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Evaluation of the dependence of radiomic 
features on the machine learning model
Aydin Demircioğlu*  

Abstract 

Background: In radiomic studies, several models are often trained with different combinations of feature selection 
methods and classifiers. The features of the best model are usually considered relevant to the problem, and they 
represent potential biomarkers. Features selected from statistically similarly performing models are generally not 
studied. To understand the degree to which the selected features of these statistically similar models differ, 14 publicly 
available datasets, 8 feature selection methods, and 8 classifiers were used in this retrospective study. For each com-
bination of feature selection and classifier, a model was trained, and its performance was measured with AUC-ROC. 
The best-performing model was compared to other models using a DeLong test. Models that were statistically similar 
were compared in terms of their selected features.

Results: Approximately 57% of all models analyzed were statistically similar to the best-performing model. Feature 
selection methods were, in general, relatively unstable (0.58; range 0.35–0.84). The features selected by different 
models varied largely (0.19; range 0.02–0.42), although the selected features themselves were highly correlated (0.71; 
range 0.4–0.92).

Conclusions: Feature relevance in radiomics strongly depends on the model used, and statistically similar models 
will generally identify different features as relevant. Considering features selected by a single model is misleading, and 
it is often not possible to directly determine whether such features are candidate biomarkers.
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Key points

• Different combinations of feature selection methods 
and classifiers result in models that are not signifi-
cantly different from the best model in approximately 
57%.

• Features selected by statistically best-performing 
models are largely different (0.19; range 0.02–0.42), 
although their correlation is higher (0.71; range 0.4–
0.92).

• Relevance of features often cannot be decided by the 
single best model.

Background
Radiomics is an emergent technique used for diagnostic 
and predictive purposes and is based on machine learn-
ing techniques [1, 2]. It promises a non-invasive, person-
alized medicine and is applied primarily in an oncological 
context for diagnosis, survival prediction, and other pur-
poses [3]. Radiomics is often performed using a well-
established machine learning pipeline; generic features 
from the images are first extracted before feature selec-
tion methods and classifiers for modeling are employed 
[4, 5]. One of the main concerns related to radiomics is 
whether the extracted features have biological meaning 
[6].

However, in the absence of a direct link between fea-
tures and the underlying biology of various pathologies, 
in radiomic studies, many generic features are extracted 
in the hope that some would be associated with the 
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biology and thus be predictive [7]. These features strongly 
depend on several choices regarding the acquisition 
parameters, preprocessing choices, the segmentation of 
the volume-of-interest and others, and therefore contain 
both necessarily correlated and irrelevant features [8, 
9]. Radiomics then proceeds by using a feature selection 
method to identify relevant features and a machine learn-
ing model for prediction. It seems natural to consider 
relevant features of the best-performing model as surro-
gates for biomarkers because such features contribute to 
the model’s predictive performance. They should there-
fore be considered informative and are at least good can-
didates for biomarkers [10–14].

Unfortunately, from a statistical standpoint, there 
is often not a single best-performing model. Different 
choices of feature selection methods and classifiers can 
lead to models performing only slightly worse than and 
statistically similarly to the best-performing model. In 
these cases, the null hypothesis that they are equal can-
not be rejected. If the best-performing model’s features 
are associated with the underlying biology, it raises the 
question of whether the same features can be considered 
relevant in statistically similar models.

Therefore, we analyzed on 14 publicly available radiomic 
datasets whether the selected features of statistically similar 
models are similar. We employed 8 different feature selec-
tion methods and 8 classifiers and measured the predictive 
performance of the models by area under the receiver oper-
ating characteristic curve (AUC-ROC). We compared the 
stability of the selected features, the similarity, and the cor-
relation among the best-performing models.

Methods
To ensure reproducibility, only publicly available datasets 
were employed for this study. Ethical approval for this 
study was therefore waived by the local ethics committee 
(Ethik-Kommission, Medizinische Fakultät der Univer-
sität Duisburg-Essen, Germany). All methods and proce-
dures were performed following the relevant guidelines 
and regulations.

