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Chapter 1

Introduction
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Currently, many cities and municipalities are striving for an integrated mobility concept. In
addition to public transportation, this also includes shared mobility systems (SMSs), such as
bike or car sharing. It is a component that can contribute to an useful and sustainable mobility
concept. For example, in the best case, an integrated mobility concept replaces private vehicles
and thus reduces the congestion and emissions caused by cars.

Car sharing has become increasingly popular among providers and customers in recent years.
For example, in the EU, the share of sold cars used for new mobility (car sharing, ride hailing, ride
sharing, and robocabs) is predicted to rise from 2 % in 2015 up to 15 % in 2025 (Destatis, 2018a).
Bike sharing is also becoming increasingly popular. The number of bike sharing providers
increased from 388 in 2010 to more than 1,250 in 2017 worldwide. In the same period, the
number of bike sharing vehicles increased from 367k in 2010 to more than 10,000k in 2017
(Destatis, 2018b).

This thesis addresses the question of how to set optimal prices in SMSs. It is based on five
papers (see Table 1.1), some of which have been published, accepted for publication, or are
under review. The order of the papers corresponds to their appearance in this thesis.

Chapter 1 introduces the terminology used in SMSs and the two modeling techniques (linear
programming and dynamic programming) applied in the papers.

Chapter 2 is based on the paper entitled "Differentiated Pricing of Shared Mobility Systems
Considering Network Effects" by Matthias Soppert, Claudius Steinhardt, Christian Müller and
Jochen Gönsch. We introduce an origin-based differentiated, profit-maximizing pricing problem
for SMSs. The problem is to determine spatially and temporally differentiated minute prices,
taking network effects on the supply side as well as several practice relevant aspects into account.
Based on a deterministic network flow model, we formulate the problem as a mixed-integer linear
program and prove that it is NP-hard. For its solution, we propose a temporal decomposition ap-
proach based on approximate dynamic programming. The approach integrates a value function
approximation to incorporate future profits and to account for network effects.

Chapter 3 is based on the paper entitled "Practicable Solution Approaches for Differentiated
Pricing of Shared Mobility Systems" by Christian Müller and considers an origin-based SMS,
where prices originate from a predefined discrete price set. For this, we develop two different
practicable solution approaches to determine spatially and temporally differentiated minute
prices that take supply-side network effects into account. The first solution approach does not
differentiate between rentals and demand and calculates continuous prices for every period and
location. The second solution approach determines the vehicle distributions for each period and
then calculates the optimal prices for each period backwards.

Chapter 4 is based on the paper entitled "Matching Functions for Free-Floating Shared
Mobility System Optimization to Capture Maximum Walking Distances" by Matthias Soppert,
Claudius Steinhardt, Christian Müller and Jochen Gönsch. In this paper, we address the issue
of accurate optimization model formulation for free-floating SMSs. Thereby, we build on the
state-of-the-art concept of considering a spatial discretization of the operating area into zones.
We formally derive two novel analytical matching functions specifically suited for free-floating
system optimization, incorporating additional parameters besides supply and demand, such as

2



Authors Journal Status* Individual work of
Müller, C.

Paper 1: Differentiated Pricing of Shared Mobility Systems
Considering Network Effects

First Author: Soppert, M.
Co-Authors: Steinhardt, C.;
Müller C., Gönsch, J.

Transportation
Science

published abstract, computational
study

Paper 2: Practicable Solution Approaches for Differentiated Pricing of
Shared Mobility Systems

Müller, C. Transportation
Research: Part B

under re-
view: first
round

exclusive authorship

Paper 3: Matching Functions for Free-Floating Shared Mobility System
Optimization to Capture Maximum Walking Distances

First Author Soppert, M.
Co-Authors: Steinhardt,
C.; Müller, C.; Gönsch, J.;
Bhogale, P.M.

European Journal
of Operational
Research

published abstract, computational
study

Paper 4: Customer-Centric Dynamic Pricing for
Free-Floating Vehicle Sharing Systems

First Author Müller, C.,
Co-Authors: Gönsch, J.;
Soppert, M.; Steinhardt, C.

Transportation
Science

accepted conception of the re-
search project and the
entire study, litera-
ture review, solution
method, computational
study, case study

Paper 5: Dynamic Pricing for Shared Mobility Systems
Based on Idle Time Data

First Author Müller, C.,
Co-Authors: Gönsch, J.;
Soppert, M.; Steinhardt, C.

OR Spectrum accepted conception of the re-
search project and the
entire study, litera-
ture review, solution
method, computational
study

Table 1.1: Overview of written papers (*at time of writing the thesis)

customers’ maximum walking distance and zone sizes. We investigate their properties, such as
their linearizability and integrability into existing optimization models.

Chapter 5 is based on the paper entitled "Customer-Centric Dynamic Pricing for Free-
Floating Vehicle Sharing Systems" by Christian Müller, Jochen Gönsch, Matthias Soppert and
Claudius Steinhardt.1 We develop a profit-maximizing dynamic pricing approach that is built
on adopting the concept of customer-centricity. Customer-centric dynamic pricing here means
that, whenever a customer opens the provider’s mobile application to rent a vehicle, the price
optimization incorporates the customer’s location as well as disaggregated choice behavior to
precisely capture the effect of price and walking distance to the available vehicles on the cus-
tomer’s probability for choosing a vehicle. Two other features characterize the approach. It is

1In this paper, we use the term "vehicle sharing system" synonymously with the term "SMS" due to the changes
during the review process.
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origin-based, i.e., prices are differentiated by location and time of rental start, which reflects the
real-world situation where the rental destination is usually unknown. Further, the approach is
anticipative, using a stochastic dynamic program to foresee the effect of current decisions on fu-
ture vehicle locations, rentals, and profits. We propose an approximate dynamic programming-
based solution approach with non-parametric value function approximation. It allows direct
application in practice, because historical data can readily be used and main parameters can be
pre-computed so that the online pricing problem becomes tractable.

Chapter 6 is based on the paper entitled "Dynamic Pricing for Shared Mobility Systems
Based on Idle Time Data" by Christian Müller, Jochen Gönsch, Matthias Soppert and Claudius
Steinhardt. We develop a novel dynamic pricing approach that determines prices by online
optimization and thereby anticipates future profits through the integration of idle time data.
With regard to application in practice, the approach is generic in the sense that different types
of readily available historical idle time data with different spatio-temporal granularity can be
seamlessly integrated.

Chapter 7 concludes this thesis.
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1.1 Shared Mobility Systems

Shared Mobility Systems (SMSs)2 are systems for spontaneous, short-term rentals of vehicles.
There are two types of SMSs: free-floating (see Figure 1.1a) and station-based SMSs (see Fig-
ure 1.1b). In free-floating SMSs, customers can pick-up and drop-off vehicles at any location
throughout the business area. In station-based SMSs, stations are distributed throughout the
business area, where customers can pick-up or drop-off vehicles. A distinction is also made be-
tween two-way (see Figure 1.1c) and one-way station-based SMSs (see Figure 1.1d). In two-way
SMSs, the customer must drop-off the vehicle at the station where she picked it up, whereas
in one-way SMSs, the customer can pick-up a vehicle at one station and drop it off at another
station.

(a) free-floating (b) station-based

(c) two-way (d) one-way

Figure 1.1: Different forms of SMSs

From an operations research perspective decision problems in SMSs belong to different plan-
ning levels (see Figure 1.2). It can be distinguished between operative and strategical/tactical
planning in SMSs. Whereas the decision problems of station location and dimensioning or fleet
size belong to the strategical/tactical problems, the decision problem of station inventory is
an operative planning problem. However, there are also dependencies between these different
decision problems. The decision about station locations and their size influences the decision
about fleet size. The fleet size, in turn, has an impact on the station inventory.

The station inventory decision problem is composed of two parts: operator-based and user-
based relocation.

The operator-based relocation is handled by the provider and requires resources such as staff
or further equipment (such as trucks). It can be performed statically or dynamically. Static,
on the one hand, means that the relocation is performed when the system is closed, usually at
night. Dynamic, on the other hand, means that the relocation is performed while the SMS is
running.

In user-based relocation, incentives are set so that customers participate in the relocation
process. It can also be divided into static and dynamic. Whereas in static user-based relocation,

2Please note that the term “vehicle sharing system" is used in this thesis as a synonym for SMS (Chapter 5).
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incentives are set to remain constant over a longer period of time, e.g., several months, in
dynamic user-based relocation, incentives are set based on the short-term status of the SMS.
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dimensioning
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station inventory

operator-based
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static
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static

dynamic

Figure 1.2: Illustration of different planning levels of decision problems in SMSs (Gönsch and Kruk,
2017)

All chapters deal with pricing, that has an impact on the station/zone inventory. Chapters
2 and 3 consider differentiated pricing that accounts for supply-side network effects for better
vehicle distributions throughout the day. In Chapter 4 we additionally examine the difference of
free-floating and station-based SMSs. Chapters 5 and 6 consider dynamic pricing that considers
future states and thus (expected) supply-side network effects for better vehicle distributions
throughout the day.
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1.2 Applied Techniques

We formulate solution approaches for differentiated and dynamic pricing. For differentiated
pricing we use mixed integer linear programming to model the problem. Based on the linear
model, we develop different solution approaches. For the dynamic pricing, we formulate the
problem as a dynamic program which depends on the current state. Since the dynamic program
suffers from the curse of dimensionality, we develop different approximate dynamic programs.

The following sections include a simple example based on a consistent problem to support
the explanation of the different methods used.

Example: A provider of a free-floating car sharing system aims to determine the profit-
optimal, origin-based prices for all vehicles.

1.2.1 Linear Programming

Linear programming is one of the most studied and developed methods to deal with decision
problems. Linear programming techniques are used for many problems such as human resources
management, transport problems or scheduling flights. It is a powerful tool to get an optimal
solution for limited resources. In the following, we explain the different components and aspects
of linear programs (see Section 1.2.1.1) and the linearization of non-linear programs we use (see
Section 1.2.1.2).

1.2.1.1 Components and Aspects of Linear Programs

Every linear program consists of three components: decision variables, objective function and
constraints.

The decision variables are the components, that can be affected by the decision maker (Poler
et al., 2014, Chapter 1). Thus, they "are the quantities whose values are to be determined"
(Denardo, 2011, Chapter 1). They may take fractional values.

Example: The decision variables are the expectation values of rentals ri,j,t from zone i to
zone j at period t.

The objective function defines the goal of the decision maker and represents the relation
between the decision variables and the parameters. In a linear program, the objective function
must be linear (Poler et al., 2014, Chapter 1).

Example: If the provider optimizes the number of rentals, the objective function is linear
(max

∑
i,j∈Z,t∈T ri,j,t) , but if the provider optimizes profit, it is non-linear (max

∑
i,j∈Z,t∈T ri,j,t ·

(pi − c) ) because the decision variables for rentals ri,j,t are multiplied by the decision variables
for prices pi,t.

The constraints indicate the limitation of the objective function due to the given environ-
mental conditions, such as limited capacity, limited time, flow conditions, etc. (Poler et al.,
2014, Chapter 1).

Example: Limiting the rentals ∑j∈Z ri,j,t in zone i and period t to the number of available
vehicles ai,t in zone i and period t.

Integer linear programming is an extension of linear programming. The difference is that
some or all of the decision variables can no longer take fractional values (Poler et al., 2014,
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Chapter 2). An integer linear program becomes a linear program if we relax the constraint that
the decision variables are integer (Denardo, 2011, Chapter 1).

Integer linear programming also considers binary variables, which can take two values (0 or
1) (Poler et al., 2014, Chapter 2).

Example: We consider a discrete price list of M possible prices. A binary decision variable
for a price ym

i,t for station i and price point m at period t is 1 if the price pm is chosen and 0
otherwise.

We distinguish between feasible solutions and optimal solutions. A feasible solution is a
solution that satisfies each constraint and assigns an objective value to the linear program.
Thus, a linear program is feasible, if it has at least one feasible solution, otherwise it is infeasible
(Denardo, 2011, Chapter 1).

Example: For profit optimization one feasible solution is to set always the lowest price.
An optimal solution is the feasible solution with the largest (smallest) objective value of a

maximization (minimization) problem (Denardo, 2011, Chapter 1). A linear program cannot be
solved simply in most cases, but requires solution methods (for example simplex algorithm or
branch-and-bound).

We also distinguish between unbounded and bounded linear programs. A linear program is
unbounded, if it is feasible and there is no limit for the objective value and bounded otherwise
(Denardo, 2011, Chapter 1).

Example: We consider a rental maximization problem max
∑

i,j∈Z,t∈T ri,j,t in a car sharing
system without any constraints. This problem is unbounded. In contrast, the same problem
with the capacity constraint ∑j∈Z ri,j,t ≤ ai,t ∀i ∈ Z, t ∈ T (the rentals from a zone i in period
t are less than or equal to the available vehicles in zone i in period t.) is bounded.

1.2.1.2 Linearizing Non-linear Programs

In operations research there are a lot of problems that are formulated as a non-linear program.
A non-linear program has an objective and/or constraints that are described by non-linear
functions (Denardo, 2011, Chapter 1). Most linear programming problems can be solved in
much less computational time than the non-linear programming problems. Therefore, in most
cases, it is useful to reformulate non-linear programs as linear programs. There are several
techniques to linearize non-linear programs (Asghari et al., 2022):

1. Transforming the non-linear equations or functions into exact linear equivalents.

2. Linear approximation, which finds an equivalent for the non-linear functions with the
smallest deviation.

1.2.1.2.1 Transformation into exact linear equivalents The non-linear problem results
from multiplication of variables, maximum or minimum operators, absolute value functions, etc.
However, in this subsection, we consider only the linearization of a minimum operator. For other
transformations, we refer to Asghari et al. (2022).

The minimum operator is an explicit non-linear term. Assume there is a non-linear minimum
operator zi = min

i∈I
(xi, yi) , where I = {1, ..., n}. We convert this structure by adding a new
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continuous variable zi, a set of new binary variables ai and introduce the following constraints
(Asghari et al., 2022):

zi ≤ xi ∀i ∈ I (1.1)

zi ≤ yi ∀i ∈ I (1.2)

xi − yi ≤M · ai ∀i ∈ I (1.3)

zi ≥ xi −M · ai ∀i ∈ I (1.4)

zi ≥ yi −M · (1− ai) ∀i ∈ I (1.5)

ai ∈ {0, 1} ∀i ∈ I (1.6)

Constraints 1.1 and 1.2 ensure that zi is lower or equal than xi and yi. Constraints 1.3
enforce the binary variables ai to 1, if yi is greater than xi. The next two constraints ensure
that either zi = xi if ai = 0 (Constraints 1.4) or zi = yi if ai = 1 (Constraints 1.5). Constraints
1.6 define the variable yi as binary.

Example: Assume there is a minimum-operator ri,t = min(ai,t,
∑

j∈Z di,j,t) that defines that
the decision variables ri,t (rentals) from zone i at period t are the minimum of reachable vehicles
ai,t (decision variables) in zone i at period t and the sum of demand ∑j∈Z di,j,t from zone i to
zone j at period t. The following Constraints 1.7 -1.13 linearize this minimum-operator:

ri,t ≤ ai,t ∀i ∈ Z, t ∈ T (1.7)

ri,t ≤
∑
j∈Z

di,j,t ∀i ∈ Z, t ∈ T (1.8)

∑
j∈Z

di,j,t − ai,t < M · qi,t ∀i ∈ Z, t ∈ T (1.9)

ai,t −
∑
j∈Z

di,j,t ≤M(1− qi,t) ∀i ∈ Z, t ∈ T (1.10)

ri,t ≥ ai,t + M · qi,t ∀i, j ∈ Z, t ∈ T (1.11)

ri,t ≥
∑
j∈Z

di,j,t + M · (1− qi,t) ∀i ∈ Z, t ∈ T (1.12)

qi,t ∈ {0, 1} ∀i ∈ Z, t ∈ T (1.13)

Constraints 1.7 and 1.8 limit the rentals of zone i at period t to the available vehicles ai,t

at zone i at period t or to the given demand ∑j∈Z di,j,t for zone i at period t. Constraints 1.9
and 1.10 determine the value of the binary variables qi,t. qi,t is 1, if ∑j∈Z di,j,t is greater than
ai,t and 0 if ai,t is greater than ∑j∈Z di,j,t. Constraints 1.11 and 1.12 define the upper bounds
for the rentals ri,t. If qi,t = 1 (that means ∑j∈Z di,j,t > ai,t), then Constraints 1.11 define the
upper bounds, otherwise Constraints 1.12 define the upper bounds for the rentals.

1.2.1.2.2 Linear Approximation Approximations of non-linear functions with simple lin-
ear functions are one of the most common techniques for linearization. One of these approxi-
mations is a linear approximation to a known curve by dividing the curve into several parts and
use linear interpolation for these parts. For other approximation techniques, we refer to As-
ghari et al. (2022). To integrate a piece-wise linear approximation, we need additional variables
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and constraints. Thus, a function is replaced by a sequence of linear divisions. By using this
technique, the previous non-linear program becomes linear and can be solved by common linear
program solution techniques.

Example: We consider a non-linear function f(ai,t) (see red dashed line in Figure 1.3) that
yields a certain profit as a function of the number of available vehicles ai,t in zone i in period t.
This function can be approximated by piece-wise linear functions (see blue line in Figure 1.3).
The function is decomposed into K buckets (in Figure 1.3 K = 5) and for each bucket k, a
linear function is found that minimizes the deviation from the non-linear function. Thus, the
available vehicles are divided into K buckets with the bucket size of ∆âk

i (number of vehicles
in bucket k, see Table 1.2). Each vehicle in a bucket k contributes with the common marginal
value per vehicle (v̄k

i , see Table 1.2). In order to obtain the profit for five vehicles, the following
calculation must be done: 2 · 15 + 2 · 10 + 1 · 6 = 56

0 1 2 3 4 5 6 7 8 9 10
number available vehicles
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Figure 1.3: Non-linear and piece-wise
linear function of profit in dependency

of the number of available vehicles

k ∆âk
i v̄k

i

1 2 15
2 2 10
3 2 6
4 2 2
5 2 0

Table 1.2: Values of different parts of the
piece-wise function in Figure 1.3

1.2.2 Dynamic Programming

Dynamic programming is useful for sequential decision problems. A sequential decision problem
is defined as "a problem in which a sequence of decisions must be made with each decision
affecting future decisions" (Howard, 1966).

In these problems, making a decision alternates with gathering information. This means
that decisions are made over time. In contrast to linear programming, the required information
is not deterministic, but stochastic. Thus, the state of the system is also stochastic. This means,
however, that with linear programming, all decisions are made at the beginning, whereas with
dynamic programming, the decisions are made successively depending on the state of the system.

Example: Differentiated pricing determines all prices for every period of the day before
the day begins. Dynamic pricing using (approximate) dynamic programming determines prices
based on the current system state (Powell, 2011, Chapter 5).
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1.2.2.1 Parts of Dynamic Programming

A dynamic program consists of five parts:

1. State variable: variables, we need to know.

2. Decision variables: variables, we control.

3. Exogenous information process: arriving information, representing randomness.

4. Transition function: describes how the state evolves.

5. Objective function: optimal profit or costs after a sequence of decisions.

We divide the entire problem into stages. In every stage t, we observe a state St and take
an action at. Our transition function St+1 = SM (St, at, Wt) describes in which state we evolve,
depending on the current state St, the action at and the exogenous information Wt. Thus, we
need a function Vt+1(St+1) that shows the value of the next stage until the end of the considered
period. With this function, we evaluate every possible action at and choose the action at with
the maximal expected contribution Ct(St, at, Wt) at this stage t plus the expected contribution
until the end of the considered period Vt+1(St+1). Thus, we search the action that solves the
following function (Powell, 2011, Chapter 3):

a∗(St) = arg max
at∈A

E(Ct(St, at, Wt) + Vt+1(St+1)) (1.14)

We explain each part of the dynamic program in a separate subsection.

1.2.2.1.1 State variable The goal of the state variable St is to "completely specify the
instantaneous situation [...] "(Howard, 1966) for every stage t. Thus, it includes all information
we need to know (Powell, 2011, Chapter 5), and it contains (fully or partially) information
about the decisions made in the previous stages (Lew and Mauch, 2007, Chapter 1.1). The
state includes every information that is either in the decision function, the transition function or
the contribution function. However, if an information is in the state but in none of these three
functions, this information can be dropped (Powell, 2011, Chapter 5). Powell (2011, Chapter 5)
called this "minimally dimensioned function", which means that "our state variable is as compact
as possible". The state space St contains all feasible states in stage t. It can be finite or infinite
(Powell, 2011, Chapter 5.4).

Example: The state of a free-floating car sharing system at the beginning of period t consists
of six vectors St = (x⃗v

t , y⃗v
t , τ⃗v

t , x⃗c
t , y⃗c

t , τ⃗ c
t ). Each vector has the dimension C × 1, where the it-th

element in each vector describes a property of the it-th vehicle of the fleet. The first three
vectors contain all information about the vehicles. The vectors x⃗v

t and y⃗v
t contain the x- and

y-coordinates of each vehicle. If the vehicle is idle, it contains the current coordinates and
otherwise it contains the coordinates where the vehicle is picked-up. The vector τ⃗v

t contains
the starting time of every vehicle. The entry of an idle vehicle is 0. The next three vectors
contain information about the customers, where also the it-th element in each vector describes a
property of the it-th vehicle of the fleet. The vectors x⃗c

t and y⃗c
t contain the x- and y-coordinates
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of the customers opening the mobile application, if they picked-up a vehicle. If a vehicle is
idle, the entry is 0. The vectors τ⃗ c

t describe the time point when the customers have requested
the rentals. This means for a driving vehicle, when the customer initially opened the mobile
application.

1.2.2.1.2 Action variable In every stage t, the decision maker has to choose an action
at ∈ A. This decision is the challenge of the dynamic programming. Thus, we need a decision
function at = Aπ(St) that returns an action at at the given state St (Powell, 2011, Chapter 5.5).
The action space A is the set of all possible actions at at the stage t and depends on the state
St (Lew and Mauch, 2007, Chapter 1.1).

Example: The car sharing system provider decides about the prices for the vehicles. Thus,
the action variable is the optimal price vector including prices for each vehicle.

1.2.2.1.3 Exogenous Information The exogenous information Wt changes the state of the
system. The main challenge is to make decisions before all the information is available. The
exogenous information Wt becomes available during interval t. It can be a single variable or a
collection of variables (Powell, 2011, Chapter 5.6).

Example: One exogenous information after the prices are set is, if and which vehicle is
picked-up: Wt(St, it, t).

1.2.2.1.4 Transition Function The transition function defines how the system evolves after
the decision is made and the exogenous information arrived (Powell, 2011, Chapter 5.7). This
defines the state in the next stage (Lew and Mauch, 2007, Chapter 1.1): St+1 = SM (St, at, Wt).
Thus, the state of the system at stage t + 1 depends on the state St at stage t, the action at,
that is made at stage t and the exogenous information Wt arriving after the action at was made
at stage t (Powell, 2011, Chapter 5.7).

Example: The transition function contains the state of stage (in this example micro period)
t, the customer’s location (xO

t , yO
t ), the chosen vehicle it (0 indicates that the customer decides

against renting a vehicle), and the returned vehicle jt together with its drop-off location (xD
t , yD

t ),
i.e.,

St+1 = St+1
(
St, (xO

t , yO
t ), it, (xD

t , yD
t ), jt

)
. (1.15)

Please note that this transition function is not comparable to the usual transition functions,
because the specific choices it depend on the price vector p⃗t. More precisely, the action of the
provider does not directly affect the choice of the customer. That means, the state St+1 is
probabilistically dependent (Powell, 2011, Chapter 3) on the pricing decision p⃗t.

1.2.2.1.5 Objective Function The objective function evaluates the profit or costs after
a sequence of decisions (Lew and Mauch, 2007, Chapter 1.1). It is an indicator how well the
optimization is conducted. However, we can maximize a contribution (or profit) Ct(St, at, Wt)
which depends on the action at, the state St and the exogenous information Wt at stage t. This
means the contribution (profit) is random and the decision maker has to wait until he receives
information about the realization. Thus, he decides about an action at with no access to the
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exogenous information Wt. Therefore, action at considers the expected contribution (profit):
Ct(St, at) = E[Ĉt+1(St, at, Wt)|St] (Powell, 2011, Chapter 5.8).

Example: We optimize the expected profit of a car sharing system provider: Ct = E[Ct+1(St, it, Wt)].
The profit depends on the state St, the chosen vehicle it and the exogenous information Wt.

1.2.2.1.6 Recursive Bellman Equation We can formulate the recursive Bellman Equa-
tion as follows:

Vt(St) = max
at

E[Ct(St, at, Wt) + Vt+1(St+1|St, at)] (1.16)

s.t.

St+1 = SM
t (St, at, Wt) (1.17)

at ∈ At(St) (1.18)

with the boundary condition: VT (ST ) = 0. The standard approach to solve the Bellman
Equation is backwards recursion.

Example: For a detailed example please see Chapter 5.

1.2.2.2 Approximate Dynamic Programming

The main drawback of the dynamic programming is the "curse of dimensionality". This describes
the fact, that the state St can be very large, which makes a backwards recursion computationally
complex (Talluri and Van Ryzin, 2004). Powell (2011, Chapter 1.2) defines three curses of
dimensionality:

1. State space.

2. Exogenous information space.

3. Action space.

The dynamic pricing problems in Chapters 5 and 6 suffer from the curse of dimensionality.
More precisely, the state space of the dynamic programs described in in these chapters depends,
among other things, on where customers arrive and the current distribution of vehicles within
the business area. Since we consider a free-floating SMS and the business area is not divided
into zones, the business area is continuous. Thus, the customer can arrive and the vehicle can
be dropped-off at any location. Therefore, the state is continuous and cannot be discretized.

The space of exogenous information of the dynamic pricing programs described in Chapters
5 and 6 contains at maximum two information. First, if and which vehicle was picked-up by a
customer and second, if and which vehicle is dropped-off by another customer.

The action space of these dynamic pricing programs depends on the number of possible
discrete prices |M| and vehicles |C|. Therefore, the size of the action space for this problem is
|M||C|, implying that the calculation time in one single stage of the dynamic program increases
exponentially with the number of vehicles |C| and polynomially with the number of price points
|M|.
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In order to circumvent the curse of dimensionality, approximate dynamic programming is
often used. One of the most commonly used approximation techniques is the value function
approximation.

Powell (2011, Chapter 6.4) describes the value function approximation as the "most powerful
and visible method for solving dynamic programs [which] involves replacing the value function
Vt(St) with an approximation of some form." Three different broad classes of approximation
strategies exist that we could use. They are outlined in the following:

• Lookup Tables: Lookup tables contain a stored value for every discrete state s. Thus, they
are only useful for discrete states. It is possible to update these values by the following
function: V̄ n(Sn) = (1− α) · V̄ (Sn) + α · V̂ (Sn). The benefit is that if we have a discrete
state space, we can approximate V (S) very well. The disadvantage is that the value for
one state s does not provide information about another state s′.

• Parametric Models: Specific kinds of regression models can be used for approximation. For
this, we have to identify the important features, so that we can specify a value function
approximation using the following function: V̄ (S) = ∑

f∈F Θf · ϕf (S), where Θf is a
vector of regression parameters and ϕf∀f ∈ F is a function, that draws information from
S. The benefit is that parametric models are powerful. The parameters of a vector Θf

can be estimated by a relative small number of observations. The disadvantage is that it
is necessary to choose the right functions ϕf for a good approximation.

• Non-parametric Models: Non-parametric models are hybrids between lookup tables and
parametric models. There are many non-parametric models, but all use simple models
to present small regions of a function. The benefit is that we do not need to specify the
structure of a parametric model. They also provide accurate approximations if we have
enough observations. Some examples for non-parametric models are k-nearest neighbor,
kernel regression or local polynomial regression.

In Chapters 5 and 6, we use non-parametric models (kernel regression) to approximate the
value function.
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2.1 Introduction

Shared mobility systems (SMSs) such as car sharing or bike sharing offer flexible short-term
rentals in many major cities of the world. Globally, the number of car sharing vehicles has
increased from 11,500 in 2006 to 112,000 in 2015, with 427,000 cars forecast for 2025 (ACEA and
Frost & Sullivan, 2016). In terms of annual growth, projections for the global car sharing market
were recently at 30%. Also, bike sharing systems have experienced a strong market growth of
20% per year (Roland Berger Strategy Consultants, 2014). Their increasing importance, as well
as the challenge to operate such systems profitably, have led to an ongoing academic interest,
as survey papers by Jorge and Correia (2013) and Laporte, Meunier, and Wolfler Calvo (2018),
among others, demonstrate.

As the fleet is the most important cost driver, high utilization is key to profitably operating
an SMS. This, however, is difficult to achieve due to existing imbalances between supply and
demand. First, customers’ demand varies across time and space. Second, a rental not only
instantly decreases available capacity at its origin, but also influences future supply across the
whole system. These supply-side network effects result from the fact that modern systems mostly
allow one-way trips, that is, the customer does not need to return the vehicle to the same location
as where the trip originated. A practical consequence is that in most real-world systems, because
of asymmetric demand, rental vehicles tend to accumulate at certain locations, usually in the
city’s outskirts.

The described imbalances are widely addressed by supply-oriented operational control mech-
anisms such as vehicle relocation. However, as relocations are quite costly, pricing has been iden-
tified as a promising demand-oriented means in practice as well as in research. Most recently,
Huang et al. (2020) have compare relocation and pricing optimization (also see Di Febbraro,
Sacco, and Saeednia (2012); Jorge, Molnar, and Correia (2015); Lippoldt, Niels, and Bogen-
berger (2018, 2019)). While the existing research tends to focus on pricing problems with a
high degree of details and high pricing flexibility, current practical implementations strive for
simple, more restrictive pricing mechanisms that are more easily applied and communicated
to customers. Interestingly, the restriction to simple pricing mechanisms while network effects
prevail, turns out to create its own challenges.

Three dimensions characterize pricing mechanisms for SMSs, all of which impact the men-
tioned trade-off between flexibility and practicability, as explicated below.

• Pricing basis: The first pricing dimension concerns the basis on which rental fees are
calculated. The rental duration is usually central. Usage-based pricing, for example with
prices in cents per minute, is most commonly used, therefore we focus on this in our work.
The final rental fee is then determined by the rental duration and the price that is valid
at the start of the journey. In addition, some SMS providers offer package pricing for long
rentals of multiple hours, fixed rental fees, or monthly membership fees that are not linked
to usage.

• Spatio-temporal pricing features: The second pricing dimension refers to whether the SMS
provider sets prices depending on a rental’s time and the location of start (origin), end
(destination) or a combination of these (trip). Note that in this terminology, origin and
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destination consider both spatial and temporal aspects, i.e., two rentals that begin at the
same location, but at different times of the day, have different origins. Trip-based pricing
mechanisms use prices which depend on origin as well as destination, allowing a very
detailed level of pricing. By contrast, origin-based and destination-based mechanisms only
depend on the origin or destination, respectively. Although trip-based pricing may seem
most powerful, there are several practical disadvantages. First, the customer’s destination
is usually unknown in advance (Lippoldt, Niels, and Bogenberger, 2018, 2019). Second,
pricing mechanisms that include the destination become much more complicated (Lippoldt,
Niels, and Bogenberger, 2018). Third, prices need to be transparently communicated to
the customer before a rental. Attempts to prepare all origin-destination combinations in a
price table are impractical. The SMS provider then would have to ask a user to (truthfully)
disclose the intended destination, which would considerably change the user experience
of most real SMSs and thus would be unacceptable in most practical settings. Due to
these drawbacks, trip-based pricing seems not to be realizable in practice, and we are
not aware of a single SMS provider who has actually implemented such trip-based pricing
(see Appendix 2.I). This paper, therefore, focuses on origin-based pricing as a mechanism
most commonly used in current practice, because the SMS provider then requires less
information than otherwise. It also entails a more efficient user-provider interaction process
and fairly simple implementation.

• State dependency: The third pricing dimension distinguishes between dynamic and differ-
entiated pricing. Dynamic pricing mechanisms determine prices in real-time and have the
theoretical advantage of recurrently adjusting prices to the current state of the system,
in particular the current spatial vehicle distribution. Differentiated pricing mechanisms
also allow for temporal and spatial price variations, but prices are determined off-line and
do not depend on the current state of the system (Agatz et al., 2013). Note that some
authors use the term static pricing for this pricing mechanism (Waserhole and Jost, 2012).
For SMSs, these differentiated pricing mechanisms, on which we focus in this paper, are
preferred in practice. This is mainly because differentiated mechanisms are easier to im-
plement and again, quite importantly, easy to communicate transparently to customers,
for example via price tables.

The problem we consider in this paper can therefore be summarized as follows: A one-way
SMS provider applies origin-based differentiated pricing by varying minute prices across differ-
ent locations and depending on the time of day in order to scale demand. Consistent with the
common situation in practice, there are no parallel operational steering means beyond pricing
(pure pricing assumption). In particular, there is no availability control, i.e., whenever vehicle
and customer match, a rental results. However, if at a certain location and point in time, de-
mand exceeds supply, demand for all destinations is served proportionally (proportional demand
fulfilment assumption) and excess demand is lost. This can be interpreted as customers with
different destinations arriving in random order. Resulting rentals evoke network effects in the
aforementioned sense of influencing supply at their destinations later in the day. To ensure sim-
ple and transparent customer communication, prices must originate from a predefined discrete
price set. Given this setting, the optimization task is now to set prices optimally for all location-
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time combinations, with the SMS provider’s overall objective being profit maximization. We
refer to this optimization problem as the origin-based differentiated pricing problem (OBDPP)
in SMSs.

Given its broad relevance to practice and across all SMS types, it is remarkable that the prob-
lem has not yet been addressed in the academic literature. Our contributions, more precisely,
are the following:

• To the best of our knowledge, we are the first to focus on origin-based differentiated pricing,
which is highly relevant for various SMS types in practice because the corresponding
pricing mechanism is transparent to the customer and relatively easy for the provider to
implement. In addition, we include other novel problem characteristics such as a realistic
modeling of the SMS provider’s control ability. The problem’s practical relevance is ensured
by, among other things, close cooperation we have established with Share Now, Europe’s
largest car sharing provider operating in eight countries and 16 cities (Share Now, 2021).

• Second, we prove that the problem is NP-hard and therefore computationally intractable
for real-life instances. While some authors (e.g. Waserhole and Jost (2012); Ren et al.
(2019)) discuss the computational effort SMS pricing problems require, to the best of our
knowledge, we are the first to derive a formal proof of computational complexity for such
a problem, to validly justify the development of solution heuristics.

• Third, we develop a problem-specific, temporal decomposition heuristic based on approxi-
mate dynamic programming (ADP). The approach is scalable and applicable to real-world
problems. Its integrated value function approximation (VFA) anticipates the network ef-
fects of the entire problem endogenously in the optimization, although only parts of the
original problem are explicitly optimized during the decomposition. This is enabled by
specifying piece-wise linear VFAs that reflect the available vehicles’ decreasing marginal
value while maintaining linearity for efficiently integrating it in the decomposed optimiza-
tion problems.

• Fourth, we generate a number of relevant managerial insights based on extensive compu-
tational experiments with different problem sizes, considering many relevant parameter
settings and demand patterns, and on a real-world case study of Share Now. In particu-
lar, we demonstrate that origin-based pricing is capable of substantially increasing profit
compared to the de facto industry standard of constant uniform pricing. Further, we show
that our approach can adequately capture both short-term and long-term network effects
due to its VFA.

The remainder of the paper is organized as follows. In Section 2.2, we review the relevant
literature, focusing on pricing problems. In Section 2.3, we formalize the origin-based differenti-
ated pricing problem, derive its model formulation, and discuss its complexity. We present the
proposed solution approach in Section 2.4. Section 2.5 contains the computational experiments,
and Section 2.6 presents the Share Now case study. Based on the obtained results, Section
2.7 discusses the managerial insights we derived. Section 2.8 concludes the paper and gives an
outlook on future research. The appendix contains the complexity proof, as well as additional
data and results for the computational experiments and case study.
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2.2 Literature Review

General overviews on SMS problems have been given in survey papers on bike sharing (e.g.
DeMaio (2009), Fishman, Washington, and Haworth (2013), Ricci (2015)), car sharing (e.g.
Jorge and Correia (2013), Ferrero et al. (2015a), Ferrero et al. (2015b), Illgen and Höck (2019)),
and shared mobility in general (e.g. Laporte, Meunier, and Wolfler Calvo (2015, 2018)). We
begin by reviewing the literature on differentiated pricing problems in Section 2.2.1 and dynamic
pricing problems in Section 2.2.2. Then, we give a detailed delineation of our work from the
papers most closely related in Section 2.2.3. Please note that since most pricing mechanisms are
not limited to a single SMS type like bike sharing or car sharing, we refrain from mentioning
whether the authors considered a specific SMS type. Also, we do not state explicitly whether the
authors considered other optimization problems besides pricing, such as fleet sizing or relocation.

2.2.1 Differentiated Pricing

The literature on optimizing differentiated pricing for SMSs focuses on trip-based pricing.
Waserhole and Jost (2012) propose a fluid approximation for the revenue-maximizing trip-

based pricing problem, which is the limit of the stochastic model when demand and supply are
scaled to infinity. In another paper from the same research group, Waserhole, Jost, and Brauner
(2012) present a model optimizing revenue in a single scenario, that is, they focus on solving the
discrete problem with perfect hindsight information. This can be used to derive an upper bound
for the stochastic problem. They also consider pick-up and drop-off fees. To our knowledge, this
paper is the only one in the related literature that has investigated computational complexity.

The following papers apply a certainty equivalent approach that replaces stochastic quanti-
ties (i.e. rentals) with a deterministic value (Bertsektas, 2019, chapter 2.3.2). Jorge, Molnar,
and Correia (2015) use a continuous (expected) demand function and round rentals to the next
integer value in the model. They formulate a profit-maximizing trip-based pricing problem as
mixed-integer nonlinear program and propose an iterated local search meta-heuristic solution
approach. Building on this work, Ren et al. (2019) integrate the vehicle-grid interaction of elec-
tric vehicles into the model, and use a nonlinear solver for the resulting problem. The next two
papers simply require rentals to be integral values not exceeding a continuous demand function.
Xu, Meng, and Liu (2018) formulate a mixed-integer nonlinear and non-convex program. On
this basis, they develop a computationally tractable convex model which has the same objective
in the optimum, and solve the latter arbitrarily close to optimality. Huang et al. (2020) use a
deterministic, continuous demand function. They discuss two pricing approaches that they com-
pare to relocation. While the first is a classic trip-based pricing approach, the second involves
simultaneously optimizing pick-up and drop-off fees. They formulate mixed-integer nonlinear
programs and solve them with a combined rolling horizon and iterated local search heuristic,
which the authors point out can also be applied in a dynamic context.

Lu et al. (2021) use yet another formulation, i.e., a bi-level nonlinear program based on
a fluid approximation in which the provider determines profit-maximizing prices on the upper
level. The lower level’s objective minimizes customers’ total cost by a binary choice between two
modes of transportation, namely shared vehicles and private cars. In an odd interpretation of a
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discrete choice model, rentals are additionally bounded from above by a logit model. The authors
transform the bi-level problem to a single-level one using Karush-Kuhn-Tucker conditions, and
heuristically solve it with a genetic algorithm.

Finally, there are two other more distant lines of work, parallel to the aforementioned.
One analytically investigated the steady state of highly stylized, stationary settings with time-
invariant demand using techniques from closed-queuing networks. Waserhole and Jost (2016)
maximize the number of trips taken, assuming null travel time. They approximate the problem
and show a bound for the solution quality. In a working paper, Banerjee, Freund, and Lykouris
(2016) basically extended this result using a different proof and approximation techniques. A
second parallel line of work considered pricing in SMSs but without optimization. For example,
Brendel et al. (2017) developed a framework for a decision support system that could help
to define contingent areas with low or high demand. The provider can then manually choose
pick-up and drop-off discounts and fees for these areas.

2.2.2 Dynamic Pricing

Dynamic pricing problems make up the majority of pricing problems considered in the litera-
ture on SMSs. We structure the discussion along the spatio-temporal pricing features (second
dimension introduced in Section 2.1). We begin with the dynamic mechanisms that exclusively
use either origin-based or destination-based pricing. Next we refer to a class of approaches that
simultaneously considers dynamic origin- and destination-based pricing, after which we discuss
those using classic trip-based pricing.

Giorgione, Ciari, and Viti (2019) are the only scholars to have considered pure origin-based
dynamic pricing. They analyze a dynamic pricing policy which links the price to the availability
of vehicles at a rental’s origin and demonstrate the advantage of dynamic pricing over a constant
uniform price.

Destination-based dynamic pricing was first investigated by Di Febbraro, Sacco, and Saeednia
(2012). In a first step, they determine a service maximizing fleet distribution, while the second
step determines optimal drop-off discounts that incentivize customers to return their vehicle
to a specific destination. Following up on this work, Di Febbraro, Sacco, and Saeednia (2019)
changed the second step’s objective to profit maximization. Brendel, Brauer, and Hildebrandt
(2016) proposed a dynamic drop-off incentive for users who accept the option of returning their
vehicle to a different location than that initially intended. Pfrommer et al. (2014) suggest a
model predictive control approach. The objective is a weighted sum of the deviation from an
optimal vehicle distribution and the cost of incentive payments. Wagner et al. (2015) propose
a system that dynamically suggests alternative rental destinations, and incentivizes customers
with free minutes. Chemla et al. (2013) consider a service maximizing fleet utilization, measured
by successful and unsuccessful intended customer interactions like finding an available vehicle.
They suggest dynamic drop-off fees to influence customer behavior. Marecek, Shorten, and Yu
(2016) propose a dynamic pricing scheme that derives drop-off fees to incentivize drivers to
distribute cars more evenly.

Some authors simultaneously consider dynamic origin- and destination-based pricing. Singla
et al. (2015) investigate the problem of minimizing customers’ dissatisfaction about not finding
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an available vehicle or parking slot under a given budget restriction. They propose dynamic
pick-up and drop-off fees to incentivize users to choose an alternative origin or destination.
Kamatani, Nakata, and Arai (2019) take a reinforcement learning approach to derive dynamic
pick-up and drop-off fees with the objective of maximizing fleet utilization. Wang and Ma (2019)
consider the objective of keeping inventories in a certain range, and they determine dynamic
pick-up and drop-off rewards and charges by a quadratic programming formulation.

Finally, there are papers that use a dynamic trip-based pricing mechanism. Barth, Todd,
and Xue (2004) consider maximizing fleet utilization by incentivizing customers with the same
journey to share a ride or to split up and use multiple vehicles. Prices are reduced according
to a simple rule-based mechanism without any optimization. For example, if two users are
asked to take two cars, each pays half-price. Angelopoulos et al. (2016) consider the problem of
dynamically setting budget-constrained trip-based incentives in an SMS to balance the vehicle
inventory. The approach uses graph-theoretic modeling and proposes a heuristic method to
solve the resulting weighted packing problem. Haider et al. (2018) dynamically set trip-based
prices to minimize the number of unbalanced stations, that is, SMS stations with a surplus
or lack of vehicles, to ease the subsequent need to reposition using trucks. In their bi-level
programming approach, the upper level sets prices and minimizes the imbalance, while the
lower level represents customers’ cost minimization route choices. They convert the problem
to a single-level problem, and propose a heuristic which iteratively adjusts prices and customer
decisions.

2.2.3 Delineation from Closest Related Work

In this section, we discuss that the closest related works cannot be simply adapted to meet the
given characteristics of the origin-based differentiated pricing problem this paper considers.

Among the papers discussed here, which all focus on trip-based pricing, we identify two
groups that differ regarding the modeling of demand and rentals. For both groups, we have to
conclude that central structural differences impede an inclusion of the OBDPP’s characteristics.

The first group of papers does not distinguish between demand and rentals. It encompasses
Jorge, Molnar, and Correia (2015); Ren et al. (2019); Waserhole and Jost (2012), as well as
Haider et al. (2018) who study differentiated and dynamic trip-based pricing. The former three
consider unrestricted, continuous prices that scale demand. Thus, it is always optimal to set
prices such that capacity is not scarce and, so that demand will equal rentals. The key issue is
that with the restricted and especially discrete price points prevalent in practice, this equivalence
of demand and rentals no longer holds and is usually even infeasible. Allowing for discrete prices
requires a differentiation between demand and rentals, as well as explicitly incorporating the
pure pricing and proportional demand fulfillment assumptions. Thus it would require major
modeling changes.

By contrast, Haider et al. (2018) do not scale demand by continuous prices; they only
influence customers’ route choices in a bi-level problem with an infinite fleet size. Moreover,
their model is optimistic, that is, if customers are indifferent, the provider chooses the itinerary
for them. While including discrete prices with demand scaling, profit maximization, and origin-
based pricing in their model seems possible, this alone would yield an entirely new model.
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However, there are two key issues. First, incorporating a limited fleet size would also necessitate
accounting for the pure pricing assumption. Second, the problem that we consider with its
proportional demand fulfillment assumption is neither optimistic nor pessimistic. As optimistic
approaches are usually the most tractable ones, including these two assumptions appears to be
complex.

The second group of papers encompasses Xu, Meng, and Liu (2018), Lu et al. (2021), and
Huang et al. (2020), who distinguish between demand and rentals in their models, but do not
satisfy the pure pricing and proportional demand fulfillment assumptions. Xu, Meng, and Liu
(2018) and Huang et al. (2020) include demand scaling with continuous prices. Their models
bound rentals only from above by supply and demand. Thus, the provider can freely choose the
number of rentals going to the different destinations up to these bounds, as it is beneficial in the
long term. This violates the pure pricing and proportional demand fulfilment assumptions. An
extension of their models that includes the assumptions in respective constraints seems possible,
but the changes would be so extensive that basically any network flow model could be used.

Slightly similar to Haider et al. (2018), Lu et al. (2021) do not scale total demand by
continuous prices, but only influence customers’ mode choices on the lower level of their bi-level
problem, where they work with the assumption of customers collectively minimizing cost. As
in Haider et al. (2018), the key issue is that the model is optimistic. If customers’ costs are the
same for carsharing and private cars on a trip, the provider can choose the number of customers
up to the logit model’s bound. Even more importantly, if this holds for several trips, the provider
can freely choose the number of customers for each trip. Again, there is no clear path to include
the two assumptions.

Note that the work of Giorgione, Ciari, and Viti (2019) is not closely related. Although
they do analyze a pure origin-based pricing problem, they do so without pricing optimization,
without considering network effects, and in a dynamic context which fundamentally differs from
the differentiated pricing problem that we analyze.
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2.3 The Origin-Based Differentiated Pricing Problem in Shared
Mobility Systems

In this section, we define and analyze the origin-based differentiated pricing problem in SMSs
(OBDPP). Section 2.3.1 formally states the problem and introduces the notation. In Section
2.3.2, we present a mixed-integer linear programming formulation for the OBDPP based on
a fluid network flow model. Section 2.3.3 investigates the computational complexity of the
problem.

2.3.1 Problem Statement and Notation

We take the perspective of a one-way SMS provider whose task is to apply differentiated pricing
to determine minute prices over a given time interval, for example, one day. The SMS consists
of locations Z = {1, 2, . . . , Z}. The considered time interval is discretized into periods T =
{0, 1, . . . , T − 1}. For all rentals which originate at a specific combination of location i ∈ Z
and period t ∈ T the same minute price pit is charged, regardless of a trip’s destination (origin-
based pricing). The minute prices have to be selected from M given price points pm ∈ R+

0
with m ∈ M = {1, 2 . . . , M}. Now, the provider’s objective is to set the prices such that
they maximize the profit generated from the resulting rentals over the given time interval. The
corresponding solution to the problem – i.e., the optimized prices – can be presented in the form
of a price table, as shown in Table 2.1.

On a more detailed level, additional key aspects of the problem definition are the assumptions
regarding demand, rental realization, and system dynamics, which we now discuss in more detail.

• Demand: We considered the demand and its dependence on the price points on an aggre-
gate level as described, for example, in Talluri and van Ryzin (2004, chapter 7.3). More
specifically, the base demand for every location-location-time combination – from location
i to location j at period t – is given by dijt ∈ R+

0 and builds the base demand matrix
d = [dijt]Z×Z×T . Each entry is scaled by an i-j-t specific sensitivity factor fm

ijt, depending
on the price pm, to obtain the actual demand dm

ijt = dijt · fm
ijt. The price where fm

ijt = 1
and thereby dm

ijt = dijt is denoted as base price.

• Rental realization: The rentals rm
it that realize for a specific origin, meaning a location-time

(i-t) combination, and price pit, are determined by the minimum of the available vehicle
count ait and the prevailing actual demand, meaning rm

it = min(ait,
∑

j∈Z dm
ijt). Note

that this implicit realization of rentals based on the prevailing supply and demand implies
that the SMS provider can only influence rentals via prices (pure pricing assumption). We
assume that rentals at period t in location i, that is, rm

it , split up proportionally to demand
regarding their destination into the i-j-t specific rentals rm

ijt. This means that we model
rm

ijt as a fraction of rm
it proportional to dm

ijt/
∑

j∈Z dm
ijt (proportional demand fulfillment

assumption). We assume rentals have a variable cost per minute c ∈ R+
0 .

• Dynamics: We think of the SMS dynamics as a sequential process with successive periods,
as it is done in practice and commonly found in the literature, for example in Xu, Meng,
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T
0 1 2 . . . T − 1

Z

1 p10 p11 p12 . . . p1(T −1)
2 p20 p21 p22 . . . p2(T −1)

. . . . . . . . . . . . . . . . . .
Z pZ0 pZ1 pZ2 . . . pZ(T −1)

Figure 2.1: Structure of the origin-based,
differentiated price table
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Figure 2.2: Structure of the
spatio-temporal network (columns: time

periods, rows: locations)

and Liu (2018). More precisely, we assume that rentals start at the beginning of a period
and the vehicles, at latest, always become available again at the beginning of the respective
next period. The average rental duration lij ∈ R+

0 (in minutes) is shorter than the period
length, but can vary according to the spatial distance between different locations i-j.

Finally, note that the initial vehicle distribution at the beginning of the considered time
interval (beginning of the day) âi0 for every location i is given as a consequence of regular
relocation activity (usually performed during the night). Thus, fixed costs related to these
regular relocations are out of the problem’s scope.

2.3.2 Mathematical Model

We formulate the OBDPP based on a deterministic network flow problem in which vehicles move
through a spatio-temporal network (Figure 2.2). The resulting fluid model considers expected
values of the vehicle movements and available vehicles in the SMS. Deterministic models for
pricing decisions are standard in pricing and revenue management (Talluri and van Ryzin, 2004,
chapter 3.3.1), and are also applied in SMS optimization (see e.g., Illgen and Höck (2019);
Waserhole and Jost (2012)).

The model contains multiple continuous variables: As depicted in Figure 2.2, rentals from
location i to location j in period t that are charged with minute price pm are represented by the
continuous variable rm

ijt; these build the elements of the vector r = [rm
ijt]Z×Z×T ×M . Vehicles that

are not rented in location i at period t and therefore remain in that location are represented by
the continuous variable sit and are the elements of s = [sit]Z×T . The number of vehicles at the
beginning of a period t in a certain location i is represented by the continuous variable ait with
the corresponding vector a = [ait]Z×(T +1).

Additionally, the model contains the following binary decision variables. The pricing deci-
sions build the elements of y = [ym

it ]Z×T ×M . A specific decision variable ym
it takes the value 1,

if and only if price pm is set in location i at period t. To formulate all necessary constraints
– in particular that vehicle movements and availabilities are the result of existing demand and
selected prices (see pure pricing and proportional demand fulfillment assumptions in Sections
2.1 and 2.3.1) – additional auxiliary binary variables are required, represented by q = [qit]Z×T .

Based on the decision variables and the parameters defined so far, the model can be stated

25



as a mixed-integer linear program as follows:

max
y,q,r,a,s

∑
t∈T

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c) (2.1)

s.t. ait =
∑
j∈Z

∑
m∈M

rm
ijt + sit ∀i ∈ Z, t ∈ T (2.2)

∑
i∈Z

∑
m∈M

rm
ijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (2.3)

ai0 = âi0 ∀i ∈ Z (2.4)∑
m∈M

ym
it = 1 ∀i ∈ Z, t ∈ T (2.5)

rm
ijt ≤ dm

ijt · ym
it ∀i, j ∈ Z, t ∈ T , m ∈M (2.6)

rm
ijt ≤ dm

ijt/
∑
k∈Z

dm
ikt · ait ∀i, j ∈ Z, t ∈ T , m ∈M (2.7)

∑
j∈Z

∑
m∈M

dm
ijt · ym

it − ait ≤ M̄ · qit ∀i ∈ Z, t ∈ T (2.8)

∑
j∈Z

∑
m∈M

−dm
ijt · ym

it + ait ≤ M̄ · (1− qit) ∀i ∈ Z, t ∈ T (2.9)

∑
m∈M

dm
ijt · ym

it ≤
∑

m∈M
rm

ijt + M̄ · qit ∀i, j ∈ Z, t ∈ T (2.10)

sit ≤ M̄ · (1− qit) ∀i ∈ Z, t ∈ T (2.11)
ym

it ∈ {0, 1} ∀i ∈ Z, t ∈ T , m ∈M (2.12)
qit ∈ {0, 1} ∀i ∈ Z, t ∈ T (2.13)
rm

ijt ∈ R+
0 ∀i, j ∈ Z, t ∈ T , m ∈M (2.14)

sit ∈ R+
0 ∀i ∈ Z, t ∈ T (2.15)

ait ∈ R+
0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (2.16)

The objective function (2.1) maximizes the contribution margin across all periods and results
from the rentals at different prices minus the variable costs. Note that since decisions related
to fixed costs cannot be made at this point and are therefore out of scope, maximizing the
contribution margin is equivalent to optimizing profit here. Constraints (2.2) and (2.3) form the
flow conservation that ensure a constant fleet size at all periods. More precisely, (2.2) connect
the available vehicles ait in location i at the beginning of period t to the rentals at all possible
prices rm

ijt that originate at this specific spatio-temporal node, plus the vehicles not rented sit.
Constraints (2.3) determine the available vehicles at the beginning of the next period aj(t+1)

by summing up the arriving rentals and the vehicles not moved. Clearly, (2.2) and (2.3) could
be formulated in one set of constraints; however, the description of the solution approach in
Section 2.4 becomes more comprehensible with an explicit decision variable ait. The initial
vehicle distribution is set by constraints (2.4). Constraints (2.5) ensure that at every location-
time combination only one price pm is set.

Constraints (2.6) and (2.7) define upper bounds on the rentals, depending on whether de-
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mand or supply limits the rentals. For every i-j-t combination, constraints (2.6) limit the rentals
observed at a certain price to the actual demand at this price. Additionally, these constraints
ensure that only those variables rm

ijt whose corresponding price pm was selected can be positive.
Constraints (2.7) limit the rentals to the number of available vehicles for every location-time
combination. More specifically, the rentals from location i to location j at period t and price pm

must not exceed the fraction dm
ijt/

∑
k∈Z dm

ikt ·ait of available vehicles. The factor dm
ijt/

∑
k∈Z dm

ikt

splits the available vehicles proportionally into vehicle flows according to the demand relation.
The next constraints (2.8) to (2.11) are necessary to enforce lower bounds on the rentals,

which thereby ensure that if pit = pm, rentals realize according to rit = min(ait,
∑

j∈Z dm
ijt)

(see pure pricing and proportional demand fulfillment assumptions in Sections 2.1 and 2.3.1).
They incorporate a sufficiently large number M̄ . Constraints (2.8) and (2.9) force qit to 1, if
the demand exceeds the available vehicles, and to zero otherwise. Now, if demand exceeds the
supply, such that qit = 1, constraints (2.11) ensure that all available vehicles are rented. In the
other case where qit = 0, constraints (2.10) set the demand as a lower bound for the rentals.
As described in the review of the closest related literature in Section 2.2.3, to the best of our
knowledge, none of the existing works on SMS pricing optimization enforces such lower bounds
on the rentals. Consequently, these models have a degree of freedom which allows them to reject
certain rentals. They therefore do not adequately reflect the real decision problem.

Note that from a technical viewpoint, the OBDPP falls into the class of deterministic sequen-
tial decision problems, which are characterized by the fact that they can be divided into stages
(see e.g. Winston and Goldberg (2004, chapter 18.2)). In the OBDPP, these stages correspond
to the multiple time periods. The corresponding model given in (2.1) to (2.16) has the same
structure as the general deterministic sequential decision problem stated, e.g., in Powell (2011,
chapter 4.8.4).

2.3.3 Computational Complexity

Theorem. The origin-based differentiated pricing optimization problem in SMSs (OBDPP)
(2.1)-(2.16) is NP-hard.

Proof. See Appendix 2.A.

The proof is performed by polynomial-time reduction of the three-satisfiability problem (3-SAT),
which is well-known to be NP-hard (Garey and Johnson, 1990), to the OBDPP. In 3-SAT,
multiple clauses of 3 literals each build a Boolean formula, where the clauses are connected
by conjunctions and the literals in each clause by disjunctions, meaning that the formula is in
conjunctive normal form (CNF). 3-SAT now asks whether a given 3-CNF formula is satisfiable,
thus asking whether there exists a consistent truth assignment of TRUE/FALSE to the literals,
such that the formula is TRUE. The idea of the proof is to construct an OBDPP instance where
location-time combinations correspond to a 3-SAT instance’s clauses. For each location-time
combination, the price selection corresponds to the selection of a literal that is guaranteed to be
TRUE. For the constructed OBDPP instance, determining the optimal solution implies deciding
satisfiability of the corresponding 3-SAT instance.

27



2.4 Approximate Dynamic Programming Decomposition Ap-
proach

Given that the OBDPP is NP-hard, in this section, we develop a problem-specific heuristic
approach for its solution. More precisely, we propose a decomposition approach based on ap-
proximate dynamic programming (ADP). We start by explaining the theoretical foundation of
the approach in Section 2.4.1, followed by its formal description in Section 2.4.2. In Section
2.4.3, we describe the specific design of the VFA which is a central element of the approach. We
explain the estimation process of the VFA parameters in Section 2.4.4.

2.4.1 Theoretical Foundation

The solution approach builds on the general idea of using ADP as a decomposition technique.
As Powell (2011) noted, while ADP is known as a solution framework for solving stochastic
dynamic decision problems, it can also be applied as a decomposition technique for determin-
istic sequential decision problems (Powell, 2011, chapter 4.8.4), like the OBDPP. Through this
technique, multiple smaller problems are solved instead of the original large problem, with each
smaller problem containing a VFA that attempts to compensate for the neglected parts of the
original problem (see also Powell (2009, 2016)). These VFAs are functions of the decision vari-
ables, such that the profits-to-come they approximate are endogenously incorporated within the
optimization of the smaller problems. Powell points out that ADP decomposition approaches in
principle allow to solve extremely large mathematical programs, which even modern commercial
solvers find difficult, but the challenge is to design effective, problem-specific VFAs that yield
adequate solution quality.

The ADP decomposition approach we developed for the OBDPP in this study implies a
time-based decomposition of the original problem. That is, while in the original problem (2.1)-
(2.16), all periods t ∈ T are optimized simultaneously, our approach is based on the iterative
solution of multiple smaller and adapted versions of the original problem (termed substitute
problem). More precisely, the approach loops chronologically across all periods τ ∈ T , and for
each τ , a substitute problem with fewer explicitly considered periods (termed horizon) but with
a period-specific VFA at the end of the horizon is optimized.

It is important to note that the ADP decomposition approach goes beyond the basic rolling
horizon solution approach for deterministic sequential decision problems, as it is described, e.g.,
by Grossmann (2012). In fact, the key idea is to integrate sophisticated VFAs which allow
us to implicitly consider all remaining parts of the original problem which are not considered
explicitly in the optimized substitute problem. In our case, these VFAs are functions of the
vehicle distribution (decision variables in the substitute problems) such that for any resulting
vehicle distribution at the end of the horizon, the approximated profit-to-come is endogenously
incorporated in the optimization. Thereby, the ADP decomposition approach has an obvious
advantage over the basic rolling-horizon approach and comes along with the theoretical potential,
in case of perfect VFAs, to indeed find the optimal solution of the overall problem. We describe
the details of the approach next.
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2.4.2 Formal Description

We begin the more formal description of the ADP decomposition approach by formalizing the
substitute problem at a specific period τ . To reduce the problem size, the number of explicitly
modeled periods in the substitute problem at period τ is limited to the horizon length H that has
to be prespecified. For a certain H, the explicitly considered periods in the substitute problem
at τ are the elements of the horizon Hτ = {τ, τ + 1, . . . , min(τ + H − 1, T − 1)}. In other words,
this means that periods t < τ and t > min(τ + H − 1, T − 1) are not considered explicitly and
that the number of periods in the substitute problem can also be fewer than H in case it would
otherwise exceed T − 1. To compensate for the reduction of explicitly considered periods, the
VFA is additionally integrated in the objective function.

To obtain a formulation of the substitute problem on the basis of the original OBDPP (2.1)-
(2.16), it must be adapted to the considered periods in Hτ and the VFA should be integrated.
For that purpose, the decision variable vectors y, q, r, a, s are replaced by τ -specific vectors
with appropriate time-dimension, that is yHτ = [ym

it ]Z×Hτ ×M , qHτ = [qit]Z×Hτ ×M , rHτ =
[rm

ijt]Z×Z×Hτ ×M , sHτ = [sit]Z×Hτ , where Hτ = min(H, T − τ − 1), and aHτ = [ait]Z×(Hτ +1)×M ,
respectively. For each horizon Hτ with τ ∈ T , a corresponding substitute problem with initial
vehicle distribution âτ is then given by the following MILP:

max
yHτ ,qHτ ,

rHτ ,aHτ ,sHτ

∑
t∈Hτ

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c) + 1{τ+H<T −1} · V̄τ+H(aτ+H) (2.17)

s.t. Constraints (2.2)-(2.3), (2.5)-(2.15) with T replaced by Hτ , (2.18)
and (2.16) with {0, 1, . . . , T} replaced by {τ, τ + 1, . . . , min(τ + H, T )}
Constraints (2.4) with vehicle distribution âτ (2.19)
Constraints depending on choice of V̄τ+H(aτ+H). (2.20)

Compared to the original OBDPP (2.1)-(2.16), the objective function in the substitute prob-
lem (2.17) contains the additional VFA V̄τ+H(aτ+H). For each substitute problem, the function
V̄τ+H(aτ+H) approximates the value at the end of the horizon (that is, from period t = τ + H

until the end of the day), referring to the optimal profit-to-come in the original problem for
the remaining periods Rτ+H = {τ + H, τ + H + 1, . . . , T − 1}. Since the VFA depends on
the vehicle distribution aτ+H = [ai(τ+H)]Z×1, the approximated profit-to-come is endogenously
incorporated in the optimization of the substitute problem. More formally, the link between the
approximation V̄τ+H(aτ+H) and the original problem for a certain period t = τ + H under the
respective constraints is

V̄τ+H(aτ+H) ≈ max
yRτ+H

,qRτ+H
,rRτ+H

,
aRτ+H

,sRτ+H

∑
t∈Rτ+H

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c), (2.21)

again with adapted vectors of decision variables that now contain the respective variables
for all remaining periods t ∈ Rτ+H . Note that the indicator function 1{τ+H<T −1} in (2.17)
ensures that the VFA is not used beyond the last period of the original problem. We present
the details of the VFA design, as well as of determining the function parameters in Section 2.4.3
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and Section 2.4.4, respectively.
Further, while constraints (2.18) in the substitute problem in principle correspond to the

original constraints (2.2)-(2.3) and (2.5)-(2.16), they now account for the new time periods
considered explicitly, meaning that T is replaced by Hτ and {0, 1, . . . , T} is replaced by {τ, τ +
1, . . . , min(τ + H, T )}. Likewise, constraints (2.19) concerning the substitute problem’s initial
vehicle distribution remain largely unchanged from (2.4), but the initial vehicle distribution
âτ = [âiτ ]Z×1 at τ now is the distribution at the beginning of the substitute problem’s horizon.
Depending on the specific choice of the VFA V̄τ+H(aτ+H), additional constraints might be
necessary (constraints (20)). We discuss these regarding our specific VFA design in Section
2.4.3.

