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A genetic risk score of alleles 
related to MGUS interacts 
with socioeconomic position 
in a population‑based cohort
Lisa Baak1, Mirjam Frank1, Jan Dürig2, Ulrich Dührsen2, Per Hoffmann3, Markus M. Nöthen3, 
Nico Dragano4, Raimund Erbel1, Karl‑Heinz Jöckel1 & Börge Schmidt1*

Environmental, genetic, and social factors are suggested to jointly influence monoclonal gammopathy 
of undetermined significance (MGUS), a precursor of multiple myeloma. Aim of this study was to 
investigate interactions between MGUS‑related genetic variants and socioeconomic position (SEP) 
indicators education and income on MGUS in a population‑based study. Two different MGUS‑related 
genetic risk allele sum scores (GRS) were calculated based on recent genome‑wide meta‑analyses. 
Odds Ratios (OR) were estimated in 4329 participants including 238 MGUS cases to assess associations 
and multiplicative interaction. The relative excess risk due to interaction (RERI) was calculated to 
assess additive interaction. Both GRSs were associated with MGUS. A multiplicative interaction 
between one GRS and education was observed with genetic effects of OR 1.34 (95% CI 1.11–1.62) per 
risk allele in the highest and OR 1.06 (95% CI 0.86–1.31) in the lowest education group. A RERI of 0.10 
(95% CI 0.05–0.14) also indicated additive interaction. Further, additive GRS by income interaction 
(RERI 0.07; 95% CI 0.01–0.13) for the same GRS was also indicated. Results indicate interaction 
between MGUS‑related genetic risk and SEP. Non‑genetic MGUS risk factors more common in higher 
education groups may influence the expression of MGUS‑related genetic variants.

Monoclonal gammopathy of undetermined significance (MGUS) is an asymptomatic premalignant plasma-cell 
dyscrasia that is characterised by the presence of a monoclonal immunoglobulin (M-Protein). The prevalence of 
MGUS increases from age 50 onwards and its clinical relevance lies in the inherent risk of progression to hema-
tologic malignancies such as multiple myeloma or other lymphoproliferative disorders as well as amyloidosis or 
light-chain deposition disease at an annual rate of ~ 1%1,2.

Case reports of familial clustering of multiple myeloma and case–control as well as cohort studies have 
provided strong evidence for increased risk of MGUS or multiple myeloma in first-degree relatives of affected 
 patients3–8. In addition, several genome-wide association studies (GWASs) have identified multiple risk loci for 
MGUS and multiple myeloma. So far, common genetic variants at 23 loci have been associated with multiple 
myeloma  risk9–13, which have also been shown to be at least weakly associated with  MGUS14–16. However, genetic 
susceptibility of MGUS has only been studied to a limited extent, with two interrelated GWASs each identify-
ing 10 different risk loci with suggestive evidence of genome-wide  association15,17. Like other polygenetic risk 
factors for complex disorders, MGUS-related risk alleles only show small to moderate individual effects on the 
respective outcome. One explanation for this are possible gene-environment interactions.

Although preventable risk factors for MGUS are still largely unknown, inequalities in socioeconomic position 
(SEP) are discussed alongside other factors such as obesity, diabetes, smoking, diet, and other lifestyle factors 
as well as pesticide exposure and occupational  factors18–23. However, most studies on modifiable risk factors 
have shown inconclusive results. So far, only one population-based study have indicated a positive association 
between SEP and MGUS while considering other discussed risk factors potentially mediating this  effect23. As 
SEP can serve as a context defining variable that describes overall differences in risk-associated environments 
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and health behaviours, it is hypothesized that SEP may affect disease via its influence on the social distribution 
of specific risk factors, which in turn have an impact on gene expression (i.e., gene-environment interaction)24,25.

The aim of this study was (1) to replicate the cumulative effect of genetic risk allele sum scores (GRSs) 
predisposing to MGUS using an independent sample of MGUS cases and (2) to investigate possible interac-
tions between the GRSs and indicators of SEP (i.e., education and income) in a population based study cohort, 
where positive associations between indicators of SEP and MGUS have already been  shown23. We calculated 
two separate MGUS GRSs each comprising 10 different risk loci from previous GWASs published in  201717 and 
 201915. To explore whether any detected GRS by SEP interactions are mediated by underlying interactions with 
other suggested MGUS risk factors, risk factors that were available for analysis in the study population (i.e., 
obesity, diabetes, smoking, dietary factors such as low fish, vegetable, and fruit consumption) were included in 
the analysis. As MGUS is one of the most common premalignant disorders in the general population, gaining a 
better understanding of the underlying causes and their interaction is important for the identification of factors 
suitable for disease prevention.

