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Abstract

Modern utility-scale wind turbines are equipped with a Supervisory Control And Data

Acquisition (SCADA) system gathering vast amounts of operational data that can be

used for analysis to improve operation and maintenance of turbines. We analyze

high-frequency SCADA-data from the Thanet offshore wind farm in the United

Kindom and evaluate Pearson correlation matrices for a variety of observables with a

moving time window. This renders possible a quantitative assessment of non-

stationarity in mutual dependencies of different types of data. We show that a clus-

tering algorithm applied to the correlation matrices reveals distinct correlation

structures for different states. Looking first at only one and then at multiple turbines,

the main dependence of these states is shown to be on wind speed. This is in accor-

dance with known turbine control systems, which change the behavior of the turbine

depending on the available wind speed. We model the boundary wind speeds sepa-

rating the states based on the clustering solution. Our analysis shows that for high-

frequency data, the control mechanisms of a turbine lead to detectable non-

stationarity in the correlation matrix. The presented methodology allows accounting

for this with an automated preprocessing by sorting new data based on wind speed

and comparing it to the respective operational state, thereby taking the non-

stationarity into account for an analysis.
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1 | INTRODUCTION

Renewable energies are indispensable to respond to the temperature rise caused by climate change. Wind turbines are one key technology paving

the way toward a green and emission-less energy production. The Global Wind Energy Council (GWEC) reports a growth of 93 GW in wind instal-

lations for 2020, bringing the total up to 650 GW with an increase of the growth rate by 53 % compared to 2019. Offshore installations are on

the rise, their comparatively low total increased from 29.1 GW by more than a fifth to 35.3 GW in 2019.1 The GWEC also forecasts more than

205-GW new offshore wind capacity by 2030 in its 2020 Global Offshore Wind Report.2 They point out a growing acceptance of the fact that

the price of offshore wind power can out-compete fossil and nuclear fuels. The various reports agree that wind power cannot be the only clean

energy used to reach a net zero in emissions by 2050, but onshore and especially offshore wind turbines are crucial to reach this goal.
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While offshore locations usually provide steadier and higher wind speeds, this comes at the cost of harsh environmental conditions and

increased difficulties for operation and maintenance.3 Maldonado-Correa et al4 list various authors claiming that Operation and Maintenance

(O&M) costs account for 20–35% of the total expenditure for offshore wind farms. The corresponding numbers are lower but still significant

(approx. 10–15 %) for onshore turbines.5,6

Not surprisingly, among the many topics to be studied in the wind turbine field,7 O&M is on focus for researchers and industry alike. They

undertake increased efforts to effectively optimize O&M procedures for wind turbines and thereby reduce this cost factor.8–13 Improved under-

standing of wind turbine behavior is key to achieving this goal. Data driven methods are developed to control problems such as, for example, yaw

misalignment or underperformance.14,15 Another prominent topic is the prediction of failures in wind turbines with sufficient lead time to react

and carry out preemptive maintenance instead of correctional maintenance. This not only reduces the money lost in turbine downtime but also

enables cheaper maintenance. The idea is to optimize assets by replacing components exactly when needed.16 The wind energy branch follows a

general trend in most industries, aiming at moving from scheduled maintenance toward condition-based maintenance to reduce costs and

efforts17

A plethora of data are gathered in modern wind turbines. A Supervisory Control and Data Acquisition (SCADA) system is installed in all major

wind farms since commission. This SCADA data contains many variables, usually averaged over 10-min intervals. Some further statistical mea-

sures, such as standard deviation in the 10-min interval, are often recorded as well. Many developed methods try to employ them for different

types of analysis. The reader is referred to Maldonado-Correa et al4 and Tautz-Weinert et al18 for reviews. Common methodologies include neural

networks, physical models and statistical analysis.11,19–26 These authors also raise two important points: First, it is often complicated or impossible

to reliably label events in the data due to scarcity of available log and maintenance data. Second, Ulmer et al,10 who apply convolutional neural

networks for failure detection, mention that the 10-min averaging process naturally leads to a loss of information. This effect is specifically studied

in Beretta et al.27 Some researchers have tried to avoid these problems by using simulated high frequency data24,28 while the industry uses addi-

tionally installed vibration sensors to increase monitoring quality. Stetco et al29 provide a review on approaches using such Condition Monitoring

Systems (CMS). However, the goal is to reduce costs and installing additional sensors has its own inherent costs.

Another challenge for wind turbine analysis and monitoring is presented by the varying external (e.g., wind speed and temperature) and inter-

nal (e.g., turbine control and curtailment) operation conditions. Such nonstationarity is important also in many applications aside from wind

turbines.30–35 We have recently shown that nonstationarity in correlated systems is important for the detection of anomalies.36,37 For wind tur-

bines, it has been shown to have an effect on failure detection.38,39 Furthermore, different states in frequency data measured by a CMS system

have been identified due to operational regimes.40 Different behavior of the SCADA data for such regimes is to be expected also due to the tur-

bine control mechanisms.8 In general, complex systems containing many different variables, mechanisms, and external influences show non-

stationarity in their cross-correlations. The stability of correlations in financial stock market data was analyzed, for example, by Buccheri et al.41

Münnix et al42 show that the correlation matrix of these data inhabits different states over time by using cluster analysis. The stability of these

states was further analyzed by Rinn et al43 and Stepanov et al.44 Similar studies were also done for traffic data.45 Some general correlation analy-

sis for wind turbine data was carried out by Braun et al.46

In this paper, we aim to quantify the nonstationarity in correlation matrices for high-frequency SCADA data from real wind turbines during

normal operations. To this end, we apply cluster analysis to the correlation matrices of different SCADA signals calculated over 30-min time inter-

vals. Distinct states with significantly different structures in the correlations matrices are found. We show that the prime cause for this is the tur-

bine's own control mechanism. This allows us to develop a criterion based on wind speed to separate the cluster states. Such an automated

distinction would, in principle, enable the usage of multiple normal states in applications via preprocessing. It is an important step toward account-

ing for the nonstationarity due to the operational regimes in an analysis such as failure detection with principal components.

This paper is structured as follows: In Section 2, we will introduce the dataset we work with before moving on to the theoretical background

of correlation matrices and clustering in Section 3. Then we will present our clustering results for a single turbine in Section 4. We find proof of

nonstationarity and identify the turbine control mechanism as the prime influence. Afterwards, we model the boundary wind speeds between the

states in Section 5. Finally, we will show that the established method works for multiple turbines without further problems and can even be

improved by the increase in available data in Section 6. We present our conclusions in Section 7.

2 | DATA

Our dataset includes 100 Vestas V90 wind turbines from the Thanet offshore wind farm south-east of Great Britain. It contains observables that

are measured at approximately 5-s time intervals. To obtain aligned, synchronized data, we average the time series on 10-s time intervals resulting

in a data frequency ν¼1=10s. This ensures continuity in the data even when the actual measurement frequency fluctuates around 5 s. This does

not hinder the calculation of correlations for our purposes. In fact, it is rather similar to any measurement process: Every sensor will in reality aver-

age over a short time span to obtain a value. Taking the mean over 10 s seems therefore more natural than, for example, using only the last value

from each interval. If at some time the deviation from the 5-s interval becomes stronger or if there are actually missing data points, data points will
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be missing in our averaged data as well. This might occur if there was a problem with, for example, sensors or communications. Another reason is

simply a decreased measurement frequency when the turbine is switched off. This is underlined by the majority of missing values occurring in the

very low wind speed regime beneath the turn-on wind speed. As the turbines are not running during these times, this wind range is not of interest

for us. These missing values do not pose a problem for our analysis. For these reasons, we decided to transfer missing values from the original

dataset into the 10-s data instead of replacing them by other means.