Given the formulation of the substitute problem, we can now solve the original problem using
the decomposition approach by chronologically looping over T , from τ = 0 to τ = T −1. In each
iteration, we solve a substitute problem (2.17)-(2.20) at period τ with horizonHτ . For τ = 0, the
vehicle distribution is initialized with the vehicle distribution of the original problem â0. For all
other substitute problems at τ > 0, the respective initial vehicle distribution âτ is determined by
the vehicle distribution aτ that realized after one period in the previous substitute problem with
horizon Hτ−1. The prices pτ = [piτ ]Z×1 that result from the optimization for the first period of
each substitute problem at τ are the final prices to be recorded in column τ of the price table
(see Table 2.1), while all other calculated prices are discarded. Similarly, vehicle distributions
are computed for the entire horizon, but only the vehicle distribution aτ+1 of the next period
τ +1 is used as initial vehicle distribution âτ+1 for the next substitute problem. Note that, from
a technical perspective, already calculated future prices and spatial vehicle distributions can be
used as part of a warm start solution in the following substitute problem to speed up the overall
solution process.

The general ADP decomposition approach is depicted as pseudo-code in Algorithm 1. The
substitute problem including VFA given by (2.17)-(2.20) can be solved using a standard MIP
solver. Remember that it is not fully specified yet. We still need to choose a specific VFA to be
integrated in objective (2.17) and add its corresponding constraints as indicated by (2.20). We
describe our choice of this VFA and the corresponding elements to add in the next subsection.
The computation times for the entire process of pricing solution determination are discussed in
Appendix 2.D.

Algorithm 1 Approximate dynamic programming decomposition approach
- start with initial vehicle distribution â0 according to original problem
for τ = 0 to τ = T − 1 do

- solve substitute problem including VFA (2.17)-(2.20) with respective horizon Hτ

- store prices pτ in price table
- update initial vehicle distribution: âτ+1 ← aτ+1

end for

2.4.3 Design of the Value Function Approximation

Here we propose and discuss a problem-specific VFA to be used for V̄τ+H in (2.17) and state the
additional constraints it requires (cf. (2.20)). The main focus in our VFA design is to effectively
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approximate the network effects of the OBDPP. Please remember that the idea is to use the
VFA to be able to evaluate any vehicle distribution that might arise in the substitute problem.

Basically, the VFA V̄τ+H can be any function that maps the decision variables at the end of
the horizon to the desired value. In general, three alternative VFA types can be used in ADP,
namely lookup tables, non-parametric value functions, and parametric value functions (Powell,
2011, chapter 6). We decided to follow the latter type, i.e., a parametric approach, because,
different to the others, it can be incorporated in our MILP framework without excessively using
auxiliary variables.

The choice of a specific VFA depends on two aspects. First, and most importantly, the
VFA should be a good approximation of the true value function and capture all properties
relevant for decision making. The second is tractability. As we integrate the VFA into a MILP,
we aim as much as possible to reduce the additional complexity that inevitably results from
the VFA integration with its additional decision variables and potential constraints. The first
step of the VFA design is known as feature selection in the ADP realm. It determines the
variables (a subset of the state) of which the VFA is a function. The vehicle distribution aτ+H

is the natural choice, as it is central to the SMS’s state, and determines the potential for future
rentals. The second step that defines the actual function is a bit more complicated. The key
property here is that each additional vehicle in a specific location at time τ + H has a positive
additional value, but as the number of vehicles increases, the marginal value of each additional
available vehicle decreases. This is because the finite demand causes saturation and limits the
profit that can be realized with additional vehicles, also taking future demand at other locations
through network effects into account. Thus, a concave function seems appropriate. Regarding
tractability, linearity in the vehicle distribution aτ+H is desirable.

Combining these arguments and computational tests, we propose a piece-wise linear function
of the number of vehicles in each location at time τ +H. Additional constraints ensure concavity.
Thus, the VFA captures the decreasing marginal value of available vehicles and retains linearity.
In particular, the VFA (incorporated in the substitute problem (2.17)-(2.20)) is the following
Z-dimensional piece-wise linear function with K pieces in each dimension.

V̄τ+H(aτ+H) :=
∑
i∈Z

∑
k∈K

v̄k
i(τ+H) ·∆ak

i(τ+H) + v̄const
τ+H (2.22)

Technically speaking, the VFA (2.22) for a specific period τ +H is a function of the respective
spatial vehicle distribution aτ+H and additive over the Z locations. For a specific location i,
the present vehicles ai(τ+H) are divided into K buckets that each represent a common marginal
value per vehicle and correspond to the pieces of the piece-wise linear function. The number of
vehicles in these buckets is modeled by additional decision variables ∆ak

i(τ+H) (=pieces) with
ai(τ+H) = ∑

k∈K ∆ak
i(τ+H) ∀i ∈ Z, where K = {1, . . . , K}. Thus, a specific share ∆ak

i(τ+H)
of the vehicles at location i, period (τ + H) now corresponds to piece k and contributes with
the respective marginal value v̄k

i(τ+H) to the overall value of the VFA. Additionally, the VFA
contains the time specific constant v̄const

τ+H .
The VFA parameters, meaning v̄k

i(τ+H) for i ∈ Z, τ + H ∈ T , k ∈ K as well as v̄const
τ+H for

(τ + H) ∈ T , are derived in an estimation process that we describe in Section 2.4.4. Due to the
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decreasing marginal value of vehicles discussed above, during estimation, we enforce concavity of
the function in each dimension i by requiring v̄k

i(τ+H) ≥ v̄k+1
i(τ+H) ∀i ∈ Z and ∀k ∈ {1, . . . , K−1}.

Further, we require v̄k
i(τ+H) ≥ 0 ∀i ∈ Z, k ∈ K and v̄const

τ+H ≥ 0 for obvious reasons.
As a side note, for an efficient VFA of our problem, considering i-t-specific parameters v̄k

i(τ+H)
is indeed decisive. The intuition behind this is that a vehicle’s value depends on both location
and time. In particular, parameters that were only time-specific would result in a valuation of
the fleet at the end of the horizon which is identical for all possible fleet distributions.

Now, to plug the VFA (2.22) into the substitute problem (2.17)-(2.20) for period τ with hori-
zon Hτ , we obviously substitute (2.22) into the objective function (2.17). Moreover, additional
continuous and non-negative decision variables ∆ak

i(τ+H) ∀i ∈ Z, k ∈ K are introduced. To
ensure a correct evaluation of the vehicle distribution at+H with (2.22), the following additional
constraints need to be integrated in the substitute problem for (2.20):

ai(τ+H) =
∑
k∈K

∆ak
i(τ+H) ∀i ∈ Z (20a)

∆ak
i(τ+H) ≤ ∆ã ∀i ∈ Z,∀k ∈ {1, 2, . . . , K − 1} (20b)

Constraints (20a) ensure that the ∆ak
i(τ+H) indeed sum up to the vehicle count. By constraints

(20b), the number of vehicles in each bucket, except for the last bucket (∆aK
i(τ+H)), is limited

to the respective predefined bucket size ∆ã. Note that because of the concavity of the VFA, the
buckets are "automatically" filled in the correct order, beginning with k = 1.

To solve the substitute problem (2.17)-(2.20) incorporating this VFA, we still need values
for its parameters. We describe their estimation in the next subsection.

2.4.4 Parameter Estimation

The estimation process we propose for the VFA parameters is performed before we loop over
the time periods and iteratively solve the substitute problems as described in Sections 2.4.1 and
2.4.2. We followed the traditional idea of parameter estimation based on observed data, which,
in our case, is artificial sample data generated from simulations, as common in ADP-based
approaches. For the purpose of sample generation, we exploit that for a given spatial vehicle
distribution at a certain period and with a given price table for the remaining periods, the
resulting rentals of the remaining periods and thus the corresponding profit-to-come are easily
calculated algorithmically. This profit-to-come evaluation is computationally efficient, even for
real-life instances. The overall process can roughly be outlined as follows: First, we generate
samples of vehicle distributions. Second, for each sample, we calculate the resulting profit-to-
come. Finally, this data is used to estimate the VFA parameters by an adapted least squares
estimation procedure.

More formally, for each period (τ + H) ∈ {1, 2, . . . , T − 1}, multiple samples n ∈ N =
{1, 2, . . . , N} of vehicle distributions ân

τ+H = [ân
i(τ+H)]Z×1 are drawn by randomly splitting

up the fleet among the Z locations. For each of these vehicle distribution samples ân
τ+H, a

corresponding profit-to-come V̂ n
τ+H(ân

τ+H) is determined by evaluating a known (suboptimal)
price table, for example one that only consists of a constant uniform price, over the remaining
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periods. This could be done by applying a solver to evaluate the original problem (2.1)-(2.16)
with fixed prices for the remaining periods in Rτ+H , but an equivalent algorithmic solution is
straightforward and much faster. Moreover, for each vehicle distribution the number of vehicles
in each bucket ∆ân

τ+H = [∆âk,n
i(τ+H)]Z×1×K×N is calculated. In particular, for each location, we

simply assign as many vehicles as possible up to the bucket size ∆âk,n
i(τ+H) to a bucket and then

continue with the next with increased k.
Given the resulting sample data, the respective parameters v̄τ+H = [v̄k

i(τ+H)]Z×1×K and
v̄const

τ+H from the VFA (2.22) are simultaneously determined by constrained least squares estima-
tion, that is, a variant of ordinary least squares estimation with additional equality and inequal-
ity constraints. More precisely, we minimize the mean squared error over the N generated data
points by the following quadratic optimization problem:

min
v̄τ+H,v̄const

τ+H

1
N

∑
n∈N

(V̂ n
τ+H(ân

τ+H)− V̄ n
τ+H(∆ân

i(τ+H)))2 (2.23)

s.t. V̄ n
τ+H(∆ân

i(τ+H)) =
∑
i∈Z

∑
k∈K

v̄k
i(τ+H) ·∆âk,n

i(τ+H) + v̄const
τ+H ∀n ∈ N

(2.24)

v̄k
i(τ+H) ≥ 0 ∀i ∈ Z, k ∈ K

(2.25)

v̄const
τ+H ≥ 0 (2.26)

v̄k
i(τ+H) ≥ v̄k+1

i(τ+H) ∀i ∈ Z, k ∈ {1, 2, . . . , K − 1}.
(2.27)

The error minimized in (2.23) is the mean of the squared difference between the observed
(evaluated) profits-to-come V̂ n

τ+H and the profits-to-come V̄ n
τ+H predicted with (2.22) (identi-

cal to (2.24)), for the respective observed (randomly drawn) spatial vehicle distribution, over
all samples N . Constraints (2.25)-(2.26) ensure the non-negativity of the parameters and con-
straints (2.27) ensure the VFA’s concavity. Remember that v̄τ+H and v̄const

τ+H are parameters
in their eventual use as parts of the VFA in the substitute problem (2.17)-(2.20), but here in
(2.23)-(2.27), they are the decision variables to be determined.

Note that the parameter estimation is performed individually for each period (τ + H) ∈ T ,
but simultaneously over all Z locations each (τ +H) such that spatio-temporal interdependencies
are captured by the VFA parameters. The process is depicted as pseudo-code in Algorithm 2.
We solve (2.23)-(2.27) using a standard MIP solver. Computation times for the parameter
estimation process are discussed in Appendix 2.D.
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Algorithm 2 Parameter estimation algorithm
for (τ + H) = 1 to T − 1 do

for n = 1 to N do
- randomly divide fleet into spatial vehicle distribution ân

τ+H
- determine profit-to-come V̂ n

τ+H by algorithmic evaluation of original problem (2.1)-(2.16) for
remaining periods Rτ+H with known (suboptimal) price solution
- for each location, calculate number of vehicles in each bucket (∆ân

τ+H)
end for
- determine VFA parameters v̄τ+H and v̄const

τ+H by (2.23)-(2.27)
end for
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2.5 Computational Experiments

We investigate the performance of the ADP decomposition approach presented in Section 4
in comprehensive computational experiments. We vary the most relevant influencing factors
systematically to triangulate the approach’s performance. Section 2.5.1 introduces the scenarios
and parameter values. In Section 2.5.2, we state all solution approaches that we investigate –
including benchmarks – as well as the metrics we use for their evaluation. In Section 2.5.3, we
present and discuss the computational results.

2.5.1 Scenarios and Parameters

We consider three settings of a free-floating SMS that primarily differ in the number of zones
(=locations) – Z = 9, Z = 16 and Z = 25 – but also regarding the demand pattern. The process
used to generate the base demand matrix d with values for all zone-zone-period combinations
allows to incorporate typical demand characteristics that we observed in practice, namely a
typical demand pattern over the course of the day and differentiation between zone types, like
city center zones or peripheral zones (see, for example Reiss and Bogenberger (2016)). The exact
procedure is explained in Appendix 2.B. The remaining parameters are constant over all three
settings: we discretize the time interval of one day into T = 48 periods of 30 minutes each, in
line with practice and literature (see, e.g., Kaspi et al. (2016) and Ferrero et al. (2015b)). The
parameters âi0 = 2∀i ∈ Z represent a realistic number of vehicles per zone. We select the M = 3
price points pm according to typical prices in practice and literature (see, e.g. Lippoldt, Niels,
and Bogenberger (2018)): we choose a base price of p(2) = 30 ct/min and price differences of 20%
to the low and high price, such that p(1) = 24 ct/min and p(3) = 36 ct/min. The corresponding
sensitivity factors f

(1)
ijt = 1.25, f

(2)
ijt = 1, f

(3)
ijt = 0.75 ∀i, j ∈ Z, t ∈ T are chosen according to

observations from practice. Variable costs of c = 7.5 ct/min made up 25% of the base price.
The average rental time was set to lij = 15 min ∀i, j ∈ Z, again in line with literature (see e.g.
Xu, Meng, and Liu (2018)) and after discussions with our practice partner.

To generate different scenarios within a setting, the overall demand level can be adjusted by
the demand-supply-ratio δ, which determines the ratio of the maximum period demand during
the day d̄ and the fleet size ∑i∈Z âi0. While the fleet size remains constant for all scenarios
within a setting, the overall demand varies according to δ, i.e., d̄ = ∑

i∈Z âi0 · δ. The required
(base) demand of a scenario for every location-location-period combination dijt is then simply
determined by scaling d̄ according to the given demand pattern which is defined by ratios of the
dijt amongst one another. As a result, d̄ = maxt(

∑
i,j∈Z dijt) holds. We use demand patterns

that replicate typical spatio-temporal differences, e.g., that show the two characteristic demand
peaks over the course of a day, as observed in practice by our practice partner (also see Figure
2.10b in the case study). This is typical for SMSs and has been similarly reported in many
other studies, such as Reiss and Bogenberger (2016). Note that although the maximum period
demand only reflects the demand of a single period, it is a representative, yet simple, metric for
the overall demand, because all SMSs in practice show a comparable course of demand across
the day. The demand-supply-ratios we use are δ ∈ {2/6, 4/6, 6/6, 8/6}. Further, as already
mentioned, each combination of a certain setting with a specific δ forms a scenario.
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description configurations
ADP-H ADP decomposition approach with horizon length H ADP-1, ADP-4, ADP-8

CUP benchmark: constant uniform pricing -
OPT benchmark: optimal pricing -
UB benchmark: best upper bound after a computation time limit -

ROL-H benchmark: rolling-horizon approach with horizon length H ROL-1, ROL-4, ROL-8

Table 2.1: Overview of solution approaches investigated

2.5.2 Investigated Solution Approaches and Evaluation Metrics

Here, we describe the solution approaches that we investigate. Besides our ADP decomposition
approach with three different configurations, we investigate four benchmark approaches, of which
one again has three configurations (the approaches are summarized in Table 2.1):

• ADP-H is the ADP decomposition solution approach we presented in Section 2.4, and is
configured with different horizon lengths H (ADP-1, ADP-4, ADP-8).

• CUP denotes a lower benchmark using constant uniform pricing. Due to its wide adoption
over all SMS types, this pricing can be considered as the de facto standard applied in
practice. Here we used the base price pit = p(2) for all i ∈ Z and t ∈ T .

• OPT denotes the optimal solution of the OBDPP in which all 48 periods are optimized
simultaneously. It provides an upper bound. This benchmark can be calculated for some
of the scenarios.

• UB denotes the best known upper bound that the solver returned after a computation
time limit.

• ROL-H is a basic rolling-horizon approach. In the context of our work, it is best described
as a variant of the ADP decomposition approach without the VFA at the end of the
horizon, that is, V̄τ+H = 0 ∀(τ + H) ∈ T . We considered this benchmark in order to
analyze the impact of the VFA in our approach. Like ADP-H, it can be configured for
different horizon lengths H (ROL-1, ROL-4, ROL-8). Note that this benchmark with
H = 1 represents the myopic solution that only considers one period in each substitute
problem without anticipating any network effects.

Each combination of scenario and solution approach configuration forms a test instance in
our experiments. Table 2.6 in Appendix 2.C summarizes the test instances that we evaluate.

Regarding the VFA, we define the parameters that specify the structure of the function and
the estimation process as follows. The number of buckets (pieces) is K = 10 and the bucket size
is ∆ã = 2. For each scenario, we perform the parameter estimation as described in Section 2.4.4
on N = 10, 000 samples. In each period (τ + H) ∈ T , we randomly generate the initial vehicle
distribution ân

τ+H following the Dirichlet distribution and use the CUP solution for evaluating
the original problem (2.1)-(2.16) for the remaining periods in Rτ+h to obtain V̂ n(ân

τ+H).
We use various metrics to evaluate the solution approaches and to discuss further insights.

We describe these metrics in the following exposition. We summarize them in Table 2.2, as
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description variant
PRrel relative profit increase w.r.t. CUP time-specific: PRrel

t

RV rel relative revenue increase w.r.t. CUP time-specific: RV rel
t

RT rel relative rentals increase w.r.t. CUP time-specific: RT rel
t

P prop
pm proportion of price pm in pricing solution time-specific: P prop

pmt

RT prop
pm proportion of rentals at price pm in pricing solution time-specific: RT prop

pmt

Table 2.2: Evaluation metrics

well as formally define them in Table 2.7 in Appendix 2.C. Profit (PRrel
(·) ), revenue (RV rel

(·) ) and
rentals (RT rel

(·) ) are stated as relative improvements to the respective value from the uniform
pricing solution. Depending on the analysis, we consider the overall improvements across all
periods t ∈ T (for example PRrel) or one particular period t (for example PRrel

t ). Further, we
consider the proportion of location-time combinations in which a particular price pm is selected
(P prop

(·) ) and the proportion of rentals that occur at price pm (RT prop
(·) ) for all periods t ∈ T

(P prop
pm , RT prop

pm ) as well as for a specific period t (P prop
pmt , RT prop

pmt ).
We implement the algorithms in Python 3.7 and solve all MILPs with Gurobi 9.0.2. In all

scenarios with 9 zones, we set the target optimality gap to zero in Gurobi and no time limit in
any of the approaches is imposed. In all scenarios with 16 and 25 zones, the time limit is set at
one hour for the substitute problems of the ADP-H and ROL-H approaches and at 48 hours for
UB. Additionally, we use the CUP solution as a warm start solution in all instances. We execute
our computations on a workstation with two Intel Xeon E7-8890 v3 2.5 Gigahertz processors
with a total of 36 cores, and 512 Gigabyte RAM.

2.5.3 Results

In the following subsections, we present and discuss our computational results. First, we de-
termine how much improvement is possible beyond myopic pricing (ROL-1) (Section 2.5.3.1).
Next, we investigate how much of this potential can be realized with the ADP-H and ROL-H
approaches (Section 2.5.3.2) and in this context we show the importance of the VFA by com-
paring ADP-H to ROL-H. Then, we discuss the impact of accounting for network effects on the
pricing (Section 2.5.3.3) and intuitively illustrate how the VFA captures network effects, as well
as the future value of available vehicles (Section 2.5.3.4). Finally, we analyze the robustness of
the results by considering a stochastic environment (Section 2.5.3.5).

We discuss the results for all demand-supply-ratios δ here, but depict only those of the profit
for δ =2/6, illustratively. All other results are depicted in Appendices 2.E (9-zone setting) and
2.F (16- and 25-zones settings). Computation times are discussed in Appendix 2.D.

2.5.3.1 Improvement Potential over Myopic Pricing

We begin by identifying the improvement potential over myopic pricing, that is, the relative
difference in profit PRrel between the myopic (ROL-1) and upper benchmarks. For the 9-zones
setting, we use the optimal (OPT) solution as upper benchmark. For the 16- and 25-zones
setting, the optimal solution can not be determined in reasonable time, therefore we use the
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Figure 2.3: Relative profit increase in settings with 9, 16, and 25 zones. Demand-supply-ratio δ = 2/6.

best known upper bound (UB) as benchmark. The idea is that the range between the lower
and upper benchmarks is an upper bound on the potential of PRrel that can be achieved by the
ADP decomposition approach. We consider the latter approach in Section 2.5.3.2.

This potential is graphically given in Figure 2.3. It depicts the profit obtained with the
different solution approaches (for the later considered ADP-H and ROL-H in dependence of the
horizon lengths H on the horizontal axis) relative to the profit with CUP, which the 0%-line
marks. The profits obtained by OPT and UB are horizontal lines as they do not depend on
H. We observe that OPT and UB yield a profit increase of about 15% over CUP. The myopic
solution ROL-1 provides about 5% more profit than CUP. Thus, the potential improvement over
myopic pricing is about 10 percentage points. Note that we return to Figure 2.3 in the following
subsection to discuss the other results included.

Figure 2.15 in Appendix 2.E depicts the results for all scenarios with δ from 2/6 to 8/6 (rows)
in the 9-zones setting. The potential for improvement between ROL-1 and OPT decreases from
10.1 percentage points for δ =2/6 to 2.3 percentage points for δ =8/6. Note that especially the
scenarios with δ <6/6 are relevant for practice (Section 2.6.1). The above results are also valid
for the 16- and 25-zones settings (see Figure 2.16 in Appendix 2.F).

What makes the difference between the scenarios, is obviously the relevance of network effect
anticipation, because ROL-1 considers only one period in each substitute problem and includes
no VFA, and therefore no network effects. The intuition is that in high-demand scenarios (large
δ) there is almost always demand for an available vehicle, because the demand is never the
limiting factor. In low-demand scenarios, however, vehicles remain unused more often. This
conclusion is supported by the comparison of rentals (RT rel) in the third column of Figure
2.15 which shows a substantial difference of 3.8 percentage points between ROL-1 and OPT for
δ =2/6, and almost no difference for δ =8/6.

2.5.3.2 Performance of the ADP Decomposition Approach

After identifying the potential of up to 10 percentage points for improvement over the myopic
solution ROL-1, we now analyze the performance of the proposed ADP decomposition approach
(ADP-H). To do so, we revisit Figure 2.3a and consider the profit PRrel of ADP-1, ADP-4,
and ADP-8. In the 9-zones setting, we observe that as the horizon length H increases, PRrel

increases from 11.4% (ADP-1) to 15.1% (ADP-8). Additionally, the improvement potential
identified in Section 2.5.3.1, is almost entirely exploited. The results for the 16- and 25-zones
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settings are similar. An additional profit increase does not necessarily go hand in hand with a
revenue RV rel and rentals RT rel increase, as depicted for the 9-zones setting in the second and
third columns of Figure 2.15 in Appendix 2.E. Sometimes profit increases because of a quantity
effect when the differentiated pricing enables more rentals while the average price remains more
or less constant. The underlying reason is a better positioning of vehicles due to the network
effect consideration. At other times profit increases because of a price effect at rather constant
rentals with increase average price or even at fewer rentals when the average price decreases
under-proportionally.

Again referring to Figure 2.3a, we see that the integrated VFA in ADP-1 and ADP-4 has a
substantial benefit of 5.8 and 2.4 percentage points over their ROL-H counterparts. For ROL-
8/ADP-8, the benefit is smaller. For smaller horizon lengths, the potential for improvement by
the VFA is obviously higher than for larger horizon lengths because both the explicit considera-
tion of additional periods in a longer horizon and the VFA aim to consider the spatio-temporal
network effects. As settings become larger, the benefit of ADP-H over ROL-H increases, and
with 16- and 25-zones even ADP-1 performs considerably better than the ROL-8 benchmark
procedure (Figures 2.3b and 2.3c)

The results for all scenarios in the 9-zones setting (Figure 2.15, Appendix 2.E) and all
scenarios in the 16- and 25-zones settings (Figure 2.16, Appendix 2.F) confirm the findings
discussed above. Most importantly, the profits obtained with ADP-H are at least as high as the
respective variant of ROL-H, but especially for the practice-relevant scenarios with low δ there is
substantial improvement. This demonstrates that integrating the VFAs can partly compensate
for not considering all spatio-temporal network effects explicitly. The fewer network effects are
captured within the horizon, the stronger the effect.

Another benefit of the ADP decomposition approach concerns its scalability to large problem
instances. As preliminary studies have shown, problem complexity (NP-hardness of the OBDPP)
takes its toll, and finding good solutions in reasonable time cannot be guaranteed. By contrast,
ADP-H benefits from the decomposition and can therefore cope with the larger problem size
while simultaneously considering network effects.

2.5.3.3 Investigation of Pricing

The differences in considering network effects of the myopic (ROL-1) and the optimal solution
(OPT) identified in Section 2.5.3.1 are also reflected in the pricing decisions, depicted as price
tables in Figures 2.4a and 2.4b for the 9-zones setting with δ =2/6. On an aggregate level, these
differences become obvious in comparing the proportions of the ROL-1 and OPT prices PRprop

in the fourth column of Figure 2.15 in Appendix 2.E. For δ =2/6, for example, the ROL-1
solution consists of 1.6% low, 76.9% base, and 21.5% high prices. The OPT solution consists of
34.5% low, 28.7% base, and 36.8% high prices.
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Figure 2.4: Pricing with different solution approaches in 9-zones setting. Demand-supply-ratio δ =2/6.
Green: L=low price, yellow: B=base price, red: H=high price

The better network effects are captured, the more the resulting pricing decisions resemble
the optimal pricing, as the price tables for ADP-1 and ADP-8 depicted in Figures 2.4c and 2.4d
demonstrate. Especially the difference between ROL-1 and ADP-1 is insightful. Again, the
aggregate price proportions P prop

pm which are depicted in Figure 2.15 (Appendix 2.E) and Figure
2.16 (Appendix 2.F) underline how the network effect integration, especially with ADP-H, affects
the pricing.

2.5.3.4 Investigation of the Value Function Approximation

Integrating the VFA that captures the spatio-temporal network effects beyond the explicitly
considered horizon’s end is an integral component of the ADP decomposition approach. In this
section, we illustrate how the VFA works and illustratively interpret the estimated values we
obtained. In particular, the following analyses demonstrate how the VFA’s parameters reflect
the demand pattern, and thus capture short-term as well as long-term vehicle values. For ease
of readability, we first repeat the VFA given in Section 2.4.3:

V̄τ+H(aτ+H) =
∑
i∈Z

∑
k∈K

v̄k
i(τ+H) ·∆ak

i(τ+H) + v̄const
τ+H (2.28)

For the sake of clearer analyses, we define its zone specific parts as

V̄ part
i(τ+H)(ai(τ+H)) =

∑
k∈K

v̄k
i(τ+H) ·∆ak

i(τ+H) (2.29)

such that

V̄τ+H(aτ+H) =
∑
i∈Z

V̄ part
i(τ+H)(ai(τ+H)) + v̄const

τ+H . (2.30)

Table 2.3 contains an extract of the slope parameters v̄k
i(τ+H) and the constants v̄const

τ+H for two
periods ((τ + H) = 16 at morning peak time and (τ + H) = 32 at evening peak time) and two
zones (center zone i = 5 and peripheral zone i = 1). The values result from the estimation
process of the scenario with Z = 9 zones and demand-supply-ratio δ =2/6. The biggest absolute
difference between the respective parameters concerns the constants with v̄const

16 = 140.63 and
v̄const

32 = 1.36. As the value function V̄τ+H approximates the profit-to-come from a certain period
(τ +H) onwards, the difference in the constants reflects the higher demand-to-come at an earlier
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v̄k
i(τ+H) v̄const

τ+Hk = 1 k = 2 k = 3. k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
(τ + H)

= 16
i = 1 9.79 2.30 1.54 1.54 1.42 1.27 0.00 0.00 0.00 0.00 140.63
i = 5 6.45 5.82 5.82 5.66 5.44 5.44 5.22 3.49 0.00 0.00

(τ + H)
= 32

i = 1 3.31 3.25 3.25 3.25 3.25 3.25 3.25 0.00 0.00 0.00 1.36
i = 5 7.33 7.28 7.17 7.06 6.96 6.85 6.85 0.00 0.00 0.00

Table 2.3: Parameter estimates of VFA for two exemplary periods and zones

time. This time dependence of v̄const
τ+H is also visible in Figure 2.5. The close connection to the

demand-to-come is obvious from comparing its course over the day, as depicted in Figure 2.6.
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The slope parameters v̄k
i(τ+H) during the evening peak period (τ +H) = 32 take larger values

for the center zone i = 5 than for the peripheral zone i = 1, reflecting that vehicles in the center
have a higher value. This is because demand in the center zone is higher during the evening
peak. This is reflected in the VFA by the parts V̄1,32(a1,32) and V̄5,32(a5,32) for zones 1 and 5,
which are depicted in Figure 2.7b. Both curves, the solid one representing the value in zone
i = 1 and the dashed one for zone i = 5, are concave with a positive slope in the origin and a
saturation with zero slope from a certain vehicle count ait onwards. Concavity and saturation
represent the diminishing marginal value of additional vehicles and the assumptions imposed in
the estimation process.

During the morning peak period at (τ + H) = 16, the zone specific VFAs V̄i16(ai16) for
the same two zones i = 1 and i = 5 are depicted in Figure 2.7a. There is also concavity
and saturation, but the functions intersect. As the slope parameters in Table 2.3 show, the
first slope parameter for zone 1 takes higher values than the corresponding values of zone 5,
meaning v̄k

1,16 > v̄k
5,16 for k = 1. For k > 1 however, the order of slope values switches, such

that v̄k
1,16 ≤ v̄k

5,16. These parameters and the resulting curves can be explained by analyzing the
demand. Figure 2.7c shows that at (τ + H) = 16, the demand of zone 1 is slightly higher than
that of zone 5. The demand-to-come from (τ + H) = 16 on in zone 5, however, is much higher,
as Figure 2.7d displays. Because the demand after the morning peak in zone 1 is low, putting
more than two vehicles in that zone will not deliver high value, and for more than 12 vehicles
zero additional value will accrue. In contrast, the higher demand-to-come in zone 5 will lead
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Figure 2.7: Parts of the VFA for two selected zones at periods 16 (a) and 32 (b), base demand (c), and
cumulated base demand (d) over the course of the day

to a positive value for additional vehicles, which explains the later saturation of V̄5,16(a5,16) at
higher vehicle count a5,16. This shows how the VFA reflects short-term and long-term network
effects due to temporal demand variations. Note that the magnitudes of the v̄k

i(τ+H) values and
v̄const

τ+H values (with an average of two vehicles per zone) in Table 2.3 indicate that they both
represent decisive VFA features.

2.5.3.5 Stochastic Demand

To analyze the robustness of the results, we additionally evaluate the pricing resulting from
different solution approaches in a stochastic environment. For this purpose, we apply a mul-
tiplicative stochastic demand function, which is one of the standard approaches of modeling
demand as described, e.g., in Talluri and van Ryzin (2004, Chapter 7.3.4). More precisely, base
demand is now a random variable Dijt with

Dijt = ξ · dijt (2.31)

where ξ is a stochastic error term which is assumed to follow a normal distribution N (1, σ2).
Based on this demand model, we evaluate all scenarios from Section 2.5.1, i.e., the 9-, 16-

and 25-zones settings with all demand-supply-ratios δ. For each scenario, we consider different
degrees of stochasticity, expressed by different standard deviations σ ∈ {0, 0.1, 0.2, 0.3, 0.4} of
the factor ξ. These values are in the range of demand uncertainties we observed in practice. For
each of the resulting combinations of scenario and degree of stochasticity, we draw S = 1000
demand matrices ds with s ∈ {1, . . . , S} as realizations of [Dijt]Z×Z×T and use them to evaluate
the ADP-H and ROL-H solution approaches, i.e., to evaluate the price table which was optimized
for the corresponding base demand matrix d. Appendix 2.G contains all results with confidence
intervals.

Figure 2.8 illustratively depicts the results for δ = 2/6 and the three different zone numbers.
On the vertical axis, the mean value of the relative profit increase with respect to the CUP
benchmark (0%-line) is depicted for ROL-1, ROL-8, ADP-1, and ADP-8. On the horizontal
axis, the standard deviation σ is varied.

Overall, the proposed pricing approaches and our results are robust to the stochasticity of
demand. However, all profit increases tend to decrease slightly with increasing stochasticity. The
more sophisticated procedures are obviously more sensitive to stochasticity than CUP. However,
these reductions in profit increase amount to at most two percentage points compared to zero
stochasticity (σ = 0) and the order of the different approaches regarding their performance does
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Figure 2.8: Stochastic evaluation of solution approaches in 9-, 16- and 25-zones setting with
demand-supply-ratio δ = 2/6.

not change with increasing stochasticity. All proposed approaches still perform substantially
better than the benchmark CUP, and as in Section 2.5.3.2, the anticipatory approach ADP-8
we propose is always the best.

As a technical remark, note that in the stochastic demand model, demand realization Dijt < 0
could potentially result, in particular for high values of σ (see the corresponding discussion in
Talluri and van Ryzin (2004, Chapter 7.3.4)). We correct for this by setting negative draws to 0.
Note that the small positive bias resulting from this truncation is not relevant to our study, as
for each degree of stochasticity, we use the same 1000 scenarios for all approaches we compare.

2.5.3.6 Assessment of Pricing Approaches covered in the Literature

As stated in Section 2.1, the OBDPP – despite its relevance for practice, which we trace to
the pricing approach’s advantages compared to others – is a novel problem which has not been
discussed in the literature yet. Thus, a direct comparison with pricing approaches covered in
the literature is not feasible. Still, in this section, we assess pricing solutions derived from
pricing approaches suggested in the literature to determine whether they could be applied to
the problem at hand.

We explained in Section 2.2.3 that all of the closest related studies differ from the OBDPP
on two decisive points: The existing studies consider Trip-based pricing instead of origin-based
pricing, and they do not make the two central assumptions of pure pricing and proportional de-
mand fulfillment (see Section 2.1). Therefore, we formulate two variants of the original OBDPP
model (2.1)-(2.16):

• TBDPP-RLX mimics trip-based pricing (TBDPP) as the closest related work suggests (see
Section 2.2.3). Similar to all of these studies, the model omits – or technically speaking,
relaxes (RLX) – the pure pricing and proportional demand fulfillment assumptions that are
operative in the original OBDPP model. The TBDPP-RLX is formulated by (2.34)-(2.44)
in Appendix 2.H.1.

• OBDPP-RLX considers origin-based pricing as in the OBDPP but also relaxes the pure
pricing and proportional demand fulfillment assumptions. By relaxing the OBDPP’s two
central assumptions, this model allows us to asses the two assumptions’ realistic modeling
in the OBDPP in isolation. The OBDPP-RLX is formulated by (2.45)-(2.55) in Appendix
2.H.2.
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Figure 2.9: Comparison of profit obtained by pricing solutions with OBDPP, OBDPP-RLX, and
TBDPP-RLX in settings of 9, 16 and 25 zones with different demand-supply-ratios δ.

To assess the pricing solutions derived from the TBDPP-RLX and the OBDPP-RLX, we
evaluate the resulting pricing solutions in the OBDPP and compare the resulting profits with
the result we achieved by solving the OBDPP with our ADP decomposition approach (ADP-8).
For the TBDPP-RLX, we determine origin-based prices from the trip-based pricing solution as
follows: In a first step, for every location-period combination, all corresponding trip-based prices
are averaged. In the second step, the nearest price point from the given price set is determined.
Regarding the solution methods for the OBDPP-RLX and the TBDPP-RLX, all periods of
the respective problems are solved simultaneously (as for OPT and UB) with a computation
time limit of 48 hours. Due to the reduced complexity of these two problems compared to the
OBDPP, they can be solved close to optimally for all settings and scenarios: All solutions have
a gap of less than 0.5% to the respective best known upper bound.

Figure 2.9 states the results for the three settings with 9, 16, and 25 zones, where each has
four scenarios with different demand-supply ratios. Independent of the setting and scenario, the
pricing determined by TBDPP-RLX performs worst of all pricing approaches. Also, the pricing
determined by OBDPP-RLX is consistently worse than the one that OBDPP determined. In
terms profit PRrel (percentage points w.r.t. CUP), pricing solutions delivered by OBDPP-
RLX perform 0.1 to 7.2 percentage points worse than those of ADP-8, and the ones delivered
by TBDPP-RLX perform 7.8 to 12.8 percentage points worse than those of ADP-8. This is
because the OBDPP-RLX, and especially the TBDPP-RLX, suppose too high an influence on the
resulting rentals than is possible in reality. Without the pure pricing and proportional demand
fulfillment assumptions, the models can perform a kind of availability control (see Section 2.1).
This means that rentals do not – as in reality – realize solely from dependence on the prevailing
supply and demand, but that the model can decide to reject certain rentals and to favor others
that have specific destinations. For the TBDPP-RLX, this effect is even stronger, because the
model can influence demand more flexibly with trip-based prices (location-location-period level),
while in reality prices are limited to being origin-based (location-period level).

Overall, these results clearly justify two findings: First, pricing approaches such as those
suggested in the literature (TBDPP-RLX), cannot be applied to determine prices for the OB-
DPP. Second, the exact modeling of the two central assumptions as they are prevalent in the
reality of the OBDPP is indeed decisive in determining the best possible pricing solutions.

Note that these results do not allow any statements regarding the effectiveness of origin-
based pricing in comparison to actual trip-based pricing of an SMS. Clearly, if an SMS provider
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were able to put trip-based pricing into practice, this cannot perform worse than origin-based
pricing, simply due to the additional flexibility. However, as explained in Section 2.1, practice
– for very good reasons – exclusively applies origin-based pricing.
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2.6 Case Study

In this section, we consider a real-world scenario that reflects the origin-based differentiated
pricing optimization of Share Now for a weekday in Florence, Italy. On the one hand, this case
study allows us to conclude results and managerial insights in an instance of real-world size. On
the other hand, compared to the rather stylized scenarios given in Section 2.5, all parameters in
this case study are based on real historic data which was collected over several months at Share
Now. We introduce the scenario in Section 2.6.1 and discuss the results in Section 2.6.2.

2.6.1 Scenario and Parameters

Share Now’s area of operation in Florence is divided into 59 zones, as shown in Figure 2.10a.
To respect the non-disclosure agreement, we only share values for demand and rentals that are
normalized to the maximum period demand max(dt), where dt = ∑

i,j∈Z dijt. Figure 2.10b
depicts the normalized base demand (dt/ max(dt) ∀t ∈ T ), as well as the resulting normalized
rentals with the uniform pricing solution (∑i,j∈Z r

(2)
ijt / max(dt) ∀t ∈ T ) during the course of the

day. The day is discretized into 48 periods of 30 minutes each. The demand curve shows the
typical pattern with two peaks at the rush hour times, in the morning at t = 17 (08:30) and in the
evening at t = 39 (21:30), with the lowest level during the night at t = 8 (04:00). The rental curve
follows the general course of the demand curve, with less pronounced peaks. During the night,
the difference between demand and rentals is smaller than during the day. This can be explained
by the higher availability of vehicles during the night, implying that potential customers almost
always find an available vehicle. During the day, in particular during peak times, the probability
that demand results in a rental is lower due to the relatively high number of vehicles in use. Note
that the demand-supply-ratio in this scenario is approximately δ = 0.7, which is in the range
of scenarios with δ < 1 on which we focused in the computational experiments we described in
Section 2.5.

(a) Operating area with 59 zones
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(b) Normalized demand and rentals over the course of the day

Figure 2.10: Share Now scenario in Florence, Italy

Demand parameters are obtained from data Share Now recorded in April and May 2018.
More precisely, the base demand matrix d with entries dijt results from unconstraining the
constrained demand, i.e., the observed rentals. Unconstraining is a standard issue in revenue
management (see, e.g., Talluri and van Ryzin (2004, chapter 9.4)). We chose all other parameters
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real-life
scenario

solution
approach

change w.r.t. CUP P prop
pm RT prop

pm

PRrel RV rel RT rel low base high low base high

Florence,
59 zones

ROL-1 3.9% 0.9% -8.2% 11.1% 45.7% 43.2% 8.5% 33.5% 58.1%
ADP-1 7.0% 4.1% -4.4% 8.8% 54.0% 37.1% 6.0% 43.2% 50.8%
ROL-4 6.8% 4.0% -4.3% 8.4% 56.1% 35.5% 5.4% 45.5% 49.1%
ADP-4 9.2% 6.2% -2.8% 13.7% 45.3% 41.0% 6.4% 41.1% 52.5%

Table 2.4: Results from real-life scenario in Florence, Italy

as in the computational experiments (Section 2.5.1). The only difference concerns the VFA
design and its parameter estimation process. We increased the number of pieces to K = 20 to
adapt to the larger fleet size. Finally, we compared our ADP decomposition approach’s results
in the ADP-4 configuration to the myopic benchmark ROL-1.

2.6.2 Results

Section 2.6.2.1 discusses the profit increase from ADP-4. Section 2.6.2.2 analyzes the resulting
pricing decisions, rentals, and revenue.

2.6.2.1 Profit

Table 2.4 summarizes the PRrel results for the Florence scenario. With our ADP decomposition
approach (ADP-4), the profit improvement PRrel is 9.2%. Thus, the explicit and implicit
consideration of network effects in ADP-4 realized an additional improvement of 5.3 percentage
points compared to the myopic solution ROL-1, and an improvement of 2.4 percentage points
over the ROL-4 benchmark. These results demonstrate the scalability of our solution approach
to real-life scenarios and show a substantial improvement potential compared to the de facto
standard of CUP through network effect consideration.

2.6.2.2 Pricing Decisions, Rentals, Revenue

We now analyze the effect of optimization on the pricing decisions, the rentals, as well as the
revenue. Figure 2.11a depicts the PRprop

pmt results of ADP-4 during the course of the day and
shows that the prices vary considerably. The largest proportion of highly priced rentals is set
at demand peak times t = 17 and t = 40. At non-peak times, the base price accounts for the
largest proportion of rentals, with an exception in the very first period only. Table 2.4 shows
the price proportions P prop

pm over the whole day. We observe that, on average, ADP-4 leads to
higher prices compared to the CUP benchmark, lower average prices compared to the myopic
solution and comparable prices with ROL-4.

To gain more insight, we now illustratively consider four zones in more detail. Figure 2.12
depicts absolute demand, absolute available vehicles, and the prices of the ADP decomposition
solution ADP-4 over all periods for the four zones with indexes 2, 7, 49, and 59. Zones 2 and
59 are characterized by relatively low demand, zone 49 has the highest demand of the four, and
zone 7’s demand lies approximately halfway between the two extremes. During the first half of
the day, especially during the morning peak time, zone 2 has relatively many vehicles available
– more than the demand requires. This results in low prices at the beginning of the day and
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Figure 2.11: Prices (a) and rentals (b) over the course of the day (ADP-4)
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Figure 2.12: Base demand (a), available vehicles (b) and prices (c) in four selected zones (ADP-4)
Green: L=low price, yellow: B=base price, red: H=high price

a declining vehicle count towards midday. During the evening peak, the levels of supply and
demand are largely balanced and high prices are set. Zone 7 shows the typical demand pattern,
with two peaks that exceed the available vehicle count at these times. The resulting prices also
show this shortage of vehicles at peak times, as high prices are set during these periods. Zone
49 has a higher demand than vehicle supply during most periods of the day, and therefore often
has high prices. The only exception is during the morning peak, when many vehicles arrive in
that zone and lower prices are set to compensate for the oversupply. Zone 59 is characterized
by relatively low demand and only a few available vehicles throughout the day, with high prices
at peak times and low prices in the first periods. These observations show that the resulting
pricing decisions differ considerably in their patterns. To some extent they can be explained by
current supply and demand, but regarding the above-mentioned differences between the P prop

pm

of the myopic benchmark and the ADP decomposition approach, they are also the result of
network effect considerations.

Table 2.4 shows that RT rel decreases by 8.2% with the myopic solution and by 2.8% with the
ADP decomposition approach solution, while RV rel increases by 0.9% and 6.2%, respectively.
Considering these figures in combination with the P prop

pm discussed above, the additional PRrel

increase through network effect consideration of ADP-4 with respect to ROL-1 is a result of
overall lower prices with more rentals and revenue. Figure 2.11b displays the RT prop

pmt of ADP-4.
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Their courses over the day resemble the courses of the respective PRprop
pmt . More precisely, during

peak times most of the rentals take place at a high price and in almost all other times most
rentals are at the base price.

To summarize the results of the case study of Share Now in Florence, our solution approach
generates considerably higher profits compared to the de facto standard of constant uniform
prices and, more importantly, to the myopic benchmark. In fact, our solution even gets quite
close to a theoretical upper bound. This increase is realized by a considerable price differentiation
that allows for generating more revenue with fewer rentals in comparison to CUP at base price.
High prices exploit the higher demand at peak times, and the larger proportion of low and base
prices under network effect consideration allows for creating a more favorable fleet distribution
and more rentals compared to the myopic solution.
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2.7 Managerial Insights

The systematic computational experiments (abbreviated below as experiments) of OBDPP sce-
narios given in Section 2.5 in combination with the analyses of the Share Now case study
(abbreviated below as case) given in Section 2.6 reveal important managerial insights for shared
mobility providers, which we summarize in this section.

Benefit of origin-based differentiated minute pricing: The results demonstrate that origin-
based differentiated minute pricing is more advantageous than constant uniform pricing which
is still the de facto industry standard. With our approximate dynamic programming decompo-
sition solution approach, profits consistently increased throughout the considered instances, i.e.,
in both experiments (10% to 15%) and in the case (9%). For SMS providers, this is an insight-
ful outcome, because origin-based differentiated minute prices are the first natural extension
going beyond constant uniform prices. This is mainly because compared to other pricing mech-
anisms, origin-based differentiated pricing is relatively simple to implement, does not require
upfront information about a trip’s destination, and, very importantly, is easy to communicate
to customers.

Scalability requires sophisticated solution approaches: The problem is computationally com-
plex. More precisely, determining profit-maximizing pricing solutions is NP-hard. This is re-
flected by the fact that a straightforward solution using out-of-the-box commercial solvers is not
possible. The supposedly obvious idea of directly solving the pricing problem in an integrated
way, i.e., simultaneously for all locations and in a reasonable time frame (e.g. a day), already
fails for the smallest SMS that consists of only a few dozens locations. The standard next step is
temporal decomposition, i.e., considering multiple smaller problems with fewer periods instead
of the entire day. This has a reasonable run time, but in general lacks in solution quality. We
show that more sophisticated approaches are necessary and possible, thereby striking a balance
between the ideas of integrated and decomposed problem solving. In particular, our approximate
dynamic programming decomposition approach provides a computationally tractable means for
SMS providers applicable in instances of real-life size.

Importance of network effect consideration: The consideration of network effects is decisive
for high-quality solutions. Our results demonstrate that SMSs are characterized by a complex
interaction between supply and demand. Consequently, vehicle values differ considerably across
locations and time. Further, additional available vehicles at the same location and time have
a decreasing marginal value because of limited demand. In contrast to straightforward pricing
approaches like a myopic optimization, our approximate dynamic programming decomposition
approach yields very good solutions that are close to an upper bound for the optimal solution.
Key is its design for and ability to capture these network effects. This led to a profit increase over
myopic pricing of up to 9.4 percentage points in the experiments, and up to 5.3 percentage points
in the case. Please note that these profit improvements depend on the instance. Especially for
ratios of supply and demand prevalent in practice, there is a considerable improvement. Marginal
vehicle values vary considerably in the range of 0 to 9.8 monetary units, which is equivalent to
2-3 rentals at base price where profit is 3.4 monetary units. For SMS providers, the different
marginal vehicle values provide a means of quantifying short- and long-term network effects,
and they are also informative for other planning tasks, such as relocation.
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Profit increase due to price and quantity effect: Profit maximization is not always equivalent
to an increase in rentals. In the experiments, we indeed observed an increase of both profit and
rentals for the best solutions we found. In the case, however, the profit increase was realized
with less rentals and higher prices. For SMS providers this is an important observation, as it
also affects other service-oriented metrics like the availability of vehicles.

High degree of price differentiation: Finally, we observe that the best pricing solutions have a
high degree of differentiation across time and space. In the case, for example, over all location-
time combinations, we have an average of 15% low, 45% base, and 40% high prices. These
proportions do not remain constant throughout the day. A deeper analysis of the price table
revealed that some zones have high prices during the morning and evening rush hours, while
others have lower prices at these times. We showed that these different pricing patterns result
from the supply and demand level in these zones over time, but are also a consequence of
network effects. All these aspects indicate that the optimal price tables are complex. From
a customer perspective, switching from constant uniform pricing to origin-based differentiated
minute pricing means that prices now vary frequently. Therefore, it is important for SMS
providers to accompany the introduction of origin-based minute price differentiation with a
communications campaign that thoroughly explains the reasons for and benefits of the new
approach, i.e., to ensure customer satisfaction and loyalty.
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2.8 Conclusion and Outlook

Motivated by our collaboration with Share Now, in this paper we defined and analyzed the
problem of origin-based differentiated pricing for SMSs. The paper has addressed the problem
of determining spatially and temporally differentiated origin-based minute prices to maximize
profit. Despite such price differentiation increasingly being adopted in practice, the research
literature has not yet focused on these origin-based pricing mechanisms.

To model the SMS, we proposed a mixed-integer linear program based on a fluid formulation
in which vehicle movements are described as flows through a spatio-temporal network. It natu-
rally incorporates network effects, that is, the complex interactions between the moving vehicle
supply and varying demand in an SMS. The problem turns out to be NP-hard, thus, heuristic
solution approaches are warranted. We therefore proposed an approach that simultaneously
scales to real-life scenarios and approximately incorporates the network effects. We designed
the approach in such a way that it combines the benefits of decomposition on the one hand and
VFA from the realm of approximate dynamic programming on the other. The decomposition
allows providers to quickly solve multiple smaller problems with limited time horizons instead
of the original problem that simultaneously considers all periods. At the end of the considered
horizon, a VFA allows for endogenously incorporating the profit-to-come in dependence of any
resulting vehicle distribution.

Extensive computational experiments with a varying number of zones, demand patterns, and
overall demand levels demonstrated the benefit of our approach. It considerably improves profit
(up to 15%) compared to the de facto standard of constant uniform prices, as well as compared
to a myopic benchmark without consideration of network effects (up to 10 percentage points).
In settings where the optimal solution can be determined, our approach finds a solution close
to optimality. The resulting price tables show high similarity to the optimal price tables, in
contrast to the price tables from the myopic pricing approach. We further demonstrated that
the proposed VFA structure can reflect the decreasing marginal value of vehicles, which allows
taking into account both short-term and long-term network effects.

In a real-life case study based on Share Now data, we demonstrated the scalability and
performance of our solution approach. Profits increase 9% with respect to the de facto industry
standard, although rentals decrease by 3%, leading to higher vehicle availability and 6% more
revenue – two additional important operative indicators for SMS providers. Therefore, this
illustrates that profit increases can result from price and quantity effect, to the extent that
profit increases can also realize with reduced rentals. A detailed analysis of prices showed
considerable differentiation across the location-time combinations and that there are various
price patterns in the different zones. SMS providers should bear this in mind when introducing
origin-based differentiated minute pricing, as frequent price changes could affect the customer
experience. Also, the consideration of network effects in our approach causes an overall price
reduction compared to the myopic solution, resulting in more rentals and revenue. Considering
both profit and pricing, we conclude that simple pricing rules cannot exploit the total potential
for increased profit. We refer the reader to Section 2.7 for a generalized discussion of managerial
insights that follow from jointly considering our computational experiments and the case.

To summarize, this work demonstrates the potential of origin-based differentiated minute
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pricing in SMSs and the importance of considering network effects. Our ADP decomposition
approach provides a scalable means for integrating these effects successfully.

Based on the presented results and methodology, we believe there are several promising
directions for future work. First, the fleet of car sharing providers typically consists of different
vehicle types that could be represented in a formulation based on multi-commodity network flow
problems. Second, although our approach has already proved to be robust in a stochastic setting,
developing approaches explicitly based on stochastic optimization models could be another useful
way of extending our work and potentially further improving the promising results. Third, we
believe that integrating VFAs in the vast field of other tactical and operational decision-making
problems in SMSs is promising. This applies in particular to dynamic problems that require
decision making in real-time, and reveals the problem of provider-based relocation, potentially
in combination with pricing, as a relevant topic for future work.
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2.A Proof of NP-hardness

We prove the NP-hardness of the OBDPP (2.1)-(2.16) by polynomial-time reduction of the
three-satisfiability problem (3-SAT) to the OBDPP.

We begin with the definition of 3-SAT. Let X = {x1, . . . , xn} be a set of n Boolean variables.
A literal is a Boolean variable xn or its negation x̄n. A k-CNF (conjunctive normal form)
formula is a logic expression, consisting of a conjunction (AND,∧) of C clauses, where each
clause is a disjunction (OR,∨) of k literals. Such a k-CNF formula F (x1, . . . , xn) is satisfiable
if a truth assignment α : X → {TRUE, FALSE}n exists for which F (α) = TRUE. For example,
F = (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x̄3 ∨ x4), is a 3-CNF formula with four variables and
three clauses. The 3-SAT problem is the following: Given a 3-CNF formula F, is F satisfiable?

The core idea of the proof is to construct an OBDPP instance where prices correspond to
literals of the 3-SAT problem. The OBDPP instance is constructed such that optimal profit
equals a known upper bound if and only if the corresponding 3-SAT is satisfiable.

To understand this underlying idea, think of 3-SAT as the problem of selecting one literal
per clause that is guaranteed to be TRUE. The other two literals in each clause can be given by
the selected ones, if they share a variable (i.e. xn and x̄n). Otherwise, they are arbitrary. Of
course, the selection must be consistent (i.e. selecting a literal with x1 = TRUE and another
with x̄1 = TRUE would be contradictory). Each clause now corresponds to a location-period
combination i-t that must be priced in the OBDPP instance. Also, the selection of the literal m

as guaranteed to be TRUE corresponds to the selection of price point pm in the location-period
combination (i.e. ym

it = 1). Overall, the OBDPP instance is constructed to ensure optimal profit
reaches a known upper bound if and only if the selected literals are not contradictory. Thus,
satisfiability of the 3-SAT instance is equivalent to the existence of a pricing that reaches the
upper bound in the OBDPP instance.

More precisely, consider the following reduction from 3-SAT to the OBDPP. Let x1, . . . , xn

be n Boolean variables and F be a formula in 3-CNF consisting of C clauses and literals λc′m:

F =
C∧

c′=1
(λc′1 ∨ λc′2 ∨ λc′3). (2.32)

Inspired by Roch, Savard, and Marcotte (2005), who consider a toll pricing problem, we construct
an OBDPP subnetwork for each clause, as shown in Figure 2.13. The subnetwork consists of
three time steps t, t + 1, t + 2 and at least five locations. Figure 2.13 illustratively depicts
eight locations k′, l′, . . . , r′. Only the arcs on which the flow of vehicles can be positive are
represented. Each of the three solid arcs outgoing from the l′-t node represents one literal λc′m

which corresponds to price ym
l′t = 1. The dashed arcs represent the sit arcs for vehicles not

moved (compare Figure 2.2) and, thus, remaining at their location i. The thin solid, thick solid
and dot-dashed arcs represent the rm

ijt arcs for rented vehicles.
The demand on the thin solid arcs is denoted by d̄c′ , and ¯̄d on the thick solid arcs. While

d̄c′ can vary over different subnetworks, ¯̄d is constant. The specific choice of these demand
parameters depends on the instance, as we explain below. We always set dm

ijt = 1 for each
dot-dashed arc.
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Figure 2.13: Subnetwork corresponding to clause (λc′1 ∨ λc′2 ∨ λc′3)
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Only the thick solid arcs represent the rentals that have a positive contribution to the
objective, i.e., the rental duration (compare OBDPP objective function (2.1)) is set to zero for
all location-location combinations, except for ll′k′ = 1. All three minute prices are p(1) = p(2) =
p(3) = 1 and the variable minute cost is c = 0. With these parameters, every rental that realizes
between the locations l′ and k′ has a profit of 1, and for all other location-location combinations
it is 0.

Note that because exactly one price is set at the l′-t node, exactly one of the thin solid paths
has a positive flow in the subnetwork. Remember that if price pm is selected at the l′-t node, the
corresponding literal λc′m is TRUE. It is important to keep in mind that this is an implication,
not equivalence: If the price at the l′-t node is not pm, the literal λc′m is irrelevant regarding
satisfiability (we already have another TRUE one in that clause) and could be TRUE or FALSE.
Note that if λc′m = x̄n, then xn = FALSE. Each of the thin solid paths in a subnetwork can have
up to 3(C − c′) corresponding dot-dashed paths (3 for every subnetwork with larger c′), that is,
they have the same price index. Figure 2.13 illustrates one corresponding dot-dashed arc per
solid arc.

The 3-SAT reduction is performed by connecting multiple subnetworks in series, as shown
in Figure 2.14. When connecting the subnetworks, we introduce an additional set of rental arcs
represented by dotted arcs and with dm

ijt = 1 ∀m ∈ M and lij = 0. Each dash-dotted arc that
originates in a subnetwork requires a corresponding dotted arc that closes the path between
two clauses. We denote these paths as interclause paths. They connect every pair of literals
corresponding to a variable and its negation, where a contradiction might arise. The idea is that
if the first literal (at the origin of the interclause path) is guaranteed to be TRUE, vehicles flow
over the path. If the second literal (at the destination of the path) is guaranteed to be TRUE,
vehicles will flow over the corresponding thin solid arc. If both are TRUE, and we therefore have
a contradiction, we have excess vehicles at the node where the aforementioned thin solid arc and
the dotted arc end and will lose profit, which makes attaining the bound impossible. In Figure
2.14 four interclause paths originate in node i = 2, t = 0 and one originates in node i = 2 and
t = 2.

We already stated the parameters pm, c, lij , and dm
ijt for the dotted arcs above. Regarding

the other parameters, we set d̄c′ = 1 for the last and second to last clauses C and C−1, meaning
d̄C = d̄C−1 = 1. We now iterate backwards over the clauses from c′ = C − 2 to c′ = 1. For
each of these clauses with c′ < C − 1, we set d̄c′ = d̄c′+1 + maxm∈M{z(c′+1)m}. The fleet size is
set to â2,0 = d̄1 + maxm∈M{z1m}. Note that with this choice of demand parameters and fleet
size, the available vehicles a2,2(c′−1) for each subnetwork c′ are sufficient for the possible rentals
in all periods t ≥ c′, independent of the set prices. Note further, that an inconsistent selection
of guaranteed literals thus leads to more vehicles than demand in the destination node of an
interclause path. For all thick solid arcs, the demand is set to the fleet size, meaning ¯̄d = â2,0.
Finally, the demand for the first and last arc of all interclause paths is set to 1 for all prices,
meaning dm

ijt = 1 ∀m ∈M.
In our example, this implies d̄3 = d̄2 = 1. As clause 2 has only one assignment restriction,

with clause 3 for price y
(3)
2,2, we set d̄1 = 1 + 1. In the first clause, we set maxm∈M{z1m} = 2,

because price y
(3)
2,0 has two assignment restrictions with clauses 2 and 3. The fleet size is â2,0 =

56



t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

a2,0
= 4

a2,2
= 2

a2,4
≥ 1

x1

x2

x̄3

d̄1 = 2

x̄2

x3

x̄4

d̄2 = 1

x̄1

x3

x4

d̄3 = 1

¯̄d = 4

d
(1)
2,9,0 = 1

d
(2)
2,10,0 = 1

d
(3)
2,11,0 = 1

d
(3)
2,12,0 = 1

dm
9,3,4 = 1,∀m

dm
10,6,2 = 1,∀m dm

11,7,2 = 1,∀m

dm
12,4,4 = 1,∀m

d
(3)
2,13,2 = 1

dm
13,5,4 = 1,∀m

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

i = 13

Figure 2.14: An instance of the OBDPP for the formula (x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3 ∨ x̄4) ∧ (x̄1 ∨ x3 ∨ x4).
An optimal solution with prices y

(2)
2,0 = y

(2)
2,2 = y

(2)
2,4 = 1 attains the upper profit bound. The

corresponding assignment x2 = x3 = TRUE with arbitrary x1 and x4 is satisfiable.
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2 + 2. Now consider the following inconsistent selection of guaranteed literals: y
(1)
2,0 = y

(1)
2,4 = 1

(inconsistent because x1 = x̄1 = TRUE). Then, we have a3,5 = 2 and since d̄3 = 1, one vehicle
would remain unused, meaning s3,t = 1 for t = 5, 6.

Since our choice of parameters causes a profit of 1 for every rental between locations i = 2
and i = 1 (see above), and our setup of the network allows every vehicle of the fleet to realize
at most 1 rental from i = 2 to i = 1, a profit that equals the fleet size is an upper bound. We
claim that F is satisfiable if and only if the optimal profit is equal to that bound. Formally, we
show that the following equivalence holds:

F is satisfiable ⇐⇒ ∃y such that
∑
t∈T

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c) = â2,0. (2.33)

⇐: Assume that the optimal profit is equal to the fleet size. As each vehicle can only flow
once over a thick solid arc where it earns a profit of 1, this is the upper bound. Obviously,
no vehicle must end up in a node where it remains unused, and thus will not be rented at a
profit, otherwise the upper bound cannot be reached. Now assume we were inconsistent and the
pricing corresponded to guaranteeing literals with a variable and its negation. Then, the number
of vehicles at the destination node of the corresponding interclause path would exceed demand,
and some vehicles would remain unused until the end of the horizon. They would not flow over
a thick solid arc and earn no profit. This yields a contradiction. Therefore a pricing with a
profit attaining the bound must correspond to a consistent assignment, and F is satisfiable.
⇒: Conversely, if F is satisfiable, a satisfying assingment exists. There, at least one literal

per clause is TRUE. For each clause, we pick a price that corresponds to a TRUE literal (if there
are several, we take an arbitrary one). Because the assignment is consistent, we will never pick
contradicting literals and there are never more vehicles in a node than the outgoing demand.
Thus, all vehicles of the fleet are being rented at some period from location i = 2 to i = 1 with
a profit of 1, and the upper bound is reached.

We now analyze the OBDPP construction’s computational complexity. First, we consider
the size of the network. It consists of T = 2C +2 periods; in our example in Figure 2.14 there are
two periods each for the C = 3 clauses with t = 0, . . . , 5 and two additional periods t = 6, 7. The
number of locations is, at most, Z = 2+ 3(C−1) +(3C)2 and depends on the number of clauses
and interclause paths. The first two locations are required for the rentals with a positive profit,
in our example i = 1, 2. Independent of the interclause arcs, the first and last clauses require
three locations, one for each price and i = 3, 4, 5 in our example. For every additional clause,
three additional locations are required, here i = 6, 7, 8. For each interclause path, an additional
location is required, and the number of interclause paths is bounded by (3C)2. In our example,
there are five interclause paths with locations i = 9, . . . , 13. The entire network thereby consists
of Z · T = O(C3) spatio-temporal nodes. Note that while considering the interclause paths in
the network construction, we count and store the number of outgoing paths for every clause c′

and price m in zc′m.
Overall, because all of the above operations are polynomial in C, the construction of the

OBDPP instance is polynomially bounded in C. This completes the proof. □
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2.B Base Demand Matrix Generation

In this section, we describe the generation process of the base demand matrices that we used in
the computational experiments in Section 2.5. The base demand matrix for a specific scenario is
defined by d = [dijt]Z×Z×T , where each element dijt represents the base demand from zone i to
zone j in period t (Section 2.3.1). The process of base demand matrix generation has two general
steps. First, the period demand dt in the course of the day, meaning ∀t ∈ T , is determined.
Second, the specific dijt values are calculated. The two steps are elaborated in the following.

