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Symmetric Feller Processes on Uniform State Spaces

This thesis investigates symmetric Feller processes on uniform 
state spaces equipped with a measure, aiming to extend and 
unify diverse results on the convergence of such processes on 
metric measure spaces. It has been shown in previous works that 
processes that are related to both the metric and the measure of 
their state spaces through their Dirichlet forms converge 
whenever the state spaces converge. However, it is not always 
clear which metric is the right one to consider and there might 
even be many such metrics. The main focus lies therefore on 
abstracting from the metric structure of the spaces and instead 
considering their uniform structure. This approach warrants an 
in-depth analysis of uniform spaces as state spaces for Feller 
processes including an analysis of the Skorokhod topology on the 
the space of paths on such spaces. One of the main results is 
that the convergence of a family of hitting times implies the 
convergence of paths. Moreover, symmetric Feller processes on 
uniform state spaces and their Dirichlet forms are introduced and 
studied. As a result of a detailed study of killed processes, it is 
demonstrated that symmetric Feller processes are uniquely 
determined by their Green operators. Finally, five conditions for 
the convergence of symmetric Feller processes on uniform state 
spaces are identified and discussed.
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1Introduction

„The story so far: In the beginning the Universe
was created. This has made a lot of people very
angry and been widely regarded as a bad move.

— Douglas Adams
The Restaurant at the End of the Universe

1.1 Introduction and main results
Let (Ω,A,P) be a probability space. At the center of this thesis are symmetric Feller

processes. That is, strong Markov processes defined on (Ω,A,P) with values in some
topological space S that possess additional regularity properties. Many stochastic
processes fall into this class, for example Brownian motion, Lévy processes or random
walks. We generalize the state spaces from metric measure spaces to uniform measure
spaces and show how hitting times play an important role in the analysis of such
processes.

This research was initially motivated by the question under which conditions a
sequence X(n) of symmetric Feller processes converges to a limiting process X(∞).

1.1.1 Motivation
One of the earliest results of such a convergence is Donskers invariance theorem.

It was obtained by Monroe D. Donsker as a result of his doctoral dissertation and
published in [Don51]. Loosely speaking, Donsker showed that a simple symmetric
random walk (linearly interpolated) converges in distribution to the Brownian motion
as random variables on the space of continuous functions on the unit interval, C([0, 1]).
More precisely, suppose (ξn)n∈N is a sequence of independent and identically dis-
tributed real-valued random variables with E

[
ξ
]
= 0 and E

[
ξ2

]
= σ2. Define S 0 = 0

and for each n ∈ N set S n :=
∑n

k=1 ξk. Moreover, for n ∈ N, t ∈ [0, 1], ω ∈ Ω set

X(n)
t (ω) :=

1
√

nσ
S ⌊nt⌋(ω) +

nt − ⌊nt⌋
√

nσ
ξ⌊nt⌋+1(ω). (1.1)

Then X(n) : Ω→ C([0, 1]) and
P(n) ⇒W, (1.2)
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weakly as probability measures on C([0, 1]), whereW denotes the Wiener measure.
Sometimes this result is phrased as “the simple symmetric random walk converges to
the Brownian motion in the scaling limit”.

In [Sko56], Anatolii Skorokhod laid the groundwork for the analysis of processes
that are not necessarily continuous but may contain jumps by introducing a topology
(actually four different topologies) on the space of function f : [0,∞) → S that are
continuous from the right and possess limits from the left. Here S denotes a complete
and separable metric space. We call such functions càdlàg1 functions and denote the
space of such functions by DS ([0,∞)). We refer to the space DS ([0,∞)) equipped
with the Skorokhod topology as the Skorokhod space or pathspace.

Charles Stone considered in [Sto63] Markov processes on subsets of the real
line such that “the random trajectories do not jump over points in the state space”2

and depend continuously on a speed measure ν when considered on their “natural
scale”. Stone was able to show that under certain conditions on the convergence of the
state spaces as well as the speed measure, such processes converge in the Skorokhod
topology to a limiting process. Donsker’s functional limit theorem can be considered
an example of Stone’s result.

More than 50 years later, SivaAthreya, Wolfgang Löhr and AnitaWinter extended
Stone’s result to an invariance principle for random walks on metric measure trees in
[ALW17]. Here, metric measure trees are metric spaces (T, r), that have a tree-like
structure and are equipped with a measure ν. The speed-ν motion on a metric measure
tree (T, r, ν) is a ν-symmetric Feller process which is determined by the structure
of the tree, encoded in the metric r and the measure ν. The speed-ν motion was
constructed earlier in [AEW13] using Dirichlet forms. It is worth pointing out that
this construction makes use of the geometry of the tree through its metric. The speed-ν
motion can therefore be considered to be on its natural scale.

In [ALW17], the authors were able to show the very elegant result that the
speed-ν(n) motions X(n) started in ρ(n) on a sequence of rooted metric measure trees((

T (n), r(n), ρ(n), ν(n)
))

n∈N
converges weakly in path space to the speed-ν(∞) motion

X(∞) started in ρ(∞) on a rooted metric measure tree
(
T (∞), r(∞), ρ(∞), ν(∞)

)
whenever(

T (n), r(n), ρ(n), ν(n)
)
−→

(
T (∞), r(∞), ρ(∞), ν(∞)

)
, (1.3)

as n → ∞ in pointed Gromov-Hausdorff vague topology and a uniform bound
on the lengths of edges emanating from a ball around the root holds. Pointed
Gromov-Hausdorff vague convergence takes place when the rooted metric trees(
T (n), r(n), ρ(n)

)
can be isometrically embedded into a common metric space (S , d) so

1from French: continue à droite, limite à gauche
2[Sto63, p. 638]
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that
(
T (n), r(n), ρ(n)

)
converge in the pointed Hausdorff sense as subsets of the metric

space (S , d) and the push-forwards of the measures ν(n) under this embedding converge
vaguely.

To illustrate this result consider again the simple symmetric random walk on Z. We
can consider Z as a (graph theoretic, discrete) tree where x, y ∈ Z are connected by an
edge (x ∼ y) if and only if |x − y| = 1. We let r(x, y) = |x − y| be the Euclidean metric
and ν(A) = #(A ∩ Z) the counting measure. Then, X = (Z, r, 0, ν) is a rooted metric
measure tree and the speed ν-motion X on X is the ν-symmetric Feller process that
jumps from x ∈ Z to y ∈ Z with x ∼ y at rate

γxy =
1

2ν({x})r(x, y)
=

1
2
. (1.4)

The total jumprate at x ∈ Z is then γx :=
∑

y:y∼x γxy = 1. Hence, X is the continuous-
time version of the simple symmetric random walk. Now define for each n ∈ N a
rooted metric measure tree X(n) =

(
T (n), r(n), 0, ν(n)

)
by setting

T (n) := Z, r(n)(x, y) := |x − y|/
√

n and ν(n)(A) := ν(A)/
√

n. (1.5)

The metric spaces
(
T (n), r(n)

)
are all naturally embedded into R and they converge to

(R, d) in the Hausdorff topology where d denotes the Euclidean metric on R. Moreover,
for real numbers a < b, the set [a, b] ∩ T (n) contains of the order of

√
n(b − a) many

points. More precisely,(√
n(a − b) − 1

)
/
√

n ≤ ν(n)([a, b]) ≤
(√

n(a − b) + 1
)
/
√

n. (1.6)

Consequently, ν(n) ⇒ λ weakly as n→ ∞, where λ denotes the Lebesgue measure on
R. Moreover, the jump rates of the speed-ν(n) motion X(n) is γ(n)

x = n. The spaces X(n)

converge pointed Gromov-Hausdorff weakly to X(∞) = (R, d, 0, λ) and the speed-ν(n)

motions converge to the speed-λ motion on R which is simply the standard Brownian
motion. Note that the same result remains true when we rescale the metrics r(n) by
a constant factor c > 0, as long as we make up for this rescaling by also rescaling
the measures ν(n) by c−1. In this sense, constant factors can be shifted between the
measure and the metric.

The result of Athreya, Löhr and Winter was extended by David Croydon in [Cro18]
to so-called resistance forms. Resistance forms are a tool that was developed by Jun
Kigami and others (cf. [Kig01]) to describe and analyze random walks on fractals
and fractal-like graphs like the Sierpiński Gasket (see Figure 5.2). Technically, a
resistance form is a symmetric bilinear form E on a subspace F of the real-valued
functions on some set S satisfying certain conditions to ensure that E induces a metric

1.1 Introduction and main results 3



R, called the resistance metric, on S by virtue of the following variational principle

R(x, y) := sup
{
| f (x) − f (y)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}
, x, y ∈ S . (1.7)

We will discuss the concepts related to resistance forms in more depth in Section 5.6.
On the other hand, a resistance form together with a Radon measure ν on the metric
space (S ,R) gives rise to a regular Dirichlet form on L2(S , ν) which in turn uniquely
defines a ν-symmetric Feller process with values in S . Again these processes can
be considered to be on their natural scale as processes on the metric measure space
(S ,R, ν). Croydon showed that under an additional uniform recurrence condition an
analogue of the invariance principle of [ALW17] holds. That is, the processes X(n)

associated to a sequence of resistance forms (E(n),F (n)) on a sequence of sets S (n)

started in ρ(n) converges weakly in path-space to a ν(∞)-symmetric Feller process
started in ρ(∞), whenever(

S (n),R(n), ρ(n), ν(n)
)
→

(
S (∞),R(∞), ρ(∞), ν(∞)

)
(1.8)

pointed Gromov-Hausdorff weakly as n→ ∞.

All these results have in common that they are basically low dimensional in the sense
that the processes hit points with positive probability, i.e. Px ({∃t > 0 : Xt = y}) > 0
for all x, y in the state space. In other words, singletons have positive capacity (for the
definition of capacities and other potential theoretic notions see Section 5.4). However
this property fails in higher dimensions, for example for the Brownian motion in Rd

for d ≥ 2.

A complementary result that closes this gap was shown by Kohei Suzuki for
Brownian motions on Riemannian Manifolds. The Brownian motion on a Riemannian
manifold M equipped with the volume measure dV is again constructed by means
of its Dirichlet form which is given in terms of the Laplace-Beltrami operator on M.
The Laplace-Beltrami operator, on the other hand, is again related to the metric d
on M through the Riemannian metric (see Section 5.7). The Brownian motion on a
manifold M can therefore again be considered to be on its natural scale. In [Suz19a],
Suzuki showed that under a uniform bound on the Ricci curvature of a sequence of
Riemannian manifolds, the convergence of these manifolds in the Gromov-Hausdorff
weak topology3 implies pathwise convergence of the Brownian motions on said
manifolds.

The common denominator of these complementary results is that the geometry of
the state space and the probabilistic behavior of the processes defined on these state

3Suzuki actually uses pointed measured Gromov convergence (pmG) that was introduced in [GMS15].
However, this topology is weaker than the topology of Gromov-Hausdorff weak convergence (cf.
[Suz19a, Remark 2.2. b)])
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spaces are linked. This is what is meant by the expression that the processes are on
their natural scale. This connection is maybe best illustrated by the occupation time
formula for the speed-ν motion X on a metric measure tree (T, r, ν),

Gy f (x) := Ex

[∫ τy

0
f (Xt) dt

]
= 2

∫
T

r
(
y, c(x, y, z)

)
f (z) ν(dz), (1.9)

where τz := inf { t > 0 | Xt = y } is the first hitting time of y ∈ T and c(x, y, z) ∈ T
denotes the unique branchpoint of the three points x, y, z ∈ T . The occupation time
formula relates the Green operator Gy on the left to the geometric structure and the
speed measure through the Green kernel gy(x, z) = r

(
y, c(x, y, z)

)
on the right.

If we now consider a ν-symmetric Feller process X on a “nice” metric measure
space (S , d, ν) the question arises whether this process is on its natural scale and what
is actually the natural scale for X?

Consider for example the random walk on a finite weighted graph G = (V, µ) (see
Section 4.5.1). Here V , Ø denotes the set of vertices and µ : V × V → [0,∞) is
a symmetric map that represents the weights (or inverse lengths) of edges between
vertices. That is, two vertices x, y ∈ V are connected by an edge of length µ−1

xy if
µxy > 0 and there exists no edge between x and y if µxy = 0. Such a graph comes with
at least two natural metrics, the simple graph distance d(x, y) which is the minimal
number of vertices on a path from x to y (minus 1) and the weighted graph distance
dµ(x, y) which is simply the length of a shortest path between x and y. Neither of these
metrics represents the natural scale for the random walk on G. Instead the natural
scale is given by the resistance metric which can heuristically be understood as the
electrical resistance between two vertices when we think of the graph as an electrical
network where the vertices are connected by resistors with a resistance given by µ−1

xy .

Moreover, if we have a sequence
(
X(n)

)
n∈N

of symmetric Feller processes living on a

sequence of metric measure spaces
{ (

S (n), d(n), ν(n)
) ∣∣∣∣ n ∈ N

}
, under which conditions

does this sequence converge to a limiting process? Since the processes have a priori no
relation to the metrics d(n), we remove the metric from the state spaces and consider
uniform spaces instead of metric spaces as state spaces for symmetric Feller processes.
A Uniform space (S ,U) is a topological space with an additional structure that is just
enough to define uniform continuity. In this sense uniform spaces are intermediates
between topological spaces and metric spaces.

The idea to consider uniform spaces as state spaces is not new and goes back to
Adam Jakubowski who introduced the Skorokhod topology on uniform spaces in
[Jak86]. However, this idea had only little resonance.
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1.1.2 Main results
One of the central results of this thesis is the introduction of uniform spaces as

state spaces for stochastic processes. This entails a careful study of the space of
càdlàg functions with values in a uniform space (S ,U). We show that the Skorokhod
topology is uniformizable and describe the Skorokhod uniformity in terms of a family
of pseudometrics (Proposition 3.14 and Theorem 3.16). Moreover, we show how many
known quantitative results, in terms of the Skorokhod metric, can be reformulated as
qualitative statements which hold true for the Skorokhod uniformity. For example, we
prove a result about relative compactness in DS ([0,∞)) by replacing the convergence
of the modified modulus of continuity with a quantitative statement in Theorem 3.21.

Of particular interest is Theorem 3.27 where we characterize the convergence in
DS ([0,∞)) by the convergence of hitting times of certain sets. This result is new even
in the context of metric spaces. The theorem was proven jointly with Gerónimo Rojas
and it will appear in his dissertation for the metric case. For A ⊂ S we define the first
contact time of A by

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
. (1.10)

Moreover, for each t > 0 let θt : DS ([0,∞))→ DS ([0,∞)) with θt(ω( · )) := ω( · + t)
denotes the shift operator on DS ([0,∞)). Then Theorem 3.27 states the following.

Theorem. Let (S ,U) be a uniform Hausdorff space, ω ∈ DS ([0,∞)) and (ωn)n∈N ⊂

DS ([0,∞)) be relatively compact. Then the following are equivalent.

(i) limn→∞ ωn = ω in the Skorokhod topology.

(ii) For all x ∈ S , U ∈ U, all continuity points s ≥ 0 of ω, and all D ∈ U, there
exists a E ∈ U with E ⊂ D open, such that

τ(U◦E)[x](ωn ◦ θs)→ τ(U◦E)[x](ω ◦ θs), as n→ ∞. (1.11)

(iii) For all x ∈ S , all continuity points s ≥ 0 of ω and all U ∈ U open such that
τU[x](ω ◦ θs) = γU[x](ω ◦ θs) it holds that

τU[x](ωn ◦ θs)→ τU[x](ω ◦ θs), as n→ ∞. (1.12)

In Theorem 3.48 we lift this statement to the space of probability measures on
DS ([0,∞)) and show how the convergence of hitting times can be used to show weak
convergence of probability measures on DS ([0,∞)). The theorem reads as follows.

6 Chapter 1 Introduction



Theorem. Let (S ,U) be a separable uniform Hausdorff space with a countable base.
Assume that X,

(
X(n)

)
n∈N

are DS ([0,∞))-valued random variables with distribution

PX(n)
and PX respectively. Then, PX(n)

=⇒
n→∞
PX if and only if the following conditions

are satisfied.

(i) The sequence
{
PX(n)

∣∣∣∣ n ∈ N
}

is tight.

(ii) There exists a countable dense set T ⊂ { t > 0 | Xt = Xt− a.s. }, a countable
dense subset D ⊂ S and a countable base V ⊂ U of U consisting of open
entourages such that for all x ∈ D, all V ∈ V open with τV[x](X) = γV[x](X) a.s.
and all s ∈ T it holds that

τV[x]
(
X(n) ◦ θs

) d
−→ τV[x](X ◦ θs). (1.13)

We apply our analysis of the path-space to obtain a tightness criterion in Theo-
rem 4.75 for Feller processes with values in uniform state spaces. The criterion states
that a sequence of Feller processes

(
X(n)

)
n∈N

is tight when the probability that the
processes move far from their starting point in a short time t goes uniformly to 0 in
the starting point and n as t → 0. Such a criterion was already shown in [ALW17,
Corollary 4.3] as a corollary to Aldous’ tightness criterion. Instead of using Aldous’
criterion to proof Theorem 4.75 we present a direct proof using the Feller property.

Theorem. For each n ∈ N let X(n) be a Feller process with values in a subset S n of a
locally compact Polish uniform space (S ,U). Assume that for every open entourage
U ∈ U it holds that

lim
t→0

lim
n→∞

inf
x∈S n
Px((x, X(n)

t ) ∈ U) = 1. (1.14)

Then for every sequence of initial distributions µn ∈ M1(S n) the family
{

X(n)
∣∣∣ n ∈ N

}
is tight in the one-point compactification (S ϑ,Uϑ).

We follow up on the idea to analyze Feller processes by hitting times. For a
symmetric Feller process X and a closed set A ⊂ S we introduce the killed process
XA which is the same as X up to the first hitting time τA of A and is then moved to a
cemetery state ϑ. In Theorem 4.65 and Theorem 4.66, we prove that the killed process
is again a symmetric (strong) Feller process with state space Dϑ := D ∪ {ϑ}, where
D = S \ A.

Theorem. Let X be a ν-symmetric (strong) Feller process with values in Sϑ and
A ∈ Bϑ closed. Then the killed process XA is again a ν|D-symmetric (strong) Feller
process with values in Dϑ, where D = S \ A.
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We apply this result in Theorem 4.72 to show that a symmetric doubly Feller
process is already uniquely determined by its family of Green operators

GA : Bb → Bb, GA f (x) := Ex

[∫ τA

0
f (Xt) dt

]
. (1.15)

The theorem is stated as follows.

Theorem. Let (S ,U) be compact and X be a ν-symmetric doubly Feller process with
values in Sϑ. Then X is uniquely determined by the family of Green operators

{GA : Bb → Bb | A ∈ B closed } . (1.16)

Other than in the situation of metric measure trees and resistance forms, points
do generally not have positive capacity in our setup. That means we cannot define
a resistance metric to introduce a natural scale for symmetric Feller processes on
uniform spaces. We can however define a resistance between closed subsets of the
state space in a very similar manner as in (1.7) using the Dirichlet form of the process.

Our final result is a convergence theorem for symmetric doubly Feller processes on
compact uniform spaces. Theorem 6.1 can be formulated as follows.

Theorem. Suppose (S ,U) is a compact uniform space and for each n ∈ N∞ = N∪{∞},
ν(n) is a Radon measure on (S ,B) with support S (n). Let further X(n) be a ν(n)-
symmetric conservative doubly Feller process with values in Sn. Denote by P(n) = PX(n)

the distribution of X(n) and assume that the following conditions hold.

(C1) ν(n) converges Hausdorff weakly to ν(∞).

(C2) The family
{

Q(n)
∣∣∣ n ∈ N

}
of maps given by

Q(n) : S (n) × [0,∞)→M1(S ), (x, t) 7→ Q(n)
x,t ( · ) := Px

(
X(n)

t ∈ ·
)

(1.17)

is uniformly equicontinuous.

(C3) For every sequence (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞), the
sequence

{
P(n)

xn

∣∣∣∣ n ∈ N
}

is tight as probability measures on DS ([0,∞)).

(C4) The Green’s functionals G(n)
A converge to G(∞)

A in the following sense. For all
bounded measurable functions f ∈ Bb(S ) and all A ∈ B(S ) with τA < ∞,
P(∞)

x∞ -a.s.,
lim
n→∞

G(n)
A f (xn) = G(∞)

A f (x∞), (1.18)

for all sequences (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞).
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Then X(n) converges in distribution to X(∞) for all sequences of initial distributions(
µ(n)

)
n∈N
⊂ M1(S ) with µ(n) ∈ M1(S (n)) and µ(n) ⇒ µ(∞) ∈ M1(S (∞)). In other

words,
P(n)
µ(n) ⇒ P

(∞)
µ(∞) (1.19)

weakly as probability measures on DS ([0,∞)) as n→ ∞.

1.2 Outline
This thesis is structured as follows.

In Chapter 2 we introduce the notion of uniformities and uniform spaces. We
present several different ways to define a uniform structure on a set S . Moreover, we
explain how uniform spaces are related to topological spaces (uniformities induce
topologies) and to metric spaces (metrics induce uniformities). In Section 2.5 we show
that uniform spaces admit Cauchy sequences and therefore a notion of completeness.
We introduce the notion of a Polish uniform space that is a separable and complete
uniform space. This allows us to define uniform measure spaces. We also introduce a
notion of uniform equicontinuity and prove a variant of the Arzelà-Ascoli theorem
for uniform spaces in Theorem 2.46 and Lemma 2.47. We close this foundational
chapter with a discussion of Hausdorff and Hausdorff weak convergence of subspaces
of uniform spaces.

Chapter 3 is dedicated to the pathspace DS ([0,∞)) of càdlàg functions with values
in a uniform space (S ,U). We pick up an idea of Jakubowski [Jak86] and define
a uniform structure on DS ([0,∞)) that is compatible with the Skorokhod topology
using a family of pseudometrics. We use the Skorokhod uniformity to reformulate
many important results that are usually stated in terms of the Skorokhod metric in a
more qualitative way. In Proposition 3.19 we give a useful criterion for convergence
in the Skorokhod topology. In Section 3.3 we discuss the relatively compact subsets
of DS ([0,∞)) and give conditions for relative compactness in the Skorokhod topology.
Section 3.4 is centered around Theorem 3.27 where we characterize the Skorokhod
convergence by the convergence of hitting times of certain sets. We continue with a
short discussion of the space of probability measures on a uniform space and show
that the concept of the Prokhorov metric can be extended to define a uniform structure,
the Prokhorov uniformity, on the space of probability measures on a uniform space.
In Theorem 3.43 we give a characterization of tightness of a family of probability
measures on DS ([0,∞)) which will come in handy when we proof our tightness
criterion Theorem 4.75 in Chapter 4. We conclude this chapter with our result on weak
convergence of a sequence of probability measures on DS ([0,∞)), Theorem 3.48.

We continue to introduce symmetric Feller processes with values in uniform spaces
in Chapter 4. We first introduce Markov processes to fix some notations. In particular,
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we introduce filtrations, stopping times, semigroups, resolvents and ν-symmetry of
semigroups. In Section 4.2 we introduce the normal and the strong Feller property
and introduce the generator. We also state the Hille-Yosida theorem Proposition 4.40
to characterize Feller semigroups in terms of the generator. We then continue to
show that Feller processes possess càdlàg modifications. Next, we discuss hitting
times and give some bounds on hitting times. In Section 4.3 we introduce the killed
process XA that is killed upon hitting a closed set A ⊂ S . We show that the Markov
property, the strong Markov property, symmetry as well as the normal and the strong
Feller property carry over from X to the killed process XA. We then briefly discuss
recurrence and transience of Feller processes and continue to show one of our main
results, Theorem 4.72, where we state that a symmetric doubly Feller process is
already determined by its family of Green operators. Before we conclude this chapter
with the discussion of two important examples, the random walk on graphs and
Brownian motion on Rd, we proof our tightness criterion Theorem 4.75 in Section 4.4.

In Chapter 5 we introduce Dirichlet forms. We start with the definition of a closed
symmetric form, then define Dirichlet forms as closed symmetric forms that possess
the Markov property. We begin Section 5.2 with a brief discussion of operators
on Hilbert spaces and then illustrate the relationship between strongly continuous
contraction semigroups, strongly continuous resolvents, generators and closed forms
on L2(S , ν). In the next subsection, we introduce the Markov property of the semigroup
and show that a Markovian semigroup gives rise to a Dirichlet form. We conclude
this section by explicitly extending a Feller semigroup (Pt)t≥0 on C∞(S ) to a strongly
continuous Markovian semigroup on L2(S , ν). Thereby showing how a Feller process
induces a Dirichlet form. We go on to define the extended Dirichlet space and discuss
the implications of transience and recurrence for the extended Dirichlet space. Namely,
the extended Dirichlet space is a Hilbert space if and only if the Dirichlet form is
transient. In Section 5.4 we introduce important potential theoretic notions like the
capacity. We begin with a general definition of Choquet capacities and then move on
to define α-capacities with respect to a Dirichlet form (E,D). The α-capacity is given
by the following variational principle.

Capα(A) := inf
{
Eα( f , f )

∣∣∣ f ∈ LA
}
, (1.20)

where LA := { f ∈ D | f ≥ 1 ν-a.e. on A }. Moreover, we characterize the minimizer
of (1.20) in Theorem 5.51 and identify the minimizer with pαA(x) = Ex

[
e−ατA

]
. For

transient Dirichlet forms, we define the 0-capacity in Section 5.4.3 and proceed
similarly as for the α-capacity. In Section 5.5 we define the resistance R(A, B)
between two closed subsets of S as the inverse of the 0-capacity of the killed Dirichlet
form. We conclude this chapter again with two examples. First, we formally introduce
resistance forms and discuss some of their properties. Finally, we define the Brownian
motion on Riemannian manifolds in a rather condensed form.
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We proof the convergence theorem Theorem 6.1 in Chapter 6. We proceed thereby
as follows. We first show that under the Hausdorff weak convergence of the state
spaces and the uniform equicontinuity of the semigroup, there exist subsequential
limits of the semigroup that again possess both the normal and the strong Feller prop-
erty in Theorem 6.2. We then show in Theorem 6.4 that this already implies that the
sequence of processes X(n) has subsequential limits in finite dimensional distributions.
Together with the assumption that the sequence X(n) is tight, we obtain the existence
of subsequential limits in path-space, Theorem 6.5. Finally, the convergence of the
Green operators implies by Theorem 4.72 that all subsequential limits mus coincide,
which proves the theorem. The last part of this chapter, Section 6.4, is dedicated to a
discussion of the assumptions (C1) to (C4).

The last chapter, Chapter 7 contains remarks and conjectures that are potentially of
interest for further research on the topic of convergence of symmetric Feller processes
and uniform measure spaces as state spaces.

The appendices contain some important facts that are good to have at an arm’s
length but which have not found their way into the main text.
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2Uniform spaces

„Gedanken ohne Inhalt sind leer, Anschauungen
ohne Begriffe sind blind.

— Immanuel Kant
Kritik der reinen Vernunft (B 75)

In this chapter, we introduce the notion of uniformities or uniform spaces. We will
show that a metric induces a uniformity which in turn induces a topology; but not the
other way round. In this sense uniform spaces are an intermediary between metric
spaces and topological spaces.

Uniform spaces will serve as state spaces for our stochastic processes throughout
this thesis. Although in many cases the uniform spaces under consideration will
be metrizable we want, on the one hand, emphasize the sufficiency of the uniform
structure for many results. On the other hand, we want to equip the state spaces with
a structure that is related to the processes under consideration (think of resistance
metrics) and the “correct” metric can be quite inaccessible.

Historically, the concept of uniform continuity for real-valued functions was intro-
duced by Eduard Heine [Hei70] in 1870. Heine attributes the insight that a stronger
notion of continuity is needed to KarlWeierstrass. The concept of uniform conti-
nuity was further extended to uniform continuity of functions on metric spaces by
Maurice Fréchet [Fré06] in 1906 and Felix Hausdorff [Hau14] in 1914. It took until
1937 that André Weil formally introduced uniform spaces in [Wei37]. Weil used
families of pseudometrics to define the uniform structure and we will present this
approach in Section 2.3. A different approach was put forward in 1939 by JohnW.
Tukey in his dissertation which has been recompiled and published as the monograph
[Tuk40]. Tukey relied in his work on uniform coverings to define a uniform structure.
In the 1950s and 1960s, there were further contributions to the theory of uniform
spaces by Vadim A. Efremovič and YuriM. Smirnov who constructed uniform spaces
from the proximity relation we will introduce in Section 2.6. In this thesis, we will
mainly rely on so-called diagonal uniformities which were used in [Bou66a] by the
famous author’s collective Nicolas Bourbaki which Weil was a founding member of.
More on the history of uniform spaces can be found in the preface to [Isb64] and in
the historical appendix in [Wil70].
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2.1 Diagonal uniformities
We begin with a bit of motivation. Let (S , d) and (T, r) be metric spaces. A function

f : S → T is continuous, if and only if the preimage f −1A of every open set A ⊂ S
is open in T . Furthermore, f is uniformly continuous if for every ε > 0 there exists
a δ > 0 such that r( f (x), f (y)) < ε for all x, y ∈ S with d(x, y) < δ. We can even
measure the degree of continuity with the modulus of continuity or Lipschitz constants.
In fact, the metric structure is not necessary to define uniform continuity. Write

Bd
ε :=

{
(x, y) ∈ S 2

∣∣∣ d(x, y) < ε
}

(2.1)

for the tube around the diagonal in S 2 with radius ε > 0 and analogously Br
ε ⊂ T 2 for

the ε-tube around the diagonal of T 2. Then the condition for uniform continuity can
be reformulated as: for all ε > 0 there exists a δ > 0 such that{

( f (x), f (y)) ∈ T 2
∣∣∣ (x, y) ∈ Bd

δ

}
⊂ Br

ε. (2.2)

These tubes or entourages allow us to compare neighborhoods of different points
across the whole space to each other. This idea is generalized by uniformities, in
particular by diagonal uniformities.

Let S be a nonempty set. There are different ways to introduce a uniform structure
on S . One way is via coverings and their refinements and another way is by families
of subsets of S × S . In the literature (cf. [Wil70]) the uniformities obtained from
coverings are called covering uniformities and the latter are called diagonal unifor-
mities. Both definitions are of course equivalent. We will mainly focus on diagonal
uniformities.

We denote by
∆ = ∆(S ) := { (x, x) | x ∈ S } ⊂ S × S (2.3)

the diagonal of the space S × S . Furthermore, we write

U∗ := { (x, y) ∈ S × S | (y, x) ∈ U } (2.4)

and say that U is symmetric if U∗ = U. For two subsets U,V of S × S we define the
concatenation of U and V as

U ◦ V := { (x, y) ∈ S × S | ∃ z ∈ S : (x, z) ∈ V and (z, y) ∈ U } . (2.5)

We can now define the main object of this section. The definition formalizes the
intuition gained from the motivation above.
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Definition 2.1 (Uniformities). Let S be a nonempty set. A (diagonal) uniformity on S
is a familyU = U(S ) of subsets of S × S satisfying

(U1) if U ∈ U then ∆ ⊂ U,

(U2) if U,V ∈ U then U ∩ V ∈ U,

(U3) if U ∈ U then there exists a V ∈ U such that V ◦ V ⊂ U,

(U4) if U ∈ U then V∗ ⊂ U for some V ∈ U,

(U5) if U ∈ U and U ⊂ V then V ∈ U.

The elements U of a uniformity U are called entourages or surroundings. A pair
(S ,U(S )) is called a uniform space. ♢

Most of the time is it enough to work with bases or even subbases of uniformities.

Definition 2.2 (Bases and subbases). Let (S ,U) be a uniform space. A familyV ⊂ U
of subsets of S is called a base of the uniformityU if

U = { U ⊂ S × S | ∃ V ∈ V : U ⊃ V } . (2.6)

The elements of a baseV ⊂ U are called basic entourages.

A familyV ⊂ U is called a subbase ofU if all finite intersections of elements of
V form a base ofU. ♢

We have indicated in the introduction that metric spaces carry a uniform structure.
It is instructive to have the following example in mind.

Example 2.3 (Metric spaces have uniform structure). Let (S , d) be a metric space.
Consider the familyV of sets of the form

Bε := { (x, y) ∈ S × S | d(x, y) < ε } , ε > 0. (2.7)

Clearly, V satisfies (U1) and (U4). For 0 < ε < δ we have Bε ⊂ Bδ and hence
Bε ∩ Bδ = Bε ∈ V and V satisfies (U2). Finally, we have for every ε > 0 that
Bε/3 ◦ Bε/3 = B2ε/3 ⊂ Bε, verifying (U3). Thus the family V is the base of a
uniformity on S . We refer to this uniformity simply as the metric uniformity when
there can be no confusion about the metric involved. ■

Given a uniformityU on S we can define neighborhoods of points by setting

U[x] := { y ∈ S | (x, y) ∈ U } (2.8)
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for some entourage U ∈ U. This definition can be extended to neighborhoods of sets
in a natural way by setting

U[A] :=
⋃
x∈A

U[x] (2.9)

for an entourage U ∈ U and a subset A of S .

We will show that these neighborhoods in fact give rise to a topology on S .

Recall from Definition A.4 and Proposition A.6 the properties of neighborhood
bases.

Proposition & Definition 2.4 (Topologies and uniformities). Let (S ,U) be a uniform
space andV ⊂ U a base ofU. The family Nx = { V[x] | V ∈ V } forms a neighbor-
hood base at x ∈ S and thusU induces a topology on S which we call the uniform
topology (associated with the uniformityU) on S . Furthermore, any baseV ofU
induces the same topology on S . We call any topology that can be obtained in this
way from some uniformity uniformizable.

Proof. We show that the family of subsets given by Nx := { V[x] | V ∈ V } at each
x ∈ S satisfies (i)–(iii) of Proposition A.6. By definition, (x, x) ∈ V for all V ∈ V and
consequently x ∈ V[x]. Assume that N1,N2 ∈ Nx, then there exist V1,V2 ∈ V such
that N j = V j[x], j = 1, 2. By property (U2) of Definition 2.1 we have V := V1∩V2 ∈ V

and hence

N1 ∩ N2 = { y ∈ S | (x, y) ∈ V1 ∩ V2 } = V1[x] ∩ V2[x] = V[x] ∈ Nx (2.10)

which implies (ii) of Proposition A.6. Consider N ∈ Nx with N = V[x] for some
V ∈ V. By Definition 2.1 (U3) there exists a U ∈ V such that U ◦ U ⊂ V and
consequently, for all y ∈ U[x] and z ∈ U[y] we have (x, z) ∈ U ◦ U ⊂ V and hence
U[y] ⊂ N, verifying the final property of neighborhood bases.

Let V′ ⊂ U be another base of U then for each x ∈ S the family N ′x :=
{ V[x] | V ∈ V′ } is a neighborhood base by the same arguments as above. Now,
Nx and N ′x are bases for same neighborhood system at x and hence induce the same
topologies on S , by Proposition A.3. ■

It follows immediately from the arguments laid out above that the uniform topology
is first countable if the uniformity possesses a countable base. We will say that the
uniform space (S ,U) has a countable base if the uniformityU has a countable base.
This does not mean, and should not be confused with, that the topology induced by
U has a countable base (second countable) but rather a countable local base (first
countable).

By taking the product of the uniform topology, any uniformity on S induces a
topology on S × S . We say that an entourage is open, closed, compact etc. if it is
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open, closed, compact etc. with respect to the product of the uniform topology on
S × S . In the same way we define the interior and the closure and related notions of
an entourage.

As is customary, we denote by A◦ the interior of A ⊂ S , that is the largest open set
contained in A (cf. Definition A.2). We make the following simple observation.

Lemma 2.5 (interiors of entourages are again entourages). Let (S ,U) be a uniform
space. Assume U ∈ U then U◦ ∈ U.

Proof. Let U ∈ U. In order to show the claim we show that there exists a V ∈ U
such that V ⊂ U◦. The claim then follows from Definition 2.1 (U5). By definition
of an entourage (U4), there exists a V ∈ U such that V ◦ V ◦ V ⊂ U. In order to
show V ∈ U◦ we must show that every element (x, y) ∈ V has a neighborhood that is
contained in U. By construction,

(x, y) ∈ V[x] × V[y] ⊂ V ◦ V ◦ V ⊂ U, (2.11)

hence V ◦ V ◦ V is the desired neighborhood. ■

The next result can be found in [Wil70, Theorem 35.6]. The proof is straightforward
but we present it here for completeness sake.

Proposition & Definition 2.6 (Separating uniformities). Let (S ,U) be a uniform
space. The uniformityU is called separating if⋂

U∈U

U = ∆. (2.12)

Furthermore, the uniformityU is separating if and only if (2.12) holds for some and
hence for any base V of U. The uniform topology is Hausdorff if and only if the
uniformityU is separating

Proof. By definition of a base, it follows immediately that (2.12) holds for every base
ofU if it holds forU. On the other hand, since every base is a subset ofU, (2.12)
holds if it holds for some baseV ofU.

Now assume that U is separating and let x, y ∈ S be distinct. Then there exists
a U ∈ U such that (x, y) < U. By Definition 2.1 (U3) and Lemma 2.5 there exists
a V ∈ U open such that V ◦ V ⊂ U. We claim that V[x] and V[y] are disjoint
neighborhoods of x and y, respectively. If there exists a z ∈ V[x] ∩ V[y] then, by
definition, (x, y) ∈ V ◦ V ⊂ U which was ruled out by assumption.
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Now assume that (S ,T ) is Hausdorff, where T is the uniform topology induced
by U. Let x, y ∈ S be distinct. By definition of the uniform topology, there exist
V,W ∈ U open such that V[x] ∩W[y] = Ø. Then V ∩W ∈ U is an (open) entourage
that does not contain (x, y). ■

Different authors use slightly different definitions of uniformities. Isbell [Isb64] for
example, includes the Hausdorff property in the definition of a uniformity.

The next lemma provides a convenient base for proofs involving uniformities. We
say that U ⊂ S × S is symmetric, if S = S ∗.

Lemma 2.7 ([Wil70, Theorem 35.9]). The open, symmetric elements of U form a
base ofU.

Proof. Let U ∈ U, then U ∩ U∗ ∈ U, by Definition 2.1 (U4) and furthermore
U ∩ U∗ ⊂ U. It remains to show that the open sets form a base. Let U ∈ U and
V ∈ U be symmetric with the property that V ◦ V ◦ V ⊂ U. By Lemma 2.5 we have
U◦ ∈ U, completing the proof. ■

It turns out that uniformities are the structure that is needed to define uniformly
continuous functions – hence the name.

Definition 2.8 (Uniform continuity). Let (S ,U) and (T,V) be two uniform spaces. A
function f : S → T is uniformly continuous, if for each V ∈ V there exists a U ∈ U
such that { ( f (x), f (y)) | (x, y) ∈ U } ⊂ V . ♢

If either S ,T or both are metric spaces, the function f : S → T is uniformly
continuous if and only if it is uniformly continuous with respect to the uniformities
generated by metrics on S and/or T respectively.

It follows immediately from the definition of the metric uniformity that a function
f : S → T , where (S ,U) is a uniform space and (T, d) is a metric space, is uniformly
continuous if and only if for every ε > 0 there exists a U ∈ U such that d( f (x), f (y)) <
ε whenever (x, y) ∈ U.

The trinity of topological, uniform and metric spaces becomes apparent when con-
sidering continuous functions: on topological spaces, we can only discern continuous
from non-continuous functions. On uniform spaces, we can compare the degree of
continuity at different points of a function, which leads to the notion of uniform
continuity. In metric spaces, however, we can even measure the degree of continuity
via the modulus of continuity and compare the degree of continuity across functions.

We conclude this section with a couple of examples.
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Examples 2.9 (cf. [Wil70, Examples 35.3]). Let S be a non empty set.

(i) The uniformity U = { U ⊂ S × S | ∆ ⊂ U } is called the discrete uniformity.
The discrete uniformity generates the discrete topology.

(ii) The uniformity U = {S × S } is called the trivial uniformity. The trivial
uniformity generates the trivial topology. ■

The next example illustrates that there may exist multiple uniformities that induce
the same topology.

Example 2.10. Let S = R. For any r ∈ R the sets of the form

Ur :=
{

(x, y) ∈ R2
∣∣∣ x > r and y > r

}
∪ ∆ (2.13)

form a base for a uniformity U on R which is not the discrete uniformity (e.g. the
unit ball is not contained inU). On the other hand, for every x and every r < x we
have Ur[x] = {x} and henceU generates the discrete topology on R. ■

On the other hand, different metrics may induce the same uniformity.

Example 2.11. Let (S , d) be a metric space. Assume α > 0, then the metrics d, αd
and
√

d all induce the same uniformity on S . ■

2.2 Weak uniformities
Similar to the weak topology induced by a family of functions one can define the

weak uniformity.

Definition 2.12 (Weak uniformities). Let S be a set and (T,V) a uniform space.
Further, let F := { f : S → T } be a family of maps from S to T . The weak uniformity
UF generated by F is the coarsest uniformity on S such that all f ∈ F are uniformly
continuous. ♢

Proposition 2.13 (A base for weak uniformities). Let S be a non-empty set and (T,V)
a uniform space. Let further F ⊂ { f : S → T } be a non empty family of maps from S
to T and define for each f ∈ F the map F f : S × S → T × T by

F f (x, y) = ( f (x), f (y)). (2.14)
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Then the collection of sets

W :=

 n⋂
i=1

F−1
fi Vi

∣∣∣∣∣∣∣ n ∈ N, fi ∈ F , Vi ∈ V for all i ∈ N

 (2.15)

forms a base for the weak uniformityUF on S .

Proof. We first show that W is a base, i.e. satisfies properties (U1) to (U4). By
definition, ∆(T ) ⊂ V for all V ∈ V and clearly, F−1

f (∆(T )) = ∆(S ). Hence, ∆(S ) ⊂
W for all W ∈ W showing (U1). Property (U2) follows immediately from the
definition ofW. Properties (U3) and (U4) are consequences of the corresponding
properties of V. We only show (U3) as (U4) can be shown by a similar argument.
Assume W = F−1

f V for some f ∈ F and V ∈ V. Then there exists a V ′ ∈ V
such that V ′ ◦ V ′ ⊂ V and set W′ := F−1

f V ′. For i = 1, 2, 3 let xi ∈ S be such that
(x1, x2), (x2, x3) ∈ W′. Then there exist yi ∈ T , i = 1, 2, 3 such that xi ∈ f −1{yi}

for i = 1, 2, 3 and (y1, y2), (y2, y3) ∈ V ′. Thus, (y1, y3) ∈ V and hence (x1, x3) ∈ W
and consequently W′ ◦W′ ⊂ W. The same conclusion follows for general W ∈ W
from the observation that for two subsets A, B ⊂ S × S and A′, B′ ⊂ S × S such that
A′ ◦ A′ ⊂ A and B′ ◦ B′ ⊂ B it holds that

(A′ ∩ B′) ◦ (A′ ∩ B′) ⊂ (A′ ◦ A′) ∩ (B′ ◦ B′) ⊂ A ∩ B. (2.16)

We have shown that W is indeed the base for a uniformity UF on S . It remains
to show that every uniformity on S with respect to which all f ∈ F are uniformly
continuous, containsW. But this follows immediately from the definition ofW. ■

Remarks 2.14. (i) In (2.15) it suffices to restrict choice of the Vi to a base ofV.

(ii) In the case where (T, d) is a metric space the weak uniformity associated with a
family F = { f : S → T } is generated by the sets of the form

n⋂
i=1

F−1
fi Bδ, (2.17)

where n ∈ N, δ > 0, f j ∈ F for all 1 ≤ i ≤ n and

Bδ := { (u, v) ∈ T × T | d(x, y) < δ } . (2.18)

To see this recall that the sets Bδ, δ > 0 are a base for the metric uniformity.
Furthermore, the inclusion Bε ⊂ Bδ for ε < δ is preserved under the preimage
operation and hence we can choose δ = mini=1,...,n{δi}. ♢
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For a more detailed account of weak uniformities see [Wil70, Chap. 37]. For our
purpose weak uniformities generated by real-valued functions will suffice. Observe
that the topology generated by the weak uniformity generated by F coincides with
the weak topology generated by F (cf. the remark after [Wil70, Definition 37.7]).

2.3 Uniformities and pseudometrics
Recall from Definition A.26 that a pseudometric on a set S is a distance function

ρ : S × S → R that satisfies all the axioms of a metric except that ρ(x, y) = 0 does
not necessarily imply x = y. That is, ρ is non-negative definite, symmetric, satisfies
ρ(x, x) = 0 for all x ∈ S and the triangle inequality holds.

Pseudometrics, or rather families of pseudometrics provide a different way to
characterize uniform spaces. Given a non-empty index set I , Ø and a family
{ ρi | i ∈ I } of pseudometrics on S we can define a uniformityU on S using the sets
of the form

Uρi
ε := { (x, y) ∈ S × S | ρi(x, y) < ε } i ∈ I, ε > 0

as a base of U. An important question is when is a uniformity generated by a
family of pseudometrics separating or, equivalently, when is the uniform space (S ,U)
Hausdorff.

Lemma 2.15 (Pseudometrics and separating uniformities). Let S , Ø and Γ =
{ ρi | i ∈ I } a family of pseudometrics on S . Then the uniformity generated by Γ is
separating if for each pair (x, y) ∈ S 2 \ ∆ there exists a ρ ∈ Γ such that ρi(x, y) > 0.

Proof. Let (x, y) ∈ S 2 \ ∆. By assumption, there exists a ε > 0 and a ρ ∈ Γ such that
ρ(x, y) > ε. Hence, (x, y) < Uρ

ε and thus
⋂
ρ∈Γ

⋂
ε>0 Uρ

ε = ∆. ■

More interestingly, every uniformity can be obtained from a family of pseudomet-
rics (cf. [Bou66b, IX Theorem 1.4.1]). To construct such a family of pseudometrics on
a uniform space (S ,U), consider the space S ×S endowed with the product uniformity
U2. That is the coarsest uniformity that makes the projections uniformly continuous.
ThenU is generated by the family of all pseudometrics that are uniformly continuous
on S × S (see [Bou66b, IX §1.5]).

These observations lead to the following result. (see e.g. [Jak86])

Proposition 2.16 (Consistent families of pseudometrics). Let (S ,U) be a uniform
Hausdorff space. Then there exists an index set I and a family { ρi | i ∈ I } of pseudo-
metrics on S generatingU with the properties
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(i) for all x, y ∈ S with x , y there exists an i ∈ I such that ρi(x, y) > 0

(ii) for all i, j ∈ I there exists an index k ∈ I such that max{ρi, ρ j} ≤ ρk.

Proof. By Lemma 2.7 we can choose a base V of U consisting of the open and
symmetric entourages U ∈ U. For U ∈ V set ρU(x, y) = 1U

(
(x, y)

)
. It is easy to

check that ρU is a pseudometric. Furthermore, it is evident from the construction
that the family { ρU | U ∈ V } generatesU. By the Hausdorff property, for each pair
(x, y) ∈ S 2 \ ∆ there exists a basic entourage U ∈ V such that (x, y) < U and hence
ρU(x, y) > 0, showing (i). Now let U,V ∈ V, by definition of a uniformity, U∩V ∈ U
and hence there exists a basic entourage W ∈ V such that W ⊂ U ∩ V . Assume
ρU(x, y) > 0 then, (x, y) < U and hence (x, y) < W and we have ρU(x, y) = ρW(x, y) =
1. The same holds for ρV , establishing (ii) ■

We use the common short-hand a ∨ b := max{a, b} and a ∨ b := min{a, b} for
a, b ∈ R. Analogously we set for real-valued functions f , g : Ω→ R

( f ∨ g)(ω) := max{ f (ω), g(ω)}, ( f ∧ g)(ω) := min{ f (ω), g(ω)}, ω ∈ Ω. (2.19)

Without loss of generality we can always take the family { ρi | i ∈ I } to be bounded
by 1.

Lemma 2.17 (Truncated pseudometrics generate the same uniformity). Let { ρi | i ∈ I }
be a family of pseudometrics on S and U the uniformity generated by this family.
ThenU is also generated by the family { ρi ∧ 1 | i ∈ I }.

Proof. The claim follows immediately from the observation that for all 0 < ε < 1 and
i ∈ I {

(x, y) ∈ S 2
∣∣∣ ρi(x, y) < ε

}
=

{
(x, y) ∈ S 2

∣∣∣ ρi(x, y) ∧ 1 < ε
}
. (2.20)

■

Apparently, there is a close connection between uniformities and (families of) pseu-
dometrics. So it comes as no surprise that AndréWeil used families of pseudometrics,
so called gage structures, to originally define uniformities in [Wei37].

Definition 2.18 (Gage structures). Let S be a nonempty set and I , Ø some set of
indices. A family G = { ρi | i ∈ I } of pseudometrics on S is called a gage structure if
it satisfies

(i) whenever ρi, ρ j ∈ G then max ρi, ρ j ∈ G
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(ii) if ρ is a pseudometric on S and for every ε > 0 there exists a δ > 0 and a ρ′ ∈ G
such that ρ(x, y) < ε whenever ρ′(x.y) < δ, then ρ ∈ G. ♢

It can be shown (cf. [Kel75, Theorem 6.18]) that gage structures are in a one-to-one
correspondence with uniformities.

The term “gage” does not appear in Weil’s work in 1937 or in Doss’ article [Dos49]
in 1949. But it appears in the first edition of Kelley’s [Kel75] in 1955. I have not been
able to find out who first coined the term. In more recent publications about uniform
spaces, one can also find the term “gauge” (see for example [HNV04]) which appears
to be a copying error.

We have already seen, that every metric induces a uniform structure which in
turn induces a topology. We are now interested in conditions under which these
implications can be reversed. In other words, we seek conditions for a topological
space to be uniformizable and for uniform spaces to be metrizable. We cite the
following results from [Wil70] and omit the proofs.

Recall from Definition A.14 that a completely regular topological space is a topo-
logical space where points can be separated by continuous functions. As it turns out,
the uniformizable topological spaces are exactly those that are completely regular.

Proposition 2.19 (Completely regular spaces are uniformizable). Let (S ,T ) be a
topological space. The topology T is uniformizable if and only if (S ,T ) is completely
regular.

Proof. See [Wil70, Theorem 38.2]. ■

Next, we turn to the question which uniformities can be derived from a metric.

Proposition 2.20 (Metrizable uniform spaces). Let (S ,U) be a uniform space. Then
the uniformity is pseudometrizable if and only ifU has a countable base. Furthermore,
U is metrizable if and only ifU has a countable base and is Hausdorff.

Proof. See [Wil70, Theorem 38.3 & Corollary 38.4]. ■

We will say that a uniform space (S ,U) is metrizable if the uniformity U is
metrizable. It is important to observe that metrizability of the topology induced byU
does not imply metrizability ofU itself. For a pathological counterexample refer to
[Wil70, Example 38.5].
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2.4 Covering uniformities
Next, we give a brief introduction to covering uniformities. This is another, and

equivalent, way to define a uniform structure and we will need this construction in the
proof of Theorem 3.16. Some authors, notably JohnW. Tukey [Tuk40] and John R.
Isbell [Isb64] advocate this approach. Isbell summarizes his opinion

However, Weil’s original axiomatization [via pseudometrics] is not
at all convenient and was soon succeeded by two other versions: the
orthodox (Bourbaki) [via diagonal uniformities] and the heretical (Tukey)
[via uniform coverings]. The present author is a notorious heretic, and
here advances the claim that in this book each system is used where
it is most convenient, with the result that Tukey’s system of uniform
coverings is used nine-tenths of the time.1

Let S , Ø be a non-empty set. Recall that a cover of S is a family A = {A ⊂ S }
such that S =

⋃
A∈A A. Given a cover A of S and some C ⊂ S , the star of C with

respect toA is the family

St(C,A) =
⋃

A∈A: A∩C,Ø

A. (2.21)

Before we can define what a uniform covers or a covering uniformity is, we need a
bit of vocabulary.

Definition 2.21 (Refinements). LetA,B be two covers of S . We say that

(i) A refines B,A < B, if for each A ∈ A there exists a B ∈ B such that A ⊂ B.

(ii) A star-refines B,A <∗ B, if for each A ∈ A there exists some B ∈ B such that
St(A,A) ⊂ B.

(iii) A is a barycentric refinements of B, A ⊏ B, if the family of sets of the form
{ St({x},A) | x ∈ S } refines B. ♢

Lemma 2.22 (Barycentric refinements of barycentric refinements are star refinements).
LetA,B,C be covers of S and assume thatA ⊏ B ⊏ C. ThenA <∗ C.

Proof. Let A ∈ A. Since A ⊏ B, there exists for each x ∈ A a Bx ∈ B such that
St({x},A) ⊂ Bx. By construction, we have St(A,A) ⊂

⋃
x∈A Bx and A ⊂

⋂
x∈A Bx

which implies St(A,A) ⊂ St({x},B) for each x ∈ A. By assumption B ⊏ C and
consequently there exists a x ∈ A and C ∈ C such that St(A,A) ⊂ St({x},B) ⊂ C and
henceA <∗ C. ■

1[Isb64, p. v]
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In uniform spaces, certain coverings play a special role.

Definition 2.23 (Uniform covers). Let (S ,U) be a uniform space. A coveringA of S
is called a uniform cover if it is refined by a cover of the form

AU = { U[x] | x ∈ S } (2.22)

for some U ∈ U. ♢

Proposition 2.24 (Properties of the family of uniform covers). Let (S ,U) be a uniform
space and denote by µ the family of all uniform covers of S . Then the following hold

(C1) IfA1,A2 ∈ µ are uniform coverings then there exists another uniform covering
A3 ∈ µ such thatA3 <∗ A1 andA3 <∗ A2.

(C2) IfA ∈ µ andA < A′ for some coveringA′ of S , thenA′ ∈ µ.

Proof. Let A ∈ µ be a uniform cover of S . Then there exists a U ∈ U such that A
is refined by AU := { U[x] | x ∈ S }. Choose V ∈ U such that V ◦ V ⊂ U and let
B = { V[x] | x ∈ S }. For each x ∈ S we have St({x},B) ⊂ U[x] because each V[y] for
which x ∈ V[y] is contained in (V ◦ V)[x] ⊂ U[x]. Hence B ⊏ A and by Lemma 2.22
there exists another uniform cover C such that C <∗ A. What is left to show is that
A1,A2 ∈ µ possess a common barycentric refinement. Without loss of generality,
assume that let U1,U2 ∈ U are entourages that induceA1 andA2, respectively. Now
choose an open symmetric entourage U ∈ U such that U ◦ U ⊂ U1 ∩ U2 and denote
the uniform cover induced by U byA, then St({x},A) ⊂ U1[x]∩U2[x] and thusA is
a barycentric refinement of bothA1 andA2, which proves (C1).

The second assertion follows immediately from the definition of uniform covers.
■

The converse of Proposition 2.24 holds true, too.

Theorem 2.25 (Uniform covers induce uniformity). Let µ be a family of covers of the
set S satisfying (C1) and (C2) of Proposition 2.24. Then the family

V :=

 ⋃
A∈A

A × A

∣∣∣∣∣∣∣ A ∈ µ
 (2.23)

forms a base of a diagonal uniformity U and the collection of all uniform covers
induced byU is µ.
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Proof. Let U ∈ V, i.e. there exists a cover A ∈ µ such that U =
⋃

A∈A A × A. We
check the axioms (U1) to (U4) of Definition 2.1 one by one. Since A is a cover
of S we readily get ∆ ⊂ U and thus (U1). By construction, the elements of V are
symmetric, implying (U4). Now assume V ∈ V is another element and B ∈ µ is such
that V =

⋃
B∈B B × B. Then,

U ∩ V =
⋃
A∈A

A × A ∩
⋃
B∈B

B × B =
⋃
A∈A

⋃
B∈B

(A ∩ B) × (A ∩ B) (2.24)

and the family C := { A ∩ B | A ∈ A, B ∈ B } is a cover of S . By (C1) there exists
a star-refinement C′ ∈ µ of both A and B. By construction, C′ refines the cover C
and thus C ∈ µ by virtue of (C2), which in turn implies U ∩ V ∈ V and hence (U2).
Finally, (U3) follows immediately when we choose B to be a star-refinement of A
and U,V defined as before.

Next, we need to show that the uniform covers with respect to the uniformityU
generated byV is just µ. It suffices to show that eachA ∈ µ is a uniform cover with
respect toU.

Let A ∈ µ and U ∈ U, as before, the entourage generated by A. Choose an
entourage V ∈ U such that V ◦ V ⊂ U then the cover { V[x] | x ∈ S } refinesA and
by definitionA is a uniform cover with respect toU. ■

We call a family µ of covers of S satisfying (C1) and (C2) a covering uniformity. If
µ satisfies only (C1), we say that µ is a base for a uniform covering.

The connection between covering uniformities and families of pseudometrics on S
is straight-forward.

Lemma 2.26 (Pseudometrics and covering uniformities). Let I be a non empty index
set and (ρi)i∈I a family of pseudometrics on S satisfying (i) of Proposition 2.16. Then
the family µ consisting of all covers of S of the form

Ai,ε := { Bi(x, ε) = { y ∈ S | ρ(x, y) < ε } | x ∈ S } i ∈ I, ε > 0 (2.25)

is a base for a covering uniformity of S .

Proof. We only need to show that µ satisfies condition (C1). Let ε, δ > 0 and i, j ∈ I.
We need to find a star-refinement of bothAi,ε andA j,δ. It follows from condition (i)
of Proposition 2.16 that there exists an index k ∈ I such that ρk ≥ max{ρi, ρ j} which
means Bk(x, ε) ⊂ Bi(x, ε) and Bk(x, δ) ⊂ B j(x, δ) for all x ∈ S . That implies that
Ak,(ε∧δ)/4 star-refines bothAi,ε andA j,δ. ■
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Remark 2.27. Let D ⊂ S be a dense subset of S . Then the conclusion of the last
lemma still holds if we replace µ by the family of covers consisting of the sets

A′i,ε := { Bi(x, ε) = { y ∈ S | ρ(x, y) < ε } | x ∈ D } i ∈ I, ε > 0, (2.26)

as these are clearly covers of S and the same proof as before applies. ♢

It comes as no surprise, that uniform continuity can be defined in terms of covering
uniformities equally well.

Proposition 2.28 (Uniform continuity [Wil70, Theorem 36.8]). Let (S ,U) and (T,V)
be uniform Hausdorff spaces and denote by µ and ν the families of uniform covers
of S and T , respectively. A function f : S → T is uniformly continuous if and only if
any of the following two equivalent conditions is satisfied.

(i) For each uniform cover B ∈ ν of T there exists a uniform cover A ∈ µ of S
such that f (A) < B, where f (A) = { f (A) | A ∈ A }.

(ii) For each uniform cover B ∈ ν of T , the family f −1B :=
{

f −1B
∣∣∣ B ∈ B

}
is a

uniform cover of S .

Proof. First observe that the equivalence of the two conditions is an immediate
consequence of Proposition 2.24. Now assume that f : S → T is uniformly continuous
and let B ∈ ν be a uniform cover of T . Then there exists an entourage V ∈ V such
that BV := { V[y] | y ∈ T } is a refinement of B. By uniform continuity, there exists a
U ∈ U such that ( f (x), f (x′)) ∈ V whenever (x, x′) ∈ U and hence, f (AU) < BV < B.

Conversely, suppose that conditions (i) and (ii) hold and fix V ∈ V. For B ∈ ν,
write

VB :=
⋃
B∈B

B × B, (2.27)

and compare this to (2.23) to deduce that VB ∈ V for all B ∈ ν. Then there exists a
uniform cover B ∈ ν such that VB ⊂ V and by assumption a uniform coverA ∈ µ of
S such that f (A) < B. Hence, (x, x′) ∈ UA implies that ( f (x), f (x′)) ∈ VB ⊂ V . And
since V ∈ V was arbitrary this proves uniform continuity of f , as claimed. ■

The next result is well known for metric metric spaces from any introductory
calculus course. We nevertheless prove it here for uniform spaces as the proof is rather
instructive.

Lemma 2.29 (Continuous functions on compacta are uniformly continuous). Let
(S ,U) and (T,V) be uniform Hausdorff spaces and assume that S is compact. Then,
every continuous function f : S → T is already uniformly continuous.
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Proof. Let V ∈ V and choose V ′ ∈ V open and symmetric such that V ′ ◦ V ′ ⊂ V .
Consider the open (uniform) cover B f

V′ { V
′[ f (x)] | x ∈ S } of f (S ). By continuity of

f , the family
A =

{
f −1V ′[ f (x)]

∣∣∣ x ∈ S
}

(2.28)

is an open cover of S . By definition of the uniform topology, there exist open
entourages Ux such that

(Ux ◦ Ux)[x] ⊂ f −1V ′[ f (x)] (2.29)

for all x ∈ S . By compactness, there exist finitely many x1, . . . , xN ∈ S such that the
family

{
Ux j[x j]

∣∣∣ j = 1, . . . ,N
}

is an open cover of S . By definition of a uniformity,
we obtain

U :=
N⋂

j=1

Ux j ∈ U (2.30)

and furthermore, U is open.

Assume that (y, z) ∈ U. By construction, there exists a j ∈ {1, . . . ,N} such that
(x j, y) ∈ Ux j and hence

{y, z} ⊂ (Ux j ◦ U)[x j] ⊂ f −1V ′[ f (x j)]. (2.31)

As a consequence, { f (y), f (z)} ∈ V ′[ f (x j)] and by a similar argument as before we
finally obtain ( f (x), f (y)) ∈ V for all (x, y) ∈ U. ■

Much more can be said about covering uniformities and we refer the interested
reader to Isbell’s book [Isb64] for an in depth treatment of covering uniformities. The
take-away from this section is that covering uniformities offer a different view of the
uniform structure of a space.

2.5 Further properties of uniform spaces
We described in the first section of this chapter how uniform spaces are halfway

between topological spaces and metric spaces with respect to their structure. Many
structural properties known in metric spaces can be generalized to uniform spaces by
exchanging quantitative statements for qualitative statements.

In this section, we explain how the notion of metric measure spaces can be extended
to uniform measure spaces which will serve as the state spaces for the processes that
are the focus of this research.
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Definition 2.30 (totally bounded sets). Let (S ,U) be a uniform space. A subset A ⊂ S
is totally bounded if for every open entourage U ∈ U there exists a finite collection
of points { xi ∈ A | 1 ≤ i ≤ n } in A such that

A ⊂
n⋃

i=1

U[xi]. ♢

Lemma 2.31 (A condition for totally boundedness). Let (S ,U) be a uniform space
and D ⊂ S a subset. Assume that for each U ∈ U there exists a totally bounded set
A ⊂ S such that

D ⊂
⋃
x∈A

U[x]. (2.32)

Then D is totally bounded.

Proof. Fix U ∈ U open and choose V,W ∈ U open such that that W ◦ W ⊂ V
and V ◦ V ⊂ U. By assumption, there exists a totally bounded A ⊂ S such that
D ⊂

⋃
x∈A W[x]. Let x1, . . . , xn ∈ A be such that

A ⊂
n⋃

k=1

W[xk]. (2.33)

Since
⋃

x∈W[xk] W[x] ⊂ V[xk] for all k = 1, . . . , n it follows that

D ⊂
n⋃

k=1

V[xk]. (2.34)

Without loss of generality assume that for some N ≦ n the points x1, . . . , xN are
exactly those xk for which V[xk] ∩ D , Ø. Now let yk ∈ V[xk] ∩ D for k = 1, . . . ,N.
Then, V[xk] ⊂ U[yk] and consequently

D ⊂
N⋃

k=1

U[yk]. (2.35)

■

Naturally, any uniform spaces (S ,U) induces a measurable space (S ,B(S )), where
B(S ) denotes the Borel σ-algebra generated by the open sets of (S ,U).

Recall from Definition A.35 the definition of a Radon measure.

Definition 2.32 (Boundedly finite measures). Let (S ,U) be a locally compact uniform
Hausdorff space. A Radon measure ν on (S ,B(S )) is boundedly finite, if ν(A) < ∞
for every totally bounded set A ⊂ S . ♢
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Recall the definition of a net from Definition A.42: A net is a generalization of a
sequence in the sense that we allow arbitrary directed sets (I,⪰) as index sets.

The uniform structure allows us to define Cauchy sequences and nets as follows.

Definition 2.33 (Cauchy nets). Let (S ,U) be a uniform space. A net (xα)α∈I is called
a Cauchy net if for every open entourage U ∈ U there exists a α0 ∈ I such that

(xβ, xγ) ∈ U (2.36)

whenever β, γ ⪰ α0. ♢

With the definition of Cauchy nets at hand we can introduce the notion of complete-
ness for uniform spaces and define uniform measure spaces.

Definition 2.34 (Complete uniform spaces). A uniform space (S ,U) is called com-
plete if every Cauchy net converges. ♢

Next, we make two useful observations about compact sets.

Lemma 2.35 (Heine-Borel). Let (S ,U) be a complete uniform space. Then A ⊂ S is
compact if and only if A is closed and totally bounded.

Proof. Assume A ⊂ S is compact. Then A is closed and furthermore for every open
entourage U ∈ U, the covering { U[x] | x ∈ A } of A has a finite subcover, i.e. there
exists a collection of points {x1, . . . , xn} ⊂ A such that A ⊂

⋃n
i=1 U[xi]. The converse

implication follows from [Wil70, Theorem 39.13]. ■

Lemma 2.36 (Totally bounded uniform neighborhoods). Let (S ,U) be a locally
compact uniform Hausdorff space. Then there exists for every x ∈ S an open
entourage U ∈ U such that U[x] is compact.

Proof. Fix x ∈ S . By local compactness, there exists a compact set Kx ⊂ S and an
open entourage U ∈ U such that U[x] ⊂ K. Suppose { Bn | n ∈ N } is an open cover
of the closure U[x]. Then,

{ Bn | n ∈ N } ∪
{
∁U[x]

}
(2.37)

is an open cover of Kx. By compactness of Kx, there exists a finite open subcover,

{ B1, . . . , Bn | n ∈ N } ∪
{
∁U[x]

}
(2.38)
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of Kx. Since ∁U[x] ∩ U[x] = Ø, we have found with { B1, . . . , Bn | n ∈ N } an open
subcover of U[x] which is therefore compact. ■

A similar result holds true for compact subsets of S .

Lemma 2.37. Let (S ,U) be a locally compact uniform Hausdorff space. For each
K ⊂ S compact there exists an open set A ⊂ S such that K ⊂ A ⊂ S and the closure
A is compact.

Proof. For each x ∈ K choose by Lemma 2.36 an open entourage U x ∈ U such that
U x[x] is relatively compact. Take a finite subcover consisting of x1, . . . , xn ∈ K and
U1, . . . ,Un ∈ U open such that

K ⊂
n⋃

i=1

Un[xn] =: A. (2.39)

Then A is open and contained in the compact set

A ⊂
n⋃

i=1

Un[xn] ⊂ S , (2.40)

as claimed. ■

In order to use the classical results from probability theory, we need to make sure
that our spaces are separable and complete. We adapt the terminology that is known
from the theory of metric spaces and call such spaces Polish.

These assumptions can certainly be weakened to some degree, but it is not within
the scope of this thesis to do so.

Definition 2.38 (Polish uniform space). A metrizable uniform space (S ,U) is called
Polish uniform space if is separable and complete. ♢

Some remarks about this definition are in order. First, observe that by Proposi-
tion 2.20 Polish uniform spaces are Hausdorff and possess a countable base for the
uniformityU. Furthermore, we note the following result for further reference.

Lemma 2.39 (Completely metrizable uniform spaces). [Wil70, Theorem 39.4] Let
(S ,U) be a uniform Hausdorff space with a countable base (sc. U is metrizable).
Assume further thatU is complete. Then every metric on S that inducesU is complete.
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This gives rise to the question why to consider Polish uniform spaces at all instead
of relying on the well developed theory of metric measure spaces. The main reason
is that we want to emphasize that the structural properties of the spaces that are
important are those expressed by the uniformity and do not depend on the concrete
metric that generates the uniform structure.

Lemma 2.40 (Lindelöf property). Let (S ,U) be a Polish uniform space. Then (S ,U)
is Lindelöf.

Proof. Metrizability and separability together imply the existence of a countable base
of the uniform topology. Hence, every Polish uniform space is second countable and
therefore, by Lemma A.19, Lindelöf. ■

For further reference, we introduce the analog of metric measure spaces for our
uniform setup.

Definition 2.41 (Uniform measure spaces). A uniform measure space is a triple
(S ,U, ν), where (S ,U) is a Polish uniform space and ν is a σ-finite Radon measure
on (S ,B(S )), where B(S ) is the Borel σ-algebra, as usual. We write Bν(S ) for the
completion of B(S ) with respect to ν, i.e.

Bν(S ) := σ (B(S ) ∪ { A ⊂ N ∈ B(S ) | ν(N) = 0 }) . (2.41)

♢

Remark 2.42 (Properties of Radon measures on Polish spaces). Let A ⊂ S be totally
bounded. By Lemma 2.35, A is compact and therefore, by Definition A.35,

µ(A) ≤ µ(A) < ∞. (2.42)

Hence, every Radon measure on a Polish uniform space is boundedly finite. ♢

In the next chapter we will develop the theory of the Skorokhod space of càdlàg
functions on a uniform space. We will be as general as the scope of this thesis permits
in order to show that the assumptions on uniform measure spaces can be relaxed while
still retaining a meaningful theory.

2.5.1 Uniform equicontinuity
In this section, we introduce the notion of equicontinuity of a family of real-valued

functions on a uniform Hausdorff space and present a version of the celebrated Arzelà-
Ascoli theorem that will be central to the proof of Theorem 6.2. The proof presented
here is based on the proof of [DS58, Theorem IV.6.5.7].
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Let S ,T be two non empty sets, we denote by F (S ; T ) = { f : S → T } the family
of all maps f from S to T .

Lemma 2.43 (Uniformity of uniform convergence). Let S , Ø be a set and (T,V) a
uniform Hausdorff space. Assume that V′ ⊂ V is a base of V. Then the family of
subsets of F (S ; T )2 of the form{

( f , g) ∈ F (S ; T )2
∣∣∣ ( f (x), g(x)

)
∈ V, ∀x ∈ S

}
, V ∈ V′ (2.43)

is a base of a uniformity on F (S ; T ) which does not depend on the choice of the base
V′.

Proof. LetV′ ⊂ V be a base ofV and assume thatW′ is the system of subsets of
F (S ; T )2 induced by V′ as described in (2.43). We first show thatW′ is indeed a
base for a uniformity on F (S ; T ). Clearly, ∆ ⊂ W for all W ∈ W′. The remaining
properties of a base (U2) to (U4) follow readily from the analogous properties ofV′.
Now LetV′,V′′ ⊂ V be two bases of the uniformityV andW′,W′′ the families
of entourages defined as in (2.43). Let W′ ∈ W′, then there exists a V ′ ∈ V′ such
that ( f (x), g(x)) ∈ V ′ for all ( f , g) ∈ W′ and x ∈ S . SinceV′ andV′′ were assumed
to be bases of the same uniformity, there exists a V ′′ ∈ V′′ such that V ′′ ⊂ V ′. Let
W′′ =

{
( f , g) ∈ F (S ; T )2

∣∣∣ ( f (x), g(x)) ∈ V ′′, ∀x ∈ S
}
, then W′′ ⊂ W′ and we can

deduce thatW′ is contained in the uniformity generated byW′′. By symmetry, we
obtain the converse inclusion and ultimately the identity of the uniformities generated
byW′ andW′′, respectively. ■

Let (T,V) be a uniform Hausdorff space and recall that a sequence ( fn)n∈N ⊂

F (S ; T ) converges uniformly to a limit f ∈ F (S ; T ) if and only if for all V ∈ V there
exists a n0 ∈ N such that

{ ( fn(x), f (x)) | x ∈ S } ⊂ V (2.44)

for all n ≥ n0.

We call the uniformityW on C(S ; T ) as described in Lemma 2.43 the uniformity
of uniform convergence for it induces the usual topology of uniform convergence .

Observe that both the uniformity of uniform convergences and the topology of
uniform convergence fundamentally depend on the uniform structure of T .

More details on the uniformity of uniform convergence can be found in [Bou66a,
Chapter X.1]. We collect some of the results in the following remarks.

Remarks 2.44. Let S be some set and (T,V) a uniform Hausdorff space. We equip
the space F (S ; T ) with the uniformity of uniform convergence which we denote by
W.
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(i) LetA be some family of subsets of S . We can equip F (S ; T ) with the coars-
est uniformity that makes the restrictions maps f 7→ f |A, A ∈ A uniformly
continuous with respect to the uniformity of uniform convergence on F (A; T ).
This uniformity is called uniformity of uniform convergence on the sets ofA.
One example is the uniformity of uniform convergence on compacta which
is obtained by taking S to be a topological space and A to be the family of
compact sets (cf. [Bou66a, Definition 2 X.1.2]).

(ii) The space C(S ; T ) is a closed subset of the space F (S ; T ) equipped with the
topology of uniform convergence (cf. [Bou66a, Theorem 2 X.1.6]). In particular,
uniform limits of continuous functions are again continuous.

(iii) If T is complete, then so is F (S ; T ) equipped with the uniformity of uniform
convergence (cf. [Bou66a, Theorem 1 X.1.5]). ♢

Next, we introduce the notion of uniform equicontinuity for a family of continu-
ous functions and extend this definition to continuous functions that are defined on
(possibly different) subsets of a common uniform space (S ,U).