We are interested in identifying changes in the correlation structure, which emerge while the turbine is operating normally, in contrast to

changes caused by failures. Therefore, in our main analysis we look at the following basic observables:

• generated active power (ActivePower)

• generated current (CurrentL1)*

• rotation per minute of the rotor (RotorRPM)

• rotation per minute of the high speed shaft at the generator (GeneratorRPM)

• wind speed (WindSpeed)

These observables provide a good picture of the main turbine systems. Wind speed makes the rotor move. Its rotation is transmitted via gears

to the rotation of the high-speed shaft at the generator. This, in turn, generates electrical current and power. Two pairs of strongly correlated vari-

ables exist in this set. Deviations between generated active power and current could only occur, if large amounts of reactive power are generated.

The low- and high-speed rotation of rotor and generator are directly coupled as well. These expected results are confirmed during our analysis.

We include these pairs in our analysis as examples for group structures in the correlations. Knowledge of such structures is indispensable for mon-

itoring a complex system: Are the groups stable? Do they break up? Do correlations across groups exist? In the presence of anomalies, such corre-

lations, which are deemed normal and obvious, might be the structures which break up. Grouping is, in general, an important aspect in the study

of complex systems.45,47–50

While measurements of temperatures are very common and useful for failure analysis,4,18,19 they are rather slowly changing variables. Hence,

in our data they are not measured at high frequency and without decimals, which makes the calculation of short-term correlations impossible. Fur-

thermore, it seems reasonable to assume that their behavior in normal states is strongly coupled to mechanical variables, e.g. higher rotation

speeds will lead to increased bearing temperatures. Of course, they would also be influenced by, for example, seasonality or cooling mechanisms.

Thus, while excluded from the study at hand, further analysis of temperature correlations is nevertheless desirable for future work.

Two additional important control variables are the pitch angle of the rotor blades (BladePitchAngle†) and the ratio between the blade tip

speed and the current wind speed (TipSpeedRatio). The first is excluded in our main analysis due to many missing values that hinder the calcula-

tion of correlation matrices. The second is not directly present in the data, but results from easy linear calculation

TipSpeedRatio¼2πRotorRPM �RotorRadius
WindSpeed

: ð1Þ

It is disregarded in the main analysis, because we study linear correlations and it is also linearly derived from two already present variables. As

both omissions are prominent observables when studying wind turbines, we include additional results with consideration of the pitch angle of the

blades and the tip speed ratio for the basic cluster analysis in Section 4. To do this, we had to fill the missing values for the pitch angle. A possible

explanation for the missing values is a data acquisition system that only writes values whenever a new measurement is different from an old mea-

surement, that is, if the value changed. We could not establish whether this is actually the case in our data, but it seems reasonable. Thus, for the

additional results including the pitch angle observable, we treated the data as if this assumption were true. This means we filled any missing values

in the 10-s data with the last measured value before. Of course, thereby we also fill in any values that might actually be missing instead of being

left out for data storage reasons. Furthermore, with the pitch angle being a rather slowly changing variable compared to the other observables,

the filling sometimes leads to stable values over long time periods. This, of course, hinders once again the calculation of short-term correlations.

Therefore, one must be cautious when considering these additional results and we did not consider pitch angle or tip speed ratio directly for the

analysis following the basic clustering in the present work.

We used approximately 3 weeks of data from March 5, 2017, to March 24, 2017. The data from such a time span are still easy enough to

handle while providing enough data points to obtain reasonable clustering results. In view of possible practical applications, 3 weeks is a short

enough time span to make it easily usable. There would be no need to collect huge amounts of operational data beforehand. However, it is of

course necessary that the data used for identifying different operational states covers all possible states. In practice, it turns out later that this

means we need a wide range of wind speeds in our data. The actual time span was chosen, because for at least one wind turbine there are no

*As there are no deviations between the three phases in our data, we simply choose one of them.
†Our data do not contain three separate measurements for the blades, but only one. We assume this to be a mean of the three individual blades.
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manual or automatic alarms or services during this period (cf. Section 4). Two turbines have no recorded data for this time span, effectively reduc-

ing our data set to 98 turbines.

Due to confidentiality agreements, we will never show absolute values of any observable. In fact, only wind speed is shown directly and is

then presented in units of the nominal wind speed ~vnom at which the turbine starts to produce its nominal power output according to the manu-

facturer. The tilde is introduced to mark it as the rated value provided by the manufacturer as we will later on try to infer this value also from

the data.

Each of the measured signals k for each turbine l yields a time series of data points SðlÞk ðtÞ, k¼1,…,K, l¼1,…,L, t¼1,…,Tend. Here, we assume

that all times are given as unit free steps. In the case of our dataset, we have K¼5, L¼98 and—assuming complete data—

Tend ¼20 �24 �60 �6¼172800. The data are arranged into L rectangular K�Tend data matrices

SðlÞ ¼

SðlÞ1 ð1Þ … SðlÞ1 ðTendÞ
..
. ..

.

SðlÞk ð1Þ . .
.

SðlÞk ðTendÞ
..
. ..

.

SðlÞK ð1Þ … SðlÞK ðTendÞ

2
6666666664

3
7777777775
, ð2Þ

where each row is the time series of signal k.

3 | THEORETICAL BACKGROUND

Our analysis to distinguish different states is based on identifying differences in the correlation matrix of observables listed in Section 2. In

Section 3.1 we define the way in which we are calculating the correlation matrices.

To identify nonstationarity in the time series of these matrices we will use a distance measure and a clustering algorithm. These are intro-

duced in Section 3.2.

3.1 | Correlation matrices

To identify changes over time in the correlation structure, the correlation matrices are calculated with a moving time window of 30 min. The time

intervals do not overlap. We effectively create a time series of matrices. To this end, the signal time series SðlÞk ðtÞ are divided into disjoint intervals

of 30min; that is, the lengths of the intervals is T¼180 in our dimensionless time variable. We refer to these intervals as epochs. Hence, we have

Tend=T¼960 epochs. To avoid notational confusion, we introduce the new time variable τ labeling the epochs. We reserve the notation SðlÞk ðtÞ for
the original time series and write SðlÞðτÞ for the K�T data matrix containing the different time series for turbine l from τ to τþT�1. The length of

30min represents a compromise. Longer time spans would provide more data points per correlation matrix and would thereby decrease noise.

However, we want to distinguish different states in time. Considering external conditions, for example, wind, changing on short time scales of sev-

eral minutes to hours, we have to choose relatively short epochs to ensure resolution of the nonstationarity. Such compromises are common

when dealing with correlation matrix time series.48,51

The first step toward calculating correlation matrices is the normalization of SðlÞk ðtÞ to zero mean and standard deviation one in each epoch.

With the mean value

μðlÞk ðτÞ¼ 1
T

XτþT�1

t¼τ

SðlÞk ðtÞ ð3Þ

and the standard deviation

σðlÞk ðτÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XτþT�1

t¼τ

SðlÞk ðtÞ�μðlÞk ðτÞ
� �2vuut ð4Þ

of the epoch τ, the normalized time series for signal k and turbine l is given by
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MðlÞ
k ðtÞ¼ SðlÞk ðtÞ�μðlÞk ðτÞ

σðlÞk ðτÞ
, k¼1,…,K , l¼1,…,L , τ ≤ t< τþT : ð5Þ

The normalized K�T data matrix MðlÞðτÞ for each epoch is then defined analogous to SðlÞðτÞ.
The Pearson correlation matrix for each turbine l during the time τ ≤ t< τþT�1 is then easily calculated as

CðlÞðτÞ¼ 1
T
MðlÞðτÞMðlÞ†ðτÞ , ð6Þ

where MðlÞ†ðτÞ denotes the transpose of MðlÞðτÞ. In the matrix CðlÞðτÞ, each element CðlÞ
ij ðτÞ is the Pearson correlation coefficient of the signals i and

j for turbine l during the epoch from τ to τþT�1. The diagonal values are one by definition.

