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Laserlabor zusammen bewältigt habe. Auch wenn ich Micha anfangs mit meinen etlichen

Fragen an den Rand der Verzweiflung getrieben habe, haben wir uns zu einem äußerst
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Abstract

Vibrational spectroscopy is a powerful tool for investigating the dynamics of molecular

systems in non-equilibrium states. In this thesis, we employ a time-resolved two-colour

IR sum-frequency pump-probe setup to delve into the transient energy redistribution

in calcium arachidate (CaAra) Langmuir-Blodgett monolayers. Our novel experimental

design involves a broadband IR pulse and a narrowband visible pulse generating a sum-

frequency signal for probing the sample, while an independent narrowband IR pulse serves

as the pump, populating specific vibrational levels.

We were led by several fundamental questions in our research:

1. How does the system react or evolve in time after it has been brought into a non-

equilibrium state?

2. How does the coupling to different degrees of freedom work?

3. How long does a ’hot’ adsorbate exist on the surface after an initial chemical reaction

step?

Our investigation encompasses a range of techniques, including simple sum-frequency

spectra in ssp and ppp polarisation, wavelength scans to explore resonant pumping and

delay scans to investigate the transient bleach of different vibrational modes. We focus

our attention on the CH3 symmetric (r+) and antisymmetric (r−) stretch vibrations, as

these are the most prominent modes in our sum-frequency spectra.

Our main findings include:

1. Strong resonant pumping observed at 2920 cm−1 (CH2 antisymmetric stretching,

d−) and 2962 cm−1 (r−).

2. The dynamics differ when pumping r− vs d−, with r− showing a very slow decay with

a time constant of a few nanoseconds and d− displaying multiple decay components,

including the very slow component but also a ≈ 100 ps component.

3. To explain these findings, we propose a three-temperature model accounting for

different heat baths for the CH2, the CH3 and the lower deformation modes. Cou-

pling parameters between these baths are estimated, shedding light on the energy

redistribution pathways.
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We further explore the system by altering sample conditions:

1. Reducing the surface pressure during deployment of the Langmuir-Blodgett films

results in less dense monolayers. This impacts the dynamics, particularly the r+

mode when pumping d− shows a smaller bleach for decreasing density. Surprisingly,

this is only observable in ssp polarisation.

2. Deuterating specific CH2 groups aims to disrupt anharmonic coupling between the

CH2 and CH3 modes. This reveals interesting behaviour in the deuterated samples,

such as a delayed lift-off point in the bleach when pumping d−.

Our findings provide valuable insights into the complex dynamics of CaAra Langmuir-

Blodgett films and highlight the importance of film density and isotopic substitutions in

controlling energy redistribution processes.

This research advances our understanding of vibrational dynamics in molecular mono-

layers and paves the way for future investigations into non-equilibrium states of condensed

matter.
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Zusammenfassung

Vibrationsspektroskopie ist ein leistungsfähiges Werkzeug zur Untersuchung der Dynamik

von molekularen Systemen im Nichtgleichgewichtszustand. In dieser Arbeit verwenden wir

einen zeitauflösenden Zweifarben Infrarot Summenfrequenz Pump-Probe Aufbau, um die

zeitliche Energieumverteilungen in Calciumarachidat (CaAra) Langmuir-Blodgett Mono-

lagen aufzulösen. Unser neuartiges experimentelles Design umfasst einen breitbandigen

Infrarot Puls und einen schmalbandigen sichtbaren Puls, die ein Summenfrequenzsignal

zur Untersuchung der Probe erzeugen, während ein unabhängiger schmalbandiger Infrarot

Puls als Pumppuls dient und bestimmte Schwingungsniveaus anregt.

Unsere Forschung wurde von mehreren grundlegenden Fragen geleitet:

1. Wie reagiert oder entwickelt sich das System im Laufe der Zeit, nachdem es in einen

Nichtgleichgewichtszustand versetzt wurde?

2. Wie funktioniert die Kopplung zu verschiedenen Freiheitsgraden?

3. Wie lange existiert ein ’heißes’ Adsorbat auf der Oberfläche nach einem ersten

chemischen Reaktionsschritt?

Unsere Untersuchung umfasst eine Reihe von Techniken, darunter die Analyse ein-

facher Summenfrequenzspektren in der ssp und ppp Polarisation, Wellenlängen-Scans zur

Erkundung von resonanten Pump-Anregungen und Verzögerungs-Scans zur Untersuchung

des transienten Bleicheffekts verschiedener Schwingungsmoden. Unser Hauptaugenmerk

liegt auf den symmetrischen (r+) und antisymmetrischen (r−) Streckschwingungen der

CH3-Gruppen, da diese die prominentesten Moden in unseren Summenfrequenzspektren

sind.

Unsere wichtigsten Ergebnisse umfassen:

1. Starke resonante Anregung bei 2920 cm−1 (CH2-antisymmetrische Streckung, d−)

und 2962 cm−1 (r−).

2. Die Dynamik unterscheidet sich, wenn r− im Vergleich zu d− angeregt wird. Bei r−

zeigt sich ein sehr langsamer Abbau mit einer Zeitkonstanten von einigen Nanosekun-

den, während bei d− mehrere Komponenten sichtbar werden, einschließlich der sehr

langsamen Komponente, aber auch einer ≈ 100 ps-Komponente.
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3. Zur Erklärung dieser Ergebnisse schlagen wir ein Drei-Temperatur-Modell vor, das

verschiedene Wärmebäder für die CH2-, die CH3- und die niedrigeren Deforma-

tionsmoden berücksichtigt. Kopplungsparameter zwischen diesen Bädern werden

abgeschätzt und offenbaren die Energieumverteilungswege.

Wir erforschen das System weiter, indem wir die Probenkonditionen verändern:

1. Die Reduzierung des Oberflächendrucks während der Herstellung der Langmuir-

Blodgett-Filme führt zu weniger dichten Monolagen. Dies wirkt sich auf die Dy-

namik aus, insbesondere die r+-Mode, wenn d− angeregt wird, zeigt eine gerin-

gere Bleiche bei abnehmender Dichte. Überraschenderweise ist dies nur in der ssp-

Polarisation zu beobachten.

2. Die Deuterierung bestimmter CH2-Gruppen zielt darauf ab, die anharmonische Kop-

plung zwischen den CH2- und CH3-Moden zu stören. Dies enthüllt interessantes

Verhalten in den deuterierten Proben, wie einen verzögerten Abhebepunkt in der

Bleiche, wenn d− angeregt wird.

Unsere Ergebnisse liefern wertvolle Einblicke in die komplexe Dynamik von CaAra

Langmuir-Blodgett-Filmen und betonen die Bedeutung von Film-Dichte und isotopischen

Substitutionen zur Kontrolle von Energieumverteilungsprozessen.

Diese Forschung trägt dazu bei, unser Verständnis der Schwingungsdynamik in moleku-

laren Monolagen zu vertiefen und ebnet den Weg für zukünftige Untersuchungen im Bere-

ich der Nichtgleichgewichtszustände von kondensierter Materie.

IV
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Chapter 1

Introduction

This chapter is intended to put the research that is presented in this thesis in a broader

context. The main topic of this thesis is the tracking of the vibrational energy flow through

adsorbate monolayers. For this reason, we decided to briefly talk about time scales and

the orders of magnitude that can be observed with our setup. This will be covered in

the first section. The second section gives more context to the scope of the project and

emphasises the motivation of our research.

1.1 Time Scales

What is time? This seemingly simple question has been the topic of many philosophical

theories and debates. Despite this fact, or maybe because of it, there is no universally

agreed-upon definition of time. Physicists often define time as a coordinate that allows

us to order events and measure the duration between them. Further, this coordinate is

influenced by the relative motion and gravitational field of the observers, according to the

theory of relativity.1 Ultimately, the most intuitive and simple definition might just be,

as Feynman puts it: ”it is how long we wait!”.2

Regardless of the actual definition of the concept, the more relevant question (for us

at least) is how to measure time. Galileo supposedly used his heartbeat to count equal

intervals of time for his first experiments on motion. Later, the use of sand running

through an hourglass and the swinging of a pendulum became common tools to measure

time. But the basic idea is always the same: measure a certain event by counting the

periods of another recurring event.

Needless to say, the tracking of faster events became problematic at some point because

of the practical limitations of the mechanical pendulum. This gave rise to electrical

pendulums, in which it is an electric current that now swings back and forth. With

these electronic oscillators, it suddenly became very easy to cut recurring events into

even smaller fractions. Today, there are resonant tunnelling diodes, called RTDs that

1
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Figure 1-1: Shown are different orders of magnitude of seconds and corresponding events.

The red box indicates the orders of magnitude that we will investigate in the scope of this

thesis.

are synthetically manufactured solid-state electronic oscillators, which reach fundamental

frequencies into the THz regime, corresponding to periods of 10−12 s.3

This is, however, not the limit of what has been measured up till today but the method

of measurement has changed. Instead of cutting a recurring event into smaller fractions,

we can also measure the distance that something travelled. If we then also know the

speed of the traveller, we can simply calculate the time it took to get from point A to

point B. By this method, the shortest event that was ever experimentally measured is

247 zeptoseconds (247 · 10−21 s) long, which is the time it takes for a photon to cross a

hydrogen molecule.4

Figure 1-1 shows a time scale in seconds that encompasses different orders of magni-

tude. It is quite fascinating that almost all of the known processes in our universe occur

on this scale. In this work, we will investigate core vibrations in CH3 molecules, which

are oscillating at a frequency of roughly 1014Hz. So a single of these oscillations has a

period of about 10 fs. Unfortunately, our experiment is not able to resolve such short

events because the periodicity of our ’hourglass’ is limited by the width of our IR probing

pulse, which has a width of about 300 fs. We can, therefore, only resolve dynamics that

occur on a longer timescale. Most of the interesting vibrational dynamics in adsorbate

systems occur on the picosecond scale, as we will see in the next subsection. Therefore,

in the scope of this thesis, we will investigate how vibrational energy flows through our

molecules on the timescale of pico- to nanoseconds, as indicated by the red box in figure

1-1.

1.2 Vibrational Energy Redistribution

The research presented in this thesis is a subproject in a collaborative research centre

(CRC 1242), which is funded by the Deutsche Forschungsgemeinschft (DFG). The title

of the CRC 1242 reads: ’Non-Equilibrium Dynamics of Condensed Matter in the Time

Domain’ and tackles fundamental questions about ultrafast processes in systems that are

pushed out of equilibrium.

2
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Our subproject is titled: ’Time-Resolved 2D-IR-Spectroscopy on Adsorbate Layers’

even though we decided to drop the ’two-dimensional’ attribute later. Usually, this term

is reserved for pump-probe setups that derive both lasers from the same source. In our

case, however, the pump and probe beams are completely independent and non-coherent,

which we now refer to as ’two-colour’ spectroscopy.

In this thesis, we will investigate how the vibrational energy in an excited mode ’travels’

through the molecular system. By doing this, we hope to reveal the fundamental intra-

but also intermolecular vibrational energy redistribution mechanism. The motivation for

this research can be expressed by these questions:

1. How does the system react or evolve in time after it has been brought into a non-

equilibrium state?

2. How does the coupling to different degrees of freedom work?

3. How long does a ’hot’ adsorbate exist on the surface after an initial chemical reaction

step?

By tackling these questions we hope to gain more insights into the energy redistribu-

tion mechanism. Specifically, knowledge about ’hot’ adsorbates that have enough energy

to overcome the activation barriers for subsequent reactions is crucial for chemical engi-

neering. The power to manipulate reactions and tailor a specific reaction outcome has

become an increasingly attractive subject.

Relaxation Mechanisms

In 1989, Harris et al. conducted pump-probe experiments on cadmium stearate ad-

sorbed on a silver film to investigate vibrational energy relaxation.5,6 They observed

a bi-exponential decay in the symmetric methyl stretching vibration, with a fast compo-

nent (2.5 ps) convoluted with the pump pulse and a second component (165 ps). They

achieved a 15% excited state population with pump pulse energies of 10 to 30µJ. At

specific wavenumbers (2940 cm−1 and 2965 cm−1), corresponding to the Fermi resonance

and the antisymmetric stretching vibration of the methyl group, they only achieved lower

excited state populations of 2% to 3%, with just a fast recovery time constant and no

slow component.

Further, in 1991, Harris et al. conducted similar pump-probe experiments on methylth-

iolate (S–CH3) on an Ag(111) surface, finding a bi-exponential decay in the CH3 sym-

metric stretching mode.7 The fast component had a lifetime of 2.5 to 3.0 ps, and the

slow component showed temperature-dependent behaviour, decreasing from 90 ps at 110

K to 55 ps at 380 K. They proposed that the antisymmetric CH3 stretching modes and

the overtone of the CH3 antisymmetric bending modes played a role in vibrational energy

relaxation.

3
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Coupling Between Vibrational Modes

Two-dimensional vibrational spectroscopy can be realized in both the frequency and time

domains. In the frequency domain, recent advancements, particularly by the Zanni group,

have driven investigations into the dynamics of molecular excitations.8 This involves

generating a sequence of three pulses from a single fs-laser pulse through pulse shaping.

Spatially overlapping all three pulses, they were able to detect the free induction decay

with a heterodyne setup. When combined with sum-frequency generation, this yields a

selectively surface-sensitive spectroscopy method.9 Its application to a surface system,

such as CO on polycrystalline Pt, has been demonstrated, offering access to studying

ultrafast processes at a level of detail previously unattainable for surface processes.10,11

Bonn et al. utilized frequency-domain 2D spectroscopy to investigate the coupling

between different vibrational modes in the OD stretch vibration region (2600±250 cm−1)

at water surfaces.12 Nibbering and Elsässer employed a two-colour experiment to excite

the H-O-H bending vibration (1650 cm−1) and subsequently probe this mode as well as

librations in water with a spectrally broad pulse.13 This model suggests that, after exciting

high-frequency internal vibrations, a transient population of overtones of low-frequency

bending and external vibrations is generated, based on the anharmonicity of vibrations.

However, this transient population has never been directly observed for surface systems.

Internal Vibrational Energy Redistribution

Internal Vibrational Energy Redistribution (IVR) has been extensively studied for isolated

molecules in the gas phase. One fundamental insight is that internal rotations are crucial

for dynamics. In adsorbate layers, these rotations are hindered by interactions with

neighbouring molecules. Thus, it is presumed that, in addition to substrate coupling,

these intermolecular interactions play a significant role in adsorbate dynamics compared

to the gas phase. Adsorbate layers are also distinct from molecular crystals, with one end

of the molecule firmly anchored and the other end loose, which must be considered in

dynamics. Dlott and colleagues demonstrated that in alkyl-SAMs, vibrational excitation

propagates along the methylene chain from the headgroup to the endgroup within a few

10 ps when the substrate is rapidly heated by laser excitation.14 The time constants scaled

with chain length, approximately 5 ps/nm, depending on the number of CH2 groups in

the chain.

Dipole-Dipole Coupling Effects

Since Ryberg’s work in the 1980s, it has been known that in adsorbate systems with strong

dipole-dipole-(Förster)-coupling, such as CO on Cu(100), one cannot consider individual,

separate oscillators during vibrational excitation.15 For example, in isotope mixtures, the

line positions shift significantly with changes in the mixing ratio, and the intensities do

4
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not faithfully represent the mixture ratio. There exists a classical theory by B. Persson

to explain this phenomenon. Line positions also shift during strong excitation, i.e., in

non-equilibrium situations, and this affects the dynamics of overtone excitations.16–18
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Chapter 2

Principles

The goal of the second chapter is the presentation and interpretation of the various phys-

ical principles upon which our experimental approach is based. Since the main tool for

probing our systems of interest is the use and manipulation of light, the first section aims

to provide a broad, fundamental understanding of this phenomenon. Building up on that

knowledge, the second section details the interaction of light with matter. This leads the

reader to the final section, which introduces simple and advanced experimental methods,

using light as a high-precision tool to probe molecular systems.

2.1 Theory of Light

This first section of the theory chapter is intended for a general audience because it

addresses historical aspects and tackles very fundamental questions about the physical

character of light. It is, therefore, not necessary to read this section in order to understand

the ideas of this thesis but should rather be seen as a treat for the curious mind.

The outline of this section is as follows: The first part briefly introduces the scientific

history up to the formulation of Fermat’s principle of least time, which ultimately led to

the first law about the behaviour of light. After that, the duality of wave and particle

characteristics is discussed and further investigated quantum-mechanically in the third

subsection. This leads to Maxwell’s equations and his great unification of electricity,

magnetism and light. Finally, we conclude the first section with the presentation of

Schrödinger’s equation, which is essential to fully describe any interaction of light with

matter.

2.1.1 Principle of Least Time

Light has been a subject of study since the first civilisations emerged. However, the first

known mathematical exposition of vision was given by Euclid in his Optica around 300

7
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B.C.E. Contradictory to the modern view, Euclid was convinced that the process of seeing

involved light rays that travel in straight lines from the eyes onto objects. Furthermore,

he deduce the relation between the incident θi and the reflected angle θf of a light ray

hitting a surface as19

θi = θf , (2.1)

with a lack of a deeper explanation for the cause of this phenomenon.

It is widely believed that Heron of Alexandria (alive between 100 B.C.E and 100 C.E.)

was the first to think of an optimum principle, which gave cause to the behaviour of light.

After studying Euclid’s Optica, Heron concluded that light always takes the shortest

distance, thus explaining the reflection off a mirror.20,21

This, however, did not explain the refraction of light in different media and it was not

until the 2nd century C.E. that Claudius Ptolemy tackled this problem. Ptolemy was

supposedly the first experimentalist, as he, based on his knowledge from Euclid’s Optica,

experimentally tried to find a law of refraction with light rays that traversed from air to

water. In his Optics, Ptolemy wrote about a certain proportionality between the incident

θi and the refracted angle θr, which approximates the real parabola remarkably well for

small angles, but he could not derive the full equation.22

Only many years later, around 984 C.E., it was the Persian Ibn Sahl who finally

succeeded in developing an equation mathematically equivalent to the modern refraction

law of Snellius:

sin(θi) = n sin(θr), (2.2)

with the proportionality factor n = nr

ni
depending on the media. Sahl’s findings were never

published because his manuscript was eventually disassembled and partly lost. However,

recent historical research suggests that Sahl was the original inventor of the law of refrac-

tion.23–25

The theory of optics gained a lot of attention again in the early 17th century, when

Thomas Harriot rediscovered the law of refraction in 1602, without publishing his re-

sults.25 Independently, Willebrodt Snellius discovered in 1621 the formula that was later

named after him, although he also never published his findings. It was René Descartes

that published the first law of refraction in 1637, without citing Harriot or Snellius. It

remains, however, a topic of controversy if Descartes knew about the discoveries that were

made before him or not.26 Finally a publication made by Isaac Vossius in 1662 proved

Snell’s priority over Descartes in discovering the law of refraction and ultimately led to

its naming.27

Following this enthusiasm of the 17th century, the development of science took another

step. Since the observed data were now predictable with laws the next question that

puzzled the human mind was the nature of this behaviour or as Feynman put it: ”can we

8
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A

B

B’

MC
θ θθ

Figure 2-1: Schematic of a light ray that is reflected at a mirror to illustrate Fermat’s

principle of least time.

find a way of thinking such that the law is evident”?2 In 1657, Pierre de Fermat, inspired

by Heron’s principle of least distance thought of a way to explain the refraction of light,

which could not be explained by Heron’s principle. He then enunciated the principle of

least time, stating that light always takes the path with the shortest travel time. This

principle worked extremely well in explaining most of nature’s behaviour. It did, however,

raise a great deal of controversy as it seemed to ascribe intent to light and nature in

checking for multiple paths and taking the fastest one.28 Although the controversy has

died down over the years and the theory was generally accepted, the behaviour of light is

still a puzzling phenomenon, as we will see in the next subsection.

Even though Fermat’s principle comes very close to explaining all of the different,

complex facets of light, there are a few exceptions where we need to refine the principle

a little to still be accurate. We will get to these exceptions later. First, let us see how

Fermat’s principle applies to mirrors and refracting media.

In figure 2-1 we see a mirror M and a light ray travelling from point A to point B. The

fastest path from A to B is evidently the path AB, but what if we arrange the experiment

in a way so that the light has to hit the mirror once? Then there is a simple geometrical

trick to quickly find the solution here as well. If we mirror point B to a fictive point B’

behind the mirror and look for the fastest path from A to B’ the answer is simply the

path AB’. But since B’ is symmetrical to B the paths CB’ and CB are the same and the

path the light takes is therefore ACB. Furthermore, we can directly see that the incident

angle θ is the same as the reflected angle, thus proving the law of reflection. This was

already deduced by Heron with his principle of least distance, which, however, failed to

explain the refraction in different media.

The law of refraction is not quite as easy to draw from qualitative arguments. It is,

however, still rather simple to derive quantitatively with Fermat’s principle as long as we

permit the assumption that light travels slower in dense media by a factor n. In figure

2-2 we see a light ray refracting at the boundary of two arbitrary media. To apply the

9
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Figure 2-2: Illustration of a light ray that is refracted at the boundary of two different

media to derive Snell’s law.

principle of least time to this problem we need to calculate the time t it takes to travel

from point A to point B as

t =
s1
v1

+
s2
v2

=
s1n1

c
+

s2n2

c

=
n1

√
a2 + x2

c
+

n2

√
b2 + (L− x)2

c
, (2.3)

with c, the speed of light and x as the variation parameter. Now we can optimize this

quantity and directly derive the law of refraction:

dt

dx
=

n1

c

x√
a2 + x2︸ ︷︷ ︸
sin(θi)

−n2

c

(L− x)√
b2 + (L− x)2︸ ︷︷ ︸

sin(θr)

!
= 0 (2.4)

⇒ sin(θi) =
n2

n1

sin(θr). (2.5)

Therefore this simple principle seemed to explain the behaviour of light very accurately

and one could deduce a lot of interesting phenomena from it. One curious example is the

sunset. Since light always takes the fastest path through the atmosphere of the earth and

the outer layers are a lot less dense, the actual path of the light looks something like in

figure 2-3. This is because the rays are trying to avoid the denser atmosphere for as long

as possible. Consequently, when we see the sun setting on the horizon our eyes cannot

distinguish where the bent light rays actually originated from and the sun is already below

the horizon by a few degrees when we just see it fading.29

Fermat’s principle in its original form, however, is not the complete ”truth” as it fails

to describe a certain aspect of the nature of light, which is illustrated in the following

experiment. In figure 2-4 we see a source producing electromagnetic radiation that is
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apparent sun

actual sun

atmosphere

earth

Figure 2-3: Oversimplified sketch of a light ray travelling through the outer atmosphere.

Inspired by lecture 26, volume I of the Feynman lectures.2

directed onto a variable slit. The opened slit is roughly in the same order of magnitude

as the wavelength of the radiation. Now, the detector at point D observes the light

that comes in a straight line from S and if we narrow down the slit then the light still

goes through and hits the detector, although somewhat less. The detector at point D’,

however, only detects very small amounts of radiation with a wide slit but increasingly

more when we make the slit more narrow.2 This experimental fact cannot be explained

by the original principle of least time, because if the detectors at points D and D’ are

arranged on a circular front, the paths from the middle of the slit to each detector should

correspond to the same time. Therefore there should be no distinction between the two

detectors and also the width of the slit should not influence the relative intensity detected

by each one.

To make Fermat’s principle true for all cases we need to add a locality argument to

the statement. The full ”truth”, as far as we know, is that light checks in a certain area

if similar paths correspond to the same travelling time. Or to formulate this phenomenon

more precisely: light always looks for a path that lies in the vicinity of other paths where

a slight deviation does not lead to a first-order change in the travelling time. This is

basically what we did already when deriving the law of refraction in 2.5, we set the

first-order derivative of the travelling time to zero.

So how can we explain the experiment in 2-4 with the addition of Fermat’s principle?

If we look at the wide slit and compare the travelling time of a path from the top part of

the slit to D with a path going from the bottom part to D it turns out they are close to

equal and, therefore, most of the radiation goes to D. If we look at detector D’, on the

other hand, the paths from the top and bottom of the slit correspond to very different

times, so here we get a lot less intensity. Now, by narrowing down the slit we prohibit

the light to check the outer paths and more radiation reaches D’ the narrower the slit

gets. Also, we learn from this experiment that the distance in which light compares the

different travelling times is approximately the wavelength of the light since we set the

width of the open slit close to that.

This is difficult to set up experimentally with visible light since we need a slit on the

11
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Figure 2-4: Illustration of an experiment proving that Fermat’s principle is not complete

in its original form. The source S produces electromagnetic radiation that is hitting a

variable slit. Depending on the width of the slit the detectors D and D’ observe different

amounts of radiation. Taken with permission from lecture 26, volume I of the Feynman

lectures.30

nano-scale, but there is a very intuitive way to do this experiment qualitatively. One can

look for a bright point source far away and look at it with one eye through a slit made

by two fingers. When squeezing the fingers together slowly one can observe elongated

lines coming from the point source. This is the same phenomenon that occurs in our

experiment in 2-4 and shows that light bends behind narrow slits.

2.1.2 Wave and Particle Approximation

The curious behaviour of light has triggered a lot of speculation in history about its char-

acter. The first experiments indicated that light is a wave while others hinted more toward

a particle phenomenon. The most important experiment for the latter was the photoelec-

tric effect, which was first discovered by Heinrich Hertz in 1887.31 With the prominent

wave picture at the time, the expectations of this experiment were the following: when

light hits a metal plate, the electromagnetic wave interacts with all the electrons in the

metal simultaneously and drives them to oscillate until they have enough energy to break

free of the surrounding potential. Therefore, physicists made the following predictions:

1. Increasing the amplitude of the light wave should increase the kinetic energy of the

emitted electrons because the amplitude is proportional to the energy of the wave.

2. Increasing the frequency of the light wave should increase the rate of electron emis-

sion because more wavefronts per time necessarily release more electrons per time.

On the contrary, the observation was entirely different and impossible to explain with

the wave picture. In figure 2-5 we can see the essence of the experiment. When red light,

12
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electron

Figure 2-5: Visible light of different frequencies hits a metal surface. The red light does

not release electrons and the green and blue light release the same amount of electrons,

but with different kinetic energies.

with a lower frequency, hits a metal surface, no electrons are emitted at all. But if we

increase the frequency and pass a certain threshold, let’s say green light, then we always

detect the same amount of released electrons. Only an increase in the amplitude of the

light wave resulted in a higher rate of electron emission.

This phenomenon was first completely explained by Albert Einstein in 1905 when

he, based on Planck’s theories, proposed that the energy of light is not continuously

distributed like a wave but instead localised in discreet energy quanta, later called photons.

This photon energy is given by the product of Planck’s constant and the frequency of the

electromagnetic radiation Ep = hf and one of these quanta can only ever release one

photoelectron, thereby verifying the particle character of light.32

The wave picture of light, on the other hand, was established a century before Einstein,

in 1803, when Thomas Young devised a setup that was later known as the original double-

slit experiment.33 In figure 2-6 is a sketch of Young’s experiment. Here we have a

source of radiation that is directed at a barrier with two slits and a screen behind the

barrier observes the projected radiation. Young did his experiment with sunlight and

demonstrated the resulting interference pattern, which is typical for overlapping waves.

To understand this pattern we need to understand how waves interfere with each other.

Let us define two arbitrary, oscillating functions with amplitudes Ai, frequencies ωi and

phases ϕi, representing the waves that are forming in the slits and make a superposition

S of the two

S = A1 cos(ω1t+ ϕ1) + A2 cos(ω2t+ ϕ2). (2.6)

In our particular case, we have a single source producing the radiation in the two slits,

so we can approximate the amplitudes and frequencies to be equal. Furthermore, if we

make use of a trigonometric identity we can see what the resulting wave is composed of,

13
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Figure 2-6: The double-slit experiment. A source S produces radiation that is directed

onto a barrier with two slits. Behind the barrier is a screen with an interference pattern.

directly: [
cos(A) + cos(B) = 2 cos

(
A+B

2

)
cos

(
A−B

2

)]
(2.7)

⇒ S = 2A cos

(
ϕ1 − ϕ2

2

)
︸ ︷︷ ︸

AS

cos

(
ωt+

ϕ1 + ϕ2

2

)
. (2.8)

This equation reveals some interesting characteristics of the resulting wave: it oscillates

with the same frequency as the original waves, has a phase shift that is the average of the

two initial phases and the superposed amplitude AS is only dependent on the difference

of the two initial phases ∆ϕ = ϕ1 − ϕ2, for a fixed amplitude.

In order to understand the pattern in figure 2-6 we first need to clarify what it is that we

see. The bright spots (illustrated as black lines) are bright because there is a lot of energy

per area per time and, naturally, there is much less energy in the darker areas in between.

That is what we call intensity. Now we need to figure out how energy is transmitted by

an electromagnetic wave to get a relationship between our wave in equation 2.8 and the

interference pattern in figure 2-6. Qualitatively speaking, when electromagnetic radiation

hits a surface, the force that every charge in the material experiences is proportional to

the field strength of the radiation if the field is sufficiently weak. So the displacements

and velocities are all proportional to the field and the kinetic energy that is developed in

the charges is proportional to the square of the field.

Following this qualitative analysis, we now know that the intensity of the interference

pattern is proportional to the square of the amplitude of our resulting wave AS, which,

in turn, is only dependent on the phase difference ∆ϕ. Looking back at equation 2.8 we
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can now deduce how the bright spot in our intensity correlates to a phase difference of

∆ϕ = 2πn, with an integer n ≥ 0 and, consequently, there are dark spots for ∆ϕ = 2πn+π.

Since the waves travel at the same velocity c, the only relevant factor to determine the

phase difference then becomes the distance by which two wavefronts are delayed and the

wavelength λ of the wave. If we take a look at figure 2-6 again we see a sketch of wavefronts

coming from slit A to P and from B to P and the delay between these wavefronts is given

by d sin(θ), with d being the spacing between the slits and θ representing the angle at

which the wavefronts are travelling to the screen.

The final step to derive the general formula is then to recall how waves interfere con-

structively when two crests are overlapping and how they cancel each other if a crest hits

a trough. So if the delay distance is exactly a wavelength or a multiple of the wavelength

we will observe constructive interference on the screen at that angle and dark spots in

between. That gives us the following general formula for the phase difference between

two interfering waves

∆ϕ = ϕ1 − ϕ2 = 2π
d sin(θ)

λ
. (2.9)

The demonstration and explanation of the double-slit experiment by Young in 1803

led the scientific world to believe that light is indeed a wave and it was generally accepted

for a century until Einstein published his analysis of the photoelectric effect. Hence, the

character of light remained a topic of controversy and to many it still is. The most accurate

statement one can make about light is probably that it is neither a particle nor wave but

behaves in a ”typical” quantum-mechanical manner. This, of course, is a very unintuitive

statement but it is the only one we can make because human intuition and logic apply to

our experience with large objects in a macroscopic world and things on the atomic scale

do not behave the same way. Therefore, we have to learn about this behaviour abstractly,

using different tools and methods but we cannot connect our findings to anything we have

a direct experience with, which makes it so hard to understand.

On the upside, however, all things on the atomic scale seem to behave the same way.

What we know about electrons, protons and the like also applies to photons and they

all behave like ”particle-waves” or in a quantum-mechanical fashion as we will see in the

next subsection.

2.1.3 Principles of Quantum Mechanics

To illustrate all of the peculiar behaviour of things on a small scale it is enough to present

one key experiment, which is taken from lecture 37, volume I of the Feynman lectures.2

This key experiment is the double-slit experiment, which we have already presented in

the last section, but this time we are using macroscopic bullets and think of them as

indestructible for reasons of simplicity. In figure 2-7 we can see the experimental setup:
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Figure 2-7: The double-slit experiment with bullets. A gun shoots bullets over a large

angular spread onto a wall with two holes and behind the wall is a detector to count the

bullets that arrive. On the right side are plots of the probability of arrival if hole 2 is

blocked (P1), hole 1 is blocked (P2) or both holes are open (P12).

an imperfect gun shoots bullets randomly over a large angular spread onto a wall with two

holes. Behind this wall is another wall with a moveable detector to count the bullets at

an arbitrary position x and since the bullets are indestructible the detector always counts

whole bullets, not fractions.

By measuring the lumps of bullets at every position in a certain time interval we can

find the probability of their arrival as a function of x. If hole 2 is blocked then we get the

probability P1 and vice versa, which is sketched in figure 2-7. When both holes are open

then the probability function is the sum of the single hole probabilities P12 = P1 + P2.

This is the classical expectation of a double-slit experiment with macroscopic bullets.

The interesting part occurs when the experiment is done with electrons, which was hard

to realise at the time due to experimental limitations. However, the effect has been shown

in many experiments of different scales and proportions in the past. In 1961, Jönsson

was able to show interference patterns with electrons but was unable to observe single-

electron diffraction.35 With the advancement in technology on the nano-scale, however,

the original double-slit experiment, with electrons instead of light, was finally realised by

Bach et al. in 2013 and is illustrated in figure 2-8. Apart from experimental difficulties,

the setup is the same with the only exception that our bullets are now on an atomic

scale. Surprisingly, this results in a probability function that is not the superposition of

the single hole probabilities P12 ̸= P1 + P2, but rather looks like the interference pattern

that we already saw in figure 2-6. Furthermore, if the rate at which the electrons come

out of the gun is greatly reduced so that there is only one electron detected at a time, the

probability distribution will also eventually look like the interference pattern again. This

suggests that the electrons not only interfere with each other but with themselves, which
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Figure 2-8: The double-slit experiment with electrons. (a) An electron gun shoots elec-

trons onto a wall with two holes. Behind the wall is a moveable mask to temporarily

block the holes and a detector to count the electrons that arrive. (b) The probability of

arrival P1 if hole 2 is closed and P2 if hole 1 is closed, respectively. (c) The probability of

arrival P12 when both holes are open. Taken from Bach et al. (2013).34

cannot be explained in any classical way.

There were a lot of creative ideas to find ways of explaining this peculiar behaviour and

the most prominent was putting a light source behind the holes so one could observe the

scattered light when an electron passes to determine what hole it went through. Although

the observation worked, it resulted in an even more confusing phenomenon. When the

light was scattered from the electrons and one could tell which hole the electron went

through, the probability distribution came out to be the one from the macroscopic bullets

in figure 2-7. Moreover, the intensity of the light was made very dim and the frequency of

the radiation was reduced so that the light could not disturb the electrons as much as to

destroy the interference pattern. But it all resulted in the same phenomenon: if one could

tell through which hole the electrons went then one would get the superposition of the

two single-hole probabilities and if the method of detection was too weak to accurately

tell which hole the electron took then one would get the interference pattern of waves as

a result.

This led Heisenberg to suggest in 1927 that there had to be a general limitation to the

experimental capabilities in order for the laws of nature to be consistent on the atomic

scale.36 He stated with his uncertainty principle that the x-component of the momentum

px of a particle cannot be measured precisely without taking the position x of the particle

into account, at any instant. Three years earlier, in 1924, de Broglie had studied the

interference of electrons and proposed that particles also exhibit wave characteristics

with a wavelength that is inversely proportional to their momentum λ = h
p
. Therefore,

Heisenberg assumed the uncertainty in position x1 is proportional to the wavelength and
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the uncertainty in the momentum p1 is given by de Broglie:37

x1 ∝ λ,

p1 ∝
h

λ

→ x1p1 ∝ h. (2.10)

Thus assuming that the product of uncertainties for position and momentum had to be

proportional to Planck’s constant h. This was the original statement of Heisenberg’s

uncertainty principle, although he did not give a precise definition for the uncertainties x1

and p1. Later in the same year 1927, Earle Kennard proved the general case and derived

the modern inequality38

σxσp ≥
ℏ
2
, (2.11)

with the standard deviations of position σx and momentum σp and the reduced Planck

constant ℏ = h
2π
. This general form reads: ”If one makes a measurement on any object

and determines the x-component of the momentum with a standard deviation of σp, one

cannot, at the same time, measure the x-position more accurately than σx ≥ ℏ
2σp

.” This

is a fundamental rule of nature to protect quantum mechanics and, since nobody has

found a way to measure anything more precisely than 2.11 yet, we assume the uncertainty

principle to be true. On a side note, this principle also solves one of the greatest mysteries

of the atomic theory in explaining why atoms are stable and electrons do not crush into

the nucleus, which is predicted by classical physics. When an electron comes close to the

centre, its position becomes increasingly sharper and according to the uncertainty princi-

ple, the average momentum rises in turn. For this reason, there is always an equilibrium

between localisation around the nucleus and the momentum of the electron.

Going back to the double-slit experiment, we will now derive the first principles of

quantum mechanics. According to the interference pattern of the electrons, it seems

reasonable to describe their behaviour with a wave function, similar to the ones we have

used in the previous subsection. On the other hand, the detector counts single hits and

not arbitrary values, so we have to assume there is also a probability of arrival for each

electron. Combining these ideas, we can think of the probability as an intensity, which,

recalling the last subsection again, is given by the square of the amplitude of the wave

function. So ultimately, the electrons are described by a wave function with a probability

amplitude ϕ and the square of this amplitude gives us the probability of arrival at the

screen P = ϕ2.

