

Towards the optimal orchestration of service function chains to enable ultra-

reliable low latency communication in an NFV-enabled network

Von der Fakultät für Ingenieurwissenschaften,

Abteilung Informatik und Angewandte Kognitionswissenschaft

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Ingenieurswissenschaften

genehmigte Dissertation

von

Sam Erbati

aus

Teheran, Iran

1. Gutachter: Prof. Dr. Gregor Schiele

2. Gutachter: Prof. Dr. Christian Becker

Tag der mündlichen Prüfung: 29.01.2024

Abstract

i

Abstract

The growing utilization of Ultra-Reliable Low Latency Communication

(URLLC) in 5G/6G networks, the Internet of Things (IoT), and fixed-line

networks has considerably increased the significance of reliability and latency

requirements within the telecommunications sector. Communication Service

Providers (CSPs) encounter emerging challenges in optimizing reliability and

latency to support Ultra-Reliable Low Latency Applications (URLLA). These

applications include autonomous driving, remote surgery, tele-operated driving,

and virtual reality. Simultaneously enhancing both reliability and latency poses

a significant challenge, as enhancing reliability may potentially lead to

increased latency. Furthermore, the limited availability of physical network

resources increases the complexity of this endeavor.

Network Function Virtualization (NFV) is a promising technology that has

the potential to overcome some of the limitations associated with conventional

network architectures, thereby enabling URLLC. The integration of NFV with

Software-Defined Networking (SDN) represents a revolutionary technological

advancement that has the capacity to fundamentally transform existing network

designs. NFV is the deployment of network functions as virtual software

running on standard hardware. By decoupling network functions from dedicated

hardware in NFV, greater network performance and management flexibility can

be achieved. NFV relies heavily on Service Function Chain (SFC) deployment

to realize network services. SFC refers to delivering a network service to a

customer, which requires that different network functions be concatenated in a

specific order. See Chapter 1 for more information. Although NFV is a

promising technology for providing elastic network services, it is important to

note that there are several concerns related to its reliability and service quality.

This creates a new research problem known as the SFC deployment problem.

This problem is concerned with chaining Virtual Network Functions (VNFs)

Abstract

ii

while meeting SFC requirements such as latency, reliability, physical resource

consumption, power consumption, etc. CSPs must have optimal and efficient

SFC embedding techniques for embedding SFC requests to enable URLLC.

Chapter 1 provides more information.

The goal of this study is to address URLLC in an NFV-enabled network. After

analyzing state-of-the-art studies in the field of NFV (see Chapter 2), we

identified a crucial research obstacle. Consequently, we defined our goal to

simultaneously optimize reliability and latency in the SFC deployment phase.

We offer a novel and efficient SFC embedding technique that aims to enhance

the reliability and latency of URLLA simultaneously. Mathematically, we

formulate the SFC deployment problem as an integer-linear-programming

optimization model to obtain exact numerical solutions. More information can

be found in Chapter 4. In our optimization model, we propose an adjustable

priority coefficient factor and flow prioritization to reserve a portion of physical

network resources (bandwidth, RAM memory, and CPU) exclusively for

embedding URLLA to significantly optimize their deployment paths. Since

obtaining exact numerical solutions is time-consuming, we provide a set of

heuristics and relaxed versions for addressing the scalability issue, reducing

execution time, and producing results that are close to optimal for large-scale

network topologies. Chapter 5 provides further information about heuristic

approaches. In this study, we explore both static and dynamic service function

chaining; further information is provided in Chapter 1. The performance

evaluations reveal that our proposed algorithms considerably outperform the

existing approaches in terms of end-to-end delay, reliability, bandwidth

consumption, and SFC acceptance rate. See Chapter 6 for more details.

Kurzfassung

iii

Kurzfassung

Die zunehmende Nutzung von Ultra-Reliable Low Latency Communication

(URLLC) in 5G/6G-Netzen, dem Internet der Dinge (IoT) und Festnetzen hat

die Bedeutung von Zuverlässigkeits- und Latenzanforderungen im

Telekommunikationssektor erheblich gesteigert. Kommunikationsdienstleister

stehen vor neuen Herausforderungen bei der Optimierung von Zuverlässigkeit

und Latenz, um Ultra-Reliable Low Latency Applications (URLLA) zu

unterstützen. Zu diesen Anwendungen gehören autonomes und ferngesteuertes

Fahren, Fernchirurgie und virtuelle Realität. Die gleichzeitige Verbesserung der

Zuverlässigkeit und der Latenzzeit stellt eine große Herausforderung dar, da die

Verbesserung der Zuverlässigkeit möglicherweise zu einer Erhöhung der

Latenzzeit führen kann. Darüber hinaus erhöht die begrenzte Verfügbarkeit von

physischen Netzwerkressourcen die Komplexität dieses Unterfangens.

Network Function Virtualization (NFV) ist eine vielversprechende

Technologie, die das Potenzial hat, einige der mit klassischen

Netzwerkarchitekturen verbundenen Einschränkungen zu überwinden und

damit URLLC zu ermöglichen. Die Integration von NFV mit Software-Defined

Networking (SDN) stellt einen revolutionären technologischen Fortschritt dar,

der das Potenzial hat, bestehende Netzwerkdesigns grundlegend zu verändern.

NFV ist die Bereitstellung von Netzwerkfunktionen als virtuelle Software, die

auf Standardhardware läuft. Durch die Entkopplung der Netzwerkfunktionen

von dedizierter Hardware in NFV kann eine höhere Netzwerkleistung und

Managementflexibilität erreicht werden. NFV stützt sich in hohem Maße auf

die Bereitstellung von Service Function Chain (SFC), um Netzwerkdienste zu

realisieren. SFC bezieht sich auf die Bereitstellung eines Netzwerkdienstes für

einen Kunden, der die Verkettung verschiedener Netzwerkfunktionen in einer

bestimmten Reihenfolge erfordert. Siehe Kapitel 1 für weitere Informationen.

Obwohl NFV eine vielversprechende Technologie für die Bereitstellung von

Kurzfassung

iv

elastischen Netzwerkdiensten ist, gibt es einige Bedenken hinsichtlich ihrer

Zuverlässigkeit und Servicequalität. Daraus ergibt sich ein neues

Forschungsproblem, das als “SFC Deployment Problem” bekannt ist. Bei

diesem Problem geht es um die Verkettung von Virtual Network Functions

(VNFs) unter Einhaltung spezifischer SFC-Anforderungen wie Latenz,

Zuverlässigkeit, Verbrauch physischer Ressourcen, Stromverbrauch usw.

Kommunikationsdienstleister müssen über optimale und effiziente SFC-

Einbettungstechniken für die Einbettung von SFC-Anfragen verfügen, um

URLLC zu ermöglichen. Kapitel 1 enthält weitere Informationen.

Das Ziel dieser Dissertation ist es, URLLC in einem NFV-fähigen Netzwerk

zu adressieren. Nach der Analyse der neuesten Studien im Bereich NFV (siehe

Kapitel 2) haben wir ein entscheidendes Forschungshindernis identifiziert.

Daher haben wir unser Ziel definiert, die Zuverlässigkeit und Latenz in der SFC-

Einführungsphase gleichzeitig zu optimieren. Wir bieten einen innovativen und

effizienten SFC-Embedding-Algorithmus an, der darauf abzielt, die

Zuverlässigkeit und die Latenzzeit von URLLA gleichzeitig zu verbessern.

Mathematisch formulieren wir das SFC-Deployment-Problem als ein

Optimierungsmodell der "Integer-Linear-Programming", um exakte optimale

Ergebnisse zu erzielen (weitere Informationen finden Sie in Kapitel 4). In

unserem Optimierungsmodell bieten wir eine Priorisierung der Flows an und

schlagen einen einstellbaren Prioritätsfaktor vor, um einen bestimmten Anteil

der physischen Netzwerkressourcen (Bandbreite, RAM-Speicher und CPU)

ausschließlich für die Integration von URLLA zu reservieren. Da die Ermittlung

exakter numerischer Lösungen zeitaufwändig ist, bieten wir eine Reihe von

Heuristiken und Relaxed-Versionen an, um das Problem der Skalierbarkeit zu

lösen, die Rechenzeit zu verringern und Ergebnisse zu erzielen, die für große

Netzwerktopologien nahezu optimal sind. Kapitel 5 enthält weitere

Informationen über heuristische Methoden. In dieser Studie untersuchen wir

Kurzfassung

v

sowohl das statische als auch das dynamische Service-Function-Chaining

(weitere Informationen finden Sie in Kapitel 1). Die Leistungsbewertungen

zeigen, dass die von uns vorgeschlagenen Algorithmen die bestehenden

Methoden in Bezug auf die Ende-zu-Ende-Latenz, die Zuverlässigkeit, den

Bandbreitenverbrauch und die SFC-Akzeptanzrate übertreffen; siehe Kapitel 6

für weitere Details.

vi

Table of Contents

vii

Table of Contents

Abstract ... i

Kurzfassung ...iii

Table of Contents ... vii

Acronyms ... x

List of Figures ...xiii

List of Tables .. xv

List of Publications ... xvi

List of Supervised Theses .. xvii

1 Introduction ... 1

1.1 Network Function Virtualization .. 3

1.2 Software Defined Networking .. 10

1.3 Research Problem ... 12

1.4 Scientific Contributions .. 16

1.5 Outline .. 17

2 Related Work .. 19

2.1 Background Information... 19

2.1.1 Optimization Models ... 20

2.1.2 Shortest Path Algorithms ... 22

2.2 Ultra-Low Latency Communication ... 25

2.3 Ultra-Reliable Low Latency Communication 28

2.4 Dynamic Service Function Chaining .. 31

2.5 Conclusion .. 34

Table of Contents

viii

3 System Model ... 35

3.1 Ultra-Low Latency Communication .. 35

3.2 Ultra-Reliable Low Latency Communication 38

3.3 Dynamic Service Function Chaining ... 42

4 Integer-Linear-Programming Optimization Model 47

4.1 Ultra-Low Latency Communication .. 47

4.2 Ultra-Reliable Low Latency Communication 57

5 Heuristic SFC Embedding Algorithms .. 65

5.1 Fast Application-Aware SFC (FAS) Algorithm 66

5.2 Near-Optimal Reliability- and Application-Aware SFC (NORAAS)

Algorithm ... 71

5.3 Dynamic Application Aware SFC (DAAS) Algorithm 75

5.4 Nearest Service Function First (NSF) Algorithm 85

5.5 Greedy Algorithm .. 86

6 Performance Evaluations ... 91

6.1 Ultra-Low Latency Communication .. 92

6.2 Ultra-Reliable Low Latency Communication 100

6.3 Dynamic Service Function Chaining ... 107

7 Conclusion and Future Work ... 117

7.1 Conclusion ... 118

7.2 Future Work ... 120

Appendix ... 123

A.1. Implementation of the ORAAS algorithm in Python 123

A.2. Implementation of the NORAAS algorithm in Python 131

Table of Contents

ix

A.3. Implementation of the DAAS algorithm in Python 140

Acronyms

x

Acronyms

5G The Fifth Generation (5G) of Mobile Communication

6G The Sixth Generation (6G) of Mobile Communication

API Application Program Interface

BFS Breadth-First Search

BGP-LS Border Gateway Protocol-Link State

BIP Binary Integer Programming

BRAS Broadband Remote Access Server

BSS Business Support System

CAPEX Capital Expenditure

CDN Content Delivery Network

CPU Central Processing Unit

CSP Communication Service Provider

DAAS Dynamic Application-Aware SFC

DC Data Center

DDoS Distributed Denial of Service

DPI Deep Packet Inspection

EM Element Management

ETSI European Telecommunications Standards Institute

FAS Fast Application-Aware SFC

FW Firewall

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

HW Hardware

IDS Intrusion Detection System

ILP Integer Linear Programming

Acronyms

xi

IoT Internet of Things

ISP Internet Service Provider

KPI Key Performance Indicator

MANO Management and Orchestration

MILP Mixed Integer Linear Programming

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NORAAS Near-Optimal Reliability- and Application-Aware SFC

NSF Nearest Service-Function First

OAS Optimal Application-Aware SFC

OPEX Operational Expenditure

ORAAS Optimal Reliability- and Application-Aware SFC

OSS Operation Support System

PCEP Path Communication Element Communication Protocol

PE Router Provider Edge Router

PNF Physical Network Function

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

REST API Representational State Transfer API

SDN Software Defined Networking

SFC Service Function Chain

SGSN Serving GPRS Support Node

SW Software

TM Traffic Monitor

URLLA Ultra-Reliable Low Latency Applications

Acronyms

xii

URLLC Ultra-Reliable Low Latency Communication

VM Virtual Machine

VNF Virtual Network Function

WAN Wide Area Network

List of Figures

xiii

List of Figures

Figure 1. Traditional hardware middleboxes [5]. .. 2

Figure 2. Network function virtualization [10]. ... 4

Figure 3. Conventional network service delivery [9]. 5

Figure 4. NFV based network service delivery [9]. ... 5

Figure 5. NFV reference architecture framework proposed by ETSI [1]. 7

Figure 6. An example of an SFC request. .. 10

Figure 7. Architecture of SDN [22]. .. 12

Figure 8. An example of a physical link reservation. 14

Figure 9. Gridnet network topology [60]. .. 36

Figure 10. Reliability of an SFC request. ... 39

Figure 11. EliBackbone network topology [60]. .. 43

Figure 12. End-to-end delay (the first phase of the study)............................... 94

Figure 13. Bandwidth utilization (the first phase of the study). 96

Figure 14. Average end-to-end delay over proportion of high-priority SFCs to

the total SFCs (the first phase of the study). .. 97

Figure 15. SFC acceptance rate (the first phase of the study). 98

Figure 16. Average end-to-end delay over reserved physical resources (the first

phase of the study). .. 99

Figure 17. Average end-to-end delay (the second phase of the study). 103

Figure 18. Bandwidth consumption (the second phase of the study). 104

Figure 19. Average end-to-end delay over reserved physical resources for high-

priority SFC requests (the second phase of the study). 105

Figure 20. SFC acceptance rate (the second phase of the study). 106

Figure 21. Average reliability over varying the number of required VNFs (the

second phase of the study). .. 107

Figure 22. Average end-to-end delay (the third phase of the study). 110

List of Figures

xiv

Figure 23. Bandwidth consumption (the third phase of the study). 111

Figure 24. Average path length (the third phase of the study). 112

Figure 25. SFC acceptance rate (the third phase of the study). 113

Figure 26. Average end to end delay over varying proportion of high-priority

SFCs to the total SFCs (the third phase of the study). 115

Figure 27. Average reliability (the third phase of the study). 116

List of Tables

xv

List of Tables

Table 1. Symbols and variables used in the first phase of our study. 50

Table 2. Symbols and variables used in the second phase of our study 58

Table 3. Symbols and variables used in the third phase of our study 77

List of Publications

xvi

List of Publications

1. Sam Erbati (Mohammad Mohammadi Erbati) and Gregor Schiele,

"Application- and reliability-aware service function chaining to support

low-latency applications in an NFV-enabled network," in IEEE NFV-

SDN, November 2021.

2. Sam Erbati (Mohammad Mohammadi Erbati), Mohammad Mahdi

Tajiki, Faramarz Keshvari, and Gregor Schiele, "Service function

chaining to support ultra-low latency communication in NFV," IEEE-

International Conference on Broadband Communications for Next

Generation Networks and Multimedia Applications (CoBCom), p. 8,

July 2022.

[Wining Gold-Award at CoBCom2022]

3. Sam Erbati (Mohammad Mohammadi Erbati) and Gregor Schiele, "A

novel reliable low-latency service function chaining to enable URLLC

in NFV," The 9th IEEE International Conference on Communications

and Networking (IEEE ComNet’2022), p. 8, 1-4 November 2022.

4. Sam Erbati (Mohammad Mohammadi Erbati) and Gregor Schiele, "A

novel dynamic service function chaining to enable URLLC in NFV," The

17th ConTEL – INTERNATIONAL CONFERENCE ON

TELECOMMUNICATIONS, p. 8, 11-13 July 2023.

5. Sam Erbati (Mohammad Mohammadi Erbati), Mohammad Mahdi

Tajiki and Gregor Schiele, "Service function chaining to support ultra-

low latency communication in NFV," MDPI-electronics journal, p. 26,

September 2023.

List of Supervised Theses

xvii

List of Supervised Theses

1. Faramarz Keshvari. “Investigation of the Reliability of Service Function

Chains in an NFV-enabled Network”. Bachelor’s thesis, University of

Duisburg-Essen, 2022.

2. Yuning Zhu. “Investigation of online service function chaining to

support low latency network services in an NFV environment”. Master’s

thesis, University of Duisburg-Essen, 2023.

A cooperation between Telekom Deutschland GmbH and the University

of Duisburg-Essen.

xviii

Introduction

1

1 Introduction

The telecommunications sector is an essential component of the modern

world and has continued to grow each year. Its infrastructure, which includes

both wired and wireless networks, is responsible for the delivery of data

communications to users. In the coming years, the demand for

telecommunications infrastructure will be greater than ever, as each year brings

new services with varying Service Level Agreements (SLAs). One of the main

advancements in this regard is the emergence of Ultra-Reliable Low Latency

Communication (URLLC) services, which promise to deliver unprecedented

levels of reliability and latency in data transfer. Each year, the telecom

infrastructure must enable better communication, reduce latency, improve

reliability, improve bandwidth, and boost connectivity speed. To stay

competitive and ahead of the competition, Communication Service Providers

(CSPs) must adjust, adapt, and expand their network services, offerings, and

business models. CSPs consist of Telecommunications, Internet Service

Providers (ISPs), Data Centers (DCs), Enterprises, and the Cloud, which supply

and enable communication services. To this end, it is essential for CSPs to

continually discover innovative, effective methods for meeting different SLAs

[1, 2, 3].

To provide a network service to customers, it is necessary to direct their

traffic to pass through different hardware middleboxes in a specified order.

Traditionally, these hardware middleboxes providing Network Functions (NFs)

such as Traffic Monitor (TM), Firewall (FW), Deep Packet Inspection (DPI),

Network Address Translation (NAT), and Intrusion Detection System (IDS) are

realized on dedicated hardware equipment, see Figure 1. Due to the fact that the

hardware equipment is physically present, they are also known as Physical

Introduction

2

Network Functions (PNF). In this arrangement, a PNF has access to the full

CPU power and memory for the execution of its task, even if complete access

is not necessary depending on network demand [4].

Figure 1. Traditional hardware middleboxes [5].

Traditional network deployment is expensive to implement, and the

deployment of network devices is also expensive and requires a significant

investment in hardware from the network operator. Its operational expenditure

is also high, and it is complex to manage. Since network functions are hardware-

based and implemented on the underlying infrastructure, adjusting the topology

of a network service, such as adding or removing network functions, demands

reconfiguring the underlying physical topology, which is a highly complex and

error-prone process. Traditional networks are also inflexible; due to the strong

coupling between network functions and physical topology, it is extremely

difficult to reconstruct the network to accommodate a new topology or service.

Changing the service's logical network topology necessitates configuration

adjustments. Traditional network deployment suffers from inefficient resource

Introduction

3

utilization. When constructing a network service, it is necessary to allocate

additional network resources in the event that future resource demand increases.

Due to a shift in traffic patterns, computing and bandwidth resources may be

underutilized. Due to the dependence of network functions on topology, the

reconfiguration of network function chaining in a production environment is

both impractical and costly [6, 7, 8].

In recent years, with the rising usage of URLLC applications in 5G/6G

networks, the Internet of Things (IoT), and fixed-line networks, such as

autonomous vehicles, remote surgery, tele-operated driving, virtual reality,

augmented reality, and industrial automation, reliability and latency

requirements have become even more crucial for CSPs. To fulfill new

applications needs and overcome the limitations of traditional network

infrastructure, the telecom sector must advance. Network Function

Virtualization (NFV) and Software Defined Networking (SDN) are two

emerging technologies that have the potential to significantly transform the

telecommunications sector. These technologies offer complementary solutions

to address the evolving service demands and the limitations of existing network

architectures. Providing a multipurpose platform that can handle a wide range

of services with varying requirements over a shared infrastructure is one of the

primary challenges. The implementation of a platform that enables the

establishment of a virtual network for each service on a shared infrastructure

can be achieved through the process of slicing. In the next section, we will go

deeper into NFV and SDN and explain how they might overcome the limitations

of traditional network architectures.

1.1 Network Function Virtualization

NFV is now recognized as a technology with the potential to revolutionize

Introduction

4

traditional network design and overcome some of its limitations. In November

2012, NFV was established by the seven most important telecom network

providers. The European Telecommunications Standards Institute [ETSI] has

been producing NFV standards since 2012 and is currently recognized as the

most influential standardization group in this sector. The NFV architecture

provided by the ETSI contributes to NFV implementation standardization. To

provide greater stability and interoperability, each architectural component is

based on these standards. NFV is the implementation of specific network

functions as virtual software operating on standard hardware. It replaces the

dedicated hardware platforms with software implementations by Virtual

Network Functions (VNFs) in a virtualized environment. Figure 2 illustrates the

network virtualization approach [9].

Figure 2. Network function virtualization [10].

Introduction

5

VNFs are realized in software and placed on containers, general-purpose

Virtual Machines (VMs), or CPUs on commercial-off-the-shelf equipment such

as x86 servers within the cloud infrastructure. This indicates that network

functions are executed as applications on virtual machines in Data Centers

(DCs). This changes how network operators may deliver their services.

Depending on the needs, a network operator can operate the same function in a

centralized cloud in order to save expenses or decentralized in a cloud edge

closer to the user to minimize latency. Figure 3 and 4 show the transformation

of network service delivery from a traditional network function approach to an

NFV-based strategy. This change can be seen in both figures. Figure 3 depicts

a traditional implementation of a network service in which each network

function uses its own dedicated hardware. On the other hand, Figure 4 illustrates

Figure 3. Conventional network service delivery [9].

Figure 4. NFV based network service delivery [9].

Introduction

6

an NFV-based approach, in which network services are virtualized and make

use of generic hardware to provide the desired service [11, 12, 13].

NFV consequently benefits from all the advantages provided by

virtualization, regardless of the application in question. The CPU and memory

capacities can be adjusted with great flexibility. The ability to dynamically

modify the resources allocated to a VNF based on the level of utilization

improves the scalability of the VNF. A VNF can be provisioned far faster than

a PNF due to the absence of mechanical work (transporting, configuring, and

connecting the hardware to the network). This can be enhanced with automated

processes that operate without human interaction and are coupled with

considerable network simplification (operation). There is no need for

mechanical intervention (field service) in the case of a failure. A VNF is entirely

software. Therefore, the evolution of the VNF is independent of the hardware.

Specifically, the developer of VNF software should be able to respond more

quickly to the needs of his clients. The system is programmable via Application

Program Interfaces (APIs), making it accessible to third-party programs that,

for instance, provide a control function. The following is a brief summary of

some of the benefits of NFV implementation:

• Enhancing network flexibility

• Enhancing the utilization of the CPU and memory capacity of the hosts

• Enhancing the scalability of a VNF

• Enhancing the dynamic allocation of resources based on the demand for

a VNF

• Enhancing centralized management of the NFV infrastructure

• Enhancing operational efficiencies

• Enhancing the pace of service innovation

Introduction

7

• Reducing Operational Expenses (OPEX)

• Reducing Capital Expenses (CAPEX)

• Enhancing the simplification of network operation and fault handling

Figure 5 presents the basic architecture of NFV proposed by ETSI, which

consists of three main components [1]:

1. Virtual Network Function (VNF)

2. Network Function Virtualization Infrastructure (NFVI)

3. NFV Management and Orchestration (MANO)

Figure 5. NFV reference architecture framework proposed by ETSI [1].

Virtual Network Function (VNF): A VNF is the basic block in the NFV

architecture. It virtualized network functions such as the DHCP server, firewall,

router, IDS, and DPI. It runs on one or more virtual machines on top of the

hardware networking infrastructure. VNFs are deployed on-demand,

Introduction

8

eliminating the deployment delays associated with traditional network hardware

[14].

NFV Infrastructure (NFVI): NFVI is as important as any other functional

block to realize the business benefits provided by the NFV architecture. It

provides the real physical resources and associated software upon which VNFs

can be installed. The NFVI generates a virtualization layer that is placed directly

on top of the hardware and abstracts the HW resources. This allows the HW

resources to be logically partitioned and delivered to the VNF so that it may

carry out its functions. Building increasingly complex networks without the

geographic limits of traditional network topologies requires NFVI, which is

another reason why it is so important [14].

Management and Orchestration (MANO): NFV MANO controls

resources, including the NFVI and VNFs, running in a virtualized data center,

such as computation, networking, storage, and virtual machines. NFV MANO

employs templates for standard VNFs to enable architects to select the necessary

NFVI deployment resources. The following are the three functional areas that

make up NFV MANO [15]:

1. NFV Orchestrator: It is responsible for the onboarding of VNFs, the

management of their lifecycles, the management of global resources, and

the validation and authorization of resource requests made by NFVI.

2. VNF Manager: It is in charge of managing the lifecycle of VNF

instances, and it also plays a role in coordinating and adapting the

configuration of NFVI and Element/Network Management Systems.

3. Virtual Infrastructure Manager: The NFVI computing, storage, and

network resources are under the control and management of Virtual

Infrastructure Manager.

Introduction

9

As a result, because we are investigating the optimal orchestration of service

function chains to improve network service quality, it is clear that our research

is focused on the MANO component.

OSS (Operation Support System): It is a software component that gives a

service provider the ability to manage, monitor, control, and analyze the

services that are provided on its network. Together with a business support

system, these software programs enable the majority of customer-facing

operations, such as ordering, billing, and support [14].

BSS (Business Support System): Business support systems (BSS) are the

conventional term for business and/or customer-facing functions. BSS

platforms are utilized by service providers and telecom operators to supply

revenue management, product management, customer management, and order

management applications, which aid in the administration of their businesses

[14].

EM (Element Management): Element Management provides standard

management functions for a single or several VNFs. It is responsible for the

lifecycle management of VNFs [14].

To realize network services, NFV primarily relies on the deployment of

Service Function Chains (SFCs). An SFC request is a sequence of VNFs that

must be concatenated in a predefined order to deliver a network service to a

client. Figure 6 illustrates an example of an SFC request comprising two VNF

instances, namely VNFa and VNFc. These VNF instances are required to be

concatenated in a predetermined sequence, with VNFa being processed first,

followed by VNFc. The role of the SFC orchestrator is to effectively manage

and direct network traffic in order to ensure the successful delivery of its

designated service. NFV facilitates the virtualization of network functions,

transforming them into VNFs. SFC allows various VNFs to be concatenated to

Introduction

10

provide a network service. The SFC deployment problem is one of NFV's most

significant problems, requiring further advancements [16, 17, 18, 19].

Figure 6. An example of an SFC request.

1.2 Software Defined Networking

Through the separation of data forwarding from network control, Software-

Defined Networking (SDN) facilitate centralized network management and

dynamic reconfiguration, thereby providing improved agility, scalability, and

programmability. SDN-enabled-networks support NFV to control the

forwarding of traffic and reduce management complexity. SDN separates the

data plane form the control plane. In SDN environment, the control plane is

centralized and programmable, making network management and configuration

more agile and dynamic. The control plane and data plane of network hardware

Introduction

11

like switches and routers are intimately interwoven in traditional networking.

The control plane assumes the responsibility of making determinations

regarding the appropriate forwarding of network traffic, ascertaining the

optimal route for packets, and maintaining the integrity of routing tables. In

contrast, the data plane assumes the responsibility of effectively transmitting

data packets by executing the directives provided by the control plane.

SDN involves the abstraction of the control plane from the underlying

network devices and the centralization of control functions in a software-based

controller. The act of separating network management facilitates a more

adaptable and customizable method, enabling the ability to dynamically

regulate network behavior. Network engineers are able to configure all of the

different portions of the virtual network using a hypervisor or SDN controller,

and they can even automate the process of establishing the network. Within

minutes, IT administrators are able to set up a variety of components for the

operation of the network. SDN decouples the control plane from the data plane.

It enables a controller to centrally manage a network. A portion of the control

plane (or, in severe circumstances, the complete control plane) is passed to the

controller. The entire data plane stays on the PNFs. The controller interacts with

the PNFs using southbound protocols such as OpenFlow, PCEP, BGP-LS, and

a REST API. The controller can be programmed through a Northbound API.

Figure 7 presents the basic architecture of SDN. Despite the fact that NFV and

SDN are separate technologies, they are frequently used in conjunction to reap

greater benefits and enhance overall network capabilities [20, 21].

After learning the fundamental information about NFV, SDN, VNF, and SFC

and their relationships among one another, we go on to detail the research

problem, the goal of this study, and our proposed solutions to overcome the

research problem in the following sections.

Introduction

12

Figure 7. Architecture of SDN [22].

1.3 Research Problem

As stated in the preceding section, to implement network services, NFV

strongly relies on SFC deployment. To deliver an end-to-end service to a client,

an NFV-enabled network must direct traffic via several VNFs deployed on top

of the virtualization layer. This creates a new research problem referred to as

the SFC deployment problem. This problem is concerned with chaining VNFs

while meeting SFC requirements such as latency, physical resource

consumption, power consumption, etc. To address SFC deployment problem, a

VNF chaining algorithm must be developed that is specifically engineered using

the most efficient approach instead of a random process. Various studies have

tackled the SFC deployment problem with different objectives (see Chapter 2),

Introduction

13

but more developments are still required to enable URLLC in an NFV-enabled

network [23, 24, 25].

