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Chapter 1

Introduction



Currently, many cities and municipalities are striving for an integrated mobility concept. In
addition to public transportation, this also includes shared mobility systems (SMSs), such as
bike or car sharing. It is a component that can contribute to an useful and sustainable mobility
concept. For example, in the best case, an integrated mobility concept replaces private vehicles
and thus reduces the congestion and emissions caused by cars.

Car sharing has become increasingly popular among providers and customers in recent years.
For example, in the EU, the share of sold cars used for new mobility (car sharing, ride hailing, ride
sharing, and robocabs) is predicted to rise from 2 % in 2015 up to 15 % in 2025 (Destatis, 2018a).
Bike sharing is also becoming increasingly popular. The number of bike sharing providers
increased from 388 in 2010 to more than 1,250 in 2017 worldwide. In the same period, the
number of bike sharing vehicles increased from 367k in 2010 to more than 10,000k in 2017
(Destatis, 2018b).

This thesis addresses the question of how to set optimal prices in SMSs. It is based on five
papers (see Table 1.1), some of which have been published, accepted for publication, or are

under review. The order of the papers corresponds to their appearance in this thesis.

Chapter 1 introduces the terminology used in SMSs and the two modeling techniques (linear
programming and dynamic programming) applied in the papers.

Chapter 2 is based on the paper entitled "Differentiated Pricing of Shared Mobility Systems
Considering Network Effects" by Matthias Soppert, Claudius Steinhardt, Christian Miiller and
Jochen Gonsch. We introduce an origin-based differentiated, profit-maximizing pricing problem
for SMSs. The problem is to determine spatially and temporally differentiated minute prices,
taking network effects on the supply side as well as several practice relevant aspects into account.
Based on a deterministic network flow model, we formulate the problem as a mixed-integer linear
program and prove that it is NP-hard. For its solution, we propose a temporal decomposition ap-
proach based on approximate dynamic programming. The approach integrates a value function
approximation to incorporate future profits and to account for network effects.

Chapter 3 is based on the paper entitled "Practicable Solution Approaches for Differentiated
Pricing of Shared Mobility Systems" by Christian Miiller and considers an origin-based SMS,
where prices originate from a predefined discrete price set. For this, we develop two different
practicable solution approaches to determine spatially and temporally differentiated minute
prices that take supply-side network effects into account. The first solution approach does not
differentiate between rentals and demand and calculates continuous prices for every period and
location. The second solution approach determines the vehicle distributions for each period and
then calculates the optimal prices for each period backwards.

Chapter 4 is based on the paper entitled "Matching Functions for Free-Floating Shared
Mobility System Optimization to Capture Maximum Walking Distances" by Matthias Soppert,
Claudius Steinhardt, Christian Miiller and Jochen Goénsch. In this paper, we address the issue
of accurate optimization model formulation for free-floating SMSs. Thereby, we build on the
state-of-the-art concept of considering a spatial discretization of the operating area into zones.
We formally derive two novel analytical matching functions specifically suited for free-floating

system optimization, incorporating additional parameters besides supply and demand, such as



Authors Journal Status* Individual work of
Miiller, C.

Paper 1: Differentiated Pricing of Shared Mobility Systems

Considering Network Effects

First Author: Soppert, M. | Transportation published abstract, computational

Co-Authors: Steinhardt, C.; | Science study

Miiller C., Goénsch, J.
Paper 2: Practicable Solution Approaches for Differentiated Pricing of

Shared Mobility Systems

Miiller, C. Transportation under  re- | exclusive authorship
Research: Part B | view: first
round

Paper 3: Matching Functions for Free-Floating Shared Mobility System
Optimization to Capture Maximum Walking Distances

First Author Soppert, M. | European Journal | published abstract, computational

Co-Authors: Steinhardt, | of = Operational study
C.; Miller, C.; Gonsch, J.; | Research
Bhogale, P.M.

Paper 4: Customer-Centric Dynamic Pricing for
Free-Floating Vehicle Sharing Systems

First Author Miiller, C., | Transportation accepted conception of the re-
Co-Authors: Gonsch, J.; | Science search project and the
Soppert, M.; Steinhardt, C. entire study, litera-

ture review, solution
method, computational
study, case study
Paper 5: Dynamic Pricing for Shared Mobility Systems

Based on Idle Time Data

First Author Miiller, C., | OR Spectrum accepted conception of the re-
Co-Authors: Gonsch, J; search project and the
Soppert, M.; Steinhardt, C. entire study, litera-

ture review, solution
method, computational
study

Table 1.1: Overview of written papers (*at time of writing the thesis)

customers’ maximum walking distance and zone sizes. We investigate their properties, such as
their linearizability and integrability into existing optimization models.

