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This introductory part contains a summary in which we briefly discuss the content
of the 11 original research papers included in this habilitation thesis. The articles have
been ordered into three groups depending on the main focus of their studies, namely
Quasi-static poroelasticity (6 papers), Dynamic plate vibration (1 paper) and
Scalar elliptic problems (4 papers).

Ten of these articles have been published in the following renowned international
scientific journals

• Numer. Linear Algebra Appl.: Papers I, VIII

• Multiscale Model. Simul.: Paper II

• Math. Models Methods Appl. Sci.: Paper III

• Comput. Methods Appl. Mech. Eng.: Paper IV

• Math. Comp.: Paper V

• J. Sci. Comput.: Paper VI

• Comput. Math. with Appl.: Paper VII

• SIAM J. Sci. Comput.: Paper X

• Math. Comput. Simul.: Paper XI

There is also one conference proceeding paper IX included.
Papers I, II, III, IV, V, VI gathered in the first thematic group Quasi-static

poroelasticity study the robust and efficient numerical solution of Biot’s consolida-
tion model and its generalizations, that are, the multiple-network poroelastic theory
(MPET) model and the Biot-Brinkman model. Biot’s theory dating back to 1941 is
certainly the most popular theory used to describe the displacement and flow within
a fluid-filled linearly elastic porous media and has found many major applications,
e.g., in geomechanics and petroleum engineering. In 1960 double-porosity models, ex-
tending upon Biot’s single fluid network to the case of two interacting networks, were
utilized to describe the motion of liquids in fissured rocks and later, in the context
of reservoir modelling, multiple-network poroelasticity equations were used to study
the behaviour of elastic media permeated by multiple networks characterised by dif-
ferent porosities, permeabilities and/or interactions. The MPET equations have more
recently been used to model the heart as well as the brain and central nervous system.
The incorporation of viscous fluid effects in the generalized Biot-Brinkman model fur-
thermore extends its applicability to more complicated biomedical processes such as
the perfusion of the heart and glymphatic system of the brain. Solving numerically
these poroelasticity models is a rather onerous task as the many physical parameters
in practical applications exhibit extremely large variations.

The second group, Dynamic plate vibration, contains article VII. The consid-
ered biharmonic wave equation is commonly used to describe the linear reaction of thin
structures (also called “plates”) to external forces, the study of which is important,
e.g., in civil and aeronautical engineering. This dynamic model investigating the prop-
agation of waves in the plates as well as standing waves and vibration modes can be
furthermore investigated as a prototype model for more sophisticated Kirchhoff-type
equations, such as the Euler–Bernoulli equation describing the deflection of viscoelas-
tic plates. The numerical solution of wave equations is a challenging task due to the
fact that solutions may exhibit sharp fronts, as for example in case of shock waves, and
possibly create complicated patterns of interference due to reflections at boundaries,
in particular for complicated domains and inhomogeneous materials.
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In the third group, Scalar elliptic problems, articles VIII, IX, X, XI are included.
Although the computer systems have evolved significantly since the first electronic
computer was developed in the 1940s, the topic of constructing fast solvers for linear
systems of large dimensions continues to be very relevant nowadays as the understand-
ing of “large” has also changed. Finding the numerical solution of a physical problem
described in terms of differential equations with some prescribed accuracy may require
solving a sparse algebraic system of millions or even billions of unknowns. This task
can become even more intricate, e.g., when the time needed to solve such a system
is also of high priority as is in many applications. While a lot has been done in this
direction in the recent years, the construction of fast and efficient iterative solvers for
certain classes of problems still remains an open question.

QUASI-STATIC POROELASTICITY

I Conservative discretizations and parameter-robust preconditioners for
Biot and multiple-network flux-based poroelasticity models.

Qingguo Hong, Johannes Kraus, Maria Lymbery and Fadi Philo

Numer. Linear Algebra Appl. 26(4), (2019), e2242

Article I is the first on the topic of poroelasticity and is a joint work with Qingguo
Hong, Johannes Kraus and Fadi Philo. The studied model here is the MPET
model which is a generalization of the quasi-static Biot’s consolidation model
when more than one fluid networks are considered. Its flux based formulation
for n networks reads as follows:

−divσ +

n∑

i=1

αi∇pi = f in Ω× (0, T ), (0.1a)

vi = −Ki∇pi in Ω× (0, T ), (0.1b)

−αidiv u̇− divvi − cpi ṗi −
n∑

j=i
j 6=i

βij(pi − pj) = gi in Ω× (0, T ), (0.1c)

σ = 2µε(u) + λdiv(u)I, (0.1d)

ε(u) =
1

2
(∇u+ (∇u)T ), (0.1e)

where i = 1, . . . , n and the studied physical fields are the displacement u, fluxes
vi and corresponding pressures pi.

Here, Ω ⊂ Rd, d = 2, 3 is an open domain, f describes the body force density in
(0.1a), whereas gi represent forced fluid extractions or injections into the medium
in (0.1c).

The Biot-Willis coefficients αi and the effective stress tensor σ appearing in the
mass balance equation (0.1a) couple the pore pressures with the displacement
variable u. Each fluid flux vi relates to a specific negative pressure gradient
−∇pi via Darcy’s law in (0.1b), in which the parameter tensors Ki describe the
hydraulic conductivities which provide an indication of the general permeability
of a porous medium. In the momentum balance equation, (0.1c), the time deriva-
tives of the displacement u and the pressure variables pi are denoted by u̇ and
ṗi, respectively, the coupling coefficients βij designate the network transfer coef-
ficients, hence, βij = βji and the constants cpi

, connected to the compressibility
of each fluid, are called constrained specific storage coefficients.
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It is assumed that Hooke’s law (0.1d) holds where the effective strain tensor ε(u)
defined in (0.1e) is the symmetric part of the gradient of the displacement, here
I denotes the identity tensor.

The Lamé parameters λ and µ in (0.1d) are determined in terms of the Young’s
modulus E and the Poisson ratio ν ∈ [0, 1/2) by

λ := (νE)/[(1 + ν)(1− 2ν)], µ := E/[2(1 + ν)].

The following boundary, (0.2), and initial, (0.3), conditions complement sys-
tem (0.1) and guarantee its well posedness:

pi(x, t) = pi,D(x, t) for x ∈ Γpi,D, t > 0, (0.2a)

vi(x, t) · n(x) = qi,N (x, t) for x ∈ Γpi,N , t > 0, (0.2b)

u(x, t) = uD(x, t) for x ∈ Γu,D, t > 0, (0.2c)

(σ(x, t)−
n∑

i=1

αipiI)n(x) = gN (x, t) for x ∈ Γu,N , t > 0, (0.2d)

pi(x, 0) = pi,0(x) x ∈ Ω, (0.3a)

u(x, 0) = u0(x) x ∈ Ω, (0.3b)

where i = 1, . . . , n and it is satisfied Γpi,D ∩ Γpi,N = ∅, Γpi,D ∪ Γpi,N = Γ = ∂Ω,
Γu,D ∩ Γu,N = ∅ and Γu,D ∪ Γu,N = Γ.

The stable discretization and efficient solution of system (0.1) is a very challeng-
ing task due to the big number highly of varying parameters. In this article we
construct novel parameter-matrix-dependent norms. Based on them for the first
time the uniform Ladyzhenskaya–Babuška–Brezzi (LBB) stability for this class
of problems is proven which ultimately facilitates the design of uniformly stable
discretizations and parameter-robust preconditioners for flux-based formulations
of multiporosity/multipermeability systems.

It is important to note that the stability estimates presented here are uniform
not only with respect to the Lamé parameters but also to all the other model
parameters, such as the storage coefficients cpi

, the permeability coefficients Ki,
the network transfer coefficients βij , i, j = 1, . . . , n the scale of the networks n
and the time step size τ involved in the time discretization process.

The considered discretizations in article I are shown to be strongly mass-conservative
and meet the required conditions for parameter-robust LBB stability. Further-
more, optimal error estimates have been proven and the foundation for optimal
and fully robust iterative solution methods is laid via the construction of canon-
ical (norm-equivalent) operator preconditioners on both continuous and discrete
level.

Finally, the results of the performed numerical tests given in the included tables
fully support the theoretical findings and further give a clear view of the practical
potential of the developed technique.

II Parameter-robust convergence analysis of fixed-stress split iterative
method for multiple-permeability poroelasticity systems.

Qingguo Hong, Johannes Kraus, Maria Lymbery, and Mary F. Wheeler

Multiscale Model. Simul. 18(2), (2020), 10.1137/19M1253988
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Article II is a continuation of the work presented in article I where the focus
is on the construction of fast iterative solvers for the arising block systems on
both continuous and discrete level. For stability reasons, as before, we discretize
system (0.1) in time by an implicit method which results in a coupled static prob-
lem in each time step. Among the established iterative schemes to solve coupled
problems arising in poromechanics is the fixed-stress split iteration which often
is the method of choice due to being unconditionally stable and computationally
cheaper to other approaches.

In this work, performed in collaboration with Qingguo Hong, Johannes Kraus and
Mary Wheeler, the fixed-stress split method is derived for the first time for the
discretized in time flux based quasi-static MPET model on both continuous and
discrete level and convergence analysis proving that the contraction rate of the
fixed point iteration in both cases is independent of any model and discretization
parameters is provided.

The series of numerical tests presented in this article not only fully justify the
elaborated theory but also demonstrate the advantage of the fixed-stress split
scheme over a preconditioned Minimal Residual (MinRes) solver accelerated by
norm-equivalent preconditioning.

III Parameter-robust Uzawa-type iterative methods for double saddle
point problems arising in Biot’s consolidation and multiple-network
poroelasticity models.

Qingguo Hong, Johannes Kraus, Maria Lymbery and Fadi Philo

Math. Models Methods Appl. Sci. 30(13), (2020), 2523-2555

The experience gathered while working on the previous two projects naturally
led to deeper understanding but also rose more questions regarding the fast
and efficient solution of quasi-static multiple-network poroelasticity equations
describing flow in elastic porous media that is permeated by single or multiple
fluid networks - can we further accelerate the iterative process by decoupling all
three fields of interest, u, vi and pi, which is not the case in the fixed-stress split
iteration? What would be the thereby preconditioner defining the new scheme
and how would it affect the performance of classical iterative schemes, e.g., the
generalized minimal residual (GMRES) algorithm?

Starting point to answer these questions is the observation that the MPET equa-
tions (0.1) when written in abstract canonical form exhibit a double saddle point
structure 


A1 0 BT

1

0 A2 BT
2

B1 B2 −C




with A1 and A2 being symmetric positive definite (SPD) operators and C a
symmetric positive semidefinite (SPSD) operator.

In article III we propose an approach in which we augment and split this three-
by-three block system in such a way that the resulting block Gauss–Seidel pre-
conditioner defines a fully decoupled iterative scheme for the flux-, pressure-,
and displacement fields, thereby obtaining an augmented Lagrangian Uzawa-
type method. The theoretical study of this algorithm is the main contribution of
this paper. We show that the rate of contraction of this fixed-point iteration is
strictly less than one independently of all physical and discretization parameters
which proves its parameter-robust uniform linear convergence.
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All the results of the numerical tests we have performed with the newly developed
Lagrangian Uzawa-type algorithm coincide with the theoretical expectations.
Moreover, we have compared the performance of the fully decoupled scheme to
the very popular partially decoupled fixed-stress split iterative method, which
decouples only flow from the mechanics problem – the flux and pressure fields
remain coupled in this case – and also to the preconditioned GMRES accelerated
by the block-triangular preconditioner defining the new scheme. In terms of
computational work, the obtained results clearly demonstrate the superiority of
the new algorithm over these methods.

A scaling test indicating the robustness of the preconditioned GMRES and aug-
mented Uzawa-type algorithms with respect to the number of networks is in-
cluded which further supports the theoretical findings in this work performed in
collaboration with Qingguo Hong, Johannes Kraus and Fadi Philo.

IV Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed
discretizations for Biot’s consolidation model.

Johannes Kraus, Philip L. Lederer, Maria Lymbery, Joachim Schöberl

Comput. Methods Appl. Mech. Eng. 384 (2021), 113991

Article IV is a joint work Johannes Kraus, Philip L. Lederer and Joachim
Schöberl and is again motivated by the desire to construct fast and memory
efficient solvers for poroelasticity systems. Subject of the study is the flux based
formulation of the quasi-static Biot’s consolidation model. To achieve Stokes and
Darcy stability and pointwise mass conservation of the discrete model we use an
H(div)-conforming ansatz for u and v together with an appropriate pressure
space.

We propose a new family of higher-order mass conserving hybridized/hybrid
mixed FE discretizations based on the combination of a hybridized discontinuous
Galerkin (DG) method for the elasticity subproblem with a mixed method for
the flow subproblem, handled also by hybridization, which ultimately allows for
a static condensation step. The latter eliminates the seepage velocity from the
system while at the same time preserving mass conservation. A key point here
is that the system to be finally solved contains only degrees of freedom (DOF)
related to u and p which is a consequence of the hybridization process.

The performed theoretical analysis of the proposed discretization technique in-
volves proper scaled norms and conclusively shows the well-posedness of the
resulting continuous and discrete problems. Furthermore, it guides the construc-
tion of norm-equivalent preconditioners and the derivation of optimal near best
approximation estimates.

To validate our theoretical findings we have performed a number of numerical
tests which show the expected orders of convergence when increasing the degree
of the FE approximation and the parameter-robustness of the proposed precon-
ditioners. The last tests we have included clearly show that the new technique
provides a very cost-efficient family of physics-oriented space discretizations for
poroelasticity problems, especially for higher-order approximations.

V A new practical framework for the stability analysis of perturbed
saddle-point problems and applications.

Qingguo Hong, Johannes Kraus, Maria Lymbery and Fadi Philo

Math. Comp. 92 (2023), 607-634
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Proving stability results has been a very substantial part of the scientific work
performed in the previous articles by the author of this habilitation. All the
achievements have been possible largely due to the involvement of specially cho-
sen norms which to many readers can seem hard to grasp and apply themselves
in practice.

Therefore, there was the inevitable need to perform a deeper and more compre-
hensive analysis which ultimately resulted in the development of a new practical
framework for the stability analysis of perturbed saddle-point problems which
is the topic of article V written together with Quingguo Hong, Johannes Kraus
and Fadi Philo.

In this paper we consider perturbed saddle-point problems characterized by an
operator/matrix of the form

A =

[
A BT

B −C

]
,

where A and C are SPSD operators and for them we prove a new abstract
stability result which is based on a norm fitting technique.

The stability condition according to Babuška’s theory is derived in a combined
abstract norm from a small inf-sup condition, similar to the famous Ladyzhenskaya-
Babuška-Brezzi (LBB) condition, and the other standard assumptions in Brezzi’s
theory. The combined norm itself is formed from individual fitted norms that
are composed from proper seminorms.

This result is fundamental because it not only shows how simpler (shorter)
proofs of many stability results can be derived but also guides the design of
parameter-robust norm-equivalent preconditioners. All these benefits have been
demonstrated in practice on mixed variational formulations of generalized Pois-
son, Stokes, vector Laplace and Biot’s equations. Furthermore, the framework
allows to analyze variational problems not only on a continuous but also on a dis-
crete level as has been exploited in the convergence analysis of the discretizations
subject to the following two articles.

VI Robust Approximation of Generalized Biot-Brinkman Problems.

Qingguo Hong, Johannes Kraus, Miroslav Kuchta, Maria Lymbery, Kent-André
Mardal, Marie E. Rognes

J. Sci. Comput. volume 93, Article number: 77 (2022)

In article VI we focus on flux-based three-field formulations of the generalized
Biot-Brinkman model which encompasses effects of fluid viscosity by replacing
Darcy’s law (0.1b) for i = 1, . . . , n by the Brinkman equation

−νidiv ε(vi) + vi +Ki∇pi = ri in Ω× (0, T ),

where for a fixed network i, νi denotes the fluid viscosity, ri represents an external
flux and ε(vi) is the symmetric part of the gradient of the velocity vi.

This model has the advantage that it extends on the Biot, in case n = 1, and
multiple-network poroelasticity equations on the one hand and Brinkman flow
problems on the other hand which allows to encompass a range of singular per-
turbation problems in realistic parameter regimes. Therefore, it can be applied
to investigate more complex poromechanical interactions, e.g., in biophysics and
engineering sciences.

12
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In this article, which is a joint work with Qingguo Hong, Johannes Kraus,
Miroslav Kuchta, Kent-André Mardal and Marie E. Rognes, a class of finite
element discretizations for the generalized Biot-Brinkman equations is intro-
duced and theoretically analyzed using the framework presented in article V.
We demonstrate that the proposed three-field formulation of the Biot-Brinkman
problem on a continuous and discrete level is uniformly well-posed under the
chosen norms and the associated preconditioning strategy is robust with respect
to the relevant parameter regimes.

The theoretical analysis is complemented by numerical experiments in the last
section of the article whose results confirm the stability properties of the finite
element discretization of the generalized Biot-Brinkman model and the robust
behaviour of the derived preconditioner. The latter has been tested within the
MinRes algorithm where for the solution of the displacement and flux subsystems
required for the application of the preconditioner, a geometric multigrid solver
implemented in FireDrake has been employed to accelerate the computations.
Note that the auxliary multigrid method which has been proposed in article VIII
provides an optimal solver for these tasks as well.

DYNAMIC PLATE VIBRATION

VII C1-conforming variational discretization of the biharmonic wave equa-
tion.

Markus Bause, Maria Lymbery and Kevin Osthues

Comput. Math. with Appl. 119 (2022), 208-219

Article VII is a joint work with Markus Bause and Kevin Osthues. Subject of
this study is the biharmonic wave equation which is of big importance to various
applications including thin plate analyses. In contrary to articles I, II, III, IV, VI
the model considered here is fully dynamic and its analysis and fast and accurate
numerical solution require the involvement of different techniques.

The novelty here comes from the proposed numerical approximation using a C1-
conforming in space and time finite element ansatz which offers preservation of
the smoothness properties of the solutions to the continuous evolution problem.
We discretize in time using a combined Galerkin and collocation technique, while
for space discretization we apply the Bogner–Fox–Schmit element and we prove
optimal order error estimates.

We demonstrate the convergence and performance properties of the presented
discretization technique by a series of numerical experiments with complex wave
profiles in homogeneous and heterogeneous media which not only fully support
the theoretical findings in this work but also show that the approach offers high
potential for sophisticated multi-physics and/or multi-scale systems.

Based on the collected experience, the author of this habilitation thesis plans
to apply similar tools also for the error analysis of the more complicated fully
dynamic poroelasticicy systems and is currently preparing a paper on this topic.

SCALAR ELLIPTIC PROBLEMS

VIII Auxiliary space multigrid method based on additive Schur comple-
ment approximation

Johannes Kraus, Maria Lymbery and Svetozar Margenov

Numer. Linear Algebra Appl. 22(6), (2015) 965-986
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The evolution of a certain quantity with time and/or according to a structure
variable such as space is typically expressed by partial differential equations
(PDE) and therefore they play a key role in diverse fields such as physics, chem-
istry, biology, economics, engineering, and life sciences. Finding the numerical
solution of PDE after the discretization process typically reduces a continuous
problem to a discrete problem that finally is given in the form of one or more
systems of linear algebraic equations.

These systems of equations are typically very large and sparse which brings the
need to construct fast and efficient iterative solvers. Among all iterative solvers,
multigrid (MG) methods have earned a reputation as an efficient and versatile
approach for solving such systems as they can solve them in a small uniformly
bounded number of iterations, independent of the dimension of the discrete prob-
lem, up to a prescribed accuracy, allow for low-memory implementations and
often can be parallelized.

In article VIII the idea of auxiliary space MG methods, which differ from classical
MG methods in replacing coarse-grid correction by auxiliary space correction, is
introduced. We perform a two-level block factorization of local matrices that are
associated with a partitioning of the domain into overlapping or non-overlapping
subdomains. The two-level auxiliary space method is based on a coarse-grid
operator obtained from additive Schur complement approximation and is ana-
lyzed in the framework of auxiliary space preconditioning. We prove condition
number estimates for both the additive Schur complement approximation and
the two-level preconditioner, the latter implying robust convergence of the re-
lated two-grid method. We extend the two-level algorithm recursively in order to
define the auxiliary space multigrid (ASMG) algorithm, where so-called Krylov
cycles are considered.

To demonstrate the efficiency of the new algorithm for multiscale problems we
have performed a representative collection of numerical tests. The obtained
results not only show the efficiency of the proposed auxiliary space multigrid
algorithm but also address further directions for development, e.g., incorporat-
ing different smoothers and transfer mappings or shifting the focus to different
problem classes.

Article VIII is a joint work with Johannes Kraus and Svetozar Margenov.

IX Auxiliary Space Multigrid Method for Elliptic Problems with Highly
Varying Coefficients

Johannes Kraus and Maria Lymbery

(2016) In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds)
Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes
in Computational Science and Engineering, vol 104. Springer.

In article IX written together with Johannes Kraus we summarize the main
steps of the construction of the ASMG method presented in article VIII on a
less technical level. We study in detail the spectral properties of the proposed
additive Schur complement approximation for a class of elliptic problems with
highly varying coefficients and provide a condition number estimate implying the
robustness of the two-level method.

A crucial step in the application of the two-level preconditioner is the choice and
realization of the operator ΠD̃ defining the fictitious space preconditioner. We
suggest two different variants where the efficient implementation of the second
requires additionally the incorporation of an inner iterative method such as a

14
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preconditioned conjugate gradient (PCG) method. For reasons of efficiency the
latter requires a uniform preconditioner. We propose the scaled one-level additive
Schwarz preconditioner for this purpose and prove a uniform condition number
estimate.

The included numerical results fully support the theoretical analysis and more-
over demonstrate that the choice of the surjective mapping ΠD̃ affects crucially
the performance of the nonlinear AMLI-cycle ASMG method.

X Preconditioning Heterogeneous H(div) Problems by Additive Schur
Complement Approximation and Applications

Johannes Kraus, Raytcho Lazarov, Maria Lymbery, Svetozar Margenov, and
Ludmil Zikatanov

SIAM J. Sci. Comput. 38(2), (2016), 10.1137/140974092

In article X the AMLI-cycle ASMG is again in focus, this time with respect
to systems arising from a mixed finite element approximation of second-order
elliptic problems describing processes in highly heterogeneous media. First, we
prove the stability of the continuous and discrete variational formulations with
respect to the contrast of the media, defined as the ratio between the maximum
and minimum values of the coefficient of the elliptic operator.

For the numerical solution of the discrete problem, we propose a new precondi-
tioner for the MinRes algorithm where for the efficient solution of the weighted
H(div) subsystem a nonlinear ASMG algorithm is utilized. The performed nu-
merical tests demonstrate the high quality of the preconditioner and its desired
robustness with respect to the material contrast. Several representative test
cases have been considered, one of which is related to the SPE10 (Society of
Petroleum Engineers) benchmark problem.

This article is a joint work Johannes Kraus, Raytcho Lazarov, Svetozar Margenov
and Ludmil Zikatanov.

XI Incomplete factorization by local exact factorization (ILUE)

Johannes Kraus and Maria Lymbery

Math. Comput. Simul. 145 (2018), 50-61.

In article XI which is co-authored with Johannes Kraus we develop a special
preconditioning strategy for symmetric positive (semi-)definite SP(S)D matrices
which we refer to as incomplete factorization by local exact factorization (ILUE).

This technique is influenced by and therefore shares similarities with the auxiliary
space multigrid algorithm presented in articles VIII, XI, X in the sense that it
utilizes a splitting of the domain into overlapping or non-overlapping subdomains
as in ASMG, in the present context for computing exact LU decompositions of
small-sized local matrices. We define the ILUE preconditioner and provide an
estimate for its relative condition number.

We test the performance of the ILUE preconditioner within the PCG algorithm
for linear systems arising from the finite element (FE) discretization of a second
order elliptic boundary value problem in mixed formulation. The obtained nu-
merical results clearly show the robust behaviour of the new algorithm and its
advantage over the classical ILU(p) and ILUT(τ) incomplete factorization pre-
conditioners even for problems with highly oscillatory permeability coefficients.

15
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It should be noted that many coupled problems in computational mechanics are most
efficiently solved by applying preconditioning techniques which finally require only fast
solvers for elliptic problems either in form of a second-order self-adjoint problem or
of a first-order system in mixed form. An example of such a situation is article IV
in which the application of the parameter-robust preconditioner for the poroelasticity
system requires the inversion of Laplacians only.

A project proposal on the topic of fast solvers for the fully dynamic and non-linear
MPET model is under preparation.

16



Habilitationsschrift Dr. Maria Lymbery

PAPERS

17





Habilitationsschrift Dr. Maria Lymbery

CONSERVATIVE DISCRETIZATIONS AND PARAMETER-ROBUST
PRECONDITIONERS FOR BIOT AND MULTIPLE-NETWORK
FLUX-BASED POROELASTICITY MODELS

19





Received: 7 October 2018 Revised: 25 February 2019 Accepted: 8 March 2019

DOI: 10.1002/nla.2242

R E S E A R C H A R T I C L E

Conservative discretizations and parameter-robust
preconditioners for Biot and multiple-network flux-based
poroelasticity models

Qingguo Hong1 Johannes Kraus2 Maria Lymbery2 Fadi Philo2

1Department of Mathematics,
Pennsylvania State University, State
College, Pennsylvania
2Faculty of Mathematics, University of
Duisburg-Essen, Essen, Germany

Correspondence
Johannes Kraus, Faculty of Mathematics,
University of Duisburg-Essen, 45127
Essen, Germany.
Email: johannes.kraus@uni-due.de

Summary
The parameters in the governing system of partial differential equations of
multiple-network poroelasticity models typically vary over several orders of
magnitude, making its stable discretization and efficient solution a challenging
task. In this paper, we prove the uniform Ladyzhenskaya–Babuška–Brezzi (LBB)
condition and design uniformly stable discretizations and parameter-robust
preconditioners for flux-based formulations of multiporosity/multipermeability
systems. Novel parameter-matrix-dependent norms that provide the key for
establishing uniform LBB stability of the continuous problem are introduced. As
a result, the stability estimates presented here are uniform not only with respect
to the Lamé parameter 𝜆 but also to all the other model parameters, such as
the permeability coefficients Ki; storage coefficients cpi ; network transfer coeffi-
cients 𝛽 i j, i, j = 1, … ,n; the scale of the networks n; and the time step size 𝜏.
Moreover, strongly mass-conservative discretizations that meet the required
conditions for parameter-robust LBB stability are suggested and corresponding
optimal error estimates proved. The transfer of the canonical (norm-equivalent)
operator preconditioners from the continuous to the discrete level lays the foun-
dation for optimal and fully robust iterative solution methods. The theoretical
results are confirmed in numerical experiments that are motivated by practical
applications.

KEYWORDS

Biot's consolidation model, multiple-network poroelastic theory (MPET), parameter-robust LBB
stability, robust norm-equivalent preconditioners, strongly mass-conservative discretization

1 INTRODUCTION

Multiple-network poroelastic theory (MPET) has been introduced into geomechanics1,2 to describe mechanical deforma-
tion and fluid flow in porous media as a generalization of Biot's theory.3,4 The deformable elastic matrix is assumed to be
permeated by multiple fluid networks of pores and fissures with differing porosity and permeability.

Abbreviations: MPET, multiple-network poroelastic theory; LBB, Ladyzhenskaya–Babuška–Brezzi

Numer Linear Algebra Appl. 2019;e2242. wileyonlinelibrary.com/journal/nla © 2019 John Wiley & Sons, Ltd. 1 of 25
https://doi.org/10.1002/nla.2242



2 of 25 HONG ET AL.

During the last decade, MPET has acquired many important applications in medicine and biomechanics and therefore
become an active area of scientific research. The biological MPET model captures flow across scales and networks in soft
tissue and can be used as an embedding platform for more specific models, for example, to describe water transport in
the cerebral environment and to explore hypotheses defining the initiation and progression of both acute and chronic
hydrocephalus.5

In the works of Vardakis et al.6,7 multicompartmental poroelasticity models have been proposed to study the effects
of obstructing cerebrospinal fluid (CSF) transport within an anatomically accurate cerebral environment and to demon-
strate the impact of aqueductal stenosis and fourth ventricle outlet obstruction (FVOO). As a consequence, the efficacy of
treating such clinical conditions by surgical procedures that focus on relieving the buildup of CSF pressure in the brain's
third or fourth ventricles could be explored by means of computer simulations, which could also assist in finding medical
indications of oedema formation.8

Recently, the MPET model has also been used to better understand the influence of biomechanical risk factors associated
with the early stages of Alzheimer's disease (AD), the most common form of dementia.9 Modeling transport of fluid within
the brain is essential in order to discover the underlying mechanisms currently being investigated with regard to AD, such
as the amyloid hypothesis, according to which the accumulation of neurotoxic amyloid-𝛽 (A𝛽) into parenchymal senile
plaques or within the walls of arteries is a root cause of this disease.

Biot and multiple-network poroelasticity models are computationally challenging because the physical parameters in
practical applications exhibit extremely large variations. To give a few examples, comparing typical geophysical and biolo-
physical systems, permeabilities range from 10−9 to 10−21m2 and 10−7 to 10−16m2, a Poisson ratio from 0.1 to 0.3 and 0.3
to almost 0.5, respectively; see the works of Wang,10 Lee et al.,11 and Coussy.12 Young's modulus in geomechanics is of
the order of GPa, whereas in soft tissues, it is KPa; see the works of Smith et al.13 and Støverud et al.14

In the multiple-network poroelasticity model, recently proposed in the work of Vardakis et al.,7 describing fluid flow
in the human brain, permeability also depends on network type. Transfer coefficients between different networks are
very small and vary from 10−19kg/(m·s) to 10−13kg/(m·s). For that reason, it is important that the problem is well-posed
and that numerical methods for its solution are stable over the whole range of values of the physical and discretization
parameters.

The stability of discretizations by finite difference or finite volume methods for the Biot problem has been stud-
ied in other works.15–18 We focus here on the design and analysis of uniform LBB stable discretizations for static
multiple-network poroelasticity problems. It is well known that the well-posedness of saddle-point problems in their
weak formulation, apart from the boundedness of the underlying bilinear form, relies on a stability estimate that is often
referred to as the LBB condition.19,20 The LBB condition21,22 is also crucial in the analysis of stable discretizations and
the derivation of a priori error estimates. Inf-sup stability for the Darcy problem, as well as the Stokes and linear elastic-
ity problems, has been established under rather general conditions, and various stable mixed discretizations for either of
these problems have been proposed over the years; see, for example, the work of Boffi et al.19 and the references therein.

The fully parameter-robust stability of Biot's classical three-field formulation holding Darcy's law has been established
only recently in the work of Hong et al.23 Alternative formulations that can be proven to be stable include a two-field
formulation24,25 and a new three-field formulation introducing a total pressure as the third unknown aside from the
displacement and fluid pressure.11,26 A four-field formulation for the Biot model keeping the stress tensor as a variable
is considered in the work of Lee,27 where the analysis is robust with respect to the Lamé parameter 𝜆, but not uniform
with respect to parameter K. Another formulation of Biot's model based on 𝝈, u, p, and a Lagrange multiplier to weakly
impose the symmetry of the stress tensor 𝝈 has recently been proposed and analyzed in the work of Bærland et al.28

The first attempt to design and analyze parameter-robust stable discretizations for the MPET model is presented in the
work of Lee et al.29 Motivated by the works of Lee et al.11 and Oyarzúa et al.,26 Lee et al.29 propose a mixed finite element
formulation based on introducing an additional total pressure variable. They show that the formulation is robust in the
limits of incompressibility, vanishing storage coefficients, and vanishing transfer between networks.

There are various discretizations for the classic three-field formulation of Biot's model that fit in the framework of full
parameter-robust stability analysis presented in the work of Hong et al.23 For example, the triplets CRl∕RTl−1∕Pdc

l−1(l = 1, 2)
together with the stabilization techniques suggested in the works of Hansbo et al.30 and Hu et al.31 (see also the work
of Fortin et al.32); the triplets P2∕RT0∕Pdc

0 (in 2D) and Pstab
2 ∕RT0∕Pdc

0 (in 3D); P2∕RT1∕Pdc
1 ; the stabilized discretization,

recently advocated in the work of Rodrigo et al33; or the finite element methods proposed in the work of Lee34 would
qualify for such parameter robustness. Coupling continuous or discontinuous Galerkin (DG) approximations of the solid
displacement with a mixed method for the pressure, error estimates were obtained in the works of Phillips et al.35,36

Following the theoretical framework presented in this paper, these discretizations can be applied to the MPET model.
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A priori error estimates for the continuous-in-time scheme and discontinuous Galerkin spatial discretization, similar
to the work of Hong et al.,23 have been presented in the work of Kanschat et al.37 for the Biot model. Inspired by the
approach proposed in the work of Hong et al.23 in the context of the static Biot problem; we analyze the MPET system
using novel parameter-matrix-dependent norms. Furthermore, we exploit the same DG technology for discretizing the
displacement field. The aim of this work is to establish the results regarding the parameter-robust stability of the weak for-
mulation of the continuous problem, as well as the stability of strongly mass-conservative discretizations, corresponding
error estimates, and parameter-robust preconditioners for the (2n + 1)-field formulation of the n-network problem. The
presented stability results, error estimates, and preconditioners are independent of all model and discretization parame-
ters including the Lamé parameter 𝜆; permeability coefficients Ki; arbitrarily small or even vanishing storage coefficients
cpi ; network transfer coefficients 𝛽 i j, i, j = 1, … ,n; the scale of the networks n; the time step size 𝜏; and mesh size h. To
our knowledge, these are the first fully parameter-robust stability results for the MPET model in a flux-based formulation.

The paper is organized as follows. In Section 2, the multiple-network poroelasticity model is stated in a flux-based for-
mulation. The governing partial differential equations are then rescaled and the static boundary-value problem resulting
from semidiscretization in time by the implicit Euler method is presented in its weak formulation in the beginning of
Section 3. The proofs of the uniform boundedness and the parameter-robust inf-sup stability of the underlying bilinear
form are the main results that follow in this section. Section 4 then discusses a class of uniformly stable and strongly
mass-conservative mixed finite element discretizations that are based on H(÷)-conforming DG approximations of the
displacement field. Boundedness and LBB stability are shown to be independent of all model and discretization param-
eters. In consequence, parameter-robust preconditioners and uniform optimal error estimates are provided. Section 5 is
devoted to numerical tests underlining and validating the theoretical results of this work. Finally, Section 6 provides a
brief conclusion.

2 MODEL PROBLEM

In an open domainΩ ⊂ ℝd, d = 2, 3, the unknown physical variables in the MPET flux-based model are the displacement
u, fluxes vi, and corresponding pressures pi i = 1, … ,n. The equations describing the model are as follows:

−div 𝛔 +
n∑

i=1
𝛼i∇pi = f in Ω × (0,T), (1a)

vi = −Ki∇pi in Ω × (0,T), i = 1, … ,n, (1b)

−𝛼idiv .u − div vi − cpi

.pi −
n∑
𝑗=i
𝑗≠i

𝛽i𝑗(pi − p𝑗) = gi in Ω × (0,T), i = 1, … ,n, (1c)

𝛔 = 2𝜇𝝐(u) + 𝜆div(u)I, (1d)

𝝐(u) = 1
2 (∇u + (∇u)T). (1e)

In Equation (1d), 𝜆 and 𝜇 denote the Lamé parameters defined in terms of the modulus of elasticity (Young's modulus)
E and the Poisson ratio 𝜈 ∈ [0, 1∕2) by 𝜆 ∶= (𝜈E)∕[(1 + 𝜈)(1 − 2𝜈)],𝜇 ∶= E∕[2(1 + 𝜈)]. The constants 𝛼i appearing in (1a)
couple n pore pressures pi with the displacement variable u and are known in the literature as Biot–Willis parameters. The
corresponding right-hand side f describes the body force density. Each fluid flux vi is related to a specific negative pressure
gradient −∇pi via Darcy's law in (1b). The tensors Ki denote the hydraulic conductivities, which give an indication of the
general permeability of a porous medium. In (1c), .u and .pi express the time derivatives of the displacement u and the
pressure variables pi. The constants cpi are referred to as the constrained specific storage coefficients and are connected
to compressibility of each fluid; for more details, see for example the work of Showalter38 and the references therein. The
parameters 𝛽 i j are the network transfer coefficients coupling the network pressures5; hence, 𝛽 i j = 𝛽 ji. The source terms
gi in (1c) represent forced fluid extractions or injections into the medium.

It is assumed that the effective stress tensor 𝝈 satisfies Hooke's law (1d) where the effective strain tensor 𝝐(u) is given
by the symmetric part of the gradient of the displacement field; see (1e). Here, I is used to denote the identity tensor.



4 of 25 HONG ET AL.

The following boundary and initial conditions guarantee the well-posedness of system (1):

pi(x, t) = pi,D(x, t) for x ∈ Γpi,D, t > 0, i = 1, … ,n, (2a)

vi(x, t) · n(x) = qi,N(x, t) for x ∈ Γpi,N , t > 0, i = 1, … ,n, (2b)

u(x, t) = uD(x, t) for x ∈ Γu,D, t > 0, (2c)
(
𝛔(x, t) −

n∑
i=1

𝛼ipiI
)

n(x) = gN(x, t) for x ∈ Γu,N , t > 0, (2d)

where, for i = 1, … ,n, it is fulfilled Γpi,D ∩ Γpi,N = ∅, Γpi,D ∪ Γpi,N = Γ = 𝜕Ω, and Γu,D ∩ Γu,N = ∅, Γu,D ∪ Γu,N = Γ.
The initial conditions

pi(x, 0) = pi,0(x) x ∈ Ω, i = 1, … ,n, (3a)

u(x, 0) = u0(x) x ∈ Ω (3b)
at the time t = 0 have to satisfy (1a).

The stress variable 𝝈 is eliminated from the MPET system by substituting the constitutive equation (1d) in (1a), thus
obtaining a flux-based formulation of the MPET model.

To solve numerically the time-dependent problem, the backward Euler method is employed for time discretization
resulting in the following system of time-step equations:

−2𝜇div 𝝐(uk) − 𝜆∇div uk +
n∑

i=1
𝛼i∇pk

i = f k, (4a)

K−1
i vk

i + ∇pk
i = 0, i = 1, … ,n, (4b)

−𝛼idiv uk − 𝜏div vk
i − cpi p

k
i − 𝜏

n∑
𝑗=1
𝑗≠i

𝛽i𝑗
(

pk
i − pk

𝑗
)
= gk

i , i = 1, … ,n. (4c)

The unknown time-step functions uk, vk
i , pk

i for i = 1, … ,n yield approximations of u, vi, pi at a given time tk = tk− 1 + 𝜏:

u(x, tk) ≈ uk ∈ u ∶=
{

u ∈ H1(Ω)d ∶ u = uD on Γu,D
}
,

vi(x, tk) ≈ vk
i ∈ V i ∶=

{
vi ∈ H(div,Ω) ∶ vi · n = qi,N on Γpi,N

}
,

pi(x, tk) ≈ pk
i ∈ Pi ∶= L2(Ω).

The right-hand side time-step functions are given by

f k = f (x, tk),
gk

i = −𝜏gi(x, tk) − 𝛼idiv(uk−1) − cpi p
k−1
i , i = 1, … ,n.

Later, the static problem (4) is considered and, for convenience, the superscript for the time-step functions is skipped,
that is, uk, vk

i , and pk
i will be denoted by u, vi, and pi, respectively.

As usual, let L2(Ω) be the space of square Lebesgue integrable functions equipped with the standard L2 norm || · ||;
H1(Ω)d denotes the space of vector-valued H1-functions equipped with the norm || · ||1 for which ||u||21 ∶= ||u||2 + ||∇u||2;
H(div; Ω) ∶= {v ∈ L2(Ω)d ∶ div v ∈ L2(Ω)}with norm || · ||div defined by ||v||2div ∶= ||v||2 + ||divv||2. When the case Γu,D =
Γpi,N = Γ and uD = 0, qi,N = 0 is considered, the notations U = H1

0(Ω)
d and Vi = H0(div,Ω), i = 1, … ,n are used. To

guarantee the uniqueness of the solution for the pressure variables pi, we set Pi = L2
0(Ω) ∶= {p ∈ L2(Ω) ∶ ∫Ωpdx = 0} for

i = 1, … ,n.

3 STABILITY ANALYSIS

Before presenting the stability analysis, we perform a transformation of the governing system of partial differential
equations with the aim of reducing the number of model parameters. One could additionally nondimensionalize the
equations,39 which, however, would not change the range of the parameters as considered in this paper.
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First, the parameter 𝜇 is eliminated from the system by dividing Equation (4) by 2𝜇, that is, making the substitutions

2𝜇 → 1, 𝜆
2𝜇 → 𝜆, 𝛼i

2𝜇 → 𝛼i,
f

2𝜇 → f , 𝜏
2𝜇 → 𝜏,

cpi

2𝜇 → cpi ,
gi

2𝜇 → gi, i = 1, … ,n,

Equation (4) becomes

−div 𝝐(u) − 𝜆∇div u +
n∑

i=1
𝛼i∇pi = f , (5a)

K−1
i vi + ∇pi = 0, i = 1, … ,n, (5b)

−𝛼idiv u − 𝜏div vi − cpi pi − 𝜏
n∑

𝑗=1
𝑗≠i

𝛽i𝑗(pi − p𝑗) = gi, i = 1, … ,n. (5c)

Next, Equation (5b) is multiplied by 𝛼i and Equation (5c) by 𝛼−1
i so that the substitutions ṽi ∶= 𝜏

𝛼i
vi, p̃i ∶= 𝛼ipi, g̃i ∶= gi

𝛼i
yield

−div 𝝐(u) − 𝜆∇div u +
n∑

i=1
∇p̃i = f , (6a)

𝜏−1K−1
i 𝛼2

i ṽi + ∇p̃i = 0, i = 1, … ,n, (6b)

−div u − div ṽi −
cpi

𝛼2
i

p̃i +
n∑

𝑗=1
𝑗≠i

(
−
𝜏𝛽i𝑗

𝛼2
i

p̃i +
𝜏𝛽i𝑗

𝛼i𝛼𝑗
p̃𝑗

)
= g̃i, i = 1, … ,n. (6c)

We define

R−1
i = 𝜏−1K−1

i 𝛼2
i , 𝛼pi =

cpi

𝛼2
i
, 𝛽ii =

n∑
𝑗=1
𝑗≠i

𝛽i𝑗 , 𝛼i𝑗 =
𝜏𝛽i𝑗

𝛼i𝛼𝑗
, i, 𝑗 = 1, … ,n

and make the rather general and reasonable assumptions that

𝜆 > 0, R−1
1 , … ,R−1

n > 0, 𝛼p1 , … , 𝛼pn ≥ 0, 𝛼i𝑗 ≥ 0, i, 𝑗 = 1, … ,n. (7)

Making use of these substitutions, and, for convenience, skipping the “tilde” symbol, system (4a) becomes

−div 𝝐(u) − 𝜆∇div u +
n∑

i=1
∇pi = f , (8a)

R−1
i vi + ∇pi = 0, i = 1, … ,n, (8b)

−div u − div vi − (𝛼pi + 𝛼ii)pi +
n∑

𝑗=1
𝑗≠i

𝛼i𝑗p𝑗 = gi, i = 1, … ,n, (8c)

or [uT , vT
1 , … , vT

n , p1, … , pn
]T =

[
f T , 0T , … , 0T , g1, … , gn

]T , (9)
where

𝒜 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−div 𝝐 − 𝜆∇div 0 … … 0 ∇ … … ∇
0 R−1

1 I 0 … 0 ∇ 0 … 0
⋮ 0 ⋱ ⋮ 0 ⋱ ⋮
⋮ ⋮ ⋱ 0 ⋮ ⋱ 0
0 0 … 0 R−1

n I 0 … 0 ∇

−div −div 0 … 0 �̃�11I 𝛼12I … 𝛼1nI
⋮ 0 ⋱ ⋮ 𝛼21I ⋱ 𝛼2nI
⋮ ⋮ ⋱ 0 ⋮ ⋱ ⋮

−div 0 … 0 −div 𝛼n1I 𝛼n2I … �̃�nnI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

is the scaled operator and �̃�ii = −𝛼pi − 𝛼ii, i = 1, … ,n.
For convenience, let vT = (vT

1 , … , vT
n ), pT = ( p1, … , pn), zT = (zT

1 , … , zT
n ), qT = (q1, … , qn), and V = V1 × … × Vn,

P = P1 × … × Pn. With the boundary conditions, system (8a) has the following weak formulation: Find (u; v;p) ∈
U × V × P such that, for any (w; z;q) ∈ U × V × P, there holds

(𝝐(u), 𝝐(w)) + 𝜆(div u, div w) −
n∑

i=1
(pi, div w) = ( f ,w) (11a)
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(R−1
i vi, zi) − (pi, div zi) = 0, i = 1, … ,n, (11b)

−(div u, qi) − (div vi, qi) − (𝛼pi + 𝛼ii)(pi, qi) +
n∑

𝑗=1
𝑗≠i

𝛼i𝑗(p𝑗 , qi) = (gi, qi), i = 1, … ,n. (11c)

Following the work of Lipnikov,40 we first consider the following Hilbert spaces and weighted norms:

U = H1
0(Ω)

d, (u,w)u = (𝝐(u), 𝝐(w)) + 𝜆(div u, div w), (12)

V i = H0(div,Ω), (vi, zi)V i = (R−1
i vi, zi) +

(
R−1

i div vi, div zi
)
, i = 1, … ,n, (13)

Pi = L2
0(Ω), (pi, qi)Pi = (pi, qi), i = 1, … ,n. (14)

System (11), however, is not uniformly stable with respect to the parameters R−1
i under these norms as shown in the work

of Hong et al.23 Therefore, proper parameter-dependent norms for the spaces U, Vi, Pi, i = 1, … ,n, have to be introduced
that allow us to establish the parameter-robust stability of the MPET model (11) for parameters in the ranges presented
in (7).

From experience, we know that the largest of the values R−1
i , i = 1, … ,n is important and we note that the term

(𝝐(u), 𝝐(w)) dominates in the elasticity form when 𝜆 ≪ 1. Hence, we define

R−1 = max
{

R−1
1 , … ,R−1

n
}
, 𝜆0 = max{1, 𝜆}. (15)

We introduce the following n × n matrices:

Λ1 =
⎡⎢⎢⎢⎣

𝛼11 −𝛼12 … −𝛼1n
−𝛼21 𝛼22 … −𝛼2n
⋮ ⋮ ⋱ ⋮

−𝛼n1 −𝛼n2 … 𝛼nn

⎤⎥⎥⎥⎦
, Λ2 =

⎡⎢⎢⎢⎣

𝛼p1 0 … 0
0 𝛼p2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝛼pn

⎤⎥⎥⎥⎦
,

Λ3 =
⎡
⎢⎢⎢⎣

R 0 … 0
0 R … 0
⋮ ⋮ ⋱ ⋮
0 0 … R

⎤
⎥⎥⎥⎦
, Λ4 =

⎡
⎢⎢⎢⎢⎣

1
𝜆0

… … 1
𝜆0

⋮ ⋮
⋮ ⋮
1
𝜆0

… … 1
𝜆0

⎤
⎥⎥⎥⎥⎦

through which the parameter-dependent norms are to be specified and analyzed. From the definition of 𝛼i𝑗 =
𝜏𝛽i𝑗

𝛼i𝛼𝑗
, 𝛽ii =∑n

𝑗=1
𝑗≠i

𝛽i𝑗 , and 𝛽 i j = 𝛽 ji, it is obvious that Λ1 is symmetric positive semidefinite (SPSD). Because 𝛼pi ≥ 0, we have that Λ2

is SPSD. Noting that R > 0, it follows that Λ3 is symmetric positive definite (SPD). Moreover, it is obvious that Λ4 is a
rank-one matrix with eigenvalues 𝜆i = 0, i = 1, … ,n − 1, and 𝜆n = n

𝜆0
.

Remark 1. Let gT = ( g1, … , gn). It is convenient to assume that ∫Ω gdx = 𝟎. This assumption, however, as we explain
here is not restrictive for the following reason. If ∫Ω gdx ≠ 𝟎, then the “consistency condition” rank(Λ1 + Λ2) =
rank(Λg)has to be satisfied where rank(X) denotes the rank of a matrix X andΛg = [Λ1 + Λ2, gc] is the matrix obtained
by augmenting Λ1 + Λ2 with the column gc =

1
|Ω|∫Ω gdx. In this case, there exists a vector pT

c = (p1,c, … , pn,c) ∈ ℝn

such that (Λ1 + Λ2)pc = gc (in many applications, Λ1 + Λ2 is invertible and pc = (Λ1 + Λ2)−1gc). Hence, we can
decompose g = g0 + gc, where g0 = g− 1

|Ω|∫Ω gdx, and thus, ∫Ω g0dx = 𝟎. Then, the solution (u; v;p) can be decomposed
according to (u; v;p) = (u; v;p0) + (0; 0;pc), where pT

0 = (p1,0, … , pn,0) ∈ L2
0(Ω) × … × L2

0(Ω) and pc is a basic
solution of (Λ1 + Λ2)pc = gc. This decomposition shows that we only need to consider the case when ∫Ω gdx = 𝟎.

Now, we introduce the SPD matrix

Λ =
4∑

i=1
Λi. (16)

As we will see, Λ plays an important role in the definition of proper norms and the splitting (16) in our analysis.
Furthermore, we summarize some useful properties of the matrix Λ in the following lemma.

Lemma 1. Let Λ̃ = Λ3 + Λ4, Λ̃−1 = (b̃i𝑗)n×n; then, Λ̃ is SPD and, for any n-dimensional vector x, we have

(Λx, x) ≥ (Λ̃x, x) ≥ (Λ3x, x), (17)

(Λ−1x, x) ≤ (Λ̃−1x, x) ≤ (
Λ−1

3 x, x
)
= R−1(x, x). (18)



HONG ET AL. 7 of 25

In addition,

0 <
n∑

i=1

n∑
𝑗=1

b̃i𝑗 ≤ 𝜆0. (19)

Proof. From the definitions of Λ3,Λ4, noting that Λ3 is SPD and Λ4 is SPSD, it is obvious that Λ̃ is SPD.
From the definition of Λ, noting that Λ1 and Λ2 are SPSD, we infer the estimates

(Λx, x) ≥ (Λ̃x, x) ≥ (Λ3x, x), (Λ−1x, x) ≤ (Λ̃−1x, x) ≤ (
Λ−1

3 x, x
)
= R−1(x, x).

Next, we show that
n∑

i=1

n∑
𝑗=1

b̃i𝑗 ≤ 𝜆0.

From the definitions of Λ3,Λ4, and Λ̃, we have

Λ̃ =

⎡
⎢⎢⎢⎢⎢⎣

R + 1
𝜆0

1
𝜆0

… 1
𝜆01

𝜆0
⋱ ⋱ ⋮

⋮ ⋱ ⋱ 1
𝜆01

𝜆0
… 1

𝜆0
R + 1

𝜆0

⎤
⎥⎥⎥⎥⎥⎦

.

Now, using the Sherman–Morrison–Woodbury formula, we find

Λ̃−1 =
(
Λ3 + �̃�eT)−1 = Λ−1

3 −
Λ−1

3 �̃�eTΛ−1
3

1 + eTΛ−1
3 �̃�

, where �̃� =

⎛
⎜⎜⎜⎜⎝

1
𝜆0

, … , 1
𝜆0

⏟⏞⏞⏞⏟⏞⏞⏞⏟
n

⎞
⎟⎟⎟⎟⎠

T

, e = (1, … , 1
⏟⏟⏟

n

)T .

Furthermore, noting that

Λ−1
3 =

⎡
⎢⎢⎢⎣

1
R 0 … 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 1

R

⎤
⎥⎥⎥⎦
= 1

R In×n,

where In×n is the n × n identity matrix, we obtain

Λ−1
3 �̃�eTΛ−1

3 =
( 1

R In×n

)
⎡
⎢⎢⎢⎢⎣

1
𝜆0

… … 1
𝜆0

⋮ ⋱ ⋮
⋮ ⋱ ⋮
1
𝜆0

… … 1
𝜆0

⎤
⎥⎥⎥⎥⎦

( 1
R In×n

)
=

⎡
⎢⎢⎢⎢⎣

1
R2𝜆0

… … 1
R2𝜆0

⋮ ⋱ ⋮
⋮ ⋱ ⋮
1

R2𝜆0
… … 1

R2𝜆0

⎤
⎥⎥⎥⎥⎦

and

eTΛ−1
3 �̃� = (1, … , … , 1)

⎡⎢⎢⎢⎣

1
R 0 … 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 1

R

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1
𝜆0
⋮
⋮
1
𝜆0

⎤⎥⎥⎥⎥⎦
=

n∑
i=1

1
R𝜆0

= n
R𝜆0

,

which implies that

1
1 + eTΛ−1

3 �̃�
= R𝜆0

R𝜆0 + n .
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Now, we can calculate Λ̃−1 as follows:

Λ̃−1 = Λ−1
3 −

Λ−1
3 �̃�eTΛ−1

3

1 + eTΛ−1
3 �̃�

=
⎡⎢⎢⎢⎣

1
R 0 … 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 1

R

⎤⎥⎥⎥⎦
− R𝜆0

R𝜆0 + n

⎡⎢⎢⎢⎢⎣

1
R2𝜆0

… … 1
R2𝜆0

⋮ ⋱ ⋮
⋮ ⋱ ⋮
1

R2𝜆0
… … 1

R2𝜆0

⎤⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1
R − 1

R(R𝜆0+n) − 1
R(R𝜆0+n) … − 1

R(R𝜆0+n)
− 1

R(R𝜆0+n)
1
R − 1

R(R𝜆0+n) … − 1
R(R𝜆0+n)

⋮ ⋮ ⋱ ⋮
− 1

R(R𝜆0+n) − 1
R(R𝜆0+n) … 1

R − 1
R(R𝜆0+n)

⎤
⎥⎥⎥⎥⎦
= (b̃i𝑗)n×n.

Finally, we conclude that
n∑

i=1

n∑
𝑗=1

b̃i𝑗 =
n
R − n2

R(R𝜆0 + n) =
nR𝜆0 + n2 − n2

R(R𝜆0 + n) = n𝜆0
(R𝜆0 + n) ≤

n𝜆0
n = 𝜆0.

The crucial idea here is that we equip the Hilbert spaces U,V,P with parameter-matrix-dependent norms || · ||U, || · ||V,
|| · ||P induced by the following inner products:

(u,w)u = (𝝐(u), 𝝐(w)) + 𝜆(div u, div w), (20a)

(v, z)V =
n∑

i=1

(
R−1

i vi, zi
)
+ (Λ−1Div v,Div z), (20b)

(p,q)P = (Λp,q), (20c)

where pT = ( p1, … , pn), vT = (vT
1 , … , vT

n ), (Div v)T = (div v1, … , div vn).
It is easy to show that (20a)–(20c) are indeed inner products on U,V,P, respectively. It should be noted that Div v,Div z,

and p,q are vectors and the SPD matrix Λ is used to define the norms. These novel parameter-matrix-dependent norms
play a key role in the analysis of the uniform stability of the MPET model. We further point out that, for n = 1, the norms
defined by (20) are slightly different but equivalent to the norms that were used in the work of Hong et al.23 to establish
the parameter-robust inf-sup stability of the three-field formulation of Biot's model of consolidation.

The main result of this section is a proof of the uniform well-posedness of problem (11) under the norms induced
by (20). Firstly, directly related to problem (11), we introduce the bilinear form

((u; v;p), (w; z;q)) = (𝝐(u), 𝝐(w)) + 𝜆(div u, div w) −
n∑

i=1
( pi, div w) +

n∑
i=1

(
R−1

i vi, zi
)
−

n∑
i=1

( pi, div zi)

−
n∑

i=1
(div u, qi) −

n∑
i=1

(div vi, qi) −
n∑

i=1
(𝛼pi + 𝛼ii)( pi, qi) +

n∑
i=1

n∑
𝑗=1
𝑗≠i

𝛼𝑗i( p𝑗 , qi),

which, in view of the definition of the matrices Λ1 and Λ2, can be written in the form

((u; v;p), (w; z;q)) = (𝝐(u), 𝝐(w)) + 𝜆(div u, div w) −

( n∑
i=1

pi, div w
)

+
n∑

i=1

(
R−1

i vi, zi
)
− ( p,Div z)

−

(
div u,

n∑
i=1

qi

)
− (Div v,q) − ((Λ1 + Λ2)p,q).

Then, the following theorem shows the boundedness of ((·; ·; ·), (·; ·; ·)) in the norms induced by (20).

Theorem 1. There exists a constant Cb independent of the parameters 𝜆,R−1
i , 𝛼pi , 𝛼i𝑗 , i, 𝑗 = 1, … ,n and the network

scale n such that, for any (u; v;p) ∈ U × V × P, (w; z;q) ∈ U × V × P,

|((u; v;p), (w; z;q))| ≤ Cb(||u||U + ||v||V + ||p||P)(||w||U + ||z||V + ||q||P).
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Proof. From the definition of the bilinear form and by using Cauchy's inequality, we obtain

((u; v;p), (w; z;q)) = (𝝐(u), 𝝐(w)) + 𝜆(div u, div w) −

( n∑
i=1

pi, div w
)

+
n∑

i=1
(R−1

i vi, zi) − (p,Div z) −
(

div u,
n∑

i=1
qi

)
− (Div v,q) − ((Λ1 + Λ2)p,q)

≤ ||𝝐(u)||||𝝐(w)|| + 𝜆||div u||||div w|| + 1√
𝜆0
||

n∑
i=1

pi||
√
𝜆0||div w||

+
n∑

i=1

(
R−1

i vi, vi
) 1

2
(

R−1
i zi, zi

) 1
2 + ||Λ 1

2 p||||Λ− 1
2 Div z|| +√𝜆0||div u|| 1√

𝜆0
||

n∑
i=1

qi||

+ ||Λ− 1
2 Div v||||Λ 1

2 q|| + ||(Λ1 + Λ2)
1
2 p||||(Λ1 + Λ2)

1
2 q||.

Then, another application of Cauchy's inequality, in view of the definition of Λ4, yields

((u; v;p), (w; z;q)) ≤ ||𝝐(u)||||𝝐(w)|| + 𝜆||div u||||div w|| + ||Λ
1
2
4 p||√𝜆0||div w||

+

( n∑
i=1

(R−1
i vi, vi)

) 1
2
( n∑

i=1
(R−1

i zi, zi)

) 1
2

+ ||Λ 1
2 p||||Λ− 1

2 Div z||

+
√
𝜆0||div u||||Λ

1
2
4 q|| + ||Λ− 1

2 Divv||||Λ 1
2 q|| + ||(Λ1 + Λ2)

1
2 p||||(Λ1 + Λ2)

1
2 q||.

Before we prove the uniform inf-sup condition for the MPET problem, we recall some well-known results.19,22

Lemma 2. There exists a constant 𝛽v > 0 such that

inf
q∈Pi

sup
v∈Vi

(div v, q)
||v||div||q|| ≥ 𝛽d, i = 1, … ,n. (21)

Moreover, for any (q1, … , qn) ∈ P1 × … × Pn, the sum∑n
i=1 qi is in L2

0(Ω) and the classical Stokes inf-sup condition19

implies the following.

Lemma 3. There exists a constant 𝛽s > 0 such that

inf
(q1,… ,qn)∈P1×…×Pn

sup
u∈U

(
div u,

n∑
i=1

qi

)

||u||1||
n∑

i=1
qi||

≥ 𝛽s. (22)

We are now ready to prove the uniform LBB condition for ((·; ·; ·), (·; ·; ·)) in the norms induced by (20).

Theorem 2. There exists a constant 𝜔 > 0 independent of the parameters 𝜆,R−1
i , 𝛼pi , 𝛼i𝑗 for all i, j ∈ {1, … ,n}, and

independent of the number of networks n such that

inf
(u;v;p)∈U×V×P

sup
(w;z;q)∈U×V×P

((u; v;p), (w; z;q))
(||u||U + ||v||V + ||p||P)(||w||U + ||z||V + ||q||P) ≥ 𝜔.

Proof. For any (u; v;p) = (u; v1, … , vn; p1, … , pn) ∈ U × V1 × … × Vn × P1 × … × Pn, by Lemma 2, there exist

𝝍 i ∈ V i such that div𝝍 i =
√

Rpi and ||𝝍 i||div ≤ 𝛽−1
d

√
R||pi||, i = 1, … ,n, (23)

and by Lemma 3, there exists

u0 ∈ U such that div u0 = 1√
𝜆0

( n∑
i=1

pi

)
, ||u0||1 ≤ 𝛽−1

s
1√
𝜆0

‖‖‖‖‖

n∑
i=1

pi
‖‖‖‖‖
. (24)
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Choose
w = 𝛿u − 1√

𝜆0
u0, zi = 𝛿vi −

√
R𝝍 i, i = 1, … ,n, q = −𝛿p − Λ−1Div v, (25)

where 𝛿 is a positive constant to be determined later. Now, let us verify the boundedness of (w; z;q) by (u; v;p) in the
combined norm. Let 𝝍T = (𝝍T

1 , … ,𝝍T
n ) such that z = 𝛿v −

√
R𝝍 .

Firstly, by (24), we have(
1√
𝜆0

u0,
1√
𝜆0

u0

)

U

=

(
𝝐

(
1√
𝜆0

u0

)
, 𝝐

(
1√
𝜆0

u0

))
+ 𝜆

(
div

(
1√
𝜆0

u0

)
, div

(
1√
𝜆0

u0

))

≤ 1
𝜆0

(𝝐(u0), 𝝐(u0)) + (div u0, div u0) ≤ 1
𝜆0

(𝝐(u0), 𝝐(u0)) +
1
𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)

≤ 1
𝜆0

𝛽−2
s

1
𝜆0
||

n∑
i=1

pi||2 + 1
𝜆0
||

n∑
i=1

pi||2 ≤ 1
𝜆0

(
𝛽−2

s
1
𝜆0

+ 1
)
||

n∑
i=1

pi||2

≤ 1
𝜆0

(
𝛽−2

s + 1
) ||

n∑
i=1

pi||2 =
(
𝛽−2

s + 1
)
(Λ4p,p) ≤ (

𝛽−2
s + 1

) ||p||2P,

which implies that
||w||u ≤ 𝛿||u||u +

√(
𝛽−2

s + 1
)||p||P. (26)

Secondly, by (18) and (23), we have
(√

R𝝍 ,
√

R𝝍
)

V
=

n∑
i=1

(
R−1

i

√
R𝝍 i,

√
R𝝍 i

)
+
(
Λ−1Div

(√
R𝝍

)
,Div

(√
R𝝍

))

≤ R
n∑

i=1

(
R−1

i 𝝍 i,𝝍 i
)
+ R−1

(
Div

(√
R𝝍

)
,Div

(√
R𝝍

)) ≤ n∑
i=1

(𝝍 i,𝝍 i) + (Div𝝍 ,Div𝝍)

=
n∑

i=1
||𝝍 i||2 +

n∑
i=1

(div𝝍 i, div𝝍 i) =
n∑

i=1
||𝝍 i||2div ≤

n∑
i=1

𝛽−2
d R||pi||2

= 𝛽−2
d R||p||2 ≤ 𝛽−2

d ||p||2P,
which implies that

||z||V ≤ 𝛿||v||V + 𝛽−1
d ||p||P. (27)

Thirdly, there holds
||q||P ≤ 𝛿||p||P + ||v||V (28)

because (Λ−1Div v,Λ−1Div v)P = (Div v,Λ−1Div v) ≤ (v, v)V.
Collecting the estimates (26), (27), and (28), we obtain the desired boundedness estimate

||w||U + ||z||V + ||q||P ≤ (
𝛿 + 1 + 𝛽−1

d + 𝛽−1
s
)
(||u||U + ||v||V + ||p||P).

Next, we show the coercivity of((u; v;p), (w; z;q)). Using the definition of((u; v;p), (w; z;q)) and that of (w; z;q)
from (25), we find

((u; v;p), (w; z;q)) = (𝝐(u), 𝝐(w)) + 𝜆(div u, div w) −

( n∑
i=1

pi, div w
)

+
n∑

i=1

(
R−1

i vi, zi
)
− ( p,Div z) −

(
div u,

n∑
i=1

qi

)
− (Div v,q) − ((Λ1 + Λ2)p,q)

=

(
𝝐(u), 𝝐

(
𝛿u − 1√

𝜆0
u0

))
+ 𝜆

(
div u, div

(
𝛿u − 1√

𝜆0
u0

))
−

( n∑
i=1

pi, div
(
𝛿u − 1√

𝜆0
u0

))

+
n∑

i=1

(
R−1

i vi,
(
𝛿vi −

√
R𝝍 i

))
−
(

Div
(
𝛿v −

√
R𝝍

)
,p
)
−
⎛
⎜⎜⎜⎝
(div u, … , div u
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n

)T ,−𝛿p − Λ−1Div v
⎞
⎟⎟⎟⎠

− (Div v,−𝛿p − Λ−1Div v) −
(
(Λ1 + Λ2)p, (−𝛿p − Λ−1Div v)

)
.



HONG ET AL. 11 of 25

Using (23) and (24), we therefore get

((u; v;p), (w; z;q)) = 𝛿(𝝐(u), 𝝐(u)) − 1√
𝜆0

(𝝐(u), 𝝐(u0)) + 𝛿𝜆(div u, div u) − 𝜆√
𝜆0

(div u, div u0) − 𝛿

( n∑
i=1

pi, div u
)

+ 1√
𝜆0

( n∑
i=1

pi, div u0

)
+ 𝛿

n∑
i=1

(
R−1

i vi, vi
)
−
√

R
n∑

i=1

(
R−1

i vi,𝝍 i
)
− 𝛿(Div v,p) +

√
R(Div𝝍 ,p)

+ 𝛿

⎛⎜⎜⎜⎝
(div u, … , div u
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n

)T ,p
⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝
Λ−1(div u, … , div u

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
n

)T ,Div v
⎞⎟⎟⎟⎠
+ 𝛿( p,Div v)

+ (Λ−1Div v,Div v) + 𝛿((Λ1 + Λ2)p,p) +
(
(Λ1 + Λ2)p,Λ−1Div v

)

= 𝛿(𝝐(u), 𝝐(u)) − 1√
𝜆0

(𝝐(u), 𝝐(u0)) + 𝛿𝜆(div u, div u) − 𝜆
𝜆0

(
div u,

n∑
i=1

pi

)
+ 1

𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)

+ 𝛿
n∑

i=1

(
R−1

i vi, vi
)
−
√

R
n∑

i=1

(
R−1

i vi,𝝍 i
)
+ R

n∑
i=1

(pi, pi) + (Λ−1

⎛
⎜⎜⎜⎝
(div u, … , div u
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n

)T ,Div v
⎞
⎟⎟⎟⎠

+ (Λ−1Div v,Div v) + 𝛿((Λ1 + Λ2)p,p) +
(
(Λ1 + Λ2)p,Λ−1Div v

)
.

Using Young's inequality, it follows that

((u; v;p), (w; z;q)) ≥ 𝛿(𝝐(u), 𝝐(u)) − 1
2

1√
𝜆0
𝝐1(𝝐(u), 𝝐(u)) − 1

2
1√
𝜆0
𝝐−1

1 (𝝐(u0), 𝝐(u0)) + 𝛿𝜆(div u, div u)

− 𝜆(div u, div u) − 𝜆
4𝜆2

0

( n∑
i=1

pi,
n∑

i=1
pi

)
+ 1

𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)
+ 𝛿

n∑
i=1

(
R−1

i vi, vi
)
− 1

2𝝐2

n∑
i=1

(
R−1

i vi, vi
)

− 1
2𝝐

−1
2 R

n∑
i=1

(
R−1

i 𝝍 i,𝝍 i
)
+ R

n∑
i=1

(pi, pi) − (Λ−1(div u, … , div u)T , (div u, … , div u)T)

− 1
4 (Λ

−1Div v,Div v) + (Λ−1Div v,Div v) + 𝛿((Λ1 + Λ2)p,p)

− 1
4 ((Λ1 + Λ2)Λ−1Div v,Λ−1Div v) − ((Λ1 + Λ2)p,p). (29)

From the definition of Λ and noting that both Λ3 and Λ4 are SPSD, we conclude that

(Λ−1Div v,Div v) −
(
(Λ1 + Λ2)Λ−1Div v,Λ−1Div v

)
= (Λ−1Div v,ΛΛ−1Div v) −

(
Λ−1Div v, (Λ1 + Λ2)Λ−1Div v

)

=
(
Λ−1Div v, (Λ3 + Λ4)Λ−1Div v

) ≥ 0. (30)

Furthermore, by (19) from Lemma 1, we have that

(
Λ−1(div u, … , div u)T , (div u, … , div u)T) =

( n∑
i=1

n∑
𝑗=1

b̃i𝑗

)
(div u, div u) ≤ 𝜆0(div u, div u). (31)

Collecting (29)–(31), the estimates from (23) and (24), and noting that 𝜆0 = max{𝜆, 1}, the proof continues as follows:

((u; v;p), (w; z;q)) ≥
(
𝛿 − 1

2
1√
𝜆0
𝝐1

)
(𝝐(u), 𝝐(u)) − 1

2
1√
𝜆0
𝝐−1

1 𝛽−2
s

1
𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)
+ (𝛿 − 1)𝜆(div u, div u)

+ 3
4𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)
+
(
𝛿 − 1

2𝝐2

) n∑
i=1

(
R−1

i vi, vi
)
− 1

2𝝐
−1
2

n∑
i=1

(𝝍 i,𝝍 i) + R
n∑

i=1
(pi, pi)

− (𝜆0 − 𝜆 + 𝜆)(div u, div u) + 1
2 (Λ

−1Div v,Div v) + (𝛿 − 1)((Λ1 + Λ2)p,p).
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Let 𝝐1 ∶= 2𝛽−2
s , 𝝐2 ∶= 2𝛽−2

d . We note that 𝜆0 = max{𝜆, 1} and (div u, div u) ≤ 2(𝝐(u), 𝝐(u)) for all u ∈ H1
0(Ω)

d to obtain

((u; v;p), (w; z;q)) ≥ (
𝛿 − 𝛽−2

s − 2
)
(𝝐(u), 𝝐(u)) − 1

4𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)
+ (𝛿 − 2)𝜆(div u, div u) + 3

4𝜆0

( n∑
i=1

pi,
n∑

i=1
pi

)

+
(
𝛿 − 𝛽−2

d
) n∑

i=1

(
R−1

i vi, vi
)
− 1

4 R
n∑

i=1
(pi, pi) + R

n∑
i=1

(pi, pi) +
1
2 (Λ

−1Div v,Div v)

+ (𝛿 − 1)((Λ1 + Λ2)p,p),

or equivalently,

((u; v;p), (w; z;q)) ≥ (
𝛿 − 𝛽−2

s − 2
)
(𝝐(u), 𝝐(u)) + (𝛿 − 2)𝜆(div u, div u) + 1

2 (Λ4p,p)

+
(
𝛿 − 𝛽−2

d
) n∑

i=1

(
R−1

i vi, vi
)
+ 3

4 (Λ3p,p) + 1
2 (Λ

−1Div v,Div v) + (𝛿 − 1)((Λ1 + Λ2)p,p).

Finally, let 𝛿 ∶= max{𝛽−2
s + 2 + 1

2 , 𝛽
−2
d + 1

2}. Then, using the definition of Λ, we get the desired coercivity estimate

((u; v;p), (w; z;q)) =
(
𝛿 − 𝛽−2

s − 2
)
(𝝐(u), 𝝐(u)) + (𝛿 − 2)𝜆(div u, div u) +

(
𝛿 − 𝛽−2

d
) n∑

i=1

(
R−1

i vi, vi
)

+ 1
2 (Λ

−1Div v,Div v) +
((

(𝛿 − 1)(Λ1 + Λ2) +
3
4Λ3 +

1
2Λ4

)
p,p

)

≥ 1
2
(||u||2u + ||v||2V + ||p||2P

)
.

The above theorem implies the following stability result.

Corollary 1. Let (u; v;p) ∈ U × V × P be the solution of (11). Then, there holds the estimate

||u||U + ||v||V + ||p||P ≤ C1(|| f ||U∗ + ||g||P∗ ), (32)

for some positive constant C1 that is independent of the parameters 𝜆,R−1
i , 𝛼pi , 𝛼i𝑗 , i, 𝑗 = 1, … ,n and the network scale n,

where || f ||U∗ = supw∈U
( f,w)
||w||U , ||g||P∗ = supq∈P

(g,q)
||q||P = ||Λ− 1

2 g||.

Remark 2. We want to emphasize that the parameter ranges as specified in (7) are indeed relevant because the vari-
ations of the model parameters are quite large in many applications. For that reason, Theorem 1 and Theorem 2 are
fundamental results that provide the parameter-robust stability of the model (11a)– (11c). We also point out that the
matrix technique plays an interesting role for proving the uniform stability.

Remark 3. Let Λ = (𝛾i𝑗)n×n,Λ−1 = (�̃�i𝑗)n×n and define

ℬ ∶=
⎡⎢⎢⎣

ℬ−1
u 0 0

0 ℬ−1
v 0

0 0 ℬ−1
p

⎤⎥⎥⎦
, (33)

where
ℬu = −div𝝐 − 𝜆∇div,

ℬv =
⎡
⎢⎢⎢⎣

R−1
1 I 0 … 0
0 R−1

2 I … 0
⋮ ⋮ ⋱ ⋮
0 0 … R−1

n I

⎤
⎥⎥⎥⎦
−
⎡
⎢⎢⎢⎣

�̃�11∇div �̃�12∇div … �̃�1n∇div
�̃�21∇div �̃�22∇div … �̃�2n∇div

⋮ ⋮ ⋱ ⋮
�̃�n1∇div �̃�n2∇div … �̃�nn∇div

⎤
⎥⎥⎥⎦
,

and

ℬp =
⎡
⎢⎢⎢⎣

𝛾11I 𝛾12I … 𝛾1nI
𝛾21I 𝛾22I … 𝛾2nI
⋮ ⋮ ⋱ ⋮

𝛾n1I 𝛾n2I … 𝛾nnI

⎤
⎥⎥⎥⎦
.
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Inferring from the theory presented in the work of Mardal et al.,41 Theorems 1 and 2 imply that the operator ℬ
defined in (33) is a uniform norm-equivalent (canonical) block-diagonal preconditioner for the operator 𝒜 in (10),
robust in all model and discretization parameters, that is, 𝜅(ℬ𝒜 ) = (1).

4 UNIFORMLY STABLE AND STRONGLY MASS- CONSERVATIVE
DISCRETIZATIONS

In recent years, DG methods have been developed to solve various problems,42–46 and some unified analysis for a finite
element including DG methods has recently been presented in the works of Hong et al.47,48 In this section, as motivated
by the works of Schötzau et al.49 and Hong et al.,50 we propose discretizations of the MPET model problem (11). These
discretizations preserve the divergence condition (namely Equation (8c)) pointwise, which results in a strong conservation
of mass (see Proposition 1). Furthermore, they are also locking free when the Lamé parameter 𝜆 tends to ∞.51

4.1 Preliminaries and notation
Let h be a shape-regular triangulation of mesh-size h of the domain Ω into triangles {T} and define the set of all interior
edges (or faces) of h by  I

h and the set of all boundary edges (or faces) by B
h . Let h =  I

h ∪ B
h .

For s ≥ 1, we introduce the spaces

Hs(h) = {𝜙 ∈ L2(Ω), such that 𝜙|T ∈ Hs(T) for all T ∈ h}.

We further define some trace operators. Denote by e = 𝜕T1 ∩𝜕T2 the common boundary (interface) of two subdomains
T1 and T2 in h, and by n1 and n2, the unit normal vectors to e that point to the exterior of T1 and T2, correspondingly.
For any e ∈  I

h and q ∈ H1(h), v ∈ H1(h)d and 𝛕 ∈ H1(h)d×d, the averages are defined as

{v} = 1
2 (v|𝜕T1∩e · n1 − v|𝜕T2∩e · n2), {𝛕} = 1

2 (𝛕|𝜕T1∩en1 − 𝛕|𝜕T2∩en2),

and the jumps are given by
[q] = q|𝜕T1∩e − q|𝜕T2∩e, [v] = v|𝜕T1∩e − v|𝜕T2∩e.

When e ∈ B
h , then the above quantities are defined as

{v} = v|e · n, {𝛕} = 𝛕|en, [q] = q|e, [v] = v|e.
If nT is the outward unit normal to 𝜕T, it is easy to show that, for 𝝉 ∈ H1(Ω)d× d and for all v ∈ H1(h)d, we have

∑
T∈h

∫
𝜕T

(𝛕nT) · vds =
∑
e∈h

∫
e

{𝛕} · [v]ds. (34)

4.2 DG discretization
The finite element spaces we consider are denoted by

Uh = {u ∈ H(div; Ω) ∶ u|T ∈ U(T), T ∈ h; u · n = 0 on 𝜕Ω},
V i,h = {v ∈ H(div; Ω) ∶ v|T ∈ V i(T), T ∈ h; v · n = 0 on 𝜕Ω}, i = 1, … ,n,

Pi,h =
⎧
⎪⎨⎪⎩

q ∈ L2(Ω) ∶ q|T ∈ Qi(K), T ∈ h; ∫
Ω

qdx = 0
⎫
⎪⎬⎪⎭
, i = 1, … ,n.

The discretizations we analyze in the present context define the local spaces U(T )∕Vi(T )∕Qi(T ) via the triplets BDMl(T )∕
RTl− 1(T )∕Pl− 1(T ), or BDFMl(T )∕RTl− 1(T )∕Pl− 1(T ) for l ≥ 1. Note that, for each of these choices, the important
condition div U(T ) = div Vi(T ) = Qi(T ) is satisfied.
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Note that the normal component of any u ∈ Uh is continuous on the internal edges and vanishes on the boundary
edges. Then, for all e ∈ h and for all 𝛕 ∈ H1(h)d,u ∈ Uh, it holds

∫
e

[un] · 𝛕ds = 0, implying that ∫
e

[u] · 𝛕ds = ∫
e

[ut] · 𝛕ds, (35)

where un and ut denote the normal and tangential component of u, respectively.
Similar to the continuous problem, we denote

vT
h =

(
vT

1,h, … vT
n,h

)
, pT

h = (p1,h, … , pn,h), zT
h =

(
zT

1,h, … zT
n,h

)
,

qT
h = (q1,h, … , qn,h), V h = V 1,h × … × V n,h, Ph = P1,h × … × Pn,h.

With this notation at hand, the discretization of the variational problem (11) is given as follows: Find (uh; vh;ph, ) ∈
Uh × Vh × Ph such that, for any (wh; zh;qh) ∈ Uh × Vh × Ph and i = 1, … ,n,

ah(uh,wh) + 𝜆(div uh, div wh) −
n∑

i=1
(pi,h, div wh) = ( f ,wh), (36a)

(
R−1

i vi,h, zi,h
)
− (pi,h, div zi,h) = 0, (36b)

−(div uh, qi,h) − (div vi,h, qi.h) + �̃�ii(pi,h, qi,h) +
n∑

𝑗=1
𝑗≠i

𝛼i𝑗(p𝑗,h, qi,h) = (gi, qi,h), (36c)

where

ah(u,w) =
∑

K∈h
∫
K

𝝐(u) ∶ 𝝐(w)dx −
∑
e∈h

∫
e

{𝝐(u)} · [wt]ds (37)

−
∑
e∈h

∫
e

{𝝐(w)} · [ut]ds +
∑
e∈h

∫
e

𝜂h−1
e [ut] · [wt]ds,

�̃�ii = −𝛼pi − 𝛼ii, and 𝜂 is a stabilization parameter independent of parameters 𝜆, R−1
i , 𝛼pi , 𝛼i j for all i, j ∈ {1, … ,n}, the

network scale n, and the mesh size h.

Remark 4. The general rescaled boundary conditions

pi = pi,D on Γpi,D, i = 1, … ,n, (38a)

vi · n = qi,N on Γpi,N , i = 1, … ,n, (38b)

u = uD on Γu,D, (38c)
(
𝛔 −

n∑
i=1

piI
)

n = gN on Γu,N (38d)

can be incorporated as explained in the work of Hong et al.23

Proposition 1. Let (uh; vh;ph) ∈ Uh × Vh × Ph be the solution of (36a)-(36c); then, the pointwise mass conservation
equation is satisfied, that is,

−div uh − div vi,h − (𝛼pi + 𝛼ii)pi,h +
n∑

𝑗=1
𝑗≠i

𝛼i𝑗p𝑗,h = Qi,hgi, i = 1, … ,n, ∀x ∈ K,∀K ∈ h, (39)

where the L2-projection on Pi,h is denoted by Qi,h. Hence, if gi = 0, then−div uh−div vi,h−(𝛼pi +𝛼ii)pi,h+
∑n

𝑗=1
𝑗≠i

𝛼i𝑗p𝑗,h = 0.
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For u ∈ Uh, we introduce the mesh-dependent norms

||u||2h =
∑

K∈h

||𝝐(u)||20,K +
∑
e∈h

h−1
e ||[ut]||20,e,

||u||21,h =
∑

K∈h

||∇u||20,K +
∑
e∈h

h−1
e ||[ut]||20,e,

the “DG”-norm
||u||2DG =

∑
K∈h

||∇u||20,K +
∑
e∈h

h−1
e ||[ut]||20,e +

∑
K∈h

h2
K|u|22,K , (40)

and finally, the mesh-dependent norm || · ||Uh

||u||2Uh
= ||u||2DG + 𝜆||div u||2. (41)

Regarding the well-posedness and approximation properties of the DG formulation, we refer the reader to the works of
Hong et al.50,51 Firstly, from the discrete version of Korn's inequality, the norms || · ||DG, || · ||h, and || · ||1,h are equivalent
on Uh, namely,

||u||DG ≂ ||u||h ≂ ||u||1,h, for all u ∈ Uh.

Secondly, the bilinear form ah(·, ·) from (37) is continuous and it is valid that

|ah(u,w)| ≲ ||u||DG||w||DG, for all u, w ∈ H2(h)d. (42)

Thirdly, the LBB conditions

inf
(q1,h,… ,qn,h)∈P1,h×…×Pn,h

sup
uh∈Uh

(
div uh,

n∑
i=1

qi,h

)

||uh||1,h||
n∑

i=1
qi,h||

≥ 𝛽sd,

inf
qi,h∈Pi,h

sup
vi,h∈V i,h

(div vi,h, qi,h)
||vi,h||div||qi,h|| ≥ 𝛽dd, i = 1, … ,n

(43)

are satisfied for our choice of the finite element spaces Uh,Vh, and Ph; see, for example, the work of Schötzau et al.49 Here,
the positive constants 𝛽sd and 𝛽dd are independent of the parameters 𝜆, R−1

i , 𝛼pi , 𝛼i j for all i, j ∈ {1, … ,n}, the network
scale n, and the mesh size h. Finally, using standard techniques, one can show that

ah(uh,uh) ≥ 𝛼a||uh||2h, for all uh ∈ Uh, (44)

where 𝛼a is a positive constant independent of the parameters 𝜆,R−1
i , 𝛼pi , 𝛼i𝑗 , i, 𝑗 = 1, … ,n, the network scale n, and the

mesh size h.
Related to the discrete problem (36a)-(36c), and from the definition of the matrices Λ1 and Λ2, we define the bilinear

form

h((uh; vh;ph), (wh; zh;qh)) = ah(uh,wh) + 𝜆(div uh, div wh) −
n∑

i=1
(pi,h, div wh)

+
n∑

i=1

(
R−1

i vi,h, zi,h
)
− (ph,Div zh) −

(
div uh,

n∑
i=1

qi,h

)
− (Div vh,qh) − ((Λ1 + Λ2)ph,qh).

(45)

The following theorem results directly from the definitions of the norms || · ||Uh , || · ||V and || · ||P.

Theorem 3. There exists a constant Cbd independent of the parameters 𝜆, R−1
i , 𝛼pi , 𝛼i j for all i, j ∈ {1, … ,n}, the

network scale n, and the mesh size h such that the inequality

|h((uh; vh;ph), (wh; zh;qh))| ≤ Cbd(||uh||Uh + ||vh||V + ||ph||P)(||wh||Uh + ||z h||V + ||qh||P)
is fulfilled for any (uh; vh;ph) ∈ Uh × Vh × Ph, (wh; z h;qh) ∈ Uh × Vh × Ph.

The second main result of this paper is given in the following theorem.
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Theorem 4. There exits a positive constant 𝛽0 independent of the parameters 𝜆, R−1
i , 𝛼pi , 𝛼i j for all i, j ∈ {1, … ,n}, the

network scale n, and the mesh size h such that

inf
(uh;vh;ph)∈Uh×Vh×Ph

sup
(wh;zh;qh)∈Uh×Vh×Ph

h((uh; vh;ph), (wh; z h;qh))
(||uh||Uh + ||vh||V + ||ph||P)(||wh||Uh + ||z h||V + ||qh||P)

≥ 𝛽0. (46)

Proof. Noting that ah(uh,uh) is coercive and the inf-sup conditions (43) hold, the proof of this theorem uses similar
arguments and follows the lines of the proof of Theorem 2.

The following stability estimate is a consequence of the above theorem.

Corollary 2. Let (uh; vh;ph) ∈ Uh × Vh × Ph be the solution of (36a)-(36c); then, the estimate

||uh||Uh + ||vh||V + ||ph||P ≤ C2
(|| f ||U∗

h
+ ||g||P∗

)
(47)

holds where
|| f ||U∗

h
= sup

wh∈Uh

( f,wh)
||wh||Uh

, ||g||P∗ = sup
qh∈Ph

( g,qh)
||qh||P

,

and C2 is a constant independent of 𝜆, R−1
i , 𝛼pi , 𝛼i j for all i, j ∈ {1, … ,n}, the network scale n, and the mesh size h.

Remark 5. Let Wh ∶= Uh × Vh × Ph be equipped with the norm || · ||W h ∶= || · ||Uh + || · ||V + || · ||P and consider the
operator

𝒜h ∶=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−divh𝝐h − 𝜆∇hdivh 0 … … 0 ∇h … … ∇h

0 R−1
1 Ih 0 … 0 ∇h 0 … 0

⋮ 0 ⋱ ⋮ 0 ⋱ ⋮

⋮ ⋮ ⋱ 0 ⋮ ⋱ 0
0 0 … 0 R−1

n Ih 0 … 0 ∇h

−divh −divh 0 … 0 �̃�11Ih 𝛼12Ih … 𝛼1nIh

⋮ 0 ⋱ ⋮ 𝛼21Ih ⋱ 𝛼2nIh

⋮ ⋮ ⋱ 0 ⋮ ⋱ ⋮

−divh 0 … 0 −divh 𝛼n1Ih 𝛼n2Ih … �̃�nnIh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

induced by the bilinear form (45). Clearly, 𝒜h is self-adjoint and indefinite on Wh. Moreover, Theorems 3 and 4
imply that it is a uniform isomorphism in the sense of being bounded and having a bounded inverse with bounds
independent of the mesh size, the network scale, and the model parameters. Following the framework in the study of
Mardal et al.,41 we define the self-adjoint positive definite operator

ℬh ∶=
⎡
⎢⎢⎣

ℬ−1
h,u 0 0
0 ℬ−1

h,v 0
0 0 ℬ−1

h,p

⎤
⎥⎥⎦
, (49)

where
ℬh,u = −divh 𝝐h − 𝜆∇hdivh,

ℬh,v =

⎡
⎢⎢⎢⎢⎣

R−1
1 Ih 0 … 0
0 R−1

2 Ih … 0
⋮ ⋮ ⋱ ⋮
0 0 … R−1

n Ih

⎤
⎥⎥⎥⎥⎦
−
⎡
⎢⎢⎢⎣

�̃�11∇hdivh �̃�12∇hdivh … �̃�1n∇hdivh
�̃�21∇hdivh �̃�22∇hdivh … �̃�2n∇hdivh

⋮ ⋮ ⋱ ⋮
�̃�n1∇hdivh �̃�n2∇hdivh … �̃�nn∇hdivh

⎤
⎥⎥⎥⎦
, and ℬh,p =

⎡
⎢⎢⎢⎣

𝛾11Ih 𝛾12Ih … 𝛾1nIh
𝛾21Ih 𝛾22Ih … 𝛾2nIh
⋮ ⋮ ⋱ ⋮

𝛾n1Ih 𝛾n2Ih … 𝛾nnIh

⎤
⎥⎥⎥⎦
.

It is obvious that
⟨ℬ−1

h xh, xh⟩ ≂ ||xh||2W h
,

where xh = (uh, vh,ph) ∈ Wh; “≂” stands for a norm equivalence, uniform with respect to model and discretization
parameters; and ⟨·, ·⟩ expresses the duality pairing between Wh and W∗

h, that is, ℬ−1
h is a uniform isomorphism.

By using the properties of ℬh and 𝒜h when solving the generalized eigenvalue problem 𝒜hxh = 𝜉ℬ−1
h xh, the

condition number 𝜅(ℬh𝒜h) is easily shown to be uniformly bounded with respect to the parameters 𝜆, R−1
i , 𝛼pi , 𝛼i j

for all i, j ∈ {1, … ,n} in the ranges specified in (7), the network scale n, and the mesh size h. Therefore, ℬh defines
a uniform preconditioner.
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Remark 6. To apply the preconditioner ℬh, one has to solve an elasticity system discretized by an H(div)-conforming
DG method51 and n-coupled elliptic H(div) problems discretized by RT elements, which can be decoupled by diago-
nalization as follows. Denoting D−1

R = diag(R−1
1 ,R−1

2 , … ,R−1
n ) and 𝒟−1

R = blockdiag(R−1
1 Ih, … ,R−1

n Ih) = D−1
R ⊗ Ih, we

have
(ℬh,vvh, zh) =

(
𝒟

− 1
2

R vh,𝒟
− 1

2
R zh

)
+
(
Λ−1Div vh,Div zh

)
. (50)

Now, by the change of variables v̂h = 𝒟
− 1

2
R vh, ẑh = 𝒟

− 1
2

R zh, we get
(
𝒟

1
2

R ℬh,v𝒟
1
2

R v̂h, ẑ h

)
= (v̂h, ẑh) +

(
Λ−1Div

(
𝒟

1
2

R v̂h

)
,Div

(
𝒟

1
2

R ẑh

))
= (v̂h, ẑ h) +

(
D

1
2
RΛ

−1D
1
2
R Div v̂h,Div ẑh

)
. (51)

Next, denoting Λ−1
R = D

1
2
RΛ

−1D
1
2
R , we can diagonalize Λ−1

R as D−1
v = QvΛ−1

R QT
v , where Qv satisfying QvQT

v = In×n is
an orthogonal matrix and D−1

v = diag(�̄�1, �̄�2, … , �̄�n) is the diagonal matrix composed from the eigenvalues of Λ−1
R .

