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Abstract. The present dissertation consists of two main parts. Both parts arise from
the desire of a systematic construction of rational points on elliptic curves. On the one
hand, we study the existence of parametrizations of an elliptic curve over the rationals
by considering merely its self-fold triple product. This is done via an analysis of Galois
representations and its follow-up contextualization into the framework of the Tate Conjec-
ture. On the other hand, we construct a new p-adic L-function for the symmetric cube of a
Hida family. This p-adic L-function provides a factorization of a restricted balanced triple
product p-adic L-function. Moreover, we prove an interpolation property of this novel
p-adic L-function and formulate a conjecture on the leading term of its Taylor expansion
at a point of vanishing.

Zusammenfassung. Die vorliegende Dissertation verfolgt zwei Hauptziele, die beide
aus dem Wunsch nach einer systematischen Konstruktion rationaler Punkte auf elliptischen
Kurven entstehen. Einerseits untersuchen wir die Existenz von Parametrisierungen einer el-
liptischen Kurve über den rationalen Zahlen, indem wir lediglich ihr selbstgefaltetes Tripel-
produkt in Betracht ziehen. Dies geschieht durch eine Analyse von Galois-Darstellungen
und derer anschließenden Einordnung in den Kontext der Tate-Vermutung. Andererseits
konstruieren wir eine neue p-adische L-Funktion für den symmetrischen Kubus einer Hida-
Familie. Diese p-adische L-Funktion liefert eine Faktorisierung einer eingeschränkten,
ausgewogenen p-adischen Tripelprodukt L-Funktion. Wir beweisen darüber hinaus eine
Interpolationseigenschaft dieser neuartigen p-adischen L-Funktion und formulieren eine
Vermutung über den führenden Term ihrer Taylor-Entwicklung an einem Nullpunkt.
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1 Introduction

Let A/Q be an elliptic curve of conductor N . The algebro-geometric version of the cel-
ebrated modularity theorem of Wiles [Wil95], Taylor–Wiles [TW95] and Breuil–Conrad–
Diamond–Taylor [BCDT01] provides the existence of a so-called modular parametrization

CH1(X0(N))0 −→ A, (1.1)

where X0(N) denotes the modular curve of level Γ0(N) and CH1( · )0 denotes the subgroup
of null-homologous algebraic cycles in the Chow group CH1( · ).

Among several equivalent formulations of the modularity of elliptic curves over the ra-
tionals, the above form is of particular interest in the study of points on the elliptic curve.
In the language of L-functions, the modularity theorem states that there exists a newform
fA ∈ S2(Γ0(N)) with rational Fourier coefficients such that

L(A/Q, s) = L(fA, s).

This is established by showing that the p-adic Tate module Vp(A) = H1
ét(Ā,Qp)(1) is a

constituent of the p-adic étale cohomology of the modular curve X0(N). The parametriza-
tion (1.1) is then deduced from combining the work of Shimura [Shi71] and Carayol [Car86]
with Faltings’ proof [Fal83] of a certain case of the Tate Conjecture for abelian varieties
over number fields. More precisely, the Eichler–Shimura Construction provides an elliptic
curve EfA attached to fA, constructed as a quotient of CH1(X0(N))0, whose Hasse–Weil
L-series equals the complex L-function of fA up to finitely many factors. With the com-
plete equality being established by Carayol, the Isogeny Theorem of Faltings shows that A
and EfA are isogenous as a consequence of having the same L-series, and we can form the
composition

CH1(X0(N))0 −→ EfA −→ A.

A key feature of (1.1) stems from considering special collections of algebraic points
on X0(N), arising from the moduli of elliptic curves with complex multiplication by a
quadratic imaginary field K. The resulting images of certain degree-zero divisors supported
on these points provide points on A which are defined over abelian extensions of K. These
include the so-called Heegner points, which provide one of the most fruitful approaches to
the Birch–Swinnerton-Dyer (BSD) Conjecture, such as the result

ords=1 L(A/Q, s) ≤ 1 =⇒ rank(A(Q)) = ords=1 L(A/Q, s) and #

ΠΠ

(A/Q) < ∞.

This statement follows from combining the Gross–Zagier Formula [GZ86], which relates
canonical heights of Heegner points to the central critical derivatives of L(A/K, s), with
a method of Kolyvagin [Kol90]. We refer the interested reader to the subsequent work of
Gross [Gro91] for a discussion of this.

Aiming to generalize (1.1), one option is to replace X0(N) by a variety X of dimension
d > 1 and CH1(X0(N))0 by CHj(X)0 for 0 ≤ j ≤ d. Bertolini–Darmon–Prasanna [BDP14]
discuss this approach for the product of a Kuga–Sato variety with a self-fold product of
the considered elliptic curve in a complex multiplication situation and provide a novel
construction of so-called Chow–Heegner points on the elliptic curve.
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In contrast to the setting of [BDP14], the main idea of the present dissertation is to study
the existence of such a parametrization considering merely the three-fold product A3 and
without assuming A to have complex multiplication. This is done via an analysis on the
level of Galois representations and putting this into the context of the Tate Conjecture.

We give a brief overview of our approach. The Tate Conjecture claims the surjectivity of
the associated (geometric) p-adic étale cycle class map, whose construction we will recall
in Section 2.5, for smooth projective varieties Z defined over a number field K:

clpét,g ⊗Qp : CHn(Z)(K)⊗Qp −→ H2n
ét (Z̄,Qp)(n)

GK .

In our case, we study the p-adic Tate module Vp(A) of the elliptic curve and its appropriately
twisted triple tensor product Vp(A)

⊗3(−1) = H1
ét(Ā,Qp)

⊗3(2). As will be explained in
greater detail in Section 3, this particular twist allows us to establish a projection of p-adic
Galois representations

H1
ét(Ā,Qp)

⊗3(2) Vp(A)
⊕2 (1.2)

onto two copies of the p-adic Tate module of A. This is done by considerations on the level
of Frobenius-traces. The left-hand side of (1.2) is a part of the Künneth decomposition for
the triple product:

H3
ét(Ā

3,Qp)(2) =
!

j1+j2+j3=3

Hj1
ét(Ā,Qp)⊗Hj2

ét(Ā,Qp)⊗Hj3
ét(Ā,Qp)(2).

Therefore, (1.2) provides two GQ-equivariant projections

πét,i : H3
ét(Ā

3,Qp)(2) Vp(A). (1.3)

As will be explained in greater detail in Section 4, these components πét,i may be viewed as
non-trivial elements of H4

ét(Ā
4,Qp)(2)

GQ by using Poincaré duality along with a Künneth
decomposition as above. Hence, by assuming the Tate Conjecture in this setting, we obtain
elements Π

?,(p)
i ∈ CH2(A4)(Q)⊗Qp. By basic notions from the theory of algebraic cycles

and intersection theory, which we will recall in Section 2, such elements induce maps

Π
?,(p)
i,∗ : CH2(A3)0(Q)⊗Qp −→ A(Q)⊗Qp

Γ (−→ prA,∗(Π
?,(p)
i · pr∗A3(Γ)).

Here, prA,∗ denotes the pushforward and pr∗A3 denotes the pullback on Chow groups with
respect to the natural projections prA and prA3 from A4 = A3 × A onto A and A3, and
· denotes the intersection product. Note that, as a consequence of the formulation of the
Tate Conjecture, we have to involve p-adic coefficients on the level of the algebraic cycles,
so that we only obtain a parametrization with coefficients in Qp. Therefore, we are led to
address a possible normalization procedure in order to obtain a parametrization defined
over the rationals. Using methods from p-adic Hodge theory to be recalled in Section 2.3,
including a comparison isomorphism, we pass to de Rham cohomology over Qp and obtain
analogues

πdR,i : H3
dR(A

3/Qp)[2] H1
dR(A/Qp)[1] (1.4)

of the projections πét,i of Galois representations. The advantage is that the de Rham
cohomology has a natural rational structure which we can use for normalizing the maps.

The above mentioned article [BDP14] was a first inspiration for the following result.

2



Theorem A. If the Tate Conjecture is true for A4 in codimension two, then there exist
algebraic cycles Π?

i ∈ CH2(A4)(Q) inducing rational parametrizations

Π?
i,∗ : CH2(A3)0(Q) −→ A(Q)

along with projections

Π?,p
i,ét,∗ : H3

ét(Ā
3,Qp)(2) Vp(A) and Π?

i,dR,∗ : H3
dR(A

3/Q)[2] H1
dR(A/Q)[1],

which approximate the non-conjectural maps πét,i of (1.3) and their analogues πdR,i of (1.4)
in de Rham cohomology.

We recall how to obtain the induced maps Π?
i,dR,∗ in Section 2.2, using a cycle class map,

a Künneth decomposition and Poincaré duality in de Rham cohomology. The maps Π?,p
i,ét,∗

are their p-adic analogues in étale cohomology and are described in Section 2.5.
In particular, Theorem A provides parametrizations of the elliptic curve which map

algebraic cycles Γ ∈ CH2(A3)0(L) defined over any number field L to points P ?
i (Γ) ∈ A(L)

on A defined over the same number field. This is explained in greater detail in Section 4,
using the notions recalled in Section 2. Moreover, this study of parametrizations via three-
fold products leads us to a conjecture on the rank of its relevant Chow group in codimension
two. As the parametrizations Π?

i,∗ conjecturally arise from two independent components
of a projection, we pose the following implication:

rank(A(Q)) ≥ 1
?

=⇒ rank(CH2(A3)0(Q)) ≥ 2.

We will consider this aspect towards the end of Section 4.
It turns out that the underlying idea of (1.2) can be carried out more generally, consid-

ering eigenforms θ ∈ Sk(Γ0(N)) of arbitrary even weight k ≥ 2. This yields the following
decomposition result on the level of p-adic Galois representations, which is discussed in
Section 3.3. Here, ρθ,p denotes the GQ-representation attached to θ as constructed by
Deligne [Del71], whose properties are recalled in Section 3.1.

Proposition B. There is an isomorphism of p-adic Galois representations

ρ⊗3
θ,p(1− k) ∼= Sym3(ρθ,p)(1− k)⊕ ρ⊕2

θ,p. (1.5)

The map of (1.2) now arises from taking θ to be the eigenform fA ∈ S2(Γ0(N)) attached
to A as a consequence of the modularity theorem.

This result naturally draws our attention to the symmetric cube that appears in the
decomposition (1.5), which will be the main focus for the rest of the thesis. With Propo-
sition B leading to a factorization of complex L-functions

L(θ⊗3, s+ k − 1) = L(Sym3 θ, s+ k − 1) · L(θ, s)2, (1.6)

we move on to the second main part of the thesis – the study of p-adic L-functions. When
the forms θ vary in a p-adic Hida family θ of square-free level, we have the following known
p-adic L-functions at hand:
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• The restriction of the Mazur–Kitagawa p-adic L-function (cf. [MSD74], [MTT86]
[Kit91], [GS93]) to the central critical line:

Lcc
p (θ)(k) = LMK

p (θ)(k, k2 ),

• The restriction of the balanced triple product p-adic L-function (cf. [Hsi21]) to the
diagonal:

L∆
p (θ)(k) = L bal

p (θ,θ,θ)(k, k, k)2.

These particular restrictions interpolate the central critical values appearing for s = k
2 in

(1.6) for the complex L-functions attached to the forms θ"k that are associated with the
weight-k specializations of θ. Our goal is to establish a factorization of the above form
on the level of p-adic L-functions. We approach this by introducing a p-adic L-function
LSym3

p (θ)(k) which interpolates the central critical values for the complex symmetric cube
L-functions. Under Assumptions 1, 2, 3, specified in Section 5.5, we are able to prove the
following result on our proposed p-adic L-function.

Theorem C. Let f be the p-adic Hida family passing through the newform attached to
a semi-stable elliptic curve A/Q with split multiplicative reduction at p at its weight-two
specialization. There exists a p-adic L-function LSym3

p (f)(k), providing a p-adic analytic
function on a neighborhood of k = 2, such that

1. LSym3

p (f)(k) = L Sym3

p (f)(k)2 is a square,

2. L∆
p (f)(k) = LSym3

p (f)(k) · Lcc
p (f)(k)2,

3. LSym3

p (f)(k) interpolates the central critical values L(Sym3 f "
k,

3k−2
2 ),

4. LSym3

p (f)(k) has an exceptional zero at k = 2.

Note that the first point of the theorem is a formal consequence of the second one, as
the triple product p-adic L-function is constructed as a square and the Mazur–Kitagawa
p-adic L-function appears as a square in the factorization:

LSym3

p (f)(k) =
L∆
p (f)(k)

Lcc
p (f)(k)2

=

"
L bal

p (f ,f ,f)(k, k, k)

Lcc
p (f)(k)

#2

= L Sym3

p (f)(k)2.

In particular, this shows that the order of vanishing of the symmetric cube p-adic L-function
at k = 2 is even and at least two.

The last section of this thesis is dedicated to the study of a BSD type formula for the
triple product p-adic L-function, introducing a conjectural regulator for the symmetric cube
p-adic L-function. We briefly elaborate on what is done in this final part. The restriction
of the Mazur–Kitagawa p-adic L-function is known to vanish to order at least two at k = 2
and Bertolini–Darmon [BD07] provide a formula for its second derivative. More precisely,
the authors construct a global point P ∈ A(Q)⊗Q, whose squared image under the formal
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group logarithm logA : A(Qp) → Q×
p attached to A describes the derivative up to a non-zero

rational scalar:

d2

dk2
Lcc
p (f)(k)|k=2 = a · logA(P)2 for some a ∈ Q×.

With both p-adic L-functions in the factorization of L∆
p (f)(k) vanishing to order at

least two at k = 2, one of them appearing as a square, the triple product p-adic L-function
vanishes to even order at least six at k = 2. We use the above result of Bertolini–Darmon
and obtain the following formula by a direct computation.

Theorem D. There exists P ∈ A(Q)⊗Q and a ∈ Q×, such that

d6

dk6
L∆
p (f)(k)|k=2 = 90a2 · d2

dk2
LSym3

p (f)(k)|k=2 · logA(P)4.

As a consequence of Theorem D, we are left to understand the contribution coming from
the p-adic L-function for the symmetric cube, for which we follow the lines of [BSV21].
In this article, Bertolini–Seveso–Venerucci consider an elliptic curve twisted by two Artin
representations and introduce a conjecture on the order of vanishing of the relevant p-adic
L-function at the point of interest and the leading term of its Taylor expansion. This is
done by introducing a Garrett–Nekovář regulator, using the work of Nekovář [Nek06]. We
adapt the constructions for introducing a regulator for our scenario via extended Selmer
groups and p-adic height pairings. This regulator for the symmetric cube aims to take care
of the leading term appearing on the right-hand side of the equation in Theorem D. We
close the thesis by formulating a conjecture that encompasses the aforementioned concepts
and propose a BSD type formula for the triple product p-adic L-function in a situation of
minimal rank.
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Structure of the Thesis. The present work is structured as follows. In Section 2,
we introduce and recall relevant notions on algebraic cycles and cohomology theories. We
prove Proposition B in Section 3, which is where the fundamental discussion of the relevant
Galois representations is carried out. Building on the discussion of Section 3, in Section 4
we place (1.2) in the framework of the Tate Conjecture and study how to normalize the
so-obtained algebraic cycles in order to arrive at Theorem A. In Section 5, we construct
the p-adic L-function for the symmetric cube and discuss the proof of Theorem C. Finally,
in Section 6, we introduce the concepts needed for discussing the derivative on the right-
hand side of Theorem D. This is where we formulate a conjecture on the precise order of
vanishing, as well as a resulting BSD type formula in light of Theorem D in a situation of
minimal rank.

Notational Conventions. If not explicitely stated otherwise, all appearing fields are
of characteristic zero and cardinality ≤ 2ℵ0 , so that they may be viewed inside C. Number
fields are considered as embedded in a fixed algebraic closure Q̄ of Q. Moreover, we fix a
complex embedding Q̄ ↩→ C, as well as p-adic embeddings Q̄ ↩→ Q̄p ↩→ Cp for each rational
prime p. In this way, all finite extensions of Q are simultaneously realized as a subfield of C
and of Cp. This provides in particular embeddings GQp ↩→ GQ of absolute Galois groups,
whose images Gp are the decomposition groups at p, and we denote the relevant inertia
subgroups by Ip. When writing Frobp we refer to an arithmetic Frobenius element at p.
Finally, when considering p-adic étale cohomology groups or more generally p-adic Galois
representations V , for any n ∈ Z, we will write V (n) for the n-th Tate-twist, meaning
that we tensor with Qp(n). This changes the action by a power of the p-adic cyclotomic
character χp : GQ → Z×

p .
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2 Algebraic Cycles and Cohomology

This section is meant to collect some basic material and introduce certain theories that will
be used throughout our work. It concerns in particular concepts related to algebraic cycles
and those that are derived from algebraic cycles when considering certain cohomology
theories. We provide references for further exposition of the matter below. Additional
works that influenced the exposition of the material in the first subsections include [Dau13]
and [Lil21]. We keep the proofs presented in this section at a minimum and point the reader
to the references therein for further details.

2.1 Chow Groups. A comprehensive presentation of the notions to be introduced in
this section can be found in [Sta23, Tag 0AZ6]. For any smooth projective variety X over
a field K, let Cm(X) denote the group of algebraic cycles of codimension m. This is the
free abelian group generated by codimension m subvarieties of XK̄ . Considering rational
equivalence ∼rat on Cm(X), we set

CHm(X) = Cm(X)/∼rat

to be the Chow group of codimension m algebraic cycles on X. For any field extension
L/K inside C, we denote

CHm(X)(L) = {[Z] ∈ CHm(X) : Z ∼rat Z
σ for all σ ∈ AutL(C)}.