In recent years, URLLC has attracted a great deal of interest due to the

growing use of Ultra-Reliable Low Latency Applications (URLLA) such as

autonomous vehicles, remote surgery, tele-operated driving, virtual reality,

augmented reality, and industrial automation [26]. Consequently, addressing

URLLC in NFV-enabled networks to optimize reliability and latency

requirements has attracted significant research interest. It is extremely difficult

to achieve both high reliability and low latency simultaneously. Increasing

reliability may result in a rise in latency, and limited physical network resources

make it even more challenging. The limited availability of VNF instances and

physical network resources, including CPU, RAM memory, and bandwidth,

within the CSP's network, adversely affects latency. By analyzing the recent

studies, we discovered that backup techniques and using redundant components

are often proposed to boost reliability, while latency-aware service function

chaining is proposed to minimize latency. More information can be found in

Chapter 2. To this end, we provide a novel solution to address URLLC in an

NFV-enabled network without using backup techniques. In general, we focus

on two challenges in our study: first, optimizing the concatenation of VNF

instances with respect to Quality of Service (QoS) and utilization of physical

network resources; and second, optimizing resource allocation with respect to

the priority of SFC requests.

Figure 6 shows an example of an SFC request, which each SFC request

originating from a source node and ending at a destination node. Each SFC

request may contain several VNF types (e.g., a, b, c, d, etc.), which need to be

concatenated in a specified order. We implement our proposed efficient physical

resource allocation for SFC deployment by utilizing flow prioritization and a

configurable priority coefficient factor. We classify SFC requests into those

Introduction

14

with a high-priority (URLLA) and those with a low-priority. Then, we reserve

an amount of physical network resources (bandwidth, RAM memory, and CPU)

using the priority coefficient factor for SFC requests with a high-priority in

order to improve their QoS explicitly. Figure 8 illustrates the physical link

reservation exclusively for high-priority SFC requests. Memory and CPU usage

follow the same principles as bandwidth utilization. We also studied the impact

of varying the amount of reserved physical network resources for high-priority

SFC requests. Chapters 3 and 4 provide further details about our proposed

methodology. In this way, SFC requests with a high-priority can obtain a more

optimal deployment path and a higher quality of service in terms of latency and

reliability. We also take into account the maximum tolerable end-to-end delay

and reliability requirements for both high- and low-priority SFC requests to

minimize any negative side effects on low-priority SFC requests.

Figure 8. An example of a physical link reservation.

We mathematically formulate the SFC deployment problem as an Integer

Linear Programming (ILP) optimization model to obtain exact numerical

solutions (see Chapter 4). Since obtaining the exact numerical results for large-

scale network topologies is very time-consuming, we also offer a set of heuristic

algorithms and relaxed versions to obtain near-optimal solutions in an

acceptable time frame for large-scale network topologies. We describe the

heuristics in Chapter 5. In terms of end-to-end delay, reliability, bandwidth

usage, and SFC acceptance rate, the evaluation findings shown in Chapter 6

indicate that our proposed algorithms outperform the existing approaches. To

Introduction

15

address the SFC deployment problem and enable URLLC in an NFV-enabled

network, our study is divided into three phases:

1. Phase One: Ultra-Low Latency Communication (ULLC) Study: First, we

focus on the latency requirement. Our goal is to decrease latency for latency-

sensitive applications subject to physical network resource limitations. In

this phase, we disregard the requirement for reliability. We provide a novel

technique for minimizing latency in the SFC embedding phase, subject to

limits on the maximum tolerable end-to-end delay and physical network

resources. Chapters 4 and 5 provide more details.

2. Phase Two: Ultra-Reliable Low Latency Communication (URLLC) Study:

We incorporate the findings from the first phase along with reliability

constraints. Our goal is to optimize reliability and minimize latency for

URLLA. As stated previously, backup techniques and using redundant

components are typically proposed to boost reliability, but they may have a

negative effect on latency and cause it to increase. It is contradictory to our

goal. We propose a method for achieving our goal during the SFC

embedding phase without a redundant component; more details can be found

in Chapters 4 and 5.

3. Phase Three: Dynamic Service Function Chaining Study: In the first two

phases of our study, we deal with static SFC requests, similar to studies in

[27, 28] that imply SFC requests are static inputs and do not include arrival

and departure timings (lifetime). In the third phase of our research, we

examine dynamic service function chaining, similar to studies in [29, 30]. In

this phase, we apply our findings from the second phase of our study to a

dynamic SFC embedding scenario. In this case, we address URLLC in an

Introduction

16

NFV-enabled network in a dynamic scenario where each SFC request has an

arrival and departure time, or lifetime, to use physical network resources to

deliver its services; once the lifetime expires, the physical network resources

are made available for the subsequent SFC request. Chapter 5 provides more

information.

1.4 Scientific Contributions

We did an in-depth analysis of URLLC in an NFV-enabled network by

analyzing several state-of-the-art studies (see Chapter 2) and taking into account

open issues that require further development. The main goal of this dissertation

is to present a meticulously crafted methodology for the SFC deployment

problem to enable URLLC in an NFV environment. We made a number of

contributions to the relevant scientific communities, which are outlined below:

1. A novel and efficient service function chaining methodology: Using

flow prioritization and a configurable priority coefficient factor to reserve

physical network resources (bandwidth, RAM memory, and CPU), we

propose a novel and efficient SFC embedding approach that

simultaneously minimizes latency and optimizes reliability in the SFC

embedding phase.

2. Mathematical formulations of the SFC deployment problem: We

mathematically formulate the SFC deployment problem as an ILP

optimization model in order to find exact numerical solutions. To this end,

we consider the maximum tolerable end-to-end delay, the consumption

of physical network resources (bandwidth, RAM memory, and CPU),

reliability, and routing-related constraints.

Introduction

17

3. Set of heuristic approaches: We provide a set of heuristic algorithms

and relaxed versions for minimizing the execution time of the ILP

optimization model, making it applicable to large-scale network

topologies, and achieving near-optimal solutions with a minimum

optimality gap.

4. Conducting detailed performance evaluations: We conduct a detailed

examination of our proposed SFC embedding algorithms and demonstrate

that they significantly improve the end-to-end delay, reliability,

bandwidth consumption, and SFC acceptance rate compared to the

existing algorithms.

1.5 Outline

The remaining chapters of the dissertation are organized as follows: In

Chapter 2, we review related research and present an overview of state-of-the-

art works on the subject of SFC deployment problem. In Chapter 3, we discuss

the system model and assumptions behind our research. The fourth chapter

specifies the problem statement and mathematical formulations, which are

provided in the form of an ILP optimization model that takes diverse service

requirements into account. The fifth chapter details the proposed set of heuristic

algorithms for obtaining near-optimal solutions with minimal execution time

and an optimality gap. In Chapter 6, simulation results demonstrating

considerable improvements in terms of end-to-end delay, reliability, bandwidth

consumption, and SFC acceptance rate are shown. In Chapter 7, we conclude

our study and indicate a few areas requiring more investigation as future work.

In the appendix, we describe the Python codes.

Related Work

19

2 Related Work

In this chapter, we evaluate a number of relevant studies and emphasize their

key findings. Although various studies have approached the issue of SFC

deployment from various angles and with various goals, they need more

advancements to enable URLLC in an NFV-enabled network. Prior to

conducting a detailed analysis of relevant studies for each phase of our study,

we will first present a concise overview of the primary distinctions among

related studies. This will aid in enhancing our understanding of the various

methodologies employed in related literature.

The present chapter is structured in the following manner: In Section 2.1, we

provide a description of the primary distinctions between related studies and

emphasize the key attributes of each. Section 2.2 provides a comprehensive

review of the state-of-the-art studies associated with Ultra-Low Latency

Communication (the first phase of our study). In Section 2.3, a concise overview

of the scholarly investigations concerning Ultra-Reliable Low Latency

Communications will be presented (the second phase of our study). In Section

2.4, an analysis will be conducted on the existing research related to dynamic

service function chaining (the third phase of our study). In Section 2.5 of this

chapter, we present an analysis of the novelty and significance of our research,

highlighting its divergence from previous studies in the field.

2.1 Background Information

The SFC deployment problem is one of the primary challenges in NFV that

must be improved further. Diverse approaches have been proposed to optimize

the SFC deployment problem from different perspectives and with different

objectives, but these approaches still require additional developments. Due to

Related Work

20

the rapid growth of URLLA usage over the past several years, which requires

extremely low latency and high reliability, we see a significant need to tackle

emerging URLLC in NFV environments. In addition, the limited physical

network resources of network providers make it more challenging. Various

studies addressing service function chaining with low latency and high

reliability are reviewed below. To better comprehend these studies, it is

necessary to first emphasize and define their key distinctions; we detail some of

these differences in the following subsections.

2.1.1 Optimization Models

One area of divergence among the different studies applies to the

optimization model employed. The subsequent section presents a concise

summary of prevalent optimization models utilized for addressing the SFC

deployment problem. It outlines the fundamental characteristics associated with

these approaches.

• Linear Programming (LP) Model: Linear programming is a collection of

mathematical and computational tools that enable you to discover a specific

solution to this system that corresponds to the maximum or minimum of

another linear function. Linear programming is a technique that was

developed in the 1960s. In some of the research, the SFC deployment

problem is formulated using an LP model. The mathematical method known

as linear programming seeks to determine the values of decision variables in

a way that maximizes or minimizes the value of an objective function while

adhering to linear restrictions. It illustrates how the resources that are

available may be utilized in the most effective way possible. On the other

hand, mathematically determining the objective function and the restrictions

is a tough task. There is a chance that the objective function and the

restrictions will not be explicitly specified by linear in the equality of

Related Work

21

equations, but there is also a chance that they will be. Linear programming

is not suitable for problems where the decision variables must have integer

or binary values.

• Integer Linear Programming (ILP): ILP is a kind of optimization problem

with integer-valued variables, a linear objective function and equations. ILP

is an extension of linear programming. LP solvers are only able to work with

real numbers and cannot employ integers as variables. In instances where

variables must be whole numbers, integer restrictions allow ILP to offer

more realistic and useful answers. The complexity of solving integer

programming problems is typically greater than that of standard linear

programming problems, primarily due to the inclusion of discrete values,

which introduces additional complexities. In many cases, these problems

also become NP-hard, which makes them computationally difficult for

large-scale instances [31].

• Mixed Integer Linear Programming (MILP): One of the most cutting-edge

approaches to resolving the challenge of SFC deployment optimization is

the MILP method. MILP is a method for solving optimization issues that is

widely used since it is highly desirable and guarantees the discovery of

global optimality in linear problems, and has efficient solvers that are

commercially available. However, the MILP formulation suffers from a

number of severe drawbacks, the most notable of which are its inability to

take into account nonlinear effects and its need that all time periods be

considered concurrently. Despite the fact that you can approximate non-

linear functions using piecewise linear functions, employ semi-continuous

variables, represent logical restrictions, and more, there are some non-linear

functions that cannot be approximated. The complexity of a problem

increases as the combination of continuous and integer variables is

introduced, leading to computational demands for MILP, particularly in the

Related Work

22

case of large and intricate models. In comparison to conventional linear

programming, solving MILP problems may require advanced optimization

solvers and take longer.

• Binary Integer Programming (BIP): With binary integer programming,

optimization entails expressing a problem as a mathematical model that can

be resolved. Binary integer programming involves decision variables that

are restricted to taking on only two values: 0 or 1. This characteristic makes

it particularly suitable for addressing problems that involve binary decisions.

Consequently, the representation and interpretation of problems in binary

integer programming are simplified and more straightforward. It becomes

more difficult to tackle large-scale problems as the problem's combinatorial

complexity rises with the number of binary variables.

• Markov Decision Process (MDP): A decision-making paradigm called the

Markov Decision Process focuses on maximizing expected cumulative

rewards over time in unpredictable circumstances. MDP is suitable for

decision-making under uncertainty and reinforcement learning because it

offers a framework for determining the best policy that maximizes the

predicted cumulative reward. MDP problems can exhibit computational

complexity, particularly in cases where the state and action spaces are

extensive. This characteristic poses a significant difficulty in the search for

optimal solutions. In certain scenarios, the state space may exhibit extensive

characteristics, resulting in what is commonly referred to as the "curse of

dimensionality." This phenomenon entails a significant escalation in

computational resources needed to address the problem, which grows

exponentially in relation to the quantity of states involved [34].

2.1.2 Shortest Path Algorithms

Utilizing a proper algorithm to determine the shortest path between two

Related Work

23

nodes in a network topology is one of the major factors that contribute to getting

the optimum results. In a range of studies, researchers have made use of a

number of different algorithms in order to identify the shortest path. Following

is a brief summary of the most common algorithms:

• Breadth-First Search (BFS) Algorithm: The BFS is a graph traversal

algorithm that begins traversing the graph at the root node and searches all

adjacent nodes. When working with graphs that do not have weights

assigned to their edges, one of our primary concerns is constantly attempting

to cut down on the total number of edges that have been traversed. As a

consequence of this, we are certain that all of the immediate neighbors of

the source node have a distance that is equal to one. The following item that

we are able to determine with absolute certainty is that all of the nodes that

are considered to be the source node's second neighbors have a distance that

is equal to two, and so on. The BFS algorithm is applied to a straightforward

queue that we employ. The overall time complexity is denoted by the

notation O(V+E), where V represents the number of vertices and E

represents the total number of edges in the graph [32].

• Dijkstra Algorithm: When dealing with weighted graphs, it is not required

that adjacent nodes always have the shortest path between them. On the other

hand, the neighbor whose edge is the shortest is inaccessible by any route

that is shorter. The reason for this is that every other edge has a greater

weight, and passing through any of those edges would increase the distance

traveled significantly. This concept is used by Dijkstra's algorithm to devise

a Greedy solution to the problem. At each stage, we select the node that has

the path with the least distance. After adjusting this cost, we add the

neighbors of this node to the queue. As a result, the queue has to have the

capacity to rank the nodes included in it according to the lowest possible

cost. To accomplish this goal, we may think about employing a priority

Related Work

24

queue. Because we are only going to each node's neighbors one time, this

means that we are only going to visit edges once. Additionally, we have the

option of utilizing a priority queue that has a time complexity of O(logN)

for both the push and pop operations. As a result, the overall time complexity

is denoted by the notation O(V+E(logV)) [32].

• Greedy Algorithm: It is an algorithmic paradigm that creates a solution piece

by piece, constantly picking the next piece that delivers the greatest evident

and immediate benefit. Therefore, Greedy is best suited for solving

situations in which selecting a locally optimal solution also leads to a

solution at the global level. The Greedy technique is the strategy that is the

least complicated and most direct. It is not an algorithm, but rather an

approach that may be used instead. The most important feature of this

technique is that it allows a choice to be made on the basis of the information

that is now accessible. The choice is taken regardless of the knowledge that

is currently available, and there is no concern given to how the current

decision may affect events in the future. The total amount of time required

to complete the task is O(N × logN). It is quite tempting to adopt this method

because of its space and time complexity; nevertheless, there are no

assurances that it would deliver the most ideal accumulated reward. Despite

the fact that it is difficult in both space and time, it is very tempting to apply

it [33].

Consequently, we made the decision to utilize the Dijkstra algorithm in our

study, as it enables us to acquire the global optimal shortest path while taking

into account the propagation delay associated to the links. Following an

exploration of diverse strategies employed to tackle the issue of SFC

deployment, we proceed to examine the latest scholarly contributions in the

subsequent sections.

Related Work

25

2.2 Ultra-Low Latency Communication

As the number of applications that require ultra-low latency increases,

finding a solution to the SFC deployment problem has become both more

important and more difficult, calling for more advancements. Following are a

variety of approaches that have been proposed as a means of assisting ultra-low

latency applications. To enable latency-aware service function chaining, the

great majority of these approaches only consider the latency requirement of SFC

requests in conjunction with other objectives and constraints and choose the

shortest provisioning path that is still feasible.

Sun et al. [28] conducted research on low-latency and resource-efficient

orchestration of SFCs in an NFV environment. They offered an SFC

Deployment Optimization (SFCDO) algorithm based on a BFS algorithm for

determining the shortest path between the source node and the destination node

for all SFC requests and preferentially selecting the path with the shortest hops

to minimize the end-to-end delay. They compared the performance of their

proposed algorithms to the Greedy algorithm and the simulated annealing

algorithm and found that their proposed algorithms performed better in terms of

the average end-to-end delay and the average bandwidth consumption while

dealing with SFC requests of varying lengths and quantities. Alameddine et al.

[34] studied low-latency service schedule orchestration in NFV-based

networks. They address the Latency-Aware Service Schedule Orchestration

(LASSO) problem, which tackles the mapping and scheduling of services to

VNFs. They describe the problem as a MILP optimization model and provide

ENCHAIN, a unique game-theoretic technique that exploits a scalable solution

for the LASSO problem while allowing each network service to choose its own

mapping and scheduling solution.

Harutyunyan et al. [35] investigated latency-aware service function chain

placement in 5G mobile networks. Utilizing ILP techniques, they formulate and

Related Work

26

solve a joint user association, SFC placement, and resource allocation problem

in which SFCs consisting of virtualized service functions represent user-

requested services with specific E2E latency and data rate requirements. In

particular, they evaluate three implementations of an ILP-based method

designed to reduce E2E latency of requested services, service provisioning cost,

and VSF migration frequency, in that order. The authors then present a heuristic

for addressing the scalability problem of ILP-based solutions. Results from

simulations illustrate the efficacy of the suggested heuristic method. Sun et al.

[36] investigated a cost-efficient SFC orchestration for low-latency applications

in NFV networks. They introduced a heuristic approach called Closed-Loop

Feedback (CLF) that was designed to determine the shortest route to map an

SFC request while also taking into account the amount of resources that may be

saved. The performance of their algorithm was superior to that of two of their

rivals in terms of communication latency and deployment time. In [30], they

examined energy-efficient SFC provisioning with the goal of enabling delay-

sensitive applications inside an NFV setting. For dynamic SFC deployment,

they present an Energy-Aware Routing and Adaptive Delayed Shutdown

(EAR-ADS) algorithm. Latency- and capacity-aware placement of chained

virtual network functions was investigated by Hmaity et al. [37]. They address

two fundamental problems. The first consists of determining where VNFs will

be hosted (i.e., VNF placement), and the second consists of determining how to

properly direct network traffic to traverse the necessary VNFs in the correct

order (i.e., routing), thereby provisioning network services in the form of SFCs.

They presented and contrasted a variety of heuristic techniques with regard to

the lag time of the links and the computational power of the nodes.

In an SDN-based network, Tajiki et al. [27] conducted research on service

function chaining that was simultaneously energy-efficient and QoS-aware

(latency-aware). They took into account limitations on the maximum amount of

Related Work

27

end-to-end delay that could be tolerated, as well as link utilization and server

utilization. In order to do this, they model the problems of VNF placement,

allocation of VNFs to flows, and flow routing as ILP optimization problems.

Because the formulated problems cannot be solved (using ILP solvers) in

timescales that are acceptable for realistic problem dimensions, they design a

set of heuristics to find near-optimal solutions in timescales that are suitable for

practical applications. These heuristics allow us to solve the problems in a

manner that is acceptable for real-world applications. They carry out a

numerical analysis to determine how well the suggested algorithms function

across a real-world topology and in a variety of network traffic patterns. Their

findings demonstrate that the suggested heuristic algorithms may produce near-

optimal solutions (with an optimality-gap of no more than 14%), and that their

execution duration makes them suitable for use in actual networks. Li et al. [38]

did a study on cost- and QoS-based NFV service function chain mapping

mechanisms. They proposed a Greedy algorithm for service mapping. They

examined cost- and QoS-based NFV service function chain mapping

mechanisms and proposed a mathematical model with the goal of cost

optimization and QoS assurance. They achieved higher deployment benefits

while ensuring QoS requirements.

Fountoulakis et al. [39] did an end-to-end performance analysis for service

chaining in a virtualized network. They note that the outcomes of the simulation

and the analysis are consistent with each other. They provide insights for the

decision-making process on traffic flow control and its influence on crucial

performance indicators by assessing the system in a variety of different

situations and then providing those results. Han et al. [40] studied a service

function chain deployment method based on network flow theory for load

balance in operator networks. They proposed an algorithm to meet the demands

of load balance, low delay, and efficient utilization of substrate resources in

Related Work

28

operator networks. Wang et al. [41] studied service function chain composition

and mapping in NFV-enabled networks. Utilizing the resource efficiently is one

of the greatest obstacles to adopting SFC. In this study, they examine the

composition and mapping of the SFC in consideration of resource optimization.

The SFC composition and mapping issue is represented as a weighted graph

matching problem. Then, they present a Hungarian-based method to

coordinately solve the SFC composition and mapping problem. In [42], Pham

et al. studied traffic-aware and energy-efficient VNF placement for service

chaining. Luizelli et al. [43] proposed a heuristic approach for VNF placement

and chaining that aims to minimize required resource allocation while meeting

network flow requirements. Additionally, we profited from research in [44, 45,

46], which give a good understanding of how to approach URLLC in NFV with

a wide range of objectives.

2.3 Ultra-Reliable Low Latency Communication

In the second phase of our study, we take into account the reliability

constraint so that we may satisfy the criteria of URLLC in a network that is

enabled for NFV. There are various ways to raise reliability, and while a backup

technique is typically suggested as a way to increase the reliability of various

components in an NFV environment, we will go through some of the other

available options in the following. In the event that either the hardware or the

software fails, a redundant component can be swapped in its place in order to

extend the amount of time the system is available for use. However, enhancing

the system's reliability by adding features that are redundant may have the

opposite effect on latency and cause the system to become more complex. This

method also necessitates additional physical network resources, which is a

disadvantage. In what follows, we will take a look at some of the most recent

and cutting-edge studies that deal with the issue of reliability constraints and

Related Work

29

make an effort to increase reliability.

Zhou et al. [47] looked at the possibility of parallelizing network functions

to achieve high reliability and low latency in service delivery. They were able

to increase the reliability of the service by adding backup VNF nodes, while

simultaneously reducing the flow latency through the use of parallel network

function processing. They decided to approach the issue by posing it as an

integer programming problem with the objective of reducing the amount of

reserved computation and bandwidth resources while maintaining the same

level of end-to-end latency and service reliability. They solved the issue by

modeling it as a MDP model and then applying a reinforcement-learning

method to it. Yin et al. [48] did a study on the SFC placement problem while

guaranteeing availability. They are concentrating on finding a solution to the

issue of SFC placement inside the Mobile-Edge-Computing-NFV system while

maintaining reliability. They came up with a backup model to increase the

availability of SFC. In addition to this, they provide a placement strategy for

SFC that is based on Dynamic Programming (DP). The results of the evaluation

reveal that their proposed solutions perform better than the existing techniques

with regard to the guarantee of availability and the optimization of resources.

The topic of reliability-focused and resource-efficient SFC construction and

backup was discussed in the paper by Wang et al. [49]. They investigated how

the building phase of the SFC affected the reliability of the system. In order to

combine several SFCs into a Service Function Graph (SFG) and perform

reliability screening for the SFG set, they presented an algorithm called the

Instance-Sharing and Reliable Construction Algorithm (ISRCA). After that, an

algorithm for ranking nodes that takes into account centrality and reliability,

called NRCR is suggested for use in selecting backup nodes. Qu et al. [50]

investigated reliability-aware VNF chain placement and flow routing

optimization. This study presents an in-depth analysis of simultaneous VNF

Related Work

30

chain placement and flow routing optimization that takes into account the

importance of reliability. An incremental method is provided as a means of

determining the number of necessary VNF backups. This is done with the

intention of ensuring the requisite level of reliability. This study argues for the

existence of a VNF assignment technique that is based on the sharing of

resources and is capable of trading off all of the reliability, bandwidth, and

computing resources that are consumed by a particular service chain. It is

suggested to use a heuristic in order to get around the complexity of the already

formulated ILP model.

In [51], Kaliyammal-Thiruvasagam et al. studied the reliability-aware, delay-

guaranteed, and resource efficient placement of SFCs in softwarized 5G

networks. Within the scope of this study, the authors tackle the challenge of

solving the reliability-aware, delay-guaranteed, and resource-efficient SFC

placement problem in 5G networks that are being softwarized. First, in order to

improve the reliability of an SFC that does not use backups, they suggest a new

way of subchaining an SFC. They add backups to the VNFs in order to fulfill

the reliability requirement if, after using the subchaining approach, the criterion

for reliability is not met. After that, they turn the problem of reliable SFC

placement into an ILP problem in order to solve it in the most effective manner

possible. They offer a modified stable matching technique in order to deliver a

near-optimal solution in polynomial time. This is in response to the significant

computational cost of the ILP issue, which requires the resolution of large input

instances. In [52], they initially investigate latency aware and reliable SFC

placement in order to suit the expectations of users and improve the reliability

of SFCs from VNF failures. Then, they concentrate on the reliable placement of

virtual monitoring functions near VNFs in order to discover and mitigate service

degradation and security-related concerns in the network. In order to reduce the

overall deployment cost, they formulate the problems as ILP problems and

Related Work

31

demonstrate that they are NP-hard. They offer new heuristic algorithms based

on complex network theory to deliver near-optimal solutions in polynomial time

for large input cases in order to overcome the high computational complexity of

ILP issues. They demonstrate, via extensive simulations, that their suggested

algorithms give a near-optimal (5% optimality gap) solution in a real-world

network design.

Lin et al. [53] investigated the reliability of service provisioning in a Mobile

Edge Computing (MEC) network by utilizing redundant placement of VNF

instances. They assumed that each service request included a SFC requirement

and a service reliability requirement. They created a unique reliability-aware

service function chain provisioning problem with the objective of maximizing

the number of requests accepted while satisfying the reliability requirements of

each admitted request. When the problem size was small, they created an ILP

solution and offered a heuristic method for addressing scalability.

2.4 Dynamic Service Function Chaining

In the third phase of our study, we review the most recent research concerning

dynamic service function chaining. Following is a summary of dynamic service

function chaining research. In dynamic SFC embedding studies, every SFC

request has an arrival and departure time in order to use physical network

resources. SFC requests enter and exit the network at distinct intervals. When

the lifetime of SFC requests expires, the resources become accessible for

subsequent SFC requests.

Chen et al. [54] studied cost-efficient dynamic service function chain

embedding in edge clouds. Edge Computing (EC) provides delay protection for

some delay-sensitive network applications by putting limited-resource cloud

infrastructure at the network's edge. In this research, the authors investigate how

Related Work

32

to dynamically embed SFC in a geo-distributed edge cloud network to fulfill

user requests with varying latency requirements, and present this problem as a

MILP model with the goal of minimizing the overall embedding cost. In

addition, a unique SFC Cost-Efficient emBedding (SFC-CEB) technique has

been presented to embed the required SFC efficiently and optimize embedding

cost. Based on the findings of trace-driven simulations, the suggested approach

can lower the cost of SFC embedding by up to 37% when compared to existing

techniques (e.g., RDIP). Qin et al. [55] investigated dynamic service chaining

for ultra-reliable services in softwarized networks. They presented a dynamic

service chaining framework for the delivery of ultra-reliable services, where the

reliability is described by the probability distribution utilizing extreme value

theory. Their design purpose is to limit the number of backup VNF modules

subject to resource and reliability restrictions. To deliver ultra-reliable services,

main and backup VNFs are re-mapped to more reliable physical machines due

to the network's dynamic nature. Utilizing Lyapunov stochastic optimization,

the primary VNF mapping and backup VNF selection are conducted on large

and small timescales, respectively. Shang et al. [56] studied online SFC

placement for cost-effectiveness and network congestion control. They offered

a novel online technique that reduces operating costs and controls network

congestion at the same time. It accomplishes this by co-locating VNFs and

routing flows among them. They formulated it as an ILP optimization problem.

They also propose a heuristic algorithm named Candidate Path Selection (CPS)

algorithm with a theoretical performance guarantee.

Luo et al. [57] did a study on an online algorithm for VNF service chain

scaling in datacenters. They offer an online scaling technique to adapt the

deployment of VNF instances to the fluctuating traffic demand over time,

ensuring a competitive advantage. They illustrate the efficiency of the proposed

online VNF scaling method via theoretical analysis and trace-driven simulation.

Related Work

33

Pei et al. [29] addressed efficiently embedding SFCs with dynamic VNF

placement in geo-distributed cloud systems. They formulated it in the form of a

BIP optimization model, aiming to minimize the embedding cost. Their

proposed approach enhances performance in terms of SFC request acceptance

rate, network throughput, and mean VNF utilization rate. Liu et al. [58] did a

study on dynamic service function chain deployment and readjustment. They

examine how to optimize SFC deployment and readjustment in a dynamic

setting. In particular, they attempt to simultaneously optimize the deployment

of new users' SFCs and the readjustment of existing users' SFCs, taking into

account the trade-off between resource usage and operational overhead. First,

an ILP model is constructed to solve the issue precisely. Then, they propose a

Column Generation (CG) model for the optimization to lower the time

complexity. Simulation findings demonstrate that the proposed CG-based

algorithm may approximate the performance of the ILP optimization model and

outperform an existing benchmark in terms of service provisioning profit.