Methods
Study population. The present study is based on data of the prospective population-based Heinz Nixdorf 
Recall Study. The design and rationale of the study has been described in detail  elsewhere26. Briefly, 4814 partici-
pants aged 45–75 years were recruited from 2000 to 2003 from three adjacent cities (Bochum, Essen, Mülheim/
Ruhr) in an urban region in the western part of Germany. The first follow-up examination took place after a 
median time of ~ 5.1 years between 2005 and 2008, the second follow-up took place ~ 10.3 years after baseline 
between 2010 and 2015. The baseline response proportion of invited random sample of the population was 
55.8%27. The study was approved by the ethics committee of the University of Duisburg-Essen and comprises 
extended quality management procedures including a certification according to DIN ISO 9001:2000. Written 
informed consent was obtained from all participants.

Monoclonal gammopathy of undetermined significance (MGUS). Serum samples were collected 
at baseline and prospectively at the 5-year and the 10-year follow-up examination at each visit and stored at 
− 80 °C. MGUS was assessed using standard serum electrophoresis combined with parallel screening immuno-
fixation electrophoresis (scIFE) using pentavalent antisera (Hydragel 12 IF, Penta-Kit, Sebia, Fulda, Germany). 
In samples showing a visible or suspected monoclonal band, confirmatory IFE was performed using antisera 
against γ, α, μ, κ, and λ immunoglobulin chains. Results were assessed by a trained physician and MGUS cases 
were defined according to the International Myeloma Working Group criteria (i.e., including information on the 
detectable monoclonal protein on SPE and/or IFE, monoclonal protein concentration, laboratory results, and 
disease history)28.

Free kappa (κ) and free lambda (λ) immunoglobulin light chains (FLC) were determined using a Dade 
Behring BNII automated nephelometer (Siemens, Germany) utilizing a commercially available kit (FREELITE, 
The Binding Site Ltd, Birmingham, UK). Published ranges for κ and λ FLC were used as reference (3.3–19.4 mg/L 
and 5.7–26.3 mg/L, respectively)29. A pathological κ/λ FLC ratio was defined as < 0.26 or > 1.65 for participants 
with an estimated glomerular filtration rate (eGFR) of > 30 mL/min and as < 0.37 or > 3.1 for participants with 
an eGFR of < 30 mL/min30.

Genetic data. Lymphocyte DNA was extracted from EDTA venous blood samples using the Chemagic 
Magnetic Separation Module I (Chemagen, Baesweiler, Germany) and genotyped using different Illumina 
microarrays according to the manufacturer’s protocols. Data from different Illumina genome-wide chips were 
imputed and then combined (Omni1-Quad n = 779, Omni1S n = 1348, HumanCoreExome n = 1747, Illumina 
OmniExpressv1.0 n = 457) resulting in a population of n = 4331 participants with an imputation quality of > 0.97 
for all selected SNPs. Prior to imputation, quality control was applied separately for each chip on subject level 
including sex-, ethnicity- and relatedness-checks, excluding subjects with missing genotype data > 5%. Further, 
SNPs with a minor allele frequency (MAF) < 1%, a missing genotype frequency > 5% or a deviation from Hardy–
Weinberg Equilibrium (HWE) (p <  10−5) were excluded. Imputation was carried out using IMPUTE v.2.3.131 
with reference data from 1000 Phase 3, release October 2014.

Two unweighted genetic risk allele sum scores for MGUS were constructed based on previous genome-wide 
association studies (GWAS) published in  201717  (GRSMGUS2017) and  201915  (GRSMGUS2019). Each GWAS have 
identified 10 loci associated with MGUS at a p value threshold of <  10–5. Of the  GRSMGUS2017 risk loci, one SNP 
(rs10744861) was not available for 3874 participants. Therefore, we used rs1816225 as a proxy marker for those 
participants, which was in linkage disequilibrium of  r2 = 0.86, based on European populations (CEU, TSI, FIN, 
GBR and IBS). Likewise, rs74998556 was used as a proxy marker with  r2 = 0.73 for one SNP (rs74998556) of the 
 GRSMGUS2019 score that was not available for 457 participants. The GRSs were then calculated by summing the 
total number of risk alleles for each individual across the selected SNPs.