While the dependency of variables in a wind turbine is not always linear, which is already seen in the well-studied power curve, the linear

Pearson correlation yields important and good results for the structure of the mutual dependencies. We have repeated our analysis with Spe-

arman's rank correlation, which also measures nonlinear dependencies, but did not find substantial differences. Results for the case with five vari-

ables are shown for comparison in Appendix B.

3.2 | Clustering

We will now introduce the clustering, which allows us to sort the correlation matrices into groups (clusters) and check whether different typical

states do exist. If we can identify these, we will refer to them as operational states. An integer will be assigned to each of them and the algorithm

will label each matrix in the time series with one such integer. Instead of a time series of correlation matrices, we then have a new integer time

series nðτÞ with the range n� f1,…,Ng when N is the number of clusters created.

The first outcome will then be as follows: If any decent clustering solution can be found, it is proof that typical states of the correlation struc-

ture exist. Then, analyzing the resulting integer time series nðτÞ can much easier reveal dependencies of the state on time or other factors.

Any method separating objects into groups needs a distance measure defined between those objects. For the correlation matrices, we choose

the euclidean distance.48 The reader can imagine that all matrix entries are written into a vector, effectively arranging the columns of the matrix

underneath each other, so that the standard euclidean distance between vectors can be applied. The distance between the correlation matrices

for the epochs starting at τ and τ0 of turbine l is then

dðlÞðτ,τ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i, j

CðlÞ
ij ðτÞ�CðlÞ

ij ðτ0Þ
� �2s

¼ jjCðlÞðτÞ�CðlÞðτ0Þjj: ð7Þ

We choose the bisecting k-means algorithm to perform our clustering.52,53 This is the algorithm that was also used to determine states in the

financial markets by Münnix et al42 and Heckens et al.48 It can be described as a hybrid of standard k-means clustering54,55 and hierarchical clus-

tering.56 While the former directly divides the whole set of objects into k groups (see Appendix A), the latter is performed step-wise. In each step,

either two groups are merged (agglomerative) or one group is divided into two (divisive). Bisecting k-means is a divisive clustering algorithm,

meaning that at the start, all objects belong to one big cluster and during each step, one of the existing clusters is split into two new clusters. This

bisection is performed by running a standard k-means on all objects within the group to be split with k¼2. Which of the ~N currently existing clus-

ters is split during a step is decided based on the average internal distance of all objects in a cluster zn ,n¼1,…, ~N

dðlÞn ¼ 1

zðlÞn
��� ���

X
τ � zðlÞn

jjCðlÞðτÞ�hCðlÞinjj : ð8Þ

Here, jzðlÞn j denotes the number of objects in cluster zðlÞn and hCðlÞin is the centroid of cluster zðlÞn defined by the element-wise mean:

CðlÞ
ij

D E
n
¼ 1

zðlÞn
��� ���

X
τ � zðlÞn

CðlÞ
ij : ð9Þ

Each step the cluster with the largest average internal distance is bisected. The algorithm is terminated when a set number N of clusters is

reached.
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This is slightly different from the approach used in former works,42–44,48 where a threshold is introduced and all clusters are bisected until no

single existing cluster has an average internal distance larger than the threshold. However, the threshold is then set based on the number of clus-

ters wanted. It can easily be understood that the resulting clustering will be the same if one either uses our approach to produce N clusters or

chooses the threshold in such a way that N clusters are produced.

Applying this algorithm, we split the set ZðlÞ ¼ CðlÞð1Þ,CðlÞð1þTÞ,…,CðlÞðTend�TÞ
n o

of all correlation matrices into N subsets zðlÞ1 ,…,zðlÞn ,…,zðlÞN
n o

.

The centroid of each cluster according to Equation (9) is interpreted as the mean correlation matrix of a cluster representing its typical correlation

structure. Thereby, we only need to look at N matrices and a series of Tend=T integers nðτÞ instead of as many matrices.

Later on, we will see that the emerging typical correlation matrices correspond to different control settings of the turbines. This explains in a

simplified way why the hierarchical k-means works better than a normal k-means in our case. Approximately, we can describe the controller of a

wind turbine as a mechanism fixing certain signals to a fixed value. This means the correlation of that signal with other nonfixed signals should

vanish. The divisive clustering will first extract a group where signal A might be fixed. Then this group might be further divided into subgroups

where signal B is either fixed or not. And in theory, this could go on. Such a problem is very well suited for divisive clustering.

In order to check, if our clustering is sensible, we will do two things. First, we will just look at the cluster centroids and see if we can interpret

them and if they are substantially different from each other. Second, we will calculate silhouette coefficients57

sðlÞðτÞ¼
bðτÞ�aðτÞ

maxðbðτÞ,aðτÞÞ , jznðτÞj>1
0 , jznðτÞj ¼1

8<
: ð10Þ

with the average distance to all other matrices in the same cluster

aðτÞ¼ 1
jznðτÞj�1

X
τ0 � znðτÞ ,τ0 ≠ τ

dðlÞðτ,τ0Þ ð11Þ

and the smallest average distance to a single other cluster

bðτÞ¼ min
m≠ nðτÞ

1
jzmj

X
τ0 � zm

dðlÞðτ,τ0Þ
 !

: ð12Þ

This coefficient will take values between �1 and +1 with larger positive values representing matrices that are well clustered and negative values

showing matrices that are closer to another cluster than to their own. To get an indicator for the overall clustering, we will use the average silhou-

ette coefficient

SðlÞ ¼ T
Tend

X
τ

sðlÞðτÞ: ð13Þ

4 | STATE IDENTIFICATION VIA CLUSTERING

In the following, we analyze the correlation matrix time series of one turbine, which will henceforth be referred to as turbine 1 (WT1). We are sin-

gling out this wind turbine, because the time frame of the total dataset was selected in such a way that for WT1 no problems were listed in the

automatic alarm logs and manual service reports. The idea is that this will make analysis and definition of normal states easier as there was no

(reported) unusual behavior.

The correlation matrices are calculated for non-overlapping epochs of 30 min each. This results in 960 matrices per turbine. However, due to

several reasons, there might be missing data in the time series. In such a case, any time stamp missing one or more of the measured variables is

excluded from the calculation of the correlation matrix. Hereby, no estimation of values, which could influence the actual correlation coefficient,

is necessary. More data could be used by calculating the correlation coefficients pair-wise; that is, for any two observables, just remove the time

stamps where one of them is missing data. However, this does not result in a well-defined positive semidefinite correlation matrix. For further

analysis, only those matrices for which at least half of the expected data points (90 out of 180) exist are considered. Furthermore, epochs in which

the standard deviation σkðτÞ¼0 for any signal k have to be disregarded as they cannot be normalized.