Hence, by the further substitution v̄h = 𝒬vv̂h, z̄h = 𝒬vẑh, where 𝒬v = Qv ⊗ Ih, we obtain(
𝒬v𝒟

1
2

R ℬh,v𝒟
1
2

R 𝒬
T
v v̄h, z̄h

)
=
(
𝒬T

v v̄h,𝒬T
v z̄h

)
+
(

D−1
v Div v̄h,Div z̄h

)
= (v̄h, z̄h) +

(
D−1

v Div v̄h,Div z̄h
)
. (52)

We denote

ℬh,v̄ ∶=
⎡⎢⎢⎢⎣

Ih 0 … 0
0 Ih … 0
⋮ ⋮ ⋱ ⋮
0 0 … Ih

⎤⎥⎥⎥⎦
−
⎡⎢⎢⎢⎣

�̄�1∇hdivh 0 … 0
0 �̄�2∇hdivh … 0
⋮ ⋮ ⋱ ⋮
0 0 … �̄�n∇hdivh

⎤⎥⎥⎥⎦
,

which means that we only need to solve n-decoupled elliptic H(div) problems discretized by RT elements to get v̄h.
This task has been addressed in the work of Kraus et al.,52 where optimal solvers for the lowest order case have been
discussed. Other order-optimal multigrid methods and efficient preconditioners for this type of H(div) problems can
be found in other works.53–55 Finally, we obtain the original vh from back substitution, that is, vh = 𝒟

1
2

R 𝒬
T
v v̄h. Similarly,

diagonalization can also be applied to ℬh,p to obtain the diagonal preconditioner

ℬh,p̄ ∶=
⎡
⎢⎢⎢⎣

𝜇1Ih 0 … 0
0 𝜇2Ih … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜇nIh

⎤
⎥⎥⎥⎦

for the system with p̄h = Qpph, where Dp = QpΛQT
p , Dp = diag(𝜇1, 𝜇2, … , 𝜇n), and 𝜇i, i = 1, … ,n, denote the

eigenvalues of Λ = (𝛾 i j)n×n.

4.3 Error estimates
This subsection summarizes the error estimates that follow from the stability results presented in Section 4.2. For further
details (in the case n = 1), we refer the reader to the work of Hong et al.23

Theorem 5. For the solution (u; v;p) of (11) and (uh; vh;ph) of (36a)– (36c), the error estimates

||u − uh||Uh + ||v − vh||V ≤ Ce,u inf
wh∈Uh,zh∈Vh

(||u − wh||Uh + ||v − zh||V) (53)

and
||p − ph||P ≤ Ce,p inf

wh∈Uh,zh∈Vh,qh∈Ph

(||u − wh||Uh + ||v − zh||V + ||p − qh||P
)
, (54)

hold true, where the constants Ce,u,Ce,p are independent of 𝜆,R−1
i , 𝛼pi , 𝛼i𝑗 , i, 𝑗 = 1, … ,n, the network scale n, and the

mesh size h.

Proof. The proof of this result is analogous to the proof of Theorem 5.2 in the work of Hong et al.23

Remark 7. In particular, the above theorem shows that the proposed discretizations are locking free. Note that the
estimate (53) controls the error in u plus the error in v by the sum of the errors of the corresponding best approxi-
mations, whereas the estimate (54) requires the best approximation errors of all three vector variables u, v, and p to
control the error in p.
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TABLE 1 Errors measured in parameter-dependent norms (𝛼p1 = 10−4, 𝜆 = 104)

h
R−𝟏
𝟏 1/8 1/16 1/32 1/64 1/128 1/256

1E0 || · ||P 2.1E−1 1.0E−1 5.2E−2 2.6E−2 1.3E−2 6.6E−3
|| · ||V 1.3E1 6.6E0 3.3E0 1.7E0 8.2E−1 4.1E−1
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

1E2 || · ||P 2.1E−2 1.0E−2 5.1E−3 2.6E−3 1.3E−3 6.6E−4
|| · ||V 1.3E0 6.6E−1 3.3E−1 1.7E−1 8.2E−2 4.1E−2
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

1E4 || · ||P 2.1E−3 1.0E−3 5.1E−4 2.6E−4 1.3E−4 6.6E−5
|| · ||V 1.3E−1 6.6E−2 3.3E−2 1.7E−2 8.2E−3 4.1E−3
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

1E8 || · ||P 2.0E−3 1.0E−3 5.1E−4 2.6E−4 1.3E−4 6.6E−5
|| · ||V 1.6E−4 8.3E−5 4.4E−5 2.3E−5 1.2E−5 6.1E−6
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

1E16 || · ||P 2.0E−3 1.0E−3 5.2E−4 2.6E−4 1.3E−4 6.6E−5
|| · ||V 1.6E−8 8.3E−9 4.4E−9 2.3E−9 1.2E−9 6.1E−10
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

5 NUMERICAL EXPERIMENTS

The following numerical experiments are for three widely applied MPET models, namely, the one-network, two-network,
and four-network models. We suppose that the domain Ω is the unit square in ℝ2, and during the discretization, it has
been partitioned as bisections of 2N2 triangles with mesh size h = 1∕N. To discretize the pressure variables, we use
discontinuous piecewise constant elements; the fluxes are discretized employing the lowest order Raviart–Thomas space
and the displacement we approximate with the Brezzi-Douglas-Marini elements of lowest order. All the numerical tests
included in this section have been carried out in FEniCS.56,57 The aim of these experiments is

(i) to validate the convergence of the error estimates in the derived parameter-dependent norms and
(ii) to test the robustness of the proposed block-diagonal preconditioners by using it within the MinRes algorithm where

the iterative process has been initialized with a random vector.

In these numerical experiments, we apply exactly the block-diagonal preconditioners; inexact solvers, corresponding
to approximate preconditioners, are to be investigated in future work.

5.1 The one-network model
Here, we consider the simplest case of a system with only one pressure and one flux, namely, Biot's consolidation model.
We solve system (8) for

f =
[
−(2𝑦3 − 3𝑦2 + 𝑦)(12x2 − 12x + 2) − (x − 1)2x2(12𝑦 − 6) + 900(𝑦 − 1)2𝑦2(4x3 − 6x2 + 2x)
(2x3 − 3x2 + x)(12𝑦2 − 12𝑦 + 2) + (𝑦 − 1)2𝑦2(12x − 6) + 900(x − 1)2x2(4𝑦3 − 6𝑦2 + 2𝑦)

]

and

g = R1

(
𝜕𝜙2
𝜕x + 𝜕𝜙2

𝜕𝑦

)
− 𝛼p1 (𝜙2 − 1), where 𝜙1 = (x − 1)2(𝑦 − 1)2x2𝑦2, 𝜙2 = 900(x − 1)2(𝑦 − 1)2x2𝑦2, (x, 𝑦) ∈ Ω.

Then, the exact solution of system (8) with boundary conditions u|𝜕Ω = 0, v · n|𝜕Ω = 0 is given by

u =
(
𝜕𝜙1
𝜕𝑦

,−𝜕𝜙1
𝜕x

)
, p= 𝜙2 − 1, v = −R1∇p, where p ∈ L2

0(Ω).

We performed experiments with different sets of input parameters. In Tables 1 –3, we report the error of the numerical
solution in the introduced parameter-dependent norms || · ||P, || · ||V, || · ||Uh . Additionally, we list the number of MinRes
iterations nit and average residual convergence factor with the proposed block-diagonal preconditioner where the stopping
criterion is residual reduction by 108 in the norm induced by the preconditioner. The robustness of the method is validated
with respect to variation of the parameters 𝜆, R−1

1 , 𝛼p1 , as introduced in (8), and the discretization parameter h.
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TABLE 2 Errors measured in parameter-dependent norms (𝛼p1 = 0, R−1
1 = 108)

h
𝝀 1/8 1/16 1/32 1/64 1/128 1/256
1E0 || · ||P 2.0E−1 1.0E−1 5.2E−2 2.6E−2 1.3E−2 6.6E−3

|| · ||V 1.6E−4 8.9E−5 5.7E−5 4.6E−5 4.3E−5 4.1E−5
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

1E4 || · ||P 2.0E−3 1.0E−3 5.2E−4 2.6E−4 1.3E−4 6.6E−5
|| · ||V 1.6E−4 8.6E−5 4.5E−5 2.3E−5 1.2E−5 6.1E−6
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

1E8 || · ||P 2.1E−5 1.0E−5 5.2E−6 2.6E−6 1.3E−6 6.6E−7
|| · ||V 1.3E−3 6.5E−4 3.3E−4 1.6E−4 8.2E−5 4.1E−5
|| · ||Uh 9.1E−2 4.5E−2 2.3E−2 1.1E−2 5.6E−3 2.8E−3

TABLE 3 Errors measured in parameter-dependent norms (R−1
1 = 104, 𝜆 = 100)

h
𝜶p𝟏

1/8 1/16 1/32 1/64 1/128 1/256
1E0 || · ||P 2.0E−1 1.0E−1 5.2E−2 2.6E−2 1.3E−2 6.6E−3

|| · ||V 1.6E−2 8.1E−3 4.1E−3 2.0E−3 1.0E−3 5.1E−4
|| · ||Uh 9.0E−2 4.5E−2 2.2E−2 1.1E−2 5.6E−3 2.8E−3

1E−4 || · ||P 2.0E−1 1.0E−1 5.2E−2 2.6E−2 1.3E−2 6.6E−3
|| · ||V 1.6E−2 8.3E−3 4.2E−3 2.1E−3 1.0E−3 5.1E−4
|| · ||Uh 9.1E−2 4.5E−2 2.2E−2 1.1E−2 5.6E−3 2.8E−3

0 || · ||P 2.0E−1 1.0E−1 5.2E−2 2.6E−2 1.3E−2 6.6E−3
|| · ||V 1.6E−2 8.3E−3 4.2E−3 2.1E−3 1.0E−3 5.1E−4
|| · ||Uh 9.1E−2 4.5E−2 2.2E−2 1.1E−2 5.6E−3 2.8E−3

As can be seen from Tables 1 –3 the error in the considered parameter-dependent norms decreases by a factor of 2
when decreasing the mesh size by the same factor independently of the model parameters. Although the error of the
velocity in Table 2 is not reduced by this factor when 𝜆 = 1E0, the previous statement remains valid and in accordance
with the theoretical results. Remember that, according to Theorem 5, estimate (53) bounds the sum of the errors of the
approximations of u and v and, hence, reflects the convergence of the larger of the two.

The results in Table 4 suggest that the number of MinRes iterations required to achieve a prescribed solution accu-
racy is bounded by a constant independent of 𝜆, R−1

1 , 𝛼p1 , and h, whereas the average residual reduction factor always
remains smaller than 0.70. Note that, in this table, the authors have tried to present the most unfavourable setting of input
parameters in order to stress test the proposed method.

5.2 The two-network model
The governing partial differential equations of the Biot–Barenblatt model are a special case of the flux-based MPET sys-
tem (1) and involve two pressures and two fluxes (n = 2). We consider here the cantilever bracket benchmark problem
proposed by the National Agency for Finite Element Methods and Standards58 with f = 0, g1 = 0, and g2 = 0.

The boundary Γ of the domain Ω = [0, 1]2 is split into Γ1, Γ2, Γ3, and Γ4 denoting the bottom, right, top, and left
boundaries, respectively, and the boundary conditions u = 0 on Γ4, (𝝈−p1I−p2I )n = (0, 0)T on Γ1∪Γ2, (𝝈−p1I−p2I )n =
(0, −1)T on Γ3, p1 = 2 on Γ, and p2 = 20 on Γ are imposed.

The base values of the model parameters, used for the numerical testing of the preconditioned MinRes algorithm in
Table 6, are taken from the work of Kolesov et al.59 and are presented in Table 5.

The numerical results in Table 6 show robust behaviour with respect to mesh refinements and variation of the param-
eters including high contrasts of the hydraulic conductivities. Moreover, in Table 7, we have confirmed the robustness of
the proposed block-diagonal preconditioners for larger values of the transfer coefficient 𝛽, while varying the hydraulic
conductivities as considerably higher values than that in the work of Kolesov et al.59 have been reported in the work of
Lee et al.60 when modelling cardiac perfusion. With the choice of parameter ranges for K1 and K2, we encompassed
interesting test scenarios revealing changes in the convergence properties.
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TABLE 4 Number of preconditioned MinRes iterations and average residual reduction factor for
residual reduction by 108 in the norm induced by the preconditioner when solving the Biot problem

R−𝟏
𝟏

h 𝜶p 𝝀 1E0 1E2 1E3 1E4 1E8 1E16
1E0 1E0 22 0.42 32 0.52 33 0.53 23 0.41 9 0.10 9 0.10

1E4 10 0.14 18 0.32 19 0.38 14 0.23 4 < 0.01 3 < 0.01
1E8 7 0.05 12 0.18 13 0.21 10 0.14 3 < 0.01 3 < 0.01

1E−4 1E0 20 0.40 36 0.57 43 0.65 33 0.54 14 0.23 15 0.25
1E4 12 0.20 9 0.11 15 0.26 14 0.28 25 0.44 7 0.05

1
16 1E8 5 <0.01 6 0.03 7 0.05 9 0.09 19 0.34 5 <0.01

1E−8 1E0 20 0.40 35 0.54 48 0.67 37 0.58 16 0.27 13 0.23
1E4 8 0.08 10 0.12 12 0.19 12 0.19 26 0.47 7 0.05
1E8 5 <0.01 5 <0.01 6 0.03 8 0.07 14 0.24 5 <0.01

0 1E0 19 0.36 35 0.58 49 0.67 37 0.58 16 0.27 13 0.24
1E4 8 0.08 10 0.12 12 0.17 12 0.17 26 0.47 7 0.05
1E8 5 <0.01 5 <0.01 6 0.03 8 0.07 14 0.24 5 <0.01

1E0 1E0 20 0.40 33 0.54 37 0.58 30 0.52 11 0.14 11 0.14
1E4 10 0.14 18 0.32 18 0.33 19 0.38 5 0.01 4 <0.01
1E8 7 0.05 12 0.19 15 0.26 15 0.26 5 0.01 4 <0.01

1E−4 1E0 20 0.40 35 0.56 49 0.68 46 0.66 17 0.32 17 0.32
1E4 10 0.14 7 0.05 15 0.25 15 0.26 33 0.54 6 0.03

1
64 1E8 4 <0.01 6 0.03 7 0.05 9 0.09 18 0.33 5 <0.01

1E−8 1E0 20 0.40 37 0.58 49 0.68 46 0.65 19 0.38 11 0.19
1E4 6 0.03 11 0.17 12 0.19 12 0.19 27 0.50 6 0.03
1E8 4 <0.01 7 0.05 9 0.10 9 0.10 14 0.24 5 <0.01

0 1E0 20 0.40 37 0.58 48 0.67 46 0.64 20 0.40 11 0.19
1E4 6 0.03 11 0.17 12 0.19 12 0.19 27 0.50 6 0.03
1E8 4 <0.01 7 0.05 8 0.07 9 0.10 15 0.28 5 <0.01

1E0 1E0 20 0.40 29 0.51 34 0.55 32 0.54 11 0.15 11 0.15
1E4 10 0.14 18 0.32 18 0.33 20 0.40 5 0.01 4 <0.01
1E8 7 0.05 12 0.19 15 0.26 15 0.25 5 0.01 4 <0.01

1E−4 1E0 20 0.40 33 0.54 49 0.68 50 0.68 18 0.34 17 0.32
1E4 10 0.14 8 0.07 14 0.23 14 0.22 35 0.56 6 0.03

1
256 1E8 3 <0.01 6 0.03 7 0.05 9 0.09 18 0.33 4 <0.01

1E−8 1E0 21 0.39 37 0.58 49 0.67 50 0.68 20 0.39 11 0.15
1E4 6 0.03 11 0.17 12 0.19 12 0.19 27 0.48 6 0.04
1E8 4 <0.01 7 0.05 9 0.10 9 0.10 13 0.23 5 <0.01

0 1E0 20 0.38 37 0.58 48 0.68 50 0.68 20 0.39 11 0.16
1E4 6 0.02 11 0.16 12 0.19 12 0.19 27 0.50 6 0.03
1E8 4 <0.01 6 0.03 9 0.09 9 0.10 15 0.27 5 <0.01

TABLE 5 Base values of model
parameters for the Barenblatt model

Parameter Value Unit
𝜆 4.2 MPa
𝜇 2.4 MPa

cp1 54 (GPa)−1

cp2 14 (GPa)−1

𝛼1 0.95
𝛼2 0.12
𝛽 5 10−10kg/(m·s)

100 10−10kg/(m·s)
K1 6.18 10−15m2

K2 27.2 10−15m2
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TABLE 6 Number of preconditioned MinRes iterations and average
residual reduction factor for residual reduction by 108 in the norm
induced by the preconditioner when solving the Barenblatt problem

h 𝜷 K2 K2 · 102 K2 · 104 K2 · 106

5E−10 K1 · 10−2 13 0.23 16 0.30 24 0.45 19 0.35
K1 · 10−1 14 0.25 18 0.33 26 0.47 21 0.41

1
16 K1 15 0.28 19 0.36 29 0.51 22 0.43

1E−8 K1 · 10−2 13 0.23 16 0.31 24 0.45 20 0.39
K1 · 10−1 14 0.24 18 0.33 26 0.47 21 0.41

K1 15 0.28 19 0.35 30 0.52 21 0.41
5E−10 K1 · 10−2 16 0.29 27 0.49 26 0.47 20 0.40

K1 · 10−1 16 0.31 29 0.51 28 0.50 21 0.41
1

64 K1 17 0.32 30 0.52 31 0.53 22 0.43
1E−8 K1 · 10−2 16 0.31 26 0.47 26 0.47 20 0.40

K1 · 10−1 16 0.31 29 0.51 28 0.50 21 0.41
K1 18 0.33 30 0.52 31 0.53 24 0.45

5E−10 K1 · 10−2 19 0.35 30 0.52 28 0.50 21 0.41
K1 · 10−1 21 0.41 33 0.55 29 0.51 21 0.41

1
256 K1 21 0.41 35 0.56 30 0.52 22 0.43

1E−8 K1 · 10−2 19 0.35 29 0.51 29 0.51 20 0.39
K1 · 10−1 20 0.40 32 0.54 29 0.51 22 0.43

K1 22 0.42 35 0.56 30 0.52 23 0.44

TABLE 7 Number of preconditioned MinRes iterations and average residual reduction factor
for residual reduction by 108 in the norm induced by the preconditioner when solving the
Barenblatt problem

𝜷 = 10−6 𝜷 = 10−3 𝜷 = 100 𝜷 = 103 𝜷 = 106

K2 · 10−3 K1 · 10−3 14 0.26 13 0.23 13 0.23 13 0.22 13 0.22
K1 17 0.33 17 0.33 17 0.32 15 0.29 15 0.28

K1 · 103 29 0.51 29 0.51 27 0.45 25 0.43 23 0.42
K1 · 106 27 0.49 27 0.48 26 0.46 25 0.43 23 0.42

h=1/256. K2 K1 · 10−3 16 0.31 16 0.31 15 0.28 15 0.29 14 0.26
K1 22 0.42 23 0.42 20 0.40 15 0.29 16 0.30

K1 · 103 36 0.57 39 0.62 33 0.54 30 0.54 31 0.55
K1 · 106 35 0.56 35 0.57 34 0.55 32 0.52 30 0.53

K2 · 103 K1 · 10−3 26 0.46 26 0.46 25 0.44 22 0.42 22 0.42
K1 35 0.56 35 0.56 32 0.52 30 0.54 30 0.53

K1 · 103 44 0.64 46 0.66 45 0.65 38 0.61 37 0.60
K1 · 106 41 0.62 41 0.62 41 0.62 33 0.53 33 0.53

5.3 The four-network model
In this example, we consider the four-network MPET model. The boundary Γ of Ω is split as in the previous example, that
is, Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 ∪ Γ̄4 with Γi ∩ Γj = ∅ for i ≠ j and Γ1, Γ2, Γ3, Γ4 denoting the bottom, right, top, and left boundaries,
respectively. Then, the boundary conditions are as follows: u = 0 on Γ4, (𝝈 − p1I − p2I − p3I − p4I)n = (0, 0)T on Γ1 ∪ Γ2,
(𝝈−p1I−p2I−p3I−p4I)n = (0, −1)T on Γ3, p1 = 2 on Γ, p2 = 20 on Γ, p3 = 30 on Γ, and p4 = 40 on Γ. The right-hand
sides in (8) are chosen to be f = 0, g1 = 0, g2 = 0, g3 = 0, and g4 = 0.

The base values of the parameters for numerical testing are given in Table 8 and taken from the work of Vardakis et al.,7
where the four-network MPET model has been used to simulate fluid flow in the human brain.

Table 9 shows robust behaviour of the block-diagonal preconditioner (49) as the number of MinRes iterations remains
uniformly bounded for large variations of the coefficients 𝜆, K3 and K = K1 = K2 = K4. Note that, in all three examples,
that is, for the one-network problem, the two-network-problem, and the four-network problem, the observed average
residual reduction factors were always below 0.7 and did not increase as the number of networks was increased, which
is in accordance with the theoretical findings. Moreover, the authors have tried to perform the numerical tests for the
parameter ranges leading to the worst results.
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TABLE 8 Base values of model parameters for the
four-network MPET model

Parameter Value Unit
𝜆 505 Nm−2

𝜇 216 Nm−2

cp1 = cp2 = cp3 = cp4 4.5 · 10−10 m2N−1

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 0.99
𝛽12 = 𝛽24 1.5 · 10−19 m2N−1s−1

𝛽23 2.0 · 10−19 m2N−1s−1

𝛽34 1.0 · 10−13 m2N−1s−1

K1 = K2 = K4 = K (1.0 · 10−10)∕(2.67 · 10−3) m2∕Nsm−2

K3 (1.4 · 10−14)∕(8.9 · 10−4) m2∕Nsm−2

Note. MPET = multiple-network poroelastic theory.

TABLE 9 Number of preconditioned MinRes iterations and average residual reduction factor
for residual reduction by 108 in the norm induced by the preconditioner when solving the
four-network MPET problem

h K3 · 10−2 K3 K3 · 102 K3 · 104 K3 · 106 K3 · 1010

𝜆 K · 10−2 32 0.52 34 0.55 29 0.50 29 0.50 29 0.51 29 0.51
K 17 0.32 20 0.39 23 0.42 19 0.38 18 0.33 22 0.42

K · 102 15 0.28 17 0.33 20 0.38 24 0.45 35 0.58 35 0.57
𝜆 · 104 K · 10−2 24 0.44 33 0.53 38 0.61 38 0.60 38 0.60 38 0.61

1
32 K 15 0.27 26 0.47 38 0.60 31 0.52 32 0.52 31 0.51

K · 102 13 0.22 24 0.44 39 0.61 22 0.42 16 0.31 16 0.30
𝜆 · 108 K · 10−2 25 0.43 27 0.45 17 0.31 17 0.31 17 0.32 17 0.32

K 26 0.48 25 0.44 13 0.23 10 0.15 11 0.16 10 0.15
K · 102 26 0.48 24 0.45 13 0.22 14 0.26 14 0.25 15 0.27

𝜆 K · 10−2 32 0.53 32 0.53 28 0.51 28 0.50 28 0.51 28 0.51
K 20 0.39 21 0.40 21 0.40 20 0.39 21 0.40 23 0.42

K · 102 18 0.33 16 0.31 20 0.39 26 0.48 34 0.55 34 0.56
𝜆 · 104 K · 10−2 24 0.45 37 0.59 39 0.62 39 0.62 39 0.61 39 0.61

1
64 K 18 0.34 29 0.51 38 0.61 28 0.51 28 0.51 28 0.50

K · 102 14 0.25 32 0.54 38 0.60 21 0.40 14 0.25 14 0.25
𝜆 · 108 K · 10−2 27 0.46 27 0.47 17 0.32 17 0.32 17 0.34 17 0.34

K 26 0.49 25 0.44 12 0.20 9 0.12 10 0.14 9 0.11
K · 102 25 0.43 24 0.44 12 0.19 16 0.31 17 0.32 13 0.22

𝜆 K · 10−2 33 0.53 34 0.56 29 0.52 29 0.52 29 0.53 29 0.53
K 20 0.40 21 0.41 22 0.42 21 0.41 22 0.41 22 0.41

K · 102 17 0.33 17 0.32 20 0.40 27 0.47 35 0.56 35 0.57
𝜆 · 104 K · 10−2 23 0.42 37 0.58 40 0.62 40 0.63 40 0.63 40 0.62

1
128 K 19 0.38 29 0.51 34 0.56 28 0.51 27 0.47 28 0.51

K · 102 15 0.27 33 0.54 34 0.56 21 0.41 15 0.28 14 0.26
𝜆 · 108 K · 10−2 27 0.48 27 0.48 18 0.34 18 0.33 16 0.29 16 0.30

K 25 0.44 25 0.44 13 0.23 9 0.12 11 0.16 11 0.17
K · 102 26 0.49 25 0.46 12 0.21 17 0.34 18 0.34 13 0.23

Note. MPET = multiple-network poroelastic theory.

6 CONCLUSIONS

In this paper, as motivated by the approach recently presented by Hong et al.23 for the Biot model, we establish the
uniform stability and design stable discretizations and parameter-robust preconditioners for flux-based formulations of
multiple-network poroelasticity systems. Novel proper parameter-matrix-dependent norms that provide the key for estab-
lishing uniform inf-sup stability of the continuous problems are introduced. The stability results that could be obtained
using the presented matrix technique are uniform not only with respect to the Lamé parameter 𝜆 but also to all the
other model parameters such as small or large permeability coefficients Ki, arbitrary small or even vanishing storage
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coefficients cpi , arbitrary small or even vanishing network transfer coefficients 𝛽 i j, i, j = 1, … ,n, the scale of the networks
n, and the time step size 𝜏.

Moreover, strongly mass-conservative and uniformly stable discretizations are proposed and corresponding uniform
and optimal error estimates proved, which are also independent of the Lamé parameter 𝜆; the permeability coefficients
Ki; the storage coefficients cpi ; the network transfer coefficients 𝛽 i j, i, j = 1, … ,n; the scale of the networks n; the time
step size 𝜏; and the mesh size h. The transfer of the canonical (norm-equivalent) operator preconditioners from the
continuous to the discrete level lays the foundation for optimal and fully robust iterative solution methods. Numerical
experiments motivated by practical applications are presented. These confirm both the uniform and optimal convergence
of the proposed finite element methods and the uniform robustness of the norm-equivalent preconditioners.
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 - div\bfitsigma +
n\sum 

i=1

\alpha i\nabla pi = \bfitf in \Omega \times (0, T ),(1.1a)

\bfitv i =  - Ki\nabla pi in \Omega \times (0, T ),(1.1b)

 - \alpha idiv \.\bfitu  - div\bfitv i  - cpi
\.pi  - 

n\sum 

j=1
j \not =i

\beta ij(pi  - pj) = gi in \Omega \times (0, T ),(1.1c)

where (1.1a) and (1.1b) are for i = 1, . . . , n. Here

\bfitsigma = 2\mu \bfitepsilon (\bfitu ) + \lambda div(\bfitu )\bfitI and \bfitepsilon (\bfitu ) =
1

2
(\nabla \bfitu + (\nabla \bfitu )T ),(1.2)
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denote the effective stress and the strain tensor, respectively, and the Lam\'e parameters
\lambda and \mu are expressed in terms of the modulus of elasticity E and the Poisson ratio
\nu \in [0, 1/2) by \lambda := \nu E

(1+\nu )(1 - 2\nu ) , \mu := E
2(1+\nu ) . The displacement \bfitu , fluxes \bfitv i, and

corresponding pressures pi, i = 1, . . . , n, are the unknown physical quantities.
The constants \alpha i in (1.1a) are known as Biot--Willis parameters, while \bfitf rep-

resents the body force density. The hydraulic conductivity tensors Ki in (1.1b) are
defined as the permeability divided by the viscosity of the ith network. The constants
cpi in (1.1c) denote the constrained specific storage coefficients; see, e.g., [38]. The
network transfer coefficients \beta ij couple the network pressures and hence \beta ij = \beta ji.
Fluid extractions or injections enter the system via the source terms gi in (1.1c).

The system (1.1) is well-posed under proper boundary and initial conditions. For
stability reasons, this system is discretized in time by an implicit method. This creates
a coupled static problem in each time step. The latter can be solved fully implicit,
using a loose or explicit coupling, or an iterative coupling. In general, the loosely or
explicitly coupled approach is less accurate than the fully implicit one which, however,
is normally more computationally expensive. Iterative coupling is a commonly used
alternative to avoid the disadvantages of the aforementioned approaches. The most
popular procedures in this category are the undrained split, the fixed-stress split,
the drained split, and the fixed-strain split iterative methods. As shown in [27], in
contrast to the drained split and the fixed-strain split methods, the undrained split
and fixed-stress split methods are unconditionally stable.

Convergence estimates and the rate of convergence for the latter methods have
been derived in [35] for the quasi-static Biot system. The convergence and error
analysis of an iterative coupling scheme for solving a fully discretized Biot system
based on the fixed-stress split has been provided in [3]. Linear convergence in energy
norms of a variant of the fixed-stress split iteration applied to heterogenous media
has been shown in [13] for linearized Biot's equations.

Other variants of the fixed-stress split iterative scheme include a two-grid algo-
rithm in which the flow subproblem of the Biot system is solved on a fine grid whereas
the poromechanics subproblem is solved on a coarse grid (see [16]) or the multirate
fixed-stress split iterative scheme which exploits different time scales for the mechan-
ics and flow problems by taking several finer time steps for flow within one coarse
time step for the mechanics of the system (see [2]).

The fixed-stress split scheme has also been successfully applied and proved con-
vergent for space-time finite element approximations of the quasi-static Biot system;
cf. [6]. In the context of unsaturated materials, it can be used for linearization of
nonlinear poromechanics problems [10, 11]. When combined with Anderson accel-
eration, as shown in [12], this yields a highly efficient method. Other applications
include fractured porous media [20] and fracture propagation [31]. The optimization
of the stabilization parameter that serves the acceleration of the fixed-stress iterative
method is considered for the Biot problem in the two-field formulation in [39].

In this paper we propose a fixed-stress split method for the MPET system. We
prove its linear convergence and, furthermore, show with a proper choice for the
stabilization parameter that the rate of convergence is independent of the physical
parameters in the model. These theoretical findings are also tested computationally.
The obtained numerical results support the proven convergence rate estimate and
demonstrate the precedence of the fixed-stress split iterative method over the MinRes
algorithm with norm-equivalent preconditioning.

The remainder of the paper is structured as follows. In section 2 we introduce no-
tation and recall some important stability properties of the flux-based MPET system
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(see [24], and also [23] for the special case of Biot's system), which are to be used
later. Section 3 contains the main contribution of the paper. There, the fixed-stress
algorithm for the MPET system is formulated and a parameter-robust convergence
rate estimate proven. Section 4 discusses a discrete MPET model to which the main
results from section 3 are then transferred in section 5. Numerical tests for the pro-
posed fixed-stress split iterative coupling scheme are presented in section 6. Section 7
gives concluding remarks.

\bftwo . \bfP \bfr \bfo \bfp \bfe \bfr \bft \bfi \bfe \bfs \bfo \bff \bft \bfh \bfe fl\bfu \bfx -\bfb \bfa \bfs \bfe \bfd \bfM \bfP \bfE \bfT \bfp \bfr \bfo \bfb \bfl \bfe \bfm . It will be convenient for
our exposition to rescale the MPET equations (1.1) and to represent the time-discrete
problem in operator form. We start with imposing the following boundary and initial
conditions that guarantee the well-posedness of system (1.1):

pi(\bfitx , t) = pi,D(\bfitx , t) for \bfitx \in \Gamma pi,D, t > 0, i = 1, . . . , n,

\bfitv i(\bfitx , t) \cdot \bfitn (\bfitx ) = qi,N (\bfitx , t) for \bfitx \in \Gamma pi,N , t > 0, i = 1, . . . , n,

\bfitu (\bfitx , t) = \bfitu D(\bfitx , t) for \bfitx \in \Gamma \bfitu ,D, t > 0,\Biggl( 
\bfitsigma (\bfitx , t) - 

n\sum 

i=1

\alpha ipi\bfitI 

\Biggr) 
\bfitn (\bfitx ) = \bfitg N (\bfitx , t) for \bfitx \in \Gamma \bfitu ,N , t > 0,

pi(\bfitx , 0) = pi,0(\bfitx ), \bfitx \in \Omega , i = 1, . . . , n,

\bfitu (\bfitx , 0) = \bfitu 0(\bfitx ), \bfitx \in \Omega ,

where \Gamma pi,D \cap \Gamma pi,N = \emptyset , \Gamma pi,D \cup \Gamma pi,N = \Gamma = \partial \Omega for i = 1, . . . , n, \Gamma \bfitu ,D \cap \Gamma \bfitu ,N = \emptyset ,
and \Gamma \bfitu ,D \cup \Gamma \bfitu ,N = \Gamma are fulfilled.

Using the backward Euler method for time discretization (see also [24]), one has
to solve a static problem of the form

 - 2\mu div \bfitepsilon (\bfitu k) - \lambda \nabla div\bfitu k +

n\sum 

i=1

\alpha i\nabla pki = \bfitf k,(2.1a)

K - 1
i \bfitv ki +\nabla pki = \bfzero , i = 1, . . . , n,(2.1b)

 - \alpha idiv\bfitu 
k  - \tau div\bfitv ki  - cpip

k
i  - \tau 

n\sum 

j=1
j \not =i

\beta ij(p
k
i  - pkj ) = gki , i = 1, . . . , n,(2.1c)

at every time moment tk = tk - 1 + \tau , k = 1, 2, . . .. In system (2.1), the unknown
time-step functions \bfitu k, \bfitv ki , p

k
i approximate \bfitu , \bfitv i, pi at t = tk, the right-hand sides

are given by \bfitf k = \bfitf (x, tk), g
k
i =  - \tau gi(x, tk) - \alpha idiv (\bfitu 

k - 1) - cpi
pk - 1
i for i = 1, . . . , n,

and \tau denotes the time step size. We divide (2.1) by 2\mu and, for convenience, denote

\lambda 

2\mu 
\rightarrow \lambda ,

\alpha i

2\mu 
\rightarrow \alpha i,

\bfitf k

2\mu 
\rightarrow \bfitf k,

\tau 

2\mu 
\rightarrow \tau ,

cpi

2\mu 
\rightarrow cpi

,
gki
2\mu 
\rightarrow gki , i = 1, . . . , n.

Next, we multiply (2.1b) by \alpha i and (2.1c) by \alpha  - 1
i and introduce the new variables

\bfitv i :=
\tau 

\alpha i
\bfitv ki , pi := \alpha ip

k
i , \bfitu := \bfitu k, \bfitf := \bfitf k, gi :=

gki
\alpha i

, i = 1, . . . , n.

Then system (2.1) takes the form
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 - div \bfitepsilon (\bfitu ) - \lambda \nabla div\bfitu +

n\sum 

i=1

\nabla pi = \bfitf ,(2.2a)

\tau  - 1K - 1
i \alpha 2

i\bfitv i +\nabla pi = \bfzero , i = 1, . . . , n,(2.2b)

 - div\bfitu  - div\bfitv i  - 
cpi

\alpha 2
i

pi +
n\sum 

j=1
j \not =i

\biggl( 
 - \tau \beta ij

\alpha 2
i

pi +
\tau \beta ij

\alpha i\alpha j
pj

\biggr) 
= gi, i = 1, . . . , n,(2.2c)

in the new variables. Finally, using the parameter substitutions

R - 1
i := \tau  - 1K - 1

i \alpha 2
i , \alpha pi :=

cpi

\alpha 2
i

, \beta ii :=

n\sum 

j=1
j \not =i

\beta ij , \alpha ij :=
\tau \beta ij

\alpha i\alpha j
, \~\alpha ii :=  - \alpha pi  - \alpha ii

for i, j = 1, . . . , n, system (2.2) can be represented in operator notation by

A
\bigl[ 
\bfitu T ,\bfitv T1 , . . . ,\bfitv 

T
n , p1, . . . , pn

\bigr] T
=
\bigl[ 
\bfitf T ,\bfzero T , . . . ,\bfzero T , g1, . . . , gn

\bigr] T
,(2.3)

where

A :=

\left[ 
                     

 - div \epsilon  - \lambda \nabla div 0 . . . . . . 0 \nabla . . . . . . \nabla 

0 R - 1
1 I 0 . . . 0 \nabla 0 . . . 0

... 0
. . .

... 0
. . .

...
...

...
. . . 0

...
. . . 0

0 0 . . . 0 R - 1
n I 0 . . . 0 \nabla 

 - div  - div 0 . . . 0 \~\alpha 11I \alpha 12I . . . \alpha 1nI
... 0

. . .
... \alpha 21I

. . . \alpha 2nI
...

...
. . . 0

...
. . .

...
 - div 0 . . . 0  - div \alpha n1I \alpha n2I . . . \~\alpha nnI

\right] 
                     

(2.4)

is the rescaled operator. For the scaled parameters we make the following plausible
and quite nonrestrictive assumptions, namely,

\lambda > 0, R - 1
1 , . . . , R - 1

n > 0, \alpha p1
, . . . , \alpha pn

\geq 0, \alpha ij \geq 0, i, j = 1, . . . , n.(2.5)

\bftwo .\bfone . \bfP \bfr \bfe \bfl \bfi \bfm \bfi \bfn \bfa \bfr \bfi \bfe \bfs \bfa \bfn \bfd \bfn \bfo \bft \bfa \bft \bfi \bfo \bfn . Let us denote \bfitv T := (\bfitv T1 , . . . ,\bfitv 
T
n ), \bfitz 

T :=
(\bfitz T1 , . . . ,\bfitz 

T
n ), \bfitp 

T := (p1, . . . , pn), \bfitq 
T := (q1, . . . , qn) where \bfitv , \bfitz \in \bfitV = \bfitV 1 \times \cdot \cdot \cdot \times \bfitV n,

\bfitp , \bfitq \in \bfitP = P1 \times \cdot \cdot \cdot \times Pn and \bfitU := \{ \bfitu \in H1(\Omega )d : \bfitu = \bfzero on \Gamma \bfitu ,D\} ,\bfitV i := \{ \bfitv i \in 
H(div,\Omega ) : \bfitv i \cdot \bfitn = 0 on \Gamma pi,N\} , Pi := L2(\Omega ), and Pi := L2

0(\Omega ) if \Gamma \bfitu ,D = \Gamma = \partial \Omega .
The weak formulation of system (2.3) reads: find (\bfitu ;\bfitv ;\bfitp ) \in \bfitU \times \bfitV \times \bfitP , such

that for any (\bfitw ; \bfitz ; \bfitq ) \in \bfitU \times \bfitV \times \bfitP there hold

(\epsilon (\bfitu ), \epsilon (\bfitw )) + \lambda (div\bfitu ,div\bfitw ) - 
n\sum 

i=1

(pi,div\bfitw ) = (\bfitf ,\bfitw ),(2.6a)

(R - 1
i \bfitv i, \bfitz i) - (pi,div \bfitz i) = 0, i = 1, . . . , n,(2.6b)

 - (div\bfitu , qi) - (div\bfitv i, qi) + \~\alpha ii(pi, qi) +
n\sum 

j=1
j \not =i

\alpha ij(pj , qi) = (gi, qi), i = 1, . . . , n,(2.6c)
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or, equivalentely, \scrA ((\bfitu ;\bfitv ;\bfitp ), (\bfitw ; \bfitz ; \bfitq )) = F (\bfitw ; \bfitz ; \bfitq ) for all (\bfitw ; \bfitz ; \bfitq ) \in \bfitU \times \bfitV \times \bfitP ,
where

F (\bfitw ; \bfitz ; \bfitq ) = (\bfitf ,\bfitw ) +

n\sum 

i=1

(gi, qi) and

\scrA ((\bfitu ;\bfitv ;\bfitp ), (\bfitw ; \bfitz ; \bfitq )) = (\bfitepsilon (\bfitu ), \bfitepsilon (\bfitw )) + \lambda (div\bfitu ,div\bfitw ) - 
n\sum 

i=1

(pi,div\bfitw )

+
n\sum 

i=1

(R - 1
i \bfitv i, \bfitz i) - (\bfitp ,Div \bfitz ) - 

n\sum 

i=1

(div\bfitu , qi)

 - (Div\bfitv , \bfitq ) - 
n\sum 

i=1

(\alpha pi
+ \alpha ii)(pi, qi) +

n\sum 

i=1

n\sum 

j=1
j \not =i

\alpha ji(pj , qi)

= (\bfitepsilon (\bfitu ), \bfitepsilon (\bfitw )) + \lambda (div\bfitu ,div\bfitw ) - 
n\sum 

i=1

(pi,div\bfitw )

+
n\sum 

i=1

(R - 1
i \bfitv i, \bfitz i) - (\bfitp ,Div \bfitz ) - 

n\sum 

i=1

(div\bfitu , qi)

 - (Div\bfitv , \bfitq ) - ((\Lambda 1 + \Lambda 2)\bfitp , \bfitq ).

Here we have denoted (Div\bfity )T := (div\bfity 1, . . . ,div\bfity n) for \bfity \in \bfitV and

\Lambda 1 :=

\left[ 
    

\alpha 11  - \alpha 12 . . .  - \alpha 1n

 - \alpha 21 \alpha 22 . . .  - \alpha 2n

...
...

. . .
...

 - \alpha n1  - \alpha n2 . . . \alpha nn

\right] 
    , \Lambda 2 :=

\left[ 
    

\alpha p1 0 . . . 0
0 \alpha p2

. . . 0
...

...
. . .

...
0 0 . . . \alpha pn

\right] 
    .

Furthermore, define R - 1 := max\{ R - 1
1 , . . . , R - 1

n \} , \lambda 0 := max\{ 1, \lambda \} , and the n \times n
matrices

\Lambda 3 :=

\left[ 
    

R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

\right] 
    , \Lambda 4 :=

\left[ 
     

1
\lambda 0

. . . . . . 1
\lambda 0

...
...

...
...

1
\lambda 0

. . . . . . 1
\lambda 0

\right] 
     

that are used later in the convergence analysis of the fixed-stress split iterative method.
It is easy to show that \Lambda i are symmetric positive semidefinite for i = 1, 2, 4, while \Lambda 3

is symmetric positive definite (SPD).

Moreover, we denote \Lambda :=
\sum 4

i=1 \Lambda i, which obviously is an SPD matrix and there-
fore can be used to define the parameter-matrix-dependent norms \| \cdot \| \bfitU , \| \cdot \| \bfitV , \| \cdot \| \bfitP 
induced by the inner products:

(\bfitu ,\bfitw )\bfitU = (\epsilon (\bfitu ), \epsilon (\bfitw )) + \lambda (div\bfitu ,div\bfitw ),(2.7a)

(\bfitv , \bfitz )\bfitV =

n\sum 

i=1

(R - 1
i \bfitv i, \bfitz i) + (\Lambda  - 1Div\bfitv ,Div \bfitz ),(2.7b)

(\bfitp , \bfitq )\bfitP = (\Lambda \bfitp , \bfitq ).(2.7c)

As shown in [24], these norms are crucial to show the parameter-robust stability of
the MPET system.
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\bftwo .\bftwo . \bfS \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfp \bfr \bfo \bfp \bfe \bfr \bft \bfi \bfe \bfs . The following inf-sup conditions for the spaces \bfitU ,
\bfitV , \bfitP are assumed to be fulfilled in the analysis presented in this paper:

inf
q\in Pi

sup
\bfitv \in \bfitV i

(div\bfitv , q)

\| \bfitv \| \mathrm{d}\mathrm{i}\mathrm{v}\| q\| 
\geq \beta d, i = 1, . . . , n,(2.8)

inf
(q1,\cdot \cdot \cdot ,qn)\in P1\times \cdot \cdot \cdot \times Pn

sup
\bfitu \in \bfitU 

\biggl( 
div\bfitu ,

n\sum 
i=1

qi

\biggr) 

\| \bfitu \| 1
\bigm\| \bigm\| \bigm\| \bigm\| 

n\sum 
i=1

qi

\bigm\| \bigm\| \bigm\| \bigm\| 
\geq \beta s(2.9)

for some constants \beta d > 0 and \beta s > 0; see [14, 9]. Then from [24], we know that
the MPET problem (2.6) is uniformly well-posed, namely the three assertions in
Theorem 2.1 hold.

Theorem 2.1.
(i) There exists a positive constant Cb independent of the parameters \lambda , R - 1

i ,
\alpha pi

, \alpha ij, i, j \in \{ 1, . . . , n\} and the network scale n such that the inequality

| \scrA ((\bfitu ;\bfitv ;\bfitp ), (\bfitw ; \bfitz ; \bfitq ))| \leq Cb(\| \bfitu | \bfitU + \| \bfitv \| \bfitV + \| \bfitp \| \bfitP )(\| \bfitw \| \bfitU + \| \bfitz \| \bfitV + \| \bfitq \| \bfitP )

holds true for any (\bfitu ;\bfitv ;\bfitp ) \in \bfitU \times \bfitV \times \bfitP , (\bfitw ; \bfitz ; \bfitq ) \in \bfitU \times \bfitV \times \bfitP .
(ii) There is a constant \omega > 0 independent of the parameters \lambda ,R - 1

i , \alpha pi
, \alpha ij,

i, j \in \{ 1, . . . , n\} and the number of networks n such that

inf
(\bfitu ;\bfitv ;\bfitp )\in \bfitX 

sup
(\bfitw ;\bfitz ;\bfitq )\in \bfitX 

\scrA ((\bfitu ;\bfitv ;\bfitp ), (\bfitw ; \bfitz ; \bfitq ))

(\| \bfitu \| \bfitU + \| \bfitv \| \bfitV + \| \bfitp \| \bfitP )(\| \bfitw \| \bfitU + \| \bfitz \| \bfitV + \| \bfitq \| \bfitP )
\geq \omega ,

(2.10)

where \bfitX := \bfitU \times \bfitV \times \bfitP .
(iii) The MPET system (2.6) has a unique solution (\bfitu ;\bfitv ;\bfitp ) \in \bfitU \times \bfitV \times \bfitP and

the following stability estimate holds:

\| \bfitu \| \bfitU + \| \bfitv \| \bfitV + \| \bfitp \| \bfitP \leq C1(\| \bfitf \| \bfitU \ast + \| \bfitg \| \bfitP \ast ),(2.11)

where C1 is a positive constant independent of the parameters \lambda ,R - 1
i , \alpha pi

,

\alpha ij , i, j \in \{ 1, . . . , n\} and the network scale n, and \| \bfitf \| \bfitU \ast = sup\bfitw \in \bfitU 
(\bfitf ,\bfitw )
\| \bfitw \| \bfitU 

,

\| \bfitg \| \bfitP \ast = sup\bfitq \in \bfitP 
(\bfitg ,\bfitq )
\| \bfitq \| \bfitP 

= \| \Lambda  - 1
2 \bfitg \| .

\bftwo .\bfthree . \bfA \bfn \bfo \bfr \bfm -\bfe \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bft \bfa \bfn \bfd \bfa fi\bfe \bfl \bfd -\bfo \bff -\bfv \bfa \bfl \bfu \bfe \bfs -\bfe \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bft \bfp \bfr \bfe \bfc \bfo \bfn \bfd \bfi \bft \bfi \bfo \bfn \bfe \bfr .
Consider the block-diagonal operator

BN :=

\left[ 
 
\scrA \bfitu \bfzero \bfzero 
\bfzero \scrS \bfitv \bfzero 
\bfzero \bfzero \scrS \bfitp 

\right] 
 
 - 1

,(2.12)

where

\scrA \bfitu =  - div \bfitepsilon  - \lambda \nabla div ,(2.13)

\scrS \bfitv =

\left[ 
    

R - 1
1 I 0 . . . 0
0 R - 1

2 I . . . 0
...

...
. . .

...
0 0 . . . R - 1

n I

\right] 
     - 

\left[ 
    

\~\gamma 11\nabla div \~\gamma 12\nabla div . . . \~\gamma 1n\nabla div
\~\gamma 21\nabla div \~\gamma 22\nabla div . . . \~\gamma 2n\nabla div

...
...

. . .
...

\~\gamma n1\nabla div \~\gamma n2\nabla div . . . \~\gamma nn\nabla div

\right] 
    ,(2.14)
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and

\scrS \bfitp =

\left[ 
    

\gamma 11I \gamma 12I . . . \gamma 1nI
\gamma 21I \gamma 22I . . . \gamma 2nI
...

...
. . .

...
\gamma n1I \gamma n2I . . . \gamma nnI

\right] 
    .(2.15)

Here, \gamma ij , \~\gamma ij , i, j = 1, . . . , n, are the entries of \Lambda and \Lambda  - 1, respectively.
As substantiated in [24, 34], the stability results for the operator A imply that

the operator BN defined in (2.12) is a uniform norm-equivalent (canonical) block-
diagonal preconditioner that is robust with respect to all model and discretization
parameters. An analogous uniform block-diagonal preconditioner exists also on the
discrete level if discrete inf-sup conditions analogous to (2.8) and (2.9) are satisfied;
cf. [24].

In addition, we can also consider the field-of-values-equivalent (FOV-equivalent)
preconditioner

BF :=

\left[ 
 
\scrA \bfitu \bfzero \bfzero 
\bfzero \scrS \bfitv \bfzero 
 - \scrB \bfitu \scrB \bfitv \scrS \bfitp 

\right] 
 
 - 1

,(2.16)

where

\scrB \bfitu :=

\left[ 
     

 - div
...
...

 - div

\right] 
     
, \scrB \bfitv :=

\left[ 
     

 - div 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0  - div

\right] 
     

(2.17)

and \scrA \bfitu , \scrS \bfitv , \scrS \bfitp are defined in (2.13), (2.14), (2.15).
The field-of-values equivalence of the block-triangular preconditioner (2.16) can

be proven following the theory presented in [17, 18, 33]. Related results on parame-
ter-robust block-preconditioners for Biot's consolidation model can be found in [1, 29]
and in [24, 30] in the context of the MPET model.

\bfthree . \bfF \bfi \bfx \bfe \bfd -\bfs \bft \bfr \bfe \bfs \bfs \bfm \bfe \bft \bfh \bfo \bfd \bff \bfo \bfr \bfM \bfP \bfE \bfT \bfm \bfo \bfd \bfe \bfl . In the proposed fixed-stress split
iterative coupling scheme for the MPET system, and as for Biot's equations, we first
solve the flow and then the mechanics problem where, in order to avoid instabilities,
a stabilization term is added to the flow equation. Note that generalizing the fixed-
stress iteration from the Biot to the (flux-based) MPET model is not straightforward
due to the involvement of n pressures pi and n fluxes \bfitv i. Our formulation suggests
a stabilization that employs the sum of the pressures which later shows itself to be
vital for the convergence properties of the scheme.

In order to elucidate our approach, we present the fixed-stress split iterative
scheme for the continuous problem first. Let \bfitu k, \bfitv ki , and pki denote the kth fixed-
stress iterates for \bfitu , \bfitv i, and pi, respectively, i = 1, . . . , n. The single rate fixed-stress
split iterative method is given by the following algorithm.



FIXED STRESS FOR MPET 923

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone : \bfF \bfi \bfx \bfe \bfd -\bfs \bft \bfr \bfe \bfs \bfs \bfc \bfo \bfu \bfp \bfl \bfi \bfn \bfg \bfi \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn \bff \bfo \bfr \bft \bfh \bfe \bfM \bfP \bfE \bfT \bfs \bfy \bfs \bft \bfe \bfm 

\bfS \bft \bfe \bfp \bfa : Given \bfitu m, we solve for \bfitv m+1
i and pm+1

i

( - div\bfitv m+1
i , qi) - ((\alpha pi

+ \alpha ii)p
m+1
i , qi) +

\left( 
   

n\sum 

j=1
j \not =i

\alpha ijp
m+1
j , qi

\right) 
    - L

\left( 
 

n\sum 

j=1

pm+1
j , qi

\right) 
 

= (gi, qi) - L

\left( 
 

n\sum 

j=1

pmj , qi

\right) 
 + (div\bfitu m, qi), 1 \leq i \leq n,

and

(R - 1
i \bfitv m+1

i , \bfitz i) - (pm+1
i ,div \bfitz i) = \bfzero , 1 \leq i \leq n.

\bfS \bft \bfe \bfp \bfb : Given \bfitv m+1
i and pm+1

i , we solve for \bfitu m+1

(\bfitepsilon (\bfitu m+1), \bfitepsilon (\bfitw )) + \lambda (div\bfitu m+1,div\bfitw ) = (\bfitf ,\bfitw ) +
n\sum 

i=1

(pm+1
i ,div\bfitw ).

Our main result is formulated in terms of the following quantities:

\bfite ku = \bfitu k  - \bfitu \in \bfitU ,(3.1a)

\bfite kvi = \bfitv 
k
i  - \bfitv i \in \bfitV i, i = 1, . . . , n,(3.1b)

ekpi
= pki  - pi \in Pi, i = 1, . . . , n,(3.1c)

denoting the errors of the kth iterates \bfitu k, \bfitv ki , p
k
i , i = 1, . . . , n, generated by Algo-

rithm 3.1. The error block-vectors \bfite kv and \bfite kp are given by (\bfite kv)
T = ((\bfite kv1)

T , . . . , (\bfite kvn))
T

and (\bfite kp)
T = (ekp1

, . . . , ekpn
). Since \bfitu , \bfitv i, pi, i = 1, . . . , n, are the exact solutions

of (2.6), the error equations

( - Div\bfite m+1
v , \bfitq ) - ((\Lambda 1 + \Lambda 2)\bfite 

m+1
p , \bfitq ) - L

\Biggl( 
n\sum 

i=1

em+1
pi

,

n\sum 

i=1

qi

\Biggr) 
=  - L

\Biggl( 
n\sum 

i=1

empi
,

n\sum 

i=1

qi

\Biggr) 

+

\Biggl( 
div \bfite mu ,

n\sum 

i=1

qi

\Biggr) 
,(3.2a)

(R - 1\bfite m+1
v , \bfitz ) - (\bfite m+1

p ,Div\bfitz ) = 0,(3.2b)

(\bfitepsilon (\bfite m+1
u ), \bfitepsilon (\bfitw )) + \lambda (div \bfite m+1

u ,div\bfitw ) =

\Biggl( 
n\sum 

i=1

em+1
pi

,div\bfitw 

\Biggr) 
(3.2c)

hold, the latter of which plays a key role in the presented convergence analysis.
Note that in the following we do not make any further restrictive assumptions on

the parameters in (2.6) but consider the general situation in which only (2.5) needs to
be satisfied. Useful for deriving and defining the tuning parameter L is the constant
cK in the estimate
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\| \bfitepsilon (\bfitw )\| \geq cK\| div (\bfitw )\| for all \bfitw \in \bfitU (3.3)

which is used for \bfitw = \bfite m+1
u  - \bfite mu in the proof of the next Lemma.1

We perform the convergence analysis in two steps. The first one is the proof of
the following lemma.

Lemma 3.1. The errors \bfite m+1
u , \bfite m+1

v , and \bfite m+1
p of the (m+1)st fixed-stress iterate

generated by Algorithm 3.1 for L \geq 1
\lambda +c2K

satisfy the estimate

1

2

\Bigl( 
\| \bfitepsilon (\bfite m+1

u )\| 2 + \lambda \| div \bfite m+1
u \| 2

\Bigr) 
+ \| R - 1/2\bfite m+1

v \| 2 + \| (\Lambda 1 + \Lambda 2)
1/2\bfite m+1

p \| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

, m = 0, 1, 2, . . . .
(3.4)

Proof. Setting \bfitz = \bfite m+1
v , \bfitq =  - \bfite m+1

p ,\bfitw = \bfite m+1
u in (3.2a)--(3.2c), it follows that

\| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2 + \| R - 1/2\bfite m+1
v \| 2 + \| (\Lambda 1 + \Lambda 2)

1/2\bfite m+1
p \| 2

+L

\Biggl( 
n\sum 

i=1

(em+1
pi
 - empi

),
n\sum 

i=1

em+1
pi

\Biggr) 
=

\Biggl( 
div (\bfite m+1

u  - \bfite mu ),
n\sum 

i=1

em+1
pi

\Biggr) 
.

(3.5)

Using the identity

\Biggl( 
n\sum 

i=1

(em+1
pi
 - empi

),
n\sum 

i=1

em+1
pi

\Biggr) 

=
1

2

\left( 
 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

 - 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2
\right) 
 ,

(3.5) can be rewritten as

\| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2 + \| R - 1/2\bfite m+1
v \| 2 + \| (\Lambda 1 + \Lambda 2)

1/2\bfite m+1
p \| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

=
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+

\Biggl( 
div (\bfite m+1

u  - \bfite mu ),
n\sum 

i=1

em+1
pi

\Biggr) 
.

(3.6)

Now, taking \bfitw = \bfite m+1
u  - \bfite mu in (3.2c) we obtain

\Biggl( 
div (\bfite m+1

u  - \bfite mu ),

n\sum 

i=1

em+1
pi

\Biggr) 

= (\bfitepsilon (\bfite m+1
u ), \bfitepsilon (\bfite m+1

u  - \bfite mu )) + \lambda (div \bfite m+1
u ,div (\bfite m+1

u  - \bfite mu ))

(3.7)

1It can easily be shown that estimate (3.3) holds true for cK = 1/
\surd 
d, where d is the space

dimension.
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and, substituting (3.7) in (3.6), conclude that

\| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2 + \| R - 1/2\bfite m+1
v \| 2 + \| (\Lambda 1 + \Lambda 2)

1/2\bfite m+1
p \| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

=
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+ (\bfitepsilon (\bfite m+1
u ), \bfitepsilon (\bfite m+1

u  - \bfite mu )) + \lambda (div \bfite m+1
u ,div (\bfite m+1

u  - \bfite mu ))

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
1

2

\Bigl( 
\| \bfitepsilon (\bfite m+1

u )\| 2 + \lambda \| div \bfite m+1
u \| 2

\Bigr) 

+
1

2

\Bigl( 
\| \bfitepsilon (\bfite m+1

u  - \bfite mu )\| 2 + \lambda \| div (\bfite m+1
u  - \bfite mu )\| 2

\Bigr) 
.

The latter inequality can be expressed equivalently in the form

1

2

\Bigl( 
\| \bfitepsilon (\bfite m+1

u )\| 2 + \lambda \| div \bfite m+1
u \| 2

\Bigr) 
+ \| R - 1/2\bfite m+1

v \| 2 + \| (\Lambda 1 + \Lambda 2)
1/2\bfite m+1

p \| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
1

2

\Bigl( 
\| \bfitepsilon (\bfite m+1

u  - \bfite mu )\| 2 + \lambda \| div (\bfite m+1
u  - \bfite mu )\| 2

\Bigr) 
.

(3.8)

To estimate the last term in (3.8) consider (3.2c) again. Subtracting the mth error
from the (m+1)st, choosing \bfitw = \bfite m+1

u  - \bfite mu , and applying Cauchy's inequality yields

\| \bfitepsilon (\bfite m+1
u  - \bfite mu )\| 2 + \lambda \| div (\bfite m+1

u  - \bfite mu )\| 2

\leq \| div (\bfite m+1
u  - \bfite mu )\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

(em+1
pi
 - empi

)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .
(3.9)

Next, from (3.3) we have that \| \bfitepsilon (\bfite m+1
u  - \bfite mu )\| \geq cK\| div (\bfite m+1

u  - \bfite mu )\| , which implies

(c2K + \lambda )\| div (\bfite m+1
u  - \bfite mu )\| \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,

that is,

\| div (\bfite m+1
u  - \bfite mu )\| \leq 1

\lambda + c2K

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .(3.10)

Hence

\| \bfitepsilon (\bfite m+1
u  - \bfite mu )\| 2 + \lambda \| div (\bfite m+1

u  - \bfite mu )\| 2

\leq 1

\lambda + c2K

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

(em+1
pi
 - empi

)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

(em+1
pi
 - empi

)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

.
(3.11)
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Therefore, using (3.11) in (3.8), we obtain

1

2

\Bigl( 
\| \bfitepsilon (\bfite m+1

u )\| 2 + \lambda \| div \bfite m+1
u \| 2

\Bigr) 
+ \| R - 1/2\bfite m+1

v \| 2 + \| (\Lambda 1 + \Lambda 2)
1/2\bfite m+1

p \| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi
 - 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

(em+1
pi
 - empi

)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

,

which completes the proof.

Using (3.4), we can prove that
\sum n

i=1 e
m
pi

m\rightarrow \infty  - \rightarrow 0, which is stated in the following
theorem.

Theorem 3.2. Let cK and \beta s denote the constants in (3.3) and (2.9), respec-
tively. The single rate fixed-stress iterative method for the static MPET problem (2.6)
defined in Algorithm 3.1 is a contraction that converges linearly for any L \geq 1/(\lambda +c2K)
independent of the model parameters and the time step size \tau . The errors \bfite mp in this
case satisfy the inequality

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq rate2(\lambda )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

(3.12)

with

rate2(\lambda ) \leq 1
L - 1

\beta  - 2
s +\lambda 

+ 1
.(3.13)

For L = 1
\lambda +c2K

, the convergence factor in (3.12) can be estimated by

rate2(\lambda ) \leq 1
\lambda +c2K
\beta  - 2
s +\lambda 

+ 1
\leq max

\biggl\{ 
\beta  - 2
s

c2K + \beta  - 2
s

,
1

2

\biggr\} 
.(3.14)

Proof. By the Stokes inf-sup condition, we have that for any
\sum n

i=1 e
m+1
pi

there
exists \bfitw p \in \bfitU such that

div\bfitw p =
n\sum 

i=1

em+1
pi

and \| \bfitepsilon (\bfitw p)\| \leq \beta  - 1
s

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,(3.15)

where \beta s is the Stokes inf-sup constant in (2.9). Hence,

\| \bfitepsilon (\bfitw p)\| 2 + \lambda \| div\bfitw p\| 2 \leq (\beta  - 2
s + \lambda )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

.

Taking \bfitw = \bfitw p in (3.2c) and using (3.15) yields

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

= (\bfitepsilon (\bfite m+1
u ), \bfitepsilon (\bfitw p)) + \lambda (div \bfite m+1

u ,div\bfitw p).(3.16)

Now, applying Cauchy's inequality, we obtain
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\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq (\| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2) 1
2 (\| \bfitepsilon (\bfitw p)\| 2 + \lambda \| div\bfitw p\| 2)

1
2

\leq (\| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2) 1
2 (\beta  - 2

s + \lambda )
1
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,
(3.17)

which implies

(\beta  - 2
s + \lambda ) - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq \| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2.(3.18)

Given Lemma 3.1 and (3.18), we therefore obtain

1

2
(\beta  - 2

s + \lambda ) - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

+ \| R - 1/2\bfite m+1
v \| 2 + \| (\Lambda 1 + \Lambda 2)

1/2\bfite m+1
p \| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

and hence \biggl( 
1

2\beta  - 2
s + 2\lambda 

+
L

2

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

,

or, equivalently,

\biggl( 
L - 1

\beta  - 2
s + \lambda 

+ 1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

,

which proves (3.12)--(3.13). Finally, (3.14) follows from (3.13) by choosing L = 1
\lambda +c2K

and noting that 1
\lambda +c2

K

\beta 
 - 2
s +\lambda 

+1
is a monotone function for \lambda > 0.

Note that
\bigm\| \bigm\| \sum n

i=1 e
m
pi

\bigm\| \bigm\| only defines a seminorm of \bfite mp and Theorem 3.2 indicates
the convergence rate of \bfite p in this seminorm. It still remains at this point unclear
whether

\bigm\| \bigm\| \sum n
i=1 e

m
pi

\bigm\| \bigm\| \rightarrow 0 guarantees that \bfite mp converges to \bfzero .
Theorem 3.4, as stated later, clarifies this and demonstrates the uniform conver-

gence of \bfite mu , \bfite mv , and \bfite mp for the fixed-stress iterative method utilizing the uniform
stability results from [24]. Before we present Theorem 3.4, we introduce the matrices

\Lambda L :=

\left[ 
     

L . . . . . . L
...

...
...

...
L . . . . . . L

\right] 
     

and \Lambda e := \Lambda + \Lambda L.(3.19)

Analogous to the assertion of Lemma 1 in [24], the properties of \Lambda e are as follows.

Lemma 3.3. Letting \~\Lambda = \Lambda 3 + \Lambda 4 + \Lambda L, \~\Lambda 
 - 1 = (\~bij)n\times n, then \~\Lambda is SPD and for

any n-dimensional vector \bfitx , and we have

(\Lambda e\bfitx ,\bfitx ) \geq (\~\Lambda \bfitx ,\bfitx ) \geq (\Lambda 3\bfitx ,\bfitx ),(3.20)

(\Lambda  - 1
e \bfitx ,\bfitx ) \leq (\~\Lambda  - 1\bfitx ,\bfitx ) \leq (\Lambda  - 1

3 \bfitx ,\bfitx ) = R - 1(\bfitx ,\bfitx ).(3.21)
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Also,

0 <

n\sum 

i=1

n\sum 

j=1

\~bij \leq 
\biggl( 

1

\lambda 0
+ L

\biggr)  - 1

.(3.22)

Subsequently, we can use \Lambda e to define the following parameter-dependent norms:

(\bfitu ,\bfitw )\bfitU = (\epsilon (\bfitu ), \epsilon (\bfitw )) + \lambda (div\bfitu ,div\bfitw ),(3.23a)

(\bfitv , \bfitz )\bfitV e
=

n\sum 

i=1

(R - 1
i \bfitv i, \bfitz i) + (\Lambda  - 1

e Div\bfitv ,Div \bfitz ),(3.23b)

(\bfitp , \bfitq )\bfitP e
= (\Lambda e\bfitp , \bfitq ).(3.23c)

As stated in the following theorem, the fixed-stress split iterative method for the
MPET system converges uniformly.

Theorem 3.4. Consider the fixed-stress split iterative method as defined in Algo-
rithm 3.1 and assume that L \geq 1/(\lambda + c2K). Then the errors \bfite mu , \bfite mv , and \bfite mp given
in (3.1), measured in the norms induced by (3.23), satisfy the estimates

\| \bfite mu \| \bfitU \leq Cu[rate(\lambda )]
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

e0pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,(3.24)

\| \bfite mv \| \bfitV e + \| \bfite mp \| \bfitP e \leq Cvp[rate(\lambda )]
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

e0pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,(3.25)

where the constants Cu and Cvp are independent of the model parameters and the time
step size \tau . Furthermore, the convergence rate rate(\lambda ) satisfies (3.13).

Proof. In the same manner as we derived (3.11) we find

\| \bfitepsilon (\bfite m+1
u )\| 2 + \lambda \| div \bfite m+1

u \| 2 \leq 
\biggl( 

1

c2K + \lambda 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

,

which shows (3.24). Moreover, rewriting the error equations (3.2a)--(3.2c) and using
the definition of \Lambda L we deduce the variational problem

(\bfitepsilon (\bfite m+1
u ), \bfitepsilon (\bfitw )) + \lambda (div \bfite m+1

u ,div\bfitw ) - 
\Biggl( 

n\sum 

i=1

em+1
pi

,div\bfitw 

\Biggr) 
= 0,

(R - 1\bfite m+1
v , \bfitz ) - (\bfite m+1

p ,Div\bfitz ) = 0,

 - 
\Biggl( 
div \bfite m+1

u ,

n\sum 

i=1

qi

\Biggr) 
 - (Div\bfite m+1

v , \bfitq ) - ((\Lambda 1 + \Lambda 2 + \Lambda L)\bfite 
m+1
p , \bfitq )

=  - L
\Biggl( 

n\sum 

i=1

empi
,

n\sum 

i=1

qi

\Biggr) 
+

\Biggl( 
div \bfite mu  - div \bfite m+1

u ,
n\sum 

i=1

qi

\Biggr) 
.

(3.26)

Denote

ge =  - L
n\sum 

i=1

empi
+ div \bfite mu  - div \bfite m+1

u ;
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then by the triangle inequality, (3.10), and the contraction estimate (3.12), it follows
that

\| ge\| =
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|  - L

n\sum 

i=1

empi
+ div \bfite mu  - div \bfite m+1

u

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq L

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| +
1

\lambda + c2K

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi
 - 

n\sum 

i=1

em+1
pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq L

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| +
2

\lambda + c2K

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq 3L

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq 3L[rate(\lambda )]m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

e0pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .

(3.27)

Next, by taking \bfitf = \bfzero , \bfitg = (ge, ge, . . . , ge)
T and replacing \Lambda 1 + \Lambda 2 by \Lambda 1 + \Lambda 2 + \Lambda L

in (2.6) and using the uniform stability estimate (2.11) with \Lambda replaced by \Lambda e, we
obtain

\| \bfite m+1
u \| \bfitU + \| \bfite m+1

v \| \bfitV e
+ \| \bfite m+1

p \| \bfitP e
\leq C1\| \bfitg \| \bfitP \ast 

e
(3.28)

= C1\| \Lambda  - 1
2

e \bfitg \| = C1(\Lambda 
 - 1
e \bfitg , \bfitg )

1
2 .

Further, by Lemma 3.3 and (3.27), we have

(\Lambda  - 1
e \bfitg , \bfitg ) \leq (\~\Lambda  - 1\bfitg , \bfitg ) = (\~\Lambda  - 1(ge, ge . . . , ge\underbrace{}  \underbrace{}  

n

)T , (ge, ge . . . , ge\underbrace{}  \underbrace{}  
n

)T )

=

\left( 
 

n\sum 

i=1

n\sum 

j=1

\~bij

\right) 
 (ge, ge) \leq 

\biggl( 
1

\lambda 0
+ L

\biggr)  - 1

(ge, ge)

\leq 9

\biggl( 
1

\lambda 0
+ L

\biggr)  - 1

L2[rate(\lambda )]2m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

e0pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq 9L[rate(\lambda )]2m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

e0pi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

.

(3.29)

Combining (3.28) and (3.29) then implies (3.24) and (3.25).

\bffour . \bfD \bfi \bfs \bfc \bfr \bfe \bft \bfe \bfM \bfP \bfE \bfT \bfp \bfr \bfo \bfb \bfl \bfe \bfm . In this section, mass conservative discretizations
of the MPET model are discussed; cf. [23, 24]. The analysis here can be similarly used
for other stable discretizations of the three-field formulation of Biot's consolidation
or the MPET model; see, e.g., [26, 36].

\bffour .\bfone . \bfN \bfo \bft \bfa \bft \bfi \bfo \bfn . We consider a shape-regular triangulation \scrT h of \Omega into trian-
gles/tetrahedrons. Here, the subscript h indicates the mesh size. The set of all
interior edges/faces and the set of all boundary edges/faces of \scrT h are denoted by \scrE Ih
and \scrE Bh , respectively, and their union by \scrE h.

We define the broken Sobolev spaces

Hs(\scrT h) = \{ \phi \in L2(\Omega ), such that \phi | T \in Hs(T ) for all T \in \scrT h\} 
for s \geq 1.
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We next introduce the notion of jumps [\cdot ] and averages \{ \cdot \} . Let T1 and T2 be two
elements from the triangulation sharing an edge or face e and let \bfitn 1 and \bfitn 2 be the
corresponding unit normal vectors to e pointing to the exterior of T1 and T2. Then
for q \in H1(\scrT h), \bfitv \in H1(\scrT h)d, and \bfittau \in H1(\scrT h)d\times d and any e \in \scrE Ih we define

[q] = q| \partial T1\cap e  - q| \partial T2\cap e, [\bfitv ] = \bfitv | \partial T1\cap e  - \bfitv | \partial T2\cap e

and

\{ \bfitv \} = 1

2
(\bfitv | \partial T1\cap e \cdot \bfitn 1  - \bfitv | \partial T2\cap e \cdot \bfitn 2), \{ \bfittau \} = 1

2
(\bfittau | \partial T1\cap e\bfitn 1  - \bfittau | \partial T2\cap e\bfitn 2),

while for e \in \scrE Bh ,

[q] = q| e, [\bfitv ] = \bfitv | e, \{ \bfitv \} = \bfitv | e \cdot \bfitn , \{ \bfittau \} = \bfittau | e\bfitn .

\bffour .\bftwo . \bfM \bfi \bfx \bfe \bfd fi\bfn \bfi \bft \bfe \bfe \bfl \bfe \bfm \bfe \bfn \bft \bfs \bfp \bfa \bfc \bfe \bfs \bfa \bfn \bfd \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfe \bff \bfo \bfr \bfm \bfu \bfl \bfa \bft \bfi \bfo \bfn . In order to
discretize the flow equations, we use a mixed finite element method to approximate
the fluxes and pressures, whereas for the mechanics problem we apply a discontinuous
Galerkin method to approximate the displacement. The considered finite element
spaces are denoted by

\bfitU h = \{ \bfitu \in H(div; \Omega ) : \bfitu | T \in \bfitU (T ), T \in \scrT h; \bfitu \cdot \bfitn = 0 on \partial \Omega \} ,
\bfitV i,h = \{ \bfitv \in H(div; \Omega ) : \bfitv | T \in \bfitV i(T ), T \in \scrT h; \bfitv \cdot \bfitn = 0 on \partial \Omega \} , i = 1, . . . , n,

Pi,h =

\biggl\{ 
q \in L2(\Omega ) : q| T \in Qi(T ), T \in \scrT h;

\int 

\Omega 

qdx = 0

\biggr\} 
, i = 1, . . . , n,

where \bfitV i(T )/Qi(T ) = RTl - 1(T )/Pl - 1(T ), \bfitU (T ) = BDMl(T ), or \bfitU (T ) = BDFMl(T )
for l \geq 1. For each of these choices, we would like to point out that div\bfitU (T ) =
div\bfitV i(T ) = Qi(T ) is satisfied.

As pointed out also in [23, 24], for all \bfitu \in \bfitU h it holds that

[\bfitu n] = 0, from which it follows [\bfitu ] = [\bfitu t],(4.1)

where \bfitu n and \bfitu t denote the normal and tangential components of \bfitu , respectively.
Using the notation

\bfitv Th = (\bfitv T1,h, . . . ,\bfitv 
T
n,h), \bfitp Th = (p1,h, . . . , pn,h),

\bfitz Th = (\bfitz T1,h, . . . ,\bfitz 
T
n,h), \bfitq Th = (q1,h, . . . , qn,h),

\bfitV h = \bfitV 1,h \times \cdot \cdot \cdot \times \bfitV n,h, \bfitP h = P1,h \times \cdot \cdot \cdot \times Pn,h, \bfitX h = \bfitU h \times \bfitV h \times \bfitP h,

the discretization of problem (2.6) can be expressed as: find (\bfitu h;\bfitv h;\bfitp h) \in \bfitX h, such
that for any (\bfitw h; \bfitz h; \bfitq h) \in \bfitX h and i = 1, . . . , n

ah(\bfitu h,\bfitw h) + \lambda (div\bfitu h,div\bfitw h) - 
n\sum 

i=1

(pi,h,div\bfitw h) = (\bfitf ,\bfitw h),(4.2a)

(R - 1
i \bfitv i,h, \bfitz i,h) - (pi,h,div \bfitz i,h) = 0,(4.2b)

 - (div\bfitu h, qi,h) - (div\bfitv i,h, qi.h) + \~\alpha ii(pi,h, qi,h) +

n\sum 

j=1
j \not =i

\alpha ij(pj,h, qi,h) = (gi, qi,h),(4.2c)
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where

ah(\bfitu ,\bfitw ) =
\sum 

T\in \scrT h

\int 

T

\bfitepsilon (\bfitu ) : \bfitepsilon (\bfitw )dx - 
\sum 

e\in \scrE h

\int 

e

\{ \bfitepsilon (\bfitu )\} \cdot [\bfitw t]ds(4.3)

 - 
\sum 

e\in \scrE h

\int 

e

\{ \bfitepsilon (\bfitw )\} \cdot [\bfitu t]ds+
\sum 

e\in \scrE h

\int 

e

\eta h - 1
e [\bfitu t] \cdot [\bfitw t]ds,

\~\alpha ii =  - \alpha pi
 - \alpha ii, and \eta is a stabilization parameter independent of the parameters

\lambda , R - 1
i , \alpha pi

, \alpha ij , where i, j \in \{ 1, . . . , n\} , the network scale n, and the mesh size h.
The discrete variational problem (4.2) corresponds to the weak formulation (2.6)

with homogeneous boundary conditions. The DG discretizations for general rescaled
boundary conditions can be found in [24, 23].

\bffour .\bfthree . \bfS \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfp \bfr \bfo \bfp \bfe \bfr \bft \bfi \bfe \bfs . Let \bfitu be a function from \bfitU h and consider the mesh
dependent norms

\| \bfitu \| 2h =
\sum 

K\in \scrT h

\| \bfitepsilon (\bfitu )\| 20,K +
\sum 

e\in \scrE h

h - 1
e \| [\bfitu t]\| 20,e,

\| \bfitu \| 21,h =
\sum 

K\in \scrT h

\| \nabla \bfitu \| 20,K +
\sum 

e\in \scrE h

h - 1
e \| [\bfitu t]\| 20,e,

\| \bfitu \| 2DG =
\sum 

K\in \scrT h

\| \nabla \bfitu \| 20,K +
\sum 

e\in \scrE h

h - 1
e \| [\bfitu t]\| 20,e +

\sum 

K\in \scrT h

h2
K | \bfitu | 22,K ,(4.4)

and

\| \bfitu \| 2\bfitU h
= \| \bfitu \| 2DG + \lambda \| div\bfitu \| 2.(4.5)

The well-posedness and approximation properties of the DG formulation are de-
tailed in [25, 22]. Here we briefly present some important results:

\bullet \| \cdot \| DG, \| \cdot \| h, and \| \cdot \| 1,h are equivalent on \bfitU h; that is,

\| \bfitu \| DG \eqsim \| \bfitu \| h \eqsim \| \bfitu \| 1,h for all \bfitu \in \bfitU h.

\bullet ah(\cdot , \cdot ) from (4.3) is continuous and it holds true that

| ah(\bfitu ,\bfitw )| \lesssim \| \bfitu \| DG\| \bfitw \| DG for all \bfitu , \bfitw \in H2(\scrT h)d.(4.6)

\bullet The inf-sup conditions

inf
(q1,h,\cdot \cdot \cdot ,qn,h)\in P1,h\times \cdot \cdot \cdot \times Pn,h

sup
\bfitu h\in \bfitU h

(div\bfitu h,
n\sum 

i=1

qi,h)

\| \bfitu h\| 1,h\| 
n\sum 

i=1

qi,h\| 
\geq \beta sd,

inf
qi,h\in Pi,h

sup
\bfitv i,h\in \bfitV i,h

(div \bfitv i,h, qi,h)

\| \bfitv i,h\| \mathrm{d}\mathrm{i}\mathrm{v}\| qi,h\| 
\geq \beta dd, i = 1, . . . , n,

(4.7)

are valid for our choice of \bfitU h,\bfitV h, and \bfitP h (see [37]), and the positive constants
\beta sd and \beta dd are independent of \lambda , R - 1

i , \alpha pi
, \alpha ij for i, j \in \{ 1, . . . , n\} , the

network scale n, and the mesh size h.
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\bullet ah(\cdot , \cdot ) is coercive, namely

ah(\bfitu h,\bfitu h) \geq \alpha a\| \bfitu h\| 2h for all \bfitu h \in \bfitU h,(4.8)

where \alpha a > 0 is a constant independent of the model and discretization
parameters \lambda ,R - 1

i , \alpha pi
, \alpha ij , i, j \in \{ 1, . . . , n\} , n, and h.

Using the definition of the matrices \Lambda 1 and \Lambda 2, we define the bilinear form

\scrA h((\bfitu h;\bfitv h;\bfitp h), (\bfitw h; \bfitz h; \bfitq h)) = ah(\bfitu h,\bfitw h) + \lambda (div\bfitu h,div\bfitw h)

 - 
n\sum 

i=1

(pi,h,div\bfitw h) +
n\sum 

i=1

(R - 1
i \bfitv i,h, \bfitz i,h) - (\bfitp h,Div \bfitz h)

 - 
\Biggl( 
div\bfitu h,

n\sum 

i=1

qi,h

\Biggr) 
 - (Div\bfitv h, \bfitq h) - ((\Lambda 1 + \Lambda 2)\bfitp h, \bfitq h)

(4.9)

related to problem (4.2a)--(4.2c).
Let the space\bfitX h be equipped with the norm \| (\cdot ; \cdot ; \cdot )\| \bfitX h

:= \| \cdot \| \bfitU h
+\| \cdot \| \bfitV +\| \cdot \| \bfitP .

Similar to Theorem 2.1, the following uniform stability results can be found as in [24].

Theorem 4.1.
(i) For any (\bfitu h;\bfitv h;\bfitp h) \in \bfitX h, (\bfitw h; \bfitz h; \bfitq h) \in \bfitX h there exists a positive constant

Cbd independent of the parameters \lambda , R - 1
i , \alpha pi

, \alpha ij, i, j \in \{ 1, . . . , n\} , the
network scale n, and the mesh size h such that the inequality

| \scrA h((\bfitu h;\bfitv h;\bfitp h), (\bfitw h; \bfitz h; \bfitq h))| \leq Cbd\| (\bfitu h;\bfitv h;\bfitp h)\| \bfitX h
\| (\bfitw h; \bfitz h; \bfitq h)\| \bfitX h

holds true.
(ii) There exists a constant \beta 0 > 0 independent of the model and discretization

parameters \lambda , R - 1
i , \alpha pi

, \alpha ij, i, j \in \{ 1, . . . , n\} , n, and h, such that

inf
(\bfitu h;\bfitv h;\bfitp h)\in \bfitX h

sup
(\bfitw h;\bfitz h;\bfitq h)\in \bfitX h

\scrA h((\bfitu h;\bfitv h;\bfitp h), (\bfitw h; \bfitz h; \bfitq h))

\| (\bfitu h;\bfitv h;\bfitp h)\| \bfitX h
\| (\bfitw h; \bfitz h; \bfitq h)\| \bfitX h

\geq \beta 0.(4.10)

(iii) Let (\bfitu h;\bfitv h;\bfitp h) \in \bfitX h solve (4.2a)--(4.2c) and

\| \bfitf \| \bfitU \ast 
h
= sup

\bfitw h\in \bfitU h

(\bfitf ,\bfitw h)

\| \bfitw h\| \bfitU h

, \| \bfitg \| \bfitP \ast = sup
\bfitq h\in \bfitP h

(\bfitg , \bfitq h)

\| \bfitq h\| \bfitP 
.

Then the estimate

\| \bfitu h\| \bfitU h
+ \| \bfitv h\| \bfitV + \| \bfitp h\| \bfitP \leq C2(\| \bfitf \| \bfitU \ast 

h
+ \| \bfitg \| \bfitP \ast )(4.11)

holds with a constant C2 independent of the network scale n, the mesh size
h, and the parameters \lambda , R - 1

i , \alpha pi , \alpha ij, i, j \in \{ 1, . . . , n\} .

\bffive . \bfF \bfi \bfx \bfe \bfd -\bfs \bft \bfr \bfe \bfs \bfs \bfm \bfe \bft \bfh \bfo \bfd \bff \bfo \bfr \bft \bfh \bfe \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfe \bfM \bfP \bfE \bfT \bfm \bfo \bfd \bfe \bfl . In the manner
of Algorithm 3.1, we formulate the fixed-stress method for the mixed continuous-
discontinuous Galerkin finite element method (4.2):
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\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffive .\bfone : \bfF \bfi \bfx \bfe \bfd -\bfs \bft \bfr \bfe \bfs \bfs \bfm \bfe \bft \bfh \bfo \bfd \bff \bfo \bfr \bft \bfh \bfe \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfe \bfM \bfP \bfE \bfT \bfp \bfr \bfo \bfb \bfl \bfe \bfm 

\bfS \bft \bfe \bfp \bfa : Given \bfitu m
h , we solve for \bfitv m+1

i,h and pm+1
i,h

( - div\bfitv m+1
i,h , qi,h) - ((\alpha pi,h

+ \alpha ii)p
m+1
i,h , qi,h) +

\left( 
   

n\sum 

j=1
j \not =i

\alpha ijp
m+1
j,h , qi,h

\right) 
   

 - L

\left( 
 

n\sum 

j=1

pm+1
j,h , qi,h

\right) 
 = (gi, qi,h) - L

\left( 
 

n\sum 

j=1

pmj,h, qi,h

\right) 
 +(div\bfitu m, qi,h), 1 \leq i \leq n,

and

(R - 1
i \bfitv m+1

i,h , \bfitz i,h) - (pm+1
i,h ,div \bfitz i,h) = 0, 1 \leq i \leq n.

\bfS \bft \bfe \bfp \bfb : Given \bfitv m+1
i,h and pm+1

i,h , we solve for \bfitu m+1
h

ah(\bfitu 
m+1
h ,\bfitw h) + \lambda (div\bfitu m+1

h ,div\bfitw h) = (\bfitf ,\bfitw h) +
n\sum 

i=1

(pm+1
i,h ,div\bfitw h).

The main convergence result for Algorithm 5.1 is formulated in terms of the
following quantities corresponding to the discrete case:

\bfite kuh
= \bfitu k

h  - \bfitu h \in \bfitU h,(5.1a)

\bfite kvi,h = \bfitv ki,h  - \bfitv i,h \in \bfitV i,h, i = 1, . . . , n,(5.1b)

ekpi,h
= pki,h  - pi,h \in Pi,h, i = 1, . . . , n,(5.1c)

denoting the errors of the kth iterates \bfitu k
h, \bfitv 

k
i,h, pki,h, i = 1, . . . , n, generated by

Algrorithm 5.1. In the discrete case, the useful constant for defining the tuning
parameter L is the constant cKd

from the estimate

ah(\bfitw h,\bfitw h) \geq c2Kd
\| div\bfitw h\| 2 for all \bfitw h \in \bfitU h.(5.2)

Note that cKd
is strictly positive and independent of the mesh size h.

Using the approach applied to proving Lemma 3.1, for the continuous MPET
model we obtain the corresponding lemma for the discrete case as follows.

Lemma 5.1. The errors \bfite m+1
uh

, \bfite m+1
vh

, and \bfite m+1
ph

of the (m+1)st fixed-stress iterate

generated by Algorithm 5.1 for L \geq 1
\lambda +c2Kd

satisfy the estimate

1

2

\Bigl( 
ah(\bfite 

m+1
uh

, \bfite m+1
uh

) + \lambda \| div \bfite m+1
uh
\| 2
\Bigr) 
+ \| R - 1/2\bfite m+1

vh
\| 2 + \| (\Lambda 1 + \Lambda 2)

1/2\bfite m+1
ph
\| 2

+
L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi,h

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq L

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi,h

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

, m = 0, 1, 2, . . . .

By Lemma 5.1, again following the proof of Theorem 3.2 for the continuous MPET
model, we obtain the corresponding statements, Theorem 5.2, for the discrete case.

Theorem 5.2. Let cKd
and \beta sd denote the constants in (5.2) and (4.7), respec-

tively. The single rate fixed-stress iterative method for the discrete static MPET prob-
lem (4.2) defined in Algorithm 5.1 is a contraction that converges linearly for any
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L \geq 1/(\lambda + c2Kd
) independent of the model parameters, the time step size \tau , and the

mesh size h. The errors \bfite mph
in this case satisfy the inequality

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

em+1
pi,h

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq rated
2(\lambda )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

empi,h

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

,(5.3)

where

rated
2(\lambda ) \leq 1

L - 1

\beta  - 2
sd +\lambda 

+ 1
.(5.4)

For L = 1/(\lambda + c2Kd
), the convergence factor in (5.3) can be estimated by

rated
2(\lambda ) \leq 1

\lambda +c2Kd

\beta  - 2
sd +\lambda 

+ 1
\leq max

\Biggl\{ 
\beta  - 2
sd

c2Kd
+ \beta  - 2

sd

,
1

2

\Biggr\} 
.(5.5)

Note that Theorem 5.2 only gives the convergence rate of \bfite mph
in the seminorm

\| \sum n
i=1 e

m
pi,h
\| . However, we can combine the estimates in Theorem 5.2 with the uni-

form stability result presented in Theorem 4.1 and follow the proof of Theorem 3.4
to obtain the following convergence results for \bfite muh

, \bfite mvh , and \bfite 
m
ph

in their respective
parameter-dependent full norms.

Theorem 5.3. The errors \bfite muh
, \bfite mvh

, and \bfite mph
defined in (5.1) measured in the

norms induced by (4.5) and (2.7) satisfy the estimates

\| \bfite muh
\| 2\bfitU h
\leq Cud[rated(\lambda )]

2m,(5.6)

\| \bfite mvh\| 2\bfitV e
+ \| \bfite mph

\| 2\bfitP e
\leq Cvpd[rated(\lambda )]

2m,(5.7)

where the constants Cud and Cvpd are independent of the model parameters, the time
step size, and the mesh size.

\bfsix . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfr \bfe \bfs \bfu \bfl \bft \bfs . In our numerical test setup, we assume that
\bullet \Omega = [0, 1] is partitioned into 2N2 right-angled triangles with catheti of length

h = 1/N ;
\bullet problem (2.6) is discretized by a strongly conservative discontinuous Galerkin

method which is based on a mixed finite element space formed by the triplet
of BDM1/RT0/P

dc
0 elements;

\bullet the iterative process is terminated when residual reduction by a factor 108 in
the combined norm induced by the inner products (2.7) (the norm induced
by the inverse of the preconditioner) is reached.

Numerical experiments have been performed in FEniCS, [4, 32], and their aim was
(i) to validate the theoretical estimates for the convergence of the fixed-stress

split iterative method;
(ii) to compare the performance of the latter with the preconditioned MinRes

algorithm using the norm-equivalent preconditioner proposed in [24] and also
with the preconditioned GMRES algorithm using the FOV-equivalent pre-
conditioner as defined in (2.16).