Chapter 5 is based on the paper entitled "Customer-Centric Dynamic Pricing for Free-
Floating Vehicle Sharing Systems" by Christian Miiller, Jochen Goénsch, Matthias Soppert and
Claudius Steinhardt.! We develop a profit-maximizing dynamic pricing approach that is built
on adopting the concept of customer-centricity. Customer-centric dynamic pricing here means
that, whenever a customer opens the provider’s mobile application to rent a vehicle, the price
optimization incorporates the customer’s location as well as disaggregated choice behavior to
precisely capture the effect of price and walking distance to the available vehicles on the cus-

tomer’s probability for choosing a vehicle. Two other features characterize the approach. It is

'In this paper, we use the term "vehicle sharing system" synonymously with the term "SMS" due to the changes
during the review process.



origin-based, i.e., prices are differentiated by location and time of rental start, which reflects the
real-world situation where the rental destination is usually unknown. Further, the approach is
anticipative, using a stochastic dynamic program to foresee the effect of current decisions on fu-
ture vehicle locations, rentals, and profits. We propose an approximate dynamic programming-
based solution approach with non-parametric value function approximation. It allows direct
application in practice, because historical data can readily be used and main parameters can be
pre-computed so that the online pricing problem becomes tractable.

Chapter 6 is based on the paper entitled "Dynamic Pricing for Shared Mobility Systems
Based on Idle Time Data" by Christian Miiller, Jochen Gonsch, Matthias Soppert and Claudius
Steinhardt. We develop a novel dynamic pricing approach that determines prices by online
optimization and thereby anticipates future profits through the integration of idle time data.
With regard to application in practice, the approach is generic in the sense that different types
of readily available historical idle time data with different spatio-temporal granularity can be
seamlessly integrated.

Chapter 7 concludes this thesis.



1.1 Shared Mobility Systems

Shared Mobility Systems (SMSs)? are systems for spontaneous, short-term rentals of vehicles.
There are two types of SMSs: free-floating (see Figure 1.1a) and station-based SMSs (see Fig-
ure 1.1b). In free-floating SMSs, customers can pick-up and drop-off vehicles at any location
throughout the business area. In station-based SMSs, stations are distributed throughout the
business area, where customers can pick-up or drop-off vehicles. A distinction is also made be-
tween two-way (see Figure 1.1c) and one-way station-based SMSs (see Figure 1.1d). In two-way
SMSs, the customer must drop-off the vehicle at the station where she picked it up, whereas
in one-way SMSs, the customer can pick-up a vehicle at one station and drop it off at another

station.
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Figure 1.1: Different forms of SMSs

From an operations research perspective decision problems in SMSs belong to different plan-
ning levels (see Figure 1.2). It can be distinguished between operative and strategical /tactical
planning in SMSs. Whereas the decision problems of station location and dimensioning or fleet
size belong to the strategical/tactical problems, the decision problem of station inventory is
an operative planning problem. However, there are also dependencies between these different
decision problems. The decision about station locations and their size influences the decision
about fleet size. The fleet size, in turn, has an impact on the station inventory.

The station inventory decision problem is composed of two parts: operator-based and user-
based relocation.

The operator-based relocation is handled by the provider and requires resources such as staff
or further equipment (such as trucks). It can be performed statically or dynamically. Static,
on the one hand, means that the relocation is performed when the system is closed, usually at
night. Dynamic, on the other hand, means that the relocation is performed while the SMS is
running.

In user-based relocation, incentives are set so that customers participate in the relocation

process. It can also be divided into static and dynamic. Whereas in static user-based relocation,

2Please note that the term “vehicle sharing system" is used in this thesis as a synonym for SMS (Chapter 5).



incentives are set to remain constant over a longer period of time, e.g., several months, in

dynamic user-based relocation, incentives are set based on the short-term status of the SMS.
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Figure 1.2: Tllustration of different planning levels of decision problems in SMSs (Goénsch and Kruk,
2017)

All chapters deal with pricing, that has an impact on the station/zone inventory. Chapters
2 and 3 consider differentiated pricing that accounts for supply-side network effects for better
vehicle distributions throughout the day. In Chapter 4 we additionally examine the difference of
free-floating and station-based SMSs. Chapters 5 and 6 consider dynamic pricing that considers
future states and thus (expected) supply-side network effects for better vehicle distributions

throughout the day.