Definition 2.45 (Uniform equicontinuity). Let (S ,U) and (T,V) be uniform Haus-
dorff spaces and F ⊂ C(S ; T ) a family of continuous functions. We say that F is
uniformly equicontinuous if for all V ∈ V open there exists a U ∈ U open such that⋃

f∈F

{ (
f (x), f (y)

) ∣∣∣ (x, y) ∈ U
}
⊂ V. (2.45)

Let ( fn)n∈N be a sequence of continuous functions with each fn defined on a subset
Sn ⊂ S . Then the sequence ( fn)n∈N is uniformly equicontinuous if for all open V ∈ V
there exists an open U ∈ U such that⋃

n∈N

{ (
fn(x), fn(y)

) ∣∣∣ (x, y) ∈ U ∩ Sn × Sn
}
⊂ V. (2.46)

♢

We can now state and proof a version of the Arzelà-Ascoli theorem for uniform
spaces.

Theorem 2.46 (Arzelà-Ascoli). Let (S ,U) and (T,V) be uniform Hausdorff spaces
and assume that (S ,U) is compact and (T,V) is complete. A family K ⊂ C(S ; T ) is
relatively compact if and only if K is uniformly equicontinuous and the set⋃

f∈K

f (S ) ⊂ T (2.47)

is relatively compact.
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Proof. First assume that K ⊂ C(S ; T ) is relatively compact and recall the definition
of the uniformity W from Lemma 2.43. Let V ∈ V and choose V ′ ∈ V open
and symmetric such that V ′ ◦ V ′ ⊂ V , as usual. Fix f ∈ K, by compactness of
S and continuity of f , we deduce that f (S ) ⊂ T is compact and hence there exist
x1, . . . , xM ∈ S for some M ∈ N such that

f (S ) ⊂
M⋃

i=1

V ′[ f (xi)]. (2.48)

Now choose W ∈ W open such that

W ⊂
{

( f , g) ∈ F (S ; T )2
∣∣∣ ( f (x), g(x)

)
∈ V, ∀x ∈ S

}
, (2.49)

whereW denotes the uniformity on F (S ; T ) as defined in Lemma 2.43. By relative
compactness and Lemma 2.35, K is totally bounded and we can find f1, . . . , fN ∈ K
for some N ∈ N such that

K ⊂
N⋃

j=1

W[ f j]. (2.50)

For each j = 1, . . . ,N let x( j)
1 , . . . , s( j)

M j
∈ S , M j ∈ N be a finite family of points such

that (2.48) is satisfied for f j. By construction we have

⋃
f∈K

f (S ) ⊂
N⋃

j=1

M j⋃
i=1

(V ′ ◦ V ′)[ f j(x( j)
i )] ⊂

N⋃
j=1

M j⋃
i=1

V[ f j(x( j)
i )] (2.51)

and since V ∈ V open was arbitrary, we have that
⋃

f∈K f (S ) is totally bounded and
hence relatively compact by Lemma 2.35.

Observe that by Lemma 2.29 each f ∈ K is uniformly continuous. We continue
to show that K is actually uniformly equicontinuous. Fix V ∈ V and choose V ′ ∈
V,W ∈ W and f1, . . . , fN ∈ K as before with the only difference that we assume
that V ′ ◦ V ′ ◦ V ′ ◦ V ′ ⊂ V . By uniform continuity, there exist open entourages
U1, . . . ,UN ∈ U such that

( f j(x), f j(y)) ∈ V ′ (2.52)

for all (x, y) ∈ U j and j = 1, . . . ,N. We can take the intersection U :=
⋂N

j=1 U j

of these entourages to obtain another open entourage U ∈ U. By construction, we
find for each f ∈ K a j ∈ {1, . . . ,N} such that ( f (x), f j(x)) ∈ V ′ for all x ∈ S . In
combination with (2.52) we obtain

( f (x), f (y)) ∈ V ′ ◦ V ′ ◦ V ′ ⊂ V (2.53)

for all (x, y) ∈ U and f ∈ K.
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For the converse implication recall that by completeness of T , C(S ; T ) is complete,
too. It therefore suffices by Lemma 2.35 to show that K is totally bounded. To that
end fix some W ∈ W open. By definition ofW there exists a V ∈ V open such that

W′ := { ( f , g) ∈ F (S ; T ) | ( f (x), g(x)) ∈ V, ∀x ∈ S } ⊂ W. (2.54)

As before, we choose V ′ ∈ V open with the property that V ′ ◦ V ′ ◦ V ′ ◦ V ′ ⊂ V . By
uniform equicontinuity, there exists an open U ∈ U such that ( f (x), f (y)) ∈ V ′ for all
(x, y) ∈ U and f ∈ K. Since S and

⋃
f∈K f (S ) are totally bounded by assumption, we

find finitely many x1, . . . , xN ∈ S and f1, . . . , fM ∈ K such that
{

U[x j]
∣∣∣ j = 1, . . . ,N

}
is an open cover of S and

{
V ′[ fi(x j)]

∣∣∣ i = 1, . . .M, j = 1, . . . ,N
}

is an open cover
of

⋃
f∈K f (S ), i.e. ⋃

f∈K

f (S ) ⊂
M⋃

i=1

N⋃
j=1

V ′[ fi(x j)]. (2.55)

We claim that the family {W[ fi] | i = 1, . . . ,M } is a finite open cover of K. Suppose
this was not the case, then there exists a f ∈ K such that f < W[ fi] for all i = 1, . . . ,M.
This means, for each i ∈ {1, . . . ,M} there exists some x ∈ S such that ( f (x), fi(x)) < V ′.
By (2.55) we can choose i ∈ {1, . . . ,M} such that ( f (y), fi(y)) ∈ V for some y ∈ S .
For convenience write g := fi. By compactness of S we can find (x, y) ∈ U such
that ( f (x), g(x)) < V ′ but ( f (y), g(y)) ∈ V ′. By construction of U and uniform
equicontinuity we obtain ( f (x), f (y)), (g(x), g(y)) ∈ V ′ and hence

( f (x), g(x)) ∈ V ′ ◦ V ′ ◦ V ′ ⊂ V, (2.56)

in contradiction to the assumption. ■

We present another formulation of the Arzelà-Ascoli theorem that is specifically
tailored to our needs in Chapter 6. This formulation is due to [ALW17, Lemma 5.4]
and a similar version can be found in [Cro18, Lemma 5.3]. Although the proof is very
similar to the proof of Theorem 2.46, we give a detailed proof as both papers omit a
proof and there are a few subtleties that require careful treatment.

Lemma 2.47 (Arzelà-Ascoli). Let (S ,U) and (T,V) be uniform Hausdorff spaces
with countable bases and assume that (S ,U) is compact and that (T,V) is complete.
Assume further that there are non-empty closed subsets Sn ⊂ S for each n ∈ N ∪ {∞}
and a sequence ( fn)n∈N of continuous functions such that fn ∈ C(Sn; T ) and the
sequence ( fn)n∈N is uniformly equicontinuous. Suppose for each x ∈ S∞ there exists a
sequence (xn)n∈N ⊂ S with xn ∈ Sn for all n ∈ N and limn→∞ xn = x with the property
that { fn(xn) | n ∈ N } is relatively compact in T .
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Then there exists a continuous function f ∈ C(S∞; T ) and a subsequence ( fnk )k∈N

such that for all V ∈ V there exists a U ∈ U with the property{
( f (x), fnk (y))

∣∣∣ (x, y) ∈ U ∩ S∞ × Snk

}
⊂ V, ∀k ∈ N. (2.57)

Proof. Let V ∈ V be open. By uniform equicontinuity, there exists an open entourage
U ∈ U such that for all n ∈ N

fn(U) :=
{

( fn(x), fn(y))
∣∣∣ (x, y) ∈ U ∩ S 2

n

}
⊂ V. (2.58)

Choose U′ ∈ U open such that U′ ◦ U′ ⊂ U. As S∞ is a closed subset of a compact
space, it is itself totally bounded and we can find finitely many x1, . . . , xN ∈ S∞ such
that

S∞ ⊂
N⋃

j=1

U′[x j]. (2.59)

Furthermore, the x j can be chosen in a way that

xk ∈ U′[x j] ⇔ k = j. (2.60)

For each j ∈ {1, . . . ,N} let
(
x j

n

)
n∈N
⊂ S be a sequence with x j

n ∈ Sn for all n ∈ N and

limn→∞ x j
n = x j. By assumption such sequences exist and furthermore we can choose

a subsequence
(
fnk

)
k∈N such that

lim
k→∞

fnk (x j
nk ) = z j ∈ T, ∀ j ∈ {1, . . . ,N}. (2.61)

For x ∈ S∞ set α(x) := min
{

j = 1, . . . ,N
∣∣∣ x ∈ U′[x j]

}
and define hV : S∞ → T by

setting
hV (x) := zα(x). (2.62)

Observe that hV (x j) = z j for all j ∈ {1, . . . ,N}. It is worth noting that if T is path
connected, hV can be chosen to be continuous.

Let (Vl)l∈N ⊂ V be a sequence of open entourages such that

Vl+1 ◦ Vl+1 ⊂ Vl. (2.63)

For each l ∈ N define hl = hVl : S∞ → T as above but choose the sequence ( fn)n∈N in
the definition of hl+1 as a subsequence of that in the definition of hl. We claim that the
sequence (hl)l∈N is Cauchy with respect to the uniformity of uniform convergenceW
on F (S∞; T ). To see this, take any W ∈ W open. By definition, there exists a l0 ∈ N
such that for f , g ∈ F (S∞; T ),

{ ( f (x), g(x)) | x ∈ S∞ } ⊂ Vl0 (2.64)
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implies that ( f , g) ∈ W. Now take l0 ≤ k < l and fix x ∈ S∞. Choose Uk,Ul ∈ U open
such that fn(Uk) ⊂ Vk and fn(Ul) ⊂ Vl. As before take U′k,U

′
l ∈ U open such that

U′k ◦ U′k ⊂ Uk and U′l ◦ U′l ⊂ Ul, respectively. Denote by yk := xα(x) the x j from the
definition of hk which determines the value of hk at x, i.e. hk(x) = hk(yk) and in the
same manner define yl ∈ S∞ for hl. By construction, we have x ∈ U′k[yk] ∩ U′l [y

l] and
thus (yk, yl) ∈ Uk, as Ul ⊂ Uk. Furthermore denote the sequences from the definition
of hk and hl converging to yk and yl by

(
yk

n

)
n∈N

and
(
yl

n

)
n∈N

respectively. Observe that
we can indeed take the same subsequences by construction. As Uk is open, we deduce
that (yk

n, y
l
n) ∈ Uk, eventually. Hence,(

fn
(
yk

n

)
, fn

(
yl

n

))
∈ Vk ⊂ Vl0 (2.65)

for all n ∈ N sufficiently large and consequently (hk(x), hl(x)) ∈ Vl0 . Since x ∈ S∞
was arbitrary we conclude that (hl, hk) ∈ W which proves the claim that (hl)l∈N is
Cauchy. By completeness of T together with Remarks 2.44 (iii) we have convergence
of the sequence (hl)l∈N and we denote the limit by f .

It remains to show that f is continuous and satisfies (2.57). To that end take V ∈ V
open and choose V ′ ∈ V open with V ′ ◦ V ′ ⊂ V . Then there exists a l0 ∈ N such that
( f (x), hl(x)) ∈ V ′ for all l ≥ l0. By construction, there exists a l1 ∈ N and a U ∈ U
open such that hl(U) ⊂ V ′ for all l ≥ l1. Consequently, f (U) ⊂ V and we have that f
is even uniformly continuous. Finally, (2.57) holds by construction of f . ■

2.6 Proximity spaces
For further reference, we introduce the notion of proximities and show that proxim-

ity spaces are in a one-to-one relation with uniform spaces. The main source for this
section is [Wil70, Chapter 40] where further details can be found. Willard traces the
notion of proximities back to Frigyes Riesz (1908) [Rie08] and mentions works on
proximity spaces by Alexander D. Wallace [Wal41], Vadim A. Efremovič [Efr52]
and YuriM. Smirnov [Smi52].

Definition 2.48 (Proximity spaces). Let S , Ø be a set. We call a binary relation ▷◁
on P(S ) a proximity (relation) if for all subsets A, B,C ⊂ X it holds

(P1) Ø ▷◁/ A for all A ⊂ S

(P2) {x} ▷◁ {x} for all x ∈ S ,

(P3) A ▷◁ B implies B ▷◁ A,

(P4) A ▷◁ (B ∪C) if and only if A ▷◁ B or A ▷◁ C,

(P5) if A ▷◁/ B then there exist E, F ⊂ S such that E ∩ F = Ø and A ▷◁/ Ec and B ▷◁/ Fc.
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If ▷◁ is a proximity relation on P(S ), we call the pair (S , ▷◁) a proximity space and
we say that A, B ⊂ S are close (or ▷◁-close) if A ▷◁ B. If in addition

(P6) {x} ▷◁ {y} implies x = y,

we say that the proximity space (S , ▷◁) is separated or that the proximity ▷◁ is
separating. ♢

Examples 2.49 (Proximities). (i) For any set S and subsets A, B ⊂ S we can define
a proximity by A ▷◁ B if and only if A ∩ B , Ø. It is easy to check, that this
indeed defines a proximity and this proximity is called the discrete proximity
and it is separating.

(ii) If (S , d) is a metric space we set A ▷◁ B if and only if

d(A, B) = inf { d(x, y) | x ∈ A, y ∈ B } = 0 (2.66)

for A, B ⊂ S . Again, it is straightforward to check that this defines a separating
proximity. ■

In the sequel, we omit the braces around singletons and simply write x ▷◁ y or
x ▷◁ A.

First, lets observe some simple facts.

Lemma 2.50 (Properties of proximities). Let (S , ▷◁) be a proximity space and A, B,C ⊂
S . Then the following hold.

(i) x ▷◁ A for all x ∈ A,

(ii) if A ∩ B , Ø then A ▷◁ B,

(iii) if A ▷◁/ B and C ⊂ B then A ▷◁/ C.

Proof. By writing A = (A \ {x} ∪ {x}) we immediately obtain (i) from (P2) and (P4)
of Definition 2.48. Using (i), we obtain (ii) by writing A = (A \ {x} ∪ {x}) for some
x ∈ A ∩ B. Claim (iii) is another direct consequence of (P4). ■

The reason for the introduction of proximities is that they provide a further way to
define uniformities on a set S . First, we observe that proximity spaces are topological
spaces. To that end we introduce the notion of proximity neighborhoods.

Definition 2.51 (Proximity neighborhood). Let (S , ▷◁) be a proximity space. For
subsets A, B ⊂ S , we write A ⋐ B if A ▷◁/ (S \ B). We call B a proximity neighborhood
(p-neighborhood, or ▷◁-neighborhood) of A, if A ⋐ B. ♢
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Recall from Definition A.8 the definition of a closure operator and that we can
associate a topology with a closure operator by virtue of Proposition A.9.

Proposition 2.52 (Topology induced by proximity). Let (S , ▷◁) be proximity space.
The operator Γ : P(S )→ P(S ) given by

Γ(A) := A := { x ∈ S | {x} ▷◁ A } (2.67)

is a closure operator. Furthermore, the topology induced by Γ is Hausdorff if and
only if (S , ▷◁) is separated.

Proof. By Lemma 2.50 (i) we readily get A ⊂ Γ(A). We proceed to show that
Γ(Γ(A)) = Γ(A). If Γ(A) = S , there is nothing to show. Assume instead that there
exists a x < Γ(A), i.e. x▷◁/ A. By property (P5), there exist sets E, F ⊂ S with E∩F = Ø
such that x ▷◁/ Ec and A ▷◁/ Fc. From A ▷◁/ Fc we can deduce that Γ(A) ⊂ F. Now, since
sets E and F are disjoint, we also have F ⊂ Ec and hence Γ(A) ⊂ Ec which implies
x ▷◁/ Γ(A) by Lemma 2.50 (iii) because x ▷◁/ Ec. From (P4) we can easily conclude that
Γ(A ∪ B) = Γ(A) ∪ Γ(B). Finally, Γ(Ø) = Ø follows from (P1).

Now assume that (S , ▷◁) is separated and take x, y ∈ S with x , y. By (P6) we have
x ▷◁/ y and by (P5) we can find E, F ⊂ S with E ∩ F = Ø such that x ▷◁/ Ec and y ▷◁/ Fc.
Then, because Γ(A) = Γ(Γ(A)), we have x ▷◁/ Γ(Ec) and y ▷◁/ Γ(Fc). Furthermore, Γ(Ec)c

and Γ(Fc)c are disjoint open neighborhoods of y and x, respectively.

Conversely, assume that the topology T induced by Γ is Hausdorff and let x, y ∈ S
with x , y. Let A, B ∈ T be disjoint open neighborhoods of x and y, respectively.
Then, Ac, Bc are closed and hence x ▷◁/ Ac and y ▷◁/ Bc which in turn yields x ▷◁/ y by
(P5), thus concluding the proof. ■

2.7 Hausdorff and Hausdorff-weak
convergence

We have observed throughout this chapter that known concepts from metric spaces
can be generalized to uniform spaces by replacing quantitative statements by qualita-
tive ones. We conclude this chapter with a generalization of the Hausdorff distance on
the space of subsets of a metric space.

Let A , Ø be some set. Recall (cf. Definition A.42) that a net in A, { xα ∈ A | α ∈ I }
is a set where the index set I is a directed set (see Definition A.41) that is not necessarily
countable.
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Definition 2.53 (Hausdorff convergence). Let (S ,U) be a uniform Hausdorff space.
Assume that (Aα)α∈I ⊂ P(S ) is a net in the family of subsets of S . We say that (Aα)α∈I
converges to some A ∈ P(S ) in the Hausdorff sense, if and only if for all U ∈ U open
there exists a α0 ∈ I such that

Aα ⊂ U[A] and A ⊂ U[Aα], (2.68)

for all α ⪰ α0. ♢

Proposition 2.54 (Hausdorff topology). Let (S ,U) be a uniform Hausdorff space.
Then Hausdorff convergence uniquely determines a topology on the space P(S ) of
subsets of S and we call this topology the Hausdorff topology. Furthermore, the
Hausdorff topology restricted to the family K(S ) ⊂ P(S ) of closed subsets of S is
itself Hausdorff.

Proof. By Theorem A.44 it suffices to show that Hausdorff convergence determines
a convergence class in the sense of Definition A.43 in order to show that Hausdorff
convergence uniquely determines a topology on P(S ). But this is trivial.

On the other hand, it is clear that the Hausdorff topology on P(S ) cannot be
Hausdorff as A◦ ⊂ U[A] and A ⊂ U[A◦] for all open U ∈ U and A ⊂ S , where A◦

denotes the inner and A denotes the closure of A.

Now assume A, B ∈ K(S ) are distinct closed subsets of S . Without loss of general-
ity assume that there exists a x ∈ A \ B. As x is contained in the open set ∁B, there
exists an open symmetric entourage U ∈ U such that U[x] ⊂ ∁B which implies that
x < U[B]. Hence every net (Aα)α∈I ⊂ K(S ) that converges to A cannot converge to B
and vice versa. ■

The next lemma shows that a Hausdorff convergent sequence of closed subsets of a
uniform Hausdorff space satisfies the conditions on the domains in Lemma 2.47.

Lemma 2.55 (Approximating points in the Hausdorff limit). Let (S ,U) be a uniform
Hausdorff space with a countable base and (S n)n∈N ⊂ K(S ) a sequence of closed
subsets of S . Assume that (S n)n∈N converges in the Hausdorff topology to some closed
subset S∞ ∈ K(S ) of S . Then there exists for each x ∈ S∞ a sequence (xn)n∈N ⊂ S
such that xn ∈ Sn and

lim
n→∞

xn = x. (2.69)

Proof. Assume that limn→∞ Sn = S∞ ∈ K(S ) with respect to the Hausdorff topology
and let x ∈ S∞. Fix U ∈ U open. By Hausdorff convergence, we have that U[x] ∩
Sn , Ø, eventually. Now take a sequence (Um)m∈N ⊂ U of open entourages with
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Um+1 ⊂ Um and
⋂

m∈NUm = ∆. By a diagonal argument we can find a sequence
(xn)n∈N with xn ∈ Sn for all n ∈ N and xn ∈ Umn[x] for all n ≥ n0 ∈ N and a (not
necessarily strictly) increasing sequence (mn)n∈N ⊂ N with limn→∞mn = ∞. Since
x ∈ S∞ was arbitrary this concludes the proof. ■

We now generalize the concept of a correspondence (cf. [BBI01, Definition 7.3.17])
to uniform spaces.

Lemma 2.56. Let (S ,U) be a uniform Hausdorff space with a countable base and
A, (An)n∈N subsets of S . Then, An → A in the Hausdorff topology if and only if there
exist sets (Tn)n∈N and for each n ∈ N surjective maps φn : Tn → An, ψn : Tn → A
with the property that for every open entourage U ∈ U there exists a natural number
N ∈ N such that

{ (φn(z), ψn(z)) | z ∈ Tn } ⊂ U (2.70)

for all n > N.

Proof. We start with the necessity. Suppose An → A in the Hausdorff sense. Take a
sequence (Um)m∈N ⊂ U of open entourages with Um+1 ⊂ Um and

⋂
m∈NUm = ∆. We

can choose (Um)m∈N so that for each n ∈ N there exists a minimal m(n) ∈ N such that
Ak ⊂ Um(n)[A] and A ⊂ Um(n)[Ak] for all k ≥ n. For each n ∈ N let Tn be defined as
follows

Tn :=
{

(x, y) ∈ An × A
∣∣∣ (x, y) ∈ Um(n)

}
. (2.71)

Let and φn, ψn the projections on the first and second component, respectively. By
construction, φn and ψn are surjective for every n ∈ N. Moreover, there exists for each
U ∈ U open a N ∈ N such that Un ⊂ U for all n ≥ N and consequently, (2.70) holds.

Conversely, fix U ∈ U open. Then there exist sets Tn and surjective maps φn : Tn →

An, ψn : Tn → A satisfying (2.70) for all n ≥ N for some N ∈ N. Hence,

A ⊂
⋃
x∈An

U[x] = U[An] and An ⊂
⋃
x∈A

U[x] = U[A] (2.72)

proving sufficiency. ■

Recall the notion of uniform measure spaces from Definition 2.41 and the definition
of the support supp(ν) of a Radon measure ν from Definition A.36. Observe that the
support of a Radon measure is always closed by definition.

Definition 2.57 (Hausdorff-weak convergence). Let (S ,U) be a uniform Hausdorff
space. For each n ∈ N ∪ {∞} let ν(n) be a Radon measure on S with support Sn ⊂ S .
We say that (ν(n))n∈N converges Hausdorff-weakly (Hausdorff-vaguely) to ν(∞) if and
only if ν(n) =⇒

n→∞
ν(∞) weakly (vaguely) and Sn −→

n→∞
S∞ in the Hausdorff topology. ♢
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Hausdorff-weak convergence is indeed stronger than weak convergence alone, as
the following simple example demonstrates.

Example 2.58 (Hausdorff-weak vs. weak convergence). Let S = R be equipped with
the uniformity generated by the Euclidean metric. Assume that for each n ∈ N,

ν(n) :=
n − 1

n
δ0 +

1
n
δ1, (2.73)

where δx denotes the Dirac measure at x ∈ S . Then ν(n) =⇒
n→∞

δ0 but supp ν(n) = {0, 1}
for all n ∈ N whereas supp δ0 = {0}. ■

Morally, the Hausdorff convergence of the supports ensures that no points disappear
from the supports of the approximating sequence. This becomes crucial when we
consider ν(n) to be the speed measure of random processes. If points vanish from the
support of the speed measure, the limiting process would be essentially tunneling
through these points without visiting them. This breaks the path-wise convergence
that we will introduce in the next chapter.
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3The path space

„Not all those who wander are lost.

— J.R.R. Tolkien
Lord of the Rings

It is well known that when (S , d) is a metric space, there exists a metric on the
space DS ([0,∞)) or right continuous functions with left limits ω : [0,∞) → S that
metrizes the Skorokhod topology on DS ([0,∞)).

We begin this chapter with a couple of observations about the space DS ([0,∞))
when (S ,U) is a uniform Hausdorff space. Most importantly, we show that the
knowledge of a large class of hitting times already determines a path (i.e. an element
ω ∈ DS ([0,∞))) uniquely. We then proceed to show that in the situation where
(S ,U) is a uniform Hausdorff space, there exists a uniformity on DS ([0,∞)) that
is compatible with the Skorokhod topology. We call this uniformity the Skorokhod
uniformity. This idea goes back ItaruMitoma [Mit83] and Adam Jakubowski [Jak86]
who considered completely regular topological spaces which are just uniform spaces
by Proposition 2.19. We then translate some known results for the Skorokhod topology
in terms of the Skorokhod metric to the language of uniform spaces. Often this
involves restating quantitative convergence statements (i.e. some distance goes to 0),
as qualitative statements (i.e. for all U ∈ U open, there exists...).

The main result of this chapter is Theorem 3.27, which was proven in a joint
effort with Gerónimo Rojas, characterizes the Skorokhod convergence in terms of the
convergence of hitting times.

In the last section, we discuss random paths and give a criterion for the tightness
of a family of probability measures on DS ([0,∞)). This result will be crucial for the
proof of our tightness criterion in Theorem 4.75. Finally, we show that Theorem 3.27
can be lifted to probability measures to obtain a characterization of weak convergence
of probability measures on DS ([0,∞)) in terms of the weak convergence of hitting
times.

3.1 The space of càdlàg paths
Let (S ,U) be a uniform Hausdorff space. We denote by DS ([0,∞)) the space of

functions ω : [0,∞)→ S that are continuous from the right and possess left limits at
each t > 0. As is customary, we refer to such functions with the adjective càdlàg.
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We introduce a family of homomorphisms { θt | t ≥ 0 } on DS ([0,∞)) by

θt(ω)( · ) = ω ◦ θt( · ) = ω( · + t), t ≥ 0. (3.1)

For obvious reasons we call the family { θt | t ≥ 0 } the family of (time) shift operators.

Denote by ω(t−) = lims↑t ω(s) the left limit point of ω at t > 0. The points of
discontinuity of ω are called jumps and we write

J(ω) := { t > 0 | ω(t−) , ω(t) } (3.2)

for the set of jump points of ω.

When S is a metric or metrizable space, càdlàg functions can only have countably
many jumps (see e.g. [EK86, Lemma 4.5.1]). This is not true for general uniform
spaces. This is illustrated by the following example which is due to Adam Jakubowski
[Jak86, Example 1.2].

Example 3.1. Consider the space S = [0, 1][0,1] � { f : [0, 1]→ [0, 1]} equipped with
the product topology, i.e. the topology of pointwise convergence. Analogously to the
product topology, we can define the product uniformity on S as the weak uniformity
generated by the projections { πi | i ∈ [0, 1] } and observe that the product uniformity
generates the product topology on S . Furthermore, S is Hausdorff as a product of
Hausdorff spaces but has no countable base (compare [SS78, #105]).

Let ω : [0, 1] → S be defined as ω(t) = 1[0,t)(x). Then (ω(tn))n∈N converges
pointwise to 1[0,t)(x) for every sequence (tn)n∈N ⊂ [0, 1] with tn ↓ t ∈ [0, 1]. On the
other hand, (ω(tn))n∈N converges pointwise to 1[0,t](x) for every such sequence with
tn ↑ t ∈ [0, 1]. Hence, ω ∈ DS ([0, 1]) but ω is discontinuous at every t ∈ (0, 1]. ■

Instead of countably many jumps we have for càdlàg functions on general uniform
Hausdorff spaces that there can only be countably many jumps exceeding a certain
“size”, in the following sense.

Lemma 3.2 (Discontinuity points of càdlàg paths). Let (S ,U) be a uniform Hausdorff
space and ω ∈ DS ([0,∞)). Then the following hold

(i) For every U ∈ U and T > 0 the set

JT
U(ω) := { t ∈ [0,T ] | (ω(t), ω(t−)) < U } (3.3)

is finite.

(ii) for every U ∈ U the set

JU(ω) := { t > 0 | (ω(t−), ω(t)) < U } (3.4)
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is at most countable.

(iii) If U has a countable base, then the set J(ω) = { t ≥ 0 | ω(t) , ω(t−) } of
discontinuity points of ω is at most countable.

Proof. The second claim follows readily from the first by taking the limit T → ∞
and the third claim follows from the second with the observation that the points of
discontinuity of ω are

J(ω) =
⋃
V∈V

JV (ω) (3.5)

for some base V of U. By assumption V can be chosen to be countable and the
countable union of countable sets is again countable.

To show the first claim, fix U ∈ U and T > 0 and assume that there exists a
sequence (tn)n∈N ⊂ JT

U(ω) with tn ↑ t ∈ JT
U(ω). Now choose V ∈ U open and

symmetric such that V ◦ V ⊂ U and observe that V[ω(t)] ∩ V[ω(t−)] = Ø. Because ω
is càdlàg, we have limn→∞ ω(tn) = ω(t−) and hence there exists some n0 ∈ N such
that

ω(tn) ∈ V[ω(t−)] ∀n > n0. (3.6)

From the existence of left limits, we deduce that there exists another entourage W ∈ U,
open and symmetric, with W ◦W ⊂ V and a sequence (sn)n∈N ⊂ [0,T ], not necessarily
contained in JT

U(ω), with sn ≤ tn and sn ↑ t such that ω(sn) ∈ W[ω(tn−)] for all n ∈ N.
By assumption sn ↑ t, there exists a n1 ∈ N such that ω(sn) ∈ W[ω(t−)] for all n > n1.
Since (ω(sn), ω(tn−)) ∈ W and (ω(sn), ω(t−)) ∈ W for all n > n1, it follows that

(ω(tn−), ω(t−)) ∈ W ◦W ⊂ V ∀n > n1. (3.7)

By (3.6) we have (ω(tn), ω(t−)) ∈ V for all n > n0 and together with (3.7) we deduce

(ω(tn), ω(tn−)) ∈ V ◦ V ⊂ U ∀n > n0 ∨ n1, (3.8)

in contradiction to the assumption (tn)n∈N ⊂ JT
U(ω).

By the same logic, there can not exist a decreasing sequence (tn)n∈N ⊂ JT
U(ω) with

tn ↓ t ∈ JTU(ω). Hence JT
U(ω) has no cluster points and is thus finite. ■

Lemma 3.3 (càdlàg functions are measurable). Let S be a uniform Hausdorff space.
Then every ω ∈ DS ([0,∞)) is Borel measurable.

Proof. Fix ω ∈ DS ([0,∞)) and let A ⊂ S be open. Assume that there exists a t ≥ 0
such that ω(t) ∈ A and let I ⊂ [0,∞) be the largest interval such that t ∈ I and
ω(I) ⊂ A. Then I is nonempty, open to the right by right continuity and either open or
closed to the left depending on whether ω enters A continuously or by a jump. Either
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way, I has positive length and is Borel measurable. Furthermore, ω−1A is at most a
countable union of such intervals and hence measurable. ■

Recall that (cf. [EK86]), the modified modulus of continuity for càdlàg functions
ω ∈ DE([0,∞)) where (E, d) is a (Polish) metric space is defined as

w′(ω, δ,T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

d(ω(s), ω(t)), δ > 0 and T > 0, (3.9)

where the infimum is taken over all partitions of [0,T ] of the form 0 = t0 < t1 < · · · <
tn−1 < T ≤ tn with min1≤i≤n(ti − ti−1) > δ and n ≥ 1.

Càdlàg functions ω ∈ DE([0,∞)) are “almost continuous” in the sense that
limδ→0 w′(ω, δ,T ) = 0 for all T > 0 (see [EK86, Lemma 3.6.2 (a)]). In the uni-
form setting we cannot measure the modulus of continuity but we can substitute the
quantitative statement for a qualitative one.

We introduce the following notations for partitions of the time axis

Π :=
{
π = (πn)n∈N0

∣∣∣ 0 = π0 < π1 < π2 < . . .
}

(3.10)

and for T > 0, N ∈ N,

ΠN
T :=

{
π = (π0, π1, π2, . . . , πN)

∣∣∣ π0 = 0 < π1 < · · · < πN−1 < T ≤ πN
}
. (3.11)

Every π ∈ Π induces a unique partitions of [0,∞) via the map

ι : π 7→ ι(π) := { [πi−1, πi) | i ∈ N } , π ∈ Π. (3.12)

Since no confusion can arise, we use the same notation for the map that maps a
π ∈ ΠN

T to a partition of [0,T ], i.e.

ι : π 7→ ι(π) := { [πi−1, πi) | i = 1, . . . ,N } , π ∈ ΠN
T . (3.13)

It is often required to have some control over the length of the intervals of a partition.
We write

L(π) := sup
I∈ι(π)

λ(I) and l(π) := inf
I∈ι(π)

λ(I) (3.14)

for π ∈ Π or π ∈ ΠN
T , where λ denotes the Lebesgue measure on R.

In the following, we suppress the dependence on N from the notation and write
ΠT := ΠN

T if N is not explicitly needed
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Lemma 3.4 (Modulus of continuity). Let (S ,U) be a uniform Hausdorff space and
ω ∈ DS ([0,∞)). For all U ∈ U and T > 0 there exist a δ > 0 and a partition π ∈ ΠT

of [0,T ] with l(π) > δ such that

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(π). (3.15)

Proof. Fix U ∈ U and T > 0. Let V ∈ U be open and symmetric such that V ◦V ⊂ U.
Further, let σ0 := 0 and for k ∈ N set

σk := inf { t > σk−1 | (ω(t), ω(σk−1)) < V } , (3.16)

where we set inf Ø = ∞, as usual. If σk = ∞ for some k ∈ N we set σl = ∞ for all
l ≥ k. Observe that by existence of left limits the family { σk | k ∈ N } contains no
finite limit points and by right continuity we have σk+1 − σk > 0 for all k ∈ N. Hence
N := inf { n ∈ N | σN ≥ T } is finite. Now, let

δ := min
k≥0
{ σk+1 − σk | σk ≤ T } . (3.17)

Then, { σk | k = 1, . . . ,N } gives rise to a partition π ∈ ΠT of [0,T ] with the desired
properties. ■

3.1.1 Separation of paths by hitting times
In this section, we show that a path is uniquely determined by its hitting times of

uniform neighborhoods. In the case where (S ,U) has a countable base we improve
this result by reducing the number of neighborhoods.

First, recall the definition of a hitting time.

Definition 3.5 (Hitting times). For A ⊂ S we introduce the (first) hitting time operator
τA : DS ([0,∞))→ [0,∞] as

τA(ω) := inf { t > 0 | ω(t) ∈ A } , (3.18)

where we set inf Ø = ∞, as usual. ♢

First, we show that the hitting times of a subset of all neighborhoods is separating
on DS ([0,∞)).

Proposition 3.6 (Separation by hitting times I). Let (S ,U) be a uniform Hausdorff
space and ω1, ω2 ∈ DS ([0,∞)). Then the following are equivalent

(i) ω1 = ω2,
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(ii) for all x ∈ S there exists a V ∈ U such that for all U ∈ U with U ⊂ V and all
t ≥ 0

τU[x](ω1 ◦ θt) = τU[x](ω2 ◦ θt). (3.19)

Proof. The implication (i) ⇒ (ii) is trivial. For the reverse implication we proceed
by contraposition. Assume ω1 , ω2. Then there exists a t > 0 such that ω1(t) ,
ω2(t). By virtue of the Hausdorff property there exists a V ∈ U open such that
V[ω1(t)] ∩ V[ω2(t)] = Ø. By right continuity of the elements of DS ([0,∞)) there
exists a ε > 0 with ωi(s) ∈ V[ωi(t)] for i = 1, 2 and all s ∈ [t, t + ε). Hence

0 = τU[ω(t)](ω1 ◦ θt) , τU[ω(t)](ω2 ◦ θt) ≥ ε > 0, (3.20)

for all U ∈ U with U ⊂ V , concluding the proof. ■

Next, we introduce the notion of first contact times.

Definition 3.7 (Contact times). Let ω ∈ DS ([0,∞)) and A ⊂ S . The first contact time
of A by ω is defined as

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
. (3.21)

A set A ⊂ S is called regular (for ω), if γA(ω) = τA(ω). ♢

As an immediate consequence of the definition observe that γA(ω) ≤ τA(ω) for all
A ⊂ S and γA(ω) = τA(ω) if A is closed and ω is continuous.

Lemma 3.8 (Approximation of contact times by hitting times). Let (S ,U) be a
uniform Hausdorff space with a countable base, A ⊂ S and ω ∈ DS ([0,∞)). Assume
further that γA(ω) > 0.

(i) For any sequence (En)n∈N ⊂ U of open entourages with En+1 ⊂ En and⋂
n≥1 En = ∆,

lim
n→∞

τEn[A](ω) = γA(ω). (3.22)

(ii) For each s < γA(ω) and D ∈ U there exists an open entourage E ∈ U with
E ⊂ D such that

γE[A](ω) ≥ s. (3.23)

Proof. We begin in the beginning and show (i) first. Observe that the Hausdorff
property guarantees the existence of such a sequence. Furthermore, if ∆ ∈ U, the
topology generated by U is discrete and the statement becomes trivial. Clearly,
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τEn[A](ω) is an increasing sequence in n and by definition of γA(ω) and ω(t−), we find
{ω(γA(ω)−), ω(γA(ω))} ∩ En[A] , Ø for all n ≥ 1. Hence τEn[A](ω) ≤ γA(ω) and the
limit limn→∞ τEn[A](ω) exists and

lim
n→∞

τEn[A](ω) ≤ γA(ω). (3.24)

Denote t0 := limn→∞ τEn[A](ω). Then there exists a sequence (εn)n∈N ⊂ (0,∞) with
εn ↓ 0 as n → ∞ such that ω(τEn[A](ω) + εn) ∈ En[A] for each n ∈ N. We have by
construction limn→∞ ω(τEn[A](ω) + εn) ∈ {ω(t0−), ω(t0)} and limn→∞ ω(τEn[A](ω) +
εn) ∈

⋂
n≥1 En[A] = A and hence

γA(ω) ≤ t0 = lim
n→∞

τEn[A](ω). (3.25)

For (ii) suppose the statement does not hold. Then there exist 0 < s < γA(ω),
D ∈ U and a sequence (En)n∈N ⊂ U of open entourages with En+1 ⊂ En ⊂ D and⋂

n≥1 En = ∆ such that for all n ∈ N,

γEn[A](ω) < s. (3.26)

Since γEn[A](ω) is an increasing sequence, the limit limn→∞ γEn[A](ω) =: t1 exists
and t1 ≤ s. Furthermore, {ω(t1−), ω(t1)} ∩ En[A] , Ø for all n ∈ N. Because
En+1[A] ⊂ En[A], it follows that

Ø ,
⋂
n≥1

({ω(t1−), ω(t1)} ∩ En[A]) = {ω(t1−), ω(t1)} ∩
⋂
n≥1

En[A]

= {ω(t1−), ω(t1)} ∩ A.
(3.27)

Hence γA(ω) ≤ s, in contradiction to the assumption. ■

In fact, γA(ω) , τA(ω) can only happen for exceptional sets and the regular sets are
dense in the following sense.

Lemma 3.9 (Most neighborhoods are regular). Let (S ,U) be a uniform Hausdorff
space with a countable base, A ⊂ S and ω ∈ DS ([0,∞)). Then there exists for each
D ∈ U an open entourage E ∈ U with E ⊂ D such that

γE[A](ω) = τE[A](ω). (3.28)

Proof. Fix D ∈ U and choose some U ∈ U open with U ◦U ⊂ D. If U[A] is regular,
we are done. Thus assume that

τU[A](ω) > γU[A](ω) =: t1. (3.29)

3.1 The space of càdlàg paths 51



We distinguish two cases of how ω behaves before time t1. First consider the case
where ω jumps to U[A] or, more precisely, to ∂U[A] at time t1. In that case we have
ω(t1) ∈ U[A] and ω(t1−) , ω(t1). Hence, we find for each E ∈ U with E ⊂ U and
E[ω(t1−)] ∩ (E ◦U)[A] = Ø some ε = ε(E) > 0 such that ω([t1 − ε, t1)) ⊂ E[ω(t1−)].
Now take s ∈ [t1 − ε, t1). By Lemma 3.8 there exists a E′ ∈ U open with E′ ⊂ E
such that γ(E′◦U)[A](ω) > s. By construction, we find γ(E′◦U)[A](ω) = τ(E′◦U)[A](ω) =
γU[A](ω), as desired.

For the contrary case assume ω(t1−) ∈ U[A]. Let s1 = t1/2, by Lemma 3.8 there
exists an E1 ∈ U open such that E1 ⊂ U and γ(E1◦U)[A](ω) > s1. By definition of
ω(t−), we find an ε1 > 0 such that ω([t1 − ε1, t1)) ⊂ (E1 ◦ U)[A]. Hence,

s1 < γ(E1◦U)[A](ω) ≤ τ(E1◦U)[A](ω) ≤ t1 − ε1. (3.30)

If we have equality of the contact time γ(E1◦U)[A](ω) and the hitting time τ(E1◦U)[A](ω),
we are done. If not set t2 := γ(E1◦U)[A](ω). If we find ω(t2−) , ω(t2) and ω(t2) ∈
(E1 ◦ U)[A], we can use the same arguments as before to construct E ∈ U, E ⊂
U such that limn→∞ τ(U◦E)[A](ωn) = τ(U◦E)[A](ω). In the case where ω(t2−) ∈
(E1 ◦ U)[A] we proceed as before and take s2 = (s1 + t2)/2 and E2 ∈ U open
with E1 ⊂ E2 ⊂ U such that t3 := γ(E2◦U)[A](ω) > s2. Then we find some ε2 > 0 such
that ω([t2 − ε2, t2)) ⊂ (E2 ◦ U)[A]. We can repeat this construction inductively until
we find some En ∈ U open with En ⊂ U such that either γ(En◦U)[A](ω) = τ(En◦U)[A](ω)
or ω(tn+1−) , ω(tn+1) and ω(tn+1) ∈ (En ◦ U)[A]. In both cases, we find an E ∈ U
open with E ⊂ U such that the hitting time of (U ◦ E)[A] and the contact time of
(U ◦ E)[A] coincide. If this procedure does not terminate we end up with a strictly
increasing sequence (sn)n∈N, a strictly decreasing sequence (tn)n∈N and a family of
open entourages (En)n∈N ⊂ U with En ⊂ En+1 ⊂ U such that

sn < γ(En◦U)[A](ω) ≤ τ(En◦U)[A](ω) < tn. (3.31)

Since E :=
⋃

n≥1 En ∈ U is open and E ◦ U ⊂ D, by construction, we conclude
γ(E◦U)[A](ω) = τ(E◦U)[A](ω). ■

The second condition in Proposition 3.6 can be sharpened significantly if we assume
that ω has only countably many points of discontinuity.

Theorem 3.10 (Separation by hitting times II). Let (S ,U) be a uniform Hausdorff
space with a countable base and ω1, ω2 ∈ DS ([0,∞)). Then the following are
equivalent

(i) ω1 = ω2,
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(ii) There exists dense subsets D ⊂ S and T ⊂ { t ≥ 0 | ωi(s) = ωi(s−), i = 1, 2 } ⊂
[0,∞) such that for all x ∈ D and s ∈ T and all U ∈ U open with τU[x](ωi◦θs) =
γU[x](ωi ◦ θs), i = 1, 2,

τU[x](ω1 ◦ θs) = τU[x](ω2 ◦ θs). (3.32)

Proof. The first implication is again trivial. Conversely, assume there exists a t > 0
such that ω1(t) , ω2(t). We argue along the same lines as in the proof of Propo-
sition 3.6. There exist W ∈ U such that W[ω1(t)] ∩ W[ω2(t)] = Ø. By right
continuity, there exists a V ∈ U open with V ◦ V ⊂ W and ε > 0 such that
ωi(s) ∈ V[ωi(t)] for all s ∈ [t, t + ε) and i = 1, 2. By assumption, U has a count-
able base and we can apply Lemma 3.2 to deduce that there exists a continuity
point s ∈ [t, t + ε/2) ∩ T of both ω1 and ω2. Now let U ∈ U open be such that
U ◦ U ⊂ V . Then there exists a x ∈ D such that ω1(s) ∈ U[x]. We have constructed
U[x] and s in such a way that τE◦U[x](ω1 ◦ θs) = 0 and τE◦U[x](ω2 ◦ θs) > ε/2 for
all E ∈ U open with E ⊂ U. By Lemma 3.9 there exists an open entourage E ∈ U
with E ⊂ U such that τE◦U[x](ω2 ◦ θs) = γE◦U[x](ω2 ◦ θs). Furthermore we have
γE◦U[x](ω1 ◦ θs) ≤ τE◦U[x](ω1 ◦ θs) = 0 and the proof is complete. ■

3.2 Path space
Next, we want to obtain conditions for the convergence of paths. To do so, we first

need to introduce a topology on DS ([0,∞)). One can consider various topologies on
DS ([0,∞)). One possible choice being the topology of uniform convergence where
we set limn→∞ ωn = ω if and only if for all open entourages U ∈ U there exists a
n0 ∈ N such that

(ωn(t), ω(t)) ∈ U ∀t ∈ [0,T ] and ∀n ≥ n0. (3.33)

This topology is induced by the uniformity of uniform convergence (cf. Lemma 2.43),
which has as a base the family of sets{

(ω,ω′)
∣∣∣ (ω(t), ω′(t)) ∈ U ∀t ≥ 0

}
U ∈ U. (3.34)

Observe that the uniformity of uniform convergence has a countable base if the
original uniformity U on S has a countable base. Thus, the topology of uniform
convergence is first countable and hence determined by the converging sequences (cf.
Proposition A.46) ifU possesses a countable base.

Anatoliy Skorokhod observed in his seminal paper [Sko56]

[T]he uniform topology in [DS ([0,T ])] requires that the convergence
of [ωn] to [ω] imply that there exists a number such that for all n greater
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than or equal to this number the points of discontinuity of [ωn] coincide
with the points of discontinuity of [ω]. This means that if t is considered
to be the time, we must assume the existence of an instrument which will
measure time exactly, and physically this is an impossibility. It is much
more natural to suppose that the functions we can obtain from each other
by small deformations of the times scale lie close to each other.1

He introduced four topologies on DS ([0,T ]) that take this observation into account.
The strongest of the four, the J1 topology is now commonly called the Skorokhod
topology.

Definition 3.11 ([Sko56]). Let (S , d) be a metric space. The sequence (ωn)n∈N ⊂

DS ([0,T ]) is called Skorokhod convergent (J1-convergent) to ω ∈ DS ([0,T ]) if there
exists a sequence of continuous bijections λn : [0,T ]→ [0,T ] such that

lim
n→∞

sup
t∈[0,T ]

d (ωn(t), ω(λn(t))) = 0 and lim
n→∞

sup
t∈[0,T ]

|λn(t) − t| = 0. (3.35)
♢

It is important to note that this definition indeed well defines a topology on
DS ([0,T ]): Clearly, the topology described in Definition 3.11 is coarser than the
topology of uniform convergence and hence is first countable if the topology of uni-
form convergence is first countable but this is the case because every metric uniformity
possesses a countable base.

As indicated in the quote above, it is natural to think of [0,T ] or [0,∞) as a time
interval and ω(t) describing the position of a particle in the space S at time t. With
this interpretation in mind we call the elements of DS ([0,∞)) paths and DS ([0,∞))
itself the pathspace.

It is well known that the Skorokhod topology on DS ([0,∞)) is metrizable when
(S , d) itself is a metric space. For a detailed account of the Skorokhod metric we refer
the reader to the classical book [EK86] by Stewart N. Ethier and Thomas G. Kurtz.

We will show in the following that a similar approach can applied to show that
in the case where (S ,U) is a uniform Hausdorff space, the Skorokhod topology on
DS ([0,∞)) is uniformizable. Furthermore, we will explicitly construct the Skorokhod
uniformity using the approach via families of pseudometrics. This Idea goes back to
ItaruMitoma [Mit83] and Adam Jakubowski [Jak86].

3.2.1 The Skorokhod uniformity
Let (S ,U) be a uniform space. Denote by DS := DS ([0,∞)) the space of càdlàg

functions ω : [0,∞)→ S .
1[Sko56, p. 264f] with notation adapted to our notation.
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We can define a uniformity on DS that generates the Skorokhod topology on DS

using a similar approach as in the metric case. More precisely, we use the family of
pseudometrics associated with the uniformityU to define a family of pseudometrics
on DS . This idea was introduced by Mitoma in [Mit83] and further developed by
Jakubowski in [Jak86]. For reference, we present the construction suggested by
Jakubowski.

We mimic the construction of the Skorokhod metric in the case of a metric space
S (see e.g. [EK86]). For s > 0 let Λs denote the family of continuous and strictly
increasing functions λ : [0, s]→ [0, s] such that λ(0) = 0 and λ(s) = s.

Given any pseudometric ρ on S we can define a pseudometric ρ̃s on DS ([0, s]) via

ρ̃s(ω,ω′) = inf
λ∈Λs

 sup
t∈[0,s]

|λ(t) − t| ∨ sup
t∈[0,s]

ρ
(
ω(t), ω′

(
λ(t)

)) . (3.36)

For s > 0 consider the maps qs : DS ([0,∞))→ DS ([0, s + 1]) given by

qs(ω)(t) =

ω(t), if t ∈ [0, s)
ω(s), if t ∈ [s, s + 1].

(3.37)

For two paths ω,ω′ ∈ DS ([0,∞)) let

ζ
ρ
s (ω,ω′) := ρ̃s+1(qs(ω), qs(ω′)). (3.38)

As a function in s ∈ [0,∞) this is an element of DR+([0,∞)) and we can define

ζρ(ω,ω′) =
∫ ∞

0
e−s(1 ∧ ζρs (ω,ω′))ds. (3.39)

It is straight-forward to show that this construction indeed yields a pseudometric
on DS ([0,∞)).

Lemma 3.12 (Pseudometrics on the pathspace). Let ρ be a pseudometric on S . Then
ζρ as defined above is a pseudometric on DS ([0,∞)).

Proof. Clearly, ζρ(ω,ω) = 0 for all ω ∈ DS ([0,∞)) and ζρ is non-negative definite.
The triangle inequality for ζρ follows immediately if we can show that for every s > 0,
the triangle inequality holds for ρ̃s as defined in (3.36). To show this, fix s > 0 and let
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ωa, ωb, ωc ∈ DS ([0,∞)). Then, by the triangle inequality for ρ,

ρ̃s(ωa, ωc) = inf
λ∈Λs

 sup
t∈[0,s]

|λ(t) − t| ∨ sup
t∈[0,s]

ρ
(
ωa(t), ωc

(
λ(t)

))
≤ inf

λ∈Λs
inf
λ′∈Λs

 sup
t∈[0,s]

(
|λ(t) − λ′(t)| + |λ′(t) − t|

)
∨ sup

t∈[0,s]

(
ρ
(
ωa(t), ωb

(
λ′(t)

))
+ ρ

(
ωb

(
λ′(t)

)
, ωc

(
λ(t)

))
≤ inf

λ∈Λs
inf
λ′∈Λs

( sup
t∈[0,s]

|λ′(t) − t| ∨ sup
t∈[0,s]

ρ
(
ωa(t), ωb

(
λ′(t)

)))
+

(
sup

t∈[0,s]
|λ(t) − λ′(t)| ∨ sup

t∈[0,s]
ρ
(
ωb

(
λ′(t)

)
, ωc

(
λ(t)

))
= ρ̃s(ωa, ωb) + ρ̃s(ωb, ωc).

(3.40)

In the last equation, we have used the fact that with λ ∈ Λs it follows that λ−1 ∈ Λs

and furthermore λ−1 ◦ λ′ ∈ Λs. ■

Denote by Λ the family of increasing continuous functions λ : [0,∞) → [0,∞)
such that λ(0) = 0 and λ(t)→ ∞ as t → ∞. Jakubowski has shown the following.

Proposition 3.13 (Convergence in the Skorokhod topology [Jak86, Proposition 4.1]).
Let (ωn)n∈N be a sequence of elements of DS ([0,∞)) and ω ∈ DS ([0,∞)). Assume that
ρ is a pseudometric on S and let ζρ be defined as in (3.39). Then limn→∞ ζ

ρ(ωn, ω) = 0
if and only if there exists a sequence (λn)n∈N ⊂ Λ such that for each T ≥ 0

lim
n→∞

sup
s∈[0,T ]

|λn(s) − s| = 0 (3.41)

lim
n→∞

sup
s∈[0,T ]

ρ(ωn(λn(s)), ω(s)) = 0. (3.42)

Let I denote some index set and let (ρi)i∈I be a family of pseudometrics on S that
generatesU with the properties described in Proposition 2.16. Analogously to the
classical case where (S , d) is a metric space, we aim to define a uniform structure on
DS ([0,∞)) through the family (ζρi)i∈I of pseudometrics on DS ([0,∞)).

Proposition 3.14 (Skorokhod uniformity generated by pseudometrics). Let (S ,U) be
a uniform Hausdorff space and (ρi)i∈I a family of pseudometrics that generates U
and satisfies the conditions of Proposition 2.16. Then the family of pseudometrics
(ζρi)i∈I on DS ([0,∞)) as defined above, satisfies the conditions in Proposition 2.16
and induces a uniformityD on DS ([0,∞)) which is Hausdorff.
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Proof. We first show that the family (ζi)i∈I satisfies condition (i) of Proposition 2.16.
Assume ω,ω′ ∈ DS ([0,∞)) and ω , ω′. Then there exists a t ≥ 0 such that
ω(t) , ω′(t). By the Hausdorff property there exists a basic entourage U ∈ U such
that U[ω(t)]∩U[ω′(t)] = Ø. By definition of uniformities and their bases, there exists
another basic entourage V ∈ U such that V ◦ V ⊂ U and by right continuity we find
an ε > 0 such that V[ω(s)] ∩ V[ω′(s′)] = Ø for all s, s′ ∈ [t, t + ε). Since V is a basic
entourage, there exists an i ∈ I and a δ > 0 such that V =

{
(x, y) ∈ S 2

∣∣∣ ρi(x, y) < δ
}
.

As a consequence, we have for any s > t + ε that

ρ̃s(ω,ω′) ≥ min{ε/2, δ} > 0 (3.43)

and hence ζρi(ω,ω′) > 0. As an immediate consequence, we obtain that the uniformity
D induced by (ζi)i∈I on DS ([0,∞)) is Hausdorff.

The second property of Proposition 2.16 follows directly from the corresponding
property of the family (ρi)i∈I. ■

It is important to know whether this construction of D depends on the choice of
the family (ρi)i∈I – it does not. But before we can show this fact we need to show
that we can approximate elements of DS ([0,∞)) by piecewise constant functions with
countably many jumps.

We denote the family of piecewise constant functions by

ES ([0,∞)) :=
{
ω ∈ DS ([0,∞))

∣∣∣∃ (xn)n∈N ⊂ S , π ∈ Π :

ω|I = xi,∀i ∈ N, I ∈ ι(π)
}
.

(3.44)

We refer to the elements of ES ([0,∞)) as simple paths.

Lemma 3.15 (Simple paths are dense in DS ([0,∞))). Let (S ,U) be a uniform Haus-
dorff space and (ρi)i∈I a family of pseudometrics on S , as before. Denote by D
the uniformity on DS ([0,∞)) generated by the family (ζρi)i∈I. Then the family of
piecewise constant functions ES ([0,∞)) is sequentially dense in DS ([0,∞)). That
is, for every ω ∈ DS ([0,∞)) there exists a sequence (ωn)n∈N ⊂ ES ([0,∞)) such that
limn→∞ ωn = ω.

It is worth pointing out that in general topological spaces, a subset D ⊂ S is dense
if and only for each x ∈ S there exists a net (xα)α such that limα xα = x. Thus,
sequential denseness is stronger than denseness in general.

Proof. Let ω ∈ DS ([0,∞)). It is sufficient to show that for fixed T > 0 there exists a
sequence (ωn)n∈N ⊂ ES ([0,∞)) such that

lim
n→∞

ρ̃T
i (ω,ωn) = 0 ∀i ∈ I. (3.45)
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To construct such a sequence, take a sequence of partitions
(
π(n)

)
n∈N

of the interval

[0,T ] such that π(n) ∈ Πn
T and limn→∞ L

(
π(n)

)
= 0 and define

ωn(t) :=

ω
(
π(n)

i−1

)
, if π(n)

i−1 ≤ t < π(n)
i ∧ T, i = 1, . . . , n

ω(T ), if t ≥ T.
(3.46)

Now fix ε > 0 and i ∈ I. By Lemma 3.4 there exists a partition π ∈ ΠT of [0,T ] such
that

sup
s,t∈I

ρi(ω(s), ω(t)) < ε ∀I ∈ ι(π). (3.47)

Clearly, we can choose π such that L(π) < ε. Then there exists a λ ∈ ΛT and a n ∈ N
such that supt∈[0,T ] |λ(t)−t| < ε and the partition λ

(
π(n)

)
=

(
λ(π(n)

0 ), λ(π(n)
0 ), . . . , λ(π(n)

n )
)

refines π, i.e. for all J ∈ ι
(
λ
(
π(n)

))
there exists an I ∈ ι(π) such that J ⊂ I. It follows

that
sup

t∈[0,T ]
ρi (ω(t), ωn(λ(t))) < ε (3.48)

and consequently ρ̃T
i (ω,ωn) < ε, which concludes the proof. ■

Theorem 3.16. Let (S ,U) be a uniform Hausdorff space and (ρi)i∈I and (σ j) j∈J two
families of pseudometrics that generate U and satisfy the conditions of Proposi-
tion 2.16. Then the uniformities on DS ([0,∞)) generated by (ζρi)i∈I and (ζσ j) j∈J
coincide.

Proof. We will make use of the covering uniformities introduced in Section 2.4 to
prove this theorem. Observe that by Lemma 2.26 the families of covers of S of the
form

Ai,ε :=
{ {
ω ∈ DS ([0,∞))

∣∣∣ ζρi(ω,ω0) < ε
} ∣∣∣ ω0 ∈ DS ([0,∞))

}
i ∈ I, ε > 0

(3.49)
and

B j,ε :=
{ {
ω ∈ DS ([0,∞))

∣∣∣ ζσ j(ω,ω0) < δ
} ∣∣∣ ω0 ∈ DS ([0,∞))

}
j ∈ J, δ > 0

(3.50)
form bases of the covering uniformities µ and ν of DS ([0,∞)), respectively. Once we
can show that eachAi,ε is refined by some B j,δ we obtain µ ⊂ ν by the definition of a
base and the conclusion follows by symmetry. As before, it suffices to show that for
fixed T > 0 and every pair (i, ε) ∈ I × (0,∞) there exist a pair ( j, δ) ∈ J × (0,∞) such
that for every ω0 ∈ DS ([0,∞)){

ω ∈ DS ([0,∞))
∣∣∣ σ̃T

j (ω,ω0) < δ
}
⊂

{
ω ∈ DS ([0,∞))

∣∣∣ ρ̃T
i (ω,ω0) < ε

}
. (3.51)
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Both (ρi)i∈I and (σ j) j∈J are bases for the same uniformity on S . By the definition of
covering uniformities this implies that for each pair (i, ε) ∈ I × (0,∞) there exists a
pair ( j, δ) ∈ J × (0,∞) such that the cover

{
Bρi(x, ε)

∣∣∣ x ∈ S
}

is refined by the cover{
Bσ j(x, δ)

∣∣∣ x ∈ S
}
. Without loss of generality, we can assume that δ < ε. Now fix

ω0 ∈ DS ([0,∞)). For every ω ∈
{
ω ∈ DS ([0,∞))

∣∣∣∣ σ̃T
j (ω,ω0) < δ

}
there exists a

λ ∈ ΛT such that

sup
t∈[0,T ]

|λ(t) − t| < δ and sup
t∈[0,T ]

σ j(ω(λ(t)), ω0(t)) < δ (3.52)

By choice of ( j, δ), this immediately implies supt∈[0,T ] ρi(ω(λ(t)), ω0(t)) < ε. Together
with supt∈[0,T ] |λ(t) − t| < δ < ε we readily obtain ρ̃T

i (ω,ω0) < ε, concluding the
proof. ■

There is a plethora of results on the Skorokhod topology for metric spaces and even
more for R. The next result is due to Jakubowki and gives a handy way to translate
these results to the uniform setting.

Proposition 3.17 ([Jak86, Theorem 4.3]). Let F ⊂ C(S ) be a family of continuous
real functions on S that is closed under addition and generates the topology on S .
For f ∈ F denote by f̂ : DS ([0,∞)) → DR([0,∞)) the map defined by f̂ (ω)( · ) :=
f (ω( · )). Then the Skorokhod topology on DS ([0,∞)) is generated by the family
F̂ :=

{
f̂
∣∣∣ f ∈ F

}
.

Using the fact that the topology induced by the weak uniformity generated by a
family of functions F coincides with the weak topology generated by these functions,
we readily get the following.

Corollary 3.18. Let F be a family of uniformly continuous functions mapping S to R
that is closed under addition and generates the uniformity on S . Then the Skorokhod
topology on DS ([0,∞)) is uniformizable and generated by the weak uniformity gener-
ated by the family F̂ . Moreover, this uniformity does not depend on the choice of F .
We call this uniformity Skorokhod uniformity and denote it withD = D(S ).

We can use this definition of the Skorokhod topology together with [EK86, Propo-
sition 3.6.5] to obtain a useful characterization of Skorokhod convergence.

Proposition 3.19 (Characterization of Skorokhod convergence). Let S be a uniform
Hausdorff space. Assume (ωn)n≥1 ⊂ DS and ω ∈ DS . Then ωn → ω in the Skorokhod
topology if and only if for all t ≥ 0 and sequences (tn)n≥1 ⊂ (0,∞) with limn→∞ tn = t
the following three conditions are satisfied
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(i) For every U ∈ U open,

ωn(tn) ∈ U[ω(t)] ∪ U[ω(t−)] eventually. (3.53)

(ii) If there exists a subsequence (tk)k∈N of (tn)n∈N such that limk→∞ ωk(tk) = ω(t),
then for all sequences (sk)k≥1 with sk ≥ tk for each k ≥ 1 and limk→∞ sk = t it
holds that limk→∞ ωk(sk) = ω(t).

(iii) If there exists a subsequence (tk)k∈N of (tn)n∈N such that limk→∞ ωk(tk) = ω(t−),
then for all sequences (sk)k≥1 with 0 ≤ sk ≤ tk for each k ≥ 1 and limk→∞ sk = t
it holds that limk→∞ ωk(sk) = ω(t−).

Proof. In the case where S is a metric space, the statement is just a reformulation of
[EK86, Proposition 3.6.5]. Without repeating the proof we assume that the statement
holds for S = R.

Throughout this proof let F ⊆ { f : S → R | f unif. cont. } denote a family of
uniformly continuous functions that generatesU. Recall from Proposition 2.13 and
Remarks 2.14 that this means that for every U ∈ U there exists a m ∈ N, functions
f1, . . . , fm ∈ F and δ > 0 such that

m⋂
j=1

F−1
j Bδ ⊂ U, (3.54)

where Bδ =
{

(u, v) ∈ R2
∥∥∥ u − v| < δ

}
and F j : S 2 → R2 is given by F j(x, y) =

( f j(x), f j(y)), as usual.

As in Proposition 3.17 define f̂ : DS ([0,∞)) → DR([0,∞)) by f̂ (ω)(t) = f (ω(t))
for each f ∈ F and denote F̂ =

{
f̂
∣∣∣ f ∈ F

}
.

We start with necessity. Let (ωn)n∈N ⊂ DS ([0,∞)) and assume that ωn → ω ∈

DS ([0,∞)) with respect to the Skorokhod topology on DS ([0,∞)). Let (tn)n∈N ⊂ R≥0
be such that tn → t ≥ 0. By continuity, f̂ (ωn)→ f̂ (ω) for each f̂ ∈ F̂ . Applying (i)
to the DR([0,∞)) valued sequence

(
f̂ (ωn)

)
n∈N

, we find for each ε > 0 and f̂ ∈ F̂ a
n0 = n0( f ) ∈ N such that

| f̂ (ωn)(tn) − f̂ (ω)(t)| ∧ | f̂ (ωn)(tn) − f̂ (ω)(t−)|

= | f (ωn(tn)) − f (ω(t))| ∧ | f (ωn(tn)) − f (ω(t−))| < ε
(3.55)

for all n ≥ n0.

Now let U ∈ U be open and m ∈ N, f1, . . . , fm ∈ F and δ > 0 be such that (3.54)
is satisfied. Taking the maximum over all n0( f j) as above we find a N0 ∈ N such that

f j(ωn(tn)) ∈ Bδ[ f j(ω(t))] ∪ Bδ[ f j(ω(t−))] (3.56)
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for all n > N0 and all j = 1, . . . ,m. By continuity of the f j and after choosing a smaller
δ > 0 or a bigger N0 ∈ N, if necessary, we can assume that if f j(ωn(tn)) ∈ Bδ[ f j(ω(t))]
( f j(ωn(tn)) ∈ Bδ[ f j(ω(t−))]) for some j = 1, . . . ,m then the same holds for all
j = 1, . . . ,m. Thus, for every n > N0 we obtain

ωn(tn) ∈ (F−1
j Bδ)[ω(t)] for all j = 1, . . . , n (3.57)

or
ωn(tn) ∈ (F−1

j Bδ)[ω(t−)] for all j = 1, . . . , n (3.58)

and hence, by construction,

ωn(tn) ∈ U[ω(t)] ∪ U[ω(t−)] (3.59)

for all n > N0. The same argument can be applied to show (ii) and (iii).

We now show sufficiency. Assume (ωn)n∈N ⊂ DS ([0,∞)) and ω ∈ DS ([0,∞)) are
such that for all (tn)n∈N ⊂ [0,∞) with limn→∞ tn = t ≥ 0 (i)–(iii) hold. If we can
show that f̂ (ωn)→ f̂ (ω) in DR([0,∞)), we are done by Lemma A.34. Let f ∈ F , by
continuity we can deduce that (i)–(iii) hold for the sequence

(
f̂ (ωn)

)
n∈N

and hence,
by assumption, f̂ (ωn)→ f̂ (ω), concluding the proof. ■

Next, observe that the space of càdlàg paths over a Polish uniform space is itself
again a Polish uniform space. We phrase this result as a corollary to the known result
for Polish metric spaces but it is possible to prove this fact directly.

Lemma 3.20 (Completeness and separability of the Skorokhod uniformity). Let (S ,U)
be a uniform Hausdorff space with a countable base. Then the Skorokhod uniformity
on DS ([0,∞)) is separable if (S ,U) is separable and complete if (S ,U) is complete.

Proof. By assumption, (S ,U) is metrizable and by Lemma 2.39 every metric that
inducesU is complete and the claim follows directly from the corresponding theorem
for metric spaces (cf. [EK86, Theorem 3.5.6]). ■

Observe that we can drop the assumption that U has a countable base in the
statement of Lemma 3.20 and still show that separability of S implies separability of
DS ([0,∞)) by the same proof as in the metric case. Furthermore, we strongly believe
that also completeness can be shown without the assumption of first countability. But
as we will only use the statement only for metrizable spaces, we do not intend to
prove it here.
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3.3 Relative compactness in DS ([0,∞))
Recall the notation we introduced for partitions in (3.12) and (3.13) and (3.14).

We seek to prove the following theorem which is a qualitative restatement of the
quantitative statement of [EK86, Theorem 3.6.3].

Theorem 3.21 (Relative compactness in DS ([0,∞))). Let (S ,U) be a complete uni-
form Hausdorff space with a countable base and A ⊂ DS ([0,∞)). Then A is relatively
compact if and only if the following conditions are satisfied for every T > 0.

(i) There exists a compact ΓT ⊂ S such that for all ω ∈ A and t ∈ [0,T ], ω(t) ∈ ΓT .

(ii) For all U ∈ U and ω ∈ A there exists a δ = δ(U) > 0 depending only on U and
a partition πω ∈ ΠT of [0,T ] with l(πω) > δ such that

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(πω). (3.60)

As before, this theorem can be regarded as a corollary to the corresponding state-
ment for metric spaces. We will nevertheless include a proof that relies on the uniform
structure to highlight its significance.

The proof relies on a Lemma from [EK86] which holds verbatim for uniform
Hausdorff spaces. We present it here together with a proof for sake of completeness.
First, we introduce the following notation for an ω ∈ DS ([0,∞)) with countably
many jumps. Given such an ω we define the jump-times s j(ω) of ω as follows. Let
s0(ω) := 0 and for k = 1, 2, . . . let

sk(ω) := inf { t > sk−1(ω) | ω(t) , ω(t−) } , (3.61)

if sk−1(ω) < ∞ and sk(ω) = ∞ if sk−1(ω) = ∞. Here we use the convention that
inf Ø = ∞.

Lemma 3.22. [EK86, Lemma 3.6.1] Let (S ,U) be a uniform Hausdorff space and
Γ ⊂ S a compact subset. Fix δ > 0 and define A(Γ, δ) to be the set of piecewise
constant paths ω ∈ ES ([0,∞)) such that ω(t) ∈ Γ for all t ≥ 0 and sk(ω)− sk−1(ω) > δ
for all k ∈ N with sk(ω) < ∞. Then A(Γ, δ) is relatively compact (in DS ([0,∞))).

Proof. Let (ωn)n∈N ⊂ A(Γ, δ). We need to show that there exists a convergent subse-
quence

(
ωnm

)
m∈N of (ωn)n∈N. For k ∈ N denote by Mk := { n ∈ N | sk(ωn) < ∞ } the

set of indices for which (ωn)n∈N has at least k jumps and observe that Mk+1 ⊂ Mk. In
the case where |M1| < ∞ there exists a subsequence

(
ωnm

)
m∈N such that ωnm(t) = xm ∈

Γ for all t ≥ 0. Because Γ is compact there exists another subsequence that converges.
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Now assume M := sup { k ∈ N | |Mk| = ∞ } ≥ 1. Observe that M may be infinite.
Then there exists a subsequence

(
ωnm

)
m∈N such that sk(ωnm) < ∞ for all k ≤ M

and all m ∈ N. Choosing an adequate subsequence if necessary, we can assume
without loss of generality that limm→∞ sk(ωnm) = tk exists (tM = ∞ is possible) and
limm→∞ ωnm(sk(ωnm)) = xk ∈ Γ for all k ≤ M. By assumption we have tk−tk−1 ≥ δ > 0
for all k ≤ M and hence limm→∞ ωnm = ω, where

ω(t) =

xk, t ∈ [tk−1, tk), k = 1, . . . ,M
xM, t ≥ tM.

(3.62)

■

Proof of Theorem 3.21. Let A ⊂ DS ([0,∞)) and assume that the conditions (i) and (ii)
of the theorem hold. By Lemma 3.20, DS ([0,∞)) is complete and by Lemma 2.35 it
suffices to show that A is totally bounded.

Let (ρi)i∈I be a family of pseudometrics on S that generatesU and write (ζi)i∈I for
the family of pseudometrics on DS ([0,∞)) induced by (ρi)i∈I, as before. Fix a pair
(i, ε) ∈ I × (0,∞) and choose T > 0 large enough such that

∫ ∞
T e−t dt < ε/2. By (ii)

there exists a δ > 0 and for each ω ∈ A a partition πω ∈ ΠT with l(πω) > δ such that

sup
s,t∈I

ρi(ω(s), ω(t)) < ε/2 ∀I ∈ ι(πω). (3.63)

For ω ∈ A define ω as

ω(t) :=

ω
(
πωk−1

)
, t ∈ [πωk−1, π

ω
k ), k = 1, . . . ,Nω

ω
(
πωNω

)
t ≥ πωNω

.
(3.64)

Then ω ∈ A(ΓT , δ) and ζi(ω,ω) < ε.

As (ζi)i∈I generates the uniformityD on DS ([0,∞)), we have shown that for every
entourage D ∈ D there exists a compact set ΓD and a δD > 0 such that

A ⊂
⋃

ω∈A(ΓD,δD)

D[ω]. (3.65)

Since A(ΓD, δD) is totally bounded by Lemma 3.22 it follows from Lemma 2.31 that
A itself is totally bounded.

Now assume that A is relatively compact. Then every sequence (ωn)n∈N ⊂

A contains a converging subsequence. Furthermore, every sequence (tn)n∈N ⊂

[0,T ] contains a converging subsequence and thus, by Proposition 3.19, every se-
quence (ωn(tn))n∈N of paths contains a converging subsequence. Therefore, the set
{ ω(t) | ω ∈ A, t ∈ [0,T ] } is contained in a compact set ΓT ⊂ S .
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Now assume that (ii) does not hold. Then there exist T > 0, U ∈ U open and a
sequence (ωn)n∈N ⊂ A such that for all partitions π(n) ∈ ΠT of [0,T ] with l(πn) ≥ 1/n
there exists an interval In ∈ ι(π(n)) and s, t ∈ In such that

(ωn(s), ωn(t)) < U. (3.66)

Choosing an adequate subsequence if necessary, we can assume without loss of gener-
ality that there exists a ω ∈ DS ([0,∞)), not necessarily in A, such that limn→∞ ωn = ω.
By Lemma 3.4 there exists a δ > 0 and a partition π ∈ ΠT with l(π) > δ such that

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(π). (3.67)

For large enough n ∈ N we can choose the partitions π(n) such that π(n) refines π and
L(π) < 2/n. Now let (sn)n∈N ⊂ [0,T ] and (tn)n∈N ⊂ [0,T ] be such that sn < tn and
sn, tn ∈ In for some In ∈ ι(π(n)). By compactness, there exist converging subsequences
(snk )k∈N and (tnk )k∈N such that limk→∞ snk = s and limk→∞ tnk = t. By construction we
have tnk − snk → 0 and hence s = t. On the other hand we have (ωnk (snk ), ωnk (tnk )) < U
for all k ∈ N. Using the fact that the sequence (ωnk )k∈N converges and Proposi-
tion 3.19 we deduce that limk→∞ ωnk (snk ) = ω(t−) and limk→∞ ωnk (tnk ) = ω(t) and
(ω(t−), ω(t)) < U. But this contradicts (3.67) thus concluding the proof. ■

Observe that in the proof we have used the existence of a countable base only in
the first paragraph to justify that DS ([0,∞)) is complete. If we can show the Conjec-
ture 7.1 the assumption of first countability and hence also the implicit assumption of
metrizability can be dropped from the statement of the theorem.