Li et al. [59] studied an efficient algorithm for service function chains

reconfiguration in mobile edge cloud networks. As an emerging network

architecture, MEC enables ultra-low latency and high-bandwidth applications

by putting servers at the network's edge to provide compute and storage

capabilities. Their study focuses on the SFCs reconfiguration scheme with

resource capacity limits in the MEC network. First, they define the SFCs

reconfiguration problem of the edge network as a mathematical model with the

goal of minimizing end-to-end delay and operating costs for user services. Then,

they turn the problem into an analogous shortest path problem and create a

Dynamic Programming based SFC Migration algorithm (DPSM). Lastly,

simulated tests are conducted to evaluate the performance of the method using

a real-world dataset. The outcomes of the trial demonstrate the algorithm's

usefulness and efficiency.

Related Work

34

2.5 Conclusion

To conclude this chapter, after analyzing a number of state-of-the-art studies

with diverse objectives, we identified a lack of research on addressing URLLC

in an NFV-enabled network. It has been observed that, in order to enhance

reliability, it is common practice to utilize a backup technique. Similarly, to

enhance latency, a commonly employed approach is the implementation of

latency-aware service function chaining. Nevertheless, using a backup method

may result in an increase in latency. Adding extra physical network resources is

not something we want to do; therefore, having a backup element is also

undesirable. To this end, we constructed a novel solution to address URLLC in

an NFV-enabled network. This allowed us to simultaneously improve the

reliability and latency of URLLA without a backup technique while having a

minimal negative impact on other applications.

Different from the aforementioned investigations, we not only provide a

reliability- and latency-aware SFC embedding algorithm that simultaneously

improves the reliability and latency of URLLA without using backup techniques

and redundant components, but we also propose a configurable priority

coefficient factor and utilize flow prioritization to provide URLLA with

dedicated physical network resources (bandwidth, RAM memory, and CPU).

We define constraints on maximum tolerable end-to-end delay, consumption of

physical network resources, reliability, and routing-related constraints. We

employ the Dijkstra algorithm, which is optimized for weighted graphs, to

locate the shortest path between two nodes in order to arrive at the solution that

is optimal on a global scale. To find the exact numerical solutions, we

formulated the SFC deployment problem as an ILP optimization problem (see

Chapter 4), and we provided a set of heuristic approaches and relaxed versions

to minimize the execution time with a minimum optimality gap in order to make

it usable for large-scale network topologies and solve the scalability issue.

System Model

35

3 System Model

This chapter illustrates the system model and its underlying assumptions for

each phase of our research, which consist of the underlying substrate network,

virtual network functions, and service function chains. To solve the SFC

deployment problem, an accurate system model must be designed. The system's

model plays a crucial role in producing accurate results. Here is how this chapter

is structured: In Section 3.1, we present the system model of the ULLC study,

which is the first phase of our study. In Section 3.2, we explain the system model

for analyzing the URLLC study, which takes the reliability model into

consideration (the second phase of our study). In Section 3.3, we detail the

system model used to investigate the dynamic service function chaining to

enable URLLC (the third phase of our study). In this setting, each SFC request

has an arrival time and a departure time to use physical network resources. As

stated before, in the first two phases of our research, we dealt with static SFC

requests, similar to studies [27, 28] that suggest SFC requests are static inputs

and unaffected by arrival and departure timings (lifetime). In the third phase of

our research, similar to [29, 30], we investigate dynamic SFC requests. When

an SFC request's lifetime expires, the physical network resources become

accessible for the next SFC request.

3.1 Ultra-Low Latency Communication

To investigate ultra-low latency communication, we will first present the

modeling of a physical network and its underlying assumptions. Gridnet [60] is

the network topology that we employed for the first phase of our investigation.

Figure 9 presents the Gridnet network topology, which consists of 8 nodes and

18 links. The modeling of physical networks, SFC requests, and the parameters

System Model

36

used to describe them are the subsequent topics discussed in the following

subsections.

Figure 9. Gridnet network topology [60].

A. Physical Network

We represent the physical network as an undirected graph with the notation

𝐺𝑃=(𝑁𝑃,𝐿𝑃), where 𝑁𝑃 refers to the set of physical nodes and 𝐿𝑃 refers to the

set of physical links in the physical network. The matrix 𝑃𝑁𝑁𝑝 × 𝑁𝑝 is employed

to depict the underlying physical network. It serves as an adjacency matrix,

representing the connections between vertices in the undirected graph. The

vertices of the graph are represented by the rows and columns of the adjacency

matrix, with each cell in the matrix denoting an edge connecting two vertices.

We divide nodes into two classes. The first category of nodes is known as Core-

Data-Center (CDC) Nodes (𝑁𝐶𝐷𝐶), and these are the nodes that host the various

VNF types (e.g., a, b, c, d, etc.). The second category, Switching Nodes (𝑁𝑆),

are the nodes that only send traffic to the subsequent nodes (𝑁𝐶𝐷𝐶 , 𝑁𝑆 ⊆ 𝑁𝑃)

System Model

37

and cannot host any VNF types. On the graph displayed in Figure 9, the CDC

nodes are represented by the green squares, while the switching nodes are

represented by the red dots. In this phase, the physical network and SFC requests

are both treated as static inputs. As shown in Figure 9, we have configured two

CDC nodes depending on node degree to host VNV instances and six switching

nodes to pass traffic to the following nodes.

In order to represent a pair of nodes, we make use of the symbols m and n

(m, n ∈ Np). In our study, we establish constraints on bandwidth use, memory

utilization, and CPU usage. To this end, the parameter 𝐶(𝑚,𝑛)
𝑏𝑤 represents the

bandwidth capacity of the physical link between node m and node n, the

parameter 𝐶𝑚
𝑚𝑒𝑚 denotes the memory capacity of node m, and 𝐶𝑚

𝐶𝑃𝑈represents

the CPU capacity of node m. In this study, since the switching nodes (𝑁𝑆) only

forward the traffic to the next nodes and do not host any VNFs, we assume that

they do not require much CPU and memory capacity; therefore, the CPU and

memory capacities of the switching nodes are considered infinity.

B. Service Function Chain Requests

An SFC request, denoted as f, refers to a sequential arrangement of VNFs

that must be concatenated in a specific predetermined order, as depicted in

Figure 6 on Page 10. In order to establish a clear understanding of SFC requests,

it is necessary to have a collection of input parameters, which are commonly

referred to as input matrices. The parameters employed to indicate an SFC

request are enumerated as follows. We employ nine parameters to indicate SFC

request f, {𝑆𝑟𝑐𝑓 , 𝐷𝑒𝑠𝑓 , 𝑅𝑥
𝑓

 , 𝑊𝑥
𝑓

, 𝑃𝑓 , 𝜏𝑏𝑤
𝑓

, 𝜏𝑐𝑝𝑢
𝑓

 , 𝜏𝑚𝑒𝑚
𝑓

 , 𝜏𝑡𝑑
𝑓

}. We use 𝑆𝑟𝑐𝑓

and 𝐷𝑒𝑠𝑓 in order to represent the source and destination nodes of SFC request

f. The matrix 𝑅𝐹× 𝑋
 represents the required VNFs for fulfilling SFC requests. In

this study, we treat this matrix as a static input. F denotes the total number of

SFC requests, and f is a single SFC request. X denotes the total number of VNF

System Model

38

types (e.g., a, b, c, d, etc.). In fact, if VNF type x is requested for the SFC request

f, then 𝑅𝑥
𝑓
 equals 1 (0 otherwise). Matrix 𝑊𝐹 ×𝑋

 represents the sequence of

required VNFs for all SFC requests, where 𝑊𝑥
𝑓
specifics the 𝑥

𝑡ℎ required VNF

for flow f. It is a matrix with integer values to define the order of each VNF x.

Indeed, a VNF with lower index needs to deliver service first. 𝑃𝑓 is used to

denote the priority of SFC request f. As stated before, we define high-priority

SFC requests for ultra-low latency applications (𝑃𝑓is 1) and low-priority SFC

requests for other applications (𝑃𝑓is 0). The parameters 𝜏𝑏𝑤
𝑓

, 𝜏𝑐𝑝𝑢
𝑓

 and 𝜏𝑚𝑒𝑚
𝑓

denote the required bandwidth, CPU, and memory for each SFC request f,

respectively. Finally, 𝜏𝑡𝑑
𝑓

 denotes the maximum tolerable end-to-end delay of an

SFC request f.

3.2 Ultra-Reliable Low Latency Communication

As indicated previously, in the second phase of our study, we study URLLC

and incorporate SFC reliability requirements. The reliability of an SFC request

is demonstrated in Figure 10. In this figure, the symbols 𝑅𝑒𝑐𝑑𝑐
 and 𝑅𝑒𝑣𝑛𝑓

represent the reliability values for each CDC node and each VNF instance,

respectively. The figure illustrates that the reliability of SFC request s

containing VNFa and VNFb, which are deployed on CDC node 1, is determined

by multiplying their respective reliability values. In our analysis, we take into

account both software reliability (𝑅𝑒𝑣𝑛𝑓
) and hardware reliability (𝑅𝑒𝑐𝑑𝑐

). To

examine Ultra-Reliable Low-Latency communication, we first outline the

reliability viewpoint in our system model and then give the substrate network

model and its underlying assumptions. Finally, the modeling of service function

chain requests is presented.

System Model

39

Figure 10. Reliability of an SFC request.

A. Reliability Model

In this study, both software and hardware failures are taken into

consideration, which means both VNF and CDC node failures are taken into

account. When a component in this model fails, it ceases to function and stops

producing any output or results. Although it may crash or halt, it never delivers

inaccurate or distorted data. In an NFV context, the availability of a component,

such as CDC node or VNF, can be determined as the ratio of the mean time the

component is up for service delivery to the sum of the mean time the component

is up for service delivery and the mean time the component is down for repair.

To this end, the availability of a component is defined as follows [51]:

Availability=
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 (1)

System Model

40

Where MTBF denotes the mean time between failures of the component and

MTTR denotes the mean time to repair the failed component. The chance that a

component (a VNF or CDC node) will be available for delivering services

without failure for a certain amount of time is defined as reliability. Failures in

either the software or the hardware might result in disruptions to the services

that are provided.

In our formulations, the parameter 𝑅𝑒𝑥 denotes the software reliability of

VNF x, while the parameter 𝑅𝑒𝐶𝐷𝐶 reflects the hardware reliability of CDC

node i that hosts the VNF. As can be seen in Figure 10, the reliability of an SFC

request s including 𝑉𝑁𝐹𝑎 and 𝑉𝑁𝐹𝑏 traversing the 𝐶𝐷𝐶1 node is determined

as Equation (2) [49]:

Reliability of 𝑆𝐹𝐶𝑠 → 𝑅𝑒𝑠= 𝑅𝑒𝐶𝐷𝐶 1× 𝑅𝑒𝑎 × 𝑅𝑒𝑏 (2)

As a result, we reference to the reliability of SFC request s as 𝑅𝑒𝑠, which is

determined as shown in Equation (3), where 𝐸𝑖 ,𝑥
𝑠 indicates whether VNF x of

SFC request s is served via CDC node i (𝐸𝑖 ,𝑥
𝑠 =1) or not (𝐸𝑖 ,𝑥

𝑠 =0).

 𝑅𝑒𝑠 = ∏ 𝑅𝑒𝑥
 . 𝑅𝑒𝐶𝐷𝐶

 𝑖

𝑥 ∈ X

 . 𝐸𝑖,𝑥
𝑠 ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑠 ∈ 𝑆 (3)

Equation (3) is nonlinear; hence it cannot be used in our optimal optimization

algorithm. Therefore, we present an approximation-based formulation for linear

reliability. It is described in Chapter 4.

B. Substrate Network

We represent the substrate network as an undirected graph G= (N, L), where

N denotes the set of physical nodes and L the set of physical links in our

substrate network. Similar to phase one of our study, the nodes are divided into

two types. The first category of nodes Core-Data-Center Nodes (𝑁𝐶𝐷𝐶), hosts

the different VNF types (e.g., a, b, c, d, etc.). Switching Nodes (𝑁𝑆) are the

System Model

41

nodes that only forward traffic to succeeding nodes (𝑁𝐶𝐷𝐶 , 𝑁𝑆 ⊆ 𝑁) and are

incapable of hosting any VNF kinds. On the network depicted in Figure 9, CDC

nodes are depicted as green squares, whereas switching nodes are depicted as

red dots. The physical network and SFC requests are both considered as static

inputs at this phase. As illustrated, we have setup two CDC nodes based on node

degree to host VNF instances and six switching nodes to forward traffic to the

subsequent nodes. We use i and j to represent two nodes in the substrate

network, and (i, j) to represent the link between node i and j. In our investigation,

we impose limitations on bandwidth use, memory utilization, and CPU

utilization. The parameter 𝐾(𝑖,𝑗)
𝑏𝑤 represents the total bandwidth capacity of link

(i, j). The parameters 𝐾𝑖
𝑐𝑝𝑢

 and 𝐾𝑖
𝑚𝑒𝑚 denote the CPU and the memory

capacities of node i, respectively.

C. Service Function Chain Requests

An SFC request s is a sequence of VNFs that must be concatenated in a

certain order, see Figure 6 on Page 10. To define SFC requests, a set of input

parameters, which we refer to as input matrices, is required. The parameters we

utilize to signify an SFC request s are listed below. We employ ten parameters

to indicate SFC request s, {𝑆𝑟𝑐𝑠 , 𝐷𝑒𝑠𝑠 , 𝐴𝑥
𝑠 , 𝑂𝑥

𝑠 , 𝑃𝑠 , ᴦ𝑠 , 𝜓𝑏𝑤
𝑠 , 𝜓𝑐𝑝𝑢

𝑠 , 𝜓𝑚𝑒𝑚
𝑠 ,

𝜓𝑡𝑑
𝑠 }. The parameters 𝑆𝑟𝑐𝑠 and 𝐷𝑒𝑠𝑠 represent the source and destination of

SFC request s, respectively. The parameter x represents the VNF type and S

denotes the total number of SFC requests. The matrix 𝐴𝑆 ×𝑋
 represents the

needed VNFs for each SFC request s, where 𝐴𝑥
𝑠 equals 1, if the SFC request s

requests the VNF x (0 otherwise). We take A to be a static input in our study.

The integer matrix 𝑂𝑆 ×𝑋
 specifies the ordering of the needed VNFs for SFC

request s. The 𝑂𝑥
𝑠 denotes the 𝑥𝑡ℎ required VNF for SFC request s, VNFs with

a lower index must provide service first. 𝑃𝑠 denotes the priority of each SFC

request s, high and low-priority SFC requests. The parameter ᴦ𝑠 represents the

System Model

42

reliability requirement of SFC request s. The bandwidth, CPU, and memory

requirements of SFC request s is represented as 𝜓𝑏𝑤
𝑠 , 𝜓𝑐𝑝𝑢

𝑠 , 𝜓𝑚𝑒𝑚
𝑠 , respectively.

Finally, 𝜓𝑡𝑑
𝑠 represents the maximum tolerable end-to-end delay of SFC request

s.

3.3 Dynamic Service Function Chaining

Given that in the third phase of our research we study dynamic service

function chaining and present a heuristic way to handle URLLC in an NFV-

enabled network, we chose a bigger network topology. We chose EliBackbone

network topology consisting of 19 nodes and 28 links [60]. In a dynamic

context, each SFC request has an arrival time and a departure time in order to

use physical network resources. Similar to a real-world scenario in which SFC

requests enter and exit the network at varied time intervals and use the network

for a certain amount of time. When the allotted amount of time for an SFC

request has passed, the underlying physical network resources become available

for the subsequent SFC request to use.

A. Substrate Network

We present the Substrate Network as an undirected graph 𝐺𝑠=(𝑁𝑠,𝐿𝑠), where

𝑁𝑠 represents the set of physical nodes and 𝐿𝑠 represents the set of physical

links. We represent two substrate network nodes as m and n, and the link

between nodes m and n as (m,n). The parameter 𝐶(𝑚,𝑛)
𝐵𝑊 denotes the total

bandwidth capacity of the link (m,n). The parameters 𝐶𝑚
𝐶𝑃𝑈 and 𝐶𝑚

𝑀𝑒𝑚,

respectively, represent the CPU and the memory capacity of node m. The set of

physical nodes (𝑁𝑠) consist of two types of nodes, Core-Data-Center Nodes

(𝑁𝐶𝐷𝐶) and Switching Nodes (𝑁𝑆𝑊), (𝑁𝐶𝐷𝐶 , 𝑁𝑆𝑊 ⊆ 𝑁𝑠
). In our setting, only

𝑁𝐶𝐷𝐶 can host the VNF types, whereas 𝑁𝑆𝑊 only transmits network traffic to the

System Model

43

following nodes. As shown in Figure 11, we consider three nodes to be CDC

nodes (green squares) and sixteen nodes to be switching nodes (red dots).

Figure 11. EliBackbone network topology [60].

B. Service Function Chain Request

An SFC request f consists of a series of VNFs that must be concatenated in a

certain order. {𝑆𝑟𝑐𝑓 , 𝐷𝑒𝑠𝑓 , 𝑇𝑎
𝑓
,𝑇𝑑

𝑓
𝐴𝑥

𝑓
 , 𝑂𝑥

𝑓
 , 𝑃𝑓 , ᴦ𝑓 , Ω𝐵𝑊

𝑓
 , Ω𝐶𝑃𝑈

𝑓
 , Ω𝑀𝑒𝑚

𝑓
} are

eleven parameters used to identify SFC request f. The parameters 𝑆𝑟𝑐𝑓 and

𝐷𝑒𝑠𝑓 denotes, respectively, the source and destination of SFC request f. 𝑇𝑎
𝑓
 and

𝑇𝑑
𝑓
are the arrival and departure times for SFC request f, respectively. The

parameter x denotes the VNF type and F represent the total number of SFC

requests. 𝐴𝐹 ×𝑋
 denotes the required VNFs for each SFC request f, where 𝐴𝑥

𝑓
 =

1, if the SFC request f requests the VNF x (0 otherwise). The integer matrix

𝑂𝐹 ×𝑋
 specifies the ordering of the needed VNFs for SFC request f. The 𝑂𝑥

𝑓

denotes the 𝑥𝑡ℎ required VNF for SFC request f, VNFs with a lower index must

provide service first. 𝑃𝑓 denotes the priority of each SFC request f, high and

low-priority SFC requests. The parameter ᴦ𝑓 denotes the reliability requirement

System Model

44

of SFC request f. The bandwidth, CPU, and memory requirements of SFC

request f are denoted as Ω𝐵𝑊
𝑓

 , Ω𝐶𝑃𝑈
𝑓

 , Ω𝑀𝑒𝑚
𝑓

, respectively.

C. Reliability

Similar to the second phase of our study, failures of software and hardware

components are considered in the third phase, which means VNFs and CDC

nodes failures. This model stops working and stops delivering any output or

results when a component fails. It may stop or crash, but it never provides

distorted or false data. In an NFV setting, the availability of a component, such

as CDC node or VNF, can be measured as the ratio of the mean time the

component is up for service delivery to the sum of the mean time the component

is up for service delivery and the mean time the component is down for repair.

It is defined as follows [51]:

Availability=
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 (4)

Where MTBF is the mean time between failures of the component and MTTR

denotes the mean time to repair the failed component. Reliability is the

probability that a component (VNF or CDC node) will be available to supply

services without interruption for a certain period of time. Interruptions in

services are possible as a consequence of software and hardware failures. In this

study, the parameter 𝑅𝑒𝑥 represents the software reliability of VNF x, while the

parameter 𝑅𝑒𝐶𝐷𝐶 denotes the hardware reliability of CDC node m that hosts the

VNF. As it can be seen in Figure 10, the reliability of an SFC request involving

𝑉𝑁𝐹𝑎 and 𝑉𝑁𝐹𝑏 traversing the 𝐶𝐷𝐶1 node is determined by Equation (5) [61]:

Reliability of 𝑆𝐹𝐶𝑓 → 𝑅𝑒𝑓= 𝑅𝑒𝐶𝐷𝐶 1× 𝑅𝑒𝑎 × 𝑅𝑒𝑏 (5)

System Model

45

To this end, we refer to the reliability of SFC request f as 𝑅𝑒𝑓, which is

determined as shown in Equation (6), where 𝐸𝑚 ,𝑥
𝑓

 indicates whether VNF x of

SFC request f is served via CDC node m (𝐸𝑚,𝑥
𝑓

=1) or not (𝐸𝑚,𝑥
𝑓

=0).

 𝑅𝑒𝑓 = ∏ 𝑅𝑒𝑥
 . 𝑅𝑒𝐶𝐷𝐶

 𝑚

𝑥 ∈ X

 . 𝐸𝑚,𝑥
𝑓

 ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑓 ∈ 𝐹 (6)

After illustrating the system models and their underlying assumptions, the

subsequent chapter formulates the SFC deployment problem as an ILP

optimization model.

Integer-Linear-Programming Optimization Model

47

4 Integer-Linear-Programming Optimization Model

In this chapter, we formulate our proposed methodology in the form of an

ILP optimization model. Using the ILP optimization model, we are able to

obtain exact numerical solutions to the SFC deployment problem. The task of

constructing all of the constraints and the objective function in the form of an

ILP optimization model is a very difficult one, as we discussed in the second

chapter. In order to address URLLC in an NFV-enabled network, we first

created a comprehensive list of required constraints in order to obtain exact

numerical results. This was done by doing an analysis of the studies that were

relevant to the topic in Chapter 2. Following that, we took this set of identified

constraints and converted them into linear mathematical formulations based on

our system model and the problem statement, both of which are detailed in the

upcoming subsections.

This chapter is constructed as follows: In the first section of this chapter, we

will go through the mathematical formulations of the necessary constraints to

address ultra-low latency communication. In accordance with this, we construct

an ILP optimization model consisting of the required constraints along with an

objective function. In the second section of this chapter, we investigate ultra-

reliable low-latency communication and develop an ILP optimization model to

address URLLC in a network that supports NFV. This model includes the

essential constraints and the objective function.

4.1 Ultra-Low Latency Communication

It is of the utmost priority for suppliers of network services to fulfill the

various requirements of network services. Applications that require ultra-low

latency are highly sensitive and important and therefore require special

Integer-Linear-Programming Optimization Model

48

handling. As a result, it is essential to have an efficient SFC embedding

algorithm. In this section of the chapter, we will discuss how to structure the

SFC embedding problem as an ILP optimization model. This model will handle

applications that require extremely low latency in a different manner than other

applications.

As stated before, we consider two priorities for SFC requests: high-priority

for ultra-low latency applications and low-priority for other network services.

We use a priority coefficient factor (µ) to apply physical resource reservations

(bandwidth, RAM memory, and CPU) for high-priority network services. We

assume the initial priority coefficient factor (µ) is 0.9, which means a maximum

of 90 percent of physical resources can be used by low-priority SFC requests

and 10 percent of the physical resources are reserved for high-priority SFC

requests. In our study, we investigate the change in priority coefficient factor

(µ) in Chapter 6.

First, we will establish the appropriate bandwidth, CPU, and memory

utilization restrictions for SFC requests based on the priority of each SFC

request and the priority coefficient factor. These requirements are guaranteed

by (7-12). Constraint (7) ensures that the total bandwidth utilization of SFC

requests cannot exceed the total physical bandwidth capacity of the link between

node m and node n. In this context, F is the total number of SFC requests in the

network, which we take as a static input for our investigation. Constraint (8)

forces that the total bandwidth utilization of SFC requests with low-priority

cannot exceed 90 percent (given that the initial value of µ is 0.9) of the physical

bandwidth capacity of the link between node m and node n. F´ is the total

number of SFC requests with low-priority. We use the binary variable 𝐻(𝑚,𝑛)
𝑓

 ∈

{0, 1} to indicate whether the SFC request f traverses the link (m,n) or not.

𝐻(𝑚,𝑛)
𝑓

 equals 1, if the SFC request f traverses the link (m,n), and 0 otherwise.

Integer-Linear-Programming Optimization Model

49

In Table 1, you will find a list of all symbols along with an explanation.

∑ 𝜏𝑏𝑤
𝑓

 . 𝐻(𝑚,𝑛)
𝑓

 ≤ 𝐶(𝑚,𝑛)
𝑏𝑤

𝐹

𝑓=1

, ∀ 𝑚, 𝑛 ∈ 𝑁𝑃 (7)

∑ 𝜏𝑏𝑤
𝑓′

. 𝐻(𝑚,𝑛)
𝑓′

≤ 𝐶(𝑚,𝑛)
𝑏𝑤 . 𝜇 ,

𝐹′

𝑓′=1

 ∀𝑚, 𝑛 ∈ 𝑁𝑃 (8)

Constraint (9) makes certain that the CPU consumption of SFC requests does

not go over the total CPU capacity of CDC node m. Constraint (10) guarantees

that the CPU utilization of SFC requests with low-priority cannot exceed 90

percent (given that the initial value of µ is 0.9) of the total CPU capacity of CDC

node m.

∑ 𝜏𝑐𝑝𝑢
𝑓

. 𝐻(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝑐𝑝𝑢

𝐹

𝑓=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃 (9)

∑ 𝜏𝑐𝑝𝑢
𝑓′

. 𝐻(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝑐𝑝𝑢

. 𝜇

𝐹′

𝑓′=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃 (10)

The same logic for CPU utilization is applied for memory utilization on CDC

node m. Constraint (11) ensures that the memory utilization of SFC requests

does not exceed the total memory capacity of CDC node m. Constraint (12)

guarantees that the memory utilization of SFC requests with low-priority cannot

exceed 90 percent (given that the initial value of µ is 0.9) of the memory

capacity of CDC node m.

∑ 𝜏𝑚𝑒𝑚
𝑓

. 𝐻(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝑚𝑒𝑚

𝐹

𝑓=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃 (11)

Integer-Linear-Programming Optimization Model

50

Table 1. Symbols and variables used in the first phase of our study.

Symbols Description

𝐺𝑃 The physical network

𝑁𝑃 The set of the physical nodes

𝐿𝑃 The set of the physical links

𝑁𝑆 The set of the switching nodes (𝑁𝑆 ⊆ 𝑁𝑃)

𝑁𝐶𝐷𝐶 The set of the CDC nodes (𝑁𝐶𝐷𝐶 ⊆ 𝑁𝑃)

F The total number of SFC requests (flows)

F´ The total number of low-priority SFC requests (flows)

X The total number of VNF types (e.g., a, b, c, d, etc.)

𝑃𝑓 The priority of SFC requests f

𝜇 The priority coefficient factor for physical resource

reservation (𝜇 = 0.9 as the initial value)

𝐻(𝑚,𝑛)
𝑓

 A binary variable, whether flow f traverses the link (m,n) or

not

𝐾𝑚 ,𝑥
𝑓

 A binary variable, whether flow f uses VNF type x which is

placed at CDC node m or not

𝐶(𝑚,𝑛)
𝑏𝑤 The total bandwidth capacity of link (m,n)

𝐶𝑚
𝑐𝑝𝑢

 The total CPU capacity of node m

𝐶𝑚
𝑚𝑒𝑚 The total memory capacity of node m

𝑆𝑟𝑐𝑓 The source node of SFC request f

𝐷𝑒𝑠𝑓 The destination node of SFC request f

𝑅𝐹 ×𝑋
 The matrix of required VNFs by SFC request f

𝑊𝐹 ×𝑋
 The matrix of ordering of VNFs requested by SFC request f

𝜏𝑏𝑤
𝑓

 The required bandwidth by SFC request f

𝜏𝑐𝑝𝑢
𝑓

 The required CPU by SFC request f

𝜏𝑚𝑒𝑚
𝑓

 The required memory by SFC request f

Integer-Linear-Programming Optimization Model

51

𝜏𝑡𝑑
𝑓

 The maximum tolerated delay by SFC request f

𝐷(𝑚,𝑛) The propagation delay on link (m,n)

𝐿Ncdc × X
 The matrix represents the VNF types placed on each CDC

node

 𝑇(𝑁𝑝 ×𝑁𝑝 ×𝐹)
 The matrix T represents the ordering-aware rerouting matrix

𝑍𝑅𝑓 Contains all the required VNFs with a higher order (i.e.,

lower index) than 𝑅𝑓

∑ 𝜏𝑚𝑒𝑚
𝑓′

. 𝐻(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝑚𝑒𝑚. 𝜇

𝐹′

𝑓′=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑃 (12)

Constraint (13) ensures that the propagation delay of SFC request f cannot

exceed the maximum tolerated end-to-end delay of SFC request f. We apply it

to both low- and high-priority SFC requests to minimize any side effects on

low-priority applications.

∑

𝑁𝑝

𝑚=1

∑ 𝐷(𝑚,𝑛). 𝐻(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

≤ 𝜏𝑡𝑑
𝑓

, ∀𝑓 ∈ 𝐹 (13)

In this formulation, 𝐷(𝑚,𝑛) is the propagation delay on the link between node

m and node n. We ensure flow control by using Constraint (14). We make sure

that the links on the deployment path of SFC request f are connected head-to-

tail.

∑ 𝐻(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

− ∑ 𝐻(𝑛,𝑚)
𝑓

=

𝑁𝑝

𝑛=1

{
1 𝑚 = 𝑆𝑟𝑐𝑓

−1 𝑚 = 𝐷𝑒𝑠𝑓

 0 𝑚 ≠ 𝑆𝑟𝑐𝑓 , 𝐷𝑒𝑠𝑓

∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑃 (14)

Integer-Linear-Programming Optimization Model

52

To guarantee that each VNF type x required by SFC request f is supported by

the server hosting it, we apply Constraint (15).

