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Abstract

Using classical results from non Abelian Hodge theory and more contemporary ones developed for

complex projective varieties with Kawamata log terminal (klt) singularities, we deduce necessary and

sufficient conditions for such varieties to be uniformized by each of the four classical irreducible Her-

mitian symmetric spaces of non compact type. We also deduce necessary and sufficient conditions for

uniformization by a polydisk in the klt setting, which generalizes a classical result of Simpson.

Zussamenfassung

Mithilfe von klassischen Resultaten aus der nicht-Abelschen Hodgetheorie und modernen Resultaten

über komplexe projektive Varietäten mit Kawamata-log-terminalen (klt) Singularitäten, geben wir jeweils

notwendige und hinreichende Bedingungen für die Uniformisierung solcher Varietäten durch jeden der

vier klassischen irreduziblen Hermitesch-symmetrischen Räume von nicht kompaktem Typ. Wir geben

in diesem klt-Setting auch notwendige und hinreichende Bedingungen für die Uniformisierung durch eine

Polydisk und verallgemeinern damit ein klassisches Resultat von Simpson.
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1 Introduction and main results

After reading the title of this thesis one might wonder what the words uniformization, klt, and bounded

symmetric domains mean. We begin by addressing these curiosities, and explaining the goal of this work.

The aim of this section is to introduce the uniformization problem, and to convince the reader that it is

indeed an interesting one, and has applications in algebraic and complex geometry.

Throughout this thesis, we work with algebraic varieties over the field C of complex numbers.

1.1 The uniformization problem

A Hermitian manifold can be regarded as the complex analytic version of a Riemannian manifold. More

precisely, it is a complex manifold with a Hermitian metric on its holomorphic tangent bundle. A Hermi-

tian symmetric space is a a Hermitian manifold with the property that at each point, there is an inversion

symmetry which preserves the Hermitian structure.

We are interested in the Hermitian symmetric spaces D of non-compact type. Each such D can be expressed

as the quotient of a real algebraic semisimple Lie group G0 by a maximal compact subgroup K0, which

is unique up to conjugation (see Section 2.3 for details). Irreducible Hermitian symmetric spaces of non-

compact type were classified by Elie Cartan into six types- the four classical, and two exceptional ones. It

was shown by Harish-Chandra that each Hermitan symmetric space of non-compact type can be realized as

a bounded symmetric domain inside a complex vector space (see Section 3.1 for details).

Bounded symmetric domains and their quotients are of classical interest in complex geometry. Varieties

which are quotients of bounded symmetric domains are known to admit special tensors and automorphic

forms, so they are interesting from an arithmetic point of view as well. The characterization of such varieties

is then a natural problem to consider. In view of the minimal model program, it is important to work with

singular varieties. One of the most important classes of singularities occurring in the minimal model program

are the Kawamata log terminal (klt for short) singularities (see Section 2.4). For details about singularities

of the minimal model program, we refer the reader to [24].

The goal of this thesis is to answer the following question, which we call the uniformization problem.

Let X be a complex projective variety with Kawamata log terminal (klt) singularities. What are neces-

sary and sufficient conditions so that the universal cover X̃ of X is a bounded symmetric domain?

The uniformization problem has been studied in various settings. For example, in [39], Yau showed that

smooth, projective surfaces of general type which satisfy equality in the Miyaoka-Yau inequality are uni-

formized by the unit ball B2 ⊂ C2. Simpson formulated necessary and sufficient conditions for a smooth

complex projective variety of aribitrary dimension to have a bounded symmetric domain as its universal

cover in [34], and as a consequence obtained explicit conditions for uniformization by the polydisk and by

the ball. In the ball case, Simpson’s result has been generalized to smooth quasi-projective varieties (see

[8]), and projective varieties with Kawamata log terminal (klt) singularities (see [13, 15]). The main result

of this thesis, Theorem 1.1, settles the uniformization problem for arbitrary bounded symmetric domains, in

the projective klt setting.

4



1.2 The role of Hodge theory

In his classical work [34], Simpson developed a method to construct representations of the topological fun-

damental group of a complex algebraic variety, which are the same as vector bundles on the variety with

vanishing curvature. To do this, he used techniques from harmonic analysis and partial differential equa-

tions. He solved the Yang-Mills equation on holomorphic vector bundles with interaction terms over complex

Kähler varieties. The solutions to this equation yield flat connections on the vector bundles if certain Chern

classes are zero. As an application in the smooth projective case, one arrives at necessary and sufficient con-

ditions for a smooth projective variety to be uniformized by any Hermitian symmetric space of non-compact

type.An important fact is that an irreducible holomorphic vector bundle E on a projective variety has a

Hermitian-Yang-Mills metric if and only if it is stable. Moreover, if the Chern classes of E satisfy c1(E) = 0

and c2(E) · [KX ]n−2 = 0, then any Hermitian-Yang-Mills metric on E is flat.

One of the main goals of [34] was to parametrize complex variations of Hodge structures as defined by

Griffiths. A complex variation of Hodge structure is a C∞ vector bundle V together with a decomposition

V =
⊕

p+q=w V
p,q, a flat connection D, satisfying the following Griffiths transversality condition

D : V p,q → A0,1(V p+1,q−1) +A1,0(V p,q) +A0,1(V p,q) +A1,0(V p−1,q+1)

and with a polarization. In the above expression Ai,j(V p,q) denotes V p,q-valued forms of type (i, j). A

polarization is a Hermitian form which makes the Hodge decomposition orthogonal, and is positive definite

on V p,q if p is even, and is negative definite if p is odd. For a VHS V coming from a family of manifolds, there

is a lattice in V preserved by the connection D, which Griffiths included as part of his definition. Relaxing

this condition gives more complex VHSs, so a VHS can be deformed in a continuous family.

Considering infinitesimal deformations of a VHS motivates the definition of a system of Hodge bundles

(see Section 2, Definition 2.16). These are special instances of more general objects called Higgs sheaves

(see Section 2, Definition 2.7). A system of Hodge bundles arises from a VHS in a natural way. A more

interesting problem is to construct a VHS starting from a system of Hodge bundles. The upshot is that an

irreducible complex VHS corresponds precisely to a system of Hodge bundles E which i stable and satisfies

c1(E) = 0, and c2(E) · [KX ]n−2 = 0. A VHS on a variety X gives a holomorphic map from the universal

cover X̃ of X to the classifying space D of Hodge structures. Of prime interest to us is the case when D is

a Hermitian symmetric space of non-compact type.

When X is a curve, one can construct a non-trivial VHS on X in the following way. Let L be a line

bundle on X such that L⊗2 = KX , and set E1,0 = L, and E0,1 = L∨. Then E = E1,0 ⊕ E0,1 together with

Higgs field θ given by θ1,0 : L ∼= L∨ ⊗KX , θ0,1 : L∨ → 0 is a system of Hodge bundles. It is easily checked

that c1(E) = c2(E) = 0. If the genus of X is ≥ 2, then the only saturated subsystem of Hodge sheaves of E
is L, which has negative degree, thus E is stable and gives a VHS. The classifying map is an isomorphism

between the universal cover X̃ and the upper half plane H.

Now suppose X is of any dimension n. There is a canonical system of Hodge bundles E on X given by

E1,0 = Ω1
X , E0,1 = OX , and the Higgs field given by sending Ω1

X to itself and OX to zero. If E is stable then

the Bogomolov-Gieseker inequality (2(n + 1)c2(X) − nc1(X)2) · [KX ]n−2 ≥ 0 holds. If equality holds, then

X̃ is the unit ball Bn. In the case that X is a surface of general type, one recovers the result of Miyaoka and

Yau which says that c1(X)2 − 3c2(X) ≤ 0, and if equality holds then X is a ball quotient. Similarly, the

tangent bundle of X splitting as a direct sum of line bundles of negative degree, together with the Chern
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class equality (c1(X)2 − 2c2(X)) · [KX ]n−2 are sufficient conditions for X to be a quotient of the polydisk

Hn. This result was slightly improved by Beauville (see [3, Theorem B]), who showed that the assumption

on the Chern classes of X is not necessary.

1.3 Recent developments

The results of this thesis owe a great deal to the works [13] and [15], which extend Simpson’s non-abelian

Hodge correspondence to complex projective varieties with klt singularities. The main result of [13] is a

Miyaoka-Yau inequality for projective varieties of general type with klt singularities, formulated in terms of

Q-Chern classes (see Section 2.4), known as the Q-Miyaoka-Yau inequality. The fact that klt singularities

are quotient in codimension two allows one to define the first and second Q-Chern classes of the tangent

sheaf TX of X, which is locally free over the big open subset of X where X has only quotient singularities.

If X is smooth in codimension two, these agree with the usual Chern classes of TX . The authors also prove

that equality in the Q-Miyaoka-Yau inequality is a necessary and sufficient condition for a projective klt

variety which is smooth in codimension two, to be uniformized by the ball.

The protagonist in the proof of the uniformization result of [13] is the system of Hodge sheaves E =

(Ω1
X)∗∗⊕OX , which is the correct analog of the system of Hodge bundles Ω1

X ⊕OX , in the singular setting.

Using the semistability of TX and (Ω1
X)∗∗ for X klt and of general type, it is shown that E is stable as a

Higgs sheaf on X. A crucial result is that X admits a global Galois, quasi-étale cover γ : Y → X, such that

the étale fundamental groups of Y and of its smooth locus Yreg are isomorphic. This is known as a maximally

quasi-étale cover, and the aim is to show that it is smooth. Using the relationship between certain represen-

tations of the fundamental group and variations of Hodge structures in the singular setting, also dveloped in

[13], it is shown that the system of Hodge sheaves γ[∗∗](Ω
[1]
X ⊕OX) = Ω

[1]
Y ⊕OY is locally free. The solution

to the Lipman-Zariski conjecture for klt spaces then implies that Y is smooth, as desired. Then Yau’s uni-

formization result implies that Y is a ball quotient, and a further argument shows that the same is true for X.

In [15], the authors show that Higgs bundles living over the smooth locus Xreg of a projective klt vari-

ety admit harmonic metrics. Let (E , θ) be a reflexive Higgs sheaf on the smooth locus Xreg of a klt space

X of dimension n, let E ′ denote the reflexive extension of E to X, and let H be an ample divisor on X.

Then the main result of [15] says that (E , θ) being polystable with respect to H and satisfying the equalities

ĉh1(E ′) · [H]n−1 = 0 and ĉh2(E ′) · [H]n−2 = 0 is equivalent to E being locally free, and (E , θ) being induced

by a tame, purely imaginary harmonic bundle whose associated flat bundle is semisimple (see Section 2.5).

As a consequence one obtains necessary and sufficient conditions for a projective klt variety X with ample

canonical divisor to be uniformized by the ball. The improvement from the uniformization result of [13] is

that one does not need to assume X to be smooth in codimension two.

The proof of the uniformization result of [15] is the same spirit as that of [13], and we use it as a tem-

plate to prove the uniformization results appearing in this thesis.

1.4 Main results

We work in the same setting as [15] and formulate the following analog of Simpson’s result of uniformization

by Hermitian symmetric spaces of non compact type, for a complex projective variety with klt singularities

and ample canonical divisor.
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Theorem 1.1. Let X be a complex projective klt variety with ample canonical divisor KX . Let D be a

Hermitian symmetric space of non-compact type. Then X ∼= D/Γ, where Γ is a discrete cocompact subgroup

of Aut(D), whose action on D is fixed point free in codimension one, if and only if:

1. The smooth locus Xreg admits a uniformizing system of Hodge bundles (P, θ) for any Hodge group G0

of which Aut(D) is a quotient by a discrete central subgroup, and

2. X satisfies the Q-Chern class equality ĉh2(E ′) · [KX ]n−2 = 0, where E ′ is the reflexive extension of the

system of Hodge bundles P ×K g to X.

The notation appearing in Theorem 1.1 will be made clear in the subsequent sections. As a consequence

of Theorem 1.1, we derive necessary and sufficient conditions for a projective klt variety X with ample

canonical divisor to be uniformized by each of the four classical Hermitian symmetric spaces of noncompact

type, and by the polydisk. In the polydisk case, our result is a slight generalization of Beauville’s, in that

we only assume that the tangent bundle TXreg of the smooth locus Xreg of X splits as a direct sum of line

bundles (see Theorem 5.1). Due to the semistability of the tangent sheaf TX with respect to the canonical

divisor KX , which was shown in [13], we do not need to assume that the line bundles appearing in the

decomposition of TXreg have negative degree.

In each case, the conditions consist of the tangent bundle of the smooth locus TXreg admitting a reduction in

structure group, and X satisfying a Q-Chern class equality. For example, the statement for uniformization

by the Hermitian symmetric space Hn of type CI (also known as the Siegel upper half space), is as follows.

Theorem 1.2. Let X be a projective klt variety of dimension n(n + 1)/2 such that the canonical divisor

KX is ample. Then X ∼= Hn/Γ, where Γ is a discrete cocompact subgroup of Aut(Hn) = PSp(2n,R), whose

action on D is fixed point free in codimension one, if and only if X satisfies

• TXreg ∼= Sym2(E)

• [2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(E ′)2] · [KX ]n−2 = 0,

where E is a vector bundle of rank n on Xreg, and E ′ denotes the reflexive extension of E to X.

Theorem 1.2 is a consequence of combining Propositions 6.1 and 6.2 in Section 6. Analogous results to

Theorem 1.2 for Hermitian symmetric spaces of types DIII, BDI, and AIII for p 6= q are Theorems 7.3,

8.3, and 9.3 in Sections 7, 8, and 9 respectively. Necessary and sufficient conditions for uniformization by

the polydisk and by the Hermitian symmetric space of type AIII for p = q are formulated separately in

Sections 5 and 9 respectively.

Another consequence of Theorem 1.1 is the following Kazhdan type result, which is a klt version of [34,

Corollary 9.5].

Corollary 1.3. Let D be a Hermitian symmetric space of non-compact type, and let X be a projective klt

quotient of D by a Γ as in Theorem 1.1, with KX ample. Then for any σ ∈ Aut(C/Q), the conjugate variety

Xσ is also a quotient of D.

This statement appears again as Corollary in Section 4 and is proved there, following the proof of Theorem

1.1.
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1.5 Structure of the thesis

In order to prove our main uniformization theorem and subsequently apply it to particular bounded symmet-

ric domains, it is important to understand Simpson’s uniformization result and its philosophy in the smooth

projective setting. The thesis is divided in two parts. Part I consists of preliminaries, Simpson’s classical

results from [34] in detail, and the proof of Theorem 1.1. In Part II we apply Theorem 1.1 to the classical

irreducible bounded symmetric domains, and the polydisk.

In Section 2 we introduce objects, morphisms, and conventions that will be used in the following sections of

the thesis. We start by discussing nef and ample sheaves, and Galois and quasi-étale morphisms of normal

varieties. We then talk about Higgs sheaves and their stability, which play a central role in the proof of

the main theorem. We then introduce objects and notions specific to the uniformization problem, as they

appear in [34]. Next, we move to the klt setting where we make definitions of klt spaces and pairs, and

introduce Q-Chern classes of reflexive sheaves living on these. It is convenient that Q-Chern classes have the

same numerical behaviour (e.g. with respect to direct sums and tensor products) as the usual Chern classes.

Finally, we discuss harmonic bundles and related structures necessary to state the main results of [15] which

will be used in the proof of the main uniformization result.

In Section 3 we discuss in detail the material appearing in Sections 8 and 9 of [34]. For the sake of thorough-

ness, we give proofs of some important facts stated therein. In particular, using the equivalence between

isomorphism classes of flat G-bundles and conjugacy classes of representations ρ : π1(X)→ G, we show that

each Hermitian symmetric space D admits a uniformizing system of Hodge bundles. Moreover, we show that

this descends to a uniformizing system of Hodge bundles on any smooth projective quotient X of D. We

conclude the section by recalling the main results of [34] on which the proofs of our uniformization results

are based. We remark that one should be careful when working with bounded symmetric domains whose

automorphism group is not connected, the reason for this should become apparent in sections 5-9.

Section 4 is dedicated to extending the uniformization results of [34] to the projective, klt setting, and

is divided into two parts. In the first part we prove some auxiliary statements about the stability of certain

Higgs sheaves that will be used in the proof of the main theorem. For example, we show that a torsion

free system of Hodge sheaves being (poly/semi)stable as a system of Hodge sheaves is equivalent to it being

(poly/semi)stable as a Higgs sheaf. Using this, together with the semistablity of the tangent sheaf of a klt

variety of general type, we show that the system of Hodge bundles P ×K g (introduced in Section 2.3) is

always polystable as a Higgs bundle on the smooth locus Xreg of X. In the second part of the section we

prove Theorem 1.1. As a corollary, we show that X being a quotient of a bounded symmetric domain implies

that any Galois conjugate Xσ is too.

In Sections 5-9, we apply Theorem 1.1 to the polydisk and each of the four classical irreducible bounded

symmetric domains D and determine necessary and sufficient conditions for a projective klt variety X with

ample canonical divisor to have D as it’s universal cover. We also provide examples wherever possible.

The necessary and sufficient conditions consist of (a) the tangent bundle of the smooth locus Xreg admit-

ting a reduction in structure group to K, and (b) X satisfying the Q-Chern class equality. To make these

conditions explicit for a particular D, the trick is to identify the vector bundles associated to the adjoint

representations of K on the Lie algebras g−1,1, g0,0, and g1,−1. One can then write down the tangent bundle

as TXreg = P ×K g−1,1, and the Q-Chern class equality follows from equating c2(P ×K g) to zero.
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Part I

Uniformization theorem

We remind the reader that throughout this thesis we work over the field C of complex numbers.

2 Preliminaries

In this section we introduce objects and notation that will be used to formulate our main results. We follow

the conventions of [13, Section 2], [15, Sections 2 and 3] and of [34].

2.1 Morphisms and sheaves

We recall notions of positivity for vector bundles and coherent sheaves that will be used throughout.

Definition 2.1 (Nef and ample sheaves, [15, Definition 2.4]). Let X be a normal projective variety and let

F 6= 0 be a nontrivial coherent sheaf on X. Then F is called ample (resp. nef ) if the locally free sheaf

OP(F)(1) ∈ Pic(P(F)) is ample (resp. nef).

Following are some well known facts about ample and nef sheaves which we list without proof.

Lemma 2.2 ([15], Facts 2.5). Let X be a normal projective variety. Then the following statements hold.

• Ample sheaves on X are nef.

• A direct sum of sheaves on X is nef if and only if every summand is nef.

• Pullbacks and quotient sheaves of nef sheaves are nef.

• A sheaf E on X is nef if and only if for every morphism γ : C → X from a smooth curve C, the

pullback γ∗E is nef on C.

A closed subset Z of a normal, quasi projective variety is called small if the codimension of Z in X is at

least two. An open subset U of X is called big if the complement X \ U is small.

Definition 2.3 (Covering maps and Galois morphisms). A covering map is a finite, surjective map γ : Y →
X of normal, quasi-projective varieties. The covering map γ is called Galois if there exists a finite group

G ⊂ Aut(Y ) such that γ is isomorphic to the quotient map Y → Y/G.

Definition 2.4 (Quasi étale morphism). A morphism f : X → Y between normal varieties is called quasi

étale if f is of relative dimension zero, and étale in codimension one. In other words, f is quasi étale if

dim(X) = dim(Y ) and if there exists a subset Z ⊂ X of codimension at least two such that the restricted

map f |X\Z : X \ Z → Y is étale.

Definition 2.5 (Saturated subsheaf). Let E be a coherent sheaf on X. A coherent subsheaf F ⊂ E is said

to be saturated in E if the quotient sheaf E/F is torsion-free. Morever, the saturation of a subsheaf F ⊂ E
is the kernel of the map E → (E/F)/(torsion).
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2.2 Higgs sheaves and stability

Next, we discuss Higgs sheaves and their stability on smooth quasi-projective varieties. We first introduce

more general objects, namely sheaves with operators.

Definition 2.6 (Sheaf with an operator, [13, Definition 4.1]). Let X be a smooth, quasi-projective variety,

and W a coherent sheaf of OX -modules. A sheaf with a W-valued operator is a pair (E , θ), where E is a

coherent sheaf on X and θ : E → E ⊗W is an OX -linear sheaf morphism.

A Higgs sheaf on X is an example of a Ω1
X -valued operator with some additional conditions on the

morphism θ. More precisely,

Definition 2.7 (Higgs sheaves). Let X be a smooth, quasi-projective variety. A Higgs sheaf on X is a pair

(E , θ), where E is a coherent sheaf of OX -modules, and θ : E → E ⊗Ω1
X is an Ω1

X -valued operator called the

Higgs field, such that the composed morphism

E θ−→ E ⊗ Ω1
X

θ⊗Id−−−→ E ⊗ Ω1
X ⊗ Ω1

X
Id⊗∧−−−−→ E ⊗ Ω2

X

is zero. The composed morphism is usually denoted θ ∧ θ.

One can also define Higgs sheaves on normal varieties X (see [13, Definition 5.1]) by replacing Ω1
X in

the above definition with the sheaf Ω
[1]
X of reflexive differentials. Higgs sheaves defined this way behave well

under reflexive pullback, as is explained in more detail in [13, Section 4].

We remark that an alternative definition of Higgs sheaves on normal varieties was introduced in [28, Section

4]. The advantage of this definition is that one can define define duals of Higgs sheaves, and also extend

reflexive Higgs sheaves on the smooth locus of a klt variety to reflexive Higgs sheaves on the whole variety.

This does not seem immediately possible with Higgs sheaves in the sense of Definition 2.7. However, in this

article we use Definition 2.7 because the proof of the main theorem relies on some results of [15], where this

definition is used, and we work in the same generality as [15].

The constructions in [28, Section 4] are however of independent interest, and we point the interested reader

to the article [28] for details.

Definition 2.8 (Morphism of Higgs Sheaves, [13, Definition 5.2]). In the setting of Definition 2.7, a morphism

of Higgs sheaves f : (E1, θ1) → (E2, θ2) is a morphism f : E1 → E2 of sheaves which is compatible with the

Higgs fields, i.e., (f ⊗ IdΩ1
X

) ◦ θ1 = θ2 ◦ f .