• We determine dt ∀t ∈ T by specifying dt for some of the periods U ⊆ T in relation to the
maximum period demand max(dt) and subsequently use linear interpolation to calculate
dt for all other periods T \ U .

More precisely, we first decide on the period τ with maximum period demand and de-
termine this dτ = max(dt) based on the fleet size â0 and the respective scenario-specific
demand-supply-ratio δ (Section 2.5.1), i.e., dτ = â0/δ. In our scenarios, in order to repli-
cate the demand patterns observed in practice, we chose the maximum period demand to
occur at the evening peak τ = 36 (18:00h).

Second, we define a set of periods U ⊆ T with |U| = U , for which the period demand
dt ∀t ∈ U is defined in relation to the maximum period demand dτ , i.e., dt = ut · dτ . In
our settings, to replicate the typical course of demand, we define U = 4 period demands:
the evening peak t = 36 with u36 = 100%, the night low t = 8 (04:00) with u8 = 10%, the
morning peak t = 16 (08:00) with u16 = 80%, and midday t = 24 (12:00h) with u24 = 60%.

Third, the remaining dt ∀t ∈ T \ U are calculated by linear interpolation, where for some
t ∈ T \U the dt values of the respective next smaller and larger t ∈ U are used as supporting
points. At this point, the absolute period demand dt ∀t ∈ T is defined.

• We calculate the specific base demand matrix entries dijt based on dt in a hierarchical
process where the demand streams are first determined on an aggregate zone-type level.
Subsequently, we specify the demand streams for the original zones, which allows us to
replicate typical demand patterns observed in practice.

More precisely, in order to replicate typical demand streams observed in practice, we first
define Q = {1, 2, . . . , Q} different zone types. Each of the original Z zones is assigned to
one of the zone types with an injective mapping, resulting in Q sets of zones Zq ⊆ Z∀q ∈ Q,
with ⋂Q

q=1Zq = ∅ and ⋃Q
q=1Zq = Z. In our scenarios, we define Q = 4 zone types, which

we denote center, inner, outer, peripheral.

Second, for each of the U periods defined above, a typical demand pattern can now be
defined on the zone type level by specifying proportions of the respective dt for every
zone-type-zone-type combination. Table 2.5 depicts an example from one of our scenarios,
in which we chose the parameters to reflect that most of the demand at the morning peak
t = 16 is directed from the non-center zones to the center zones. Note that the proportions
sum up to 100%, such that at this point, the absolute demand values dxyt for all Q ·Q ·U
zone-type x ∈ Q to zone-type y ∈ Q combinations are defined for all periods t ∈ U .
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Third, considering the number of zones in a specific zone-type, meaning |Qq|, the absolute
demand values dijt for all Z · Z · U original zones for all periods t ∈ U are calculated. For
example, a specific dxyt with x, y ∈ Q has to be divided into multiple dijt with i ∈ Zx and
j ∈ Zy according to dijt = dxyt/(|Zx| · |Zy|).

Fourth, the remaining dijt∀i, j ∈ Z, t ∈ T \U are calculated by linear interpolation between
the supporting points dijt ∀i, j ∈ Z, t ∈ U . More precisely, for a specific i-j-t combination
with t ∈ T \U , the surrounding dijt with the respective next smaller and next larger t ∈ U
are used as supporting points. The interpolation is linear in the number of periods that
separate the dijt to be calculated from the respective two supporting points.

destination zone type
center inner outer peripheral

origin
zone
type

center 0.05 0.1 0.025 0.025
inner 0.1 0.05 0.025 0.025
outer 0.15 0.1 0.025 0.025

peripheral 0.15 0.1 0.025 0.025

Table 2.5: Example of demand proportions for zone types at morning peak t = 16

2.C Test Instances and Evaluation Metrics

scenarios with number of zones and demand-supply-ratio
solution
approach

time
limit

9 16 25
2/6 4/6 6/6 8/6 12/6 2/6 4/6 6/6 8/6 12/6 2/6 4/6 6/6 8/6 12/6

ADP-1, ROL-1 none x x x x x
ADP-4, ROL-4 none x x x x x
ADP-8, ROL-8 none x x x x x

OPT none x x x x x
UB 48h x x

ADP-1, ROL-1 48×1h x x x x x x x x x x
ADP-4, ROL-4 48×1h x x x x x x x x x x
ADP-8, ROL-8 48×1h x x x x x x x x x x

CUP none x x x x x x x x x x x x x x x

Table 2.6: Considered test instances
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metric all periods t ∈ T , (* price pm) period t, (* price pm)

PRrel
(·)

∑
t∈T

∑
i,j∈Z

∑
m∈M rm

ijt·l·(pm−c)∑
t∈T

∑
i,j∈Z r

(2)
ijt ·l·(p(2)−c)

− 1
∑

i,j∈Z

∑
m∈M rm

ijt·l·(pm−c)∑
i,j∈Z r

(2)
ijt ·l·(p(2)−c)

− 1

RV rel
(·)

∑
t∈T

∑
i,j∈Z

∑
m∈M rm

ijt·l·pm∑
t∈T

∑
i,j∈Z r

(2)
ijt ·l·p(2)

− 1
∑

i,j∈Z

∑
m∈M rm

ijt·l·pm∑
i,j∈Z r

(2)
ijt ·l·p(2)

− 1

RT rel
(·)

∑
t∈T

∑
i,j∈Z

∑
m∈M rm

ijt∑
t∈T

∑
i,j∈Z r

(2)
ijt

− 1
∑

i,j∈Z

∑
m∈M rm

ijt∑
i,j∈Z r

(2)
ijt

− 1

P prop
(·) *

∑
t∈T

∑
i∈Z ym

it∑
t∈T

∑
i∈Z

∑
q∈M yq

it

∑
i∈Z ym

it∑
i∈Z

∑
q∈M yq

it

RT prop
(·) *

∑
t∈T

∑
i,j∈Z rm

ijt∑
t∈T

∑
i,j∈Z

∑
q∈M rq

ijt

∑
i,j∈Z rm

ijt∑
i,j∈Z

∑
q∈M rq

ijt

Table 2.7: Evaluation metrics used

2.D Computation Times for VFA Parameter Estimation

As explained in Section 2.4.2, the entire process of determining pricing solutions requires a
parameter estimation (Algorithm 2, Section 2.4.4) and subsequently the ADP decomposition
approach (Algorithm 2). Here, we consider the computation times for the parameter estimation.
Algorithm 2 shows that for every period this parameter estimation has two general components.
The first is to generate samples of vehicles’ distribution and to calculate a corresponding profit-
to-come for every sample; the second is to determine the VFA parameters by solving the adapted
least squares problem (2.23)-(2.27). To provide more insight on the respective computation
times, we state the average computation times for these two components, i.e., data generation
and solve (2.23)-(2.27) separately in the rows of Table 2.8. The idea is to generate all required
data (for all periods) first, and then, in a second step, to solve (2.23)-(2.27) for all periods.

setting
9Z 16Z 25Z 59Z

data
generation

per data sample [sec.] 1.1 2.9 6.6 67.6
1000 samples [h.] 0.3 0.8 1.8 18.7

solve (2.23)-(2.27) total process [sec.] 27.8 46.9 67.9 195.8

Table 2.8: Computational times for data generation and parameter estimation

The data generation for all periods’ computation time with each 1000 samples that we used
lies between less than one hour for the 9-zones setting and roughly 19 hours for the Florence
case study which has 59 zones. Solving (2.23)-(2.27) for all periods requires, at its maximum,
several minutes, because (2.23)-(2.27) is a quadratic programming problem which can be solved
efficiently by standard solvers.

As explained in Section 2.1, the OBDPP is an off-line pricing problem, where – as for every
off-line problem – the overall computation time for determining a solution is not crucial, while the
solution quality is indeed decisive. Of course, even for off-line problems, the computation time
needs to be reasonable, so that application in practice is possible. For the considered problem
and the proposed approach, the following is given: Considering the computation times in Table
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2.8 and the maximum duration of determining a pricing solution with our ADP decomposition
approach, which was 48 hours (see Section 2.5.1), prices are obtained in less than three days.
In practice, the applied pricing solutions are kept stable for several months to ensure that
an adapted demand pattern can be observed with statistical significance. Only then can a
recalculation of prices be reasonable. Thus, the overall computation time does not pose any
limitations for practice. Moreover, the presented computation times for generating the data
can be considered as an upper bound for this process step, since all samples were generated
sequentially, while a complete parallelization was possible. This means that the data generation
is limited by the potential for parallelization and not by the generation of a sample data point,
which in the Florence example, on average, requires only 67.6 seconds.
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2.E Small Setting - 9 Zones - Additional Results
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Figure 2.15: Relative increase of profit (PRrel), revenue (RV rel), rentals (RT rel) and price proportions
(P prop

pm ) in 9-zones setting.
Columns: PRrel, RV rel, RT rel, P prop

pm ; Rows: Ascending demand-supply-ratio δ
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2.F Enlarged Settings - 16, 25 Zones
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Figure 2.16: Relative profit increase (PRrel) and price proportions (P prop
pm ) in 16- and 25-zones settings.

Columns: Z = 16 PRrel, P prop
pm – Z = 25 PRrel, P prop

pm ; Rows: Ascending demand-supply-ratio δ
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2.G Stochastic Evaluation

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROL-1 5.6 5.6 5.5 5.4 5.2 5.7 5.7 5.7 5.7 5.7 6.2 6.2 6.2 6.2 6.2
ROL-4 12.0 11.8 11.7 11.4 11.0 8.9 8.9 8.9 8.9 8.8 9.5 9.4 9.4 9.3 9.2
ROL-8 14.4 14.3 14.1 13.8 13.5 10.6 10.6 10.6 10.5 10.5 11.4 11.3 11.2 11.1 11.0
ADP-1 11.4 11.4 11.2 10.8 10.4 13.0 12.9 12.8 12.6 12.4 14.3 14.2 14.1 13.9 13.8
ADP-4 14.4 14.3 13.9 13.9 13.5 13.7 13.5 13.3 13.0 12.8 14.6 14.5 14.3 14.1 13.9
ADP-8 15.1 15.1 14.9 14.5 14.0 14.0 13.8 13.6 13.3 13.0 14.7 14.6 14.4 14.3 14.1

(a) δ = 2/6

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROL-1 8.1 8.1 8.0 7.9 7.8 9.5 9.5 9.4 9.3 9.2 9.0 9.0 9.0 9.0 9.0
ROL-4 12.5 12.5 12.4 12.3 12.2 12.7 12.5 12.4 12.2 12.1 12.2 12.1 12.0 11.9 11.9
ROL-8 14.0 14.0 13.9 13.8 13.7 13.4 13.3 13.2 13.0 12.8 14.1 14.0 13.9 13.8 13.7
ADP-1 13.4 13.4 13.3 13.2 13.1 14.1 14.0 13.9 13.7 13.5 14.2 14.2 14.1 14.0 13.9
ADP-4 14.0 13.9 13.8 13.6 13.4 14.8 14.6 14.4 14.1 13.9 14.7 14.6 14.4 14.3 14.1
ADP-8 13.9 14.0 13.9 13.8 13.7 14.8 14.7 14.5 14.2 14.0 14.6 14.6 14.5 14.3 14.2

(b) δ = 4/6

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROL-1 10.1 10.1 10.0 9.9 9.7 11.8 11.7 11.5 11.3 11.2 11.4 11.4 11.3 11.2 11.1
ROL-4 12.6 12.6 12.5 12.4 12.2 14.4 14.2 14.0 13.8 13.5 14.1 14.0 13.8 13.6 13.5
ROL-8 13.3 13.3 13.3 13.2 13.0 15.1 15.0 14.8 14.6 14.4 14.7 14.6 14.5 14.4 14.3
ADP-1 12.9 12.9 12.8 12.6 12.4 14.9 14.8 14.7 14.5 14.4 14.2 14.2 14.1 14.0 13.9
ADP-4 13.3 13.3 13.2 13.1 13.0 15.3 15.1 14.9 14.7 14.5 14.8 14.9 14.6 14.5 14.3
ADP-8 13.3 13.3 13.3 13.2 13.0 15.1 15.0 14.8 14.6 14.4 14.8 14.7 14.6 14.5 14.3

(c) δ = 6/6

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROL-1 10.8 10.8 10.6 10.5 10.3 13.6 13.5 13.4 13.2 13.0 13.4 13.4 13.3 13.3 13.2
ROL-4 12.9 12.8 12.6 12.4 12.3 15.5 15.4 15.2 14.8 14.3 15.3 15.2 15.0 14.8 14.6
ROL-8 13.0 13.0 13.0 12.9 12.7 15.7 15.6 15.3 14.9 14.4 15.5 15.4 15.3 15.1 14.9
ADP-1 13.0 13.0 13.0 13.0 12.9 15.2 15.1 15.1 14.8 14.5 14.9 14.9 14.9 14.8 14.6
ADP-4 13.0 13.1 13.1 13.0 12.9 15.7 15.7 15.5 15.1 14.6 15.5 15.4 15.3 15.1 14.9
ADP-8 13.0 13.0 12.9 12.9 12.7 15.7 15.7 15.4 15.1 14.6 15.4 15.4 15.3 15.1 14.9

(d) δ = 8/6

Table 2.9: Mean profit increase for different demand-supply-ratios δ. For all analyzes, the half-width of
the 95% confidence interval was at most ±0.2 percentage points.
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2.H Model variants

As described in Section 2.5.3.6, we develop two model variants for the OBDPP (2.1)-(2.16) in
the following two subsections.

2.H.1 Trip-based pricing with relaxation of pure pricing and proportional
demand fulfillment

The TBDPP-RLX mimics a trip-based differentiated pricing problem (TBDPP) which omits
the two central assumptions made for the OBDPP, i.e., technically speaking, compared to the
OBDPP, it relaxes (RLX) the pure pricing and the proportional demand fulfillment assumptions
(see Section 1) in the model. The TBDPP-RLX is given by (2.34)-(2.44).

Compared to the OBDPP model (2.1)-(2.16), the TBDPP-RLX model (2.34)-(2.44) de-
lineates as follows: The constraints (2.8)-(2.11) as well as the auxiliary binary decision vari-
ables q = [qit]Z×T become obsolete. Constraints (2.8) in the OBDPP change to (2.40) in
the TBDPP-RLX. Since pricing is trip-based, the binary origin-based pricing decision variables
y = [ym

it ]Z×T ×M in the OBDPP are replaced by binary trip-based variables y = [ym
ijt]Z×Z×T ×M

in the TBDPP.

max
y,q,r,a,s

∑
t∈T

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c) (2.34)

s.t. ait =
∑
j∈Z

∑
m∈M

rm
ijt + sit ∀i ∈ Z, t ∈ T (2.35)

∑
i∈Z

∑
m∈M

rm
ijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (2.36)

ai0 = âi0 ∀i ∈ Z (2.37)∑
m∈M

ym
ijt = 1 ∀i, j ∈ Z, t ∈ T (2.38)

rm
ijt ≤ dm

ijt · ym
ijt ∀i, j ∈ Z, t ∈ T , m ∈M (2.39)∑

j∈Z

∑
m∈M

rm
ijt ≤ ait ∀i, j ∈ Z, t ∈ T (2.40)

ym
ijt ∈ {0, 1} ∀i, j ∈ Z, t ∈ T , m ∈M (2.41)

rm
ijt ∈ R+

0 ∀i, j ∈ Z, t ∈ T , m ∈M (2.42)
sit ∈ R+

0 ∀i ∈ Z, t ∈ T (2.43)
ait ∈ R+

0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (2.44)

2.H.2 Origin-based pricing with relaxation of pure pricing and proportional
demand fulfillment

The OBDPP-RLX also omits/relaxes (RLX) the two central OBDPP assumptions, but apart
from this, is identical to the model for the original origin-based differentiated pricing problem
(OBDPP). The OBDPP-RLX is given by (2.45)-(2.55).

Compared to the OBDPP model (2.1)-(2.16), the OBDPP-RLX model (2.45)-(2.55) delin-
eates as follows: The constraints (2.8)-(2.11) as well as the auxiliary binary decision variables
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q = [qit]Z×T become obsolete. Constraints (2.8) in the OBDPP change to (2.51) in the OBDPP-
RLX.

max
y,q,r,a,s

∑
t∈T

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c) (2.45)

s.t. ait =
∑
j∈Z

∑
m∈M

rm
ijt + sit ∀i ∈ Z, t ∈ T (2.46)

∑
i∈Z

∑
m∈M

rm
ijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (2.47)

ai0 = âi0 ∀i ∈ Z (2.48)∑
m∈M

ym
it = 1 ∀i ∈ Z, t ∈ T (2.49)

rm
ijt ≤ dm

ijt · ym
it ∀i, j ∈ Z, t ∈ T , m ∈M (2.50)∑

j∈Z

∑
m∈M

rm
ijt ≤ ait ∀i, j ∈ Z, t ∈ T (2.51)

ym
it ∈ {0, 1} ∀i ∈ Z, t ∈ T , m ∈M (2.52)

rm
ijt ∈ R+

0 ∀i, j ∈ Z, t ∈ T , m ∈M (2.53)
sit ∈ R+

0 ∀i ∈ Z, t ∈ T (2.54)
ait ∈ R+

0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (2.55)

2.I Pricing of Shared Mobility Systems in Practice

In Section 2.1 where we introduce the origin-based differentiated pricing problem (OBDPP), we
explain that there are three dimensions to classify pricing mechanisms. Regarding the second
dimension, i.e., the spatio-temporal pricing features, we consider origin-based pricing in our work,
whereas the closest related studies (Section 2.2.3) all focus on trip-based pricing.

To underline the relevance of this origin-based pricing, the following exposition shows which
pricing mechanisms are actually applied in practice. In particular, in Table 2.10 we state how
the ten largest car sharing providers worldwide do their pricing.

Provider Location Fleet size Pricing mechanism
Spatio-temporal
pricing feature

Subject of
price differentiation

EvCard China 30,000 Not found
Delimobil Russia 16,000+ Origin Time

Yandex.Drive Russia 16,000 Origin Not found
Zipcar United States 12,000 No price differentiation

Share Now Germany 11,240 Origin Location and time
Flinkster Germany 6,500+ Origin Time
GoGet Australia 3,300+ Origin Time

Car Next Door Australia 3,000+ Origin Time
Cambio Germany 2,700 Origin Time
Enjoy Italy 2,670 Origin Time

Table 2.10: Pricing in the largest car sharing systems in practice (based on internet research)
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The status quo of SMS pricing in practice can be summarized as follows:

• Practice exclusively applies origin-based pricing: Of the ten largest car sharing providers
worldwide, seven apply origin-based pricing, two do not apply price differentiation at all,
and for the remaining one we could find no information on their basis for pricing. In other
words, none of these providers applies trip-based pricing, despite the fact that this is the
dominant pricing mechanism discussed in literature.

• Share Now is pioneering in the field by differentiating prices with regard to both location
and time: Of the seven providers who do apply origin-based pricing, only Share Now –
Europe’s largest car sharing provider that operates in 16 cities in 8 countries (Share Now,
2021) – differentiates prices with regard to location and time. The remaining six providers
differentiate prices only with regard to time. Hence, we regard Share Now as a pioneer in
determining prices for SMSs. The OBDPP that we consider in this paper reflects Share
Now’s problem one-to-one and the resulting pricing solutions have been applied in practice
since the end of 2019.

Additional investigations reiterate these two findings. Besides car sharing, there are several
other SMSs, such as bike sharing or scooter sharing, for which we searched the internet thor-
oughly to find information on their applied pricing mechanisms. To the best of our knowledge,
not a single provider actually applies trip-based pricing. As for the car sharing discussed above,
providers either do not differentiate prices at all, or they use origin-based pricing in which the
company differentiates only with regard to time.
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3.1 Introduction

The ongoing debate about climate crisis leads to different concepts on how this issue can be
addressed. One component that can contribute to an useful and sustainable mobility concept
are shared mobility systems (SMSs). For example, ideally, car or bike sharing systems with
widely available vehicles do not only partially replace private vehicles, but also reduce the
emissions caused by mobility. This is one of the reasons why the concept of car sharing has
become increasingly popular among providers and customers in recent years. For example, in
the EU, the proportion of shared mobility is predicted to rise from 2 % in 2015 up to 15 % in
2025 (Destatis, 2017).

However, SMS providers face mainly two challenges:

1. The distribution of vehicles is uneven across locations, because origin and destination
locations are influenced by the customer’s preferences. These preferences and thus the de-
mand vary during the day (uneven nature of the travel pattern). This is the so-called "tide
phenomenon", which represents the oscillation of demand intensity throughout the day
(spatio-temporal demand asymmetries) (Côme, 2014; Jorge and Correia, 2013). Besides,
the current number of available vehicles in a location affects the number of future rentals
in that location (supply-side network effects). Therefore, it must be taken into account
that a rental not only decreases the current amount of vehicles in a origin location and
increases the amount of vehicles in the destination location, but also has an impact on
future rentals in these two locations. Neglecting supply-side network effects in relocation
leads to an accumulation or absence of vehicles at popular locations. As a result, the
system is no longer able to serve demand and may lose customers (Di Febbraro, Sacco,
and Saeednia, 2012).

2. Maximization of profit is a central objective. SMS can be operated by different institutions,
such a public municipalities or private companies. Especially private SMS providers are
interested in maximizing profit (minimizing costs) (Pantuso, 2022).

With regards to the first challenge of imbalance, a possible solution is relocation, which de-
creases imbalance. More precisely, relocation can be distinguished into operator-based and user-
based relocations. Operator-based relocation involves repositioning of vehicles by employees,
while user-based relocation is performed by customers and is incentivized by the provider. The
operator-based relocation increases the operational costs, as providers need additional staff and
extra equipment, e.g. operator-based relocation of bikes is handled with trucks (Dötterl et al.,
2017). Although operator-based relocation is one of the main cost drivers (Jorge and Correia,
2013) and (time) inefficient (vehicle cannot be used while it is relocated by staff) (Schiffer et al.,
2021), almost all SMS providers use it to obtain reduced imbalance.

A more cost-effective method is user-based relocation (Brendel, Brauer, and Hildebrandt,
2016). Ideally, the provider sets prices to encourage customers to drive from a low-demand
location to a high-demand location (Angelopoulos et al., 2016). Furthermore, no additional
vehicles or additional trips are needed. In short, user-based relocation is more preferable from
an environmental and economic perspective (Clemente et al., 2017), as it is a more sustainable
and cost-effective alternative to operator-based relocation (Stokkink and Geroliminis, 2021).
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With regard to the second challenge of profit maximization, a pricing approach that calculates
the optimal price for a given period is useful.

Thus, both challenges can be solved with an appropriate and anticipative pricing approach
that takes into account a longer time horizon (e.g. a day, a week), which incorporates supply-
side network effects.
In addition, providers should consider customers’ needs. Customers have two interests regarding
the pricing approaches of SMSs:

1. Customers prefer an easy and comfortable booking process in SMSs, i.e. booking a vehicle
without much effort. They cannot and/or do not want to disclose their destination or the
duration of the intended rental. Therefore, SMS providers do not know the destination in
advance. If SMS providers ask customers to (truthfully) disclose their intended destination,
this would considerably change the customers experience of SMSs and thus would be
unacceptable in most practical settings.

2. Customers prefer clear and transparent prices. This means that customers would like to
know (minute) prices before the rental starts.

Against this background, this paper focuses on origin-based pricing, where the SMS provider sets
prices depending on a rental’s time and origin. Since origin-based pricing is most commonly used
in current practice, the providers of such SMSs do not have to change their booking process by
asking customers for the destination or rental duration. This means a more efficient interaction
between user and provider and an easier implementation. To be precise, in this work, we consider
the problem of differentiated (=static) pricing of free-floating SMS providers with a focus on its
practicability, by using different heuristic solution approaches.

The contributions of our work are the following:

• First, we develop two practicable, problem-specific, easy to implement and new solution
approaches. The first one is a simplified model, so that the problem can be solved quickly,
even for large instances. The second solution approach is a backwards algorithm for deter-
mining the best prices for all location-period-combinations. Thus, the major advantage of
both solution approaches is that they do not require any pre-processing, but still provide
similar results compared to existing, more complex benchmarks. These new solution ap-
proaches are beneficial for practitioners to get a practicable and straightforward solution
and for researchers to benchmark other upcoming solution approaches.

• Second, we generate a number of relevant managerial insights based on an extensive com-
putational study and a sensitivity analysis with different problem sizes, considering various
relevant parameter settings and demand patterns.

The remainder of the paper is organized as follows. In Section 3.2, we review the relevant
literature, focusing on differentiated pricing problems using optimization. In Section 3.3, we
describe the problem and present two proposed solution approaches. Section 3.4 contains the
computational study. After the computational study, we perform a sensitivity analysis in Section
3.5. Section 3.6 concludes the paper and gives an outlook on future research. The appendix
contains additional data and results for the computational experiments.
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3.2 Literature

The literature on SMS optimization is quite extensive, so for general overviews we refer to the
following papers:

• bike sharing: DeMaio (2009), Fishman, Washington, and Haworth (2013), Ricci (2015)

• car sharing: Jorge and Correia (2013), Ferrero et al. (2015a), Ferrero et al. (2015b), Illgen
and Höck (2019)

• SMS in general: Laporte, Meunier, and Wolfler Calvo (2015, 2018)

In our literature review, we focus on differentiated pricing in SMSs in the sense that the pricing
does not depend on the system’s current state (e.g. current vehicle distribution). Furthermore,
we only consider papers that apply collective, not individual pricing (targeted to all customers,
see Pantuso (2022)) using optimization. We exclude papers that apply business rules (e.g. Ruch,
Warrington, and Morari (2014); Brendel, Brauer, and Hildebrandt (2016); Wagner et al. (2015);
Barth, Todd, and Xue (2004)).

In the following, we introduce dimensions for differentiated pricing approaches (Section
3.2.1). Using these dimensions, Section 3.2.2 considers differentiated pricing and Section 3.2.3
presents further literature that developed single-period solution approaches in a rolling-horizon
fashion for dynamic pricing.

3.2.1 Dimensions of Differentiated Pricing

We propose two dimensions of the customer perspective and four dimensions of the provider
perspective to structure the different solution approaches (see also Table 3.1). The following
dimensions describe the customer perspective:

1. Spatio-temporal pricing: Origin-based prices depend only on time and location of a rental’s
start. Other variants are destination-based prices (prices depend on location of destination)
or trip-based prices (prices depend on both origin and destination).

2. Number of possible prices: Some pricing approaches set only one price for all locations
and periods, whereas others set different prices selected from a discrete set of prices (price
list). Still others either have a defined upper and lower bound for prices, or the restriction
that prices must be positive, or no restrictions regarding the prices at all.

The following four dimensions characterize the provider’s perspective:

1. Control of rentals: There are providers that can influence the number of rentals only by
the price (price control). However, there are also providers that can additionally reject
requests (trip selection).

2. Objective: Different pricing approaches aim either at improving the distribution (balance)
of vehicles in the SMS or at increasing profit (reducing costs).
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Differentiated Pricing
Waserhole and Jost (2012) x x x x x x

Guo and Kang (2022) x x x x x x
Xu, Meng, and Liu (2018) x x x x x x

Jiao et al. (2020) x x x x x x
Huang et al. (2020) x x x x x x

Lu et al. (2021) x x x x x x
Zhang and Kan (2020) x x x x x x

Jorge, Molnar, and Correia (2015) x x x x x x
Ren et al. (2019) x x x x x x

Huang et al. (2020) x x x x x x
Zhang and Kan (2020) x x x x x x
Soppert et al. (2022) x x x x x x

Müller (2022) x x x x x x
Further related literature

Pfrommer et al. (2014) x x x x x x
Chemla et al. (2013) x x x x x x
Haider et al. (2018) x x x x x x

Wang and Ma (2019) x x x x x x
Pantuso (2022) x x x x x x

Table 3.1: Literature overview on differentiated pricing and further related literature in shared mobility
systems.

3. Foresight: Some pricing approaches determine prices based on the current period without
considering the supply-side network effects for the next period(s) (myopic). In contrast,
other pricing approaches additionally consider how pricing decisions in the current period
affect future vehicle supply, and thus future rentals at each location in subsequent periods,
by considering supply-side network effects (anticipative).

4. Additional parameters: Some pricing approaches require some pre-processing, for instance,
additional estimation of parameters in advance to perform the price determination.

3.2.2 Literature on Differentiated Pricing

Most of the published papers considering differentiated pricing in SMS deal with trip-based
prices. There are solution approaches that use a fluid approximation to determine prices. In
fluid approximations, the model sets the prices so that the rentals of a station match the de-
mand, i.e. there is no distinction between demand and rentals. This means that the price is
not constrained (even negative prices are possible). Waserhole and Jost (2012) propose a fluid
approximation for the revenue-maximizing trip-based pricing problem, which is the upper bound
of the stochastic model if demand and supply are scaled to infinity. Guo and Kang (2022) also
propose a fluid model to maximize profit, which considers the pricing and re-balancing problem
of electric vehicles.

However, other papers distinguish between demand and rentals. More precisely, rentals
depend on supply, demand and prices. Only positive prices are determined here. We distinguish
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between papers where the provider cannot reject users and controls rentals only by price (i.e.
price control) and papers where the provider can reject users (i.e. trip selection).

First, we consider papers where the provider can (indirectly) reject users. Xu, Meng, and
Liu (2018) formulate a mixed-integer non-linear and non-convex program. On this basis, they
develop a computationally tractable mixed-integer convex program which has the same objective
in the optimum, and solve the latter arbitrarily close to optimality. Jiao et al. (2020) integrate
trip selection and price incentives with user-based relocation in one model. Therefore this
model distinguishes between three different types of demands: 1. potential travel demand, 2.
adopted demand (demand after customers see the price), and 3. final served demand (after
trip selection). They consider a mixed-integer non-linear program to maximize the profit and
propose an iterative algorithm between the two decomposition programming sub-problems (a
linear master sub-problem and a non-linear sub-problem). Huang et al. (2020) compare operator-
based and user-based relocation. They formulate two mixed-integer non-linear programs for the
user-based relocation. The first one sets trip-based prices, whereas the second optimizes pick-
up and drop-off fees. They solve both programs with a combined rolling-horizon and iterated
local search heuristic. Lu et al. (2021) use another model formulation, i.e. a bi-level non-linear
program in which the provider determines profit-maximizing prices on the upper level. In this
case, these prices are within the previously defined bounds. The lower level’s objective minimizes
customers’ total cost by a binary choice between two modes of transportation (shared vehicles vs.
private cars). In an interpretation of a discrete choice model, rentals are additionally bounded
from above by a logit model. The authors transform the bi-level program to a single-level one
using Karush-Kuhn-Tucker conditions, and heuristically solve it with a genetic algorithm.

Second, we consider papers where the providers only control rentals by price. Jorge, Molnar,
and Correia (2015) formulate a profit-maximizing trip-based pricing problem as mixed-integer
non-linear, non-concave program, which is not tractable for real-world-instances. They propose
an iterated local search meta-heuristic to solve the program. Ren et al. (2019) extend the previ-
ous program to include a vehicle-grid interaction of electric vehicles. They use non-linear solvers.
Huang et al. (2020) combine tactical and operational decisions for a one-way station-based car
sharing system on a mixed-integer non-linear program. This program optimizes profit by consid-
ering fleet size, pricing (both tactical) and relocation. They linearize this program, decompose
it into two interdependent stages, and develop a gradient search method to solve the two stages.
Zhang and Kan (2020) formulate a non-linear, non-concave program that maximizes the profit
for an entire planning horizon of a station-based, one-way car sharing system by setting trip-
based prices. Particle swarm optimization is used to solve the program.

In contrast to the presented literature above, Soppert et al. (2022) consider origin-based, dif-
ferentiated pricing. They formulate a profit-maximizing, mixed-integer linear program that
distinguishes between rentals and demand. This program determines origin-based prices from a
discrete price set. The rentals of a location are calculated as a minimum of demand and sup-
ply (number of idle vehicles). The demand can be influenced only by the price (price control).
Since the model cannot be solved due to its complexity, Soppert et al. (2022) propose a solution
method using value function approximation. To apply this method, the provider has to estimate
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some parameters in pre-processing.
We also consider a provider, who determines origin-based prices from a discrete price set (i.e.

price control). We suggest two solution approaches to solve this mixed-integer linear program
without the need to estimate any parameters in pre-processing.

3.2.3 Further Literature

In addition, there are other models that are developed in such a way that they have to be solved
for each single period with the currently available data (without considering supply-side network
effects). Although they apply dynamic pricing, they have similarities with our problem.

The following papers do not distinguish between demand and rentals. They assume that
prices do not affect the demand, but affect the customers’ destinations. Pfrommer et al. (2014)
propose a model predictive control approach. The objective of the quadratic program is a
weighted sum of the deviation from an optimal vehicle distribution and the cost of incentive
payments. Chemla et al. (2013) use a linear program to determine the number of customers who
change their travel plans due to the price incentive in order to reach the given target inventory
of vehicles for each station. Haider et al. (2018) formulate a bi-level program, where the upper
level determines prices and minimizes vehicle imbalance, while the lower level represents the cost-
minimizing route choice of customers. The problem is transformed into a single-level program.
Wang and Ma (2019) consider the objective of keeping the vehicle inventory within a certain
range for a period. For this purpose, they define lower and upper thresholds for each station.
The number of rentals from or to a station can be affected by pick-up and drop-off fees. To this
end, they formulate a simple quadratic program to calculate such optimal dynamic fees.

Other papers distinguish between demand and rentals. Pantuso (2020, 2022) formulates an
extensive mixed-integer two-stage stochastic program, which maximizes the profit by setting
trip-based prices and decides about operator-based relocation. Pantuso (2020) also proposes a
compact integer programming reformulation and compares the two formulations in terms of ease
of solution. Pantuso (2022) proposes an exact solution algorithm for the mixed-integer two-stage
stochastic program.
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3.3 Solution Approaches for Differentiated Pricing

In this section, we describe two solution approaches for differentiated pricing.

3.3.1 Problem Statement and Notation

There is a one-way SMS provider with Z locations (Z = 1, ..., Z), which sets origin-based prices.
This means for all rentals, which have the same origin, the same minute price pi,t is charged. The
considered time horizon is subdivided into T periods (T = 0, ..., T − 1). The provider maximizes
its profit by setting minute prices pi,t for every location i ∈ Z and period t ∈ T , regardless of
the destination. The minute prices are chosen from a given price set PM = p1, ..., pM with M

price points.
We also have the following assumptions concerning demand, rental realization and dynamics.

Demand depends on the price points. A base demand (demand at the median price) di,j,t for
each rental combination i−j of possible origins and destinations at period t is given. We assume
that if the price is lower (than the median price), demand increases and if the price is higher
(than the median price) demand decreases. Thus, we scale the base demand with sensitivity
factors fm, which depend on the chosen price pi,t from a given price set PM = p1, ..., pM with
M price points. For the rental realization, we assume that the provider cannot reject any user
at a location, if there are vehicles available (no trip selection, but price control). Therefore, the
number of trips is the minimum of the supply (number of idle vehicles at the location) and the
demand at each location i. Furthermore, we assume that the rentals split proportionally to the
demand regarding their destinations. Thus, the provider can only affect the system and thereby
the rentals by price. For the dynamics, we assume that rentals start at the beginning of a period
t and the vehicles, at latest, always become available again at the beginning of the respective
next period t + 1. The average rental duration li,j ∈ R+

0 (in minutes) is shorter than the period
length, but can vary according to the spatial distance between different locations i − j. Also,
the initial inventory âi,0 of each location is given at the beginning of the period t = 0.

3.3.2 Simplified Model for Differentiated Pricing

This section describes the first solution approach, which is a simplified model.
The idea of this solution approach is that we only consider demand in a fluid approximation.

The approach controls demand with the scaled continuous sensitivity factor qi,t (and therefore in-
directly with the price). The simplified model does not distinguish between demand and rentals,
thus demand equals rentals. This has several advantages. First, we do not need the decision
variables for rentals in the model. Therefore, we do not need to define constraints regarding
rentals, e.g. ensuring that rentals do not exceed demand or that rentals are the minimum of
demand and supply (available vehicles). Second, prices are not discrete and therefore the choice
of discrete prices does not need to be represented by binary variables. This makes the model
faster compared to other origin-based pricing models, e.g. origin-based pricing from Soppert
et al. (2022), which considers discrete prices and distinguishes between demand and rentals,
which is NP-hard. However, one drawback is that the continuous prices in the simplified model
must be converted to discrete prices.
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The model only contains the continuous variables for sensitivity factors qi,t and available
vehicles ai,t. The sensitivity factor qi,t is defined between 0 and 1, so we have to scale the
demand di,j,t to the demand at the lowest price dscaled

i,j,t . We obtain this demand by multiplying
the demand di,j,t at the median price with the sensitivity factor for the lowest price f1. The
price pcon

i,t itself is continuous and a function of the sensitivity factor (pcon
i,t = f(qi,t)) (line 2).

We formulate the simplified model based on a deterministic network flow problem in which
vehicles move through a spatio-temporal network. The resulting fluid model considers expected
values of the demand and available vehicles in the shared mobility system.

The model is embedded in an algorithm (see Algorithm 3, line 3) that converts the continuous
prices of the simplified model into prices of the discrete price set PM (line 4).

Algorithm 3 Applying Simplified Model
1: Results: Best prices for the whole day
2: Step 1: Find a linear price function f(qit) that describes the price as a function of price

sensitivity
3: Step 2: Solve the following MINLP:

maxq,a,p

∑
t∈T

∑
i∈Z

∑
j∈Z

(f(qi,t)− cvar) · lij · dscaled
i,j,t · qi,t (3.1)

s.t. ai,t+1 = ai,t −
∑
j∈Z

dscaled
i,j,t · qi,t +

∑
k∈Z

dscaled
k,i,t · qk,t ∀i ∈ Z, t ∈ T (3.2)

ai,0 = âi,0 ∀i ∈ Z (3.3)

ai,t ≥
∑
j∈Z

dscaled
i,j,t · qi,t ∀i ∈ Z, t ∈ T (3.4)

qi,t ≥ 0 ∀i ∈ Z, t ∈ T (3.5)
qi,t ≤ 1 ∀i ∈ Z, t ∈ T (3.6)
qi,t ∈ R+

0 ∀i ∈ Z, t ∈ T (3.7)
ai,t ∈ R+

0 ∀i ∈ Z, t ∈ {1, 2, . . . , T + 1} (3.8)

4: Step 3: Round to the nearest discrete price of price set PM

The contribution margin (3.1) is the product of the rentals (di,j,t · qi,t), the rental time (li,j),
and the price minus the variable costs (f(qi,t)−cvar). Note that maximizing contribution margin
here is equivalent to optimizing profit, since decisions about fixed costs cannot be made at this
point and are therefore out of scope. Constraints (3.2) provide flow conservation. They ensure a
constant fleet size at all times. The initial vehicle distributions are defined through Constraints
(3.3). Constraints (3.4) set upper bounds on the number of rentals, so that the rentals are
limited by the number of vehicles available in a zone. The next constraints (3.5 and 3.6) define
the upper and lower bounds of the sensitivity factors qi,t. The range is between 0 and 1. The
last constraints (3.7 and 3.8) define that all variables are real positive numbers.

The prices we get from solving the model are continuous. They must be converted to the
discrete prices (line 4). To do this, we first compute the absolute differences of all resulting
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continuous prices pcon
i,t for all i− t combinations at all discrete price points pm. Then, we convert

the continuous prices to discrete prices with the smallest absolute difference.

3.3.3 Backwards Algorithm for Differentiated Pricing

This section describes the second solution approach, called a backwards algorithm (see Algorithm
4 and Figure 3.1). The idea of this solution is to decompose the problem into smaller problems.
These smaller problems can be solved more quickly. To do this, we first compute the vehicle
distribution at the beginning of each period (Step 1), taking advantage of the fact that demand is
deterministic. Then, starting backwards from period T , we compute prices for each period based
on the calculated initial vehicle distributions of this period, taking into account the next periods
(Step 2). The advantage of this method lies in its solvability and computational speed, and
it takes supply-side network effects into account, at least to a some extent. The disadvantage
of this solution approach is that the pricing approach can only determine the prices of the
considered period.

The solution approach is divided into two steps (see Figure 3.1). In the first step, a simple
solution approach is used to calculate the network flows and vehicle distributions at the beginning
of each period for the entire day. The results of the first step are the available vehicles apre

i,t for
each zone i at the beginning of each period t. This is the basis for the next step.

In Step 2, we use pre-calculated vehicle distributions for every period t from Step 1 as input.
Starting from the last period T , we calculate the prices period by period, taking into account
the next periods. However, when calculating prices pi,t for every zone i of the current period t,
the prices pfix

i,k for every zone i of the next periods k ∈ {t + 1, ..., T} are fixed and determined by
the previous calculation. Thus, only the prices pi,t of the considered period t are the decision
variables. However, with the prices of the considered period pi,t, the provider also decides on
the network flows of the considered period t and thus on the vehicle distributions of the next
periods k ∈ {t+1, ..., T}, since the vehicle distributions of the next periods depend on the vehicle
distribution at the end of the considered period t.

Algorithm 4 Backwards Algorithm
1: Results: Best prices for the whole day
2: Step 0: Define fixed prices: pfix

i,t = ∅ ∀i ∈ I, t ∈ T and pre-calculated vehicle-distribution
apre

i,t = ∅ ∀i ∈ I, t ∈ T
3: Step 1: Solve the problem using a simple and fast solution approach to get a vehicle distri-

bution apre
i,t ∀i ∈ I, t ∈ T

4: Step 2: Solve the following:
5: for t ∈ T do
6: tbackwards = T − 1 + 1
7: Set the initial distribution ai,tbackwards = apre

i,tbackwards ∀i ∈ I

8: Solve the problem for the period tbackwards taking into account the fixed prices pfix
i,t ∀i ∈

I, t ∈ tbackwards...T
9: Save the resulting prices pfix

i,tbackwards = pi,tbackwards ∀i ∈ I, t ∈ T − t...T − t + 1
10: end for

To calculate the prices backwards, the Algorithm 4 first defines the following two parameters
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Figure 3.1: Illustration backwards algorithm.

as empty sets (line 2): fixed prices pfix
i,t and pre-calculated available vehicles apre

i,t for each zone i

at the beginning of each period t. Since there was no calculation of available vehicles and prices
yet, the algorithm cannot assign a value to these parameters. Thus, in a first step (line 3), the
algorithm solves the problem with a simple and fast solution approach, obtaining the values for
the available vehicles apre

i,t for each zone i and period t. In a second step, the backwards cal-
culation determines the prices in different substeps. First, based on the pre-calcuated available
vehicles apre

i,T for each zone i and the last period T (line 7), the algorithm computes the prices
pi,T for each zone i for the last period T (line 8). In this substep, the pricing approach does not
need to consider the next periods. After this, the calculated prices pi,T are fixed for the next
substep (pfix

i,T = pi,T , line 9), which is to calculate the prices pi,T −1 for each zone i for period
T − 1 based on the pre-calculated available vehicles apre

i,T −1 for each zone i for period T − 1 (line
7). In this substep, the algorithm considers both periods (T and T −1), but the prices of period
T are fixed. After getting the computed prices pi,T −1 for each zone i for period T − 1, we fix
these prices (pfix

i,T −1, line 9) as well. This continues until the first period is reached. Here, the
algorithm calculates prices based on the pre-calculated available vehicles apre

i,1 for each zone i for
the first period. For this, the algorithm considers all periods, but only the prices pi,1 for each
zone i for the first period are decision variables, and the prices of the next periods t ∈ {2, ..., T}
are fixed. After this last calculation, the provider has prices for all zones and periods.
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3.4 Computational Study

In extensive computational studies, we investigate the performance of two solution approaches
presented in Section 3.3. We systematically vary the most important influencing factors to
triangulate how the solution approaches in comparison to benchmarks perform. Section 3.4.1
introduces the scenarios and parameter values. In Section 3.4.2, we present the solution ap-
proaches and the benchmarks we investigate. Section 3.4.3 presents the computational results.

3.4.1 Scenarios and Parameters

We consider three settings (SMALL, MEDIUM, LARGE) of a free-floating SMS that primarily
differ in the size of the operating area and the number of locations Z (SMALL: Z = 9, MEDIUM:
Z = 16 and LARGE: Z = 25). Each of the three settings is examined for three different overall
demand levels, which differ in the demand-supply-ratio (DSR). The DSR is the maximum
period demand divided by the fleet size and we consider the values ∈ {1

3 , 2
3 , 3

3} by scaling demand
appropriately. The remaining parameters are constant over all three settings: we discretize the
time interval of one day into T = 48 periods of 30 minutes each, in line with practice and
literature (see e.g. Kaspi et al. (2016) and Ferrero et al. (2015b)). We select the M = 3 price
points pm according to typical prices in practice and literature (see e.g. Lippoldt, Niels, and
Bogenberger (2018)). We chose a base price per minute of p2 = 0.30 e/min and price differences
of 0.06 e/min to the so-called low and high prices, so that p1 = 0.24 e/min and p3 = 0.36 e/min.
Variable costs are c = 0.075 e/min. The rental time is set to l = 15 min, in line with, for example,
Xu, Meng, and Liu (2018), Soppert et al. (2022) and the discussions with our industry partner.
The corresponding sensitivity factors f

(1)
i,j,t = 0.75, f

(2)
i,j,t = 1, f

(3)
i,j,t = 1.25 ∀i, j ∈ Z, t ∈ T are

chosen according to observations from practice.

3.4.2 Investigated Solution Approaches and Evaluation Metrics

Here, we describe the solution approaches that we investigate.

• MODSIM denotes the solution of a simplified model neglecting the assumption of rental
realization (see Section 3.3.2).

• BAW denotes the backwards algorithm that computes the vehicle distribution in a first
step using either the rolling-horizon with horizon H = 1 (BAW-ROL-1) or MODSIM
(BAW-MODSIM) and calculating the optimal prices backwards in a second step.

Besides the solution approaches, we investigate four benchmarks:

• BASE denotes a benchmark using constant uniform pricing. Here we use the base price
pi,t = p(2) ∀i ∈ Z, t ∈ T .

• MOD48h denotes the solution of the model with a given time limit for the solver of 48h
in which all 48 periods are optimized simultaneously.

• ROL-H is a basic rolling-horizon approach and is configured with different horizon lengths
H (ROL-1, ROL-4, ROL-8). Note that this benchmark with H = 1 represents the myopic
solution that only considers one period in each substitute problem.
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• ADP-H is the ADP decomposition solution approach presented in Soppert et al. (2022),
and is configured with different horizon lengths H (ADP-1, ADP-4, ADP-8). It uses a
value function approximation to approximate the future after the horizon H that is being
considered.

Each combination of settings and DSRs forms a instance in our experiments. We implement
the algorithms in Python 3.8 and solve all solution approaches and benchmarks with Gurobi
9.1.2. In all scenarios, we set the optimality gap to zero and the time limit is set to one hour for
ADP-H, ROL-H, BAW-ROL-1, BAW-MODSIM and to 48 hours for MOD48h and MODSIM.
We execute the computations on a workstation with an AMD Ryzen 9 3900 X 12-Core processor
with 12 cores, and 64 Gigabyte RAM. Please note that we use the MILP of Soppert et al. (2022)
to evaluate the computed prices of the solution approaches and the benchmarks.

3.4.3 Results

In this section we present the results regarding the analyses of profit (see Section 3.4.3.1), pricing
(see Section 3.4.3.2), rentals (see Section 3.4.3.3) and computational time (see Section 3.4.3.4).

3.4.3.1 Profit

We begin with a comparison of the different solution methods and the benchmarks by identifying
the improvement over BASE. The potential is graphically shown in Figure 3.2. It depicts the
profit obtained with the different solution approaches and benchmarks (for the later considered
ADP-H and ROL-H in dependence of the horizon lengths H on the horizontal axis) relative
to the profit with BASE, which the 0%-line marks. The profits obtained by MODSIM, BAW-
ROL-1, BAW-MODSIM and MOD48h are horizontal lines as they do not depend on horizon
H.

We observe that MOD48h yield a profit increase of at least 13.5% over BASE. For SMALL
with DSR = 1/3 MOD48h yields the optimal solution. For LARGE and a higher DSR than
1/3, MOD48h does not find any feasible solution within 48 h. The myopic solution ROL-1
provides at least 5% more profit than BASE.

The difference between ROL-1 and MOD48h (in the instance SMALL, DSR = 1/3) shows
the whole effect of considering supply-side network effects. The exact supply-side network effect
for larger instances cannot be determined because it is not possible to determine the optimal
solution within 48 h. In the instance where an optimal solution can still be determined within
48 h (SMALL, DSR = 1/3), the profits of MODSIM, and BAW-ROL-1, BAW-MODSIM and
ADP-8 are very similar to the profit of the optimal solution (MOD48h). This leads to the
conclusion that these solution approaches and the benchmark consider the supply-side network
effects best. This conclusion is further supported by analyzing the profits for the other instances.
In contrast, the profit of ROL-8 is sometimes very similar (e.g. Figure 3.2a) to the profit of
MOD48h, sometimes clearly lower (e.g. Figure 3.2b and Figure 3.2c).

Figure 3.13 in Appendix 3.B depicts the results for SMALL, MEDIUM and LARGE with
all DSRs. In both figures it is obvious that BAW-ROL-1 and BAW-MODSIM make at least
the same profit as ADP-8 in SMALL, MEDIUM and LARGE for every DSR. Also the solution
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approach MODSIM provides results that are similar to BAW-ROL-1 and BAW-MODSIM for
all instances, although it is always below the profit of BAW-ROL-1 and BAW-MODSIM.

Thus, we can draw the following conclusions:

1. Although the proposed solution approaches (MODSIM, BAW-ROL-1, BAW-MODSIM)
are rather straightforward, they achieve equivalent results to more complex benchmarks
(MOD48h, ADP-8).

2. The comparison of profit of both new solution approaches (MODSIM, BAW) shows that
they consider supply-side network effects, as do the benchmarks MOD48h and ADP-8.
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Figure 3.2: Relative profit increase in a 9 zones- (SMALL), 16 zones- (MEDIUM), and 25 zones-setting
(LARGE) , DSR = 1/3.

3.4.3.2 Pricing Decisions

The anticipative solution approaches MODSIM, BAW-ROL1 and BAW-MODSIM consider supply-
side network effects as the benchmarks ADP-8 and MOD48h in contrast to ROL-1 (see Section
3.4.3.1). These supply-side network effects are also reflected in the pricing decisions.

The pricing decisions are depicted as price tables in Figure 3.4 for SMALL with DSR = 1/3.
For the sake of simplicity, we only analyze the pricing decision of the benchmarks ROL-1 (as
myopic pricing), ROL-8, MOD-48h, ADP-1 and ADP-8.

Since MOD48h (which is the optimal solution in this instance) considers the supply-side net-
work effects throughout the day, we compare the price table of the other solution approaches and
benchmarks with that of MOD48h. It is obvious that the price table of ROL-1 is very different
from the price table of MOD48h, which shows the strong impact of supply-side network effects.
The price tables of ROL-8, ADP-8, MODSIM, BAW-ROL-1, BAW-MODSIM and MOD48 h
are very similar to the price pattern of MOD48h. That indicates that these solution approaches
and benchmarks consider supply-side network effects.

On an aggregate level, these differences become also visible in comparing the proportion of
different prices of the solution approaches and benchmarks. In SMALL with DSR = 1/3, for
example, ROL-1 results in 2% low, 77% base, and 22% high prices (see Figure 3.3). Pricing
decisions of MOD48h consists of 34% low, 29% base, and 37% high prices. The proportions
of different prices of ADP-8 (43% low, 19% base, 38% high prices), MODSIM (45% low, 16%
base, 39% high prices), BAW-ROL-1 (36% low, 28% base, 36% high prices) and BAW-MODSIM
(35% low, 25% base, 37% high prices) are also similar to the proportion of different prices of
MOD48h, especially for the high prices. This shows that the better supply-side network effects
are captured, the more the resulting pricing decisions resemble the optimal pricing.

Thus, we can draw the following conclusions:
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1. Supply-side network effects are visible in the price tables and price proportions of MOD48h.

2. MODSIM, BAW-ROL-1 and BAW-MODSIM create price tables which are very similar
to those of MOD48h and ADP-8, which indicates that they consider supply-side network
effects effectively.
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Figure 3.3: Price proportions.
Green: low price, yellow: base price, red: high price.
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Figure 3.4: Pricing with different solution approaches and benchmarks in a 9 zones-setting (SMALL),
DSR = 1/3.

Green: L=low price, yellow: B=base price, red: H=high price

3.4.3.3 Rentals

The consideration of supply-side network effects is evident in profit and pricing. We also consider
the course of rentals for SMALL with a DSR = 1/3 (see Figure 3.5). Since prices affect demand
and demand affects rentals, we study the extent to which supply-side network effects are evident
for rentals. For the sake of simplicity, we only analyze the pricing decision of the benchmarks
ROL-1 (as myopic pricing), ROL-8, MOD-48h and ADP-8.
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The first thing to notice is that during the periods with low demand, BASE results in
fewer rentals than MOD48h and during the peaks it generates more rentals than MOD48h.
Furthermore, it is apparent that the rental-curve of ROL-1 fluctuates similar to the rental-curve
of BASE, whereas the rental-curve of MOD48h fluctuates less than both. Another remarkable
feature is that the rental curves of MOD48h, ADP-8, BAW-ROL-1 and BAW-MODSIM lie
almost on top of each other. The rental curve of MODSIM deviates only slightly from these
three rental curves.

From this we conclude that all anticipative solution approachesm and benchmarks (ROL-
8, ADP-8, MODSIM, BAW-ROL-1, BAW-MODSIM) consider the supply-side network effects
similarly and that apart from the similar prices, the rental curves of MOD48h, ADP-8 BAW-
ROL-1, BAW-MODSIM and MODSIM are also very similar.
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Figure 3.5: Rentals over the day in a 9 zones-setting (SMALL), DSR = 1/3.

3.4.3.4 Computational Time

An important aspect for the practicability of solution approaches is, among others, the compu-
tational time. For this purpose, we compare the computational time for SMALL, MEDIUM and
LARGE for the DSR = 1/3 (see Figure 3.6).

First, we consider the different benchmarks. MOD48h (2.5 h up to over 48 h) always takes
the longest time for SMALL. For MEDIUM and LARGE, MOD48h takes the full given time
of 48 h. The computational times of the rolling-horizon and decomposition solution approaches
depend on their horizon. ROL-1 (6 s up to under 1 min) takes the second lowest computational
time. ROL-4 (18 s up to 8 min) requires a similar computational time. In contrast, ROL-8 (20
min up to over 12h) requires a clearly longer computational time than ROL-1 and ROL-4. The
order of computational times for the different horizons is similar for the decomposition solution
approaches. More precisely, ADP-1 (4 min up to over 12 min) and ADP-4 (4 min up to over 1.5
h) still require relatively short computational times, whereas the computational time for ADP-8
(23 min up to over 17.5 h) is clearly longer. Thus, when comparing each different horizon length
of the rolling-horizon approaches with the decomposition solution approaches it is obvious that
the decomposition solution approaches need longer computational times. This is due to the
consideration of future states in the decomposition solution approaches. However, it should
also be noted that the benchmarks ADP-1, ADP-4 and ADP-8 require parameter estimation in
advance. The additional computational time of parameter estimation for all periods, which lies
between less than 1 hour for SMALL and roughly 2 hours for LARGE, thus, must be considered
(see also Soppert et al., 2022).
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Second, we consider the proposed solution approaches. MODSIM (1 s up to 6 s) takes the
least computational time for SMALL, MEDIUM and LARGE. BAW-ROL-1 (1.5 min up to 35
min) and BAW-MODSIM (1 min up to over 3.h) need relatively short computational times.

Comparing benchmarks with solution approaches, ADP-8 and MOD48h, which consider
the supply-side network effects effectively, require more computational time than MODSIM,
BAW-ROL-1 and BAW-MODSIM. In the most cases, even ADP-4 and ROL-8 require longer
computational times than the proposed solution approaches. ROL-4 takes less time than BAW-
MODSIM and BAW-ROL-1, but more time than MODSIM.

Figure 3.14 in Appendix 3.C depicts the results for SMALL, MEDIUM and LARGE with
all DSRs.

From the obtained computational times we can conclude the following.

1. ROL-1 and ROL-4 require short computational times but do not consider the supply-side
network effects effectively (see Section 3.4.3.1).

2. ADP-8 and MOD48h require long computational times.

3. MODSIM requires a short computational time and and is a preferred option due to the
comparable results in Section 3.4.3.1 with the best benchmarks (MOD48h, ADP-8).

4. BAW-ROL-1 and BAW-MODSIM need about the same and clearly less computational
time than the benchmarks that give similar results (ADP-8, MOD48h). Thus, they are
also preferred options.
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Figure 3.6: Computational time in a 9 zones- (SMALL), 16 zones- (MEDIUM), and 25 zones-setting
(LARGE) , DSR = 1/3.
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3.5 Sensitivity Analysis

In this section, we perform a sensitivity analysis to show how stable the solutions of the different
approaches are. First, we study the solution stability in a stochastic environment (see Section
3.5.1). Second, we analyze the effect of different intervals between prices in price sets and
different numbers of prices in price sets by modifying the discrete price set (see Section 3.5.2).
Third, we apply the different solution approaches and benchmarks for one week (see Section
3.5.3). Fourth, we study the impact of a start solution on results and computational time (see
Section 3.5.4).

3.5.1 Stochastic Demand

We analyze the robustness of the prices generated by the different solution approaches and
benchmarks in a stochastic environment. For this purpose, we use the multiplicative stochastic
function, which generates a stochastic demand Di,j,t (Talluri and van Ryzin, 2004): Di,j,t =
di,j,t · ξ where ξ is a stochastic error term which is assumed to follow a normal distribution
N(1, σ). We evaluate all scenarios, i.e., SMALL, MEDIUM and LARGE with all DSRs. For
each scenario, we consider different degrees of stochasticity, expressed by different standard
deviations σ ∈ 0, 0.1, 0.2, 0.3, 0.4 of the factor ξ. These values are in the range of demand
uncertainties we observed in practice. For each of the resulting combinations of scenario and
degree of stochasticity, we draw S = 1, 000 demand matrices.

Figure 3.7 illustrates the results for SMALL, MEDIUM and LARGE with DSR = 1/3. On
the vertical axis, the mean value of the relative profit increases with respect to BASE. On the
horizontal axis, the standard deviation σ is varied. Overall, the solution approaches MODSIM,
BAW-ROL-1 and BAW-MODSIM are robust to the stochasticity of demand. Similar to the
profits of the benchmarks ROL-1, ROL-8, ADP-1 and ADP-8, the relative profits of MODSIM,
BAW-ROL-1 and BAW-MODSIM decrease slightly with increasing stochasticity. The order of
the different solution approaches and benchmarks with respect to their performance does not
change in most instances. MODSIM, BAW-MODSIM and BAW-ROL-1 deliver profits that are
not worse than the benchmark ADP-8 for all scenarios and all stochasticities (see Appendix
3.D).
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Figure 3.7: Stochastic evaluation of solution approaches and benchmarks in a 9 zones- (SMALL), 16
zones- (MEDIUM) and 25 zones-setting (LARGE), DSR = 1/3.
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3.5.2 Different Price Sets

In this section, we analyze the impact of the price sets on the performance of the different
solution approaches and benchmarks. For this purpose, we use a common standard demand
pattern (SMALL, DSR = 1/3). Furthermore, in each instance we use 0.30 e/min as base price.
We conduct two experiments (see Table 3.2). First, we investigate 20 different price sets with
three prices each. The intervals between prices are the same within a price set, but differ between
price sets. We use intervals of 0.01 e/min, 0.02 e/min up to 0.2 e/min (see Table 3.2). Second,
we investigate the impact of the number of prices on the performance. Here, the intervals are
the same for each price set, but we increase the number of price points to five, seven and nine.
Price sensitivities change in accordance with prices.

Note that we exclude the ADP benchmarks for this analysis due to the high effort of esti-
mating the parameters in pre-processing. Thus, we focus on the solution approaches MODSIM,
BAW-ROL-1 and BAW-MODSIM and on the benchmarks ROL-8 and MOD48h only.

experiment 1: different intervals experiment 2: different number of prices

price interval price set sensitivity
factors number of prices price set sensitivity

factors
0.01 e/min {0.29, 0.30, 0.31} {1.04, 1, 0.96} 3 {0.24, 0.30, 0.36} {1.25, 1, 0.75}

0.02 e/min {0.28, 0.30, 0.32} {1.08, 1, 0.92} 5 {0.18, 0.24, 0.30,
0.36, 0.42}

{1.50, 1.25, 1,
0.75, 0.50}

0.03 e/min {0.27, 0.30, 0.33} {1.12, 1, 0.87} 7
{0.12, 0.18, 0.24,
0.30, 0.36, 0.42,

0.48}

{1.75, 1.50, 1.25,
1, 0.75, 0.50,

0.25}

0.04 e/min {0.26, 0.30, 0.34} {1.17, 1, 0.83} 9
{0.06, 0.12, 0.18,
0.24, 0.30, 0.36,
0.42, 0.48, 0.54}

{2.00, 1.75, 1.50,
1.25, 1, 0.75,
0.50, 0.25, 0}

0.05 e/min {0.25, 0.30, 0.35} {1.21, 1, 0.79}
0.06 e/min {0.24, 0.30, 0.36} {1.25, 1, 0.75}
0.07 e/min {0.23, 0.30, 0.37} {1.29, 1, 0.71}
0.08 e/min {0.22, 0.30, 0.38} {1.33, 1, 0.67}
0.09 e/min {0.21, 0.30, 0.39} {1.37, 1, 0.62}
0.10 e/min {0.20, 0.30, 0.40} {1.42, 1, 0.58}
0.11 e/min {0.19, 0.30, 0.41} {1.46, 1, 0.54}
0.12 e/min {0.18, 0.30, 0.42} {1.50, 1, 0.50}
0.13 e/min {0.17, 0.30, 0.43} {1.54, 1, 0.46}
0.14 e/min {0.16, 0.30, 0.44} {1.58, 1, 0.42}
0.15 e/min {0.15, 0.30, 0.45} {1.62, 1, 0.37}
0.16 e/min {0.14, 0.30, 0.46} {1.67, 1, 0.33}
0.17 e/min {0.13, 0.30, 0.47} {1.71, 1, 0.29}
0.18 e/min {0.12, 0.30, 0.48} {1.75, 1, 0.25}
0.19 e/min {0.11, 0.30, 0.49} {1.79, 1, 0.21}
0.20 e/min {0.10, 0.30, 0.50} {1.83, 1, 0.17}

Table 3.2: Overview over different price lists.

Figure 3.8 illustrates the results for different intervals between the prices and different number
of prices in the price set. On the vertical axis, the mean value of the relative profit increases
with respect to BASE. On the horizontal axis, the interval between the prices (see Figure 3.8a)
or the number of prices (see Figure 3.8b) in the price set is varied.

In Figure 3.8a the relative profit of all solution approaches and benchmarks, except of MOD-
SIM, tends to increase with the difference between the prices in the price set up to the difference
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of 0.14 e/min, after which it decreases. This shows that the prices should be chosen reasonably.
The relative profit of MODSIM increases until the difference of 0.08 e/min. Thereafter, the
profit curve drops sharply. We assume that this is due to the difference between the discrete
price points (p(1), p(2), p(3)). MODSIM, which converts the continuous prices of the simplified
model into discrete prices, calculates larger price differences between the continuous and the
discrete price. Thus, if the price difference between price points is greater than 0.08 e/min, the
larger the price difference, the worse the results of MODSIM. In reality, however, differences of
0.05 and 0.06 e/min are observed for Share Now.

In addition, in Figure 3.8b the relative profit also increases as the number of price points in
the price set increases. The profit increase is degressive. Furthermore, ROL-8, MODSIM, BAW-
ROL-1, BAW-MODSIM and MOD48h perform similarily well for three and five price points,
whereas ROL-8, BAW-MODSIM and MOD48h perform better than MODSIM and BAW-ROL-1
for seven and nine price points.

With regards to the worse performance of BAW-ROL-1 compared to BAW-MODSIM, the
first step of calculating vehicle distributions seems to be decisive. More precisely, BAW-MODSIM,
which has a suitable solution approach MODSIM to determine the vehicle distributions, per-
forms better than BAW-ROL-1, which has the benchmark ROL-1 to determine the vehicle
distributions.