Datasets
We identified publicly available datasets by reviewing 
open-access journals. A total of 14 radiomic datasets 
were included in this study (Table 1). As is common for 
radiomic datasets, these datasets were all high-dimen-
sional; in other words, they contained more features than 
samples, except for the dataset Carvalho2018. Since the 
focus of this study is on radiomic features, only features 
coming from imaging data were used, and other features, 
e.g., clinical or genetic features, were removed. All avail-
able data were merged to reduce the effects of non-iden-
tically distributed data.

Features
All datasets were available in preprocessed form; that is, 
they contained already extracted features. Extraction and 
acquisition parameters differed for each dataset. Because 
in-house software was used, compliance with the Image 
Biomarker Standardisation Initiative (IBSI) was not 
always ensured [15]. Texture and histogram features 
were available for all datasets but shape features were 
only available for some. Further information on the fea-
ture extraction and preprocessing methods used for each 
dataset can be found in the corresponding study.

Preprocessing
Additional simple preprocessing was performed to 
harmonize the data; specifically, missing values were 
imputed using column-wise mean, and the datasets were 
normalized using z-scores.

Feature selection methods
Eight often used feature selection methods were 
employed (Table  2), including LASSO, MRMRe, and 
MIM. These feature selection algorithms do not directly 
identify the most relevant features but instead calculate 
a score for each. Thus, a choice had to be made as to how 
many of the highest-scoring features should be used for 
the subsequent classifier. The number of selected features 
was chosen among N = 1, 2, 4, …, 64.

Classifiers
After the choice of the feature selection methods, the 
choice of classifier is most important because suboptimal 
classifiers yield inferior results. Eight often-used classifi-
ers were selected (Table 3).

Training
Training proceeded following the standard radiomics 
workflow; combinations of feature selection methods and 
classifiers were used. In the absence of explicit valida-
tion and test sets, tenfold stratified cross-validation was 
employed.

Evaluation
Predictive performance is the most important metric in 
radiomics. Therefore, AUC-ROCs were employed for 
evaluation. Model predictions over all 10 test folds of the 
cross-validation were pooled into a single receiver operat-
ing characteristic (ROC) curve. A DeLong test was used 
to determine whether models were statistically different.

For the evaluation, we focused on the best-performing 
model for each dataset as well as the models that were 
not be shown to be statistically different. A histogram of 
Pearson correlations between all features was plotted to 
visually depict the correlations present in the datasets.
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Stability of the feature selection methods
A critical property for the interpretation of features is 
the stability of the feature selection, meaning whether a 
given feature selection method will select similar features 
if presented with data from the same distribution. Using 

the data from the tenfold cross-validation, we calcu-
lated the stability using the Pearson correlation method. 
Because features are selected prior to the training of the 
classifier, the stability does not depend on the classifier; 
rather, it depends on the number of chosen features. The 

Table 1 Overview of the datasets used for the study

For reproducibility reasons only publicly, available datasets were used. The sample size is denoted by N, the number of features as d, which corresponds to the 
dimension of the data. Outcome balance denotes the percentage of events in the outcome used. The software that was used to extract the features, the feature 
selection and classifier methods is reported as stated in the corresponding study. Finally, DOI denotes the identifier of the publication corresponding to the dataset

Dataset N d Dimensionality 
(#Samples/#Features)

Outcome 
balance 
[%]

Modality Tumor type Software 
for feature 
extraction

Feature 
selection and 
classifier

DOI

Arita2018 [32] 168 685 0.25 66 MRI Brain Inhouse LASSO and 
LASSO

https:// doi. org/ 
10. 1038/ s41598- 
018- 30273-4

Carvalho2018 
[33]

262 118 2.22 59 FDG-PET NSCLC Inhouse LASSO and Cox 
regression

https:// doi. org/ 
10. 1371/ journ al. 
pone. 01928 59

Hosny2018A 
(HarvardRT) [34]

293 1005 0.29 54 CT NSCLC Pyradiomics mRMR and 
random forest

https:// doi. org/ 
10. 1371/ journ al. 
pmed. 10027 11

Hosny2018B 
(Maastro) [34]