An important notion that will be used later in this note is that of a Higgs subsheaf. To make a definition

we must first define an invariant subsheaf of a sheaf with an operator.

Definition 2.9 (Invariant subsheaf, [13, Definition 4.8]). Let X be a smooth quasi-projective variety and

(E , θ) a sheaf with aW-valued operator, as in Definition 2.6. A coherent subsheaf F ⊂ E is called θ-invariant

if the map θ : F → E ⊗W factors through F ⊗W. We call F generically θ-invariant if the restriction F|U is

invariant with respect to θ|U , where U ⊂ X is the maximal dense open subset of X where W is locally free.

Let (E , θ) be a Higgs sheaf on X. A subsheaf F ⊂ E is called a sub-Higgs sheaf if F is θ-invariant, and

if (F , θ|F ) is a Higgs sheaf.

Remark 2.10. For applications to uniformization (Sections 4-9), we work exclusively with Higgs sheaves over

the smooth locus Xreg of a projective klt variety X (see Section 2.4). If F ⊂ E is any subsheaf, then Xreg

being quasi-projective and Ω1
Xreg

being locally free implies that the functor −⊗Ω1
Xreg

is exact. In particular,

F ⊗ Ω1
Xreg

⊂ E ⊗ Ω1
Xreg

holds.
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Remark 2.11. Let (E , θ) be a Higgs sheaf on a smooth, quasi-projective variety X. Then any generically

θ-invariant subsheaf F ⊂ E is actually θ-invariant, because Ω1
X is locally free. Moreover, every θ-invariant

subsheaf F is actually a Higgs subsheaf (F , θ|F ), because F⊗Ω1
X ⊂ E⊗Ω1

X by Remark 2.10, thus θ|F∧θ|F =

0.

Following [13], on a normal, quasi projective variety X, we denote by N1(X)Q the Q-vector space of

numerical Cartier divisor classes. For any sheaf F on X whose determinant is Q-Cartier, we denote the

corresponding element of N1(X)Q by [F ] = [detF ]. The following construction gives a way to compute

intersection products between Weil and Cartier divisors.

Intersection products ([13, Construction 2.17]). Let X be a normal, projective variety of dimension

n, and let F be a non-zero coherent sheaf on X. Then detF is a Weil-divisorial sheaf, say detF = OX(D),

for some Weil divisor D on X. Then D defines a rational equivalence class δ of an (n− 1)-dimensional cycle

on X. For (n− 1) line bundles L1, L2,...,Ln−1 on X, we can form the cap product, and consider the number

deg(δ ∩ [L1] ∩ · · · ∩ [Ln−1]) ∈ Z,

where [Li] denotes the element of N1(X)Q corresponding to the line bundle Li. The above value depends only

on the numerical classes [Li], thus the sheaf F induces a well-defined Q-multilinear form on N1(X)
×(n−1)
Q .

Following [13], we denote the multilinear form obtained as above also by [F ]. If detF is Q-Cartier, then there

is a numerical class [F ] ∈ N1(X)Q, and it agrees with the one obtained by applying the above construction

to F (see [13, Remark 2.19]).

Henceforth, we denote the intersection product of a coherent sheaf F with numerical classes α1, ..., αn−1 ∈
N1(X)Q by [F ] · α1 · · · · αn−1 ∈ Q.

We can now define the slope of any coherent sheaf on a normal projective variety with respect to a nef,

Q-Cartier divisor as follows.

Definition 2.12 (Slope with respect to a nef divisor). Let X be a normal projective variety of dimension

n, and let H be a nef, Q-Cartier divisor on X. If F is a torsion free, coherent sheaf on X, the slope of F
with respect to H is given by

µH(F) =
[F ] · [H]n−1

rank(F)
.

We call F semistable with respect to H if for any subsheaf E ⊂ F with 0 < rank(E) < rank(F), we have

µH(E) ≤ µH(F). We call F stable with respect to H if the strict inequality holds for all E .

For situations that arise later in the thesis, we would like to use notions of slope and stability which work

for sheaves defined over the smooth locus of a normal projective variety. This is developed in [14, Section

2]. For completeness, we state the relevant definitions which appear therein.

It should be pointed out that all sheaves we work with are assumed to algebraic. For coherent analytic

sheaves F on the analytic space associated to Xreg, the pushforward j∗F is in general not analytic, as re-

marked in [14, Remark 2.24]. We will view Xreg as a quasi projective variety over C, hence coherent sheaves

on Xreg will always be algebraic.

Definition 2.13 (Slope for sheaves on the smooth locus). Let X be a normal, projective variety of dimension

n, and let E be a torsion free, coherent sheaf of rank r on the smooth locus Xreg. If H is a nef, Q-Cartier

12



divisor on X, define the slope of E with respect to H as

µH(E) =
[j∗E ] · [H]n−1

r

where j : Xreg → X is the inclusion.

As earlier, we call E semistable with respect to H if for any subsheaf F ⊂ E on Xreg with 0 < rank(F) <

rank(E), we have µH(F) ≤ µH(E). Call E stable with respect to H if the strict equality holds.

These notions can be extended to sheaves with operator on Xreg as follows.

Definition 2.14 (Stability for sheaves on the smooth locus). Let the setting be as in Definition 2.13. LetW
be a coherent sheaf on Xreg, and let θ : E → E ⊗W be aW-valued operator. We say that (E , θ) is semistable

with respect to H if the inequality µH(F) ≤ µH(E) holds for all generically θ-invariant subsheaves F of E
with 0 < rank(F) < rank(E). Call (E , θ) stable with respect to H if the strict inequality µH(F) < µH(E)

holds. Direct sums of stable sheaves with operator of the same slope are called polystable.

A Higgs sheaf on the smooth locus Xreg of a normal projective variety X is called stable (resp. semistable,

polystable) with respect to H if it is stable (resp. semistable, polystable) with respect to H as a sheaf with

an Ω1
Xreg

-valued operator.

Lemmas 2.26 and 2.27 in [14] give useful properties of the above notions of slope and stability.

Remark 2.15. In order to check the stability of a Higgs sheaf, it is sufficient to check only the saturated

sub-Higgs sheaves, because passing to the saturation of a subsheaf does not decrease the slope.

2.3 Uniformization

The notions of a system of Hodge bundles, principle bundles, and uniformizing systems of Hodge bundles

play a central role in the proof of the main theorem. We state the definitions here as they are in Simpson’s

paper [34]. The variety X is assumed to be smooth and quasi-projective through Definitions 2.16-2.24.

Definition 2.16 (System of Hodge sheaves). A system of Hodge sheaves on X is a Higgs sheaf (E, θ) as in

Definition 2.7, together with a splitting E =
⊕

p,q E
p,q such that restricting the Higgs field θ to each Ep,q,

we get OX -linear maps θ|Ep,q : Ep,q → Ep,q → Ep−1,q+1 ⊗ Ω1
X . If E is locally free, we say it is a system of

Hodge bundles.

Let E be a system of Hodge sheaves. A subsystem of Hodge sheaves F of E is a sub-Higgs sheaf of E which

has the same decomposition F =
⊕

p,q F
p,q as E, with Higgs field given by θ|F : F p,q → F p−1,q+1 ⊗ Ω1

X .

A system of Hodge sheaves E is semistable (resp. stable) with respect to a nef, Q-Cartier divisor if for any

proper subsystem of Hodge sheaves F ⊂ E, we have µH(F ) ≤ µH(E) (resp. µH(F ) < µH(E)). We call E

polystable if it is a direct sum of stable subsystems of Hodge sheaves of the same slope.

Definition 2.17 (Complexification of a Lie group). A complexification of a real Lie group G is a complex Lie

group GC containing G as a closed, real Lie subgroup such that the Lie algebra gC of GC is a complexification

of the Lie algebra g of G i.e., gC = g⊗R C. The group G is then called a real form of the group GC.

Not every real Lie group G admits a complexification in the above sense. For example, the universal

cover of SL(2,R) does not admit such a complexification. The following is a collection of facts from [4,

Chapters 2 and 3].

Lemma 2.18. A real Lie group G admits a complexification in the sense of Definition 2.17 if and only if G

is a linear group. If a complexification exists, it is not necessarily unique. Compact Lie groups always admit

complexifications.
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We are specifically interested in automorphism groups of bounded symmetric domains, which are real

Lie groups with some additional properties.

Definition 2.19 (Hodge group). A Hodge group is a semisimple real algebraic Lie group G0, together with

a Hodge decomposition of the complexified Lie algebra

g =
⊕
p

gp,−p

such that [gp,−p, gr,−r] ⊂ gp+r,−p−r and such that (−1)p+1 Tr(ad(U) ◦ ad(V̄ )) > 0 for U, V ∈ gp,−p \ {0}.
Here ad : g→ Der(g) denotes the adjoint representation of the Lie algebra g.

Let G0 be a Hodge group as in the above definition, and let K0 ⊂ G0 be the subgroup corresponding to

the Lie algebra k = g0,0
0 . It is the subgroup of elements k such that ad(k) preserves the Hodge decomposition

of g. In particular ad(k) preserves the positive definite form (−1)p+1Tr(ad(U) ◦ ad(V̄ )) so K0 is compact.

Remark 2.20. Henceforth, we will fix the Hodge group G0 to be linear, because this is the case for applications

to uniformization (see Sections 4-9 and [34, Section 9]). Thus G0 and K0 will admit complexifications in the

sense of Definition 2.17 (see [25, Chapter VII, Section 9]). We denote by G and K the complexifications of

G0 and K0 respectively.

Definition 2.21 (Principal system of Hodge bundles). A principal system of Hodge bundles on X for a

Hodge group G0 is a principal K-bundle P on X together with a morphism of vector bundles

θ : TX → P ×K g−1,1

such that [θ(u), θ(v)] = 0 for all local sections u, v of TX .

The morphism θ maps local sections of TX to elements of g−1,1, thus the Lie bracket appearing in the

above definition is the usual Lie bracket of g extended to the bundle P ×K g−1,1.

To any local section a of the vector bundle P ×K g, we can associate the map a 7→ (v 7→ [θ(v), a]), for all

local sections v of TX . It is easy to check that this gives P ×K g the structure of a system of Hodge bundles,

hence the name.

Definition 2.22 (Hodge group of Hermitian type). A Hodge group G0 of Hermitian type is a Hodge group

such that the Hodge decomposition of g has only types (1,−1), (0, 0), and (−1, 1), and such that G0 has no

compact factors.

In the case of a Hodge group of Hermitian type, K0 ⊂ G0 is a maximal compact subgroup, and the

quotient D = G0/K0 is a Hermitian symmetric space of non-compact type, and it can also be realized as a

bounded symmetric domain. Moreover, all bounded symmetric domains arise in this way.

We use the following result of Simpson about Lie algebras of Hodge groups of Hermitian type multiple

times later in the thesis, so we state it here.

Lemma 2.23 ([34, Corollary 9.3]). Let g be the complexified Lie algebra of a Hodge group of Hermitian

type. Let W ⊂ g be a sub-Hodge structure such that [g−1,1,W ] ⊂ W , where [·, ·] denotes the Lie bracket of

g. Then

dim(W−1,1) ≥ dim(W 1,−1)

and if equality holds then W is a direct sum of ideals of g.
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Definition 2.24 (Uniformizing system of Hodge bundles). Let G0 be a Hodge group of Hermitian type. A

uniformizing system of Hodge bundles on X for G0 is a principal system of Hodge bundles (P, θ) on X such

that map θ : TX → P ×K g−1,1 is an isomorphism of sheaves.

A uniformizing system of Hodge bundles on X corresponds to a reduction of structure group for TX to

K → GL(n,C), where the map K → GL(n,C) is given by the adjoint representation of K on g−1,1. We

refer the reader to Section 3 of this thesis for more details.

Note that if W ⊂ P ×K g is a subsystem of Hodge sheaves of a uniformizing system of Hodge bundles P ×K g,

then W is locally a sub-Hodge structure of g. In particular, Lemma 2.23 holds locally for W .

Definition 2.25 (Uniformizing variation of Hodge structure). A uniformizing variation of Hodge structure

on X is a uniformizing system of Hodge bundles (P, θ) together with a flat metric on the associated bundle

P ×K g.

The table below shows bounded symmetric domains D = G0/K0, and the associated groups G0, K0, and

their respective complexifications G, K, which we use to prove our uniformization statements (Sections 5-9).

Bounded

symmetric domain

G0 K0 G K

Polydisk (Hn) SL(2,R)n U(1)n SL(2,C)n (C∗)n

Type CI (Hn) Sp(2n,R) U(n) Sp(2n,C) GL(n,C)

Type DIII (Dn) SO∗(2n) U(n) SO∗(2n,C) GL(n,C)

Type BDI (Bn) SO(2, n) SO(2)× SO(n) SO(2 + n,C) SO(2,C)×
SO(n,C)

Type AIII (Apq) SU(p, q) S(U(p)× U(q)) SL(p+ q,C) S(GL(p,C)×
GL(q,C))

2.4 Klt spaces and Q-Chern classes

One of six main classes of singularities one encounters when running the minimal model program in dimen-

sion ≥ 3 are klt singularities, which we define next. We first introduce some basic terminology which can be

found in any standard reference on birational geometry, such as [24].

A contraction is a projective morphism f : X → Z of normal varieties with connected fibres, i.e. such

that f∗OX = OZ . A birational contraction is called a blowup or blowdown depending on the variety we start

with.

A boundary on a variety is a Q-Weil divisor D =
∑
i aiDi with coefficients 0 ≤ ai ≤ 1 for all i. If D is a

boundary on X then (X,D) is called a log variety or log pair. For f : X → Y a birational morphism, the

boundary D′ of Y is given by the direct image of the boundary D of X, i.e., D′ = f∗D. A log resolution

f : X̃ → X is a resolution of singularities such that the union
⋃
i D̃i ∪ Exc(f) of proper transforms of the

Di and the exceptional locus of f is a simple normal crossing divisor.

Let f : X̃ → X be a projective birational morphism between normal varieties, and let D be a Q-Weil divisor

on X. Suppose that KX +D is Q-Cartier. Then we can write

KX̃ + D̃ ≡ f∗(KX +D) +
∑
E

a(E,D)E,
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where D̃ denotes the proper transform of D and a(E,D) ∈ Q. Note that the numbers a(E,D) depend only

on X, D, and E and not on f . They are called the discrepancies. Define

discrep(X,D) = infE{a(E,D)|E is an exceptional divisor on X}.

We are now ready to make the definitions of klt pairs and spaces.

Definition 2.26 (klt pair). A klt pair (X,∆) consists of a normal variety X, and a Q-Weil divisor ∆ =∑
i aiDi, where ai ∈ Q ∩ (0, 1) such that KX + ∆ is Q-Cartier, and such that the discrepancy satisfies

discrep(X,∆) > −1.

Definition 2.27 (klt space). A normal, quasi-projective variety X is called a klt space if there exisits an

effective Q-Weil divisor ∆ on X such that (X,∆) is a klt pair.

Klt spaces of dimension 2 are known to have only quotient singularities. In dimension ≥ 3, a klt space

X does not in general have only quotient singularities (see Example 2.29). A standard example of a klt

singularity that is not quotient is that of a cone over a Fano variety. We first give a definition of a Fano

variety and then discuss an example.

Definition 2.28. A Fano variety is a normal projective variety with klt singularities such that −KX is an

ample Q-Cartier divisor.

Example 2.29. Let Y be a smooth projective subvariety of Pn with hyperplane divisor H, such that KY ∼ aH
for some a ∈ Q.

Set π : X̃ = P(OY ⊕OY (H))→ Y , and let E be a section such that E|Y ≡ −H. The cone X in Pn+1 over

Y is normal, it is the contraction f : X̃ → X of E, and we have

KX̃ ∼ −2E + π∗(KY −H)

∼ −2E + π∗((a− 1)H).

It follows that KX ∼ (a− 1)H. Note that they are both Weil divisors which coincide outside the vertex of

X. Thus KX is ample if and only if a < 1.

Writing KX̃ ∼ f∗KX+bE and restricting to E gives that b = −1−a, so it follows that X has klt singularities

if and only if a < 0. Moreover, X is a Fano variety of and only if Y is a Fano variety.

One can study the geometry of klt spaces using a more general notion of Chern classes, namely the

Q-Chern classes, or orbifold Chern classes.

Let X be a klt space as in Definition 2.27. After excluding a suitable subset Z ⊂ X of codimension ≥ 3,

only quotient singularities remain, and X \Z can be equipped with the structure of a Q-variety that admits

a global, Cohen-Macaulay cover (see [13, Section 3.4]). Thus following Mumford’s work [32], Chern classes

can be defined on X \ Z. Since codimX(Z) ≥ 3, one can construct on any klt space of dimension n ≥ 3

intersection products with first and second Q-Chern classes of any reflexive sheaf E on X. The associated

symmetric Q-multilinear forms can be written as follows.

ĉ1(E) : N1(X)n−1
Q → Q, (α1, . . . , αn−1) 7→ ĉ1(E) · α1 · · · · αn−1

ĉ1(E)2 : N1(X)n−2
Q → Q, (α1, . . . , αn−2) 7→ ĉ21(E) · α1 · · · · αn−2

ĉ2(E) : N1(X)n−1
Q → Q, (α1, . . . , αn−2) 7→ ĉ2(E) · α1 · · · · αn−2.

In later sections we will also consider Q-Chern characters, which are defined as follows

ĉh1(E) = ĉ1(E)

ĉh2(E) =
1

2
(ĉ1(E)2 − 2ĉ2(E)).
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The subject of Q-Chern classes has been covered in greater detail in [13, Section 3]. We will use the following

important observation about the behaviour of Q-Chern classes under quasi-etale covers.

Lemma 2.30 ([13, Lemma 3.16]). Let γ : Y → X be a quasi-etale morphism between projective klt spaces.

Then the following equalities hold for all reflexive sheaves E on X, and all numerical classes α1, . . . , αn−1 ∈
N1(X)Q

ĉ1(γ[∗]E) · γ∗α1 · · · · · γ∗αn−1 = (deg γ)ĉ1(E) · α1 · · · · · αn−1,

where γ[∗]E = (γ∗E)∗∗. Analogous statements hold for ĉ1(γ[∗]E)2 and ĉ2(γ[∗]E).

We will use the following formula for the Q-Chern classes of the direct sum of two reflexive sheaves E

and F of ranks r and r′ respectively.

ĉk(E ⊕ F ) =

k∑
i=0

ĉi(E) · ĉk−i(F ).

So in particular we have

ĉ1(E ⊕ F ) = ĉ1(E) + ĉ1(F ) (1)

ĉ2(E ⊕ F ) = ĉ2(E) + ĉ1(E) · ĉ1(F ) + ĉ2(F ). (2)

2.5 Harmonic bundles

Harmonic bundles play an important role in nonabelian Hodge theory. We give here some basic definitions,

facts, and results established in [15, Section 3], which will be used in the proof of the main uniformization

result, Theorem 1.1.

Definition 2.31 ([15, Fact and Definition 3.1]). Let M be a complex manifold, and let E = (E, ∂̄, θ, h) be

tuple consisting of the following data

• A holomorphic vector bundle (E, ∂̄) and a Hermitian metric h on E.

• A Higgs field θ : E → E ⊗ Ω1
X , where E = ker ∂̄ is the sheaf of holomorphic sections.

Denote also by θ the induced A0-linear morphism θ : A0(E) → A1,0(E). Let θh : A0(E) → A0,1(E) be

the adjoint of θ with respect to the metric h, and let ∂ be the (1, 0)-part of the unique Chern connection

compatible with both the metric h and the complex structure ∂̄. Then

∇E = ∂ + ∂̄ + θ + θh

is a connection. The tuple E = (E, ∂̄, θ, h) is called a harmonic bundle if ∇E is flat.

For a harmonic bundle E = (E, ∂̄, θ, h) as in the above definition, denote the associated flat bundle by

(E,∇E).

Definition 2.32 ([15, Notation 3.3]). Let M be a complex manifold.

• Let E be a locally free sheaf on M with associated holomorphic bundle (E, ∇̄). Then we say E admits

a harmonic bundle structure if there exists a harmonic bundle of the form (E, ∂̄, θ, h).

• Let (E , θ) be a locally free Higgs sheaf on M with associated holomorphic bundle (E, ∇̄). Then we say

(E , θ) admits a harmonic bundle structure if there exists a harmonic bundle of the form (E, ∂̄, θ, h).
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• A flat bundle (E,∇) is said to admit a harmonic bundle structure if there exists a harmonic bundle

E = (E, ∂̄, θ, h) such that ∇ = ∇E.

If E is a locally free sheaf on a smooth, quasi-projective variety X, then E is said to admit a harmonic

bundle structure if its analytification Ean on the complex manifold Xan admits a harmonic bundle structure.

An analogous statement holds for Higgs bundles (E , θ) on X.

In the situation of Definition 2.32, let N be a complex submanifold of M , and let (E , θ) be a locally free

Higgs sheaf on M . Then the locally free Higgs sheaf (E , θ)|N on N admits a harmonic bundle structure via

restriction.

To study Higgs bundles on a quasi-projective varieties, the authors of [15] look at tame harmonic bundles.

Definition 2.33 (Tame harmonic bundle, [15, Definition 3.5]). Let M be a complex manifold, let D ⊂ M

be a simple normal crossing divisor, and let E = (E, ∂̄, θ, h) be a harmonic bundle on M \ D. Then E is

called tame with respect to (M,D) if there exists a locally free sheaf EM on M , a morphism of sheaves

θM : EM → EM ⊗ Ω1
M (logD)

and an isomorphism EM |M\D ∼= E that identifies θM |M\D with θ. Call (EM , θM ) an extension of (E , θ).

Definition 2.34 (Purely imaginary bundles, [15, Fact and Definition 3.6]). In the setup of Definition 2.33,

assume that (E, ∂̄, θ, h) is tame, and let (EM , θM ) be an extension of (E , θ). If Di ⊂ D is any component,

and if x ∈ Di is any point, consider the residue and its restriction to x

resDiθM ∈ End(EM |Di), and (resDiθM )|x ∈ End(EM |x).

