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Kurzfassung

Die rasche Verknappung der Süßwasserressourcen als Folge der steigendenWeltbevöl-
kerung ist eine Herausforderung zur Deckung des weltweiten Nahrungsmittelbedarfs.
Die Bewässerungslandwirtschaft ist der Hauptverbraucher von Süßwasser weltweit,
und es wird erwartet, dass die Bewässerungsflächen in Zukunft weltweit zunehmen
werden. Die Herausforderung, die Welt zu ernähren, ohne das verfügbare Süßwasser
zu erschöpfen, erfordert eine Neubewertung der Anbaupraktiken im Hinblick auf die
Optimierung der Erträge bei gleichzeitiger Verringerung des Bewässerungsbedarfs -
ein Ansatz, der gemeinhin als ”mehr Ertrag pro Tropfen” bezeichnet wird [GRS06].

Ansätze, die auf Defizitbewässerung beruhen, nutzen die physiologischen Reaktionen
der Pflanzen auf Wasserstress in verschiedenenWachstumsstadien, um eine Verringer-
ung des zugeführten Bewässerungswassers zu erreichen und gleichzeitig die nachteilig-
en Auswirkungen auf die Wachstumsraten der Pflanzen zu minimieren. Eine genaue
Charakterisierung der Pflanzenreaktion in Echtzeit ist der Schlüssel zur Gewährleist-
ung einer minimalen Verringerung des Ernteertrags bei gleichzeitiger Reduzierung
des Gesamtwasserverbrauchs. Aus praktischer Sicht bleibt die Erkennung von Stress
mit Hilfe herkömmlicher Sensortechniken eine große Herausforderung, da es keine
kostengünstigen Sensoren gibt, die pflanzen-basierte Stressreaktionen erkennen könn-
en, bevor der Schaden eintritt, was zu Ertragseinbußen führt. Die Verwendung von
auf dem Wasserstatus basierenden Modellen für das Pflanzenwachstum und damit
zusammenhängende physiologische Prozesse gilt daher als attraktive Alternative zur
Echtzeit-Erfassung. Vom Standpunkt der Steuerung aus betrachtet, ermöglicht die
Umsetzung von auf Präzisionsbewässerung basierenden Strategien das Erreichen
der beiden Ziele der Optimierung des Pflanzenwachstums und der Reduzierung des
Wasserverbrauchs.

In dieser Arbeit werden auf einem Zustandsautomaten basierende Modellierungs-
ansätze für Pflanzenwachstumsparameter, insbesondere für die Blattexpansion, die
Blatterscheinung und die Biomasseakkumulation, entwickelt und vorgestellt. Ein
Evapotranspirationsmodell, das auf Maispflanzen im Gewächshaus unter Wasser-
stressbedingungen zugeschnitten ist, wird ebenfalls entwickelt. Die Wachstums- und
Evapotranspirationsmodelle werden in einem Algorithmus zur präzisen Bewässer-
ungssteuerung integriert und zur Optimierung und Steuerung des Pflanzenwachstums
im geschlossenen Regelkreis eingesetzt, wobei ein Ausgleich zwischen der Maximier-
ung der Gesamtblattlänge und der Minimierung des Wasserverbrauchs geschaffen
wird.

Die Validierung und Prüfung der Pflanzenwachstumsmodelle und des Wachstums-
steuerungsansatzes erfolgt in einem Gewächshaus mit Maispflanzen (Zea mays)
als Kontrollobjekt. Die Ergebnisse zeigen, dass die vorgeschlagenen Modelle die
Gesamtblattlänge, den Zeitpunkt des Blattaustriebs und die Evapotranspiration
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unter verschiedenen Stressbedingungen genau vorhersagen können. Der Steuerungs-
algorithmus ist auch in der Lage, die Wachstumsziele auf der Grundlage der generier-
ten Bewässerungssequenzen zu erreichen und gleichzeitig denWasserverbrauch inner-
halb der gewünschten Grenzen zu halten. Chronologische Schwellenwerte für die
Reaktion von Maispflanzen auf den Beginn von Wasserstress und die Erholung
nach einer erneuten Bewässerung wurden ebenfalls anhand von Sensormessungen
experimentell validiert. Die Grenzen statischer Wachstumsmodelle, die auf konstant-
en Übergangsschwellen beruhen, wurden ebenfalls festgestellt, was auf die Notwendig-
keit der Implementierung dynamischer Stressschwellwerte in zukünftigen Arbeiten
führt.
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Abstract

Rapid dwindling of freshwater resources as a result of rising global population is
a challenge that urgently requires to be addressed if global food demand is to be
met. Irrigation-fed agriculture is the main consumer of global freshwater, with
future expansion of land under irrigation expected globally. Meeting the challenge
of feeding the world without exhausting available freshwater requires a re-evaluation
of crop management practices with a view to optimize yield while reducing irrigation
requirements, an approach commonly referred to as ”more crop per drop” [GRS06].

Deficit irrigation-based approaches exploit physiological responses of plants on expos-
ure to water stress at different stages of growth to achieve a reduction in irrigation
water supplied while minimizing detrimental effects to the plant growth rate. Accura-
te characterization of plant response in real time is key to ensuring minimal reduction
in crop yield while simultaneously reducing overall water consumption. From a
practical point of view, detection of stress onset using conventional sensing techniques
remains a key challenge due to unavailability of cost-effective sensors capable of
detecting stress responses before onset of damage, which results in loss of yield. Use
of water status-based models for plant growth and related physiological processes
is therefore considered an attractive alternative to real-time sensing. From the
control viewpoint, implementation of precision irrigation-based strategies allows
achievement of the dual objectives of optimizing plant growth and reduction of
water consumption.