We will first provide extensive results for the five considered observables in Section 4.1 and afterwards repeat some analysis including the

pitch angle and tip speed ratio in Section 4.2.
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4.1 | Main results for five observables

Without pitch angle, no epoch includes a time series k, for which the standard deviation becomes zero. The disregarding of epochs with too many

missing values is not a problem when looking at the five main observables as missing measurements usually stem from turbines being operational

but switched off during times of very low wind speeds v smaller than turn-on wind speed von. For WT1, the average wind speed for 746 epochs

with enough data is 10.01ms�1, while the average for 214 epochs where no correlation matrix could be calculated is only 4.34ms�1. It is obvious

that these times where a wind turbine is not operating are unsuited for an identification of operational states. Of course, there might also be other

reasons causing the missing data, for example, a problem with the measurement of a signal. However, as for WT1, there are no alarms or services

logged, and we would not know what happened in those cases anyway. Any estimation of missing values would therefore need considerable

guessing. As our results show that using only the epochs with enough data points is sufficient to reach a good differentiation of operational states,

we are confident that just excluding missing values instead of estimating them is a good approach for our purposes.

When applying the hierarchical k-means algorithm described in the previous section to the set of matrices, the first step is to decide how

many clusters provide a good solution. To this end, we calculate the silhouette coefficients for solutions with two to five clusters. The silhouette

plots can be found in Figure 1. The fifth cluster is almost imperceptible as it consists only of three matrices. Some descriptive statistics for these

silhouette coefficients are shown in Table 1. The mean corresponds to the average silhouette coefficient from Equation (13). All statistics provided

decrease with increasing cluster number, implying that a few different states are sufficient to describe the dynamics of the analyzed correlation

matrices. In the plots, we can see some negative coefficients implying elements that would fit better into a different cluster. Such imperfections

are to be expected when using heuristics like clustering algorithms. It is however clear that all solutions provide a good grouping with largely posi-

tive silhouette coefficients. This is a strong indication that nonstationarities influence the correlation matrix. The influence is strong enough to be

detected via simple clustering. Here, we observe that the assumption of a stationary correlation structure, for, for example, principal component

analysis, is not justified.

4 clusters 5 clusters

2 clusters 3 clusters

− 0.80.40.00.4 0.80.40.0−0.4

silhouette coefficient

cluster

1

2

3

4

5

F IGURE 1 Silhouette plots for clustering solutions with two to five clusters. Each clustered element (matrix) is represented by a horizontal
line the length of which is the silhouette coefficient for that element. Different clusters are color coded.
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As mentioned before, we also look at the cluster centroids to see if the matrices show indeed different behavior and if this distinction facili-

tates clear identification. Figure 2 shows the matrices calculated via Equation (9) in a dendogram for the hierarchical clustering. The solutions for

two and three clusters show distinctly different structures in the matrices, whereas the fourth cluster stems from cluster three but is structurally

very similar to cluster one, only differing in the strength of the mean correlation. The introduction of a fifth cluster only produces a very small

cluster with only three elements. The algorithm does not identify new groups but rather starts to classify outliers. While the average silhouette

coefficient favors two clusters, we continue our analysis with three clusters as we have seen that up to this point structural differences in the

matrices occur and we will later see that these can be interpreted very reasonably. Here, we also point out that structural differences in the matrix

have a stronger influence on the structure of the eigenvectors, that is, principal components, than differences in average correlation strength.

They are therefore more important to distinguish when using methods like principal components and Mahalanobis distance.

The classification of the matrices for three clusters is shown as an integer time series in Figure 3. All three states appear to have a certain sta-

bility. Consecutive epochs often belong to the same cluster. However, there is no obvious behavior in dependency of the time. State 3 appears

far less often than states 1 and 2. There is no emergence of new or disappearance of old states over time as is sometimes seen in other complex

systems.42 To get a better idea what each state might represent, we look at the matrices for the cluster centroids calculated according to

Equation (9) once more. They are seen in the third row of Figure 2. Generally, as the differences between the matrices are quite clear, we can

conclude—in accordance with the silhouette coefficient—that the clustering does indeed separate the matrix time series into meaningful groups.

The correlation matrices are nonstationary and automatically separable with a clustering algorithm.

In every cluster, the strongest correlations are clearly visible between the observable pairs ActivePower-CurrentL1 and RotorRPM-

GeneratorRPM. This was to be expected as these pairs are very directly linked. Apart from this, we can see that for cluster 1, both of these pairs

and the WindSpeed are all correlated with each other. Put differently, higher wind speed leads to faster rotation and thus to higher power. In clus-

ter 2, this changes and the observables RotorRPM and GeneratorRPM, while still being closely correlated with each other, decouple from the

other observables. Cross-correlations between these two and any other measurement vanish. The remaining cross-correlation between Win-

dSpeed and the two observables ActivePower and CurrentL1 also vanish in cluster 3. Clearly, the three different states of the correlation struc-

ture identified via clustering are meaningful: They show distinctly different correlation behavior between different observables.

To interpret the meaning of the clustering solution, it is helpful to look at turbine control systems. The basic functionality of such a system is,

for example, described by Schütt.58 The specific functionality varies for individual turbine types, so it is likely that not all turbine types will show

the same operational states. The turbine control system of the Vestas V90 turbines analyzed in this paper is one with variable pitch (Vestas

OptiTip™) and variable speed (Vestas OptiSpeed™). We can connect the three clusters to different operational states of this turbine type, which are

separated by boundary wind speeds von,v1,v2, and vnom. For very low wind speeds just above the turn-on wind speed von ≤ v < v1, the generator

rotation is kept constant at the lowest possible value defined by the maximum slip in the generator. This results in a correlation structure as seen

in cluster 2. Already for slightly higher wind speeds v1 ≤ v < v2, the system controls the rpm proportional to the wind speed to operate at maximum

aerodynamic efficiency of the rotor. This corresponds to cluster 1. With even more wind, but still not enough to reach nominal power output

v2 ≤ v < vnom, the turbine operates at fixed nominal rpm by controlling the torque. The rotational variables decouple again as for very low wind

speeds and the correlation structure corresponds to cluster 2 again. Of course, fluctuations in wind speed will cause the rotation to fluctuate

around the nominal value leading to some noise in the correlation structure. If wind speed is high enough to allow full power output vnom ≤ v, the

nominal power output is reached and therefore kept constant alongside the rpm. This results in correlations as seen in cluster 3. All boundary

wind speeds von,v1,v2,vnom are turbine dependent and usually not public knowledge.

We can see that our reasoning for the turbine at hand is correct by plotting the cluster state over the mean wind speed of the epoch instead

of the time stamp in Figure 4. For now disregarding the interval von ≤ v < v1 due to lack of enough data, cluster 1 represents low wind speeds, clus-

ter 2 intermediate wind speeds, and cluster 3 high wind speeds, where nominal power output can be reached. Some exceptions are to be

expected due to either wrong sorting during the clustering or wind speeds changing during the 30-min epoch. Another but probably less impor-

tant factor is the finite response time of a wind turbine controller. It ranges in seconds or minutes and therefore the correlation structure does

not respond instantly to fluctuations and changes in wind speed.59 One example are the epochs sorted into cluster 3 whose wind speeds seem to

lie in the range of cluster 1. They are all moved into the fourth cluster if we take another step in the algorithm. Its centroid is shown in the

TABLE 1 Minimum, first quartile, median, mean, third quartile, and maximum of silhouette coefficients for the clustering solutions with two
to five clusters for correlation matrices of WT1.