Then the set of eigenvalues of (resDiθM )|x is independent of the choice of (EM , θM ).

The harmonic bundle (E, ∂̄, θ, h) is called purely imaginary with respect to (M,D) if all eigenvalues of the

residues of θM along the irreducible components of D are purely imaginary for any extension (EM , θM ) of

(E , θ).

Proposition 2.35 (Tame and purely imaginary bundles on quasi-projective bundles, [15, Fact and Definition

3.7]). Let X be a smooth quasi-projective variety, and let E = (E, ∂̄, θ, h) be a harmonic bundle on Xan. Let

X̄1 and X̄2 be two smooth projective compactifications of X such that Di = X̄i \ X, i ∈ {1, 2} are simple

normal crossing divisors. Then E is tame and purely imaginary with respect to (X̄1, D1) if and only if E is

tame and purely imaginary with respect to (X̄2, D2).

The above proposition shows that the notion of tame purely imaginary does not depend on the compact-

ification. Thus one can talk about tame and purely imaginary harmonic bundles on the analytification Xan

of a smooth quasi-projective variety X.

Denote by TPI-locFreeX the family of isomorphism classes of locally free sheaves on X that admit a tame,

purely imaginary harmonic bundle structure. Let TPI-HiggsX denote the family of isomorphism classes of

locally free Higgs sheaves on X that admit a tame, purely imaginary harmonic bundle structure. Write

(E , θ) ∈ TPI-HiggsX to denote that a Higgs sheaf (E , θ) on X is locally free and admits a tame, purely

imaginary harmonic bundle structure E. If (E , θ) ∈ TPI-HiggsX and if X is a big open subset of a normal

projective variety X̄, we say that (E , θ) is induced by E.

In order to prove the sufficiency part of Theorem 1.1, we make use of the following deep existence result.
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Theorem 2.36 ([12, Theorem 1.14]). Let X be a projective klt variety. Then X admits a quasi-étale cover

γ : Y → X such that the natural map of étale fundamental groups π̂1(Yreg) → π̂1(Y ) is an isomorphism.

This is known as a maximally quasi-étale cover

We also state the following results of [15], which are crucial to the proof of the main uniformization result.

Proposition 2.37 ([15, Proposition 3.17]). Let X be a projective klt space. Let γ : Y → X be a maximally

quasi-étale cover, let Y o = γ−1Xreg, and let γ|Y o : Y o → Xreg be the restricted morphism, which is étale.

Then for any (EXreg , θXreg ) ∈ TPI-HiggsXreg , there exists a locally free Higgs sheaf (F , θ) on Y , and an

isomorphism

(F , θ)|Y o = (γ|Y o)∗(EXreg , θXreg ).

In particular, if E denotes the reflexive extension of EXreg to X, then γ[∗]E ∼= F is locally free, and all the

Chern classes of F vanish.

The following theorem is one of the main results of the paper [15], and allows us to pass from the singular

to the smooth setting in the proof of Theorem 1.1.

Theorem 2.38 ([15, Theorem 5.1]). Let X be a projective klt space of dimension n ≥ 2. Let H be an ample

divisor on X and use H to equip Xreg with a Kähler metric. Let (EXreg , θXreg ) be a reflexive Higgs sheaf on

Xreg and let E denote the reflexive extension of EXreg to X. Then the following statements are equivalent.

• The Higgs sheaf (EXreg , θXreg ) is (poly)stable with respect to H, and the Q-Chern characters satisfy

ĉh1(E) · [H]n−1 = 0 and ĉh2(E) · [H]n−2 = 0.

• The sheaf EXreg is locally free and (EXreg , θXreg ) is induced by a tame, purely imaginary harmonic

bundle whose associated flat bundle is (semi)simple.

2.6 A weak characterization of klt varieties with split cotangent sheaf

The following observation is a weaker version of [16, Proposition 4.1], in a more general setting.

Lemma 2.39. Let X be normal, complex quasi-projective variety of dimension n with klt singularities.

Assume that the sheaf of reflexive differentials Ω
[1]
X is of the form

Ω
[1]
X
∼= L1 ⊕ · · · ⊕ Ln. (3)

where Li is a rank one Q-Cartier sheaf for all 1 ≤ i ≤ n. Then X has only quotient singularities.

Proof. Since each Li is assumed to be Q-Cartier, there is a minimal number Ni ∈ N for each i, such that

L[⊗Ni]
i is locally free. Note that for any point x ∈ X, for each 1 ≤ i ≤ n, we can find an open neighbourhood

Ui = Ui(x) of x over which L[⊗Ni]
i is trivial, i.e. such that (L[⊗Ni]

i )|Ui ∼= OUi . Let V =
⋂
i Ui. Then V is a

non-empty open neighbourhood of x as it is the intersection of finitely many non-empty open neighbourhoods

of x.

Consider the restriction of L[⊗N1]
1 to V and observe that it is trivial. Let γ1 : V1 → V be the associated

index one quasi-étale cover which is cyclic of order N1. The variety V1 again has klt singularities, and we

have γ
[∗]
1 L1

∼= OV1 . In particular, it follows that Ω
[1]
V1

∼= γ
[∗]
1 Ω

[1]
V , i.e., Ω

[1]
V1

∼= γ
[∗]
1 (L1|V ) ⊕ · · · ⊕ γ[∗]

1 (Ln|V ) ∼=
OV1

⊕ · · · ⊕ γ
[∗]
1 (Ln|V ). Note that since L[⊗N2]

2 is trivial over V , γ
[∗]
1 L

[⊗N2]
2 is trivial over V1. Now let

γ2 : V2 → V1 be the associated index one quasi-étale cover which is cyclic of order N2. We again have that
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V2 is klt and γ
[∗]
2 γ

[∗]
1 L2

∼= OV2
. Thus it follows that Ω

[1]
V2

∼= γ
[∗]
2 Ω

[1]
V1

∼= γ
[∗]
2 γ

[∗]
1 (L1|V )⊕ · · · ⊕ γ[∗]

2 γ
[∗]
1 (Ln|V ) ∼=

OV2
⊕OV2

⊕ · · · ⊕ γ[∗]
2 γ

[∗]
1 (Ln|V ).

Continuing in this way n− 2 more times we arrive at an index one quasi-étale cover γn : Vn → Vn−1 of order

Nn, such that Vn is klt and γ
[∗]
n . . . γ

[∗]
1 Ln ∼= OVn . This implies that Ω

[1]
Vn
∼= γ

[∗]
n . . . γ

[∗]
1 Ω

[1]
V
∼= O⊕nVn i.e., Ω

[1]
Vn

and TVn are both free. The solution for the Lipman-Zariski conjecture for spaces with klt singularities ([11,

Theorem 16.1]) then asserts that Vn is smooth.

The composed map γ = γ1 ◦ · · · ◦γn : Vn → V is a covering map of quasi-projective varieties. Then it follows

from [12, Theorem 3.7] that there exists a normal, quasi-projective variety Ṽn and a finite surjective morphism

γ̃ : Ṽn → Vn. such that the following holds. There exist finite groups H ⊂ G such that the composed map

γ ◦ γ̃ : Ṽn → V and γ̃ are Galois with groups G and H respectively. The map γ ◦ γ̃ is called the Galois

closure of γ. Moreover, the branch loci of γ and γ ◦ γ̃ are equal. This implies that the map γ ◦ γ̃ : Ṽn → V

is again quasi-étale, and Ṽn has at worst klt singularities. We have Ω
[1]

Ṽn
= γ̃[∗]γ[∗]Ω

[1]
V = γ̃[∗]O⊕nVn = O⊕n

Ṽn
. It

follows again by the solution to the Lipman-Zariski conjecture for klt spaces that Ṽn is smooth. Thus we

conclude that X has quotient singularities only.

2.7 Another remark on stability

We now make an observation about the stability of certain vector bundles associated to a semistable bundle.

Lemma 2.40. Let X be a n-dimensional algebraic variety over C and let H be an ample divisor on X. Let

E be a rank r vector bundle on X such that Sym2(E) is semistable with respect to H. Then E and End(E)

are semistable with respect to H.

Proof. Note that Sym2(E) is a vector bundle of rank r(r + 1)/2. Let ct(E) =
∑r
i=0 ci(E)ti be the Chern

polynomial of E , and let α1, ..., αr be the Chern roots of E . Then the Chern polynomial of the p-th symmetric

power Symp(E) is given by

ct(Symp(E)) =
∏

i1≤···≤ip

(1 + (αi + αj)t).

In particular, we have that c1(Sym2(E)) is the coefficient of t in the expression
∏
i≤j(1+(αi+αj)t). A quick

computation shows that c1(Sym2(E)) = (r + 1)
∑r
i=1 αi = (r + 1)c1(E). The slope of Sym2(E) with respect

to H is given by

µH(Sym2(E)) =
c1(Sym2(E)) · [H]n−1

r(r + 1)/2
=

2c1(E) · [H]n−1

r
= 2µH(E).

Suppose E is not H-semistable. Let F ⊂ E be a subsheaf of rank r′ < r such that µH(F) > µH(E). Consider

the short exact sequence

0→ F → E → G → 0

where G = E/F . Note that taking Sym2 preserves surjective maps, so the map Sym2(E) → Sym2(G) is

surjective. This implies that Sym2(G∨) ⊂ Sym2(E∨). Since rank(G) = r − r′ and c1(G) = c1(E)− c1(F), we

have

µH(G) =
(c1(E)− c1(F)) ·Hn−1

r − r′
=

r

r − r′
µH(E)− r′

r − r′
µH(F).

Thus µH(F) > µH(E) implies that µH(G) < µH(E), which further implies µH(G∨) = −µH(G) > −µH(E) =

µH(E∨). But this means that µH(Sym2(G∨)) > µH(Sym2(E∨)), which implies that Sym2(E∨) is not H-

semistable, and hence neither is Sym2(E), a contradiction.
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Since E is semistable with respect to H, so is the dual bundle E∨, and the endomorphism bundle End(E) ∼=
E ⊗ E∨, because the tensor product of semistable bundles is semistable.

An analogous statement to Lemma 2.40 holds for the second wedge power.

Lemma 2.41. Let X be a n-dimensional algebraic variety and let H be an ample divisor on X. Let E be a

vector bundle of rank r ≥ 3 on X such that
∧2

(E) is semistable with respect to H. Then E and End(E) are

semistable with respect to H.

The proof of this Lemma is essentially the same as that of Lemma 2.40, and is therefore omitted. Applying∧2
also preserves surjective maps, and a simple computation shows that µH(

∧2 E) = 2µH(E), just as in the

Sym2 case.

It was pointed out to us by A. Langer that this Lemma does not work when the rank of E is 2. This is

because
∧2

(E) will be a line bundle in this case, which is always semistable, but this does not imply that E
is semistable.

3 Revisiting Simpson’s results

In this section, our goal is to study the structure of the tangent bundle of a Hermitian symmetric space D of

non-compact type. This structure descends to the tangent bundle of a smooth projective quotient X = D/Γ,

where Γ is a discrete, cocompact group of automorphisms of D which acts freely. We use the notation of

Sections 8 and 9 of [34], and we use the theory developed in Chapter 12 of [6].

3.1 The tangent bundle of D

Let G0 be a Hodge group, and K0 the subgroup corresponding to the Lie algebra k0 = g0,0
0 , as in the

paragraph following Definition 2.19. Since G0 and K0 are linear groups (see Remark 2.20), they admit com-

plexifications in the sense of Definition 2.17. Let G and K be complexifications of G0 and K0 respectively.

Let X be a smooth projective variety of dimension n over C, and let (P, θ) be a principal system of Hodge

bundles on X for G. Recall from Definition 2.21 that P is a principal K-bundle on X, and θ is a morphism

of vector bundles

θ : TX → P ×K g−1,1

such that [θ(u), θ(v)] = 0 for all local sections u, v of TX .

Definition 3.1. A metric H for a principal system of Hodge bundles is a C∞ reduction of structure group

of P from K to K0, i.e., a principal K0-bundle PH ⊂ P .

Let (P, θ) be a principal system of Hodge bundles with metric PH ⊂ P . This reduction in structure group

corresponds to a Hermitian metric H on the associated system of Hodge bundles E = P×Kg ∼= PH×K0g. Let

d′H ∈ A1(End(E)) denote the Chern connection on E with respect to H, and let dH be the K0-connection on

PH from which d′H is induced. Now we view E as a G0-bundle E′ = RH ×G0
g−1,1, where RH = PH ×K0

G0,

and G0 acts on g via the adjoint action. The map θ : TX → P ×K g−1,1 gives an End(E′)-valued one-form

θ′ ∈ A1,0(End(E′)), as discussed in the paragraph following Definition 2.21. Let θ̄′ ∈ A0,1(End(E′)) be the

adjoint of θ′ with respect to H, i.e., 〈θ′u, v〉H = 〈u, θ̄′v〉H for local sections u, v of E. Let σ and σ̄ be the

G0-connections on RH which induce θ′ and θ̄′ respectively. Then D′H = d′H + θ′ + θ̄′ ∈ A1(End(E′)) is a

connection on E. Let DH = dH + σ + σ̄ denote the G0-connection on RH which induces D′H .
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Definition 3.2. A principal variation of Hodge structure for a Hodge group G0 is a principal system of

Hodge bundles (P, θ) together with a metric PH such that the curvature of the associated connection DH is

zero.

Let (P, θ) together with metric (PH , DH) be a principal variation of Hodge structure on X, and let X̃

be a universal cover of X. We denote by π the quotient map π : X̃ → X. Let R̃H be the pullback of the

G0-bundle RH = PH ×K0 G0 to X̃, then R̃H = π∗(PH ×K0 G0) = P̃H ×K0 G0, where P̃H = π∗PH is a

principal K0-bundle on X̃. The flat connection DH on RH pulls back to a flat connection on R̃H . Since

R̃H is a principal bundle with a flat connection on a simply connected space X̃, we have a trivialisation

φ : R̃H = P̃H ×K0
G0
∼= X̃ × G0, hence R̃H admits a global section. A global section of P̃H ×K0

G0

corresponds to a K0-equivariant map ϕ : P̃H → G0, which induces a map P̃H/K0 → G0/K0. Since X̃ is dif-

feomorphic to P̃H/K0, we get a map X̃ → G0/K0, which sends a point x ∈ X̃ to a rightK0-coset ϕP̃H,x ⊂ G0.

Let H be a Lie group. Then, corresponding to every flat principal H-bundle P → X, there is a group

homomorphism ρ : π1(X) → H, known as the holonomy morphism or the monodromy morphism. More

precisely, the following is true.

Theorem 3.3 ([31], Theorem 2.9). The correspondence, which sends each flat principal H-bundle over X

to its holonomy morphism, induces a bijection

{isomorphism classes of flat H-bundles over X} ∼= {conjugacy classes of homomorphism ρ : π1(X)→ H}.

In view of this, the flat G0-bundle RH on X corresponds to a homomorphism σ : π1(X) → G0. Recall

from the preceding paragraph that we have a trivialisation φ : π∗RH = R̃H ∼= X̃ × G0. From the proof of

[31, Theorem 2.9], it follows that the flat bundle RH can be expressed as

RH = R̃H/π1(X) = (X̃ ×G0)/π1(X),

where π1(X) acts on X̃ × G0 diagonally- by deck transformations on X̃, and via σ on G0. This action is

described explicitly in [31], p.58-59. Setting φ = (φ1, φ2), we have that φ(r · γ) = (φ1(r)γ, σ(γ)−1φ2(r)) for

all local sections r ∈ R̃H and all γ ∈ π1(X). The map X̃ → G0/K0, given by x 7→ ϕP̃H,x is equivariant

under the representation σ, i.e.,

ϕP̃H,γx = ϕ(γ · P̃H,x) = σ(γ)(ϕP̃H,x)

for all γ ∈ π1(X), and x ∈ X̃.

Note that D = G0/K0 is a homogeneous space and its tangent bundle TD is a homogeneous vector bundle

on D. Since G0 is a Hodge group, G0/K0 is in fact a reductive domain, i.e., there is an Ad(K0)-invariant

decomposition of the Lie algebra of G0 as g0 = k0 ⊕ m. From the discussion in [6, Chapter 12.2], there is

an isomorphism G0 ×K0
m ∼= TD. To obtain the holomorphic tangent bundle TD of D, consider the splitting

m ⊗ C = m+ ⊕ m−, where m+ =
⊕

p>0 g
p,−p, and m− =

⊕
p<0 g

p,−p. By [6, Lemma 12.2.2], this splitting

defines a complex structure on m. By [6, Lemma-Definition 12.2.3], the holomorphic tangent bundle of D is

given by TD ∼= G0 ×K0
m−, where K0 acts on m− via the adjoint action. Let H0 be the maximal compact

subgroup of G0 containing K0. Then G0/H0 is a symmetric space. The associated Cartan decomposition

of g0 is g0 = h0 ⊕ p0. The Cartan involution ι : g0 → g0 is defined such that ι|h0
= id, and ι|p0

= −id.

The Cartan decomposition is reflected in the tangent bundle of D as follows. There is a canonical projection

ω : D = G0/K0 → G0/H0 with respect to which the tangent space at any point x ∈ D splits into vertical

and horizontal tangent spaces given by

T vD,x = fiber of ω through x, ThD,x = orthogonal complement of T vD,x.
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From [6, Lemma 12.5.2], we know that the ±1-eigenspaces of the Cartan involution on g are given by

h = h0 ⊗ C =
⊕

j even g
−j,j , and p = p0 ⊗ C =

⊕
j odd g

−j,j . Moreover, there are canonical identifications

T vD,x = h0/k0, and ThD,x = p0. By [6, Proposition 12.5.3], the tangent bundle TD canonically decomposes as

TD = T vD ⊕ ThD into vertical and horizontal components. Both components are homogeneous vector bundles

on D for the adjoint action of K0 on g0. They can be written as

T vD = G0 ×K0
h0/k0, ThD = G0 ×K0

p0.

The vertical tangent bundle T vD is holomorphic, because its fibers are complex submanifolds of D (see [6,

Problem 4.4.2]). The horizontal tangent bundle is in general not holomorphic. The subbundle G0×K0
g−1,1 of

the complexification ThD⊗C has the structure of a holomorphic vector bundle, and is called the holomorphic

horizontal tangent bundle of D.

Now suppose that G0 is a Hodge group of Hermitian type. Then K0 is a maximal compact subgroup of G0,

and D = G0/K0 is the associated Hermitian symmetric space of non-compact type. While there may be

several G0 corresponding to a fixed D, their identity components are all isogenous, so the complexified Lie

algebra g and its Hodge decomposition are determined (see [29, Section II, Corollary 3.30]).

Lemma 3.4. The holomorphic tangent bundle TD of the Hermitian symmetric space D can be written as

TD ∼= P ′ ×K g−1,1,

where P ′ is a principal K-bundle on D.

Proof. Let Q+ and Q− denote the Lie subgroups of G corresponding to the Lie subalgebras g−1,1 and g1,−1

of g respectively. Then Q+ and Q− are abelian unipotent subgroups of G stabilized by conjugation by K

([38, Section 2.4]). There is a Zariski open embedding

j : D ∼= G0/K0 ↪→ G/(K nQ−) ∼= D∗

called the Borel embedding (see [20, Chapter VIII, Section 7]), where D∗ is a complex homogeneous projective

variety known as the compact dual of the Hermitian symmetric space D. By the discussion in the preceding

paragraph, the holomorphic tangent bundle of D∗ can be expressed as TD∗ ∼= G×(KnQ−)g
−1,1, where KnQ−

acts on g−1,1 via the adjoint action. The adjoint action of Q− on g−1,1 is trivial, i.e., qXq−1 = 0 for all

q ∈ Q−, X ∈ g−1,1. Thus the adjoint action of K n Q− on g−1,1 factors through K. Hence TD∗ admits a

reduction in structure group from KnQ− to K, and we can write TD∗ ∼= P ×K g−1,1, where P is a principal

K-bundle on D∗ such that P ×K (KnQ−) ∼= G. It follows that P ∼= G/Q− as principal K-bundles over D∗.
Expressing the holomorphic tangent bundle TD of D as the restriction of TD∗ to D, we get TD ∼= P ′×K g−1,1,

where P ′ = P |D is principal K-bundle on D.

Hence, it is clear that the holomorphic tangent bundle of a Hermitian symmetric space of non-compact

type is horizontal.

If X admits a uniformizing variation of Hodge structure for a Hodge group G0 of Hermitian type, then

we know from the proof of [34, Proposition 9.1] (Proposition 3.6 below), that the π1(X)-equivariant map

X̃ → G0/K0 = D is an isomorphism. The differential of this map is an isomorphism θ : TX̃ ∼= P ′ ×K g−1,1.

3.2 The tangent bundle of X = D/Γ

We would now like to invert the previous construction. Let X be a smooth projective variety with universal

cover X̃. Suppose there is a π1(X)-equivariant holomorphic isomorphism φ : X̃ → D, where D is a Hermitian
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symmetric space of noncompact type. Let π : X̃ → X denote the projection map. Let G0 = Aut(D) be the

full automorphism group of D, then G0 is a Hodge group of Hermitian type with maximal compact subgroup

K0, and we have D = G0/K0.

Lemma 3.5. In this situation, the variety X admits a uniformizing variation of Hodge structure (P, θ) for

the Hodge group G0.

Proof. The differential of the holomorphic isomorphism φ : X̃ ∼= D is the isomorphism dφ : TX ∼= TD of

holomorphic tangent bundles. From Lemma 3.4 it follows that TX̃ ∼= P̃ ×K g−1,1, where P̃ is a prinicipal

K-bundle on X̃. Recall that, by [6, Lemma-Definition 12.2.3], we have TD ∼= G0 ×K0 g
−1,1. Thus it follows

that TX̃ ∼= P̃ ′ ×K0
g−1,1, where P̃ ′ = φ∗G0 is a principal K0-bundle on X̃. Hence, we may view P̃ ′ as a

reduction in structure group of P̃ from K to K0.

There is natural principal G0 bundle R̃ on D called the Higgs principal bundle (see [6, Definition 12.4.1]).