The elements of this group are said to be defined over L. For any 0 ≤ m,n ≤ dim(X),
there is an intersection product

CHm(X)× CHn(X) −→ CHm+n(X),

which endows CH∗(X) =
$

m≥0CH
m(X) with the structure of a graded ring. The last

notion we want to recall concerns morphisms f : X → Y of varieties defined over K. If f
is flat, respectively proper, then the pullback, respectively pushforward, of algebraic cycles
preserves ∼rat, so that there are induced maps

f∗ : CHm(Y ) −→ CHm(X), respectively f∗ : CHm(X) −→ CHdim(Y )−dim(X)+m(Y ).

In particular, combining the two previous notions, any element Π ∈ CHm(X × Y ) induces

Π∗ : CHj(Y ) −→ CHm−dim(Y )+j(X), ΓY (−→ prX,∗(Π · pr∗Y (ΓY )),

Π∗ : CHj(X) −→ CHm−dim(X)+j(Y ), ΓX (−→ prY,∗(Π · pr∗X(ΓX)),

where for Z = X,Y , prZ : X×Y → Z is the projection map, and · denotes the intersection
product. Note that the above notions of an intersection product and the induced maps on
Chow groups restrict to classes defined over extensions of the base field inside C.

2.2 Cycle Classes and Induced Maps on de Rham Cohomology. Let X be a
smooth projective variety defined over K as before. For more details on its algebraic de
Rham cohomology and the relevant notions that we will recall in this section, we refer the

7
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reader to [Sta23, Chapter 0FK4] or [Har75]. The algebraic de Rham cohomology groups
are equipped with an alternating, non-degenerate pairing

〈 · , · 〉X : Hj
dR(X/K)×H

2 dim(X)−j
dR (X/K)[dim(X)] −→ K, 0 ≤ j ≤ 2 dim(X),

which is called the Poincaré pairing. In particular, this pairing provides an isomorphism

H
2 dim(X)−j
dR (X/K)[dim(X)] ∼= Hj

dR(X/K)∨ (2.1)

of filtered K-vector spaces, which is referred to as Poincaré duality. Here, [ · ] refers to a shift
in the Hodge filtration, i.e., as vector spaces one has V [t] = V , but Fili V [t] = Fili+t V . We
will recall the notion of filtered vector spaces when it becomes relevant for a more detailed
discussion.

For a morphism f : X → Y of varieties over K as above with dim(X) = d and dim(Y ) =
e, one has maps

f∗
dR : Hj′

dR(Y/K) −→ Hj′

dR(X/K), fdR,∗ : H
j
dR(X/K) −→ H

j−2(d−e)
dR (Y/K)[e− d],

which are mutual adjoints (for the appropriate choice of j′ = 2d − j) with respect to the
Poincaré pairing, i.e.

〈f∗
dRα,β〉X = 〈α, fdR,∗β〉Y for α ∈ H2d−j

dR (Y/K) and β ∈ Hj
dR(X/K).

They further respect the Hodge filtration that the cohomology inherits. Moreover, any
element Π ∈ CHm(X × Y )(K) induces maps

Π∗
dR : Hj′

dR(Y/K) −→ H
j′−2(e−m)
dR (X/K)[m− e],

ΠdR,∗ : H
j
dR(X/K) −→ H

j−2(d−m)
dR (Y/K)[m− d],

as follows. Let

cldR : CHm(X × Y )(K) −→ H2m
dR (X × Y/K)[m]

denote the cycle class map for the variety X ×Y over K. Its target cohomology group has
a Künneth decomposition of the form

H2m
dR (X × Y/K)[m] =

!

j+j′=2m

Hj
dR(X/K)⊗Hj′

dR(Y/K)[m]

and we denote by

prj : H2m
dR (X × Y/K)[m] Hj

dR(X/K)⊗H2m−j
dR (Y/K)[m]

the projection onto its j-th component. Note that we have an isomorphism

Hom(H2d−j
dR (X/K),H2m−j

dR (Y/K)[m− d]) ∼= Hj
dR(X/K)⊗H2m−j

dR (Y/K)[m]

arising from Poincaré duality (2.1) along with the isomorphism

A∨ ⊗B
∼−→ Hom(A,B), Ψ⊗ b (−→ (a (→ Ψ(a) · b).
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We can now define a map

( · )dR,∗ : CHm(X × Y )(K) −→ Hom(H2d−j
dR (X/K),H2m−j

dR (Y/K)[m− d])

Π (−→ ΠdR,∗

by the diagram

CHm(X × Y )(K) H2m
dR (X × Y/K)[m]

Hom(H2d−j
dR (X/K),H2m−j

dR (Y/K)[m− d]) Hj
dR(X/K)⊗H2m−j

dR (Y/K)[m].

cldR

( · )dR,∗ prj

∼

(2.2)

The map

Π∗
dR : Hj′

dR(Y/K) −→ H
j′−2(e−m)
dR (X/K)[m− e]

is defined to be the adjoint (for j′ = j+2(e−m)) with respect to the Poincaré pairing, so
that one has

〈Π∗
dRα,β〉X = 〈α,ΠdR,∗β〉Y for α ∈ H

j+2(e−m)
dR (Y/K) and β ∈ H2d−j

dR (X/K).

The cycle class maps for X and Y link (cf. [Sta23, Tag 0FWC, Tag 0FFG]) the flat pullback
and proper pushforward maps f∗ and f∗ on Chow groups to their de Rham avatars in the
form of commutative diagrams

CHm(Y )(K) H2m
dR (Y/K)[m]

CHm(X)(K) H2m
dR (X/K)[m]

cldR

f∗ f∗
dR

cldR

as well as
CHm(X)(K) H2m

dR (X/K)[m]

CHm−(d−e)(Y )(K) H
2m−2(d−e)
dR (Y/K)[m− d+ e].

cldR

f∗ fdR,∗

cldR

Considerations of cycle class maps also lead to subgroups of the Chow groups that are
of particular interest for us. We denote by

CHm(X)0(K) = ker(cldR)

the subgroup of null-homologous cycles defined over K. For any Π ∈ CHm(X × Y )(K)
and any morphism f : X → Y as above, assumed to be flat for the pullback and proper
for the pushforward, the attached maps on Chow groups can then also be viewed as

Π∗ : CHj(X)0(K) −→ CHm−d+j(Y )0(K),

Π∗ : CHj(Y )0(K) −→ CHm−e+j(X)0(K),

f∗ : CHj(X)0(K) −→ CHe−d+j(Y )0(K),

f∗ : CHj(Y )0(K) −→ CHj(X)0(K).

9
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Most of our future study builds on an analysis of Galois representations. With its origin
lying in studying certain p-adic étale cohomology groups instead of de Rham cohomology
groups, we are interested in passing from one cohomology theory to the other. More
precisely, we want to use the merit of de Rham cohomology, inheriting a natural rational
structure, and are therefore interested in a comparison theorem in order to normalize
objects in the étale context, which are a priori only defined up to p-adic coefficients.

The following two subsections will provide the tools for passing from considerations on
étale cohomology to de Rham cohomology and therefore provide a bridge between the
notions that we have just defined and their p-adic étale avatars that we will consider later.
In fact, once we have introduced the p-adic étale versions, the upcoming material will
enable us to view the concepts on de Rham cohomology over p-adic fields as a natural
image of those p-adic étale concepts.

2.3 Recalls of p-adic Hodge Theory. This subsection is devoted to summarizing
notions from p-adic Hodge theory that are needed to state the comparison result between
p-adic étale cohomology and de Rham cohomology over p-adic fields.

This subject employs Fontaine’s rings Bcris,Bst,BdR of p-adic periods. As we will be
mostly using BdR, let us briefly recall its construction. For further details on the construc-
tion and basic properties, in particular of the period rings Bst and Bcris, we refer the reader
to the comprehensive work of Fontaine–Ouyang [FO08]. Let R = limn∈Z≥0

OCp /(p) be the
ring obtained as an inverse limit along the p-power maps. Its elements (xn)n∈N ∈ R are
identified with collections (x(n))n∈Z≥0

of elements x(n) ∈ OCp in the ring of integers with
(x(n+1))p = xn. Denoting by W (R) the ring of Witt vectors over R, there is (cf. [FO08,
Lemma 5.9, Proposition 5.11]) a surjective homomorphism

W (R) OCp , (an)n∈Z≥0

%
n≥0 p

na
(n)
n .

Its kernel is a principal ideal, generated by an element ξ ∈ W (R), such that ξ − p = [ϖ] is
the Teichmüller representative [ϖ] = (ϖ, 0, 0, . . . ) of an element ϖ ∈ R with ϖ(0) = −p.
Fontaine’s ring of de Rham periods is defined to be

BdR = Frac
&

lim
n∈Z≥0

W (R)[1p ]/(ξ)
n
'
.

Let F be a finite extension of Qp. We can now associate to any p-adic representation V of
GF the F -vector space

DdR(V ) = (V ⊗Qp BdR)
GF .

This vector space is equipped with a decreasing, separated and exhaustive filtration, which
we will introduce later on.

In the same style as above, there are vector spaces Dst(V ) and Dcris(V ), whose con-
struction employs Fontaine’s rings Bst and Bcris. In order to recall their shape and basic
properties, we fix the following notation. Let F0 be the maximal unramified extension of
Qp in F and let σ be the absolute Frobenius acting on F0, inducing the p-th power map on
the residue field of F0. To any p-adic representation V , there are the following associated
vector spaces:
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(i) Dst(V ) = (V ⊗Qp Bst)
GF – a vector space over F0, equipped with a σ-semilinear

bijective map φst : Dst(V ) → Dst(V ) and a linear map Nst : Dst(V ) → Dst(V ),
called monodromy operator, satisfying Nst ◦φst = p · φst ◦Nst.

(ii) Dcris(V ) = (V ⊗Qp Bcris)
GF – a vector space over F0, equipped with a σ-semilinear

bijective map φcris : Dcris(V ) → Dcris(V ).

We further set φ$,F = φ
[F0:Qp]
$ for , ∈ {st, cris}. The above vector spaces are related by:

• Dst(V )Nst=0 = Dcris(V ),

• injective maps

ȷst : Dst(V )⊗F0 F DdR(V ) and ȷcris : Dcris(V )⊗F0 F DdR(V ),

• dimF0(Dcris(V )) ≤ dimF0(Dst(V )) ≤ dimF (DdR(V )) ≤ dimQp(V ).

The representation V is said to be
(
)*

)+

crystalline if dimF0(Dcris(V )) = dimQp(V ),
semistable if dimF0(Dst(V )) = dimQp(V ),
de Rham if dimF (DdR(V )) = dimQp(V ).

In particular, crystalline representations are semistable, which in turn are de Rham. Fur-
thermore, if V is semistable, then ȷst is an isomorphism, while if V is crystalline, then
Nst = 0 on Dst(V ), Dcris(V ) = Dst(V ) and both ȷcris and ȷst are isomorphisms.

More on Filtered Vector Spaces and DdR. We will now concentrate on the assignment
provided by DdR( · ) and consider it from a categorial viewpoint. Denote by FilF the
category whose objects are finite dimensional F -vector spaces U equipped with a decreas-
ing, exhausted and separated filtration {Filj U}j∈Z, with morphisms η : U → U ′ given by
F -linear maps respecting the filtration. This means:

• Filj U are sub F -vector spaces of U ,

• Filj+1 U ⊆ Filj U ,

• Filj U = 0 for j ≫ 0 and Filj U = U for j ≪ 0,

• η(Filj U) ⊆ Filj U ′.

We provide some more notions in that regard which are of interest for our study. A
morphism η : U → U ′ in FilF is said to be strict if for all j ∈ Z one has

η(Filj U) = Filj U ′ ∩ im(η).

Strict morphisms are of importance for the notion of short exact sequences in the category
of filtered vector spaces. Indeed, a short exact sequence in FilF is of the form

U ′ U U ′′,
η µ

11



for strict morphisms η and µ such that im(η) = ker(µ). Given two objects U,U ′ ∈ FilF ,
we define their tensor product as the F -vector space U⊗U ′ together with a filtration given
by

Filj(U ⊗ U ′) =
,

j1+j2=j

Filj1 U ⊗ Filj2 U ′.

The unit object is given by the base field F with Filj F = 0 for j > 0 and Filj F = F for
j ≤ 0. Lastly, any U ∈ FilF has a dual given by the F -linear dual U∨ as its underlying
vector space together with a filtration defined by

Filj U∨ = (Fil1−j U)⊥ = {ϕ ∈ HomF (U,F ) : ϕ(x) = 0 for all x ∈ Fil1−j U}.

For any p-adic representation V of GF , the attached F -vector space DdR(V ) has a
filtration induced by the one on BdR, which we will now describe. Let

B+
dR = lim

n∈Z≥0

W (R)[1p ]/(ξ)
n,

so that BdR = FracB+
dR. Denoting by m+

dR the maximal ideal of B+
dR, the filtration on BdR

is given by

Filj BdR = m+,i
dR .

Now, DdR(V ) is an object of FilF by setting

Filj DdR(V ) = (Filj BdR ⊗Qp V )GF .

We are now restricting our attention to the category RepdR
Qp

(GF ) of p-adic de Rham
representations of GF . The proof of [FO08, Theorem 2.13] contains a particular observation
concerning short exact sequences which we would like to point out. We recall the relevant
argument for convenience.

Lemma 2.1. If the middle term of a short exact sequence in RepQp
(GF ) is de Rham,

then so are its surrounding terms.

Proof. Let V be a p-adic de Rham representation of GF and let

V ′ V V ′′f g

be an exact sequence in RepQp
(GF ). Then, we have

DdR(V
′) DdR(V ) DdR(V

′′)
DdR(f) DdR(g)

(2.3)

with im(DdR(f)) = ker(DdR(g)) and we can compute:

dimDdR(V ) = dimV

= dimV ′ + dimV ′′

≥ dimDdR(V
′) + dimDdR(V

′′)

= dim im(DdR(f)) + dimker(DdR(f)) + dimDdR(V
′′)

= dimker(DdR(g)) + dimDdR(V
′′)

≥ dimker(DdR(g)) + dim im(DdR(g))

= dimDdR(V ).

(2.4)
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From this it follows that dimV ′ + dimV ′′ = dimDdR(V
′) + dimDdR(V

′′), concluding the
proof.

We note that the computation (2.4) further shows that the morphism DdR(g) of (2.3)
is surjective, so that DdR actually maps short exact sequences to short exact sequences.
Indeed, one has the following result.

Theorem 2.2 ([FO08, Theorem 5.29]). The assignment DdR( · ) provides an exact, faithful
tensor functor

RepdR
Qp

(GF ) −→ FilF .

We will now state the aforementioned comparison result between étale cohomology and
de Rham cohomology. This comparison isomorphism (cf. [Fal89], [Tsu99]) will be used
for transferring considerations on the level of Galois representations arising from étale
cohomology groups to vector spaces offering a rational structure that we employ for a
certain normalization process. Let X be a smooth projective variety as before and let F
be a finite extension of Qp.

Theorem 2.3 (Comparison Isomorphism). The étale cohomology group Hm
ét(X̄,Qp)(j) is

a p-adic de Rham representation of GF and there is a canonical isomorphism

compdR : DdR(H
m
ét(X̄,Qp)(j))

∼−→ Hm
dR(X/F )[j] (2.5)

in FilF .

In particular, as compdR identifies the filtrations, we get an isomorphism

compdR = qFil0 ◦ compdR : DdR(H
m
ét(X̄,Qp)(j))/Fil

0 ∼−→ Hm
dR(X/F )[j]/Fil0 (2.6)

by the universal property of quotients with respect to the projection

qFil0 : Hm
dR(X/F )[j] Hm

dR(X/F )[j]/Fil0 .

2.4 Selmer Groups and the Bloch–Kato Logarithm. We retain the notation of
the preceding subsection and let F be a finite extension of Qp and let V be a p-adic de
Rham representation of GF .

For recalling the definition of the Selmer groups in the style of Bloch–Kato, in addition to
[BK90] we refer to [Nek00] and [Bel09] for further treatment of the material. Let H1

cts(F, V )
denote the continuous Galois cohomology group (cf. [Tat76]). One defines nested subspaces

H1
e(F, V ) ⊆ H1

f (F, V ) ⊆ H1
g(F, V ) ⊆ H1

cts(F, V )

by setting

H1
$(F, V ) =

(
)*

)+

ker(H1
cts(F, V ) −→ H1

cts(F, V ⊗Bφcris=1
cris )) if , = e

ker(H1
cts(F, V ) −→ H1

cts(F, V ⊗Bcris)) if , = f

ker(H1
cts(F, V ) −→ H1

cts(F, V ⊗BdR)) if , = g.
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It will be of later interest to also consider a number field K and a p-adic representation
V of GK . In that case, we define H1

$(K,V ) as the subspace of H1
cts(K,V ) consisting of

elements whose restriction at any finite place ν of K belongs to
(
))))))*

))))))+

H1
$(Kν , V ) if ν | p

(
)*

)+

0 if , = e

H1
ur(Kν , V ) if , = f

H1
cts(Kν , V ) if , = g

if ν ∤ p.

Here, the unramified cohomology group H1
ur(Kν , V ) is defined to be the kernel of the

map H1
cts(Kν , V ) → H1

cts(Iν , V ), in which Iν denotes the inertia subgroup.
Considering Fontaine’s period rings, there is (cf. [BK90, (1.17.1)]) a short exact sequence

Qp Bφcris=1
cris ⊕ Fil0 BdR BdR. (2.7)

Tensoring with V and taking Galois cohomology gives a connecting homomorphism

δ0V : DdR(V ) −→ H1
cts(F, V ),

which is essentially the Bloch–Kato exponential as introduced by Bloch–Kato in [BK90].
This assignment is natural in the representation, i.e. the collection of maps δ0V forms a
natural transformation

DdR( · ) =⇒ H1
cts(F, · )

of functors RepdR
Qp

(GF ) −→ VectF . In the next lemma, we modify this to suit our
applications.

Lemma 2.4. We can modify both the functors DdR( · ) and H1
cts(F, · ) as follows.