 𝐾𝑚 ,𝑥
𝑓

 ≤ 𝐿𝑚,𝑥
 , ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑥 ∈ 𝑋 (15)

 𝐾𝑚 ,𝑥
𝑓

 is a binary variable. 𝐾𝑚 ,𝑥
𝑓

 equals 1, if the SFC request f uses VNF type

x, which is placed on CDC node m, and 0 otherwise. The matrix 𝐿(𝑁𝑐𝑑𝑐 ×𝑋)

identifies the VNF types placed on each CDC node, which is given as an input.

If VNF type x is placed on CDC node m, then 𝐿𝑚,𝑥
 =1 (and 0 otherwise). We

consider Constraint (16), in order to prevent a loop for SFC request f.

∑ 𝐻(𝑚,𝑛)
𝑓

 ≤ 1

𝑁𝑝

𝑛=1

, ∀𝑚 ∈ 𝑁𝑝, ∀𝑓 ∈ 𝐹 (16)

Constraint (17) is considered to ensure that SFC request f crosses a valid VNF

chain while traversing through the nodes.

∑ 𝐾𝑚 ,𝑥
𝑓

 = 𝑅𝑥
𝑓

𝑁𝑐𝑑𝑐

𝑚=1

, ∀𝑥 ∈ 𝑋, ∀𝑓 ∈ 𝐹 (17)

We define Constraint (18) to make sure that each VNF type x is used by at

most one SFC request.

∑ 𝐾𝑚 ,𝑥
𝑓

 ≤ 1

𝑁𝑐𝑑𝑐

𝑚=1

, ∀𝑥 ∈ 𝑋, ∀𝑓 ∈ 𝐹 (18)

In the following, we consider ordering constraints to enforce an ordered

sequence of VNFs to concatenate different VNFs of SFC requests. We introduce

matrix 𝑇 (𝑁𝑝 × 𝑁𝑝 ×F) as ordering-aware rerouting matrix. T includes the notion

of ordering for the nodes and links appearing in the deployment path. The

elements of 𝑇𝑓 are integer values starting from 1, which means that node need

to be pathed first and so on.

Integer-Linear-Programming Optimization Model

53

𝑇𝑓 = [

0 0 0 1
0 0 3 0
0 0 0 4
0 2 0 0

]

The matrix 𝑇𝑓 represents that the SFC request f leaves node one in the first

step and goes to node four (since the fourth column is one), then in the second

step, from node four goes to node two (since the second column in row four is

two), and finally from node two reaches node three, which is the destination of

the SFC request f. The value four in 𝑇𝑓 means that SFC request f crossed four

nodes to reach the destination. Indeed, 𝑇(𝑚,𝑛)
𝑓

 specifies the number of previously

crossed nodes. The values stored in the matrix 𝑇𝑓 are integer and need to be

equal or higher to the corresponding one stored in the rerouting matrix 𝐻(𝑚,𝑛)
𝑓

.

Therefore, we define Constraint (19).

 𝑇(𝑚,𝑛)
𝑓

 ≥ 𝐻(𝑚,𝑛)
𝑓

, ∀𝑓 ∈ 𝐹, ∀𝑚, 𝑛 ∈ 𝑁𝑝 (19)

We ensure that 𝑇(𝑚,𝑛)
𝑓

 becomes zero, if 𝐻(𝑚,𝑛)
𝑓

 is zero. Therefore, we

introduce Constraint (20).

𝑇(𝑚,𝑛)
𝑓

= 𝑇(𝑚,𝑛)
𝑓

. 𝐻(𝑚,𝑛)
𝑓

, ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑝 − {𝐷𝑒𝑠𝑓}, ∀𝑛 ∈ 𝑁𝑝 (20)

As we can see, Constraint (20) is a nonlinear constraint. We need to rewrite

it as a linear constraint for our optimization model. To this end, since each SFC

request f traverses at most all the nodes, we can change Constraint (20) to

Constraint (21).

 𝑇(𝑚,𝑛)
𝑓

≤ 𝑁𝑝 . 𝐻(𝑚,𝑛)
𝑓

, ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑝 − {𝐷𝑒𝑠𝑓}, ∀𝑛 ∈ 𝑁𝑝 (21)

The elements of the ordering-aware rerouting matrix for the output links must

be zero for the destination node. Therefore, we apply Constraint (22).

 𝑇(𝑚,𝑛)
𝑓

= 0, ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝐷𝑒𝑠𝑓 , ∀𝑛 ∈ 𝑁𝑝 − {𝐷𝑒𝑠𝑓} (22)

Integer-Linear-Programming Optimization Model

54

Except for the source and destination nodes, when SFC request f enters a

node in its 𝑛𝑡ℎ step, it leaves that node in the (𝑛 + 1)𝑡ℎ step. Therefore, we

introduce the Constraint (23).

∑ 𝑇(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

= ∑ 𝑇(𝑛,𝑚)
𝑓

+

𝑁𝑝

𝑛=1

∑ 𝐻(𝑛,𝑚)
𝑓

𝑁𝑝

𝑛=1

 ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑁𝑝 − {𝑆𝑟𝑐𝑓 , 𝐷𝑒𝑠𝑓} (23)

We need to make sure that the SFC requests leave the source nodes.

Therefore, we introduce the Constraint (24).

∑ 𝑇(𝑚,𝑛)
𝑓

 = 1

𝑁𝑝

𝑛=1

, ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑆𝑟𝑐𝑓 (24)

Finally, to force the sequence of VNF chaining, Constraint (25) is introduced.

The purpose of this process is to determine if the VNFs with higher ordering,

i.e., lower index in 𝑊𝑓, are delivered to the SFC request f on one of the crossed

servers or not.

∑

𝑁𝑝

𝑚=1

∑

𝑁𝑝

𝑛=1

𝑇(𝑚,𝑛)
𝑓

 . 𝐾
(𝑚, 𝑊

𝑅𝑓
𝑓

)

𝑓
 ≥ ∑

𝑁𝑝

𝑚=1

∑

𝑁𝑝

𝑛=1

𝑇(𝑚,𝑛)
𝑓

 . 𝐾
(𝑚, 𝑊𝑍

𝑅𝑓

𝑓
)

𝑓

∀𝑓 ∈ 𝐹, ∀𝑅𝑓 ∈ {1, … , 𝑙𝑒𝑛(𝑊𝑓)}

∀𝑍𝑅𝑓 ∈ {1, . . . , 𝑅𝑓 − 1}, 𝑇(𝑚,𝑛)
𝑓

∈ ℤ ≥ 0, ∀𝑚, 𝑛 ∈ 𝑁𝑝 (25)

In Constraint (25), 𝑍𝑅𝑓 stores all the required VNFs with a higher order, i.e.,

lower index, than 𝑅𝑓. For instance, if 𝑊𝑓 = [4 3 2 6] then 𝑅𝑓 ∈

 {1, 2, 3, 4}. If we assume 𝑅𝑓 = 4, then 𝑍𝑅𝑓 is a member of {2, 3}. Using the

same approach as [27], the ordering constraints of the VNFs belonging to a flow

are expressed in a different form. Therefore, the Constraint (25) is replaced with

the Constraint (26).

Integer-Linear-Programming Optimization Model

55

(1 − 𝐾
(𝑚 ,𝑊

𝑅𝑓
𝑓

)

𝑓
) . (2𝑁 − 1) + ∑

𝑁𝑝

𝑛=1

𝑇(𝑚,𝑛)
𝑓

≥ (𝐾
(𝐼 ,𝑊𝑍

𝑅𝑓

𝑓
)

𝑓
). (2𝑁 − 1) + ∑

𝑁𝑝

𝑛=1

𝑇(𝐼,𝑛)
𝑓

∀𝑓 ∈ 𝐹, ∀𝑅𝑓 ∈ {1, … , 𝑙𝑒𝑛(𝑊𝑓)}, ∀𝑍𝑅𝑓 ∈ {1, . . . , 𝑅𝑓 − 1}, ∀𝐼, 𝑚 ∈ 𝑁𝑝 (26)

In Constraint (26), if the CDC node m hosts the VNF 𝑊
𝑅𝑓
 , then 𝐾(𝑚 ,𝑊

𝑅𝑓
)

𝑓
=

1. Therefore, the left-side of Constraint (26) considers the step of the CDC node

m and it must be greater than the step of all CDC nodes (𝐼) hosting a VNF with

an index lower than the index of VNF 𝑊
𝑅𝑓
 in 𝑊

𝑓. By considering the 𝑍𝑅𝑓 as

the index of any VNF in 𝑊
𝑓 with an index lower than VNF 𝑊

𝑅𝑓
 , which means

the flow f must pass VNF 𝑊𝑍
𝑅𝑓

𝑓
 before 𝑊

𝑅𝑓
𝑓

. If the CDC node m (I) hosts the

VNF 𝑊𝑍
𝑅𝑓

𝑓
, then 𝐾

(m ,𝑊𝑍
𝑅𝑓

𝑓
)

𝑓
= 1. Therefore, the right-side of Constraint (26)

considers the step of the CDC node m (I) and it must be greater than the step of

all CDC nodes m hosting a VNF with an index greater than the index of VNF

𝑊𝑍
𝑅𝑓

𝑓
 in 𝑊

𝑓. If either 𝐾𝑚 ,𝑊
𝑅𝑓

𝑓
 or 𝐾(𝐼 ,𝑊

𝑍𝑓
)

𝑓
 are equal to zero, the value of

∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1 is always lower than (2N-1), then the constraint is fulfilled.

∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1 and ∑ 𝑇(𝑚,𝑛)
𝑓Np

m=1 are always lower than (2N-1), since in the worst

case, the flow crosses all nodes, which means the value of ∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1 is at most

(N-1)+N. The destination has a flow to itself with a step of at most N+1. When

both 𝐾(𝑚 ,𝑊
𝑅𝑓
)

𝑓
 and 𝐾(𝐼 ,𝑊

𝑍𝑓
)

𝑓
 are equal to one, the constraint is satisfied on the

condition that the value of ∑ 𝑇(𝑚,𝑛)
𝑓Np

n=1 is greater than ∑ 𝑇(𝐼,𝑛)
𝑓Np

n=1 . It means that

a CDC node that delivers the lower index VNF is crossed before the CDC nodes

that deliver higher index VNFs [27].

Integer-Linear-Programming Optimization Model

56

We discussed the mathematical formulation of the SFC deployment problem

in the earlier formulations. These formulations handle the prioritized SFC

requests in a different way than in related studies. As was mentioned earlier, by

utilizing the priority coefficient factor (µ) to reserve physical network resources

for embedding high-priority SFC requests and optimize their provisioning

paths, and also by taking into consideration the maximum tolerable end-to-end

delay of low-priority SFC requests to minimize side effects on low-priority SFC

requests, we define the objective function as (27), which is to optimize the

provisioning paths of SFC requests with respect to the end-to-end delay, subject

to: (7)-(19), (21)-(24) and (26).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑

𝑁𝑝

𝑚=1

∑ 𝐷(𝑚,𝑛). 𝐻(𝑚,𝑛)
𝑓

𝑁𝑝

𝑛=1

, ∀𝑓 ∈ 𝐹 (27)

The objective function (27) aims to find the most optimal deployment paths

for each SFC request with respect to the end-to-end delay. This methodology

we have developed is referred to as the Optimal Application-Aware SFC (OAS)

embedding methodology. The objective is to reduce the number of intermediate

nodes that a flow traverses from the source node to the destination node, while

considering the overall delay experienced by the flow. OAS is an NP-hard

problem because, as can be seen, it maps to the weight constrained shortest path

problem (WCSPP), which is also an NP-hard problem [62, 63]. An NP-Hard

problem is a type of complexity class in which obtaining the exact numerical

solutions for large-scale network topologies is very time-consuming. In Chapter

5, we propose a heuristic algorithm (the FAS algorithm) to obtain near-optimal

solutions close to the results produced by Equation (27) within an acceptable

time frame for large network topologies.

Integer-Linear-Programming Optimization Model

57

4.2 Ultra-Reliable Low Latency Communication

As mentioned earlier, we address URLLC in an NFV-enabled network in the

second phase of our study by incorporating a reliability viewpoint into our

findings from the first phase of our study. Providing a guaranteed quality of

service for URLLA is one of the main challenges for NSPs, and it has become

more complicated by the limited physical network resources. Thus, in an NFV

environment, having an efficient SFC embedding algorithm that supports

URLLA is essential. We construct our Optimal Reliability- and Application-

Aware SFC (ORAAS) embedding algorithm as an ILP optimization model, as

described in the following. In Table 2, we have provided a list of all symbols

along with their respective definitions.

The first thing that has to be done is define the reliability constraints. In

accordance with what was discussed in Chapter 3, the reliability of SFC requests

is assessed using Equation (3). As a direct consequence of this, Constraint (28)

ensures that the reliability of the deployment path of SFC request s is higher

than the minimum needed reliability of SFC request s. As it is shown,

Constraint (28) is a nonlinear constraint.

∏ 𝑅𝑒𝑥
 . 𝑅𝑒𝐶𝐷𝐶

𝑖

𝑥 ∈ 𝑋

 . 𝐸𝑖,𝑥
𝑠 ≥ ᴦ𝑠 , ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑠 ∈ 𝑆 (28)

In order to use the Equation (28) in our optimization model, we need to

linearize it. In order to do this, we apply the method of approximation outlined

in [50] and replace Equation (28) with Equation (29).

1 − ∑(1 − 𝑅𝑒𝑥
 . 𝐸𝑖,𝑥

𝑠) −

𝑋

𝑥=1

∑(1 − 𝑅𝑒𝐶𝐷𝐶
𝑖 . 𝐸𝑖,𝑥

𝑠) ≥ ᴦ𝑠

𝑋

𝑥=1

 ,

∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑠 ∈ 𝑆 (29)

Integer-Linear-Programming Optimization Model

58

Table 2. Symbols and variables used in the second phase of our study

Symbols Description

𝐺 The physical network

𝑁 The set of the physical nodes

𝐿 The set of the physical links

𝑁𝑆 The set of the switching nodes (𝑁𝑆 ⊆ 𝑁)

𝑁𝐶𝐷𝐶 The set of the CDC nodes (𝑁𝐶𝐷𝐶 ⊆ 𝑁)

S The total number of SFC requests (flows)

S´ The total number of low-priority SFC requests (flows)

X The total number of VNF types (e.g., a, b, c, d, etc.)

𝑃𝑠 The priority of SFC requests s

ᴦ𝑠 The required reliability by SFC request s

𝑅𝑒𝑠 The reliability of SFC request s

𝑅𝑒𝑎 The reliability of VNF a

𝑅𝑒𝐶𝐷𝐶 The reliability of CDC node

δ The priority coefficient factor for physical resource reservation (𝜇 =

0.9 as the initial value)

𝑅(𝑖,𝑗)
𝑠 A binary variable, whether flow s traverses the link (i,j) or not

𝐾𝑖 ,𝑥
𝑠 A binary variable, whether flow s uses VNF type x which is placed at

CDC node i or not

𝐾(𝑖,𝑗)
𝑏𝑤 The total bandwidth capacity of link (i,j)

𝐾𝑖
𝑐𝑝𝑢

 The total CPU capacity of node i

𝐾𝑖
𝑚𝑒𝑚 The total memory capacity of node i

𝑆𝑟𝑐𝑠 The source node of SFC request s

𝐷𝑒𝑠𝑠 The destination node of SFC request s

𝐴𝑆 ×𝑋
 The matrix of required VNFs by SFC request s

𝑂𝑆 ×𝑋
 The matrix of ordering of VNFs requested by SFC request s

Integer-Linear-Programming Optimization Model

59

𝜓𝑏𝑤
𝑠 The required bandwidth by SFC request s

𝜓𝑐𝑝𝑢
𝑠 The required CPU by SFC request s

𝜓𝑚𝑒𝑚
𝑠 The required memory by SFC request s

𝜓𝑡𝑑
𝑠 The maximum tolerable delay by SFC request s

𝐷(𝑖,𝑗) The propagation delay on link (i,j)

𝐿Ncdc × X
 The matrix represents the VNF types placed on each CDC node

 𝑌(𝑁 × 𝑁 × 𝑆)
 The matrix Y represents the ordering-aware rerouting matrix

𝐽𝐴𝑠 Contains all the required VNFs with a higher order (i.e. lower index)

than 𝐴𝑠

In the next step, we will specify the limitations on the consumption of

physical network resources (bandwidth, memory, and CPU) in proportion to the

priority of each SFC request s. Constraint (30) ensures that the bandwidth

utilization of all SFC requests on link (i, j) does not exceed the total bandwidth

capacity of substrate link (i, j). The binary variable 𝑅(𝑖,𝑗)
𝑠 indicates the routing

path of SFC request s, where 𝑅(𝑖,𝑗)
𝑠 =1, if SFC request s traverses the link (i, j),

and 0 otherwise. The parameter S indicates the total number of SFC requests.

Constraint (31) ensures that the low-priority SFC requests cannot exceed (𝛿 ×

bandwidth of substrate link (i, j)). The parameter 𝛿 is the adjustable priority

coefficient factor for reserving physical network resources for high-priority SFC

requests. We assume the initial priority coefficient factor (δ) as 0.9, which

means that 10% of physical resources are reserved for embedding only high-

priority SFC requests (URLLA). The parameter S’ denotes the total number of

low-priority SFC requests.

∑ 𝜓𝑏𝑤
𝑠 . 𝑅(𝑖,𝑗)

𝑠 ≤ 𝐾(𝑖,𝑗)
𝑏𝑤

𝑆

𝑠=1

, ∀ 𝑖, 𝑗 ∈ 𝑁 (30)

Integer-Linear-Programming Optimization Model

60

∑ 𝜓𝑏𝑤
𝑠′ . 𝑅(𝑖,𝑗)

𝑠′ ≤ 𝐾(𝑖,𝑗)
𝑏𝑤 . δ ,

𝑆′

𝑠′=1

 ∀𝑖, 𝑗 ∈ 𝑁 (31)

Constraint (32) guarantees that the CPU usage of SFC requests on node i does

not exceed the overall CPU capacity of CDC node i. Constraint (33) prevents

low-priority SFC requests from exceeding (𝛿 × CPU capacity of the CDC node

i).

∑ 𝜓𝑐𝑝𝑢
𝑠 . 𝑅(𝑖,𝑗)

𝑠 ≤ 𝐾𝑖
𝑐𝑝𝑢

𝑆

𝑠=1

, ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁 (32)

∑ 𝜓𝑐𝑝𝑢
𝑠′ . 𝑅(𝑖,𝑗)

𝑠′ ≤ 𝐾𝑖
𝑐𝑝𝑢

. δ

𝑆′

𝑠′=1

, ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁 (33)

The same logic as for CPU utilization of CDC node i is applied for memory

utilization of CDC node i via Constraint (34) and (35).

∑ 𝜓𝑚𝑒𝑚
𝑠 . 𝑅(𝑖,𝑗)

𝑠 ≤ 𝐾𝑖
𝑚𝑒𝑚

𝑆

𝑠=1

, ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁 (34)

∑ 𝜓𝑚𝑒𝑚
𝑠′ . 𝑅(𝑖,𝑗)

𝑠′ ≤ 𝐾𝑖
𝑚𝑒𝑚. δ

𝑆′

𝑠′=1

, ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑗 ∈ 𝑁 (35)

Constraint (36) is used to guarantee the maximum tolerable end-to-end delay

for SFC request s.

∑

𝑁

𝑖=1

∑ 𝐷(𝑖,𝑗). 𝑅(𝑖,𝑗)
𝑠 ≤ 𝜓𝑡𝑑

𝑠

𝑁

𝑗=1

, ∀𝑠 ∈ 𝑆 (36)

The parameter 𝐷(𝑖,𝑗) denotes the propagation delay on link (i, j). The flow

control is guaranteed via Constraint (37), which ensures that the links on the

deployment path of SFC request s are connected head-to-tail.

Integer-Linear-Programming Optimization Model

61

∑ 𝑅(𝑖,𝑗)
𝑠

𝑁

𝑗=1

− ∑ 𝑅(𝑗,𝑖)
𝑠 =

𝑁

𝑗=1

{
1 𝑖 = 𝑆𝑟𝑐𝑠

−1 𝑖 = 𝐷𝑒𝑠𝑠

 0 𝑖 ≠ 𝑆𝑟𝑐𝑠 , 𝐷𝑒𝑠𝑠

∀𝑖 ∈ 𝑁 , ∀𝑠 ∈ 𝑆 (37)

We use Constraint (38) to prevent a loop for SFC request s.

∑ 𝑅(𝑖,𝑗)
𝑠 ≤ 1

𝑁

𝑗=1

, ∀𝑖 ∈ 𝑁 , ∀𝑠 ∈ 𝑆 (38)

To ensure that SFC request s crosses a valid VNF chain while traversing

through the nodes, we apply Constraint (39).

∑ 𝐸𝑖 ,𝑥
𝑠 = 𝐴𝑥

𝑠

𝑁𝑐𝑑𝑐

𝑖=1

, ∀𝑥 ∈ 𝑋, ∀𝑠 ∈ 𝑆 (39)

Each VNF x of SFC request s needs to be supported by the server hosting it.

Therefore, Constraint (40) is needed.

 𝐸𝑖 ,𝑥
𝑠 ≤ 𝐿𝑖,𝑥

 , ∀𝑖 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑥 ∈ 𝑋, ∀𝑠 ∈ 𝑆 (40)

To identify the VNF types placed on CDC node i, we use the matrix 𝐿𝑖,𝑥
 (N

× X). To make sure that each VNF is used by at most one SFC request, the

Constraint (41) is proposed.

∑ 𝐸𝑖 ,𝑥
𝑠 ≤ 1

𝑁𝑐𝑑𝑐

𝑖=1

, ∀𝑥 ∈ 𝑋, ∀𝑠 ∈ 𝑆 (41)

With the following constraints, we apply the VNF ordering in the SFC

deployment path. As stated before, the VNF instances of SFC request s need to

be concatenated in a predefined order. Therefore, we apply the following

ordering constraints. First, we define a matrix 𝑌𝑠(N × N) to store the deployment

path of SFC request s. The stored values in 𝑌𝑠 are integer; therefore, its elements

Integer-Linear-Programming Optimization Model

62

need to be equal or higher to the corresponding rerouting matrix 𝑅(𝑖,𝑗)
𝑠 . Thus, we

introduce Constraint (42).

𝑌(𝑖,𝑗)
𝑠 ≥ 𝑅(𝑖,𝑗)

𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑖, 𝑗 ∈ 𝑁 (42)

If 𝑅(𝑖,𝑗)
𝑠 becomes zero, then we need to be sure that 𝑌(𝑖,𝑗)

𝑠 becomes zero as

well. To apply this, we utilize Constraint (43).

 𝑌(𝑖,𝑗)
𝑠 = 𝑌(𝑖,𝑗)

𝑠 . 𝑅(𝑖,𝑗)
𝑠 , ∀𝑗 ∈ 𝑁 , ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝑁 − {𝐷𝑒𝑠𝑠} (43)

Since Constraint (43) is nonlinear, we need to make it linear. We know that each

SFC request s can traverse at most all the nodes in our substrate network.

Therefore, we can apply Constraint (44) instead of Constraint (43), which is

linear.

𝑌(𝑖,𝑗)
𝑠 ≤ 𝑁 . 𝑅(𝑖,𝑗)

𝑠 , ∀𝑖 ∈ 𝑁 − {𝐷𝑒𝑠𝑠}, ∀𝑗 ∈ 𝑁, ∀𝑠 ∈ 𝑆 (44)

The output links of the rerouting matrix must be zero for the destination node.

To apply this, we use Constraint (45).

𝑌(𝑖,𝑗)
𝑠 = 0, ∀𝑖 ∈ 𝐷𝑒𝑠𝑠 , ∀𝑗 ∈ 𝑁 − {𝐷𝑒𝑠𝑠}, ∀𝑠 ∈ 𝑆 (45)

Next, we need to make sure that when an SFC request enters a node in its 𝑛
𝑡ℎ

step, it leaves that node in its (𝑛 + 1)
𝑡ℎ step. Therefore, we use Constraint (46).

∑ 𝑌(𝑖,𝑗)
𝑓

𝑁

𝑗=1

= ∑ 𝑌(𝑗,𝑖)
𝑠 +

𝑁

𝑗=1

∑ 𝑅(𝑗,𝑖)
𝑠

𝑁

𝑗=1

 ∀𝑖 ∈ 𝑁 − {𝑆𝑟𝑐𝑠 , 𝐷𝑒𝑠𝑠}, ∀𝑠 ∈ 𝑆 (46)

We apply Constraint (47) to make sure that the SFC requests leave the source

nodes.

∑ 𝑌(𝑖,𝑗)
𝑠 = 1

𝑁

𝑗=1

, ∀𝑖 ∈ 𝑆𝑟𝑐𝑠 , ∀𝑠 ∈ 𝑆 (47)

Integer-Linear-Programming Optimization Model

63

As the last ordering constraint in our optimization model to check if VNFs

with higher ordering are delivered to the SFC request s in one of the crossed

serves or not, we apply Constraint (48).

∑

𝑁

𝑖=1

∑

𝑁

𝑗=1

𝑌(𝑖,𝑗)
𝑠 . 𝐸(𝑖, 𝑂

𝐴𝑠
𝑠)

𝑠 ≥ ∑

𝑁

𝑖=1

∑

𝑁

𝑗=1

𝑌(𝑖,𝑗)
𝑠 . 𝐸(𝑖, 𝑂𝐽

𝐴𝑠
𝑠)

𝑠

∀𝑠 ∈ 𝑆, ∀𝐴𝑠 ∈ {1, … , 𝑙𝑒𝑛(𝑂𝑠)}, ∀𝐽𝐴𝑠 ∈ {1, … , 𝐴𝑠 − 1},

 𝑌(𝑖,𝑗)
𝑠 ∈ ℤ ≥ 0, ∀𝑖, 𝑗 ∈ 𝑁 (48)

The matrix 𝐽𝐴𝑠 stores all the required VNFs with a higher order than 𝐴𝑠, i.e.,

if 𝑂𝑠 = [4 3 2 6] then 𝐴𝑠 ∈ {1, 2, 3, 4}. If we assume 𝐴𝑠 = 4, then 𝐽𝐴𝑠 is a

member of {2, 3}. Using the same approach as in [27], the ordering constraints

of the VNFs belonging to a flow are expressed in a different form. Therefore,

the Constraint (48) is replaced with the Constraint (49).

(1 − 𝐸(𝑖 ,𝑂
𝐴𝑠
𝑠)

𝑠) . (2𝑁 − 1) + ∑

𝑁

𝑖=1

𝑌(𝑖,𝑗)
𝑠 ≥ (𝐸(𝐼 ,𝑂𝐽

𝐴𝑠
𝑠)

𝑠). (2𝑁 − 1) + ∑

𝑁

𝑗=1

𝑌(𝐼,𝑗)
𝑠

∀𝑠 ∈ 𝑆, ∀𝐴𝑠 ∈ {1, … , 𝑙𝑒𝑛(𝑂𝑠)}, ∀𝐽𝐴𝑠 ∈ {1, . . . , 𝐴𝑠 − 1}, ∀𝐼, 𝑖 ∈ 𝑁 (49)

In Constraint (49), if the CDC node i hosts the VNF 𝑂𝐴𝑠
 , then 𝐸(𝑖 ,𝑂

𝐴𝑠
𝑠)

𝑠 = 1.

Therefore, the left-side of Constraint (49) considers the step of the CDC node i

and it must be greater than the step of all CDC nodes (𝐼) hosting a VNF with an

index lower than the index of VNF 𝑂𝐴𝑠
 in 𝑂

𝑠. By considering the 𝐽𝐴𝑠 as the

index of any VNF in 𝑂
𝑠 with an index lower than VNF 𝑂𝐴𝑠

 , which means the

flow s must pass VNF 𝑂𝐽𝐴𝑠
𝑠 before 𝑂𝐴𝑠

𝑠 . If the CDC node i (I) hosts the VNF

𝑂𝐽𝐴𝑠
𝑠 , then 𝐸(𝐼 ,𝑂𝐽

𝐴𝑠
𝑠)

𝑠 = 1. Therefore, the right-side of Constraint (49) considers

the step of the CDC node i (I) and it must be greater than the step of all CDC

nodes i hosting a VNF with an index greater than the index of VNF 𝑂𝐽𝐴𝑠
𝑠 in 𝑂

𝑠.

Integer-Linear-Programming Optimization Model

64

If either 𝐸𝑖 ,𝑂
𝐴𝑠

𝑠 or 𝐸(𝐼 ,𝑂
𝐽𝑠
)

𝑠 are equal to zero, the value of ∑ 𝑌(𝑖,𝑗)
𝑠N

j=1 is always

lower than (2N-1), then the constraint is fulfilled. ∑ 𝑌(𝑖,𝑗)
𝑠N

j=1 and ∑ 𝑌(𝑖,𝑗)
𝑠N

i=1 are

always lower than (2N-1), since in the worst case, the flow crosses all nodes,

which means the value of ∑ 𝑌(𝑖,𝑗)
𝑠N

j=1 is at most (N-1)+N. The destination has a

flow to itself with a step of at most N+1. When both 𝐸(𝑖 ,𝑂
𝐴𝑠
)

𝑠 and 𝐸(𝐼 ,𝑂
𝐽𝑠
)

𝑠 are

equal to one, the constraint is satisfied on the condition that the value of

∑ 𝑌(𝑖,𝑗)
𝑠N

j=1 is greater than ∑ 𝑌(𝐼,𝑗)
𝑠N

j=1 . It means, a CDC node that delivers the lower

index VNF is crossed before the CDC nodes that deliver higher index VNFs

[27].