In all numerical tests we have used a direct solver based on LU decomposition to solve
the velocity-pressure and the displacement problems arising in the fixed-stress split
iteration. The stabilization parameter has been chosen to be L = 1/(1 + \lambda ) in all test
cases except the one presented in Table 5, where the performance of the fixed-stress
algorithm is compared for different values of L.
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\bfsix .\bfone . \bfT \bfh \bfe \bft \bfw \bfo -\bfn \bfe \bft \bfw \bfo \bfr \bfk \bfm \bfo \bfd \bfe \bfl . The Biot--Barenblatt model involves two pres-
sures and two fluxes. In our notation, it has the following formulation:

 - div(\bfitsigma  - p1\bfitI  - p2\bfitI ) = \bfitf ,(6.1a)

R - 1
i \bfitv i +\nabla pi = 0, i = 1, 2,(6.1b)

 - div\bfitu  - div\bfitv i  - \alpha pi
pi +

2\sum 

j=1
j \not =i

\alpha ijpj = gi, i = 1, 2.(6.1c)

Specifically, the subject of numerical study in this subsection is the cantilever bracket
benchmark problem (see [19]), for which \bfitf = \bfzero , g1 = g2 = 0. The boundary \Gamma of the
domain \Omega = [0, 1]2 is split into bottom, right, top, and left boundaries denoted by \Gamma 1,
\Gamma 2, \Gamma 3, and \Gamma 4, respectively, and

(\bfitsigma  - p1\bfitI  - p2\bfitI )\bfitn = (0, 0)T on \Gamma 1 \cup \Gamma 2,
(\bfitsigma  - p1\bfitI  - p2\bfitI )\bfitn = (0, - 1)T on \Gamma 3,

\bfitu = \bfzero on \Gamma 4,
p1 = 2 on \Gamma ,
p2 = 20 on \Gamma .

Table 1 gives the base values of the model parameters as taken from [28]. We have
varied the parameter K2 over a wider range than K1 since, at least, for the MinRes
iteration it happened to be the more interesting case. The results in Tables 2--4
show very clearly the robust behavior of the fixed-stress split iteration with respect
to mesh refinements and variation of the hydraulic conductivities K1 and K2, and
also \lambda . Furthermore, they demonstrate its advantage over the MinRes and GMRES
methods with regard to the rate of convergence.

The purpose of Table 5 is to illustrate the convergence behavior of the fixed-stress
split method for different choices of the parameter L. We have run the algorithm
with L = L1 := 1/(0.1 + \lambda ), L = L2 := 1/(0.5 + \lambda ), L = L3 := 1/(1 + \lambda ), and
L = L4 := 1/(10 + \lambda ). We should mention again that estimate (3.3) is valid for
c2K = 0.5 in two dimensions. In all tests, we have observed that the fixed-stress scheme
diverges for L = L4 and we do not report this in Table 5. Moreover, the computational
results coincide with the theory presented in Lemma 5.1 and Theorems 5.2--5.3; note
also that the latter were proven for the discrete constant cKd

.
In Table 6, we list the elapsed times in seconds for the iterative solution of the

matrix equation arising from (4.2) in one time step of the implicit Euler method

Table 1
Base values of model parameters for a Barenblatt model.

Parameter Value Unit
\lambda 0 4.2 MPa
\mu 2.4 MPa
cp1 54 (GPa) - 1

cp2 14 (GPa) - 1

\alpha 1 0.95
\alpha 2 0.12

\beta 
5 10 - 10kg/(m\cdot s)

100 10 - 10kg/(m\cdot s)
K1 6.18 10 - 15m2

K2 27.2 10 - 15m2
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Table 2
Number of preconditioned MinRes (nM ), preconditioned GMRES (nG), and fixed-stress split

(nF ) iterations: parameters from Table 1, \lambda = \lambda 0.

h \beta K2 K2 \cdot 102 K2 \cdot 104 K2 \cdot 106
nM nG nF nM nG nF nM nG nF nM nG nF

1

16

5E--10
K1 \cdot 10 - 2 16 9 8 21 10 8 37 12 8 29 12 8
K1 \cdot 10 - 1 16 9 8 21 10 8 37 12 8 29 12 8

K1 16 9 8 21 10 8 37 12 8 29 12 8

1E-8
K1 \cdot 10 - 2 16 9 8 21 10 8 37 12 8 29 12 8
K1 \cdot 10 - 1 16 9 8 21 10 8 37 12 8 29 12 8

K1 16 9 8 21 10 8 37 12 8 29 12 8

1

32

5E--10
K1 \cdot 10 - 2 16 9 8 26 10 8 38 11 8 27 11 8
K1 \cdot 10 - 1 16 9 8 26 10 8 38 11 8 27 11 8

K1 16 9 8 26 10 8 38 11 8 27 11 8

1E-8
K1 \cdot 10 - 2 16 9 8 26 10 8 38 11 8 27 11 8
K1 \cdot 10 - 1 16 9 8 26 10 8 38 11 8 27 11 8

K1 16 9 8 26 10 8 38 11 8 27 11 8

1

64

5E--10
K1 \cdot 10 - 2 18 9 8 32 10 8 38 11 8 27 11 8
K1 \cdot 10 - 1 18 9 8 32 10 8 38 11 8 27 11 8

K1 18 9 8 32 10 8 38 11 8 27 11 8

1E-8
K1 \cdot 10 - 2 18 9 8 32 10 8 38 11 8 27 11 8
K1 \cdot 10 - 1 18 9 8 32 10 8 38 11 8 27 11 8

K1 18 9 8 32 10 8 38 11 8 27 11 8

Table 3
Number of preconditioned MinRes (nM ), preconditioned GMRES (nG), and fixed-stress split

(nF ) iterations: parameters from Table 1, except \lambda := 10 - 2 \cdot \lambda 0.

h \beta K2 K2 \cdot 102 K2 \cdot 104 K2 \cdot 106
nM nG nF nM nG nF nM nG nF nM nG nF

1

16

5E--10
K1 \cdot 10 - 2 24 13 11 38 15 11 71 16 11 42 15 11
K1 \cdot 10 - 1 24 13 11 38 15 11 71 16 11 42 15 11

K1 24 13 11 38 15 11 71 16 11 42 15 11

1E-8
K1 \cdot 10 - 2 24 13 11 38 15 11 71 16 11 42 15 11
K1 \cdot 10 - 1 24 13 11 38 15 11 71 16 11 42 15 11

K1 24 13 11 38 15 11 71 16 11 42 15 11

1

32

5E--10
K1 \cdot 10 - 2 25 14 10 45 15 10 66 16 10 38 15 10
K1 \cdot 10 - 1 25 14 10 45 15 10 66 16 10 38 15 10

K1 25 14 10 45 15 10 66 16 10 38 15 10

1E-8
K1 \cdot 10 - 2 25 14 10 45 15 10 66 16 10 38 15 10
K1 \cdot 10 - 1 25 14 10 45 15 10 66 16 10 38 15 10

K1 25 14 10 45 15 10 66 16 10 38 15 10

1

64

5E--10
K1 \cdot 10 - 2 25 14 10 57 15 10 66 16 10 38 15 10
K1 \cdot 10 - 1 25 14 10 57 15 10 66 16 10 38 15 10

K1 25 14 10 57 15 10 66 16 10 38 15 10

1E-8
K1 \cdot 10 - 2 25 14 10 57 15 10 66 16 10 38 15 10
K1 \cdot 10 - 1 25 14 10 57 15 10 66 16 10 38 15 10

K1 25 14 10 57 15 10 66 16 10 38 15 10

using the preconditioned MinRes, GMRES, and fixed-stress split methods. The time
for the setup phase is excluded since matrix factorizations typically are reused many
times when solving a quasi-static problem. Over the tested parameter sets the fixed-
stress method reaches the stopping criterion faster than preconditioned MinRes and
performes similarly to the GMRES algorithm with FOV-equivalent preconditioning.
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Table 4
Number of preconditioned MinRes (nM ), preconditioned GMRES (nG), and fixed-stress split

(nF ) iterations: parameters from Table 1, except \lambda := 102 \cdot \lambda 0.

h \beta K2 K2 \cdot 102 K2 \cdot 104 K2 \cdot 106
nM nG nF nM nG nF nM nG nF nM nG nF

1

16

5E--10
K1 \cdot 10 - 2 4 4 2 8 5 2 16 5 2 14 5 2
K1 \cdot 10 - 1 4 4 2 8 5 2 16 5 2 14 5 2

K1 4 4 2 8 5 2 16 5 2 14 5 2

1E-8
K1 \cdot 10 - 2 4 4 2 8 5 2 16 5 2 14 5 2
K1 \cdot 10 - 1 4 4 2 8 5 2 16 5 2 14 5 2

K1 4 4 2 8 5 2 16 5 2 14 5 2

1

32

5E--10
K1 \cdot 10 - 2 6 3 2 12 5 2 20 5 2 14 5 2
K1 \cdot 10 - 1 6 3 2 12 5 2 20 5 2 14 5 2

K1 6 3 2 12 5 2 20 5 2 14 5 2

1E-8
K1 \cdot 10 - 2 6 3 2 12 5 2 20 5 2 14 5 2
K1 \cdot 10 - 1 6 3 2 12 5 2 20 5 2 14 5 2

K1 6 3 2 12 5 2 20 5 2 14 5 2

1

64

5E--10
K1 \cdot 10 - 2 7 3 2 16 5 2 21 5 2 14 5 2
K1 \cdot 10 - 1 7 3 2 16 5 2 21 5 2 14 5 2

K1 7 3 2 16 5 2 21 5 2 14 5 2

1E-8
K1 \cdot 10 - 2 7 3 2 16 5 2 21 5 2 14 5 2
K1 \cdot 10 - 1 7 3 2 16 5 2 21 5 2 14 5 2

K1 7 3 2 16 5 2 21 5 2 14 5 2

Table 5
Number of fixed-stress split iterations for Barenblatt problem: parameters from Table 1, L =

L1 := 1/(0.1 + \lambda ), L = L2 := 1/(0.5 + \lambda ), and L = L3 := 1/(1 + \lambda ).

h \beta K2 K2 \cdot 102 K2 \cdot 104 K2 \cdot 106
L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

1

16

5E--10
K1 \cdot 10 - 2 20 13 8 20 13 8 20 13 8 19 13 8
K1 \cdot 10 - 1 20 13 8 20 13 8 20 13 8 19 13 8

K1 20 13 8 20 13 8 20 13 8 19 13 8

1E-8
K1 \cdot 10 - 2 20 13 8 20 13 8 20 13 8 19 13 8
K1 \cdot 10 - 1 20 13 8 20 13 8 20 13 8 19 13 8

K1 20 13 8 20 13 8 20 13 8 19 13 8

1

32

5E--10
K1 \cdot 10 - 2 20 13 8 19 13 8 19 13 8 19 13 8
K1 \cdot 10 - 1 20 13 8 19 13 8 19 13 8 19 13 8

K1 20 13 8 19 13 8 19 13 8 19 13 8

1E-8
K1 \cdot 10 - 2 20 13 8 19 13 8 19 13 8 19 13 8
K1 \cdot 10 - 1 20 13 8 19 13 8 19 13 8 19 13 8

K1 20 13 8 19 13 8 19 13 8 19 13 8

1

64

5E--10
K1 \cdot 10 - 2 19 13 8 19 13 8 19 13 8 19 13 8
K1 \cdot 10 - 1 19 13 8 19 13 8 19 13 8 19 13 8

K1 19 13 8 19 13 8 19 13 8 19 13 8

1E-8
K1 \cdot 10 - 2 19 13 8 19 13 8 19 13 8 19 13 8
K1 \cdot 10 - 1 19 13 8 19 13 8 19 13 8 19 13 8

K1 19 13 8 19 13 8 19 13 8 19 13 8

\bfsix .\bftwo . \bfT \bfh \bfe \bff \bfo \bfu \bfr -\bfn \bfe \bft \bfw \bfo \bfr \bfk \bfm \bfo \bfd \bfe \bfl . This subsection is devoted to the four-network
MPET model. As with the previous example, the boundary \Gamma of \Omega is split into
bottom (\Gamma 1), right (\Gamma 2), top (\Gamma 3), and left (\Gamma 4) boundaries. The considered boundary
conditions are chosen as
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Table 6
Elapsed times in seconds for the preconditioned MinRes (tM ), preconditioned GMRES (tG),

and fixed-stress split (tF ) algorithms to reach residual reduction by a factor 108 in the norm induced
by the preconditioner: Barenblatt problem, h = 1/64.

\beta K2 K2 \cdot 102 K2 \cdot 104 K2 \cdot 106
tM tG tF tM tG tF nM tG tF tM tG tF

\lambda \cdot 10 - 2

5E--10
K1 \cdot 10 - 2 1.4 0.8 0.8 3.2 0.9 0.8 3.7 0.9 0.8 2.1 0.9 0.9
K1 \cdot 10 - 1 1.4 0.8 0.8 3.2 0.9 0.8 3.7 0.9 0.8 2.1 0.9 0.9

K1 1.4 0.8 0.8 3.2 0.9 0.8 3.7 0.9 0.8 2.1 0.9 0.9

1E-8
K1 \cdot 10 - 2 1.4 0.8 0.8 3.2 0.9 0.8 3.7 0.9 0.8 2.1 0.9 0.9
K1 \cdot 10 - 1 1.4 0.8 0.8 3.2 0.9 0.8 3.7 0.9 0.8 2.1 0.9 0.9

K1 1.4 0.8 0.8 3.2 0.9 0.8 3.7 0.9 0.8 2.1 0.9 0.9

\lambda 

5E--10
K1 \cdot 10 - 2 1.0 0.5 0.6 1.8 0.6 0.6 2.1 0.6 0.6 1.5 0.6 0.7
K1 \cdot 10 - 1 1.0 0.5 0.6 1.8 0.6 0.6 2.1 0.6 0.6 1.5 0.6 0.7

K1 1.0 0.5 0.6 1.8 0.6 0.6 2.1 0.6 0.6 1.5 0.6 0.7

1E-8
K1 \cdot 10 - 2 1.0 0.5 0.6 1.8 0.6 0.6 2.1 0.6 0.6 1.5 0.6 0.7
K1 \cdot 10 - 1 1.0 0.5 0.6 1.8 0.6 0.6 2.1 0.6 0.6 1.5 0.6 0.7

K1 1.0 0.5 0.6 1.8 0.6 0.6 2.1 0.6 0.6 1.5 0.6 0.7

\lambda \cdot 102
5E--10

K1 \cdot 10 - 2 0.4 0.2 0.2 1.0 0.3 0.2 1.2 0.3 0.2 0.8 0.3 0.2
K1 \cdot 10 - 1 0.4 0.2 0.2 1.0 0.3 0.2 1.2 0.3 0.2 0.8 0.3 0.2

K1 0.4 0.2 0.2 1.0 0.3 0.2 1.2 0.3 0.2 0.8 0.3 0.2

1E-8
K1 \cdot 10 - 2 0.4 0.2 0.2 1.0 0.3 0.2 1.2 0.3 0.2 0.8 0.3 0.2
K1 \cdot 10 - 1 0.4 0.2 0.2 1.0 0.3 0.2 1.2 0.3 0.2 0.8 0.3 0.2

K1 0.4 0.2 0.2 1.0 0.3 0.2 1.2 0.3 0.2 0.8 0.3 0.2

Table 7
Base values of model parameters for a four-network MPET model.

Parameter Value Unit

\lambda 505 Nm - 2

\mu 216 Nm - 2

cp1 = cp2 = cp3 = cp4 4.5 \cdot 10 - 10 m2N - 1

\alpha 1 = \alpha 2 = \alpha 3 = \alpha 4 0.99

\beta 12 = \beta 24 1.5 \cdot 10 - 19 m2N - 1s - 1

\beta 23 2.0 \cdot 10 - 19 m2N - 1s - 1

\beta 34 1.0 \cdot 10 - 13 m2N - 1s - 1

K1 = K2 = K4 = K (1.0 \cdot 10 - 10)/(2.67 \cdot 10 - 3) m2/Nsm - 2

K3 (1.4 \cdot 10 - 14)/(8.9 \cdot 10 - 4) m2/Nsm - 2

(\bfitsigma  - p1\bfitI  - p2\bfitI  - p3\bfitI  - p4\bfitI )\bfitn = (0, 0)T on \Gamma 1 \cup \Gamma 2,
(\bfitsigma  - p1\bfitI  - p2\bfitI  - p3\bfitI  - p4\bfitI )\bfitn = (0, - 1)T on \Gamma 3,

\bfitu = \bfzero on \Gamma 4,
p1 = 2 on \Gamma ,
p2 = 20 on \Gamma ,
p3 = 30 on \Gamma ,
p4 = 40 on \Gamma ,

whereas the right-hand sides are \bfitf = \bfzero , g1 = g2 = g3 = g4 = 0.
Table 7 shows the base values of the parameters which have been taken from [41].

The presented numerical results in Table 8 demonstrate the superiority of the fixed-
stress split iterative method over the preconditioned MinRes algorithm and its robust-
ness with respect to large variations of the coefficients \lambda , K3 and K = K1 = K2 = K4.
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Table 8
Number of preconditioned MinRes (nM ) and fixed-stress split (nF ) iterations: parameters from

Table 7.

h K3 \cdot 10 - 2 K3 K3 \cdot 102 K3 \cdot 104 K3 \cdot 106 K3 \cdot 1010
nM nF nM nF nM nF nM nF nM nF nM nF

1

16

\lambda 
K \cdot 10 - 2 34 10 34 10 26 10 23 10 21 10 21 10

K 24 10 24 10 24 10 22 10 21 10 19 10
K \cdot 102 21 10 21 10 23 10 23 10 31 10 30 10

\lambda \cdot 104
K \cdot 10 - 2 18 2 23 2 24 2 34 2 34 2 34 2

K 11 2 17 2 34 2 31 2 31 2 31 2
K \cdot 102 9 2 14 2 32 2 21 2 14 2 14 2

\lambda \cdot 108
K \cdot 10 - 2 14 2 14 2 12 2 12 2 12 2 12 2

K 11 2 14 2 9 2 7 2 7 2 7 2
K \cdot 102 9 2 14 2 9 2 5 2 5 2 5 2

1

32

\lambda 
K \cdot 10 - 2 34 10 32 10 26 10 23 10 19 10 19 10

K 24 10 24 10 24 10 22 10 21 10 20 10
K \cdot 102 21 10 21 10 21 10 26 10 41 10 39 10

\lambda \cdot 104
K \cdot 10 - 2 18 2 25 2 30 2 34 2 34 2 34 2

K 12 2 20 2 35 2 31 2 31 2 31 2
K \cdot 102 9 2 18 2 34 2 21 2 14 2 14 2

\lambda \cdot 108
K \cdot 10 - 2 14 2 14 2 12 2 12 2 12 2 12 2

K 12 2 14 2 9 2 7 2 7 2 7 2
K \cdot 102 11 2 14 2 9 2 6 2 5 2 5 2

1

64

\lambda 
K \cdot 10 - 2 34 10 32 10 26 10 21 10 19 10 19 10

K 24 10 24 10 24 10 23 10 22 10 21 10
K \cdot 102 21 10 21 10 21 10 36 10 45 10 45 10

\lambda \cdot 104
K \cdot 10 - 2 20 2 28 2 34 2 34 2 34 2 34 2

K 13 2 25 2 36 2 31 2 31 2 31 2
K \cdot 102 6 2 25 2 36 2 21 2 14 2 14 2

\lambda \cdot 108
K \cdot 10 - 2 14 2 14 2 12 2 12 2 12 2 12 2

K 12 2 14 2 9 2 7 2 7 2 7 2
K \cdot 102 12 2 14 2 9 2 6 2 5 2 5 2

\bfseven . \bfC \bfo \bfn \bfc \bfl \bfu \bfd \bfi \bfn \bfg \bfr \bfe \bfm \bfa \bfr \bfk \bfs . To the best of our knowledge, this paper is the first
example of a proposed and analyzed fixed-stress split iterative scheme for a three-
field formulation of the MPET model. Fundamental to the linear convergence of the
evolved algorithm is the incorporation of stabilization that employs the sum of all
pressures. By applying the stability results proven in [24], we have demonstrated that
the contraction rate of this fixed-point iteration is independent of any model physical
parameters. Furthermore, the performed numerical experiments have confirmed the
theoretical findings and have clearly demonstrated the efficiency of the presented
fixed-stress scheme.
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This work is concerned with the iterative solution of systems of quasi-static multiple-
network poroelasticity equations describing flow in elastic porous media that is perme-
ated by single or multiple fluid networks. Here, the focus is on a three-field formulation
of the problem in which the displacement field of the elastic matrix and, additionally, one
velocity field and one pressure field for each of the n ≥ 1 fluid networks are the unknown
physical quantities. Generalizing Biot’s model of consolidation, which is obtained for
n = 1, the MPET equations for n ≥ 1 exhibit a double saddle point structure. The pro-
posed approach is based on a framework of augmenting and splitting this three-by-three
block system in such a way that the resulting block Gauss–Seidel preconditioner defines
a fully decoupled iterative scheme for the flux-, pressure-, and displacement fields. In
this manner, one obtains an augmented Lagrangian Uzawa-type method, the analysis
of which is the main contribution of this work. The parameter-robust uniform linear
convergence of this fixed-point iteration is proved by showing that its rate of contraction
is strictly less than one independent of all physical and discretization parameters. The
theoretical results are confirmed by a series of numerical tests that compare the new
fully decoupled scheme to the very popular partially decoupled fixed-stress split itera-
tive method, which decouples only flow — the flux and pressure fields remain coupled
in this case — from the mechanics problem. We further test the performance of the

∗Corresponding author.
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block-triangular preconditioner defining the new scheme when used to accelerate the
generalized minimal residual method (GMRES) algorithm.

Keywords: Biot’s consolidation; multiple-network poroelasticity; double saddle point
problems; parameter-robust Uzawa method; field-of-values-equivalent preconditioners.

AMS Subject Classification 2020: 65M12, 65M60, 65F10, 65N22, 35Q92

1. Introduction

In this paper, we propose and analyze stationary iterative methods for solving the

equations of multiple-network poroelastic theory which describe flow in deformable

porous media. The latter is modeled as an elastic solid matrix comprising n ≥
1 superimposed fluid networks with possibly vastly varying characteristic length

scales and hydraulic conductivities, see e.g. Ref. 53 and the references therein.

Dual-porosity/dual-permeability models have been proposed and studied in a

geomechanical context,7,8 providing a generalization of Biot’s consolidation model

which is obtained for n = 1, see Refs. 12 and 13. Over the last decade, the MPET

equations have gradually gained attention as a tool for modeling flow across scales

and networks in soft tissue. Biological multicompartmental poroelasticity models

can be used to embed more specific medical models, e.g. to describe water trans-

port in the cerebral environment and explore the pathogenesis of acute and chronic

hydrocephalus,51 or to study effects of obstructing cerebrospinal fluid (CSF) trans-

port and to demonstrate the impact of aqueductal stenosis and fourth ventricle out-

let obstruction (FVOO),52,54 or to find medical indications of oedema formation.20

Recently, the MPET model has also been used in order to gain a better under-

standing of the processes involved with the mechanisms behind Alzheimer’s disease

(AD), the most common form of dementia, cf. Ref. 24. Most prominently, the so-

called amyloid hypothesis states that the accumulation of neurotoxic amyloid-β

(Aβ) into parenchymal senile plaques or within the walls of arteries is a basic cause

of this disease. In Ref. 23, a partial validation of a four-network poroelastic model

for metabolic waste clearance is presented in a qualitative way, i.e. by showing a

qualitative agreement of the cerebral blood flow (CBF) data obtained from arte-

rial spin labeling (ASL) images and the corresponding model output for different

regions of the brain. Although the authors of these papers conclude that there is a

need for more experimental and clinical data to optimize the boundary conditions

and parameters used in numerical modeling, they also stress the potential of MPET

modeling as a testing bed for hypotheses and new theories in neuroscience research.

Regarding the numerical solution of the MPET equations mainly two different

approaches have been investigated in the last couple of years. The first one has been

proposed in Ref. 37 and uses a mixed finite element formulation based on intro-

ducing an additional total pressure variable. Energy estimates for the continuous

solutions and a priori error estimates for a family of compatible semidiscretiza-

tions demonstrate that this formulation is robust for nearly incompressible materi-
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als, small storage coefficients, and small or vanishing transfer coefficients between

networks.

The second approach is based on a generalization of the classical three-field for-

mulation of Biot’s model and explicitly accommodates Darcy’s law for each fluid

network. This formulation enforces the exact conservation of mass at the price of

including additionally n vector fields for the Darcy velocities (fluxes). A parameter-

robust stability analysis of this flux-based MPET model has been presented in

Ref. 27 along with fully parameter-robust norm-equivalent preconditioners. Follow-

ing Refs. 26 and 31, the authors propose in Ref. 27 a family of strongly conservative

locking-free discretizations for the MPET model and establish the related optimal

error estimates for the stationary problems arising from implicit time discretiza-

tion by the backward Euler method. These results also cover the case of vanishing

storage coefficients.

Various works can be found on discretizations and efficient iterative solvers and

preconditioning techniques for the quasi-static Biot model addressing two-field,1,14

three-field,26,30,36,45 and four-field formulations.6,35

Two of the most popular and likely most efficient iterative schemes for solving

the equations of poroelasticity are the so-called undrained split and fixed-stress

split iterative methods, which, contrary to the drained split and the fixed-strain

split methods, are unconditionally stable, see Ref. 32. The first convergence analysis

of the former methods has been presented in Ref. 43 for the quasi-static Biot sys-

tem. Subsequent refined results focus mostly on variants of the fixed-stress method

addressing multirate fixed-stress split iterative schemes,2 fully discrete iterative

coupling of flow and geomechanics,3 heterogeneous media and linearized Biot’s

equations,16 two-grid fixed-stress schemes for heterogeneous media,22 or space-time

finite element approximations of the quasi-static Biot system.9 A strategy for opti-

mizing the stabilization parameter in the fixed-stress split iterative method for the

Biot problem in two-field formulation has been presented in Ref. 50.

The fixed-stress method has also been recently successfully used in combination

with Anderson acceleration for the solution of nonlinear poromechanics problems.17

Moreover, monolithic and splitting based solution schemes have been considered

and analyzed for solving quasi-static thermo-poroelasticity problems with nonlinear

convective transport, see Ref 19. The latter work focuses on the analysis of fully and

partially decoupled schemes for heat, mechanics and flow applied to the linearized

problem obtained via the so-called L-scheme. All previously mentioned works, in

presence of flux and pressure unknowns, solve the flow equations implicitly, i.e. as

a coupled subsystem, a strategy which we will not pursue in this paper.

A desirable property of preconditioners, in addition to their uniformity with

respect to discretization parameters, is their robustness regarding potentially large

variations of the physical parameters. This task can be studied in the framework of

operator preconditioning on the level of the continuous model.42 Targeting Biot’s

consolidation model the parameter-robustness of norm-equivalent preconditioners

has been established in Ref. 36 for the total pressure-based formulation and in
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Ref. 26 for the classical three-field formulation based on displacement, Darcy veloc-

ity and fluid pressure fields. Both approaches have been generalized to the MPET

model.27,37

One potential advantage of the approach presented in Ref. 27 is exact mass con-

servation. A disadvantage, however, is that the presence of n fluxes and n associated

pressures makes the system in general more difficult and also more time-consuming

to solve. The fixed-stress split iterative method has recently been generalized to be

applicable not only to the Biot (n = 1) but also to the more general MPET (n ≥ 1)

systems in Ref. 28 which presents a fully parameter-robust convergence analysis

and determines a close to optimal acceleration parameter.

However, in the conservative approach obtained from generalizing the classical

three-field formulation of Biot’s model, the block of n unknown fluxes (with d com-

ponents each) couples to a block of n pressure unknowns creating a subsystem with

n(d + 1) scalar quantities of interest as compared to the (n(d + 1)+ d) unknown

scalar functions in the whole system. Hence, considering the above-mentioned four-

network model (n = 4) in three space dimensions (d = 3), for example, this results

in a flux–pressure subsystem with approximately 16/19 of the size of the whole

system. This explains why a further decoupling of the flux from the pressure block

of unknowns in an iterative method is of particular interest in this approach.

The goal of this paper is to propose and analyze a class of fully decoupled itera-

tive schemes, which contrary to the fixed-stress split iterative method also decouple

the flux–pressure subsystem. In this respect, it can be seen as a continuation of the

analysis presented in Ref. 28.

As already mentioned, the target problem is a three-by-three block system with

a double saddle point. The abstract canonical form of the operator (matrix) of the

related operator equation can be represented in the form

⎡
⎢⎣

A1 0 BT
1

0 A2 BT
2

B1 B2 −C

⎤
⎥⎦ (1.1)

with A1 and A2 being symmetric positive definite (SPD) operators and C a sym-

metric positive semidefinite (SPSD) operator. The operator (1.1) defines a double

saddle point problem and can be rearranged in such a way that it has the form

⎡
⎢⎣

A1 BT
1 0

B1 −C B2

0 BT
2 A2

⎤
⎥⎦ (1.2)

and thus fits the definition of a multiple saddle point operator as given in Ref. 49

where block-diagonal Schur complement preconditioners for multiple saddle point

problems of block tridiagonal form are analyzed. We will use a combined augmen-

tation and splitting technique to construct in a block Gauss–Seidel framework fully

decoupled augmented Lagrangian Uzawa-type methods for linear systems with an
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operator (matrix) of the canonical form (1.1). Although our methodical approach to

construct preconditioners is similar to the one taken in recent works, see Refs. 10, 11,

and 56, there are also major differences. First, the double saddle point problems

considered in Refs. 10 and 11 are generated by operators of the canonical form

⎡
⎢⎣

A1 BT
1 BT

2

B1 0 0

B2 0 −C

⎤
⎥⎦ (1.3)

with A1 being SPD and C being SPSD. It can easily be seen that the operators (1.1)

and (1.3) are of a different type in the sense that they cannot be transferred one

into the other by permutations of rows and columns. The second main difference

is that the analysis in Refs. 10 and 11 uses arguments from classical linear algebra

whereas our convergence proofs use techniques from functional analysis aiming at

quantitative bounds that might be useful when applying the proposed iterative

methods at the level of finite element approximations of the continuous problems.

The remainder of the paper is organized as follows: In Sec. 2, we first formulate

the MPET problem, introduce the notation and transform the problem into a cou-

pled system with a double saddle point operator of the form (1.2). Based on this

notation we then recall the fixed-stress split iterative method in a block Gauss–

Seidel framework. It follows the construction of a new class of fully decoupled iter-

ative Uzawa-type methods, which requires an additional augmentation step. This

section ends with summarizing some preliminary and auxiliary results that are used

in the convergence analysis of the new class of methods presented in Sec. 3. The

numerical tests in Sec. 5 serve the assessment of the performance of the iterative

methods and preconditioners developed in this paper comparing them also with the

fixed-stress split iterative method analyzed in Ref. 28.

2. Iterative Coupling Methods for the MPET Problem

2.1. The MPET system — formulation and notation

Consider the quasi-static MPET equations in a bounded Lipschitz domain Ω ⊂ Rd,

d = 2, 3:

vi + Ki∇pi = 0 in Ω × (0, T ), (2.1a)

−αidiv u̇− div vi − cpi ṗi −
n∑

j=1
j �=i

βij(pi − pj) = gi in Ω × (0, T ), (2.1b)

−divσ +

n∑

i=1

αi∇pi = f in Ω × (0, T ). (2.1c)

where (2.1a) and (2.1b) are for i = 1, . . . , n. The unknown physical quantities in

this system are the displacement field u, the seepage velocities, or fluxes, vi, and
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the scalar pressure fields pi. The effective stress and strain tensors are given by

σ = 2με(u) + λdiv(u)I and ε(u) =
1

2
(∇u+ (∇u)T ), (2.2)

respectively, with the Lamé parameters λ and μ defined via the modulus of elasticity

E and the Poisson ratio ν ∈ [0, 1/2) as follows:

λ :=
νE

(1 + ν)(1 − 2ν)
, μ :=

E

2(1 + ν)
.

In (2.1), αi denote the Biot–Willis coefficients, cpi the constrained specific storage

coefficients, and Ki the hydraulic conductivities, which in this paper for convenience

only, are scalars defining the tensor coefficients Ki = KiI where I is the identity

(matrix) operator. Considering the right-hand sides in (2.1c) and (2.1b), f denotes

the body force density whereas gi represent the fluid extractions or injections, see

e.g. Ref. 48 and the references therein. The parameters βij = βji, i �= j couple the

network pressures and are called network transfer coefficients.

By substituting the expression for the stress tensor from (2.2) in (2.1c) the

MPET system takes the form:

vi + Ki∇pi = 0, i = 1, . . . , n, (2.3a)

−div vi − cpi ṗi −
n∑

j=1
j �=i

βij(pi − pj) − αidivu̇ = gi, i = 1, . . . , n, (2.3b)

n∑

i=1

αi∇pi − 2μdiv ε(u) − λ∇divu = f . (2.3c)

After imposing proper boundary and initial conditions, see Ref. 27, and using

the backward Euler method for time discretization, one has to solve a static problem

of the form

K−1
i vk

i + ∇pk
i = 0, i = 1, . . . , n, (2.4a)

−αidivuk − τdiv vk
i − cpip

k
i − τ

n∑

j=1
j �=i

βij(p
k
i − pk

j ) = gk
i , i = 1, . . . , n, (2.4b)

−2μdiv ε(uk) − λ∇divuk +
n∑

i=1

αi∇pk
i = fk, (2.4c)

in each time step, i.e. at every time moment tk = tk−1 + τ , k = 1, 2, . . . . Here,

uk, vk
i , pk

i are approximations of u, vi, pi at t = tk and fk = f (x, tk), gk
i =

−τgi(x, tk) − αidiv(uk−1) − cpip
k−1
i for i = 1, . . . , n. After dividing (2.4) by 2μ,
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denoting

λ

2μ
→ λ,

αi

2μ
→ αi,

fk

2μ
→ fk,

τ

2μ
→ τ,

cpi

2μ
→ cpi ,

gk
i

2μ
→ gk

i , i = 1, . . . , n,

and further introducing the new variables

vi :=
τ

αi
vk

i , pi := αip
k
i , u := uk, f := fk,

gi :=
gk

i

αi
, i = 1, . . . , n,

system (2.4) can be presented in the form

τ−1K−1
i α2

i vi + ∇pi = 0, (2.5a)

−divu− divvi − cpi

α2
i

pi +

n∑

j=1
j �=i

(
−τβij

α2
i

pi +
τβij

αiαj
pj

)
= gi, (2.5b)

−div ε(u) − λ∇divu+

n∑

i=1

∇pi = f , (2.5c)

where (2.5a) and (2.5b) are for i = 1, . . . , n, and we have also multiplied (2.4a) by

αi and (2.4b) by α−1
i .

In what follows, we will also make use of the notation vT := (vT
1 , . . . ,vT

n ),

zT := (zT
1 , . . . , zT

n ), pT := (p1, . . . , pn), qT := (q1, . . . , qn) where v, z ∈ V =

V 1 × · · · ×V n, p, q ∈ P = P1 × · · · × Pn and U = {u ∈ H1(Ω)d : u = 0 on Γu,D},

V i = {vi ∈ H(div, Ω) : vi · n = 0 on Γpi,N}, Pi = L2(Ω), and Pi = L2
0(Ω) if

Γu,D = Γ = ∂Ω. Using the parameter substitutions

R−1
i := τ−1K−1

i α2
i , αpi :=

cpi

α2
i

, βii :=

n∑

j=1
j �=i

βij ,

αij :=
τβij

αiαj
, α̃ii := −αpi − αii

for i, j = 1, . . . , n, we further rewrite system (2.5) as

A

⎛
⎜⎝
v

p

u

⎞
⎟⎠ =

⎡
⎢⎣
Av BT

v 0

Bv −C Bu

0 BT
u Au

⎤
⎥⎦

⎛
⎜⎝
v

p

u

⎞
⎟⎠ =

⎛
⎜⎝

0

g

f

⎞
⎟⎠, (2.6)
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where

Av :=

⎡
⎢⎢⎢⎢⎢⎢⎣

R−1
1 I 0 . . . 0

0
. . .

...

...
. . . 0

0 . . . 0 R−1
n I

⎤
⎥⎥⎥⎥⎥⎥⎦
, Bv :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−div 0 . . . 0

0
. . .

...

...
. . . 0

0 . . . 0 −div

⎤
⎥⎥⎥⎥⎥⎥⎦

,

−C :=

⎡
⎢⎢⎢⎢⎢⎢⎣

α̃11I α12I . . . α1nI

α21I
. . . α2nI

...
. . .

...

αn1I αn2I . . . α̃nnI

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Bu :=
[
−div, . . . , −div

]T
, Au := −divε− λ∇div

and I is the identity operator. For the scaled parameters, we make the rather

nonrestrictive assumptions

λ ≥ 0, R−1
1 , . . . , R−1

n > 0, αp1 , . . . , αpn ≥ 0, αij ≥ 0, i, j = 1, . . . , n. (2.7)

From now on, we will use the same symbols for denoting operators and their cor-

responding coefficient matrices. Additionally, let us introduce

Λ1 :=

⎡
⎢⎢⎢⎢⎢⎣

α11 −α12 . . . −α1n

−α21 α22 . . . −α2n

...
...

. . .
...

−αn1 −αn2 . . . αnn

⎤
⎥⎥⎥⎥⎥⎦

, Λ2 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

αp1 0 . . . 0

0 αp2

. . .
...

...
. . .

. . . 0

0 . . . 0 αpn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i.e. C = (Λ1 + Λ2) ⊗ I. Further, denote R−1 := max{R−1
i : i = 1, . . . , n}, λ0 :=

max{1, λ},

Λ3 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

R 0 . . . 0

0 R
. . .

...

...
. . .

. . . 0

0 . . . 0 R

⎤
⎥⎥⎥⎥⎥⎥⎦

, Λ4 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

λ0
. . . . . .

1

λ0

...
...

...
...

1

λ0
. . . . . .

1

λ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ := Λ1 + Λ2 + Λ3 + Λ4

and also, for any block vector z and vector u

Div z := (div z1, . . . , divzn)T , Divu := (divu, . . . , divu)T .
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2.2. The fixed-stress split iterative method revisited

For any operator ΛL : P → P ∗, A can be decomposed as follows:

A =

⎡
⎢⎣

Av BT
v 0

Bv −C − ΛL 0

0 BT
u Au

⎤
⎥⎦+

⎡
⎢⎣
0 0 0

0 ΛL Bu

0 0 0

⎤
⎥⎦. (2.8)

Applying the block Gauss–Seidel method to the above system, we obtain

⎡
⎢⎣
Av BT

v 0

Bv −C − ΛL 0

0 BT
u Au

⎤
⎥⎦

⎛
⎜⎝
vk+1

pk+1

uk+1

⎞
⎟⎠+

⎡
⎢⎣

0 0 0

0 ΛL Bu

0 0 0

⎤
⎥⎦

⎛
⎜⎝
vk

pk

uk

⎞
⎟⎠ =

⎛
⎜⎝

0

g

f

⎞
⎟⎠ (2.9)

or, equivalently,

⎡
⎢⎣
Av BT

v 0

Bv −C − ΛL 0

0 BT
u Au

⎤
⎥⎦

⎛
⎜⎝
vk+1

pk+1

uk+1

⎞
⎟⎠ =

⎛
⎜⎝

0

g

f

⎞
⎟⎠−

⎡
⎢⎣
0 0 0

0 ΛL Bu

0 0 0

⎤
⎥⎦

⎛
⎜⎝
vk

pk

uk

⎞
⎟⎠, (2.10)

which is (a block variant of) the fixed-stress method. In Ref. 28, a parameter-robust

convergence analysis of this method has been presented for the choice

ΛL = L

⎡
⎢⎢⎣

I . . . I

...
. . .

...

I . . . I

⎤
⎥⎥⎦ where L ≥ 1

λ + c2
K

. (2.11)

I is the identity operator and cK the constant in the estimate

‖ε(w)‖ ≥ cK‖divw‖ for all w ∈ U . (2.12)

Here, ‖ · ‖ denotes the L2 norm, on the left-hand side of (2.12) of a tensor-valued

and on the right-hand side of a scalar-valued function. Note that (2.12) holds true

for example for cK = 1/
√

d where d is the space dimension.

2.3. Uzawa-type methods in block Gauss–Seidel framework

Now for any positive definite operator M : P ∗ → P , we consider the equivalent

augmented MPET system

Â

⎛
⎜⎝
v

p

u

⎞
⎟⎠ =

⎡
⎢⎣

Av + BT
v MBv BT

v − BT
v MC BT

v MBu

−Bv C −Bu

0 BT
u Au

⎤
⎥⎦

⎛
⎜⎝
v

p

u

⎞
⎟⎠ =

⎛
⎜⎝

BT
v Mg

−g
f

⎞
⎟⎠. (2.13)
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Further, for any positive definite operator S : P → P ∗, we decompose Â in the

form

Â = ÂL + ÂU :=

⎡
⎢⎣

Av + BT
v MBv 0 0

−Bv S 0

0 BT
u Au

⎤
⎥⎦

+

⎡
⎢⎣

0 BT
v − BT

v MC BT
v MBu

0 −S + C −Bu

0 0 0

⎤
⎥⎦. (2.14)

Next, applying the block Gauss–Seidel method to the above system yields

ÂL

⎛
⎜⎝
vk+1

pk+1

uk+1

⎞
⎟⎠ =

⎛
⎜⎝

BT
v Mg

−g
f

⎞
⎟⎠− ÂU

⎛
⎜⎝
vk

pk

uk

⎞
⎟⎠. (2.15)

System (2.15) can be expressed in terms of bilinear forms as follows:

Algorithm 1. Fully decoupled iterative scheme for weak

flux–pressure–displacement formulation of MPET problem.

Step a: Given pk and uk, we first solve for vk+1, such that for all z ∈ V there

holds

(Avv
k+1, z) + (MDiv vk+1, Div z) = −(Mg, Div z) + (pk, Div z)

− (M(Λ1 + Λ2)p
k, Div z)

− (MDivuk, Div z).

Step b: Given uk and vk+1, we solve for pk+1, such that for all q ∈ P there

holds

(Spk+1, q) = −(g, q) + (Spk, q) − ((Λ1 + Λ2)p
k, q)) − (Divuk, q)

− (Div vk+1, q).

Step c: Given pk+1 and vk+1, we solve for uk+1, such that for all w ∈ U there

holds

(ε(uk+1), ε(w)) + λ(divuk+1, divw) = (f ,w) + (pk+1, Divw).
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2.4. Preliminary results

We first present a result from linear algebra which will be useful in the proof of

Theorem 3.2 in Sec. 3.

Lemma 2.1. For any a > 0 and b > 0, denote e = (1, . . . , 1)T ∈ Rn and let

(aIn×n + beeT )−1 = (bij)n×n. Then we have that

0 <

n∑

i=1

n∑

j=1

bij =
n

(a + nb)
. (2.16)

Proof. The proof is based on the Sherman–Morrison–Woodbury formula and fol-

lows the arguments of the proof of Lemma 1 in Ref. 27.

Next, let us recall some well-known results.15,18

Lemma 2.2. There exists a constant βs > 0 such that

inf
(q1,...,qn)∈P1×···×Pn

sup
u∈U

(divu,
∑n

i=1 qi)

‖u‖1 ‖∑n
i=1 qi‖

≥ βs. (2.17)

Lemma 2.3. There exists a constant βd > 0 such that

inf
q∈Pi

sup
v∈V i

(div v, q)

‖v‖div‖q‖ ≥ βd, i = 1, . . . , n. (2.18)

Here, ‖ · ‖1 and ‖v‖div denote the standard H1 and H(div) norms of vector-

valued functions, respectively, i.e. ‖u‖2
1 :=

∫
Ω

∇u : ∇u + u · u dx and ‖v‖2
div :=∫

Ω divv divv + v · v dx.

Our task will be to study the errors

ek
u = uk − u ∈ U , (2.19a)

ek
vi

= vk
i − vi ∈ V i, i = 1, . . . , n, (2.19b)

ek
pi

= pk
i − pi ∈ Pi, i = 1, . . . , n, (2.19c)

of the kth iterates uk, vk
i , pk

i , i = 1, . . . , n, generated by Algorithm 1. For that

reason, we consider the following error equations:

(Ave
k+1
v , z) − (ek

p, Div z) + (MDiv ek
u, Div z) + (MDiv ek+1

v , Div z)

+ (M(Λ1 + Λ2)e
k
p, Div z) = 0, (2.20a)

(Sek+1
p , q) − (Sek

p, q) + (Div ek
u, q) + (Div ek+1

v , q)

+((Λ1 + Λ2)e
k
p, q) = 0, (2.20b)

(ε(ek+1
u ), ε(w)) + λ(div ek+1

u , divw) − (ek+1
p , Divw) = 0, (2.20c)

where the error block-vectors ek
v and ek

p are given by (ek
v)T = ((ek

v1
)T , . . . , (ek

vn
))T ,

(ek
p)T = (ek

p1
, . . . , ek

pn
).
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To complete the design of Algorithm 1, we need to specify M and S. By

Lemma 2.3, we have that for all ek+1
pi

∈ Pi there exists ψi ∈ V i such that

divψi = ek+1
pi

and ‖ψi‖div ≤ β−1
d ‖ek+1

pi
‖ for all i = 1, . . . , n, i.e. Divψ = ek+1

p and

‖ψ‖div ≤ β−1
v ‖ek+1

p ‖. Setting q = S−1ek+1
p in (2.20b) and z = ψ in (2.20a), from

Divψ = ek+1
p it follows that

(Ave
k+1
v ,ψ) − (ek

p, ek+1
p ) + (MDiv ek+1

u , ek+1
p ) + (MDiv ek+1

v , ek+1
p )

+ (M(Λ1 + Λ2)e
k
p, ek+1

p ) = 0, (2.21a)

(ek+1
p , ek+1

p ) − (ek
p, ek+1

p ) + (S−1Div ek
u, ek+1

p ) + (S−1Div ek+1
v , ek+1

p )

+ (S−1(Λ1 + Λ2)e
k
p, ek+1

p ) = 0. (2.21b)

Subtracting (2.21a) from (2.21b) yields

‖ek+1
p ‖2 = (Ave

k+1
v ,ψ) − ((S−1 − M)(Div ek

u + Div ek+1
v + (Λ1 + Λ2)e

k
p), ek+1

p ),

implying

‖ek+1
p ‖2 ≤ ‖A

1
2
v e

k+1
v ‖‖A

1
2
vψ‖

+ ‖(S−1 − M)(Div ek+1
u + Div ek+1

v + (Λ1 + Λ2)e
k
p)‖‖ek+1

p ‖

≤
√

R−1‖A
1
2
v e

k+1
v ‖‖ψ‖

+ ‖(S−1 − M)(Div ek
u + Div ek+1

v + (Λ1 + Λ2)e
k
p)‖‖ek+1

p ‖

≤ β−1
d

√
R−1‖A

1
2
v e

k+1
v ‖‖ek+1

p ‖ + ‖(S−1 − M)(Divek
u + Div ek+1

v

+ (Λ1 + Λ2)e
k
p)‖‖ek+1

p ‖.

We conclude that

‖ek+1
p ‖ ≤ β−1

d

√
R−1‖A

1
2
v e

k+1
v ‖

+ ‖(S−1 − M)(Divek
u + Div ek+1

v + (Λ1 + Λ2)e
k
p)‖. (2.22)

Estimate (2.22) suggests choosing S = M−1 in order to minimize the upper bound

for ‖ek+1
p ‖. This results in the following statement.

Lemma 2.4. Consider Algorithm 1 and let S = M−1, then we have

‖A
1
2
v e

k+1
v ‖2 ≥ Rβ2

d‖ek+1
p ‖2 = β2

d‖Λ
1
2
3 e

k+1
p ‖2. (2.23)

The relationship S = M−1 reduces our design task to the determination of

either S or M . In the remainder of this paper, we analyze and numerically test

Algorithm 1 for the specific choice

S := Λ1 + Λ2 + L1Λ3 + L2Λ4, (2.24)

where L1 and L2 are scalar parameters which are later to be determined.
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3. Convergence Theory of Uzawa-Type Algorithms for MPET

This section is devoted to the convergence analysis of Algorithm 1. Our aim is to

establish a uniform bound on the convergence rate, i.e. a bound independent of any

model and discretization parameters.

We start with deriving some useful auxiliary results presented in the following

two lemmas. These afterwards assist us in establishing a parameter-robust upper

bound on the pressure error in a weighted norm.

Lemma 3.1. Considering Algorithm 1 with S as defined in (2.24), the errors ek
u,

ek
v, and ek

p defined in (2.19) satisfy the following estimate:

1

2
‖ε(ek+1

u )‖2 +
λ

2
‖div ek+1

u ‖2 + ‖A
1
2
v e

k+1
v ‖2 + ‖(Λ1 + Λ2)

1
2ek+1

p ‖2

+
L1

2
‖Λ

1
2
3 e

k+1
p ‖2 +

L2

2
‖Λ

1
2
4 e

k+1
p ‖2 ≤ L1

2
‖Λ

1
2
3 e

k
p‖2 +

L2

2
‖Λ

1
2
4 e

k
p‖2

+

(
λ0

2(c2
K + λ)

− L2

2
− L1Rλ0

2n

)
‖Λ

1
2
4 (ek+1

p − ek
p)‖2. (3.1)

Proof. By setting q = MDivek+1
v in (2.20b) and z = ek+1

v in (2.20a) we obtain

(Ave
k+1
v , ek+1

v ) − (ek
p, Div ek+1

v ) + (MDiv ek
u, Div ek+1

v )

+ (MDiv ek+1
v , Div ek+1

v ) + (M(Λ1 + Λ2)e
k
p, Div ek+1

v ) = 0,

(ek+1
p , Div ek+1

v ) = (ek
p, Div ek+1

v ) − (MDiv ek
u, Div ek+1

v )

− (MDiv ek+1
v , Div ek+1

v ) − (M(Λ1 + Λ2)e
k
p, Div ek+1

v )

from where it immediately follows that

(ek+1
p , Div ek+1

v ) = (Ave
k+1
v , ek+1

v ). (3.2)

Choosing q = ek+1
p in (2.20b) and w = ek+1

u in (2.20c) yields

(ε(ek+1
u ), ε(ek+1

u )) + λ(div ek+1
u , div ek+1

u ) − (ek+1
p , Div ek+1

u ) = 0, (3.3a)

(Sek+1
p , ek+1

p ) = (Sek
p, ek+1

p ) − (Div ek
u, ek+1

p ) − (Div ek+1
v , ek+1

p )

− ((Λ1 + Λ2)e
k
p, ek+1

p ). (3.3b)

Next, summing (3.3a) and (3.3b) and applying (3.2) it follows that

‖ε(ek+1
u )‖2 + λ‖div ek+1

u ‖2 + ‖S
1
2ek+1

p ‖2 − ((L1Λ3 + L2Λ4)e
k
p, ek+1

p )

= (Div ek+1
u − Div ek

u, ek+1
p ) − ‖A

1
2
v e

k+1
v ‖2. (3.4)
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In order to simplify (3.4) we first rewrite ‖S
1
2ek+1

p ‖2 − ((L1Λ3 + L2Λ4)e
k
p, ek+1

p ),

that is,

‖S
1
2 ek+1

p ‖2 − ((L1Λ3 + L2Λ4)e
k
p, ek+1

p )

= ‖(Λ1 + Λ2)
1
2 ek+1

p ‖2 +
L1

2
(‖Λ

1
2
3 e

k+1
p ‖2 − ‖Λ

1
2
3 e

k
p‖2 + ‖Λ

1
2
3 (ek+1

p − ek
p)‖2)

+
L2

2

(
‖Λ

1
2
4 e

k+1
p ‖2 − ‖Λ

1
2
4 e

k
p‖2 + ‖Λ

1
2
4 (ek+1

p − ek
p)‖2

)

≥ ‖(Λ1 + Λ2)
1
2 ek+1

p ‖2 +
L1

2
‖Λ

1
2
3 e

k+1
p ‖2 +

L2

2
‖Λ

1
2
4 e

k+1
p ‖2 − L1

2
‖Λ

1
2
3 e

k
p‖2

− L2

2
‖Λ

1
2
4 e

k
p‖2 +

(
L2

2
+

L1Rλ0

2n

)
‖Λ

1
2
4 (ek+1

p − ek
p)‖2. (3.5)

Second, we estimate (Div ek+1
u −Div ek

u, ek+1
p ). By setting w = ek+1

u −ek
u in (2.20c)

we obtain

(ek+1
p , Div(ek+1

u − ek
u)) = (ε(ek+1

u − ek
u), ε(ek+1

u )) + λ(div(ek+1
u − ek

u), div ek+1
u )

≤ 1

2
(‖ε(ek+1

u − ek
u)‖2 + λ‖div(ek+1

u − ek
u)‖2)

+
1

2
(‖ε(ek+1

u )‖2 + λ‖div ek+1
u ‖2). (3.6)

In order to estimate the right-hand side of (3.6), we subtract the kth error from

the (k + 1)th error and choose w = ek+1
u − ek

u in (2.20c) and herewith obtaining

‖ε(ek+1
u − ek

u)‖2 + λ‖div(ek+1
u − ek

u)‖2 =

(
n∑

i=1

(ek+1
pi

− ek
pi

), div(ek+1
u − ek

u)

)
.

Applying Cauchy’s inequality further yields

‖ε(ek+1
u − ek

u)‖2 + λ‖div(ek+1
u − ek

u)‖2

=

(
n∑

i=1

(ek+1
pi

− ek
pi

), div(ek+1
u − ek

u)

)

≤
∥∥∥∥∥

n∑

i=1

(ek+1
pi

− ek
pi

)

∥∥∥∥∥ ‖div(ek+1
u − ek

u)‖

=
√

λ0‖Λ
1
2
4 (ek+1

p − ek
p)‖‖div(ek+1

u − ek
u)‖. (3.7)

Noting that

(c2
K + λ)‖divw‖2 ≤ ‖ε(w)‖2 + λ‖divw‖2, (3.8)

which follows from (2.12), we directly obtain

(c2
K + λ)‖div(ek+1

u − ek
u)‖2 ≤

√
λ0‖Λ

1
2
4 (ek+1

p − ek
p)‖‖div(ek+1

u − ek
u)‖,
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from (3.7). The latter estimate implies

‖div(ek+1
u − ek

u)‖ ≤
√

λ0

c2
K + λ

‖Λ
1
2
4 (ek+1

p − ek
p)‖.

By using the above inequality in (3.7), it follows that

‖ε(ek+1
u − ek

u)‖2 + λ‖div(ek+1
u − ek

u)‖2 ≤ λ0

c2
K+λ

‖Λ
1
2
4 (ek+1

p − ek
p)‖2. (3.9)

Now, combining (3.6) and (3.9) yields

(ek+1
p , Div(ek+1

u − ek
u)) ≤ λ0

2(c2
K + λ)

‖Λ
1
2
4 (ek+1

p − ek
p)‖2

+
1

2
(‖ε(ek+1

u )‖2 + λ‖div ek+1
u ‖2). (3.10)

Finally, inserting (3.5) and (3.10) in (3.4) we have that

‖ε(ek+1
u )‖2 + λ‖divek+1

u ‖2 + ‖(Λ1 + Λ2)
1
2ek+1

p ‖2 +
L1

2
‖Λ

1
2
3 e

k+1
p ‖2

+
L2

2
‖Λ

1
2
4 e

k+1
p ‖2

≤ λ0

2(c2
K + λ)

‖Λ
1
2
4 (ek+1

p − ek
p)‖2 +

1

2
(‖ε(ek+1

u )‖2 + λ‖divek+1
u ‖2)

− ‖A
1
2
v e

k+1
v ‖2 +

L1

2
‖Λ

1
2
3 e

k
p‖2 +

L2

2
‖Λ

1
2
4 e

k
p‖2

−
(

L2

2
+

L1Rλ0

2n

)
‖Λ

1
2
4 (ek+1

p − ek
p)‖2

which shows (3.1).

The next lemma provides a preliminary estimate for the pressure errors.

Lemma 3.2. Consider Algorithm 1 with S as in (2.24). Then the errors ek
p defined

in (2.19) satisfy

λ0

2(β−2
s + λ)

‖Λ
1
2
4 e

k+1
p ‖2 + β2

d‖Λ
1
2
3 e

k+1
p ‖2 + ‖(Λ1 + Λ2)

1
2ek+1

p ‖2

+
L1

2
‖Λ

1
2
3 e

k+1
p ‖2 +

L2

2
‖Λ

1
2
4 e

k+1
p ‖2

≤ L1

2
‖Λ

1
2
3 e

k
p‖2 +

L2

2
‖Λ

1
2
4 e

k
p‖2

+

(
λ0

2(c2
K + λ)

− L2

2
− L1Rλ0

2n

)
‖Λ

1
2
4 (ek+1

p − ek
p)‖2.
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Proof. From Lemma 2.2, it follows that for all
∑n

i=1 e
k+1
pi

∈ Pi there exists

w0 ∈ U such that divw0 = 1√
λ0

∑n
i=1 e

k+1
pi

and ‖w0‖1 ≤ β−1
s

1√
λ0

‖∑n
i=1 e

k+1
pi

‖ =

β−1
s ‖Λ

1
2
4 e

k+1
p ‖. Also,

Divw0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
λ0

n∑

i=1

ek+1
pi

...

1√
λ0

n∑

i=1

ek+1
pi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
√

λ0Λ4e
k+1
p .

Setting w = w0 in (2.20c), it follows that
√

λ0‖Λ
1
2
4 e

k+1
p ‖2 = (ε(ek+1

u ), ε(w0)) + λ(div ek+1
u , divw0)

≤ (‖ε(ek+1
u )‖2 + λ‖div ek+1

u ‖2)
1
2 (‖ε(w0)‖2 + λ‖divw0‖2)

1
2

≤ (‖ε(ek+1
u )‖2 + λ‖div ek+1

u ‖2)
1
2 (β−2

s ‖Λ
1
2
4 e

k+1
p ‖2 + λ‖Λ

1
2
4 e

k+1
p ‖2)

1
2

= (‖ε(ek+1
u )‖2 + λ‖div ek+1

u ‖2)
1
2 (β−2

s + λ)
1
2 ‖Λ

1
2
4 e

k+1
p ‖

and, therefore,

λ0

β−2
s + λ

‖Λ
1
2
4 e

k+1
p ‖2 ≤ ‖ε(ek+1

u )‖2 + λ‖divek+1
u ‖2. (3.11)

Using (3.11) and (2.23) in (3.1), we have

λ0

2(β−2
s + λ)

‖Λ
1
2
4 e

k+1
p ‖2 + β2

d‖Λ
1
2
3 e

k+1
p ‖2 + ‖(Λ1 + Λ2)

1
2ek+1

p ‖2 +
L1

2
‖Λ

1
2
3 e

k+1
p ‖2

+
L2

2
‖Λ

1
2
4 e

k+1
p ‖2 ≤ L1

2
‖Λ

1
2
3 e

k
p‖2 +

L2

2
‖Λ

1
2
4 e

k
p‖2

+

(
λ0

2(c2
K + λ)

− L2

2
− L1Rλ0

2n

)
‖Λ

1
2
4 (ek+1

p − ek
p)‖2, (3.12)

which completes the proof.

The following two theorems present the main convergence results for Algo-

rithm 1.

Theorem 3.1. Consider Algorithm 1. For any θ > 0 and L2 ≥ λ0

(c2
K+λ)(1+

θβ2
d

Rλ0
n )

,

L1 = θβ2
dL2, the errors ek

p defined in (2.19) satisfy the estimate:

‖ek+1
p ‖2

P θ
≤ rate2(λ, R, θ)‖ek

p‖2
P θ

(3.13)

with

rate2(λ, R, θ) ≤ 1

C + 1
, C := min

{
λ0

β−2
s + λ

, 2θ−1

}
L−1

2
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and

‖ek+1
p ‖2

P θ
:= ‖Λ

1
2
4 e

k+1
p ‖2 + θβ2

d‖Λ
1
2
3 e

k+1
p ‖2 + ‖(Λ1 + Λ2)

1
2 ek+1

p ‖2. (3.14)

(1) For θ = θ0 := β−2
d and L2 = λ0

(c2
K+λ)(1+

Rλ0
n )

, we obtain the convergence factor

under the norm ‖ · ‖P θ0
estimated by

rate2(λ, R) ≤ 1

c0(c2
K+λ)(1+ λ0R

n )
λ0

+ 1
≤ max

{
1

c0 + 1
,

1

c0c2
K + 1

,
1

2

}
,

where c0 = min{ λ0

β−2
s +λ

, 2β2
d}. Here, for any x ∈ P

‖x‖2
P θ0

:= ‖Λ
1
2
3 x‖2 + ‖Λ

1
2
4 x‖2 + ‖(Λ1 + Λ2)

1
2x‖2.

(2) For the best choice θ = θ∗ :=
2(β−2

s +λ)
λ0

and L2 = λ0

(c2
K+λ)(1+

2β2
d
(β

−2
s +λ)R

n )

, the

errors ek
p satisfy the estimate

‖ek+1
p ‖2

P θ∗
≤ rate2(λ, R) ≤ 1

(c2
K+λ)

(
1+

2β2
d
(β

−2
s +λ)R

n

)

(β−2
s +λ)

+ 1

≤ max

{
β−2

s

c2
K + β−2

s

,
1

2

}
, (3.15)

where

‖ek+1
p ‖2

P θ∗
:= ‖Λ

1
2
4 e

k+1
p ‖2 +

2(β−2
s + λ)β2

v

λ0
‖Λ

1
2
3 e

k+1
p ‖2

+ ‖(Λ1 + Λ2)
1
2 ek+1

p ‖2. (3.16)

Proof. In view of the estimate presented in Lemma 3.2, we want to find L2 and

L1 subject to the condition

λ0

2(c2
K + λ)

− L2

2
− L1Rλ0

2n
≤ 0. (3.17)

For any θ > 0, we rewrite (3.12) as

λ0

2(β−2
s + λ)

‖Λ
1
2
4 e

k+1
p ‖2 + θ−1θβ2

d‖Λ
1
2
3 e

k+1
p ‖2 + ‖(Λ1 + Λ2)

1
2 ek+1

p ‖2

+
L1

2θβ2
d

θβ2
d‖Λ

1
2
3 e

k+1
p ‖2 +

L2

2
‖Λ

1
2
4 e

k+1
p ‖2 ≤ L1

2θβ2
d

θβ2
d‖Λ

1
2
3 e

k
p‖2 +

L2

2
‖Λ

1
2
4 e

k
p‖2

+

(
λ0

2(c2
K + λ)

− L2

2
− L1Rλ0

2n

)
‖Λ

1
2
4 (ek+1

p − ek
p)‖2, (3.18)
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namely,
(

λ0

2(β−2
s + λ)

+
L2

2

)
‖Λ

1
2
4 e

k+1
p ‖2 +

(
θ−1 +

L1

2θβ2
d

)
θβ2

d‖Λ
1
2
3 e

k+1
p ‖2

+ ‖(Λ1 + Λ2)
1
2ek+1

p ‖2 ≤ L1

2θβ2
d

θβ2
d‖Λ

1
2
3 e

k
p‖2 +

L2

2
‖Λ

1
2
4 e

k
p‖2. (3.19)

Then, for L2 ≤ 1 we obtain

min

{
λ0

2(β−2
s + λ)

+
L2

2
, θ−1 +

L1

2θβ2
d

}

×
(
‖Λ

1
2
4 e

k+1
p ‖2 + θβ2

d‖Λ
1
2
3 e

k+1
p ‖2 + ‖(Λ1 + Λ2)

1
2 ek+1

p ‖2
)

≤ max

{
L1

2θβ2
d

,
L2

2

}(
θβ2

d‖Λ
1
2
3 e

k
p‖2 + ‖Λ

1
2
4 e

k
p‖2
)
. (3.20)

Now, choose L1 = θβ2
dL2. Then, condition (3.17) becomes

λ0

2(c2
K + λ)

− L2

2
− θβ2

dL2Rλ0

2n
≤ 0 or L2 ≥

λ0

(c2
K+λ)

1 +
θβ2

dRλ0

n

(3.21)

and we can simplify (3.20) as follows:

min

{
λ0

2(β−2
s + λ)

+
L2

2
, θ−1 +

L2

2

}

×
(
‖Λ

1
2
4 e

k+1
p ‖2 + θβ2

d‖Λ
1
2
3 e

k+1
p ‖2 + ‖(Λ1 + Λ2)

1
2 ek+1

p ‖2
)

≤ L2

2

(
θβ2

d‖Λ
1
2
3 e

k
p‖2 + ‖Λ

1
2
4 e

k
p‖2
)
,

which shows (3.13). Statements (1) and (2) are direct consequences of (3.13) for

the particular choices of θ in the corresponding norms.

Note that estimate (3.15) not only indicates that the convergence rate of the

Uzawa-type iterative method has a uniform, with respect to the parameters, upper-

bound being strictly less than 1, but also that it is bounded by a number much

smaller than 1 if λ is large. Moreover, the presented analysis of the Uzawa-type

scheme results in a new, parameter-optimized block-triangular preconditioner that

can be used to accelerate the convergence of the GMRES method if the latter is

applied to the augmented system (2.13). The parameter-robust uniform convergence

estimates for the new Uzawa-type method imply the field-of-values equivalence of

this preconditioner for the augmented system.

Theorem 3.2. Consider Algorithm 1 with S as introduced in (2.24). Then the

errors ek
u and ek

v defined in (2.19) satisfy the estimates :

‖ek
u‖U ≤ Cu[rate(λ, R)]k, ‖ek

v‖V θ∗ ≤ Cv[rate(λ, R)]k, (3.22)
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where

‖ek
v‖2

V θ∗
:= (Ave

k
v, ek

v) + (S−1Divek
v, Divek

v), ‖u‖2
U := ‖ε(u)‖2 + λ‖divu‖2 (3.23)

and the constants Cu and Cv are independent of the model parameters and the time

step size.

Proof. First, we estimate ‖ek+1
u ‖2

U . By setting w = ek+1
u in (2.20c), applying

Cauchy’s inequality and using (3.8) we obtain

‖ε(ek+1
u )‖2 + λ‖div ek+1

u ‖2 =

(
n∑

i=1

ek+1
pi

, div ek+1
u

)
≤
∥∥∥∥∥

n∑

i=1

ek+1
pi

∥∥∥∥∥ · ‖div ek+1
u ‖

=
√

λ0‖Λ
1
2
4 e

k+1
p ‖‖divek+1

u ‖

≤
√

λ0‖Λ
1
2
4 e

k+1
p ‖

√
1

c2
K + λ

(‖ε(ek+1
u )‖2 + λ‖div ek+1

u ‖2),

or, equivalently,

‖ek+1
u ‖2

U ≤ λ0

c2
K + λ

‖Λ
1
2
4 e

k+1
p ‖2 ≤ λ0

c2
K + λ

‖ek+1
p ‖2

P θ
. (3.24)

In order to estimate ‖ek+1
v ‖2

V θ∗
we set z = ek+1

v in (2.20a) and apply the Cauchy

inequality to derive

(Ave
k+1
v , ek+1

v ) + (S−1Div ek+1
v , Div ek+1

v )

= (ek
p, Div ek+1

v ) − (S−1Div ek
u, Div ek+1

v )

− (S−1(Λ1 + Λ2)e
k
p, Div ek+1

v )

= (S−1(L1Λ3 + L2Λ4)e
k
p, Div ek+1

v ) − (S−1Div ek
u, Div ek+1

v )

≤ (S−1(L1Λ3 + L2Λ4)e
k
p, (L1Λ3 + L2Λ4)e

k
p) +

1

4
(S−1Div ek+1

v , Div ek+1
v )

+ (S−1Div ek
u, Div ek

u) +
1

4
(S−1Div ek+1

v , Div ek+1
v ). (3.25)

From the definition of S, see (2.24), that of ‖ · ‖P θ∗ , see (3.16), and noting that

L1 = θβ2
dL2, see Theorem 3.1, we have

(S−1(L1Λ3 + L2Λ4)e
k
p, (L1Λ3 + L2Λ4)e

k
p)

≤ ((L1Λ3 + L2Λ4)
−1(L1Λ3 + L2Λ4)e

k
p, (L1Λ3 + L2Λ4)e

k
p)

= ((L1Λ3 + L2Λ4)e
k
p, ek

p) ≤ L2‖ek
p‖2

P θ∗
. (3.26)

Then (3.25) can be rewritten in the form

(Ave
k+1
v , ek+1

v ) +
1

2
(S−1Div ek+1

v , Div ek+1
v ) ≤ L2‖ek

p‖2
P θ∗

+ ‖S− 1
2 Div ek

u‖2.
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Again, from the definition of S, and noting that L1Λ3 + L2Λ4 = (L1RIn×n +
L2

λ0
eeT ), by choosing a = L1R and b = L2

λ0
in Lemma 2.1, it follows that

‖S− 1
2 Div ek

u‖2 ≤ ((L1Λ3 + L2Λ4)
−1Div ek

u, Div ek
u)

=

⎛
⎝
⎛
⎝

n∑

i=1

n∑

j=1

bij

⎞
⎠divek

u, div ek
u

⎞
⎠

=
nλ0

L1Rλ0 + nL2
(div ek

u, div ek
u) ≤ (c2

K + λ)(div ek
u, div ek

u).

Therefore, from (3.24), we have

‖ek
v‖2

V θ∗
= (Ave

k+1
v , ek+1

v ) +
1

2
(S−1Div ek+1

v , Div ek+1
v )

≤ L2‖ek
p‖2

P θ∗
+ (c2

K + λ)(div ek
u, div ek

u) ≤ L2‖ek
p‖2

P θ∗
+ ‖ek

u‖2
U

≤ L2‖ek
p‖2

P θ∗
+

λ0

c2
K + λ

‖ek
p‖2

P θ∗

=

(
L2 +

λ0

c2
K + λ

)
‖ek

p‖2
P θ∗

,

which completes the proof.

Remark 3.1. Note that for the particular choice of S and M in this section, the

block-triangular matrix on the left-hand side of (2.15) provides a field-of-values-

equivalent preconditioner with equivalence constants independent of any model and

discretization parameters.

4. The Discrete MPET Problem

Mass conservative discretizations for the MPET model are considered in this sec-

tion, cf. Refs. 26 and 27. The analysis here can also be utilized for other stable

discretizations of the three-field formulation of the MPET model.30,46

4.1. Notation

Let Th be a shape-regular triangulation of the domain Ω into triangles/tetrahedrons

where the subscript h denotes the mesh-size. Furthermore, let EI
h and EB

h define

the set of all interior edges/faces and the set of all boundary edges/faces of Th,

respectively, with their union being written as Eh.

For s ≥ 1 we introduce the broken Sobolev spaces

Hs(Th) = {φ ∈ L2(Ω), such that φ|T ∈ Hs(T ) for all T ∈ Th}.

Define T1 and T2 to be two elements from the triangulation which share an edge

or face e and n1 and n2 to be the corresponding unit normal vectors to e which
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point to the exterior of T1 and T2. For q ∈ H1(Th), v ∈ H1(Th)d and τ ∈ H1(Th)d×d

and any e ∈ EI
h , the jumps [·] and averages {·} are defined by

[q] = q|∂T1∩e − q|∂T2∩e, [v] = v|∂T1∩e − v|∂T2∩e,

{v} =
1

2
(v|∂T1∩e · n1 − v|∂T2∩e · n2), {τ} =

1

2
(τ |∂T1∩en1 − τ |∂T2∩en2),

whereas in the case of e ∈ EB
h , [q] = q|e, [v] = v|e, {v} = v|e · n, {τ} = τ |en.

4.2. Mixed finite element spaces and discrete formulation

So as to discretize the flow equations, a mixed finite element method has been

used to approximate fluxes and pressures. The displacement field of the mechanics

problem is approximated using a discontinuous Galerkin method. The following

finite element spaces are employed:

Uh = {u ∈ H(div; Ω) : u|T ∈ U(T ), T ∈ Th; u · n = 0 on ∂Ω},

V i,h = {v ∈ H(div; Ω) : v|T ∈ V i(T ), T ∈ Th; v · n = 0 on ∂Ω}, i = 1, . . . , n,

Pi,h =

{
q ∈ L2(Ω) : q|T ∈ Qi(T ), T ∈ Th;

∫

Ω

qdx = 0

}
, i = 1, . . . , n,

where V i(T )/Qi(T ) = RTl−1(T )/Pl−1(T ), U(T ) = BDMl(T ) or U(T ) =

BDFMl(T ) for l ≥ 1. One should note that divU(T ) = divV i(T ) = Qi(T ) for each

of these choices.

Also, it has been shown in Refs. 26 and 27 that for all u ∈ Uh, [un] = 0,

from which follows that [u] = [ut]. Here, un and ut are the normal and tangential

component of u, respectively.

Defining vT
h = (vT

1,h, . . . ,vT
n,h), pT

h = (p1,h, . . . , pn,h), zT
h = (zT

1,h, . . . , zT
n,h),

qT
h = (q1,h, . . . , qn,h), and further V h = V 1,h × · · · ×V n,h, P h = P1,h × · · · × Pn,h,

Xh = Uh ×V h ×P h, we consider the following discrete variational problem: Find

(uh;vh;ph) ∈ Xh, such that for any (wh; zh; qh) ∈ Xh and i = 1, . . . , n

(R−1
i vi,h, zi,h) − (pi,h, divzi,h) = 0, (4.1a)

−(divuh, qi,h) − (div vi,h, qi.h) + α̃ii(pi,h, qi,h)

+

n∑

j=1
j �=i

αij(pj,h, qi,h) = (gi, qi,h), (4.1b)

ah(uh,wh) + λ(divuh, divwh) −
n∑

i=1

(pi,h, divwh) = (f ,wh), (4.1c)
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where

ah(u,w) =
∑

T∈Th

∫

T

ep(u) : ep(w)dx −
∑

e∈Eh

∫

e

{ep(u)} · [wt]ds

−
∑

e∈Eh

∫

e

{ep(w)} · [ut]ds +
∑

e∈Eh

∫

e

ηh−1
e [ut] · [wt]ds, (4.2)

α̃ii = −αpi −αii, and η is a stabilization parameter which is independent of λ, R−1
i ,

αpi , αij , i, j ∈ {1, . . . , n}, the network scale n, and the mesh-size h.

In the derivation of the discrete variational problem (4.1), homogeneous Dirich-

let boundary conditions for u and homogeneous Neumann boundary conditions for

pi, i = 1, 2, . . . , n, have been assumed for each case over the entire domain bound-

ary. The DG discretizations for more general (rescaled) boundary conditions and

the stability analysis of the related discrete variational problems can be found in

Refs. 26 and 27. The iterative scheme for flux–pressure–displacement formulation

of the discrete MPET problem, analogous to Algorithm 1, is as follows:

Algorithm 2. Fully decoupled iterative scheme for flux–pressure–displacement

formulation of discrete MPET problem.

Step a: Given pk
h and uk

h, we first solve for vk+1
h , such that for all zh ∈ V h there

holds

(Avv
k+1
h , zh) + (MDiv vk+1

h , Div zh)

= −(Mg, Div zh) + ((I − M(Λ1 + Λ2))p
k
h, Div zh) − (MDivuk

h, Div zh).

Step b: Given uk
h and vk+1

h , we solve for pk+1
h , such that for all qh ∈ P h there

holds

(Spk+1
h , qh)

= −(g, qh) + (Spk
h, qh) − ((Λ1 + Λ2)p

k
h, qh) − (Divuk

h, qh) − (Div vk+1
h , qh).

Step c: Given pk+1
h and vk+1

h , we solve for uk+1
h , such that for all wh ∈ Uh

there holds

ah(uk+1
h ,wh) = (f ,wh) + (pk+1

h , Divwh).

In Step a, a coupled H(div) problem is solved. As mentioned in Remark 6 of

Ref. 27, we can apply orthogonal transformations to the flux and pressure subsys-

tems which decouple the fluxes from each other and also the pressures from each

other. For fluxes, this procedure results in n decoupled H(div) problems for the

operators I + μ̄i∇div, i = 1, 2, . . . , n, where μ̄i are the eigenvalues of an n × n

coefficient matrix, n denoting the number of networks, i.e. n ∈ {1, 2, 4, 8} in the
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examples presented in Sec. 5; correspondingly, the decoupling of the pressure sub-

system yields n, essentially, well-conditioned independent L2 problems.

There are several works addressing the solution of nearly singular H(div) prob-

lems and we may resort to Hiptmair–Xu preconditioners25 and the robust subspace

correction methods presented in Refs. 39, 40, 57 and 58. There also exist multigrid

methods that serve this purpose.5,55 In case of highly varying permeability (conduc-

tivity) coefficient, the auxiliary space multigrid preconditioners based on additive

Schur complement approximation proposed in Ref. 34 provide a parameter-robust

alternative.

In Step c, to obtain A−1
u for the elasticity subproblem, one can use the multi-

grid method proposed in Ref. 29 for the discontinuous Galerkin discretization and

the multigrid methods proposed in Refs. 38 and 47 for conforming elements, which

are all robust with respect to the Lamé parameter λ. Following the methodology

of the convergence analysis presented for the continuous MPET problem, state-

ments analogous to those presented in Theorems 3.1 and 3.2 can also be proven for

Algorithm 2.

5. Numerical Results

In the following, we consider four numerical test settings to demonstrate the effec-

tiveness and accuracy of the proposed Uzawa-type iterative schemes for the MPET

model.

First, numerical results are presented for the single network problem, i.e. the

Biot model, in Fig. 1. These validate the theoretical convergence estimates of the

linear stationary iterative method based on Algorithm 1 which has been addition-

ally assessed against the preconditioned GMRES algorithm. In the second and third

tests, the performance of Algorithm 1 is compared with the preconditioned GMRES

algorithm and the fixed-stress algorithm as proposed in Ref. 28, cf. (2.10), for the

two-network and four-network MPET problems. Finally, a scaling test demonstrat-

ing the behavior of the preconditioned GMRES and the Uzawa-type algorithms for

different numbers of networks is performed.

The block Gauss–Seidel preconditioner that we have used to accelerate the

GMRES method equals the lower block-triangular matrix in the left-hand side

of (2.15) where M = S−1 and S is given in (2.24).

All the numerical results in this section have been conducted on the FEniCS

computing platform.4,41 In all test cases the set-up is as follows:

• The domain Ω ∈ R2 is the unit square which is partitioned into 2N2 congruent

right-angled triangles.

• The discretization setting follows Sec. 4, see also Refs. 27 and 28, i.e. we use dis-

continuous piecewise constant elements, lowest-order Raviart–Thomas elements

and Brezzi–Douglas–Marini elements to approximate the pressures, fluxes, and

displacement fields, respectively.
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• For all experiments conducted using Algorithm 1, whose implementation corre-

sponds to Algorithm 2, we set

L2 =
λ0

(c2
k + λ)(1 +

2β2
d(β−2

s +λ)R

n )
, L1 =

2(β−2
s + λ)β2

d

λ0
L2

and β2
s = β2

d = 0.18, see Ref. 21.

• The stopping criterium of the iterative process is the reduction of the initial

preconditioned residual by a factor 108 where a random vector has been used in

the initialization.

5.1. The Biot’s consolidation model

Consider system (2.1) for n = 1, i.e. a system for which only one pressure and one

flux exists, where for (x, y) ∈ Ω

g = R1

(
∂2φ2

∂x2
+

∂2φ2

∂y2

)
− αp1(φ2 − 1),

φ1 = (x − 1)2(y − 1)2x2y2, φ2 = 900(x − 1)2(y − 1)2x2y2,

and

f =
1

2

⎛
⎜⎜⎜⎝

− ∂3φ1

∂x2∂y
− ∂3φ1

∂y3
+ 2

∂φ2

∂x

∂3φ1

∂x∂y2
+

∂3φ1

∂x3
+ 2

∂φ2

∂y

⎞
⎟⎟⎟⎠.

Experiments over a wide-range of input parameters αp, λ, R−1
1 have been run

with Algorithm 1 and the preconditioned GMRES algorithm and are shown in

Fig. 1. In all test cases, the number of Uzawa-type iterations required to achieve the

prescribed solution accuracy is bounded by a constant independent of all model and

discretization parameters. Clearly, the GMRES preconditioned algorithm demon-

strates better convergence behavior for small λ.

5.2. The Biot–Barenblatt model

In the next test, system (2.1) is considered for n = 2 where the problem setting is

as per the cantilever bracket benchmark problem in Ref. 44. We denote the bottom,

right, top, and left parts of Γ = ∂Ω by Γ1, Γ2, Γ3, and Γ4 and, also, we impose

u = 0 on Γ4, (σ − p1I − p2I)n = (0, 0)T on Γ1 ∪ Γ2, (σ − p1I − p2I)n = (0, −1)T

on Γ3, p1 = 2 on Γ and p2 = 20 on Γ. Further, we set f = 0, g1 = 0, and g2 = 0.

Table 1 shows the reference values of the model parameters as given in Ref. 33.

Figures 2–4 present a comparison between the preconditioned GMRES algo-

rithm, the fixed-stress split algorithm as presented in Ref. 28 with a tuning param-

eter L = 1/(1+λ) and Algorithm 1. As can be seen, from Figs. 2 and 4 for λ being
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Fig. 1. (Color online) Number of preconditioned GMRES (small black circles) and augmented
Uzawa-type (red crosses) iterations for preconditioned residual reduction by a factor 108 when
solving the Biot problem. These tests have been performed for h = 1/32 (dash-dotted line),
h = 1/64 (dashed line), and h = 1/128 (full line).

sufficiently large, the Uzawa-type method shows similar convergence behavior to

the preconditioned GMRES and fixed-stress methods.

Furthermore, all the numerical results included in Figs. 2–4 demonstrate the

robust performance of the Uzawa-type algorithm with respect to mesh refinements

and variation of the hydraulic conductivities K1 and K2, as well as λ.

5.3. The four-network model

Now, we consider system (2.1) for n = 4. This test setting is analogous to the

previous example, i.e. ∂Ω = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 ∪ Γ̄4 with Γ1, Γ2, Γ3, Γ4 denoting the
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Table 1. Reference values of model parameters
for the Barenblatt model.

Parameter Value Unit

λ̂ 4.2 ∗ 106 Nm−2

μ 2.4 ∗ 106 Nm−2

cp1 5.4 ∗ 10−8 N−1 m2

cp2 1.4 ∗ 10−8 N−1 m2

α1 0.95
α2 0.12
β 5.0 ∗ 10−10 N−1 m2 s−1

1.0 ∗ 10−8 N−1 m2 s−1

K1 6.18 ∗ 10−12 N−1 m4 s−1

K2 2.72 ∗ 10−11 N−1 m4 s−1

Fig. 2. (Color online) Number of preconditioned GMRES (small black circles), fixed-stress split
(big green circles), and augmented Uzawa-type (red crosses) iterations for preconditioned residual
reduction by a factor 108 when solving the Barenblatt problem, λ = λ̂. These tests have been
performed for h = 1/16 (dash-dotted line), h = 1/32 (dashed line), and h = 1/64 (full line).

bottom, right, top, and left boundaries, respectively, u = 0 on Γ4, (σ−p1I−p2I−
p3I − p4I)n = (0, 0)T on Γ1 ∪ Γ2, (σ − p1I − p2I − p3I − p4I)n = (0, −1)T on

Γ3, p1 = 2 on Γ, p2 = 20 on Γ, p3 = 30 on Γ, p4 = 40 on Γ. All right-hand sides

have been chosen to be zero. The reference values of the parameters are taken from

Ref. 52 and presented in Table 2.

The main aim of the numerical experiments discussed in this section is, again,

the comparison between the three algorithms, namely the preconditioned GMRES

algorithm, the fixed-stress split algorithm with L = 1/(1 + λ) and the fully decou-

pling Algorithm 1.
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Fig. 3. (Color online) Number of preconditioned GMRES (small black circles), fixed-stress split
(big green circles), and augmented Uzawa-type (red crosses) iterations for preconditioned residual
reduction by a factor 108 when solving the Barenblatt problem, λ := 0.01 ∗ λ̂. These tests have
been performed for h = 1/16 (dash-dotted line), h = 1/32 (dashed line), and h = 1/64 (full line).

Fig. 4. (Color online) Number of preconditioned GMRES (small black circles), fixed-stress split
(big green circles), and augmented Uzawa-type (red crosses) iterations for preconditioned residual
reduction by a factor 108 when solving the Barenblatt problem, λ := 100 ∗ λ̂. These tests have
been performed for h = 1/16 (dash-dotted line), h = 1/32 (dashed line), and h = 1/64 (full line).

Figure 5 shows that Algorithm 1 exhibits a convergence behavior similar to that

of the preconditioned GMRES method and the fixed-stress split iterative scheme

over a wide-range of parameters as tabulated. Moreover, the presented numerical

results demonstrate the robustness of the newly proposed algorithm with respect
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Table 2. Reference values of model parameters for the
four-network MPET model.

Parameter Value Unit

λ 505 N m−2

μ 216 N m−2

cp1 = cp2 = cp3 = cp4 4.5 ∗ 10−10 N−1 m2

α1 = α2 = α3 = α4 0.99
β12 = β24 1.5 ∗ 10−19 N−1 m2 s−1

β23 2.0 ∗ 10−19 N−1 m2 s−1

β34 1.0 ∗ 10−13 N−1 m2 s−1

K1 = K2 = K4 = K 3.75 ∗ 10−6 N−1 m4 s−1

K3 1.57 ∗ 10−9 N−1 m4 s−1

Fig. 5. (Color online) Number of preconditioned GMRES (small black circles), fixed-stress split
(big green circles), and augmented Uzawa-type (red crosses) iterations for preconditioned residual
reduction by a factor 108 when solving the four-network MPET problem. These tests have been
performed for h = 1/16 (dash-dotted line), h = 1/32 (dashed line), and h = 1/64 (full line).

to large variations of the coefficients K3, K = K1 = K2 = K4 and λ and the mesh

parameter h.

In order to further compare the performance of the preconditioned GMRES,

fixed-stress split and augmented Uzawa-type algorithms we present one final table,

Table 3, with elapsed times measured in seconds. These numerical tests have been
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Table 3. Computational times in seconds for the preconditioned GMRES (tG), fixed-stress split
(tF ), and augmented Uzawa-type (tU ) algorithms to reach preconditioned residual reduction by
a factor 108 in the norm induced by the preconditioner when solving the four-network MPET
problem on a mesh with h = 1/64.

K3 · 10−2 K3 K3 · 102 K3 · 104 K3 · 1010

tG tF tU tG nF tU tG tF tU tG tF tU tG tF tU

λ K · 10−2 15.54 8.98 7.26 15.39 9.12 7.21 15.51 9.09 7.16 15.90 9.17 7.21 15.83 9.33 7.24

K 15.32 9.20 7.68 15.60 9.13 7.66 15.40 8.91 7.13 15.75 9.12 7.41 16.09 9.26 7.68

K · 102 15.25 9.17 7.53 15.47 9.27 7.19 15.24 9.08 7.52 15.44 9.11 7.28 15.64 9.17 7.37

λ · 103 K · 10−2 14.87 7.80 5.45 15.00 7.74 5.68 14.95 7.56 5.93 15.16 8.05 5.48 15.31 8.64 6.10

K 14.71 7.78 5.38 14.81 7.91 5.42 14.74 8.10 5.75 15.05 8.03 6.68 15.23 8.07 6.05

K · 102 14.92 8.91 6.78 14.97 8.92 6.69 14.90 8.80 6.96 14.83 8.64 5.21 14.87 9.27 5.28

λ · 106 K · 10−2 14.98 8.95 6.14 15.02 9.06 7.07 14.81 7.67 7.12 14.75 7.65 5.90 14.96 7.53 5.81

K 14.91 8.89 5.40 15.08 8.96 5.61 15.12 9.03 7.01 15.06 9.12 6.33 15.19 9.32 6.20

K · 102 14.72 9.27 4.92 14.88 8.99 5.00 15.09 8.96 5.26 15.52 9.19 5.40 15.12 9.24 5.54

conducted on a Dell Precision 5540 notebook with an Intel Core i7-9 9850H pro-

cessor and 64GB RAM. As the results indicate, the Uzawa-type method is the

computationally most efficient among the three, here, clearly seen in terms of total

solution time when direct methods are used to solve the respective subproblems.

A similar behavior can also be expected when iterative solvers of lower complexity

replace the direct ones.

5.4. Scaling test

Finally, we present a scaling test demonstrating the convergence behavior of the

preconditioned GMRES and augmented Uzawa-type algorithms with respect to the

number of fluid networks n. These methods have been tested for n = 1, 2, 4, 8.

In order to perform a reasonable comparison, we have assumed that all network

transfer coefficients are equal to 0 irrelevant to the number of networks, λ = 103,

R−1
i = 104, αpi = 10−4, i = 1, . . . , n. The test setting is similar to those of the

previously considered Biot–Barenblatt and four-network models, i.e. ∂Ω = Γ̄1 ∪
Γ̄2 ∪ Γ̄3 ∪ Γ̄4 with Γ1, Γ2, Γ3, Γ4 being the bottom, right, top, and left boundaries,

respectively, u = 0 on Γ4, (σ−∑n
i=1 piI)n = (0, 0)T on Γ1 ∪Γ2, (σ−∑n

i=1 piI)n =

(0, −1)T on Γ3, and pi = 10, i = 1, . . . , n on Γ. As previously, all the right-hand

sides have been chosen to be zero.

We have conducted the numerical tests on a mesh with a mesh-size h = 1/32. In

all test cases, the number of required iterations to reach a preconditioned residual

reduction by a factor 108 equals 4. This clearly indicates the robustness of the

proposed algorithms with respect to the number of networks as suggested by our

theoretical findings.

6. Concluding Remarks

The main contribution of this paper is the development of a new augmented

Lagrangian Uzawa algorithm for three-by-three double saddle point block systems

arising in Biot’s and multiple-network poroelasticity models. The proposed method
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fully decouples the fluid velocity, fluid pressure and solid displacement fields, con-

trary to the fixed-stress iterative scheme, which decouples only the flow from the

mechanics problem. In this manner the subsystems that need to be solved in every

iteration become considerably smaller, especially in the models where multiple fluid

networks are present.

The presented convergence analysis proves the parameter-robust linear conver-

gence of the new algorithm and additionally offers explicit formulas for a proper

choice of required stabilization parameters. All numerical tests confirm the robust-

ness and efficiency of the new fully decoupled iterative scheme and also its superi-

ority in terms of computational work over existing methods.
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Abstract

We consider the quasi-static Biot’s consolidation model in a three-field formulation with the three unknown physical
quantities of interest being the displacement u of the solid matrix, the seepage velocity v of the fluid and the pore pressure
p. As conservation of fluid mass is a leading physical principle in poromechanics, we preserve this property using an H(div)-
conforming ansatz for u and v together with an appropriate pressure space. This results in Stokes and Darcy stability and exact,
that is, pointwise mass conservation of the discrete model.