(i) Cutting out the kernel of the connecting homomorphism gives a functor

DdR( · ) : RepdR
Qp

(GF ) −→ VectF

V (−→ DdR(V )/ ker(δ0V )

(ϕ : V → W ) (−→ (DdR(ϕ) : DdR(V )/ ker(δ0V ) → DdR(W )/ ker(δ0W )),

where DdR(ϕ) is the map induced by the universal property of quotients for the com-
position qker(δ0W ) ◦DdR(ϕ).

(ii) Restricting to the image of the connecting homomorphism gives a functor

im(δ0· ) : RepdR
Qp

(GF ) −→ VectF

V (−→ im(δ0V )

(ϕ : V → W ) (−→ (H1
cts(F,ϕ)|im(δ0V ) : im(δ0V ) → im(δ0W )).

14



Proof. As we will see, (i) follows from the universal property of quotients, while for (ii) one
has to observe that H1

cts(F,ϕ) respects the images of the connecting homomorphisms. This
will be proven by considering the commutative diagram arising from applying cohomology
to the relevant morphism of short exact sequences.

Ad (i): First of all note that for any morphism ϕ : V → W of de Rham representations,
the assigned morphism DdR(ϕ) is meaningful as DdR(ϕ)(ker(δ

0
V )) ⊆ ker(δ0W ), so that the

universal property of quotients provides the desired morphism. In order to prove that

DdR(idV ) = idDdR(V ) and DdR(ϕ ◦ ϕ′) = DdR(ϕ) ◦DdR(ϕ
′)

for any two morphisms ϕ′ : U → V and ϕ : V → W , we show that both sides of the
respective desired equality satisfy the universal property for the considered quotient. The
identity case being clear, let us have a look at the composition. We claim that both the
maps DdR(ϕ ◦ ϕ′) and DdR(ϕ) ◦DdR(ϕ

′) fit in the diagram

DdR(U) DdR(W ) DdR(W )

DdR(U)

q
ker(δ0

U
)

DdR(ϕ◦ϕ′)
q
ker(δ0

W
)

as the dashed arrow making it commutative. Indeed, we compute

DdR(ϕ) ◦DdR(ϕ
′) ◦ qker(δ0U ) = DdR(ϕ) ◦ qker(δ0V ) ◦DdR(ϕ

′)

= qker(δ0W ) ◦DdR(ϕ) ◦DdR(ϕ
′)

= qker(δ0W ) ◦DdR(ϕ ◦ ϕ′).

Ad (ii): With the compatibility properties given, we only have to make sure the images
are respected, which is immediate from the construction. Indeed, tensoring the short exact
sequence (2.7) with V and W and applying cohomology to

V V ⊗ (Bφcris=1
cris ⊕ Fil0 BdR) V ⊗ BdR

W W ⊗ (Bφcris=1
cris ⊕ Fil0 BdR) W ⊗ BdR

gives a commutative diagram

DdR(V ) H1
cts(F, V )

DdR(W ) H1
cts(F,W ).

δ0V

DdR(ϕ) H1
cts(F,ϕ)

δ0W

This shows that H1
cts(F,ϕ)(im(δ0V )) ⊆ im(δ0W ) as required.

We record the following result, which is immediate from the above.
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Proposition 2.5. There is a natural isomorphism

expBK, · : DdR( · )
∼

=⇒ im(δ0· )

of functors RepdR
Qp

(GF ) → VectF .

We call expBK,V the Bloch–Kato exponential for V . Its inverse will be denoted logBK,V

and called the Bloch–Kato logarithm for V .
Going into the defining diagrams, [BK90, Corollary 3.8.4] provides an explicit description

of the appearing kernels and images:

ker(δ0V ) = im
&
Dcris(V )φcris=1 ⊕ Fil0DdR(V ) −→ DdR(V ), (x, y) (−→ x− y

'
,

im(δ0V ) = H1
e(F, V ).

If we further assume our de Rham representation V to satisfy Dcris(V )φcris,F=1 = 0, we
have in particular Dcris(V )φcris=1 = 0 and thus

ker(δ0V ) = Fil0DdR(V ) and im(δ0V ) = H1
f (F, V ). (2.8)

For the second equality, one simply notes that H1
e(F, V ) ⊆ H1

f (F, V ) have the same
dimension, which follows again by [BK90, Corollary 3.8.4] and the additional assump-
tion. The Bloch–Kato logarithm for a p-adic de Rham representation V of GK with
Dcris(V )φcris=1 = 0 hence is of the form

logBK,V : H1
f (F, V )

∼−→ DdR(V )/Fil0DdR(V ). (2.9)

Remark 2.6. As noted in [BDP17], the above assumptions are satisfied in particular for
representations arising as V = H2j−1

ét (X̄,Qp)(j) for X a smooth projective variety over a
number field K having good reduction at a prime ν of K lying above p, where now F = Kν .

Recalling the comparison isomorphism modulo filtrations (2.6), the following result pro-
vides another description of the image of the Bloch–Kato logarithm for representations
V = H2j−1

ét (X̄,Qp)(j) with X a smooth projective variety as above. It is a twisted version
of the Poincaré duality isomorphism (2.1) with respect to filtrations.

Lemma 2.7. There is a canonical isomorphism

H2j−1
dR (X/F )/Filj ∼= (Filj

∗
H2j∗−1

dR (X/F ))∨ (2.10)

induced by the Poincaré pairing, where j∗ = dim(X)− j + 1.

Proof. We consider the Poincaré pairing

〈 · , · 〉X : Hm
dR(X/F )×H

2 dim(X)−m
dR (X/F )[dim(X)] −→ F

with m = 2j − 1, providing an isomorphism

H2j−1
dR (X/F ) ∼= H

2 dim(X)−2j+1
dR (X/F )[dim(X)]∨
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of filtered F -vector spaces. In particular, we find that

H2j−1
dR (X/F )/Filj ∼= H

2 dim(X)−2j+1
dR (X/F )[dim(X)]∨/Filj . (2.11)

It is left to have a closer look at the right-hand side, for which we consider the projection

H
2 dim(X)−2j+1
dR (X/F )[dim(X)]∨ (Fil1−j H

2 dim(X)−2j+1
dR (X/F )[dim(X)])∨

given by the dual of the inclusion. Its target is qual to the right-hand side of (2.10) and
its kernel equals

(Fil1−j H
2 dim(X)−2j+1
dR (X/F )[dim(X)])⊥ = Filj(H

2 dim(X)−2j+1
dR (X/F )[dim(X)]∨),

which is precisely the j-th filtration piece on the right-hand side of (2.11).

We call the isomorphism (2.10) twisted Poincaré duality isomorphism and henceforth
denote it by PDX .

2.5 Étale Cohomology and p-adic Abel–Jacobi Maps. Let now X be a smooth
projective variety over a field K of characteristic zero. As mentioned before, the geometric
étale cohomology groups Hj

ét(X̄,Qp) and their twists are of particular interest in our con-
siderations of Galois representations. While for these we are extending scalars of the variety
to an algebraic closure, one can also take arithmetic étale cohomology groups (continuous
étale cohomology in the sense of [Jan88]) of X over K, without extending scalars. We
denote these groups by Hj′

ét(X,Qp). Their relation to the Galois cohomology of Hj
ét(X̄,Qp)

leads to the construction of the p-adic étale cycle class and Abel–Jacobi maps that we are
interested in. Moreover, as remarked earlier, in the p-adic case, the material presented in
the previous two sections enables one to view notions on de Rham cohomology as certain
images of their étale versions. Therefore, by definition, there is a compatibility between
considerations on de Rham cohomology over p-adic fields and p-adic étale cohomology.
After briefly introducing some concepts on the level of étale cohomology, we explain how
to pass to their de Rham versions.

Let us start by recalling the construction of the p-adic étale cycle class map, following
Nekovář [Nek00]. For X as above, we consider the cycle class map

clpét,a : CHn(X)(K) −→ H2n
ét (X,Qp(n))

with values in p-adic arithmetic étale cohomology. There is a Hochschild–Serre spectral
sequence

Hi
cts(K,Hj

ét(X̄,Qp)(n)) =⇒ Hi+j
ét (X,Qp(n))

linking arithmetic and geometric étale cohomology, which degenerates at the second page
(cf. [Del68], [Del80]). More precisely, there exists a decreasing filtration

· · · ⊆ Filj Hm
ét(X,Qp(n)) ⊆ · · · ⊆ Fil0Hm

ét(X,Qp(n)) = Hm
ét(X,Qp(n))

in such a way that there are isomorphisms

α
(n)
m,j : Filj Hm

ét(X,Qp(n))/Fil
j+1Hm

ét(X,Qp(n))
∼−→ Hj

cts(K,Hm−j
ét (X̄,Qp)(n)).
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This provides various maps, including the p-adic étale cycle class map

clpét,g : CHn(X)(K) −→ H2n
ét (X̄,Qp)(n).

The image of this map actually consists of GK-invariants, as it is constructed as the
composition

CHn(X)(K) H2n
ét (X,Qp(n)) H2n

ét (X,Qp(n))/Fil
1 H2n

ét (X̄,Qp)(n)
GK∼ (2.12)

of the cycle class map for p-adic arithmetic étale cohomology with the natural projection
and the isomorphism α

(n)
2n,0. This map is object of the Tate Conjecture for smooth projective

varieties X over number fields K, claiming surjectivity of the map

clpét,g ⊗Qp : CHn(X)(K)⊗Qp −→ H2n
ét (X̄,Qp)(n)

GK .

As this will be of interest at a later point, we will come back to this and discuss its relevance
for us at the beginning of Section 4.

Remark 2.8. We note that ker(clpét,g) is independent of the choice of the prime p. In
fact, the kernel ker(clpét,g) is precisely the group of null-homologous cycles CHn(X)0(K) as
defined in Section 2.2.

Given Π ∈ CHm(X×Y )(K), with Y of dimension e, we use the cycle class map to define
its induced maps on p-adic étale cohomology

Π∗,p
ét : H2m−j′

ét (Ȳ ,Qp) −→ H2d−j′

ét (X̄,Qp)(m− e),

Πp
ét,∗ : H

2d−j
ét (X̄,Qp) −→ H2m−j

ét (Ȳ ,Qp)(m− d),

by considering the exact étale analogue of diagram (2.2). More precisely, we define ( · )pét,∗
through the diagram

CHm(X × Y )(K) H2m
ét (X × Y ,Qp)(m)

Hom(H2d−j
ét (X̄,Qp),H

2m−j
ét (Ȳ ,Qp)(m− d)) Hj

ét(X̄,Qp)⊗H2m−j
ét (Ȳ ,Qp)(m).

clpét,g

( · )pét,∗ prj

∼

The assignment ( · )∗,pét is again defined to be its adjoint with respect to the Poincaré
pairing on étale cohomology. Note that as before one can make the relevant adjustments
for extensions L/K inside C and that the resulting maps are actually GL-equivariant.

When considering the local case of a finite extension F of Qp, the de Rham versions of
the above maps arise through the commutative diagrams

DdR(H
j
ét(Ȳ ,Qp)) DdR(H

j−2(e−m)
ét (X̄,Qp)(m− e))

Hj
dR(Y/F ) H

j−2(e−m)
dR (X/F )[m− e]

DdR(Π∗,p
ét )

∼compdR ∼compdR

Π∗,p
dR

18



and

DdR(H
j
ét(X̄,Qp)) DdR(H

j−2(d−m)
ét (Ȳ ,Qp)(m− d))

Hj
dR(X/F ) H

j−2(d−m)
dR (Y/F )[m− d].

DdR(Πp
ét,∗)

∼compdR ∼compdR

Πp
dR,∗

Let now K be a number field. We close this section by briefly discussing the p-adic étale
Abel–Jacobi map. By using the material of the previous subsections, this can be used to
introduce the p-adic Abel–Jacobi map on de Rham cohomology over p-adic fields Kν . On
étale cohomology, the map is of the form

AJpét,X : CHj(X)0(K) −→ H1
cts(K,H2j−1

ét (X̄,Qp)(j)),

induced by the following observation. Given Π ∈ CHj(X)0(K), the definition (2.12) of
clpét,g reveals that clpét,a(Π) ∈ Fil1H2j

ét (X,Qp(j)), so that we can set

AJpét,X(Π) = α
(j)
2j,1([cl

p
ét,a(Π)]).

We note (cf. [Nek00]) that the image of AJpét,X lies in the Bloch–Kato Selmer group
H1

f (K,H2j−1
ét (X̄,Qp)(j)). As before, a change in the field of definition on the left-hand side

translates to an appropriate change on the right-hand side for the Galois cohomology.
We can now introduce the p-adic Abel–Jacobi map on de Rham cohomology. We assume

the variety X to have good reduction at a prime ν lying above p. By restricting the target
of AJpét,X to Kν , we can consider the Bloch–Kato logarithm (2.9) along with the comparison
isomorphism modulo filtrations (2.6) and the twisted Poincaré duality isomorphism (2.10):

logBK,X : H1
f (Kν ,H

2j−1
ét (X̄,Qp)(j))

∼−→ DdR(H
2j−1
ét (X̄,Qp)(j))/Fil

0,

compdR,X : DdR(H
2j−1
ét (X̄,Qp)(j))/Fil

0 ∼−→ H2j−1
dR (X/Kν)[j]/Fil

0,

PDX : H2j−1
dR (X/Kν)[j]/Fil

0 ∼−→ (Filj
∗
H2j∗−1

dR (X/Kν))
∨.

We denote their composition by

logνX : H1
f (Kν ,H

2j−1
ét (X̄,Qp)(j))

∼−→ (Filj
∗
H2j∗−1

dR (X/Kν))
∨. (2.13)

This map will be referred to as the ν-adic logarithm. We denote its inverse by expνX and
call it the ν-adic exponential. Finally, we can define

AJνdR,X = logνX ◦resν ◦AJpét,X : CHj(X)0(K) −→ (Filj
∗
H2j∗−1

dR (X/Kν))
∨ (2.14)

to be the ν-adic Abel–Jacobi map on de Rham cohomology.
The compatibility of ν-adic Abel–Jacobi maps for varities X and Y through the induced

maps introduced before takes the form of the commutative diagram

CHj(X)0(K) (Fild−j+1H
2(d−j)+1
dR (X/Kν))

∨

CHm−d+j(Y )0(K) (File−m+d−j+1H
2(e−m+d−j)+1
dR (Y/Kν))

∨

Π∗

AJνdR,X

Π∗,p,∨
dR

AJνdR,Y

(2.15)
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for cycles Π ∈ CHm(X × Y )(K). This is referred to as functoriality of Abel–Jacobi maps
with respect to correspondences.

Remark 2.9. To be precise, the map Π∗,p,∨
dR on the right-hand side of diagram (2.15) is

given by the dual of the filtration piece File−m+d−j+1Π∗,p
dR.
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3 Self-Fold Triple Products

We will now turn our attention towards the particular situation that we are interested in
– three-fold products of elliptic curves over the rational numbers. Let A/Q be an elliptic
curve with corresponding modular form fA ∈ Snew2 (Γ0(cond(A))) and associated p-adic
Galois representation

ρfA,p : GQ −→ GL2(Qp),

whose properties we recall below. Considering its three-fold tensor product ρ⊗3
fA,p, we want

to know about the existence of a projection of representations

ρ⊗3
fA,p(n) ρ⊕m

fA,p (3.1)

for an appropriate twist n ∈ Z and multiplicity m ≥ 1.
With regard to our subsequent considerations of Hida families and p-adic L-functions

attached to those, we will address this question in a more general context. More precisely,
we let θ ∈ Sk(Γ0(N)) be an eigenform of even weight k ≥ 2 and ask the very same question
for the attached p-adic Galois representation ρθ,p. We will answer this by decomposing the
triple product, revealing the original representation as one of the components of the direct
sum.

On the one hand, when specializing to the weight-two case of an elliptic curve, the
projection (3.1) that this section provides will be of fundamental interest for our upcoming
discussion of conjectural parametrizations via three-fold products. On the other hand,
those eigenforms considered in the general situation show up when looking at the weight-k
specializations of the Hida family that we will consider later. Again, the result will play
an important role in our study of complex and p-adic L-functions, more precisely in the
factorization of such.

3.1 Galois Representations Attached to Modular Forms. Let θ ∈ Sk(Γ0(N))
be an eigenform of even weight k ≥ 2 and denote by Kθ the number field generated by
its Fourier coefficients {an(θ)}n. As constructed by Deligne (cf. [Del71], [Rib77, Theorem
2.1]), we consider the p-adic Galois representation

ρθ,p : GQ −→ GL2(Kθ ⊗Qp)

with the following property. For any prime q ∤ Np, the representation ρθ,p is unramified at
q with

tr(ρθ,p(Frobq)) = aq(θ), det(ρθ,p(Frobq)) = qk−1.

Remark 3.1. Note that this is the contragredient representation of that originally con-
structed by Deligne. For example, for an elliptic curve A/Q, the representation ρfA,p is
realized by the p-adic Tate module Vp(A), which is the dual of the first étale cohomology
group H1

ét(Ā,Qp).
We will be looking at those representations through the following p-adic variants. De-

composing Kθ ⊗ Qp as the product of the various completions Kθ,p for primes p of OKθ

lying above p, the representation ρθ,p decomposes as the direct sum of representations

ρθ,p : GQ −→ GL2(Kθ,p)
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with coefficients in a finite extension of Qp. This viewpoint is useful as one has the following
result.

Proposition 3.2 ([Rib77, Theorem 2.3]). The representations ρθ,p are simple.

The importance of this observation lies in the fact of semi-simple representations being
up to isomorphism uniquely determined by a particular finite amount of Frobenius-traces
via a density argument. We will discuss this in greater detail in the next subsection.

3.2 Characterization of Semi-Simple Galois Representations. We will now have
a look at how considerations on the level of Frobenius-traces characterize semi-simple Ga-
lois representations. To put ourselves in the setting in which we want to apply these
methods, we consider representations of GQ with coefficients in a finite extension F/Qp.