Lemma 3.23 (Skorokhod convergence). Let (S ,U) be a uniform Hausdorff space
with a countable base. Assume that (ωn)n∈N ⊂ DS ([0,∞)) and ω ∈ DS ([0,∞)). Then
limn→∞ ωn = ω in the Skorokhod topology if and only if the following two conditions
are satisfied.

(i) For all sequences (tn)n∈N ⊂ [0,∞) with limn→∞ tn = t < ∞ and all open
entourages U ∈ U there exists a n0 ∈ N such that

ωn(tn) ∈ U[ω(t−)] ∪ U[ω(t)] ∀n > n0. (3.68)

(ii) The sequence (ωn)n∈N is relatively compact.

Proof. We have shown necessity of (i) already in the proof of Proposition 3.19 and
(ii) follows directly from the convergence of the sequence (ωn)n∈N.

For sufficiency, we show that together with (i), relative compactness implies that
(ii) and (iii) of Proposition 3.19 hold. To that end assume that Proposition 3.19
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(ii) fails. We want to show that the sequence (ωn)n∈N cannot be relatively compact.
Assume that there exists a sequence (tn)n∈N ⊂ [0,∞) such that limn→∞ tn = t < ∞
and limn→∞(ωn(tn)) = ω(t). Assume further that there exists another sequence
(sn)n∈N ⊂ [0,∞) with limn→∞ sn = t, limn→∞ ωn(sn) = ω(t−) and sn ≥ tn for all
n ∈ N, where ω(t−) , ω(t). By the Hausdorff property, there exists an open entourage
U ⊂ U such that U[ω(t)]∩U[ω(t−)] = Ø and we can choose another open entourage
V ∈ U with the property V ◦ V ◦ V ◦ V ⊂ U. By right continuity and definition of the
left limit point there exists ε > 0 such that

ω(r) ∈ V[ω(t−)], ∀r ∈ [t − ε, t) and ω(r) ∈ V[ω(t)], ∀r ∈ [t, t + ε). (3.69)

Choose δ ∈ (0, ε) fixed but arbitrary. By Lemma 3.2 there exist continuity points
u ∈ [t − δ/2, t) and v ∈ [t, t + δ/2) of ω. By (i) we have

lim
n→∞

ωn(u) = ω(u) ∈ V[ω(t−)] and lim
n→∞

ωn(v) = ω(v) ∈ V[ω(t)]. (3.70)

Observe that there exists an open entourage W ∈ U such that W[ω(u)] ⊂ V[ω(t−)]
and W[ω(v)] ⊂ V[ω(t)]. After choosing an adequate subsequence we can assume
without loss of generality that

ωn(u) ∈ V[ω(t−)], ωn(v) ∈ V[ω(t)], (3.71)

sn, tn ∈ (u, v) and
ωn(sn) ∈ V[ω(t−)], ωn(tn) ∈ V[ω(t)], (3.72)

for all n ∈ N. If we now collect all the pieces, observe that we constructed for each
n ∈ N

t − δ/2 < u < tn ≤ sn < v < t + δ/2 (3.73)

with the property

V[ωn(u)] ∩ V[ωn(tn)] = Ø, V[ωn(tn)] ∩ V[ωn(sn)] = Ø

and V[ωn(sn)] ∩ V[ωn(v)] = Ø.
(3.74)

Since v − u ≤ δ and δ ∈ (0, ε) was arbitrary this is a contradiction to the relative
compactness condition in Theorem 3.21 and hence (ωn)n∈N is not relatively compact.

If instead condition (iii) of Proposition 3.19 fails, we can exchange the roles of sn

and tn in the previous argument to deduce that (ωn)n∈N is not relatively compact. ■

Note that we have shown in the proof of Lemma 3.23 that relative compactness of
a sequence (ωn)n∈N ⊂ DS ([0,∞)) implies that (ωn)n∈N satisfies both conditions (iii)
of Proposition 3.19.
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3.4 Convergence of paths via hitting times
In this section, we show that the convergence of a sequence (ωn)n∈N ⊂ DS ([0,∞))

of paths is equivalent to the convergence of hitting times.

Throughout this section let (S ,U) denote a uniform Hausdorff space and equip
DS ([0,∞)) with the Skorokhod uniformity. The first important observation is that the
hitting time operator is upper semi-continuous for open sets.

Lemma 3.24 (Semi-continuity of hitting times). For A ⊂ S be consider the hitting
time operator

τA : DS ([0,∞))→ [0,∞], τA(ω) := inf { t ≥ 0 | ω(t) ∈ A } . (3.75)

If A is open, the hitting time operator τA is upper semi-continuous, i.e. for all
(ωn)n∈N ⊂ DS ([0,∞)) such that limn→∞ ωn = ω ∈ DS ([0,∞)),

lim sup
n→∞

τA(ωn) ≤ τA(ω). (3.76)

Proof. We proceed by contradiction. Let A ⊂ S be open and assume there ex-
ists a sequence (ωn)n∈N ⊂ DS ([0,∞)) such that ωn → ω ∈ DS ([0,∞)) and
lim supn→∞ τA(ωn) > τA(ω). Passing over to subsequences, we can assume without
loss of generality that tn := τA(ωn) > τA(ω) and limn→∞ tn = t > τA(ω). By defi-
nition of the hitting time and Lemma 3.2 there exists a continuity point s ∈ (τA, t)
of ω such that ω(s) ∈ A. Hence, there exists an open entourage U ∈ U such that
U[ω(s)] ⊂ A and. By construction, ωn(s) < U[ω(s)] for all n ∈ N in contradiction to
Proposition 3.19 (i). ■

The convergence of all hitting times of neighborhoods is certainly sufficient for
the convergence of a sequence of paths (ωn)n∈N ⊂ DS ([0,∞)) but it is not a necessary
condition.

Example 3.25. Let S = R and consider the sequence of constant paths ωn ≡ 1/n
and ω ≡ 0. Clearly, ωn → ω, as n → ∞. But for the hitting times of B = B(1, 1) =
{ x ∈ R ∥ x − 1| < 1 } we have τB(ωn) = 0 and τB(ω) = ∞. ■

The example shows that we have to allow the convergence of hitting times to fail
for a few exceptional sets. We will show that the Skorokhod convergence implies the
convergence of the hitting times of all slightly enlarged neighborhoods. A similar
result in the metric case was proved by Rojas [Roj24].
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Recall from Definition 3.7 that the first contact time of ω to a set A ⊂ S is defined
as

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
, (3.77)

Lemma 3.26. Let (S ,U) be a uniform Hausdorff space, ω ∈ DS ([0,∞)) and
(ωn)n∈N ⊂ DS ([0,∞)) such that ωn → ω in the Skorokhod topology as n → ∞.
Assume A ⊂ S is such that γA(ω) = τA(ω). Then limn→∞ τA(ωn) = τA(ω).

Proof. Let A ⊂ S be such that the first contact time is the first hitting time, i.e.
γA(ω) = τA(ω).

Fix t ∈ [0, τA(ω)) ∩ Q. By assumption, ω(t) and ω(t−) are contained in the
open set ∁A hence there exists a V ∈ U open such that V[ω(t)] ∩ A = Ø and
V[ω(t−)] ∩ A = Ø. By Proposition 3.19 we have that ωn(t) ∈ V[ω(t−)] ∪ V[ω(t)]
for all n ∈ N large enough. By right continuity, we even find for every n ∈ N large
enough some εn > 0 such that ωn(s) ∈ V[ω(t−)] ∪ V[ω(t)] for all s ∈ [t, t + εn).
Hence there cannot exist a subsequence

(
ωnk

)
k∈N such that limk→∞ τA(ωnk ) = t and

consequently lim supn→∞ τA(ωn) ≥ t for all t < τA(ω). On the other hand, we have by
semi-continuity of the hitting times that lim supn→∞ τA(ωn) ≤ τA(ω). ■

Theorem 3.27 (Convergence via hitting times). Let (S ,U) be a uniform Hausdorff
space, ω ∈ DS ([0,∞)) and (ωn)n∈N ⊂ DS ([0,∞)) be relatively compact. Then the
following are equivalent.

(i) limn→∞ ωn = ω in the Skorokhod topology.

(ii) For all x ∈ S , U ∈ U, all continuity points s ≥ 0 of ω, and all D ∈ U, there
exists a E ∈ U with E ⊂ D open, such that

τ(U◦E)[x](ωn ◦ θs)→ τ(U◦E)[x](ω ◦ θs), as n→ ∞. (3.78)

(iii) For all x ∈ S , all continuity points s ≥ 0 of ω and all U ∈ U open such that
τU[x](ω ◦ θs) = γU[x](ω ◦ θs) it holds that

τU[x](ωn ◦ θs)→ τU[x](ω ◦ θs), as n→ ∞. (3.79)

Proof. We start with the implication (i) ⇒ (iii). Assume that ωn → ω in the Sko-
rokhod topology. Then also ωn ◦ θs → ω ◦ θs for every continuity point s ≥ 0 of ω.
We can thus assume without loss of generality s = 0. Now assume that (iii) does not
hold, i.e. there exists an x ∈ S and a U ∈ U open such that τU[x](ω) = γU[x](ω) fails.
By upper semi-continuity Lemma 3.24 this implies

t := lim sup
n→∞

τU[x](ωn) < τU[x](ω) = γU[x](ω) (3.80)
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and furthermore {ω(t), ω(t−)} ⊂ ∁U[x]. We can thus find a V ∈ U open such that
V[ω(t)] ∪ V[ω(t−)] ⊂ ∁U[x]. We can then choose a subsequence (ωk)k∈N such that
tk := τU[x](ωk)→ t. By Proposition 3.19 we have ωk(tk) ∈ V[ω(t)] ∪ V[ω(t−)] for all
k ∈ N large enough and by right continuity there exists a sequence (εk)k∈N ⊂ (0,∞)
such that ωk([tk, tk + εk)) ⊂ V[ω(t)] ∪ V[ω(t−)] for all k ∈ N large enough. In
contradiction to the definition of tk.

The implication (iii) ⇒ (ii) is a direct consequence of Lemma 3.9.

Finally, we turn to the implication (ii)⇒ (i). Assume (ωn)n∈N does not converge to
ω ∈ DS ([0,∞)). We want to apply Lemma 3.23 and Lemma 3.2 to find a continuity
point s ≥ 0 of ω and a subsequence (ωm)m∈N such that limm→∞ ωm(s) = x exists and
ω(s) , x. Then the claim follows because the hitting times of either U[x] or U[ω(t)]
do not converge for all U ∈ U open and sufficiently small.

Since (ωn)n∈N is relatively compact by assumption, assume that (i) fails. Namely,
there exists a sequence (tn)n∈N ⊂ [0,∞) such that limn→∞ tn = t ≥ 0 and a U ∈ U
open such that

ωn(tn) < U[ω(t−)] ∪ U[ω(t)] for infinitely many n ∈ N. (3.81)

Passing over to a subsequence (tk)k∈N we can assume that (3.81) holds for all k ∈
N. Furthermore, supk∈N tk =: T < ∞ and by assumption, (ωk(tk))k∈N ⊂ ΓT for
some ΓT ⊂ S compact. Hence, there exists a further subsequence (tl)l∈N such that
liml→∞ ωl(tl) = x ∈ ΓT . Let V ∈ U be open with V ◦ V ⊂ U. We can choose yet
another subsequence (tm)m∈N such that

ωm(tm) ∈ V[x] for all m ∈ N (3.82)

and observe that
V[x] ∩ (V[ω(t−)] ∪ V[ω(t)]) = Ø. (3.83)

Furthermore, by right continuity of ω and by definition of ω(t−) there exists a ε > 0
such that ω([t − ε, t + ε]) ⊂ V[ω(t−)] ∪ V[ω(t)]. Observe that (tm)m∈N contains either
an increasing or a decreasing subsequence – or both. Without loss of generality,
we assume that (tm)m∈N is either increasing or decreasing itself and treat both cases
separately.

Assume that (tm)m∈N is increasing. By Lemma 3.2 there exists a continuity point
s ∈ (t − ε, t) of ω. By construction we have tm ≥ s eventually and thus

lim
m→∞

τV[x](ωm ◦ θs) = 0. (3.84)

on the other hand, τV[x](ω ◦ θs) ≥ ε. Observe that this holds for all open entourages
W ∈ U with W ⊂ V .

68 Chapter 3 The path space



Now assume that (tm)m∈N is decreasing. Again by Lemma 3.2 there exists a
continuity point s ∈ (t − ε/4, t) of ω and we have

lim sup
m→∞

τV[x](ωm ◦ θs) ≤ ε/2, (3.85)

while τV[x](ω ◦ θs) ≥ ε. ■

We conclude this section with a few simple examples to highlight the importance
of the assumptions in Theorem 3.27.

Example 3.28 (shifts to discontinuity points). The restriction of the shifts in the
statement of Theorem 3.27 (ii) is necessary because the starting point plays a special
role in the Skorokhod topology and shifting the starting point to a point of discontinuity
may break convergence in the Skorokhod topology. To illustrate this, consider the
path

ω(t) = 1[1,∞)(t) ∈ DR([0,∞)) (3.86)

and the sequence (ωn)n∈N ⊂ DR([0,∞)) given by

ωn(t) = 1[1+1/n,∞)(t), (3.87)

for every n ∈ N. ■

Example 3.29 (relative compactness is necessary). Let ω ∈ DR([0,∞)) be defined as

ω(t) := 1[1,∞)(t). (3.88)

For each n ∈ N let ωn ∈ DR([0,∞)) be defined as

ωn(t) := 1[1−1/n,1)(t) + 1[1+1/n,∞)(t). (3.89)

Clearly, ω is discontinuous at t = 1 and continuous on [0,∞) \ {1}. For every sequence
(tn)n∈N ⊂ [0,∞) with limn→∞ tn = t ∈ [0,∞) \ {1} we have ωn(tn)→ ω(t). For every
sequence (tn)n∈N ⊂ [0,∞) with limn→∞ tn = 1 we have ωn(tn) ∈ {ω(1), ω(1−)} = {1, 0}.
Hence, the condition (i) of Proposition 3.19 is satisfied. On the other hand, (ii) of
Proposition 3.19 fails. To see that, consider the sequences (tn)n∈N and (sn)n∈N defined
as

tn := 1 −
1
2n

and sn := 1 +
1

2n
. (3.90)

Then, limn→∞ tn = 1 = limn→∞ sn and tn ≤ sn for every n ∈ N. Furthermore, it holds
for every n ∈ N

ωn(tn) = 1 = ω(1) and ωn(sn) = 0 = ω(1−). (3.91)
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1 − 1
n

tn 1 sn 1 + 1
n

1

Fig. 3.1.: The process ωn

Hence, we have found a sequence (tn)n∈N such that limn→∞ ωn(tn) = ω(t) and a se-
quence (sn)n∈N with the same limit, that dominates (tn)n∈N such that limn→∞ ωn(sn) =
ω(t−) , ω(t). Thus, ωn does not converge to ω in the Skorokhod topology by
Proposition 3.19.

On the other hand, we have

τB(x,δ)(ωn ◦ θs)→ τB(x,δ)(ω ◦ θs) (3.92)

for every x ∈ R, δ > 0 and every continuity point s ≥ 0 of ω. ■

The following example was brought to our attention by Wolfgang Löhr [Löh21]
and illustrates that the convergence of the hitting times can fail for infinitely many
balls although the processes converge.

Example 3.30. Let S = R and ω ∈ DS ([0,∞)) be the path that starts in 1, waits for
one unit of time and jumps by 1/2; waits again 1/2 unit of time and jumps by 1/4 and
so on in a geometric fashion. In other words

ω(t) =
∞∑

k=0

2−k
1[0,

∑k
j=0 2− j)(t) =

∞∑
k=0

(2 − 2−k)1[2−2−k+1,2−2−k)(t). (3.93)

For n ∈ N and t ≥ 0 let ωn(t) := ω(t) + 1/n. Then ωn → ω in the Skorokhod topology.
Consider for example the ball B(3, 1) around 3 with radius 1. Then τB(3,1)(ωn) ≤ 2
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and τB(3,1)(ω) = ∞. Furthermore, let δ > 0 then there exists a k ∈ N such that
ε := (2 − 2k) > 2 − δ and for every n ∈ N, we have

τB(3,1+ε)(ωn) ≤ 2 − 2−k+1 (3.94)

but
τB(3,1+ε)(ω) = 2 − 2−k. (3.95)

hence, τB(3,1+ε)(ω) − τB(3,1+ε)(ωn) ≥ 2−k, independently of n. ■

3.5 Random càdlàg paths
In this section, we introduce probability measures on the space of càdlàg func-

tions DS ([0,∞)) equipped with the Skorokhod uniformity. We will lift some of the
statements we have proved in the last sections to the random elements. Namely, we
will shortly introduce tightness for a family of probability measures and give criteria
when a family of probability measures on DS ([0,∞)) is tight. Finally, we will give
a criterion for the convergence of a sequence of probability measures based on the
hitting times of certain (uniform) neighborhoods.

We will consider mainly Polish uniform spaces. Recall from the discussion in
Section 2.5 that if (S ,U) is a uniform Polish space, DS ([0,∞)) also becomes a uniform
Polish space when equipped with the Skorokhod uniformityD. By Definition 2.38
and Lemma 2.39, (S ,U) and (DS ([0,∞)),D) are then completely metrizable. Instead
of choosing one specific metric we continue as before and use the uniform structure
thereby showing that many classical results can be translated by using uniformities
instead of metrics.

We begin with some general remarks about probability measures on uniform spaces.

3.5.1 Probability measures on uniform spaces
Let (S ,U) be a uniform Hausdorff space. We equip S with the Borel-σ-field B and

denote byM1 = M1(S ) the family of probability measures on (S ,B). In a similar
fashion as we generalized the Skorokhod metric we can generalize the Prokhorov
metric on the space of probability measures over a uniform space. Recall that there
exists a family of pseudometrics (ρi)i∈I for some I , Ø on S that generates U and
satisfies (i) and (ii) of Proposition 2.16. For every i ∈ I we introduce the maps
ζi :M1 ×M1 → [0, 1] as

ζi(µ, ν) := inf { ε > 0 | µ(A) ≤ ν(Bi(A, ε)) + ε and ν(A) ≤ µ(Bi(A, ε)) + ε, ∀A ∈ B } ,
(3.96)
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where Bi(A, ε) = { x ∈ S | ∃x ∈ A : ρi(x, y) < ε } denotes the (open) ε-blowup of A
with respect to ρi.

Proposition 3.31. Let (S ,U) be a uniform space and (ζi)i∈I defined as above. Then the
family (ζi)i∈I satisfies the conditions of Proposition 2.16 and the uniformity generated
by (ζi)i∈I does not depend on the choice of the family (ρi)i∈I.

Proof. First, let µ, ν ∈ M1(S ) with µ , ν. Without loss of generality there exists an
A ∈ B such that µ(A) < ν(A). Suppose

inf { ε > 0 | ν(A) ≤ µ(Bi(A, ε)) + ε } = 0 (3.97)

for all i ∈ I. Then,

ν(A) ≤ inf
{
ν(U)

∣∣∣ U ∈ B open, A ⊂ U
}
+ c, (3.98)

where c = ν(A) − µ(A) > 0, in contradiction to the fact that ν is a probability measure
and therefore (outer) regular. Hence we have verified (i) of Proposition 2.16.

Now let i, j ∈ I. By (ii) of Proposition 2.16 there exists a k ∈ I such that ρi∨ρ j ≤ ρk.
Suppose again that µ, ν ∈ M1(S ) and A ∈ B such that µ(A) < ν(A). Then, Bi(A, ε) ∪
B j(A, ε) ⊂ Bk(A, ε) for all ε > 0. Consequently, µ(Bi(A, ε))∨µ(B j(A, ε)) ≤ µ(Bk(A, ε))
and hence,

inf { ε > 0 | ν(A) ≤ µ(Bα(A, ε)) + ε } ≥ inf { ε > 0 | ν(A) ≤ µ(Bk(A, ε)) + ε } (3.99)

for α = i, j. Since A ∈ B was arbitrary we obtain ζi ∨ ζ j ≤ ζk, and this confirms
Proposition 2.16 (ii).

The final part of the statement will follow from the next result, Proposition 3.32. □

We call the uniformity generated by (ζi)i∈I the Prokhorov uniformity and denote it
byDM. A different construction of the Prokhorov uniformity can be given in terms
of the diagonal uniformity on S .

Proposition 3.32. Let (S ,U) be a uniform Hausdorff space. Then the sets of the form

DU,ε :=
{

(µ, ν) ∈ M2
1

∣∣∣ µ(A) ≤ ν(U[A]) + ε and ν(A) ≤ µ(U[A]) + ε, ∀A ∈ B
}
,

(3.100)
where ε ∈ (0, 1) and U ∈ U form a base of the Prokhorov uniformity onM1(S ). The
same holds true if we let ε range over a dense subset of (0, 1) and U over some base
V ofU.
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Proof. We only show the second part of the statement. Let D ∈ DM without loss
of generality we can assume that D is a basic entourage with respect to a family of
pseudometric (ζi)i∈I as in Proposition 3.31. In other words, there exists a i ∈ I and a
0 < δ < 1 such that

D =
{

(µ, ν) ∈ M2
1

∣∣∣ ζi(µ, ν) < δ
}
. (3.101)

By definition of ζi we can immediately conclude that D is of the form (3.100) with
U =

{
(x, y) ∈ S 2

∣∣∣ ρi(x, y) < δ
}

and U an element of the basis V generated by the
family of pseudometrics (ρi)i∈I. In every dense subset of (0, 1) there exists an ε > 0
such that ε < δ and we find that

DU,ε ⊂ D, (3.102)

which yields the claim. Note that the uniformityDM does not depend on the choice
of the baseV or of the family (ρi)i∈I. ■

The following results are completely analogous of the results for the Prokhorov
metric, as are their proofs. We leave the proofs to the reader as an exercise in handling
uniformities.

Proposition 3.33. Let (S ,U) be a uniform Hausdorff space andDM the Prokhorov
uniformity onM1(S ). Then

• (M1(S ),DM) is separable if and only if (S ,U) is separable.

• (M1(S ),DM) has a countable base if and only if (S ,U) has a countable base.

• (M1(S ),DM) is complete if and only if (S ,U) is complete.

The main feature of the Prokhorov metric is that it metricizes the weak convergence
of (probability) measures. The analogue holds true for the Prokhorov uniformity.

Proposition 3.34. Let (S ,U) be a uniform Hausdorff space andDM the Prokhorov
uniformity onM1(S ). A sequence of probability measures (µn)n∈N ⊂ M1(S ) con-
verges weakly if and only if it converges with respect to the Prokhorov uniformity.

As usual, we want to know more about the (relatively) compact subsets ofM1(S ).
Recall the following definition.

Definition 3.35 (Tightness). Let (S ,U) be a uniform Hausdorff space. A family
A ⊂ M1(S ) of probability measures is called tight if for all ε > 0 there exists a
compact set Kε ⊂ S such that

sup
µ∈A

µ
(
∁Kε

)
< ε. (3.103)
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If (Ω,A,P) is a probability space and Ξ ⊂ {X : Ω→ S } is a family of S -valued random
variables, we say that Ξ is tight if the family

{
PX = P ◦ X−1

∣∣∣ X ∈ Ξ
}
⊂ M1(S ) is

tight. ♢

The next result is a simple extension of the well-known result for metric spaces.

Lemma 3.36. Let (S ,U) be a uniform Polish space. Then every probability measure
µ ∈ M1(S ) is tight.

For uniform spaces, we have the following version of Prokhorov’s Theorem.

Proposition 3.37 (Prokhorov). Let (S ,U) be a uniform Hausdorff space and A ⊂
M1(S ) a family of probability measures on S .

(i) If A is tight then A is relatively compact.

(ii) If in addition (S ,U) is separable, complete and possesses a countable base,
then relative compactness of A implies tightness of A.

Proof. See [Kle14, Theorem 13.29]. The proof is easily adapted to the uniform
setting. ■

3.5.2 Random paths
Let (S ,U) be a uniform Hausdorff space and (Ω,A,P) a probability space. We

equip the space (DS ([0,∞)),D) with the Borel σ-field BD generated by the open
sets and denote by πt : DS ([0,∞))→ S the projections ω 7→ πt(ω) := ω(t). The next
result can be found in [EK86, Proposition 3.7.1] and the same proof can be applied
almost verbatim for uniform spaces and we will omit it here.

Proposition 3.38. Let D ⊂ [0,∞) be a dense subset. Then,

BD ⊃ B
′
D

:= σ ({ πt | t ∈ [0,∞) }) = σ ({ πt | t ∈ D }) . (3.104)

If S is separable, we have BD = B′D.

For further reference, we cite the following result from Dudley’s book [Dud02].

Lemma 3.39 ([Dud02, Proposition 4.1.7]). Let S ,T be two topological spaces. Then
B(S ) ⊗ B(T ) ⊂ B(S × T ). If both S and T are second countable, we have equality of
the σ-fields.
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We continue with a simple observation.

Lemma 3.40. Let (S ,U) be a separable uniform Hausdorff space with a countable
base. Assume that U ∈ U is open. Then the sets{

ω ∈ DS ([0,∞))
∣∣∣ (ω(s), ω(t)

)
∈ U

}
(3.105)

and {
ω ∈ DS ([0,∞))

∣∣∣ (ω(s−), ω(t)
)
∈ U

}
(3.106)

are BD-measurable for each 0 ≤ s < t.

Proof. Let 0 ≤ s < t and write πs,t : DS ([0,∞)) → S × S for the map defined as
πs,t(ω) := (πs(ω), πt(ω)) = (ω(s), ω(t)). By Proposition 3.38, the map πs,t is BD − B2-
measurable, where B2 denotes the product σ-field on S × S . By assumption S is
second countable and hence the product σ-field B2 and the Borel σ-field B(S × S )
on S × S generated by the product topology coincide by Lemma 3.39. Consequently,
U ∈ B2 and the set in (3.105) is BD-measurable as the preimage of a measurable set
under a measurable map.

The measurability of the set in (3.106) follows by the same arguments if we can
show that the map πs− : DS ([0,∞)) → S with πs−(ω) := ω(s−) is measurable. By
definition of left limits, πs− is the pointwise limit of

(
πsn

)
n∈N for every increasing

sequence (sn)n∈N with sn ↑ s. Under the assumptions of the lemma S is metrizable and
we can apply [Dud02, Theorem 4.2.2] to conclude that πs− is, indeed, measurable. ■

Assume that X : Ω → DS ([0,∞)) is a DS ([0,∞))-valued random variable that is
a A-BD-measurable map. As before, we denote the Borel-σ-field on S by B. By
virtue of Proposition 3.38, the concatenations Xt := πt ◦ X : Ω→ DS ([0,∞))→ S are
A− B-measurable for each t ≥ 0 and hence S -valued random variables.

Proposition 3.41 (fdd’s determine distribution of càdlàg random variables). Let (S ,U)
be a separable uniform Hausdorff space and X,Y two DS ([0,∞))-valued random
variables. Assume that X and Y agree in their finite-dimensional distributions. Then,
X and Y have the same distribution, PX = PY .

Proof. We use a classic Dynkin system argument. Consider the family

D := { A ∈ BD | P(X ∈ A) = P(Y ∈ A) } . (3.107)
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Naturally, D is a Dynkin system. Let T ⊂ [0,∞) be a countable dense subset and
define the family

E :=

 n⋂
i=1

π−1
ti Bi

∣∣∣∣∣∣∣ n ∈ N; ti ∈ T ; Bi ∈ B(S ), ∀i = 1, . . . , n

 . (3.108)

By measurability of the projections πt we have E ⊂ BD and as a direct consequence
of the definition of E, the family is a π-system, i.e. E is closed under intersections.
Furthermore, by Proposition 3.38, E generates BD.

By assumption, we have for all A ∈ E,

P(X ∈ A) = P
(
(Xt1 , . . . , Xtn) ∈ B1 × · · · × Bn

)
= P

(
(Yt1 , . . . ,Ytn) ∈ B1 × · · · × Bn

)
= P(Y ∈ A)

(3.109)

and hence E ⊂ D. By the Dynkin system argument (or Dynkin’s π-λ-Theorem cf. e.g.
[Kle14, Theorem 1.19]) we conclude thatD = BD and hence P(X ∈ A) = P(Y ∈ A)
for all A ∈ BD. ■

Definition 3.42 (One-dimensional and finite-dimensional distributions). Let (S ,U) be
a uniform Hausdorff space and X a DS ([0,∞))-valued random variable. The family
of probability measures on S , PXt = P ◦ X−1

t for t > 0 are called the one dimensional
distributions of X. For any finite set 0 ≤ t1 < t2 < · · · < tn of points we refer to the
probability measure

P(Xt1 ,...,Xtn ) = P ◦ (Xt1 , . . . , Xtn)−1 ∈ M1(S n) (3.110)

as a finite dimensional distribution of X. ♢

It is useful to introduce the canonical version of X by identifying the probability
space (Ω,A,P) with (DS ([0,∞)),BD,PX) where PX := P ◦ X−1 denotes the push-
forward of P under X. In this case, X is just the identity map and we can define the
shift operator θt for t > 0 as

X ◦ θt = ω( · + t). (3.111)

From now on we always implicitly assume that we are working with the canonical
versions of the involved processes.

3.5.3 Tightness of random càdlàg paths
Let (S ,U) be a uniform Hausdorff space and X a DS ([0,∞))-valued random vari-

able. Recall the notations for partitions of the time axis we introduced in (3.10)
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and (3.12) to (3.14) of Section 3.1. For T > 0, U ∈ U and δ > 0 we consider the
event

WT
U,δ(X) := {∃π ∈ ΠT with l(π) > δ : (Xs, Xt) ∈ U ∀s, t ∈ I, I ∈ ι(π)} ⊂ Ω. (3.112)

For a family Ξ ⊂ {X : Ω → DS ([0,∞))} of DS ([0,∞))-valued random variables
defined on a common probability space (Ω,A,P) and T > 0, U ∈ U, δ > 0 we set

WT
U,δ(Ξ) :=

⋂
X∈Ξ

WT
U,δ(X). (3.113)

Theorem 3.43 (Tightness). Let (S ,U) be a uniform Hausdorff space and Ξ a family
of DS ([0,∞))-valued random variables on a common probability space (Ω,A,P).
Then Ξ is tight if and only if the following two conditions are satisfied.

(i) For every ε > 0 and T > 0 there exists a compact set Γ ⊂ S such that

inf
X∈Ξ
P ({ Xt | 0 ≤ t ≤ T } ⊂ Γ) ≥ 1 − ε. (3.114)

(ii) For every ε > 0, U ∈ U and T > 0 there exists a δ > 0 such that

P
(
WT

U,δ(Ξ)
)
≥ 1 − ε. (3.115)

Proof. Fix ε > 0. By tightness of Ξ there exists a K ⊂ DS ([0,∞)) compact such
that infX∈Ξ P(X ∈ K) ≥ 1 − ε. As K is in particular relatively compact, we obtain (i)
and (ii) from Theorem 3.21.

Now assume (i) and (ii) hold and fix ε > 0. We will construct a compact set
K ⊂ DS ([0,∞)) such that infX∈Ξ P(X ∈ K) ≥ 1 − ε establishing tightness of Ξ. Let
Γ ⊂ S be such that (3.114) holds for ε/2. Furthermore, let U ∈ U be open and choose
δ > 0 such that (3.115) holds for U and ε/2. Define A = A(Γ, δ) as in Lemma 3.22.
Now let ω ∈ DS ([0,∞)) be such that there exists a partition π ∈ ΠT of [0,T ] with
l(π) > δ and

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(π). (3.116)

Furthermore, assume that ω([0,T ]) ⊂ Γ. By the same argument as in the proof of
Theorem 3.21 we can find some ω ∈ A and D = D(U, δ) ∈ D open depending only
on U and δ such that (ω,ω) ∈ D. Since A is relatively compact by Lemma 3.22 we
obtain from Lemma 2.31 that D[A] is totally bounded and hence relatively compact
by completeness. Taking K = D[A] we have found the desired compact set. ■

Next we want to derive equivalent conditions for the two conditions for tightness in
Theorem 3.43. We start with condition (ii) and construct a partition explicitly.
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Fix ω ∈ DS ([0,∞)), U ∈ U open and let V ∈ U open be such that V ◦ V ⊂ U. For
each k ∈ N0 we define τk, σk as follows. Let τ0 = σ0 ≡ 0 and inductively define

τk := inf { t > τk−1 | (ω(t), ω(τk−1)) < V } (3.117)

if τk−1 < ∞ and τk = ∞ if τk−1 = ∞. And

σk := sup { t ≤ τk | (ω(t), ω(τk)) < V or (ω(t−), ω(τk)) < V } , (3.118)

if τk < ∞ and σk = ∞, if τk = ∞.

Furthermore, we write
ξk :=

σk + τk

2
, k ∈ N0 (3.119)

and observe that, by definition, limk→∞ ξk = ∞. Suppose now τk+1 < ∞. Then we
have (ω(τk), ω(τk+1)) < V and hence σk+1 ≥ τk. Thus,

σk ≤ ξk ≤ τk ≤ σk+1 ≤ ξk+1 ≤ τk+1, (3.120)

for all k ∈ N0. If ξk < ∞ we obtain the following lower bound for the difference
ξk+1 − ξk from (3.120)

ξk+1 − ξk =
σk+1 + τk+1

2
−
σk + τk

2
≥
τk + τk+1

2
−
σk + τk

2
=
τk+1 − σk

2
. (3.121)

For the sake of readability we do not indicate the dependence of σk, τk and ξk on
V ∈ U by notation at this point but note that the definitions very much depend on V
(and U).

Now take T > 0 and δ > 0. Assume that there exists a partition π ∈ ΠT of [0,T ]
with l(π) > δ such that { (ω(s), ω(t)) | s, t ∈ I } ⊂ V for all I ∈ ι(π). From (3.120) we
deduce that

min { τk+1 − σk | τk < T } > δ, (3.122)

as τk+1 − σk ≤ δ for some k ≥ 0 would imply that any interval I of length at least δ
with τk ∈ I also contains either σk or τk+1 or both in its interior. That means there exist
s, t ∈ I such that (ω(s), ω(t)) < V , in contradiction to the assumption. Consequently,
(3.121) implies that

min { ξk+1 − ξk | ξk < T } >
δ

2
. (3.123)

On the other hand, if we have (3.123) we can take

π′ := (ξ0, ξ1, . . . , ξk+1) ∈ ΠT (3.124)

as a partition of [0,T ] with the properties l(π′) > δ/2 and { (ω(s), ω(t)) | s, t ∈ I } ⊂
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V ◦ V ⊂ U for all I ∈ ι(π′).

It is now straightforward to extend our definitions of σk, τk and ξk to maps
DS ([0,∞))→ [0,∞] for k ∈ N0. In fact, these maps are measurable.

Lemma 3.44 (Measurability of σk, τk, ξk). Let (S ,U) be a separable uniform Haus-
dorff space with a countable base. Then the maps σk, τk, ξk : DS ([0,∞)) → [0,∞],
k ∈ N0 as defined above are Borel measurable.

Proof. By Lemma 3.20 and the subsequent remarks, DS ([0,∞)) equipped with the
Skorokhod uniformity is a separable uniform Hausdorff space. We proceed by induc-
tion. Clearly σ0 and τ0 are measurable as constant functions. Let k ≥ 1 and consider
the preimage τ−1

k [0, s) of [0, s) under τk for some s > 0. We use the event notation
and write

{τk < s} = { ω ∈ DS ([0,∞)) | τk(ω) < s } = τ−1
k [0, s). (3.125)

We can decompose the set {τk < s} as

{τk < s} = {τk−1 < ∞} ∩
⋃

t∈[0,s)∩Q

({(
ω(τk−1), ω(t)

)
< V

}
∩ {τk−1 < t}

)
. (3.126)

By induction hypothesis, the sets {τk−1 < ∞} and {τk−1 > t} are measurable and
it remains to show that the sets

{(
ω(τk−1), ω(t)

)
< V

}
are measurable. Again, by

hypothesis τk−1 is measurable and so is the map φk : DS ([0,∞)) → S , defined as
φk(ω) = ω(τk−1(ω)), as composition of measurable maps by Lemma 3.3.We can thus
follow the lines of the proof of Lemma 3.40 to conclude that

{(
ω(τk−1), ω(t)

)
∈ V

}
is measurable, which implies the measurability of τk. Then, measurability of σk

follows from the definition and the measurability of τk together with Lemma 3.40 and
Lemma 3.3. Finally, measurability of ξk is a direct consequence of the measurability
of σk and τk. ■

Given a random variable X : Ω→ DS ([0,∞)), the preceding lemma shows that the
concatenations σX

k := σk ◦ X, τX
k := τk ◦ X and ξX

k := ξk ◦ X are [0,∞]-valued random
variables. In order to make the dependence on the entourage V in the definition
explicit, we add it to the superscript.

Lemma 3.45. Let (S ,U) be a separable uniform Hausdorff space with a countable
base and Ξ a family of DS ([0,∞))-valued random variables on a common probability
space (Ω,A,P). Then condition (ii) of Theorem 3.43 is equivalent to each of the
following.

(i) For all U ∈ U open and T > 0 it holds that

lim
δ→0

inf
X∈Ξ
P
(
WT

U,δ(Ξ)
)
= 1. (3.127)
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(ii) For all U ∈ U open and T > 0 it holds that

lim
δ→0

inf
X∈Ξ
P
(
min

{
τX,U

k+1 − σ
X,U
k

∣∣∣ k ∈ N : τX,U
k < T

}
≥ δ

)
= 1. (3.128)

(iii) For all U ∈ U open and T > 0 it holds that

lim
δ→0

inf
X∈Ξ
P
(
min

{
ξX,U

k+1 − ξ
X,U
k

∣∣∣ k ∈ N : ξX,U
k < T

}
≥ δ

)
= 1. (3.129)

Proof. Clearly, (i) is equivalent to (ii) of Theorem 3.43. In the discussion above we
have shown that (i) implies (ii) as well as (iii). Furthermore, we have shown that (iii)
implies (i) hence the claim is established. ■

3.5.4 Convergence of random càdlàg paths

For A ⊂ S open recall the first hitting time operator τA : DS ([0,∞)) → R+ from
Definition 3.5 and the first contact time operator γA : DS ([0,∞))→ R+ from Defini-
tion 3.7, respectively.

Lemma 3.46 (Measurability of hitting times and contact times). Let (S ,U) be a
separable uniform Hausdorff space with a countable base and A ∈ B a Borel subset
of S . Then the maps τA, γA : DS ([0,∞))→ [0,∞] are Borel measurable.

Proof. Fix s ≥ 0 and assume for now that A ⊂ S is open. By right continuity of ω,
the set τ−1

A [0, s) can be written as

{τA < s} =
⋃

t∈[0,s]∩Q

{ ω ∈ DS ([0,∞)) | ω(t) ∈ A } =
⋃

t∈[0,s]∩Q

π−1
t A. (3.130)

And the measurability of τA follows from the measurability of πt for all t ≥ 0. On the
other hand, if A ⊂ S is closed, we have by the same argument

{τA > s} =
⋂

t∈[0,s]∩Q

π−1
t (A \ S ) ∈ B(R≥0). (3.131)

Now let A ∈ B(S ) be arbitrary. Then A is the countable union of open or closed sets
(An)n∈N, hence

{τA < s} =
⋃
n∈N

{τAn < s} ∈ B(R≥0). (3.132)

80 Chapter 3 The path space



For the first contact time of an arbitrary Borel set A ⊂ S we obtain

{γA < s} =
⋃

t∈[0,s]∩Q

{
ω ∈ DS ([0,∞))

∣∣∣ ω(t) ∈ A
}
∪

{
ω ∈ DS ([0,∞))

∣∣∣ ω(t−) ∈ A
}

=
⋃

t∈[0,s]∩Q

π−1
t A ∪ π−1

t− A,

(3.133)

which readily implies measurability of γA as πt− is measurable for all t ≥ 0 (see the
proof of Lemma 3.40) ■

In metric spaces and in metrizable uniform spaces we have the following proba-
bilistic version of Lemma 3.2.

Lemma 3.47 (cf. [EK86, Lemma 3.7.7]). Let (S ,U) be a separable uniform Hausdorff
space with a countable base. Assume that X is a DS ([0,∞))-valued random variable.
Then the set

J(X) := { t > 0 | P(Xt , Xt−) > 0 } (3.134)

is at most countable.

Proof. Let δ > 0 and U ∈ U open. For T > 0 fixed but arbitrary consider the set

JT
U,δ(X) := { t ∈ [0,T ] | P((Xt, Xt−) < U) ≥ δ } . (3.135)

Assume the set JT
U,δ(X) contains a sequence (tn)n∈N of distinct points and denote the

jumps exceeding U by An := {(Xtn , Xtn−) < U}. By Fatou’s lemma, we obtain

P
({

(Xtn , Xtn−) < U infinitely often
})
= P(lim inf

n→∞
An) ≥ lim sup

n→∞
P(An) ≥ δ > 0,

(3.136)
in contradiction to Lemma 3.2 and hence JT

U,δ(X) is finite. Letting T → ∞ and δ→ 0
we find that the set

JU(X) := { t > 0 | P((Xt, Xt−) < U) > 0 } (3.137)

is at most countable. Finally, taking a sequence of open entourages Un ∈ U with
Un ⊃ Un+1 and

⋂
n≥1 Un = ∆, we conclude that

J(X) =
⋃
n≥1

JUn(X) (3.138)

is at most countable. ■
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Theorem 3.48 (Weak convergence of paths by weak convergence of hitting times). Let
(S ,U) be a separable uniform Hausdorff space with a countable base. Assume that
X,

(
X(n)

)
n∈N

are DS ([0,∞))-valued random variables with distribution PX(n)
and PX

respectively. Then, PX(n)
=⇒
n→∞
PX if and only if the following conditions are satisfied.

(i) The sequence
{
PX(n)

∣∣∣∣ n ∈ N
}

is tight.

(ii) There exists a countable dense set T ⊂ { t > 0 | Xt = Xt− a.s. }, a countable
dense subset D ⊂ S and a countable base V ⊂ U of U consisting of open
entourages such that for all x ∈ D, all V ∈ V open with τV[x](X) = γV[x](X) a.s.
and all s ∈ T it holds that

τV[x]
(
X(n) ◦ θs

) d
−→ τV[x](X ◦ θs). (3.139)

Proof. To keep the proof more readable we set Pn := PX(n)
for n ∈ N. We be-

gin with the implication “⇒”. Assume Pn converges weakly to PX . Then (i) is
obvious (cf. [Kal21, Theorem 23.2]) and it remains to show that (ii) holds. By
Skorokhod’s coupling theorem Theorem C.6 there exist DS ([0,∞))-valued random
variables ξ,

(
ξ(n)

)
n∈N

on some probability space (Ω′,A′,P′) such that Pξ = PX and

Pξ
(n)
= Pn for all n ∈ N and ξ(n) → ξ P′-a.s. Using Theorem 3.27 we conclude

that there exists a P′-nullset N′ ⊂ Ω′ such that for all x ∈ S , all U ∈ U open with
τU[x](ξ(ω′)) = γU[x](ξ(ω′)) and all s > 0 with ξs(ω′) = ξs−(ω′) it holds that

lim
n→∞

τU[x]
(
ξ(n)(ω′) ◦ θs

)
= τU[x]

(
ξ(ω′) ◦ θs

)
(3.140)

for all ω′ ∈ Ω′ \ N′. That implies (ii), as Lemma 3.47 ensures the existence of
a countable dense set T ⊂ { t > 0 | Xt = Xt− a.s. }. Observe that we have actually
shown the stronger conclusion that (3.139) holds for all x ∈ S and V ∈ U open with
τV[x](X) = γV[x](X).

For the reverse implication “⇐” assume that (Pn)n∈N is tight. In order to show that
X(n) =⇒

n→∞
X we need to show that all subsequential limits of

(
X(n)

)
n∈N

have the same
distribution. To that end assume there exists a random variable Y : Ω→ DS ([0,∞))
with distribution PY such that

Pnk =⇒k→∞
PY (3.141)

along a subsequence. Assume furthermore that (ii) holds, i.e. there exist countable
dense subsets D ⊂ S and T ⊂ { t > 0 | Xt = Xt− a.s. } as well as a countable base
V ⊂ U of U such that (3.139) holds for all x ∈ D, s ∈ T and all V ∈ V with
τV[x](X) = γV[x](X). By (3.141) we have Xnk =⇒k→∞

Y and we can use what we have
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shown in the first part of the proof to deduce that for all x ∈ D and s ∈ T ′, where

T ′ ⊂ { t ≥ 0 | Xt = Xt− and Yt = Yt− a.s. } (3.142)

is a countable dense subset by Lemma 3.47 and all V ∈ V with

τV[x](X) = γV[x](X) and τV[x](Y) = γV[x](Y) (3.143)

it holds that
τV[x]

(
Y (k) ◦ θs

) d
−→ τV[x](Y ◦ θs)

d
= τV[x](X ◦ θs). (3.144)

Again, we can conclude from Skorokhod’s coupling theorem, Theorem C.6 that
there exists a probability space (Ω′,A′,P′) and random variables ζ,

(
ξ(n)

)
n∈N

with

Pζ = PY and Pξ
(k)
= Pk on Ω′ such that ξ(k) → ζ almost surely. Furthermore, there

exist a random variable ξ on Ω′ with Pξ = PX such that for all x ∈ D, s ∈ T ′ and
V ∈ V satisfying (3.143) there exists a nullset N′(x, s,V) ⊂ Ω′ such that

lim
k→∞

τV[x]
(
Y (k)(ω′) ◦ θs

)
= τV[x](Y(ω′) ◦ θs) = τV[x](X(ω′) ◦ θs) (3.145)

for all ω′ ∈ Ω′ \ N′(x, s,V). As D, T ′ andV were assumed to be countable, the set

N′ :=
⋃
x∈D

⋃
s∈T ′

⋃
V∈V

N′(x, s,V) (3.146)

is still a nullset and (3.145) holds for all x ∈ D, s ∈ T ′ and all V ∈ V satisfying (3.143)
outside the common nullset N′. From Theorem 3.10 we conclude that ζ(ω′) = ξ(ω′)
for all ω′ ∈ Ω \ N′, which implies that the laws of X and Y agree. Hence every
subsequential limit of

(
X(n)

)
n∈N

has the same distribution as X and thus Pn =⇒
n→∞
PX ,

as claimed. ■
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4Symmetric Feller processes

„At a purely formal level, one could call
probability theory the study of measure spaces
with total measure one, but that would be like
calling number theory the study of strings of
digits which terminate.

— Terence Tao
Topics in random matrix theory

In this chapter, we introduce the main objects of this thesis, namely symmetric
Feller processes. In this chapter we achieve two main results. First, we state with
Theorem 4.72 that a Feller process X is uniquely determined by a family of Green
operators associated with X. Finally, we give in Theorem 4.75 a tightness criterion
for Feller processes.

The chapter is structured as follows: We first introduce time-homogeneous Markov
processes and their semigroups. We then define Borel right processes and the asso-
ciated resolvent or potential operators and Green operators. We further introduce
the notions of symmetry and strong symmetry of Borel right processes. Next, we
introduce the Feller property for semigroups. This leads to the notion of a Feller
process and we will show that each Feller process possesses a modification with
càdlàg sample paths. Furthermore, we will show that to each Feller semigroup, there
exists a unique Feller process with càdlàg paths. This leads to the observation that
a Feller process with càdlàg paths is uniquely determined by its family of resolvent
operators. In preparation of the next chapter, we introduce Hunt processes, that is
Feller processes with quasi-left continuous paths.

Up to this point, everything is standard and can be found in most textbooks on
stochastic processes. Our main references are the books [Kal21] by Olav Kallenberg,
[Kle14] by Achim Klenke and [CW05] by Kai Lai Chung and John B. Walsh. Al-
though we state all our results in the framework of Polish uniform spaces, the classical
results for Polish metric spaces apply as every Polish uniform space is completely
metrizable by Definition 2.38 and Lemma 2.39. Nevertheless, we repeat the proofs
of the most important results in order to remain as self-contained as possible and
to highlight the fact that the actual choice of a metric does not matter and that all
important properties are already captured by the uniform structure.
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We then proceed to show that a Feller process is not only uniquely determined by
its resolvent family but also by its family of Green operators. This result will play an
important role in the proof of our convergence theorem Theorem 6.1.

Finally, we prove a tightness criterion for Feller processes that is closely related to
Aldous’s tightness criterion (cf. [Ald78, Theorem 1]) and conclude the chapter with a
couple of examples.

Throughout this chapter let (S ,U, ν) denote a locally compact uniform measure
space. As usual, we denote by B(S ) the Borel σ-field on S . Furthermore, we write
B(S ;R) for the Borel measurable function f : S → R. When no confusion can occur,
we drop the braces and write for both sets simply B. We denote the set of bounded
and Borel measurable functions by

Bb = Bb(S ;R) := { f ∈ B(S ;R) | ∥ f ∥∞ < a ∈ R } (4.1)

and the family of non-negative Borel measurable functions by B+ = B+(S ,R) ⊂
B(S ;R) with the obvious meaning of the combination B+b = Bb ∩ B

+.

Finally we write C = C(S ;R) for the continuous real valued functions and introduce
the following notations

Cb = Cb(S ;R) := { f ∈ C | ∥ f ∥∞ < a ∈ R } (4.2)

C+ = C+(S ;R) := { f ∈ C | f (x) ≥ 0∀x ∈ S } (4.3)

C∞ = C∞(S ;R) :=
{

f ∈ Cb
∣∣∣ ∀ε > 0∃K ⊂ S compact s.t. | f (x)| < ε, ∀x ∈ Kc }

(4.4)

C0 = C0(S ;R) :=
{

f ∈ C∞
∣∣∣ ∃K ⊂ S compact s.t. f (x) = 0∀x ∈ Kc }

(4.5)

for the bounded, the non-negative, the vanishing at infinity and the compactly sup-
ported continuous functions, respectively.

4.1 Markov processes
We begin with a fairly general introduction to stochastic processes. This section is

kept as short as possible while trying to make this thesis as self-contained as possible.
All the concepts put forward here are mathematical folklore and can be found in
any textbook on Markov processes, for example [EK86], [MR06], [Lig10], [RY99,
Chapter 3], [FOT11, Appendix 2], [Kal21], [Kle14], [KS98] or [CW05].

4.1.1 Stochastic processes
Definition 4.1 (Stochastic process). Let (Ω,A,P) be a probability space and T , Ø
some set of indices. A stochastic process on (Ω,A,P) with index set T and values
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in the measurable space (S ,B) is a collection of mappings X = { Xt : Ω→ S | t ∈ T }
such that for each t ∈ T the mapping Xt : Ω → S isA/B-measurable and as such a
S -valued random variable. ♢

Throughout this chapter, we assume that (Ω,A,P) is a probability space and that
(S ,U) is a Polish uniform space, that is, a separable uniform Hausdorff space with a
countable base that is completely metrizable. It is useful to recall that in this situation
the Borel σ-fields B(S × S ) and B(S ) ⊗ B(S ) coincide by Lemma 3.39.

Evaluating the process X at k ∈ N many points in T yields a probability measure on
the product space S k. This leads us to the following Definition (cf. Definition 3.42).

Definition 4.2 (Finite dimensional distributions & versions). Let X be a stochastic
process with values in (S ,B). For k ∈ N and {t1, . . . , tk} ⊂ T define the finite
dimensional distribution PX

t1,...,tk of X as the push forward of the probability measure P
on the product space (S k,B(S k)) under the map (Xt1 , . . . , Xtk ) : Ω→ S k, i.e.

PX
t1,...,tk (A) := P

({
(Xt1 , . . . , Xtk ) ∈ A

})
, A ∈ B(S k). (4.6)

Furthermore, we say that two stochastic processes X and Y with values in (S ,B) are
versions of each other, if they have the same finite-dimensional distributions, i.e. for
all k ∈ N and {t1, . . . , tk} ⊂ T it holds that PX

t1,...,tk = P
Y
t1,...,tk . ♢

Note that in the above definition, the processes X and Y are not necessarily defined
on the same probability space. In the case when X and Y are defined on the same
probability space and their finite-dimensional distributions coincide, we say that X
and Y are modifications of each other. In that case, we have Xt = Yt a.s. for all t ∈ T .

For the remainder of this chapter let X be a stochastic process indexed by time, i.e.
we choose T = [0,∞) or, occasionally, T = N when we consider processes at discrete
points in time.

For fixed ω ∈ Ω we call the mapping t 7→ Xt(ω) a sample path, or simply a path,
of the process X. We say that the paths of X have a certain property (almost surely)
if the mappings t 7→ Xt(ω) have this property for (P-almost) all ω ∈ Ω. By a slight
abuse of terminology, we sometimes say that the process X has a property when the
paths of X have that property.

We will only consider such processes which have almost surely right continuous
paths with left limits. That is, we consider stochastic processes as random variables
X : Ω → DS ([0,∞)). This restriction will be justified later in this chapter when we
show in Proposition 4.44 that Feller processes always admit a modification which has
almost surely càdlàg sample paths.
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If the state space S is not compact and X has càdlàg paths, the process X might leave
the state space S in finite time with positive probability. We provide the following
(non-rigorous) example as an illustration.

Example 4.3. Consider the process X = (Xt)t≥0 with Xt = (1 − Wt)−1, where W =
(Wt)t≥0 is a standard Brownian motion on R started in 0. Then the process X explodes
when the Brownian motion hits {1} which happens with positive probability (even
a.s.) in finite time as W has continuous paths. ■

Compactification

If the state space (S ,U) is locally compact, we can avoid the pitfalls that come with
explosion by adjoining a point ϑ to S and consider the one-point compactification
(Sϑ,Bϑ) of (S ,B) (see Definition A.22). Observe that every f ∈ C∞ can be canonically
extended to a function f̂ ∈ Ĉ = C(S ϑ;R) by setting f̂ (ϑ) = 0. Under this extension,
every f ∈ C∞ is extended to a function f̂ ∈ Ĉ∞ = C∞(S ϑ;R) and every f ∈ C0 is
extended to a function f̂ ∈ Ĉ0 = C0(S ϑ;R)

The point ϑ serves as a cemetery point for the process, meaning that

P(Xt+s ∈ {ϑ} | Xt = ϑ) = 1 for all s, t ≥ 0. (4.7)

Extending this metaphor we define the lifetime ζ of X as

ζ := inf { t ≥ 0 | Xt = ϑ } , (4.8)

where we define inf Ø = ∞, as usual, and hence P(X∞ = ϑ) = 1.

Generally, we call any state x ∈ S that satisfies (4.7) absorbing.

Filtrations

Next, we introduce filtrations. Heuristically, filtrations capture the (incomplete)
information available up to time t ≥ 0.

Set F 0
∞ := σ ({ Xs | s ∈ [0,∞) }) and F 0

t := σ ({ Xs | s ≤ t }) for all t ∈ [0,∞),
where σ( · ) denotes the smallest σ-field that makes the content of the braces measur-
able.

For our purposes it is necessary to go a bit further into detail. We therefore collect
some measure-theoretic notions in this paragraph for further reference.

Definition 4.4 (Admissible filtrations). Let (Ω,A,P) be a probability space. A family
(At)t≥0 of sub σ-fields ofA is called a filtration (of the probability space (Ω,A,P)), if
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it is increasing, i.e.As ⊂ At for all s < t. In that case, we say that (Ω,A, (At)t≥0 ,P)
is a filtered probability space.

Suppose X = (Xt)t≥0 is a stochastic process defined on (Ω,A,P) with values in a
measurable space (S ,B). A filtration (At)t≥0 of (Ω,A,P) is called admissible (for
X) if Xt is At/B-measurable for each t ≥ 0. The process X is said to be adapted to
(At)t≥0 if (At)t≥0 is admissible for X. ♢

Coming back to the heuristics for filtrations above, let X be adapted to the filtration
(At)t≥0, and A ∈ At for some t > 0. Then we can decide whether the event A has
occurred if we know the process X up to time t.

It is clear that
(
F 0

t

)
t≥0

, where F 0
t = σ ({ Xs | s ≤ t }) is an admissible filtration and

we refer to it as the minimal admissible filtration or the canonical filtration.

A filtration (At)t≥0 is said to be right continuous if

At = At+ :=
⋂
s>t

As (4.9)

for all t ≥ 0.

Remark 4.5 (Right continuous filtrations). Every filtration (At)t≥0 can be turned into
a right continuous filtration simply by setting A+t := At+ for every t ≥ 0. Clearly,(
A+t

)
t≥0 is coarser that A in the sense that At ⊂ A

+
t for every t ≥ 0. If

(
F 0

t

)
t≥0

is
the minimal admissible filtration then the right continuous filtration

(
F +t

)
t≥0 is an

admissible filtration for X. ♢

Let (S ,B) be a measurable space and µ ∈ M1(S ) a probability measure. We write
Nµ := { A ∈ B | µ(A) = 0 } for the family of µ-nullsets or µ-negligible sets. For any
sub σ-fieldA of B define the family of µ-negligibleA-sets as

Nµ(A) { A ∈ A | µ(A) = 0 } . (4.10)

Recall that the powerset of a set A is the family of all subsets of A and denote the
powerset of A by P(A). For any family of setsA we define

P(A) :=
⋃
A∈A

P(A), (4.11)

the union of all powersets of sets inA. Now recall that the completion of a σ-field
A ⊂ B with respect to a measure µ ∈ M1(S ) is defined as

Aµ := σ
(
A∪ P(Nµ(A))

)
. (4.12)
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We define the universal completion of A with respect to a family M ⊂ M1(S ) of
probability measures as the intersection of the completion ofAµ over all probability
measures µ ∈ M:

AM :=
⋂
µ∈M

Aµ. (4.13)

Definition 4.6 (Complete and augmented filtrations). Let (At)t≥0 be a filtration of the
probability space (Ω,A,P).

(i) The completion of the filtration (At)t≥0 with respect to P is the filtration
(
At

)
t≥0

defined by
At := σ (At ∪ P(NP(A))) . (4.14)

(ii) The augmentation of (At)t≥0 with respect to P is the filtration
(
A∗t

)
t≥0 defined

by
A∗t := σ (At ∪ P(NP(At))) . (4.15)

♢

Some authors say that a filtered probability space (Ω,A, (At)t≥0 ,P) satisfies the
usual conditions if (At)t≥0 is right continuous and augmented with respect to P (cf.
[Kle14, Definition 21.22]).

Again, it is an immediate consequence of the definition that if (Ft)t≥0 is admissible
for X, then its completion

(
F t

)
t≥0

and augmentation
(
F ∗t

)
t≥0 are admissible for X as

well.

Stopping times

Let (Ω,A, (At)t≥0 ,P) be a probability space and τ : Ω→ [0,∞] a random variable.
We continue to interpret the positive real axis as time, in the same spirit we call such a
random variable τ a random time. If X is a stochastic process on the same probability
space, we write Xτ as a shorthand for the random variable ω 7→ Xτ(ω) = Xτ(ω)(ω).
Using the established terminology, we refer to the process (Xt∧τ)t≥0 as the process
killed at time τ or, simply, the killed process. If the state space is locally compact, it is
sometimes convenient to introduce a process X̂ where we set X̂τ = ϑ for the cemetery
point of the one-point compactification Sϑ of S , that is, we move the process to the
cemetery right when it is killed.1

We are mostly interested in random times τ that are related to a stochastic process
X in a way that we can determine whether τ ≤ t if we know the process X up to time t.
That leads to the following definition.

1Kallenberg [Kal21, p. 378] calls this terminology morbid but concedes that it is well established.
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Definition 4.7 (Optional times and stopping times). Let (Ω,A, (At)t≥0 ,P) be a filtered
probability space and τ : Ω→ [0,∞] a random time.

(i) τ is called a (At)t≥0-optional time if

{τ < t} ∈ At ∀t ≥ 0. (4.16)

(ii) τ is called a (At)t≥0-stopping time if

{τ ≤ t} ∈ At ∀t ≥ 0. (4.17)
♢

It is worth pointing out that many authors do not distinguish between stopping
times and optional times. In [Kle14], Achim Klenke uses stopping times in the
sense of our Definition 4.7. On the other hand, Kallenberg in [Kal21] or Chung and
Walsh in [CW05] use the terms synonymously and use the term optional time for
stopping times in the sense of Definition 4.7. The disambiguation we use here is due
to Ioannis Karatzas and Steven E. Shreve as found in [KS98, Defintion 1.2.1]. The
two definitions are quite similar. Indeed they coincide for right-continuous filtrations.

Lemma 4.8 (Stopping and optional times). Let (Ω,A, (At)t≥0 ,P) be a filtered prob-
ability space. Then, every stopping time is optional. If, in addition, the filtration
(At)t≥0 is right continuous, then every optional time is a stopping time.

Proof. Assume τ is a stopping time. Observe that{
τ ≤ t −

1
n

}
∈ At− 1

n
⊂ At, (4.18)

for every t ≥ 0 and n ∈ N with t ≥ 1
n . Hence,

{τ < t} =
⋃
n∈N

{
τ ≤ t −

1
n

}
∈ At, (4.19)

and we have shown the first assertion. Now let (At)t≥0 be right continuous and assume
that τ is an optional time. Analogously to (4.19) we can write

{τ ≤ t} =
⋂
n∈N

{
τ < t +

1
n

}
. (4.20)

Now, {τ < t + 1/n} ∈ At+ 1
n

for each n ∈ N and thus,

{τ ≤ t} ∈
⋂
n∈N

At+ 1
n
= At+ = At, (4.21)
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which is what we wanted to show. ■

The simplest yet important example of stopping times are constant times. Let s > 0
as s ≤ t is either the empty set or the whole of Ω and thus contained inAt for every
t ≥ 0.

From now on we will always implicitly assume that (Ω,A, (At)t≥0 ,P) is a filtered
probability space and omit the reference to the filtration when no confusion can occur.
For a stopping time τ we introduce the σ-field of the τ-past,

Aτ := { A ∈ A | A ∩ {τ ≤ t} ∈ At ∀t ≥ 0 } . (4.22)

It is straightforward to check thatAτ is indeed a σ-field.

Lemma 4.9. Let τ, σ be stopping times with σ(ω) ≤ τ(ω) for all ω ∈ Ω. Then,
Aσ ⊂ Aτ.

Proof. Let A ∈ Aσ and t ≥ 0. By definition ofAσ, we have A ∩ {σ ≤ t} ∈ At. Since
τ is a stopping time we also have {τ ≤ t} ∈ At. By assumption, σ ≤ τ and thus
{τ ≤ t} ⊂ {σ ≤ t}. Hence

A ∩ {τ ≤ t} = (A ∩ {σ ≤ t}) ∩ {τ ≤ t} ∈ At (4.23)

and therefore A ∈ Aτ. ■

We present a well-known lemma that shows that certain operations on optional
times yield new optional times.

Lemma 4.10 (optional times). Let (S ,A, (At)t≥0 ,P) be a filtered probability space.
Assume (τn)n∈N, τ and σ are optional times. Then the following random times are
also optional:

(i) σ ∨ τ and σ ∧ τ,

(ii) τ + σ,

(iii) supn∈N τn and infn∈N τn,

(iv) lim supn→∞ τn and lim infn→∞ τn.

Proof. We obtain (i) from the simple observation

{σ ∨ τ < t} = {σ < t} ∩ {τ < t} and {σ ∧ τ ≥ t} = {σ ≥ t} ∩ {τ ≥ t}. (4.24)
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Now fix t0 > 0. By (i) we have that σ∧ t0 and τ∧ t0 are optional times. We first show
that both random times areAt0-measurable. Suppose t ≤ t0, then

{σ ∧ t0 < t}, {τ ∧ t0 < t} ∈ At ⊂ At0 . (4.25)

Now suppose t > t0, then (σ ∧ t0) and (τ ∧ t0) are both bounded by t and hence
{σ ∧ t0 < t} = {τ ∧ t0 < t} = Ω ∈ At0 . Now define σ̂ := (σ ∧ t0) + 1σ≥t0 and
τ̂ := (τ ∧ t0) + 1τ≥t0 and observe that both σ̂ and τ̂ as well as the sum σ̂ + τ̂ are
At0-measurable, by construction. It is now straight forward to check the equality

{σ + τ < t0} = {σ̂ + τ̂ < t0} ∈ Ft0 . (4.26)

Since t0 > 0 was arbitrary, this proves (ii).

For (iii) we set σ̂ := infn∈N τn and τ̂ := supn∈N τn. Then, for all t ≥ 0,

{σ̂ < t} =
⋃
n∈N

{τn < t} ∈ At. (4.27)

On the other hand, by Lemma 4.8, every optional time is a stopping time of the right
continuous filtration

(
A+t

)
t≥0. Hence,

{τ̂ ≤ t} =
⋂
n∈N

{τn ≤ t} ∈ A+t . (4.28)

Thus, τ̂ is again a stopping time with respect to the right continuous filtration
(
A+t

)
t≥0.

Applying again Lemma 4.8, shows that τ̂ is indeed optional with respect to (At)t≥0.

Finally, (iv) follows from (iii) by the fact that

lim sup
n→∞

τn = inf
m∈N

sup
n≥m

τn (4.29)

and
lim inf

n→∞
τn = sup

m∈N
inf
n≥m

τn, (4.30)

thus completing the proof. ■

Remark 4.11. Observe that (i), (ii) and the first part of (iii) of Lemma 4.10 hold
also for stopping times. But in general, infn∈N τn is not again a stopping time for any
sequence (τn)n∈N of stopping times. ♢

4.1.2 Markov processes
We now introduce the Markov property and define Markov processes. Loosely

speaking, the Markov property means that the past and the future of a stochastic
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process are independent of each other given the present. Despite the general definition,
we will restrict ourselves to time-homogeneous Markov processes, as they come
with useful analytic features like the transition semigroups and resolvent families.
Furthermore, we will define stopping times and introduce the Green operators. Finally,
we introduce a further subclass of Markov processes namely Borel right processes and
we define what it means for such processes to be symmetric or strongly symmetric.

Definition 4.12 (Markov kernel). Let (Ω,A) and (S ,B) be two measurable spaces. A
Markov kernel (or stochastic kernel) is a map κ : Ω × B → [0, 1] with the following
properties

(i) for each B ∈ B, the map κ( · , B) : Ω→ [0, 1] is measurable,

(ii) κ(ω, · ) is a probability measure on (S ,B) for each ω ∈ Ω.

If instead of (ii), for all ω ∈ Ω, κ(ω, · ) is a finite Borel measure on (S ,B) with
κ(ω, S ) ≤ 1 for all ω ∈ Ω then κ is called a sub Markov (or substochastic) kernel. ♢

Definition 4.13 (Markov process). Let X = { Xt | t ∈ [0,∞] } be a stochastic process
on the filtered probability space

(
Ω,A, (At)t≥0 ,P

)
. We say that X hast the Markov

property if for each t > 0
E [Y | At] = E [Y | Xt] (4.31)

almost surely for all σ({ Xs | s ≥ t }) measurable Y .

The stochastic process X with state space S is called a Markov process if it possesses
the Markov property and if there exists a family of probability measures { Px | x ∈ Sϑ }
on (Ω,A) such that

(i) the map x 7→ Px(Xt ∈ B) ∈ [0, 1] is Borel measurable for each t ≥ 0 and B ∈ B
and

(ii) for all x ∈ Sϑ it holds that Px(X0 = x) = 1. ♢

Denote byM1(S ) ⊂ M f (S ) ⊂ M(S ) the set of probability measures on S , the set
of finite measures on S and the set of all measures on (S ,B(S )), respectively. For a
measure µ ∈ M(S ) we define

Pµ( · ) :=
∫

S
Px( · )µ( dx). (4.32)

Taking Pµ(Ω) it is easy to see that Pµ ∈ M1 (∈ M f ) if and only if µ ∈ M1 (∈ M f ).
We denote the expectations with respect to Px and Pµ by Ex and Eµ, respectively.

For x ∈ S , A ∈ B and t > s ≥ 0 define

ps,t(x, A) := P(Xt ∈ A | Xs = x). (4.33)
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Then
{

ps,t
∣∣∣ t > s ≥ 0

}
is a family of (sub) Markovian transition functions in the sense

that ps,t : S × B → [0, 1] is a is a (sub) Markov kernel for each t > s ≥ 0 and that for
all u > s > t ≥ 0, x ∈ S and A ∈ B it holds that

ps,u(x, A) =
∫

S
ps,t(x, dy)pt,u(y, A). (4.34)

The equation (4.34) is called Chapman-Kolmogorov equation and it is a consequence
of the Markov property of X.

We call a Markov process (time) homogeneous when the associated transitions
functions depend only on the difference |t − s|. In that case ps,t(x, A) = pt−s(x, A) =
Px(Xt−s ∈ A) and the Chapman-Kolmogorov equation (4.34) reads as

pt(x, A) =
∫

S
pt−s(y, A)ps(x, dy) (4.35)

for t > s ≥ 0.

Definition 4.14 (transition functions). Let (S ,B) be a measurable space. A family
(pt)t≥0 of (sub) Markov kernels pt : S × B → [0, 1] is called a family of (sub)
Markovian transition functions if it satisfies the Chapman-Kolmogorov equation(4.35)
for all 0 ≤ s < t < ∞ and p0(x, A) = 1A(x). ♢

It is worth noting that the transition functions pt are Markov kernels if and only if
the associated process is non-explosive.

Suppose X is a Markov process, then for each ω ∈ Ω the map X(ω) : [0,∞)→ S
is called a path. It is often useful to impose further regularity assumptions on these
paths. For example, one can consider only Markov processes with continuous paths.
This turns out to be rather restrictive as we want to allow the processes to have
jumps. One possible choice is to consider processes that have càdlàg paths (more
precisely, processes for which there exists a modification with càdlàg paths). As a
first observation, homogeneous Markov processes cannot jump at fixed time-points,
since that would break the homogeneity. As an illustration, consider the following
example.

Example 4.15 (Processes with fixed jump times are non homogeneous). Let S =
{a, b, c} and consider the process X that jumps at integer times from one point to one
of the others with equal probability. It is easy to check that X is a Markov process.
However, the transition probabilities are not homogeneous:

0 = P
(
X3/4 ∈ {b, c} | X1/4 = a

)
, P

(
X5/4 ∈ {b, c} | X3/4 = a

)
= 1. (4.36)
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■

It turns out that the holding times of a homogeneous Markov process X, i.e. the
times that the process X spends in a point x ∈ S before it jumps are exponentially
distributed.

Lemma 4.16 (Holding times are exponentially distributed). Let X be a homogeneous
Markov process with state space (S ,U). Assume that there exists a x ∈ S such that

T := inf { t ≥ 0 | Xt , x } = inf { t ≥ 0 | Xt , Xt− } Px-a.s. (4.37)

Then T is exponentially distributed under Px.

Proof. Observe that by (ii) of Definition 4.13 we have Px(T > 0) = 1. By time
homogeneity and the Markov property we have for all s, t > 0,

Px(T > s + t |T > s) = Px(T > s + t | Xs = x) = Px(T > t). (4.38)

This is the so-called loss of memory property that characterizes the exponential
distribution. ■

4.1.3 The transition semigroup
For the remainder of this thesis, we will only be concerned with time homogeneous

Markov processes.

Let (S ,B) be a measurable space and X a Markov process with values in S . Using
the transition functions (pt)t≥0 of X, we can define for each t ≥ 0 a linear operator on
Bb(S ) by

Pt f = Pt f ( · ) :=
∫

S
f (y)pt( · , dy) = E ·

[
f (Xt)

]
, t ≥ 0. (4.39)

The family P = (Pt)t≥0 has some nice properties.

Proposition 4.17. Let (S ,B) be a measurable space and X be a Markov process with
values in S . Then the family (Pt)t≥0 of operators on Bb(S ) defined above has the
following properties for all f , g ∈ Bb(S ):

(i) P0 f = f ,

(ii) PtPs f = Ps+t f for all s, t ≥ 0,

(iii) Pt(α f + βg) = αPt f + βPtg for all t ≥ 0,
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(iv) if f ≥ 0, then Pt f ≥ 0 for all t ≥ 0,

(v) ∥Pt f ∥∞ ≤ ∥ f ∥∞.

Proposition 4.17 (i) and (ii) together imply that P = (Pt)t≥0 is a semigroup on
Bb(S ). i.e. P is equipped with a (commutative) binary operation ◦, there exists a
neutral element but in general Pt has no inverse in P. Furthermore, (v) means that
the semigroup P is contractive and (iv) says that P is positive. We say that P is the
semigroup determined by the process X.

Definition 4.18 (positive contraction semigroups). A family T = (Tt)t≥0 of operators
on a linear subspace of F ⊂ B(S ) containing constant functions that satisfies (i) to (v)
of Proposition 4.17 is called a semigroup of positive contraction operators on F . If,
in addition, Tt1 = 1 for all t ≥ 0, then T is said to be conservative. ♢

We continue with the proof of the proposition.