It is given by

R̃ = G0 ×K0
G0
∼= D ×G0,

where the isomorphism is a G0-equivariant map given by [g, g′] 7→ ([g], gg′). The Higgs connection ωH

on R̃ is obtained by pulling back the Maurer-Cartan form on G0 to D × G0, and ωH is flat. Thus we

get a principal G0-bundle R̃′ on X̃ given by R̃′ = φ∗R̃ = φ∗(G0 ×K0 G0) ∼= P̃ ′ ×K0 G0. The connection

ω′H = φ∗ωH on R̃′ is flat, and there is a trivialisation R̃′ ∼= X̃ × G0. The fundamental group π1(X) acts

on X̃ ∼= D by holomorphic automorphisms, so we have a representation σ : π1(X)→ G0. The isomorphism

φ : X̃ ∼= G0/K0 is equivariant under σ i.e., we have φ(γx) = σ(γ)φ(x) for all x ∈ X̃ and γ ∈ π1(X). It

follows that the differential dφ is also equivariant under σ. The action of π1(X) on X̃ lifts to a left action of

π1(X) on the principal K-bundle P̃ . Thus there is a left action of π1(X) on the associated bundle TX̃ , and

we have TX ∼= TX̃/π1(X). By the equivariance of dφ under the representation σ, we have an isomorphism

θ : TX ∼= P ×K g−1,1, where P = P̃ /π1(X) is a principal K-bundle on X. The pair (P, θ) is a uniformizing

system of Hodge bundles on X for the Hodge group G0. Since we also have TX̃ ∼= P̃ ′ ×K0 g
−1,1, it follows

that TX ∼= P ′ ×K0
g−1,1, where P ′ = P̃ ′/π1(X) is a principal K0 bundle on X, and P ′ ×K0

K ∼= P . Note

that P ′ is a metric for (P, θ).

Recall that R̃′ = P̃ ′×K0
G0 is a flat principal G0-bundle on X̃, and we can associate to it the system of Hodge

bundles Ẽ = R̃′ ×G0
g via the adjoint action of G0 on g. We can view Ẽ as a K0-bundle Ẽ′ = P̃ ′ ×K0

g.

As a K0-bundle Ẽ′ decomposes as a direct sum Ẽ′ =
⊕

i∈{−1,0,1} P̃
′ ×K0 gi,−i. The flat connection ωH

on R̃′ induces a flat connection ω′H on the associated bundle Ẽ. From [6, Proposition 13.1.1], there is a

decomposition ω′H = d̃H + σ + σ̄, where d̃H is the Chern connection for the Hodge metric (see Definition

3.1) on Ẽ′, σ ∈ A1,0(End(Ẽ)), and σ̄ is the adjoint of σ with respect to the Hodge metric. By slight abuse

of notation, let ωH = d̃H + σ + σ̄ be the associated splitting as principal connections.

There is an action of π1(X) on R̃ by automorphisms, which comes from the representation σ : π1(X)→ G0.

This action is described explicitly in the proof of [31, Theorem 2.9]. The quotient R′ = (P̃ ′×K0G0)/π1(X) =

P ′ ×K0 G0 is a flat principal G0-bundle on X by the correspondence of Theorem 3.3.

The system of Hodge bundles E = P×K g on X admits a Hermitian metric H corresponding to the reduction

of structure group P ′ of P from K to K0. Let d′H be the K0-connection on P ′ which induces the Chern

connection on E for H. Let θ′ denote the connection on E corresponding to θ, θ̄′ the adjoint of θ′ with

respect to H, and σ′, σ̄′ the G0 connections on R′ which induce θ′, θ̄′ respectively. Then DH = d′H+σ′+ σ̄′ is

a G0-connection on R′, and the connections DH , d
′
H , σ

′, σ̄′ pull back to D̃H , d̃H , σ, σ̄ respectively. Recall that

D̃H is a flat connection on R̃′. Since flatness can be checked locally, and X and X̃ are locally diffeomorphic,

it follows that DH is a flat connection on R′.
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Thus, (P, θ) together with the metric P ′ is a principal variation of Hodge structure on X for the Hodge

group G0. It is in fact a uniformizing variation because the differential θ is an isomorphism.

3.3 Classical results of Simpson

In the case when X is a smooth compact complex manifold, Simpson derives the following necessary and

sufficient conditions for X to be uniformized by a Hermitian symmetric space D of noncompact type.

Proposition 3.6 ([34, Proposition 9.1]). Let X be a smooth compact complex manifold and let X̃ be the

universal cover of X. Then X̃ is isomorphic to the bounded symmetric domain D if and only if X admits a

uniformizing variation of Hodge structure for some Hodge group G0 with D = G0/K0.

A more algebraic formulation of the above Proposition, which is more useful in practice, is the following

result.

Theorem 3.7 ([34, Theorem 2]). Let X be a smooth compact complex manifold. Then X̃ is biholomorphic

to D if and only if there is a uniformizing system of Hodge bundles (P, θ) for a Hodge group G0 of Hermitian

type corresponding to D, such that P ×K g is polystable with respect to KX as a Higgs bundle on X, and

c2(P ×K g) · [KX ]n−2 = 0.

Theorem 3.7 turns out to be useful in formulating explicit necessary and sufficient conditions for a complex

projective variety with klt singularities to be uniformized by each of the four classical Hermitian symmetric

spaces D of non-compact type.

Remark 3.8. To determine necessary conditions for a projective variety X over C to be uniformized by a

Hermitian symmetric space D of non-compact type, we must fix a Hodge group G0 associated to D. In

general, choosing G0 to be the connected component Aut0(D) of the automorphism group of D will not give

necessary conditions.

In general, choosing G0 to be the full automorphism group of the boounded symmetric domain will always

work, but we have a little more freedom. More precisely,

Lemma 3.9. In order to determine necessary conditions for X to have a bounded symmetric domain D as

its universal cover, we can choose the G0 to be a cover of Aut(D), such that the kernel of the covering map

ϕ : G0 → Aut(D) is a discrete central subgroup of G0.

Proof. Let K0 and M0 denote the maximal compact subgroups of G0 and Aut(D) respectively. Note that G0

and Aut(D) have the same Lie algebra, and the isomorphism G0/K0
∼= Aut(D)/M0 is compatible with the

map ϕ. This means that the image of K0 via ϕ is M0, and the kernel of ϕ|K0
is a discrete central subgroup

of K0.

Let K and M denote the complexifications of K0 and M0 respectively, which exist because K0 and M0 are

compact. Then, M is a quotient of K by a discrete central subgroup. Note that K acts on the complexified

Lie algebra g of G0 via the adjoint representation Ad : K → Aut(g), k 7→ Adk = kXk−1, X ∈ g. The kernel

of the adjoint representation Ad is the center of K. It follows that the action of K on g factors through M .

From the proof of Lemma 3.5, we know that the tangent bundle of X can be expressed as TX ∼= P ×M g−1,1,

where P is a principal M -bundle on X. Since the action of K on g−1,1 factors through M , the tangent

bundle of X can also be expressed as TX ∼= P ′ ×K g−1,1, where P ′ ∼= P ×M K is a principal K- bundle on

X. This concludes the proof.
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4 Extending Simpson’s result to the klt case

In this section, our goal is to prove Theorem 1.1. Henceforth, we work in the klt setting instead of the

smooth setting. We first make some observations which will help us.

4.1 Auxiliary remarks

The following observation about the semistability of the tangent sheaf of a variety of general type is a slight

generalization of a result of H.Guenancia ([18, Theorem A]). It allows us to do away with the assumption

that the tangent sheaf has negative degree, which was made by Simpson in his uniformization result ([34,

Corollary 9.7]).

Proposition 4.1 ([13], Theorem 7.1). Let X be a projective, klt variety of general type whose canonical

divisor KX is nef. Then the sheaves TX and Ω
[1]
X are semistable with respect to KX .

In general, the (semi)stability of a sheaf on a normal, projective variety X in the sense of Definition 2.14

is equivalent to the (semi)stability of the sheaf restricted to the smooth locus Xreg. The following is a special

case of [14, Lemma 2.26].

Lemma 4.2. Let E be a torsion-free coherent sheaf on a normal, projective variety X and let H be a nef,

Q-Cartier divisor on X. Then E is semistable (resp. stable) with respect to H if and only if E|Xreg is

semistable (resp. stable) with respect to H.

Proof. Let j : Xreg → X denote the inclusion. If for any proper subsheaf F ⊂ E we have µH(F) >

µH(E), then it follows that µH(F|Xreg ) > µH(E|Xreg ). Indeed, by Definition 2.13 we have µH(F|Xreg ) =

µH(j∗F|Xreg ) = µH(F∗∗) = µH(F), and similarly µH(E|Xreg ) = µH(E).

Conversely, the same argument shows that if µH(F|Xreg ) > µH(E|Xreg ) then we have µH(F) > µH(E).

Remark 4.3. In particular, if X is a projective, klt variety of general type with KX nef, the vector bundles

TXreg and Ω1
Xreg

on Xreg are semistable with respect to KX .

An important observation due to A. Langer is that the stability of a system of Hodge sheaves is equivalent

to the stability of the underlying Higgs sheaf. This was first proved for systems of Hodge sheaves over a

smooth projective variety X (see [26, Proposition 8.1]). The proof uses that systems of Hodge sheaves are

fixed points of the C∗-action on the moduli space of Higgs sheaves (see [35, Lemma 4.1]) on X. Moreover,

[36, Lemma 6.8] says that a torsion free Higgs sheaf E on X is the same thing as a pure coherent sheaf E
of dimension n = dim(X) on a projective completion Z of the cotangent bundle, such that the support of E
does not meet the divisor at infinity. Then E being a C∗-fixed point implies that the Quot scheme QuotZ(E)

inherits a C∗- action. Since QuotZ(E) is projective, the limit of the orbit of any point F ∈ QuotZ(E) under

the C∗-action exists in QuotZ(E), and corresponds to a quotient system of Hodge sheaves of E on X that

has the same numerical invariants as F .

This result was generalized to the setting where X is normal and projective (see [27, Corollary 3.5]). It is

shown that even in this more general setting, a torsion free Higgs sheaf is a fixed point of the C∗-action if

and only if it is a system of Hodge sheaves. To prove the result it is sufficient to show that the maximally

destabilizing Higgs subsheaf of a system of Hodge sheaves is a system of Hodge sheaves. This follows from the

fact that the maximally destabilizing Higgs subsheaf is unique, so it must be a fixed point of the C∗-action.

We give the following independent proof of this result for systems of Hodge sheaves on the smooth locus of

a projective variety X with klt singularities.
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Lemma 4.4. Let X be a projective variety with klt singularities. Then the stability conditions for a torsion

free system of Hodge sheaves on the smooth locus Xreg and the stability conditions of the underlying Higgs

sheaf in the sense of Definition 2.14, are equivalent.

Proof. Let E =
⊕n

p=0E
p be a torsion free system of Hodge sheaves on Xreg with Higgs field θ, i.e., we have

θ : Ep → Ep−1 ⊗ Ω1
Xreg

for all 0 ≤ p ≤ n. Let F ⊂ E be a Higgs subsheaf. The idea is to construct a

subsystem of Hodge sheaves F ′ =
⊕n

p=0 F
′p of E such that F and F ′ have the same rank and first Chern

class. For each i, define Gi = F ∩
⊕

p<iE
p, where 0 ≤ i ≤ n+ 1. So for example G0 = 0, G1 = F ∩E0, and

Gn+1 = F ∩
⊕

p<n+1E
p = F . Thus the G′is give a filtration of F

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn ⊂ Gn+1 = F.

Since θ(F ) ⊂ F ⊗Ω1
Xreg

, and θ(
⊕

p<iE
p) ⊂ (

⊕
p<i−1E

p)⊗Ω1
Xreg

, it follows that θ(Gi) ⊂ Gi−1 ⊗Ω1
Xreg

for

all 0 ≤ i ≤ n+ 1. Let {F ′i}ni=0 be the quotients of this filtration, i.e., F ′i = Gi+1/Gi for all i. Consider the

sequence of maps

Gi+1 ↪→
⊕
p<i+1

Ep → Ei

where the first map is the inclusion and the second is projection. The kernel of the composed map is Gi,

so the image of Gi+1 in Ei is isomorphic to the quotient F ′i = Gi+1/Gi. Thus we have F ′i ⊂ Ei for

all 0 ≤ i ≤ n. Moreover, since θ(Gi) ⊂ Gi−1 ⊗ Ω1
Xreg

, and tensoring with Ω1
Xreg

is exact, it follows that

θ(F ′i) ⊂ F ′i−1⊗Ω1
Xreg

for all 0 ≤ i ≤ n. Hence F ′ =
⊕n

p=0 F
′p ⊂

⊕n
p=0E

p is a subsystem of Hodge sheaves.

To see that F and F ′ have the same numerical invariants, we look at the series of short exact sequences

0→ G0 = 0→ G1 → F ′0 → 0

0→ G1 → G2 → F ′1 → 0

...

0→ Gn−1 → Gn → F ′n−1 → 0

0→ Gn → Gn+1 = F → F ′n → 0

From the first exact sequence it follows that rank(G1) = rank(F ′0). This implies that rank(G2) = rank(F ′0)+

rank(F ′1), and repeating this gives rank(Gi) = rank(F ′0) + · · ·+ rank(F ′i−1). From the last exact sequence

we get rank(F ) = rank(F ′0) + · · · + rank(F ′n) = rank(F ′). The same computation holds for first Chern

classes, so we have c1(F ) = c1(F ′).

The above result is true also for reflexive systems of Hodge sheaves on a normal variety in the sense of

[28, Section 4]. More precisely, the stability conditions for a reflexive system of Hodge sheaves and the under-

lying reflexive Higgs sheaf in the sense of [28, Section 4] are equivalent. This is remarked in [28, Section 4.10].

Recall that any bounded symmetric domain D can be expressed as a quotient D = G0/K0, where G0 is

a Hodge group of Hermitian type with maximal compact subgroup K0. Their complexifications are denoted

G and K respectively. The Lie algebra g of G decomposes as g = g−1,1 ⊕ g0,0 ⊕ g1,−1. We know from the

discussion in Section 3.1 that any smooth, projective quotient X of D satisfies TX ∼= P ×K g−1,1, where P

is a principal K-bundle on X. Moreover, X admits a system of Hodge bundles P ×K g which has a Hodge

decomposition induced from that of g.

We will now consider the system of Hodge bundles P ×K g over the smooth locus Xreg of a projective, klt
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variety X. The semistability of the bundle P ×K g0,0 is necessary to show that the system of Hodge bundles

P ×K g is polystable as a Higgs bundle in the sense of Definition 2.14. This will play a central role in the

proofs of statements that appear later. We observe the following.

Lemma 4.5. Let X be a projective, klt variety of general type, and let (P, θ) define a uniformizing system

of Hodge bundles for a Hodge group G0 on Xreg. Then the vector bundle P ×K g0,0 is semistable with respect

to KX .

Proof. Let TXreg =
⊕
Vi be a decomposition corresponding to irreducible representations ofK → Aut(g−1,1).

First suppose that the group G is connected. Let g =
⊕

gi be the decomposition into simple ideals. Then

g−1,1 =
⊕

g−1,1
i is the decomposition into irreducible representations of K. Since TXreg is semistable by

Proposition 4.1, it follows that the Vi ∼= P ×K g−1,1
i and their duals P ×K g1,−1

i are also semistable. Since

the Lie bracket g−1,1
i ⊗ g1,−1

i → g0,0
i is surjective (see [34, proof of Proposition 9.6]), we get a surjective map

of vector bundles

(P ×K g−1,1
i )⊗ (P ×K g1,−1

i )→ P ×K g0,0
i ,

where the left hand side is a semistable vector bundle of degree zero and the right hand side is a vector bundle

of degree zero. It follows that P ×K g0,0
i is also semistable. Indeed, if it is not, then neither is the dual bundle

(P×K g0,0
i )∨. Note that (P×K g0,0

i )∨ is also of degree zero, and is a subbundle of (P×K g−1,1
i )⊗(P×K g1,−1

i ).

Thus, if some subsheaf of (P ×K g0,0
i )∨ destabilizes it, then it also destabilizes (P ×K g−1,1

i )⊗ (P ×K g1,−1
i ),

which is a contradiction. Since P ×K g0,0 =
⊕

i P ×K g0,0
i , it follows that P ×K g0,0 is also a semistable

vector bundle of degree zero.

Now suppose that G is not connected. Let G′ be the connected component of G, let K ′ = K ∩G′, and let

f ′ : Y ′ → Xreg be a finite étale cover which the structure group of P can be reduced to K ′. Note that Y ′

can be completed to a projective, klt variety Y such that KY is ample, and there is a finite quasi-étale map

f : Y → X, which restricts to f ′ on Y ′. Since the Vi’s are semistable with respect to KX , the pullbacks f ′∗Vi

are semistable with respect to f∗KX = KY . If we decompose TY =
⊕

k V
′
k corresponding to irreducible

components of the representation K ′ → Aut(g−1,1), the V ′k’s are direct summands of the f ′∗Vi, so they are

also semistable with respect to KY . Since V ′k
∼= f ′∗(P ×K g−1,1

k ) = f ′∗P ×K′ g−1,1
k , and G′ is connected, it

follows that f ′∗(P ×K g0,0) is semistable with respect to KY of degree zero. Since f ′ is finite and étale, it

follows that P ×K g0,0 is also semistable with respect to KX of degree zero. Indeed, if not, then the pullback

along f ′ of any destabilizing subsheaf of P ×K g0,0 will destabilize f ′∗(P ×K g0,0).

The following observation is at the heart of the proof of Theorem 1.1, and we again split the proof into

two cases, namely G connected and disconnected.

Proposition 4.6. Let X be a projective, klt variety with ample canonical divisor KX and let (P, θ) define

a uniformizing system of Hodge bundles for a Hodge group G0 on Xreg. Then the system of Hodge bundles

P ×K g is KX-polystable as a Higgs bundle on Xreg. If g is a simple Lie algebra, then it is KX-stable.

Remark 4.7. The system of Hodge bundles P×Kg onXreg beingKX -polystable is equivalent to the restriction

(P ×K g)|X′ being KX -polystable on X ′, for any big open subset X ′ ⊂ Xreg. Thus we may replace Xreg by

any big open subset X ′ in Proposition 4.6.

Proof of Proposition 4.6. First, suppose that the complexification G of G0 is connected. By assumption,

there is an isomorphism of vector bundles θ : TXreg ∼= P ×K g−1,1 on Xreg. Write TXreg =
⊕

i Vi, where each

Vi corresponds to an irreducible component of the representation K ↪→ Aut(g−1,1). We know from Remark
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4.3 that TXreg is semistable with respect to KX , and since KX is ample by assumption, TXreg has negative

slope with respect to KX . It follows that all direct summands Vi are semistable with respect to KX and

have the same negative slope as TXreg .

Let g =
⊕

i gi be a decomposition of g as a direct sum of simple ideals. Then each P ×K gi is a subsystem

of Hodge bundles of P ×K g (see [34, p.903]), and we have a decomposition P ×K g =
⊕

i P ×K gi. Note

that if G is not connected, we do not in general have a global decomposition of P ×K g into the bundles

P ×K gi associated to the simple ideals gi of g. Let g−1,1 =
⊕

i g
−1,1
i be the decomposition into irreducible

representations of K ⊂ Aut(g−1,1). Since Vi ∼= P ×K g−1,1
i for all i, the bundles P ×K g−1,1

i and their duals

P ×K g1,−1
i are semistable with respect to KX . From the proof of Lemma 4.5, we know that the bundle

P ×K g0,0
i is semistable with respect to KX of degree zero. Thus each P ×K gi is a system of Hodge bundles

on Xreg of degree zero.

By Lemma 4.4, to show that P ×K g is polystable as a Higgs bundle, it is sufficient to show that it is

polystable as a system of Hodge bundles on Xreg. Let W ⊂ P ×K gi be a subsystem of Hodge sheaves. Then

we know from Lemma 2.23 that rank(W−1,1) ≥ rank(W 1,−1), i.e., µKX (W ) ≤ 0, and if equality holds then

W = P ×K gi, because gi is simple. Thus each P ×K gi is KX -stable as a Higgs bundle of degree zero, and

since P ×K g =
⊕

i P ×K gi, it follows that P ×K g is KX -polystable as a Higgs bundle on Xreg, of degree

zero. Note that if g is a simple Lie algebra, then the only non trivial ideal of g is itself. So in this case,

P ×K g is even KX -stable as a Higgs bundle on Xreg.

Now suppose G is not connected. Let G′ denote the connected component of G and let K ′ = K ∩ G′.
Let f : Y ′ → Xreg be a finite étale cover over which the structure group of P can be reduced from K to

K ′, and let Y be a normal projective completion of Y ′ such that f can be extended to a quasi-étale map

γ : Y → X. Note that Y is again klt, Y ′ ⊂ Yreg is a big open subset, and KY = γ∗KX is still ample. Thus

TY ′ is semistable with respect to KY of negative degree.

We can write TY ′ = f∗TXreg = f∗(P ×K g−1,1) = f∗P ×K′ g−1,1. Then TYreg = P ′ ×K′ g−1,1, where P ′ is

a principal K ′-bundle on Yreg such that P ′|Y ′ = f∗P . Since G′ is connected, we know that the system of

Hodge bundles P ′ ×K′ g is KY -polystable as a Higgs bundle on Yreg. Therefore by Remark 4.7, f∗(P ×K g)

is KY -polystable as a Higgs bundle on Y ′.

If W ⊂ P ×K g is any saturated subsystem of Hodge sheaves with deg(W ) ≥ 0, then f∗W is a subsystem

of Hodge sheaves of f∗(P ×K g) of degree zero, and is therefore a direct summand of f∗(P ×K g) by [34,

Proposition 3.3]. This implies that locally on Y ′, f∗W is a sub-Hodge structure of g. Then by Lemma 2.23,

f∗W is locally a direct sum of simple ideals of g, i.e., f∗W is locally a direct sum of the P ×K′ gi. Hence the

same holds for W on Xreg. From the discussion in [34, p.903], there is a unique finest global decomposition

P ×K g =
⊕
j

Ej (4)

on Xreg such that each Ej is a subsystem of Hodge bundles of P ×K g, and is locally a direct sum of simple

ideals of g. We want to show that each Ej in the decomposition 4 is KX -stable as a system of Hodge bundles

of degree zero on Xreg.