Let us fix the following simple observation.

Lemma 3.3. Let ρ ↠ ρ′ be a projection of semi-simple representations. Then, given any
σ ∈ GQ, each eigenvalue for ρ′(σ) is also one for ρ(σ).

Proof. Let ϕ : V ↠ W be the corresponding GQ-equivariant projection between the rep-
resentation spaces of ρ and ρ′. As V is semi-simple, there exists a section, i.e. a GQ-
equivariant map ϕ′ : W ↩→ V such that ϕ ◦ ϕ′ = idW . Let w ∈ W be an eigenvector of
ρ′(σ) with eigenvalue µ, so that in particular w ∕= 0. Then ϕ′(w) ∕= 0 and

ρ(σ)(ϕ′(w)) = ϕ′(ρ′(σ)(w)) = ϕ′(µw) = µϕ′(w),

so µ is also an eigenvalue for ρ(σ).

Therefore, checking the eigenvalues for ρ(σ) and ρ′(σ) for an accessible amount of σ ∈ GQ
may be the first thing to consider when hoping for a projection ρ ↠ ρ′. In our case, these
elements will be the Frobenius elements Frobq for primes q ∤ Np.
Remark 3.4. To be precise, in general one has to replace the representations by a suitable
scalar extension to make sense of talking about actual eigenvalues. However, we will not
get into this as in the end we are working with Frobq-traces instead of Frobq-eigenvalues,
which always belong to the field of definition.

Taking this observation a step further, we now introduce the relevant material for the
characterization, as can be found in [FWG+92]. Let S be a finite set of primes including
p and let K/Q be a finite Galois extension unramified outside of S. A particular version
of the Chebotarev Density Theorem (cf. Corollary 2.4 of loc. cit.) provides a finite set
TK,S of primes disjoint from S in such a way that the conjugacy classes of the Frobenius
automorphisms at q for q ∈ TK,S cover all of Gal(K/Q).

Now, let d ≥ 1 be an integer and take L to be the finite Galois extension of Q con-
taining all the Galois extensions K/Q of degree [K : Q] < p2d

2 which are unramified
outside of S. Considering the finite set of primes TL,S defined as above, semi-simple Galois
representations of dimension d are characterized by the following result.

Proposition 3.5 ([FWG+92, Proposition 2.7]). Let ρ, ρ′ : GQ → GLd(F ) be two semi-
simple Galois representations which are unramified outside of S and satisfy

tr(ρ(Frobq)) = tr(ρ′(Frobq)) for all q ∈ TL,S .

Then ρ and ρ′ are isomorphic.
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Remark 3.6. We note that we replaced Qp by F in the above result as its proof does
not depend on that choice. In our situation of representations associated to an eigenform
θ ∈ Sk(Γ0(N)), these finite extensions will be the p-adic completions Kθ,p, appearing in
the decomposition Kθ ⊗Qp =

-
p|pKθ,p mentioned before.

3.3 The Appropriate Twist of the Triple Product and its Decomposition. We
will now compare Frobenius-eigenvalues and -traces for our Galois representations of in-
terest in order to determine how to appropriately twist the triple product representation.
Note that in the end, we have to consider the relevant p-adic components of the repre-
sentations of interest, but as the Frobenius-eigenvalues of the original representation give
those of the components, we have a look at these.

As the twists of the representation are described by powers of the p-adic cyclotomic
character, let us briefly recall its construction. Let n ≥ 1 be an integer and let µpn

denote the group of pn-th roots of unity in Q̄×. Fixing a primitive pn-th root of unity ζpn

generating µpn , we can define the mod pn cyclotomic character to be the map

χp,n : GQ −→ (Z/pnZ)×, such that σ(ζpn) = ζ
χp,n(σ)
pn for σ ∈ GQ.

When n varies, the elements χp,n(σ) form a compatible system and hence yield an element
χp(σ) ∈ Z×

p . The so obtained map

χp : GQ −→ Z×
p

is referred to as the p-adic cyclotomic character. This map is unramified at primes q ∕= p,
and moreover satisfies χp(Frobq) = q for such primes. Twisting a p-adic Galois represen-
tation ρ by n ∈ Z thus affects the Frobq-eigenvalues by multiplication by qn.

We can now turn to the study of representations of interest. Let θ ∈ Sk(Γ0(N)) be an
eigenform. We fix a prime p and consider the associated p-adic Galois representation from
Section 3.1. In the following, we refrain from carrying the prime p in the index of the
representation and denote it by ρθ.

A direct computation shows how the triple product ρ⊗3
θ should be twisted in order to

have a chance for a projection onto ρθ.

Lemma 3.7. For every prime q ∤ Np, each Frobq-eigenvalue for ρθ appears as a Frobq-
eigenvalue for ρ⊗3

θ (1− k).

Proof. Let αq and βq be the roots of the characteristic polynomial of ρθ(Frobq). Since
αqβq = qk−1, we immediately notice that for ρ⊗3

θ (1−k)(Frobq) we find α3
qq

1−k and β3
q q

1−k,
both with multiplicity one, as well as αq and βq, both with multiplicity three.

Our goal is now to establish a projection

ρ⊗3
θ (1− k) ρ⊕2

θ . (3.2)

This is done by decomposing the left-hand side, using considerations on the level of Frobq-
traces. More precisely, we will write down a representation, having the same Frobenius-
traces as our triple product for the right amount of primes, so that, considering the p-adic
components of both of these, we can apply Proposition 3.5 to those for each p | p. Here,
the finite set S will be given by S(N) = {q prime : q | N} ∪ {p}, and we set T (N) to be
TL,S(N) as in the notation of Section 3.2.
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Proposition 3.8. There is an isomorphism of p-adic Galois representations

ρ⊗3
θ (1− k) ∼= ρ⊕2

θ ⊕ Sym3(ρθ)(1− k).

Proof. Let q ∈ T (N), so that in particular q ∤ Np. We compute that

tr(ρ⊗3
θ (1− k)(Frobq)) = q1−k(α3

q + β3
q ) + 3aq(θ)

= tr(Sym3(ρθ)(1− k)(Frobq)) + tr(ρ⊕2
θ (Frobq))

= tr((Sym3(ρθ)(1− k)⊕ ρ⊕2
θ )(Frobq)).

Therefore, in particular the p-adic components on both sides share the same Frobq-traces.
Noting that tensor products of semi-simple representations are semi-simple (cf. [Hoc71,
Theorem 12.2]), as are subrepresentations of semi-simple representations, the stability of
semi-simplicity under taking direct sums ensures that all the considered representations are
semi-simple. Now, Proposition 3.5 yields an isomorphism as desired on each p-component,
assembling to an isomorphism as claimed.

Remark 3.9. One might ask whether one can find a higher multiplicity of ρθ inside the
triple product ρ⊗3

θ (1− k). The summand that has to be studied further for such a higher
multiplicity result is Sym3(ρθ)(1− k). As its Frobq-traces are given by

tr(Sym3(ρθ)(1− k)(Frobq)) = q1−k(α3
q + β3

q ) + aq(θ)

= q1−k(α3
q + β3

q ) + tr(ρθ(Frobq)),
(3.3)

in order to find another copy of ρθ, one has to realize the error term q1−k(α3
q + β3

q ) as
the Frobq-trace of some p-adic representation. As will be presented in what follows, this
is indeed possible in a complex multiplication case. However, let us point out that the
multiplicity of ρθ can not be four. Indeed, if this were the case, then we would have
q1−kaq(θ)

3 = 4aq(θ), so that by choosing a prime q ∤ N with aq(θ) ∕= 0, we arrive at.
qk−1 ∈ Q, which forms a contradiction as k ≥ 2 is even.

Complex Multiplication. In this section, we want to improve the above discussion in a
special case, whose origin lies in assuming our elliptic curve A/Q to have complex mul-
tiplication by a quadratic imaginary field K. Let ψA be the Hecke character of infinity
type (1, 0) attached to A, inducing the weight-two newform θψA

= fA that establishes the
modularity of A. In this situation, we will prove that we can now obtain a projection of
the form

ρ⊗3
fA

(−1) ρ⊕3
fA

. (3.4)

More precisely, we will show in greater generality that the twisted triple tensor product Ga-
lois representations of cusp forms induced by odd powers of a Hecke character ψ of infinity
type (1, 0) split further, now allowing to find three copies of the original representation.

Let k ≥ 2 be an even integer and consider the Hecke character ψk−1 of K of infinity
type (k − 1, 0). As k − 1 is odd, its central character is given by the quadratic Dirichlet
character attached to K, and so ψk−1 gives rise to a cusp form

θψk−1 ∈ Sk(Γ0(− disc(K)Nfψk−1)),
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where fψk−1 denotes the conductor of ψk−1. For the good primes, the Frobq-eigenvalues of
the attached Galois representation can be described in terms of the Hecke character ψk−1,
depending on the ramification behavior of q in the field K:

/
{ψk−1(q),ψk−1(q′)} if qOK = q q′

{±ψk−1(q)1/2} if qOK = q.
(3.5)

The next result is a follow-up version of Proposition 3.8 in this particular situation of
Hecke characters.

Proposition 3.10. There is an isomorphism of p-adic representations

ρ⊗3
θ
ψk−1

(1− k) ∼= ρ⊕3
θ
ψk−1

⊕ ρθ
ψ3k−3

(1− k).

Proof. As remarked earlier, we will now analyze the component Sym3(ρθ
ψk−1

)(1− k). Set
Nk−1 = − disc(K)Nfψk−1 and let, in the notation introduced above, q be a prime not in
S(Nk−1). Denoting αq,k−1 and βq,k−1 the Frobq-eigenvalues of ρθ

ψk−1
, by using (3.3) and

(3.5) we can compute

q1−k(α3
q,k−1 + β3

q,k−1) + aq(θψk−1) = q1−k(α3
q,k−1 + β3

q,k−1) + tr(ρθ
ψk−1

(Frobq))

= q1−k(αq,3k−3 + βq,3k−3) + tr(ρθ
ψk−1

(Frobq))

= tr(ρθ
ψ3k−3

(1− k)(Frobq)) + tr(ρθ
ψk−1

(Frobq))

= tr((ρθ
ψ3k−3

(1− k)⊕ ρθ
ψk−1

)(Frobq)).

It should be noted that S(N3k−3) ⊆ S(Nk−1), so our choice of primes to consider makes
sense. Again, executing the same argument as before concerning the p-adic components,
Proposition 3.5 concludes the proof.

Specializing Proposition 3.10 to the weight-two case of an elliptic curve A/Q, we obtain
the enhanced version (3.4) of (3.2) in the case of complex multiplication.
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4 Conjectural Parametrizations via Three-Fold Products

In this section, we study the possibility of obtaining conjectural parametrizations of elliptic
curves through the analysis of the three-fold Galois representation that we discussed in the
previous section. The fundamental ingredient for these conjectural considerations is the
following statement.

Conjecture 4.1 (Tate Conjecture). If Z is a smooth projective variety over a number field
K, then

clpét,g ⊗Qp : CHn(Z)(K)⊗Qp −→ H2n
ét (Z̄,Qp)(n)

GK

is surjective.

Before we explain how to put our analysis of Galois representations into the context of
the Tate Conjecture, let us recall in which case elements of CHn(Z)(K) are of interest
for parametrizations. Let X and Y be smooth projective varieties over K and let Π ∈
CHn(X × Y )(K). Denoting by prX : X × Y → X and prY : X × Y → Y the natural
projection maps, recall (cf. Section 2.1) that one has an induced map

Π∗ : CHdim(X)+j−n(X)0(K) −→ CHj(Y )0(K)

∆ (−→ prY,∗(Π · pr∗X(∆)).

This is of particular interest for us when we take Y to be our elliptic curve A/Q and j = 1.
More precisely, we will be considering this in the case of X = A3, so that the sought for
elements live in the Chow group of the four-fold A4.

As a consequence of the formulation of the Tate Conjecture, we necessarily encounter
p-adic coefficients and so we will also address the question of an appropriate normalization
in order to get towards a global parametrization with rational coefficients.

4.1 Projections onto the Tate Module and the Tate Conjecture. We will now
discuss how certain Galois equivariant maps with target the Tate module of A come into
play for obtaining conjectural parametrizations of A. The Tate Conjecture will be used
through the following simple observation.

Lemma 4.2. Any GK-equivariant projection ϕ : H2j−1
ét (X̄,Qp)(j) ↠ Vp(A) corresponds to

a non-trivial element

Zϕ ∈ H2j∗

ét (X ×A,Qp)(j
∗)GK for j∗ = dim(X) + 1− j.

Proof. Starting with the fact that any G-invariant map V → W corresponds to an element
of (V ∨ ⊗W )G, we see that ϕ corresponds to a non-zero element of

Zϕ ∈ (H2j−1
ét (X̄,Qp)(j)

∨ ⊗ Vp(A))GK

= (H2j−1
ét (X̄,Qp)

∨(−j)⊗H1
ét(Ā,Qp)(1))

GK

= (H
2 dim(X)−2j+1
ét (X̄,Qp)(dim(X)− j)⊗H1

ét(Ā,Qp)(1))
GK

⊆ H2j∗

ét (X ×A,Qp)(j
∗)GK .

Here, we have further used Poincaré duality and the Künneth decomposition.
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In the following, we will explain how to situate ourselves within the aforementioned
scenario for our particular case of interest. Let fA ∈ S2(Γ0(cond(A))) be the cusp form
attached to A by the modularity theorem. The decomposition of Proposition 3.8 provides
a projection

ρ⊗3
fA

(−1) ρ⊕2
fA

of p-adic Galois representations, which translates to a GQ-invariant projection

H1
ét(Ā,Qp)

⊗3(2) Vp(A)
⊕2.

Combining this with the natural projection arising from the Künneth decomposition lets
us end up with a GQ-equivariant projection

πét : H3
ét(Ā

3,Qp)(2) Vp(A)
⊕2.

We refer to its components by πét,i and record the following observation, performing the
steps from the previous general considerations in this particular case.

Lemma 4.3. If the Tate Conjecture is true for A4 in codimension two, then the two compo-
nents of the GQ-equivariant projection πét give rise to elements Π

?,(p)
i ∈ CH2(A4)(Q)⊗Qp,

consequently inducing parametrizations

Π
?,(p)
i,∗ : CH2(A3)0(Q)⊗Qp −→ A(Q)⊗Qp.

Proof. By Lemma 4.2, we know that we can view the component πét,i as a non-trivial
element Zπét,i

∈ H4
ét(Ā

4,Qp)(2)
GQ . Assuming the validity of the Tate Conjecture thus

gives rise to an element

Π
?,(p)
i ∈ CH2(A4)(Q)⊗Qp such that (clpét,g ⊗Qp)(Π

?,(p)
i ) = Zπét,i

.

As introduced in Section 2 and recalled at the beginning of this section, this yields

Π
?,(p)
i,∗ : CH2(A3)0(Q)⊗Qp −→ A(Q)⊗Qp.

As we are ultimately interested in obtaining objects that are defined over Q without
the need of extending coefficients to Qp, in the following we will study the process of
normalizing the original projection πét in an appropriate way in order to naturally get
towards a global parametrization.

4.2 Passing to de Rham Cohomology. We will now describe how πét induces a
corresponding projection πdR in de Rham cohomology, whose components we will again
denote by πdR,i. This morphism in de Rham cohomology has the advantage that its
domain and target have natural Q-structures, which we will use for normalizing our original
projection on the level of étale cohomology.

Applying DdR to the projection πét : H
3
ét(Ā

3,Qp)(2) ↠ H1
ét(Ā,Qp)(1)

⊕2 and using the
respective comparison isomorphism (2.5) on both sides induces a map

πdR : H3
dR(A

3/Qp)[2] −→ H1
dR(A/Qp)[1]

⊕2
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defined by the diagram

DdR(H
3
ét(Ā

3,Qp)(2)) DdR(Vp(A)⊕2)

H3
dR(A

3/Qp)[2] H1
dR(A/Qp)[1]

⊕2.

compdR,A3 ∼

DdR(πét)

comp⊕2
dR,A ∼

πdR

(4.1)

Remark 4.4. Note that DdR(πét)i = DdR(πét,i), so it does not matter at which point we
decide to consider the respective components separately for studying πdR.

We record two useful properties of the induced map on de Rham cohomology.

Lemma 4.5. The map πdR vanishes on Sym3(H1
dR(A/Qp)[1])[−1].

Proof. As πét vanishes on Sym3(H1
ét(Ā,Qp)(1))(−1), it follows by its very construction that

πdR vanishes on the image of DdR(Sym
3(H1

ét(Ā,Qp)(1))(−1)) under the relevant compari-
son isomorphism. Note that Sym3(H1

ét(Ā,Qp)(1))(−1) is indeed a de Rham representation,
being the kernel of the surjection

H1
ét(Ā,Qp)

⊗3(2) Vp(A)
⊕2

of de Rham representations which arises from Proposition 3.8. This follows for example
from Lemma 2.1. The assertion then follows from the fact that the comparison isomorphism
on the triple product side restricts to an isomorphism

DdR(Sym
3(Vp(A))(−1)) ∼= Sym3(H1

dR(A/Qp)[1])[−1].

Lemma 4.6. The map πdR is surjective, and so is each of its filtration parts

Filj πdR : Filj+2H3
dR(A

3/Qp) (Filj+1H1
dR(A/Qp))

⊕2.

Proof. As DdR is exact by Theorem 2.2, it takes the short exact sequence

ker(πét) H3
ét(Ā

3,Qp)(2) Vp(A)⊕2πét

in RepdR
Qp

(GQp) to a short exact sequence

DdR(ker(πét)) DdR(H
3
ét(Ā

3,Qp)(2)) DdR(Vp(A)
⊕2)

DdR(πét)

in FilQp . Therefore, DdR(πét), and thus πdR by its definition (4.1), are surjective. Recall
that in the category of filtered vector spaces, short exact sequences are those having strict
morphisms as the injection and surjection, i.e.