Proof of Proposition 4.17. The property (i) follows from the definition of P0 and (ii)
is a consequence of the Chapman-Kolmogorov equation (4.39):

PtPs f (x) =
∫

S

∫
S

f (z)ps(y, dz)pt(x, dy) =
∫

S
f (z)ps+t(x, dz) = Ps+t. (4.40)

The positivity (iv) and linearity (iii) of Pt follow immediately from the definition
(4.39) of Pt.

By (4.39) we have for all x ∈ S and t ≥ 0

Pt f (x) =
∫

S
f (y)pt(x, dy) ≤ ∥ f ∥∞pt(x, S ) ≤ ∥ f ∥∞ (4.41)

and thus supx∈S Pt f (x) ≤ ∥ f ∥∞, proving (v). ■

Now assume that ν is a finite Borel measure on (S ,B). For p ∈ [1,∞) we obtain by
application of Jensen’s inequality

∥Pt f ∥pp =
∫

S
|Pt f (x)|pν( dx) =

∫
S
|Ex

[
f (Xt)

]
|pν( dx) ≤

∫
S
Ex

[
| f (x)|p

]
ν( dx)

=

∫
S

Pt| f (x)|pν( dx) =
∫

S
| f (x)|pPt1(x)ν( dx) ≤

∫
S
| f (x)|pν( dx)

= ∥ f ∥pp.
(4.42)

Hence, (v) of Proposition 4.17 can be strengthened to
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(iii)* ∥Pt f ∥p ≤ ∥ f ∥p for all t ≥ 0 and p ∈ [1,∞].

We have shown that every Markov process is associated with a family (pt)t≥0 of
(sub) Markov kernels satisfying the Chapman-Kolmogorov equation (4.35). Kol-
mogorov’s celebrated extension theorem shows that the converse also holds. We
present the theorem for further reference without proof as the proof can be found in
any standard textbook on probability theory e.g. [Kal21, Theorem 11.4] or [Kle14,
Theorem 14.36].

Theorem 4.19 (Kolmogorov’s extension theorem). Let (S ,B) be a measurable space,
(pt)t≥0 a family of (sub) Markovian transition functions on S . Assume that µ ∈ M1(S ).
Then there exists a Markov process with state space S , initial distribution µ and
transition functions (pt)t≥0.

Proof. See[Kal21, Theorem 11.4]. ■

Assume that (Pt)t≥0 is a contraction semigroup on Bb(S ). For x ∈ S , A ∈ B and
t ≥ 0 let

Pt1A(x) =: pt(x, A). (4.43)

Then the map x 7→ pt(x, A) is Borel measurable because Pt is a linear operator on
Bb(S ). Furthermore, we have p0(x, A) = 1A(x) and (pt)t≥0 satisfies the Chapman-
Kolmogorov equation:

pt(x, A) = Pt1A(x) = PsPt−s1A(x) = Ps pt−s(x, A) =
∫

S
pt−s(y, A)ps(x, dy), (4.44)

for 0 ≤ s < t < ∞, where we used (4.39) in the last equality. Furthermore, we deduce
from the contraction property, Proposition 4.17 (v) that

sup
x∈S

pt(x, S ) = ∥Pt1S ∥∞ ≤ ∥1S ∥∞ = 1, (4.45)

thereby showing that P induces a family of Markovian transition function (pt)t≥0 via
(4.43). Approximating measurable functions by simple functions, it is straightforward
to show that P is the semigroup induced by (pt)t≥0. We have thus proved the following.

Corollary 4.20. Let (S ,B) be a measurable space and P = (Pt)t≥0 a contraction
semigroup on Bb(S ). Assume that µ ∈ M1(S ), then there exists a Markov process
with state space S , initial distribution µ and transition semigroup P.

While there always exists a Markov process with a given transition function (or
semigroup), this process is generally not unique. Instead, we have that all processes
with the same transition function are versions of each other.
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Lemma 4.21 (Semigroup determines the finite-dimensional distributions). Let X,Y be
two Markov processes on the measurable space (S ,B) with the same initial distribution
µ ∈ M1(S ). Assume that both processes have the same semigroup P = (Pt)t≥0. Then,
the finite-dimensional distributions of X and Y coincide.

Proof. It is evident from the discussion above that both X and Y have the same
transition functions (pt)t≥0. Let A1, . . . , An ∈ B and 0 ≤ t1 < · · · < tn, then it follows
by the Chapman-Kolmogorov equation,

P(Xt1 ∈ A1, . . . , Xtn ∈ An)

=

∫
S
µ( dx0)

∫
A1

pt1(x0, dx1)· · ·
∫

An

ptn−tn−1(xn−1, dxn)

= P(Yt1 ∈ A1, . . . ,Ytn ∈ An),

(4.46)

completing the proof. ■

Remark 4.22. By definition, the semigroup and hence the finite-dimensional dis-
tributions of a Markov process are already determined by their one-dimensional
distributions. ♢

Now let ν ∈ M(S ) be a Radon measure on (S ,B). This measure will later serve as
the speed measure for our processes in the sense that the time the process spends in a
set A ∈ B will be roughly proportional to its measure ν(A).But first we explain what it
means for a Markov process to be symmetric with respect to ν.

Definition 4.23 ((strong) symmetry). Let X be a Markov process with values in the
measure space (S ,B, ν). Then X is said to be ν-symmetric if the semigroup P = (Pt)t≥0
determined by X satisfies∫

S
f (x)Ptg(x) ν(dx) =

∫
S

Pt f (x)g(x) ν(dx) (4.47)

for all non-negative f , g ∈ Bb(S ) and t ≥ 0. In that case, we also refer to the family P
as symmetric (with respect to ν).

If, in addition, the (sub) probability measures pt(x, dy) are absolutely continuous
with respect to ν for all t ≥ 0 and x ∈ S , we say that the process X is strongly
symmetric (with respect to ν). In that case, we denote the density of pt(x, dy), with a
slight abuse of notation, by pt(x, y). In that case, Pt f (x) can be written as

Pt f (x) =
∫

S
f (y)pt(x, y) ν(dy). (4.48)

♢
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Let (S ,B, ν) be a compact measure space. Suppose that X is a ν-symmetric Markov
process with values in S . Then ν is a reversible measure for X in the sense that for all
A, B ∈ B with ν(A), ν(B) > 0 and t ≥ 0,

ν(A)PνA(Xt ∈ B) =
∫

A
Px(Xt ∈ B) ν(dx) =

∫
S

Pt1B(x)1A(x) ν(dx)

=

∫
B
Px(Xt ∈ A) ν(dx) = ν(B)PνB(Xt ∈ A),

(4.49)

where νA =
(
ν(A)−1ν

)∣∣∣
A and νB =

(
ν(B)−1ν

)∣∣∣
B denote the renormalized restrictions of

ν to A and B, respectively.

We take note of the following useful property of ν-symmetric Markov processes.

Lemma 4.24. Let X be a ν-symmetric Markov process with values in S . Suppose that
for n ∈ N, f0, f1, . . . , fn ∈ B+b and 0 = t0 < t1 < . . . tn < ∞. Then,

Eν
[
f0(X0) f1(Xt1) · · · fn(Xtn)

]
= Eν

[
f0(Xtn) f1(Xtn−t1) · · · fn−1(Xtn−tn−1) fn(X0)

]
. (4.50)

Proof. We proceed by induction and start with the case n = 1. For f , g ∈ B+b (S ) and
0 < t < ∞, we have by symmetry

Eν
[
f (X0)g(Xt)

]
=

∫
S
Ex

[
f (X0)g(Xt)

]
ν(dx) =

∫
S

f (x)Ptg(x) ν(dx)

=

∫
S
Ex

[
f (Xt)g(X0)

]
ν(dx) = Eν

[
f (Xt)g(X0)

]
.

(4.51)

Now suppose that the statement holds for some n ∈ N and let f0, . . . , fn+1 ∈ B
+
b and

0 = t0 < · · · < tn+1 < ∞. Then,

Eν
[
f0(X0) · · · fn+1(Xtn+1)

]
= Eν

[
f0(X0) · · · ( fn · Ptn+1−tn fn+1)(Xtn)

]
= Eν

[
f0(Xtn) · · · ( fn · Ptn+1−tn fn+1)(X0)

]
=

∫
S

Ptn+1−tn fn+1(x)Ex
[
f0(Xtn) · · · fn(X0)

]
ν(dx)

=

∫
S

fn+1(x)Ptn+1−tnEx
[
f0(Xtn) · · · fn(X0)

]
ν(dx)

=

∫
S

fn+1(x)Ex
[
EXtn+1−tn

[
f0(Xtn) · · · fn(X0)

]]
ν(dx)

=

∫
S
Ex

[
f0(Xtn+1) f1(Xtn+1−t1) · · · fn+1(X0)

]
ν(dx)

= Eν
[
f0(Xtn+1) f1(Xtn+1−t1) · · · fn(Xtn+1−tn) fn+1(X0)

]
,

(4.52)

completing the proof. ■
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Next, we introduce the resolvent or potential operator (cf. [MR06]) of a Markov
process as the Laplace transform of the semigroup.

Definition 4.25. Let X be a Markov process with values in S and f ∈ Bb(S ). Then,
for each α > 0 we set

Rα f (x) := Ex

[∫ ∞

0
f (Xt)e−αt dt

]
. (4.53)

The family (Rα)α>0 of operators is called the resolvent associated with the process X.
For α > 0, the operator Rα is called the α-resolvent of X. ♢

Clearly, Rα is a linear operator mapping Bb(S ) to Bb(S ). By Fubini’s Theorem, we
can write

Rα f (x) =
∫ ∞

0
e−αtPt f (x) dt. (4.54)

Applying Fubini’s Theorem again and using the ν-symmetry of (Pt)t≥0, we find that
Rα is ν-symmetric as well. Observe that for α, β > 0(

Rα − Rβ
)

f =
∫ ∞

0
e−αtPt f dt −

∫ ∞

0
e−βtPt f dt

=

∫ ∞

0
e−βt

(
e−(α−β)t − 1

)
Pt f dt

= −(α − β)
∫ ∞

0

∫ t

0
e−β(t−s)−αsP(t−s)+s f ds dt

= −(α − β)
∫ ∞

0

∫ ∞

0
e−αse−βtPsPt f dt ds = −(α − β)RαRβ f .

(4.55)

We have thus shown that the resolvent satisfies the resolvent equation

Rα − Rβ + (α − β)RαRβ = 0 ∀α, β > 0. (R1)

Remark 4.26. The resolvent has another, probabilistic, interpretation. Let α > 0 and
consider an exponential random variable ζ with expectation 1/α, independent of the
process X. Let

X̂t =:

Xt, t < ζ
ϑ, t ≥ ζ

(4.56)

be the exponentially killed process. Denote by Ê and P̂ the expectation and the
semigroup of X̂, respectively. Then

P̂t f (x) = Ê
[
f (Xt); ζ > t

]
= P(ζ > t)Pt f (x) = e−αtPt f (x). (4.57)
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Thus, the α-resolvent can be regarded as the integrated semigroup of the process
that is killed at an independent Exp(α)-time. When we consider f = 1A for some
set A ∈ B, the quantity Rα1A(x) is the expected time the process X̂ spends in A, or
occupation time, before it is killed at time ζ. ♢

Definition 4.27 (α-excessive functions). Let (Pt)t≥0 be the transition semigroup of
a Markov process with values in (S ,B). Furthermore, let α > 0. A non-negative
measurable function h ∈ B+(S ) is called α-excessive with respect to (Pt)t≥0 if

e−αtPth(x) ≤ h(x) (4.58)

and
lim
t→0

e−αtPth(x) = h(x), (4.59)

for each x ∈ S . ♢

As an immediate consequence of Definition 4.27 we find that for every α-excessive
function h ∈ B+(S ) and s, t > 0,

e−α(s+t)Ps+th(x) = e−αsPse−αtPth(x) ≤ e−αtPth(x), (4.60)

and consequently the function t 7→ e−αtPth(x) is increasing as t → 0. Furthermore,
constant functions are α-excessive for every α > 0 and h ∧ g is α-excessive whenever
f and g are α-excessive.

Lemma 4.28. (i) Let α > 0 and (hn)n∈N ⊂ B
+(S ) be an increasing sequence of

α-excessive functions such that limn→∞ hn = h ∈ B+(S ). Then, h is α-excessive,
too.

(ii) Let f ∈ B+b (S ) be non-negative, bounded and measurable. Then the function
h := Rα f is α-excessive for all α > 0.

(iii) Let h ∈ B+(S ) be α-excessive for α > 0. Then there exists a sequence ( fn)n∈N ⊂

B(S ) such that Rα fn(x) is increasing as n→ ∞ and

lim
n→∞

Rα fn(x) = h(x), (4.61)

for all x ∈ S .

Proof. Fix α > 0 and let (⊂n)n∈NB
+(S ) be an increasing sequence of α-excessive

functions with limn→∞ hn = h. Then,

e−αtPth(x) = lim
n→∞

e−αtPthn(x) ≤ lim
n→∞

hn = h. (4.62)
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Taking the limit t → 0 we can interchange limits because of monotonicity and obtain

lim
t→0

e−αtPth(x) = lim
n→∞

lim
t→0

e−αtPthn(x) = h(x) (4.63)

and the first assertion (i) is established.

For the second claim (ii) assume that f ∈ B+b (S ) is non-negative and bounded and
let α > 0. We start by showing that h = Rα f satisfies (4.58):

e−αtPth = e−αtPtRα f = e−αtPt

∫ ∞

0
e−αsPs f ds =

∫ ∞

0
e−α(t+s)Pt+s f ds

=

∫ ∞

t
e−αsPs f ds ≤ Rα f = h.

(4.64)

When we apply the limit for t → 0 at (4.64) we obtain the equality (4.59), thus proving
the claim.

For the last claim (iii) we construct the approximating sequence explicitly. Let
h ∈ B+(S ) be α-excessive for some α > 0. For n ∈ N set hn := h ∧ n. By definition of
the resolvent and substituting t = ns, we obtain

nRα+nhn =

∫ ∞

0
ne−(α+n)sPshn ds =

∫ ∞

0
e−te−αt/nPt/nhn dt. (4.65)

Now, hn is α-excessive since it is the minimum of two α-excessive functions. There-
fore, the function

gn := e−αt/nPt/nhn (4.66)

is increasing for fixed α, t > 0 as n → ∞ and limn→∞ gn = h. Hence, nRα+nhn is
increasing in n and converges to h. Now observe that by the resolvent equation we
have

nRα+nhn = nRα (hn − nRα+nhn) , (4.67)

and therefore, the functions

fn := n (hn − nRα+nhn) (4.68)

are the desired sequence with Rα fn ↑ h as n→ ∞. ■

The importance of α-excessive functions stems from the following fact.

Proposition 4.29. Let h ∈ B+(S ) be α-excessive for some α > 0. Then, the real valued
stochastic process (Yt)t≥0 :=

(
e−αth(Xt)

)
t≥0 is a supermartingale with respect to the

canonical filtration (At)t≥0 for every initial distribution µ ∈ M1(S ).
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Proof. The proof is straightforward. Fix t > 0, by α-excessivity of h we have Pµ-
almost surely

E [Yt+h | At] = e−α(t+h)E [h(Xt+h) | At] = e−α(t+h)E [Phh(Xt) | At]

= e−αte−αhPhh(Xt) ≤ e−αth(Xt).
(4.69)

■

4.2 Feller processes
In the previous chapter Chapter 3 we have examined the space of càdlàg functions

on a uniform space (S ,U) with great care and in the previous section we have seen
that the finite dimensional distributions of a Markov process are determined by its
semigroup. We are interested in a stronger statement. Namely,we want to consider a
class of Markov processes that are already uniquely determined by their semigroups.
This is where the càdlàg paths come into play.

Proposition 4.30. Let (S ,U) be a separable uniform Hausdorff space and X,Y two
Markov processes with càdlàg paths, i.e. X,Y : Ω → DS ([0,∞)). Assume further
that X and Y have the same transition semigroup P = (Pt)t≥0 and the same initial
distribution µ ∈ M1(S ). Then, X and Y have the same law.

Proof. By Lemma 4.21, X and Y have the same finite-dimensional distributions and
the result follows from Proposition 3.41. ■

As a consequence, in the case of Markov processes with càdlàg paths, the semigroup
is a very powerful tool in the analysis of the process. Yet, this result is not satisfying
as it is a priori not clear that a given Markov process even has a modification with
càdlàg paths. To make sure that this is the case we need stronger assumptions on the
semigroups.

For the remainder of this chapter assume that (S ,U) is a Polish uniform space,
i.e. a separable and complete locally compact uniform Hausdorff space. Recall that
under this assumption, (S ,U) is completely metrizable, yet we want to avoid fixing a
specific metric. While some of the concepts can be further generalized, we refrain
from doing so as this would go beyond the scope of this thesis.

Definition 4.31 (Feller semigroups). A semigroup (Tt)t≥0 of positive contraction
operators is called a Feller semigroup if it has the following properties

(F1) Tt f ∈ C∞(S ) for all f ∈ C∞(S ) and t ≥ 0,
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(F2) limt→0 ∥Pt f − f ∥∞ = 0 for all f ∈ C∞(S ). ♢

Lemma 4.32. Let (Tt)t≥0 be a Feller semigroup on C∞(S ). Then,

(t, f , x) 7→ Tt f (x) (4.70)

is continuous as a function [0,∞) × C∞(S ) × S → R.

Proof. Let (t, f , x), (s, g, y) ∈ [0,∞) × C∞(S ) × S , then

|Tt f (x) − Tsg(y)| = |Tt f (x) − Tt f (y) + Tt f (y) − Ts f (y) + Ts f (y) − Tsg(y)|

≤ |Tt f (x) − Tt f (y)| + |Tt f (y) − Ts f (y)| + |Ts f (y) − Tsg(y)| .
(4.71)

By (F1), the first term vanishes as y → x. For every t > 0, Tt is a contraction by
assumption and the second term can be bounded by

∥Tt(T|s−t| f − f )∥∞ ≤ ∥T|s−t| f − f ∥∞. (4.72)

By (F2) this bound converges to 0 as s → t. Similarly, the last term is bounded by
∥ f − g∥∞ which also tends to 0 as g→ f . ■

Definition 4.33 (Feller processes). Let X be a Markov process with values in S . We
call X a Feller process, if the semigroup (Pt)t≥0 associated with X satisfies (F1)
and (F2) of Definition 4.31. ♢

Some remarks about the above definition are in order. As the name indicates, the
definition goes back to a series of papers that William Feller wrote in the 1950s, e.g.
[Fel52; Fel54]. Feller introduced the conditions above in the context of his analysis of
diffusion processes 2. However, Feller’s original work is rarely cited today3. Instead,
classical textbooks like [Mey66], [Dyn65] or [BG68] give a thorough account of the
theory of Feller processes.

Some authors use slightly different definitions of the Feller property and require
(F1) to hold for all bounded f ∈ Cb, instead.4

2[Fel54, Theorem 1]
3[CW05, Notes on Chapter §2.2, p. 73]
4See Martin Hairer’s comment in [Hai]
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Assume that X is a Markov process with values in a compact space S and assume
that its associated semigroup (Pt)t≥0 has the Feller property. Then, (F1) implies that
for all t ≥ 0 and f ∈ C the maps Pt f are continuous and thus∫

S
f (z)pt(x, dz) = Ex

[
f (Xt)

]
= Pt f (x) −→

x→y
Pt f (y) =

∫
S

f (z)pt(x, dy). (4.73)

Hence, laws Lx and Ly of X started in x and y, respectively, converge as x → y. In
fact, the reverse implication is also true. We say that (F1) means that X depends
continuously on the starting point. On the other hand, (F2) means that in probability
(under Px),

lim
t→0

Xt = x. (4.74)

Moreover, observe that under (F1) condition (F2) is equivalent to the seemingly
weaker condition

lim
t→0
|Pt f (x) − f (x)| = 0, (4.75)

for all f ∈ C∞(S ) and x ∈ S .5

We want to prove a slightly stronger result than (4.74).

Proposition 4.34 ([CW05, Proposition 2.2.2]). Let X be a Feller process with values
in S . Then X is stochastically continuous, i.e. for all t > 0, every initial distribution
µ ∈ M1(S ) and every open entourage U ∈ U,

lim
s→t
Pµ ((Xt, Xs) ∈ U) = 1. (4.76)

Proof. It suffices to show the claim for µ = δx for some x ∈ S . Let U ∈ U be open
and V ∈ U such that V ◦V ⊂ U. Now choose a continuous function h : S ×S → [0, 1]
such that h(x, y) = 0 if (x, y) < U and h(x, y) = 1 if (x, y) ∈ V . Then h ≤ 1U and we
obtain

Px ((Xt, Xs) ∈ U) ≥ Ex [h(Xt, Xs)] , (4.77)

for all s, t > 0. Consider the functions of the form

p(x, y) =
k∑

j=1

f j(x)g j(y), (4.78)

where f j, g j ∈ C0(S ) for j ∈ {1, . . . , k}. These functions form a sub-algebra of

5See [RY99, Proposition III.2.4]
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C∞(S ×S ) and separate points. We can therefore apply the Stone-Weierstrass Theorem
(cf. [Con07, Corollary V.8.3]) to obtain a sequence

hn(x, y) =
kn∑
j=1

f (n)
j (x)g(n)

j (4.79)

of functions the form (4.78) that converges uniformly to h.

Now observe that for all f , g ∈ C∞(S ) and t > 0 we have by (F2),

Ex
[
f (Xt)g(Xt+δ)

]
= Ex

[
f (Xt)EXt

[
g(Xδ)

]]
= Ex

[
f (Xt)Pδg(Xt)

]
−→
δ→0
Ex

[
f (Xt)g(Xt)

]
.

(4.80)

Consequently,

lim
δ→0
Px((Xt, Xt+δ) ∈ U) ≥ lim

δ→0
Ex [h(Xt, Xt+δ)] = Ex [h(Xt, Xt)] = 1. (4.81)

Next, we have to consider the left limit s ↑ t. To that end fix t > 0 and 0 < δ < t.
Then,

Ex
[
f (Xt−δ)g(Xt)

]
= Ex

[
f (Xt−δ)EXt−δ

[
g(Xδ

]]
= Ex

[
f (Xt−δ)Pδg(Xt−δ)

]
= Pt−δ ( f Pδg) (x).

(4.82)

As δ→ 0, the right hand side converges to

Pt( f g)(x) = Ex
[
f (Xt)g(Xt)

]
, (4.83)

by Lemma 4.32. By the same argument as before we conclude that

lim
δ→0
Px((Xt, Xt−δ) ∈ U) ≥ lim

δ→0
Ex [h(Xt, Xt−δ)] = Ex [h(Xt, Xt)] = 1. (4.84)

■

Condition (F1) in Definition 4.31 can be exchanged for another condition sometimes
called the strong Feller property.

Definition 4.35 (Strong Feller property). Let (Tt)t≥0 be as in Definition 4.31 but
assume that instead of (F1), (Tt)t≥0 satisfies the strong Feller property

(F3) Tt f ∈ Cb for all f ∈ Bb(S ) and t > 0.

Analogously to Definition 4.33 we call a Markov process X whose transition semi-
group satisfies (F2) and (F3) a strong Feller process or simply strongly Feller. ♢
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While the Feller property makes sure that the distribution of X at time t depends on
the initial conditions continuously, the strong Feller property ensures that the process
X behaves diffusively in the sense that point masses in the initial distribution are
smoothed out by the semigroup.

As an example of a Markov process that is Feller but not strongly Feller consider
the following simple process.

Example 4.36. Let X be the process on R that remains in its initial distribution forever,
i.e. we have Px(Xt = x) = 1. Thus, the semigroup (Pt)t≥0 of X is given by

Pt f (x) = Ex
[
f (Xt)

]
= Ex

[
f (x)

]
= f (x) (4.85)

and Pt is the identity operator for all t > 0. Hence, (F1) and (F2) from Definition 4.31
hold but (F3) does not. ■

Note that, despite the name, the strong Feller property does not imply the normal
Feller property. Instead, we have the following definition.

Definition 4.37 (Doubly Feller). Let (Tt)t≥0 be a semigroup of strongly continuous
contraction operators. If (Tt)t≥0 is both Feller and strongly Feller, i.e. (Tt)t≥0 satisfies
(F1) to (F3), we say that (Tt)t≥0 is doubly Feller. ♢

4.2.1 Resolvents and generators
Given a Feller semigroup (Tt)t≥0 we can define the family of resolvent operators

(Rα)α>0 associated with (Tt)t≥0 using (4.54), i.e.

Rα f :=
∫

e−αtTt f dt, f ∈ C∞. (4.86)

Observe that this definition of the resolvent coincides for Feller processes with the
definition of resolvents given before, apart from the domain. This justifies using the
same letter to designate both.

The resolvent has further remarkable properties. We write C+∞ := C∞ ∩ C+ for the
non-negative continuous functions that vanish at infinity.

Lemma 4.38 (Resolvents and supermartingales). Let X be a Markov process with
values in a uniform Hausdorff space (S ,U). Assume that f ∈ C+∞, then for each α > 0,
the process Y = (Yt)t≥0 with

Yt := e−αtRα f (Xt), t ≥ 0, (4.87)
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is a supermartingale under Pµ for every initial distribution µ ∈ M1(S ).

Proof. The claim is a direct consequence of Lemma 4.28 and Proposition 4.29. ■

Next, we introduce the generator of a Feller semigroup and present briefly the
interrelationship between semigroups, resolvents and generators. We will keep this
exposition as short as possible as we will go more into detail when discussing Dirichlet
forms associated with Feller groups in the next chapter. Again, all of the following
can be found in most standard textbooks covering Feller processes and we will refer
to Kallenberg’s book [Kal21] for most of the proofs.

LetD ⊂ C∞ be the family of functions for which the limits

∆ f := lim
t↓0

Tt f − f
t

(4.88)

exist in C∞. By [Kal21, Theorem 17.6], ∆ is a linear operator on C∞ with domainD
such that

d
dt

(Tt f ) = Tt∆ f = ∆Tt f , t ≥ 0. (4.89)

We say that (∆,D) is the generator of the Feller semigroup (Tt)t≥0. The term generator
stems from the fact that (∆,D) determines the semigroup (Tt)t≥0 uniquely (cf. [Kal21,
Lemma 17.5]).

Furthermore, ∆ satisfies

Tt f − f =
∫ t

0
Ts∆ f ds, (4.90)

for all f ∈ D and t ≥ 0, by [Kal21, Theorem 17.6].

On the other hand, the following relationship exists between the generator and the
resolvent of a Feller semigroup.

Proposition 4.39. Let (Tt)t≥0 be a Feller semigroup on C∞ with resolvents (Rα)α>0
and generator (∆,D). Then

(i) for each α > 0, αRα is an injective contraction operator on C∞ and

lim
α→∞

αRα = id (4.91)

in the strong operator topology,

(ii) D = RαC∞ independently of α > 0 andD is dense in C∞,
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(iii) for all f ∈ D and α > 0, the relation

R−1
α f = (α − ∆) f (4.92)

holds.

Proof. See [Kal21, Theorem 17.4]. ■

Here, (4.92) might be more familiar to the reader who knows the resolvent from a
functional analytic context.

Recall that a linear operator ∆ with domainD ⊂ B, where B is some Banach space,
is called closed if the graph of ∆, G(∆) := { (∆ f , f ) | f ∈ D } ⊂ B2 is closed (cf.
[Yos78, Definition II.6.2]). A linear operator (∆,D) is called closable, if for every
sequence ( fn)n∈N ⊂ D with limn→∞ fn = 0 it holds that limn→∞ ∆ fn = 0 (cf. [Yos78,
Proposition II.6.2]). In that case, ∆ can be uniquely extended to an operator ∆ onD
by taking G(∆) := G(∆).

Finally, assume that (∆,D) is a closed operator. We call a linear subspace D ⊂ D
a core for ∆ if and only if the operator (∆|D,D) is closable and its closure is (∆,D).
It can be shown (cf. [Kal21, Lemma 17.8]) that the generator (∆,D) of a Feller
semigroup (Tt)t≥0 is closed and that a linear subspace D ⊂ D is a core for (∆,D) if
and only if the range (α − ∆)D is a dense subset of C∞ for one and hence for every
α > 0.

The celebrated Hille-Yosida Theorem was proven independently by EinarHille and
Kōsaku Yosida in the middle of the last century. It characterizes those operators that
uniquely determine a strongly continuous contraction semigroup. In the formulation
we present here, it characterizes the generators of Feller semigroups.

Proposition 4.40 (Hille-Yosida). Let ∆ be a linear operator on C∞ with domainD.
Then ∆ is closable and its closure ∆ is the generator of a Feller semigroup (Tt)t≥0 on
C∞ if and only if the following conditions hold

(i) D is dense in C∞,

(ii) the range of α − ∆ is dense in C∞ for some α > 0,

(iii) ∆ f (x) ≤ 0, for any f ∈ D and x ∈ S such that ∥ f ∨ 0∥∞ ≤ f (x).

Proof. See [Kal21, Theorem 17.11]. ■

We conclude this brief discussion of the generator of a Feller process with the
following useful result.
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Proposition 4.41 (Dynkin’s formula [Kal21, Lemma 17.21]). Let X be a Feller process
with values in S . Denote by (Pt)t≥0 and (∆,D) the semigroup and the generator
associated with X, respectively. For f ∈ D define the process

(
M f

t

)
t≥0

by

M f
t := f (Xt) − f (X0) −

∫ t

0
∆ f (Xs) ds. (4.93)

Then

(i) M f is a martingale with respect to (Ft)t≥0 under every initial distribution
µ ∈ M1(S ).

(ii) For every bounded optional time τ,

Ex
[
f (Xτ)

]
= f (x) + Ex

[∫ τ

0
∆ f (Xs) ds

]
. (4.94)

Proof. We only show (i). The second assertion then follows by the optional sampling
theorem. Fix µ ∈ M1 and let t, δ > 0 and f ∈ D. Then,

M f
t+δ − M f

t = f (Xt+δ) − f (Xt) −
∫ t+δ

t
∆ f (Xs) ds = M f

δ ◦ θt. (4.95)

We can therefore apply the Markov property to obtain

Eµ
[
M f

t+δ

∣∣∣∣Ft
]
− M f

t = Eµ
[
M f
δ ◦ θt

∣∣∣∣Ft
]
= EXt

[
M f
δ

]
. (4.96)

Now,

EXt

[∫ δ

0
∆ f (Xs) ds

]
=

∫ δ

0
Ps∆ f (Xt) ds (4.97)

and we can apply (4.90) to deduce that EXt

[
M f
δ

]
= 0, Pµ-a.s. It then follows readily

from (4.96) that M f is a martingale. ■

4.2.2 Existence of Feller processes with càdlàg paths
Recall the one-point compactification (Sϑ,Uϑ) of the locally compact space (S ,U)

and that every f ∈ C∞(S ) can be extended to function f̂ ∈ C(S ϑ) by setting f̂ (ϑ) = 0.

The following results are mathematical folklore but of fundamental importance
for our treatment of Feller processes. For that reason, we choose to present them
here along with their proofs. We follow again very closely Kallenberg’s exposition in
[Kal21, Chapter 17], where further background material on Feller processes can be
found.
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Lemma 4.42 (Extension of Feller semigroups [Kal21, Lemma 17.13]). Every Feller
semigroup (Tt)t≥0 on C∞(S ) can be extended to a conservative Feller semigroup(
T̂t

)
t≥0

on the space C(Sϑ) by setting

T̂t f := f (ϑ) + Tt ( f − f (ϑ)) , t ≥ 0, f ∈ C(Sϑ). (4.98)

Proof. First observe that for f ∈ C(Sϑ), we have ( f − f (ϑ)) ∈ C0(S ) and hence,
T̂t f ∈ C(Sϑ) for all f ∈ C(Sϑ) and t ≥ 0. The strong continuity and semigroup
property then carry over from (Tt)t≥0 to (T̂ )t≥0 by linearity.

Now let f ∈ C(Sϑ) be non-negative and set g := f (ϑ) − f ∈ C0(S ). Then, g ≤ f (ϑ)
and we obtain

Ttg ≤ Ttg+ ≤ ∥Ttg+∥∞ ≤ ∥g+∥∞ ≤ f (ϑ), (4.99)

where g+ := g ∨ 0 denotes the positive part of g, as usual. Thus,

T̂t f = f (ϑ) − Ttg ≥ 0. (4.100)

Finally, we have T̂t1 = 1 + Tt0 = 1 and we can deduce the conservativeness and the
contraction property of (T̂t)t≥0. ■

Recall that a state x ∈ Sϑ is called absorbing for a Markov process X if pt(x, {x}) =
Px(Xt ∈ {x}) = 1 for all t ≥ 0.

First we show, that there is a Markov process associated with every Feller semi-
group.

Proposition 4.43 (Existence [Kal21, Proposition 17.14]). For every Feller semigroup
(Tt)t≥0 on C0 there exists a unique family of Markovian transition functions (pt)t≥0 on
Sϑ satisfying

Tt f (x) =
∫

f (y)pt(x, dy), (4.101)

for each f ∈ C0 and t ≥ 0 such that ϑ is absorbing for (pt)t≥0.

Proof. By Lemma 4.42 the maps f 7→ T̂t f are positive linear functionals on C(Sϑ)
with norm 1 for each t ≥ 0. Applying Riesz’ representation Theorem (cf. [Rud87,
Theorem 6.19]) we deduce that for each x ∈ Sϑ and t ≥ 0 there exists a unique
probability measure pt(x, · ) on Sϑ such that

T̂t f (x) =
∫

f (y)pt(x, dy) (4.102)

for all f ∈ C(Sϑ). By continuity, the right-hand side is a measurable function of x.
Measurability of the maps x 7→ pt(x, A) for all A ∈ B(Sϑ) and t ≥ 0 is then obtained
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by an approximation argument and an application of the monotone class theorem. In
the same fashion we can show that p0(x, A) = 1A(x). From the semigroup property of
(T̂t)t≥0 we have

T̂t f (x) = T̂sT̂t−s f (x) =
∫ ∫

f (y)pt−s(z, dy)ps(x, dz) (4.103)

for all 0 ≤ s < t and by the same argument as before, we conclude that (pt)t≥0 satisfies
the Chapman-Kolmogorov equation (4.35). Finally, (4.101) follows from (4.102) as
well as ∫

f (y)pt(ϑ, dy) = T̂t f (ϑ) = f (ϑ) = 0, (4.104)

for all f ∈ C0. Hence, ϑ is indeed absorbing for (pt)t≥0. ■

We say that ϑ is absorbing for X± if P(Xt ∈ {ϑ}) = 1 for all t ≥ ζ, where

ζ := inf { t ≥ 0 | ϑ ∈ {Xt, Xt−} } . (4.105)

Proposition 4.44 (Feller processes admit càdlàg modifications [Kal21, Theorem
17.15]). Let X be a Feller process with semigroup (Tt)t≥0 and values in S . For every
initial distribution µ ∈ M1(S ), there exists a modification X̂ of X with values in Sϑ
such that X̂ has càdlàg paths and ϑ is absorbing for X̂±. If, in addition, (Tt)t≥0 is
conservative, then there exists a càdlàg modification X̂ with values in S .

From now on we will always assume that a Feller process has càdlàg paths and we
will include this in our definition of a Feller process.

Definition 4.45 (Feller processes II). A Markov process X with values in a Polish
uniform space (S ,U) is a Feller process if it satisfies the following conditions

(i) for each ω ∈ Ω, X(ω) is càdlàg,

(ii) the semigroup (Pt)t≥0 associated with X has the Feller property. ♢

Remark 4.46. Combining Propositions 4.30, 4.43 and 4.44 we can deduce that every
Feller semigroup uniquely determines a Feller process. Consequently, every Feller
process is uniquely determined by its family of resolvent operators. This is an
immediate consequence of the definition (4.86) since the resolvent is the Laplace
transform of the semigroup. ♢

Proposition 4.44 allows us to view a Feller process as a random variable X : Ω→
DS ([0,∞)), thus building the bridge to Section 3.5. As before, we introduce the
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canonical version of X by identifying Ω with DS ([0,∞)) and setting Xt(ω) = ω(t),
where ω ∈ DS ([0,∞)). Recall further the translation operators (θt)t≥0, where
θt : DS ([0,∞))→ DS ([0,∞)) is defined as θt(ω) := ω(t + · ) for each t ≥ 0.

4.2.3 Feller processes and stopping times
Let X be a canonical Feller process on (Ω,A,P) with values in the Polish uniform

space (S ,U). Denote by (Ft)t≥0 the augmented filtration generated by X.

Recall that a random variable τ on (Ω,A, P) with values in [0,∞) is called a (Ft)-
stopping time if for each t ≥ 0 the event {τ ≤ t} is Ft-measurable. Whenever it is clear
from the context which filtration we are using, we just say that τ is a stopping time.
Further, recall the definition of the σ-field Fτ from (4.22).

It is worth noting that the augmented filtration (Ft)t≥0 generated by a Feller process
is always right continuous (cf. [CW05, Theorem 2.3.4]). From Lemma 4.8 we then
deduce that for a Feller process every optional time is a stopping time (and vice versa).

Feller processes exhibit nice properties with respect to stopping times. First and
foremost, Feller processes are strongly Markovian.

Proposition 4.47 (Feller processes have the strong Markov property). Let X be a
Feller process with initial distribution µ ∈ M1(S ). For every stopping time τ with
Px(τ < ∞) = 1 for all x ∈ S and non-negative random variable Y : Ω→ R, we have

Eµ [Y ◦ θτ | Fτ] = EXτ [Y] , Pµ-a.s. (4.106)

Proof. See [Kal21, Theorem 17.17]. ■

On the other hand, Feller processes are quasi left-continuous.

Proposition 4.48 (Quasi left-continuity). Every Feller process X is quasi left-
continuous. That is, for every stopping time τ and every sequence of stopping
times (τn)n∈N with τn ≤ τn+1 and limn→∞ τn = τ almost surely,

lim
n→∞

Xτn = Xτ a.s. on {τ < ∞}. (4.107)

Proof. See [CW05, Theorem 2.4.4]. ■

While Feller’s approach is more analytic, another approach to the same objects was
developed by the mathematician (and tennis ace [Hol08]) Gilbert A. Hunt. Hunt’s
definition starts with Markov processes and their path properties. The following
definition coincides roughly with Hunt’s hypothesis A in [Hun56]6.

6Compare Chung’s remarks in [Chu82, p. 135].
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Definition 4.49 (Hunt processes). Let X be a Markov process with values in Sϑ. We
call X a Hunt process if it satisfies the following conditions

(i) X is right continuous,

(ii) X has the strong Markov property,

(iii) X is quasi-left-continuous. ♢

Basically, Hunt processes are Feller processes but the approach is somewhat re-
versed.7

For some applications, it is useful to extend the Borel σ-algebraBϑ on Sϑ to include
those sets that are “not seen” by a given Feller process X. This leads to the following

Definition 4.50 (nearly Borel measurable sets). Let X be a Feller process with values
in Sϑ. A set A ⊂ Sϑ is said to be nearly Borel measurable if there exist Borel
measurable sets A1, A2 ∈ Bϑ such that A1 ⊂ A ⊂ A2 with

Pµ(Xt ∈ A2 \ A1 for some t ≥ 0) = 0 (4.108)

for all initial distributions µ ∈ M1(S ). We write Bn = Bn(Sϑ) for the totality of all
nearly Borel measurable sets. ♢

4.2.4 Hitting times
We have observed in Remark 4.46 that the family of resolvent operators (Rα)α>0

of a Feller process X uniquely determines said process. On the other hand, we have
seen in Remark 4.26 that for α > 0 the resolvent Rα applied to 1A for some A ∈ B
can be interpreted as the (expected) occupation time of the set A by the process X up
to an Exp(α) distributed random time ζ. Using the usual approximations by simple
functions and the linearity of the resolvent operator, we can deduce that the resolvent
operators (Rα)α>0 and a fortiori the Feller process X is uniquely determined by the
occupation times of all Borel sets A ∈ B of the killed process X̂, killed at an Exp(α)
random time for all α > 0.

Following up on this idea, one might suspect that the same holds true for another
class of random times. Indeed, we will show that we can use hitting times of open
sets instead of independent exponentially distributed random variables.

To that end, we start with a brief treatment of hitting times and stopping times in
general.

7See [CW05, §3].
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Let X be a Feller process with values in (S ,U) and denote by (Ft)t≥0 the augmented
filtration generated by X. Recall that (Ft)t≥0 is right continuous (cf. [CW05, Theorem
2.3.4]).

Clearly, constant times a ≥ 0 are stopping times since the events {a ≤ t} are either
the empty set or the whole space Ω and thus Ft-measurable for every t ≥ 0. We write

τA = τA(X) := inf { t > 0 | Xt ∈ A } (4.109)

for the first hitting time of the set A ∈ B. Note that we use the same notation for the
random hitting times as we did in Chapter 3 for the deterministic hitting times. This
ambiguity should lead to no confusion as it is always clear from the context if the
involved hitting times are random or not.

Recall the definition of the first contact time γA from Section 3.4 (3.21):

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
. (4.110)

Analogously we define the first contact time of the set A ∈ B by the process X as

γA = γA(X) := inf
{

t ≥ 0
∣∣∣ {Xt, Xt−} ∩ A , Ø

}
. (4.111)

Proposition 4.51 (Hitting times of open and closed sets are stopping times). Let X be
a Feller process with values in (S ,U). For each A ∈ B, open or closed, the random
times τA and γA are (Ft)t≥0-stopping times.

Proof. Let A ∈ B be open. In the case where P({τA < ∞}) = 0, the first hitting time
τA is clearly a stopping time as {τA < t} is a P-nullset for each t > 0 and (Ft)t≥0 was
assumed to be augmented. Fix t > 0 and choose ω ∈ {τA < t}. Then there exists a
s > 0 such that τA ≤ s < t with Xs(ω) ∈ A. Now, since A is open, there exists an open
entourage U ∈ U such that U[Xs(ω)] ⊂ A. By right continuity of the map t 7→ Xt(ω),
there exists a ε > 0 such that Xr(ω) ∈ U[Xs(ω)] ⊂ A for all r ∈ [s, s + ε). That means
there exists a q ∈ Q ∩ [0, t) such that Xq(ω) ∈ A and hence,

{τ < t} =
⋃

q∈[0,t)∩Q

{Xq ∈ A} ∈ Ft, (4.112)

proving that τA is a (Ft)t≥0 stopping time.

Now suppose A ∈ B is closed. Let (Bn)n∈N ⊂ B be a sequence of open sets such that
Bn+1 ⊂ Bn and A ⊂ Bn for each n ∈ N. SinceU has a countable base, we can choose
for example (Un)n∈N ⊂ U to be a sequence of open entourages with Un+1◦Un+1 ⊂ Un,
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⋂
n∈NUn = ∆ and set Bn := Un[A]. Then the sequence

(
τBn

)
n∈N is increasing and

bounded by τA. By right continuity, we have for each B ∈ B

XτB ∈ B on {τB < ∞}. (4.113)

By construction, we find that A =
⋂

n∈N Bn =
⋂

n∈N Bn and

T := lim
n→∞

τBn ≤ τA. (4.114)

Consequently, by quasi left continuity of X (Proposition 4.48),

XT = lim
n→∞

XτBn
∈

⋂
n∈N

Bn = A on {T < ∞}. (4.115)

Hence, τA ≤ T and consequently τA = T almost surely on {T < ∞}. On the other
hand, on {T = ∞}, we have τA ≥ T = ∞, by construction. It follows that

τA = lim
n→∞

τBn , (4.116)

and we conclude from Lemma 4.10, that τA is indeed a stopping time. It remains to
show that γA is a stopping time. Let A ∈ B be open or closed and let (Bn)n∈N ⊂ B

denote a sequence of open sets, as before. From the definition of γA we obtain for
each t ≥ 0,

{γA ≤ t} =
⋂
n∈N

{τBn ≤ t} ∈ Ft, (4.117)

proving that γA is indeed a stopping time. ■

Remark 4.52. In the proof of Proposition 4.51 we have actually shown the stronger
statement that γA is a stopping time for every Borel set A ∈ B. In fact, one can show
that every hitting time of a Borel set is a stopping time. This is sometimes called
the Debut Theorem. Usually, the proof involves Choquet’s capacibility theorem (cf.
Proposition 5.52). A proof using only elementary methods was given by Richard F.
Bass in [Bas10]. ♢

Definition 4.53. A random time τ is called a terminal time if

τ ◦ θt + t = τ (4.118)

Px-almost surely on {t ≤ τ} for any starting point x ∈ S . ♢

Lemma 4.54. For all A ∈ B open or closed, the first hitting time τA is a terminal time.

Proof. Let ω ∈ {t ≤ τ}. Then, τA ◦ θt = τA − t, almost surely. ■
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Clearly, the event {τA = 0} is F0-measurable for every A ∈ B open or closed.
With our remark above, the same holds for every Borel measurable set A ∈ B and
by definition even for every nearly Borel measurable set A ∈ Bn. By Blumenthal’s
0 − 1-law (cf. [Kal21, Corollary 17.18]) we therefore conclude

Px(τA = 0) ∈ {0, 1} (4.119)

for all x ∈ S and A ∈ Bn.

This leads to the following definition.

Definition 4.55 (regular points). Let X be a Feller process with values in Sϑ and
A ∈ Bn a nearly Borel measurable set. We say that a point x ∈ S is regular for A if

Px(τA = 0) = 1. (4.120)

We denote by Ar ⊂ S the set of regular points for A, i.e.

Ar := { x ∈ S | Px(τA = 0) = 1 } . (4.121)

Conversely, a point x ∈ S is said to be irregular for A if it is not regular for A. In that
case, Px(τA = 0) = 0. We say that a set A ∈ Bn is thin if Ar = Ø. ♢

By right-continuity of X, we immediately obtain the relation,

A◦ ⊂ Ar ⊂ A. (4.122)

Lemma 4.56. Let X be a (strong) Feller process with values in Sϑ and A ⊂ S closed.
Then,

lim
t→0

sup
x∈K
Px(τA ≤ t) = 0 (4.123)

for all compact subsets K ⊂ D = S \ A.

Proof. Let K ⊂ D be a compact subset of D := S \ A. Let φ ∈ C∞(S ) non negative
be such that φ(x) = 1 for all x ∈ K and φ(x) = 0 for all x ∈ A. By either the Feller
property (F1) or the strong Feller property (F3) we have that Ptφ ∈ Cb(S ) for all t > 0.
Furthermore, we have by (F2) that limt→0∥Ptφ − φ∥ = 0. For every ε > 0 we can thus
find a T > 0 such that

sup
x∈A

Ptφ(x) < ε/2 and inf
x∈K

Ptφ(x) > 1 − ε/2, (4.124)
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for all t ≤ T . Hence, for all x ∈ K,

1 − ε/2 < Ex
[
φ(XT )

]
= Ex

[
φ(XT ); T < τA

]
+ Ex

[
φ(XT ); T ≥ τA

]
≤ Px(T < τA) + Ex

[
φ(XT ); T ≥ τA

]
.

(4.125)

On the other hand, by the strong Markov property,

Ex
[
φ(XT ); T ≥ τA

]
= Ex

[
EXτA

[
φ(XT−τA)

]
; T ≥ τA

]
. (4.126)

Because XτA ∈ A, the inner expectation on the right can be bounded by ε/2, by virtue
of (4.124). Consequently,

Px(T < τA) > 1 − ε (4.127)

for all x ∈ K. We conclude the proof by letting ε→ 0. ■

We go even further and show that the probability Px(τA ≤ t) decays at least linearly
in t. This result seems to have escaped notice in the literature in the general form
we present it here. A similar result for Feller processes on Rd was given in [BSW13,
Theorem 5.1] and our proof is inspired by their proof.

Theorem 4.57. Let X be a Feller process with values in Sϑ and A ⊂ S closed. For all
compact subsets K ⊂ D = S \ A there exists a constant C > 0 such that

Px(τA ≤ t) ≤ Ct (4.128)

for all x ∈ K and t > 0.

Proof. Let K ⊂ D. By Lemma 2.37 we can choose φ ∈ C∞(S ) such that 0 ≤ φ ≤ 1,
φ(x) = 1 for all x ∈ K and φ(x) = 0 for all x ∈ A. Denote by (∆,D) the generator
of the Feller semigroup (Pt)t≥0 associated with X. Since D ⊂ C∞(S ) is dense, we
can assume without loss of generality that φ ∈ D. Fix t > 0 and note that t ∧ τA is a
bounded stopping time. We can therefore apply the Dynkin formula Proposition 4.41
(ii) to obtain

Ex
[
1 − φ

(
Xt∧τA

)]
= Ex

[∫ t∧τA

0
−∆φ(Xs) ds

]
. (4.129)

Observe that φ
(
Xt∧τA

)
= 0 on {τA ≤ t} and therefore 1 − φ

(
Xt∧τA

)
≥ 1{τA≤t}. Conse-

quently,

Px(τA ≤ t) ≤ Ex

[∫ t∧τA

0
−∆φ(Xs) ds

]
≤ Ex [t ∧ τA] ∥∆φ∥∞ ≤ Ct, (4.130)

where C = ∥∆φ∥∞. ■

4.2 Feller processes 119



Corollary 4.58 (exit times). Let X be a Feller process with values in Sϑ. For each
x ∈ S and U ∈ U open, there exists a constant C > 0 such that for all t > 0,

Px(σU[x] ≤ t) ≤ Ct. (4.131)

Here, σA = τ∁A denotes the first exit time from A.

Recall from Definition 4.27 that for α > 0 we call a measurable function f ∈ B(S )
α-excessive with respect to the semigroup (Pt)t≥0 if

Pte−αt f (x) ≤ f (x) (4.132)

for all t > 0 and limt→0 Pte−αt f (x) = f (x) for all x ∈ S . For later reference, we note
the following fact.

Proposition 4.59. Let A ∈ Bn be a nearly Borel measurable set and τA the first hitting
time of A. For each α > 0 the function

x 7→ Ex
[
e−ατA

]
, x ∈ S (4.133)

is α-excessive.

Proof. Let α, t > 0. Then,

e−αtPtEx
[
e−ατA

]
= PtEx

[
e−αtα−1

∫ ∞

τA

e−αs ds
]

= Ex

[
EXt

[
e−αtα−1

∫ ∞

τA

e−αs ds
]]

= Ex

[∫ ∞

τA◦θt

α−1e−α(s+t) ds
]
= Ex

[∫ ∞

t+τA◦θt

α−1e−αs ds
]
.

(4.134)

Since τA is a terminal time, we have τA = t + τA ◦ θt for all t ≤ τA. Hence, limt→0 t +
τA ◦ θt = τA and therefore,

lim
t→0

e−αtPtEx
[
e−ατA

]
= Ex

[
e−ατA

]
. (4.135)

On the other hand we have t + τA ◦ θt ≥ τA if t > τA, hence

e−αtPtEx
[
e−ατA

]
≤ Ex

[
e−ατA

]
. (4.136)

■

When we consider hitting times of a ν-symmetric Feller process X, the question
where the process first hits a set A ∈ Bn, naturally arises. This leads to the following
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definition of the α-hitting distribution. For each α > 0 and nearly Borel set A ∈ Bn

we set
Hα

A(x, B) := Ex
[
e−ατA ; XτA ∈ B

]
, (4.137)

if α = 0 we write
H0

A(x, B) := Px(τA < ∞; XτA ∈ B), (4.138)

where x ∈ S and B ∈ B. Using Definition 4.12 one easily verifies the following.

Lemma 4.60. For each α ≥ 0 and every nearly Borel set A ∈ Bn, the α-hitting
distribution

Hα
A : S × B → [0, 1] (4.139)

is a sub-Markov kernel.

As usual, we write Hα
A f (x) for the integral of a bounded Borel measurable function

f ∈ Bb(S ) with respect to the measure Hα
A(x, dy). In other words,

Hα
A f (x) = Ex

[
f
(
XτA

)
e−ατA

]
for α > 0 and H0

A f (x) = Ex
[
f (XτA); τA < ∞

]
.

(4.140)
In particular, we have

Hα
A1(x) = Ex

[
e−ατA

]
for α > 0 and H0

A1(x) = Px(τA < ∞). (4.141)

4.3 Symmetric Feller processes
As before let (S ,U) be a locally compact uniform Polish space and ν ∈ M(S )

a boundedly finite Radon measure on (S ,B). Recall the definition of a (strongly)
ν-symmetric Markov process from Definition 4.23. Naturally, we say that a Feller
process X with values in S is (strongly) ν-symmetric if it is (strongly) ν-symmetric
in the sense of Definition 4.23. Observe that the same definition holds true when we
consider the extension of X to the one-point compactification Sϑ.

Suppose that X is a strongly ν-symmetric Feller process with semigroup (Pt)t≥0
and resolvent (Rα)α>0. Then for all f ∈ C∞(S ),

Rα f (x) =
∫ ∞

0
e−αtPt f (x) dt =

∫ ∞

0
e−αt

∫
S

pt(x, y) f (y) ν(dy) dt

=

∫ ∞

0

∫
S

e−αt pt(x, y) dt f (y) ν(dy) =:
∫

S
uα(x, y) f (y) ν(dy).

(4.142)
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The functions uα(x, y) are called α-resolvent kernels or α-potential densities for
their potential theoretic origin and the fact that the α-resolvent is sometimes referred
to as the α-potential.

Furthermore, it follows from the ν-symmetry that pt and uα are symmetric for every
t ≥ 0 and α > 0 (cf. [MR06, Chapter 3.3]). Observe that in the book [MR06] by
Michael B. Marcus and Jay Rosen, the authors start with (4.142) as the definition
of strong ν-symmetry and deduce the existence of a symmetric family pt. Both
definitions are equivalent as was shown by RainerWittmann in [Wit86] (cf. [MR06,
Remark 3.3.5]).

By virtue of the Feller property and the strong continuity of the semigroup, we
can choose the functions pt such that the map (t, x, y) 7→ pt(x, y) is continuous as
a function on [0,∞) × S × S . As a consequence, every strongly symmetric Feller
process is regular in the sense of [Kal21, Chapter 26].

4.3.1 The killed process
Let (S ,U, ν) be a locally compact uniform measure space. Suppose that A ∈ B is

closed. Given a ν-symmetric Feller process X with values in Sϑ. Recall the definition
of the lifetime ξ = inf { t > 0 | Xt ∈ {ϑ} } of X. We introduce the process XA which
is the same as the process X but killed upon hitting the set A, i.e. for each t ≥ 0 and
ω ∈ Ω we set

XA
t (ω) :=

Xt(ω), t < min{τA(ω), ξ}
ϑA, t ≥ min{τA(ω), ξ}

(4.143)

and
D := S \ A. (4.144)

Note that D is again locally compact by Lemma A.18 and denote by DϑA = D∪{ϑA} its
one-point compactification. Observe that the cemetery point ϑA does not necessarily
coincide with the cemetery point ϑ of the original process X. Keeping this in mind,
we just write ϑ for the cemetery point of XA with an abuse of notation. As usual, we
extend functions in B(D) to Dϑ by setting f (ϑ) = 0.

Further observe that every f ∈ Bb(D) and f ∈ C∞(D) can be extended to Bb(S )
and C∞(S ), respectively, by setting f = 0 on A. Moreover, we can identify

C∞(D) = { f ∈ C∞(S ) | f (x) = 0 ∀x ∈ A } . (4.145)

We can therefore consider the killed process as a stochastic process with state space
DϑA . The question remains which properties of X the killed process XA inherits. As a
first property observe that since A ⊂ S was assumed to be closed, every point x ∈ D
is regular for D, i.e.

Px(XA
0 = x) = 1 ∀x ∈ D. (4.146)
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In the following, we will restrict ourselves to the case where we kill in a closed set
A ∈ B. Most of the results can be significantly generalized (see for example [CF11,
Sections 3.2 ff.] or [FOT11, Sections 4.1 ff.]) to sufficiently regular sets.

Despite being of natural interest, the killed process has gotten little attention in the
literature, as far as we can tell. Some results about the properties of the killed process
were obtained by Kai Lai Chung in [Chu86] and more recently in [BLM18].

We start with the observation that the killed process is again Markov.

Lemma 4.61. Let X be a Markov process with respect to the filtration (Ft)t≥0 and
values in S ϑ. Suppose A ∈ B is closed, then the killed process XA is also a Markov
process with respect to (Ft)t≥0 with values in Dϑ.

Proof. The proof is straightforward. Let s, t > 0 and B ∈ BD a Borel subset of
D = S \ A. Then, for each x ∈ D,

Px
(
XA

t+s ∈ B | Ft
)
= Px (Xs ◦ θt ∈ B, t < τA, s < τA ◦ θt | Ft)

= 1{t<τA}PXt (Xs ∈ B, s < τA) = PXA
t

(
XA

s ∈ B
)
, P-a.s.

(4.147)

■

Now, the semigroup associated with XA, denoted by
(
PA

t

)
t≥0

, is given by

PA
t f (x) := Ex

[
f
(
XA

t

)]
= Ex

[
f (Xt); t < τA

]
, (4.148)

for t ≥ 0, f ∈ Bb(D) and x ∈ D. Similarly, the resolvent
(
RA
α

)
α>0

associated with XA

can be written as

RA
α f (x) =

∫ ∞

0
e−αtPA

t f (x) dt = Ex

[∫ τA

0
e−αt f (Xt) dt

]
. (4.149)

Suppose X is a strong Markov process, then we have for all α > 0 and f ∈ B+b (S ) non
negative,

Hα
A (Rα f (x)) =

∫
S

Rα f (y)Ex
[
e−ατA ; XτA ∈ dy

]
=

∫
S
Ey

[∫ ∞

0
e−αt f (Xt) dt

]
Ex

[
e−ατA ; XτA ∈ dy

]
= Ex

[∫ ∞

0
e−α(t+τA)EXτA

[
f (Xt)

]
dt

]
= Ex

[∫ ∞

τA

e−αt f (Xt) dt
]
.

(4.150)
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By combining (4.149) and (4.150) we obtain for all α > 0, f ∈ B+b (S ) and x ∈ S ,

RA
α f (x) = Rα f (x) − Hα

ARα f (x), (4.151)

which is a special case of Dynkin’s formula8 (cf. [Dyn65, §1 Theorem 5.1]) due to the
prolific Eugene B. Dynkin.

Lemma 4.62. Let X be a strong Markov process with respect to the filtration (Ft)t≥0
and values in S ϑ. Suppose A ∈ B is closed, then the killed process XA is also a strong
Markov process with respect to (Ft)t≥0 with values in Dϑ.

Proof. Let τ be a (Ft)t≥0 stopping time and Θ ∈ Fτ. Then,

Ex
[
PA

t f
(
XA
τ

)
; τ < ∞; Θ

]
= Ex

[
EXτ

[
f (Xt); t < τA

]
; τ < τA; Θ

]
= Ex

[
f (Xτ+t) ; τ + t < τA; Θ

]
= Ex

[
f
(
XA
τ+t

)
; τ < ∞; Θ

]
.

(4.152)

Because Θ ∈ Fτ was arbitrary, we conclude that for all f ∈ B(Dϑ) and x ∈ Dϑ,

Ex
[
f
(
XA
τ+t

) ∣∣∣∣Fτ] = EXτ

[
f
(
XA

t

)]
Px − a.s. (4.153)

Therefore, XA is again strong Markov. ■

Clearly, XA has càdlàg paths if X has càdlàg paths. We now show that the ν-
symmetry of X is preserved under killing.

Lemma 4.63. Let X be a ν-symmetric Feller process with values in Sϑ. Suppose that
A ∈ Bϑ is closed and denote D := S \ A. Then the killed process XA is a ν-symmetric
Markov process with values in Dϑ.

Proof. Let t > 0. Suppose f , g ∈ C+∞ and fix n ∈ N. Then, by Lemma 4.24,∫
S

g(x)Ex
[
f (Xt); Xtk/2n ∈ D, k = 1, . . . , 2n] ν(dx)

=

∫
S
Ex

g(X0)
2n∏

k=1

1D(Xtk/2n) f (Xt)

 ν(dx)

=

∫
S

f (x)Ex
[
g(Xt); Xtk/2n ∈ D, k = 1, . . . , 2n] ν(dx)

(4.154)

8see [FOT11, p. 154]. Compare also with the Dynkin Formula from Proposition 4.41.
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By right continuity of X and because D ⊂ S is open, we obtain∫
S

g(x)PA
t f (x) ν(dx) =

∫
S

g(x)Ex
[
f (Xt); t ≤ τA

]
ν(dx)

=

∫
S

f (x)Ex
[
g(Xt); t ≤ τA

]
ν(dx) =

∫
S

f (x)PA
t g(x) ν(dx)

(4.155)

as n→ ∞. Splitting f and g into positive and negative part and using the linearity of
the integral completes the proof. ■

Next, we want to identify the generator of the killed process XA.

Proposition 4.64. Let X be a Feller process with values in Sϑ and denote by (∆,D)
its generator. Let A ∈ Bϑ be closed and D = S \ A. Then the generator of the killed
process XA is given by (∆A,DA), where

DA = { f ∈ D | f |A = 0 } = D∩ C∞(D), (4.156)

and ∆A f = ∆ f for all f ∈ DA.

Proof. We first show that for all f ∈ DA and x ∈ D,

lim
t→0

∣∣∣∣∣∣PA
t f (x) − f (x)

t
−

Pt f (x) − f (x)
t

∣∣∣∣∣∣ = lim
t→0

∣∣∣PA
t f (x) − Pt f (x)

∣∣∣
t

= 0. (4.157)

It suffices to show (4.157) for non negative f ∈ C+∞(D) ∩ D. Furthermore, we can
extend PA

t f to C∞(S ) by setting PA
t f (x) = 0 on A. Fix f ∈ C+∞(D) ∩ D, we want to

show (4.157) for all x ∈ S . By application of the strong Markov property, we obtain

Pt f (x) − PA
t f (x) = Ex

[
f (Xt); t ≥ τA

]
= Ex

[
Pt−τA f (XτA); t ≥ τA

]
. (4.158)

Now, by strong continuity (F2), there exists a δ > 0 such that

∥Pt f − f ∥∞ < ε, (4.159)

for all t ∈ [0, δ). Suppose t ∈ [0, δ), note that this immediately implies 0 ≤ t − τA < δ

on {t ≥ τA} and hence,

Ex
[
Pt−τA f (XτA); t ≥ τA

]
≤ Ex

[
f (XτA) + ε; t ≥ τA

]
≤ εPx(t ≥ τA), (4.160)

because XτA ∈ A by closedness of A and right continuity of the paths of X. Con-
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sequently, f (XτA) = 0. Clearly, the right-hand side is equal to 0 for all x ∈ S . By
Theorem 4.57 we find for every K ⊂ D compact a constant C > 0 such that

sup
x∈K
Px(t ≥ τA) ≤ Ct. (4.161)

Cleaning up now leads to

lim
t→0

sup
x∈K

∣∣∣∣∣∣PA
t f (x) − f (x)

t
−

Pt f (x) − f (x)
t

∣∣∣∣∣∣ ≤ εC. (4.162)

Since ε > 0 was arbitrary and C > 0 depends on K but not on ε, we find that

PA
t f − f

t
−→ ∆ f ∈ C∞(S ) (4.163)

uniformly on compacta as t → 0 and therefore uniformly on D. Furthermore, because
the left-hand side of (4.163) is equal to 0 for all x ∈ A, the right hand side is actually
in C∞(D). We have therefore shown that ∆A f = ∆ f for all f ∈ C∞(D) ∩ D and
therefore C∞(D) ∩ D ⊂ DA. The converse relation “⊃” follows from the fact that
C∞(D) ⊂ C∞(S ). ■

A similar argument can be found in [BLM18, Theorem 2.3].

We are now in a position to show the main result about killed Feller processes.

Theorem 4.65. Let X be a ν-symmetric Feller process with values in Sϑ and A ∈ Bϑ
closed. Then the killed process XA is again a ν|D-symmetric Feller process with values
in Dϑ, where D = S \ A.

Proof. We have already shown the symmetry of XA in Lemma 4.63. It only remains to
show that XA is a Feller process. In Proposition 4.64 we have identified the generator
(∆A,DA) of PA

t and we want to apply the Hille-Yosida Theorem, Proposition 4.40, to
conclude that PA

t is Feller. Since D is dense in C∞(S ), it follows immediately that
DA = D ∩ C∞(D) is dense in C∞(D) and (i) of Proposition 4.40 holds. Similarly,
property (iii) follows from the corresponding property of ∆. In order to verify (ii), we
need to show that the range of (α − ∆A) is dense in C∞(D). By Proposition 4.39 (ii)
we know thatD = RαC∞(S ) for all α > 0. Fix some α > 0, it suffices to show that

Rα f (x) > 0 (4.164)

for all f ∈ C∞(S ) with f (x) > 0. Because then we can argue that

Rα (C∞(S ) \ C∞(D)) ⊂ C∞(S ) \ C∞(D) (4.165)
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and therefore the preimage of f ∈ DA = D∩ C∞(D) under Rα must be an element of
C∞(D). Consequently, because (∆,D) itself satisfies property (ii) of Proposition 4.40
i.e. (α − ∆)D is dense in C∞(S ), we can conclude that

(α − ∆A)DA = (α − ∆)DA = R−1
α D

A (4.166)

is dense in C∞(D).

We show (4.164). Suppose f ∈ C∞(S ) and x0 ∈ S such that f (x0) = c > 0. By
continuity, there exists for each ε > 0 an open entourage U ∈ U such that f (x) ≥ c−ε
for all x ∈ U[x0]. Denote by σ = τ∁U[x0] the first exit time from U[x0]. Then,

Rα f (x0) =
∫ ∞

0
e−αtPt f (x0) dt ≥ Ex0

[
e−ασ

∫ σ

0
f (Xt) dt

]
≥ Ex0

[
σe−ασ

]
(c − ε).

(4.167)
By Corollary 4.58 there exists a t > 0 such that Px0(σ > t) ≥ ε. That allows us to
bound the expectation on the right of (4.167) from below by e−αttε > 0. Consequently,
(4.164) is verified and the proof is finished. ■

The final result of this section is basically due to [Chu86]. In the Theorem on p.
68 of [Chu86], Kai Lai Chung shows that XA is doubly Feller whenever X is doubly
Feller. We have decoupled the Feller property from the strong Feller property in
Theorem 4.65. The proof that the strong Feller property is retained under killing is
now rather simple.

Theorem 4.66 (the killed process is again strongly Feller). Let X be a strong Feller
process with values in S and A ∈ Bϑ closed. Then the killed process is a strong Feller
process with values in Dϑ.

Proof. First, assume that (Pt)t≥0 has the property (F3). Fix f ∈ Bb(D). For x ∈ D
and t > s > 0 let

ψs(x) := Ex
[
f (Xt−s); t − s < τA

]
. (4.168)

Clearly, ψs ∈ Bb(D). Hence,

Psψs(x) = Ex
[
EXs

[
f (Xt−s); t − s < τA

]]
= Ex

[
EXs

[
f (Xt−s); t − s < τA

]
; s < τA

]
+ Ex

[
EXs

[
f (Xt−s); t − s < τA

]
; s ≥ τA

]
= Ex

[
f (Xt); t < τA

]
+ Ex

[
EXs

[
f (Xt−s); t − s < τA

]
; s ≥ τA

] (4.169)

is continuous and bounded by (F3). Bounding the last summand on the right, we
obtain ∣∣∣PA

t f (x) − Psψs(x)
∣∣∣ ≤ ∥ψs∥Px(τA ≤ s). (4.170)
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By virtue of Lemma 4.56 the right hand side converges to 0 uniformly on compact
sets as s → 0. Hence, PA

t f ∈ Cb(S ) (see for example [Fol99, Proposition 4.38]).
Moreover, PA

t f (x) = 0 for all x ∈ A, by definition, and therefore PA
t f ∈ Cb(D). In

conclusion,
(
PA

t

)
t≥0

satisfies the strong Feller property (F3).

It remains to show the strong continuity of PA
t . Fix f ∈ C∞(D), then∣∣∣PA

t f (x) − Pt f (x)
∣∣∣ = ∣∣∣Ex

[
f (Xt); t ≥ τA

]∣∣∣ ≤ ∥ f ∥∞Px(t ≥ τA). (4.171)

By Lemma 4.56, the upper bound goes to 0 uniformly on compacta as t → 0. Because
Pt f → f uniformly as t → 0 and f ∈ C∞(D), we can conclude from (4.171) that
PA

t f → f uniformly as t → 0.

■

4.3.2 Recurrence and transience
In this section, we introduce the notions of recurrence and transience for strongly

symmetric Feller processes.

Definition 4.67 (Recurrence and transience). A ν-symmetric Feller process X with
values in (Sϑ,Uϑ) is recurrent, if∫ ∞

0
1A(Xt) dt = ∞, Px-a.s. (4.172)

for all x ∈ S and A ∈ B with ν(A) > 0.

The process X is called (uniformly) transient if

sup
x∈S
Ex

[∫ ∞

0
1K(Xt) dt

]
< ∞, (4.173)

for all K ∈ B, compact. ♢

Again, there are various definitions of recurrence of a stochastic process. The
definition we use here is sometimes called Harris recurrence (cf. [Kal21, Chapter
26]). Clearly, (4.172) implies that the first hitting time τA of every A ∈ B with
ν(A) > 0 is Px-a.s. finite for every starting point x ∈ S . Observe that in Definition 4.67
we consider the extension of X to the one-point compactification (Sϑ,Uϑ). Yet the
equations (4.172) and (4.173) take only x ∈ S and B,K ∈ B into account.

The next result is important but we refer for a proof to the literature as the proof
requires some potential theoretic tools that we have not developed yet.
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Proposition 4.68 (Recurrence dichotomy). Let X be a ν-symmetric Feller process.
Then X is either recurrent or transient.

Proof. See [Kal21, Theorem 26.17]. ■

As a consequence, we get the following result.

Lemma 4.69 (The killed process is transient). Let X be a ν-symmetric Feller process
and A ∈ B closed with ν(A) > 0. Then the killed process XA, where XA

t = Xt on
{t < τA} and XA

t = ϑ on {t ≥ τA} is transient.

Proof. By Theorem 4.65, the process XA is again a ν-symmetric (at least up to time
t = τA = ζ) Feller process. If X was already transient, there is nothing to show. If X is
recurrent, then τA < ∞ Px-a.s. for every x ∈ S . Hence, (4.173) holds because ϑ < K
for all K ∈ B compact. ■

4.3.3 Uniqueness by hitting times
For the remainder of this section we assume that (S ,U) is a compact uniform space

and that ν is a Radon measure on S with full support. As before, let X denote a
ν-symmetric Feller process with values in Sϑ.

Note that in the situation of compact state spaces, transience of X is equivalent to
the lifetime ζ of X being almost surely finite for every starting point x ∈ S .

We will apply the next lemma for killed processes but the result is in itself interest-
ing. It shows that the whole resolvent family is already determined by the 0-resolvent
if X is transient.

Lemma 4.70. Let (S ,U) be compact and X a ν-symmetric and transient Feller process
with values in Sϑ. Define the 0-resolvent of X as

R f (x) := Ex

[∫ ∞

0
f (Xs) ds

]
= Ex

[∫ ζ

0
f (Xs) ds

]
(4.174)

for f ∈ C∞(S ) and x ∈ S . Then, R f ∈ C∞(S ) and X is uniquely determined by the
0-resolvent R.

Proof. Let f ∈ C∞(S ). By definition of transience we have

∥R f ∥∞ ≤ sup
x∈S

∫ ∞

0
|Pt f (x)| dt ≤ ∥ f ∥∞ sup

x∈S
Ex

[∫ ∞

0
1S (Xt) dt

]
< ∞. (4.175)
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Moreover, for every n ∈ N the function Gn f defined by

Gn f (x) := Ex

[∫ n

0
f (Xt) dt

]
(4.176)

is in C∞(S ) and Gn f → R f uniformly and consequently, R f ∈ C∞. We have therefore
shown that R : C∞(S )→ C∞(S ) is a linear operator.

Now suppose that f ∈ C+∞(S ) is non negative and choose M < ∞ such that
∥ f ∥∞ ≤ M. Assume further that X̂ is another Feller process with the same 0-resolvent
R. Write (Rα)α>0 and

(
R̂α

)
α>0

for the resolvents of X and X̂, respectively. By the
resolvent equation (R1) we obtain for all α > 0

Rα f (x) = R f (x) − αRRα f (x). (4.177)

Iterating this argument we get for all 0 < α < M−1,

Rα f (x) =
∞∑

k=1

(−α)k−1Rk f (x). (4.178)

An application of the same argument to R̂α yields Rα f = R̂α f for all α ∈ (0,M−1)
and hence for all α > 0 by uniqueness of the Laplace transform. The extension
of this equality to all f ∈ C∞(S ) is easily obtained by splitting f into positive and
negative parts and applying monotone convergence to f ±n = f ±1 f ±≤n. Finally, the
claim follows from the fact that X is uniquely determined by its family of resolvent
operators (see Remark 4.46). ■

For every A ∈ B with ν(A) > 0 and f ∈ Bb(S ) we introduce the Green operator GA

as follows

GA f (x) := Ex

[∫ τA

0
f (Xs) ds

]
, x ∈ S . (4.179)

Lemma 4.71 (Green operators are bounded). Let (S ,U) be compact and X a ν-
symmetric Feller process with values in Sϑ. For each A ∈ B closed with ν(A) > 0, the
map GA : Bb(S )→ Bb(S ) is a bounded linear operator.