1.2 Applied Techniques

We formulate solution approaches for differentiated and dynamic pricing. For differentiated
pricing we use mixed integer linear programming to model the problem. Based on the linear
model, we develop different solution approaches. For the dynamic pricing, we formulate the
problem as a dynamic program which depends on the current state. Since the dynamic program
suffers from the curse of dimensionality, we develop different approximate dynamic programs.

The following sections include a simple example based on a consistent problem to support
the explanation of the different methods used.

Example: A provider of a free-floating car sharing system aims to determine the profit-

optimal, origin-based prices for all vehicles.

1.2.1 Linear Programming

Linear programming is one of the most studied and developed methods to deal with decision
problems. Linear programming techniques are used for many problems such as human resources
management, transport problems or scheduling flights. It is a powerful tool to get an optimal
solution for limited resources. In the following, we explain the different components and aspects
of linear programs (see Section 1.2.1.1) and the linearization of non-linear programs we use (see
Section 1.2.1.2).

1.2.1.1 Components and Aspects of Linear Programs

Every linear program consists of three components: decision variables, objective function and
constraints.

The decision variables are the components, that can be affected by the decision maker (Poler
et al., 2014, Chapter 1). Thus, they "are the quantities whose values are to be determined"
(Denardo, 2011, Chapter 1). They may take fractional values.

Example: The decision variables are the expectation values of rentals r; ;; from zone ¢ to
zone j at period t.

The objective function defines the goal of the decision maker and represents the relation
between the decision variables and the parameters. In a linear program, the objective function
must be linear (Poler et al., 2014, Chapter 1).

Example: If the provider optimizes the number of rentals, the objective function is linear
(maz 3, jez 1e7 Tigt) » but if the provider optimizes profit, it is non-linear (max 3=, ;e z o7 Ti it
(pi — ¢) ) because the decision variables for rentals r; ;; are multiplied by the decision variables
for prices p; .

The constraints indicate the limitation of the objective function due to the given environ-
mental conditions, such as limited capacity, limited time, flow conditions, etc. (Poler et al.,
2014, Chapter 1).

Example: Limiting the rentals Eje =T j¢ in zone ¢ and period t to the number of available
vehicles a;; in zone 7 and period t.

Integer linear programming is an extension of linear programming. The difference is that

some or all of the decision variables can no longer take fractional values (Poler et al., 2014,



Chapter 2). An integer linear program becomes a linear program if we relax the constraint that
the decision variables are integer (Denardo, 2011, Chapter 1).

Integer linear programming also considers binary variables, which can take two values (0 or
1) (Poler et al., 2014, Chapter 2).

Example: We consider a discrete price list of M possible prices. A binary decision variable
for a price y;"; for station ¢ and price point m at period ¢ is 1 if the price p™ is chosen and 0
otherwise.

We distinguish between feasible solutions and optimal solutions. A feasible solution is a
solution that satisfies each constraint and assigns an objective value to the linear program.
Thus, a linear program is feasible, if it has at least one feasible solution, otherwise it is infeasible
(Denardo, 2011, Chapter 1).

Example: For profit optimization one feasible solution is to set always the lowest price.

An optimal solution is the feasible solution with the largest (smallest) objective value of a
maximization (minimization) problem (Denardo, 2011, Chapter 1). A linear program cannot be
solved simply in most cases, but requires solution methods (for example simplex algorithm or
branch-and-bound).

We also distinguish between unbounded and bounded linear programs. A linear program is
unbounded, if it is feasible and there is no limit for the objective value and bounded otherwise
(Denardo, 2011, Chapter 1).

Example: We consider a rental maximization problem maz }_; jcz ;7 7ij¢ in a car sharing
system without any constraints. This problem is unbounded. In contrast, the same problem
with the capacity constraint 3 °;czrijt <a;x Vi€ Z,t €T (the rentals from a zone i in period

t are less than or equal to the available vehicles in zone i in period ¢.) is bounded.

1.2.1.2 Linearizing Non-linear Programs

In operations research there are a lot of problems that are formulated as a non-linear program.
A non-linear program has an objective and/or constraints that are described by non-linear
functions (Denardo, 2011, Chapter 1). Most linear programming problems can be solved in
much less computational time than the non-linear programming problems. Therefore, in most
cases, it is useful to reformulate non-linear programs as linear programs. There are several

techniques to linearize non-linear programs (Asghari et al., 2022):
1. Transforming the non-linear equations or functions into exact linear equivalents.

2. Linear approximation, which finds an equivalent for the non-linear functions with the

smallest deviation.