From this we can conclude that BAW-MODSIM is the best practicable solution approach.
It provides similar results as MOD48h and ROL-8.
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Figure 3.8: Sensitivity analysis of varying intervals between prices and number of prices in price set in a
9 zones-setting (SMALL), DSR = 1/3.

3.5.3 Pricing for One Week without Operator-Based Relocation

In this section, we examined the determination of prices for an entire week without operator
based relocation. For this purpose, we assume that each day has the same demand pattern. For
this study, we look at the relative average profit for a day compared to the profit of pricing with
BASE, the course of rentals, and the price structure.
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3.5.3.1 Profit

First, we consider the relative average profit per day for one week (see Figure 3.9a), which is
relative to the average profit per day of BASE. It is obvious that supply-side network effects
have to be taken into account. This can be seen in the difference between myopic pricing ROL-1
and anticipative pricing ROL-8, MODSIM, BAW-ROL-1, BAW-MODSIM or MOD48h. Second,
we consider the relative profit per day for one week (see Figure 3.9b), which is relative to the
profit of BASE at the first day. Similar to the observation above, the profit of MODSIM, BAW-
ROL-1, BAW-MODSIM, ROL-8 and MOD48h is similar and higher than the profit of ROL-1. It
is also obvious that the order of the different solution approaches and benchmarks with regard
to profit does not change over the seven days. In addition, we note that the profit is highest on
the first day compared to the following days for all solution approaches and benchmarks (see
Figure 3.9b). However, this shows that operator-based relocation can be worthwhile.

Considering computational times, MOD48h needs 336.44 h, ROL-8 needs 8.46 h, while BAW-
ROL-1 needs 7.6 min, BAW-MODSIM 7 min and MODSIM 0.07 min to calculate prices (for a
more detailed analysis see Section 3.4.3.4)
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Figure 3.9: Profit for a week without operator-based relocation in a 9 zones-setting (SMALL),
DSR = 1/3.

3.5.3.2 Pricing Decisions

We examine the pricing decisions (see Figure 3.10). Except for the first day, we see a re-
peating price pattern for each day. Moreover, it is obvious that the myopic pricing approach
(ROL-1, Figure 3.10a) leads to a clearly different price table than the solution approaches and
benchmarks that include supply-side network effects (ROL-8, MODSIM, BAW-ROL-1, BAW-
MODSIM, MOD48h). However, there are also differences between them. For example, ROL-8
(see Figure 3.16c) sets high and low prices less frequently than MODSIM, BAW-ROL-1, BAW-
MODSIM and MOD48h (see Figure 3.10). The different price tables can be explained by the
different pricing decisions on the first day, which probably lead to different vehicle distributions
on the first day and thus different stable price patterns for days 2-7.
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Figure 3.10: Pricing for one week with different solution approaches and benchmarks in a 9
zones-setting (SMALL), DSR = 1/3

Green: low price, yellow: base price, red: high price.

3.5.3.3 Rentals

We examine rentals over the seven days (see Figure 3.11). Again, we note that after the initial
day, the rental course over the following days is identical. Furthermore, we observe that BASE
and the myopic pricing approach (ROL-1) result in numbers of rentals that fluctuate clearly more
than for the others. Furthermore, ROL-8, MODSIM, BAW-ROL-1, BAW-MODSIM, MOD48h
are similar.
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Figure 3.11: Rentals over seven days in a 9 zones-setting (SMALL), DSR = 1/3.

We can therefore conclude the following:

1. Each solution approach and each benchmark creates a (daily) regular rental pattern (see
Figure 3.11) and pricing (see Figure 3.10) after the first day. These regular patterns (for
day 2 to day 7) can be identified by the equal contribution margins (see Figure 3.9b).

2. The consideration of supply-side network effects in solution approaches and benchmarks
is useful and leads to clearly higher profits, even in longer periods. The consideration of
these supply-side network effects can be observed in the price tables (see Figure 3.10).

3. The solution approaches MODSIM, BAW-ROL-1 and BAW-MODSIM provide the same
results as the benchmarks ROL-8 or MOD48h (see Figure 3.9a), but need less computa-
tional time.

3.5.4 Impact of a Start Solution

In Section 3.4.3, we notice that even for some instances (Z = 25, DSR = 2/3 and Z = 25,
DSR = 3/3), there are no results for MOD48h since the solver does not find a feasible solution
within the given time limit of 48 h. Therefore, we wanted to investigate two aspects in this
section: First, whether a start solution improves the solution quality and second, whether and
how a start solution affects the computational time. We use the BASE solution as a start
solution in all instances.
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Difference in profit increase with respect to BASE in %
Z = 9 Z = 16 Z = 25

DSR = 1/3 DSR = 2/3 DSR = 3/3 DSR = 1/3 DSR = 2/3 DSR = 3/3 DSR = 1/3 DSR = 2/3 DSR = 3/3
ROL-4 0.02 0.00 0.00 0.00 0.37 0.09 -0.04 -0.15 -0.04
ROL-8 0.02 0.00 0.00 -0.06 -0.02 -0.09 -0.33 -0.01 0.04

MOD48h 0.00 0.00 0.00 0.07 0.02 0.25 0.30
ADP-1 0.00 0.00 -0.06 0.00 -0.04 0.00 0.00 0.00 0.02
ADP-4 0.00 0.00 0.00 0.00 0.04 0.14 0.00 -0.01 -0.01
ADP-8 0.00 0.00 0.00 -0.07 0.05 0.01 -0.04 0.00 -0.04

BAW-ROL-1 -0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
BAW-MODSIM 0.00 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 -0.05

(a) Profit with and without start solution

Difference in computational time in min
Z = 9 Z = 16 Z = 25

DSR = 1/3 DSR = 2/3 DSR = 3/3 DSR = 1/3 DSR = 2/3 DSR = 3/3 DSR = 1/3 DSR = 2/3 DSR = 3/3
BASE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-4 0.04 -0.18 -0.12 -0.98 -1.44 -4.50 2.91 8.10 11.36
ROL-8 -23.55 -1.25 -0.75 -5.94 -91.07 -87.91 -84.10 -91.59 265.08

MOD48h 2723.46 1.00 0.42 -0.16 0.08 0.00 0.06
ADP-1 0.14 0.07 -9.94 -3.89 -7.61 22.76 3.05 0.00 0.01
ADP-4 0.04 -0.05 -9.64 -3.71 -7.72 -36.43 -30.74 0.00 -0.01
ADP-8 -6.45 -2.90 0.46 47.06 -89.43 -1394.14 73.93 40.21 7.44

BAW-ROL-1 0.46 0.83 0.13 -15.44 -3.46 -2.24 16.17 21.76 65.43
BAW-MODSIM 0.21 -0.07 0.10 -9.42 -4.92 -2.51 -30.54 63.86 74.60

(b) Computational time with and without start solution

Table 3.3: Comparison regarding profit and computational time provided by solution approaches and
benchmarks with and without start solution.

The comparison leads to the following findings: All applied solution approaches and bench-
marks with a start solution result in no noticeable improvement of the results regarding profit
(see Table 3.3a). Notably, the start solution has a positive effect on the computational time for
most instances (a reduction of computational time up to 92 min, see Table 3.3b). However, a
start solution can also have negative effects on the computational time for some instances. For
example, for MOD48h at the smallest instance (Z = 9, DSR = 1/3), it has a clearly negative
time effect (+ 46 h).

Nevertheless, the use of a start solution results in solutions for MOD48h in all instances
within the time limit. From this it can be concluded that it makes sense to use BASE as a start
solution. This applies in particular to real instances.
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3.6 Conclusion

In this paper we propose two different solution approaches for the problem of origin-based
differentiated pricing for SMSs, which maximize the profit by setting spatially and temporarily
differentiated origin-based minute prices. Although origin-based pricing is the most practicable
variant of differentiated pricing, only one paper in the current literature focuses on differentiated
origin-based pricing in SMSs.

The first solution approach is a simplified mathematical model and formulated as a fluid
approximation (simplified model, MODSIM). The second one is a backwards algorithm (BAW),
which computes the vehicle distribution for every period with an appropriate straightforward
solution approach in a first step. We apply a myopic solution approach (BAW-ROL-1) and a
relaxed solution approach (BAW-MODSIM) for this step. In the second step, we calculate the
prices backwards based on the calculated vehicle distributions in the first step.

Extensive computational experiments and the sensitivity analysis with a varying number
of zones, demand patterns, overall demand levels, varying price sets and pricing for one week
without operator-based relocation show the stability of the results from our solution approaches
MODSIM, BAW-ROL-1 and BAW-MODSIM.

In the computational study, the proposed solution approaches perform similarly well as the
best performing benchmarks ADP-8, ROL-8 and MOD48h with considerably shorter computa-
tional time without having to calculate additional parameters (as with ADP-8). Additionally,
they show a considerable improvement with regard to profit over the myopic benchmark (ROL-1,
up to 10 percentage points). In the instance (SMALL, DSR = 1/3) where the optimal solution
can be determined, we can show that the proposed, anticipative solution approaches (MOD-
SIM, BAW-ROL-1, BAW-MODSIM) find a solution close to optimality. Finally, the resulting
price tables show high similarity to the optimal price tables, in contrast to the price tables from
the myopic pricing approach (ROL-1). This shows that, in contrast to the myopic solution ap-
proach, our approaches, just like other benchmarks (ADP-8, ROL-8, MOD48h), take supply-side
networks into account. We also show that the proposed solution approaches need clearly less
computational time in comparison to the benchmarks ADP-4, ADP-8 and MOD48h.

In the sensitivity analysis, we investigate the stability of the solutions from our solution
approaches and benchmarks in regards to four aspects. First, we investigate the stability of
the results against a background of an environment with different degrees of stochasticity of
the demand. The solution approaches MODSIM, BAW-ROL-1 and BAW-MODSIM are robust
against stochasticity of demand. The order of the different solution approaches and benchmarks
with respect to profit does not change in most cases. Second, we study the effect of different
price sets on the performance of the different solution approaches and benchmarks. We find that
MODSIM is only useful for the difference between the discrete prices up to 0.08 e/min, and
that MODSIM and BAW-ROL-1 lose performance when the price set has more than five price
points. For settings with price sets containing more than five price points, we recommend BAW-
MODSIM. Third, we study the determination of prices for an entire week without operator-based
relocation. Even in this long considered period the consideration of supply-side network effects
is useful and leads to clearly higher profits for the anticipative solution approaches (MODSIM,
BAW-ROL-1, BAW-MODSIM) and the benchmarks (ROL-8, MOD48h). Fourth, we study the
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impact of a start solution. The implementation of a start solution does not noticeably improve
the results regarding profit (except for MOD48h, where now always a feasible solution exists).
However, in most cases, it has a positive effect on the computational time.

To conclude, we propose different pricing approaches (MODSIM, BAW-ROL-1, BAW-MODSIM)
that can be used for profit maximization in SMSs by considering supply-side network effects with
clearly shorter computational times. These pricing approaches do not require a pre-processing
for estimating parameters in advance, are straightforward to apply and equal in profit to com-
parable but more complex benchmarks (e.g. ADP-8).
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3.A Price Proportion for Different Scenarios
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Figure 3.12: Price proportion in a 9 zones- (SMALL), 16 zones- (MEDIUM) and 25 zones-setting
(LARGE)

Green: low price, yellow: base price, red: high price.
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3.B Profit for Different Scenarios
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Figure 3.13: Relative profit increase in a 9 zones- (SMALL), 16 zones- (MEDIUM) and 25 zones-setting
(LARGE).
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3.C Computational Time for Different Scenarios
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Figure 3.14: Computational time in a 9 zones- (SMALL), 16 zones- (MEDIUM) and 25 zones-setting
(LARGE).

3.D Stochastic Demand

As a technical remark, note that in the stochastic demand model, demand realization Dijt < 0
could potentially result in particular for high values of σ (see the corresponding discussion in
Talluri and van Ryzin (2004, Chapter 7.3.4)). We correct for this by setting negative draws to 0.
Note that the small positive bias resulting from this truncation is not relevant to our study, as
for each degree of stochasticity, we use the same 1000 scenarios for all approaches we compare.
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Figure 3.15: Pricing with different solution approaches in a 9 zones-setting (SMALL), DSR = 1/3.
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3.E One Week Pricing
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Figure 3.16: Pricing for one week with different solution approaches in a 9 zones-setting (SMALL)
DSR = 1/3

Green: low price, yellow: base price, red: high price.
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3.F Stochastic Evaluation

Mean profit increase with respect to BASE in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
BASE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 6.24 5.71 5.73 5.79 5.78 9.05 5.67 5.67 5.67 5.61 11.44 6.24 6.23 6.22 6.22
ROL-4 9.41 12.06 12.16 12.29 12.36 12.35 8.84 8.78 8.45 8.15 14.17 9.24 9.07 8.90 8.74
ROL-8 11.68 14.50 14.64 14.79 14.83 13.97 10.91 10.67 10.24 9.83 14.71 11.54 11.38 11.24 11.09
ADP-1 14.25 11.55 11.65 11.75 11.81 14.20 12.66 12.13 11.60 11.00 14.25 14.10 13.77 13.44 13.12
ADP-4 14.57 14.59 14.79 15.03 15.20 14.67 13.20 12.57 11.95 11.35 14.82 14.36 14.05 13.72 13.40
ADP-8 14.72 15.27 15.46 15.62 15.72 14.65 13.45 12.83 12.22 11.64 14.78 14.48 14.20 13.91 13.60

MODSIM 13.46 14.67 14.74 14.85 14.97 14.23 13.90 13.39 12.80 12.26 14.25 13.30 13.11 12.90 12.69
BAW-ROL-1 14.87 15.26 15.31 15.36 15.37 14.59 14.08 13.48 12.88 12.32 14.70 14.61 14.30 13.99 13.66

BAW-MODSIM 14.73 15.36 15.41 15.47 15.49 14.71 13.62 12.97 12.34 11.73 14.80 14.41 14.06 13.72 13.36

(a) DSR = 1/3

Mean profit increase with respect to BASE in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
BASE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 8.14 8.26 8.29 8.35 8.28 9.53 9.31 9.13 9.04 8.99 9.05 9.04 9.05 9.05 9.07
ROL-4 12.65 12.84 12.91 12.99 12.98 12.65 12.43 12.20 12.05 11.99 12.35 12.30 12.26 12.22 12.17
ROL-8 13.96 14.09 14.16 14.22 14.14 14.64 14.37 14.15 14.02 13.97 13.97 13.93 13.82 13.73 13.63
ADP-1 13.69 13.59 13.77 14.00 14.10 14.42 13.94 13.73 13.62 13.55 14.23 14.13 14.03 13.93 13.84
ADP-4 13.87 14.00 13.98 13.99 13.90 14.79 14.44 14.15 13.96 13.85 14.59 14.57 14.46 14.35 14.24
ADP-8 13.93 14.10 14.12 14.16 14.07 14.87 14.53 14.31 14.16 14.06 14.71 14.60 14.52 14.43 14.34

MODSIM 13.38 13.73 13.74 13.80 13.77 14.12 14.55 14.63 14.61 14.60 14.20 14.29 14.30 14.25 14.18
BAW-ROL-1 13.96 13.88 13.87 13.89 13.82 14.80 14.50 14.20 13.99 13.84 14.67 14.51 14.41 14.31 14.22

BAW-MODSIM 13.94 13.94 13.94 13.97 13.90 14.79 14.62 14.33 14.12 13.99 14.65 14.64 14.53 14.43 14.33

(b) DSR = 2/3

Mean profit increase with respect to BASE in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
BASE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 10.09 10.23 10.30 10.42 10.45 11.83 11.72 11.60 11.48 11.51 11.44 11.41 11.31 11.18 11.08
ROL-4 12.64 12.78 12.74 12.73 12.64 14.36 14.31 14.08 13.64 13.30 14.17 14.09 13.93 13.73 13.55
ROL-8 13.29 13.37 13.39 13.38 13.30 15.23 15.03 14.69 14.25 13.95 14.71 14.56 14.37 14.13 13.90
ADP-1 13.26 13.08 13.04 13.03 12.95 14.81 14.87 14.64 14.34 13.98 14.25 14.16 14.02 13.87 13.75
ADP-4 13.20 13.24 13.17 13.13 13.06 15.25 15.04 14.73 14.35 14.02 14.70 14.67 14.52 14.35 14.21
ADP-8 13.31 13.38 13.40 13.39 13.30 15.26 14.95 14.63 14.26 13.81 14.80 14.66 14.50 14.34 14.18

MODSIM 12.93 13.33 13.30 13.29 13.21 14.90 14.90 14.69 14.28 13.84 14.25 14.18 14.09 13.99 13.89
BAW-ROL-1 13.31 13.14 13.06 13.01 12.94 15.25 15.12 14.78 14.40 14.04 14.82 14.60 14.42 14.18 13.95

BAW-MODSIM 13.31 13.24 13.17 13.13 13.06 15.14 15.05 14.68 14.20 13.79 14.78 14.70 14.55 14.39 14.21

(c) DSR = 3/3

Table 3.4: Mean profit increase in a 9 zones- (SMALL), 16 zones- (MEDIUM) and 25 zones-setting
(LARGE) for different DSRs. For all analyses, the half-width of the 95% confidence interval was at

most ±0.16 percentage points.
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4.1 Introduction

Shared mobility systems (SMSs) such as car sharing and bike sharing systems have become an
integral part of the inner-city mobility. Globally, the shared mobility market today has a size
of approximately 250 bn. USD and is projected to grow annually by around 25% the next years
(Data Bridge Market Research, 2021). Among the two general concepts of free-floating (FF)
and station-based (SB) systems (Lu, Chen, and Shen, 2017), especially FF SMSs experienced
considerable growth during the last decade (Shaheen, Cohen, and Jaffee, 2018). The decisive
difference between FF SMSs and SB SMSs is that pick-up and drop-off locations for vehicles
are not limited to certain predefined locations – the stations in an SB SMS. Instead, in an FF
SMS, vehicles are free-floating within some predefined operating area and can be dropped-off
(and picked-up) at any publicly accessible location.

The optimization of SMSs, e.g. with regard to pricing and relocation, has been studied
extensively in the literature, summarized e.g. in review papers on car sharing by Ferrero et al.
(2015a) and on SMSs in general by Laporte, Meunier, and Wolfler Calvo (2018); Ataç, Obrenović,
and Bierlair (2021). However, in the body of works addressing operational optimization problems
with endogenous modeling of rentals, FF SMSs – despite their dominance in practice – have not
been adequately considered. Instead, up to now, FF SMSs are treated like SB SMSs (compare
e.g. Jorge, Molnar, and de Almeida Correia (2015); Haider et al. (2018) for SB SMSs and
Lu et al. (2021); Hardt and Bogenberger (2021) for FF SMSs). However, as it turned out in
a close collaboration with Share Now, Europe’s largest FF car sharing provider operating in
16 cities in 8 countries (Share Now, 2021), ignoring the difference between both concepts in
the optimization models can result in an overestimation of rentals in the FF SMS, suboptimal
decisions and substantial profit losses. In this work, we address and solve this fundamental issue
of inaccurate rentals modeling in FF SMS optimization models.

To give an idea of the causes of this issue, we first need to consider how SMS optimization
models are usually formulated: Regarding space, it is the state-of-the-art approach in literature
and practice to discretize the operating area of an FF SMS into zones – the counterpart of
stations in an SB SMS (e.g. Weikl and Bogenberger (2016); Neijmeijer et al. (2020)). Regarding
time, the considered time frame is discretized into periods for both SB and FF SMSs. The SMSs
are described and optimized on this level of aggregation, i.e. relevant data (e.g. demand) is
collected, and optimization models are formulated on this location-period level (station-period
in SB SMSs, zone-period in FF SMSs). Typically, these optimization models are mixed-integer
(linear) programs based on network flow formulations for both SB (e.g. Jorge, Molnar, and de
Almeida Correia (2015)) and FF (e.g. Lu, Chen, and Shen (2017)) SMSs.

Now, a central component of these optimization models is the formalization on the location-
period level how rentals realize in dependence of the number of available vehicles and the number
of arriving customers – i.e., how supply and demand match. The existing SB and FF SMS op-
timization models rely on the implicit assumption that rentals are determined by the minimum
of supply and demand. While the realization of rentals can be modeled well with this matching
function in an SB SMS, applying the same simplified assumption to FF SMSs can cause sub-
stantial errors. Consider e.g. a station-period combination in an SB SMS with one (expected)
available vehicle and one (expected) arriving customer. In this SB SMS, it is valid to assume

109



that one (expected) rental realizes. For the same situation in an FF SMS in contrast, an accurate
matching function must differ: When the zone is large, the available vehicle is not necessarily
within reach of the customer, because the zone has a spatial expansion and customers have a
maximum willingness-to-walk (e.g. Herrmann, Schulte, and Voß (2014)). Thus, at most one –
for a large zone, much less than one – (expected) rental results. Note that we explicitly write
"(expected)", because even though realizations of supply, demand and rentals are discrete values
in reality, they can be (and often are) modeled continuously.

A presumably simple solution is to apply a finer spatial discretization scheme to the FF SMS,
i.e. to define many small zones such that a customer can reach any vehicle in the respective
zone, and then use the matching function to determine rentals as in an SB SMS. This, however,
simply substitutes the problem of a vehicle being too far away in a large zone by other problems,
which become more severe with decreasing zone size: Most importantly, defining many small
zones is problematic, because observed data points of demand and supply that in reality resulted
in a rental are more likely to be assigned to neighboring zones such that there would not be a
matching in the FF SMS model. This aggregation error is related to the modifiable areal unit
problem (see, e.g., Manley (2019)) which summarizes that statistical results, such as mean values,
variance, and correlations do depend on the specific discretization scheme. Typical discretization
schemes in literature and practice use zones in the order of several square kilometers (e.g. Weikl
and Bogenberger (2016)) and for these zone area sizes, the described issue regarding the supply-
demand matching due to the customers’ maximum walking distance indeed prevails. These larger
zone area sizes also have the practical advantage that the typically resulting fifty to hundred
zones have a count which is still manageable for the staff of the SMS provider and that the
optimization models which scale with the zone count do not grow too large. All of the named
aspects already show that the decision on appropriate discretization schemes (including count,
size and shape of zones) for FF SMSs is very complex. In fact, there is no single best definition
of the discretization scheme. Thus, in our work, we consider a certain discretization scheme as
given, and we address the search for accurate matching functions for FF SMSs that adapt to
the given circumstances.

Clearly, any matching process can be replicated arbitrarily exact with stochastic simulations
that consider discrete supply, demand, and resulting rentals. However, we are interested in
analytical functions that output expected rentals (continuous values) and that can be integrated
in the existing SMS optimization models from the literature. Therefore, to solve the issue of
inaccurate matching modeling in FF SMS optimization models, we first formulate a general
matching function that replicates the matching process within an FF SMS and incorporates its
specific characteristics. Based on this, we then formally derive two novel matching functions
which are specifically suited for FF SMS optimization models. We also formalize what is assumed
in the existing literature so far by a third matching function and show that only the two novel
matching functions can widely be applied to FF SMSs, and that their integration in FF SMS
optimization models improves decision making.

To properly distinguish our work from the literature, two streams are of particular impor-
tance. First, matching functions have a long history in macroeconomics, mostly focusing on
labor markets and with the intention to explain unemployment (e.g. Petrongolo and Pissarides
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(2001)). Some extensions also consider matching functions in transportation systems, such as
taxi systems (e.g. Buchholz (2019)). However, as we discuss in more detail in Section 4.2, match-
ing functions that incorporate the specifics of FF SMSs have not been discussed yet. Moreover,
in contrast to this literature stream, our focus eventually lies on the formulation of optimization
models, such that we have a different view on matching functions and their requirements: For
example, the matching functions’ linearizability and integrability in an overall FF SMS opti-
mization model is of particular importance in our case, but irrelevant in the existing literature.
Second, the development of matching functions for FF SMSs in our work must not be mixed
up with the development of so-called matching algorithms in platform-based SMSs such as on-
demand ride-hailing, like Uber or Lyft (e.g. Yan et al. (2020)). In the latter, a central platform
faces the problem to assign customer requests most efficiently to available drivers. Since the
customer’s GPS coordinates are shared with the driver after the assignment happened, the ride
realizes with certainty and, thus, there is no need for matching functions in the sense explained
above. In contrast to the matching algorithms in platform-based SMSs, the provider of the
SMSs that we consider cannot explicitly decide on the assignment of vehicles to customers as
customers choose vehicles themselves. Instead, the matching functions formalize how many
rentals are expected to realize within some location-period combination, given supply, demand,
and other relevant parameters.

The contributions of this paper are as follows:

• To the best of our knowledge, we are the first to reveal the necessity to formulate SB
and FF SMS optimization models differently. We show that more sophisticated matching
functions improve FF SMSs models and the decisions resulting from optimization.

• Second, we derive two novel matching functions for FF SMSs, which take into account the
customers’ sequential arrival, their maximum walking distance, and the size of the zone.
These functions differ regarding their mathematical properties and can be integrated in
different types of optimization models – one into the widespread linear network flow-based
SMS optimization models, allowing to adapt a variety of existing SB SMS optimization
models to FF SMSs.

• Third, we formalize a third matching function that reflects the assumptions made (im-
plicitly) in the SMS optimization literature, i.e. that (expected) rentals correspond to the
minimum of (expected) supply and demand. We demonstrate that this benchmark does
not yield accurate rentals estimations for FF SMSs in general. Our analytical investigation
of this function’s properties shows that this shortcoming cannot be remedied by artificially
partitioning zones for which data is given into multiple smaller zones.

• Fourth, in a computational study, we demonstrate that the rental prediction accuracy of
the novel functions in an FF SMS is substantially higher than the benchmark function.
This is because the novel matching functions adapt to the given circumstances, in particular
to different zones sizes.

• Fifth, in a case study based on real-life data, we integrate one of the novel matching
functions into an existing pricing optimization framework and demonstrate significant
profit increases that can be ascribed solely to the more accurate matching modeling.
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Overall, this work primarily contributes to the literature on FF SMS optimization from the
operations research stream of literature. We build a bridge between the optimization of SB and
FF SMSs, in the sense that, by the approaches presented in this paper, existing optimization
approaches that were specifically designed for SB SMSs can straightforwardly be generalized to
make them applicable for FF SMSs as well.

The remainder of the paper is structured as follows. In Section 4.2, we review the related
literature. Section 4.3 discusses the novel as well as the benchmark matching functions. Section
4.4 contains the numerical study considering the rentals prediction accuracy. In Section 4.5, we
assess the importance of accurate matching modeling in optimization problems by considering
a pricing optimization case study. Section 4.6 covers managerial insights, concludes the paper
and gives an outlook.
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4.2 Literature

The literature on SMS optimization is broad and covers decision making at strategic, tactical and
operational levels (Laporte, Meunier, and Wolfler Calvo, 2018). Various review papers on bike
sharing (DeMaio, 2009; Fishman, Washington, and Haworth, 2013; Ricci, 2015) and car sharing
(Jorge and Correia, 2013; Ferrero et al., 2015a,b; Brendel and Kolbe, 2017; Illgen and Höck,
2019; Golalikhani et al., 2021a,b) summarize the literature. Our work contributes to the tactical
(e.g. fleet sizing) and operational (e.g. relocation or pricing) levels where matching functions
are (implicitly) used and, as we will see, more advanced matching functions are required for FF
SMSs.

Until now, matching functions for SMSs and the necessity of modeling FF SMSs differently
than SB SMSs has not been discussed in the literature. On the contrary, the literature is divided
on whether any differences need to be made between optimization models of SB and FF SMSs
and we explore these views in Section 4.2.1. In Section 4.2.2, we provide an overview on SMS
optimization problems with a focus on the wide spread approaches formulated as time-expanded
networks. These works are relevant because existing assumptions regarding matching can be
concluded from their optimization models and these works are the ones where our novel matching
functions can be integrated in. In Section 4.2.3, we review the literature on matching functions
from macroeconomics. In Section 4.2.4, we briefly review two other related literature streams,
namely agent-based FF SMS simulations and empirical studies, as these works implicitly provide
insights regarding relevant parameters for matching functions.

Note that, as explained in Section 4.1, we do not consider platform-based mobility offers like
on-demand ride-hailing that assign customer requests to vehicles (e.g. Boysen, Briskorn, and
Schwerdfeger (2019); Yan et al. (2020)), because the nature of these problems differs fundamen-
tally from those in the SMSs that we consider (car sharing etc.).

4.2.1 Station-Based vs. Free-Floating Shared Mobility System Optimization

SB SMSs have a relatively long history in practice – the first SB car sharing system was installed
in 1948 in Switzerland (called Sefage) (Shaheen, Sperling, and Wagner, 1998). In contrast, the
concept of FF SMSs, which today largely relies on the usage of mobile phones and GPS tracking
only became technically realizable much later and arguably was first put into practice with
an FF car sharing system in 2008 in Germany (Ciari, Bock, and Balmer, 2014) (called car2go
which ten years later became Share Now). This temporal delay of FF SMSs is reflected in the
literature, where the majority of papers consider SB SMSs. For example, in the general survey
paper on SMSs, Laporte, Meunier, and Wolfler Calvo (2015) entirely focus on SB SMSs, while
their updated survey a few years later explicitly differs between SB and FF SMSs (Laporte,
Meunier, and Wolfler Calvo, 2018).

Regarding the optimization of these SMSs, there are different views in the literature on
whether SB and FF SMSs can be considered identical or not: Some authors state that SB and
FF SMSs can be treated identically. As stated in Section 4.1, this view is based on the fact that
the state-of-the-art approach in literature and practice regarding the modeling of FF SMSs is
to discretize the operating area into zones (e.g. Weikl and Bogenberger (2016); Neijmeijer et al.
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(2020)). Thus, it is tempting to equate stations and zones. For example, in their review paper
on relocations in one-way car sharing, Illgen and Höck (2019) argue that "free-floating operation
areas are usually partitioned into smaller zones that serve as virtual stations, such that the
VReP [vehicle relocation problem] can be applied perfectly for relocations that occur between
those zones instead of from station to station". Similarly, Lu et al. (2021) who consider combined
relocation and pricing on the performance of one-way car sharing systems, implicitly state that
SB and FF SMSs can be considered identically, as they use the decisive terms "stations" and
"zones" interchangeably.

The only researchers we know of who represent a more differentiated view are from Bogen-
berger’s group. Weikl and Bogenberger (2015) e.g. consider relocation optimization for FF
SMSs. On the one hand, they state that from a technical viewpoint, SB SMS optimization mod-
els can be transferred to FF SMSs by "dividing the operating area into station-like zones." On the
other hand, they state that "transferring the existing relocation models for station-based systems
to free-floating car sharing systems is however restricted" and they give multiple reasons related
to the considered relocation problem (see also Weikl and Bogenberger (2013)). The authors e.g.
argue that zone-level relocation decisions are not specific enough for FF SMSs because vehicles
have specific positions. Another argument concerns the optimization model, since zones of FF
SMSs "do not have strict capacity limits" in contrast to stations in SB SMSs. To address these
issues, the authors define "macroscopic zones" which are separated into "microscopic zones". The
relocation decisions on macroscopic level are determined by optimization while the decisions on
microscopic level are rule-based. Note that in the models of Weikl and Bogenberger (2013) and
Weikl and Bogenberger (2015), the issue of accurate matching modeling does not arise, because
the optimal number of vehicles per zone which is affected by the relocation decisions is given
and rentals are not modeled endogenously (see also Section 4.2.2).

In our work, we demonstrate that SB and FF SMS optimization models indeed need to differ.
While Weikl and Bogenberger (2015) focus on relocation, in this paper we address the essential
issue of matching modeling, which is necessary for all optimization models in which rentals are
endogenously modeled. We in particular show that once that data is collected on some defined
zone level, artificially subdividing this zone into multiple sub-zones which correspond to stations
of an SB SMS does not address the issue of inaccurate rentals predictions (Section 4.3).

4.2.2 Network Flow-Based Shared Mobility System Optimization Models

The dynamically changing, imbalanced distribution between available and demanded vehicles
is a well-known challenge of SMSs (Jorge and Correia, 2013; Lippoldt, Niels, and Bogenberger,
2019; Molnar and Correia, 2019). Most tactical and operational optimization approaches seek
to address this problem in order to optimize for the actual service- or monetary-related goal.
To that end, the proposed approaches typically consider the interaction of supply and demand
over the entire SMS by modeling the system with a time-expanded network, where rentals and
relocations are described by flows. Note that not all network flow-based SMS models consider
rentals endogenously. For example, papers on relocation typically consider the desired number
of vehicles at different spatio-temporal network nodes as given, and model only the operator-
based vehicle movements (=relocations) to serve this demand as network flows. The matching
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functions in this work determine the user-based vehicle movements (=rentals) in dependence
of supply, demand and other parameters. Accordingly, they are only relevant for optimization
models with endogenous rentals which we focus on in the following.

Among these works, we identify three groups. First, works that consider SB SMSs (e.g.
Jorge, Molnar, and de Almeida Correia (2015); Haider et al. (2018)), second, works that consider
FF SMSs (e.g. Lu, Chen, and Shen (2017); Lu et al. (2021); Hardt and Bogenberger (2021)),
and third, works that consider SMSs in general (e.g. Correia and Antunes (2012); Soppert et al.
(2022)), by speaking of locations instead of stations or zones. Among the first and second group,
several works do not use the term station-based or free-floating explicitly, but their problem
description and modeling where they use the terms station or zone allows to classify them.

To the best of our knowledge, the issue of supply and demand matching in FF SMSs has not
been addressed in any of these works, or elsewhere in the literature. Still, the above works model
the relation between supply, demand, and rentals, such that assumptions regarding the matching
modeling within a specific location-period are implicitly revealed: All of the above-named works
use the concept that rentals are the minimum of demand and supply. Other parameters that
may affect the matching are not considered. To the best of our knowledge, there are only two
works in the above-named groups (Hardt and Bogenberger (2021); Soppert et al. (2022)) that
explicitly model (expected) rentals to equal the minimum of (expected) supply and (expected)
demand (always add "(expected)" in the following). All other works formulate constraints that
only limit rentals to this minimum because they propose optimistic optimization models in the
sense that the operator can deny a rental although there is supply and demand (see Soppert
et al. (2022) for further discussions).

To summarize the SMS literature regarding matching modeling, one can conclude from the
optimization models that it is current practice to (explicitly or implicitly) assume that rentals
are determined by the minimum of supply and demand and this simplistic assumption is applied
to both SB and FF SMSs. With regard to the three groups in the literature identified above,
our contribution is to develop matching functions that allow to apply SB SMS models to FF
SMS models (first group) and to improve FF and unspecified SMS models (second and third
group).

Even if supply and demand matching has not been considered explicitly, the above works
impose requirements on the matching functions that we develop. For one thing, the matching
functions need to be compatible with a spatio-temporal discretization and shall be seamlessly
integratable into these SMS models. More specifically, the matching functions’ in- and output
need to be compatible with the overall SMS models from literature. For another, many ap-
proaches are formulated as linear optimization problems. Therefore, linear matching functions
that retain the linearity of the overall model have an additional value for the generalizability of
existing literature.

4.2.3 Matching Functions

Analytical formulations that describe the formation of new relationships, i.e. matches, from
unmatched agents are denoted as (aggregate) matching functions and have originally been dis-
cussed in macroeconomics, often in the context of stylized (labor) markets. The motivation to
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formulate these matching functions is to explain "coordination failures" that e.g. "explain the
existence of unemployment" (despite job availability) through "the modeling of frictions" which
derive e.g. from "information imperfections" or "heterogeneities" (Petrongolo and Pissarides,
2001). In their survey paper on matching functions, Petrongolo and Pissarides (2001) state that
for labor markets the simplest matching function m is of the form M = m(U, V ), where M is the
number of jobs that result during a given time interval in dependence of unemployed workers U

and vacant jobs V . Different underlying mechanisms of the matching process, called microfoun-
dations, are assumed that lead to different matching functions. For example, the earliest works
by Butters (1977) and Hall (1979) formulate matches based on an urn-ball microfoundation,
where (in labor market context) workers randomly send applications (balls) to job vacancies
(urns). Under the simplest assumption that "U workers know exactly the location of job V va-
cancies", that workers "send one application each", and that "a vacancy [...] selects an applicant
at random", the resulting matching function becomes M = V · [1 − (1 − 1/V )U ] which can be
approximated by M = V · [1− e−U/V ] (Petrongolo and Pissarides, 2001).

In the context of transportation, the matching between customers and drivers in taxi systems
has been analyzed by Bian (2018), Buchholz (2019), Fréchette, Lizzeri, and Salz (2018) as well
as Ata, Barjesteh, and Kumar (2019). The matching functions of the first two are based on the
works named above, have the same structural form, and are only slightly modified, e.g. by a "lo-
cation specific parameter" (Bian, 2018) that allows to calibrate to spatial heterogeneities. A par-
ticular matching function that holds "in the absence of frictions" is M = min(U, V ) (Petrongolo
and Pissarides, 2001), also denoted as "perfect matching" (Bian, 2018) or "frictionless matching"
(Buchholz, 2019), which in the latter is used to describe the search process by taxis for customers
at airports.

In contrast, Fréchette, Lizzeri, and Salz (2018) as well as Ata, Barjesteh, and Kumar (2019)
use fundamentally different approaches to derive matching functions for taxi systems. Fréchette,
Lizzeri, and Salz (2018) picture different areas of a city where each area consists of a grid
of locations that represent street corners. A matching function is approximated through a
simulation in which customers and drivers appear randomly on these locations. Customers wait
for some time before they leave and whenever a driver arrives at a location where a customer
is waiting a match realizes. Ata, Barjesteh, and Kumar (2019) propose an analytical approach
in which they draw the number of customers and drivers each from a Binomial distribution and
then derive the expected number of matches by taking the minimum of both values. To find a
tractable approximation, the authors use the Normal distribution and linear approximations to
obtain the eventual matching function.

To the best of our knowledge, matching functions for FF SMSs have not yet been discussed
in the literature. In our work, we fill this gap by deriving matching functions which are based
on FF SMSs specifics (microfoundations), such as zone sizes and customers’ willingness-to-walk.
These parts of our work contribute to the matching functions literature. However, since we
focus on FF SMS optimization – during development of the functions as well as in a pricing
optimization case study – we overall see our contribution with regard to the SMS optimization
literature from operations research. E.g. other than in the matching function literature, addi-
tional properties for the newly developed functions, like e.g. the integrability into optimization
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models, are of particular interest in our work. In Section 4.3, we establish the connection be-
tween the developed matching functions and literature and e.g. discuss under which conditions
the frictionless matching mentioned above can be applied to FF SMSs.

4.2.4 Further Related Literature Streams

The first related literature stream uses agent-based simulations to derive insights on SMSs.
Typical applications are e.g. the evaluation of SMSs within a multi-commodity transportation
network (Ciari, Balac, and Axhausen, 2016; Li et al., 2018; Heilig et al., 2018), the impact of
specific (parking) pricing rules (Ciari, Balac, and Balmer, 2015; Balac, Ciari, and Axhausen,
2017), or the interplay of competing SMS providers (Balac et al., 2019). Because of the system’s
description on agent level, including customer behavior and exact vehicle positioning, matching
is indeed considered in these simulations. However, an analytical formalization of the matching,
in particular on location-period level, as required for the integration into network flow-based
optimization problems, is not given. Another application of agent-based simulations is to serve
as a heuristic solution approach for network flow optimization problems that we consider in
our work (see e.g. Cocca et al. (2019)), but also in this case no analytical formulations of the
matching is provided.

The second related literature stream deals with empirical studies on FF SMS. These works
provide requirements for and relevant parameters of suitable matching functions. From several
studies one can conclude that matching functions have to consider spatio-temporal differences
of an SMS. For example, Reiss and Bogenberger (2016) simulate a bike sharing system based
on empirical data and identify different demand patterns for weekdays and weekends, as well
as for different locations and times of the day. Hardt (2018) also reports different spatio-
temporal demand patterns and furthermore identifies differences regarding the resulting rentals,
drop-offs, and availabilities within the operating area. Regarding relevant parameters on the
customers’ decision for the matching functions in FF SMSs, literature especially mentions the
distance/walking time to the vehicles as well as the pricing. For example, Wu et al. (2019)
investigate the user behavior with a stated-choice experiment considering for example walking
time, willingness to pay, and socio-demographical features. Niels and Bogenberger (2017) analyze
app openings and booking data from a car sharing system. Among other results, they report a
high influence of the distance to available vehicles on the customers’ decision.
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4.3 Modeling Rentals in FF SMS Optimization Problems

In this section, we propose and discuss two novel analytical matching functions to model rentals
in FF SMS optimization problems. Further, we formalize a third one which reflects the matching
as it is currently assumed in the SMS optimization literature and which will serve as a benchmark
later in the computational study. In Section 4.3.1, we begin by discussing the required output
as well as reasonable inputs for the matching functions. Section 4.3.2 presents a generic stylized
matching process and a corresponding generic matching function on which all specific matching
functions are based. In Section 4.3.3, we systematically derive the different functions, along
with their specific underlying assumptions. Section 4.3.4 discusses mathematical properties and
Section 4.3.5 the potential of being integrated into linear optimization problems for each of the
matching functions.

4.3.1 Output and Inputs

We begin by stating the output of the matching functions: As discussed in Sections 4.1 and
4.2.2, SMS optimization models are typically formulated based on network flow formulations,
consisting of multiple locations and periods. In these SMS models, vehicle movements, i.e.,
rentals and relocations, have a certain location-period origin as well as a certain location-period
destination. To fit in these network flow SMS models, a compatible matching function’s output
simply needs to quantify the (expected) number of rentals r that originate in a certain location
and period. Conversely, it is not determined by the matching function how the rentals that realize
in a specific origin split into different destinations, as this can be covered by other components
of the overall SMS network flow model (see Section 4.3.5).

We continue with stating reasonable inputs for the matching functions: Clearly, the rentals
depend on the number of available vehicles and arriving customers in a given location and
period. Therefore, these quantities, which we denote as a and d, are inputs. However, when
considering the realization of rentals in an FF SMS, two additionally necessary parameters
become immediately apparent, namely the maximum distance that customers are willing to walk
and the size of the zone. With a maximum walking distance in the order of several hundred
meters (e.g. Herrmann, Schulte, and Voß (2014); Niels and Bogenberger (2017)), and a typical
zone size of several square kilometers (e.g. Weikl and Bogenberger (2016); Müller, Correia, and
Bogenberger (2017)), it is clear that an available vehicle is not necessarily within reach of a
customer, even if the customer and vehicle are in the same zone. In order to formalize the
matching functions based on these two additional parameters, we define Aw as the size of the
area within walking distance and Az as the size of the zone. The matching functions therewith
become a function of the discussed inputs and parameters, meaning r = rAw,Az (a, d).

4.3.2 Preliminaries: Generic Matching

4.3.2.1 Stylized Matching Process

As discussed above, matching functions for network flow-based SMS optimization models require
to describe the rentals r on location-period level, given a and d. In contrast, the actual matching
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process in reality is independent of the artificial spatio-temporal discretization and underlies
dynamics that take place within the period. In this section, we therefore introduce a stylized
matching process that considers the requirements imposed by the discretization in the SMS
model as well as the intent to formalize analytical functions that replicate the real matching
process as accurately as possible. We take the following assumptions for the stylized matching
process on location-period level:

• All vehicles a become available at the beginning and customers d arrive sequentially during
the period. More precisely, the a vehicles are first distributed over the zone. Second,
the d customers arrive sequentially and potentially rent one of the vehicles each. Both
a and d have zero variance, meaning that these are deterministic values in the matching
process. We assume homogeneity of the zone, such that the exact locations of vehicles
and customers are drawn from a uniform distribution. To formalize the process and in
particular its intermediate states, we denote the remaining customers to arrive during a
period as d̂ and the remaining available vehicles as â.

• Each of the remaining available vehicles belongs to a corresponding part of the zone,
meaning that the vehicle would be within reach for an arriving customer from this part.
We say that a vehicle covers a part of the zone area and we denote the size of the area
that is covered by â vehicles all together as Aâ. The size of the marginally covered area by
the âth vehicle is denoted as ∆Aâ. The matching functions differ in their assumption how
the vehicles are spatially distributed and how additional vehicles cover additional parts of
the zone.

Note that it is reasonable to define the marginal coverage of a vehicle ∆Aâ in dependence of
the walking area Aw of a customer : As stated above, we assume homogeneity of a zone such
that the probability of any location within the zone to lie within Aw is equal. Considering
a situation with one available vehicle, the probability that this vehicle is located within
the reachable area of the customer Aw is equivalent to the probability that the customer
arrival location lies within the area Aw which is covered by the vehicle. The latter is in
line with the assumption that vehicles are available from the beginning of a period and
that customers arrive sequentially.

• For every arriving customer, there is a certain probability that a rental realizes. Clearly,
this probability depends on the remaining available vehicles â in the zone, the customer’s
walking area Aw as well as the zone area size Az. Since â and therewith Aâ may change
over the matching process, also this matching probability, which we denote by PAw,Az (â),
generally differs for each of the customers. We assume that a rental realizes if the customer
arrival position lies within the (currently) covered zone area Aâ. Considering the uniform
distribution for a customer’s exact arrival position, the probability of a matching PAw,Az (â)
therewith is equal to the proportion of the covered area to the entire zone area, meaning
PAw,Az (â) = Aâ

Az
. The matching process ends if all customers have arrived or if all vehicles

have been rented.

Note that drawing exact positions from the uniform distribution corresponds to assuming
homogeneity of the zone. We define a zone as the smallest considered spatial unit within
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an FF SMS for which data is aggregated or given. This implies that no information on a
more disaggregate level is available which would justify separating a (heterogeneous) zone
into multiple (homogeneous) ones. Later, in the numerical study, we vary the zone size
which corresponds to different given levels of spatial data aggregation and we evaluate the
matching functions with regard to their adaptability to these different circumstances.

4.3.2.2 Generic Matching Function

Given the above assumptions, the matching process within a location-period combination can
be formalized by the following generic matching function

rAw,Az
(â, d̂) = PAw,Az

(â) · (1 + rAw,Az
(â− 1, d̂− 1)) + (1− PAw,Az

(â)) · rAw,Az
(â, d̂− 1) ∀â, d̂ ∈ Z

(4.1a)

rAw,Az (â, 0) = 0 ∀â ∈ Z
(4.1b)

rAw,Az (0, d̂) = 0. ∀d ∈ Z
(4.1c)

The inter-dependencies between the possible rental realizations and the changing zone coverages
are formulated by a recursion over the customer arrivals (4.1a). For every arriving customer, the
probability that a rental realizes is PAw,Az (â). In case of a match, one rental is counted and the
number of available vehicles is reduced by one. With probability P̄Aw,Az (â) = 1−PAw,Az (â), no
rental takes place such that the subsequent customer (if existent) has the same number of vehicles
available, i.e. â. Independent of the outcome, the number of customers to come is reduced by
one, i.e. d̂ ← d̂ − 1. The boundary conditions (4.1b) and (4.1c) ensure that the number of
rentals is zero if either supply or demand are zero. Note that (4.1) is a discrete function in â

and d̂ but that its output of expected rentals in general takes continuous values. In reality, of
course, realizations of supply, demand, and rentals are discrete but since matching functions,
meaning (4.1) as well as all introduced in the following, are models that aim at replicating reality,
continuous outputs are reasonable or even desired if interpreted as expected values (see Section
4.3.5).

In the context of an overall network flow SMS model, (4.1) would then be integrated to
calculate the resulting rentals for a specific location-period combination with corresponding
vehicle count a and arriving customers d, i.e., by evaluating rAw,Az (a, d).

4.3.3 Derivation of Matching Functions

Based on the previously described generic matching process, we derive three matching functions
in this section. The decisive difference between the functions is the rate with which an additional
vehicle covers the area of the zone. Consequently, we denote the three functions as

• degressive coverage rate matching function (DCR) (Section 4.3.3.1),

• constant coverage rate matching function (CCR) (Section 4.3.3.2), and

• infinite coverage rate matching function (ICR) (Section 4.3.3.3).
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Figure 4.1: Illustrative representation of coverage by matching functions
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Figure 4.2: Schematic iso-rental curves for different matching functions and a specific Aw, Az with
Aw < Az

The assumptions of the DCR come closest to the real matching process, but also the other two
functions, especially the CCR, have a range of validity, and other advantages compared to the
DCR.

4.3.3.1 The Degressive Coverage Rate matching function (DCR)

The DCR results from the generic matching function (4.1) by further specifying the matching
probability PAw,Az (â). The underlying assumption of the DCR is that each part of the zone
is equally likely to belong to the area covered by a vehicle. Thus, the area covered by an
additional vehicle comprises a part that is newly covered (marginally covered area) and a part
that is already covered by the other vehicles (and wasted in this sense). More formally, the
DCR assumes that, for a given available vehicle count â, the additionally covered area ∆Aâ+1
by one additional vehicle, meaning by the (â + 1)st vehicle, is a fraction of Aw. This fraction
is the ratio of the not covered zone area with â vehicles Āâ = Az − Aâ to the entire zone area,
meaning ∆Aâ+1 = Aw · Āâ

Az
.

Proposition 1. Assuming ∆Aâ+1 = Aw · Āa
Az

, the matching probability is PAw,Az (â) = (1− (1−
Aw
Az

)â) and the DCR is defined by

DCR: rDCR
Aw,Az

(â, d̂) = (1− (1− Aw

Az
)â) · (1 + rDCR

Aw,Az
(â− 1, d̂− 1))

+ (1− Aw

Az
)â · rDCR

Aw,Az
(â, d̂− 1) ∀â, d̂ ∈ Z (4.2a)

rDCR
Aw,Az

(â, 0) = 0 ∀â ∈ Z (4.2b)
rDCR

Aw,Az
(0, d̂) = 0. ∀d̂ ∈ Z (4.2c)

We prove Proposition 1 in Appendix 4.B. Figure 4.1a illustrates the marginal coverage of
the DCR for a = 3 vehicles. The âth vehicle additionally covers Aw ·(1− Aw

Az
)â−1. In Figure 4.2a,
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the DCR iso-rental curves are schematically depicted, indicating which a, d combinations lead
to the same number of rentals. For every a, d combination, an increase of one of the quantities
always results in a higher-level curve, but the increase depends on the ratio of a and d. If a is
larger than d, an increase of a causes a smaller increase of rentals r than if a and d are identical
or if d is even larger than a, and vice versa..

Remark. Note that for formal reasons Aw ≤ Az is required such that the matching probability
does not exceed one. Naturally, Aw ≥ 0 also holds. For Aw > Az the entire zone is always
covered by the remaining available vehicles such that every arriving customer results in a rental
as long as at least one vehicle is available. In this case, the matching process is rather trivial
and, as we discuss later, it is covered by the ICR, the state-of-the-art matching function. This
also holds for the following sections, in particular for the CCR which is discussed next.

4.3.3.2 The Constant Coverage Rate matching function (CCR)

The CCR is derived from the generic matching function (4.1) in two steps. The first step
concerns the assumption regarding the marginal coverage by an additional vehicle and, as the
name suggests, the CCR assumes a constant marginal coverage. More precisely, the marginal
coverage for the (â + 1)st vehicle is ∆Aâ+1 = min(Az −Aâ, Aw · λ) with λ ∈ [0, 1], meaning that
each additional vehicle additionally covers the same fraction of the walking area Aw ·λ until the
residual of the zone’s covered area is smaller than this Aw · λ, such that the next vehicle covers
this residual. The factor λ allows to formulate a constant marginal coverage which implicitly
considers the potential overlap of the area covered by the individual vehicles (as for the DCR).
In Appendix 4.C, we show that for an expected number of available vehicles ā, for example
determined by historic data, λ can be analytically approximated by

λ ≈
1− (1− Aw

Az
)ā

Aw

Az

· 1
ā

. (4.3)

With this assumption for ∆Aâ+1, the covered area by â vehicles becomes Aâ = min(Az, Aw ·λ·â),
and PAw,Az (â) = min(Az ,Aw·λ·â)

Az
in (4.1a).

In the second step to derive the CCR, the additional assumption is taken that all customers
have identical matching probabilities, such that the former recursive formulation simplifies to

rAw,Az
(a, d) = min(min(Az, Aw · λ · µ · a)

Az
· d, a, d), ∀a, d ∈ Z (4.4)

with µ ∈ [0, 1]. The fraction in the first argument of the (outer) min()-operator in (4.4) represents
the average matching probability for every of the d arriving customers. µ allows to formulate the
average covered area Aw · λ ·µ · a, which is a fraction of Aw · λ · a. In the recursive formulations,
the boundary conditions ensured that rentals can not exceed a or d. In the explicit (4.4), this
is ensured by the second and third argument of the min()-operator. (4.4) can be simplified to
the final CCR

CCR: rCCR
Aw,Az

(a, d) = min(Aw

Az
· λ · µ · a · d, a, d). ∀a, d ∈ Z (4.5)

Clearly, µ has to depend on the amount of customers arriving. We show in Appendix 4.C, that
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for an expected amount of customers d̄, the parameter µ can be analytically approximated by

µ ≈ 1
d̄
·

d̄∑
i=1

(1− Aw · λ
Az

)i−1. (4.6)

Figure 4.1b illustrates the marginal coverage of the CCR for λ = µ = 1 and a = 3 vehicles.
Every vehicle additionally covers Aw ·λ ·µ. In Figure 4.2b, the iso-rental curves of the CCR are
schematically depicted. In contrast to the DCR, for large values of a and/or d, an increase of
these quantities does not result in an increase of the rentals r.

4.3.3.3 The Infinite Coverage Rate matching function (ICR)

As the name suggests, the ICR assumes an infinite coverage by every additional vehicle (no
friction). More precisely, the marginal coverage for the (â + 1)st vehicle is ∆Aâ+1 = min(Az −
Aâ, Az), meaning that the entire zone is covered as long as there is at least one vehicle available.
With this assumption, PAw,Az (â) = 1 for every arriving customer as long as there is at least one
vehicle available. Then, the ICR in dependence of a and d can be formalized by

ICR: rICR
Aw,Az

(a, d) = rICR(a, d) = min(a, d). ∀a, d ∈ Z (4.7)

Figure 4.1c illustrates the coverage of the zone according to the ICR for a ≥ 1 vehicles, showing
that the entire zone is covered. In Figure 4.2c, the iso-rental curves of the ICR are schematically
depicted. If a is greater or equal to d, an increase of a does not result in an increase of the rentals
r, and vice versa. The iso-rental curves demonstrate that the ICR follows the characteristics of
a Leontief production (Fandel, 1991, Chapter 4).

Regarding the relation between the matching functions, one can state the following: When
the first argument in the min()-operator in (4.5) is not restrictive, the CCR (4.5) and the ICR
(4.7) become identical. This first argument is not restrictive if λ ·µ · Aw

Az
·a ≥ 1 or λ ·µ · Aw

Az
·d ≥ 1.

Further, the ICR is a special case of the DCR: When Aw = Az, PAw,Az (â) = 1 for every customer
in the DCR (4.2) such that rentals realize until all vehicles are taken, or all customers have arrived
– exactly as in the ICR (4.7). In the schematic depiction of iso-rental curves of the DCR in
Figure 4.2a, the curves take the form of the ICR in Figure 4.2c if Pa = 1 for every customer.
As stated in Section 4.3.3.1, the DCR is not defined for Aw > Az. Similarly, the derivation of λ

and µ for the CCR in Section 4.3.3.2 assumes Aw ≤ Az. However, more general formulations of
these two matching functions that would also capture the case of Aw > Az would return rentals
as for Aw = Az, i.e. like the ICR, because Aw = Az already captures the case where the entire
zone is covered by the available vehicles.

Remark. As discussed in Sections 4.1 and 4.2.2, it is current practice in the SMS optimization
literature to determine rentals for a specific location-period combination by the minimum of
the available vehicles and arriving customers (also known as "perfect/frictionless matching",
see Section 4.2.3). Literature applies this (implicit) assumption to model both SB as well as
FF SMSs. The ICR (4.7) is the formalization of this assumption such that the ICR could be
considered as the state-of-the-art matching function, even if not discussed as such in the SMS
literature. Clearly, since the ICR does not consider Aw and Az, the ICR in general overestimates
the actual matching when applied to model an FF SMS for which Aw < Az. In the numerical
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studies in Section 4.4, we use the ICR as a benchmark to evaluate the DCR and CCR.
Note that in an SB SMS, where available vehicles and arriving customers refer to a specific

station, the issue of overestimating rentals due to the neglection of spatial parameters Aw and
Az described above does not occur. Note further that the link between SB and FF SMSs in
the context of matching modeling can be established by considering an extreme case of the zone
area size: A station of an SB SMS can be considered as a zone in an FF SMS of infinitely small
size – a point zone. In this point zone, the expected rentals can be correctly described by the
ICR (4.7).

4.3.4 Properties

In this section, we discuss mathematical properties of the three matching functions rM
Aw,Az

(a, d)
with M ∈ {DCR, CCR, ICR}. This analysis is common in the matching function literature, as
it allows to assess the plausibility of the derived functions by verifying desirable properties and
to analytically derive limitations of the functions’ applicability. Properties 1 and 2 can be con-
sidered as standard boundary conditions for matching functions. Properties 3 and 4 are related
to the special case of "perfect/ frictionless" matching (see Section 4.2.3) in FF SMSs. Properties
5 and 6 are specific for matching functions in FF SMSs, while especially the latter also impacts
the formulation of overall optimization models for FF SMSs – a particularly relevant aspect in
our work (see also Section 4.3.5).

Property 1 – Zero rentals boundary conditions. If either demand or supply are zero, no
rentals realize. Formally, we have rM

Aw,Az
(a, d) = 0 if a = 0 or d = 0.

This property verifies an intuitive boundary condition: The absence of available vehicles or cus-
tomers. Clearly, the DCR, the CCR, and the ICR fulfill this property.

Property 2 – Supply and demand limits. If the number of available vehicles becomes in-
finitely large, the realized rentals equal demand, and vice versa. Formally, we have rM

Aw,Az
(a, d) =

d for a→∞ and rM
Aw,Az

(a, d) = a for d→∞, respectively.

This property verifies an intuitive boundary condition in the abundance of available vehicles or
customers. Clearly, the CCR and the ICR fulfill this property. For the DCR, consider that if
a → ∞, also â → ∞ and that the probability of a matching PAw,Az (â) = (1 − (1 − Aw

Az
)â) → 1

in (4.2a), for realistic parameters where Aw ≤ Az. If this is true for every arriving customer d,
rM = d. For d → ∞, the recursion in (4.2a) is executed until all vehicles a are taken because
we have PAw,Az (â) > 0 ∀â > 0.

Property 3 – Matching with certainty for entire zone coverage. If the vehicles cover
the entire zone area, the next arriving customer certainly finds a vehicle and a rental results.
Formally, we have ∂

∂drM
Aw,Az

(a, d) = 1 if Aa = Az.

This intuitive property covers constellations in which matching in an FF SMS works as matching
in SB SMS. For the DCR, Aa = Az requires the special case that Az = Aw, and in this case,
PAw,Az (a) = 1 for every arriving customer, as long as there is at least one vehicle available.
For the CCR, Aa = Az means that Aw · λ · µ · a = Az such that the first argument of the
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min()-operator is not restrictive and an additional demand results in an additional rental. The
ICR fulfills this property by definition.

Property 4 – No matching for zero zone coverage. If the vehicles cover an infinitely
small zone area or the zone area grows to infinity, there is no matching. More precisely, every
additional customer results in zero additional rentals. Formally, we have ∂

∂drM
Aw,Az

(a, d) = 0 for
Aa → 0 or Az →∞.

This property is the opposite of the aforementioned one. Compared to the walking distance,
distances are so long that there are no rentals.

For the DCR, both of the extreme cases result in PAw,Az (a) → 0 such that an additional
customer does not increase the expected rentals. For the CCR, the first argument of the min()-
operator becomes zero such this property is fulfilled. The ICR does not fulfill this property
and in contrast predicts an additional rental for every customer, given an available vehicle, no
matter what sizes Aw and Az take.

Property 5 – Supply and demand symmetry. The matching function is symmetric regard-
ing supply and demand. Formally, we have rM

Aw,Az
(a, d) = rM

Aw,Az
(d, a).

Obviously, the CCR and the ICR both fulfill this property. We prove symmetry of the DCR in
Appendix 4.D.

It follows from the proof, that the DCR can be formulated by interchanging â and d̂ in (4.2)
which yields

rDCR
Aw,Az

(d̂, â) = (1− (1− Aw

Az
)d̂) · (1 + rAw,Az (d̂− 1, â− 1))

+ (1− Aw

Az
)d̂ · rDCR

Aw,Az
(d̂, â− 1) ∀â, d̂ ∈ Z (4.8a)

rDCR
Aw,Az

(d̂, 0) = 0 ∀d̂ ∈ Z (4.8b)
rDCR

Aw,Az
(0, â) = 0. ∀â ∈ Z (4.8c)

The intuition of this alternative DCR formulation (4.8) is exactly inverse to the one described
in Section 4.3.2.1: A customer covers a certain fraction of the zone and every part of the zone
is equally likely to belong to the marginally covered area by an additional customer. The
positions where the available vehicles are located are sequentially drawn at random from a
uniform distribution. For each drawn vehicle, the probability that it is rented is determined
by the respective proportion of the covered zone at the time it is drawn. As for the DCR
formulation (4.2), the process ends if either the rentals realized equal the initial customer count,
or if all vehicle appearances were drawn.

Property 6 – Independence to zone partitioning. For the ICR, the expected number
of rentals does not change if a homogeneous zone is artificially sub-divided into multiple sub-
zones. Formally, if a zone of zone area size Âz is partitioned into Z sub-zones, rICR

Aw,Âz
(a, d) =

Z · rICR
Aw,Âz/Z

( a
Z , d

Z ) holds

Property 6 states that artificially partitioning a zone into multiple sub-zones does not change
the overall expected number of rentals for the ICR. Consider that the collected data on the
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zone level is given by a, d, and Âz. Aw is also given. When data is collected on this zone level,
the only reasonable assumption is that this zone is homogeneous, such that a and d would be
divided proportionally to obtain the respective quantities for the Z smaller sub-zones, i.e. a

Z

and d
Z . Consequently, the resulting rentals for the ICR in each sub-zone are the rentals of the

original zone divided by Z. Since there are Z of these sub-zones, overall, the amount of rentals
remains the same.

This property is the reason for the fact that the issue of inaccurate matching modeling cannot
be simply solved by partitioning a zone artificially into multiple smaller sub-zones of the ’right’
size for the ICR (see the corresponding statement in Section 4.1). This property is illustrated
with a numerical example in Appendix 4.I. Note that an analogous property holds for the DCR
and CCR, which considers the probabilities of all combinations of possible discrete distributions
of a and d over the sub-zones and then applies the matching functions on these sub-zones.

4.3.5 Integration in Linear Optimization Problems

As described in Sections 4.1 and 4.2.2, a lot of work has been done in the literature to cover
the various SMS optimization problems based on network flow modeling. Mostly, the resulting
formulations are mixed-integer linear programs (MILP). As explained, our work particularly
focuses on the optimization models of FF SMSss and in this section, we therefore discuss whether
the introduced matching functions can be linearized losslessly, such that an exact integration in
a typical MILP is possible.

The decisive characteristic of spatio-temporal network flow formulations, illustrated in Figure
4.14 in Appendix 4.A, is a set of constraints that describe the flow conservation in the network.
With discrete locations i, j, k ∈ Z, and periods t ∈ T , the flow conservation constraints can be
formulated as ∑

i∈Z
rijt + sjt =

∑
k∈Z

rjk(t+1) + sj(t+1) ∀j ∈ Z, t ∈ T , (4.9)

where rijt describe the rentals from location i to j in period t, and sjt describe the vehicles that
remain unused at location j in period t. Now, the number of rentals originating at a location
i, given by rit = ∑

j∈Z rijt, are assumend to realize according to a specific matching function,
depending on the number of available vehicles ait and the arriving customers dit = ∑

j∈Z dijt.
Therefore, the logic of the matching functions to determine rit has to be formulated by means
of additional constraints within the MILP formulation. Note that additional constraints are
required to derive the i-j-t-specific rentals rijt from the rit-values, but this is out of scope of the
matching itself.