211 1005 0.21 28 CT NSCLC Pyradiomics mRMR and 
random forest

https:// doi. org/ 
10. 1371/ journ al. 
pmed. 10027 11

Hosny2018C 
(Moffitt) [34]

183 1005 0.18 73 CT NSCLC Pyradiomics mRMR and 
random forest

https:// doi. org/ 
10. 1371/ journ al. 
pmed. 10027 11

Ramella2018 
[35]

91 243 0.37 55 CT NSCLC Inhouse Random forest 
for both

https:// doi. org/ 
10. 1371/ journ al. 
pone. 02074 55

Lu2019 [36] 213 658 0.32 43 CT Ovarian cancer Inhouse Univariate and 
LASSO + Cox

https:// doi. org/ 
10. 1038/ s41467- 
019- 08718-9

Sasaki2019 [37] 138 588 0.23 49 MRI Brain Inhouse Super PCA and 
LASSO

https:// doi. org/ 
10. 1038/ s41598- 
019- 50849-y

Toivonen2019 
[38]

100 7106 0.01 80 MRI Prostate cancer Inhouse Logistic regres-
sion for both

https:// doi. org/ 
10. 1371/ journ al. 
pone. 02177 02

Keek2020 [39] 273 1323 0.21 40 CT HNSCC Inhouse Univariate 
Concordance 
Index and Cox 
regression as 
well as random 
survival forest

https:// doi. org/ 
10. 1371/ journ al. 
pone. 02326 39

Li2020 [40] 51 397 0.13 63 MRI Glioma Artificial 
Intelligence 
Kit, GE 
Healthcare

LASSO + Mann–
Whitney-U + cor-
relation and 
logistic regres-
sion

https:// doi. org/ 
10. 1371/ journ al. 
pone. 02277 03

Park2020 [41] 768 941 0.82 24 US Thyroid cancer Inhouse LASSO for both https:// doi. org/ 
10. 1371/ journ al. 
pone. 02273 15

Song2020 [42] 260 265 0.98 49 MRI Prostate cancer Pyradiomics ANOVA, RFE, 
relief and 10 
classifiers

https:// doi. org/ 
10. 1371/ journ al. 
pone. 02375 87

Veerara-
ghavan2020 
[43]

150 201 0.75 31 DCE-MRI Breast Inhouse No feature selec-
tion and random 
forest

https:// doi. org/ 
10. 1038/ s41598- 
020- 72475-9

https://doi.org/10.1038/s41598-018-30273-4
https://doi.org/10.1038/s41598-018-30273-4
https://doi.org/10.1038/s41598-018-30273-4
https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
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stability might be different for two models that use the 
same feature selection method but a different number of 
features. The stability will be 1.0 if, over each cross-vali-
dation fold, the very same features are selected.

Similarity among the feature selection methods
The similarity of the selected features was computed 
using the Pearson correlation method to determine the 
discrepancy between the features selected by the best 
model and those selected by a statistically similar model. 
A correlation of 1.0 would indicate that the two feature 
selection methods selected the same features over each 
cross-validation fold.

Correlation among the selected features
Because the features in radiomic datasets are known 
to be highly correlated, two feature selection methods 
could select features that are different but nonetheless 
highly correlated. In this case, their similarity would be 
low; however, this is misleading because the different fea-
tures would contain similar information. Therefore, cor-
relations among the selected features themselves were 
measured by computing the average highest correlation 
of each feature to that of all other features. This measure 

will be 1.0 if a perfectly correlated feature of another 
method can be found for each selected feature of one 
method. More details on the measure can be found in 
Additional file 1.

Predictive performance
The stability, similarity, and correlation of statistically 
similar models could be associated with their predic-
tive performance. For example, if a few features had very 
high correlation with the outcome in a dataset, it is likely 
that many statistical similar models will be able to iden-
tify these features. Therefore, a larger correlation among 
them could be observed. Similarly, if the dataset contains 
many relatively uninformative features, it is conceivable 
that the selection of one feature over another depends 
on the model. Therefore, in this case, lower correla-
tions among models would be observed. Hence, a linear 
regression was performed to relate the AUC-ROCs to 
stability, similarity, and correlation.