Indicators of SEP. Information on education and income was assessed by standardized face-to-face inter-
views at baseline examination. Education was defined as total years of formal education by combining school 
and vocational training according to the International Standard Classification of Education (ISCED-97)32. 
Education was included in all SEP stratified analyses categorized into four groups with the lowest educational 
group of ≤ 10 years (equivalent to a basic school degree with no vocational training) and the highest educational 
group of ≥ 18 years of education. For all regression models including SEP indicators education was dichotomized 
into low education (< 14 years) vs. high education (≥ 14 years). Income was defined as the monthly household 
equivalent income calculated by dividing the total household net income by a weighting factor for each house-
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hold  member33. Income was included in all SEP stratified analyses as a categorized variable using sex-specific 
quartiles. Income was dichotomized using sex specific medians for all regression models including SEP indica-
tors. To take into account different mechanisms causing health inequalities, both SEP indicators were analysed 
 separately34,35.

Potential risk factors. Data on potential risk factors for MGUS were collected at study baseline (i.e., smok-
ing, obesity, diabetes, low dietary intake of fish, vegetables, and fruits). Information on smoking was dichot-
omised into one group comprising current and past smoking (smoking cigarettes during the past year or having 
a history of smoking before the past year), and the second group of never smoking. Obesity was defined accord-
ing to WHO criteria for individuals having a body mass index of 30 or more, utilizing standardized measure-
ments of height and weight (kg/m2). Diabetes mellitus was defined as either of the following criteria: nonfasting 
glucose levels of 200 mg/dL or greater, fasting blood glucose levels of greater than 125 mg/dL, a reported history 
of diabetes mellitus, or intake of glucose lowering drugs. Dietary intake was assessed by a validated food fre-
quency questionnaire (FFQ)36. Frequency of consumption was assessed using a five-point scale with the catego-
ries daily, 4–6 times/week, 1–3 times/week, 1–3 times/month, and hardly ever/never for each food item. Based 
on the FFQ, information for boiled vegetable, raw vegetable, and fruit consumption was dichotomized into low 
consumption (1–3 times/week or less) vs. high consumption (at least 4–6 times/week). Fish consumption was 
dichotomized into low consumption (1–3 times/month) vs. high consumption (at least 1–3 times/week)37.

Statistical analyses. For the main analyses, 4329 participants with non-missing information on MGUS 
and genetic variants were included (Figure S1). Additional missing information on education (n = 12) and 
income (n = 267), smoking status (n = 6), obesity (n = 21), and dietary factors (n = 65–71) led to the exclusion of 
these participants from the respective analyses. Participants with missing information on income or education 
did not differ in rates of MGUS or in the GRS distribution compared to the analysis population. All analyses 
included both, prevalent MGUS cases at baseline and incident MGUS cases at the 5- and 10-year follow-up 
examination (i.e., having MGUS at least at one of the three examination dates).

First, age- and sex-adjusted logistic regression models were fitted to calculate odds ratios (OR) and their 
corresponding 95% confidence intervals (95% CI) to detect associations of the two SEP indicators and the two 
GRSs with MGUS in four separate regression models. In addition, the age- and sex-adjusted effect of the two 
GRSs on MGUS was also calculated stratified by SEP groups.

Second, to assess GRSxSEP interactions on the multiplicative scale, the GRS and SEP main effects as well as 
GRSxSEP interaction terms were included separately for the SEP indicators education and income as dichoto-
mized variables in the regression models (base models). The regression coefficient of the interaction term in 
the logistic regression models calculated here reflect interaction on a multiplicative scale; however, it has been 
proposed that interaction described as departure from additivity of effects on disease events is better suited for 
indicating biological  interaction38. Hence, the relative excess risk due to interaction (RERI) and the correspond-
ing 95% CI was calculated to estimate interaction on the additive scale utilizing the regression coefficients of the 
logistic regression models including interaction terms.

Third, single reference joint effects of the GRS and SEP indicators were assessed by grouping GRS tertiles and 
SEP categories in all possible combinations into dummy variables that were then entered in regression models 
with the group of lowest GRS and lowest SEP as reference.