Note further that, in contrast to dit, the quantities rit and ait are decision variables in the
MILP. In certainty equivalent formulations (based on expected values), these decision variables
are continuous, meaning ait, rit ∈ R+

0 ∀i ∈ Z, t ∈ T . In the following, we therefore discuss for
each of the initial matching functions from Section 4.3.3, whether the range of values Z for ait

and dit can be replaced by R+
0 , how the functions are formulated for a specific i-t-combination,

and whether a lossless integration in a MILP formulation is possible.
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Figure 4.3: Schematic representation of matching functions

4.3.5.1 DCR

For a specific i-t combination, the DCR (4.2) becomes

rDCR
it,Aw,Az

(âit, d̂it) = (1− (1− Aw

Az
)âit) · (1 + rDCR

it,Aw,Az
(âit − 1, d̂it − 1))

+ (1− Aw

Az
)âit · rDCR

it,Aw,Az
(âit, d̂it − 1) ∀âit, d̂it ∈ Z (4.10a)

rDCR
it,Aw,Az

(âit, 0) = 0 ∀âit ∈ Z (4.10b)
rDCR

it,Aw,Az
(0, d̂it) = 0. ∀d̂it ∈ Z (4.10c)

Due to the recursive formulation of the DCR (4.10) which is only defined for discrete values
âit, d̂it ∈ Z, the range of values for âit and d̂it, and therewith also for rDCR

it,Aw,Az
(âit, d̂it), cannot be

replaced by the continuous range R+
0 . Figure 4.3a depicts (4.10) schematically (for Aw < Az).

For a given demand level dit, it illustrates how the realized rentals rDCR
it,Aw,Az

(ait, dit) depend on
the number of initially available vehicles ait. Every additional vehicle increases the expected
rentals with decreasing margin such that the demand is the limit of the function.

Clearly, since for a given ait, dit, (4.10) is a discrete function in ait ∈ Z ∀i ∈ Z, t ∈ T , the
DCR can not be losslessly linearized and integrated in a MILP formulation. Note, however, that
the DCR may find application in (non-linear) optimization approaches with discrete ait ∈ Z,
such as for example in an approach based on a Markov decision process (MDP).

As for any function, an approximate linearization is possible in principle also for the DCR.
However, the question is how accurate such a linearization is and, in the context of a MILP, how
this impacts the number of decision variables and constraints. A reasonable way to linearize the
DCR would be to define a piece-wise linear function with supporting points for every ait ∈ Z,
for which the exact rit is known. This would correspond to a function that connects the dots
in Figure 4.3a. While this is possible in theory, it would require a large number of additional
auxiliary variables in a MILP in order to determine which piece of this function is active. Thus,
we do not see this as a promising path.

4.3.5.2 CCR

In the CCR (4.5), the range of values for a, d, and rCCR
Aw,Az

(a, d) can be replaced by R+
0 . For a

specific i-t combination, the CCR becomes

rCCR
it,Aw,Az

(ait, dit) = min(λ · µ · Aw

Az
· dit · ait, ait, dit). ∀ait, dit ∈ R+

0 (4.11)
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Since λ, µ, Aw, Az and dit are parameters, one can pre-compute whether the first or the second
argument of the min()-operator is smaller. We define this i-t-specific pre-computed parameter
as

γit = min(λ · µ · Aw

Az
· dit, 1) (4.12)

and therewith obtain

rCCR
it,Aw,Az

(ait, dit) = min(γit · ait, dit), ∀ait, dit ∈ R+
0 (4.13)

which is schematically depicted in Figure 4.3b. It illustrates that for the CCR (4.13), the number
of expected rentals rCCR

it,Aw,Az
(ait, dit) is a piece-wise linear function of ait with two pieces, where

dit determines the height of the horizontal second piece. As long as ait ≤ dit
γit

, an increase of
ait results in the same marginal increase of rentals. This marginal increase is determined by
the slope parameter γit, determined with (4.12) or tuned (based on simulations or the DCR) to
obtain an overall good fit for a certain range of expected ait, dit. For ait > dit

γit
, an increase of

ait does not increase rCCR
it,Aw,Az

(ait, dit).
The CCR (4.13) can be losslessly linearized and integrated in a MILP formulation with a

set of auxiliary variables and corresponding constraints. Depending on the actual ait, these
constraints determine which part of the piece-wise linear function needs to be active. The model
(4.44)-(4.58) in Appendix 4.F that we apply in the case study in Section 4.5 is an example of a
CCR integrated into a MILP for a differentiated pricing optimization problem.

4.3.5.3 ICR

In the ICR (4.7), the range of values for a, d, and rICR(a, d) can be replaced by R+
0 . For a

specific i-t combination, the ICR (4.7) becomes

rICR
it (ait, dit) = min(ait, dit), ∀ait, dit ∈ R+

0 (4.14)

which is schematically depicted in Figure 4.3c. Like for the CCR, the number of expected rentals
rICR

it (ait, dit) in the ICR is a piece-wise linear function of the initially available vehicles count
ait with two pieces where dit determines the height of the horizontal second piece. In contrast to
the CCR, the slope of the first piece is γit = 1 such that every additional ait results in a rental,
as long as ait ≤ dit.

Analogously to the CCR, a set of auxiliary variables and corresponding constraints enables
a lossless integration of (4.14) in a MILP. Examples for the integration of the ICR in SMS
optimization problems are Hardt and Bogenberger (2021) for relocation and Soppert et al.
(2022) for pricing.
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4.4 Computational Study

In this section, we evaluate the rental prediction accuracy of the three matching functions DCR,
CCR, and ICR introduced in Section 4.3.3. We consider two general settings, i.e. the single
zone single period setting and the multiple zones multiple periods setting, discussed in Section
4.4.1 and 4.4.2, respectively. The subsections for each setting are organized as follows. We
begin with an introduction of the setting (4.4.1.1 resp. 4.4.2.1), followed by the description of
a simulation which serves as a benchmark (4.4.1.2 resp. 4.4.2.2), the parameter configurations
(4.4.1.3 resp. 4.4.2.3), and the evaluation metrics (4.4.1.4 resp. 4.4.2.4). The last subsections
discuss the results (4.4.1.5 resp. 4.4.2.5).

4.4.1 Single Zone Single Period Setting

4.4.1.1 Setting

The single zone single period (SZSP) setting is a stylized setting where the FF SMS, as the name
suggests, consists of one single zone and one single period. The purpose of this setting is to isolate
the assessment of the rental prediction accuracy, and to eliminate potential effects that would
result from replicating a real FF SMS consisting of more than one zone and multiple periods. For
each considered parameter configuration, characterized by a given number of available vehicles
a at the beginning of the period, a given number of customers to arrive d, and a specific choice
of walking area Aw and zone area Az size, rM

Aw,Az
(a, d) is evaluated for the different matching

functions M ∈ {DCR, CCR, ICR}. The outputs are compared to a benchmark from a stochastic
dynamic simulation, described next.

4.4.1.2 Simulation Benchmark

The simulation of the SZSP-setting is consistent with the generic matching process described
in Section 4.3.2, i.e. vehicles are available at the beginning of the considered period, while
customers arrive sequentially during the period. For each considered parameter configuration,
we derive the benchmark by performing multiple simulation runs n ∈ N = {1, 2, . . . , N} that
each yield a rental observation rn.

At the beginning of each simulation run n, a given number of available vehicles a is distributed
within a squared zone of size Az. In line with the assumptions from Section 4.3.2.1, a zone is
homogeneous and consequently, the location of each vehicle is drawn from a uniform distribution.
A given number of customers then arrive sequentially and their respective point of appearance
is drawn from a uniform distribution as well. The customers have a maximum walking distance
(corresponding to Aw) and the assumption is that if there is at least one vehicle within reach,
the closest one is rented. This vehicle is then removed and the rental is recorded. Independent of
the actual rental outcome, the number of customers to come is reduced by one and the process
is repeated until all d customers have arrived. The simulation process for one simulation run is
summarized as pseudo code in Algorithm 6 in Appendix 4.E.

To clarify the setup, consider Figure 4.4 that depicts a single simulation run of the SZSP-
setting with Az = 1 km2 in retrospective. The a = 10 initially available vehicles are represented
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Figure 4.4: Run of SZSP-scenario with Az = 1 km2 in retrospective (a = 10, d = 10)

as blue triangles, and the d = 10 customers, that arrived sequentially during the run, are
represented by red dots with their respective walking area, depicted as red circles. One of
the vehicles, the one in the lower left corner of the zone, was out of reach for all customers.
Consequently, this vehicle has not been rented in this simulation run. Note, however, that even
though all other vehicles lay within at least one of the red circles, they were not necessarily
rented, because the respective customer might have taken a different vehicle. Since Figure 4.4
does not show the temporal sequence of the run, some of the vehicles depicted have not been
available for the customers that arrived rather late. In fact, only rn = 6 rentals realized in this
particular run.

Note that Figure 4.4 shows that parts of the walking area may lay outside of the zone.
The actual area of the zone which is within reach of a customer therewith is smaller than the
walking area. For the benchmark simulation, we exclude this effect by the following mechanism:
Whenever a part of the walking area protrudes beyond the zone boundary, this part is displaced
to the other side of the zone. The effect is that the entire walking area actually lies within the
zone. Thus, our zone has a limited size, but effectively no border, like the surface of a sphere.

4.4.1.3 Parameter Configurations and Scenarios

We consider the following parameter settings, with every potential combination of values defining
a valid parameter configuration:

• Available vehicles (VSZSP ): a is selected from the discrete set VSZSP = {0, 1, . . . , 10}.

• Arriving customers (DSZSP ): d is selected from the discrete set DSZSP = {0, 1, . . . , 10}.

• Walking area size (Aw): Aw is kept constant at Aw = π · (0.3km)2 = 0.28 km2. The radius
of 0.3km represents a realistic maximum walking distance (Herrmann, Schulte, and Voß,
2014).

• Zone area size (Az): Az is selected from the discrete setAz = {0.5 km2, 1 km2, 2 km2, 4 km2},
representing the typical range of zone size values from literature (e.g. Weikl and Bogen-
berger (2016); Müller, Correia, and Bogenberger (2017)) and practice.

We use the term SZSP-scenario to refer to parameter settings having the same value of Az, i.e.,
we group all resulting parameter configurations for a specific Az to belong to one scenario. Note
that in this stylized setting there is no supply or demand uncertainty, meaning that a and d
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have no variance within a scenario but are deterministic values. We perform N = 100 simulation
runs for every parameter setting.

4.4.1.4 Evaluation Metrics

We use the following metrics to assess the rentals prediction accuracy:

• Rentals (RT ): The expected absolute rentals RT predicted by the matching functions are
simply r̄ = rM

Aw,Az
(a, d) with M ∈ {DCR, CCR, ICR}. With regard to the simulation

benchmark, the corresponding value is obtained from averaging over the simulations runs,
i.e., r̄N = 1

N

∑
n∈N rn.

• Rentals’ mean error (RT ME): The mean absolute error RT ME between the expected
rentals r̄ predicted by a matching function and the N observations of the simulation
benchmark rn is RT ME = r̄ − r̄N .

• Rentals’ mean relative error (RT MRE) [%]: The mean relative error RT MRE between
the expected rentals r̄ predicted by a matching function and the N observations of the
simulation benchmark rn is RT MRE = (r̄ − r̄N )/r̄N · 100.

4.4.1.5 Results

We begin by investigating the predicted and observed absolute rentals RT on an aggregate
level. Therefore, we consider Figure 4.5 which provides a first impression of how the different
matching functions predict rentals and how the rentals observed in the simulation benchmark
depend on supply, on demand, as well as on the zone area size. In each of the subfigures, the
vertical axis of the surface plot represents expected and observed rentals RT for the matching
functions and the simulation benchmark, respectively. The horizontal axes represent a ∈ VSZSP

and d ∈ VSZP Z , respectively. The two rows depict the results of the SZSP-scenarios Az = 1 km2

and Az = 2 km2. The respective graphs for all scenarios, i.e. for all Az ∈ Az, are depicted in
Figure 4.16 in Appendix 4.G. The columns depict the mean of the simulation benchmark (SIM),
and the expected rentals predicted by DCR, CCR, and ICR. From considering Figure 4.5, the
following observations can be made, which partly relate to the properties discussed in Section
4.3.4.:

• For all matching functions, the surfaces are bounded to RT = 0 for all a-d combinations
where a = 0 or d = 0 (see Property 1). All graphs increase monotonically in a and in
d, which is reasonable, since additional vehicles/ additional customers can never, ceteris
paribus, decrease but may increase the (expected) rentals.

• While the surfaces of the DCR resemble the SIM benchmarks in their general shape of
being strictly concave in a and d, especially the ICR but also the CCR differ as they both
run into saturation if one of the inputs is fixed and the other increased (see Property 2).
The ICR has the characteristic shape of a Leontief production, consisting of two planes
that intersect on the diagonal between a- and d-axis. The CCR takes this shape for large
values of a and d. On this a-d-diagonal, the surface of SIM and DCR is strictly concave.
The ICR grows linearly on this diagonal and for the CCR, the first part of the diagonal
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Figure 4.5: Exemplary mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in two SZSP-scenarios.

is strictly convex and then grows linearly from some point on. For all matching functions,
the surfaces are symmetric on the diagonal between a- and d-axis (see Property 5).

• Comparing the respective observed and predicted rentals for a = 10 and d = 10 reveals,
that all matching functions overestimate the SIM results at this point, but that the DCR
prediction is better than the ICR and CCR. Considering the surfaces overall, as well as
the concave and convex shapes of the surfaces on the diagonal discussed above, indicates
that the DCR approximates the SIM best, followed by the CCR and then the ICR.

We continue the discussion of results by comparing the rental curves RT for specific values
of the demand d̂, depicted in Figure 4.6. These graphs which are common to depict matching
functions can be thought of as corresponding vertical cuts through the surface plots in Figure
4.5. Again, the two rows depict the SZSP-scenarios with Az = 1 km2 and Az = 2 km2. The
respective graphs for all Az ∈ Az, are depicted in Figure 4.17 in Appendix 4.G. The columns
correspond to different demands d̂. The simulation (SIM) results are depicted by a black solid
line, the results of ICR in dashed blue, CCR in dotted red, and DCR in dotdashed green. The
following observations can be made:

• As illustrated in Figure 4.3 in Section 4.3.5, the DCR is strictly concave in a, while both
ICR and CCR take the form of a piece-wise linear function with a positive slope piece
anchored at the origin and a second horizontal piece.

• The expected rentals predicted by the DCR are almost identical to the average SIM results,
for all a-d̂ combinations and all Az. The characteristic strictly concave shape of SIM is
perfectly modeled by the DCR. The CCR underestimates SIM for small values of a and d̂.
For large values, it overestimates this benchmark. As above, for large a and d̂, the CCR
and the ICR do not differ (see Figures 4.17(a2)-4.17(a4) in Appendix 4.G).

• The ICR overestimates the SIM rentals for all a-d̂ combinations. The difference grows in
the size of the zone Az and for a certain Az it reaches its maximum at a = d̂. Moreover,
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this maximum difference grows in d̂. This can be explained as follows: The ICR assumes
a perfect matching, which is appropriate if the zone size Az equals the walking area.
However, when the zone becomes larger, the probability that an available vehicle is actually
in walking distance to a customer decreases. The maximum is at a = d̂ because at this
value, each customer needs to find a vehicle for the ICR to be exact. By contrast, imagine
d = a + 1, then we have an additional customer and the ICR prediction is still realized if
one customer cannot reach a vehicle.
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Figure 4.6: Exemplary mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in two SZSP-scenarios.
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Figure 4.7: Exemplary mean absolute error RT ME in two SZSP-scenarios.
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Figure 4.8: Exemplary mean relative error RT MRE in two SZSP-scenarios.

In the following, we discuss the results based on the introduced metrics. Figure 4.7 and
Table 4.3 in Appendix 4.G contains the values of RT ME for the DCR, CCR, and ICR for all
parameter configurations, grouped by SZSP-scenarios Az ∈ Az. The corresponding RT MRE are
depicted in Figure 4.8 and Table 4.4 in Appendix 4.G.

• For the DCR, RT ME takes both positive and negative values. The minimum RT ME is
between -0.06 (Az = 0.5 km2) and -0.20 (Az = 2 km2), i.e. -3.8% and -1.0% RT MRE . The
maximum RT ME is between 0.19 (Az = 0.5 km2) and 0.40 (Az = 1 km2), i.e. 2.9% and
5.6% RT MRE .

• For the CCR, RT ME also takes both positive and negative values. The minimum RT ME

is between -0.06 (Az = 0.5 km2) and -0.80 (Az = 1 km2), i.e. -13.7% and -32.0% RT MRE .
The maximum RT ME is between 0.85 (Az = 0.5 km2) and 2.20 (Az = 1 km2), i.e. 11.9%
and 28.2% RT MRE .

• For the ICR, RT ME only takes values greater or equal to zero. The maximum RT ME is
0.85 (Az = 0.5 km2) and it grows to 5.75 (Az = 4 km2), i.e. to 11.9% and 135.3% RT MRE .

The above results demonstrate that in general, the ICR matching function is not suitable
to predict rentals accurately in the stylized SZSP-setting that only considers one zone. In
particular, they show that only the novel matching functions are capable to adapt to different
zone area sizes. While the prediction error diminishes when the zone area size equals the
walking area size and might be acceptable in our scenarios with ratios of walking area and zone
area in the approximate range Aw

Az
≥ 1

2 , the ICR overestimates the observed rentals in the SIM
benchmark substantially for smaller Aw

Az
. Since larger zone areas are commonly used in literature

as well as practice and since using multiple smaller zones comes with several disadvantages (see
Section 4.1), the ICR’s applicability is limited. In contrast, the CCR considers Aw and Az in
the matching prediction and therewith is capable of predicting the rentals in the SZSP-setting
much more accurately, especially for smaller ratios of Aw

Az
. The DCR predicts the rentals best in

the SZSP-setting and in particular performs better than the CCR for ratios of around Aw
Az

= 1
2 .

Overall, the adaptability of CCR and DCR to different zone sizes is the key advantage over
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the ICR. As discussed in Section 4.3.5, the decisive disadvantage of the DCR is that it can not
be losslessly integrated in a linear network flow SMS model, such that the DCR can not be
considered in the following numerical results of the MZMP-setting.

4.4.2 Multiple Zones Multiple Periods Setting

4.4.2.1 Setting

The multiple zones multiple periods (MZMP) setting replicates an entire FF SMS with Z = 59
zones Z = {1, 2, . . . , Z} and T = 48 periods T = {0, 1, . . . , T − 1} of 30 minutes each which
together replicate one day. The purpose of this MZMP-setting is to assess how different matching
functions affect the overall rental prediction accuracy when supply and demand interact in
an entire FF SMS. In this setting, only the size of the zones Az changes over the parameter
configurations, replicating multiple FF SMSs with identical zone number but with different sizes
of the operating area. Think of cities with the same number of inhabitants, but spread over
areas of different sizes, i.e. with different densities. The MZMP-setting is based on a real-life
FF SMS: The vehicle fleet is initially distributed over the zones in line with historical data
from Share Now. Customers arrive according to a demand pattern over the different zones and
periods, which is obtained from historical data as well. More precisely, for every zone i ∈ Z, âi0

defines the initial vehicle count and for every zone-zone-period combination (i-j-t combination
with i, j ∈ Z, t ∈ T ), the demand dijt is given.

Due to the non-disclosure agreement with our practice partner, we do not state these pa-
rameters above explicitly. However, the following general statements regarding the data used
can be made. Data sources for estimating the demand are primarily the realized app openings
as well as the realized rentals. Every data point of an app opening contains information regard-
ing location and time. Clearly, not every single app opening can be counted as an individual
demand, e.g. because a customer might simply check a payment history or might check vehicle
availability multiple times before the actual booking. However, with much data and experience,
the provider can estimate the actual demand from these app openings. These data points are
then mapped to a given discretization scheme, meaning to zone-period combinations. Average
values over multiple identical days can then be derived. To obtain the demand data for every
zone-zone-period combination, i.e. the expected destinations for the demand originating at a
certain zone-period, the proportions of rentals that realize can be used as a proxy for the de-
mand proportions. Clearly, rentals only reflect the served (constrained) demand, which is why
unconstraining techniques can come into place (see e.g. Talluri and van Ryzin (2004, Chapter
9.4)). Similar to the demand on zone-period level, the initial vehicle count can be obtained by
mapping and averaging data points of available vehicles to the respective zone-period.

As in the SZSP-setting, the benchmark in the MZMP-setting stems from a stochastic dy-
namic simulation, with the difference that the rentals that evolve over one entire day throughout
the entire SMS are considered. The latter also implies that, in contrast to the SZSP-setting,
the matching functions can no longer be directly evaluated for a given parameter configura-
tion. Therefore, to evaluate the matching functions, we integrate the two functions which
can be losslessly linearized – the CCR and the ICR – in an FF SMS model that is based on
a linear network flow formulation, as described in Section 4.3.5. In each zone-period combi-
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Figure 4.9: Scenario with MZMP and Z = 59, Az = 1 km2, Ao = 59 km2

nation, the rentals realize according to the respective matching function rCCR
it,Aw,Az

(ait, dit) and
rICR

it,Aw,Az
(ait, dit). The constraints of the network flow formulation ensure that these rentals rM

it

with M ∈ {CCR, ICR} split into the different rM
ijt in proportion to the given demand pattern,

meaning rM
ijt = dijt

dit
· rM

it ∀i, j ∈ Z, t ∈ T . Therewith, the rentals that realize over all zones and
periods according to a specific matching function can be derived.

4.4.2.2 Simulation Benchmark

For a specific parameter configuration of the MZMP-setting, we derive the respective benchmark
by performing multiple simulation runs n ∈ N = {1, 2, . . . , N} that each yield a rental obser-
vation rijt,n for every zone-zone-period combination (i-j-t combination with i, j ∈ Z, t ∈ T ).
Primarily, we consider the observed rentals on the period-level, meaning rt,n = ∑

i∈Z
∑

j∈Z rijt,n.
At the beginning of each run, the vehicle fleet is initialized according to the initial spatial

vehicle distribution â0 = [âi0]Z×1. Each zone then exactly contains the number of vehicles as
defined in â0, and the precise location within a zone for each of the vehicles is randomly de-
termined from the uniform distribution. The customer arrival process follows a Poisson process
Pλt in which the intensity λt varies for the periods and equals the demand in the respective
period, meaning λt = ∑

i∈Z
∑

j∈Z dijt/30 (unit of λt is [1/min]). The inter-arrival time ∆τ until
a new customer arrives is sampled from the exponential distribution ∆τ ∼ Exp(λt). Whenever
a customer arrives in period t, the customer’s origin zone i is determined by roulette wheel se-
lection, i.e. the probability for arrival in i is P origin

it = ∑
j∈Z dijt/

∑
i∈Z

∑
j∈Z dijt (see previous

section for demand pattern dijt). The customer’s exact origin location is determined by uniform
distribution of positions within the origin zone. All available vehicles within the walking distance
of 0.3km are determined and, if there is at least one vehicle within reach, the customer chooses
the closest one for rental. Note that, in contrast to the assumptions in the SZSP-setting (end of
Section 4.4.1.2), customers may now cross the border of a zone and take a vehicle from a neigh-
boring one. If there is no vehicle within reach, the customer leaves the system without further
consideration. In case of a rental that originates at a certain i-t-combination, the destination
zone is again determined by roulette wheel selection, i.e. the probability for destination zone j

is P destination
jt = dijt/

∑
k∈Z dikt. All rentals have a duration of 15 min. and immediately become

available as soon as a rental is terminated. Note that here, in contrast to the SZSP-simulation,
not all vehicles are necessarily available at the beginning of a period. The customer’s exact
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destination location is determined by uniform distribution of positions within the destination
zone. This process of customer arrival sampling and potential rental determination is executed
until the cumulated arrival time over all customers exceeds the considered day τmax = 48 · 30
[min]. One simulation run is depicted as pseudo code in Algorithm 5.

To clarify the setup, consider Figure 4.9a that depicts a snapshot of a single simulation
run. In the simulation, the zones are squares of the same size and in this particular parameter
configuration, Az = 1 km2 for all zones. Note that since the considered FF SMS consists of 59
zones, the five zones represented in the top row on the right are out of the simulation’s scope.
The vehicles are represented as blue triangles, and the currently rented vehicles are depicted at
the rental origin with a dotted line that ends at the rental destination. One customer arrived in
the considered instance, represented by the red dot with walking area, depicted as red circle. For
this particular customer, no available vehicle was within reach. Figure 4.9b depicts the demand
and the resulting rentals averaged over all N runs in the course of the day. More specifically, the
dotted black curve represents the aggregate demand over all zones for every single period t ∈ T ,
meaning dt = ∑

i∈Z
∑

j∈Z dijt. The solid black curve represents the mean aggregate rentals over
all zones for every single period t ∈ T , meaning r̄t,N = 1

N

∑
n∈N rt,N . This rentals curve for

various parameter configurations serves as a benchmark to evaluate the rentals prediction of the
matching functions qualitatively.

Algorithm 5 MZMP simulation (one run n ∈ N )
- initialize simulation time τ = 0
- initialize rental count rt,n = 0 ∀t ∈ T
- distribute vehicles randomly according to â0
- initialize set of available vehicles Vavailable with all vehicles
- initialize set of currently rented vehicles Vrented = ∅
while τ < τmax do

- draw inter-arrival time ∆τ from exponential distribution ∆τ ∼ Exp(λt)
- update simulation time τ ← τ + ∆τ
if vehicles in Vrented have arrival time < τ then

- remove respective vehicles from Vrented

- add respective vehicles to Vavailable

end if
- determine current period t
- determine customer’s origin zone i with probabilities P origin

it ∀i ∈ Z
- determine customer’s exact origin location within origin zone i by uniform distribution
- determine distances to vehicles in Vavailable

if at least one vehicle in walking distance then
- choose closest vehicle from Vavailable

- remove chosen vehicle from Vavailable

- add chosen vehicle to Vrented

- record rental: rt,n ← rt,n + 1
- determine destination zone j with probabilities P destination

jt ∀j ∈ Z
- determine customer’s exact destination location within j destination zone by uniform distribution

end if
end while

4.4.2.3 Parameter Configurations and Scenarios

We consider the following parameter values:

• Available vehicles (VMZMP ): The initial fleet distribution VMZMP remains constant over
all studies and it is chosen according to real-life data. The overall fleet size is ∑j∈Z âi0 =
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201 and for the individual zones, the initial vehicle count lays in the interval âi0 ∈
[0, 10] ∀i ∈ Z.

• Arriving customers (VMZMP ): The pattern of arriving customers VMZMP remains constant
over all studies and it is chosen according to real-life data. The dijt values vary in the
interval dijt ∈ [0, 18] ∀i, j ∈ Z, t ∈ T .

• Walking area size (Aw): As in the SZSP-setting, the size of the reachable area by walking
is kept constant at Aw = π · (0.3km)2 = 0.28 km2.

• Zone area size (Az): We obtain four scenarios by considering the sizes of the zone area
Az = {0.5 km2, 1 km2, 2 km2, 4 km2}. This can be considered as different cities with the
same fleet and demand, but spread over operating areas of different size, i.e. Ao = 29.5 km2

to Ao = 236 km2. Note that the number of zones remains identical in each scenario.
In Appendix 4.I, in contrast, we consider a setting in which a given operating area is
partitioned into a different number of multiple zones.

We perform N = 100 simulation runs for every variant, meaning for every matching function in
each parameter configuration (here equivalent to scenario).

4.4.2.4 Evaluation Metrics

Analogous to the SZSP-setting, we use several metrics to assess the rentals prediction accuracy.
Different from above, all metrics here are time-specific:

• Rentals (RTt): The period-specific absolute rentals RTt are determined as follows for the
simulation and the matching functions. The mean observed rentals in the simulation for
a specific period t are r̄t,N = 1

N

∑
n∈N

∑
i∈Z

∑
j∈Z rijt,n. The predicted rentals by the

network flow-based model with integrated matching function for a specific period t are
r̄t = ∑

i∈Z
∑

j∈Z rijt.

• Rentals mean error (RT ME
t ): The period-specific mean absolute error RT ME

t between the
predicted rentals by the network flow-based model with integrated matching function r̄t

and the mean observed rentals in the simulation r̄t,N is RT ME
t = r̄t − r̄t,N .

• Rentals mean relative error (RT MRE
t ) [%]: The period-specific mean relative error RT MRE

t

between the predicted rentals by the network flow-based model with integrated matching
function r̄t and the mean observed rentals in the simulation r̄t,N is RT MRE = (r̄t −
r̄t,N )/r̄t,N · 100.

4.4.2.5 Results

Figure 4.10 depicts the mean rentals RTt for the simulation benchmark (SIM) and the predicted
rentals by the two linear network flow formulations with CCR and ICR in the course of the day
for the four MZMP-scenarios with Az = 0.5 km2, 1 km2, 2 km2, and 4 km2. In Figures 4.11, 4.12
and Tables 4.5, 4.6 in Appendix 4.H, the corresponding mean errors RT ME

t and mean relative
errors RT MRE

t are depicted. The most relevant results can be summarized as follows:

• The rental curves follow the typical demand pattern with two peaks around 8:00 and 19:00.
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• Despite the identical demand pattern in all scenarios, the SIM benchmark of RTt (solid
black) varies substantially. As the city considered becomes less dense (mimicked by in-
creasing c.p. Az), the number of rentals quickly decreases (by a factor of more than 10)
from Az = 0.5 to Az = 4. This can be explained as follows: For small Az (dense cities),
customers’ walking area is comparatively larger. This increases the matching probability
because – given the same number of vehicles in the operating area – they can walk to more
vehicles. By contrast, with large Az (low density), the available vehicles are spread over
large distances and customers more often do not find a vehicle in their walking distance.

• The predicted ICR rentals are identical in all scenarios, because the ICR is independent of
Az (see (4.7)). While for Az = 0.5 km2, the overall rental curve incidentally resembles the
SIM benchmark, it increasingly overestimates the benchmark with growing Az. Already
for Az = 1 km2, the ICR rental predictions are far from the SIM benchmark. The mean
error RT ME

t lies between [-17.7, 10.7] for Az = 0.5 km2, [1.5, 48.2] for Az = 1 km2, [4.7,
86.3] for Az = 2 km2, and [6.0, 105.2] for Az = 4 km2. In the periods between morning
and evening peak, the mean relative error RT MRE

t lies in the range of [-19.3%, 14.0%]
for Az = 0.5 km2, [18.9%, 92.9%] for Az = 1 km2, [21.7%, 478.7%] for Az = 2 km2, and
[870.8%, 2199.6%] for Az = 4 km2.

• The CCR rentals curve resembles the the SIM benchmark for all Az (densities). The mean
error RT ME

t lies between [-17.2, 8.7] for Az = 0.5 km2, [-8.7, 41.0] for Az = 1 km2, [-2.9,
4.2] for Az = 2 km2, and [-3.1, 1.0] for Az = 4 km2. In the periods between morning
and evening peak, the mean relative error RT MRE

t lies in the range of [-19.2%, 11.2%]
for Az = 0.5 km2, [-13.7%, 2.2%] for Az = 1 km2, [-11.3%, 30.5%] for Az = 2 km2, and
[-32.9%, 24.1%] for Az = 4 km2. In comparison to the ICR, the curve changes with varying
zone size Az, demonstrating the CCR’s capability to adapt to scenarios with high and low
density also in the MZMP-setting.
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Figure 4.10: Mean (SIM) and predicted (CCR, ICR) rentals RT in MZMP-scenarios with different zone
and operating area sizes Az, Ao
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As in the SZSP-setting, also the above results in the MZMP-setting demonstrate that the
ICR in general is not suitable to predict rentals accurately and that the CCR in contrast is
capable of adapting to different densities. For the Az = 0.5 km2 scenario (high density), both
ICR and CCR provide good rentals predictions. For larger Az (low density), however, the ICR
substantially overestimates the SIM benchmark by a factor of approximately 2 in the Az = 1 km2

scenario and up to a factor of approximately 20 in the Az = 4 km2 scenario, while the error
RT MRE

t of CCR remains in a relatively narrow range of up to approximately 30% at the most. It
may be tempting to wrongly think that Az = 0.5 km2 always, meaning for all possible instances,
is a good value for the ICR. Certainly, the results (SZSP- and MZMP-setting) show that smaller
zones which are closer to the walking area are favorable over larger zones with regard to the
overall rental prediction accuracy that can be obtained when applying the ICR. However, since
customers and vehicles in neighboring zones do not match in network flow formulations with
discrete zones (as in the MZMP-setting), rentals that realize in reality are increasingly neglected
when having multiple smaller zones. This means that the increased accuracy within a zone
might be overcompensated by a reduced accuracy across zones. The specific results depend on
the actual homogeneity of the zones and whether they can in fact be considered as disjunct
zones for which there are indeed no customers crossing the borders.
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4.5 Pricing Optimization Case Study

In this section, we evaluate the performance of the CCR and ICR matching functions in an FF
SMS optimization problem. To that end, we present a pricing optimization case study based on
Share Now data and assess whether more accurate rental predictions can result in better pricing
decisions and eventually higher profits (more precisely contribution margin). The problem that
we consider is a differentiated pricing problem for SMS that was discussed in Soppert et al. (2022)
and for which a MILP, based on a network flow formulation, with ICR matching function was
proposed. We adapt the MILP formulation by integrating the CCR. For the different instances
considered in this case study, we derive pricing solutions with both of the MILP models and
evaluate them in a simulation study.

The differentiated pricing problem and its original as well as the adapted mathematical
modeling are introduced in Section 4.5.1. Section 4.5.2 discusses the setup of the simulation
study we use to evaluate the different pricing solutions. In Section 4.5.3, we introduce the
considered parameter configurations as well as the metrics we use. Section 4.5.4 discusses the
obtained results.

4.5.1 Problem Statement and Mathematical Modeling

The origin-based differentiated pricing problem (OBDPP) in SMSs, as defined in Soppert et al.
(2022), is a pricing problem in which spatially and temporally differentiated minute prices have
to be determined, to maximize the contribution margin of an SMS. More precisely, an SMS is
discretized into Z different locations Z = {1, 2, . . . , Z} and the considered time span of one day
is discretized into T periods T = {0, 1, . . . , T − 1}. For every i-t combination with i ∈ Z, t ∈ T ,
a minute price pit is to be chosen from a given price set P = {p1, p1, . . . , pM} with corresponding
price indicesM = {1, 2, . . . , M}. Origin-based refers to the fact that, in contrast to a trip-based
pricing mechanism for example, all rentals that begin in a certain i-t combination, are charged
with the same minute price pit. Note that differentiated (=static), in contrast to dynamic (see
Agatz et al. (2013)), refers to a pricing approach where prices do not depend on components
of the current state of the system that are unobservable by the clients, such as current fleet
distribution, but can be pre-computed and pre-published. The OBDPP assumes supply and
demand matching according to the ICR.

The OBDPP can be modeled by a MILP which is based on a deterministic network flow
formulation where expected vehicle movements are represented by flows in a spatio-temporal
network, as depicted in Figure 4.14. Vehicle flows consist of actual rentals rm

ijt from location
i ∈ Z to j ∈ Z in period t ∈ T and at price pm with index m ∈ M (solid arcs), or unused
vehicles sit that remain in the same location i ∈ Z at period t ∈ T (dashed arcs). For every
i-j-t combination, the respective basic demand dijt is assumed to scale with the i-j-t-specific
sensitivity factor fm

ijt, depending on the price pm, to the actual demand dm
ijt = dijt · fm

ijt. The
main components of the OBDPP MILP formulation are as follows:

• An objective function that maximizes the contribution margin from rentals that realize at
different prices over the entire spatio-temporal network, meaning ∑i,j∈Z

∑
t∈T

∑
m∈M rm

ijt ·
lij · (pm − c), where lij is the average rental duration and c is variable cost per minute.
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• Flow conservation constraints of the form (4.9) as described in Section 4.3.5 which ensure
that the fleet of vehicles remains constant in every period and that, for a certain i-t-
combination, the available vehicles either remain unused or get rented.

• Constraints ensuring that for pit exactly one of the prices from the price list P is chosen
for every i-t-combination. If price pm is chosen, the respective binary variable ym

it is one.

• A set of constraints that determines the realization of rentals. The overall rentals for
every i-t combination are determined according to the ICR. These rentals split into the
i-j-t-specific rentals, proportionally according to the demand, as described in Appendix
4.F.

The constraints in the OBDPP MILP formulation that ensure rentals realization according to
the ICR can easily be replaced by corresponding constraints for the CCR. We state the resulting
full MILP formulation in Appendix 4.F. The constraints that are new compared to Soppert et al.
(2022) are (4.49)-(4.54). To differentiate in the following, we denote the original problem by
OBDPP-ICR and the adapted with CCR matching function by OBDPP-CCR. For solving the
OBDPP-CCR, we use the decomposition solution approach described in Soppert et al. (2022)
which builds on the idea to solve multiple smaller MILPs instead of the original one. The
algorithm is implemented in Python 3.7 and all MILPs are solved with Gurobi 9.0.2. As in the
original paper, the algorithm runs for 48 hours. The simulation evaluation takes approximately
8 hours without any parallelization. Given that the considered pricing problem (in Soppert
et al. (2022) and, thus in this case study) is a differentiated (=static) pricing problem, these
computation times do not pose a restriction for application in practice.

4.5.2 Simulation Evaluation

To evaluate and compare the performance of the optimization results, i.e., of the prices obtained
from either optimizing using OBDPP-ICR or OBDPP-CCR, we perform a simulation study.
Each run of the simulation reflects a potential real-world evolvement of the system over the
considered day given the calculated pricing solutions. In essence, the simulation is in line with the
one we used to calculate the simulation benchmarks for the MZMP-setting in Section 4.4.2.2. We
only need to adapt it to allow for different prices and their effect on the demand. As described,
the customer arrival process in the MZMP simulation follows a Poisson process Pλt with intensity
λt that depends on the demand in the respective period. According to the assumption in the
OBDPP, described in Section 4.5.1, the demand now depends on the chosen prices. Therefore,
λt has to be calculated according to the pricing solution, meaning λt = ∑

i∈Z
∑

j∈Z dm
ijt/30,

where dm
ijt = dijt · fm

ijt and fm
ijt depends on the price pit (see Section 4.4.2.1 for demand pattern

dijt). Accordingly, the probability for an arriving customer in period t to arrive in zone i has to
be updated to P origin

it = ∑
j∈Z dm

ijt/
∑

i∈Z
∑

j∈Z dm
ijt. In case of a rental originating in a certain

i-t-combination, the probability to have target zone j is P destination
jt = dm

ijt/
∑

k∈Z dm
ikt. Every

pricing solution is evaluated with N = 100 simulation runs.
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4.5.3 Parameter Configurations, Scenarios, and Evaluation Metrics

The case study builds on the MZMP-setting introduced in Section 4.4.2.1. The number of zones
and periods, the initial vehicle distribution, and the overall demand pattern are chosen as in the
MZMP-setting. Again, we consider the two scenarios with Az ∈ {0.5 km2, 1 km2, 2 km2, 4 km2}
(high to low density with operating area sizes of Ao = 29.5 km2 to Ao = 236 km2). The
additional parameters are chosen according to Soppert et al. (2022), that is, prices of p1 = 24
cent/min, p2 = 30 cent/min, p3 = 36 cent/min, denoted as low, base, and high price. The
corresponding price sensitivities are f1

ijt = 1.25, f2
ijt = 1, f3

ijt = 0.75 ∀i, j ∈ Z, t ∈ T (derived
from a conjoint analysis and A/B tests). Variable costs of c = 7.5 cent/min make up 25% of the
base price. The rental time is lij = 15 min. Note that for these parameters, one rental realizes
a contribution margin per minute of 20.625 cent/min for price p1, 22.5 cent/min for price p2,
and 21.375 cent/min for price p3. Thus, in a myopic optimization when there is enough supply
to serve the demand, the base price p2 would be chosen.

The results obtained by a uniform pricing with the base price, that is, without price dif-
ferentiation, (BASE) serve as a benchmark for the ones by a price optimization (OPT) with
OBDPP-ICR or OBDPP-CCR. In addition to the metrics defined in Section 4.4.2.4, we con-
sider the following metrics:

• Relative rentals increase (RT rel [%]): The RT rel between rental observations with opti-
mized pricing RT OP T

n and the rental observations with base pricing RT BASE
n is defined as

RT rel = (∑N
n=1 RT OP T

n −
∑N

n=1 RT BASE
n )/∑N

n=1 RT BASE
n · 100.

• Relative revenue increase (RV rel [%]): The RV rel between revenue observations with op-
timized pricing RV OP T

n and revenue observations with base pricing RV BASE
n is defined as

RV rel = (∑N
n=1 RV OP T

n −
∑N

n=1 RV BASE
n )/∑N

n=1 RV BASE
n · 100.

• Relative contribution margin increase (CM rel [%]): The CM rel between contribution mar-
gin observations with optimized pricing CMOP T

n and the contribution margin observations
with base pricing CMBASE

n is defined as
CM rel = (∑N

n=1 CMOP T
n −

∑N
n=1 CMBASE

n )/∑N
n=1 CMBASE

n · 100.

• Proportion of prices (PRprop
m [%]): For a particular price pm, the PRprop

m defines the pro-
portion of this price to all prices of a certain pricing solutions, i.e.,
PRprop

m = ∑Z
i=1

∑T −1
t=0 ym

it /(Z · T ) · 100.

Note that RT
(·)
n , RV

(·)
n , and CM

(·)
n denote the respective quantity observed in one entire simu-

lation run, meaning the sum over all zones and periods.

4.5.4 Results

In Table 4.1, the results for the evaluated pricing solutions, generated by OBDPP-ICR and
OBDPP-CCR for MZMP-scenarios with Az = 0.5 km2, 1 km2, 2 km2, 4 km2 are summarized.
Table 4.7 in Appendix 4.H additionally depicts the corresponding confidence intervals that
demonstrate the statistical significance of the respective CM rel results.

• The PRprop
m results for all scenarios demonstrate, that the prices in the solution obtained

with the OBDPP-ICR are higher on average than those obtained with the OBDPP-CCR.
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Az

[
km2

]
OBDPP-

PRprop
m change w.r.t. BASE

low base high RT rel RV rel CM rel

0.5 ICR 17.1% 62.8% 20.1% -4.3% -0.1% 1.2%
CCR 19.9% 61.1% 19.0% -3.7% 0.6% 2.1%

1 ICR 17.1% 62.8% 20.1% -3.4% 0.4% 1.6%
CCR 34.1% 54.0% 11.1% 1.8% 3.6% 4.2%

2 ICR 17.1% 62.8% 20.1% -3.2% 0.6% 1.8%
CCR 16.3% 80.3% 3.5% 3.5% 4.3% 4.6%

4 ICR 17.1% 62.8% 20.1% -5.7% -1.9% -0.6%
CCR 0.0% 98.9% 1.1% -1.3% 0.7% 1.4%

Table 4.1: Simulation results of pricing solutions from OBDPP-ICR and -CCR with different Az ∈ Az.

For Az = 0.5 km2, the difference in the price levels is smaller than 2 percentage points, but
it grows with increasing Az up to almost 20 percentage points for Az = 4 km2. Exemplary,
the two pricing solutions of OBDPP-ICR and OBDPP-CCR for Az = 2 km2 are depicted
in Figure 4.13. Clearly, the OBDPP-ICR solution contains more high prices around the
morning and evening demand peak, meaning around the periods 16 and 36. Only few
of the zones, for example zone 7 and zone 49 have relatively many high prices in both
solutions.

• As a consequence of the higher prices in the OBDPP-ICR solution, fewer rentals (RT rel)
realize in the simulation. The decrease in rentals depends on the scenario and lies between
0.6 percentage points for Az = 0.5 km2 and to 6.7 percentage points for Az = 2 km2.

• The revenue (RV rel) obtained by the OBDPP-CCR solution is higher than the one result-
ing from the OBDPP-ICR in all scenarios. The gap lies in the range of 0.7 percentage
points for Az = 0.5 km2 and 3.7 percentage points for Az = 2 km2.

• Most importantly, the contribution margin CM rel, which is the objective of the pricing
optimization, is significantly higher with the OBDPP-CCR pricing solution than with the
OBDPP-ICR. The difference lies between 0.9 percentage points (Az = 0.5 km2) and 2.8
(Az = 2 km2) percentage points. Remember that for Az = 0.5 km2, the overall rentals
prediction of ICR was very accurate. The fact that even here an increase of 0.9 percentage
points by using the CCR is possible shows that this coincidental overall accuracy does
not necessarily translate to good decisions. First, errors at the zone level may cancel out.
Second, supply and demand are endogeneous in the optimization model, and, thus, zones
which have the "appropriate" parameter combination in the ICR may no longer have in
the optimal solution.

To summarize the results of the case study, the OBDPP-CCR with improved matching
modeling compared to the OBDPP-ICR yields pricing solutions that generate significantly higher
contribution margins. The overestimation of rentals by the ICR causes the OBDPP-ICR to
predict too many rentals in general and therewith also too many rentals when high prices are
set. The optimal pricing solution according to the OBDPP-ICR therefore sets too many high
prices which cause a reduction of rentals and a decrease in contribution margin when compared
to the optimal pricing solution according to the OBDPP-CCR. These results demonstrate that
an accurate matching modeling that considers the specific characteristics of FF SMS is highly
relevant for optimizing operations. Certainly, the specific results of an instance depend on the
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(b) OBDPP-CCR

Figure 4.13: Low (L), base (B), and high (H) prices in case study scenario with Az = 2 km2

many parameters (demand pattern, price sensitivities, etc.) but considering the results obtained
in the SZSP-setting (Section 4.4.1), the MZMP-setting (Section 4.4.2) and in this case study,
it seems clear that the overestimation of rentals with the OBDPP-ICR is the root cause of too
high prices and the reduced profit.
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4.6 Managerial Insights and Conclusion

In this paper, motivated by the insights gained in a close collaboration with Europe’s largest
FF car sharing provider Share Now, we examined the modeling of supply and demand matching
in FF SMSs. Despite the fact that the realization of rentals is central to the accuracy of an
SMS model, matching functions for SMSs have not been discussed in the literature yet and as a
consequence, optimization models for SB and FF SMSs have been identical in this regard. With
the development of matching functions that consider the central influencing factors specifically
relevant for FF SMSs, such as customers’ maximum walking distance and zone sizes, our work
builds a bridge between the optimization models for SB and those for FF SMSs. This allows to
adapt optimization models designed for SB to FF SMSs.

In the following, we structure the conclusions from our findings and the related managerial
insights according to two central aspects, namely (1) the development and the analytical as well
as computational assessment of accurate matching functions for FF SMSs and (2) the integration
of the functions into FF SMS optimization approaches and the investigation of benefits that
result from that.

With regard to (1), the methodological approach of developing accurate matching functions
for FF SMSs was to formalize a generic, stylized matching process first and, based upon this,
to systematically derive three matching functions in a second step. According to their assump-
tions regarding how vehicles cover the zone area, we termed the matching functions degressive,
constant, and infinite coverage rate matching function (DCR, CCR, and ICR). While the DCR
and CCR are novel matching functions, the ICR with its extremely simplified assumptions can
be considered as the state-of-the-art matching function, even if not explicitly discussed as such
in the SMS literature. In an extensive computational study, we compared the rental prediction
accuracy by the matching functions in two settings – the first considering the rentals realization
process isolated in a single zone and single period, and the second covering an entire FF SMS
network consisting of multiple zones and periods.

The numerical results in the single zone single period setting revealed that the ICR in general
overestimates rental: The maximum relative rental prediction errors lie in the range of 10% to
more than 100%, depending on the zone size. With the CCR and DCR, the rentals prediction is
a lot more accurate: For the CCR, the relative rental prediction errors lie in the range of -30%
to 30% and for the DCR in the range of -5% to 5%. In the setting with multiple zones and
multiple periods, the relative rental prediction error with the ICR can (in one period) grow up
to 100%-500% for medium sized and above 2000% for larger zones. For the CCR, the maximum
relative rental prediction error in the relevant periods where many vehicles move lies between
-15% and 30% for medium sized and between -30% and 25% for larger zones. These results
support the finding that the ICR cannot accurately describe matching in an FF SMS in general
and that novel matching functions, like the CCR and DCR are required.

Besides the numerical analyses, we also investigated the matching functions analytically.
Most importantly, we demonstrated that only the CCR and DCR have a rentals limit value of
zero when the walking distance approaches zero or the zone area grows infinitely large. This
demonstrates mathematically that these two functions behave meaningfully with regard to the
spatial parameters relevant in FF SMS. Among other theoretical results, we also showed ana-
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lytically that the ICR is a special case of the CCR and DCR for extreme cases of large walking
distance and/or small zone area size, meaning that in such situations, even the ICR could have
some validity for FF SMS.

Several important insights can be concluded from these numerical and analytical results.
First, to accurately describe the matching between supply and demand in an FF SMS, multiple
relevant parameters have to be considered. Besides the sheer number of available vehicles and
arriving customers, the zone size, the customers’ maximum willingness-to-walk, successively
arriving customers as well as the decreasing marginal zone coverage by additional vehicles play
a decisive role. Second, the results show that only the DCR and CCR are suitable for modeling
FF SMSs in general, because they do consider all of the above parameters explicitly or implicitly.
The ICR in contrast has the structural problem to neglect these additionally relevant parameters
and to severely overestimate rentals. Third, the necessity for more comprehensive matching
functions depends on the zone sizes and the area within walking distance of the customers. All
of the above insights reveal that the previously mentioned and so far unconsidered aspect of
matching modeling is indeed central for managing FF SMSs and that matching modeling needs
to be considered in the modeling and control of FF SMSs.

Regarding the second central aspect of our work, (2) the integration of the matching functions
into FF SMS optimization approaches and the investigation of resulting benefits, we demon-
strated that the CCR, opposed to the DCR, can easily be losslessly linearized. Given the vast
literature on SMS optimization that use linear network flow-based formulations, this allows the
adaptation of the many existing optimization approaches to be generalized such that they can
be applied to both SB as well as FF SMSs. To analyze the potential benefits resulting from
that, as an example, we considered a pricing optimization approach from literature in a case
study based on real data from Share Now.

The numerical results from the case study show that, compared to the pricing solution with
the ICR, in the pricing solution from the CCR model high prices are chosen a lot less frequently,
i.e. by a factor of 20. Low prices are chosen a lot more frequently, i.e. by a factor of 2 in the
CCR pricing solution, such that the different matching functions do actually impact the decision
making. The better pricing decisions with the CCR cause significant contribution margin gains
over the overall too high prices caused by the overestimation of rentals in the ICR pricing
solution. The difference in the resulting contribution margin increase with respect to the base
price benchmark was up to 3 percentage points (corresponding to an increase by factors of 1.8
to 2.6) with the pricing solution obtained by the CCR, compared to the ICR – an effect than
can be solely ascribed to the more accurate matching modeling (and, thus, in a sense comes for
free, compared to marketing or a fleet increase).

The main insight to derive from the pricing optimization case study is that the more accurate
matching modeling of the CCR also effects the decision making in a way that benefits the
overall objective. Since other FF SMS optimization problems, such as relocation or fleet sizing
problems, also rely on accurate rental predictions, it is clear that they would also be affected by
an overestimation of rentals. Therefore, it is a managerial task to assess the potential problem
of rental overestimation based on the findings in this work and to initiate the recommended
adaptations if necessary.
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Taking the presented results and insights with regard to (1) and (2) into account, we believe
that there are promising directions for future work. First, the consideration of inter-zone move-
ments by customers as well as boundary effects at the borders of an operating area might yield
improvement potential when considered in the matching modeling. Second, an empirical study
that focuses on matching in FF SMS would have the potential to identify additional relevant
factors, such as for example zone-specific characteristics like its shape or its street network.
Third, it would be insightful to investigate how FF SMSs could be modeled accurately in a spa-
tially (and temporally) continuous manner, with the intention to circumvent the limitations that
inevitably come with the current state-of-the-art approach of spatial (and temporal) discretiza-
tion. For the latter, continuous optimization techniques might be suitable. Finally, while we
considered specific discretization schemes as given in our work, the complex question regarding
the discretization itself is an important topic for future research.
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4.A Illustration Spatio-Temporal Network
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Figure 4.14: Spatio-temporal network

4.B DCR Proof

Proof. If the zone does not contain any vehicles, A0 = 0 and Ā0 = Az, such that the first
vehicle, according to the assumption, covers

∆A1 = Aw ·
Az

Az
= Aw. (4.15)

The remaining uncovered area with one vehicle is Ā1 = Az − Aw and the additionally covered
area by the second vehicle is

∆A2 = Aw ·
Az −Aw

Az
= Aw · (1−

Aw

Az
). (4.16)

The âth vehicle additionally covers

∆Aâ = Aw · (1−
Aw

Az
)â−1 ∀â ∈ Z+. (4.17)

The total covered area Aâ by â vehicles then is

Aâ =
â∑

n=1
∆An =

â−1∑
n=0

∆An+1 = Aw ·
â−1∑
n=0

(1− Aw

Az
)n (4.18a)

= Aw ·
1− (1− Aw

Az
)â

1− (1− Aw

Az
)

= Az · (1− (1− Aw

Az
)â), (4.18b)

where the fourth equation stems from reformulating the partial sum of the geometric series (with
Aw ̸= 0). Therewith, PAw,Az (â) = Aâ

Az
= (1 − (1 − Aw

Az
)â) and substituting this in (4.1a) yields

(4.2a). □

4.C CCR Parameter Approximation

In this section, we show that the parameters λ and µ, which we introduced in Section 4.3.3.2
can be analytically approximated.

We begin with λ. Following the DCR assumption of degressive coverage of the zone by
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additional vehicles according to ∆Aa = Aw · (1− Aw
Az

)a−1, one can reformulate Aa as follows.

Aa =
a∑

i=1
∆Ai = Aw ·

a∑
i=1

(1− Aw

Az
)i−1 (4.19)

= Aw ·
a−1∑
i=0

(1− Aw

Az
)i = Aw ·

1− (1− Aw

Az
)a

1− (1− Aw

Az
)

(4.20)

= Aw ·
1− (1− Aw

Az
)a

Aw

Az

(4.21)

For a known average available vehicle count ā, for example obtained from historical data or
preliminary tests in an optimization model, we can formulate

Aa ≈ Aw · λ · a, (4.22)

where

λ =
1− (1− Aw

Az
)ā

Aw

Az

· 1
ā

. (4.23)

Note that (4.21) could clearly be further simplified but the way we define λ and use it in (4.22)
allows to interpret λ as the fraction of Aw which is in average covered by every additional vehicle.

In the following we derive µ which allows to formulate an average matching probability for
every customer and the explicit formulation of the CCR (4.4). Therefore, we consider a certainty
equivalent model of the matching process which can be formulated as

rAw,Az (a, d) =
d∑

i=1
Pi =

d∑
i=1

min(Di, Az)
Az

, (4.24)

where Pi denotes the matching probability and Di the area covered by the remaining available
vehicles when the ith customer arrives. In this expectation model, the coverage changes for every
customer according to Di+1 = Di−Pi ·∆D, where ∆D is the marginal coverage by one vehicle.

We first consider the case that Di ≤ Az, such that the first argument of the min()-operator
in (4.24) is restrictive, therewith Di+1 = Di · (1− ∆D

Az
), and the expectation model becomes

rAw,Az (a, d) = D1

Az
·

d∑
i=1

(1− ∆D

Az
)i−1. (4.25)

With ∆D = Aw · λ and D1 = Aw · λ · a this yields

rAw,Az
(a, d) = Aw

Az
· λ · a ·

d∑
i=1

(1− Aw · λ
Az

)i−1, (4.26)

where the last factor can be approximated by µ · d with a known average d̄ and

µ ≈ 1
d̄
·

d̄∑
i=1

(1− Aw · λ
Az

)i−1, (4.27)
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such that (4.26) becomes

rAw,Az
(a, d) = Aw

Az
· λ · µ · a · d. (4.28)

Above, we considered that Di ≤ Az but with the constant coverage assumption ∆D = Aw ·λ this
is not given in general such that the rentals could exceed the arriving customers. Furthermore,
the assumption of an average matching probability neglects that all vehicles might be taken for
some of the arriving customers such that the rentals could exceed the initial available vehicles
count. Therefore, we need to introduce these two constraints back in the expectation model and
obtain

rAw,Az
(a, d) = min(Aw

Az
· λ · µ · a · d, a, d), (4.29)

which is exactly the CCR matching function in (4.5).

4.D Symmetry Proof of DCR

4.D.1 Idea of the Proof

To simplify notation in this outline, we use r(a, d) and r(d, a) instead of rDCR
Aw,Az

(â, d̂) and
rDCR

Aw,Az
(d̂, â) here, so we prove r(a, d) = r(d, a).

The proof is by induction over n = a + d. In the base cases, we show that r(a, d) = r(d, a)
for n = 0 and n = 1. This is straightforward, using the boundary conditions. In the induction
step, we show that if r(a, d) = r(d, a) for n− 2 and n− 1 (induction hypothesis), symmetry also
holds for n.

The key idea of the proof is illustrated by the two subfigures in Figure 4.15. Each shows a grid
of a-d combinations where every node represents the value of the respective r(a, d). The dotted
line on the diagonal represents the symmetry axis. The three dashed lines on the secondary
diagonals illustrate the procedure of the induction: Every n has a corresponding secondary
diagonal where symmetry holds, illustrated for n = 0, n = 1, and n = 2. The induction step
can be interpreted as an upward shift of the secondary diagonal, using the previous secondary
diagonals.

Illustratively, we need to prove equality of a node and its symmetric counterpart which
results from mirroring the original node on the diagonal. Without loss of generality, we define
nodes I and I′ to correspond to r(a, d) and r(d, a), respectively. We prove equality for these two
(general) nodes I and I′. The other nodes denoted by roman numbers illustrate which nodes –
in dependence of I and I′ – are used to show this equality. The proof consists of three steps:

(1) First, we show that node I can be expressed as a sum with summands corresponding to
nodes III′, IV′, V′, and VI′ – the nodes within the dashed square in Figure 4.15a.

(2) Second, we analogously show that node I′ can be expressed as a sum with summands
corresponding to nodes III, IV, V, and VI – the nodes within the dashed square in Figure
4.15b.

(3) Third, we show equality of the two resulting sums which completes the proof.
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Figure 4.15: Illustration of the DCR symmetry proof (see Property 5)

More precisely, two different operations are performed (multiple times) within these three
steps: Applying the recursion of the DCR and using the symmetry property in the induction
hypothesis. In step (1) of the proof (consider the DCR (4.2a)), applying the recursion for r(a, d)
(I) yields a sum with two summands, one with r(a, d − 1) (II) and one with r(a − 1, d − 1)
(III), as illustrated in Figure 4.15a. Since the induction hypothesis supposes that the symmetry
property holds for n − 1 and n − 2, nodes II and III have corresponding counterpart nodes II′

with r(d − 1, a) = r(a, d − 1) and III′ with r(d − 1, a − 1) = r(a − 1, d − 1). Subsequently
applying recursion for both nodes II′ and III′ yields a sum with four summands, i.e. one each
corresponding to nodes III′, IV′, V′, and VI′. Analogously in step (2) of the proof, starting with
node I′ yields a sum with summands corresponding to nodes III, IV, V, and VI, as illustrated
in Figure 4.15b. Finally, in step (3) of the proof, we then again use the induction hypothesis
(twice) and show that the two resulting sums of r(a, d) and r(d, a) are equal. This completes
the proof.

4.D.2 Formal Proof

To prove symmetry of the DCR (4.2), we need to show

rDCR
it,Aw,Az

(âit, d̂it) = rDCR
it,Aw,Az

(d̂it, âit). (4.30)

To simplify notation, we use r(a, d) and r(d, a) instead of rDCR
it,Aw,Az

(âit, d̂it) and rDCR
it,Aw,Az

(d̂it, âit)
here, so we need to show

r(a, d) = r(d, a). (4.31)
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Further, we introduce α = (1− Aw
Az

), such that the original DCR (4.2) results in

r(a, d) = (1− αa) · (1 + r(a− 1, d− 1)) + αa · r(a, d− 1) (4.32)
r(a, 0) = 0 ∀a ∈ Z (4.33)
r(0, d) = 0. ∀d ∈ Z (4.34)

The proof is performed by induction over n = a + d.

Base Cases: r(a, d) = r(d, a) for a + d = 0 and a + d = 1.
a + d = 0: According to the boundary conditions (4.33) and (4.34), r(a, d) = r(d, a) = 0 if

a = d = 0.
a + d = 1: According to the boundary conditions (4.33) and (4.34), r(a, d) = r(d, a) = 0 if

a = 0 or d = 0.

Induction Hypothesis. r(a, d) = r(d, a) for a + d = n− 2 and a + d = n− 1, with n ∈ Z.

Induction Step. If r(a, d) = r(d, a) for a + d = n− 2 and a + d = n− 1, then r(a, d) = r(d, a)
for a + d = n ∀n ∈ Z.

We first prove three lemmata which we then apply to prove the induction step.

Lemma 1.