DdR(πét)(Fil
j DdR(H

3
ét(Ā

3,Qp)(2))) = Filj DdR(Vp(A)⊕2) ∩ im(DdR(πét))

= Filj DdR(Vp(A)⊕2).

As the comparison isomorphisms respect the filtrations, being strict as well, this finishes
the proof of surjectivity of Filj πdR.
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For a deeper examination of the maps πét and πdR, we position ourselves within a context
enriched with additional knowledge about the Bloch–Kato logarithm, achieved through the
imposition of the assumption of good reduction at p. Recalling the Bloch–Kato logarithm
(2.9), the comparison isomorphism modulo filtrations (2.6) and the twisted Poincaré duality
isomorphism (2.10), the p-adic logarithms that are of interest for us are of the following
form.

Lemma 4.7. The p-adic logarithms for A3 and A give isomorphisms of the form

logp
A3 : H

1
f (Qp,H

3
ét(Ā

3,Qp)(2))
∼−→ (Fil2H3

dR(A
3,Qp))

∨,

logpA : H1
f (Qp, Vp(A))

∼−→ Ω1(A/Qp)
∨.

Proof. As introduced in (2.13), these maps are given by the composition of the following
isomorphisms:

logBK,A3 : H1
f (Qp,H

3
ét(Ā

3,Qp)(2))
∼−→ DdR(H

3
ét(Ā

3,Qp)(2))/Fil
0,

compdR,A3 : DdR(H
3
ét(Ā

3,Qp)(2))/Fil
0 ∼−→ H3

dR(A
3/Qp)[2]/Fil

0,

PDA3 : H3
dR(A

3/Qp)/Fil
0 ∼−→ (Fil2H3

dR(A
3/Qp))

∨,

respectively,

logBK,A : H1
f (Qp, Vp(A))

∼−→ DdR(Vp(A))/Fil
0,

compdR,A : DdR(Vp(A))/Fil
0 ∼−→ H1

dR(A/Qp)[1]/Fil
0,

PDA : H1
dR(A/Qp)/Fil

0 ∼−→ (Fil1H1
dR(A/Qp))

∨.

We further have the following compatibility result through the various ingredients of
these p-adic logarithms.

Proposition 4.8. The following diagram is commutative:

H1
f (Qp,H

3
ét(Ā

3,Qp)(2)) H1
f (Qp, Vp(A))

DdR(H
3
ét(Ā

3,Qp)(2))/Fil
0 DdR(Vp(A))/Fil

0

H3
dR(A

3/Qp)[2]/Fil
0 H1

dR(A/Qp)[1]/Fil
0

(Fil2H3
dR(A

3/Qp))
∨ Ω1(A/Qp)

∨.

H1
f (Qp,πét,i)

logBK,A3 ∼ logBK,A ∼

compdR,A3 ∼

DdR(πét,i)

compdR,A ∼

πdR,i

PDA3 ∼ PDA ∼

πad,∨
dR,i

Proof. The top square commutes by Proposition 2.5 and (2.8). For showing commutativity
of the middle square one applies the universal property of quotients in various situations.
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More precisely, one shows that both the maps πdR,i ◦ compdR,A3 and compdR,A ◦DdR(πét,i)
qualify for being the unique dashed arrow making the diagram

DdR(H
3
ét(Ā

3,Qp)(2)) H1
dR(A/Qp)[1]/Fil

0

DdR(H
3
ét(Ā

3,Qp)(2))/Fil
0

qFil0

qFil0 ◦ compdR,A ◦DdR(πét,i)

commutative. Finally, the bottom square commutes by definition: πad
dR,i is the adjoint of

πdR,i with respect to the Poincaré pairing and the twisted Poincaré duality isomorphisms
PDA and PDA3 are given by that pairing.

4.3 A More Detailed Look at the Relevant Filtration Step. Let us have a
look at a specific filtration piece of our projection πdR. We take ωA to be the canonical
differential on A and write

H1
dR(A/Qp) = QpωA ⊕QpηA

for another element ηA ∈ H1
dR(A/Qp), which may be chosen to satisfy 〈ωA, ηA〉A = 1. We

then have

Fil0H1
dR(A/Qp)[1] = Fil1H1

dR(A/Qp) = Ω1(A/Qp) = QpωA,

Fil0H3
dR(A

3/Qp)[2] = Fil2H3
dR(A

3/Qp) = Qpϖ
123
A ⊕Qpϖ

12
A ⊕Qϖ13

A ⊕Qpϖ
23
A ,

where for J a set of indices,

ϖJ
A = pr∗A,1,dR ϑ1 ∧ pr∗A,2,dR ϑ2 ∧ pr∗A,3,dR ϑ3, with ϑj =

/
ωA if j ∈ J

ηA if j /∈ J .

Here, prA,j : A
3 → A is the projection onto the j-th component of the triple product. By

Lemma 4.6, we now have a projection

Fil0 πdR : Fil2H3
dR(A

3/Qp) Ω1(A/Qp)
⊕2.

As provided by Lemma 4.5, the vanishing of πét on Sym3(H1
ét(Ā,Qp)(1))(−1) implies

the vanishing of the induced map πdR on the corresponding 4-dimensional Qp-vector space
Sym3(H1

dR(A/Qp)[1])[−1], which is generated by

ϖ∅
A, ϖ123

A , ϖ12
A +ϖ13

A +ϖ23
A , ϖ1

A +ϖ2
A +ϖ3

A.

Out of these generators, only ϖ123
A and ϖ12

A +ϖ13
A +ϖ23

A belong to the filtration step we
are interested in, so we obtain a two-dimensional subspace H ⊆ Fil2H3

dR(A
3/Qp) and an

isomorphism

Fil0 πdR : Fil2H3
dR(A

3/Qp)/H
∼−→ Ω1(A/Qp)

⊕2.
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Complex Multiplication. By our analysis on the level of Galois representations (cf.
Proposition 3.10), in the case of A having complex multiplication, we obtain

Fil0 πdR : Fil2H3
dR(A

3/Qp) Ω1(A/Qp)
⊕3.

Hence, we only have to cut out a one-dimensional subspace H ⊆ Fil2H3
dR(A

3/Qp) for
getting an isomorphism onto Ω1(A/Qp)

⊕3. Further filtration considerations show that πdR
vanishes on ϖ123

A and hence we get an isomorphism

Fil0 πdR : Fil2H3
dR(A

3/Qp)/Qpϖ
123
A

∼−→ Ω1(A/Qp)
⊕3.

Indeed, the differential ϖ123
A generates Fil3H3

dR(A
3/Qp), which under πdR maps onto

(Fil1H1
dR(A/Qp)[1])

⊕3 = (Fil2H1
dR(A/Qp))

⊕3 = 0.

4.4 Normalization and Conjectural Global Cycles. The remainder of this section
concerns two objectives, which we discuss in separate subsections. For these, we use the
comparison between étale and de Rham cohomology and take advantage of the rational
structure of the latter. More precisely, we normalize our projection πét by requiring that the
induced projection πdR respects the Q-structures of the relevant de Rham cohomologies.
This results in having an induced projection of the form

πdR : H3
dR(A

3/Q)[2] H1
dR(A/Q)[1]⊕2.

On the one hand, we study the conjectural existence of corresponding cycles with rational
coefficients, inducing a map on de Rham cohomology as above. Consequently, our study
aims to provide a conjectural parametrization

CH2(A3)0(Q) −→ A(Q)⊕2.

This gives a conjectural map which non-conjecturally produces rational points on the ellip-
tic curve from rational cycles on its three-fold product. On the other hand, the subsequent
subsection concerns a non-conjectural map

H1
f (Q,πét,i) ◦AJp

ét,A3 : CH2(A3)0(Q) −→ H1
f (Q, Vp(A))

which conjecturally produces rational points on the elliptic curve from rational cycles on
its three-fold product. Their relation will be displayed by a commutative diagram provided
by Lemma 4.15.

Recall the cycle class map in de Rham cohomology

cldR : CH2(A4)(Q) −→ H4
dR(A

4/Q)[2]

and the Künneth decomposition

H4
dR(A

4/Q)[2] =
!

j+j′=4

Hj
dR(A

3/Q)⊗Hj′

dR(A/Q)[2].
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Both the cycle class map and the Künneth decomposition were used to define the maps on
de Rham cohomology induced by cycles in Section 2.2. More precisely, recall the diagram

CH2(A4)(Q) H4
dR(A

4/Q)[2]

Hom(H3
dR(A

3/Q)[2],H1
dR(A/Q)[1]) H3

dR(A
3/Q)[1]⊗H1

dR(A/Q)[1],

cldR

( · )dR,∗ pr3

∼

(4.2)

where the map below arises from Poincaré duality along with the canonical isomorphism
A∨ ⊗B ∼= Hom(A,B).

Remark 4.9. Note that we changed the left vertical map of the diagram by a twist of two.
This only effects considerations on the level of filtrations.

As we have already explained in Lemma 4.2 for the étale case, we can also use the above
for viewing any map τ : H3

dR(A
3/Q)[2] → H1

dR(A/Q)[1] as an element

Zτ ∈ H3
dR(A

3/Q)[2]∨ ⊗H1
dR(A/Q)[1]

= H3
dR(A

3/Q)[1]⊗H1
dR(A/Q)[1]

⊆ H4
dR(A

4/Q)[2].

The commutative diagram (4.2) implies that in the above notation,

cldR(Π) = ZΠdR,∗ for any Π ∈ CH2(A4)(Q).

Therefore, if given a map τ : H3
dR(A

3/Q)[2] → H1
dR(A/Q)[1], the corresponding element Zτ

is of the form Zτ = cldR(Πτ ) for some Πτ ∈ CH2(A4)(Q), then τ actually comes from a
correspondence in the sense that

τ = Πτ,dR,∗.

This will be interesting in particular for the rational version of our induced map

πdR,i : H3
dR(A

3/Q)[2] H1
dR(A/Q)[1].

The above discussion yields:

Proposition 4.10. If there exists a cycle Π?
i ∈ CH2(A4)(Q) such that cldR(Π?

i ) = ZπdR,i
,

then

Π?
i,dR,∗ = πdR,i.

In light of the Tate Conjecture, such algebraic cycles conjecturally exist at the cost of
extending coefficients to Qp. In the following, we therefore want to describe an approxima-
tion process that can be applied after using the Tate Conjecture, in order to conjecturally
obtain algebraic cycles with rational coefficients that are of the above form.

Proposition 4.11. If the Tate Conjecture is true for A4 in codimension two, then there
exist cycles Π̃?

i ∈ CH2(A4)(Q) such that
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1. Π̃?,p
i,ét,∗ : H

3
ét(Ā

3,Qp)(2) ↠ Vp(A) is a surjection of Qp[GQ]-modules.

2. Π̃?
i,dR,∗ : H

3
dR(A

3/Q)[2] ↠ H1
dR(A/Q)[1] is a surjection of Q-vector spaces.

Proof. Our approach follows an argument which is also used in [BDP14, Lemma 2.9]. If
the Tate conjecture is true for A4 in codimension two, then there exist elements αi,j ∈ Qp

and Π?
i,j ∈ CH2(A4)(Q), such that

Zπét,i
=

ti,

j=1

αi,jcl
p
ét(Π

?
i,j).

By multiplying Zπét
with a suitable power of p we may assume that αi,j ∈ Zp. We

impose that πét has been modified beforehand in such a way. We now choose a vector
(βi,1, . . . ,βi,ti) ∈ Zti that is sufficiently close to (αi,1, . . . ,αi,ti) ∈ Zti

p and obtain a cycle

Π̃?
i =

ti,

j=1

βi,jΠ
?
i,j ∈ CH2(A4)(Q),

which induces surjections

Π̃?,p
i,ét,∗ : H3

ét(Ā
3,Qp)(2) Vp(A), Π̃?

i,dR,∗ : H3
dR(A

3/Q)[2] H1
dR(A/Q)[1],

of Qp[GQ]-modules, respectively Q-vector spaces.

Remark 4.12. By viewing Π̃?
i as being defined over Qp via an embedding of its coefficients,

we also obtain
Π̃?

i,dR,∗ : H3
dR(A

3/Qp)[2] H1
dR(A/Qp)[1]

as an induced map. This is nothing but Π̃?,p
i,dR,∗ as defined via Π̃?,p

i,ét,∗ through the commu-
tative diagram

DdR(H
3
ét(Ā

3,Qp)(2)) DdR(Vp(A))

H3
dR(A

3/Qp)[2] H1
dR(A/Qp)[1].

DdR(Π̃?,p
i,ét,∗)

compdR,A3 ∼ compdR,A ∼

Π̃?,p
i,dR,∗

By mimicking the approximation process on the level of the non-conjectural projections
we therefore obtain projections which are p-adically close to the original ones and conjec-
turally induced by rational algebraic cycles.

Remark 4.13. This can be thought of as a linear algebra principle for Qp-vector spaces
which admit a Q-structure, the idea being that for a surjective map on Qp-vector spaces
there is a rational approximation which is still surjective.

We replace πét and πdR by these new maps that are conjecturally induced by rational
algebraic cycles and keep denoting them by the same symbols. With the replacements
being made, Proposition 4.10 can be reformulated to the following.
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Proposition 4.14. If the Tate Conjecture is true for A4 in codimension two, then there
exist algebraic cycles Π?

i ∈ CH2(A4)(Q) such that

Π?
i,dR,∗ = πdR,i.

We therefore obtain conjectural parametrizations defined over the rationals

Π?
i,∗ : CH2(A3)0(Q) −→ A(Q)

which are related to our non-conjectural maps by the following observation.

Lemma 4.15. There is a commutative diagram

CH2(A3)0(Q) H1
f (Q,H3

ét(Ā
3,Qp)(2)) H1

f (Q, Vp(A)) A(Q)

CH2(A3)0(Qp) H1
f (Qp,H

3
ét(Ā

3,Qp)(2)) H1
f (Qp, Vp(A)) A(Qp)

DdR(H
3
ét(Ā

3,Qp)(2))/Fil
0 DdR(Vp(A))/Fil0

H3
dR(A

3/Qp)[2]/Fil
0 H1

dR(A/Qp)[1]/Fil
0

(Fil2 H3
dR(A

3/Qp))
∨ Ω1(A/Qp)

∨.

Π?
i,∗

AJp

ét,A3 H1
f (Q,πét,i)

resp resp

AJp
ét,A

AJp

dR,A3

AJp

ét,A3 H1
f (Qp,πét,i)

logBK,A3 ∼ logBK,A ∼

AJp
dR,A

AJp
ét,A

compdR,A3 ∼

DdR(πét,i)

compdR,A ∼

πdR,i

PDA3 ∼ PDA ∼

Π?,∗,p,∨
i,dR

(4.3)

Proof. The middle squares are commutative by Proposition 4.8 and the compatibility with
the Abel–Jacobi maps is given by definition. The conjectural parametrization Π?

i,∗ fits on
top of the diagram since the outer arrows form a commutative diagram by (2.15).

Remark 4.16. The compatibility that this commutative diagram provides explains the
choice of our normalization on the non-conjectural map. It contains the relation between
the conjectural maps

Π?
i,∗ : CH2(A3)0(Q) −→ A(Q)

and the non-conjectural map

H1
f (Q,πét,i) ◦AJpét,A3 : CH2(A3)0(Q) −→ H1

f (Q, Vp(A))

that we want to consider in the upcoming subsection.
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We can use the conjectural cycles to define conjectural rational points on A:

P ?
i (Γ) = Π?

i,∗(Γ) ∈ A(Q),

related to non-conjectural objects arising from our projection on the level of Galois repre-
sentations. Note that these conjectural rational points on A come in pairs, as πét consists
of two components, giving rise to a pair of cycles (Π?

1,Π
?
2) ∈ CH2(A4)(Q)⊕2 inducing

Π?
∗ = (Π?

1,∗,Π
?
2,∗) : CH2(A3)0(Q) −→ A(Q)⊕2. (4.4)

Although we are not going to dive into this topic in this thesis, this can become interesting
once special collections of algebraic cycles Γ ∈ CH2(A3)0(Q) are considered.

Remark 4.17. We would like to point out that a certain seemingly natural choice of a cycle
on the three-fold product will not be of interest for these kinds of considerations. As is
presented in [GS95], one can modify the diagonal cycle ∆ on A3 to obtain a homologically
trivial cycle in the following way. Let e be a rational point of A. Then, besides ∆, there
are the following obvious subvarieties of codimension two of A3 defined over Q:

∆1 = {(x, e, e) : x ∈ A(Q)},
∆2 = {(e, x, e) : x ∈ A(Q)},
∆3 = {(e, e, x) : x ∈ A(Q)},
∆12 = {(x, x, e) : x ∈ A(Q)},
∆23 = {(e, x, x) : x ∈ A(Q)},
∆13 = {(x, e, x) : x ∈ A(Q)}.

It is shown in [GS95, Proposition 3.1] that the cycle

∆−∆12 −∆13 −∆23 +∆1 +∆2 +∆3 ∈ CH2(A3)(Q)

is homologous to zero and therefore defines an element denoted ∆e ∈ CH2(A3)0(Q). How-
ever, in our case of elliptic curves, [GS95, Proposition 4.1] shows that ∆e is even rationally
equivalent to zero, and so images under our parametrizations are trivial.

Shifting the point of view to studying the Chow group of the three-fold product via
rational points on the elliptic curve, we propose the following conjecture.

Conjecture 4.18. If the rank of A(Q) is at least one, then the rank of CH2(A3)0(Q) is
at least two.

This conjecture fits into the overall picture of our previous discussion by the fact that
our conjectural parametrization (4.4) arises from two independent projections on the level
of Galois representations as remarked before. Indeed, the origin being the projection

πét : H
3
ét(Ā

3,Qp)(2) Vp(A)
⊕2,

its two components πét,i should produce two independent cycles Π?
i in the Chow group

CH2(A4)(Q). The resulting components Π?
i,∗ of the conjectural parametrization (4.4) are

further expected to provide independent rational points on the elliptic curve.
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4.5 A Note on Global Selmer Classes. Let us take a final look at some of the non-
conjectural parts of the above diagram, which involves global cohomology classes. More
precisely, consider the map

Φπét,i
= H1

f (Q,πét,i) ◦AJpét,A3 : CH2(A3)0(Q) −→ H1
f (Q, Vp(A)).