With that, we can finally summarise the main conclusions from the double-slit experi-

ment for a general case:2

1. The probability of an event in an ideal experiment is given by the square of ϕ, which
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is called the probability amplitude:

P = probability,

ϕ = probability amplitude,

P = ϕ2. (2.12)

2. When an event can occur in several alternative ways, the probability amplitude for

the event is the sum of the probability amplitudes for each way considered separately.

There is interference:

ϕ = ϕ1 + ϕ2 ,

P = (ϕ1 + ϕ2)
2 (2.13)

3. If an experiment is performed which is capable of determining whether one or an-

other alternative is taken, the probability of the event is the sum of the probabilities

for each alternative. The interference is lost:

P = P1 + P2 (2.14)

Therefore, at the core of quantum mechanics lies the inability to predict exactly what

is going to happen with a given set of initial conditions, since we can only predict the

odds. This is a very important difference between classical and quantum mechanics and

has given rise to a lot of speculation about the determinism of the world. No one knows

what kind of machinery could produce such curious laws and maybe this is as far as we

can go in trying to understand nature, but if we accept this fact then the whole theory of

quantum mechanics gives us a very effective tool to predict nature, nonetheless. In order

to appreciate this theory, however, we first need to define and interpret the previously

mentioned wave function, which will be done in subsection 2.1.5.

2.1.4 Maxwell’s Equations

To approach the topic of wave functions and wave equations, we are going to briefly cover

the history of scientific advances in electricity and magnetism that led to the present view

of calling light an electromagnetic wave.

At the beginning of the 19th century, there have been a lot of accomplishments in

the understanding of electromagnetics. Coulomb published the law to describe the force

between two stationary charged particles in 1785,39 around 1820 Ampére laid the foun-

dations for electromagnetism after Hans Ørsted discovered the magnetic effects of an

electric current flowing through a wire40 and electromagnetic induction was discovered

independently by Faraday and Henry in 1831 and 1832, respectively.41
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div E = 0

div E > 0

div E < 0

Figure 2-9: Possible visualisation of the resulting electric field E of a positive and negative

charge in 2 dimensions. Every point in space is associated with a vector that represents

the electric force on a unit charge at this point. The divergence of E vanishes everywhere,

except in the regions where there is charge present.

These experimental results and laws, however, were not written down and organised

properly, so they were widely seen as independent phenomena. It was not until the 1860s

that one of the greatest unifications in the history of physics took place when James

Maxwell combined the laws of electricity, magnetism and light in a series of papers. In

1873, he finally published the summary of his findings with more than 20 equations

governing the behaviour of electromagnetism.42 These equations were later synthesized

into the 4 known Maxwell’s equations using vector calculus by Oliver Heaviside:43

∇ · E =
ρ

ϵ0
(2.15)

∇ ·B = 0 (2.16)

∇× E = −∂B

∂t
(2.17)

∇×B = µ0j+ µ0ϵ0
∂E

∂t
(2.18)

The variables E and B represent the electric and the magnetic field, respectively and

the universal constants µ0 and ϵ0 are the permeability and the permittivity of free space.

Furthermore, we have the charge density ρ and the current density j and all variables that

are printed in bold denote three-dimensional vectors.

The first of Maxwell’s equations, which is also called Gauss’s law, states that the scalar

product of the differential operator nabla and the electric field is proportional to the charge

density, which reads as: ”divergence of E is equal to ρ
ϵ0
”. The divergence is, essentially,

a mathematical tool but in physics, we can find a deeper interpretation of this derivative

operator. To get a better understanding of the divergence we need to recall that the

electric field is a vector field, which is illustrated in figure 2-9. We can, for example,

compare the electric field with a gas flow in the sense that every point in space has a
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curl V = 0

electric �eld

curl V > 0
increasing magnetic �eld

curl V < 0(a) (b)

Figure 2-10: Illustration of the curl of a vector field. (a) The curl of a vector field V,

representing the flow of gas molecules, indicates if there is rotational movement in the

vicinity of any point in space. (b) An axially symmetric magnetic field that increases in

time produces a non-conservative, rotational electric field.

vector of magnitude and direction, representing the velocity of the gas molecules at that

point. Naturally, the electric field is no gas and the vectors represent the electric force on

a unit charge at a certain point in space. However, this concept illustrates how divergence

can be interpreted physically as it indicates how much is flowing in and out of a region.

As we can see in figure 2-9, the flux through any closed volume, which is the definition

of the divergence, is zero everywhere, except in the regions where the gas is contracting

and expanding. Therefore, the first of Maxwell’s equations predicts that the electric field

has sources and sinks, which are the electric charges in our universe.

Going to the second equation, we can already see the strong statement that the mag-

netic field B has no such sinks and sources, meaning there are no magnetic monopoles and

the magnetic field lines always form loops. Since nobody has ever found something that

resembles a magnetic analogue to an electric charge, Maxwell’s predictions are believed

to be true.

The third of Maxwell’s equations, which is also called Faraday’s law of induction states

that the vector product of nabla and E is equal to the change of B in time, which reads as:

”the curl of E is −∂B
∂t
”. To get an intuition about the curl of a vector field, it again helps

to think about the vector field as a representation of the flow of gas molecules. In figure

2-10 we can see how the curl at any point in space is an indicator of rotational movement

in the vicinity of that point. Therefore, Faraday’s law implies that a changing magnetic

field forces charges on a circular motion perpendicular to the field. This seemingly simple

law laid the foundation for electric motor technology and drastically changed the modern

way of life.

The fourth and last equation is based on Ampére’s law, which states that the flux

of the magnetic field is only dependent on a flowing electric current. In general, this is

true for static fields, but when Maxwell tried to combine the known laws for the dynamic
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case he found inconsistencies. He found that adding the second term on the right side of

equation 2.18 made the equations mutually consistent without changing the other laws.44

This addition ultimately led to the naming of Maxwell’s equations and predicts another

beautiful phenomenon. Not only do changing magnetic fields generate perpendicular

electric fields, but these electric fields themselves are producing new magnetic fields as

well so that there is a constant perpetual interplay that extends through space, completely

disconnected from the source. Surprisingly, this propagation does not rely on any medium,

but the fields rather maintain themselves in accordance to Maxwell’s equations, which was

difficult to accept by the scientific world at the time and eventually came to be known as

electromagnetic radiation.

The connection to light, however, was not immediately apparent and came to Maxwell

after further analysis of his newfound phenomenon. With the vector identity for an

arbitrary vector function of space V

∇× (∇×V) = ∇ · (∇ ·V)−∇2V, (2.19)

one can quickly deduce from Maxwell’s equations the equation that governs the propaga-

tion of the electric and magnetic field in a vacuum, respectively. In the case of the electric

field E we need to take the curl of the third equation

∇× (∇× E) = ∇×
(
−∂B

∂t

)
⇔ ∇ · (∇ · E)︸ ︷︷ ︸

=0

−∇2E = − ∂

∂t
(∇×B)︸ ︷︷ ︸

µ0ϵ0
∂E
∂t

⇔ ∇2E− µ0ϵ0
∂2

∂t2
E = 0. (2.20)

On the right side of the first equation, we made use of the interchangeability of time and

space derivatives in Euclidean space and, since we are looking for solutions in a vacuum

we set ρ and j to zero.

The resulting equation is a second-order linear partial differential equation for the

description of three-dimensional waves. Even though we have no charges and no currents

in a vacuum, the solution for the electric field is not necessarily zero, although that is one

possible solution. Other solutions for this kind of differential equation are the periodic sin

and cos functions, which we already used earlier to describe waves. The general approach

to solving periodic problems like this is to make use of Euler’s formula

eix = cos(x) + i sin(x), (2.21)

with the imaginary unit i. This equation is praised by Feynman as ”the most remarkable

formula in mathematics” because it ultimately describes a connection between algebra
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and geometry.2 In physics, we can exploit this by approaching oscillating problems with

complex exponential functions, which are a lot easier to handle than their geometric

counterparts sin and cos. It is, however, necessary to think carefully about what it is that

the complex number describes and how real and imaginary parts correlate to physical

observables because nothing that we can measure is complex in nature and Euler’s formula

is only a tool to make the mathematics easier.

Utilizing this formula, one possible solution for the three-dimensional wave equation

2.20 is

E(r, t) = E0e
i(kr−ωt), (2.22)

with an euclidean vector r = (x, y, z), an oscillating frequency ω and a wavevector k =

(kx, ky, kz). The magnitude of the wavevector |k| = k = 2π
λ
is the spacial angular frequency

of the wave, describing the number of completed oscillations per unit of space. The

orientation of the wavevector is in the direction of the phase velocity vp = ω
k
, which

means it is normal to the surfaces of constant phase, called wavefronts. Solutions like

2.22 are called plane waves because at any given time they look the same as one moves

along any plane k · r = constant.

When we solve the wave equation for a plane wave(
∇2 − µ0ϵ0

∂2

∂t2

)
E0e

i(kr−ωt) = 0(
−k2 + µ0ϵ0ω

2
)
E0e

i(kr−ωt) = 0, (2.23)

we get a very interesting result for the relation between the phase velocity and the product

of µ0ϵ0. For the non-trivial case of E0 ̸= 0 we have

−k2 + µ0ϵ0ω
2 = 0

⇒ vp =
ω

k
=

1
√
µ0ϵ0

= c0. (2.24)

The permeability of free space µ0 and the permittivity of free space ϵ0 are quanti-

ties that can be determined by various electromagnetic experiments. In the relation of

2.24, however, they equate to another important constant, which was already determined

from optical experiments during Maxwell’s time to be c0 = 299792458m
s
and is known

as the speed of light in vacuum. This means that the wavefronts of the electric and

magnetic fields travel through space with the speed of light and it strongly implies a con-

nection between electromagnetism and light, which drove Maxwell to propose that light

is not a different phenomenon but indeed the radiation of these fields. And, although his

proposition was not accepted immediately, Maxwell has been proven right in countless

experiments ever since.
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2.1.5 Schrödinger’s Equation

Coming back to quantum mechanics, we are wrapping up the introductory section with

the moment when the theory of quantum mechanics was essentially born.

In 1926, Erwin Schrödinger wrote down the first-ever quantum-mechanical equation

to explain the behaviour of atomic particles.45 This equation, however, is impossible to

derive from anything because there are no known fundamental laws governing quantum

mechanics and we only have the observations we acquired in section 2.1.3 from experi-

mentation. Schrödinger’s equation, therefore, is a construct that originated in his mind

as an attempt to describe the curious behaviour of interfering electrons and probability

amplitudes. Nonetheless, the reason it is still relevant almost a century later is the fact

that it manages to explain chemical binding, the energy level of an atom and in general

all atomic phenomena except those involving relativity, at least in theory. In reality, only

the simplest systems can be calculated analytically because the solutions to the equa-

tions quickly become too complicated. To approach more complex systems one needs to

find reasonable approximations and use numerical calculus, but even then Schrödinger’s

equation prevails.

Although we cannot deduce the Schrödinger equation from a higher governing law like

we did the wave equation from Maxwell’s equations in the last subsection, we will try to

give the reader some sort of motivation to at least make the idea reasonable. Schrödinger

knew that in order to describe interference phenomena and the fact that particles are no

longer localised but distributed probabilistically he would need some sort of wave as the

plane wave in equation 2.22. This wave function had to predict the probability of the

particle’s location in space and the change of this probability in time. Further, it may

seem reasonable to find a relation that connects ω and k in 2.22 to physical properties of

particles like kinetic and potential energy. Taking into account de Broglie’s wavelength

λ = h
p
and recalling the spatial angular frequency |k| = k = 2π

λ
= p

ℏ we can express the

energy of a particle as

Eparticle = Ekinetic + Epotential =
p2

2m
+ V (r) =

(ℏk)2

2m
+ V (r), (2.25)

with the mass m of the particle and an arbitrary potential V (r). Combining this with

Einstein’s formula for the photon energy

Ephoton = hf = ℏω (2.26)

we get the important relation

ℏω =
(ℏk)2

2m
+ V (r). (2.27)

We know that our probability function is some kind of wave, so we need a differential

equation, not unlike the wave equation in 2.20 to derive the evolution of our function in
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time. Therefore, the idea is to look for derivates that satisfy 2.27. Specifically, we have

the ansatz of a plane wave and take derivates to find ω and k:

Ψ(r, t) = Ψ0e
i(kr−ωt), (2.28)

∂Ψ(r, t)

∂t
= −iωΨ(r, t), (2.29)

∇2Ψ(r, t) = −k2Ψ(r, t). (2.30)

Incorporating this into our relation 2.27, we finally get

iℏ
∂

∂t
Ψ(r, t) =

(
− ℏ2

2m
∇2 + V (r)

)
︸ ︷︷ ︸

Ĥ

Ψ(r, t), (2.31)

with the energy operator Ĥ usually called the Hamiltonian or Hamilton operator.

This is Schrödinger’s famous equation and arguably marks the birth of the quantum-

mechanical description of matter. It describes the form of the probability wave that

governs the non-relativistic motion of atomic particles in an arbitrary potential V (r, t).

One can take relativistic effects into account and this was done by Dirac in 1928 after

Schrödinger published his findings, but we will not get into that in this thesis.46

With the discovery of an equation to precisely calculate the wave function of atomic

particles came the topic of debate of how to interpret the wave function physically.

Schrödinger himself struggled quite a bit with the complex nature of his equation and

even tried to avoid the explicit appearance of the imaginary unit i.47 When we introduced

the complex function of Euler’s formula in 2.21, we specifically mentioned carefully defin-

ing what parts of the function correlate to physical quantities since nothing that we can

measure can be complex. In the same sense, Schrödinger only attached physical meaning

to the real component of his wave function at first, but the fact that his equation itself

already features the imaginary unit might imply how the complex nature of the wave

function is more than a mathematical tool, but an intrinsic part of quantum mechanics.

The discussions of Niels Bohr and Werner Heisenberg mostly contributed to what is

now known as the Copenhagen interpretation of quantum mechanics.48 It is a collection

of views about the meaning of the wave function and quantum mechanics altogether and

the one that is most commonly taught. The physical interpretation of the wave function,

however, goes back to the statistical calculations of Max Born who interpreted the square

of the wave function, which is a real number, as the probability density of the particle’s

location at a given time.49 Thereby, Born circumvented the conflict of a complex wave

function because only its square is observable as a physical quantity and in time this view

was generally accepted.

This concludes the section about some of the fundamental ideas of light and the

quantum-mechanical theory and hopefully paved the way for the next topic of how light

interacts with matter.
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2.2 Interaction of Light and Matter

This section tackles the phenomena that arise when light interacts with matter. The

appreciation of these phenomena is essential for any kind of spectroscopic experimental

approach, as it builds the basis for most spectroscopic methods. At first, we introduce the

model of the harmonic oscillator, which is a linear approximation to many spectroscopic

problems and usually acts as a decent starting point. This knowledge, in turn, is then used

to explain the scattering of light at atoms and molecules, which leads us to the polarisation

of the electromagnetic wave and its effect on materials. In conclusion, we synthesise the

previously mentioned topics in an attempt to clarify the origin of the refractive index,

which we defined in the last section as the attenuation factor of the speed of light in

different media.

2.2.1 The Harmonic Oscillator

The oscillation of the electric field vector in an electromagnetic wave is the driving force

for most optical phenomena. This type of fluctuation, however, is not limited to light.

In fact, there are a plethora of phenomena in our world that can be described by an

oscillating motion, like the flow of electrons in an AC circuit, a mass on a spring, but also

the growth of bacteria in interaction with the food supply and the population of foxes and

rabbits as hunter and prey. All of these phenomena are described by linear differential

equations with constant coefficients:2

an
∂ny

∂tn
+ an−1

∂n−1y

∂tn−1
+ · · ·+ a1

∂1y

∂t1
+ a0y = f(t), (2.32)

where the integer n indicates the order of the differential equation.

In our case, we are interested in the motion of the electrons in an atom, which are

bound to a certain region around the nucleus by the interplay of the electric force and

the uncertainty principle, as described in subsection 2.1.3. An external force can push

the electrons out of their equilibrium position, which starts an oscillating motion as soon

as the external force disappears because the electrons are compelled to get back to their

initial equilibrium. As mentioned before, this motion is the same as that of a mass

attached to a spring and can be approximated by

Fs = m
∂2x

∂t2
= −kx. (2.33)

Here, Fs is the restoring force exerted by the spring, m is the mass that oscillates, x is

the displacement vector from the equilibrium position and k is not to be confused with

the wavevector, but represents a material constant of the spring or in our case the atom.

Equation 2.33 is called Hooke’s law and it approximates oscillatory motion with the idea
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of a linear restoring force, proportional to the displacement x.50 This approximation

is only valid for weak external forces such that the displacement of the mass is small in

comparison to the total possible deformation of the system but this simple approach often

gives a decent insight into the problem at hand.

We can solve this equation with a general oscillating function, utilising Euler’s formula

in 2.21 to obtain

x(t) = x0e
−iω0t (2.34)

⇒ mω2
0 = k, (2.35)

which gives us an important relation for the frequency of the oscillation ω0 =
√

k
m
.

Note that this frequency is in no way dependent on the force that was applied to start

the motion, it is only determined by the mass and k, which makes ω0 a characteristic

frequency of the system, called a resonance.

To approach a more realistic case, one can refine Hooke’s law to describe the response

of the system when the external force is constantly applied in the form of an oscillating

function F(t), like the electric field vector of radiation. Furthermore, we should introduce

some sort of damping parameter γ, which forces the oscillation to die out at some point,

to better represent a real situation. In general, such a problem is very difficult to solve

because of the complexity of this frictional term. There is, however, an often-used ap-

proximation of a frictional force that is proportional to the speed of the motion, which,

more often than not, gives good results for many problems. With that, we can formulate

our differential equation for a forced oscillator with damping as

m
∂2x

∂t2
+mγ

∂x

∂t
+mω2

0x = F(t). (2.36)

If we solve this equation for an oscillating external force F(t) = F0e
−iωt and expect the

system to respond with the same frequency x(t) = x0e
−iωt we can derive the amplitude

of the resulting oscillation as

(
−ω2 − iωγ + ω2

0

)
x0e

−iωt =
F0

m
e−iωt (2.37)

⇒ x0(ω) =
F0

m

1

ω2
0 − ω2 − iωγ

. (2.38)

Equation 2.38 describes the amplitude of an oscillating electron bound to a nucleus in

dependence on the driving frequency of an external fluctuating field. The energy that is

generated in this motion is proportional to the square of the (complex) amplitude

|x0(ω)|2 =
F 2
0

m2

1

((ω2
0 − ω2)2 + ω2γ2)

, (2.39)
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which also dictates the intensity of the fields that are re-radiated by this oscillating elec-

tron. Equation 2.39 is called the Cauchy distribution after Augustin Cauchy, which he

defined as a continuous probability distribution in the field of mathematics.51 In spec-

troscopy, it is usually called Lorentz distribution or the Lorentzian, named after Hendrik

Lorentz, who was arguably the first to find this function to be the solution of forced

oscillators that describe resonances and lineshapes.52

In many cases, however, equation 2.39 is not the function that is used to fit resonances

in a spectrum because there is a good approximation to simplify the equation. In general,

the damping term is very small γ ≪ ω0 and the most interesting part of the curve is near

the resonance ω ≈ ω0, which simplifies equation 2.38 to be

ω2
0 − ω2 = (ω0 + ω)(ω0 − ω) ≈ 2ω0(ω0 − ω)

and γω ≈ γω0 (2.40)

⇒ω2
0 − ω2 + iγω ≈ 2ω0(ω0 − ω + i

γ

2
) (2.41)

⇒x0(ω) ≈
F0

2mω0

1

ω0 − ω + iΓ
. (2.42)

The square of this equation is frequently used to model the Lorentzian shape of a singu-

lar resonance in a molecular spectrum. In reality, even a single atom exhibits multiple

resonance frequencies and we can include this quantum-mechanical effect by adding up

all the contributions from the different oscillations to get

x0(ω) ≈
F0

2mω0

∑
k

fk
ω0,k − ω + iΓk

. (2.43)

Here fk represents the relative strength of a resonant mode k, usually called the oscillator

strength and Γk =
γk
2
is the damping constant.53

In figure 2-11 we see a plot of the square of equation 2.42, which represents a common

intensity spectrum of a system that features a singular resonance. One should note that

the peak is not infinitely sharp at the resonance frequency but broadened. This full width

at half maximum (FWHM) is given by the damping term and equals 2Γ, which is called

the natural line width of the system. Various aspects can define the shape of resonant

lines in a spectrum, like the Doppler effect, collisions and proximity to other systems, just

to name a few. But even in an almost ideal experiment with a gaseous sample at low

temperature, the spectrum will still exhibit a natural homogeneous broadening. When

many oscillators in an ensemble experience different degrees of these broadening effects,

the resulting lineshape is a superposition of slightly displaced curves, resulting in a broader

line width than the natural one, which is called inhomogeneous broadening.54

The natural line width, however, cannot be reduced by any means because it repre-

sents an intrinsic characteristic of every atomic system and its roots lie in Heisenberg’s
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Figure 2-11: Plot of the squared amplitude |x0(ω)|2 of a forced oscillation vs the external

driving frequency ω.

uncertainty principle. Analogue to the relation of space and momentum uncertainties,

one can derive a similar inequality formalism for energy and time as

δtδE ≥ ℏ
2
. (2.44)

In this formalism, however, the uncertainties do not necessarily represent the standard

deviations but rather δt = τ is a measure of the lifetime of a resonant excitation and

δE = 2Γ is the energy spread, governing the natural width of the spectral line.55 In

other words, independent of the precision of the optical tool, atomic systems with a long

lifetime excitation exhibit sharper peaks than those with shorter ones.

To conclude, we now have a powerful tool to approximate how matter reacts to incident

radiation with the model of the harmonic oscillator, which is one of the key models for

most spectroscopic problems.

2.2.2 Light Scattering

When light hits charged particles they are forced to follow the oscillation of the electric

field vector, which can be described by the model of the harmonic oscillator that we

introduced in the last subsection. According to Maxwell’s equations, this accelerated

motion, in turn, generates new electromagnetic radiation, perpendicular to the oscillating

motion. This new wave is called scattered radiation and the process is what we call the

scattering of light.

When there are multiple oscillators, close together in a periodic pattern, the scattered

waves can interfere with each other and one can observe a diffraction pattern, as we have

seen in Young’s double-slit experiment in subsection 2.1.2. This interference is governed

by the phase difference of the various oscillators and in the case of two waves, it is given by

equation 2.8. If, however, we are looking at thin gas with random spacing between moving

molecules then the interference of two radiated waves oscillates very rapidly because the

phase relation between these moving generators also changes rapidly. In this case, the
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φ

θ

accelerated charge

Figure 2-12: Spherical geometry around a charge that is accelerated along one axis.

cosine in equation 2.8 averages to zero and the interference is seemingly lost, which makes

the intensity I only dependent on the amplitudes Ai of the two waves, such that

I ∝ A2
r = A2

1 + A2
2. (2.45)

In reality, however, the interference is not lost but rather hard to detect, because two

oscillators are only in-phase on a very short timescale. In that sense, a precise tool can

detect the oscillation of the cosine but most equipment like our eyes, for example, are too

insensitive and only observe the macroscopic time average of this rapid oscillation.

Important quantities for experimental setups are the amount and direction of the scat-

tered energy. The intensity is independent of the angle ϕ around the oscillating axis and

only depends on the angle θ, which is measured from the axis of motion. This spherical

geometry is illustrated in 2-12. The derivation of the intensity’s angular dependence is

done in detail in lecture 32, volume I of the Feynman lectures and it comes out to be

proportional to sin2(θ).2 Consequently, most of the energy is scattered perpendicular to

the motion and there is no radiation scattered along the axis. If one averages over all

spatial coordinates, the total power that is radiated by the oscillator is given by

P =
q2ω4x2

0

12πϵ0c3
, (2.46)

with the charge q, frequency ω and amplitude x0 of the oscillating particle that generates

the radiation. We already calculated the amplitude of such a particle with the approxi-

mation of the harmonic oscillator in equation 2.39 of the last subsection, which we can

now incorporate into equation 2.46. The force on the charged particle is F0 = qE0 and

for simplicity, we disregard the frictional term γ to get the total energy that is scattered

in all directions per second as

P =
q2ω4

12πϵ0c3
q2E2

0

m2(ω2 − ω2
0)

=

(
1

2
ϵ0cE

2
0

)
8π

3

(
q2

4πϵ0mc2

)2
ω4

(ω2 − ω2
0)

2
. (2.47)
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This equation is written out like that for a reason. First of all, the factor 1
2
ϵ0cE

2
0 is

precisely the energy per square meter per second that is carried by the incident wave,

which is driving the oscillation. Accordingly, the total energy scattered is proportional

to the energy per square meter that is going in. Secondly, the proportionality factor has

the dimension of an area and is known as the cross section for scattering.56 This area,

however, does not have a physical meaning in the sense that it can be attributed to the

oscillator but rather describes the size of the area that would be irradiated if the total

scattered radiation was directed onto it. This cross-section σs is a quantity often used to

describe the amount of scattered radiation and in our case is defined as

σs =
8π

3

(
q2

4πϵ0mc2

)2

︸ ︷︷ ︸
r20

ω4

(ω2 − ω2
0)

2
. (2.48)

The quantity r0 =
q2

4πϵ0mc2
= 2.82 ·10−15 m is called the classical electron radius because

it is the solution to a simplistic calculation of a sphere of charge that ignores quantum-

mechanical effects.57,58 Modern research suggests, however, that this quantity does not

represent the radius of the electron but can rather be seen as an interaction length on

atomic scales. According to experimental data, the actual radius is much smaller or even

non-existent such that the electron can be seen as a point particle with no spatial extent.59

From the cross-section in 2.48 we can deduce some interesting phenomena in terms of

the scattering of light in different situations. Firstly, if the light is scattered at weakly

bound or free particles (ω0 = 0), the scattering cross-section becomes a constant

σT =
8π

3

(
q2

4πϵ0mc2

)2

(2.49)

and in the case of free electrons is known as the Thomson scattering cross section.60 On

the other hand, if we go to the limit of very large natural frequencies, we can disregard

ω2 in the denominator, such that

σR ≈ σT
ω4

ω4
0

, (2.50)

which is an approximation for the Rayleigh scattering cross-section.61 One rather obvious

example of Rayleigh scattering is the interaction of visible light with particles in our

atmosphere. The electronic excitation energies of most gases, like nitrogen, for example,

are generally located in the ultraviolet region of the electromagnetic spectrum such that

the frequencies of visible light are small in comparison.62 This makes the cross-section in

2.50 a good approximation for the scattering of sunlight in air and from the powerful ω4

dependency it becomes apparent how the blue end of the visible spectrum with the highest

frequency is scattered most in our atmosphere, which is the reason why we perceive the

sky as blue.
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When we transition from gas to a more condensed phase like a cloud of water molecules,

we can observe yet another phenomenon. Up until now, we ignored the effects of inter-

ference because the oscillators were too far apart to keep their phase relations stable for

long. In a condensed phase, however, the oscillators can be quite close together in com-

parison to the wavelength of the light. In that case, the electric field acts on all oscillators

simultaneously and they necessarily scatter in-phase. The intensity of scattered light of

N oscillators close together, therefore, scales with a factor of N2 because the amplitudes

add up when they are in-phase and this effect is much stronger than that for randomly

spaced oscillators, which only goes with a factor of N . This is the reason why clouds are

so opaque since all the microscopic water droplets scatter such a tremendous amount of

sunlight.

There is, however, a limit to the increase in scattered intensity, which is closely tied

to the wavelength of the light. When the drops become bigger and their sizes are of the

same magnitude as the wavelength, the oscillators are not all in-phase anymore and the

intensity does not increase nearly as fast as before, which is described by the Mie theory

for scattering.63 Thus, there is an equilibrium of two processes that occur in the clouds.

On the one hand, according to Lord Rayleigh, the blue end of the visible spectrum is

scattered more intensely per oscillator and on the other hand, the Mie theory predicts

that the scattering in water drops is much stronger for the red end of the spectrum because

the drops can become bigger for longer wavelengths. On average then, all the wavelengths

of the visible spectrum are scattered almost equally, which gives the clouds their white

colour.

If the size of the scattering volume is increased even more the Mie theory usually

becomes too complex to calculate but converges quite well to the limit of geometrical

optics for sizes comparable to 10λ.63 Indeed when we arrange a macroscopic surface to

have evenly spaced oscillators that are not closer spaced than a wavelength, the scattered

waves will strongly interfere with each other. This results in multiple strong-intensity

reflections at different angles because the beams cancel out in every other direction, which

we already discussed in subsection 2.1.2. For normal incidence, the angles of strong

intensities are given by equation 2.9 as

∆ϕ = m2π

⇒mλ = d sin(θ), (2.51)

with the nonzero integer m representing the diffraction order of the reflection. These

surfaces are called diffraction gratings and are widely used in almost all spectroscopic

setups to spatially split up a laser pulse in its respective wavelength components.28 Note

that the spacing between oscillators has to be bigger than a wavelength to observe this

effect because the only solution for d < λ is the 0th diffraction order, which does not

contain any wavelength information.
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With that, we conclude our introduction of the fundamental scattering processes of

light and continue in the next subsection with the topic of the polarisation of the light

wave and its effect on irradiated materials.

2.2.3 Polarisation

When we talk about polarisation in the scope of this thesis we will contextually refer

to one of two things: the oscillatory motion of the tip of the electric field vector of a

light wave or the microscopic distortion of the electron distribution around the nucleus

in matter. In the first part of this subsection, we will tackle the former concept and the

latter is discussed in the second part, which is based on lecture 33, volume I and lectures

10-11, volume II of the Feynman lectures, respectively.2,64

As we mentioned before, the electric field component of electromagnetic radiation drives

most optical processes and until now we only considered an oscillating E vector in one

dimension. This oscillation can, however, have arbitrary x and y components in the

plane of incidence and the phase relation between these components can also vary, which

gives rise to very different possible motions of the vector. The most common case can be

observed in radiation emitted from a heat source like the sun, for example. When there are

a lot of atomic oscillators that are randomly oriented and they emit their radiation only

very briefly until the next oscillator takes over, the phase relation between two oscillating

fields can also only be constant on these short timescales. If the equipment we are using

to detect the radiation is too insensitive to pick up these brief moments of constant phase,

we will only observe an average that we call unpolarised light.

In a laser, we can circumvent this effect by forcing all the atoms to emit together in

time, such that their phases are kept constant on much longer timescales, which allows the

generation of different polarisations. Figure 2-13 (a) is an illustration of two oscillators

in the x and y dimension that are in-phase but have different amplitudes, which results

in linearly polarised light. If the oscillators are out of phase like in figure 2-13 (b)

the resulting electric field vector usually oscillates in an elliptic motion, which is called

elliptically polarised light. The special case of an elliptic motion for equal amplitudes and

a phase shift of π
2
is called circularly polarised light since the electric field vector follows

the motion of a circle.

Although the radiation of the sun is unpolarised, we can still detect polarised light

in nature. In fact, most of the sunlight that is scattered in the sky is linearly polarised,

which is an intrinsic trait of all scattered radiation in a direction perpendicular to the

incident beam. When the unpolarised sunlight acts on the atoms in the air, the electrons

follow the random oscillating motion of the E vector in the plane of incidence and radiate,

in turn, their waves in every direction perpendicular to their motion. If we now observe

this scattered light from the side, that is to say, perpendicular to the incident sunlight,

we will only see the projected motion of the electrons in one dimension, which radiates
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Figure 2-13: Illustration of different polarisations of the electric field vector E. In (a) the

oscillations are in-phase and only the amplitudes change, which results in linear polarisa-

tion and in (b) the amplitudes are kept constant but the phase relation changes, which

results in elliptical and circular polarisation. Adapted from lecture 33, volume I of the

Feynman lectures.2

linearly polarised light. In this sense, a possibility of creating linearly polarised light is

through the use of scattered radiation.

Another interesting effect of polarisation can be observed in anisotropic media because

they exhibit something that is called an optical axis. For every material that is made

out of long molecules, which are aligned parallel to each other, the refractive index is

usually different when light is polarised along the molecular axis than it is perpendicular

to it. Such materials are called birefringent because they have two indexes of refraction.

If linearly polarised light is oriented parallel or perpendicular to the optical axis it just

goes through the medium with different velocities but if the polarisation is oriented at

a 45◦ angle to the optical axis something interesting happens. The component of the

electric field vector that is parallel to the optical axis now travels at a different speed

through the medium than the component perpendicular to it, which results in a phase

shift between these two that increases with the distance travelled through the material.

In other words, if the thickness of the birefringent material is made just so that the

two components of the incident light have a phase difference of π when they leave the

material, the incident linearly polarised light is still linearly polarised but perpendicular

to the original axis. Such an object is called a half-wave plate and it rotates linearly

polarised light by 90◦. There is also a quarter-wave plate, which fixes the phase delay to
π
2
, resulting in a transformation of linearly polarised light to circularly polarised light and

vice versa.

Birefringent wave plates are a special example of how polarised light can interact with

matter. In general, any non-conducting material that experiences an external electric

field responds with a macroscopic polarisation, which is the average of a microscopic

polarisation of all the atoms inside the material. When an external electric field acts,

the electron cloud of every atom inside the dielectric is pushed in the opposite direction

than the nucleus, which results in a very small dipole. For sufficiently weak electric fields

this displacement is approximately proportional to the field strength and is given by the

34



2 Principles 2.2 Interaction of Light and Matter

amplitude of a harmonic oscillator that we already derived in equation 2.38. Following this

analysis, we can define a dipole moment per atom p as the charges q that are separated

multiplied by the separation distance x, such that

p = qx (2.52)

=
q2

m(ω2
0 − ω2 − iωγ)

E (2.53)

= αE. (2.54)

Here we substituted the electric force on a charged particle as F0 = qE and rearranged the

equation to match the usual depiction in most textbooks. The material-specific propor-

tionality constant α = q2

m(ω2
0−ω2−iωγ)

is called the atomic polarisability because it represents

a measure of how easy it is to induce a dipole moment in an atom with an electric field.

Strictly speaking, equation 2.54 is only valid if the variation in the electric field amplitude

does not change across the atomic diameter and can be seen as constant. This is, however,

usually the case in most spectroscopic setups with wavelengths in the visible spectrum

and is known as the electric dipole approximation.52

In general, the polarisability α is not the same in every direction because there might

be charges in the medium that are quite easy to move along one axis but stiffer for motion

perpendicular to this axis. Therefore, we need to express the polarisability as a second-

rank tensor with 9 coefficients αij to fully describe the polarisation of the medium. We

will, however, postpone this detail to a later section and assume for reasons of simplicity

that the polarisation is the same in every direction. In this case, the microscopic dipoles

are all oriented the same way, that is, parallel to the electric field vector and therefore

add up to constitute a macroscopic dipole moment per unit volume P of the material

P = Np (2.55)

= χϵ0E, (2.56)

withN atoms in a unit volume. This macroscopic polarisation is governed by the material-

specific constant

χ =
Nq2

ϵ0m(ω2
0 − ω2 − iωγ)

, (2.57)

which is known as the electric susceptibility of dielectrics. One can derive from Maxwell’s

equations how the susceptibility is directly related to the relative permittivity κ with

κ =
ϵ

ϵ0
= χ+ 1. (2.58)

The constants ϵ and ϵ0 are the material-specific absolute permittivity and the permittivity

of free space. From equation 2.58 follows that a material, which is easily polarised has
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Figure 2-14: Representation of an oxygen molecule (a) with no permanent dipole moment

and a water molecule (b) with a net permanent dipole moment p0. Taken with permission

from lecture 11, volume II of the Feynman lectures.66

a large susceptibility and in the limit of vacuum (ϵ = ϵ0) the susceptibility vanishes. In

general, the electric susceptibility is very important for spectroscopic setups because it

greatly influences the form and intensity of the optical response of a system, which is

something that we will cover in detail in later sections.

For conducting materials with very weakly bound electrons, the electric susceptibility

is usually zero because the electrons move through the material, according to the external

field, until the field inside of the material cancels out. That is, however, only true for

static fields. If we apply a time-varying oscillating electric field to a conductor or any

material with a huge electron density, for that matter, we can induce rapid oscillations

of this density known as plasma oscillations or Langmuir waves after Irving Langmuir.

This phenomenon, however, will not be covered in this thesis and the reader is referred

to the book of José Bittencourt instead.65

Coming back to dielectrics, there are two more important aspects we need to cover on

the topic of polarisation. The first one is that molecular samples can have an inherent

dipole moment due to their electron distribution. If the centres of positive and negative

charges in the molecule do not coincide, there is a permanent net dipole moment even

without an external electric field. These molecules are called polar, while those without

a permanent dipole are called nonpolar. Figure 2-14 is a representation of a nonpolar

oxygen molecule and a polar water molecule to illustrate this phenomenon.