Clusters Min 1st Qu. Median Mean 3rd Qu. Max

2 �0.046 0.473 0.571 0.540 0.664 0.734

3 �0.157 0.379 0.537 0.491 0.640 0.718

4 �0.262 0.343 0.508 0.465 0.631 0.716

5 �0.352 0.314 0.479 0.439 0.626 0.707
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F IGURE 2 Cluster centroids as calculated in Equation (9) for WT1 for different numbers of clusters. The color indicates the value of the
correlation coefficient. Black lines connect child and parent clusters of the hierarchical algorithm and the number of cluster elements is given as
jznj. Each cluster solution is ordered from low wind speeds (left) to high wind speeds (right) according to the average wind speed in a cluster.

F IGURE 3 Cluster identifier n over time for WT1. Each dot represents a 30-min epoch.
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dendogram Figure 2 and exhibits a structure very close to cluster 1. Such mismatches occur due to the heuristic nature of the algorithm and noise

and fluctuations in the data, which results in matrices lying on the edge between two clusters. We will see in the following section that we can

use the silhouette coefficient to identify them. One might also imagine high turbulence intensities, that is, the standard deviation of wind speed

divided by the mean wind speed in an epoch, leading to strange behavior in an epoch. We have tested filtering the epochs based on this turbu-

lence intensity and did not find significant changes in the results. The dependency on wind speed is also in accordance with the stability in time as

periods with stable wind speeds are common.60

We have seen that the correlation matrix is nonstationary in time. The clustering has confirmed a primary influence of the control strategies

in dependence of the wind speed. While the existence of different control regimes is not new, our analysis proves that they have strong influence

on the structure of the correlation matrix. This automatic separation of states is a vital first step to account for nonstationarities when performing

any analysis on high frequency SCADA data.

4.2 | Additional results with pitch angle and tip speed ratio

The inclusion of the tip speed ratio does not affect the number of calculable epochs as it is directly derived from two other observables. Including

the pitch angle variable, we only get 623 epochs, for which it is possible to calculate a correlation matrix. This is 123 epochs less than before. As

missing values in the time series of pitch angle were filled as described in Section 2, this can only be due to standard deviations in the pitch angle

being zero for the pitch angle data. We want to point out that this can be a direct result of the filling mechanism used for missing values. This goes

to show that the results with pitch angle while being interesting have to be treated with caution.

The calculation of matrices and the clustering are carried out in exactly the same way as before.

As we cannot assume that the number of relevant clusters stays the same when looking at a different set of observables, we look again at sil-

houettes in Figure 5 and Table 2 and the cluster dendogram in Figure 6.

The silhouette coefficients are again largely positive with some expected negative values from imperfect clustering heuristics. On average,

the values of the silhouette coefficients are smaller than in the analysis with only five variables. They still indicate a good grouping. The minimum

and first quartile even increase in comparison to before, which indicates less poorly sorted matrices. A slight overall decrease in silhouettes is to

be expected when clustering larger matrices as more pairs of single correlation coefficients need to be compared and each of them adds fluctua-

tions. Once again, we see decreasing silhouette coefficients for larger numbers of clusters while still indicating that the grouping is reasonable.

Looking at the centroids in Figure 6, we see that with four clusters, the three-cluster solution for with five observables has re-emerged. Only

cluster 1 from the previous solution is already split again because of the pitch angle. The numbering of clusters is done based on the average wind

speed in each cluster, that is, a low cluster number indicates low wind speeds.

Interestingly, with pitch angle and tip speed ratio considered, we cannot stop at three clusters. The four- and five-cluster solutions still show

centroids that are structurally different. The sixth cluster distinguishes stronger and weaker values (mainly in the pitch angle) of the same type of

structure and is already quite close to outsider classification with only nine inhabitants. Considering this as well as the sharply falling minimal value

of silhouette coefficients from the five-cluster solution to the one with six, we will take a closer look at five clusters. The cluster number over

wind speed is shown in Figure 7.

For low wind speeds, the five main observables and the tip speed ratio are always correlated, while the pitch angle is either anticorrelated to

all other observables or decouples from them. For the second case, it is likely that it simply stays constant in this regime as the intake of energy

from the wind does not need to be reduced here. The anticorrelations might stem from a turbine being turned on underlined by wind speeds

being slightly lower for cluster 1 than cluster 2. While it is turned off, large pitch angles are used to minimize strain on a still standing rotor and

must then be reduced as wind speed increases above the cut-in point. It is not clear, however, if this effect is strong enough to produce antic-

orrelations for a period of 30 min. Cluster 3 of the five-cluster solution appears to be an intermediate state, where the rotations are already

decoupled from the rest of the system, but the pitch angle is not changed. Tip speed ratio is now anticorrelated to wind speed, active power, and

F IGURE 4 Cluster identifier n over wind speed for WT1. Each dot represents a 30-min epoch.
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current as the rotation—and therefore the tip speed—does not increase any longer. Contrary to the average wind speed sorting, cluster 3 shares a

parent cluster with cluster 5 instead of 4. This might be because the decoupling of pitch angle from active power and current is a clearer distinc-

tion than the decoupling of the rotations from the rest. As the turbine controller tries to keep rotation constant, it still fluctuates creating some

weak correlations, whereas the pitch angle usually stays constant when it is decoupled from everything else. For intermediate wind speeds in clus-

ter 4, the pitch angle is coupled to wind speed, active power, and current. In cluster 5, at high wind speeds, active power and current decouple

from wind speed and pitch angle as well. In both states, the pitch angle is used to decrease the intake of power of the turbine. The tip speed ratio

behaves as expected from Equation (1).

Figure 7 shows that the clusters are not as clearly separated over wind speed alone as with only five variables. This is mainly true for low wind

speeds. The three regimes we identified in our main analysis can again be distinguished. Furthermore, we see in Figure 8 that the small range

intermediate cluster 3 can be distinguished from cluster 4 when looking not only at the average wind speed in the epoch but also at the standard

deviation of wind speed in the epoch. Cluster 3 exists for small standard deviations. One possible explanation is that the wind changed so little

that the controller did not change the pitch angle even though it would already do so in this regime as seen in cluster 4. There could also be a

small wind speed regime where the controller already tries to keep rotation constant but does not change the pitch angle to this end. We must

also mention that the amount of filled missing values for the pitch angle time series is quite high in cluster 3 as can be seen in Figure 9. This is also

true for the overlapping clusters 1 and 2, for which we did not find a clear distinction criterion. The high amount of filled missing values in clusters

2 and 3 could be reasonable as the pitch angle is decoupled from other variables. This would lead to a constant value, which would lead to many

missing values in the time series, if the reasoning in Section 2 is correct. However, without knowing for certain that this reasoning is correct, the

decoupling of pitch angle from the rest that we find could also be an artifact of the data manipulation.

5 clusters 6 clusters

2 clusters 3 clusters 4 clusters
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F IGURE 5 Silhouette plots for clustering solutions with two to six clusters with pitch angle. Each clustered element (matrix) is represented by
a horizontal line the length of which is the silhouette coefficient for that element. Different clusters are color coded.

TABLE 2 Minimum, first quartile, median, mean, third quartile, and maximum of silhouette coefficients for the clustering solutions with two
to six clusters for correlation matrices of WT1 with pitch angle.

Clusters Min 1st Qu. Median Mean 3rd Qu. Max

2 0.071 0.521 0.631 0.580 0.672 0.706

3 �0.183 0.380 0.500 0.461 0.609 0.668

4 �0.129 0.239 0.396 0.353 0.490 0.587

5 �0.133 0.270 0.418 0.366 0.495 0.582

6 �0.429 0.243 0.402 0.347 0.479 0.569
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In conclusion, we have seen that nonstationarity can also be detected with our clustering when including pitch angle and tip speed ratio. The

primary influence still stems from the control strategies in dependence of the wind. In general, it can be necessary to have more than one variable,

on which the distinction between clusters is based. It could also happen that some overlap cannot be distinguished and more than one normal

state would need to be considered for analysis of the system under those operating conditions.