Proof. By Theorem 4.65 the killed process XA is again Feller. Moreover, by
Lemma 4.69, XA is transient. Recall that PA

t f (x) := Ex
[
f (Xt); t < τA

]
. Although the

domain of PA
t contains by definition only functions in Bb(D), where D = S \ A, PA

t
can easily extended to Bb(S ). Suppose f ∈ Bb(S ), then

∥GA f ∥∞ ≤ sup
x∈S

∫ ∞

0

∣∣∣PA
t f (x)

∣∣∣ dt < ∞, (4.180)
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as before. ■

Theorem 4.72. Let (S ,U) be locally compact and X be a ν-symmetric doubly Feller
process with values in Sϑ. Then X is uniquely determined by the family of Green
operators

{GA : Bb → Bb | A ∈ B closed } . (4.181)

Proof. Consider the process killed upon hitting the closure A = U of some open set
U ∈ B, i.e. XA = (Xt∧τA)t≥0. By assumption, ν has full support, hence every open
A ∈ B has positive measure ν(A) > 0. Consequently, by Lemma 4.69, we have that
the killed process XA is transient. Then the resolvent associated to XA can be written
as

RA
α f (x) := Ex

[∫ τA

0
e−αs f (Xs) ds

]
, x ∈ S , (4.182)

which we can extend to Bb(S ), as before. The 0-resolvent RA associated with XA then
coincides with the Green operator GA associated with X. By Lemma 4.70, the killed
process XA is then uniquely determined by GA. It therefore suffices to show that the
resolvent (Rα)α>0 of X is determined by the resolvents of XA for a suitable collection
of A ∈ B. To that end let a, b ∈ S and choose U ∈ U open such that U[a],U[b]
are compact and U[a] ∩ U[b] = Ø. Such a U ∈ U exists because of the Hausdorff
property and the local compactness of S , as shown in Lemma 2.36. In order to save
some ink we write A = U[a] and B = U[b]. Now, define τ0 := τA and for n ≥ 0 set

τn+1 := inf { t > τn | Xt ∈ A,∃s ∈ [τn, t] : Xs ∈ B } . (4.183)

Suppose that X is transient, then we have limn→∞ τn = ∞, Px-almost surely for all
x ∈ S . If, on the other hand, X is recurrent, we get τn < ∞, Px-almost surely for all
x ∈ S . By right continuity of X and the strong Markov property, we conclude that

inf
n∈N

inf
x∈S
Ex [τn − τn−1] := T > 0. (4.184)

Hence,

τn = τ0 +

n∑
j=1

τ j − τ j−1. (4.185)

Consequently, we have by the strong law of large numbers limn→∞ τn = ∞, Px-almost
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surely for all x ∈ S . Hence,

Rα f (x) = Ex

[∫ τ0

0
e−αs f (Xs) ds

]
+

∞∑
n=0

Ex

[∫ τn+1

τn

e−αs f (Xs) ds
]

= RA
α f (x) +

∞∑
n=0

Ex

[∫ τn+1

τn

e−αs f (Xs) ds
] (4.186)

Since A = U[a] is compact there exist (not necessarily unique) minimizers x, x0 ∈ A
of the variational problems

Ex
[
e−ατ1

]
= inf

{
Ex

[
e−ατ1

] ∣∣∣ x ∈ A
}

(4.187)

and

Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
= inf

{
Ex

[∫ τ1

0
e−αs f (Xs) ds

] ∣∣∣∣∣∣ x ∈ A
}
. (4.188)

Applying the strong Markov property at the stopping times τn we obtain

Ex

[∫ τn+1

τn

e−αs f (Xs) ds
]
= Ex

[
E

[∫ τn+1

τn

e−αs f (Xs) ds

∣∣∣∣∣∣Fτn

]]
= Ex

[
e−ατnEXτn

[∫ τ1

0
e−αs f (Xs) ds

]]
≥ Ex

[
e−ατn

]
Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
≥ Ex

[
e−ατ0

]
Ex

[
e−ατn

]
Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
.

(4.189)

Using the fact that

RA
α1S (x) = Ex

[∫ τ0

0
e−αs ds

]
= α−1 (

Ex
[
e−ατ0

]
− 1

)
(4.190)

we can write
Ex

[
e−ατ0

]
= 1 − αRA

α1S (x). (4.191)

Now let y, y
0
∈ B be minimizers of

Ey
[
e−ατ0

]
= inf

{
Ey

[
e−ατ0

] ∣∣∣ y ∈ B
}

(4.192)
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and

Ey
0

[∫ τ0

0
e−αs f (Xs) ds

]
= inf

{
Ey

[∫ τ0

0
e−αs f (Xs) ds

] ∣∣∣∣∣∣ y ∈ B
}
, (4.193)

respectively. Using these minimizers and (4.190), we can estimate

Ex
[
e−ατ1

]
= Ex

[
e−ατBe−α(τ1−τB)

]
= Ex

[
E

[
e−ατBe−α(τ1−τB)

∣∣∣FτB

]]
≥ Ex

[
e−ατB

]
Ey

[
e−ατ1

]
=

(
1 − αRB

α1S
(
x
)) (

1 − αRA
α1S

(
y
)) (4.194)

and inductively

Ex
[
e−ατn

]
≥

((
1 − αRB

α1S
(
x
)) (

1 − αRA
α1S

(
y
)))n

. (4.195)

Similarly, we obtain

Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
= Ex0

[
E

[∫ τB

0
e−αs f (Xs) ds +

∫ τA

τB

e−αs f (Xs) ds

∣∣∣∣∣∣FτB

]]
≥ RB

α f
(
x0

)
+ Ex0

[
e−ατB

]
Ey

0

[∫ τA

0
e−αs f (Xs) ds

]
= RB

α f
(
x0

)
+

(
1 − αRB

α1S
(
x0

))
RA
α f

(
y

0

)
(4.196)

Plugging these estimates into (4.186), we obtain

Rα f (x) ≥ RA
α f (x) +

(
1 − αRA

α1S (x)
) (

RB
α f

(
x0

)
+

(
1 − αRB

α1S
(
x0

)))
RA
α f

(
y

0

)
×

∞∑
n=0

((
1 − αRB

α1S
(
x
)) (

1 − αRA
α1S

(
y
)))n

=: RA
α f (x) +

(
1 − αRA

α1S (x)
)

Hα(A, B, f )
(4.197)

By replacing the infima in (4.187), (4.188), (4.192) and (4.193) with suprema and

4.3 Symmetric Feller processes 133



writing x, x0, y, y0 for their respective maximizers, we obtain a similar upper bound

Rα f (x) ≤ qRA
α f (x) +

(
1 − αRA

α1S (x)
) (

RB
α f (x0) +

(
1 − αRB

α1S (x0)
))

RA
α f

(
y0

)
×

∞∑
n=0

((
1 − αRB

α1S (x)
) (

1 − αRA
α1S (y)

))n

=: RA
α f (x) +

(
1 − αRA

α1S (x)
)

Hα(A, B, f )
(4.198)

Now let (Un)n∈N ⊂ U be a family of open entourages such that U ⊃ U1 ⊃ U2 ⊃ . . .

and
⋂

n≥1 Un = ∆. Observe that the killed processes are again strongly Feller by
Theorem 4.66. Therefore, Hα(A, B, f ) and Hα(A, B, f ) are continuous functions of
x, x0, y, y0

and x, x0, y, y0, respectively. Therefore,

lim sup
n→∞

∣∣∣∣Hα(Un[a],Un[b], f ) − Hα(Un[a],Un[b], f )
∣∣∣∣ = 0, (4.199)

and hence the upper and lower bounds in (4.197) and (4.198) converge to the same
limit as we let U → ∆. Finally, we can write

Rα f (x) = RA
α f (x) + (1 − αRA

α1S (x)) lim
n→∞

Hα(Un[a],Un[b], f ), (4.200)

which concludes the proof. ■

By assumption, (S ,U) is a Polish uniform space. In particular, that means that
there exists a sequence of open entourages (Un)n∈N ⊂ U such that Un+1 ⊂ Un and⋂

n∈NUn = ∆. Upon closer inspection of the proof of Theorem 4.72 it turns out that
the assumptions can be relaxed and we obtain the following.

Corollary 4.73. Let X be a ν-symmetric doubly Feller process with values in Sϑ.
Suppose (Un)n∈N ⊂ U is a decreasing sequence of open entourages with

⋂
n∈NUn = ∆.

Then X is uniquely determined by the family of Green operators{
GUn[x] : Bb → Bb

∣∣∣∣ n ∈ N, x ∈ {a, b} ⊂ S
}
. (4.201)

4.4 Tightness
Ultimately we are interested in the convergence of a sequence of Feller processes

which may live on different subsets of a common state space. We have already
developed some conditions for the convergence of random paths in Chapter 3. In
order to apply Theorem 3.48 we need a good criterion for the tightness of a sequence
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(Xn)n∈N of processes. In the case of metric state spaces and strong Markov processes
one has Aldous’ tightness criterion that was developed by David Aldous in his
dissertation and can be found for example in [Ald78], [Bil99, Theorem 16.10] or
[Kal21, Theorem 23.11], to name a few. Aldous’ criterion can be formulated as
follows.

Proposition 4.74 (Aldous’ tightness criterion). Let
(
X(n)

)
n∈N

be a sequence of stochas-
tic processes with càdlàg paths with values in a metric space (S , d). Suppose that(
X(n)

)
n∈N

is compactly contained, i.e. for every T, ε > 0 there exists a compact set
K ⊂ S such that

lim inf
n→∞

P
({

X(n)
t

∣∣∣∣ t ≤ T
}
⊂ K

)
≥ 1 − −ε. (4.202)

If, in addition, for every family (τn)n∈N of bounded optional times (with respect to
σ(X(n))) and every sequence (δn)n∈N with δn > 0 and limn→∞ δn = 0,

lim
n→∞
P
(
d
(
X(n)
τn , X

(n)
τn+δn

)
> ε

)
= 0, ∀ε > 0, (4.203)

then the family
(
X(n)

)
n∈N

is tight.

Siva Athreya, Wolfgang Löhr and AnitaWinter showed in [ALW17, Corollary
4.3] that a family of Feller processes satisfies Aldous’ tightness criterion when the
probability that the processes reach a given distance from the starting point before
time t goes to zero uniformly in the starting point as t tends to zero.

We show that a similar result holds for uniform state spaces. But instead of applying
Aldous’ criterion we show the statement directly as we have the luxury of working
with Feller processes which possess the strong Markov property and we don’t need the
full power of Aldous’ theorem. The proof is inspired by the proof of [EK86, Lemma
3.8.1].

Theorem 4.75 (Tightness for Feller processes on uniform state spaces). For each
n ∈ N let X(n) be a Feller process with values in a subset S n of a locally compact
Polish uniform space (S ,U). Assume that for every open entourage U ∈ U it holds
that

lim
t→0

lim
n→∞

inf
x∈S n
Px((x, X(n)

t ) ∈ U) = 1. (4.204)

Then for every sequence of initial distributions µn ∈ M1(S n) the family
{

X(n)
∣∣∣ n ∈ N

}
is tight in the one-point compactification (S ϑ,Uϑ).

Proof. Write Ξ :=
{

X(n)
∣∣∣ n ∈ N

}
. We want to apply Theorem 3.43 to prove the claim.

That means that we have to show that the family Ξ is compactly contained (Theo-
rem 3.43 (i)) and that jumps above a fixed threshold do not accumulate (Theorem 3.43
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(ii)). As processes in the compact space (Sϑ,Uϑ), the family clearly satisfies (i) of
Theorem 3.43, i.e. the family is compactly contained. It remains to show that Ξ also
satisfies (ii) of Theorem 3.43. We want to apply one of the equivalent conditions from
Lemma 3.45.

To that end fix U ∈ U open. For each n ∈ N define the random time τ(n) as

τ(n) := inf
{

t > 0
∣∣∣∣ X(n)

t < U
[
X(n)

0

] }
. (4.205)

Observe that τ(n) is the first hitting time of the closed set ∁U
[
X(n)

0

]
and therefore a

stopping time by Proposition 4.51.

From the assumption, in particular (4.204), it follows that for every ε > 0 there
exists a δ > 0 such that

inf
n∈N
Pµn

(
τ(n) ≥ δ

)
≥ 1 − ε (4.206)

for all sequences of initial distributions µn ∈ M1(S n).

Now set τ(n)
0 = 0 and inductively define

τ(n)
k := inf

{
t > τ(n)

k−1

∣∣∣∣∣∣
(
X(n)
τ(n)

k−1

, X(n)
t

)
< U

}
(4.207)

for each k ∈ N if τ(n)
k−1 < ∞ and τ(n)

k = ∞, otherwise.

By the strong Markov property, we have for all n ∈ N and k ∈ N with τ(n)
k < ∞,

Pµn

(
τ(n)

k+1 − τ
(n)
k ≥ δ

)
= Pµ̂n,k

(
τ(n) ≥ δ

)
, (4.208)

where µ̂n,k denotes the distribution of X(n) at time τ(n)
k when started in the initial

distribution µn, i.e.

µ̂n,k(A) = Pµn

(
X(n)
τ(n)

k

∈ A
)
, A ∈ B(S n). (4.209)

As µ̂n,k ∈ M1(S n) for each (n, k) ∈ N2 with τ(n)
k < ∞, we can apply (4.206) to deduce

that for each ε > 0 there exists a δ > 0 such that

inf
{
Pµn

(
τ(n)

k+1 − τ
(n)
k ≥ δ

) ∣∣∣∣ n, k ∈ N : τ(n)
k < ∞

}
≥ 1 − ε (4.210)

for all sequences (µn)n∈N of initial distributions with µn ∈ M1(S n). For convenience,
we write for k, n ∈ N

ξ(n)
k := τ(n)

k+1 − τ
(n)
k , (4.211)

if τ(n)
k−1 < ∞ and ξ(n)

k = ∞, otherwise.
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For a fixed sequence (µn)n∈N of initial distributions an application of the strong
Markov property at times τ(n)

k together with (4.210) guarantees the existence of a
sequence

(
ζ(n)

k

)
k,n∈N

of independent random variables satisfying the following condi-
tions,

ξ(n)
k ≥ ζ

(n)
k Pµn-a.s. (4.212)

and for each ε > 0 there exists a δ > 0 such that

Pµn

(
ζ(n)

k < δ
)
< ε, (4.213)

for all k, n ∈ N.

Taking ζ(n)
k ∧ 1, if necessary, we can ensure that Var(ζ(n)

k ) ≤ 1 for all n, k ∈ N while
maintaining (4.212). By construction we have

τ(n)
k ≥

k∑
j=1

ζ(n)
j Pµn-a.s. (4.214)

We can therefore apply Kolmogorov’s law of large numbers (cf. [Fel68, Section
X.7]) to deduce that for each T > 0 and n ∈ N the number of k ∈ N with τ(n)

k ≤ T is
Pµn-almost surely finite.

Moreover, by (4.213), there exists a K > 0 such that

Eµn

[
ζ(n)

k

]
≥ K (4.215)

for all k, n ∈ N. Consequently, there exists for each ε > 0 and T > 0 a number
Mε(T ) ∈ N independent of n ∈ N such that

Pµn

(
τ(n)

Mε(T ) < T
)
< ε, ∀n ∈ N. (4.216)

Now fix T, ε > 0 and choose δ > 0 such that

inf
{
Pµn

(
τ(n)

k+1 − τ
(n)
k ≥ δ

) ∣∣∣∣ k, n ∈ N : τ(n)
k < T

}
≥

(
1 −

ε

2

)Mε/2(T )−1

. (4.217)
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To save some ink, we write Mε/2 = Mε/2(T ) and obtain

sup
n∈N
Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ∈ N : τ(n)
k < T

}
< δ

)
≤ sup

n∈N

[
Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ≤ Mε/2
}
< δ

)
+ Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ∈ N : τ(n)
k < T

}
< δ, T > Mε/2

)]
≤ sup

n∈N
Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ≤ Mε/2
}
< δ

)
+
ε

2

= 1 − inf
n∈N
Pµn

Mε/2⋂
k=1

{
ξ(n)

k ≥ δ
} + ε2 ≤ 1 − inf

n∈N

(
inf

k≤Mε/20
Pµn

(
ξ(n)

k ≥ δ
))Mε/2

+
ε

2

≤ 1 −
(
1 −

ε

2

)
+
ε

2
= ε.

(4.218)

We can conclude that for each T > 0,

lim
δ→0

inf
n∈N
Pµn

(
inf

{
τ(n)

k+1 − τ
(n)
k

∣∣∣∣ k ∈ N : τ(n)
k < T

}
≥ δ

)
= 1. (4.219)

Now recall the definition of the random times σk from (3.118). Analogously, set
σ(n)

0 = 0 and inductively define for k ∈ N,

σ(n)
k := sup

{
t ≤ τ(n)

k

∣∣∣∣∣∣ {X(n)
t , X(n)

t−

}
1 U

[
X(n)
τ(n)

k

] }
, (4.220)

if τ(n)
k < ∞ and σ(n)

k = ∞, otherwise.

Applying again the strong Feller property together with the strong continuity of the
semigroups, we can deduce that σ(n)

k = τ
(n)
k almost surely under Pµn for every initial

distribution µn ∈ M1(S n). We have thus shown (3.128) and therefore established
tightness of the family Ξ. ■

4.5 Examples
We conclude this chapter with two examples of strongly symmetric (doubly) Feller

processes. These examples can be considered as our base examples. While both are
strongly symmetric Feller processes, they differ in a fundamental way. Furthermore,
both examples can be extended in different directions. The first example are random
walks on graphs. This is a discrete example in the sense that the state space is
countable and carries the discrete topology. The second example is Brownian motion
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where the state space is Rd. While our first example can be extended to non-discrete
examples (speed-ν motion on the R trees [AEW13] and more generally to resistance
forms [Cro18]), those examples remain basically low dimensional in the sense that
these processes always hit points with a positive probability. Brownian motion has
this property only in the case of d = 1 and can be further extended to other (high
dimensional) state spaces like Riemannian manifolds (cf. [Suz19a]).

4.5.1 Random walks on graphs
We first introduce weighted graphs and collect some basic facts about them.

Weighted graphs

Definition 4.76 (Graphs). Let V , Ø be at most countable and E ⊂ { e ⊂ V | #e = 2 },
a subset of the family of two-element subsets of V . The pair (V, E) is called a
(undirected) graph and the set V is the set of vertices whereas E is the set of edges of
the graph. ♢

A directed graph is a generalization of an undirected graph that is obtained by
taking E ⊂ V × V . We will only be considering undirected graphs in this thesis and
therefore drop the attribute undirected.

We say that two vertices x, y ∈ V are connected by an edge if {x, y} ∈ E. In that
case, we write x ∼ y. All vertices y ∈ V with x ∼ y are called neighbors of x. A
path (of length n ∈ N) is a n + 1-tuple (x0, x1, . . . , xn) ⊂ Vn+1 with the property that
xk−1 ∼ xk for all k = 1, . . . , n. We say that a path (x0, . . . , xn) is simple if x j , xk for
all j, k = 0, . . . , n with j , k. For two vertices x, y ∈ V we denote the set of simple
paths of length n connecting x and y by

Γn
xy :=

{
(x0, x1, . . . , xn) ∈ Vn+1

∣∣∣ x = x0 ∼ x1 ∼ · · · ∼ xn = y, x j , xk if j , k
}
,

(4.221)
and we write

Γxy :=
⋃
n∈N

Γn
xy (4.222)

for the set of simple paths from x to y. Given a simple path γxy = (x0, x1, . . . , xn) ∈ Γxy

from x to y, we write
l(γxy) = n (4.223)

for its length. A graph (V, E) is said to be connected if Γxy , Ø for all pairs of vertices
(x, y) ∈ V2. We will assume from now on that the graphs under consideration are
connected if not explicitly stated otherwise.
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Furthermore, we introduce the degree of a vertex x ∈ V , as the number of neighbors
of x, i.e.

deg(x) := # { y ∈ V | x ∼ y } . (4.224)

The graph distance d between two vertices x, y ∈ V is defined as the length of the
shortest path connecting x and y:

d(x, y) := inf
{

l(γxy)
∣∣∣ γxy ∈ Γxy

}
. (4.225)

It is straightforward to check that d is indeed a metric.

We introduce an important generalization of graphs by assigning weights to the
edges. One common interpretation of these weights are conductances in an electrical
network. Here the conductance is the reciprocal of the resistance which can be seen
as proportional to the length of an edge.

Definition 4.77 (Weighted graphs). A weighted graph is a triple (V, E, µ), where (V, E)
is a graph and µ : V × V → [0,∞) is a symmetric map with µ(x, y) = µ(y, x) > 0 if
and only if {x, y} ∈ E. ♢

We usually write µxy := µ(x, y) and with a slight abuse of notation we write for an
edge e = {x, y} ∈ E,

µe = µ(e) = µ(x, y) = µ(y, x) = µxy = µyx. (4.226)

For a weighted graph, we can introduce weighted versions of the degree and the
graph distance by

degµ(x) = µx :=
∑
y:x∼y

µxy (4.227)

and
dµ(x, y) := inf

{
lµ(γxy)

∣∣∣ γxy ∈ Γxy
}
, (4.228)

where

lµ(γxy) :=
l(γxy)∑
k=1

µ(xk−1, xk)−1. (4.229)

It is again a standard calculation to show that dµ defines a metric on V .

Observe that the edges E of a weighted graph is determined by the weights{
µxy

∣∣∣ x, y ∈ V
}

because {x, y} ∈ E ⇔ µxy > 0. For that reason, we often write
(V, µ) for the weighted graph (V, E, µ).

Definition 4.78 (Degree conditions). Let G = (V, µ) be a weighted graph.
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(i) We say that G is of finite local degree if

µx < ∞, ∀x ∈ V. (4.230)

(ii) The graph G satisfies the controlled weights condition if there exists a δ > 0
such that

µxy

µx
> δ, ∀x ∈ V and y ∈ V with x ∼ y. (4.231)

♢

Effective resistance
Let (V, µ) be a weighted graph. We introduce a bilinear form E on the space of

real-valued maps V → R by

E( f , g) :=
1
2

∑
x,y∈V

µxy ( f (x) − f (y)) (g(x) − g(y)) (4.232)

for f , g ∈ D(E), where

D(E) := { f : V → R | E( f , f ) < ∞ } . (4.233)

We refer to the quantity E( f , f ) as the energy of f and to E as the energy form
associated with (V, µ). We will examine such bilinear forms in more depth in Chapter 5
where we also explore the deep connection between Dirichlet forms and symmetric
Feller processes. Using the energy functional E we can define another metric on V by

R(x, y) := inf { E( f , f ) | f ∈ D(E), f (x) = 0, f (y) = 1 }−1 . (4.234)

We introduce the following shorthand notation

F
y
x := { f ∈ D(E) | f (x) = 0, f (y) = 1 } . (4.235)

First, we check that R indeed defines a metric.

Lemma 4.79. Let (V, µ) be a weighted graph of finite local degree and E the associated
energy functional. Then R as defined in (4.234) is a metric on V.

Proof. By definition of E, we have R(x, y) ≥ 0 and R(x, x) = 0 for all x, y ∈ V . On
the other hand, if x , y we can set f (y) = 1 and f (z) = 0 for all z ∈ V \ {y} and obtain

E( f , f ) =
1
2

∑
u,v∈V

µuv( f (u) − f (v))2 =
1
2

∑
u∈V : u∼y

µuy = µy < ∞. (4.236)

4.5 Examples 141



Hence, R(x, y) ≥ E( f , f )−1 = µ−1
y > 0. The symmetry of R follows from the fact that

E(1 − f , 1 − f ) = E(1, 1) − 2E(1, f ) + E( f , f ) = E( f , f ) (4.237)

together with the fact that (1 − f ) ∈ F x
y for all f ∈ F y

x .

It remains to show that R satisfies the triangle inequality. To that end fix x, z ∈ V
and observe that for all f ∈ D(E) with f (x) , f (z) we have

h :=
f − f (x)

f (z) − f (x)
∈ F z

x , (4.238)

and we can write the energy of h as

E(h, h) =
E( f , f )

( f (z) − f (x))2 . (4.239)

Consequently, we can rewrite (4.234) as

R(x, z) = sup
{

( f (z) − f (x))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}
. (4.240)

Now let y ∈ V \ {x, z} be arbitrary. Applying (4.240), we arrive at

R(x, z) ≤ sup
{

( f (z) − f (y))2

E( f , f )
+

( f (y) − f (x))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}

≤ sup
{

( f (z) − f (y))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}

+ sup
{

( f (y) − f (x))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}

= R(y, z) + R(x, y).

(4.241)

■

We call the metric R the effective resistance metric or simply resistance metric.
The name stems from the interpretation of (V, µ) as an electrical network and it can be
shown that R satisfies the usual rules for parallel resistors and resistors in series.

A good survey of the resistance metric on (finite) graphs can be found in the article
[Wei18] by Tobias Weihrauch. Another rich source is the book [AF02] by David
Aldous and James Allen Fill.

Remark 4.80. Clearly, the graph metric induces the discrete topology on V since

d(x, y) < 1 ⇔ x = y. (4.242)
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Let (V, µ) be of finite local degree. Fix x ∈ V and suppose c > 0 is such that µx < c.
Then, {

y ∈ V
∣∣∣ dµ(x, y) < 1/c

}
= {x} (4.243)

and hence dµ induces the discrete topology, too. The same holds for the resistance
metric as is easy to check. For each x, y ∈ V , the function 1V\{x} ∈ F

y
x . Hence,

R(x, y) ≥ E(1V\{x},1V\{x})−1 = µ−1
x , (4.244)

and therefore R introduces the discrete topology on V by the same argument as before.

Now denote byUd,Uµ andUR the uniformities generated by d, dµ and R, respec-
tively. Recall from Example 2.3 that the sets of the form

Ur
ε :=

{
(x, y) ∈ V2

∣∣∣ r(x, y) < ε
}
, ε > 0 (4.245)

form a base of the uniformity Ur, where r is one of the metrics d, dµ and R. Now,
Ur

1 = ∆ and therefore d induces the discrete uniformity. This is not necessarily the
case for the other metrics dµ and R. ♢

To illustrate the last remark consider the following two examples.

Example 4.81 (Line graph). Let G = (V, µ) be the graph with V = N and

µxy = min{x, y}, (4.246)

if |x − y| = 1 and µxy = 0 otherwise. Then, µn = 2n − 1 hence (V, µ) is of finite local
degree. For every ε > 0 we have that(

⌈ε−1⌉ + 1, ⌈ε−1⌉ + 2
)
∈ Uµ

ε . (4.247)

ThereforeUd , Uµ. In this example, the metrics µ and R coincide because (V, µ) is a
tree. ■

Example 4.82 (Line with attachements). Now, let G = (V, µ) be the graph depicted in
Figure 4.1. That is, G is the graph with vertices

V = N ∪
{

v j
i

∣∣∣∣ 1 ≤ i ≤ j, j ≥ 3
}
∪

{
x j

∣∣∣ j ≥ 3
}

(4.248)
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Fig. 4.1.: The graph G = (V, µ) from Example 4.82

and conductances
µ(n, n + 1) = µ(n + 1, n) = 1, n ∈ N,
µ(n, vn

i ) = µ(vn
i , n) = 1, n ≥ 3, 1 ≤ i ≤ n,

µ(xn, vn
i ) = µ(vn

i , xn) = 1, n ≥ 3, 1 ≤ i ≤ n,
µ(x, y) = 0, otherwise.

(4.249)

First observe that µn = n for all n ∈ N, µv j
i
= 2 and µxn = n − 2. Therefore, G is

of finite local degree. Furthermore, the metrics d and dµ coincide and generate the
discrete uniformity. We also have R(x, y) = d(x, y) = dµ(x, y) = |x − y| for all x, y ∈ N.
Whereas

R(n, xn) =
2

(n − 2)
, (4.250)

as can be easily checked using the series and parallel laws for resistors (cf. Ap-
pendix B.2). As a consequence, R does not generate the discrete uniformity since for
each ε > 0 there exists a n ∈ N such that (n, xn) ∈ URn . Recall that by Remark 4.80 all
three metrics on V induce the discrete topology. So this is a further example of the case
where different uniformities may induce the same topology (c.f. Example 2.10). ■

The speed-ν random walk
Let (V, µ) be a weighted graph and ν be a boundedly finite measure on V with

full support. In other words, a map ν : V → (0,∞). Again, we use νx := ν(x) as a
shorthand. We refer to the triple (V, µ, ν) as a weighted measure graph.

Consider a continuous time Markov chain X with values in V , that is a Markov
process with the countable and discrete state space V . Assume further that X jumps
from x ∈ V to a neighbor y ∼ x at rate

ηxy :=
µxy

2νx
. (4.251)
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To put it differently, X is a random walk9 on the graph (V, µ) that stays in a vertex
x ∈ V for an exponentially distributed random time ξ := inf { t > 0 | Xt , X0 } with
expectation

Ex
[
ξ
]
=
νx

µx
(4.252)

and then jumps to one of the neighboring vertices y ∈ { y ∈ V | y ∼ x } with probability

Px(Xξ = y) =
µxy

µx
. (4.253)

In the case where νx = cµx for all x ∈ V and some c > 0, we call X the fixed speed
random walk and otherwise the variable speed random walk on V .

We will assume from now on that (V, µ) has finite local degree so that the holding
times ξ are non-degenerate (i.e. 0 < Ex

[
ξ
]
< ∞ for all x ∈ V).

For a (continuous time) random walk X we introduce its (discrete time) skeleton10

of X, usually denoted by Z = (Zn)n≥0, defined as

Zn := Xτn , (4.254)

where (τn)n≥0 are defined inductively via τ0 = 0 and

τn+1 := inf
{

t ≥ τn
∣∣∣ Xt , Xτn

}
n ∈ N. (4.255)

Definition 4.83 (Speed-ν random walk). Let (V, µ, ν) be a weighted measure graph
with finite local degree. The Markov process X described above is called the speed-ν
random walk (or speed-ν motion) on the graph (V, µ). We refer to the measure ν as the
speed measure (of X). ♢

It is straightforward to check that the speed-ν random walk is both Feller and
strongly Feller.

Conditions (F1) and (F3) follow trivially from the fact that every real-valued
function f : V → R on the discrete space V is continuous. On the other hand,
we obtain (F2) from the fact that the holding time at x before the next jump is
exponentially distributed with a finite parameter for all x ∈ V .

In order to show the symmetry of the speed-ν random walk we need to examine the
semigroup further.

9We use the term random walk generally for a Markov process or a Markov chain on a discrete state
space.

10It may be more common to call this object the embedded discrete-time Markov chain, but we prefer
the term skeleton as it is much shorter. It is also not unprecedented (cf. [Szn11]).
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Proposition 4.84. Let (V, µ, ν) be a weighted measure graph and X the speed-ν random
walk on (V, µ). Then for each f ∈ Bb(V), the generator of X is given by

L f (x) :=
1

2νx

∑
y∈V

µx,y ( f (y) − f (x)) . (4.256)

Thus, the semigroup (Pt)t≥0 associated with X can be written as

Pt f (x) = Ex
[
f (Xt)

]
=

∑
n≥0

tn

n!
Ln f (x) = etL f (x), t ≥ 0, f ∈ Bb(V). (4.257)

Proof. Let f ∈ Bb(V) and fix x ∈ V and consider the difference quotient

Pt f (x) − f (x)
t

= t−1Ex
[
f (Xt) − f (X0)

]
. (4.258)

Write J(t) for the number of jumps of X in the interval [0, t]. We can split the
expectation on the right and obtain

Pt f (x) − f (x)
t

= t−1Ex
[
( f (Xt) − f (X0))1{J(t)=1}

]
+ t−1Ex

[
( f (Xt) − f (X0))1{J(t)≥2}

]
.

(4.259)

For z ∈ V denote by λz := µz/νz the jump rate at z. Further, let

λ := max { λz | z ∼ x } . (4.260)

Then we can bound the probability that X has two or more jumps in [0, t] by an
Erlang(2, λ)-distribution, i.e.

Px(J(t) ≥ 2) ≤ 1 − e−λt − λte−λt. (4.261)

Observe that the right-hand side is in o(t) as t → 0. Denote by ξ the holding time of X
before the first jump and recall that ξ ∼ Exp(λx) under Px. Furthermore, let Z denote
the discrete skeleton of X as defined in (4.254). Conditioning on the event J(t) = 1,
we obtain

Ex
[
( f (Xt) − f (X0))1{J(t)=1}

]
= Ex

[
f (Z1) − f (Z0)

]
Px(J(t) = 1)

= Ex
[
f (Z1) − f (Z0)

]
(Px(J(t) ≥ 1) − Px(J(t) ≥ 2))

= Ex
[
f (Z1) − f (Z0)

]
Px(ξ < t) + o(t),

(4.262)
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as t → 0. A similar argument applied to the second summand in (4.259) yields

Pt f (x) − f (x)
t

= t−1Ex
[
f (Z1) − f (Z0)

]
Px(ξ < t) + o(1)

=
1 − e−λxt

t

∑
y∈V

µxy

µx
( f (y) − f (x)) + o(1)

−→
t→0

λx/µx

∑
y∈V

µxy( f (y) − f (x)) = L f (x).

(4.263)

Thus, L is indeed the generator of the Feller process X and (4.257) follows with
standard arguments. ■

The operator L is sometimes referred to as the (discrete) Laplacian or the (discrete)
Laplace operator.

The next result gives a hint at the intrinsic relationship between the resistance
metric and the speed-ν random walk on (V, µ).

Lemma 4.85. Let X be the speed-ν random walk on the weighted measure graph
(V, µ, ν). Recall the energy form E from (4.232). Then, for all f , g ∈ D(E),∫

V
−L f g dν = E( f , g). (4.264)

Proof. A straightforward calculation yields∫
V
−L f g dν =

∑
x∈V

−L f (x)g(x)νx =
∑

x,y∈V

µxy( f (x) − f (y))g(x)

=
1
2

∑
x,y∈V

µxy ( f (x)g(x) − f (y)g(x)) +
1
2

∑
y,x∈V

µyx ( f (y)g(y) − f (x)g(y))

=
1
2

∑
x,y∈V

µxy( f (y) − f (x))(g(y) − g(x)) = E( f , g).

(4.265)
■

Proposition 4.86. Let (V, µ, ν) be a weighted measure graph with locally finite de-
gree. Then the speed-ν random walk on (V, µ) is both doubly Feller and strongly
ν-symmetric.
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Proof. Let X be the speed-ν random walk on (V, µ). We have already shown that X is
doubly Feller. By Lemma 4.85, the generator L is ν-symmetric, as∫

V
L f g dν = −E( f , g) = −E(g, f ) =

∫
V

fLg dν. (4.266)

This symmetry carries over to the semigroup (Pt)t≥0 and the resolvent (Rα)α>0 by
Proposition 4.84.

Now define for α > 0 and x, y ∈ V ,

uα(x, y) := ν−1
y Rα1y(x) = ν−1

y

∫ ∞

0
Pt1y(x)eαt dt. (4.267)

Again, checking the symmetry of uα is a straight forward calculation

uα(x, y) = ν−1
y Rα1y(x) = (νyνx)−1

∫
V

Rα1y(z)1x(z) dν

= (νyνx)−1
∫

V
1y(z)Rα1x(z) dν = ν−1

x Rα1x(y) = uα(y, x).
(4.268)

Finally, we have∫
V

uα(x, y) f (y) ν(dy) =
∫

V

∫ ∞

0
ν−1

y Pt1y(x) f (y)e−αt dt ν(dy)

=

∫ ∞

0

∫
V
ν−1

y 1y(x)Pt f (y)e−αt ν(dy) dt

=

∫ ∞

0
Pt f (x)e−αt dt = Rα f (x).

(4.269)

Thus, the strong ν-symmetry of X is established (see the discussion at the beginning
of Section 4.3). ■

4.5.2 Brownian motion

Unsurprisingly, one of our base examples is Brownian motion which Kallenberg
called “arguably the single most important object of modern probability”11. We
assume that the reader is familiar with the basic properties of Brownian motion.

Let d ∈ N and consider the metric measure space (Rd, r, λ), where r(x, y) = ∥x − y∥
is the Euclidean metric on Rd and λ denotes the Lebesgue measure.

11[Kal21, p.297]
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Let B = (Bt)t≥0 be the Brownian motion with values in Rd. Recall (cf. [Sch21,
Lemma 7.1]) that the semigroup (Pt)t≥0 of B is given by

Pt f (x) :=
∫

Rd
pt(x, y) f (y) λ(dy), f ∈ Bb(Rd), x ∈ Rd, t > 0, (4.270)

where
pt(x, y) :=

1
(2πt)d/2 e−

∥y−x∥2
2t , x, y ∈ Rd, t > 0. (4.271)

Proposition 4.87. The semigroup (Pt)t≥0 of the Brownian motion is both Feller and
strongly Feller.

Proof. We first show that Pt is strongly continuous, i.e. satisfies (F2). Let f ∈ C∞(Rd),
then ∥ f ∥∞ < ∞ and f is uniformly continuous. Let ε > 0 and choose δ > 0 such that

| f (x) − f (y)| < ε, ∀x, y ∈ Rd : ∥x − y∥ < δ. (4.272)

Then,

∥Pt f − f ∥∞ = sup
x∈Rd

∣∣∣∣∣∫
Rd

pt(x, y) f (y) λ(dy) − f (x)
∣∣∣∣∣

≤ sup
x∈Rd

∫
Rd

pt(x, y)| f (y) − f (x)| λ(dy)

= sup
x∈Rd

(∫
∥x−y∥<δ

pt(x, y)| f (y) − f (x)| λ(dy)

+

∫
∥x−y∥≥δ

pt(x, y)| f (y) − f (x)| λ(dy)
)

≤ ε + sup
x∈Rd

2∥ f ∥∞
(2πt)d/2

∫
∥x−y∥≥δ

e−∥x−y∥2/(2t) λ(dy)

= ε + 2∥ f ∥∞P0 (∥Bt∥ ≥ δ) −→
t→0

ε.

(4.273)

The claim then follows since ε > 0 was arbitrary.

The Feller property (F1) follows from the translation invariance of Brownian motion.
Let again f ∈ C∞(Rd). Since ∥ f ∥∞ < ∞ we can apply dominated convergence to
obtain

lim
x→y

Pt f (x) = lim
x→y
Ex

[
f (Bt)

]
= lim

x→y
E0

[
f (Bt + x)

]
= E0

[
f (Bt + y)

]
= Pt f (y).

(4.274)
Analogously, we obtain limx→∞ Pt f (x) = 0 and hence Pt f ∈ C∞(Rd).
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In order to show the strong Feller property, (F3), fix f ∈ Bb(Rd). Clearly, Pt f is
again bounded. We want to show that Pt f is continuous at x ∈ Rd. To that end let
R := 2∥x∥ and write UR[0] for the ball around the origin with radius R. It suffices to
show that limn→∞ Pt f (xn) = Pt f (x) for all sequences (xn)n∈N ⊂ UR[0]. Recall that

Pt f (xn) =
1

(2πt)d/2

∫
Rd

f (y)e−
∥xn−y∥

2t λ(dy). (4.275)

Thus, the claim follows by dominated convergence once we can show that the inte-
grand is bounded by an integrable function. Suppose ∥y∥ ≥ 2R, then

∥xn − y∥2 ≥ (∥y∥ − ∥xn∥)2 ≥
1
4
∥y∥2. (4.276)

Consequently,

f (y)e−
∥xn−y∥

2t ≤ ∥ f ∥∞
(
1U2R[0] + 1∁U2R[0]e

−
∥y∥
8t

)
, (4.277)

which is the integrable bound we were seeking. Hence, Pt f ∈ Cb(Rd), as x ∈ Rd was
arbitrary. ■

By definition, pt is a symmetric function for all t > 0. Hence,∫
Rd

Pt f g dλ =
∫
Rd

∫
Rd

pt(x, y) f (y) λ(dy)g(x) λ(dx)

=

∫
Rd

∫
Rd

pt(y, x)g(x) λ(dx)g(y) λ(dy) =
∫
Rd

f Ptg dλ.
(4.278)

In other words, Brownian motion is λ-symmetric. From (4.270) it is immediate that
pt(x, · ) is the density of the probability measure Px(Bt ∈ A) = Pt1A(x) with respect
to λ. We have therefore shown the following.

Proposition 4.88. For every d ∈ N, d-dimensional Brownian motion is strongly
λ-symmetric. ■

In fact, it can be shown (cf. [Sch21, Example 7.14]) that the resolvent kernel of
Brownian motion is given by

ud
α(x, y) =

1
πd/2

 √2α
2|x − y|

 d
2−1

K d
2−1

(√
2α|x − y|

)
, (4.279)

where

Kν(z) =
1
2

( z
2

)ν ∫ ∞

0
exp

(
−t −

z2

4t

)
t−(ν+1) dt, z > 0 (4.280)
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denotes a modified Bessel function of the second12 kind (see [Olv+10, §10.25] and
[Olv+10, eq. 10.32.10]).

12In [Sch21], Kν is identified as a Bessel function of the third kind, which seems to be a mistake.
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5Dirichlet Forms and symmetric
Feller Processes

„He stared at his feet. “I’m still very ignorant”,
he said, “but at least I’m ignorant about really
important things.”

— Terry Pratchett
Diggers: The Second Book of the Nomes

5.1 Dirichlet Forms
Dirichlet forms are a rich analytical tool for the study of symmetric Feller processes.

Informally speaking there is a one-to-one correspondence between a class of bilinear
forms on L2(S , ν) and a class of ν-symmetric Feller processes on the uniform measure
space (S ,U, ν). In Section 4.5.1 we have already encountered an example of a
Dirichlet form when we introduced the energy functional in (4.232). We give an
introduction to Dirichlet forms and shine a light into the “black box” that is the theory
of Dirichlet forms. We show in some detail how a symmetric Feller process gives rise
to a Dirichlet form. Subsequently, we introduce some important potential theoretic
notions and show how they relate to the Dirichlet form on the one hand and to the
process on the other hand. Finally, we use Dirichlet forms to extend the examples of
the previous section.

In order to keep this work reasonably bounded we refer the reader to the literature
for deeper results. An extensive treatment of the theory of Dirichlet forms can be
found in the monographs [FOT11] by Masatoshi Fukushima, Yoichi Oshima and
Masayoshi Takeda and [CF11] by Zhen-Qing Chen and Masatoshi Fukushima. We
focus exclusively on symmetric Dirichlet forms and include the symmetry in the
definition of Dirichlet forms. A thorough treatment of the theory of not necessarily
symmetric Dirichlet forms can be found in the book [MR92] by Zhi-MingMa and
Michael Röckner. An extension of the hereinafter developed concepts to the not
necessarily symmetric case is interesting but beyond the scope of this thesis and must
remain a subject for further research. We begin with a brief discussion of symmetric
forms on real Hilbert spaces.
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Definition 5.1. Let H be a real Hilbert space and D ⊂ H a linear subspace. A
quadratic form is a map q : D → R≥0 satisfying q(α f ) = α2q( f ) for all α ∈ R. A map
E : D×D → R is a symmetric bilinear form, if the following hold

(i) E is symmetric, i.e.
E( f , g) = E(g, f ) (5.1)

for all f , g ∈ D.

(ii) E is linear in each component, i.e.

E(α( f + g), h) = α(E( f , h) + E(g, h)) (5.2)

for all f , g, h ∈ D and α ∈ R.

D is called the domain of E. To emphasize this, we sometimes writeD(E). ♢

A quadratic form q uniquely determines a symmetric bilinear form E via polariza-
tion: E( f , g) := 1

2 (q( f + g) − q( f ) − q(g)) and vice versa every symmetric bilinear
form uniquely determines a quadratic form via q( f ) := E( f , f ). To save some ink, we
sometimes write E( f ) := E( f , f ) for the quadratic form determined by the bilinear
form E. Furthermore, we drop the adjective bilinear from the notation for convenience.

A quadratic form q is called positive (semi-) definite1 if q( f ) (≥) > 0 for all
f ∈ D(E)\{0}. A symmetric form E is called positive (semi-) definite, if the associated
quadratic form is positive (semi-) definite.

We begin with some important observations.

Lemma 5.2 (Cauchy Schwarz). Let E be a positive semidefinite symmetric form with
domain D ⊂ H . Let f , g ∈ D such that at least one of quantities E( f , f ),E(g, g) is
non-zero. Then,

E( f , g)2 ≤ E( f , f )E(g, g). (5.3)

Proof. Let f , g ∈ D. Without loss of generality suppose that E( f , f ) > 0. For every
λ ∈ R we have

Then, 0 ≤ E(g − λ f , g − λ f ) = E(g, g) − 2λE( f , g) + λ2E( f , f ). (5.4)

Now choose λ = E( f , g)/E( f , f ). Then,

0 ≤ E(g, g) − E( f , g)2/E( f , f ). (5.5)

Rearranging (5.5) yields the desired inequality. ■

1Some authors (e.g. [FOT11]) use the term non-negative definite instead of positive semi-definite.
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This is the classical Cauchy-Schwarz inequality with the only exception that we
have to be mindful of the case where E( f , f ) + E(g, g) = 0 while f , g , 0.

Lemma 5.3 (Triangle inequality). Let E be a positive semidefinite symmetric form
with domainD ⊂ H . Suppose f , g ∈ D with E( f , f ) + E(g, g) > 0. Then,

E( f + g, f + g)1/2 ≤ E( f , f )1/2 + E(g, g)1/2. (5.6)

Proof. Let f , g ∈ D(E). Applying the Cauchy-Schwarz inequality from Lemma 5.2
we obtain

E( f + g, f + g) = E( f , f ) + 2E( f , g) + E(g, g)

≤ E( f , f ) + 2E( f , f )1/2E(g, g)1/2 + E(g, g)

≤
(
E( f , f )1/2 + E(g, g)1/2

)2
,

(5.7)

completing the proof. ■

Lemma 5.4. Let E be a positive semidefinite symmetric form and denote by ⟨ · , · ⟩
the inner product ofH . Then, for each α > 0, the form

Eα( f , g) := E( f , g) + α ⟨ f , g⟩ (5.8)

is a positive definite symmetric bilinear form with domainD(E).

Proof. Symmetry and bilinearity are immediate consequences of the fact that Eα is
the sum of two symmetric bilinear forms. Similarly, positive definiteness follows from
the fact that Eα is the sum of a positive definite and a positive semidefinite form. ■

Recall that a pre-Hilbert space is a vector space equipped with a scalar product that
is not necessarily complete.

Lemma 5.5. The form Eα is a scalar product onD(E) and (D(E),Eα) is a pre-Hilbert
space for each α > 0. Moreover, Eα and Eβ determine equivalent metrics onD(E) for
all α, β > 0.

Proof. By Lemma 5.4 it is clear that (D(E),Eα) is a real pre-Hilbert space. We need
to show that

rα( f , g) :=
√
Eα( f − g, f − g) (5.9)

are equivalent metrics onD(E) for all α > 0. Assume 0 < α < β, then

α

β
Eβ ≤ Eα( f − g) ≤

β

α
Eβ( f − g) (5.10)
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and rα and rβ are even bi-Lipschitz equivalent. ■

We call a symmetric form (E,D(E)) closed ifD(E) is complete with respect to E1
(or, equivalently, with respect to Eα for all α > 0), i.e. every E1-Cauchy sequence is
E1-convergent to an element ofD(E). We say that the symmetric form (E,D(E)) is
closable if for every E-Cauchy sequence ( fn)n∈N ⊂ D(E) with limn→∞ ⟨ fn, fn⟩ = 0 it
holds that limn→∞ E( fn, fn) = 0. As implied by the terminology, a closable symmetric
form can be extended to a closed symmetric form in the following sense. We say
that a symmetric form (E,D(E)) is an extension of the symmetric form (E′,D(E′)) if
D(E′) ⊂ D(E) and E|D(E′)×D(E′) = E

′.

Proposition 5.6. Let (E,D(E)) be a closable symmetric form. Suppose ( fn)n∈N ⊂ D(E)
is an E1-Cauchy sequence. Then there exists a f ∈ H such that limn→∞ fn = f (in
H) and limn→∞ E( fn) < ∞ exists. Furthermore, letD(E) denote the set of all f ∈ H
such that there exists an E1-Cauchy sequence ( fn)n∈N ⊂ D(E) with limn→∞ fn = f (in
H) and set

E( f ) := lim
n→∞
E( fn) (5.11)

Then the value of E( f ) does not depend on the choice of ( fn)n∈N and (E,D(E)) is
the smallest closed extension of (E,D(E)) in the sense that every closed extension of
(E,D(E)) also extends (E,D(E)).

Proof. See [Kat95, Theorem VI.1.17]. ■

Let again denote (S ,U, ν) denote a uniform measure space. We will turn our focus
to symmetric forms on the particular Hilbert space L2(S , ν) equipped with the scalar
product

⟨ f , g⟩ :=
∫

S
f g dν. (5.12)

We introduce the Markov property for symmetric forms.

Definition 5.7. Let (E,D(E)) be a symmetric form on L2(S , ν). We say that (E,D(E))
is Markovian (has the Markov property) if for each ε > 0 there exists a function
φε : R→ R with the following properties

(i) φε(t) = t for all t ∈ [0, 1]

(ii) −ε ≤ φε(t) ≤ 1 + ε for all t ∈ R

(iii) 0 ≤ φε(t) − φε(s) ≤ t − s for all s < t

such that for all f ∈ D(E) we have φε ◦ f ∈ D(E) and E(φε ◦ f ) ≤ E( f ). ♢
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Next, we introduce the central object of this chapter.

Definition 5.8 (Dirichlet form). Let E be a positive semi-definite symmetric bilinear
form on L2(S , ν) with domainD(E) ⊂ L2(S , ν). Then, (E,D(E)) is a Dirichlet form if

(D1) D(E) is a dense linear subspace of L2(S , ν),

(D2) (E,D(E)) is closed and

(D3) (E,D(E)) is Markovian. ♢

Recall from (4.5) that we use C0 = C0(S ,R) to denote the compactly supported
continuous real-valued functions on S . With a slight abuse of notation we write
C0 ∩ D(E) for the elements of C0 that are representatives of an element in D(E) as
well as for those elements of D(E) that have a representative in C0, depending on
the context. For a f ∈ D(E) we denote by supp( f ) = supp( f · ν) the support of the
measure f · dν. For the domainD(E) of E we simply writeD when no confusion can
arise.

Definition 5.9. A Dirichlet form (E,D) is called regular, if

(D4) C0(S )∩D is both dense inD with respect to E1 and dense in C0(S ) with respect
to the uniform norm.

Furthermore, the Dirichlet form is called local if

(D5) for all f , g ∈ D such that supp( f ) and supp(g) are disjoint compact sets it holds
that E( f , g) = 0. ♢

We conclude this section with two examples of Dirichlet forms

Example 5.10 (Random walks on graphs). Let G = (V, µ) be a finite weighted graph
as defined in Definition 4.77 and ν : V → R+ a measure on V with νx = ν(x) > 0 for
all x ∈ V . Clearly, L2(V, ν) is just the space of all real functions f : V → R. Recall
from Section 4.5.1 the definition of the energy form

E( f , g) :=
1
2

∑
x,y∈V : x∼y

µxy( f (y) − f (x))(g(y) − g(x)), (5.13)

with D = { f : V → R} = L2(V, ν). By definition, E is a symmetric bilinear form.
We show that (E,D) is, indeed, a Dirichlet form. Because the weights µxy are all
non-negative, the form E is positive semi definite. Properties (D1) and (D2) are
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satisfied, becauseD = L2(V, ν). In order to verify (D3), observe that it is enough to
show that for f ∈ L2(V, ν) it holds that g := ( f ∧1)∨0 ∈ L2(V, ν) and E(g, g) ≤ E( f , f ).
The first part is obvious and since(

(( f ∧ 1) ∨ 0)(y) − (( f ∧ 1) ∨ 0)(x)
)2
≤

(
( f ∨ 0)(y) − ( f ∧ 1)(x)

)2

=
(
( f ∧ 1)(x) − ( f ∨ 0)(y)

)2

≤ ( f (x) − f (y))2

(5.14)

it follows that E(g, g) ≤ E( f , f ) and thus we have shown that (E,D) has the Markov
property (D3) and hence is a Dirichlet form.

Furthermore, because G is a finite graph, we have C0(V) = L2(V, ν) = D and thus,
(E,D) is a regular Dirichlet form.

On the other hand, observe that E(1{x},1{y}) = µxy whenever x , y and thus (E,D)
is not local. ■

Example 5.11 (Brownian motion on Rd). Let d ≥ 1 and set (S , ν) = (R, dx) the
d-dimensional Euclidean space equipped with the Lebesgue measure. Denote by

H1(Rd) :=
{

f ∈ L2(Rd)
∣∣∣∣∣ ∂ f
∂xi
∈ L2(Rd), 1 ≤ i ≤ d

}
(5.15)

the real Sobolev space of order 1. Here the derivative ∂
∂xi

are taken in the weak sense.
Then a symmetric, positive semidefinite bilinear form is given by

E( f , g) =
d∑

i=1

1
2

∫
Rd

∂ f
∂xi

∂g
∂xi

dx. (5.16)

We show that (E,H1(Rd)) is a Dirichlet form.

For the sake of readability, we drop the space Rd from the notation of the various
function spaces. To show (D1) observe that H1 is a Banach space and that C∞0 , the
set of compactly supported, infinitely often continuously differentiable functions is
a subset of H1. Furthermore, C∞0 is a dense subset of L2, which proves that H1 is a
dense linear subset of L2. To check property (D2) consider a E1-Cauchy sequence
( fn)n≥1. Then ( fn) and

(
∂ fn
∂xi

)
are L2-Cauchy sequences for all 1 ≤ i ≤ d and since

L2 is complete, the closedness of (E,H1) follows. To show the Markov property,
consider the following function (compare [FOT11, Exercise 1.2.1]). For ε > 0 let
ψε(t) := (−ε∨ t)∧ (1+ ε) and denote by j(x) := γ−1e−1/(1−x2) for |x| < 1 and j(x) := 0
for |x| ≥ 1 a mollifier, where γ =

∫
R

j(x) dx. For 0 < δ < ε set jδ = δ−1 j(x/δ) and
define

φε(t) := ( jδ ∗ ψε)(t) =
∫
R

jδ(t − s)ψε(s) ds. (5.17)
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Then, φε satisfies the properties (i)-(iii) of Definition 5.7 and additionally φε ∈ C∞0
and |φ′ε(t)| ≤ 1 for all t ∈ R and ε > 0. Thus

E(φε( f ), φε( f )) =
d∑

i=1

∫
Rd

∂ f
∂xi

φ′ε( f )2 dx ≤ E( f , f ), (5.18)

for all f ∈ H1 and ε > 0, which proves (D3).

Next, we show that (E,H1) is a regular Dirichlet form. Because C∞0 can be consid-
ered a subset of both H1 and C0 and because C∞0 is a dense subset of C0, it is clear
that C0 ∩ H1 is uniformly dense in C0. It remains to show that C∞0 is also E1-dense in
H1. To this end consider f ∈ C∞ ∩ H1 and let δ ∈ C∞0 with 0 ≤ f ≤ 1 and δB(1,0) ≡ 1
be a smooth version of the indicator function on the unit ball at the origin. For R > 0
set fR(x) := f (x)δ(x/R), then fR ∈ C∞0 for all R > 0 and by dominated convergence,
fR → f in L2 as R→ ∞. Furthermore, we have

∂ fR
∂xi
=
∂ f
∂xi

δ(x/R) +
1
R

f (x)
∂δ

∂xi
(x/R) (5.19)

and with the same reasoning, ∂ f
∂xi
δ(x/R) converges in L2 to ∂ f

∂xi
whereas the second

summand goes to 0 for all 1 ≤ i ≤ d as R → ∞. We have shown that C∞0 is dense
in C∞ ∩ H1. Next, we show that C∞ ∩ H1 is dense in H1. Let (φn)n≥1 ⊂ C∞0 be
a sequence of compactly supported smooth approximations of the identity and let
f ∈ H1. Then the convolutions fn := f ∗ φn are in C∞ ∩ H1 for each n ∈ N. Because
f ∈ L2, it holds that fn converges in L2 to f as n→ ∞. Furthermore, ∂ fn

∂xi
=

∂ f
∂xi
∗ φn is

in L2 and hence ∂ fn
∂xi
→

∂ f
∂xi

as n→ ∞ which proves the claim.

Finally, we show that the Dirichlet form (E,H1) is even local. Let f , g ∈ H1

be compactly supported with disjoint supports. Then f g = 0 almost everywhere.
Moreover,

supp
(
∂ f
∂xi

)
⊂ supp( f ) and supp

(
∂g
∂xi

)
⊂ supp(g), (5.20)

for all 1 ≤ i ≤ d which implies ∂ f
∂xi

∂g
∂xi
= 0 almost everywhere which yields (D5). ■

5.2 Feller processes and Dirichlet forms
We have already seen in the previous chapter that there is a fundamental connection

between semigroups of operators on B(S ) and Markov processes. A similar connec-
tion exists between Dirichlet forms and semigroups of operators. With the subtle but
important difference that the latter correspondence holds for operators on the L2-space.
Therefore the Dirichlet form theory is a weak theory whereas the theory presented in
the last chapter is a strong theory.
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5.2.1 Operators on Hilbert spaces and closed forms
Following the lines of [FOT11] we first describe how strongly continuous contrac-

tion semigroups, strongly continuous resolvents, non-positive definite self-adjoint
operators and closed forms on Hilbert spaces are related to each other. Thereby
establishing a one to one relation between these objects.

We then introduce the Markovian property of operators on L2(S , ν) and show
that the correspondence from the previous section can be extended to Markovian
semigroups and resolvents and Dirichlet forms.

It then is just a small step to show that a symmetric Feller process induces a
Markovian semigroup and therefore a Dirichlet form.

We begin with some basic functional analytic definitions to fix some notation.
Henceforth, let H denote a non-empty, real or complex Hilbert space with inner
product ⟨ · , · ⟩.

Definition 5.12 (Linear operators). A linear map T : D(T ) → H is called a linear
operator onH with domainD(T ), ifD(T ) ⊂ H . We say that a linear operator T is
densely defined ifD(T ) is a dense subset ofH .

For a linear operator T onH we introduce the graph G(T ) of T as the subspace

G(T ) := { ( f ,T f ) | f ∈ D(T ) } ⊂ H2. (5.21)

We call an operator T on H closed if G(T ) is a closed subspace of H2. Given two
linear operators T,V onH we write T ⊂ V as a shorthand for G(T ) ⊂ G(V).

Finally, we define the operator norm of a linear operator T onH as

∥T∥op := sup { ∥T f ∥ | f ∈ D(T ), ∥ f ∥ ≤ 1 } , (5.22)

where ∥ · ∥ denotes the norm onH induced by the scalar product by ∥ f ∥ :=
√
⟨ f , f ⟩,

f ∈ H . ♢

It is easy to check that the space of bounded linear operators on a real or complex
Hilbert spaceH with domainH form an algebra, denoted by B(H), where

(T + V) f := T f + V f , (TV) f := T (V f ), (αT ) f := α(T f ), (5.23)

for all T,V ∈ B(H), α ∈ C (∈ R) and f ∈ H . On the other hand, B(H) equipped
with the norm ∥ · ∥op becomes a Banach space or, more specifically, a Banach algebra.
More details can be found in [Rud91, Chapters 10 & 12].
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To a densely defined linear operator T onH we associate the adjoint operator T ∗

via
⟨T f , g⟩ =

〈
f ,T ∗g

〉
, f ∈ D(T ). (5.24)

The domainD(T ∗) of T ∗ consists of all g ∈ H such that the mapping

f 7→ (T f , g) ∈ H2 (5.25)

is continuous onD(T ). Since T is densely defined, the adjoint T ∗ is unique and linear.

Definition 5.13. A linear operator T onH is called symmetric if

⟨T f , g⟩ = ⟨ f ,Tg⟩ , (5.26)

for all f , g ∈ D(T ).

A densely defined linear operator T onH satisfying

G(T ) = G
(
T ∗

)
(5.27)

is called self adjoint. ♢

It is worth noting that the densely defined symmetric operators are those for which
T ⊂ T ∗. Hence, self-adjoint operators are symmetric and the two concepts coincide
on B(H).

Definition 5.14. A linear operator T onH is called non-negative definite or simply
non-negative if

⟨T f , f ⟩ ≥ 0, ∀ f ∈ D(T ). (5.28)

Analogously, T is non-positive (definite) if −T is non-negative. ♢

Definition 5.15 (Strongly continuous semigroup). Let (Tt)t≥0 be a semigroup of
symmetric linear operators onH with domainD(Tt) = H for each t ≥ 0 and T0 = id.
We say that (Tt)t≥0 is

(i) contractive if ∥Tt f ∥2 ≤ ∥ f ∥2 for all f ∈ H or, equivalently, ∥Tt∥op ≤ 1 for all
t ≥ 0.

(ii) strongly continuous if limt→0∥Tt f − f ∥ = 0 for all f ∈ H . ♢

In the same vein, we define resolvents.
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Definition 5.16 (Resolvent). A family (Gα)α>0 of linear symmetric operators onH
with domainD(Gα) = H for each α > 0 is called a resolvent onH if

(i) (Gα)α>0 satisfies the resolvent equation (R1)

Gα −Gβ + (α − β)GαGβ = 0, ∀α, β > 0, (R1)

(ii) αGα is contractive for each α > 0, i.e.

∥Gα∥op ≤ α
−1. (5.29)

If, in addition

(iii) limα→∞∥αGα f − f ∥ = 0 for all f ∈ L2(S , ν),

we say that (Gα)α>0 is a strongly continuous resolvent. ♢

Lemma 5.17. Let (Gα)α>0 be a strongly continuous resolvent onH . For each α > 0,
Gα is invertible.

Proof. We need to show that

ker(Gα) = { f ∈ H | Gα f = 0 } (5.30)

is trivial. Suppose f ∈ H is such that Gα f = 0. Using the resolvent equation (R1) we
obtain Gβ f = 0 for all β > 0. By strong continuity this implies

0 = lim
α→∞
∥αGα f − f ∥ = ∥ f ∥ (5.31)

and therefore f = 0, completing the proof. ■

For a strongly continuous resolvent (Gα)α>0 on H we introduce its generator as
follows ∆ f = α f −G−1

α f

D(∆) = Gα(H).
(5.32)

It is not clear a priori that this definition of ∆ does not depend on our choice of
α > 0. To see this, let α, β > 0. Then,

GαGβ

((
α f −G−1

α f
)
−

(
β f −G−1

β f
))
= (α − β)GαGβ f + (Gα −Gβ) f = 0. (5.33)

Because the kernels of Gα and Gβ are trivial, we can conclude that the definition of
the generator in (5.32) is independent of the choice of α > 0.
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We have the following important property of the generator which we will state
without proof.

Proposition 5.18 ([FOT11, Lemma 1.3.1 (i)]). The generator (∆,D(∆)) of a strongly
continuous resolvent (Gα)α>0 onH is a non-positive definite self adjoint operator.

We seek to explore the connection between closed symmetric forms, strongly
continuous contraction semigroups and strongly continuous resolvents. As a first
observation, we can easily get from a strongly continuous contraction semigroup to a
strongly continuous resolvent.

Lemma 5.19. Let (Tt)t≥0 be a strongly continuous contraction semigroup onH . For
α > 0 and f ∈ H write

Gα f :=
∫ ∞

0
e−αtTt f dt, (5.34)

where the integral is a Bochner integral (see Appendix C.1). Then the family (Gα)α>0
is a strongly continuous resolvent onH .

Proof. Let (Gα)α>0 be defined as in (5.34) and fix α > 0. First observe that e−αtTt f
is indeed Bochner integrable as a function [0,∞) → H . Then an application of
Lemma C.5 shows that

⟨Gα f , g⟩ =
∫ t

0
e−αt ⟨Tt f , g⟩

=

∫ t

0
e−αt ⟨ f ,Ttg⟩ = ⟨ f ,Gαg⟩ ,

(5.35)

where we have used the symmetry of Tt. Now, linearity of Tt and linearity of the
Bochner integral imply that Gα is in fact a symmetric linear operator with domain
D(Gα) = D(Tt) = H .

For α, β > 0 a straight forward calculation yields the resolvent equation (R1),(
Gα −Gβ

)
f =

∫ ∞

0
e−αtTt f dt −

∫ ∞

0
e−βtTt f dt

=

∫ ∞

0
e−βt

(
e−(α−β)t − 1

)
Tt f dt

= −(α − β)
∫ ∞

0

∫ t

0
e−β(t−s)−αsT(t−s)+s f ds dt

= −(α − β)
∫ ∞

0

∫ ∞

0
e−αse−βtTsTt f dt ds = −(α − β)GαGβ f .

(5.36)
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Finally we obtain (5.29) from another application of Lemma C.5. Let g ∈ H with
∥g∥ ≤ 1, then

∥Gαg∥2 =
〈∫ ∞

0
e−αtTt dt,

∫ ∞

0
e−αtTt dt

〉
=

∫ ∞

0

∫ ∞

0
e−αte−αs ⟨Ttg,Tsg⟩ dt ds ≤ α−2.

(5.37)

■

The converse of the last result is the following.

Lemma 5.20. Let (Gα)α>0 be a strongly continuous resolvent onH . For each t ≥ 0
and f ∈ H set

Tt f = lim
α→0

e−αt
∞∑

n=0

(αt)n

n!
(αGα)n f . (5.38)

Then (Tt)t≥0 is a strongly continuous contraction semigroup and the resolvent induced
by (Tt)t≥0 via (5.34) coincides with (Gα)α>0.

Proof. Fix t ≥ 0. We begin by showing that the limit in (5.38) exists. By strong
continuity, we have that for each f ∈ H the map α 7→ αGα f is continuous. Therefore,
for each t ≥ 0 and f ∈ H the map

α 7→ e−αt
∞∑

n=0

(αt)n

n!
(αGα)n f (5.39)

is continuous. Furthermore, because the strong limit limα→0 αGα f exists the limit in
(5.38) exists in the strong sense, too.

Applying the contractivity of αGα we find that

∥Tt f ∥ ≤ lim
α→0

e−αt
∞∑

n=0

(αt)n

n!
∥(αGα)n f ∥ ≤ ∥ f ∥ (5.40)

for all f ∈ H . Next, we show the semigroup property of (Tt)t≥0. A straightforward
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calculation yields for all s, t ≥ 0 and f ∈ H ,

Tt+s f = lim
α→0

e−α(t+s)
∞∑

n=0

(α(s + t))n

n!
(αGα)n f

= lim
α→0

e−α(t+s)
∞∑

n=0

n∑
j=0

(
n
j

)
s j tn− j α

n

n!
(αGα)n f

= lim
α→0

∞∑
n=0

n∑
j=0

(αs) j

j!
(αt)n− j

(n − j)!
(αGα) j(αGα)n− j f

= lim
α→0

∞∑
m,n=0

(αs)m

m!
(αt)n

n!
(αGα)m(αGα)n f = TsTt f

(5.41)

Finally, the fact that the resolvent of (Tt)t≥0 coincides with (Gα)α>0 follows from the
spectral theorem [Rud91, Theorem 12.23] (cf. [BGL14, p. 127]). ■

Note that a Hilbert space always comes with a weak and a strong notion of conver-
gence. We say that a sequence ( fn)n∈N ⊂ H converges weakly to a limit f ∈ H , if for
all g ∈ H ,

lim
n→∞
⟨ fn, g⟩ = ⟨ f , g⟩ . (5.42)

In contrast, we say that ( fn)n∈N converges to f in the strong limit if

lim
n→∞
∥ fn − f ∥ = 0. (5.43)

Similar to our analysis of the Feller semigroup in the previous chapter we can
introduce the generator of a strongly continuous contraction semigroup (Tt)t≥0 onH
as D(∆) =

{
f ∈ H

∣∣∣∣ limt→0
Tt f− f

t exists in the strong sense
}

∆ f = limt→0
Tt f− f

t , f ∈ D(∆).
(5.44)

Indeed, the generator of a strongly continuous contraction semigroup (Tt)t≥0 and
the generator of the strongly continuous resolvent (Gα)α>0 induced by (Tt)t≥0 via
(5.34) coincide [FOT11, Lemma 1.3.1 (ii)].

The next result shows how to obtain a strongly continuous resolvent and a strongly
continuous contraction semigroup from a non-positive self-adjoint operator on H .
Again, we refer the reader to [FOT11] for a proof.

Proposition 5.21 ([FOT11, Lemma 1.3.2]). Let ∆ be a non-positive self-adjoint
operator onH .
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(Tt)t≥0 (Gα)α>0

∆

(5.34)

(5.38)

(5.44)
et∆

(5.32)
(α − ∆)−1

Fig. 5.1.: The relation between (Tt)t≥0, (Gα)α>0 and the generator ∆ (cf. [FOT11, Diagram 1])

(i)
{

Tt = exp(t∆)
∣∣∣ t ≥ 0

}
and

{
Gα = (α − ∆)−1

∣∣∣ α > 0
}

are a strongly continu-
ous contraction semigroup and a strongly continuous resolvent onH respec-
tively.

(ii) The generator of (Tt)t≥0 as in (i) coincides with ∆. Furthermore, the strongly
continuous contraction semigroup possessing ∆ as its generator is unique and
the same holds for the resolvent (Gα)α>0.

We have so far established a one-to-one correspondence between non-positive self-
adjoint operators, strongly continuous contraction semigroups and strongly continuous
resolvents. The next step is to show that there is a further one-to-one correspondence
with closed symmetric forms. For a proof of this important fact, we refer the reader to
the book [FOT11].

Proposition 5.22 ([FOT11, Theorem 1.3.1]). There is a one-to-one correspondence
between the family of closed symmetric forms E onH and the family of non-positive
self adjoint operators ∆ onH . This correspondence is given byD(E) = D

(√
−∆

)
E( f , g) =

〈√
−∆ f ,

√
−∆g

〉
, f , g ∈ D(E).

(5.45)

Remark 5.23. The proof of Proposition 5.22 is fairly technical and will be omitted
here as it can be found in [FOT11]. We still make some remarks about the proof.

(i) Another application of the spectral theorem shows that for the resolvent (Gα)α>0
generated by ∆ we have for all α > 0 that Gα(H) ⊂ D(E) and

Eα (Gα f , g) = ⟨ f , g⟩ , f ∈ H , g ∈ E(D). (5.46)
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(ii) The correspondence (5.45) can be restated asD(∆) ⊂ D(E)

E( f , g) = ⟨−∆ f , g⟩ , f ∈ D(∆), g ∈ D(E).
(5.47)
♢

For completeness sake, note that the symmetric form (E,D(E)) associated with ∆
can be approximated using the semigroup (Tt)t≥0 and the resolvent (Gα)α>0 associated
with ∆. To that end define for f , g ∈ H ,

E(t)( f , g) := t−1 ⟨ f − Tt f , g⟩ , t > 0 (5.48)

E(α)( f , g) := α ⟨ f − αGα f , g⟩ , α > 0. (5.49)

Then, D(E) =
{

f ∈ H
∣∣∣ limt→0 E

(t)( f , f ) < ∞
}

E( f , g) = limt→0 E
(t)( f , f ), f , g ∈ D(E)

(5.50)

and D(E) =
{

f ∈ H
∣∣∣ limα→∞ E

(α)( f , f ) < ∞
}

E( f , g) = limα→∞ E
(α)( f , g), f , g ∈ D(E).

(5.51)

Furthermore, E(t) and E(α) are increasing as t → 0 and α → ∞, respectively. This
handy approximation result is proven in [FOT11, Lemma 1.3.4].

5.2.2 Markovian operators and Dirichlet forms
From now on we consider the particular Hilbert space L2(S , ν), where (S , ν) denotes

a uniform measure space. As usual, we write

∥ f ∥2 :=
√
⟨ f , f ⟩ =

(∫
S

f 2 dν
)1/2

(5.52)

for the L2-norm on L2(S , ν).

Recall the shorthand a ∨ b = max{a, b} and a ∧ b = min{a, b} for real numbers
a, b ∈ R. For real-valued functions f , g : S → R we have set f ∨g and f ∧g pointwise.
Furthermore, we write

f + := f ∨ 0 and f − := −( f ∧ 0) (5.53)

for the positive and the negative part of f , respectively. Clearly, these notations
can be extended to the elements of L2(S , ν) by applying them to a Borel-measurable
representative.
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The next result provides us with equivalent conditions to the Markov property of a
closed symmetric form.

Lemma 5.24. A closed symmetric form (E,D(E)) on L2(S , ν) has the Markov property
if and only if for all f ∈ D(E) it holds that g := 0 ∨ ( f ∧ 1) ∈ D(E) and

E(g, g) ≤ E( f , f ). (5.54)

Proof. Fix f ∈ D(E) and let g = f + ∧ 1, as above. The first implication is trivial,
because φ(t) := 0 ∨ (t ∧ 1) satisfies (i) to (iii) of Definition 5.7 for all ε > 0 and
g = φ◦ f . The converse implication follows readily from the observation that φ can be
approximated by functions φε satisfying (i) to (iii) of Definition 5.7. Letting ε→ 0 we
obtain g = limε→0 φε ◦ f ∈ D(E) by closedness of (E,D(E)). Finally, (5.54) follows
from the closedness of (E,D(E)) together with the Markov property of E. ■

We call a real valued function γ : R→ R a normal contraction if γ(0) = 0 and for
all s, t ∈ R,

|γ(s) − γ(t)| ≤ |s − t|. (5.55)

Lemma 5.25. A closed symmetric form (E,D(E)) on L2(S , ν) has the Markov property
if and only if for all f ∈ D(E) and all normal contractions γ : R → R it holds that
γ ◦ f ∈ D(E) and

E(γ ◦ f , γ ◦ f ) ≤ E( f , f ). (5.56)

Proof. See [CF11, Theorem 1.1.3] ■

The previous lemma has a very useful consequence.