αa−1 + αa−1 · r(a− 2, d− 2)− αa−1 · r(a− 1, d− 2)
= αd−1 + αd−1 · r(a− 2, d− 2)− αd−1 · r(a− 2, d− 1) (4.35)

According to the induction hypothesis, symmetry holds for a + d = n− 2, i.e. r(a− 1, d− 1) =
r(d− 1, a− 1). Starting with this, we show Lemma 1 by means of equivalent transformations.

r(a− 1, d− 1) = r(d− 1, a− 1)
⇐⇒ (1− αa−1) · (1 + r(a− 2, d− 2)) + αa−1 · r(a− 1, d− 2)

= (1− αd−1) · (1 + r(d− 2, a− 2)) + αd−1 · r(d− 1, a− 2)
⇐⇒ (1− αa−1) + (1− αa−1) · r(a− 2, d− 2) + αa−1 · r(a− 1, d− 2)

= (1− αd−1) + (1− αd−1) · r(a− 2, d− 2) + αd−1 · r(d− 1, a− 2)
⇐⇒ αa−1 + αa−1 · r(a− 2, d− 2)− αa−1 · r(a− 1, d− 2)

= αd−1 + αd−1 · r(a− 2, d− 2)− αd−1 · r(a− 2, d− 1) □ (4.36)

Lemma 2.

r(a, d) = (1− αa) + (1− αd−1)
+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)
+ (1− αa) · αd−1 · r(d− 1, a− 2)
+ αa · (1− αd−1) · r(d− 2, a− 1)
+ αa · αd−1 · r(d− 1, a− 1) (4.37)
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We prove Lemma 2 by starting with the recursion of r(a, d):

r(a, d) = (1− αa) · (1 + r(a− 1, d− 1)) + αa · r(a, d− 1) (4.38)

We want so substitute r(a − 1, d − 1) and r(a, d − 1) in (4.38) and therefore apply symmetry
according to the induction hypothesis for a + d = n− 2 and a + d = n− 1:

r(a− 1, d− 1) = r(d− 1, a− 1)
= (1− αd−1) · (1 + r(d− 2, a− 2)) + αd−1 · r(d− 1, a− 2) (4.39)

r(a, d− 1) = r(d− 1, a)
= (1− αd−1) · (1 + r(d− 2, a− 1)) + αd−1 · r(d− 1, a− 1) (4.40)

We now substitute (4.39) and (4.40) in (4.38) and simplify the summands without r(·, ·):

r(a, d) = (1− αa) ·
[
1 + (1− αd−1) · (1 + r(d− 2, a− 2)) + αd−1 · r(d− 1, a− 2)

]
+ αa ·

[
(1− αd−1) · (1 + r(d− 2, a− 1)) + αd−1 · r(d− 1, a− 1)

]
= (1− αa) + (1− αa) · (1− αd−1) + αa · (1− αd−1)
+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)
+ (1− αa) · αd−1 · r(d− 1, a− 2)
+ αa · (1− αd−1) · r(d− 2, a− 1)
+ αa · αd−1 · r(d− 1, a− 1)
= (1− αa) + (1− αd−1)
+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)
+ (1− αa) · αd−1 · r(d− 1, a− 2)
+ αa · (1− αd−1) · r(d− 2, a− 1)
+ αa · αd−1 · r(d− 1, a− 1) □ (4.41)

Lemma 3.

r(d, a) = (1− αd) + (1− αa−1)
+ (1− αd) · (1− αa−1) · r(a− 2, d− 2)
+ (1− αd) · αa−1 · r(a− 1, d− 2)
+ αd · (1− αa−1) · r(a− 2, d− 1)
+ αd · αa−1 · r(a− 1, d− 1) (4.42)

The proof of Lemma 3 is analogous to Lemma 2, beginning with r(d, a). □
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Proof of Induction Step.
We show r(a, d) = r(d, a), by means of equivalent transformations and by using Lemmata 1-3.

r(a, d)
= (Lemma 2)

(1− αa) + (1− αd−1)
+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)
+ (1− αa) · αd−1 · r(d− 1, a− 2)
+ αa · (1− αd−1) · r(d− 2, a− 1)
+ αa · αd−1 · r(d− 1, a− 1)
= (Rearrangement)

(1− αa) + (1− αd−1)
+ r(a− 2, d− 2)− αd−1 · r(a− 2, d− 2)− αa · r(a− 2, d− 2) + αa+d−1 · r(a− 2, d− 2)
+ αd−1 · r(a− 2, d− 1)− αa+d−1 · r(a− 2, d− 1)
+ αa · r(a− 1, d− 2)− αa+d−1 · r(a− 1, d− 2)
+ αa+d−1 · r(a− 1, d− 1)
= (Use Lemma 1 to substitute summands with αd−1)

(1− αa) + (1− αa−1)
+ r(a− 2, d− 2)− αa−1 · r(a− 2, d− 2)− αa · r(a− 2, d− 2) + αa+d−1 · r(a− 2, d− 2)
+ αa−1 · r(a− 1, d− 2)− αa+d−1 · r(a− 2, d− 1)
+ αa · r(a− 1, d− 2)− αa+d−1 · r(a− 1, d− 2)
+ αa+d−1 · r(a− 1, d− 1)
= (Use Lemma 1 multiplied with α to substitute summands with αa)

(1− αd) + (1− αa−1)
+ r(a− 2, d− 2)− αa−1 · r(a− 2, d− 2)− αd · r(a− 2, d− 2) + αa+d−1 · r(a− 2, d− 2)
+ αa−1 · r(a− 1, d− 2)− αa+d−1 · r(a− 1, d− 2)
+ αd · r(a− 2, d− 1)− αa+d−1 · r(a− 2, d− 1)
+ αa+d−1 · r(a− 1, d− 1)
= (Rearrangement)

(1− αd) + (1− αa−1)
+ (1− αd) · (1− αa−1) · r(a− 2, d− 2)
+ (1− αd) · αa−1 · r(a− 1, d− 2)
+ αd · (1− αa−1) · r(a− 2, d− 1)
+ αd · αa−1 · r(a− 1, d− 1)
= (Lemma 3)

r(d, a) (4.43)

This completes the proof. □
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4.E SZSP Simulation

Algorithm 6 SZSP simulation (one run n ∈ N )
- draw position for each of the a vehicles from uniform distribution
- initialize rental count: rn = 0
- initialize customers to come d̂ = d
while d̂ > 0 do

- draw arrival position of customer from uniform distribution
- determine distance to vehicles
if at least one vehicle in walking distance then

- choose closest vehicle
- remove chosen vehicle
- record rental: rn ← rn + 1

end if
- reduce customers to come: d̂← d̂− 1

end while
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4.F The Origin-Based Differentiated Pricing Problem in
Free-Floating Shared Mobility Systems

To allows for the optimization of FF SMSs, we in this section integrate the CCR in the origin-
based differentiated pricing problem (OBDPP) in SMSs as defined by (Soppert et al., 2022) that
assumes matching according to the ICR, here denoted as OBDPP-ICR. We denote the resulting
problem with CCR (4.44)-(4.58) the OBDPP-CCR. Table 4.2 summarizes the nomenclature.

max
y,q,r,a,s

∑
t∈T

∑
i∈Z

∑
j∈Z

∑
m∈M

rm
ijt · lij · (pm − c) (4.44)

s.t. ait =
∑
j∈Z

∑
m∈M

rm
ijt + sit ∀i ∈ Z, t ∈ T (4.45)

∑
i∈Z

∑
m∈M

rm
ijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (4.46)

ai0 = âi0 ∀i ∈ Z (4.47)∑
m∈M

ym
it = 1 ∀i ∈ Z, t ∈ T (4.48)

rm
ijt ≤ dm

ijt · ym
it ∀i, j ∈ Z, t ∈ T , m ∈M (4.49)

rm
ijt ≤ dm

ijt/
∑
k∈Z

dm
ikt · γm

it · ait ∀i, j ∈ Z, t ∈ T , m ∈M (4.50)

∑
j∈Z

dm
ijt · ym

it − γm
it · ait ≤ M̄ · qm

it ∀i ∈ Z, t ∈ T , m ∈M (4.51)

∑
j∈Z
−dm

ijt · ym
it + γm

it · ait ≤ M̄ · (1− qm
it ) ∀i ∈ Z, t ∈ T , m ∈M (4.52)

dm
ijt · ym

it ≤ rm
ijt + M̄ · qm

it ∀i, j ∈ Z, t ∈ T , m ∈M (4.53)

dm
ijt/

∑
k∈Z

dm
ikt · γm

it · ait ≤ rm
ijt + M̄ · (1− qm

it ) + M̄ · (1− ym
it ) ∀i, j ∈ Z, t ∈ T , m ∈M (4.54)

ym
it , qm

it ∈ {0, 1} ∀i ∈ Z, t ∈ T , m ∈M (4.55)
rm

ijt ∈ R+
0 ∀i, j ∈ Z, t ∈ T , m ∈M (4.56)

sit ∈ R+
0 ∀i ∈ Z, t ∈ T (4.57)

ait ∈ R+
0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (4.58)

The central decision variables are y = [ym
it ]Z×T ×M where ym

it is binary and takes the value
1, if and only if price pm with m ∈ M was set in location i ∈ Z at period t ∈ T . The
continuous decision variables a = [ait]Z×(T +1) describe the number of available vehicles for a
certain i-t combination. r = [rm

ijt]Z×Z×T ×M is the vector of rentals where the continuous decision
variable rm

ijt describes the rentals at price pm that realize from location i to location j during
period t. s = [sit]Z×T describes the vehicles that remain unused in a certain i-t combination
and these decision variables are continuous as well. The vector of auxiliary decision variables
q = [qm

it ]Z×T ×M is required to set the ensure the rentals realization according to the CCR (4.11).
The objective function (4.44) maximizes the contribution margin of the SMS. It considers

the revenue which is generated by the rentals of duration lij at price pm, minus the respective
variable costs per minute c. Constraints (4.45) and (4.46) formulate the flow balance, where in
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(4.45), for example, the available vehicles are either rented or remain in the same location. With
Constraints (4.47), the vehicle count for all locations i ∈ Z is initialized by âi0. Constraints
(4.48) ensure, that only one price can be set for a certain location-time combination.

All other constraints form the linearized CCR. Constraints (4.49) and (4.50) are the upper
bounds and represent the horizontal, and the first piece, respectively, from Figure 4.3b. Note
that if the first piece of the CCR is restrictive, meaning (4.50) is restrictive, the rentals split
proportionally according to the demand, analogous to OBDPP-ICR. Note further that if a
certain price is not set, (4.49) forces the respective rentals to be zero. The lower bounds on the
rentals have to be set in dependence of which price is set and which part of the piece-wise linear
function is active. Therefore constraints (4.51) and (4.52) ensure that the auxiliary variable qm

it

is 1, if and only if price pm was set at the respective i-t combination and if and only if the first
piece shall be active. In this case, when qm

it = 1 and ym
it = 1 the respective constraint (4.54)

puts a lower bound on the rentals. If qm
it = 0 and ym

it = 1, the respective constraint (4.53) is
active. The difference to the original OBDPP consists in the introduction of γm

it , the adaptation
of the auxiliary variables q, now dependent on m and with different meaning, and the respective
constraints (4.50)-(4.54).

The original OBDPP-ICR was proven to be NP-hard (Soppert et al., 2022). Since the ICR is
a special case of the CCR, obviously, also the OBDPP-ICR is a special case of the OBDPP-CCR.
The OBDPP-CCR therewith is NP-hard as well.
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(Decision) variables
ait vehicles available in i at t, ait ∈ R+

0
rm

ijt vehicles rented from i to j during t when price m was set, rm
ijt ∈ R+

0
sit vehicles not rented, meaning vehicles that remain in i during t, sit ∈ R+

0
ym

it pricing decision variable, describing if price m is set in i at t, ym
it ∈ {0, 1}

qm
it auxiliary variable, qm

it ∈ {0, 1}

Sets
Z set of stations
T set of time periods
M set of price indices
y = {ym

it ∀i ∈ Z, t ∈ T , m ∈M}
q = {qm

it ∀i ∈ Z, t ∈ T , m ∈M}
r = {rm

ijt ∀i, j ∈ Z, t ∈ T , m ∈M}
s = {sit ∀i ∈ Z, t ∈ T }

Parameters and indices
i, j, k ∈ Z location index
t ∈ T period index
m ∈M price index
pm price
fm

ijt sensitivity for price pm for i-j-t combination
dijt basic demand from i to j during t at base price
dm

ijt actual demand from i to j during t for price pm, dm
ijt = dijt · fm

ijt

âi0 initial number of available vehicles in i
c variable costs per minute
lij average duration of rental in minutes from i to j

M̄ sufficiently large number

Table 4.2: List of (decision) variables, sets, parameters and indices for the OBDPP-CCR (4.44)-(4.58)
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4.G Single Zone, Single Period Setting - Additional Results
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Figure 4.16: Mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in SZSP-scenarios with
Az = 0.5 km2, 1 km2, 2 km2, 4 km2
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Figure 4.17: Mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in SZSP-scenarios with
Az = 0.5 km2, 1 km2, 2 km2, 4 km2 and demand values d̂ = 2, 4, 6, 8
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Table 4.3: RT ME in different SZSP-scenarios with varying Az for DCR, CCR, and ICR
a) Az = 0.5 km2, b) Az = 1 km2, c) Az = 2 km2, d) Az = 4 km2
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4.H Multiple Zones, Multiple Periods Setting - Additional Re-
sults
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4.I Artificial Zone Partitioning

This section illustrates Property 6, i.e., the independence to zone partitioning, which was in-
troduced in Section 4.3.4. Consider an instance of the SZSP-setting (Section 4.4.1.1). The
quadratic zone is comparably large to the walking areas with Az = 16 ·Aw, as depicted in Figure
4.18a. The zone is assumed to be homogeneous and demand and supply in this zone are d = 16
and a = 16 (zero variance). As depicted in Figure 4.19 (left: 1 zone with Az = 16 · Aw), the
simulation (SIM) yields 8.5 rentals on average. The DCR returns a similar result, the CCR
slightly overestimates with around 10 rentals, while the ICR predicts 16 rentals.

(a) 1 zone with Az = 16 · Aw (b) 4 zones with Az = 4 · Aw (c) 16 zones with Az = Aw

Figure 4.18: Setting for artificial zone partitioning

We now artificially partition the zone into four smaller zones with each having a size of
Az = 4 ·Aw (Figure 4.18b). Supply and demand are split homogeneously across the zones, i.e.,
d = 4 and a = 4 for each zone. To determine the overall rentals with the matching functions,
the functions are evaluated on each individual zone and the result is multiplied by 4 (because
of the 4 zones). As depicted in Figure 4.19 (middle: 4 zones with Az = 4 · Aw), the value from
the SIM benchmark remains unchanged, because the artificial partitioning into smaller zones
has no impact on the actual matching process on the original large zone. The overall rentals
resulting from applying the DCR and CCR (both adapted to the zone size) on the four zones
now both overestimate the actual rentals. The results for ICR remain unchanged compared
to the previous results with one zone. This characteristic of the ICR is what is formalized as
the independence to zone partitioning in Property 6. The reason for the overestimation of the
DCR and CCR is that the friction regarding the supply-demand matching in the large zone
is removed by assuming that supply and demand distributes proportionally across the smaller
zones in which there is no friction.

In the last step of this analysis, the original zone is partitioned into 16 zones with each
having a size of Az = Aw (Figure 4.18c). Again, supply and demand are split homogeneously
across the zones, i.e., d = 1 and a = 1 for each zone. The effects are in principle the same as
described for the four zones, but since Az = Aw, the DCR and CCR now predict one rental per
small zone and, thus 16 rentals overall, exactly as with the ICR (Figure 4.19 right: 16 zones
with Az = Aw).

This shows that one cannot improve rental prediction accuracy by artificially partitioning a
zone for which supply and demand is given into multiple smaller zones and then apply the ICR.
The predictions with the ICR do not change due to the “independence to zone partitioning”
(Property 6) and the DCR and CCR only perform accurately on the original zone where the

165



1 zone with
Az = 16 · Aw

4 zones with
Az = 4 · Aw

16 zones with
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0
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Figure 4.19: Results for artificial zone partitioning

friction is considered correctly. The difference between the studies performed in the SZSP-
and the MZMP-setting (Sections 4.4.1.1 and 4.4.2.1) and the study in this section is that in
the former, the operating area (one zone in the SZSP-setting) is scaled to different sizes while
maintaining the number of zones, while here the operating area is partitioned into multiple zones.

4.J Case Study - Additional Results

Az

[
km2

]
OBDPP-

RT RV CM
mean c.i. mean c.i. mean c.i.

0.5 ICR 2908.3 ±12.4 13651.2 ±60.1 10379.4 ±46.2
CCR 2925.2 ±12.3 13755.2 ±57.9 10464.3 ±44.2

1 ICR 1788.5 ±11.8 8365.4 ±55.9 6353.3 ±42.8
CCR 1885.2 ±10.9 8636.8 ±50.8 6515.9 ±38.8

2 ICR 698.7 ±6.4 3267.2 ±30.8 2481.2 ±23.5
CCR 747.4 ±6.2 3388.5 ±29.0 2547.7 ±22.0

4 ICR 203.5 ±3.1 953.1 ±14.7 724.2 ±11.2
CCR 213.0 ±2.9 978.2 ±13.5 738.5 ±10.3

Table 4.7: Mean and 95% confidence interval for RT , RV , and CM of pricing solutions of OBDPP-ICR
and OBDPP-CCR for MZMP-settings with Az = 0.5 km2, 1 km2, 2 km2, 4 km2 evaluated in simulation.

ICR-CCR pairs with non-overlapping confidence intervals are highlighted
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Chapter 5

Customer-Centric Dynamic Pricing
for Free-Floating Shared Mobility
Systems

172



5.1 Introduction

Vehicle sharing systems (VSSs), such as car sharing, bike sharing, or scooter sharing, are specific
shared mobility systems (Mourad, Puchinger, and Chu, 2019) that allow users to flexibly and
spontaneously rent vehicles for a short period of time (Ataç, Obrenović, and Bierlaire, 2021).
In contrast to other popular shared mobility systems, VSSs enable individual trips (conducted
by the user), whereas, for example, ride-hailing (e.g. Wang and Yang, 2019) requires connecting
passengers with drivers in a two-sided market, and ride-pooling (e.g. Ke et al., 2020) as well as
dial-a-ride (e.g. Qiu et al., 2018) concepts strive for shared trips.

There are three fundamental types of VSSs which, from the customers’ view, decisively differ
with regard to the degree of flexibility they offer. In two-way station-based systems, customers
have to return vehicles to the pick-up station, whereas in one-way station-based systems, cus-
tomers can pick-up and drop-off the vehicle at any station. Free-floating is the most flexible
variant, as it allows customers to pick-up and drop-off vehicles at any public parking spot in the
business area of the VSS provider (e.g. Chow and Yu, 2015). For this reason, free-floating VSSs
have become a very popular type in urban areas (e.g. Statista, 2022). However, higher degrees
of flexibility come with an important drawback: Due to unbalanced demand patterns and the
oscillation of the demand intensity over the course of the day, vehicles accumulate at certain
locations (usually the outskirts) over time, while other areas lack vehicles (usually downtown).
This so-called “tide phenomenon" (spatio-temporal demand asymmetries (Côme, 2014; Jorge
and Correia, 2013)) is even more pronounced for free-floating VSSs than for station-based one-
way VSSs. The reason is that while demand and supply in a free-floating VSSs spread across
the entire business area, they concentrate to rather few locations in station-based VSSs (Wagner
et al., 2015).

Pricing is an established tool to counter these imbalances and to improve the system’s profit.
The idea is to nudge some customers to slightly adapt their travel plans, for example, to pick up
a sharing vehicle at a low demand location instead of a high demand location. Thus, adequate
pricing can achieve a vehicle availability that assures an appropriate service level.

Existing pricing approaches from the related literature on VSSs determine vehicle-specific
prices, meaning that all customers are getting displayed the same (minute) price for a partic-
ular vehicle when checking prices at the same time. These approaches do not leverage on the
detailed disaggregate information which is available in modern free-floating VSSs. Opposed to
these approaches, a customer-centric pricing approach determines prices under consideration of
the situation-specific information of each customer. As depicted in Figure 5.1a, this particularly
comprises a customer’s location as well as the information about the available vehicles within
the customer’s walking distance. Thus, in contrast to vehicle-specific pricing, customer-centric
pricing may result in different prices for the same vehicle when customers are at different loca-
tions (Figure 5.1b). It can be considered as an application of choice-based revenue management
(Strauss, Klein, and Steinhardt, 2018) with the particularity in free-floating VSSs that the con-
sideration set of available vehicles is determined by the customer’s location. The core idea of
customer-centric pricing has successfully been applied to shared mobility systems other than
VSSs, i.e., to mobility on demand services (Qiu et al., 2018). However, these mobility systems
differ fundamentally from VSSs in that the provider operates a platform that receives requests

173



for the customers’ desired trips and then matches demand to supply. This (moving) supply of
vehicles may either be under full control of the provider (Ke et al., 2020) or it may be influenced
by pricing as well, resulting in a two-sided market (Wang and Ma, 2019). Thus, these approaches
are not directly applicable to our context, and in this work we propose such customer-centric
dynamic pricing which is specifically tailored to free-floating VSSs.

?? ?

?

?

customer 
1

customer 
2

max. walking 
distance

(a) Provider’s pricing problem:
The “?" indicate prices to be optimized online.

0.36 0.26 0.26 
0.31

0.36 

max. walking 
distance

customer 
1

customer 
2

(b) Resulting customer’s choice situation:
Customers might see different prices for a vehicle.

Figure 5.1: Illustration of the first distinguishing feature of the developed pricing approach:
customer-centricity.

In this work, we consider a profit-maximizing free-floating VSS provider’s dynamic online
pricing problem with a strong focus on applicability in practice, meaning that problem definition
and solution approach design are based on the circumstances and requirements in practice. More
precisely, whenever a customer considers prices in the mobile application, prices need to be
determined based on the currently available information. For this problem, we develop a new
pricing approach that is characterized by the following three distinguishing features:

• First, and most importantly, the pricing is customer-centric. As briefly described above,
adopting the concept of customer-centricity means that prices are situation-specific for
each customer. As a consequence, the online price optimization can leverage on detailed
disaggregate information like the customer’s location. This, in turn, allows to exploit that
the location not only determines the vehicles within the customer’s walking distance, but
that the distance to a vehicle also impacts the customer’s utility and, thus, the probabil-
ity of choosing it. Due to the customer-centricity, the pricing approach can incorporate
the customer choice behavior through an appropriate choice model. As stated above, this
pricing can result in one specific vehicle having different prices for different customers,
but this does not mean that pricing is personalized. More specifically, we do not use
socio-demographic characteristics such as age or income to potentially exploit individual
willingness-to-walk or individual price sensitivity. Only the location of the customer’s
device when she looks for vehicles is used to account for the impact of distance to dif-
ferent vehicles on customer utility. Thus, prices are identical for every customer who
faces the same situation. Note, however, that – as for all pricing approaches in which
locations of customers or vehicles are decisive – prices may indirectly be dependent on
socio-demographic characteristics, e.g. because of location-dependent income levels.

• Second, within our pricing approach, prices can be varied (solely) based on location and
time of a rental’s start, denoted as origin-based pricing, in line with the business deci-
sion of Share Now. In particular, information on a rental’s destination can not be used,
because it is not available in reality: Asking customers for their destination beforehand

174



contradicts the spontaneous selling proposition of free-floating VSSs (Soppert et al., 2022).
The alternative, i.e., displaying prices for all potential origin-destination (and -time) com-
binations in advance of a rental, is impracticable in general, given that free-floating VSS
providers often discretize their business area into up to hundred zones. Note, however, that
if zones (or stations in a station-based system) are aggregated to fewer categories, such
as “incentivized rental (return) station” and “neutral station” which allow the customer
to pre-calculate incurring rental prices based upon these zone categories (Chung, Freund,
and Shmoys , 2018), this becomes practical.

• Third, for the provider, it is important how prices are determined. In this respect, our
pricing approach is anticipative as it considers future profits based on dynamic program-
ming. The papers using mathematical models largely rely on myopic optimization models.
In addition, as we will discuss in-depth in Section 5.2, they can not be applied to the
problem we consider for various other reasons. The ways we design the anticipation allows
to use historical data that is readily available in practice.

This pricing approach takes into account the typical characteristics of free-floating VSS (pick-up
and drop-off possible at any location within the business area). However, given that station-
based VSSs can be considered as a special case of free-floating systems, the approach is applicable
to both. The pricing problem and our approach’s practical relevance is ensured by, among other
things, close cooperation with Share Now, Europe’s largest car sharing provider operating in
eight countries and 16 cities (Share Now, 2021).

The contributions of our work are the following:

• We present a dynamic pricing approach for modern (free-floating) VSSs like car sharing
and bike sharing, which is characterized by the three distinguished features mentioned
above, i.e., it is customer-centric, origin-based, and anticipative.

• We formulate the pricing problem underlying our approach as a dynamic program which
considers stochasticity of the VSS. We show that regarding the action space at each stage
of the dynamic program, only vehicles within walking distance need to be considered, such
that online pricing becomes tractable. Based on the dynamic programming formulation,
we develop an approximate dynamic programming solution method for the online pricing
problem. The approach incorporates a non-parametric regression which allows the ap-
proximation of future profits based on historical data. This enables the pre-calculation
of state-values such that the numerical operations of the online pricing problem can be
reduced to a minimum.

• We conduct several computational studies, including sensitivity analyses as well as a case
study based on Share Now data from the city of Vienna. We consider a discrete set of
five (see Sections 5.5.4 to 5.5.6) or three price points (see Section 5.6) as VSS providers
aim for a transparent and easy-to-communicate pricing mechanism. These studies show
that our new dynamic pricing approach dominates all of the considered benchmarks in
terms of realized profit, including state-of-the-art approaches from the literature. Further,
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these results are shown to be robust across the various considered settings and parameter
variations, such as different VSSs sizes, overall demand levels, and customer preferences.

• We derive a number of relevant managerial insights from the computational studies. In
particular, we show that our pricing approach is particularly effective when there is spatial
variation in demand and that sophisticated anticipation of future states and profits is
key. Another finding is that our pricing approach realizes higher profits compared to the
benchmarks while maintaining the overall level of rentals, which is beneficial for service-
oriented metrics of a VSS provider.

The remainder of the paper is organized as follows. In Section 5.2, we review the relevant
literature. Section 5.3 formalizes the problem. Based on this, we develop the new dynamic
pricing approach in Section 5.4. Section 5.5 contains the computational study with a discrete
set of five price points. Section 5.6 presents the Share Now case study with the set of the three
original price points. Section 5.7 concludes the paper and gives an outlook on future research.
The appendix contains additional numerical results and a list of notation.
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5.2 Related Literature

The literature on VSS optimization is broad, covering various types of systems, optimization
problems, control approaches, and methodologies. General overviews on VSS optimization prob-
lems have been presented in survey papers on bike sharing (e.g. DeMaio, 2009; Fishman, Wash-
ington, and Haworth, 2013; Ricci, 2015), car sharing (e.g. Jorge and Correia, 2013; Ferrero et al.,
2015a,b; Illgen and Höck, 2019; Golalikhani et al., 2021a,b), and VSSs in general (e.g. Laporte,
Meunier, and Wolfler Calvo, 2015, 2018).

To define the scope of the following discussion of the related literature, please first note
that VSSs are one specific type of shared mobility systems (Mourad, Puchinger, and Chu,
2019), with the latter also comprising other modern mobility concepts such as ride-hailing (e.g.
Wang and Yang, 2019), ride-pooling (e.g. Ke et al., 2020), or dial-a-ride (e.g. Qiu et al., 2018).
VSSs substantially differ from these other mobility concepts in terms of the service offered as
well as in terms of the provider’s operating tasks. For example, in contrast to ride-hailing
where the provider operates a platform that connects passengers and drivers in a two-sided
market for individual trips, providers of VSSs operate in a one-sided market with a fixed supply
(fleet) of (non-autonomous) vehicles. Further, e.g., in dial-a-ride concepts, the provider is in
charge of executing trips and, thus, strives for shared trips among passengers, whereas users in
VSSs rent vehicles for individual trips and then drive these vehicles themselves. Due to these
substantial differences in terms of mobility services and provider tasks, we exclude the other
mobility concepts from our literature discussion and exclusively concentrate on VSSs. As a side
remark, please note that the term “shared mobility system" is sometimes also used in a narrower
sense as a synonym for VSS (e.g. Laporte, Meunier, and Wolfler Calvo, 2015, 2018).

Within the literature on VSS pricing, we further focus on the closest related works that
address dynamic pricing in VSSs. Dynamic – in contrast to differentiated (or static) pricing
for VSSs like in Waserhole and Jost (2012) or Ren et al. (2019) – means that the pricing is
performed on-line and depends on the system’s current state (e.g. vehicle locations) (Agatz
et al., 2013).

Our presentation of the closest related literature is organized in two groups according to the
methodology proposed. First, in Section 5.2.1, we summarize approaches in which prices are
determined through business rules. Second, in Section 5.2.2, we present those which are based
on optimization. For both groups, we distinguish further into approaches that are anticipative
in contrast to the myopic ones. Please note that some of these works have another main focus
than pricing, but we discuss them specifically with regard to their pricing mechanism. In Section
5.2.3, we briefly refer to other literature streams that are related only in a broader sense. Finally,
in Section 5.2.4, we position our approach in the closest related literature on dynamic pricing
for VSSs.

5.2.1 Rule-Based Approaches

Rule-based approaches propose business rules to derive prices, for example by comparing endoge-
nously given thresholds to the current state of the system. Among them, a group of anticipative
approaches incorporates expected future states of the VSS into the pricing decision. Threshold
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values are usually compared with the ratio of future supply and demand at individual loca-
tions, which is derived from historical data and the system’s current state (Brendel, Brauer, and
Hildebrandt, 2016; Dötterl et al., 2017). Wagner et al. (2015) in contrast consider exogenously
given rules based on expected idle times. These three works have in common that they pro-
pose an overall framework for dynamic pricing, of which the rule-based pricing approach is one
component.

Other works that use business rules propose myopic approaches. Bianchessi, Formentin, and
Savaresi (2013) compare the number of vehicles at a location with the mean value across all
locations to determine prices. Zhang, Meng and David (2019) define prices by comparing the
current number of vehicles with demand and propose a negative price that is linear in the un-
dersupply of a rental’s destination location. If there is no undersupply, the regular positive price
applies. Barth, Todd, and Xue (2004) propose a system that, once it recognizes an imbalance,
provides incentives for joint rides of independent customers in one car or splitting a party of cus-
tomers into multiple cars. Mareček, Shorten, and Yu (2016) derive drop-off charges for vehicles
depending on the intended destination location’s distance to the nearest vehicle. Angelopoulos
et al. (2016, 2018) propose two algorithms for promoting trips based on the priorities of vehicle
relocations between locations. Chung, Freund, and Shmoys (2018) study the impact of an
incentive program of New York City’s bike sharing system and propose two myopic dynamic
pricing approaches which are based on a performance metric that incorporates the estimated
reduction of future out-of-stock events as well as the costs incurred by the incentives. Whereas
the first considers each individual trip, the second determines decisions less frequently, i.e., for
several periods. Neijmeijer et al. (2020) is difficult to classify regarding methodology. They
formulate a MIP that minimizes deviations of idle times from a desired value plus the costs of
incentives, but in the empirical evaluations of a scooter sharing system, they test the effect of
two possible discounts on vehicles’ idle times.

5.2.2 Optimization-Based Approaches

Optimization-based dynamic pricing approaches are characterized by having a formal objective
metric that is maximized (profit, revenue, rentals, service, etc.) or minimized (costs, unsatisfied
demand, etc.). Methodologically, these approaches comprise those built on mathematical opti-
mization like mixed-integer programming as well as learning methods that iteratively improve
the objective, like reinforcement learning.

A couple of these optimization-based approaches use anticipative models. Singla et al. (2015)
design a complete architecture of an operational incentive system which comprises, among other
components, an "Incentive Deployment Schema" that decides whether to offer an alternative
station with incentives or not with the objective to align future demand and supply. They
evaluate using a real world survey as well as simulations. Pfrommer et al. (2014) propose
an approach that uses quadratic programming and combines user-based and operator-based
relocation. Prices are recalculated each period in a rolling horizon fashion. Ruch, Warrington,
and Morari (2014) build on Pfrommer et al. (2014) and investigate simplified variants that can
be used to benchmark more complex approaches. Di Febbraro, Sacco, and Saeednia (2012) aim
at balancing supply and demand at all locations. They suggest alternative drop-off locations
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with a discount to customers. Assuming a given acceptance probability for these suggestions, a
simulation evaluates the benefit for vehicle availability. Di Febbraro, Sacco, and Saeednia (2019)
follow up on their earlier paper and formulate and test corresponding optimization models.
Kamatani, Nakata, and Arai (2019) optimize thresholds by simulation-based optimization (Q-
learning), while Clemente et al. (2017) propose a decision support system that uses a simulation-
based heuristic (particle swarm optimization).

The remaining papers use myopic optimization. While they overall focus on user-based
relocation, in one subsection Chemla et al. (2013) determine myopic prices period by period.
They aim at a service-maximizing fleet distribution in bike-sharing systems through user-based
relocation, where customer satisfaction is measured by successful and unsuccessful customer
actions (available or non available bike, empty or full rack). They use a linear program to
determine the number of customers who change their travel plans because of the price incentive
to reach the given target inventory of vehicles for each location. Two papers do not directly solve
a mathematical model, but use it as a basis to develop a heuristic. Haider et al. (2018) formulate
a bi-level program, where the upper level determines prices and minimizes vehicle imbalance,
while the lower level represents the cost-minimizing route choice of customers. The problem is
transformed into a single-level problem and a heuristic is proposed that iteratively adjusts prices
(and, in contrast to the bi-level program, contains some anticipation). Wang and Ma (2019)
consider the objective of keeping inventory within a certain range for a period. For this purpose,
they define lower and upper thresholds for each location. The number of rentals from or to a
location can be affected by pickup and drop-off fees. They formulate a simple quadratic program
to determine optimal dynamic pickup and drop-off fees and solve it with a genetic algorithm.
Kanoria and Qian (2019) define a myopic and location-based dynamic pricing algorithm for a
trip-based VSS with time-variant arrival rates, without knowledge of arrival rates and with a
finite time horizon. The algorithm needs the information about the queue length of origin and
destination and a partitioning of the business area into zones.

5.2.3 Further Literature

There are several further literature streams which have some similarities with the considered
problem and the applied methods, but which we do not discuss in detail. In particular, this
concerns the determination of relocation prices with an auction process for VSSs (Ghosh and
Varakantham, 2017). Furthermore, we do not consider papers that do not describe the price
setting process in detail. For example, Fricker and Gast (2016) show that user-based relocation
is worthwhile, but they do not elaborate on how the prices are calculated.

Another stream of the literature investigates the steady state of stationary settings in mobil-
ity sharing concepts (including VSSs as considered in this work and ride-hailing applications),
using techniques from closed-queuing networks. Waserhole and Jost (2016) maximize the num-
ber of trips taken, assuming time-invariant demand and zero travel time. Banerjee, Freund, and
Lykouris, Thodoris (2022) extend this work by considering additional performance metrics and
allowing non-zero travel time. Besbes, Castro, and Lobel (2021) focus on the single-location
case of this setting. Benjaafar and Shen (2022) present an alternative solution approach with
better performance bounds for several of the particular problems addressed in the above. Since
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all of these works consider stylized steady-state settings with time-invariant arrival-rates, exact
knowledge of arrival-rate and an infinite time horizon. The derived pricing policies are differ-
entiated (static) (see Benjaafar and Shen, 2022), and, thus, not within the scope of our work.
Further, they consider the systems on an aggregated level in which customer choices on a disag-
gregated level cannot be easily incorporated. Note that there are papers from this stream that
differ from the aforementioned papers and use dynamic pricing. We have already mentioned an
example (Kanoria and Qian , 2019) of this in Section 5.2.2.

5.2.4 Positioning in the Literature

Our approach is positioned as follows in the literature on dynamic pricing for VSSs. With
regard to methodology, the pricing approach we propose is anticipative and optimization-based.
Thus, it belongs to the first group of works named in Section 5.2.2. It substantially differs from
the above-named closest related works in particular by incorporating the concept of customer-
centricity. As explained in Section 5.1 and illustrated by Figure 5.1, this means that prices
are situation-specific for each customer, considering in particular a customer’s location, the
available vehicles within walking distance and other situational characteristics that influence
the customer choice behavior, like walking distances to these vehicle. Using this situation-
specific information for each customer has also been applied in shared mobility systems other
than VSSs, e.g. for mobility on demand services (Qiu et al., 2018). To adopt this idea to the
particularities of free-floating VSSs, we design our approach using disaggregate demand modeling
which is capable of capturing the uncertain choice behavior. More specifically, our approach is
designed to incorporate discrete choice models (Train, 2009) in which the available vehicles
within walking distance represent the discrete alternatives of the customer’s consideration set
that have individual choice probabilities. In the context of dynamic pricing in VSSs, we are not
aware of any other comparable pricing approach.

As a consequence, our work also differs in terms of the mathematical modeling. Almost all of
the closest related works which use mathematical models for determining prices use deterministic
models (e.g. Chemla et al., 2013; Pfrommer et al., 2014; Wang and Ma, 2019). In contrast, our
approach is built upon a stochastic dynamic model and uses approximate dynamic programming
with a non-parametric value function approximation to become tractable and scalable.

With regard to the type of the VSS, there are a few papers that also consider free-floating
systems, albeit with rule-based approaches. Di Febbraro, Sacco, and Saeednia (2012) and Di
Febbraro, Sacco, and Saeednia (2019) are the only two optimization-based approaches. Their
vehicle-specific pricing is based on aggregated demand modeling.

Further, our approach differs from most of the literature in that prices are origin-based,
meaning that they only depend on time and location of a rental’s start. Such origin-based pricing,
as applied by Share Now, is the most practicable variant for free-floating VSSs (see Section 5.1
or Soppert et al., 2022) for differentiated pricing, and thus a popular business practice. Other
variants are destination-based prices (e.g. target-specific discounts as in Singla et al., 2015) and
trip-based prices (or other incentives as in Chung, Freund, and Shmoys , 2018), that depend
on both origin and destination. Only Neijmeijer et al. (2020) in a rule-based approach consider
origin-based pricing.
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5.3 Model

In this section, we formally model the free-floating VSS provider’s decision problem as a dynamic
program. To do so, in Section 5.3.1, we give an overview on the sequence of events. In Sections
5.3.2 to 5.3.5, we explain how we choose the standard ingredients of dynamic programs: states,
decisions, state transitions, and cost/revenue function. Based on this, we formally state the
provider’s optimization problem in Section 5.3.6.

5.3.1 Sequence of Events

We consider a free-floating VSS provider who operates a fleet of vehicles C = {1, . . . , C} which
is distributed spatially across a continuous business area. At any given point in time, a vehicle
i ∈ C is either idle (standing available) or in use (currently rented). The provider seeks to
maximize his profit over a finite planning horizon (e.g. one day) by pricing.

We follow the standard approach in the literature on pricing and revenue management by
which this planning horizon is discretized into micro periods t ∈ {0, . . . , T} = T and we have ∆
micro periods per minute. These micro periods are w.l.o.g. so short that at most one customer
request arrives and/or one rental terminates per period.

For every customer who opens the mobile application and requests prices, the provider has
the ability to optimize and display prices. Hence, in this online pricing problem, the four steps
within a micro period t are the following: (I) A customer may arrive, (II) if so, prices are
determined by the provider, and (III) the customer chooses among the available vehicles under
consideration of the offered prices. Finally, (IV) another moving vehicle that was previously
rented (before period t) by another customer may return. One micro period of this process is
illustrated in Figure 5.2, where decision nodes are represented as squares and stochastic nodes
as circles.

Please note that in the following description, t denotes the current period, t′ an earlier period,
and t′′ some future period, i.e., t′ < t < t′′. Further, for random variables, following conventional
notation, the indices t′, t, and t′′ reflect when these random variables realize and, thus, become
known to the provider.

Step I: At the beginning of period t, the system is in state St which contains information
about idle and driving vehicles. Now, at the stochastic node (circle) in Step I, with probability
λt a customer kt arrives, i.e., she opens the mobile application and looks for available vehicles.
The coordinates of the requesting customer’s specific location in the business area are random
variables (XO

t , Y O
t ) which follow a given, time-dependent origin probability distribution O(t).

Realizations of these random variables, meaning the coordinates where a customer opens the
mobile application, are denoted with (xO

t , yO
t ).

Step II: The provider optimizes the C × 1 price vector p⃗t, visualized by the decision node
(square).

Step III: Based on these prices, the customer kt decides whether and which vehicle to rent.
The vehicle chosen is denoted by the random variable It with realizations it. The customer
choice behavior is formalized as follows: Customers have a (fixed) maximum willingness to walk
d̄ (assumed to be known), meaning that a customer only considers idle vehicles it for which the
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Figure 5.2: Illustration of dynamic pricing problem

walking distance dit,t between the customer’s current location (xO
t , yO

t ) and the idle vehicle is
smaller than this radius, i.e., the consideration set is Ct,(xO

t ,yO
t ) = {it ∈ C | dit,t ≤ d̄ ∧ τv

it,t = 0}
(τv

it,t is explained below in Section 5.3.2, it contains the information whether a vehicle is idle or
in use). This is a well-known behavior of customers in VSSs and has been reported in multiple
studies (e.g. Niels and Bogenberger, 2017). More technically, we assume that the customer’s
choice probability qit,t for vehicle it ∈ Ct,(xO

t ,yO
t ) follows a known choice model and depends on

the prices and the distances of the vehicles within reach, i.e. Ct,(xO
t ,yO

t ) and p⃗t. The probability of
not choosing any of the available vehicles is denoted by q0,t. Note that our problem formulation
is generic in this regard, meaning that arbitrary choice models providing these probabilities can
be used. In the numerical studies, we apply a multinomial logit model (e.g. Train, 2009). If
she chooses a vehicle, the customer needs to walk there. This walking time lwt in minutes is a
realization of LW

t and depends on her distance to the vehicle. We assume a constant walking
speed. As the chosen vehicle is stochastic, Lw

t is a random variable.
Step IV: Finally, in each micro period, w.l.o.g., at most one rental may terminate, which

started in some period t′ < t before the current period t. More specifically, a customer who
arrived at t′ = t− lwt′ ·∆− ldt ·∆ terminates her rental in t (see also Figure 5.3). Similar to the
customer origin probability distribution O(t), when and where a rental terminates is random.
More technically, (Jt, XD

t , Y D
t ) is a random variable which denotes that vehicle Jt (zero if none)

is returned at location (XD
t , Y D

t ). It follows a given destination probability distribution D(t, St)
that depends on the state St at the beginning of period t. The state definition is explained
below. In particular, to capture typical traffic flow patterns, D(t, St) may depend on where and
when the currently driving customers have originated. Realizations of these random variables
are denoted with jt and (xD

t , yD
t ). The driving/rental time ldt in minutes is a realization of the

random variable Ld
t , which follows a distribution ρ(St′) and depends on the stochastic travel

speed and the travel distance from pick-up to drop-off location (XD
t , Y D

t ) of the vehicle, all
unknown to the provider before the rental ends at micro period t.
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Figure 5.3: Sequence of events

5.3.2 State

The VSS’s state St = (x⃗c
t , y⃗c

t , τ⃗ c
t , x⃗v

t , y⃗v
t , τ⃗ v

t ) at the beginning of period t consists of six vectors
of dimension C × 1, where the it-th element in each vector describes a property of the it-th
vehicle of the fleet. The vectors x⃗v

t and y⃗v
t contain the coordinates of all vehicles of the fleet,

i.e. xv
it,t and yv

it,t ∀it ∈ C, t ∈ T , respectively. More specifically, for an idle vehicle they contain
the coordinates of its location at the current micro period t. For a rented vehicle, they contain
where the currently driving customer picked up the vehicle. The vector τ⃗ v

t contains when the
vehicle was picked up, with the value 0 indicating a vehicle standing idle. The vectors x⃗c

t , y⃗c
t ,

and τ⃗ c
t describe when and where the respective customers have requested the rental (i.e. for

driving vehicles when and where the customer initially opened the mobile application).

5.3.3 Actions

Regarding the VSS provider’s pricing decisions, we assume that the provider seeks to maximize
profits by means of dynamic pricing. More precisely, when a customer opens the mobile applica-
tion to look for available vehicles in micro period t, the VSS provider needs to optimize prices.
As explained in Section 5.1, prices are origin-based per-minute prices and they are chosen from
a discrete finite price set M.

5.3.4 State Transitions

The transition function describes the evolution of the system from state St at the beginning of
period t to state St+1 at the beginning of period t+1. It depends on the current state St and the
following realizations of random variables: the arriving customer’s location (xO

t , yO
t ), the chosen

vehicle it (0 indicates the customer decides against renting a vehicle), and the returned vehicle
jt together with its return location (xD

t , yD
t ) if (another) vehicle jt rented before is returned

(likewise, jt = 0 indicates no vehicle is returned), i.e.,

St+1 = St+1
(
St, (xO

t , yO
t ), it, (xD

t , yD
t ), jt

)
. (5.1)
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Please note that the probability distribution of the chosen vehicle It and therewith specific
choices it depend on p⃗t. Technically speaking, St+1 is probabilistically dependent (Powell ,
2011, Chapter 3) on the pricing decision p⃗t. By contrast, jt does not depend on p⃗t, but solely
on which vehicles are currently in use and when and where these rentals started (stored in
x⃗c
t , y⃗c

t , τ⃗ c
t , x⃗v

t , y⃗v
t , τ⃗ v

t ).
The transitions of the state vectors are as follows. When a customer selects a vehicle it, the

respective entries of the vectors x⃗c
t and y⃗c

t are filled with the customer’s origin location (xO
t , yO

t ),
the origin time is updated to τ c

it,t = t and the rental start time is set to τv
it,t = t + lwt · ∆.

When vehicle it is returned, xv
it,t and yv

it,t change to the destination location (xD
t , yD

t ) and the
corresponding τv

it,t and τ c
it,t change back to 0.

5.3.5 Cost/Revenue Structure

For each minute that a vehicle it is rented, the provider collects the corresponding revenue pit,t.
During the rental, when the customer drives, the provider incurs variable costs per minute of c

(e.g. for fuel). Following common practice, we assume that the short time frame the customer
needs to walk to the vehicle is free of charge. Thus, the profit resulting from renting out vehicle
it to the customer who arrived in period t and will return it in period t′′ is given by (pit,t−c) · ldt′′ ,
where ldt′′ is the realization of Ld

t′′ ∼ ρ(St).

5.3.6 Dynamic Programming Formulation

In this subsection, we model the problem described previously as a Markov decision process and
state the corresponding Bellman equation:

V (St, t) =

λt · E
(XO

t ,Y O
t )

∼O(t)

[
max
p⃗t

customer arrives and chooses a vehicle︷ ︸︸ ︷∑
it∈C

t,(xO
t

,yO
t

)

qit,t(p⃗t) ·
(

(pit,t − c) · E
Ld

t′′ ∼ρ(St)
[Ld

t′′ ]

customer arrives and chooses a vehicle︷ ︸︸ ︷
+ E

(Jt,XD
t ,Y D

t )
∼D(t,St

)

[
V

(
St+1

(
St, (XO

t , Y O
t ), it, (XD

t , Y D
t ), Jt

)
, t + 1

)])

+

customer arrives and chooses no vehicle︷ ︸︸ ︷
q0,t(p⃗t) · E

(Jt,XD
t ,Y D

t )
∼D(t,St

)

[
V

(
St+1

(
St, 0, 0, (XD

t , Y D
t ), Jt

)
, t + 1

)]]

+

no customer arrives︷ ︸︸ ︷
(1 − λt) · E

(Jt,XD
t ,Y D

t )
∼D(t,St

)

[
V

(
St+1

(
St, 0, 0, (XD

t , Y D
t ), Jt

)
, t + 1

)]

(5.2)

with the boundary condition V (ST , T ) = 0 ∀ST . The Bellman equation recursively calculates
the optimal expected profit from future rentals V (St, t) for being in state St at the beginning of
period t. Each micro period t corresponds to a stage in this dynamic program. In the following,
we explain how the four steps (I-IV) within each stage (=micro period) are represented in (5.2).

In the first and the second line of (5.2), a customer arrives (Step I) with probability λt

at a location (xO
t , yO

t ) and in this case, the optimal price vector p⃗t for all available vehicles is
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determined (Step II). The following customer choice process has different potential outcomes
(Step III): With probability qit,t(p⃗t) (first line), vehicle it is chosen, and, in expectation a profit
of (pit,t − c) ·ELd

t′′∼ρ(St)
[Ld

t′′ ] is obtained. Another vehicle jt that was rented before micro period
t may be returned at location (xD

t , yD
t ) (Step IV) and the system evolves to the next state in

micro period t + 1 where expected future profit is V
(
St+1

(
St, (xO

t , yO
t ), it, (xD

t , yD
t ), jt

)
, t + 1

)
.

With probability q0,t(p⃗t) (second line), no vehicle is chosen. Nonetheless a vehicle jt may
be returned at location (xD

t , yD
t ), and the system evolves into the state in micro period t + 1

with expected future profit V
(
St+1

(
St, 0, 0, (xD

t , yD
t ), jt

)
, t + 1

)
. The third line of the Bellman

equation considers the case – occuring with probability (1− λt) – in which no customer arrives,
so again, only a vehicle may be returned at location (xD

t , yD
t ). Hence, we have the same expected

future profit as in the second line of the equation.
If a customer arrives in micro period t, the optimal prices need to be calculated. When doing

so, the provider is aware of the customer’s coordinates (xO
t , yO

t ), which are thus deterministic
for the problem of pricing. Obviously, profit-maximizing prices in (5.2) are given by

p⃗∗
t = arg max

p⃗t

∑
it∈C

t,(xO
t

,yO
t

)

qit,t(p⃗t) ·
(

(pit,t − c) · ELd
t′′ ∼ρ(St)[L

d
t′′ ] + Wit

(
St, (xO

t , yO
t ), t

))

+ q0,t(p⃗t) ·W0(St, t)

(5.3)

with

Wit,t

(
St, (xO

t , yO
t ), t

)
= E

(Jt,XD
t ,Y D

t )
∼D(t,St)

[
V

(
St+1

(
St, xO

t , yO
t ), it, (XD

t , Y D
t ), Jt

)
, t + 1

)]
∀it ∈ Ct,(xO

t ,yO
t ),

(5.4)

W0,t(St, t) = E
(Jt,XD

t ,Y D
t )

∼D(t,St)

[
V

(
St+1

(
St, 0, 0, (XD

t , Y D
t ), Jt

)
, t + 1

)]
. (5.5)

Since the provider knows the customer’s coordinates, he also knows her consideration set
Ct,(xO

t ,yO
t ) and only the prices for the idle vehicles it ∈ Ct,(xO

t ,yO
t ) within reach of the current

customer at location (xO
t , yO

t ) need to be optimized, as the choice probabilities only depend on
them (see Section 5.3.3 and Figure 5.1a). Thus, instead of the C × 1 vector p⃗t, a smaller price
vector p⃗t,(xO

t ,yO
t ) with only |Ct,(xO

t ,yO
t )| × 1 entries (a subset of the entries of the original price

vector) needs to be optimized. More specifically, this new p⃗t,(xO
t ,yO

t ) contains the entries i of
p⃗t,(xO

t ,yO
t ), for which i ∈ Ct,(xO

t ,yO
t ). Thus, the action space reduces from pricing all idle vehicles

of the fleet to a handful and the online pricing problem becomes

p⃗∗
t,(xO

t ,yO
t ) = arg max

p⃗
t,(xO

t
,yO

t
)

∑
it∈C

t,(xO
t

,yO
t

)

qit,t(p⃗t) ·
(

(pit,t − c) · E
Ld

t′′ ∼ρ(St)
[Ld

t′′ ] + Wit,t

(
St, (xO

t , yO
t ), t

))

+ q0,t(p⃗t) ·W0,t(St, t).

(5.6)

The dynamic program considers all steps (Step I-Step IV) in a micro period, i.e., at the
beginning of the micro period, it is not yet clear if and where a customer arrives. Therefore,
the outer expectation in (5.2) is over the location (XO

t , Y O
t ) ∼ O(t) where the customer arrives.

However, the supplier determines the prices of the reachable vehicles when the customer has
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already arrived (Step II). Thus, when deciding on prices, the provider knows the location (xO
t , yO

t )
of the customer and the expectation over (XO

t , Y O
t ) ∼ O(t) can be dropped in (5.6).
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5.4 Solution Method

In this section, we describe the solution method we propose for the considered problem. First,
in Section 5.4.1, we derive a convexity result that allows us to obtain an efficient linear refor-
mulation of the pricing problem. Then, in Section 5.4.2, we develop our approximate dynamic
programming solution method. Section 5.4.3 contains the proposed non-parametric value func-
tion approximation, including a description how historical data is used.

5.4.1 Convexity of the Pricing Problem and Linear Reformulation

When solving the online pricing problem (5.6) by complete enumeration, the number of calcula-
tions that must be performed for each micro period t is of the order O(|M|

|C
t,(xO

t
,yO

t
)|

), implying
that the calculation time in one single stage of the dynamic program increases exponentially
with the number of reachable vehicles |Ct,(xO

t ,yO
t )| and polynomially with the number of price

levels |M|. Further, given that the state space grows exponentially across the multiple stages,
an alternative solution method is required to efficiently solve larger instances.

Under the assumption that demand follows a multinomial logit model (see Section 5.3.1) as
it does in our numerical studies (see Section 5.5.4.2), the pricing problem at stage t (i.e. the
one-stage optimization problem) can be formalized by the following fractional program(see, e.g.,
Davis, Gallego, and Topaloglu, 2013), using decision variables zit,m that equal 1 if the provider
selects price level m for vehicle it:

max 1
Bt +

∑
it∈C

t,(xO
t

,yO
t

)

∑
m∈M Ait,t,m · zit,t,m

·

[ ∑
it∈C

t,(xO
t

,yO
t

)

∑
m∈M

(
(pit,m − c) · E

Ld
t′′ ∼ρ(St)

[Ld
t′′ ] + Wi,t

(
St, (xO

t , yO
t ), t

))
·Ait,t,m · zit,t,m + Bt ·W0,t(St, t)

]

(5.7)

s.t. ∑
m∈M

zit,t,m = 1 ∀it ∈ Ct,(xO
t ,yO

t ) (5.8)

zit,t,m ∈ {0, 1} ∀it ∈ Ct,(xO
t ,yO

t ), m ∈M (5.9)

In the objective function (5.7), Ait,t,m denote given attraction values for each vehicle it and
price level m, capturing the attractiveness of the corresponding alternative to the customer. The
attraction values correspond to e(uit,t), with uit,t referring to the utility of alternative it in the
underlying multinomial logit demand model. The attraction value for the no-choice alternative
is Bt and corresponds to e(u0,t). Constraints (5.8) ensure that exactly one price level m is selected
for each reachable vehicle it, and Constraints (5.9) define the variables zit,t,m as binary.

The structure of the fractional program (5.7)-(5.9) is identical to that of the product line
and price selection problem analyzed by Chen and Hausman (2000). They show that its objec-
tive function is strictly quasi-convex in zit,m. Further, the coefficient matrix of the model’s
Constraints (5.8) is totally unimodular (also see Lemma 2 in Chen and Hausman (2000)).
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Consequently, the binary Constraints (5.9) can be LP-relaxed (i.e., 0 ≤ zit,t,m ≤ 1 ∀it ∈
Ct,(xO

t ,yO
t ), m ∈ M) and, due to the convexity of the resulting model, every local maximum is

also a global maximum, allowing to solve the problem by standard nonlinear programming codes.
It is even possible to use linear programming to solve the problem, as we can linearize

the objective of the relaxed fractional program by applying a Charnes-Cooper transformation
(see, e.g. Stancu-Minasian , 1997). The idea is to substitute the reciprocal of the denominator,
i.e., (Bt + ∑

m∈M
∑

it∈C
t,(xO

t
,yO

t
)
Ait,t,m · zit,m)−1 in (5.7) by a new variable vt > 0 and ensure

correctness by additionally imposing the constraint:

Bt · vt +
∑

it∈C
t,(xO

t
,yO

t
)

∑
m∈M

Ait,t,m · ẑit,t,m = 1, (5.10)

where the variable ẑit,t,m substitutes vt · zit,t,m.
After performing the latter substitution also in the existing constraints of the relaxed frac-

tional program and removing redundant constraints, the following equivalent, linear reformula-
tion for period t is obtained:

max
∑

it∈C
t,(xO

t
,yO

t
)

∑
m∈M

(
(pit,m − c) · E

Ld
t′′ ∼ρ(St)

(Ld
t′′) + Wit

(
St, (xO

t , yO
t ), t

))

·Ait,t,m · ẑit,t,m + (Bt · vt) ·W0,t(St, t)

(5.11)

s.t.

Bt · vt +
∑

it∈C
t,(xO

t
,yO

t
)

∑
m∈M

Ait,t,m · ẑit,t,m = 1 (5.12)

∑
m∈M

ẑit,t,m = vt ∀it ∈ Ct,(xO
t ,yO

t ) (5.13)

ẑit,t,m ≥ 0 ∀it ∈ Ct,(xO
t ,yO

t ), m ∈M (5.14)

vt ≥ 0 (5.15)

5.4.2 Approximate Dynamic Programming Solution Method

The state space as well as the outcome space of the dynamic program (5.2) depend on the coor-
dinates of the arriving customer. Since the customer can arrive anywhere within the continuous
business area, these coordinates are continuous. The same holds for the return location of a
vehicle. Thus, state and outcome space are of infinite size. As a consequence, the dynamic
program cannot be solved exactly (curse of dimensionality, see, e.g., Powell , 2011, Chapter 1.2).

We use approximate dynamic programming to obtain a tractable solution method and exploit
the fact that we are only interested in the price decisions p⃗∗

t,(xO
t ,yO

t ), i.e., the solution of (5.6).
In particular, we approximate the values Wit,t, W0,t of the stochastic nodes immediately after

a customer’s decision (Step III) and before a potential return of a vehicle becomes known (see
Figure 5.2). This allows to reduce the size of the online pricing problem tremendously by only
optimizing one period explicitly while still taking into account the customer choice behavior.
Graphically, this corresponds to “trimming" the decision tree in Figure 5.2 after Step IV and
capture the parts that are cut away by W0,t and Wit,t. The challenge, however, is to find

188



accurate approximations W̃i,t, W̃0,t for Wit,t, W0,t, respectively. Our approximation is based
on the key simplification that V and, thus, W is additive in the values of all vehicles. The
intuition here is that, since the overall revenue obtained is composed of the revenues realized
by the individual vehicles, adding up the revenue-to-come from a certain point in time on for
all vehicles – the vehicle values – yields the state value. Clearly, this is a simplification because
the actual spatial vehicle distribution never perfectly matches the one observed in history such
that potential interdependencies between vehicle values for the current vehicle distribution are
neglected. However, this additivity assumption has a very favorable property with regard to
runtime and, thus, implementation in practice: In order to calculate the optimal prices, we no
longer need to consider all available vehicles of the fleet, but only the reachable ones. This is
because the vehicles out of the customer’s reach remain idle for any choice outcome and, thus
— technically speaking — form a constant term in the online pricing problem (5.6) that can
be neglected. Our results show that this value function approximation works well and that this
policy provides in a small instance, the same results (=prices) as the theoretically optimal policy
(TINY, see Sections 5.5.2 and 5.5.3).

For the same reason, we neglect the currently moving vehicles. Clearly, this also is an
approximation, because, in reality, unreachable and moving vehicles obviously impact future
revenues and may also alter a decision – e.g., if a vehicle is part of a large agglomeration of
vehicles.

Clearly, a vehicle’s value (=expected future profit until the end of the time horizon) depends
on whether it remains standing idle at its current location or whether it departs to another
location through a rental. Hence, for a certain vehicle it, we denote these approximate vehicle-
specific values as w̃idle

it
and w̃depart

it
, respectively. With this assumption, the approximated values

W̃it,t and W̃0,t, thus, can be obtained by

Wit,t ≈ W̃it,t =
∑

jt∈C
t,(xO

t
,yO

t
)\{it}

w̃idle
jt,t + w̃depart

it,t ∀it ∈ Ct,(xO
t ,yO

t ), (5.16)

W0,t ≈ W̃0,t =
∑

jt∈C
t,(xO

t
,yO

t
)

w̃idle
jt,t . (5.17)

The idea in (5.16) is that the value of the state after vehicle it has been chosen (Wit,t) is
approximately the sum of the values of the remaining idling vehicles from the consideration set
Ct,(xO

t ,yO
t ), plus the value of the departing (=chosen) vehicle it. Accordingly in (5.17), the state

value when no vehicle was chosen (W0,t) is approximately the sum of all idling vehicles from
Ct,(xO

t ,yO
t ).

Hence, the online pricing problem (5.6) solved in Step II becomes

p⃗∗
t,(xO

t ,yO
t ) ≈ arg max

p⃗
t,(xO

t
,yO

t
)

∑
it∈C

t,(xO
t

,yO
t

)

qit,t(p⃗t) ·
(
(pit,t − c) · ELd

t′′ ∼ρ(St)[L
d
t′′ ] + W̃it,t) + q0,t(p⃗t) · W̃0,t.

(5.18)

5.4.3 Non-parametric Value Function Approximation

In this subsection, we describe the specific approach for obtaining the values w̃idle
it,t and w̃depart

it,t .
We first give an overview of our approach in Section 5.4.3.1. Then, we present the details of
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data selection and the kernel function used in Section 5.4.3.2.

5.4.3.1 General Idea

Based on the current time t and the location, a vehicle it is evaluated. This evaluation is
performed for two different cases. First, for the case that vehicle it is chosen by the customer,
departs and is dropped off at the destination after the rental time. Second, when the customer
does not choose the vehicle and, thus, the vehicle remains idle at the current location. For the
first case (w̃depart

it
), the value indicates the expected value of vehicle it after it has been chosen

and parked by the customer. For the second case (w̃idle
it

), the value indicates the expected value
of the vehicle after the customer has not chosen the vehicle and it is still idle at the same location.

More technically, the approximate vehicle values w̃idle
it,t and w̃depart

it,t for a vehicle it are deter-
mined by a non-parametric value function approximation (see Powell , 2011, Chapter 8.4 for an
introduction to this technique). Building on this, our approach is as follows. The values w̃idle

it,t

and w̃depart
it,t are calculated as weighted averages across corresponding data points k from histor-

ical and/or simulated data that reflects current system behavior. That is, for an idle vehicle,
w̃idle

it,t is a weighted average of corresponding idle vehicle values ŵidle
k in the data and w̃depart

it,t is
a weighted average of corresponding departing vehicle values ŵdepart

k in the data. The values
w̃idle

it,t and w̃depart
it,t depend on the location of the vehicle it and the time at which the vehicle it to

be valuated is located. These approximate vehicle values are location and time dependent, i.e.
they depend on a subset of the state. More specifically,

w̃s
it,t =

∑
k∈Ks

it

κs
k,it
· ŵs

k ∀it ∈ Ct,(xO
t ,yO

t ), s ∈ {idle, depart}, t ∈ T (5.19)

where κidle
k,it

and κdepart
k,it

are the weights that capture how “similar" a specific data point k is
to vehicle it (see next subsection for details). The sets Kidle

it,t and Kdepart
it,t represent the sets of

observations relevant to approximate the value of vehicle it (see next subsection for details).
To explain the process of obtaining these values ŵidle

k and ŵdepart
k from data, we assume

for the following illustration w.l.o.g. that the problem’s time horizon is one day and that we
dispose of data that only comprises one specific date. For each vehicle, we know over the day
when and where it was standing idle, when it departed, and how much profit the corresponding
rental generated, as well as when and where each rental terminated. Figure 5.4 illustrates
such “paths" in the historical data, consisting of idle times (thick blue/red lines) and rentals
(thin blue/red arrows) exemplarily for two vehicles (red and blue). For now, consider only
the temporal dimension on the horizontal axis. The remainder of this figure (with the spatial
dimension on the vertical axis) is explained in the next subsection. Thus, for any given point
in time, we can determine the current status of each vehicle from this data, and the required
values ŵidle

k and ŵdepart
k capture the – loosely speaking – profit the vehicle generates from this

point in time onwards until the end of the day.
Obviously, robustness improves with increased amount of data available, and, thus, one would

combine data from multiple comparable historical/simulated dates, for example from multiple
identical days of the week. Then, regarding a data’s timestamps, only the time (and not the date)
is relevant and observations from different dates are considered as different vehicles. Further, an
implicit assumption to note here is that spatial vehicle distributions, demand patterns and, thus,
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Figure 5.4: Illustration of historical data considered for evaluation of vehicle it

vehicle values are similar for comparable days and, even more important, to the situation when
the pricing approach is applied. This, of course, is the case only to a certain extend, because the
above-mentioned are endogeneous and an important point of pricing is to influence the vehicle
distribution. To address this issue, the underlying database may be iteratively updated (see also
the numerical results in Sections 5.5.3 and 5.5.7.2)

The described non-parametric value function approximation has two decisive benefits for
practice. First, historical data can readily be used. Second, the approximate vehicle values can
continuously be pre-computed such that they do not need to be determined in the moment the
pricing problem (5.18) needs to be solved.

5.4.3.2 Data Collection, Data Selection and Kernel Function

The remaining part to fully specify our approach is the determination of the sets Kidle
it,t and

Kdepart
it,t relevant for the evaluation of vehicle it from the sets of all data points Kidle and Kdepart,

as well as the weights κidle
it,k and κdepart

it,k .
Regarding departing vehicles, the set of all data points Kdepart =

{(ŵdepart
k , ok, tk)} consists of collected data points k with location ok and time tk of the departure

event. The value ŵdepart
k is the profit earned by this vehicle after the rental that started at tk

(this is necessary for consistency with (5.18)) until the considered time frame (one day in our
case). Thus, a VSS provider can simply reconstruct this data from the observed historical vehicle
movements, which are collected anyway for invoicing.

As mentioned above, one central idea is to approximate values for departing vehicles based
on “similar" data points. Since all events in the free-floating VSS are characterized by a certain
location and time, it is reasonable to integrate the spatial as well as the temporal dimension
in the metric that measures “similarity". This implies that the vehicle values w̃idle

it,t and w̃depart
it,t

are time- and location-dependent. To determine Kdepart
it

for a vehicle it whose value is to be
approximated (with location oit,t = (xv

it,t, yv
it,t) and at time t), we define the following filter:

Kdepart
it,t =

{
(ŵdepart

k , ok, tk) ∈ Kdepart

∣∣∣∣ ζ · |t− tk|+ |oit,t − ok| ≤ h

}
. (5.20)

where |t − tk| is some temporal distance, |oit,t − ok| is some spatial distance, ζ is a scaling
parameter, and h is a bandwidth. This idea of a spatio-temporal “similarity" and a bandwidth
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h can be thought of as a (stretched) circle. It is illustrated in Figure 5.4b. The black (diagonally
striped) vehicle at a certain location at 8:00 h is to be evaluated. The departure event data
points are the red and blue circles. According to the filter, only data points (red and blue circles
within the semicircle) within radius h (black dotted) are to be considered and marked by a black
circle.