Finally, to investigate whether suspected GRSxSEP interactions were mediated by underlying interactions 
involving other potential MGUS risk factors, the base model was extended by GRS by risk factor and SEP by risk 
factor interaction terms and respective main effects in separate models for each risk factor. Single SNP analyses 
were performed accordingly assuming an additive genetic model. All analyses were performed using the statistical 
computing software R v3.5.339 and Plink v1.07 for single SNP analyses for  Windows40.

Results
Characteristics of the study population are presented in Table 1. The total number of MGUS cases was 238 (5.5%) 
with women having a lower risk of MGUS than men. Clinical characteristics of MGUS cases are presented 
in Table S1. Mean values and standard deviations of MGUS-GRSs were 5.3 ± 2.0  (GRSMGUS2017) and 9.0 ± 1.9 
 (GRSMGUS2019), respectively. Both GRSs showed slightly higher average numbers of risk alleles for participants 
diagnosed with MGUS compared to non-MGUS participants.

As expected, single SNP associations showed no genome-wide significance; however, magnitude and direc-
tion of effects were consistent to those reported in the original GWAS for 9/10 of the  GRSMGUS2017-SNPs and 
7/10 of the  GRSMGUS2019-SNPs (Tables S2–S3). Both GRSs were associated with MGUS risk  (GRSMGUS2017: OR, 
1.08; 95% CI, 1.01–1.15; and  GRSMGUS2019: OR, 1.12; 95% CI 1.04–1.20 per additional risk allele; Table 2). Both 
SEP indicators were also associated with MGUS in separate logistic regression models (Table 2). With the low 
education group (< 14 years of training) as reference, an OR of 1.43 (95% CI 1.07–1.90) was observed for the 
high education group (≥ 14 years of training). Similarly, the high income group (income > sex-specific median) 
showed an OR of 1.38 (95% CI 1.05–1.82) (Table 2).

Stratified analyses for the genetic effect on MGUS indicated stronger effects of the  GRSMGUS2017 in higher SEP 
groups (Fig. 1), with the strongest effect in the highest education group (OR 1.34; 95% CI 1.11–1.62 per additional 
risk allele). A similar, although less pronounced trend of  GRSMGUS2017 effects was observed for income quartiles 
with higher associations in Q2-Q4 compared to the lowest quartile. Associations of the  GRSMGUS2019 were also 
stronger in the highest education group compared to the lower education groups; however, a strong effect of 
 GRSMGUS2019 was also observed in the lowest education group. No clear trend was observed for the  GRSMGUS2019 
effect stratified by income (Fig. 1).
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In analyses modelling the interaction between the GRSs and SEP, indication for a  GRSMGUS2017 by education 
interaction was observed on the multiplicative scale showing an  ORinteraction of 1.17 (95% CI 1.03–1.33) per 
additional risk allele for high (≥ 14 years) compared to low (< 14 years) education (Table 3). The RERI reflecting 
additive  GRSMGUS2017 by education interaction effect on MGUS was 0.10 (95% CI 0.05–0.14) for high (≥ 14 years) 
vs. low (< 14 years) education (Table 3). Further, there was also indication for additive  GRSMGUS2017 by income 

Table 1.  Characteristics of the study population stratified by MGUS status. *Mean (± sd), †Number(%), 
‡Median (quartile range).

All MGUS no MGUS

n 4329 (100%) 238 (5.5%) 4091 (94.5%)

Age (years)* 59.6 (± 7.8) 61.9 (± 7.7) 59.5 (± 7.8)

Sex (female)† 2165 (50.0%) 94 (39.5%) 2071 (50.6%)

GRSMGUS2017* 5.3 (± 2.0) 5.6 (± 2.1) 5.3 (± 2.0)

GRSMGUS2019* 9.0 (± 1.9) 9.3 (± 2.0) 8.9 (± 1.9)

Education (years of training)†  [nmiss = 12]

 <  = 10 years 486 (11.3%) 20 (8.4%) 466 (11.4%)

11–13 years 2409 (55.8%) 119 (50.2%) 2290 (56.1%)

14–17 years 972 (22.5%) 66 (27.8%) 906 (22.2%)

 >  = 18 years 450 (10.4%) 32 (13.5%) 418 (10.2%)

Income (€/month)‡  [nmiss = 267] 1449 (1108–1875) 1619 (1150–2033) 1149 (1108–1875)

Current or past  smoking†  [nmiss = 6] 2517 (58.2%) 149 (62.6%) 2368 (60.0%)