Lemma 5.26. Let (E,D(E)) be a Dirichlet form. For every f ∈ D(E) it holds that

E( f +, f −) ≤ 0. (5.57)

Proof. For each ε ∈ (0, 1) let γε(t) := t+ − εt− and γ(t) := t+. Then it is easy to
check that γ, γε are normal contractions and γ ◦ γε = γ for each 0 < ε < 1. Hence,
γ ◦ f , γε ◦ f ∈ D(E) for any f ∈ D(E) and 0 < ε < 1. Moreover,

E( f +, f +) = E(γ ◦ (γε ◦ f ), γ ◦ (γε ◦ f ))

≤ E(γε ◦ f , γε ◦ f ) = E( f + − ε f −, f + − ε f −).
(5.58)

Hence,
E( f +, f −) ≤

ε

2
E( f −, f −) (5.59)

and we conclude the proof by letting ε→ 0. ■

168 Chapter 5 Dirichlet Forms and symmetric Feller Processes



Definition 5.27 (Markovian and Dirichlet operators). (i) A linear operator V on
L2(S , ν) is called positivity preserving if

V f ≥ 0 ν-a.e. (5.60)

for all f ∈ L2(S , ν) with f ≥ 0 ν-almost everywhere. We say that V is Marko-
vian if V is bounded and

0 ≤ V f ≤ 1 ν-a.e. (5.61)

for all f ∈ L2(S , ν) with 0 ≤ f ≤ 1 ν-almost everywhere. Furthermore, a
semigroup (Vt)t≥0 of operators is said to be Markovian if Vt is Markovian for
every t ≥ 0. A strongly continuous resolvent (Gα)α>0 is Markovian if for each
α > 0, αGα is Markovian.

(ii) A closed and densely defined operator V on L2(S , ν) is called a Dirichlet
operator if 〈

V f , ( f − 1)+
〉
≤ 0 (5.62)

for all f ∈ D(V). ♢

Proposition 5.28. Let (Tt)t≥0 be a strongly continuous contraction semigroup, (Gα)α>0
a strongly continuous resolvent, ∆ a non-positive definite densely defined self adjoint
operator and (E,D(E)) a closed symmetric form on L2(S , ν). Suppose that they
are related to each other as described in the last section. Then the following are
equivalent.

(i) (Tt)t≥0 is Markovian,

(ii) (Gα)α>0 is Markovian,

(iii) ∆ is a Dirichlet operator.

(iv) (E,D(E)) is a Dirichlet form.

Proof. The equivalence of (i) to (iii) is [MR92, Proposition I.4.3] and the equivalence
of (ii) and (iv) is due to [MR92, Theorem I.4.4]. ■

5.2.3 Symmetric Feller processes and Dirichlet forms
Dirichlet forms are a rich analytic tool for the analysis of symmetric Feller processes.

To that end, we need to show that we can associate a Dirichlet form to a symmetric
Feller process. Indeed, we can show that every Feller semigroup (Pt)t≥0 of a ν-
symmetric Feller process with values in (S ,U, ν) can be extended to a Markovian
semigroup (Tt)t≥0 on L2(S , ν).
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The following Lemma is essentially [CF11, Lemma 1.1.14. (ii)]. We want to
provide a proof anyway because the result is central.

Proposition 5.29. Let X be a ν-symmetric Feller process with values in a uniform mea-
sure space (S ,U, ν) with semigroup (Pt)t≥0. Then there exists a unique extension of
(Pt)t≥0 to a strongly continuous contraction semigroup (Tt)t≥0 on L2(S , ν). Moreover,
(Tt)t≥0 is Markovian.

Proof. First we show that for any given t ≥ 0 the operator Pt on Bb(S ) can be uniquely
extended to a linear contractive and symmetric operator on L2(S , ν). Observe that each
f ∈ L∞(S , ν) has a representative that is in Bb(S ) and that for two such representatives
f , g ∈ Bb(S ) with ∥ f − g∥∞ = 0 we have that∫

|Pt f − Ptg| dν ≤
∫

Pt| f − g| dν ≤
∫
| f − g| dν = 0 (5.63)

and hence ∥Pt f − Ptg∥∞ = 0. Thus we can regard Pt as an operator on L∞(S , ν).
By the contraction property, Proposition 4.17 (v), Pt can also be regarded as a
bounded operator on L2(S , ν) ∩ L∞(S , ν). It is easy to see that L2(S , ν) ∩ L∞(S , ν) is
dense in L2(S , ν). Now let f ∈ L2(S , ν) and ( fn)n∈N ⊂ L2(S , ν) ∩ L∞(S , ν) such that
limn→∞∥ f − fn∥2 = 0. By the contraction property of Pt we have

lim
n→∞
∥Pt fn∥2 ≤ lim

n→∞
∥ fn∥2 < ∞ (5.64)

and we can define Tt f to be the L2(S , ν) limit of Pt fn.

To show uniqueness assume that (gn)n∈N ⊂ L2(S , ν) ∩ L∞(S , ν) is another sequence
with limn→∞∥ f − gn∥2 = 0. Then, by linearity of Pt and the contraction property we
have

∥Pt fn − Ptgn∥2 = ∥Pt( fn − gn)∥2 ≤ ∥ fn − gn∥2 → 0 as n→ ∞. (5.65)

By assumption, Pt is positivity preserving and ν-symmetric and these properties
as well as the contraction property carry over to Tt by approximation arguments.
The semigroup property of (Tt)t≥0 follows immediately from the semigroup property
of (Pt)t≥0. It remains to show that (Tt)t≥0 is strongly continuous. We have that
C∞(S ) ∩ L2(S , ν) is dense in L2(S , ν) (cf. [Rud87, Theorem 3.14]). For ε > 0 and
f ∈ L2(S , ν) let g ∈ C∞(S ) ∩ L2(S , ν) such that ∥ f − g∥2 ≤ ε. Then, by the triangle
inequality and the contraction property of Tt, we have

∥Tt f − g∥2 ≤ ∥Ptg − g∥2 + ∥Tt f − Ttg∥2 + ∥ f − g∥2 ≤ ∥Ptg − g∥2 + 2ε. (5.66)

and
∥Ptg − g∥22 ≤ 2∥Ptg∥22 − 2 ⟨Ptg, g⟩ . (5.67)
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Since P was assumed to be Feller, we have by property (F2) that limt→0 Ptg(x) = g(x)
for all x ∈ S and by dominated convergence it follows that the right hand side of
(5.67) goes to 0 as t → 0, which concludes the proof because ε was arbitrary. ■

In the same manner, one can show that for each α > 0 there exists a unique
extension of the α-resolvent operator to a L2-pendant.

Lemma 5.30. Let (Rα)α>0 be the resolvent of a ν-symmetric Feller process X. Then
there exists for each α > 0 a unique extension of of Rα to a ν-symmetric operator
Gα on L2(S , ν) such that αGα is contractive and strongly continuous as α → ∞.
Furthermore, the family (Gα)α>0 satisfies the resolvent equation (R1).

Proof. We could copy the proof of Proposition 5.29, instead we use the fact that
(Pt)t≥0 can be uniquely extended to a symmetric and strongly continuous contraction
semigroup (Tt)t≥0 on L2(S , ν). For α > 0 define

Gα f :=
∫ ∞

0
e−αtTt f dt, (5.68)

where the integral is defined in the Bochner sense (see Appendix C.1). By contractivity
of (Tt)t≥0 it follows that Gα is well defined and that αGα is itself contractive and it
agrees with Rα on L2(S , ν) ∩ Bb(S ) by construction. To show that Gα is well-defined,
we need to show that Gα f ∈ L2(S , ν) for f ∈ L2(S , ν). Applying first Jensen’s
inequality then Fubini’s Theorem and finally using the contractivity of (Tt)t≥0 we get

∥Gα f ∥22 =
∫

S

(∫ ∞

0
e−αtTt f dt

)2

dν ≤
∫

S

∫ ∞

0
e−2αt(Tt f )2 dt dν

=

∫ ∞

0
e−2αt∥Tt f ∥22 dt ≤

1
2α
∥ f ∥22 < ∞ ∀α > 0.

(5.69)

Contractivity follows by the same arguments when we substitute r = αt in the inner
integral:

∥αGα f ∥22 =
∫

S

(∫ ∞

0
αe−αtTt f dt

)2

dν =
∫

S

(∫ ∞

0
e−rTr/α dr

)2

dν

≤

∫
S

∫ ∞

0
e−2r(Tr/α f )2 dr dν =

∫ ∞

0
e−2r∥Tr/α f ∥22 dr ≤

1
2
∥ f ∥22

(5.70)

In the same way as in (5.36) it is shown that (Gα)α>0 satisfies the resolvent equation
(R1). The uniqueness of Gα follows by approximation as in the proof of Proposi-
tion 5.29.
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Next, we show strong continuity of αGα as α → ∞. By substituting r = αt,
applying Jensen’s inequality and Fubini’s Theorem – in that order – we obtain

∥αGα f − f ∥22 =
∫

S

(∫ ∞

0
αe−αtTt f dt − f

)2

dν =
∫

S

(∫ ∞

0
αe−αt(Tt f − f ) dt

)2

dν

=

∫
S

(∫ ∞

0
e−r(Tr/α f − f ) dr

)2

dν ≤
∫ ∞

0
e−2r∥Tr/α f − f ∥22 dr.

(5.71)

By contractivity of Tt, the integrand on the right hand is dominated by 2e−2r∥ f ∥22 and
hence limα→∞∥αGα f − f ∥22 = 0 by dominated convergence and the strong continuity
of Tt. ■

5.3 Extension and transience of Dirichlet forms
Let E be a Dirichlet form with domain D := D(E) on L2(S , ν) where (S ,U, ν)

denotes a locally compact uniform measure space, as usual. We adopt the terminology
from the literature ([FOT11; CF11]) and refer to D as a Dirichlet space, where we
implicitly equipD with the form E. Recall that L∞(S , ν) is the family of ν-equivalence
classes of ν-almost everywhere bounded, measurable functions. We want to extend
the Dirichlet form E to functions in L∞(S , ν). We will show that this extension forms
a Hilbert space if and only if the Dirichlet form is transient.

5.3.1 The extended Dirichlet space
We begin with the following observations.

Lemma 5.31. Let V be a Markovian operator on L2(S , ν). Then V can be uniquely
extended to a Markovian operator on L∞(S , ν).

Proof. We give an explicit construction of the extension. By Definition 2.41 we have
that ν is σ-finite. Then there exists a strictly positive function φ ∈ L1(S , ν), take for
example the function

φ :=
∞∑

n=1

αnν(An)−1
1An , (5.72)

where (An)n∈N ⊂ B is countable family of Borel subsets of S with 0 < ν(An) < ∞
for all n ∈ N and (αn)n∈N ⊂ R a summable sequence of strictly positive real numbers.
Now define for each n ∈ N,

φn := (nφ) ∧ 1. (5.73)
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Then, 0 < φn ≤ 1 and the sequence (φn)n∈N is increasing with limn→∞ φn = 1, ν-a.e.
Let f ∈ L∞(S , ν) be non-negative, then the product φn f is in L2(S , ν) ∩ L∞(S , ν) and
we can set

V f := lim
n→∞

V(φn f ), (5.74)

where the limit is taken in L∞(S , ν) and exists by the Markov property of V . We
sometimes refer to V as the potential operator. Furthermore, we set

V f := V f + − V f − (5.75)

for arbitrary f ∈ L∞(S , ν). ■

Lemma 5.32. Let (E,D) be a Dirichlet form on L2(S , ν). Further, let f ∈ L∞(S , ν) and
assume that there exists an E-Cauchy sequence ( fn)n∈N ⊂ D such that limn→∞ fn = f
in L∞(S , ν). Then the limit

E( f , f ) := lim
n→∞
E( fn, fn) (5.76)

exists and is independent of the choice of ( fn)n∈N.

Proof. Let ( fn)n∈N ⊂ D be an E-Cauchy sequence and f ∈ L∞(S , ν) as above. The
existence of the limit follows from the fact that ( fn)n∈N is E-Cauchy. We want to
prove this fact in detail. Fix n, k ∈ N and suppose without loss of generality that
E( fn, fn) + E( fk, fk) > 0. Then,

|E( fn, fn) − E( fk, fk)| = |E( fn − fk, fn + fk)|

≤ E( fn − fk, fn − fk)1/2E( fn + fk, fn + fk)1/2

≤ E( fn − fk, fn − fk)1/2
(
E( fn, fn)1/2 + E( fk, fk)1/2

)
,

(5.77)

where we used the Cauchy-Schwarz inequality from Lemma 5.2 in the first inequality
and the triangle inequality from Lemma 5.3 in the second inequality. Rearranging
now yields ∣∣∣E( fn, fn)1/2 − E( fk, fk)1/2

∣∣∣ ≤ E( fn − fk, fn − fk)1/2. (5.78)

Therefore,
√
E( fn, fn) is a real-valued Cauchy sequence which converges. Therefore

we immediately obtain the existence of limn→∞ E( fn, fn).

Recall the definition of E(t) from (5.48). By Lemma 5.31 we can extend E(t) to
L∞(S , ν). It now suffices to show that

lim
t→0
E(t)( f , f ) = E( f , f ). (5.79)
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For each k ∈ Nwe have that f− fk ∈ L∞(S , ν) and ( fn− fk)n∈N is an E-Cauchy sequence
that converges to f − fk ν-a.e. Therefore, by Fatou’s property [CF11, Lemma 1.1.7]
and the fact that E(t)( f , f ) is increasing as t → 0 for all f ∈ L2(S , ν), we obtain

E(t)( f − fk, f − fk) ≤ lim inf
n→∞

E(t)( fn − fk, fn − fk) ≤ lim
n→∞
E( fn − fk, fn − fk). (5.80)

Taking the limit for k → ∞ on both sides shows that limk→∞ E
(t)( f − fk, f − fk) = 0.

Using a similar argument as in (5.77) and (5.78), we obtain

lim
k→∞
E(t)( fk, fk) = E(t)( f , f ). (5.81)

Since E(t)( fk, fk) ↑ E( fk, fk) as t → 0 (see our remarks at the end of Section 5.2.1 or
[FOT11, Lemma 1.3.4]), we conclude∣∣∣∣∣limt→0

E(t)( f , f )1/2 − E( fk, fk)1/2
∣∣∣∣∣ ≤ lim

t→0
E(t)( f − fk, f − fk)1/2

≤ lim
n→∞
E( fn − fk, fn − fk)1/2,

(5.82)

where we have applied the equivalent of (5.78) for E(t) in the first inequality and
(5.80) in the second inequality. Now, the right hand side of (5.82) goes to 0 as k → ∞.
Which completes the proof. ■

We have now justified the following definition.

Definition 5.33 (Extended Dirichlet space). Let (E,D) be a Dirichlet form on L2(S , ν).
Let De denote the collection of f ∈ L∞(S , ν) such that there exists a E-Cauchy
sequence ( fn)n∈N ⊂ D with limn→∞ fn = f in L∞(S , ν). We call De the extended
Dirichlet space and (E,De) the extended Dirichlet form . ♢

It is worth noting thatD = De ∩ L2(S , ν) (cf. [FOT11, Theorem 1.5.2 (iii)]).

5.3.2 Transient Dirichlet forms
Recall the definition of transience of a ν-symmetric Feller process from Defini-

tion 4.67. We introduce a closely related notion of transience of a Dirichlet form
and show that the extended Dirichlet space becomes a Hilbert space whenever the
Dirichlet form is transient.

We begin with the definition of a transient Dirichlet form. While quite abstract at
first glance, we will fill this definition with a bit of life in the remainder of this section.
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Definition 5.34 (Transient Dirichlet forms). Let (E,D) be a Dirichlet form on L2(S , ν).
We say that (E,D) is transient if there exists a ψ ∈ L1(S , ν) with ψ > 0 ν-almost
everywhere on S such that ∫

S
| f |ψ dν ≤ E( f , f )1/2, (5.83)

for all f ∈ D. In that case we call ψ the reference function of (E,D). ♢

Let (Tt)t≥0 be a Markovian semigroup on L2(S , ν). For t ≥ 0 and f ∈ L2(S , ν)
define

Vt f :=
∫ t

0
Ts f ds. (5.84)

By the contraction property of (Tt)t≥0, we can apply Fubini’s theorem and with
Jensen’s inequality, we get

∥Vt f ∥22 =
∫

S
(Vt f )2 dν ≤

∫
S

∫ t

0
(Ts f )2 ds dν =

∫ t

0

∫
S

(Ts f )2 dν ds

≤

∫ t

0
∥ f ∥22 ds = t∥ f ∥22.

(5.85)

Thus, Vt is a bounded symmetric operator on L2(S , ν) for every t > 0.

Again, we want to extend (Tt)t≥0 and (Vt)t≥0 to a different domain.

Lemma 5.35. Each of the families of operators (Tt)t≥0, (Vt)t≥0 as above can be
uniquely extended to L1(S , ν) in a way such that for all f ∈ L1(S , ν) and s, t > 0,

TsTt f = Ts+t f , ∥Tt f ∥1 ≤ ∥ f ∥1, ∥Vt f ∥1 ≤ t∥ f ∥1. (5.86)

Moreover, Tt and 1
t Vt are Markovian for each t > 0.

Proof. First, let f ∈ L2(S , ν) ∩ L1(S , ν). By σ-finiteness, we can choose a sequence
(An)n∈N ⊂ B of Borel subsets with ν(An) < ∞, An ⊂ An+1 and S =

⋃
n≥1 An. Then for

all t > 0 and f ∈ L2(S , ν) ∩ L1(S , ν),∫
An

|Tt f | dν ≤
〈
Tt| f |,1An

〉
=

〈
| f |,Tt1An

〉
≤

∫
S
| f | dν, (5.87)

where we have used the contraction property of Tt in the second inequality. Letting
n → ∞, we obtain ∥Tt f ∥1 ≤ ∥ f ∥1 and analogously ∥Vt f ∥1 ≤ t∥ f ∥1 for all t > 0 and
f ∈ L2(S , ν) ∩ L1(S , ν).
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Now set φn(t) := (−n ∨ t) ∧ n, t ∈ R. Then, φn ◦ f ∈ L2(S , ν) ∩ L1(S , ν) for all
f ∈ L1(S , ν):∫

S
(Φn ◦ f ) dν = n2ν ({| f | > n}) + n2

∫
{| f |≤n}

n−2(φn ◦ f )2 dν

≤ n2 (ν ({| f | > n}) + ∥ f ∥1) < ∞.
(5.88)

By the contractivity property of Tt, we immediately obtain the existence of the limit
Tt f := limn→∞ Tt(φn ◦ f ) in L1(S , ν) for each f ∈ L1(S , ν) and t > 0. The operators Vt

can be extended in the same manner and the properties (5.86) as well as the Markov
property of Tt and t−1Vt are an immediate consequence of this definition. ■

As an immediate consequence of the preceding lemma and the relation between
(Tt)t≥0 and the resolvent (Gα)α>0 given by (5.34) we obtain the existence of a unique
extension of (Gα)α>0 to a Markovian resolvent on L1(S , ν). Moreover, we have for
each 0 < s < t and 0 < α < β and f ∈ L1

+(S , ν) :=
{

f ∈ L1(S , ν)
∣∣∣ f ≥ 0 ν-a.e.

}
that

0 ≤ Vs f ≤ Vt f and 0 ≤ Gβ f ≤ Gα f , (5.89)

ν-almost everywhere. Therefore, we can define for each f ∈ L1
+(S , ν) a function

V f : S → [0,∞] satisfying

lim
t→∞

Vt f = lim
n→∞

G1/n f = V f , (5.90)

ν-almost everywhere. By (5.90) the function V f is unique up to ν-equivalence.
Observe that V f can take the value +∞ on a set of positive measure.

This leads us to the following definition (cf. [CF11, Definition 2.1.1]). Recall that
we denote the completion of B with respect to ν by Bν (cf. Definition 2.41).

Definition 5.36. Let (Tt)t≥0 be Markovian semigroup on L2(S , ν).

(i) (Tt)t≥0 is called transient if V f < ∞ ν-a.e. for some f ∈ L1
+(S , ν) with f > 0

ν-a.e.

(ii) (Tt)t≥0 is called recurrent if

ν ({ x ∈ S | V f (x) ∈ (0,∞) }) = 0 (5.91)

for all f ∈ L1
+(S , ν).

(iii) A set A ∈ Bν is called Tt-invariant if for every t > 0 and f ∈ L2(S , ν),

Tt
(
1∁A f

)
= 0 ν-a.e. on A. (5.92)
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(iv) (Tt)t≥0 is called irreducible if any Tt-invariant set A ∈ Bν is ν-trivial, i.e.
ν(A) = 0 or ν(∁A) = 0. ♢

The next result gives some equivalent formulations for the transience and recurrence
of (Tt)t≥0 and formulates a recurrence-transience dichotomy. We will not prove this
result here but instead refer the reader to the literature.

Proposition 5.37. Let (Tt)t≥0 be a Markovian semigroup and V as defined in (5.90).

(i) (Tt)t≥0 is transient if and only if for every f ∈ L1
+(S , ν),

V f < ∞ ν-a.e. (5.93)

(ii) The following three statements are equivalent

a) V f = ∞ ν-a.e. for every f ∈ L1
+(S , ν) with f > 0 ν-a.e.

b) There exists a f ∈ L1
+(S , ν) such that V f = ∞ ν-a.e.

c) (Tt)t≥0 is recurrent.

(iii) Suppose that (Tt)t≥0 is irreducible. Then (Tt)t≥0 is either transient or recurrent.

Proof. See [CF11, Proposition 2.1.3]. ■

We can now show that there exists a one-to-one correspondence between transient
semigroups and transient Dirichlet forms and that in that case the extended Dirichlet
space becomes a real Hilbert space.

Theorem 5.38 ([CF11, Theorem 2.1.5]). Let (Tt)t≥0 be Markovian semigroup on
L2(S , ν) and (E,D) the Dirichlet form associated with (Tt)t≥0.

(i) (E,D) is transient if and only if (Tt)t≥0 is transient.

(ii) Suppose that (E,D) is transient with reference function ψ ∈ L1(S , ν). Then,∫
S
| f |ψ dν ≤ E( f , f )1/2 (5.94)

for all f ∈ De and the extended Dirichlet spaceDe is a real Hilbert space with
inner product E.

Proof. Fix f ∈ L2(S , ν). For each 0 < s < t we have

Vt f − TsVt f =
∫ t

0
Tr f dr −

∫ t

0
Tr+s f dr =

∫ s

0
Tr f dr −

∫ t+s

t
Tr f dr. (5.95)
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Therefore, we obtain

lim
s→0

s−1 ⟨Vt f − TsVt f ,Vt f ⟩ = ⟨ f ,Vt f ⟩ − ⟨Tt f ,Vt f ⟩ < ∞. (5.96)

Hence, Vt f ∈ D and by the same argument as before, we arrive at

E(Vt f , g) = ⟨ f − Tt f , g⟩ ∀g ∈ D. (5.97)

Now let f ∈ L1
+(S , ν) ∩ L2(S , ν). We claim that

sup
g∈D

⟨|g|, f ⟩2

E(g, g)
=

∫
S

f V f dν. (5.98)

Denote the left hand side of (5.98) by c and suppose that c < ∞. Using (5.97) and the
fact that for all t > 0, f ,Tt f ,Vt f ≥ 0 ν-a.e. we obtain for each t > 0,

⟨Vt f , f ⟩2 ≤ cE(Vt f ,Vt f ) = c (⟨ f ,Vt f ⟩ − ⟨Tt f ,Vt f ⟩) ≤ c ⟨ f ,Vt f ⟩ (5.99)

and consequently ⟨Vt f , f ⟩ ≤ c. If we let t → ∞, the inequality remains true and we
obtain

⟨V f , f ⟩ ≤ c. (5.100)

Now assume that the right-hand side of (5.98) is finite. We can apply Fubini’s theorem
and obtain ∫

S
f V f dν =

∫ ∞

0
⟨Ts f , f ⟩ ds. (5.101)

By the contraction property of (Tt)t≥0, we conclude that

lim
s→∞
⟨Ts f , f ⟩ = lim

s→∞

〈
Ts/2 f ,Ts/2

〉
= 0. (5.102)

Again, by (5.97) and the Cauchy-Schwarz inequalities for E and ∥ · ∥2 we now obtain
for all g ∈ D and t > 0,

⟨|g|, f ⟩ = E(Vt f , |g|) − ⟨Tt f , |g|⟩ ≤ E(Vt f ,Vt f )1/2E(g, g)1/2 + ∥Tt f ∥2∥u∥2

=
√
⟨ f ,Vt f ⟩ − ⟨Tt f ,Vt f ⟩E(g, g)1/2 + ⟨T2t f , f ⟩1/2 ∥u∥2

≤ ⟨ f ,Vt f ⟩1/2 E(g, g)1/2 + ⟨T2t f , f ⟩1/2 ∥u∥2.

(5.103)

By (5.102) the right hand side of (5.103) converges to ⟨ f ,V f ⟩ E(g, g)1/2 when we let
t → ∞. Therefore,

c ≤ ⟨V f , f ⟩ , (5.104)

proving our claim.

Now suppose that (E,D) is transient with reference function ψ ∈ L1(S , ν). Combin-
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ing the definition of transience (5.83) with (5.98), we can deduce that∫
S
ψVψ dν ≤ 1. (5.105)

Since ψ is strictly positive ν-a.e. we obtain that Vψ < ∞ ν-a.e. Hence, (Tt)t≥0 is
transient by Definition 5.36.

Now suppose that (Tt)t≥0 is transient. By Proposition 5.37 (i) we have that V f < ∞
ν − a.e. for every f ∈ L1

+(S , ν). We can therefore choose φ ∈ L1
+(S , ν) such that φ > 0,

Vφ < ∞ ν-a.e. and
∫

S φ dν = 1. Let

ψ := φ(Vφ ∨ 1)−1, (5.106)

by definition we have 0 < ψ ≤ φ ν-a.e. Moreover,∫
S
ψVψ dν ≤

∫
S
φVψ dν =

∫
S
ψVφ dν ≤

∫
S

(φ/Vφ) Vφ dν =
∫

S
φ dν = 1. (5.107)

When we plug this estimate in (5.98), we get that (E,D) is transient with reference
function ψ, proving (i).

We turn to (ii). Suppose that (E,D) is transient. Fix f ∈ De, by definition of
the extended Dirichlet space, there exists a E-Cauchy sequence ( fn)n∈N ⊂ D such
that limn→∞ fn = f in L∞(S , ν). By transience, (5.94) holds for all fn, n ∈ N. By
definition of the reference function ψ we know that f , fn ∈ L∞(S , ψ · ν). Consequently,
(5.94) also holds in the limit n → ∞. Equation (5.94) also implies that E( f , f ) = 0
if and only if f = 0 ν-a.e. for all f ∈ De. It therefore remains to show that De
equipped with the scalar product E is complete. To that end, let ( fn)n∈N ⊂ De be a
E-Cauchy sequence. For each n ∈ N choose a E-Cauchy sequence

(
fn,m

)
m∈N such that

limm→∞ fn,m = fn ν-a.e. Note that

E( fn − fn,m, fn − fn,m) = lim
k→∞
E( fn,k − fn,m, fn,k − fn,m). (5.108)

Therefore,
(
fn,m

)
m∈N converges to fn with respect to the scalar product E. By a

diagonal argument, we can assume without loss of generality that ( fn,m)m∈N is chosen
so that

lim
n→∞
E( fn − fn,n, fn − fn,n) = 0. (5.109)

It is clear that ( fn,n)n∈N ⊂ D is again a Cauchy sequence with respect to E. Moreover,
by virtue of (5.94) we can conclude that ( fn,n)n∈N is also Cauchy in L1(S , ψ · ν).
Consequently, there exists a f ∈ L1(S , ψ · ν) such that limn→∞ fn,n = f ν-a.e. By
definition, f ∈ De and

E( fn − f , fn − f ) ≤ E( fn − fn,n, fn − fn,n) + E( fn,n − f , fn,n − f ). (5.110)
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The first summand on the right-hand side goes to 0 as n→ ∞ by (5.109). As for the
second summand, recall that ( fn,n)n∈N is a E-Cauchy sequence that converges ν-a.e. to
f ∈ De. By (5.108) we find that the second summand also tends to 0 as n→ ∞. We
have therefore shown that fn → f with respect to E as n → ∞, thereby completing
the proof. ■

Using the recurrence-transience dichotomy from Proposition 5.37 (iii), Theo-
rem 5.38 also characterizes a recurrent Dirichlet form in terms of its extended Dirichlet
space. Here we call a Dirichlet form (E,D) recurrent if its associated Markovian
semigroup (Tt)t≥0 is recurrent. A more direct characterization with further useful
implications is the following.

Theorem 5.39. Let (E,D) be a Dirichlet form on L2(S , ν). Then (E,D) is recurrent if
and only if 1 ∈ De and

E(1, 1) = 0. (5.111)

Proof. We only show necessity because we will only make use of this direction. For
sufficiency see the proof of [CF11, Theorem 2.1.8].

Before we start with the actual proof we make the following observation. Let
η ∈ L1(S , ν) ∩ L∞(S , ν) with η > 0 ν-a.e. For each f , g ∈ D define,

Eη( f , g) := E( f , g) + ⟨ f , g⟩η·ν . (5.112)

Here, ⟨ · , · ⟩η·ν denotes the inner product on L2(S , η · ν), i.e.

⟨ f , g⟩η·ν =
∫

S
f (x)g(x)η(x) ν(dx). (5.113)

Then, (Eη,D) is again a Dirichlet form on L2(S , ν)2, because for all f ∈ D we have
the inequality,

E1( f , f ) ≤ Eη( f , f ) + ⟨ f , f ⟩ ≤ E( f , f ) + (1 + ∥η∥∞) ⟨ f , f ⟩ . (5.114)

We denote by
(
T η

t

)
t≥0

and
(
Gη
α

)
α>0

the semigroup and the resolvent associated with
the perturbed Dirichlet form (Eη,D). Observe that for every f ∈ L2(S , ν), g ∈ D and
α > 0 it holds that

Eα(Gη
α f , g) = Eηα(Gη

α f , g) −
〈
Gη
α f , g

〉
η·ν
=

〈
f − ηGη

α f , g
〉
ν

(5.115)

and consequently,
Gη
α f = Gα( f − ηGη

α f ), (5.116)
2note that the sets L2(S , ν) and L2(S , η · ν) are equal.
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by virtue of (5.46).

To show that 1 ∈ De we need to find a sequence ( fn)n∈N ⊂ D such that 0 ≤ f ≤ 1
and limn→∞ fn = 1 ν-a.e. such that

lim
n→∞
E( fn, fn) = 0. (5.117)

We claim that for η as above with the additional assumption ∥η∥∞ ≤ 1, the sequence
( fn)n∈N ⊂ D where

fn = Gη
1/nη, (5.118)

is such a sequence.

To prove the claim fix ε > 0. Note that (E,D) can be considered to be a Dirichlet
form on the perturbed space L2(S , (ε + η) · ν). In view of this interpretation we obtain,

E1
(
Gη
ε(ε f + η f ), g

)
= E

(
Gη
ε(ε f + η f ), g

)
+

〈
Gη
ε(ε f + η f ), g

〉
(η+ε)·ν

= E
η
ε

(
Gη
ε(ε f + η f ), g

)
= ⟨ε f + η f , g⟩ν = ⟨ f , g⟩(ε+η)·ν .

(5.119)

Hence, Gη
ε(ε f + η f ) is the 1-order resolvent of f with respect to the Dirichlet form

(E,D) on L2(S , (ε + η) · ν). By the properties of the resolvent we immediately obtain

0 ≤ Gη
ε(ε f + η f ) ≤ 1 (5.120)

for all f ∈ D with 0 ≤ f ≤ 1. If we now let first ε→ 0 and then f → 1, we find that
ν-a.e.,

0 ≤ Vηη ≤ 1, (5.121)

where Vηη = limε→0 Gη
εη, as in (5.89). Now take f = η in (5.116), then

Gη
εη = Gε(η(1 −Gη

εη)). (5.122)

If we now let ε→ 0, we obtain together with (5.121),

0 ≤ V(η(1 − Vηη)) ≤ lim
ε→0

Gε(η(1 −Gη
εη)) = Vηη ≤ 1. (5.123)

By definition of recurrence, Definition 5.36, we conclude that V(η(1−Vηη)) = 0 ν-a.e.
and therefore,

Vηη = 1 ν-a.e. (5.124)

We have shown fn ↑ 1 ν-a.e. as n → ∞ and it remains to show (5.117). Applying
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(5.115), we obtain

0 ≤ E( fn, fn) ≤ E1/n( fn, fn) = ⟨η − η fn, fn⟩ν

=

∫
S
η(1 − fn) fn dν→ 0,

(5.125)

as n→ ∞, which proves the claim. ■

Corollary 5.40. Let (E,D) be a recurrent Dirichlet form on L2(S , ν). Then 1 ∈ De

and
E(1, f ) = 0 (5.126)

for all f ∈ De.

Proof. Fix f ∈ De and let ( fn)n∈N ⊂ D be defined as in the proof of Theorem 5.39.
Instead of (5.125) we can write∣∣∣E1/n( fn, f )

∣∣∣ = ∣∣∣∣∣∫
S
η(1 − fn) f dν

∣∣∣∣∣ ≤ ∥ f ∥∞ ∫
S
|1 − fn| dν→ 0, (5.127)

as n→ ∞, which implies the assertion. ■

Finally, we relate the transience of a ν-symmetric Feller process as defined in the
previous chapter to the transience of its associated Dirichlet form.

Proposition 5.41. Let (S ,U, ν) be a locally compact uniform measure space and
suppose X is a transient ν-symmetric Feller process with values in (Sϑ,Uϑ). Then the
Dirichlet form (E,D) on L2(S , ν) associated with X is transient.

Proof. Let (Pt)t≥0 denote the semigroup associated with X. Recall Lemma 2.40
and observe that (S ,U) is Lindelöf and consequently, by Lemma A.20, σ-compact.
Therefore, we can write S as the union of countably many compact subsets (Kn)n∈N ⊂

S . By Definition 4.67, we have

cn := sup
x∈S
Ex

[∫ ∞

0
1Kn(Xt) dt

]
= sup

x∈S

∫ ∞

0
Pt1Kn(x) dt < ∞. (5.128)

Now choose a sequence (αn)n∈N ⊂ R with αn > 0 for all n ∈ N such that
∑

n∈N αn < ∞.
Set

φ :=
∞∑

n=1

αn

(cn + ν(Kn)) ∨ 1
1Kn . (5.129)
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Then, φ ∈ Bb(S ), φ ∈ L1(S , ν) ∩ L2(S , ν), φ > 0 ν-a.e. and

sup
x∈S

∫ ∞

0
Ptφ(x) dt < ∞. (5.130)

By definition, Ttφ is a representative of Ptφ and we can conclude that

Vφ =
∫ ∞

0
Ttφ dt < ∞ ν-a.e. (5.131)

Consequently, by Definition 5.36 we have that (Tt)t≥0 is transient which implies the
assertion by Theorem 5.38. ■

5.4 Potential theory
Potential theoretic concepts are an important tool in the analysis of Markov pro-

cesses. In this section, we introduce some potential theoretic notions with the help
of Dirichlet forms and show how they relate to the dynamics of the processes they
are associated with. For more details see [FOT11], [CF11] and the classical books on
potential theory [BG68] by RobertM. Blumenthal and Ronald Getoor or [DM79]
by Claude Dellacherie and Paul-AndréMeyer.

5.4.1 Choquet capacities
The notion of capacity is at the very core of classical potential theory. We begin with

the definition of Choquet capacity named after the French mathematician Gustave
Choquet (1915–2006). We will use the following definition because it is tailored to
our needs. For a more general definition see [DM79, Definition III.27].

Definition 5.42 (Choquet capacity). Let (S ,U) be a uniform Hausdorff space. Denote
byK the class of all compact subsets of S . An extended real valued set function φ that
is defined on all the subsets of S is called a Choquet capacity on S if the following
hold

(i) φ is increasing, i.e. A ⊂ B implies that φ(A) ≤ φ(B).

(ii) For every increasing sequence (An)n∈N of subsets of S it holds that

φ

⋃
n∈N

An

 = sup
n∈N

φ(An). (5.132)
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(iii) For every decreasing sequence (Kn)n∈N of elements of K it holds that

φ

⋂
n∈N

Kn

 = inf
n∈N

φ(Kn). (5.133)

Given a Choquet capacity φ on S we say an arbitrary set A ⊂ S is φ-capacitable or
just capacitable if

φ(A) = sup
K∈K ,K⊂A

φ(K). (5.134)

♢

The following result is a simplified version of the celebrated result of Choquet. A
proof can be found for example in [DM79].

Proposition 5.43 (Choquet’s capacibility theorem). Every Borel set is capacitable.

Proof. See [DM79, Theorem III.28]. ■

We have the following useful characterization of Choquet capacities.

Proposition 5.44 (Theorem A.1.2 in [FOT11]). Let (S ,U) be a uniform Hausdorff
space and denote by T the uniform topology. Suppose φ : T → R+ ∪ {∞} satisfies

(i) for all A, B ∈ T , A ⊂ B⇒ φ(A) ≤ φ(B),

(ii) for all A, B ∈ T , φ(A ∪ B) + φ(A ∩ B) ≤ φ(A) + φ(B),

(iii) for every increasing sequence (An)n∈N ⊂ T ,

φ

⋃
n∈N

An

 = sup
n∈N

φ(An). (5.135)

For an arbitrary A ⊂ S set

φ∗(A) := inf
B∈T , A⊂B

φ(B). (5.136)

Then φ∗ is a Choquet capacity. Moreover φ∗ extends φ and is σ-subadditive.
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Proof. By definition, we immediately obtain that φ∗ is monotone and extends φ, i.e.
φ∗|T = φ. Furthermore, we have by (ii) that for A1, A2 ⊂ S ,

φ∗ (A1 ∪ A2) = inf { φ(B) | B ∈ T , A1 ∪ A2 ⊂ B }

= inf { φ(B1 ∪ B2) | Bi ∈ T , Ai ⊂ Bi, i = 1, 2 }

≤ inf
B1∈T , A1⊂B1

φ(B1) + inf
B2∈T , A2⊂B2

φ(B2) = φ∗(A1) + φ∗(A2).
(5.137)

Hence, φ∗ is subadditive. The claimed σ-subadditivity of φ∗ follows immediately if
we can show that φ∗ satisfy property (ii) of Definition 5.42. To see that, let (An)n∈N
be an arbitrary sequence of subsets of S and write Bn :=

⋃n
i=1 Ai. Then (Bn)n∈N is an

increasing sequence of subsets of S and by combining (5.132) and (5.137) we obtain

φ∗
⋃

n∈N

An

 = φ∗ ⋃
n∈N

Bn

 = sup
n∈N

φ∗(Bn) ≤ sup
n∈N

n∑
i=1

φ∗(Ai) =
∑
n∈N

φ∗(An). (5.138)

Let’s show that φ∗ satisfies (ii) of Definition 5.42 first. Suppose A1, A2, B1, B2 ∈ T

with Ai ⊂ Bi and φ(Ai), φ(Bi) < ∞ for i = 1, 2. Using properties (i) and (ii) of φ, we
have

φ(B1 ∪ B2) + φ(A1) ≤ φ(B1 ∪ (B2 ∪ A1)) + φ(B1 ∩ (B2 ∪ A1))

≤ φ(B1) + φ(B2 ∪ A1)
(5.139)

and similarly,

φ(B2 ∪ A1) + φ(A2) ≤ φ(B2 ∪ (A1 ∪ A2)) + φ(B2 ∩ (A1 ∪ A2))

≤ φ(B2) + φ(A1 ∪ A2).
(5.140)

Adding (5.139) and (5.140) and rearranging yields

φ(B1 ∪ B2) − φ(A1 ∪ A2) ≤ φ(B1) − φ(A1) + φ(B2) − φ(A2). (5.141)

Now let (An)n∈N , (Bn)n∈N ⊂ T with An ⊂ Bn and φ(An), φ(Bn) < ∞ for all n ∈ N.
Suppose that for some n ∈ N,

φ

 n⋃
i=1

Bi

 − φ  n⋃
i=1

Ai

 ≤ n∑
i=1

φ(Bi) − φ(Ai). (5.142)
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Then, by (5.141),

φ

n+1⋃
i=1

Bi

 − φ
n+1⋃

i=1

Ai

 ≤ φ
 n⋃

i=1

Bi

 − φ  n⋃
i=1

Ai

 + φ(Bn+1) − φ(An+1)

≤

n+1∑
i=1

φ(Bi) − φ(Ai).

(5.143)

Therefore, by induction, (5.142) holds in fact for all n ∈ N.

Let (An)n∈N be an increasing sequence of arbitrary subsets of S and set A :=⋃
n∈N An. Since An ⊂ A for all n ∈ N we have φ∗(An) ≤ φ∗(A) and taking the

supremum on the right hand side we obtain φ∗(A) ≥ supn∈N φ
∗(An). It therefore

remains to show that
φ∗(A) ≤ sup

n∈N
φ∗(An). (5.144)

Without loss of generality, we can assume that the right-hand side of (5.144) is finite.
By definition of φ∗ we can find for each ε > 0 and n ∈ N a Bn ∈ T such that An ⊂ Bn

and
φ∗(An) ≤ φ(Bn) ≤ φ∗(An) +

ε

2n . (5.145)

By assumption, the limit limn→∞ φ
∗(An) exists and by (5.145) we obtain

lim
n→∞

φ∗(An) = lim
n→∞

φ(Bn). (5.146)

Now choose k, n ∈ N with k < n. Then, Ak ⊂ Bk∩Bn and we can extend the inequality
(5.145) to

φ∗(Ak) ≤ φ(Bk ∩ Bn) ≤ φ(Bk) ≤ φ∗(Ak) +
ε

2k . (5.147)

Therefore, φ(Bk) − φ(Bk ∩ Bn) ≤ φ∗(Ak) + ε2−k − φ∗(Ak) = ε2−k and consequently

n∑
k=1

φ(Bk) − Φ(Bk ∩ Bn) ≤ ε
n∑

k=1

2−k < ε. (5.148)

We can now apply (5.142) to obtain

φ

 n⋃
k=1

Bk

 − φ(Bn) = φ

 n⋃
k=1

Bk

 − φ
 n⋃

k=1

Bn ∩ Bk


≤

n∑
k=1

φ(Bk) − φ(Bk ∩ Bn) < ε.

(5.149)

186 Chapter 5 Dirichlet Forms and symmetric Feller Processes



Now set B :=
⋃

n∈N Bn. Then B is open and A ⊂ B and we can conclude with (iii),

φ∗(A) ≤ φ(B) = lim
n→∞

φ

 n⋃
k=1

Bn

 . (5.150)

Taking the limit in (5.149) and applying (5.146) we find that

lim
n→∞

φ

 n⋃
k=1

Bk

 ≤ lim
n→∞

φ(Bn) + ε ≤ lim
n→∞

φ∗(An) + ε. (5.151)

Finally, plugging this estimate into (5.150), we arrive at the desired inequality as
ε→ 0.

It remains to show that φ∗ satisfies property (iii) of Definition 5.42. Denote by
(Kn)n∈N a decreasing sequence of compact subsets of S . Since

⋂
n∈N Kn ⊂ Kn, we

have φ∗
(⋂

n∈N Kn
)
≤ φ∗(Kn) for each n ∈ N and it remains to show that

inf
n∈N

φ∗(Kn) ≤ φ∗
⋂

n∈N

Kn

 . (5.152)

Again, we assume without loss of generality that the right-hand side is finite. By
definition of φ∗ we can find for each ε > 0 an open B ∈ T with φ(B) < ∞ such that⋂

n∈N Kn ⊂ B and

φ(B) ≤ φ∗
⋂

n∈N

Kn

 + ε. (5.153)

That means that for some n ∈ N it must hold that
⋂n

k=1 Kn ⊂ B and therefore
φ∗(Kl) ≤ φ(B) for all l ≥ n. Now, since ε > 0 was arbitrary, this concludes the
proof. ■

5.4.2 α-capacities

We now aim to define a capacity that is related to the ν-symmetric Feller process X
through its Dirichlet form. We will also introduce a class of inverse capacities that we
call resistances and show how these objects relate to the dynamics of the underlying
process.

As usual, let (S ,U, ν) be a uniform measure space and denote by T the uniform
topology, i.e. the open subsets of S with respect to the topology induced by the
uniformityU.

Furthermore, let X be a ν-symmetric Feller process with values in (S ,U) and denote
by (E,D) the Dirichlet form associated with X. Recall the definition of the symmetric
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form Eα( f , g) = E( f , g) + α ⟨ f , g⟩ for f , g ∈ D and α > 0 and recall thatD equipped
with Eα becomes a Hilbert space. Sometimes we write

∥ f ∥Eα := Eα( f , f )1/2 and ∥ f ∥E := E( f , f )1/2 (5.154)

for the (pseudo-)norms onD induced by Eα and E, respectively.

As before, we denote by (Tt)t≥0 and (Gα)α>0 the Markovian semigroup and the
Markovian resolvent associated with (E,D). The following definition is an analogue
to Definition 4.27 for elements of L2(S , ν).

Definition 5.45. Let α > 0. An element f ∈ L2(S , ν) is α-excessive (with respect to
(Tt)t≥0) if f ≥ 0 ν-a.e. and for all t > 0,

e−αtTt f ≤ f ν-a.e. (5.155)

We say that f ∈ L2(S , ν) is α-excessive when the respective semigroup is evident from
the context. ♢

Observe that α-excessive functions can be characterized via Eα, too.

Lemma 5.46 ([CF11, Lemma 1.2.4]). Let α > 0 and f ∈ D. Then, f is α-excessive if
and only if

Eα( f , g) ≥ 0 (5.156)

for every g ∈ D with g ≥ 0 ν-a.e.

Proof. Suppose f ∈ D is α-excessive and g ≥ 0 ν-a.e. Then, f − e−αtTt f ≥ 0 ν-a.e.
for all t > 0, by definition. Hence,

0 ≤
1
t

〈
f − e−αtTt f , g

〉
=

1
t
⟨ f − Tt f , g⟩ +

1 − e−αt

t
⟨Tt f , g⟩ (5.157)

for all t > 0. Using the approximation of E by E(t) given in (5.50) and the strong
continuity of (Tt)t≥0 we get that the right hand side of (5.157) converges to Eα( f , g)
as t → 0.

For the converse implication suppose f ∈ D such that (5.156) holds for all non-
negative g ∈ D. For each t > 0 and α > 0 we have

Gαg − e−αtTtGαg =
∫ ∞

0
e−αsTsg ds −

∫ ∞

0
e−α(s+t)Ts+tg ds

=

∫ t

0
e−αsTsg ds ≥ 0 ν-a.e.

(5.158)
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Therefore, by symmetry of Tt,〈
f − e−αtTt f , g

〉
= ⟨ f , g⟩ −

〈
f , e−αtTtg

〉
=

〈
f , g − e−αtTtg

〉
. (5.159)

Recall that by Remark 5.23 (i) we have Eα( f ,Gαg) = ⟨ f , g⟩. Hence,〈
f − e−αtTt f , g

〉
= Eα

(
f ,Gαg − e−αtTtGαg

)
≥ 0, (5.160)

by (5.159) and assumption. Consequently, f − e−αtTt f ≥ 0 ν-a.e. and f is α-
excessive. ■

For each A ∈ T we introduce the family

LA := { f ∈ D | f ≥ 1 ν-a.e. on A } (5.161)

and note that LA is a convex and closed subset of the real Hilbert space (D,Eα) for
each α > 0.

Definition 5.47 (α-capacity). For A ∈ T and α > 0 the α-capacity of A is given as

Capα(A) := inf
{
Eα( f , f )

∣∣∣ f ∈ LA
}
, (5.162)

where inf Ø := ∞, by convention. For arbitrary subsets B ⊂ S we define

Capα(B) := inf
{

Capα(A)
∣∣∣ A ∈ T , A ⊃ B

}
. (5.163)

For convenience, we write

Cα :=
{

A ⊂ S
∣∣∣ Capα(A) < ∞

}
(5.164)

for the family of subsets of S with finite α-capacity. ♢

Proposition 5.48. Let α > 0 and A ∈ Cα ∩ T be an open set with finite α-capacity.
Then there exists a unique element hαA ∈ L

A such that

Eα(hαA, h
α
A) = Capα(A). (5.165)

Furthermore, hαA has the following properties.

(i) 0 ≤ hαA ≤ 1 ν-almost everywhere on S and hαA = 1 ν-almost everywhere on A.

(ii) hαA is α-excessive.

(iii) For every f ∈ D with f = 0 ν-a.e. on A it holds that

Eα(hαA, f ) = 0. (5.166)
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(iv) For each f ∈ D with f = 1 ν-a.e. on A it holds that

Eα(hαA, f ) = Capα(A). (5.167)

(v) If B ∈ Cα ∩ T is another open set with finite α-capacity such that A ⊂ B then,
hαA ≤ hαB ν-a.e. and

Capα(A) = Eα(hαA, h
α
A) ≤ Eα(hαB, h

α
B) = Capα(B). (5.168)

Proof. For each A ∈ Cα ∩ T , the set LA is a convex and closed subset of the Hilbert
space (D,Eα). Therefore, the variational problem in (5.162) has a unique solution.

The first assertion (i) follows directly from the Markov property of E, the fact that
f + ∧ 1 ∈ LA for all f ∈ LA and ∥ f + ∧ 1∥2 ≤ ∥ f ∥2.

We use Lemma 5.46 to show (ii). Suppose f ∈ D is non-negative. Then for all
ε > 0, hαA + ε f ∈ LA. Without loss of generality we can assume that Eα( f , f ) > 0 or,
equivalently, f , 0. Hence,

0 ≤ Eα(hαA + ε f , hαA + ε f ) − Eα(hαA, h
α
A) = ε

(
2Eα(hαA, f ) + εEα( f , f )

)
(5.169)

and therefore
ε

2
Eα( f , f ) ≥ −Eα(hαA, f ) (5.170)

which yields the desired inequality E(hαA, f ) ≥ 0 since ε > 0 was arbitrary.

Let f ∈ D be such that f ≥ 0 ν-a.e. on S and f = 0 ν-a.e. on A. Then, for each
ε > 0, we have hαA − ε f ∈ LA. with the same argument as above we have

ε

2
Eα( f , f ) ≥ Eα(hαA, f ). (5.171)

Since ε > 0 was arbitrary and hαA is α-excessive by (ii) we obtain Eα(hαA, f ) = 0.
The statement (iii) then follows if we consider the positive and negative part of f
separately.

Property (iv) is a direct consequence of (iii) and the last property (v) follows from
the fact that LB ⊂ LA whenever A ⊂ B. ■

The minimizer hαA is sometimes referred to as the α-order equilibrium potential of
A (cf. [CF11, p.78]).

Let A ⊂ S and note that Capβ(A) > 0 for some β > 0 implies Capα(A) > 0 for all
α > 0. It therefore suffices to consider only a particular α > 0 e.g. α = 1 when we
talk about sets with capacity 0. We introduce some potential theoretic notions.
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Definition 5.49. Let X be a ν-symmetric Feller process with values in Sϑ and (E,D)
the Dirichlet form associated with X. A set A ⊂ S is said to be E-polar or polar for X,
if Cap1(A) = 0. A property that holds everywhere outside a polar set is said to hold
E-quasi everywhere and a increasing sequence {Fn}n≥1 of closed subsets of S is called
a E-nest if Fn ↑ S and Cap1(S \ Fk)→ 0 as n→ ∞. For the sake of readability, we
drop the E from the terminology when it is clear from the context which Dirichlet
form we are referring to. ♢

A set A ⊂ S which is polar in the sense of the above definition can be considered
small. There are various other notions of smallness of sets which are intrinsically
related. For example, from a measure-theoretic viewpoint we consider (Borel) sets
as small if they have measure 0. It is an immediate consequence of the definition of
the α-capacity that every open set A ∈ B with ν(A) has capacity zero. This follows
simply from the fact that the function 0 ∈ L2(S , ν) can take any value on the nullset
A. Sometimes, a set A ⊂ S is also called X-polar (with respect to a process X)
if it is contained a nearly Borel measurable set B ∈ Bn (see Definition 4.50) with
Px(τB < ∞) = 0 for all x ∈ S (cf. [CF11, Definition A.2.6]). On the other hand,
a set A ⊂ S is called thin if it has no regular points (see Definition 4.55), i.e. if
Px(τA = 0) = 0 for all x ∈ A. A set that is contained in a countable union of thin sets
is called semipolar (cf. [CF11, Definition A.2.6]). Some relations between these and
further notions of smallness of sets are presented in the diagram in [FOT11, p. 158].
One important equivalence is the following.

Proposition 5.50. Let X be a ν-symmetric Feller process with values in Sϑ and (E,D)
the Dirichlet form associated with X. A set A ⊂ S is E-polar if and only if it is ν-polar,
i.e. A is contained in a nearly Borel measurable set B ⊂ Bn such that

Pν(τB < ∞) = 0. (5.172)

Proof. See [CF11, Theorem 3.1.3]. ■

Before we can show that α-capacities are capacities in the sense of Choquet we
need an important characterization of the minimizer hαA of the variational problem in
(5.162).

Theorem 5.51 (Characterization of minimizers). Let α > 0 and A ∈ Cα be an open
set with finite α-capacity and hαA ∈ L

A the α-equilibrium potential of A.

(i) hA,α is the unique α-excessive element of LA such that hαA = 1 ν-almost every-
where on A.
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(ii) hαA is the unique element of LA with

Eα(hαA, h
α
A) ≤ Eα( f , hαA) (5.173)

for all f ∈ LA.

(iii) hαA is the minimal α-excessive element ofLA in the sense that for all α-excessive
g ∈ LA it holds that hαA ≤ g ν-a.e.

Proof. By Proposition 5.48 we know that hαA is α-excessive and = 1 ν-a.e. on A. Let
h ∈ LA be another α-excessive function with h = 1 ν-a.e. on A. Then, hαA − h = 0
ν-a.e. on A. Inspecting the proof of (iii) of Proposition 5.48 we realize that we have
only used the α-excessivity of hαA. Therefore, the same property holds for h. Hence,

Eα(hαA − h, hαA − h) = 0, (5.174)

which implies that h = hαA ν-a.e.

We turn to the proof of (iii). Suppose h ∈ LA is α-excessive. As an immediate
consequence of the definition of α-excessivity we obtain that hαA∧h is also α-excessive.
Furthermore, hαA ∧ h = 1 ν-a.e. on A and we can conclude from (i) that hαA ∧ h = hαA
which means hαA ≤ h ν-a.e.

It remains to proof the characterization (iii). Note that for every f ∈ LA and
0 < ε < 1 we have that hαA + ε( f − hαA) ∈ LA. Hence,

0 ≤ Eα
(
hαA + ε( f − hαA), hαA + ε( f − hαA)

)
− Eα(hαA, h

α
A)

= ε
(
2Eα(hαA, f − hαA) + εEα( f − hαA, f − hαA)

)
.

(5.175)

And consequently

Eα(hαA, f − hαA) ≥ −
ε

2
Eα( f − hαA, f − hαA), (5.176)

letting ε→ 0 we have Eα(hαA, f − hαA) ≥ 0. In other words, hαA satisfies (5.173). Now
assume that h ∈ LA is another function that satisfies (5.173). Then we can plug hαA
into the inequality and obtain

Eα(h, hαA − h) ≥ 0. (5.177)

Finally, we can conclude

Eα(h − hαA, h − hαA) = −
(
Eα(h, hαA − h) + Eα(hαA, h − hαA)

)
≤ 0 (5.178)

and therefore h = hαA ν-a.e.

■
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Proposition 5.52. For each α ≥ 0 the α-capacity is a Choquet capacity.

Proof. Fix α > 0. It suffices to show that Capα satisfies the properties (i) to (iii)
of Proposition 5.44 for open sets. We have already shown that Capα satisfies (i) in
Proposition 5.48 (v).

We start by showing (ii). To that end let A, B ∈ Cα ∩ T be open sets with finite
α-capacity. Recall that by Lemma 5.26, E( f +, f −) ≤ 0 for all f ∈ D. This directly
implies that Eα(| f |, | f |) ≤ Eα( f , f ) for all α > 0 and f ∈ D. Therefore,

Capα(A ∪ B) + Capα(A ∩ B) ≤ Eα(hαA ∨ hαB, h
α
A ∨ hαB) + Eα(hαA ∧ hαB, h

α
A ∧ hαB)

=
1
2

(
Eα(hαA + hαB, h

α
A + hαB) + Eα(|hαA − hαB|, |h

α
A − hαB|)

)
≤ Eα(hαA, h

α
A) + Eα(hαB, h

α
B) = Capα(A) + Capα(B)

(5.179)

Now let (An)n∈N ⊂ Cα∩T be an increasing sequence of open sets with finite α-capacity.
In order to show (iii) we can assume without loss of generality that supn∈N Capα(An) <
∞. Let k, n ∈ N with k < n. Then,

Eα(hαAn
− hαAk

, hαAn
− hαAk

) = Capα(An) + Capα(Ak) − 2Eα(hαAn
, hαAk

). (5.180)

Note that hαAn
= 1 ν-a.e. on Ak ⊂ Ak. Therefore, by (iv) of Proposition 5.48,

Eα(hαAn
− hαAk

, hαAn
− hαAk

) = Capα(An) − Capα(Ak). (5.181)

Hence,
(
hαAn

)
n∈N

is a Eα-Cauchy sequence. By completeness of the Hilbert space
(D,Eα), there exists a h ∈ D such that limn→∞ hαAn

= α with respect to Eα. Evidently,
h = 1 ν-a.e. on A :=

⋃
n∈N An. Then we have for all f ∈ D with f ≥ 0 ν-a.e.,

Eα(h, f ) = lim
n→∞
Eα(hαAn

, f ) ≥ 0, (5.182)

by Proposition 5.48 (ii). Therefore, h is α-excessive by Lemma 5.46 and we can apply
Theorem 5.51 (i) to conclude that

sup
n∈N

Capα(An) = lim
n→∞
Eα(hαAn

, hαAn
) = Eα(h, h) = Capα(A). (5.183)

■

We make the following observation about continuous functions.

Lemma 5.53. Let α > 0 and f ∈ D ∩ C(S ) be a continuous representative of an
element ofD. Then,

Capα ({ x ∈ S | | f (x)| > λ }) ≤ λ−2Eα( f , f ), (5.184)
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for all λ > 0.

Proof. By continuity of f , the set A := ({ x ∈ S | | f (x)| > λ }) is open. Furthermore,
λ−1| f | ∈ LA and hence

Capα(A) ≤ Eα(λ−1| f |, λ−1| f |) ≤ λ−2Eα( f , f ), (5.185)

where the last inequality is due to Lemma 5.26. ■

Let X be a ν-symmetric Feller process with values in (S ,U) and Dirichlet form
(E,D). Recall (e.g. from (4.109)) that we write

τA := inf { t > 0 | Xt ∈ A } . (5.186)

for the first hitting time of a Borel set A ∈ B. As a first result that relates the potential
theoretic concepts we have developed so far to the process X we have the following.

Proposition 5.54 ([CF11, Lemma 3.1.1]). Let α > 0 and A ∈ Cα ∩ T be an open set
with finite α-capacity. Define the function pαA : S → R+ by

pαA(x) = Ex
[
e−ατA

]
x ∈ S . (5.187)

Then, pαA = hαA ν-a.e.

Proof. As usual we denote the L2-semigroup associated with (E,D) by (Tt)t≥0 and the
Feller semigroup associated with the process X by (Pt)t≥0. By Proposition 5.29, we
have that for all f ∈ Bb(S ) ∩ L2(S , ν) and t > 0, Tt f = Pt f ν-a.e. Moreover we have
that pαA is α-excessive with respect to (Pt)t≥0 by Proposition 4.59 and, as discussed
above in Proposition 5.48, hαA is α-excessive with respect to (Tt)t≥0. By definition of
pαA, we have pαA(x) = 1 for all x ∈ A. We can therefore apply (i) of Theorem 5.51 to
prove the claim once we have shown that pαA ∈ D because then pαA ∈ L2(S , ν) and
therefore, pαA is also α-excessive with respect to (Tt)t≥0.

By application of the Cauchy-Schwarz inequality to the scalar product E(t) we can
show that an α-excessive function f ∈ L2(S , ν) is an element of D if there exists a
g ∈ D with f ≤ g ν-a.e. (cf. [CF11, Lemma 1.2.3]). It therefore suffices to show that

pαA ≤ hαA, ν-a.e. (5.188)

because then pαA ∈ L2(S , ν) and consequently in the domain of E due to the aforemen-
tioned.

In order to show (5.188) fix a Borel measurable representative h̃ ∈ B+b (S ) of the
equivalence class hαA ∈ L2(S , ν) such that h̃(x) = 1 for all x ∈ A. Clearly, h̃ is α-
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excessive with respect to (Pt)t≥0 and by Proposition 4.29 the real-valued stochastic
process

(Yt)t≥0 :=
(
e−αth̃(Xt)

)
t≥0

(5.189)

is a Pµ-supermartingale with respect to the canonical filtration (At)t≥0 for any initial
distribution µ ∈ M1(S ). Furthermore, Yt is bounded by 1 for each t ≥ 0 which implies
uniform integrability of Y .

Consider the following construction. Let Γ ⊂ (0,∞) be a finite set with a := min Γ
and b := maxΓ and write

τ(Γ, A) := min { t ∈ Γ | Xt ∈ A } , (5.190)

and set τ(Γ, A) = b if { t ∈ Γ | Xt ∈ A } = Ø. Clearly, τ(Γ, A) is a stopping time and
Yτ(Γ,A) = e−ατ(Γ,A) on the event {τ(Γ, A) < b}.

Let g ∈ B+(S ) be a non negative Borel measurable function with
∫

S g dν = 1 and
set µ := g · ν. Then,

Eµ
[
e−ατ(Γ,A)

∣∣∣ τ(Γ, A) < b
]
≤ Eµ

[
Yτ(Γ,A)

]
. (5.191)

By uniform integrability we can apply the optional sampling theorem (cf. [Kle14,
Theorem 10.21]) to obtain

Eµ
[
e−ατ(Γ,A)

∣∣∣ τ(Γ, A) < b
]
≤ Eµ [Ya] . (5.192)

Now fix b > 0 and choose for each n ∈ N a finite set Γn ⊂ (0, b) ∩ Q such that
Γn ⊂ Γn+1 and

⋃
n∈N Γn = (0, b) ∩ Q. As n → ∞ the right hand side of (5.192)

converges to

Eµ [Y0] =
∫

S
h̃ dµ =

∫
S

gh̃ dν =
〈
g, h̃

〉
. (5.193)

When we now let b→ ∞, the left hand side of (5.192) converges to

Eµ
[
e−ατA

]
=

∫
S

pαA dµ =
∫

S
gpαA dν =

〈
g, pαA

〉
. (5.194)

We have thus shown
〈
g, pαA

〉
≤

〈
g, h̃

〉
for all g ∈ B+(S ) with

∫
S g dν = 1 and hence

pαA ≤ h̃ ν-a.e. which concludes the proof. ■

5.4.3 0-capacities
In the last section we have made use of the fact that Eα turnsD into a Hilbert space

which ensured the existence of a unique minimizer for the variational problem that
defines the α-capacity (5.162).
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For the remainder of this section we assume that (E,D) is a regular Dirichlet form.

Now suppose (E,D) is a transient Dirichlet form on L2(S , ν) and recall that the
extended Dirichlet space as defined in Definition 5.33 De then becomes a Hilbert
space when equipped with the inner product E by Theorem 5.38. Analogously to the
definition of the α-capacity in the previous section we can therefore introduce the
notion of (0-)capacities for transient Dirichlet forms. To that end we write

LA
e := { f ∈ De | f ≥ 1 ν-a.e. on A } . (5.195)

Definition 5.55 (0-Capacity). Let (E,D) be a transient Dirichlet form. For open
A ∈ T we define the (0-)capacity3 as

Cap(A) := inf
{
E( f , f )

∣∣∣ f ∈ LA
e

}
(5.196)

if F A , Ø and Cap(A) := ∞ otherwise. For arbitrary B ⊂ S we define

Cap(B) := inf
{

Cap(A)
∣∣∣ A ∈ T , B ⊂ A

}
(5.197)

and denote by C :=
{

A ⊂ S
∣∣∣ Cap(A) < ∞

}
the subsets of S with finite (0-)capacity.

♢

By the same arguments laid out in the proof of Proposition 5.44, we can argue
that the capacity defined in Definition 5.55 is a Choquet capacity. Furthermore, it
is easy to check that the analogue of Lemma 5.53 remains true for the 0-capacity.
In particular, there exists a unique minimizer hA ∈ L

A
e to the variational problem in

(5.196) such that
Cap(A) = E(hA, hA). (5.198)

Lemma 5.56. Let f ∈ De ∩ C(S ) be a continuous representative of an element ofDe.
Then,

Cap ({ x ∈ S | | f (x)| > λ }) ≤ λ−2E( f , f ), (5.199)

for all λ > 0.

Proof. See the proof of Lemma 5.56. ■

Recall that a set A ⊂ S has zero α-capacity for some α > 0 then Capα(A) = 0
for all α > 0. Also, note that sets of zero capacity give us a finer notion than sets

3We will use the notation Cap without index for the 0-capacity. Note that both our reference texts
[CF11; FOT11] use the notation without index to denote the 1-capacity.
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of measure zero since ν(A) implies Capα(A) = 0 but not the other way around. In
Proposition 5.61 we will see that every set with zero α-capacity also has 0-capacity
zero and vice versa. We could hence equivalently reformulate the following definition
in terms of the α-capacity.

Definition 5.57 (Quasi continuous functions). We call an extended real-valued func-
tion f : S → R ∪ {−∞,∞} quasi continuous if for each ε > 0 there exists an open
set A ∈ T such that Cap(A) < ε and the restriction f |∁A of f to the closed set S \ A
is finite and continuous. If f |∁A is even finite and continuous on the complement
of A with respect to the one-point compactification Sϑ \ A, we say that f is quasi
continuous in the restricted sense. ♢

Proposition 5.58 ([FOT11, Theorem 2.1.3]). Let (E,D) be a regular Dirichlet form,
then each f ∈ De admits a quasi-continuous modification in the restricted sense
which we will denote by f̃ .

Proof. By definition of the extended Dirichlet spaceDe, we have thatD is a dense
subset ofDe. On the other hand, by definition of regularity, Definition 5.9, for each
f ∈ De there exists a sequence ( fn)n∈N ⊂ De ∩C0(S ) such that E1( fn − f , fn − f )→ 0
as n → ∞. Then, ( fn)n∈N is a Cauchy sequence and we can assume without loss of
generality that

E1( fn+1 − fn, fn+1 − f ) ≤ 2−3n. (5.200)

Furthermore, fn+1 − fn is continuous. If we set

An :=
{

x ∈ S
∣∣∣ | fn+1 − fn| > 2−n }

, (5.201)

we can apply Lemma 5.56 to obtain

Cap(An) ≤ 2−n. (5.202)

Observe that An ⊂ An+1 and set

Bn :=
∞⋂

k=n

∁Ak. (5.203)

Then, Bn is closed, Bn ⊂ Bn+1 for all n ∈ N and Cap(S \ Bn) → 0 as n → ∞.4 Now
fix N ∈ N, then we have for all k, l > m ≥ N and all x ∈ BN that

| fk(x) − fl(x)| ≤
∞∑

i=N+1

| fi+1(x) − fi(x)| ≤
∞∑

i=N+1

2−i = 2−N . (5.204)

4Recall that this means that (Bn)n∈N is a E-nest from Definition 5.49.
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Consequently, for each k ∈ N, the sequence of functions given by fn|Bk∪{ϑ} (where we
set fn(ϑ) = 0) converges uniformly as n→ ∞ and we can define

f̃ (x) := lim
n→∞

fn(x), x ∈
∞⋃

n=1

Bn. (5.205)

Then, by uniform convergence, f̃ is the desired quasi-continuous representative of f
since f̃ ∈ C∞(Bn) for each n ∈ N and f = f̃ ν-a.e. ■

Recall that we say that a property holds quasi everywhere (q.e.) if it holds outside
a set of capacity zero. For now, we will use the term with respect to the 0-capacity.
This ambiguity will be resolved once we prove Proposition 5.61.

Note that the elements ofDe are equivalence classes of ν-a.e. identical functions
and while f̃ = f ν-a.e. for all f ∈ De, f̃ itself describes an equivalence class of q.e.
identical functions.

We make the following observations about quasi-continuous functions.

Lemma 5.59 ([FOT11, Lemma 2.1.6 & Theorem 2.1.4]). Let (E,D) be a transient
regular Dirichlet form on L2(S , ν).

(i) For each f ∈ De and λ > 0,

Cap
({

x ∈ S
∣∣∣ ∣∣∣ f̃ (x)

∣∣∣ > λ })
≤ λ−2E( f , f ). (5.206)

(ii) Suppose ( fn)n∈N ⊂ De is a E-Cauchy sequence. Then there exists a f ∈ De
such that limn→∞ f̃n = f̃ q.e. and fn → f with respect to E as n→ ∞.

Proof. We start with the first claim (i). Fix f ∈ De. Similarly to the proof of
Proposition 5.58 there exists a sequence ( fn)n∈N ∈ C0(S )∩De such that limn→∞ fn = f
with respect to E, by regularity. By assumption, f = f̃ q.e. Therefore, for each ε > 0
there exists an open set A ∈ T such that Cap(A) < ε and fn → f̃ uniformly on S \ A
as n→ ∞. Now let λ > 0, then we find for each δ > 0 with δ < λ a n0 ∈ N such that{

x ∈ S
∣∣∣ ∣∣∣ f̃ (x)

∣∣∣ > λ }
⊂ { x ∈ S | | fn(x)| > λ − δ } ∪ A (5.207)

for all n > n0. Consequently, by Lemma 5.56,

Cap
({

x ∈ S
∣∣∣ ∣∣∣ f̃ (x)

∣∣∣ > λ })
≤ E( fn, fn)(λ − δ)−2 + ε. (5.208)

The claim then follows when we let n→ ∞, δ→ 0 and then ε→ 0.

For the second assertion (ii) let ( fn)n∈N ⊂ De be a E-Cauchy sequence. By as-
sumption and Theorem 5.38, (De,E) is a real Hilbert space and therefore complete.
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Consequently, there exists a f ∈ De with limn→∞ E( fn − f , fn − f ) = 0 and it remains
to show that limn→∞ f̃n = f q.e.

Similarly as in the proof of Proposition 5.58 we set

An :=
{

x ∈ S
∣∣∣ ∣∣∣ f̃n+1 − f̃n

∣∣∣ > 2−n
}
. (5.209)

By passing over to a subsequence, if necessary, we can assume by (i) that

Cap(An) ≤ 2−n. (5.210)

By quasi continuity of f̃n we can choose for every n ∈ N a family
(
E(n)

k

)
k∈N

of closed

subsets of S with E(n)
k ⊂ E(n)

k+1 and

Cap
(
S \ E(n)

k

)
≤

1
2nk

(5.211)

such that f̃n is continuous on E(n)
k for all k ∈ N. We can therefore set Ek :=

⋂
n∈N E(n)

k
to obtain a family of sets with Ek ⊂ Ek+1 and

Cap(S \ Ek) ≤ 1/k (5.212)

such that f̃n is continuous on Ek for each k, n ∈ N. For ε > 0 we can therefore find
open sets B1, B2 ∈ T with Cap(B1),Cap(B2) ≤ ε/2 and a n0 ∈ N such that An ⊂ B1
and f̃n is continuous on S \ B2 for all n > n0. Then, f̃n converges uniformly to f̃ on
B := B1 ∪ B2 and we can conclude the proof by letting ε→ 0.

■

For arbitrary A ⊂ S consider the following family of functions

F A :=
{

f ∈ De
∣∣∣ f̃ ≥ 1 q.e. on A

}
. (5.213)

Theorem 5.60. Let (E,D) be a transient regular Dirichlet form on L2(S , ν). Further,
let Ø , A ⊂ S be an arbitrary subset. Then the following hold.

(i) The 0-capacity of A is given by the following variational problem

Cap(A) = inf
{
E( f , f )

∣∣∣ f ∈ F A
}

(5.214)

(ii) Suppose F A is non empty. Then there exists a unique minimizer hA ∈ F
A to the

variational problem (5.214) and

Cap(A) = E(hA, hA). (5.215)
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(iii) The minimizer hA from (ii) satisfies 0 ≤ hA ≤ 1 ν-a.e. and h̃A = 1 q.e. on A.

We call the minimizer hA of the variational problem in (5.214) the 0-order equilib-
rium potential of A or simply the equilibrium potential of A.