When dealing with polar molecules one has to carefully think about how the perma-

nent dipole moment affects the polarisation of the system. In gases, for example, polar

molecules tend to align in the direction of the applied field, which increases the electric

susceptibility. This alignment, however, is closely tied to the temperature of the system,

as there are more collisions at higher temperatures, resulting in a 1
T
dependence of the

susceptibility that is known as Curie’s law. For denser materials, there is no alignment

due to the external field because the molecules are usually stuck in place. This, on the

other hand, leads to interesting possibilities like determining the orientation of molecules

at a surface, as the susceptibility becomes greater the more the polarisation of the incident

light and the permanent dipole of the molecules are aligned.
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The second aspect we want to cover is mostly relevant in condensed phases, where the

single atoms can be close together. Until now, we only considered external radiation to

be responsible for the field that is felt by the electrons. When the oscillators are close

together, however, there can be a considerable contribution from the fields of neighbouring

atoms that influences the local field, depending on the strength of the polarisation. For

isotropic material with small spacing between atoms in comparison to the wavelength of

the light, one can approximate this contribution to be

Elocal = Eexternal +
P

3ϵ0
, (2.59)

which is derived in detail in lecture 11, volume II of the Feynman lectures.64 This con-

tribution, however, is usually small and omitted in most theoretical works in favour of a

more accessible explanation of the underlying principle.67

This concludes the introduction of the concept of polarisation of light and matter and

with this knowledge, we now have the tools to dive even deeper into the principles of

spectroscopy to understand how the refractive index of materials comes about and what

it entails.

2.2.4 Origin of the Refractive Index

In the earlier sections, we defined the refractive index of matter as the factor by which

the speed of light is reduced when travelling through a medium. We did, however, not

elaborate on this phenomenon until now because there are certain topics that we preferred

to introduce beforehand. This subsection now aims to give a deeper understanding of the

origin of the refractive index through the knowledge we accumulated so far.

In general, the total electric field at an arbitrary point P in space can be calculated by

the sum of the fields from all the charges in the universe. And these fields are, in turn,

generated by the accelerated motion of these charges, retarded by the speed of light c.

Retarded because they first need to travel to P to affect the field at this point. Naturally,

this is also true inside of materials, which begs the question of why light appears to travel

at reduced speed through a medium when all of the charges inside of the material radiate

their waves at the speed c.

In section 2.2.2 we learned about the scattering of light such that the atoms in an

irradiated material become little oscillating dipoles that produce their own waves. The

superposition of these new waves then is the scattered radiation. Consequently, when we

look at the process of refraction, we observe a superposition of the original source wave

and the scattered waves inside of the material. This superposition constitutes a new wave

with a different phase velocity than c, namely vp = c
n
, which is, qualitatively speaking,

the origin of the refractive index.

The bending of light at the interface of different refractive media is just a consequence

of this new phase velocity, which is illustrated in figure 2-15 as the refraction of wave
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Figure 2-15: Illustration of a wave that is refracted at a glass surface because of the

different wavelengths in the two media. Taken with permission from lecture 31, volume I

of the Feynman lectures.30

crests at the interface of vacuum and glass. When the incident wave fronts interact with

the atoms in the material, the electrons are compelled to start oscillating with the same

frequency as the incoming wave. The reduced phase speed inside the glass, however,

results in a smaller spacing between the crests of the wave λ = 2πvp
ω

= 2πc
nω

= λ0

n
. The

consequence of this smaller wavelength is a change in the direction of the wave to make

the crests geometrically ”fit” at the interface, which is the reason for the refraction angle.

In fact, one can directly get the relation λ0

sin(θ0)
= λ

sin(θ)
or sin(θ0)

sin(θ)
= n from the geometry in

figure 2-15, which is Snell’s law for refraction that we already derived in equation 2.2.

In the next part, we will give a brief derivation of the refractive index of dense mate-

rials, which is going to cover the most important aspects that motivated our qualitative

approach. For the full story, the reader is referred to lecture 32, volume II of the Feynman

lectures on which this subsection is based.

To understand how waves travel through a dielectric material, we need to solveMaxwell’s

equations for this kind of material. As we learned in the last subsection, the incident light

induces small oscillating dipoles that constitute a macroscopic polarisation per unit vol-

ume P of the material. A spatial change in this polarisation is equivalent to a charge

density and in particular one can show that the charge density due to polarisation of the

material ρpol is given as

ρpol = −∇ ·P. (2.60)

For time-varying fields, such as light, the induced polarisation also changes quickly in

time, which results in a polarisation current jpol that is defined as

jpol =
∂P

∂t
. (2.61)
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With the assumption that there are no charges other than those bound in atoms and

these definitions for ρ = ρpol and j = jpol, we can now formulate Maxwell’s equations for

a dielectric, according to 2.15-2.18:

∇ · E =
−∇ ·P

ϵ0
(2.62)

∇ ·B = 0 (2.63)

∇× E = −∂B

∂t
(2.64)

∇×B = µ0
∂P

∂t
+ µ0ϵ0

∂E

∂t
(2.65)

We now apply the trick of taking the curl of equation 2.64 that we already used in

section 2.1.4 to calculate the behaviour in a vacuum. This yields

∇(∇ · E)−∇2E = − ∂

∂t
(∇×B) (2.66)

⇒∇2E− 1

c2
∂2E

∂t2
= − 1

ϵ0
∇(∇ ·P) + µ0

∂2P

∂t2
. (2.67)

The left side of this equation is already familiar to us from section 2.1.4 as it represents

a wave equation for the electric field vector E. In a vacuum, this wave equation equals

zero but in a dielectric, the field depends on two terms that involve the polarisation P.

To keep this example simple, we make two more assumptions. First of all, we restrict

our approach to isotropic media, which results in P and E having the same direction.

Secondly, our waves travel in the z-direction and are linearly polarised in the x-dimension.

Therefore, we can represent E as Ex = E0e
i(ωt−kz) and consequently the polarisation vector

P only has an x-component as well. Furthermore, there is no spatial change of Px in the

x-dimension and the time evolution is given by the driving field, in the case of a linear

dielectric, such that Px ∝ eiωt. This allows us to simplify equation 2.67 accordingly:

∇ ·P = 0, (2.68)

∂2Px

∂t2
= −ω2Px (2.69)

⇒ −k2Ex +
ω2

c2
Ex = −µ0ω

2Px, (2.70)

which is now a one-dimensional wave equation that couples Ex and Px. We already derived

this connection in the last subsection in equation 2.56 and, including the local field effects
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that are described in equation 2.59, we can express the polarisation as

Px = χϵ0Elocal (2.71)

= χϵ0

(
Ex +

Px

3ϵ0

)
(2.72)

=
χ

1− χ
3

ϵ0Ex. (2.73)

Incorporating this into equation 2.70 lets us eliminate Ex and yields the important relation

k2 − ω2

c2
=

χ

1− χ
3

ω2

c2
(2.74)

⇒ k2c2

ω2
= 1 +

χ

1− χ
3

. (2.75)

Finally, we can include our definition of the refractive index as the reduced phase velocity

inside the material vp =
ω
k
= c

n
to get

n2 = 1 +
χ

1− χ
3

, (2.76)

which is usually rewritten as

3
n2 − 1

n2 + 2
= χ (2.77)

=
Nq2

ϵ0m

∑
k

fk
ω2
0,k − ω2 − iωγk

. (2.78)

This equation is known as the Clausius-Mossotti relation and it describes the refractive

index of dense materials.68 Note, however, that with the local field approximation of

equation 2.59 this relation is only strictly true for isotropic materials with small spacing

between atoms in comparison to the wavelength of the light. Furthermore, we made some

adjustments to the susceptibility from equation 2.57. Specifically, we included quantum-

mechanical effects like we did in equation 2.43 such that one atom can exhibit multiple

resonances k and the relative strength of each resonance is given by fk. The internal modes

of oscillation ω0,k and their damping γk are usually quite different from those of free atoms

because of the strong interaction of neighbouring atoms. Nevertheless, equation 2.78 is

a decent approximation for the refractive index of matter. Finding the correct values for

fk, ω0,k and γk, however, is a difficult problem of quantum mechanics but one that can

be tackled with a spectroscopic approach as we will see in future sections.

In the next part, we want to emphasise some important aspects of the formula for

the refractive index of matter. First of all, we can see a dependence on the frequency of

the incident light such that light of different frequencies has a different refractive index
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Figure 2-16: Real and imaginary part of the index of refraction as a function of frequency.

Taken with permission from lecture 31, volume I of the Feynman lectures.30

and also a different angle of refraction. This phenomenon is called dispersion because

light of different colours is spatially dispersed into a spectrum when travelling through a

refractive medium.

Secondly, the index of refraction is a complex quantity because we included the damping

term iγ, which has some interesting consequences. In figure 2-16 we can see a plot

of the real (a) and the imaginary (b) part of n as a function of the irradiated light

frequency. Most of the real part has a positive slope, which only becomes very steep and

negative, close to the resonance frequency. This behaviour is sometimes called ”normal”

and ”abnormal” dispersion because when it was first discovered a long time ago it seemed

very unusual. Apart from this historical aspect though we can describe both slopes as

quite normal because they stem from the same equation that we derived.

Furthermore, the index of refraction can be smaller than one and even become negative.

The latter, however, just means that the phase shift due to the scattered radiation is

negative such that the transmitted wave has an advance of phase and not a delay. More

interesting is the fact that |n| can be smaller than one, which corresponds to a phase

velocity greater than the speed of light. This is, in fact, true and also reasonable because

a wave with a single frequency does not carry information so it can travel at a speed

greater than c. To transmit information there has to be some sort of modulation such

that the wave is composed of different frequencies. For such a modulated wave it can be

shown that the speed of sending a signal, which is called the group velocity is not only

dependent on the index at one frequency but also how the index changes with frequency

and this speed cannot exceed c.69

According to figure 2-16 (b) the imaginary part vanishes everywhere except in the

region close to resonance. To understand this phenomenon, we should take a look at how

the complex refractive index influences our wave. We express n as

n = nR − inI , (2.79)

with nR and nI as the real and imaginary parts of n, respectively. If we now incorporate
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this representation into our plane wave from earlier, we get

Ex = E0e
i(ωt−kz) (2.80)

= E0e
iω(t−nz

c ) (2.81)

= E0e
−ωnIz

c︸ ︷︷ ︸
E′

0

eiω(t−
nRz

c ). (2.82)

The part eiω(t−
nRz

c ) is a wave that travels with the phase velocity c
n
, which means that

the real part of the refractive index nR is responsible for the behaviour that we expect.

The imaginary part nI , however, results in an enveloping exponential function E ′
0 as the

new amplitude, which is decaying with the travel distance z. For the same reason, the

intensity, which is proportional to the square of the amplitude

I ∝ e−
2ωnIz

c = e−βz, (2.83)

is also decaying inside the material. The factor β = 2ωnI

c
is called the absorption coefficient

because it is a measure of how much energy the material is absorbing from the wave due to

the frictional term iγ we introduced in the beginning. Comparing this result with the plot

in figure 2-16 (b) again, we now understand why nI peaks around the resonances of the

material. The imaginary part of n is directly related to the absorption of the material and,

naturally, the atoms can only absorb a decent amount of energy if the frequency of the

light corresponds to a resonance frequency of the system. If there is not much absorption

and the length c
ωnI

is quite large in comparison to the thickness of the material, we usually

refer to this material as transparent.

This concludes not only the subsection about the refractive index and the absorption

of electromagnetic radiation in matter but also the second section of the theory of light

chapter. In summary, we introduced the important model of the harmonic oscillator

and learned about the scattering of light in different scattering volumes. Furthermore,

we explained how polarisation comes about and gave a deeper insight into one of the

most important quantities in spectroscopy, the refractive index. We feel that all of these

topics are essential to appreciating and understanding most of the modern spectroscopic

approaches, which we are going to describe in the next section.

2.3 Light as a Tool

The third section of the theory chapter intends to convince the reader of the versatility

and precision of light when used as a tool to investigate atoms and molecules. The use

of sum-frequency generation is a powerful method to reveal vibrational information of

an interfacial monolayer and is utilised in many modern setups. However, we start this

section by introducing a model to describe molecular systems in a quantum-mechanical

42



2 Principles 2.3 Light as a Tool

manner. Subsequently, we tackle vibrational excitations and take a closer look at the

vibrational dynamics inside a molecule and a monolayer of molecules. After that, we

present how to reveal this vibrational information by the use of light and transition to

more advanced non-linear techniques in the following subsection. Lastly, we are going

to introduce vibrational sum-frequency spectroscopy, which is the method that we use to

probe our molecular systems.

2.3.1 Quantum Model of Molecules

This subsection introduces a quantum-mechanical view of molecules and models to ap-

proximate their behaviour, which is for the most part adapted from the book by Hertel

and Schulz.70

When we talk about the probing of molecules we usually refer to the approach of

putting a certain amount of energy into the system and watching the response. From

section 2.2.1 we know that this input energy has to correspond to a resonance of the

system to observe a strong response. Furthermore, the order of magnitude of the input

energy dictates what kind of excitation we will induce in the molecule. The excited states

of each system can be categorised into three parts: electronic, vibrational and rotational

levels. Strictly speaking, there are also translational energies, which, however, are not only

extremely small and hard to detect but also only quantised for particles that are confined

to a fixed volume. For these reasons, translational excitation levels are usually neglected

and will not be covered in this thesis. Despite these distinct categories, it is possible to

have a superposition of two or more different kinds of excitations simultaneously if the

circumstances are right. We do, however, want to emphasise the important fact that the

excitation energies of each category are magnitudes apart, as we will see in the following.

The electronic excitations occur at very high energies and usually, the outermost elec-

tron of a system is forced into a bound state further away from the core. To give an

example, the electronic excitation energies Ee are of the order of the electron’s bind-

ing energy and in the case of a hydrogen molecule it can be shown that this energy is

approximated by the average kinetic energy, which is

|Ee| ≈
p2

2me

=
ℏ2

2mer20
≈ 7 eV. (2.84)

Here, we estimated the momentum p = ℏ
r0

with the uncertainty principle and approx-

imated the expansion of the electron cloud with the bond length of the molecule r0 ≈
0.074 nm. The order of magnitude of 1 − 10 eV corresponds to photon energies in the

ultraviolet and visible regions and this is also where we expect the spectrum to show

resonant peaks.

The second category consists of energies that correspond to vibrations of the core struc-

ture and are therefore restricted to molecules, whereas the previously discussed electronic
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excitations are observable for molecules as well as single atoms. The vibrational excitation

energies are much smaller than the electronic excitations and can be approximated by the

harmonic oscillator model. In section 2.2.1 we learned that the frequency of such a model

comes out as ω =
√

k
m

and the generated energy is ℏω. The harmonic restoring force on

the electron is, however, the same as for the core only in the opposite direction and we

can use this equality to find a relation between the electronic excitation energy Ee and

the vibrational energy that is generated in the cores Ev. Accordingly, we can write

Ev

Ee

≈

√
k
mc√
k
me

≈
√

me

mc

⪅ 10−2, (2.85)

where we approximated the force constants to be of the same order of magnitude. Com-

paring this result to the electronic case, we find the vibrational excitations for energies

of about 0.1 eV, which corresponds to photons in the infrared region. The vibrational

spectra of molecules are quite vast and usually categorised even further into the high

energetic stretching modes and the lower deformation modes, consisting of bending, rock-

ing, wagging and twisting motions.53 For the most part we are going to be interested in

vibrational spectra in this thesis.

The rotational levels are very close together, resulting in much smaller energies for

rotational excitations. These rotational energies Er are of the same order of magnitude

as the rotational constant, which is defined as

Er ≈ B =
ℏ2

2I
=

ℏ2

2mcr20
. (2.86)

And if we take the example of a hydrogen molecule again, we can approximate this value

to be

Er ≈
me

mc

Ee ≈ 10−4Ee. (2.87)

From this, we can see how the rotational excitation energies are 4 and 2 orders of mag-

nitude smaller than the electronic and the vibrational ones, respectively. Rotational

transitions are, therefore, common around 0.001 eV and can be spectrally observed in the

far-infrared region.

The huge gap between electronic and core excitations, i.e. vibration and rotation,

comes about because the nucleus is much heavier than the electrons and this fact is the

foundation of molecular physics. Generally speaking, a three-body problem with mutual

interaction cannot be solved analytically and, therefore, the Schrödinger equation of any

molecular system can also only be solved numerically. However, since the nuclei are that

much heavier than the electrons they also move a lot slower, such that on the timescales

of the core movement the electrons respond almost instantaneously. This motivates the
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approach of separating core and electronic wave functions, effectively cancelling their in-

teraction in the sense that the electrons become independent of the rate of change of the

nuclei coordinates. Qualitatively speaking, one can then solve the electronic Schrödinger

equation for every fixed set of nuclei coordinates to calculate the electronic energies. With

the electronic energies, the Schrödinger equation for the nuclei can be calculated accord-

ingly. This approach was proposed in 1927 by Born and Oppenheimer and is called the

Born-Oppenheimer approximation.71 The Born-Oppenheimer approximation is essential

for molecular physics because it simplifies the numerical calculations for larger systems

immensely and even allows for analytical solutions of systems with a single electron.72

In the case of a diatomic molecule, the Hamiltonian for the motion of the nuclei in the

Born-Oppenheimer approximation becomes

Ĥn = − ℏ2

2µ
∇2

R + T̂e + V (r;R)︸ ︷︷ ︸
Vn

, (2.88)

which is derived in detail in the book by Hertel and Schulz.70 Since the two atoms in

our molecule exert the same force on each other, it is common practice to work with

relative coordinates such that the two-body problem is simplified to a single reduced

mass µ = m1m2

m1+m2
and the relative position of the two objects R = R2−R1. Furthermore,

as mentioned before, the potential energy of the electrons V (r;R) is only dependent

on the distance of the two nuclei R = |R| as a parameter in the Born-Oppenheimer

approximation, which is denoted with a semicolon in 2.88. Therefore, the kinetic and

potential energy of the electrons T̂e + V (r;R) = Vn act as the potential energy for the

nuclei and we can calculate this energy for every R. The resulting function is called a

potential curve or, in multiple dimensions, a potential hypersurface.

Our goal is now to find a suitable potential to understand and model the motion of

the nuclei in a molecule. One usually approaches such a problem with a Taylor expansion

about the equilibrium length R0. For small disturbances, we can take the Taylor expansion

up to the first non-vanishing order, such that

Vn(R) ≈ Vn(R0) + (R−R0)
dVn

dR

∣∣∣∣
R=R0

+
1

2
(R−R0)

2 d2Vn

dR2

∣∣∣∣
R=R0

. (2.89)

The second term vanishes because we expect our potential to have a minimum at the

equilibrium length. Therefore, in the first approximation, we have the harmonic potential

Vn(R) ≈ Vn(R0) +
1

2
k(R−R0)

2 (2.90)

that describes the motion of the nuclei. The classical harmonic oscillator was already

discussed in section 2.2.1 and we know that such a system has a specific resonance fre-

quency of ω =
√

k
µ
. In our quantum-mechanical description, however, we have to solve
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Figure 2-17: Plot of the potential energy of a harmonic oscillator in dependence of the

core distance R and an illustration of the first three vibrational wave functions.

the time-independent Schrödinger equation with the harmonic potential, which leads to

the wave functions of the nuclei and their respective energies. The quantum-mechanical

harmonic oscillator is a well-discussed topic in various textbooks and one can find a thor-

ough description there, as we will only state the results here.70,73 The energy eigenvalues

for a vibrational level ν are given by

Eν = ℏω
(
v +

1

2

)
(2.91)

and their respective eigenfunctions are products of Hermite polynomials and a Gaussian

function. These eigenfunctions can be calculated, for instance, with

ϕν(x) =
(−1)ν√
2νν!

√
π
e(

x2

2
) d

ν

dxν
e(−x2). (2.92)

The harmonic potential and the wavefunctions for the first three levels (ν = 0, 1, 2) are

plotted for an arbitrary system in fig 2-17.

This harmonic approach, however, not only fails rather quickly for stronger deviations

from the equilibrium position but also ignores the fact that molecules dissociate when

their cores are pushed apart far enough. For these reasons, Philip Morse proposed in

1929 an asymmetric potential of the form

Vm(R) = De

[
1− e−a(R−R0)

]2
, (2.93)

with the depth of the potential well De and the stiffness of the potential a. This Morse

potential is extensively used as an empirical description of atomic interaction because it

describes experimental data extremely well. In figure 2-18 we can see the experimental

data of the potential energy of the electronic ground state of CO and a Morse potential

that is fitted to these data points. Evidently, we can see how the Morse potential is a lot
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Figure 2-18: Potential energy of the ground state of CO. The crosses indicate the exper-

imental data points according to Fleming and Rao, to which a Morse potential was fitted

with De = 11.108 eV and R0 = 0.1128 nm.74 The dashed line is a ground state harmonic

potential of the same frequency. This figure is taken with permission from Hertel and

Schulz.70

more accurate than the harmonic oscillator for most of the vibrational energy levels and

usually only begins to fail close to the dissociation level.

In this qualitative derivation, we have completely neglected the rotational motion of the

molecule, which, although small, does influence the vibrational motion due to centrifugal

deformation. This, however, is only truly relevant for molecules in a gas that can rotate

freely. The densely packed adsorbed monolayers that we investigate in the context of

this thesis, on the other hand, are restricted in their rotational motion, which makes this

approach reasonable.

In conclusion, we now have a better understanding of excitation levels in molecular

systems and tools to model their behaviour. In the next step, we are tackling the main

topic of interest of this thesis, which are the vibrational modes and the energy flow of the

system through these modes, called vibrational dynamics.

2.3.2 Vibrational Dynamics

All vibrational modes of a molecule can be expressed in a set of normal coordinates by

transforming the local coordinates of a system in a specific way. This is demonstrated

in the first part of this subsection. In the second part, we take a closer look at these

fundamental vibrational modes and see how they influence each other in the anharmonic
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Figure 2-19: Normal vibrational modes of a non-linear (a) and linear (b) molecule. In

the linear case, the mode ν2 is degenerated. Adapted from Demtröder.73

approximation. The first part is adapted from the books by Hertel/Schulz and Demtröder

and the second part is based on different scientific articles.70,73

In general, every N -atomic molecule in free space has 3N degrees of freedom because

every single atom can move in 3 dimensions. Of these 3N degrees of freedom, 3 are

reserved for the translational motion of the centre of mass of the molecule and another 3

for the rotation about the three main axes of inertia that cross in the centre of mass. For

linear molecules, only 2 degrees of freedom are reserved for rotation because the rotation

about the molecular axis is not considered a rotation of the core frame. This results in

3N − 5 and 3N − 6 degrees of freedom for linear and non-linear molecules, respectively,

that correspond to vibrations of the nuclei. For that reason, the vibrational spectra

of larger molecules are quite vast and further categorised in the high-energy stretching

vibrations and the lower-energy deformation modes, i.e. bending, rocking, wagging and

twisting. The latter usually features a significant change in the bond angle, while the

former mainly changes the bond length.

For sufficiently small displacements from equilibrium, the atoms in a molecule expe-

rience a linear restoring force, resulting in a harmonic oscillation. In this case, every of

the 3N − 6 vibrational modes can be expressed as a linear combination of fundamental

oscillations, called normal modes. A normal mode is a vibration of the core structure in

which every nucleus passes its equilibrium position at the same time. In figure 2-19 we

can see an illustration of the 3 normal modes of the non-linear H2O (a) and the 4 normal

modes of the linear CO2 (b) molecule. The ν2 mode of CO2 is degenerated because the

oscillation in the drawing plane and the one orthogonal to it have the same energy.

In the following, we are going to quantitatively describe these fundamental vibrational

modes and we start by defining the displacement of a single nucleus from its equilibrium

position in one dimension as ξ, such that the whole system is characterised by 3N param-

eters ξ1 . . . ξ3N . If we now focus only on the vibrational modes of a non-linear molecule

and approximate the potential of the cores with a Taylor expansion about the equilibrium
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position, we get

V (ξ) ≈ V0(0) +
3N−6∑
i=1

∂V

∂ξi

∣∣∣∣
ξi=0

ξi +
1

2

3N−6∑
i,j=1

∂2V

∂ξi∂ξj

∣∣∣∣
0

ξiξj. (2.94)

We can now shift the potential, such that V (0) = 0 and since we expect the potential to

have a minimum at equilibrium ξ = 0 the second term also vanishes, leaving us with the

harmonic potential

Vh =
1

2

3N−6∑
i,j=1

∂2V

∂ξi∂ξj

∣∣∣∣
0

ξiξj. (2.95)

The restoring force on the nuclei is the derivative of this potential energy, therefore

Fi = −∂Vh

∂ξi
= −

3N−6∑
j=1

∂2V

∂ξi∂ξj

∣∣∣∣
0

ξj, (2.96)

which gives us the classical equations for the motion of the cores as

Fi = mi
∂2ξi
∂t2

(2.97)

⇒
3N−6∑
j=1

∂2V

∂ξi∂ξj

∣∣∣∣
0

ξj +miξ̈i = 0, (2.98)

with the mass of the nuclei mi. Further, we now define new mass-weighted coordinates

qi =
√
miξi that simplify our set of equations to

q̈i +
3N−6∑
j=1

Vijqj = 0 (i = 1, . . . , 3N − 6), (2.99)

where Vij =
∂2V

∂qi∂qj

∣∣∣
0
are the elements of the Hessian matrix Ṽ, which is real, symmetric

(Vij = Vji) and positiv definit. The terms in 2.99 describe a set of differential equations

that are coupled because the off-diagonal elements Vij(i ̸= j) are typically nonzero. That

said, it now becomes obvious how the fundamental modes come about. If we find a specific

set of initial conditions, such that the off-diagonal elements of Ṽ are all zero, the nuclei

will all oscillate with the same frequency and phase. These oscillations are what we call

normal modes.

First, we begin by rewriting equation 2.99 with vectors q = q1, . . . , q3N−6, such that

q̈+ Ṽ · q = 0. (2.100)
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We can then use some simple methods of linear algebra to find an orthogonal transfor-

mation matrix T̃ that diagonalises Ṽ with

T̃−1ṼT̃ = D̃. (2.101)

Here, D̃ is a diagonal matrix with 3N − 6 elements λi. Now, we just need to transform

our coordinates qi accordingly

Q = T̃−1 · q, (2.102)

to end up with a set of differential equations in the new coordinate system that is now

uncoupled:

Q̈+ D̃ ·Q = 0. (2.103)

The solutions to equation 2.103 are harmonic oscillators and their displacement from

equilibrium in the new coordinates Qi is given by

Qi(t) = Ai cos(ωit+ ϕi), (2.104)

with amplitudes Ai, phases ϕi and frequencies ωi =
√
λi.

In conclusion, we have transformed the system to new coordinates Qi that are su-

perpositions of the mass-weighted displacement of the nuclei in the original cartesian

coordinates qj, according to equation 2.102. In these new coordinates, called normal co-

ordinates, the system can be solved by uncoupled harmonic oscillators. Therefore, the

oscillations in these normal coordinates correspond to a simultaneous vibration of the

whole core structure with a single frequency ωi, such that all nuclei pass their equilibrium

position at the same time. These fundamental vibrational modes are called delocalised

because they span over the whole molecule. On the other hand, a careful superposition of

normal modes can lead to a predominant stretching of a certain bond, effectively creating

a local mode.

In the harmonic approximation, an unperturbed, isolated molecule in free space would

stay in an excited normal mode forever because the energy is trapped in this state. This,

however, does not agree with experimental observation. In fact, most excited vibrational

states are only stable on a timescale of picoseconds until their energy is transferred to

other degrees of freedom. In equation 2.94 we approximated the nuclei potential by a

second-order Taylor expansion, which is a good approximation in most cases but not

generally true. If we take terms of higher order into account as well, we necessarily end

up with an anharmonic potential that ultimately leads to anharmonic coupling because

the interaction matrix Ṽ does not have a completely diagonalised representation anymore.

For this reason, the vibrational modes can now exchange energy, which is called internal

vibrational energy redistribution (IVR) for an isolated system or energy relaxation in

general when the system is connected to external reservoirs as well.75
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IVR can also be understood from a quantum-mechanical perspective in which we de-

scribe the system with the Schrödinger equation, whose solutions are the true molecular

eigenstates of the system. These are, by definition, orthogonal, i.e. uncoupled, and

time-independent. However, when we push the system into an excited state with our

experimental setup we usually invoke a superposition of these molecular eigenstates with

a particular phase relationship. The differing phase dependencies of each eigenstate then

cause the superposition to become time-dependent and the initial phase relationship is

lost after some time, which gives rise to the finite lifetime of a vibrational mode.75,76 How-

ever because the true eigenstates are often unknown and generally hard to resolve, most

authors prefer to introduce normal coordinates and anharmonic coupling as the cause for

IVR. Either picture can be adopted and in this thesis, we are following the norm with

classical anharmonic oscillators rather than the loss of phase information.

The precise mechanism of how an excited mode transfers its energy to other degrees

of freedom is highly non-trivial and not yet completely understood. Some experiments

suggest proportionality between the density of states of a molecular system and the exci-

tation lifetime, such that a slow decay rate corresponds to a single excitation in a sparse

region.75,77 Another theory proclaims the necessity of certain vibrational modes to act as

’doorways’ for strong anharmonic coupling to occur.75,78 In addition, for free molecules

in the gas phase, the internal rotation plays a significant role for IVR, which is known as

Coriolis coupling.75 The samples that we are going to investigate, however, are adsorbed

on a substrate, such that the rotations are frustrated and strongly coupled to the surface

atoms. Furthermore, the adsorbed monolayer is squeezed tightly together to the point

that intermolecular coupling might also become relevant for the energy transfer.79

Since our molecules are long organic chains, these densely packed monolayers resemble,

in good approximation, a form of two-dimensional molecular crystal. The vibrational

dynamics of such crystals were investigated by Dlott et al. and can be roughly categorised

into three frequency regimes.80 The low-frequency modes usually distribute their energy

by emission of two phonons, which are vibrations of the crystal layer. In the intermediate

frequency regime, the vibrational relaxation mostly occurs by emission of one phonon

and a lower energy vibration and the high-frequency modes behave similarly to isolated

molecules, as they transfer their energy to a bath of lower vibrational levels.

Even though the mechanism of energy relaxation is still vigorously investigated, the

theory regarding the excitation lifetime of adsorbed monolayers is generally understood.

Two important time constants determine the decay rate of an excited state: the so-

called longitudinal relaxation time T1 and the transversal relaxation time T ∗
2 in analogy

to the terminology used in magnetic resonance.81 The relaxation time T1 represents the

loss of population due to energy relaxation into different degrees of freedom. As we

mentioned before, this relaxation is due to intra- and intermolecular vibrational energy

transfer, multiphonon emission in the monolayer and the coupling to substrate phonons.

In addition, the excitation of electron-hole pairs in the substrate also plays an important
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Figure 2-20: Schematic illustration of a Fermi resonance. On the left side are the theo-

retically calculated intensities for a fundamental transition at E1 and an overtone at E2

in an arbitrary system. On the right side is the actual spectrum, in which the intensities

are averaged and the energy levels are pushed apart due to anharmonic coupling.

role in energy relaxation, which, however, is only truly relevant for metallic surfaces and

our samples are adsorbed on glass.79 The relaxation time T ∗
2 , on the other hand, comes

about due to the loss of coherence in the monolayer. This phase decay is either caused by

elastic collisions with surface phonons or anharmonic coupling to low-frequency modes,

which causes a random modulation of the observed excitation.82

In section 2.2.1 we talked about lineshapes and how the FWHM of a Lorentzian, defined

in equation 2.42, is inversely proportional to the lifetime of an excitation. Similarly, one

can show that in the case of a monolayer, the lineshape of a resonant excitation is given

by a superposition of T1 and T ∗
2 terms as

2Γ =
2

T2

=
1

T1

+
2

T ∗
2

, (2.105)

which is derived in detail by Ueba.83 Here, 2Γ is the FWHM of a Lorentzian lineshape,

according to equation 2.42 and T2 is the overall relaxation time. There are two com-

monly deployed methods to obtain information about these relaxation times, namely

time-resolved and frequency-resolved spectroscopy. The latter extracts the information

from lineshape analysis, while the former has the advantage of separately probing the

population decay T1 and the overall relaxation time T2. In this thesis, we are using the

time-resolved method and mostly investigate the population decay of our samples to track

the vibrational dynamics.

Before we wrap this section up, we want to address one last phenomenon because it is

relevant to our molecular systems. When two vibrational modes are very close in energy,

the anharmonic coupling between these levels becomes very strong if the symmetry of the

vibrations is identical. In that case, the energy levels are pushed apart due to a mixing of

the two wave functions, which is essentially an avoided crossing of vibrational levels that

is known as a Fermi resonance. This mixing increases the coupling strengths between
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modes and can act as a ’doorway’ for the energy flow in the molecule, as we mentioned

earlier.53,75 Also, when we look at the spectrum of a Fermi resonance, the otherwise

weaker mode is usually more intense, effectively becoming more ’allowed’ and borrowing

intensity from the stronger mode, which is illustrated schematically in figure 2-20.

An example of such a Fermi resonance can be observed in the Raman spectrum of

CO2, in which the fundamental symmetric stretching and the much weaker first overtone

of the bending mode are theoretically calculated to νs = 1337 cm−1 and 2νb ≈ 1334 cm−1,

respectively. In the spectrum, however, there are two almost equally strong lines at

1388 cm−1 and 1286 cm−1, which is a strong indicator for a Fermi resonance.84 On a side

note, the quantity with unit cm−1 is called the wavenumber, which is usually preferred

in spectroscopy because the fundamental frequencies are uncomfortably large in atomic

systems. Therefore, the norm was established to divide the frequency by c and calling

this quantity the wavenumber ν = f
c
= 1

λ
in analogy to the angular wavenumber k = 2π

λ

that we introduced in section 2.1.4. With the equation for the photon energy E = hf , we

can calculate the energy in Joule from the wavenumber in cm−1 accordingly: E = hcν102.

This concludes the section about vibrational dynamics and in the following, we are

going to address the spectroscopic techniques by which we can observe these vibrational

modes.

2.3.3 Vibrational Spectroscopy

The fact that all molecules vibrate with inherent characteristic frequencies, due to their

structure, allows us to study molecular compounds with light. This field of science is

called vibrational spectroscopy and it is one of the least invasive and least destructive

methods of analysing a sample for its molecular structure.

In a prior subsection, we learned about the potential energy of the nuclei and their

quantised motion in this potential, called vibrational levels. If we arrange for a light

source to produce radiation of just the right frequency and direct it onto the system, we

can observe a transition from one vibrational level to another, effectively changing its

motion. Conceptually speaking, there are two mainly used techniques to realise such a

transition of vibrational states: infrared absorption and Raman scattering. As the name

implies, infrared absorption forces a system to transition to a higher state by absorption

of a photon that usually correlates to energies in the infrared region. Raman scattering,

on the other hand, induces the vibrational transition by an inelastic scattering process

that was first discovered by C.V. Raman in 1928.85 We will take a closer look at both of

these techniques in the following paragraphs, which are, for the most part, adapted from

the books by Hertel/Schulz and Demtröder.70,73

In general, the most important quantity for the interaction of light with matter is the

dipole moment, which we already discussed in section 2.2.3. For a quantum-mechanical

description of this interaction, however, we need to refine this statement slightly. We start
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with a system in an arbitrary vibrational state |i⟩ and want to transition this system to

the vibrational state |k⟩ by absorption of a photon. According to quantum mechanics,

we can only find the probability of triggering such a transition and this probability is

proportional to the square of

Mik =

∫
Ψ∗

kp̂Ψi dr dR , (2.106)

which is the quantity that the electromagnetic field interacts with, called the transition

dipole moment. The Mik can be seen as elements of a matrix that couples all the different

states of a system, denoted by their respective wave functions Ψ. The operator p̂ is the

dipole operator

p̂ = −
∑
m

erm +
∑
n

ZneRn (2.107)

= p̂e + p̂n, (2.108)

with the elementary charge e, the atomic number Z and the sums running over all electron

r and nuclei R coordinates in the molecule. Furthermore, we split the operator into an

electron p̂el and a nucleus p̂n part for convenience.

According to subsection 2.3.1, we can separate the motion of electrons and cores in the

Born-Oppenheimer approximation such that the wave functions can also be split up into

an electronic and a nuclei part

Ψ = Ψe ·Ψn. (2.109)

If we now incorporate equations 2.108 and 2.109 into the transition dipole moment 2.106

we get, with some rearranging,

Mik =

∫
Ψ∗

e,kΨ
∗
n,k (p̂e + p̂n)Ψe,iΨn,i dr dR (2.110)

=

∫
Ψ∗

n,k

[∫
Ψ∗

e,kp̂eΨe,i dr

]
︸ ︷︷ ︸

=0 for i=k

Ψn,i dR

+

∫
Ψ∗

n,kp̂n

[∫
Ψ∗

e,kΨe,i dr

]
︸ ︷︷ ︸

=1 for i=k

Ψn,i dR . (2.111)

Since we are only interested in vibrational transitions in the scope of this thesis, we can

disregard a change in the electronic level, such that

Ψe,k = Ψe,i. (2.112)

Due to p̂e being an odd function of r, the integral over r in the first term in equation

2.111 equals zero if Ψ∗
e,k and Ψ∗

e,i are both even or odd functions, which is the case when
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the electronic level does not change. Furthermore, the integral over r in the second term

comes out as 1 because of the orthogonality of the wave functions. With that, we can

write the transition dipole moment elements as

Mik =

∫
Ψ∗

n,kp̂nΨn,i dR . (2.113)

In theory, we have all the tools now to calculate these elements for a given system. We

do, however, want to derive some more general principles from this formula, regarding IR

absorption spectroscopy. As we have done before, we can approximate the dipole moment

pn(R) with a Taylor expansion around the equilibrium distance R0 as

pn(R) ≈ pn(R0) +
∂pn
∂R

∣∣∣∣
R=R0

(R−R0) (2.114)

because the oscillation amplitudes R−R0 = |R2 −R1|−R0 are usually sufficiently small.