Obesity† (BMI ≥ 30)  [nmiss = 21] 1177 (29.1%) 74 (31.2%) 1103 (27.1%)

Diabetes  mellitus† 588 (13.6%) 43 (18.1%) 545 (13.3%)

Dietary factors

Low fish  consumption†  [nmiss = 69] 2694 (63.2%) 148 (63.0%) 2546 (63.3%)

Low boiled vegetables  consumption†  [nmiss = 67] 2695 (63.2%) 157 (66.8%) 2538 (63.0%)

Low raw vegetables  consumption†  [nmiss = 71] 2937 (69.0%) 169 (72.2%) 2768 (68.8%)

Low fruit  consumption†  [nmiss = 65] 1316 (30.8%) 74 (31.5%) 1242 (30.8%)

Table 2.  Sex-and age adjusted odds ratios (OR) and 95% confidence intervals (95% CI) for the main effects 
on MGUS status in four separate logistic regression models including either the MGUS-associated genetic risk 
scores (GRS), dichotomized education or income (lower category as reference).

Model n  (ncase) OR (95%CI) P

GRSMGUS2017 4329 (238) 1.08 (1.01; 1.15) 0.02

GRSMGUS2019 4329 (238) 1.12 (1.04; 1.20) 1.44*10–3

Education (≥ 14 years) 4317 (237) 1.43 (1.07;1.90) 0.02

Income (high) 4062 (222) 1.38 (1.05; 1.82) 0.02

Figure 1.  Sex-and age-adjusted odds ratios (OR) and 95% confidence intervals (95% CI) for the effect of 
genetic risk scores  GRSMGUS2017 or  GRSMGUS2019 on MGUS status, stratified by education groups (years) and 
income quartiles in logistic regression models.
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interaction on MGUS (RERI: 0.07; 95% CI 0.01–0.13 for high compared to low income). No indication for 
interaction was observed for using  GRSMGUS2019 in the analyses (Table 3).

The analysis of single reference joint effects of  GRSMGUS2017 and SEP indicators on MGUS showed an increasing 
trend of effect size estimates with increasing years of education in groups with the highest  GRSMGUS2017 tertile 
(Table 4). Compared to the reference group with the lowest education and lowest  GRSMGUS2017 tertile, partici-
pants within the highest  GRSMGUS2017 tertile and highest education category showed on average a fivefold higher 
MGUS risk (OR 4.99; 95% CI 1.87–15.77). Single reference joint effect analyses of income and  GRSMGUS2017 also 
indicated the strongest MGUS risk for participants within the highest income quartile and highest  GRSMGUS2017 
tertile compared to the reference group (Table 4).

The addition of interaction terms with other potential MGUS-risk factors (i.e., smoking, obesity, diabetes, low 
dietary intake of fish, vegetables, and fruits) to the logistic regression model including the  GRSMGUS2017xEducation 
interaction term did not substantially change the effect size estimate of the  GRSMGUS2017xEducation interaction, 
neither on the multiplicative nor on the additive scale (Table 5).

In the single SNP interaction analysis using education as SEP indicator, 7 of the 10 SNPs included in the 
 GRSMGUS2017 were directionally consistent to the overall  GRSMGUS2017 by education interaction effect on the mul-
tiplicative scale (Table S4), while this was true for 8 of the 10 SNPs regarding interaction on the additive scale. 
SNP rs3118053 presented the strongest indication for interaction with education on both scales.

Discussion
The aim of this study was (1) the replication of cumulative genetic risk factors predisposing to MGUS and (2) to 
investigate possible interactions between genetic risk allele sum scores and indicators of SEP and their impact 
on MGUS in a population-based study cohort employing MGUS cases not included in previous GWAS. Asso-
ciations of two different sum scores of MGUS-related genetic variants with MGUS were observed. In addition, 
results gave indication for positive interaction between one MGUS-related GRS  (GRSMGUS2017) and SEP indica-
tor education on both the additive and multiplicative scale and for income on the additive scale, resulting in 
stronger associations between MGUS-related genetic risk and MGUS in higher SEP groups. Effect size estimates 
for the  GRSMGUS2017 by education interaction remained unchanged after including discussed MGUS risk fac-
tors (i.e., smoking, obesity, diabetes, low dietary intake of fish, vegetables, and fruits) into regression analysis, 
suggesting that these factors do not explain the observed  GRSMGUS2017 by education interaction. Further, results 
of stratified analyses support the suspected interaction with the strongest genetic effect on MGUS observed in 
the highest education group. In addition, joint effects of all possible combinations of  GRSMGUS2017 tertiles and 
education groups showed the strongest effect on MGUS for participants with highest genetic risk within the 
highest education group.