As the right-hand side equals the Selmer group Selp(A/Q) (cf. [Bel09, Proposition 2.13]),
we are actually considering classical Selmer classes

Φπét,i
(Γ) ∈ Selp(A/Q) for Γ ∈ CH2(A3)(Q).

Recall that the Selmer group consists of elements in the Galois cohomology of Vp(A), whose
restrictions at p are contained in the image of the local Kummer map

κ
(p)
A : A(Qp) −→ H1

f (Qp, Vp(A)).

Moreover, we remind (cf. [Bel09], [Sil09]) that we have an induced injection

κA : A(Q)⊗Qp Selp(A/Q),

which is an isomorphism if and only if the p-primary component

ΠΠ

(A/Q)[p∞] of the
Tate–Shafarevich group is finite.

We are led to pose the following conjecture on the images of cycles under the non-
conjectural map Φπét,i

of diagram (4.3).

Conjecture 4.19. For any Γ ∈ CH2(A3)0(Q), there exists a point P̃ ?
i (Γ) ∈ A(Q) such

that Φπét,i
(Γ) = κA(P̃

?
i (Γ)).

Let us have a look at possible local analogues. By definition, considering restrictions of
those classes, there are local points P

(p)
i (Γ) ∈ A(Qp) such that

κ
(p)
A (P

(p)
i (Γ)) = Φπét,i

(Γ)|GQp
.

We may thus define

Φ(p)
πét,i

= H1
f (Qp,πét,i) ◦AJpét,A3 : CH2(A3)0(Qp) −→ H1

f (Qp, Vp(A))

to be the p-adic analogue of Φπét,i
, so that Φ(p)

πét,i(Γ) = κ
(p)
A (P

(p)
i (Γ)). This is precisely what

the conjecture aims for, but over Qp instead of Q. The big commutative diagram (4.3)
further gives that

κ
(p)
A (P

(p)
i (Γ)) = Φ(p)

πét,i
(Γ)

= expp
A3(Π

?,p,∗,∨
i,dR (AJp

dR,A3(Γ)))

= expp
A3(AJ

p
dR,A(Π

?
i,∗(Γ)))

= AJpét,A(P
?
i (Γ)).

This means that the local Kummer images of the local analogues coincide with the local
Abel–Jacobi images of the conjectural global points when viewed inside A(Qp).
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5 A p-adic L-Function for the Symmetric Cube

In this section, we construct a p-adic L-function for the symmetric cube of a Hida family,
guided by the factorization of complex L-functions

L(θ⊗3, s+ k − 1) = L(Sym3 θ, s+ k − 1) · L(θ, s)2 (5.1)

for eigenforms θ ∈ Sk(Γ0(N)) of even weight k ≥ 2. This factorization is provided by
our decomposition (cf. Proposition 3.8) of the Galois representation ρ⊗3

θ (1 − k). When θ
varies in a p-adic Hida family θ, the central critical values L(θ⊗3, 3k−2

2 ) and L(θ, k2 ) within
the above factorization can be p-adically interpolated by the following known p-adic L-
functions:

• The restriction of the Mazur–Kitagawa p-adic L-function (cf. [MSD74], [MTT86]
[Kit91], [GS93]) to the central critical line:

Lcc
p (θ)(k) = LMK

p (θ)(k, k2 ),

• The restriction of the balanced triple product p-adic L-function (cf. [Hsi21]) to the
diagonal:

L∆
p (θ)(k) = L bal

p (θ,θ,θ)(k, k, k)2.

Our goal is to obtain p-adic interpolation of the central critical values L(Sym3 θ, 3k−2
2 ) for

the symmetric cube complex L-function in such a way that the above factorization (5.1)
of complex L-functions is mirrored by a factorization of p-adic L-functions.

After agreeing on some standard notation concerning Hida theory, we recall the relevant
information on the two p-adic L-functions that we want to use and formulate the general
conjecture on the existence of the sought for p-adic L-function for the symmetric cube.
A special emphasis will lie on a particular case of elliptic curves, in which we prove the
conjecture under certain additional assumptions.

5.1 Hida Families. Let f ∈ S2(Γ0(N)) be a p-ordinary newform of level N = N ′pr

with r ∈ {0, 1} and p ≥ 5 not dividing N ′. Write

X2 − ap(f)X + p = (X − αp) · (X − βp),

with αp,βp ∈ Q̄. Under our fixed embedding, we assume αp ∈ Z×
p and βp ∈ pZp. If r = 0,

the p-stabilization of f is the cusp form fo ∈ S2(Γ0(N
′p)), defined by

fo(z) = f(z) + βp · f(pz). (5.2)

If r = 1, we put fo = f . Hida’s theory (cf. [Hid86b], [Hid86a]) associates to f a neighbor-
hood Uf ⊆ X = Hom(Z×

p ,Z×
p ) of the weight k = 2 and a formal q-expansion

f =
,

n≥1

an q
n, an ∈ A (Uf ),
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called (p-adic) Hida family, with A (Uf ) denoting the ring of Cp-valued p-adic analytic
functions on Uf . The neighborhood Uf is understood by means of the embedding Z ↩→ X
defined by k (→ ( · )k−2, realizing Z as a dense subset, and is contained in the residue class
of 2 modulo p − 1. We fix the following notation for the specializations of f at classical
weights k ∈ U cl

f = Uf ∩Z≥2:

(1) For any k ∈ U cl
f , the weight-k specialization fk =

%
n≥1 an(k)q

n is the q-expansion
of a normalized p-ordinary eigenform of weight k on Γ0(N

′p) and f2 = fo. We put
an(fk) = an(k).

(2) These eigenforms are new at the primes dividing the tame level N ′, but not new at
p for k > 2. In this case, fk arises as the p-stabilization of a newform f "

k of weight k

on Γ0(N
′). In the terminology introduced in (5.2), one has fk = f ",o

k , satisfying

fk(z) = f "
k(z) + βp(k) · f "

k(pz).

For notational consistency, we put f "
2 = f2.

(3) We define punctured sets U ◦
f = Uf "{2} and U cl,◦

f = U cl
f "{2}.

Remark 5.1. Note that the classical weights are necessarily even as p is assumed to be odd
and elements in the neighborhood Uf are congruent to 2 modulo p− 1.

In the following two subsections, we will recall the relevant material on the two known
p-adic L-functions that we want to consider. When it comes to discussing the respective
assumptions for those functions, we will focus on those that are of particular impact on
the elliptic curve scenario that we ultimately want to study. For a complete and general
discussion of all the assumptions and their background, we refer to the works already
mentioned in the introduction of this section.

5.2 The Restricted Mazur–Kitagawa p-adic L-Function. We consider a Hida
family f as in the previous section. Its classical specializations fk are ordinary eigenforms
of even weight, so that each comes equipped with a p-adic L-function Lp(fk, s) once a com-
plex period Ωfk is chosen (cf. [MSD74], [MTT86]). As discussed in [GS93], the so-called
Mazur–Kitagawa p-adic L-function LMK

p (f)(k, s) combines those p-adic L-functions of the
weight-k specializations as a single two-variable p-adic L-function, which is analytic in a
neighborhood of (k, s) = (2, 1). It interpolates the complex special values L(f "

k, n) with
k ∈ U cl

f and 1 ≤ n ≤ k − 1 as we will now recall.

We pin down the algebraic parts of the L-functions for f "
k for the critical values as follows,

using the canonical periods Ω±
k ∈ C×, chosen to satisfy

Ω±
k Ω

∓
k = 〈f "

k, f
"
k〉

as in [BD07] (see also [Shi77]). Here, the Petersson scalar product is normalized so that

〈g, h〉 = 4π2

00

Γ0(N)\ h
g(z)h̄(z)yk−2dxdy,
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the integral taken over any fundamental region for the action of Γ0(N) on the upper
half-plane h. With these periods, for any integer 1 ≤ n ≤ k − 1 determining the sign
ε2n = (−1)n−1, we fix the algebraic part as in [BD07]:

Lalg(f "
k, n) =

L(f "
k, n)

(π
√
−1)n−1 · Ωε2n

k

.

We are interested in the restriction of the Mazur–Kitagawa p-adic L-function to the
central critical line (k, k2 ) and denote the resulting p-adic L-function by

Lcc
p (f)(k) = LMK

p (f)(k, k2 ).

This central critical p-adic L-function satisfies the following interpolation property (cf.
[BSV22a]):

Lcc
p (f)(k) = λεk

k ·
Γ(k2 )

(−1)
k
2
−1 · 2 k

2
−1

· E cc
p (f , k) · E cc

p,old(f , k) · Lalg(f "
k,

k
2 ). (5.3)

In this formula, λ±
k ∈ Cp are p-adic numbers with λ±

2 = 1 as in [BD07, Theorem 1.5], which
are non-vanishing after possibly shrinking Uf (cf. [BD07, Proposition 1.7]). The factors

E cc
p (f , k) = 1− ap(fk)

−1p
k
2
−1 and E cc

p,old(f , k) = 1− εp(k)ap(fk)
−1p

k
2
−1

are modified Euler factors at p, for which we put εp(k) = 0 if fk = f "
k and εp(k) = 1

otherwise.

Remark 5.2. Our labeling of the Euler factors stems from their appearance being dependent
on whether the considered form is new or old at p. These Euler factors in fact only appear
in the latter case.

5.3 The Restricted Balanced Triple Product p-adic L-Function. Let us now
briefly discuss the balanced triple product p-adic L-function as constructed by Hsieh in
[Hsi21] and recall the relevant interpolation formula that is of interest for us. We will ad-
dress some of the imposed assumptions that are of particular impact for our considerations,
but will not go into full detail with most of the technical assumptions and rather refer to
loc. cit. for a complete discussion of the techniques involved.

Let (f , g,h) be a triplet of Hida families as in the previous section, such that the least
common multiple of their tame levels is square-free. Under further technical assumptions,
the above mentioned article constructs a p-adic L-function L bal

p (f , g,h)(k, l,m), called the
balanced square-root triple product p-adic L-function. Its square interpolates the complex
values L(f "

k⊗g"l⊗h"m, k+l+m−2
2 ) for weight triples (k, l,m) that lie in the balanced region, i.e.

those such that k+ l+m is greater than 2k, 2l and 2m. We are interested in the restriction
of this square-root p-adic L-function to the diagonal. More precisely, we consider the Hida
family f of square-free tame level N ′ and put

L∆
p (f)(k) = L bal

p (f ,f ,f)(k, k, k)2.
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For any k ∈ U cl
f , let us look at the complex triple product L-function L(f ",⊗3

k , s), whose
special values this p-adic L-function interpolates. The functional equation relating its
values at s and 3k−2−s has a sign that can be written as a product of local root numbers

ε(f ",⊗3
k ) = −

1

q|N
εq(f

",⊗3
k ), εq(f

",⊗3
k ) ∈ {±1}.

Observe the contribution at ∞ as the triple (k, k, k) is balanced, so that ε∞(f ",⊗3
k ) = −1.

We define a subset of the primes dividing the tame level by

Σ− = {q | N ′ : εq(f
",⊗3
k ) = −1}

and remark that this does not depend on the weight k that is chosen, as being pointed out
in the introduction of [Hsi21]. We assume from now on that Σ− has odd cardinality.

The algebraic parts that are going to be interpolated by the restricted balanced triple
product p-adic L-function are as follows (cf. [GH93], [HK91]). For any integer k ≤ m ≤
2k − 2, we define

Lalg(f ",⊗3
k ,m) =

L(f ",⊗3
k ,m)

(π
√
−1)4m−3k+3 · 〈f "

k, f
"
k〉3

.

The following interpolation property for the restricted balanced triple product p-adic
L-function is proven in [Hsi21, Theorem B] (see also [BCS23] for an explicit description of
the various ingredients):

L∆
p (f)(k) = A ∆

f ·
Γ(3k−2

2 ) · Γ(k2 )
3 · c3fk

(−1)3k+3 · 23k−5
· (
√
−1)1−3k ·

E ∆
p (f , k)

2

E ∆
p,old(f , k)

3
· Lalg(f ",⊗3

k , 3k−2
2 ).

(5.4)

In this formula, A ∆
f =

-
q|N ′ Locq ∈ Q× is an explicit non-zero rational number, cfk is

the congruence number of fk as defined by Hida in [Hid81, (0.3)] and the modified Euler
factors are defined as

E ∆
p (f , k) = (1− ap(fk)

−1p
k
2
−1)3 · (1− ap(fk)

−3p
3k−2

2
−1),

E ∆
p,old(f , k) = (1− εp(k)ap(fk)

−2pk−1) · (1− εp(k)ap(fk)
−2pk−2).

We point out that cfk is a positive integer in our case by Theorem A (0.4b) of loc. cit.,
noting that our level is divisible by the odd prime p.

5.4 Construction of the Symmetric Cube p-adic L-Function. Let again f be a
Hida family of square-free tame level N ′ and consider the newforms f "

k ∈ Sk(Γ0(N
′)) giving

rise to the weight-k specializations fk = f ",o
k for k ∈ U cl

f . We start by pinning down the
algebraic parts of the critical L-values for the symmetric cube, using the algebraic parts
already mentioned in the previous two subsections:

Lalg(f "
k, n) =

L(f "
k, n)

(π
√
−1)n−1 · Ωε2n

k

, Lalg(f ",⊗3
k ,m) =

L(f ",⊗3
k ,m)

(π
√
−1)4m−3k+3 · 〈f "

k, f
"
k〉3

,
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for any integer 1 ≤ n ≤ k − 1, determining the sign ε2n = (−1)n−1, and any integer
k ≤ m ≤ 2k − 2. Recalling the factorization

L(f ",⊗3
k ,m) = L(Sym3 f "

k,m) · L(f "
k,m+ 1− k)2, (5.5)

this immediately gives the following result.

Proposition 5.3. For any integer k ≤ m ≤ 2k−2 such that L(f "
k,m+1−k) ∕= 0, choosing

the sign ε2m−2k+2 = ε2m+2 = (−1)m, one has

Lalg(Sym3 f "
k,m) =

L(Sym3 f "
k,m)

(π
√
−1)2m−k+3 · 〈f%

k,f
%
k〉

3

Ω
ε2m+2,2

k

∈ K
f%
k
.

Proof. If the symmetric cube L-function vanishes at m, the above definition of its algebraic
part gives Lalg(Sym3 f "

k,m) = 0 and the statement trivially holds. In the non-vanishing
situation we can compute that

Lalg(f ",⊗3
k ,m)

Lalg(f "
k,m+ 1− k)2

= Lalg(Sym3 f "
k,m),

concluding the claim.

Remark 5.4. We give a few remarks on the statement of Proposition 5.3.

(i) The reader might want to compare the formula to the one in [KS00], addressing the
conjectures of [Del79] and [Zag77]. Note that in our normalization and notation, the
period for the symmetric cube is

〈f "
k, f

"
k〉3

Ω±,2
k

= Ω±
k · Ω∓,3

k ,

which appears to be of the same form as the period introduced right before [KS00,
Proposition 4.1] with an opposite choice of sign. Moreover, note that the extra powers
of π

√
−1 are a little different, so is their way of fixing the algebraic part of L(f "

k, n)
for critical n, possibly due to different normalization choices.

(ii) In addition to the formula for the algebraic part we remark that [KS00, Proposition
4.1] establishes L(Sym3 f "

k,m) being holomorphic for any critical integer k ≤ m ≤
2k − 2, in particular at the central critical value m = 3k−2

2 . We refer the reader to
[KS99] concerning holomorphicity of symmetric cube L-functions.

As mentioned before, we use the p-adic L-functions Lcc
p (f)(k) = LMK

p (f)(k, k2 ), as well
as L∆

p (f)(k) = L bal
p (f ,f ,f)(k, k, k)2. Both of these p-adic L-functions are viewed as Cp-

valued p-adic analytic functions on Uf and we assume that Lcc
p (f)(k) does not vanish

identically.
We fix the following observation on the vanishing behavior:

Lemma 5.5. If L∆
p (f)(k) does not vanish at k ∈ U cl

f , then Lcc
p (f)(k) does not either.
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Proof. Assuming non-vanishing of the triple product p-adic L-function, its interpolation
formula (5.4) provides non-vanishing of the Euler factors, which are given by

1− ap(fk)
−1p

k
2
−1 and 1− ap(fk)

−3p
3k−2

2
−1.

The first factor is precisely the Euler factor appearing in the interpolation formula (5.3)
for the Mazur–Kitagawa p-adic L-function, so we are not in the situation of an extra zero
coming from the interpolation. Moreover, since by assumption the complex special value
L(f ",⊗3

k , 3k−2
2 ) is non-zero, so is L(f "

k,
k
2 ) by the factorization (5.5) for m = 3k−2

2 and the
finiteness of the complex values for the symmetric cube. The interpolation formula (5.3)
concludes the claim.

Definition 5.6. We define the symmetric cube p-adic L-function as the meromorphic
function on Uf given by

LSym3

p (f)(k) = L∆
p (f)(k) · Lcc

p (f)(k)−2.

The definition of this ratio formally provides the desired factorization on the level of
p-adic L-functions, given that we are considering finite values of this a priori meromorphic
function.

Definition 5.7. For any classical weight k ∈ U cl
f , we define the following terms:

1. Af = −A ∆
f ∈ Q×,

2. Bk = Γ(3k−2
2 ) · Γ(k2 ) · 2

3−2k ∈ Q×,

3. Cf ,k = c3fk ∈ Z≥1,

4. E Sym3

p (f , k) = E ∆
p (f , k)

2 · E cc
p (f , k)−2,

5. E Sym3

p,old (f , k) = E ∆
p,old(f , k)

3 · E cc
p,old(f , k)

2,

6. ESym3

p (f , k) = E Sym3

p (f , k)2 · E Sym3

p,old (f , k)
−1.

