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Abstract 

The growing utilization of Ultra-Reliable Low Latency Communication 

(URLLC) in 5G/6G networks, the Internet of Things (IoT), and fixed-line 

networks has considerably increased the significance of reliability and latency 

requirements within the telecommunications sector. Communication Service 

Providers (CSPs) encounter emerging challenges in optimizing reliability and 

latency to support Ultra-Reliable Low Latency Applications (URLLA). These 

applications include autonomous driving, remote surgery, tele-operated driving, 

and virtual reality. Simultaneously enhancing both reliability and latency poses 

a significant challenge, as enhancing reliability may potentially lead to 

increased latency. Furthermore, the limited availability of physical network 

resources increases the complexity of this endeavor. 

Network Function Virtualization (NFV) is a promising technology that has 

the potential to overcome some of the limitations associated with conventional 

network architectures, thereby enabling URLLC. The integration of NFV with 

Software-Defined Networking (SDN) represents a revolutionary technological 

advancement that has the capacity to fundamentally transform existing network 

designs. NFV is the deployment of network functions as virtual software 

running on standard hardware. By decoupling network functions from dedicated 

hardware in NFV, greater network performance and management flexibility can 

be achieved. NFV relies heavily on Service Function Chain (SFC) deployment 

to realize network services. SFC refers to delivering a network service to a 

customer, which requires that different network functions be concatenated in a 

specific order. See Chapter 1 for more information. Although NFV is a 

promising technology for providing elastic network services, it is important to 

note that there are several concerns related to its reliability and service quality. 

This creates a new research problem known as the SFC deployment problem. 

This problem is concerned with chaining Virtual Network Functions (VNFs) 
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while meeting SFC requirements such as latency, reliability, physical resource 

consumption, power consumption, etc. CSPs must have optimal and efficient 

SFC embedding techniques for embedding SFC requests to enable URLLC. 

Chapter 1 provides more information. 

The goal of this study is to address URLLC in an NFV-enabled network. After 

analyzing state-of-the-art studies in the field of NFV (see Chapter 2), we 

identified a crucial research obstacle. Consequently, we defined our goal to 

simultaneously optimize reliability and latency in the SFC deployment phase. 

We offer a novel and efficient SFC embedding technique that aims to enhance 

the reliability and latency of URLLA simultaneously. Mathematically, we 

formulate the SFC deployment problem as an integer-linear-programming 

optimization model to obtain exact numerical solutions. More information can 

be found in Chapter 4. In our optimization model, we propose an adjustable 

priority coefficient factor and flow prioritization to reserve a portion of physical 

network resources (bandwidth, RAM memory, and CPU) exclusively for 

embedding URLLA to significantly optimize their deployment paths. Since 

obtaining exact numerical solutions is time-consuming, we provide a set of 

heuristics and relaxed versions for addressing the scalability issue, reducing 

execution time, and producing results that are close to optimal for large-scale 

network topologies. Chapter 5 provides further information about heuristic 

approaches. In this study, we explore both static and dynamic service function 

chaining; further information is provided in Chapter 1. The performance 

evaluations reveal that our proposed algorithms considerably outperform the 

existing approaches in terms of end-to-end delay, reliability, bandwidth 

consumption, and SFC acceptance rate. See Chapter 6 for more details. 
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Kurzfassung 

Die zunehmende Nutzung von Ultra-Reliable Low Latency Communication 

(URLLC) in 5G/6G-Netzen, dem Internet der Dinge (IoT) und Festnetzen hat 

die Bedeutung von Zuverlässigkeits- und Latenzanforderungen im 

Telekommunikationssektor erheblich gesteigert. Kommunikationsdienstleister 

stehen vor neuen Herausforderungen bei der Optimierung von Zuverlässigkeit 

und Latenz, um Ultra-Reliable Low Latency Applications (URLLA) zu 

unterstützen. Zu diesen Anwendungen gehören autonomes und ferngesteuertes 

Fahren, Fernchirurgie und virtuelle Realität. Die gleichzeitige Verbesserung der 

Zuverlässigkeit und der Latenzzeit stellt eine große Herausforderung dar, da die 

Verbesserung der Zuverlässigkeit möglicherweise zu einer Erhöhung der 

Latenzzeit führen kann. Darüber hinaus erhöht die begrenzte Verfügbarkeit von 

physischen Netzwerkressourcen die Komplexität dieses Unterfangens. 

Network Function Virtualization (NFV) ist eine vielversprechende 

Technologie, die das Potenzial hat, einige der mit klassischen 

Netzwerkarchitekturen verbundenen Einschränkungen zu überwinden und 

damit URLLC zu ermöglichen. Die Integration von NFV mit Software-Defined 

Networking (SDN) stellt einen revolutionären technologischen Fortschritt dar, 

der das Potenzial hat, bestehende Netzwerkdesigns grundlegend zu verändern. 

NFV ist die Bereitstellung von Netzwerkfunktionen als virtuelle Software, die 

auf Standardhardware läuft. Durch die Entkopplung der Netzwerkfunktionen 

von dedizierter Hardware in NFV kann eine höhere Netzwerkleistung und 

Managementflexibilität erreicht werden. NFV stützt sich in hohem Maße auf 

die Bereitstellung von Service Function Chain (SFC), um Netzwerkdienste zu 

realisieren. SFC bezieht sich auf die Bereitstellung eines Netzwerkdienstes für 

einen Kunden, der die Verkettung verschiedener Netzwerkfunktionen in einer 

bestimmten Reihenfolge erfordert. Siehe Kapitel 1 für weitere Informationen. 

Obwohl NFV eine vielversprechende Technologie für die Bereitstellung von 
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elastischen Netzwerkdiensten ist, gibt es einige Bedenken hinsichtlich ihrer 

Zuverlässigkeit und Servicequalität. Daraus ergibt sich ein neues 

Forschungsproblem, das als “SFC Deployment Problem” bekannt ist. Bei 

diesem Problem geht es um die Verkettung von Virtual Network Functions 

(VNFs) unter Einhaltung spezifischer SFC-Anforderungen wie Latenz, 

Zuverlässigkeit, Verbrauch physischer Ressourcen, Stromverbrauch usw. 

Kommunikationsdienstleister müssen über optimale und effiziente SFC-

Einbettungstechniken für die Einbettung von SFC-Anfragen verfügen, um 

URLLC zu ermöglichen. Kapitel 1 enthält weitere Informationen. 

Das Ziel dieser Dissertation ist es, URLLC in einem NFV-fähigen Netzwerk 

zu adressieren. Nach der Analyse der neuesten Studien im Bereich NFV (siehe 

Kapitel 2) haben wir ein entscheidendes Forschungshindernis identifiziert. 

Daher haben wir unser Ziel definiert, die Zuverlässigkeit und Latenz in der SFC-

Einführungsphase gleichzeitig zu optimieren. Wir bieten einen innovativen und 

effizienten SFC-Embedding-Algorithmus an, der darauf abzielt, die 

Zuverlässigkeit und die Latenzzeit von URLLA gleichzeitig zu verbessern. 

Mathematisch formulieren wir das SFC-Deployment-Problem als ein 

Optimierungsmodell der "Integer-Linear-Programming", um exakte optimale 

Ergebnisse zu erzielen (weitere Informationen finden Sie in Kapitel 4). In 

unserem Optimierungsmodell bieten wir eine Priorisierung der Flows an und 

schlagen einen einstellbaren Prioritätsfaktor vor, um einen bestimmten Anteil 

der physischen Netzwerkressourcen (Bandbreite, RAM-Speicher und CPU) 

ausschließlich für die Integration von URLLA zu reservieren. Da die Ermittlung 

exakter numerischer Lösungen zeitaufwändig ist, bieten wir eine Reihe von 

Heuristiken und Relaxed-Versionen an, um das Problem der Skalierbarkeit zu 

lösen, die Rechenzeit zu verringern und Ergebnisse zu erzielen, die für große 

Netzwerktopologien nahezu optimal sind. Kapitel 5 enthält weitere 

Informationen über heuristische Methoden. In dieser Studie untersuchen wir 
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sowohl das statische als auch das dynamische Service-Function-Chaining 

(weitere Informationen finden Sie in Kapitel 1). Die Leistungsbewertungen 

zeigen, dass die von uns vorgeschlagenen Algorithmen die bestehenden 

Methoden in Bezug auf die Ende-zu-Ende-Latenz, die Zuverlässigkeit, den 

Bandbreitenverbrauch und die SFC-Akzeptanzrate übertreffen; siehe Kapitel 6 

für weitere Details.  
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1 Introduction 

 

The telecommunications sector is an essential component of the modern 

world and has continued to grow each year. Its infrastructure, which includes 

both wired and wireless networks, is responsible for the delivery of data 

communications to users. In the coming years, the demand for 

telecommunications infrastructure will be greater than ever, as each year brings 

new services with varying Service Level Agreements (SLAs). One of the main 

advancements in this regard is the emergence of Ultra-Reliable Low Latency 

Communication (URLLC) services, which promise to deliver unprecedented 

levels of reliability and latency in data transfer. Each year, the telecom 

infrastructure must enable better communication, reduce latency, improve 

reliability, improve bandwidth, and boost connectivity speed. To stay 

competitive and ahead of the competition, Communication Service Providers 

(CSPs) must adjust, adapt, and expand their network services, offerings, and 

business models. CSPs consist of Telecommunications, Internet Service 

Providers (ISPs), Data Centers (DCs), Enterprises, and the Cloud, which supply 

and enable communication services. To this end, it is essential for CSPs to 

continually discover innovative, effective methods for meeting different SLAs 

[1, 2, 3].  

To provide a network service to customers, it is necessary to direct their 

traffic to pass through different hardware middleboxes in a specified order. 

Traditionally, these hardware middleboxes providing Network Functions (NFs) 

such as Traffic Monitor (TM), Firewall (FW), Deep Packet Inspection (DPI), 

Network Address Translation (NAT), and Intrusion Detection System (IDS) are 

realized on dedicated hardware equipment, see Figure 1. Due to the fact that the 

hardware equipment is physically present, they are also known as Physical 



Introduction 

2 

 

Network Functions (PNF). In this arrangement, a PNF has access to the full 

CPU power and memory for the execution of its task, even if complete access 

is not necessary depending on network demand [4].   

 

Figure 1. Traditional hardware middleboxes [5]. 

 

Traditional network deployment is expensive to implement, and the 

deployment of network devices is also expensive and requires a significant 

investment in hardware from the network operator. Its operational expenditure 

is also high, and it is complex to manage. Since network functions are hardware-

based and implemented on the underlying infrastructure, adjusting the topology 

of a network service, such as adding or removing network functions, demands 

reconfiguring the underlying physical topology, which is a highly complex and 

error-prone process. Traditional networks are also inflexible; due to the strong 

coupling between network functions and physical topology, it is extremely 

difficult to reconstruct the network to accommodate a new topology or service. 

Changing the service's logical network topology necessitates configuration 

adjustments. Traditional network deployment suffers from inefficient resource 
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utilization. When constructing a network service, it is necessary to allocate 

additional network resources in the event that future resource demand increases. 

Due to a shift in traffic patterns, computing and bandwidth resources may be 

underutilized. Due to the dependence of network functions on topology, the 

reconfiguration of network function chaining in a production environment is 

both impractical and costly [6, 7, 8].     

In recent years, with the rising usage of URLLC applications in 5G/6G 

networks, the Internet of Things (IoT), and fixed-line networks, such as 

autonomous vehicles, remote surgery, tele-operated driving, virtual reality, 

augmented reality, and industrial automation, reliability and latency 

requirements have become even more crucial for CSPs. To fulfill new 

applications needs and overcome the limitations of traditional network 

infrastructure, the telecom sector must advance. Network Function 

Virtualization (NFV) and Software Defined Networking (SDN) are two 

emerging technologies that have the potential to significantly transform the 

telecommunications sector. These technologies offer complementary solutions 

to address the evolving service demands and the limitations of existing network 

architectures. Providing a multipurpose platform that can handle a wide range 

of services with varying requirements over a shared infrastructure is one of the 

primary challenges. The implementation of a platform that enables the 

establishment of a virtual network for each service on a shared infrastructure 

can be achieved through the process of slicing. In the next section, we will go 

deeper into NFV and SDN and explain how they might overcome the limitations 

of traditional network architectures.    

 

1.1 Network Function Virtualization 

NFV is now recognized as a technology with the potential to revolutionize  
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traditional network design and overcome some of its limitations. In November 

2012, NFV was established by the seven most important telecom network 

providers. The European Telecommunications Standards Institute [ETSI] has 

been producing NFV standards since 2012 and is currently recognized as the 

most influential standardization group in this sector. The NFV architecture 

provided by the ETSI contributes to NFV implementation standardization. To 

provide greater stability and interoperability, each architectural component is 

based on these standards. NFV is the implementation of specific network 

functions as virtual software operating on standard hardware. It replaces the 

dedicated hardware platforms with software implementations by Virtual 

Network Functions (VNFs) in a virtualized environment. Figure 2 illustrates the 

network virtualization approach [9].   

 

Figure 2. Network function virtualization [10]. 
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VNFs are realized in software and placed on containers, general-purpose 

Virtual Machines (VMs), or CPUs on commercial-off-the-shelf equipment such 

as x86 servers within the cloud infrastructure. This indicates that network 

functions are executed as applications on virtual machines in Data Centers 

(DCs). This changes how network operators may deliver their services. 

Depending on the needs, a network operator can operate the same function in a 

centralized cloud in order to save expenses or decentralized in a cloud edge 

closer to the user to minimize latency. Figure 3 and 4 show the transformation 

of network service delivery from a traditional network function approach to an 

NFV-based strategy. This change can be seen in both figures. Figure 3 depicts 

a traditional implementation of a network service in which each network 

function uses its own dedicated hardware. On the other hand, Figure 4 illustrates 

 

Figure 3. Conventional network service delivery [9]. 

 

 

Figure 4. NFV based network service delivery [9]. 
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an NFV-based approach, in which network services are virtualized and make 

use of generic hardware to provide the desired service [11, 12, 13]. 

NFV consequently benefits from all the advantages provided by 

virtualization, regardless of the application in question. The CPU and memory 

capacities can be adjusted with great flexibility. The ability to dynamically 

modify the resources allocated to a VNF based on the level of utilization 

improves the scalability of the VNF. A VNF can be provisioned far faster than 

a PNF due to the absence of mechanical work (transporting, configuring, and 

connecting the hardware to the network). This can be enhanced with automated 

processes that operate without human interaction and are coupled with 

considerable network simplification (operation). There is no need for 

mechanical intervention (field service) in the case of a failure. A VNF is entirely 

software. Therefore, the evolution of the VNF is independent of the hardware. 

Specifically, the developer of VNF software should be able to respond more 

quickly to the needs of his clients. The system is programmable via Application 

Program Interfaces (APIs), making it accessible to third-party programs that, 

for instance, provide a control function. The following is a brief summary of 

some of the benefits of NFV implementation: 

• Enhancing network flexibility  

• Enhancing the utilization of the CPU and memory capacity of the hosts 

• Enhancing the scalability of a VNF  

• Enhancing the dynamic allocation of resources based on the demand for 

a VNF 

• Enhancing centralized management of the NFV infrastructure 

• Enhancing operational efficiencies 

• Enhancing the pace of service innovation  
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• Reducing Operational Expenses (OPEX)  

• Reducing Capital Expenses (CAPEX) 

• Enhancing the simplification of network operation and fault handling  

Figure 5 presents the basic architecture of NFV proposed by ETSI, which 

consists of three main components [1]:  

1. Virtual Network Function (VNF)  

2. Network Function Virtualization Infrastructure (NFVI)  

3. NFV Management and Orchestration (MANO) 

 

Figure 5. NFV reference architecture framework proposed by ETSI [1]. 

 

Virtual Network Function (VNF): A VNF is the basic block in the NFV 

architecture. It virtualized network functions such as the DHCP server, firewall, 

router, IDS, and DPI. It runs on one or more virtual machines on top of the 

hardware networking infrastructure. VNFs are deployed on-demand, 
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eliminating the deployment delays associated with traditional network hardware 

[14].   

NFV Infrastructure (NFVI): NFVI is as important as any other functional 

block to realize the business benefits provided by the NFV architecture. It 

provides the real physical resources and associated software upon which VNFs 

can be installed. The NFVI generates a virtualization layer that is placed directly 

on top of the hardware and abstracts the HW resources. This allows the HW 

resources to be logically partitioned and delivered to the VNF so that it may 

carry out its functions. Building increasingly complex networks without the 

geographic limits of traditional network topologies requires NFVI, which is 

another reason why it is so important [14]. 

Management and Orchestration (MANO): NFV MANO controls 

resources, including the NFVI and VNFs, running in a virtualized data center, 

such as computation, networking, storage, and virtual machines. NFV MANO 

employs templates for standard VNFs to enable architects to select the necessary 

NFVI deployment resources. The following are the three functional areas that 

make up NFV MANO [15]:  

1. NFV Orchestrator: It is responsible for the onboarding of VNFs, the 

management of their lifecycles, the management of global resources, and 

the validation and authorization of resource requests made by NFVI. 

2. VNF Manager: It is in charge of managing the lifecycle of VNF 

instances, and it also plays a role in coordinating and adapting the 

configuration of NFVI and Element/Network Management Systems. 

3. Virtual Infrastructure Manager: The NFVI computing, storage, and 

network resources are under the control and management of Virtual 

Infrastructure Manager.  
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As a result, because we are investigating the optimal orchestration of service 

function chains to improve network service quality, it is clear that our research 

is focused on the MANO component.  

OSS (Operation Support System): It is a software component that gives a 

service provider the ability to manage, monitor, control, and analyze the 

services that are provided on its network. Together with a business support 

system, these software programs enable the majority of customer-facing 

operations, such as ordering, billing, and support [14]. 

BSS (Business Support System): Business support systems (BSS) are the 

conventional term for business and/or customer-facing functions. BSS 

platforms are utilized by service providers and telecom operators to supply 

revenue management, product management, customer management, and order 

management applications, which aid in the administration of their businesses 

[14]. 

EM (Element Management): Element Management provides standard 

management functions for a single or several VNFs. It is responsible for the 

lifecycle management of VNFs [14]. 

To realize network services, NFV primarily relies on the deployment of 

Service Function Chains (SFCs). An SFC request is a sequence of VNFs that 

must be concatenated in a predefined order to deliver a network service to a 

client. Figure 6 illustrates an example of an SFC request comprising two VNF 

instances, namely VNFa and VNFc. These VNF instances are required to be 

concatenated in a predetermined sequence, with VNFa being processed first, 

followed by VNFc. The role of the SFC orchestrator is to effectively manage 

and direct network traffic in order to ensure the successful delivery of its 

designated service. NFV facilitates the virtualization of network functions, 

transforming them into VNFs. SFC allows various VNFs to be concatenated to 
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provide a network service. The SFC deployment problem is one of NFV's most 

significant problems, requiring further advancements [16, 17, 18, 19]. 

 

 

Figure 6. An example of an SFC request. 

 

 

1.2 Software Defined Networking 

Through the separation of data forwarding from network control, Software-

Defined Networking (SDN) facilitate centralized network management and 

dynamic reconfiguration, thereby providing improved agility, scalability, and 

programmability. SDN-enabled-networks support NFV to control the 

forwarding of traffic and reduce management complexity. SDN separates the 

data plane form the control plane. In SDN environment, the control plane is 

centralized and programmable, making network management and configuration 

more agile and dynamic. The control plane and data plane of network hardware 
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like switches and routers are intimately interwoven in traditional networking. 

The control plane assumes the responsibility of making determinations 

regarding the appropriate forwarding of network traffic, ascertaining the 

optimal route for packets, and maintaining the integrity of routing tables. In 

contrast, the data plane assumes the responsibility of effectively transmitting 

data packets by executing the directives provided by the control plane. 

SDN involves the abstraction of the control plane from the underlying 

network devices and the centralization of control functions in a software-based 

controller. The act of separating network management facilitates a more 

adaptable and customizable method, enabling the ability to dynamically 

regulate network behavior. Network engineers are able to configure all of the 

different portions of the virtual network using a hypervisor or SDN controller, 

and they can even automate the process of establishing the network. Within 

minutes, IT administrators are able to set up a variety of components for the 

operation of the network. SDN decouples the control plane from the data plane. 

It enables a controller to centrally manage a network. A portion of the control 

plane (or, in severe circumstances, the complete control plane) is passed to the 

controller. The entire data plane stays on the PNFs. The controller interacts with 

the PNFs using southbound protocols such as OpenFlow, PCEP, BGP-LS, and 

a REST API. The controller can be programmed through a Northbound API. 

Figure 7 presents the basic architecture of SDN. Despite the fact that NFV and 

SDN are separate technologies, they are frequently used in conjunction to reap 

greater benefits and enhance overall network capabilities [20, 21].   

After learning the fundamental information about NFV, SDN, VNF, and SFC 

and their relationships among one another, we go on to detail the research 

problem, the goal of this study, and our proposed solutions to overcome the 

research problem in the following sections.   
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Figure 7. Architecture of SDN [22]. 

 

 

1.3 Research Problem  

As stated in the preceding section, to implement network services, NFV 

strongly relies on SFC deployment. To deliver an end-to-end service to a client, 

an NFV-enabled network must direct traffic via several VNFs deployed on top 

of the virtualization layer. This creates a new research problem referred to as 

the SFC deployment problem. This problem is concerned with chaining VNFs 

while meeting SFC requirements such as latency, physical resource 

consumption, power consumption, etc. To address SFC deployment problem, a 

VNF chaining algorithm must be developed that is specifically engineered using 

the most efficient approach instead of a random process. Various studies have 

tackled the SFC deployment problem with different objectives (see Chapter 2), 
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but more developments are still required to enable URLLC in an NFV-enabled 

network [23, 24, 25]. 

In recent years, URLLC has attracted a great deal of interest due to the 

growing use of Ultra-Reliable Low Latency Applications (URLLA) such as 

autonomous vehicles, remote surgery, tele-operated driving, virtual reality, 

augmented reality, and industrial automation [26]. Consequently, addressing 

URLLC in NFV-enabled networks to optimize reliability and latency 

requirements has attracted significant research interest. It is extremely difficult 

to achieve both high reliability and low latency simultaneously. Increasing 

reliability may result in a rise in latency, and limited physical network resources 

make it even more challenging. The limited availability of VNF instances and 

physical network resources, including CPU, RAM memory, and bandwidth, 

within the CSP's network, adversely affects latency. By analyzing the recent 

studies, we discovered that backup techniques and using redundant components 

are often proposed to boost reliability, while latency-aware service function 

chaining is proposed to minimize latency. More information can be found in 

Chapter 2. To this end, we provide a novel solution to address URLLC in an 

NFV-enabled network without using backup techniques. In general, we focus 

on two challenges in our study: first, optimizing the concatenation of VNF 

instances with respect to Quality of Service (QoS) and utilization of physical 

network resources; and second, optimizing resource allocation with respect to 

the priority of SFC requests.  

Figure 6 shows an example of an SFC request, which each SFC request 

originating from a source node and ending at a destination node. Each SFC 

request may contain several VNF types (e.g., a, b, c, d, etc.), which need to be 

concatenated in a specified order. We implement our proposed efficient physical 

resource allocation for SFC deployment by utilizing flow prioritization and a 

configurable priority coefficient factor. We classify SFC requests into those 



Introduction 

14 

 

with a high-priority (URLLA) and those with a low-priority. Then, we reserve 

an amount of physical network resources (bandwidth, RAM memory, and CPU) 

using the priority coefficient factor for SFC requests with a high-priority in 

order to improve their QoS explicitly. Figure 8 illustrates the physical link 

reservation exclusively for high-priority SFC requests. Memory and CPU usage 

follow the same principles as bandwidth utilization. We also studied the impact 

of varying the amount of reserved physical network resources for high-priority 

SFC requests. Chapters 3 and 4 provide further details about our proposed 

methodology. In this way, SFC requests with a high-priority can obtain a more 

optimal deployment path and a higher quality of service in terms of latency and 

reliability. We also take into account the maximum tolerable end-to-end delay 

and reliability requirements for both high- and low-priority SFC requests to 

minimize any negative side effects on low-priority SFC requests.   

 

Figure 8. An example of a physical link reservation. 

 

We mathematically formulate the SFC deployment problem as an Integer 

Linear Programming (ILP) optimization model to obtain exact numerical 

solutions (see Chapter 4). Since obtaining the exact numerical results for large-

scale network topologies is very time-consuming, we also offer a set of heuristic 

algorithms and relaxed versions to obtain near-optimal solutions in an 

acceptable time frame for large-scale network topologies. We describe the 

heuristics in Chapter 5. In terms of end-to-end delay, reliability, bandwidth 

usage, and SFC acceptance rate, the evaluation findings shown in Chapter 6 

indicate that our proposed algorithms outperform the existing approaches. To 
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address the SFC deployment problem and enable URLLC in an NFV-enabled 

network, our study is divided into three phases: 

 

1. Phase One: Ultra-Low Latency Communication (ULLC) Study: First, we 

focus on the latency requirement. Our goal is to decrease latency for latency-

sensitive applications subject to physical network resource limitations. In 

this phase, we disregard the requirement for reliability. We provide a novel 

technique for minimizing latency in the SFC embedding phase, subject to 

limits on the maximum tolerable end-to-end delay and physical network 

resources. Chapters 4 and 5 provide more details.   

 

2. Phase Two: Ultra-Reliable Low Latency Communication (URLLC) Study: 

We incorporate the findings from the first phase along with reliability 

constraints. Our goal is to optimize reliability and minimize latency for 

URLLA. As stated previously, backup techniques and using redundant 

components are typically proposed to boost reliability, but they may have a 

negative effect on latency and cause it to increase. It is contradictory to our 

goal. We propose a method for achieving our goal during the SFC 

embedding phase without a redundant component; more details can be found 

in Chapters 4 and 5.    