F IGURE 6 Cluster centroids as calculated in Equation (9) for WT1 for different numbers of clusters with pitch angle. The color indicates the
value of the correlation coefficient. Black lines connect child and parent clusters of the hierarchical algorithm and the number of cluster elements
is given as jznj. Each cluster solution is ordered from low wind speeds (left) to high wind speeds (right) according to the average wind speed in a
cluster.
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Further analysis of matrices with more and different variables as well as an attempt to distinguish other influencing factors is interesting for

future work. Regulatory impacts on the correlation structure as, for example, curtailment should also be considered. We will continue the current

work with an analysis of the possibility to predict the state solely based on wind speed for our five main observables.

5 | CLUSTER PREDICTION BY WIND SPEED

Having established a strong influence of the control system on the structure of the analyzed correlation matrices, we will now try to predict which

correlation matrix state, that is, operational state, the turbine should be in based on the wind speed. We have seen in the analysis with additional

variables that overlaps between states can happen when differentiating solely based on wind speed. In such cases, more variables or external

parameters might be necessary for state prediction. For the current work, we will stick with the simpler example of five observables. Here, we are

confident when separating the clusters solely based on wind speed and show that such a distinction can, in general, work. This makes the example

easy to follow. Also, this way we do not need to worry about the filled in pitch values. We now present a method that allows separation of the

F IGURE 7 Cluster identifier n over wind speed for WT1 and included pitch angle. Each dot represents a 30-min epoch.
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F IGURE 8 Cluster allocation as colored points over the average wind speed in an epoch on the x-axis and the standard deviation of wind
speed during an epoch on the y-axis.
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three states found based on wind speed. To this end, we look at the distribution of wind speeds in the different states, analyze them and then pre-

dict the boundary wind speeds that separate the distinct groups. This will show that it is possible to account for found nonstationarity, even

though small adaptations are likely to be necessary when considering different sets of observables or turbines. In Figure 10, one can see the

empirical probability density functions (pdfs) for wind speeds per cluster state. As already expected from Figure 4, we can clearly distinguish the

different regimes. However, we identify much more clearly what we are calling mismatches: Epochs that are sorted into cluster 3 but have mean

wind speeds in the range associated with cluster 1. They make up the left peak of the distribution for cluster 3. Furthermore, we can see a small

peak in the pdf for cluster 2 lying at very low wind speeds beneath the distribution for cluster 1. These could be reasonable as the rotation of the

generator shaft is kept at a minimum rotational speed needed for operation of the turbine for very low wind speeds as discussed in the previous

section. However, the data in the very low wind regime is sparse and not as reliable as the turbines often move in and out of operation during

these times due to shutting off below a certain minimal wind speed, therefore we will disregard this first boundary v1 for now.

Before modeling the boundaries between the distributions, we try to compensate for mismatches due to matrices lying at the edge of two

clusters, matrices being wrongly sorted, or singular outliers. This can easily be done by using the silhouette coefficient we have introduced before.

It gives an indication of how good a member of a cluster fits into this cluster compared to the other clusters. This means that any 30-min epoch
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F IGURE 9 Cluster allocation as colored points over the average wind speed in an epoch on the x-axis. The y-axis shows the proportion of
filled missing values in the pitch angle time series relative to all values in an epoch.
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F IGURE 10 Probability density functions for the 30-min epoch mean wind speed per cluster. The width of bins is 0:05~vnom.
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that has been sorted into cluster i but should rather be in cluster j will have a very small or negative silhouette coefficient. We can use this fact

and remove from the calculation of the pdf all epochs with a silhouette coefficient below the first quartile of all silhouette coefficients, which can

be seen in Table 1. The resulting pdfs can be seen in Figure 11. The second peak at low wind speeds for cluster 3 disappears. This indicates that

our reasoning of a mismatch was correct. The persistence of the small peak at very low wind speeds for cluster 2 on the other hand shows that it

indeed points toward a control of the rotational speeds in this regime.

The empirical distributions are noisy due to the finite amount of data points. This is especially true for cluster 3, which contains the least

epochs. However, it is very clear that every cluster is representing a wind speed regime. There are now two basic approaches to defining the

boundaries between these regimes. One can simply look at the empirical data and define for each value of wind speed the maximum likelihood

state based on the empirical pdf. Second, one can fit a distribution to the data and calculate the intersections of these, which represent the

boundaries. For now, we choose to fit distributions as it turns out that a normal distribution is a good choice for each wind speed regime (see

Figure 11) and the other method could be heavily influenced by noisiness in the empirical data. Of course, this will dismiss the smaller peak of

cluster 2. It should be taken into account if enough data exists in this regime (cf. Section 6). For now, cluster 1 has a mean of 0:603~vnom and a

standard deviation of 0:101~vnom. Clusters 2 and 3 are centered at 0:943~vnom and 1:255~vnom with standard deviations of 0:101~vnom and

0:071~vnom, respectively. These values lead to boundaries at v2 ¼0:774~vnom and vnom ¼1:118~vnom. Interestingly, the last value shows that vnom as

calculated in our analysis is larger than ~vnom. The reason for this discrepancy lies in realistic operational conditions. The power curve (active power

in dependency of wind speed) as given by the manufacturer is one line. Accordingly, there is exactly one value ~vnom that marks the starting point

for nominal power production. In reality, especially when looking at high-frequency data, there will always be an area around this line which is

realized. The value ~vnom lies in the middle of this smeared out power curve. At this wind speed nominal power output can be reached but is not

yet constant. With even higher wind speeds, it becomes less and less likely that the actual power produced lies beneath the nominal value. Only

when this probability nearly vanishes, a change in correlation structure is detectable by our method. It is therefore reasonable that our value vnom

lies higher than ~vnom. While our value is therefore well suited to distinguish correlation states, it cannot be directly compared with the nominal

wind speed given by the manufacturer of a turbine. We have confirmed this by looking at scatter plots of our data but cannot show them in this

paper due to data confidentiality.

We want to point out two things. First, when using our method as a pre-processing for an analysis it needs to be run on the same observables

that are to be considered in the analysis (cf. Section 4.2). Some adaptations for additional influences from the external conditions, regulatory influ-

ences (e.g., curtailment and deration) or overlaps of clusters might be necessary. Second, it is not proven that a normal distribution will always pro-

vide the best fit. For example, if much larger wind speeds exist in the data set, the distribution for cluster 3 would have much heavier tails in the

large wind speed regime unless cut off by the cut-out wind speed of the turbine.

In the current case for WT1, the model fitted works very well. Compared to the clustering solution, we have 9.9% of changes in group assign-

ment. If one only looks at epochs with silhouettes above the first quartile, this number reduces to 3.7%. This is clear as the epochs previously

characterized as mismatches obviously change their cluster allocation when applying the model to all epochs. The mean correlation matrices of

the states as sorted by the model are shown in Figure 12. They clearly exhibit the different structures discussed above produced by the control

system of the turbine showing that our state prediction works. This state prediction is an essential first step for using the different operational

regimes as a preprocessing for data analysis. Using the fitted criterion, one can predict what state the turbine should be in and run the analysis for

the corresponding operational regime. This is necessary if the analysis itself (e.g., principal components) directly involves the correlation matrix.
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Otherwise, it is also possible to make direct use of the clustering and simply identify the state by comparing the current correlation matrix to the

previously identified cluster centers. A direct application of both that we want to test in the future is monitoring the correlation structure. Using

the fitted criterion we predict a correlation matrix and compare it to the current one. With sufficiently labeled data we plan to analyze if devia-

tions might signify operational problems or failures.