In the present study, the cumulative effect of MGUS-related genetic risk alleles reported in two different 
GWAS by Thomsen et al.15,17 was replicated utilising cumulative GRSs. The associations between SNPs effect 

Table 3.  Sex-and age-adjusted odds ratios (OR) and 95% confidence intervals (95% CI) for the effects on 
MGUS status in logistic regression models including main effects and interaction terms of the genetic effect 
 (GRSMGUS) and dichotomised education or income as indicators of socioeconomic position (SEP) with the 
lower SEP category as reference group (relative excess risk due to interaction, RERI).

MGUS ~ Education +  GRSMGUS2017 + age + sex + education x 
 GRSMGUS2017 (n = 4317; ncase = 237)

MGUS ~ Education +  GRSMGUS2019 + age + sex + education x 
 GRSMGUS2019 (n = 4317; ncase = 237)

MGUS ~ Income +  GRSMGUS2017 + age + sex + income x 
 GRSMGUS2017 (n = 4062; ncase = 222)

MGUS ~ Income +  GRSMGUS2019 + age + sex + income x 
 GRSMGUS2019 (n = 4062; ncase = 222)

OR
(95% CI) P

OR
(95% CI) P

OR
(95% CI) P

OR
(95% CI) P

Age 1.04
(1.02; 1.06) 2.49*10–06 1.04

(1.03; 1.06) 1.98*10–06 1.04
(1.02; 1.06) 4.22*10–06 1.04

(1.03; 1.06) 2.73*10–06

Sex (male) 1.39
(1.05; 1.86) 0.02 1.41

(1.07; 1.89) 0.02 1.60
(1.21; 2.12) 9.90*10–3 1.62

(1.23; 2.16) 6.88*10–4

GRSMGUS2017 1.01 (0.93; 1.10) 0.81 1.04
(0.94; 1.14) 0.44

GRSMGUS2019
1.14
(1.04; 1.24) 5*10–3 1.19

(1.07;1.32) 1.34*10–3

Education 
(≥ 14 years)

0.58
(0.26; 1.27) 0.17 1.95

(0.52; 7.23) 0.32

Education x 
 GRSMGUS2017

1.17 (1.03; 1.33) 0.02

Education x 
 GRSMGUS2019

0.97
(0.84; 1.11) 0.64

Income
(> median)

0.89
(0.40; 1.95) 0.76 3.62

(0.94; 14.09) 0.06

Income x 
 GRSMGUS2017

1.08
(0.95; 1.24) 0.24

Income x 
 GRSMGUS2019

0.90
(0.78; 1.04) 0.16

RERI
(95% CI) 0.10 (0.05; 0.14) 0.06 (− 0.03; 0.14) 0.07 (0.01; 0.13) 0.07 (− 0.14; 0.28)
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Table 4.  Sex-and age adjusted odds ratios (OR) and 95% confidence intervals (95% CI) for the single reference 
joint effects of the genetic effect  (GRSMGUS2017) and SEP indicators on MGUS status calculated separately for 
income and education with the group of being in the low genetic risk score tertile and the lowest SEP category 
as reference.