There is similarly a finest global decomposition f∗P ×K′ g =
⊕

k E ′k on Y ′, and since f∗P ×K′ g is KY -

polystable as a system of Hodge bundles of degree zero, each E ′k is KY -stable as a system of Hodge bundles

of degree zero. The pullbacks f∗Ej are direct sums of the E ′k, thus each Ej also has degree zero.

Now we argue as in the proof of [34, Corollary 9.4]. If W ⊂ Ej is any saturated subsystem of Hodge sheaves

of degree ≥ 0, then W must have degree zero, and we know that W is a locally a direct sum of simple ideals

of g. Therefore we must have W = Ej by minimality of the decomposition (4). Thus Ej is stable with respect

to KX as a system of Hodge bundles of degree zero. It follows that P ×K g is KX -polystable as a system of
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Hodge bundles, which is equivalent to P ×K g being KX -polystable as a Higgs bundle on Xreg, by Lemma

4.4.

We are now ready to prove Theorem 1.1.

4.2 Proof of Theorem 1.1

We split the proof into two steps, in order to make it more readable. The first step is to show that if

X ∼= D/Γ, then X satisfies the two conditions of Theorem 1.1. The second step is to prove the converse.

Proof. Step I. Suppose we can write X ∼= D/Γ, for a Hermitian symmetric space D of noncompact type.

Let G0 = Aut(D) be the full automorphism group of D, then Γ ⊂ G0. In this case G0 is a Hodge group of

Hermitian type, and K0 is a maximal compact subgroup of G0. Let G and K denote complexifications of

G0 and K0 respectively. Since the smooth locus Xreg is (the analytic space associated to) a quasi-projective

variety, its fundamental group π1(Xreg) is finitely generated, and isomorphic to Γ. Then from Selberg’s

lemma (see [1]), it follows that Γ admits a normal torsion free subgroup Γ̂ of finite index. Thus the quotient

map D → D/Γ = X factors as

D π−→ D/Γ̂ γ−→ D/Γ = X,

where D/Γ̂ = Y is smooth and projective because Γ̂ acts freely and cocompactly on D. The map γ : Y → X

is quasi-étale and Galois with group H = Γ/Γ̂. Recall from Lemma 3.4 that the holomorphic tangent bundle

of D satisfies TD ∼= P̃ ×K g−1,1, where P̃ is a principal K-bundle on D. Since Y is uniformized by D, it

follows from the classical Theorem 3.7 that Y admits a uniformizing system of Hodge bundles (P ′, θ) for

the Hodge group G0, such that c1(P ′ ×K g) · [KY ]n−1 = c2(P ′ ×K g) · [KY ]n−2 = 0. There is hence an

isomorphism of vector bundles TY ∼= P ′ ×K g−1,1 on Y , where P ′ = P̃ /Γ̂.

By the purity of branch locus, γ : Y → X branches only over the singular locus of X. Let Y o = γ−1(Xreg).

Then γ|Y o : Y o → Xreg is étale, and Y o ⊂ Y is a big open subset. We have TY o = TY |Y o = P ′′ ×K g−1,1,

where P ′′ = P ′|Y o . The action of H on Y restricts to a free action on Y o and lifts to a left action on TY o .
On Xreg, we have TXreg ∼= TY o/H, and the isomorphism TY o ∼= P ′′ ×K g−1,1 is H-equivariant because the

isomorphism TD ∼= P̃ ×K g−1,1 is Γ-equivariant. Thus there is an isomorphism θ : TXreg ∼= P ×K g−1,1, where

P ∼= P ′′/H is a principal K-bundle on Xreg. It follows that (P, θ) is a uniformizing system of Hodge bundles

on Xreg.

Let E be the system of Hodge bundles P ×K g on Xreg, and let E ′ denote the unique extension of E to X

as a reflexive sheaf. Then, γ[∗]E ′ ∼= P ′ ×K g on Y , because γ[∗]E and P ′ ×K g are both reflexive and agree

on the big open subset Y o of Y . Moreover, we have KY = γ∗KX . From the behaviour of Q-Chern classes

under quasi-étale covers (Lemma 2.30), it follows that

(a) c1(E ′) · [KX ]n−1 = (deg(γ))−1c1(γ[∗]E ′) · [γ∗KX ]n−1 = (deg(γ))−1c1(P ′ ×K g) · [KY ]n−1

(b) ĉ2(E ′) · [KX ]n−2 = (deg(γ))−1ĉ2(γ[∗]E ′) · [γ∗KX ]n−2 = (deg(γ))−1c2(P ′ ×K g) · [KY ]n−2.

The right hand sides of equalities (a) and (b) are zero, again by Theorem 3.7. Thus it follows that

ĉh2(E ′) · [KX ]n−2 = 0. This proves one implication of Theorem 1.1.

Step II. Conversely, suppose that X is a projective klt variety which satisfies the two conditions of Theorem

1.1. Let G0, K0, G, and K be as in Step I. By assumption, we have an isomorphism of vector bundles

θ : TXreg ∼= P ×K g−1,1 on Xreg.

Let γ : Y → X be a Galois, maximally quasi-étale cover with Galois group H. The existence of such a cover
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is known by [12, Theorem 1.14]. Note that Y is again klt (see [24, Proposition 5.20]), and KY = γ∗KX is

ample. Since γ branches only over the singular locus of X, the restricted map γ|Y o : Y o → Xreg is étale.

Here Y o = γ−1(Xreg) ⊂ Yreg, and note that Y o is a big open subset of Y . Then TY o = (γ|Y o)∗TXreg ∼=
(γ|Y o)∗(P ×K g−1,1) = P ′ ×K g−1,1, where P ′ = (γ|Y o)∗P is a principal K-bundle on Y o. Thus there is an

isomorphism of vector bundles θ′ : TYreg ∼= P ′′ ×K g−1,1 on Yreg, where P ′′ is a principal K-bundle on Yreg

such that P ′′|Y o = P ′. Note that TYreg has negative degree, and is semistable with respect to KY , again by

Remark 4.3.

Let F = P ′′ ×K g, then F is a system of Hodge bundles on Yreg with Higgs field coming from θ′. By

Proposition 4.6, we know that F is KY -polystable as a Higgs bundle on Yreg, and of degree zero. Let F ′ and

E ′ be the unique extensions of F to Y and of P ×K g to X respectively, as reflexive sheaves. Since γ[∗]E ′ and

F ′ agree on the big open subset Y o, we have F ′ ∼= γ[∗]E ′. By assumption, ĉh2(E ′) · [KX ]n−2 = 0 holds, and

by the behaviour of Q-Chern classes under quasi-étale covers (Lemma 2.30), we have ĉh2(F ′) · [KY ]n−2 = 0.

From Theorem 2.38, it follows that (F , θ′) is induced by a purely imaginary harmonic bundle whose asso-

ciated flat bundle is semisimple, i.e., (F , θ′) ∈ TPI-HiggsYreg . Since Y is already maximally quasi-étale,

Proposition 2.37 implies that the reflexive extension F ′ of F is locally free. Since TY is a direct summand of

F ′, it follows that TY is locally free. The solution to the Lipman-Zariski conjecture for klt spaces (see [11,

Theorem 16.1]) asserts that Y is smooth. We may thus apply Simpson’s classical Theorem 3.7 to conclude

that Y is uniformized by G0/K0 = D.

This means that Y ∼= D/Γ′, where Γ′ is a discrete, cocompact, torsion free group of automorphisms of D,

and X ∼= Y/H, where H acts fixed point freely in codimension one on Y by automorphisms. By arguments

analogous to those in the proof of [13, Theorem 1.3], (specifically, step (1.3.3) =⇒ (1.3.1)), there is an exact

sequence of groups 1 → Γ′ → Γ → H → 1, where Γ is a discrete, cocompact subgroup of Aut(D) acting

properly discontinuously, and fixed point freely in codimension one, such that X ∼= D/Γ. This concludes the

proof of Theorem 1.1.

Corollary 4.8. Let D be a Hermitian symmetric space of non-compact type, and let X be a projective klt

quotient of D by a Γ as in Theorem 1.1, with KX ample. Then for any σ ∈ Aut(C/Q), the conjugate variety

Xσ is also a quotient of D.

Proof. The variety Xσ again has klt singularities and ample canonical divisor KXσ . From the proof of

Theorem 1.1 we know that X admits a smooth, quasi-étale cover γ : Y → X such that Y is uniformized by

D. The conjugate variety Y σ = Xσ ×X Y is again smooth, and by the result for smooth projective varieties

([34, Corollary 9.5]), it follows that Y σ is also uniformized by D. Thus Y σ admits a uniformizing system of

Hodge bundles E which is polystable with respect to KY , and has vanishing first and second Chern classes.

The map γσ : Y σ → Xσ is also quasi-étale and finite, since these properties are preserved under base change.

Thus there is a uniformizing system of Hodge bundles F on Xσ
reg which is polystable with respect to KXσ ,

such that the reflexive extension F ′ of F to Xσ pulls back to E , i.e., (γσ)[∗](F ′) ∼= E . By the behaviour of

Q-Chern classes under quasí-etale covers (Lemma 2.30), the first and second Q-Chern classes of F ′ vanish.

Then we conclude by Theorem 1.1 that Xσ is uniformized by D.
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Part II

Applications

We are now in good shape to apply Theorem 1.1 to the polydisk, and each of the four classical irreducible

bounded symmetric domains. Before we begin, we remark that for each bounded symmetric domain D,

necessary and sufficient conditions for uniformization by D are formulated separately. Recall from Section 4

that to obtain such conditions, we must choose a Hodge group G0 associated to D.

Remark A. If we choose G0 to be a cover of Aut(D) such that the kernel of the covering map is a

discrete central subgroup of G0, the sufficient conditions for uniformization by D are also necessary. However

in some cases, such a choice of G0 implies that the complexification G is disconnected, and this does not

give meaningful (nice) conditions on the tangent bundle TXreg . Thus in cases when G is disconnected, we

formulate necessary conditions for uniformization by D up to a finite, quasi-étale cover.

5 Uniformization by a polydisk

We are now ready to state the first uniformisation result, which is an application of Theorem 1.1. This is an

extension of [34, Corollary 9.7], to the klt setting. We make the steps of the proof of Theorem 1.1 explicit

in this section and therefor do not use any of the results of Section 4.

5.1 Sufficient conditions

Theorem 5.1. Let X be an n-dimensional projective klt variety of general type whose canonical divisor KX

is big and nef. Suppose that the tangent sheaf TXreg of the smooth locus Xreg splits as a direct sum

TXreg = L1 ⊕ · · · ⊕ Ln (5)

where each direct summand Li is a line bundle. Then the canonical model Xcan of X admits a Galois,

quasi-étale cover γ : Y → Xcan, where Y is a smooth projective variety whose universal cover is the polydisk

Hn.

Let X be as in Theorem 5.1 and let E be a vector bundle on the smooth locus Xreg of X. Let D1(E)

denote the sheaf of differential operators ∆ : E → E of order ≤ 1 whose symbol σ(∆) is scalar. The Atiyah

class of E is the class at(E) of the extension

0→ End(E)→ D1(E)
σ−→ TX → 0

in H1(X, End(E)⊗ Ω1
X). We refer the reader to [22, p. 180] for further details.

In order to prove Theorem 5.1, we would like to define the Atiyah class of a reflexive sheaf L of rank one

on X. This turns out to be the extension class of an exact sequence, whose restriction to Xreg is the exact

sequence corresponding to the classical Atiyah class at(L|Xreg ) of the line bundle L|Xreg . This construction

is used to prove an analog of [3, Lemma 3.1], and may also be of independent interest.

Proposition 5.2. Let X be a projective klt variety of dimension n and let L be a line bundle on the smooth

locus Xreg. Consider the following short exact sequence of sheaves

0→ End(L)→ D1(L)
σ−→ TXreg → 0 (6)
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on Xreg, known as the Atiyah sequence of L. Let j : Xreg → X be the natural inclusion map. Then, the

sequence

0→ j∗End(L)→ j∗D1(L)→ j∗TXreg → 0 (7)

is exact on X.

Proof. Note that since L is a line bundle on Xreg, we have End(L) ∼= OXreg . Moreover, since OX and

j∗OXreg are both reflexive and agree on Xreg, we have j∗OXreg ∼= OX . Let Z ⊂ X be the subset of X

consisting of points which are not quotient singularities. Since X is klt, it follows that Z has codimension

≥ 3 in X. Let X ′ = X \ Z denote the complement of Z in X and let i : Xreg → X ′ denote the inclusion

map. Note that X ′ is Q-factorial and hence i∗L is a Q-Cartier sheaf on X ′.

The extension class at(L) of the Atiyah sequence (6) on Xreg is an element of Ext1(TXreg ,OXreg ) ∼=
H1(Xreg,Ω

1
Xreg

), and coincides with the first Chern class c1(L) of L. Since i∗L is Q-Cartier on X ′, we

can associate to it a cohomology class c1(i∗L) ∈ H1(X ′,Ω1
X′)
∼= Ext1(OX′ ,Ω1

X′), which we call the first

Chern class of i∗L, (see [17, Section 4]). Moreover, c1(i∗L) corresponds to the extension class of a short

exact sequence in Ext1(OX′ ,Ω1
X′) which is locally split, hence the dual sequence of this exact sequence is

also exact and locally split (see [17, Section 4]). Since this dual sequence is precisely the pushforward along

i∗ of the Atiyah sequence (6), we have a short exact sequence

0→ OX′ → i∗D1(L)→ TX′ → 0 (8)

on X ′. Let i′ : X ′ → X denote the inclusion map. To complete the proof we want the pushforward of the

exact sequence (8) along i′∗ to stay exact.

Since the direct image functor is left exact it follows that the sequence

0→ OX → j∗D1(L)→ TX → R1j∗OXreg

is exact on X.

From [19, Corollary 1.9], we know that Hp+1
Z (OX) ∼= Rpi′∗OX′ , for all p > 0, so in particular, we have

H2
Z(OX) ∼= R1j∗OXreg . In order to show that the sequence (7) is exact it suffices to work affine locally, so

we may assume X = Spec(A), for some Noetherian ring A. Let I ⊂ OX denote the ideal sheaf associated to

the closed subset Z ⊂ X. Let x ∈ Z be any point. Then we have by [10, Lemma 2.4] that

depthZOX = infx∈Z(depthIxOX,x) = infIx⊃p(depth(OX,p))

where Ix denotes the localization of I at x, p is a prime ideal such that Ix ⊂ p ⊂ OX,x, and depth(OX,p)

denotes the depth of the local ring OX,p over its maximal ideal. By the assumptions on X, we know that

X is a Cohen-Macaulay scheme, which means that every local ring OX,x of X is Cohen-Macaulay, and

the same holds for OX,p, where p ⊂ OX,x is any prime ideal. The Cohen-Macaulay condition implies that

depth(OX,p) = dim(OX,p) = height(p). Since the codimension of Z in X is ≥ 3, we have dim(OX,p) =

height(p) ≥ 3, i.e., depth(OX,p) ≥ 3 for all primes p such that Ix ⊂ p ⊂ OX,x, x ∈ Z. It follows that

depthZOX = infIx⊃p(depth(OX,p)) ≥ 3. Thus by [19, Theorem 3.8], we have HpZ(OX) = 0 for p < 3, i.e., in

particular H2
Z(OX) = 0. This implies that R1i′∗OX′ = R1j∗OXreg = 0, and hence that the sequence (7) is

exact on X.

Lemma 5.3. Suppose X satisfies the assumptions in Theorem 5.1, and let Li be a direct summand of TX
for each 1 ≤ i ≤ n. Then we have ĉ1(Li)2 = 0 for each 1 ≤ i ≤ n.
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Proof. Recall from Section 2.2, that for a reflexive sheaf Li on X, ĉ1(Li)2 : N1(X)
×(n−2)
Q → Q is a Q-

multilinear form which maps a tuple (α1, ..., αn−2) ∈ N1(X)
×(n−2)
Q to ĉ1(Li)2 · α1 . . . αn−2 ∈ Q, such that

the properties listed in [13, Theorem 3.13], hold.

Recall also that KX is big and nef, so that we can choose a sufficiently increasing and divisible sequence

of numbers 0 << m1 << · · · << mn−2 and a general tuple of elements (H1, ...,Hn−2) ∈
∏
i |miKX |, and

set S = H1 ∩ · · · ∩ Hn−2. Note that S has only quotient singularities and hence is contained entirely in

X ′ = X \ Z, where Z ⊂ X is the subset of X containing points which are not quotient singularities.

In order to show ĉ1(Li)2 = 0, it suffices to show ĉ1(Li)2 · S = 0 for every surface S of complete intersection

constructed as above. Since S ⊂ X ′, the latter equality is equivalent to ĉ1(Li|X′)2 · S = 0. Since X ′ is

Q-factorial, Li|X′ is Q-Cartier and hence has an associated first Chern class c1(Li|X′) ∈ H1(X ′,Ω1
X′). This

cohomology class can be identified with an element in H2(X ′,Q), which we also denote by c1(Li|X′). Thus

we have ĉ1(Li|X′)2 ·S = c1(Li|X′)2 ·S, where the latter intersection product is computed as the cup product

of c1(Li|X′)2 ∈ H4(X ′,Q) and [S] ∈ H2(n−2)(X ′,Q). Choose an integer m large enough so that (Li|X′)⊗m

is locally free. Then c1(Li|X′)2 · S = 0 implies that c1((Li|X′)⊗m)2 · S = 0 and conversely, hence we may

assume for the remainder of the proof that Li|X′ is locally free.

Recall that the first Chern class c1(Li|X′) corresponds to the extension class ât(Li|X′) of the exact sequence

0→ OX′ → i∗D1(Li|Xreg )→ TX′ → 0 (9)

in H1(X ′,Ω1
X′). We know from [3, Lemma 3.1], that the above exact sequence restricted to Xreg is exact

and splits over the sub-bundle F =
⊕

j 6=i Lj |Xreg ⊂ TXreg , hence at(Li|Xreg ) ∈ H1(Xreg,Ω
1
Xreg

) vanishes in

H1(Xreg,F∗) and comes from H1(Xreg,L∗i |Xreg ).

The pushforward of the OXreg -linear map F → D1(Li|Xreg ) along the inclusion i : Xreg → X gives an

OX′ -linear map i∗F → i∗D1(Li|Xreg ). Over an open subset U ⊂ X ′, this map sends a local section u ∈
H0(U, i∗F) ∼= H0(Ureg,F) to Du ∈ H0(U, i∗D1(Li|Xreg )) ∼= H0(Ureg,D1(Li|Xreg )), where Ureg = i−1U =

U ∩ Xreg. Moreover, the pushed forward symbol map i∗σ : i∗D1(Li|Xreg ) → TX′ maps Du to u, for every

local section u of i∗F . Hence we see that the exact sequence (9) splits over the subsheaf i∗F of TX′ . Thus

its extension class ât(Li|X′) ∈ H1(X ′,Ω1
X′) vanishes in H1(X ′, (i∗F)∗), hence comes from H1(X ′, (Li|X′)∗).

Since (Li|X′)∗ is a locally free sheaf of rank 1 on X ′, we have ât(Li|X′)2 ∈ H2(X ′,
∧2

(Li|X′)∗) = 0. This

implies c1(Li|X′)2 = 0, and hence ĉ1(Li)2·S = 0, for every surface S ⊂ X of complete intersection constructed

as earlier.

The proof of Theorem 5.1 is based on the following key auxiliary Propositions.

Proposition 5.4. Let X be an n-dimensional projective, klt variety of general type whose canonical divisor

KX is big and nef. Suppose that the tangent sheaf TXreg of the smooth locus Xreg splits as in (5). Then, the

tangent sheaf of the smooth locus of the canonical model Xcan of X also splits as in (5), where each direct

summand is a line bundle of negative degree.

Proof. Let π : X → Xcan be the birational crepant morphism to the canonical model Xcan. We know from

[15] that Xcan is also projective and klt and its canonical divisor KXcan is ample.

Let U ⊂ X be the largest open subset of X restricted to which π is an isomorphism. Let V ⊂ Xcan be the

open subset defined as the intersection V = π(U) ∩ Xcan,reg, where Xcan,reg denotes the smooth locus of

Xcan. Since Xcan \ π(U) is a codimension ≥ 2 subset of Xcan, it follows that Xcan,reg \ V is a codimension

≥ 2 subset of Xcan,reg. The subset Xreg \ π−1(V ) is a codimension ≥ 1 subset of Xreg.

The restriction TXreg |π−1(V ) = Tπ−1(V ) splits as a direct sum of line bundles because we have by assumption

that TXreg ∼= L1 ⊕ · · · ⊕ Ln, where each Li is a line bundle. Since we have π−1(V ) ∼= V , it follows that the
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corresponding tangent bundle TV of V also splits as a direct sum of line bundles, say TV =M1 ⊕ · · · ⊕Mn.

Let M′i denote the unique extension of Mi as a reflexive sheaf of rank 1 over Xcan,reg for all 1 ≤ i ≤ n.

Then by uniqueness of the extensions, we have that M′1 ⊕ · · · ⊕M′n ∼= TXcan,reg . Since Xcan,reg is smooth,

TXcan,reg must be locally free. This implies that the summand M′i must be locally free, i.e. a line bundle,

for all 1 ≤ i ≤ n.

We know from Proposition 4.1 that the tangent sheaf TXcan is semistable with respect to KXcan . Since

KXcan is ample, we have [KXcan ]n > 0 and it follows that

µKXcan (TXcan) =
[det(TXcan)] · [KXcan ]n−1

rank(TXcan)
= − [KXcan ]n

n
< 0.