Proof. We start with assertion (ii). Suppose F A , Ø. Then, clearly, the set F A is
convex and by Lemma 5.59 (ii) it is closed. Therefore, there exists a unique element
hA ∈ F

A such that
E(hA, hA) ≤ E( f , f ) (5.216)

for all f ∈ F A. By definition of capacity, there exists for each ε > 0 a B ∈ T open
such that A ⊂ B and

Cap(A) > Cap(B) − ε. (5.217)

Then LB
e ⊂ F

A since f ≥ 1 ν-a.e. on B implies f̃ ≥ 1 q.e. on B (cf. [FOT11, Lemma
2.1.4]). Consequently,

Cap(B) ≥ E(hA, hA) (5.218)

and hence Cap(A) ≥ E(hA, hA) since ε > 0 was arbitrary. For the reversed inequality
fix a quasi-continuous modification h̃A of hA. For each ε > 0 we can choose an open
set Bε such that Cap(Bε) < ε and h̃A is continuous on S \ Bε and h̃A ≥ 1 for all
x ∈ A \ Bε. For convenience we write hε for the minimizer of the variational problem
for the capacity of Bε, i.e. Cap(Bε) = E(hε, hε). Observe that the set

Eε :=
{

x ∈ S \ Bε
∣∣∣ h̃A(x) > 1 − ε

}
∪ Bε (5.219)

is open and A ⊂ Eε. On the other hand, hA + hε ≥ 1 − ε ν-a.e. on Eε. Hence,

Cap(A) ≤ Cap(Eε) ≤ (1 − ε)−1E(hA + hε, hA + hε)

≤ (1 − ε)−2
(
E(hA, hA)1/2 + E(hε, hε)1/2

)2

≤ (1 − ε)−2
(
E(hA, hA)1/2 + ε1/2

)2
,

(5.220)

where we have used the triangle inequality for E from Lemma 5.3 in the second line.
Letting ε→ 0, we obtain

Cap(A) ≤ E(hA, hA), (5.221)

therefore verifying (5.215). Furthermore, we obtain (i) as a direct consequence.
Assertion (iii) follows from the observation that for each f ∈ F A we have g :=
(0 ∨ f ) ∧ 1 ∈ F A and g̃ = 1 q.e. on A.

■

We are now in a position to show the equivalence of the quasi notions with respect
to the α-capacity and with respect to the 0-capacity.
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Proposition 5.61 ([FOT11, Theorem 2.1.6]). Let (E,D) be a transient regular Dirich-
let form on L2(S , ν). For all A ⊂ S we have Cap(A) = 0 if and only if Cap1(A) = 0.
Furthermore, a function f is quasi-continuous with respect to the 0-capacity if and
only if f is quasi-continuous with respect to the 1-capacity.

Recall from Definition 5.49 that a set A ⊂ S is said to be E-polar, if Cap1(A) = 0.

Proof of Proposition 5.61. Recall from Theorem 5.38 that if (E,D) is transient there
exists a function ψ ∈ L1(S , ν) with ψ > 0 ν-a.e. called the reference function such that∫

S
| f |ψ dν ≤ E( f , f )1/2 (5.222)

for all f ∈ De. Consequently, Cap(A) = 0 implies ν(A) = 0. On the other hand, it is
clear from the definition that

Cap(A) ≤ Cap1(A) (5.223)

for all A ⊂ S . Now suppose (An)n∈N ⊂ T is a decreasing sequence of relatively
compact open subsets of S . We first show that limn→∞ Cap(An) = 0 if and only if
limn→∞ Cap1(An) = 0. By (5.223) we only need to show the implication

lim
n→∞

Cap(An) = 0 ⇒ lim
n→∞

Cap1(An) = 0. (5.224)

Using (5.222), we obtain that

hAn → 0 ν-a.e (5.225)

as n→ ∞, where hAn denotes the minimizer for the variational problem for Cap(An),
as usual. By assumption the closure A1 is compact and E is regular. Consequently,
there exists a continuous function h ∈ D ∩ C0(S ) such that h(x) ≥ 1 for all x ∈ A1.
Define

hn := hAn ∧ h, (5.226)

then hn ∈ L2(S , ν) ∩De = D. Hence,

sup
n∈N
E1(hn, hn) ≤ sup

n∈N
E(hn, hn) + ⟨h, h⟩ ≤ sup

n∈N
E(h, h) + E(hAn , hAn) + ⟨h, h⟩

≤ sup
n∈N

Cap(An) + E1(h, h) ≤ Cap(A1) + E1(h, h) < ∞.
(5.227)

We can now apply the Banach-Saks Theorem (cf. [CF11, Theorem A.4.1]) to argue
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that there exists a subsequence
(
hnk

)
k∈N such that the Cesàro means

gk :=
1
k

k∑
j=1

hn j (5.228)

converge with respect to E1. By (5.225) we can conclude that hn → 0 ν-a.e. as n→ ∞
and consequently gk → 0 ν-a.e. as k → ∞. Observe that gk ∈ L

Ak as (An)n∈N was
taken to be decreasing. We arrive therefore at

Cap1(Ak) ≤ E1(gk, gk)→ 0, (5.229)

as n→ ∞, showing (5.224).

Now let A ⊂ S be arbitrary. From (5.223) we immediately obtain Cap(A) = 0 if
Cap1(A) = 0. Now observe that by σ-compactness there exists a decreasing sequence
of relatively compact open sets (An)n∈N ⊂ T such that A ⊂

⋂
n∈N and Cap1(An)→ 0

.Then the reverse implication follows from the statement above.

Now let f : S → R be quasi-continuous with respect to the 1-capacity. Then, for
every ε > 0 there exists an open set A such that Cap1(A) < ε and f |∁A is continuous.
Then (5.223) implies Cap(A) < ε, too. Now suppose f is quasi- continuous with
respect to the 0-capacity. Then, by σ-compactness, there exists a increasing sequence
(Kn)n∈N of compact subsets of S such that S =

⋃
n∈N Kn. For every n ∈ N we can

therefore find a decreasing sequence
(
A(n)

k

)
k∈N
⊂ T such that f |Kn\A

(n)
k

is continuous

and Cap(A(n)
k ) → 0 as k → ∞. Then we can find for every ε > 0 and n ∈ N a k ∈ N

such that
Cap1(A(n)

k ) ≤ ε2−n. (5.230)

Then, f is continuous on the complement of A :=
⋃

n∈N An and Cap1(A) ≤ ε and f is
quasi-continuous with respect to the 1-capacity, as claimed. ■

Next, we want to characterize the minimizer hA in a similar manner as in Theo-
rem 5.51. We first need the following definition.

Definition 5.62. An element f ∈ L∞(S , ν) is called excessive (with respect to (Tt)t≥0)
if f ≥ 0 ν-a.e. and for all t ≥ 0,

Tt f ≤ f ν-a.e. (5.231)
♢

Again, we can characterize excessive functions via the Dirichlet form.
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Lemma 5.63. An element f ∈ De is excessive if and only if

E( f , g) ≥ 0 (5.232)

for every g ∈ De with g ≥ 0 ν-a.e.

Proof. The claim follows from Lemma 5.46 by letting α→ 0. ■

Theorem 5.64. Let (E,D) be a transient regular Dirichlet form on L2(S , ν) and
Ø , A ⊂ S a non-empty subset of S . Denote by hA ∈ F

A the equilibrium potential of
A. Then hA is the unique element ofDe such that h̃A = 1 q.e. on A and

E(hA, f ) ≥ 0, (5.233)

for all f ∈ De with f̃ ≥ 0 q.e. on A.

Proof. Take f ∈ De with f̃ ≥ 0 q.e. on A. Then, for each ε > 0, ε f + hA ∈ F
A and

E(hA, hA) ≤ E(ε f + hA, ε f + hA). (5.234)

Rearranging yields
ε

2
E( f , f ) ≥ −E(hA, f ) (5.235)

from which we can conclude that E(hA, f ) ≥ 0. Now suppose that g ∈ F A is another
element of F A with g̃ = 1 q.e. on A and E( f , g) ≥ 0 for all f ∈ De with f̃ ≥ 0 q.e.
Suppose h ∈ F A, then h̃ − g ≥ 0 q.e. on A and we obtain

E(h, h) = E(g + (h − g), g + (h − g))

= E(g, g) + 2E(g, h − g) + E(h − g, h − g) ≥ E(g, g).
(5.236)

If we take h = hA, we can conclude that g = hA from Theorem 5.60 (ii), which
completes the proof.

■

Corollary 5.65. In the situation of Theorem 5.64, hA is also the unique element ofDe

such that h̃A = 1 q.e. on A and
E(hA, f ) = 0 (5.237)

for all f ∈ De with f̃ = 0 q.e. on A.

Proof. Suppose f ∈ De with f̃ = 0 q.e. on A, then − f has the same property and both
f̃ , −̃ f ≥ 0 q.e. on A. By Theorem 5.64 we obtain

E(hA, f ) ≥ 0 and E(hA,− f ) = −E(hA, f ) ≥ 0. (5.238)
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Consequently, E(hA, f ) = 0. For the converse implication suppose g ∈ De is another
element with g̃ = 1 q.e. on A satisfying (5.237) for all f ∈ De with f̃ = 0 q.e. on A.
Then, hA − g ∈ De and h̃A − g = 0 q.e. on A. Therefore,

0 = E(hA, hA − g) + E(g, hA − g) = E(hA, hA) − E(g, g) (5.239)

which implies E(g, g) = Cap(A) and therefore g = hA by uniqueness, Theorem 5.60
(ii). ■

Remark 5.66. For open sets A ∈ T ∩ C with finite capacity, we have the analogue
of Theorem 5.51 also for the 0-capacity where we replace LA by LA

e and drop the α.
The proof is verbatim. ♢

We conclude this section by relating the analytic results developed above to proba-
bilistic properties of a Feller process X which is associated with a transient regular
Dirichlet form. The result is an analogue of Proposition 5.54.

Proposition 5.67. Let X be a ν-symmetric Feller associated with a transient regular
Dirichlet form (E,D) on L2(S , ν). For every Borel set A ∈ B ∩ C with finite capacity,
the function x 7→ pA(x) given by

pA(x) := Px(τA < ∞) (5.240)

is a quasi-continuous version of the equilibrium potential hA of A.

Proof. See [CF11, Corollary 3.4.3]. ■

Remark 5.68. From the start, the theory of Dirichlet forms is a theory of equivalence
classes of L2 functions. As such one would expect that we can only arrive at statements
that are true outside a set of measure zero. The potential theory we have condensed
on the last pages, however, enables us to make finer-grained statements, in the sense
that they are true outside a set of zero capacity.5 In order to obtain results that hold
for every starting point of the process X we must therefore assume that every point
x ∈ S has positive capacity. This assumption leads to the resistance forms discussed
under Section 5.6 ♢

5.5 Resistances
In this section, we introduce the notion of resistance between two sets of positive

capacity. The resistance R(A, B) will be defined as the inverse of the 0-capacity of the
5see also the remarks in Section 7.3
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set B ⊂ S with respect to the Dirichlet form of the process XA which is the process X
but killed upon hitting the set A ⊂ S . Recall from (4.143) in Section 4.3.1 that XA is
given by

XA
t =

Xt, t < τA

ϑ, t ≥ τA.
(5.241)

As usual assume that (S ,U, ν) is a locally compact uniform measure space and
denote by (Sϑ,Uϑ) its one-point compactification. Furthermore, let X denote a ν-
symmetric Feller process with values in S . We will assume throughout this section
that X is associated with a regular Dirichlet form (E,D) on L2(S , ν).

5.5.1 The Dirichlet form of the killed process
Let A ⊂ B be a nonempty Borel measurable subset of S . in the following we will

denote the complement of A in S by D, i.e.

D := S \ A. (5.242)

We can identify the space L2(D, ν) with the subspace

L2(D, ν) =
{

f ∈ L2(S , ν)
∣∣∣ f = 0 ν-a.e. on A

}
⊂ L2(S , ν). (5.243)

Let X be a ν-symmetric Feller process with values in Sϑ. Recall from Theorem 4.65
that the killed process XA is again a ν|D symmetric Feller process with values in Dϑ,
where D = S \ A. Moreover, recall from (4.140) that for nearly Borel measurable
A ∈ Bn and α > 0 the α-hitting distribution Hα

A is given by

Hα
A f (x) = Ex

[
f
(
XτAe−ατA

)]
(5.244)

for f ∈ B ∩ L2(S , ν), that is for a Borel measurable representative f of an element of
L2(S , ν). Let

FA :=
{

f ∈ D
∣∣∣ f̃ = 0 q.e. on A

}
, (5.245)

where f̃ denotes the quasi-continuous version of f . Then FA is a closed linear subset
of the Hilbert space (D,Eα) for every α > 0. We denote its orthogonal complement
(with respect to Eα) byHα

A , i.e.

Hα
A := { g ∈ D | Eα( f , g) = 0, ∀ f ∈ FA } . (5.246)

Finally, denote by παA : D → Hα
A the projection ontoHα

A .
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Lemma 5.69. Let α > 0 and f ∈ D be α-excessive with respect to the process X. For
every nearly Borel measurable set A ⊂ Bn ,

παA f = Hα
A f . (5.247)

Furthermore, for every f ∈ D, Hα
A| f̃ | < ∞ q.e. and Hα

A f̃ is a quasi continuous version
of παA f .

Proof. See [CF11, Lemma 3.2.1 & Theorem 3.2.2]. ■

Recall from (4.149) that the resolvent of the killed process XA is given by

RA
α f (x) = Ex

[∫ τA

0
e−αt f (Xt) dt

]
(5.248)

for f ∈ B+b (D). Naturally, (5.248) can be extended to B+b (S ). From (4.151) recall the
Dynkin formula,

RA
α f (x) = Rα f (x) − Hα

ARα f (x) (5.249)

holds for all f ∈ B+b (S ), x ∈ S and α > 0. This equation can also be extended to hold
for f ∈ B(S ) ∩ L2(S , ν) and q.e. x ∈ S . Clearly, RA

α f (x) = 0 for all x ∈ A since every
point of A is regular for A if A is closed. It can be shown (for a rigorous argument
see [CF11, p. 105]) that RA

α f ∈ FA for all f ∈ B(S ) ∩ L2(S , ν) and α > 0. From
Lemma 5.69 we can then deduce that (5.249) represents the orthogonal decomposition
of f into the sum of elements of FA andHα

A with respect to the scalar product Eα on
D. Furthermore, RA

α f is quasi continuous and

Eα

(
RA
α f , g

)
=

∫
D

f (x)g(x) ν(dx) (5.250)

for every g ∈ FA. In the same way, it holds that∫
D

f (x)RA
αg(x) ν(dx) =

∫
D

RA
α f (x)g(x) ν(dx) (5.251)

for all f , g ∈ FA and α > 0.

We can now identify the Dirichlet form associated with the killed process XA.

Theorem 5.70. Let (E,D) be a regular Dirichlet form on L2(S , ν) and A ⊂ S closed
with ν(A) > 0. Then the bilinear form (ED,DD), where

DD = FA =
{

f ∈ D
∣∣∣ f̃ = 0 q.e. on A

}
(5.252)
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and ED( f , f ) = E( f , f ) for all f ∈ DD is a regular Dirichlet form on L2(D, ν).
Furthermore, (ED,DD) is associated with the ν-symmetric Feller process XA.

Proof. We begin with the second claim. Recall from Theorem 4.65 that the killed
process XA is again a ν-symmetric Feller process with resolvent

(
RA
α

)
α>0

given by

(5.248) Using Lemma 5.30, we can extend
(
RA
α

)
α>0

to a family of operators
(
GA
α

)
α>0

on L2(D, ν) which gives rise to a Dirichlet form (ED,DD) on L2(D, ν) by (5.51). It
follows from the discussion above that for each α > 0,

FA =
{

GA
α f

∣∣∣ f ∈ L2(D, ν)
}

(5.253)

and (5.250) implies that (ED,DD) is in fact the Dirichlet form associated with the
killed process by virtue of (5.46).

The regularity of (ED,DD) is due to [CF11, Theorem 3.3.9 (ii)]. ■

Corollary 5.71. Let X be a ν-symmetric Feller process with values in Sϑ and A ∈ B
closed with Cap1(A) > 0. Then the Dirichlet form (ED,DD) is transient.

Proof. By Theorem 5.70, (ED,DD) is associated with the killed process XA. With
Proposition 5.50 we can conclude analogously to Lemma 4.69, that XA is transient
and the claim follows from Proposition 5.41. ■

By virtue of Theorem 5.70 and Corollary 5.71 we can transfer the potential theoretic
notions developed in Section 5.4 to the Dirichlet form (EA,DA). Most notably, we
can define the α-capacity CapA

α with respect to (EA,DA) and, in the case where
Cap1(A) > 0, the 0-capacity CapA in the same way as before. By Definition 5.33 the
extended Dirichlet space with respect to (EA,DA) is given by

DA
e =

{
f ∈ L∞(D, ν)

∣∣∣∣∣ ∃ ( fn)n∈N ⊂ D
A Cauchy s.t. lim

n→∞
fn = f in L∞(D, ν)

}
.

(5.254)
Note that, analogously to (5.243), we can identify L∞(D, ν) with the subspace

L∞(D, ν) =
{

f ∈ L∞(S , ν)
∣∣∣ f = 0 ν-a.e. on A

}
⊂ L∞(S , ν). (5.255)

Consequently, we can identifyDA
e with

DA
e = De ∩ L∞(D, ν). (5.256)

Recall from Theorem 5.38, thatDA
e becomes a real Hilbert space equipped with the

inner product EA if (EA,DA) is transient.
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We conclude this section with some potential theoretic properties of the killed
process.

Proposition 5.72. Let X be a ν-symmetric Feller process with values in Sϑ and
associated Dirichlet form (E,D). Moreover let A ⊂ S be closed and denote by
(EA,DA) the Dirichlet form of the killed process XA.

(i) If an increasing sequence (Bn)n∈N ⊂ B(S ) of closed subsets of S is a E-nest,
then (Bk ∩ D) is a EA-nest.

(ii) For all B ⊂ D, CapA
1 (B) ≥ Cap1(B).

(iii) Suppose that (E,D) is transient, then CapA(B) ≥ Cap(B) for all B ⊂ D.

(iv) If f ∈ FA, then f is quasi-continuous with respect to EA if and only if f is the
restriction to D of a quasi-continuous function (with respect to E) on S .

Proof. See [CF11, Theorem 3.3.8] ■

5.5.2 Effective resistance
We now introduce the effective resistance as a further potential theoretic notion.

The effective resistance has long been recognized as an important tool in the analysis
of Markov processes on graphs (see our example in Section 4.5.1). Peter G. Doyle
and J. Laurie Snell in [DS84] trace some of the ideas regarding the electrical network
interpretation of graphs back to the first half of the last century, in particular to
[Kak45] by Shizuo Kakutani. The first application of the effective resistance seems
to be found in the work [Nas59] by Crispin Nash-Williams. Despite its potential
theoretic nature, the effective resistance is usually not treated in potential analytic
texts on Markov processes e.g. [FOT11; CF11; BG68; RY99].

As usual, let (S ,U, ν) denote a uniform measure space and X a ν-symmetric Feller
process. We denote the Dirichlet form associated with X by (E,D) and assume that it
is regular.

Recall the definitions of F A and FA from (5.213) and (5.245), respectively. For
A ∈ B closed with Cap1(A) > 0 and B ⊂ D = S \ A set

F B
A :=

{
f ∈ DA

e

∣∣∣ f̃ ≥ 1 q.e. on B
}
, (5.257)

where DA
e denotes the extended Dirichlet space (see Definition 5.33 and (5.254))

associated with the transient Dirichlet form (EA,DA) (see Corollary 5.71).
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Definition 5.73. Let (E,D) be a regular Dirichlet form on L2(S , ν). For two closed
subsets A, B ⊂ S with Cap1(A),Cap1(B) > 0 the (effective) resistance between A and
B is defined as

R(A, B) := sup
{
E( f , f )−1

∣∣∣ f ∈ F B
A

}
, (5.258)

where we set sup Ø = 0, as usual. ♢

We make note of the following properties of the effective resistance.

Proposition 5.74. Let (E,D) be a regular Dirichlet form on L2(S , ν). Suppose A, B ⊂
S are closed and have positive capacity. Then the effective resistance has the following
properties.

(i) R(A, B) ≥ 0.

(ii) If CapA(B) > 0 then,
R(A, B) = CapA(B)−1 (5.259)

and R(A, B) = ∞ else.

(iii) B ⊂ E ⊂ S implies that R(A, E) ≤ R(A, B) and A ⊂ F ⊂ S implies R(F, B) ≤
R(A, B).

(iv) R(A, B) < ∞.

(v) R(A, B) > 0 if and only if Cap1(A ∩ B) = 0 and Cap1(B) < ∞.

Proof. The first and the second assertion, (i) and (ii), follow directly from the defini-
tion.

We show (iii). Without loss of generality assume R(A, E) > 0. For B ⊂ E we have
F E

A ⊂ F
B

A and consequently R(A, E) ≤ R(A, B). The second part follows analogously.

For (iv) suppose that R(A, B) > 0. Then set F B
A is non empty and therefore the

0-capacity CapA(B) of B with respect to (EA,DA) is well defined. Now, Cap1(B) > 0
implies CapA

1 (B) > 0, by (ii), and consequently CapA(B) > 0 by Proposition 5.61.
The claim then follows from (ii).

To verify (v) note that Cap1(A ∩ B) > 0 immediately implies that F B
A = Ø and

therefore R(A, B) = 0. On the other hand, if Cap1(B) = ∞ that implies that LC = Ø
for all C ∈ T open with B ⊂ C. Since FA = D

A ⊂ D this implies that there exists no
f ∈ FA with f ≥ 1 ν-a.e. on B and therefore F B

A = Ø.6 Now suppose Cap1(A∩B) = 0
and Cap1(B) < ∞. First, observe that

R(A, B) = R(A, B \ N), (5.260)
6This argument can be made more direct by applying, for example, [FOT11, Theorem 2.1.5].
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where N ⊂ S with Cap1(N) = 0. This is just a simple consequence of the definition of
quasi continuity and quasi everywhere. We can therefore assume that A ∩ B = Ø or,
equivalently, that B is a proper subset of D = S \ A. This, together with Cap1(B) < ∞,
implies that F B

A , Ø and therefore R(A, B) > 0. ■

Remark 5.75. Note that the definition of the effective resistance can easily be extended
to include arbitrary sets B ⊂ S \ A since the 0-capacity is defined for such sets by
Definition 5.55. Since we want the resistance to be symmetric (see Theorem 5.76)
the question arises whether we can also extend the definition to allow arbitrary sets
A ⊂ S in the first argument. Some preliminary results in that direction are collected
in Section 7.3.1. ♢

Theorem 5.76. Let (E,D) be a regular Dirichlet form. Suppose A, B ⊂ S are closed
and R(A, B) > 0. Then the following hold.

(i) There exists a unique maximizer gB
A ∈ F

B
A to the variational problem (5.258)

and
R(A, B) = E−1(gB

A, g
B
A). (5.261)

(ii) The maximizer gB
A from (i) satisfies 0 ≤ gB

A ≤ 1 ν-a.e. and g̃B
A = 1 q.e. on B (and

g̃B
A = 0 q.e. on A, by definition).

(iii) gB
A is the unique element of F B

A with the property

E(gB
A, f ) = 0 (5.262)

for all f ∈ De with f̃ = 0 q.e. on A ∪ B.

(iv) Suppose that (E,D) is recurrent and Cap1(A) < ∞, then the effective resistance
is symmetric,

R(A, B) = R(B, A). (5.263)

Proof. We begin in the beginning and start with (i). By assumption R(A, B) > 0 and
therefore F B

A , Ø. The space F B
A is a closed and convex subset of the real Hilbert

space (DA
e ,E

A). Therefore, there exists a unique minimizer of (5.258) and (5.261)
follows from the fact that EA( f , f ) = E( f , f ) for all f ∈ DA

e .

The second claim (ii) follows immediately from the fact that gB
A is the minimizer

for the 0-capacity with respect to the Dirichlet form (EA,DA) and Theorem 5.60 (ii).

Similarly, Corollary 5.65 states that gB
A is the unique element of F B

A with the
property

EA(gB
A, f ) = 0 (5.264)
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for all f ∈ DA
e with f̃ = 0 q.e. on B. By definition ofDA

e those f ∈ DA
e are exactly the

f ∈ De with f̃ = 0 q.e. on A ∪ B. In the same way, gB
A can be considered an element

ofDe and EA(gB
A, f ) = E(gB

A, f ), again by definition, which implies (iii).

For the last assertion (iv) recall that by Corollary 5.40 recurrence of implies 1 ∈ De

and E(1, f ) = 0 for all f ∈ D. Let

g := 1 − gB
A. (5.265)

Then, g ∈ De with g̃ = 1 q.e. on A and g̃ = 0 q.e. on B. Moreover,

E(g, f ) = E(1 − gB
A, f ) = E(1, f ) − E(gB

A, f ) = 0 (5.266)

for all f ∈ De with f̃ = 0 q.e. on A ∪ B. Consequently, by (iii),

g = gA
B (5.267)

and therefore

R(B, A)−1 = E(gA
B, g

A
B) = E(1 − gB

A, 1 − gB
A)

= E(1, 1) − 2E(1, gB
A) + E(gB

A, g
B
A) = E(gB

A, g
B
A) = R(A, B)−1,

(5.268)

completing the proof ■

In the case where (E,D) is transient, we generally do not have symmetry of the
effective resistance. We can, however, say the following. Suppose (E,D) is transient
and A, B ⊂ S are closed and 0 < Cap1(A) Cap1(B) < ∞. Let h := gB

A + gA
B where gB

A
and gA

B are the maximizers from Theorem 5.76. Then, h ∈ De and h̃ = 1 q.e. on A∪ B,
by Theorem 5.76 (ii). Fix some f ∈ De with f̃ = 0 q.e. on A ∪ B and observe that by
Theorem 5.76 (iii),

E(h, f ) = E(gB
A, f ) + E(gA

B, f ) = 0. (5.269)

By Theorem 5.60, this implies that h = hA∪B where hA∪B is the minimizer of the
variational problem for Cap(A ∪ B).

In the same manner as in Proposition 5.54 and Proposition 5.67 we can describe
the maximizer of the variational problem for the resistance probabilistically.

Proposition 5.77. Let X be a ν-symmetric Feller process with values in Sϑ associated
with a regular Dirichlet form (E,D) on L2(S , ν). Suppose A, B ⊂ S are closed and
0 < Cap1(A) Cap1(B) < ∞ and define the function pB

A : S → [0, 1] as

pB
A(x) := Px(τB < τA, τA∪B < ∞). (5.270)

Then pB
A is a quasi-continuous version of gB

A.
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Proof. The claim follows directly from Proposition 5.67. If (E,D) is recurrent, we
have τA∪B < ∞ almost surely and PA

x (τB < ∞) = Px(τB < τA) is a quasi continuous
version of gB

A. Here PA denotes the probability with respect to the killed process XA. If,
on the other hand, (E,D) is transient we have that PA

x (τB < ∞) = Px(τB < τA, τA∪B <

∞), which is a quasi continuous version of gB
A, again by Proposition 5.67. ■

5.6 Resistance forms
Resistance forms are closely related to Dirichlet forms. Informally speaking,

resistance forms are Dirichlet forms for which the effective resistance, as defined in
the previous section, between points is finite and therefore induces a metric on S .
In particular, these are regular recurrent Dirichlet forms for which singletons have
positive capacity. One example of a process associated with a resistance form is the
random walk on a graph described in Section 4.5.1.

The concept of resistance forms is deeply rooted in the analysis of stochastic
processes on fractals like the Sierpiński Gasket or the Sierpiński Carpet, named
after Wracław Sierpiński [Sie16]. In the late 80s Martin T. Barlow, Richard F.
Bass and Edwin Perkins described and constructed the Brownian motion on the
Sierpiński Gasket in [BP88; BB89]. This research was continued for example by
Shigeo Kusuoka and Zhou Yin in [KY92], Jun Kigami in [Kig95] and VolkerMetz
in [Met97]. The notion of resistance forms seems to first occur in [Kig01] and has
since gained a lot of attention. Notable works include [Kig03; Kig12], [Kum04] by
Takashi Kumagai, [KS05] by Kumagai and Karl-Theodor Sturm and [GT12] by
Alexander Grigor’yan and Andras Telcs. More recently, David Croydon obtained
results for the convergence of Feller processes associated with resistance forms in
[Cro18] and further details were developed by Croydon together with Kumagai and
Ben Hambly in [CHK17]. A good introduction to the topic of resistance forms in the
context of random walks on graphs can be found in [Kum14]. Most of the results and
their proofs presented here about resistance forms can be found in [Kig12]

Definition 5.78 (resistance forms). Let S be a non-empty set. A quadratic form (E,F )
on RS is a called a resistance form if the following conditions are satisfied.

(i) The domain F of E is a linear subspace of RS and contains the constant
functions f (x) = c ∈ R. Furthermore, E( f , f ) = 0 if and only if f : S → R is
constant.

(ii) Define an equivalence relation ∼ on F by f ∼ g if and only f − g = c is
constant. Then, the quotient space F / ∼ equipped with the inner product E is a
real Hilbert space.
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Fig. 5.2.: The Sierpiński Gasket with 5 iterations

(iii) F separates points in S , i.e. for x, y ∈ S with x , y there exists a f ∈ F such
that f (x) , f (y).

(iv) For all x, y ∈ S it holds that

R(x, y) := sup
{
| f (x) − f (y)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}
< ∞, (5.271)

where sup Ø = 0, as usual.

(v) If f ∈ F and g := f + ∧ 1, then g ∈ F and E(g, g) ≤ E( f , f ). ♢

In the following, we will indicate the underlying set S by saying that (E,F ) is a
resistance form on S .

Note that in the definition of resistance forms, we do not assume any a priori
structure on the set S . Instead, the resistance form itself induces a metric on S via
(5.271).

Proposition 5.79. Let S , Ø and (E,F ) be a resistance form on S . Then the
resistance R : S → S → R is a metric on S .

Proof. By definition, R(x, y) is non negative and we immediately obtain R(x, x) = 0.
Suppose x , y. Then there exists a f ∈ F with f (x) , f (y) by Definition 5.78 (iii)
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and by (i), we have E( f , f ) > 0. Consequently, R(x, y) > 0. It remains to show that R
satisfies the triangle inequality. Let x, y, z ∈ S , then

R(x, z) = sup
{
| f (x) − f (z)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}

≤ sup
{
| f (x) − f (y)|2 + | f (y) − f (z)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}

≤ R(x, y) + R(y, z),

(5.272)

therefore completing the proof. ■

Fix x, y ∈ S with x , y and choose f ∈ F with f (y) , f (x). Then

f̂ :=
( f − f (x))
f (y) − f (x)

∈ F (5.273)

with f̂ (x) = 0 and f̂ (y) = 1. Moreover,

| f (x) − f (y)|
E( f , f )

=
( f (y) − f (x))2

∣∣∣ f̂ (x) − f (x) − f̂ (y) + f (x)
∣∣∣

( f (y) − f (x))2E( f̂ − f (x), f̂ − f (x))

=
f̂ (y)

E( f̂ , f̂ )
= E( f̂ , f̂ )−1.

(5.274)

We can therefore rewrite the variational principle for the resistance in (5.271) as
follows

R(x, y) =
(
inf { E( f , f ) | f ∈ F , E( f , f ) > 0, f (x) = 0, f (y) = 1 }

)−1. (5.275)

In the following, we will tacitly assume that the space S is equipped with the
resistance metric R when making topological statements like the next.

Lemma 5.80. Let (E,F ) be a resistance form on S . Then each f ∈ F is uniformly
continuous.

Proof. Let f ∈ F . By definition of the resistance metric we have for all x, y ∈ S ,

( f (x) − f (y))2 ≤ R(x, y)E( f , f ), (5.276)

which yields the claim. ■
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Next, we want to extend the definition of the resistance to measure the resistance
between a point and a set. In the same spirit as before we set for A ⊂ S

FA := { f ∈ F | f |A = 0 } . (5.277)

Definition 5.81. Let (E,F ) be a resistance form on S and A ⊂ S non empty. For
x ∈ S we define the resistance between x and A as

R(x, A) := sup
{
E( f , f )−1

∣∣∣ f ∈ FA, f (x) ≥ 1
}
, (5.278)

where we set sup Ø = 0, as usual. ♢

We will only focus on closed sets A ⊂ S in the following. The results can, however,
be extended to sufficiently regular sets (cf. [Kig12, Chapter 4]).

Theorem 5.82 (Green function). Let (E,F ) be a resistance form on S and A ⊂ S
non-empty and closed. Then (FA,E) is a Hilbert space and there exists a unique map
gA : S × S → R with gx

A = gA(x, · ) ∈ FA for all x ∈ S and

E
(
gx

A, f
)
= f (x) (5.279)

for all f ∈ FA. Furthermore, gA(x, x) ≥ 0 for all x ∈ S and gA(x, x) = 0 if and only if
x ∈ B.

Proof. First we show that FA equipped with E is indeed a Hilbert space. By definition,
the only constant function in FA is the zero function and completeness follows from
the fact that (F ,E) is complete and A is closed. Now let y ∈ A and f ∈ FB. Then,

| f (x)|2 = | f (y) − f (x)|2 ≤ R(x, y)E( f , f ) (5.280)

for every x ∈ S . Consequently, the evaluation map f 7→ f (x) is a continuous linear
functional FA → R. By Riesz’ representation theorem [Yos78, Theorem II.6], there
exists a unique gx

A ∈ FA such that

E
(
gx

A, f
)
= f (x) (5.281)

for all f ∈ FA. Consequently, gA(x, x) = E
(
gx

A, g
x
A

)
≥ 0. If x ∈ B, then gA(x, x) = 0

because gx
A ∈ FA. Conversely, suppose gA(x, x) = 0. Then, E

(
gx

A, g
x
A

)
= 0 which

means, gx
A = 0. As a consequence, we obtain for every f ∈ FA,

f (x) = E
(
gx

A, f
)
= 0. (5.282)
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Therefore, x ∈ A and the proof is finished. ■

We call the map gA the Green function or Green kernel associated with the resistance
form (E,F ). Equation (5.279) means that gA is a reproducing kernel for the Hilbert
space (F ,E). The space (F ,E) is therefore called a reproducing kernel Hilbert space.

Proposition 5.83. Let (E,F ) be a resistance form on S and A ⊂ S non-empty and
closed. For x ∈ S the unique maximizer of (5.278) is given by gx

A/gA(x, x). In
particular,

R(x, A) = E
(
gx

A/gA(x, x), gx
A/gA(x, x)

)
= gA(x, x)−1. (5.283)

Proof. The case x ∈ A is trivial. Suppose now that x ∈ S \ A. Clearly, the set
{ f ∈ FA | f (x) ≥ 1 } is a closed convex subset of the Hilbert space (FA,E) which
implies the existence and uniqueness of a maximizer h of the variational problem
(5.278). Note that by Definition 5.78 (v) we can assume without loss of generality
that 0 ≤ h ≤ 1 and h(x) = 1. By virtue of Theorem 5.82 we have that gA(x, x) > 0.
Set ψx

A := gx
A/gA(x, x), then

E
(

f − ψx
A, ψ

x
A

)
=
E

(
f − ψx

A, g
x
A

)
gA(x, x)

=
f (x) − 1
gA(x, x)

= 0 (5.284)

for all f ∈ FA with f (x) = 1. Consequently,

E(h, h) = E
(
h − ψx

A, h − ψ
x
A

)
+ E

(
h − ψx

A, ψ
x
A

)
+ E

(
ψx

A, h
)

≤ E
(
ψx

A, h
)
= gA(x, x)−1 = E

(
ψx

A, ψ
x
A

)
.

(5.285)

Since h was assumed to be the maximizer of (5.278), we have E(h, h) = E
(
ψx

A, ψ
x
A

)
and therefore h = ψx

A. Finally,

E
(
ψx

A, ψ
x
A

)
=
E

(
gx

A, g
x
A

)
gA(x, x)2 = gA(x, x)−1, (5.286)

thus completing the proof. ■

For a subset A of S we write S A := (S \ A) ∪ {a} to describe the set where A is
replaced with a single point a. Moreover, we write

F A := { f ∈ F | f |A = c ∈ R } (5.287)

for the subspace of F consisting only of functions which are constant on A. It is
straightforward to verify the following fact.
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Lemma 5.84. Let (E,F ) be a resistance form on S and A ⊂ S non-empty and closed.
Then (E,F A) is a resistance form on S A.

Note that we have to make some restrictions on the set A for Lemma 5.84 to hold.
If A is open, for example, there might be no function f ∈ F A that separates a from
some x ∈ ∂A. Note that our assumption that A is closed is sufficient but not necessary
for Lemma 5.84 to hold (cf. [Kig12, Chapter 4]).

If we think of the resistance form (E,F ) representing some kind of electrical
network, like in Section 4.5.1, the resistance form (E,F A) represents a transformation
of the original electrical network where the whole set has been shortened or fused
to a single point. The resistance form (E,F A) is therefore sometimes referred to as
the shortened or fused resistance form. We denote the resistance associated with the
fused resistance form (E,F A) by

RA(x, y) = sup
{
| f (x) − f (y)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F A, E( f , f ) > 0
}
. (5.288)

Note that RA(A, x) := RA(a, x) = R(x, A).

Proposition 5.85. Let (E,F ) be a resistance form on S and A ⊂ S non empty and
closed. Then,

gA(x, y) =
R(A, x) + R(A, y) − RA(x, y)

2
, (5.289)

for all x, y ∈ S .

Proof. See [Kig12, Theorem 4.3]. ■

5.6.1 Resistance forms and Dirichlet forms
The close relationship between resistance forms and Dirichlet forms is salient.

Condition (v) of Definition 5.78 is analogous to the Markov property of Dirichlet
forms. On the other hand, (i) can be understood as a recurrence property in light of
Theorem 5.39.

Similarly to the regularity of Dirichlet forms, we define regularity of resistance
forms as follows.

Definition 5.86. Let (E,F ) be a resistance form on S , where S , Ø. Denote by C0(S )
the compactly supported functions f : S → R that are continuous with respect to the
metric R on S . We say that (E,F ) is regular if and only if F ∩ C0(S ) is dense in
C0(S ) with respect to the uniform norm ∥ · ∥∞. ♢
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Indeed, when we equip the metric space (S ,R) associated with the resistance form
(E,F ) with a Borel regular measure, the resistance form gives rise to a Dirichlet form.
We will assume in the following that ν is a Borel regular measure on (S ,R) with

0 < ν (BR(x, r)) < ∞, (5.290)

for all x ∈ S and r > 0, where BR(x, r) denotes the ball with respect to the resistance
metric with radius r > 0 and center x ∈ S .

Proposition 5.87. Let (E,F ) be a regular resistance form on S . Denote by D the
closure of F ∩ C0(S ) with respect to the inner product E1 on F ∩ L2(S , ν) given by

E1( f , g) = E( f , g) + ⟨ f , g⟩ν . (5.291)

Then E can be uniquely extended to D and (E,D) is a regular Dirichlet form on
L2(S , ν).

Proof. The extension of E toD is, of course, given by

E( f , f ) = lim
n→∞
E( fn, fn), (5.292)

where f ∈ D and ( fn)n∈N ⊂ F is such that E1( f − fn, f − fn)→ 0 as n→ ∞. Clearly,
this extension is unique and in particular E( f , f ) does not depend on the choice of
( fn)n∈N ⊂ F .

By definition, (E,D) is a closed form on L2(S , ν). The Markov property, Defini-
tion 5.78 (v), of (E,F ) is preserved under the closure operation: Fix f ∈ D and set
g := f + ∧ 1. Then there exists a sequence ( fn)n∈N ⊂ F such that limn→∞ fn = f with
respect to E1. The sequence (gn)n∈N ∈ F with gn = f +n ∧1 is again a Cauchy sequence
and converges to some g ∈ D with respect to E1. Clearly, g = f + ∧ 1 and

E(g, g) = lim
n→∞
E(gn, gn) ≤ lim

n→∞
E( fn, fn) = E( f , f ). (5.293)

It remains to show that (E,D) is regular. We have F ⊂ D and consequently,
C0(S ) ∩ D is dense in C0(S ) with respect to the uniform norm. On the other hand,
C0(S )∩D is dense inD with respect to E1, by definition ofD. Hence, (E,D) satisfies
(D4) of Definition 5.9 and is therefore regular. ■

We will from now on assume that we are dealing with regular resistance forms. Then
Proposition 5.87 allows us to apply the potential theory developed in the previous
sections for the resistance form (E,F ). Note that we will not always make the
dependence on the Dirichlet form (E,D) associated with (E,F ) explicit. Instead,
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we will simply speak about the 1-order capacity associated with the resistance form
(E,F ), for example.

If not explicitly stated otherwise, we will always assume that the resistance forms
are defined on S , where S , Ø.

Lemma 5.88 (reproducing kernel Hilbert space). Let (E,F ) be a regular resistance
form. Denote by (E,D) the regular Dirichlet form associated with (E,F ). Then there
exists a reproducing kernel for the Hilbert space (D,E1). That is, for each x ∈ S there
exists a unique φx ∈ D such that

E1( f , φx) = f (x), (5.294)

for all f ∈ D.

Note that in (5.294) we evaluate f (x) for a continuous representative of f ∈ D. By
construction, such a continuous representative is unique and the expression makes
sense.

Proof of Lemma 5.88. Fix x ∈ S . It suffices to show that the evaluation map ex : D →
R given by ex f = f (x) is a bounded operator. Then the existence of φx follows from
Riesz’ representation theorem (cf. [Yos78, Theorem II.6]). To that end let f ∈ D and
assume that f (x) , 0. Without loss of generality, we can assume that f (x) = 1. Now
let ( fn)n∈N ⊂ F be a sequence with fn → f with respect to E1. We can choose fn such
that fn(x) = 1. Suppose we have

E1( fn, fn) = 1/n. (5.295)

By definition of the resistance metric we get

| fn(x) − fn(y)| ≤

√
R(x, y)
√

n
≤

√
R(x, y), (5.296)

for every y ∈ S . Consequently, fn(y) ≥ 1/2 for all y ∈ BR(x, 1/4). Therefore,

∥ fn∥22 =
∫

S
f 2 dν ≥

∫
BR(x,1/4)

f (y)2 ν(dy) ≥
ν(BR(x, 1/4))

4
> 0, (5.297)

by (5.290). This is clearly a contradiction to (5.295) and we have shown that there
exists a constant cx > 0 such that

1 = f (x) = ex f ≤ cx
√
E1( f , f ). (5.298)
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Note that the bound in (5.297) does not depend on f which implies that for all f ∈ D,

f (x) ≤ cx
√
E1( f , f ). (5.299)

Uniqueness of φx is clear. Suppose g had the same property, then

E1(φx − g, f ) = f (x) − f (x) = 0, (5.300)

for all f ∈ D, which implies g = φx. ■

One of the fundamental properties of resistance forms is that singletons have
positive capacity. This property makes it possible to associate a symmetric Feller
process with a resistance form that is unique in distribution for every initial condition.

Proposition 5.89. Let (E,F ) be a regular resistance form. Each x ∈ S has positive
1-order capacity,

Cap1({x}) > 0. (5.301)

Proof. Fix x ∈ S and denote by φx the unique element of D with E1(φx, f ) = f (x)
for all f ∈ D, as in Lemma 5.88. Note that φx(x) = E1(φx, φx) > 0 and therefore,
φx/φx(x) is well defined. Fix any f ∈ D with f (x) ≥ 1 and set a := f (x). Write
h1

x = φx/φx(x), then

E1( f , f ) = E1
(

f − ah1
x, f − ah1

x

)
+ E1

(
f − ah1

x, ah1
x

)
+ E

(
f , ah1

x

)
. (5.302)

By the reproducing property of φx, we obtain

E1
(

f − ah1
x, ah1

x

)
=

a
φx(x)

(
f (x) − ah1

x(x)
)
= 0 (5.303)

and similarly,

E1
(

f , ah1
x

)
=

a
φx(x)

f (x) =
a2

φx(x)
E1

(
h1

x, φx
)
= E1

(
ah1

x, ah1
x

)
. (5.304)

Combining those with (5.302) and using the fact that a ≥ 1, we arrive at

E1( f , f ) = E1
(

f − ah1
x, f − ah1

x

)
+ E1

(
ah1

x, ah1
x

)
≤ E1

(
h1

x, h
1
x

)
. (5.305)

Consequently, h1
x minimizes E1( f , f ) over the set { f ∈ D | f (x) ≥ 1 }.
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Now let U ∈ U be an open entourage. By definition of the 1-Capacity, we have

Cap1(U[x]) = inf
{
E1( f , f )

∣∣∣ f ∈ D, E( f , f ) > 0, f |U[x] ≥ 1
}

≥ inf { E1( f , f ) | f ∈ D, E( f , f ) > 0, f (x) ≥ 1 }

= E1
(
h1

x, h
1
x

)
= φx(x)−1.

(5.306)

Taking the limit inferior over a sequence (Un)n∈N ⊂ U of open entourages with⋂
n≥1 Un = ∆, we obtain Cap1({x}) = φx(x)−1 > 0. ■

We have not only shown that singletons have positive capacity, we also have
identified the minimizer for the 1-capacity of a point x ∈ S to be h1

x and have given an
expression for the 1-capacity in terms of the reproducing kernel φx.

Lemma 5.90. The regular Dirichlet form (E,D) associated with a regular resistance
form is transient.

Proof. Since D is defined as the E1-closure of F ∩ C0(S ), we immediately obtain
1 ∈ De from 1 ∈ F . The claim then follows by Theorem 5.39. ■

5.6.2 Feller processes associated with resistance forms
Suppose (E,F ) is a regular resistance form on S and (E,D) the regular Dirichlet

form on L2(S , ν) associated with (E,F ). It follows from the standard theory of
Dirichlet forms, a part of which that we have not presented in this chapter, that there
exists a ν-symmetric Feller process X with values in Sϑ that is associated with (E,D).
See for example [FOT11, Theorem 7.2.1] or our remarks in Chapter 7. Moreover, as
singletons have positive capacity by Proposition 5.89, it follows from [CF11, Theorem
3.1.12] that X is unique in distribution for every initial condition µ ∈ M1(S ).

We can therefore give probabilistic interpretations of the Green function and the
resistance. We will restrict to the case where (S ,R) is compact. Recall the definition
of the Green operator GA : Bb(S )→ Bb(S ),

GA f (x) := Ex

[∫ τA

0
f (Xs) ds

]
, x ∈ S , f ∈ Bb(S ) (5.307)

from (4.179).

The next result shows that the Green function is, in fact, the integral kernel for the
Green operator.
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Proposition 5.91. Let (E,F ) be a regular resistance form on S and X the ν-symmetric
Feller process associated with (E,D). Suppose that the metric space (S ,R) is compact.
Then,

GA f (x) =
∫

S
gA(x, y) f (y) ν(dy), (5.308)

for every f ∈ Bb(S ) and x ∈ S .

Proof. See [Kig12, Theorem 10.10] and [Cro18, Lemma 3.1]. ■

Note that by Proposition 5.77, we can identify

gA(x, y) = Px(τy < τA)gA(y, y). (5.309)

Moreover, from Theorem 4.72, we know that the process X is uniquely determined
by the family of Green operators GU[x] for x ∈ S and U ∈ U open. By Proposi-
tion 5.85, on the other hand, the Green kernel gA(x, y) can be expressed in terms of
the resistance metric. In some sense the Green kernel gx(y, z) measures how much the
triangle inequality for the triple (x, y, z) deviates from the identity.

Although random walks on graphs are the prime example of processes associated
with resistance forms, the class of such examples is larger. We have already mentioned
random walks on fractals like the Sierpiński gasket which can be constructed as the
limit of discrete, self-similar graphs. The question that naturally arises is whether the
random walks on such a sequence of graphs also converge to a limit. Further examples
are continuous limits of discrete trees like the continuum random tree constructed
by David Aldous in a series of papers [Ald91a; Ald91b; Ald93]. In [AEW13], Siva
Athreya, Michael Eckhoff and AnitaWinter constructed the Brownian motion on
so-called R-trees and in [ALW17] Athreya and Winter together with Wolfgang Löhr
showed that the random walks on discrete trees converge to the Brownian motion on
the R-tree when the trees converge to an R-tree. The following result is due to David
Croydon [Cro18].

Theorem 5.92. For each n ∈ N ∪ {∞} let S (n) ⊂ S be non empty and ρ(n) ∈ S (n).
Moreover, let

(
E(n),F (n)

)
be a regular resistance form on S (n) and ν(n) be a Borel

regular measure on
(
S (n),R(n)

)
with full support. Denote by X(n) the ν-symmetric

Feller process associated with (E(n),D(n)). Suppose (S (n),R(n)) is compact and(
S (n),R(n), ρ(n), ν(n)

)
−→

(
S (∞),R(∞), ρ(∞), ν(∞)

)
(5.310)
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with respect to the pointed Gromov-Hausdorff-weak topology. Then there exists a
common metric space (S , d) and for each n ∈ N ∪ {∞}, (S (n),R(n)) can be embedded
isometrically in (S , d) such that

Pρ(n)

(
X(n) ∈ ·

)
→ Pρ(∞)

(
X(∞) ∈ ·

)
(5.311)

weakly as processes with values in (S , d).

Proof. This is a simplified version of [Cro18, Theorem 1.2]. ■

Note that despite many important examples of symmetric Feller processes are
associated with resistance forms, such examples are basically low dimensional in the
sense that the processes hit points almost surely. This fails to hold, for example, for
Brownian motion already in dimension d = 2 (see Example 5.11).

5.7 Brownian Motion on Riemannian manifolds
Another class of examples of symmetric Feller processes are Brownian motions on

Riemannian manifolds. These processes are in some sense complementary to those
associated with resistance forms. We will keep this section almost painfully short
because we only want to highlight the connection between the Riemannian metric
and the Brownian motion itself. For the details of Riemannian manifolds, we rely
on the book [Jos11] by Jürgen Jost. A (very) short construction of the Brownian
motion on Riemannian manifolds can be found in [CF11, Section 2.2.5] and [FOT11,
Example 5.7.2]. More results on Brownian motions on Riemannian manifolds under
certain curvature conditions as well as a convergence result can be found in the paper
[Suz19a] by Kohei Suzuki or [GL17] by Maria Gordina and Thomas Laetsch.

5.7.1 Riemannian Manifolds
We recall the basic concepts of Riemannian manifolds. For further details see

[Jos11]. A different and less analytical approach to Riemannian manifolds can be
found in [BBI01, Chapter 5.1].

Definition 5.93 (Differentiable manifold). A connected and paracompact Hausdorff
space M is called a manifold of dimension d ∈ N if every point p ∈ M has a neighbor-
hood U that is homeomorphic to an open subset O of Rd. The homeomorphism

x : U → O (5.312)
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is called a (coordinate) chart. A family of charts { {xα,Uα} | α ∈ I } is called an atlas
if { Uα | α ∈ I } is an open cover of M. A manifold M is called differentiable if all
chart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ)→ xβ(Uα ∩ Uβ) (5.313)

are infinitely often continuously differentiable, i.e. in C∞, whenever Uα∩Uβ , Ø. ♢

Let x = (x1, . . . , xd) ∈ Rd and O ⊂ Rd open. The tangent space of O at the point
z ∈ O,

TzO (5.314)

is the space {z} × E, where E is the d-dimensional vector space spanned by the partial
derivatives

∂

∂x1

∣∣∣∣∣
z
, . . . ,

∂

∂xd

∣∣∣∣∣
z

(5.315)

at z. Suppose O ⊂ Rd and O′ ⊂ Rc are open and f : O → O′ is differentiable. For
z ∈ O we define the derivative d f (z) : TzO → T f (z)O

′ by

v =
d∑

i=1

∂

∂xi 7→

d∑
i=1

c∑
j=1

vi ∂ f j

∂xi (z)
∂

∂ f j . (5.316)

Definition 5.94 (Tangent space). Let M be a differentiable manifold and p ∈ M.
Define an equivalence relation on the set{

(x, v)
∣∣∣ x : U → O is a chart with p ∈ U and v ∈ Tx(p)O

}
(5.317)

by setting
(x, v) ∼ (y,w) ⇐⇒ w = d(y ◦ x−1)v. (5.318)

We denote the quotient space by TpM and say that TpM is the tangent space to M at
p. ♢

The tangent bundle is the disjoint union of the tangent spaces TpM, p ∈ M and can
itself be again equipped with a differentiable structure.

Definition 5.95 (Riemannian manifold). A Riemannian metric on a differentiable
manifold M is given by a scalar product on each tangent space TpM which depends
smoothly on p. A Riemannian manifold is a differentiable manifold equipped with a
Riemannian metric. ♢
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The Riemannian metric can be represented as a positive definite symmetric matrix.
Let x = (x1, . . . , xd) be local coordinates, then a Riemannian metric can be written as

g =
(
gi j(x)

)
i, j=1,...,d

. (5.319)

Then, for v,w ∈ TpM we have

⟨v,w⟩p :=
∑
i, j

gi j(x(p))viw j. (5.320)

The representation (gi j) is also called a metric tensor

The volume element V(dp) of (M, g) is given by

V(dp) =
√

g dp =
√

det(gi j) dp, (5.321)

in local coordinates. Note that V(dp) constitutes a Radon measure on (M,B(M)).

The Riemannian metric also gives rise to a metric on M. Let γ : [a, b]→ M be a
smooth curve, i.e. γ ∈ C∞. We write Γ for set of all such curves. The length of γ is
defined as

L(γ) :=
∫ b

a

∣∣∣∣∣∣∣∣∣∣ dγ
dt

(t)
∣∣∣∣∣∣∣∣∣∣ dt, (5.322)

where ∥ · ∥ denotes the norm with respect to the Riemannian metric. For two points
p, q ∈ M we define

d(p, q) := inf { L(γ) | γ ∈ Γ, γ(a) = p, γ(b) = q } (5.323)

and observe that (M, d,V(dx)) is a metric measure space.

5.7.2 Brownian motion

There are different ways to define the Brownian motion on a Riemannian manifold.
One way is through its Dirichlet form.

Let M be a Riemannian manifold with dimension d ∈ N and metric tensor (gi j)
in some local coordinates x1, . . . , xd. We want to construct a Dirichlet form on
L2(M, dV).

For a smooth function f : M → R we define the gradient of f as the vector field
given by

∇ f := grad f :=
d∑

i, j=1

gi j ∂ f
∂xi

∂

∂x j , (5.324)
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where gi j is the i j-th entry of the inverse (gi j)−1
i j=1,...,d of the metric tensor. For com-

pactly supported smooth functions f , g ∈ C∞0 (M) we define a bilinear form E by

E( f , g) :=
1
2

∫
M
⟨∇ f ,∇g⟩p V(dp). (5.325)

We can further define the divergence of a vector field Z =
∑d

i=1 Zi ∂
∂xi by

div Z :=
1
√

g

d∑
i=1

∂

∂x j

(√
gZ j

)
=

1
√

g

d∑
i, j=1

∂

∂x j

(
√

ggi j
〈
Z,

∂

∂xi

〉)
. (5.326)

Moreover the Laplace-Beltrami operator is defined by

∆ f := − div grad f = −
1
√

g

d∑
i, j=1

∂

∂x j

(
√

ggi j ∂ f
∂xi

)
. (5.327)

For more details see the [Jos11, Chapter 3].

Then the quadratic form E can be written for f , g ∈ C∞0 (M) as

E( f , g) = −
1
2
⟨∆ f , g⟩V = −

1
2
⟨ f ,∆g⟩V , (5.328)

where ⟨ · , · ⟩V denotes the scalar product on L2(M, dV). It can be shown that the
quadratic form (E,C∞0 ) is closable and that the closed form (E,D) is indeed a regular
Dirichlet form. The dV-symmetric Feller process X with values in M and Dirichlet
form (E,D) is then called the Brownian motion on M. Compare this also to our
Example 5.11.

Remark 5.96 (Convergence of Brownian motions on Riemannian manifolds). In
[Suz19a] and [Suz19b], Kohei Suzuki developed conditions under which the conver-
gence of a sequence of Riemannian manifolds implies the (pathwise) convergence
of the Brownian motions living on these manifolds. These conditions are basically
Gromov-Hausdorff weak convergence of the manifolds as metric measure spaces,
similar to the last example, and a lower bound on the so-called Ricci curvature to
ensure that the limit is again a Riemannian manifold with a Brownian motion. ♢

It is important to point out that points on Riemannian manifolds do not have positive
capacity, in general. Therefore, the Brownian motion on manifolds is generally not
uniquely determined by its Dirichlet form for every starting point (see our remarks
in Section 7.3). Instead, the results in [Suz19a] require that the Brownian motion
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is started in an initial distribution that is absolutely continuous with respect to the
volume measure dV .

Remark 5.97. As noted at the beginning of this section, this result complements the
result for resistance forms in different ways. On the one hand, it covers examples
where points have capacity zero like the Brownian motion on Rd in dimensions d ≥ 2
or the Ornstein-Uhlenbeck process (cf. [Suz19a, Remark 3.1]). On the other hand, the
starting point here is a geometric structure, the Riemannian structure on the manifold.
We use this structure, in particular the metric tensor, to construct the processes via
their Dirichlet forms. Whereas in the case of resistance forms, the starting point is
a bilinear form, which then induces the geometric structure on the state space and
at the same time defines the processes. Another difference is that the speed measure
and the geometry of the Riemannian manifold are related to each other through the
Riemannian metric. In contrast to the resistance forms where the geometric structure,
given by the resistance metric, and the speed measure are separated. ♢
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6Convergence of symmetric
Feller processes

„Invention, it must be humbly admitted, does not
consist in creating out of void, but out of chaos.

— Mary Wollstonecraft Shelley
Frankenstein

In this chapter we formulate our main convergence result. We introduce four
conditions and show in three steps which role these conditions play for the convergence
of a sequence of symmetric doubly Feller processes. We first show that the sequence
of semigroups has subsequential limits which are again doubly Feller. Then we show
that the processes along such converging subsequence converge already weakly in the
path space. Finally, we apply Theorem 4.72 to conclude that all subsequential limits
must coincide.

In Section 6.3 we will discuss each of the conditions individually.

6.1 Statement of the theorem
For the remainder of this chapter let (S ,U) be a locally compact uniform Polish

space. For each n ∈ N∞ let ν(n) denote a boundedly finite measure on (S ,B) with
support S (n). Assume further that for each n ∈ N∞ a ν(n)-symmetric doubly Feller
process is given by X(n). We write

P(n) := PX(n)
(6.1)

for the distribution of X(n). Generally, we will indicate all entities related to X(n) by a
superscript (n).

Recall from Definition 2.57 that the sequence
(
ν(n)

)
n∈N

converges Hausdorff weakly
if and only if the measures ν(n) converge weakly and their supports converge in the
Hausdorff topology.

Consider the following conditions.

(C1) ν(n) converges Hausdorff weakly to ν(∞).
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(C2) The family
{

Q(n)
∣∣∣ n ∈ N

}
of maps given by

Q(n) : S (n) × [0,∞)→M1(S ), (x, t) 7→ Q(n)
x,t ( · ) := Px

(
X(n)

t ∈ ·
)

(6.2)

is uniformly equicontinuous.

(C3) For every sequence (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞),
the sequence

{
P(n)

xn

∣∣∣∣ n ∈ N
}

is tight as probability measures on DS ([0,∞)).

(C4) The Green’s functionals G(n)
A converge to G(∞)

A in the following sense. For all
bounded measurable functions f ∈ Bb(S ) and all A ∈ B(S ) with τA < ∞,
P(∞)

x∞ -a.s.,
lim
n→∞

G(n)
A f (xn) = G(∞)

A f (x∞), (6.3)

for all sequences (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞).

We will exclusively consider the case where the space (S ,U) is compact which
implies that the closed subsets S (n) are compact for each n ∈ N∞. Moreover, we will
assume that the processes X(n) are conservative for each n ∈ N∞. We are confident
that an extension to general state spaces S (n) is possible by approximation similar to
[ALW17; Cro18]. Such an extension, however, remains subject to further research.

Theorem 6.1. Assume that (S ,U) is compact and that X(n) is conservative for each
n ∈ N∞. Under conditions (C1), (C2), (C3) and (C4) X(n) converges in distribution to
X(∞) for all sequences of initial distributions

(
µ(n)

)
n∈N
⊂ M1(S ) with µ(n) ∈ M1(S (n))

and µ(n) ⇒ µ(∞) ∈ M1(S (∞)). In other words,

P(n)
µ(n) ⇒ P

(∞)
µ(∞) (6.4)

weakly as probability measures on DS ([0,∞)) as n→ ∞.

In order to proof Theorem 6.1 we will first show that under (C1) and (C2), the
sequence

{
X(n)

∣∣∣ n ∈ N
}

has subsequential limits in the f.d.d. sense which are again

doubly Feller. Next, we will show that the sequence
{

X(n)
∣∣∣ n ∈ N

}
has subsequential

limits in pathspace if we additionally impose condition (C3). The final step is then to
show that these subsequential limits coincide. We follow roughly the path that was
laid out by [ALW17] and refined by [Cro18].
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6.2 Existence of subsequential limits
For each n ∈ N∞ denote the Feller semigroups associated with X(n) by P(n) ={

P(n)
t

∣∣∣∣ t ≥ 0
}

and observe that for each f ∈ C(S ) and x ∈ S (n),

P(n)
t f (x) =

∫
S (n)

f dQ(n)(x, t), (6.5)

where Q(n) is given by (6.2).

We begin by showing that the uniform continuity of the family
{

Q(n)
∣∣∣ n ∈ N

}
(condition (C2)) together with the Hausdorff convergence of the spaces S (n) (condition
(C1)) implies that every subsequential limit of the semigroups P(n) =

{
P(n)

t

∣∣∣∣ t ≥ 0
}

is
again a conservative Feller semigroup. Furthermore, we prove that such subsequential
limits exist. The proof is based on the proofs of [ALW17, Proposition 5.2] and [Cro18,
Lemma 5.4].

Theorem 6.2 (Convergence of semigroups). Let (S ,U) be compact and assume
that conditions (C1) and (C2) hold. Then for every subsequence of

(
P(n)

)
n∈N

there

exists a further subsequence
(
P(nk)

)
k∈N

and a conservative doubly Feller semigroup
P = (Pt)t≥0 with the property that for every ε > 0, f ∈ C(S ) there exists a U ∈ U
open and a δ > 0 such that for every k ∈ N large enough,{ (

Ps f (x), P(nk)
t f (y)

) ∣∣∣∣ (x, y) ∈ U ∩ S (∞) × S (nk), s, t > 0 : |t − s| < δ
}
⊂ Bε, (6.6)

where Bε :=
{

(α, β) ∈ R2
∣∣∣ |α − β| < ε }

.

Proof. Recall the definition of the Prokhorov uniformity from Section 3.5.1 and
denote the Prokhorov uniformities onM1(S ) andM1(S (n)) byDM andD(n)

M
, respec-

tively. By assumption, (S ,U) is a Polish space and by virtue of Proposition 3.33 so are
(M1(S ),DM) and

(
M1(S n),D(n)

M

)
, n ∈ N. Consequently, the Prokhorov uniformities

are completely metrizable by Proposition 2.20 and Lemma 2.39.

Fix T > 0 and write
Q(n)

T : S (n) × [0,T ]→M1(S ) (6.7)

for the restriction of Q(n) to S (n) × [0,∞). Now take any subsequence (nk)k∈N. For
ease of notation, we simply use the index k to indicate elements from this sequence.
Clearly, the family

{
Q(k)

T

∣∣∣∣ k ∈ N
}

is uniformly equicontinuous by assumption (C2).
Furthermore, we have by assumption (C1) and Lemma 2.55 that for each x ∈ S∞
there exists a sequence (xk)k∈N with xk ∈ S k and limk→∞ xk = x. We can therefore
apply the Arzelà-Ascoli theorem as formulated in Lemma 2.47 to obtain a continuous
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map QT : S (∞) × [0,T ]→M1(S ) with the property that for all V ∈ DM open there
exists a U ∈ U open and a δ > 0 such that for all k ∈ N large enough,{ (

Q(k)
T (x, s),QT (y, t)

) ∣∣∣∣ (x, y) ∈ U ∩ S (k) × S (∞), s, t ∈ [0,T ] : |s − t| < δ
}
⊂ V. (6.8)

By letting T → ∞ we obtain a continuous map Q : S (∞) × [0,∞) → M1(S ) with
the same property (6.8) for all s, t ∈ [0,∞) with |s − t| < δ. Note that because the
spaces S (n), n ∈ N ∪ {∞} are all closed we can trivially extend the measures Q(x, t)
and Q(n)(xn, t), t ≥ 0, x ∈ S (∞), xn ∈ S (n) to probability measures on the whole of S .
We will do so implicitly in the following.

Let P(n) :=
(
P(n)

t

)
t≥0

be defined as in (6.5) and analogously define P = (Pt)t≥0 as
the family of operators on Bb(S ) given by

Pt f (x) :=
∫

S
f dQ(x, t). (6.9)

Now take f ∈ C(S (∞)). Since Q is a continuous map, we have that Q(xn, t) =⇒
n→∞

Q(x, t)

weakly in M1(S ) for every sequence (xn)n∈N ⊂ S (∞) with limn→∞ xn = x which
readily implies Pt f (xn) −→

n→∞
Pt f (x). Hence, Pt f ∈ C(S (∞)). By the same argument,

we also obtain Pt f ∈ Cb(S (∞)) for all f ∈ Bb(S ). Furthermore, Pt is a positive
contraction operator on C(S (∞)), since Q(x, t) is a probability measure for each t ≥ 0
and x ∈ S (∞). In order to show that P is a Feller semigroup it therefore remains to
show that P is a strongly continuous semigroup, i.e.

PsPt f = Ps+t f ∀s, t > 0 (6.10)

and
lim
t→0

Pt f (x) = f (x) (6.11)

for all f ∈ C(S (∞)) and x ∈ S (∞).

We first show that (Pt)t≥0 indeed satisfies (6.6). To that end fix a metric d on S that
generatesU. We denote the Prokhorov metric (cf. Definition B.1) onM1(S ) induced
by d by dPr and the Kantorovich-Rubinshtein metric (cf. Definition B.2) by dKR and
recall that both metrics are uniformly equivalent (cf. [Bog07, Theorem 8.10.43]).
Hence, both metrics induce the Prokhorov uniformityDM onM1(S ). Furthermore,
denote by

Lip1(S ) := Lipd
1(S ) := { f ∈ C(S ) ∥ f (x) − f (y)| ≤ d(x, y) } (6.12)

the family of real-valued Lipschitz continuous functions with Lipschitz constant at
most 1 (with respect to the metric d). We first show (6.6) for f ∈ Lip1(S ). To that end
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observe that by definition of dKR we have for (x, y) ∈ S (∞) × S (n),∣∣∣∣Ps f (x) − P(k)
t f (y)

∣∣∣∣ = ∣∣∣∣∣∫
S

f dQ(x, s) −
∫

S
f dQ(k)(y, t)

∣∣∣∣∣
≤ dKR

(
Q(x, s),Q(k)(y, t)

)
,

(6.13)

which implies the claim by (6.8). As any continuous function on a compact metric
space can be approximated uniformly by Lip1-functions (cf. [Mic00; Geo67]), we
obtain (6.6) by an approximation argument.

By the same reasoning it suffices to show that both (6.10) and (6.11) hold for
f ∈ Lip1(S (∞)). We first show the semigroup property (6.10). Fix f ∈ Lip1(S (∞)) and
note that f can be extended to a function f̃ ∈ Lip1(S ). In fact, any continuous function
f ∈ C(S (∞)) can be extended to a continuous function f̃ ∈ C(S ). Take x ∈ S (∞) and
denote by (xk)k∈N ⊂ S a sequence with xk ∈ S (k) and limk→∞ xk = x. Such a sequence
exists by assumption (C1). By (6.6), we have for t > 0,

Pt f (x) = lim
k→∞

P(k)
t f̃ (xk). (6.14)

In particular we have for s, t > 0,

PsPt f (x) = lim
k→∞

P(k)
s (̃Pt f )(xk), (6.15)

where (̃Pt f ) ∈ C(S ) again denotes the continuous extension of Pt f ∈ C(S (∞)). Apply-
ing the semigroup property of P(k) for s, t > 0 on the right-hand side we obtain

Ps+t f (x) = lim
k→∞

P(k)
s+t f̃ (xk) = lim

k→∞
P(k)

s P(k)
t f̃ (xk). (6.16)

With (6.15) in mind, it suffices to show that P(k)
s (̃Pt f )(xk) and P(k)

s P(k)
t f̃ (xk) have the

same limit as k → ∞. From assumption (C1) we know that the supports S (n) converge
in the Hausdorff topology to S (∞). By Lemma 2.56, there exist sets Tn and surjective
maps φn : Tn → S n, ψn : Tn → S (∞) for all n ∈ N such that for all U ∈ U open,

{ (φn(y), ψn(y)) | y ∈ Tn } ⊂ U, (6.17)
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eventually. Hence,∣∣∣∣P(k)
s P(k)

t f̃ (xk) − P(k)
s (̃Pt f )(xk)

∣∣∣∣ ≤ ∣∣∣∣P(k)
t f̃ (xk) − (̃Pt f )(xk)

∣∣∣∣
≤ sup

y∈Tk

∣∣∣∣P(k)
t f̃ (φk(y)) − (̃Pt f ) (φk(y))

∣∣∣∣
≤ sup

y∈Tk

∣∣∣∣P(k)
t f̃ (φk(y)) − Pt f (ψk(y))

∣∣∣∣
+ sup

y∈Tk

∣∣∣Pt f (ψk(y)) − (̃Pt f ) (φk(y))
∣∣∣

(6.18)

where we applied the contraction property of P(n) in the first inequality and the triangle
inequality in the second. Now it is easy to see that the right hand side tends to 0 as
k → ∞, as the first summand goes to 0 by construction of φk, ψk and their property
(6.17) together with (6.6). Whereas the second summand goes to 0 by continuity of
Pt f . We have thus shown that P is indeed a semigroup and it remains to show the
strong continuity of P (6.11). Using (6.14) we obtain for f ∈ C(S (∞)) and x ∈ S (∞),

P0 f (x) = lim
k→∞

P(k)
0 f̃ (xk) = lim

k→∞
f̃ (xk) = f (x), (6.19)

where (xk)k∈N ⊂ S is chosen as before.

Finally, we deduce (6.11) from limt→0 Pt f (x) = P0 f (x) which is a direct conse-
quence of the continuity of Q. ■

We have shown that there exists a subsequence
{

X(nk)
∣∣∣ nk ∈ N

}
of

{
X(n)

∣∣∣ n ∈ N
}

so that the semigroups
{

P(nk)
∣∣∣ nk ∈ N

}
converge in the sense of (6.6) to a limiting

semigroup (Pt)t≥0, which is again Feller. By Remark 4.46 there exists a unique
Feller process X associated to (Pt)t≥0. We need to examine if and in which sense the
sequence of processes

{
X(nk)

∣∣∣ nk ∈ N
}

converges to X. But first, we verify that the

limit is again symmetric with respect to the limit ν(∞) of the sequence
{
ν(n)

∣∣∣ n ∈ N
}
.

Lemma 6.3. Under the assumptions of Theorem 6.2 suppose that the P = (Pt)t≥0
is the limit of a subsequence

{
P(nk)

∣∣∣ nk ∈ N
}

of
{

P(n)
∣∣∣ n ∈ N

}
in the sense of (6.6).

Then P is ν(∞)-symmetric Feller semigroup.

Proof. It only remains to show that P is ν(∞)-symmetric by Theorem 6.2. For read-
ability we again write just k instead of nk for the index of the subsequence. We first
show that for every f ∈ C(S ),

lim
k→∞

∫
S

P(k)
t f dν(k) =

∫
S

Pt f dν(∞). (6.20)
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Note that by (6.6) there exists a continuous extensions P̃t f of Pt f to C(S ) such that,

M(k)
t, f := sup

x∈S (k)

∣∣∣∣P(k)
t f (x) − P̃t f (x)

∣∣∣∣→ 0, (6.21)

as k → ∞. Consequently,∫
S

P(k)
t f dν(k) ≤

∫
S

P̃t f dν(k) + M(k)
t, f ν

(k)(S ). (6.22)

Because S is compact we have ν(k)(S ) < ∞ for all k ∈ N.

Moreover, as limn→∞ ν
(k)(S ) = ν(∞)(S ) < ∞, the sequence ν(k)(S ) is uniformly

bounded. Therefore we obtain (6.20) from (6.22) by weak convergence of ν(k) and
(6.21).

As an immediate consequence, we obtain the conclusion∫
S

f Ptg dν(∞) = lim
k→∞

∫
S

f P(k)
t g dν(k) = lim

k→∞

∫
S

P(k)
t f g dν(k) =

∫
S

Pt f g dν(∞),

(6.23)
for all f , g ∈ C(S ). ■

Theorem 6.4 (Subsequential limits in f.d.d.). Under the assumptions of Theorem 6.2
suppose that the P = (Pt)t≥0 is the limit of a subsequence

{
P(nk)

∣∣∣ nk ∈ N
}

of{
P(n)

∣∣∣ n ∈ N
}

in the sense of (6.6) and that X is the ν(∞)-symmetric Feller process
associated with the semigroup (Pt)t≥0. Then, for every sequence of starting points(
xnk

)
k∈N ⊂ S with xnk ∈ S (nk) and limk→∞ xnk = x∞ ∈ S (∞), X(nk) converges to X in

finite dimensional distributions. In other words, for every N ∈ N, f1, . . . , fN ∈ C(S )
and 0 ≤ t1 ≤ · · · ≤ tN ,

lim
k→∞
E(nk)

xnk

 N∏
j=1

f j
(
X(nk)

t j

) = Ex∞

 N∏
j=1

f j
(
Xt j

) , (6.24)

where E(n) denotes the expectation with respect to P(n) and E the expectation with
respect to PX .