 

3. Phase Three: Dynamic Service Function Chaining Study: In the first two 

phases of our study, we deal with static SFC requests, similar to studies in 

[27, 28] that imply SFC requests are static inputs and do not include arrival 

and departure timings (lifetime). In the third phase of our research, we 

examine dynamic service function chaining, similar to studies in [29, 30]. In 

this phase, we apply our findings from the second phase of our study to a 

dynamic SFC embedding scenario. In this case, we address URLLC in an 
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NFV-enabled network in a dynamic scenario where each SFC request has an 

arrival and departure time, or lifetime, to use physical network resources to 

deliver its services; once the lifetime expires, the physical network resources 

are made available for the subsequent SFC request. Chapter 5 provides more 

information.  

   

1.4 Scientific Contributions 

We did an in-depth analysis of URLLC in an NFV-enabled network by 

analyzing several state-of-the-art studies (see Chapter 2) and taking into account 

open issues that require further development. The main goal of this dissertation 

is to present a meticulously crafted methodology for the SFC deployment 

problem to enable URLLC in an NFV environment. We made a number of 

contributions to the relevant scientific communities, which are outlined below:   

 

1. A novel and efficient service function chaining methodology: Using 

flow prioritization and a configurable priority coefficient factor to reserve 

physical network resources (bandwidth, RAM memory, and CPU), we 

propose a novel and efficient SFC embedding approach that 

simultaneously minimizes latency and optimizes reliability in the SFC 

embedding phase. 

 

2. Mathematical formulations of the SFC deployment problem: We 

mathematically formulate the SFC deployment problem as an ILP 

optimization model in order to find exact numerical solutions. To this end, 

we consider the maximum tolerable end-to-end delay, the consumption 

of physical network resources (bandwidth, RAM memory, and CPU), 

reliability, and routing-related constraints.    
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3. Set of heuristic approaches: We provide a set of heuristic algorithms 

and relaxed versions for minimizing the execution time of the ILP 

optimization model, making it applicable to large-scale network 

topologies, and achieving near-optimal solutions with a minimum 

optimality gap.   

 

4. Conducting detailed performance evaluations: We conduct a detailed 

examination of our proposed SFC embedding algorithms and demonstrate 

that they significantly improve the end-to-end delay, reliability, 

bandwidth consumption, and SFC acceptance rate compared to the 

existing algorithms.  

 

1.5 Outline 

The remaining chapters of the dissertation are organized as follows: In 

Chapter 2, we review related research and present an overview of state-of-the-

art works on the subject of SFC deployment problem. In Chapter 3, we discuss 

the system model and assumptions behind our research. The fourth chapter 

specifies the problem statement and mathematical formulations, which are 

provided in the form of an ILP optimization model that takes diverse service 

requirements into account. The fifth chapter details the proposed set of heuristic 

algorithms for obtaining near-optimal solutions with minimal execution time 

and an optimality gap. In Chapter 6, simulation results demonstrating 

considerable improvements in terms of end-to-end delay, reliability, bandwidth 

consumption, and SFC acceptance rate are shown. In Chapter 7, we conclude 

our study and indicate a few areas requiring more investigation as future work. 

In the appendix, we describe the Python codes. 
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2 Related Work 

 

In this chapter, we evaluate a number of relevant studies and emphasize their 

key findings. Although various studies have approached the issue of SFC 

deployment from various angles and with various goals, they need more 

advancements to enable URLLC in an NFV-enabled network. Prior to 

conducting a detailed analysis of relevant studies for each phase of our study, 

we will first present a concise overview of the primary distinctions among 

related studies. This will aid in enhancing our understanding of the various 

methodologies employed in related literature.  

The present chapter is structured in the following manner: In Section 2.1, we 

provide a description of the primary distinctions between related studies and 

emphasize the key attributes of each. Section 2.2 provides a comprehensive 

review of the state-of-the-art studies associated with Ultra-Low Latency 

Communication (the first phase of our study). In Section 2.3, a concise overview 

of the scholarly investigations concerning Ultra-Reliable Low Latency 

Communications will be presented (the second phase of our study). In Section 

2.4, an analysis will be conducted on the existing research related to dynamic 

service function chaining (the third phase of our study). In Section 2.5 of this 

chapter, we present an analysis of the novelty and significance of our research, 

highlighting its divergence from previous studies in the field. 

 

2.1 Background Information 

The SFC deployment problem is one of the primary challenges in NFV that 

must be improved further. Diverse approaches have been proposed to optimize 

the SFC deployment problem from different perspectives and with different 

objectives, but these approaches still require additional developments. Due to 
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the rapid growth of URLLA usage over the past several years, which requires 

extremely low latency and high reliability, we see a significant need to tackle 

emerging URLLC in NFV environments. In addition, the limited physical 

network resources of network providers make it more challenging. Various 

studies addressing service function chaining with low latency and high 

reliability are reviewed below. To better comprehend these studies, it is 

necessary to first emphasize and define their key distinctions; we detail some of 

these differences in the following subsections.   

 

2.1.1 Optimization Models 

One area of divergence among the different studies applies to the 

optimization model employed. The subsequent section presents a concise 

summary of prevalent optimization models utilized for addressing the SFC 

deployment problem. It outlines the fundamental characteristics associated with 

these approaches.    

• Linear Programming (LP) Model: Linear programming is a collection of 

mathematical and computational tools that enable you to discover a specific 

solution to this system that corresponds to the maximum or minimum of 

another linear function. Linear programming is a technique that was 

developed in the 1960s. In some of the research, the SFC deployment 

problem is formulated using an LP model. The mathematical method known 

as linear programming seeks to determine the values of decision variables in 

a way that maximizes or minimizes the value of an objective function while 

adhering to linear restrictions. It illustrates how the resources that are 

available may be utilized in the most effective way possible. On the other 

hand, mathematically determining the objective function and the restrictions 

is a tough task. There is a chance that the objective function and the 

restrictions will not be explicitly specified by linear in the equality of 
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equations, but there is also a chance that they will be. Linear programming 

is not suitable for problems where the decision variables must have integer 

or binary values. 

• Integer Linear Programming (ILP): ILP is a kind of optimization problem 

with integer-valued variables, a linear objective function and equations. ILP 

is an extension of linear programming. LP solvers are only able to work with 

real numbers and cannot employ integers as variables. In instances where 

variables must be whole numbers, integer restrictions allow ILP to offer 

more realistic and useful answers. The complexity of solving integer 

programming problems is typically greater than that of standard linear 

programming problems, primarily due to the inclusion of discrete values, 

which introduces additional complexities. In many cases, these problems 

also become NP-hard, which makes them computationally difficult for 

large-scale instances [31]. 

• Mixed Integer Linear Programming (MILP): One of the most cutting-edge 

approaches to resolving the challenge of SFC deployment optimization is 

the MILP method. MILP is a method for solving optimization issues that is 

widely used since it is highly desirable and guarantees the discovery of 

global optimality in linear problems, and has efficient solvers that are 

commercially available. However, the MILP formulation suffers from a 

number of severe drawbacks, the most notable of which are its inability to 

take into account nonlinear effects and its need that all time periods be 

considered concurrently. Despite the fact that you can approximate non-

linear functions using piecewise linear functions, employ semi-continuous 

variables, represent logical restrictions, and more, there are some non-linear 

functions that cannot be approximated. The complexity of a problem 

increases as the combination of continuous and integer variables is 

introduced, leading to computational demands for MILP, particularly in the 
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case of large and intricate models. In comparison to conventional linear 

programming, solving MILP problems may require advanced optimization 

solvers and take longer. 

• Binary Integer Programming (BIP): With binary integer programming, 

optimization entails expressing a problem as a mathematical model that can 

be resolved. Binary integer programming involves decision variables that 

are restricted to taking on only two values: 0 or 1. This characteristic makes 

it particularly suitable for addressing problems that involve binary decisions. 

Consequently, the representation and interpretation of problems in binary 

integer programming are simplified and more straightforward. It becomes 

more difficult to tackle large-scale problems as the problem's combinatorial 

complexity rises with the number of binary variables. 

• Markov Decision Process (MDP): A decision-making paradigm called the 

Markov Decision Process focuses on maximizing expected cumulative 

rewards over time in unpredictable circumstances. MDP is suitable for 

decision-making under uncertainty and reinforcement learning because it 

offers a framework for determining the best policy that maximizes the 

predicted cumulative reward. MDP problems can exhibit computational 

complexity, particularly in cases where the state and action spaces are 

extensive. This characteristic poses a significant difficulty in the search for 

optimal solutions. In certain scenarios, the state space may exhibit extensive 

characteristics, resulting in what is commonly referred to as the "curse of 

dimensionality." This phenomenon entails a significant escalation in 

computational resources needed to address the problem, which grows 

exponentially in relation to the quantity of states involved [34]. 

 

2.1.2 Shortest Path Algorithms 

Utilizing a proper algorithm to determine the shortest path between two 
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nodes in a network topology is one of the major factors that contribute to getting 

the optimum results. In a range of studies, researchers have made use of a 

number of different algorithms in order to identify the shortest path. Following 

is a brief summary of the most common algorithms:  

• Breadth-First Search (BFS) Algorithm: The BFS is a graph traversal 

algorithm that begins traversing the graph at the root node and searches all 

adjacent nodes. When working with graphs that do not have weights 

assigned to their edges, one of our primary concerns is constantly attempting 

to cut down on the total number of edges that have been traversed. As a 

consequence of this, we are certain that all of the immediate neighbors of 

the source node have a distance that is equal to one. The following item that 

we are able to determine with absolute certainty is that all of the nodes that 

are considered to be the source node's second neighbors have a distance that 

is equal to two, and so on. The BFS algorithm is applied to a straightforward 

queue that we employ. The overall time complexity is denoted by the 

notation O(V+E), where V represents the number of vertices and E 

represents the total number of edges in the graph [32]. 

• Dijkstra Algorithm: When dealing with weighted graphs, it is not required 

that adjacent nodes always have the shortest path between them. On the other 

hand, the neighbor whose edge is the shortest is inaccessible by any route 

that is shorter. The reason for this is that every other edge has a greater 

weight, and passing through any of those edges would increase the distance 

traveled significantly. This concept is used by Dijkstra's algorithm to devise 

a Greedy solution to the problem. At each stage, we select the node that has 

the path with the least distance. After adjusting this cost, we add the 

neighbors of this node to the queue. As a result, the queue has to have the 

capacity to rank the nodes included in it according to the lowest possible 

cost. To accomplish this goal, we may think about employing a priority 
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queue. Because we are only going to each node's neighbors one time, this 

means that we are only going to visit edges once. Additionally, we have the 

option of utilizing a priority queue that has a time complexity of O(logN) 

for both the push and pop operations. As a result, the overall time complexity 

is denoted by the notation O(V+E(logV)) [32]. 

• Greedy Algorithm: It is an algorithmic paradigm that creates a solution piece 

by piece, constantly picking the next piece that delivers the greatest evident 

and immediate benefit. Therefore, Greedy is best suited for solving 

situations in which selecting a locally optimal solution also leads to a 

solution at the global level. The Greedy technique is the strategy that is the 

least complicated and most direct. It is not an algorithm, but rather an 

approach that may be used instead. The most important feature of this 

technique is that it allows a choice to be made on the basis of the information 

that is now accessible. The choice is taken regardless of the knowledge that 

is currently available, and there is no concern given to how the current 

decision may affect events in the future. The total amount of time required 

to complete the task is O(N × logN). It is quite tempting to adopt this method 

because of its space and time complexity; nevertheless, there are no 

assurances that it would deliver the most ideal accumulated reward. Despite 

the fact that it is difficult in both space and time, it is very tempting to apply 

it [33]. 

Consequently, we made the decision to utilize the Dijkstra algorithm in our 

study, as it enables us to acquire the global optimal shortest path while taking 

into account the propagation delay associated to the links. Following an 

exploration of diverse strategies employed to tackle the issue of SFC 

deployment, we proceed to examine the latest scholarly contributions in the 

subsequent sections.  
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2.2 Ultra-Low Latency Communication 

As the number of applications that require ultra-low latency increases, 

finding a solution to the SFC deployment problem has become both more 

important and more difficult, calling for more advancements. Following are a 

variety of approaches that have been proposed as a means of assisting ultra-low 

latency applications. To enable latency-aware service function chaining, the 

great majority of these approaches only consider the latency requirement of SFC 

requests in conjunction with other objectives and constraints and choose the 

shortest provisioning path that is still feasible.   

Sun et al. [28] conducted research on low-latency and resource-efficient 

orchestration of SFCs in an NFV environment. They offered an SFC 

Deployment Optimization (SFCDO) algorithm based on a BFS algorithm for 

determining the shortest path between the source node and the destination node 

for all SFC requests and preferentially selecting the path with the shortest hops 

to minimize the end-to-end delay. They compared the performance of their 

proposed algorithms to the Greedy algorithm and the simulated annealing 

algorithm and found that their proposed algorithms performed better in terms of 

the average end-to-end delay and the average bandwidth consumption while 

dealing with SFC requests of varying lengths and quantities. Alameddine et al. 

[34] studied low-latency service schedule orchestration in NFV-based 

networks. They address the Latency-Aware Service Schedule Orchestration 

(LASSO) problem, which tackles the mapping and scheduling of services to 

VNFs. They describe the problem as a MILP optimization model and provide 

ENCHAIN, a unique game-theoretic technique that exploits a scalable solution 

for the LASSO problem while allowing each network service to choose its own 

mapping and scheduling solution. 

Harutyunyan et al. [35] investigated latency-aware service function chain 

placement in 5G mobile networks. Utilizing ILP techniques, they formulate and 
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solve a joint user association, SFC placement, and resource allocation problem 

in which SFCs consisting of virtualized service functions represent user-

requested services with specific E2E latency and data rate requirements. In 

particular, they evaluate three implementations of an ILP-based method 

designed to reduce E2E latency of requested services, service provisioning cost, 

and VSF migration frequency, in that order. The authors then present a heuristic 

for addressing the scalability problem of ILP-based solutions. Results from 

simulations illustrate the efficacy of the suggested heuristic method. Sun et al. 

[36] investigated a cost-efficient SFC orchestration for low-latency applications 

in NFV networks. They introduced a heuristic approach called Closed-Loop 

Feedback (CLF) that was designed to determine the shortest route to map an 

SFC request while also taking into account the amount of resources that may be 

saved. The performance of their algorithm was superior to that of two of their 

rivals in terms of communication latency and deployment time. In [30], they 

examined energy-efficient SFC provisioning with the goal of enabling delay-

sensitive applications inside an NFV setting. For dynamic SFC deployment, 

they present an Energy-Aware Routing and Adaptive Delayed Shutdown 

(EAR-ADS) algorithm. Latency- and capacity-aware placement of chained 

virtual network functions was investigated by Hmaity et al. [37]. They address 

two fundamental problems. The first consists of determining where VNFs will 

be hosted (i.e., VNF placement), and the second consists of determining how to 

properly direct network traffic to traverse the necessary VNFs in the correct 

order (i.e., routing), thereby provisioning network services in the form of SFCs. 

They presented and contrasted a variety of heuristic techniques with regard to 

the lag time of the links and the computational power of the nodes.   

In an SDN-based network, Tajiki et al. [27] conducted research on service 

function chaining that was simultaneously energy-efficient and QoS-aware 

(latency-aware). They took into account limitations on the maximum amount of 
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end-to-end delay that could be tolerated, as well as link utilization and server 

utilization. In order to do this, they model the problems of VNF placement, 

allocation of VNFs to flows, and flow routing as ILP optimization problems. 

Because the formulated problems cannot be solved (using ILP solvers) in 

timescales that are acceptable for realistic problem dimensions, they design a 

set of heuristics to find near-optimal solutions in timescales that are suitable for 

practical applications. These heuristics allow us to solve the problems in a 

manner that is acceptable for real-world applications. They carry out a 

numerical analysis to determine how well the suggested algorithms function 

across a real-world topology and in a variety of network traffic patterns. Their 

findings demonstrate that the suggested heuristic algorithms may produce near-

optimal solutions (with an optimality-gap of no more than 14%), and that their 

execution duration makes them suitable for use in actual networks. Li et al. [38] 

did a study on cost- and QoS-based NFV service function chain mapping 

mechanisms. They proposed a Greedy algorithm for service mapping. They 

examined cost- and QoS-based NFV service function chain mapping 

mechanisms and proposed a mathematical model with the goal of cost 

optimization and QoS assurance. They achieved higher deployment benefits 

while ensuring QoS requirements.  

Fountoulakis et al. [39] did an end-to-end performance analysis for service 

chaining in a virtualized network. They note that the outcomes of the simulation 

and the analysis are consistent with each other. They provide insights for the 

decision-making process on traffic flow control and its influence on crucial 

performance indicators by assessing the system in a variety of different 

situations and then providing those results. Han et al. [40] studied a service 

function chain deployment method based on network flow theory for load 

balance in operator networks. They proposed an algorithm to meet the demands 

of load balance, low delay, and efficient utilization of substrate resources in 
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operator networks. Wang et al. [41] studied service function chain composition 

and mapping in NFV-enabled networks. Utilizing the resource efficiently is one 

of the greatest obstacles to adopting SFC. In this study, they examine the 

composition and mapping of the SFC in consideration of resource optimization. 

The SFC composition and mapping issue is represented as a weighted graph 

matching problem. Then, they present a Hungarian-based method to 

coordinately solve the SFC composition and mapping problem. In [42], Pham 

et al. studied traffic-aware and energy-efficient VNF placement for service 

chaining. Luizelli et al. [43] proposed a heuristic approach for VNF placement 

and chaining that aims to minimize required resource allocation while meeting 

network flow requirements. Additionally, we profited from research in [44, 45, 

46], which give a good understanding of how to approach URLLC in NFV with 

a wide range of objectives. 

 

2.3 Ultra-Reliable Low Latency Communication 

In the second phase of our study, we take into account the reliability 

constraint so that we may satisfy the criteria of URLLC in a network that is 

enabled for NFV. There are various ways to raise reliability, and while a backup 

technique is typically suggested as a way to increase the reliability of various 

components in an NFV environment, we will go through some of the other 

available options in the following. In the event that either the hardware or the 

software fails, a redundant component can be swapped in its place in order to 

extend the amount of time the system is available for use. However, enhancing 

the system's reliability by adding features that are redundant may have the 

opposite effect on latency and cause the system to become more complex. This 

method also necessitates additional physical network resources, which is a 

disadvantage. In what follows, we will take a look at some of the most recent 

and cutting-edge studies that deal with the issue of reliability constraints and  
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make an effort to increase reliability.     

Zhou et al. [47] looked at the possibility of parallelizing network functions 

to achieve high reliability and low latency in service delivery. They were able 

to increase the reliability of the service by adding backup VNF nodes, while 

simultaneously reducing the flow latency through the use of parallel network 

function processing. They decided to approach the issue by posing it as an 

integer programming problem with the objective of reducing the amount of 

reserved computation and bandwidth resources while maintaining the same 

level of end-to-end latency and service reliability. They solved the issue by 

modeling it as a MDP model and then applying a reinforcement-learning 

method to it. Yin et al. [48] did a study on the SFC placement problem while 

guaranteeing availability. They are concentrating on finding a solution to the 

issue of SFC placement inside the Mobile-Edge-Computing-NFV system while 

maintaining reliability. They came up with a backup model to increase the 

availability of SFC. In addition to this, they provide a placement strategy for 

SFC that is based on Dynamic Programming (DP). The results of the evaluation 

reveal that their proposed solutions perform better than the existing techniques 

with regard to the guarantee of availability and the optimization of resources. 

The topic of reliability-focused and resource-efficient SFC construction and 

backup was discussed in the paper by Wang et al. [49]. They investigated how 

the building phase of the SFC affected the reliability of the system. In order to 

combine several SFCs into a Service Function Graph (SFG) and perform 

reliability screening for the SFG set, they presented an algorithm called the 

Instance-Sharing and Reliable Construction Algorithm (ISRCA). After that, an 

algorithm for ranking nodes that takes into account centrality and reliability, 

called NRCR is suggested for use in selecting backup nodes. Qu et al. [50] 

investigated reliability-aware VNF chain placement and flow routing 

optimization. This study presents an in-depth analysis of simultaneous VNF 
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chain placement and flow routing optimization that takes into account the 

importance of reliability. An incremental method is provided as a means of 

determining the number of necessary VNF backups. This is done with the 

intention of ensuring the requisite level of reliability. This study argues for the 

existence of a VNF assignment technique that is based on the sharing of 

resources and is capable of trading off all of the reliability, bandwidth, and 

computing resources that are consumed by a particular service chain. It is 

suggested to use a heuristic in order to get around the complexity of the already 

formulated ILP model. 

In [51], Kaliyammal-Thiruvasagam et al. studied the reliability-aware, delay-

guaranteed, and resource efficient placement of SFCs in softwarized 5G 

networks. Within the scope of this study, the authors tackle the challenge of 

solving the reliability-aware, delay-guaranteed, and resource-efficient SFC 

placement problem in 5G networks that are being softwarized. First, in order to 

improve the reliability of an SFC that does not use backups, they suggest a new 

way of subchaining an SFC. They add backups to the VNFs in order to fulfill 

the reliability requirement if, after using the subchaining approach, the criterion 

for reliability is not met. After that, they turn the problem of reliable SFC 

placement into an ILP problem in order to solve it in the most effective manner 

possible. They offer a modified stable matching technique in order to deliver a 

near-optimal solution in polynomial time. This is in response to the significant 

computational cost of the ILP issue, which requires the resolution of large input 

instances. In [52], they initially investigate latency aware and reliable SFC 

placement in order to suit the expectations of users and improve the reliability 

of SFCs from VNF failures. Then, they concentrate on the reliable placement of 

virtual monitoring functions near VNFs in order to discover and mitigate service 

degradation and security-related concerns in the network. In order to reduce the 

overall deployment cost, they formulate the problems as ILP problems and 



Related Work 

31 

 

demonstrate that they are NP-hard. They offer new heuristic algorithms based 

on complex network theory to deliver near-optimal solutions in polynomial time 

for large input cases in order to overcome the high computational complexity of 

ILP issues. They demonstrate, via extensive simulations, that their suggested 

algorithms give a near-optimal (5% optimality gap) solution in a real-world 

network design.  

Lin et al. [53] investigated the reliability of service provisioning in a Mobile 

Edge Computing (MEC) network by utilizing redundant placement of VNF 

instances. They assumed that each service request included a SFC requirement 

and a service reliability requirement. They created a unique reliability-aware 

service function chain provisioning problem with the objective of maximizing 

the number of requests accepted while satisfying the reliability requirements of 

each admitted request. When the problem size was small, they created an ILP 

solution and offered a heuristic method for addressing scalability. 

 

2.4 Dynamic Service Function Chaining 

In the third phase of our study, we review the most recent research concerning 

dynamic service function chaining. Following is a summary of dynamic service 

function chaining research. In dynamic SFC embedding studies, every SFC 

request has an arrival and departure time in order to use physical network 

resources. SFC requests enter and exit the network at distinct intervals. When 

the lifetime of SFC requests expires, the resources become accessible for 

subsequent SFC requests. 

Chen et al. [54] studied cost-efficient dynamic service function chain 

embedding in edge clouds. Edge Computing (EC) provides delay protection for 

some delay-sensitive network applications by putting limited-resource cloud 

infrastructure at the network's edge. In this research, the authors investigate how 
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to dynamically embed SFC in a geo-distributed edge cloud network to fulfill 

user requests with varying latency requirements, and present this problem as a 

MILP model with the goal of minimizing the overall embedding cost. In 

addition, a unique SFC Cost-Efficient emBedding (SFC-CEB) technique has 

been presented to embed the required SFC efficiently and optimize embedding 

cost. Based on the findings of trace-driven simulations, the suggested approach 

can lower the cost of SFC embedding by up to 37% when compared to existing 

techniques (e.g., RDIP). Qin et al. [55] investigated dynamic service chaining 

for ultra-reliable services in softwarized networks. They presented a dynamic 

service chaining framework for the delivery of ultra-reliable services, where the 

reliability is described by the probability distribution utilizing extreme value 

theory. Their design purpose is to limit the number of backup VNF modules 

subject to resource and reliability restrictions. To deliver ultra-reliable services, 

main and backup VNFs are re-mapped to more reliable physical machines due 

to the network's dynamic nature. Utilizing Lyapunov stochastic optimization, 

the primary VNF mapping and backup VNF selection are conducted on large 

and small timescales, respectively. Shang et al. [56] studied online SFC 

placement for cost-effectiveness and network congestion control. They offered 

a novel online technique that reduces operating costs and controls network 

congestion at the same time. It accomplishes this by co-locating VNFs and 

routing flows among them. They formulated it as an ILP optimization problem. 

They also propose a heuristic algorithm named Candidate Path Selection (CPS) 

algorithm with a theoretical performance guarantee.  

Luo et al. [57] did a study on an online algorithm for VNF service chain 

scaling in datacenters. They offer an online scaling technique to adapt the 

deployment of VNF instances to the fluctuating traffic demand over time, 

ensuring a competitive advantage. They illustrate the efficiency of the proposed 

online VNF scaling method via theoretical analysis and trace-driven simulation. 
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Pei et al. [29] addressed efficiently embedding SFCs with dynamic VNF 

placement in geo-distributed cloud systems. They formulated it in the form of a 

BIP optimization model, aiming to minimize the embedding cost. Their 

proposed approach enhances performance in terms of SFC request acceptance 

rate, network throughput, and mean VNF utilization rate. Liu et al. [58] did a 

study on dynamic service function chain deployment and readjustment. They 

examine how to optimize SFC deployment and readjustment in a dynamic 

setting. In particular, they attempt to simultaneously optimize the deployment 

of new users' SFCs and the readjustment of existing users' SFCs, taking into 

account the trade-off between resource usage and operational overhead. First, 

an ILP model is constructed to solve the issue precisely. Then, they propose a 

Column Generation (CG) model for the optimization to lower the time 

complexity. Simulation findings demonstrate that the proposed CG-based 

algorithm may approximate the performance of the ILP optimization model and 

outperform an existing benchmark in terms of service provisioning profit. 