As we have seen in our analysis with additional variables in Section 4.2 for low wind speeds, large overlaps between multiple states can occur

when differentiating by wind speed. If this is the case in an analysis at hand, one could look for other distinguishing factors. However, it is not a

given that these exist. Another possibility is to accept that more than one control state is normal for the given conditions and compare new data

to all possible states. If for example the goal is to minimize false alarms in a failure detection procedure, one could run failure analysis in all likely

states and then choose the one that gives the least indication for failure. An alternative could be weighing the failure indicators with the likeliness

calculated for each state under the given conditions.

6 | APPLICATION TO MULTIPLE TURBINES

For a single wind turbine, we identified different operational states in the correlation structure and presented a model to distinguish these states

based on wind speed. To be useful for applications, our findings need to be general characteristics and not be specific for one turbine. We pro-

ceed and test our methodology for all turbines in the data set. We want to emphasize that in a first step this does not mean assuming one model

with fixed wind speed boundaries and applying it to all turbines. Rather, we test if the procedure described in previous chapters can be automati-

cally transferred to other turbines without supervision. Hence, we perform cluster analysis and fit the boundaries for each turbine separately.

An easily comparable indicator for the quality of the proposed methodology is the relative numbers of cluster allocation changes from the

model compared to the clustering itself. We already discussed that for WT1 at the end of the previous section. This number will drastically

increase if either of the two steps in the calculation does not work well on a turbine: If the clustering algorithm returns a solution that is not

grouped by wind speed, sorting on the basis of wind speed will change the allocation of many epochs. If they are clustered according to wind

speed, but the boundaries are less sharp than for WT1, it will again result in many changed allocations.

A histogram over all calculated allocation changes for the 98 turbines is shown in Figure 13. We can see that the changes for WT1 lie in the

lower end of changes, as expected due to it not showing any alarms or failures in the chosen time span. This does not hold true for the other tur-

bines, most of which exhibit a few more changes. However, there are multiple turbines which show no more changes than WT1. Also, for those

that do the fitted boundaries still work remarkably well. Some allocation changes are always expected for the reasons discussed above and espe-

cially near the boundaries the distinction between two states is not always perfect. Concluding that our proposed method works well for all tur-

bines in our dataset, we proceed with an optimization.

It stands to reason that the pdfs for wind speeds per cluster should be much smoother, if we look at all turbines at the same time. Combining

the data from all turbines before fitting the model, we have approximately 98 times more data points than for a single turbine. The resulting distri-

butions are shown in Figure 14. They are indeed much smoother. Furthermore, we can see that the previously assumed Gaussian fit would not

work well anymore. Especially the distribution shown for cluster 1 is skewed. Also, the peak in the distribution for cluster 2 beneath wind speeds

of 0:4~vnom becomes more explicit. This second point is explained in Sections 4 and 5 and actually underlines our reasoning: For very low wind

speeds, rotation is kept constant and with more data from all turbines we can distinguish this regime more clearly than before.

At a first glance, the skewness of the pdfs does not fit our theory so well. If the controller would work perfectly and instantly and the wind

speeds were constant during each epoch, we would expect the distinctions between the operational states to be represented by rectangular

F IGURE 12 Matrices corresponding to the group centroids after sorting with the epochs according to the calculated boundaries for WT1.
The mean matrices were calculated for all epochs, not only those used to determine the boundaries. The color indicates the value of the
correlation coefficient.
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functions as probability densities. In nonperfect conditions, these would overlap and smooth out to be something similar to a Gaussian distribu-

tion as assumed before, but they should not become skewed. However, the reason can be found in the underlying distribution of wind speeds in

the inlay in Figure 14. It follows roughly the expected Weibull distribution. The deviations could be explained by combinations of influences in the

environment of the wind farm, overlying of different Weibull distributions for different wind directions or maybe even measurement effects due

to the sensor being placed behind the rotor. Some differences might also be introduced by the removal of low silhouette coefficients as these will

appear often in the regimes of the boundaries between states where two correlation structures might be mixed during an epoch. This is of interest

for future studies. For now, we can take away that the skewness of this underlying distributions might lead to the skewness in the cluster pdfs.

To check this, we replace the histogram count of epochs hiðvwÞ for wind speed vw and cluster i with the rescaled count

~hiðvwÞ¼ hiðvwÞ
htotalðvwÞ

by dividing with the total histogram count of epochs htotalðvwÞ for that wind speed and all clusters. This basically removes the effect of the under-

lying wind speed distribution by transforming it into an equal distribution. The resulting pdfs for each cluster can be seen in Figure 15. Indeed, we

can now see symmetric areas, showing behavior very similar to rectangular functions for cluster 1 and 3 with cluster 2 being smoothed out to a

more Gaussian curve, because its wind regime is quite narrowly bounded by overlaps with the other states. This strongly underlines the existence

of three regimes corresponding to operational states of the turbines.

As the functions for all turbines are much smoother and the bin size can be reduced, we can apply the direct maximum likelihood method

instead of fitting a continuous curve to decide cluster allocation based on the epoch wind speed. This leads to three instead of the previous two

boundary wind speeds to account for the appearance of cluster 2 in the very low wind regime. The values of the boundaries are v1 ¼0:38~vnom,

v2 ¼0:80~vnom, and vnom ¼1:10~vnom. The resulting histogram of changes due to model allocation compared to the clustering is presented in
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F IGURE 13 Histogram counts showing the frequency of relative changes in state allocation when comparing clustering and individual models
per turbine.

F IGURE 14 Probability density functions for the 30-min epoch mean wind speed per cluster considering all turbines. Only those epochs with
a silhouette coefficient above the first quartile of all silhouette coefficients for each turbine were used (calculated separately per turbine). The
underlying wind speed distribution without cluster separation is shown as inlay. The width of bins is 0:02~vnom.
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Figure 16 and shows less changes compared to Figure 13. One reason for this is the taking into account of the very low wind speed regime in

cluster 2. Such a method without need for fitting could be easily transferred to other data and turbine types providing high usability as a

preprocessing step for data analysis. It will need to be tested in future work, how best to deal with wind speeds where the clusters overlap. The

simplest method proposed above is an all-or-nothing approach choosing the likeliest cluster. Contrary to that, if one wants to minimize false

alarms in a failure detection for example, it could be useful to compare current data to all clusters, which are possible for the current wind speed

and choose the one indicating the least likelihood for a failure. Additional filters alongside the current wind speed can also be necessary as seen in

Section 4.2, where the standard deviation of wind speed helped separating clusters. Also, operating measures such as curtailment might lead to

temporary changes in the boundaries between clusters and thereby create the need for an additional filter. In general, when applying this method,

one should always check the clustering results beforehand.

Overall, we conclude that the results formerly shown for WT1 are easily transferred to multiple wind turbines. Furthermore, the model to

decide state allocation based on wind speed can be optimized by taking into account more turbines and thereby more data.