n  (ncase) OR 95%CI P

Education

Education ≤ 10 years

GRSMGUS2017 lower tertile 160 (5) Ref … …

GRSMGUS2017 middle tertile 188 (10) 1.77 0.62; 5.81 0.31

GRSMGUS2017 highest tertile 138 (5) 1.22 0.33; 4.47 0.76

Education 11–13 years

GRSMGUS2017 lower tertile 791 (45) 2.07 0.88; 6.07 0.13

GRSMGUS2017 middle tertile 870 (39) 1.62 0.68; 4.77 0.32

GRSMGUS2017 highest tertile 748 (35) 1.68 0.70; 4.97 0.29

Education 14–17 years

GRSMGUS2017 lower tertile 347 (20) 1.94 0.75; 6.01 0.20

GRSMGUS2017 middle tertile 326 (18) 1.88 0.72; 5.86 0.23

GRSMGUS2017 highest tertile 299 (28) 3.20 1.29; 9.71 0.02

Education ≥ 18 years

GRSMGUS2017 lower tertile 147 (7) 1.84 0.57; 6.45 0.31

GRSMGUS2017 middle tertile 160 (8) 1.93 0.62; 6.61 0.26

GRSMGUS2017 highest tertile 143 (17) 4.99 1.87; 15.77 2.59*10–3

Income

Income Q1

GRSMGUS2017 lower tertile 338 (15) Ref … …

GRSMGUS2017 middle tertile 360 (21) 1.34 0.71; 2.80 0.34

GRSMGUS2017 highest tertile 348 (8) 0.51 0.20;1.20 0.13

Income Q2

GRSMGUS2017 lower tertile 358 (18) 1.24 0.61; 2.53 0.56

GRSMGUS2017 middle tertile 359 (16) 1.07 0.52; 2.23 0.85

GRSMGUS2017 highest tertile 301 (22) 1.85 0.95; 3.72 0.07

Income Q3

GRSMGUS2017 lower tertile 357 (18) 1.29 0.64; 2.64 0.48

GRSMGUS2017 middle tertile 404 (19) 1.21 0.60; 2.46 0.60

GRSMGUS2017 highest tertile 325 (29) 1.29 1.25; 4.59 0.01

Income Q4

GRSMGUS2017 lower tertile 315 (21) 1.77 0.89; 3.57 0.10

GRSMGUS2017 middle tertile 318 (14) 1.14 0.54; 2.42 0.74

GRSMGUS2017 highest tertile 279 (21) 2.01 1.02; 2.07 0.05

Table 5.  Changes in the interaction effect of the genetic effect  (GRSMGUS2017) by dichotomised education (E) 
on MGUS (base model) in separate sex-and age-adjusted logistic regression models additionally including the 
main effects and respective interaction terms for each potential risk factor (odds ratios, OR; 95% confidence 
intervals, 95% CI; relative excess risk due to interaction, RERI).

MGUS risk factor n  (ncase) OR (95% CI) (GRSxE) P(GRSxE) RERI (95% CI)

Base model 4317 (237) 1.17 (1.03; 1.34) 0.02 0.10 (0.05; 0.14)

Current or past smoking 4317 (237) 1.19 (1.04; 1.36) 0.01 0.07 (− 0.01; 0.16)

Obesity 4298 (236) 1.17 (1.03;1.34) 0.02 0.09 (0.04; 0.15)

Diabetes mellitus 4317 (237) 1.18 (1.03; 1.34) 0.01 0.11 (0.05; 0.16)

Low fish consumption 4252 (234) 1.18 (1.03; 1.34) 0.02 0.10 (0.03;0.17)

Low boiled vegetables consumption 4254 (234) 1.17 (1.03; 1.34) 0.02 0.07 (− 0.01; 0.15)

Low raw vegetables consumption 4250 (233) 1.19 (1.04; 1.36) 0.01 0.14 (0.06;0.22)

Low fruit consumption 4256 (234) 1.17 (1.03; 1.34) 0.02 0.10 (0.04; 0.15)
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alleles and MGUS in both previous studies have been reported to reach suggestive evidence of genome-wide 
association (p <  10–5), probably due to small numbers of MGUS cases. The first GWAS from 2017 comprised 
243 MGUS cases and 1285 controls from Germany with a replication of three SNPs in an independent Czech 
cohort of 294 cases and 272 controls. The second GWAS from 2019 comprised in total 992 MGUS cases and 
2900 controls based on three different data sets including the previously mentioned German cohort, a Czech 
cohort of 288 cases and 600 controls and additionally a Swedish cohort including 461 cases and 1,025 controls. 
Since none of the 10 loci associated with MGUS risk identified in the first GWAS were replicated in the second 
(probably due to fluctuations of allele frequencies in smaller GWAS samples), we decided a priori to investigate 
associations of the reported SNP sets separately in our study population. Another recent GWAS including 754 
MGUS cases from Mayo Clinic and MD Anderson could only replicate one of the reported MGUS risk  loci16. 
This lack of replication may be explained by underlying population differences and differences in the distribu-
tion MGUS risk types between study populations. However, both MGUS-related genetic sum scores showed 
an association with MGUS in our study population with  GRSMGUS2019 showing a slightly stronger association 
with MGUS than the  GRSMGUS2017. In contrast to the present study, the underlying genetic variants of the GRSs 
calculated here were identified in GWAS in which MGUS cases were mainly not selected from MGUS screening 
studies, but from clinical MGUS collectives.