Li et al. [59] studied an efficient algorithm for service function chains 

reconfiguration in mobile edge cloud networks. As an emerging network 

architecture, MEC enables ultra-low latency and high-bandwidth applications 

by putting servers at the network's edge to provide compute and storage 

capabilities. Their study focuses on the SFCs reconfiguration scheme with 

resource capacity limits in the MEC network. First, they define the SFCs 

reconfiguration problem of the edge network as a mathematical model with the 

goal of minimizing end-to-end delay and operating costs for user services. Then, 

they turn the problem into an analogous shortest path problem and create a 

Dynamic Programming based SFC Migration algorithm (DPSM). Lastly, 

simulated tests are conducted to evaluate the performance of the method using 

a real-world dataset. The outcomes of the trial demonstrate the algorithm's 

usefulness and efficiency. 
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2.5 Conclusion 

To conclude this chapter, after analyzing a number of state-of-the-art studies 

with diverse objectives, we identified a lack of research on addressing URLLC 

in an NFV-enabled network. It has been observed that, in order to enhance 

reliability, it is common practice to utilize a backup technique. Similarly, to 

enhance latency, a commonly employed approach is the implementation of 

latency-aware service function chaining. Nevertheless, using a backup method 

may result in an increase in latency. Adding extra physical network resources is 

not something we want to do; therefore, having a backup element is also 

undesirable. To this end, we constructed a novel solution to address URLLC in 

an NFV-enabled network. This allowed us to simultaneously improve the 

reliability and latency of URLLA without a backup technique while having a 

minimal negative impact on other applications.  

Different from the aforementioned investigations, we not only provide a 

reliability- and latency-aware SFC embedding algorithm that simultaneously 

improves the reliability and latency of URLLA without using backup techniques 

and redundant components, but we also propose a configurable priority 

coefficient factor and utilize flow prioritization to provide URLLA with 

dedicated physical network resources (bandwidth, RAM memory, and CPU). 

We define constraints on maximum tolerable end-to-end delay, consumption of 

physical network resources, reliability, and routing-related constraints. We 

employ the Dijkstra algorithm, which is optimized for weighted graphs, to 

locate the shortest path between two nodes in order to arrive at the solution that 

is optimal on a global scale. To find the exact numerical solutions, we 

formulated the SFC deployment problem as an ILP optimization problem (see 

Chapter 4), and we provided a set of heuristic approaches and relaxed versions 

to minimize the execution time with a minimum optimality gap in order to make 

it usable for large-scale network topologies and solve the scalability issue. 
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3 System Model  

 

This chapter illustrates the system model and its underlying assumptions for 

each phase of our research, which consist of the underlying substrate network, 

virtual network functions, and service function chains. To solve the SFC 

deployment problem, an accurate system model must be designed. The system's 

model plays a crucial role in producing accurate results. Here is how this chapter 

is structured: In Section 3.1, we present the system model of the ULLC study, 

which is the first phase of our study. In Section 3.2, we explain the system model 

for analyzing the URLLC study, which takes the reliability model into 

consideration (the second phase of our study). In Section 3.3, we detail the 

system model used to investigate the dynamic service function chaining to 

enable URLLC (the third phase of our study). In this setting, each SFC request 

has an arrival time and a departure time to use physical network resources. As 

stated before, in the first two phases of our research, we dealt with static SFC 

requests, similar to studies [27, 28] that suggest SFC requests are static inputs 

and unaffected by arrival and departure timings (lifetime). In the third phase of 

our research, similar to [29, 30], we investigate dynamic SFC requests. When 

an SFC request's lifetime expires, the physical network resources become 

accessible for the next SFC request.  

  

3.1 Ultra-Low Latency Communication 

To investigate ultra-low latency communication, we will first present the 

modeling of a physical network and its underlying assumptions. Gridnet [60] is 

the network topology that we employed for the first phase of our investigation. 

Figure 9 presents the Gridnet network topology, which consists of 8 nodes and 

18 links. The modeling of physical networks, SFC requests, and the parameters  
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used to describe them are the subsequent topics discussed in the following 

subsections. 

 

Figure 9. Gridnet network topology [60]. 

 

A. Physical Network 

We represent the physical network as an undirected graph with the notation 

𝐺𝑃=(𝑁𝑃,𝐿𝑃), where 𝑁𝑃 refers to the set of physical nodes and 𝐿𝑃 refers to the 

set of physical links in the physical network. The matrix 𝑃𝑁𝑁𝑝 × 𝑁𝑝 is employed 

to depict the underlying physical network. It serves as an adjacency matrix, 

representing the connections between vertices in the undirected graph. The 

vertices of the graph are represented by the rows and columns of the adjacency 

matrix, with each cell in the matrix denoting an edge connecting two vertices. 

We divide nodes into two classes. The first category of nodes is known as Core-

Data-Center (CDC) Nodes (𝑁𝐶𝐷𝐶), and these are the nodes that host the various 

VNF types (e.g., a, b, c, d, etc.). The second category, Switching Nodes (𝑁𝑆), 

are the nodes that only send traffic to the subsequent nodes (𝑁𝐶𝐷𝐶 , 𝑁𝑆 ⊆ 𝑁𝑃) 
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and cannot host any VNF types. On the graph displayed in Figure 9, the CDC 

nodes are represented by the green squares, while the switching nodes are 

represented by the red dots. In this phase, the physical network and SFC requests 

are both treated as static inputs. As shown in Figure 9, we have configured two 

CDC nodes depending on node degree to host VNV instances and six switching 

nodes to pass traffic to the following nodes.  

In order to represent a pair of nodes, we make use of the symbols m and n 

(m, n ∈ Np). In our study, we establish constraints on bandwidth use, memory 

utilization, and CPU usage. To this end, the parameter 𝐶(𝑚,𝑛)
𝑏𝑤  represents the 

bandwidth capacity of the physical link between node m and node n, the 

parameter 𝐶𝑚
𝑚𝑒𝑚 denotes the memory capacity of node m, and 𝐶𝑚

𝐶𝑃𝑈represents 

the CPU capacity of node m. In this study, since the switching nodes (𝑁𝑆) only 

forward the traffic to the next nodes and do not host any VNFs, we assume that 

they do not require much CPU and memory capacity; therefore, the CPU and 

memory capacities of the switching nodes are considered infinity.   

B. Service Function Chain Requests 

An SFC request, denoted as f, refers to a sequential arrangement of VNFs 

that must be concatenated in a specific predetermined order, as depicted in 

Figure 6 on Page 10. In order to establish a clear understanding of SFC requests, 

it is necessary to have a collection of input parameters, which are commonly 

referred to as input matrices. The parameters employed to indicate an SFC 

request are enumerated as follows. We employ nine parameters to indicate SFC 

request f, {𝑆𝑟𝑐𝑓 ,  𝐷𝑒𝑠𝑓 , 𝑅𝑥
𝑓

 , 𝑊𝑥
𝑓

, 𝑃𝑓 , 𝜏𝑏𝑤
𝑓

, 𝜏𝑐𝑝𝑢
𝑓

 , 𝜏𝑚𝑒𝑚
𝑓

 , 𝜏𝑡𝑑
𝑓

}. We use 𝑆𝑟𝑐𝑓 

and 𝐷𝑒𝑠𝑓 in order to represent the source and destination nodes of SFC request 

f. The matrix 𝑅𝐹× 𝑋
  represents the required VNFs for fulfilling SFC requests. In 

this study, we treat this matrix as a static input. F denotes the total number of 

SFC requests, and f is a single SFC request.  X denotes the total number of VNF 
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types (e.g., a, b, c, d, etc.). In fact, if VNF type x is requested for the SFC request 

f, then 𝑅𝑥
𝑓
 equals 1 (0 otherwise). Matrix 𝑊𝐹 ×𝑋

  represents the sequence of 

required VNFs for all SFC requests, where  𝑊𝑥
𝑓
specifics the 𝑥 

𝑡ℎ required VNF 

for flow f. It is a matrix with integer values to define the order of each VNF x. 

Indeed, a VNF with lower index needs to deliver service first. 𝑃𝑓 is used to 

denote the priority of SFC request f. As stated before, we define high-priority 

SFC requests for ultra-low latency applications (𝑃𝑓is 1) and low-priority SFC 

requests for other applications (𝑃𝑓is 0). The parameters 𝜏𝑏𝑤
𝑓

, 𝜏𝑐𝑝𝑢
𝑓

 and 𝜏𝑚𝑒𝑚
𝑓

 

denote the required bandwidth, CPU, and memory for each SFC request f, 

respectively. Finally, 𝜏𝑡𝑑
𝑓

 denotes the maximum tolerable end-to-end delay of an 

SFC request f.  

  

3.2 Ultra-Reliable Low Latency Communication 

As indicated previously, in the second phase of our study, we study URLLC 

and incorporate SFC reliability requirements. The reliability of an SFC request 

is demonstrated in Figure 10. In this figure, the symbols 𝑅𝑒𝑐𝑑𝑐
  and 𝑅𝑒𝑣𝑛𝑓

  

represent the reliability values for each CDC node and each VNF instance, 

respectively. The figure illustrates that the reliability of SFC request s 

containing VNFa and VNFb, which are deployed on CDC node 1, is determined 

by multiplying their respective reliability values. In our analysis, we take into 

account both software reliability (𝑅𝑒𝑣𝑛𝑓
 ) and hardware reliability (𝑅𝑒𝑐𝑑𝑐

 ). To 

examine Ultra-Reliable Low-Latency communication, we first outline the 

reliability viewpoint in our system model and then give the substrate network 

model and its underlying assumptions. Finally, the modeling of service function 

chain requests is presented. 
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Figure 10. Reliability of an SFC request. 

 

 

A. Reliability Model  

In this study, both software and hardware failures are taken into 

consideration, which means both VNF and CDC node failures are taken into 

account. When a component in this model fails, it ceases to function and stops 

producing any output or results. Although it may crash or halt, it never delivers 

inaccurate or distorted data. In an NFV context, the availability of a component, 

such as CDC node or VNF, can be determined as the ratio of the mean time the 

component is up for service delivery to the sum of the mean time the component 

is up for service delivery and the mean time the component is down for repair. 

To this end, the availability of a component is defined as follows [51]: 

Availability= 
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
                                                                                                    (1) 
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Where MTBF denotes the mean time between failures of the component and 

MTTR denotes the mean time to repair the failed component. The chance that a 

component (a VNF or CDC node) will be available for delivering services 

without failure for a certain amount of time is defined as reliability. Failures in 

either the software or the hardware might result in disruptions to the services 

that are provided.  

In our formulations, the parameter 𝑅𝑒𝑥 denotes the software reliability of 

VNF x, while the parameter  𝑅𝑒𝐶𝐷𝐶 reflects the hardware reliability of CDC 

node i that hosts the VNF. As can be seen in Figure 10, the reliability of an SFC 

request s including 𝑉𝑁𝐹𝑎 and 𝑉𝑁𝐹𝑏 traversing the 𝐶𝐷𝐶1 node is determined 

as Equation (2) [49]:   

Reliability of 𝑆𝐹𝐶𝑠  →   𝑅𝑒𝑠= 𝑅𝑒𝐶𝐷𝐶 1× 𝑅𝑒𝑎 × 𝑅𝑒𝑏                                       (2) 

As a result, we reference to the reliability of SFC request s as 𝑅𝑒𝑠, which is 

determined as shown in Equation (3), where 𝐸𝑖 ,𝑥
𝑠  indicates whether VNF x of 

SFC request s is served via CDC node i (𝐸𝑖 ,𝑥
𝑠 =1) or not (𝐸𝑖 ,𝑥

𝑠 =0). 

 𝑅𝑒𝑠 =  ∏  𝑅𝑒𝑥
  .  𝑅𝑒𝐶𝐷𝐶

 𝑖

𝑥 ∈ X 

 .  𝐸𝑖,𝑥
𝑠              ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑠 ∈ 𝑆                                (3) 

Equation (3) is nonlinear; hence it cannot be used in our optimal optimization 

algorithm. Therefore, we present an approximation-based formulation for linear 

reliability. It is described in Chapter 4.   

B. Substrate Network   

We represent the substrate network as an undirected graph G= (N, L), where 

N denotes the set of physical nodes and L the set of physical links in our 

substrate network. Similar to phase one of our study, the nodes are divided into 

two types. The first category of nodes Core-Data-Center Nodes (𝑁𝐶𝐷𝐶), hosts 

the different VNF types (e.g., a, b, c, d, etc.). Switching Nodes (𝑁𝑆) are the 
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nodes that only forward traffic to succeeding nodes (𝑁𝐶𝐷𝐶 , 𝑁𝑆 ⊆ 𝑁 ) and are 

incapable of hosting any VNF kinds. On the network depicted in Figure 9, CDC 

nodes are depicted as green squares, whereas switching nodes are depicted as 

red dots. The physical network and SFC requests are both considered as static 

inputs at this phase. As illustrated, we have setup two CDC nodes based on node 

degree to host VNF instances and six switching nodes to forward traffic to the 

subsequent nodes. We use i and j to represent two nodes in the substrate 

network, and (i, j) to represent the link between node i and j. In our investigation, 

we impose limitations on bandwidth use, memory utilization, and CPU 

utilization. The parameter 𝐾(𝑖,𝑗)
𝑏𝑤  represents the total bandwidth capacity of link 

(i, j). The parameters 𝐾𝑖
𝑐𝑝𝑢

 and 𝐾𝑖
𝑚𝑒𝑚 denote the CPU and the memory 

capacities of node i, respectively.  

C. Service Function Chain Requests 

An SFC request s is a sequence of VNFs that must be concatenated in a 

certain order, see Figure 6 on Page 10. To define SFC requests, a set of input 

parameters, which we refer to as input matrices, is required. The parameters we 

utilize to signify an SFC request s are listed below. We employ ten parameters 

to indicate SFC request s, {𝑆𝑟𝑐𝑠 ,  𝐷𝑒𝑠𝑠 , 𝐴𝑥
𝑠  , 𝑂𝑥

𝑠 , 𝑃𝑠 , ᴦ𝑠 , 𝜓𝑏𝑤
𝑠 , 𝜓𝑐𝑝𝑢

𝑠  , 𝜓𝑚𝑒𝑚
𝑠  ,

𝜓𝑡𝑑
𝑠 }. The parameters 𝑆𝑟𝑐𝑠 and 𝐷𝑒𝑠𝑠 represent the source and destination of 

SFC request s, respectively. The parameter x represents the VNF type and S 

denotes the total number of SFC requests. The matrix 𝐴𝑆 ×𝑋
  represents the 

needed VNFs for each SFC request s, where 𝐴𝑥
𝑠  equals 1, if the SFC request s 

requests the VNF x (0 otherwise). We take A to be a static input in our study. 

The integer matrix 𝑂𝑆 ×𝑋
  specifies the ordering of the needed VNFs for SFC 

request s. The 𝑂𝑥
𝑠 denotes the 𝑥𝑡ℎ required VNF for SFC request s, VNFs with 

a lower index must provide service first. 𝑃𝑠 denotes the priority of each SFC 

request s, high and low-priority SFC requests. The parameter ᴦ𝑠 represents the 
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reliability requirement of SFC request s. The bandwidth, CPU, and memory 

requirements of SFC request s is represented as 𝜓𝑏𝑤
𝑠  , 𝜓𝑐𝑝𝑢

𝑠  , 𝜓𝑚𝑒𝑚
𝑠 , respectively. 

Finally, 𝜓𝑡𝑑
𝑠  represents the maximum tolerable end-to-end delay of SFC request 

s. 

 

3.3 Dynamic Service Function Chaining  

Given that in the third phase of our research we study dynamic service 

function chaining and present a heuristic way to handle URLLC in an NFV-

enabled network, we chose a bigger network topology. We chose EliBackbone 

network topology consisting of 19 nodes and 28 links [60]. In a dynamic 

context, each SFC request has an arrival time and a departure time in order to 

use physical network resources. Similar to a real-world scenario in which SFC 

requests enter and exit the network at varied time intervals and use the network 

for a certain amount of time. When the allotted amount of time for an SFC 

request has passed, the underlying physical network resources become available 

for the subsequent SFC request to use.  

A. Substrate Network 

We present the Substrate Network as an undirected graph 𝐺𝑠=(𝑁𝑠,𝐿𝑠), where 

𝑁𝑠 represents the set of physical nodes and 𝐿𝑠 represents the set of physical 

links. We represent two substrate network nodes as m and n, and the link 

between nodes m and n as (m,n). The parameter 𝐶(𝑚,𝑛)
𝐵𝑊  denotes the total 

bandwidth capacity of the link (m,n). The parameters 𝐶𝑚
𝐶𝑃𝑈 and 𝐶𝑚

𝑀𝑒𝑚, 

respectively, represent the CPU and the memory capacity of node m. The set of 

physical nodes (𝑁𝑠) consist of two types of nodes, Core-Data-Center Nodes 

(𝑁𝐶𝐷𝐶) and Switching Nodes (𝑁𝑆𝑊), (𝑁𝐶𝐷𝐶 , 𝑁𝑆𝑊 ⊆ 𝑁𝑠 
). In our setting, only 

𝑁𝐶𝐷𝐶  can host the VNF types, whereas 𝑁𝑆𝑊 only transmits network traffic to the 
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following nodes. As shown in Figure 11, we consider three nodes to be CDC 

nodes (green squares) and sixteen nodes to be switching nodes (red dots). 

 

Figure 11. EliBackbone network topology [60]. 

 

B. Service Function Chain Request  

An SFC request f consists of a series of VNFs that must be concatenated in a 

certain order. {𝑆𝑟𝑐𝑓 ,  𝐷𝑒𝑠𝑓 , 𝑇𝑎
𝑓
,𝑇𝑑

𝑓
𝐴𝑥

𝑓
 , 𝑂𝑥

𝑓
 , 𝑃𝑓 , ᴦ𝑓 , Ω𝐵𝑊

𝑓
 , Ω𝐶𝑃𝑈

𝑓
 , Ω𝑀𝑒𝑚

𝑓
} are 

eleven parameters used to identify SFC request f. The parameters 𝑆𝑟𝑐𝑓 and 

𝐷𝑒𝑠𝑓 denotes, respectively, the source and destination of SFC request f. 𝑇𝑎
𝑓
 and 

𝑇𝑑
𝑓
are the arrival and departure times for SFC request f, respectively. The 

parameter x denotes the VNF type and F represent the total number of SFC 

requests. 𝐴𝐹 ×𝑋
  denotes the required VNFs for each SFC request f, where 𝐴𝑥

𝑓
 = 

1, if the SFC request f requests the VNF x (0 otherwise). The integer matrix 

𝑂𝐹 ×𝑋
  specifies the ordering of the needed VNFs for SFC request f. The 𝑂𝑥

𝑓
 

denotes the 𝑥𝑡ℎ required VNF for SFC request f, VNFs with a lower index must 

provide service first. 𝑃𝑓 denotes the priority of each SFC request f, high and 

low-priority SFC requests. The parameter ᴦ𝑓 denotes the reliability requirement 
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of SFC request f. The bandwidth, CPU, and memory requirements of SFC 

request f are denoted as Ω𝐵𝑊
𝑓

 , Ω𝐶𝑃𝑈
𝑓

 , Ω𝑀𝑒𝑚
𝑓

, respectively.  

C. Reliability  

Similar to the second phase of our study, failures of software and hardware 

components are considered in the third phase, which means VNFs and CDC 

nodes failures. This model stops working and stops delivering any output or 

results when a component fails. It may stop or crash, but it never provides 

distorted or false data. In an NFV setting, the availability of a component, such 

as CDC node or VNF, can be measured as the ratio of the mean time the 

component is up for service delivery to the sum of the mean time the component 

is up for service delivery and the mean time the component is down for repair. 

It is defined as follows [51]: 

Availability= 
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
                                                                              (4) 

Where MTBF is the mean time between failures of the component and MTTR 

denotes the mean time to repair the failed component. Reliability is the 

probability that a component (VNF or CDC node) will be available to supply 

services without interruption for a certain period of time. Interruptions in 

services are possible as a consequence of software and hardware failures. In this 

study, the parameter 𝑅𝑒𝑥 represents the software reliability of VNF x, while the 

parameter  𝑅𝑒𝐶𝐷𝐶 denotes the hardware reliability of CDC node m that hosts the 

VNF. As it can be seen in Figure 10, the reliability of an SFC request involving 

𝑉𝑁𝐹𝑎 and 𝑉𝑁𝐹𝑏 traversing the 𝐶𝐷𝐶1 node is determined by Equation (5) [61]:  

 

Reliability of 𝑆𝐹𝐶𝑓  →  𝑅𝑒𝑓= 𝑅𝑒𝐶𝐷𝐶 1× 𝑅𝑒𝑎 × 𝑅𝑒𝑏                                   (5) 
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To this end, we refer to the reliability of SFC request f as 𝑅𝑒𝑓, which is 

determined as shown in Equation (6), where 𝐸𝑚 ,𝑥
𝑓

 indicates whether VNF x of 

SFC request f is served via CDC node m ( 𝐸𝑚,𝑥
𝑓

=1) or not ( 𝐸𝑚,𝑥
𝑓

=0).    

 

       𝑅𝑒𝑓 =  ∏  𝑅𝑒𝑥
  .  𝑅𝑒𝐶𝐷𝐶

 𝑚

𝑥 ∈ X 

 .  𝐸𝑚,𝑥
𝑓

            ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑓 ∈ 𝐹                      (6) 

After illustrating the system models and their underlying assumptions, the 

subsequent chapter formulates the SFC deployment problem as an ILP 

optimization model. 
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4 Integer-Linear-Programming Optimization Model 

 

In this chapter, we formulate our proposed methodology in the form of an 

ILP optimization model. Using the ILP optimization model, we are able to 

obtain exact numerical solutions to the SFC deployment problem. The task of 

constructing all of the constraints and the objective function in the form of an 

ILP optimization model is a very difficult one, as we discussed in the second 

chapter. In order to address URLLC in an NFV-enabled network, we first 

created a comprehensive list of required constraints in order to obtain exact 

numerical results. This was done by doing an analysis of the studies that were 

relevant to the topic in Chapter 2. Following that, we took this set of identified 

constraints and converted them into linear mathematical formulations based on 

our system model and the problem statement, both of which are detailed in the 

upcoming subsections.  

This chapter is constructed as follows: In the first section of this chapter, we 

will go through the mathematical formulations of the necessary constraints to 

address ultra-low latency communication. In accordance with this, we construct 

an ILP optimization model consisting of the required constraints along with an 

objective function. In the second section of this chapter, we investigate ultra-

reliable low-latency communication and develop an ILP optimization model to 

address URLLC in a network that supports NFV. This model includes the 

essential constraints and the objective function.   

 

4.1 Ultra-Low Latency Communication  

It is of the utmost priority for suppliers of network services to fulfill the 

various requirements of network services. Applications that require ultra-low 

latency are highly sensitive and important and therefore require special 
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handling. As a result, it is essential to have an efficient SFC embedding 

algorithm. In this section of the chapter, we will discuss how to structure the 

SFC embedding problem as an ILP optimization model. This model will handle 

applications that require extremely low latency in a different manner than other 

applications.  

As stated before, we consider two priorities for SFC requests: high-priority 

for ultra-low latency applications and low-priority for other network services. 

We use a priority coefficient factor (µ) to apply physical resource reservations 

(bandwidth, RAM memory, and CPU) for high-priority network services. We 

assume the initial priority coefficient factor (µ) is 0.9, which means a maximum 

of 90 percent of physical resources can be used by low-priority SFC requests 

and 10 percent of the physical resources are reserved for high-priority SFC 

requests. In our study, we investigate the change in priority coefficient factor 

(µ) in Chapter 6.  

First, we will establish the appropriate bandwidth, CPU, and memory 

utilization restrictions for SFC requests based on the priority of each SFC 

request and the priority coefficient factor. These requirements are guaranteed 

by (7-12). Constraint (7) ensures that the total bandwidth utilization of SFC 

requests cannot exceed the total physical bandwidth capacity of the link between 

node m and node n. In this context, F is the total number of SFC requests in the 

network, which we take as a static input for our investigation. Constraint (8) 

forces that the total bandwidth utilization of SFC requests with low-priority 

cannot exceed 90 percent (given that the initial value of µ is 0.9) of the physical 

bandwidth capacity of the link between node m and node n.  F´ is the total 

number of SFC requests with low-priority. We use the binary variable 𝐻(𝑚,𝑛)
𝑓

 ∈ 

{0, 1} to indicate whether the SFC request f traverses the link (m,n) or not. 

𝐻(𝑚,𝑛)
𝑓

 equals 1, if the SFC request f traverses the link (m,n), and 0 otherwise. 
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In Table 1, you will find a list of all symbols along with an explanation. 

∑ 𝜏𝑏𝑤
𝑓

 .  𝐻(𝑚,𝑛)
𝑓

 ≤  𝐶(𝑚,𝑛)
𝑏𝑤

𝐹

𝑓=1

,         ∀ 𝑚, 𝑛 ∈  𝑁𝑃                                                       (7) 

∑ 𝜏𝑏𝑤
𝑓′

. 𝐻(𝑚,𝑛)
𝑓′

≤ 𝐶(𝑚,𝑛)
𝑏𝑤 . 𝜇  ,

𝐹′

𝑓′=1

     ∀𝑚, 𝑛 ∈ 𝑁𝑃                                                         (8) 

Constraint (9) makes certain that the CPU consumption of SFC requests does 

not go over the total CPU capacity of CDC node m. Constraint (10) guarantees 

that the CPU utilization of SFC requests with low-priority cannot exceed 90 

percent (given that the initial value of µ is 0.9) of the total CPU capacity of CDC 

node m. 

∑ 𝜏𝑐𝑝𝑢
𝑓

.  𝐻(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝑐𝑝𝑢

𝐹

𝑓=1

,         ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃                                           (9) 

∑ 𝜏𝑐𝑝𝑢
𝑓′

. 𝐻(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝑐𝑝𝑢

. 𝜇 

𝐹′

𝑓′=1

,    ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃                                        (10) 

The same logic for CPU utilization is applied for memory utilization on CDC 

node m. Constraint (11) ensures that the memory utilization of SFC requests 

does not exceed the total memory capacity of CDC node m. Constraint (12) 

guarantees that the memory utilization of SFC requests with low-priority cannot 

exceed 90 percent (given that the initial value of µ is 0.9) of the memory 

capacity of CDC node m.    