After specifying all the necessary constraints for our optimization model, we

must define the objective function. Using the adjustable priority coefficient

factor (δ), we reserve a certain amount of physical network resources

exclusively for embedding URLLA. To minimize negative effects on low-

priority SFC requests, we consider constraints on the maximum tolerable end-

to-end delay and reliability for low-priority SFC requests. To this end, we define

the objective function as (50), optimizing SFC request deployment paths in

respect of end-to-end delay and subject to (29)-(42), (44-47), and (49).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑

N

𝑖=1

∑ 𝑅(𝑖,𝑗)
𝑠

𝑁

𝑗=1

. 𝐷(𝑖,𝑗) ∀𝑠 ∈ 𝑆 (50)

Using Equation (50), we obtain the optimal results, which we refer to as the

Optimal Reliability- and Application-Aware SFC (ORAAS) embedding. As

stated before, given that Equation (50) is an NP-Hard problem and getting exact

numerical solutions is very time consuming, we provide a heuristic algorithm

(NORAAS algorithm) in Chapter 5 in order to obtain near-optimal results with a

minimal execution time and optimality gap.

Heuristic SFC Embedding Algorithms

65

5 Heuristic SFC Embedding Algorithms

Obtaining exact numerical solutions of the SFC deployment problem by

utilizing an ILP optimization model is an NP-hard problem, which was proofed

in the previous chapter. The goal of the proposed heuristic approaches is to

achieve near-optimal results with minimum execution time to solve the

scalability problem. When applied to real-world network topologies, the SFC

embedding technique must be able to get near-optimal results in an acceptable

amount of time. To this end, achieving near-optimal results with a small

optimality gap and the shortest possible execution time plays an important role.

In this chapter, we provide a set of heuristic algorithms and relaxed versions

for achieving near-optimal outcomes with minimal execution time and an

optimality gap, making them usable in real-world use cases. These algorithms

are designed to generate results as efficiently as possible. In Section 5.1, we will

discuss our Fast Application-Aware Service Function Chaining (FAS)

algorithm to address Ultra-Low Latency Communication and obtain near-

optimal outcomes to the OAS approach that was discussed in Chapter 4. In

Section 5.2, we will describe our heuristic approach to address Ultra-Reliable

Low-Latency Communication, named the Near-Optimal Reliable Application

Aware Service Function Chaining (NORAAS) algorithm. Our goal is to obtain

results that are close to the optimal level of the ORAAS algorithm that was

presented in Chapter 4. As mentioned before, in the first two phases of our

investigation, our focus is on static SFC requests similar to [27, 28]. The SFC

requests are considered static inputs, and the lifetime of SFC requests is not

taken into account. In the final stage of our investigation, we look at a dynamic

service function chaining scenario with flow arrival and departure times. In this

scenario, each SFC request has a lifetime that specifies the amount of time that

Heuristic SFC Embedding Algorithms

66

it needs to use physical network resources in order to receive the service that it

requests. Following the expiration of this lifetime, the physical network

resources can be made available for subsequent SFC requests. Since the

objective of our study is to address Ultra-Reliable Low Latency

Communication, in Section 5.3, we offer a set of heuristic algorithms to address

URLLC in a dynamic scenario similar to [29, 30]. In Section 5.4, we describe

the Nearest-Service-Function-First (NSF) algorithm proposed by Tajiki et al.

[27]. It is used as a comparison algorithm. In Section 5.5, we present the well-

known Greedy algorithm, which is also employed as a comparison algorithm as

in [48, 45, 64, 65, 46, 36].

5.1 Fast Application-Aware SFC (FAS) Algorithm

In the following, we illustrate our proposed heuristic algorithm, named the

FAS algorithm, in order to get results that are close to optimal using the optimal

optimization model (OAS algorithm). Similar to the OAS approach, we classify

SFC requests into those with a high-priority and those with a low-priority. Then,

utilizing the priority coefficient factor, we set aside a certain portion of the

available physical network resources (bandwidth, RAM memory, and CPU) for

high-priority SFC requests. That means low-priority SFC requests can use a

maximum of 90 percent of physical resources (since (µ × physical resources)

and the initial value of μ is 0.9), and we reserve ((1- µ)× physical resources)

of the total physical resources for high-priority SFC requests to optimize their

deployment paths and hence provide a guaranteed QoS. In the sixth chapter, we

investigate the impact of changing the priority coefficient factor (µ). The

pseudocode of the FAS algorithm is presented in Algorithm 1.

Heuristic SFC Embedding Algorithms

67

Algorithm 1. FAS Algorithm

Input: 𝐺𝑝= (𝑁𝑃,𝐿𝑃) Physical Network;

 𝑆𝑟𝑐𝑓,𝐷𝑒𝑠𝑓,𝑊(𝐹 ×𝑋)

Output: 𝑆𝑃𝑓 Selected Path for SFC request f;

1: for each SFC request f do

2: 𝑆𝑃𝑓= empty;

3: CN = Src (f) Set source of f as Current Node (CN);

4: Free Resources = Calculate_Free_Resources (Flow f)

 (Bandwidth, memory, and CPU);

5: Prune (𝑁𝐶𝐷𝐶 , 𝐿𝑃) Pruning the CDC nodes and the links,

 which cannot be used to serve SFC request f;

6: for each VNF x in 𝑊𝑥
𝑓
 do

7: Find Nearest CDC Providing x (CN, x) Dijkstra;

8: CN = next CDC;

9: Update Used Resources;

10: Update SP;

11: end for

12: Find shortest path from CDC to the Des (flow) Dijkstra;

13: Update Used Resources;

14: Update SP;

15: end for

16: return SP;

Heuristic SFC Embedding Algorithms

68

To execute Algorithm 1, the following list of input parameters is required.

We require the physical network graph, including its physical network

resources. We require the information concerning SFC requests, which includes

the source node and the destination node of each SFC request as well as the

priority of the request for use in Algorithms 2 and 3. The optimal selected path

for each SFC request is the output that is intended to be produced. The first SFC

request that is received by the system serves as our starting point. It is necessary

to start with the source node of each SFC request and work our way to the

destination of each SFC request while adhering to the constraints that are

demanded.

In Algorithm 1, line 1 does an iteration loop for each SFC request (F) in order

to identify the optimal deployment path for SFC requests. In line 2, we create a

Selected Path (SP) list in which we will record the optimal deployment paths

that have been obtained for each SFC request f. The source of the SFC request

f is specified to be the current node in line 3, which allows the algorithm to begin

from this node. In line 4, we compute the free physical resources (bandwidth,

memory, and CPU) with respect to the priority of each SFC request f, which is

detailed in further detail in Algorithms 2 and 3. The purpose of line 5 is to

remove the CDC nodes and physical links that are unable to be utilized in order

to fulfill the SFC request f. Lines 6-8 use the Dijkstra method to locate the CDC

nodes that are closest to the SFC request f that can supply the necessary VNFs.

These nodes are located in accordance with the values that are recorded in the

VNF ordering matrix W. After determining the routes with the shortest distances

to the CDC nodes that supply the necessary VNFs for the SFC request f, we will

update both the Used Resources (line 9) and the Selected Path (line 10).

Following that, we identify the shortest path between the last CDC node that is

giving the last required VNF of SFC request f and the destination node of SFC

request f in line 12, and then we update the Used Resources in line 13 and the

Heuristic SFC Embedding Algorithms

69

Selected Path in line 14, respectively. Finally, in line 16, the algorithm provides

a report of the most efficient deployment routes for the SFC request.

Algorithm 2 calculates the free physical resources with respect to the priority

of each SFC request. In line 2, we reduce the Used Resources (calculated in

Algorithm 3) from the 90 percent (since the initial value of μ is 0.9) of the total

network capacity (bandwidth, memory, and CPU). In lines 3-4, if the SFC

request f has high-priority, then it can use the reserved 10 percent of the network

capacity. Line 6 makes the Free Resources equal zero if low-priority SFC

requests require more than 90 percent of physical resources. Line 8 returns the

Free Resources.

Algorithm 2. Calculate_Free_Resources

Input: Flow f, 𝑃𝑓

Output: Free Resources (bandwidth, memory, and CPU);

1: Calculate_Free_Resources (Flow f)

2: Free Resources= (𝜇 × Network Capacity) – Used Resources;

3: if Flow f has high-priority then

4: Free Resources= Free Resources + ((1- 𝜇) × Network Capacity);

5: end if

6: if Free Resource < 0 then Free Resources=0; Since

 (1- 𝜇)% is reserved for high-priority, the Free Resources

 value for low-priority can become negative.

7: end if

8: return Free Resources;

Heuristic SFC Embedding Algorithms

70

Algorithm 3 updates Used Resources of SFC request f with respect to its

priority. First, it checks the Selected Path of SFC request f in lines 1-2. In line

3, if the SFC request f has high-priority, then the algorithm uses the reserved 10

percent of network capacity for path deployment. If the reserved 10 percent of

the network capacity is not enough for path deployment, then it uses the rest of

the 90 percent of the network capacity (line 6). In line 9, if the SFC request f

has low-priority, the algorithm reduces the required physical resource only from

the 90 percent of the total network capacity. Line 12 returns the Used Resources

Algorithm 3. Update_Used_Resources

Input:Route, Flow f, 𝑃𝑓

Output: Used Resources (bandwidth, memory, and CPU);

1: Used Reources (Route, Flow f)

2: for each (node m → node n) in Route do

3: if Flow f has high-priority then

4: reduce Required Resources from ((1- 𝜇) × Network Capacity);

5: if ((1- 𝜇) × Network Capacity) < Required Resources

6: then reduce the remaining from (𝜇 × Network Capacity);

7: end if

8: else

9: reduce the Required Resources from (𝜇 × Network Capacity);

10: end if

11: end for

12: return Used Resources;

Heuristic SFC Embedding Algorithms

71

for deployment of SFC request f. Using Algorithms 1-3, we obtain near-optimal

results of our proposed Optimal Application-Aware SFC (OAS) embedding

algorithm with a minimum execution time.

5.2 Near-Optimal Reliability- and Application-Aware SFC

(NORAAS) Algorithm

In this section, we illustrate our proposed heuristic algorithm to reduce the

execution time of the optimal optimization model using Equation (50) and

obtain near-optimal results for large-scale network topologies. Our heuristic

algorithm handles high-priority SFC requests identically to the ORAAS

algorithm, which means that we reserve a certain amount of physical network

resources exclusively for embedding high-priority SFC requests to optimize

their latency and reliability. We refer to our heuristic algorithm as the Near-

Optimal Reliability- and Application-Aware SFC (NORAAS) embedding

algorithm, and its pseudocode is presented in Algorithm 4.

Algorithm 4 returns the shortest route for deploying SFC request s in terms

of end-to-end delay with respect to reliability. To do this, we need the following

parameters: source node, destination node, VNF ordering matrix, and reliability

requirement of SFC request s. It begins with the source node of each SFC

request s (line 3), calculates the available physical network resources via

Algorithm 5 (line 4), then prunes the physical links and nodes in accordance

with the available physical network resources (line 5). For each VNF in the

ordering matrix of SFC request s (line 6), the Dijkstra Algorithm will be used to

find the nearest CDC nodes that support the required VNFs (line 7). The

reliability requirement of the selected route will be checked in line 8. Then it

keeps a record of the physical resources that have been used (line 10). After

locating the required VNFs for SFC request s, it determines the shortest route

Heuristic SFC Embedding Algorithms

72

Algorithm 4. NORAAS Algorithm

Input: 𝐺 = (𝑁, 𝐿), 𝑆𝑟𝑐𝑠 , 𝐷𝑒𝑠𝑠, 𝑂𝑥
𝑠, ᴦ𝑠;

Output: 𝑅𝑜𝑢𝑡𝑒𝑠 Selected route for SFC request s;

1: for each SFC request s do

2: 𝑅𝑜𝑢𝑡𝑒𝑠= empty;

3: CN = Src (s) Set source of s as Current-Node (CN);

4: Calculate_Free_Resources (Bandwidth, memory, CPU)

 Via Algorithm 5;

5: Prune (𝑁𝐶𝐷𝐶 , 𝐿) Pruning the CDC nodes and the links,

 which cannot be used to serve SFC request s;

6: for each VNF x in 𝑂𝑥
𝑠 do

7: Find nearest CDC providing x (CN, x) Dijkstra;

8: if Reliability [Selected-Route] ≥ ᴦ𝑠 then

 9: CN = next CDC;

10: Update Used Resources;

11: Update Route;

12 end if

13: end for

14: Find shortest path from CDC to the Des (flow) Dijkstra;

15: Update Used Resources;

16: Update Route;

17: end for

18: return Route;

Heuristic SFC Embedding Algorithms

73

between the latest CDC node and the SFC request's destination node (line 14).

The Used Resources and Selected Route in lines 15 and 16, respectively, are

then updated. The algorithm finally outputs the shortest route in line 18.

Algorithm 5 calculates the available physical network resources for mapping

SFC requests based on their priority. It subtracts the Used Resources (calculated

via Algorithm 6) from 90% of the total network capacity (because the initial

value of δ is 0.9) in line 2. If the SFC request has a high-priority, it can utilize

the reserved 10% of network capacity in lines 3-4. If low-priority SFC requests

require more than 90% of physical resources, line 6 sets the Free Resources to

zero. Line 8 returns the Free Resources.

Algorithm 5. Calculate_Free_Resources

Input: Flow s, 𝑃𝑠;

Output: Free Resources (Bandwidth, memory, CPU);

1: Calculate_Free_Resources (Flow s)

2: Free Resources= (δ × Network Capacity) – Used Resources;

3: if Flow s has high-priority then

4: Free Resources= Free Resources + ((1- δ) × Network Capacity);

5: end if

6: if Free Resources < 0 then Free Resources=0; Since

(1- δ)% is reserved for high-priority, the Free Resources value

for low-priority can become negative.

7: end if

8: return Free Resources;

Heuristic SFC Embedding Algorithms

74

Algorithm 6 updates the Used Resources for SFC request s in accordance

with its priority. To begin, it verifies the Selected Path of SFC request s

specified in lines 1-2. Then, if the SFC request s has a high-priority, the

algorithm uses the reserved 10% of the total network capacity first (line 4) and,

if necessary, the rest 90% of network capacity (lines 5-6). If the SFC request s

is not a high-priority SFC request, it can use only 90% of network capacity (line

9). Line 12 returns the Used Resources for SFC deployment.

Algorithm 6. Update_Used_Resources

Input: Route, Flow s, 𝑃𝑠;

Output: Used Resources (Bandwidth, memory, CPU);

1: Used Reources (Route, Flow s)

2: for each (node i → node j) in Route do

3: if Flow s has high-priority then

4: reduce Required Resources from ((1- 𝛿) × Network Capacity);

5: if ((1- 𝛿) × Network Capacity) < Required Resources

6: then reduce the remaining from (𝛿 × Network Capacity);

7: end if

8: else

9: reduce the Required Resources from (𝛿 × Network Capacity);

10: end if

11: end for

12: return Used Resources;

Heuristic SFC Embedding Algorithms

75

5.3 Dynamic Application Aware SFC (DAAS) Algorithm

As stated earlier, in the first two developed SFC embedding algorithms (FAS

and NORAAS), we assumed that the SFC requests were static input as in [27,

28] and did not take into account the lifetime of each SFC request. In this

subsection, we will add dynamicity to our SFC embedding algorithm. We'll look

at dynamic SFC requests that have flow arrival and departure times similar to

[29, 30]. Each SFC request has a lifetime to use physical network resources, and

after the expiration of this lifetime, the physical network resources can be

released for following SFC requests. In this part, we discuss our dynamic SFC

embedding technique to address ultra-reliable low latency communication. This

follows our work with a master student [66], in which we examined ultra-low

latency communication in an NFV- enabled network in a dynamic environment.

We construct our proposed Dynamic Application-Aware SFC (DAAS)

embedding algorithm as following. All the symbols and variables of the DAAS

algorithm are summarized in Table 3.

First, we establish the limitations on the utilization of physical network

resources (bandwidth, memory, and CPU) in accordance with the priority of

each SFC request f. Using flow prioritization and a configurable priority

coefficient factor, we are able to reserve a portion of physical network resources

for high-priority SFC requests or URLLA as follows. Constraint (51) guarantees

that the bandwidth utilization of all SFC requests on link (m,n) does not exceed

the total bandwidth capacity of substrate link (m,n). The binary variable 𝑅(𝑚,𝑛)
𝑓

indicates the routing path of SFC request f, where 𝑅(𝑚,𝑛)
𝑓

=1, if SFC request f

traverses the link (m,n), and 0 otherwise. The parameter F indicates the total

number of SFC requests. Constraint (52) ensures that the low-priority SFC

requests cannot exceed (µ × bandwidth of substrate link (m,n)). The parameter

µ is the adjustable priority coefficient factor for reserving physical network

resources for high-priority SFC requests. We assume the initial priority

Heuristic SFC Embedding Algorithms

76

coefficient factor (µ) to be 0.9, which means that 10 percent of physical

resources are reserved for embedding only high-priority SFC requests (URLLA).

The parameter F’ denotes the total number of low-priority SFC requests.

∑ Ω𝐵𝑊
𝑓

 . 𝑅(𝑚,𝑛)
𝑓

 ≤ 𝐶(𝑚,𝑛)
𝐵𝑊

𝐹

𝑓=1

, ∀ 𝑚, 𝑛 ∈ 𝑁𝑠 (51)

∑ Ω𝐵𝑊
𝑓′

. 𝑅(𝑚,𝑛)
𝑓′

≤ 𝐶(𝑚,𝑛)
𝐵𝑊 . µ ,

𝐹′

𝑓′=1

 ∀ 𝑚, 𝑛 ∈ 𝑁𝑠 (52)

Constraint (53) ensures that the CPU use of SFC requests on node m does not

exceed the node's total CPU capability. Constraint (54) prohibits low-priority

SFC requests from exceeding (µ × CPU capacity of the CDC node m).

Therefore, we reserve ((1-µ) × CPU capacity) only for high-priority SFC

requests.

∑ Ω𝐶𝑃𝑈
𝑓

. 𝑅(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝐶𝑃𝑈

𝐹

𝑓=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠
 (53)

∑ Ω𝐶𝑃𝑈
𝑓′

. 𝑅(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝐶𝑃𝑈 . µ

𝐹′

𝑓′=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠
 (54)

Using Constraints (55) and (56), the same reasoning as for CPU utilization

of CDC node m is applied to memory consumption of CDC node m. Constraint

(55) ensures that the memory use of SFC requests on node m does not exceed

the node's total memory capability. Constraint (56) prohibits low-priority SFC

requests from exceeding (µ × memory capacity of the CDC node m). Therefore,

we reserve ((1-µ) × memory capacity) only for high-priority SFC requests.

Heuristic SFC Embedding Algorithms

77

Table 3. Symbols and variables used in the third phase of our study

Symbols Description

𝐺𝑠 The substrate network

𝑁𝑠
 The set of the physical nodes

𝐿𝑠
 The set of the physical links

𝑁𝑆𝑊 The set of the switching nodes (𝑁𝑆𝑤 ⊆ 𝑁𝑠
)

𝑁𝐶𝐷𝐶 The set of the CDC nodes (𝑁𝐶𝐷𝐶 ⊆ 𝑁𝑠)

F The total number of SFC requests (flows)

F´ The total number of low-priority SFC requests (flows)

X The total number of VNF types (e.g., a, b, c, d, etc.)

𝑃𝑓 The priority of SFC requests f

ᴦ𝑓 The required reliability by SFC request f

𝑅𝑒𝑓 The reliability of SFC request f

𝑅𝑒𝑎 The reliability of VNF a

𝑅𝑒𝐶𝐷𝐶 The reliability of CDC node

µ The priority coefficient factor for physical resource reservation

(𝜇 = 0.9 as the initial value)

𝑅(𝑚,𝑛)
𝑓

 A binary variable, whether flow f traverses the link (m,n) or not

 𝐸𝑚,𝑥
𝑓

 A binary variable, whether flow f uses VNF type x which is placed

at CDC node m or not

𝐶(𝑚,𝑛)
𝐵𝑊 The total bandwidth capacity of link (m,n)

𝐶𝑚
𝐶𝑃𝑈 The total CPU capacity of node m

𝐶𝑚
𝑀𝑒𝑚 The total memory capacity of node m

𝑆𝑟𝑐𝑓 The source node of SFC request f

𝐷𝑒𝑠𝑓 The destination node of SFC request f

𝑇𝑎
𝑓
 The arrival time of SFC request f

Heuristic SFC Embedding Algorithms

78

𝑇𝑑
𝑓
 The departure time of SFC request f

𝐴𝐹 ×𝑋
 The matrix of required VNFs by SFC request f

𝑂𝐹 ×𝑋
 The matrix of ordering of VNFs requested by SFC request f

Ω𝐵𝑊
𝑓

 The required bandwidth by SFC request f

Ω𝐶𝑃𝑈
𝑓

 The required CPU by SFC request f

Ω𝑀𝑒𝑚
𝑓

 The required memory by SFC request f

Ω𝑡𝑑
𝑓

 The maximum tolerable delay by SFC request f

𝐷𝑙(𝑚,𝑛) The propagation delay on link (m,n)

∑ Ω𝑀𝑒𝑚
𝑓

. 𝑅(𝑚,𝑛)
𝑓

≤ 𝐶𝑚
𝑀𝑒𝑚

𝐹

𝑓=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠
 (55)

∑ Ω𝑀𝑒𝑚
𝑓′

. 𝑅(𝑚,𝑛)
𝑓′

≤ 𝐶𝑚
𝑀𝑒𝑚. µ

𝐹′

𝑓′=1

, ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑛 ∈ 𝑁𝑠
 (56)

Using Constraint (57), we ensure the reliability requirement of SFC request

f.

 𝑅𝑒𝑓 = ∏ 𝑅𝑒𝑥
 . 𝑅𝑒𝐶𝐷𝐶

 𝑚

𝑥 ∈ X

 . 𝐸𝑚,𝑥
𝑓

 ≥ ᴦ𝑓 , ∀𝑚 ∈ 𝑁𝐶𝐷𝐶 , ∀𝑓 ∈ 𝐹 (57)

After specifying the necessary constraints, we present our proposed heuristic

method for dynamic service function chaining with the aim of facilitating

URLLC in NFV in a dynamic scenario. As stated before, in order to optimize

the latency and reliability of high-priority SFC requests, our heuristic algorithm

reserves a specific amount of physical network resources only for their

embedding. Our heuristic technique is referred to as the DAAS embedding

algorithm, and its pseudocode is shown in Algorithm 7.

Heuristic SFC Embedding Algorithms

79

Algorithm 7. DAAS Algorithm

Input: 𝐺𝑠=(𝑁𝑠,𝐿𝑠), 𝑆𝑟𝑐𝑓, 𝐷𝑒𝑠𝑓, 𝑂𝑥
𝑓
, ᴦ𝑓, 𝑇𝑎

𝑓
, 𝑇𝑑

𝑓
;

Output: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑜𝑢𝑡𝑒𝑓 Selected route for SFC request f;

1: for t in range 1,10 do

2: for each SFC request f at time t do

3: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑜𝑢𝑡𝑒𝑓= empty;

4: CN = Src (f) Set source of f as Current-Node (CN);

5: Calculate_Free_Resources (Bandwidth, memory, CPU)

 Via Algorithm 8;

6: Prune (𝑁𝐶𝐷𝐶 ,𝐿𝑠) Pruning CDC nodes and links that are unable

 to serve SFC request f (Constraints 51-56);

7: for each VNF x in 𝑂𝑥
𝑓
 do

8: Find nearest CDC providing x (CN, x) Dijkstra;

9: if Reliability [Selected-Route] ≥ ᴦ𝑠 (Constraints 57)

10: CN = next CDC;

11: Update Used Resources (Algorithm 9);

12: Get Used Resources← Record the used resources

 (Algorithm 10)

13: Update Selected_Route;

14: end if

15: end for

16: Find shortest path from CDC to the Des (flow)Dijkstra;

17: Update Used Resources (Algorithm 9);

Heuristic SFC Embedding Algorithms

80

18: Get Used Resources← Record the used resources (Algorithm 10)

19: Update Selected_Route;

20: end if

21: end for

22: end for

23: return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑜𝑢𝑡𝑒𝑓;

The optimum path for delivering SFC request f in conjunction with end-to-

end delay and reliability requirements is returned by Algorithms 7-10. To do

this, we require the following parameters for each SFC request: source node,

destination node, VNF ordering matrix, reliability requirement, and arrival and

departure time of SFC request f. In Algorithm7, we establish 10 time-cycles for

mapping SFC requests (line 1), which some SFC requests entering and leaving

the network at their arrival time (𝑇𝑎
𝑓
) and departure time (𝑇𝑑

𝑓
). At each time-

cycle, we collect all incoming SFC requests (line 2), then define an empty

Selected_Route list to record each SFC request's optimum path (line 3). Line 4

begins at the source node of each SFC request. Line 5 computes the available

physical network resources (bandwidth, memory, and CPU) using Algorithm 8,

and then prunes the physical links and nodes based on the available physical

network resources (line 6). For each VNF in the ordering matrix of SFC request

f (line 7), the Dijkstra algorithm will be utilized to identify the closest CDC

nodes that can provide the necessary VNFs (line 8). In line 9, the Selected_Route

reliability requirement will be examined. The program then keeps track of the

used physical resources (line 11) and calculates the available physical resources

that are released at the departure time of SFCs (line 12) using Algorithm 10.

After discovering the necessary VNFs for SFC request f (line 13), the algorithm

Heuristic SFC Embedding Algorithms

81

identifies the shortest path between the most recent CDC node and the SFC

request's destination node (line 16). Finally, it updates the used resources,

released resources at departure time, and selected route (line 17-19) before

returning the shortest route (line 23).

Algorithm 8 calculates the free network resources for mapping SFC requests

based on their priority. In order to have dynamic SFC embedding, we utilize

SFC arrival time (𝑇𝑎
𝑓
) and departure time (𝑇𝑑

𝑓
). In the first time-cycle (line 2),

it subtracts the Used_Resources (derived via Algorithm 9) from 90 percent of

the total network capacity (because the starting value of µ is 0.9) (line 3). In line

4, if the flow has high-priority, then it can utilize the reserved 10 percent ((1-

µ) × Network Capacity) of physical network resources (line 5). Line 7 sets the

free resources to 0, if low-priority SFC requests require more than 90 percent of

physical resources. The Free Resources after time t=2 are calculated on line 10.

The released resources (derived in Algorithm 10) must be taken into account

here; thus, we not only subtract the used resources but also add the released

resources. In line 11, if the flow has high-priority, it can utilize the reserved 10

percent ((1- µ) × Network Capacity) of physical network resources (line 12).

Line 15 returns the Free_Resources.

Algorithm 9 updates Used_Resources for SFC request f according to its

priority. It begins by examining the Selected_Path of SFC request f in lines 1-

2. In line 3, if the SFC request f has a high-priority, then the algorithm uses the

reserved 10 percent of network capacity for path deployment. If the allocated

10 percent of the network capacity is insufficient for path deployment, the

remaining 90 percent of the network capacity is utilized (line 6). In line 9, if the

SFC request f has low-priority, the algorithm reduces the required physical

resource only from the 90 percent of the total network capacity. Line 12 returns

the Used_Resources for SFC request deployment.

Heuristic SFC Embedding Algorithms

82

Algorithm 8. Calculate_Free_Resources

Input: Flow f, 𝑃𝑓, 𝑇𝑎
𝑓
, 𝑇𝑑

𝑓
;

Output: Free_Resources (Bandwidth, memory, CPU);

1: Calculate_Free_Resources (Flow f, 𝑻𝒂
𝒇
, 𝑻𝒅

𝒇
)

2: if t < 2 then

3: Free_Resources= (µ × Network Capacity) – Used_Resources;

4: if Flow f has high-priority then

5: Free_Resources= Free_Resources + ((1- µ) × Network Capacity);

6: end if

7: if Free_Resources < 0 then Free_Resources=0; Since (1- µ)%

 is reserved for high-priority, the Free Resources value for low

 priority can become negative.

8: end if

9: else

10: Free_Resources= (µ × Network Capacity) – Used_Resources +

 Released Resources at time (𝑻𝒅
𝒇
)

11: if Flow f has high-priority then

12: Free_Resources= Free_Resources + ((1- µ) × Network Capacity)

 + Released Resources at time (𝑻𝒅
𝒇
);

13: end if

14: end if

15: return Free_Resources;

Heuristic SFC Embedding Algorithms

83

Algorithm 9. Update_Used_Resources

Input: Selected_Route, Flow f, 𝑃𝑓;

Output: Used_Resources (Bandwidth, memory, CPU);

1: Used Reources (Selected_Route, Flow f)

2: for each (node m → node n) in Selected_Route do

3: if Flow f has high-priority then

4: reduce Required Resources from ((1- µ) × Network Capacity);

5: if ((1- µ) × Network Capacity) < Required Resources then

6: reduce the remaining from (µ × Network Capacity);

7: end if

8: else

9: reduce the Required Resources from (µ × Network Capacity);

10: end if

11: end for

12: return Used_Resources;

Algorithm 10 computes the released resource when an SFC request's lifetime

expires at time t. To do this, the route, priority, and departure time of each SFC

request are required. The used resources that are waiting to be released are

recorded by Algorithm 10. In order to make the method dynamic, we now

introduce two new types of three-dimensional matrices, High_used_resources

and Low_used_resources, which record the Used_Resources by high-priority

and low-priority SFC requests, respectively. Each matrix indicates how much

resource should be released at the departure time t (𝑇𝑑
𝑓
). As for the algorithm,

first it checks the Selected Route of SFC request f in line 1-2. In line 3-7, if the

Heuristic SFC Embedding Algorithms

84

request has high-priority, it will first record the Used Resources in

High_used_resources with its departure time (𝑇𝑑
𝑓
). When the reserved 10

percent of network capacity is not enough for this request, the rest of Used

Resources will be recorded in Low_used_resources with its departure time (𝑇𝑑
𝑓
).