Seemingly, this representation is now restricted to diatomic molecules. One can, however,

transform the local coordinates of any N -atomic system into the normal coordinates that

we introduced in the last subsection, which describes the motion of the whole structure. In

these normal coordinates, the Taylor expansion comes out the same as equation 2.114 and

we can, therefore, stay with our simplified view of a diatomic molecule as a representation

of the general case.

If we plug equation 2.114 into our transition dipole moment 2.113 we finally get

Mik =

∫
Ψ∗

n,kp̂n(R0)Ψn,i dR︸ ︷︷ ︸
=0 for i ̸=k

+
∂p̂n
∂R

∣∣∣∣
R=R0

∫
Ψ∗

n,k(R−R0)Ψn,i dR . (2.115)

Here, the first term equals zero because p̂n(R0) is just a constant and the wave functions

of different vibrational levels are orthogonal to one another. Furthermore, we can extract

some very interesting facts about IR absorption spectroscopy from equation 2.115. First

of all, for a molecular vibration to be susceptible to infrared radiation, the dipole moment

has to change during the oscillation. This is one of the most important aspects of IR

absorption spectroscopy and one can often find if a potential transition is IR active or

not just by looking at the symmetry of the molecule. Secondly, in the harmonic approx-

imation, the vibrational wave functions Ψn consist of the Hermite polynomials that we

already discussed briefly in equation 2.92. Due to the special form of these polynomials,

one can show how the second integral in equation 2.115 equals zero in all cases that are

not k = i ± 1. Therefore, the only allowed transitions are the ones that excite or de-

excite the system to adjacent vibrational levels. Nevertheless, this is only strictly true for

the harmonic oscillator and if we allow the potential to have anharmonicity, transitions

of k = i ± 2 and higher become possible solutions as well. These transitions are called
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overtones and they occur with significantly less intensity. This concludes the part about

IR absorption spectroscopy and we will now discuss Raman scattering.

For an accessible introduction to Raman scattering, most textbooks prefer to give a

classical view of this phenomenon. We will follow this example but refer the reader to

the book by Hertel and Schulz for a quantum-mechanical approach.70 As before, the

important quantity to look at is the dipole moment. The Raman effect, however, comes

about not because of the permanent dipole of a system but the induced dipole due to the

electric field of the light. It is, therefore, a time-dependent quantity that is proportional

to the applied electric field, which we already discussed in section 2.2.3. Whenever a

molecule is exposed to an electric field, the positive and negative charges are pushed in

opposite directions, effectively polarising the system. This polarisation then oscillates

with the same frequency as the light E(t) = E0 cos(ωt) and overlaps with any inherent

permanent dipoles of the system. Therefore, the dipole operator from equation 2.108

becomes

p̂ = p̂e + p̂n + p̂ind. (2.116)

According to equation 2.54, this induced dipole moment p̂ind depends on the polarisability

of the system α and the electric field of the light E(t), such that

p̂ind = αE(t) (2.117)

= αE0 cos(ωt). (2.118)

Again, we take α as a scalar in favour of a more simplified explanation but we want to

emphasise that α usually does depend significantly on direction and should be expressed

as a second-rank tensor.

In the Born-Oppenheimer approximation, the polarisability becomes essentially de-

pendent on the nuclei distance, which usually only changes slightly from the equilibrium

distance R0. For this reason, we can express α in a Taylor series around R0, similarly to

how we developed the permanent dipole moment in equation 2.114. Therefore, we write

α(R) ≈ α(R0) +
∂α

∂R

∣∣∣∣
R=R0

(R−R0). (2.119)

As we mentioned before, although this equation represents a diatomic system, the principle

is true for any N -atomic molecule and can be represented in the same way, using normal

coordinates. Without the driving field, the molecule will oscillate harmonically with a

characteristic frequency ω0 about the equilibrium position R0, which can be expressed as

R(t)−R0 = R1 cos(ω0t). (2.120)
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Figure 2-21: Illustration of different scattering processes of photons. On the left, we see a

potential energy diagram and multiple vibrational states of a system. The first transition

is the elastic Rayleigh scattering that does not change the energy of the scattered photon

and the other two transitions depict the Stokes (energy loss) and Anti-Stokes scattering

(energy gain), respectively. The dotted lines indicate virtual states. On the right side,

the corresponding spectrum is illustrated.

If we incorporate this into equation 2.118, the induced dipole moment becomes

p̂ind = αE(t) ≈

[
α(R0) +

∂α

∂R

∣∣∣∣
R=R0

R1 cos(ω0t)

]
E0 cos(ωt) (2.121)

= α(R0)E0 cos(ωt) +
∂α

∂R

∣∣∣∣
R=R0

R1E0

2
[cos ((ω + ω0)t) + cos ((ω − ω0)t)] .

(2.122)

We can learn two very important aspects of Raman spectroscopy from this classical

description. Firstly, the induced dipole oscillates at three different frequencies: the un-

modulated frequency ω of the light and two modulated bands with ω+ω0 and ω−ω0. The

unmodulated frequency is just the elastic Rayleigh scattering that we already discussed

in section 2.2.2 but the two modulated bands arise from inelastic Raman scattering. The

process in which the molecule gains energy ω − ω0 is called a Stokes transition and the

opposite band in which an excited molecule loses energy ω + ω0 is called an Anti-Stokes

transition. These transitions and their respective spectra are illustrated in figure 2-21.

The Raman effect is usually very weak, which is why the Raman lines are that much

smaller than their Rayleigh counterpart in the spectrum. Additionally, the scattering

process is usually illustrated with a dotted line to indicate a transition to a virtual state.

Such a virtual state is not an eigenstate of the free atom but rather a level with the

combined energy of an eigenstate and one or more photons of the irradiating field.86

The second important aspect we can extract from equation 2.122 is the fact that

Raman lines can only be observed in molecules that change their polarisability during

the nuclei oscillation ( ∂α
∂R

∣∣
R=R0

̸= 0). This makes Raman spectroscopy a very powerful

technique because it can identify structures that are transparent for IR absorption. There
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are, however, also vibrational modes that change neither their dipole moment nor their

polarisability during the oscillation, which are called silent modes because they cannot be

observed spectroscopically.87

Concludingly, we introduced the two most applied techniques to induce vibrational

transitions in molecules, which are IR absorption and Raman scattering. Moreover, we

learned that for a vibrational mode to be IR or Raman active, the dipole moment or the

polarisability of the system has to change during the vibration of the cores, respectively.

Building up on that, we are going to take a look at more advanced spectroscopic methods

that make use of non-linear effects, in the following subsection.

2.3.4 Non-Linear Optics

When we introduced optical phenomena in the previous sections, we always assumed

the response of the system to be linear in regard to the electric field of the light. In

other words, light that interacts with a medium will get reflected or refracted but never

changes its frequency. This, however, is only a good approximation for weak fields and in

the following subsection, we will address phenomena that arise in the presence of strong

electric fields. For the most part, this subsection is adapted from the first chapter of

’Nonlinear Optics ’ by Robert Boyd.86

In equation 2.56 of section 2.2.3 we defined the macroscopic polarisation P of a medium

due to the irradiation of light as

P = χ(1)ϵ0E. (2.123)

Here, we denoted the proportionality constant χ with a superscript to indicate the linear

susceptibility. In general, this equation is a good approximation for most optical effects

that can be observed in nature. However, with the advent of lasers that generate highly

intense and coherent radiation came the observation of phenomena that could not be

explained by this linear polarisation. Specifically, the discovery of second-harmonic gen-

eration by Franken et al. in 1961 is often referred to as the beginning of the field of

non-linear optics.88

To accurately describe these new phenomena, it became necessary to include non-linear

terms in the optical response. Therefore, one often expresses the polarisation in a power

series, such that

P = ϵ0
(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
= P (1) + P (2) + P (3) + . . . , (2.124)

where χ(2) and χ(3) are called the second- and third-order non-linear susceptibilities, re-

spectively. We now have taken the quantities to be scalar in favour of a more simplistic

approach when in reality, the susceptibilities are tensors of rank (1, 2, 3, . . . ) and P and
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E are three-dimensional vectors. We will take a closer look at the nature of these tensors

in the next subsection.

Usually, all of the contributions to the polarisation P (n) are several orders of magnitudes

apart, which is the reason why enormous field strengths are necessary to observe these non-

linear effects. The second-order non-linear susceptibility becomes significant for electric

fields that are comparable in strength to these inside of the atom Eat. If we take the

hydrogen atom as an example, we can approximate the strength of this electric field by

Eat =
e

4πϵ0a20
≈ 5.14 · 1011 V

m
, (2.125)

with the Bohr radius of the hydrogen atom a0. Furthermore, one can show how the

second- and third-order susceptibilities are of the order of χ(1)

Eat
and χ(1)

Eat
2 , respectively in

the case of significant non-linear effects.89 Empirically, it was found that for condensed

matter χ(1) is of the order of unity, which lets us predict the strength of the non-linear

contributions accordingly. We find

χ(2) ≈ 1

Eat

= 1.94 · 10−12 m

V
and (2.126)

χ(3) ≈ 1

E2
at

= 3.78 · 10−24 m
2

V2
, (2.127)

which does indeed agree with the experimental data of various experiments and shows

quite well how significantly different these contributions are in strength.86 We should also

note, however, that the approximations in equations 2.126 and 2.127 are only good for

optical frequencies away from resonance. Near resonances, χ2 and χ3 can become quite

large such that the non-linear effects are observable with much weaker light.90

The non-linear contributions to the polarisation give rise to a multitude of new phe-

nomena. If we take the second-order contribution for example and have our irradiating

light be a superposition of two different frequencies

E(t) = E1 cos(ω1t) + E2 cos(ω2t) = E1e
−iω1t + E2e

−iω2t + c.c., (2.128)

we find that

P (2)(t) =ϵ0χ
(2)E(t)2

=2ϵ0χ
(2)

(
E2

1E
2
2

)
+ ϵ0χ

(2)(E2
1e

−i2ω1t + E2
2e

−i2ω2t

+ 2E1E2e
−i(ω1+ω2)t + 2E1E2e

−i(ω1−ω2)t + c.c.). (2.129)

Here, we can see how the non-linear contribution results in multiple mixing processes,

such that the induced polarisation now oscillates with not just the original frequencies

but new ones. In most textbooks, P (2)(t) is often expressed as

P (2)(t) =
∑
n

P (ωn)e
−iωnt, (2.130)

59



2.3 Light as a Tool 2 Principles

E

(a) SHG (b) SFG (c) DFG

ω1

2ω1
ω1

E

ω1

ω1 + ω2

E

ω1 - ω2
ω1

ω2

ω2

Figure 2-22: Energy level description of (a) second-harmonic generation (SHG), (b) sum-

frequency generation (SFG), and (c) difference-frequency generation (DFG).

where the sum extends over all positive frequencies ωn. In this notation, we can conve-

niently take a closer look at each individual oscillating term, which for n = 2 are

P (2ω1) = ϵ0χ
(2)E2

1 (SHG),

P (2ω2) = ϵ0χ
(2)E2

2 (SHG),

P (ω1 + ω2) = 2ϵ0χ
(2)E1E2 (SFG), (2.131)

P (ω1 − ω2) = 2ϵ0χ
(2)E1E2 (DFG),

P (0) = 2ϵ0χ
(2)(E2

1 + E2
2) (OR).

(2.132)

As mentioned previously, the second-harmonic generation (SHG) was the first observed

non-linear effect and it induces a polarisation in the medium that oscillates with twice the

original frequency. The process of SHG is schematically illustrated in figure 2-22 (a) with

an energy level diagram. Here, two photons at frequency ω1 are annihilated and a photon

at frequency 2ω1 is created simultaneously in a single quantum-mechanical process. In

this figure, the solid lines indicate the ground state and the dashed lines are virtual states

that we already mentioned in the previous subsection.

The energy level diagrams of sum- and difference-frequency generation (SFG) and

(DFG), respectively are illustrated in figure 2-22 (b) and (c). These processes are more

general in the sense that they can generate a wide array of different photons and specif-

ically in this thesis we are using two laser pulses to induce a sum-frequency photon that

probes our molecular systems. Although SFG and DFG are seemingly very similar pro-

cesses, there is an important difference between them. If we look at the energy level

diagram in figure 2-22 (c), we see that to create a photon at ω = ω1 − ω2, a photon at

higher energy ω1 must be annihilated and a photon at lower energy ω2 is created. Con-

sequently, the lower-frequency field is amplified in this process, which is known as optical

parametric amplification and most infrared lasers feature such an amplifier. In this sense,

we are utilising SFG, DFG and SHG in our setup to generate all the photons we need to

investigate our molecules.
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The last equation in 2.132 features terms with zero frequency. This contribution to

the polarisation does not lead to the generation of electromagnetic radiation because

its second derivative vanishes. It does, however, induce a static electric field across the

non-linear medium and this process is known as optical rectification (OR).

Although all of the contributions in 2.132 are theoretically possible, usually only one

will be significant in an experiment. The reason for that is the necessity for a certain phase-

matching condition to be satisfied, which can only really be done for a single frequency

component. The phase-matching condition for our sum-frequency setup is discussed in

more detail in the next subsection. Naturally, this derivation can be extended to the third-

order polarisation as well, yielding even more different frequencies. We will, however, omit

this approach since our main interest lies in the second-order contribution and the reader

is instead referred to the book by Robert Boyd.86

The last point we want to emphasise is the fact that due to the tensor nature of the

susceptibility, the non-linear contributions are strongly dependent on the symmetry of

the medium. Furthermore, one can specifically show how the second-order contribution

to the polarisation vanishes completely in media that have inversion symmetry, which

is also known as centrosymmetry. Although it is true in general that χ(2) vanishes in

centrosymmetric media, one can easily demonstrate this fact for the special case of second

harmonic generation. We assume the second-order polarisation to be

P (2)(t) = ϵ0χ
(2)E(t)2, (2.133)

with E(t) = E0 cos(ωt). Now, if we change the sign of the applied electric field, the

inversion symmetry forces the polarisation to change signs as well and we get

−P (2)(t) = ϵ0χ
(2)(−E(t))2. (2.134)

Comparing this result to equation 2.133, we find that −P (2)(t) = P (2)(t), which is only

true for P (2)(t) = 0. Accordingly, if the polarisation vanishes for an arbitrary applied

electric field, the non-linear susceptibility has to vanish as well, namely

χ(2) = 0. (2.135)

As an alternative perspective, we can also look at the potential energy functions of

non- and centrosymmetric media. The potential energy depends on the restoring force on

the electrons, which is given by Hook’s law in equation 2.33 for the harmonic case. The

actual potential, however, is given by a Taylor expansion of Hook’s law and if we just

take the lowest order, we find for the non-centrosymmetric case that

Frestore = −mω2
0x−max2, (2.136)

with the strength of the non-linearity denoted by a. The associated potential energy is

the integral of this force, which is

Vncs(x) = −
∫

Frestore dx =
1

2
mω2

0x
2 +

1

3
max3. (2.137)
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Figure 2-23: On the left side are the potential energy functions for centrosymmetric and

non-centrosymmetric media and a parabola for comparison. On the right side is the plot of

a sinusoidal applied electric field (a). The polarisation response due to this field is sketched

for the linear contribution (b) and the non-linear contributions in a centrosymmetric (c)

and non-centrosymmetric (d) medium. Adapted from Boyd.86

In centrosymmetric media, on the other hand, the first-order Taylor contribution vanishes

because it does not satisfy the symmetry of the x → −x operation. Therefore, we need

to expand the series to the second order in the centrosymmetric case, such that

Vcs = −
∫

−mω2
0x+mbx3 dx =

1

2
mω2

0x
2 − 1

4
mbx4. (2.138)

The centrosymmetric Vcs(x) and non-centrosymmetric Vncs(x) potential energy func-

tions are plotted on the left side of figure 2-23 along with a simple parabola for compari-

son. On the right side of this figure, we can see the polarisation in response to an applied

electric field. Part (a) is the sinusoidal waveform of an arbitrary incident electromagnetic

wave of a single frequency ω. The linear response mirrors the applied field such that there

is no distortion of the waveform, which is illustrated in part (b). For centrosymmetric me-

dia that feature a potential like Vcs, we find strong waveform distortion in the non-linear

polarisation, as we can see in part (c) of figure 2-23. Although the distortion is signifi-

cant, we only find odd overtones of the fundamental frequency because of the symmetry

of the potential energy. For the anharmonic potential of a non-centrosymmetric medium

Vncs, however, we find strong distortion of polarisation waveform because both even and

odd overtones of the fundamental frequency are present. This case is depicted in part (d).

We also want to point out that the time-average of the waveforms in parts (c) and

(d) of figure 2-23 are different. In the centrosymmetric case, the time average of the
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non-linear polarisation comes out as zero, whereas for non-centrosymmetric media it is

nonzero. The reason for that is the strong dependence of the non-linear susceptibility on

direction, such that the polarisation of the incident electric field dictates the polarisation

of the medium. This direction dependence is very important for the structural analysis of

molecular monolayers and will be further discussed in the following subsection. Further-

more, we are taking a closer look at the sum-frequency contribution to χ(2) specifically,

since we are mainly utilising this process in our vibrational sum-frequency spectroscopy

(vSFS) setup.

2.3.5 Sum-Frequency Generation

In the previous section, we introduced non-linear contributions to the induced polarisation

of dense materials that become significant when the irradiating fields are very intense. We

also found that the second-order and more generally all even-order contributions vanish

in centrosymmetric media. For that reason, the second-order polarisation is an effective

tool to investigate interfaces because the layer at which two different centrosymmetric

media come together, necessarily features a break in symmetry. Especially the sum-

frequency contribution became a major player in molecular interface analysis, ultimately

establishing the field of science known as vibrational sum-frequency spectroscopy (vSFS).

This subsection aims to provide a deeper understanding of sum-frequency generation and

is partly based on the second chapter of ’Nonlinear Optics ’ by Robert Boyd and the

tutorial review by Lambert, Davies, and Neivandt.67,86

We begin with a qualitative view of the sum-frequency generation process. When an

atomic system is irradiated with an electric field of frequencies ω1 and ω2, this system

develops a dipole moment, according to equation 2.118. This dipole moment will oscillate

with many frequencies, including a component at ω1 + ω2 and radiate its energy like a

typical dipole that we already described in section 2.2.2. This quantum-mechanical pro-

cess is sketched in part (a) of figure 2-24. In dense materials, there are numerous of these

oscillators close together and if their phase relationship is just right, their radiated fields

interfere constructively, forming a strong beam in a single direction, which is illustrated

in part (b) of figure 2-24. When we talked about the scattering of light in section 2.2.2,

we already described how the intensity of such an interference field is proportional to N2,

if all N oscillators are in-phase. So even though the χ(2) contribution is fairly small, we

can still generate a decent signal with an appropriate laser setup, which is known as the

phase-matching condition.

To find this phase-matching condition, we need to solve Maxwell’s equations while

allowing for non-linearities in the polarisation. With equation 2.67 in section 2.2.4 we

already derived the wave equation for a linear polarisation, which we are going to take as

63



2.3 Light as a Tool 2 Principles

ω1

ω1 + ω2 ω1 + ω2
ω2 ω3 = ω1 + ω2
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Figure 2-24: Schematic illustration of the sum-frequency generation process. The atomic

response of a single oscillator is shown in part (a) and the enhanced radiation for multiple

oscillators in-phase is illustrated in part (b). Adapted from Boyd.86

our starting point:

∇2E− 1

c2
∂2E

∂t2
= − 1

ϵ0
∇(∇ ·P) + µ0

∂2P

∂t2
. (2.139)

Previously, we discussed how the first term on the right-hand side of this equation vanishes

for a linear polarisation response. In the case of non-linearities, this contribution is usually

non-vanishing but can still be neglected for most cases of interest. Specifically, in the

slowly varying amplitude approximation, which is valid as long as the amplitude of the

sum-frequency component does not change much in a distance of the order of an optical

wavelength, ∇(∇ ·P) is negligibly small. That leaves us with

∇2E− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
. (2.140)

For further convenience, we express the polarisation as

P = P(1) +P(NL), (2.141)

such that P(1) is the part that goes linearly with E and P(NL) describes the non-linear

contributions. With that, our equation becomes

∇2E− 1

c2
∂2E

∂t2
= µ0

∂2

∂t2
(
P(1) +P(NL)

)
(2.142)

⇔ ∇2E− µ0
∂2

∂t2
(
ϵ0E+P(1)

)︸ ︷︷ ︸
D(1)

= µ0
∂2P(NL)

∂t2
. (2.143)

Historically, the quantity D(1) = ϵ0E + P(1) was defined as part of a new vector D =

D(1) + P(NL) to express Maxwell’s equations in a simpler form. With equation 2.56 we

find that

D(1) = ϵ0E+ χ(1)ϵ0E = ϵ0 (1 + χ(1))︸ ︷︷ ︸
κ(1)

E, (2.144)
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where κ(1) is a real, frequency-dependent dielectric tensor, called the relative permittivity.

This is analogous to the definition we gave in equation 2.58 of section 2.2.3 because the

permittivity becomes a scalar in isotropic media. In general, however, the permittivity is

dependent on direction and expressed as a tensor, such that

∇2E− κ(1)

c2
· ∂

2E

∂t2
= µ0

∂2P(NL)

∂t2
, (2.145)

which has the form of an inhomogeneous wave equation with P(NL) appearing as the

source term that is driving the radiation.

In the case of a dispersive medium, we need to consider each frequency component

separately. Therefore, we express E and P(NL) as

E(r, t) =
∑
n

En(r)e
−iωnt + c.c and (2.146)

P(NL)(r, t) =
∑
n

P(NL)
n (r)e−iωnt + c.c, (2.147)

with the summation running over all positive frequencies. Incorporating this into equation

2.145, we get a wave equation for each frequency component of the field

∇2En(r) +
ω2
n

c2
κ(1)(ωn) · En(r) = − ω2

n

ϵ0c2
P(NL)

n . (2.148)

This frequency-domain wave equation is also known as a Helmholtz equation.

We first consider the simple homogeneous case of an absent source term. Here, we find

the solution to the Helmholtz equation for a plane wave that travels in the z-direction

and oscillates with the sum-frequency component ω3 as

E3(z, t) = E3(z)e
−i(ω3t) + c.c. = A3e

i(k3z−ω3t) + c.c., (2.149)

with

k3 =
n3ω3

c
and n2

3 = κ(1)(ω3). (2.150)

The last relation comes about due to equation 2.76 and we also disregarded local field

effects as well as the tensor character of κ(1), for reasons of simplicity. In this homogeneous

solution, the amplitude A3 is a constant. This is no longer the case, however, when we

include the non-linear source term. In good approximation, we can expect the solution

to be of the same form as 2.149 but with a slowly varying amplitude A3(z) if the source

term is not too large. Further, we represent the source term as

P3(z, t) = P3(z)e
−iω3t, (2.151)
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where the amplitude P3 can be expressed in terms of the amplitudes of the incident fields

as

P3(z) = 2ϵ0χ
(2)E1(z)E2(z), (2.152)

which is derived in detail by Boyd.86 The applied fields (i = 1, 2) are given by

Ei(z, t) = Ei(z)e
−iωit + c.c. = Aie

i(kiz−iωiz). (2.153)

Incorporating equation 2.149 with a varying amplitude A3(z) and the source term 2.152

into the Helmholtz equation 2.148, we end up with[
∂2

∂z2
A3(z) + 2ik3

∂

∂z
A3(z)− k2

3A3(z) +
ω2
3κ

(1)(ω3)

c2

]
eik3z + c.c.

= −2ω2
3

c2
χ(2)A1A2e

i(k1+k2)z + c.c.. (2.154)

With k2
3 =

ω2
3κ

(1)(ω3)

c2
the third and fourth term cancel. Furthermore, we do not lose

the equality if we drop the complex conjugate forms on either side, which simplifies the

equation to

∂2

∂z2
A3(z) + 2ik3

∂

∂z
A3(z) = −2ω2

3

c2
χ(2)A1A2e

i(k1+k2−k3)z. (2.155)

This form is usually simplified even further by saying that the first term on the left side

is much smaller than the second, which is the slowly varying amplitude approximation

that we mentioned earlier. We can, therefore, drop the first term and get

∂A3(z)

∂z
=

iω3

n3c
χ(2)A1A2e

i∆kz, (2.156)

where we introduced the wavevector mismatch ∆k = k1 + k2 − k3.

We solve equation 2.156 by integrating over the interaction length L of the non-linear

medium, such that

A3(L) =
iω3χ

(2)A1A2

n3c

∫ L

0

ei∆kzdz =
iω3χ

(2)A1A2

n3c

(
ei∆kL − 1

i∆k

)
. (2.157)

The intensity of the sum-frequency contribution is proportional to the square of this

amplitude. More specifically, the intensity is equal to the time average of the Poynting

vector, which is, according to Boyd,86

Ii = 2niϵ0c|Ai|2, i = 1, 2, 3. (2.158)

With that, we find the intensity of the generated wave as

I3 =
2ϵ0ω

2
3χ

(2)2|A1|2|A2|2

n3c

∣∣∣∣ei∆kL − 1

∆k

∣∣∣∣2, (2.159)
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Figure 2-25: Plot of the intensity of the sum-frequency signal in dependence of the

wavevector mismatch ∆k

which can be simplified even further with∣∣∣∣ei∆kL − 1

∆k

∣∣∣∣2 = L2

(
ei∆kL − 1

∆kL

)(
e−i∆kL − 1

∆kL

)
= 2L2 (1− cos(∆kL))

(∆kL)2

= L2 sin
2
(
∆kL
2

)(
∆kL
2

)2 ≡ L2sinc2
(
∆kL

2

)
. (2.160)

As the last step, we express I3 in terms of the intensities of the incident fields I1 and I2
with equation 2.158, which yields the final equation for the intensity of the sum-frequency

field as

I3 =
ω2
3χ

(2)2I1I2
2n1n2n3ϵ0c3

L2sinc2
(
∆kL

2

)
. (2.161)

By taking a closer look at equation 2.161, we can learn some very interesting aspects

about the sum-frequency signal. First of all, the intensity of SFG is proportional to

the intensity of each of the incident waves I1 and I2. Secondly, the strong quadratic

dependence indicates how the non-linear susceptibility plays a huge part in the strength

of the signal. Furthermore, we can finally see the strong influence of the wavevector

mismatch ∆k on the intensity of the sum-frequency wave, which is plotted in figure 2-25.

The condition

∆k = 0 (2.162)

is the phase-matching that we were looking for and we can see now, how the efficiency of

SFG is maximal at perfect phase-matching. Moreover, the intensity of the signal decreases

drastically, with some oscillations occurring, when the condition 2.162 is not met. On a
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microscopic scale, one can assume that all atomic dipoles are in-phase and add coherently

to the emitted signal when perfect phase-matching is achieved. Consequently, in such a

case the total power of the sum-frequency signal scales as the square of the number of

atomic oscillators that participate, as we have stated in the beginning. Furthermore, the

results we presented here are for the one-dimensional case but the three-dimensional case

leads to the same equations. However, there is one important aspect that we want to

mention. When the ki are represented by vectors, the wavevector mismatch in three di-

mensions necessarily leads to a directed beam in space, which is an inherent characteristic

of sum-frequency generation.

It should be noted that in equation 2.157 we specifically restricted our derivation to the

case where the amplitudes of the incident waves A1 and A2 are taken as constants. This

approximation is valid as long as the conversion of the input fields into the sum-frequency

field is not too large. In our experimental setup, we have a weaker field at a lower frequency

that corresponds to infrared radiation and a stronger field at a frequency in the visible

region. This process is known as upconversion because the weaker, information-carrying

wave is enhanced and shifted to higher frequencies, which usually makes it much easier

to detect. In this case, usually, only the amplitude of the stronger field A2 can be taken

as constant in equation 2.157 and the weaker field amplitude A1 becomes a function of z.

This situation leads to a somewhat more complicated formula than equation 2.161 due

to the more intricate dependence on the amplitude A1(z). However, the efficiency of the

sum-frequency generation near ∆k = 0 still roughly follows the curve in figure 2-25 and

is mainly dependent on the above-mentioned quantities. Therefore, we are not getting

into details about the so-called undepleted-pump approximation here but instead, refer

the interested reader to the thorough derivation by Boyd.86

Second-Order Non-Linear susceptibility

Now that we understand the impact of the phase-matching condition on the sum-frequency

signal, we are going to take a closer look at the influence of the second-order non-linear

susceptibility. As mentioned above, we utilise an upconversion setup with a weaker in-

frared beam and a beam in the visible region that converts the vibrational information of

the IR beam to a higher frequency. The susceptibility in equation 2.161 is the only quan-

tity that changes significantly with the IR frequency and is therefore solely responsible

for the vibrational information in our sum-frequency spectrum.67

In section 2.2.3 we introduced the atomic polarisability α and the (linear) suscep-

tibility as the proportionality factors that govern the microscopic and the macroscopic

polarisation of a system, respectively. In this sense, we can regard the susceptibility as the

macroscopic average of the atomic polarisability α. In equation 2.124 we expanded the

polarisation of a system into a power series to include non-linear terms and accordingly,
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we can also expand the microscopic polarisation in the same manner, such that

p = αE + βE2 + γE3 + . . . . (2.163)

The quantities β and γ are called second- and third-order hyperpolarisabilities and we can,

in analogy to the linear case, define the non-linear susceptibility χ(2) as the macroscopic

average of the second-order hyperpolarisability β. The complete formula for β requires a

lengthy quantum-mechanical derivation, using perturbation theory, which is why we are

only giving the results here.91 Specifically, one can show that

β ∝ Mν,kαν,i,j. (2.164)

The Mν,k are the components of the IR transition dipole moment that we defined in equa-

tion 2.106 and αν,i,j are the components of the Raman transition dipole moment, which

we did not specifically derive in this thesis.92 The exact form of the Raman components

is, however, not that important. The more crucial consequence of equation 2.164 is the

strong selection rule of vSFS, such that a resonance has to be both IR and Raman active

to be visible in a vSF spectrum.

The lineshape of such a resonance can be modelled with a Lorentzian that we already

derived in equation 2.43 because we can express the second-order susceptibility, similarly

to the linear case in equation 2.57, as

χ(2) =
∣∣χ(2)

nr

∣∣eiξ +∑
k

Ak

ω0,k − ωIR + iΓk

, (2.165)

with k running over all vibrational modes of the system. Accordingly, we find the intensity

as

Isf ∝

∣∣∣∣∣∣∣χ(2)
nr

∣∣eiξ +∑
k

Ak

ω0,k − ωIR + iΓk

∣∣∣∣∣
2

. (2.166)

Here, we included all of the contributions from β in the oscillator strength Ak, and ωIR and

Γk are the frequency of the IR beam and the damping constant, respectively. Furthermore,

in addition to the resonant contributions that we model with the Lorentzian part in 2.165

we also need to include any possible non-resonant contributions χ
(2)
nr =

∣∣∣χ(2)
nr

∣∣∣eiξ from the

medium or the interface layer. The energy diagram of vibrationally resonant and non-

resonant processes is illustrated in figure 2-26. Also, the non-resonant background can

interfere with the resonant part and produce distorted lineshapes, depending on the phase

relation ξ between the two. This is especially prominent on metal surfaces such as gold,

which shows a strong non-resonant response in the visible region.9 Our samples, however,

are on glass and we can disregard the non-resonant contribution in equation 2.165 for the

most part.
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Figure 2-26: Energy diagram of the sum-frequency processes. The infrared beam either

corresponds to a vibrational level of the molecule and resonantly enhances the signal (a)

or it does not and the radiation is only scattered weakly (b). Adapted from Lambert et

al.67

In the last part of this subsection, we are finally tackling the tensor character of the

susceptibility. For reasons of simplicity, we approximated the polarisation and hence the

susceptibility as a scalar in the previous sections. This, however, is only accurate in

isotropic materials, which are independent of direction. In general, matter can react quite

differently to, say an electric field in the x-direction than in the y-direction, like the bire-

fringent materials that we discussed in section 2.2.3. In this sense, the linear susceptibility,

which is the proportionality factor between the polarisation P and an applied electric field

E, has 3× 3 = 9 components, one for each combination of cartesian coordinates Pi and

Ei with i = (x, y, z). In the non-linear sum-frequency process, we are mixing two electric

fields, which results in even more combinations, such that the second-order non-linear

susceptibility χ(2) becomes a third-rank tensor with 3×3×3 = 27 possible combinations.

These 27 elements of χ(2) do not, however, all contribute to the sum-frequency signal.

Usually, only very few of these elements are independent and contain information. To

find these elements, we need to remind ourselves why every even-order contribution to

the susceptibility vanishes in centrosymmetric media. The reason is that we find both of

the following equations to be true:

χ
(2)
ijk = χ

(2)
−i−j−k (2.167)

χ
(2)
ijk = −χ

(2)
−i−j−k. (2.168)

The first equation is the definition of a centrosymmetric medium and the second equation

is due to the tensor nature of χ(2) because a change in the sign of each index is the

same as reversing the axis system, such that the physical information in χ(2) must also

reverse the sign. Both of these equations can only be true for χ(2) = 0, which is the

non-centrosymmetric rule for even-order non-linear processes that we already discussed

in subsection 2.3.4.
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Figure 2-27: Illustration of a planar surface that is symmetric about the surface normal.

Adapted from Lambert et al.67

In this thesis and also most vSFS setups, the molecular sample is put on an isotropic

surface and in our case, the molecules themselves are long enough to constitute their own

isotropic bulk. Under these circumstances, we can generate a sum-frequency signal at

the interfaces where the different media come together. These interfaces are considered

to have a C∞ rotational axis, such that they are isotropic in the xy-plane but not in the

z-axis, as depicted in figure 2-27. This C∞ symmetry only forces the components of χ(2)

in the xy-plane to obey the relations in 2.167 and 2.168. Thus, one finds that all except

7 of the contributions to χ(2) vanish and more specifically one can show that only the

quadratic terms in x and y are nonzero, with zzz being the exception. The complete set

of combinations is given by:67

xxx xyx xzx yxx yyx yzx zxx zyx zzx

xxy xyy xzy yxy yyy yzy zxy zyy zzy

xxz xyz xzz yxz yyz yzz zxz zyz zzz

Since the x and y contributions are equivalent in the isotropic surface, we are left with 4

independent, nonzero components χ
(2)
ijk that can generate a sum-frequency signal. These

contributions are

χ(2)
zxx(= χ(2)

zyy), χ(2)
xzx(= χ(2)

yzy), χ(2)
xxz(= χ(2)

yyz) and χ(2)
zzz. (2.169)

By carefully aligning our linearly polarised incident beams to specific polarisation com-

binations, we can selectively probe these contributions because the electric field vector

may oscillate solely in the y-dimension or the xz-plane. Figure 2-28 shows the sketch of

a common sum-frequency geometry at an interface. The reflected SF angle βsf,r can be

calculated, according to the phase-matching condition, with

n(ωsf)ωsf sin(βsf) = n(ω1)ω1 sin(β1) + n(ω2)ω2 sin(β2), (2.170)

where n(ω) is the refractive index of the medium that the beam in consideration travels

through.67 Note that both the reflected and the refracted angle can be calculated with

2.170.
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Figure 2-28: Schematic overview of sum-frequency generation at an interface between

two media with refractive indices n1 and n2. Shown is the ssp polarisation for the sum-

frequency signal (blue), the visible upconversion (green) and the infrared beam (red),

respectively.

In figure 2-28 we illustrated the polarisation combination ssp, which usually refers to

the corresponding beams by decreasing frequency ωsf > ωvis > ωir. The s-polarised beams

are perpendicular (German ”senkrecht”) to the incident xz-plane and the p polarised

beam is parallel (German ”parallel”) to that plane and therefore only oscillates in the

y-dimension.