∑ 𝜏𝑚𝑒𝑚
𝑓

. 𝐻(𝑚,𝑛)
𝑓

≤  𝐶𝑚
𝑚𝑒𝑚

𝐹

𝑓=1

,           ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃                                   (11) 

 

 



Integer-Linear-Programming Optimization Model 

50 

 

Table 1. Symbols and variables used in the first phase of our study. 

Symbols Description 

𝐺𝑃 The physical network 

𝑁𝑃 The set of the physical nodes 

𝐿𝑃 The set of the physical links 

𝑁𝑆 The set of the switching nodes (𝑁𝑆 ⊆ 𝑁𝑃) 

𝑁𝐶𝐷𝐶  The set of the CDC nodes (𝑁𝐶𝐷𝐶  ⊆ 𝑁𝑃) 

F The total number of SFC requests (flows) 

F´ The total number of low-priority SFC requests (flows) 

X The total number of VNF types (e.g., a, b, c, d, etc.) 

𝑃𝑓 The priority of SFC requests f 

𝜇  The priority coefficient factor for physical resource 

reservation (𝜇 = 0.9 as the initial value) 

𝐻(𝑚,𝑛)
𝑓

 A binary variable, whether flow f traverses the link (m,n) or 

not 

𝐾𝑚 ,𝑥
𝑓

 A binary variable, whether flow f uses VNF type x which is   

placed at CDC node m or not 

𝐶(𝑚,𝑛)
𝑏𝑤  The total bandwidth capacity of link (m,n) 

𝐶𝑚
𝑐𝑝𝑢

 The total CPU capacity of node m 

𝐶𝑚
𝑚𝑒𝑚 The total memory capacity of node m 

𝑆𝑟𝑐𝑓 The source node of SFC request f 

𝐷𝑒𝑠𝑓 The destination node of SFC request f 

𝑅𝐹 ×𝑋
  The matrix of required VNFs by SFC request f 

𝑊𝐹 ×𝑋
  The matrix of ordering of VNFs requested by SFC request f 

𝜏𝑏𝑤
𝑓

 The required bandwidth by SFC request f 

𝜏𝑐𝑝𝑢
𝑓

 The required CPU by SFC request f 

𝜏𝑚𝑒𝑚
𝑓

 The required memory by SFC request f 
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𝜏𝑡𝑑
𝑓

 The maximum tolerated delay by SFC request f 

𝐷(𝑚,𝑛) The propagation delay on link (m,n) 

𝐿Ncdc × X
  The matrix represents the VNF types placed on each CDC 

node 

 𝑇(𝑁𝑝 ×𝑁𝑝 ×𝐹)
  The matrix T represents the ordering-aware rerouting matrix 

𝑍𝑅𝑓 Contains all the required VNFs with a higher order (i.e., 

lower index) than 𝑅𝑓 

 

∑ 𝜏𝑚𝑒𝑚
𝑓′

. 𝐻(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝑚𝑒𝑚. 𝜇 

𝐹′

𝑓′=1

,      ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃                                  (12) 

Constraint (13) ensures that the propagation delay of SFC request f cannot 

exceed the maximum tolerated end-to-end delay of SFC request f. We apply it 

to both low- and high-priority SFC requests to minimize any side effects on 

low-priority applications. 

∑  

𝑁𝑝

𝑚=1

∑ 𝐷(𝑚,𝑛). 𝐻(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

≤ 𝜏𝑡𝑑
𝑓

,       ∀𝑓 ∈ 𝐹                                                            (13) 

In this formulation, 𝐷(𝑚,𝑛) is the propagation delay on the link between node 

m and node n. We ensure flow control by using Constraint (14). We make sure 

that the links on the deployment path of SFC request f are connected head-to-

tail. 

∑  𝐻(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

− ∑  𝐻(𝑛,𝑚)
𝑓

= 

𝑁𝑝

𝑛=1

{
1                    𝑚 = 𝑆𝑟𝑐𝑓

−1                  𝑚 = 𝐷𝑒𝑠𝑓

  0        𝑚 ≠  𝑆𝑟𝑐𝑓 , 𝐷𝑒𝑠𝑓

    

∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑃                                                                                                     (14) 
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To guarantee that each VNF type x required by SFC request f is supported by 

the server hosting it, we apply Constraint (15).  

 𝐾𝑚 ,𝑥
𝑓

 ≤  𝐿𝑚,𝑥
 ,              ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑥 ∈ 𝑋                                         (15) 

 𝐾𝑚 ,𝑥
𝑓

 is a binary variable.  𝐾𝑚 ,𝑥
𝑓

 equals 1, if the SFC request f uses VNF type 

x, which is placed on CDC node m, and 0 otherwise. The matrix  𝐿(𝑁𝑐𝑑𝑐 ×𝑋)
  

identifies the VNF types placed on each CDC node, which is given as an input. 

If VNF type x is placed on CDC node m, then  𝐿𝑚,𝑥
 =1 (and 0 otherwise). We 

consider Constraint (16), in order to prevent a loop for SFC request f. 

∑  𝐻(𝑚,𝑛)
𝑓

 ≤  1

𝑁𝑝

𝑛=1

,           ∀𝑚 ∈ 𝑁𝑝, ∀𝑓 ∈ 𝐹                                                           (16) 

Constraint (17) is considered to ensure that SFC request f crosses a valid VNF 

chain while traversing through the nodes.  

∑  𝐾𝑚 ,𝑥
𝑓

 = 𝑅𝑥
𝑓

𝑁𝑐𝑑𝑐

𝑚=1

,           ∀𝑥 ∈ 𝑋, ∀𝑓 ∈ 𝐹                                                             (17) 

We define Constraint (18) to make sure that each VNF type x is used by at 

most one SFC request. 

∑  𝐾𝑚 ,𝑥
𝑓

 ≤  1

𝑁𝑐𝑑𝑐

𝑚=1

,             ∀𝑥 ∈ 𝑋, ∀𝑓 ∈ 𝐹                                                             (18) 

In the following, we consider ordering constraints to enforce an ordered 

sequence of VNFs to concatenate different VNFs of SFC requests. We introduce 

matrix 𝑇  (𝑁𝑝 × 𝑁𝑝 ×F) as ordering-aware rerouting matrix. T includes the notion 

of ordering for the nodes and links appearing in the deployment path. The 

elements of 𝑇𝑓 are integer values starting from 1, which means that node need 

to be pathed first and so on.  
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𝑇𝑓 = [

0     0     0     1
0     0     3     0
0     0     0     4
0     2     0     0

] 

The matrix 𝑇𝑓 represents that the SFC request f leaves node one in the first 

step and goes to node four (since the fourth column is one), then in the second 

step, from node four goes to node two (since the second column in row four is 

two), and finally from node two reaches node three, which is the destination of 

the SFC request f. The value four in 𝑇𝑓 means that SFC request f crossed four 

nodes to reach the destination. Indeed, 𝑇(𝑚,𝑛)
𝑓

 specifies the number of previously 

crossed nodes. The values stored in the matrix 𝑇𝑓 are integer and need to be 

equal or higher to the corresponding one stored in the rerouting matrix  𝐻(𝑚,𝑛)
𝑓

. 

Therefore, we define Constraint (19).    

 𝑇(𝑚,𝑛)
𝑓

 ≥   𝐻(𝑚,𝑛)
𝑓

,                      ∀𝑓 ∈ 𝐹, ∀𝑚, 𝑛 ∈ 𝑁𝑝                                          (19) 

We ensure that  𝑇(𝑚,𝑛)
𝑓

 becomes zero, if  𝐻(𝑚,𝑛)
𝑓

 is zero. Therefore, we 

introduce Constraint (20). 

𝑇(𝑚,𝑛)
𝑓

= 𝑇(𝑚,𝑛)
𝑓

. 𝐻(𝑚,𝑛)
𝑓

,       ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑝 − {𝐷𝑒𝑠𝑓}, ∀𝑛 ∈ 𝑁𝑝            (20)       

As we can see, Constraint (20) is a nonlinear constraint. We need to rewrite 

it as a linear constraint for our optimization model. To this end, since each SFC 

request f traverses at most all the nodes, we can change Constraint (20) to 

Constraint (21).  

 𝑇(𝑚,𝑛)
𝑓

≤ 𝑁𝑝 . 𝐻(𝑚,𝑛)
𝑓

,               ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑝 − {𝐷𝑒𝑠𝑓}, ∀𝑛 ∈ 𝑁𝑝            (21)                       

The elements of the ordering-aware rerouting matrix for the output links must 

be zero for the destination node. Therefore, we apply Constraint (22).  

 𝑇(𝑚,𝑛)
𝑓

= 0,   ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝐷𝑒𝑠𝑓 , ∀𝑛 ∈ 𝑁𝑝  − {𝐷𝑒𝑠𝑓}                                   (22) 



Integer-Linear-Programming Optimization Model 

54 

 

Except for the source and destination nodes, when SFC request f enters a 

node in its 𝑛𝑡ℎ step, it leaves that node in the  (𝑛 + 1)𝑡ℎ step. Therefore, we 

introduce the Constraint (23). 

∑ 𝑇(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

= ∑ 𝑇(𝑛,𝑚)
𝑓

+ 

𝑁𝑝

𝑛=1

∑  𝐻(𝑛,𝑚)
𝑓

𝑁𝑝

𝑛=1

  ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑝 − {𝑆𝑟𝑐𝑓 , 𝐷𝑒𝑠𝑓}  (23) 

We need to make sure that the SFC requests leave the source nodes. 

Therefore, we introduce the Constraint (24). 

∑  𝑇(𝑚,𝑛)
𝑓

 = 1

𝑁𝑝

𝑛=1

,         ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑆𝑟𝑐𝑓                                                           (24) 

Finally, to force the sequence of VNF chaining, Constraint (25) is introduced. 

The purpose of this process is to determine if the VNFs with higher ordering, 

i.e., lower index in 𝑊𝑓, are delivered to the SFC request f on one of the crossed 

servers or not. 

∑  

𝑁𝑝

𝑚=1

∑  

𝑁𝑝

𝑛=1

𝑇(𝑚,𝑛)
𝑓

 .  𝐾
(𝑚, 𝑊

𝑅𝑓
𝑓

)

𝑓
 ≥ ∑  

𝑁𝑝

𝑚=1

∑  

𝑁𝑝

𝑛=1

𝑇(𝑚,𝑛)
𝑓

 .  𝐾
(𝑚, 𝑊𝑍

𝑅𝑓

𝑓
)

𝑓
 

∀𝑓 ∈ 𝐹, ∀𝑅𝑓 ∈ {1, … , 𝑙𝑒𝑛(𝑊𝑓)} 

∀𝑍𝑅𝑓 ∈ {1, . . . , 𝑅𝑓 − 1},  𝑇(𝑚,𝑛)
𝑓

∈ ℤ ≥ 0, ∀𝑚, 𝑛 ∈  𝑁𝑝                                    (25) 

In Constraint (25), 𝑍𝑅𝑓 stores all the required VNFs with a higher order, i.e., 

lower index, than 𝑅𝑓. For instance, if  𝑊𝑓 = [4   3   2   6 ] then 𝑅𝑓 ∈

 {1, 2, 3, 4}. If we assume  𝑅𝑓 = 4, then 𝑍𝑅𝑓  is a member of {2, 3}. Using the 

same approach as [27], the ordering constraints of the VNFs belonging to a flow 

are expressed in a different form. Therefore, the Constraint (25) is replaced with 

the Constraint (26).  
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(1 −  𝐾
(𝑚 ,𝑊

𝑅𝑓
𝑓

)

𝑓
) . (2𝑁 − 1) + ∑  

𝑁𝑝

𝑛=1

𝑇(𝑚,𝑛)
𝑓

≥  (𝐾
(𝐼 ,𝑊𝑍

𝑅𝑓

𝑓
)

𝑓
). (2𝑁 − 1) + ∑  

𝑁𝑝

𝑛=1

𝑇(𝐼,𝑛)
𝑓

 

∀𝑓 ∈ 𝐹, ∀𝑅𝑓 ∈ {1, … , 𝑙𝑒𝑛(𝑊𝑓)}, ∀𝑍𝑅𝑓 ∈ {1, . . . , 𝑅𝑓 − 1}, ∀𝐼, 𝑚 ∈  𝑁𝑝     (26) 

In Constraint (26), if the CDC node m hosts the VNF 𝑊
𝑅𝑓
 , then 𝐾(𝑚 ,𝑊

𝑅𝑓
 )

𝑓
=

1. Therefore, the left-side of Constraint (26) considers the step of the CDC node 

m and it must be greater than the step of all CDC nodes (𝐼) hosting a VNF with 

an index lower than the index of VNF 𝑊
𝑅𝑓
  in 𝑊 

𝑓. By considering the 𝑍𝑅𝑓 as 

the index of any VNF in 𝑊 
𝑓 with an index lower than VNF 𝑊

𝑅𝑓
 , which means 

the flow f must pass VNF 𝑊𝑍
𝑅𝑓

𝑓
 before 𝑊

𝑅𝑓
𝑓

. If the CDC node m (I) hosts the 

VNF 𝑊𝑍
𝑅𝑓

𝑓
, then 𝐾

(m ,𝑊𝑍
𝑅𝑓

𝑓
)

𝑓
= 1. Therefore, the right-side of Constraint (26) 

considers the step of the CDC node m (I) and it must be greater than the step of 

all CDC nodes m hosting a VNF with an index greater than the index of VNF 

𝑊𝑍
𝑅𝑓

𝑓
 in 𝑊 

𝑓.  If either 𝐾𝑚 ,𝑊
𝑅𝑓
 

𝑓
 or 𝐾(𝐼 ,𝑊

𝑍𝑓
 )

𝑓
 are equal to zero, the value of 

∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1  is always lower than (2N-1), then the constraint is fulfilled. 

∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1  and ∑ 𝑇(𝑚,𝑛)
𝑓Np

m=1  are always lower than (2N-1), since in the worst 

case, the flow crosses all nodes, which means the value of ∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1  is at most 

(N-1)+N. The destination has a flow to itself with a step of at most N+1. When 

both 𝐾(𝑚 ,𝑊
𝑅𝑓
 )

𝑓
 and 𝐾(𝐼 ,𝑊

𝑍𝑓
 )

𝑓
 are equal to one, the constraint is satisfied on the 

condition that the value of ∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1  is greater than ∑ 𝑇(𝐼,𝑛)
𝑓Np

n=1 . It means that 

a CDC node that delivers the lower index VNF is crossed before the CDC nodes 

that deliver higher index VNFs [27].   
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We discussed the mathematical formulation of the SFC deployment problem 

in the earlier formulations. These formulations handle the prioritized SFC 

requests in a different way than in related studies. As was mentioned earlier, by 

utilizing the priority coefficient factor (µ) to reserve physical network resources 

for embedding high-priority SFC requests and optimize their provisioning 

paths, and also by taking into consideration the maximum tolerable end-to-end 

delay of low-priority SFC requests to minimize side effects on low-priority SFC 

requests, we define the objective function as (27), which is to optimize the 

provisioning paths of SFC requests with respect to the end-to-end delay, subject 

to: (7)-(19), (21)-(24) and (26).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑  

𝑁𝑝

𝑚=1

∑ 𝐷(𝑚,𝑛). 𝐻(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

,       ∀𝑓 ∈ 𝐹                                                   (27) 

The objective function (27) aims to find the most optimal deployment paths 

for each SFC request with respect to the end-to-end delay. This methodology 

we have developed is referred to as the Optimal Application-Aware SFC (OAS) 

embedding methodology. The objective is to reduce the number of intermediate 

nodes that a flow traverses from the source node to the destination node, while 

considering the overall delay experienced by the flow. OAS is an NP-hard 

problem because, as can be seen, it maps to the weight constrained shortest path 

problem (WCSPP), which is also an NP-hard problem [62, 63]. An NP-Hard 

problem is a type of complexity class in which obtaining the exact numerical 

solutions for large-scale network topologies is very time-consuming. In Chapter 

5, we propose a heuristic algorithm (the FAS algorithm) to obtain near-optimal 

solutions close to the results produced by Equation (27) within an acceptable 

time frame for large network topologies.   
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4.2 Ultra-Reliable Low Latency Communication 

As mentioned earlier, we address URLLC in an NFV-enabled network in the 

second phase of our study by incorporating a reliability viewpoint into our 

findings from the first phase of our study. Providing a guaranteed quality of 

service for URLLA is one of the main challenges for NSPs, and it has become 

more complicated by the limited physical network resources. Thus, in an NFV 

environment, having an efficient SFC embedding algorithm that supports 

URLLA is essential. We construct our Optimal Reliability- and Application-

Aware SFC (ORAAS) embedding algorithm as an ILP optimization model, as 

described in the following. In Table 2, we have provided a list of all symbols 

along with their respective definitions. 

The first thing that has to be done is define the reliability constraints. In 

accordance with what was discussed in Chapter 3, the reliability of SFC requests 

is assessed using Equation (3). As a direct consequence of this, Constraint (28) 

ensures that the reliability of the deployment path of SFC request s is higher 

than the minimum needed reliability of SFC request s.  As it is shown, 

Constraint (28) is a nonlinear constraint.  

∏  𝑅𝑒𝑥
  .  𝑅𝑒𝐶𝐷𝐶

𝑖 

𝑥 ∈ 𝑋 

 .  𝐸𝑖,𝑥
𝑠  ≥   ᴦ𝑠 ,     ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑠 ∈ 𝑆                                      (28) 

In order to use the Equation (28) in our optimization model, we need to 

linearize it. In order to do this, we apply the method of approximation outlined 

in [50] and replace Equation (28) with Equation (29).  

1 − ∑(1 −  𝑅𝑒𝑥
  .  𝐸𝑖,𝑥

𝑠 ) −

𝑋

𝑥=1

∑(1 −  𝑅𝑒𝐶𝐷𝐶
𝑖  .  𝐸𝑖,𝑥

𝑠 ) ≥  ᴦ𝑠

𝑋

𝑥=1

 ,       

∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑠 ∈ 𝑆                                                                                                    (29) 
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Table 2. Symbols and variables used in the second phase of our study 

Symbols Description 

𝐺  The physical network 

𝑁  The set of the physical nodes 

𝐿  The set of the physical links 

𝑁𝑆 The set of the switching nodes (𝑁𝑆 ⊆ 𝑁 ) 

𝑁𝐶𝐷𝐶  The set of the CDC nodes (𝑁𝐶𝐷𝐶  ⊆ 𝑁 ) 

S The total number of SFC requests (flows) 

S´ The total number of low-priority SFC requests (flows) 

X The total number of VNF types (e.g., a, b, c, d, etc.) 

𝑃𝑠 The priority of SFC requests s 

ᴦ𝑠 The required reliability by SFC request s 

𝑅𝑒𝑠 The reliability of SFC request s 

𝑅𝑒𝑎 The reliability of VNF a 

𝑅𝑒𝐶𝐷𝐶  The reliability of CDC node 

δ  The priority coefficient factor for physical resource reservation (𝜇 =

0.9 as the initial value) 

𝑅(𝑖,𝑗)
𝑠  A binary variable, whether flow s traverses the link (i,j) or not 

𝐾𝑖 ,𝑥
𝑠  A binary variable, whether flow s uses VNF type x which is placed at 

CDC node i or not 

𝐾(𝑖,𝑗)
𝑏𝑤  The total bandwidth capacity of link (i,j) 

𝐾𝑖
𝑐𝑝𝑢

 The total CPU capacity of node i 

𝐾𝑖
𝑚𝑒𝑚 The total memory capacity of node i 

𝑆𝑟𝑐𝑠 The source node of SFC request s 

𝐷𝑒𝑠𝑠 The destination node of SFC request s 

𝐴𝑆 ×𝑋
  The matrix of required VNFs by SFC request s 

𝑂𝑆 ×𝑋
  The matrix of ordering of VNFs requested by SFC request s 
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𝜓𝑏𝑤
𝑠  The required bandwidth by SFC request s 

𝜓𝑐𝑝𝑢
𝑠  The required CPU by SFC request s 

𝜓𝑚𝑒𝑚
𝑠  The required memory by SFC request s 

𝜓𝑡𝑑
𝑠  The maximum tolerable delay by SFC request s 

𝐷(𝑖,𝑗) The propagation delay on link (i,j) 

𝐿Ncdc × X
  The matrix represents the VNF types placed on each CDC node 

 𝑌(𝑁 × 𝑁 × 𝑆)
  The matrix Y represents the ordering-aware rerouting matrix 

𝐽𝐴𝑠 Contains all the required VNFs with a higher order (i.e. lower index) 

than 𝐴𝑠 

 

In the next step, we will specify the limitations on the consumption of 

physical network resources (bandwidth, memory, and CPU) in proportion to the 

priority of each SFC request s. Constraint (30) ensures that the bandwidth 

utilization of all SFC requests on link (i, j) does not exceed the total bandwidth 

capacity of substrate link (i, j). The binary variable  𝑅(𝑖,𝑗)
𝑠  indicates the routing 

path of SFC request s, where 𝑅(𝑖,𝑗)
𝑠 =1, if SFC request s traverses the link (i, j), 

and 0 otherwise. The parameter S indicates the total number of SFC requests. 

Constraint (31) ensures that the low-priority SFC requests cannot exceed (𝛿 × 

bandwidth of substrate link (i, j)). The parameter 𝛿 is the adjustable priority 

coefficient factor for reserving physical network resources for high-priority SFC 

requests. We assume the initial priority coefficient factor (δ) as 0.9, which 

means that 10% of physical resources are reserved for embedding only high-

priority SFC requests (URLLA). The parameter S’ denotes the total number of 

low-priority SFC requests. 

∑ 𝜓𝑏𝑤
𝑠  .  𝑅(𝑖,𝑗)

𝑠  ≤  𝐾(𝑖,𝑗)
𝑏𝑤

𝑆

𝑠=1

,         ∀ 𝑖, 𝑗 ∈  𝑁                                                             (30) 
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∑ 𝜓𝑏𝑤
𝑠′ . 𝑅(𝑖,𝑗)

𝑠′ ≤ 𝐾(𝑖,𝑗)
𝑏𝑤 . δ ,

𝑆′

𝑠′=1

        ∀𝑖, 𝑗 ∈ 𝑁                                                              (31) 

Constraint (32) guarantees that the CPU usage of SFC requests on node i does 

not exceed the overall CPU capacity of CDC node i. Constraint (33) prevents 

low-priority SFC requests from exceeding (𝛿 × CPU capacity of the CDC node 

i). 

∑ 𝜓𝑐𝑝𝑢
𝑠 .  𝑅(𝑖,𝑗)

𝑠 ≤ 𝐾𝑖
𝑐𝑝𝑢

𝑆

𝑠=1

,             ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁                                           (32) 

∑ 𝜓𝑐𝑝𝑢
𝑠′ .  𝑅(𝑖,𝑗)

𝑠′ ≤ 𝐾𝑖
𝑐𝑝𝑢

. δ 

𝑆′

𝑠′=1

,       ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁                                           (33) 

The same logic as for CPU utilization of CDC node i is applied for memory 

utilization of CDC node i via Constraint (34) and (35).  

∑ 𝜓𝑚𝑒𝑚
𝑠 .  𝑅(𝑖,𝑗)

𝑠 ≤ 𝐾𝑖
𝑚𝑒𝑚

𝑆

𝑠=1

,         ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁                                           (34) 

∑ 𝜓𝑚𝑒𝑚
𝑠′ .  𝑅(𝑖,𝑗)

𝑠′ ≤ 𝐾𝑖
𝑚𝑒𝑚. δ 

𝑆′

𝑠′=1

,    ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁                                           (35) 

Constraint (36) is used to guarantee the maximum tolerable end-to-end delay 

for SFC request s.   

∑  

𝑁

𝑖=1

∑ 𝐷(𝑖,𝑗). 𝑅(𝑖,𝑗)
𝑠 ≤ 𝜓𝑡𝑑

𝑠

𝑁

𝑗=1

, ∀𝑠 ∈ 𝑆                                                               (36) 

The parameter 𝐷(𝑖,𝑗) denotes the propagation delay on link (i, j). The flow 

control is guaranteed via Constraint (37), which ensures that the links on the 

deployment path of SFC request s are connected head-to-tail.  
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∑  𝑅(𝑖,𝑗)
𝑠

𝑁

𝑗=1

− ∑  𝑅(𝑗,𝑖)
𝑠 = 

𝑁

𝑗=1

{
1                    𝑖 = 𝑆𝑟𝑐𝑠

−1                  𝑖 = 𝐷𝑒𝑠𝑠

  0        𝑖 ≠  𝑆𝑟𝑐𝑠 , 𝐷𝑒𝑠𝑠
             

∀𝑖 ∈ 𝑁 , ∀𝑠 ∈ 𝑆                                                                                                          (37)  

We use Constraint (38) to prevent a loop for SFC request s. 

∑ 𝑅(𝑖,𝑗)
𝑠  ≤  1

𝑁

𝑗=1

,           ∀𝑖 ∈ 𝑁 , ∀𝑠 ∈ 𝑆                                                                   (38) 

To ensure that SFC request s crosses a valid VNF chain while traversing 

through the nodes, we apply Constraint (39).  

∑ 𝐸𝑖 ,𝑥
𝑠  = 𝐴𝑥

𝑠

𝑁𝑐𝑑𝑐

𝑖=1

,           ∀𝑥 ∈ 𝑋, ∀𝑠 ∈ 𝑆                                                                  (39) 

Each VNF x of SFC request s needs to be supported by the server hosting it. 

Therefore, Constraint (40) is needed. 

 𝐸𝑖 ,𝑥
𝑠  ≤  𝐿𝑖,𝑥

 ,                 ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑥 ∈ 𝑋, ∀𝑠 ∈ 𝑆                                             (40) 

To identify the VNF types placed on CDC node i, we use the matrix  𝐿𝑖,𝑥
  (N 

× X). To make sure that each VNF is used by at most one SFC request, the 

Constraint (41) is proposed.  