Since TXcan,reg decomposes as a direct sum of line bundles, it follows that TXcan decomposes as a direct sum

of rank 1 reflexive sheaves on Xcan. Namely, TXcan ∼=
⊕n

i=1 j∗M′i, where j : Xcan,reg → Xcan denotes the

inclusion. For each direct summand j∗M′i of TXcan , we have µKXcan (j∗M′i) ≤ µKXcan (TXcan) < 0 by the

semistability of TXcan . This implies that c1(j∗M′i) · [KXcan ]n−1 < 0 for all 1 ≤ i ≤ n. Note that [KXcan ]n−1

corresponds to the class of a smooth curve in Xcan because KXcan is ample. Hence c1(M′i) · [KXcan ]n−1 =

c1(j∗M′i) · [KXcan ]n−1 < 0 for all 1 ≤ i ≤ n. Thus the tangent bundle TXcan,reg of Xcan,reg splits as a direct

sum of line bundles of negative degree.

Proposition 5.5. Let X be an n-dimensional projective klt variety such that the tangent sheaf TXreg of the

regular locus Xreg splits as a direct sum of line bundles as in (5). Let γ : Y → X be a Galois, quasi-étale

cover. Then, the tangent sheaf TYreg of the regular locus Yreg also splits as a direct sum of line bundles.

Proof. Note that since γ : Y → X is quasi-étale, Y is again projective and klt of dimension n. By purity of

branch locus, we know that γ branches only over the singular locus of X. It follows that γ−1(Xreg) = Y o,

where Y o denotes the open subset of Y restricted to which the map γ is étale. Note that Y o ⊂ Yreg, because

any singular point of Y necessarily belongs to the branching locus of γ. Since γ is finite, the codimension of

the branching locus of γ in Y is equal to the codimension of the singular locus of X in X. This implies that

Y o is a big open subset of Y , and in particular of the smooth locus Yreg.

Since the restricted map γ : Y 0 → Xreg is finite and étale, we have KY o
∼= γ∗KXreg , and TY o ∼= γ∗TXreg ∼=

γ∗L1 ⊕ · · · ⊕ γ∗Ln, where the Li’s are the line bundles appearing in the direct sum decomposition of TXreg .

Let L′i denote the unique extension of γ∗Li as a reflexive sheaf over Yreg, for all 1 ≤ i ≤ n. Then by

uniqueness of the reflexive extension, we have L′1 ⊕ · · · ⊕ L′n ∼= TYreg . Since Yreg is smooth, TYreg is locally

free, which implies that each L′i is locally free, i.e. a line bundle for all 1 ≤ i ≤ n.

Proposition 5.6. Let X be a projective, klt variety of dimension n, and let the canonical divisor KX be

ample. Suppose the tangent sheaf TXreg of the smooth locus of X splits as a direct sum of line bundles as in

(5), and suppose that X is maximally quasi-étale, i.e., there is an isomorphism of étale fundamental groups

π̂1(Xreg) ∼= π̂1(X). Then X is smooth.

Proof. Since TXreg ∼= L1 ⊕ · · · ⊕ Ln, and we have assumed KX to be ample, the semistability of TXreg with

respect to KX (Remark 4.3) implies that each line bundle Li appearing in the direct sum decomposition of

TXreg has negative degree i.e., c1(Li) · [KX ]n−1 < 0 for all 1 ≤ i ≤ n.

Let G0 = SL(2,R)n, then G0 is a connected Hodge group corresponding to the polydisk Hn, which is a

Hermitian symmetric space of noncompact type. Let G = SL(2,C)n, a complexification of G0, and let

g = sl(2,C)n, the Lie algebra of G. Explicitly, g consists of n-tuples of trace zero 2 × 2 complex matrices
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([
αj βj

γj −αj

])n
j=1

. Since G0 is a Hodge group of Hermitian type, g has the following Hodge decomposition

g = g−1,1 ⊕ g0,0 ⊕ g1,−1,

with [gp,−p, gq,−q] ⊂ gp+q,−p−q for p, q ∈ {−1, 0, 1}, where [·, ·] denotes the Lie bracket of g. The summands

g−1,1, g0,0, and g1,−1 consist of n-tuples of the form

([
0 βj

0 0

])n
j=1

,

([
αj 0

0 −αj

])n
j=1

, and

([
0 0

γj 0

])n
j=1

respectively. Note that Hn ∼= G0/K0, where K0 = U(1)n is a maximal compact subgroup of G0. Let K

denote the complexification of K0, then we have K ∼= (C∗)n, and K sits inside SL(2,C)n as the set of all

n-tuples of diagonal matrices.

Since TXreg splits as a direct sum of line bundles, it admits a reduction in structure group from GL(n,C) to

K = (C∗)n. Let P denote the principal K = (C∗)n-bundle over Xreg associated to TXreg , i.e., P has the same

locally trivializing cover and the same transition functions as
⊕n

i=1 Li. Note that K acts on g−1,1 via the

adjoint representation, which in the present case is simply by scaling. Thus C⊕n and g−1,1 are isomorphic

as K-representations, and it follows from the associated bundle construction that there is an isomorphism

of vector bundles

θ : TXreg −→ P ×K g−1,1 (10)

such that [θ(u), θ(v)] = 0 for all local sections u, v of TXreg . Thus (P, θ) is a uniformizing system of Hodge

bundles on Xreg. In particular, E = P ×K g is a system of Hodge bundles on Xreg. It has a Hodge

decomposition E = E−1,1⊕E0,0⊕E1,−1 induced by the Hodge decomposition of g, i.e., Ei,−i ∼= P ×K gi,−i

for i ∈ {−1, 0, 1}.
The isomorphism θ induces a map from TXreg to the endomorphism bundle End(E). This map is given

locally by sending an element a ∈ TXreg,x ∼= g−1,1 to the endomorphism b 7→ [θ(a), b] in End(E)x. Hence

θ corresponds to an element in H0(Xreg,Ω
1
Xreg

⊗ End(E)) via the isomorphism Hom(TXreg , End(E)) ∼=
Ω1
Xreg

⊗ End(E). Since Ω1
Xreg

⊗ End(E) ∼= Ω1
Xreg

⊗E ⊗E∗ ∼= Hom(E,E ⊗Ω1
Xreg

), we see that θ eventually

corresponds to a morphism θ̂ : E → E⊗Ω1
Xreg

. The map θ̂ is given locally by sending an element a ∈ Ex ∼= g

to the map b 7→ [θ(b), a] ∈ Hom(TXreg,x, Ex) ∼= Ω1
Xreg,x

⊗Ex. Thus on the direct summands Ep,q appearing

in the Hodge decomposition of E, we have θ̂ : Ep,q → Ep−1,q+1 ⊗ Ω1
Xreg

. Moreover, it is straightforward to

see that θ̂ ∧ θ̂ = 0, where θ̂ ∧ θ̂ denotes the composition

θ̂ ∧ θ̂ : E
θ̂−→ E ⊗ Ω1

Xreg

θ̂⊗Id−−−→ E ⊗ Ω1
Xreg ⊗ Ω1

Xreg

Id⊗[∧]−−−−→ E ⊗ Ω2
Xreg .

Thus θ̂ is in fact a Higgs field on E. We can decompose g as as direct sum of simple ideals g ∼=
⊕

i gi,

where gi ∼= sl(2,C) for all 1 ≤ i ≤ n. Since G = SL(2,C)n is connected, we have a global decomposition

E = P ×K g =
⊕

i P ×K gi, Each gi is a sub-Hodge structure of g, i.e., there is a decomposition g =

g−1,1
i ⊕g0,0

i ⊕g
1,−1
i for each i. Moreover, g−1,1

i is irreducible as aK-representation, and from the decomposition

of TXreg it follows that Li ∼= P ×K g−1,1
i . Similarly, we have P ×K g0,0

i
∼= OXreg for all i. Hence we have

Ei = P ×K gi ∼= Li ⊕ L∗i ⊕OXreg for all 1 ≤ i ≤ n, and each Ei is a subsystem of Hodge sheaves of E.

We want to show that E is KX -polystable as a Higgs bundle on Xreg, and by Lemma 4.4 it is sufficient to

show that E is KX -polystable as a system of Hodge bundles. To do this, we will show that Ei is a KX -stable

as a system of Hodge bundles, and hence as a Higgs bundle on Xreg, for all 1 ≤ i ≤ n.

Let F ⊂ Ei be a subsystem of Hodge sheaves with 0 < rank(F) < rank(Ei). For each local section a ∈ F , we

can identify the image θ̂(a) with a local section (b 7→ [θ(b), a]) ∈ Hom(TXreg , Ei), with b ∈ TXreg ∼= P×Kg−1,1.
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For each non-zero local section b ∈ TXreg , θ(b) can be expressed as an n-tuple of trace zero upper-diagonal

2× 2 matrices of the form ([
0 βj

0 0

])
j

,

βj ∈ C for all 1 ≤ j ≤ n. If F is a subsystem of Hodge sheaves of Ei of rank one, then F is a subsheaf of one

of the direct summands of Ei. If F ⊂ Li, then c1(F) · [KX ]n−1 < 0 because c1(Li) · [KX ]n−1 < 0 and Li is

semistable. If F ⊂ L∗i , then any non-zero local section a ∈ F can be represented by an n-tuple of the form(
0, . . . , 0,

[
0 0

αi 0

]
, 0, . . . , 0

)
,

where the matrix is in the i-th position. The bracket [θ(b), a] gives(
0, . . . , 0,

[
αiβi 0

0 −αiβi

]
, 0, . . . , 0

)
.

Thus the image θ̂(a) is a non-zero local section in OXreg ⊗ Ω1
Xreg

, for all non-zero a ∈ F , which implies

that θ̂(F) is not contained in F ⊗ Ω1
Xreg

. It follows that F is not θ̂-invariant, hence not a Higgs subsheaf

of Ei. Similarly, we see that if F ⊂ OXreg , then F is not θ̂-invariant and hence not a Higgs subsheaf

of Ei. If F is a rank two subsystem of Hodge sheaves of Ei, then F is a subsheaf of either Li ⊕ L∗i , or

Li ⊕OXreg , or L∗i ⊕OXreg . If F ⊂ Li ⊕OXreg , then it is straightforward to see that c1(F) · [KXreg ]n−1 < 0.

If F ⊂ L∗i ⊕OXreg , then any non-zero local section a ∈ F can be expressed as a n-tuple of the form(
0, . . . , 0,

[
γi 0

αi −γi

]
, 0, . . . , 0

)

with αi, γi ∈ C∗. For a non-zero local section b ∈ TXreg as earlier, the bracket [θ(b), a] is then(
0, . . . , 0,

[
αiβi −2γiβi

0 −αiβi

]
, 0, . . . , 0

)
.

Thus the image θ̂(a) is a non-zero local section of (Li⊕OXreg )⊗Ω1
Xreg

, i.e., the image θ̂(F) is not contained

in F ⊗Ω1
Xreg

. It follows that F is not θ̂-invariant and hence not a Higgs subsheaf of Ei. It can similarly be

verified that if F ⊂ Li ⊕ L∗i , then F is not θ̂-invariant and hence not a Higgs subsheaf of Ei. These are all

the cases, hence we conclude that any proper subsystem of Hodge sheaves of Ei has slope strictly less than

zero, which implies that Ei is KX -stable as a Higgs bundle for all 1 ≤ i ≤ n. Since E is a direct sum of all

the Ei’s, it follows that E is KX -polystable as a Higgs bundle on Xreg.

Note that E ∼= TXreg ⊕ Ω1
Xreg

⊕O⊕nXreg , and let FX be the unique extension of E as a reflexive sheaf on X.

Then we have FX ∼= TX⊕Ω
[1]
X ⊕O

⊕n
X , and by construction it follows that c1(F) = 0. Note that TX =

⊕
i j∗Li,

where j : Xreg → X denotes the natural inclusion. Therefore ĉ2(FX) =
∑
i ĉ1(j∗Li)2 by the formula (2). It

follows from Lemma 5.3 that ĉ1(j∗Li)2 = 0 for all 1 ≤ i ≤ n and hence ĉ2(FX) = 0. In particular, we have

ĉh2(FX) · [KX ]n−2 = ĉ2(FX) · [KX ]n−2 = 0. Theorem 2.38 thus implies that (E, θ̂) ∈ TPI-HiggsXreg .

Then Proposition 2.37 together with the assumption that X is maximally quasi-étale implies that FX is

locally free. Since TX is a direct summand of FX = TX ⊕ Ω
[1]
X ⊕ O

⊕n
X , it follows that TX must be locally

free. The solution of the Lipman-Zariski conjecture for klt spaces ([11, Theorem 16.1]) thus asserts that X

is smooth, and we are done.
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Proof of Theorem 5.1

Suppose X is an n-dimensional projective, klt variety of general type which satisfies the assumptions of

Theorem 5.1. Recall from Proposition 5.4 that the canonical model Xcan of X is projective, klt, and the

tangent sheaf of its regular locus splits as a direct sum of line bundles of negative degree. Moreover, the

canonical divisor KXcan of Xcan is ample. Let γ : Y → Xcan be a Galois, maximally quasi-étale cover (see

Lemma 2.36). Y is again klt, andthe canonical divisor KY = γ∗KXcan is ample. Moreover, by Proposition

5.5 and the semistability of TY with respect to KY (Proposition 4.1), we have that TYreg splits as a direct sum

of line bundles of negative degree. Thus Y satisfies the assumptions of Proposition 5.6 and we conclude that

Y is smooth. It follows that Y also satisfies the assumptions of [34, Corollary 9.7], hence Y is uniformized

by the polydisk Hn.

Remark 5.7. While the splitting of the tangent bundle TXreg of the smooth locus Xreg of X as a direct sum

of line bundles is a sufficient condition for (the canonical model of) X to be uniformized by the polydisk, it

is not a necessary condition. The reason, as pointed out by Catanese and Di Scala in [7], is that the group

Aut(Hn) of holomorphic automorphisms of the polydisk is not PSL(2,R)n, but is the semidirect product of

PSL(2,R)n and the symmetric group σn. Thus there is a split sequence

1→ Aut(H)n ↪→ Aut(Hn)→ σn → 1

where Aut(H)n = Aut0(Hn) = PSL(2,R)n. The group Aut(Hn) is a disconnected Hodge group of Hermitian

type. The splitting of the tangent bundle THn ∼=
⊕n

i=1 TH descends to a quotient X ∼= Hn/Γ, where

Γ ⊂ Aut(Hn) acts discretely and cocompactly on Hn, only if Γ acts diagonally on Hn, i.e., only if Γ ⊂
Aut(H)n = PSL(2,R)n. However, since any subgroup Γ ⊂ Aut(Hn) can be expressed as an extension of a

subgroup Γ′ of PSL(2,R)n by a subgroup H of σn because of the above exact sequence, every projective,

klt quotient X of a polydisk admits a Galois, quasi-étale cover γ : Y → X such that Y is also a polydisk

quotient whose tangent sheaf TY splits as a direct sum of reflexive sheaves of rank one.

5.2 Necessary conditions

Next we would like to formulate a necessary condition for a projective klt variety of general type to be

uniformized by the polydisk. This will be a more precise version of Remark 5.7.

Proposition 5.8. Let X be a n-dimensional projective klt variety with KX is ample, and such that X ∼=
Hn/Γ̂, where Γ̂ ⊂ PSL(2,R)n o σn = Aut(Hn) is a discrete cocompact subgroup acting fixed point freely in

codimension one. Then X admits a smooth quasi-étale cover γ : Y → X such that KY is ample, and the

tangent bundle TY splits as a direct sum of line bundles.

Proof. Due to the structure of the automorphism group Aut(Hn) = PSL(2,R)n o σn, we know that Γ̂ can

be expressed as an extension

1→ Γ′ → Γ̂→ H → 1,

where Γ′ ⊂ PSL(2,R)n is normal of finite index in Γ̂, and H ⊂ σn is finite. The quotient map π : Hn → X

thus factors as

Hn → Hn/Γ′ → Hn/Γ̂ = X,

where Y ′ = Hn/Γ′ is also klt and projective, and the map Y ′ → X is Galois and quasi-étale. Using Selberg’s

lemma we know that Γ′ has a torsion free normal subgroup Γ of finite index. The quotient map π′ : Hn → Y ′
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thus factors as

Hn → Hn/Γ→ Hn/Γ′ = Y ′.

Since Γ acts freely and cocompactly on Hn, the quotient Y = Hn/Γ is a smooth projective variety. The map

Y → Y ′ is Galois and quasi-étale, and after composing with the map Y ′ → X, we get a quasi-étale map

Y → X. Recall from Lemma 3.4 that the tangent bundle of Hn can be expressed as THn ∼= P ×K g−1,1,

where K = (C∗)n is maximal compact inside SL(2,C)n, and g = sl(2,C)n. The action of Γ on Hn lifts to

a left action of Γ on THn via pushforward of tangent spaces, so it follows that TY ∼= P ′ ×K g−1,1, where

P ′ ∼= P/Γ as principal K-bundles on Y . Since TY also has structure group K = (C∗)n, it splits as a direct

sum of line bundles. Since the map γ : Y → X is finite, and KX is ample by assumption, it follows that

KY = γ∗KX is also ample. The semistability of TY with respect to KY then implies that the line bundles

appearing in the direct sum decomposition of TY all have negative degree.

Remark 5.9. If X is a smooth projective quotient of the polydisk, then we do not in general have a repre-

sentation π1(X)→ PSL(2,R)n. Therefore the action of π1(X) on Hn is not in general compatible with the

reduction in structure group of THn from GL(n,C) to (C∗)n = K. Hence the splitting of the tangent bundle

into a direct sum of line bundles does not in general descend to the quotient variety X.

There is however always a representation π1(X) → PSL(2,R)n o σn, and the action of π1(X) on Hn is

compatible with the reduction in structure group of THn from GL(n,C) to (C∗)n o σn = K ′. The tangent

bundle of X thus always admits a reduction in structure group from GL(n,C) to K ′ i.e., we can write

TX ∼= P ×K′ g−1,1, for some principal K ′ = (C∗)n o σn-bundle P on X.

Example 5.10. Let C1,...,Cn be smooth projective curves, each of genus gi ≥ 2, and let G be a finite group

acting faithfully by automorphisms on each of the n curves. Necessary and sufficient conditions for a finite

group G to act on a curve by automorphisms are given by [2, Theorem 2.1], which is a reformulation of the

Riemann existence theorem. Consider the cartesian product Y = C1 × · · · × Cn and let X be the quotient

variety X = Y/G. If the action of G on Y is free, then X is said to be a variety isogenous to a product of

curves of unmixed type. The universal cover of X (and of course of Y ) is the polydisk Hn.

We restrict our attention to product-quotient surfaces i.e., quotients X = (C1 × C2)/G, where G acts

diagonally on C1 × C2. If the action of G is not free, then we know from [2, Remark 2.4] that G has a

finite set of fixed points, and X has a finite number of cyclic quotient singularities, which are rational. In

particular, X is klt, and the quotient map C1 ×C2 → X is quasi-étale. Since G acts diagonally, the tangent

bundle of the smooth locus Xreg splits as a direct sum of line bundles, so it follows from Theorem 5.1 that

X is uniformized by the bidisk H2.

If X̃ is any resolution of singularities of X then we have equality of topological fundamental groups π1(X) =

π1(X̃). Let pg(X̃) and q(X̃) denote the geometric genus and irregularity of X̃ respectively. Then all surfaces

X = (C1 × C2)/G with g1, g2 ≥ 2 where the action of G on C1 × C2 is unmixed, and such that X has only

rational double point singularities and pg(X̃) = q(X̃) = 0 have been classified in [2, Theorem 0.20]. A list of

all such surfaces is given in [2, Table 2], and each entry of the table gives an example of a singular polydisk

quotient. For example, g1 = 3, g2 = 22, and G = PSL(2, 7) produces a surface with π1(X) = (Z/2Z)2,

which is finite, while g1 = 4, g2 = 21, and G = σ5 produces a surface with π1(X) = Z2 o (Z/3Z), which is

infinite.
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6 Uniformization by Hermitian symmetric space of type CI

For any n ∈ Z≥1, the Siegel upper half space Hn is a Hermitian symmetric space of non-compact type, of

dimension n(n+ 1)/2. The bounded symmetric domain realization of CI is as follows (see [30, Ch.4, Sec.2]).

CI = {Z ∈ Dn,n : ZT = Z},

where the domain Dn,n is given by

Dn,n = {Z ∈M(n, n,C) ∼= Cn
2

: In − Z̄TZ > 0}. (11)

In the above definition, the condition in the bracket is that the matrix In − Z̄TZ is positive definite. We

know, for example from [37, p.108], that the automorphism group of Hn is PSp(2n,R), which is a Hodge

group of Hermitian type. Another Hodge group associated to Hn is G0 = Sp(2n,R), which is a cover of

PSp(2n,R) and has maximal compact subgroup K0 = U(n). Thus we have Hn ∼= G0/K0 = Sp(2n,R)/U(n).

The complexified Lie algebra g of G0 has complex dimension n(2n+ 1), and it follows from the list on [20,

p.341], that g can be expressed as the set of complex 2n× 2n trace zero matrices

[
A B

C −AT

]
, where A is a

complex n× n matrix, and B and C are complex symmetric n× n matrices. By definition, the Lie algebra

g admits a Hodge decomposition given by g = g−1,1 ⊕ g0,0 ⊕ g1,−1, where g−1,1 consists of matrices of the

form

[
0 B

0 0

]
, g0,0 consists of matrices of the form

[
A 0

0 −AT

]
, and g1,−1 consists of matrices of the form[

0 0

C 0

]
. The Lie algebras g−1,1, g0,0, and g1,−1 have complex dimensions n(n + 1)/2, n2, and n(n + 1)/2

respectively.

The compact dual of Hn is the Lagrangian Grassmannian Yn, which is a homogeneous complex projective

variety of dimension n(n + 1)/2 for the action of G = Sp(2n,C). It parametrizes all Lagrangian (i.e. max-

imally isotropic) subspaces of a complex symplectic vector space of dimension 2n. We know from [9] that

there is an open embedding j : Hn ↪→ Yn, and the tangent bundle of Yn is given by TYn ∼= Sym2(E), where

E is the tautological vector bundle on Yn, and corresponds to the standard representation of K0 = U(n). It

follows that the tangent bundle of Hn can be expressed as THn ∼= Sym2(E ′), where E ′ denotes the restriction

of E to Hn.