Proof. Again we use just the index k instead of nk for the subsequence. We proceed
by induction. In the case N = 1, we have

lim
k→∞

P(k)
t1 f (xk) = Pt1 f (x∞), (6.25)
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which is true by Theorem 6.2. Suppose now that (6.24) holds for N ∈ N. Applying
the Markov property at tN yields

E(nk)
xk

N+1∏
j=1

f j
(
X(k)

t j

) = Exk

P(k)
tN+1−tN fN

(
X(k)

tN

) N∏
j=1

f j
(
X(k)

t j

) . (6.26)

As before, PtN+1−tn fN can be extended to a continuous function ˜PtN+1−tn fN on S and it
holds that

lim
k→∞

sup
x∈S (k)

∣∣∣∣P(k)
tN+1−tN fN(x) − ˜PtN+1−tn fN(x)

∣∣∣∣ = 0. (6.27)

Combining this with (6.26), we arrive at

lim
k→∞
E(nk)

xk

N+1∏
j=1

f j
(
X(k)

t j

) = lim
k→∞
Exk

 ˜PtN+1−tN fN
(
X(k)

tN

) N∏
j=1

f j
(
X(k)

t j

) . (6.28)

Note that the factor ˜PtN+1−tN fN
(
X(k)

tN

)
fN

(
X(k)

tN

)
in the expectation on the right is a

function of X(k)
tN and we can apply the inductive hypothesis to obtain

lim
k→∞
E(nk)

xk

N+1∏
j=1

f j
(
X(k)

t j

) = Ex∞

PtN+1−tN fN
(
XtN

) N∏
j=1

f j
(
Xt j

) = Ex∞

N+1∏
j=1

f j
(
Xt j

) ,
(6.29)

as claimed. ■

If we now add the tightness (C3) to our set of assumptions, we immediately
obtain from Prokhorov’s theorem Proposition 3.37 that for every subsequence of{
P(n)

∣∣∣ n ∈ N
}

and every sequence (xn)n∈N ⊂ S with xn ∈ S (nn) and limn→∞ xn =

x∞ ∈ S (∞), there exists a further subsequence
{
P(nk)

∣∣∣ nk ∈ N
}

and a probability

measure Px∞ on DS ([0,∞)) such that P(nk)
xk ⇒ Px∞ weakly as k → ∞. In conjunction

with the previous result Theorem 6.4 we directly obtain the following result.

Theorem 6.5 (Subsequential limits in DS ([0,∞))). Let (S ,U) be compact and
assume that conditions (C1), (C2) and (C3) hold. Then for every subsequence
of

{
X(n)

∣∣∣ n ∈ N
}

there exists a further subsequence
{

X(nk)
∣∣∣ nk ∈ N

}
and a ν(∞)-

symmetric Feller process X such that

P(nk)
µ(k) ⇒ P

X
µ(∞) , (6.30)

weakly as measures on DS ([0,∞)) for every sequence
(
µ(k)

)
k∈N

of initial distributions
with µ(k) ∈ M1(S (k)) and µ(k) ⇒ µ(∞) ∈ M1(S (∞)) weakly as k → ∞.
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6.3 Identification of subsequential limits
So far we have established that under conditions (C1), (C2) and (C3) the sequence(

X(n)
)
n∈N

possesses subsequential limits not only in a f.d.d. sense but also in a

pathwise sense. In order to establish convergence of the sequence
{

X(n)
∣∣∣ n ∈ N

}
we

must therefore show that all subsequential limits coincide. Here comes our assumption
(C4) into play.

Proof of Theorem 6.1. Suppose
{

X(nk)
∣∣∣ nk ∈ N

}
and

{
X(nl)

∣∣∣ nl ∈ N
}

are two subse-
quences along which the convergence in Theorem 6.5 holds. For ease of notation, we
write again k instead of nk and l instead of nl for the indices. Denote the respective
limits by X and X̂. By Theorem 6.2 we have that both X and X̂ are ν(∞)-symmetric
Feller processes on S∞. Moreover, from (C4) we can conclude that for each x ∈ S (∞)

and A ∈ B(S ) with τA < ∞, P(∞)
x -a.s. and every f ∈ Bb(S ),

GA f (x) = ĜA f (x), (6.31)

where GA and ĜA denote the Green operators associated with X and X̂, respectively.
We can therefore apply Theorem 4.72 to obtain X d

= X̂, concluding the proof. ■

By the same argument we obtain convergence in f.d.d. if we don’t assume the
tightness (C3) of the sequence

{
X(n)

∣∣∣ n ∈ N
}
.

Corollary 6.6. Assume that (S ,U) is compact and that X(n) is conservative for each
n ∈ N∞. Under conditions (C1), (C2) and (C4) X(n) converges in f.d.d. to X(∞) for
all sequences of initial distributions

(
µ(n)

)
n∈N
⊂ M1(S ) with µ(n) ∈ M1(S (n)) and

µ(n) ⇒ µ(∞) ∈ M1(S (∞)).

6.4 Discussing the assumptions
Recall our discussion of the two examples at the end of the last chapter in Re-

mark 5.97. In both examples the behavior of the process X is linked to the geometric
structure of the state space. For the Brownian motion on a Riemannian manifold M
through the Riemannian metric tensor g which induces both the metric d on the mani-
fold and the Dirichlet form (E,D) on L2(M, dV) that defines the Brownian motion. A
different point of view is that the generator of the Brownian motion on M is given by
the Laplace-Beltrami operator ∆, which is defined in terms of the metric tensor g and
therefore related to the geometry of M.
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A similar connection exists for the resistance form. Here the resistance form (E,F )
itself is the link between the resistance metric R and the Dirichlet form (E,D) on
L2(S , ν) and consequently the process X.

This connection between the geometry of the state space and the process is some-
times (cf. [Sto63; AEW13; ALW17]) expressed by saying that the process is on its
“natural scale”.

6.4.1 Convergence of Green operators (C4)
For the resistance forms, the relation between the process and the metric of the

state place is explicit in the following way. By Proposition 5.85 together with (5.309),
we have that

Px(τy < τA) =
gA(x, y)
gA(y, y)

=
R(A, x) + R(A, y) − R(x, y)

2R(A, y)
. (6.32)

Consequently, the probabilities of hitting one point before the other can be expressed
in terms of their mutual distances and their distance to the starting point. Sim-
ilarly, the Green kernel gA(x, y) and consequently the Green operator GA f (x) =∫

S gA(x, y) f (y) ν(dy) is determined by the resistance metric. As a consequence, it
is plausible that for resistance forms the Hausdorff-weak convergence (C1) already
implies the convergence of the Green operators, (C4). Indeed, this is the case as
shown in [Cro18, Lemma 5.5]. Note that the Green kernel can also be expressed in
terms of the probabilities to hit one point before another, by (6.32).

Under our assumptions the processes are not on their “natural scale” as we do
not have a scale (i.e. a metric) on the state spaces, to begin with. We have, how-
ever, defined a notion of resistance between sets in Section 5.5. We have shown in
Proposition 5.77 that the minimizer of the variational problem for R(A, B) is given by
Px(τB < τA).

This leads us to believe that the following conjecture holds true.

Conjecture 6.7. Suppose that (S ,U) is compact and that (C1) holds. Then (C4) is
equivalent to the following condition.

(C4∗) For all A, B ∈ B(S ) closed with τA < ∞ P
(∞)
x -a.s. for all x ∈ S (∞),

lim
n→∞
P(n)

xn (τA < τB) = P(∞)
x∞ (τA < τB) (6.33)

for every sequence (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞.

Using the relation between the probabilities Px(τA < τB) and the resistance R(A, B),
we can rephrase Conjecture 6.7 as follows.
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Conjecture 6.8. Suppose that (S ,U) is compact and that (C1) holds. Then (C4) is
equivalent to the following condition.

(C4∗∗) For all A, B ∈ B(S ) closed with Cap1(A) > 0,

lim
n→∞
R(n)(A, B) = R(∞)(A, B), (6.34)

where R(n) denotes the effective resistance associated with the process X(n),
n ∈ N∞, as defined in Definition 5.73.

6.4.2 Tightness (C3)
By Theorem 4.75, condition (C3) holds whenever the probability that X(n) moves

far from its starting point in a short period of time is uniformly bounded in the starting
point and n ∈ N. Hausdorff weak convergence of the state spaces is one important
property to ensure the tightness. Because it ensures that there are no areas of the state
space, where the measure ν(∞) vanishes in the limit while having positive measure
for all n ∈ N. This would mean that the limiting process moves increasingly faster
through these areas, causing (4.204) of Theorem 4.75 to fail.

For both special cases, for resistance forms and the Brownian motion on manifolds
the tightness follows from Theorem 4.75 by the Gromov-Hausdorff weak convergence
of the state spaces together with an additional condition. In [Cro18, Assumption 1.1
b)], this additional condition for resistance forms is a uniform recurrence condition
given by

lim
r→∞

lim sup
n→∞

R(n)
(
xn,∁B(n)(xn, r)

)
= ∞. (6.35)

In [CHK17, Assumption 1.2], the authors instead assumed the stronger1 uniform
volume doubling condition, which claims that there exists a non-decreasing function
v : (0,∞) → (0,∞) and constants c1, c2, c3 > 0 such that v(2r) ≤ c1v(r) for every
r > 0 and

c2v(r) ≤ ν(n)
(
B(n)(x, rn)

)
≤ c3v(r), ∀x ∈ S (n), rn ∈ [R0(n),R∞(n) + 1], (6.36)

where

R0(n) := inf
x,y∈S (n), x,y

{
R(n)(x, y)

}
and R∞(n) := sup

x,y∈S (n)

{
R(n)(x, y)

}
. (6.37)

For Brownian motions on Riemannian manifolds, Suzuki imposes the following
condition in [Suz19a, Lemma 5.6 (ii)] on the sequence of initial distribution. First,

1See Croydon’s discussion of these assumptions in [Cro18, Remark 1.3 b)].
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the sequence µ(n) of initial distributions must be absolutely continuous with respect to
the volume measure dVn. Moreover the Radon-Nikodym derivatives φn =

dµ(n)

dVn
are

uniformly bounded in the following sense. For every r > 0 there exists a Mr > 0 such
that

sup
n∈N

sup
{
|φn(z)|

∣∣∣ z ∈ B(n)(xn, r)
}
< Mr < ∞. (6.38)

It is far from obvious what additional assumption would be needed in our situation
to apply Theorem 4.75.

6.4.3 Uniform equicontinuity of the semigroups (C2)
In [ALW17, Lemma 5.3] and in [Cro18, Lemma 5.2], the authors use a coupling

argument to show the uniform equicontinuity of the semigroups (C2). Here the
connection between the behavior of the process and the geometric structure of the
state space given by the resistance metric plays a fundamental role.

6.4.4 Hausdorff-weak convergence of the state spaces
(C1)

The results in [ALW17], [Cro18] and [Suz19a] all allow the processes to live on
different state spaces. A part of the results, or more precisely, part of the assumption,
is that the state spaces S (n) can be isometrically embedded into a common ambient
space.

We also allow the processes to have different state spaces we do, however, assume
that these state spaces are already subsets of an ambient space. This is due to the lack
of a metric structure on the state spaces S (n). Without a metric structure we cannot
define isometric embeddings and hence no Gromov-Hausdorff convergence.

A possible extension of our result would rely on the definition of convergence of
uniform measure spaces.
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7Remarks and Outlook

„It is possible to commit no mistakes and still
lose. That is not a weakness; that is life.

— Jean Luc Picard
Star Trek: The Next Generation

In this chapter, we collect various remarks and present an outlook of further research
questions that could not be answered in this thesis.

7.1 Chapter 3: The path space
In the discussion following Lemma 3.20 we already mentioned that it would make

the following results a bit stronger if it could be shown that completeness of the
uniform space (S ,U) implies completeness of the path space DS ([0,∞)) without the
assumption of metrizability. Indeed we conjecture that the following is true.

Conjecture 7.1. Assume (S ,U) is a uniform Hausdorff space. If (S ,U) is complete
then so is DS ([0,∞)).

7.2 Chapter 4: Symmetric Feller processes
In Example 4.15 we have shown that fixed jump times break the homogeneity

property of a Markov process. The following conjecture seems like it should be
well-known. Nevertheless, I have not been able to find a reference and will leave the
proof as an open problem.1

Conjecture 7.2. Let X be a homogeneous Markov process with state space (S ,U).
Then for all s ≥ 0 and x ∈ S

Px(Xs , Xs−) = 0. (7.1)

In Proposition 4.34 we have shown that this conjecture is indeed true if we assume
that the semigroup of X has the Feller property.

1The author has posted this conjecture online: https://math.stackexchange.com/q/4443534/
1054746
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7.2.1 The killed process
In Section 4.3.1 we show that the Feller property, the strong Feller property and the

ν-symmetry of the original process X carry over to the killed process XA. It remains
an open question whether also the strong ν-symmetry is preserved under killing.

7.2.2 Uniqueness by hitting times
In order to establish the uniqueness of a Feller process by its hitting times through

the Green operator in Section 4.3.3, we have to make some quite restrictive assump-
tions. On the one hand, we assume that the state space is compact and on the other
hand, we need the strong Feller property in the proof of Theorem 4.72. The compact-
ness is needed to make sure that the 0-resolvent of a transient process and the Green
operator are bounded operators. This assumption can certainly be relaxed as can be
seen in our discussion of transient Dirichlet forms in Section 5.3.2. For more on this
topic see [CF11, Section 2.1].

We have the following conjecture which might be too strong.

Conjecture 7.3. Let (S ,U) be a locally compact uniform Hausdorff space and ν a
Radon measure on (S ,B) with full support. Suppose X is a transient ν-symmetric
Feller process with values in Sϑ. Then the 0-resolvent given by

R f (x) :=
∫ ∞

0
Pt f (x) dt (7.2)

for f ∈ C∞(S ) and x ∈ S is a bounded operator mapping C∞(S ) to C∞(S ).

It is worth pointing out that the proof of Theorem 4.72 is the only point where we
need the strong Feller property. If we could show that the same conclusion holds
under the normal Feller property, we could significantly strengthen our results in
Chapter 6.

7.3 Chapter 5: Dirichlet Forms and symmetric
Feller Processes

We have tried to extract the most important parts from the very rich analytic theory
of Dirichlet forms. This leads necessarily to some gaps. For example, we completely
ignore the question if there is a ν-symmetric Feller associated with every Dirichlet
form. The answer to this question is basically “yes” but a precise statement needs
more potential theory than we can develop in this short summary. A partial answer is
given by the following theorem.
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Theorem 7.4 ([CF11, Theorem 1.5.1]). Let (E,D) be a regular Dirichlet form on
L2(S , ν), where S is a locally compact separable metric space and ν is a Radon
measure on S with full support. Then there exists a Hunt process X with values in S
and a ν-symmetric transition function such that (E,D) is the Dirichlet form associated
with X.

For a more general result see [CF11, Theorem 1.5.2]. Even uniqueness in distri-
bution of the associated processes can be shown [CF11, Theorems 3.1.12 & 3.1.13].
However, uniqueness only holds for quasi-all starting points, in other words, outside a
set of zero capacity.

7.3.1 Resistance
In Remark 5.75 we have hinted at a possible extension of the definition of the

effective resistance to arbitrary subsets of S .

One possible extension is given by the following.

Definition 7.5. Let (E,D) be a regular Dirichlet form on L2(S , ν). For two subsets
A, B ⊂ S with Cap1(A),Cap1(B) > 0 and A closed the (effective) resistance between
A and B is defined as

R(A, B) := sup
{
E( f , f )−1

∣∣∣ f ∈ F B
A

}
, (7.3)

where we set sup Ø = 0. For arbitrary sets A, B ⊂ S we define

R(A, B) := sup { R(K, B) | K ⊃ A and K ⊂ S closed } (7.4)

whenever Cap1(A) > 0 and R(A, B) = 0 otherwise. ♢

This definition would lead to the following consequence.

Proposition 7.6. Suppose A, B ⊂ S with positive capacity and R(A, B) > 0, then

R(A, B) = R(A, B). (7.5)

Proof. First observe that for F ⊂ S with A ⊂ F, it holds hat R(F, B) ≤ R(A, B). To
see that take any closed set K ⊂ S with F ⊂ K, then K also contains A. Hence,

R(F, B) := sup { R(K, B) | K ⊃ F and K ⊂ S closed }

≤ sup { R(K, B) | K ⊃ A and K ⊂ S closed } = R(A, B).
(7.6)
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Now the claim follows simply from the fact that A ⊂ K for all closed K ⊂ S with
A ⊂ K. ■

Furthermore, we conjecture that the same variational problem, (7.3) defines the
effective resistance for arbitrary sets A, B.

Conjecture 7.7. Let (E,D) be a regular Dirichlet form. Suppose A, B ⊂ S are such
that R(A, B) > 0, then the resistance between A and B is given by the following
variational problem

R(A, B) := sup
{
E( f , f )−1

∣∣∣ f ∈ F B
A

}
. (7.7)

Sketch of proof. If A is closed (7.7) is just the definition of the resistance. Suppose A
is not closed. Then R(A, B) = R(A, B) by Proposition 7.6. Now let f ∈ FA, i.e. f ∈ D
is such that its quasi continuous version f̃ is 0 q.e. on A. By quasi continuity, f̃ = 0
q.e. on A. Hence, FA ⊂ FA. The reverse inclusion is trivial and consequently FA = FA.
Recall the definition of the boundary of A, ∂A := A \ A◦ from Definition A.2. Since
for every f ∈ FA, f̃ = 0 q.e. on ∂A, we have that f = 0 ν-a.e. on ∂A. Consequently,
every limit in L∞(S \ A, ν) of an E-Cauchy sequence in FA is 0 ν-a.e. on A \ A. That
means we can identify DA

e = D
A
e and consequently F B

A = F
B

A
which implies the

statement. □

7.4 Chapter 6: Convergence of symmetric
Feller processes

In the proof of Theorem 6.2 we stray from our path to completely avoid metrics.
However, observe that the proof does not depend on the choice of the metric. We
strongly believe that the statement is provable without using metrics. That would
require an in-depth analysis of the convergence of (probability) measures on uniform
spaces which would go beyond the scope of this thesis. It could be subject of further
research in order to establish a full theory of stochastic processes on uniform spaces.
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ATopology

We formally introduce the basic topological concepts used throughout this thesis.

Throughout this chapter let S , Ø be a non-empty set and denote by P(S ) = {A ⊂
S } the powerset of S .

A.1 Fundamentals of topology
Definition A.1. Let S be a non-empty set. A family T of subsets of S is called a
topology (on S ), if it satisfies

(i) S ,Ø ∈ T ,

(ii) any union of elements in T belongs again to T ,

(iii) finite intersections of elements in T belong again to T .

The pair (S ,T ) is called a topological space. When there can be no confusion
about the topology T we sometimes refer to S as a topological space.

The elements of T are called open sets. A set A ⊂ S is called closed if its
complement Ac := S \ A is open. ♢

Observe that openness and closedness are not complementary: A set can be both
open and closed – or neither.

Definition A.2 (Interior and closure of sets). Let A ⊂ S be a set. The interior of A is
defined as

A◦ :=
⋃

U⊂A : U open

U. (A.1)

Conversely, we define the closure of A as

A :=
⋂

K⊃A : K closed

K. (A.2)

We call the set theoretic difference ∂A := A \ A◦ the boundary of the set A. ♢

It is easy to check that the interior of a set A is open and the closure is closed.
Furthermore, a set A ⊂ S is open if and only if A = A◦ and it is closed if and only if
A = A.
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A neighborhood of x ∈ S is a set V such that there exists an open set Ux ∈ T with
Ux ⊂ V and x ∈ Ux. We sometimes write

Ux := { U ⊂ S | ∃U ∈ T : U ⊂ V and x ∈ U } (A.3)

for the neighborhood system at x.

The family of all neighborhood systems { Ux | x ∈ S } is clearly determined by the
topology on S . But the converse is also true.

Proposition A.3. Let S be a topological space andUx the neighborhood system of
x ∈ S . ThenUx satisfies

(i) x ∈ U for all U ∈ Ux,

(ii) U ∩ V ∈ Ux for all U,V ∈ Ux,

(iii) for all U ∈ Ux there exists a V ∈ Ux, such that U ∈ Uy for each y ∈ V,

(iv) if U ∈ Ux and U ⊂ V, then V ∈ Ux.

Furthermore

(v) U ⊂ S is open if and only if U contains a neighborhood of all its elements.

Conversely, if for each x ∈ S there is a familyUx satisfying (i)–(iv), then the family of
open sets in the sense of (v) is a topology and the neighborhood system of x in this
topology isUx.

We shall not provide a proof of this statement. Instead, we focus on a similar
statement for bases of neighborhood systems.

Definition A.4. Let S be a topological space. A base of the neighborhood system at
x ∈ S or a neighborhood base at x is a family Nx ⊂ Ux such that

∀U ∈ Ux ∃V ∈ Nx : V ⊂ U. (A.4)

The elements of the neighborhood base Nx are called basic neighborhoods of x. ♢

We categorize topological spaces by the size of their bases, i.e. whether they have
a countable base or at least a countable neighborhood base at every point x ∈ S .

Definition A.5. A topological space (S ,T ) is said to be first countable, if T possesses
a countable neighborhood baseNx at every x ∈ S . We call a topological space second
countable if the topology T has a countable base. ♢
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Proposition A.6. Let S be a topological space and Nx a neighborhood base at x ∈ S .
Then Nx satisfies

(i) x ∈ U for all U ∈ Nx,

(ii) for any U1,U2 ∈ Nx there exists V ∈ Nx such that V ⊂ U1 ∩ U2,

(iii) for any U ∈ Nx there exists a V ∈ Nx such that for all y ∈ V there exists a
W ∈ Ny such that W ⊂ U.

Furthermore,

(iv) U ⊂ S is open if and only if U contains a basic neighborhood of each of its
elements.

Conversely, if we assign to each x ∈ S a family Nx satisfying (I)–(III) and use (IV) to
define the open subsets of S , then the result is a topology in which a neighborhood
base for each x ∈ S is given by Nx.

Proof. Assertion (i) is evident from the definition of neighborhoods and the fact that
Nx ⊂ Ux. To show (ii) let U1,U2 ∈ Nx and observe that U := U◦1 ∩ U◦2 is open and
contains x, hence U ∈ Ux. By definition Definition A.4, there exists a V ∈ Nx such
that V ⊂ U ⊂ U1 ∩ U2. Now, let U ∈ Nx then U◦ ∈ Ux and by definition of Nx there
exists a V ∈ Nx with V ⊂ U◦. Clearly, U ∈ Uy for all y ∈ V and by definition of Ny

there exists a W ∈ Ny with W ⊂ U, establishing (iii). For (iv) assume that U ⊂ S
is open, then U is a neighborhood for each of its elements and a fortiori contains a
basic neighborhood of all its elements. Now assume that U ⊂ S contains a basic
neighborhood Vx of all its elements x ∈ U. Then x ∈ V◦x ⊂ U and by taking the union
over all x ∈ U we get U ⊂

⋃
x∈U Vx ⊂ U and hence U is the union of open sets and

thus open.

For the converse assertion assume that we are given a family Nx at each x ∈ S
satisfying (I)–(III). Let

T := { U ⊂ S | ∀x ∈ U ∃V ∈ Nx : V ⊂ U } . (A.5)

We first show that T is a topology. Clearly S ,Ø ∈ T , the former because it contains
all subsets and the latter because it has no elements. Let U ⊂ T be any family of
open sets. For each x ∈ A :=

⋃
U∈U U there exists a U ∈ U and a V ∈ Nx such that

V ⊂ U. Thus V ∈ A and A contains a basic neighborhood of each of its elements and
thus A ∈ T . Assume n ∈ N and U1, . . . ,Un ∈ T and let x ∈ U :=

⋂n
k=1 Uk. Then

there is a basic neighborhood Uk
x ∈ Nx with Uk

x ⊂ Uk for all k = 1, . . . , n and by (II)
and induction there exists V ∈ Nx such that V ⊂

⋂n
k=1 Uk

x ⊂ U and hence U ∈ T
because x ∈ U was arbitrary.

Now, for each x ∈ S let Ux := { U ⊂ S | ∃V ∈ Nx : V ⊂ U }. It remains to be
shown thatUx defines a neighborhood system at each x ∈ S . Let x ∈ S and U ∈ Ux,
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by (I) x ∈ U and it suffices to show that x ∈ U◦. The assertion follows immediately
from (III) if we can show that U◦ =

{
y ∈ U

∣∣∣ U ∈ Uy
}
=: ι(U). The inclusion

U◦ ⊆ ι(U) is clear by (IV), the fact that U◦ is open and the definition ofUx. For the
converse inclusion, it is enough to show that ι(U) ∈ T . Let y ∈ ι(U), then there exists
V ∈ Ny such that V ⊂ U. By (III) there exists a B ⊂ Ny such that for all z ∈ B there
exists a W ∈ Nz such that W ⊂ V ⊂ U. And by construction, all these W are subsets
of U and hence U ∈ Uz for all z ∈ B which means B ⊂ ι(U). Since y was arbitrary,
ι(U) contains a basic neighborhood of all its elements and is thus open. ■

Remark A.7. In the proof of Proposition A.6 we have actually shown more. If at each
x ∈ S we have families Nx and N ′x satisfying (i)–(iii) then the topologies induced by
{ Nx | x ∈ S } and

{
N ′x

∣∣∣ x ∈ S
}

coincide. ♢

There are various ways to define a topology on a set S . In Section 2.6 we use the
closure operator to define the topology induced by a proximity.

Definition A.8 (Closure operator). Let S , Ø be a set. A map Γ : P(S ) → P(S ) is
called closure operator if it satisfies the following conditions for all A, B ∈ P(S )

(i) A ⊂ Γ(A),

(ii) Γ(Γ(A)) = Γ(A),

(iii) Γ(A ∪ B) = Γ(A) ∪ Γ(B),

(iv) Γ(Ø) = Ø.

If Γ is a closure operator, we write A := Γ(A). ♢

Clearly, the operation A defined by (A.2) defines a closure operator.

Proposition A.9. Let Γ be a closure operator on P(S ). The family

T :=
{

U ∈ P(S )
∣∣∣∣ Γ (∁U

)
= ∁U

}
(A.6)

is a topology on S . In other words, the closed sets are those sets A ∈ P(S ) for which
Γ(A) = A holds.

Proof. By (i) of Definition A.8, S is closed and hence, Ø ∈ T . On the other hand,
by (iv), Ø is closed and hence S is open. Now let U1, . . . ,Un ∈ T . Using (iii) and
induction we get

Γ

∁ n⋂
j=1

U j

 = Γ
 n⋃

j=1

∁U j

 = n⋃
j=1

Γ
(
∁U j

)
=

n⋃
j=1

∁U j = ∁
n⋂

j=1

U j (A.7)
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and hence
⋂n

j=1 U j ∈ T .

It remains to show that if I is any index set and { Ui | i ∈ I } ⊂ T we have that⋃
i∈I Ui ∈ T . First observe that if A, B ⊂ S with A ⊂ B, we have Γ(B) = Γ(A)∪Γ(B\A)

by (iii) and hence Γ(A) ⊂ Γ(B). As
⋂

i∈I ∁Ui ⊂ ∁U j for every j ∈ I, we conclude

Γ

⋂
i∈I

∁Ui

 ⊂⋂
i∈I

Γ
(
∁Ui

)
=

⋂
i∈I

∁Ui. (A.8)

Using (i) we obtain the reverse inclusion and hence

Γ

⋂
i∈I

∁Ui

 =⋂
i∈I

∁Ui, (A.9)

which implies, by definition of T ,
⋃

i∈I Ui ∈ T . ■

Recall the following fundamental concepts of topology.

Definition A.10. Let (S ,T ) be a topological space.

(i) A point x ∈ S is called a cluster point (or point of accumulation) of a set A ⊂ S
if every basic neighborhood V ∈ Nx of x contains some point y ∈ A \ {x}.

(ii) A set K ⊂ S is called compact if and only if for every open covering of K, i.e.
a familyU ⊂ T with K ⊂

⋃
U∈U U, there exists a finite open subcover of K,

i.e. there exists a familyV ⊂ U such that K ⊂
⋃

V∈V V and |V| < ∞. ♢

Lemma A.11. A set A ⊂ S is closed if and only if all cluster points of A are contained
in A. Furthermore A = A ∪ { x ∈ S | x is a cluster point of A }.

Proof. Assume that A ⊂ S is closed. Then ∁A is open and for all x ∈ ∁A there exists
a basic neighborhood V ∈ Nx such that V ∩ A = Ø. Hence all cluster points of A are
already contained in A. Assume the converse is true, i.e. all cluster points of A are
contained in A. Then, for each y ∈ ∁A there exists a basic neighborhood V ∈ Ny such
that V ⊂ ∁A and hence ∁A is open and A is closed. For the last part of the claim
observe that A ⊂ A and A is closed and consequently contains all its cluster points
and a fortiori all cluster points of A. To show the converse inclusion “⊇” observe that
any closed subset K ⊂ S that contains A has to contain all cluster points of A and so
does the intersection of all such sets which is, by definition, A. ■

Definition A.12 (relatively compact subsets). Let (S ,T ) be a topological Hausdorff
space. A subset A ⊂ S is relatively compact if its closure A is compact in (S ,T ). ♢
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Sometimes, especially in probability theory, it is useful to work with topological
spaces that are “almost countable” in the following sense.

Definition A.13 (Separability). Let (S ,T ) be a topological space.

(i) A subset A ⊂ S is said to be dense in S , if A = S .

(ii) The topological space (S ,T ) is called separable, if there exists a countable
dense subset D ⊂ S . ♢

Definition A.14 (Complete regularity). A topological space (S ,T ) is called completely
regular if for every closed set A ⊂ S and every x ∈ S \ A there exists a real valued
continuous function f : S → R with f |A = 0 and f (x) = 1. ♢

Definition A.15 (Hausdorff property). A topological space (S ,T ) has the Hausdorff
property if for every x, y ∈ S with x , y there exist neighborhoods Ux ∈ Ux and
Uy ∈ Uy of x and y respectively such that Ux ∩ Uy = Ø. ♢

If (S ,T ) has the Hausdorff property we refer to (S ,T ) as a Hausdorff space.

Hausdorff spaces have the following nice property.

Lemma A.16. Let (S ,T ) be a Hausdorff topological space. Then every compact
subset of S is closed.

Proof. Assume K ⊂ S is compact and let x ∈ S \ K be arbitrary. By the Hausdorff
property, for each y ∈ K there exist open neighborhoods Ux(y) of x and Vy of y such
that Ux(y) ∩ Vy = Ø. Clearly,

{
Vy

∣∣∣ y ∈ K
}

is an open covering of K, hence, by

compactness, there exists a finite subset F ⊂ K such that
{

Vy
∣∣∣ y ∈ F

}
is already an

open covering of K. Then
Ux :=

⋂
y∈F

Ux(y) (A.10)

is an open neighborhood of x, disjoint from K. Since x ∈ S \ K was arbitrary this
implies that S \ K can be written as the union of open sets and is therefore open,
which proves the claim. ■

We introduce some concepts that are closely related to compactness.

Definition A.17. Let (S ,T ) be a topological Hausdorff space.

(i) (S ,T ) is said to be locally compact if each point has a compact neighborhood.
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(ii) (S ,T ) is called σ-compact if S is the union of countably many compact sets.

(iii) (S ,T ) is said to be Lindelöf if every open cover of S has a countable subcover.
♢

Note that some authors refer to the property in Definition A.17 as weakly locally
compact and require the existence of a local base of compact neighborhoods for
each x ∈ S for local compactness. However, the two definitions are equivalent for
topological Hausdorff spaces by [Wil70, Theorem 18.2].

Clearly, if (S ,T ) itself is compact, then S is a compact neighborhood of each x ∈ S
and (S ,T ) is locally compact.

Lemma A.18. Let (S ,T ) be a locally compact Hausdorff space. Suppose A ⊂ S is
open or closed, then A is locally compact with respect to the subspace topology.

Proof. First, let A ⊂ S be closed. Fix x ∈ A and take a compact neighborhood
Kx ⊂ S of x in S . Clearly, Kx ∩ A is closed in S and therefore compact. Since
every open subset of A is of the form U ∩ A for some U ∈ T , every open cover of
Kx ∩ A in A gives rise to an open cover of Kx in S which possesses an open subcover
{ Uk ∈ T | k = 1, . . . , n } of Kx, by compactness. Then, { Uk ∩ A | k = 1, . . . , n } is a
finite open subcover of Kx ∩ A.

If A is open, on the other hand, the case is simple. Let x ∈ A, then there exists an
open neighborhood Ux ⊂ A of x which contains a compact neighborhood Kx (in S ).
But then Kx is also a compact neighborhood of x in A. ■

Lemma A.19. Every second countable topological space is Lindelöf.

Proof. Let (S ,T ) be a second countable topological space. Suppose that an open
cover of S is given by { Aα ∈ T | α ∈ I }. Since T possesses a countable base
{ Un ∈ T | n ∈ N }, we can deduce that for each α ∈ I there exists a n ∈ N such
that

Un ⊂ Aα. (A.11)

Now choose a subset J ⊂ I such that for each n ∈ N, Un ⊂ Aβ for at most one β ∈ J.
Then, J is at most countable and

{
Aβ

∣∣∣ β ∈ J } is a countable open cover of S . ■

We can relate the different notions in Definition A.17 to each other in the following
way.

Lemma A.20. Let (S ,T ) be a locally compact Lindelöf space. Then (S ,T ) is σ-
compact.
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Proof. By local compactness, there exists for each x ∈ S a compact neighborhood Kx

of x. By definition, there exists an open neighborhood Ux such that Ux ⊂ Kx for each
x ∈ S . Now, { Ux | x ∈ S } is an open cover of S and by the Lindelöf property there
exists a countable collection { xn ∈ S | n ∈ N } such that

S ⊂
⋃
n∈N

Uxn ⊂
⋃
n∈N

Kxn . (A.12)

Hence, (S ,T ) is σ-compact. ■

Another notion related to compactness is that of a paracompact space.

Definition A.21 (Paracompactness). Let (S ,T ) be a topological Hausdorff space. A
cover { Aα ∈ T | α ∈ I } is said to be locally finite if for every x ∈ S there exists an
open neighborhood Ux such that Ux ∩ Aα , Ø for only finitely many α ∈ I. The space
(S ,T ) is called paracompact if every open cover possesses a locally finite refinement.
In other words, for every open cover { Aα ∈ T | α ∈ I } of S there exists a locally finite
open cover

{
Bβ ∈ T

∣∣∣ β ∈ J } such that for all β ∈ J there exists an α ∈ I such that
Bβ ⊂ Aα. ♢

A.1.1 Compactification
Compactification is the process of embedding a topological space (S ,T ) into a

compact topological space (S̃ , T̃ ).

In the main text we use the one-point compactification or Alexandrov compactifica-
tion of locally compact topological spaces.

Definition A.22 (One-point compactification). Let (S ,T ) be a locally compact Haus-
dorff topological space. The one-point compactification is the topological space
(S ∪ {ϑ},Tϑ), where ϑ < S is a single point and Tϑ := T ∪ T ′, where

T ′ :=
{

(S \C) ∪ {ϑ}
∣∣∣ C ⊂ S compact

}
. (A.13)

♢

We also use the notation Sϑ := S ∪ {ϑ} in the main text. Sometimes, the point
ϑ in Definition A.22 is referred to as “point at infinity” and denoted by ∞. In the
main text, we use the uncommon1 ϑ instead of∞, because the point in the one-point

1but not unprecedented (see e.g. [CW05])
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compactification represents rather a cemetery state2 of the state space of a Markov
process than a point at infinity of some metric space.

We present the following useful properties of the one-point compactification.

Proposition A.23. Let (S ,T ) be a locally compact Hausdorff space and (Sϑ,Tϑ) its
one-point compactification. Then the following assertions hold.

(i) (Sϑ,Tϑ) is compact and Hausdorff.

(ii) The embedding map ι : S ↪→ Sϑ is continuous and open.

(iii) When (S ,T ) is not already compact, then the image ι(S ) of the embedding is
dense in Sϑ.

(iv) When (S ,T ) is separable, then so is (Sϑ,Tϑ).

Proof. Assume that U ⊂ Tϑ is an open covering of Sϑ. Then there exists a V ∈
T ′∩U, by assumption. I.e. V = (S \C)∪{ϑ} for some C ⊂ S compact. ThenU\{V}
is an open covering of C and by compactness of C, there is a finite open subcover
U′ ⊂ U of C and furthermore (U′ ∩ {V}) ⊂ U is a finite open cover of Sϑ. To show
the Hausdorff property it suffices to find disjoint open neighborhoods of ϑ and x for
an arbitrary x ∈ S . By assumption, there exists a compact neighborhood Cx of x that
contains an open neighborhood Ux of x. Then Cc ∪ {ϑ} is an open neighborhood of ϑ
and disjoint from Ux, which proves (i).

It is obvious that the embedding is an open map, i.e. it maps open sets to open
sets. To show continuity, we need to show that the preimage of every set of the form
(S \ C) ∪ {∞} with C ⊂ S compact is open. Hence, (ii) follows from Lemma A.16
and the fact that (S ,T ) is Hausdorff by assumption.

Finally, (iii) follows because every compact set C ⊂ S has non-empty complement
in S and thus, ϑ is a cluster point of S in Sϑ.

Assertion (iv) is trivial because we can amend the countable dense subset of (S ,T )
by ϑ to get a countable dense subset of (Sϑ,Tϑ). ■

A.1.2 sequences
Given a topology T on a set S , it is possible to speak of converging sequences. A

sequence is a subset of the ambient space S with countably many elements, thus the
elements of a sequence can be indexed by the natural numbers and we write

(xn)n∈N := { xn ∈ S | n ∈ N } ⊂ S . (A.14)

2hence ϑ from greek: θανατoς, “Death”

A.1 Fundamentals of topology 253



Of course, we can index sets by arbitrary index sets I and we write (xi)i∈I in that case.
As a shorthand, we sometimes use the notation (xi)i, if the index set is clear.

Being a subset of a topological space (S ,T ) we have a notion of cluster points for
sequences from Definition A.10 (i). Recall the following definition of limit points of
sequences.

Definition A.24. Let (S ,T ) be a topological space and (xn)n∈N ⊂ S a sequence in S .
Then (xn)n converges to a limit point x ∈ S if and only if for every open neighborhood
Ux of x there exists an n0 ∈ N such that xn ∈ Ux for all n ≥ n0. In that case, we write
limn→∞ xn = x or xn → x as n→ ∞. ♢

Observe that limit points are not well defined in general. Assume for example
that S is equipped with the lump topology T = {S ,Ø}. Then S is the only open
neighborhood for every x ∈ S and by definition, every x ∈ S is a limit point for every
sequence in S . Clearly, the lump topology is not Hausdorff and it turns out that the
Hausdorff property ensures uniqueness of limit points of sequences.

Lemma A.25. Let (S ,T ) be a Hausdorff topological space and (xn)n∈N a sequence
in S . Assume that there exist x, y ∈ S with limn→∞ xn = x and limn→∞ xn = y. Then
x = y.

Proof. Assume x , y. Then there exist neighborhoods Ux and Uy of x and y, respec-
tively, with Ux ∩Uy = Ø by the Hausdorff property. Thus xn < Ux ∩Uy for any n ∈ N,
a contradiction to the assumption that both x and y are limit points of (xn)n. ■

A.1.3 Metrizable spaces
Recall the following definition.

Definition A.26 ((Pseudo) metric). Let S be a non-empty set. A map d : S × S → R+

is a pseudo metric if it satisfies

(i) d(x, y) = d(y, x) for all x, y ∈ S (symmetry),

(ii) d(x, y) ≥ 0 for all x, y ∈ S , (non negative definiteness),

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S (triangle inequality).

If in addition d(x, y) = 0 if and only if x = y, we call d a metric.

We call a pair (S , d), where S is a set and d a (pseudo) metric on S a (pseudo)
metric space. ♢
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Given a metric d on a set S we write

Bd(x, ε) := { y ∈ S | d(x, y) < ε } (A.15)

for the open ball around x ∈ S with radius ε > 0. When it is clear from the context
which metric we are using, we sometimes drop the d from the notation of balls and
write B(ε, x) = Bε(x). Using open balls we can always define a topology T on a metric
space by taking T to be the collection of arbitrary unions and finite intersections of
open balls. In that case, we say that d generates the topology T . If not explicitly
stated otherwise we always assume a metric space to be equipped with the topology
generated by the given metric.

Definition A.27. A topological space (S ,T ) is called metrizable if there exists a
metric d on S that generates T . ♢

Metrizable spaces have some nice features. For example, they are Hausdorff.

Proposition A.28. Metrizable topological spaces are Hausdorff.

Proof. Assume (S ,T ) is metrizable and d is a metric that generates T . Assume
x, y ∈ S with x , y, then there exists an ε > 0 such that d(x, y) ≥ 2ε. Hence Bd(x, ε)
and Bd(y, ε) are disjoint open neighborhoods of x and y, respectively. ■

Recall that a Cauchy sequence in a metric space (S , d) is a sequence (xn)n∈N such
that for each ε > 0 there exists an n0 ∈ N such that d(xn, xm) < ε for all n,m ≥ n0.
This leads to the following definition.

Definition A.29. A metric d on a set S is called complete if every Cauchy sequence
converges in the topology generated by d. Furthermore, we call the metric space (S , d)
complete when d is a complete metric on S and we say that a topological space (S ,T )
is completely metrizable when it is metrizable and there exists a complete metric that
generates T . ♢

Definition A.30. A metric space (S , d) is said to be Polish if it is complete and
separable. ♢

In the main text, we are concerned with metrizable spaces without a specific metric.
For a sensible treatment of these spaces, we need a slight weakening of the Polish
property in the following sense.
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Definition A.31 (Souslin and Lusin spaces). A topological Hausdorff space (S ,T ) is
called a Souslin space if it is the image of Polish metric space under a continuous
map Φ. If the map Φ is additionally bijective, we call (S ,T ) a Lusin space. ♢

A.1.4 Weak topology
In this section, we collect some useful facts about weak or initial topologies.

Definition A.32. Let S be a nonempty set and (T, τ) a topological space. Assume F ⊂
{ f : S → T } is a non empty family of maps. The initial or weak topology generated
by this family is the coarsest topology that makes every f ∈ F measurable. ♢

Let τ(F ) be the weak topology on S as in the definition. Then it is easy to check
that the family of sets {

f −1A
∣∣∣ f ∈ F , A ∈ τ

}
(A.16)

forms a subbase of the topology τ(F ).

If the space (T, τ) is a metric space, we have the following useful characterization
of τ(F ).

Lemma A.33. Let S be a non empty set, (T, d) a metric space and F ⊂ { f : S → T }
a non empty family of functions. Then the sets of the form{

f −1B(x, ε)
∣∣∣ f ∈ F , x ∈ T, ε > 0

}
(A.17)

form a subbase of τ(F ).

Lemma A.34. Let S be a nonempty set and (T, τ) a topological Hausdorff space.
Assume F ⊂ { f : S → T } is a family of functions and equip S with the weak topology
τ(F ). A sequence (xn)n∈N ⊂ S in S converges to a limit x ∈ S if and only if for all
f ∈ F , f (xn)→ f (x).

Proof. The direction “⇒” is obvious by continuity. For the converse implication
assume (xn)n∈N ⊂ S is such that there exists a x ∈ S with

lim
n→∞

f (xn) = f (x) ∀ f ∈ F . (A.18)

By definition of the weak topology τ(F ), for every open neighborhood Ux ∈ τ(F ) of
x there exist finitely many f1, . . . , fm ∈ F such that

x ∈
m⋂

j=1

f −1
j V j ⊂ Ux, (A.19)
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where V j ∈ τ is an open neighborhood of f j(x) for every j = 1, . . . ,m. By assumption
(A.18) we have f j(xn) ∈ V j eventually for every j = 1, . . . ,m. Hence, xn ∈

⋂m
j=1 f −1

j V j

eventually, which means limn→∞ xn = x, concluding the proof. ■

A.2 Measures on topological spaces
Let (S ,T ) be a topological space, recall that the Borel σ-algebra B(S ) on S is

the σ-algebra generated by the open sets. Another σ-algebra that can be defined
on every topological space is the Baire σ-algebra Ba(S ) which is generated by the
continuous real-valued functions C(S ), i.e. Ba(S ) is the smallest σ-algebra that makes
all f ∈ C(S ) measurable. It is conceivable that the Borel σ-field and the Baire σ-field
are not very different. Indeed the two σ-algebras coincide when S is a completely
regular Souslin space (cf. [Bog07, Theorem 6.7.7]).

Definition A.35. Let (S ,T ) be a locally compact topological Hausdorff space and
B(S ) the Borel σ-field on S . A Radon measure on (S ,B(S )) is a measure ν such that

(i) ν is finite on compact sets,

(ii) ν is outer regular on all Borel sets, i.e. for all A ∈ B(S )

ν(A) = inf { ν(U) | U ∈ T ,U ⊃ A } , (A.20)

(iii) ν is inner regular on all open sets, i.e. for all U ∈ T

ν(U) = sup
{
ν(K)

∣∣∣ K ⊂ S , K compact,U ⊂ K
}
. (A.21)

♢

Throughout this thesis, we use the following notation for families of Radon mea-
sures, finite measures and probability measures on a topological Hausdorff space
(S ,T ) equipped with the Borel σ-algebra B(S ).

M(S ) := { ν : B(S )→ [0,∞] | ν Radon measure } (A.22)

M f (S ) := { ν ∈ M(S ) | ν(S ) < ∞ } (A.23)

M1(S ) :=
{
ν ∈ M f (S )

∣∣∣ ν(S ) = 1
}

(A.24)

Recall the following definition of the support of a Radon measure.
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Definition A.36. Let (S ,T ) be a topological Hausdorff space and ν ∈ M(S ) a Radon
measure on (S ,B(S )). Let furtherN := { N ∈ T | ν(N) = 0 } be the collection of open
ν-nullsets. The support of ν is defined as

supp(ν) :=

⋃
N∈N

N

c

, (A.25)

i.e. the complement of the union of all open ν-nullsets. ♢

Remarks A.37. (i) By definition, the union of open sets is open and hence the
support is always closed as the complement of an open set.

(ii) We frequently assume that the measures we are working with have full support,
that is, supp(ν) = S . An important consequence of this assumption is that open
sets A ⊂ S always have strictly positive measure.

♢

Definition A.38. Let (S ,T ) be a topological Hausdorff space, (νn)n∈N ⊂ M f (S ) and
ν ∈ M f (S ).

(i) We say that the sequence (νn)n∈N converges weakly to ν, if

lim
n→∞

∫
S

f dνn =

∫
S

f dν ∀ f ∈ Cb(S ). (A.26)

(ii) We say that the sequence (νn)n∈N converges vaguely to ν, if

lim
n→∞

∫
S

f dνn =

∫
S

f dν ∀ f ∈ C0(S ). (A.27)

♢

Remark A.39 (Weak convergence of measures). We can equip the spaceM f (S ) with
the weak topology generated by the functions

F =

{
ν 7→

∫
S

f dν
∣∣∣∣∣ f ∈ Cb(S )

}
. (A.28)

By Lemma A.34 the weak convergence of a sequence of measure (νn)n∈N ⊂ M f (S ) is
equivalent to the convergence of (νn)n∈N in the weak topology generated by F . ♢
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A.3 Topologies and Nets
By definition, a topology always determines the convergent sequences. The con-

verse is not true in general as there may be different topologies with the same conver-
gent sequences.

Example A.40 (different topologies may have the same class of convergent sequences).
Let S be an uncountable set. Consider the discrete topology T1 = { {x} ⊂ S | x ∈ S }
and the topology T2 := { A ⊂ S | Ac is countable } consisting of complements of
countable sets. Clearly, a sequence (xn)n∈N ⊂ S converges to x ∈ S in the T1 topology
if and only if there exists an k ∈ N such that xn = x for all n ≥ k, that is, when
(xn)n∈N is eventually constant. On the other hand, assume limn→∞ xn = x in the
T2 topology but (xn)n∈N is not eventually constant. Then, for every k ∈ N the set
Nk := { xn | n ≥ k } \ {x} is nonempty and countable. By definition of T2, Nc

1 is an
open neighborhood of x. Further, N1 ∩ Nk , Ø for all k ∈ N, thus { xn | n ≥ k } is not
contained in Nc

1 for any k ∈ N, a contradiction. Hence, every converging sequence in
T2 must also be eventually constant. ■

It turns out that there is a generalized notion of sequences, so-called nets, not to be
confused with ε-nets, whose convergence already uniquely determines the topology.
Before we introduce nets we need the following definition.

Definition A.41. A directed set is a set I equipped with a binary relation ⪰ such that

(i) (transitivity) for all α, β, γ ∈ I with α ⪰ β and β ⪰ γ it holds that α ⪰ γ,

(ii) (reflexivity) for all α ∈ I it holds that α ⪰ α and

(iii) (Archimedean property) for all α, β ∈ I there exists a γ ∈ I such that γ ⪰ α and
γ ⪰ β. ♢

We can now introduce nets.

Definition A.42. Let S be any set. A net in S is a set { xα ∈ S | α ∈ I } where the
index set (I,⪰) is a directed set. ♢

We adopt the following notions from Kelley’s book [Kel75]. We say that a property
holds for a net (xα)α eventually if and only if there exists an α0 ∈ I such that xα has
that property for all α ⪰ α0. We say that a property holds for a net (xα)α frequently, if
for every α such that xα has the property, there exists a β ⪰ α, such that the property
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also holds for xβ. A subnet of (xα)α∈I is a net (xβ)β∈J with index set J ⊂ I such that
(J, ⪰|J×J) is itself a directed set.

We say that a net (xα)α converges to a point x ∈ S if and only if (xα)α is eventually
in every neighborhood U ∈ Ux. In that case, we write limα∈I xα = x, or, if there can
be no confusion about the index set, limα xα = x.

We will show that the knowledge of convergent nets uniquely determines a topology
if the class of convergent nets is sufficiently rich.

Definition A.43 (Convergence class). Let N be a family of elements of the form
((xα)α∈I, x) where (xα)α∈I ⊂ S is some net in S and x ∈ S . We say that a net (xα)α∈I
converges to x with respect to N if and only if ((xα)α∈I, x) ∈ N . In that case we write
limNα∈I xα = x. We call the family N a convergence class if and only if

(i) For every net (xα)α∈I with xα = x for all α ∈ I it holds that limNα∈I xα = x.

(ii) If (xα)α∈I converges to x with respect toN , then so does every subnet of (xα)α∈I.

(iii) If (xα)α∈I does not converge to x with respect to N then there exists a subnet
(xβ)β∈J of (xα)α∈I such that no subset of (xβ)β∈J converges to x.

(iv) For each α ∈ I let Jα be another directed set and denote the product of a directed
set by

K := I ××
α∈I
Jα. (A.29)

Assume that (xκ)κ∈K converges to x with respect to N . Let f (κ) = f (α, j) :=
(α, j(α)), where κ ∈ K, α ∈ I and j ∈×α∈I Jα. Then (x f (κ))κ∈K converges to x
with respect to N . ♢

It is easy to check that the convergent nets in a given topological space satisfy (i)
to (iv) (cf. [Kel75, p. 74]). But also the converse holds true.

Theorem A.44 ([Kel75, Theorem 2.9]). Let N be a convergence class for a set S and
for each subset A ⊂ S let Γ(A) be the set of all points x ∈ S such that there exists a
net (xα)α∈I ⊂ A with limNα∈I xα = x. Then Γ is a closure operator and ((xα)α∈I, x) ∈ N
if and only if (xα)α∈I converges to x in the topology generated by Γ.

Definition A.45. A topological space (S ,T ) is called sequential if the topology T is
determined by the convergent sequences. ♢

Proposition A.46 ([Wil70, Theorem 10.4]). Let (S ,T ) be a first-countable topological
space. Then T is sequential.
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BMetric spaces

B.1 Metrics on the space of probability
measures

Let (S , d) be a metric space.

Definition B.1 (Prokhorov metric). For two probability measures µ, ν ∈ M1(S ), define

d∗(µ, ν) := inf
{
ε > 0

∣∣∣ ∀B ∈ B : µ(B) ≤ ν(Bε) + ε
}
, (B.1)

where Bε := { x ∈ S | ∃y ∈ B : d(x, y) < ε } denotes the ε-blowup of B. Then the
Prokhorov metric onM1(S ) is defined as

dPr(µ, ν) := max
{
d∗(µ, ν), d∗(ν, µ)

}
. (B.2)

♢

Definition B.2 (Kantorovich-Rubinshtein metric). Denote by Lip1(S ) the Lipschitz
continuous functions f : S → R with Lipschitz constant at most 1. On the space of
probability measuresM1(S ) we introduce the Kantorovich-Rubinshtein norm as

∥µ∥KR := sup
{ ∫

S
f dµ

∣∣∣∣∣ f ∈ Lip1(S ), ∥ f ∥∞ ≤ 1
}
, µ ∈ M1(S ). (B.3)

Then,
dKR(µ, ν) := ∥µ − ν∥KR (B.4)

is called the Kantorovich-Rubinshtein metric onM1(S ). ♢

B.2 The resistance metric
In Section 4.5.1 we have introduced the effective resistance metric on weighted

graphs. In this appendix, we collect some useful properties of the effective resistance
metric on finite graphs.
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Let V be a finite set and recall from Definition 4.77 the definition of a weighted
graph (V, µ). Furthermore, recall from (4.232) the definition of the energy form E
given by

E( f , g) :=
1
2

∑
x,y∈V

µxy ( f (x) − f (y)) (g(x) − g(y)) (B.5)

for each f : V → R. Observe that in the case of finite V , the domain of E is unrestricted.
In general, we denote by

F := { f : V → R | E( f , f ) < ∞ } (B.6)

the domain of E.

Let f : V → R and denote by f̃ := ( f ∨ 0) ∧ 1 the unit truncation of f . Since
( f̃ (x) − f̃ (y))2 ≤ ( f (x) − f (y))2 for all x, y ∈ V we immediately obtain

E( f̃ , f̃ ) ≤ E( f , f ). (B.7)

Let F y
x := { f : V → R | f (x) = 0, f (y) = 1 }. The effective resistance metric on V

is given by1

R(x, y) = inf
{
E( f , f )

∣∣∣ F y
x

}−1
= inf

{
E( f , f )

∣∣∣ f ∈ F y
x , 0 ≤ f ≤ 1

}−1

= sup
{

( f (y) − f (x))2

E( f , f )

∣∣∣∣∣∣ f : V → R, E( f , f ) > 0
}
.

(B.8)

Define
µx :=

∑
y∈V: y∼x

µxy. (B.9)

Then, µx induces a measure on V and we can define the space L2(V, µ) with the inner
product

⟨ f , g⟩ :=
∑
x∈V

µx f (x)g(x) (B.10)

Next, we introduce the discrete Laplace operator on L2(V, µ) as follows

L f (x) :=
1
µx

∑
y∈V: y∼x

µxy( f (y) − f (x)), f ∈ L2(V, µ), x ∈ V. (B.11)

Note that there is a close relationship between the Energy form E and the Laplace

1See (4.234), (4.240) and (B.7).
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operator L.2 Let f ∈ F ∩ L2(V, µ) and g ∈ F . Then,

⟨−L f , g⟩ = −
∑
x∈V

µxL f (x)g(x) =
∑
x∈V

∑
y∈V: y∼x

µxy( f (x) − f (y))g(x)

=
1
2

 ∑
x,y∈V: x∼y

µxy( f (x) − f (y))g(x) +
∑

x,y∈V: x∼y

µyx( f (y) − f (x))g(y)


=

1
2

 ∑
x,y∈V: x∼y

µxy( f (x) − f (y))g(x) −
∑

x,y∈V: x∼y

µxy( f (x) − f (y))g(y)


=

1
2

∑
x,y∈V: x∼y

µxy( f (x) − f (y))(g(x) − g(y)) = E( f , g).

(B.12)

With the Laplace operator we can define harmonic functions.

Definition B.3 (Harmonic functions). Let (V, µ) be a weighted graph andL the discrete
Laplace operator on F . A function f ∈ F is harmonic in x ∈ V if

L f (x) = 0. (B.13)

Moreover, we say that f is sub-harmonic in x ∈ V if L f (x) ≥ 0 and f is super-
harmonic in x ∈ V if L f (x) ≤ 0. ♢

Suppose that V is finite. Then we can show that the minimizer of the resistance
problem in (B.8) is a harmonic function.

Proposition B.4. Let (V, µ) be a finite weighted graph. For any two vertices x, y ∈ V
there exists a unique minimizer hy

x for the effective resistance problem (B.8). Moreover,
hy

x is the unique element of F y
x that is harmonic on V \ {x, y}.

Proof. Note that by finiteness of V the space F y
x equipped with E is a convex and

closed Hilbert space. Therefore, there exists a unique element hy
x ∈ F

y
x with

E(hy
x, h

y
x) = R(x, y)−1. (B.14)

Now suppose that g : V → R is such that g(x) = g(y) = 0. For every λ > 0 we obtain
hy

x − λg ∈ F y
x . Hence,

E(hy
x − λg, hy

x − λg) ≥ E(hy
x, h

y
x) = R(x, y)−1 > 0 (B.15)

2Compare this to the relationship between the generator and the Dirichlet form in (5.47).
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and consequently,
λ

2
E(g, g) ≥ E(hy

x, g). (B.16)

Therefore, we can conclude that E(hy
x, g) = 0. Now, by (B.12), we also know that〈

Lhy
x, g

〉
= 0. Choosing g = 1z, we find that L f (z) = 0 for all z ∈ V \ {x, y}. ■

B.2.1 Network reduction rules
In order to calculate the effective resistance between two vertices of a finite graph

the definition in (B.8) is quite unhandy. Instead, it is often more convenient to replace
the graph with an equivalent graph. Recall that we can interpret a weighted graph
(V, µ) as an electrical network with nodes V where two nodes x, y ∈ V with x ∼ y
are connected by a resistor with resistance given by µ−1

xy . Analogously, we call the
weights µxy conductances.

With this metaphor of an electrical network, we can interpret Proposition B.4 in
this context. First, note that by Ohm’s law the current between two nodes is given by
the potential difference between them divided by the resistance. Therefore, L f (x) is
the net current at x ∈ V when a potential of f is applied to the network and L f (x) = 0
means that there is the same amount of current flowing into x as is flowing out of x.
The minimizer hy

x then is the potential on the graph when we apply a source of one
Volt to y and ground the network at x. Finally, the effective resistance between x and
y is the reciprocal energy of this potential.

Now pick any two nodes x, y ∈ V and connect them to an Ohm-meter to measure
the resistance between them. We can replace the whole network V \ {x, y} by a single
resistor with resistance R(x, y) and the reading or our Ohm-meter would not change.
Now, this leaves us with the same problem as before, calculating R(x, y). Instead,
we can simplify the network successively by simple network reduction rules without
changing the effective resistance between fixed nodes. The first rule says that two
resistors in series can be replaced by a single resistor with the sum of the resistances
of the replaced resistors.

Proposition B.5 (Serial rule). Let (V, µ) be a weighted graph and suppose that there
are u, v,w ∈ V such that the set of neighbors { x ∈ V | x ∼ v } of v equals {u,w}. Define
(V̂ , µ̂) where V̂ = V \ {v} and µ̂xy = µxy for all x, y ∈ V \ {u, v,w} and

µ̂u,w =
1

µ−1
uv + µ

−1
vw
=
µuvµvw

µv
. (B.17)

Then, R(x, y) = R̂(x, y) for all x, y ∈ V \ {v}.
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Proof. Fix x, y ∈ V \ {v} and denote the unique minimizer of the effective resistance
problem by h. Then, h is harmonic in v and we can write

h(v) =
µuvh(u) + h(w)µwv

µv
. (B.18)

We claim that ĥ = h|V̂ is the unique minimizer of Ê( f , f ). Then,

µuv(h(u) − h(v))2 = µuv

(
h(u) −

µuvh(u) + h(w)µwv

µv

)2

=
µ2

vw

µ2
v

(h(u) − h(w))2 (B.19)

and similarly

µvw(h(v) − h(w))2 =
µ2

uv

µ2
v

(h(u) − h(w))2. (B.20)

Thus,

Ê(ĥ, ĥ) − E(h, h) = µ̂uw(ĥ(u) − ĥ(w))2 − µuv(h(u) − h(v))2 − µvw(h(v) − h(w))2

=

(
µuvµvw

µv
−
µuvµ

2
vw

µ2
v
−
µvwµ

2
uv

µ2
v

)
(h(u) − h(w))2

=

(
µuvµvw

µv
−
µuvµvw

µv

(
µvw + µuv

µv

))
(h(u) − h(w))2 = 0.

(B.21)

It remains to show that ĥ is indeed the unique minimizer of Ê. It suffices to show
that ĥ is harmonic in u and w, by Proposition B.4. A similar calculation as above for
L̂ĥ(u) − Lh(u) yields the claim. ■

Note that replacing two adjoining edges by a single edge can lead to a graph that is
no longer a simple graph in the sense that two vertices can be joined by two edges
with different weights. In this case, we can apply the following rule for parallel
resistors and replace them by a single resistor with the sum of the conductances as
conductance.

We state this rule rather informally and without proof because a formal statement
would create too much notational overhead.

rule B.6 (Parallel rule). Let (V, µ) be a finite weighted graph and suppose that there is
an additional edge between x and y with weight µ′xy. Then the edges µxy and µ′xy can
replaced by a single edge with weight µ̂xy = µxy + µ

′
xy. ■
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CSome loose ends

C.1 The Bochner Integral
Let B , Ø denote a Banach space with norm ∥ · ∥ and let (Ω,A, µ) be a complete

and σ-finite measure space. We want to define the integral of a map F : Ω→ B.

The Bochner integral is defined similar to the Lebesgue integral and its construction
is due to Salomon Bochner [Boc33].

Let E = E(Ω;B) be the space of elementary functions i.e.

E :=
{

F =
n∑

i=1

fi 1Ai

∣∣∣∣∣∣ n ∈ N, fi ∈ B, Ai ∈ A :

µ(Ai) < ∞, Ai ∩ A j = Ø, i , j ∈ {1, . . . , n}
}
.

(C.1)

Definition C.1 (Bochner integral). Let F ∈ E. The Bochner integral of F with respect
to µ is defined as ∫

B
F dµ :=

n∑
i=1

fi µ(Ai ∩ B), B ∈ A. (C.2)

We say that a function F : Ω→ B is Bochner integrable if there exists an sequence
(Fn)n∈N ⊂ E of elementary functions satisfying

(i) lim
n→∞

Fn = F, µ-a.e. and

(ii) lim
n→∞

∫
Ω

∥Fn − F∥ dµ = 0.

In that case, the Bochner integral of F (with respect to µ) is defined as∫
B

F dµ := lim
n→∞

∫
B

Fn dµ, B ∈ A. (C.3)
♢

Not only is the Bochner integral defined similar to the Lebesgue integral, it also
exhibits most of the properties of the Lebesgue integral. The following properties are
shown in the same way as for the Lebesgue integral.

Proposition C.2. (i) The Bochner integral
∫

B F dµ does not depend on the choice
of the approximating sequence (Fn)n∈N ⊂ E.
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(ii) The Bochner integral is linear.

(iii) The Bochner integral is monotone,

F ≤ G µ-a.e. ⇒
∫

B
F dµ ≤

∫
B

G dµ. (C.4)

Definition C.3 (Strong measurability). Let F : Ω → B. We say that F is strongly
measurable (or Bochner measurable) if there exists a sequence (Fn)n∈N ⊂ E of
elementary functions with

lim
n→∞
∥Fn(ω) − F(ω)∥ = 0 (C.5)

for almost all ω ∈ Ω. ♢

Strong measurability yields a handy criterion for Bochner integrability.

Theorem C.4 ([Rao04, Theorem VII.5]). A function F : Ω→ B is Bochner integrable
if and only if F is strongly measurable and ∥F∥ is Lebesgue integrable.

Lemma C.5. LetH be a real or complex Hilbert space with inner product ⟨ · , · ⟩ and
F : Ω→ H Bochner integrable. Then for each g ∈ H , the function ω 7→ ⟨F(ω), g⟩ is
Lebesgue integrable and 〈∫

B
F dµ, g

〉
=

∫
B
⟨F, g⟩ dµ. (C.6)

Proof. Fix g ∈ H . First assume that F is elementary, i.e.

F =
n∑

i=1

fi1Ai (C.7)

for some n ∈ N and fi ∈ H , Ai ∈ A. Then,〈∫
B

F dµ, g
〉
=

n∑
i=1

µ(Ai ∩ B) ⟨ fi, g⟩ =
∫

B

n∑
i=1

⟨ fi, g⟩1Ai dµ =
∫

B
⟨F, g⟩ dµ (C.8)

and clearly the Lebesgue integral on the right-hand side exists.

Now let F : Ω → B be Bochner integrable. By Theorem C.4, there exists a
sequence (Fn)n∈N ⊂ E such that ∥Fn − F∥ → 0 outside a set of measure 0 as n→ ∞.
Therefore, by application of the definition of the Bochner integral and (C.8),〈∫

B
F dµ, g

〉
= lim

n→∞

〈∫
B

Fn dµ, g
〉
= lim

n→∞

∫
B
⟨Fn, g⟩ dµ. (C.9)
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The Cauchy-Schwarz inequality now yields

|⟨Fn, g⟩ − ⟨F, g⟩| = |⟨Fn − F, g⟩| ≤ ∥Fn − F∥ ∥g∥ −→
n→∞

0, (C.10)

for µ-almost all ω ∈ Ω.

Without loss of generality, we can choose the sequence (Fn)n∈N in such a way that
(∥Fn∥)n∈N is increasing. Then the functions ⟨Fn, g⟩ are bounded µ-almost everywhere
by the integrable function ∥F∥ ∥g∥ and an application of the dominated convergence
theorem yields the claim. ■

C.2 Probabilistic results in the uniform setting
Here we collect some important results from probability theory that can be found in

most textbooks but are usually formulated for (Polish) metric spaces. We show how
the proofs can easily be generalized to the uniform setting.

As always, let (Ω,A,P) denote some probability space.

Theorem C.6 (Skorokhod coupling [Kal21, Theorem 5.31] ). Let (S ,U) be a separa-
ble uniform Hausdorff space and X, X1, X2, . . . : Ω→ S random variables. Assume

that Xn
d
−→ X, then there exists a probability space (Ω′,A′,P′) and random variables

Y,Y1,Y2, . . . : Ω′ → S such that PX = P
′
Y and PXn = P

′
Yn

for all n ∈ N and furthermore

Yn → Y P′-a.s. (C.11)

The proof relies on the following general result.

Lemma C.7. Let I be some index set and (Ωα,Aα,Pα) a probability space for each
α ∈ I. Then there exist independent random variables Xα on Ωα with

L(Xα) = Pα, α ∈ I. (C.12)

Proof. See [Kal21, Corollary 8.25]. ■

Proof of Theorem C.6. We start with the case where S = {1, . . . ,m} is finite. Set

pk := P(X = k) and pn
k := P(Xn = k). (C.13)

Let η be defined on a probability space (Ω1,A1,P1) and uniformly distributed on
[0, 1]. We can construct random variables (Yn)n∈N on the product space Ω′ = Ω1
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with L(Yn) = Xn by setting Yn = k whenever X = k and η ≤ pn
k/pk. By assumption,

pn
k/pk → 1 as n→ ∞ for each 1 ≤ k ≤ m. Hence, Yn → Y P′-a.s.

Now let (S ,U) be an arbitrary separable uniform Hausdorff space and (Un)n∈N ⊂ U

a sequence of open entourages with Un+1 ⊂ Un and
⋂

n∈NUn = ∆. Fix p ∈ N and
suppose further that

(
B j

)
j∈N
⊂ B is a partition of S into subsets with P(X ∈ ∂B j) = 0

such that there exists a sequence (xn)n∈N ⊂ S with B j ⊂ Up[x j] for all j ∈ N. We can
choose m ∈ N large enough so that

P

X <
⋃
k≤m

Bk

 < 2−p. (C.14)

Moreover, write B0 :=
⋂

k≤m∁Bk. Let κ, (κn)n∈N be random variables with κ = k when
X ∈ Bk and κn = k when Xn ∈ Bk for n ∈ N and k ∈ {0, 1, . . . ,m}. By assumption,

κn
d
−→ κ as n → ∞. We can therefore apply the result for finite S and conclude

that there exist random variables κ̃, (κ̃n)n∈N on some probability space (Ω′,A′,P′)
such that κ̃ d

= κ, κ̃n
d
= κn and κ̃n → κ̃, P′-a.s. as n → ∞. Define now further random

variables ξk
n on Ω′ with values in S and distributions

L(ξk
n) = L(Xn | Xn ∈ Bk). (C.15)

Moreover, define
Y p

n :=
∑
k∈N

ξk
n 1κ̃n=k. (C.16)

Then, Y p
n

d
= Xn and, by construction,{(

Y p
n , X

)
< Up

}
⊂ {κ̃n , κ} ∪ {X ∈ B0} , (C.17)

for all n, p ∈ N. Let Y be defined on Ω′ with Y d
= X. Because of the almost sure

convergence κ̃n → κ̃ and (C.14), we conclude that for every p ∈ N there exists a
np ∈ N such that

P′

⋃
n≥np

{(
Y p

n ,Y
)} < 2−p. (C.18)

Without loss of generality, we can assume that the sequence
(
np

)
p∈N

is increasing.
Applying the Borel-Cantelli Theorem, find that{

(Y p
n ,Y)

∣∣∣ n > np
}
⊂ U (C.19)

for all but finitely many p ∈ N. We can therefore apply a diagonal argument and set
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Yn := Y p
n for some n ∈ {np, . . . , np+1 − 1} to finally obtain

Xn
d
= Yn → Y, (C.20)

P′-a.s. as n→ ∞. ■
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Markov process, 94
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Measure
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Operator

closure, 248

Dirichlet, 169
Green, 130
Laplace-Beltrami, 226
potential-, 173
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regular, 118
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Probability space

filtered, 90
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filtered, 89
Process
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stochastic, 86
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Prokhorov
uniformity, 72

Prokhorov metric, 261
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Pseudometric, 21
Pseudometrics

consistent family of, 21

Quasi continuous, 197
Quasi everywhere, 191

Radon measure, 257
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Random walk
on graphs, 139
skeleton, 145
speed-ν, 145

Recurrence dichotomy, 129
Recurrent

Markovian semigroup, 176
Recurrent process, 128
Reference function, 175
Refinement, 24

barycentric, 24
star, 24

Regular point, 118
Relatively compact, 249
Reproducing kernel, 219
Reproducing kernel, 216
Resistance, 142, 187, 209, 243

between sets, 208
Resistance form, 212
Resistance form

regular, 217
Resolvent, 101

equation, 101
strongly continuous, 162

Riemannian manifold, 224
Riemannian metric, 224

Sample path, see Path
Scaling limit, 2
Second countable, 246
Semigroup, 97

conservative, 97
Markovian, 169
positive contraction, 97
strongly continuous, 161

Separable space, 250
Set

boundary, 245
capacitable, 184
closed, 245
closure, 245
compact, 249

directed, 259
interior, 245
interior of a, 17
negligible, 89
open, 245
Polar, 201
polar, 191
thin, 118
totally bounded, 29

Shift operator, 46
Skeleton of a random walk, 145
Skorokhod

coupling, 269
topology, 54
uniformity, 56

Souslin space, 256
Space

pre-Hilbert, 155
proximity, 39
topological, 245
uniform, 15

Star, 24
refinement, 24

State
absorbing, 88, 112

Stochastic kernel, see Markov kernel
Stopping time, 91, 114
Subset

dense, 250
Supermartingale, 103, 109
Support of a measure, 258

Tangent space, 224
Terminal time, 117
Thin set, 118
Tightness, 77, 135
Time

optional, 91
stopping, 91

Topological space, 245
compactification of, 252
completely regular, 23, 250
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Lindelöf, 251
locally compact, 250
metrizable, 255
separable, 250

Topology, 245
of uniform convergence, 33
uniform, 16
uniformizable, 16

Totally bounded, 29
Transient

Dirichlet forms, 175
Markovian semigroup, 176

Transient process, 128
Transistion function, 95
Translation operator, 114

Uniform convergence
topology of, 33
uniformity of, 33

Uniform continuity, 27
Uniform cover, 25
Uniform equicontinuity, 34
Uniform measure space, 32
Uniform space, 15

base of, 15
complete, 30
Polish, 31

Uniformity
covering, 14, 24, 26
diagonal, 14
of uniform convergence, 33
of uniform convergence, 33
Prokhorov, 72
separating, 17
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weak, 19

Version, 87
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Symmetric Feller Processes
on Uniform State Spaces

Construction and Convergence
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Symmetric Feller Processes on Uniform State Spaces

This thesis investigates symmetric Feller processes on uniform 
state spaces equipped with a measure, aiming to extend and 
unify diverse results on the convergence of such processes on 
metric measure spaces. It has been shown in previous works that 
processes that are related to both the metric and the measure of 
their state spaces through their Dirichlet forms converge 
whenever the state spaces converge. However, it is not always 
clear which metric is the right one to consider and there might 
even be many such metrics. The main focus lies therefore on 
abstracting from the metric structure of the spaces and instead 
considering their uniform structure. This approach warrants an 
in-depth analysis of uniform spaces as state spaces for Feller 
processes including an analysis of the Skorokhod topology on the 
the space of paths on such spaces. One of the main results is 
that the convergence of a family of hitting times implies the 
convergence of paths. Moreover, symmetric Feller processes on 
uniform state spaces and their Dirichlet forms are introduced and 
studied. As a result of a detailed study of killed processes, it is 
demonstrated that symmetric Feller processes are uniquely 
determined by their Green operators. Finally, five conditions for 
the convergence of symmetric Feller processes on uniform state 
spaces are identified and discussed.
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