∑ 𝐸𝑖 ,𝑥
𝑠  ≤  1

𝑁𝑐𝑑𝑐

𝑖=1

,             ∀𝑥 ∈ 𝑋, ∀𝑠 ∈ 𝑆                                                                 (41) 

With the following constraints, we apply the VNF ordering in the SFC 

deployment path. As stated before, the VNF instances of SFC request s need to 

be concatenated in a predefined order. Therefore, we apply the following 

ordering constraints. First, we define a matrix 𝑌𝑠(N × N) to store the deployment 

path of SFC request s. The stored values in 𝑌𝑠 are integer; therefore, its elements 
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need to be equal or higher to the corresponding rerouting matrix 𝑅(𝑖,𝑗)
𝑠 . Thus, we 

introduce Constraint (42).   

𝑌(𝑖,𝑗)
𝑠  ≥  𝑅(𝑖,𝑗)

𝑠 ,                ∀𝑠 ∈ 𝑆, ∀𝑖, 𝑗 ∈ 𝑁                                                              (42) 

If 𝑅(𝑖,𝑗)
𝑠  becomes zero, then we need to be sure that 𝑌(𝑖,𝑗)

𝑠  becomes zero as 

well. To apply this, we utilize Constraint (43). 

 𝑌(𝑖,𝑗)
𝑠 = 𝑌(𝑖,𝑗)

𝑠 .  𝑅(𝑖,𝑗)
𝑠 ,    ∀𝑗 ∈ 𝑁 , ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝑁 − {𝐷𝑒𝑠𝑠}                                (43) 

Since Constraint (43) is nonlinear, we need to make it linear. We know that each 

SFC request s can traverse at most all the nodes in our substrate network. 

Therefore, we can apply Constraint (44) instead of Constraint (43), which is 

linear.     

𝑌(𝑖,𝑗)
𝑠 ≤ 𝑁  . 𝑅(𝑖,𝑗)

𝑠 ,          ∀𝑖 ∈ 𝑁 − {𝐷𝑒𝑠𝑠}, ∀𝑗 ∈ 𝑁, ∀𝑠 ∈ 𝑆                                (44) 

The output links of the rerouting matrix must be zero for the destination node. 

To apply this, we use Constraint (45).  

𝑌(𝑖,𝑗)
𝑠 = 0,          ∀𝑖 ∈ 𝐷𝑒𝑠𝑠 , ∀𝑗 ∈ 𝑁 − {𝐷𝑒𝑠𝑠}, ∀𝑠 ∈ 𝑆                                       (45) 

Next, we need to make sure that when an SFC request enters a node in its 𝑛 
𝑡ℎ 

step, it leaves that node in its (𝑛 + 1) 
𝑡ℎ step. Therefore, we use Constraint (46).  

∑ 𝑌(𝑖,𝑗)
𝑓

𝑁

𝑗=1

= ∑ 𝑌(𝑗,𝑖)
𝑠 + 

𝑁

𝑗=1

∑ 𝑅(𝑗,𝑖)
𝑠

𝑁

𝑗=1

          ∀𝑖 ∈ 𝑁 − {𝑆𝑟𝑐𝑠 , 𝐷𝑒𝑠𝑠}, ∀𝑠 ∈ 𝑆        (46) 

We apply Constraint (47) to make sure that the SFC requests leave the source 

nodes.  

∑ 𝑌(𝑖,𝑗)
𝑠  = 1

𝑁

𝑗=1

,         ∀𝑖 ∈ 𝑆𝑟𝑐𝑠 , ∀𝑠 ∈ 𝑆                                                                  (47) 
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As the last ordering constraint in our optimization model to check if VNFs 

with higher ordering are delivered to the SFC request s in one of the crossed 

serves or not, we apply Constraint (48). 

∑  

𝑁

𝑖=1

∑  

𝑁

𝑗=1

𝑌(𝑖,𝑗)
𝑠  .  𝐸(𝑖, 𝑂

𝐴𝑠
𝑠 )

𝑠  ≥ ∑  

𝑁

𝑖=1

∑  

𝑁

𝑗=1

𝑌(𝑖,𝑗)
𝑠  .  𝐸(𝑖, 𝑂𝐽

𝐴𝑠
𝑠 )

𝑠  

∀𝑠 ∈ 𝑆, ∀𝐴𝑠 ∈ {1, … , 𝑙𝑒𝑛(𝑂𝑠)}, ∀𝐽𝐴𝑠 ∈ {1, … , 𝐴𝑠 − 1},  

 𝑌(𝑖,𝑗)
𝑠 ∈ ℤ ≥ 0, ∀𝑖, 𝑗 ∈  𝑁                                                                                         (48) 

The matrix 𝐽𝐴𝑠 stores all the required VNFs with a higher order than 𝐴𝑠, i.e., 

if 𝑂𝑠 = [4   3   2   6 ] then 𝐴𝑠 ∈  {1, 2, 3, 4}. If we assume  𝐴𝑠 = 4, then 𝐽𝐴𝑠 is a 

member of {2, 3}. Using the same approach as in [27], the ordering constraints 

of the VNFs belonging to a flow are expressed in a different form. Therefore, 

the Constraint (48) is replaced with the Constraint (49).     

(1 −  𝐸(𝑖 ,𝑂
𝐴𝑠
𝑠 )

𝑠 ) . (2𝑁 − 1) + ∑  

𝑁

𝑖=1

𝑌(𝑖,𝑗)
𝑠 ≥  (𝐸(𝐼 ,𝑂𝐽

𝐴𝑠
𝑠 )

𝑠 ). (2𝑁 − 1) + ∑  

𝑁

𝑗=1

𝑌(𝐼,𝑗)
𝑠  

∀𝑠 ∈ 𝑆, ∀𝐴𝑠 ∈ {1, … , 𝑙𝑒𝑛(𝑂𝑠)}, ∀𝐽𝐴𝑠 ∈ {1, . . . , 𝐴𝑠 − 1}, ∀𝐼, 𝑖 ∈  𝑁                (49) 

In Constraint (49), if the CDC node i hosts the VNF 𝑂𝐴𝑠
 , then 𝐸(𝑖 ,𝑂

𝐴𝑠
𝑠 )

𝑠 = 1. 

Therefore, the left-side of Constraint (49) considers the step of the CDC node i 

and it must be greater than the step of all CDC nodes (𝐼) hosting a VNF with an 

index lower than the index of VNF 𝑂𝐴𝑠
  in 𝑂 

𝑠. By considering the 𝐽𝐴𝑠 as the 

index of any VNF in 𝑂 
𝑠 with an index lower than VNF 𝑂𝐴𝑠

 , which means the 

flow s must pass VNF 𝑂𝐽𝐴𝑠
𝑠  before 𝑂𝐴𝑠

𝑠 . If the CDC node i (I) hosts the VNF 

𝑂𝐽𝐴𝑠
𝑠 , then 𝐸(𝐼 ,𝑂𝐽

𝐴𝑠
𝑠 )

𝑠 = 1. Therefore, the right-side of Constraint (49) considers 

the step of the CDC node i (I) and it must be greater than the step of all CDC 

nodes i hosting a VNF with an index greater than the index of VNF 𝑂𝐽𝐴𝑠
𝑠  in 𝑂 

𝑠.  
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If either 𝐸𝑖 ,𝑂
𝐴𝑠
 

𝑠  or 𝐸(𝐼 ,𝑂
𝐽𝑠
 )

𝑠  are equal to zero, the value of ∑ 𝑌(𝑖,𝑗)
𝑠N

j=1  is always 

lower than (2N-1), then the constraint is fulfilled. ∑ 𝑌(𝑖,𝑗)
𝑠N

j=1  and ∑ 𝑌(𝑖,𝑗)
𝑠N

i=1  are 

always lower than (2N-1), since in the worst case, the flow crosses all nodes, 

which means the value of ∑ 𝑌(𝑖,𝑗)
𝑠N

j=1  is at most (N-1)+N. The destination has a 

flow to itself with a step of at most N+1. When both 𝐸(𝑖 ,𝑂
𝐴𝑠
 )

𝑠  and 𝐸(𝐼 ,𝑂
𝐽𝑠
 )

𝑠  are 

equal to one, the constraint is satisfied on the condition that the value of 

∑ 𝑌(𝑖,𝑗)
𝑠N

j=1  is greater than ∑ 𝑌(𝐼,𝑗)
𝑠N

j=1 . It means, a CDC node that delivers the lower 

index VNF is crossed before the CDC nodes that deliver higher index VNFs 

[27]. 

After specifying all the necessary constraints for our optimization model, we 

must define the objective function. Using the adjustable priority coefficient 

factor (δ), we reserve a certain amount of physical network resources 

exclusively for embedding URLLA. To minimize negative effects on low-

priority SFC requests, we consider constraints on the maximum tolerable end-

to-end delay and reliability for low-priority SFC requests. To this end, we define 

the objective function as (50), optimizing SFC request deployment paths in 

respect of end-to-end delay and subject to (29)-(42), (44-47), and (49).   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑  

N

𝑖=1

∑  𝑅(𝑖,𝑗)
𝑠  

𝑁

𝑗=1

. 𝐷(𝑖,𝑗)       ∀𝑠 ∈ 𝑆                                                        (50) 

Using Equation (50), we obtain the optimal results, which we refer to as the 

Optimal Reliability- and Application-Aware SFC (ORAAS) embedding. As 

stated before, given that Equation (50) is an NP-Hard problem and getting exact 

numerical solutions is very time consuming, we provide a heuristic algorithm 

(NORAAS algorithm) in Chapter 5 in order to obtain near-optimal results with a 

minimal execution time and optimality gap. 
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5 Heuristic SFC Embedding Algorithms 

 

Obtaining exact numerical solutions of the SFC deployment problem by 

utilizing an ILP optimization model is an NP-hard problem, which was proofed 

in the previous chapter. The goal of the proposed heuristic approaches is to 

achieve near-optimal results with minimum execution time to solve the 

scalability problem. When applied to real-world network topologies, the SFC 

embedding technique must be able to get near-optimal results in an acceptable 

amount of time. To this end, achieving near-optimal results with a small 

optimality gap and the shortest possible execution time plays an important role.  

In this chapter, we provide a set of heuristic algorithms and relaxed versions 

for achieving near-optimal outcomes with minimal execution time and an 

optimality gap, making them usable in real-world use cases. These algorithms 

are designed to generate results as efficiently as possible. In Section 5.1, we will 

discuss our Fast Application-Aware Service Function Chaining (FAS) 

algorithm to address Ultra-Low Latency Communication and obtain near-

optimal outcomes to the OAS approach that was discussed in Chapter 4. In 

Section 5.2, we will describe our heuristic approach to address Ultra-Reliable 

Low-Latency Communication, named the Near-Optimal Reliable Application 

Aware Service Function Chaining (NORAAS) algorithm. Our goal is to obtain 

results that are close to the optimal level of the ORAAS algorithm that was 

presented in Chapter 4. As mentioned before, in the first two phases of our 

investigation, our focus is on static SFC requests similar to [27, 28]. The SFC 

requests are considered static inputs, and the lifetime of SFC requests is not 

taken into account. In the final stage of our investigation, we look at a dynamic 

service function chaining scenario with flow arrival and departure times. In this 

scenario, each SFC request has a lifetime that specifies the amount of time that 
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it needs to use physical network resources in order to receive the service that it 

requests. Following the expiration of this lifetime, the physical network 

resources can be made available for subsequent SFC requests. Since the 

objective of our study is to address Ultra-Reliable Low Latency 

Communication, in Section 5.3, we offer a set of heuristic algorithms to address 

URLLC in a dynamic scenario similar to [29, 30]. In Section 5.4, we describe 

the Nearest-Service-Function-First (NSF) algorithm proposed by Tajiki et al. 

[27]. It is used as a comparison algorithm. In Section 5.5, we present the well-

known Greedy algorithm, which is also employed as a comparison algorithm as 

in [48, 45, 64, 65, 46, 36]. 

 

5.1 Fast Application-Aware SFC (FAS) Algorithm 

In the following, we illustrate our proposed heuristic algorithm, named the 

FAS algorithm, in order to get results that are close to optimal using the optimal 

optimization model (OAS algorithm). Similar to the OAS approach, we classify 

SFC requests into those with a high-priority and those with a low-priority. Then, 

utilizing the priority coefficient factor, we set aside a certain portion of the 

available physical network resources (bandwidth, RAM memory, and CPU) for 

high-priority SFC requests. That means low-priority SFC requests can use a 

maximum of 90 percent of physical resources (since (µ × physical resources) 

and the initial value of μ is 0.9), and we reserve ((1- µ)× physical resources) 

of the total physical resources for high-priority SFC requests to optimize their 

deployment paths and hence provide a guaranteed QoS. In the sixth chapter, we 

investigate the impact of changing the priority coefficient factor (µ). The 

pseudocode of the FAS algorithm is presented in Algorithm 1.  
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Algorithm 1. FAS Algorithm 

 

Input: 𝐺𝑝= (𝑁𝑃,𝐿𝑃)  Physical Network;  

            𝑆𝑟𝑐𝑓,𝐷𝑒𝑠𝑓,𝑊(𝐹 ×𝑋)
  

 

Output: 𝑆𝑃𝑓  Selected Path for SFC request f;  

 

1: for each SFC request f do 

2:      𝑆𝑃𝑓= empty; 

3:      CN = Src (f)  Set source of  f as Current Node (CN); 

4:      Free Resources = Calculate_Free_Resources (Flow f) 

                                       (Bandwidth, memory, and CPU); 

5:      Prune (𝑁𝐶𝐷𝐶 , 𝐿𝑃) Pruning the CDC nodes and the links,  

                              which cannot be used to serve SFC request f;          

6:      for each VNF x in 𝑊𝑥
𝑓
 do 

7:            Find Nearest CDC Providing x (CN, x)  Dijkstra; 

8:            CN = next CDC; 

9:            Update Used Resources; 

10:          Update SP;           

11:    end for  

12:    Find shortest path from CDC to the Des (flow) Dijkstra; 

13:    Update Used Resources; 

14:    Update SP;     

15: end for 

16: return SP; 
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To execute Algorithm 1, the following list of input parameters is required. 

We require the physical network graph, including its physical network 

resources. We require the information concerning SFC requests, which includes 

the source node and the destination node of each SFC request as well as the 

priority of the request for use in Algorithms 2 and 3. The optimal selected path 

for each SFC request is the output that is intended to be produced. The first SFC 

request that is received by the system serves as our starting point. It is necessary 

to start with the source node of each SFC request and work our way to the 

destination of each SFC request while adhering to the constraints that are 

demanded.  

In Algorithm 1, line 1 does an iteration loop for each SFC request (F) in order 

to identify the optimal deployment path for SFC requests. In line 2, we create a 

Selected Path (SP) list in which we will record the optimal deployment paths 

that have been obtained for each SFC request f. The source of the SFC request 

f is specified to be the current node in line 3, which allows the algorithm to begin 

from this node. In line 4, we compute the free physical resources (bandwidth, 

memory, and CPU) with respect to the priority of each SFC request f, which is 

detailed in further detail in Algorithms 2 and 3. The purpose of line 5 is to 

remove the CDC nodes and physical links that are unable to be utilized in order 

to fulfill the SFC request f. Lines 6-8 use the Dijkstra method to locate the CDC 

nodes that are closest to the SFC request f that can supply the necessary VNFs. 

These nodes are located in accordance with the values that are recorded in the 

VNF ordering matrix W. After determining the routes with the shortest distances 

to the CDC nodes that supply the necessary VNFs for the SFC request f, we will 

update both the Used Resources (line 9) and the Selected Path (line 10). 

Following that, we identify the shortest path between the last CDC node that is 

giving the last required VNF of SFC request f and the destination node of SFC 

request f in line 12, and then we update the Used Resources in line 13 and the 
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Selected Path in line 14, respectively. Finally, in line 16, the algorithm provides 

a report of the most efficient deployment routes for the SFC request. 

Algorithm 2 calculates the free physical resources with respect to the priority 

of each SFC request. In line 2, we reduce the Used Resources (calculated in 

Algorithm 3) from the 90 percent (since the initial value of μ is 0.9) of the total 

network capacity (bandwidth, memory, and CPU). In lines 3-4, if the SFC 

request f has high-priority, then it can use the reserved 10 percent of the network 

capacity. Line 6 makes the Free Resources equal zero if low-priority SFC 

requests require more than 90 percent of physical resources. Line 8 returns the 

Free Resources.  

Algorithm 2. Calculate_Free_Resources  

 

Input: Flow f, 𝑃𝑓 

Output: Free Resources (bandwidth, memory, and CPU); 

 

1: Calculate_Free_Resources (Flow f) 

2:     Free Resources= ( 𝜇  × Network Capacity) – Used Resources; 

3:     if Flow f  has high-priority then 

4:         Free Resources= Free Resources + ((1- 𝜇 ) × Network Capacity); 

5:     end if  

6:     if Free Resource < 0 then Free Resources=0;  Since  

        (1- 𝜇 )% is reserved for high-priority, the Free Resources 

        value for low-priority can become negative. 

7:     end if 

8: return Free Resources; 
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Algorithm 3 updates Used Resources of SFC request f with respect to its 

priority. First, it checks the Selected Path of SFC request f in lines 1-2. In line 

3, if the SFC request f has high-priority, then the algorithm uses the reserved 10 

percent of network capacity for path deployment. If the reserved 10 percent of 

the network capacity is not enough for path deployment, then it uses the rest of 

the 90 percent of the network capacity (line 6). In line 9, if the SFC request f 

has low-priority, the algorithm reduces the required physical resource only from 

the 90 percent of the total network capacity. Line 12 returns the Used Resources 

Algorithm 3. Update_Used_Resources 

 

Input:Route, Flow f, 𝑃𝑓 

Output: Used Resources (bandwidth, memory, and CPU); 

 

1: Used Reources (Route, Flow f) 

2:    for each (node m → node n) in Route do 

3:         if Flow f  has high-priority then   

4:         reduce Required Resources from ((1- 𝜇 ) × Network Capacity); 

5:              if ((1- 𝜇 ) × Network Capacity) < Required Resources 

6:                then reduce the remaining from ( 𝜇  × Network Capacity); 

7:              end if 

8:         else 

9:               reduce the Required Resources from ( 𝜇  × Network Capacity); 

10:       end if 

11:     end for   

12: return Used Resources; 
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for deployment of SFC request f.  Using Algorithms 1-3, we obtain near-optimal 

results of our proposed Optimal Application-Aware SFC (OAS) embedding 

algorithm with a minimum execution time. 

 

5.2 Near-Optimal Reliability- and Application-Aware SFC 

(NORAAS) Algorithm 

In this section, we illustrate our proposed heuristic algorithm to reduce the 

execution time of the optimal optimization model using Equation (50) and 

obtain near-optimal results for large-scale network topologies. Our heuristic 

algorithm handles high-priority SFC requests identically to the ORAAS 

algorithm, which means that we reserve a certain amount of physical network 

resources exclusively for embedding high-priority SFC requests to optimize 

their latency and reliability. We refer to our heuristic algorithm as the Near-

Optimal Reliability- and Application-Aware SFC (NORAAS) embedding 

algorithm, and its pseudocode is presented in Algorithm 4. 

Algorithm 4 returns the shortest route for deploying SFC request s in terms 

of end-to-end delay with respect to reliability. To do this, we need the following 

parameters: source node, destination node, VNF ordering matrix, and reliability 

requirement of SFC request s. It begins with the source node of each SFC 

request s (line 3), calculates the available physical network resources via 

Algorithm 5 (line 4), then prunes the physical links and nodes in accordance 

with the available physical network resources (line 5). For each VNF in the 

ordering matrix of SFC request s (line 6), the Dijkstra Algorithm will be used to 

find the nearest CDC nodes that support the required VNFs (line 7). The 

reliability requirement of the selected route will be checked in line 8. Then it 

keeps a record of the physical resources that have been used (line 10). After 

locating the required VNFs for SFC request s, it determines the shortest route 
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Algorithm 4. NORAAS Algorithm 

 

Input: 𝐺 = (𝑁, 𝐿), 𝑆𝑟𝑐𝑠 ,  𝐷𝑒𝑠𝑠, 𝑂𝑥
𝑠, ᴦ𝑠; 

Output: 𝑅𝑜𝑢𝑡𝑒𝑠  Selected route for SFC request s;  

 

1: for each SFC request s do  

2:      𝑅𝑜𝑢𝑡𝑒𝑠= empty; 

3:      CN = Src (s)  Set source of s as Current-Node (CN); 

4:      Calculate_Free_Resources (Bandwidth, memory, CPU) 

                                                      Via Algorithm 5;  

5:      Prune (𝑁𝐶𝐷𝐶 , 𝐿 ) Pruning the CDC nodes and the links,  

                              which cannot be used to serve SFC request s;          

6:      for each VNF x in 𝑂𝑥
𝑠 do 

7:            Find nearest CDC providing x (CN, x)  Dijkstra; 

8:            if Reliability [Selected-Route] ≥ ᴦ𝑠 then     

 9:               CN = next CDC; 

10:              Update Used Resources; 

11:              Update Route;  

12           end if            

13:     end for  

14:     Find shortest path from CDC to the Des (flow) Dijkstra; 

15:     Update Used Resources; 

16:     Update Route;   

17: end for  

18: return Route;  
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between the latest CDC node and the SFC request's destination node (line 14). 

The Used Resources and Selected Route in lines 15 and 16, respectively, are 

then updated. The algorithm finally outputs the shortest route in line 18. 

Algorithm 5 calculates the available physical network resources for mapping 

SFC requests based on their priority. It subtracts the Used Resources (calculated 

via Algorithm 6) from 90% of the total network capacity (because the initial 

value of δ is 0.9) in line 2. If the SFC request has a high-priority, it can utilize 

the reserved 10% of network capacity in lines 3-4. If low-priority SFC requests 

require more than 90% of physical resources, line 6 sets the Free Resources to 

zero. Line 8 returns the Free Resources. 

 

Algorithm 5. Calculate_Free_Resources  

 

Input: Flow s, 𝑃𝑠; 

Output: Free Resources (Bandwidth, memory, CPU); 

 

1: Calculate_Free_Resources (Flow s) 

2:     Free Resources= ( δ  × Network Capacity) – Used Resources; 

3:     if Flow s has high-priority then 

4:         Free Resources= Free Resources + ((1- δ ) × Network Capacity); 

5:     end if  

6:     if  Free Resources < 0 then Free Resources=0;  Since  

(1- δ )% is reserved for high-priority, the Free Resources value 

for low-priority can become negative. 

7:      end if 

8: return Free Resources; 
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Algorithm 6 updates the Used Resources for SFC request s in accordance 

with its priority. To begin, it verifies the Selected Path of SFC request s 

specified in lines 1-2. Then, if the SFC request s has a high-priority, the 

algorithm uses the reserved 10% of the total network capacity first (line 4) and, 

if necessary, the rest 90% of network capacity (lines 5-6). If the SFC request s 

is not a high-priority SFC request, it can use only 90% of network capacity (line 

9). Line 12 returns the Used Resources for SFC deployment. 

 

Algorithm 6. Update_Used_Resources 

 

Input: Route, Flow s, 𝑃𝑠; 

Output: Used Resources (Bandwidth, memory, CPU); 

 

1: Used Reources (Route, Flow s) 

2:    for each (node i → node j) in Route do 

3:         if Flow s has high-priority then  

4:         reduce Required Resources from ((1- 𝛿  ) × Network Capacity); 

5:                if ((1- 𝛿  ) × Network Capacity) < Required Resources 

6:                then reduce the remaining from ( 𝛿   × Network Capacity); 

7:                end if  

8:         else 

9:               reduce the Required Resources from ( 𝛿   × Network Capacity); 

10:       end if  

11:     end for   

12: return Used Resources; 
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5.3 Dynamic Application Aware SFC (DAAS) Algorithm 

As stated earlier, in the first two developed SFC embedding algorithms (FAS 

and NORAAS), we assumed that the SFC requests were static input as in [27, 

28] and did not take into account the lifetime of each SFC request. In this 

subsection, we will add dynamicity to our SFC embedding algorithm. We'll look 

at dynamic SFC requests that have flow arrival and departure times similar to 

[29, 30]. Each SFC request has a lifetime to use physical network resources, and 

after the expiration of this lifetime, the physical network resources can be 

released for following SFC requests. In this part, we discuss our dynamic SFC 

embedding technique to address ultra-reliable low latency communication. This 

follows our work with a master student [66], in which we examined ultra-low 

latency communication in an NFV- enabled network in a dynamic environment. 

We construct our proposed Dynamic Application-Aware SFC (DAAS) 

embedding algorithm as following. All the symbols and variables of the DAAS 

algorithm are summarized in Table 3.  

First, we establish the limitations on the utilization of physical network 

resources (bandwidth, memory, and CPU) in accordance with the priority of 

each SFC request f. Using flow prioritization and a configurable priority 

coefficient factor, we are able to reserve a portion of physical network resources 

for high-priority SFC requests or URLLA as follows. Constraint (51) guarantees 

that the bandwidth utilization of all SFC requests on link (m,n) does not exceed 

the total bandwidth capacity of substrate link (m,n). The binary variable  𝑅(𝑚,𝑛)
𝑓

 

indicates the routing path of SFC request f, where 𝑅(𝑚,𝑛)
𝑓

=1, if SFC request f 

traverses the link (m,n), and 0 otherwise. The parameter F indicates the total 

number of SFC requests. Constraint (52) ensures that the low-priority SFC 

requests cannot exceed (µ × bandwidth of substrate link (m,n)). The parameter 

µ is the adjustable priority coefficient factor for reserving physical network 

resources for high-priority SFC requests. We assume the initial priority 
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coefficient factor (µ) to be 0.9, which means that 10 percent of physical 

resources are reserved for embedding only high-priority SFC requests (URLLA). 

The parameter F’ denotes the total number of low-priority SFC requests.  

