0.67∗ −0.97· −2.99∗ −4.69

(1.90) (1.13) (0.52) (0.32) (0.22) (0.29) (0.54) (1.39) (4.07)
NCGS× ∆CR −4.46∗ −2.09· −0.94 −0.36 −0.35 −0.85∗∗ −1.74∗∗ −5.43∗∗∗ −14.01∗∗∗

(1.87) (1.16) (0.58) (0.33) (0.23) (0.30) (0.55) (1.44) (3.64)
Real Estate× ∆CR 1.24 −1.89· −0.74 −0.18 −0.23 −0.68∗ −1.56∗∗ −4.60∗∗ −10.50∗∗

(1.58) (1.11) (0.49) (0.32) (0.23) (0.31) (0.57) (1.46) (3.65)
Technology× ∆CR −6.41∗∗∗ −3.96∗∗∗ −1.39∗∗ −0.50 −0.52∗ −0.96∗∗∗ −2.16∗∗∗ −5.59∗∗∗ −14.30∗∗∗

(1.56) (1.10) (0.49) (0.31) (0.21) (0.28) (0.52) (1.37) (3.55)
Utilities× ∆CR 6.09∗∗∗ 0.35 −0.04 −0.15 −0.20 −0.59∗ −1.35∗ −2.26 −2.57

(1.81) (1.07) (0.52) (0.30) (0.21) (0.28) (0.53) (1.50) (4.03)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table A.2.: This table reports the coefficient estimates of the interaction terms of the sector panel quantile regression
model for 30-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises of data from
137 European firms resp. 281 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables
in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are
reported for all nine deciles. All estimates are scaled by factor 1e03.
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