Specifically, four polarisation combinations correspond to nonzero components of χ(2),

namely ssp, sps, pss and ppp. One can show that these combinations correlate to effective

susceptibilities, measured in an experiment. These effective susceptibilities are given by93

χ
(2)
eff,ssp =Lyy(ωsf)Lyy(ωvis)Lzz(ωir) sin(βir)χ

(2)
yyz, (2.171)

χ
(2)
eff,sps =Lyy(ωsf)Lzz(ωvis)Lyy(ωir) sin(βvis)χ

(2)
yzy, (2.172)

χ
(2)
eff,pss =Lzz(ωsf)Lyy(ωvis)Lyy(ωir) sin(βsf)χ

(2)
zyy, (2.173)

χ
(2)
eff,ppp =− Lxx(ωsf)Lxx(ωvis)Lzz(ωir) cos(βsf) cos(βvis) sin(βvis)χ

(2)
xxz

− Lxx(ωsf)Lzz(ωvis)Lxx(ωir) cos(βsf) sin(βvis) cos(βvis)χ
(2)
xzx

+ Lzz(ωsf)Lxx(ωvis)Lxx(ωir) sin(βsf) cos(βvis) cos(βvis)χ
(2)
zxx

+ Lzz(ωsf)Lzz(ωvis)Lzz(ωir) sin(βsf) sin(βvis) sin(βvis)χ
(2)
zzz. (2.174)

The β are the incident and reflected angles according to figure 2-28 and Lii(ω) are the

diagonal elements of L̃(ω), called the Fresnel factor at frequency ω. These Fresnel factors
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are given by93

Lxx(ω) =
2n1(ω) cos(βt)

n1(ω) cos(βt) + n2(ω) cos(βi)
, (2.175)

Lyy(ω) =
2n1(ω) cos(βi)

n1(ω) cos(βi) + n2(ω) cos(βt)
, (2.176)

Lzz(ω) =
2n2(ω) cos(βi)

n1(ω) cos(βt) + n2(ω) cos(βi)

(
n1(ω)

n′(ω)

)2

. (2.177)

According to figure 2-28, the angles βt and βi are the transmitted and incident angles

of the beam in consideration, respectively. The quantity n′(ω) is the refractive index

of the interface between the two media, which can be quite different from either n1 or

n2 and difficult to measure. However, the calculation of the molecular orientation is

quite sensitive to n′ and finding a good approximation for this value is crucial for the

determination of the orientation angle.

Specifically for our samples, i.e. arachidic acid, we are mostly interested in the sym-

metric and antisymmetric stretching vibrations of the methyl group (CH3). One can show

that for the symmetric stretch, the hyperpolarisability tensor only has two non-vanishing

independent elements βccc and βaac = βbbc and the antisymmetric stretch spectra depend

on one independent element βcaa.
93 Here, axis c is the principal axis of the methyl group

and the ab-plane is perpendicular to that. Assuming C3v symmetry for the methyl group,

one can now determine the relationship between elements of the susceptibility tensor in

the lab coordinate system (xyz) and the hyperpolarisabilities in the molecular coordinate

system (abc).94 For the symmetric stretch, we have

χ(2)
xxz,s = χ(2)

yyz,s =
1

2
Nsβccc

[
cos(θ)(1 + r)− cos3(θ)(1− r)

]
, (2.178)

χ(2)
xzx,s = χ(2)

yzy,s = χ(2)
zxx,s = χ(2)

zyy,s =
1

2
Nsβccc

[
cos(θ)− cos3(θ)

]
(1− r), (2.179)

χ(2)
zzz,s = Nsβccc

[
r cos(θ) + cos3(θ)(1− r)

]
, (2.180)

with the number density of molecules Ns, the relation βaac = rβccc and the orientational

angle θ of the molecular axis c to the surface normal. For the antisymmetric stretching

vibration, we have

χ(2)
xxz,as = χ(2)

yyz,as = −1

2
Nsβcaa

[
cos(θ)− cos3(θ)

]
, (2.181)

χ(2)
xzx,as = χ(2)

yzy,as = χ(2)
zxx,as = χ(2)

zyy,as =
1

2
Nsβcaa cos

3(θ), (2.182)

χ(2)
zzz,as = Nsβcaa

[
cos(θ)− cos3(θ)

]
. (2.183)

From these equations, it becomes obvious how sensitive the vSF spectra are to the tilt

angle θ of the methyl group. Furthermore, in this calculation, we assumed the same tilt
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angle for all the molecule that generates our sum-frequency signal. In reality, however,

even a well-ordered monolayer has a certain distribution of tilt angles and one needs to

average over this distribution to make the calculations accurate.

This concludes not only our introduction to vibrational sum-frequency generation but

also the theoretical part of this thesis altogether. In this last subsection, we learned about

the important quantities that constitute the intensity of the sum-frequency signal as well

as the importance of the phase-matching condition. Furthermore, we determined that a

vibrational mode can only be observable in vSFS if it is both Raman and IR active, which

is a strong selection rule of vSFS. Lastly, we tackled the tensor nature of the susceptibility

and found that there are only four independent contributions to χ(2), which can be probed

with specific polarisation combinations of the three interacting beams.
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Chapter 3

Experimental Aspects

The third chapter is intended to cover all experimental details that are relevant to our

research. The outline of this chapter is as follows: We begin by giving a complete overview

of the table setup and all components. Subsequently, we illustrate the pump-probe ap-

proach in general and specifically show how the spectroscopic information is processed.

Lastly, we introduce the sample preparation and the samples themselves that we are going

to investigate.

3.1 Table Setup

Our experiments are performed in a semi-controlled environment on an optical table. We

say semi-controlled because even though we can regulate the airflow and climate in the

laboratory to a certain degree, there are still significant fluctuations in laser power on very

hot or rainy days. This has been taken into account and one can usually tell immediately

if the environment is stable during a measurement or not.

On the optical table itself, we devised a novel time-resolved pump-probe vibrational

spectroscopy setup that utilises a narrowband IR pulse as the pump excitation and follows

up with the sum-frequency signal of a broadband IR - narrowband visible pulse pair as

the probe. We call this experiment Time-Resolved 2-Colour Vibrational Sum-Frequency

Spectroscopy. To emphasize the novelty of our setup, we decided to use the term 2-Colour

Spectroscopy as an indicator for completely independent pump and probe pulses. Most

pump-probe spectroscopy setups feature a pump and a probe beam that originate from the

same source, effectively resulting in coherent pulses, which is known as 2D-spectroscopy.

In theory, the novelty of our experiment allows us to pump a distant vibrational mode

and observe any spectral region of interest to investigate the vibrational energy flow in

the molecule.

Figure 3-1 is an illustration of our setup on the optical table. All beams are parallel to

the table and meet at the entrance of the sample stage, which is illustrated in figure 3-2.
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Figure 3-1: A schematic overview of our table setup. This illustration is taken with

permission from the published dissertation of my senior coworker Michael Lackner, with

whom I have been working on this project.53
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Figure 3-2: Schematic overview and beam geometries of the sample stage. This illus-

tration is taken with permission from the published dissertation of my senior coworker

Michael Lackner, with whom I have been working on this project.53

76



3 Experimental Aspects 3.1 Table Setup

The sample stage is an optical table element that is attached to the main table vertically,

such that all the beams can now travel in a plane that is orthogonal to the main table.

In the following subsection, we are going to take a closer look at all of the components in

our setup.

3.1.1 Components

The heart of our setup (figure 3-1) is the Light Conversion: Pharos PH1 (Pharos) that

was designed and manufactured by Light Conversion in Lithuania. This powerful machine

generates laser pulses at 1028±5 nm with a repetition rate of 2 kHz, a pulse length of< 300

fs and pulse energies of 1.9 mJ. The output of the Pharos drives the Light Conversion:

Orpheus-Twins (B5) and the Light Conversion: Second Harmonic Bandwidth Compressor

(SHBC) (B6). The Pharos is also connected to the Ekspla: APL2210D-TR diode-pumped

Nd:YAG laser (B7), which was designed and manufactured by Ekspla also in Lithuania.

Technically speaking, the Ekspla system would also run without the Pharos, but we do

need to seed the Pharos output into the Expla system to be able to synchronise our pulses.

SHBC - upconversion pulse

These three devices that are connected to the Pharos generate all of the pulses that

we need to investigate our samples. First of all, we have the SHBC that generates the

upconversion pulse for our sum-frequency probe (B1). This visible pulse is the second

harmonic of the Pharos output with a centre wavelength of around 515 nm, a bandwidth

of < 10 cm−1 and pulse energies of 33 µJ with a repetition rate of 2 kHz.

In the beam path, we have a movable stage (Micos: Phytron / Micos SMC Controller)

to delay or advance the point in time when the pulse hits the sample. This delay stage

is 25 mm long, which corresponds to a total delay of 2·25mm
c

≈ 167 ps and the minimal

displacement is 1µm (≈ 6.7 fs). After that, we installed a telescope (L1 and L2) to

manipulate the diameter of the beam. The specifications of each of the lenses are given

in table 3-1. The next optical elements are a half-wave plate (H1) and a polarising

beam splitter cube (P1). This construction serves as a simple attenuator because P1 only

allows horizontally polarised light to pass and the vertical component is reflected into a

Power Meter (Thorlabs: S121C / PM100USB Controller). This way we can attenuate

the power of the transmitted beam with H1 and by measuring the residue reflected power

we can calculate the approximate power that arrives at the sample at all times. The next

object in the beam path is another half-wave plate to manipulate the polarisation of the

attenuated beam. The beam is then directed to the sample stage (see 3-2) and focused

with a lens (L3) on the sample at a 45◦ angle with respect to the surface normal.
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Table 3-1: List of all lenses that are used in our setup (see figure 3-1 and 3-2 for reference).

Lense Material Focal Length (mm) Location

L1 BK7 75 Telescope SHBC

L2 BK7 75 Telescope SHBC

L3 BK7 500 Sample Focus SHBC

L4 CaF2 -40 Telescope Twin

L5 CaF2 25 Telescope Twin

L6 CaF2 100 Sample Focus Twin

L7 CaF2 75 Telescope Ekspla

L8 CaF2 75 Telescope Ekspla

L9 CaF2 150 Sample Focus Ekspla

L10 BK7 125 Sum-Frequency Probe Collimator

L11 BK7 175 Sum-Frequency Pump Collimator

L12 BK7 150 Spectroscope Entrance

L13 BK7 75 Sample Camera

L14 BK7 75 Sample Camera

Twin - broadband IR pulse

The next device we are going to address is the Orpheus-Twins. The Twins are two

independent optical parametric amplifiers that can both generate broad IR pulses with

a FWHM of roughly 200 cm−1 and a pulse length of about 300 fs at a repetition rate of

2 kHz. The wavelength of the twins can be tuned from 1300 nm up to 19500 nm with

the help of an additional DFG unit (Light Conversion: Lyra) and reach pulse energies

ranging from 100µJ to 0.1µJ. In our spectral region of interest about 3400 nm we usually

expect pulse energies of roughly 25µJ. In our experiment, we are only using one arm of

the twins to generate the broad IR pulse for our sum-frequency probe (B2).

The first optional optical element in the beam path is a half-wave plate (H3). The

problem we need to circumvent with this wave plate is the following: For all of our exper-

iments, we need the broad IR pulse to be p-polarised, which is the default configuration

of the output of the twins. However, to probe low energy regimes (wavelength of approx

> 3800 nm) the system requires the use of the Lyra unit, which switches the default out-

put polarisation to s. To avoid the need to put a half-wave plate into the broad IR pulse,

which not only needs to be adjusted for different wavelengths but also absorbs quite a lot

of the pulse energy, we decided to rotate the Lyra by 90◦ and adjust the polarisation of

idler and signal output of the twin with H3.

Attached to the Lyra is an interchangeable filter that is necessary to filter any unwanted

residue idler/signal output. The next optical element is a telescope with lenses L4 and
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L5 to manipulate the beam diameter, which is a surprisingly powerful tool to optimise

the effective overlap of our pulses. The reason for the use of a concave lens is plainly the

limitation of space on the optical table. In the sample stage, the beam is focused on the

sample with lens L6 at a 60◦ angle to the surface normal. Down the path, there is an

optional motorised flip-mirror (Thorlabs: MFF101 (FM1)) that directs the beam onto a

Power Meter (Thorlabs: TD10XP / National Instruments PCIe-6321 DAQ-Board (PM2))

to obtain an approximate measure of the pulse energy that arrives at the sample. Usually,

the Twin pulses lose about half of their energy due to absorption in optical elements and

the atmosphere, which puts them at around 13µJ.

Ekspla - narrowband IR pulse

The last device that we need to introduce is the Ekspla system, which generates our

narrowband IR pump pulses (B3). As we mentioned before, the Ekspla system can run on

its own but is seeded by the Pharos to ensure the synchronisation of our pulses. The first

box (Ekspla: APL2210D-TR) generates pulses of 1064 nm at a repetition rate of 1 kHz,

which is half the rate of the Pharos. These pulses (B8 and B9) power the Ekspla: PG711-

DFG unit that generates pulses ranging from 1540 nm to 16000 nm with a bandwidth of

< 10 cm−1 and respective energies of 560µJ to 3µJ. Unfortunately, the Ekspla system

switches to the DFG regime at 3440 nm, which not only changes the polarisation of the

output from vertically to horizontally but also slightly changes the beam pathing. We

have yet to find a reliable solution to this problem, which is why most of our scanning

experiments stop at a pump wavelength of 3439 nm.

The first optical element in the beam path is a telescope with lenses L7 and L8 for

the option of manipulating the beam diameter. After that, we have an optional half-wave

plate (H3) to be able to change the polarisation. The next element in the beam path

is a movable stage (Micos: LS-180 / MoCo DC Controller) for delaying or advancing

the pump pulse in time. The total displacement covered by the stage is 30.5 cm, which

corresponds to a delay of 2·30.5 cm
c

≈ 2 ns and the minimal displacement is 2.46µm (≈ 16.4

fs). The beam is then directed to the sample stage and with another flip-mirror (Thorlabs:

MFF101 (FM2)) it is possible to measure the pump power on a power meter (Thorlabs:

TD10XP / National Instruments PCIe-6321 DAQ-Board (PM3)) to approximate the

energy of the pulses when they arrive at the sample. The pump beam is then focussed

onto the sample via lens L9 at an angle of 60◦ to the surface normal but opposite to the

other two beams.

We chose this geometry because the pump pulse can also interact with the upconversion

pulse and generate quite a strong sum-frequency signal itself. According to equation

2.170, the angle of the reflected sum-frequency beam does not change much for different

IR angles. Also, in a co-propagating geometry, the pump-SF signal usually also hits

the spectrometer as unwanted stray light. With our counter-propagating geometry, we
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significantly alter the angle of the reflected pump-SF signal and block most of it from

entering the spectrometer. However, we also have the option to observe the pump-SF

signal, which is first collimated by lens L11 and directed onto an optional mirror with a

magnetic mount (MM). This way, the pump-SF signal is directed onto the camera and the

probe-SF signal is blocked. Observing the pump-SF signal is useful to find the temporal

and spatial overlap of all three pulses and also to gain spectral information about the

pump pulse.

The last beam we have to cover is the generated sum-frequency probe pulse (B4) that

originates in the sample. The first optical element in the SF-beam path is a lens (L10)

to collimate the diverging beam. The pulse is then directed onto a Galvanometer mirror

(Cambridge Technology: 6240H (GM)), whose function is discussed in greater detail in

the next section. The next optical element is a prism, which we use here instead of

mirrors to minimise the losses in beam power. Going further, we have a Glan-Thompson

polariser (Thorlabs: GTH10M-A) to choose what polarisation we want to resolve in a

given experiment. After the Glen-Thompson, we do, however, need to make sure that the

residual beam is p-polarised because the optical grating in the spectrometer is optimised

for p-polarised light. We achieve this with another half-wave plate in the beam path

(H5). The pulse is then focussed on the optical grating of the spectrometer with lens

L12. The last optical element in front of the spectrometer’s slit is a short pass filter

(Thorlabs: FESH0500 (F2)). This filter is necessary because the reflection angle of the

upconversion pulse B1 is very close to that of the sum-frequency beam, which is why we

detect a significant amount of stray light without the filter. The cutoff wavelength of the

filter is 500 nm so that the upconversion pulse at ≈ 515 nm is mostly blocked and our

sum-frequency signal at around 447 nm is transmitted.

The beam then enters our spectrometer (Acton: SpectraPro-300i), which has a focal

length of 300 mm and features a holographic grating (Princeton Instruments). This

optical grating is optimised for the visible spectral range and has a groove density of

2400 gr/mm. Attached to the exit of the spectrometer is an electron-multiplying charged

coupled device camera (Andor: iXon Ultra 897 (CCD)). This camera has a resolution of

512× 512 pixels and each of these pixels has an edge length of 16µm. Together with the

groove density and length of the spectrometer, this corresponds to a spectral resolution

of 0.74 cm−1 per pixel and a total spectral range of ≈ 380 cm−1.

At last, we need to cover the elements on the table that are not in any beam paths.

For one, we have the motorised table that our samples are put on, which is a combination

of two movable linear stages Micos: Phytron / Micos SMC Controller and one vertical

stage Standa: 8MVT40-13-1 / Standa 8SMC5-USB-B8-1 Controller. This sample table is

adjustable in all three spatial directions. For arbitrary reasons, we define the yz-plane as

being parallel to the optical table and the v-axis changes the height of the sample table.

This way, we can choose to irradiate a different spot on the same sample or switch to
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another sample by moving the table in the yz-plane. For samples of different heights, on

the other hand, we need to adjust the v-position of the table. To find the correct height

for different samples such that our beam geometry is still aligned, we chose to observe the

magnified, visible spot of our upconversion beam with a CMOS camera and two lenses

L13 and L14 attached right above the sample table. Also, by removing the optical filters

in front of the CMOS sensor, we can see some residual IR radiation from our other spots

as well. This way we can find the first rough spatial overlap of our beams by observing

the spots on the camera screen.

The only device on the table that we have not yet introduced is a function generator

(Tektronix: AFG1062 ). This function generator is necessary to synchronise the Gal-

vanometer mirror with the laser pulses and will be explained further in a later subsection

when we address the importance of the Galvanometer mirror to our system. But first, we

are going to take a closer look at the optical properties of each of our laser pulses.

3.1.2 Laser Pulse Characterisation

Each of our three laser systems generates pulses that are characterised by a temporal

length and a spectral width. It is important to know about these characteristics for several

reasons. First of all, we want to populate a single vibrational level in our molecules and

track the energy flow that originates from this single excitation. Therefore, our pump

pulse has to be spectrally narrow, which necessarily results in a longer pulse duration.

This temporal length, on the other hand, is the limiting factor in our ability to track

the initial dynamics because when pump and probe pulses are in temporal overlap we

are effectively blind to any dynamics. In this sense, we can only track dynamics on a

timescale longer than the temporal length of our pump pulse. Secondly, the IR pulse of

our sum-frequency probe has to be spectrally broad and temporally narrow. The broad

spectrum is advantageous to observe multiple vibrational levels simultaneously by taking

a single snapshot of the system after the initial pump excitation. The temporal length of

our probe IR pulse governs the temporal resolution that we can achieve with our probe

setup. Lastly, the upconversion pulse from the SHBC governs our spectral resolution

because every vibrational level that is populated by the probe IR is broadened by the

upconversion bandwidth. Therefore, we want the SHBC pulse to be spectrally narrow

and temporally broad.

Because we cannot directly observe the temporal profile of the pulses, we need to resort

to other means of extracting these optical properties. One commonly deployed method is

called the cross-correlation. The cross-correlation of two continuous functions f(x) and

g(x) is defined as

(f ⋆ g)(x) =

∫ ∞

−∞
f(τ)g(x− τ) dτ , (3.1)
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which simply implies a shift of one signal to the other. In our case, we can generate

a cross-correlation for example by observing the SHBC-Twin sum-frequency spectrum,

while delaying the SHBC beam with respect to the IR beam from the Twins in time. This

sum-frequency spectrum, however, cannot feature any resonances and should overall not

vary in the spectral range of interest in order to properly mirror the intensity distribution

of the pulses. We can achieve this for example by generating a sum-frequency signal

utilising the non-resonant background from a gold surface. Furthermore, we need to

make sure that the coherence time of the sum-frequency excitation is shorter than the

convoluted pulse length, otherwise, we artificially stretch the pulse in time. This, however,

is also given for a gold surface.

From this convoluted sum-frequency signal, we can then learn about the spectral and

temporal properties of each of the single pulses, as we will see in the following. We assume

that our pulses are Gaussian shaped, such that

f(x) = e
− x2

2σ2
f and (3.2)

g(x) = e
− x2

2σ2
g , (3.3)

with standard deviations σi, widths FWHMi = 2
√
2 ln 2σi and in our case the variable x

can either represent time or wavenumber. Further, we set the height of each function to

unity and centred the curves around the origin, for reasons of simplicity. With that, we

can express the cross-correlation of our two functions as

(f ⋆ g)(x) =

∫ ∞

−∞
e
− τ2

2σ2
f e

− (x−τ)2

2σ2
g dτ

= e−bx2

∫ ∞

−∞
e−(a+b)τ2+2bxτ dτ with a =

1

2σ2
f

, b =
1

2σ2
g

= e−bx2

e
b2x2

a+b

∫ ∞

−∞
e−

b2x2

a+b e−(a+b)τ2+2bxτ dτ

= e−bx2+ b2x2

a+b

∫ ∞

−∞
e
−(

√
a+bτ− bx√

a+b
)2
dτ

= e−
abx2

a+b

∫ ∞

−∞
e−(a+b)(τ− bx

a+b
)2 dτ︸ ︷︷ ︸√

π
a+b

= Ae
− x2

2(σ2
g+σ2

f
) .

(3.4)

Comparing this result to our Gaussian functions, we find that the cross-correlation of two

Gaussian-shaped pulses is also Gaussian and their widths are related by

FWHM2
f⋆g = FWHM2

f + FWHM2
g. (3.5)
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Figure 3-3: Cross-correlation of SHBC and Twin output. This data represents the sum-

frequency signal from a gold surface of the upconversion pulse with the broadband IR

pulse for different delay times of the upconversion pulse. The colour scale indicates the

normalised intensity of the sum-frequency signal and the green lines depict slices through

the data. The data points of the horizontal slices are plotted in figure 3-4 (a) and the

ones of the vertical slices are plotted in subplot (b).

Figure 3-4: Subplot (a) shows the temporal profile of the cross-correlation of the SHBC

and Twin output. The data points are taken from figure 3-3, illustrated by the green

horizontal line. Subplot (b) shows the spectral profile of the same cross-correlation, which

is visualised as the green vertical line in figure 3-3
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With our spectrometer, we can observe the sum-frequency signal of the SHBC-Twin

pulse pair but also the sum-frequency signal of the SHBC and Ekspla output. First,

we are going to take a look at the cross-correlation of the SHBC-Twin pulse pair. In

figure 3-3 we can see a three-dimensional plot of the non-resonant sum-frequency signal

of the SHBC and Twin output for different SHBC delays. Each vertical set of data points

represents a sum-frequency spectrum with the relative intensity indicated by the colour

scale. The x-axis represents the delay in time of the SHBC pulse with respect to the Twin

pulse.

We can now extract the spectral and temporal profile of our convoluted pulses by

taking different sets of data points from the cross-correlation. This is indicated by the

horizontal and vertical green lines going through the spectrum in figure 3-3. The data set

of the horizontal slice is plotted in figure 3-4 (a) and represents the temporal profile of

our SHBC-Twin cross-correlation with a FWHM of ≈ 3.4 ps. Depending on daily external

conditions, the Pharos slightly changes the form of this temporal profile but the data that

are shown here do represent a profile that we usually observe. In the last subsection, we

gave the approximate optical characteristics that were given by the manufacturer. From

this, we know the Twin output is roughly ∆tTwin ≈ 300 fs long and the SHBC spectrally

compresses the Pharos pulse to generate a narrowband signal, which necessarily results in

a stretched pulse in time. We can, therefore, expect the upconversion pulse to be at least

one order of magnitude longer than our broadband IR pulse. This, on the other hand,

lets us disregard the width of the broadband IR in equation 3.5 and we find the length of

the upconversion pulse to be ∆tSHBC ≈ 3.4 ps.

The data set indicated by the vertical slice in figure 3-3 is plotted in figure 3-4 (b)

and represents the spectral profile of the SHBC-Twin cross-correlation with a FWHM of

≈ 220.3 cm−1. The spectral width of the SHBC output was measured by one of the service

technicians during a service visit in August 2019 to be ∆νSHBC ≈ 8.6 cm−1 and we expect

the Twin output to be at least one order of magnitude broader than this value. With the

same arguments as before, we can therefore disregard the smaller length in equation 3.5

again and find the spectral width of the broadband IR pulse to be ∆νTwin ≈ 220.3 cm−1.

With the magnetic mirror mount (MM in figure 3-2) that we mentioned in the last sub-

section, we can block the Twin-SHBC sum-frequency signal and instead focus the Ekspla-

SHBC SF signal into the spectrometer. This way we can observe the cross-correlation

of pump and upconversion pulses by changing the upconversion delay accordingly. This

three-dimensional plot is shown in figure 3-5. Same as before, the x-axis represents the

delay in time of the SHBC pulse to the pump pulse, the y-axis shows the spectral infor-

mation and the colour scale indicates the relative intensity of the sum-frequency signal.

Again, we begin by extracting the temporal profile from the data set indicated by the

horizontal green line in figure 3-5, which is plotted in figure 3-6 (a). Here, however, we

are convoluting two pulses with similar temporal widths so we cannot just disregard the

smaller quantity in equation 3.5 as we did before. Instead, we use the results from the
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Figure 3-5: Cross-correlation of SHBC and Ekspla output. This data represents the sum-

frequency signal from a gold surface of the upconversion pulse with the narrowband IR

pulse for different delay times of the upconversion pulse. The colour scale indicates the

normalised intensity of the sum-frequency signal and the green lines depict different sets

of data. The data points of the horizontal slices are plotted in figure 3-6 (a) and the ones

of the vertical slices are plotted in subplot (b).

Figure 3-6: Subplot (a) shows the temporal profile of the cross-correlation of the SHBC

and Ekspla output. The data points are taken from figure 3-5, illustrated by the green

horizontal line. Subplot (b) shows the spectral profile of the same cross-correlation, which

is visualised as the green vertical line in figure 3-5
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Table 3-2: Collection of the spectral and temporal widths of our pulses that were extracted

from cross-correlation measurement. All values are approximated by the FWHM of a

Gaussian profile. The FWHM of the SHBC output ∆νSHBC is taken from a service report

measurement in August 2019.

FWHM SHBC Twin Ekspla

∆t (ps) 3.4 0.30 15.1

∆ν (cm−1) 8.6 220.3 3.8

last paragraphs to calculate the temporal width of the pump pulse as

∆tEkspla =
√

∆t2Ekspla-SHBC −∆t2SHBC

≈
√

15.5 ps2 − 3.4 ps2 = 15.1 ps. (3.6)

Similarly, we can extract the spectral width of the pump pulse from the spectral profile

that is plotted in figure 3-6 (b) from the vertical data points in figure 3-5. Here, we find

∆νEkspla =
√
∆ν2

Ekspla-SHBC −∆ν2
SHBC

≈
√

9.4 cm−12 − 8.6 cm−1 = 3.8 cm−1. (3.7)

Table 3-2 is an overview of the optical properties that we extracted from the cross-

correlation measurement except for the spectral width of the SHBC, which is taken from

a service report measurement. Note, that these values represent approximations since

our pulses are subjective to daily fluctuations and do not mirror a ”clean” Gaussian

profile. However, we can still expect the ”true” values to be at least of the same order of

magnitude.

With that, we can link back to the introductory paragraph of this subsection by re-

viewing the demands on our laser system. First of all, the spectral width of our pump

laser ∆νEkspla ≈ 3.8 cm−1 is narrow enough to excite a single vibrational mode and the

corresponding temporal width ∆tEkspla ≈ 15.1 ps prohibits the tracking of dynamics of

significantly faster timescales. Secondly, we can track vibrational modes with a single

shot in a spectral area of ∆νTwin ≈ 220.3 cm−1 and the temporal width of our probe

IR pulse ∆tTwin ≈ 300 fs represents the temporal resolution that we can achieve in our

experiments. Lastly, the resonances in our spectrum are broadened by the spectral width

of the upconversion pulse ∆νSHBC ≈ 8.6 cm−1, which dominates the spectral resolution in

our experiments.
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3.2 Pump-Probe Spectroscopy

In previous sections, when we talked about our pump-probe approach we did so in a

superficial manner, without getting into much detail. Our setup, however, was carefully

planned and built with a specific idea in mind and this section aims to convey this idea to

the reader. The general pump-probe approach that we are using to track the vibrational

energy transfer is sketched in the first subsection. Subsequently, we present the collected

raw data and specifically show how insight into the vibrational dynamics is gained.

3.2.1 The Idea

The overall goal of our experiments is to track the vibrational energy flow in our molec-

ular monolayer. To this end, we hit the sample with our narrowband IR pump pulse

and transition the system into a non-equilibrium state, which is illustrated in figure 3-

7 (a). Usually, we expect an order of 10% of molecules that are excited in the beam

spot with every pulse. These molecules then populate a high energetic vibrational level,

corresponding to the photon energy of the pump pulse.

In section 2.3.2 we explained how the vibrational energy is not ’trapped’ in a state

forever but is instead transferred to other degrees of freedom through anharmonic coupling

mechanisms that depend on the system. It is, therefore, safe to assume that our molecules

will also experience some sort of gradual population decay of the initially excited mode

by transferring the vibrational energy into other degrees of freedom. One way of tracking

this energy flow is to observe all vibrational levels of the system at different points in

time, effectively mapping the population of states of the system. This idea is illustrated

in figure 3-7 (b).

Now, to get the information about the population of different states in the monolayer

we need the probing part of our setup. With the tunable broadband IR - upconversion

pulse pair we can generate a sum-frequency spectrum in a region that contains multiple

vibrational levels to take a ’snapshot’ of the intensities of these resonances at different

points in time. By comparing the intensities of this spectrum with one of the same systems

in equilibrium, we can extract information about the population of that particular state

at a specific time. This is because the molecules that are already in an excited state

become transparent to photons of the energy that corresponds to the excitation of this

particular state, which necessarily reduces the intensity of the sum-frequency signal.

With that, we can compare the sum-frequency signal at various points in time with the

unpumped reference spectrum to observe the pump effect on a specific vibrational mode,

called the bleach. This is schematically illustrated in figure 3-8 in the case of a singular

observed resonance. From the recovery time of the bleach of this particular resonance, we

learn about the timescales of the population decay. Also, by probing different vibrational

modes we can track through which pathways the energy flows in the system.
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Figure 3-7: (a) The narrowband pump IR pulse excites ≈ 10% of the irradiated molecules

to a high vibrational level. (b) Through anharmonic coupling we expect this vibrational

energy to be transferred into other degrees of freedom on different timescales. This is

illustrated on the right, which shows the population of states at different times.
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Figure 3-8: With our sum-frequency probe, we can monitor selected resonances at dif-

ferent times. Comparing the sum-frequency spectra with the unpumped reference then

allows us to calculate the transient bleach on these resonances and obtain information

about the population decay of excited levels.
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Naturally, for this to work, every sum-frequency spectrum that our camera captures

needs to be accompanied by an unpumped reference spectrum to accurately determine

the bleach. This is where the Galvanometer mirror (GM in figure 3-2) comes into play. A

Galvanometer mirror changes its angle in dependence on an applied voltage, which is in

our case given by the function generator that we mentioned in section 3.1.1. So when we

apply a sinusoidal voltage with a frequency of 1 kHz, the mirror will oscillate with that

same frequency. Our IR-upconversion pulse pair has a repetition rate of 2 kHz, which

means that if the phase shift of the Galvanometer is just right, the probing sum-frequency

signal will hit the mirror exactly in the extrema of the amplitude. If this amplitude is

very small, the path of the sum-frequency signal does not change much and we effectively

get two separate signals that hit the camera. This separation distance can be changed by

manipulating the amplitude with the function generator.

Now it becomes obvious why we chose the pump system to operate at a repetition rate

of 1 kHz. With half the repetition rate of the probing pulses, only every other spectrum is

pumped such that the two separated spectra on the camera screen are indeed the spectra

of a pumped monolayer and an unpumped reference. On a side note, we can also see

how our experiments are limited to systems that are in complete equilibrium again by

the time the next pulse arrives, which is after 500µs. This, however, was always fulfilled

and we will even show in the next chapter that our systems recover on a timescale of

nanoseconds.

3.2.2 Handling the Data

Now that we established the basic idea of our pump-probe experiments we are going to

introduce how the spectroscopic data are handled specifically. Before that, however, we

provide some general information about the environment of our data handling. Most of

the data processing is done with a fairly new programming language called julia. The core

code of our analysis tools was written by my senior PhD colleague Michael Lackner, with

some adjustments made by me. Collecting the raw data of the CCD camera is handled

by LabView, which we also use to operate most of our equipment on the optical table.

Raw data

When we talk about raw data, we usually refer to the picture that our CCD camera takes

at a specific exposure time, which we call a single frame. As we mentioned earlier, this

frame contains 512×512 pixels and each one of these pixels can accumulate charge that is

generated by the incident radiation. In our case, the sum-frequency signal hits the optical

grating in the spectrometer in such a way that it is spread out horizontally onto the CCD

screen. Therefore, each pixel in a horizontal line corresponds to a different wavenumber

and all the pixels in one column correspond to roughly the same wavenumber. We say
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(a) (b)

Figure 3-9: (a) Illustration of a possible CCD image with no binning. The signals are

separated at the centre (dashed line) because of the Galvanometer mirror. Each signal

also has a reflection from the back of our transparent glass samples, resulting in a total

of 4 visible signals on the screen. (b) Averaging multiple pixel rows that contain a signal

(horizontal green lines) reveals the spectrum of the investigated molecules. The pixels can

then be transformed to wavelength or wavenumber by taking the position of the optical

grating in the spectrometer into account.

roughly because there might be a ’tilt’ in the signal on screen if the sum-frequency pulse

enters the spectrometer at a slight angle. In figure 3-9 (a) we can see a possible image of

the CCD sensor with no binning. Binning is the ability of a CCD to selectively combine

the charge of multiple pixels into a single charge packet via a special charge readout

mode that reduces the signal-to-noise ratio.95 Normally, we use a full vertical binning (all

vertical pixels in a column are treated as a single pixel) for simple spectra or a 256 pixel

vertical binning (the top and bottom 256 pixels in a column are treated as a single pixel

each) for pump-probe experiments. Here, we have two signals that are separated by the

Galvanometer mirror to hit the top and bottom parts of the CCD screen. Also, due to the

nature of our samples which we will address in the next section, we get a second reflection

from the back of our transparent glass slides, resulting in a total of four visible signals. If

we specifically take the average of multiple pixel rows that contain a signal (green lines in

figure 3-9 (a)), we can plot the intensity of each vertical pixel as is illustrated in figure 3-9

(b). The pixel axis, in turn, can then be transformed into the corresponding wavenumber,

given by the position of the optical grating. This is the general idea of how we obtain our

spectra.

Event removal

There are, however, several reasons why this spectrum needs to be refined to accurately

describe the vibrational information in our samples. For one, we need to remove strong
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isolated intensity peaks in single or multiple pixels of the CCD camera that do not cor-

relate to photons from our experiment. These ’jumps’ in intensity are liberally labelled

as Cosmic Ray Events because they are caused by high-energy particles that originate

from supernovae and pulsars.96 However, radioactive decay can also contribute to this

phenomenon.97 The algorithm that we devised to remove these events is the following:

1. Take any 1-dimensional array that represents the intensity data on the CCD screen

and calculate the difference between every array element and its subsequent neigh-

bour.

2. Check if any of these differences are greater than a threshold, which we base on the

standard deviation of the data points.

3. For all values that are above the threshold, check if any of the next values in a

certain interval are below the negative threshold. The width of this interval can be

altered to catch events that encompass multiple pixels.

4. If the above holds, we expect the jump in intensity at these pixels to be caused by

a spurious event. In such a case, we remove the affected data points and replace

them with interpolated data.

Dark data

Secondly, the CCD sensor might accumulate charge even without the presence of photons

from our probe pulse, which is what we call dark counts. These dark counts have multiple

sources:

1. Stray light from our laser pulses but also the environment can hit the CCD sensor

and generate an unwanted background signal. Even though we put an appropriate

filter in front of the spectrometer, the upconversion pulse is still the biggest source

of stray light in our setup. This kind of contribution to the dark counts increases

linearly with the exposure time of the CCD.

2. Even though the CCD sensor is cooled thermoelectrically to −100 ◦C there are

still pixels that accumulate charge due to heat that contribute significantly to a

background signal. These dark counts due to heat also increase linearly with the

exposure time of the CCD.98

To measure these dark counts, we block the broadband IR beam such that no sum-

frequency signal is generated and take multiple pictures with the same exposure time as

that of the experiment, which we call dark frames. These frames are then averaged to

ensure that roughly the same amount of stray light and heat charge accumulates in the

dark frame as in the actual spectrum. The exception here is the missing stray photons
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from the broadband IR pulse in the dark frame, which, however, do not contribute much

to the dark counts because of the insensitivity of the CCD to infrared radiation. To rid

the raw spectrum of the dark counts is as simple as subtracting the dark frame from the

spectral frames.

Frame-by-frame acquisition

The next step is less of a refinement but comes about because of our limited width of

the broadband IR pulse. Even with our broadband setup, we still cannot cover the whole

CCD screen with a single Gaussian profile of the probe laser. This becomes relevant in

the next step when normalising the spectra to the probe IR spectral profile. Here, we

get huge experimental artefacts when there is little signal on the edges of the screen. To

compensate for this, we usually take 3 or 4 frames with different central wavelengths to

cover the edges of the screen as well as the middle part. We then simply sum up all

of these frames to produce a single frame with a more evenly distributed IR intensity.