∑ Ω𝐵𝑊
𝑓

 . 𝑅(𝑚,𝑛)
𝑓

 ≤  𝐶(𝑚,𝑛)
𝐵𝑊

𝐹

𝑓=1

,         ∀ 𝑚, 𝑛 ∈  𝑁𝑠                                                    (51) 

∑ Ω𝐵𝑊
𝑓′

. 𝑅(𝑚,𝑛)
𝑓′

≤ 𝐶(𝑚,𝑛)
𝐵𝑊 . µ ,

𝐹′

𝑓′=1

        ∀ 𝑚, 𝑛 ∈  𝑁𝑠                                                  (52) 

Constraint (53) ensures that the CPU use of SFC requests on node m does not 

exceed the node's total CPU capability. Constraint (54) prohibits low-priority 

SFC requests from exceeding (µ × CPU capacity of the CDC node m). 

Therefore, we reserve ((1-µ) × CPU capacity) only for high-priority SFC 

requests.   

∑ Ω𝐶𝑃𝑈
𝑓

. 𝑅(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝐶𝑃𝑈

𝐹

𝑓=1

,             ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠 
                                   (53) 

∑ Ω𝐶𝑃𝑈
𝑓′

. 𝑅(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝐶𝑃𝑈 . µ 

𝐹′

𝑓′=1

,       ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠 
                                   (54) 

Using Constraints (55) and (56), the same reasoning as for CPU utilization 

of CDC node m is applied to memory consumption of CDC node m. Constraint 

(55) ensures that the memory use of SFC requests on node m does not exceed 

the node's total memory capability. Constraint (56) prohibits low-priority SFC 

requests from exceeding (µ × memory capacity of the CDC node m). Therefore, 

we reserve ((1-µ) × memory capacity) only for high-priority SFC requests. 
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Table 3. Symbols and variables used in the third phase of our study 

Symbols Description 

𝐺𝑠 The substrate network 

𝑁𝑠 
 The set of the physical nodes 

𝐿𝑠 
 The set of the physical links 

𝑁𝑆𝑊 The set of the switching nodes (𝑁𝑆𝑤 ⊆ 𝑁𝑠 
) 

𝑁𝐶𝐷𝐶  The set of the CDC nodes (𝑁𝐶𝐷𝐶  ⊆ 𝑁𝑠) 

F The total number of SFC requests (flows) 

F´ The total number of low-priority SFC requests (flows) 

X The total number of VNF types (e.g., a, b, c, d, etc.) 

𝑃𝑓 The priority of SFC requests f 

ᴦ𝑓 The required reliability by SFC request f 

𝑅𝑒𝑓 The reliability of SFC request f 

𝑅𝑒𝑎 The reliability of VNF a 

𝑅𝑒𝐶𝐷𝐶  The reliability of CDC node 

µ The priority coefficient factor for physical resource reservation 

(𝜇 = 0.9 as the initial value) 

𝑅(𝑚,𝑛)
𝑓

 A binary variable, whether flow f traverses the link (m,n) or not 

 𝐸𝑚,𝑥
𝑓

 A binary variable, whether flow f uses VNF type x which is placed 

at CDC node m or not 

𝐶(𝑚,𝑛)
𝐵𝑊  The total bandwidth capacity of link (m,n) 

𝐶𝑚
𝐶𝑃𝑈 The total CPU capacity of node m 

𝐶𝑚
𝑀𝑒𝑚 The total memory capacity of node m 

𝑆𝑟𝑐𝑓 The source node of SFC request f 

𝐷𝑒𝑠𝑓 The destination node of SFC request f 

𝑇𝑎
𝑓
 The arrival time of SFC request f 
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𝑇𝑑
𝑓
 The departure time of SFC request f 

𝐴𝐹 ×𝑋
  The matrix of required VNFs by SFC request f 

𝑂𝐹 ×𝑋
  The matrix of ordering of VNFs requested by SFC request f 

Ω𝐵𝑊
𝑓

 The required bandwidth by SFC request f 

Ω𝐶𝑃𝑈
𝑓

 The required CPU by SFC request f 

Ω𝑀𝑒𝑚
𝑓

 The required memory by SFC request f 

Ω𝑡𝑑
𝑓

 The maximum tolerable delay by SFC request f 

𝐷𝑙(𝑚,𝑛) The propagation delay on link (m,n) 

  

∑ Ω𝑀𝑒𝑚
𝑓

. 𝑅(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝑀𝑒𝑚

𝐹

𝑓=1

,         ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠 
                                     (55) 

∑ Ω𝑀𝑒𝑚
𝑓′

. 𝑅(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝑀𝑒𝑚. µ 

𝐹′

𝑓′=1

,    ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠 
                                    (56) 

Using Constraint (57), we ensure the reliability requirement of SFC request 

f. 

       𝑅𝑒𝑓 =  ∏  𝑅𝑒𝑥
  .  𝑅𝑒𝐶𝐷𝐶

 𝑚

𝑥 ∈ X 

 .  𝐸𝑚,𝑥
𝑓

   ≥    ᴦ𝑓 ,      ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑓 ∈ 𝐹        (57) 

After specifying the necessary constraints, we present our proposed heuristic 

method for dynamic service function chaining with the aim of facilitating 

URLLC in NFV in a dynamic scenario. As stated before, in order to optimize 

the latency and reliability of high-priority SFC requests, our heuristic algorithm 

reserves a specific amount of physical network resources only for their 

embedding. Our heuristic technique is referred to as the DAAS embedding 

algorithm, and its pseudocode is shown in Algorithm 7. 
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Algorithm 7. DAAS Algorithm 

 

Input: 𝐺𝑠=(𝑁𝑠,𝐿𝑠), 𝑆𝑟𝑐𝑓, 𝐷𝑒𝑠𝑓, 𝑂𝑥
𝑓
, ᴦ𝑓, 𝑇𝑎

𝑓
, 𝑇𝑑

𝑓
; 

Output: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑜𝑢𝑡𝑒𝑓  Selected route for SFC request f;  

 

1: for t in range 1,10 do 

2:     for each SFC request f at time t do  

3:         𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑜𝑢𝑡𝑒𝑓= empty; 

4:         CN = Src (f)  Set source of  f as Current-Node (CN); 

5:         Calculate_Free_Resources (Bandwidth, memory, CPU)  

                                                                       Via Algorithm 8;  

6:         Prune (𝑁𝐶𝐷𝐶 ,𝐿𝑠)  Pruning CDC nodes and links that are unable  

                                               to serve SFC request f (Constraints 51-56);          

7:         for each VNF x in 𝑂𝑥
𝑓
 do   

8:               Find nearest CDC providing x (CN, x)  Dijkstra; 

9:               if Reliability [Selected-Route] ≥ ᴦ𝑠     (Constraints 57) 

10:              CN = next CDC; 

11:              Update Used Resources (Algorithm 9); 

12:              Get Used Resources← Record the used resources  

                                                                           (Algorithm 10) 

13:               Update Selected_Route;  

14:                end if            

15:           end for  

16:           Find shortest path from CDC to the Des (flow)Dijkstra; 

17:           Update Used Resources (Algorithm 9); 
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18:           Get Used Resources← Record the used resources (Algorithm 10) 

19:           Update Selected_Route;    

20:           end if 

21:     end for 

22: end for  

23: return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑜𝑢𝑡𝑒𝑓; 

 

 

The optimum path for delivering SFC request f in conjunction with end-to-

end delay and reliability requirements is returned by Algorithms 7-10. To do 

this, we require the following parameters for each SFC request: source node, 

destination node, VNF ordering matrix, reliability requirement, and arrival and 

departure time of SFC request f. In Algorithm7, we establish 10 time-cycles for 

mapping SFC requests (line 1), which some SFC requests entering and leaving 

the network at their arrival time (𝑇𝑎
𝑓
) and departure time (𝑇𝑑

𝑓
). At each time-

cycle, we collect all incoming SFC requests (line 2), then define an empty 

Selected_Route list to record each SFC request's optimum path (line 3). Line 4 

begins at the source node of each SFC request. Line 5 computes the available 

physical network resources (bandwidth, memory, and CPU) using Algorithm 8, 

and then prunes the physical links and nodes based on the available physical 

network resources (line 6). For each VNF in the ordering matrix of SFC request 

f (line 7), the Dijkstra algorithm will be utilized to identify the closest CDC 

nodes that can provide the necessary VNFs (line 8). In line 9, the Selected_Route 

reliability requirement will be examined. The program then keeps track of the 

used physical resources (line 11) and calculates the available physical resources 

that are released at the departure time of SFCs (line 12) using Algorithm 10. 

After discovering the necessary VNFs for SFC request f (line 13), the algorithm 
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identifies the shortest path between the most recent CDC node and the SFC 

request's destination node (line 16). Finally, it updates the used resources, 

released resources at departure time, and selected route (line 17-19) before 

returning the shortest route (line 23). 

Algorithm 8 calculates the free network resources for mapping SFC requests 

based on their priority. In order to have dynamic SFC embedding, we utilize 

SFC arrival time (𝑇𝑎
𝑓
) and departure time (𝑇𝑑

𝑓
). In the first time-cycle (line 2), 

it subtracts the Used_Resources (derived via Algorithm 9) from 90 percent of 

the total network capacity (because the starting value of µ is 0.9) (line 3). In line 

4, if the flow has high-priority, then it can utilize the reserved 10 percent ((1- 

µ ) × Network Capacity) of physical network resources (line 5).  Line 7 sets the 

free resources to 0, if low-priority SFC requests require more than 90 percent of 

physical resources. The Free Resources after time t=2 are calculated on line 10. 

The released resources (derived in Algorithm 10) must be taken into account 

here; thus, we not only subtract the used resources but also add the released 

resources. In line 11, if the flow has high-priority, it can utilize the reserved 10 

percent ((1- µ ) × Network Capacity) of physical network resources (line 12). 

Line 15 returns the Free_Resources.   

Algorithm 9 updates Used_Resources for SFC request f according to its 

priority. It begins by examining the Selected_Path of SFC request f in lines 1-

2. In line 3, if the SFC request f has a high-priority, then the algorithm uses the 

reserved 10 percent of network capacity for path deployment. If the allocated 

10 percent of the network capacity is insufficient for path deployment, the 

remaining 90 percent of the network capacity is utilized (line 6). In line 9, if the 

SFC request f has low-priority, the algorithm reduces the required physical 

resource only from the 90 percent of the total network capacity. Line 12 returns 

the Used_Resources for SFC request deployment.  
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Algorithm 8. Calculate_Free_Resources 

 

Input: Flow f, 𝑃𝑓, 𝑇𝑎
𝑓
, 𝑇𝑑

𝑓
; 

Output: Free_Resources (Bandwidth, memory, CPU); 

1: Calculate_Free_Resources (Flow f, 𝑻𝒂
𝒇
, 𝑻𝒅

𝒇
)  

2:    if t < 2 then 

3:           Free_Resources= ( µ  × Network Capacity) – Used_Resources;  

4:           if Flow f has high-priority then   

5:                Free_Resources= Free_Resources +  ((1- µ ) × Network Capacity); 

6:           end if      

7:           if  Free_Resources < 0 then Free_Resources=0;  Since (1- µ )%   

                    is reserved for high-priority, the Free Resources value for low  

                    priority can become negative. 

8:            end if 

9:    else 

10:         Free_Resources= ( µ  × Network Capacity) –  Used_Resources +  

                                             Released Resources at time (𝑻𝒅
𝒇
)  

11:         if Flow f has high-priority then 

12:             Free_Resources= Free_Resources +  ((1- µ ) × Network Capacity)   

                                                                   + Released Resources at time (𝑻𝒅
𝒇
); 

13:         end if 

14:     end if 

15: return Free_Resources; 
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Algorithm 9. Update_Used_Resources 

 

Input: Selected_Route, Flow f, 𝑃𝑓; 

Output: Used_Resources (Bandwidth, memory, CPU); 

 

1: Used Reources (Selected_Route, Flow f) 

2:    for each (node m → node n) in Selected_Route do 

3:         if Flow f has high-priority then   

4:         reduce Required Resources from ((1- µ) × Network Capacity); 

5:               if ((1- µ ) × Network Capacity) < Required Resources then 

6:               reduce the remaining from (µ × Network Capacity); 

7:               end if  

8:          else 

9:               reduce the Required Resources from ( µ × Network Capacity); 

10:       end if  

11:     end for   

12: return Used_Resources; 

 

 

Algorithm 10 computes the released resource when an SFC request's lifetime 

expires at time t. To do this, the route, priority, and departure time of each SFC 

request are required. The used resources that are waiting to be released are 

recorded by Algorithm 10. In order to make the method dynamic, we now 

introduce two new types of three-dimensional matrices, High_used_resources 

and Low_used_resources, which record the Used_Resources by high-priority 

and low-priority SFC requests, respectively.  Each matrix indicates how much 

resource should be released at the departure time t (𝑇𝑑
𝑓
). As for the algorithm, 

first it checks the Selected Route of SFC request f in line 1-2. In line 3-7, if the 
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request has high-priority, it will first record the Used Resources in 

High_used_resources with its departure time (𝑇𝑑
𝑓
). When the reserved 10 

percent of network capacity is not enough for this request, the rest of Used 

Resources will be recorded in Low_used_resources with its departure time (𝑇𝑑
𝑓
). 

Line 9 records the Used Resources of low-priority in the Low_used_resources 

with its departure time (𝑇𝑑
𝑓
). Line 12 returns the Used resources at time t, which 

is considered as resources that should be released at time t.   

Algorithm 10. Get_Used_Resources 

 

Input: Selected_Route, Flow f, 𝑃𝑓, 𝑇𝑑
𝑓
; 

Output: Released Resources at time t (Bandwidth, memory, CPU); 

 

1: Released Reources (Selected_Route, Flow f, 𝑻𝒅
𝒇
 ) 

2:    for each (node m → node n) in Route of f at 𝑇𝑑
𝑓
 do 

3:           if Flow f  has high-priority  then  

4:              add Required Resources to high_used_recources; 

5:                 if ((1- µ ) × Network Capacity) < Required Resources then  

6:                  add Required Resources - (1- µ ) × Network Capacity) to  

                     low_used_recources; 

7:                 end if 

8:            else 

9:                add Required Resources to low_used_recources;          

10:           end if    

11:    end for    

12: return Released Resources at time t; 
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5.4 Nearest Service Function First (NSF) Algorithm 

The Nearest-Service-Function-First (NSF) algorithm proposed by Tajiki et 

al. [27] is used as a comparison algorithm. Algorithm 11 contains a presentation 

of the pseudocode for the NSF algorithm. Their method makes use of the 

commonsense approach of locating the closest server that supports the VNFs in 

the chain of the flow f to deliver service. It is important to note that the NSF 

method does not utilize any sort of prioritizing or physical resource reserve 

while determining the optimal deployment routes. It treats SFC requests in an 

equal manner. The pseudocode of the NSF algorithm is presented in Algorithm 

11.  

As described in [27], for proper operation of this algorithm, the following 

parameters must be provided as input. We need the ordering list of needed VNFs 

that is specified by the matrix K for each SFC request f. It is necessary for us to 

know the source and destination of each SFC request, denoted by s and d 

correspondingly. The N denotes the number of servers in the physical network. 

Line 1 does an algorithmic iteration for each SFC request (F) to discover the 

most efficient deployment paths for SFC requests. Line 2 constructs a Selected 

Path (SP) list containing the ideal deployment pathways for each SFC request 

f. In Line 3, the source of the SFC request f is declared to be the current node, 

allowing the algorithm to begin here. Lines 4-8 employ the Dijkstra algorithm 

to identify the nearest server that can provide the required VNFs of the SFC 

request f in a row according to the VNF ordering matrix. If the selected route 

meets the reliability requirement of the SFC request (line 6), then the utilized 

bandwidth resources will be updated in line 9 in the appropriate manner. Then, 

locate the shortest path from the most recently formed VNF to the destination 

node (line 11), and add that path to the selected path. This process will take 

place in line 12. It is necessary for us to get the resource for total bandwidth 

usage up to date (line 13). Line 15 will return the best possible deployment path. 
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Algorithm 11. NSF Algorithm 

 

Input: K, s, d, N 

Output: SP  SP is the Selected Path;  

 

1: for each flow f in F do  

2:      𝑆𝑃𝑓= empty; 

3:      CN = s  CN is the current server; 

4:      for each VNF k in K do 

5:      [v, p] = Find_Nearest_Providers (CN, k, N);  

6:      if Reliability [Selected-Route] ≥ required-reliability then     

7:      add p to 𝑆𝑃𝑓 

8:       CN = v; 

9:      𝐵𝑚𝑎𝑥= Reduce_Capacity (𝐵𝑚𝑎𝑥, MFS, p); 

10:      end for 

11:    p = Shortest_Path (CN, d); 

12:     add p to 𝑆𝑃𝑓 

13:     𝐵𝑚𝑎𝑥= Reduce_Capacity (𝐵𝑚𝑎𝑥, MFS, p); 

14: end for 

15: return SP; 

 

 

5.5 Greedy Algorithm 

A Greedy algorithm is a type of algorithm that solves a problem by selecting 

the optimal option currently available. Numerous studies [48, 45, 64, 65, 46, 36] 

employ the well-known Greedy method as a comparison technique for the SFC 

deployment problem. Although a Greedy algorithm can be straightforward and 

effective, it may not necessarily result in the optimal solution. It is unconcerned 
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about whether the current best result will lead to the overall best result. The 

algorithm never undoes a previous choice, even if it was erroneous. It operates 

in a top-down fashion. This algorithm might not produce the best solution for 

all problems. Because it always chooses the best option locally to produce the 

best outcome globally [67, 68].  The pseudocode of Greedy Algorithm is 

presented in Algorithm 12. When it comes to determining the optimal 

deployment pathways, the Greedy algorithm does not make use of any sort of 

prioritization or physical resource reservation, and it handles SFC requests in 

an equal manner. This is something that has to be emphasized. 

The following set of input parameters must be supplied for the algorithm to 

be executed. We need access to the physical network and all of its physical 

network resources 𝐺𝑝= (𝑁𝑃,𝐿𝑃). Following that, we need information on service 

function chains, including the origin and destination of each SFC request, 

𝑆𝑟𝑐𝑓,𝐷𝑒𝑠𝑓. We need to have the VNF ordering matrix 𝑊(𝐹 ×𝑋)
  and the 

maximum tolerable delay for each SFC request, 𝜏𝑡𝑑
𝑓

. The expected output 

consists of the optimally determined path for each SFC request. The initial SFC 

request received by the system serves as our starting point. While adhering to 

the required limitations, we must begin with the source node of each SFC 

request and make our way to the destination of each SFC request.   

Line 1 executes an algorithmic iteration for each SFC request (F) to discover 

the most efficient deployment paths for SFC requests. In line 2, we construct a 

Selected Path (SP) list to keep track of the optimal deployment pathways for 

each SFC request f. Line 3 specifies the present node as the source of the SFC 

path between the last CDC node that is providing the final required VNF for 

SFC request f and the destination node for SFC request f. We then update the 

request f, allowing the algorithm to begin at this node. Line 4's objective is to 
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Algorithm 12. Greedy Algorithm 

 

Input: 𝐺𝑝= (𝑁𝑃,𝐿𝑃)  Physical Network;  

            𝑆𝑟𝑐𝑓,𝐷𝑒𝑠𝑓,𝑊(𝐹 ×𝑋)
  

Output: 𝑆𝑃𝑓  Selected Path for SFC request f;  

 

1: for each SFC request f do 

2:      𝑆𝑃𝑓= empty; 

3:      CN = Src (f)  Set source of  f as Current Node (CN); 

4:      Prune (𝑁𝐶𝐷𝐶 , 𝐿𝑃) Pruning the CDC nodes and the links,  

                                         which cannot be used to serve SFC request f;          

5:      for each VNF x in 𝑊𝑥
𝑓
 do 

6:            Find Nearest CDC Providing x (CN, x)  Greedy algorithm; 

7:            if Reliability [Selected-Route] ≥ ᴦ𝑓 then     

8:            CN = next CDC; 

9:            Update Used Resources; 

10:          Update SP;           

11:    end for  

12:    Find shortest path from CDC to the Des (flow) Greedy algorithm; 

13:    Update Used Resources; 

14:    Update SP; 

15: end for 

16: return SP; 
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eliminate the CDC nodes and physical links that cannot be employed to satisfy 

SFC request f. Lines 5-7 employ the Greedy algorithm to identify the CDC 

nodes nearest to the SFC request f that can provide the required VNFs. These 

nodes are positioned based on the values included in the VNF ordering matrix 

W. In the meantime, it examines the reliability constraint of the selected path in 

line 7. After identifying the routes with the shortest distances to the CDC nodes 

that provide the required VNFs for the SFC request f, we will update both the 

Used Resources (line 9) and the Selected Path fields (line 10). Line 12 finds the 

shortest path from the CDC node that provides the last required VNF to the 

destination of the flow in line 12. Then, we update Used Resources in line 12 

and the Selected Path in line 14. Line 16 returns the SFC request's most efficient 

deployment paths. 
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6 Performance Evaluations 

 

In this chapter, we present the results of the performance evaluation 

conducted on the algorithms proposed in our study, covering the different 

phases of our research. It provides a comprehensive description of the 

parameters employed in the performance evaluation and conducts an 

assessment of the resulting outcomes. Python was employed as the 

programming language for executing the simulations, in conjunction with the 

PuLP library and CBC Solver. The computational task is executed on a 

computer system equipped with an Intel Core i7-8550U CPU, operating at a 

frequency range of 1.80GHz to 1.99GHz, and a memory capacity of 24 GB.  

To assess the efficacy of our proposed algorithms, we have identified a set of 

Key Performance Indicators (KPIs) for various stages of our investigation 

through a comprehensive examination of cutting-edge studies. The objective of 

this study is to investigate Ultra-Reliable Low Latency Communication within 

a network enabled by NFV. The KPIs that we will focus on are latency, 

reliability, bandwidth utilization, and SFC acceptance rate. In order to ensure 

comparability and fairness, we utilize identical parameter settings when 

conducting comparisons between different algorithms. The current chapter is 

organized in the subsequent manner: In the subsequent section, denoted as 

Section 6.1, an examination is conducted to explore the outcomes of the 

investigation regarding Ultra-Low Latency Communication. In Section 6.2, this 

study investigates the outcomes associated with Ultra-Reliable Low Latency 

Communication. In Section 6.3, an analysis is conducted on the outcomes of the 

Dynamic Service Function Chaining, which was executed to tackle URLLC in 

a dynamic setting. The subsequent sections provide an expanded description of 

our research findings.     
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6.1 Ultra-Low Latency Communication 

This section will outline the simulation setup and performance evaluation 

results of the algorithms proposed to address Ultra-Low Latency 

Communication. In this study, we conduct a comparative analysis of four 

embedding algorithms, namely: (a) the OAS embedding algorithm, which 

utilizes Equation (27) to obtain exact numerical solutions; (b) the FAS 

embedding algorithm, which yields near exact numerical solutions; (c) the NSF 

algorithm as proposed in a related study [27]; and (d) the Greedy algorithm, a 

widely recognized baseline algorithm [48, 45, 64, 65, 46, 36]. Both the NSF 

method and the Greedy algorithm are based on the closest server that provides 

the required VNFs, as indicated in Chapter 5. However, the Greedy approach 

uses the Greedy algorithm whereas the NSF algorithm uses the Dijkstra 

algorithm to find the shortest path between two nodes. It is important to note 

that neither the NSF nor the Greedy algorithms take flow prioritization or 

physical network resource reservation into account.    

In our simulation, we use the Gridnet network topology [69] as our substrate 

network, which consists of 8 nodes and 18 links. Two nodes are considered 

CDC nodes according to node degree to host the VNF instances, and six nodes 

are regarded as switching nodes to pass traffic to the following nodes. We define 

six different VNF types, and each CDC node can host a maximum of three 

different VNF types. The bandwidth capacity between nodes m and n (m, n ∈ 

Np) is considered to be in the range of [500-1000] Mbps, location-dependent. 

We set different CDC node capacities in terms of storage and computing 

capabilities based on their different network locations. We set the memory and 

CPU capacity of the first CDC node at 1500 MB and 1500 MIPS, respectively, 

and for the second CDC node at 2000 MB and 2000 MIPS. As previously stated, 

we assume that the memory and CPU capabilities of switching nodes are 

limitless, as they just transmit traffic to the next nodes and do not require a great  
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deal of memory and CPU capacity.   

The propagation delay of link (m,n) follows a uniform distribution in the 

range of [2, 21] milliseconds, computed based on the nodes’ distances and the 

medium type of Gridnet network topology [60]. We assume the initial priority 

coefficient factor (µ) to be 0.9, and the change in this value is also studied. 

Indicating low-priority SFC requests are permitted to use up to 90 percent of 

physical network resources, and 10 percent of physical network resources are 

reserved for SFC requests with high-priority. In this simulation setup, we 

generate 150 SFC requests with a random source and destination node. We 

assume ten percent of SFC requests are high-priority SFC requests, which are 

among the second half of SFC requests. The required bandwidth (𝜏𝑏𝑤
𝑓

), CPU 

(𝜏𝑐𝑝𝑢
𝑓

) and memory (𝜏𝑚𝑒𝑚
𝑓

) of each SFC request f are set as numbers distributed 

randomly between (0, 10] [29]. We set the number of required VNFs per SFC 

request at three [29]. Last but not least, the maximum tolerated delay (𝜏𝑡𝑑
𝑓

) of 

each SFC request is in the range of [50,100] ms [29]. When comparing OAS, 

FAS, and NSF algorithms, it is vital that we utilize the same settings for our 

simulation parameters. This is done for the sake of fairness [70].   