1.2.1.2.1 Transformation into exact linear equivalents The non-linear problem results
from multiplication of variables, maximum or minimum operators, absolute value functions, etc.
However, in this subsection, we consider only the linearization of a minimum operator. For other
transformations, we refer to Asghari et al. (2022).

The minimum operator is an explicit non-linear term. Assume there is a non-linear minimum

operator z; = ml}l(azz,yz) , where I = {1,...,n}. We convert this structure by adding a new
1€



continuous variable z;, a set of new binary variables a; and introduce the following constraints
(Asghari et al., 2022):

zi < x; Viel (1.1)

zi <y Viel (1.2)

i —Yi <M -a; Viel (1.3)
zi>xi— M -q; Viel (1.4)
zi>yi— M- (1—a) Viel (1.5)
a; € {0,1} Viel (1.6)

Constraints 1.1 and 1.2 ensure that z; is lower or equal than x; and y;. Constraints 1.3
enforce the binary variables a; to 1, if y; is greater than x;. The next two constraints ensure
that either z; = x; if a; = 0 (Constraints 1.4) or z; = y; if a; = 1 (Constraints 1.5). Constraints
1.6 define the variable y; as binary.

Example: Assume there is a minimum-operator r; ; = min(a;, djez d; j+) that defines that
the decision variables r;; (rentals) from zone ¢ at period ¢ are the minimum of reachable vehicles
a; ¢ (decision variables) in zone 4 at period ¢ and the sum of demand > ez dijt from zone i to

zone j at period t. The following Constraints 1.7 -1.13 linearize this minimum-operator:

Tit < Q; ¢t Vie Z,te T (17)
rig <Y digy VieZ,teT (1.8)
JEZ
Z dijt — it < M- qiy Vie Z,teT (1.9)
jez
aig = dijy < M(1— qiy) Vie ZteT (1.10)
JEZ
Tit > it + M- qiy Vi,je Z,teT (1.11)
Tit > Z dijt+ M- (1—qiz) VieZ,teT (1.12)
jez
g+ € {0,1} Vie Z,teT (1.13)

Constraints 1.7 and 1.8 limit the rentals of zone i at period ¢ to the available vehicles a;,
at zone 7 at period t or to the given demand }_;cz d; j: for zone i at period ¢. Constraints 1.9
and 1.10 determine the value of the binary variables g;;. ¢;¢ is 1, if Zje 7 d; j¢ is greater than
a;; and 0 if a;; is greater than ZjeZ d; ;. Constraints 1.11 and 1.12 define the upper bounds
for the rentals ;4. If ¢;+ = 1 (that means djez dije > a;t), then Constraints 1.11 define the

upper bounds, otherwise Constraints 1.12 define the upper bounds for the rentals.

1.2.1.2.2 Linear Approximation Approximations of non-linear functions with simple lin-
ear functions are one of the most common techniques for linearization. One of these approxi-
mations is a linear approximation to a known curve by dividing the curve into several parts and
use linear interpolation for these parts. For other approximation techniques, we refer to As-

ghari et al. (2022). To integrate a piece-wise linear approximation, we need additional variables



and constraints. Thus, a function is replaced by a sequence of linear divisions. By using this
technique, the previous non-linear program becomes linear and can be solved by common linear
program solution techniques.

Example: We consider a non-linear function f(a;) (see red dashed line in Figure 1.3) that
yields a certain profit as a function of the number of available vehicles a;; in zone 4 in period t.
This function can be approximated by piece-wise linear functions (see blue line in Figure 1.3).
The function is decomposed into K buckets (in Figure 1.3 K = 5) and for each bucket k, a
linear function is found that minimizes the deviation from the non-linear function. Thus, the
available vehicles are divided into K buckets with the bucket size of Aa¥ (number of vehicles
in bucket k, see Table 1.2). Each vehicle in a bucket & contributes with the common marginal
value per vehicle (17@’-‘3, see Table 1.2). In order to obtain the profit for five vehicles, the following
calculation must be done: 2-154+2-10+1-6 = 56

80 -
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W 4
£50 20 2 |10
£ 404
S 3 2
o 30

20 4 2

—@— piecewise linear function
101 = = non-linear function 5 2
01 2 3 456 7 8 910
number available vehicles

Figure 1.3: Non-linear and piece-wise Table 1.2: Values of different parts of the
linear function of profit in dependency piece-wise function in Figure 1.3

of the number of available vehicles

1.2.2 Dynamic Programming

Dynamic programming is useful for sequential decision problems. A sequential decision problem
is defined as "a problem in which a sequence of decisions must be made with each decision
affecting future decisions" (Howard, 1966).