We want to formulate necessary and sufficient conditions for a complex projective klt variety of dimen-

sion n(n + 1)/2 with ample canonical divisor to be uniformized by the Siegel upper half space Hn. To do

this, we apply Theorem 1.1.

6.1 Sufficient conditions

Proposition 6.1. Let X be a projective, klt variety of dimension n(n + 1)/2 for some n ∈ Z≥1 with KX

ample. Suppose that the tangent bundle of the regular locus Xreg of X satisfies TXreg ∼= Sym2(E), where E
is a vector bundle of rank n on Xreg. Let E ′ denote the reflexive extension of E to X, and suppose that the

Chern class equality

[2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(E ′)2] · [KX ]n−2 = 0 (12)

holds on X. Then X ∼= Hn/Γ, where Γ ⊂ PSp(2n,R) is a discrete, cocompact subgroup, and acts fixed point

freely in codimension one on the Siegel upper half space Hn.
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Proof. Let j : Xreg → X denote the natural inclusion. Then we have TX ∼= j∗TXreg ∼= Sym[2](E ′) =

Sym2(E ′)∗∗ by the uniqueness of reflexive extension. Let G0 = Sp(2n,R), K0 = U(n) a maximal compact

subgroup of G0, Then complexifications G and K of G0 and K0 respectively, are G = Sp(2n,C) and

K = GL(n,C).

Let P be the frame bundle of E . Then P is a principal K = GL(n,C)-bundle on Xreg and we can write

E ∼= P×KV , where V denotes the typical fiber of E . It follows that TXreg ∼= Sym2(P×KV ) = P×KSym2(V ),

so in particular TXreg admits a reduction in structure group from GL(n(n + 1)/2,C) to K. As mentioned

earlier, every element of g−1,1 can by expressed as an n × n complex symmetric matrix, and the adjoint

action of K on such an element is given by conjugation by unitary matrices. Hence it follows that Sym2(V )

and g−1,1 are isomorphic as K-representations. Thus there is an isomorphism

θ : TXreg → P ×K g−1,1

such that [θ(u), θ(v)] = 0 for all local sections u, v of TXreg . The latter statement is clear because G0 is a

Hodge group, so the Lie bracket of any two elements of g−1,1 lands in g−2,2, which is zero. It follows that

(P, θ) is a uniformizing system of Hodge bundles on Xreg.

Hence we can form the system of Hodge bundles E = P ×K g = P ×K g−1,1 ⊕ P ×K g0,0 ⊕ P ×K g1,−1,

where we have P ×K g1,−1 ∼= Sym2(E∨) ∼= Ω1
Xreg

, and P ×K g0,0 ∼= End(E). The last isomorphism follows

from observing that g0,0 and End(V ) are isomorphic as K-representations. Indeed, they are isomorphic

as C-vector spaces, and the adjoint action of K on g0,0 is compatible with the action of K on End(V ) by

conjugation.

Note that the system of Hodge bundles E = P ×K g ∼= TXreg⊕End(E)⊕Ω1
Xreg

is in particular a Higgs bundle

with Higgs field θ̂ : E → E ⊗Ω1
Xreg

given by sending a local section u of E to the local section v 7→ [θ(v), u]

of Hom(TXreg , E) ∼= E ⊗ Ω1
Xreg

. It is clear that E has slope zero with respect to KX . By Proposition 4.6,

we know that E is KX -polystable as a Higgs bundle on Xreg. In fact, E is KX -stable as a Higgs bundle on

Xreg because g = sp(2n,C) is a simple Lie algebra.

Let FX denote the reflexive extension of E to X, then FX ∼= TX ⊕ End(E ′)⊕ Ω
[1]
X . It is clear that ĉ1(FX) ·

[KX ]n−1 = 0. Moreover, we compute using the formulae (1) and (2)

ĉ2(FX) = 2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(X)2,

so by the assumption of the Proposition we have ĉ2(FX) · [KX ]n−2 = ĉh2(FX) · [KX ]n−2 = 0.

Therefore, X satisfies the two conditions of Theorem 1.1, and we conclude that X ∼= Hn/Γ, where Γ ⊂
PSp(2n,R) is a discrete, cocompact subgroup acting fixed point freely in codimension one on Hn.

6.2 Necessary conditions

Since the automorphism group Aut(Hn) = PSp(2n,R) is a connected Lie group, we choose the associated

Hodge group to be G0 = Sp(2n,R), and its complexification to be G = Sp(2n,C), which is also connected.

Thus by Remark A the sufficient conditions of Proposition 6.1 are also necessary conditions for a projective

klt variety with ample canonical divisor to be uniformized by Hn.

Proposition 6.2. Let X be a projective klt variety of dimension n(n + 1)/2 with KX ample, such that

X = Hn/Γ̂, where Γ̂ ⊂ Aut(Hn) acts discretely, cocompactly, and fixed point freely in codimension one on

Hn. Then the tangent bundle of the regular locus of X satisfies TXreg ∼= Sym2(E), where E is a rank n vector

bundle on X. Moreover, X satisfies the Chern class equality 12.

Proof. We know from Theorem 1.1 that the smooth locus Xreg of X admits a uniformizing system of Hodge

bundles (P, θ) corresponding to the Hodge group G0 = Sp(2n,R), such that E = P ×K g is KX -polystable
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as a Higgs bundle on Xreg, and ĉ2(E′) · [KX ]n−2 = 0, where E′ denotes the unique reflexive extension of E

to X. Thus there is an isomorphism θ : TXreg ∼= P ×K g−1,1. Recall from the proof of Proposition 6.1 that

g−1,1 is isomorphic as a K-representation to Sym2(V ), where V is a complex n-dimensional vector space.

So we can write TXreg ∼= P ×K Sym2(V ) = Sym2(E), where E = P ×K V is a rank n vector bundle on Xreg.

We also have Ω1
Xreg

∼= Sym2(E∨) ∼= P ×K g1,−1, and End(E) ∼= P ×K g0,0, from which it follows that the

system of Hodge bundles P ×K g is isomorphic to TXreg ⊕ End(E)⊕ Ω1
Xreg

.

Let E ′ denote the reflexive extension of E to X. Then E′ = TX ⊕ End(E ′) ⊕ Ω
[1]
X , and the equality ĉ2(E′) ·

[KX ]n−2 = 0 is equivalent to

ĉ2(TX ⊕ End(E ′)⊕ Ω
[1]
X ) · [KX ]n−2 = 0.

Using the formula (2) for the second Q-Chern class of a direct sum of reflexive sheaves, the above equality

can be rephrased as

[2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(E ′)2] · [KX ]n−2 = 0.

Thus it follows that X satisfies the required Chern class equality (12), this concludes the proof.

Putting together Propositions 6.1 and 6.2, we arrive at Theorem 1.2.

7 Uniformization by Hermitian symmetric space of type DIII

This example is very similar to the Siegel upper half space. The Hermitian symmetric space of type DIII,

which we denote by Dn, can be expressed as the quotient G0/K0, where the associated Hodge group is

G0 = SO∗(2n) defined as

SO∗(2n) = {M ∈ SL(2n,C) : MTM = I2n, M̄
TJnM = Jn},

where Jn is the matrix given by Jn =

[
0 In

−In 0

]
. We know from [30, Ch.4, Sec.2] that the maximal compact

subgroup K0 of G0 is given by

K0 =

{
M =

[
U 0

0 Ū

]
: M ∈ SU(n, n)

}
,

from which it is clear that U ∈ U(n) ∼= K0, for n ∈ Z≥1. The bounded symmetric domain realization of

DIII is as follows (see again [30, Ch. 4, Sec. 2]).

DIII = {Z ∈ Dn,n : ZT = −Z},

where the domain Dn,n is as defined in the expression (11). From [37, p. 111], the group of holomorphic

automorphisms of Dn is Aut(Dn) = PSO∗(2n), so Aut(Dn) is a quotient of G0 by a discrete central sub-

group. From the list on [20, p.341], the complexified Lie algebra g of G0 has complex dimension n(2n− 1),

and can be expressed as the set of complex 2n× 2n trace zero matrices

[
A B

C −AT

]
, where A is a complex

n × n matrix, and B and C are complex skew-symmetric n × n matrices. Since G0 is a Hodge group of

Hermitian type, the Lie algebra g has a Hodge decomposition given by g = g−1,1 ⊕ g0,0 ⊕ g1,−1, where g−1,1

consists of matrices of the form

[
0 B

0 0

]
, g0,0 consists of matrices of the form

[
A 0

0 −AT

]
, and g1,−1 consists
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of matrices of the form

[
0 0

C 0

]
. The Lie algebras g−1,1, g0,0, and g1,−1 have dimensions n(n−1)/2, n2, and

n(n− 1)/2 respectively.

The compact dual of Dn is the Isotropic Grassmannian In, which is a homogeneous complex projective

variety of dimension n(n − 1)/2 for the action of G = SO∗(2n,C). It parametrizes all isotropic subspaces

of a complex vector space of dimension 2n equipped with a complex inner product. Just as in the case

of the Lagrangian Grassmannian, there is an open embedding j : Dn ↪→ In. The tangent bundle of In is

given by TIn ∼=
∧2

(E), where E is the tautological vector bundle on In, and corresponds to the standard

representation of K0 = U(n). It follows that the tangent bundle of Dn can be expressed as TDn ∼=
∧2

(E ′),
where E ′ denotes the restriction of E to Dn.

We want to formulate necessary and sufficient conditions for a complex projective variety of dimension

n(n− 1)/2 with klt singularities and ample canonical divisor to be uniformized by the Hermitian symmetric

space Dn of type DIII.

7.1 Sufficient conditions

A version of Proposition 6.1 also holds in this case, and the proof is essentially the same. For completeness,

we repeat the proof.

Proposition 7.1. Let X be a projective, klt variety of dimension n(n − 1)/2 for some n ∈ Z≥1 with KX

ample. Suppose that the tangent bundle of the regular locus Xreg of X satisfies TXreg ∼=
∧2

(E), where E is

a vector bundle of rank n on Xreg. Let E ′ denote the reflexive extension of E to X, and suppose that the

Chern class equality

[2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(E ′)2] · [KX ]n−2 = 0 (13)

holds on X. Then X ∼= Dn/Γ, where Γ ⊂ PSO∗(2n,R) is a discrete, cocompact subgroup, and acts fixed

point freely in codimension one on the domain Dn of type DIII.

Proof. Let j : Xreg → X denote the natural inclusion. Then we have TX ∼= j∗TXreg ∼=
∧[2]

(E ′) = (
∧2

(E ′))∗∗

by the uniqueness of reflexive extension. Let G0 = SO∗(2n,R), K0 = U(n) a maximal compact subgroup

of G0. Then we choose complexifications G and K of G0 and K0 respectively, to be G = SO∗(2n,C) and

K = GL(n,C).

Let P be the frame bundle of E . Then P is a principal K = GL(n,C)-bundle on Xreg and we can write

E ∼= P×KV , where V ∼= Cn denotes the typical fiber of E . It follows that TXreg ∼=
∧2

(P×KV ) = P×K
∧2

(V ),

so in particular TXreg admits a reduction in structure group fromGL(n(n−1)/2,C) toK. Note that analogous

to the previous case, each element of g−1,1 can be expressed as an n × n anti-symmetric matrix, and the

action of K is given again by conjugation by unitary matrices. Hence
∧2

(V ) and g−1,1 are isomorphic as

K-representations. Thus there is an isomorphism

θ : TXreg → P ×K g−1,1

such that [θ(u), θ(v)] = 0 for all local sections u, v of TXreg . It follows that (P, θ) is a uniformizing system of

Hodge bundles on Xreg.

Hence we can form the system of Hodge bundles E = P ×K g = P ×K g−1,1 ⊕ P ×K g0,0 ⊕ P ×K g1,−1,

where we have P ×K g1,−1 ∼=
∧2

(E∨) ∼= Ω1
Xreg

, and P ×K g0,0 ∼= End(E). The last isomorphism follows from

observing, as in Proposition 6.1, that g0,0 and End(V ) are isomorphic as K-representations. Hence we have
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P ×K g0,0 ∼= P ×K End(V ) = End(P ×K V ).

Note that the system of Hodge bundles E = P ×K g ∼= TXreg ⊕ End(E) ⊕ Ω1
Xreg

is in particular a Higgs

bundle with Higgs field θ̂ : E → E ⊗ Ω1
Xreg

given by sending a local section u of E to the local section

v 7→ [θ(v), u] of Hom(TXreg , E) ∼= E⊗Ω1
Xreg

. It is clear that E has slope zero with respect to KX . We know

from Proposition 4.6 that E is KX -polystable as a Higgs bundle on Xreg. In fact, E is KX -stable as a Higgs

bundle on Xreg because again g is a simple Lie algebra.

Let FX denote the reflexive extension of E to X, then FX ∼= TX ⊕ End(E ′)⊕ Ω
[1]
X . It is clear that ĉ1(FX) ·

[KX ]n−1 = 0. Moreover, we compute again using (2)

ĉ2(FX) = 2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(X)2,

so by the assumption of the Proposition we have ĉ2(FX) · [KX ]n−2 = ĉh2(FX) · [KX ]n−2 = 0.

Again we see that X satisfies the two conditions of Theorem 1.1, and we conclude that X ∼= Dn/Γ, where

Γ ⊂ PSO∗(2n,R) is a discrete, cocompact subgroup, acting fixed point freely in codimension one on Dn.

7.2 Necessary conditions

Since Aut(Dn) = PSO∗(2n) is a connected Lie group, we take the associated Hodge group to be G0 =

SO∗(2n), and its complexification to be G = SO∗(2n,C), which is also connected. Then Remark A implies

that the sufficient conditions of Proposition 7.1 are also necessary conditions for a projective klt variety

with ample canonical divisor to be uniformized by Dn. We have K0 = U(n) and its complexification

K = GL(n,C). The proof is essentially the same as that of Proposition 6.2.

Proposition 7.2. Let X be a projective klt variety of dimension n(n − 1)/2 with KX ample, such that

X = Dn/Γ̂, where Γ̂ ⊂ Aut(Dn) acts discretely, cocompactly, and fixed point freely in codimension one on

Dn. Then the tangent bundle of the regular locus of X satisfies TXreg ∼=
∧2

(E), where E is a rank n vector

bundle on Xreg. Moreover, X satisfies the Chern class equality 13.

Proof. From Theorem 1.1, it follows that Xreg admits a uniformizing system of Hodge bundles (P, θ) cor-

responding to the Hodge group G0 = SO∗(2n), such that the system of Hodge bundles E = P ×K g is

KX -polystable as a Higgs bundle on Xreg. Moreover, the equality ĉ2(E′) · [KX ]n−2 = 0. holds, where E′

denotes the extension of E to X as a reflexive sheaf. Hence there is an isomorphism θ : TY ∼= P ×K g−1,1.

Recall from the proof of Proposition 7.1 that g−1,1 is isomorphic as a K-representation to
∧2

(V ), where V

is a complex n-dimensional vector space. So we can write TXreg ∼= P ×K
∧2

(V ) =
∧2

(E), where E = P ×K V
is a rank n vector bundle on Y . We also have Ω1

Xreg
∼=
∧2

(E∨) ∼= P ×K g1,−1, and End(E) ∼= P ×K g0,0, from

which it follows that the system of Hodge bundles P ×K g is isomorphic to TXreg ⊕ End(E)⊕ Ω1
Xreg

.

Let E ′ denote the reflexive extension of E to X. Then E′ = TX⊕End(E ′)⊕Ω
[1]
X , and the Chern class equality

ĉ2(E′) · [KX ]n−2 = 0 is equivalent to

ĉ2(TX ⊕ End(E ′)⊕ Ω
[1]
X ) · [KX ]n−2 = 0.

Using the formula (2) for the second Q-Chern class of a direct sum of vector bundles, the above equality can

be rephrased as

[2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E)− (n− 1)ĉ1(E)2] · [KX ]n−2 = 0.

Thus it follows that X satisfies the Chern class equality (13), and we are done.
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Putting together Propositions 7.1 and 7.2, we arrive at the following necessary and sufficient condition

for a projective klt variety X with ample canonical divisor to be uniformized by the Hermitian symmetric

space Dn of type DIII.

Theorem 7.3. Let X be a projective klt variety of dimension n(n−1)/2 such that the canonical divisor KX

is ample. Then X ∼= Dn/Γ, where Γ ⊂ PSO∗(2n,R) is a discrete, cocompact subgroup, and acts fixed point

freely in codimension one on Dn, if and only if X satisfies

• TXreg ∼=
∧2

(E)

• [2ĉ2(X)− ĉ1(X)2 + 2nĉ2(E ′)− (n− 1)ĉ1(E ′)2] · [KX ]n−2 = 0,

where E is a vector bundle of rank n on Xreg, and E ′ denotes the reflexive extension of E to X.

8 Uniformization by Hermitian symmetric space of type BDI

The Hermitian symmetric space of type BDI, which we denote by Bn, can be expressed as the quotient

G0/K0, where we may take the associated Hodge group to be G0 = SO(2, n), and K0 = SO(2) × SO(n) a

maximal compact subgroup of G0, for n ∈ Z≥2. The bounded symmetric domain realization of BDI is more

involved than the other examples, we refer the reader to [30, p. 75] for details. When n = 2, the domain

B2 is isomorphic to the bidisk H2, which we have already studied. Thus we may assume n ≥ 3. The Lie

group G0 has two connected components, and the automorphism group PSO(2, n) of Bn (see again [37]) is

a quotient of SO(2, n) by a discrete central subgroup. The dimension of Bn as a complex manifold is n. The

complexified Lie algebra of G0 is g = so(2+n,C). The Lie algebra g has complex dimension (2+n)(1+n)/2,

and using [20, p. 341], can be expressed as the set of complex (n+ 2)× (n+ 2) matrices

[
A B

C D

]
, where A

is a 2 × 2 orthogonal matrix, D is a n × n orthogonal matrix, and B and C are 2 × n and n × 2 matrices

respectively. The group G0 = SO(2, n) is in fact a Hodge group of Hermitian type, therefore the Lie algebra

g has a Hodge decomposition given by g = g−1,1⊕ g0,0⊕ g1,−1, where g−1,1 consists of those matrices of g of

the form

[
0 B

0 0

]
, g0,0 consists of matrices of the form

[
A 0

0 D

]
, and g1,−1 consists of matrices of the form[

0 0

C 0

]
. The Lie algebras g−1,1, g0,0, and g1,−1 are of dimensions n, n(n− 1)/2 + 1, and n respectively.

By Lemma 3.4, we know there is be a principal K = SO(2,C)×SO(n,C)-bundle P on Bn such that there is

an isomorphism θ : TBn → P ×K g−1,1. Then there is an orthogonal vector bundle W of rank n, and a line

bundle L such that the system of Hodge bundles P×Kg is isomorphic to
∧2

(W⊕L⊕L∨). From the Hodge de-

composition of the Lie algebra g, it follows that P×K g−1,1 ∼= TBn ∼= Hom(W,L), P×K g0,0 ∼=
∧2

(W)⊕OBn ,

and P ×K g1,−1 ∼= Ω1
Bn
∼= Hom(W,L∨). Note that, since W is an orthogonal bundle, it is self-dual.

We want to determine necessary and sufficient conditions for a projective, klt variety of dimension n with

ample canonical divisor to be uniformized by Bn.

8.1 Sufficient conditions

We apply Theorem 1.1 to prove the following.

Proposition 8.1. Let X be a projective, klt variety of dimension n ≥ 3 with KX ample. Suppose that the

tangent bundle of the regular locus Xreg of X satisfies TXreg ∼= Hom(W,L), where W is an orthogonal vector
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bundle of rank n, and L is a line bundle on Xreg. Let W ′ and L′ denote the reflexive extensions of W and

L respectively to X, and suppose that the Chern class equality

[ĉ2(W ′ ∧W ′) + 2ĉ2(W ′)− nĉ1(L′)2] · [KX ]n−2 = 0 (14)

holds on X. Then X ∼= Bn/Γ, where Γ ⊂ Aut(Bn) is a discrete, cocompact subgroup, and acts fixed point

freely in codimension one on Bn.

Proof. Let j : Xreg → X denote the natural inclusion. Then we have TX ∼= j∗TXreg ∼= j∗Hom(W,L) ∼=
Hom(W ′,L′) by the uniqueness of reflexive extension. Let G0 = SO(2, n), K0 = SO(2)×SO(n) the maximal

compact subgroup of G0, and let G and K denote complexifications of G0 and K0 respectively. We choose

G = SO(2 + n,C), then K = SO(2,C)× SO(n,C).

We can deduce from [5, Table 2] that the Lie algebra g = so(2 + n,C) and the typical fiber of the vector

bundle
∧2

(W⊕L⊕L∨) are isomorphic as K-representations, although this is also straightforward to check.

Moreover, the vector bundle
∧2

(W ⊕L⊕ L∨) admits a reduction in structure group from GL((n + 2)(n +

1)/2,C) to K = SO(2,C) × SO(n,C). Thus there is a principal K-bundle P on Xreg such that P ×K g ∼=∧2
(W ⊕L⊕L∨). Recall from the earlier discussion that the Hodge decomposition of g gives P ×K g−1,1 ∼=

Hom(W,L), P ×K g0,0 ∼=
∧2W ⊕OXreg , and P ×K g1,−1 ∼= Hom(W,L∨). Since TXreg ∼= Hom(W,L) by

assumption, we have the following isomorphism

θ : TXreg → P ×K g−1,1

such that [θ(u), θ(v)] = 0 for all local sections u, v of TXreg . It follows that (P, θ) gives a uniformizing system

of Hodge bundles on Xreg.