The end-to-end delay is the most crucial KPI in this investigation. Figure 12  

displays the measurements of end-to-end delay for the OAS, FAS, NSF, and 

Greedy algorithms. In this graph, (×) represents the average end-to-end delay of 

these four algorithms. The results of the study provide clear evidence that both 

OAS and FAS exhibit significant efficacy in improving the average end-to-end 

delay, particularly for SFC requests with high-priority, when compared to NSF 

and Greedy. When examining high-priority SFC requests, it is observed that the 

OAS and FAS algorithms demonstrate a significant decrease of 22 percent and 

17 percent, respectively, in the average end-to-end delay when compared to the 

Greedy algorithm. The OAS and FAS algorithms facilitate the optimization of 
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provisioning paths by enabling ultra-low latency applications to utilize the 

reserved 10 percent of physical network resources allocated for high-priority 

SFC requests. Additionally, the findings show that the average end-to-end delay 

for SFC requests with low-priority remains similar when comparing the FAS 

and NSF algorithms. Nevertheless, the FAS algorithm exhibits a modest 

decrease of 2 percent in the average end-to-end delay, in contrast to the Greedy 

algorithm. On the other hand, the OAS algorithm demonstrates a significant 

enhancement of 15 percent in the average end-to-end delay when compared to 

the Greedy algorithm. The results of this study emphasize the considerable 

advantages provided by OAS and FAS algorithms in decreasing end-to-end 

delay for high-priority SFC requests, thereby improving the overall efficiency 

and performance of ultra-low latency applications. 

 

Figure 12. End-to-end delay (the first phase of the study) 

 

The second KPI in this study applies to the efficient utilization of bandwidth 

resources. In recent years, the use of bandwidth has increased dramatically due 
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to an increase in the use of new services. Therefore, it is regarded as an essential 

KPI and is of great importance to network providers. Figure 13 illustrates the 

utilization of bandwidth resources in the provisioning paths of SFCs by the four 

algorithms. (×) reflects the average bandwidth use of these four approaches in 

this graph.  

The results indicate that, on average, the OAS and FAS algorithms 

demonstrate reduced bandwidth utilization (28 percent and 24 percent, 

respectively) in comparison to the Greedy algorithm when handling high-

priority SFC requests. The reason for this can be attributed to the utilization of 

reserved physical resources by OAS and FAS algorithms, which leads to the 

creation of shorter provisioning paths for high-priority requests. On the other 

hand, the Greedy algorithm may produce outcomes that are locally optimal but 

do not achieve global optimality. Furthermore, the findings indicate that, on 

average, low-priority SFC requests in the FAS consume approximately two 

percent more bandwidth resources in comparison to the NSF. The observed 

discrepancy can be attributed to the assignment of dedicated physical resources 

for SFC requests with high-priority, resulting in less optimal deployment paths 

for requests with low-priority. In addition, it can be observed that the OAS 

algorithm demonstrates a decrease in bandwidth utilization of 10 percent and 

12 percent, respectively, in comparison to the NSF and Greedy algorithms. 

Overall, when considering both priority levels, the OAS algorithm demonstrates 

a reduction in bandwidth resource consumption of approximately 14 percent in 

comparison to the Greedy algorithm. The aforementioned discoveries provide 

insights into the advantages provided by OAS and FAS algorithms in enhancing 

the optimization of bandwidth utilization within SFC provisioning paths. 

Consequently, this leads to enhanced resource efficiency and allocation.  
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Figure 13. Bandwidth utilization (the first phase of the study). 

  

Changing the proportion of high-priority SFC requests to low-priority SFC 

requests is an additional element worth investigating. What happens if the 

fraction of SFC requests with a high-priority rises? The priority coefficient 

factor remains unchanged in this case. Figure 14 presents an analysis of the 

average end-to-end delay experienced by provisioning paths, with a focus on 

the varying proportion of high-priority SFC requests in relation to the total SFC 

requests. The findings indicate that when the percentage of SFC requests 

classified as high-priority rises, reaching a maximum of 10 percent, the OAS 

and FAS algorithms exhibit the lowest average end-to-end delay in comparison 

to the NSF and Greedy algorithms for high-priority SFC requests. The observed 

enhancement can be attributed to the effective utilization of allocated physical 

network resources. Nevertheless, upon surpassing this threshold, specifically 

when the proportion of high-priority SFC requests reaches 30 percent, a notable 

escalation in the average end-to-end delay for high-priority SFC requests can be 
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observed in both the OAS and FAS algorithms, in contrast to the NSF and 

Greedy algorithms. This phenomenon occurs as a result of the full utilization of 

the 10 percent reserved physical resources by a subset of high-priority SFC 

requests. As a result, the remaining SFC requests with high-priority are 

obligated to utilize the non-reserved physical resources. This ultimately results 

in suboptimal mapping and non-optimal provisioning paths. 

 

Figure 14. Average end-to-end delay over proportion of high-priority SFCs to 

the total SFCs (the first phase of the study). 

 

Figure 15 illustrates the SFC acceptance rate attained by the four 

aforementioned algorithms, which serves as a measure of their effectiveness in 

mapping SFC requests. The SFC acceptance rate is the percentage of effectively 

mapped SFC requests relative to the total number of SFC requests. Results 

indicate a decline in SFC acceptance rates as the number of VNFs required for 

each SFC request increases. Nevertheless, it is noteworthy that OAS and FAS 

algorithms, which utilize allocated physical resources, exhibit smaller decreases 

in SFC acceptance rates for high-priority SFC requests compared to NSF and 
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Greedy algorithms when the number of VNFs increases. When six VNFs are 

requested per SFC, the acceptance rates for high-priority SFC requests are as 

follows: 95% for OAS, 90% for FAS, 85% for NSF, and 82% for Greedy. This 

demonstrates that OAS and FAS algorithms are able to mitigate the decline in 

SFC acceptance rates to a greater degree, emphasizing their efficiency in 

processing high-priority SFC requests even with a larger number of VNFs. 

  

Figure 15. SFC acceptance rate (the first phase of the study). 

 

Finally, as previously stated, we examine the variation of the priority 

coefficient factor (µ) in our research. The selected initial priority coefficient 

factor (µ) was 0.9, leading to a reservation of 10 percent of physical network 

resources that are exclusively designated for accommodating high-priority SFC 

requests. Figure 16 presents an analysis of the impact of varying the proportion 

of physical network resources allocated to high-priority SFC requests, denoted 

by the priority coefficient factor (µ). The findings indicate a consistent decrease 

in the average end-to-end delay of high-priority SFC requests for both OAS and  
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Figure 16. Average end-to-end delay over reserved physical resources (the 

first phase of the study). 

 

FAS algorithms as the proportion of allocated physical network resources 

increases, until reaching the 20% data point. At this point, the average end-to-

end delay reaches its lowest value and remains unchanged as the reserved 

physical resources are further increased, up to 30 percent. The results of this 

study indicate that in the given test scenario, high-priority SFC requests achieve 

optimal outcomes when a 20% reservation of physical resources is made. 

Furthermore, it was observed that further reservation of physical resources does 

not have any effect on the provisioning paths of high-priority SFC requests. In 

contrast, as expected, the average end-to-end delay of low-priority SFC requests 

for OAS and FAS algorithms experiences a significant increase after the 15% 

data point. This is attributable to the greater reservation of physical resources 

for high-priority SFC requests, resulting in insufficient resources for low-

priority requests. Consequently, low-priority SFC requests are compelled to 

select longer paths due to the scarcity of physical resources. The results for the 
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NSF and Greedy algorithms remain unaffected by changes in physical resource 

reservations for high-priority SFC requests, as they operate independently of 

such reservations. These findings suggest that the incorporation of a dynamic 

priority coefficient factor (µ) holds the potential to optimize overall results 

further. By dynamically adjusting the priority coefficient factor (µ), the system 

can adapt to variations in network load or changes in the proportion of high-

priority to low-priority requests. This dynamic adjustment mechanism allows 

for a flexible and responsive approach, enabling the system to achieve optimal 

outcomes based on the prevailing conditions and priorities within the network 

environment. 

 

6.2 Ultra-Reliable Low Latency Communication 

By expanding the use of URLLC applications such as autonomous vehicles, 

remote surgery, tele-operated driving, virtual reality, augmented reality, and 

industrial automation, addressing the SFC deployment problem has received 

considerable attention from the scientific community. In the second section of 

this chapter, we will discuss the outcomes of the second phase of our study 

regarding Ultra-Reliable Low Latency Communication. We compare the results 

of our proposed optimal SFC embedding algorithm, ORAAS, and our proposed 

heuristic algorithm, NORAAS, which were described in detail in Chapters 4 and 

5 of our study, with the NSF algorithm proposed in [27] and the well-known 

Greedy algorithm as a baseline as used in [48, 45, 64, 65, 46, 36]. As stated in 

Chapter 5, both the NSF algorithm and the Greedy algorithm are based on the 

nearest server that offers the needed VNFs. However, while the NSF algorithm 

employs the Dijkstra algorithm to determine the shortest path between two 

nodes, the Greedy approach uses the Greedy algorithm. It should be highlighted 

that both the NSF and Greedy algorithms do not account for flow prioritization 

or physical network resource reservation.    
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Following is a description of the parameters utilized in the performance 

evaluation. Similar to the previous phase of our research, Gridnet network 

topology [60] is utilized in our simulation for the second phase of our study. It 

consists of 8 nodes and 18 links, of which we define two nodes as CDC nodes 

according to node degree to host the VNF instances and six nodes as switching 

nodes to forward traffic to the next nodes. Six different VNF types are defined, 

and each CDC node may support a maximum of three different VNF types. Each 

physical link is assumed to have a bandwidth capacity in the range of [500-

1000] Mbps, depending on the network location. We set up CDC nodes with 

varied capacities for storage and processing based on their network locations. 

The first CDC node's memory and CPU capabilities were set to 1500 MB and 

1500 MIPS, respectively, while the second CDC node's memory and CPU 

capacities were set to 2000 MB and 2000 MIPS, respectively. We assume that 

Switching Nodes (𝑁𝑆) do not need a large amount of CPU and memory 

resources, as they just transmit network traffic to the following nodes and do 

not require a great deal of memory and CPU. We thus regard their CPU and 

memory as infinite. 

In our simulation setting, we set the propagation delay of each link as a 

uniform distribution in a range of [3, 41] milliseconds. As stated, we assume the 

initial priority coefficient factor (δ) as 0.9, which means that 10 percent of 

physical network resources are reserved for embedding only high-priority SFC 

requests (URLLA) and low-priority SFC requests are allowed to use up to 90 

percent of physical network resources. In this simulation scenario, the 

bandwidth, CPU, and memory requirements of each SFC request are specified 

as random values between (0,10] [29]. We set the maximum tolerable delay at 

each SFC request in the range of [50, 100] milliseconds [29]. We produce 150 

SFC requests with a random source and destination node. We assume that ten 

percent of SFC requests have a high-priority and that the first fifty percent of 
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SFC requests have a low-priority. We set the number of VNF requested per SFC 

request as three. The software reliability of VNF instances is distributed in the 

range of [0.99, 0.999] similar to [49]. The first and second CDC nodes have 

hardware reliability of 0.99 and 0.999, respectively. The required reliability for 

each SFC request was chosen from the following ranges: [0.95, 0.98, 0.99, 

0.992, 0.999] [49]. We use the same simulation parameter settings when 

comparing the algorithms to guarantee comparability. Since we deal with ultra-

reliable low latency communication in an NFV-enabled network, our primary 

KPIs are end-to-end delay, reliability, bandwidth usage, and SFC acceptance 

rate. These are the primary KPIs determined after examining various cutting-

edge studies, as discussed in Chapter 2. 

One of the most important KPIs that we study is the end-to-end delay of SFC 

requests using these four algorithms (ORAAS, NORAAS, NSF, and Greedy). The 

term "end-to-end delay" pertains to the duration required for a packet to be 

transmitted from its originating node to its intended destination node across a 

network. As can be seen in Figure 17, it presents the average end-to-end delay 

obtained by these four algorithms for low- and high-priority SFC requests. The 

green color represents the average end-to-end delay of high-priority SFC 

requests, whereas the blue color represents the average end-to-end delay of low-

priority SFC requests.  

As it is presented, ORAAS and NORAAS significantly reduce the average end-

to-end delay of high-priority SFC requests compared to NSF and Greedy. The 

reason is that they use of 10 percent reserved physical network resources 

(bandwidth, memory, and CPU) for mapping high-priority SFC requests and 

can obtain more optimal deployment paths. More in detail, ORAAS (33%) and 

NORAAS (19%) have a smaller end-to-end delay for high-priority SFC requests 

than Greedy. Moreover, ORAAS (30%) and NORAAS (17%) reduce end-to-end 

delay for low-priority SFC requests compared to Greedy. We conclude that 
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ORAAS and NORAAS utilize their physical network resources more efficiently 

than NSF and Greedy. This approach is highly advantageous for applications 

that are sensitive to latency, such as autonomous cars, remote surgery, 

augmented reality, etc. 

 

Figure 17. Average end-to-end delay (the second phase of the study). 

 

The next parameter to analyze is bandwidth resource consumption. Figure 18 

depicts the bandwidth usage of SFC deployment paths. (×) reflects the average 

bandwidth usage of these four algorithms in this graph.  As can be seen, the 

Greedy algorithm consumes more bandwidth than ORAAS, NORAAS, and NSF. 

In this setup, as represented, ORAAS and NORAAS use bandwidth resources 

more effectively than NSF and Greedy. More in detail, ORAAS and NORAAS 

consume 30 percent and 22 percent fewer bandwidth resources for high-priority 

SFC requests, respectively, than Greedy. Additionally, ORAAS consumes 18 

percent, 20 percent, and 24 percent less bandwidth than NORAAS, NSF, and 

Greedy for low-priority SFC requests, respectively. When the deployment path 

is more optimal, the amount of bandwidth required for SFC deployment is also 



Performance Evaluations 

104 

 

reduced. As a result of the increased demand for bandwidth during the past few 

years, ORAAS and NORAAS will be essential for optimizing resource use.  

 

Figure 18. Bandwidth consumption (the second phase of the study). 

 

As indicated previously, we examine the effect of altering the priority 

coefficient factor (𝛿), specifically what occurs when we reserve additional 

physical resources for SFC requests with high-priority. The impact of varying 

the priority coefficient factor (𝛿) on ORAAS and NORAAS is represented in 

Figure 19. As shown, increasing the amount of reserved physical network 

resources for high-priority SFC requests reduces their average end-to-end delay 

while increases the average end-to-end delay of low-priority SFC requests. As 

we raise the reserved physical resources up to 30 percent, the average end-to- 

end delay of high-priority SFC requests falls gradually until the 20 percent data 

point, where it stays unchanged after reaching this point. The reason is that high-

priority SFC requests get the most optimal deployment paths by reserving 20 

percent of physical network resources, and higher physical network resource 

reserve has no effect on provisioning paths. In contrast, the exclusive physical 
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network resources allocation for high-priority SFC requests increases the 

average end-to-end delay of low-priority SFC requests, indicating that a sweet 

spot for the priority coefficient factor (𝛿) must be identified.  

   

Figure 19. Average end-to-end delay over reserved physical resources for 

high-priority SFC requests (the second phase of the study). 

  

The next essential KPI is the SFC acceptance rate, which represents the 

algorithm's effectiveness in terms of mapping SFC requests. The SFC 

acceptance rate is the percentage of mapped SFC requests compared to the total 

number of SFC requests. In order to evaluate the SFC acceptance rate, the 

number of VNF instances requested by each SFC request is increased from two 

to six, and the SFC acceptance rate of these four algorithms is evaluated by 

increasing the network load. Figure 20 presents the SFC acceptance rate in 

relation to the change in the number of required VNFs for each SFC request. As 

expected, the acceptance rate for SFC requests declines as the number of needed 

VNFs rises. As network demand grows, there will not be sufficient resources 

for mapping SFC requests. Therefore, algorithms that make more effective use 
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of physical network resources will have a higher SFC acceptance rate. In more 

detail, this reduction is more gradual for ORAAS and NORAAS than for NSF and 

Greedy. As shown in the graph, at the six needed VNF datapoints, ORAAS, 

NORAAS, NSF, and Greedy achieve acceptance rates of 95 percent, 92 percent, 

91 percent, and 88 percent, respectively. In this sense, ORAAS has the highest 

SFC acceptance rate, whereas Greedy has the lowest. 

 

Figure 20. SFC acceptance rate (the second phase of the study). 

 

In the final stage, we analyze the average reliability of these four algorithms. 

Since our goal is to address URLLC in NFV-enabled networks. Elements have 

different reliability values, as specified in Chapter 3, and we consider both 

hardware and software reliability. In order to do this, we vary the network load 

and assess the average reliability attained by these four algorithms. Figure 21 

depicts the average reliability in response to the varying number of VNF 

instances required by each SFC request. As it can be seen, the average reliability 

decreases as the length of SFC requests increases, and this decline is more 

moderate for high-priority SFC requests by ORAAS and NORAAS. This is due 
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to the fact that SFC requests with high-priority have the benefit of accessing 

reserved physical network resources and hence the most reliable components. 

To this end, ORAAS and NORAAS are superior to NSF and Greedy in terms of 

average reliability and are optimum for addressing URLLC. In this regard, the 

ORAAS algorithm has the highest degree of reliability, whereas the Greedy 

algorithm has the lowest.  

 

Figure 21. Average reliability over varying the number of required VNFs (the 

second phase of the study). 

 

 

6.3 Dynamic Service Function Chaining 

In the final section of this chapter, we explore the outcomes of the dynamic 

SFC deployment problem, in which each SFC request has an arrival and 

departure time to utilize physical network resources. Since the goal of this 

research is to investigate URLLC in an NFV-enabled network, we examined 

URLLC in a dynamic scenario. As we discussed in Chapter 5, we offered the 

DAAS algorithm, a heuristic technique, to handle URLLC in a dynamic scenario. 
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 In the next section, we analyze the effectiveness of our suggested heuristic 

dynamic SFC embedding technique, the DAAS algorithm. We compare the 

DAAS algorithm with the NSF algorithm developed in [27] and the well-known 

Greedy algorithm as used in [48, 45, 64, 65, 46, 36]. As noted earlier, both the 

NSF and Greedy algorithms are built on the closest server that provides the 

required VNF instances. Nevertheless, whereas the NSF technique utilizes the 

Dijkstra algorithm to establish the shortest path between two nodes, which 

obtains a global optimal result, the Greedy approach employs the Greedy 

algorithm, which may obtain a local optimal result. It should be noted that 

neither the NSF nor the Greedy Algorithms account for flow prioritization or 

physical network resource reservation. The simulation is implemented in 

Python using the PuLP library. It is performed on a laptop with a 1.80GHz 

1.99GHz Intel Core i7-8550U processor and 24 GB of RAM.      

Different from the previous two phases of our research, we chose the 

EliBackbone network topology [60] as our substrate network, which is a larger 

network topology than the Gridnet network topology. Figure 11 represents the 

EliBackbone network topology. It consists of 19 nodes and 28 links, of which 

we define three nodes as CDC nodes according to node degree to host the VNF 

instances and sixteen nodes as switching nodes to forward traffic to the next 

nodes. Six different VNF types are defined, and each CDC node may support 

up to a maximum of three different VNF types.  

In our simulation setting, we employ the following input values. It is 

considered that each link has a bandwidth capacity between 800 and 2000 Mbps, 

depending on the network location. We configure CDC nodes with varying 

storage and CPU processing capacities based on their network locations. The 

memory and CPU capacities of two CDC nodes are 2500 MB and 2500 MIPS, 

respectively, while the memory and CPU capacities of the third CDC node are 

3000 MB and 3000 MIPS, respectively. We suppose that Switching Nodes (𝑁𝑆) 
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do not demand a considerable amount of CPU and memory resources, as they 

only transmit network traffic to subsequent nodes and do not need a lot of 

memory and CPU. Consequently, we consider their CPU and memory to be 

unlimited. We set the propagation delay of each link as a uniform distribution 

in a range of [2, 23] milliseconds, which is determined by the nodes' distances 

and the EliBackbone network topology's medium type. As stated, we assume 

the initial priority coefficient factor (µ) to be 0.9, which means that low-priority 

SFC requests are permitted to utilize only up to 90 percent of physical network 

resources (bandwidth, memory, and CPU), and ten percent of physical network 

resources are reserved for embedding only high-priority SFC requests (URLLA).  

In this simulation scenario, the bandwidth, CPU, and memory requirements of 

each SFC request are specified as random values between (0,10] [29].  

To evaluate these three algorithms (DAAS, NSF, and Greedy), 600 SFC 

requests with random source and destination nodes and varying lifetimes are 

generated. In our dynamic scenario, we set 10 time-cycles in which a certain 

number of SFC requests may enter or depart the network throughout each time 

cycle. We assume that 10 percent of SFC requests have high-priority. We 

assume that the first 50 percent of SFC requests entering the network have low-

priority. We set the number of VNF requested per SFC request as three. The 

software reliability of VNF instances is distributed in the range of [0.99, 0.999] 

similar to [61]. The hardware reliability of CDC nodes is distributed in the range 

of [0.99, 0.999]. The required reliability for each SFC request was chosen from 

the following ranges [0.95, 0.98, 0.99, 0.992, 0.999] [61]. We use the same 

simulation parameter settings when comparing the algorithms to guarantee 

comparability and fairness.  

End-to-end delay is one of the most important KPIs to access. End-to-end 

delay is the amount of time it takes for a network packet to be sent from its 

source node to its destination node. The end-to-end delay produced by these 
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three algorithms (DAAS, NSF, and Greedy algorithms) for low- and high-

priority SFC requests is depicted in Figure 22. In this graph, the end-to-end 

delay for high-priority SFC requests is shown in green, while the end-to-end 

delay for low-priority SFC requests is shown in blue. In this figure, (×) 

represents the average end-to-end delay of these three algorithms. As depicted, 

by reserving 10 percent of physical network resources for high-priority SFC 

requests, DAAS reduces the average end-to-end delay of high-priority SFC 

requests significantly in comparison to NSF and Greedy. DAAS enables ultra-

low latency applications to utilize the 10 percent of reserved physical resources 

for high-priority SFC requests; hence, the provisioning paths of DAAS are more 

optimal. DAAS achieves 9 percent less average end-to-end delay than the NSF 

method and 13 percent less average end-to-end delay than the Greedy algorithm. 

For low-priority SFC requests, DAAS achieves 4 percent less average end-to- 

end delay than Greedy but 2 percent higher than NSF. In comparison to Greedy, 

NSF achieves a 7 percent and 5 percent reduced average end-to-end delay for  

 

Figure 22. Average end-to-end delay (the third phase of the study). 
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high-priority and low-priority SFC requests, respectively.  

Bandwidth consumption is the second key performance indicator we 

consider. Figure 23 depicts the bandwidth usage for SFC deployment paths 

using these three algorithms. In this graph, (×) represents the average bandwidth 

utilization of these three methods. The results indicate that, on average, the 

DAAS algorithm uses less bandwidth resources than the NSF approach and the 

Greedy algorithm while handling high-priority SFC requests. As demonstrated, 

DAAS utilizes 11 percent and 17 percent less bandwidth resources for high-

priority SFC requests than NSF and Greedy, respectively. Due to the allocated 

physical resources, the DAAS algorithm provides shorter provisioning paths for 

high-priority SFC requests than the NSF method and the Greedy algorithm. As 

a result, the DAAS algorithm utilizes less bandwidth than the NSF algorithm and 

the Greedy algorithm. In this configuration, DAAS consumes 4 percent less 

bandwidth than the Greedy algorithm for low-priority SFC requests but 2 

 

Figure 23. Bandwidth consumption (the third phase of the study). 
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percent more than the NSF algorithm. As can be seen, Greedy uses the most 

bandwidth resources for both high- and low-priority SFC queries. Since it may 

obtain local optimum route deployment, additional bandwidth resources are 

required. 

The average path length is the next KPI that can demonstrate the success of 

these three algorithms (DAAS, NSF, and Greedy algorithms). It demonstrates 

how effectively these three algorithms can map SFC requests. The average path 

length of these three methods is depicted in Figure 24.  As presented, DAAS 

achieves the shortest average path length among other algorithms for high- 

priority SFC requests. Therefore, DAAS may have a considerable positive effect 

on mapping SFC requests with the highest priority. This is because SFC requests 

with high-priority in DAAS have access to the reserved physical network 

resources and may thus acquire a more optimal deployment path. Although 

 

Figure 24. Average path length (the third phase of the study). 
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DAAS has achieved the shortest path length for high-priority SFC requests 

among the proposed algorithms, it achieves a longer path length for low-priority 

SFC requests than the NSF algorithm. As can be observed in the graph, the NSF 

approach achieves shorter average path lengths than the Greedy algorithm. This 

is because NSF gets global optimal results using the Dijkstra algorithm, whereas 

the Greedy technique may return local optimal results. 

Figure 25 presents the SFC acceptance rate for each of the three algorithms 

(DAAS, NSF, and Greedy). The SFC acceptance rate is an important KPI that 

demonstrates the algorithm's efficacy in mapping SFC requests. The proportion 

of mapped SFC requests relative to the total number of SFC requests is the SFC 

acceptance rate. As indicated previously, 600 SFC requests with random source 

and destination nodes and varying lifetimes have been produced. As can be seen 

 

Figure 25. SFC acceptance rate (the third phase of the study). 
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in the graph, the DAAS, NSF, and Greedy algorithms achieve 100 percent, 97 

percent, and 96 percent of the SFC acceptance rate for SFC requests with high-

priority, respectively. DAAS has a 100 percent acceptance rate for SFC requests 

with high-priority. It indicates that all high-priority SFC requests function 

properly and are implemented into the network. This is because, while utilizing 

DAAS, SFC requests with high-priority have access to reserved physical 

resources. Clearly, it helps a great deal in facilitating URLLC, but we must also 

consider its disadvantages with respect to low-priority SFC requests. It is crucial 

to maintain a balance between SFC requests of high- and low-priority. 

Figure 26 depicts the average end-to-end delay of SFC requests utilizing 

these three algorithms while chaining the proportion of high-priority SFC 

requests to total SFC requests. As can be seen in the graph, DAAS achieves a 

lower average end-to-end delay compared to the other two algorithms up to the 

20 percent data point. At the 25 percent and 30 percent data points, the average 

end-to-end delay of high-priority SFC requests increases significantly. This is 

due to the fact that at these two datapoints, the reserved physical resources have 

been used completely by some high-priority SFC requests, and the remaining 

high-priority SFC requests were unable to find the optimal deployment paths. 