Software
Python 3.6 was used for all experiments. Feature selec-
tion methods and classifiers from scikit-learn 0.24.2 [16] 
and ITMO_FS 0.3.2 [17] were utilized.

Table 2 Overview of all feature selection methods used

Filtering methods assign a score to each feature directly, while wrapper methods use a classifier

Feature selection Type Hyperparameters

ANOVA Filtering –

Bhattacharyya distance Filtering –

ExtraTrees Wrapper –

Fast correlation-based filtering (FCBF) Filtering –

Kendall correlation Filtering –

LASSO Wrapper Regularization parameter, fixed at C = 1.0

Mutual information (MIM) Filtering –

Miinimum redundancy maximum relevance ensemble (MRMRe) Filtering Number of ensembles, fixed at 5

Table 3 Overview of all classifiers used during training

Classifier Hyperparameters

Linear discriminant analysis (LDA) –

Linear SVM Regularization parameter C in 2**{− 6, − 4, − 2, 0, 2, 4, 6}

Logistic regression Regularization parameter, C in 2**{− 6, − 4, − 2, 0, 2, 4, 6}

Naive Bayes –

Neural network (three layers) Neurons in layer 1, 2, 3 in {4, 16, 64}

Random forest Number of trees in 50, 250, 500

Radial basis function-SVM (RBF-SVM) Regularization parameter, C in 2**{− 6, − 4, − 2, 0, 2, 4, 
6}, Kernel parameter γ = auto

XGBoost Learning rate in 0.001, 0.1, 0.3, 0.9, number of estimators 
in 50, 250, 500
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Statistics
Descriptive statistics were reported as means and ranges, 
computed using Python 3.6. p values less than 0.05 were 
considered significant. No adjustments for multiple test-
ing were performed. AUC-ROCs were compared using a 
DeLong test using the R library pROC.

Results
Overall, 3640 models for each of the 14 datasets were fit-
ted, each with stratified tenfold cross-validation. For eval-
uation, the model with highest AUC-ROC was selected 
for each combination of the 8 features selection methods 
and 8 classifiers, yielding 64 models. A DeLong test was 
used to compare these models to the overall best per-
forming model to calculate statistical difference (Fig. 1). 
For 508 of 882 models, the hypothesis that the AUC-
ROCs were different from those of the best performing 
model could not be rejected (Table 4). This corresponds 
to 58% of all models (N = 508/882) and to roughly 36 of 
the 64 models per dataset.

Datasets
Plotting the Pearson correlation among all features 
revealed that some datasets had many highly correlated 
features (Fig.  2). All datasets deviated largely from the 
histogram of a dataset with normally distributed and 

independently chosen columns. Although Toivonen2019 
is very close, it still revealed many highly correlated fea-
tures, as can be seen in the fat right tail.

Fig. 1 Graphical overview of the predictive performance of all models. The AUC-ROC of all computed models were plotted for all datasets. Those 
models that cannot be statistically shown to be different from the best model were marked in cyan color, while those that were worse were marked 
in orange color

Table 4 Counts of how many models were statistically not 
different to the best model for each dataset, sorted by AUC-ROC 
of the best model

Dataset AUC-ROC of best 
model

Number 
of stat. eq. 
models

Song2020 0.98 9

Li2020 0.89 34

Toivonen2019 0.87 45

Arita2018 0.83 18

Ramella2018 0.81 23

Lu2019 0.76 27

Hosny2018B 0.73 26

Hosny2018C 0.69 14

Keek2020 0.69 56

Carvalho2018 0.67 52

Sasaki2019 0.67 61

Park2020 0.65 48

Hosny2018A 0.64 53

Veeraraghavan2020 0.64 42
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Stability of the feature selection method
In general, selecting more features resulted in higher sta-
bility (Fig. 3). The three simpler methods (Anova, Bhat-
tacharyya and Kendall) yielded higher stability than the 
more complex methods (including LASSO and Extra 
Trees). Overall, the stability of the methods was moder-
ate (Fig. 4). Results for each dataset can be found in Addi-
tional file 2 and Additional file 3.