The proposed discretization technique combines a hybridized discontinuous Galerkin method for the elasticity subproblem
with a mixed method for the flow subproblem, also handled by hybridization. The latter allows for a static condensation step
to eliminate the seepage velocity from the system while preserving mass conservation. The system to be solved finally only
contains degrees of freedom related to u and p resulting from the hybridization process and thus provides, especially for
higher-order approximations, a very cost-efficient family of physics-oriented space discretizations for poroelasticity problems.

We present the construction of the discrete model, theoretical results related to its uniform well-posedness along with optimal
error estimates and parameter-robust preconditioners as a key tool for developing uniformly convergent iterative solvers. Finally,
the cost-efficiency of the proposed approach is illustrated in a series of numerical tests for three-dimensional test cases.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Biot’s consolidation model; Strongly mass conserving high-order discretizations; Parameter-robust LBB stability; Norm-equivalent
preconditioners; Hybrid discontinuous Galerkin methods; Hybrid mixed methods

1. Introduction

Poroelastic models describing the mechanical behavior of fluid saturated porous media find a wide range of
applications in many different fields of science, medicine and engineering. The theory of poroelasticity was initially
conceived by Maurice Anthony Biot who proposed a soil consolidation model to calculate the settlement of
structures placed on fluid-saturated porous soils, see [1,2].

Recently, interest in Biot’s consolidation equations has been revived due to their newly discovered applications
in medicine, see e.g. [3] and [4], where they have been studied in the context of human cancellous bone samples
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and risk factors associated with the early stages of Alzheimer’s disease, respectively. Their numerical solution has
consequently been a subject of active research. One major challenge is that the parameters involved in Biot’s model
can vary over many orders of magnitude and, therefore, it is vital that not only the variational formulation of
the problem is stable but also that the iterative solution method is uniformly convergent over the whole range of
admissible model parameter values.

A rigorous stability and convergence analysis for finite element (FE) approximations of the two-field formulation
of Biot’s equations where the velocity field has been eliminated from the unknowns has first been presented
in [5,6]. The derived a priori error estimates are valid for both semidiscrete and fully discrete formulations, where
the backward Euler method is used for time-discretization and inf–sup stable finite elements are used for space
discretization.

Other recent developments in discretizing Biot-type models are related to the stabilization of conforming
methods [7], stable finite volume methods [8], discretizations for total-pressure-based formulations [9,10], including
conservative discontinuous finite volume and mixed schemes [11], enriched Galerkin methods [12,13], space–
time finite element approximations [14], and methods for two-phase flow and non-linear extensions of the Biot
problem [13,15], to mention only but a few. Finally, and, nevertheless, important in the context of the present
research, are the extensions of abovementioned discretization techniques to multicompartmental (multiple network)
poroelasticity problems presented in [16,17].

The subject of the study in this paper is the standard three-field formulation of Biot’s model in which the unknown
fields are the displacement, seepage velocity and fluid pressure. Discretizations based on three-field-formulation have
originally been proposed in [18,19] where continuous-in-time and discrete-in-time error estimates have been proved.
This approach has also been extended to discontinuous Galerkin approximations of the displacement field in [20]
and other nonconforming approximations, e.g., using modified rotated bilinear elements [21], or Crouzeix–Raviart
elements for the displacements in [22]. More recently, in [23], a family of strongly mass conserving discretizations
based on the H(div)-conforming discontinuous Galerkin (DG) discretization of the displacement field has been
suggested and its parameter-robust stability and near best approximation properties proven. Time-dependent error
estimates for the same family of discretizations have been proved in [24]. Note that these approaches are based on
the inf–sup stability of the corresponding Stokes discretization scheme which were originally stated in [25–27] and
the Brinkman problem [28,29].

Hybridization techniques have been applied to discretizations of Biot’s model in the recent works [30] and [31].
Whereas in [30] the authors introduced a hybridized H(div)-conforming DG method for the two-field formulation,
the work [31] starts from a lowest-order conforming stabilized discretization of the three-field formulation and uses
hybridization for the flow subsystem as it was first presented in [32].

The aim of the present work is the construction, analysis and numerical testing of a new family of higher-order
mass conserving hybridized/hybrid mixed FE discretizations for the three-field formulation of Biot’s model. The
main focus lies on a well-posedness analysis in properly scaled norms resulting in estimates with constants that are
independent of any problem parameters. As a consequence, we obtain norm-equivalent preconditioners and optimal
near best approximation estimates. Recently, norm-equivalent preconditioners for Biot’s consolidation model have
been also derived for a total-pressure based formulation in [9], a two-field formulation in [33], and for a classical
flux-based three-field formulation in [23]. Non-linear extensions of Biot’s consolidation model in which, e.g., the
volumetric stress and fluid density are given by certain non-linear functions [34], large deformations are combined
with deformation-dependent permeability [35] or with non-linear fluid compressibility [36], have been considered.
The application of the family of higher-order mass conserving hybridized/hybrid mixed FE discretizations presented
in this paper to such models is possible and work in progress, e.g., based on the approach in [37].

The most popular splitting methods (e.g., fixed stress or undrained split) can be described on a continuous level
and the problems that have to be solved in each iteration of these iterative coupling schemes can then be discretized
using the proposed techniques. For example, the combination of the presented discretizations with the methods
described and analyzed in [17,38] is uncomplicated and straightforward to implement.

The paper is structured as follows. In Section 2 the governing equations are stated and the three-field formulation
of Biot’s model is discussed. Its semi-discretization in time by the implicit Euler method along with a proper
rescaling of the parameters results in a static boundary value problem and is presented in Section 3. The latter
then is discretized in space by a new family of hybridized discontinuous Galerkin/hybrid mixed methods while
addressing the advantages of this approach. The main theoretical results follow in Section 4 where the uniform
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boundedness and the parameter-robust inf–sup stability of the underlying bilinear form are proven to be independent
of all model and discretization parameters. Furthermore, the corresponding parameter-robust preconditioners and
error estimates are provided. In Section 5 the theoretical results of this paper are complemented by a series of
numerical tests assessing the approximation quality and cost efficiency of these preconditioners for the proposed
family of higher-order hybridized discontinuous Galerkin/hybrid mixed discretizations.

2. Problem formulation

2.1. Governing equations

We consider a porous medium, which is linearly elastic, homogeneous, isotropic and saturated by an incom-
pressible Newtonian fluid. Then Biot’s consolidation model, see [1,39], for a bounded Lipschitz domain Ω ∈ Rd ,
d ∈ {2, 3},

−div(2µ̃ϵ(u)) − λ̃∇divu + α∇ p = f̃ , in Ω × (0, T ), (1a)
∂

∂t
(S0 p + αdivu) − div(K∇ p) = g̃, in Ω × (0, T ), (1b)

relates the deformation u and the fluid pressure p for a given body force density f̃ and mass source or sink g̃. For
convenience, we assume a scalar conductivity coefficient K . We use bold symbols to denote vector- or tensor-valued
quantities, e.g., ϵ(u) :=

1
2 (∇u+ (∇u)T ) denoting the symmetric gradient. Further, λ̃ and µ̃ are the Lamé parameters,

α is the Biot–Willis parameter and S0 the constrained specific storage coefficient.
The three-field [18,20] formulation is based on the primary variables (u, w, p) and reads

−divσ = f̃ , in Ω × (0, T ), (2a)

K −1w + ∇ p = 0, in Ω × (0, T ), (2b)
∂

∂t
(S0 p + α div u) + div w = g̃, in Ω × (0, T ), (2c)

where w denotes the seepage velocity, σ̃ := 2µ̃ϵ(u) + λ̃div(u)I is the total stress and σ = σ̃ − αpI the effective
stress. If not mentioned otherwise, we assume homogeneous Dirichlet boundary conditions for the displacement
u and homogeneous Neumann conditions for the pressure p. In this context, let H1

0(Ω ), H0(div,Ω ) denote the
standard vector-valued Sobolev spaces where the subscript 0 refers to homogeneous essential boundary conditions.
Further, let L2

0(Ω ) denote the space of square integrable functions with zero mean value. Following the standard
procedure, one derives the weak formulation: Find (u, w, p) ∈ H1

0(Ω ) × H0(div,Ω ) × L2
0(Ω ) such that

ã(u, v) − (α p, div v) = ( f̃ , v), ∀v ∈ H1
0(Ω ), (3a)

(K −1w, z) − (p, div z) = 0, ∀z ∈ H0(div,Ω ), (3b)

−(α div ∂t u, q) − (div w, q) − (S0∂t p, q) = −(g̃, q), ∀q ∈ L2
0(Ω ), (3c)

where

ã(u, v) := 2µ̃

∫
Ω

ε(u) : ε(v)d x + λ̃

∫
Ω

div u div vd x . (4)

Finally, system (3) is completed with suitable initial conditions u(·, 0) = u0(·) and p(·, 0) = p0(·).

3. Hybridized discontinuous Galerkin/hybrid mixed discretizations of the Biot problem

3.1. Strongly mass conserving discretization of the Biot problem

The starting point for this subsection is a family of strongly mass conserving discretizations of the three-field
formulation of the quasi-static Biot model based on a discontinuous Galerkin (DG) formulation of the mechanics
subproblem, as proposed in [23]. After time discretization by the implicit Euler scheme, the method for the arising
static problem in each time step can be expressed as follows:

3
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Find the time-step functions (uk, wk, pk) := (u(x, tk), w(x, tk), p(x, tk)) ∈ H1
0(Ω ) × H0(div,Ω ) × L2

0(Ω ) which
solve the following system of equations

ã(uk, v) − (α pk, div v) = ( f̃
k
, v), ∀v ∈ H1

0(Ω ), (5a)

(K −1wk, z) − (pk, div z) = 0, ∀z ∈ H0(div,Ω ), (5b)

−(α div(uk
− uk−1), q) − τ (div wk, q) − (S0(pk

− pk−1), q) = −τ (g̃k, q), ∀q ∈ L2
0(Ω ), (5c)

where τ is the time-step parameter and f̃
k

= f̃ (x, tk), g̃k
= g̃(x, tk).

For the space discretization, consider a shape-regular triangulation Th whose set of facets are denoted by Fh .
We introduce the following finite element spaces

Uh := {v ∈ H0(div,Ω ) : v|T ∈ U(T ), T ∈ Th},

W h := {z ∈ H0(div,Ω ) : z|T ∈ W (T ), T ∈ Th},

Ph := {q ∈ L2
0(Ω ) : q|T ∈ P(T ), T ∈ Th}.

The local spaces U(T ), W (T ), P(T ) are either BDMℓ(T ), RTℓ−1(T ), Pℓ−1(T ) or by BDFMℓ(T ), RTℓ−1(T ), Pℓ−1(T )
where BD(F)Mℓ(T ), RTℓ−1(T ), and Pℓ−1(T ) denote the local Brezzi–Douglas–(Fortin–)Marini space of order ℓ, the
Raviart–Thomas space of order ℓ − 1, and full polynomials of degree ℓ − 1, respectively. A definition of these
local spaces can be found, for example, in [40]. Since the exact solution belongs to H1

0(Ω ), the discrete space
Uh leads to a nonconforming method where tangential continuity is incorporated via a DG-formulation of the
mechanics subproblem. The benefit of the proposed combination of FE spaces is that they provide exact fluid mass
conservation, i.e., (2c) is fulfilled pointwise.

We present the definitions of some trace operators next. Let F = ∂T1 ∩ ∂T2 be a common facet of two adjacent
elements T1, T2 ∈ Th , and let n1, n2 be the corresponding outward pointing unit normal vectors. For any interior
facet F ̸⊂ ∂Ω and element-wise smooth and scalar-valued function q , vector-valued function v and tensor-valued
function τ , their averages and jumps on the facet F are defined by

{v} =
1
2

(v1 · n1 − v2 · n2), {τ } =
1
2

(τ 1n1 − τ 2n2), [q] = q1 − q2, [v] = v1 − v2,

where the subscript i , i = 1, 2, with the functions q , v and τ refers to their evaluation on Ti ∩ F . For any boundary
facet F ⊂ ∂Ω , these quantities are given as

{v} = v|F · n, {τ } = τ |F n, [q] = q|F , [v] = v|F .

With these definitions at hand, the formulation of the method is as follows: Find (uh, wh, ph) ∈ Uh × W h × Ph ,
such that

ah(uh, vh) − (ph, divvh) = (f , vh), ∀vh ∈ Uh, (6a)

(R−1wh, zh)−(ph, divzh) = 0, ∀zh ∈ W h, (6b)

− (divuh, qh) − (divwh, qh) − (Sph, qh) = (g, qh), ∀qh ∈ Ph . (6c)

This system has been derived by dividing system (5) by 2µ̃ and, additionally, Eq. (5b) by the time step size τ and
furthermore by applying the substitutions uh = αuk

h , wh = τwk
h , ph = α2 pk

h/2µ̃. The right-hand sides in (6) are
f = αf̃ (x, tk)/2µ̃ and g = (τ g̃(x, tk) − αdiv(uh(x, tk−1)) − S0 p(x, tk−1))/2µ̃,

ah(uh, vh) := aDG
h (uh, vh) + λ

∫
Ω

divuh divvhd x

and

λ :=
λ̃

2µ̃
, R :=

2µ̃τ

α2 K > 0, S :=
2µ̃S0

α2 . (7)

Note that the discrete bilinear form ah(·, ·) is obtained from scaling the bilinear form in (4) by 1/2µ̃. We denote the
tangential component of any vector field on a facet by its symbol with a subscript t . Then the symmetric interior

4
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Fig. 1. Robustness of the preconditioner defined in (63).

Fig. 2. Robustness of the preconditioner defined in (64).

penalty Galerkin (SIPG) bilinear form aDG
h (·, ·) is defined as

aDG
h (u, v) :=

∑
T ∈Th

∫
T
ϵ(u) : ϵ(v)d x −

∑
F∈Fh

∫
F
{ϵ(u)} · [vt ]d s

−

∑
F∈Fh

∫
F
{ϵ(v)} · [ut ]d s +

∑
F∈Fh

ηℓ2h−1
F

∫
F

[ut ] · [vt ]d s (8)

with a sufficiently large stabilization parameter η independent of all model parameters, i.e., λ, R, S, and discretiza-
tion parameters h (mesh size), and τ (time step), and l (polynomial order). Note that in this paper the constants in
all parameter-robust estimates are independent of all model parameters and the discretization parameters h and τ .
While the numerical results, see Fig. 1 and 2, show only a mild dependence on the polynomial order, we want to
emphasize that we do not claim uniform robustness in l.

3.2. Hybridized DG method

When dealing with Stokes-type problems, H(div)-conforming discretizations possess several advantages over
H 1-conforming discretizations. This is mainly due to the fact that they allow for a suitable approximation of the
incompressibility constraint which results in favorable properties such as pointwise divergence-free solutions and
pressure robustness, see, e.g., [25,26]. However, the incorporation of (tangential) continuity in standard DG schemes
leads to a significantly increased number of (globally) coupled degrees of freedom (dof). To overcome this, in
hybridized DG methods, one decouples element unknowns by introducing additional unknowns on the facets through
which (tangential) continuity is imposed weakly, see, e.g., [41,42].

5
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In the context of an H(div)-conforming hybridized DG discretization, one introduces an additional space

Ûh := {û ∈ L2(Fh) : û|F ∈ Pℓ(F) and û|F · n = 0, F ∈ Fh; û = 0 on ∂Ω}

for the approximation of the tangential trace of the displacement field u. Here, L2(Fh) denotes the space of vector-
valued square integrable functions on the skeleton Fh and Pℓ(F) the vector-valued polynomial space of order ℓ on
each facet F ∈ Fh . We replace the bilinear form aDG

h (·, ·) defined in (8) by aHDG
h (·, ·) given by

aHDG
h ((u, û), (v, v̂)) :=

∑
T ∈Th

[∫
T

ϵ(u) : ϵ(v) d x +

∫
∂T

ϵ(u)n · (v̂ − v)t d s

+

∫
∂T

ϵ(v)n · (û − u)t d s + ηℓ2h−1
∫

∂T
(û − u)t · (v̂ − v)t d s

]
, (9)

where (u, û), (v, v̂) ∈ Uh := Uh × Ûh . Our approach for exactly divergence-free hybridized discontinuous Galerkin
methods will be based on [42] as well as its improvements presented in [43,44]. The resulting method for the Biot
problem now reads as: Find ((uh, ûh), wh, ph) ∈ Uh × W h × Ph , such that

ah((uh, ûh), (vh, v̂h)) − (ph, divvh) = (f , vh), ∀(vh, v̂h) ∈ Uh, (10a)

(R−1wh, zh)−(ph, divzh) = 0, ∀zh ∈ W h, (10b)

− (divuh, qh) − (divwh, qh) − (Sph, qh) = (g, qh), ∀qh ∈ Ph, (10c)

where

ah((uh, ûh), (vh, v̂h)) := aHDG
h ((uh, ûh), (vh, v̂h)) + λ

∫
Ω

divuhdivvhd x (11)

and aHDG
h ((·, ·), (·, ·)) is defined in (9).

3.3. A family of hybridized DG/hybrid mixed methods

In this subsection, we enrich the hybridization idea by additionally introducing a hybrid mixed formulation for
the flow subproblem. While the stability analysis presented in [23,45] uses properly scaled H(div) and L2 norms
for the flow subproblem, we hybridize the latter one in the present work. This approach has the advantage that when
solving the full saddle-point problem with some preconditioned iterative method, one needs to invert a div–grad type
operator instead of a grad–div operator in order to apply the preconditioner which is easier and more cost-efficient
in general. Note that the solution of the hybridized system is the same as that of the non-hybridized one.

The additional hybridization step can be expressed as follows. First, one enforces the normal continuity of the
velocity by a Lagrange multiplier. To this end, we introduce the following finite element spaces

W−

h := {z ∈ L2(Ω ) : z|T ∈ W (T ), T ∈ Th}, P̂h :=

∏
F∈Fh

Pl−1(F), Ph := Ph × P̂h,

where W (T ) can be chosen in the same way as before. Here, the space W−

h is simply a discontinuous version of
the space W h . Further, note that P̂h is chosen as the normal trace space of W h , e.g., in the case W (T ) = RT0 (thus
l − 1 = 0) the normal traces on each facet are constant and so correspondingly we also choose P̂h to be defined as
facet wise constants. Based on these spaces, we next define for all wh ∈ W−

h and (ph, p̂h) ∈ Ph the bilinear form

b((ph, p̂h), wh) =

∑
T ∈Th

(∫
T

div wh phd x −

∫
∂T

wh · n p̂hd s
)

. (12)

This bilinear form can be interpreted as a distributional version of the inner product “(div wh, ph)” since functions
in W−

h are not normal continuous. Therefore, variational problem (10), when using a hybrid mixed formulation of
the flow subproblem, is expressed as: Find ((uh, ûh), wh, (ph, p̂h)) ∈ Uh × W−

h × Ph , such that

ah((uh, ûh), (vh, v̂h)) − (ph, divvh) = (f , vh), ∀(vh, v̂h) ∈ Uh, (13a)

(R−1wh, zh)−b((ph, p̂h), zh) = 0, ∀zh ∈ W−

h , (13b)

− (divuh, qh) − b((qh, q̂h), wh) − (Sph, qh) = (g, qh), ∀(qh, q̂h) ∈ Ph . (13c)

6
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Note that if we test this system with the test function ((0, 0), 0, (0, q̂h)), we obtain

b((0, p̂h), wh) = −

∑
T ∈Th

∫
∂T

wh · n p̂hd s =

∑
F∈Fh

∫
F

[wh · n] p̂hd s = 0.

Hence, by choosing q̂h = [wh · n] on each facet F ∈ Fh , the above equation demonstrates that the velocity solution
of (13) is normal continuous, i.e. wh ∈ W h .

In the next section, we extend the parameter-robust stability results from [23,45] to the hybridized three-field
formulation given by systems (10) and (13).

4. Parameter-robust stability, preconditioners and optimal error estimates

4.1. Parameter-robust well-posedness

4.1.1. Parameter-dependent norms
First, let us recall the norms previously used in the parameter robust stability analysis presented in [23]. These

are, for the infinite dimensional spaces U, W , P ,

∥v∥
2
U := ∥ϵ(v)∥2

0 + λ∥divv∥
2
0, (14a)

∥z∥2
W := R−1

∥z∥2
0 + γ −1

∥divz∥2
0, (14b)

∥z∥2
W− := R−1

∥z∥2
0, (14c)

∥q∥
2
P := γ ∥q∥

2
0, (14d)

where the parameter γ can be defined as γ := λ−1
0 + R + S ≂ max{λ−1

0 , R, S}, with λ0 = max{1, λ} ≂ 1 + λ, or
exactly as in [23] where γ has been defined as γ := max{(min{λ, R−1

})−1, S}. Due to the non-conformity of the
DG discretization, the norm for the discrete displacement space Uh is based on the standard DG norm

∥vh∥
2
DG :=

∑
T ∈Th

∥∇vh∥
2
0,T +

∑
F∈Fh

h−1
F ∥[(vh)t ]∥2

0,F +

∑
T ∈Th

h2
T |vh |

2
2,T (15)

and defined by

∥vh∥
2
Uh

:= ∥vh∥
2
DG + λ∥divvh∥

2
0. (16)

Next, we introduce the hybridized discontinuous Galerkin (HDG) norm

∥(vh, v̂h)∥2
HDG :=

∑
T ∈Th

(
∥∇vh∥

2
0,T + h−1

T ∥(v̂h − vh)t∥
2
0,∂T + h2

T |vh |
2
2,T

)
, (17)

based on which we can define a discrete norm on the extended displacement space Uh , i.e.,

∥(vh, v̂h)∥2
Uh

:= ∥(vh, v̂h)∥2
HDG + λ∥divvh∥

2
0. (18)

Moreover, we define the following discrete norm on the extended pressure space Ph

∥(qh, q̂h)∥2
HDG :=

∑
T ∈Th

(
∥∇qh∥

2
0,T + h−1

T ∥q̂h − qh∥
2
0,∂T + h2

T |qh |
2
2,T

)
, (19a)

∥(qh, q̂h)∥2
Ph

:= R∥(qh, q̂h)∥2
HDG + γ ∥qh∥

2
0, (19b)

where

γ = S +
1
λ0

≃ max
{

S,
1
λ0

}
. (20)

Finally, we consider the following two product spaces

Xh := Uh × W h × Ph, (21a)

Xh := Uh × W−

h × Ph (21b)

7
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equipped with the norms⏐⏐⏐⏐⏐⏐((vh, v̂h), zh, qh)
⏐⏐⏐⏐⏐⏐2

Xh
:= ∥(vh, v̂h)∥2

Uh
+ ∥zh∥

2
W + ∥qh∥

2
P , (22a)⏐⏐⏐⏐⏐⏐((vh, v̂h), zh, (qh, q̂h))

⏐⏐⏐⏐⏐⏐2
Xh

:= ∥(vh, v̂h)∥2
Uh

+ ∥zh∥
2
W− + ∥(qh, q̂h)∥2

Ph
(22b)

in the context of problems (10) and (13), respectively.

4.1.2. Uniform well-posedness of the time-discrete problem
The well-posedness of the three-field formulation (3) on the continuous and discrete levels has been addressed

and answered in [46–49] using semi-group theory and Galerkin discretization methods. After time discretization by
an implicit or semi-implicit time integration scheme, the continuous three-field formulation results in a variational
problem of the form: Find x ∈ X such that

A(x, y) = F(y), ∀y ∈ X := U × W × P, (23)

where A(x, y) := a(u, v)− (p, divv)+ (R−1w, z)− (p, divz)− (divu, q)− (divw, q)− (Sp, q) and F(·) ∈ X ′ denotes
a corresponding linear form, which depends on the time integrator.

As it is well known, the abstract variational problem (23) is well-posed under the following necessary and
sufficient conditions, see [50].

Theorem 1. Assume that F ∈ X ′ and the bilinear form A(·, ·) in (23) satisfies the following conditions:

• A(·, ·) is bounded, i.e., there exists a constant C > 0 such that

A(x, y) ≤ C |||x|||X |||y|||X ∀x, y ∈ X; (24)

• There exists a constant β > 0 such that

inf
x∈X

sup
y∈X

A(x, y)
|||x|||X |||y|||X

≥ β > 0. (25)

Then there exists a unique solution x∗
∈ X of the variational problem (23). Further, the solution satisfies the stability

estimate⏐⏐⏐⏐⏐⏐x∗
⏐⏐⏐⏐⏐⏐

X ≤
1
β

sup
y∈X

F(y)
|||y|||X

=:
1
β

∥F∥X ′ .

Besides for the establishment of well-posedness on the continuous and discrete levels, boundedness, i.e., prop-
erty (24), and inf–sup stability, i.e., property (25), is crucial in the error analysis and for the construction of
preconditioners and iterative solution methods for the algebraic problems arising from the discretization of (23).
Furthermore, aiming at parameter-independent error, or near-best approximation estimates and parameter-robust
preconditioners, it is essential that the constants C and β in (24) and (25) are independent of any physical (model)
and discretization parameters.

Definition 1. We call problem (23) uniformly well-posed on its parameter space (or, in short, uniformly well-posed)
under the norm |||·|||X if the conditions of Theorem 1 are satisfied and the constants C and β in (24) and (25) do
not depend on any of the problem parameters.

Remark 1. The parameter space is the space of all problem parameters, i.e., physical parameters of the continuous
mathematical model but also discretization parameters when A(·, ·) represents a semi- or fully discrete problem.

Uniform well-posedness of the time-discrete problem resulting from the three-field formulation of Biot’s
consolidation model has first been proven in [23] using the norm

|||(v, z, q)|||2X := ∥v∥2
U + ∥z∥2

W + ∥q∥
2
P (26)

where ∥·∥U , ∥·∥W , ∥·∥P are defined in (14). In the remainder of Section 4.1, we extend the uniform well-posedness
analysis from [23,45] to the three-field formulations (10) and (13).

8



J. Kraus, P.L. Lederer, M. Lymbery et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 113991

4.1.3. Hybridized DG method
Following the approach presented in [23], we will show that problem (10) is uniformly well-posed. Initially, we

rewrite (10) in the form: Find x̄h := ((uh, ûh), wh, ph) ∈ Uh × W h × Ph =: Xh , such that

Ah(x̄h, ȳh) = Fh(ȳh), ∀ȳh ∈ Xh, (27)

where with ȳh := ((vh, v̂h), zh, qh) we have

Ah(x̄h, ȳh) :=ah((uh, ûh), (vh, v̂h)) − (ph, divvh) + (R−1wh, zh)

− (ph, divzh) − (divuh, qh) − (divwh, qh) − (Sph, qh), (28a)

Fh(ȳh) :=( f , vh) + (g, qh), (28b)

and ah((·, ·), (·, ·)) is defined in (11). Next, we recall two auxiliary results crucial for establishing the main result
of this subsection.

Lemma 2. The following discrete inf–sup condition

inf
qh∈Ph

sup
(vh ,v̂h )∈Uh

(divvh, qh)
∥(vh, v̂h)∥HDG∥qh∥0

≥ β̄S,d > 0, (29)

holds where ∥ · ∥HDG is the HDG norm defined in (17).

Proof. As shown, for example, in [51,52], the following inf–sup condition holds true:

inf
qh∈Ph

sup
vh∈Uh

(divvh, qh)
∥vh∥DG∥qh∥0

≥ βS,d > 0. (30)

Moreover, for all vh ∈ Uh there exists v̂h ∈ Ûh such that ∥vh∥DG ≥ C∥(vh, v̂h)∥HDG with a constant C depending
only on mesh regularity. Combining the latter estimate with (30) yields (29).

The proof of the following theorem also makes use of the boundedness and coercivity of the bilinear form
aHDG

h ((·, ·), (·, ·)) on Uh defined in (9), i.e.,

|aHDG
h ((uh, ûh), (vh, v̂h))| ≤ Ca∥(uh, ûh)∥HDG∥(vh, v̂h)∥HDG (31)

for all (uh, ûh), (vh, v̂h) ∈ Uh and

aHDG
h ((uh, ûh), (uh, ûh)) ≥ Cc∥(uh, ûh)∥2

HDG for all (uh, ûh) ∈ Uh, (32)

see e.g. [42,44].

Theorem 3. Problem (27)–(28) is uniformly well-posed under the norm |||·|||Xh
defined in (22a), that is,

A(x̄h, ȳh) ≤ C |||x̄h |||Xh
|||ȳh |||Xh

∀x̄h, ȳh ∈ Xh, (33)

inf
x̄h∈Xh

sup
ȳh∈Xh

A(x̄h, ȳh)
|||x̄h |||Xh

|||ȳh |||Xh

≥ β̄ > 0. (34)

Proof. To show (33) one uses Cauchy–Schwarz inequality, the continuity of the bilinear form ah((·, ·), (·, ·)) in the
norm ∥ · ∥Uh

on Uh , i.e.,

|ah((uh, ûh), (vh, v̂h))| ≤ Ca∥(uh, ûh)∥Uh
∥(vh, v̂h)∥Uh

∀(uh, ûh), (vh, v̂h) ∈ Uh, (35)

which follows from (31) as well as the definitions of ah((·, ·), (·, ·)), ∥ · ∥Uh
and |||·|||Xh

, see (11), (18) and (22a),
respectively.

The proof of (34) follows exactly the lines of the proof of Theorem 4.4 in [23] replacing the DG bilinear form (8)
by the HDG bilinear form (9) and the DG norm (15) by the HDG norm (17).

9
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4.1.4. Hybridized DG/hybrid mixed method
Consider the HDG/hybrid mixed method for the three-field formulation as stated in (13). To prove the uniform

well-posedness of this fully discrete problem, as we did with (10), we rewrite (13) in the form: Find xh :=

((uh, ûh), wh, (ph, p̂h)) ∈ Uh × Wh × Ph =: Xh such that

Ah(xh, yh) = Fh(yh), ∀yh ∈ Xh, (36)

where with yh := ((vh, v̂h), zh, (qh, q̂h)) we have

Ah(xh, yh) :=ah((uh, ûh), (vh, v̂h)) − (ph, divvh) + (R−1wh, zh)

− b((ph, p̂h), zh) − (divuh, qh) − b((qh, q̂h), wh) − (Sph, qh), (37a)

Fh(yh) :=( f , vh) + (g, qh), (37b)

and ah((·, ·), (·, ·)) and b((·, ·), ·) are defined in (11) and (12), respectively. Before proving the main theorem, we
need another auxiliary result given by the following lemma.

Lemma 4. There holds the following discrete inf–sup condition

inf
(qh ,q̂h )∈Ph

sup
zh∈V h

b((qh, q̂h), zh)
∥zh∥0∥(qh, q̂h)∥HDG

≥ βD,d > 0 (38)

where ∥(·, ·)∥HDG is defined in (19a).

Proof. A direct proof of (38) can be readily constructed, similarly as for the inf–sup condition in [53,54], using
the definition of the degrees of freedom for the Raviart–Thomas space, see [40], and standard scaling arguments.

Such inf–sup conditions with mesh-dependent norms are widely used in structural mechanics, see, e.g., [55].

Theorem 5. Problem (36)–(37) is uniformly well-posed under the norm |||·|||Xh
defined in (22b).

Proof. We start with proving the boundedness of the bilinear form Ah(·, ·), i.e.,

Ah(xh, yh) ≤ C
⏐⏐⏐⏐⏐⏐xh

⏐⏐⏐⏐⏐⏐
Xh

⏐⏐⏐⏐⏐⏐yh

⏐⏐⏐⏐⏐⏐
Xh

∀xh, yh ∈ Xh . (39)

First we note that

b((ph, p̂h), wh) =

∑
T ∈Th

∫
T

div wh phd x −

∫
∂T

wh · n p̂hd s

=

∑
T ∈Th

∫
T

−wh · ∇ phd x −

∫
∂T

wh · n( p̂h − ph)d s

=

∑
T ∈Th

∫
T

−wh · ∇ phd x −

∫
∂T

hwh · n
1
h

( p̂h − ph)d s

≤

√
∥wh∥

2
0 +

∑
T ∈Th

h∥wh · n∥∂T ∥(ph, p̂h)∥HDG

≤ Cb∥wh∥0∥(ph, p̂h)∥HDG, (40)

where we have used standard scaling arguments in the last step of (40), i.e. the constant Cb depends only on the
mesh regularity.

Further, using the continuity of the bilinear form ah((·, ·), (·, ·)) on Uh , i.e. (35), the definitions of the norms
∥ · ∥Uh

, ∥ · ∥W , ∥ · ∥Ph
, and |||·|||Xh

, see (18), (14b), (19b) and (22b), respectively, and applying the Cauchy–Schwarz

10
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inequality and also estimate (40), one gets

Ah(xh, yh) :=ah((uh, ûh), (vh, v̂h)) − (ph, divvh) + (R−1wh, zh)

− b((ph, p̂h), zh) − (divuh, qh) − b((qh, q̂h), wh) − (Sph, qh)

≤Ca∥(uh, ûh)∥Uh
∥(vh, v̂h)∥Uh

+ λ−1/2
∥ph∥0λ

1/2
∥divvh∥0

+ R−1/2
∥wh∥0 R−1/2

∥zh∥0 + Cb R1/2
∥(ph, p̂h)∥HDG R−1/2

∥zh∥0

+ λ1/2
∥divuh∥0λ

−1/2
∥qh∥0 + Cb R1/2

∥(qh, q̂h)∥HDG R−1/2
∥wh∥0

+ S1/2
∥ph∥0S1/2

∥qh∥0

≤Ca∥(uh, ûh)∥Uh
∥(vh, v̂h)∥Uh

+ ∥(ph, p̂h)∥Ph
∥(vh, v̂h)∥Uh

+ ∥wh∥W−∥zh∥W− + Cb∥(ph, p̂h)∥Ph
∥zh∥W−

+ ∥(uh, ûh)∥Uh
∥(qh, q̂h)∥Ph

+ Cb∥(qh, q̂h)∥Ph
∥wh∥W−

+ ∥(ph, p̂h)∥Ph
∥(qh, q̂h)∥Ph

≤C
(
∥(uh, ûh)∥Uh

+ ∥wh∥W− + ∥(ph, p̂h)∥Ph

)
×
(
∥(vh, v̂h)∥Uh

+ ∥zh∥W− + ∥(qh, q̂h)∥Ph

)
. (41)

Next we prove the inf–sup condition

inf
xh∈Xh

sup
yh∈Xh

Ah(xh, yh)⏐⏐⏐⏐⏐⏐xh
⏐⏐⏐⏐⏐⏐

Xh

⏐⏐⏐⏐⏐⏐yh

⏐⏐⏐⏐⏐⏐
Xh

≥ β > 0 (42)

which immediately follows if for all xh ∈ Xh we can find yh = yh(xh) such that⏐⏐⏐⏐⏐⏐⏐⏐⏐ yh

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Xh

≤ Cb

⏐⏐⏐⏐⏐⏐⏐⏐⏐xh

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Xh

(43)

and the coercivity estimate

Ah(xh, yh) ≥ Cc

⏐⏐⏐⏐⏐⏐⏐⏐⏐xh

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Xh

(44)

are simultaneously satisfied with constants Cb and Cc independent of all problem parameters.
Now let xh ∈ Xh be arbitrary but fixed. Then we choose yh := ((vh, v̂h), zh, (qh, q̂h)) by setting

(vh, v̂h) := δ(uh, ûh) −
1

√
λ0

(uh,0, ûh,0), (45a)

zh := δwh + Rwh,0, (45b)

(qh, q̂h) := −δ(ph, p̂h), (45c)

where (uh,0, ûh,0) ∈ Uh is such that

divuh,0 =
1

√
λ0

ph, (46a)

∥(uh,0, ûh,0)∥HDG ≤ β̄−1
S,d

1
√

λ0
∥ph∥0 (46b)

and wh,0 is such that

−b((ph, p̂h), wh,0) = ∥(ph, p̂h)∥2
HDG, (47a)

∥wh,0∥0 ≤ β
−1
D,d∥(ph, p̂h)∥HDG. (47b)

11
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Note that the existence of (uh,0, ûh,0) and wh,0 satisfying the estimates (46) and (47) follows from the discrete
inf–sup conditions (29) and (38). With this particular choice, we first verify (43). To begin with

∥
1

√
λ0

(uh,0, ûh,0)∥2
Uh

=∥
1

√
λ0

(uh,0, ûh,0)∥2
HDG + λ0(div

(
1

√
λ0

uh,0

)
, div

(
1

√
λ0

uh,0

)
)

(46b)
≤

1
λ0

β
−2
S,d

1
λ0

∥ph,0∥
2
0 +

1
λ0

∥ph∥
2
0

≤

(
1
λ0

β
−2
S,d + 1

)
γ ∥ph∥

2
0

≤

(
1
λ0

β
−2
S,d + 1

)
∥(ph, p̂h)∥2

Ph
,

from which we conclude

∥(vh, v̂h)∥Uh
≤ δ∥(uh, ûh)∥Uh

+ (β
−2
S,d + 1)

1
2 ∥(ph, p̂h)∥Ph

. (48)

Next,

∥zh∥W− ≤δ∥wh∥W− + R∥wh,0∥W−

≤δ∥wh∥W− +
√

R∥wh,0∥0

(47b)
≤ δ∥wh∥W− +

√
Rβ

−1
D,d∥(ph, p̂h)∥H DG

≤δ∥wh∥W− + β
−1
D,d∥(ph, p̂h)∥Ph

. (49)

Finally,

∥(qh, q̂h)∥Ph
≤ δ∥(ph, p̂h)∥Ph

. (50)

The bounds (48)–(50) together imply (43) with Cb = [2(δ2
+ β

−2
S,d + β

−2
D,d + 1)]

1
2 .

What remains is to verify (44):

Ah((uh, ûh), wh, (ph, p̂h)) =aHDG
h ((uh, ûh), (vh, v̂h)) + λ(divuh, divvh)

− (ph, divvh) + R−1(wh, zh) − b((ph, p̂h), zh) − (divuh, qh)

− b((qh, q̂h), wh) − (Sph, qh)

=δaHDG
h ((uh, ûh), (uh, ûh)) −

1
√

λ0
aH DG

h ((uh, ûh), (uh,0, ûh,0))

+ δλ(divuh, divuh) −
λ

√
λ0

(divuh, divuh,0) − δ(ph, divuh)

+
1

√
λ0

(ph, divuh,0) + δR−1(wh, wh) + (wh, wh,0)

+ R∥(ph, p̂h)∥2
HDG + δ(divuh, ph) + δ(Sph, ph)

≥δaHDG
h ((uh, ûh), (uh, ûh)) −

1
2

1
λ0

ε−1
1 aHDG

h ((uh, ûh), (uh, ûh))

−
1
2
ε1aHDG

h ((uh,0, ûh,0), (uh,0, ûh,0)) + δλ(divuh, divuh)

−
1
2
ε−1

2 λ(divuh, divuh) −
1
2
ε2

λ

λ0
(divuh,0, divuh,0)

+
1
λ0

(ph, ph) + δR−1(wh, wh) −
1
2
ε−1

3 R−1(wh, wh)

−
1
2
ε3 R(wh,0, wh,0) + R∥(ph, p̂h)∥2

HDG + δ(Sph, ph)

≥

(
δ −

1
2

1
λ0

ε−1
1

)
aHDG

h ((uh, ûh), (uh, ûh)) +

(
δ −

1
2
ε−1

2

)
λ(divuh, divuh)

12
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+

(
δS +

1
λ0

−
1
2
ε2

λ

λ2
0

−
1
2

1
λ0

ε1Caβ
−2
S,d

)
(ph, ph)

+

(
δ −

1
2
ε−1

3

)
R−1(wh, wh) +

(
1 −

1
2
ε3β

−2
D,d

)
R∥(ph, p̂h)∥2

HDG.

By choosing ε1 =
1
2 C−1

a β
2
S,d , ε2 =

1
2 , ε3 = β

2
D,d the last inequality becomes

Ah((uh, ûh), wh, (ph, p̂h)) ≥(δ − Caβ
−2
S,d )aHDG

h ((uh, ûh), (uh, ûh)) + (δ − 1)λ(divuh, divuh)

+

(
δS +

1
λ0

−
1
4

1
λ0

−
1
4

1
λ0

)
(ph, ph)

+

(
δ −

1
2

1

β
2
D,d

)
R−1(wh, wh) +

(
1 −

1
2

)
R∥(ph, p̂h)∥2

HDG.

For δ ≥ max
{

3
2 , 1

2Cc
+ Caβ

−2
S,d ,

1
2 +

β
−2
D,d
2

}
, we finally obtain

Ah((uh, ûh), wh, (ph, p̂h)) ≥
1
2

(
∥(uh, ûh)∥2

HDG + λ∥divuh∥
2

+

(
S +

1
λ0

)
∥ph∥

2
0 + R∥(ph, p̂h)∥2

HDG + R−1
∥wh∥

2
0

)
=

1
2

(
∥(uh, ûh)∥2

Uh
+ ∥(ph, p̂h)∥2

Ph
+ ∥wh∥

2
W−

)
,

utilizing aHDG
h ((uh, ûh)) ≥ Cc∥(uh, ûh)∥2

HDG.

4.2. Uniform preconditioners

The results from the previous subsection imply a “mapping property” that is the basis for defining uniform
preconditioners. Here, we discuss norm-equivalent (block-diagonal) preconditioners which fall into this category.

Consider a uniformly well-posed problem of the form (23) where A : X → X ′ is a linear operator, i.e., A ∈

L(X, X ′), F ∈ X ′ for a given Hilbert space X , e.g., X := U × W × P or X := Xh = Uh × W h × Ph , or
X := Xh = Uh × W h × Ph . Here we assume that A and F are defined via the bilinear and linear forms A(·, ·),
F(·), or Ah(·, ·), Fh(·), or Ah(·, ·), Fh(·), cf. (23), (28), (37). Let us write Eq. (23) in operator form, i.e.,

Ax = F ∈ X ′ (51)

and define the linear operator B : X ′
→ X , i.e., B ∈ L(X ′, X) by

(BG, y)X = ⟨G, y⟩, ∀G ∈ X ′, y ∈ X, (52)

where (·, ·)X is the inner product inducing the norm ∥ · ∥X , that is, ∥y∥X = (y, y)
1
2
X , or, equivalently, B−1

: X → X ′,
B−1

∈ L(X, X ′) by

⟨B−1x, y⟩ = (x, y)X , ∀x, y ∈ X, (53)

which implies

⟨B−1x, x⟩ = (x, x)X = ∥x∥
2
X , ∀x ∈ X . (54)

In practice, the latter relation is often replaced by the weaker condition

⟨B−1x, x⟩ ≂ ∥x∥
2
X , (55)

for which reason the preconditioner B is also referred to as a norm-equivalent preconditioner, cf. [56]. The symbol
“≂” stands for a norm equivalence, uniform with respect to all problem parameters.

Since (24) and (25) are in the norm ∥ ·∥X , we conclude for the operators BA ∈ L(X, X) and (BA)−1
∈ L(X, X)

the following bounds:

∥BA∥L(X,X) = sup
x,y

(BAx, y)X

∥x∥X∥y∥X
= sup

x,y

⟨Ax, y⟩
∥x∥X∥y∥X

= sup
x,y

A(x, y)
∥x∥X∥y∥X

≤ C, (56)

13
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(
∥(BA)−1

∥L(X,X)
)−1

= inf
x

⎛⎜⎜⎜⎝ 1

sup
y

((BA)−1x, y)X

∥x∥X∥y∥X

⎞⎟⎟⎟⎠ = inf
x

sup
y

(BAx, y)X

∥x∥X∥y∥X

= inf
x

sup
y

⟨Ax, y⟩
∥x∥X∥y∥X

= inf
x

sup
y

A(x, y)
∥x∥X∥y∥X

≥ β. (57)

Finally, (56) and (57) together imply that the condition number κ of the preconditioned operator BA ∈ L(X, X)
is uniformly bounded by a constant that does not depend on any problem parameters, i.e.,

κ(BA) := ∥BA∥L(X,X)∥(BA)−1
∥L(X,X) ≤

C
β

. (58)

4.3. Optimal error estimates

The uniform well-posedness that we have established in Theorem 5 for the hybridized/hybrid mixed discretization
implies near best approximation estimates, which we state next. For the following statements let (u, w, p) be the
exact solution of the continuous problem (3) assuming that

u ∈ U := H1
0(Ω ) ∩ H2(Th), w ∈ W := H0(div,Ω ) ∩ H1(Th), and p ∈ P := H 1(Ω ) ∩ H 2(Th), (59)

where Hm(Th) := {v ∈ L2(Ω ) : v|T ∈ Hm(T ) ∀T ∈ Th} is the broken Sobolev space of order m. Further let
u := (u, û) and p := (p, p̂) with û := u|Fh and p̂ := p|Fh .

Theorem 6. Consider problem (36)–(37) as a discretization of the continuous problem (3) in three-field formulation
and assume that the exact solution fulfills (59). Then the following near-best approximation result holds with
constants Cuv, C p independent of all problem parameters:

∥u − uh∥Uh
+ ∥w − wh∥W− ≤ Cuv

(
inf

vh∈Uh

∥u − vh∥Uh
+ inf

zh∈W−

h

∥w − zh∥W−

)
(60)

∥p − ph∥Ph
≤ C p

(
inf

vh∈Uh

∥u − vh∥Uh
+ inf

zh∈W−

h

∥w − zh∥W− + inf
qh∈Ph

∥p − qh∥Ph

)
(61)

Proof. Let Π U
: U → Uh , and Π W

: W → W−

h , and Π P
: P → Ph denote the canonical interpolation operators

onto the discrete spaces. Next, let us define uI = (uI , ûI ) := Π U u, and wI := Π W w, and p I = (pI , p̂I ) := Π P p.
Then, using the consistency of aHDG

h and following the arguments of the proof of [23, Theorem 5.2], it can easily
be seen that due to discrete stability there hold the estimates

∥uI − uh∥Uh
+ ∥wI − wh∥W− ≤ C

⎛⎝ sup
vh∈Uh

aHDG
h (uI − u, vh)

∥vh∥Uh

+ sup
zh∈W−

h

R−1(wI − w, zh)
∥zh∥W−

h

+ sup
qh∈Ph

b(qh, w − wI )
∥qh∥Ph

)
,

∥p I − ph∥Uh
≤ C

⎛⎝ sup
vh∈Uh

aHDG
h (uI − u, vh)

∥vh∥Uh

+ sup
zh∈W−

h

R−1(wI − w, zh)
∥zh∥W−

h

+ sup
qh∈Ph

b(qh, w − wI )
∥qh∥Ph

⎞⎠ .

Finally, applying triangle inequality and using continuity of aHDG
h (·, ·), the Cauchy–Schwarz inequality and the fact

that b(qh, w − wI ) = 0, which is a consequence of the properties of the Raviart–Thomas interpolator Π W , the
assertions of the theorem follow.

Remark 2. An analogous result to Theorem 6 is also valid for the discrete problem (27)–(28) if one replaces the
spaces W−, W−

h , Ph by W, Wh and Ph and the corresponding norms ∥ · ∥W− and ∥ · ∥Ph
by ∥ · ∥W and ∥ · ∥P . The

result is then a consequence of Theorem 3.

14
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In the following let Π Ph (·) = (ΠPh (·),ΠP̂h
(·)) ∈ Ph be the standard element and facet-wise L2-projection. Using

the proper, well known (see [40,42,57]) interpolation operators and standard arguments, one can derive the following
optimal error estimates from the above best approximation results.

Theorem 7. Consider problem (36)–(37) as a discretization of the continuous problem (3) in three-field
formulation. Beside (59) we assume that the exact solution fulfills the regularity estimate (u, w, p) ∈ Hm(Th) ×

Hm−1(Th) × H m−1(Th). Then there hold the following error estimates with a constants Ce,uv, Ce,p independent of
all problem parameters:

∥u − uh∥Uh
+ ∥w − wh∥W− + ∥Π Ph p − ph∥Ph

≤ Ce,uvhs(|u|Hs+1(Th ) + λ
1
2 | div(u)|Hs (Th ) + R−

1
2 |w|Hs (Th ))

and

∥p − ph∥Ph
≤ Ce,phs−1(|u|Hs (Th ) + λ

1
2 | div(u)|Hs−1(Th )

+ R−
1
2 |w|Hs−1(Th ) + R

1
2 |p|H s (Th ) + γ

1
2 |p|H s−1(Th )).

where s := min{l, m − 1}.

Proof. The proof is based on Theorem 6 and the application of the Bramble–Hilbert Lemma to bound the
interpolation errors in the right-hand sides of Eqs. (60) and (61) , cf. [58, Proposition 2.3.10]. Similar estimates can
also be found in [44].

Remark 3. Assuming enough regularity of the exact solution, Theorem 7 shows that the projected error ∥Π Ph p −

ph∥Ph
converges with one order higher than ∥p−ph∥Ph

. This super convergence property of (hybrid) mixed methods
is well known in the literature, see for example [28,29].

4.4. Implementation aspects and static condensation

In order to solve the discrete system, we employ static condensation of the local element-wise degrees of freedom.
These are given by the dof introduced through the discontinuous approximation spaces W−

h and Ph . One can also
eliminate the local H(div)-conforming element bubbles of the space Uh . However, for ease of representation, we
only consider the lowest order case l = 1, hence, no bubbles for the displacement are present. In the following, we
use the same symbols uh := (uh, ûh), wh , ph and p̂h for the representation of the coefficients of the corresponding
discrete finite element solutions. Then (13) can be written as⎛⎜⎜⎜⎜⎝

Au 0 BT
u 0

0 Mw BT
w B̂T

w

Bu Bw −Mp 0

0 B̂w 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

uh

wh

ph

p̂h

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
fh

0
gh

0

⎞⎟⎟⎟⎠ ,

where fh represent the corresponding vector of the right hand side (f , vh) and gh the vector of (g, qh). Further,
Au, Bu, Mw, Mp, Bw and B̂w denote the operators, or their corresponding matrix representations, defined via
the bilinear forms ah((uh, ûh), (vh, v̂h)), (− div uh, qh), (R−1wh, zh), (Sph, qh), b((qh, 0), wh) and b((0, q̂h), wh),
respectively. From the second line we see that we can eliminate wh using wh = M−1

w (−BT
w ph − B̂T

w p̂h). Then
the third line gives ph = −(Mp + Bw M−1

w BT
w)−1(−Buuh + Bw M−1

w B̂T
w p̂h). Thus, we have the following system to

solve (
A BT

B −C

)(
uh

p̂h

)
=

(
fh

gh

)
, (62)

with

A := Au + BT
u (Mp + Bw M−1

w BT
w)−1 Bu,

B := −B̂w M−1
w BT

w(Mp + Bw M−1
w BT

w)−1 Bu,

C := B̂w M−1
w BT

w(Mp + Bw M−1
w BT

w)−1 Bw M−1
w B̂T

w + B̂w M−1
w B̂T

w.
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Note that Mw, Mp and (Mp + Bw M−1
w BT

w) are all block diagonal and locally (element-wise) invertible. Since these
systems are very small they are solved by a direct method. Further, the operator C is equivalent to a (scaled) H 1-like
norm on P̂h . By means of norm equivalent preconditioning, cf. Eq. (55), we now follow two different approaches.
The first preconditioner we investigate is based on a block system that decouples mechanics from the flow problem,
and, additionally, the velocity from the fluid pressure. The latter is achieved by introducing an HDG bilinear form
on Ph for the discretization of div(R∇ p) as given in the original equation (1) (where K was replaced due to scaling
by R). Henceforth, let M̃p denote the matrix representation of the scaled bilinear form (γ ph, qh). Then we define
the operator

B :=

⎛⎜⎜⎜⎝
Au 0 0 0
0 Mw 0 0

0 0 −M̃p − Ap −BT
p

0 0 −Bp −A p̂

⎞⎟⎟⎟⎠
−1

.

where Ap, Bp and A p̂ correspond to the bilinear forms given by

ap(ph, qh) := R
∑
T ∈Th

∫
T

∇ ph · ∇qhd x +

∫
∂T

(−∇ ph · nqh − ∇qh · nph) + ηpl2h−1ηp phqhd s,

bp(ph, q̂h) := R
∑
T ∈Th

∫
∂T

∇ ph · nq̂h − ηpl2h−1 ph q̂hd s,

a p̂( p̂h, q̂h) := R
∑
T ∈Th

∫
∂T

ηpl2h−1 p̂h q̂hd s,

respectively, where ηp is again a sufficiently large stabilization parameter. Note that the combined bilinear form
ap(ph, qh) + bp(ph, q̂h) + bp(qh, p̂h) + a p̂( p̂h, q̂h) is the HDG bilinear form mentioned above which is continuous
and elliptic with respect to R∥ · ∥HDG. Similarly, as before, we can eliminate the local (element-wise) variables to
obtain the following preconditioner(

Au 0
0 −(A p̂ + Bp(M̃−1

p + A−1
p )BT

p )

)
(63)

for the condensed system (62), where we have again made use of Ap being block diagonal and invertible. Further,
note that both blocks on the diagonal are H 1-type systems. Thus, standard solvers, such as, for example, an
algebraic multigrid method for the lowest order system and a element-level “balancing domain decomposition
with constraints”(BDDC) preconditioner (see [59]), the latter featuring only a polylogarithmic dependence on the
polynomial degree l, can be used.

The second block diagonal preconditioner we test still satisfies the norm equivalence (55), but decouples only
the mechanics and flow problems, hence, keeps the hybrid mixed formulation of the velocity pressure system. The
block diagonal operator preconditioner is then given by

B :=

⎛⎜⎜⎜⎜⎝
Au 0 0 0

0 Mw BT
w B̂T

w

0 Bw −M̃p 0

0 B̂w 0 0

⎞⎟⎟⎟⎟⎠
−1

.

Following similar steps as above, the preconditioner for the condensed system is(
Au 0
0 −C̃

)
, (64)

where C̃ is the same as C with Mp replaced by M̃p. The advantage of the preconditioner defined by (64), as
demonstrated below in Section 5.2, is that the subsystem for the pressure variable does not require a stabilization
parameter ηp which in general affects the condition number.
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5. Numerical results

In this section, we present several numerical examples to validate our theoretical findings. First, we test for
the expected orders of convergence for a problem with a constructed solution increasing the degree of the FE
approximation. Second, we study the parameter-robustness of the proposed preconditioners. Finally, we discuss the
cost efficiency of our modified methods. All numerical examples are implemented within the finite element library
Netgen/NGSolve, see [60,61] and www.ngsolve.org.

5.1. Convergence of the hybridized/hybrid mixed method

Here we discuss the convergence orders of the errors of the methods introduced in this work. Note, however,
that we only consider the discretization given by (13) since the solution is the same as of (10).

5.1.1. 2D example
We solve problem (13) on the spatial domain Ω = (0, 1)2 and choose the right hand side f and g such that the

exact solutions are given by

u := (−∂yφ, ∂xφ), p := sin(πx) sin(πy) − p0,

with the potential φ = x2(1 − x)2 y2(1 − y)2 and p0 ∈ R is chosen such that p ∈ L2
0(Ω ). For simplicity, we choose

the constants K = 1, µ = 1, S0 = 1, and α = 1. Further, we set λ = c with an arbitrary constant c ∈ R+ since the
exact and discrete solutions are exactly divergence-free.

In Table 1 we have displayed several discrete errors and their estimated order of convergence (eoc) for the
discretization of problem (13) for varying polynomial orders l = 1, 2, 3, 4. Whereas the H 1-seminorm error of
the displacement uh and the pressure ph converge with the expected (see Theorem 7) order O(hl) and O(hl−1),
respectively, the corresponding L2-norm errors converge with order O(hl+1) and O(hl). This can be shown by
a standard Aubin–Nitsche duality argument whenever the considered problem is sufficiently regular, see for
example [40]. Note also that the L2-norm error ∥∇ p + R−1wh∥0 of the discrete velocity wh converges with optimal
order O(hl). In the lowest order case where we have a piece-wise constant approximation of the pressure ph , we
do not present the H 1-seminorm error of the pressure since the gradient ∇ ph vanishes locally on each element.

5.1.2. 3D example
We solve problem (13) on the spatial domain Ω = (0, 1)3 and choose the right hand side f and g such that the

exact solutions are given by

u := curl(φ, φ, φ), p := sin(πx) sin(πy) sin(π z) − p0,

with the potential φ = x2(1 − x)2 y2(1 − y)2z2(1 − z)2 and p0 ∈ R is chosen such that p ∈ L2
0(Ω ). The parameters

λ, µ, S0, α, K are chosen as in the two-dimensional example.
Again, we present in Table 2 several discrete errors and their estimated orders of convergence for varying

polynomial degree l = 1, 2, 3. We make the same observations as for the two-dimensional example, that is, all
errors converge with optimal order as predicted by Theorem 7.

5.2. Parameter-robustness of the preconditioners

In this section, we demonstrate the robustness of the preconditioners defined in Section 4.2 with respect to
varying physical parameters. Again, we solve the example given in Section 5.1.1 on a fixed triangulation with 384
elements. The system is solved by means of the minimal residual method (MinRes) with a fixed tolerance of 10−10

and for different polynomial degrees l = 1, 2, 3, 4. In Fig. 1 we plot the number of iterations for the preconditioner
defined in (63) with a fixed stabilization parameter ηp = 10 for variations of the parameters R−1, λ, S. In Fig. 2
we plot the number of iterations for the same example using the preconditioner defined in (64). Although both
preconditioners show the expected robustness as predicted by the analysis presented in Section 4.1, we see that the
results with (64) demonstrate improvement upon those with (63). While a different (smaller) choice of ηp in (63)
might lead to better results – we have fixed ηp = 10 here – the analysis unfortunately only shows that ηp has to
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Table 1
The H1-seminorm and the L2-norm errors of the discrete displacement uh and the discrete pressure ph and the L2-norm errors of the
discrete velocity wh for different polynomial degrees l = 1, 2, 3, 4 for the two-dimensional example.

|T | ∥∇u − ∇uh∥0 (eoc) ∥u − uh∥0 (eoc) ∥∇ p − ∇ ph∥0 (eoc) ∥p − ph∥0 (eoc) ∥∇ p + R−1wh∥0 (eoc)

l = 1
6 5.3· 10−2 – 5.5· 10−3 – – – 1.8· 10−1 – 9.7· 10−1 –

24 4.9· 10−2 0.1 4.9· 10−3 0.2 – – 1.8· 10−1 0.0 5.7· 10−1 0.8
96 2.2· 10−2 1.1 1.1· 10−3 2.2 – – 8.1· 10−2 1.1 2.8· 10−1 1.0

384 1.1· 10−2 1.0 2.6· 10−4 2.1 – – 4.0· 10−2 1.0 1.4· 10−1 1.0
1536 5.4· 10−3 1.0 6.3· 10−5 2.0 – – 2.0· 10−2 1.0 7.1· 10−2 1.0
6144 2.7· 10−3 1.0 1.6· 10−5 2.0 – – 1.0· 10−2 1.0 3.6· 10−2 1.0

l = 2
6 4.6· 10−2 – 5.1· 10−3 – 1.7 – 1.5· 10−1 – 2.9· 10−1 –

24 1.1· 10−2 2.1 5.9· 10−4 3.1 7.4· 10−1 1.2 3.1· 10−2 2.3 8.2· 10−2 1.8
96 3.0· 10−3 1.8 7.4· 10−5 3.0 3.8· 10−1 1.0 7.9· 10−3 2.0 2.7· 10−2 1.6

384 7.7· 10−4 2.0 9.3· 10−6 3.0 1.9· 10−1 1.0 2.0· 10−3 2.0 6.9· 10−3 2.0
1536 1.9· 10−4 2.0 1.2· 10−6 3.0 9.6· 10−2 1.0 4.9· 10−4 2.0 1.8· 10−3 2.0
6144 4.9· 10−5 2.0 1.5· 10−7 3.0 4.8· 10−2 1.0 1.2· 10−4 2.0 4.4· 10−4 2.0

l = 3
6 8.8· 10−3 – 5.1· 10−4 – 2.7· 10−1 – 6.2· 10−3 – 9.7· 10−2 –

24 2.3· 10−3 1.9 6.7· 10−5 2.9 1.4· 10−1 0.9 3.9· 10−3 0.7 1.0· 10−2 3.3
96 3.1· 10−4 2.9 4.3· 10−6 4.0 3.7· 10−2 2.0 4.6· 10−4 3.1 1.3· 10−3 2.9

384 3.7· 10−5 3.1 2.5· 10−7 4.1 9.2· 10−3 2.0 5.7· 10−5 3.0 1.7· 10−4 3.0
1536 4.6· 10−6 3.0 1.6· 10−8 4.0 2.3· 10−3 2.0 7.1· 10−6 3.0 2.2· 10−5 3.0
6144 5.7· 10−7 3.0 9.6· 10−10 4.0 5.7· 10−4 2.0 8.8· 10−7 3.0 2.7· 10−6 3.0

l = 4
6 3.3· 10−3 – 2.6· 10−4 – 2.0· 10−1 – 2.3· 10−3 – 1.0· 10−2 –

24 2.8· 10−4 3.6 1.0· 10−5 4.7 1.9· 10−2 3.4 1.1· 10−4 4.4 8.3· 10−4 3.7
96 1.6· 10−5 4.1 2.9· 10−7 5.1 2.5· 10−3 3.0 7.4· 10−6 3.9 5.3· 10−5 4.0

384 9.8· 10−7 4.0 8.9· 10−9 5.0 3.1· 10−4 3.0 4.7· 10−7 4.0 3.3· 10−6 4.0
1536 6.1· 10−8 4.0 2.8· 10−10 5.0 3.9· 10−5 3.0 2.9· 10−8 4.0 2.1· 10−7 4.0
6144 3.8· 10−9 4.0 8.7· 10−12 5.0 4.9· 10−6 3.0 1.8· 10−9 4.0 1.3· 10−8 4.0

Table 2
The H1-seminorm and the L2-norm errors of the discrete displacement uh and the discrete pressure ph and the L2-norm errors of the
discrete velocity wh for different polynomial degrees l = 1, 2, 3 for the three-dimensional example.

|T | ∥∇u − ∇uh∥0 (eoc) ∥u − uh∥0 (eoc) ∥∇ p − ∇ ph∥0 (eoc) ∥p − ph∥0 (eoc) ∥∇ p + R−1wh∥0 (eoc)

l = 1
48 5.2· 10−3 – 4.9· 10−4 – – – 1.8· 10−1 – 9.4· 10−1 –

384 2.6· 10−3 1.0 1.7· 10−4 1.5 – – 9.6· 10−2 0.9 4.9· 10−1 0.9
3 072 1.3· 10−3 1.0 5.2· 10−5 1.7 – – 4.9· 10−2 1.0 2.5· 10−1 1.0

24 576 6.6· 10−4 1.0 1.4· 10−5 1.9 – – 2.5· 10−2 1.0 1.3· 10−1 1.0

l = 2
48 4.8· 10−3 – 4.7· 10−4 – 1.1 – 6.4· 10−2 – 2.8· 10−1 –

384 8.6· 10−4 2.5 4.2· 10−5 3.5 5.8· 10−1 0.9 1.7· 10−2 1.9 7.4· 10−2 1.9
3 072 1.9· 10−4 2.2 3.5· 10−6 3.6 3.0· 10−1 1.0 4.4· 10−3 2.0 1.9· 10−2 2.0

24 576 4.6· 10−5 2.1 3.4· 10−7 3.4 1.5· 10−1 1.0 1.1· 10−3 2.0 4.8· 10−3 2.0

l = 3
48 1.2· 10−3 – 7.4· 10−5 – 4.4· 10−1 – 8.5· 10−3 – 5.3· 10−2 –

384 1.3· 10−4 3.2 3.6· 10−6 4.4 1.2· 10−1 1.9 1.0· 10−3 3.0 6.8· 10−3 3.0
3 072 1.5· 10−5 3.0 2.1· 10−7 4.1 3.1· 10−2 2.0 1.3· 10−4 3.0 8.6· 10−4 3.0

24 576 1.9· 10−6 3.0 1.2· 10−8 4.1 7.9· 10−3 2.0 1.6· 10−5 3.0 1.1· 10−4 3.0

be chosen sufficiently large (see [57]), and its optimal choice is difficult. Therefore, it is obvious that the mixed
formulation, which is known to result in a minimal stabilization, as used in (64), is preferable.
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Further note that although the definition (63) includes a proper scaling (in terms of l and h) of the interior
penalty stabilization parameter given by ηpl2h−1, Fig. 1 shows a mild dependence on l of the preconditioner (63),
whereas (64) seems to be more robust (see Fig. 2). Note, however, that we do not claim uniform robustness with
respect to l.

Remark 4. Since R =
2µ̃τ

α2 , the robustness in R, see Figs. 1 and 2, also implies robustness with respect to the time
step τ . In a time-dependent problem, with constant time step, only the right hand side will change, which does not
deteriorate the performance of the iterative solver. Varying the time step leads to a variation of R, which is studied
in Figs. 1–2.

5.3. Cost-efficiency of the new family of hybridized discretizations

5.3.1. DG vs. HDG
In a first step we only illustrate the effect of hybridization introduced Section 3.2. To this end we consider the

model problem: Find u ∈ H1
0(Ω ) such that

− div(ϵ(u)) = f ,

with a given right hand side f and Ω = (0, 1)3. We solve this problem on a given triangulation with 166 elements
either with an H (div)-conforming DG or HDG method, i.e. setting λ = 0 we have the problems: Find uh ∈ Uh

such that

aDG
h (uh, vh) = ( f, vh) ∀vh ∈ uh, (65)

and find (uh, ûh) ∈ Uh such that

aHDG
h ((uh, ûh), (vh, v̂h)) = ( f, vh), ∀(vh, v̂h) ∈ Uh . (66)

In Table 3 we compare the values

dof: number of unknowns,
cdof: number of coupling unknowns,
nze: number of non-zero entries in thousands of the resulting system matrix,

for varying polynomial degrees l = 1, . . . , 6 which correspond to the local order of approximation of uh, ûh in
BDMℓ(T )/P⊥

ℓ (F), for all T ∈ Th and all F ∈ Fh . Here P⊥

ℓ (F) is the space of polynomials of order l that are
orthogonal to the normal vector, see the definition of the space Ûh in Section 3.2.

First, note that, due to the coupling between element unknowns in the DG method, no static condensation can be
applied, i.e. dof = cdof. When solving the linear system one is particularly interested in the number of non-zero
entries. As we can see, the HDG method clearly outperforms the DG method in case of higher order approximation
(l ≥ 4). In the low order cases the additional facet unknowns dominate and thus no improvement can be expected.

Remark 5. The HDG method can further be improved by means of another technique, called “projected jumps”,
which was introduced in [42]. This modification allows to further decrease the coupling of the HDG method without
affecting its approximation properties. This essentially compensates the overhead of the HDG method in the low
order cases by reducing the polynomial degree of the space of ûh to P⊥

ℓ−1(F) and adding consistent projections in
the bilinear form. Although we do not discuss these modifications here, we include the corresponding numbers in
Table 3 in the rows denoted by PHDG. Note that the well-posedness theory and the robustness of the preconditioners
obtained in this work also hold for the PHDG method.

5.3.2. Mixed vs. hybrid mixed methods
The aim of this subsection is to compare the sparsity structure of the matrix arising from the application of a

hybrid mixed method to the flow subproblem to that of the matrix resulting from its discretization by a standard
mixed method, when both are used as building blocks of mass conserving discretizations of the Biot problem.
Although hybridization introduces additional degrees of freedom in the linear system, the number of coupling
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Table 3
dof, cdof and nze of the system matrix of the DG, HDG and PHDG methods for different polynomial degrees
l.

dof cdof nze dof cdof nze dof cdof nze

l = 1 l = 2 l = 3

DG 834 834 65 2664 2664 454 6100 6100 1945
HDG 2502 2502 193 6000 5004 770 11 660 8340 2140
PHDG 1390 1390 59 4332 3336 342 9436 6116 1151

l = 4 l = 5 l = 6

DG 11 640 11 640 6238 19 782 19 782 16 512 31 024 31 024 38 106
HDG 19 980 12 510 4815 31 458 17 514 9438 46 592 23 352 16 779
PHDG 17 200 9730 2913 28 122 14 178 6185 42 700 19 460 11 652

degrees of freedom is typically smaller when following this approach, which is a crucial advantage for its cost-
efficient iterative solution. Hence, we study the effect of the modifications introduced in Section 3.3 on the following
Darcy model problem: Find (w, p) ∈ H(div)(Ω ) × L2(Ω ) such that

w + ∇ p = 0,

div(w) = g,

for a given right hand side g on the domain Ω = (0, 1)3. We use the same mesh as in the previous section, and
consider the problems: Find (wh, ph) ∈ W h × Ph , such that

(wh, zh)−(ph, divzh) = 0, ∀zh ∈ W h, (67a)

−(divwh, qh) = −(g, qh), ∀qh ∈ Ph . (67b)

and find (wh, (ph, p̂h)) ∈ W−

h × Ph , such that

(wh, zh)−b((ph, p̂h), zh) = 0, ∀zh ∈ W−

h , (68a)

−b((qh, q̂h), wh) = −(g, qh), ∀(qh, q̂h) ∈ Ph . (68b)

Note that system (67) only allows a static condensation of the following degrees of freedom: all local (element-
associated) degrees of freedom of the space W h , i.e. element-wise basis functions with a vanishing normal trace,
and all high-order (considering a standard L2-Dubiner basis) basis functions of Ph such that element-wise constant
basis functions remain in the system. In contrast to this, system (68) allows us to eliminate all degrees of freedom
associated with the basis functions of the spaces W−

h and Ph . In Table 4, we again present the corresponding numbers
as discussed above, where M represents the discretization of (67), and HM of (68). Here, the order l corresponds
to the local polynomial degree of wh, ph, p̂h in RTℓ(T )/Pℓ(T )/Pℓ(F), for all T ∈ Th and all F ∈ Fh . Further,
we observe that the hybrid mixed method produces always a smaller number of non-zero entries than the standard
mixed method although the difference is negligible. However, the main purposes of hybridization are a reduction
of the number of coupling dof and obtaining a condensed system with a symmetric and definite Schur complement,
see also [41,62]. This allows us to use preconditioners for H 1-elliptic problems like standard algebraic multigrid
methods.

6. Concluding remarks

We have introduced a family of higher-order hybridized/hybrid mixed strongly mass conserving discretizations
of the three-field formulation of Biot’s model of consolidation and proven their uniform well-posedness. The
construction relies on a hybridized H(div)-conforming discontinuous Galerkin method for the mechanics and a
hybrid mixed method for the flow subproblems. The hybridization approach offers the advantages of reducing the
number of coupling degrees of freedom and the possibility of a static (element-wise) condensation of all other
degrees of freedom, in particular, of all flux degrees of freedom. Additionally, we have constructed parameter-robust
norm-equivalent preconditioners that avoid the solution of an H(div) subproblem which is typically the most time
consuming part of the application of preconditioners that rely on such. A generalization and application of the
presented methodology to non-linear extensions of Biot’s model are subject of ongoing research.
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Table 4
dof, cdof and nze of the system matrix for different polynomial degrees l in the discretizations of problems
(67), (68).

dof cdof nze dof cdof nze dof cdof nze

l = 0 l = 1 l = 2

M 552 552 4k 2320 1324 26k 5968 2482 94k
HM 1108 278 2k 3988 834 21k 9304 1668 86k

l = 3 l = 4 l = 5

M 12 160 4026 251k 21 560 5956 555k 34 832 8272 1077k
HM 17 720 2780 238k 29 900 4170 535k 46 508 5838 1049k
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ANALYSIS OF PERTURBED SADDLE-POINT PROBLEMS AND

APPLICATIONS

QINGGUO HONG, JOHANNES KRAUS, MARIA LYMBERY, AND FADI PHILO

Abstract. In this paper we prove a new abstract stability result for per-
turbed saddle-point problems based on a norm fitting technique. We derive

the stability condition according to Babuška’s theory from a small inf-sup
condition, similar to the famous Ladyzhenskaya-Babuška-Brezzi (LBB) con-
dition, and the other standard assumptions in Brezzi’s theory, in a combined
abstract norm. The construction suggests to form the latter from individual
fitted norms that are composed from proper seminorms.

This abstract framework not only allows for simpler (shorter) proofs of
many stability results but also guides the design of parameter-robust norm-
equivalent preconditioners. These benefits are demonstrated on mixed varia-
tional formulations of generalized Poisson, Stokes, vector Laplace and Biot’s
equations.

1. Introduction

Saddle-point problems (SPPs) arise in various areas of computational science
and engineering ranging from computational fluid dynamics [26, 27, 57], elastic-
ity [4,15,24], and electromagnetics [12,48] to computational finance [40]. Moreover,
SPPs play a vital role in the context of image reconstruction [29], model order
reduction [56], constrained optimization [25], optimal control [8], and parameter
identification [18], to mention only a few but important applications.

In the mathematical modeling of multiphysics phenomena described by (initial-)
boundary-value problems for systems of partial differential equations, SPPs often
naturally arise and are frequently posed in a variational formulation. Mixed finite
element methods and other discretization techniques can be and have been success-
fully used for their discretization and numerical solution, see, e.g. [9,12,17,23] and
the references therein.

The pioneering works laying the foundations of the solution theory for SPPs have
been conducted by Ivo Babuška, Franco Brezzi, Olga Ladyzhenskaya, and Jindřich
Nečas [5, 16, 42, 51], see also the contributions [6, 41].

Designing and analyzing discretizations and solvers for SPPs require a careful
study of the mapping properties of the underlying operators. Of particular interest
are their continuity and stability, which not only guarantee the well-posedness of
(continuous and discrete) mathematical models but also provide the basis for error
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2 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

estimates and a convergence analysis of iterative methods and preconditioners, see,
e.g. [12, 23, 46, 47], for a review see also [9].

Saddle-point problems/systems are of a two-by-two block form and characterized
by an operator/matrix of the form

(1.1) A =

(
A BT

1

B2 −C

)
,

where A and C denote positive semidefinite operators/matrices and BT
1 the ad-

joint/transpose of an operator/matrix B1. We consider the symmetric case in this
paper where AT = A, CT = C, and B1 = B2 = B. Problems in which C �= 0 are
often referred to as perturbed saddle-point problems.

In [63] a technique has been proposed to determine norms for parameter-
dependent SPPs providing necessary and sufficient conditions for their well-
posedness and leading to robust estimates of the solution in terms of the data.
A drawback of this approach, however, is that these conditions are often hard to
verify in practice as the operators inducing the norms are defined only implicitly.

More general SPPs in which A (and C) are allowed to be non-symmetric and
B1 �= B2 have also been studied by many authors, see, e.g., [12, 17, 52], and the
references therein. Their analysis, in general is more complicated and is mostly
done following the monolithic approach, i.e., imposing conditions on A rather than
on A, B1, B2, and C separately.

Our work is motivated by the stability analysis of variational problems occurring
in poromechanics (cf. [20]), a subarea of continuum mechanics which originates
from the early works of Terzaghi and Biot [10, 58]. Various formulations of Biot’s
consolidation model have been considered and analyzed since it had been introduced
in [10, 11], including two-field [49, 50], three-field [19, 32, 43, 53–55], and four-field-
formulations [39, 44, 62], for generalizations to several fluid networks as considered
in multiple network poroelastic theory (MPET), see also [7, 28, 33–35,45, 60].

Although they typically relate more than two physical fields, or quantities of
interest (except for the two-field formulation of Biot’s model), the variational prob-
lems arising from the above-mentioned formulations–subject to a proper grouping
or rather aggregation of variables–result in symmetric two-by-two block systems of
saddle point form characterized by a self-adjoint operator A.

The abstract framework presented in the next section of this paper applies to
such saddle-point operators. After introducing some notation, we recall the classical
stability results of Babuška and Brezzi for classical (unperturbed) SPPs. Next, we
focus on perturbed (symmetric) SPPs, initially summarizing some of the additional
conditions which, together with the Ladyzhenskaya-Babuška-Brezzi (LBB) condi-
tion (small inf-sup condition), imply the necessary and sufficient stability condition
of Babuška (big inf-sup condition). Our main theoretical result then follows in Sec-
tion 2.3 where we propose a generalization of the classical Brezzi conditions for the
analysis of perturbed SPPs with C �= 0. These new conditions imply the Babuška
condition. The fitted norms on which they are based provide a constructive tool
for designing norm-equivalent preconditioners.

This paper does not discuss discretizations and discrete variants of inf-sup con-
ditions. However, the proposed framework directly translates to discrete settings
where it also allows for shorter and simpler proofs of the well-posedness of discrete
models and error-estimates for stable discretizations.
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NEW STABILITY ANALYSIS OF SADDLE-POINT PROBLEMS 3

2. Abstract framework

2.1. Notation and problem formulation. Consider two Hilbert spaces V and
Q equipped with the norms ‖ · ‖V and ‖ · ‖Q induced by the scalar products (·, ·)V

and (·, ·)Q, respectively. We denote their product space by Y := V × Q and endow
it with the norm ‖ · ‖Y defined by
(2.1)

‖y‖2
Y = (y, y)Y = (v, v)V + (q, q)Q = ‖v‖2

V + ‖q‖2
Q ∀y = (v; q) :=

(
v
q

)
∈ Y.

Next, we introduce an abstract bilinear form A((· ; ·), (· ; ·)) on Y × Y defined by

(2.2) A((u; p), (v; q)) := a(u, v) + b(v, p) + b(u, q) − c(p, q)

for some symmetric positive semidefinite (SPSD) bilinear forms a(·, ·) on V × V ,
c(·, ·) on Q × Q, i.e.,

a(u, v) = a(v, u) ∀u, v ∈ V,(2.3)

a(v, v) ≥ 0 ∀v ∈ V,(2.4)

c(p, q) = c(q, p) ∀p, q ∈ Q,(2.5)

c(q, q) ≥ 0 ∀q ∈ Q,(2.6)

and a bilinear form b(·, ·) on V × Q.
We assume that a(·, ·), b(·, ·) and c(·, ·) are continuous with respect to the norms

‖ · ‖V and ‖ · ‖Q, i.e.,

a(u, v) ≤ C̄a‖u‖V ‖v‖V ∀u, v ∈ V,(2.7)

b(v, q) ≤ C̄b‖v‖V ‖q‖Q ∀v ∈ V, ∀q ∈ Q,(2.8)

c(p, q) ≤ C̄c‖p‖Q‖q‖Q ∀p, q ∈ Q.(2.9)

Then each of these bilinear forms defines a bounded linear operator as follows:

A : V → V ′ : 〈Au, v〉V ′×V = a(u, v), ∀u, v ∈ V,(2.10a)

C : Q → Q′ : 〈Cp, q〉Q′×Q = c(p, q), ∀p, q ∈ Q,(2.10b)

B : V → Q′ : 〈Bv, q〉Q′×Q = b(v, q), ∀v ∈ V, ∀q ∈ Q,(2.10c)

BT : Q → V ′ : 〈v, BT q〉V ×V ′ = b(v, q), ∀v ∈ V, ∀q ∈ Q.(2.10d)

Here, V ′ and Q′ denote the dual spaces of V and Q and 〈·, ·〉 the corresponding
duality pairings.

Associated with the bilinear form A defined in (2.2) we consider the following
abstract perturbed saddle-point problem

(2.11) A((u; p), (v; q)) = F((v; q)) ∀v ∈ V, ∀q ∈ Q

which can also be written as

A(x, y) = F(y) ∀y ∈ Y,

thereby using the definitions x = (u; p) and y = (v; q), or, in operator form

(2.12) Ax = F ,

where

A : Y → Y ′ : 〈Ax, y〉Y ′×Y = A(x, y), ∀x, y ∈ Y(2.13)

and F ∈ Y ′, i.e., F : Y → R : F(y) = 〈F , y〉Y ′×Y for all y ∈ Y .

Licensed to University Duisburg Essen, Essen. Prepared on Tue Nov 22 05:28:34 EST 2022 for download from IP 132.252.62.105.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

The operator A can also be represented in block form by

(2.14) A =

(
A BT

B −C

)
.

Problem (2.11) (and (2.12)) is called a perturbed saddle-point problem (in opera-
tor form) when c(·, ·) �≡ 0 and a classical saddle-point problem in the case c(·, ·) ≡ 0.

2.2. Babuška’s and Brezzi’s conditions for stability of saddle-point prob-
lems. As is well-known from [5], the abstract variational problem (2.11) is well-
posed under the following necessary and sufficient conditions 2.15 and 2.16 given
in Theorem 2.1.

Theorem 2.1 (Babuška [5]). Let F ∈ Y ′ be a bounded linear functional. Then the
saddle-point problem (2.11) is well-posed if and only if there exist positive constants
C̄ and α for which the conditions

A(x, y) ≤ C̄‖x‖Y ‖y‖Y ∀x, y ∈ Y,(2.15)

inf
x∈Y

sup
y∈Y

A(x, y)

‖x‖Y ‖y‖Y
≥ α > 0(2.16)

hold. The solution x then satisfies the stability estimate

‖x‖Y ≤ 1

α
sup
y∈Y

F(y)

‖y‖Y
=:

1

α
‖F‖Y ′ .

Remark 2.2. Estimate (2.15) ensures continuity, that is, boundedness of the oper-
ator A from above, whereas (2.16) is a stability condition, sometimes referred to as
Babuška condition, which grants boundedness of A from below.

Using the operator notations introduced in (2.14), the conditions (2.15) and
(2.16) can be rewritten as

(2.17) α‖y‖Y ≤ ‖Ay‖Y ′ ≤ C̄‖y‖Y for all y ∈ Y.

In [63], the condition (2.17) is characterized by two equivalent conditions as stated
in Theorem 2.3.

Theorem 2.3 (Zulehner [63]). If there are constants γ
v
, γ̄v, γq

, γ̄q > 0 such that

(2.18) γ
v
‖v‖2

V ≤ a(v, v) +

(
sup
q∈Q

b(v, q)

‖q‖Q

)2

≤ γ̄v‖v‖2
V ∀v ∈ V,

and

(2.19) γ
q
‖q‖2

Q ≤ c(q, q) +

(
sup
v∈V

b(v, q)

‖v‖V

)2

≤ γ̄q‖q‖2
Q ∀q ∈ Q,

then (2.17) is satisfied with constants α, C̄ > 0 that depend only on γ
v
, γ̄v, γq

, γ̄q.

And, vice versa, if the estimates (2.17) are satisfied with constants α, C̄ > 0, then
the estimates (2.18) and (2.19) are satisfied with constants γ

v
, γ̄v, γ

q
, γ̄q > 0 that

depend only on α, C̄ > 0.

Remark 2.4. The two conditions (2.15) and (2.16), entangling the bilinear forms
a(·, ·), b(·, ·) and c(·, ·), are equivalent to the two conditions (2.18) and (2.19) which
entangle the bilinear forms a(·, ·) and b(·, ·) and the bilinear forms c(·, ·) and b(·, ·),
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NEW STABILITY ANALYSIS OF SADDLE-POINT PROBLEMS 5

respectively. However, verifying the two big conditions (2.18) and (2.19) is some-
times difficult or even impractical. Our aim is to propose a framework untangling
the bilinear forms a(·, ·), b(·, ·) and c(·, ·) and impose Brezzi-type conditions, in par-
ticular a small coercivity condition on a(·, ·) and a small inf-sup condition on b(·, ·).

For the classical saddle-point problem, i.e., c(·, ·) ≡ 0, Theorem 2.5 which we
formulate under the conditions that a(·, ·) is symmetric positive semidefinite and

(2.20) Ker(BT ) := {q ∈ Q : b(v, q) = 0 ∀v ∈ V } = ∅
has been proven in [16], see also [12, 17].

Theorem 2.5 (Brezzi [16]). Assume that the bilinear forms a(·, ·) and b(·, ·) are
continuous on V ×V and on V ×Q, respectively, a(·, ·) is symmetric positive semi-
definite, and also that

a(v, v) ≥ Ca‖v‖2
V ∀v ∈ Ker(B),(2.21)

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β > 0(2.22)

hold. Then the classical saddle-point problem (problem (2.11) with c(·, ·) ≡ 0) is
well-posed.

Remark 2.6. Note that if Ker(BT ) �= ∅, the statement of Theorem 2.5 remains
valid if we identify any two elements q1, q2 for which q0 := q1 − q2 is an element of
Ker(BT ), i.e., replacing the space Q with the quotient space Q/ Ker(BT ) and also
the norm ‖ · ‖Q with ‖ · ‖Q/ Ker(BT ), the latter being defined by

‖q‖Q/ Ker(BT ) = inf
q0∈Ker(BT )

‖q + q0‖Q.

In this case, the solution p is only unique up to an arbitrary element p0 ∈ Ker(BT ).

For the classical saddle-point problem Brezzi’s stability condition (2.22) and the
continuity of a(·, ·) imply Babuška’s stability condition (2.16), see [21], where it
has also been shown that from (2.16) it follows (2.22) and the inf-sup condition for
a(·, ·) in the kernel of B, the latter being equivalent to the coercivity estimate (2.21)
if a(·, ·) is symmetric positive semidefinite.

Obviously, the stability condition (2.16) directly applies to perturbed saddle-
point problems, a reason why they can be studied using Babuška’s theory. However,
conditions (2.21) and (2.22) together with the continuity of a(·, ·), b(·, ·) and c(·, ·) in
general are not sufficient to guarantee the stability condition (2.16) when c(·, ·) �≡ 0.
Additional conditions to ensure (2.16) have been studied, for example, in [12,14,17].

In [17] it has been shown that a condition on the kernel of BT can be used as
an additional assumption to ensure well-posedness of the perturbed saddle-point
problem, that is, in particular, for Babuška’s inf-sup condition (2.16) to hold. This
condition is expressed in terms of the following auxiliary problem

(2.23) ε(p0, q)Q + c(p0, q) = −c(p⊥, q), ∀q ∈ Ker(BT ),

and requires the following general assumption:

Assumption 2.7. There exists a γ0 > 0 such that for every p⊥ ∈ (Ker(BT ))⊥ and
for every ε > 0 it holds that the norm of the solution p0 ∈ Ker(BT ) of (2.23) is
bounded by ‖p0‖Q ≤ 1

γ0
‖p⊥‖Q.

The theorem then reads as follows:
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6 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

Theorem 2.8 (Brezzi and Fortin [17]). Assume that a(·, ·), b(·, ·) and c(·, ·) are
continuous bilinear forms on V ×V , on V ×Q, and on Q×Q, respectively. Further
assume that a(·, ·) and c(·, ·) are symmetric positive semidefinite. Finally, let (2.21),
(2.22) from Theorem 2.5 and Assumption 2.7 be satisfied. Then for every f ∈
V ′ and every g ∈ Im(B) problem (2.11) with A as defined in (2.2) and F(y) =
〈f, v〉V ′×V + 〈g, q〉Q′×Q has a unique solution x = (u; p) in Y = V × Q/M where

M = Ker(BT ) ∩ Ker(C).

Moreover, the estimate

‖u‖V + ‖p‖Q/ Ker(BT ) ≤ K(‖f‖V ′ + ‖g‖Q′)

holds with a constant K only depending on C̄a, C̄c, Ca, β and γ0.

Remark 2.9. The result in [17] is more general than Theorem 2.8 in that it applies
also to non-symmetric but positive semidefinite a(·, ·). We are considering only the
case of symmetric positive semidefinite a(·, ·) in this paper.

In order to ensure the boundedness (continuity) of the symmetric positive semi-
definite bilinear form c(·, ·) with respect to the norm ‖ · ‖Q, and more generally the

boundedness of A(·, ·) with respect to the combined norm ‖·‖Y = (‖·‖2
V +‖·‖2

Q)1/2,

it is natural to include the contribution of c(·, ·) in the norm ‖ · ‖Q, e.g., by defining
‖ · ‖Q via

(2.24) ‖q‖2
Q = |q|2Q + t2c(q, q), ∀q ∈ Q,

for a proper seminorm or norm | · |Q and a parameter t ∈ [0, 1].
As it has been shown in [14] the stability of the perturbed saddle-point problem

then can be proven under Brezzi’s conditions for the classical saddle-point problem
and the additional condition

(2.25) inf
u∈V

sup
(v;q)∈V ×Q

a(u, v) + b(u, q)

|||(v; q)||| ≥ γ > 0,

where |||·||| is defined by

(2.26) |||(v; q)|||2 := ‖v‖2
V + |q|2Q + t2c(q, q), t ∈ [0, 1],

and provides a specific choice of ‖·‖Y , i.e., ‖·‖Y = |||·|||. The corresponding theorem
then reads as:

Theorem 2.10 (Braess [14]). Assume that the classical saddle-point problem with
a(·, ·) being SPSD and c(·, ·) ≡ 0 is stable, i.e., Brezzi’s conditions (2.21) and (2.22)
are fulfilled. If in addition condition (2.25) holds with γ > 0 and we choose t > 0
in (2.26) for c(·, ·) �≡ 0, then the perturbed saddle-point problem (2.11) is stable
under the norm ‖ · ‖Y := |||·||| and the stability constant α in (2.16) depends only
on β, Ca and γ and the choice of t.

Remark 2.11. Note that as it can easily be seen if a(·, ·) is symmetric positive
semidefinite, condition (2.25) is equivalent to the condition that there exists a
constant γ′ > 0 such that

(2.27)
a(u, u)

‖u‖V
+ sup

q∈Q

b(u, q)

|q|Q + tc(q, q)
≥ γ′‖u‖V ∀u ∈ V.
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NEW STABILITY ANALYSIS OF SADDLE-POINT PROBLEMS 7

Moreover, as shown in [14], then (2.27) is also equivalent to the condition that there
exists a constant γ′′ > 0 such that

(2.28) sup
(v;q)∈Y

A((u; 0), (v; q))

|||(v; q)||| ≥ γ′′‖u‖V ∀u ∈ V.

Since (2.25) is an inf-sup condition for (a(·, ·) + b(·, ·)) which can be interpreted
as a big inf-sup condition on A for p = 0 under the specific norm ‖ · ‖Y = |||·|||,
see (2.28), Theorem 2.10 still does not provide us with the desired stability result
in terms of conditions on a(·, ·), b(·, ·) and c(·, ·) separately. On the other hand,
Theorem 2.8 requires the solution of the auxiliary problem (2.23) on Ker(BT ) for
which one has to verify Assumption 2.7 which, in some situations, is a difficult task.