In these problems, making a decision alternates with gathering information. This means
that decisions are made over time. In contrast to linear programming, the required information
is not deterministic, but stochastic. Thus, the state of the system is also stochastic. This means,
however, that with linear programming, all decisions are made at the beginning, whereas with
dynamic programming, the decisions are made successively depending on the state of the system.

Example: Differentiated pricing determines all prices for every period of the day before
the day begins. Dynamic pricing using (approximate) dynamic programming determines prices

based on the current system state (Powell, 2011, Chapter 5).
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1.2.2.1 Parts of Dynamic Programming

A dynamic program consists of five parts:
1. State variable: variables, we need to know.
2. Decision variables: variables, we control.
3. Exogenous information process: arriving information, representing randomness.
4. Transition function: describes how the state evolves.
5. Objective function: optimal profit or costs after a sequence of decisions.

We divide the entire problem into stages. In every stage t, we observe a state .S; and take
an action a;. Our transition function Sy = SM (S, at, W) describes in which state we evolve,
depending on the current state .S;, the action a; and the exogenous information W;. Thus, we
need a function V;y1(S¢41) that shows the value of the next stage until the end of the considered
period. With this function, we evaluate every possible action a; and choose the action a; with
the maximal expected contribution Cy(Sy, ar, W) at this stage ¢ plus the expected contribution
until the end of the considered period Vi41(Si+1). Thus, we search the action that solves the
following function (Powell, 2011, Chapter 3):

CL*(St) = arg ing)j E(Ct(St, ag, Wt) + %+1(St+1)) (114)
t
We explain each part of the dynamic program in a separate subsection.

1.2.2.1.1 State variable The goal of the state variable S; is to "completely specify the
instantaneous situation [...] "(Howard, 1966) for every stage ¢. Thus, it includes all information
we need to know (Powell, 2011, Chapter 5), and it contains (fully or partially) information
about the decisions made in the previous stages (Lew and Mauch, 2007, Chapter 1.1). The
state includes every information that is either in the decision function, the transition function or
the contribution function. However, if an information is in the state but in none of these three
functions, this information can be dropped (Powell, 2011, Chapter 5). Powell (2011, Chapter 5)
called this "minimally dimensioned function", which means that "our state variable is as compact
as possible". The state space S; contains all feasible states in stage ¢. It can be finite or infinite
(Powell, 2011, Chapter 5.4).

Example: The state of a free-floating car sharing system at the beginning of period ¢ consists
of six vectors Sy = (Z}, 47, 77, Tf, 5, 7). Each vector has the dimension C' x 1, where the i;-th
element in each vector describes a property of the i;-th vehicle of the fleet. The first three
vectors contain all information about the vehicles. The vectors &} and g} contain the x- and
y-coordinates of each vehicle. If the vehicle is idle, it contains the current coordinates and
otherwise it contains the coordinates where the vehicle is picked-up. The vector 7{ contains
the starting time of every vehicle. The entry of an idle vehicle is 0. The next three vectors
contain information about the customers, where also the 7;-th element in each vector describes a

property of the i;-th vehicle of the fleet. The vectors Z§ and ¢} contain the x- and y-coordinates

11



of the customers opening the mobile application, if they picked-up a vehicle. If a vehicle is
idle, the entry is 0. The vectors 7 describe the time point when the customers have requested
the rentals. This means for a driving vehicle, when the customer initially opened the mobile

application.

1.2.2.1.2 Action variable In every stage ¢, the decision maker has to choose an action
a; € A. This decision is the challenge of the dynamic programming. Thus, we need a decision
function a; = A7™(S;) that returns an action a; at the given state S; (Powell, 2011, Chapter 5.5).
The action space A is the set of all possible actions a; at the stage t and depends on the state
Sy (Lew and Mauch, 2007, Chapter 1.1).

Example: The car sharing system provider decides about the prices for the vehicles. Thus,

the action variable is the optimal price vector including prices for each vehicle.

1.2.2.1.3 Exogenous Information The exogenous information W, changes the state of the
system. The main challenge is to make decisions before all the information is available. The
exogenous information W; becomes available during interval ¢. It can be a single variable or a
collection of variables (Powell, 2011, Chapter 5.6).

Example: One exogenous information after the prices are set is, if and which vehicle is
picked-up: Wy (S, i, t).

1.2.2.1.4 Transition Function The transition function defines how the sy