The main finding of this study is the indication for stronger associations between  GRSMGUS2017 and MGUS in 
groups of higher SEP. Results of stratified analyses revealed the strongest genetic effect of  GRSMGUS2017 on MGUS 
in the highest education group and joint effects of all possible combinations of  GRSMGUS2017 tertiles and education 
groups showed the strongest effect on MGUS for participants with highest genetic risk within the highest educa-
tion group. These findings together with the effect size estimates for the  GRSMGUS2017 by education interaction 
term and the RERI estimate gave strong indication for positive interaction that is more than the product and the 
sum of both independent variables, meaning that the presence of these underlying genetic variants is accompa-
nied with a higher risk for developing MGUS in higher educational groups. Results for interaction between SEP 
indicator income and  GRSMGUS2017 were less pronounced; however, we still observed an indication for additive 
interaction between  GRSMGUS2017 and income and stronger associations of  GRSMGUS2017 with MGUS in higher 
income groups. SEP stratified analyses of  GRSMGUS2019 on MGUS showed more heterogeneous results across the 
strata. However, it showed also stronger associations in the highest education group compared to all other groups.

As SEP usually has no direct effect on disease, but influences disease development indirectly via risk factors 
that are unequally distributed across SEP  groups23, results of the present analysis indicate that MGUS risk factors 
more prevalent in higher SEP groups may also impact the expression of MGUS-related genetic effects. However, 
since the inclusion of potential MGUS risk factors that were available for analysis did not explain the observed 
 GRSMGUS2017 by education interaction, other risk factors for MGUS not included in the analysis may be underlying 
the observed interaction effect. In previous studies, stronger genetic effects on health risks in higher SEP groups 
have also been explained by a lack of competing non-genetic risk factors in higher SEP  groups41. However, in the 
present study both, a higher overall MGUS risk as well as stronger MGUS-related genetic effects were observed 
in higher SEP groups. The stronger overall MGUS risk in higher SEP groups suggests some sort of MGUS risk 
factor that is more prevalent in higher SEP groups and that may also affect MGUS risk via its interaction with 
MGUS-related genetic factors.

Besides its population-based study design, strengths of this study include the assessment of both prevalent and 
incident MGUS cases over a 10-year follow-up period using a sensitive diagnostic screening approach, the inclu-
sion of two different SEP indicators as well as the inclusion of other potential MGUS risk factors into analyses. 
Moreover, interaction analyses were not merely based on testing GRSxSEP interaction terms and additional RERI 
calculation, but also on stratified analyses and analyses of joint effects. A limitation of the study is the lack of urine 
protein measurements as well as imaging and bone marrow biopsy results for giving more detailed information 
on MGUS diagnosis and its severity. Thus, a small fraction of MGUS cases and rare plasma cell dyscrasias might 
have been missed. Moreover, due to the sample size the statistical power for single SNP analyses was limited. 
Furthermore, complex interdependencies of the analysed risk factors cannot be ruled out for contributing to the 
observed GRSxSEP interaction. However, with regard to potential model overfitting the sample size of the study 
was not suitable for simultaneously exploring potential interactions between all factors included in the analysis.

In conclusion, results of the present study provide further evidence for associations of previously reported 
genetic variants for MGUS risk and indicate stronger associations between one MGUS-related GRS  (GRSMGUS2017) 
and MGUS in higher SEP groups in a population-based study sample. This suggests that the genetic risk related 
to MGUS may not act independently from potentially preventable risk factors. However, the present study was 
not able to identify potential MGUS risk factors underlying the observed GRS by SEP interaction, indicating 
the existence of unknown risk factors for MGUS not included in the analysis that are more common in people 
with higher SEP that seem to influence the expression of MGUS-associated genetic variants. However, further 
studies are needed to investigate MGUS risk factors including genetic variants and SEP effects on MGUS to 
reliably identify more distinct subgroups with higher exposure-specific disease risk and to gain further insights 
into the biology of MGUS.

Data availability
Due to data security reasons (i.e., data contain potentially participant identifying information), the Heinz Nix-
dorf Recall Study does not allow sharing data as a public use file. However, others can access the data used upon 
request, which is the same way the authors of the present paper obtained the data. Data requests can be addressed 
to: recall@uk-essen.de.
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