Our aim is to avoid the latter and still impose Brezzi-type conditions, in partic-
ular a small inf-sup condition on b(·, ·). In the next section, we will prove a theorem
(Theorem 2.15) which ensures the stability of the perturbed saddle-point problem
2.11 under conditions which are equivalent to the conditions in Brezzi’s theorem
(Theorem 2.5) when the perturbation term vanishes. Moreover, our approach pro-
vides a framework suited for finding norms in which stability can be shown and
allows for simplifying and shortening proofs based on the result of Babuška.

2.3. A new framework for the stability analysis of perturbed saddle-
point problems. The key idea for studying and verifying the stability of per-
turbed saddle-point problems we follow in this paper is to construct proper norms
as part of an abstract framework which applies to a variational formulation of var-
ious multiphysics models. As we have already observed in the previous subsection,
a norm-splitting of the form (2.24) is quite natural if the symmetric positive semi-
definite perturbation form c(·, ·) is not identical to zero. For fixed t > 0, the norm
defined in (2.24) is equivalent to the norm defined by

(2.29) ‖q‖2
Q := |q|2Q + c(q, q) =: 〈Q̄q, q〉Q′×Q.

Note that the assumption that ‖ · ‖Q is a full norm induced by an inner product
under which Q is a Hilbert space implies that the seminorm | · |Q corresponds to an
SPSD bilinear form d(·, ·) : Q × Q → R, i.e., |q|2Q = d(q, q). Consequently, the form

c(p, q) + d(p, q) is symmetric positive definite (SPD) and defines a linear operator
Q̄ : Q → Q′ by 〈Q̄p, q〉 := c(p, q) + d(p, q).

Now we introduce the following splitting of the norm ‖ · ‖V defined by

‖v‖2
V := |v|2V + |v|2b ,(2.30)

where | · |V is a proper seminorm, which is a norm on Ker(B) satisfying

|v|2V � a(v, v) ∀v ∈ Ker(B)

and | · |b is defined by

|v|2b := 〈Bv, Q̄−1Bv〉Q′×Q = ‖Bv‖2
Q′ .(2.31)

Here, Q̄−1 : Q′ → Q is an isometric isomorphism (Riesz isomorphism) since Q̄ is
an isometric isomorphism, i.e.,

‖Bv‖2
Q′ = ‖Q̄−1Bv‖2

Q = (Q̄−1Bv, Q̄−1Bv)Q = 〈Q̄Q̄−1Bv, Q̄−1Bv〉Q′×Q

= 〈Bv, Q̄−1Bv〉Q′×Q.
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Remark 2.12. Note that both | · |V and | · |b can be seminorms as long as they add
up to a full norm. Likewise, only the sum of the seminorms | · |Q and c(·, ·) has to
define a norm. In some particular situations, it is also useful to identify certain of
the involved seminorms with 0, in which case the corresponding splitting becomes a
trivial splitting. The splitting (2.30) is closely related to a Schur complement type
operator, corresponding to the modified (regularized) bilinear form resulting from
A((·; ·), (·; ·)) by replacing c(·, ·) with (·, ·)Q.

In order to present our main theoretical result, we give Definition 2.13.

Definition 2.13. For two Hilbert spaces V and Q, a norm ‖ · ‖V on V and a
norm ‖ · ‖Q on Q are called fitted if they satisfy the splittings (2.29) and (2.30),
respectively, where | · |Q is a seminorm on Q and | · |V and | · |b are seminorms on
V , the latter defined according to (2.31).

Remark 2.14. Note that the norm fitting can also be performed by first fixing the
full norm on V (instead of the full norm on Q as described above). Exploiting the
structure of the problem, in the latter case one uses the following norm splittings

‖v‖V := |v|2V + a(v, v) =: 〈V̄ v, v〉V ′×V ,

‖q‖Q := |q|2Q + |q|2b ,

where V̄ : V → V ′ is a linear operator, |q|2Q is equivalent to c(q, q) and |q|2b =:

〈BT q, V̄ −1BT q〉V ′×V .

Theorem 2.15. Let ‖ · ‖V and ‖ · ‖Q be fitted norms according to Definition 2.13,
which immediately implies the continuity of b(·, ·) and c(·, ·) in these norms with
C̄b = 1 and C̄c = 1, cf. (2.8)–(2.9). Consider the bilinear form A((·; ·), (·; ·))
defined in (2.2) where a(·, ·) is continuous, i.e., (2.7) holds, and a(·, ·) and c(·, ·) are
symmetric positive semidefinite. Assume, further, that a(·, ·) satisfies the coercivity
estimate

(2.32) a(v, v) ≥ Ca|v|2V , ∀v ∈ V,

and that there exists a constant β > 0 such that

(2.33) sup
v∈V
v �=0

b(v, q)

‖v‖V
≥ β|q|Q, ∀q ∈ Q.

Then the bilinear form A((·; ·), (·; ·)) is continuous and inf-sup stable under the
combined norm ‖ · ‖Y defined in (2.1), i.e., the conditions (2.15) and (2.16) hold.

Before presenting the proof of Theorem 2.15, we show an auxiliary result and
make some remarks.

Lemma 2.16. The inf-sup condition: there exists a constant β > 0 such that

(2.34) sup
v∈V
v �=0

b(v, q)

‖v‖V
≥ β|q|Q, ∀q ∈ Q,

is equivalent to the condition: for any q ∈ Q, there exists v ∈ V , such that

(2.35) b(v, q) = |q|2Q and ‖v‖V ≤ β−1|q|Q.
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Proof. Obviously, (2.35) implies (2.34). Hence, it remains to prove that (2.34)
implies (2.35). Let KQ = {q ∈ Q : |q|Q = 0} and define ‖q‖Q/KQ

:= |q|Q which is a
norm on the quotient space Q/KQ. For any q ∈ Q, where the class in Q/KQ which
q belongs to is also denoted by q, there exists f ∈ (Q/KQ)′ s.t. f(q) = ‖q‖2

Q/KQ
and

‖f‖(Q/KQ)′ = ‖q‖Q/KQ
. Since B is onto, we can find v s.t. Bv = f and by the open

mapping theorem, we can find v with ‖v‖V ≤ β−1‖f‖(Q/KQ)′ = β−1‖q‖Q/KQ
=

β−1|q|Q and b(v, q) = 〈Bv, q〉 = f(q) = ‖q‖2
Q/KQ

= |q|2Q. �

Remark 2.17. The continuity of b(·, ·) readily follows from

b(v, q) = 〈Bv, q〉Q′×Q = 〈Q̄Q̄−1Bv, q〉Q′×Q = (Q̄−1Bv, q)Q ≤ ‖Q̄−1Bv‖Q‖q‖Q

≤ ‖v‖V ‖q‖Q.

If | · |V is induced by the bilinear form a(·, ·) then the continuity of a(·, ·) also follows
directly from the definition of the fitted norms.

Remark 2.18. Theorem 2.15 is a generalization of Theorem 2.5 in the sense that
given two norms ‖ · ‖Q,eqv and ‖ · ‖V,eqv under which the conditions of Theorem 2.5
are satisfied, one can always find two fitted equivalent norms ‖ · ‖Q � ‖ · ‖Q,eqv and
‖ · ‖V � ‖ · ‖V,eqv such that the conditions of Theorem 2.15 are satisfied in these
fitted norms when c(·, ·) ≡ 0.

More specifically, for c(·, ·) ≡ 0, we have | · |Q = || · ||Q = ‖q‖Q,eqv and Q̄ = I. If
we define the fitted norm ‖ · ‖V by choosing

|v|2V = a(v, v),(2.36)

then (2.32) obviously holds. In addition, there exists a constant α0 such that
(see [12, Proposition 4.3.4])

α0‖v‖2
V,eqv ≤ a(v, v) + ‖Bv‖2

Q′ = ‖v‖2
V .(2.37)

At the same time, under the conditions of Theorem 2.5, the continuity of a(·, ·) and
b(·, ·) in the norms ‖ · ‖V,eqv and ‖ · ‖Q,eqv, we have

‖v‖2
V = a(v, v) + ‖Bv‖2

Q′ ≤ C‖v‖2
V,eqv.(2.38)

Thus, the fitted norm ‖·‖V is equivalent to the norm ‖·‖V,eqv, and (2.33) is induced
by (2.22).

Remark 2.19. Note that under the conditions of Theorem 2.15 the coercivity of
a(·, ·) on Ker(B) in the (semi-) norms |·|V and ‖·‖V are equivalent since |v|V = ‖v‖V

for all v ∈ Ker(B). The inf-sup condition (2.33), however, uses the seminorm | · |Q
instead of ‖ · ‖Q as in Brezzi’s condition (2.22).

Proof of Theorem 2.15. Demonstrating (2.15) is straightforward since

A((w; r), (v; q)) =a(w, v) + b(v, r) + b(w, q) − c(r, q)(2.39)

≤C̄a‖w‖V ‖v‖V + ‖v‖V ‖r‖Q + ‖w‖V ‖q‖Q + ‖r‖Q‖q‖Q

≤C̄(‖w‖V + ‖r‖Q)(‖v‖V + ‖q‖Q) ≤ 2C̄‖(w; r)‖Y ‖(v; q)‖Y

with C̄ := max{C̄a, 1}.
In order to prove (2.16) for a positive constant δ, which will be selected later,

and for a given arbitrary pair (w, r) ∈ V × Q, we choose

(2.40) v := δw + w0,
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where, by Lemma 2.16, w0 ∈ V can be chosen such that

b(w0, r) =|r|2Q,(2.41a)

‖w0‖V ≤β−1|r|Q,(2.41b)

and

(2.42) q := −δr + r0,

where

(2.43) r0 := Q̄−1Bw.

Note that the existence of an element w0 satisfying (2.41) follows from (2.33).
Then we have

‖v‖V ≤‖δw‖V + ‖w0‖V ≤ δ‖w‖V + β−1|r|Q ≤ δ‖w‖V + β−1‖r‖Q,(2.44)

‖q‖Q ≤δ‖r‖Q + ‖r0‖Q = δ‖r‖Q + (Q̄−1Bw, Q̄−1Bw)
1/2
Q = δ‖r‖Q + |w|b,

and, consequently,

‖(v; q)‖2
Y =‖v‖2

V + ‖q‖2
Q ≤ 2(δ2 + 1)‖w‖2

V + 2(β−2 + δ2)‖r‖2
Q.(2.45)

Hence, it follows that

(2.46) ‖(v; q)‖Y ≤
(
2 max{(δ2 + 1), (β−2 + δ2)}

) 1
2 ‖(w; r)‖Y .

Moreover, for the same choice of v and q, we obtain

A((w; r), (v; q))

= a(w, δw + w0) + b(δw + w0, r) − b(w, δr − r0) + c(r, δr − r0)

≥ δa(w, w) + a(w, w0) + δb(w, r) + b(w0, r) − δb(w, r) + δc(r, r)

+ 〈Bw, Q̄−1Bw〉Q′×Q − c(r, Q̄−1Bw)

≥ δa(w, w) − 1

2
ε−1a(w, w) − 1

2
εa(w0, w0) + |r|2Q + δc(r, r)

+ |w|2b − 1

2
c(r, r) − 1

2
c(Q̄−1Bw, Q̄−1Bw)

≥
(

δ − 1

2
ε−1

)
a(w, w) − 1

2
εC̄aβ−2|r|2Q + |r|2Q + δc(r, r) + |w|2b − 1

2
c(r, r) − 1

2
|w|2b

≥
(

δ − 1

2
ε−1

)
Ca|w|2V +

(
1 − 1

2
εC̄aβ−2

)
|r|2Q + δc(r, r) − 1

2
c(r, r) +

1

2
|w|2b

and, hence, for ε = 1
2 C̄−1

a β2 and δ = max{ 1
4C−1

a + C̄aβ−2, 3
4}, we have

A((w; r), (v; q)) ≥
(
δ − C̄aβ−2

)
Ca|w|2V +

1

4
|r|2Q +

(
δ − 1

2

)
c(r, r) +

1

2
|w|2b

≥ 1

4

(
‖w‖2

V + ‖r‖2
Q

)
=

1

4
‖(w; r)‖2

Y .(2.47)

Together, (2.46) and (2.47) imply the inf-sup condition (2.16) which can equiva-
lently be formulated as

(2.48) sup
(v;q)∈Y

A((w; r), (v; q))

‖(v; q)‖Y
≥ α‖(w; r)‖Y ∀(w; r) ∈ Y
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NEW STABILITY ANALYSIS OF SADDLE-POINT PROBLEMS 11

because the supremum on the left-hand side of (2.48) is bounded from below by

A((w; r), (v; q))

‖(v; q)‖Y

if we insert any fixed (v; q), in particular the choice we made and for which we
proved

A((w; r), (v; q))

‖(v; q)‖Y
≥

1
4‖(w; r)‖2

Y

(2 max{(δ2 + 1), (β−2 + δ2)})1/2‖(w; r)‖Y

.

�

Remark 2.20. The statement of Theorem 2.15 remains valid if the norms ‖ · ‖Q

and ‖ · ‖V , as defined in (2.29) and (2.30), are replaced with equivalent norms
‖ · ‖Q,eqv � ‖ · ‖Q and ‖ · ‖V,eqv � ‖ · ‖V , hence using ‖ · ‖V,eqv in (2.33) in this case.
The proof remains unchanged and the only difference in the final result is that the
inf-sup constant α in (2.48) with respect to the (new) equivalent combined norm
has to be scaled by the quotient of the constants in the norm equivalence relation
for the combined norms. For that reason, without loss of generality, we can use the
fitted norms defined by (2.29) and (2.30) directly in the formulation of Theorem
2.15.

Remark 2.21. An advantage of the new framework is that Theorem 2.15 provides
sufficient conditions that are easy to verify in practice. These are given in form of
an LBB-type condition on the basis of the proposed norm fitting technique, which
allows, contrary to the technique in [63], to choose the norms subsequently, see
also Remark 2.14.

3. Applications of the framework

In this section four different classes of problems are analyzed by means of the
proposed framework demonstrating its versatility and ease of application. Here,
we use bold letters to denote vector-valued functions and the spaces to which they
belong which means that we identify certain non-bold symbols from the abstract
framework in the previous section with bold symbols, e.g., v = v. To prove stability
of the exemplified mixed variational formulations, we assume that proper boundary
conditions are imposed. In certain cases, we will also make use of the following
classical inf-sup conditions, see [16], also [12, 17], for the pairs of spaces (V , Q):
there exist constants βd and βs such that

inf
q∈Q

sup
v∈V

(divv, q)

‖v‖div‖q‖ ≥ βd > 0,(3.1)

inf
q∈Q

sup
v∈V

(divv, q)

‖v‖1‖q‖ ≥ βs > 0,(3.2)

where the norms ‖ · ‖div, ‖ · ‖1 and ‖ · ‖ denote the standard H(div), H1 and L2

norms and (·, ·) is the L2-inner product.

3.1. Generalized Poisson and generalized Stokes equations.
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12 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

Example 3.1. The first example, see [13], is the following mixed variational prob-
lem resulting from a weak formulation of a generalized Poisson equation: find
(u, p) ∈ H(div, Ω) × L2(Ω) such that

(u, v) + (p, divv) = 0, ∀v ∈ H(div, Ω),(3.3)

(divu, q) − t(p, q) = −(f, q), ∀q ∈ L2(Ω),

where t ≥ 0 is a parameter.
The bilinear forms generating A((·; ·), (·; ·)) are given by

a(u, v) := (u, v), b(v, q) := (divv, q), c(p, q) = t(p, q), ∀u, v ∈ V , ∀p, q ∈ Q,

where Q := L2(Ω), V := H(div, Ω). Using the norm fitting technique, we define
| · |Q, | · |V by

|q|2Q := (q, q) ∀q ∈ Q and |v|2V := (v, v) ∀v ∈ V .

Obviously, B := div : V → Q′, and (2.29) and (2.30) take the form

‖q‖2
Q = |q|2Q + c(q, q) = (q, q) + t(q, q) = ((1 + t)q, q) = 〈(1 + t)Iq, q〉Q′×Q,

‖v‖2
V = |v|2V +|v|2b =(v, v)+〈divv,

1

(1+t)
Idivv〉Q′×Q =(v, v)+

1

(1+t)
(divv, divv),

respectively. Since a(v, v) = (v, v) = |v|2V for all v ∈ V , condition (2.32) in
Theorem 2.15 is satisfied with Ca = 1.

Finally, we have to verify condition (2.33) in Theorem 2.15, namely

sup
v∈V

(divv, q)

(‖v‖2 + 1
(1+t)‖divv‖2)1/2

≥ β|q|Q =: β‖q‖, ∀q ∈ Q,

which follows directly from the classical inf-sup condition (3.1) on the spaces (V , Q)
since t ≥ 0.

As a result, we obtain that the preconditioner

B :=

[
(I − (1 + t)−1∇div)−1

((1 + t)I)−1

]

is norm-equivalent for the combined norm, cf. [47]. To solve the H(div) subproblem,
one can use various preconditioners, see, e.g., [30, 38], multigrid, see, e.g., [2, 61],
and domain decomposition methods [59].

Remark 3.2. Note that in Example 3.1 as well as the ones which follow, the per-
turbation term c(·, ·), due to the presence of various parameters, can dominate
the problem. In this situation stability often cannot be proven using Theorem 2.8
because ‖q‖Q has to bound c(q, q)

1
2 which for dominating perturbation conflicts

satisfying the classical LBB condition (2.22) uniformly. A way to overcome this
problem is to work either with the Braess inf-sup condition, see Theorem 2.10,
or with the Babuška inf-sup condition, see Theorem 2.1, or, alternatively use the
simpler to verify inf-sup condition provided in Theorem 2.15.

Example 3.3. The second example we consider is taken from [43]. Its mixed
variational formulation reads: find (u, p) ∈ H1

0 (Ω) × (H1(Ω) ∩ L2
0(Ω)) such that

(∇u, ∇v) − (p, divv) = (f , v), ∀v ∈ H1
0 (Ω),(3.4)

−(divu, q) − (κ∇p, ∇q) = (g, q), ∀q ∈ H1(Ω) ∩ L2
0(Ω),

where κ ≥ 0 is a parameter.
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The bilinear forms defining A((·; ·), (·; ·)) here are given by

a(u, v) := (∇u, ∇v), b(v, q) := −(divv, q),

c(p, q) = (κ∇p, ∇q), ∀u, v ∈ V , ∀p, q ∈ Q.

In Example 3.3, we set Q := H1(Ω) ∩ L2
0(Ω), V := H1

0 (Ω), and | · |Q, | · |V to be

|q|2Q := (q, q) ∀q ∈ Q and |v|2V := (∇v, ∇v) ∀v ∈ V .

Then the operator B is defined by B : V → Q′, B := −div and the norm split-
tings (2.29) and (2.30) are given by

(3.5) ‖q‖2
Q = |q|2Q + c(q, q) = (q, q) + (κ∇q, ∇q) = 〈Q̄q, q〉Q′×Q

and

‖v‖2
V = |v|2V + |v|2b = (∇v, ∇v) + 〈Bv, Q̄−1Bv〉Q′×Q.

Condition (2.32) is automatically satisfied with Ca = 1. To show (2.33) we first
note that using (3.5) we obtain

〈Bv, Q̄−1Bv〉Q′×Q = ‖Bv‖2
Q′ =

(
sup
q �=0

b(v, q)

‖q‖Q

)2

=

(
sup
q �=0

(divv, q)

‖q‖Q

)2

≤
(

sup
q �=0

‖divv‖‖q‖
‖q‖Q

)2

≤ (divv, divv).

Thus,

‖v‖2
V = (∇v, ∇v) + 〈Bv, Q̄−1Bv〉Q′×Q ≤ (∇v, ∇v) + (divv, divv) ≤ 2(∇v, ∇v)

≤ 2‖v‖2
1.

(3.6)

Now, we choose v0 such that −divv0 = q and hereby obtain from the Stokes inf-sup
condition (3.2) the estimate ‖v0‖1 ≤ 1

βs
‖q‖, and, finally,

sup
v∈V

b(v, q)

‖v‖V
≥ b(v0, q)

‖v0‖V
=

‖q‖2

‖v0‖V
≥ 1√

2

‖q‖2

‖v0‖1
≥ βs√

2

‖q‖2

‖q‖ =: β‖q‖ = β|q|Q, ∀q ∈ Q.

The induced norm-equivalent preconditioner in Example 3.3 reads as

B :=

[
(−Δ − ∇(I − divκ∇)−1div)−1

(I − divκ∇)−1

]
�

[
−Δ−1

(I − divκ∇)−1

]
,

where the equivalence is due to (3.6).

3.2. Stokes Darcy problem.

Example 3.4. Let Ω = ΩS ∪ΩD and Γ = ∂ΩS ∩∂ΩD. We assume that ΓD
S ∪ΓN

S ∪Γ
forms a disjoint decomposition of ∂ΩS and, similarly, ΓD

D ∪ ΓN
D ∪ Γ is a partition of

∂ΩD. Denote

H1
ΓD

i
(Ωi) =

{
w ∈ H1(Ωi) : w|ΓD

i
= 0

}
, i = S or D.
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The classical formulation of Stokes Darcy problem follows [22]: Find (u, pS, pD) ∈
H1

ΓD
S

(ΩS) × L2(ΩS) × H1
ΓD

D
(ΩD) such that

(2με (u) , ε (v))ΩS
+ βτ (τ · u, τ · v)Γ

− (pS, ∇ · v)ΩS
+ (pD, n · v)Γ = (fS , v)ΩS

, ∀v ∈ H1
ΓD

S
(ΩS),

− (∇ · u, qS)ΩS
= 0, ∀qS ∈ L2(ΩS),

(n · u, qD)Γ − (κ∇pD, ∇qD)ΩD
= (fD, qD)ΩD

, ∀qD ∈ H1
ΓD

D
(ΩD),

where n := nS is the outer normal of the Stokes domain and τ := I − (n ⊗ n) is
the projection onto the tangent bundle of the interface Γ.

The bilinear forms defining A((·; ·), (·; ·)) here are given by

a(u, v) := (2με (u) , ε (v))ΩS
+ βτ (τ · u, τ · v)Γ , ∀u, v ∈ V ,

b(v, q) := − (qS , ∇ · v)ΩS
+ (qD, n · v)Γ , ∀v ∈ V , ∀q ∈ Q,

c(p, q) := (κ∇pD, ∇qD)ΩD
, ∀p, q ∈ Q,

where V = H1
ΓD

S
(ΩS), Q = L2(ΩS)×H1

ΓD
D

(ΩD) and p = (pS, pD), q = (qS , qD). We

fix | · |Q, | · |V to be

|q|2Q := (2μ)−1(qS , qS)ΩS
+ (2μ)−1‖qD‖2

− 1
2 ,Γ, ∀q ∈ Q,

|v|2V := (2με (v) , ε (v))ΩS
+ βτ (τ · v, τ · v)Γ , ∀u ∈ V .

Noting that a(v, v) = |v|2V for all v ∈ V , that is, (2.32) is satisfied with Ca = 1.
In addition, we have

‖q‖2
Q := |q|2Q + c(q, q) = 〈Q̄q, q〉Q′×Q, ∀q ∈ Q,

‖v‖2
V := |v|2V + 〈Bv, Q̄−1Bv〉Q′×Q = |v|2V + |v|2b , ∀v ∈ V .

The continuity of B is shown by the following calculation, utilizing the Cauchy-
Schwarz inequality and a trace inequality:

(3.7)

〈Bv, q〉Q′×Q = − (∇ · v, pS)ΩS
+ (n · v, qD)Γ

≤ ‖∇ · v‖ΩS
‖qS‖ΩS

+ ‖n · v‖ 1
2 ,Γ‖qD‖− 1

2 ,Γ

� ‖ε (v) ‖ΩS

(
‖qS‖ΩS

+ ‖qD‖− 1
2 ,Γ

)

� (2μ)
1
2 ‖ε (v) ‖ΩS

(2μ)− 1
2

(
‖qS‖2

ΩS
+ ‖qD‖2

− 1
2 ,Γ

) 1
2

≤ |v|V |q|Q ≤ |v|V ‖q‖Q.

Furthermore, by (2.31), we have

(3.8) |v|b = ‖Bv‖Q′ = sup
q∈Q

〈Bv, q〉Q′×Q

‖q‖Q
≤ |v|V , ∀v ∈ V ,

and ‖ · ‖V is equivalent to | · |V , namely

(3.9) ‖v‖V � |v|V , ∀v ∈ V .

Now we show that (2.33) is satisfied. By (3.9), it suffices to show the following
inf-sup condition of B: there exists a constant β > 0 such that

(3.10) sup
v∈V
v �=0

b(v, q)

|v|V
≥ β|q|Q, ∀q ∈ Q.
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NEW STABILITY ANALYSIS OF SADDLE-POINT PROBLEMS 15

For any given q = (qS , qD), let vS ∈ H1 (ΩS) be constructed, using the Stokes
inf-sup condition (3.2), such that

(3.11) vS |Γ = 0, ∇ · vS = −qS , ‖ε
(
vS

)
‖ΩS

≤ βs‖qS‖ΩS
.

On the other hand, let φ ∈ H
1
2 (Γ) be the Riesz representative of qD|Γ ∈ H− 1

2 (Γ).
We then define vD ∈ H1 (ΩS) as the bounded extension that satisfies

(3.12) vD|Γ = φn, ∇ · vD = 0, ‖ε
(
vD

)
‖ΩS

≤ β0‖φ‖ 1
2 ,Γ = β0‖qD‖− 1

2 ,Γ.

We now set the test function v0 := (2μ)−1
(
vS + vD

)
. Noting that τ · v0 = 0 on Γ,

this function satisfies

b(v0, q) = −(2μ)−1
(
∇ · vS , qS

)
ΩD

+ (2μ)−1
(
n · vD, qD

)
Γ

= (2μ)−1‖qS‖2
ΩS

+ (2μ)−1‖qD‖2
− 1

2 ,Γ = |q|2Q,

|v0|V = (2μ)
1
2 ‖ε

(
(2μ)−1

(
vS + vD

))
‖ΩS

≤ (2μ)− 1
2

(
‖ε

(
vS

)
‖ΩS

+ ‖ε
(
vD

)
‖ΩS

)

� (2μ)− 1
2

(
‖qS‖ΩS

+ ‖qD‖− 1
2 ,Γ

)
= |q|Q.

Hence, condition (3.10) is fulfilled.

3.3. Vector Laplace equation.

Example 3.5. We consider the following mixed variational formulation of the
vector Laplace equation [3, 37]: find p ∈ H0(curl, Ω), u ∈ H0(div, Ω), such that

(αp, q) − (u, curlq) = 0, ∀q ∈ H0(curl, Ω),(3.13)

−(curlp, v) − (divu, divv) = (f, v), ∀v ∈ H0(div, Ω),

where α is a positive scalar. Here, H0(curl, Ω) = {q ∈ L2(Ω) : curlq ∈ L2(Ω), q ×
n = 0 on ∂Ω} and H0(div, Ω) = {v ∈ L2(Ω) : divv ∈ L2(Ω), v ·n = 0 on ∂Ω}. We
rewrite the above equations as

(divu, divv) + (curlp, v) = −(f, v), ∀v ∈ H0(div, Ω),(3.14)

(u, curlq) − (αp, q) = 0, ∀q ∈ H0(curl, Ω).

The bilinear forms that define A((·; ·), (·; ·)) are

a(u, v) := (divu, divv), ∀u, v ∈ V ,

b(v, p) := (curlp, v), ∀v ∈ V , ∀p ∈ Q,

c(p, q) := (αp, q), ∀p, q ∈ Q,

where V = H0(div, Ω), Q = H0(curl, Ω). We fix | · |Q and | · |V to be

|q|2Q := ((α + 1)curlq, curlq), ∀q ∈ Q,

|v|2V := (divv, divv), ∀v ∈ V .

As in the previous examples, a(v, v) = |v|2V for all v ∈ V , that is, (2.32) is satisfied
with Ca = 1. In addition, noting that B := curl∗ : V → Q′, we have

‖q‖2
Q := |q|2Q + c(q, q) = ((α + 1)curlq, curlq) + (αq, q) = 〈Q̄q, q〉Q′×Q, ∀q ∈ Q,

‖v‖2
V := |v|2V + 〈Bv, Q̄−1Bv〉Q′×Q

= (divv, divv) +
(
(αI + curl∗(α + 1)curl)−1curl∗v, curl∗v

)
, ∀v ∈ V .
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16 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

Now we show that (2.33) is satisfied. For any q ∈ Q, choose v0 = curlq ∈ V to
obtain

‖v0‖2
V = (div curlq, div curlq) +

(
(αI + curl∗(α + 1)curl)−1curl∗curlq, curl∗curlq

)

=
(
(αI + curl∗(α + 1)curl)−1curl∗curlq, curl∗curlq

)

≤ (q, (α + 1)−1curl∗curlq)

= ((α + 1)−1curlq, curlq)

and
(3.15)

sup
v∈V

b(v, q)

‖v‖V
≥ b(v0, q)

‖v0‖V
=

(curlq, curlq)

‖v0‖V
≥ (curlq, curlq)

((α + 1)−1curlq, curlq)
1
2

= |q|Q.

Remark 3.6. Consider H(div0, Ω) = {v ∈ H(div, Ω) : divv = 0}. Then for any
α > 0 and v ∈ H0(curl, Ω) ∩ H(div0, Ω), we have

((αI + (α + 1)curl∗curl)v, v) ≤ (cP α + (α + 1))(curl∗curlv, v)

≤ c1((α + 1)curl∗curlv, v),

where cP denotes the Poincaré constant for the curl operator and c1 = cP + 1.
Hence,

((αI + (α + 1)curl∗curl)−1f , f) ≥ c−1
1 ((α + 1)−1(curl∗curl)−1f , f),

for any f ∈ (αI + (α + 1)curl∗curl) (H0(curl, Ω) ∩ H(div0, Ω)). Now, by using the
Helmholtz decomposition v = curlw + ∇z of v and choosing f = curl∗v we obtain

(3.16) c−1
1 ((α + 1)−1curlw, curlw) ≤

(
(αI + (α + 1)curl∗curl)−1curl∗v, curl∗v

)
.

On the other hand, the Poincare’s inequality for vector Laplacian (see Theorem 2.2
in [3]) implies

(∇z, ∇z) ≤ cPv
((div(∇z), div(∇z)) + (curl(∇z), curl(∇z))) = cPv

(divv, divv),

(3.17)

where cPv
denotes the Poincaré constant for vector Laplacian. By multiplying

(3.17) with c−1
1 (α + 1)−1 we obtain

c−1
1 (α + 1)−1(∇z, ∇z) ≤ c−1

1 (α + 1)−1cPv
(divv, divv) ≤ c−1

1 cPv
(divv, divv).

(3.18)

Combining (3.16) and (3.18) and noting that (v, v) = (curlw, curlw) + (∇z, ∇z),
we have

c−1
1 (α + 1)−1‖v‖2 ≤ c−1

1 cPv
‖divv‖2 +

(
(αI + (α + 1)curl∗curl)−1curl∗v, curl∗v

)
.

Next we add c−1
1 ‖divv‖2 to both sides and get

c−1
1

(
(α + 1)−1‖v‖2 + ‖divv‖2

)

≤ c−1
1 (cPv

+ 1)‖divv‖2 +
(
(αI + (α + 1)curl∗curl)−1curl∗v, curl∗v

)
.

By multiplying with c1 and setting c2 := max {c1, (cPv
+ 1)} it follows that

(α + 1)−1‖v‖2 + (divv, divv) ≤ c2‖v‖2
V .
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Moreover, we have

‖v‖2
V = |v|2V + 〈Bv, Q̄−1Bv〉Q′×Q

= (divv, divv) +
(
(αI + curl∗(α + 1)curl)−1curl∗v, curl∗v

)

≤ (divv, divv) +
(
(α + 1)−1v, v

)
.

Therefore we conclude that ‖v‖2
V and (divv, divv)+ ((α+1)−1v, v) are equivalent.

The corresponding norm-equivalent preconditioner is then given by

B :=

[
((α + 1)−1I − ∇div)−1

(αI + (α + 1)curl∗curl)−1

]
.

To solve the H(curl) subproblem, one can use the preconditioner proposed in [30],
the multigrid method in [2], or domain decomposition methods [59].

3.4. Poromechanics.

Example 3.7. The two-field formulation of the quasi-static Biot’s consolidation
model after semidiscretization in time by the implicit Euler method as studied
in [1, 43] reads: find (u, pF ) ∈ H1

0 (Ω) × H1
0 (Ω) such that

(ε(u), ε(v)) + λ(divu, divv) − α(pF , divv) = (f , v), ∀v ∈ H1
0 (Ω),(3.19)

−α(divu, qF ) − c0(pF , qF ) − (κ∇pF , ∇qF ) = (g, qF ), ∀q ∈ H1
0 (Ω),

where λ ≥ 0 is a scaled Lamé coefficient, c0 ≥ 0 is the storage coefficient, κ is the
(scaled) hydraulic conductivity, and α is the (scaled) Biot-Willis coefficient.

The bilinear forms defining A((·; ·), (·; ·)) are given by

a(u, v) := (ε(u), ε(v)) + λ(divu, divv), ∀u, v ∈ V ,

b(v, qF ) := −α(divv, qF ), ∀v ∈ V , ∀qF ∈ Q,

c(pF , qF ) := c0(pF , qF ) + (κ∇pF , ∇qF ), ∀pF , qF ∈ Q,

where Q := H1
0 (Ω), V := H1

0 (Ω). We define | · |Q, | · |V to be

|qF |2Q := η(qF , qF ), ∀qF ∈ Q,

|v|2V := (ε(v), ε(v)) + λ(divv, divv), ∀v ∈ V ,

where the parameter η > 0 is to be determined later. As before, a(v, v) ≥ |v|2V for
all v ∈ V , that is, (2.32) is satisfied with Ca = 1. It remains to show (2.33). As in
Example 3.3, it is easy to see that

〈Bv, Q̄−1Bv〉Q′×Q ≤ α2

η
(divv, divv),

where B : V → Q′, B := −αdiv. Therefore, we obtain

(3.20)

‖v‖2
V = (ε(v), ε(v)) + λ(divv, divv) + 〈Bv, Q̄−1Bv〉Q′×Q

≤ (ε(v), ε(v)) +

(
λ +

α2

η

)
(divv, divv) ≤

(
1 + λ +

α2

η

)
‖v‖2

1.
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18 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

We choose v0 such that −divv0 = 1√
1+λ

qF and use (3.2) to obtain ‖v0‖1 ≤
1
βs

1√
1+λ

‖qF ‖, and finally

(3.21)

sup
v∈V

b(v, qF )

‖v‖V
≥ b(v0, qF )

‖v0‖V
=

α√
1+λ

‖qF ‖2

‖v0‖V
≥

α√
1+λ√(

1 + λ + α2

η

)
‖qF ‖2

‖v0‖1

≥ βsα√(
1 + λ + α2

η

)
‖qF ‖2

‖qF ‖ =
βsα√(

1 + λ + α2

η

)
1√
η
|qF |Q.

For η := α2

(1+λ) > 0 the right-hand side of (3.21) is bounded from below by βs√
2
|qF |Q

which shows (2.33) with β = 1√
2
βs. Note that there are also other possible choices

for η.
We conclude that

B :=

[
(−divε − (1 + λ)∇div)−1

((
c0 + α2/(1 + λ)

)
I − divκ∇

)−1

]

provides a norm-equivalent preconditioner for the combined norm, where we have
used (3.20). To solve the elasticity subproblem, one can use the multigrid method
proposed in [31, 36].

Example 3.8. By introducing pS = −λdivu and substituting αpF → pF , c0α
−2 →

c0, κα−2 → κ, α−1g → g in Example 3.7 we obtain the following three-field varia-
tional formulation of Biot’s model, see [43],

(ε(u), ε(v)) − (pS + pF , divv) = (f , v), ∀v ∈ H1
0 (Ω),(3.22)

−(divu, qS) − λ−1(pS , qS) = 0, ∀qS ∈ L2
0(Ω),

−(divu, qF ) − c0(pF , qF ) − (κ∇pF , ∇qF ) = (g, qF ), ∀qF ∈ H1
0 (Ω).

The bilinear forms that determine A((·; ·), (·; ·)) are

a(u, v) := (ε(u), ε(v)), ∀u, v ∈ V ,

b(v, q) := −(divv, qS) − (divv, qF ), ∀v ∈ V , ∀q ∈ Q,

c(p, q) := λ−1(pS, qS) + c0(pF , qF ) + (κ∇pF , ∇qF ), ∀p, q ∈ Q,

where V = H1
0 (Ω), Q = L2

0(Ω) × H1
0 (Ω) and p = (pS; pF ), q = (qS; qF ). Then the

operator B is given by

B :=

(
−div
−div

)
.

Moreover, we define | · |Q, | · |V to be

|q|2Q :=

((
I I
I I

)(
qS

qF,0

)
,

(
qS

qF,0

))
= ‖qS + qF,0‖2, ∀q ∈ Q,

|v|2V := (ε(v), ε(v)), ∀v ∈ V ,
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where qF,0 := P0qF and P0 is the L2 projection from L2(Ω) to L2
0(Ω). Then

‖q‖2
Q =

((
I I
I I

)(
qS

qF,0

)
,

(
qS

qF,0

))
+

((
λ−1I 0

0 c0I − divκ∇

) (
qS

qF

)
,

(
qS

qF

))

=

((
(1 + λ−1)I P0

P0 P0 + c0I − divκ∇

) (
qS

qF

)
,

(
qS

qF

))
= (Q̄q, q)

= 〈Q̄q, q〉Q′×Q.

As in the previous examples, (2.32) is satisfied with Ca = 1. Next, we choose v0

such that −divv0 = qS + qF,0 for which we have ‖v0‖1 ≤ β−1
s ‖qS + qF,0‖, see (3.2).

Then

b(v0, q) = ‖qS + qF,0‖2 = |q|2Q.

Moreover,

‖v0‖2
V = (ε(v0), ε(v0)) + (Q̄−1Bv0, Bv0)

= (ε(v0), ε(v0)) +

(
Q̄−1

(
−divv0

−divv0

)
,

(
−divv0

−divv0

))

≤ ‖v0‖2
1 +

1

4

(
Q̄−1

(
I P0

P0 P0

) (
divv0

divv0

)
,

(
I P0

P0 P0

) (
divv0

divv0

))

≤ ‖v0‖2
1 +

1

4

((
I P0

P0 P0

) (
divv0

divv0

)
,

(
divv0

divv0

))
= ‖v0‖2

1 + (divv0, divv0)

≤ β−2
s ‖qS + qF,0‖2 + ‖qS + qF,0‖2 = (β−2

s + 1)|q|2Q.

Now (2.33) follows directly from

sup
v∈V

b(v, q)

‖v‖V
≥ b(v0, q)

‖v0‖V
≥

|q|2Q√
(β−2

s + 1)|q|Q
=: β|q|Q, ∀q ∈ Q.

Using the fitted norms for the constructions of a norm-equivalent preconditioner,
cf. [47], results in

B :=

⎡
⎣
(−divε)−1

(
(1 + λ−1)I P0

P0 P0 + c0I − divκ∇

)−1

⎤
⎦ .

Remark 3.9. In [43], the authors showed that the three-field formulation for Biot’s
model in Example 3.8 is not stable under the Q-seminorm defined by |q|2Q = ‖pS‖2+

‖pF ‖2.

Example 3.10. By introducing the total pressure pT = pS+pF in Example 3.8, an-
other discrete in time three-field formulation of the quasi-static Biot’s consolidation
model, see [43], is obtained and has the form

(ε(u), ε(v)) − (pT , divv) = (f , v), ∀v ∈ H1
0 (Ω),(3.23)

−(divu, qT ) − (λ−1pT , qT ) + (αλ−1pF , qT ) = 0, ∀qT ∈ L2(Ω),

(αλ−1pT , qF ) − ((α2λ−1 + c0)pF , qF ) − (κ∇pF , ∇qF ) = (g, qF ), ∀qF ∈ H1
0 (Ω).
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Here, A((·; ·), (·; ·)) is constructed from

a(u, v) :=(ε(u), ε(v)), ∀u, v ∈ V ,

b(v, q) := − (divv, qT ), ∀v ∈ V , ∀q ∈ Q,

c(p, q) :=(λ−1pT , qT ) − (αλ−1pF , qT ) − (αλ−1pT , qF ) + ((α2λ−1 + c0)pF , qF )

+ (κ∇pF , ∇qF ), ∀p, q ∈ Q,

where V = H1
0 (Ω), Q = L2(Ω)×H1

0 (Ω) and p = (pT ; pF ), q = (qT ; qF ). Obviously,
the operator B : V → Q′ is defined by

B :=

(
−div

0

)
.

We next set

|q|2Q := (qT,0, qT,0), ∀q ∈ Q,

|v|2V := (ε(v), ε(v)), ∀v ∈ V ,

where qT,0 := P0qT is the L2 projection of qT ∈ L2(Ω) to L2
0(Ω). Now we choose

v0 ∈ V = H1
0 (Ω) such that −divv0 = qT,0 for which it holds ‖v0‖1 ≤ β−1

s ‖qT,0‖ =
β−1

s |q|Q, see (3.2), and also

b(v0, q) = (qT,0, qT,0) = |q|2Q.

From the definition of ‖ · ‖Q, and using similar arguments as in the previous exam-
ples, we obtain

‖v0‖2
V = (ε(v0), ε(v0)) + 〈Bv0, Q̄

−1Bv0〉 ≤ (ε(v0), ε(v0)) + (divv0, divv0)

≤ 2‖v0‖2
1 ≤ 2β−2

s |q|2Q.

Again, (2.32) is satisfied with Ca = 1 while (2.33) follows from

sup
v∈V

b(v, q)

‖v‖V
≥ b(v0, q)

‖v0‖V
≥ βs

|q|2Q
|q|Q

=: β|q|Q, ∀q ∈ Q.

Thus, the fitted norms generate the norm-equivalent preconditioner

B :=

⎡
⎣
(−divε)−1

(
λ−1I + P0 −αλ−1I
−αλ−1I α2λ−1I + c0I − divκ∇

)−1

⎤
⎦ .

Remark 3.11. The arguments presented above are valid for a vanishing storage
coefficient, i.e., c0 = 0. Moreover, our analysis shows how Example 3.8 and Ex-

ample 3.10 are related to each other. In fact, by the transformation

(
pT

pF

)
=

(
I I
0 I

)(
pS

pF

)
or, equivalently,

(
pS

pF

)
=

(
I −I
0 I

) (
pT

pF

)
, we can derive the stabil-

ity and preconditioners of Example 3.8 and Example 3.10 from each other.
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Remark 3.12. Note that for the case c0 = α2λ−1, as considered in [43], we can
further estimate

c(q, q) :=(λ−1qT , qT ) − 2(αλ−1qF , qT ) + 2(α2λ−1qF , qF ) + (κ∇qF , ∇qF )

≥1

4
(λ−1qT , qT ) +

2

3
(α2λ−1qF , qF ) + (κ∇qF , ∇qF )

≥1

4

(
(λ−1qT , qT ) + (α2λ−1qF , qF ) + (κ∇qF , ∇qF )

)
.

Hence, we obtain

‖q‖2
Q = |q|2Q + c(q, q)

≥ 1

4

(
(qT,0, qT,0) + (λ−1qT , qT ) + (α2λ−1qF , qF ) + (κ∇qF , ∇qF )

)
,

from which we conclude the stability result and preconditioner shown in [43]:

B0 :=

⎡
⎣

(−divε)−1

(
λ−1I + P0

α2λ−1I − divκ∇

)−1

⎤
⎦ .

Example 3.13. Next we consider a four-field formulation of Biot’s model in which
a total pressure has been introduced [39]. The variational problem reads as

2μ(ε(u), ε(v)) + (pT , divv) = (f , v), ∀v ∈ H1
0 (Ω),(3.24)

1

τκ
(w, z) − (p, divz) = 0, ∀z ∈ H0(div, Ω),

(divu, qT ) − λ−1(pT , qT ) − α

λ
(p, qT ) = 0, ∀qT ∈ L2

0(Ω),

−(divw, q) − α

λ
(pT , q) −

(
c0 +

α2

λ

)
(p, q) = (f, q), ∀q ∈ L2

0(Ω),

with μ and λ the Lamé coefficients, τ the time step size, κ the hydraulic conduc-
tivity, α the Biot-Willis coefficient, and c0 ≥ 0 the constrained specific storage
coefficient.

The bilinear forms defining A((·; ·), (·; ·)) in Example 3.13 are given by

a(ū, v̄) :=2μ(ε(u), ε(v)) +
1

τκ
(w, z), ∀ū, v̄ ∈ V ,

b(v̄, q) :=(divv, qT ) − (divz, q), ∀v̄ ∈ V , ∀q ∈ Q,

c(p, q) :=λ−1(pT , qT ) +
α

λ
(p, qT ) +

α

λ
(pT , q) +

(
c0 +

α2

λ

)
(p, q), ∀p, q ∈ Q,

where ū := (u; w), v̄ := (v; z) ∈ V = H1
0 (Ω) × H0(div, Ω), p := (pT ; p), q :=

(qT ; q) ∈ Q = L2
0(Ω) × L2

0(Ω). Hence, B has the form

B =

(
div 0
0 −div

)
.

Using the norm fitting technique, we define

|q|2Q :=
1

2μ
(qT , qT ) + τκ(q, q), ∀q ∈ Q,

|v̄|2V := 2μ(ε(v), ε(v)) +
1

τκ
(z, z), ∀v̄ ∈ V .

For this choice of | · |V the coercivity estimate (2.32) is again fulfilled with Ca = 1.

Licensed to University Duisburg Essen, Essen. Prepared on Tue Nov 22 05:28:34 EST 2022 for download from IP 132.252.62.105.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 Q. HONG, J. KRAUS, M. LYMBERY, AND F. PHILO

Now, in view of the Stokes and Darcy inf-sup conditions (3.2) and (3.1), for any
q = (qT ; q) we can choose v̄0 = (v0; z0) such that divv0 = 1

2μqT and −divz0 = τκ q

and it holds that

‖v0‖1 ≤ β−1
s

2μ
‖qT ‖, ‖z0‖div ≤ β−1

d τκ‖q‖.(3.25)

Then we have

b(v̄0, q) =(divv0, qT ) − (divz0, q) =
1

2μ
(qT , qT ) + τκ(q, q) = |q|2Q(3.26)

and

‖v̄0‖2
V = 2μ(ε(v0), ε(v0)) +

1

τκ
(z0, z0) + 〈Bv̄0, Q̄

−1Bv̄0〉

= 2μ(ε(v0), ε(v0)) +
1

τκ
(z0, z0) +

(
Q̄−1

(
divv0

−divz0

)
,

(
divv0

−divz0

))

≤ 2μ‖v0‖2
1 +

1

τκ
‖z0‖2 +

((
2μI 0
0 1

τκI

) (
divv0

−divz0

)
,

(
divv0

−divz0

))

= 2μ‖v0‖2
1 +

1

τκ
‖z0‖2 + 2μ‖divv0‖2 +

1

τκ
‖divz0‖2

≤ 4μ‖v0‖2
1 +

1

τκ
‖z0‖2

div.

Now by (3.25) and the definition of | · |Q, we obtain

(3.27)

‖v̄0‖2
V ≤ 4μ‖v0‖2

1 +
1

τκ
‖z0‖2

div ≤ 4μ
β−2

s

4μ2
‖qT ‖2 +

1

τκ
β−2

d τ2κ2‖q‖2

≤ 2 max{β−2
s , β−2

d }
(

1

2μ
‖qT ‖2 + τκ‖q‖2

)
≤ 2 max{β−2

s , β−2
d }|q|2Q.

Hence, in Example 3.14 (2.33) follows from

sup
v̄∈V

b(v̄, q)

‖v̄‖V
≥ b(v̄0, q)

‖v̄0‖V
≥

|q|2Q√
2 max{β−2

s , β−2
d }|q|Q

=: β|q|Q, ∀q ∈ Q,

where we have used (3.26) and (3.27).
From our findings we conclude that

B :=

⎡
⎣

([
−2μdivε

(τκ)−1I

]
+

[
−∇

∇

]
C−1

[
div

−div

])−1

C−1

⎤
⎦

�

⎡
⎣

(−2μdivε)−1

τκ(I − ∇div)−1

C−1

⎤
⎦

provides a norm-equivalent preconditioner, where

C :=

[
(λ−1 + (2μ)−1)I αλ−1I

αλ−1I (c0 + α2λ−1 + τκ)I

]
and

C−1 = η

[
2μ(α2 + λ(c0 + τκ))I −2μαI

−2μαI (λ + 2μ)I

]
,

with η = 1/(α2 + (λ + 2μ)(c0 + τκ)).
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Example 3.14. Finally, let us consider the classical three-field formulation of Biot’s
consolidation model as analyzed in [32]. After some rescaling of parameters and
semidiscretization in time by the implicit Euler method the static variational prob-
lem to be solved in each time step is given by

(ε(u), ε(v)) + λμ(divu, divv) − (p, divv) = (f , v), ∀v ∈ H1
0 (Ω),(3.28)

R−1
p (w, z) − (p, divz) = 0, ∀z ∈ H0(div, Ω),

−(divu, q) − (divw, q) − αp(p, q) = (g, q), ∀q ∈ L2
0(Ω),

with parameters λμ = λ/(2μ), R−1
p = α2τ−1κ−1, and αp = c0α

−2. In this example,

we set V := H1
0 (Ω) × H0(div, Ω), Q := L2

0(Ω). The individual bilinear forms are
defined by

a(ū, v̄) = a((u; w), (v; z))

:= (ε(u), ε(v)) + λμ(divu, divv) + R−1
p (w, z), ∀ū, v̄ ∈ V ,

b(v̄, q) = b((v; z), q) := −(divv + divz, q) =: −(Divv̄, q), ∀v̄ ∈ V , ∀q ∈ Q,

c(p, q) := αp(p, q), ∀p, q ∈ Q,

and B : V → Q′, B = −Div where Divv̄ = Div(v; z) := divv + divz.
The fitted norms we use in Example 3.14 are determined by

|q|2Q :=

(
Rp +

1

1 + λμ

)
(q, q), ∀q ∈ Q,

|v̄|2V := a(v̄, v̄), ∀v̄ ∈ V .

The coercivity estimate (2.32) is again trivially fulfilled with Ca = 1.
Next, from the inf-sup conditions (3.1) and (3.2) we infer that for any q ∈ Q

there exist v0 and z0 such that v̄0 := (v0; z0) ∈ V such that

−divz0 = Rpq and ‖z0‖2
div ≤ β−2

d R2
p‖q‖2,(3.29a)

−divv0 =
1

1 + λμ
q and ‖v0‖2

1 ≤ β−2
s

1

(1 + λμ)2
‖q‖2.(3.29b)

Now, from (3.29a) and (3.29b) we conclude

(3.30)
β−2

d Rp‖q‖2 ≥ R−1
p ‖z0‖2

div = R−1
p

(
‖divz0‖2 + ‖z0‖2

)

= ‖R−1/2
p divz0‖2 + ‖R−1/2

p z0‖2,

(3.31)

β−2
s

1

1 + λμ
‖q‖2 ≥ (1 + λμ)‖v0‖2

1 =
1

2
(1 + λμ)2

(
‖∇v0‖2 + ‖v0‖2

)

≥ 1

2
[(ε(v0), ε(v0)) + λμ(divv0, divv0) + (1 + λμ)(divv0, divv0)] .
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Choosing β := min{βd,
βs√

2
}, we obtain

β−2|q|2Q = β−2

(
Rp +

1

1 + λμ

)
‖q‖2

≥ (ε(v0), ε(v0)) + λμ(divv0, divv0) + R−1
p (z0, z0)

+ R−1
p (divz0, divz0) +

(
1

1 + λμ

)−1

(divv0, divv0)

≥ |v̄0|2V +
1

2
(Rp +

1

1 + λμ
+ αp)

−1(Divv̄0, Divv̄0)≥
1

2
‖v̄0‖2

V .(3.32)

Hence, in Example 3.13 (2.33) follows by combining (3.29a), (3.29b) and (3.32).

Remark 3.15. Noting that for any ε ∈ (0, 1), by Cauchy inequality, we have

‖v̄‖2
V = |v̄|2V + 〈Bv̄, Q̄−1Bv̄〉Q′×Q = a(v̄, v̄) + (Rp +

1

1 + λμ
+ αp)

−1(Divv̄, Divv̄)

= (ε(v), ε(v)) + λμ(divv, divv) + R−1
p (z, z)

+ (Rp +
1

1 + λμ
+ αp)

−1(divv + divz, divv + divz)

≥ (ε(v), ε(v)) + λμ(divv, divv) + R−1
p (z, z)

+ (
1

1+λμ
)−1(1−ε−1)(divv, divv) + (Rp +

1

1 + λμ
+ αp)

−1(1 − ε)(divz, divz)

≥ 1

2
(ε(v), ε(v)) +

1

2
λμ(divv, divv) + R−1

p (z, z)

+ (1 + λμ)(
3

2
− ε−1)(divv, divv) + (Rp +

1

1 + λμ
+ αp)

−1(1 − ε)(divz, divz).

Taking ε = 2
3 , we have

‖v̄‖2
V ≥ 1

3

(
‖ε(v)‖2 + λμ‖divv‖2 + R−1

p ‖z‖2 + (Rp +
1

1 + λμ
+ αp)

−1‖divz‖2

)
,

from which we conclude the uniform stability result for classical three-field formu-
lation of Biot’s consolidation model presented in [32].

A norm-equivalent preconditioner in this final example is, therefore, given by

B :=

⎡
⎢⎣

−(divε+λμ∇div)−1

(R−1
p I−∇(Rp+ 1

1+λμ
+αp)−1div)−1

((Rp+ 1
1+λμ

+αp)I)−1

⎤
⎥⎦.

4. Conclusion

In this paper we have presented a new framework for the stability analysis of per-
turbed saddle-point problems in variational formulation in a Hilbert space setting.
Our approach is constructive and is based on a specific norm fitting technique. The
main theoretical result (Theorem 2.15) is a generalization of the classical splitting
theorem (Theorem 2.5) of Brezzi and allows to conclude the necessary stability con-
dition (big inf-sup condition) according to Babuška’s theory (Theorem 2.1) from
conditions similar to those on which Brezzi’s theorem is based also in presence of a
symmetric positive semidefinite perturbation term c(·, ·) �≡ 0.
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As demonstrated on mixed formulations of generalized Poisson, Stokes, vector
Laplacian, and Biot’s equations, the new norm fitting technique guides the process
of defining proper parameter-dependent norms and allows for simple and short
proofs of the stability of perturbed saddle-point problems. Although the examples
in the present paper are continuous (infinite-dimensional) models, the abstract
framework suggests that the proposed technique is also quite useful when studying
the stability of various mixed (finite element) discretizations and has a wide range
of applications.
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Abstract
The generalized Biot-Brinkman equations describe the displacement, pressures and fluxes in
an elastic medium permeated by multiple viscous fluid networks and can be used to study
complex poromechanical interactions in geophysics, biophysics and other engineering sci-
ences. These equations extend on the Biot and multiple-network poroelasticity equations on
the one hand and Brinkman flow models on the other hand, and as such embody a range of
singular perturbation problems in realistic parameter regimes. In this paper, we introduce,
theoretically analyze and numerically investigate a class of three-field finite element formu-
lations of the generalized Biot-Brinkman equations. By introducing appropriate norms, we
demonstrate that the proposed finite element discretization, as well as an associated precon-
ditioning strategy, is robust with respect to the relevant parameter regimes. The theoretical
analysis is complemented by numerical examples.
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1 Introduction

The study of the mechanical response of fluid-filled porous media – poromechanics – is
essential in geophysics, biophysics and civil engineering. Through a series of seminal works
dating from 1941 and onwards [7, 8], Biot introduced governing equations for the dynamic
behavior of a linearly elastic solid matrix permeated by a viscous fluid with flow through the
pore network described by Darcy’s law [17, 47]. Double-porosity models, extending upon
Biot’s single fluid network to the case of two interacting networks, were used to describe the
motion of liquids in fissured rocks as early as in the 1960s [5, 32, 48]. Later, multiple-network
poroelasticity equations emerged in the context of reservoir modelling [4] to describe elastic
media permeated by multiple networks characterised by different porosities, permeabilities
and/or interactions. Since the early 2000s, poromechanics has been applied to model the
heart [13, 38] as well as the brain and central nervous system [16, 20, 44–46].

Several recent papers [6, 12, 14, 31] have in biomedical applications such as the perfu-
sion of the heart and glymphatic system of the brain, in addition to multiple networks, also
accounted for viscous effects of the fluid. At its core, the effect of viscosity can be accounted
for by replacing the Darcy approximation in the poroelasticity model by a Brinkman approx-
imation [11, 40]. We here introduce multiple-network poroelasticity models incorporating
viscosity under the termgeneralized Biot-Brinkman equations. In a bounded domain� ⊂ Rd ,
d = 1, 2, 3 comprising n fluid networks, the generalized Biot-Brinkman equations read as
follows: find the displacement u = u(x, t), fluid fluxes vi = vi (x, t) and corresponding
(negative) fluid pressures pi = pi (x, t), for i = 1, . . . , n satisfying

− div (σ (u) − α · pI) = f , (1.1a)

−νi div ε(vi ) + vi + Ki∇ pi = r i , (1.1b)

−ci ṗi − β̄i pi − αi div u̇ − div vi + β i · p = gi , (1.1c)

over � × (0, T ) for T > 0, and where (1.1b) and (1.1c) hold for i = 1, . . . , n. In (1.1a),
we have introduced the vector notation p = (p1, . . . , pn) and α = (α1, . . . , αn), where αi

is the Biot-Willis coefficient associated with network i . The elastic stress and strain tensors
are:

σ (u) = 2με(u) + λdiv(u)I, ε(u) = 1

2
(∇u + (∇u)T ), (1.2)

respectively, and with Lamé parameters μ and λ. Moreover, for each fluid network i , νi

denotes the fluid viscosity and Ki is its hydraulic conductance tensor. Furthermore, (1.1c)
is an equivalent formulation of the standard multiple-network poroelasticity mass balance
equations [4, 24, 36] with transfer coefficients βi j , denoting β i = (βi1, . . . , βin) and β̄i =∑

j βi j , when the fluid transfer into network i is given by

∑n
j=1, j �=i βi j (pi − p j ).

The constants ci in (1.1c) denote the constrained specific storage coefficients, see e.g. [43]
and the references therein. Finally, the prescribed right hand side f denotes body forces,
while gi denotes a fluid source and r i represents an external flux, both of the two latter in
each network i . In the case n = 1 and ν = 0, (1.1) reduces to the Biot equations.
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The generalized Biot-Brinkman problem (1.1) defines a challenging system of PDEs to
solve numerically. One reason for this is the large number of material parameters, several
of which give rise to singular perturbation problems such as in the extreme cases of (near)
incompressibility (λ → ∞) and impermeability (Ki → 0). Specifically, λ � μ is associated
with numerical locking; if (1.1) is scaled by 1/λ, the elastic term of the equation reads
div 2μ

λ
ε(u) + ∇ div u = f which transforms from an H1 problem to an H(div) problem

as λ tends to infinity. Similar singular perturbation problems arise, now for the flux variable
vi , as νi tends to zero. Furthermore, certain parameter ranges of the storage coefficients and
permeabilities (Ki � ci ) give rise to singular perturbation problems in theDarcy sub-system,
see e.g. [37] and references therein. Finally, we mention that large transfer coefficients βi j

and/or small Biot-Willis coefficientsαi can lead to strong coupling of the different subsystems
and prevent direct exploitation of each subsystem’s properties.

In the case of vanishing viscosities (νi = 0,∀i) the system (refeq:mBB:t)reduces to
the multiple-network poroelasticity (MPET) equations. Robust and conservative numerical
approximations of the MPET equations have been studied in the context of (near) incom-
pressibility [36] as well as other material parameters [24, 26, 27]. Parameter-independent
preconditioning and splitting schemes as well as a-posteriori error analysis and adaptivity
have also been identified for the MPET equations [18, 25, 27, 39]. However, the generalized
Biot-Brinkman system has received little attention from the numerical community. There-
fore, the purpose of this paper is to identify and analyze stable finite element approximation
schemes and preconditioning techniques for the time-discrete generalized Biot-Brinkman
systems, with particular focus on parameter robustness.

This paper is organized as follows. After introducing notation, context and preliminaries
in Sect. 2, we prove that the time-discrete generalized Biot-Brinkman system is well-posed
in appropriate function spaces in Sect. 3. We introduce a fully discrete generalized Biot-
Brinkman problem in Sect. 4 and prove that the discrete approximations satisfy a near optimal
a-priori error estimate in appropriate norms independently of material parameters. We also
propose a natural preconditioner. The theoretical analysis is complemented by numerical
experiments in Sect. 5.

2 Preliminaries and Notation

In this section of preliminaries, we give assumptions on the material parameters, present
a rescaling of a time-discrete generalized Biot-Brinkman system and introduce parameter-
weighted norms and function spaces.

2.1 Material Parameters

We assume that the elastic Lamé coefficients satisfy the standard conditions μ > 0 and
dλ + 2μ > 0. The transfer coefficients are such that βi j = β j i ≥ 0 for i �= j while
βi i = 0, and the specific storage coefficients ci ≥ 0 for i = 1, . . . , n. The Biot-Willis
coefficients are bounded between zero and one by construction: 0 < αi ≤ 1. We also assume
that the hydraulic conductances Ki > 0 for i = 1, . . . , n. Further, our focus will be on the
case νi > 0. For spatially-varying material parameters, we assume that each of the above
conditions holds point-wise and that each parameter field is uniformly bounded from above
and below.
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2.2 Time Discretization, Rescaling and Structure

Taking an implicit Euler time-discretization of (refeq:mBB:t)with uniform timestep τ , mul-
tiplying (1.1c) by τ , rearranging terms and removing the time-dependence from the notation,
we obtain the following problem structure to be solved over � at each time step: find the
unknown displacement u = u(x), fluid fluxes vi = vi (x) and corresponding (negative) fluid
pressures pi = pi (x), for i = 1, . . . , n satisfying

− div (σ (u) − α · pI) = f ,

−νi div ε(vi ) + vi + Ki∇ pi = r i ,

− (
ci + τ β̄i

)
pi − αi div u − τ div vi + τβ i · p = τgi .

Multiplying by τ K −1
i in the second equation(s) for the sake of symmetry gives

− div (σ (u) − α · pI) = f , (2.2a)

−νiτ K −1
i div ε(vi ) + τ K −1

i vi + τ∇ pi = τ K −1
i r i , (2.2b)

− (
ci + τ β̄i

)
pi − αi div u − τ div vi + τβ i · p = τgi . (2.2c)

For the sake of readability, we define

si = ci + τ β̄i , γi = τνi K −1
i , (2.3)

recalling that β̄i = ∑
j βi j and βi i = 0, and set

R−1 = max{(1 + ν1)τ K −1
1 , . . . , (1 + νn)τ K −1

n }. (2.4)

Using this notation, we introduce four n × n parameter matrices

	1 = −τ

⎛

⎜
⎜
⎜
⎝

0 β12 . . . β1n

β21 0 . . . β2n
...

...
. . .

...

βn1 βn2 . . . 0

⎞

⎟
⎟
⎟
⎠

, (2.5)

and

	2 = diag(s1, s2, . . . , sn), 	3 = τ 2RI , 	4 = 1

2μ + λ
ααT , (2.6)

before defining

	 =
4∑

i=1

	i . (2.7)

In the case n = 1, dropping the subscripts i, j for readability and with the newly introduced
parameter notation, the operator structure of the rescaled system (2.2) is

⎛

⎝
− div σ 0 α∇

0 −γ div ε + τ K −1 I τ∇
−α div −τ div −(	1 + 	2)

⎞

⎠

⎛

⎝
u
v

p

⎞

⎠ =
⎛

⎝
f
r
g

⎞

⎠ , (2.8)

for (	1 +	2) = cI , and p = p in the n = 1 case. The same structure holds for n > 2 when
denoting vT = (vT

1 , vT
2 , . . . , vT

n ), (Divv)T = (div v1, . . . , div vn).
By the assumption of symmetric transfer, i.e. βi j = β j i , 	1 and 	 are symmetric. More-

over, as 	1 + 	2 is weakly diagonally dominant and thus symmetric positive semi-definite,
	3 is symmetric positive definite, and 	4 is symmetric positive semi-definite, it follows that
	 is symmetric positive definite.
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2.3 Domain and Boundary Conditions

Assume that � is open and bounded in Rd , d = 2, 3 with Lipschitz boundary ∂�. We
consider the following idealized boundary conditions for the theoretical analysis of the time-
discrete generalized Biot-Brinkman system (2.8) over �. We assume that the displacement
is prescribed (and equal to zero for simplicity) on the entire boundary ∂�. Furthermore for
each of the flux momentum equations we assume datum on the normal flux vi · n and the
tangential part of the traction associated with the viscous term ε(vi ) · n. Combined, we thus
set

u(x) = 0 x ∈ ∂�,

vi · n(x) = 0, n × (ε(vi ) · n) (x) = 0 x ∈ ∂�,
(2.9)

for i = 1, . . . , n.

2.4 Function Spaces and Norms

We use standard notation for the Sobolev spaces L2(�), H1(�) and H(div,�), and denote
the L2(�)-inner product and norm by (·, ·) and ‖ · ‖, respectively. We let L2

0(�) denote the
space of L2 functions with zero mean. For a Banach space U , its dual space is denoted U ′
and the duality pairing between U and U ′ by 〈·, ·〉U ′×U .

For the displacement, flux and pressure spaces, we define

U = {u ∈ H1(�)d : u = 0 on ∂�}, (2.10a)

V i = {vi ∈ H1(�)d : vi · n = 0 on ∂�}, (2.10b)

Pi = L2
0(�), (2.10c)

for i = 1, . . . , n, and subsequently define

V = V1 × · · · × Vn, P = P1 × · · · × Pn . (2.11)

We also equip these spaces with the following parameter-weighted inner products

(u,w)U = (2με(u), ε(w)) + λ(div u, divw), (2.12a)

(v, z)V =
n∑

i=1

(γiε(vi ), ε(zi )) + (τ K −1
i vi , zi ) + (	−1τ 2Divv,Divz), (2.12b)

( p, q)P = (	 p, q), (2.12c)

and denote the induced norms by ‖·‖U , ‖·‖V , and ‖·‖P , respectively. These are indeed inner
products and norms by the assumptions on the material parameters given and in particular
the symmetric positive-definiteness of 	.
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3 Well-Posedness of the Biot-Brinkman System

3.1 Abstract Form and Related Results

System (2.8) is a special case of the abstract saddle-point problem
⎛

⎝
A1 0 BT

1
0 A2 BT

2
B1 B2 −A3

⎞

⎠

⎛

⎝
u
v

p

⎞

⎠ , (3.1)

where A1 : U → U ′, A2 : V → V ′, and A3 : P → P ′ are symmetric and positive (semi-
)definite, and B1 : U → P ′, B2 : V → P ′ are linear operators. In terms of bilinear forms,
we can write (3.1) as

a1(u,w) + b1(w, p) = ( f ,w), (3.2a)

a2(v, z) + b2(z, p) = (r, z), (3.2b)

b1(u, q) + b2(v, q) − a3( p, q) = (g, q). (3.2c)

This abstract form was studied in the context of twofold saddle point problems and equiv-
alence of inf-sup stability conditions by Howell and Walkington [30] for the case where
A3 = A2 = 0.

3.2 Three-Field Variational Formulation of the Biot-Brinkman System

We consider the following variational formulation of the Biot-Brinkman system (2.8) with
the boundary conditions given by (2.9): given f , r, g, find (u, v, p) ∈ U × V × P such
that (3.2) holds with

a1(u,w) = (σ (u), ε(w)), (3.3a)

a2(v, z) = ∑n
i=1(γiε(vi ), ε(zi )) + (τ K −1

i vi , zi ), (3.3b)

a3( p, q) = ∑n
i=1(si pi , qi ) − ∑n

i, j=1(τβi j p j , qi ), (3.3c)

b1(w, p) = −∑n
i=1(divw, αi pi ) ≡ −(divw,α · p), (3.3d)

b2(v, q) = −∑n
i=1(τ div vi , qi ), (3.3e)

for all w ∈ U , z ∈ V , and q ∈ P . Equivalently, (u, v, p) ∈ U × V × P solves

A((u, v, p), (w, z, q)) = (( f , r, g), (z,w, q)), (3.4)

for all (z,w, q) ∈ U × V × P where

A((u, v, p), (w, z, q)) = a1(u,w) + a2(v, z) + b1(w, p) + b1(u, q)

+ b2(z, p) + b2(w, q) − a3( p, q).
(3.5)

We refer to (3.2)–(3.3), or also (3.4), as a three-field formulation of theBiot-Brinkman system,
with three-field referring to the three groups of fields (displacement, fluxes and pressures).

3.3 Stability Properties

In this section we prove the main theoretical result of this paper, that is, the uniform well-
posedness of problem (3.2)–(3.3) under the norms induced by (2.12), as stated inTheorem3.5.
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The proof utilizes the abstract framework for the stability analysis of perturbed saddle-point
problems that has recently been presented in [26]. It is performed in two steps. In the first step,
we recast the system (3.2)–(3.3) into the following two-by-two (single) perturbed saddle-point
problem

A((u, v, p), (w, z, q)) = A((ū, p), (w̄, q)) (3.6)

= a(ū, w̄) + b(w̄, p) + b(ū, q) − c( p, q),

where ū = (u, v), w̄ = (w, z) and

a(ū, w̄) = a1(u,w) + a2(v, z),

b(w̄, p) = b1(w, p) + b2(z, p),

c( p, q) = a3( p, q),

with a1(·, ·), a2(·, ·), a3(·, ·), b1(·, ·) and b2(·, ·) as defined in (3.3). Then, according to
Theorem 5 in [26], for properly chosen seminorms | · |Q and | · |V̄ , which are specified in
Theorem 3.2 below, the uniformwell-posedness of this problem is guaranteed under the fitted
(full) norms

‖q‖2Q = |q|2Q + c(q, q) =: 〈Q̄q, q〉Q′×Q, (3.7)

‖w̄‖2
V̄

= |w̄|2
V̄

+ 〈Bw̄, Q̄−1Bw̄〉Q′×Q, (3.8)

if the following two conditions are satisfied for positive constants ca and cb which are inde-
pendent of all model parameters:

a(v̄, v̄) ≥ ca |v̄|2
V̄

∀v̄ ∈ V̄ , (3.9)

sup
v̄∈V̄

b(v̄, q)

‖v̄‖V̄
≥ cb|q|Q ∀q ∈ Q. (3.10)

This means that under the conditions (3.9) and (3.10) the bilinear form in (3.6) satisfies the
estimates

|A((u, v, p), (w, z, q))| ≤ Cb‖(u, v, p)‖X̄‖(w, z, q)‖X̄ , (3.11)

and

inf
(u,v, p)∈X sup

(w,z,q)∈X
A((u, v, p), (w, z, q))

‖(u, v, p)‖X̄‖(w, z, q)‖X̄
≥ ω, (3.12)

for the combined norm ‖(·, ·, ·)‖X̄ defined by

‖(w, z, q)‖2
X̄

:= ‖q‖2Q + ‖w̄‖2
V̄
, (3.13)

on the space X = U × V × P with constants Cb and ω that do not depend on any of the
model parameters.

Before we turn to the proof of estimates (3.11) and (3.12) in Theorem 3.2 below, we recall
appropriate inf-sup conditions for the spaces U , V , P in Lemma 3.1.
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Lemma 3.1 The following conditions hold with constants βd > 0 and βs > 0:

inf
q∈Pi

sup
v∈V i

(divv, q)

‖v‖1‖q‖ ≥ βd , i = 1, . . . , n, (3.14)

inf
(q1,...,qn)∈P1×···×Pn

sup
u∈U

(

divu,
n∑

i=1
qi

)

‖u‖1
∥
∥
∥
∥

n∑

i=1
qi

∥
∥
∥
∥

≥ βs . (3.15)

Proof See [9, 10].

Theorem 3.2 Consider problem (3.2)–(3.3) on the space X = U × V × P = V̄ × Q and
define the combined norm ‖·‖X̄ via (3.13) where the fitted norms ‖·‖Q and ‖·‖V̄ are defined
by (3.7)–(3.8) with seminorms

|q|2Q = ((	3 + 	4)q, q), (3.16)

|w̄|2
V̄

= a(w̄, w̄). (3.17)

Then, the continuity and stability estimates (3.11) and (3.12) hold with positive constants Cb

and ω that are independent of all model parameters.

Proof To prove statement (3.11), one uses the Cauchy-Schwarz inequality and the definition
of the norms.

In order to prove (3.12) we verify the conditions of Theorem 5 in [26], i.e., conditions (3.9)
and (3.10). Noting that |w̄|2

V̄
= a(w̄, w̄), we find that condition (3.9) trivially holds with

ca = 1 so it remains to show (3.10). The bilinear form b is induced by the operator B : V̄ →
Q′ that is given by

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−α1 div −τ div 0 0 . . . 0
−α2 div 0 −τ div 0 . . . 0
−α3 div 0 0 −τ div . . . 0

...
...

...
...

. . .
...

−αn div 0 0 0 . . . −τ div

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thanks to Lemma 3.1, for a given (ū, p) we can choose test functions w̄ = (w, z) such that

− divw = 1

2μ + λ

n∑

i=1

αi pi , ‖w‖1 ≤ β−1
s

1

2μ + λ
‖

n∑

i=1

αi pi‖,

− div zi =τ Rpi , ‖zi‖1 ≤ β−1
s τ R‖pi‖, i = 1, . . . , n.

With these choices we find that

b(w̄, p) = −(divw,

n∑

i=1

αi pi ) −
n∑

i=1

(τ div zi , pi )

= 1

2μ + λ

(
n∑

i=1

αi pi ,

n∑

i=1

αi pi

)

+
n∑

i=1

(τ 2Rpi , pi )

= (	4 p, p) + (	3 p, p) = | p|2Q .
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In view of (3.8) and noting that 〈Bw̄, Q̄−1Bw̄〉Q′×Q = (	−1Bw̄, w̄), we obtain

‖w̄‖2
V̄

= 2μ(ε(w), ε(w)) + λ(divw, divw) +
n∑

i=1

γi (ε(zi ), ε(zi ))

+
n∑

i=1

(τ K −1
i zi , zi ) + (	−1Bw̄, Bw̄)

≤ β−2
s (2μ + λ)

(
1

2μ + λ

)2

‖
n∑

i=1

αi pi‖2 +
n∑

i=1

γiβ
−2
s τ 2R2‖pi‖2

+
n∑

i=1

τ K −1
i β−2

s τ 2R2‖pi‖2 + (	−1Bw̄, Bw̄)

≤ β−2
s

1

2μ + λ
‖

n∑

i=1

αi pi‖2 + β−2
s

n∑

i=1

(γi + τ K −1
i )τ 2R2‖pi‖2 + (	−1Bw̄, Bw̄)

≤ β−2
s

1

2μ + λ
‖

n∑

i=1

αi pi‖2 + β−2
s

n∑

i=1

τ 2R‖pi‖2 + (	−1Bw̄, Bw̄)

≤ β−2
s ((	4 p, p) + (	3 p, p)) + ((	3 + 	4)

−1Bw̄, Bw̄)

≤ (β−2
s + 1)| p|2Q,

where we have also used (	−1Bw̄, Bw̄) ≤ ((	3+	4)
−1Bw̄, Bw̄) and Bw̄ = (	3+	4) p.

Finally, (3.10) follows from

sup
v̄∈V̄

b(v̄, q)

‖v̄‖V̄
≥ b(w̄, q)

‖w̄‖V̄
≥ 1

√

β−2
s + 1

|q|2Q
|q|Q = cb|q|Q, ∀q ∈ Q.

We have now established the well-posedness of the Biot-Brinkman problem under the
specific combined norm ‖ · ‖X̄ of the form (3.13), specified through (3.16) and (3.17). Next,
we show that this combined norm is equivalent to the norm ‖ · ‖X defined by

‖(w, z, q)‖2X := ‖w‖2U + ‖z‖2V + ‖q‖2P . (3.18)

The following Lemma is useful in establishing this norm equivalence, cf. [25, Lemma 2.1]
where the statement has been proven for α = (1, 1, . . . , 1)T .

Lemma 3.3 For any a > 0 and b > 0 and α = (α1, . . . , αn)T , we have that

(aIn×n + bααT )−1 = a−1 I − a−1(ab−1 + αT α)−1ααT , (3.19)

and

αT (aIn×n + bααT )−1α = αT α

ab−1 + αT α
b−1 ≤ b−1. (3.20)

Proof The proof follows the lines of the proof of Lemma 2.1 in [25].

Now we can establish the following norm equivalence result.

Lemma 3.4 The norm (3.18) defined in terms of (2.12) is equivalent to the combined
norm (3.13) based on (3.16) and (3.17).
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Proof First, we note that

Bw̄ =

⎛

⎜
⎜
⎜
⎝

−α1divw − τ div z1
−α2divw − τ div z2

...

−αndivw − τ div zn

⎞

⎟
⎟
⎟
⎠

= −divw

⎛

⎜
⎜
⎜
⎝

α1

α2
...

αn

⎞

⎟
⎟
⎟
⎠

+ τ

⎛

⎜
⎜
⎜
⎝

− div z1
− div z2

...

− div zn

⎞

⎟
⎟
⎟
⎠

≡ −αdivw − τDivz.

Then for any 1 > ε > 0, by Cauchy’s inequality, we obtain

(	−1Bw̄, Bw̄) = (
	−1(αdivw + τDivz), (αdivw + τDivz)

)

= (	−1αdivw,αdivw) + 2(	−1αdivw, τDivz) + (	−1τDivz, τDivz)

≥ −(ε−1 − 1)(	−1αdivw,αdivw) + (1 − ε)(	−1τDivz, τDivz)

≥ −(ε−1 − 1)((	3 + 	4)
−1αdivw,αdivw) + (1 − ε)(	−1τDivz, τDivz).

By Lemma 3.3, with a = τ 2R, b = 1
2μ+λ

, we have

(	−1Bw̄, Bw̄) ≥ −(ε−1 − 1)((	3 + 	4)
−1αdivw,αdivw) + (1 − ε)(	−1τDivz, τDivz)

= −(ε−1 − 1)(αT (	3 + 	4)
−1αdivw, divw) + (1 − ε)(	−1τDivz, τDivz)

≥ −(ε−1 − 1)(2μ + λ)(divw, divw) + (1 − ε)(	−1τDivz, τDivz).

Therefore, we get

‖w̄‖2
V̄

= 2μ(ε(w), ε(w)) + λ(divw, divw)x +
n∑

i=1

γi (ε(zi ), ε(zi ))

+
n∑

i=1

(τ K −1
i zi , zi ) + (	−1Bw̄, Bw̄)

≥ 2μ(ε(w), ε(w)) + λ(divw, divw) − (ε−1 − 1)(2μ + λ)(divw, divw)

+
n∑

i=1

γi (ε(zi ), ε(zi )) +
n∑

i=1

(τ K −1
i zi , zi ) + (1 − ε)(	−1τDivz, τDivz).

Now, for ε = 2
3 , we obtain

‖w̄‖2
V̄

≥ 2μ(ε(w), ε(w)) + λ(divw, divw) − 1

2
(2μ + λ)(divw, divw)

+
n∑

i=1

γi (ε(zi ), ε(zi )) +
n∑

i=1

(τ K −1
i zi , zi ) + 1

3
(	−1τ 2Divz,Divz)

≥ 1

2
(2μ(ε(w), ε(w)) + λ(divw, divw))

+ 1

3

(
n∑

i=1

γi (ε(zi ), ε(zi )) +
n∑

i=1

(τ K −1
i zi , zi ) + (	−1τ 2Divz,Divz)

)

,

namely ‖w‖2U + ‖z‖2V � ‖w̄‖2
V̄
. On the other hand, it is obvious that

‖w̄‖2
V̄

� ‖w‖2U + ‖z‖2V .
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Together, this gives ‖w̄‖2
V̄

∼= ‖w‖2U + ‖z‖2V .

In view of Theorem 3.2 and Lemma 3.4, we conclude that the Biot-Brinkman problem is
also well-posed under the norm (3.18) defined in terms of (2.12). We summarize our results
in the following theorem.

Theorem 3.5 (i) There exists a positive constant Cb independent of the parameters λ, K −1
i ,

si , βi j , i, j ∈ {1, . . . , n}, the network scale n and the time step τ such that the inequality

|A((u, v, p), (w, z, q))| ≤ Cb(‖u|U + ‖v‖V + ‖ p‖P )(‖w‖U + ‖z‖V + ‖q‖P )

holds true for any (u, v, p) ∈ U × V × P, (w, z, q) ∈ U × V × P .
(ii) There is a constant ω > 0 independent of the parameters λ, K −1

i , si , βi j , i, j ∈
{1, . . . , n}, the number of networks n and the time step τ such that

inf
(u,v, p)∈X sup

(w,z,q)∈X
A((u, v, p), (w, z, q))

(‖u‖U + ‖v‖V + ‖ p‖P )(‖w‖U + ‖z‖V + ‖q‖P )
≥ ω,

where X := U × V × P .
(iii) The MPET system (3.4) has a unique solution (u, v, p) ∈ U × V × P and the following

stability estimate holds:

‖u‖U + ‖v‖V + ‖ p‖P ≤ C1(‖ f ‖U ′ + ‖g‖P ′),

where C1 is a positive constant independent of the parameters λ, K −1
i , si , βi j , i, j ∈

{1, . . . , n}, the network scale n and the time step τ , and ‖ f ‖U ′ = sup
w∈U

( f ,w)
‖w‖U , ‖g‖P ′ =

sup
q∈P

(g,q)
‖q‖P

= ‖	− 1
2 g‖.

4 Discrete Generalized Biot-Brinkman Problems

Stable and parameter-robust discretizations for the multiple network poroelasticity equa-
tions have been proposed based on a classical three-field formulation using a discontinuous
Galerkin (DG) [1, 29] formulation of the momentum equation resulting in strong mass con-
servation, see [24], or based on a total pressure formulation in the setting of conforming
methods in [36]. These discrete models have been developed as generalizations of the cor-
responding Biot models, see [23] in case of conservative discretizations and [35] in case
of the total pressure scheme. A hybridized version of the method in [23] has recently been
presented in [33]. For other conforming parameter-robust discretizations of the Biot model
see also [15, 42] and [34], where the latter method is based on a total pressure formulation
introducing the flux as a fourth field, which then also results in mass conservation. In this
paper we extend the approach from [23, 24] to obtain mass-conservative discretizations for
the generalized Biot-Brinkman system (3.2)–(3.3), which generalizes the MPET system.

4.1 Notation

Consider a shape-regular triangulation Th of the domain� into triangles/tetrahedrons, where
the subscript h indicates the mesh-size. Following the standard notation, we first denote the
set of all interior edges/faces and the set of all boundary edges/faces of Th by E I

h and E B
h
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respectively, their union by Eh and then we define the broken Sobolev spaces

Hs(Th) = {φ ∈ L2(�), such that φ|T ∈ Hs(T ) for all T ∈ Th},
for s ≥ 1.

Next we introduce the notion of jumps [·] and averages {·} as follows. For any q ∈ H1(Th),
v ∈ H1(Th)d and τ ∈ H1(Th)d×d and any e ∈ E I

h the jumps are given as

[q] = q|∂T1∩e − q|∂T2∩e, [v] = v|∂T1∩e − v|∂T2∩e,

and the averages as

{v} = 1

2
(v|∂T1∩e · n1 − v|∂T2∩e · n2), {τ } = 1

2
(τ |∂T1∩en1 − τ |∂T2∩en2),

while for e ∈ E B
h ,

[q] = q|e, [v] = v|e, {v} = v|e · n, {τ } = τ |en.

Here T1 and T2 are any two elements from the triangulation that share an edge or face e while
n1 and n2 denote the corresponding unit normal vectors to e pointing to the exterior of T1
and T2, respectively.

4.2 Mixed finite element spaces and discrete formulation

We consider the following finite element spaces to approximate the displacement, fluxes and
pressures:

Uh = {u ∈ H(div,�) : u|T ∈ U(T ), T ∈ Th; u · n = 0 on ∂�},
V i,h = {v ∈ H(div,�) : v|T ∈ V i (T ), T ∈ Th; v · n = 0 on ∂�}, i = 1, . . . , n,

Pi,h =
{

p ∈ L2(�) : p|T ∈ Pi (T ), T ∈ Th;
∫

�

pdx = 0

}

, i = 1, . . . , n.

The discretizations that we consider here, define the local spaces U(T )/V i (T )/Pi (T )

via the triplets of spaces BDMl(T )/BDMl(T )/Pl−1(T ), or RTl(T )/RTl(T )/Pl−1(T ), or
BDMl(T )/RTl(T )/Pl−1(T ), or RTl(T )/BDMl(T )/Pl−1(T ) for l ≥ 1. Note that for each
of these choices, the condition divU(T ) = div V i (T ) = Pi (T ) is fulfilled. We remark that
the tangential part of the displacement boundary condition (2.9) is enforced by a Nitsche
method, see e.g. [21].

From a computational point of view, it is preferable to choose U(T )/V i (T )/Pi (T )

= BDMl(T )/BDMl(T )/Pl−1(T ) since the l-th order BDM element achieves the same con-
vergence order using less unknowns than l-th order RT element when approximating the
Laplacian operator. Furthermore the orthogonality constraint for the pressures in Pi,h is
realized in the implementation by introducing (scalar) Lagrange multipliers.

Remark 4.1 Working with rectangular or hexahedral meshes, one can also use Raviart-
Thomas or Brezzi-Douglas-Fortin-Marini elements on rectangles and cubes. In the former
case, the local space U(T ) = V i (T ) = RTl(T ) for displacements and fluxes fits the local
space Pi (T ) = Ql(T ) for pressures, in the latter case U(T ) = V i (T ) = BDFMl+1(T ) fits
Pi (T ) = Pl(T ), in the sense that divU(T ) = div V i (T ) = Pi (T ) is satisfied again, ensuring
strong (pointwise) mass conservation. Here T denotes a rectangle in two and a cube in three
space dimensions and Ql(T ) the space of polynomials on T which are of degree less than
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or equal to l in each variable (when all other variables are fixed) whereas Pl(T ) denotes the
local polynomials of (total) degree at most l. For more details, see [9].

Let us denote vT
h = (vT

1,h, . . . , vT
n,h), pT

h = (p1,h, . . . , pn,h), zT
h = (zT

1,h, . . . , zT
n,h),

qT
h = (q1,h, . . . , qn,h) and

V h = V 1,h × . . . × V n,h, Ph = P1,h × . . . × Pn,h, Xh = Uh × V h × Ph .

The discretization of the variational problem (3.2)–(3.3) now is given as follows: find
(uh, vh, ph) ∈ Xh , such that for any (wh, zh, qh) ∈ Xh and i = 1, . . . , n

ah(uh,wh) + λ(div uh, divwh) + (α · ph, divwh) = ( f ,wh), (4.1a)

γi ah(vi,h, zi,h) + (τ K −1
i vi,h, zi,h) + (pi,h, τ div zi,h) = 0, (4.1b)

(div uh, αi qi,h) + (τ div vi,h, qi .h) − si (pi,h, qi,h)

+
n∑

j=1

τβi j (p j,h, qi,h) = (gi , qi,h), (4.1c)

where

ah(φ,ψ) =
∑

T ∈Th

∫

T
ε(φ) : ε(ψ) dx −

∑

e∈Eh

∫

e
{ε(φ)} · [ψ t ] ds

−
∑

e∈Eh

∫

e
{ε(ψ)} · [φt ] ds +

∑

e∈Eh

∫

e
ηh−1

e [φt ] · [ψ t ] ds, (4.2)

and η is a stabilization parameter independent of all other problem parameters, the network
scale n and the mesh size h, he is the size of edge e. However, η will depend on shape
regularity of the triangulation and polynomial order of the finite element space and will
affect the condition number, see also Remark 5.1.

We note that the discrete variational problem (4.1) has been derived for the weak formula-
tion (3.4) with homogeneous boundary conditions. For general rescaled boundary conditions
with DG discretizations we refer the reader to e.g. [23].

4.3 Stability Properties

For any function φ ∈ H2(Th) := H2(Th)d , consider the following mesh dependent norms

‖φ‖2h =
∑

T ∈Th

‖ε(φ)‖2T +
∑

e∈Eh

h−1
e ‖[φt ]‖2e,

‖φ‖21,h =
∑

T ∈Th

‖∇φ‖2T +
∑

e∈Eh

h−1
e ‖[φt ]‖2e,

and
‖φ‖2DG =

∑

T ∈Th

‖∇φ‖2T +
∑

e∈Eh

h−1
e ‖[φt ]‖2e +

∑

T ∈Th

h2
T |φ|22,T . (4.3)

Details about the well-posedness and approximation properties of the DG formulation of
elasticity, Stokes and Brinkman-type systems can be found in [22, 28].

Now, for u ∈ H(div,�) ∩ H2(Th), we define the norm

‖u‖2Uh
= ‖u‖2DG + λ‖ div u‖2, (4.4)
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and for v ∈ H(div,�) ∩ H2(Th), we define the norm

‖v‖2V h
=

n∑

i=1

(
γi‖vi‖2DG + (τ K −1

i vi , vi )
) + (	−1Divv,Divv). (4.5)

The well-posedness and approximation properties of the DG formulation are detailed in [22,
28]. Here we briefly present some important results:

• ‖ · ‖DG , ‖ · ‖h , and ‖ · ‖1,h are equivalent on Uh ; that is

‖uh‖DG � ‖uh‖h � ‖uh‖1,h, for all uh ∈ Uh .

• ah from (4.2) is continuous and it holds true that

|ah(u,w)| � ‖u‖DG‖w‖DG , for all u, w ∈ H2(Th). (4.6)

• The following inf-sup conditions are satisfied

inf
(q1,h ,··· ,qn,h)∈P1,h×···×Pn,h

sup
uh∈Uh

(div uh,
n∑

i=1
qi,h)

‖uh‖1,h‖
n∑

i=1
qi,h‖

≥ βsd ,

inf
qi,h∈Pi,h

sup
vi,h∈V i,h

(div vi,h, qi,h)

‖vi,h‖1,h‖qi,h‖ ≥ βdd , i = 1, . . . , n.