Naturally, we cannot achieve a perfectly constant IR distribution across the whole screen

for any finite number of frames, which is something that we have to tackle as well in the

next step.

Flat data

Due to the Gaussian-shaped spectral profile of our broadband IR pulse, the resonances in

our sample are necessarily not all excited equally. Furthermore, depending on the spectral

range of the broadband IR pulse we might hit strong absorption bands of the air molecules,

which also results in fewer photons that arrive at the monolayer. To compensate for this,

we need to enhance the spectrum according to the intensity profile of our pulse. We can

approximate this intensity distribution by generating a non-resonant background signal

on a metallic surface that we call a flat frame. We use gold for this because it gives a

strong non-resonant signal that is roughly constant over our spectral range. Since we

only need a normalised intensity spectrum it does not matter at which exposure time the

flat frame is taken as long as there is a decent signal. On the other hand, we do need

to take a dark frame for the flat spectrum as well to get the accurate Gaussian-shaped

intensity profile of the broadband IR pulse. Also, we need to take a flat frame for all of

the different central wavelengths in our frame-by-frame acquisition. We then enhance the

resonances in our spectrum by dividing each data point according to the data points of

the normalised flat frame.

Baseline correction

At this point, we expect the spectral data to be zero in areas of no resonance and only

deviate from zero when there is resonance. This, however, is not always the case as we,
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more often than not, observe some kind of ’tilt’ in the baseline. There are multiple reasons

for this behaviour, like a fluctuating laser intensity for example. Also, when we take our

flat frame on a gold surface, we not only have to move the sample stage to the gold sample

but also adjust the height to find the correct laser geometry again. This process, however,

is often tricky and the sum-frequency signal of the flat might enter the spectrometer at

a slightly different angle than the spectrum signal, which can result in a tilted baseline.

We remedy this by fitting a curve through some of the data points at the edges of the

screen, far away from any resonance and subtracting this curve from the data. Usually, a

second-order polynomial is enough to level the baseline appropriately.

Pump-probe experiments

With the above steps, we have a fully refined spectrum that we can analyse for its vibra-

tional information. This, however, does not give us any insights into the dynamics of the

system, yet. The pump-probe part of our experiments comes into play when we compare

the refined spectra in the top and bottom part of the CCD screen (see figure 3-9 (a)). In

case we find the appropriate temporal and spatial overlap of our three laser spots on the

sample and the observed resonances are susceptible to the pump wavelength, we will find

a significant deviation in the peak intensities of the two spectra. The difference in peak

intensity of the unpumped and the pumped spectra then is evidence for what we call a

pump effect. Now, we can either scan through different pump wavelengths to investigate

what resonances are susceptible to which energies or we can fix the pump wavelength and

change the timing of the pump pulse to observe a transient bleach of the resonances. The

former is what we call a wavelength scan while the latter is called a delay scan. Both

of these experiments are necessary to gain meaningful insights into the dynamics of our

molecular samples.

These measurements can take up to several hours, depending on the number of scans

that we take and the necessary exposure time of the CCD for decent spectra. It is very

difficult to keep the system completely stable over such a long period of time as there might

be a change in ambient temperature, fluctuations in laser power or even deterioration of

our samples. To counter these problems, we integrated certain measures into our setup.

For one, when we take a delay scan, the positions on the delay stage are approached in

random order. This ensures that a transient effect due to environmental circumstances

does not show up in the spectra as such but instead, the noise in the spectra will increase

over time. The downside is a slightly increased runtime of the whole experiment because

the delay stage occasionally needs to move long distances when the positions are chosen

randomly. In addition, we can choose to measure the broadband IR power before every

spectrum at the cost of an increased runtime. For the wavelength scans, we devised

a procedure that allows us to measure and regulate the pump IR power before every

spectrum, which ensures that we always pump with the same strength.
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Even though we have taken these measures, there might still be some fluctuation in

the intensities of each spectrum. Since we find the pump effect in any spectrum by

subtracting the reference, the absolute difference will necessarily be smaller in spectra

with less intensity. We tackle this problem by finding some sort of master reference that

all spectra are then adjusted to. For this, we devised the following algorithm:

1. Find a master reference spectrum by averaging all reference spectra, which usually

gives a decent signal-to-noise ratio.

2. Divide each reference spectrum by the master reference. This results in an array of

512 values (one for each horizontal pixel) for every reference spectrum. These values

are what we call reference factors because they represent the factors by which each

pixel in a spectrum has to be adjusted to match the master reference.

3. Multiply the values of each pixel in every spectrum by their respective reference

factors to adjust all spectra to the master reference.

This is the last step in refining the pump-probe spectra, which brings us to a point

where we minimised the experimental error and can extract the information about the

vibrational dynamics in the monolayer.

3.3 Sample Preparation

This section aims to provide information about the samples that we are going to inves-

tigate in the scope of this thesis. First, the Langmuir-Blodgett technique is introduced,

which we utilise to attach our molecules of interest to a glass slide. Furthermore, we take

a closer look at the density of these monolayers and illustrate how to manipulate this

quantity. Our actual molecules are introduced in the second subsection. Here, we show

what we expect the molecular layers to look like and we also give an in-depth look at the

spectral fingerprint of this rather well-known system.

3.3.1 Langmuir-Blodgett Technique

Our samples are prepared using the Langmuir-Blodgett technique, which is named after

the pioneering work of Irving Langmuir and Katharine Blodgett in the late 1930s.99 By

now, the LB technique is a well-established method of depositing single or successive

layers of molecules on a solid surface. And our setup specifically has been described in

earlier works.100 Here, we illustrate the general idea and give details regarding our sample

preparation. In figure 3-10 we can see the illustration of a so-called Langmuir trough,

which we use to coat a glass slide with a single layer of long-chained amphiphile molecules.

These molecules are deposited onto a liquid subphase and pushed together by two moving
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liquid subphase

barrier

dipper

amphiphile monolayerglass substrate

Figure 3-10: Illustration of the Langmuir-Blodgett technique. A glass substrate is slowly

pulled out of a liquid subphase, while two barriers simultaneously push an amphiphile

monolayer together to maintain a constant surface pressure. This allows the monolayer

to coat both sides of the glass substrate.

barriers to create pressure on the surface. If this pressure is sufficiently high, the long

chains of the amphiphile molecules align horizontally and form a well-ordered monolayer

on the liquid subphase.99 A previously lowered glass slide is now slowly pulled out of the

liquid subphase while the barriers simultaneously push the surface molecules together to

maintain a constant pressure. This way, the molecules attach to both sides of the glass

substrate, forming a thin film.

Our setup utilises a Teflon-coated Langmuir trough from the company Riegler and

Kirstein GmbH equipped with a lift for our glass substrates (1×1 cm2, 0.5mm thickness,

Plano GmbH microscope coverslip). A Wilhelmy balance with an automated feedback

system is used to guarantee constant surface pressure when the substrate is pulled out of

the liquid. As the subphase, we use a solution of 5mM CaCl2 in deionized water (Mil-

lipore system, resistivity > 18 MΩ/cm). The pH value of this subphase was adjusted

to 9.5 by adding a saturated solution of Ca(OH)2, which is shown to have a stabilis-

ing effect on the monolayer.100,101 About 70µL of a 1mM solution of our molecules

in chloroform are then spread onto the liquid subphase. There are two systems that

we are going to investigate in this thesis. The first one is arachidic acid, also known

as eicosanoic acid (CH3(CH2)18COOH, analytical grade, Sigma Aldrich) and the sec-

ond system is a deuterated version of the same molecule: arachidic-17,17,18,18-d4 acid

(CH3CH2(CD2)2(CH2)15COOH, Deutero).

Isotherms

Depending on the surface pressure, the temperature of the subphase and the density of

the monolayer, multiple phases can occur in any amphiphile film. Typically, one measures

the surface pressure in the Langmuir trough (usually expressed as π in millinewton per

meter) while monitoring the compressed surface area (usually expressed as A in area per
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π
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gaseous (g)

liquid expanded (LE)

liquid condensed (LC)

solid-like (s)
collapse

Figure 3-11: Schematic illustration of commonly observed phases in amphiphile mono-

layers. The graph shows the surface pressure π vs the area per molecule A. Adapted from

the book by Butt, Graf and Kappl.102

molecule) to get a phase diagram of the two-dimensional monolayer. This is done at a

fixed subphase temperature, which is why these graphs are called isotherms. Figure 3-11

shows a schematic isotherm of an arbitrary amphiphile monolayer. This figure and the

paragraph itself are mainly based on the book by Butt, Graf and Kappl and the article

by Kaganer et al.102,103

Similar to any three-dimensional material, a two-dimensional Langmuir film undergoes

phase transitions from gaseous over liquid to even solid-like phases. When the area per

molecule is much larger than the molecule itself, there is virtually no interaction between

the molecules, which is known as the gaseous phase (g). Here, the surface pressure

is usually so small that it is nearly undetectable. Compressing a gaseous monolayer,

there can be a phase transition to a liquid state, which is characterised by a significant

interaction between the molecules. Most authors describe at least two types of liquid

phases: a liquid-expanded phase (usually called LE or L1) and a liquid-condensed phase

(usually called LC or L2).

In the LE phase, the area per molecule is still larger than the actual molecule. However,

the amphiphiles do touch each other and there is interaction but no lateral order. In the

further compressed LC phase, the monolayer becomes relatively stiff as the molecules

align to form a somewhat ordered film. There is, however, still water present between the

headgroups and the molecules are tilted to the surface normal. Here, the pressure-area

isotherms become more linear. Compressing the liquid phases even further, one finds

the monolayer in a solid-like phase (s), indicating a stiff film with largely dehydrated

headgroups. The isotherms are linear and extrapolation to zero film pressure results in
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Figure 3-12: Area vs surface pressure isotherm of calcium arachidate on a subphase at

pH ≈ 9.5, a solution of 5mM CaCl2 and a constant temperature of 295.15 K. Shown is

the sample that was prepared at a transfer pressure of 32 mN/m (millinewton per meter).

The dashed horizontal lines indicate the transfer pressures of our other samples.

an area per molecule that is comparable to the cross-section of the molecule.

All of these phases can occur but for most amphiphiles, not all phases are observed.

Furthermore, some systems exhibit an even greater variety of phases. Especially for long-

chain fatty acids, including our arachidic acid, the phase diagram is quite complex and

it is now believed that the phase of high compressibility is not the solid-like phase but a

so-called superliquid phase (LS).104,105 This LS phase is well-ordered and densely packed,

providing an excellent film for investigation.106

In the scope of this thesis, we prepared our samples at three different surface pressures,

which are indicated by the dashed lines in the isotherm of figure 3-12. Naturally, each

transfer pressure requires a fresh sample and a unique isotherm but in our case, plots of

different transfer pressures are sufficiently similar, allowing us to show all of them in a

single diagram. The 32mN/m (millinewton per meter) and 25mN/m pressures guarantee

that the calcium arachidate monolayer is in the stable LS phase during deployment.107

This was chosen to investigate the influence of different transfer pressures on the vibra-

tional dynamics of our molecules. Furthermore, in earlier works of our group, it was found

that in our system (calcium arachidate, subphase temperature of 295.15 K and pH of 9.5)

the phase transition from the LC to the LS phase is around 15mN/m.106 Therefore, we

chose our third transfer pressure at 13mN/m to investigate how different phases during

deployment influence our pump-probe experiments.
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Figure 3-13: Illustration of an ideal calcium arachidate Langmuir-Blodgett monolayer on

glass. Two arachidate ions coordinate to one calcium ion and the saturated fatty acid

chains are tilted at an angle of ≈ 33◦ to the surface normal.

3.3.2 Calcium Arachidate Monolayer

As previously mentioned, the molecules that we are going to investigate in this thesis

are long-chain saturated fatty acids called arachidic acid. This system and fatty acids

in general have been studied thoroughly in the literature and their properties are rather

well-known.108,109 In our case, we spread arachidate ions (C20H39O2
– ) onto a subphase

of calcium ions (Ca2
+), which is known to have an overall stabilising effect on the mono-

layer.101 Figure 3-13 illustrates such a well-ordered Langmuir-Blodgett monolayer. Here,

we can see how the arachidate ion consists of 18 methylene (CH2) groups and the ends of

the chain are terminated with a methyl (CH3) and a carboxylate (COO– ) group, respec-

tively. According to Outka et al., the zig-zag chains on a Si(111) surface are not vertical

even in the highly stable LS phase but interlocked in a 33◦ ± 5◦ tilt angle to the surface

normal.110 This, on the other hand, results in an almost vertically aligned methyl group

(0◦± 5◦ tilt to the surface normal) due to the C-C-C bond angle of ≈ 115◦. Furthermore,

two carboxylate groups coordinate to one calcium ion of the subphase, which is also illus-

trated in figure 3-13. We expect the deuterated versions of the arachidate ion to behave

in a sufficiently similar way.

Gauche Defects

In figure 3-13 we illustrated the monolayer in such a way that all of the ’kinks’ in the

chains are in the same plane, which is known as the anti- or all-trans- conformation. More
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Figure 3-14: In the lower half of the figure is the schematic illustration of a bird’s-eye view

of alkyl chains in the trans- and gauche conformation. The trans conformation consists

of adjacent methylene groups that are rotated by 180◦ such that all C atoms lie in the

same plane. In the gauche conformation, some CH2 groups are rotated by ±60◦, which

destroys the symmetric order in a Langmuir-Blodgett monolayer. This is illustrated in

the top half of the figure. Adapted from Lackner.53

precisely, every methylene group is rotated by 180◦ to their neighbours and this confor-

mation is the thermodynamically preferred state of every molecule in the monolayer.100

There are, however, energetically higher-lying metastable states that correlate to confor-

mations where adjacent methylene groups are rotated by 60◦ in either direction. This

is illustrated in figure 3-14 and such an arrangement is called a gauche conformation.

When single or multiple chains form such gauche conformations, the symmetric order of

the monolayer is locally broken, which is known as a gauche defect.

During our experiments, which are done at room temperature, a small amount of these

gauche defects is already present in our calcium arachidate monolayers.111 To significantly

alter the symmetric order in the monolayer, however, temperatures higher than 340 K are

necessary, which was shown in earlier works from our group.100,106

Knowledge about gauche defects is relevant to our experiment for several reasons. First

of all, a gauche defect necessarily forces a change in the tilt angle of the molecule. The

average tilt angle of our molecules, on the other hand, strongly influences the susceptibility

of the methyl group, as we have seen at the end of section 2.3.5. Thus, with an increasing

amount of gauche defects, our overall sum-frequency signal will decrease accordingly.

Secondly, the methylene groups in a well-ordered monolayer form an isotropic bulk that

prohibits the generation of a sum-frequency signal, as we have learned in section 2.3.4.

This bulk symmetry, however, is locally broken in the vicinity of a gauche defect such that

the methylene groups become SFG active. Therefore, one can derive a direct relationship
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between the number of gauche defects in the monolayer and the intensity of the methylene

groups’ vibrational modes.112,113 This is very important because we now have a tool to

rule out if a decrease in signal intensity comes about because of accumulated heat and

the consequential increase of gauche defects in the sample. We will necessarily heat our

sample by inducing energy with our lasers, which is something that needs to be taken

into account. Therefore, the absence of significant CH2 bands in the spectrum strongly

supports a signal decrease due to vibrational redistribution.

With this brief overview of our knowledge about calcium arachidate monolayers, we

conclude the experimental chapter. Here, we learned about the structure of a densely

packed film as well as the orientation of the ordered chains. Equally important, we

mentioned how gauche defects are revealed in the vSF spectrum and how they can be

used to monitor heat in the monolayer. With this knowledge, we are now ready to tackle

the main part of this thesis, which is the analysis of sum-frequency spectra and the

tracking of vibrational dynamics.
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Chapter 4

Results

Chapter 4 constitutes the main part of this thesis. Here, we present the results that we

have gathered from investigating calcium arachidate Langmuir-Blodgett films using pump-

probe vibrational sum-frequency spectroscopy. This chapter is structured as follows: First,

we take a look at the information that we can extract from the vibrational spectra of

our monolayers. Specifically, we focus on the prominent stretching vibrations of the

methyl and methylene groups and compare the visible modes in IR and Raman spectra

to the sum-frequency results. Secondly, we present and elucidate the results of our pump-

probe experiments. After that, we introduce a reservoir model in an attempt to explain

the observed dynamics. Lastly, we extend our molecular system to further explore the

intra- and intermolecular energy redistribution mechanism. By decreasing the density in

the monolayer we hope to gain insights into the coupling mechanism between adjacent

alkyl chains. Additionally, we investigate how deuteration in the chains influences the

vibrational energy redistribution.

4.1 Vibrational Spectra of CaAra

As we already mentioned before, arachidic acid and alkyl chains in general have been the

focus of study in many scientific works. For this reason, the spectral fingerprint of the

methylene and methyl groups is well known.114 This subsection provides infrared, Raman

and sum-frequency spectra of arachidic acid and our deuterated version. Further, we

compare our results with the literature and assign the prominent peaks to their respective

vibrational modes, accordingly. Here, we follow the established norm of many authors

and denote the vibrational modes of the methyl group with r and the ones belonging to

the methylene group with d.
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Figure 4-1: Normalised IR absorbance and Raman intensity spectra of crystalline

arachidic acid (AA) and deuterated arachidic acid-d4 (dAA). The dashed lines indicate

the most prominent peaks and their associated vibrational modes. The 2100 cm−1 region

of the deuterated infrared spectrum on the left is enhanced by a factor of 5 with respect

to the right side.

4.1.1 Infrared and Raman Spectra

Figure 4-1 shows the infrared and Raman spectra of crystalline arachidic acid (AA) and

the deuterated version (dAA) in the CH stretching region around 2900 cm−1.

The methyl group has been extensively studied in bulk alkanes and reportedly features

a symmetric stretch (r+) at ≈ 2875 cm−1, to which a change in the dipole moment along

the symmetry (z-) axis of the CH3 group corresponds. Furthermore, there are two nearly

degenerated antisymmetric modes at ≈ 2962 cm−1 and ≈ 2954 cm−1, corresponding to a

change of the dipole moment in (r−a ) and out (r−b ) of the plane of the chain, respectively.
115

Interestingly, the r−a mode seems to be more Raman active than the other r− mode. Since

the sum-frequency intensity depends on both the IR and Raman transition dipole moment,

as we have stated in the theory chapter in equation 2.164, we should expect a larger peak

in the sum-frequency spectrum at 2962 cm−1. Additionally, one usually finds another peak

near 2935 cm−1 that is attributed to a Fermi resonance (r+FR) of the symmetric stretch

with the overtone of the methyl bending modes. These values are in good agreement with

the spectroscopic data of our IR and Raman spectra.

The discussion of the more prominent methylene group is a little more tricky. According

to Tasumi et al., the phase difference ϕ between the oscillating motion of a CH2 group

and its adjacent neighbour is important for the mode to be IR or Raman active.116 This

is reasonable because, as we have seen in equation 2.115 and 2.122 of the theory chapter,

either the dipole moment or the polarisability has to change during the oscillation for

the mode to become IR or Raman active. If we recall how the CH2 links in a fatty acid
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molecule point in opposite directions alternatingly as shown in figure 3-13, it now becomes

obvious that the combined motion of the symmetric stretching of all CH2 links does not

change the net dipole moment when all oscillators are in-phase and the superposition is

therefore not IR active. On the other hand, if we have a phase shift of ϕ = π between

adjacent links, we do get a net dipole moment change. A similar argument can be made

about the Raman activity: When adjacent links are in-phase, the expanse of the combined

symmetric stretch gets larger during the motion, resulting in a changing polarisability of

the system and a Raman active mode. When the adjacent links are again shifted in phase

by π, the expanse stays the same and the mode becomes Raman inactive.

Snyder et al. assigned the most intense peaks at ≈ 2850 cm−1 and ≈ 2920 cm−1 in

the infrared spectrum to the symmetric (d+(π)) and antisymmetric (d−(π)) stretching of

the CH2 group that have a phase shift of ϕ = π to their adjacent neighbours.117 In the

Raman spectrum, on the other hand, the modes that are in-phase with their neighbours

(ϕ = 0) become visible. Here, we find the symmetric CH2 stretch (d+(0)) at the same

wavenumber≈ 2850 cm−1 but the antisymmetric stretch (d−(0)) is shifted to≈ 2880 cm−1.

These values were observed for the extended polymethylene chain and are only roughly

comparable to our arachidic acid spectra in figure 4-1. There are, however, works that

investigate palmitic acid (C16H32O2), which report values much closer to our system.118

A comparison of multiple systems from different sources is shown further below in table

4-1.

The infrared spectrum of the deuterated molecule does not differ much from the un-

deuterated species. Blaudez et al. report the symmetric stretch of the CD2 group (d+CD2)

at ≈ 2089 cm−1 and the antisymmetric stretch (d−CD2) at ≈ 2194 cm−1 for fully deuter-

ated crystalline cadmium arachidate.119 These values are comparable to the peaks in the

2100 cm−1 region of the deuterated infrared spectrum. Interestingly, one finds a slight

blue shift of the CH2 modes in the deuterated molecule against the natural molecule that

is not observable for the CH3 modes. It stands to reason if this small shift comes about

due to the partially deuterated chain or is an experimental artefact.

4.1.2 Sum-Frequency Spectrum

Figure 4-2 shows a typical sum-frequency spectrum of a calcium arachidate Langmuir-

Blodgett film, taken with our setup in the ssp and ppp polarisation combinations. As

mentioned in section 2.3.4, the methylene groups are mostly invisible here because of

the centrosymmetric rule for even-order susceptibilities. Therefore, we find the most

prominent peaks originating from the methyl modes. Guyot-Sionnest et al. report for a

system similar to ours, strong resonances at ≈ 2875 cm−1 and ≈ 2940 cm−1 for the ssp

sum-frequency spectrum, which they identify with the symmetric stretch r+ and the Fermi

resonance r+FR, respectively.
115 Furthermore, the ppp spectrum reveals a strong band at

≈ 2960 cm−1, associated with the r− mode and a weaker r+-feature. These values are in
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Figure 4-2: Vibrational sum-frequency spectrum of a calcium arachidate Langmuir-

Blodgett film. Shown is the ssp polarisation combination in blue and the ppp polarisation

combination in orange. The important features are indicated with black dashed lines.

good agreement with our spectra. However, even though some authors observe a splitting

of the r− mode, we cannot resolve by eye the in-plane (r−b ) vibration in our sum-frequency

spectra.120,121

As previously mentioned, we perform our experiments at room temperature and expect

some gauche defects to be present in our samples. Therefore, we can attribute the weak

shoulder at ≈ 2850 cm−1 in the ssp polarisation spectrum to the symmetric stretch (d+)

of the methylene group, which is also found by Guyot-Sionnest et al.115 The broad

background around 2900 cm−1 in the ppp polarisation spectrum can also be attributed to

CH2 stretches.115 More specifically, some authors attribute a feature at ≈ 2900 cm−1 in

the vSF spectra of alkyl chains to the antisymmetric stretching of the CH2 group that is

adjacent to the CH3 group (d−ω ).
120 A comparison of different systems and their respective

mode assignments is shown in table 4-1.

Comparing our sum-frequency spectrum with the literature, it is reasonable to assume

our peak assignment in figure 4-2 is correct. A list of all prominent modes and their

wavenumbers is given in table 4-2. With that, we have a good idea about the different

vibrational modes that are visible in our sum-frequency spectra and we can now tackle

the pump-probe experiments.

4.2 Pump-Probe Experiments

This section presents the results of our pump-probe experiments. We begin by showing

the data of our wavelength scans, which provide the necessary insight as to how susceptible

the monolayer is to specific pump wavenumbers. Building up on that, we then fix the

pump photon energy to a specific resonance and observe the transient bleach. These
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Table 4-1: List of observable modes and their respective wavenumbers (cm−1) in

similar molecular systems. The investigated samples are pentadecanoic acid (PDA,

CH3(CH2)13COOH), octadecylsiloxane (ODS, CH3(CH2)17SiOH), docosanethiol (DT,

CH3(CH2)21SH), palmittic acid (PA, CH3(CH2)14COOH), fully deuterated arachidic acid

(dAA, CD3(CD2)18COOD) and our arachidic acid (AA, CH3(CH2)18COOH). Bracketed

values indicate Raman data and the mode assignment from Hill et al. is supported and

extended by Snyder et al.117

Source
Guyot-Sionnest Chow Himmelhaus Hill Blaudez This work

et al.115 et al.120 et al.121 et al.118 et al.119

System
PDA ODS DT PA in dAA in AA in

on water on glass on gold KBr pellet KCl pellet KBr pellet

Spectrum vSF vSF vSF IR (Raman) IR IR (Raman)

Mode

r−a 2964 2968 2961 (2964) 2963 (2964)

r− 2960

r−b 2958 2954 2953 (2955) 2953 (2954)

r+FR 2940 2941 2940 2938 (2938) 2937 (2939)

d− 2920 2916 2925

d−(π) 2917 2913

d−ω 2905

d−(0) (2880) (2881)

r+ 2875 2877 2880 2871 (2871) 2871

d+ 2850 2850 2855 2848 (2846) 2852 2847 (2846)

d−CD2 2194 2181 [dAA]

d+CD2 2089 2081 [dAA]

delay scan spectra allow us to obtain information about the vibrational dynamics of our

molecular system. Lastly, we conclude this section with a summary of our findings.

4.2.1 Wavelength Scans

We begin the presentation of our results by showing the wavelength scan data, even

though the chronology of events during the project was quite different. In reality, we

found the first pump effects more or less by chance, pumping different modes and looking

for any kind of change in the transient delay scans. However, we feel like introducing the

wavelength scans first and presenting how susceptible the molecules are to different pump

energies paints a more coherent picture.

Figure 4-3 shows the two-dimensional wavelength scan of a calcium arachidate mono-

layer. As mentioned previously in section 3.2.1, our setup allows for self-referencing

because of the Galvanometer mirror, such that the top and bottom parts of the CCD
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Figure 4-3: Two-dimensional plot showing the difference between pumped and reference

spectra for different pump wavenumbers. The sum-frequency spectra are taken in the

ssp polarisation combination and a single of these spectra is displayed in the top part

of the figure. The left panel shows the RAIR spectrum that indicates how much of the

pump-IR energy is absorbed at what wavenumbers. Dashed lines either indicate notable

vibrational modes or show where the pump and probe wavenumbers are identical.
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Figure 4-4: Same plot as in figure 4-3 but in ppp polarisation.
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Table 4-2: A list of visible resonances and their mode assignment in the ssp and ppp

sum-frequency spectrum of calcium arachidate (figure 4-2).

Mode ssp ppp

r− shoulder 2962

r+FR 2942 shoulder

r+ 2879 2879

d+ shoulder

correspond to a pumped spectrum and an unpumped reference. What is shown in figure

4-3 is the difference in intensity between the pumped sum-frequency spectra and their

references

∆ISF = ISF,pump − ISF,ref. (4.1)

Furthermore, every row in the two-dimensional plot corresponds to a different pump

wavenumber and we put all three pulses in temporal overlap to achieve a strong pump

effect. Due to the non-coherence of our pump and probe IR beams we do not need to

worry about any unwanted interference phenomena arising from the overlapping of all

three pulses. The spectra are taken in the ssp polarisation combination and a single of

these sum-frequency spectra is shown in the top part of this figure. On the left side is

the reflection absorption infrared (RAIR) spectrum of a similar system (stearic acid) on a

gold surface, which was provided by Yujin Tong as part of a collaboration with the group

of R. Kramer Campen. Even though our samples are on glass, we expect the absorption

spectra of our arachidic acid to not deviate too much from the RAIR spectrum. The

dashed line in the two-dimensional plot indicates where the pump and probe wavenumber

are equal.

This quite complex figure reveals some interesting facts about our calcium arachidate

monolayers. The most evident feature appears in the more prominent r+ mode but in

the Fermi resonance r+FR we can see some features as well. The RAIR spectrum on the

left was taken in a similar beam geometry to our setup, which is why we can expect this

graph to roughly approximate the amount of pump IR energy that is absorbed by our

monolayer. Interestingly enough, the pump effect seems to mirror the RAIR spectrum

quite well, which raises the question of whether the features in the difference spectrum

are primarily due to heat.

In section 3.3.2 we introduced gauche defects and discussed how they appear in the

monolayer with increasing temperature. Therefore, we should expect a decent amount of

sum-frequency active methylene groups to be present in the monolayer if we significantly

heat the sample with our pump laser. According to table 4-1 of the last section, we

would expect the d+ and the d− mode to appear around ≈ 2850 cm−1 and ≈ 2920 cm−1,
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respectively. However, at neither of these values do we find prominent features in the SF

spectrum or the difference spectrum. Assuming a Boltzmann distribution, a temperature

far above 1000K is necessary to explain our peak bleach of roughly 17%. Consequently,

we can safely rule out a signal decrease due to heat.

The next thing that might pique the reader’s interest is the change in intensity in

the red flank of r+FR. Here, the difference spectrum shows a signal increase for pump

wavenumbers near d− as opposed to the expected decrease. This curious behaviour can

have various causes. For one, the Fermi resonance is known to be quite sensitive to its

environment, according to Guyot-Sionnest et al.115 So it is possible that r+FR slightly

shifts to lower frequencies in the pumped spectra, which would result in a signal increase

in the difference spectra. This is illustrated on the left side of figure 4-5 with simulated

sum-frequency data, according to

ISF =

∣∣∣∣∣∑
k

akAk

ω0,k − ω + iΓk

∣∣∣∣∣
2

. (4.2)

This equation is very similar to the one we derived in 2.166, except for a neglected

non-resonant background contribution and an additional factor ak, which we call the

attenuation coefficient. This coefficient attenuates the line strength Ak and represents a

measure of how many available oscillators there are for a single resonance in comparison

to the unpumped equilibrium state. Also, equation 4.2 is only a valid representation of

our data if all resonances are in-phase, such that ϕ = 0 or anti-phase, such that ϕ = ±π.

In the latter case, the Ak are negative. Otherwise, we would need an additional phase

factor eiϕ for every resonance. For calcium arachidate monolayers, however, we expect

this to be the case and we can hide the phase factor in the sign of Ak.

Coming back to figure 4-5, the top left part shows simulated sum-frequency spectra

with a resonance ω0 that is shifted with respect to the one in the reference spectrum

ωref. Illustrated in the bottom left panel is the difference between pumped and reference

spectra. This difference is also calculated by equation 4.2 and in this case, we set the

attenuation coefficient for all spectra to ak = 1. Here, we can see a significant increase in

the difference signal, the more the resonance of the pumped spectrum is shifted.

Secondly, when there are two resonances close together, they form a convoluted sum-

frequency signal, which is shown in the top right part of figure 4-5. If these resonances

have opposite phases, one can also observe an increase in the difference spectrum even

though the population in both modes decreases. This is illustrated in the bottom right

part of figure 4-5. The phases of r+FR and r− fit such a case, which has been resolved by

Ji et al. for octadecyltrichlorosilane monolayers on glass.122 The shown sum-frequency

spectrum is a simulation of two convoluted modes that roughly resemble r+FR and r−.

The spectra are simulated with equation 4.2 and the exact parameters are given in the

caption of figure 4-5. It is hard to say at this point, whether the increase in the difference
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Figure 4-5: Simulated sum-frequency data to illustrate the possibility of a signal increase

in the two-dimensional difference plot in figure 4-3. The top row of this figure shows the

sum-frequency spectra and the bottom row reveals the resulting signal difference. The

plots on the left side illustrate spectra of a single resonance ω0 that is slightly shifted

to the reference spectrum ωref. On the right side is the sum-frequency spectrum of two

convoluted modes that resemble r+FR and r−. Here, the effect of different attenuation

coefficients ak, according to equation 4.2 is shown. Parameters for the spectra on the

left side are A = 1, Γ = 10 cm−1 and a = 1.0. Parameters for the convoluted spectra

on the right are A1 = 7, A2 = −6, ω1 = 2938 cm−1, ω2 = 2962 cm−1, Γ1 = 9 cm−1 and

Γ2 = 17 cm−1.

spectrum of figure 4-3 comes about due to a shift of the resonances, a convolution of

modes or something else but both mentioned scenarios might play a significant role here.

The final aspect we need to address is the white area in the two-dimensional difference

plot. As we previously mentioned in section 3.1.1, the Ekspla system that generates our

pump pulses switches to the DFG regime at 3440 nm and significantly alters the beam

path and power. We could not get around this problem, which is why our pump-probe

experiments, unfortunately, are limited to stopping at around 2908 cm−1.

Figure 4-4 shows a similar two-dimensional difference plot as in figure 4-3. Here, we are

looking at the ppp spectra and the most intense modes are r+ and r−. The strongest pump

effect is now visible in the r− mode, which makes sense because it is the most intense mode

in the sum-frequency spectrum. However, it is noteworthy that this correlates to a strong

pump effect in a vibrational mode that is significantly higher in energy (r− ≈ 2960 cm−1)

than the excited mode (d− ≈ 2920 cm−1). Naturally, this is only possible if there is energy
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flow not only from the initially excited mode but from multiple lower modes as well. Even

so, it is difficult to say what modes contribute to this mechanism, at this point.

We can, however, explore this phenomenon a little further by looking at the product

of the Boltzmann constant and the temperature kT , which is basically an estimate for an

energy level that is significantly populated at the temperature T . In our case, we need to

compensate for an energy mismatch of ∆ν ≈ 40 cm−1 between r− and d−. This energy

corresponds to a temperature of

T = 102hc∆ν/k (4.3)

≈ 60K, (4.4)

with h and c being the Planck constant and the speed of light in vacuum, respectively.

Since we operate at room temperature, where kT corresponds to ≈ 200 cm−1, we should

expect that there is always a low energy vibration available to compensate for the energy

mismatch ∆ν by either creating of annihilating an excitation. We will tackle this point

again later on when we model the data.

At first glance, the strong pump effects in areas of significant IR absorption seem

to be reproducible in the ppp spectra, which is especially clear to see in the r− mode.

Nevertheless, it is hard to discern by eye if we can observe a signal increase in the red

flank of r+FR, similar to the ssp spectra. This is something that we have to take a closer

look at in the following.

Taking a Closer Look at the Data

Now that we have taken a first look at the two-dimensional wavelength scan data, we are

interested in a more discerning view. Figure 4-6 shows vertical slices through the two-

dimensional difference spectra in the ssp (figure 4-3) and ppp (figure 4-4) polarisation

combination. The slices are centred at the most prominent modes r+ and r− at 2879 cm−1

and 2962 cm−1, respectively. Furthermore, the data are averaged over a range of≈ 10 cm−1

in probe wavenumbers to include most of the dominant pump effects. Additionally, the

RAIR spectrum is shown as well for a more detailed comparison.

First of all, we should note that the ssp and ppp datasets in figure 4-3 and 4-4 are

normalised to the most intense peaks, such that ∆ISF roughly represents the intensity

decrease in per cent for the most prominent peaks. In figure 4-6 only the RAIR data are

scaled, which means that we have a surprisingly good reproducibility of the pump effects

in the most prominent modes of two experiments on different days. Secondly, the data

points do roughly follow the RAIR spectrum except in the region of r+FR around 2935 cm−1.

Here, we find a significant shoulder in the RAIR spectrum that is not observed in the

datasets.

Furthermore, as we mentioned previously, it is hard to distinguish between the in-

and out-of-plane vibrations (r−b and r−a ) of the antisymmetric methyl stretch in our sum-
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Figure 4-6: The data points show vertical slices through the two-dimensional difference

spectra of figures 4-3 and 4-4. The blue dots represent a vertical slice at the position of

r+ (2879 cm−1) in the ssp spectra and the orange dots represent a vertical slice through

r− (2962 cm−1) in the ppp spectra. Both datasets are averaged over a range of 10 cm−1

and their values are displayed on the left axis. The right axis shows the IR absorption

values of the RAIR spectrum that is also taken from figure 4-3.

frequency spectra (figure 4-2). In the RAIR spectrum, on the other hand, we find a

significant peak at ≈ 2962 cm−1 and a prominent shoulder around ≈ 2954 cm−1, which

correspond quite well to r−a and r−b , according to table 4-1. Interestingly enough, the

pump effect seems to only be significant when pumping the out-of-plane vibration r−a .

Now, let us take a closer look at the pump effect along the probe IR axis. Figure

4-7 shows horizontal slices through the difference spectra of figure 4-3 and 4-4 that are

centred at d− (≈ 2920 cm−1) and averaged over a range of 10 cm−1 to include most of the

prominent pump effect. As we have already seen in the two-dimensional spectra, we find

that the pump effect mostly mimics the intensity in the sum-frequency spectra. There is

a strong signal decrease in the r+ mode around 2879 cm−1 and a very weak effect in the

region of the r− mode around 2962 cm−1 for the ssp polarisation combination and vice

versa for the ppp spectra.

It becomes more interesting near the Fermi resonance r+FR at 2942 cm−1. Here, we can

see the signal increase in the difference spectra very clearly. Also, the steep decline on the

right side of the peak resembles the effect that we simulated on the left side of figure 4-5.