Similarity among the feature selection methods
The average similarity between the features selected by 
statistically similar models was rather low (Fig. 4). There 
were almost always models with selected features that 
were not similar to those of the best model. In all cases, 
the average similarity among the feature selection meth-
ods was lower than their stability (Fig. 4). Details can be 
found in Additional file 4.

Correlation among the selected features
The average correlation among the features was much 
higher than their similarity. For Song2020, on average, 
the models had a correlation of 0.92, while for Veerara-
ghavan2020, this figure was only 0.40. Again, there were 
often models with features that were only moderately 
correlated with the features of the best model. Results for 
each dataset can be found in Additional file 5.

Predictive performance and feature stability
Comparing the mean AUC-ROC to the number of sta-
tistically similar models showed a slightly significant and 
decreasing association (p = 0.029; Fig. 5a), that is, the bet-
ter the best model performed, the less statistically similar 
models were observed. The associations of AUC-ROCs 
with stability, similarity, and correlation were higher 
and, in all cases, positive: a strong positive association 
(p = 0.007; Fig.  5b) was observed for stability, in other 

Fig. 2 Histogram of the Pearson correlation between all features. The “Normal” histogram was obtained by creating a dummy dataset that only 
contained independent and normally distributed features and serves as a reference
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words, models that reached higher AUC-ROCs were 
more stable. An equally strong association between mean 
AUC-ROC and similarity was found (p = 0.004; Fig. 5c), 
better models seemed to be more similar. On the other 
hand, for correlation, a weaker association was observed 
(p = 0.012; Fig. 5c).

Discussion
Radiomics has been intensively studied in pursuit of non-
invasive, precise, and personalized medicine, enabling 
better and more easily deduced diagnoses and progno-
ses. However, a critical problem of radiomics is that the 
features are generically defined and strongly depend on 
acquisition parameters. Therefore, they often lack bio-
logical meaning. This reduces reproducibility, that is, the 
features, and thus the models, often cannot be faithfully 
recreated if the study is conducted at other sites [18]. 
Feature selection is used to identify relevant features that 

could represent the underlying biology and thus be con-
sidered biomarkers [19]. In radiomic studies, often only 
a single feature selection method and classifier combi-
nation is considered, without a rationale for why a given 
method was chosen over others [20–23]. Even if multi-
ple methods are considered, the best-performing model 
is only compared to the other models in terms of its 
predictive performance [24–28]. While this approach is 
justifiable, worse-performing models need not be differ-
ent from a statistical viewpoint. There is little reason to 
ignore them.

Therefore, in this study, we considered all models that 
were statistically similar to the best model and compared 
their selected features. First and foremost, our study 
demonstrates that several statistically similar models 
exist for each dataset. This finding is not surprising, given 
that the radiomic datasets considered have small sample 
sizes and that the null hypothesis can only be rejected in 

Fig. 3 Relation of feature stability with the number of selected features
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the case of a large difference in predictive performance. 
Nonetheless, approximately 58% of the considered mod-
els were statistically similar to the best model, which is 
much higher than anticipated.

Based on the stability of the feature selection meth-
ods, in general, the more features selected, the more 
stable feature selection is. This is expected because, if 
all possible features were selected, the correlation coef-
ficient would be equal to 1. Nonetheless, it is surpris-
ing that the association is not U-shaped (Fig. 1) because 
if the datasets contained a small set of relevant fea-
tures, it could be expected that most feature selection 
methods would identify them. In this case, the stabil-
ity would be quite high for a small number of features; 
however, this was not observed (Fig. 3). There are two 
possible reasons for this: either the feature selection 
algorithms were not able to identify those relevant fea-
tures, or the datasets, in general, did not contain such 
sets. In the latter case, considering the low stability of 
the feature selection methods, this could mean that 

the interpretation of relevant features as biomarkers is 
doubtful at best.

Consequently, the similarity among the models was 
also very low. Almost no similarity could be seen for 
some datasets, and the largest similarity was only mod-
erate (0.42). Therefore, even if the best model was rela-
tively stable in terms of the selected features, thus hinting 
toward a set of relevant features, in most cases, there is a 
similarly performant model that would yield completely 
different features.