For the idle vehicles, this step is slightly more complex, because collected data points on idle
vehicles Kidle = {(ŵidle

k , ok, t̄k)} refer to the time intervals t̄k when the vehicles stood idle (the
horizontal thick lines in Figure 5.4a). For an interval t̄k, data point k has the future value ŵidle

k

that equals the profit earned by this vehicle after the interval until the end of the horizon (there
is obviously no profit during the interval). To determine distance in time, we need to compare
these intervals with the point in time t of the vehicle to evaluate. To do so, from each interval,
we consider the point in time closest to t. More formally, the set of relevant observations to
evaluate an idle vehicle it (depicted as red and blue crosses in the figure) is

Kidle
it,t =

{
(ŵidle

k , ok, tk)
∣∣∣∣ ∃ (ŵidle, ok, t̄k) ∈ Kidle ∧ tk = arg min

t′′′
k

∈t̄k

|t′′′
k − t|

∧ ζ · |t− tk|+ |oit,t − ok| ≤ h

}
.

(5.21)

Next, the weights κs
k,it

for every historical/simulated data point k ∈ Ks
it,t ∀s ∈ {idle, depart}

are determined with a kernel function K. As described above, a scaling ensures that the weights
sum to one. In particular, we use

κs
it,k =

Ks
it,k∑|Ks

it,t
|

l=1 Ks
it,l

∀k ∈ Ks
it,t, s ∈ {idle, depart}. (5.22)

The unscaled weights Ks
it,k∀s ∈ {idle, depart} can be determined using various kernel weight-

ing functions, including the Gaussian, Uniform, Epanechnikov, or Bi-Weight kernel weighting
functions. As kernel weighting function, we use the following Epanechnikov kernel function
(Powell , 2011, Chapter 8.4.2)

Ks
it,k = 3

4 ·
(

1−
(

dit,k

h

)2
)
∀k ∈ Ks

it,k, s ∈ {idle, depart} (5.23)

with

dit,k =
√

(ζ · (t− tk))2 + (|oit,t − ok|)2 ∀k ∈ Ks
it,k, s ∈ {idle, depart}. (5.24)
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5.5 Computational Studies

In this section, we evaluate the developed dynamic pricing approach in comparison to different
benchmark approaches. To that end, we consider two different groups of settings. The first group
only consists of one artificial, small setting (denoted TINY) that allows analytically solving the
dynamic program by backward recursion to obtain the optimal prices (=policy) as a benchmark.
The second group with its three settings SMALL, MEDIUM and LARGE allows to evaluate the
approaches in more realistic instances.

The new pricing approach and the benchmark approaches are described in Section 5.5.1.
Regarding TINY, Section 5.5.2 describes the setup and Section 5.5.3 describes the evaluation
procedure and the results. The setup of the second group (i.e. SMALL, MEDIUM, LARGE) is
described in Section 5.5.4, followed by the main results in Section 5.5.5 and additional sensitivity
analyses in Section 5.5.6. In Section 5.5.7, we briefly analyze variations of the developed solution
approach.

5.5.1 Pricing Approaches

We compare our developed pricing approach with nine benchmark approaches (see Table 5.1).
First we describe the customer-centric pricing approaches:

• C-ANT: Our customer-centric and anticipative pricing approach determines dynamic prices
for each customer by considering current and future (approximate) state values (see Section
5.4).

• OPT: Calculation of the optimal price for each arriving customer by backward recursion.
As usual in dynamic programming, this pricing approach is only feasible for very small
instances.

• C-MYOP: Myopic version of C-ANT without anticipation: w̃idle
it,t = w̃depart

it,t = 0 for all
it ∈ Ct,(xO

t ,yO
t ), resulting in W̃it,t = W̃0,t = 0 for all it ∈ Ct,(xO

t ,yO
t ).

• C-HEUR: Heuristic improvement of C-MYOP. Instead of w̃idle
it,t = 0, w̃idle

it,t equals the av-
erage profit per expected rental duration across all vehicles for all it ∈ Ct,(xO

t ,yO
t ). More

specifically, no distinction is made in the valuation of the idle vehicles: w̃idle
it,t = w̃idle ∀it.

Thus, in the price optimization (5.18), a rental is no longer “for free" (no opportunity cost)
as in C-MYOP, but w̃idle

it,t now reflects that if vehicle it is not rented now, it obtains in
expectation a profit of w̃idle

it,t during the expected rental time ELd
t′′ ∼ρ(St,St,d)[Ld

t′′ ] because it
may be chosen by another customer already in the next period.

focus of dynamic pricing uniform pricingcustomer-centric location-based

foresight anticipative C-ANT, C-HEUR, OPT L-ANT BASE, LOW, HIGHmyopic C-MYOP L-MYOP, RUBA

Table 5.1: Overview of pricing approaches
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In addition, we consider some pricing approaches that are location-based. Here we differenti-
ate between approaches that are based on partitioning the business area into tiles and approaches
that are based on business rules.

• RUBA: Rule-based pricing approach, in which the business area is partitioned into 1 km x
1 km tiles that can be thought of as stations, as it is common in the literature. To obtain
prices for the vehicles in each tile, we follow the approach of Bianchessi, Formentin, and
Savaresi (2013) who compare the number of vehicles in each tile to the average number of
available vehicles in the entire business area. If the number of vehicles in a tile falls below
the average number of available vehicles, the price of the vehicles in the tile is increased
and the magnitude of the increase depends on the severity of the imbalance. Vice versa, if
the number of idle vehicles rises above the average number of available vehicles, the price is
decreased. Whereas in the original approach continuous prices are used, we require discrete
prices for the considered problem. Thus, in a further step, the calculated continuous prices
are discretized by rounding to the nearest price point.

• L-ANT: In a first step, the business area is also partitioned into 1 km x 1 km tiles. This
location-based pricing approach determines dynamic prices for every tile and 1h-period
(e.g. 1am-2am, 2am-3am, etc). At the beginning of each period, a Faure sequence is used
to generate multiple realizations of artificial customer arrivals for each tile. C-ANT is then
applied to determine the prices for the available vehicles for each artificial customer. The
prices for the vehicles in a tile are then averaged and rounded to the next price point. All
vehicles located in the tile obtain this price. This benchmark is anticipative but is not
customer-centric, since it does not use the situation-specific information of the customer’s
location as in C-ANT. Therefore, by comparing the results of L-ANT to C-ANT’s, the
value of considering the location of the customer in anticipative pricing is isolated, i.e. the
importance of customer-centric pricing can be quantified.

• L-MYOP: Myopic version of L-ANT without anticipation: This means that instead of
C-ANT we use C-MYOP to determine the prices for the vehicles in the different tiles.
This benchmark is neither anticipative nor customer-centric. Therefore, compared to C-
MYOP, this benchmark can be used to measure the impact of considering the location of
the customer in myopic pricing. Compared to the benchmark above, we see the value of
anticipation in non-customer-centric (=location-based) pricing.

Regarding the relation between C-ANT and L-ANT, note that C-ANT dominates L-ANT
in the (theoretical) case that the state value approximation is exact. In this case, C-ANT is
the optimal policy. However, since state value approximations are not exact in general, both
approaches are heuristics.

Last, we consider the following uniform pricing approaches. As they use only one price, they
do not require a pricing decision from the provider.

• BASE: Constant uniform pricing, where pi,t is the median price from the set of price
points (following our industry partner, we also call it base price) for all vehicles. Due to
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(a) Customer arrives at location 1 (b) Customer arrives at location 2 (c) Customer arrives at location 3

Figure 5.5: Locations and stations in artificial setting in the first micro period (TINY)

its wide adoption over all VSS types, this pricing approach can be considered as the de
facto standard in practice.

• LOW: Constant uniform pricing, where pi,t is the lowest price for all i ∈ C, t ∈ T .

• HIGH: Constant uniform pricing, where pi,t is the highest price for all i ∈ C, t ∈ T .

Each pricing approach is evaluated in N = 500 simulation runs with common random num-
bers and we report average values.

5.5.2 Setup Artificial Setting

This artificial setting (denoted TINY) is set up such that it is still possible to optimally solve the
dynamic program by backwards recursion. To that end, a spatial discretization of the business
area is required such that the state space becomes finite. Thus, the setting can be considered as
a station-based VSS. It consists of two stations where vehicles can be rented and returned, two
micro periods, and one vehicle. The customer can arrive (i.e. open the app) at three possible
locations, of which two (location 1 and 3) coincide with the two stations (see Figure 5.5). If the
customer arrives at one station, the other is too far to walk to. Both stations are within reach
of the customer if she arrives at location 2. The customer arrival probability for both micro
periods is 80% for location 1, 10% for location 2, and 5% for location 3. With 5%, no customer
arrives. The provider can set two different prices, i.e., the high price (0.46 e/min) or the low
price (0.18 e/min).

The customer choice probability depends on the distance between customer and vehicle
(positive correlation) and the price (negative correlation): If the vehicle is out of reach, the
choice probability is 0. If the customer arrives at the station where the vehicle is located, she
chooses the vehicle with 80% for the low price and with 30% for the high price. If the customer
arrives at location 2 and the vehicle is located at one of the two stations, then she chooses the
vehicle at the low price with 60% and at the high price with 20%.

The rental destination probabilities are set as follows: If the customer chooses the vehicle
at station 1 (station 2), she terminates the rental at station 1 with probability 5% (50%) and
at station 2 with 95% (50%). For simplicity, the walking time is neglected in this setting
(lw1 = lw2 = 0) and the rental time is always one micro period (ld1 = ld2 = 1/∆). At the beginning
of the first micro period, the vehicle is at station 1. Figure 5.18 in Appendix 5.A.1 shows the
corresponding decision tree. The optimal policy always sets high prices in the first micro period
and low prices in the second micro period.
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(a) Profit impr. over LOW (b) Rentals (c) w̃
depart
1 generated by (d) w̃idle

1 generated by

Figure 5.6: Performance indices and vehicle value for station 1 and period 1

5.5.3 Simulation Procedure and Results Artificial Setting

In this subsection, we compare the results of LOW, C-ANT, and C-MYOP with OPT. For the
evaluation of each approach, N=10,000 runs are simulated.

Regarding C-ANT, the required historical data is generated by simulating 10,000 runs with
LOW. As the only vehicle is always at station 1 at the beginning of period 1, we obtain two
vehicle values. In case the vehicle departs from station 1, it has an expected future profit (i.e.
in period 2) of w̃depart

1 = 0.0242 e. In case it remains idle at station 1, we have w̃idle
1 = 0.125 e.

As the vehicle is never at station 2 in period 1, no values are available or needed. The values for
period 2 are w̃idle

1 = w̃idle
2 = w̃depart

1 = w̃depart
2 = 0, as no rentals can occur beyond this period.

Figure 5.6a depicts the profits as relative improvements over LOW. It shows that C-MYOP
generates the same profit as LOW and that C-ANT generates the same profit as OPT, i.e.,
over 20% more profit than LOW. Further analyses (not shown here) reveal that both LOW and
C-MYOP only set the low price. C-ANT and OPT also yield the same policy with a frequency
of 44% for the low price and 56% for the high price. This is also reflected in the number of
rentals, which are about 20% lower for C-ANT and OPT (Figure 5.6b). Overall, this shows that
C-ANT can indeed yield the theoretically optimal policy. The optimality achieved by C-ANT
in this small example cannot be generalized. However, it shows that in principle C-ANT can
achieve optimality.

For C-ANT, the vehicle values were determined based on LOW runs. However, as discussed
in Section 5.4.3.1, vehicle values reflect customer behaviour and are, thus, influenced by prices. If
past pricing considerably deviates from current practice, iteratively updating the vehicle values
based on new data is an alternative. To demonstrate this, we initialize the values w̃idle and
w̃depart with 0, perform a simulation run, and then adjust the vehicle values. In doing so, we
used a constant stepsize and weighted the previous vehicle value with 0.995 and the new vehicle
value from the recent simulation run with 0.05. The vehicle values for the departing and idle
vehicle at station 1 in period 1 in comparison to the vehicle values obtained by runs with LOW
(as before) and OPT are shown in Figure 5.6c and Figure 5.6d.

Although the initialization is quite bad, we observe the values to quickly converge to the
value obtained with the LOW or the OPT pricing. After 10,000 iterations we obtain the values
w̃idle = 0.1263 e and w̃depart = 0.025 e, which – in this example – yield the same policy as
described above. We will further investigate the value of iterative updating in a more realistic
setting (Section 5.5.7.2).

Thus, we could show two things by comparing C-ANT with OPT: First, C-ANT can generate
the same results as OPT if the vehicle values are well estimated. Second, we demonstrated how
to iteratively update the vehicle values based on new data.
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(a) 8:00 h, SMALL (b) 8:00 h, MEDIUM (c) 8:00 h, LARGE

(d) 16:00 h, SMALL (e) 16:00 h, MEDIUM (f) 16:00 h, LARGE

Figure 5.7: Exemplary density (pdf) of customer arrivals (demand) over business area

5.5.4 Setup Realistic Settings

5.5.4.1 Settings and Parameters

We consider three settings that differ mainly in the size of the business area and the number
of vehicles (SMALL, MEDIUM and LARGE). The area of the SMALL setting has a size of
9 km2 and is equipped with 36 vehicles (MEDIUM 16 km2 and 64 vehicles, LARGE 25 km2
and 100 vehicles, all areas are square). The planning horizon is one day and at the beginning,
all vehicles are randomly uniformly distributed across the business area. The demand patterns
we use replicate what is observed in practice. Demand intensity varies over the course of the
day with two peaks (Figure 6.5 in Appendix 5.A.2, see, e.g., Reiss and Bogenberger, 2016).
Furthermore, in line with practice, there is also a spatial variation of demand, for example,
between the city center and peripheral areas. This is modeled by the density (pdf) of the origin
probability distribution O(t) (see Section 5.3.1), which is exemplarily shown for all settings and
two different times (8:00 h, 16:00 h) in Figure 5.7. Density here means that the demand for
the respective time period is spread over the size of a certain area, e.g. the the city center
(the very center of Figure 5.7a). In other words, integrating the demand densities displayed in
Figure 5.7a over the whole business area yields a value of 1 (note that density values are rounded)
which corresponds to the normalized demand value from Figure 5.7 for a certain period. The
destination probability distribution for a customer who departed in the center is exemplarily
shown for all settings and at two different times in Figure 5.23 in Appendix 5.A.4.

Each of the three settings is examined for three different overall demand levels, which differ
in the demand-supply-ratio (DSR). The DSR is the maximum period demand (second peak)
divided by the fleet size and we consider the values ∈ {1

3 , 2
3 , 1} by scaling demand appropriately.
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The other parameters are constant throughout all three settings: We choose a presumably
small number of possible prices (M = 5 price points). The reason is related to the practitioners’
important pursuit for a transparent and easy to communicate pricing mechanism. In particular,
a pricing mechanism with a small number of prices in comparison to infinite possibilities in a
continuous range is much more transparent and easier to communicate to customers. These
price points (prices for short) pm ∈ M are predefined with regard to typical prices in practice:
We chose a base price per minute of p3 = 0.35 e/min and a price difference of 0.10 e/min to the
so-called low and high prices, so that p1 = 0.25 e/min and p5 = 0.45 e/min. The other prices
are p2 = 0.30 e/min and p4 = 0.40 e/min. Variable costs are c = 0.07 e/min. We calculate
the travel time of a rental by drawing the speed from a realistic distribution for urban traffic.
We then get the rental/driving time ldt as the product of the driving speed and the distance
doit ,(XD

t ,Y D
t ). Further, we assume a willingness to walk of d̄ = 500 m.

The parameter d̄ is assumed to be known and its estimation was performed based on two
analyzes. In the first analysis, we conducted a literature search with regard to the maximum
walking distance. For example, Singla et al. (2015); Herrmann, Schulte, and Voss (2014) show
that below 20% and at most 20.43%, respectively, of the respondents were willing to walk more
than 500 m. In the second analysis, we examined the data on customer choices from our practice
partner which, amongst others, contains information on the distances to reachable vehicles. In
particular, we analyzed two aspects. First, we analyzed the share of customers walking more
than 500 m to a vehicle. This share is below 2%. Second, we examined the choice situations
in which all of the available vehicles were located more than 500 m away. In this situation,
the share of customers who chose one of these vehicles was close to 0. Thus, by combining the
insights of literature and data, we decided to set the maximum walking distance to d̄ = 500 m.

Furthermore, we only consider the ten closest vehicles, as we observed from looking at the
Share Now data that on average there are 4.3 vehicles within walking distance and the customer
in average chooses the 2.1 nearest vehicle. Furthermore, an analysis of the distribution of the
number of available vehicles shows that 90% of customers have seven or fewer vehicles available
upon arrival. Only about 4% have ten or more vehicles available (see Figure 5.22).

5.5.4.2 Customer Choice Model

As described in Section 5.3.1, a customer at position (xO
t , yO

t ) chooses among the vehicles i ∈
Ct,(xO

t ,yO
t ) within reach and may also decide not to rent (no choice option), which is denoted

by it = 0. In the numerical study, customer choice behavior follows a multinomial logit model
(see e.g. Train, 2009, Chapter 3). Accordingly, the choice probabilities qit,t depend on the
alternatives’ deterministic utilities uit,t for the customer (see Figure 5.21b in Section 5.A.3) :

qit,t = euit,t∑
n∈C

t,(xO
t

,yO
t

)∪{0} eun,t
. (5.25)

The deterministic utility uit,t of a vehicle it depends on its price pit,t and its distance to the
customer dit,t (see Figure 5.21a in Section 5.A.3):

uit,t = βprice · pit,t + βdistance · dit,t. (5.26)
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The no-choice option has utility u0,t = ASCNoChoice where ASCNoChoice stands for the
alternative-specific constant for the no-choice option. These assumptions imply homogeneous
customers and that customers decide solely based on current circumstances (myopic behavior).
In particular, they do not act strategically (see, e.g., Gönsch et al., 2013; Gallego and Van Ryzin,
1997; Talluri and Van Ryzin , 2004, Chapter 5.1.4 for discussions of strategic or forward looking
customers.)

The parameters for the one choice model which is fit across all locations are estimated with
a maximum-likelihood estimation based on 200,000 observations of mobile application openings.
Technically, we used the Python package PandasBiogeme 3.2.10 (Bierlaire, 2020). Among others,
we used the likelihood ratio test and the Akaike information criterion to compare different
model specifications. We tested attributes for the nearest vehicle, the time of the day, the
different vehicle types used in practice, and displayed discount badges. However, their impact
was minimal, so, in the end, we then implemented the above utility function with the two
attributes with the biggest impacts on utility, i.e., price and distance, as one might intuitively
expect. We can state that 60 meters of walking distance reduction approximately correspond to
a price reduction of 0.10 e/min.

5.5.5 Main Results Realistic Settings

5.5.5.1 Profit

We first discuss profit, whose maximization is the objective of the optimization problem and
obviously the most important metric from the provider’s perspective. The results for all three
settings and DSRs are summarized in Figure 5.8. All profits are presented as relative profit
improvements over the BASE pricing approach.

We observe that C-ANT clearly provides the highest profit for all settings and DSRs. Com-
pared to BASE, C-ANT shows profit improvements of up to 13.4%. The improvement over LOW
is 22.9 to 32.7 percentage points, over HIGH 4.2 to 9.3, over C-MYOP 4 to 7.6, over C-HEUR
3.6 to 8, over RUBA 5.1 to 8.4, over L-MYOP 5.5 to 9.3, over L-ANT 0.5 to 2.3 percentage
points. By contrast, LOW performs much worse than BASE. L-ANT always performs second
best across all settings and DSRs with an improvement of 5.1-10.5 percentage over BASE. For
the benchmarks HIGH, C-MYOP, L-MYOP, C-HEUR, and RUBA, there is no clear order.

The fact that C-ANT generates up to 7.6 percentage points higher profits than C-MYOP
shows that including anticipation has substantial value. However, the comparison of C-ANT,
L-ANT and C-HEUR shows that it is important how anticipation is done. A simple constant
valuation for w̃idle

i as done in C-HEUR is not effective, since in some cases, e.g. in the SMALL
setting with DSR=2/3, C-MYOP performs better than C-HEUR. The comparison between
C-ANT and L-ANT shows the additional profit that C-ANT gains, because it is customer-
centric, i.e., it has the advantage to take situation-specific customer information (location of
customer and distance to each vehicle within walking distance) into account. C-ANT is up to
2.3 percentage points better than L-ANT.

We conclude that C-ANT dominates all other pricing approaches with regard to profit and
that its anticipative and customer-centric design is key for the performance – with about three
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(a) SMALL (b) MEDIUM (c) LARGE

Figure 5.8: Profit improvement over BASE

quarters of C-ANT’s improvement over simple heuristics such as L-MYOP coming from antici-
pation and one quarter from being customer-centric.

5.5.5.2 Prices

Now, we compare the prices resulting from the different pricing approaches. To that end, we
consider results from the SMALL setting with all three DSRs. Figure 5.9 illustrates the average
price across all areas during the day (we left out LOW, BASE, and HIGH that set constant
prices), and Figure 5.24 in Appendix 5.A.6 shows the average price for different parts of the
business area from C-ANT and C-MYOP. Figure 5.10 shows the relative frequency of prices for
all approaches. The results for MEDIUM and LARGE are depicted in Appendix 5.A.7.

Regarding the average price curves (Figure 5.9), we observe two different groups of ap-
proaches. For both groups there is a similar pattern in the average prices, but the prices of
the non-anticipative (myopic) pricing approaches fluctuate less than the anticipative pricing ap-
proaches. For example in Figure 5.9a, the average price of C-MYOP fluctuates between 0.35
and 0.40 e/min, whereas the average price of C-ANT fluctuates between 0.34 and 0.42 e/min.
These results can be explained as follows: The anticipatives approaches (C-ANT, L-ANT, C-
HEUR) attempt to incentivize the use of the vehicles in certain parts of the business area during
the morning such that they become available in other parts with high demand later during the
day. This explains the comparably low average prices of C-HEUR and especially C-ANT and
L-ANT during the morning. On the other hand, the myopic approaches do not consider futures
states and profits and, thus, set higher average prices during the morning hours which are more
profitable in the short term but less profitable in the long term, as the profit results above show.

The difference in terms of pricing between anticipative and myopic approaches becomes even
more apparent when considering the temporal and spatial differences of prices by C-ANT and
C-MYOP in Figure 5.24 in Appendix 5.A.6. C-MYOP sets relatively high average prices in all
parts of the business area throughout the entire day. In contrast, C-ANT varies prices in time
and space. For example, in all peripheral parts, relatively low prices are set in the morning,
while prices in the center at the same time are comparably high. Again, the purpose of this is
to incentivize customers to drive vehicles from the outer areas to the center. In the center there
is always high demand, so the price here is always quite high.

The discussed differences in price patterns between the pricing approaches can also be seen
at the aggregate level by comparing the frequency of prices in Figure 5.10. While C-MYOP
and L-MYOP do not set the lowest price, C-ANT also sets lowest prices. L-ANT, on the other
hand, does also not use the lowest prices, but the share of second lowest prices is higher than for
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.9: Average prices over the course of the day (SMALL)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.10: Relative price frequency (SMALL)

L-MYOP. Thus, these lowest prices (C-ANT) and the higher share of lower prices (C-ANT and
L-ANT) cannot be motivated by myopic considerations, but only by regard to future profits.
The lower profits by the higher share of lower prices in the morning are overcompensated by
profits from later rentals. This also works in the opposite direction: C-ANT and L-ANT also
choose highest prices more often then C-MYOP and L-MYOP.

We conclude that lowest prices and the higher share of lower prices, especially during morning
hours, can be used as an incentive for customers and allow to generate higher profits at highest
prices later during the day when the vehicle distribution is better aligned with the demand.
This only works when future profits are taken into account like it is done by C-ANT or L-ANT,
because vehicle values are approximated more accurately – in particular their dependence on
both location and time is considered. Taking the customer’s location into account allows C-ANT
to better tailor incentives to the customer.

5.5.5.3 Rentals

For the analysis of the rentals, we consider Figure 5.11, which shows the average hourly rentals
for the different pricing approaches over the course of the day for different DSRs in the SMALL
setting. The respective results for MEDIUM and LARGE are depicted in Appendix 5.A.7.

The rental curves resemble the demand curve (Figure 6.5) in that there is a minimum of
rentals in the early morning and a maximum in the afternoon. As expected, the number of
rentals increases in the DSR and the number of rentals is lowest (highest) for HIGH (LOW).

The rental curves for C-MYOP and L-MYOP are very similar to the rental curves for C-
ANT and L-ANT. Thus, although they all have very similar aggregated rentals, C-ANT and
L-ANT manage to obtain considerably higher profits. It is also interesting that the rental curve
for C-ANT is very similiar to the rental curve of L-ANT, but C-ANT generates a considerably
higher profit.
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.11: Rentals over the course of the day (SMALL)

The rental curves of BASE lie above the ones for C-ANT, L-ANT, C-MYOP and L-MYOP for
all DSRs. Three important insights can be drawn thereupon. First, myopic pricing (C-MYOP,
L-MYOP) leads to a significant decrease in the number of rentals compared to BASE, but an
improvement in profit. Second, including anticipation, as in C-ANT and L-ANT compared to
the C-MYOP and L-MYOP, leads to similiar number of rentals and at the same time to an
increase in profit. Thus, besides the increased profit, C-ANT and L-ANT arguably provides
the same service to customers with a higher profit. Third, including customer’s location as in
C-ANT compared to L-ANT leads to a similar number of rentals, but a considerably higher
profit.

5.5.5.4 Service-Oriented Metrics

In this section, we consider three metrics: the share of customers who have (1) no available
vehicle within reach, the (2) walking effort by considering the share of customers who choose
the nearest, second nearest, etc. vehicle, and the comparison of the (3) spatial distribution of
vehicles at the beginning of the day and immediately before the afternoon peak. All results are
obtained in the SMALL setting.

Regarding (1), Figure 5.13a shows that – as expected – the share of customers who cannot
find an reachable vehicle increases for each pricing approach, as the overall demand level (DSR)
increases. For each demand level, this share is highest (lowest) for LOW (HIGH). It is also
noticeable that for the two pricing approaches C-ANT and L-ANT, this share is considerably
lower than for BASE, C-MYOP, and L-MYOP. Overall, the results suggest that the service level
improves with anticipation (C-ANT and L-ANT), because it leads to a lower share of customers
who do not have a reachable vehicle within the walking distance.

Regarding (2), Figure 5.25 in Appendix 5.A.6 shows that most customers (>50%) take the
nearest vehicle and then, to a decreasing extent, the second nearest, the third nearest, and then
the others. Since these shares for the nearest (second nearest, etc.) vehicle hardly differ between
the different pricing approaches, we conclude that the applied pricing approach has only a minor
influence on the customers’ walking distance. This implies that total customer experience does
not suffer.

Regarding (3), Figure 5.12 shows the spatial vehicle distributions over the business area at
the beginning of the day as well as at 17:30 (immediately before the afternoon peak) for BASE,
C-MYOP, RUBA, L-ANT, and C-ANT in the SMALL setting with DSR=2/3. For illustrative
purposes, we partitioned the 3 km x 3 km business area into 9 tiles and calculated the average

202



(a) Initial, all approaches (b) 17:30, BASE (c) 17:30, C-MYOP

(d) 17:30, RUBA (e) 17:30, L-ANT (f) 17:30, C-ANT

Figure 5.12: Vehicle distribution for different pricing approaches (SMALL, DSR=2/3)

share of idle vehicles in each tile. While at the start of the day 22% of the vehicles are in the
center of the business area (Figure 5.12a) where demand is strongest in the afternoon, at 17:30h
with BASE that number declined to 5%. By contrast, C-ANT manages to have 10% of vehicles
in the center which explains the higher availability observed above.

5.5.6 Sensitivity Analysis Realistic Settings

We consider two aspects in more detail. We examine the robustness of the above results regarding
changes in demand preferences which, for example, vary across cities and countries. To that
end, first, we examine whether the dominance of C-ANT discussed above holds if the spatial
and temporal variation of the demand intensity is less pronounced (Section 5.5.6.1). Second,
we analyze the impact of customer preference variation regarding price sensitivity and disutility
from walking in Section 5.5.6.2.

A common standard demand pattern serves as a basis for parameter variations throughout the
sensitivity analysis. We use the demand pattern of the SMALL setting for DSR=2/3, depicted
in the top right of Figure 5.20 in Appendix 5.A.2.

5.5.6.1 Variation of Spatial and Temporal Demand Intensity

5.5.6.1.1 Parameter Variations: In addition to the standard demand pattern, we define
four additional demand patterns which range from spatial and temporally homogeneous demand
intensity to spatially and temporally heterogeneous demand intensity (the standard demand
pattern), as illustrated in Figure 5.20 in Appendix 5.A.2. In the most homogeneous demand
pattern, there is no spatial and no temporal variation at all (bottom left in Figure 5.20 in Ap-
pendix 5.A.2). In the most heterogeneous demand pattern, there is a high spatial and temporal
variation, as observed in practice (top right in Figure 5.20 in Appendix 5.A.2, standard demand
pattern). More over, we also consider patterns with only spatial or temporal and intermediate
variation.
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(a) (b) (c)

Figure 5.13: (a) Share of customers with no vehicle within walking distance (SMALL, DSR=2/3)
(b) Profit improvement over BASE (SMALL, DSR=2/3)

(c) Computational time of linear program (LP) and complete enumeration (CE) (SMALL, DSR=2/3)
for the reachable vehicles within walking distance

5.5.6.1.2 Results: Regarding profit, there is a clear impact of spatial and temporal demand
variation (Figure 5.13b). The superiority of C-ANT (and L-ANT) over the other benchmark
pricing approaches is more pronounced the more spatial variation there is. When there is no
spatial variation the difference between the anticipative and myopic approaches is considerably
smaller. Thus, the spatial variation is the main driver of C-ANT’s (and L-ANT’s) advantage
over C-MYOP (and L-MYOP): C-ANT (L-ANT) performs around 7 percentage points better
than C-MYOP (L-MYOP) when there is only spatial variation or spatial and temporal variation
but the approaches performs only around 2 percentage points better when there is only temporal
variation. However, as the results for high spatio-temporal demand variation show, C-ANT (and
L-ANT) leverages most on its anticipation when there is both high spatial and high temporal
demand variation, as it is observed in practice. Overall, the dominance of C-ANT as discussed
in Section 5.5.5 can be confirmed and C-ANT proves to be robust against changes in spatial and
temporal demand variation. The main insight here is that more sophisticated pricing approaches
are of particular value when there is more demand variation – especially spatial demand varia-
tion. For the analysis of rentals and prices we refer to Appendix 5.A.8.1. The most interesting
insight there is that C-ANT only uses the low price with high spatial variation. This shows that
it indeed sacrifices revenue to nudge customers to drive to “better" areas.

5.5.6.2 Variation of Customer Preferences

5.5.6.2.1 Parameter Variations: In this section, we again use the standard demand pat-
tern. We define three choice patterns in which we alter the parameters βdistance and βprice of
the multinomial logit model which describes the customer choice behavior (see Section 5.5.4.2).
As we cannot disclose the choice parameters estimated on Share Now data, we now use three
new choice patterns (Table 5.2). The first choice pattern (walking distance sensitive) is similar
to the real values we estimated on Share Now data. Here, a walking distance change of 1 km
has a higher impact on the customer’s utility than a price change of 1 e/min. In the second
choice pattern (price sensitive), the price is more important for the customer than the walking
distance. In the last parameter variation, the customer is both walking distance and price sen-
sitive. Please note that also customers always care about distance and price, for simplicity, we
name the patterns according to the more pronounced sensitivity. For each choice pattern, we
vary the DSR as in Section 5.5.5.
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choice pattern βdistance βprice ASCNoChoice

walking distance
sensitive -10 -7.5 -5

price sensitive -7.5 -10 -5
walking distance and

price sensitive -10 -10 -5

Table 5.2: Parameter variations
Figure 5.14: Profit impr. over BASE (SMALL,

DSR=2/3)

5.5.6.2.2 Results: Regarding profit, we consider Figure 5.14. C-ANT clearly outperforms
all other pricing approaches across all choice patterns and all DSRs. Compared to C-MYOP,
C-ANT yields a profit increase of up to 7.6 percentage points. However, there are substantial
differences in the results between the three choice patterns. For example, with price sensitive
customers, the improvements of all approaches over BASE are slightly lower (C-ANT’s is the
highest at 10.8%). With walking distance sensitive customers, improvements reach up to 16.2%.
Regarding an analysis of rentals and prices we again refer to Appendix 5.A.8.2.

In conclusion, we recommend C-ANT independent of customer preferences. It considerably
improves profits and consistently provides the best result (significant at the 95% confidence
level).

5.5.7 Variations of C-ANT

In the following, we briefly investigate straightforward variations of two aspects of C-ANT. First,
in Subsection 5.5.7.1, we compare using the LP (5.11) - (5.15) from Section 5.4.1 and complete
enumeration of all possible price combinations for the reachable vehicles to solve the pricing
problem for each customer. Second, in Subsection 5.5.7.2, we look at the database used to
approximate the vehicle values. As historical/simulated data depends on the pricing regiment
active during that time, we consider iteratively updating the data base based on new data, as
already investigated in the TINY example (see Section 5.5.3). Throughout this section, as in
the sections above, we use the standard demand pattern (SMALL, DSR=2/3)

5.5.7.1 Comparison of Linear Program and Complete Enumeration

5.5.7.1.1 Experiment: We define four cases in which we alter the number of possible
prices. For each case, we calculate the optimal prices in C-ANT using the linear program (LP,
Section 5.4.1) and complete enumeration (CE).

5.5.7.1.2 Results: Figure 5.13c shows computational times with 3 to 9 price points for up
to 10 vehicles within the walking distance.

With three prices, there is no considerably difference in computational time between CE and
the LP. For five or more prices, however, it is clearly visible that computational time with CE
increases in the number of vehicles within reach and explodes above seven vehicles. For eight
or more vehicles, CE’s computational time clearly exceeds the LP’s runtime, which remains
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(a) Profit improvement over BASE (b) Relative price frequency

Figure 5.15: Comparison of iterative updating based on new data
and static database (SMALL, DSR=2/3)

consistently below 0.1 seconds. In conclusion, we recommend to use the LP to determine the
optimal prices, independent of the number of possible prices |M|.

5.5.7.2 Iterative Updating of Historical Data

5.5.7.2.1 Experiment: In this analysis, we evaluate the impact of updating the historical
data Kidle and Kdepart (see Section 5.4.3.2) iteratively in batches based on new data. We denote
these variants of C-ANT and L-ANT as C-ANT-IT and L-ANT-IT, respectively. This process is
interesting for practical application, e.g. a provider may update the data after several weeks of
applying the most recent parameterization of C-ANT-IT (L-ANT-IT). More specifically, of the
5,000 simulation runs in this analysis, a batch consists of 1,000 runs each, such that the data is
updated five times. For the first 1,000 runs, C-ANT-IT and L-ANT-IT use the same historical
data as C-ANT and L-ANT (from 1,000 runs with BASE). For the second 1,000 runs, the entire
batch of the historical data (1,000 runs BASE) is replaced by the data collected from these first
1,000 runs and so on.

5.5.7.2.2 Results: The results show that the iterative update based on new data improves
the performance of C-ANT-IT and L-ANT-IT compared to C-ANT and L-ANT by 3.7 and 2.6
percentage points, respectively (see Figure 5.15a). With regard to the amount of rentals realized,
there are no differences between these four approaches. However, with regard to pricing, Figure
5.15b shows that the updating leads to a higher proportion of lower prices being set. Overall,
this analysis shows that there is additional potential for the proposed solution approach when
updating the historical data.
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5.6 Case Study – Share Now in Vienna, Austria

In this section, we consider a real-world setting that reflects the origin-based dynamic pricing
optimization of Share Now for a weekday in Vienna, Austria. This case study allows to conclude
results and managerial insights from a real-world instance, as all parameters are based on real
historical data which was collected over several months at Share Now. We introduce the scenario
in Section 5.6.1 and discuss the results in Section 5.6.2.

5.6.1 Setting and Parameters

To respect the non-disclosure agreement, we do not share the exact origin and destination
probability distributions O(t) and D(t, St), respectively. Instead, we present the course of the
aggregate demand across the entire business area normalized to the maximum period demand
(at base price) in Figure 5.16b. Demand parameters are obtained from data that Share Now
recorded during six months in 2018. We unconstrained the constrained demand, i.e., the observed
rentals, with the help of location- and time-specific app opening data which served as a proxy
for the unconstrained demand. Such unconstraining is a standard issue in revenue management
(see, e.g., Talluri and Van Ryzin , 2004, Chapter 9.4).

The demand curve (Figure 5.16b) shows two peaks at the rush hour times, in the morning at
8:30 h and in the evening at 18:30 h, with the lowest level during the night at 3:00 h. This pattern
is typical for weekdays in cities in central and northern Europe. The demand-supply-ratio is
approximately DSR=0.84, which is similar to the scenario with DSR=2/3 above. As is in reality
at the time of data recording, we use three price points. All other parameters (walking speed,
stochastic rental times, etc.) are as in the computational studies (Section 5.5.4.1). Regarding
the customer choice modeling, we applied the same multinomial logit model including the utility
function as described in Section 5.5.4.2, which has been estimated on real-life data. Due to the
very good performance of the C-ANT pricing approach in the sensitivity analysis, only this
pricing approach and some benchmarks (BASE, LOW, HIGH, C-MYOP) are used for the case
study.

5.6.2 Results

(a) Business area (b) Normalized demand

Figure 5.16: Share Now in Vienna, Austria
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(a) Profit impr. over
BASE

(b) Rentals over the course of the day (c) Average prices over the course of
the day

(d) Relative price frequency

Figure 5.17: Results for case study

We first consider the profit of the different approaches (Figure 5.17a). Again, LOW leads to
a reduction in profit compared to BASE. The approaches HIGH and C-MYOP deliver almost
identical profits. As in the numerical study, C-ANT obtains the best result. Compared to C-
MYOP (6.1% better than BASE), C-ANT’s solution is more than 2 percentage points better in
profit.

Overall, the rental curves (Figure 5.17b) follow the general course of the demand curve, with
less pronounced peaks. During the night, the difference between demand and rentals is smaller
than during the day. This can be explained by the higher availability of vehicles during the
night, implying that potential customers almost always find an available vehicle. During the
day, in particular during peak times, the probability that demand results in a rental is lower
due to the relatively high number of vehicles in use. Regarding the pricing approaches, Figure
5.17b shows that LOW leads to the most rentals. Just below this is the curve of BASE.

The average price per period (Figure 5.17c) of C-MYOP is always above the average price
of C-ANT and very close to the high price. In addition, differences in the average price over all
periods (not depicted here) of the reachable vehicles and the chosen vehicles are also apparent.
While the average price of C-MYOP is higher for the chosen vehicles than for the reachable
vehicles, it is vice versa for C-ANT. This indicates that C-ANT sets low prices for reachable
vehicles due to anticipation, so that the probability of choosing these vehicles increases. The
rental curves (Figure 5.17b) of HIGH and C-MYOP are almost identical and the rental curve
of C-ANT is above them. This can also be seen in the frequency of the prices (Figure 5.17d).
Thus, most (96%) of C-MYOP’s prices are the high price. Comparing C-ANT and C-MYOP,
the frequency of the base price is larger (5% C-ANT, 4% C-MYOP). Furthermore, low prices
are also more frequent (10% C-ANT, 0% C-MYOP). Therefore, the case study confirms that
C-ANT is a viable pricing approach that can handle real-world problem instances.
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5.7 Conclusion

In modern free-floating VSSs, providers have access to disaggregate real-time data regarding
the locations of vehicles as well as of customers who open the mobile application to look for
available vehicles. In this work, we demonstrate that this information can be leveraged in
dynamic pricing to increase profitability. The anticipative customer-centric dynamic pricing
approach in VSSs takes customers’ location as well as their behavior regarding walking distances
and prices explicitly into consideration in the online price optimization. Thus, vehicles can have
different prices for customers who are requesting the price information at the same time but from
different locations. Further, the specific pricing approach that we consider relies on origin-based
per-minute prices. This origin-based feature is decisive for practice, because the information
of a customer’s intended destination is usually not available and its enquiry would contradict
the spontaneous nature of free-floating VSSs. The third distinguishing feature of the developed
pricing approach is that it is anticipative, i.e., that future expected profits resulting from different
spatial vehicle fleet distributions are taken into consideration.

We formally define the provider’s online pricing problem as a Markov decision process and
formulate the corresponding dynamic program by stating the corresponding Bellman equation.
We show that in our approach, with regard to the action space of the pricing problem, only the
vehicles within a customer’s maximum walking distance have to be considered. Nevertheless,
the dynamic program cannot be solved to optimality by classical backwards induction due to
the curse of dimensionality which, in our case, is (above all) caused by the state space containing
the location of every vehicle in the business area.

To solve the online pricing problem, we develop a solution method based on approximate
dynamic programming. We approximate state values representing expected future profits that
occur after the current customer’s decision, such that the current customer’s choice behavior
can still be considered explicitly with a disaggregated choice model in the optimization – in our
case by a multinomial logit model. We take the assumption that state values are additive in the
vehicle values which represent the profits that individual vehicles are expected to realize until
the end of the considered time horizon. As a consequence of this assumption, vehicles which
are not part of the current customer’s consideration set can be neglected for the calculation of
the state values, as they do not change their state for any possible choice and, thus, do not
influence the online pricing optimization. To approximate the vehicle values, we propose a non-
parametric value function approximation. This type of approximation has two main benefits for
implementation in practice. First, historical data can easily be used for the approximation and,
second, approximate vehicle values can be pre-computed such that the numerical operations of
the online pricing problem can be reduced to a minimum.

In an extensive computational study with varying size of business area and fleet as well as
varying demand patterns and overall demand levels, we demonstrate the advantages of our dy-
namic pricing approach compared to various benchmarks, including one from the literature and
a myopic variant of customer-centric dynamic pricing. The new pricing approach outperforms
all benchmarks significantly and considerably. It improves profits by up to 13.4% compared to
the de facto standard in practice of constant uniform prices, as well as up to 7.6 percentage
points compared to myopic dynamic pricing. From the latter, we conclude that the accurate

209



approximation of our pricing approach is decisive for its performance. Compared to the bench-
mark from the literature, our approach obtains up to 8.4 percentage points more profit. Further,
the numerical study demonstrates that the theoretical advantage of integrating the concept of
customer-centricity in dynamic pricing compared to a location-based approach — in the case
that state value approximations are exact — also applies when using the approximation that
we propose. That is, considering situation-specific customer information like the position of
the customer and distance to the vehicles within walking distance yields up to 2.3 percentage
points more profit. The numerical results of a real-life case study based on Share Now data from
Vienna also confirm the benefit of customer-centric and anticipative pricing and demonstrate
the scalability of our approach. With regard to service level, we observe that anticipation in the
pricing leads to an improvement, because there is a lower share of customers who do not have
a reachable vehicle within the walking distance.

With a sensitivity analysis, we show that our results are robust regarding the decisive param-
eters of the customer choice behavior and we derive valuable managerial insights. We vary the
influence of price and distance on the customers’ utility of a vehicle and show that our pricing
approach still always performs best in terms of profit. A detailed analysis indicates that this is
because the new pricing approach leads to a higher variation of prices over different parts of the
business area compared to a myopic pricing. The reason is the consideration of future vehicle
locations and rentals. Thus, for example, our approach already raises prices in an area in the
early morning if it anticipates a shortage of vehicles around noon. It would be very tedious to
comprehensively mimic this anticipation with, e.g., simple pricing rules. An analysis of spatial
and temporal variations in demand shows that spatial variation, in contrast to temporal vari-
ation, has a stronger effect on the importance of anticipation. For a VSS provider this means
that if there is no spatial demand variation, it is not necessary to anticipate the future in the
pricing and rather straightforward approaches are sufficient – even a uniform pricing may be ap-
propriate. If, however, there are already small spatial differences, it is worthwhile to anticipate
the future. Another important insight for VSS providers is that our dynamic pricing approach
manages to increase profits while maintaining the overall number of rentals that realize. This
is important, since many service-related metrics that strive for customer satisfaction are related
to a high number of rentals.

The comparison of the linear program formulation (based on Charnes-Cooper transforma-
tions) to solve the pricing problem with complete enumeration shows that the former is sub-
stantially more efficient for five or more prices. We further demonstrate that an iterative update
of the historical data based on new data improves the performance of the developed solution
approach.

To summarize, our new customer-centric, origin-based, and anticipative dynamic pricing
approach for free-floating VSSs performs considerably well in comparison to existing approaches
in terms of the relevant performance metrics. The non-parametric value function approximation
solution method provides a scalable means to successfully account for the future evolution of the
VSS based on current decisions, and allows to integrate disaggregated historical and real-time
data which is readily available in practice for modern free-floating VSSs. Currently, to prepare
implementation in practice, the approach is tested by our practice partner Share Now in an
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agent-based simulation (digital twin) which samples historical events on a disaggregated level,
meaning with individual customer and vehicle events.

There are several reasonable paths for future research to extend this work. For example,
in approximate dynamic programming, updating/stepsize rules often have an important impact
on solution quality. Thus, there certainly is potential for additional improvements, given that
there are several more sophisticated updating procedures than the applied batch update. Incor-
porating additional features such as idle-times in the vehicle value approximation may improve
results and/or substitute vehicle values by another intuitive, often already available data source.
Regarding the scope of the problem, a combined optimization of pricing and operator-based
vehicle relocation seems natural.
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5.A Appendix

5.A.1 Decision Tree for Artificial Setting (TINY)

Figure 5.18: Decision tree for artificial setting (TINY). For better readability, the arrows between the
first and second micro period are not displayed.

5.A.2 Demand Patterns

Figure 5.19: Normalized demand over the course of the day (SMALL, MEDIUM, LARGE)
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Figure 5.20: Demand patterns with differing degrees of temporal and spatial variation (areas as defined
in Figure 5.24d, SMALL, DSR=2/3, *standard demand pattern (see Figures 5.7a, 5.7d))

5.A.3 Customer Choice: Figures of Utility and Probability Function

We plot utility and probability in dependence of prices and distances for a situation in which a
customer has one vehicle within walking distance. (Figure 5.21). Figure 5.21a shows the utility
for the different prices (low, base and high price) in Vienna. The utility is linear in price and
distance, as described in Section 5.5.4.2. Figure 5.21b shows the probability for the different
prices. This probability is a function of the utility of choosing a vehicle and the utility of no
choice.

Due to the non-disclosure agreement we cannot display vertical and horizontal axes labels,
because this information would reveal the exact utility function parameterization or the choice
behavior, respectively.

Distance

Ut
ilit
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low price
base price
high price

(a) Utility

Distance
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low price
base price
high price

(b) Probability

Figure 5.21: Utility and probability in dependence of prices and distances

213



5.A.4 Distribution of number of reachable vehicles

1 2 3 4 5 6 7 8 9 >9
number of reachable vehicles

0.0%

5.0%

10.0%

15.0%

Figure 5.22: Distribution of number of reachable vehicles for an arriving customer in Vienna

5.A.5 Probability Density Functions

(a) 8:00 h, SMALL (b) 8:00 h, MEDIUM (c) 8:00 h, LARGE

(d) 16:00 h, SMALL (e) 16:00 h, MEDIUM (f) 16:00 h, LARGE

Figure 5.23: Density (pdf) of destinations over business area for a customer who departed in the center
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5.A.6 Results for SMALL Setting

(a) Pricing C-MYOP

(b) Pricing C-ANT

(c) Legend

(d) Partitioning of business area
(evaluation)

Figure 5.24: Average prices in different parts of the business area over the course of the day (SMALL,
DSR=2/3)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.25: Share of customers choosing the closest, the 2nd closest, the 3rd closest or another vesicle
(SMALL)

5.A.7 Results for MEDIUM and LARGE Setting

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.26: Average prices over the course of the day (MEDIUM)
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.27: Average prices over the course of the day (LARGE)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.28: Relative price frequency (MEDIUM)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.29: Relative price frequency (LARGE)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.30: Rentals over the course of the day (MEDIUM)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 5.31: Rentals over the course of the day (LARGE)

216



(a) High temporal
variation

(b) Medium spatial and temporal
variation

(c) No spatial and temporal
variation

(d) High spatial
variation

Figure 5.32: Relative price frequency (SMALL, DSR=2/3)

(a) High temporal
variation

(b) Medium spatial and temporal
variation

(c) No spatial and temporal
variation

(d) High spatial
variation

Figure 5.33: Average prices over the course of the day (SMALL, DSR=2/3)

5.A.8 Sensitivity Analysis

5.A.8.1 Variation of Spatial and Temporal Demand Intensity

5.A.8.1.1 Additional Results: Regarding prices, we again depict the relative frequency
of prices (Figure 5.32) as well as average prices over the day (Figure 5.33). As above, we
observe that the pricing approaches without anticipation (C-MYOP, L-MYOP and RUBA),
have relatively small price variation, compared to the ones with anticipation (C-ANT and L-
ANT). However, the degree of price variation depends on the demand pattern. For example,
with medium spatial and temporal demand variation, the average prices of C-ANT over the
day have a pattern similar to the ones described in Section 5.5.5.2 and they fluctuate between
0.37 e/min and 0.42 e/min (Figure 5.33b) but there is almost no price fluctuation when there
is no spatio-temporal demand variation (Figure 5.33c). Again, the spatial demand variation
has higher influence on the results. When there is high spatial demand variation, prices of
C-ANT fluctuate between 0.37 e/min and 0.42 e/min (Figure 5.33d), while with temporal
demand fluctuation, average prices only fluctuate between 0.38 e/min and 0.41 e/min and no
low prices are set (Figure 5.33d). Only in the setting with spatial variation, the anticipative
pricing approach C-ANT uses low prices (with reduced profits) as an incentive for customers to
increase the total profit in the VSS. L-ANT, however, does not use low prices. This indicates
that the individual consideration of each customers is beneficial in the use of targeted incentives.

Regarding rentals, the hourly rentals depicted in Figure 5.34 confirm the results in Section
5.5.5.3 and the findings discussed above, in particular that with C-ANT (and L-ANT) a identical
number of rentals realize compared to C-MYOP (and L-MYOP) when there is spatial demand
variation.
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(a) High temporal
variation

(b) Medium spatial and temporal
variation

(c) No spatial and temporal
variation

(d) High spatial
variation

Figure 5.34: Rentals over the course of the day (SMALL, DSR=2/3)

(a) Walking distance sensitive (b) Price sensitive (c) Walking dist. and price sensitive

Figure 5.35: Relative price frequency (SMALL, DSR=2/3)

5.A.8.2 Variation of Customer Preferences

5.A.8.2.1 Additional Results: Regarding prices, we once again consider the relative fre-
quency of prices (Figure 5.35) and the average prices over the course of the day (Figure 5.36).

There are clear differences in the average price between the choice patterns. For example,
the average prices vary the most for all pricing approaches in the choice pattern with price
and distance sensitivity. For example, with C-ANT, the average price exceeds 0.40 e/min for
all choice patterns around noon (10 a.m. til 1 p.m.). In the pattern with price and distance
sensitivity, the average price for C-ANT falls below 0.30 e/min during the night. We do not see
this variation in the other two choice patterns. The average price for C-ANT for the walking
distance sensitive pattern does not fall below 0.32 e/min and the average price for the price
sensitive pattern does not fall below 0.34 e/min. These differences are also evident when looking
at the frequencies of prices. Comparing C-MYOP, L-MYOP C-HEUR, C-ANT and L-ANT for
all patterns, the frequency of low prices is – as expected – largest in the pattern with walking
distance and price sensitivity (21% for C-MYOP and L-MYOP, 20% for C-HEUR, 14% for
C-ANT, 0% for L-ANT). It is lower in the pattern with price sensitivity (10% for C-MYOP
and L-MYOP, 9% for C-HEUR, 6% for C-ANT, 0% L-ANT) and lowest with walking distance
sensitivity (7% for C-MYOP and L-MYOP, 6% for C-HEUR, 4% for C-ANT, 0% for L-ANT).
This shows that the optimization-based approaches succeed in adapting to customer behavior.
By contrast, RUBA always has a similar frequency of prices.

The rental curves are depicted in Figure 5.37. Obviously rentals increase in demand (DSR).
There are no clear differences between the three choice patterns.
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(a) Walking distance sensitive (b) Price sensitive (c) Walking dist. and price sensitive

Figure 5.36: Average prices over the course of the day (SMALL, DSR=2/3)

(a) Walking distance sensitive (b) Price sensitive (c) Walking dist. and price sensitive

Figure 5.37: Rentals over the course of the day (SMALL, DSR=2/3)

5.A.9 List of Notation

symbol description
sets
C fleet of vehicles C = 1, ..., C
Ct,(xO

t ,yO
t ) reachable vehicles Ct,(xO

t ,yO
t ) ⊂ C

Kdepart
it,t set of observations of departing vehicles to approximate the value of vehicle it

Kidle
it,t set of observations of idle vehicles to approximate the value of vehicle it

M set of discrete prices
T set of micro periods T = 1, ...T
parameters, variables and functions
C number of vehicles
m price point
N number of simulation runs
c variable costs per minute of a rental
T number of micro periods
t micro period
∆ number of micro periods per minute
λt arrival rate of customers in micro period t

d̄ maximum walking distance (willingness-to-walk)
dit,t walking distance between customer (xO

t , yO
t ) and vehicle it

k data point in historical/simulated data
dok,(XD

t ,Y D
t ) spatial distance between the location of the vehicle it and its destination

Ait,t,m attraction value for vehicle it in period t at price level m
Bt attraction value for no choice alternative
zit,t,m binary, 1 if price level m chosen for vehicle it in period t
vt auxiliary variable for linearization
u0,t utility for no-choice option
uit,t utility for choosing vehicle it

βprice coefficient for price
βdistance coefficient for distance
ASCNoChoice alternative-specific constant, utility of no-choice alternative

Table 5.3: List of notation, part 1
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symbol description
oit,t =
(xit,t, yit,t)

location of vehicle it at time t

ok location of data point k
h bandwidth for Kernel Regression
tk time stamp of data point k
t̄k time interval vehicle stood idle in data point k
ζ scaling parameter for temporal/spatiol distance
w̃depart

it,t approximate vehicle value, i.e. future revenue of vehicle it if it departs in period t

w̃idle
it,t approximate vehicle value, i.e. future rev. of vehicle it if it remains idle in period t

κidle
k,it

,κdepart
k,it

weight, captures similiarity of data point k to vehicle it

Kidle
it,k , Kdepart

it,k kernel function for data point k for vehicle it

p⃗t price vector including all vehicles for micro period t
p⃗t,(xO

t ,yO,t) price vector including only vehicles reachable for customer at (xO
t , yO)

pit,t price for vehicle it in micro period t
qit,t(p⃗t) probability that vehicle it is chosen
q0,t(p⃗t) probability that no vehicle is chosen
distributions, random variables and realizations
It vehicle chosen by customer in period t
it realization of It

Jt vehicle dropped-of by customer in period t
jt realization of Jt

Ld
t rental time

ld
t realization of Ld

t

Lw
t walking time

lw
t realization of Lw

t

O(t) origin probability distribution, (XO
t , Y O

t ) ∼ O(t)
D(t, St) destination probability distribution, (Jt, XD

t , Y D
t ) ∼ D(t, St)

XO
t , Y O

t coordinates the customer requesting a vehicle in period t
XD

t , Y D
t destination coordinates of vehicle returned in period t

xO
t , yO

t realization of XO
t , Y O

t

xD
t , yD

t realization of XD
t , Y D

t

value functions
V (St, t) Bellman Equation, expected future revenue from state St in micro period t onwards
Wit,t expected future revenue if customer in period t chooses vehicle it

W0,t expected future revenue if customer in period t chooses no vehicle
W̃it,t approximation of Wit,t

W̃0,t approximation of W0,t

states
St St = (x⃗c

t , y⃗c
t , τ⃗ c

t , x⃗v
t , y⃗v

t , τ⃗v
t ), state at the beginning of micro period t

St+1 St+1 = St+1(St, (xO
t , yO

t ), it, (xD
t , yD

t ), jt) transition function, state at the beginning
of micro period t + 1

x⃗v
t vector containing x-coordinates of all vehicles

y⃗v
t vector containing y-coordinates of all vehicles

xv
i,t, yv

i,t coordinates of vehicle i
x⃗c

t vector containing x-coordinates of arriving customer for each vehicle
y⃗c

t vector of y-coordinates of arriving customer for each vehicle
xc

it,t, yc
it,t arrival (=app opening) coordinates of customer who chose vehicle it

τ⃗v
t vector containing starting times for all vehicles

τv
it,t starting time of vehicle it

τ⃗ c
t vector containing customers’ arriving (=app opening) times of all vehicles

τ c
it,t arriving (=app opening) time of customer driving vehicle it

Table 5.4: List of notation, part 2
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6.1 Introduction

In recent years, the popularity and usage of shared mobility systems (SMSs) has grown rapidly.
This is reflected, for example, in the evolution of car sharing users in Germany, which has
increased steadily from only two hundred thousand users in 2011 to almost three million users
in 2021 (Statista, 2021).

Independent of private or public ownership, SMS providers strive for maximizing the system’s
operational performance. In doing so, different metrics are analyzed. A popular one is the idle
time, which is defined as "the amount of time between two consecutive rentals of one vehicle that
is available for rent" (Neijmeijer et al., 2020). In other words, it is "the time between the rental
and the prior return [...]" (Reiss and Bogenberger, 2015). According to Xie and Wang (2018),
total operating time consists of idle time, maintenance time, and use time. Importantly, idle
time "is not a characteristic of a specific [...] vehicle, but rather of the location where a rental
ends. It reflects how supply and demand [...] match in the vicinity" (Wagner et al., 2015).

Using the idle time as a performance metric has various advantages. First, it is easy to
measure, which is why historical idle time data is often available in practice. Since idle time is
location- and time-specific and since spatial as well as temporal information can be measure on
different levels of granularities, the specific idle time data available in practice varies. The second
advantage of idle time data is that it includes latent demand (i.e. the demand that does not lead
to rentals because, e.g., of supply shortages) as Neijmeijer et al. (2020) point out. Thus, it is
an "honest" indicator which, unlike simply considering rentals, does not have to be adjusted to
become meaningful. More specifically, observing a short idle time reveals the interplay between
supply and a comparably high demand while observing a certain amount of rentals does not
allow to conclude weather supply or demand was the limiting factor.

Due to these advantages, idle time is used for several purposes to analyze and control SMSs.
Most frequently it is used as a metric for the analysis of the spatial differences in utilization (e.g.
Reiss and Bogenberger, 2015) and the attractiveness of different zones (Lippoldt et al., 2018).
Moreover, idle time is also used as part of an unconstraining technique to estimate unconstrained
demand. As indicated above, while unconstrained demand is typically difficult to measure, idle
times are not. For example, Mooney et al. (2019) uses the inverse of the idle time as a proxy
for the demand. Furthermore, high idle times provide an indication for an accumulation of
vehicles in a part of the business area with low demand. Thus, idle time is a reliable metric
for operator-based relocation and used as the basis for rules of thumb in practice. For example,
Göppel and Blumenstock (2012) report that at car2go, a vehicle was relocated if its idle time
had exceeded a certain threshold (e.g. three days). Finally, another application is to use idle
time (usually in combination with other metrics) to determine the attractiveness of a zone and
then either combine a differentiated pricing approach with operator-based relocation (e.g. Reiss
and Bogenberger, 2016b) or apply operator-based relocation only (e.g. Weikl and Bogenberger,
2015).

Another very important application for idle times in SMSs is in the context of dynamic
pricing, which we focus on in this work. A few first business rules relying on exogeneously given
idle time thresholds have been proposed in literature and practice: A straightforward idea is
that locations with a very low idle time indicate a very high demand in comparison to the supply
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of available vehicles. For a profit-maximizing provider, high prices would be reasonable in this
case of high scarcity, and vice versa. The dynamic pricing of DriveNow, for example, was based
on this idea (Wu et al., 2021). Here, vehicles that exceeded a certain idle time were priced at
a discount. Another very practical pricing approach is based on the comparison between the
idle time of the customer’s indented destination and possible other destinations in the vicinity
(Wagner et al., 2015; Brandt and Dlugosch, 2021). Here, if the idle time at an alternative
destination falls short of the idle time at the intended destination by at least a threshold, then
the business rule offers an incentive for the alternative destination. It should be noted, however,
that, for this pricing approach, the customer must specify the destination, which is not current
practice. Yet another idea is to strive for a homogeneous idle time (target idle time) across the
entire business area (Neijmeijer et al., 2020). Here, the idle times are compared with this target
idle time and prices are set accordingly. All these approaches are easy to implement, practical
business rules but they are not based on optimization.

To close this literature gap regarding optimization-based approaches, in this work, we de-
velop a novel idle-time based dynamic pricing (ITDP) approach for SMSs. As typical in dynamic
pricing in complex systems, the approach builds on approximating state values which quantify
the future expected profit to handle the curse(s) of dimensionality. More specifically, the ITDP’s
central idea is that these state values are formulated based on (expected) idle times. To this
end, the (expected) remaining time a vehicle will be in use and generate profit is quantified.
This remaining time depends on the overall considered time and the expected idle time. For
example, a shorter idle time is equivalent to a longer profitable remaining time, and vice versa.
In comparison to the few existing idle-time based approaches named above, our ITDP is antici-
pative, meaning that it seeks to optimize the immediate expected profit of a pricing decision as
well as the expected profit to come. The price optimization is performed under consideration of
a disaggregated customer choice model and the general formulation of the state value approx-
imation allows to integrate historic idle-time data for different spatio-temporal granualities, as
they occur in practice.

Regarding the specifics of the SMSs that we consider, there are two main characteristics to
mention. First, two types of SMSs exist: free-floating and station-based SMSs (Laporte et al.,
2018). The decisive difference between free-floating SMSs and station-based SMSs is that pick-up
and drop-off locations for vehicles are not limited to certain predefined locations. Instead, in a
free-floating SMS, vehicles can be dropped-off (and picked-up) at any publicly accessible location.
Second, from a provider’s perspective, regardless of free-floating or station-based, SMSs differ in
the spatio-temporal demand information. More specifically, it refers to whether the provider has
knowledge of origin, destination, and time of demand. In the context of pricing, this difference
results in different pricing mechanism, as described in Soppert et al. (2022). For example, in
"origin-based pricing", prices charged for a rental only depend on a rental’s spatio-temporal
origin, meaning its start location and start time. In "trip-based pricing", in contrast, prices
may depend on both origin and destination. In this work, we consider a free-floating SMS and
formulate the ITDP in a general way that allows to apply it to all variants of spatio-temporal
demand information. In the computational studies, we focus exemplarily on an origin-based
dynamic pricing, as typical in modern free-floating SMSs.
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The contributions of our work are the following:

• We develop the first optimization-based and anticipative dynamic pricing approach for
SMSs which is built on idle times.

• With regard to methodology, we propose a general state value formulation that exclusively
relies on expected idle times to quantify a SMS’s future expected profit.

• Due to the generality of this formulation, the pricing approach allows wide applicabil-
ity in practice, especially in the sense that readily available historical idle time data –
independent of the data’s temporal and spatial granularity – can be seamlessly integrated.

• We conduct several computational studies that demonstrate the dominance of the devel-
oped approach compared to existing benchmark approaches in literature. The results show
that profit can be increased by up to 11 % compared to current pricing practice.