We can, therefore, assume that a shift in the resonance frequency plays a significant role

in the shape of the difference spectra. Equally important, there seems to be a very slight

signal increase in the ppp spectra as well, which was not visible in the two-dimensional

plots. This does, however, correlate quite well with the fact that the Fermi resonance is

also visible in the ppp spectra as we can see in the red shoulder of r− in figure 4-2. On
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Figure 4-7: The data points show horizontal slices through the two-dimensional differ-

ence spectra of figures 4-3 and 4-4. Both datasets are horizontal slices, centred at d−

(2920 cm−1) and averaged over a range of 10 cm−1. The blue dots represent the ssp data

and the orange dots represent the ppp data.

the other hand, it is very hard to discern if there is a similarly steep decline in the ppp

spectra as there is in the ssp polarisation combination.

This is as much information as we can extract from the wavelength scan data at this

moment. To gain further insights into the underlying energy transfer mechanism, we need

to find a model that simulates the data sufficiently well. This is something that we are

going to tackle in section 4.3. First, however, we will introduce the transients derived

from the delay scan data.

4.2.2 Transients

Now that we have taken a sophisticated view of the static wavelength scan data from our

pump-probe experiments, we will direct our focus on the transients. By transients, we

mean experiments in which we fix the pump photon energy to a certain value that induces

a strong response in the monolayer and observe the dynamics. From the last subsection,

we know that we can expect such a strong response if we tune the pump laser to the

d− and the r− mode at ≈ 2920 cm−1 and ≈ 2960 cm−1, respectively. With the pump

wavelength fixed, we then change the timing between the arrival of the pump pulse and

the sum-frequency probe (broadband IR - upconversion pulse pair) on the sample, the

result of which is what we call a delay scan. These delay scans then reveal how long the

energy is stored in a specific mode and give insight into the timescales of the vibrational

energy redistribution mechanism. On a side note, we will use the terms ’transient’ and

’bleach’ interchangeably in this thesis.
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Figure 4-8: Two-dimensional transient difference spectra for the ssp and ppp polarisation

combination experiments. The pump laser is set to either 2915 cm−1 or 2962 cm−1, corre-

sponding to the d− and the r− band, respectively. The left axes show the delay between

the arrival of the pump pulse and the broad IR - upconversion pair on the sample. The

bottom axes indicate the broadband IR wavenumber.

Figure 4-8 shows the two-dimensional transient difference spectra of our delay scan

experiments. On the left side are ssp spectra with either the d− mode or the r− mode

pumped and the right side shows the ppp polarisation combination. The colour bar

indicates the difference between the pumped spectra and their references just like in

figure 4-3 and 4-4.

There are several things that we can learn from a first glance at our delay scan data.

First of all, we can see a signal decrease in all visible modes, which is not surprising

since we have seen similar behaviour in the wavelength scan data. We did, however, not

learn from the previous experiments that there is a visible signal change on a timescale of

picoseconds. This is a first impression of the order of magnitude that we can expect for

the energy redistribution mechanism. Secondly, the signal decrease occurs as soon as the

pump pulse hits the sample around a delay of 0 ps in all four plots. This is reasonable

because as soon as we depopulate the ground state with the pump pulse, we should

immediately observe an effect on the other modes in the spectrum as well. It stands to

reason, however, if we also populate the CH3 modes at the same time when pumping d−
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or if the decrease in signal comes about solely due to the depopulated ground state.

Next, the form of the transients is very similar in that there seems to be a spike when

the pump pulse arrives and a very slow recovery that extends beyond the scanning range.

However, the ssp polarised, r− pumped data stand out because here, the transition from

spike to slow recovery seems to be much faster than in the other experiments. This is

something that we should also keep in mind. Lastly, the top left plot in figure 4-8 shows

a signal increase in the red flank of r+FR, which we explained earlier by either a shift in

frequency or a convoluted mode. Unfortunately, the data is too noisy to clearly show if

this signal increase transitions into a similarly slow decay as the other modes but it does

seem to be shorter-lived.

Taking a Closer Look at the Data

This is about as much as we can glean from a first glance. To extract more information

from the transient data, we are going to take vertical slices through the prominent modes,

as we did with the wavelength scan data in the last subsection. Figure 4-9 shows these

vertical slices through the two-dimensional difference spectra of figure 4-8. The plots are

arranged in the same fashion in both figures such that the ssp polarised data are on the

left and the ppp polarised data are on the right. The ssp experiments show slices through

the r+ mode and the blue flank of r+FR to circumvent the increasing signal for now. The

ppp experiments show slices through the r+ and the r− modes. All data points represent

an average over a range of ≈ 10 cm−1 to encompass most of the signal change and reduce

overall noise.

Further, the black lines represent exponential fits to the data between 50 and 230 ps,

according to

Ibleach(t) ∝ 1− 4 δNe−t/τ . (4.5)

Here, δN is the fractional population that is transferred from the ground to the excited

state and τ is the population lifetime T1 that we already introduced in section 2.3.2. This

equation is derived in detail by Han et al. and is, strictly speaking, only valid for a two-

level system and small transfer rates δN .123 Also, the factor of 4 comes about because

we take a fraction, let’s say x, of the molecules out of the ground state and push them

into the excited level. This results in a population difference between the two states of

2x, which is then squared to get the intensity. When we pump the d− mode, however,

we can only be sure to depopulate the ground state but we do not know if the r modes

are populated as well, which would invalidate the prefactor. Nevertheless, this provides

us with a reasonable approximation of the timescales at which our dynamics occur.

The first thing to note is that we will not address every mode specifically but rather list

similarities and differences between the experiments. Also, we now normalised every mode

to itself, which gives us the fractional signal in every mode. Therefore, the transients of a

114



4 Results 4.2 Pump-Probe Experiments

Figure 4-9: The data points show vertical slices through the two-dimensional transient

difference spectra of figure 4-8. The slices are centred at the prominent modes around

2879 cm−1, 2945 cm−1 and 2962 cm−1, corresponding to the r+ band, the blue flank of r+FR
and the r− band, respectively. Shown is the average intensity over a range of ≈ 10 cm−1.

The left axes indicate the fractional signal of each mode and the solid black lines show

the fitted lifetime according to equation 4.5.

single experiment can be compared with one another. Comparing transients of different

experiments is a little more tricky, however, because multiple factors influence the strength

of the pump effect:

1. Assuming the intensity of the sum-frequency spectra does not change (same spatial

and temporal overlap for broadband IR and upconversion pulse) we can get signif-

icantly different pump strengths depending on how well we align the pump pulse

with the others.

2. Even though we can control the intensity of the pump laser to a certain degree,

environmental changes like spiking humidity can lead to more IR absorption in the

air and significantly reduce the number of photons that arrive at the sample.

3. Some modes might be inherently more susceptible to the initial pump energy and

act more as a catalyst for the energy flow than others.
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Figure 4-10: Repetition of the experiment in the top left of figure 4-9 with a total delay of

up to 1.2 ns. The green line is an exponential fit of the slow component in the transients.

The dashed line indicates equilibrium.

These are important aspects that we should keep in mind for future reference.

Secondly, most if not all transients show a biexponential pattern such that a faster

decay with a time constant of roughly ≈ 100 ps transitions into a much slower component

that kind of plateaus and does not reach equilibrium on the timescale that is shown.

The only exception is the ssp, r− pumped spectra in the bottom left. Here, the system

transitions into the plateau level immediately after the pump pulse has passed and we

find a time constant in the nanosecond regime.

To investigate this behaviour further, we repeated the experiment in the top left of

figure 4-9 but utilised the full length of our delay stage. The resulting transient is shown

in figure 4-10. Here, we can see how the recovery still does not reach the equilibrium level

that is indicated by the dashed line and an exponential fit of the plateau with equation

4.5 suggests a lifetime of > 1 ns. To find an upper limit, we can manipulate the Pharos

such that another earlier pulse is seeded into the pump laser system. The internal Pharos

oscillator runs at 76 MHz, which puts the timing between these pulses at around≈ 13.2 ns.

Doing that, we found that the signal is completely recovered after 13 ns, which supports

a lifetime in the magnitude of nanoseconds.

Having covered the limit of very long delays, we will now focus on the limit of small

delays, which is essentially the moment when the pump pulse is in temporal overlap with

the other pulses. In our experiments, we find this point zero by first overlapping the

broadband IR with the upconversion pulse to generate our sum-frequency probe signal.

We then block the broadband IR and adjust the narrowband IR pump pulse to generate a

sum-frequency signal with the upconversion pulse. In theory, this guarantees a spatial and

temporal overlap of all three pulses and we can set the point of zero delay, accordingly.

Naturally, this adjustment is prone to error but we estimate the error to be no more than

a few picoseconds.

That being said, we can observe some interesting elements in the transients. Almost
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Figure 4-11: Comparison of the transient delay scan data with the temporal shape of

the pump pulse. The top part shows the r+ mode in ssp polarisation with the r− mode

pumped, which is taken from the bottom left of figure 4-9. The bottom part also shows

the r+ mode in ssp polarisation but with the d− mode pumped, taken from the top

left part of figure 4-9. The blue dots represent the Ekspla time profile according to our

cross-correlation experiments in figure 3-6 and the blue line indicates the numerically

integrated signal of the Ekspla pulse, shown on the right axis.

all trends show how the maximal signal decrease occurs roughly 10−20 ps after the pump

pulse hits the sample. The only exception is the ssp polarised, r− pumped delay scan in

the bottom left of figure 4-9, which features a minimum at around zero delay. The r+

mode in the bottom right of the same figure might show a similar trend, even though the

data are very noisy. In these plots, it looks as if the signal change mirrors the Gaussian

shape of the pump pulse when it hits the sample.

This idea is further investigated in the top part of figure 4-11. Here, the plot shows

the transient data of the r+ mode in the bottom left experiment of figure 4-9 and the ap-

proximate time profile of our pump pulse, taken from the cross-correlation measurements

of figure 3-6.

We should note here, that we only scaled the intensity of the pump pulse profile to

compare the data and left the position on the time axis untouched. Even though the two

datasets were taken on different days they fit surprisingly well together. Looking at the

bottom part of figure 4-11, we see the same comparison as before but with the pump

laser set to the d− mode. Evidently, in this case, the time profile does not fit the transient

data at all. However, if we instead look at the integrated signal from the pump pulse we

find a curve that fits the data much better.

As we have mentioned before, this does indeed suggest a very rapid decay in the ssp
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Figure 4-12: The data points show vertical slices through the two-dimensional transient

difference spectra of figure 4-8. All slices are centred at ≈ 2928 cm−1 and averaged over

≈ 10 cm−1 to include the signal increase in the red flank of r+FR. The top part shows the

ssp and ppp experiments with the pump laser set to d− and the bottom part shows the

same experiments with r− pumped.

polarised, r− pumped transients such that the system stays only excited as long as the

pump pulse is present and immediately transitions into the plateau level. In the other

experiments, the energy of the pump pulse seems to be stored longer and only dissipates

on a timescale of ≈ 100 picoseconds into the plateau.

Finally, we want to illuminate the signal increase in the red flank of r+FR that we

observed in the top left part of figure 4-8. To this end, we take slices through the two-

dimensional difference spectra again, as we did in figure 4-9. This time, however, the

slices are all centred at ≈ 2928 cm−1 and again averaged over 10 cm−1 to include the left

flank of the r+FR mode. This is shown in figure 4-12.

Even though the signals are very noisy, we can make out a similar signal increase in the

ppp spectra as well. This was hard to pick up in the two-dimensional difference spectra.

Interestingly enough, this feature seems to only be present when pumping the d− mode,

as the bottom part of figure 4-12 suggests. Setting the pump laser to r− either does not

affect the red flank of r+FR or even decreases the band intensity. Unfortunately, we are

unable to extract any finer details from the datasets because of the background noise.

4.2.3 Summary

We conclude this section with a summary of the most important insights that we have

gained from our pump-probe experiments. First, we will focus on the results from the

wavelength scan data in subsection 4.2.1 and afterwards we are going to summarise the
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results of the delay scan experiments in subsection 4.2.2.

Wavelength Scan

For the wavelength scan data, we put all three of our pulses in temporal and spatial

overlap to achieve a strong pump response, while sequentially scanning through different

pump photon energies. Analysing the resulting difference spectra, we found some very

interesting characteristics of our calcium arachidate monolayers:

1. We observed the strongest response to the pump pulse when the pump photon

energy was set to the d− and the r− modes at around 2920 cm−1 and 2962 cm−1,

respectively. Interestingly, these photon energies correspond to strong IR absorption

bands, according to the RAIR spectrum of a similar system. We did, however, rule

out a signal decrease due to heat because there was no evidence of gauche defects.

2. Comparison to the RAIR spectrum also revealed that pumping the Fermi resonance

r+FR around 2935 cm−1 does not contribute to the pump effect even though there is

strong absorption in the monolayer. Furthermore, in the r− region, the pump effect

seemed to be more prominent when pumping the out-of-plane vibration r−a .

3. Surprisingly, we observed a signal increase rather than the expected decrease in

the red flank of the Fermi resonance. As we later confirmed in the delay scan ex-

periments, this increase is roughly equally strong in the ssp and ppp polarisation

combination but seems to only be present when pumping the d− mode. We illus-

trated how a shift in the resonance frequency or a pump effect in multiple convoluted

modes can result in such a signal increase.

4. Lastly, the ppp polarised experiments featured a strong pump response in the r−

mode around 2962 cm−1 when we pumped the energetically lower lying d− mode.

Naturally, this is only possible if there is energy exchange not only between the

excited modes but a contribution from lower modes as well.

Delay Scan

After we wrapped up the fixed-delay wavelength scan data, we transitioned to the delay

scan experiments that gave insight into the dynamics of the system. Our delay scans

are characterised by fixing the pump photon energy, while solely increasing the time

delay between the arrival of the pump pulse and the sum-frequency probe pulse pair.

This allowed us to take snapshots of the system at different stages in the energy decay

process. By analysing this transient evolution we gained important knowledge about the

vibrational energy redistribution mechanism in our molecules:
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1. The first thing to note is that our temporal resolution is limited by the width of

our Twin’s pulse, which is roughly 0.3 ps and usually, our experiments encompass a

range of ≈ 200 ps. On this timescale, we were able to observe multiple components

of the energy decay process.

2. All experiments eventually transitioned into a very slow component, which we refer

to as the plateau level that extended beyond our usual scanning range. By util-

ising the full length of our delay stage and manipulating the pulse seeding of the

Pharos, we found that the system recovers to equilibrium on a timescale of a few

nanoseconds.

3. Most experiments indicated an at least biexponential decay such that there was an

initial spike in the difference spectra, which transitioned into a faster decay before

plateauing out into the slow component. The exception was the experiments with

the pump laser set to r− in ssp polarisation and to a lesser extent the r+ mode in

ppp polarisation. Here, the data did not show an exponential decay but mirrored

the temporal shape of our pump laser. This suggests a mechanism on the timescale

of a few picoseconds, limited by the temporal width of the pump laser since we are

blind to any dynamics that occur during the arrival of the pump pulse.

4. Comparing the pump pulse profile with the other experiments, we found that here,

the data does not fit the temporal shape but rather the numerically integrated

profile. This further supports how, in these experiments, the energy is stored in the

respective modes for a longer time before decaying on a timescale in the magnitude

of 100 ps into the plateau level.

5. Finally, we found virtually no delay between the arrival of the pump pulse and the

signal change in all experiments. This suggests a very rapid first internal energy

redistribution between the methylene and the methyl groups because we observed

an immediate effect in the r modes regardless of pumping the d or r modes.

This concludes the illustration of our pump-probe experiments and the presentation of

our results. The next step in understanding the underlying mechanism that dictates the

energy flow in our molecules is finding a suitable model that can explain our observations.

We will tackle this problem in the next section.

4.3 Temperature Model

Building upon the previous section, this section introduces a three-temperature model in

an attempt to explain the observations from our pump-probe experiments. The structure

is as follows: First, we will validate our experimental data from the last section to find
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what trends are reproducible. After that, we will motivate a three-temperature model

and introduce the corresponding reservoirs. Next follows a mathematical description of

our model and we conclude this section by comparing experimental and simulated data.

4.3.1 Validation of the Data

Before we introduce a suitable model to our observations, we will attempt to validate

the experimental data of the pump-probe experiments from the last section. Naturally,

it is impossible to exactly reproduce an experiment due to the amount of optimisation

that goes along with each setup. However, it is still important to repeat the experiments

mainly because of two questions:

1. Is the shape or trend of the data points reproducible?

2. How strongly does the bleach intensity vary in different measurements?

To this end, we repeated the experiments in figure 4-9 of the last section roughly half a

year later. Figure 4-13 displays a comparison between the earlier presented pump-probe

data and the repeated experiments. Shown are only the most prominent modes, i.e. r+ in

ssp and r− in ppp but the weaker modes are reproducible in the same manner. The orange

dots illustrate the experimental data from the last section and the blue dots represent the

repetition of the same experiments.

The first to note when looking at the plots is that we can reproduce the trends of all

experiments surprisingly well. However, to achieve this we had to shift the orange data

points in the top and bottom left plots by −5 ps and +5 ps, respectively. Such a shift

seems reasonable because the approximate time profile of our pump laser in figure 3-6 (a)

features two small peaks that are roughly 5 ps apart. Therefore, when looking for the zero

delay position, we may not always optimise the signal to the same peak and accidentally

create a shift of 5 ps between different measurements.

Secondly, we find strong variation in the intensity of the bleaches. We had to scale the

data points by factors of 1.1 to 1.7 to overlap the different datasets. Such surprisingly

strong deviation can only be attributed to two things: The power of the pump laser during

measurement and the spatial overlap of the pump laser with the other beams. Every other

alignment in the experimental setup only affects the intensity of the sum-frequency spectra

and not the bleach.

To investigate the influence of the pump pulse energy, we measured the maximum

bleach intensity of a single mode and sequentially decreased the power of the pump pulse.

The data points in figure 4-14 show the maximum bleach intensity of the r+ mode in ssp

when pumping the d− mode as a function of the applied pump power. As expected, the

initial data points seem to go linearly with the pump pulse energy. More surprisingly is

the fact that the bleach intensity seems to saturate at around 30mW, which might lead
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Figure 4-13: This figure shows the bleaches in figure 4-9 and a repetition of the same

experiments roughly half a year later. The blue dots represent the most prominent modes

of figure 4-9 and the orange dots are the same modes of the repeated experiments. The

coloured arrows indicate which dataset is enhanced by what factor to overlap both exper-

iments. Additionally, the orange dots in the top left and bottom left are shifted by −5 ps

and +5 ps, respectively.

to problematic effects in our pump-probe measurements. However, since the maximum

bleach that we observed in our experiments is roughly 50%, which correlates to a pop-

ulation shift of (1 −
√
0.5)/2 ≈ 15% for a simple two-level system, we should be safe in

that regard. The saturation effect that we observe in figure 4-14 might just be due to

experimental factors that arise when manipulating the attenuation of the pump laser. On

the upside, however, a fluctuation in the pump power during measurement should only

have a minute effect on the observed bleach intensity. On the other hand, if we follow

this line of thought, we necessarily have to assume that the variation in bleach intensity

in figure 4-13 cannot be attributed to the pump power but has to significantly rely on

the spatial alignment of the pump pulse.

122



4 Results 4.3 Temperature Model

Figure 4-14: The data points show the bleach on the r+ mode in ssp polarisation when

pumping the d− mode as a function of the approximate pump IR power at the sample.

The black line indicates the linear part of the data.

Bleach Comparison

Now that we made sure the shape of the transient data is reproducible, we are going

to compare the bleaches of different experiments with one another. It is reasonable to

look for similarities between different experiments with the same pump laser parameters.

Figure 4-15 shows the bleaches on the r+ and r− modes in the ssp and ppp polarisation

combinations. The left part shows the experiments with the pump laser set to d− and

the r− pumped spectra are on the right. We decided to drop the bleach on the Fermi

resonance r+FR because it is strongly convoluted and its frequency might be shifting, as we

have seen in section 4.2.1.

We begin with the top left plot in figure 4-15. Here, we can see the bleach on the r+

mode in the ssp and ppp experiments with the pump laser set to d−. Since the polarisation

combinations are essentially just two different ways of looking at the same thing, we should

expect the bleach on the same mode to also be the same. This gives us a powerful tool to

determine a scaling factor between two different experiments. Surprisingly, here, in the

top left plot, we find that the datasets are very similar even though we did not enhance any

of them. Unfortunately, the data points of the ppp measurement are very noisy because

the mode is very weak but the two datasets show a very similar trend, nonetheless.

Coming to the bottom left plot of figure 4-15, we are now comparing the most promi-

nent modes in ssp and ppp. Here, we find that the bleach on the r− mode is much stronger

and we had to enhance the r+ mode by a factor of 1.75 to match the other dataset. This

seems to be an inherent characteristic of the system because the pump laser alignment

should be comparable in both experiments as we have seen in the plot above. This be-

123



4.3 Temperature Model 4 Results

Figure 4-15: This figure compares the bleaches of different experiments. The left part

shows the measurements with the pump laser set to d− and the right part shows the r−

pumped spectra. The coloured arrows indicate how much a certain dataset is enhanced.

haviour is quite puzzling because r− is roughly 80 cm−1 higher in energy than r+ and

about 40 cm−1 higher than the pumped d− mode. This seems counter-intuitive since most

of the energy is flowing into the energetically higher mode. Apart from this scaling factor,

however, the temporal evolution of the bleaches on r+ and r− appear to be very similar.

Now we take a closer look at the r− pumped experiments. The top right plot of figure

4-15 compares the r+ mode in both polarisation combinations again. Surprisingly, here

we find the ppp measurement more than twice as intense as the ssp measurement. Since

we ruled out a significant effect of the pump power, we have to assume this discrepancy

in bleach intensity is due to the alignment of the spatial overlap of the pump laser. With

this huge enhancement factor, the two datasets do seem to show similar behaviour as far

as we can tell with the noisy ppp measurement.

The bottom right plot in figure 4-15 is where it gets interesting. We enhanced the ssp

measurement by the factor from the plot above to make both experiments comparable.

Clearly, the datasets show very different trends even though the intensity of the maximum

bleach is comparable after the enhancement. The bleach trend that follows the time profile

of the pump laser seems to be reproducible only in the r+ mode but when observing the

same mode that is pumped, we see a unique trend. Initially, the peak bleach seems to
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decay similarly fast to the other r− pumped measurements but instead of following the

pump laser profile the redistribution mechanism then transitions to a much slower decay

similar to the one in the d− pumped experiments. We should keep this peculiar behaviour

in mind.

Now that we have verified the data and taken a closer look at the transients we are

going to propose a model that reproduces our observations.

4.3.2 Reservoirs

Apart from the puzzling r− resonance when the mode itself is pumped, there seems to

be a clear trend in the transients of figure 4-15: If the d− mode is pumped, we observe

a slower decay into the plateau level. When the pump laser is set to r−, however, the

redistribution mechanism is faster than we can resolve such that the bleach mirrors the

temporal profile of our pump laser before plateauing out.

A reasonable explanation for such a behaviour might lie in the amount of CH2 groups

in the molecule. We could define energy reservoirs, that represent the energy contained

in the vibrational stretching modes. Since there are 18 methylene groups and just one

methyl group, the reservoir for the CH2 modes necessarily has to be much larger and

longer-lasting than the one for the CH3 modes. So when pumping the d− mode, we first

fill up a larger reservoir and observe a slower recovery than in the r− pumped case.

To investigate this idea further, we propose a three-temperature model with three

energy reservoirs, representing the methyl stretching vibrations, the methylene stretches

and a bath that contains the low-frequency deformation modes. These energy reservoirs

are illustrated in figure 4-16 (a) with an approximate scale of how large each reservoir

is in comparison to one another. According to table 4-1 in section 4.1, we can attribute

four stretching vibrations to the methyl reservoir, which we will call R. The methylene

groups only feature two stretching vibrations but with the amount of CH2 modes, we

get a total of 2 · 18 = 36 vibrational modes that are contained in the larger reservoir

D. The even larger heat bath is a little more tricky to define because it is hard to say

what modes contribute to this reservoir. We can approximate this number, however, by

taking all vibrational modes of the methylene groups 3N − 6 = 156 and subtracting the

modes of the D reservoir to get 156− 36 = 120. We assume this number is a reasonable

approximation to the actual amount of deformation modes that are contained in reservoir

B.

Naturally, these reservoirs need to be coupled to exchange energy and exhibit transient

change. We decided to go with three distinct coupling parameters aRD, aDR and aB that

represent the energy flow from R → D, D → R and R/D ↔ B, respectively. Usually, the

more complex a model becomes the more permutations of different parameters lead to

the same behaviour. Therefore, our approach is to find a model in a simple, physically

reasonable frame and try to fit the simulations to our data within that frame.

125



4.3 Temperature Model 4 Results

R
4

36

120

D

B

R

Dr +

E

r -
a r -

b

d-

d+

r +
FR

(a) (b)

2850 cm-1

2963 cm-1

aDR

aRD

aB aB

Figure 4-16: Illustration of the energy reservoirs. Part (a) shows how big the single

reservoirs are in comparison to one another due to the number of vibrational modes that

are contained within and also their coupling parameters. Part (b) indicates the average

vibrational energy of the modes in R and D.

Also, the vibrational modes in R are on average roughly 80 cm−1 higher in energy than

the modes in D. This is illustrated in part (b) of figure 4-16, which shows the vibrational

energy level of each mode in the R and D reservoir. The boxes are located at the average

vibrational energy of the contained modes. Here, we assumed that the energy flow from

R to D is favoured, such that aRD > aDR.

Earlier, in section 4.2.1, we claimed that at room temperature there is always a low-

energy vibrational available to compensate for the energy mismatch between r− and d−.

However, this does not seem to hold anymore because it is important to distinguish

between aRD and aDR to accurately model the data.

The coupling to the deformation mode, on the other hand, influences the transition

into the plateau level and we expect this parameter to be much smaller than the coupling

between R and D. Further, even though the coupling of R → B and D → B is surely not

equal, we assume the difference to be sufficiently small such that it can be neglected.

Rationale

With this reservoir model, we are able the explain our observations in the following way:

When pumping the r− mode, the energy quickly equilibrates between the stretching

vibrations of the methyl and methylene groups on a time scale that we cannot resolve.

Subsequently, the R and D reservoirs are drained by coupling to the deformation modes.

Presumably, this whole process occurs during the arrival of our pump pulse, such that

after the pulse is passed there is very little energy left in any single mode and we only

observe the plateau level of the heat bath.
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When pumping the d− mode, on the other hand, we fill a much larger reservoir with

roughly twice the amount of energy than in the r− pumped case, according to our RAIR

spectrum. There is now an equally fast energy redistribution process between the R and

D reservoirs. This time, however, the huge, filled D reservoir dissipates its energy with a

≈ 100 ps time constant and constantly ’feeds’ the R reservoir. This explains the observed

slow recovery into the plateau level even after the pump pulse is passed.

4.3.3 Mathematical Defintion

Now that we have introduced our model qualitatively, we will provide a mathematical

definition. In the previous subsection, we declared three reservoirs R, D and B that

represent the methyl, methylene and deformation modes. We can represent the energy in

these reservoirs by

Ei = ciTi (i = R,D,B), (4.6)

with ci being the heat capacity and Ti being the temperature of the corresponding reser-

voir. With the heat capacities, we can manipulate how much energy is needed to balance

a temperature difference between the reservoirs. Therefore, the heat capacities represent

how large each reservoir is and should reflect the number of vibrational modes according

to figure 4-16 (a). Consequently, we expect the heat capacities to not deviate much from

the ratio 4 : 36 : 120 for the reservoirs R : D : B.

We further introduced a simple set of coupling parameters aRD, aDR and aB, according

to figure 4-16 (a) that represent the rate constant of the energy flow from R → D, D →
R and R/D ↔ B. With this setup, we can formulate a set of differential equations that

govern the energy flow in our system as

dTR

dt
=

1

cR
[−aRD(TR − TD)− aB(TR − TB)] (4.7)

dTD

dt
=

1

cD
[2fpump(t)− aDR(TD − TR)− aB(TD − TB)] (4.8)

dTB

dt
=

1

cB
[−aB(TD − TB)− aB(TR − TB)] (4.9)
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for the d− pumped case and as

dTR

dt
=

1

cR
[fpump(t)− aRD(TR − TD)− aB(TR − TB)] (4.10)

dTD

dt
=

1

cD
[−aDR(TD − TR)− aB(TD − TB)] (4.11)

dTB

dt
=

1

cB
[−aB(TD − TB)− aB(TR − TB)] (4.12)

for the r− pumped case. Note that we enhanced the pump laser input by a factor of 2 in

the d− pumped case because the IR absorption is roughly twice as strong for d− than it

is for r−, according to the RAIR spectrum of figure 4-6.

We modelled the pump laser input with a Gaussian temporal profile, such that

fpump = e−
(t−t0)

2

σ2 and (4.13)

σ =
FWHM

2
√
2 ln 2

. (4.14)

Further, we approximated the full width at half maximum of our pump laser by FWHM

= 15 ps, according to table 3-2 of section 3.1.2. The offset t0 represents the point in time

when the pump pulse reaches its maximum intensity.

Integrating these differential equations reveals the temperature transients and, hence,

the energy content of each reservoir as a function of time. To extract the bleach on r+ and

r−, we need to figure out how to convert these temperatures to population differences.

Naturally, this is where the Boltzmann function comes into play. However, with our

simple approach, we only consider a handful of energy levels and disregard most of the

lower-frequency skeletal modes. In this abstract system, it is a reasonable approximation

to convert the temperatures linearly to populations of the first vibrationally excited levels.

Next, we need to consider how the bleach is inferred from a change in the population

of the respective energy levels. The bleach intensity of the R reservoir for example is

proportional to the square of the population difference between the ground state and the

R state. In other words, the number of available oscillators in the ground state but also

the population in the observed state contribute to the bleach signal.

Let us consider a simple three-level system, like the one in figure 4-17. If we now push

a fraction ∆ of the oscillators from the ground state into the R state and another part Σ

into D, the bleach on R becomes

Ibleach,R ∝ (1− 2∆− Σ)2. (4.15)

Note here that ∆ contributes twice because the ground state is drained and the R state

is populated by ∆ at the same time.
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Figure 4-17: Illustration of an abstract three-level system. The symbols ∆ and Σ indicate

how much population is transferred from the ground state (GS) to either the R or D level.

With this reasoning, we can now define the bleach on R in terms of the reservoir

temperatures, as

Ibleach,R ∝ (1− kvib(2TR + TD))
2. (4.16)

The temperatures TR and TD are solutions to the differential equations above in either

the d− or r− pumped case. For the sake of completeness, we can also calculate the bleach

on the D reservoir, such that

Ibleach,D ∝ (1− kvib(TR + 2TD))
2. (4.17)

However, since we are unable to observe the methylene modes properly, we cannot compare

this simulation with experimental data.

The experimental constant kvib contains a lot of different information like the inherent

characteristics of the vibrational mode but also experimental aspects like pump power

and spatial pump pulse alignment. For this reason, kvib can vary strongly between mea-

surements. However, we decided to fix this constant in the d− and r− pumped simulations

and instead scale the bleach afterwards to fit different datasets. As we have seen in section

4.3.1, this scaling factor can range from 1.1 up to 2.2, depending on the spatial overlap

of the pump pulse.

With these tools, we can now find suitable coupling parameters by fitting the simulated

data points to our experimental observations. We will tackle this in the next subsection.

4.3.4 Simulation of the Data

Following up on the last subsection, our goal is now to solve the differential equations in

4.7 such that the resulting bleach on the R reservoir, which we defined in equation 4.16

fits the transient trends of the r+ and r− modes in our delay scans. We decided to fit

the simulations to our ssp datasets with the least squares method and then compare the

results with the ppp spectra.

The final fit parameters are displayed in table 4-3. Our ambition in this endeavour

was to find a good fit to our data with a model that has few but reasonable parameters.
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Table 4-3: Parameters that were used to solve the differential equations in 4.7 such that

the extracted bleaches fit the dynamics shown in figure 4-18. Values in brackets were

fixed and not fitted.

Parameter Value

cR [2 JK−1]

cD [18 JK−1]

cB 50 JK−1

aDR 0.5 J(K · ps)−1

aRD 0.9 J(K · ps)−1

aB 0.2 J(K · ps)−1

kvib 0.0415K−1

t0 −5 ps

Therefore, we fixed the heat capacities cR and cD as 2 J/K and 18 J/K to represent the

size of the reservoirs, according to figure 4-16 (a). However, since we cannot be sure

about how large the heat bath is, we allowed cB to deviate slightly from the expected

value of 60 J/K. Further, the offset t0 only shifts the transients along the delay axis but

does not influence the shape of the curve. Similarly, the parameter kvib mainly scales the

intensity of the bleach and has no significant impact on the dynamics. This leaves us with

the three coupling parameters aDR, aRD and aB that primarily dictate the shape of our

curves.

The simulated data are shown in figure 4-18. The top part shows the temperature

of each reservoir R, D and B as a function of the delay between the pump and probe

pulse. Across the whole figure, the blue colouring indicates d− pumped data and orange

represents the r− pumped case. When pumping the smaller R reservoir, we observe a

steep incline in R and the energy equilibrates between D and R, such that after the pump

pulse is gone, only very little energy remains in any single oscillator. Pumping the larger

D reservoir, indicated by the blue curves, we observe a similar but slightly delayed steep

incline in the D reservoir. This time, however, energy continues to accumulate in D even

after the pump pulse maximum passes because of the slower redistribution mechanism.

For the same reason, the R reservoir is constantly fueled by D, such that the dynamics

seem much slower than they inherently are.

With these temperature functions, we are now able to calculate the bleach on a single

reservoir with equation 4.16. This is illustrated in the middle and bottom parts of figure

4-18. The middle part shows the transients of the r+ mode in ssp polarisation and the

solid lines indicate the simulated bleaches. As mentioned earlier, we decided to keep the

parameter kvib fixed in all simulations even though it can vary between measurements.

We offset this fluctuation by enhancing the curves afterwards to fit the experimental data.
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Figure 4-18: Simulation of the energy flow in the reservoir model. The top part shows the

solution of the differential equations in 4.7 with the parameters taken from table 4-3. The

blue and orange colouring indicates d− and r− pumped datasets, respectively, across the

whole figure. The middle part compares the r+ mode in ssp with the simulated bleaches

and the bottom panel shows the same but with the r− mode in ppp. All circles are

experimental data and the solid/dotted/dashed lines represent simulations. The arrows

show by what factor a simulated bleach is enhanced.
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Surprisingly, the model fits very well considering we only fitted more or less three

parameters in our simple model that significantly altered the shape of the curves. Fur-

thermore, we previously only had the option to compare two measurements with the same

pump wavelength settings. With our model, however, we can now compare a d− pumped

with a r− pumped measurement and take the enhancement factor as an indicator of how

similar the alignment was.

With a small factor of 1.05 in the middle part of figure 4-18, we can then assume

the setup to be almost equal during the measurements. This is interesting because both

the maximum intensity and the plateau levels are roughly twice as large for the blue

curve than for the orange one. So we can assume that twice as much energy is stored

in the system when pumping d−. This fits very well because the absorption measured in

the RAIR spectrum in section 4.2 is also roughly twice as strong for d−, which strongly

supports the temperature model.

The bottom part of figure 4-18 shows the transients of the r− mode in the ppp polar-

isation experiments. As we have seen before, the trend of the transients when pumping

d− is similar for the r+ and r− modes but the intensity is almost twice as strong in r−.

The only aspect our model cannot explain is the puzzling behaviour of the r− mode when

the mode itself is pumped. We enhanced the bleach by the factor taken from figure 4-15,

which does help the peak intensity to approach the maximum in the data. However, the

shape of the transient data is clearly not represented by our simulation.

Our model is based on the assumption that there is energy flow from R to D, which is

expressed in the coupling parameter aRD. Since the simulation does not fit for r− when

r− is pumped, the energy exchange necessary has to be different here.

Even though we are not able to explain the peculiar behaviour of the r− mode, we

decided to adhere to the basic idea of our model because it fits the rest of the data very

well. We will note, however, that the model is quite obviously not perfect and should

be extended in future works in order to better explain the energy flow through the r−

channel.

4.3.5 Summary

We learned many interesting things in this important and quite complex section. To

recap, we first validated the trends of our delay scan experiments by comparing the

already presented data with a repetition of the same experiments roughly half a year

later. Secondly, we introduced a three-temperature model in an attempt to explain the

energy flow dynamics in our system. We then fitted the parameters in our simulation to

match the observed transients. Finally, we will summarise the most important insights

we gained in each of these steps to conclude this section.
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Validation of the data

1. Comparing the already presented delay scans with a repetition of the same experi-

ments we were able to reproduce the trend of each bleach surprisingly well.

2. The maximum bleach intensity, on the other hand, could vary between measure-

ments up to almost twice the amount.

3. We further found that this huge difference in pump strengths significantly depends

on the spatial alignments of the pump pulse and the pump power only played a

subordinate role in that regard.

4. Lastly, we confirmed how the shape of the bleach on the same mode in ssp and ppp

is similar if the pump laser settings are comparable.