Line 9 records the Used Resources of low-priority in the Low_used_resources

with its departure time (𝑇𝑑
𝑓
). Line 12 returns the Used resources at time t, which

is considered as resources that should be released at time t.

Algorithm 10. Get_Used_Resources

Input: Selected_Route, Flow f, 𝑃𝑓, 𝑇𝑑
𝑓
;

Output: Released Resources at time t (Bandwidth, memory, CPU);

1: Released Reources (Selected_Route, Flow f, 𝑻𝒅
𝒇
)

2: for each (node m → node n) in Route of f at 𝑇𝑑
𝑓
 do

3: if Flow f has high-priority then

4: add Required Resources to high_used_recources;

5: if ((1- µ) × Network Capacity) < Required Resources then

6: add Required Resources - (1- µ) × Network Capacity) to

 low_used_recources;

7: end if

8: else

9: add Required Resources to low_used_recources;

10: end if

11: end for

12: return Released Resources at time t;

Heuristic SFC Embedding Algorithms

85

5.4 Nearest Service Function First (NSF) Algorithm

The Nearest-Service-Function-First (NSF) algorithm proposed by Tajiki et

al. [27] is used as a comparison algorithm. Algorithm 11 contains a presentation

of the pseudocode for the NSF algorithm. Their method makes use of the

commonsense approach of locating the closest server that supports the VNFs in

the chain of the flow f to deliver service. It is important to note that the NSF

method does not utilize any sort of prioritizing or physical resource reserve

while determining the optimal deployment routes. It treats SFC requests in an

equal manner. The pseudocode of the NSF algorithm is presented in Algorithm

11.

As described in [27], for proper operation of this algorithm, the following

parameters must be provided as input. We need the ordering list of needed VNFs

that is specified by the matrix K for each SFC request f. It is necessary for us to

know the source and destination of each SFC request, denoted by s and d

correspondingly. The N denotes the number of servers in the physical network.

Line 1 does an algorithmic iteration for each SFC request (F) to discover the

most efficient deployment paths for SFC requests. Line 2 constructs a Selected

Path (SP) list containing the ideal deployment pathways for each SFC request

f. In Line 3, the source of the SFC request f is declared to be the current node,

allowing the algorithm to begin here. Lines 4-8 employ the Dijkstra algorithm

to identify the nearest server that can provide the required VNFs of the SFC

request f in a row according to the VNF ordering matrix. If the selected route

meets the reliability requirement of the SFC request (line 6), then the utilized

bandwidth resources will be updated in line 9 in the appropriate manner. Then,

locate the shortest path from the most recently formed VNF to the destination

node (line 11), and add that path to the selected path. This process will take

place in line 12. It is necessary for us to get the resource for total bandwidth

usage up to date (line 13). Line 15 will return the best possible deployment path.

Heuristic SFC Embedding Algorithms

86

Algorithm 11. NSF Algorithm

Input: K, s, d, N

Output: SP SP is the Selected Path;

1: for each flow f in F do

2: 𝑆𝑃𝑓= empty;

3: CN = s CN is the current server;

4: for each VNF k in K do

5: [v, p] = Find_Nearest_Providers (CN, k, N);

6: if Reliability [Selected-Route] ≥ required-reliability then

7: add p to 𝑆𝑃𝑓

8: CN = v;

9: 𝐵𝑚𝑎𝑥= Reduce_Capacity (𝐵𝑚𝑎𝑥, MFS, p);

10: end for

11: p = Shortest_Path (CN, d);

12: add p to 𝑆𝑃𝑓

13: 𝐵𝑚𝑎𝑥= Reduce_Capacity (𝐵𝑚𝑎𝑥, MFS, p);

14: end for

15: return SP;

5.5 Greedy Algorithm

A Greedy algorithm is a type of algorithm that solves a problem by selecting

the optimal option currently available. Numerous studies [48, 45, 64, 65, 46, 36]

employ the well-known Greedy method as a comparison technique for the SFC

deployment problem. Although a Greedy algorithm can be straightforward and

effective, it may not necessarily result in the optimal solution. It is unconcerned

Heuristic SFC Embedding Algorithms

87

about whether the current best result will lead to the overall best result. The

algorithm never undoes a previous choice, even if it was erroneous. It operates

in a top-down fashion. This algorithm might not produce the best solution for

all problems. Because it always chooses the best option locally to produce the

best outcome globally [67, 68]. The pseudocode of Greedy Algorithm is

presented in Algorithm 12. When it comes to determining the optimal

deployment pathways, the Greedy algorithm does not make use of any sort of

prioritization or physical resource reservation, and it handles SFC requests in

an equal manner. This is something that has to be emphasized.

The following set of input parameters must be supplied for the algorithm to

be executed. We need access to the physical network and all of its physical

network resources 𝐺𝑝= (𝑁𝑃,𝐿𝑃). Following that, we need information on service

function chains, including the origin and destination of each SFC request,

𝑆𝑟𝑐𝑓,𝐷𝑒𝑠𝑓. We need to have the VNF ordering matrix 𝑊(𝐹 ×𝑋)
 and the

maximum tolerable delay for each SFC request, 𝜏𝑡𝑑
𝑓

. The expected output

consists of the optimally determined path for each SFC request. The initial SFC

request received by the system serves as our starting point. While adhering to

the required limitations, we must begin with the source node of each SFC

request and make our way to the destination of each SFC request.

Line 1 executes an algorithmic iteration for each SFC request (F) to discover

the most efficient deployment paths for SFC requests. In line 2, we construct a

Selected Path (SP) list to keep track of the optimal deployment pathways for

each SFC request f. Line 3 specifies the present node as the source of the SFC

path between the last CDC node that is providing the final required VNF for

SFC request f and the destination node for SFC request f. We then update the

request f, allowing the algorithm to begin at this node. Line 4's objective is to

Heuristic SFC Embedding Algorithms

88

Algorithm 12. Greedy Algorithm

Input: 𝐺𝑝= (𝑁𝑃,𝐿𝑃) Physical Network;

 𝑆𝑟𝑐𝑓,𝐷𝑒𝑠𝑓,𝑊(𝐹 ×𝑋)

Output: 𝑆𝑃𝑓 Selected Path for SFC request f;

1: for each SFC request f do

2: 𝑆𝑃𝑓= empty;

3: CN = Src (f) Set source of f as Current Node (CN);

4: Prune (𝑁𝐶𝐷𝐶 , 𝐿𝑃) Pruning the CDC nodes and the links,

 which cannot be used to serve SFC request f;

5: for each VNF x in 𝑊𝑥
𝑓
 do

6: Find Nearest CDC Providing x (CN, x) Greedy algorithm;

7: if Reliability [Selected-Route] ≥ ᴦ𝑓 then

8: CN = next CDC;

9: Update Used Resources;

10: Update SP;

11: end for

12: Find shortest path from CDC to the Des (flow) Greedy algorithm;

13: Update Used Resources;

14: Update SP;

15: end for

16: return SP;

Heuristic SFC Embedding Algorithms

89

eliminate the CDC nodes and physical links that cannot be employed to satisfy

SFC request f. Lines 5-7 employ the Greedy algorithm to identify the CDC

nodes nearest to the SFC request f that can provide the required VNFs. These

nodes are positioned based on the values included in the VNF ordering matrix

W. In the meantime, it examines the reliability constraint of the selected path in

line 7. After identifying the routes with the shortest distances to the CDC nodes

that provide the required VNFs for the SFC request f, we will update both the

Used Resources (line 9) and the Selected Path fields (line 10). Line 12 finds the

shortest path from the CDC node that provides the last required VNF to the

destination of the flow in line 12. Then, we update Used Resources in line 12

and the Selected Path in line 14. Line 16 returns the SFC request's most efficient

deployment paths.

Performance Evaluations

91

6 Performance Evaluations

In this chapter, we present the results of the performance evaluation

conducted on the algorithms proposed in our study, covering the different

phases of our research. It provides a comprehensive description of the

parameters employed in the performance evaluation and conducts an

assessment of the resulting outcomes. Python was employed as the

programming language for executing the simulations, in conjunction with the

PuLP library and CBC Solver. The computational task is executed on a

computer system equipped with an Intel Core i7-8550U CPU, operating at a

frequency range of 1.80GHz to 1.99GHz, and a memory capacity of 24 GB.

To assess the efficacy of our proposed algorithms, we have identified a set of

Key Performance Indicators (KPIs) for various stages of our investigation

through a comprehensive examination of cutting-edge studies. The objective of

this study is to investigate Ultra-Reliable Low Latency Communication within

a network enabled by NFV. The KPIs that we will focus on are latency,

reliability, bandwidth utilization, and SFC acceptance rate. In order to ensure

comparability and fairness, we utilize identical parameter settings when

conducting comparisons between different algorithms. The current chapter is

organized in the subsequent manner: In the subsequent section, denoted as

Section 6.1, an examination is conducted to explore the outcomes of the

investigation regarding Ultra-Low Latency Communication. In Section 6.2, this

study investigates the outcomes associated with Ultra-Reliable Low Latency

Communication. In Section 6.3, an analysis is conducted on the outcomes of the

Dynamic Service Function Chaining, which was executed to tackle URLLC in

a dynamic setting. The subsequent sections provide an expanded description of

our research findings.

Performance Evaluations

92

6.1 Ultra-Low Latency Communication

This section will outline the simulation setup and performance evaluation

results of the algorithms proposed to address Ultra-Low Latency

Communication. In this study, we conduct a comparative analysis of four

embedding algorithms, namely: (a) the OAS embedding algorithm, which

utilizes Equation (27) to obtain exact numerical solutions; (b) the FAS

embedding algorithm, which yields near exact numerical solutions; (c) the NSF

algorithm as proposed in a related study [27]; and (d) the Greedy algorithm, a

widely recognized baseline algorithm [48, 45, 64, 65, 46, 36]. Both the NSF

method and the Greedy algorithm are based on the closest server that provides

the required VNFs, as indicated in Chapter 5. However, the Greedy approach

uses the Greedy algorithm whereas the NSF algorithm uses the Dijkstra

algorithm to find the shortest path between two nodes. It is important to note

that neither the NSF nor the Greedy algorithms take flow prioritization or

physical network resource reservation into account.

In our simulation, we use the Gridnet network topology [69] as our substrate

network, which consists of 8 nodes and 18 links. Two nodes are considered

CDC nodes according to node degree to host the VNF instances, and six nodes

are regarded as switching nodes to pass traffic to the following nodes. We define

six different VNF types, and each CDC node can host a maximum of three

different VNF types. The bandwidth capacity between nodes m and n (m, n ∈

Np) is considered to be in the range of [500-1000] Mbps, location-dependent.

We set different CDC node capacities in terms of storage and computing

capabilities based on their different network locations. We set the memory and

CPU capacity of the first CDC node at 1500 MB and 1500 MIPS, respectively,

and for the second CDC node at 2000 MB and 2000 MIPS. As previously stated,

we assume that the memory and CPU capabilities of switching nodes are

limitless, as they just transmit traffic to the next nodes and do not require a great

Performance Evaluations

93

deal of memory and CPU capacity.

The propagation delay of link (m,n) follows a uniform distribution in the

range of [2, 21] milliseconds, computed based on the nodes’ distances and the

medium type of Gridnet network topology [60]. We assume the initial priority

coefficient factor (µ) to be 0.9, and the change in this value is also studied.

Indicating low-priority SFC requests are permitted to use up to 90 percent of

physical network resources, and 10 percent of physical network resources are

reserved for SFC requests with high-priority. In this simulation setup, we

generate 150 SFC requests with a random source and destination node. We

assume ten percent of SFC requests are high-priority SFC requests, which are

among the second half of SFC requests. The required bandwidth (𝜏𝑏𝑤
𝑓

), CPU

(𝜏𝑐𝑝𝑢
𝑓

) and memory (𝜏𝑚𝑒𝑚
𝑓

) of each SFC request f are set as numbers distributed

randomly between (0, 10] [29]. We set the number of required VNFs per SFC

request at three [29]. Last but not least, the maximum tolerated delay (𝜏𝑡𝑑
𝑓

) of

each SFC request is in the range of [50,100] ms [29]. When comparing OAS,

FAS, and NSF algorithms, it is vital that we utilize the same settings for our

simulation parameters. This is done for the sake of fairness [70].

The end-to-end delay is the most crucial KPI in this investigation. Figure 12

displays the measurements of end-to-end delay for the OAS, FAS, NSF, and

Greedy algorithms. In this graph, (×) represents the average end-to-end delay of

these four algorithms. The results of the study provide clear evidence that both

OAS and FAS exhibit significant efficacy in improving the average end-to-end

delay, particularly for SFC requests with high-priority, when compared to NSF

and Greedy. When examining high-priority SFC requests, it is observed that the

OAS and FAS algorithms demonstrate a significant decrease of 22 percent and

17 percent, respectively, in the average end-to-end delay when compared to the

Greedy algorithm. The OAS and FAS algorithms facilitate the optimization of

Performance Evaluations

94

provisioning paths by enabling ultra-low latency applications to utilize the

reserved 10 percent of physical network resources allocated for high-priority

SFC requests. Additionally, the findings show that the average end-to-end delay

for SFC requests with low-priority remains similar when comparing the FAS

and NSF algorithms. Nevertheless, the FAS algorithm exhibits a modest

decrease of 2 percent in the average end-to-end delay, in contrast to the Greedy

algorithm. On the other hand, the OAS algorithm demonstrates a significant

enhancement of 15 percent in the average end-to-end delay when compared to

the Greedy algorithm. The results of this study emphasize the considerable

advantages provided by OAS and FAS algorithms in decreasing end-to-end

delay for high-priority SFC requests, thereby improving the overall efficiency

and performance of ultra-low latency applications.

Figure 12. End-to-end delay (the first phase of the study)

The second KPI in this study applies to the efficient utilization of bandwidth

resources. In recent years, the use of bandwidth has increased dramatically due

Performance Evaluations

95

to an increase in the use of new services. Therefore, it is regarded as an essential

KPI and is of great importance to network providers. Figure 13 illustrates the

utilization of bandwidth resources in the provisioning paths of SFCs by the four

algorithms. (×) reflects the average bandwidth use of these four approaches in

this graph.

The results indicate that, on average, the OAS and FAS algorithms

demonstrate reduced bandwidth utilization (28 percent and 24 percent,

respectively) in comparison to the Greedy algorithm when handling high-

priority SFC requests. The reason for this can be attributed to the utilization of

reserved physical resources by OAS and FAS algorithms, which leads to the

creation of shorter provisioning paths for high-priority requests. On the other

hand, the Greedy algorithm may produce outcomes that are locally optimal but

do not achieve global optimality. Furthermore, the findings indicate that, on

average, low-priority SFC requests in the FAS consume approximately two

percent more bandwidth resources in comparison to the NSF. The observed

discrepancy can be attributed to the assignment of dedicated physical resources

for SFC requests with high-priority, resulting in less optimal deployment paths

for requests with low-priority. In addition, it can be observed that the OAS

algorithm demonstrates a decrease in bandwidth utilization of 10 percent and

12 percent, respectively, in comparison to the NSF and Greedy algorithms.

Overall, when considering both priority levels, the OAS algorithm demonstrates

a reduction in bandwidth resource consumption of approximately 14 percent in

comparison to the Greedy algorithm. The aforementioned discoveries provide

insights into the advantages provided by OAS and FAS algorithms in enhancing

the optimization of bandwidth utilization within SFC provisioning paths.

Consequently, this leads to enhanced resource efficiency and allocation.

Performance Evaluations

96

Figure 13. Bandwidth utilization (the first phase of the study).

Changing the proportion of high-priority SFC requests to low-priority SFC

requests is an additional element worth investigating. What happens if the

fraction of SFC requests with a high-priority rises? The priority coefficient

factor remains unchanged in this case. Figure 14 presents an analysis of the

average end-to-end delay experienced by provisioning paths, with a focus on

the varying proportion of high-priority SFC requests in relation to the total SFC

requests. The findings indicate that when the percentage of SFC requests

classified as high-priority rises, reaching a maximum of 10 percent, the OAS

and FAS algorithms exhibit the lowest average end-to-end delay in comparison

to the NSF and Greedy algorithms for high-priority SFC requests. The observed

enhancement can be attributed to the effective utilization of allocated physical

network resources. Nevertheless, upon surpassing this threshold, specifically

when the proportion of high-priority SFC requests reaches 30 percent, a notable

escalation in the average end-to-end delay for high-priority SFC requests can be

Performance Evaluations

97

observed in both the OAS and FAS algorithms, in contrast to the NSF and

Greedy algorithms. This phenomenon occurs as a result of the full utilization of

the 10 percent reserved physical resources by a subset of high-priority SFC

requests. As a result, the remaining SFC requests with high-priority are

obligated to utilize the non-reserved physical resources. This ultimately results

in suboptimal mapping and non-optimal provisioning paths.

Figure 14. Average end-to-end delay over proportion of high-priority SFCs to

the total SFCs (the first phase of the study).

Figure 15 illustrates the SFC acceptance rate attained by the four

aforementioned algorithms, which serves as a measure of their effectiveness in

mapping SFC requests. The SFC acceptance rate is the percentage of effectively

mapped SFC requests relative to the total number of SFC requests. Results

indicate a decline in SFC acceptance rates as the number of VNFs required for

each SFC request increases. Nevertheless, it is noteworthy that OAS and FAS

algorithms, which utilize allocated physical resources, exhibit smaller decreases

in SFC acceptance rates for high-priority SFC requests compared to NSF and

Performance Evaluations

98

Greedy algorithms when the number of VNFs increases. When six VNFs are

requested per SFC, the acceptance rates for high-priority SFC requests are as

follows: 95% for OAS, 90% for FAS, 85% for NSF, and 82% for Greedy. This

demonstrates that OAS and FAS algorithms are able to mitigate the decline in

SFC acceptance rates to a greater degree, emphasizing their efficiency in

processing high-priority SFC requests even with a larger number of VNFs.

Figure 15. SFC acceptance rate (the first phase of the study).

Finally, as previously stated, we examine the variation of the priority

coefficient factor (µ) in our research. The selected initial priority coefficient

factor (µ) was 0.9, leading to a reservation of 10 percent of physical network

resources that are exclusively designated for accommodating high-priority SFC

requests. Figure 16 presents an analysis of the impact of varying the proportion

of physical network resources allocated to high-priority SFC requests, denoted

by the priority coefficient factor (µ). The findings indicate a consistent decrease

in the average end-to-end delay of high-priority SFC requests for both OAS and

Performance Evaluations

99

Figure 16. Average end-to-end delay over reserved physical resources (the

first phase of the study).

FAS algorithms as the proportion of allocated physical network resources

increases, until reaching the 20% data point. At this point, the average end-to-

end delay reaches its lowest value and remains unchanged as the reserved

physical resources are further increased, up to 30 percent. The results of this

study indicate that in the given test scenario, high-priority SFC requests achieve

optimal outcomes when a 20% reservation of physical resources is made.

Furthermore, it was observed that further reservation of physical resources does

not have any effect on the provisioning paths of high-priority SFC requests. In

contrast, as expected, the average end-to-end delay of low-priority SFC requests

for OAS and FAS algorithms experiences a significant increase after the 15%

data point. This is attributable to the greater reservation of physical resources

for high-priority SFC requests, resulting in insufficient resources for low-

priority requests. Consequently, low-priority SFC requests are compelled to

select longer paths due to the scarcity of physical resources. The results for the

Performance Evaluations

100

NSF and Greedy algorithms remain unaffected by changes in physical resource

reservations for high-priority SFC requests, as they operate independently of

such reservations. These findings suggest that the incorporation of a dynamic

priority coefficient factor (µ) holds the potential to optimize overall results

further. By dynamically adjusting the priority coefficient factor (µ), the system

can adapt to variations in network load or changes in the proportion of high-

priority to low-priority requests. This dynamic adjustment mechanism allows

for a flexible and responsive approach, enabling the system to achieve optimal

outcomes based on the prevailing conditions and priorities within the network

environment.

6.2 Ultra-Reliable Low Latency Communication

By expanding the use of URLLC applications such as autonomous vehicles,

remote surgery, tele-operated driving, virtual reality, augmented reality, and

industrial automation, addressing the SFC deployment problem has received

considerable attention from the scientific community. In the second section of

this chapter, we will discuss the outcomes of the second phase of our study

regarding Ultra-Reliable Low Latency Communication. We compare the results

of our proposed optimal SFC embedding algorithm, ORAAS, and our proposed

heuristic algorithm, NORAAS, which were described in detail in Chapters 4 and

5 of our study, with the NSF algorithm proposed in [27] and the well-known

Greedy algorithm as a baseline as used in [48, 45, 64, 65, 46, 36]. As stated in

Chapter 5, both the NSF algorithm and the Greedy algorithm are based on the

nearest server that offers the needed VNFs. However, while the NSF algorithm

employs the Dijkstra algorithm to determine the shortest path between two

nodes, the Greedy approach uses the Greedy algorithm. It should be highlighted

that both the NSF and Greedy algorithms do not account for flow prioritization

or physical network resource reservation.

Performance Evaluations

101

Following is a description of the parameters utilized in the performance

evaluation. Similar to the previous phase of our research, Gridnet network

topology [60] is utilized in our simulation for the second phase of our study. It

consists of 8 nodes and 18 links, of which we define two nodes as CDC nodes

according to node degree to host the VNF instances and six nodes as switching

nodes to forward traffic to the next nodes. Six different VNF types are defined,

and each CDC node may support a maximum of three different VNF types. Each

physical link is assumed to have a bandwidth capacity in the range of [500-

1000] Mbps, depending on the network location. We set up CDC nodes with

varied capacities for storage and processing based on their network locations.

The first CDC node's memory and CPU capabilities were set to 1500 MB and

1500 MIPS, respectively, while the second CDC node's memory and CPU

capacities were set to 2000 MB and 2000 MIPS, respectively. We assume that

Switching Nodes (𝑁𝑆) do not need a large amount of CPU and memory

resources, as they just transmit network traffic to the following nodes and do

not require a great deal of memory and CPU. We thus regard their CPU and

memory as infinite.

In our simulation setting, we set the propagation delay of each link as a

uniform distribution in a range of [3, 41] milliseconds. As stated, we assume the

initial priority coefficient factor (δ) as 0.9, which means that 10 percent of

physical network resources are reserved for embedding only high-priority SFC

requests (URLLA) and low-priority SFC requests are allowed to use up to 90

percent of physical network resources. In this simulation scenario, the

bandwidth, CPU, and memory requirements of each SFC request are specified

as random values between (0,10] [29]. We set the maximum tolerable delay at

each SFC request in the range of [50, 100] milliseconds [29]. We produce 150

SFC requests with a random source and destination node. We assume that ten

percent of SFC requests have a high-priority and that the first fifty percent of

Performance Evaluations

102

SFC requests have a low-priority. We set the number of VNF requested per SFC

request as three. The software reliability of VNF instances is distributed in the

range of [0.99, 0.999] similar to [49]. The first and second CDC nodes have

hardware reliability of 0.99 and 0.999, respectively. The required reliability for

each SFC request was chosen from the following ranges: [0.95, 0.98, 0.99,

0.992, 0.999] [49]. We use the same simulation parameter settings when

comparing the algorithms to guarantee comparability. Since we deal with ultra-

reliable low latency communication in an NFV-enabled network, our primary

KPIs are end-to-end delay, reliability, bandwidth usage, and SFC acceptance

rate. These are the primary KPIs determined after examining various cutting-

edge studies, as discussed in Chapter 2.

One of the most important KPIs that we study is the end-to-end delay of SFC

requests using these four algorithms (ORAAS, NORAAS, NSF, and Greedy). The

term "end-to-end delay" pertains to the duration required for a packet to be

transmitted from its originating node to its intended destination node across a

network. As can be seen in Figure 17, it presents the average end-to-end delay

obtained by these four algorithms for low- and high-priority SFC requests. The

green color represents the average end-to-end delay of high-priority SFC

requests, whereas the blue color represents the average end-to-end delay of low-

priority SFC requests.

As it is presented, ORAAS and NORAAS significantly reduce the average end-

to-end delay of high-priority SFC requests compared to NSF and Greedy. The

reason is that they use of 10 percent reserved physical network resources

(bandwidth, memory, and CPU) for mapping high-priority SFC requests and

can obtain more optimal deployment paths. More in detail, ORAAS (33%) and

NORAAS (19%) have a smaller end-to-end delay for high-priority SFC requests

than Greedy. Moreover, ORAAS (30%) and NORAAS (17%) reduce end-to-end

delay for low-priority SFC requests compared to Greedy. We conclude that

Performance Evaluations

103

ORAAS and NORAAS utilize their physical network resources more efficiently

than NSF and Greedy. This approach is highly advantageous for applications

that are sensitive to latency, such as autonomous cars, remote surgery,

augmented reality, etc.

Figure 17. Average end-to-end delay (the second phase of the study).

The next parameter to analyze is bandwidth resource consumption. Figure 18

depicts the bandwidth usage of SFC deployment paths. (×) reflects the average

bandwidth usage of these four algorithms in this graph. As can be seen, the

Greedy algorithm consumes more bandwidth than ORAAS, NORAAS, and NSF.

In this setup, as represented, ORAAS and NORAAS use bandwidth resources

more effectively than NSF and Greedy. More in detail, ORAAS and NORAAS

consume 30 percent and 22 percent fewer bandwidth resources for high-priority

SFC requests, respectively, than Greedy. Additionally, ORAAS consumes 18

percent, 20 percent, and 24 percent less bandwidth than NORAAS, NSF, and

Greedy for low-priority SFC requests, respectively. When the deployment path

is more optimal, the amount of bandwidth required for SFC deployment is also

Performance Evaluations

104

reduced. As a result of the increased demand for bandwidth during the past few

years, ORAAS and NORAAS will be essential for optimizing resource use.

Figure 18. Bandwidth consumption (the second phase of the study).

As indicated previously, we examine the effect of altering the priority

coefficient factor (𝛿), specifically what occurs when we reserve additional

physical resources for SFC requests with high-priority. The impact of varying

the priority coefficient factor (𝛿) on ORAAS and NORAAS is represented in

Figure 19. As shown, increasing the amount of reserved physical network

resources for high-priority SFC requests reduces their average end-to-end delay

while increases the average end-to-end delay of low-priority SFC requests. As

we raise the reserved physical resources up to 30 percent, the average end-to-

end delay of high-priority SFC requests falls gradually until the 20 percent data

point, where it stays unchanged after reaching this point. The reason is that high-

priority SFC requests get the most optimal deployment paths by reserving 20

percent of physical network resources, and higher physical network resource

reserve has no effect on provisioning paths. In contrast, the exclusive physical

Performance Evaluations

105

network resources allocation for high-priority SFC requests increases the

average end-to-end delay of low-priority SFC requests, indicating that a sweet

spot for the priority coefficient factor (𝛿) must be identified.

Figure 19. Average end-to-end delay over reserved physical resources for

high-priority SFC requests (the second phase of the study).

The next essential KPI is the SFC acceptance rate, which represents the

algorithm's effectiveness in terms of mapping SFC requests. The SFC

acceptance rate is the percentage of mapped SFC requests compared to the total

number of SFC requests. In order to evaluate the SFC acceptance rate, the

number of VNF instances requested by each SFC request is increased from two

to six, and the SFC acceptance rate of these four algorithms is evaluated by

increasing the network load. Figure 20 presents the SFC acceptance rate in

relation to the change in the number of required VNFs for each SFC request. As

expected, the acceptance rate for SFC requests declines as the number of needed

VNFs rises. As network demand grows, there will not be sufficient resources

for mapping SFC requests. Therefore, algorithms that make more effective use

Performance Evaluations

106

of physical network resources will have a higher SFC acceptance rate. In more

detail, this reduction is more gradual for ORAAS and NORAAS than for NSF and

Greedy. As shown in the graph, at the six needed VNF datapoints, ORAAS,

NORAAS, NSF, and Greedy achieve acceptance rates of 95 percent, 92 percent,

91 percent, and 88 percent, respectively. In this sense, ORAAS has the highest

SFC acceptance rate, whereas Greedy has the lowest.

Figure 20. SFC acceptance rate (the second phase of the study).

In the final stage, we analyze the average reliability of these four algorithms.

Since our goal is to address URLLC in NFV-enabled networks. Elements have

different reliability values, as specified in Chapter 3, and we consider both

hardware and software reliability. In order to do this, we vary the network load

and assess the average reliability attained by these four algorithms. Figure 21

depicts the average reliability in response to the varying number of VNF

instances required by each SFC request. As it can be seen, the average reliability

decreases as the length of SFC requests increases, and this decline is more

moderate for high-priority SFC requests by ORAAS and NORAAS. This is due

Performance Evaluations

107

to the fact that SFC requests with high-priority have the benefit of accessing

reserved physical network resources and hence the most reliable components.