Remark 5.8. We would like to mention a couple of remarks on the modified Euler factors
introduced in the above definition.

(i) Recalling the definition of the modified Euler factors for the Mazur–Kitagawa and
balanced triple product p-adic L-function, we point out that E Sym3

p,old (f , k) equals

(1− εk(p)ap(fk)
−2pk−1)3 · (1− εk(p)ap(fk)

−2pk−2)3 · (1− εk(p)ap(fk)
−1p

k
2
−1)2,

and E Sym3

p (f , k) equals

(1− ap(fk)
−1p

k
2
−1)2 · (1− ap(fk)

−3p
3k−2

2
−1).
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(ii) For points k ∈ U cl,◦
f such that fk ∕= f "

k, the ratio of modified Euler factors that we
have introduced is finite by the p-ordinariness of each fk. Indeed, the Euler factors
of the form E Sym3

p,old (f , k) are non-vanishing as there does not exist a pair (n,m) of
positive integers such that ap(fk)

n = pm.

We propose the following conjecture on the symmetric cube p-adic L-function.

Conjecture 5.9. The p-adic L-function LSym3

p (f)(k) for the symmetric cube is a p-adic
analytic function on Uf such that

1. LSym3

p (f)(k) = L Sym3

p (f)(k)2 is a square,

2. L∆
p (f)(k) = LSym3

p (f)(k) · Lcc
p (f)(k)2,

3. LSym3

p (f)(k) satisfies the following interpolation property for any k ∈ U cl
f :

LSym3

p (f)(k) = Af ·Bk ·Cf ,k ·λεk
k ·

√
−1

1−3k · ESym3

p (f , k) · Lalg(Sym3 f "
k,

3k−2
2 ),

in which εk = (−1)
k
2
−1.

Note that the first point is a formal consequence of the second point, as L∆
p (f)(k) is

constructed as a square and Lcc
p (f)(k) appears as a square in the factorization:

LSym3

p (f)(k) =
L∆
p (f)(k)

Lcc
p (f)(k)2

=

"
L bal

p (f ,f ,f)(k, k, k)

Lcc
p (f)(k)

#2

= L Sym3

p (f)(k)2.

Proposition 5.10. If the central critical p-adic L-function Lcc
p (f)(k) does not vanish for

any k ∈ Uf , then Conjecture 5.9 holds true.

Proof. With the definition of LSym3

p (f)(k) as the ratio of L∆
p (f)(k) by Lcc

p (f)(k)2 and the
respective interpolation formulae (5.3) and (5.4) at hand, the interpolation property for
the symmetric cube p-adic L-function is nothing but a formal computation, keeping track
of the various factors of different nature and dependency.

Remark 5.11. Concerning the assumption of a non-vanishing denominator, let us point out
the following remarks.

(i) Outside of the points k ∈ U cl,◦
f where the complex special value L(f "

k,
k
2 ) vanishes, we

are in the situation of a non-vanishing Mazur–Kitagawa p-adic L-function by the very
same reason that we have pointed out concerning the finiteness of our ratio of modified
Euler factors in (ii) of Remark 5.8: The Euler factors of (5.3) are non-vanishing as
there does not exist a pair (n,m) of positive integers such that ap(fk)

n = pm, since
the forms fk are p-ordinary. Therefore, the restriction of the Mazur–Kitagawa p-adic
L-function to the central critical line is non-vanishing for those particular k ∈ U cl,◦

f .

(ii) We will take a closer look at the delicate point k = 2 in a special situation of an elliptic
curve, which is what we are ultimately interested in. In this particular situation, as
will be discussed below, we know that Lcc

p (f)(2) = 0, and so we can not simply
compute the ratio via the interpolation formulae, having a vanishing denominator.
Outside of k = 2 we will gain control by an extra assumption in light of the previous
remark, but the missing point has to be taken care of by a separate argument.
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5.5 The Elliptic Curve Case. Let now A/Q be a semi-stable elliptic curve of con-
ductor N = N ′p and sign(A/Q) = −1, having an odd prime p ≥ 5 of split multiplicative
reduction. Further, let f denote the Hida family specializing in weight-two to the newform
fA ∈ S2(Γ0(N)) attached to A by the modularity theorem. The semi-stability assumption
arises from [Hsi21] as we want the tame level to be square-free.

Remark 5.12. The functional equation of the two-variable p-adic L-function LMK
p (f)(k, s)

relating the values at (k, s) and (k, k− s) has a sign that is independent of k and therefore
denoted by sign(f). In our particular case of interest, in which A/Q has split multiplicative
reduction at p, one has

sign(f) = − sign(A/Q),

which excludes the case of positive sign for the Hasse–Weil L-function L(A/Q, s) from our
attention as in this case Lcc

p (f)(k) vanishes identically.

After possibly shrinking Uf , we impose the following main assumption on the complex
special values.

Assumption 1. For every k ∈ U cl,◦
f , the central critical value L(f "

k,
k
2 ) does not vanish.

Recall the p-adic numbers λ±
k ∈ Cp of (5.3), which satisfy λ±

2 = 1 and are non-zero
after possibly shrinking Uf . We further put the following assumption on those discrepancy
factors coming from the p-adic interpolation.

Assumption 2. For every k ∈ U cl,◦
f , the element λεk

k is p-integral.

Remark 5.13. The assumption on the λεk
k fulfilling an integrality property seems reasonable

as they arise from comparing two integral structures. The one side considers the modular
symbols associated with the forms f "

k, having values in the dual of the space of degree k−2
homogeneous polynomials with coefficients in the number field generated by the Fourier
coefficients of f "

k. The other side deals with a certain image of a measure-valued modular
symbol, provided by [BD07, Theorem 1.5]. We refer to [GS93], in particular Theorem 5.13
and Section 6.

Concerning the use of the triple product p-adic L-function, note that the condition on Σ−

is automatically satisfied by our assumption on A/Q being semi-stable. Indeed, as noted
in [BD07], this results in the number of primes of split multiplicative reduction for A/Q
being even. Since those are the primes giving local root number −1, excluding the split
prime p which does not belong to Σ−, there is an odd number left. In fact (cf. [GK92]),
the local root numbers (considering the triple (2, 2, 2)) are given by −aq(fA)

3, resulting in
the global sign being

ε = (−1) ·
1

q|N
split mult.

−aq(fA)
3 ·

1

ℓ|N
non-split mult.

−aℓ(fA)
3

= (−1) ·
1

q|N
split mult.

(−1) ·
1

ℓ|N
non-split mult.

−(−1)3

= −1.

44



Here, we used that aq(fA) = −1 for q of non-split multiplicative reduction for A/Q and
aℓ(fA) = 1 for ℓ of split multiplicative reduction.

This sign analysis enables us to prove the following result on the vanishing of the complex
symmetric cube L-function.

Proposition 5.14. The symmetric cube L-function L(Sym3 fA, s+1) vanishes to positive
odd order at the point s = 1.

Proof. By the above discussion of signs, the complex triple product L-function L(f⊗3
A , s+1)

vanishes to odd order at s = 1. Recalling the factorization (5.1) for θ = fA with k = 2,
having an odd order of vanishing at s = 1 on the left-hand side, the fact that the Hasse–
Weil L-function appears as a square on the right-hand side shows the contribution of
L(Sym3 fA, s+ 1) to this order of vanishing. We conclude that

ords=1 L(Sym
3 fA, s+ 1) ≥ 1 is odd.

Before we get to our main result in this elliptic curve situation, we make the following
final assumption on the special values of interest.

Assumption 3. For every k ∈ U cl,◦
f , the value Lalg(Sym3 f "

k,
3k−2
2 ) is p-integral.

We are now able to formulate our main result on the p-adic L-function for the symmetric
cube associated with the elliptic curve A/Q.

Theorem 5.15. Let f be the Hida family passing through the newform attached to a
semi-stable elliptic curve A/Q with split multiplicative reduction at p at the weight-2 spe-
cialization and assume that Assumption 1, 2 and 3 are satisfied. Then, Conjecture 5.9
holds true and the p-adic L-function LSym3

p (f)(k) has an exceptional zero at k = 2, which
is of even order at least two.

Proof. With the quantities for the interpolation formula given as in Definition 5.7, under
Assumption 1, we already have the desired interpolation formula for all k ∈ U cl,◦

f :

LSym3

p (f)(k) = Af ·Bk ·Cf ,k ·λεk
k ·

√
−1

1−3k · ESym3

p (f , k) · Lalg(Sym3 f "
k,

3k−2
2 ). (5.6)

By construction, we view LSym3

p (f)(k) as a meromorphic function in the weight variable
k, noting that it is continuous (in fact analytic) at k = 2 as a result of the boundedness in
a neighborhood of k = 2 by Assumptions 2 and 3. Indeed, using the interpolation formula
in the punctured neighborhood U cl,◦

f , the values LSym3

p (f)(k) factor as a product of

• a p-adically bounded part given by Af ·Bk ·Cf ,k ·
√
−1

1−3k,

• a p-adically bounded part given by λεk
k by Assumption 2,

• ESym3

p (f , k) tending to 0 as k → 2,

• a p-adically bounded part given by Lalg(Sym3 f "
k,

3k−2
2 ) by Assumption 3.
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In particular, the above factorization shows that

lim
k→2

LSym3

p (f)(k) = 0,

which, by continuity, gives that LSym3

p (f)(k) vanishes at k = 2 as claimed. The interpola-
tion property now holds by our observations on the vanishing of L(Sym3 fA, s+1) at s = 1
and the vanishing of the Euler factor appearing in the formula for k = 2. Note that we are
dealing with a scenario of an exceptional zero at k = 2, since the p-adic L-function vanishes
at k = 2 independently of the vanishing of the complex symmetric cube L-function. This
is due to the shape of the Euler factor appearing in the interpolation formula. Finally, the
order of vanishing is even, as

LSym3

p (f)(k) =
L∆
p (f)(k)

Lcc
p (f)(k)2

=

"
L bal

p (f ,f ,f)(k, k, k)

Lcc
p (f)(k)

#2

= L Sym3

p (f)(k)2

is a square by construction.
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6 A BSD-Formula for the Triple Product p-adic L-Function

We remain in the setting of the previous discussion and let A/Q be a semi-stable elliptic
curve with sign(A/Q) = −1, split multiplicative reduction at a prime p ≥ 5 and associated
p-adic Hida family f passing through (the modular form of) A at its weight-two specializa-
tion. As before, we work under the following list of assumptions from the previous section
for every classical weight k ∈ U cl,◦

f away from k = 2:

Assumption 1: The central critical value L(f "
k,

k
2 ) does not vanish.

Assumption 2: The element λεk
k is p-integral.

Assumption 3: The value Lalg(Sym3 f "
k,

3k−2
2 ) is p-integral.

In the previous section, we introduced a p-adic L-function for the symmetric cube, provid-
ing a factorization of p-adic analytic functions

L∆
p (f)(k) = LSym3

p (f)(k) · Lcc
p (f)(k)2. (6.1)

In the following, we want to study the orders of vanishing at k = 2 along with the relevant
derivatives of the involved p-adic L-functions. More precisely, using a result of Bertolini–
Darmon described below, we prove a formula for the sixth derivative of the triple product
p-adic L-function, relating it to a global point on the elliptic curve. Afterwards, we address
the meaning of the derivative of the symmetric cube p-adic L-function that appears as a
factor in the so-obtained formula (6.2). Our goal is to obtain a description of this derivative
in terms of a regulator term for the symmetric cube p-adic L-function.

6.1 Derivatives and Rational Points. In our particular situation of the elliptic
curve having split multiplicative reduction at p and sign(A/Q) = −1, the restriction of
the Mazur–Kitagawa p-adic L-function Lcc

p (f)(k) vanishes to order at least two at k = 2.
The following result was proven by Bertolini–Darmon [BD07], assuming a mild technical
condition subsequently removed by Mok [Mok11, Section 6].

Theorem 6.1. There exists a global point P ∈ A(Q)⊗Q and a scalar a ∈ Q× such that

d2

dk2
Lcc
p (f)(k)|k=2

= a · logA(P)2,

where logA : A(Qp) → Q×
p is the formal group logarithm attached to A.

We now want to use this theorem to provide a formula for a derivative of the triple
product p-adic L-function. Recall that, as a result of Theorem 5.15, the symmetric cube
p-adic L-function vanishes to even order at least two at k = 2.

The aforementioned result on the triple product p-adic L-function is as follows.

Theorem 6.2. The restricted triple product p-adic L-function vanishes to even order at
least six at k = 2 and there exists P ∈ A(Q)⊗Q and a ∈ Q× such that

d6

dk6
L∆
p (f)(k)|k=2 = 90a2 · d2

dk2
LSym3

p (f)(k)|k=2 · logA(P)4. (6.2)
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Proof. As both the symmetric cube p-adic L-function and the Mazur–Kitagawa p-adic L-
function vanish to even order at least two at k = 2, the factorization (6.1) yields that
L∆
p (f)(k) vanishes to even order at least six. Using the product rule, we obtain that

d6

dk6
L∆
p (f)(k)|k=2 =

6,

n=0

2
6

n

3
· d6−n

dk6−n
LSym3

p (f)(k)|k=2 ·
dn

dkn
Lcc
p (f)(k)2|k=2. (6.3)

By the vanishing of Lcc
p (f)(k) at k = 2 being of even order at least two, the first, second,

and third derivative of its square vanish at k = 2. Therefore, only the summands for
n ∈ {4, 5, 6} in (6.3) are possibly non-zero. The positive even order of vanishing of the
symmetric cube p-adic L-function implies that its first derivative at k = 2 vanishes as well.
Therefore, the only remaining term of (6.3) that can be non-zero appears at n = 4 and is
given by

2
6

4

3
· d2

dk2
LSym3

p (f)(k)|k=2·
d4

dk4
Lcc
p (f)(k)2|k=2

=

2
6

4

3
·
2
4

2

3
· d2

dk2
LSym3

p (f)(k)|k=2 ·
& d2

dk2
Lcc
p (f)(k)|k=2

'2
.

Finally, using Theorem 6.1, we obtain P ∈ A(Q) ⊗ Q and a ∈ Q× along with the desired
formula.

6.2 Ordinariness of the Symmetric Cube. In this section, we check the ordinari-
ness of the relevant Galois representations at p.

Let F be a finite extension of Qp and V be an F -vector space giving a p-adic repre-
sentation of GQ. Following Greenberg [Gre94], we call V ordinary at p if there exists a
descending filtration {Filj V }j∈Z of GQp-stable F -subspaces of V which is exhaustive and
separated such that the inertia subgroup Ip acts on the quotients Filj V/Filj+1 V via the
j-th power χj

p of the cyclotomic character χp recalled in Section 3.3.
Let now θ ∈ Sk(Γ0(N)) be a p-ordinary newform of even weight k ≥ 2 and consider the

p-adic representation ρθ,p for p | p as in Section 3.1.

Lemma 6.3. The p-adic representation (Sym3 ρθ,p)(1 − k) is ordinary at p, being of the
form

(Sym3 ρθ,p)(1− k)|GQp
∼

4

556

χ
2(k−1)
p δ−3 ∗ ∗ ∗

χk−1
p δ−1 ∗ ∗

δ ∗
χ1−k
p δ3

7

889 .

Proof. By [Wil88, Theorem 2.1.4], we have

ρθ,p|GQp
∼

2
χk−1
p δ−1 ∗
0 δ

3
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with δ being the unramified character sending Frobp to the unit root of the Hecke polyno-
mial X2 − ap(θ)X + pk−1 of θ at p. Thus, its symmetric cube is equivalent to

4

5556

χ
3(k−1)
p δ−3 ∗ ∗ ∗

χ
2(k−1)
p δ−1 ∗ ∗

χk−1
p δ ∗

δ3

7

8889

and so we observe that the relevant twist by 1−k is ordinary, being of the claimed form.

We will now begin with the final part of the thesis in which we adapt the discussion
of [BSV21] for introducing a regulator for the symmetric cube. Building on the work of
[Nek06], this is done by discussing an appropriate p-adic height pairing on an extended
Selmer group. Our goal is to formulate a conjecture on this regulator, describing the
derivative of the symmetric cube appearing in Theorem 6.2.

We refer to the aforementioned work of Nekovář for a detailed introduction of the un-
derlying notions and to the work of Bertolini, Seveso and Venerucci for the ideas towards
a regulator that we aim to mimic.

6.3 Nekovář Selmer Complexes and the p-adic Height Pairing. Let us start
by giving an idea of the picture which the extended Selmer group fits in for the case of an
elliptic curve. We refer the reader to [Nek06, Sections 0.10, 12.1.8] for further elaboration.
This example, without going into detail, may be kept in mind as it displays the direct
connection to the Bloch–Kato Selmer groups discussed in Section 2.4.

Consider the p-adic Tate module of an elliptic curve A/Q with ordinary reduction at p,
sitting in the middle of an exact sequence of Qp[GQp ]-modules

Vp(A)
+ Vp(A) Vp(A)

−.

Here, Vp(A)± is of dimension one over Qp and the inertia subgroup Ip acts trivially on
Vp(A)

−. The extended Selmer group for the elliptic curve sits in the middle of an exact
sequence

H0(Qp, Vp(A)
−) H̃1

f (Q, Vp(A)) Sel(Q, Vp(A)) (6.4)

with

dimQp(H
0(Qp, Vp(A)

−)) =

/
1 if A has split multiplicative reduction at p,
0 otherwise.

Therefore, we think of H0(Qp, Vp(A)−) as a space of p-adic periods, detecting the presence
of an extra zero for the p-adic L-function of A.