The system of Hodge bundles E = P ×K g ∼= TXreg ⊕
∧2W ⊕ OXreg ⊕ Ω1

Xreg
is in particular a Higgs

bundle with Higgs field θ̂ : E → E ⊗ Ω1
Xreg

given by sending a local section u of E to the local section

v 7→ [θ(v), u] of Hom(TXreg , E) ∼= E ⊗ Ω1
Xreg

. Since W is self-dual, we have that det(W) ∼= OXreg , and

hence c1(E) = c1(P ×K g) = 0. We know again from Proposition 4.6 that the system of Hodge bundles E

is KX -polystable as a Higgs bundle on Xreg. In fact, E is KX -stable as a Higgs bundle on Xreg because

so(2 + n,C) is a simple Lie algebra for n ≥ 3.

Let FX denote the reflexive extension of E to X. It is clear that ĉ1(FX) · [KX ]n−1 = 0. Moreover by (2),

we have

ĉ2(FX) · [KX ]n−2 = ĉ2(

2∧
(W ′ ⊕ L′ ⊕ L′∨)) · [KX ]n−2.

Expanding the right hand side of the above equality gives [ĉ2(W ′ ∧ W ′) + 2ĉ2(W ′) − nĉ1(L′)2] · [KX ]n−2,

which by assumption is zero. Therefore, we have ĉh2(FX) · [KX ]n−2 = 0.

It follows from Theorem 1.1 that X ∼= Bn/Γ, where Γ ⊂ Aut(Bn) is a discrete, cocompact subgroup, and

acts fixed point freely in codimension one on Bn. This concludes the proof.

8.2 Necessary conditions

Note that the full automorphism group of Bn is a quotient of G0 = SO(2, n) by a discrete central subgroup,

thus the complexification of G0 is G = SO(2+n,C). The complexification of the maximal compact subgroup

of Aut(Bn) is a quotient of K = SO(2,C)× SO(n,C) by a discrete central subgroup. Since G is connected,

it folloes from Remark A that the sufficient criteria for uniformization by Bn are also necessary.

Proposition 8.2. Let X be a projective klt variety of dimension n ≥ 3 with KX ample, such that X = Bn/Γ̂,

where Γ̂ ⊂ Aut(Bn) is a discrete, cocompact subgroup which acts fixed point freely in codimension one on Bn.
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Then the tangent bundle of the regular locus of X satisfies TXreg ∼= Hom(V,M), where V is an orthogonal

vector bundle of rank n, and M is a line bundle on Xreg. Moreover, X satisfies the Chern class equality 14.

Proof. Again from Theorem 1.1, it follows that the smooth locus Xreg of X admits a uniformizing system

of Hodge bundles (P, θ) corresponding to the Hodge group G0 = SO(2, n), such that E = P ×K g is KX -

polystable as a Higgs bundle on Xreg. Furthermore, the equality ĉ2(E′) · [KX ]n−2 = 0 is satisfied, where E′

denotes the reflexive extension of E to X. Hence there is an isomorphism θ : TXreg ∼= P×K g−1,1. Recall that

from the proof of Proposition 8.1 that g−1,1 is isomorphic as a K-representation to Hom(W,L), where W and

L are complex n and 1-dimensional vector spaces respectively. So we can write TXreg ∼= P ×K Hom(W,L) =

Hom(W,L), where W is an orthogonal rank n vector bundle, and L is a line bundle on Xreg. We also have

Ω1
Xreg

∼= Hom(W,L∨) ∼= P ×K g1,−1, and
∧2W⊕OXreg ∼= P ×K g0,0, from which it follows that the system

of Hodge bundles P ×K g is isomorphic to
∧2

(W ⊕L⊕ L∨).

Let E′, W ′, and L′ denote the reflexive extensions of E, W, and L respectively to X. Then the equality

ĉ2(E′) · [KX ]n−2 = 0 is equivalent to

ĉ2(

2∧
(W ′ ⊕ L′ ⊕ L′∨)) · [KX ]n−2 = 0.

Expanding the above expression using the formulae (1) and (2) for Q-Chern classes, we arrive at the following

expression.

[ĉ2(W ′ ∧W ′) + 2ĉ2(W ′)− nĉ1(L′)2] · [KX ]n−2 = 0.

Therefore, X satisfies the Q-Chern class equality (14).

Putting together Propositions 8.1 and 8.2, we arrive at the following necessary and sufficient condition

for a projective klt variety X with ample canonical divisor to be uniformized by the Hermitian symmetric

space Bn of type BDI.

Theorem 8.3. Let X be a projective klt variety of dimension n ≥ 3, such that the canonical divisor KX is

ample. Then X ∼= Bn/Γ, where Γ ⊂ Aut(Bn) is a discrete, cocompact subgroup acting fixed point freely in

codimension one on Bn, if and only if X satisfies

• TXreg ∼= Hom(W,L)

• [ĉ2(W ′ ∧W ′) + 2ĉ2(W ′)− nĉ1(L′)2] · [KX ]n−2 = 0,

where W is an orthogonal vector bundle of rank n, L is a line bundle on Xreg, and W ′ and L′ denote the

reflexive extensions of W and L to X.

9 Uniformization by Hermitian symmetric space of type AIII

The Hermitian symmetric space of type AIII, denoted Apq, can be expressed as the quotient G0/K0, where

we may take G0 = SU(p, q), and K0 = S(U(p) × U(q)) its maximal compact subgroup, for p, q ∈ Z≥1,

pq > 1. The domain Apq can also be realized as follows (see [30])

Apq = {Z ∈M(p, q,C) ∼= Cpq : Iq − Z̄TZ > 0},

where the ”> 0” again means positive definiteness. The complex dimension of Apq is pq. The complexified Lie

algebra of SU(p, q) is g = sl(p+q,C). The Lie algebra g has complex dimension (p+q)2−1, and again using
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the list on [20, p.341], can expressed as the set of complex (p+q)×(p+q) matrices

[
A B

C D

]
, where A is a p×p

matrix, B is a p× q matrix, C is a q× p matrix, and D is a q× q matrix, and Tr(A) +Tr(D) = 0. Note that

G0 = SU(p, q) is a Hodge group of Hermitan type, and g has a Hodge decomposition g = g−1,1⊕g0,0⊕g1,−1

as in Definition 2.22, where g−1,1 consists of matrices of the form

[
0 B

0 0

]
, g0,0 consists of matrices of the

form

[
A 0

0 D

]
, and g1,−1 consists of matrices of the form

[
0 0

C 0

]
. The Lie algebras g−1,1, g0,0, and g1,−1

have complex dimensions pq, p2 + q2 − 1, and pq respectively.

Let P be a principal K = S(GL(p,C) × GL(q,C))-bundle on Apq such that θ : TApq ∼= P ×K g−1,1, which

we know exists by Lemma 3.4. Then there are vector bundles V and W of ranks p and q on Apq, such

that the system of Hodge bundles P ×K g is isomorphic to End0(V ⊕ W), the bundle of trace zero endo-

morphisms of V ⊕ W. From the Hodge decomposition of g, we get P ×K g−1,1 ∼= Hom(V,W) ∼= TApq ,
P ×K g0,0 ∼= (End(V) ⊕ End(W))0, and P ×K g1,−1 ∼= Hom(W,V) ∼= Ω1

Apq . The domain Aq corresponding

to p = 1 is the unit ball Bq ⊂ Cq. In this case we have V ∼= Ω1
Bq , W = OBq , and the system of Hodge bundles

is given by P ×K g ∼= End0(Ω1
Bq ⊕OBq )

As usual, the goal is to formulate necessary and sufficient conditions for a projective, klt variety of dimension

pq with ample canonical divisor to be uniformized by Apq.

9.1 Sufficient conditions

We again apply Theorem 1.1 to make the following characterization.

Proposition 9.1. Let X be a projective, klt variety of dimension pq for some p, q ∈ Z≥1, pq > 1, with KX

ample, such that the tangent bundle of the regular locus Xreg of X satisfies TXreg ∼= Hom(V,W), where V
and W are vector bundles of ranks p and q on Xreg. Let V ′ and W ′ denote the reflexive extensions of V and

W to X, and suppose that the Chern class equality

[2(p+ q)(ĉ2(V ′) + ĉ2(W ′))− (p+ q − 1)(ĉ1(V ′)2 + ĉ1(W ′)2) + 2ĉ1(V ′)ĉ1(W ′)] · [KX ]n−2 = 0 (15)

holds on X. Then X ∼= Apq/Γ, where Γ ⊂ Aut(Apq) is a discrete, cocompact subgroup, and acts fixed point

freely in codimension one on the domain Apq of type AIII.

Proof. Let j : Xreg → X denote the natural inclusion. Then we have TX ∼= j∗TXreg ∼= j∗Hom(V,W) ∼=
Hom(V ′,W ′) by the uniqueness of reflexive extension. Let G0 = SU(p, q), K0 = S(U(p)×U(q)) the maximal

compact subgroup of G0, and let G and K denote complexifications of G0 and K0 respectively. We choose

G = SL(p+ q,C) and K = S(GL(p,C)×GL(q,C)).

Let End0(V ⊕ W) denote the bundle of trace zero endomorphisms of V ⊕ W. We deduce again from [5,

Table 2], that the Lie algebra g = sl(p + q,C) and the typical fiber End0(Cp,Cq) of End0(V ⊕ W) are

isomorphic as K-representations. Moreover, the vector bundle End0(V ⊕W) admits a reduction in structure

group from GL((p + q)2 − 1,C) to K = S(GL(p,C) × GL(q,C)). Thus there is a principal K-bundle P

on Xreg associated to End0(V ⊕W) i.e., we have P ×K g ∼= End0(V ⊕W). The Hodge decomposition of g

together with identifying isomorphic K-representations using [5, Table 2] gives P ×K g−1,1 ∼= Hom(V,W),

P×K g0,0 ∼= (End(V)⊕End(W))0, and P×K g1,−1 ∼= Hom(W,V). Since TXreg ∼= Hom(V,W) by assumption,

we have the following isomorphism

θ : TXreg → P ×K g−1,1
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such that [θ(u), θ(v)] = 0 for all local sections u, v of TXreg . It follows that (P, θ) gives a uniformizing system

of Hodge bundles on Xreg.

The system of Hodge bundles E = P ×K g ∼= TXreg ⊕ (End(V)⊕ End(W))0 ⊕ Ω1
Xreg

is in particular a Higgs

bundle with Higgs field θ̂ : E → E ⊗ Ω1
Xreg

given by sending a local section u of E to the local section

v 7→ [θ(v), u] of Hom(TXreg , E) ∼= E ⊗ Ω1
Xreg

. Note that E fits into the following short exact sequence

0→ E = End0(V ⊕W)→ End(V ⊕W)→ L → 0 (16)

where L is a line bundle of degree zero. Thus we have c1(E) = c1(End0(V ⊕W)) = 0. From Proposition 4.6,

it follows that E is KX -polystable as a Higgs bundle on Xreg, and in fact E is KX -stable as a Higgs bundle

on Xreg because g = sl(p+ q,C) is a simple Lie algebra.

Let FX denote the reflexive extension of E to X. Then FX also fits into an exact sequence

0→ FX → End(V ′ ⊕W ′)→ L′ → 0

where L′ is a coherent sheaf of degree 0. Thus ĉ1(FX) · [KX ]n−1 = ĉ1(End(V ′ ⊕W ′)) · [KX ]n−1 = 0, and

ĉ2(FX) · [KX ]n−2 = ĉ2(End(V ′ ⊕W ′)) · [KX ]n−2. Moreover, we compute using (2)

ĉ2(FX) · [KX ]n−2 = [2(p+ q)(ĉ2(V ′) + ĉ2(W ′))− (p+ q − 1)(ĉ1(V ′)2 + ĉ1(W ′)2) + 2ĉ1(V ′)ĉ1(W ′)] · [KX ]n−2,

so by the assumption of the Proposition we have ĉ2(FX) · [KX ]n−2 = ĉh2(FX) · [KX ]n−2 = 0.

Thus the conditions of Theorem 1.1 are satisfied, and it follows that X ∼= Apq/Γ, where Γ ⊂ Aut(Apq)
is a discrete, cocompact subgroup acting fixed point freely in codimension one on the domain Apq. This

concludes the proof.

In order to determine the necessary conditions for uniformization by Apq, we consider two separate cases,

namely when (i) p 6= q, and (ii) p = q. This is because the group of automorphisms Aut(Apq) of Apq is

connected when p 6= q, and is a quotient of SU(p, q) by a discrete central subgroup. However when p = q,

Aut(App) has two connected components, and is a quotient of SU(p, p) oZ2 by a discrete central subgroup

(see [37]).

9.2 Necessary conditions when p 6= q

From [37, p. 114], we know that the automorphism group of Apq when p 6= q is Aut(Apq) = PSU(p, q). This

is a connected Lie group and is a quotient of SU(p, q) by a discrete central subgroup. Thus we can choose

the associated Hodge group to be G0 = SU(p, q), and its complexification as G = SL(p+ q,C), which is also

connected. Thus the sufficient conditions of Proposition 9.1 are also necessary conditions for a projective klt

variety with ample canonical divisor to be uniformized by Apq. The proof is essentially the same as that of

Proposition 6.2.

Proposition 9.2. Let X be a projective klt variety of dimension pq, p 6= q with KX ample, such that

X = Apq/Γ̂, where Γ̂ ⊂ Aut(Apq) is a discrete, cocompact subgroup acting fixed point freely in codimension

one on Apq. Then the tangent bundle of the regular locus of X satisfies TXreg ∼= Hom(E ,F), where E and F
are vector bundles of ranks p and q on Xreg. Moreover, X satisfies the Chern class equality 15.

Proof. By Theorem 1.1, the smooth locus Xreg of X admits a uniformizing system of Hodge bundles (P, θ)

corresponding to the Hodge group G0 = SU(p, q), such that the system of Hodge bundles E = P×K g is KX -

polystable as a Higgs bundle on Xreg. Moreover, X satisfies the Q-Chern class equality ĉ2(E′) · [KX ]n−2 = 0,

where E′ denotes the unique reflexive extension of E to X. Hence there is an isomorphism θ : TXreg ∼=
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P ×K g−1,1. Recall from the proof of Proposition 9.1 that g−1,1 is isomorphic as a K-representation to

Hom(V,W ), where V and W are complex p and q-dimensional vector spaces. So we can write TXreg ∼=
P ×K Hom(V,W ) = Hom(V,W), where V and W are vector bundles of ranks p and q on Xreg. We also

have Ω1
Xreg

∼= Hom(W,V) ∼= P ×K g1,−1, and (End(V)⊕ End(W))0
∼= P ×K g0,0, from which it follows that

the system of Hodge bundles P ×K g is isomorphic to End0(V ⊕ W). Let V ′ and W ′ denote the reflexive

extensions of V and W to X. Then the Chern class equality ĉ2(E′) · [KX ]n−2 = 0 is equivalent to

ĉ2(End0(V ′ ⊕W ′)) · [KX ]n−2 = 0.

Using the short exact sequence (16), and the formula (2) for the second Q-Chern class of a direct sum of

reflexive sheaves, the above equality can be rephrased as

[2(p+ q)(ĉ2(V ′) + ĉ2(W ′))− (p+ q − 1)(ĉ1(V ′)2 + ĉ1(W ′)2) + 2ĉ1(V ′)ĉ1(W ′)] · [KX ]n−2 = 0.

Thus it follows that X satisfies the Chern class equality (15), which completes the proof.

Putting together Propositions 9.1 and 9.2, we arrive at the following necessary and sufficient condition

for a projective klt variety X with ample canonical divisor to be uniformized by the Hermitian symmetric

space Apq (p 6= q) of type AIII.

Theorem 9.3. Let X be a projective klt variety of dimension pq ≥ 2, p, q ∈ Z≥1, p 6= q, such that the

canonical divisor KX is ample. Then X ∼= Apq/Γ, where Γ ⊂ Aut(Apq) is a discrete, cocompact subgroup,

and acts fixed point freely in codimension one on Apq, if and only if X satisfies

• TXreg ∼= Hom(V,W)

• [2(p+ q)(ĉ2(V ′) + ĉ2(W ′))− (p+ q − 1)(ĉ1(V ′)2 + ĉ1(W ′)2) + 2ĉ1(V ′)ĉ1(W ′)] · [KX ]n−2 = 0,

where V and W are vector bundles of ranks p and q on Xreg, and V ′ and W ′ denote the reflexive extensions

of V and W to X.

Note that when p = 1 and q = n, the associated domain is the unit ball Bn. In this case we have

V = Ω1
Xreg

, W = OXreg , and the system of Hodge bundles is given by P ×K g = End0(Ω1
Xreg

⊕OXreg ). The

condition on the structure of the tangent bundle is tautological, and the Chern class condition is the well

known Bogomolov-Miyaoka-Yau equality satisfied by ball quotients.

9.3 Necessary conditions when p = q

In this case the group of holomorphic automorphisms has two connected components. Again from [37]

we know that Z 7→ ZT is an automorphism of App of order 2 that is not contained in the connected

component of Aut(App). This defines a group homomorphism Z2 → Aut(App), i.e., there is a splitting

Aut(App) = Aut0(App) o Z2, where Aut0(App) = PSU(p, p). It follows that Aut(App) is a quotient of

SU(p, p) o Z2 by a discrete central subgroup. Let G denote the chosen complexification of SU(p, p) o Z2,

and K the complexification of K0 = S(U(p)×U(p))oZ2. Then the tangent bundle of the regular locus of a

projective, klt quotient of App admits a reduction in structure group to K. However, as in the polydisc case,

such a reduction in structure group does not give a meaningful condition on the tangent sheaf. Therefore,

we state the result up to a 2:1 quasi-étale cover. The proof is essentially the same as that of Proposition 6.2.

Proposition 9.4. Let X be a projective klt variety of dimension p2 with KX ample, such that X is a quotient

of App by a discrete, cocompact subgroup Γ of Aut(App) acting fixed point freely in codimension one. Then
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X admits a 2:1 quasi-étale cover X ′ such that the tangent bundle of the regular locus X ′reg ⊂ X ′ satisfies

TX′reg ∼= Hom(E ,F), where E and F are vector bundles of rank p on Xreg. Moreover, X ′ satisfies the Chern

class equality 15 for p = q.

Proof. Since the automorphism group Aut(App) has two connected components, the group Γ can be expressed

as an extension of a normal subgroup Γ′ by a subgroup of Z2. Thus the quotient map App → X factors as

App → App/Γ′ → App/Γ = X,

where X ′ = App/Γ′, and the map X ′ → X is a Galois, 2:1 quasi-étale cover. Note that X ′ is again projective,

klt, and KX′ is ample. Again from Theorem 1.1, it follows that the smooth locus X ′reg of X ′ admits a

uniformizing system of Hodge bundles (P, θ) corresponding to the Hodge group G0 = SU(p, p), such that

the system of Hodge bundles E = P×K g is KX′ -polystable as a Higgs bundle on X ′reg. Moreover, X ′ satisfies

the Q-Chern class equality ĉ2(E′) · [KX′ ]
n−2 = 0, where E′ is the reflexive extension of E to X. Therefore,

there is an isomorphism θ : TX′reg ∼= P ×K g−1,1 of vector bundles. Recall from the proof of Proposition 9.1

that g−1,1 is isomorphic as a K-representation to Hom(V,W ), where V and W are p-dimensional complex

vector spaces. So we can write the tangent bundle as TX′reg ∼= P ×K Hom(V,W ) = Hom(V,W), where V
and W are vector bundles of rank p on X ′reg. Moreover, we have Ω1

X′reg
∼= P ×K g1,−1 ∼= Hom(W,V), and

P ×K g0,0 ∼= (End(V)⊕End(W))0. Thus the system of Hodge bundles P ×K g is isomorphic to End0(V⊕W).

Let V ′ and W ′ denote the reflexive extensions of V and W to X ′. Then E′ ∼= End0(V ′ ⊕ W ′), and the

Q-Chern class equality ĉ2(E′) · [KX′ ]
n−2 = 0 is equivalent to

[ĉ2(End0(V ′,W ′))] · [KX′ ]
n−2 = 0.

Expanding this using Chern class formulae (1) and (2) we arrive at the following expression

[4p(ĉ2(V)′ + ĉ2(W ′))− (2p− 1)(ĉ1(V ′)2 + ĉ1(W ′)2) + 2ĉ1(V ′)ĉ1(W ′)] · [KX′ ]
n−2 = 0.

Thus X ′ satisfies the Chern class equality as claimed, and this completes the proof.

Example 9.5. As mentioned earlier, when p = 1, the corresponding domain A1q is the unit ball Bq ⊂ Cq. It

is well known that projective klt ball quotients satisfy the Q-Bogomolov-Miyaoka-Yau equality.

In the two-dimensional case, there are many interesting examples of smooth ball quotient surfaces such as

the fake projective planes considered by Keum in [23].

Hirzebruch described a method to construct smooth projective surfaces X satisfying c1(X)2 = 3c2(X)

starting with line arrangements on the projective plane P2 in [21].

Another class of examples is given by algebraic surfaces X such that the intersection form on H2(X,Q) is

positive definite. These are smooth surfaces of general type and satisfy c1(X)2 = 9 and c2(X) = 3, so in

particular they are ball quotients.

One can obtain examples of singular ball quotients by taking quotients of fake projective planes by finite

automorphism groups. There are only four possibilities for non-trivial automorphism groups of fake projective

planes, determined by Prasad and Yeung in [33]. Namely, the groups Z/3Z, Z/7Z, 7 : 3, and (Z/3Z)2.

Quotients of fake projective planes and their minimal resolutions have been classified completely by Keum

in [23]. When the group of automorphisms has prime order, he obtains the following.

Theorem 9.6 ([23, Theorem 1.1]). Let G be a group of automorphisms of a fake projective plane X. Let

Z = X/G and ν : Y → Z be a minimal resolution. Then the following statements hold.

• If the order of G is 3, then Z has 3 singular points of type 1
3 (1, 2), and Y is a minimal surface of

general type with K2
Y = 0, pg = 0.
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• If the order of Y is 7, then Z has 3 singular points of type 1
7 (1, 3), and Y is a minimal elliptic surface

of Kodaira dimension 1 with 2 multiple fibres. The pair of the multiplicities is one of the following

three cases: (2, 3), (2, 4), (3, 3).

Note that the surface Z is a singular ball quotient with isolated quotient singularities.
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