To this end, ORAAS and NORAAS are superior to NSF and Greedy in terms of

average reliability and are optimum for addressing URLLC. In this regard, the

ORAAS algorithm has the highest degree of reliability, whereas the Greedy

algorithm has the lowest.

Figure 21. Average reliability over varying the number of required VNFs (the

second phase of the study).

6.3 Dynamic Service Function Chaining

In the final section of this chapter, we explore the outcomes of the dynamic

SFC deployment problem, in which each SFC request has an arrival and

departure time to utilize physical network resources. Since the goal of this

research is to investigate URLLC in an NFV-enabled network, we examined

URLLC in a dynamic scenario. As we discussed in Chapter 5, we offered the

DAAS algorithm, a heuristic technique, to handle URLLC in a dynamic scenario.

Performance Evaluations

108

 In the next section, we analyze the effectiveness of our suggested heuristic

dynamic SFC embedding technique, the DAAS algorithm. We compare the

DAAS algorithm with the NSF algorithm developed in [27] and the well-known

Greedy algorithm as used in [48, 45, 64, 65, 46, 36]. As noted earlier, both the

NSF and Greedy algorithms are built on the closest server that provides the

required VNF instances. Nevertheless, whereas the NSF technique utilizes the

Dijkstra algorithm to establish the shortest path between two nodes, which

obtains a global optimal result, the Greedy approach employs the Greedy

algorithm, which may obtain a local optimal result. It should be noted that

neither the NSF nor the Greedy Algorithms account for flow prioritization or

physical network resource reservation. The simulation is implemented in

Python using the PuLP library. It is performed on a laptop with a 1.80GHz

1.99GHz Intel Core i7-8550U processor and 24 GB of RAM.

Different from the previous two phases of our research, we chose the

EliBackbone network topology [60] as our substrate network, which is a larger

network topology than the Gridnet network topology. Figure 11 represents the

EliBackbone network topology. It consists of 19 nodes and 28 links, of which

we define three nodes as CDC nodes according to node degree to host the VNF

instances and sixteen nodes as switching nodes to forward traffic to the next

nodes. Six different VNF types are defined, and each CDC node may support

up to a maximum of three different VNF types.

In our simulation setting, we employ the following input values. It is

considered that each link has a bandwidth capacity between 800 and 2000 Mbps,

depending on the network location. We configure CDC nodes with varying

storage and CPU processing capacities based on their network locations. The

memory and CPU capacities of two CDC nodes are 2500 MB and 2500 MIPS,

respectively, while the memory and CPU capacities of the third CDC node are

3000 MB and 3000 MIPS, respectively. We suppose that Switching Nodes (𝑁𝑆)

Performance Evaluations

109

do not demand a considerable amount of CPU and memory resources, as they

only transmit network traffic to subsequent nodes and do not need a lot of

memory and CPU. Consequently, we consider their CPU and memory to be

unlimited. We set the propagation delay of each link as a uniform distribution

in a range of [2, 23] milliseconds, which is determined by the nodes' distances

and the EliBackbone network topology's medium type. As stated, we assume

the initial priority coefficient factor (µ) to be 0.9, which means that low-priority

SFC requests are permitted to utilize only up to 90 percent of physical network

resources (bandwidth, memory, and CPU), and ten percent of physical network

resources are reserved for embedding only high-priority SFC requests (URLLA).

In this simulation scenario, the bandwidth, CPU, and memory requirements of

each SFC request are specified as random values between (0,10] [29].

To evaluate these three algorithms (DAAS, NSF, and Greedy), 600 SFC

requests with random source and destination nodes and varying lifetimes are

generated. In our dynamic scenario, we set 10 time-cycles in which a certain

number of SFC requests may enter or depart the network throughout each time

cycle. We assume that 10 percent of SFC requests have high-priority. We

assume that the first 50 percent of SFC requests entering the network have low-

priority. We set the number of VNF requested per SFC request as three. The

software reliability of VNF instances is distributed in the range of [0.99, 0.999]

similar to [61]. The hardware reliability of CDC nodes is distributed in the range

of [0.99, 0.999]. The required reliability for each SFC request was chosen from

the following ranges [0.95, 0.98, 0.99, 0.992, 0.999] [61]. We use the same

simulation parameter settings when comparing the algorithms to guarantee

comparability and fairness.

End-to-end delay is one of the most important KPIs to access. End-to-end

delay is the amount of time it takes for a network packet to be sent from its

source node to its destination node. The end-to-end delay produced by these

Performance Evaluations

110

three algorithms (DAAS, NSF, and Greedy algorithms) for low- and high-

priority SFC requests is depicted in Figure 22. In this graph, the end-to-end

delay for high-priority SFC requests is shown in green, while the end-to-end

delay for low-priority SFC requests is shown in blue. In this figure, (×)

represents the average end-to-end delay of these three algorithms. As depicted,

by reserving 10 percent of physical network resources for high-priority SFC

requests, DAAS reduces the average end-to-end delay of high-priority SFC

requests significantly in comparison to NSF and Greedy. DAAS enables ultra-

low latency applications to utilize the 10 percent of reserved physical resources

for high-priority SFC requests; hence, the provisioning paths of DAAS are more

optimal. DAAS achieves 9 percent less average end-to-end delay than the NSF

method and 13 percent less average end-to-end delay than the Greedy algorithm.

For low-priority SFC requests, DAAS achieves 4 percent less average end-to-

end delay than Greedy but 2 percent higher than NSF. In comparison to Greedy,

NSF achieves a 7 percent and 5 percent reduced average end-to-end delay for

Figure 22. Average end-to-end delay (the third phase of the study).

Performance Evaluations

111

high-priority and low-priority SFC requests, respectively.

Bandwidth consumption is the second key performance indicator we

consider. Figure 23 depicts the bandwidth usage for SFC deployment paths

using these three algorithms. In this graph, (×) represents the average bandwidth

utilization of these three methods. The results indicate that, on average, the

DAAS algorithm uses less bandwidth resources than the NSF approach and the

Greedy algorithm while handling high-priority SFC requests. As demonstrated,

DAAS utilizes 11 percent and 17 percent less bandwidth resources for high-

priority SFC requests than NSF and Greedy, respectively. Due to the allocated

physical resources, the DAAS algorithm provides shorter provisioning paths for

high-priority SFC requests than the NSF method and the Greedy algorithm. As

a result, the DAAS algorithm utilizes less bandwidth than the NSF algorithm and

the Greedy algorithm. In this configuration, DAAS consumes 4 percent less

bandwidth than the Greedy algorithm for low-priority SFC requests but 2

Figure 23. Bandwidth consumption (the third phase of the study).

Performance Evaluations

112

percent more than the NSF algorithm. As can be seen, Greedy uses the most

bandwidth resources for both high- and low-priority SFC queries. Since it may

obtain local optimum route deployment, additional bandwidth resources are

required.

The average path length is the next KPI that can demonstrate the success of

these three algorithms (DAAS, NSF, and Greedy algorithms). It demonstrates

how effectively these three algorithms can map SFC requests. The average path

length of these three methods is depicted in Figure 24. As presented, DAAS

achieves the shortest average path length among other algorithms for high-

priority SFC requests. Therefore, DAAS may have a considerable positive effect

on mapping SFC requests with the highest priority. This is because SFC requests

with high-priority in DAAS have access to the reserved physical network

resources and may thus acquire a more optimal deployment path. Although

Figure 24. Average path length (the third phase of the study).

Performance Evaluations

113

DAAS has achieved the shortest path length for high-priority SFC requests

among the proposed algorithms, it achieves a longer path length for low-priority

SFC requests than the NSF algorithm. As can be observed in the graph, the NSF

approach achieves shorter average path lengths than the Greedy algorithm. This

is because NSF gets global optimal results using the Dijkstra algorithm, whereas

the Greedy technique may return local optimal results.

Figure 25 presents the SFC acceptance rate for each of the three algorithms

(DAAS, NSF, and Greedy). The SFC acceptance rate is an important KPI that

demonstrates the algorithm's efficacy in mapping SFC requests. The proportion

of mapped SFC requests relative to the total number of SFC requests is the SFC

acceptance rate. As indicated previously, 600 SFC requests with random source

and destination nodes and varying lifetimes have been produced. As can be seen

Figure 25. SFC acceptance rate (the third phase of the study).

Performance Evaluations

114

in the graph, the DAAS, NSF, and Greedy algorithms achieve 100 percent, 97

percent, and 96 percent of the SFC acceptance rate for SFC requests with high-

priority, respectively. DAAS has a 100 percent acceptance rate for SFC requests

with high-priority. It indicates that all high-priority SFC requests function

properly and are implemented into the network. This is because, while utilizing

DAAS, SFC requests with high-priority have access to reserved physical

resources. Clearly, it helps a great deal in facilitating URLLC, but we must also

consider its disadvantages with respect to low-priority SFC requests. It is crucial

to maintain a balance between SFC requests of high- and low-priority.

Figure 26 depicts the average end-to-end delay of SFC requests utilizing

these three algorithms while chaining the proportion of high-priority SFC

requests to total SFC requests. As can be seen in the graph, DAAS achieves a

lower average end-to-end delay compared to the other two algorithms up to the

20 percent data point. At the 25 percent and 30 percent data points, the average

end-to-end delay of high-priority SFC requests increases significantly. This is

due to the fact that at these two datapoints, the reserved physical resources have

been used completely by some high-priority SFC requests, and the remaining

high-priority SFC requests were unable to find the optimal deployment paths.

To this end, it is essential to find an appropriate value for the priority coefficient

factor in order to obtain the optimum results. This issue may be resolved by

employing a dynamic priority coefficient factor that adjusts based on network

service demand. This suggests that, utilizing network load prediction methods,

the dynamic priority coefficient factor may self-adjust to achieve optimal

outcomes according to the network load. As depicted, the Greedy algorithm

obtains the highest end-to-end delay among the other proposed algorithms

(DAAS and NSF).

Performance Evaluations

115

Figure 26. Average end to end delay over varying proportion of high-priority

SFCs to the total SFCs (the third phase of the study).

As the final step, we assess the average reliability of these three algorithms

(DAAS, NSF, and Greedy). Considering that our objective is to handle URLLC

in NFV-enabled networks. In Chapter 3, reliability is defined, and it is

emphasized that each element has a specific reliability value. We take into

account both hardware and software reliability. Figure 27 depicts the average

reliability of these three algorithms. As can be observed, the DAAS algorithm

obtains the maximum level of reliability for high-priority SFC requests. Due to

the utilization of physical resource reservations, SFC requests with the highest

priority have access to the most reliable components. Therefore, this strategy

appears to be quite helpful in tackling URLLC. For SFC requests with low-

priority, DAAS achieves the same degree of reliability as the NSF algorithm. As

shown in this graph, the Greedy algorithm achieves the lowest average

116

reliability in this configuration for both high- and low-priority SFC requests.

This is because the Greedy algorithm obtains the least optimal deployment path

by obtaining locally optimal outcomes.

Figure 27. Average reliability (the third phase of the study).

Conclusion and Future Work

117

7 Conclusion and Future Work

In this thesis, we conducted research on NFV. We observed that NFV has the

potential to revolutionize traditional network architectures and eliminate some

of their limitations. Enabling URLLC in NFV is one of the most essential topics

in this field, as URLLA use has increased dramatically in recent years. In the

first chapter of the thesis, the NFV architecture was depicted and the advantages

of NFV were discussed. We observed that the successful implementation of

network services in NFV heavily depends on the deployment of SFC. Therefore,

the SFC deployment problem remains an important challenge in NFV,

necessitating further research. In the second chapter, we conducted a study on

the existing studies in this field and reviewed the proposed methodologies for

enhancing reliability and latency in NFV. We observed that in order to enhance

reliability, backup mechanisms and redundant elements are frequently

employed, whereas latency-aware service function chaining is implemented to

reduce latency. We discussed that improving both reliability and latency at the

same time is exceedingly challenging since they may have negative interactions.

Improving reliability may result in an increase in latency, and vice versa.

Additionally, the network's physical resource limitations make it more

challenging. To this end, in order to simultaneously improve reliability and

latency in the SFC embedding phase, we proposed a novel solution with

considerable benefits.

In Chapter 3, the system model and its underlying assumptions that are used

to evaluate the proposed methodology are presented. The presence of a well-

defined system model is crucial in order to generate outcomes that are both

precise and closely aligned with the real-world context. In Chapter 4, the

mathematical formulations and optimization model were discussed. The SFC

Conclusion and Future Work

118

deployment problem was structured as an ILP optimization problem with

restrictions on maximum tolerable end-to-end delay, reliability, bandwidth,

memory, and CPU usage. Establishing all the required constraints in a linear

format is a very difficult operation. In Chapter 5, a set of heuristic algorithms

and relaxed versions were provided to attain near-optimal results while

minimizing both the execution time and optimality gap in order to make them

applicable to large-scale network topologies and solve the scalability problem.

In Chapter 6, the assessment findings were presented and showed the significant

enhancements realized by the proposed methodologies in terms of end-to-end

delay, bandwidth consumption, SFC acceptance rate, and reliability.

7.1 Conclusion

The deployment of SFC is a highly difficult process since the traffic flow

must be directed through a series of functions, and it is difficult to establish a

good trade-off between a number of essential requirements. The objective of

this study was to enable URLLC within a network that is enabled by NFV. In

order to facilitate URLLC within the context of NFV, we focused on the SFC

Deployment Problem. This particular problem represents a significant obstacle

to the implementation of an NFV-enabled network. We introduced a novel and

efficient algorithm for SFC deployment to address both latency and reliability.

Our algorithm aims to minimize latency and optimize reliability for URLLA

during the SFC embedding phase. Notably, our approach does not rely on

backup methods or redundant elements.

Using a configurable priority coefficient factor and flow prioritization, we

were able to simultaneously enhance the latency and reliability of URLLA

without the need for backup techniques. To do this, we reserved a certain

amount of physical network resources (bandwidth, RAM memory, and CPU)

Conclusion and Future Work

119

exclusively for SFC requests with high-priority (URLLA). In order to minimize

any side effects on low-priority SFC requests, we imposed constraints on the

reliability and the maximum tolerable end-to-end delay not just for high-priority

SFC requests but also for low-priority SFC requests. We mathematically

formulated the SFC deployment problem as an ILP optimization model to obtain

exact numerical solutions. Following that, we also offered a set of heuristic

approaches and relaxed versions to minimize execution time with a minimal

optimality gap in order to solve the scalability problem and make our proposed

approach usable for large-scale network topologies.

The performance evaluations revealed that our suggested algorithms can

significantly enhance the end-to-end delay, reliability, bandwidth utilization,

and SFC acceptance rate of URLLA. We discovered that our suggested ORAAS

and NORAAS algorithms reduced the end-to-end latency of URLLA by 33

percent and 19 percent, respectively, compared to the Greedy algorithm. In

addition, for low-priority applications, ORAAS and NORAAS achieved 30

percent and 17 percent less end-to-end latency than the Greedy method,

respectively. In terms of bandwidth consumption, ORAAS and NORAAS spent

30 percent and 22 percent less bandwidth resources than the Greedy algorithm

for URLLA, respectively. Moreover, ORAAS utilized 18 percent, 20 percent, and

24 percent less bandwidth for low-priority SFC requests than NORAAS, NSF,

and Greedy, respectively. In terms of reliability, ORAAS and NORAAS achieved

the highest reliability for URLLA compared to the NSF and Greedy algorithms.

Last but not least, compared to NSF and Greedy, ORAAS and NORAAS achieved

the highest SFC acceptance rate for URLLA. ORAAS, NORAAS, NSF, and

Greedy attain acceptance rates of 95 percent, 92 percent, 91 percent, and 88

percent, respectively, at the six required VNFs datapoints. Chapter 6 contains

further details. To this end, we observed that our proposed methodology is a

promising solution to enable URLLC in an NFV-enabled network.

Conclusion and Future Work

120

7.2 Future Work

The investigation focused on the SFC deployment problem in order to

facilitate URLLC within an NFV-enabled network. A novel mathematical model

incorporating all essential constraints was developed in this regard, and different

techniques were presented to address the SFC deployment problem from

various viewpoints. The findings of our study are published in [71, 72, 73, 74,

75]. These publications provide a valuable foundation for future advancements

in URLLC within an NFV-enabled network. The SFC deployment problem is

one of the main challenges in an NFV-enabled network, and it requires more

development. We only covered a small portion of it. Incorporation of additional

constraints, such as power consumption limitations and load balancing

prerequisites, within our optimization framework is feasible. Moreover, as we

discussed in Chapter 6, our research can be improved by using a dynamically

configurable priority coefficient factor to dynamically modify the reservation

of physical network resources based on the load of different network services.

To fully leverage the promises of NFV, there are still a vast number of

considerations to make. In the following, we present a list of recommendations

for further research:

A. A trendy field to research is the use of an effective backup mechanism

with the least negative influence on latency to increase system resilience

further. The valuable analysis of a student on backup approaches to

address URLLC in an NFV environment [76] and several backup

techniques presented in [77, 78, 79, 80, 81, 82, 83] can be applied to our

proposed optimization model to further improve URLLC in an NFV-

enabled network.

Conclusion and Future Work

121

B. The integration of Machine Learning techniques emerges as a promising

approach for addressing the SFC deployment problem. Machine learning

has recently been widely recognized as a promising approach for

addressing the SFC deployment problem. Different machine learning

solutions, as in [84, 85, 86, 87, 88, 89], have been proposed by

researchers, which require further developments. Integrating our

proposed methodology into the SFC deployment problem using machine

learning techniques is a fascinating research topic.

C. The next suggested field of research is Multi-access Edge Computing

(MEC). MEC enables the deployment of applications at the network's

edge, which is close to end users. Using this capability, MEC offers an

environment with ultra-low latency, and several new applications and

companies are emerging on the MEC platform [90, 65, 91, 92, 93, 94, 95].

This is another promising area of study that can be incorporated into our

suggested approach.

D. The final proposed research area involves obtaining exact numerical

solutions for dynamic SFC embedding scenarios with regard to network

load prediction techniques, which has significant potential for future

advancements as in [96, 97, 98, 99, 100, 101, 102]. This is another

interesting topic that needs to be studied.

Appendix

123

Appendix

A.1. Implementation of the ORAAS algorithm in Python

This section describes the formulation of the SFC deployment problem as an

ILP optimization model in Python. Given that our primary objective is to address

URLLC in an NFV-enabled network, we present the codes for the second phase of

our study, which focuses on Ultra-Reliable Low Latency Communication. The

second phase of our study is the completed version, building upon the first phase

of our study. As a result, the ORAAS algorithm, which is covered in Chapter 4, is

presented in the following Code-Listings. We used CBC Solver Version 2.10.3 to

solve the optimization of the SFC deployment problem. We explain all the

parameters and variables that have been utilized in coding in the following. We

begin by creating the SFC deployment problem as Code Listing 1, which is the

first step.

Code Listing 1. Create the ILP optimization problem

In the second step, we define the variables that are involved in our optimization

model as in Code Listing 2.

Code Listing 2. Define variables.

Appendix

124

We define the following variables in Code Listing 2. The binary variable

“H_s_mn” denotes the routing path of SFC request s between nodes m and n.

“H_s_mn=1” if the SFC request s traverses the node m and n, and 0 otherwise. The

binary variable “K_s_m_x” indicates whether VNF x of SFC request s is served by

CDC node m. “K_s_m_x” equals 1, if the SFC request s uses VNF type x, which

is placed on CDC node m, and 0 otherwise. The integer variable “T_s_mn” is our

final required variable to implement our optimization model. It specifies the

number of previously crossed nodes. Our SFC deployment optimization

methodology requires these three variables.

In the next step, we define the objective function. We construct the optimization

problem's objective function, which must be minimized, as in Code Listing 3. It is

the Python implementation of Equation (50) from Chapter 4.

Code Listing 3. Define objective function.

In step four, we can define all of the necessary constraints, as illustrated in

Chapter 4. To this end, we begin by defining the reliability constraint as Code

Listing 4. It is the Python implementation of Equation (27) from Chapter 4.

Code Listing 4. Reliability constraint.

Then, we continue with defining consumption constraints for physical network

resources (bandwidth, memory, and CPU). The bandwidth consumption restriction

Appendix

125

is shown in Code Listing 5. As shown in this formulation, low-priority SFC

requests (specified in the Flows_priority_Two list) are authorized to use up to 90

percent of the available bandwidth resources and 10 percent of the bandwidth

resources are reserved for high-priority SFC requests.

Code Listing 5. Bandwidth utilization constraint.

Code Listing 6 displays the memory utilization restriction. Low-priority SFC

requests (specified in the Flows_priority_Two list) are allowed to use up to 90

percent of CDC nodes' available memory resources. In contrast, there are no

restrictions on the usage of physical network resources (bandwidth, memory, and

CPU) for high-priority SFC requests (URLLA).

Code Listing 6. Memory utilization constraint.

As the last limitation on memory resource usage, Code Listing 7 applies the

same logic to CPU consumption as it does to memory utilization. Low-priority

SFC requests (specified in the Flows_priority_Two list) may occupy up to 90

Appendix

126

percent of the available CPU resources of CDC nodes. Therefore, 10 percent of

CPU resources are reserved for SFC requests with the highest priority.

Code Listing 7. CPU utilization constraint.

Code Listing 8 is the formula that we use to determine the maximum acceptable

propagation delay. The end-to-end delay of the selected path cannot exceed the

maximum tolerable end-to-end delay of SFC requests. See Constraint (36) in

Chapter 4.

Code Listing 8. Propagation delay constraint.

The flow control is formulated as Code Listing 9. Using this constraint, we make

sure that the links on the deployment path of SFC request s are connected head-to-

tail. It is the Python implementation of Constraint (37) in Chapter 4.

Appendix

127

Code Listing 9. Flow control constraint.

In order to ensure that there is a connection between VNFs and the CDC nodes

that correspond to them, we use the formulation in Code Listing 10.

Code Listing 10. VNF and its corresponding host constraint.

In order to validate the selected route across the actual physical network, we

have formulated it as Code Listing 11. Graph[m][n] denotes the adjacent matrix

that represents the substrate network.

Code Listing 11. Physical link insurance constraint.

Code Listing 12 specifies the loop restriction to avoid a loop in the SFC

embedding. It is the Python formulation of Constraint (38).

Appendix

128

Code Listing 12. Loop constraint.

The purpose of Code Listing 13 is to verify that SFC request s traverses a proper

VNF chain while traversing the nodes.

Code Listing 13. VNF chain constraint.

As the next constraint, we define Code Listing 14 to make sure that each VNF

type x is used by at most one SFC request.

Code Listing 14. VNF usage constraint.

Using the following constraints, we guarantee the VNF ordering in our problem

formulation. The values stored in the matrix ‘T_s_mn’ are integers and need to be

equal to or higher than the corresponding one stored in the rerouting matrix

‘H_s_mn’. Therefore, we define it as Code Listing 15. It is the Python formulation

of Constraint (42) in Chapter 4.

Code Listing 15. Ordering matrix constraint one.

Appendix

129

As the next constraint, we ensure that ‘T_s_mn’ becomes zero, if ‘H_s_mn’ is

zero. Therefore, we use Code Listing 16.

Code Listing 16. Ordering matrix constraint two.

As the next constraint, we define that the elements of the ordering-aware

rerouting matrix for the output links must be zero for the destination node.

Therefore, we define it as Code Listing 17.

Code Listing 17. Ordering matrix constraint three.

Except for the source and destination nodes, when SFC request s enters a node

in its 𝑛𝑡ℎ step, it leaves that node in the (𝑛 + 1)𝑡ℎ step. Therefore, we define it as

Code Listing 18.

Code Listing 18. Flow cross constraint.

We must ensure that SFC requests exit their source nodes. We define it as in

Code Listing 19.

Appendix

130

Code Listing 19. Flow initiation constraint.

As the last constraint, Code Listing 20 is used to impose the sequence of VNF

chaining.

Code Listing 20. Check VNF order constraint.

Finally, we will use Code Listing 21 to solve our described SFC deployment

problem and report the results.

Code Listing 21. Solve SFC deployment problem.

Using Code Listing 1 through Code Listing 21, exact numerical solutions are

provided for the SFC deployment problem presented in Chapter 4. Given that

obtaining exact numerical solutions is an NP-hard problem and its execution is

time-consuming, we present the Python implementation for our proposed heuristic

method for generating a near-optimal solution in a reasonable time frame so that it

may be applied in a real-world scenario.

Appendix

131

A.2. Implementation of the NORAAS algorithm in Python

In this section, we provide the Python implementation of our suggested heuristic

method, NORAAS, to achieve near-optimal solutions of ORAAS in an acceptable

time frame with a minimal optimality gap. As stated before, NORAAS addresses

ultra-reliable low latency communication in NFV. We employ the same strategy

as ORAAS, utilizing traffic prioritization and physical network resource

reservation to provide URLLA with guaranteed QoS.

To this end, first, we divide the physical network resources for high-priority SFC

requests and low-priority SFC requests, as can be seen in Code Listing 22. As it is

presented, using the priority coefficient factor, we reserve ten percent of physical

network resources (bandwidth, memory, and CPU) exclusively for high-priority

SFC requests.

Code Listing 22. Physical resource reservation.

Appendix

132

Code Listing 23. Dijkstra algorithm.

As stated in Chapter 2, we employ the Dijkstra algorithm as shown in Code

Listing 23 to determine the shortest path between two nodes (the start node and the

goal node). We described the Dijkstra algorithm in Chapter 2.

Appendix

133

Following that, we need to determine available resources (bandwidth, memory,

and CPU). Code Listing 24 is where we define the function that will be used to

compute the available bandwidth.

Code Listing 24. Free bandwidth calculation.

Then, similarly to the computation of available bandwidth, we develop a

function that computes the amount of available CPU resource, as it is presented in

Code Listing 25.

Code Listing 25. Free CPU calculation.

Last but not least, we compute the available memory resources by defining a

function that is represented by Code Listing 26. Using Code Listing 24, Code

Listing 25, and Code Listing 26, we calculate the available resources (bandwidth,

memory, and CPU).

Appendix

134

Code Listing 26. Free memory calculation.

After providing the necessary functions to compute the availability of physical

resources, we need to build the functions that allow us to keep track of how those

resources are being utilized following the embedding of each SFC request. To this

end, utilizing Code Listing 27, we update the bandwidth resources that are now

being used for embedding an SFC request. Algorithm 6 in Chapter 5 provides the

pseudocode for this function.

Code Listing 27. Update used bandwidth.

Similar to the previous function that updated the bandwidth resource, in Code

Listing 28, we construct a function that will update the CPU resource that is

currently being used for mapping an SFC request.

Appendix

135

Code Listing 28. Update used CPU.

In the end, similar to the previous two functions, we build a function to update

the memory resources that have been used for mapping an SFC request, which is

shown as Code Listing 29.

Code Listing 29. Update used memory.

To this end, using Code Listing 27, Code Listing 28, and Code Listing 29, we

are able to update the physical resources used for embedding an SFC request.

Appendix

136

In our code, the conversion from list to dictionary is handled by Code Listing

30.

Code Listing 30. Convert list to dictionary.

Following the implementation of Algorithms 5 and Algorithm 6 from Chapter

5, we build several functions to calculate the KPIs used in the performance

evaluation chapter, Chapter 6.

As stated in Chapter 6, the first important KPI is the end-to-end delay. Code

Listing 31 contains the definition of a function that we use to calculate the

propagation delay of an SFC request.

Code Listing 31. Calculate delay.

The path length of an SFC request is the following KPI that we calculate.

Appendix

137

Code Listing 32 defines a function that will be used to calculate the length of the

SFC deployment route.

Code Listing 32. Calculate path length.

The next important KPI to calculate is bandwidth utilization. Calculating the

amount of bandwidth used by each SFC request is the responsibility of the function

that is written in Code Listing 33.

Code Listing 33. Calculate bandwidth consumption.

Last but not least, one of the most important KPIs for evaluating the

performance of a developed algorithm is its reliability. The definition of reliability

is defined in Chapter 3. To this end, we determine the reliability of each SFC

request by utilizing the function that is outlined in Code Listing 34. As indicated

in Chapter 3, we take into account both hardware reliability, which is the reliability

of CDC nodes, and software reliability, which is the reliability of VNF instances.

In this regard, we have defined all the necessary functions to implement the

NORAAS algorithm. In the following stage, we will define the core of the

implementation in order to determine the optimal deployment path.

Appendix

138

Code Listing 34. Calculate reliability.

Code Listing 35 and Code Listing 36 serve as the main components of the

NORAAS algorithm that determine the optimal deployment path for each SFC

request. The Algorithm 4 in Chapter 5 represents its pseudocode.

Using Code Listing 22 through Code Listing 36, we can achieve near-optimal

ORAAS algorithm outcomes with minimal execution time and an optimality gap.

Appendix

139

Code Listing 35. Find optimal deployment path (first part).

Appendix

140

Code Listing 36. Find optimal deployment path (second part).

A.3. Implementation of the DAAS algorithm in Python

The DAAS algorithm is essentially a dynamic variant of the NORAAS algorithm.