(4.7)

Using the definition of the matrices 	1 and 	2, next we define the bilinear form

Ah((uh, vh, ph), (wh, zh, qh))

= ah(uh,wh) + λ(div uh, divwh)

+
n∑

i=1

(αi pi,h, divwh) +
n∑

i=1

γi ah(vi,h, zi,h)

+
n∑

i=1

(τ K −1
i vi,h, zi,h) + τ( ph,Div zh)

+
n∑

i=1

(div uh, αi qi,h) + τ(Divvh, qh) − ((	1 + 	2) ph, qh),

(4.8)

related to problem (4.1a)–(4.1c).
We equip Xh with the norm defined by ‖(·, ·, ·)‖2Xh

:= ‖ · ‖2Uh
+‖ · ‖2V h

+‖ · ‖2P . Similar
to Theorem 3.5, the following uniform stability result holds:

Theorem 4.2 (i) For any uh,wh ∈ Uh; vh, zh ∈ V h; ph, qh ∈ Ph there exists a positive
constant Cbd independent of all model parameters, the network scale n and the mesh
size h such that the inequality

|Ah((uh, vh, ph), (wh, zh, qh))| ≤ Cbd‖(uh, vh, ph)‖Xh ‖(wh, zh, qh)‖Xh

holds true.
(ii) There exists a constant ωd > 0 independent of all discretization and model parameters

such that

inf
(uh ,vh , ph)∈Xh

sup
(wh ,zh ,qh)∈Xh

Ah((uh, vh, ph), (wh, zh, qh))

‖(uh, vh, ph)‖Xh ‖(wh, zh, qh)‖Xh

≥ ωd . (4.9)
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(iii) Let (uh, vh, ph) ∈ Xh solve (4.1a)-(4.1c) and

‖ f ‖U ′
h

= sup
wh∈Uh

( f ,wh)

‖wh‖Uh

, ‖g‖P ′ = sup
qh∈Ph

(g, qh)

‖qh‖P
.

Then the estimate

‖uh‖Uh + ‖vh‖V + ‖ ph‖P ≤ C2(‖ f ‖U ′
h
+ ‖g‖P ′)

holds with a constant C2 independent of the network scale n, the mesh size h, the time
step τ and the parameters λ, K −1

i , si , βi j , i, j ∈ {1, . . . , n}.

4.4 Error Estimates

This subsection summarizes the error estimates that follow from the stability results presented
in Sect. 4.3.

Theorem 4.3 Assume that (u, v, p) ∈ U ∩ H2(Th)×V ∩ H2(Th)× P is the unique solution
of (3.2)–(3.3), and let (uh, vh, ph) be the solution of (4.1). Then the error estimates

‖u − uh‖Uh + ‖v − vh‖V h � inf
wh∈Uh ,zh∈V h

(
‖u − wh‖Uh + ‖v − zh‖V h

)
, (4.10)

and

‖ p − ph‖P � inf
wh∈Uh ,zh∈V h ,qh∈Ph

(
‖u − wh‖Uh + ‖v − zh‖V h + ‖ p − qh‖P

)
(4.11)

hold true, where the inequality constants are independent of the parameters λ, K −1
i , si , βi j

for i, j = 1, . . . , n, the network scale n, the mesh size h and the time step τ .

Proof The proof of this result is analogous to the proof of Theorem 5.2 in [23].

Remark 4.4 In particular, the above theorem shows that the proposed discretizations are
locking-free. Note that estimate (4.10) controls the error in u plus the error in v by the sum
of the errors of the corresponding best approximations whereas estimate (4.11) requires the
best approximation errors of all three vector variables u, v and p to control the error in p.

4.5 A Norm Equivalent Preconditioner

We consider the following block-diagonal operator

B :=
⎡

⎣
Bu 0 0
0 Bv 0
0 0 B p

⎤

⎦

−1

, (4.12)
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where

Bu = − div ε − λ∇ div,

Bv =

⎡

⎢
⎢
⎢
⎣

−γ1divε + τ K −1
1 I 0 . . . 0

0 −γ2divε + τ K −1
2 I . . . 0

...
...

. . .
...

0 0 . . . −γndivε + τ K −1
n I

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

	̃11∇div 	̃12∇div . . . 	̃1n∇div
	̃21∇div 	̃22∇div . . . 	̃2n∇div

...
...

. . .
...

	̃n1∇div 	̃n2∇div . . . 	̃nn∇div

⎤

⎥
⎥
⎥
⎦

,

and

B p =

⎡

⎢
⎢
⎢
⎣

	11 I 	12 I . . . 	1n I
	21 I 	22 I . . . 	2n I

...
...

. . .
...

	n1 I 	n2 I . . . 	nn I

⎤

⎥
⎥
⎥
⎦

.

Here, 	i j , 	̃i j , i, j = 1, . . . , n are the entries of 	 and 	−1, respectively.
As substantiated in [24], the stability results for the operator A in (3.5) imply that the

operator B is a uniform norm-equivalent (canonical) block-diagonal preconditioner that is
robust with respect to all model and discretization parameters. Note thatB defines a canonical
uniform block-diagonal preconditioner on the continuous as well as on the discrete level as
long as discrete inf-sup conditions analogous to (3.14) and (3.15) are satisfied, cf. [24].

For discrete counterpart, denote by Ah the operator induced by the bilinear form (4.8),
namely

Ah :=
⎡

⎣
Ah,u 0 BT

h,u
0 Ah,v BT

h,v

Bh,u Bh,v −Ah, p

⎤

⎦ , (4.13)

where

Ah,u = −divhεh − λ∇hdivh

Ah,v =

⎡

⎢
⎢
⎢
⎢
⎣

−γ1divhεh + τ K −1
1 Ih 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 −γndivhεh + τ K −1

n Ih

⎤

⎥
⎥
⎥
⎥
⎦

,

Bh,u =

⎡

⎢
⎢
⎢
⎣

−α1divh

−α2divh
...

−αndivh

⎤

⎥
⎥
⎥
⎦

, Bh,v =

⎡

⎢
⎢
⎢
⎢
⎣

−τdivh 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 −τdivh

⎤

⎥
⎥
⎥
⎥
⎦

,
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and

Ah, p =

⎛

⎜
⎜
⎜
⎝

s1 Ih −τβ12 Ih . . . −τβ1n Ih

−τβ21 Ih s2 Ih . . . −τβ2n Ih
...

...
. . .

...

−τβn1 Ih −τβn2 Ih . . . sn Ih

⎞

⎟
⎟
⎟
⎠

.

And the corresponding block preconditioner for Ah is

Bh :=
⎡

⎣
Bh,u 0 0
0 Bh,v 0
0 0 Bh, p

⎤

⎦

−1

, (4.14)

where

Bh,u = − divh εh − λ∇h divh,

Bh,v =

⎡

⎢
⎢
⎢
⎣

−γ1divhεh + τ K −1
1 Ih 0 . . . 0

0 −γ2divhεh + τ K −1
2 Ih . . . 0

...
...

. . .
...

0 0 . . . −γndivhεh + τ K −1
n Ih

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

	̃11∇hdivh 	̃12∇hdivh . . . 	̃1n∇hdivh

	̃21∇hdivh 	̃22∇hdivh . . . 	̃2n∇hdivh
...

...
. . .

...

	̃n1∇hdivh 	̃n2∇hdivh . . . 	̃nn∇hdivh

⎤

⎥
⎥
⎥
⎦

,

and

Bh, p =

⎡

⎢
⎢
⎢
⎣

	11 Ih 	12 Ih . . . 	1n Ih

	21 Ih 	22 Ih . . . 	2n Ih
...

...
. . .

...

	n1 Ih 	n2 Ih . . . 	nn Ih

⎤

⎥
⎥
⎥
⎦

.

5 Numerical Experiments

In this section we present numerical experiments whose results corroborate stability proper-
ties of the finite element discretization of the generalizedBiot-Brinkmanmodel (see Sect. 4.4)
and the preconditioner (4.12). We shall first demonstrate parameter robustness of the exact
preconditioner through a sensitivity study of the conditioning of the preconditioned Biot-
Brinkman system. Afterwards, scalable realization of the preconditioner in terms multilevel
methods for the displacement and flux blocks is discussed. For simplicity, all the experi-
ments concern the domain � = (0, 1)2. The implementation was carried in the Firedrake
finite element framework [41], which provides easy access to geometric multigrid solvers
via the PCPATCH library [19].

5.1 Error Estimates

We consider a single network, n = 1, case of the generalized Biot-Brinkman model (3.5),
with parametersμ = 1, τ = 10−1, α1 = 10−3 and c1 = 10−2 fixed (arbitrarily) while K1, ν1
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Fig. 1 Error approximation of the BDM1-BDM1-P0 discretization of the single network Biot-Brinkman
model. Parameters μ = 1, τ = 10−1, α1 = 10−3, c1 = 10−2, ν1 = 1 and K1 = 1 are fixed. Line colors
correspond to different values of λ (Color figure online)

2−7 2−6 2−5 2−4 2−3 2−2

10−3

10−2

h

h

‖u
−

u
h
‖ U

h

2−7 2−6 2−5 2−4 2−3 2−2

10−6

10−5

h

h

‖v
1
−

v
1,

h
‖ V

h

2−7 2−6 2−5 2−4 2−3 2−2

10−3

10−2

h

−9

−6

−3

0

log10 ν1

h

‖p
1
−

p
1,

h
‖ P

h
Fig. 2 Error approximation of the BDM1-BDM1-P0 discretization of the single network Biot-Brinkman
model. Parameters μ = 1, τ = 10−1, α1 = 10−3, c1 = 10−2, K1 = 1 and λ = 1 are fixed. Line colors
correspond to different values of ν1 (Color figure online)

and λ shall be varied in order to test robustness of the error estimates established in Sect. 4.4.
To this end, we solve (2.8) with the right hand side computed based on the exact solution

u =
(

∂φ

∂ y
,−∂φ

∂x

)

, v1 = ∇φ1, p1 = sin π(x − y), (5.1)

where

φ = x2(x − 1)2y2(y − 1)2, φ1 = x4(x − 1)4y4(y − 1)4.

It can be seen that the manufactured solution satisfies the homogeneous conditions u|∂� = 0,
v1 · n|∂� = 0 for � = (0, 1)2.

Using discretization by BDM1 elements for Uh , V 1,h and piece-wise constant elements
for the pressure space P1,h , Figs. 1 and 3 show the errors of the numerical approximations
in the parameter-dependent norms (4.4), (4.5) and ‖·‖P defined in (2.12c) when one of the
parameters λ, K1 and ν1 is varied. In all the cases the expected linear convergence can be
observed. In particular, the rate is independent of the parameter variations. We note that the
error here is computed on a finer mesh than the finite element solution in order to prevent
aliasing.

5.2 Robustness of Exact Preconditioner

We verify robustness of the canonical preconditioner (4.12) using a generalized Biot-
Brinkman system with two networks. As the parameter space then counts 12 parameters
in total we shall for simplicity fix material properties of one of the networks (below we
choose the network i = 1) to unity in addition to setting μ = 1, τ = 1. This choice leaves
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parameters λ, c2, α2, ν2, K2 as well as the transfer coefficient β := β12 to be varied. In the
following experiments we let 1 ≤ λ ≤ 1012, 10−9 ≤ ν2, K2, α2 ≤ 1, 10−6 ≤ β ≤ 106 and
c2 ∈ {0, 1} in order to perform a systematic sensitivity study. We note that we do not vary
directly the scaling parameters introduced in (3.5) but instead change the material parameters
in (1.1).

For the above choice of parameters the two-network problem is considered on the domain
� = (0, 1)2 with boundary conditions u = 0 on the left and right sides and (σ + α · pI)·n =
0 on the remaining part of the boundary; similarly, the Dirichlet conditions vi ·n = 0, i = 1, 2
on the fluxes are prescribed only on the left and right sides.

Having constructed spaces Uh , V 1,h V 2,h with BDM1 elements and pressure spaces P1,h

P2,h in terms of piece-wise constants our results are summarized in Figs. 4 and 6 where slices
of the explored parameter space are shown. It can be seen that the condition numbers remain
bounded. Concretely, given discrete operatorsAh ,Bh that respectively discretize (3.5) and the
preconditioner (4.12) the condition number is computed based on the generalized eigenvalue
problem Ah xk = λkB−1

h xk as maxk |λk |/mink |λk |. The higher condition numbers (of about
8.5) are typically attained when c2 = 0, λ = 1 and β � 1. We remark that with c2 = 0 and
all parameters but β set to 1 the condition number of 	 ranges from 2.64 when β = 10−6 to
about 106 when β = 106.

5.3 Multigrid Preconditioning

Having seen that the exact preconditioner (4.12) yields parameter-robustness let us next
discuss possible construction of a scalable approximation of the operator B. Here, in order
to approximate Bu and Bv , we follow [2, 19, 22] and employ vertex-star relaxation schemes
as part of geometric multigrid F(2, 2)-cycle for the elastic block and W (2, 2)-cycle for the
flux block. Numerical experiments documenting robustness of the cycles for their respective
blocks are reported in Appendix 1.

To test performance of the multigrid-based preconditionerB we consider the two-network
system from Sect. 5.2 where we set c2 = 0, α2 = 1, β ∈ {

10−6, 106
}
while the remaining

parameters are fixed to unity.We remark that for these parameter values the highest condition
numbers are attained with the exact preconditioner, cf. Fig. 4. Furthermore, differing from
the setup of the sensitivity study, we (strongly) enforce u · n = 0 and vi · n = 0, i = 1, 2, on
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Fig. 4 Performance of Biot-Brinkman preconditioner (4.12) for α2 = 1 and varying parameters λ, ν2, K2, β
(denoted by markers). Binary storage capacity is considered: c2 = 1 (solid lines), c2 = 0 (dashed lines). The
remaining parameters are fixed at 1. Discretization by BDM1-(BDM1)

2-(P0)2 elements. Highest condition
numbers correspond to β � 1 and c2 = 0, λ = 1

the entire boundary.1 As before, the finite element discretization is based on the BDM1 and
P0 elements.

In Figs. 7 and 8 we report the dependence on the mesh size and parameter values of the
iteration counts of the preconditioned MinRes solver where as the preconditioner both the
exact Riesz map (4.12) and the multigrid-based approximation are used. More specifically,
the multigrid cycles for the displacement and flux blocks use 3 grid levels applying the exact
L2-projection as the transfer operator. For both Bu and Bv the vertex-star relaxation uses
damped Richardson smoother. Comparing the results we observe that the use of multigrid in
(4.12) translates to a slight (about 1.5x) increase in the number of Krylov iterations compared
to the exact preconditioner. However, the iterations appear bounded in the mesh size and the
parameter variations.

We finally compare the cost of the exact and inexact Biot-Brinkman preconditioners
for case K2 = 10−3, λ = 1, β = 10−6 which required most iterations in the previous
experiments, cf. Fig. 8. Our results are summarized in Table 1 and Fig. 9. We observe that

1 The reason for not prescribing the complete displacement vector as a boundary condition are limitations in
the PCPATCH framework which was used to implement the multigrid algorithm. In particular, the software
currently lacks support for exterior facet integrals (see e.g. [3]) which are required with BDM elements to
weakly enforce conditions on the tangential displacement by the Nitsche method.

123



Journal of Scientific Computing (2022) 93 :77 Page 21 of 28 77

2

3

4

5

0

3

6

9

12
log10 λ

2

3

4

5

2

3

4

5

103 104 105

2

3

4

5

103 104 105 103 104 105 103 104 105

ν2 = 10−9 ν2 = 10−6 ν2 = 10−3 ν2 = 1

K
2

=
1

K
2

=
10

−
3

K
2

=
10

−
6

K
2

=
10

−
9

System size

C
on

d
it

io
n

nu
m

b
er

◦ β = 106 � β = 103 � β = 1 � β = 10−3 � β = 10−6

Fig. 5 Performance of Biot-Brinkman preconditioner (4.12) for α2 = 10−4 and varying parameters λ, ν2, K2,
β (denoted by markers). Binary storage capacity is considered: c2 = 1 (solid lines), c2 = 0 (dashed lines).
The remaining parameters are fixed at 1. Discretization by BDM1-(BDM1)

2-(P0)2 elements

despite requiring more iterations for convergence the solution time2 with the multigrid-based
preconditioner is noticeably faster. We remark that for the sake of simple comparison the
computations were done in serial using single-threaded execution. However, the latter setting
is particularly unfavorable for the exact preconditioner B as modern LU solvers are known
for their thread efficiency.

We note that the solver time and scaling properties are essentially determined by the
method of computing action of blocks Bu and Bv .

By using multigrid for the displacement and flux blocks the resulting solution algorithm
appears to be order optimal, cf. Fig. 9. In particular, we observe that the computational time
and memory usage of the solver scale linearly with the problem size.

Remark 5.1 Stabilization parameters enter in the discrete system operator, see (4.2), as well
as in the preconditioner blocks Bu and Bv and have to be chosen large enough such that the
related operators are positive definite, see e.g. [28].

In this study we have used the same value for all the penalty parameters, namely η = 5,
and kept η fixed throughout all the experiments, in particular in the sensitity analysis. To
illustrate the effect of the penalty parameter on performance of the Biot-Brinkman pre-

2 The comparison is done in terms of the aggregate of the setup time of the linear system, the preconditioner
and the run time of the Krylov solver.
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Fig. 6 Performance of Biot-Brinkman preconditioner (4.12) for α2 = 10−8 and varying parameters λ, ν2, K2,
β (denoted by markers). Binary storage capacity is considered: c2 = 1 (solid lines), c2 = 0 (dashed lines).
The remaining parameters are fixed at 1. Discretization by BDM1-(BDM1)

2-(P0)2 elements

conditioner (4.12) we consider the experimental setup from Sect. 5.2. For simplicity all
physical parameters shall be fixed at 1 while the Lamé parameter λ is varied together with
η = {2, 5, 10, 20, 50, 100}. We remark that with η = 1 theMinRes solver failed to converge.

Considering the results shown in Fig. 10 it can be seen that all the values of η lead to
iteration counts bounded in mesh size for both the exact preconditioner and the inexact one
using geometric multigrid. However, the choice of η plays a role in the speed of convergence.
In particular, larger values of the penalty seem to lead to larger iteration counts as can be seen
from the performance of the multrigrid-based preconditioner (especially for λ = 103, 106).
This effect is less pronounced with the exact preconditioner. We remark that the mulgrid
preconditioners use the identical smoothing scheme (in particular the relaxation parameter
of the Richardson smoother is fixed) for all the parameter values.

123



Journal of Scientific Computing (2022) 93 :77 Page 23 of 28 77

103 104 105

10

15

20

25

30

35

103 104 105 103 104 105 103 104 105 0

3

6

9

12
log10 λK2 = 10−9 K2 = 10−6 K2 = 10−3 K2 = 1

System size

M
in

R
es

it
er

at
io

n
s

◦ ν2 = 1 � ν2 = 10−3 � ν2 = 10−6 � ν2 = 10−9

103 104 105
5

10

15

20

25

30

103 104 105 103 104 105 103 104 105 0

3

6

9

12
log10 λK2 = 10−9 K2 = 10−6 K2 = 10−3 K2 = 1

System size

M
in

R
es

it
er

at
io

n
s

◦ ν2 = 1 � ν2 = 10−3 � ν2 = 10−6 � ν2 = 10−9

Fig. 7 Number of preconditionedMinRes iterations for 2-network Biot-Brinkman systemwith preconditioner
(4.12). (Top) The displacement and flux blocks are realized by geometric multigrid while B p is computed
by LU. (Bottom) Exact (LU-inverted) preconditioner is used. Transfer coefficient β = 106, while c2 = 0,
α2 = 1 and the remaining problem parameters are set to 1
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Fig. 8 Number of preconditionedMinRes iterations for 2-network Biot-Brinkman systemwith preconditioner
(4.12). (Top) The displacement and flux blocks are realized by geometric multigrid while B p is computed by
LU. (Bottom) Exact preconditioner is used. Transfer coefficient β = 10−6, while c2 = 0, α2 = 1 and the
remaining problem parameters are set to 1
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Table 1 Performance of exact
(LU) and approximate
multigrid-based (MG)
preconditioners for the
two-network generalized
Biot-Brinkman model

MinRes iterations LU MinRes iterations MG

ν2/ h 2−3 2−4 2−5 2−6 2−3 2−4 2−5 2−6

10−9 43 44 45 45 46 48 50 49

10−6 43 44 45 45 46 48 50 49

10−3 39 40 40 40 45 48 51 51

1 31 31 31 31 44 45 46 46

Solve time LU [s] Solve time MG [s]

ν2/h 2−3 2−4 2−5 2−6 2−3 2−4 2−5 2−6

10−9 2.50 4.64 23.18 181.00 4.47 7.05 18.22 64.29

10−6 2.51 4.65 23.12 180.36 4.59 7.15 18.21 64.47

10−3 2.50 4.64 23.06 180.34 4.57 7.05 18.24 65.45

1 2.51 4.57 22.74 178.84 4.45 6.94 17.63 62.83

Parameter ν2 is varied while c2 = 0, K2 = 10−3, β = 10−6 and the
remaining parameters are set to 1. Number of unknowns in the systems
ranges from 6 × 103 to 362 × 103. Solve time aggregates setup time
of the linear system, the preconditioner and the run time of the Krylov
solver. Computations were done in serial with threading disabled by
setting OMP_NUM_THREADS=1
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Fig. 9 Scaling of the two-network generalized Biot-Brinkman solver with preconditioner (4.12) using geo-
metric multigrid for the displacement and flux blocks while B p is computed by LU. Two dimensional setup
from Table 1 is considered with β = 10−6 and ν1 = 10−3. Computations were done in serial with threading
disabled by setting OMP_NUM_THREADS=1
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Fig. 10 Effect of stabilization parameter η > 1, see (4.2), in terms of number of preconditioned MinRes itera-
tions with the Biot-Brinkman preconditioner (4.12). (Top) Exact (LU-inverted) preconditioner is considered.
(Bottom) The displacement and flux blocks use geometric multigrid while B p is computed by LU. All the
physical parameters except for the Lamé parameter λ are kept constant at value 1
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Appendix A. Components of Multigrid Preconditioner

In this sectionwe report numerical experiments demonstrating robustness of geometricmulti-
grid preconditioners for blocks Bu and Bv of the Biot-Brinkman preconditioner (4.12).
Adapting the unit square geometry and the setup of boundary conditions from Sect. 5.3
we investigate performance of the preconditioners by considering boundedness of the (pre-
conditioned) conjugate gradient (CG) iterations. In the following, the initial vector is set to
0 and the convergence of the CG solver is determined by reduction of the preconditioned
residual norm by a factor 108. Finally, both systems are discretized by BDM1 elements.

Table 2 confirms robustness of the F(2, 2)-cycle for the displacement block of (4.12). In
particular, the iterations can be seen to be bounded in mesh size and the Lamé parameter λ.
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Table 2 Number of
preconditioned conjugate
gradient iterations for
approximating the displacement
block Bu of the Biot-Brinkman
preconditioner

λ log2 h
−3 −4 −5 −6 −7 −8

1 10 10 9 9 9 9

103 14 14 13 13 12 12

106 14 14 13 13 13 12

109 14 14 14 13 13 13

1012 14 15 14 14 15 16

Geometric multigrid preconditioner uses F(2, 2)-cycle with 3 levels and
a vertex-star (damped Richardson) smoother. In all experiments μ = 1

103 104 105 106

10

12

14

103 104 105 106 103 104 105 106 103 104 105 106 0

3

6

9

12
log10 λK2 = 10−9 K2 = 10−6 K2 = 10−3 K2 = 1

System size

P
C

G
it

er
at

io
n
s

◦ ν2 = 1 � ν2 = 10−3 � ν2 = 10−6 � ν2 = 10−9

103 104 105 106

10

12

14

103 104 105 106 103 104 105 106 103 104 105 106 0

3

6

9

12
log10 λK2 = 10−9 K2 = 10−6 K2 = 10−3 K2 = 1

System size

P
C

G
it

er
at

io
n
s

◦ ν2 = 1 � ν2 = 10−3 � ν2 = 10−6 � ν2 = 10−9

Fig. 11 Number of preconditioned conjugate gradient iterations for approximating the flux block Bv of the
Biot-Brinkman preconditioner. The preconditioner uses W (2, 2)-cycle of geometric multigrid with vertex-star
(damped Richardson) smoother and 3 grid levels. (Top) Transfer coefficient β = 106, (bottom) β = 10−6.
Values of K2, ν2 (encoded by markers) and λ (encoded by line color) are varied. In both setups c2 = 0, α2 = 1
and the remaining problem parameters are set to 1

For the flux block Bv we limit the investigations to the two-network case and set c2 = 0,
α2 = 1 as these parameter values yielded the stiffest problems (in terms of their condition
numbers) in the robustness study of Sect. 5.2. Performance of the geometric multigrid pre-
conditioner using a W (2, 2)-cycle with vertex-star smoother is then summarized in Fig. 11.
We observe that the number of CG iterations is bounded in the mesh size and variations in
K2, ν2 and the exchange coefficient β. We remark that for some parameter configurations
the observed dependence of the iteration counts is not monotone in mesh size. In particular,
the number of preconditioned CG iterations on a finer mesh can be smaller than on a coarse
one. However, in these cases the difference is 1 or 2 iterations with the former being the
typical value.
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Biharmonic wave equations are of importance to various applications including thin plate analyses. The 
innovation of this work comes through the numerical approximation of their solutions by a 𝐶1-conforming 
in space and time finite element approach. Therein, the smoothness properties of solutions to the continuous 
evolution problem are embodied. Time discretization is based on a combined Galerkin and collocation technique. 
For space discretization the Bogner–Fox–Schmit element is applied. Optimal order error estimates are proven. 
The convergence and performance properties are illustrated by numerical experiments with complex wave 
profiles in homogeneous and heterogeneous media, illustrating that the approach offers high potential also for 
sophisticated multi-physics and/or multi-scale systems.

1. Introduction

In this work we propose and analyze a space-time finite element 
approximation by 𝐶1-conforming in space and time discrete functions of 
the initial-boundary value problem for the biharmonic wave equation,

𝜕𝑡𝑡𝑢(𝒙, 𝑡) + Δ2𝑢(𝒙, 𝑡) = 𝑓 (𝒙, 𝑡), in Ω× (0, 𝑇 ] , (1a)

𝑢(𝒙,0) = 𝑢0(𝒙), in Ω, (1b)

𝜕𝑡𝑢(𝒙,0) = 𝑢1(𝒙), in Ω, (1c)

𝑢(𝒙, 𝑡) = 0, on 𝜕Ω× (0, 𝑇 ] , (1d)

𝜕𝒏𝑢(𝒙, 𝑡) = 0, on 𝜕Ω× (0, 𝑇 ] , (1e)

for a bounded domain Ω ⊂ ℝ2. This model is encountered in the mod-

eling of various physical phenomena, such as plate bending and thin 
plate elasticity. The dynamic theory of thin Kirchhoff–Love plates in-

vestigates the propagation of waves in the plates as well as standing 
waves and vibration modes. Moreover, system (1) can be studied as a 
prototype model for more sophisticated Kirchhoff-type equations, such 
as the Euler–Bernoulli equation describing the deflection of viscoelastic 
plates.

The finite element discretization of fourth order differential opera-

tors in space has been subject to intensive research in the literature. The 
Bogner–Fox–Schmit (BFS) element [21] is a classical 𝐶1-conforming 
thin plate element obtained by taking the tensor products of cubic Her-

mite splines. The discrete solutions are continuously differentiable on 

* Corresponding author.

E-mail addresses: bause@hsu-hh.de (M. Bause), maria.lymbery@uni-due.de (M. Lymbery), kevin.osthues@uni-due.de (K. Osthues).

tensor product (rectangular) elements, which can be a serious drawback 
since it limits the applicability of the resulting finite element method. 
However, for geometries allowing tensor product discretization it is 
considered to be one of the most efficient elements for plate analysis, cf. 
[55, p. 153]. It is also a reasonably low order element for plates which 
is very simple to implement, in contrast with triangular elements which 
either use higher order polynomials, such as the Argyris element [11], 
or macro element techniques, such as the Clough–Tocher element [29]. 
Due to the appreciable advantages of the BFS element and our target to 
propose a 𝐶1-conforming in space and time finite element approach for 
(1), the BFS element is applied here.

We note that the finite element approximation of the biharmonic 
operator continues to be an active field of research, for recent contribu-

tions, e.g. [25,26,30]. In particular, discretization methods that support 
polyhedral meshes (the mesh cells can be polyhedra or have a simple 
shape but contain hanging nodes) and hinge on the primal formulation 
of the biharmonic equation leading to a symmetric positive definite sys-

tem matrix are currently focused. These methods can be classified into 
three groups, depending on the dimension of the smallest geometric ob-

ject to which discrete unknowns are attached. This criterion influences 
the stencil of the method. Furthermore, it has an impact on the level of 
conformity that can be achieved for the discrete solution. The methods 
in the first group were developed for the case where Ω ⊂ ℝ2. They at-

tach discrete unknowns to the mesh vertices, edges, and cells and can 
achieve 𝐶1-conformity. Salient examples are the 𝐶1-conforming virtual 
element methods (VEM) from [24,28,7,27,10] and the 𝐶0-conforming 
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VEM from [53]. In [7] the proposed VEM for the Cahn–Hilliard equa-

tion has been also shown to be conforming in 𝐻2 while using a very 
simple set of degrees of freedom. Another example is the nonconforming 
VEM from [23,54,9]. The methods in the second group attach discrete 
unknowns only to the mesh faces and cells for Ω ⊂ℝ𝑑 , with 𝑑 ≥ 2. They 
admit static condensation, and provide a nonconforming approxima-

tion to the solution. Moreover, the nonconforming VEM in [9] has been 
demonstrated to be of arbitrary order of accuracy for biharmonic prob-

lems. The two salient examples are the weak Galerkin methods from 
[46,52,51] and the hybrid high-order method from [22]. Finally, the 
methods in the third group attach discrete unknowns only to the mesh 
cells and belong to the class of interior penalty discontinuous Galerkin 
methods. These are also nonconforming methods; cf. [45,47,34]. Impor-

tant examples of nonconforming finite elements on simplicial meshes 
are the Morley element [44,48] and the Hsieh–Clough–Tocher element 
(cf., e.g., [54, Chap. 6]). The spatial discretization of wave problems by 
discontinuous Galerkin methods has been focused further in the litera-

ture, cf., e.g., [35,8].

Among the most attractive methods for time discretization of 
second-order differential equations in time are the so-called continuous 
Galerkin or Galerkin–Petrov (cf., e.g., [12,33,40]) and the discontinu-

ous Galerkin (cf., e.g., [37,40]) schemes. For lowest order elements, 
these methods can be identified with certain well-known difference 
schemes, e.g. with the classical trapezoidal Newmark scheme (cf., 
e.g., [49,50,36]), the backward Euler scheme and the Crank–Nicolson 
scheme. Strong relations and equivalences between variational time dis-

cretizations, collocation methods and Runge–Kutta schemes have been 
observed. In the literature, the relations are exploited in the formulation 
and analysis of the schemes. For this we refer to, e.g., [2,3]. Recently, 
variational time discretizations that lead to discrete solutions of higher 
order regularity in time [6,16] have been devised for the second-order 
hyperbolic wave equations and analyzed carefully. In particular, opti-

mal order error estimates are proved in [6,16]. In [16], a 𝐶1-conforming 
in time family of space-time finite element approximation that is based 
on a post-processing of the continuous in time Galerkin approximation 
is introduced. Concepts that are developed in [31] for first-order hy-

perbolic problems are transferred to the wave equation written as a 
first order system in time. In [16], a family of Galerkin–collocation ap-

proximation schemes with 𝐶1- and 𝐶2-regular in time discrete solutions 
are proposed and investigated by an optimal order error analysis and 
computational experiments. The conceptual basis of the families of ap-

proximations to the wave equation is the establishment of a connection 
between the Galerkin method for the time discretization and the classi-

cal collocation methods, with the perspective of achieving the accuracy 
of the former with reduced computational costs provided by the latter 
in terms of less complex algebraic systems. Further numerical studies 
for the wave equation can be found in [14,5]. For the application of the 
Galerkin–collocation to mathematical models of fluid flow and systems 
of ordinary differential equations we refer to [4,19,20]. In the numer-

ical experiments, the Galerkin–collocation schemes have proved their 
superiority over lower-order and standard difference schemes. In par-

ticular, energy conservation is ensured which is an essential feature for 
discretization schemes to second-order hyperbolic problems since the 
physics of solutions to the continuous problem are preserved.

As a logical consequence, for the biharmonic wave problem (1)

it appears to be promising to combine the Galerkin–collocation time 
discretization with the BFS finite element discretization of the spatial 
variables to a 𝐶1-conforming approximation in space and time. This 
conceptionally new idea is applied here and yields an innovation and 
superiority over existing discretization schemes. The latter is shown by 
computational comparative studies in Sec. 6. The higher regularity of 
the discrete solutions can be of special advantage for future applications 
in multi-physics, for instance, if terms coupling subproblems depend 
on temporal or spatial derivatives of the solution to the respective 
other subsystem. Further, such space-time finite element approaches 
may lead to progress in the development of multi-scale approaches in 

space and time. Finally, such families of schemes allow the application 
of space-time adaptive methods based on the dual residual approach for 
goal-oriented error control. For the latter one, we refer to [13,15,41] for 
parabolic problems. In this work, we present the combined Galerkin–

collocation and BFS finite element approximation of (1). Key ingredi-

ents of the construction of the Galerkin–collocation approach are the 
application of a special quadrature formula, proposed in [38], and the 
definition of a related interpolation operator for the right-hand side 
term of the variational equation. Both of them use derivatives of the 
given function. The Galerkin–collocation scheme relies in an essential 
way on the perfectly matching set of the polynomial spaces (trial and 
test space), quadrature formula, and interpolation operator. Then, a 
numerical error analysis is performed, optimal order error estimates 
are proved. Here, we restrict ourselves to presenting and stressing the 
differences to the wave equation for the Laplacian considered in [6]. 
Finally, a numerical study of the proposed discretization scheme is pre-

sented in order to illustrate the analyses.

This paper is organized as follows. In Section 2, we introduce our 
notation and formulate problem (1) as a first-order system in time. 
In Section 3, the Galerkin–collocation method is considered for time 
discretization. Some beneficial results for the error analysis are summa-

rized in Section 4. In Section 5, we prove error estimates for the intro-

duced Galerkin–collocation method for the plate vibration problem (1). 
Finally, in Section 6 we present numerical experiments confirming the 
error estimates and perform a comparative study by evaluating the gain 
in accuracy of the proposed full 𝐶1-conforming approximation scheme 
over only continuous in time approximations.

2. Preliminaries and notation

2.1. Evolution form

Throughout this paper, standard notation is used for Sobolev and 
Bochner spaces. By 𝐵 we denote a Banach space. We use (⋅, ⋅) for the 
𝐿2(Ω) inner product inducing the norm

‖ ⋅ ‖ = ‖ ⋅ ‖𝐿2(Ω)

and ⟨⋅, ⋅⟩ for the duality pairing between a Hilbert space and its dual 
space. For the Sobolev norms we adopt the notation

‖ ⋅ ‖𝑚 = ‖ ⋅ ‖𝐻𝑚(Ω) for 𝑚 ∈ℕ, 𝑚 ≥ 1

and further define the spaces

𝐻 =𝐿2(Ω) and 𝑉 =𝐻2
0 (Ω).

Let 𝑉 ′ be the dual space of 𝑉 . We introduce the operator 𝐴 ∶ 𝑉 → 𝑉 ′

which for any given 𝑢 ∈ 𝑉 is uniquely defined by

⟨𝐴𝑢,𝑣⟩ = (Δ𝑢,Δ𝑣) ∀𝑣 ∈ 𝑉

and also the operator  ∶ 𝑉 ×𝐻 →𝐻 × 𝑉 ′ given by

 =
(
0 −𝐼
𝐴 0

)
.

Here 𝐼 is the identity operator that acts on 𝐻 . For the error analysis, we 
define the energy norm on 𝐻2

0 (Ω) × 𝐿2(Ω) by | | |(𝑤0, 𝑤1)| | |2 = ‖Δ𝑤0‖2 +
‖𝑤1‖2.

In order to formulate problem (1) in an evolutionary form we further 
introduce the space

𝑋 ∶=𝐿2(0, 𝑇 ;𝑉 ) ×𝐿2(0, 𝑇 ;𝐻)

and set

𝑢0 = 𝑢 and 𝑢1 = 𝜕𝑡𝑢.

With this notation then problem (1) can be equivalently stated as: 
Find 𝑈 = (𝑢0, 𝑢1) ∈𝑋 satisfying
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𝜕𝑡𝑈 +𝑈 = 𝐹 in (0, 𝑇 ) (2a)

𝑈 (0) =𝑈0 (2b)

where 𝑓 ∈𝐿2(0, 𝑇 ; 𝐻) is given, 𝐹 = (0, 𝑓 ) and 𝑈0 = (𝑢0, 𝑢1).
The existence and uniqueness of solutions to (2) is a classical result, 

cf. [42, p. 273, Thm. 1.1], and [43, p. 275, Thm. 8.2]. Further, we have 
the following regularity result 𝐻2(Ω) ⊂⊂ 𝐶(Ω) for Ω ⊂ℝ2, cf. [1].

2.2. Time discretization

Our aim is to replace the time interval with a discrete time mesh 
and subsequently to iteratively compute the solution of (1) in the time 
nodes. For this reason, we split 𝐼 = (0, 𝑇 ] into 𝑁 ∈ℕ time subintervals

𝐼𝑛 =
(
𝑡𝑛−1, 𝑡𝑛

]
, 𝑛 = 1,… ,𝑁,

where 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇 and introduce the time step parameter 
𝜏 = max𝑛=1,…,𝑁 𝜏𝑛, where 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1. The set 𝜏 ∶= {𝐼1, … , 𝐼𝑁} of 
time intervals represents the time mesh. For simplicity, we use 𝐼0 = {𝑡0}.

We denote the space of all 𝐵-valued polynomials in time of order 
𝑘 ∈ℕ0 over a given interval 𝐼𝑛 by

ℙ𝑘(𝐼𝑛;𝐵) =

{
𝑤𝜏 ∶ 𝐼𝑛 →𝐵 ∶𝑤𝜏 (𝑡) =

𝑘∑
𝑗=0

𝑊 𝑗𝑡𝑗 , ∀𝑡 ∈ 𝐼𝑛, 𝑊 𝑗 ∈𝐵 ∀𝑗

}
.

Moreover, for an integer 𝑘 ∈ ℕ we introduce the space of glob-

ally continuous functions in time, 𝑋𝑘
𝜏 (𝐵), and the space of global 𝐿2-

functions in time, 𝑌 𝑘
𝜏 (𝐵), as follows

𝑋𝑘
𝜏 (𝐵) ∶=

{
𝑤𝜏 ∈ 𝐶(𝐼 ;𝐵) ∶𝑤𝜏

|||𝐼𝑛 ∈ ℙ𝑘(𝐼𝑛;𝐵) ∀𝐼𝑛 ∈𝜏

}
,

𝑌 𝑘
𝜏 (𝐵) ∶=

{
𝑤𝜏 ∈𝐿2(𝐼 ;𝐵) ∶𝑤𝜏

|||𝐼𝑛 ∈ ℙ𝑘(𝐼𝑛;𝐵) ∀𝐼𝑛 ∈𝜏

}
.

We designate

𝜕𝑠𝑡 𝑤(𝑡+𝑛 ) ∶= lim
𝑡→𝑡+0𝑛

𝜕𝑠𝑡 𝑤(𝑡) and 𝜕𝑠𝑡 𝑤(𝑡−𝑛 ) ∶= lim
𝑡→𝑡−0𝑛

𝜕𝑠𝑡 𝑤(𝑡)

to be the one-sided limits of the 𝑠-th derivative of a piecewise suffi-

ciently smooth with respect to the time mesh 𝜏 function 𝑤 ∶ 𝐼 → 𝐵
where 𝑠 ∈ℕ0.

3. Discretizations of space and time

3.1. Space discretization

Let ℎ be a shape-regular mesh of the spatial domain Ω with ℎ > 0
denoting the mesh size and let

𝑉ℎ =
{
𝑣ℎ ∈ 𝐶1(Ω) ∶ 𝑣ℎ

|||𝑇 ∈ℚ3(𝑇 ), 𝑣ℎ
|||𝜕Ω = 0, 𝜕𝒏𝑣ℎ

|||𝜕Ω = 0 ∀𝑇 ∈ ℎ
}

be the finite element space built on the mesh using the Bogner–

Fox–Schmit element. Here ℚ3(𝑇 ) denotes the set of all polynomials with 
maximum degree 3 in each variable.

We denote the 𝐿2-orthogonal projection onto 𝑉ℎ by 𝑃ℎ, i.e.,

(𝑃ℎ𝑤,𝑣ℎ) = (𝑤,𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ

and define the elliptic operator 𝑅ℎ ∶ 𝑉 → 𝑉ℎ via

(Δ𝑅ℎ𝑤,Δ𝑣ℎ) = (Δ𝑤,Δ𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ. (3)

For 𝑤 ∈𝐻𝑠 ∩𝐻2
0 we have the estimates

‖𝑤−𝑅ℎ𝑤‖𝑚 ≤ 𝐶ℎ4−𝑚‖𝑤‖4, 0 ≤𝑚 ≤ 3 (4)

and

‖Δ(𝑤−𝑅ℎ𝑤)‖𝑚 ≤ 𝐶ℎ2−𝑚‖𝑤‖4, 0 ≤𝑚 ≤ 1

which follow directly from the interpolation error estimates given in 
[25] along with Cea’s lemma and the Aubin–Nitsche trick.

Further, we introduce the 𝐿2-projection ℎ ∶𝐻 ×𝐻 → 𝑉ℎ × 𝑉ℎ and 
the elliptic projection ℎ ∶ 𝑉 × 𝑉 → 𝑉ℎ × 𝑉ℎ both of which are onto the 
product space 𝑉ℎ × 𝑉ℎ and also the discrete operator 𝐴ℎ ∶ 𝑉 → 𝑉ℎ for 
which it holds

(
𝐴ℎ𝑤,𝑣ℎ

)
=
(
Δ𝑤,Δ𝑣ℎ

)
∀𝑣ℎ ∈ 𝑉ℎ. (5)

Therefore, if 𝑤 ∈ 𝑉 ∩𝐻4(Ω), we have

(
𝐴ℎ𝑤,𝑣ℎ

)
=
(
Δ𝑤,Δ𝑣ℎ

)
= ⟨𝐴𝑤,𝑣ℎ⟩ ∀𝑣ℎ ∈ 𝑉ℎ

or

𝐴ℎ𝑤 = 𝑃ℎ𝐴𝑤 for 𝑤 ∈ 𝑉 ∩𝐻4(Ω).

Moreover, for the operator ℎ ∶ 𝑉 ×𝐻 → 𝑉ℎ × 𝑉ℎ defined as

ℎ =
(

0 −𝑃ℎ
𝐴ℎ 0

)
(6)

the following relation holds

(ℎ𝑊 ,Φℎ
)
=
(
−𝑤1, 𝜑0

ℎ
)
+
(
Δ𝑤0,Δ𝜑1

ℎ
)
=
(
−𝑤1, 𝜑0

ℎ
)
+ ⟨𝐴𝑤0, 𝜑1

ℎ⟩
= ⟨𝑊 ,Φℎ⟩

for 𝑊 = (𝑤0, 𝑤1) ∈ (𝑉 ∩𝐻4(Ω)) ×𝐻 and for all Φℎ = (𝜑0
ℎ, 𝜑

1
ℎ) ∈ 𝑉ℎ × 𝑉ℎ

which demonstrates the consistency of ℎ on (𝑉 ∩𝐻4(Ω)) ×𝐻 , i.e.,

ℎ𝑊 = ℎ𝑊 . (7)

Finally, an appropriate approximation in 𝑉ℎ × 𝑉ℎ of the initial value 
𝑈0 ∈ 𝑉 ×𝐻 is denoted by 𝑈0,ℎ.

3.2. Numerical integration

The following makes use of the Hermite-type, Gauss and Gauss-

Lobatto quadrature formulas which for a sufficiently regular function 
𝑔 on the interval 𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛] read as

𝑄𝐻
𝑛 (𝑔) =

( 𝜏𝑛
2

)2
�̂�𝐻
𝐿 𝜕𝑡𝑔(𝑡

+
𝑛−1) +

𝜏𝑛
2

𝑘−1∑
𝑠=1

�̂�𝐻
𝑠 𝑔(𝑡

𝐻
𝑛,𝑠) +

( 𝜏𝑛
2

)2
�̂�𝐻
𝑅 𝜕𝑡𝑔(𝑡

−
𝑛 ),

(8a)

𝑄𝐺
𝑛 (𝑔) =

𝜏𝑛
2

𝑘−1∑
𝑠=1

�̂�𝐺
𝑠 𝑔(𝑡

𝐺
𝑛,𝑠), (8b)

𝑄𝐺𝐿
𝑛 (𝑔) =

𝜏𝑛
2

𝑘∑
𝑠=1

�̂�𝐺𝐿
𝑠 𝑔(𝑡𝐺𝐿𝑛,𝑠 ), (8c)

respectively. Here, 𝑡𝐻𝑛,𝑠, 𝑡𝐺𝑛,𝑠 and 𝑡𝐺𝐿𝑛,𝑠 are the corresponding quadrature 
points on the interval while {�̂�𝐻

𝐿 , �̂�
𝐻
𝑅 , �̂�

𝐻
𝑠 }, �̂�𝐺

𝑠 and �̂�𝐺𝐿
𝑠 denote the 

corresponding weights.

We also consider the global Hermite interpolation 𝐼𝐻𝜏 ∶ 𝐶1(𝐼 ; 𝐵) →
𝑋𝑘
𝜏 (𝐵) defined as

𝐼𝐻𝜏 𝑤|||𝐼𝑛 ∶= 𝐼𝐻𝑛 (𝑤|||𝐼𝑛 ) (9)

for all 𝑛 = 1, … , 𝑁 where 𝐼𝐻𝑛 ∶ 𝐶1(𝐼𝑛; 𝐵) → ℙ𝑘(𝐼𝑛; 𝐵) denotes the local 
Hermite interpolation operator with respect to point values and first 
derivatives on the interval 𝐼𝑛.

3.3. Space-time discretizations

In this subsection we introduce the discretization of the biharmonic 
wave problem (1) by a space-time finite element approach utilizing a 
Galerkin–collocation approximation (cf. [6]) of the time variable along 
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with BFS element for the approximation in space. The time discretiza-

tion combines Galerkin and collocation techniques. Moreover, for com-

parative studies and in order to analyze the impact of the discrete 
solution’s higher regularity in time on the accuracy of the numeri-

cal results, the standard continuous in time Galerkin–Petrov approach 
(cf., e.g., [33,16]) is presented here briefly. Within the latter family of 
schemes, the Crank–Nicolson method is recovered for piecewise linear 
approximations.

3.3.1. The Galerkin–collocation method cGP-C1(𝑘)
The variational time discretization for the plate vibration prob-

lem (1) is derived following the idea in [18,6] and reads as follows:

Problem 1. Let 𝑈𝜏,ℎ(𝑡−𝑛−1) for 𝑛 > 1 and 𝑈𝜏,ℎ(𝑡−0 ) =𝑈0,ℎ for 𝑛 = 1 be given. 
Find 𝑈𝜏,ℎ

|||𝐼𝑛 ∈ (ℙ𝑘(𝐼𝑛; 𝑉ℎ))2 satisfying

𝑈𝜏,ℎ(𝑡+𝑛−1) =𝑈𝜏,ℎ(𝑡−𝑛−1), (10a)

𝜕𝑡𝑈𝜏,ℎ(𝑡+𝑛−1) = −ℎ𝑈𝜏,ℎ(𝑡+𝑛−1) +ℎ𝐹 (𝑡+𝑛−1), (10b)

𝜕𝑡𝑈𝜏,ℎ(𝑡−𝑛 ) = −ℎ𝑈𝜏,ℎ(𝑡−𝑛 ) +ℎ𝐹 (𝑡−𝑛 ), (10c)

𝑄𝐻
𝑛 (

(
𝜕𝑡𝑈𝜏,ℎ, 𝑉𝜏,ℎ

)
+
(ℎ𝑈𝜏,ℎ, 𝑉𝜏,ℎ

)
) =𝑄𝐻

𝑛 (
(
𝐹 ,𝑉𝜏,ℎ

)
) (10d)

for all 𝑉𝜏,ℎ ∈ (ℙ𝑘−3(𝐼𝑛; 𝑉ℎ))2.

The existence and uniqueness of a solution to Problem 1 has been 
discussed in [6], see also [18].

From the definition of the scheme it also follows that 𝑈𝜏,ℎ ∈
(𝐶1(𝐼 ; 𝑉ℎ))2 and (10b) can be written as

𝜕𝑡𝑈𝜏,ℎ(𝑡+𝑛−1) = 𝜕𝑡𝑈𝜏,ℎ(𝑡−𝑛−1),

where 𝜕𝑡𝑈𝜏,ℎ(𝑡−0 ) = −ℎ𝑈0,ℎ + ℎ𝐹 (0) and, therefore, Problem 1 can be 
equivalently written as:

Problem 2. Let 𝑘 ≥ 3 be fixed and be given the values 
(
𝑢0𝜏,ℎ

|||𝐼𝑛−1 (𝑡𝑛−1),

𝑢1𝜏,ℎ
|||𝐼𝑛−1 (𝑡𝑛−1)

)
∈ 𝑉 2

ℎ for 1 < 𝑛 ≤ 𝑁 and 
(
𝑢0𝜏,ℎ

|||𝐼0 (𝑡0), 𝑢
1
𝜏,ℎ

|||𝐼0 (𝑡0)
)

= (𝑢0,ℎ,

𝑢1,ℎ) for 𝑛 = 1. Then the Galerkin–collocation for 
(
𝑢0𝜏,ℎ

|||𝐼𝑛 , 𝑢
1
𝜏,ℎ

|||𝐼𝑛
)

∈

ℙ𝑘(𝐼𝑛; 𝑉ℎ)2 is defined as

𝜕𝑠𝑡 𝑢
0
𝜏,ℎ

|||𝐼𝑛 (𝑡𝑛−1) = 𝜕𝑠𝑡 𝑢
0
𝜏,ℎ

|||𝐼𝑛−1 (𝑡𝑛−1), 𝑠 ∈ {0,1}, (11a)

𝜕𝑠𝑡 𝑢
1
𝜏,ℎ

|||𝐼𝑛 (𝑡𝑛−1) = 𝜕𝑠𝑡 𝑢
1
𝜏,ℎ

|||𝐼𝑛−1 (𝑡𝑛−1), 𝑠 ∈ {0,1}, (11b)

𝜕𝑡𝑢
0
𝜏,ℎ

|||𝐼𝑛 (𝑡𝑛) − 𝑢1𝜏,ℎ
|||𝐼𝑛 (𝑡𝑛) = 0, (11c)

𝜕𝑡𝑢
1
𝜏,ℎ

|||𝐼𝑛 (𝑡𝑛) +𝐴ℎ𝑢
0
𝜏,ℎ

|||𝐼𝑛 (𝑡𝑛) = 𝑓 (𝑡𝑛), (11d)

and

∫
𝐼𝑛

∫
Ω

𝜕𝑡𝑢
0
𝜏,ℎ 𝜑

0
𝜏,ℎ − 𝑢1𝜏,ℎ 𝜑

0
𝜏,ℎ d𝒙d𝑡 = 0, (11e)

∫
𝐼𝑛

∫
Ω

𝜕𝑡𝑢
1
𝜏,ℎ 𝜑

1
𝜏,ℎ +𝐴ℎ𝑢

0
𝜏,ℎ 𝜑

1
𝜏,ℎ d𝒙d𝑡 = ∫

𝐼𝑛
∫
Ω

𝑓 𝜑1
𝜏,ℎ d𝒙d𝑡, (11f)

for all 
(
𝜑0
𝜏,ℎ,𝜑

1
𝜏,ℎ

)
∈ (ℙ𝑘−3(𝐼𝑛; 𝑉ℎ))2.

The discrete initial values (𝑢0,ℎ, 𝑢1,ℎ) ∈ 𝑉 2
ℎ are determined from the 

interpolation of the functions (𝑢0, 𝑢1). We use the interpolant 𝑢1,ℎ for 
the value 𝜕𝑡𝑢0𝜏,ℎ(0) from (11a). In order to obtain an appropriate value 
for 𝜕𝑡𝑢1𝜏,ℎ(0) in (11b) we consider (1a) at time 𝑡 = 0 and interpolate the 
function

𝜕𝑡𝑢
1(𝒙,0) = 𝑓 (𝒙,0) − Δ2𝑢(𝒙,0).

The collocation conditions ensure a reduction in the size of the test 
space which results in a smaller linear system of equations.

Next, we summarize a result for scheme (10) used in the error anal-

ysis, cf. [6].

Proposition 3. Consider the solution 𝑈𝜏,ℎ ∈ (𝑋𝑘
𝜏 (𝑉ℎ))

2 of Problem 1. It 
holds that

𝐵𝐺𝐿
𝑛 (𝑈𝜏,ℎ, 𝑉𝜏,ℎ) =𝑄𝐺𝐿

𝑛 (
(
𝐼𝐻𝜏 𝐹 ,𝑉𝜏,ℎ

)
)

for all 𝑉𝜏,ℎ ∈ (ℙ𝑘−2(𝐼𝑛; 𝑉ℎ))2 and for 𝑛 = 1, … , 𝑁 , where

𝐵𝐺𝐿
𝑛 (𝑈𝜏,ℎ, 𝑉𝜏,ℎ) =𝑄𝐺𝐿

𝑛 (
(
𝜕𝑡𝑈𝜏,ℎ, 𝑉𝜏,ℎ

)
+
(ℎ𝑈𝜏,ℎ, 𝑉𝜏,ℎ

)
).

3.3.2. The cGP(𝑘)-method

The second time discretization method for the dynamic plate vi-

bration problem considered is the Crank–Nicolson method [32]. The 
differential equation is solved iteratively by determining the solution at 
the time interval points 𝑡𝑛. To derive the Crank–Nicolson method, we 

use 
(
𝑢0𝜏,ℎ

|||𝐼𝑛 , 𝑢
1
𝜏,ℎ

|||𝐼𝑛
)
∈ ℙ𝑘(𝐼𝑛; 𝑉ℎ)2 and 

(
𝜑0
𝜏,ℎ

|||𝐼𝑛 ,𝜑
1
𝜏,ℎ

|||𝐼𝑛
)
∈ ℙ𝑘−1(𝐼𝑛; 𝑉ℎ)2

as ansatz [6]. Since the solution space differs from the test space, 
this is referred to as a continuous Galerkin–Petrov method, or cGP(𝑘) 
for short. The discrete solution functions are globally continuous and 
use piecewise polynomials of degree 𝑘 for the time discretization. The 
cGP(1)-method corresponds to the Crank–Nicolson method.

In contrast to the Galerkin–collocation from the previous subsection, 
the Crank–Nicolson method only provides a solution that is continuous 
in time, but not a continuously differentiable solution.

4. Error analysis

The error analysis in this section makes heavily use of the re-

sults from [39] for semi-linear second order hyperbolic wave equations 
which can be carried over to the plate vibration problem when 𝑓 = 𝑓 (𝑢). 
This adaptation, however, requires some non-trivial steps, which are ex-

posed in detail in the appendix of [17].

Here, we build on these results and, prior to presenting the main 
theoretical findings, introduce some useful definitions. Let 𝐵 ⊂ 𝐻 and 
𝑙 ∈ℕ. The local 𝐿2-projections Π𝑙

𝑛 ∶𝐿
2(𝐼𝑛; 𝐵) → ℙ𝑙(𝐼𝑛; 𝐵) are defined by

∫
𝐼𝑛

(
Π𝑙
𝑛𝑤, 𝑞

)
d𝑡 = ∫

𝐼𝑛

(𝑤,𝑞) d𝑡 ∀𝑞 ∈ ℙ𝑙(𝐼𝑛;𝐵).

We consider the Hermite interpolant in time 𝐼𝑘+1𝜏 ∶ 𝐶1(𝐼 ; 𝐵) →
𝐶1(𝐼 ; 𝐵) ∩ 𝑋𝑘+1

𝜏 (𝐵) studied in [16,31]. For this operator it is fulfilled 
that

𝐼𝑘+1𝜏 𝑢(𝑡𝑛) = 𝑢(𝑡𝑛), 𝜕𝑡𝐼
𝑘+1
𝜏 𝑢(𝑡𝑛) = 𝜕𝑡𝑢(𝑡𝑛), 𝑛 = 0,… ,𝑁,

and

𝐼𝑘+1𝜏 𝑢(𝑡𝐺𝐿𝑛,𝜇 ) = 𝑢(𝑡𝐺𝐿𝑛,𝜇 ), 𝑛 = 1,… ,𝑁, 𝜇 = 2,… , 𝑘− 1

and for a smooth function 𝑢, the following error estimates hold true on 
each interval 𝐼𝑛

‖𝜕𝑡𝑢− 𝜕𝑡𝐼
𝑘+1
𝜏 𝑢‖𝐶0(𝐼𝑛 ;𝐵) ≤ 𝐶𝜏𝑘+1𝑛 ‖𝑢‖𝐶𝑘+2(𝐼𝑛;𝐵),

‖𝜕2𝑡 𝑢− 𝜕2𝑡 𝐼
𝑘+1
𝜏 𝑢‖𝐶0(𝐼𝑛 ;𝐵) ≤ 𝐶𝜏𝑘𝑛 ‖𝑢‖𝐶𝑘+2(𝐼𝑛 ;𝐵).

Moreover, we define the operator 𝑅𝑘
𝜏𝑢
|||𝐼𝑛 ∈ ℙ𝑘(𝐼𝑛; 𝐵) for 𝑛 = 1, … , 𝑁

via the (𝑘 + 1) conditions

𝑅𝑘
𝜏𝑢
|||𝐼𝑛 (𝑡𝑛−1) = 𝐼𝑘+1𝜏 𝑢(𝑡𝑛−1),

𝜕𝑡𝑅
𝑘+1
𝜏 𝑢|||𝐼𝑛 (𝑡𝑛,𝑠) = 𝜕𝑡𝐼

𝑘+1
𝜏 𝑢(𝑡𝑛,𝑠), 𝑠 = 0,… , 𝑘

and we set 𝑅𝑘
𝜏𝑢(0) ∶= 𝑢(0).

Here, we briefly summarize some of the properties of 𝑅𝑘
𝜏 that are 

important for the analysis. Their proofs can be found in [16,31].
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Lemma 4. Let 𝑘 ≥ 3. For 𝑛 = 1, … , 𝑁 and 𝑢 ∈ 𝐶𝑘+1(𝐼𝑛; 𝐵) the estimate

‖𝑢−𝑅𝑘
𝜏𝑢‖𝐶0(𝐼𝑛;𝐵)

≤ 𝐶𝜏𝑘+1𝑛 ‖𝑢‖𝐶𝑘+1(𝐼𝑛 ;𝐵)
holds.

A direct consequence of Lemma 4 is given in the following Coroll-

lary.

Corollary 5. For 𝑛 = 1, … , 𝑁 and 𝑢 ∈ 𝐶𝑘+1(𝐼𝑛; 𝐵) the estimate

‖𝜕𝑡𝑢− 𝜕𝑡𝑅
𝑘
𝜏 𝑢‖𝐶0(𝐼𝑛 ;𝐵)

≤ 𝐶𝜏𝑘𝑛 ‖𝑢‖𝐶𝑘+1(𝐼𝑛;𝐵) (12)

is fulfilled.

Next we consider the global Hermite interpolation operator defined 
in (9).

Lemma 6. For 𝐼𝐻𝜏 ∶ 𝐶1(𝐼 ; 𝐻) →𝑋𝑘
𝜏 (𝐻) the following estimates

‖𝑢− 𝐼𝐻𝜏 𝑢‖𝐶0(𝐼𝑛;𝐵) ≤ 𝐶𝜏𝑘+1𝑛 ‖𝑢‖𝐶𝑘+1(𝐼𝑛;𝐵)
‖𝜕𝑡𝑢− 𝜕𝑡𝐼

𝐻
𝜏 𝑢‖𝐶0(𝐼𝑛;𝐵) ≤ 𝐶𝜏𝑘𝑛 ‖𝑢‖𝐶𝑘+1(𝐼𝑛;𝐵)

hold true for all 𝑛 = 1, … , 𝑁 and all 𝑢 ∈ 𝐶𝑘+1(𝐼𝑛; 𝐵).

Another important result for our analysis that has been proved 
in [16] is presented as follows.

Lemma 7. Let us consider the Gauss quadrature formula (8b). For all poly-

nomials 𝑝 ∈ ℙ𝑘−1(𝐼𝑛; 𝐵) and all 𝑛 = 1, … , 𝑁 it is fulfilled that

Π𝑘−2
𝜏 𝑝(𝑡𝐺𝑛,𝑠) = 𝑝(𝑡𝐺𝑛,𝑠), 𝑠 = 1,… , 𝑘− 1.

Finally, a useful norm bound, see [16,31], is presented.

Lemma 8. For any 𝑢 ∈ ℙ𝑘(𝐼𝑛; 𝐻) the following inequality

∫
𝐼𝑛

‖𝑢‖2 d𝑡 ≤ 𝐶𝜏𝑛‖𝑢(𝑡𝑛−1)‖2 + 𝜏2𝑛 ∫
𝐼𝑛

‖𝜕𝑡𝑢‖2 d𝑡,

is fulfilled.

5. Error estimates

Our ultimate goal in this section is to prove estimates for the error

𝐸(𝑡) =𝑈 (𝑡) −𝑈𝜏,ℎ(𝑡) = (𝑒0(𝑡), 𝑒1(𝑡)),

where the Galerkin–collocation approximation 𝑈𝜏,ℎ is the solution of 
Problem 2 and 𝑈 (𝑡) = (𝑢0(𝑡), 𝑢1(𝑡)). To achieve this, we start with esti-

mations for 𝜕𝑡𝐸 and afterwards we estimate the error 𝐸. Note that 𝐸 is 
continuously differentiable in time if 𝑈 ∈ (𝐶1(𝐼 ; 𝑉 ))2 holds for the exact 
solution.

5.1. Error estimates for 𝜕𝑡𝑈𝜏,ℎ

First, we derive estimates for 𝜕𝑡𝑈𝜏,ℎ, which will be used later.

Theorem 9. Let 𝑈𝜏,ℎ ∈ (𝑋𝑘
𝜏 (𝑉ℎ))

2 be the discrete solution of Problem 1. 
Then, the time derivative 𝜕𝑡𝑈𝜏,ℎ ∈ (𝑋𝑘−1

𝜏 (𝑉ℎ))2 solves for 𝑛 = 1, … , 𝑁

𝐵𝐺𝐿
𝑛 (𝜕𝑡𝑈𝜏,ℎ, 𝑉𝜏,ℎ) =𝑄𝐺𝐿

𝑛 (
(
𝜕𝑡𝐼

𝐻
𝜏 𝐹 ,𝑉𝜏,ℎ

)
) = ∫

𝐼𝑛

(
𝜕𝑡𝐼

𝐻
𝜏 𝐹 ,𝑉𝜏,ℎ

)
d𝑡

for all 𝑉𝜏,ℎ ∈ (ℙ𝑘−2(𝐼𝑛; 𝑉ℎ))2.

Proof. The proof differs from proof [6, Theorem 5.1] only in the defi-

nition of the operator ℎ.

Lemma 10. Let 𝑈0,ℎ = (𝑅ℎ𝑢0, 𝑅ℎ𝑢1). Then the identity

𝜕𝑡𝑈𝜏,ℎ(0) =
(
𝑅ℎ 0
0 𝑃ℎ

)
𝜕𝑡𝑈 (0),

holds.

Proof. From 𝑈𝜏,ℎ(0) = 𝑈0,ℎ = (𝑅ℎ𝑢0, 𝑅ℎ𝑢1) together with (10a) and (10b)

for 𝑛 = 1 it follows

𝜕𝑡𝑈𝜏,ℎ(0) = −ℎ𝑈𝜏,ℎ(0) +ℎ𝐹 (0)
= −

(
0 −𝑃ℎ
𝐴ℎ 0

)(
𝑅ℎ𝑢0
𝑅ℎ𝑢1

)
+
(

0
𝑃ℎ𝑓 (0)

)

=
(

𝑃ℎ𝑅ℎ𝑢1
−𝐴ℎ𝑅ℎ𝑢0 + 𝑃ℎ𝑓 (0)

)
.

Using the definition of the operator 𝑅ℎ, (3), we obtain

(
𝐴ℎ𝑅ℎ𝑢0, 𝑣ℎ

)
=
(
Δ𝑅ℎ𝑢0,Δ𝑣ℎ

)
=
(
Δ𝑢0,Δ𝑣ℎ

)
= ⟨𝐴𝑢0, 𝑣ℎ⟩ =

(
𝑃ℎ𝐴𝑢0, 𝑣ℎ

)

for all 𝑣ℎ ∈ 𝑉ℎ. Thus, 𝐴ℎ𝑅ℎ𝑢0 = 𝑃ℎ𝐴𝑢0. In addition, we have

(
𝑃ℎ𝑅ℎ𝑢1, 𝑣ℎ

)
=
(
𝑅ℎ𝑢1, 𝑣ℎ

)

for all 𝑣ℎ ∈ 𝑉ℎ, from which we infer 𝑃ℎ𝑅ℎ𝑢1 =𝑅ℎ𝑢1. Thus, we have

𝜕𝑡𝑈𝜏,ℎ(0) =
(

𝑅ℎ𝑢1
−𝑃ℎ𝐴𝑢0 + 𝑃ℎ𝑓 (0)

)

Calculating the right-hand side gives

(
𝑅ℎ 0
0 𝑃ℎ

)
𝜕𝑡𝑈 (0) =

(
𝑅ℎ 0
0 𝑃ℎ

)
(−𝑈 (0) + 𝐹 (0))

=
(
𝑅ℎ 0
0 𝑃ℎ

)(
𝑢1

−𝐴𝑢0 + 𝑓 (0)

)

=
(

𝑅ℎ𝑢1
−𝑃ℎ𝐴𝑢0 + 𝑃ℎ𝑓 (0)

)
.

This proves the statement.

Theorem 11. Let �̂� be the solution of (1) with data (𝑓 , ̂𝑢0, ̂𝑢1) instead of 
(𝑓, 𝑢0, 𝑢1). Furthermore, let 𝑙 ∈ℕ and 𝑓𝜏 be an approximation of 𝑓 satisfying

‖𝑓 − 𝑓𝜏‖𝐶(𝐼𝑛;𝐻) ≤ 𝐶𝑓 𝜏
𝑙+1
𝑛 , 𝑛 = 1,… ,𝑁,

where 𝐶𝑓 is independent of 𝑛, 𝑁 and 𝜏𝑛. Let �̂�𝜏,ℎ = (�̂�0𝜏,ℎ, ̂𝑢
1
𝜏,ℎ) ∈ (𝑋𝑙

𝜏 (𝑉ℎ))
2

denote the solution of the local perturbed cGP(𝑙)-cG(𝑟) problem

∫
𝐼𝑛

(
𝜕𝑡�̂�𝜏,ℎ, 𝑉𝜏,ℎ

)
+
(ℎ�̂�𝜏,ℎ, 𝑉𝜏,ℎ

)
d𝑡 = ∫

𝐼𝑛

(
𝐹𝜏 ,𝑉𝜏,ℎ

)
d𝑡

for all test function 𝑉𝜏,ℎ = (𝑣0𝜏,ℎ, 𝑣
1
𝜏,ℎ) ∈ (ℙ𝑙−1(𝐼𝑛; 𝑉ℎ))2 with 𝐹𝜏 = (0, 𝑓𝜏 )

and initial value �̂�𝜏,ℎ(𝑡+𝑛−1) = �̂�𝜏,ℎ(𝑡−𝑛−1) for 𝑛 > 1 and �̂�𝜏,ℎ(𝑡0) = �̂�0,ℎ =
(𝑅ℎ�̂�0, 𝑃ℎ�̂�1). Then a sufficiently smooth exact solution �̂� satisfies

‖�̂�(𝑡) − �̂�0𝜏,ℎ(𝑡)‖+ ‖𝜕𝑡�̂�(𝑡) − �̂�1𝜏,ℎ(𝑡)‖ ≤ 𝐶(𝜏𝑙+1𝐶𝑡(�̂�) + ℎ4𝐶𝑥(�̂�)), (13)

‖Δ(�̂�(𝑡) − �̂�0𝜏,ℎ(𝑡))‖ ≤ 𝐶(𝜏𝑙+1𝐶𝑡(�̂�) + ℎ2𝐶𝑥(�̂�)) (14)

for all 𝑡 ∈ 𝐼 where 𝐶𝑡(�̂�) and 𝐶𝑥(�̂�) depend on various temporal and spatial 
derivatives of �̂�.

Proof. The proof follows the lines of the proof of [16, Theorem 5.5].

The main result in this section is
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Theorem 12. Let the exact solution 𝑈 = (𝑢0, 𝑢1) ∶= (𝑢, 𝜕𝑡𝑢) be sufficiently 
smooth and 𝑈0,ℎ ∶= (𝑅ℎ𝑢0, 𝑅ℎ𝑢1), then the following estimates hold true for 
all 𝑡 ∈ 𝐼

‖𝜕𝑡𝑈 (𝑡) − 𝜕𝑡𝑈𝜏,ℎ(𝑡)‖ ≤ 𝐶(𝜏𝑘𝐶𝑡(𝜕𝑡𝑢) + ℎ4𝐶𝑥(𝜕𝑡𝑢)) ≤ 𝐶(𝜏𝑘 + ℎ4), (15)

‖Δ(𝜕𝑡𝑢0(𝑡) − 𝜕𝑡𝑢0𝜏,ℎ(𝑡))‖ ≤ 𝐶(𝜏𝑘𝐶𝑡(𝜕𝑡𝑢) + ℎ2𝐶𝑥(𝜕𝑡𝑢)) ≤ 𝐶(𝜏𝑘 + ℎ2), (16)

where the quantities 𝐶𝑡(𝜕𝑡𝑢) and 𝐶𝑥(𝜕𝑡𝑢) depend on various temporal and 
spatial derivatives of 𝜕𝑡𝑢.

Proof. This proof differs from proof [6, Theorem 5.5] in the definition 
of the operators 𝐴, ℎ and 𝑅ℎ as well as the finite element space 𝑉ℎ. 
Analogous to this proof in [6], estimates (15) and (16) follow from 
estimates (13) and (14).

5.2. Error estimates for 𝑈𝜏,ℎ

In this subsection we wish to estimate 𝑈𝜏,ℎ. Therefore, we use the 
following splitting

𝐸(𝑡) = Θ(𝑡) +𝐸𝜏,ℎ(𝑡) with

Θ(𝑡) =𝑈 (𝑡) −ℎ𝑅
𝑘
𝜏𝑈 (𝑡) and 𝐸𝜏,ℎ(𝑡) =ℎ𝑅

𝑘
𝜏𝑈 (𝑡) −𝑈𝜏,ℎ(𝑡),

where 𝐸𝜏,ℎ(𝑡) = (𝑒0𝜏,ℎ(𝑡), 𝑒
1
𝜏,ℎ(𝑡)).

Lemma 13 (Estimation of the interpolation error). Let 𝑚 ∈ {0, 1}. Then, the 
error estimates

‖Θ(𝑡)‖𝑚 ≤ 𝐶(ℎ4−𝑚 + 𝜏𝑘+1𝑛 ), 𝑡 ∈ 𝐼𝑛, (17)

‖𝜕𝑡Θ(𝑡)‖𝑚 ≤ 𝐶(ℎ4−𝑚 + 𝜏𝑘𝑛 ), 𝑡 ∈ 𝐼𝑛, (18)

are valid for 𝑛 = 1, … , 𝑁 where ‖⋅‖0 = ‖⋅‖.

Proof. First, we note that for the elliptic projection 𝑅ℎ defined in (3)

it holds that ‖𝑅ℎ𝑢‖ ≤ 𝐶‖Δ𝑅ℎ𝑢‖ ≤ 𝐶‖Δ𝑢‖. Then, the proof follows the 
same lines as the proof of [16, Lemma 5.7].

Using Lemma 4 and the approximation properties of the elliptic pro-

jection 𝑅ℎ we obtain

‖Θ(𝑡)‖𝑚 = ‖𝑈 (𝑡) −ℎ𝑅
𝑘
𝜏𝑈 (𝑡)‖𝑚

≤ ‖𝑈 (𝑡) −ℎ𝑈 (𝑡)‖𝑚 + ‖ℎ(𝑈 (𝑡) −𝑅𝑘
𝜏𝑈 (𝑡))‖𝑚

≤ 𝐶ℎ4−𝑚‖𝑈‖𝐶0(𝐼 ;𝐻4(Ω)) + 𝜏𝑘+1𝑛 ‖𝑈‖𝐶𝑘+1(𝐼 ;𝐻1(Ω))

which proves (17). Applying estimate (12) and the fact that 𝜕𝑡 and 𝑅ℎ
commute yields

‖𝜕𝑡Θ(𝑡)‖𝑚 ≤ ‖𝜕𝑡𝑈 (𝑡) −ℎ𝜕𝑡𝑈 (𝑡)‖𝑚 + ‖ℎ(𝜕𝑡𝑈 (𝑡) − 𝜕𝑡𝑅
𝑘+1
𝜏 𝑈 (𝑡))‖𝑚

≤ 𝐶ℎ4−𝑚‖𝜕𝑡𝑈‖𝐶0(𝐼 ;𝐻4(Ω)) +𝐶𝜏𝑘+1𝑛 ‖𝑈‖𝐶𝑘+2(𝐼 ;𝐻1(Ω))

which shows (18).

Lemma 14 (Consistency error). Let 𝑈 ∈ 𝐶1(𝐼 ; 𝑉 ) × 𝐶1(𝐼 ; 𝐻). Then, we 
have

𝐵𝐺𝐿
𝑛 (𝐸,𝑉𝜏,ℎ) =𝑄𝐺𝐿

𝑛 (
(
𝐼𝐺𝐿𝜏 𝐹 − 𝐼𝐻𝜏 𝐹 ,𝑉𝜏,ℎ

)
) =𝑄𝐺𝐿

𝑛 (
(
𝐹 − 𝐼𝐻𝜏 𝐹 ,𝑉𝜏 , ℎ

)
)

for all 𝑉𝜏,ℎ ∈ (𝑌 𝑘−2
𝜏,ℎ )2 and 𝑛 = 1, … , 𝑁 .

Proof. Because of Proposition 3 and the consistency property (7), the 
proof differs from the proof [6, Lemma 5.7] only in the definition of the 
operators  and ℎ.

For the proof of the following result we refer to [16, Lemma 5.9].

Lemma 15. Let 𝑝 ∈ ℙ𝑘(𝐼𝑛) be an arbitrary polynomial of degree less than 
or equal to 𝑘. Then, the identity

𝜕𝑡𝑝(𝑡𝐺𝑛,𝜇) = 𝜕𝑡𝐼
𝐺𝐿
𝜏 𝑝(𝑡𝐺𝑛,𝜇)

is satisfied for all Gauss points 𝑡𝐺𝑛,𝜇 ∈ 𝐼𝑛, 𝜇 = 1, … , 𝑘 − 1.

Lemma 16 (Stability). The following identity

𝐵𝐺𝐿
𝑛 ((𝑒0𝜏,ℎ, 𝑒

1
𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ))

= 1
2
(‖Δ𝑒0𝜏,ℎ(𝑡𝑛)‖2 − ‖Δ𝑒0𝜏,ℎ(𝑡𝑛−1)‖2 + ‖𝑒1𝜏,ℎ(𝑡𝑛)‖2 − ‖𝑒1𝜏,ℎ(𝑡𝑛−1)‖2)

holds true for all 𝑛 = 1, … , 𝑁 .

Proof. First, we note that 
(
(𝑒0𝜏,ℎ, 𝑒

1
𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
∈

ℙ2𝑘−2(𝐼𝑛; ℝ). Using the Gauss-Lobatto interpolation operator, we obtain 
𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ ∈ ℙ𝑘−1(𝐼𝑛; 𝑉ℎ) and 𝐴ℎ𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ ∈ ℙ𝑘−1(𝐼𝑛; 𝑉ℎ). Then, we have

𝐵𝐺𝐿
𝑛 ((𝑒0𝜏,ℎ, 𝑒

1
𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ))

=𝑄𝐺𝐿
𝑛 (

(
(𝜕𝑡𝑒0𝜏,ℎ, 𝜕𝑡𝑒

1
𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
)

+𝑄𝐺𝐿
𝑛 (

(
(−𝑃ℎ𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ,𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
)

= ∫
𝐼𝑛

(
(𝜕𝑡𝑒0𝜏,ℎ, 𝜕𝑡𝑒

1
𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
d𝑡

+ ∫
𝐼𝑛

(
(−𝑃ℎ𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ,𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
d𝑡

= 𝑇1 + 𝑇2.
(19)

Using Lemma 7 together with the exactness of the (𝑘 − 1)-point Gauss 
quadrature formula for polynomials on ℙ2𝑘−3(𝐼𝑛; ℝ) and subsequent ap-

plication of Lemma 15, we obtain

𝑇1 = ∫
𝐼𝑛

(
(Π𝑘−2

𝑛 𝜕𝑡𝑒0𝜏,ℎ,Π
𝑘−2
𝑛 𝜕𝑡𝑒1𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
d𝑡

=𝑄𝐺
𝑛 (
(
(𝜕𝑡𝑒0𝜏,ℎ, 𝜕𝑡𝑒

1
𝜏,ℎ), (𝐴ℎ𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ, 𝐼

𝐺𝐿
𝜏 𝑒1𝜏,ℎ)

)
)

=𝑄𝐺
𝑛 (
(
(𝜕𝑡𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ, 𝜕𝑡𝐼

𝐺𝐿
𝜏 𝑒1𝜏,ℎ), (𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ, 𝐼

𝐺𝐿
𝜏 𝑒1𝜏,ℎ)

)
)

=
𝜏𝑛
2

𝑘−1∑
𝜇=1

�̂�𝐺
𝜇

(
𝜕𝑡𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ(𝑡

𝐺
𝑛,𝜇),𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ(𝑡

𝐺
𝑛,𝜇)

)

+
𝜏𝑛
2

𝑘−1∑
𝜇=1

�̂�𝐺
𝜇

(
𝜕𝑡𝐼

𝐺𝐿
𝜏 𝑒1𝜏,ℎ(𝑡

𝐺
𝑛,𝜇), 𝐼

𝐺𝐿
𝜏 𝑒1𝜏,ℎ(𝑡

𝐺
𝑛,𝜇)

)

=
𝜏𝑛
2

𝑘−1∑
𝜇=1

�̂�𝐺
𝜇
1
2
d𝑡‖𝐴1∕2

ℎ 𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ(𝑡
𝐺
𝑛,𝜇)‖2 +

𝜏𝑛
2

𝑘−1∑
𝜇=1

�̂�𝐺
𝜇
1
2
d𝑡‖𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ(𝑡

𝐺
𝑛,𝜇)‖2.

Using the exactness of the (𝑘 − 1)-point Gauss quadrature formula on 
ℙ2𝑘−3(𝐼𝑛; ℝ) again, we obtain

𝑇1 = ∫
𝐼𝑛

(1
2
d𝑡‖𝐴1∕2

ℎ 𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ(𝑡)‖2 + 1
2
d𝑡‖𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ(𝑡)‖2

)
d𝑡

= 1
2

(
‖𝐴1∕2

ℎ 𝑒0𝜏,ℎ(𝑡𝑛)‖2 − ‖𝐴1∕2
ℎ 𝑒0𝜏,ℎ(𝑡𝑛−1)‖2 + ‖𝑒1𝜏,ℎ(𝑡𝑛)‖2 − ‖𝑒1𝜏,ℎ(𝑡𝑛−1)‖2

)
.

(20)

By using Lemma 7, we have that
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𝑇2 = ∫
𝐼𝑛

(
(−𝑃ℎ𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ,𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
d𝑡

=∫
𝐼𝑛

(
(−Π𝑘−2

𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ,Π
𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ), (Π

𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ)

)
d𝑡

=∫
𝐼𝑛

(
−Π𝑘−2

𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ,Π
𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ

)
+
(
Π𝑘−2
𝑛 𝐴ℎ𝐼

𝐺𝐿
𝜏 𝑒0𝜏,ℎ,Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ

)
d𝑡

= 0.
(21)

Inserting the equations (20) and (21) into (19) along with the identity 
‖𝐴1∕2

ℎ 𝑣ℎ‖ = ‖Δ𝑣ℎ‖ for 𝑣ℎ ∈ 𝑉ℎ finally yields the assertion.

Lemma 17 (Boundedness). Let 𝑉𝜏,ℎ = (Π𝑘−2
𝑛 𝐴ℎ𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ, Π

𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ). 

Then the estimate

|𝐵𝐺𝐿
𝑛 (Θ, 𝑉𝜏,ℎ)| ≤ 𝐶𝜏1∕2𝑛 (𝜏𝑘+1𝑛 + ℎ4){𝜏𝑛‖𝐸𝜏,ℎ‖2 + 𝜏2𝑛𝑄

𝐺
𝑛 (‖𝜕𝑡𝐸𝜏,ℎ‖2)}1∕2

is valid for all 𝑛 = 1, … , 𝑁 .

Proof. The proof of this lemma differs from that of [16, Lemma 5.11]

only in the definition of the elliptic projection operator and the applied 
projection error estimates.

Lemma 18 (Estimates on right-hand side term). Let 𝑉𝜏,ℎ = (Π𝑘−2
𝑛 𝐴ℎ𝐼𝐺𝐿𝜏 𝑒0𝜏,ℎ,

Π𝑘−2
𝑛 𝐼𝐺𝐿𝜏 𝑒1𝜏,ℎ). Then, the estimation

𝑄𝐺𝐿
𝑛 (

(
(0, 𝑓 − 𝐼𝐻𝜏 𝑓 ), 𝑉𝜏,ℎ

)
)

≤ 𝐶𝜏1∕2𝑛 𝜏𝑘+1𝑛 {𝜏𝑛‖𝐸𝜏,ℎ(𝑡𝑛−1)‖2 + 𝜏2𝑛𝑄
𝐺
𝑛 (‖𝜕𝑡𝐸𝜏,ℎ‖2)}1∕2

is valid for 𝑛 = 1, … , 𝑁 .

Proof. The proof differs from proof [6, Lemma 5.11] only in the defini-

tion of the operator 𝐴ℎ.

Lemma 19 (Estimates on 𝐸𝜏,ℎ). Let 𝑈0,ℎ = (𝑅ℎ, 𝑢0, 𝑅ℎ, 𝑢1). Then

‖𝑒0𝜏,ℎ(𝑡𝑛)‖21 + ‖𝑒1𝜏,ℎ‖2 ≤ 𝐶
(
𝜏𝑘+1 + ℎ4

)2

holds true for all 𝑛 = 1, … , 𝑁 . Additionally,

‖Δ𝑒0𝜏,ℎ(𝑡)‖ ≤ 𝐶(𝜏𝑘+1 + ℎ3)

‖𝑒0𝜏,ℎ(𝑡)‖+ ‖𝑒1𝜏,ℎ(𝑡)‖ ≤ 𝐶(𝜏𝑘+1 + ℎ4)

is satisfied for all 𝑡 ∈ 𝐼 .

Proof. The proof follows the lines of [6, Lemma 5.12].

Theorem 20 (Error estimate for 𝑈𝜏,ℎ). Let 𝑈 = (𝑢, 𝜕𝑡𝑢) be the solution of 
the problem (1) and 𝑈𝜏,ℎ be the discrete solution of problem (11) along with 
the initial condition 𝑈0,ℎ = (𝑅ℎ𝑢0, 𝑅ℎ𝑢1). Then the following estimates for 
the error 𝐸(𝑡) = (𝑒0(𝑡), 𝑒1(𝑡)) =𝑈 (𝑡) −𝑈𝜏,ℎ(𝑡) apply for all 𝑡 ∈ 𝐼 :

‖𝑒0(𝑡)‖+ ‖𝑒1(𝑡)‖ ≤ 𝐶(𝜏𝑘+1 + ℎ4),

‖Δ𝑒0(𝑡)‖ ≤ 𝐶(𝜏𝑘+1 + ℎ3).

Additionally, the estimates

‖𝑒0‖𝐿2(𝐼 ;𝐻) + ‖𝑒1‖𝐿2(𝐼 ;𝐻) ≤ 𝐶(𝜏𝑘+1 + ℎ4), (22)

‖Δ𝑒0‖𝐿2(𝐼 ;𝐻) ≤ 𝐶(𝜏𝑘+1 + ℎ3)

are satisfied.

Proof. The proof of this theorem differs from the proof of [6, Theo-

rem 5.13] only in the definition of the operators.

6. Numerical experiments

The aim of the numerical experiments included in this section is:

(i) to compute the numerical convergence orders for the time dis-

cretizations discussed in the previous sections;

(ii) to compare the solutions obtained when using the cGP-C1(3)-, the 
cGP(2)- and the Crank–Nicolson (cGP(1)-) method for time dis-

cretization.

The numerical experiments in the first part of this section are used 
to confirm the error estimates proven in Section 5 and to show the 
faster convergence of the cGP-C1(3)-method compared with the other 
algorithms investigated. In the second part of this section, we per-

form a comparative study in order to demonstrate the superiority of 
the cGP-C1(3)-method over the considered only continuous in time ap-

proximation schemes.

We assume that the spatial domain Ω ⊂ℝ2 is either the unit square 
(0, 1)2 or the square (−1, 1)2 which during the discretization process 
has been partitioned as bisections of 𝑁2 squares with mesh size ℎ =√
2∕𝑁 or ℎ = 2

√
2∕𝑁 , respectively. Furthermore, we use the Bogner–

Fox–Schmit element throughout for spatial discretization.

All the numerical tests included in this section have been conducted 
in NGSolve, see https://ngsolve .org.

6.1. Numerical convergence study

We will utilize the first example to provide numerical evidence 
for the error estimates proven in Section 5, on the one hand, and to 
present the better convergence properties of the cGP-C1(3)-method, on 
the other. For this purpose, we compare the experimental order of con-

vergence of different time discretization schemes.

Thereby, we expect to obtain an order of convergence of 2 for the 
Crank-Nicolson (cGP(1)-) method, an order of 3 for the cGP(2)-method, 
and an order of 4 for the cGP-C1(3)-method. In addition, as in [16]

for the wave equation, we expect to observe superconvergence for the 
cGP(2)-method in the discrete time points. While we predict a conver-

gence order of 4 only in the discrete points for the cGP(2)-method, we 
anticipate a convergence order of 4 in all time points for the cGP-C1(3)-
method.

In our first example, we solve system (1) for the spatial domain 
Ω = (0, 1)2 and the temporal domain 𝐼 = (0, 1). For a right-hand side

𝑓 (𝒙, 𝑡) = −4𝜋2 sin(2𝜋𝑡) ⋅ sin2(𝜋𝑥1) ⋅ sin2(𝜋𝑥2)

+ 𝜋4 sin(2𝜋𝑡) ⋅
[
16 sin2(𝜋𝑥1) − 8

]
⋅ sin2(𝜋𝑥2)

+ 2𝜋4 sin(2𝜋𝑡)
[
2 − 4sin2(𝜋𝑥1)

]
⋅
[
2 − 4sin2(𝜋𝑥2)

]

+ 𝜋4 sin(2𝜋𝑡) ⋅ sin2(𝜋𝑥1) ⋅
[
16 sin2(𝜋𝑥2) − 8

]

and initial values

𝑢0(𝒙) = 0,

𝑢1(𝒙) = 2𝜋 ⋅ sin2(𝜋𝑥1) ⋅ sin2(𝜋𝑥2),

the exact solution 𝑢 is given by

𝑢(𝒙, 𝑡) = sin(2𝜋𝑡) ⋅ sin2(𝜋𝑥1) ⋅ sin2(𝜋𝑥2). (23)

For a comparison of the solutions of different time discretization 
methods, we consider the norms

‖𝑢− 𝑢𝜏,ℎ‖𝐿∞(𝐿2) = max
𝑡∈[0,𝑇 ]

⎛
⎜⎜⎝∫Ω

|𝑢(𝒙, 𝑡) − 𝑢𝜏,ℎ(𝒙, 𝑡)|2 d𝒙
⎞
⎟⎟⎠

1
2

214



M. Bause, M. Lymbery and K. Osthues Computers and Mathematics with Applications 119 (2022) 208–219

Table 1

Numerical errors and convergence orders for the Crank–Nicolson (cGP(1)), cGP(2)- and cGP-C1(3)-method for the function (23).

𝜏 ℎ ‖𝑢− 𝑢𝜏,ℎ‖𝐿∞
𝜏 (𝐿2 ) Order ‖𝑢− 𝑢𝜏,ℎ‖𝐿∞(𝐿2 ) Order ‖𝑢− 𝑢𝜏,ℎ‖𝐿2 (𝐿2 ) Order

cGP(1)

𝜏0∕20 ℎ0∕20 3.296e-03 – 1.794e-02 – 9.081e-03 –

𝜏0∕21 ℎ0∕21 7.835e-04 2.07 4.794e-03 1.90 2.281e-03 1.99

𝜏0∕22 ℎ0∕22 1.877e-04 2.06 1.233e-03 1.96 5.746e-04 1.99

𝜏0∕23 ℎ0∕23 4.746e-05 1.98 3.080e-04 2.00 1.435e-04 2.00

𝜏0∕24 ℎ0∕24 1.194e-05 1.99 7.701e-05 2.00 3.589e-05 2.00

cGP(2)

𝜏0∕20 ℎ0∕20 1.058e-03 – 1.059e-03 – 8.369e-04 –

𝜏0∕21 ℎ0∕21 7.258e-05 3.87 1.063e-04 3.32 6.731e-05 3.64

𝜏0∕22 ℎ0∕22 4.553e-06 3.99 1.247e-05 3.09 6.635e-06 3.34

𝜏0∕23 ℎ0∕23 2.867e-07 3.99 1.510e-06 3.05 7.625e-07 3.12

𝜏0∕24 ℎ0∕24 1.798e-08 4.00 1.857e-07 3.02 9.310e-08 3.03

cGP-C1(3)

𝜏0∕20 ℎ0∕20 1.165e-03 – 1.231e-03 – 8.533e-04 –

𝜏0∕21 ℎ0∕21 8.141e-05 3.84 8.151e-05 3.92 5.673e-05 3.91

𝜏0∕22 ℎ0∕22 5.314e-06 3.94 5.314e-06 3.94 3.363e-06 4.08

𝜏0∕23 ℎ0∕23 2.998e-07 4.15 2.999e-07 4.15 2.005e-07 4.07

𝜏0∕24 ℎ0∕24 1.823e-08 4.04 1.824e-08 4.04 1.222e-08 4.04

and

‖𝑢− 𝑢𝜏,ℎ‖𝐿2(𝐿2) =
⎛⎜⎜⎝∫𝐼 ∫

Ω

|𝑢(𝒙, 𝑡) − 𝑢𝜏,ℎ(𝒙, 𝑡)|2 d𝒙d𝑡
⎞⎟⎟⎠

1
2

.