7 | CONCLUSION

Using a matrix distance measure and clustering algorithm formerly applied to other complex systems, we were able to identify different opera-

tional states in 30-min correlation matrices of high frequency wind turbine data without prior knowledge of the control system. This demonstrates

the nonstationarity of the correlation matrix for wind turbines and its automated detectability. While the states quite often exhibit stability over a

certain time period, the real dependency lies with wind speed. This is expected for wind turbine control regimes. In the analysis with additional

variables, the standard deviation of wind speed during a 30-min epoch was also shown to have an influence. Furthermore, it was possible to

model the boundary wind speeds between the different states for the main analysis of five observables—again without knowledge about the

F IGURE 15 Probability density functions for the 30-min epoch mean wind speed per cluster considering all turbines after dividing by the
total number of counts per wind speeds to rescale the underlying distribution to an equal one. Only those epochs with a silhouette coefficient
above the first quartile of all silhouette coefficients for each turbine were used (calculated separately per turbine). The width of bins is 0:02~vnom.

F IGURE 16 Histogram counts showing the frequency of relative changes in state allocation per turbine when comparing the clustering
solution and the maximum likelihood model based on data from all turbines.
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actual parameters used in the control system. This allowed us to recreate the cluster allocation solely based on the 30-min average wind speeds.

Being developed on one turbine, the method is transferred easily to multiple turbines. Results were improved by this increased amount of data.

Our study shows clearly that the control system causes detectable nonstationarity in the correlation structure of high frequency wind turbine

SCADA data. The automatic separation of states is important to account for this nonstationarity when analyzing such data, for example to monitor

a turbine during operation.

While it is of course known that the control system of the turbine changes its operational behavior based on the external influences, our anal-

ysis proves that the influence on the correlation structure of the SCADA data is significant and an automatic distinction based on the correlation

matrix is possible. Therefore, assuming a stationary correlation matrix, e.g. when applying principal component analysis for dimensionality reduc-

tion on a dataset, is unjustified.

Furthermore, it could potentially be important for monitoring with high frequency SCADA-data, e.g. when applying failure detection. Espe-

cially methods directly dependent on the correlation matrices such as principal components61 and Mahalanobis distance62 might benefit from the

definitions of multiple, distinct normal states in the correlation behavior as they usually assume stationarity. They are commonly applied to wind

turbines,11,19,24–26,63 see also the reviews mentioned in the introduction. We have recently shown that for generic correlated systems with dis-

tinct normal states, the knowledge of these states increases the sensitivity of change detection based on principal components.36,37 This is possi-

ble via pre-processing: Using a criterion based on historical data—wind speed in the presented case—new or live data could be compared to the

respective operational states. Charmingly, the proposed ansatz does not require changes in established techniques, it just requires their applica-

tion to multiple subgroups and is therefore easily implemented.

As nonstationarity has been shown to influence failure analysis for wind turbines,38,39 we aim to test the benefit of our method for this use-

case in future studies using SCADA-data with labeled failure events and encourage others to do so. Handling of cluster allocation at the bound-

aries between clusters, where overlaps in the probability distribution exist, and abnormal operating conditions such as curtailment should then be

studied as well. Additionally to using the proposed pre-processing for failure analysis methods, we intend to test also a more direct application:

Predicting an expected correlation matrix based on a fitted criterion and comparing it to the current one. Subsequently, deviations might point

toward operational problems. Labeled data will also allow training of the model based on all intervals without abnormalities instead of a continu-

ous time span thereby increasing the amount of available data per turbine. Furthermore, it will then be possible to study long-term nonstationarity

indicated by Jin et al.19

As another obvious extension of the current work, we hope to analyze the nonstationarity for other wind turbine types and different

observables.
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APPENDIX A: STANDARD K-MEANS CLUSTERING

The standard k-means algorithm sorts every object Oi, i¼1,…,N from a set of N objects into k subsets fz1,…,zl,…,zkg. Every subset is called a clus-

ter. Generally, the optimal number k has to be determined by a separate method.55,56 The input for the algorithm are the objects Oi, i¼1,…,N and

a distance measure dðOi,OjÞ≥0, i, j¼1,…,N as well as a method to compute the centroid of any cluster zl. Note that the distance measure must

also be defined for the centroids. Then the algorithm works as follows:

1. Select k objects as starting cluster centroids.

2. Assign every object to the nearest cluster based on the distance from the object to the cluster centroid.

3. Calculate the new cluster centroids.

4. Repeat steps 2 and 3 until no allocation changes occur.

In this paper, the objects are the correlation matrices of the subset we wish to split into two in the hierarchical approach, therefore k¼2

always. The cluster centroids are calculated according to Equation (9) and the distance is calculated by Equation (7).
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APPENDIX B: CLUSTERING RESULTS WITH SPEARMAN'S RANK CORRELATIONS

The results presented in this study are based on the Pearson correlation coefficient that has been proven useful to establish structural features in

complex systems.42,45,48,64 However, some of the variables used in our analysis, such as wind speed and active power have a well-known

nonlinear dependency. We have therefore tested the robustness of our results, when applying the nonlinear measure of Spearman's rank correla-

tion coefficient.

To calculate the time series of Spearman correlation matrices, we rank the individual time series SðlÞk ðtÞ, k¼1,…,K, l¼1,…,L, t¼ τ,…,τþT�1

for signal k of turbine l for one epoch. Then we proceed by calculating the Pearson correlation matrices for the ranked time series. The following

clustering procedure and analysis is carried out in exactly the same way as for the results in Section 4. We present here results for the case of five

variables, which can be directly compared to the results with Pearson correlation coefficients in Section 4.1.

The silhouette coefficients shown in Figure B1 and Table B1 indicate good grouping. They show on average marginally larger values than for

the Pearson correlation. Comparing the resulting cluster centers for Spearman correlations in Figure B2 with those for simple Pearson correlations

in Figure 2, it is obvious that the differences for the structural features revealed in this analysis are minimal. The number of elements changes

slightly for some clusters, but the overall result and interpretation are the same for both correlation measures.

As expected from the similarity of the results, also the plots of the cluster allocation over time in Figure B3 and over wind speed in Figure B4

are very similar to their counterparts in Section 4.1.

We conclude that for the analysis carried out in this study, the simple Pearson correlation measure is sufficient. The structural differences in

the correlation matrices and thereby also the structural differences in the eigenvectors, that is, principal components, are well captured in the lin-

ear correlations.

4 clusters 5 clusters

2 clusters 3 clusters

−0.4 0.0 0.4 0.8−0.4 0.0 0.4 0.8

silhouette coefficient

cluster

1

2

3
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F IGURE B1 Silhouette plots for clustering solutions with two to five clusters for Spearman's rank correlation matrices. Each clustered
element (matrix) is represented by a horizontal line the length of which is the silhouette coefficient for that element. Different clusters are color
coded.
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TABLE B1 Minimum, first quartile, median, mean, third quartile and maximum of silhouette coefficients for the clustering solutions with two
to five clusters for Spearman ranked correlation matrices of WT1.

Clusters Min 1st Qu. Median Mean 3rd Qu. Max

2 �0.040 0.479 0.579 0.550 0.677 0.751

3 �0.064 0.406 0.533 0.507 0.656 0.735

4 �0.274 0.365 0.510 0.476 0.649 0.735

5 �0.361 0.325 0.483 0.450 0.641 0.730

F IGURE B2 Spearman's rank correlation matrix cluster centroids as calculated in Equation (9) for WT1 for different numbers of clusters. The
color indicates the value of the correlation coefficient. Black lines connect child and parent clusters of the hierarchical algorithm and the number
of cluster elements is given as jznj. Each cluster solution is ordered from low wind speeds (left) to high wind speeds (right) according to the
average wind speed in a cluster.
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F IGURE B3 Cluster identifier n over time for WT1 and Spearman's rank correlations. Each dot represents a 30-min epoch.

F IGURE B4 Cluster identifier n over wind speed for WT1 and Spearman's rank correlations. Each dot represents a 30-min epoch.
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