In a dynamic scenario, each SFC request has a lifetime during which it can access

physical network resources (bandwidth, memory, and CPU); once this lifetime

expires, the physical network resources can be made available for the next SFC

embedding. In this section, we present the programming of our proposed dynamic

SFC embedding method, DAAS. To this purpose, we employ the same strategy as

the NORAAS algorithm, i.e., flow prioritization and a configurable priority

coefficient factor, to reserve a quantity of physical network resources only for SFC

requests with the highest priority in order to guarantee their QoS. In a dynamic

scenario, time-cycles are specified, which a certain number of SFC requests

entering and exiting the network in each time-cycle. Following is the Python

implementation of the necessary functions required to implement the DAAS

algorithm. In a dynamic context, Code Listings 37 through 55 are responsible for

Appendix

141

supplying the optimal deployment path for SFC requests. The next section will

provide further clarification.

First, the physical network resources are divided into high-priority SFC requests

and low-priority SFC requests so that a part may be reserved for high-priority SFC

requests. Physical network resource reservation (bandwidth, memory, and CPU)

for high-priority SFC requests is applied using Code Listing 37.

Code Listing 37. Physical resource reservation.

After applying physical network resource reservation, we use Code Listing 38

to set arrays to get used resources at different times.

Code Listing 38. Set array to get used resources in different times.

As described in Chapter 2 regarding the various algorithms for determining the

shortest path between two nodes, we utilize the Dijkstra algorithm to get the

optimal global shortest path in a weighted graph. Similarly to the NORAAS

algorithm, the Dijkstra algorithm is used to determine the shortest route between

Appendix

142

two nodes. Code Listing 39 illustrates the Dijkstra method and its necessary

parameters for Python implementation.

Code Listing 39. Dijkstra algorithm.

Next, we must determine the available resources (bandwidth, memory, and

CPU). Using a function demonstrated in Code Listing 40, free bandwidth resources

are computed and released. The information about this function is explained in

greater detail in Chapter 5.

Appendix

143

Code Listing 40. Calculate and release free bandwidth resource.

The reasoning behind CPU resources follows the same logic as that behind

bandwidth resources. Utilizing a function illustrated in Code Listing 41, available

CPU is calculated and released.

Code Listing 41. Calculate and release free CPU.

Last but not least, the calculation and release of memory resources. Similar to

CPU resources and bandwidth resources, Code Listing 42 demonstrates a function

to calculate and release free memory resources in Python. The information about

this function is explained in greater detail in Chapter 5.

After establishing the necessary functions in order to calculate and release

physical network resources, the next necessary step is to present the functions that

are needed in order to update the used physical network resources for mapping

SFC requests based on the utilized resources. The following paragraph will offer

much more elaboration.

Appendix

144

Code Listing 42. Calculate and release free memory.

When a mapping request for SFC is processed, we are required to bring the

available physical network resources up to date. In order to accomplish this, Code

Listing 43 is referred to in order to update the consumed bandwidth resources in

order to map a SFC request.

Code Listing 43. Update used bandwidth.

The same logic as for bandwidth resources is applied to CPU resources. When

processing a mapping request for SFC, we must bring the available physical

network resources up to date. Code Listing 44 is consulted to update the utilized

CPU resources required to map an SFC request. More information regarding this

function is further discussed in Chapter 5.

Appendix

145

Code Listing 44. Update used CPU.

Last but not least, Code Listing 45 demonstrates the function used to update the

consumed memory for mapping an SFC request.

Code Listing 45. Update used memory.

Next, we require some functions in order to get used physical network resources

at each time-cycle. Code Listing 46 illustrates the function used to get the utilized

bandwidth for embedding an SFC request.

Code Listing 46. Get used bandwidth.

Similar to bandwidth resources, Code Listing 47 is used to get utilized CPU.

Appendix

146

Code Listing 47. Get used CPU.

Finally, Code Listing 48 presents the function used to get the used memory for

mapping a SFC request.

Code Listing 48. Get used memory.

We use Code Listing 49 to convert a list to a dictionary.

Code Listing 49. Convert list to dictionary.

After describing the functions necessary to determine the optimal deployment

path for SFC requests, we present the functions necessary to compute the assessed

KPIs.

Appendix

147

The first important KPI to assess is the path deployment end-to-end delay. The

end-to-end delay is calculated as presented in Code Listing 50.

Code Listing 50. Calculate delay.

The next KPI to analyze is path length. Code Listing 51 calculates the path

length of each SFC request.

Code Listing 51. Calculate path length.

Following that, bandwidth utilization is the next crucial KPI to examine. Code

Listing 52 calculates the bandwidth consumption of each SFC request.

Code Listing 52. Calculate bandwidth consumption.

Appendix

148

Lastly, one of the most essential KPIs for measuring the success of an algorithm

is its reliability. The definition of reliability may be found in Chapter 3. In order

to verify the reliability of each SFC request, we use the code shown in Code Listing

53. As described in Chapter 3, we consider both hardware reliability, which is the

reliability of CDC nodes, and software reliability, which is the reliability of VNF

instances. In this sense, we have defined every function required to implement the

NORAAS algorithm. In the subsequent stage, we will define the main body to

obtain the optimal deployment path for each SFC request.

Code Listing 53. Calculate reliability.

In the last step, we will provide the Python code that is responsible for

determining the most optimal deployment path for an SFC request. Code Listing

54 and Code Listing 55 define the main body of code that is responsible for

determining the optimum deployment path. As stated before, it handles high-

priority SFC requests differently to guarantee their QoS. Therefore, in a dynamic

setting, we built the DAAS algorithm, which is a dynamic variation of the NORAAS

algorithm, employing Code Listing 37 through Code Listing 55.

Appendix

149

Code Listing 54. Main code (part one).

Appendix

150

Code Listing 55. Main code part two.

 Bibliography

151

Bibliography

[1] E. T. S. I. (ETSI), "ETSI," [Online]. Available:

https://www.etsi.org/technologies/nfv. [Accessed 07 07 2022].

[2] A. Perrin, "adapt IT," 04 January 2021. [Online]. Available:

https://telecoms.adaptit.tech/blog/the-future-of-the-telecommunication-

industry/. [Accessed 10 2022].

[3] "New Services & Applications with 5G Ultra-Reliable Low Latency

Communicaitons," 5G Americas Whitepaper, p. 60, November 2018.

[4] European Telecommunicatin Standards Institute, "ETSI," 2013. [Online].

Available:

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_

NFV001v010101p.pdf. [Accessed January 2020].

[5] B. Casey, "Slideplayer," [Online]. Available:

https://slideplayer.com/slide/11886058/ . [Accessed 05 10 2022].

[6] J. Halpern and C. Pignataro, "IETF," [Online]. Available:

https://datatracker.ietf.org/doc/rfc7665/.

[7] H. Umar Adoga and D. P. Pezaros, "Network Function Virtualization and

Service Function Chaining Frameworks: A Comprehensive Review of

Requirements, Objectives, Implementations, and Open Research

Challenges," MDPI, 15 February 2022.

[8] H. U. Adoga and D. P. Pezaros, "Network Function Virtualization and

Service Function Chaining Frameworks: A Comprehensive Review of

Requirements, Objectives, Implementations, and Open Research

Challenges.," Future Internet, 15 February 2022.

[9] AT&T, BT, CeturyLink, China Mobile, Colt, Deutsche Telekom, KDDI,

NTT, Orange, Telecom Italia, Telecom Italia, Telefonica, Telstra, Verizon,

"ETSI," [Online]. Available:

Bibliography

152

http://portal.etsi.org/NFV/NFV_White_Paper.pdf. [Accessed January

2020].

[10] N. Operators, "Portal ETSI," 2012. [Online]. Available:

https://portal.etsi.org/NFV/NFV_White_Paper.pdf. [Accessed 05 10

2022].

[11] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer and X. Hesselbach,

"Virtual Network Embedding: A Survey.," IEEE Communications Surveys

and Tutorials., vol. 15, 2013.

[12] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck and R.

Boutaba, "Network Function Virtualization: State-of-the-art- and Research

Challenges," IEEE Communications Surveys and Tutorials, vol. 18, 2016.

[13] "RedHat," RedHat, 16 August 2019. [Online]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-nfv. [Accessed

22 11 2022].

[14] "SDx Central Studios," [Online]. Available:

https://www.sdxcentral.com/networking/nfv/definitions/whats-network-

functions-virtualization-nfv/nfv-elements-overview/nfv-infrastructure-

nfvi-definition/. [Accessed 10 10 2022].

[15] A. Leonhardt, "EQUINIX," [Online]. Available:

https://blog.equinix.com/blog/2019/10/17/networking-for-nerds-defining-

the-elements-of-nfv-architectures/. [Accessed 10 10 2022].

[16] Internet Engineering Task Force , "RFC7665," [Online]. Available:

https://www.rfc-editor.org/info/rfc7665. [Accessed 09 2020].

[17] P. Z. Y. Z. Y. W. X. L. Y. J. Bin Zhang, "Co-Scaler: Cooperative scaling

of software-defined NFV service functin chain.," 2016 IEEE Conference

on Network Function Virtualization and Software Defined Networks.,

2016.

 Bibliography

153

[18] K. Karamjeet, V. Mangat and K. Kumar, "A comprehensive survey of

service function chain provisioning approaches in SDN and NFV

architecture.," Computer Science Review, November 2020.

[19] D. Bhamare, R. Jain, M. Samaka and A. Erbad, "A Survey on Sevice

Function Chaining," Journal of Network and Computer Applications,

2016.

[20] G. Mirjalily and Z. Luo, "Optimal Network Function Virtualization and

Service Function Chaining: A Survey.," Chinese Journal of Electronics,

vol. 27, 2018.

[21] "VMWARE," [Online]. Available:

https://www.vmware.com/topics/glossary/content/network-functions-

virtualization-

nfv.html#:~:text=Network%20functions%20virtualization%20(NFV)%20

is,as%20routing%20and%20load%20balancing.. [Accessed 20 11 2022].

[22] "IEEE Software Defined Networks," [Online]. Available:

https://sdn.ieee.org/standardization. [Accessed 28 11 2022].

[23] S. Wang, H. Cao and L. Yang, "A Survey of Service Function Chains

Orchestration in Data Center Networks," EEE Globecom Workshops (GC

Workshops), 07-11 December 2020.

[24] H. Huang, W. Miao, G. Min, J. Tian and A. Alamri, "NFV and Blockchain

Enabled 5G for Ultra-Reliable and Low-Latency Communications in

Industry: Architecture and Performance Evaluation," IEEE Transactions

on Industrial Informatics, pp. 5595-5604, 10 November 2021.

[25] D. Rico and P. Merino, "A Survey of End-to-End Solutions for Reliable

Low-Latency Communications in 5G Networks," IEEE Access, January

2020.

Bibliography

154

[26] M. Osama, A.Ateya, Abdelhamied, S. Ahmed Elsaid and A. Muthanna,

"Ultra-Reliable Low-Latency Communications: Unmanned Aerial

Vehicles Assisted Systems," Advances in Wireless Communications

Systems (MDPI), 12 September 2022.

[27] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar and B. Akbari,

"Joint Energy Efficient and QoS-Aware Path Allocation and VNF

Placement for Service Function Chaining," IEEE Transactions on Network

and Service Management, vol. 16, 2019.

[28] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang and A. V. Vasilakos, "Low-

Latency and Resource-Efficient Service Function Chaining Orchestration

in Netwrok Function Virtualization," IEEE Internet of Things Journal, vol.

7, 2020.

[29] J. Pei, P. Hong, K. Xue and D. Li, "Efficiently Embedding Service

Function Chains with Dynamic Virtual Network Function Placement in

Geo-Distributed Cloud System.," IEEE Transactions on parallel and

distributed systems., vol. 30, 2019.

[30] G. Sun, R. Zhou, J. Sun, H. Yu and A. V. Vasilakos, "Energy-Efficient

Provisioning for Service Function Chains to Support Delay-Sensitive

Applications in Netwrok Function Virtualization.," IEEE Internet of

Things Journal, vol. 7, 2020.

[31] M. Labonne, "Towarddatascience," 7 April 2022. [Online]. Available:

https://towardsdatascience.com/integer-programming-vs-linear-

programming-in-python-f1be5bb4e60e. [Accessed 22 November 2022].

[32] S. Sryheni, "Baeldung," 25 August 2021. [Online]. Available:

https://www.baeldung.com/cs/graph-algorithms-bfs-dijkstra. [Accessed

15 January 2023].

 Bibliography

155

[33] "Geeksforgeeks," 25 October 2022. [Online]. Available:

https://www.geeksforgeeks.org/greedy-algorithms/. [Accessed 15 January

2023].

[34] H. A. Alameddine, C. Assi, M. H. K. Tushar and J. Y. Yu, "Low-Latency

Service Schedule Orchestration in NFV-based Networks," in IEEE

Conference on Network Softwarization (NetSoft), Paris, France, 2019.

[35] D. Harutyunyan, N. Shahriar, R. Boutaba and R. Riggio, "Latency-Aware

Service Function Chain Placement in 5G Mobile Networks," in IEEE

Conference on Network Softwarization (NetSoft), Paris, France, 2019.

[36] G. Sun, G. Zhu, D. Liao, H. Yu, X. Du and M. Guizani, "Cost-Efficient

Service Function Chain Orchestraion for Low-Latency Application in NFV

Networks.," IEEE Systems Journal, vol. 13, 2019.

[37] A. Hmaity, M. Savi, L. Askari, F. Musumeci, M. Tornatore and A.

Pattavina , "Latency- and capacity-aware placement of chainded Virtual

Network Functions in FMC metro networks," Optical Switching and

Networking, vol. 35, 2020.

[38] Y. Li, L. Gao, S. Xu, Q. Qu, X. Yuan, F. Qi, S. Guo and X. Qiu, "Cost-

and-QoS-Based NFV Sevice Function Chain Mapping Mechanism," in

IEEE Symposium on Network Operations and Management, Budapest,

2020.

[39] E. Fountoulakis, Q. Liao and N. Pappas, "An End-to-End Performance

Analysis for Service Chaining in a Virtualized Network.," IEEE Open

Journal of the Communication Society, February 2020.

[40] X. Han, X. Meng, Z. Yu, Q. Kang and Y. Zhao, "A Service Function Chain

Deployment Method Based on Network Flow Theory for Load Balance in

Operator Networks.," IEEE Access, June 2020.

Bibliography

156

[41] M. Wang, B. Cheng, B. Li and J. Chen , "Service Function Chain

Composition and Mapping in NFV-enabled Network," in IEEE World

Congress on Services, 2019.

[42] C. Pham, N. H. Tran, S. Ren, W. Saad and C. S. Hong, "Traffic-Aware and

Energy-Efficient vNF Placement for Service Chaining: Joint Sampling and

Matching Approach," IEEE Transactions on Services Computing, vol. 13,

January 2020.

[43] M. Caggiani Luizelli, W. Luis da Costa Cordeiro, L. S. Buriol and L.

Paschoal Gaspary, "A fix- and -optimize approach for efficient and large

scale virtual network function placement and chaining," Computer

Communications, vol. 102, pp. 67-77, 2017.

[44] Y. Zhao, J. Shen, Q. Wang, S. Zheng, K. Xie, J. Gao and L. Feng, "Service

Function Chain Deployment for 5G Delay-Sensitive Network Slicing,"

International Wireless Communications and Mobile Computing (IWCMC),

p. 6, 2021 .

[45] M. A. Khoshkholghi, M. Gokan Khan, K. Alizadeh Noghani, J. Taheri, D.

Bhamare, A. Kassler, Z. Xiang, S. Deng and X. Yang, "Service Function

Chain Placement for Joint Cost and Latency Optimization," Mobile

Networks and Applications, p. 2191–2205, 21 November 2020.

[46] L. Wang, M. Dolati and M. Ghaderi, "CHANGE: Delay-Aware Service

Function Chain Orchestration at the Edge," IEEE 5th International

Conference on Fog and Edge Computing (ICFEC), p. 10, 2021.

[47] J. Zhou, G. Feng and Y. Gao, "Network Function Parallelization for High

Reliability and Low Latency Services," IEEE Access, 15 April 2020.

[48] X. Yin, B. Cheng, M. Wang and J. Chen, "Availability-aware Service

Function Chain Placement in Mobile Edge Computing," in IEEE World

Congress on Services (SERVICES), 2020.

 Bibliography

157

[49] Y. Wang, L. Zhang , P. Yu, K. Chen, X. Qiu, L. Meng, M. Kadoch and M.

Cheriet, "Reliability-oriented and Resource-efficient Service Function

Chain Constrution and Backup," IEEE Transactions on Network and

Service Management, 2020.

[50] L. Qu, M. Khabbaz and C. Assi, "Reliability-Aware Service Chaining In

Carrier-Grade Softwarized Networks," IEEE Journal on Selected Areas in

Communications, vol. 36, no. 3, 2018.

[51] P. K. Thiruvasagam, V. J. Kotagi and C. S. R. Murthy, "A Reliability-

Aware, Delay Guaranteed, and Resource Efficient Placement of Service

Function Chains in Softwarized 5G Networks.," IEEE Transactions on

Cloud Computing, 2020.

[52] P. Kaliyammal Thiruvasagam, A. Chakraborty, A. Mathew and C. S. Ram

Murthy, "Reilable placement of service function chains and virtual

monitoring functions with minimal cost in softwarized 5G networks,"

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,

vol. 18, no. 2, 2021.

[53] S. Lin, W. Liang and J. Li, "Reliability-Aware Service Function Chain

Provisioning in Mobile Edge-Cloud Networks," 29th International

Conference on Computer Communications and Networks (ICCCN), p. 9,

03-06 August 2020.

[54] W. Chen, Z. Wang, H. Zhang, X. Yin and X. Shi, "Cost-Efficient Dynamic

Service Function Chain Embedding in Edge Clouds," 17th International

Conference on Network and Service Management (CNSM), 25-29 October

2021.

[55] S. Qin, M. Liu and G. Feng, "Dynamic Service Chaining for Ultra-reliable

Services in Softwarized Networks," IEEE Transactions on Network and

Service Management, 17 January 2023.

Bibliography

158

[56] X. Shang, Z. Liu and Y. Yang, "Online Service Funciton Chain Placement

for Cost-effectiveness and Network Congestion Control," IEEE

Transactions on Computers, p. 13, 2020.

[57] Z. Luo and C. Wu, "An Online Algorithm for VNF Service Chain Scaling

in Datacenters," IEEE/ACM Transaction on Networking, p. 13, 2020.

[58] J. Liu, W. Lu, F. Zhou, P. Lu and Z. Zhu, "On Dynamic Service Function

Chain Deployment and Readjustment," IEEE Transactions on Network

and Service Management, pp. 543-553, 05 June 2017.

[59] B. Li, B. Cheng and J. Chen, "An Efficient Algorithm for Service Function

Chains Reconfiguration in Mobile Edge Clouds Networks," IEEE

International Conference on Web Services (ICWS), 11 November 2021.

[60] T. u. o. Adelaide, "The Internet Topology Zoo," [Online]. Available:

http://www.topology-zoo.org/explore.html . [Accessed 02 2021].

[61] Y. Wang, L. Zhang , P. Yu, K. Chen, X. Qiu, L. Meng, M. Kadoch and M.

Cheriet, "Reliability-oriented and Resource-efficient Service Function

Chain Constrution and Backup," IEEE Transactions on Network and

Service Management, 2020.

[62] S. Choudhury, "The weight-constrained shortest path problem,"

https://web.stanford.edu/~shushman/math15_report.pdf, p. 5, 16

December 2015.

[63] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar and B. Akbari,

"Joint Energy Efficient and QoS-aware Path Allocation and VNF

Placement for Service Funciton Chaining," IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT, July 2018. [Online].

Available: https://arxiv.org/pdf/1710.02611.pdf. [Accessed 10 2019].

[64] D. Zhai, X. Meng, Z. Yu and X. Han, "Reliability-Aware Service Function

Chain Backup Protection Method," IEEE Access, p. 17, 7 January 2021.

 Bibliography

159

[65] S. Zheng, Z. Ren, W. Cheng and H. Zhang, "Minimizing the Latency of

Embedding Dependence-Aware SFCs into MEC Network via Graph

Theory.," IEEE Global Communications Conference, p. 6, 2021.

[66] Y. Zhu, "Investigation of online service function chaining to support low

latency network services in an NFV environment.," Master-Thesis,

University of Duisburg-Essen, 2023.

[67] K. Moore, K. Khim and E. Ross, "Briliant," Briliant, [Online]. Available:

https://brilliant.org/wiki/greedy-algorithm/. [Accessed 22 11 2022].

[68] "Geeksforgeeks," 18 November 2021. [Online]. Available:

https://www.geeksforgeeks.org/markov-decision-process/. [Accessed 22

November 2022].

[69] The University of Adelaide, "The Internet Topology Zoo," [Online].

Available: http://www.topology-zoo.org/explore.html. [Accessed

February 2019].

[70] J. Pei, P. Hong, K. Xue and D. Li, "Resource Aware Routing for Service

Function Chains in SDN and NFV-Enabled," IEEE Transactions on

Service Computing, 2018.

[71] M. Mohammadi Erbati and G. Schiele, "Application- and reliability-aware

service function chaining to support low-latency applications in an NFV-

enabled network," in IEEE NFV-SDN, Virtual Event, 2021.

[72] M. Mohammadi Erbati, M. M. Tajiki, F. Keshvari and G. Schiele, "Service

function chaining to support ultra-low latency communication in NFV,"

IEEE-International Conference on Broadband Communications for Next

Generation Networks and Multimedia Applications (CoBCom), p. 8, July

2022.

[73] M. Mohammadi Erbati and G. Schiele, "A novel reliable low-latency

service function chaining to enable URLLC in NFV," The 9th IEEE

Bibliography

160

International Conference on Communications and Networking (IEEE

ComNet’2022), p. 8, 1-4 November 2022.

[74] M. Mohammadi Erbati and G. Schiele, "A novel dynamic service function

chaining to enable URLLC in NFV," The 17th ConTEL –

INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS, p. 8,

11-13 July 2023.

[75] M. Mohammadi Erbati, M. M. Tajiki and G. Schiele, "Service function

chaining to support ultra-low latency communication in NFV," MDPI-

electronics, p. 26, 2023.

[76] F. Keshvari, "Investigation of the Reliability of Service Function Chains in

an NFV-enabled Network.," Bachelor Thesis, University of Duisburg

Essen, 2022.

[77] Z. Dong, M. Xiangru, Y. Zhenhua and H. Xiaoyang , "Reliability-Aware

Service Function Chain Backup Protection Method.," IEEE Access, p. 17,

26 01 2021.

[78] Y. Qiu, J. Liang, V. C. M. Leung, X. Wu and X. Deng, "Online Reliability-

Enhanced Virtual Network Services Provisioning in Fault-Prone Mobile

Edge Cloud," IEEE Transactions on Wireless Communications, pp. 7299 -

7313, 15 March 2022.

[79] G. Liu, S. Huang and K. Li, "Reliability deployment of service function

chain based on multi-agent reinforcement learning.," IEEE 6th Advanced

Information Technology, Electronic and Automation Control Conference

(IAEAC), 03-05 October 2022.

[80] X. Chen, J. Zhou and S. Wei, "SFC-HO: Reliable Layered Service

Function Chaining," IEEE Access, p. 17, 12 October 2022.

[81] M. Niu, Q. Han, B. Cheng, M. Wang, Z. Xu, W. Gu, S. Zhang and J. Chen,

"HARS: A High-Available and Resource-Saving Service Function Chain

 Bibliography

161

Placement Approach in Data Center Networks," IEEE Transactions on

Network and Service Management, pp. 829 - 847, 21 January 2022.

[82] Y. Tibebu Woldeyohannes, B. Tola, Y. Jiang and K. K. Ramakrishnan,

"CoShare: An Efficient Approach for Redundancy Allocation in NFV,"

IEEE/ACM Transactions on Networking, pp. 1014 - 1028, June 2022.

[83] G. Liu, S. Huang and K. Li, "Reliability deployment of service function

chain based on multi-agent reinforcement learning," 2022 IEEE 6th

Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC), 09 November 2022.

[84] T. J. Wassing, D. De Vleeschauwer and C. Papagianni, "A Machine

Learning Approach for Service Funciton Chain Embedding in Cloud

Datacenter Netwroks," IEEE 10th International Conference on Cloud

Networking (CloudNet), p. 7, 2021.

[85] L. Wang, W. Mao, J. Zhao and Y. Xu, "DDQP: A Double Deep Q-Learning

Approach to Online Fault-Tolerant SFC Placement," IEEE Transactions

on Network and Service Management, p. 15, 03 2021.

[86] T. Wang, Q. Fan, X. Li, X. Zhang, Q. Xiong, S. Fu and M. Gao, "DRL-

SFCP: Adaptive Service Function Chains Placement with Deep

Reinforcement Learning.," IEEE International Conference on

Communication, 2021.

[87] J. Jia, L. Yang and J. Cao, "Reliability-aware Dynamic Sercie Chains

Scheduling in 5G Networks based on Reinforcement Learning.," IEEE

INFOCOM- IEEE Conference on Computer Communications., p. 10, 2021.

[88] J. Fernando Cevallos Moreno, R. Sattler, R. P. Caulier Cisterna, L.

Ricciardi Celsi, A. Sánchez Rodríguez and M. Mecella, "Online Service

Function Chain Deployment for Live-Streaming in Virtualized Content

Bibliography

162

Delivery Networks: A Deep Reinforcement Learning Approach," Future

Internet (MDPI), p. 28, 29 October 2021.

[89] H. Qu, K. Wang and J. Zhao, "Reliable Service Function Chain

Deployment Method Based on Deep Reinforcement Learning," Sensor

(MDPI), 21 April 2021.

[90] J. Bai, X. Chang, F. Machida, L. Jiang, Z. Han and K. Trivedi, "Impact of

Service Function Aging on the Dependability fopr MEC Service Function

Chain," IEEE Transactins on Dependable and Secure Computing, p. 14,

2022.

[91] T. V. Doan, G. T. Nguyen, M. Reisslein and F. H. P. Fitzek, "SAP:

Subchain-Aware NFV Service Placement in Mobile Edge Cloud," IEEE

Transactions on Network and Service Management, p. 22, 2022.

[92] T. Subramanya, D. Harutyunyan and R. Riggio, "Machine Learning-

Driven Service Function Chain Placement and Scaling in MEC-enabled 5G

Networks," https://www.robertoriggio.net/papers/compnets2020.pdf ,

2022.

[93] M. A. Khoshkholghi and T. Mahmoodi, "Edge intelligence for service

function chain deployment in NFV-enabled networks.," Computer

Netwroks, 24 December 2022.

[94] H. Chen, S. Wang, G. Li, L. Nie, X. Wang and Z. Ning, "Distributed

Orchestration of Service Function Chains for Edge Intelligence in the

Industrial Internet of Things," IEEE Transactions on Industrial Informatics

, pp. 6244-6254, September 2022.

[95] A. Abouaomar, S. Cherkaoui, Z. Mlika and A. Kobbane, "Service Function

Chaining in MEC: A Mean-Field Game and Reinforcement Learning

Approach," IEEE Systems Journal, pp. 5357-5368, 30 May 2022.

 Bibliography

163

[96] X. Shang, Z. Liu and Y. Yang, "Online Service Function Chain Placement

for Cost-Effectiveness and Network Congestion Control.," IEEE

Transactions on Computers., p. 13, 01 2022.

[97] Y. Qiu, J. Liang, V. C. M. Leung, X. Wu and X. Deng, "Online Reliability-

Enhanced Virtual Network Service Provisioning in Fault-Prone Mobile

Edge Cloud.," IEEE Transactions on Wireless Communicaitons , p. 15, 09

2022.

[98] X. Wei, Y. Sheng, L. Li and C. Zhou , "DRL-Deploy: Adaptive Service

Function Chains Deployment with Deep Reinforcement Learning.," IEEE

Intl Conf on Parallel and Distributed Processing with Applicaitons, Big

Data and Cloud Computing, Sustainable Computing and Communications,

Social Computing and Networking

(ISPA/BDCloud/SocialCom/SustainCom), p. 8, 2021.

[99] H. Yu, Z. Chen, G. Sun, X. Du and M. Guizani, "Profit Maximization of

Online Service Function Chain Orchestration in an Inter-Datacenter Elastic

Optical Network.," IEEE Transactions on Network and Service

Management, p. 13, 01 03 2021.

[100] J. Fernando Cevallos Moreno, R. Sattler, R. P. Caulier Cisterna, L.

Ricciardi Celsi, A. Sánchez Rodríguez and . M. Mecella, "Online Service

Function Chain Deployment for Live-Streaming in Virtualized Content

Delivery Networks: A Deep Reinforcement Learning Approach," Future

Internet (MDPI), p. 28, 29 October 2021.

[101] S. Qin, M. Liu and G. Feng, "Dynamic Service Chaining for Ultra-reliable

Services in Softwarized Networks," IEEE Transactions on Network and

Service Management, 17 January 2023.

Bibliography

164

[102] X. Shang, Z. Liu and Y. Yang, "Online Service Function Chain Placement

for Cost-Effectiveness and Network Congestion Control," IEEE

Transactions on Computers , pp. 27-39, Juanuary 2022.

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/81494
URN: urn:nbn:de:hbz:465-20240206-083710-7

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/81494
https://nbn-resolving.org/urn:nbn:de:hbz:465-20240206-083710-7