In order to approximate the ‖⋅‖𝐿∞(𝐿2) norm, we first evaluate the max-

imum only in the discrete temporal points in which we have computed 
the discrete solution 𝑢𝜏,ℎ and denote this value by ‖⋅‖𝐿∞

𝜏 (𝐿2). Secondly, 
we determine the maximum by additionally evaluating the discrete so-

lution in the time points

𝐼𝜏 = {𝑡𝑛,𝑗 ∶ 𝑡𝑛,𝑗 = 𝑡𝑛−1 + 𝑗 ⋅ 1
100

⋅ 𝜏𝑛, 𝑗 = 1,… ,99, 𝑛 = 1,… ,𝑁},

which we denote by ‖⋅‖𝐿∞(𝐿2).

We compute both norms on a sequence of spatial and temporal 
meshes in order to determine the numerical convergence orders. We 
start with 𝜏0 = 0.1, ℎ0 =

√
2
5 and halve both after each pass. With 𝑒𝜏,ℎ we 

denote the error with time step 𝜏 and mesh size ℎ, then the following 
formula

𝐸𝑂𝐶 = log2
⎛⎜⎜⎝
𝑒𝜏,ℎ
𝑒 𝜏
2 ,

ℎ
2

⎞⎟⎟⎠
is applied to compute the experimental order of convergence (EOC).

The discretization errors and the corresponding convergence orders 
for the Crank–Nicolson, cGP(2)- and cGP-C1(3)-method in case of func-

tion (23) are presented in Table 1.

As seen from this table, the discretization errors for the cGP(2)- and 
the cGP-C1(3)-method are smaller than the corresponding values for the 
Crank–Nicolson method. Moreover, the cGP(2)-method with global con-

tinuous and piecewise quadratic functions gives higher convergence 
orders than the Crank–Nicolson method with piecewise linear func-

tions. The cGP-C1(3)-method has the highest convergence orders in both 
norms of all the methods studied.

The numerical convergence orders in the ‖⋅‖𝐿2(𝐿2) norm tend to 2
for the Crank–Nicolson method and for the cGP(2)-method to 3. In the 
‖⋅‖𝐿∞

𝜏 (𝐿2) norm it can be seen even that the convergence order is 4 for 
the cGP(2)-method whereas it is 2 for the Crank–Nicolson algorithm. 
This observed superconvergence in the ‖⋅‖𝐿∞

𝜏 (𝐿2) norm is due to the 
evaluation in the Gauss-Lobatto points. Comparing the evaluation of the 
maximum only in the time points where we have computed the discrete 
solution as in ‖⋅‖𝐿∞

𝜏 (𝐿2) with the evaluation on a finer temporal mesh 
as performed with ‖⋅‖𝐿∞(𝐿2), verifies this superconvergence effect. For 
a more detailed study of the superconvergence in the case of the wave 

equation, we refer to, e.g., [16]. All convergence orders for the cGP-

C1(3)-method tend to 4. This confirms the convergence order proven in 
Theorem 20.

Consequently, we obtain better convergence results in all discrete 
time points for the cGP-C1(3)-method, although we have the same 
numerical costs in terms of degrees of freedom as for the cGP(2)-

method.

6.2. Vibration in heterogeneous media

In this section we apply the cGP-C1(3)-method to a more sophis-

ticated problem with arising complex wave phenomena. Additionally, 
we stress the superiority of this method by analyzing and comparing 
the number of non-zero entries in the system matrix which is involved 
in the linear system of equations in every time step. This is of impor-

tance with respect to the application of iterative solvers to the algebraic 
systems.

As a second example in this work, we consider the problem

𝜕𝑡𝑡𝑢(𝒙, 𝑡) + Δ(𝑐(𝒙)Δ𝑢(𝒙, 𝑡)) = 𝑓 (𝒙, 𝑡) in Ω× (0, 𝑇 ] , (24a)

𝑢(𝒙,0) = 𝑢0(𝒙) in Ω, (24b)

𝜕𝑡𝑢(𝒙,0) = 𝑢1(𝒙) in Ω, (24c)

𝑢(𝒙, 𝑡) = 0 on 𝜕Ω× (0, 𝑇 ] , (24d)

𝜕𝒏𝑢(𝒙, 𝑡) = 0 on 𝜕Ω× (0, 𝑇 ] . (24e)

The coefficient 𝑐 > 0 encodes the stiffness of the involved materials. We 
use the setting

Ω= (−1,1)2, 𝑇 = 3
100

, 𝑐(𝒙) =

{
1, if 𝑥2 < 0.2,
9, if 𝑥2 ≥ 0.2,

𝑓 = 0,

with the initial values

𝑢0 = exp(−|20 ⋅ 𝒙|2) ⋅ (1 − 𝑥21)
2 ⋅ (1 − 𝑥22)

2,

𝑢1 = 0.
(25)

The initial value is a regularized Dirac impulse and stimulates the sys-

tem’s dynamics. The solution of (24) with the initial values (25) is 
illustrated in Fig. 1 for the cGP-C1(3)-method for the time step size 10−3. 
We observe the development of complex wave phenomena with sharp 
fronts. We define the control region Ω𝑐 = (0.75 − 𝑙𝑐 , 0.75 + 𝑙𝑐) × (−𝑙𝑐 , 𝑙𝑐)
with 𝑙𝑐 = 1∕32 that simulates a senor and evaluate the quantity
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Fig. 1. Numerical solution of Problem (24) with initial values (25) for the cGP-C1(3)-method with 𝜏 = 10−3 .

Fig. 2. Evaluation of the control quantity (26) with initial values (25) for the Crank–Nicolson (cGP(1)-), cGP(2)- and cGP-C1(3)-method with different time step sizes.

𝑢𝑐(𝑡) = ∫
Ω𝑐

𝑢𝜏,ℎ(𝒙, 𝑡) d𝒙 . (26)

Our first aim is to examine and compare the signal arrival at the 
sensor position for the three time discretization methods and different 
time step sizes. All calculations were performed on a fixed 64 × 64 spa-

tial mesh. A direct solver for the linear system of equations was used. 
Time step sizes were chosen as 𝜏 = 1∕𝑛𝑡, where 𝑛𝑡 denotes the number 

of prescribed time subintervals. The corresponding evaluations of the 
control quantity are presented in Fig. 2. As can be seen, the cGP(2)- and 
cGP-C1(3)-method lead to similar graphs, whereas the cGP(1)-method 
requires a smaller time step size for a comparable accuracy. As demon-

strated in the first numerical example, the cGP-C1(3)-method shows 
convergence order of order four in all time points, whereas the cGP(2)-

method yields fourth-order superconvergence in the discrete time step 
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Fig. 3. Test setting (left) and numerical solution of Problem (27) for the cGP-C1(3)-method with 𝜏 = 1∕2000 (right).

Table 2

Number of non-zero entries in the respective system matrix and number of 
degrees of freedom for the Crank–Nicolson (cGP(1)-), cGP(2)- and cGP-C1(3)-
method using different spatial refinements.

|ℎ| cGP(1) cGP(2) cGP-C1(3)

dof nze dof nze dof nze

256 2312 1.4e+05 4624 5.0e+05 4624 3.6e+05

1024 8712 5.7e+05 17424 2.0e+06 17424 1.4e+06

4096 33800 2.3e+06 67600 7.9e+06 67600 5.7e+06

16384 133128 9.1e+06 266256 3.2e+07 266256 2.3e+07

65536 528392 3.7e+07 1056784 1.3e+08 1056784 9.3e+07

262144 2105352 1.5e+08 4210704 5.2e+08 4210704 3.8e+08

points only. Therefore, a similar accuracy of the either schemes can re-

alistically be expected.

To evaluate these schemes further, we address the density of the 
arising system matrices which represents a further criteria for their 
computational efficiency. For this, we compare the number of non-zero 
entries in the system matrices resulting from each of the time discretiza-

tion schemes. The number of non-zero entries (nze) as well as the 
number of degrees of freedom (dof) for the Crank–Nicolson, cGP(2)-

and cGP-C1(3)-method are summarized in Table 2. The Crank–Nicolson 
method has fewer degrees of freedom and a smaller number of non-zero 
entries, but provides less accuracy, as already shown before. Although 
the system matrices of the cGP(2)- and cGP-C1(3)-method have the same 
size, the cGP-C1(3)-method leads to less non-zero entries in the system 
matrix. This reduced number of non-zero entries is especially advanta-

geous for the application of iterative solvers. In [5], iterative solvers are 
applied for solving the linear systems of the cGP-C1(3) approximation 
of the wave equation. In this case, a strong superiority of the cGP-C1(3)
approach over the cGP(2) one is observed with respect to accuracy and 
runtime of the simulations.

6.3. Wave propagation in structural health monitoring

Our final numerical experiment considers an application of practical 
interest. We mimic structural health monitoring of mechanical engi-

neering. The test setting is illustrated in Fig. 3. For Ω = (0, 12) × (0, 8), 
and 𝑇 = 200 we consider the system

𝜕𝑡𝑡𝑢(𝒙, 𝑡) + Δ(𝑐(𝒙)Δ𝑢(𝒙, 𝑡)) = 𝑓 (𝒙, 𝑡) in Ω× (0, 𝑇 ] , (27a)

𝑢(𝒙,0) = 0 in Ω, (27b)

𝜕𝑡𝑢(𝒙,0) = 0 in Ω (27c)

𝑢(𝒙, 𝑡) = 0 on Γ𝐷 × (0, 𝑇 ] , (27d)

Δ𝑢(𝒙, 𝑡) = 0 on Γ𝑁 × (0, 𝑇 ] , (27e)

𝜕𝒏Δ𝑢(𝒙, 𝑡) = 0 on Γ𝑁 × (0, 𝑇 ] . (27f)

Here we impose a homogeneous Dirichlet boundary condition on Γ𝐷 =
{0} × (0, 8) and use natural (do-nothing) boundary conditions for the 
biharmonic operator on Γ𝑁 = 𝜕Ω ⧵ Γ𝐷 . We put

𝑐(𝒙) =

{
10, if 𝒙 ∈ [7,9] × [2,6],
2, otherwise.

The heterogeneity in the coefficient 𝑐 can be regarded as a material 
defect. Wave propagation is stimulated by the right-hand side function

𝑓 (𝒙, 𝑡) =

{
𝑓1(𝑡) ⋅ 𝑓2(𝒙), if 𝒙 ∈ [1,3] × [3,5],
0, otherwise,

where

𝑓1(𝑡) =
1
4
⋅
(
1 − cos

(2𝜋
50

⋅ 𝑡
))

⋅ cos
(2𝜋
10

⋅ 𝑡
)
,

𝑓2(𝒙) = (𝑥1 − 1) ⋅ (𝑥1 − 3) ⋅ (𝑥2 − 3) ⋅ (𝑥2 − 5) .

The temporal function 𝑓1 is a so-called burst signal that is typically 
used in structural health monitoring. Our goal is to evaluate the control 
quantity

𝑢𝑐(𝑡) = ∫
Ω𝑐

𝑢𝜏,ℎ(𝒙, 𝑡) d𝒙 (28)

on the control region Ω𝑐 = (11, 11.5) × (0, 8). This is done for different 
time discretization methods. The computed numerical solution of Prob-

lem (27) by using the cGP-C1(3)-method with time step size 𝜏 = 1∕2000
is shown in the right plot of Fig. 3.

We measure the control quantity for the cGP(1)-, cGP(2)- and cGP-

C1(3)-method with different time step sizes. Again, the time step size be 
given by 𝜏 = 1∕𝑛𝑡, where 𝑛𝑡 denotes the number of time intervals. The 
problem was solved respectively on a fixed mesh of 48 ×32 cells. The re-

sults are shown in Fig. 4. The cGP(2)- and cGP-C1(3)-methods produce 
comparable graphs again. The cGP(1)-method requires a much smaller 
time step size. The loss of accuracy of the cGP(1)-method compared 
to the higher-order ones leads to strong dispersion effects that increase 
in time. Thus, the cGP-C1(3)-method provides a solution of higher ac-

curacy and with higher regularity, even for larger time step sizes. To 
quantify differences between the cGP(2)- and cGP-C1(3)-method might 
require much finer spatial meshes if wave profiles of the complexity 
used here have to be resolved. This does not become feasible without 
parallel computations and is beyond the scope of this work.
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Fig. 4. Evaluation of the control quantity (28) for the Crank–Nicolson (cGP(1)-), cGP(2)- and cGP-C1(3)-method with different time step sizes.
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SUMMARY

In this paper, the idea of auxiliary space multigrid methods is introduced. The construction is based on a
two-level block factorization of local (finite element stiffness) matrices associated with a partitioning of the
domain into overlapping or non-overlapping subdomains. The two-level method utilizes a coarse-grid oper-
ator obtained from additive Schur complement approximation. Its analysis is carried out in the framework of
auxiliary space preconditioning and condition number estimates for both the two-level preconditioner and
the additive Schur complement approximation are derived. The two-level method is recursively extended
to define the auxiliary space multigrid algorithm. In particular, so-called Krylov cycles are considered. The
theoretical results are supported by a representative collection of numerical tests that further demonstrate the
efficiency of the new algorithm for multiscale problems. Copyright © 2014 John Wiley & Sons, Ltd.

Received 31 October 2013; Revised 19 August 2014; Accepted 22 August 2014

KEY WORDS: auxiliary space multigrid; algebraic multilevel iteration; additive Schur complement approx-
imation

1. INTRODUCTION

Partial differential equations (PDEs) play a key role in the modeling of various processes that occur
in fields as diverse as physics, chemistry, biology, economics, engineering, and life sciences.

The numerical solution of PDE based on discretization techniques such as finite difference, finite
volume, and finite element methods typically reduces a continuous problem to a discrete problem
that finally is represented in the form of one or more systems of linear algebraic equations.

In many applications, the arising linear systems are sparse and very large. Hence, it is important
to construct efficient iterative solution methods that converge uniformly with respect to problem size
and parameters. The most successful approaches for achieving this goal are domain decomposition
(DD) (see, e.g., [1, 2]) and multigrid (MG)/multilevel methods (see, e.g., [3–5]).

As has been shown in [2, 6], two-level DD methods are robust as long as the variations of the coef-
ficients of the scalar elliptic equation are bounded inside coarse-grid cells. Recently, this robustness
has been achieved also for problems with general coefficient variations using coarse spaces based
on local generalized eigenvalue problems [7, 8]. The latter approach has been generalized for the
mixed form and the stream function formulations of Stokes’s and Brinkman’s equations [9]. Other
related techniques for constructing suitable coarse spaces for PDE modeling heterogeneous media
have been considered in [10, 11].

*Correspondence to: IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25A, 1113 Sofia, Bulgaria.
†E-mail: mariq@parallel.bas.bg

Copyright © 2014 John Wiley & Sons, Ltd.



966 J. KRAUS, M. LYMBERY AND S. MARGENOV

Regarding computational complexity, MG methods have asserted to be most efficient because
they have been demonstrated to be optimal with respect to the problem size; see [3, 5] and the
references therein. However, their design needs careful adaptation for problems with certain ‘bad’
parameters in the PDE model. From this perspective, it is desirable to enhance their robustness in
the sense of covering wider problem classes [12].

The algebraic multilevel iteration (AMLI) framework provides useful tools to achieve this
goal, for example, more general polynomial acceleration techniques or Krylov cycles resulting in
nonlinear so-called variable-step preconditioners [13–16].

In the present paper, a non-variational auxiliary space MG (ASMG) algorithm for general
symmetric positive definite (SPD) problems is introduced. The method is based on exact two-by-
two block factorization of local (stiffness) matrices that correspond to a sequence of coverings
of the domain by overlapping or non-overlapping subdomains. The coarse-grid matrix is defined
via additive Schur complement approximation (ASCA) [17–19]. Its sparsity can be controlled by
the size and overlap of the subdomains. The coarse-grid correction step, as used in classical MG
methods, however, is replaced by a correction that involves the application of an auxiliary space pre-
conditioner. For that reason, the method studied in this paper is referred to as the ASMG method.
The idea of integrating DD techniques into MG algorithms was performed as early as in [20].

The remainder of the paper is organized as follows. In Section 2, a fictitious space preconditioner
based on ASCA is constructed and analyzed and further complemented by a smoothing process
defining an auxiliary space two-level preconditioner and a related stationary two-grid method. In
Section 3, a condition number estimate of the auxiliary space preconditioner is proven followed by
a theorem characterizing the ASCA. The recursive extension of the auxiliary space two-grid method
is defined and described algorithmically in Section 4. As known from the AMLI theory [13, 14,
21, 22], the convergence of the multilevel algorithm depends on uniform two-level estimates. In the
present context, the decisive quantity, analogous to the Cauchy–Bunyakowski–Schwarz constant in
the hierarchical basis methods, is given by the energy norm of a certain projection operator. Its effi-
cient computation by a multilevel algorithm is addressed in Section 5. Finally, several numerical
tests are presented, addressing both the performance of the ASMG method on a collection of
challenging high-frequency high-contrast problems and the computation of the spectral bounds
of interest.

2. AUXILIARY SPACE TWO-GRID METHOD

2.1. Fictitious space preconditioner

Let ¹˝Gi W i D 1; 2; : : : ; nGº be a covering of the domain ˝ by non-overlapping or overlapping
subdomains ˝Gi , that is,

˝ D
nG[
iD1

˝Gi ; (1)

where G D ¹Gi W i D 1; 2; : : : ; nGº denotes a set of macrostructures that correspond to the
adjacency graphs associated with the subdomains˝Gi . The construction is such that the global stiff-
ness matrix A can be assembled from small-sized (local) symmetric positive semi-definite (SPSD)
(stiffness) matrices AGi corresponding to the subdomains ˝Gi [18]. Then A can be written in
the form

A D
nGX
iD1

RTGiAGiRGi ; (2)

where the operator RGi restricts a global vector v 2 V D IRN to the local space VGi D IRnGi
related to the subdomain ˝Gi .

Consider a partitioning of the set D of degrees of freedom (DOF) into two subsets

D D Df ˚Dc; (3)

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:965–986
DOI: 10.1002/nla
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where Df consists of fine DOF and Dc is the set of coarse DOF. Let the cardinalities of these sets be
denoted by N1 WD jDfj and N2 WD jDcj.

Further, let nGi W1 and nGi W2 be the number of fine and coarse DOF, respectively, that are associated
with the subdomain ˝Gi . The dimension of the local space dim.VGi / D nGi then can be presented
as the sum

nGi D nGi W1 C nGi W2: (4)

Next, the auxiliary (fictitious) space QV D IR QN of dimension QN D
!PnG

iD1 nGi W1
"
C N2 is

introduced, and a surjective mapping ˘ QD W QV ! V is defined via the relations

RT1 D

2
6664

RG1W1
RG2W1
:::

RGnG W1

3
7775 ; R D

#
R1 0
0 I2

$
; ˘ QD D

!
R QDRT

"!1
R QD; (5)

where RT1 is of size .
PnG
iD1 nGi W1/"N1, the identity matrix I2 is of size N2"N2, and R and ˘ QD are

of dimension N" QN . Here, QD is a block-diagonal matrix of size QN " QN to be specified later.
Given the introduced splitting of the DOF into fine and coarse the matrices AGi , i D 1; : : : ; nG

and A can be written in a two-by-two block form

AGi D
#
AGi W11 AGi W12
AGi W21 AGi W22

$
i D 1; : : : ; nG ; A D

#
A11 A12
A21 A22

$
: (6)

Let the QN" QN DD auxiliary matrix QA be defined by

QA D

2
66666664

AG1W11 AG1W12RG1W2
AG2W11 AG2W12RG2W2

: : :
:::

AGnG W11 AGnG W12RGnG W2
RTG1W2AG1W21 R

T
G2W2AG2W21 : : : R

T
GnG W2

AGnG W21
PnG
iD1R

T
Gi W2AGi W22RGi W2

3
77777775
; (7)

where the matrices AGi are assumed to be SPSD with AGi W11 SPD. Then the matrix QA is SPSD, and
the Schur complement

Q WD S QA D QA22 # QA21 QA!111 QA12 (8)

exists and is SPSD. If in addition QA is SPD, which is the case for example if A and QA are irreducible,
it introduces an energy inner product on the auxiliary space QV . Moreover, from (5) and (7), it follows
that the relation

A D R QART (9)

holds. Note that whereas each fine DOF from Df adds one to the dimension of A, it increases the
dimension of QA by the number of subdomains to which it belongs. At the same time, the blocks that
correspond to the coarse DOF are identical for both the original matrix A and the auxiliary matrix
QA, that is,

A22 D QA22 D
nGX
iD1

RTGi W2AGi W22RGi W2: (10)

The matrix QA11 is of block diagonal form with blocks of size nGi W1"nGi W1 for i D 1; 2; : : : ; nG
and thus allows for a cheap computation of the interpolation matrix

P D
#
# QA!111 QA12

I2

$
;

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:965–986
DOI: 10.1002/nla
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which for any given coarse vector v2 provides the minimum energy extension v D P v2 in the sense
that v D argminwWw2Dv2kwk QA D argminwWw2Dv2

!
wT QAw

"1=2
. Hence, the exact Schur complement

of QA defines the Galerkin coarse-grid matrix of the variational two-grid method corresponding to
the energy-minimizing interpolation P on the auxiliary space QV , that is,

Q D Ac D P T QAP D S QA D QA22 # QA21 QA!111 QA12: (11)

It is important to note that Ac can be determined without computing the (global) triple matrix
product. Instead, the coarse-grid matrix can be assembled from its subdomain contributions, the
corresponding local Schur complements, which can be computed in parallel for all subdomains,
that is,

Ac D
nGX
iD1

RTGi W2
%
AGi W22 # AGi W21A!1Gi W11AGi W12

&
RGi W2:

The number of non-zero entries inAc can be controlled by limiting the size nGi of the subdomains
˝Gi , which guarantees the sparsity of the coarse-grid matrix.

Remark 1
The spectral equivalence of the Schur complements SA and S QA of A and QA has been established
in [17, 23] for SPD stiffness matrices A arising from conforming finite element discretizations of
second-order scalar elliptic PDEs with piecewise constant coefficients under the assumption that the
jumps are aligned with the coarse mesh. There, the construction of QA has been for a non-overlapping
DD, and the set of coarse DOF has been associated with a coarse mesh resulting from standard
(full) coarsening. In a more recent paper [18], it has been proven that with a proper overlap of the
subdomains, the spectral equivalence of SA and S QA holds uniformly and is independent of jumps of
a piecewise constant diffusion coefficient even if these appear across arbitrary element interfaces on
the finest grid.

In the following, let C denote the fictitious (auxiliary) space preconditioner defined via the
relation

C!1 WD ˘ QD QA!1˘T
QD : (12)

The idea of fictitious space preconditioning goes back to Sergei Nepomnyaschikh [24]. An important
tool for deriving condition number estimates in this context is the so-called fictitious space lemma
[24], which is as follows.

Lemma 1
Let V be a Hilbert space equipped with inner product h$; $i and A W V 7! V an SPD (w.r.t. h$; $i)
linear operator. Let QV be a second Hilbert space (auxiliary space) equipped with inner product h$; $i"
and QA W QV 7! QV a second SPD linear operator. Further, let ˘ W QV 7! V be a surjective mapping
satisfying the following conditions:

(a) For all v 2 V , there exists Qv 2 QV such that ˘ Qv D v and Qc
˝ QAQv; Qv˛" 6 hAv; vi.

(b) hA˘ Qu; ˘ Qui 6 c
˝ QA Qu; Qu˛" for all Qu 2 QV .

Introduce the adjoint operator ˘? W V 7! QV by

h˘ Qu; vi D
˝
Qu; ˘?v

˛
" for all Qu 2 QV ; v 2 V:

Then

Qc
˝
A!1u;u

˛
6
˝
˘ QA!1˘?u; u

˛
6 c

˝
A!1u;u

˛
for all u 2 V: (13)
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From now on, if not stated otherwise, we denote by

hu; vi WD
NX
iD1

uivi for all u; v 2 V and h Qu; Qvi" WD
QNX

iD1
Qui Qvi for all Qu; Qv 2 QV ;

the Euclidean inner products on V D IRN and QV D IR QN . In this case,˘? D ˘T and the following
corollary can be proven.

Corollary 1
Let ˘ D ˘ QD be defined according to (5), where QD 2 IR QN# QN is an SPD matrix. Then the fictitious
space preconditioner defined in (12) with auxiliary matrix QA as given in (7) satisfies

˝
A!1u; u

˛
6
˝
˘ QA!1˘T u;u

˛
6 k! QDk2QA

˝
A!1u;u

˛
for all u 2 V; (14)

where ! QD WD RT
!
R QDRT

"!1
R QD.

Proof
The estimate (14) follows from Lemma 1 because in the present context conditions (a) and (b) hold
with constants Qc D 1 and c D k! QDk2QA:

(a) For all v 2 V D IRN , define Qv WD RT v. Then

˘ Qv D
!
R QDRT

"!1
R QD Qv D

!
R QDRT

"!1
R QDRT v D v:

Hence,

hAv; vi D
˝
R QART v; v

˛
D
˝
R QAQv; v

˛
D
˝ QAQv; RT v

˛
" D

˝ QAQv; Qv˛" ;
and thus condition (a) holds with Qc D 1.

(b) Further, as
˝
A˘ QD Qu; ˘ QD Qu

˛
D
D
R QART

!
R QDRT

"!1
R QD Qu;

!
R QDRT

"!1
R QD Qu

E

D
D
QART

!
R QDRT

"!1
R QD Qu; RT

!
R QDRT

"!1
R QD Qu

E
"

DW
˝ QA! QD Qu;! QD Qu

˛
"

we see that the inequality (b) is sharp for

c WD sup
Qu¤0

˝ QA! QD Qu;! QD Qu
˛
"˝ QA Qu; Qu˛"
D k! QDk2QA; (15)

which completes the proof.

!

Remark 2
The operator ! QD D RT

!
R QDRT

"!1
R QD is a projection, that is,

!2QD D ! QD:

Moreover, as ! QD is non-trivial, nor does it equal identity, owing to Kato’s lemma [25],

k! QDk QA D kI # ! QDk QA; (16)

where k $ k QA is the QA inner product norm, that is,

kQvk QA WD
q˝ QA Qv; Qv˛"; 8Qv 2 QV :
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For a proof of (16), see [5] where it has also been shown that k! QDk QA is related to the cosine " of
the angle between the two spaces Range

!
! QD
"

and Range
!
I # ! QD

"
in the QA inner product, that is,

k! QDk QA D
1p
1 # "2

:

Hence, the relative condition number #
!
C!1A

"
of the fictitious space preconditioner defined via

C!1 WD ˘ QD QA!1˘T
QD can be estimated by

#
!
C!1A

"
6 c D k! QDk2QA D

1

1 # "2 :

The idea of fictitious space preconditioning has been further developed in the setting of auxiliary
space preconditioning by incorporating an additional smoother, hence relaxing the constraints on
the choice of the auxiliary space QV . For details, see [26].

2.2. Two-grid method

The proposed auxiliary space two-grid method determines a stationary iterative procedure

xkC1 D xk C B!1rk; (17)

where the k-th iterate and the k-th residual have been denoted by xk and rk , respectively. Assume
that M is an A-convergent smoother, that is,

kI #M!1AkA < 1:

Then the symmetrized smoother
__
M DM

!
M CM T # A

"!1
M T is also A convergent, that is,

kI #
__
M
!1AkA D k

!
I #M!TA

" !
I #M!1A

"
kA < 1;

and the two-grid preconditioner utilizing the fictitious space preconditioner (12) is defined by

B!1 WD
__
M
!1 C

!
I #M!TA

"
C!1

!
I # AM!1

"
: (18)

As I # B!1A D
!
I #M!TA

" !
I # C!1A

" !
I #M!1A

"
, the two-grid method is convergent,

that is,

kI # B!1AkA < 1; (19)

if the auxiliary space correction is non-expansive in A norm, that is,

kI # C!1AkA 6 1: (20)

From Corollary 1, we have

1

c
vT v 6 1

c
vT
%
˘ QD QA!1˘T

QD

&
Av 6 vT v 8v 2 V;

and thus (20) and finally (19) are satisfied, for example, if the matrix C in (18) is defined by

C!1 D $!1˘ QD QA!1˘T
QD ; (21)

where $ is a scaling parameter satisfying

$ > c WD k! QDk2QA: (22)

Another way of defining B!1 is via the product matrix

OB D
#
M 0
˘T
QDA I

$" !
M CM T # A

"!1
0

0 $ QA

# #
M T A˘ QD
0 I

$
:
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Then

OB!1 D
#
M!T #M!TA˘ QD
0 I

$ #
M CM T # A 0

0 $!1 QA!1
$ #

M!1 0
#˘T

QDAM
!1 I

$
;

and

B!1 D
'
I ˘ QD

( OB!1
#
I
˘T
QD

$
:

Note that the preconditioner (18) can also be written in the form

B!1 D
__
M
!1 C $!1˘ QA!1˘T ; (23)

where

˘ D
!
I #M!TA

"
˘ QD D

!
I #M!TA

" !
R QDRT

"!1
R QD: (24)

Comparing classical two-grid methods with the proposed auxiliary space two-grid method the
main difference is that in the latter, the coarse-grid correction step is replaced by a subspace cor-
rection with iteration matrix I # C!1A, where C is the fictitious space preconditioner defined
in (21).

Remark 3
From the XZ identity [27], we have the following relation

vTBv D minvDwC˘ QD Qw
h
$ QwT QA QwC

!
M TwC A˘ QD Qw

"T !
M CM T # A

"!1 !
M TwC A˘ QD Qw

"i

D minvDwC˘ QD Qw

#
$k Qwk2QA C kM

TwC A˘ QD Qwk2.MCMT!A/!1

$
:

(25)

3. CONDITION NUMBER ESTIMATES

A condition number estimate of the two-grid preconditionerB defined by (23) and (24) can be based
on the following assumptions. For the smoother, assume that

c hv; vi 6 %A
˝ __
M
!1v; v

˛
6 Nc hv; vi (26)

and

kM!TAvk2 6 &

%A
kvk2A; (27)

where %A D 'max.A/ denotes the spectral radius of A and & is a non-negative constant. Further, let
the operator ˘ defined in (24) satisfy

k˘ Qvk2A 6 c˘kQvk2QA 8Qv 2 QV ; (28)

which, owing to k˘?˘k D k˘˘?k, is equivalent to

k˘?vk2QA 6 c˘kvk
2
A 8v 2 V; (29)

where

˘? D QA!1˘TA (30)

denotes the adjoint operator, that is,

h˘ Qu; viA D
˝
Qu; ˘?v

˛
QA 8Qu 2 QV ; v 2 V: (31)

Then the following theorem holds (cf. [26]).
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Theorem 1
Under assumptions (26)–(28), the two-grid preconditioner B defined in (23) and (24) satisfies

'max
!
B!1A

"
6 Nc C c˘=$ (32)

and

'min
!
B!1A

"
> 1

$ C &=c
; (33)

that is, #
!
B!1A

"
6 . Nc C c˘=$/ .$ C &=c/.

Proof
Using (23), (26), (29), and (30), it follows that

˝
B!1Av; v

˛
A
D
˝ __
M
!1Av; v

˛
A
C $!1

˝
˘ QA!1˘TAv; v

˛
A

D
˝ __
M
!1Av; v

˛
A
C $!1

˝
˘?v; ˘?v

˛
QA

6 Nc
%A
hAv; Avi C c˘

$
kvk2A

6 . Nc C c˘=$/ kvk2A;

(34)

which proves (32).
On the other hand, from (26), we have

˝ __
Mv; v

˛
6 %A

c
hv; vi ; 8v;

which is equivalent to
D
M T v;

!
M CM T # A

"!1
M T v

E
6 %A

c
hv; vi ; 8v;

and, by setting M T v D w, yields
D
w;
!
M CM T # A

"!1
w
E
6 %A

c

˝
M!Tw;M!Tw

˛
; 8w: (35)

Inserting w D Av in (35) and afterwards using (27), one obtains
D
Av;

!
M CM T # A

"!1
Av
E
6 &

c
hAv; vi ; 8v: (36)

Now, chooseew D RT v, and let v D wC˘ QDew D wC˘ QDRT v D 0Cv be a particular decomposi-
tion of v, that is, the one obtained for w D 0. Then

˝ QAew;ew˛ D hAv; vi, and thus from (25) and (36),
it follows that

hBv; vi 6 $ hAv; vi C kM TwC A˘ QDRT vk2
.MCMT!A/!1

D $ hAv; vi C kAvk2
.MCMT!A/!1

6
)
$ C &

c

*
hAv; vi ; 8v;

which proves (33). !

Remark 4
Note that when no smoothing is applied (B D C ), the condition number estimate provided in
Theorem 1 reduces to #

!
B!1A

"
6 c˘ D c D k! QDk2QA.

Now, the following theorem can be proved.
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Theorem 2
Let QD be a two-by-two block-diagonal SPD matrix, that is,

QD WD
# QD11 0

0 QD22

$
;

such that for the fictitious space preconditioner (12), there holdsD
˘ QD QA!1˘T

QDu;u
E
6 c

˝
A!1u;u

˛

for all u 2 V with c D k! QDk2QA.
Then the ASCA Q, as defined in (8), satisfies the relations

1

c
S 6 Q 6 S; (37)

where S is the exact Schur complement of A. Moreover, the lower bound in (37) is sharp for

QD D
# QA11 0
0 I

$
:

Proof
As

˘T
QD D QDR

T
!
R QDRT

"!1 D
# QD11RT1

!
R1 QD11RT1

"!1
0

0 I2

$
; (38)

with u D
)

0
w

*
, it follows that

)
0
w

*T
˘ QD QA!1˘T

QD

)
0
w

*
D
) Q0

w

*T
QA!1

) Q0
w

*
D
˝
Q!1w;w

˛
:

Moreover, uTA!1u D
˝
S!1w;w

˛
, and thus, Corollary 1 implies the estimate (37).

In the remainder of the proof, let

QD D
# QA11 0
0 I

$
:

In view of (38) and the relations A11 D R1 QA11RT1 , A12 D R1 QA12, and A21 D QA21RT1 , we have

˘ QD QA!1˘T
QD D

" !
R1 QA11RT1

"!1
R1 QA11 #

!
R1 QA11RT1

"!1
R1 QA12

0 I

#"
QA!111 0

0 Q!1

#

"
" QA11RT1

!
R1 QA11RT1

"!1
0

# QA21RT1
!
R1 QA11RT1

"!1
I

#

D
"
A!111 C A!111A12Q!1A21A!111 #A!111A12Q!1

#Q!1A21A!111 Q!1

#
;

and hence

vT˘ QD QA!1˘T
QDv D vT

#
I #A!111A12
0 I

$ #
A!111 0
0 Q!1

$ #
I 0

#A21A!111 I

$
v (39)

and

vTA!1v D vT
#
I #A!111A12
0 I

$ #
A!111 0
0 S!1

$ #
I 0

#A21A!111 I

$
v: (40)
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Now, let c D k! QDk2QA > 1. Then from Corollary 1, it follows that

vT
%
cA!1 #˘ QD QA!1˘T

QD

&
v > 0 8v 2 V; (41)

and there exists Nv 2 V , Nv ¤ 0, such that (see (15))

NvT
%
cA!1 #˘ QD QA!1˘T

QD

&
Nv D 0:

Next, by using (39) and (40) in (41), it can be seen that
#

w1
w2

$T #
.c # 1/A!111 0

0 cS!1 #Q!1
$ #

w1
w2

$
> 0 8w D

#
w1
w2

$
2 V; (42)

and further, there exists

Nw D
#
Nw1
Nw2

$
¤ 0

for which (42) holds with equality. Moreover, as A11 is SPD and
!
cS!1 #Q!1

"
is SPSD, as (37)

shows, it follows that Nw1 D 0 and

NwT2
!
cS!1 #Q!1

"
Nw2 D 0

for a certain vector Nw2 D Nv2 # A21A!111 Nv1 ¤ 0. This, however, finally results in

'max
!
Q!1S

"
D c:

!

4. AUXILIARY SPACE MULTIGRID METHOD

Consider the sequence of auxiliary space stiffness matrices QAk , k D 0; 1; : : : ; ` # 1. In an exact
factorization form, they are as follows:

%
QA.k/

&!1
D
%
QL.k/

&T QD.k/ QL.k/; (43)

where

QL.k/ D
"

I

# QA.k/21
%
QA.k/11

&!1
I

#
; QD.k/ D

2
4
%
QA.k/11

&!1

Q.k/!1

3
5 ; (44)

and the index k refers to a particular level of mesh refinement. The matrix Q.k/ is associated with
the stiffness matrix on the next coarser level, that is,

A.kC1/ WD Q.k/: (45)

The AMLI-cycle ASMG preconditioner approximating (43) is defined recursively as follows:

B.k/
!1 WD

__
M
.k/!1 C

%
I #M .k/!TA.k/

&
˘ .k/

%
QL.k/

&T
D
.k/ QL.k/˘ .k/T

%
I # A.k/M .k/!1

&
;

where

D
.k/ WD

2
4
%
QA.k/11

&!1

B
.kC1/
!

3
5 (46)

and

B.`/! WD A.`/
!1
: (47)
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In the linear AMLI cycle, B.kC1/! is a polynomial approximation of the inverse of the coarse-level
matrix A.kC1/ D Q.k/, that is,

B.kC1/! WD
%
I # p.k/

%
B.kC1/

!1
A.kC1/

&&
A.kC1/

!1

DW q.k/
%
B.kC1/

!1
A.kC1/

&&
B.kC1/

!1
;

where p.k/.t/ is a scaled and shifted Chebyshev polynomial of degree (k and

p.k/.0/ D 1; q.k/.t/ WD 1 # p.k/.t/
t

% 1

t
I

see [16].
In case of the nonlinear AMLI cycle, the action of B.kC1/! D B

.kC1/
! Œ$) on a vector defines

a nonlinear mapping, which is realized by ( iterations of a Krylov subspace (here, a generalized
conjugate gradient (GCG)) method, thereby utilizing the preconditioner B.kC1/ from the coarse
level. The resulting AMLI-cycle MG method is therefore sometimes referred to as a K-cycle MG
(cf. [22]). The convergence analysis of the multiplicative nonlinear AMLI has first been presented
in [21]. A description in the MG framework and comparative analysis can be found in [5, 22, 28].
The numerical results presented in Section 6 have been obtained on the basis of implementing the
following algorithms (cf. [28]).

Given a nonlinear preconditioner QB.k/Œ$) the action of B.k/GCG;! Œ$), the preconditioned GCG pre-
conditioner at level k, on a vector d 2 V .k/ is defined via the following algorithm; see for
example, [15].

Algorithm 1
Generalized conjugate gradient preconditioner: Definition of B.k/GCG;! Œd)

Step 1: u.0/ D 0, r.0/ D d, p.0/ D QB.k/Œr.0/)
˛0 D hr.0/;p.0/i

hp.0/;A.k/p.0/i , u.1/ D ˛0p.0/, r.1/ D r.0/ # ˛0A.k/p.0/
Step 2: For i D 1; 2; : : : ; ( # 1

ˇij D h
QB.k/Œr.i/";A.k/p.j/i
hp.j/;A.k/p.j/i

p.i/ D QB.k/Œr.i/) #
Pi!1
jD0 ˇijp.j /

˛i D hr.i/;p.i/i
hp.i/;A.k/p.i/i

u.iC1/ D u.i/ C ˛ip.i/
r.iC1/ D r.i/ # ˛iA.k/p.i/

Step 3: B
.k/
GCG;! Œd) WD u.!/

Finally, let

B.`/! Œ$) D
%
A.`/

&!1

and define the action B.k/! Œd) of the nonlinear AMLI-cycle ASMG preconditioner B.k/! Œ$) W V .k/ !
V .k/ at level k < ` on a vector d 2 V .k/ via the following algorithm.
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Algorithm 2
Nonlinear AMLI-cycle ASMG preconditioner: Definition of B.k/! Œd)

Pre-smoothing: u DM .k/!1d

Auxiliary space correction:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

)
Qq1
Qq2

*
WD Qq D ˘T

QD.k/
!
d # A.k/u

"

Qp1 D
%
QA.k/11

&!1
Qq1

Qp2 D B.kC1/GCG;!

h%
Qq2 # QA.k/21 Qp1

&i

Qq1 D Qp1 #
%
QA.k/11

&!1 QA.k/12 Qp2
Qq2 D Qp2
v D uC˘ QD.k/ Qq

Post-smoothing: B
.k/
! Œd) WD vCM .k/!T !d # A.k/v"

At a given level k, the nonlinear AMLI-cycle ASMG method employs the GCG method with the
particular preconditioner QB.kC1/Œ$) WD B.kC1/! Œ$) at the coarse level k C 1.

Remark 5
For the exact two-level method, the auxiliary space correction step (at level 0) updates the
approximation u according to

u uC˘ QD.0/
%
QA.0/
&!1

˘T
QD.0/

%
d # A.0/u

&
:

5. ESTIMATION OF k! QD.k0/k2QA.k0/

In order to estimate k! QDk2QA, it suffices to find an upper bound * for the maximum eigenvalue 'max

of

!TQD
QA! QD Qv D ' QAQv:

Then * > 'max implies k! QDk2QA 6 *.
As

QA D
X
G2G

QRTGAG QRG

for a certain set of restriction matrices
® QRG¯ local estimates can be derived by computing the

maximum eigenvalues 'G;max of the low-rank generalized eigenvalue problems

!TQD
QRTGAG QRG! QD Qv D 'G QAQv; 8G 2 G; (48)

which results in

'max 6 max
G2G

'G;max ncolor DW *; (49)

where ncolor is the coloring integer constant for the adjacency graph of subdomains; two subdomains
are adjacent if and only if they share at least one DOF.

As the auxiliary matrix QA is symmetric and positive definite, the generalized eigenvalue problems
(48) can be equivalently written as

QA! 12!TQD QR
T
GA

1
2

GA
1
2

G
QRG! QD QA!

1
2 Qv D 'G Qv; 8G 2 G: (50)

Finding the non-zero eigenvalues of (50), however, is equivalent to finding the eigenvalues of the
small-sized eigenvalue problems

A
1
2

G
QRG! QD QA!1!TQD QR

T
GA

1
2

GvG D 'GvG ; 8G 2 G: (51)
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The major remaining difficulty is the efficient inversion of the auxiliary matrix QA. A cost-efficient
upper bound can be computed based on the following multilevel procedure.

Consider Equation (51) for a fixed level k0 2 ¹0; : : : ; ` # 1º, that is,

for all G.k0/ 2 G.k0/;

A
1
2

G.k0/
QR
G.k0/

! QD.k0/
%
QA.k0/

&!1
!TQD.k0/

QRT
G.k0/

A
1
2

G.k0/
v
G.k0/

D '
G.k0/

v
G.k0/

;
(52)

where ! QD.k0/ is the projection operator for level k0 and G.k0/ are the related subdomains.

In order to estimate the largest eigenvalue of (52), the auxiliary matrix
! QA.k0/"!1 can be replaced

by a ‘larger’ matrix
! QB.k0/"!1, that is,

QvT QA.k0/ Qv > QvT QB.k0/ Qv; 8Qv 2 QV ;

thus considering the eigenvalue problems

for all G.k0/ 2 G.k0/:

A
1
2

G.k0/
QR
G.k0/

! QD.k0/
%
QB.k0/

&!1
!TQD.k0/

QRT
G.k0/

A
1
2

G.k0/
v
G.k0/

D +
G.k0/

v
G.k0/

;
(53)

Then, given the exact factorization (43)–(45) of the auxiliary matrix QA.k0/, that is,

%
QA.k0/

&!1
D
%
QL.k0/

&T
2
4
%
QA.k0/11

&!1

A.k0C1/
!1

3
5 % QL.k0/

&
; (54)

the left-hand side inequality in (14) implies that the following estimate holds on all levels:

vT
%
A.k/

&!1
v 6 vT˘ QD.k/

%
QA.k/

&!1
˘T
QD.k/v; 8v 2 V; k D 0; : : : ; ` # 1: (55)

Therefore, the matrix

! QB.k0/"!1 WD ! QL.k0/"T
2
4
%
QA.k0/11

&!1

˘ QD.k0C1/
! QA.k0C1/"!1˘T

QD.k0C1/

3
5 ! QL.k0/"

D
! QL.k0/"T

#
I
˘ QD.k0C1/

$2
4
%
QA.k0/11

&!1
! QA.k0C1/"!1

3
5
#
I
˘T
QD.k0C1/

$ ! QL.k0/"
(56)

can be used in (53). Note that the matrix in the middle of the right-hand side of (56) is of greater
dimension than the auxiliary matrix at level k0.

Moreover, if (55) is further applied recursively in (56) for k D k0 C 1; : : : ; ` # 1, the following
multilevel estimate is obtained.

Let

Y .k/ D
#
I
˘ QD.k/

$
Z.k/ D

#
I
QL.k/

$
k D k0C1; k0C2; : : : ; `#1; Y .`/ D I; Z.k0/ D QL.k0/

and

X .k0/ D

2
6666664

%
QA.k0/11

&!1
%
QA.k0C1/11

&!1
: : : ! QA`"!1

3
7777775
:
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Figure 1. Two subdomains composed of 8 " 8 elements each overlapping with half of their width.

Then the matrix to be used in (53) can be also defined as

%
QB.k0/

&!1
WD

`!1Y
kDk0

Z.k/
T
Y .kC1/

T
X .k0/Y .kC1/Z.k/: (57)

Remark 6
Note that the computation of

! QB.k0/"!1 requires the inversion of block diagonal matrices with a
small, uniformly bounded, semi-bandwidth and a small-sized coarse-grid matrix only. Hence, solv-
ing the eigenvalue problems (53) is computationally much cheaper than solving the problems (52).

A numerical example comparing the estimates (49) with

+max 6 max
G.0/2G.0/

+G.0/;max ncolor DW ,; (58)

and k! QD.0/k2QA.0/ is presented in the following section.

6. NUMERICAL TESTS

The presented numerical tests refer to the second-order elliptic boundary-value problem

# r $ .k.x/ru.x// D f .x/ in ˝; (59a)

u D 0 on -; (59b)

where the polygonal domain ˝ is defined in IR2, f is a function in L2.˝/ and k .x/ D ˛.x/I:
Note that the imposed Dirichlet boundary conditions upon the entire boundary are not a restriction

as for other boundary conditions the numerical results are quite similar.
Problem (59) is discretized using piecewise bilinear functions resulting in the linear system of

algebraic equations

Au D f: (60)

The considered mesh is uniform and consists of n"n elements (squares), where n D 2`C2, that is,
n D 8; : : : ; 512. The covering (1) of the domain is by subdomains composed of 8 " 8 elements
(Examples 1–2) (Figure 1) or 4 " 4 elements (Example 3) that overlap with half of their width
(and height).

The right-hand side vector of (60) has been chosen to be the vector of all zeros, and the outer
nonlinear preconditioned conjugate gradient iteration has been initialized with a random vector.

Subject to numerical testing are four representative cases of problems characterized by a highly
varying diffusion coefficient ˛, namely:
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[a] a random diffusion coefficient ˛e D 10prand , prand 2 ¹0; 1; 2; : : : ; qº, that is, ˛max=˛min D
10q where ˛e is constant on the given element e;

[b] alternating layers of high .˛max/ and low (1) permeability;
[c] islands of high permeability ˛max D 10q against a background as in [a]; see Figure 2;
[d] islands of high permeability ˛max D 10q against a background as in [b]; see Figure 3.

Note that test cases [b] and [d] in the present setting of full coarsening result in highly anisotropic
coarse-grid problems and thus add an additional difficulty for robust preconditioning to the one
introduced by the high-frequency high-contrast coefficient.

Two variants of the surjective mapping ˘ QD as defined in (5) are tested numerically:

[I] QD D diag
! QA". Note that this choice of QD leads to a cheap computation of ˘ QD as the matrix

R QDRT to be inverted becomes diagonal;
[II] QD D blockdiag

! QA", where the blocks are chosen in accordance to the groups of fine
DOF associated with different macrostructures; in rows corresponding to coarse DOF QD D
diag

! QA". The evaluation of
!
R QDRT

"!1
then requires an efficient preconditioner.

Example 1 (Auxiliary space two-grid method)
The first set of numerical tests (Tables I and II) shows the performance of the auxiliary space two-
grid method as described and analyzed in Sections 2 and 3 for test cases [c] and [d] and ˘ QD as in
[I]. The size of the coarse grid and the fine grid, respectively, has been denoted by h and H , where

(a) Fine mesh 64 × 64 nodes (b) Fine mesh 256 × 256 nodes

Figure 2. Islands of high permeability ˛max D 10q against a background as in [a].

(a) Fine mesh 64 × 64 nodes (b) Fine mesh 256 × 256 nodes

Figure 3. Islands of high permeability ˛max D 10q against background as in [b].
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Table I. Number of iterations for residual
reduction by 106.

2-Level method: H D 2h (case [c] [I])

q h

1=16 1=32 1=64 1=128 1=256

0 9 9 9 9 9
1 10 10 10 10 10
2 10 10 10 10 10
3 10 11 11 11 11
4 10 11 11 11 11
5 10 11 11 11 11
6 10 11 11 11 11

Table II. Number of iterations for residual
reduction by 106.

2-Level method: H D 2h (case [d] [I])

q h

1=16 1=32 1=64 1=128 1=256

0 9 9 9 9 9
1 9 10 9 9 9
2 9 10 10 9 9
3 10 10 10 9 9
4 10 10 10 9 9
5 9 10 10 9 9
6 10 10 10 9 9

H D 2h and h take values from the set ¹1=16; 1=32; 1=64; 1=128; 1=256º. In order to fully confirm
the robustness of the auxiliary space preconditioner, no additional smoothing has been performed.

Example 2 (Nonlinear AMLI-cycle ASMG method)
The second set of numerical tests illustrates the performance of the nonlinear AMLI-cycle ASMG
method based on the recursive application of an auxiliary space preconditioner and a point Gauss–
Seidel smoother for different test cases and mapping operators. The coarsest level is ` D 1, which
corresponds to a uniform mesh with 21C2 " 21C2 D 64 elements and 81 coarse-grid nodes.

The finest mesh is obtained by performing ` # 1 D 1; : : : ; 6 steps of uniform mesh refinement.
For ` D 7, the finest mesh is composed of 512"512 bilinear elements with .512 C 1/".512 C 1/
nodes. The `-level V-cycle, W-cycle, and threefold V-cycle methods are tested with different choices
of the parameterm indicating the number of pre-point and post-point Gauss–Seidel smoothing steps
per one GCG iteration on each grid (except on the coarsest one where an exact solve is performed).
That is, m D 0 corresponds to the case in which no smoothing is applied.

Tables III–VIII demonstrate the performance of the algorithm, variant [I], for test cases [a] and
[c]. As can be seen for a moderate contrast (q 6 3), no additional smoothing is required in order
to achieve a uniform convergence. Further, the application of a point Gauss–Seidel smoother sig-
nificantly improves the performance. This finally leads to an optimal order solution process for the
nonlinear threefold AMLI V-cycle for any given magnitude q of the maximum contrast.

Table IX presents a comparison between variants [I] and [II] of the `-level W-cycle with two
pre-smoothing and post-smoothing steps for test case [b].

The obtained numerical results clearly demonstrate how crucial the choice of QD in (5) and con-
sequently of the surjective mapping ˘ QD is. As can be observed, for variant [I], the high contrast
deteriorates the performance of the method. In some cases, the multilevel algorithm does not reach
the prescribed accuracy within 250 iterations (denoted by * in Table IX). At the same time, the
proposed ASMG algorithm with variant [II] shows robustness with respect to the contrast.
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Table III. Number of iterations for residual reduction by 106.

Nonlinear AMLI V-cycle (case [a] [I])

q m D 1 m D 2 m D 3
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 4 5 6 6 7 8 4 4 5 5 6 7 3 4 4 5 6 6
1 5 5 6 6 7 8 4 4 5 5 6 7 4 4 4 5 6 6
2 5 6 6 7 7 8 4 5 5 5 6 7 4 4 5 5 6 6
3 5 6 7 8 8 8 4 5 5 6 6 6 4 4 5 5 6 6
4 5 7 8 8 9 9 4 5 6 6 7 7 4 5 5 6 6 6
5 5 7 9 10 10 13 4 5 7 8 7 10 4 5 6 7 6 8
6 6 7 9 14 14 18 5 6 7 10 10 13 4 5 7 8 8 10

Table IV. Number of iterations for residual reduction by 106.

Nonlinear AMLI W-cycle (case [a] [I])

q m D 0 m D 1 m D 2
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 11 11 11 5 5 5 5 5 5 4 4 4 4 4 4
2 10 11 11 11 11 11 5 5 6 6 6 6 4 4 4 5 5 5
3 10 11 11 12 12 12 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 12 13 15 17 5 6 6 6 7 7 4 5 5 5 5 5
5 10 11 13 19 21 22 5 6 7 8 7 8 4 5 5 6 5 6
6 10 11 14 21 32 40 6 6 7 10 12 11 5 5 6 7 7 8

Table V. Number of iterations for residual reduction by 106.

Nonlinear AMLI 3-fold V-cycle (case [a] [I])

q m D 0 m D 1 m D 2
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
2 10 10 11 11 11 11 5 5 6 6 6 6 4 4 5 5 5 5
3 10 11 11 11 11 11 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 11 12 12 13 5 6 6 6 7 7 4 5 5 5 5 5
5 10 11 12 15 17 16 5 6 7 7 7 7 4 5 5 5 5 5
6 10 11 12 15 27 28 6 6 7 7 8 8 5 5 5 6 6 6

In Tables X and XI, the `-level V-cycle and W-cycle methods are tested for case [d] with a
mapping operator variant [II] with different choices of the parameter m . The numerical results in
Table XI show uniform convergence and robustness.

The computational expense of the ASMG iteration crucially depends on the cost of solving sys-
tems with R QDRT that are required in each application of ˘ QD and its transpose. By testing a single
iteration of variant [I], we have found that the cost of one W-cycle without additional smoothing
(m D 0) is about seven to eight, and the cost of one V-cycle about four times the cost of a single
matrix–vector multiply on the finest mesh. For variant [II], when using a (scaled) one-level additive
Schwarz preconditioner to solve iteratively the systems with R QDRT on all levels (with the same
tolerance as used in the outer iteration), the cost of a single ASMG iteration increases by a factor
five to ten as compared to variant [I].
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Table VI. Number of iterations for residual reduction by 106

Nonlinear AMLI V-cycle (case [c] [I])

q m D 1 m D 2 m D 3
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 4 5 6 6 7 8 4 4 5 5 6 7 3 4 4 5 6 6
1 5 5 6 6 7 8 4 4 5 5 6 7 4 4 4 5 6 7
2 5 5 6 7 7 8 4 5 5 5 6 7 4 4 4 5 6 6
3 5 6 6 7 7 8 4 5 6 6 6 7 4 4 5 5 6 6
4 5 6 7 8 8 9 4 5 5 6 7 7 4 4 5 5 6 6
5 5 6 7 9 10 12 4 5 7 7 7 10 4 4 6 6 6 8
6 6 7 8 12 12 17 5 5 7 8 9 12 4 4 6 7 7 10

Table VII. Number of iterations for residual reduction by 106.

Nonlinear AMLI W-cycle (case [c] [I])

q m D 0 m D 1 m D 2
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 10 11 11 5 5 5 5 5 5 4 4 4 4 4 4
2 10 11 11 11 11 11 5 5 5 6 6 6 4 4 4 4 5 5
3 10 11 11 11 12 12 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 11 12 15 15 5 6 6 6 6 6 4 5 5 5 5 5
5 10 11 13 19 21 22 5 6 6 6 7 8 4 5 5 5 5 6
6 10 12 14 24 33 46 6 6 6 8 10 10 5 5 5 5 6 8

Table VIII. Number of iterations for residual reduction by 106.

Nonlinear AMLI 3-fold V-cycle (case [c] [I])

q m D 0 m D 1 m D 2
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
2 10 10 10 11 11 11 5 5 5 6 6 6 4 4 4 4 5 5
3 10 11 11 11 11 11 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 11 11 11 12 5 6 6 6 6 6 4 5 5 5 5 5
5 10 11 12 14 17 17 5 6 6 6 7 7 4 5 5 5 5 6
6 10 11 12 17 24 36 6 6 6 7 8 8 5 5 5 5 5 6

Example 3 (Recursive estimate of k! QD.k0/k2QA.k0/)
Finally, an example demonstrating the accuracy of the proposed multilevel technique for estimating
k! QD.k0/k2QA.k0/ is provided for test case [a] with q D 4, fixed level k0 D 0 and mapping operator
˘ QD as defined according to [I] and [II].‡ The fine mesh in this example consists of 16"16 elements
and 49 overlapping subdomains. One recursive step in (57) has been performed.

On Figures 4 and 5, the sparsity patterns of the original and auxiliary matrices at different levels
are shown.

‡Mathematica © has been used in the presented computations.
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Table IX. Number of iterations for residual reduction by 106.

Nonlinear AMLI V-cycle, m D 2 (case [b])

q [I] [II]

`

2 3 4 5 6 7 2 3 4 5 6 7

0 4 4 4 4 4 4 4 4 4 4 4 4
1 4 4 4 4 4 4 4 4 4 4 4 4
2 4 4 4 4 4 4 4 4 4 4 4 4
3 4 5 6 7 7 7 4 4 4 5 5 5
4 4 9 14 19 21 20 4 4 4 4 4 5
5 4 20 54 109 * * 4 4 4 4 4 4
6 4 25 51 114 * * 4 4 4 4 4 4

Table X. Number of iterations for residual reduction by 106.

Nonlinear AMLI V-cycle (case [d] [II])

q m D 1 m D 2 m D 3
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 4 5 5 6 8 8 4 4 5 5 5 7 3 4 4 5 6 6
1 5 5 6 7 8 8 4 4 5 5 7 7 3 4 4 5 6 7
2 5 5 7 8 10 10 4 4 6 7 8 10 3 4 5 6 7 9
3 5 6 8 10 11 12 4 5 7 8 10 11 3 4 6 8 9 10
4 5 6 8 10 12 14 4 5 7 9 11 11 3 4 7 9 10 11
5 5 6 8 10 12 15 4 5 7 9 11 13 3 4 7 9 11 13
6 5 6 8 10 12 15 4 5 7 9 11 13 3 4 7 9 11 13

Table XI. Number of iterations for residual reduction by 106.

Nonlinear AMLI W-cycle (case [d] [II])

q m D 0 m D 1 m D 2
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 9 9 9 9 9 5 5 5 5 5 5 4 4 4 4 4 4
1 9 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
2 9 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
3 9 10 10 10 10 10 5 5 5 5 6 6 4 4 4 4 5 5
4 9 10 10 10 11 11 5 5 5 5 6 6 4 4 4 5 5 5
5 9 10 10 10 11 11 5 5 5 6 6 6 4 4 4 5 5 5
6 9 10 10 10 11 11 5 5 5 6 6 6 4 4 4 5 5 5

The coloring integer constant in this example is ncolor D 9. In order to obtain a tight upper
bound for the maximum eigenvalue in (52) and (53), one can assume that the subdomains touching
the boundary further overlap with degenerated subdomains of smaller size. Note that in this case
ncolor does not change. Further, it is sufficient to solve (52) and (53) only for the non-degenerated
subdomains, that is, the number of local eigenvalue problems does not increase.

On Figure 6, the maximum eigenvalues of (52) and (53) are depicted for the two variants [I] and
[II] of projection operators for which it is found that

max
G2G

'
ŒI "
G;max D 0:515764; max

G2G
+
ŒI "
G;max D 0:590758;
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(a) Original matrix
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(b) Auxiliary matrix

Figure 4. Sparsity pattern of the fine grid matrices.
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(a) Original matrix
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(b) Auxiliary matrix

Figure 5. Sparsity pattern of the coarser grid matrices.
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(a) Variant [I].
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(b) Variant [II].

Figure 6. Distribution of the maximum eigenvalues of (53) (solid lines) and of (52) (dashed lines).
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max
G2G

'
ŒII "
G;max D 0:450956; max

G2G
+
ŒII "
G;max D 0:464827:

The computed norms of the projections are

k! ŒI "QD.k0/k
2
QA.k0/ D 2:1893390511486; k! ŒII "QD.k0/k

2
QA.k0/ D 1:9827749765716:

Evaluating the respective estimates gives

*ŒI " D 4:64184; *ŒII " D 4:058604;

, ŒI " D 5:316822; , ŒII " D 4:183443;
where , ŒI " and , ŒII " correspond to (53), whereas *ŒI " and *ŒII " are for (52); see also (49).

7. CONCLUSIONS

A new MG method employing an auxiliary space and an ASCA has been constructed and analyzed.
The presented condition number estimate for the two-grid preconditioner implies robust conver-
gence of the related two-grid method. Also established has been the spectral equivalence between
the ASCA and the exact Schur complement. The upper bound in this relation is always sharp. The
lower bound is given in terms of the energy norm of a projection operator that involves an SPD
block-diagonal matrix QD. Further, for a particular choice of QD also, the lower bound has been shown
to be sharp. Its efficient computation has been addressed, and a particular multilevel algorithm has
been proposed for this purpose.

A main contribution of this work is the definition and formulation of an AMLI-cycle ASMG
method, which differs from classical MG methods in replacing coarse-grid correction by auxiliary
space correction. A representative collection of numerical test has been presented. The obtained
numerical results not only demonstrate the efficiency of the proposed algorithm but also reveal
possibilities for further development, for example, incorporating different smoothers and transfer
mappings or shifting the focus to different problem classes.

Although not in the scope of this study, it should be mentioned that the proposed ASMG method
is suitable for implementation on parallel computer architectures.
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1 Introduction

The robust preconditioning of linear systems of algebraic equations arising
from discretizations of partial differential equations (PDE) is a fastly devel-
oping area of scientific research. In many applications these systems are very
large, sparse and therefore it is vital to construct (quasi-)optimal iterative
methods that converge independently of problem parameters.

The most established techniques to accomplish this objective are domain
decomposition (DD), see, e.g., Toselli and Widlund [2005], Mathew [2008],
and multigrid (MG)/algebraic multilevel iteration (AMLI) methods, see,
e.g., Hackbusch [2003], Trottenberg et al. [2001], Vassilevski [2008].

As demonstrated by Klawonn et al. [2002], Toselli and Widlund [2005],
Graham et al. [2007], two-level DD methods can be proven to be robust for
scalar elliptic PDE with varying coefficient if the variations of the coefficient
inside the coarse grid cells are assumed to be bounded. A key tool in the
classical analysis of overlapping DD methods is the Poincaré inequality or
its weighted analog as for problems with highly varying coefficients. It is
well-known that the weighted Poincaré inequality holds only under certain
conditions, e.g., in case of quasi-monotonic coefficients, see Sarkis [1994]. The
concept of quasi-monotonic coefficients has been further developed in Pech-
stein and Scheichl [2008] for the convergence analysis of finite element tearing
and interconnecting (FETI) methods.

Recently the robustness of DD methods has also been achieved for prob-
lems with general coefficient variations using coarse spaces that are con-
structed by solving local generalized eigenvalue problems, see, e.g., Efendiev
et al. [2012], Galvis and Efendiev [2010], Spillane et al. [2014].
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In view of computational complexity, MG methods have been known to
be most efficient as they have demonstrated optimality with respect to the
problem size, see Hackbusch [2003], Vassilevski [2008]. Their design, however,
needs careful adaptation for problems with large variations in the physical
problem parameters. The AMLI framework contributes in achieving this goal,
e.g. by providing more general polynomial acceleration techniques or Krylov
cycles, see Axelsson and Vassilevski [1989, 1990, 1994], Kraus et al. [2012].

The idea of integrating domain decomposition techniques into multigrid
methods can be found as early as in Kuznetsov [1989]. The method that
is presented in the following combines DD and MG techniques with those
from auxiliary space preconditioning, see Xu [1996]. It is related to substruc-
turing methods like FETI, see Farhat and Roux [1991], and balancing domain
decomposition (BDD) methods, see Mandel [1993].

The most advanced of these methods, BDDC (BDD based on constraints),
see Dohrmann [2003], and FETI-DP (FETI dual-primal), see Farhat et al.
[2001], can be formulated and analyzed in a common algebraic framework,
see Mandel and Dohrmann [2003], Mandel et al. [2005], Mandel and Soused́ık
[2007]. The BDDC method enforces continuity across substructure interfaces
by a certain averaging operator. The additional constraints can be interpreted
as subspace corrections where coarse basis functions are subject to energy
minimization. From this point of view the BDDC method has a high degree
of similarity with the present approach.

However, contrary to BDDC, the auxiliary space multigrid (ASMG)
method considered here naturally allows overlapping of subdomains and
coarse degrees of freedom (DOF) are associated in general not only with
the interfaces of subdomains but also with their interior. Moreover, the aim
is to define a full multilevel method by recursive application of a two-level
method. In contrary to standard (variational) multigrid algorithms coarse-
grid correction is replaced by an auxiliary space correction. The coarse-grid
operator then appears as the exact Schur complement of the auxiliary ma-
trix and defines an additive approximation of the Schur complement of the
original system, see Kraus [2006, 2012].

The purpose of the present paper is to summarize the main steps of the
construction of the ASMG method recently proposed in Kraus et al. [2014]
on a less technical level (Sections 2 and 4) and further to discuss its spectral
properties and robustness with respect to highly varying coefficients (Sec-
tion 3). The latter issue is also illustrated by numerical tests (Section 5).

2 Auxiliary space two-grid preconditioner

Consider the linear system of algebraic equations

Au = f (1)
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obtained after a finite element (FE) discretization of a partial differential
equation (PDE) defined over a domain Ω, where A denotes the global stiffness
matrix and f is a given right-hand side vector.

Consider a covering of Ω by n (overlapping) subdomains Ωi, i.e., Ω =⋃n
i=1Ωi. Assume that for each subdomain Ωi there is a symmetric positive

semi-definite (SPSD) subdomain matrix Ai and that A =
∑n
i=1R

T
i AiRi

where Ri restricts a global vector v ∈ V = IRN to the local space Vi = IRni

related to Ωi. In practice the matrices Ai are assembled from scaled element
matrices where the scaling factors account for the overlap of the subdomains.
The DOF are split into two groups, coarse and fine, and the matrices A and
Ai are partitioned accordingly into two-by-two blocks, where the lower right
blocks (with index 22) are associated with coarse DOF, i.e.,

A =

[
A11 A12

A21 A22

]
, Ai =

[
Ai:11 Ai:12
Ai:21 Ai:22

]
, i = 1, . . . , n.

Introduce the following auxiliary domain decomposition matrix

Ã =




A1:11 A1:12R1:2

A2:11 A2:12R2:2

. . .
...

An:11 An:12Rn:2

RT1:2A1:21 R
T
2:2A2:21 . . . R

T
n:2An:21

n∑

i=1

RTi:2Ai:22Ri:2




. (2)

Denote Ã11 = diag{A1:11, . . . , An:11}, Ã22 = A22 =
∑n
i=1R

T
i:2Ai:22Ri:2, i.e.,

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
. The matrices A ∈ IRN×N and Ã ∈ IR

eN× eN are related via

A = RÃRT where R =

[
R1 0
0 I2

]
, R1 =

[
RT1:1 . . . R

T
n:1

]
, A11 = R1Ã11R

T
1 .

Definition 1. (Kraus [2012]) The additive Schur complement approximation

(ASCA) of S = A22−A21A
−1
11 A12 is defined as the Schur complement Q of Ã:

Q := Ã22 − Ã21Ã
−1
11 Ã12 =

n∑

i=1

RTi:2(Ai:22 −Ai:21A−1i:11Ai:12)Ri:2 (3)

Next define a surjective mapping Π eD : Ṽ → V by

Π eD = (RD̃RT )−1RD̃, (4)

where Ṽ = IR
eN and D̃ is a two-by-two block-diagonal SPD matrix.
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The proposed auxiliary space two-grid preconditioner is defined by

B−1 := M
−1

+ (I −M−TA)C−1(I −AM−1) (5)

where the operator M in (5) denotes an A-norm convergent smoother, i.e.
‖I −M−1A‖A ≤ 1, and M = M(M + MT − A)−1MT is the corresponding
symmetrized smoother. The matrix C defines a fictitious (auxiliary) space
preconditioner approximating A and is given by

C−1 = Π eDÃ−1ΠTeD. (6)

Denote Π = (I − M−TA)Π eD = (I − M−TA)(RD̃RT )−1RD̃, then the
preconditioner (5) can also be presented as

B−1 = M
−1

+ΠÃ−1ΠT . (7)

The proposed auxiliary space two-grid method differs from the classical
two-grid methods in the replacement of the coarse grid correction step by a
subspace correction with iteration matrix I − C−1A.

3 Spectral properties and robustness

As it has been shown in Kraus et al. [2014] the condition number of the
two-grid preconditioner defined in (7) satisfies the estimate

κ(B−1A) ≤ (c̄+ cΠ)(c + η)/c,

where ρA = λmax(A), cΠ is the constant in the estimate ‖Πṽ‖2A ≤ cΠ‖ṽ‖2eA
for all ṽ ∈ Ṽ , and the constants c̄, c and η characterize the smoother, i.e.,

c〈v,v〉 ≤ ρA〈M
−1

v,v〉 ≤ c̄〈v,v〉 and ‖M−TAv‖2 ≤ η

ρA
‖v‖2A.

Moreover, the ASCA defined in (3) is spectrally equivalent to S, i.e. Q ' S:

Theorem 1. (Kraus et al. [2014]) Denote π eD = RTΠ eD where Π eD is defined

as in (4) and D̃ is an arbitrary two-by-two block-diagonal SPD matrix for

the same fine-coarse partitioning of DOF as used in the construction of Ã.
Then 〈A−1u,u〉 ≤ 〈Π eDÃ−1ΠTeDu,u〉 ≤ c 〈A−1u,u〉 ∀u ∈ V where c := ‖π eD‖2eA.
Hence,

1

c
〈Sv2,v2〉 ≤ 〈Qv2,v2〉 ≤ 〈Sv2,v2〉 ∀v2. (8)

The upper bound in (8) is sharp, the lower bound is sharp for D̃ =

[
Ã11 0
0 I

]
.
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To verify that 〈Sv2,v2〉 ≤ c〈Qv2,v2〉 is robust with respect to an arbitrary
variation of an elementwise constant coefficient α(x) = αe for all x ∈ e
and all elements e, see (15), one has to consider all possible distributions of
{αe} on the finest mesh. However, in the following we will show that the
worst condition number (largest values of c) is obtained for a certain binary
distribution of {αe} so it suffices to study distributions of this type.

Let ne denote the number of elements e and consider first an arbitrary dis-
tribution {αe} of a piecewise constant coefficient where αe ∈ (0, 1] for all e.
Further, let A denote the global stiffness matrix corresponding to this distri-
bution. Then there exists a set of binary distributions {Ci : i = 1, 2, . . . , ne}
with Ci = {αej : j = 1, 2, . . . , ne, αej = βei if j = i and αej = δ else} for
some constants 0 < δ ≤ βei ≤ 1 such that A =

∑ne

i=1Ai where Ai is the
global stiffness matrix corresponding to the distribution Ci. It is easy to see
that if A is SPD then Ai is SPD for all i. Now, let Si denote the exact Schur
complement of Ai and S be the Schur complement of A. Moreover, let Qi
denote the ASCA corresponding to Ai, i.e., Qi ' Si where Qi is the exact
Schur complement of Ãi, cf. (2).

Lemma 1. Using the above notation, assume that

1

cj
〈Sjv2,v2〉 ≤ 〈Qjv2,v2〉 ≤ 〈Sjv2,v2〉 ∀v2 and j = 1, . . . , ne. (9)

Further, denote cmax = maxi∈{1,...,ne}{ci}. Then the following relations hold:

1

cmax
〈Sv2,v2〉 ≤ 〈Qv2,v2〉 ≤ 〈Sv2,v2〉 ∀v2. (10)

Proof. The right inequality in (10) follows directly from the energy mini-
mization property of Schur complements. In order to prove the left inequal-
ity we assume that (10) is wrong. Then there exists a vector v2 6= 0 such
that vT2 Sv2 ≥ c̄vT2 Qv2 > cmaxv

T
2 Qv2, the left inequality of which can also

be written in the form minv1

(
v1

v2

)T
A

(
v1

v2

)
≥ c̄vT2 Qv2, or, equivalently

as minv1

(
v1

v2

)T (∑ne

j=1Aj

)(v1

v2

)
≥ c̄ minṽ1

(
ṽ1

v2

)T (∑ne

j=1 Ãj

)( ṽ1

v2

)
.

From the latter inequality it follows that

(
v1

v2

)T



ne∑

j=1

Aj



(

v1

v2

)
≥ c̄

ne∑

j=1

min
ṽ1

(
ṽ1

v2

)T
Ãj

(
ṽ1

v2

)
∀v1,

which is equivalent to

ne∑

j=1

(
v1

v2

)T
Aj

(
v1

v2

)
≥ c̄

ne∑

j=1

vT2 Qjv2 ∀v1. (11)
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Then, since all matrices Aj and Qj are SPSD, it follows from (11) that there
exists at least one index j0 ∈ {1, 2, . . . , ne} such that

(
v1

v2

)T
Aj0

(
v1

v2

)
≥ c̄vT2 Qj0v2 ∀v1.

Hence vT2 Sj0v2 = minv1

(
v1

v2

)T
Aj0

(
v1

v2

)
≥ c̄vT2 Qj0v2 which is in contra-

diction to (9) since c̄ > cmax.

A crucial step in the application of the two-level preconditioner is the real-
ization of the operator Π eD. We propose two different variants that correspond

to the following choices of D̃:

[I] D̃ = diag(Ã);

[II] D̃ = blockdiag(Ã). The diagonal blocks are determined by the groups of

fine DOF related to different macro structures whereas D̃ = diag(Ã) in
rows corresponding to coarse DOF.

In variant [I] the matrix RD̃RT is diagonal, which makes the application
of Π eD notably simple and cost-efficient. In case of variant [II] the action

of (RD̃RT )−1 can be implemented via an inner iterative method such as a
preconditioned conjugate gradient (PCG) method, which then for reasons of
efficiency requires a uniform preconditioner. A possible candidate is the one-
level additive Schwarz (AS) preconditioner which however has to be adapted
in order to be robust with respect to coefficient jumps. For this reason we
study the scaled one-level AS preconditioner BAS defined via

B−1AS = SRS̃−1(S̃D̃S̃)−1S̃−1RTS (12)

which can be applied to the scaled system with the matrix

Ds = SDS = SRD̃RTS,

where S = [diag(A)]−1/2, if the result is then rescaled. Let us further denote

D̃s = S̃D̃S̃ and Rs = SRS̃−1 where S̃ = [diag(Ã)]−1/2.

Then the following lemma holds:

Lemma 2. The condition number of the preconditioned system using the
scaled one-level AS preconditioner satisfies the estimate

κ(B−1ASDs) ≤ κ(D̃s). (13)

Proof. First we show that λmin(B−1ASDs) ≥ 1. Note that Ds = RsD̃sR
T
s and

RsR
T
s = SRS̃−1S̃−1RTS = [diag(A)]−1/2R [diag(Ã)]RT [diag(A)]−1/2 = I.
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Consider next the matrix
[
RsD̃sR

T
s I

I RsD̃
−1
s RTs

]
=

[
Rs 0
0 Rs

] [
D̃s I

I D̃−1s

] [
RTs 0
0 RTs

]

which is SPSD with an SPD pivot block Ds = RsD̃sR
T
s . Consequently, its

Schur complement is an SPSD matrix, i.e.

RsD̃
−1
s RTs − (RsD̃sR

T
s )−1 ≥ 0

which proves that λmin(B−1ASDs) ≥ 1.
On the other hand we have

λmax(B−1ASDs) = λmax(RsD̃
−1
s RsDs)

= λmax(D
1/2
s RsD̃

−1
s RsD

1/2
s )

= λmax(D̃
−1/2
s RTs DsRsD̃

−1/2
s )

≤ λmax(D̃−1s )λmax(RTs RsD̃sR
T
s Rs)

≤ λmax(D̃−1s )λmax(D̃s)λmax(RTs Rs) = κ(D̃s)

which completes the proof.

Remark 1. For conforming FEM discretization of the second order scalar el-
liptic PDE it is not difficult to show that κ(D̃s) is uniformly bounded with

respect to jumps of an elementwise constant coefficient. Furthermore, D̃s is
block-diagonal with small-sized blocks and thus κ(D̃s) is easily computable.

4 Auxiliary space multigrid method

Consider the exact block factorization of the sequence of auxiliary stiffness
matrices Ãk, where the superscript k = 0, 1, . . . , `−1 indicates the coarsening
level:

Ã(k)−1 = L̃(k) T D̃(k)L̃(k), A(k+1) := Q(k),

L̃(k) =

[
I

−Ã(k)
21 Ã

(k)
11

−1
I

]
, D̃(k) =

[
Ã

(k)
11

−1

Q(k)−1

]
.

Let the algebraic multilevel iteration (AMLI)-cycle auxiliary space multigrid
(ASMG) preconditioner B(k) be defined by (see Kraus et al. [2014]):

B(k)−1 := M
(k)−1

+(I −M (k)−TA(k))Π(k) L̃(k)
T
D

(k)
L̃(k)Π(k)T (I −A(k)M (k)−1),

D
(k)

:=

[
Ã

(k)
11

−1

B
(k+1)
ν

]
, B

(`)
ν := A(`)−1.
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In the nonlinear AMLI-cycle B
(k+1)
ν = B

(k+1)
ν [·] is a nonlinear mapping

realized by ν iterations of a Krylov subspace method (e.g. the generalized
conjugate gradient (GCG) method), thus employing the coarse level pre-
conditioner B(k+1). In Kraus [2002] the convergence of the multiplicative
nonlinear AMLI has been first analyzed, while Notay and Vassilevski [2008],
Vassilevski [2008], Hu et al. [2013] have provided the multigrid framework
along with a comparative analysis.

We want to stress the fact that the presented construction provides a
framework for both linear and nonlinear AMLI cycle multigrid as well as
classical multigrid methods.

5 Numerical Results

Subject to numerical testing is the scalar elliptic boundary-value problem

−∇ · (k(x)∇u(x)) = f(x) in Ω, (14a)

u = 0 on Γ. (14b)

Here Ω is a polygonal domain in IR2, f is a given function in L2(Ω) and

k(x) = α(x)I = αeI. (15)

Upon the entire boundary of the domain Dirichlet boundary conditions have
been imposed as other boundary conditions would not qualitatively affect the
numerical results.

Piecewise bilinear functions have been used in the process of discretization
of (14) leading to the linear system of algebraic equations (1). A uniform mesh
consisting of N×N elements (squares) is considered where N = 2`+2, ` =
1, . . . , 7, and the covering is assumed to consist of subdomains composed of 8×
8 elements that overlap with half of their width or height. The mesh hierarchy
is such that the coarsest mesh corresponds to ` = 1 and is composed of
21+2×21+2 = 64 elements whereas the finest mesh is obtained by performing
`− 1 = 1, . . . , 6 steps of uniform mesh refinement.

The vector of all zeros was chosen to be the right hand side f in (1) while
the outer iteration was initialized with a random vector. Three representative
coefficient configurations are considered (on the respective finest mesh):

[0] log-uniformly distributed coefficient αe = 10prand where αe is constant on
each element e and prand ∈ (0, q];

[1] inclusions with coefficient αι = 10prand against a background as in [0]
where αι is constant on every inclusion ι and prand ∈ (0, q], see Fig. 2(a);

[2] stiff inclusions with coefficient αι = 10q against a background as in [0], see
Fig. 2(b).

In Table 1 we compare the condition numbers
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κ(D̃s) = κ(SD̃S), κ(B−1ASDs) = κ(SRS̃−2D̃−1S̃−2RTS(SRD̃RTS)),

with that of the corresponding unscaled preconditioned system

κ(RD̃−1RT (RD̃RT ))

for the coefficient distribution [0] on three different meshes with mesh size
h ∈ {1/16, 1/32, 1/64} and varying contrast q. The obtained numerical results
are in accordance with Lemma 2; They further show that the scaled one-level
additive Schwarz method yields a uniform preconditioner whereas its unscaled
analog suffers from high-contrast coefficients.

Next, the numerical performance of the nonlinear (AMLI)-cycle ASMG
method (V-cycle and W-cycle) utilizing the preconditioner BAS is tested for:

(P1) Problem (14) with coefficient distributions [1] and variants [I] and [II] of
Π eD. Variant [II] is realized by 10 inner PCG iterations with the scaled
one-level AS preconditioner.

(P2) Same as Problem (P1) but for coefficient distribution 2.

A comparison between variant [I] and variant [II] of the `-level V-cycle and
W-cycle is presented in Tables 2–3. Pre- and post-smoothing is performed by

(a) 16 × 16 mesh (b) 64 × 64 mesh (c) 512 × 512 mesh

Fig. 1 Inclusions resolved on different fine scales (meshes)

(a) Coefficient for Prob-

lem (P1) on 512×512 mesh

(b) Coefficient for Prob-

lem (P2) on 512×512 mesh

Fig. 2 Random and stiff inclusions against random background αe = 10prand
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Table 1 Condition numbers of AS-preconditioned systems versus κ( eDs)

unscaled AS method scaled AS method κ( eDs)

@
@q

h
1/16 1/32 1/64 1/16 1/32 1/64 1/16 1/32 1/64

1 9.76 × 101 9.47 × 101 9.35 × 101 1.25 1.26 1.26 4.73 4.73 4.73
2 2.25 × 102 3.69 × 102 5.89 × 102 1.28 1.27 1.29 4.73 4.73 4.73

3 6.93 × 102 2.42 × 103 3.70 × 103 1.29 1.32 1.33 4.73 4.73 4.73
4 1.93 × 104 1.97 × 104 3.77 × 104 1.33 1.33 1.33 4.73 4.73 4.73

5 1.78 × 105 1.87 × 105 2.16 × 105 1.32 1.33 1.33 4.73 4.73 4.73

6 3.07 × 105 1.34 × 106 2.15 × 106 1.33 1.33 1.33 4.73 4.73 4.73

one symmetric point Gauss-Seidel iteration on each level except the coarsest
one where all linear systems are solved directly.

Table 2 Number of iterations for residual reduction by 106

Problem (P1)

Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle

[I] [II] [I] [II]

@
@q
`

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 4 5 6 6 7 8 5 5 6 6 7 8 4 5 5 5 5 5 5 5 5 5 5 5

2 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5
3 5 6 6 7 7 8 5 6 6 7 7 8 5 6 6 6 6 6 5 5 5 5 5 5

4 5 6 7 8 8 9 5 6 7 8 8 8 5 6 6 6 6 6 5 6 6 6 6 6

5 5 7 7 8 9 9 5 6 7 8 8 8 5 6 6 6 7 7 5 6 6 6 6 6
6 5 7 8 9 13 15 5 7 8 8 8 9 5 6 6 7 9 10 5 6 6 6 6 6

Table 3 Number of iterations for residual reduction by 106

Problem (P2)

Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle
[I] [II] [I] [II]

@
@q

`
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

2 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

3 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 6 5 6 5 5 5 5 5 5
4 5 6 6 7 7 8 5 5 6 7 8 8 5 5 6 6 6 6 5 6 5 5 5 6

5 5 6 7 7 9 9 5 6 7 7 8 8 5 6 6 6 6 6 5 6 6 6 6 6

6 5 6 8 8 12 13 5 6 7 8 9 9 5 6 6 6 8 9 5 6 6 6 6 6
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The obtained results demonstrate that the choice of D̃ and consequently
of the surjective mapping Π eD affect the performance of the nonlinear AMLI-
cycle ASMG method crucially. As for variant [I] the number of ASMG itera-
tions required to achieve the prescribed accuracy increases with the contrast,
variant [II] shows full robustness.
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Abstract. In this paper we propose and analyze a preconditioner for a system arising from a
mixed finite element approximation of second-order elliptic problems describing processes in highly
heterogeneous media. Our approach uses the technique of multilevel methods (see, e.g., [P. Vas-
silevski, Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for
Solving Finite Element Equations, Springer, New York, 2008]) and the recently proposed precondi-
tioner based on additive Schur complement approximation by J. Kraus [SIAM J. Sci. Comput., 34
(2012), pp. A2872–A2895]. The main results are the design, study, and numerical justification of
iterative algorithms for these problems that are robust with respect to the contrast of the media,
defined as the ratio between the maximum and minimum values of the coefficient of the problem.
Numerical tests provide experimental evidence for the high quality of the preconditioner and its
desired robustness with respect to the material contrast. Such results for several representative cases
are presented, one of which is related to the SPE10 (Society of Petroleum Engineers) benchmark
problem.
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1. Introduction.

1.1. Model problem definition. Flows in porous media appear in many in-
dustrial, scientific, engineering, and environmental applications and are a subject of
significant scientific interest. Their analogous mathematical formulations are also
used in the modelling of other physical processes such as heat and mass transfer, dif-
fusion of passive chemicals, and electromagnetics. This leads to the following system
of partial differential equations (PDEs) of first order for the unknown scalar function
p(x) and the vector function u(x):

u + K(x)∇p = 0 in Ω,(1.1a)
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div u = f in Ω,(1.1b)

p = g on ΓD,(1.1c)

u · n = 0 on ΓN ,(1.1d)

where Ω is a polygonal domain in Rd, d = 2, 3. In the terminology of flows in porous
media the unknown scalar function p(x) and the vector function u are called pressure
and velocity, respectively, while K(x) : Rd �→ Rd×d, the permeability tensor, is a
symmetric and positive definite (SPD) matrix for almost all x ∈ Ω. Equation (1.1a)
is Darcy’s law, while (1.1b) expresses conservation of mass.

Our study is focused on the case K(x) = k(x)I, where I is the identity matrix in
Rd and k(x) is a scalar function. The given forcing term f is a function in L2(Ω). The
boundary ∂Ω is split into two nonoverlapping parts ΓD and ΓN , and in the case of a
pure Neumann problem, i.e., ΓN = ∂Ω, we assume that f satisfies the compatibility
condition

∫
Ω

fdx = 0. In such a case the solution is determined uniquely by taking∫
Ω p dx = 0.

To simplify the presentation, ΓD is assumed to be a nonempty set with strictly
positive measure which is also closed with respect to ∂Ω, and g(x) ≡ 0 on ΓD, so
the above system of equations has a unique solution p ∈ H1

D(Ω) = {q ∈ H1(Ω) : q =
0 on ΓD}, and u is defined by (1.1a).

Specifically, applications to flows in highly heterogeneous porous media of high
contrast are studied. The coefficient k(x) in this context represents media with multi-
scale features, involving many small size inclusions and/or long connected subdomains
(channels), where k(x) has large values (see Figure 2). A computer generated per-
meability coefficient K(x) exhibiting such features has been used as a benchmark
in petroleum engineering related simulations; cf. the SPE10 Comparative Solution
Project [28] of the Society of Petroleum Engineers. Figure 3 shows the permeability
field for two-dimensional (2D) slices of such media. An important characteristic is the
contrast κ, defined by (2.2) as a ratio between the maximum and minimum values of
k(x).

In this paper we consider approximations of the problem (1.1) by the mixed finite
element method (FEM) on a mesh that resolves the finest scale of the permeability.
This leads to a very large indefinite symmetric system of algebraic equations. Devel-
oping, studying, and testing an optimal preconditioner with respect to the contrast
κ and the mesh size h for this algebraic problem is the objective of this paper. Our
considerations and numerical experiments show that the proposed preconditioner is
optimal so that the number of iterations depends on neither the contrast nor the mesh
size. This is the main achievement of this paper.

For the vector variable u we use the lowest-order Raviart–Thomas H(div)-
conforming finite elements (FEs). The algebraic system of linear equations for the
unknown degrees of freedom associated with u and p can be written in the following
block form (for more details, see subsection 4.1):

(1.2)

[
Mα −BT

div

−Bdiv 0

] [
u
p

]
=

[
0
f

]
,

where the matrix Mα is generated by the inner product (αu, v), while Bdiv is generated
by the form (∇ · u, q). It is well known (see, e.g., [1]) that the matrix mapping
properties of this system are the same as those of

(1.3) Bh :=

[
A 0

0 I

]
,
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where the matrix A corresponds to the weighted H(div)-inner product (αu, v) +
(div u, div v). Therefore, for an optimal MinRes iteration, the construction of an
efficient preconditioner for the bilinear form (αu, v) + (div u, div v), which is robust
with respect to both the contrast and the mesh size, is essential. In this paper we
focus on the construction and study of a suitable preconditioner of A in (1.3).

1.2. Overview of existing results. The standard elliptic theory ensures the
existence of a unique solution p ∈ H1

D(Ω). However, since K(x) is a piecewise smooth
matrix and may have very large jumps, the solution p has low regularity. For exam-
ple, the case H1+s(Ω), where s > 0, could depend on the contrast κ in a subtle and
unfavorable manner. This must be considered when proving the stability of discrete
methods with a constant independent of κ. As a consequence, any solution or pre-
conditioning technique, such as multigrid or domain decomposition, that is analyzed
by using the solutions’ regularity cannot produce theoretical results independent of
the contrast.

Note that the block A corresponds to the FE approximation of the weighted
H(div)-norm generated by the weighted inner product (K−1u, v) + (div u, div v)
with H(div)-conforming FEs. Thus, one might expect that the existing precondi-
tioners of H(div)-norms would be appropriate to begin with. Various scenarios for
the properties of K(x) are possible, such as the following.