Introducing Reservoirs

1. We introduced a three-temperature model with the reservoirs R, D and B, which

represent all of the methyl, methylene and lower-frequency deformation modes, re-

spectively.

2. Further, we set the heat capacities to values that correspond to the number of

vibrational modes in each reservoir to manipulate how large each reservoir is.

3. As a final step, we then formulated a set of differential equations for the d− pumped

case and one for the r− pumped case that dictates the transient temperature change

in each reservoir. Solving these equations with the proper parameters will then

reveal the energy flow dynamics in our system.

Simulation of the Data

1. We chose to simulate our data with a simple model that depends on very few

variables. This approach is reasonable because a very complex model might fit

the data better but can also lead to multiple sets of parameters that all fit the data

similarly well. Therefore, if we can explain our data with a simple model, we can

be sure to understand the underlying, fundamental physical mechanism.

2. For this reason, we fixed the heat capacities cR = 2 and cD = 18, according to the

number of vibrational modes in the corresponding reservoir. Because we were not

sure about the size of the heat bath, however, we allowed cB to vary slightly from

the expected value of 60.

3. Apart from the slight variation of cB, the only parameters that significantly change

the shape of the transients are the coupling parameters aDR, aRD and aB.
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4. We found suitable coupling parameters by solving the differential equations, extract-

ing the bleach on the R reservoir from the resulting temperatures and fitting these

simulations to our experimental data. These parameters are: aDR = 0.5 J(K · ps)−1,

aRD = 0.9 J(K · ps)−1 and aB = 0.2 J(K · ps)−1. All parameters are listed in table

4-3.

5. With our simple model of more or less three significant parameters we found a

surprisingly good fit for the ssp polarised experiments. In ppp, however, only the

d− pumped transients could be explained with the simulation. The r− mode, when

the mode itself is pumped shows a very puzzling transient that we were not able to

explain.

This concludes the introduction of the three-temperature model and its significance to

our experimental data. As a next step, we will now extend the analysis of our molecular

systems by studying one with a different monolayer density and we also deuterate a

number of the CH2 groups. With this, we hope that the energy flow in the monolayer is

significantly altered, allowing us to learn even more about the properties of our molecules.

We will tackle this question in the next section.

4.4 Extending the System

With the temperature model, we now have a good idea about the general energy flow in

our molecular system. However, we still want to learn more about the actual anharmonic

coupling mechanism. Specifically, the role of intermolecular energy exchange is still mostly

unknown. To this end, we decided to prepare the Langmuir-Blodgett films with different

surface pressures, according to the isotherm plot in figure 3-12. By reducing the surface

pressure and forcing the monolayer into different phases, we hope to significantly alter the

intermolecular coupling and learn more about how the energy is redistributed. The results

are shown in the first subsection. In the second subsection, we investigate a deuterated

version of our calcium arachidate molecules. Specifically, by deuterating two of the CH2

links, we aim to hinder the energy exchange between the R to the D reservoir and reveal

more information about the intramolecular coupling. In the third subsection, we will

combine the two approaches by preparing a deuterated calcium arachidate film with low

surface pressure. The last subsection summarises our findings.

4.4.1 Monolayer Density

In this subsection, we will investigate a slightly different version of our calcium arachidate

films. Up till now, we have only investigated films that were prepared with the specific

surface pressure of 32mN/m (millinewton per meter) to ensure that we have a well-

ordered monolayer. By reducing the surface pressure in the Langmuir-Blodgett trough
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during deployment, we necessarily end up with a less dense monolayer. Furthermore, if

we decrease the surface pressure sufficiently the film even undergoes a phase transition to

a less ordered state, as we have explained in section 3.3.1.

Therefore, we decided to investigate two scenarios:

1. We will decrease the surface pressure slightly to 25mN/m. This guarantees that

the monolayer is still in the highly stable LS phase but is less dense.

2. We reduce the pressure to 13mN/m during deployment, which forces the monolayer

into the less ordered LC phase.

Even though we deem it necessary to consider the reproducibility of our data, we want

to restrict this section to the relevant plots. For this reason, we decided to simply claim

at this point that the data are reproducible and refer the reader to figure A-1 and A-

2 in appendix A. Furthermore, because there was no visible change in the wavelength

scan spectra for different densities, we decided to forego the presentation of the static

experiments and focus on the transient data.

25mN/m Films

We begin by presenting the results for the 25mN/m films. Figure 4-19 shows the bleach

on the most prominent modes in ssp and ppp spectra for the d− and r− pumped case

for the 25mN/m films. The transients we see here are very similar to the 32mN/m case

presented in figure 4-9 of section 4.2.2. Unfortunately, the exponential fit with equation

4.5 reveals lifetimes that, taking the experimental error into account, indicate the same

dynamics as in the denser monolayer. If there is a difference in the energy flow due to the

density of the monolayer, it is smaller than the experimental error allows us to resolve.

More interesting are the plots in figure 4-20. Here, we compare the bleaches of different

experiments but with the same molecular system, like we did in figure 4-15. As expected,

the transient trend of the r+ modes in ssp and ppp is reproducible here as well. Comparing

the r+ and the r− mode, however, yields a different result as in the 32mN/m pressure

films. For the r− pumped case in the bottom right plot, the transients differ significantly,

which is something that we have also seen before. But now the d− pumped spectra also

show very different shapes. This is the first indicator of significant change in the dynamics

and we will investigate this further after we present the 13mN/m results.

Taking a closer look at the strength of the pump effect, we found the bleach on r− to

be stronger by a factor of 1.75 than on r+, when pumping the d− mode in the 32mN/m

films. This seems to be reproducible here, as we find a factor of 1.5 · 1.2 = 1.8 when

comparing the top and bottom left plots of figure 4-20. Note, that the bleach on r+

should be equal in ssp and ppp, so the scaling factor of 1.5 in the top left plot comes

about due to experimental alignment differences.
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Figure 4-19: Similarly to figure 4-9, this figure shows the bleach on the most prominent

modes in ssp and ppp with d− and r− pumped but for a 25mN/m film sample. The black

lines indicate lifetime fits to the data, according to equation 4.5.

Figure 4-20: This figure compares the transients of different experiments of the same

molecular system, similarly to figure 4-15 but for 25mN/m surface pressure monolayers.
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13mN/m Films

Turning our attention to the less-ordered 13mN/m films, we will briefly cover the same

plots as for the 25mN/m case above. Figure 4-21 shows bleaches on the most prominent

modes and, again, the exponential fits suggest very similar lifetimes as the denser mono-

layers. Unfortunately, it seems like we are unable to significantly alter the population

decay from the R/D reservoir into the skeletal modes or at least are unable to resolve it

properly. However, taking a closer look at the bottom right plot, the puzzling behaviour

of the r− mode when it is itself pumped seems to also be visible in the r+ mode. Even

though the r+ data are quite noisy, there is a clear trend that we did not observe in the

denser films and we will investigate this further at the end of this subsection.

Before we come to that, however, we are going to complete the introduction of the

13mN/m films by comparing the bleaches of different experiments and the same density

with one another. These are compiled in figure 4-22. Looking at the top left plot, we can

properly match the bleach on r+ in the ssp and ppp experiments by enhancing the ppp

measurement, which is something that should always be possible. More puzzling then is

the plot in the top right, which seems to show different transients for the r+ mode in ssp

and ppp, when pumping r−. Needless to say, the ppp data are quite noisy but even then

we can hardly argue for similar dynamics in both experiments. Furthermore, the bottom

left plot shows a similar discrepancy as in the 25mN/m case above.

Comparing the bleach strengths again, we find that it is stronger on r− by a factor of

1.2 · 1.6 = 1.92 than on r+ for the 13mN/m films. This aligns quite well with the other

factors of 1.75 and 1.8 for the 32mN/m and 25mN/m films, respectively. It is, however,

difficult to say if the increasing factor does in fact correlate with the density or comes

about due to experimental error. Nevertheless, the general magnitude of roughly twice

the bleach intensity in r− compared to r+ is reproducible.

Density Comparison

Now that we have introduced the results for our 25mN/m and 13mN/m films separately,

we are going to compare all three systems to one another. Figure 4-23 shows the bleaches

on the most prominent mode in each experiment for every investigated monolayer density.

Surprisingly, the transients of the r− pumped experiments in the bottom part seem to

not change at all with decreasing monolayer density. There is, of course, some variation

in the data but this can likely be attributed to experimental error. The only significant

differences are visible in the transients of the r+ mode when pumping d−. Interestingly,

this behaviour seems to be exclusive to the r+ mode as we cannot observe a similar trend

for the r− mode in the ppp experiments.

To investigate this aspect further, we will take a closer look at the r+ mode when

pumping d− in both ssp and ppp. This is illustrated in figure 4-24. The left part shows

the r+ mode observed in ssp and on the right are the much noisier ppp measurements
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Figure 4-21: Like the experiments in 4-19, this figure also shows the bleach on the

most prominent modes in ssp and ppp with d− and r− pumped but with the less-ordered

13mN/m films.

Figure 4-22: Like the experiments in 4-20, this figure compares the transients of different

experiments of the same molecular system but with the less-ordered 13mN/m films.
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Figure 4-23: This figure shows the bleach on the most prominent mode in every experi-

mental setup for different film pressures during deployment. On the left are the transients

of the r+ mode and r− is displayed on the right.

presented. In an attempt to improve the noisy ppp measurement, we reduced the number

of data points by averaging every three points. Even though this helps to a certain degree,

the effect that we observed on the left side is barely reproducible here. We could argue

that the trend is similar, i.e. transients of the less dense monolayers show a plateau level

that corresponds to smaller bleaches, but the effect is certainly much weaker in the ppp

measurement.

Several possible scenarios can explain the trends in the left plot of figure 4-24. For

example, the orientation of the alkyl chain is presumably slightly altered in the less dense

monolayers. Consequently, the dipole moment of the CH2 links is also slightly different

and might not align quite as well anymore with the polarisation of the pump beam. This

will necessarily reduce the overall energy that the monolayer can absorb, thus explaining

the lower plateau level in the films with less density.

On the other hand, this argumentation should also lead to a reduced maximum bleach

intensity, which is hard to track because of experimental alignment. Another possible

explanation that is independent of the maximum bleach intensity but explains the different

plateau levels is the following:

In the denser monolayers, the alkyl chains are pressed together very tightly such that

139



4.4 Extending the System 4 Results

Figure 4-24: The left part shows the bleach on the r+ mode observed in ssp polarisation

for different monolayer densities. The solid lines indicate lifetime fits according to equation

4.5. On the right are the transients of the r+ mode observed in the ppp polarisation

combination. And every three data points are averaged to reduce noise. All plots show

experiments with the pump laser tuned to d−. Both legends apply to both plots.

the skeletal modes have very little freedom. When we reduce the surface pressure during

deployment of the other films, we increase this freedom such that it becomes ’easier’ for

the energy to flow into these lower deformation modes. This would fit quite well with the

left plot of figure 4-24 because in the denser films, the plateau level of the slow component

is higher such that more of the energy is stuck in the r+ mode.

However, neither the orientation of the alkyl chains nor the increased freedom of the

skeletal modes are limited to the ssp polarisation experiments. With these arguments,

we should then be able to reproduce the transients in the left plot of figure 4-24 also on

the right side, which we do not. Therefore, we have to assume that these ideas are only

part of the truth at best and that the real mechanism is more complex. We have not yet

found an answer to this curious behaviour but we have to presume a process that is not

only exclusive to the r+ mode but to the ssp polarisation combination as well.

4.4.2 Isotopologues

In this subsection, we will investigate the effects of deuteration in our arachidate chains.

To this end, we prepared another batch of samples with an arachidate isotopologue,

namely arachidic-17,17,18,18-d4 acid (CH3CH2(CD2)2(CH2)15COOH). Deuteration is the

process of exchanging a hydrogen atom with a deuterium atom in a molecule. A deuterium

atom has a single electron and proton, just like the hydrogen atom but also an additional
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neutron in its nucleus. Because the number of electrons stays the same, most of the

chemical reactivity is unchanged when deuterating a molecule. However, since the nucleus

is now twice as heavy, the resonance frequencies are much lower than in the original system

(∝ 1√
2
), as we have already seen in the IR spectra in figure 4-1.

Additionally, the IR spectrum of the deuterated species in figure 4-1 shows how the

resonance frequencies of the methyl and methylene groups stay roughly the same. So

we can expect the sum-frequency spectrum of the deuterated monolayers to also not

deviate much from the original one. The intramolecular energy flow, on the other hand,

is something that we expect to change. By introducing a sort of ’anchor’ into the chain

due to the deuteration, we anticipate the energy exchange between the CH3 and CH2

modes to be slowed down.

As in the previous subsection, we are going to claim here that the presented transients

of the deuterated molecules are reproducible and refer to figure A-3 in appendix A.

Furthermore, we will primarily focus on the transient data for the deuterated molecules,

as well.

Continuing the approach of the previous section, we will briefly show slices through the

two-dimensional difference spectrum centred at the most prominent modes of each exper-

iment. After that, we compare the bleaches of different experiments with one another and

finally evaluate similarities and differences between the data for the deuterated molecules

and the original ones. We begin with the bleaches on the most prominent modes in each

experimental setup.

Figure 4-25 shows slices through the two-dimensional delay scan data of the deuterated

32mN/m monolayers, centred at the most prominent modes of each experiment and

averaged over a range of ≈ 10 cm−1. In addition, the transients are fitted with equation

4.5 between 50 − 230 ps to encompass the transition into the plateau niveau. At first

glance, the data seem to show no surprising or special trends. Unfortunately, the lifetime

fits all show the same dynamics within their respective errors and do not deviate much

from the lifetimes that we found in earlier sections. Hence, there does not seem to be a

significant effect on the energy flow in our molecules due to the deuteration or at least we

are not sensitive enough to observe it.

Moving on from the evaluation of every experiment separately, we will now compare

the transients of different experiments with one another, as we have done in the previous

sections. The top part of figure 4-26 shows the bleach on the r+ mode in both ssp and

ppp with both pump laser settings. The bottom plots of the same figure then compare

the transients of r+ and r−.

Similar to the other experiments, we can reproduce the shape of the bleach on r+ quite

well in both the ssp and ppp polarisation combinations. Looking at the bottom part of

figure 4-26, however, we find a significant discrepancy between the bleach on r+ and r−

when pumping d−. This is something that was not visible in the 32mN/m film with our

original arachidate molecules but rather a feature of the 25mN/m and 13mN/m films.
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Figure 4-25: Similar to figures 4-21 and 4-19 of the previous subsection, this figure

shows the bleach on the most prominent modes in ssp and ppp with d− and r− pumped

but for a deuterated 32mN/m monolayer.

We should note here, however, that the transients in the ppp, d− pumped spectra were

tricky to reproduce and show a slightly different trend in the repeated experiments (see

figure A-3 in appendix A). So we should keep the bottom left plot of figure 4-26 in mind

but treat it with caution.

Furthermore, in the previous sections, we found that the bleach on r− is almost twice

as strong as on r+ when pumping the d− mode. For the deuterated molecules, we find a

factor of 1.95 in the bottom left plot. However, both experiments did not have a similar

alignment as we can see in the factor of 1.35 in the top left plot. So evidently, we have to

divide 1.95 by the experimental alignment factor 1.35. Finally, we find that the bleach on

r− is stronger by 1.95/1.35 = 1.45 than on r+ when pumping d−. This quite significant

difference from ≈ 2 seems to be a result of the deuteration.

Isotopologue Comparison

Finally, figure 4-27 shows the most prominent mode in every experiment for the 32mN/m

films of the original arachidate molecule and its deuterated isotopologue. As we have seen

earlier, the population lifetimes are very similar for the deuterated species so we do expect
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Figure 4-26: Similar to figures 4-20 and 4-22 of the previous subsection, this figure

compares the transients of different experiments of the same molecular system but for the

deuterated 32mN/m films.

very similar shapes of the transient data. Looking at the comparison between the original

and the deuterated molecules, this is evidently the case. Unfortunately, this also means

that the effect of the deuteration on the energy flow is not as significant as we had hoped.

However, there is one thing we can learn here. Taking a closer look at the ’lift-off’

point, i.e. the delay position at which the system leaves equilibrium, we see a different

trend for the d− pumped case than for r−. In the top plots of figure 4-27 the blue curves

seem to lift off a little later than the orange ones, which is not observed in the r− pumped

plots at the bottom. This is interesting because if we indeed slow down the coupling

between the R and D modes with the deuteration, we should expect a different behaviour

when pumping d− or r−. However, the lift-off point should stay the same, because we

immediately deplete the ground state when the pump pulse hits. It is the maximum

bleach that should instead shift to longer delays when we hinder the coupling mechanism.

Surprisingly, we do not observe such a shift in the maximum bleach here.

Although the effect is quite small with a shift of roughly ≈ 3 ps, it does seem to be

attributed to the deuterated links. One could argue that the deuteration experiments

were performed on a different day and the experimental setup might have been slightly

off, resulting in a shorter pump pulse. This could explain the observed shift but it would
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Figure 4-27: This figure shows the bleaches on the most prominent mode in every exper-

iment of the original arachidic acid (AA) monolayers and the deuterated version (dAA).

not explain why we only observe this phenomenon for the d− pumped spectra.

4.4.3 Combining Both Approaches

Unfortunately, neither the monolayer density nor a partial deuteration of the arachidate

chains yielded a sufficiently strong effect on the energy redistribution mechanism of our

monolayers. In a last attempt, we are going to investigate if a combination of the two

approaches gives rise to additional features in the transient data. Therefore, the last

system that we will introduce in this thesis is a deuterated arachidate monolayer at a

surface pressure of 13mN/m during deployment.

Contrary to the other experiments, we were not able to make enough decent mea-

surements of this molecular system to validate the shape of the transients. This is partly

because of the time frame in the last stages of the PhD work. Mainly, however, it was very

difficult to generate decent data because the 13mN/m films are less ordered in general

and keeping a good overlap for several hours was a little more tricky. We are confident,

however, that the data we are going to present can be trusted to a sufficient degree.

As per usual, we begin with the inspection of every experiment separately. Figure 4-28

shows the most prominent modes of every experimental setup and lifetime fits according
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Figure 4-28: Similar to figure 4-25 of the previous subsection, this figure shows the

bleach on the most prominent modes in ssp and ppp with d− and r− pumped but for a

deuterated 13mN/m monolayer.

Figure 4-29: Similar to figure 4-26, this figure compares the transients of different ex-

periments of the same molecular system but for the deuterated 13mN/m films.
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Figure 4-30: This figure shows the most prominent mode in each experiment and com-

pares the original 32mN/m films with the deuterated and less dense 13mN/mmonolayers.

to equation 4.5. Interestingly, the lifetimes here indicate a slower redistribution with all

fits resulting in values > 100 ps. The experimental error, however, is also significantly

larger than in the experiments of other sections due to the more noisy measurements in

general. So even though we should treat this result with caution, this is the first strong

indicator of a significant change in the dynamics of our monolayers.

Coming to the comparison of different experiments of the same system to one another,

figure 4-29 shows the transients of the 13mN/m films with the deuterated molecules. The

bleach on the r+ mode is more or less reproducible, even though the ppp measurements

are quite noisy. The bottom left plot also shows an offset in the plateau level, similar

to the previous measurements with less dense monolayers. Furthermore, we found that

the bleach on r− is stronger than on r+ by a factor of 1.45 for the deuterated 32mN/m.

Here, we find a similar small factor of 2.1/1.6 = 1.3 compared to the factor of ≈ 2 for the

original molecules. Hence, we have another indicator that the relative bleach strength on

r+ and r− when pumping d− is indeed influenced by the deuteration.

Lastly, figure 4-30 compares the transients of the original 32mN/m films with the

deuterated 13mN/m monolayers. Here, we find some interesting things. First of all,

the slight delay shift in the d− pumped spectra for the deuterated molecules is evident

here as well. This is a strong indicator that this effect can indeed be attributed to the
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Figure 4-31: The left part shows the bleach on the r+ mode in ssp for the original

32mN/m films and the deuterated 13mN/m monolayers. The solid lines indicate lifetime

fits according to equation 4.5. On the right are the transients of the r+ mode in the ppp

polarisation combination and every three data points are averaged to reduce noise. All

plots show experiments with the pump laser set to d−.

deuteration. Secondly, the top left plot shows a relaxation to a different plateau level for

the deuterated 13mN/m films. We saw a similar effect in subsection 4.4.1 and attributed

this plateau shift to the density of the monolayer.

These are all features that we already saw in the previous subsections and they seem to

be reproducible. There is, however, one aspect that we did not pick up earlier. The plot

in the bottom right does not show the same behaviour for both experiments. Observing

the bleach on the r− mode, when pumping the mode itself, we can see the usual trend

for the original 32mN/m films. The deuterated 13mN/m monolayers, however, show a

much more pronounced ’kink’ in the data points, meaning the bleach follows the pump

profile much longer before transitioning into a slower component.

We were not able to explain the biexponential curve of the bleach on the r− mode with

our model in section 4.3 and we still do not know what mechanism causes this trend. With

the results from figure 4-30, however, we might learn something new about the underlying

physics. We should also keep in mind, though, that we were not able to reproduce the

data of our deuterated 13mN/m films and proceed with caution.

Taking a glance at figure 4-27 of the previous subsection, we find no clear indication

of a similar effect in the isotopologue comparison. The density comparison in figure 4-23,

on the other hand, does seem to indicate a less pronounced but visible ’kink’ in the less

dense monolayers, as well. It is quite interesting then, that we find such a strong effect

when combining both deuteration and monolayer density.
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Unfortunately, since we do not know the underlying energy redistribution mechanism

that governs the bleach on r− it is difficult to explain this new phenomenon. However,

the goal of our experimentation with different samples was to weaken the inter- and in-

tramolecular anharmonic coupling and in this regard, we can argue to have been successful.

For some reason, there is a transition from the extremely fast redistribution such that we

can only observe a bleach that mirrors the pump profile to a much slower component and

this transition seems to be delayed in the deuterated 13mN/m monolayers.

In figure 4-24 of subsection 4.4.1, we found a puzzling behaviour of the r+ mode. The

shift of the plateau niveau for the less dense films was not reproducible in the ppp spectra

when pumping d− or at least much weaker. Figure 4-31 shows the same experiments for

the original 32mN/m films and their deuterated 13mN/m counterpart. Evidently, we

observe a very similar trend here: the different transients on the left are not reproducible

in the ppp setup on the right.

4.4.4 Summary

Our goal in this section was to alter our molecular films in such a way that the intra- and

intermolecular energy redistribution rates change significantly. To this end, we prepared

samples at smaller surface pressures during deployment, making the molecular films less

dense. Additionally, we prepared another batch of samples with a deuterated isotopologue,

namely arachidic-17,17,18,18-d4 acid. Finally, we combined both approaches by preparing

a deuterated Langmuir-Blodgett film at a surface pressure of 13mN/m.

Overall, it was very difficult to significantly change the dynamics in the molecular films,

as most experiments showed the same transients. Even though this is a clear indicator that

we can reproduce our findings very well, we were hoping for interesting deviations that

reveal more insight into our system’s dynamics. Albeit few, we did find some variation in

the data, which we will cover in the following.

1. Fits to the data of the transition into the plateau level yielded results that are all very

similar and feature time constants around 80 ps. Only the deuterated 13mN/m films

featured lifetimes larger then 100 ps. In these systems, however, the error margin

was much larger because there was a lot of noise in the measurements.

2. We found the bleach on r− stronger than on r+ by a factor of ≈ 1.75 when pumping

d−. This is close to the values for the 25mN/m films (≈ 1.8) and for 13mN/m

films (≈ 1.92) as well. The deuterated molecules, on the other hand, show factors

of ≈ 1.45 for the 32mN/m films and ≈ 1.3 for the 13mN/m films. This significant

gap can likely be attributed to the deuteration even though we did not yet find a

convincing explanation for the underlying principle.

3. The only significant change in the density experiments was visible in the r+ mode

148



4 Results 4.4 Extending the System

in ssp when pumping d−. Here, the bleach transitioned into a lower plateau level

for the less dense monolayers. Surprisingly, this was not reproducible for the r+

mode in the ppp spectra. We did, however, get the same results for the deuterated

13mN/m films. In an attempt to explain the shifting plateau level, we proposed

two ideas. First, we suggested that the molecular orientation angle distribution is

slightly altered in the different films, such that less energy is absorbed by the d−

modes. Secondly, we presented how the skeletal modes might have more freedom in

the less dense monolayers, resulting in more of the population of r+ decaying into

the lower deformation modes. Both approaches, however, are not limited to the r+

mode or the ssp polarisation combination. So the true fundamental behaviour is

likely more complex.

4. The deuterated samples all show a slightly delayed lift-off point when the pump

laser was set to d−. This is unexpected because we would assume that the maximum

bleach position is shifted to longer delays instead of the lift-off point. Nevertheless,

we observed this behaviour multiple times and only for the deuterated d− pumped

case so it is likely a feature and not an experimental artifact.

5. When combining both density and isotopologue features, we found a stronger ’kink’

in the r− mode when pumping the mode itself in the deuterated 13mN/m samples,

compared to the original 32mN/m films. This seems to indicate that the transients

follow the temporal shape of the pump laser (similarly to the behaviour on the r+

mode) for much longer before transitioning into a slower component. Even though

we do not know what causes the behaviour of the r− mode, the deuteration and

thinning of our films presumably resulted in a delay of this unknown process.
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Chapter 5

Conclusion

This chapter is intended as a summary of the most important research aspects that are

presented in this thesis. Further, we are going to link back to the introductory chapter

and review if and how the initial goals are achieved. Lastly, we will give a brief outlook

with suggestions of how the research could be continued.

5.1 Summary

The accomplishments covered in this thesis can be roughly put into three categories:

1. Experimental setup with proof of principle.

2. Pump-probe experiments of calcium arachidate monolayers and a subsequent at-

tempt to explain the observations with a three-temperature model.

3. Extending the molecular system to investigate the significance of intra- and inter-

molecular coupling.

In the following, we will take a closer at each of these categories and summarise the core

aspects.

Experimental Setup

In the scope of the PhD work that is the foundation for this thesis, we were able to produce

a time-resolved non-coherent pump-probe sum-frequency spectroscopy experiment. We

had to adjust the setup multiple times to improve the odds of finding evidence of a pump

effect. Roughly two years after the initiation of the project we found proof of principle in

the form of a transient bleach on the methyl modes when pumping the methylene modes

of a calcium arachidate sample. We have also shown in multiple figures how the transient

data is reproducible to a high degree, effectively allowing us to track vibrational dynamics

reliably.
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Calcium Arachidate Results

In the next leg of this journey, we utilised our pump-probe setup to investigate calcium

arachidate Langmuir-Blodgett films. While focusing on the methyl stretching modes

(r+ at 2879 cm−1 and r− at 2962 cm−1) we found evidence of a strong pump effect in

spectral areas that correspond to high absorption. Specifically pumping the antisymmetric

methylene and methyl modes at 2920 cm−1 (d−) and at 2962 cm−1 (r−) correlated to strong

drops in the intensity of the prominent modes in the sum-frequency spectrum. We did,

however, rule out a signal decrease due to an overall temperature increase because there

was no evidence of gauche defects in our spectra.

The fixed-delay wavelength experiments were followed up by the scanning-delay exper-

iments to reveal the transient bleaches. Here, we were able to reproduce a certain trend in

the transient data. We found that the dynamic regime consists of multiple components:

• All transients show an initial spike when the pump pulse comes into temporal overlap

with the other pulses, which is reasonable because the ground state gets depopulated

as soon as the pump pulse hits.

• The trends for the first ≈ 20 ps after the initial spikes depend on the pumped mode:

– Pumping r−, the bleach mirrors the temporal profile of the pump laser, which

suggests a rapid decay with a time constant of a few picoseconds, limited by

the temporal width of our pump pulse.

– Pumping d−, the bleach mirrors the integral of the temporal profile, which

suggests a slower decay with a time constant larger than the temporal width

of our pump pulse.

• Eventually, all transients transition into a very slow component that we refer to as

the plateau level. This decay features a time constant of a few nanoseconds and

is presumably the energy redistribution into the substrate. There are, however,

differences according to the pumped mode:

– Pumping r−, the bleach immediately enters the plateau level after the pump

pulse passes.

– Pumping d−, we find two components before entering the plateau:

∗ Faster component (roughly between delay of 20− 50 ps) that we were not

able to categorise nor could we find a reproducible time constant.

∗ Slower component (roughly between delay of 50− 200 ps), which presum-

ably is the energy redistribution into the lower deformation modes with a

population decay time constant of roughly 100 ps.
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• The only measurement that deviated from this behaviour, albeit reproducibly, is

the bleach on r− in ppp when pumping r−. Here, the transient mirrors the temporal

profile of the pump like the r− pumped spectra but then transitions into a slow

decay similar to the d− pumped case. Unfortunately, we were not able to provide a

satisfactory explanation here.

In an attempt to understand the underlying mechanism that governs the energy flow

in our samples, we devised a three-temperature model approach. The three temperature

reservoirs R, D and B correlate to the methyl and methylene stretching modes and the

heat bath that contains the lower deformation modes, respectively. We tied the heat

capacities of each reservoir to the number of vibrational modes such that the ratio of

R:D:B is roughly 4:36:120 to reflect how large each reservoir is in comparison to the

others. We then defined a set of coupled differential equations to describe the energy

flow between these reservoirs. Further, we decided to describe the system with as little

as three coupling parameters: aDR, aRD and aB for the transition from R → D, D → R

and R/D ↔ B, respectively. This approach is reasonable because we can simulate our

observations sufficiently well with this simple model even though our model neglects a lot

of finer details. It is, therefore, likely that we have grasped the fundamental principle.

We then had to solve the differential equations, transform the temperatures to pop-

ulations and compare the population difference of the R reservoir to our transient data.

In doing so, we found parameters that fit the ssp spectra very well. The coupling pa-

rameters are: aDR = 0.5 J(K · ps)−1, aRD = 0.9 J(K · ps)−1 and aB = 0.2 J(K · ps)−1. All

parameters are listed in table 4-3. Comparing the simulation to the ppp spectra, we found

good alignment with the d− pumped measurements but we were not able to reproduce

the puzzling behaviour of the r− mode when the same mode is pumped. Regardless of

these shortcomings, we are confident that the fundamental idea is correct and the trends

of the transients are caused by the much larger methylene reservoir, which takes longer to

drain and constantly fuels the R reservoir when pumping d−. Pumping r−, on the other

hand, fills up a much smaller reservoir that is quickly drained into the lower deformation

modes. We will note, however, that this model needs to be expanded to fully reflect the

vibrational dynamics of our samples.

Extension of Sytems Studied

In an attempt to learn more about the intra- and intermolecular coupling mechanism,

we decided to investigate samples that are slightly altered. First, we changed the sur-

face pressure during deployment of the Langmuir-Blodgett films such that the molecular

monolayer is less dense or even in a different phase. The samples that we investigated so

far were prepared at a surface pressure of 32mN/m (millinewton per meter) and the new

samples are deployed at 25mN/m and 13mN/m. By modifying the density of the films,

we were hoping to weaken the exchange between adjacent molecules to draw conclusions
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about the intermolecular coupling mechanism. Secondly, we introduced deuterium into

our molecules to make them heavier and push the resonant frequency far below the nat-

ural one. By deuterating two of the CH2 links we were hoping to significantly delay the

energy redistribution between the methyl and methylene modes and gain more insight

into the intramolecular coupling mechanism. Lastly, we combined both approaches by

preparing deuterated samples with less density.

We begin by summarising the density approach. Overall, the effect of the surface

pressure during deployment of the film was surprisingly weak. Almost all transients

showed very little deviation that could likely be attributed to limits in reproducibility

due to day-to-day differences in the setup. The only significant change was visible in the

transients of the r+ mode in ssp when pumping d−. Here, the plateau level of the slow

component featured a smaller bleach with decreasing density of the films. This suggests

that the amount of vibrational energy that is contained in the symmetric methyl stretch

for longer times is larger in the denser films. We illustrated some scenarios that could

explain such behaviour but ultimately none of these explanations were exclusive to this

specific experiment. However, we have been able to reproduce this behaviour in the

deuterated films with smaller density as well.

Next, we discuss the investigation of the arachidate isotopologues. The transients show

very little deviation from the ones we found for the original molecular layers and the time

constants are also equal within their experimental errors. There is, however, one aspect

that we picked up. The transients of the deuterated samples featured a slightly delayed

’lift-off’ point for the initial spike when pumping d−. This is unexpected because we would

assume that the maximum bleach position is shifted to longer delays instead of the lift-off

point if we weaken the coupling between the methylene and methyl modes. Nevertheless,

we observed this behaviour multiple times and only for the deuterated d− pumped case

so it is likely a feature and not an experimental artifact.

5.2 Review

Even though the density and isotopologue experiments did not yield the surprising results

we had hoped for, the overall research is considered a success. We established a novel

setup that allows for time-resolved pump-probe measurements, revealing the vibrational

energy flow in our samples. Linking back to the introductory chapter, we specifically

motivated our research with the following questions in mind:

1. How does the system react or evolve in time after it has been brought into a non-

equilibrium state?

2. How does the coupling to different degrees of freedom work?
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3. How long does a ’hot’ adsorbate exist on the surface after an initial chemical reaction

step?

Regarding the first question, we found evidence of strong anharmonic coupling when

pumping specific resonance frequencies. In the non-equilibrium state, the system transfers

the vibrational energy through different channels into the substrate until equilibrium is

reached. With our model, we were able to map the transient energy content in different

vibrational modes and found specific time constants for the energy exchange.

We answered the second question by investigating the pump-probe spectra of calcium

arachidate. Here, we found a very strong anharmonic coupling between the methyl and

methylene stretches. This is reasonable because of similar symmetries in the oscillatory

motion and because of the close spectral vicinity. Further, we found that by deuterating

some of the CH2 links, for which the natural frequencies of the methylene stretches are

smaller, the coupling mechanism is weakened. With a three-temperature model, we then

proposed how the methyl and methylene stretches are slightly weaker coupled to the lower

deformation modes before relaxing all of their vibrational energy to the substrate. We

did not find evidence of strong intermolecular coupling with our density experiments.

The third question was not answered specifically. We did, however, find concrete

numbers for the lifetime of certain vibrational modes in calcium arachidate. This is proof

of principle and shows that our experimental setup lays the foundation to investigate a

tailored chemical reaction and target a specific ’hot’ adsorbate.

5.3 Outlook

The research presented in this thesis still left a lot of open questions. The three-temperature

model approach for example fits most of our data very well except for a single ppp mea-

surement. To further investigate this approach, future works could focus on two things:

First, being able to observe the CH2 stretches directly would help tremendously. This

could be made possible by purposely inducing gauche defects in our samples, thus breaking

the bulk symmetry and revealing the methylene modes in the sum-frequency spectra.

Secondly, the plateau level that all transients transition into eventually, is assumed to

represent the coupling to the lower deformation modes. Being able to probe these skeletal

modes could provide a more detailed view of the complex coupling mechanisms. This,

however, is difficult to realise because the skeletal modes lie in spectral regions of strong

absorption bands in atmospheric water. One would have to cover the probe IR beam path

in dry air to reduce the absorption in the atmosphere and produce satisfactory spectra.

Further, the isotopologue and density experiments yielded only very little new informa-

tion. In the deuterated samples, the ’lift-off’ point of the initial bleach spike was slightly

delayed when pumping the methylene modes. It would be interesting to see if this trend

becomes more prominent when more than two of the CH2 links are deuterated. This could
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provide the means of tailoring the coupling strength between the methylene and methyl

modes in long-chain fatty acid molecules.

The only significant feature in the density experiments was a shifted plateau level in the

ssp spectra when pumping d−. We were unable to explain this phenomenon but observing

the skeletal modes directly, as previously mentioned, could illuminate this behaviour as

well. Another approach to investigate the intermolecular coupling mechanism is to dilute

the monolayer instead of just reducing the surface pressure. Adding additional molecules

into the monolayer, like fully deuterated arachidate for example, should strongly influence

the energy exchange between adjacent molecules.

Finally, we hope that this novel pump-probe setup encourages future work groups to

dive into the exotic world of non-equilibrium dynamics and uncover more of the fascinating

phenomena that are yet to be found.
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Appendix A

Data Validation

Figure A-1 and A-2 shows two delay scans, taken on different days, for each experimental

setup in the 25mN/m and the 13mN/m case, respectively.

Figure A-3 also shows a repetition of the same experiments but for the deuterated

arachidate monolayers with a surface pressure of 32mN/m during deployment.
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A Data Validation

Figure A-1: Similar to figure 4-13, this figure validates the reproducibility of our data.

All orange data points indicate experiments with 25mN/m surface pressure, which are

investigated in section 4.4.1. The blue dots represent a repetition of the same experiments

on a different day. The coloured arrows show the scaling factor necessary to match the

datasets.
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A Data Validation

Figure A-2: This figure shows the same as A-1 but with monolayers at a surface pressure

of 13mN/m during deployment.

159



A Data Validation

Figure A-3: This figure shows the same as A-1 but with monolayers of deuterated CaAra

at a surface pressure of 32mN/m during deployment.
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