Stability and similarity might be misleading because 
features are highly correlated in radiomic datasets and 
different features could still express related information. 
Therefore, in addition to similarity, the correlation of the 
selected features was compared. Indeed, the correlation 
was higher than seen for similarity and at least moderate 
(> 0.40) on average for all datasets.

Taking these observations together, it seems clear 
that an interpretation of relevant features as biomark-
ers cannot be obtained en passant during modeling with 
machine learning because these results are not based on 
causality but rather on correlation. Radiomic datasets 
are high-dimensional, so results are often abundant and 
partly random.

Intuitively, a higher overall AUC-ROC should be asso-
ciated with a higher mean association among statistically 
similar models, because a higher AUC-ROC could indi-
cate that there exists a set of relevant features that the 
models can identify. Indeed, regression results indicate 
that models with higher AUC-ROCs seem to have higher 
stability and similarity as well as slightly higher correla-
tion. This means that feature relevance in models that do 
not perform well must be determined cautiously. Indeed, 
for all datasets, the best model was significantly differ-
ent from the constant model (predicting a probability of 
0.5 for each sample; p < 0.05), but for some, the predic-
tive performance was too low (< 0.70) to be clinically use-
ful. However, the results were valid to a large extent for 
the datasets with higher AUC-ROCs—for example, for 
Song2020, where the AUC-ROC of 0.98 is high enough 
for possible clinical use.

When performing feature selection, the expectation 
is that there is a single set of relevant features and that 
these can be precisely determined. While this intuition 
may be correct for low-dimensional datasets, radiomic 
datasets are high-dimensional and are highly correlated. 
In theory, both problems could be prevented by acquir-
ing larger samples and more specific features. Regretta-
bly, increasing sample size is problematic, if only because 
of the need for segmentations, which, currently, are 
often still delineated manually. Furthermore, performing 
decorrelation in a high-dimensional setting is unlikely to 
be useful because correlated features might complement 

Fig. 4 Analyzed measured for all statistically similar models. The 
range is given in parentheses, the color of each cell corresponds to 
the stated measure
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one another [29]. As decorrelation can be regarded as 
an unsupervised feature selection method, it might not 
perform any better than a supervised feature selection 
method. Principal component analysis, on the other 
hand, could be more suitable; however, due to features 
being recombined, no kind of association can be made 
with the biological underpinning.

Although the current radiomics pipeline is generally 
accepted as state-of-the-art, deep learning methods have 

been considered. These forgo the tedious task of generat-
ing features and feature selection methods [30, 31]. Radi-
omic models with generic features are often regarded 
being more interpretable than deep learning models, but 
our results demonstrate that this presumed superiority is 
not necessarily the case.

While we obtained our results using cross-validation, 
other studies have used a train-test split which was 
then tested on an independent validation set. Using 

Fig. 5 Association of the mean AUC-ROC for all statistically similar models with (a) the number of equivalent models, (b) stability, (c) similarity and 
(d) correlation. Each point represents one dataset
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such a training scheme might give the impression that 
the selected features are relevant and stable, but this is 
misleading because a simple split neither considers the 
stability of the model nor the fact that a disjoint set of 
features could produce a model with statistically similar 
predictive performance. Nonetheless, having an explicit 
validation set available would provide a more precise 
picture because it is conceivable that statistically simi-
lar models would produce different results if an external 
dataset were used.

We focused only on a few often-used feature selec-
tion algorithms and classifiers, but we believe that add-
ing more methods to the study would only enhance our 
results. The same would be true if the hyperparameters 
of the classifiers were more heavily tuned. We also did 
not account for multiple testing; doing so would increase 
p values, making more models statistically similar. Thus, 
our results can be thus considered a lower limit.

Conclusion
Our study demonstrated that the relevance of features 
in radiomic models depends on the model used. The 
features selected by the best-performing model were 
often different than those of similarly performing mod-
els. Thus, it is not always possible to directly determine 
potential biomarkers using machine learning methods.
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