Constant K and/or smooth variable K(x). The case of K(x) being an SPD ma-
trix over Ω has been considered by Arnold, Falk, and Winther in [1, 2], and the
corresponding preconditioner (based on multigrid and/or domain decomposition) was
shown to be optimal with respect to the mesh size in two space dimensions. The
analysis of the preconditioner relies on the approximation properties of the Raviart–
Thomas projection and requires full regularity of the solution. Further, based on early
work by Vassilevski and Wang [31], Börm and Hiptmair [3] and later Hiptmair and
Xu [12] developed a preconditioner for the H(div)-norm that is optimal with respect
to the mesh size. This work does not consider the variable K(x) and a weighted
norm. Nevertheless, its analysis can be potentially extended to this case. However,
the theoretical justification of this preconditioner uses in a fundamental way the ap-
proximation properties of FE projections (Raviart–Thomas in two dimensions and
Nedelec in three dimensions) that require regularity of the vector field u; see, e.g., [3,
error bounds (2.3)–(2.5)], which may depend, in an unfavorable way, on the contrast
κ. In general, such regularity is not available for problems in highly heterogeneous
media with large contrast. Additionally, the main ingredient of the preconditioner
in [12], stable regular decompositions, requires an extension of these results to the
case of weighted norms. To the best of our knowledge, such results are still out of
reach for highly heterogeneous coefficients, and the analogues of Lemmas 3.4 and 3.8
of [12], crucial for constructing preconditioners, are not yet available.

Anisotropic coefficient matrix K(x). Often the coefficient matrix represents the
properties of anisotropic media or heterogeneous media with highly anisotropic in-
clusions. Solving linear systems resulting from FE approximation of such problems
is not fully mastered. Moreover, a theoretical justification of iterative solvers that
are robust with respect to anisotropy is a very difficult task. Some early work in
multigrid for 2D problems (see, e.g., [3, 4]) uses grids aligned with the anisotropy. In
[4, conditions (1.2)–(1.4)], a certain coefficient regularity is required, while in [3] it is
assumed that the grid is aligned with the anisotropy of the coefficient K(x) and the
line-relaxation in the strongly coupled direction is combined with semicoarsening in
the other directions only.
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Variable K(x) with high contrast κ. The design and analysis of condition numbers
for the system (1.2) preconditioned with block-diagonal preconditioners were carried
out by Powell and Silvester [26] and Powell [25]. One class of preconditioners proposed
in these two papers, and relevant to our constructions here, is of block-diagonal form
with a weighted H(div) operator as one diagonal block, and a lumped (weighted) mass
matrix as the other. In practice, one can use approximate solutions of the H(div)
problem by V-cycle multigrid, e.g., as proposed by Arnold, Falk, and Winther [1]. In
the case of a smooth coefficient matrix K(x), such an approach produces an optimal
preconditioner for the mixed system in the isotropic case, independent of the contrast
κ, as seen in [26, section 2.3.1, Tables 2.3–2.7] and [25, Tables 4 and 5]. In other
cases, matrix-valued anisotropic coefficients and highly heterogeneous coefficients not
aligned with the grid, the resulting preconditioners are robust with respect to the
coefficient variation whenever the approximation to the first diagonal block demon-
strates such robustness. It is still an open theoretical question, however, whether
any of the known multigrid algorithms for the weighted H(div) problem converge
uniformly with respect to both h and the coefficient variation for all cases, and par-
ticularly in cases of matrix-valued and anisotropic coefficients with discontinuities
not aligned with the coarsest mesh. This statement applies to both algebraic and
geometric multigrid methods.

Furthermore, the framework for practical preconditioning of Powell and Silvester
[25] and Powell [26] can be combined with the Schur complement preconditioning of
the H(div) block as proposed here. While a rigorous mathematical justification of
such a result is beyond our present consideration, the numerical tests presented later
and the analysis in [25] and [26] show that such a combined approach has the potential
to be successful and practical.

Highly heterogeneous discontinuous K(x). In the existing literature there are
a number of techniques for preconditioning algebraic problems with heterogeneous
coefficients of high contrast or large jumps. Among the most popular are domain
decomposition, e.g., [13, 8] for the standard Galerkin FEM, and multilevel methods
for the hybridized mixed system, e.g., [14]. The main result in [13] concerns a domain
decomposition FETI-type preconditioner which is optimal with respect to the contrast
in the case when jumps of K(x) are aligned with the coarse mesh (or the splitting of the
domain into subdomains). Similarly, the preconditioners presented in [17], based on
algebraic multilevel iteration (AMLI) methods, are theoretically proven to be robust
with respect to contrast and anisotropy in the case when jumps of the coefficients
K(x) are aligned with the initial coarse mesh. The results shown in [17, Table 7.10,
p. 163] demonstrate numerically that for highly heterogeneous media with jumps in
the permeability K(x) aligned with the fine mesh only, the AMLI preconditioner is not
robust with respect to the contrast. In a recent work [33], J. Willems has developed
a robust (with respect to the problem parameters) nonlinear multilevel method for
solving general SPD systems. A crucial role in the construction of the nested spaces
and the smoother is played by local generalized eigenproblems (in the manner of [10])
and four assumptions. It is not clear when these are verifiable for the case of the
form Λα.

We share the opinion expressed in [25, section 6] that the existence of theoretically
proven optimal preconditioners of the ‖ · ‖Λα -norm (defined by the weighted H(div)-
product (2.5)) in the case of a general SPD tensor K(x) is an open question. Moreover,
a tensor K(x) with arbitrary heterogeneities and/or high anisotropy represents a
genuine challenge for both theory and computational practice. Our paper is a step
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in this direction for the case of a highly heterogeneous permeability tensor K(x) that
satisfies the condition (2.7).

1.3. Contributions of the study. The main result and novelty of this paper
are the design, theoretical discussion, and experimental study of a preconditioner for
a matrix corresponding to the weighted norm ‖ · ‖Λα in the space H(div) (defined by
(2.5)) which gives an iterative method for mixed FE systems converging independently
of the contrast κ. Such a construction is based on ideas from [16].

A crucial role is played by the well-known inf-sup condition. In this paper we
consider the case of a permeability tensor satisfying condition (2.7). The inf-sup condi-
tion for this case immediately follows from the well-studied situation where K(x) = I.
However, in order to emphasize the dependence of the inf-sup constant on the global
properties of the differential operator and the means by which it can be extended to
a more general form of K(x), an outline of the proof is presented. Furthermore, we
present a short discussion in which K(x) = k(x)I for highly heterogeneous values of
k(x) and 0 < k(x) <∞. Theorem 3.1 establishes an inf-sup condition and bounded-
ness of the corresponding bilinear form in a discrete setting. We emphasize that under
(2.7) the constant in the inf-sup condition and the boundedness of the corresponding
form do not depend on the contrast of the media.

In section 4, which is central to the paper, a new preconditioning method for the
FE systems is described. First, a block-diagonal preconditioner for the operator form
of the mixed FEM is defined. Furthermore, subsection 4.1 presents the FE problem
in matrix form. The key issue when designing a contrast-independent Krylov solver
is the construction of a robust preconditioner for the weighted H(div)-norm. An
important aspect in its analysis is the norm of a suitable projection characterizing
this preconditioner. Currently a general theoretical proof of the independence of this
norm with respect to the contrast does not exist. However, we have presented nu-
merical evidence (in section 5, Table 1) that this quantity is bounded independently
of the contrast and the mesh size. Such a result is highly desirable and of great
practical value. Moreover, all of our presented numerical experiments indirectly show
such robustness. Subsection 4.2.1 introduces an auxiliary space multigrid (ASMG)
method. Two variants of the algorithm, differing only in their relaxation procedure,
are described in subsection 4.2.2. The work needed to compute the action of the
preconditioner is proportional to the total number of nonzeros in the coarse-grid ma-
trices (the so-called operator complexity of the preconditioner), and this is discussed
in some detail in section 4.3. Finally, section 5 gives numerical results for three dif-
ferent examples of porous media in two dimensions in order to test the robustness of
the preconditioner with respect to media contrast, and its optimality with respect to
mesh size. All numerical results confirm these claims.

2. Problem formulation.

2.1. Notation and preliminaries. For functions defined on Ω we use the stan-
dard notation for Sobolev spaces; namely, Hs(Ω) for s ≥ 0 being an integer is the
space of functions having their generalized derivatives up to order s square-integrable
on Ω. We denote by (·, ·) the L2 and [L2]d inner products. The standard norms on
Hs are denoted by ‖ · ‖s. For s = 0 we also write ‖ · ‖ without a subscript. When
the norm is weighted with a matrix-valued function ω(x), with ω(x) being SPD for
almost all x ∈ Ω, we use the notation

(2.1) ‖v‖0,ω := ‖ω1/2v‖, |φ|1,ω := ‖∇φ‖0,ω = ‖ω1/2∇φ‖.
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Occasionally, when considering only a subset of Ω, e.g., T ⊂ Ω, this is indicated in
the notation for norms and seminorms, i.e., ‖ · ‖s,T , ‖ · ‖s,ω,T , | · |s,T , and | · |s,ω,T .

To put our work into perspective, in the following, we consider K ∈ Rd×d to be a
symmetric matrix, the norm ‖K‖�2 denoting, as usual, the spectral radius of K. We
define the number

(2.2) κ = max
x∈Ω

(‖K(x)‖�2‖K−1(x)‖�2) with ‖K(x)‖�2 = sup
ξ∈Rd

(K(x)ξ · ξ)/(ξ · ξ)

to be the contrast of the media. Obviously, κ = maxx∈Ω K(x)/ minx∈Ω K(x) for a
scalar permeability coefficient K(x). In many applications κ is much larger than 1,
often up to 10 orders of magnitude, and the larger κ is, the more difficult it becomes
to devise an efficient preconditioner.

The Hilbert space H(div) consists of square-integrable vector-fields on Ω with
square-integrable divergence. The inner product in H(div) is given by

(2.3) Λ(u, v) = (u, v) + (div u, div v), and, consequently, ‖v‖2H(div) := Λ(v, v).

Together with the Sobolev space H1
D(Ω), we use the following notation of HN(div):

(2.4) HN (div) := HN (div; Ω) = {v ∈H(div; Ω) : v(x) · n = 0 on ΓN}.

For φ ∈ H1
D(Ω) the seminorms |φ|1 = ‖∇φ‖ and |φ|1,ω = ‖ω1/2∇φ‖ are, in fact, norms

on H1
D(Ω), and we denote these by ‖φ‖1 and ‖φ‖1,ω.

Together with (2.3), the following weighted inner product in the space H(div)
plays a fundamental role in our analysis:

(2.5) Λα(u, v) = (α u, v) + (div u, div v), α(x) = K−1(x).

It defines the norm

(2.6) ‖v‖2Λα
= Λα(v, v) = ‖v‖20,α + ‖ div v‖2.

A weighted bilinear form of the type Λα,β(u, v) = α(u, v) + β(div u, div v) with
constants α > 0 and β > 0 can be preconditioned by geometric multigrid methods,
uniformly with respect to the parameters α and β, as shown by Arnold, Falk, and
Winther in [2]. The important difference between our bilinear form Λα and the form
considered in [2] is that in our scheme α is a highly heterogeneous function with high
contrast. This makes the proof of an inf-sup condition with the weighted H(div)-
norm more delicate, and the construction of a robust preconditioner a challenging
task; see Remark 2.1.

Note that for all ξ ∈ Rd, x ∈ Ω, and ‖K‖�2 = supξ∈Rd(Kξ · ξ)/(ξ · ξ) we have with
K := K(x)

(Kξ · ξ) ≥ (ξ · ξ) inf
θ∈Rd

(Kθ · θ)
(θ · θ) = (ξ · ξ) inf

θ∈Rd

(θ · θ)
(K−1θ · θ) =

(ξ · ξ)
‖K−1‖�2

.

Throughout the paper the following inequality is assumed:

(2.7) 1 ≤ min
x∈Ω
‖K(x)‖�2 , which implies (ξ · ξ) ≤ (K(x)ξ · ξ), ξ ∈ Rd.

As seen from the considerations above, such an assumption is fulfilled if we scale the
coefficient K(x) ← K(x)maxx∈Ω ‖K−1(x)‖�2 . This rescaling does not change the
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value of κ; however, it changes the right-hand side f(x)← f(x)maxx∈Ω ‖K−1(x)‖�2 ,
and in general the stability of the solution cannot be established uniformly with re-
spect to the contrast. Nevertheless, homogeneous equations (f(x) ≡ 0) represent an
important class of applications. Such a scaling can also be justified when the perme-
ability is homogeneous near the Dirichlet boundary. Another possible case is when
f(x) = 0 in areas with very high permeability. The numerical examples of Powell and
Silvester presented in [26, Tables 2.9 and 2.10] for K(x) = k(x)I, with k(x) a scalar
function and I the identity matrix in R2, clearly show this. Numerical experiments in
section 5 consider homogeneous equations which are relevant to numerical reservoir
simulations.

The case 0 < k(x) < ∞, which could be used to model flow models in perfo-
rated domains, appears to be more complicated and less studied. For such problems
more advanced techniques involving weighted L2-norms and the weighted Poincaré
inequality are needed; see Remark 2.1. Such an inequality can be established under
certain restrictions on the arrangement of the jumps and the permeability distribu-
tion; see, e.g., [22, 23, 27]. Even more difficult is the case of tensor permeability
0 < ‖K(x)||�2 <∞, which also includes models of flows in anisotropic highly hetero-
geneous media. These cases represent open problems with a wide range of applications
and are left for further consideration and future studies.

2.2. Weak formulations of the elliptic problem. To present the dual mixed
weak form we require the following notation: V ≡HN(div; Ω) and W ≡ L2(Ω).

We multiply the first equation by α(x) = K−1(x) and a test function v ∈ V ,
integrate over Ω, and perform integration by parts to obtain

(2.8) (α(x)u, v) − (p, div v) = 0.

Next, multiplying the second equation by a test function q ∈ W and integrating over
Ω gives

(2.9) (div u, q) = (f, q).

Then the weak form of problem (1.1) is as follows: find u ∈ V and p ∈ W such that

(2.10) A(u, p; v, q) = −(f, q) for all (v, q) ∈ V ×W,

where the bilinear form A(u, p; v, q) : (V , W )× (V , W )→ R is defined as

(2.11) A(u, p; v, q) := (αu, v)− (p, div v)− (div u, q).

2.3. Stability of the weak formulations. Consider the stability of the discrete
problem (2.10). From the Poincaré inequality we have that there exists a constant
CP > 0 such that

(2.12) ‖q‖2 ≤ CP ‖∇q‖2 for all q ∈ H1
D(Ω).

The constant CP depends only on the geometry of the domain Ω and the splitting of
∂Ω into ΓD and ΓN . Moreover, due to (2.7), for the coefficient K(x) we also have the
inequality

‖q‖2 ≤ CP ‖∇q‖2 ≤ CP ‖∇q‖20,K .

To show the stability of the weak formulation we need a continuity and an inf-sup
condition (see, e.g., [6, 9]) for the bilinear form A(u, p; v, q) on the spaces V and

L2(Ω) equipped with the weighted norm (Λα(v, v))
1
2 and the standard L2-norm ‖p‖,

respectively.
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Lemma 2.1. Let W = L2(Ω), V = HN(div), and ‖v‖Λα := (Λα(v, v))
1
2 . Assume

also that the permeability coefficient K(x) satisfies inequality (2.7). Then the following
inequalities hold:

(1) For all u, v ∈ V and for all p, q ∈ W ,

(2.13) A(u, p; v, q) ≤ (‖u‖2Λα
+ ‖p‖2) 1

2 (‖v‖2Λα
+ ‖q‖2) 1

2 .

(2) There is a constant α0 > 0 independent of α such that

(2.14) sup
v∈V , q∈W

A(u, p; v, q)

(‖v‖2Λα
+ ‖q‖2) 1

2

≥ α0(‖u‖2Λα
+ ‖p‖2) 1

2 .

Proof. The first inequality follows immediately by applying the Schwarz inequal-
ity to all three terms and keeping in mind that α is a positive function. Proving the
inf-sup condition (2.14) is equivalent to proving the following inequality (see [9]):

(2.15) inf
q∈W

sup
v∈V

(∇ · v, q)

‖v‖Λα‖q‖
≥ γ > 0 for all v ∈ V , for all q ∈W.

As is well known, if γ is independent of the contrast κ, then so is α0. For more details
on the relation between the constants γ and α0, we refer the reader to [34]; see also
Remark 2.1. Furthermore, due to assumption (2.7) we have that

‖v‖Λα ≤ ‖v‖H(div) so that inf
q∈W

sup
v∈V

(∇ · v, q)

‖v‖Λα‖q‖
≥ inf

q∈W
sup
v∈V

(∇ · v, q)

‖v‖H(div)‖q‖
≥ γ > 0.

To find a computable bound for the constant γ, we can use the standard construction
[6] for the case K(x) = 1 in Ω. For q ∈ W we take w = ∇ϕ ∈ V , where ϕ ∈ H1

D(Ω)
is the solution to the variational problem (∇ϕ,∇χ) = (q, χ) for all χ ∈ H1

D(Ω). Then
div w = −q in L2(Ω) by construction, and using the above Poincaré inequality we get
‖w‖ ≤ √CP ‖q‖ so that

sup
v∈V

(q, div v)

‖v‖H(div)
≥ (q, div w)

‖w‖H(div)
=

‖q‖2
(‖w‖2 + ‖ div w‖2) 1

2

≥ ‖q‖√
CP + 1

.

This shows (2.15) with γ = 1/
√

CP + 1, where CP is the constant in the Poincaré
inequality (2.12). Then using the results of [34, 20] and inequalities (2.13) and (2.15),
we deduce that the constant α0 in (2.14) is positive. A sharp lower bound for α0 can
be obtained using the best known results of [20, Theorem 1] to get α0 ≥ 1/(2 + CP ),
which completes the proof.

Remark 2.1. As mentioned above, the case of scalar permeability K(x), 0 <
K(x) < ∞, needs a different computational approach. First, one establishes a spe-
cial (weighted) Poincaré inequality (involving the weighted L2-norm) with a constant
CP > 0:
(2.16)

‖q‖20,K :=

∫

Ω

K(x)q2 dx ≤ CP ‖∇q‖20,K , where ‖∇q‖20,K =

∫

Ω

K(x)|∇q|2 dx.

This type of inequality plays a role in domain decomposition methods, multiscale
FEMs, and multigrid preconditioners, and has been studied in, e.g., [7, 10, 22, 23, 27].
Particularly relevant to our work is the study conducted in [22, 23, 27], where, under
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certain restrictions on the distribution of the permeability K(x), the constant CP in
(2.16) is shown to be independent of the contrast κ. Then using (2.16) one can prove
the following inf-sup condition:
(2.17)

inf
q∈W

sup
v∈V

(∇ · v, q)

(‖v‖20,α + ‖∇ · v‖20,α)1/2‖q‖0,K
≥ 1√

CP + 1
for all v ∈ V , q ∈ W.

However, this approach needs additional research for preconditioning the weighted
H(div)-norm (‖v‖20,α + ‖∇ · v‖20,α)1/2 and is left for future consideration.

3. FEM approximations.

3.1. FE partitioning and spaces. We assume that the domain Ω is connected
and is triangulated with d-dimensional simplexes or bricks. The triangulation is de-
noted by Th, with the simplexes forming Th assumed to be shape regular (the ratio
between the diameter of a simplex and the inscribed ball is bounded above). We
consider the FE approximation of problem (1.1) using the finite dimensional spaces
Vh ⊂ V and Wh ⊂W of piecewise polynomial functions.

It is well known that for the vector variable u we can use the H(div)-conforming
Raviart–Thomas space RT k or Brezzi–Douglas–Marini BDMk+1 FEs. However,
since the solution of the problem has low regularity, it is natural to use lowest-order
FE spaces. For the vector variable u we use the standard Raviart–Thomas RT 0 for
simplexes and rectangles/bricks. In the case of simplexes we can also apply Brezzi–
Douglas–Marini BDM1 FEs. Since W ≡ L2(Ω), for its FE counterpart we can use
piecewise constant functions over the partition Th. We show that the FEM is uni-
formly stable with respect to the contrast κ.

3.2. Stability of the mixed FEM. We take

Vh = {v ∈ V : v|T ∈ RT 0 for T ∈ Th},(3.1)

Wh = {q ∈ L2(Ω) : q|T ∈ P0; i.e., q is a piecewise constant function on Th}.(3.2)

The mixed FE approximation of problem (1.1) is as follows: find uh ∈ Vh and ph ∈ Wh

such that

(3.3) A(uh, ph; v, q) = −(f, q) for all (v, q) ∈ Vh ×Wh,

where the bilinear form A(uh, ph; v, q) is defined by (2.11). Our goal is to establish a
discrete variant of the inf-sup condition.

Lemma 3.1. Let Vh be the space defined by (3.1), and let Wh be the space defined
by (3.2). Assume also that the permeability coefficient K(x) satisfies inequality (2.7).
Then, independent of the contrast κ and the mesh size h, the following inequality holds
true:

(3.4) inf
qh∈Wh

sup
vh∈Vh

(div vh, qh)

‖vh‖Λα‖qh‖
≥ γ > 0.

Proof. First we note that the inf-sup condition for the case K(x) = 1 is well
known [6, 9]. Then, using the same argument as in the proof of Lemma 2.1, we show
the desired result. Note that the constant γ will depend on the constant CP of the
Poincaré inequality and the properties of the FE partitioning, but is not dependent
on the contrast κ.
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As a consequence of Lemma 3.1 and (2.13) we have the following result.

Theorem 3.1. Assume that the permeability coefficient K(x) satisfies inequal-
ity (2.7). Then the following bounds are valid for all u ∈ Vh and p ∈ Wh:

(3.5) α0(‖u‖2Λα
+ ‖p‖2) 1

2 ≤ sup
v∈Vh,q∈Wh

A(u, p; v, q)

(‖v‖2Λα
+ ‖q‖2) 1

2

≤ (‖u‖2Λα
+ ‖p‖2) 1

2 .

The constant α0 > 0 may depend on the shape regularity of the mesh. However, it is
independent of the contrast κ and the mesh size h. In fact, α0 ≥ 1/(1 + 1/γ2), where
γ is the constant in (3.4).

4. Preconditioning. The goal of this section is to describe a uniform, with
respect to mesh size h and coefficient variation (contrast) κ, preconditioner for the
algebraic problem resulting from the Galerkin method (3.3). We write (3.3) as an
operator equation in the space Xh = Vh ×Wh equipped with the norm ‖xh‖2Xh

=
‖uh‖2Λα

+ ‖ph‖2 for xh = (uh, ph). We have

(4.1) Ahxh = fh for fh = (0,−fh) ∈ Xh,

where for all yh = (vh, qh) ∈ Xh

〈Ahxh, yh〉 = A(uh, ph; vh, qh).

Here, 〈·, ·〉 denotes the duality pairing between Xh and X�
h. Clearly, the operator

Ah : Xh → X�
h is symmetric on Xh = Vh × Wh and indefinite. Moreover, from

(3.5) we have that ‖Ah‖L(Xh,X�
h) ≤ c0 and ‖A−1

h ‖L(X�
h,Xh) ≤ c1 = 1

α0
; i.e., Ah is a

uniform isomorphism. By uniform isomorphism, here and in the following, we mean
an operator which is bounded and has a bounded inverse, with the bounds independent
of the mesh size and the coefficient variation.

Following the general framework on constructing preconditioners for discretized
systems of PDEs developed in [21], as a preconditioner we may choose any SPD
uniform isomorphism (in the sense defined above) Bh : Xh → X�

h. A standard choice
for Bh is an operator (a diagonal preconditioner) of the form

(4.2) Bh :=

[
Bh 0
0 Ih

]
,

where Ih is the Riesz isomorphism Ih : Wh �→ W ∗
h . The operator Bh : Vh → V ∗

h is
chosen so that

(4.3) 〈Bhuh, uh〉 � ‖uh‖2Λα
or, equivalently, 〈Bhxh, xh〉 � ‖xh‖2Xh

,

where xh = (uh, ph) ∈ Xh and “�” stands for a norm equivalence, uniform with
respect to h and κ. The theory in [21, section 2] shows that the norm equivalence (4.3)
guarantees a uniform bound on the condition number of the preconditioned system
‖B−1

h Ah‖L(X,X))‖(B−1
h Ah)−1‖L(X,X). Hence, a Krylov subspace method with Bh as

a preconditioner has a convergence rate independent of h or the contrast κ (see also
[25, 26, 30]).

Remark 4.1. We note that any successful development of a robust preconditioner
for the bilinear form Λα(·, ·) could also be used in the mixed-FE-least-squares ap-
proximation of the problem (1.1). In such approximation (see, e.g., [24]), one of the
principal minors of the resulting matrix also corresponds to the bilinear form Λα(·, ·).

In the rest of this section, we construct an operator Bh which, as shown later in
section 5, leads to a uniform preconditioner Bh for Ah.
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4.1. FE problem and matrix notation. The derivation and the justification
of the preconditioner are in the framework of algebraic multilevel/multigrid methods.
As a first step we rewrite the operator equation (4.1) in a matrix form. Instead of
the functions xh = (uh, ph) ∈ Vh ×Wh, we use vectors consisting of the degrees of
freedom determining xh through the nodal basis functions, namely,

x =

[
u
p

]
, where u ∈ R|Eh|, p ∈ R|Th|

are column vectors, |Eh| is the number of edges in Eh, excluding those on ΓN , and

|Th| is the number of rectangles of the partition Th. Then A, Bdiv, Ã, and R will
denote matrices being either square or rectangular. As a result of this convention,
(4.1) can be written in the matrix form (1.2). Our aim now is to derive and study
a preconditioner for algebraic systems of the form (1.2), which, due to the above
considerations, reduces to the efficient preconditioning of the system

(4.4) Au = b, u,b ∈ RN , N := |Eh|.

4.2. Robust preconditioning of the weighted H(div)-norm. In [14] ad-
ditive Schur complement approximation (ASCA) has been introduced as a tool for
constructing robust coarse spaces for high-frequency, high-contrast problems. Re-
cently, this technique has also been utilized as a building block for a new class of
multigrid methods in which a coarse-grid correction, as used in standard multigrid
algorithms, is replaced by an auxiliary space correction [16]. Viewed as a block factor-
ization algorithm, the major computations in this so-called auxiliary space multigrid
(ASMG) method can be performed in parallel since they consist of a two-level block
factorization of local FE stiffness matrices associated with a partitioning of the domain
into overlapping or nonoverlapping subdomains. The analysis of the two-grid ASMG
preconditioner relies on the fictitious space lemma; see [16]. However, the underly-
ing construction is purely algebraic and thus essentially differs from the methodology
in [12].

In this section we recall the basic construction of the ASMG method and specify
modifications that allow its successful application to the linear systems arising from
H(div)-conforming discretizations of the subproblem involving the weighted H(div)
bilinear form (2.5). For details on ASCA we refer the reader to [14, 16].

4.2.1. Auxiliary space multigrid method. Let k = 0, 1, . . . , −1 be the index
of mesh coarsening where k = 0 corresponds to the finest mesh; i.e., A(0) := Ah = A
denotes the fine-grid matrix. Consider a sequence of auxiliary space matrices Ã(k) in
the 2× 2 block factorized form

(Ã(k))−1 = (L̃(k))T D̃(k)L̃(k),

L̃(k) =

[
I

−Ã
(k)
21 (Ã

(k)
11 )−1 I

]
, D̃(k) =

[
Ã

(k)
11

Q(k)

]−1

,

where the Schur complement Q(k) = Ã
(k)
22 −Ã

(k)
21 (Ã

(k)
11 )−1Ã

(k)
12 of Ã(k) defines the ASCA

of the Schur complement S(k) = A
(k)
22 − A

(k)
21 (A

(k)
11 )−1A

(k)
12 of A(k); A(k) ∈ RN(k)×N(k)

and Ã(k) ∈ RÑ(k)×Ñ(k)

are related via

(4.5) A(k) = R(k)Ã(k)(R(k))T ;
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and Q(k) defines the next coarser level matrix, i.e.,

(4.6) A(k+1) := Q(k);

for details, see [16, 15].
Now define the (nonlinear) AMLI-cycle ASMG preconditioner C(k) at level k by

(4.7) C(k)−1
:= Π(k)(L̃(k))T

[
Ã

(k)
11

C
(k+1)
ν

]−1

L̃(k)Π(k)T
,

where [C
(k+1)
ν ]−1 is an approximation of the inverse of the coarse-level matrix (4.6)

for k + 1 <  and [C
(�)
ν ]−1 := A(�)−1

at the coarsest level . The operator Π(k) :

RÑ(k) → RN(k)

is a surjective map. Its construction is typically related to a proper

approximation D̃(k) of Ã(k), e.g.,

(4.8) Π(k) = ΠD̃(k) := (R(k)D̃(k)(R(k))T )−1R(k)D̃(k),

where in what follows D̃(k) will be of the particular form

(4.9) D̃(k) =

[
D̃

(k)
11 0
0 I(k)

]
,

and D̃
(k)
11 = Ã

(k)
11 or D̃

(k)
11 = diag(Ã

(k)
11 ), for example.

In the linear AMLI cycle for k <  − 1 one employs a matrix polynomial of the
form

(4.10)
[
C(k+1)

ν

]−1

:= (I − p(k)(C(k+1)−1
A(k+1)))A(k+1)−1

.

If the polynomial p(k)(t) satisfies the condition p(k)(0) = 1, we have the equivalent
expression

(4.11)
[
C(k+1)

ν

]−1

= q(k)(C(k+1)−1
A(k+1))C(k+1)−1

,

where q(k)(t) = (1− p(k)(t))/t. Then the application of [C
(k+1)
ν ]−1 requires the action

of the inverse of C(k+1) only. A classic choice for p(k)(t) is a scaled and shifted
Chebyshev polynomial of degree ν. Other polynomials are possible, e.g., choosing
q(k)(t) to be the polynomial of best approximation to 1/t in a uniform norm; see [19].

If we incorporate pre- and postsmoothing, the AMLI-cycle ASMG preconditioner
B(k) at level k is given by
(4.12)

B(k)−1
:= M

(k)−1

+ (I −M (k)−T
A(k))Π(k)(L̃(k))T D

(k)−1

L̃(k)Π(k)T
(I −A(k)M (k)−1

),

where

D
(k)

:=

[
Ã

(k)
11

B
(k+1)
ν

]
and

[
B(k+1)

ν

]−1

= q(k)(B(k+1)−1
A(k+1))B(k+1)−1

.

For the nonlinear AMLI-cycle ASMG method, [B
(k+1)
ν ]−1 ≡ B

(k+1)
ν [·] (or [C

(k+1)
ν ]−1

≡ C
(k+1)
ν [·]) is a nonlinear mapping whose action on a vector d is realized by ν

iterations using a preconditioned Krylov subspace method. In the following the
generalized conjugate gradient method serves this purpose, and hence we denote

B
(k+1)
ν [·] ≡ B

(k+1)
GCG,ν [·] (and C

(k+1)
ν [·] ≡ C

(k+1)
GCG,ν [·]). One can find more details in

the longer version of this paper, the arXiv preprint [15].
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4.2.2. Nonlinear ASMG algorithm for the weighted H(div) bilinear
form. In the remainder of this section we present the nonlinear ASMG algorithm for
preconditioning the SPD matrices arising from discretization of the weighted bilinear
form (2.5), and comment on some details of their implementation when specifically
using lowest-order Raviart–Thomas elements on rectangles.

Consider a partitioning of the set D of degrees of freedom (DOF). We illustrate
the construction for the case of two grids, a coarse grid TH and a fine grid Th, where
H = 2h. Then the corresponding sets of edges are EH and Eh with the following
relations being obvious: 4|TH | = |Th| and 2|EH |+4|TH | = |Eh|. Since for lowest-order
Raviart–Thomas FEs it is not immediately clear how to partition D, we perform a
preprocessing step which consists of a compatible two-level basis transformation (see
also [14]). The global matrix A is transformed according to

(4.13) Â = JT AJ, Â, J, A ∈ R|Eh|×|Eh|,

where the transformation matrix J is the product of a permutation matrix P and
another transformation matrix J±, i.e.,

(4.14) J = PJ±, P, J± ∈ R|Eh|×|Eh|.

The permutation P allows us to provide a two-level numbering of the DOF that
splits them into two groups, the first consisting of DOF associated with fine-grid edges
not part of any coarse-grid edge (interior DOF), and the second keeping all remaining
DOF ordered such that any two that are on the same coarse edge have consecutive
numbers. The transformation matrix J± in (4.14) is of the form

J± =

[
I

J22

]
, where I ∈ R(4|TH |)×(4|TH |)

and

J22 =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

. . .
. . .

−1 1
1 1

1 1
. . .

. . .

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with J22 ∈ R(2|EH |)×(2|EH |).

The analogous transformation is performed at a local level on each subdomain
Ωi; i.e.,

(4.15) Âi = JT
i AiJi,

where again Ji = PiJ±,i, with Pi the permutation as explained above but performed
on the DOF in the subdomain Ωi. J±,i has its usual meaning but is restricted to the
subdomain Ωi.

The introduced transformation matrix J defines a splitting of the DOF into fine
(FDOF) and coarse (CDOF), where for every coarse edge one CDOF is generated by
a half sum, and one FDOF by a half difference. The set of FDOF is then comple-
mented by the DOF corresponding to all fine edges that do not form coarse edges.
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Note that this transformation has been successfully used to identify CDOF in the con-
text of nonconforming FEMs for scalar elliptic problems in [11, 18], and the ASMG
method described in this section is straightforwardly applicable to the arising discrete
problems. When constructed recursively on all coarse levels, the resulting two-level
transformation matrices, referring to levels k = 0, 1, . . . , − 1, are denoted by J (k).

Finally, the nonlinear ASMG preconditioner employs the following two-level ma-
trices:

Â(k) = J (k)T
A(k)J (k)

for all k < . Its application to a vector d̂ for the two-level basis at level k can be
formulated as follows.

Algorithm 4.1. Action of preconditioner (4.7) on a vector d̂ = J (k)T
d at level

k: Ĉ(k)[d̂].

Auxiliary space correction:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q̃1

q̃2

)
:= q̃ = ΠT

D̃(k)
d̂,

p̃1 = (Ã
(k)
11 )−1q̃1,

p̃2 = J (k+1)C
(k+1)
GCG,ν [J (k+1)T

(q̃2 − Ã
(k)
21 p̃1)],

q̃1 = p̃1 − (Ã
(k)
11 )−1Ã

(k)
12 p̃2,

q̃2 = p̃2,

Ĉ(k)[d̂] := ΠD̃(k) q̃.

By incorporating pre- and postsmoothing, the realization of the preconditioner
(4.12) takes the following form.

Algorithm 4.2. Action of preconditioner (4.12) on a vector d̂ at level k: B̂(k)[d̂].

Presmoothing: û = (M̂ (k))−1d̂,

Auxiliary space correction: v̂ = û + Ĉ(k)[d̂− Â(k)û],

Postsmoothing: B̂(k)[d̂] := v̂ + (M̂ (k))−T (d̂− Â(k)v̂).

4.3. On the complexity of the ASMG preconditioner. We now address
the important topic of estimating the computational work required for performing the
action of the ASMG preconditioner. Clearly, from the algorithm descriptions given
earlier, the number of flops required to evaluate such an action is proportional to the
operator complexity of the preconditioner, defined as the total number of nonzeros
in the matrices on all levels. The most general algebraic multilevel preconditioners
are usually constructed using the combinatorial graph structure of the underlying
matrices (on the finest and coarser levels). Estimating the operator complexities in
such cases is not only difficult, but in most cases impossible due to the fact that such
estimates should hold for the set of all possible graphs. Reliable estimates are usually
done for algorithms that construct coarse levels using at least some of the geometric
information from the underlying problem. This is the case we consider here, and we
also refer the reader to [5, 32] for more insight into how geometric information can be
used to bound the operator complexity of a multilevel preconditioner.

Given a matrix A ∈ RN×N , we characterize the nonzero structure of the ASMG
coarse level matrix Q. To construct Q, recall that we first need to split the set of the
DOF as a union of subsets, {1, . . . , N} = ∪n

i=1ωi. We assume that ωi = {Fi, Ci}, where
Fi is a set of FDOF, and Ci is a set of CDOF, with Fi ∩ Ci = ∅. The total number of
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PRECONDITIONING OF WEIGHTED H(div)-NORM A889

CDOF is NC =
∣∣∪n

j=1Ci
∣∣. Since our considerations are permutation invariant, without

loss of generality, we assume that globally we have numbered first the CDOF, and
thus we have Ci ⊂ {1, . . . , NC}.

We also set Ni = |ωi| and ni = |Ci|. We denote by ek the kth Euclidean basis
vector in RN ; when we consider the canonical basis in Rm, m �= N , we use the notation
ek(m) for the kth basis vector. With each ωi we associate a matrix Ri ∈ RNi×N , and,
for ωi = {j1, . . . , jNi}, we set RT

i = [ej1 , . . . , ejNi
]. Next, we consider a fine-grid

matrix A given by the identity

A =

n∑

i=1

RT
i AiRi =

n∑

i=1

[
RT

i,F , RT
i,C

] [ Ai,F Ai,FC
Ai,CF Ai,C

] [
Ri,F
Ri,C

]
,

where we used a block form of the matrices corresponding to the splitting of ωi into
F -ine level and C-oarse level degrees of freedom. The Schur complements Si used in
the definition of the coarse-grid matrix Q are defined as Si = Ai,C −Ai,CFA−1

i,FAi,FC .

Recall that the coarse-grid matrix Q is then defined by Q =
∑n

i=1 R̃T
i,CSiR̃i,C , and we

have Q ∈ RNC×NC . If we now use our assumption that the CDOF are numbered first,
then R̃i,C ∈ Rni×NC is formed by the first NC columns of Ri,C ∈ Rni×NC . Next, we
introduce the vectors

1i = (1, . . . , 1︸ ︷︷ ︸
ni

)T and χi =
∑

j∈Ci

ej(NC).

For a fixed i, the vector χi ∈ RN is the indicator vector of the set Ci as a subset
of {1, . . . , NC}. Its components are equal to 1 for indices in Ci, and equal to zero
otherwise. We note that 1i1

T
i is the ni × ni matrix of all ones, and we encourage the

reader to check the identity χi = R̃T
i,C1i.

To describe the nonzero structure of Q, we introduce the set Bm of Boolean
(m × m) matrices whose entries are from the set {0, 1}. We introduce a mapping
nz : Rm×m �→ Bm such that [nz(A)]ij = 0 if and only if Aij = 0, and [nz(A)]ij = 1
otherwise. We say that X � Y if [nz(Y )−nz(X)] is a matrix with nonnegative entries.
This is a formal way to state that the nonzero structure of Y contains the nonzero
structure of X or, equivalently, that every zero in Y is also a zero in X . Clearly,
Si � 1i1

T
i , and, as a consequence, we have the following relation characterizing the

sparsity of Q:

(4.16) Q �
n∑

i=1

n∑

i=1

R̃T
i,C1i1

T
i R̃i,C =

n∑

i=1

χiχ
T
i =: X.

Note that from the right-hand side of (4.16) we can conclude that Qkm may be nonzero
only in the case when there exists i such that k ∈ Ci and m ∈ Ci. Using (4.16) it is
easy to compute a bound on the number of nonzeros nz,j for fixed column j in Q. We
have

nz,j ≤ ‖Xej(NC)‖�1 =
∑

i:j∈Ci

|Ci|.

As is immediately seen, the number of nonzeros per column in Q is bounded by a
constant independent of N if the following two conditions are satisfied: (i) the number
of CDOF in each Ci is bounded, and (ii) every CDOF lies in a bounded number of
subsets Ci.
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As a simple, but instructive, example of how conditions (i) and (ii) can be sat-
isfied, let us consider a PDE discretized by an FEM on a quasi-uniform grid with
characteristic mesh size h in two dimensions. The considerations are independent of
the PDE or the order of the FE spaces (but the constants hidden in “�” below may
depend on the FE spaces and the order of polynomials). To define the sets ωi on such
a grid, we proceed as follows: (1) place a regular (square) auxiliary grid of size γh,
γ ≥ 2, that contains Ω, (2) set n to be the number of vertices on the auxiliary grid
lying in Ω, and (3) choose ωi to be the set of DOF lying in the support of the bilinear
basis function corresponding to the ith vertex. Then we have that |Ci| < Ni � 4γ
and every CDOF lies in at most four such subdomains. The constant hidden in “�”
is a bound on the number of DOF lying in a square of size 2h. The fact that this
bound depends only on the polynomial order and type of FE spaces follows from the
assumption that the mesh is quasi-uniform. For efficient and more sophisticated tech-
niques using regular, but adaptively refined, auxiliary grids in coarsening algorithms
for unstructured problems, we refer the reader to [5, 32]. Such techniques may be
directly applied to yield optimal operator complexities for the ASMG preconditioner
in the general case of shape-regular grids, although the details are beyond the scope
of our consideration here.

5. Numerical experiments.

5.1. Description of the parameters and the numerical test examples.
Subject to numerical testing are three representative cases characterized by a highly
varying coefficient α(x) = K−1(x):

(a) A binary distribution of the coefficient described by islands on which α = 1.0
against a background where α = 10−q (see Figure 1);

(b) Inclusions with α = 1.0 and a background with a coefficient α = αT =
10−qrand that is constant on each element τ ∈ Th, where the random integer
exponent qrand ∈ {0, 1, 2, . . . , q} is uniformly distributed (see Figure 2);

(c) Three 2D slices of the SPE10 benchmark problem, where the contrast κ is
107 for slices 44 and 74, and 106 for slice 54 (see Figure 3).

Test problems (a) and (b) are similar to those in other works, e.g., [8, 16, 33]. Ex-
ample (c) consists of 2D slices of three-dimensional data of the SPE10 benchmark;
see [28].

(a) 32 × 32 mesh (b) 128 × 128 mesh (c) 512 × 512 mesh

Fig. 1. Binary distribution of the permeability K(x) corresponding to test case (a).

Numerical experiments were performed over a uniform mesh consisting of N×N
square elements in Ω = (0, 1) × (0, 1), where N = 4, 8, . . . , 512, i.e., up to 525312
velocity DOF and 262144 pressure DOF. We have used a direct method to solve
the problems on the coarsest grid. The iterative process has been initialized with a
random vector. Its convergence has been tested for linear systems with the right-hand
side zero except in the last example, where we have solved the mixed system (1.1) for
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(a) 32 × 32 mesh (b) 128 × 128 mesh (c) 512 × 512 mesh

Fig. 2. Random distribution of α = K−1(x) corresponding to test case (b).

(a) Slice 44 (b) Slice 54 (c) Slice 74

Fig. 3. Distributions of the permeability K(x) along planes x3 = 44, 54, 74 from the benchmark
SPE10 on a 128 × 128 mesh.

slice 44 of the SPE10 problem with the right-hand side

(5.1) f =

⎧
⎨
⎩

c for (x, y) ∈ Ω+ = [0.2, 0.3]×[0.7, 0.8],
−c for (x, y) ∈ Ω− = [0.7, 0.8]×[0.2, 0.3],

0 for (x, y) ∈ Ω \ (Ω+ ∪ Ω−).

We have used overlapping coverings of the domain where the subdomains are
composed of 8 × 8 elements and overlap with half their width or height. When
presenting results, we use the following notation:

•  denotes the number of levels.
• q = log κ/log 10 is the logarithm of the contrast κ.
• nASMG is the number of ASMG iterations.
• m ≥ 0 is the number of point Gauss–Seidel pre- and postsmoothing steps.
• ρr is the average residual reduction factor defined by

(5.2) ρr = (‖rnASMG‖/‖r0‖)1/nASMG ,

where unASMG is the first iterate (approximate solution of (4.4)) for which
the initial residual has decreased by a factor of at least 108.

• ρe := ‖I − C(0)−1
A(0)‖A(0) is the norm of the error propagation matrix of

the linear V-cycle preconditioner (4.7), which is obtained by choosing the
polynomial pν(t) = 1− t in (4.10).

The matrix D̃ is as defined in (4.9), where D̃11 = Ã11. This choice of D̃ requires an
additional preconditioner for the iterative solution of linear systems with the matrix
D = RD̃RT a part of the efficient application of the operator ΠD̃. Systems with D
are solved using the preconditioned conjugate gradient (PCG) method. The stopping
criterion for this inner iterative process is a residual reduction by a factor 106; the
number of PCG iterations required to reach it—where reported—is denoted by ni.
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The preconditioner BILUE for D is constructed using incomplete factorization with
exact local factorization (ILUE). The definition of BILUE is as follows:

BILUE := LU, U :=

n∑

i=1

RT
i UiRi, L := UT diag(U)−1,

where Di = LiUi, D =
∑n

i=1 RT
i DiRi, diag(Li) = I; for details see [17]. Note that as

Di are the local contributions to D related to the subdomains Ωi, i = 1, . . . , n, they
are all nonsingular.

The following two sections are devoted to the presentation of numerical results.
Experiments fall into two categories.

The first category, presented in section 5.2, addresses the evaluation of the per-
formance of the ASMG method on linear systems arising from discretization of the
weighted H(div) bilinear form (2.5). All three test cases, (a), (b), and (c), are con-
sidered, testing V- and W-cycle methods with and without smoothing. Additionally,
we evaluate as a robustness indicator the quantity

(5.3) cΠ := ‖πD̃‖2Ã := ‖RT ΠD̃‖2Ã,

which appears in the condition number estimate κ(C−1A) ≤ cΠ for the two-level

preconditioner C which is obtained from C(0) defined in (4.7) by replacing C
(1)
ν with

Q(0); see [16].
The second category of experiments, discussed in section 5.3, addresses the solu-

tion of the indefinite linear system (1.2) arising from problem (3.3) by a preconditioned
MinRes method. The main aims are, on the one hand, to confirm the robustness of
the block-diagonal preconditioner (4.2) with respect to arbitrary multiscale coefficient
variations, and, on the other hand, to demonstrate its numerical scalability. Further-
more, we include a test problem with a nonzero right-hand side.

5.2. Numerical tests for solving the system (4.4). An ASMG precondi-
tioner was tested for solving the system (4.4) with a matrix corresponding to dis-
cretization of the form Λα(u, v).

Example 5.1. First we compute ‖πD̃‖2Ã for up to seven refinement levels of the

mesh, and for increasing permeability contrast from 1 to 106 in the configurations de-
scribed in cases (a) and (b). This quantity provides an upper bound for the condition
number κ(C−1A). The results in Table 1 clearly demonstrate that κ(C−1A) is robust
with respect to the variation of the contrast.

Table 1
Value of ‖π

D̃
‖2

Ã
(defined by (5.3)) for the bilinear form (2.5).

Case (a) Case (b)

κ = 10q � = 3 � = 4 � = 5 � = 6 � = 7 � = 3 � = 4 � = 5 � = 6 � = 7

q = 0 1.122 1.137 1.148 1.150 1.149 1.122 1.137 1.148 1.150 1.149
q = 1 1.148 1.169 1.149 1.152 1.138 1.115 1.126 1.169 1.167 1.123
q = 2 1.286 1.338 1.360 1.287 1.126 1.126 1.208 1.119 1.146 1.112
q = 3 1.336 1.389 1.418 1.326 1.132 1.014 1.261 1.338 1.334 1.110
q = 4 1.343 1.396 1.426 1.334 1.133 1.260 1.295 1.371 1.434 1.110
q = 5 1.343 1.397 1.426 1.333 1.369 1.268 1.329 1.394 1.493 1.145
q = 6 1.343 1.397 1.426 1.333 1.369 1.255 1.374 1.412 1.139 1.113
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Example 5.2. Next we are interested in the convergence factor in the A-norm of

the linear V-cycle method; that is, we evaluate the quantity ρe := ‖I−C(0)−1
A(0)‖A(0) .

Moreover, we compare ρe to the corresponding value of the average residual reduction
factor ρr defined according to (5.2). We also report the number of iterations ite that
reduce the initial error in the A-norm by a factor 108, and the number of iterations itr
that reduce the Euclidean norm of the initial residual by the same factor. The problem
configuration is test case (c) for a zero right-hand side. The results for Example 5.2
are summarized in Table 2. Although the average residual reduction factor ρr is
much smaller than ρe, the error reduction in the A-norm is also surprisingly good,
especially in view of the linear V-cycle performing without any additional smoothing,
i.e., implementing Algorithm 4.1.

Table 2
Example 5.2: Case (c), slice 44 of the SPE10 benchmark.

Linear V-cycle: Bilinear form (2.5)
ρe ite ρr itr

� = 4 0.105 7 0.031 6
� = 5 0.289 9 0.095 8
� = 6 0.494 12 0.168 11
� = 7 0.642 14 0.215 12
� = 8 0.729 17 0.262 14

Example 5.3. Now we test the nonlinear V-cycle and the effect of additional
smoothing. Again the problem configuration is test case (c) for a zero right-hand
side. We report the number of nonlinear AMLI-cycle ASMG iterations with Algo-
rithm 4.1, denoted by nASMG for a residual reduction by eight orders of magnitude
along with ρr. Comparing the results for Example 5.3, listed in Table 3, with those
in Table 2 shows that the nonlinear V-cycle typically also reduces the residual norm
faster than the linear V-cycle—for the reduction of the A-norm of the error this is
a known fact—and the additional incorporation of a point Gauss–Seidel relaxation
further accelerates the convergence.

Table 3
Example 5.3: Case (c), slice 44 of the SPE10 benchmark.

Nonlinear V-cycle: Bilinear form (2.5)
m = 0 m = 1 m = 2

nASMG ρr nASMG ρr nASMG ρr

� = 4 6 0.032 5 0.025 6 0.027
� = 5 8 0.093 7 0.062 6 0.045
� = 6 11 0.157 8 0.091 8 0.083
� = 7 12 0.202 9 0.123 8 0.094
� = 8 14 0.243 11 0.172 10 0.154

Example 5.4. The next example tests the dependency of the convergence rate on
the contrast. The configuration is test case (a) containing a zero right-hand side, and
the number of smoothing steps is m = 2. Results in Table 4 show a slight increase in
ρr with increasing contrast.

Example 5.5. In the next set of numerical experiments we consider the same dis-
tribution of inclusions of low permeability as before but this time against a background
of a randomly distributed piecewise constant permeability coefficient as shown in Fig-
ure 2. The results, presented in Tables 5–7, are even better than those obtained for
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Table 4
Example 5.4: Case (a) with K(x) = 10q and two smoothing steps (m = 2).

ASMG V-cycle: Bilinear form (2.5), Algorithm 4.1
� = 3 � = 4 � = 5 � = 6 � = 7

nASMG ρr nASMG ρr nASMG ρr nASMG ρr nASMG ρr

q = 0 4 0.005 5 0.024 6 0.043 8 0.083 8 0.093
q = 1 3 0.002 5 0.022 7 0.058 8 0.084 9 0.121
q = 2 3 0.002 5 0.019 7 0.068 8 0.091 9 0.121
q = 3 3 0.002 5 0.018 7 0.070 8 0.095 9 0.125
q = 4 3 0.002 5 0.017 7 0.069 8 0.098 10 0.142
q = 5 3 0.002 5 0.017 8 0.082 9 0.118 10 0.145
q = 6 4 0.005 4 0.010 8 0.092 9 0.125 11 0.181

Table 5
Example 5.5: Case (b), no additional smoothing (m = 0).

ASMG V-cycle: Bilinear form (2.5), Algorithm 4.1
� = 3 � = 4 � = 5 � = 6 � = 7

nASMG ρr nASMG ρr nASMG ρr nASMG ρr nASMG ρr

q = 0 4 0.007 6 0.027 9 0.102 10 0.156 12 0.210
q = 1 4 0.006 6 0.035 9 0.103 11 0.171 13 0.224
q = 2 4 0.005 6 0.032 9 0.102 11 0.159 13 0.222
q = 3 4 0.006 6 0.042 9 0.110 11 0.174 13 0.229
q = 4 4 0.006 7 0.043 9 0.127 11 0.183 13 0.233
q = 5 4 0.006 7 0.049 10 0.138 12 0.195 13 0.239
q = 6 4 0.006 7 0.056 10 0.149 12 0.207 14 0.252

Table 6
Example 5.5: Case (b) with two smoothing steps (m = 2).

ASMG V-cycle: Bilinear form (2.5), Algorithm 4.1
� = 3 � = 4 � = 5 � = 6 � = 7

nASMG ρr nASMG ρr nASMG ρr nASMG ρr nASMG ρr

q = 0 4 0.005 5 0.024 6 0.046 8 0.083 8 0.091
q = 1 4 0.005 6 0.033 7 0.060 8 0.091 9 0.124
q = 2 3 0.002 5 0.023 6 0.045 7 0.069 9 0.121
q = 3 3 0.002 5 0.021 6 0.043 7 0.071 8 0.100
q = 4 4 0.005 5 0.023 6 0.044 8 0.089 9 0.122
q = 5 4 0.005 5 0.024 6 0.045 8 0.090 9 0.125
q = 6 4 0.005 6 0.034 6 0.045 8 0.091 10 0.142

Table 7
Example 5.5: Case (b) with one smoothing step (m = 1).

ASMG W-cycle: Bilinear form (2.5), Algorithm 4.1
� = 3 � = 4 � = 5 � = 6 � = 7

nASMG ρr nASMG ρr nASMG ρr nASMG ρr nASMG ρr

q = 0 4 0.005 4 0.007 4 0.006 4 0.005 4 0.005
q = 1 4 0.006 4 0.007 4 0.007 4 0.006 4 0.005
q = 2 4 0.004 4 0.009 5 0.016 4 0.007 4 0.006
q = 3 4 0.005 5 0.015 5 0.015 4 0.009 4 0.006
q = 4 4 0.005 5 0.016 5 0.016 4 0.009 4 0.008
q = 5 4 0.005 5 0.018 5 0.015 4 0.009 4 0.008
q = 6 4 0.005 5 0.019 5 0.015 4 0.008 4 0.007

the binary distribution in the sense that both the V - and W -cycles are robust with
respect to the contrast.

Example 5.6. The last experimental configuration refers to test case (c). As
for Example 5.2, we examine the performance of the preconditioner for the bilin-
ear form (2.5). We compare the ASMG preconditioners for three different coefficient
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distributions, slices 44, 54, and 74 of the SPE10 benchmark problem. In this example
the finest mesh is always composed of 256 × 256 cells, and changing the number of
levels  refers to a different size of the coarse-grid problem (for the coarsest grid).
Tables 8–10 report the number of outer iterations nASMG and the maximum number
of inner iterations ni needed to reduce the residual with the matrix RD̃RT by a factor
of 106.

Table 8
Example 5.6: Case (c), slice 44 of the SPE10 benchmark.

ASMG V-cycle and W-cycle: Bilinear form (2.5)
V-cycle W-cycle

m = 0 m = 1 m = 0 m = 1
nASMG ρr ni nASMG ρr ni nASMG ρr ni nASMG ρr ni

� = 3 8 0.080 4 7 0.064 5 5 0.019 6 5 0.014 5
� = 4 10 0.157 6 9 0.122 6 5 0.019 6 5 0.014 5
� = 5 12 0.209 6 10 0.154 6 5 0.019 6 5 0.014 5
� = 6 13 0.239 6 11 0.179 6 5 0.019 6 5 0.014 5
� = 7 13 0.239 6 11 0.179 6 5 0.019 6 5 0.014 5

Table 9
Example 5.6: Case (c), slice 54 of the SPE10 benchmark.

ASMG V-cycle and W-cycle: Bilinear form (2.5)
V-cycle W-cycle

m = 0 m = 1 m = 0 m = 1
nASMG ρr ni nASMG ρr ni nASMG ρr ni nASMG ρr ni

� = 3 7 0.070 4 7 0.059 4 5 0.016 4 5 0.013 4
� = 4 10 0.156 5 9 0.122 6 5 0.017 6 5 0.013 5
� = 5 13 0.236 5 11 0.173 6 5 0.018 6 5 0.013 6
� = 6 14 0.253 5 11 0.183 6 5 0.018 6 5 0.013 6
� = 7 14 0.253 6 11 0.183 6 5 0.018 6 5 0.013 6

Table 10
Example 5.6: Case (c), slice 74 of the SPE10 benchmark.

ASMG V-cycle and W-cycle: Bilinear form (2.5)
V-cycle W-cycle

m = 0 m = 1 m = 0 m = 1
nASMG ρr ni nASMG ρr ni nASMG ρr ni nASMG ρr ni

� = 3 8 0.090 4 7 0.070 4 5 0.019 4 5 0.014 4
� = 4 11 0.178 5 10 0.145 5 5 0.020 5 5 0.015 5
� = 5 13 0.229 5 11 0.166 6 5 0.020 6 5 0.015 6
� = 6 13 0.242 6 11 0.180 6 5 0.020 6 5 0.015 6
� = 7 13 0.242 6 11 0.180 6 5 0.020 6 5 0.015 6

5.3. Testing of block-diagonal preconditioner for system (1.2) within
MinRes iteration. Now we present a number of numerical experiments for solving
the mixed FE system (1.2) with a preconditioned MinRes method. We consider two
different examples: (1) Example 5.7, in which the performance of the block-diagonal
preconditioner and its dependence on the accuracy of the inner solves with a W-cycle
ASMG preconditioner is evaluated, and (2) Example 5.8, testing the scalability of the
MinRes iteration, again using a W-cycle ASMG preconditioner with one smoothing
step for the inner iterations.

Example 5.7. Here we apply the MinRes iteration to solve (1.2) for test case (c).
The hierarchy of meshes is the same as in Example 5.3. An ASMG W-cycle based
on Algorithm 4.1 with one smoothing step has been used as a preconditioner on the
RT 0 space. Table 11 shows the number of MinRes iterations denoted by nMinRes, the
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Table 11
Example 5.7: Case (c), slice 44 of the SPE10 benchmark. The hierarchy of meshes is the same

as in Example 5.6.

MinRes iteration: Saddle point system (1.2)
� = 106 � = 108 � = 1010

nMinRes nASMG nMinRes nASMG nMinRes nASMG

� = 3 24 4 17 6 15 8
� = 4 15 5 13 6 13 8
� = 5 21 5 17 6 15 8
� = 6 22 5 17 6 15 8
� = 7 22 5 17 6 15 8

maximum number of ASMG iterations nASMG needed to achieve an ASMG residual
reduction by �.

Example 5.8. Finally, the linear system (1.2) has been solved for test case (c)
and the mesh hierarchy of Example 5.1. The right-hand side of (1.1) has been cho-
sen according to (5.1). An ASMG W-cycle with one smoothing step has been used
as a preconditioner on the RT 0 space for a residual reduction by a factor 108. Ta-
ble 12 shows the number of MinRes iterations nMinRes, the maximum number of
inner ASMG iterations nASMG per outer MinRes iteration, and the number of DOF.
Note that as long as the product nMinResnASMG is constant, the total number of
arithmetic operations required to achieve any prescribed accuracy is proportional to
the number of DOF.

Table 12
Example 5.8: Case (c), slice 44 of the SPE10 benchmark.

MinRes iteration: Saddle point system (1.2)
zero r.h.s. nonzero r.h.s.

DOF nMinRes nASMG nMinRes nASMG

� = 4 3136 13 5 13 5
� = 5 12416 13 6 14 6
� = 6 49408 15 6 17 6
� = 7 197120 17 6 17 6
� = 8 787456 17 6 18 6

5.4. Comments regarding the numerical experiments and some general
conclusions. The presented numerical results clearly demonstrate the efficiency of
the proposed algebraic multilevel iteration (AMLI)-cycle auxiliary space multigrid
(ASMG) preconditioner for problems with highly varying coefficients as they typically
arise in the mathematical modelling of physical processes in high-contrast and high-
frequency media.

During the first tests, we evaluated the quantity cΠ = ‖πD̃‖2Ã, which provides an

upper bound for the condition number κ(C−1A). Then the convergence factor in the
A-norm of the linear V-cycle method was numerically studied. The results reported
above show robustness with respect to a highly varying coefficient on multiple length
scales. They also confirm that the nonlinear V-cycle reduces the residual norm faster
than the linear V-cycle.

The next group of tests examines the convergence behavior of the nonlinear ASMG
method for the weighted bilinear form (2.5). This is a key point in the presented study.
Cases (a) and (b) are designed to represent a typical multiscale geometry with islands
and channels. Although case (b), a background with a random coefficient, appears to
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be more complicated, the impact of the multiscale heterogeneity seems to be stronger
in the binary case (a), where the number of iterations is slightly larger. However,
in both cases we observe a uniformly converging ASMG V-cycle with m = 2, and
a W-cycle (ν = 2) with m = 1. Case (c) (SPE10) is a benchmark problem in the
petroleum engineering community. Here we observe robust and uniform convergence
with respect to the number of levels , or, equivalently, mesh size h. Note that
such uniform convergence is recorded for the ASMG V-cycle even without smoothing
iterations (i.e., m = 0).

The results in Tables 11 and 12 confirm the expected optimal convergence rate of
the block-diagonally preconditioned MinRes iteration applied to the coupled saddle
point system (1.2). Table 11 indicates that the highest efficiency (in terms of the
product nMinResnASMG) is achieved for the same relative accuracy (of 10−8) for the
inner (ASMG) solver as for the outer (MinRes) solver. Table 12 illustrates the scala-
bility of the method by an almost constant number of MinRes and ASMG iterations
since the total computational work in terms of fine-grid matrix vector multiplications
is proportional to the product nMinResnASMG. Tests for nonhomogeneous right-hand
side show promising robustness of the ASMG preconditioner beyond the presented
theoretical framework.

Although it is beyond the scope of this study, we note that the proposed ASMG
method would be suitable for implementation on distributed memory computer ar-
chitectures.
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Abstract

This study proposes a new preconditioning strategy for symmetric positive (semi-)definite SP(S)D matrices referred to as
incomplete factorization by local exact factorization (ILUE). The investigated technique is based on exact LU decomposition of
small-sized local matrices associated with a splitting of the domain into overlapping or non-overlapping subdomains. The ILUE
preconditioner is defined and its relative condition number estimated. Numerical tests on linear systems arising from the finite
element (FE) discretization of a second order elliptic boundary value problem in mixed form demonstrate the advantage of the
new algorithm, even for problems with highly oscillatory permeability coefficients, against the classical ILU(p) and ILUT(τ )
incomplete factorization preconditioners.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Incomplete LU factorization; Local exact factorization; Domain decomposition; Preconditioned Krylov subspace methods

1. Introduction

Consider the linear system of algebraic equations

A x = f (1)

where f is given and x is an unknown vector. Further, let A be a sparse N×N matrix with elements ai j , i, j = 1, . . . , N .
Such sparse systems commonly result, for example, from finite element (FE) discretizations of (partial) differential or
integral equations used in the modeling of various processes in science and engineering.

While in the last years the involvement of software technologies in scientific research has led to new diverse
applications of mathematical modeling, the dimensions of the studied discrete systems constantly increase due to
the demand for more accurate numerical solutions. The performance enhancement of computer hardware changes
the understanding of large dimension, but regardless of progress in this direction, crucial for the development of the
mathematical and computer simulations are achievements in the field of numerical methods and algorithms along with
their efficient implementation.

∗ Corresponding author.
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There are two distinct approaches one can apply to solve (1). The first one is by means of using direct methods.
Although proven to be very robust and predictable in view of required computational resources, see [14,16], these
methods scale unsatisfactorily with the problem size and for this reason iterative solvers are often advantageous over
direct methods, especially when considering problems of sufficiently large dimension.

For symmetric positive definite problems the method of conjugate gradients (CG), first proposed in 1952 by
Lanczos, [22], and Hestenes and Stiefel, [19], is a method of choice. It is based on the minimization of a
quadratic functional over a sequence of Krylov subspaces and its effectiveness can be improved considerably
by preconditioning, see, e.g., [5–7,18]. In recent years the development of optimal iterative methods such as the
preconditioned CG (PCG) method with a uniform preconditioner that can be applied at the cost of O(N ) arithmetic
operations has been an area of active interest and research.

Different strategies can be implemented in order to construct a preconditioner to a given matrix A. One of them is
to consider the incomplete LU (ILU) factorization

A = LU + E (2)

of A where L is unit lower triangular (lower triangular and all entries on the main diagonal are one), U is upper
triangular and E is some error matrix, see [26]. Then the matrix B defined by

B = LU

can be used as a preconditioner when solving system (1) with the PCG method. The classic algorithms for defining (2)
are based on adopting fill-in criteria such as position, value, or a combination of the two, see e.g. [8].

Typically, the spectral condition number of the system matrix obtained from FE discretization of second-order,
self-adjoint, elliptic partial differential equations (PDE) behaves as O(h−2) where h is the mesh parameter of the
underlying partitioning and the number of CG iterations required to achieve a prescribed reduction of the error scales
as h−1. Allowing no fill-ins (or small levels of fill) in the incomplete LU factors does not significantly affect the
spectral properties of the preconditioned system and the number of CG iterations is proportional to h−1 as in the
absence of preconditioning only with a much smaller multiplicative constant.

In some special cases, when a technique known as modified incomplete Cholesky (MIC) factorization is applied
the condition number of the preconditioned matrix grows as O(h−1) and consequently the estimated number of
preconditioned CG iterations becomes O(h−1/2), see. e.g. [3,15,17,20]. Regardless of any big improvement, however,
MIC preconditioners are not so popular as they are more likely to break down on non-model problems and exhibit
higher vulnerability to rounding errors, see [29].

In this paper a new technique for constructing an incomplete LU factorization is proposed. It relates to domain
decomposition (DD) methods, see e.g. [24,28], from the viewpoint of considering a splitting of the original problem
into ’local’ subproblems in order to define the LU factors. This algorithm is applicable to a wide range of discrete
problems and is easy to implement.

The remainder of the paper is organized as follows. An overview of some popular ILU factorizations is presented in
Section 2. The incomplete factorization by local exact factorization (ILUE) subject to the present study is introduced
and analyzed in Section 3. In Section 4 a collection of numerical tests on linear systems arising from the FE
discretization of a second order elliptic boundary value problem in mixed form is included. Finally, some conclusions
are drawn in Section 5.

2. Some classic incomplete LU factorization algorithms

In ILU factorization without fill-in the L and U factors are allowed to have non-zero entries only at positions (i, j)
in which the original matrix is non-zero, i.e. ai j ̸= 0. Such a restriction on the sparsity pattern makes the computation
of L and U easy algorithmically and cheap in view of memory requirements, see [25].

The following pseudo-code demonstrates an implementation of the ILU factorization without fill-in. After program
execution the entries of U are stored in the modified upper triangular part of A whereas L can be extracted from the
strictly lower part and additionally one has to set all diagonal entries of L to be equal to 1.
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Algorithm 1. ILU factorization without fill-in

For k = 1, . . . , N − 1
d = 1/akk
For i = k + 1, . . . , N

If aik ̸= 0
e = d ∗ aik
aik = e
For j = k + 1, . . . , N

If ai j ̸= 0 (∗)
ai j = ai j − e ∗ ak j

Although ILU factorization without fill-in may approximate A well in some particular cases, such as low-order
discretizations of scalar elliptic PDE, this technique is not very accurate and therefore may not provide satisfactory
preconditioners in other cases, such as those considered in this study.

One remedy for this is to allow additional p levels of fill-in in L and U . This idea of improving the accuracy
of the ILU factorization, first presented in [17] and further developed and generalized in [30], is known as ILU(p)
factorization.

The pseudo-code presented below shows an algorithm realizing the ILU(p) factorization. According to [26] the
matrix storing the level of fill-in entries is initialized by

level(ai j ) =

{
0 if ai j ̸= 0 or i = j,
∞ otherwise.

Through the factorization procedure, the levels of the processed elements are constantly updated and whenever
level(ai j ) becomes bigger than p the entry at position (i, j) is dropped. Finally, the entries of L and U overwrite
the matrix in the same manner as in Algorithm 1.

Note that the case p = 0 results in ILU factorization without fill-in as before which is also commonly referred to
as ILU(0).

Algorithm 2. ILU(p) ILUfactorization

For i, j = 1, . . . , N
If ai, j ̸= 0 or i = j

level(ai j ) = 0
Else

level(ai j ) = p + 1
For i = 2, . . . , N

For k = 1, . . . , i − 1
aik = aik/akk
For j = k + 1, . . . , N

ai j = ai j − aik ∗ ak j

level(ai j ) = min(level(ai j ), level(aik) + level(ak j ) + 1)
If level(ai j ) > p

ai j = 0

The ILU(p) factorization is especially suitable for preconditioning diagonally dominant matrices since, in this
case, the larger the level of fill-in, the smaller the fill-in tends to be in absolute value. However, if a matrix is far from
being diagonally dominant, increasing p in the ILU(p) algorithm contributes little to improving the quality of the
preconditioner as many elements that are small in absolute value have to be stored which further makes this approach
expensive to use. Therefore, a different strategy is required to improve the accuracy of the ILU approximation.
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Such a strategy can be to integrate a dropping criteria for the computed entries in L and U based on their value.
A new fill-in is accepted only if it is greater than τ times a certain (scaled) norm of the current row where τ > 0 is
called the dropping tolerance or threshold.

This algorithm is known as ILUT(τ ) factorization and can be realized via the pseudo-code given in Algorithm 3.
Here ∥v∥1 :=

∑N
i=1|vi | denotes the ℓ1-norm of a vector v ∈ RN and nnz(v) its number of nonzero entries.

A drawback to this technique is the impossibility of predicting the number of non-zero elements created during the
factorization process. For this reason one sometimes imposes an additional restriction on the number of entries in a
row, that is, at most the p largest ones in magnitude to be finally stored in the ILUT preconditioner, see [27].

Algorithm 3. ILUT(τ ) factorization

For i = 2, . . . , N
τi = τ ∗ ∥ai,1:N ∥1/nnz(ai,1:N )
For k = 1, . . . , i − 1

If aik ̸= 0
aik = aik/akk
For j = k + 1, . . . , N

ai j = ai j − aik ∗ ak j
If |ai j | < τi

ai j = 0

Remark 1. In the presented algorithms it has been assumed that no breakdowns occur due to divisions by zero,
which is guaranteed, for example, for M-matrices. In many cases, however, one can avoid such instances also for
non-M matrices by applying proper pivoting strategies.

Remark 2. There are also block variants of the described incomplete factorizations known as BILU, for more details
see e.g. [4,11–13].

3. Incomplete factorization by local exact factorization (ILUE)

The starting point of the ILUE factorization discussed in this paper is that A can be presented in the form

A =

n∑
k=1

RT
k Ak Rk (3)

where Ak , k = 1, . . . , n, are small-sized (local) symmetric positive (semi-) definite (SP(S)D) subdomain matrices and
RT

k are the natural inclusions that extend any local vector defined on the degrees of freedom (DOF) of Ωk by zeros to
a global vector defined on the set of all DOF (of Ω ). That is, Rk = (rk,i j ) ∈ RNk×N is a {0, 1}-matrix with one nonzero
entry, equal to one, in every row. The position (i, j) of each nonzero entry in Rk determines the global number, which
equals the column index j , corresponding to its local number (within Ωk), which equals the row index i . It follows
that Rk RT

k = Ik .
Consider now the exact LU factorizations of the matrices Ak , k = 1, . . . , n

Ak = LkUk . (4)

Definition 4. Incomplete factorization by local exact factorization (ILUE) is defined as

BILUE := LU (5)

where

U :=

n∑
k=1

RT
k Uk Rk, L := U T diag(U )−1, diag(Lk) = Ik (6)

and the matrices Lk , Uk and Rk are as introduced in (3)–(4).
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If one defines the auxiliary block diagonal matrix

Ã =

⎡⎢⎢⎢⎣
A1

A2
. . .

An

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
L1

L2
. . .

Ln

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

U1
U2

. . .

Un

⎤⎥⎥⎥⎦
= L̃Ũ

then

A = R ÃRT ,

where the matrix R is of size N × Ñ = dim(A) × dim( Ã) is defined by R =
[
RT

1 , RT
2 , . . . , RT

n

]
. Then Eq. (6) implies

that U = RŨ RT and hence the construction of U is analogous to that of the approximate inverse B−1
AS obtained from

the one-level additive Schwarz method, which is given by B−1
AS :=

∑n
k=1 RT

k A−1
k Rk , relating the ILUE factorization to

domain decomposition methods.
Now let Nk = dim(Ak) and N = dim(A). Further, let num[k, i] denote the column index of the nonzero entry in

row i of Rk and uk,i j the entry in position (i, j) of Uk for 1 ≤ k ≤ n and 1 ≤ i, j ≤ Nk . Then Algorithm 4. given
below formally describes the implementation of the ILUE factorization.

Remark 3. To compute Uk one performs a complete LU factorization of the matrix Ak subject to the condition
diag(Lk) = I . For that purpose one can use Algorithm 1 thereby skipping line (∗). In the case of processing symmetric
positive semidefinite matrices Ak , the occurrence of zero pivot elements, which would cause a breakdown of the
algorithm due to division by zero, requires special treatment. Simply skipping all operations involving zero pivot
elements is one possible strategy.

Remark 4. In the important case in which A is SPD and all the Ak’s are SPSD with some (or maybe most) of them
being singular, one has to use proper local numberings of the degrees of freedom (DOF) within the subdomains and
local-to-global mappings to ensure that U and hence diag(U ) and L will turn out to be regular. This, however, will
always be possible if the subdomains have sufficiently large overlaps, i.e., share sufficiently many DOF.

Algorithm 4. ILUE factorization

For k = 1, . . . , n
factorize Ak = LkUk subject to diag(Uk) = Ik
For i = 1, . . . , Nk

For j = 1, . . . , Nk
unum[k,i]num[k, j]+ = uk,i j

For i = 1, . . . , N
For j = 1, . . . , N

li j = u j i/u j j

The next lemma is useful in the analysis of the spectral condition number of the preconditioned matrix (B−1
ILUE A).

Lemma 5. Let X i and Yi , i = 1, . . . , n, be real matrices of size k × l and k × m respectively and

Z11 :=

n∑
i=1

Y T
i Yi . (7)

Then the following relation holds true
n∑

i=1

X T
i X i −

n∑
i=1

X T
i Yi

( n∑
i=1

Y T
i Yi

)−1 n∑
i=1

Y T
i X i ≥ 0. (8)
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Proof. Define

Z :=

⎡⎢⎢⎢⎢⎣
n∑

i=1

Y T
i Yi

n∑
i=1

Y T
i X i

n∑
i=1

X T
i Yi

n∑
i=1

X T
i X i

⎤⎥⎥⎥⎥⎦ .

Since [
v1
v2

]T [
Y T

i Yi Y T
i X i

X T
i Yi X T

i X i

] [
v1
v2

]
= ∥Yi v1 + X i v2∥

2
≥ 0

∀ v = [v1, v2]T and ∀ i , it follows that Z is an SPSD matrix and therefore

SZ :=

n∑
i=1

X T
i X i −

n∑
i=1

X T
i Yi

( n∑
i=1

Y T
i Yi

)−1 n∑
i=1

Y T
i X i ≥ 0. □

Remark 5. When
∑n

i=1Y T
i Yi is a singular (SPSD) matrix its inverse can be understood as the generalized Moore–

Penrose inverse. Note that like this the extremal property of the Schur complement is still valid.

Remark 6. Let k = l = m = 1 for i = 1, . . . , n. Then X i and Yi are real numbers and consequently inequality (8)
reduces to the classic discrete Cauchy–Schwarz inequality

N∑
i=1

X2
i

N∑
i=1

Y 2
i −

( N∑
i=1

X i Yi

)2

≥ 0.

If the matrices X i and Yi are defined as

X i := RT
i diag(Ui )−1/2Ui Ri and Yi := RT

i diag(Ui )1/2 Ri ,

where Ri and Ui are defined according to (3) and (4) then
∑N

i=1Y T
i Yi is an invertible matrix (if U is regular) and

Lemma 5 holds, i.e.,
N∑

i=1

X T
i X i −

N∑
i=1

X T
i Yi

( N∑
i=1

Y T
i Yi

)−1 N∑
i=1

Y T
i X i

=

N∑
i=1

RT
i U T

i diag(Ui )−1/2 Ri RT
i diag(Ui )−1/2Ui Ri

−

N∑
i=1

RT
i U T

i diag(Ui )−1/2 Ri RT
i diag(Ui )1/2 Ri

× (
N∑

i=1

RT
i diag(Ui )1/2 Ri RT

i diag(Ui )1/2 Ri )−1

×

N∑
i=1

RT
i diag(Ui )1/2 Ri RT

i diag(Ui )−1/2Ui Ri ≥ 0.

Furthermore, from

Ai = U T
i diag(Ui )−1Ui and Ri RT

i = Ii

it follows that the last inequality is equivalent to

A − BILUE ≥ 0 or wT BILUEw ≤ wT Aw ∀w. (9)

On the other hand, to find an estimate of the form

wT Aw ≤ c̄ wT BILUEw ∀w, (10)
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which equivalently reads

wT
( n∑

i=1

RT
i Ai Ri

)
w ≤ c̄ wT LUw = c̄ wT U T diag(U )−1U, w ∀w,

λmax is defined as

λmax := max
1≤i≤n

{λi,max} (11)

where λi,max are the maximum eigenvalues of the corresponding low-rank generalized eigenvalue problems

RT
i Ai Ri v = λiU T diag(U )−1Uv. (12)

Then the number c := λmax nsubdomain provides an upper bound for c̄, i.e., (10) is satisfied with c̄ = c. Here nsubdomain

denotes the number of subdomains.
The generalized eigenvalue problems (12), although related to the local matrices Ai , are of the size of the

original problem. However, the matrices RT
i Ai Ri are of low rank, which is bounded by Ni = dim(Ai ). Using the

decomposition Ai = U T
i diag(Ui )−1/2diag(Ui )−1/2Ui problem (12) can be rewritten as1

diag(U )1/2U−T RT
i U T

i diag(Ui )−1/2diag(Ui )−1/2Ui RiU−1diag(U )1/2v = λi v,

that is, in the form W T
i Wi v = λi v with Wi = diag(Ui )−1/2Ui RiU−1diag(U )1/2 where Wi ∈ RNi ×N . In order to find

the nonzero eigenvalues of (12) one can equivalently solve the eigenvalue problem Wi W T
i vi = λi vi . The latter is of

the size of the local matrices Ai and of the form

diag(Ui )−1/2Ui RiU−1diag(U )U−T RT
i U T

i diag(Ui )−1/2vi = λi vi . (13)

Finally, since nsubdomain is typically of the order O(h−2) for two-dimensional problems, it can be concluded that
κ(B−1

ILUE A) = λmaxO(h−2).
For a d-dimensional unit cube which is partitioned by a uniform mesh of mesh size h into (1/h)d cubes with side

h the number of congruent subdomains is given by

nsubdomain =

(
1 − w

H − w

)d

where H is the size (side) of the subdomains and w the width of the overlap. Assuming that H and w are both
multiples of h, i.e., H = kh and w = mh, an obvious requirement for nsubdomain to be bounded is that m < k. It is
even reasonable to assume that m ≤ k/2 resulting in

nsubdomain =

(
1

H/2

)d

= O(H−d ).

The resulting condition number estimate in this case is λmaxO(H−d ). Note that in practice H can be significantly
larger than h. To give an example, for h = 1/256 and H = 8h, as used in the numerical tests in the next section, one
has H−3

= h−2/2.

4. Numerical results

4.1. Model problem

The presented numerical tests refer to the second order elliptic boundary value problem in mixed form

u + K (x)∇ p = 0 in Ω , (14a)

div u = f in Ω , (14b)

p = 0 on ΓD , (14c)

u · n = 0 on ΓN . (14d)

1 Again inverses eventually have to be understood in the sense of the Moore–Penrose inverse.
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Here Ω is a bounded polyhedral domain in R2 and n is the outward unit vector normal to the boundary ∂Ω that is split
into two non-overlapping parts ΓD and ΓN . In order to guarantee that problem (14) has a unique solution p ∈ H 1(Ω )
it is assumed that ΓD is a non-empty set with strictly positive measure which is also closed with respect to ∂Ω . The
given forcing term f in (14b) is a function from L2(Ω ) whereas the coefficient K ∈ R2×2

S P D for almost all x ∈ Ω . In
what follows we consider K (x) = k(x)I where k(x) > 0 ∀x ∈ Ω .

The considered model problem is used to describe different processes, for example, diffusion of passive chemicals,
heat and mass transfer, or electrostatics. In the terminology of flows in porous media the unknown variable u is called
the velocity whereas p is referred to as the fluid pressure.

In order to discretize (14) a mixed FEM is applied. Due to the low regularity of the problem in the case of
heterogeneous media (highly varying permeability k(x)) lowest order Raviart–Thomas–Nédélec functions are chosen
for the discretization of the vector valued function u and piecewise constant functions are chosen for the unknown
pressure variable. As a result the following saddle point system is derived[

Mα Bdiv

BT
div 0

] [
u
p

]
=

[
0
f

]
. (15)

The matrices in (15) are determined by

vT Mαu = (αuh, vh),
vT BT

divp = (ph, div vh),

where uh and vh are lowest order Raviart–Thomas–Nédélec FE functions, ph is piecewise constant and

α = α(x) = k−1(x). (16)

The stability of the considered mixed FE approximation of problem (14) has been proven in [21] from where it
follows that the Arnold–Falk–Winther preconditioner, see [1,2],

Bh =

[
A 0
0 I

]
(17)

is uniform. Here I denotes the (matrix representation of the) Riesz isomorphism defined by the L2 inner product while
A is the operator (matrix) defined by the weighted H(div) bilinear form, i.e.,

uT Av = (α uh, vh) + (∇ · uh, ∇ · vh) = Λα(uh, vh). (18)

Therefore, the application of the preconditioner (17) requires a preconditioner for the system

Au = b, u, b ∈ RN , (19)

which is subject to the numerical study in this section. For the considered FE discretization N is the number of edges
in the underlying partitioning of the domain, excluding edges on ΓN .

When incomplete factorization preconditioners are considered the ordering of the DOF in the system can
significantly affect their performance, see, e.g. [9,10,23,31] where PCG convergence has been mainly experimentally
investigated. We test a lexicographical and a two-level ordering; the latter is combined with a two-level basis
transformation as commonly used in the context of two- and multilevel methods.

4.2. Description of the parameters

The numerical experiments are executed over a uniform mesh composed of ℓ × ℓ elements (squares) where
ℓ = 8, . . . , 256, i.e. up to 131 584 velocity DOF. An overlapping covering of the domain as shown in Fig. 1 is
considered where the subdomains are composed of 8 × 8 elements and overlap with half of their width or height.

A random vector is chosen as an initial guess for the solution of (19) and the PCG algorithm is tested on problems
with a zero right-hand side and a stopping criterion of residual reduction by a factor of 106 or exceeding 5000 PCG
iterations.

The numerical results in Tables 1–7 are obtained for problems exhibiting high oscillations in the coefficient
α(x) = K −1(x), namely a randomly distributed coefficient α = 10−prand , prand ∈ {0, 1, 2, . . . , q} where α is constant
for any given element.
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Fig. 1. Covering of a domain of 16 × 16 elements by nine overlapping subdomains.

Table 1
Values of the parameter τ for the ILUT preconditioner.

q ℓ = 8 ℓ = 16 ℓ = 32 ℓ = 64 ℓ = 128 ℓ = 256

0 10−16 10−16 3.2 ∗ 10−3 4.5 ∗ 10−3 3.3 ∗ 10−3 2.0 ∗ 10−3

1 10−16 10−16 1.8 ∗ 10−3 2.7 ∗ 10−3 2.0 ∗ 10−3 1.2 ∗ 10−3

2 10−16 10−16 1.2 ∗ 10−3 1.8 ∗ 10−3 1.4 ∗ 10−3 8.5 ∗ 10−4

3 10−16 10−16 9.1 ∗ 10−4 1.3 ∗ 10−3 1.1 ∗ 10−3 6.5 ∗ 10−4

4 10−16 10−16 8.1 ∗ 10−4 1.1 ∗ 10−3 8.3 ∗ 10−4 5.3 ∗ 10−4

5 10−16 10−16 7.8 ∗ 10−4 9.5 ∗ 10−4 7.1 ∗ 10−4 4.3 ∗ 10−4

6 10−16 10−16 3.8 ∗ 10−4 8.4 ∗ 10−4 6.1 ∗ 10−4 3.7 ∗ 10−4

Table 2
Approximate number of non-zero entries in L for the ILU(4), ILUT and ILUE.

q L ℓ = 8 ℓ = 16 ℓ = 32 ℓ = 64 ℓ = 128 ℓ = 256

L ILU(4) 1.4 ∗ 104 6.5 ∗ 104 2.7 ∗ 105 1.1 ∗ 106 4.5 ∗ 106 1.8 ∗ 107

0–6 L ILUT 1.7 ∗ 104 1.2 ∗ 105 6.8 ∗ 105 2.8 ∗ 106 1.1 ∗ 107 4.6 ∗ 107

L ILUE 1.7 ∗ 104 7.9 ∗ 104 3.4 ∗ 105 1.4 ∗ 106 5.7 ∗ 106 2.3 ∗ 107

Table 3
Number of PCG iterations for residual reduction by 106, standard basis.

ILU(4) preconditioner

Contrast

0 1 2 3 4 5 6

ℓ = 8 64 62 85 115 115 126 166
ℓ = 16–256 >5000 >5000 >5000 >5000 >5000 >5000 >5000

The performance of the ILU(p) and ILUT(τ ) preconditioners is tested for p = 4 and τ as in Table 1. In choosing
these parameters as in Table 2 the number of non-zeros produced in the corresponding L factors is comparable to the
number of non-zero entries in the studied ILUE factorization (for lexicographical ordering), i.e.

nnz(L ILUE)
2

≤ nnz(L ILU(p)), nnz(L ILUT) ≤ 2 ∗ nnz(L ILUE).

Note that the choice of the parameter τ in Table 1 for ℓ = 32, 64, 128, 256 is already quite unfavorable for
comparing our algorithm against ILUT since it results in nnz(L ILUT) ≈ 2 ∗ nnz(L ILUE).

As can be seen from Tables 3 and 5 the number of PCG iterations with the ILUE preconditioner is always less than
that with the ILU(4) preconditioner. The ILUT preconditioner would appear to be robust with respect to the contrast
for smaller-size problems, see Table 4 for ℓ = 8, 16, whereas its performance deteriorates when more refined meshes
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Table 4
Number of PCG iterations for residual reduction by 106, standard basis.

ILUT preconditioner

Contrast

0 1 2 3 4 5 6

ℓ = 8 1 1 1 1 1 1 1
ℓ = 16 1 1 1 1 1 1 1
ℓ = 32–256 >5000 >5000 >5000 >5000 >5000 >5000 >5000

Table 5
Number of PCG iterations for residual reduction by 106, standard basis.

ILUE preconditioner

Contrast

0 1 2 3 4 5 6

ℓ = 8 1 1 1 1 1 1 1
ℓ = 16 17 21 24 26 31 37 42
ℓ = 32 35 50 67 82 111 164 213
ℓ = 64 66 90 130 210 347 577 999
ℓ = 128 125 159 228 355 635 1135 2086
ℓ = 256 220 260 350 541 903 1682 3142

are considered. However, as can be seen from Table 1 the choice of τ for ℓ = 8 and ℓ = 16 actually gives the exact
factorization of A thereby explaining the observed robust behavior. It should also be mentioned that choosing a proper
parameter τ can often be quite difficult.

Table 5 furthermore shows that the number of PCG iterations with ILUE preconditioning grows moderately for
increasing contrast whereas for a fixed contrast it indicates a growth of the relative condition number as predicted by
our estimate, i.e., κ(B−1

ILUE A) = O(H−2).
Table 3 suggests that ILU(p) factorization is a bad choice for the preconditioning of system (19). The results in

Table 6 for a fixed contrast q = 2 and bigger levels of fill-in confirm this observation and show that allowing more
entries is not a remedy. Note that nnz(L ILU(p)) is always approximately or exactly the number of non-zeros in the
corresponding L factors of the exact factorization whenever the number of PCG iterations is not >5000.

To test the effect of changing into a two-level hierarchical basis, A is transformed according to

Â = J T AJ, J = P J±, (20)

where the permutation P splits the DOF into two groups. The first one contains all DOF associated with fine-grid
edges not part of any coarse-grid edge (interior DOF) whereas the second contains the remaining DOF, both groups
numbered consecutively along the grid lines. The transformation matrix J± has the form

J± =

[
I

J22

]
, where J22 =

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

. . .
. . .

1 −1
1 1

1 1
. . .

. . .

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the identity matrix I corresponds to the interior DOF. In order to compute the ILUE preconditioner in a changed
basis the analogous transformation is performed also at a local level, i.e., on each subdomain Ωi .

Table 7 demonstrates an even better performance of the ILUE preconditioner for a two-level basis and shows only
a mild dependence on the contrast.
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Table 6
Number of PCG iterations for residual reduction by 106, standard basis.

Fixed contrast q = 2

ILU(4) ILU(12) ILU(29) ILU(62)

ℓ = 8 85 1 1 1
ℓ = 16 >5000 185 1 1
ℓ = 32 >5000 >5000 125 1
ℓ = 64 >5000 >5000 >5000 35
ℓ = 128, 256 >5000 >5000 >5000 >5000

Table 7
Number of PCG iterations for residual reduction by 106, two-level basis.

ILUE preconditioner

Contrast

0 1 2 3 4 5 6

ℓ = 8 1 1 1 1 1 1 1
ℓ = 16 12 12 13 14 14 15 18
ℓ = 32 25 27 31 34 41 52 69
ℓ = 64 44 50 59 82 115 163 256
ℓ = 128 79 84 97 123 169 254 391
ℓ = 256 127 122 128 151 194 273 427

Table 8
Estimation of the relative condition number.

ℓ = 8 ℓ = 16 ℓ = 32 ℓ = 64

κ(B−1
ILUE A) 6.97 36.99 172.88 750.29

λmax · nsubdomain 9 · 4.21 49 · 13.42 225 · 32.20 961 · 73.88

Finally, the true condition number κ(B−1
ILUE A) is compared against its upper bound λmax nsubdomain, where λmax is

defined as in (11) with λi,max computed from (13), for a problem with constant coefficient (α = 1) and subdomains of
size 4 × 4 elements. As can be seen, the estimate is highly conservative. (See Table 8.)

5. Concluding remarks

A new type of preconditioner called ILUE from the class of approximate factorization methods has been
constructed and analyzed. It utilizes exact LU factorizations of local (small-sized) matrices associated with a splitting
of the domain into overlapping or non-overlapping subdomains. The principal design of the algorithm makes the
ILUE preconditioner easy to implement and leads to a simple condition number estimate. The performed numerical
results demonstrate monotone convergence for a class of problems where Krylov methods with classic incomplete
factorization preconditioning suffer from stagnation.
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