For the convenience of the reader, we give a brief introduction to the theory of Nekovář,
as assembled in [Ven13, Appendix A]. Let B be a complete noetherian ring with maximal
ideal mB and finite residue field B/mB of characteristic p. Further, let K/Q be a number
field and fix a finite set Sf of primes of K, containing every prime above p. The maximal
algebraic extension of K which is unramified outside of S = Sf ∪ {ν | ∞} is denoted by
KS ⊆ K̄. For any prime ν ∈ Sf , we consider the fixed embedding ıν : K̄ ↩→ K̄ν with

49



its induced map ı∗ν : GKν ↩→ GK of absolute Galois groups and denote the corresponding
decomposition group by Gν = ı∗ν(GKν ).

For the following, we fix G ∈ {GKS
, GKν , Gν}. Given any admissible B[G]-module M in

the sense of [Nek06, Section 3], we denote by C•
cts(G, M) the complex of (non-homogeneous)

continuous cochains. Its image in the derived category of complexes of B-modules (cf.
[Har66]) will be denoted RΓcts(G, M) and its cohomology will be denoted H·(G, M). We
further use the abbreviations

C•
cts(Kν , M) = C•

cts(GKν , M),

RΓcts(Kν , M) = RΓcts(GKν , M),

H·(Kν , M) = H·(GKν , M).

Remark 6.4. In the context of the above notions, it is worth to point out the following:

(i) If M is a B[G]-module of finite type over B, then M is admissible precisely when G acts
continuously with respect to the mB-adic topology on M, and C•

cts(G, M) is the usual
continuous cochain complex.

(i) Any admissible B[GKS
]-module can be viewed as an admissible B[Gν ]-module via ı∗ν

for ν ∈ Sf . Moreover, note that there is a natural isomorphism

C•
cts(Gν , M) ∼= C•

cts(Kν , M)

induced by Gν
∼= GKν via ı∗ν and the identity on M.

The restriction from GKS
to Gν arising from Gν ⊆ GK ↠ GKS

induces a restriction
map

resν : C
•
cts(GKS

, M) −→ C•
cts(Kν , M)

and we denote the induced map on cohomology by the same symbol. Furthermore, we set
the sum of the restriction maps to be resSf

=
$

ν∈Sf
resν .

The definition of a Selmer complex à la Nekovář requires to introduce certain local
conditions that we now want to address. Let M be an admissible B[GKS

]-module. A local
condition ∆ν(M) for M at ν ∈ Sf is a complex of B-modules U+

ν (M) together with a morphism

i+ν = i+ν (M) : U
+
ν (M) −→ C•

cts(Kν , M)

of complexes of B-modules. Here, we write ∆ν(M) = U+
ν (M) when the morphism i+ν is clear

from the context. Given local conditions ∆(M) = {∆ν(M)}ν∈Sf
, the associated Nekovář

Selmer complex is defined (cf. [Nek06, Section 6]) to be

C̃•
cts(GKS

, M;∆(M)) = cone
&
C•
cts(GKS

, M)⊕
!

ν∈Sf

U+
ν (M) −→

!

ν∈Sf

C•
cts(Kν , M)

'
[−1]. (6.5)

In this definition, the map of complexes is given by resSf
− i+Sf

, where i+Sf
=

$
ν∈Sf

i+ν .
We denote by RΓ̃f (GKS

, M;∆(M)) the image of C̃•
cts(GKS

, M;∆(M)) in the derived category
and set its cohomology to be

H̃·
f (GKS

, M;∆(M)) = H·(RΓ̃f (GKS
, M;∆(M))).
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Remark 6.5. If M is of finite type over B and the local conditions U+
ν (M) are complexes with

cohomology of finite type over B, then this translates to H̃·
f (GKS

, M;∆(M)) being of finite
type over B.

We are particularly interested in the following type of local conditions. Let M be a free
B-module of finite type with a continuous B-linear action of GKS

. We assume that for every
ν ∈ Sf , there exists a short exact sequence of B[Gν ]-modules

M+ν M M−ν
i+ν q−ν

with M±ν free as B-modules. The local conditions that we will consider are then given by
∆ν(M) = C•

cts(Kν , M
+
ν ) with morphisms i+ν : C•

cts(Kν , M
+
ν ) → C•

cts(Kν , M) induced by i+ν for
ν ∈ Sf . Keeping the above choices of B[Gν ]-submodules i+ν : M+ν ↩→ M in mind, we set
∆(M) = {C•

cts(Kν , M
+
ν )}ν∈Sf

and denote

C̃•
f (GKS

, M) = C̃•
f (GKS

, M;∆(M)),

RΓ̃f (GKS
, M) = RΓ̃f (GKS

, M;∆(M)),

H̃·
f (GKS

, M) = H̃·
f (GKS

, M;∆(M)).

Here, the cohomology groups are B-modules of finite type. One obtains an exact triangle
in the derived category of B-modules (cf. [Ven13, (157)])

!

ν∈Sf

RΓcts(Kν , M
−
ν )[−1] −→ RΓ̃f (GKS

, M) −→ RΓcts(GKS
, M) −→

!

ν∈Sf

RΓcts(Kν , M
−
ν ),

(6.6)

which in turn provides a long exact sequence of B-modules

· · · →
!

ν∈Sf

Hj−1(Kν , M
−
ν ) → H̃j

f (GKS
, M) → Hj(GKS

, M) →
!

ν∈Sf

Hj(Kν , M
−
ν ) → · · ·

by taking cohomology. Here, the last map is obtained by composing resSf
with the sum of

the maps induced by q−ν .
Finally, we give a brief overview of the ingredients for the relevant height pairing that

we want to use for introducing a regulator for the symmetric cube p-adic L-function. Let
T be a bounded complex of admissible B[G]-modules of finite type over B and denote by
J = ker(B̄ → B) the augmentation ideal of B, where B̄ = B[[Γ]] is an Iwasawa algebra over
B. On the one hand, there is (cf. [Nek06, Section 0.16]) a derived Bockstein map

β̃ : RΓ̃f (T ) −→ RΓ̃f (T )[1]⊗ J/J2.

On the other hand, one has (cf. [Nek06, (0.9.3)]) a cup product of the form

∪ : RΓ̃f (T )⊗RΓ̃f (T
∨(1)) −→ ω[−3],

where ω is the dualizing complex (cf. [Nek06, Section 0.4]). Based on the Bockstein map
and the cup product, the height pairing is defined as the composition

(∪[1]⊗ J/J2) ◦ (β̃ ⊗RΓ̃f (T
∨(1))) : RΓ̃f (T )⊗RΓ̃f (T

∨(1)) −→ ω ⊗ J/J2[−2].

Its component of the form

H̃1
f (T )⊗ H̃1

f (T
∨(1)) −→ H0(ω)⊗ J/J2

is what will be of special interest for us and will be referred to as the p-adic height pairing.
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6.4 Extended Selmer Groups for the Symmetric Cube. From here on, we focus
on the symmetric cube and introduce variants of the theory presented in the previous
subsection and the notions therein along the lines of [BSV21].

Let f be the p-adic Hida family as in the introduction of this section. It passes through
the newform fA ∈ S2(Γ0(N

′p)) of a semi-stable elliptic cuve A/Q with sign(A/Q) = −1
and split multiplicative reduction at the prime p ≥ 5 at its weight-two specialization. As
before, we assume it to satisfy Assumptions 1, 2 and 3. We denote by V (f) the Galois
representation (cf. [BSV22b]) that comes with the Hida family f , which interpolates the
Galois representations associated with the specializations. In particular, it specializes to
the p-adic Tate module Vp(fA) attached to fA at weight two. Further, we define V (Sym3 f)
to be the representation associated with the symmetric cube, i.e.

V (Sym3 f) = Sym3 V (f)⊗ Ξ.

In this definition, Ξ : GQ → O(UfA)
× is the character satisfying

Ξ(σ)(k) = χp(σ)
1−k for every σ ∈ GQ and k ∈ U cl

fA
,

and O(UfA) is the ring of bounded analytic functions on UfA . This big representation thus
gives rise to the appropriate twist of the symmetric cube that appears in the decomposition
result of Proposition 3.8. In particular, we have as a weight-two specialization

Vp(Sym
3 fA) = Sym3(Vp(fA))(−1).

We let Λ(UfA) be the ring of analytic functions on UfA bounded by 1. The ideal of analytic
functions in O(UfA) vanishing at k = 2 will be denoted J . We define KN ′p to be the
maximal algebraic extension of Q which is unramified at all the rational primes not dividing
N ′p and denote its absolute Galois group by GN ′p. In the terminology used in Section 6.3,
S is the set of primes dividing N ′p.

In our case, (B, M) is either of the pairs (Zp, Vp(Sym
3 fA)) and (Λ(UfA), V(Sym

3 f)), where

Vp(Sym
3 fA) ⊆ Vp(Sym

3 fA), resp. V(Sym3 f) ⊆ V (Sym3 f),

is a Zp-lattice, resp. Λ(UfA)-lattice, preserved by the action of GN ′p. We keep denoting
the maximal ideal of B by mB and equip M with the mB-adic topology. Furthermore, we let
(B,M) = (B[1p ], M[

1
p ]) and equip the absolute Galois groups GN ′p and GQℓ

for any prime
ℓ | N ′p with the profinite topology. The relevant complex of continuous (non-homogeneous)
cochains of GK with values in M is denoted by

C•
cts(K,M) = C•

cts(GK , M)⊗B B,

where K is any of the fields considered before. The local conditions of interest for us arise
from the inclusion within a short exact sequence

V (f)+ V (f) V (f)−

of O(UfA)[GQp ]-modules as in [BSV21, Section 2.1] or [BSV22b, (102)]. We put

V (Sym3 f)+ = Sym3 V (f)+ ⊗ Ξ
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and fix, for M being any of the two representations of interest, a GQp-stable B-lattice M+

mapping into M under the inclusion M+ ↩→ M . In the notation used before, for any prime
ℓ | N ′p, we consider the local conditions given by

U+
ℓ (M) =

/
C•
cts(Qp,M

+) = C•
cts(Qp, M

+)⊗B if ℓ = p

0 if ℓ ∕= p.

Then, as introduced in (6.5), the Nekovář Selmer complex is of the form

C̃•
cts(KN ′p,M) = cone

&
C•
cts(KN ′p,M)⊕ C•

cts(Qp,M
+) −→

!

ℓ|N ′p

C•
cts(Qℓ,M)

'
[−1].

Again, we set RΓ̃f (Q,M) to be the image of C̃•
cts(KN ′p,M) in the derived category of

bounded complexes of B-modules with cohomology of finite type over B and denote its
cohomology

H̃·
f (Q,M) = H·(RΓ̃f (Q,M)).

The first cohomology group H̃1
f (Q,M) is called the Nekovář extended Selmer group of

M . We refer the reader to [Nek06, 12.5.9.2 (ii), 12.7.13.3 (ii)] for a discussion of the
independence of these groups on the fixed sets of primes.

Just as in [BSV21, Section 2.3], this group should again be identified with the naive
extended Selmer group

Sel†(Q, Vp(Sym
3 fA)) = Sel(Q, Vp(Sym

3 fA))⊕H0(Qp, Vp(Sym
3 fA)

−), (6.7)

where the GQp-invariants on the right-hand side are thought of as the p-adic periods for
the symmetric cube. Here,

Vp(Sym
3 fA)

− = Sym3(Vp(fA)
−)(−1)

is a Qp-module of dimension one with trivial action of Ip. Note that Vp(Sym
3 fA)

− is
defined via the one-dimensional Qp-module Vp(fA)

−, on which an arithmetic Frobenius
acts as multiplication by the unit root αp of the Hecke polynomial of fA at p. Therefore,
an arithmetic Frobenius of GQp acts on Vp(Sym

3 fA)
− with eigenvalue p−1α3

p.

Remark 6.6. Recall the exact sequence (6.4) for the case of an elliptic curve, having the
extended Selmer group as its middle term, providing an identification

H̃1
f (Q, Vp(A)) = Sel(Q, Vp(A))⊕H0(Qp, Vp(A)−).

The right-hand side is exactly what we call the naive extended Selmer group for the ap-
propriate representation.

The idea for the identification (6.7) is as follows. Recalling (6.6), we have an exact
triangle

RΓcts(Qp,M
−)[−1] RΓ̃f (Q,M) RΓcts(KN ′p,M) RΓcts(Qp,M

−),
q−◦resp

(6.8)
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where q− is the map on complexes induced by the projection M ↠ M−. This triangle
induces a long exact sequence in cohomology

· · · → Hj−1(Qp, Vp(Sym
3 fA)

−) → H̃j
f (Q, Vp(Sym

3 fA)) → Hj(KN ′p, Vp(Sym
3 fA)) → · · · .

The main claim to be checked is that from this long exact sequence one can extract a short
exact sequence (cf. [Nek06, 12.5.9.2 (iii)])

H0(Qp, Vp(Sym
3 fA)

−) H̃1
f (Q, Vp(Sym

3 fA)) Sel(Q, Vp(Sym
3 fA)). (6.9)

For this, it is essential to show that (cf. [Nek06, 6.1.4 & 11.3.2])

Sel(Q, Vp(Sym
3 fA)) = ker

&
H1(KN ′p, Vp(Sym

3 fA)) H1(Qp, Vp(Sym
3 fA)

−)
q−◦resp

'
.

The short exact sequence (6.9) would then provide an identification

H̃1
f (Q, Vp(Sym

3 fA)) = Sel(Q, Vp(Sym
3 fA))⊕H0(Qp, Vp(Sym

3 fA)
−)

= Sel†(Q, Vp(Sym
3 fA))

as desired.
Finally, the definition of the p-adic height pairing that we are interested in builds on

a certain Bockstein map and a cup product pairing. More precisely, the Bockstein map
appears as

β̃ : H̃1
f (Q, Vp(Sym

3 fA)) −→ H̃2
f (Q, Vp(Sym

3 fA))⊗ J /J 2

and the relevant cup product is of the form

∪ : H̃2
f (Q, Vp(Sym

3 fA))⊗ H̃1
f (Q, Vp(Sym

3 fA)) −→ Qp.

As introduced at the end of Section 6.3, both of the above maps arise from derived versions
when considering the appropriate component in cohomology. We tensor the Bockstein map
β̃ with the identity on H̃1

f (Q, Vp(Sym
3 fA)), the cup product ∪ with the identity on J /J 2

and define the p-adic height pairing

〈〈 · , · 〉〉 : H̃1
f (Q, Vp(Sym

3 fA))⊗ H̃1
f (Q, Vp(Sym

3 fA)) −→ J /J 2

to be their composition. We expect it to be skew-symmetric by analogous arguments along
the lines of the proof of [BSV21, Proposition 2.1], using results from [Ven13, Appendix C].

6.5 A Conjectural Regulator for the Symmetric Cube p-adic L-Function.
Concluding this thesis, we assemble the above to introduce a regulator and propose a
conjecture along the lines of [BSV21] which puts that regulator into the context of Theo-
rem 6.2. The Nekovář extended Selmer group will henceforth be identified with the naive
extended Selmer group, and we set its dimension over the rationals to be

r†(Sym3A) = dim H̃1
f (Q, Vp(Sym

3 fA)).
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Definition 6.7. We define the regulator for the symmetric cube to be

Rp(Sym
3A) = det

:
〈〈Qi, Qj〉〉

;
1≤i,j≤r†(Sym3 A)

∈
&
J r†(Sym3 A)/J r†(Sym3 A)+1

'
/Q×,2,

where Q1, . . . , Qr†(Sym3 A) form a Q-basis of H̃1
f (Q, Vp(Sym

3 fA)).

Note that the determinant is only defined up to multiplication by the square of a non-
zero rational and we further use the natural multiplication (J/J2)r → Jr/Jr+1 to consider
the determinant as an element of the quotient on the right-hand side.

The following conjecture is the analogue of [BSV21, Conjecture 1.1] for the symmetric
cube p-adic L-function constructed in Section 5.

Conjecture 6.8. The p-adic L-function LSym3

p (f)(k) has order of vanishing r†(Sym3A)

at k = 2 and the following equality holds in the quotient of J r†(Sym3 A)/J r†(Sym3 A)+1 by
the multiplicative action of Q×,2:

dr
†(Sym3 A)

dkr†(Sym
3 A)

LSym3

p (f)(k)|k=2 = Rp(Sym
3A).

Wrapping up the thesis, we provide a more specialized conjecture by merging Conjec-
ture 6.8 and Theorem 6.2 in a situation of minimal analytic rank of the complex symmetric
cube L-function.

This follow-up conjecture arises from various steps that we now want to address. The
assumption on the minimal analytic rank for the complex symmetric cube L-function
conjecturally gives dimSel(Q, Vp(Sym

3 fA)) = 1. Pairing this with the expectation of
H0(Qp, Vp(Sym

3 fA)
−) being one-dimensional by the presence of an extra zero (cf. Theo-

rem 5.15), Conjecture 6.8 predicts r†(Sym3A) = 2 to be the relevant order of vanishing
by the identification of Selmer groups. The conjectured regulator for the symmetric cube
is of the form

Rp(Sym
3A) = 〈〈Q,ω〉〉2,

with generators Q ∈ Sel(Q, Vp(Sym
3 fA)) and ω ∈ H0(Qp, Vp(Sym

3 fA)
−). This would

follow from the pairing being skew-symmetric, so that the diagonal in the defining matrix
is zero, and the anti-diagonal entries differ only by a sign.

In conclusion, we propose the following BSD-formula for the triple product p-adic L-
function.

Conjecture 6.9. Assume that the order of vanishing of the complex symmetric cube L-
function L(Sym3 fA, s + 1) at s = 1 is equal to one. Then, the order of vanishing of the
p-adic symmetric cube L-function LSym3

p (f)(k) at k = 2 is equal to two. Further, there
exist P ∈ A(Q) ⊗ Q, b ∈ Q×, Q ∈ Sel(Q, Vp(Sym

3 fA)) and ω ∈ H0(Qp, Vp(Sym
3 fA)

−)
such that

d6

dk6
L∆
p (f)(k)|k=2 = 90b2 · 〈〈Q,ω〉〉2 · logA(P)4.
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