The remainder of the paper is organized as follows. In Section 3.2, we review the relevant
literature. Section 6.3 begins with a problem statement and the introduction of notation. Based
on this, Section 6.3.2 describes the new dynamic pricing approach based on idle times. Section
6.3.3 then exemplarily describes the integration of idle time data for three different temporal
and spatial granularities. Section 3.4 contains the computational studies. Section 6.5 concludes
the paper and gives an outlook on future research.

methodology foresight required historical data for anticipation

paper business
rules optimization anticipative myopic idle time vehicle

history
vehicle

distribution demand rentals only
current data

Dynamic Pricing with Idle Time
Wagner et al. (2015) x x - - - - - -

Brandt and Dlugosch (2021) x x - - - - - -
Neijmeijer et al. (2020) x x - - - - - -

Dynamic Pricing without Idle Time
Singla et al. (2015) x x

Pfrommer et al. (2014) x x x
Ruch et al. (2014) x x x x

Febbraro et al. (2012),
Febbraro et al. (2019) x x x

Kamatani et al. (2019) x x x
Clemente et al. (2017) x x x

Müller et al. (2021) x x x
Brendel et al. (2016) x x x x
Dötterl et al. (2017) x x x
Chemla et al. (2013) x x - - - - - -
Haider et al. (2018) x x - - - - - -

Wang and Ma (2019) x x - - - - - -
Bianchessi et al. (2013) x x - - - - - -

Zhang et al (2019) x x - - - - - -
Barth et al. (2004) x x - - - - - -

Mareček et al. (2016) x x - - - - - -
Angelopoulos et al. (2016),
Angelopoulos et al. (2018) x x - - - - - -

This paper
Müller et al. (2022) x x x

Table 6.1: Literature on dynamic pricing for SMS ( "-" means not applicable)
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6.2 Literature Review

The literature on SMS optimization is broad, covering various types of systems, optimization
problems, control approaches, and methodologies. General overviews on SMS optimization
problems have been presented in survey papers on bike sharing (e.g. DeMaio, 2009; Fishman
et al., 2013; Ricci, 2015), car sharing (e.g. Jorge and Correia, 2013; Ferrero et al., 2015a,b; Illgen
and Höck, 2019), and SMSs in general (e.g. Laporte et al., 2015, 2018).

In this literature review, we focus on dynamic pricing in SMSs in the sense that prices depend
on the system’s current state. We exclude differentiated (or static) pricing approaches (see e.g.,
Agatz et al., 2013; Soppert et al., 2022, and the references therein).

In the following, we introduce a classification scheme for dynamic pricing approaches (Section
6.2.1). Based on this, Section 6.2.2 considers dynamic pricing approaches using idle time data
and Section 6.2.3 reviews papers using other data. At the end of each section, we concisely
delineate the existing literature from the paper at hand.

6.2.1 Dimensions of Dynamic Pricing

To structure the dynamic pricing approaches for SMSs, we propose the following three dimen-
sions which characterize an approach from the provider’s perspective (see also Table 6.1).

1. Methodology (first column): Prices are either determined by business rules or by optimiza-
tion, meaning based on solving some mathematical optimization model.

2. Foresight (second column): Myopic approaches determine prices based on the immediate
(expected) reward (e.g. profit), given the current state of the SMS. In contrast, anticipative
approaches additionally consider how current decisions influence the SMS’s future states
and rewards.

3. Required historical data for anticipation (third column): Anticipative pricing approaches
require some component to predict the future. Thus, they usually require historical data,
either to forecast the system’s evolution or to directly predict current decisions’ implica-
tions on future rewards.

With regard to these three dimensions, this paper develops an anticipative optimization-based
dynamic pricing approach relying on idle time data, which we call ITDP for short.

6.2.2 Dynamic Pricing with Idle Time Data

Three papers perform dynamic pricing with idle time data, all using business rules. Both Wag-
ner et al. (2015) and Brandt and Dlugosch (2021) first ask an arriving customer for her intended
destination. The approaches calculates the expected idle time for the customer’s intended desti-
nation as well as for locations in its vicinity. Their approach offers an incentive to the customer
for leaving the vehicle at a nearby destination if its idle time undercuts that of the originally
entered destination by at least a threshold. The provider chooses the threshold such that his
benefit from the diversion exceeds the cost of the incentive offered to the customer. The authors
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recognize that this threshold is tedious to set and examine different threshold values. Both pa-
pers apply location-period specific idle times (see Table 6.2 and for further explanations Section
6.3.3) as they divide the free-floating system’s business area into so-called tiles and calculate
average idle times for each tile and time period (Wagner et al. (2015): 1h, Brandt and Dlugosch
(2021): 30min). They are indirectly anticipative because when they decide on prices when a cus-
tomer arrives, they consider idle times at the destination when the trip ends and, thus indirectly
capture the system’s future state and reward.

Neijmeijer et al. (2020) use idle times in a real-world experiment to set prices. The core
idea of the pricing approach is to achieve a good service level by having homogeneous idle times
across the entire business area. To price a vehicle when a customer arrives, the average idle
time at its current location for the current time period is considered (location-period specific
idle time, see Table 6.2 and for further explanations Section 6.3.3). As only current values are
considered, we classify the approach as myopic.

As mentioned above, the pricing approaches in all three papers are hands-on business rules
where prices are set based on thresholds or a target idle time for the whole system. Moreover,
the pricing approach of Neijmeijer et al. (2020) is myopic and does not consider future profit. In
contrast, our pricing approach calculates prices using an optimization procedure and anticipates
future rewards.

6.2.3 Dynamic Pricing without Idle Time Data

In this section, we consider papers that propose dynamic pricing approaches and thereby do not
use idle time data. We structure them along the first two dimensions from Section 6.2.1, i.e.
foresight and methodology. In Section 6.2.3.1, we consider the approaches that are closest to
ITDP in both dimensions, i.e. which are anticipative and optimization-based. Then, we examine
the dynamic pricing approaches that share only one of the two dimensions with ITDP, i.e. that
use anticipative business rules (Section 6.2.3.2) or myopic optimization (Section 6.2.3.3). Finally,
in Section 6.2.3.4, we consider myopic business rules.

6.2.3.1 Anticipative Optimization

Several papers use mathematical optimization with models that anticipate future states or re-
wards. Singla et al. (2015) define empty and full stations based on their current occupancy
and predicted rentals. The pricing approach iteratively learns users’ reactions to the incentives
offered and seeks to align future demand and supply. Pfrommer et al. (2014) propose a model
predictive control approach that uses quadratic programming and recalculates prices each period
in a rolling horizon fashion. This pricing approach needs data about the current occupancy of
the stations and historical rentals for the anticipation. Ruch et al. (2014) build on Pfrommer
et al. (2014) and investigate simplified variants that can be used to benchmark more complex
approaches. An anticipative variant element needs historical data about the occupancy of all
stations. Febbraro et al. (2012) aim at a supply/demand ratio of 1 at all stations. They suggest
alternative drop-off locations with a discount to customers. Febbraro et al. (2019) follow up on
their earlier paper and formulate and test corresponding optimization models. These optimiza-
tion models require future demand, which is calculated based on historical demand. Kamatani
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et al. (2019) optimize thresholds by Q-learning based on simulated data, which uses data about
the current vehicle distribution and the current rentals. Clemente et al. (2017) use a particle
swarm optimization based on simulated data of vehicle distributions and the demand. Müller
et al. (2021) develop a customer-centric disaggregate and anticipative pricing approach. Their
approach focuses on the vehicles that are within a customer’s walking distance and evaluate
them using a kernel regression based on historical vehicle-specific data, for which the provider
must have tracked individual vehicles in the past.

Although the above papers propose a similar dynamic pricing approach in terms of method-
ology and foresight, they are not directly applicable to the problem considered here in which
the provider (only) possesses idle time data. The decisive novelty compared to e.g. Müller
et al. (2021) is the type of required historical data: ITDP uses readily available idle time data
in the anticipative price optimization. This allows ITDP to approximate state values with non-
parametric value function approximations and to incorporate complex customer choice behavior.
By contrast, the above approaches need data on rentals, vehicle distribution, or vehicle histories.

6.2.3.2 Anticipative Business Rules

Both Brendel et al. (2016) and Dötterl et al. (2017) use business rules and anticipate the future.
Dötterl et al. (2017) analyze the vehicles’ current state (driving or idle) and predict the near-
future occupancy of every station. They differ in the required data. Brendel et al. (2016) requires
historical and current data on rentals and occupancy to calculate station thresholds and compare
them to current occupancy. In contrast, Dötterl et al. (2017) requires current station occupancy,
current rentals, and customer location during the rental time and no historical data to predict
near-future occupancy. Potential incentives are then based on the calculated expected future
occupancy, such as when users return a vehicle to a station with a predicted shortage.

Besides data requirements, these papers share the well-known pros and cons of business rules:
They are easy to understand, but leave parameter tuning to the provider, which often results in
inferior performance compared to optimization.

6.2.3.3 Myopic Optimization

Three papers use myopic optimization models. Chemla et al. (2013) overall focus on user-based
relocation, but also determine period-specific myopic prices. The authors aim at a service-
maximizing fleet distribution, where customer satisfaction is measured by successful and unsuc-
cessful customer actions (pick-up and drop-off because of available or non available bike, empty
or full rack). They use a linear program to determine the number of customers who change their
travel plans because of the price incentive offered to reach the given target inventory of vehicles
for each station.

Two papers do not directly solve a mathematical model, but use it as a basis to develop a
heuristic. Haider et al. (2018) model a bi-level program, where the upper level determines prices
and minimizes vehicle imbalance, while the lower level represents the cost-minimizing route
choice of customers. The problem is transformed into a single-level problem and a heuristic is
proposed that iteratively adjusts prices (and, in contrast to the bi-level program, contains some
anticipation). Wang and Ma (2019) consider the objective of keeping inventory within a certain
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range for a period. For this purpose, they define lower and upper thresholds for each station.
The number of rentals from or to a station can be affected by pick-up and drop-off fees. They
formulate a quadratic program to determine optimal dynamic pick-up and drop-off fees and
solve it with a genetic algorithm.

While the above approaches use optimization, they are restricted by their myopic horizon.
Moreover, they capture customer behaviour in aggregate models and therefore cannot exploit
the opportunities of existing disaggregated data.

6.2.3.4 Myopic Business Rules

Several works use myopic business rules. Bianchessi et al. (2013) compare the number of vehi-
cles at a station and the mean value of vehicles per station to determine prices. Zhang et al
(2019) capture system and customer behavior in a mathematical model. They define prices
by comparing the current number of vehicles with demand and propose a negative price that
is linear in the undersupply of a rental’s destination station. If there is no undersupply, the
regular positive price applies. Barth et al. (2004) propose a system that, once it recognizes an
imbalance, provides incentives for joint rides of independent customers in one car or splitting a
party of customers into multiple cars. Mareček et al. (2016) derive drop-off charges for vehicles
depending on the intended destination location’s distance to the nearest vehicle. Angelopoulos
et al. (2016) and Angelopoulos et al. (2018) propose two algorithms for promoting trips based
on the priorities of vehicle relocates between stations.
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6.3 Idle-Time Based Dynamic Pricing

In this section, we first state the problem considered and introduce the notation (Section 6.3.1).
Based on this, Section 6.3.2 describes the ITDP, i.e., the new idle-time based dynamic pricing
approach. In doing so, we assume that an idle time value for each location is known. Section
6.3.3 then exemplarily describes how to obtain these idle time values from idle time data of
three different temporal and spatial granularities. We also show the granularities’ implications
for the pricing approach. To improve readability, the following deliberations focus on a free-
floating SMS provider. Nevertheless, please note that the model covers both, station-based and
free-floating SMSs.

6.3.1 Problem Statement

We consider a free-floating SMS provider who operates a homogeneous fleet of vehicles that are
spatially distributed over a continuous business area. The objective is to maximize the expected
profit by means of dynamic price optimization. More specifically, the business area is rectangular
and ranges from west (x = 0) to east (x = xmax) and from south (y = 0) to north (y = ymax).
The set X (Y) contains all possible x-coordinates (y-coordinates) of the area. At each point in
time t during the considered time horizon (e.g. one day, 0 ≤ t ≤ ttotal, T = {0, ..., ttotal}), the
provider knows the state of the vehicle fleet, in particular the exact position (xi,t, yi,t)of a vehicle
i and whether it is idle or moving. To keep track of the vehicles’ states, τi,t denotes whether a
vehicle i is idle (τi,t = 0) or in use (τi,t = starting time of rental).

Customers arrive randomly over time. More precisely, at time t at most one customer arrives
with probability λt and opens the provider’s mobile application at a location with coordinates
(xO

t , yO
t ), which follow a given time-dependent origin probability distribution O(t), and seeks to

rent a vehicle. Then, for each vehicle in the vicinity of this customer, the provider’s optimization
problem is to determine prices p⃗t, (contains a price pi,t per minute for each vehicle within walking
distance)where each price has to be selected from a discrete set of price points M. Also, we
assume that a rental incurs variable costs c per minute.

The customer choice behavior is formalized as follows: Customers have a (fixed) maximum
willingness to walk d̄ and a vehicle’s distance to the customer is given by di. Thus, a customer
only considers idle vehicles from the so-called consideration set Ct,(xO

t ,yO
t ) = {i ∈ C |di ≤ d̄∧ τi,t =

0}. The customer either chooses vehicle i with probability qi,t(p⃗t) (then, the vehicle is in use)
or leaves the system with probability q0,t(p⃗t). Vehicles not chosen remain idle. The choice
probabilities qi,t(p⃗t) and the no choice probability q0,t(p⃗t) depend on the distance of the vehicle
to the customer as well as the prices p⃗t for all reachable vehicles of the consideration set. This
means that the customer is price and distance sensitive. Thus, the provider can e.g. incentivize
her to take a certain vehicle in walking distance by offering a low price (for detailed information
on the used multinomial logit model and its parameter estimation, see Appendix 6.A). Choosing
vehicle i with probability qi,t(p⃗t), the rental starts at time t, since we neglect the comparably
short time the customer walks to the vehicle.

The rental time li,t in minutes is a realization of the random variable Li,t, which follows
the distribution ρt. Thus, a rental terminates at time t′ = t + li,t (in expectation at t′ = t +
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ELi,t∼ρt(Li,t)) at location (xD
i,t′ , yD

i,t′). Note in this context that, depending on the characteristics
of the SMSs, a customer’s intended destination might or might not be known to the provider at
rental start time t. More specifically, spatio-temporal demand information is either origin -, or
trip-based, meaning that either only the spatio-temporal origin or both (origin and destination)
is known to the provider before a rental.

Finally, we denote the idle time for vehicle i which is not rented as φi,t,(xi,t,yi,t) (in expectation:
φ̃i,t,(xi,t,yi,t)), and the idle time for vehicle i after a rental which starts at t as φi,t′,(xD

i,t′ ,y
D
i,t′ ) (in

expectation: φ̃i,t′,(xD
i,t′ ,y

D
i,t′ )). Please note that idle time always refers to the time the vehicle is

idle until the next rental. Further explanations are given in the next subsection.

6.3.2 Idle-Time Based Dynamic Pricing Approach

In this section, we present the new ITDP. As described above, prices p⃗t are optimized whenever
a customer arrives at time t at location (xO

t , yO
t ) and p⃗t only contains prices pi,t for the vehicles

within the customer’s reach i ∈ Ct,(xO
t ,yO

t ). The maximization of total expected profit until the
end of the considered horizon includes both a myopic and an anticipative component. With re-
gard to different available spatio-temporal demand information (see previous section), the ITDP
is general in the sense that it can be specified for origin- and trip-based demand information.

The myopic component considers the expected profit from the currently arriving customer
and her choice. It is given by

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) · E
Li,t∼ρt

(Li,t) · (pi,t − c). (6.1)

The anticipative component is more complex. It considers expected profit from future customers
and is approximated by the sum of the expected profits of the vehicles. More precisely, we use
w̃idle

i,t to denote the expected future profit of vehicle i if it remains idle now, and w̃dep
i,t to denote

expected future profit after the current customer’s rental if vehicle i departs when chosen by the
current customer. Thus, expected future profit for the system is

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) ·

w̃dep
i,t +

∑
j∈C

t,(xO
t

,yO
t

)\{i}
w̃idle

j,t

+ q0,t(p⃗t) ·
∑

j∈C
t,(xO

t
,yO

t
)

w̃idle
j,t . (6.2)

Thus, to maximize profit, the provider sets the optimal price vector p⃗ ∗
t according to

p⃗ ∗
t = arg max

p⃗t

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) ·
(

(pi,t − c) · E
Li,t∼ρt

(Li,t) + w̃dep
i,t

+
∑

j∈C
t,(xO

t
,yO

t
)\{i}

w̃idle
j,t

+ q0,t(p⃗t) ·
∑

j∈C
t,(xO

t
,yO

t
)

w̃idle
j,t .

(6.3)
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Figure 6.1: Remaining time if vehicle is not chosen and remains idle
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Figure 6.2: Remaining time if vehicle is chosen and rental departs

Obviously, to efficiently solve (6.3), we need an approximation of the expected future profit
for each vehicle i for each of the two alternatives (vehicle i is chosen: w̃dep

i,t , or not chosen: w̃idle
i,t ).

As already mentioned, we approximate these values using historical idle time data, which
makes use of the fact that idle times are an implicit representation of the expected location- and
time-specific demand pattern and that they are location- and time-specific. The dependencies
between customer arrival time t, rental time li,t, rental termination time t′, and idle times are
depicted in Figures 6.1 and 6.2.

We consider two types of idle times. First, we consider a vehicle that is idle since the previous
rental ends. This vehicle is not chosen by a customer at time t and remains idle (Figure 6.1).
The time from 0 to the current time t has already passed when the customer arrives at time
t. Since the customer does not choose vehicle i located at (xi,t, yi,t), it remains idle for the idle
time φi,t,(xi,t,yi,t) during which it does not earn any profit. This means, that φi,t,(xi,t,yi,t) denotes
the (remaining) idle time after t and not the idle time after the end of the previous rental. The
remaining time after this idle time until the end of the horizon at ttotal is ttotal − t−φi,t,(xi,t,yi,t)

and is valued with R per time unit.
Second, consider a vehicle that is chosen by a customer (Figure 6.2). Again, the time from

0 to t has already elapsed. After this time, however, the customer rents vehicle i. The trip
has an duration of li,t time units and yields an profit li,t · (pi,t − c), already captured in the
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myopic component. After the vehicle has been dropped-off, it stands idle again for a certain
time φi,t′,(xD

i,t′ ,y
D
i,t′ ) at its new location (xD

i,t′ , yD
i,t′) until the next rental starts. During this time,

no profit is earned. However, in the remaining time ttotal − t′ − φi,t′,(xD
t′ ,yD

t′ ) after the idle time,
the vehicle earns again a profit of R per time unit.

The idea is that a shorter idle time is equivalent to a longer profitable remaining time, and
vice versa. The benefit of using idle times instead of demand patterns is that idle time data can
be easily measured in reality, while (unconstrained) demand is not easy to measure.

The value R is easily determined from historical data by dividing the observed total profit
over some time window through the product of the fleet size and the length of the considered
time window. The calculation of the remaining time during which a vehicle earns R per time
unit is explained in the following.

Since the exact idle time is not known we approximate the values of the idle times (ve-
hicle idle: φ̃i,t,(xi,t,yi,t), vehicle chosen: φ̃i,t′,(xD

i,t′ ,y
D
i,t′ )) and consider the stochastic rental time

(ELi,t∼ρt(Li,t)) because we do not know the exact idle time of the idle vehicle and the exact
rental time and subsequent idle time of the departing vehicle. Thus, we have

w̃idle
i,t =

(
ttotal − t− φ̃i,t,(xi,t,yi,t)

)
·R ∀i ∈ Ct,(xO

t ,yO
t ) (6.4)

w̃dep
i,t =

(
ttotal − t′ − φ̃i,t′,(xD

i,t′ ,y
D
i,t′ )

)
·R ∀i ∈ Ct,(xO

t ,yO
t ). (6.5)

The expected future profit of a vehicle i at time t (w̃idle
i,t , w̃dep

i,t ) depends on location and
time and can be different for each vehicle (depending on the spatial and temporal granularity
of idle time). Note that for station-based SMSs, the number of available vehicles considered
at a station can be reduced to one if at least one vehicle is available, since these vehicles have
the same characteristics in terms of distance and expected future profit. Substituting (6.4) and
(6.5) into (6.3) allows the following simplifications

p⃗ ∗
t = arg max

p⃗
t,(xO

t
,yO

t
)

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) ·

(
(pi,t − c) · E

Li,t∼ρt

(Li,t) + w̃dep
i,t

+
∑

j∈C
t,(xO

t
,yO

t
)\{i}

w̃idle
j,t

)
+

(
1−

∑
i∈C

t,(xO
, yO

t
)

qi,t(p⃗t)

)
·

∑
j∈C

t,(xO
t

,yO
t

)

w̃idle
j,t

= arg max
p⃗t

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) ·
(

(pi,t − c) · E
Li,t∼ρt

(Li,t)− w̃idle
i,t + w̃dep

i,t

)

+
∑

j∈C
t,(xO

t
,yO

t
)

w̃idle
j,t

= arg max
p⃗

t,(xO
t

,yO
t

)

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) ·
(

(pi,t − c) · E
Li,t∼ρt

(Li,t)−
(
w̃idle

i,t − w̃dep
i,t

))

= arg max
p⃗

t,(xO
t

,yO
t

)

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) ·
(

(pi,t − c) · E
Li,t∼ρt

(Li,t)

−
(

E
Li,t∼ρt

(Li,t) + φ̃i,t′,(xD
i,t′ ,yD

i,t′ ) − φ̃i,t,(xi,t,yi,t)

)
·R
)

(6.6)
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(a) Entire business area:
homogeneous idle time across

the entire area

(b) Zones:
coarse spatial

variation possible

(c) Spatial continuous:
different expected idle time
for each coordinate possible

Figure 6.3: Different granularities of idle time data

In (6.6), the first three equalities are rearrangements of (6.3). The second to last line nicely
shows that what matters regarding future profit is the chosen vehicle’s difference in future profit
(w̃idle

i,t − w̃dep
i,t ), which mirrors opportunity costs in revenue management (Talluri and Van Ryzin,

2004, Chapter 2.1.2).
As shown by the substitution and the last rearrangement, in addition to the profit from

the rental only the difference between the idle time of a departing vehicle and the idle time
of a remaining idle vehicle is important. For a departing vehicle, this is the current rental
time and the idle time after drop-off (ELi,t∼ρt(Li,t) + φ̃i,t′,(xD

i,t′ ,y
D
i,t′ )) and for an idle vehicle,

the idle time (φ̃i,t,(xi,t,yi,t)). This eliminates the need for additional calculations to value the
vehicles. However, unlike in traditional revenue management applications, this term may become
negative. This is the case if the vehicle was at such a "bad" location that we have φ̃i,t,(xi,t,yi,t) >

ELi,t∼ρt(Li,t) + φ̃i,t′,(xD
i,t′ ,y

D
i,t′ ).

With regard to the pricing optimization this results in a lower price (compared to a myopic
approach) for the vehicle (alternative) i with negative opportunity cost (=positive expected
profit) to increase its purchase probability qi,t(p⃗t).
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6.3.3 Using Real-World Idle Time Data

(a) Business area wide idle time

(b) Location-period specific idle time

(c) Continuous idle time

Figure 6.4: Exemplarily calculation of w̃idle and w̃dep for different spatial and temporal granularities
(Constant rental time: l = 15 min)

In this section, we discuss how to obtain the values φ̃i,t,(xi,t,yi,t) and φ̃i,t′,(xD
i,t′ ,y

D
i,t′ ) necessary to

calculate a price for a vehicle at that specific position from historical data. Moreover, we discuss
the implications of different granularities for the pricing approach. Remember that the expected
idle time of a vehicle i is a function of the time and its location.

Regarding data granularity, we distinguish two dimensions: spatial and temporal, each with
three exemplarily resolutions (see Table 6.2). Regarding spatial granularity, we distinguish
between idle time data being available only on the business area level, on a zone level (that is,
some partition/discretization of the business area), and spatially continuous idle time data (i.e.
possibly different values for all coordinates within the business area).

These three spatial granularities are illustrated in Figure 6.3. At the business area level, φ̃

cannot capture spatial differences and indicates the same expected idle time for each location
within the business area (Figure 6.3a). By contrast, there are spatial differences for the zone
level (Figure 6.3b) and spatially continuous idle time (Figure 6.3c).

Likewise, we also distinguish three temporal granularities. First, we may have only one
value for the entire time horizon under consideration (e.g. a day). Second, we consider a
discretization into time periods, and, finally, we allow for continuous time. There are nine
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temporal granularity
spatial granularity entire time horizon periods continuous

entire business area business area wide
idle time

zones location-period
specific idle time

spatial continuous continuous
idle time

Table 6.2: Overview of idle time granularities

possible combinations of the aforementioned temporal and spatial granularities.
In this paper, we focus on the three combinations with the same level in each dimension (see

Table 6.2), which we denote as

• business area wide idle time (Section 6.3.3.1),

• location-period specific idle time (Section 6.3.3.2), and

• continuous idle time (Section 6.3.3.3).

Regarding customer interaction and experience, two paradigms with variants of spatio-
temporal demand information exist. Most major sharing systems (see Soppert et al., 2022) em-
phasize the customer’s freedom to go spontaneously wherever she wants (origin-based). Thus,
they refrain from asking for her intended destination and simply wait where the vehicle is
dropped-off. By contrast, the majority of the literature considers SMS where the provider asks
for the destination before deciding on prices (trip- or destination-based).

In the following sections, we consider both cases (all variants of spatio-temporal demand
information, see Section 6.3.2). The rental’s origin is always available. However, if the provider
knows the destination of the rental, idle times can be calculated much more accurately (but it
remains stochastic) and therefore dynamic pricing is more accurate.

6.3.3.1 Business Area Wide Idle Time

The business area wide idle time assigns the same expected idle time φ̄const to each combination
of time t and location (xi,t, yi,t) for idle vehicles, respectively t′ and (xD

i,t′ , yD
i,t′) for departing

vehicles. The value φ̄const is an average idle time for the considered time horizon (e.g. a day)
and the whole business area. As expected idle time is location-independent, a rental’s destination
and knowledge thereof does not matter:

φ̃i,t,(xi,t,yi,t) = φ̃i,t′,(xD
t ′,yD

t ′) = φ̄const (6.7)

∀i, 0 ≤ t ≤ t′ ≤ ttotal, 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax

Substituting (6.7) into (6.6) yields

p⃗ ∗
t = arg max

p⃗t

∑
i∈C

t,(xO
t

,yO
t

)

qi,t(p⃗t) · (pi,t − c−R) (6.8)
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as the expected idle time as well as the expected rental length ELi,t∼ρt(Li,t) cancel out. As
idle time is the same with and without rental, it obviously does not influence the pricing decision.
Thus, the approach is largely myopic (if the homogeneity assumptions were true, no anticipation
is necessary), but R still considers that the vehicle will be unavailable for the duration of the
rental. It suffices to compare the expected average profit per minute for a chosen vehicle with the
expected profit per minute for an idle vehicle. This means that the potential profit of the moving
vehicles is compared with their opportunity cost. Thus, ceteris paribus prices from Equation
(6.8) are greater or equal myopic prices. This is also reflected by the examples in Figure 6.4a,
where we always obtain an opportunity cost of w̃idle

i,t − w̃dep
i,t = 0.2.

6.3.3.2 Location-Period Specific Idle Time

The premise for location-period specific idle time is that the provider has partitioned his business
area into Z zones z ∈ Z = {1, ..., Z} and the time horizon into θ periods ϑ ∈ Θ = {1, ..., θ}. For
notational convenience, let us assume that the function ϑ(t) : T → Θ maps time to time periods
and the function z((x, y)) : X × Y → Z maps coordinates to zones. For each combination of
period ϑ and zone z, the provider disposes of idle time values φ̄ϑ,z, for example obtained from
averaging corresponding historical data.

Now, for idle vehicles and departing vehicles if their destination is known we have

φ̃i,t,(xi,t,yi,t) = φ̄ϑ(t),z((xi,t,yi,t)) ∀i, t, 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, (6.9)

φ̃i,t′,(xD
i.t′ ,yD

i,t′ ) = φ̄ϑ(t′),z((xD
i.t′ ,yD

i,t′ )) ∀i, t′, 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax. (6.10)

This is illustrated in Figure 6.4b. Now, we see that the blue vehicle moves from a zone
with high idle time to one with medium idle time, which is reflected by an opportunity cost of
w̃idle

blue,t− w̃dep
blue,t = −0.22. The red one moves to a zone with only slightly less idle time, resulting

in w̃idle
red,t − w̃dep

red,t = −0.05.
For departing vehicles with unknown destination we average over all zones, determining the

expected idle time of the whole business area (all zones) for the period of arrival:

φ̃i,t′,(·) = 1
Z
·
∑
z∈Z

φ̄ϑ(t),z ∀i, t′ (6.11)

Here, no simplification of (6.6) is possible. If corresponding information is available, a
weighted average regarding the destination is suggested.

6.3.3.3 Continuous Idle Time

The continuous idle time described in this section follows the idea to approximate values for
departing and idle vehicles directly based on "similar" data points without an artificial discretiza-
tion of time or space. Obviously, this approach is only applicable in free-floating SMS, since a
station-based SMS always has discrete stations (nevertheless, a version that is continuous with
regard to time may be considered).

The basic idea beyond this variant is to average similar data points through kernel regression
to determine the vehicles’ expected idle times. More precisely, the provider follows four steps.
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In the first step, beforehand, the provider records vehicle-level data. The data set K =
{(φ̂k, (xk, yk), tk)} contains a data point k for each end of a rental (or when a vehicle becomes
available after maintenance etc.) with location (xk, yk), time tk of the arrival of a vehicle and
the following idle time φ̂k.

During the pricing process, when a customer arrives at time t, idle time values for vehicles
i ∈ Ct,(xO

t ,yO
t ) are determined by steps 2 to 4 as follows:

In step 2, the provider determines the sets Kidle
i,t ⊆ K and Kdep,x

i,t′ ⊆ K, x ∈ {dk, du} (dk:
destination known, du: destination unknown) from the set of all data points K. Since all events
in the free-floating SMS are characterized by a certain location and time, it is reasonable to
integrate the spatial as well as the temporal dimension in the metric that measures "similarity"
and we filter for relevant data points regarding idle vehicles as follows:

Kidle
i,t =

{
(φ̂k, (xk, yk), tk) ∈ K

∣∣∣∣
tk ≤ t < (tk + φ̂k) ∧ |(xk, yk)− (xi,t, yi,t)| ≤ h

}
(6.12)

where |(xk, yk) − (xi,t, yi,t)| is some spatial distance for the vehicle i standing at (xi,t, yi,t). For
the departed vehicles, this step is almost the same. The difference is mainly that the departed
vehicle i arrives after the expected rental time at t+ELi,t∼ρt(Li,t)(= t′) and then idles. Moreover,
we distinguish whether the provider knows the destination of the rental or not. If the provider
knows the destination (xD

i,t′ , yD
i,t′) of the vehicle i, we define the following filter:

Kdep,dk

(xD
t′ ,yD

t′ ),t′ =
{

(φ̂k, (xk, yk), tk) ∈ K
∣∣∣∣

tk ≤ (t′) < (tk + φ̂k) ∧ |(xk, yk)− (xD
t′ , yD

t′ )| ≤ h

}
(6.13)

If the provider does not know the destination of the vehicle i, we define the filter as follows:

Kdep,du
i,t′ =

{
(φ̂k, (xk, yk), tk) ∈ K

∣∣∣∣ tk ≤ (t′) < (tk + φ̂k)
}

(6.14)

In the third step, as the filtered data sets are now available for both idling and departing
vehicles, the weights κidle

i,t,k for each data point k ∈ Kidle
i,t can now be determined with a kernel

function (see Powell, 2007, Chapter 8.4.2).
In particular, for idle vehicles, we use

κidle
i,t,k =

Kidle
i,t,k∑|Kidle

i,t |
j=1 Kidle

i,t,j

∀k ∈ Kidle
i,t (6.15)

with the Epanechnikov kernel function
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Kidle
i,t,k = 3

4 ·
(

1−
(

di,k

h

)2)
∀k ∈ Kidle

i,t (6.16)

with

di,k =
√

(|(xi,t, yi,t)− (xk, yk)|)2 ∀k ∈ Kidle
i,t (6.17)

Regarding departing vehicles with unknown destination, the weights κdep,du
i,t′,k simply average all

filtered data points, whereas the calculation of weights κdep,dk
i,t′,k for departing vehicles with known

destination uses again the Kernel function and is similar to idle vehicles:

κdep,du
i,t′,k = 1

|Kdep,du
i,t′,k |

∀k ∈ Kdep,du
i,t′ (6.18)

κdep,dk
i,t′,k =

Kdep
i,t′,k∑|Kdep,dk

i,t′,j
|

j=1 Kdep
i,t′,j

∀k ∈ Kdep,dk
i,t′ . (6.19)

The calculation of the Epanechnikov kernel is again (6.16), and the distance now is di,k =√
(|(xD

i,t′ , yD
i,t′)− (xk, yk)|)2 ∀k ∈ Kdep,dk

i,t′ . Finally, in step 4, we use these weights and sets to
calculate the expected idle time for each departing and idle vehicle i:

φ̃i,t,(xi,t,yi,t) =
∑

k∈Kidle
i,t

κidle
i,k · φ̄k ∀i ∈ Ct,(xO

t ,yO
t ) (6.20)

φ̃i,t′,(xD
t′ ,yD

t′ ) =
∑

k∈Kdep,x
i,t

κdep,x
i,k · φ̄k ∀i ∈ Ct,(xO

t ,yO
t ), x ∈ {dk, du} (6.21)

where expected idle time for all departing vehicles with unknown destination is identical.
The approach is illustrated by Figure 6.4c. Now, each vehicle has an individual expected

idle time that depends on its exact position and, hence, the distance to historical data points.
Thus, at a given point in time, the expected idle time for each location can be visualized using
a heatmap as in Figure 6.4c.

6.3.4 Comparison

The three aforementioned types of idle times business area wide, location-period specific and
continuous differ in three aspects as described in the following and summarized in Table 6.3:

1. By construction, they differ in the level of granularity of the required data, as described
in sections 6.3.3.1-6.3.3.3.

2. The second aspect considers the computational effort. The effort for calculating the ex-
pected idle time with the continuous idle time is the greatest, while the computational
cost for the application of the other two idle time functions is very limited.
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idle time granularity computational effort pre-calculation possible
business area wide low low yes

location-period specific middle low yes
continuous high middle no

Table 6.3: Properties of the three ITDP variants presented

3. The third aspect considers the possibility for pre-calculation. Whereas all values for the
business area wide idle time and the location-period specific idle time have the advantage
to be pre-calculable due to their small number in order to speed up the pricing process,
the continuous idle time has to be calculated online.
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6.4 Computational Studies

In this section, we evaluate the developed dynamic pricing approach for all three variants, mean-
ing based on business area wide, location-period specific, and continuous idle times. These three
variants are compared in a computational study to four benchmarks. Section 6.4.1 describes
the setup of the study, including settings and parameters (Section 6.4.1.1) and considered pric-
ing approaches (Section 6.4.1.2). Based on this, Section 6.4.2 presents and discusses the main
results.

6.4.1 Setup

6.4.1.1 Settings and Parameters

We consider a SMS with origin-based pricing, that means the provider does not know the
destination of the rental. For the computational study we investigate two settings that differ
mainly in the size of the business area and the number of vehicles (SMALL and LARGE). The
area of the SMALL setting has a size of 9 km2 and is equipped with 18 vehicles (LARGE 16 km2
and 32 vehicles, all areas are square). Theses settings are realistic settings in terms of vehicle
density and distribution. They show that the solution approach is also applicable to larger
settings. Remember that the customer’s consideration set includes only those vehicles that
are within walking distance of the customer, and their number depends on the vehicle density.
As we use a realistic density in our examples, they also capture computational complexity of
larger systems. Therefore, we can conclude that the solution approach is also applicable to large
settings.

The planning horizon is one day and at the beginning, all vehicles are randomly uniformly
distributed across the business area. The demand patterns we use replicate what is observed
in practice. Demand intensity varies over the course of the day with two peaks (Figure 6.5,
see e.g., Reiss and Bogenberger, 2016a). Furthermore, in line with practice, there is also a
spatial variation of demand, i.e. between strong demand in the city center and lower demand
in peripheral areas. Given a uniform price, this results in different mean idle times (illustrated
for the so-called BASE price in Figure 6.6). Demand intensity is modeled by the probability
density function (pdf) of the origin probability distribution O(t).

Figure 6.5: Normalized total demand over the course of the day for all settings

Each of the two settings is examined for three different overall demand levels, which differ
in the demand-supply ratio (DSR). The DSR is the maximum demand (second peak) divided by
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.6: Mean idle time for different DSR for 9 zones with BASE price

the fleet size and we consider the values 1
3 , 2

3 , 1 by scaling demand appropriately. This can also
be seen in Figure 6.6, where as demand increases (increasing DSR), the idle time for all parts
of the business area decreases, especially in the peripheral areas.

The other parameters are constant throughout both settings: M = 3 price points (prices for
short) pm ∈ M are predefined with regard to typical prices in practice: We chose a base price
per minute of p(2) = 0.31 e/min and a price difference of 0.05 e/min to the so-called low and
high prices, so that p(1) = 0.26 e/min and p(3) = 0.36 e/min. Variable costs are c = 0.07 e/min.

Further, we assume a maximum willingness to walk of d̄ = 500 m for all customers (see
Herrmann et al., 2014).

The choice behavior follows a multinomial-logit model, where the choice probabilities depend
on the utilities for the customer (see Appendix 6.A). A customer’s utility ui,t(p⃗t) for alternative
(vehicle) i at time t depends on its price pi,t and the vehicle’s distance di to the customer
(ui,t(p⃗t) = βprice · pi,t + βdistance · di). All vehicles are homogeneous, hence their features do not
play a role in the choice model. The customer can also decide not to rent a vehicle (i = 0) and
leave the system. The utility for this alternative is a constant (u0,t(p⃗t) = ASC0). We assume for
the computational studies that all customers have the same price sensitivity and choose according
to the same choice parameters. The parameters for the one choice model which is fit across all
locations can be estimated with a maximum-likelihood estimation based on observations of
mobile application openings (for more details see Appendix 6.A). It is possible to generalize this
to multi-segment pricing without major changes. The rental time is calculated by drawing the
speed from a realistic distribution for urban traffic. We then get the rental/driving time li,t as
the product of the driving speed and the distance between the origin and the destination of the
rental.

6.4.1.2 Pricing Approaches

In total, we evaluate seven (variants of) pricing approaches. The three variants of the developed
pricing approach ITDP are:

• ITDP-B: A variant of ITDP which uses business area wide idle time data (see Section
6.3.3.1).

• ITDP-L: A variant of ITDP which uses location-period specific idle time data (see Section
6.3.3.2).

• ITDP-C: A variant of ITDP which uses continuous idle time data (see Section 6.3.3.3).
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The four benchmarks are:

• B-BASE: Constant uniform pricing, where pi,t is the base price for all vehicles i ∈ C and
every time t. Due to its wide adoption over all SMS types, this pricing can be considered
as the de facto standard in practice.

• B-MYOP: Myopic version of ITDP without anticipation: φ̃i,t,(xi,t),yi,t
= φ̃i,t,(xD

t′ ,yD
t′ ) =

w̃idle
i,t = w̃dep

i,t = 0 for all i ∈ Ct,(xO
t ,yO

t ), resulting in W̃i,t = W̃0,t = 0 for all i ∈ Ct,(xO
t ,yO

t ) .

• B-TAR: Pricing approach that compares a certain target idle time with the current idle
time in the vicinity of the vehicle with a radius of the walking distance d̄ (similar to the
pricing approach of Neijmeijer et al. (2020)). If the current idle time in the vicinity of
a vehicle falls below a threshold (i.e. a target idle time minus the parameter γ; we use
γ = 30 min), this vehicle obtains the high price and vice versa. Vehicles with idle times in
between both thresholds obtain the base price. The target idle time for this benchmark is
the average idle time of period ϑ.

• B-REL: This approach adopts ideas from Wagner et al. (2015) and Brandt and Dlugosch
(2021) who consider SMSs where customers reveal their destinations in advance. Their
approach then searches for alternative, nearby destinations with lower idle time than the
intended one and, if the difference exceeds a threshold, suggests alternative destinations
together with incentives. Since we consider a different setting in which the intended
destination is unkown, this approach is not directly applicable. However, we adopt the
central idea of comparing the difference of idle times for different locations with a given
threshold ω. More specifically, we compare the idle time at the rental’s origin with the
idle time of the whole business area. For this purpose, the business area is divided into
200m×200m tiles. The idle time for a vehicle is calculated in two steps. First, the tile
where a vehicle is located and its vicinity is identified (radius of d̄ around the center of the
tile). The second step begins with calculating the idle time for the current time t, for the
time 1 h later as well as 1 h earlier using Kernel regression where the spatial difference to
the center of the tile is not bigger than d̄. Then, it computes the average of these three
idle times. Next, we also need the idle time of the destination. Since the destination is
not known, we substitute it with the mean idle time of the whole business area for the
three above-mentioned points in time and then compute their average. We compare the
difference between these two values with a predefined threshold ω. If this difference is
larger than the threshold (ω = 30 min in our study), the vehicles in this tile get high prices
and vice versa. All vehicles standing in tiles with smaller deviations get the base price.

Each pricing approach is evaluated in N = 1000 simulation runs with common random
numbers and we report average values.

6.4.2 Main Results

In this section, we focus on the results for the two different settings (SMALL, LARGE) for the
different DSRs. We compare ITDP for different granularities of idle time (ITDP-B, ITDP-L,
ITDP-C). In the following subsections, we look at profit, prices and rentals.
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(a) SMALL (b) LARGE

Figure 6.7: Profit improvement over B-BASE

6.4.2.1 Profit

We first discuss profit, whose maximization is the objective of the optimization problem and
obviously the most important metric from the provider’s perspective. The results for all settings
and DSRs are summarized in Figure 6.7. First of all, all results show that for all settings and
all DSRs the approach B-TAR is inappropriate, since it consistently generates less profit than
B-BASE. At least in this implementation, the goal to have an identical idle time everywhere is
not profit maximizing.

The benchmark B-REL performs similarly to the benchmark B-MYOP in the LARGE set-
ting, whereas it performs worse than B-MYOP in the SMALL setting.

Regarding the new idle-time based approaches, the following can be observed: The more
detailed the idle time is taken into account, the more profit is generated. While considering
the business area idle time leads to a comparable profit to the benchmark B-MYOP, using the
continuous idle time leads to the best result in most cases. ITDP-L is in between and better
than B-REL and B-MYOP.

Thus, if temporally and spatially differentiated idle time data is available (ITDP-C, ITDP-
L) and used for dynamic pricing, a corresponding approach can perform better than myopic
pricing.

Finally, the fact that ITDP-B performs similarly to the benchmark B-MYOP can be ex-
plained as follows. ITDP-B uses generic idle time data, and thus, the pricing approach is
minimally anticipative by incorporating always the same opportunity costs (see Section 6.3.3.1).

In the following subsections (Section 6.4.2.2 - Section 6.4.2.3), we consider the results for
SMALL. The corresponding results for LARGE are shown in Appendix 6.B.

6.4.2.2 Prices

Next, we compare the prices set by the different pricing approaches over the course of the day. To
that end, we consider results from the SMALL setting with all three DSRs. Figure 6.9 illustrates
the average price across all areas during the day (we left out B-BASE that sets constant prices).
The demand peak at noon is reflected in the average price of all pricing approaches. As expected,
prices are on average higher when demand is high.

A closer look shows that the average price of B-TAR is almost always considerably below all
other price curves, which may explain its poor performance. Furthermore, it is remarkable that
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.8: Relative price frequency (SMALL)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.9: Average prices over the course of the day (SMALL)

the average price of B-REL fluctuates more than the other curves (except B-TAR). Another
interesting observation is that the average price of B-MYOP (and in the morning also B-REL)
is clearly lower than the average price of ITDP-L and ITDP-C. Obviously, anticipation with
spatial and temporal granularity of the idle time data leads to higher prices. The average price
of ITDP-B is clearly lower than the average price of ITDP-C and ITDP-L and comparable to
the average price of B-MYOP.

The aforementioned average prices are also reflected in the relative price frequency (Figure
6.8). While the frequency of low prices is highest for B-TAR, and then B-MYOP, this price
frequency (with increasing spatial and temporal granularity of the idle time data used) decreases
successively from ITDP-B via ITDP-L to ITDP-C, while the frequency of high prices for these
dynamic pricing approaches increases successively.

6.4.2.3 Rentals

Rentals are another important metric for SMS providers, as higher rentals have a positive impact
on service level metrics. For the analysis of the rentals, we consider Figure 6.10, which shows the
average hourly rentals for the different pricing approaches over the course of the day for different
DSRs in the SMALL setting. The respective results for LARGE are depicted in Appendix 6.B.

The rental curves resemble the demand curve in that there is a minimum of rentals in the
morning and a maximum in the afternoon. As expected, the number of rentals increases in
the DSR and the number of rentals is lowest (highest) for only high prices (only low prices).
The rental curve for B-MYOP is very similar to the rental curve for ITDP-C, although ITDP-C
obtains considerably higher profits. Furthermore, the curve of rentals of B-TAR is, together
with the curve for the pricing with only low prices, clearly above all other curves.

Please note that the fact that ITDP-L and ITDP-C obtain a higher revenue than B-BASE
with a comparable number of rentals proves that their profit increase is not associated with a
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worse availability. Finally, the idea behind B-TAR to ensure a good level of service seems to be
successful, but at the cost of lower profit. Considerably more trips are made with this pricing
approach than with any other pricing approach (except the provider sets only low prices).

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.10: Rentals over the course of the day (SMALL)
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6.5 Conclusion

Dynamic pricing has been shown to be an efficient means to manage SMSs and first approaches
in which pricing is designed around idle time data have been proposed. In principle, the idea of
using idle times within pricing is very promising, because this data is often available to providers
in practice. However, so far, only hands-on business rules using idle times have been suggested.
In this work, we close this important literature gap by developing an anticipative optimization-
based dynamic pricing approach which is based on the integration of idle times. This allows to
exploit the full potential of idle time data in dynamic pricing for SMSs.

The specific pricing problem considered is to determine profit-maximizing prices for the
vehicles which are located within reach of an arriving customer in an online fashion. Thereby,
the developed pricing approach captures a myopic as well as an anticipative part of the expected
future profit. While the first considers the potentially upcoming rental, the second approximates
the future state values based on idle time data. For both parts, customer choice probabilities are
considered through a multinomial-logit model which captures the influence of prices and walking
distances. The approach is generic with regard to the state-value approximation because it
allows to integrate idle time data independent of the data’s granularity in both the spatial and
the temporal dimension. More specifically, the approach is capable of integrating business area
wide idle times on the one extreme over location-period specific to continuous idle time data
on the other extreme. Technically speaking, the latter is enabled by using a non-parametric
value function approximation in which a kernel regression calculates the valuation from multiple
individual data points.

In an extensive computational study with varying size of business area, fleet size, as well as
overall demand levels, we demonstrate the advantages of our dynamic pricing approach compared
to various benchmarks. These benchmarks include two idle-time based pricing rules from the
literature as well as a myopic price optimization. The results show that the performance of the
developed dynamic pricing approach depends on the granularity of the integrated idle time data.
It consistently outperforms the reference value of constant uniform base prices and the rule-based
approach with target idle times. For the variants of the developed approach with spatio-temporal
variation of the idle times, in most cases, substantially higher profits are generated than for the
myopic optimization as well as for the rule-based approach from literature that determines prices
based on the comparison of idle times.

The idle-time based dynamic pricing approach with continuous idle time outperforms all
benchmarks considerably. It improves profits by up to 11 % compared to base pricing, as well as
up to 3 percentage points compared to myopic price optimization. From the latter, we conclude
that the accurate approximation of state values based on highly granular idle times in our pricing
approach is beneficial for its performance. Compared to the rule-based benchmarks from the
literature, this variant of our approach obtains up to 3.5 percentage points more profit.

To summarize, our anticipative and optimization-based dynamic pricing approach based on
idle time data performs considerably better in comparison to existing approaches in terms of
the relevant performance metrics. This shows that the developed approach based on idle times,
which are often available for SMSs, is a practice-ready and at the same time successful alternative
for dynamic pricing in SMSs.
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For future work, multiple directions seem promising to generate additional valuable insights.
First, an empirical real-world evaluation of the suggested dynamic pricing approach would be
helpful to support the numerical studies. Second, a new rule-based approach based on the
insights gained could be developed. Third, the development of a combined dynamic pricing and
relocation optimization approach based on idle times would be valuable as this could exploit
additional potential. Finally, to investigate the value of additional information (destination
known), the use of ITDP could be compared for trip-based and origin-based SMSs.
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6.A Customer Choice Model

A customer at position (xO
t , yO

t ) chooses among the reachable vehicles i ∈ Ct,(xO
t ,yO

t ) and may
also decide not to rent (no choice option). In the Computational Studies (Section 3.4), customer
choice behavior follows a multinomial logit model (see e.g. Train , 2009, Chapter 3). Accordingly,
the choice probabilities qi,t(p⃗t) depend on the alternatives’ deterministic utilities ui,t(p⃗t) for the
customer:

qi,t(p⃗t) = eui,t(p⃗t)∑
n∈C

t,(xO
t

,yO
t

)∪{0} eun,t(p⃗t) . (6.22)

The deterministic utility ui,t(p⃗t) of a vehicle i at time t depends on its price pi,t and its
distance to the customer di:

ui,t(p⃗t) = βprice · pi,t + βdistance · di. (6.23)

The no-choice option has utility u0,t(p⃗t) = ASCNoChoice where ASCNoChoice stands for the
alternative-specific constant for the no-choice option. These assumptions imply homogeneous
customers and that customers decide solely based on current circumstances (myopic behavior).
In particular, they do not act strategically (see, e.g., Gönsch et al., 2013; Gallego and Van Ryzin,
1997; Talluri and Van Ryzin, 2004, Chapter 5.1.4 for discussions of strategic or forward looking
customers.).

The choice model is fitted across all locations by using maximum likelihood estimation based
on 200,000 observations of mobile application openings. Technically, we used the Python package
PandasBiogeme 3.2.10 (Bierlaire, 2020).

6.B Results LARGE

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.11: Rentals over the course of the day (LARGE)
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.12: Relative price frequency (LARGE)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 6.13: Average prices over the course of the day (LARGE)

6.C List of Notation

sets
symbol description
Ct,(xO

t
,yO

t
) consideration set of a customer arriving at time t with the coordinates

(xO
t , yO

t )
K historical vehicle data, contains a data point k for each end of a rental
Kidle

i,t relevant data points regarding idle vehicles that are similar to vehicle i
at time t

Kdep,x
i,t′ relevant data points regarding departed vehicles that are similar to ve-

hicle i at time t′, x ∈ {dk, du} (dk: destination known, du: destination
unknown)

M discrete set of price points
T time horizon
X set of all possible x-coordinates
Y set of all possible y-coordinates
Z set of locations
Θ set of periods

Table 6.4: List of notation – part 1
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parameters, variables and functions
symbol description
c variable costs
d̄ (fixed) maximum willingness to walk
di distance between customer standing at coordinates (xO

t , yO
t ) and vehicle

i
di,k distance between vehicle i and data point k
Kx

i,t,k Epanechnikov kernel function for vehicle i and data point k at time t
(or time t′), x ∈ {idle, dep}

Li,t random variable of rental time
li,t driving/rental time in minutes, realization of Li,t

O(t) time-dependent origin probability for the location of the customer
p⃗t price vector
pi,t price for vehicle i at time t
qi,t(p⃗t) choice probability
q0,t(p⃗t) no choice probability
R average profit after idle time per minute
t time
t′ point of time after expected idle time t′ = t + ELt∼ρt (Li,t)
ttotal latest time of considered time horizon
ui,t(p⃗t) utility for choosing vehicle i at time t
u0,t(p⃗t) utility for no-choice at time t

w̃idle
i,t expected future profit of vehicle i at time t if it remains idle

w̃dep
i,t′ expected future profit of vehicle i at time t after the current customers’s

rental
x coordinate from west to east
xmax easternmost coordinate
(xi,t, yi,t) position of a vehicle i at time t
(xO

t , yO
t ) customer locations at time t

(xD
i,t′ , yD

i,t′ ) drop-off location of vehicle i at time t′

y coordinate from south to north
ymax northernmost coordinate
z location
Z number of locations
βprice parameter for evaluating price
βdistance parameter for evaluating distance
ϑ period
θ number of periods
κidle

i,t,k, κdep,du
i,t′,k , κdep,dk

i,t′,k
weights of every data point k to value vehicle i at time t (or time t′)

λt arrival rate of customers at time t
τi,t starting time of rental i
φ̃i,t,(xi,t,yi,t) idle time of vehicle i at time t at the current location (xi,t, yi,t)
φ̃i,t′,(xD

i,t′ ,yD
i,t′ ) idle time of vehicle i at time t′ at the destination (xD

i,t′ , yD
i,t′ )

ρt distribution of rental time

Table 6.5: List of notation – part 2
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This chapter provides an overview of the proposed pricing approaches and results of each chapter
and shows the similarities as well as the differences between them. More detailed conclusions
can be found in Chapters 2.8, 3.6, 4.6, 5.7 and 6.5.

In Chapter 1 we introduced different forms and planning levels of decision problems of shared
mobility systems (SMSs), as well as different modeling techniques for developing solution ap-
proaches for differentiated and dynamic pricing. Differentiated pricing in SMSs describes pricing
approaches where the demand is assumed to be deterministic, and the prices are set in advance
for the considered time horizon. In contrast, dynamic pricing in SMSs describe pricing ap-
proaches where the demand is assumed to be stochastic. Thus, the prices are set dependent on
the current state of the system. In this thesis, Chapters 2 to 4 deal with differentiated pricing,
whereas Chapters 5 and 6 deal with dynamic pricing.

In Chapter 2, we defined and analyzed the problem of origin-based differentiated pricing for
SMSs. The paper has addressed the problem of determining spatially and temporally differenti-
ated origin-based minute prices to maximize profit. For this, we proposed a mixed-integer linear
program based on a fluid formulation. This linear program incorporates supply-side network
effects and was proven to be NP-hard. Thus, we proposed a solution approach that combines the
benefits of decomposition on the one hand, and value function approximation from the realm of
approximate dynamic programming on the other hand. This solution approach scales to real-life
scenarios and integrates the supply-side network effects successfully.

Compared to the de facto standard of constant uniform prices and myopic pricing (no con-
sideration of network effects), this solution approach shows considerable improvements in profit.
Furthermore, we have shown that our solution approach can take into account the decreasing
marginal value of vehicles, considering both short- and long-term supply side network effects.
Thus, this solution approach provides a scalable means to successfully integrate these effects.

However, the solution approach using value function approximation requires parameter esti-
mations in advance, which estimates the parameters for the piece-wise linear function of profit
in dependency of the number of available vehicles. This estimation has two general components:

• Generating samples of vehicles’ distribution and calculating a corresponding profit-to-come
for every sample.

• Determining the value function parameters by solving the least square problem.

This process should not be underestimated in terms of computational time, e.g. the pre-
processing of parameter estimation for the Florence case study in Chapter 2 takes about 19
hours. Therefore, we have developed two practicable solution methods that do not require
pre-processing for estimating parameters in the next chapter. This saves the additional compu-
tational time required for preliminary parameter estimation.

More precisely, in Chapter 3, we proposed two different solution approaches for the problem
of origin-based differentiated pricing for SMSs, which maximize the profit by setting spatially and
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temporarily differentiated origin-based minute prices. The first solution approach is a simplified
mathematical model and formulated as a fluid approximation (simplified model). The second
solution approach is a backwards algorithm which can be divided into two steps. In the first
step, we computed the vehicle distribution for every period with an appropriate straightforward
solution approach. For this, we tested two different approaches: a myopic solution approach
and a relaxed solution approach. In the second step, we calculated the prices backwards based
on the previously calculated vehicle distributions.

These different proposed pricing approaches can be used for profit maximization in SMSs by
considering supply-side network effects with clearly shorter computational times than the given
benchmarks (e.g. approximate dynamic programming decomposition approach in Chapter 2).
Furthermore, they do not require a pre-processing for estimating parameters in advance, are
straightforward to apply and equal in profit than more complex benchmarks (e.g. approximate
dynamic programming decomposition approach in Chapter 2). In other words, the practicable
solution approaches provide the same results in the computational study as the value-function
approximation solution approach described in the previous chapter, but without having to esti-
mate the parameters in pre-processing.

Chapters 2 and 3 do not make a clear methodological distinction between free-floating and
station-based SMSs. However, the type of SMS (station-based vs. free-floating) has clear con-
sequences for the matching of supply and demand. For station-based SMSs, rentals correspond
to almost the minimum of supply and demand, i.e. they match almost exactly the minimum
of both. In contrast, for free-floating SMSs, the rentals, and thus, the matching of supply and
demand also depends on other factors, such as zone size or maximum walking distance. In the
next chapter, we therefore focused on how the rentals relate to the matching of supply and
demand in station-based and free-floating SMSs.

In Chapter 4 we examined the modeling of rentals as the matching of supply and demand
in free-floating and station-based SMSs. So far, matching functions for SMSs in optimization
models for station-based and free-floating SMSs have been identical. However, we proposed
matching functions considering central influencing factors specifically relevant for free-floating
SMSs. Thus, this chapter built a bridge between the optimization models for station-based and
those for free-floating SMSs, which allows to adapt optimization models designed for station-
based to free-floating SMSs. We derived three matching functions: degressive, constant, and
infinite coverage rate matching functions, where the latter is state-of-the-art and the degressive
and constant coverage rate matching functions are novel.

While infinite coverage rate matching functions consider only available vehicles and demand,
degressive and constant coverage rate matching functions consider additional relevant parame-
ters, such as zone size, customers’ maximum willingness to walk, successively arriving customers,
and decreasing marginal zone coverage due to additional vehicles. Therefore, only the degressive
and constant coverage rate matching functions are suitable for modeling free-floating SMSs in
general, because they do consider all of these important parameters explicitly or implicitly. In
contrast, the infinite coverage rate matching function neglects these additional parameters.
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The numerical results show that the infinite coverage rate matching function, in general,
overestimates rentals in free-floating SMSs. With the constant and degressive coverage rate
matching functions, the rentals prediction is a lot more accurate. Thus, generally, the infinite
coverage rate matching function cannot accurately describe matching in a free-floating SMS.
Since other free-floating SMS optimization problems, such as relocation or fleet sizing, also rely
on accurate rental predictions, they would be affected by an overestimation of rentals as well.

The constant coverage rate matching function, in contrast to the degressive coverage rate
matching function, can easily be losslessly linearized. This allows the adaptation of many existing
optimization approaches to free-floating SMSs.

In the case study we used this linearization of the constant coverage rate matching func-
tion. The numerical results show that the better pricing decisions with the (linearized) constant
coverage rate matching function cause significant contribution margin gains in contrast to the
pricing decisions with the infinite coverage rate matching function, which determines too high
prices due to the overestimation of rentals. Thus, the more accurate matching modeling of the
constant coverage rate also effects the decision making in a way that benefits the overall objective.

In Chapters 2 to 4, we assumed that demand is deterministic, so that we could calculate
prices in advance. In the following chapters, we assumed that demand is stochastic and not
deterministic, so that the future states of SMSs cannot be accurately predicted. For this sit-
uation, dynamic pricing is useful. Furthermore, we again considered a free-floating SMS. This
means that the vehicles are distributed over the business area, not grouped at stations, and the
customer has to walk different distances to reach the vehicles. Therefore, we also considered the
disaggregated demand, taking into account individual walking distances and vehicle prices.

In modern free-floating vehicle sharing systems1, providers have access to disaggregate real-
time data regarding the locations of vehicles as well as of customers who open the mobile
application to look for available vehicles. In Chapter 5, we demonstrated that this information
can be leveraged in dynamic pricing to increase profitability. The anticipative customer-centric
dynamic pricing approach in vehicle sharing systems takes customers’ location as well as their
behavior regarding walking distances and prices explicitly into consideration. Thus, vehicles can
have different prices for customers who are requesting the price information at the same time
but from different locations.

We formally defined the provider’s online pricing problem as a Markov decision process and
formulated the corresponding dynamic program by stating the corresponding Bellman equation.
However, the dynamic program cannot be solved to optimality by classical backwards recursion
due to the curse of dimensionality. To solve the online pricing problem, we developed a solution
method based on approximate dynamic programming. We approximated state values represent-
ing expected future profits that occur after the current customer’s decision, so that the current
customer’s choice behavior can still be considered explicitly with a disaggregated choice model
in the optimization – in our case by a multinomial logit model. We take the assumption that
state values are additive in the vehicle values which represent the profits that individual vehicles

1synonymous with SMS
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are expected to realize until the end of the considered time horizon. To approximate the vehi-
cle values, we proposed a non-parametric value function approximation, which uses historical
vehicle values.

In a computational study we demonstrated the advantages of our dynamic pricing approach
compared to various benchmarks. The new pricing approach outperforms all benchmarks signif-
icantly. Further, the numerical study demonstrated the advantage of integrating the concept of
customer-centricity in dynamic pricing. That is, considering situation-specific customer infor-
mation, like the position of the customer and distance to the vehicles within walking distance,
yields up to clearly more profit. In a sensitivity analysis, we also showed that our results are
robust regarding the decisive parameters of the customer choice behavior. An analysis of spa-
tial and temporal variations in demand showed that spatial variation, in contrast to temporal
variation, has a stronger effect on the importance of anticipation. For a vehicle sharing system
provider this means that if there are already small spatial differences in demand, it is worthwhile
to anticipate the future state.

The method of anticipative dynamic pricing as it was used in Chapter 5 requires an approx-
imation of future states. More precisely, they were calculated using historical vehicle values.
For this, the provider must have detailed data of each vehicle’s departure and arrival times.
Conversely, other options require less detailed data to approximate future states, e.g. using idle
time data.

Against this background, we developed an anticipative optimization-based dynamic pricing
approach which is based on the integration of idle times in Chapter 6. This allows to exploit
the full potential of idle time data in dynamic pricing for SMSs.

The developed dynamic pricing approach captures a myopic as well as an anticipative part
of the expected future profit. While the myopic part considers the potentially upcoming rental,
the anticipative part approximates the future state values based on idle time data. For both
parts, customer choice probabilities were considered through a multinomial logit model which
captures the influence of prices and walking distances.

The approach is generic with regard to the state-value approximation because it allows
to integrate idle time data independent of the data’s granularity in both the spatial and the
temporal dimension.

In a computational study we demonstrated the advantages of our dynamic pricing approach
compared to various benchmarks (two idle time based pricing rules from the literature and a
myopic price optimization). The results showed that the performance of the developed dynamic
pricing approach depends on the granularity of the integrated idle time data. It consistently out-
performs the reference value of constant uniform base prices. For the variants of the developed
approach with spatio-temporal variation of the idle times, in most cases, substantially higher
profits were generated than for the myopic optimization as well as for the rule-based approach
from the literature that determines prices based on the comparison of idle times. Furthermore,
we conclude that the accurate approximation of state values based on highly granular idle times
in our pricing approach is beneficial for its performance.
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To summarize, we developed different pricing approaches for differentiated and dynamic
pricing for SMSs. We made the following main observations regarding differentiated pricing.

• For any differentiated pricing approach, it is beneficial to consider supply-side network
effects.

• Different types of SMSs (station-based vs. free-floating) require different matching func-
tions to calculate rentals realistically. More precisely, besides available vehicles and de-
mand, matching functions for free-floating SMSs should additionally consider relevant pa-
rameters, such as zone size, customers’ maximum willingness to walk, successively arriving
customers, and decreasing marginal zone coverage due to additional vehicles.

Our main observations for dynamic pricing are the following.

• Explicitly taking into account disaggregated information about each customer’s location
and behavior in terms of walking distances and vehicle prices increases profits.

• It is useful to approximate the future state of the SMS with vehicle values for the customer’s
considered vehicles. Vehicle values are calculated based on historical data.

• Vehicle values can also be calculated on the basis of idle times, independent of the data’s
granularity in both the spatial and the temporal dimension.

For future research, different types of vehicles in SMSs could be considered, e.g. electric
vs. conventional vehicles. Namely, in SMSs with electric vehicles, the capacity of the battery
and the need for recharging play an important role. In Chapter 5 we focused on dynamic
customer-centric pricing, however, dynamic vehicle-centric pricing could be interesting as well.
This means that customer-specific information is not taken into account, but rather the current
distribution of vehicles is used for the pricing for each vehicle. Following from this, the vehicle
prices for all customers arriving at the same time are equal. Another possibility is a more holistic
view, where SMSs are part of the mobility concept. In this case, the availability of car-sharing
systems, bike-sharing systems and public transportation has interactive effects on the demand
and thus on the prices of the individual vehicles of the different providers.
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