To this end, it is essential to find an appropriate value for the priority coefficient 

factor in order to obtain the optimum results. This issue may be resolved by 

employing a dynamic priority coefficient factor that adjusts based on network 

service demand. This suggests that, utilizing network load prediction methods, 

the dynamic priority coefficient factor may self-adjust to achieve optimal 

outcomes according to the network load. As depicted, the Greedy algorithm 

obtains the highest end-to-end delay among the other proposed algorithms 

(DAAS and NSF). 
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Figure 26. Average end to end delay over varying proportion of high-priority 

SFCs to the total SFCs (the third phase of the study). 

 

As the final step, we assess the average reliability of these three algorithms 

(DAAS, NSF, and Greedy). Considering that our objective is to handle URLLC 

in NFV-enabled networks. In Chapter 3, reliability is defined, and it is 

emphasized that each element has a specific reliability value. We take into 

account both hardware and software reliability. Figure 27 depicts the average 

reliability of these three algorithms. As can be observed, the DAAS algorithm 

obtains the maximum level of reliability for high-priority SFC requests. Due to 

the utilization of physical resource reservations, SFC requests with the highest 

priority have access to the most reliable components. Therefore, this strategy 

appears to be quite helpful in tackling URLLC. For SFC requests with low-

priority, DAAS achieves the same degree of reliability as the NSF algorithm. As 

shown in this graph, the Greedy algorithm achieves the lowest average 
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reliability in this configuration for both high- and low-priority SFC requests. 

This is because the Greedy algorithm obtains the least optimal deployment path 

by obtaining locally optimal outcomes.   

 

Figure 27. Average reliability (the third phase of the study). 
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7 Conclusion and Future Work 

 

In this thesis, we conducted research on NFV. We observed that NFV has the 

potential to revolutionize traditional network architectures and eliminate some 

of their limitations. Enabling URLLC in NFV is one of the most essential topics 

in this field, as URLLA use has increased dramatically in recent years. In the 

first chapter of the thesis, the NFV architecture was depicted and the advantages 

of NFV were discussed. We observed that the successful implementation of 

network services in NFV heavily depends on the deployment of SFC. Therefore, 

the SFC deployment problem remains an important challenge in NFV, 

necessitating further research. In the second chapter, we conducted a study on 

the existing studies in this field and reviewed the proposed methodologies for 

enhancing reliability and latency in NFV. We observed that in order to enhance 

reliability, backup mechanisms and redundant elements are frequently 

employed, whereas latency-aware service function chaining is implemented to 

reduce latency. We discussed that improving both reliability and latency at the 

same time is exceedingly challenging since they may have negative interactions. 

Improving reliability may result in an increase in latency, and vice versa. 

Additionally, the network's physical resource limitations make it more 

challenging. To this end, in order to simultaneously improve reliability and 

latency in the SFC embedding phase, we proposed a novel solution with 

considerable benefits. 

In Chapter 3, the system model and its underlying assumptions that are used 

to evaluate the proposed methodology are presented. The presence of a well-

defined system model is crucial in order to generate outcomes that are both 

precise and closely aligned with the real-world context. In Chapter 4, the 

mathematical formulations and optimization model were discussed. The SFC 
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deployment problem was structured as an ILP optimization problem with 

restrictions on maximum tolerable end-to-end delay, reliability, bandwidth, 

memory, and CPU usage. Establishing all the required constraints in a linear 

format is a very difficult operation. In Chapter 5, a set of heuristic algorithms 

and relaxed versions were provided to attain near-optimal results while 

minimizing both the execution time and optimality gap in order to make them 

applicable to large-scale network topologies and solve the scalability problem. 

In Chapter 6, the assessment findings were presented and showed the significant 

enhancements realized by the proposed methodologies in terms of end-to-end 

delay, bandwidth consumption, SFC acceptance rate, and reliability.   

    

7.1 Conclusion 

The deployment of SFC is a highly difficult process since the traffic flow 

must be directed through a series of functions, and it is difficult to establish a 

good trade-off between a number of essential requirements. The objective of 

this study was to enable URLLC within a network that is enabled by NFV. In 

order to facilitate URLLC within the context of NFV, we focused on the SFC 

Deployment Problem. This particular problem represents a significant obstacle 

to the implementation of an NFV-enabled network. We introduced a novel and 

efficient algorithm for SFC deployment to address both latency and reliability. 

Our algorithm aims to minimize latency and optimize reliability for URLLA 

during the SFC embedding phase. Notably, our approach does not rely on 

backup methods or redundant elements.   

Using a configurable priority coefficient factor and flow prioritization, we 

were able to simultaneously enhance the latency and reliability of URLLA 

without the need for backup techniques. To do this, we reserved a certain 

amount of physical network resources (bandwidth, RAM memory, and CPU) 
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exclusively for SFC requests with high-priority (URLLA). In order to minimize 

any side effects on low-priority SFC requests, we imposed constraints on the 

reliability and the maximum tolerable end-to-end delay not just for high-priority 

SFC requests but also for low-priority SFC requests. We mathematically 

formulated the SFC deployment problem as an ILP optimization model to obtain 

exact numerical solutions. Following that, we also offered a set of heuristic 

approaches and relaxed versions to minimize execution time with a minimal 

optimality gap in order to solve the scalability problem and make our proposed 

approach usable for large-scale network topologies.  

The performance evaluations revealed that our suggested algorithms can 

significantly enhance the end-to-end delay, reliability, bandwidth utilization, 

and SFC acceptance rate of URLLA. We discovered that our suggested ORAAS 

and NORAAS algorithms reduced the end-to-end latency of URLLA by 33 

percent and 19 percent, respectively, compared to the Greedy algorithm. In 

addition, for low-priority applications, ORAAS and NORAAS achieved 30 

percent and 17 percent less end-to-end latency than the Greedy method, 

respectively. In terms of bandwidth consumption, ORAAS and NORAAS spent 

30 percent and 22 percent less bandwidth resources than the Greedy algorithm 

for URLLA, respectively. Moreover, ORAAS utilized 18 percent, 20 percent, and 

24 percent less bandwidth for low-priority SFC requests than NORAAS, NSF, 

and Greedy, respectively. In terms of reliability, ORAAS and NORAAS achieved 

the highest reliability for URLLA compared to the NSF and Greedy algorithms. 

Last but not least, compared to NSF and Greedy, ORAAS and NORAAS achieved 

the highest SFC acceptance rate for URLLA. ORAAS, NORAAS, NSF, and 

Greedy attain acceptance rates of 95 percent, 92 percent, 91 percent, and 88 

percent, respectively, at the six required VNFs datapoints. Chapter 6 contains 

further details. To this end, we observed that our proposed methodology is a 

promising solution to enable URLLC in an NFV-enabled network.  
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7.2 Future Work 

The investigation focused on the SFC deployment problem in order to 

facilitate URLLC within an NFV-enabled network. A novel mathematical model 

incorporating all essential constraints was developed in this regard, and different 

techniques were presented to address the SFC deployment problem from 

various viewpoints. The findings of our study are published in [71, 72, 73, 74, 

75]. These publications provide a valuable foundation for future advancements 

in URLLC within an NFV-enabled network. The SFC deployment problem is 

one of the main challenges in an NFV-enabled network, and it requires more 

development. We only covered a small portion of it. Incorporation of additional 

constraints, such as power consumption limitations and load balancing 

prerequisites, within our optimization framework is feasible. Moreover, as we 

discussed in Chapter 6, our research can be improved by using a dynamically 

configurable priority coefficient factor to dynamically modify the reservation 

of physical network resources based on the load of different network services. 

To fully leverage the promises of NFV, there are still a vast number of 

considerations to make. In the following, we present a list of recommendations 

for further research: 

 

A. A trendy field to research is the use of an effective backup mechanism 

with the least negative influence on latency to increase system resilience 

further. The valuable analysis of a student on backup approaches to 

address URLLC in an NFV environment [76] and several backup 

techniques presented in [77, 78, 79, 80, 81, 82, 83] can be applied to our 

proposed optimization model to further improve URLLC in an NFV-

enabled network.    
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B. The integration of Machine Learning techniques emerges as a promising 

approach for addressing the SFC deployment problem. Machine learning 

has recently been widely recognized as a promising approach for 

addressing the SFC deployment problem. Different machine learning 

solutions, as in [84, 85, 86, 87, 88, 89], have been proposed by 

researchers, which require further developments. Integrating our 

proposed methodology into the SFC deployment problem using machine 

learning techniques is a fascinating research topic. 

 

C. The next suggested field of research is Multi-access Edge Computing 

(MEC). MEC enables the deployment of applications at the network's 

edge, which is close to end users. Using this capability, MEC offers an 

environment with ultra-low latency, and several new applications and 

companies are emerging on the MEC platform [90, 65, 91, 92, 93, 94, 95]. 

This is another promising area of study that can be incorporated into our 

suggested approach. 

 

D. The final proposed research area involves obtaining exact numerical 

solutions for dynamic SFC embedding scenarios with regard to network 

load prediction techniques, which has significant potential for future 

advancements as in [96, 97, 98, 99, 100, 101, 102]. This is another 

interesting topic that needs to be studied. 
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Appendix 

A.1. Implementation of the ORAAS algorithm in Python 

This section describes the formulation of the SFC deployment problem as an 

ILP optimization model in Python. Given that our primary objective is to address 

URLLC in an NFV-enabled network, we present the codes for the second phase of 

our study, which focuses on Ultra-Reliable Low Latency Communication. The 

second phase of our study is the completed version, building upon the first phase 

of our study. As a result, the ORAAS algorithm, which is covered in Chapter 4, is 

presented in the following Code-Listings. We used CBC Solver Version 2.10.3 to 

solve the optimization of the SFC deployment problem. We explain all the 

parameters and variables that have been utilized in coding in the following. We 

begin by creating the SFC deployment problem as Code Listing 1, which is the 

first step.    

 

Code Listing 1. Create the ILP optimization problem 

In the second step, we define the variables that are involved in our optimization 

model as in Code Listing 2.  

 

Code Listing 2. Define variables. 
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We define the following variables in Code Listing 2. The binary variable 

“H_s_mn” denotes the routing path of SFC request s between nodes m and n. 

“H_s_mn=1” if the SFC request s traverses the node m and n, and 0 otherwise. The 

binary variable “K_s_m_x” indicates whether VNF x of SFC request s is served by 

CDC node m. “K_s_m_x” equals 1, if the SFC request s uses VNF type x, which 

is placed on CDC node m, and 0 otherwise. The integer variable “T_s_mn” is our 

final required variable to implement our optimization model. It specifies the 

number of previously crossed nodes. Our SFC deployment optimization 

methodology requires these three variables. 

In the next step, we define the objective function. We construct the optimization 

problem's objective function, which must be minimized, as in Code Listing 3. It is 

the Python implementation of Equation (50) from Chapter 4.       

 

Code Listing 3. Define objective function. 

In step four, we can define all of the necessary constraints, as illustrated in 

Chapter 4. To this end, we begin by defining the reliability constraint as Code 

Listing 4. It is the Python implementation of Equation (27) from Chapter 4. 

 

Code Listing 4. Reliability constraint. 

Then, we continue with defining consumption constraints for physical network 

resources (bandwidth, memory, and CPU). The bandwidth consumption restriction 
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is shown in Code Listing 5. As shown in this formulation, low-priority SFC 

requests (specified in the Flows_priority_Two list) are authorized to use up to 90 

percent of the available bandwidth resources and 10 percent of the bandwidth 

resources are reserved for high-priority SFC requests.   

 

Code Listing 5. Bandwidth utilization constraint. 

Code Listing 6 displays the memory utilization restriction. Low-priority SFC 

requests (specified in the Flows_priority_Two list) are allowed to use up to 90 

percent of CDC nodes' available memory resources. In contrast, there are no 

restrictions on the usage of physical network resources (bandwidth, memory, and 

CPU) for high-priority SFC requests (URLLA).   

 

Code Listing 6. Memory utilization constraint. 

As the last limitation on memory resource usage, Code Listing 7 applies the 

same logic to CPU consumption as it does to memory utilization. Low-priority 

SFC requests (specified in the Flows_priority_Two list) may occupy up to 90 
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percent of the available CPU resources of CDC nodes.  Therefore, 10 percent of 

CPU resources are reserved for SFC requests with the highest priority. 

 

Code Listing 7. CPU utilization constraint. 

Code Listing 8 is the formula that we use to determine the maximum acceptable 

propagation delay. The end-to-end delay of the selected path cannot exceed the 

maximum tolerable end-to-end delay of SFC requests. See Constraint (36) in 

Chapter 4.   

 

Code Listing 8. Propagation delay constraint. 

The flow control is formulated as Code Listing 9. Using this constraint, we make 

sure that the links on the deployment path of SFC request s are connected head-to-

tail. It is the Python implementation of Constraint (37) in Chapter 4.  
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Code Listing 9. Flow control constraint. 

In order to ensure that there is a connection between VNFs and the CDC nodes 

that correspond to them, we use the formulation in Code Listing 10. 

 

Code Listing 10. VNF and its corresponding host constraint. 

In order to validate the selected route across the actual physical network, we 

have formulated it as Code Listing 11. Graph[m][n] denotes the adjacent matrix 

that represents the substrate network.  

 

Code Listing 11. Physical link insurance constraint. 

Code Listing 12 specifies the loop restriction to avoid a loop in the SFC 

embedding. It is the Python formulation of Constraint (38). 
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Code Listing 12. Loop constraint. 

The purpose of Code Listing 13 is to verify that SFC request s traverses a proper 

VNF chain while traversing the nodes.  

 

Code Listing 13. VNF chain constraint. 

As the next constraint, we define Code Listing 14 to make sure that each VNF 

type x is used by at most one SFC request.  

 

Code Listing 14. VNF usage constraint. 

Using the following constraints, we guarantee the VNF ordering in our problem 

formulation. The values stored in the matrix ‘T_s_mn’ are integers and need to be 

equal to or higher than the corresponding one stored in the rerouting matrix 

‘H_s_mn’. Therefore, we define it as Code Listing 15. It is the Python formulation 

of Constraint (42) in Chapter 4.  

 

Code Listing 15. Ordering matrix constraint one. 
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As the next constraint, we ensure that ‘T_s_mn’ becomes zero, if ‘H_s_mn’ is 

zero. Therefore, we use Code Listing 16. 

 

Code Listing 16. Ordering matrix constraint two. 

As the next constraint, we define that the elements of the ordering-aware 

rerouting matrix for the output links must be zero for the destination node. 

Therefore, we define it as Code Listing 17.  

 

Code Listing 17. Ordering matrix constraint three. 

Except for the source and destination nodes, when SFC request s enters a node 

in its 𝑛𝑡ℎ step, it leaves that node in the  (𝑛 + 1)𝑡ℎ step. Therefore, we define it as 

Code Listing 18.  

 

Code Listing 18. Flow cross constraint. 

We must ensure that SFC requests exit their source nodes. We define it as in 

Code Listing 19. 
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Code Listing 19. Flow initiation constraint. 

As the last constraint, Code Listing 20 is used to impose the sequence of VNF 

chaining. 

 

Code Listing 20. Check VNF order constraint. 

Finally, we will use Code Listing 21 to solve our described SFC deployment 

problem and report the results. 

 

Code Listing 21. Solve SFC deployment problem. 

Using Code Listing 1 through Code Listing 21, exact numerical solutions are 

provided for the SFC deployment problem presented in Chapter 4. Given that 

obtaining exact numerical solutions is an NP-hard problem and its execution is 

time-consuming, we present the Python implementation for our proposed heuristic 

method for generating a near-optimal solution in a reasonable time frame so that it 

may be applied in a real-world scenario. 
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A.2. Implementation of the NORAAS algorithm in Python  

 

In this section, we provide the Python implementation of our suggested heuristic 

method, NORAAS, to achieve near-optimal solutions of ORAAS in an acceptable 

time frame with a minimal optimality gap. As stated before, NORAAS addresses 

ultra-reliable low latency communication in NFV. We employ the same strategy 

as ORAAS, utilizing traffic prioritization and physical network resource 

reservation to provide URLLA with guaranteed QoS.  

To this end, first, we divide the physical network resources for high-priority SFC 

requests and low-priority SFC requests, as can be seen in Code Listing 22. As it is 

presented, using the priority coefficient factor, we reserve ten percent of physical 

network resources (bandwidth, memory, and CPU) exclusively for high-priority 

SFC requests.   

 

Code Listing 22. Physical resource reservation. 
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Code Listing 23. Dijkstra algorithm. 

As stated in Chapter 2, we employ the Dijkstra algorithm as shown in Code 

Listing 23 to determine the shortest path between two nodes (the start node and the 

goal node). We described the Dijkstra algorithm in Chapter 2. 
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Following that, we need to determine available resources (bandwidth, memory, 

and CPU). Code Listing 24 is where we define the function that will be used to 

compute the available bandwidth. 

 

Code Listing 24. Free bandwidth calculation. 

Then, similarly to the computation of available bandwidth, we develop a 

function that computes the amount of available CPU resource, as it is presented in 

Code Listing 25.   

 

Code Listing 25. Free CPU calculation. 

Last but not least, we compute the available memory resources by defining a 

function that is represented by Code Listing 26.  Using Code Listing 24, Code 

Listing 25, and Code Listing 26, we calculate the available resources (bandwidth, 

memory, and CPU).   
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Code Listing 26. Free memory calculation. 

After providing the necessary functions to compute the availability of physical 

resources, we need to build the functions that allow us to keep track of how those 

resources are being utilized following the embedding of each SFC request. To this 

end, utilizing Code Listing 27, we update the bandwidth resources that are now 

being used for embedding an SFC request. Algorithm 6 in Chapter 5 provides the 

pseudocode for this function.   

 

Code Listing 27. Update used bandwidth. 

 

Similar to the previous function that updated the bandwidth resource, in Code 

Listing 28, we construct a function that will update the CPU resource that is 

currently being used for mapping an SFC request.  
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Code Listing 28. Update used CPU. 

In the end, similar to the previous two functions, we build a function to update 

the memory resources that have been used for mapping an SFC request, which is 

shown as Code Listing 29.  

 

Code Listing 29. Update used memory. 

To this end, using Code Listing 27, Code Listing 28, and Code Listing 29, we 

are able to update the physical resources used for embedding an SFC request.  
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In our code, the conversion from list to dictionary is handled by  Code Listing 

30.  

 

Code Listing 30. Convert list to dictionary. 

Following the implementation of Algorithms 5 and Algorithm 6 from Chapter 

5, we build several functions to calculate the KPIs used in the performance 

evaluation chapter, Chapter 6.  

As stated in Chapter 6, the first important KPI is the end-to-end delay. Code 

Listing 31 contains the definition of a function that we use to calculate the 

propagation delay of an SFC request. 

 

Code Listing 31. Calculate delay. 

The path length of an SFC request is the following KPI that we calculate.  



Appendix 

137 

 

Code Listing 32 defines a function that will be used to calculate the length of the 

SFC deployment route. 

 

Code Listing 32. Calculate path length. 

The next important KPI to calculate is bandwidth utilization. Calculating the 

amount of bandwidth used by each SFC request is the responsibility of the function 

that is written in Code Listing 33.    

 

Code Listing 33. Calculate bandwidth consumption. 

Last but not least, one of the most important KPIs for evaluating the 

performance of a developed algorithm is its reliability. The definition of reliability 

is defined in Chapter 3. To this end, we determine the reliability of each SFC 

request by utilizing the function that is outlined in Code Listing 34. As indicated 

in Chapter 3, we take into account both hardware reliability, which is the reliability 

of CDC nodes, and software reliability, which is the reliability of VNF instances. 

In this regard, we have defined all the necessary functions to implement the 

NORAAS algorithm. In the following stage, we will define the core of the 

implementation in order to determine the optimal deployment path. 
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Code Listing 34. Calculate reliability. 

 

Code Listing 35 and Code Listing 36 serve as the main components of the 

NORAAS algorithm that determine the optimal deployment path for each SFC 

request. The Algorithm 4 in Chapter 5 represents its pseudocode. 

Using Code Listing 22 through Code Listing 36, we can achieve near-optimal 

ORAAS algorithm outcomes with minimal execution time and an optimality gap.   
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Code Listing 35. Find optimal deployment path (first part). 
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Code Listing 36. Find optimal deployment path (second part). 

 

A.3. Implementation of the DAAS algorithm in Python    

 

The DAAS algorithm is essentially a dynamic variant of the NORAAS algorithm. 

In a dynamic scenario, each SFC request has a lifetime during which it can access 

physical network resources (bandwidth, memory, and CPU); once this lifetime 

expires, the physical network resources can be made available for the next SFC 

embedding. In this section, we present the programming of our proposed dynamic 

SFC embedding method, DAAS. To this purpose, we employ the same strategy as 

the NORAAS algorithm, i.e., flow prioritization and a configurable priority 

coefficient factor, to reserve a quantity of physical network resources only for SFC 

requests with the highest priority in order to guarantee their QoS. In a dynamic 

scenario, time-cycles are specified, which a certain number of SFC requests 

entering and exiting the network in each time-cycle. Following is the Python 

implementation of the necessary functions required to implement the DAAS 

algorithm. In a dynamic context, Code Listings 37 through 55 are responsible for 
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supplying the optimal deployment path for SFC requests. The next section will 

provide further clarification. 

First, the physical network resources are divided into high-priority SFC requests 

and low-priority SFC requests so that a part may be reserved for high-priority SFC 

requests. Physical network resource reservation (bandwidth, memory, and CPU) 

for high-priority SFC requests is applied using Code Listing 37. 

 

Code Listing 37. Physical resource reservation.  

After applying physical network resource reservation, we use Code Listing 38 

to set arrays to get used resources at different times. 

 

Code Listing 38. Set array to get used resources in different times. 

As described in Chapter 2 regarding the various algorithms for determining the 

shortest path between two nodes, we utilize the Dijkstra algorithm to get the 

optimal global shortest path in a weighted graph. Similarly to the NORAAS 

algorithm, the Dijkstra algorithm is used to determine the shortest route between 
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two nodes. Code Listing 39 illustrates the Dijkstra method and its necessary 

parameters for Python implementation. 

 

Code Listing 39. Dijkstra algorithm. 

Next, we must determine the available resources (bandwidth, memory, and 

CPU). Using a function demonstrated in Code Listing 40, free bandwidth resources 

are computed and released. The information about this function is explained in 

greater detail in Chapter 5. 
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Code Listing 40. Calculate and release free bandwidth resource. 

The reasoning behind CPU resources follows the same logic as that behind 

bandwidth resources. Utilizing a function illustrated in Code Listing 41, available 

CPU is calculated and released. 

 

Code Listing 41. Calculate and release free CPU. 

Last but not least, the calculation and release of memory resources. Similar to 

CPU resources and bandwidth resources, Code Listing 42 demonstrates a function 

to calculate and release free memory resources in Python. The information about 

this function is explained in greater detail in Chapter 5. 

After establishing the necessary functions in order to calculate and release 

physical network resources, the next necessary step is to present the functions that 

are needed in order to update the used physical network resources for mapping 

SFC requests based on the utilized resources. The following paragraph will offer 

much more elaboration. 
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Code Listing 42. Calculate and release free memory. 

When a mapping request for SFC is processed, we are required to bring the 

available physical network resources up to date. In order to accomplish this, Code 

Listing 43 is referred to in order to update the consumed bandwidth resources in 

order to map a SFC request.  

 

Code Listing 43. Update used bandwidth. 

The same logic as for bandwidth resources is applied to CPU resources. When 

processing a mapping request for SFC, we must bring the available physical 

network resources up to date. Code Listing 44 is consulted to update the utilized 

CPU resources required to map an SFC request. More information regarding this 

function is further discussed in Chapter 5. 
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Code Listing 44. Update used CPU. 

Last but not least, Code Listing 45 demonstrates the function used to update the 

consumed memory for mapping an SFC request.  

 

Code Listing 45. Update used memory. 

Next, we require some functions in order to get used physical network resources 

at each time-cycle. Code Listing 46 illustrates the function used to get the utilized 

bandwidth for embedding an SFC request. 

 

Code Listing 46. Get used bandwidth. 

Similar to bandwidth resources, Code Listing 47 is used to get utilized CPU. 
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Code Listing 47. Get used CPU. 

Finally, Code Listing 48 presents the function used to get the used memory for 

mapping a SFC request. 

 

Code Listing 48. Get used memory. 

We use Code Listing 49 to convert a list to a dictionary.  

 

Code Listing 49. Convert list to dictionary. 

After describing the functions necessary to determine the optimal deployment 

path for SFC requests, we present the functions necessary to compute the assessed 

KPIs.  
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The first important KPI to assess is the path deployment end-to-end delay. The 

end-to-end delay is calculated as presented in Code Listing 50. 

 

Code Listing 50. Calculate delay. 

The next KPI to analyze is path length. Code Listing 51 calculates the path 

length of each SFC request. 

 

Code Listing 51. Calculate path length. 

Following that, bandwidth utilization is the next crucial KPI to examine. Code 

Listing 52 calculates the bandwidth consumption of each SFC request. 

 

Code Listing 52. Calculate bandwidth consumption. 
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Lastly, one of the most essential KPIs for measuring the success of an algorithm 

is its reliability. The definition of reliability may be found in Chapter 3. In order 

to verify the reliability of each SFC request, we use the code shown in Code Listing 

53. As described in Chapter 3, we consider both hardware reliability, which is the 

reliability of CDC nodes, and software reliability, which is the reliability of VNF 

instances. In this sense, we have defined every function required to implement the 

NORAAS algorithm. In the subsequent stage, we will define the main body to 

obtain the optimal deployment path for each SFC request. 

 

 

Code Listing 53. Calculate reliability. 

In the last step, we will provide the Python code that is responsible for 

determining the most optimal deployment path for an SFC request. Code Listing 

54 and Code Listing 55 define the main body of code that is responsible for 

determining the optimum deployment path. As stated before, it handles high-

priority SFC requests differently to guarantee their QoS. Therefore, in a dynamic 

setting, we built the DAAS algorithm, which is a dynamic variation of the NORAAS 

algorithm, employing Code Listing 37 through Code Listing 55.  
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Code Listing 54. Main code (part one). 
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Code Listing 55. Main code part two. 
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