In this thesis, water status-based modeling approaches for plant growth parameters,
specifically leaf elongation, leaf appearance and biomass accumulation are developed
based on a state machine approach and presented. An evapotranspiration model
tailored to greenhouse-grown maize plants under water stress conditions is also
developed. The growth and evapotranspiration models are integrated into a precision
irrigation control algorithm and applied to closed loop optimization and control of
plant growth, balancing between maximizing total leaf length and minimizing water
consumption.

Validation and testing of the plant growth models and the growth control approach
is performed in an indoor greenhouse using maize plants (Zea mays) as the control
subject. Results demonstrate that the proposed models can accurately predict total
leaf length, timing of leaf appearance and evapotranspiration under different stress
conditions. The control algorithm is also able to match growth targets based on
generated irrigation sequences, while maintaining water consumption within desired
limits. Chronological thresholds related to response of maize plants to initiation
of water stress and recovery after reirrigation have also been validated based on
sensor measurements. The limitations of static growth models based on constant
transition thresholds have also been observed, suggesting a need for implementation
of dynamic stress thresholds in future work.
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1 Introduction

The United Nations Sustainable Development Goals (SDGs) envision global food
security through sustainable agriculture (SDG 2) and the availability and sustainable
management of water (SDG 6) [UN 15]. Despite technological advances and global
support towards agricultural food production, hunger continues to be a global threat,
with reports projecting 670 million people facing world hunger in 2030, indicating
no significant progress towards achievement of SDG 2 [FIU+22]. To mitigate this
trend, it is imperative that food production be proportionally increased in response
to population growth. Irrigation-based agriculture is currently responsible for 40
% of global agricultural output, utilizing 20 % of arable land but consuming 69 %
of global freshwater withdrawals [FAO20]. Driven by a rising global population,
available freshwater resources per person face increasing pressure, with a reported
decline of more than 20 % in the last two decades. While water treatment and
desalination provide alternatives to cover the freshwater need, existing techniques
are costly and energy intensive, particularly at low to medium scale [AGd+17,
AGM20, HORB+19, OPRW21, OSCA20]. Freshwater generation via atmospheric
water harvesting [LSG+22,TWZW18] offers a novel, but energy intensive alternative
which is currently limited to smaller production units under specific conditions
[LZZ+21]. However optimization of crop irrigation appears to be the most suitable
solution to achieve a sustainable compromise between increasing freshwater demand
for food production and the associated energy and environmental costs to realize
adequate global food supply [FAO18].

Precision irrigation approaches offer a solution for avoiding wastage of freshwater
resources. Precision irrigation is described as the application of a precise amount of
water at the right time to the right plant or in the right location. Traditional
definitions of precision irrigation consider the ”precise amount” of water to be
applied to be the full amount of water required to meet the plant demand, which has
commonly been determined based on the relationship between crop evapotranspirati-
on and environmental factors [MMC+15,LMA+16]. Further water savings are feasible
through the incorporation of deficit irrigation-based regimes, where plants are subject-
ed to periods of water stress, generally timed to coincide with growth phases that are
tolerant of reduced water supply. A balance is however required to avoid negatively
impacting crop yield, which would negate the overall impact of water savings. To
achieve this, a determination of water supplied to and demanded by the plant is
required in real-time.

Identification of physiological signals indicative of the onset and progression of water
stress is imperative in application of precision irrigation control under water deficit
conditions. A comprehensive overview of common physiological responses to water
stress in vegetables is presented by Nemeskëri and Helyes [NH19], presenting a basic
guideline for selection of relevant sensing devices for the detection of plant stress.
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Integral to the implementation of deficit irrigation approaches is the quantification
of stress levels. A distinction between mild and severe or high stress is based on the
growth behavior of the plant once the stress is withdrawn. Exposure to high stress
results in irreversible damage, which is expressed as a retardation in the growth rate
and eventual reduction in yield [LLT+19]. A recovery upon withdrawal of the stress
event indicates mild stress levels, and in some cases results in accelerated growth,
referred to as the ”catch-up phenomenon” [Sla69].

1.1 Automation of precision irrigation

Irrigation has been an integral part of crop production since the introduction of
agriculture. Early irrigation approaches involved intricate systems of canals, with
later additions of reservoirs, dikes, and overflow canals to mitigate flooding [GHHM00,
Wes19]. Irrigation control focused on direction of irrigation water to specific locations,
regulation of irrigation duration and mitigation of flooding. Surface irrigation
methods involving use of flooded basins, furrows, dykes, dams, and artificial reservoirs
remain the predominant form of irrigation to date [JGH+15]. Control methods
aimed at more efficient use of irrigation water have been targeted at regulating the
timing, duration, and frequency of supply to the fields through control of gates,
sluices, valves, and pumps. New methods of water application to plants in the
field, namely through sprinklers and drip lines, have provided new opportunities
for more accurate control of irrigation water supply, allowing regulation of water
supply to individual plant level. These developments on the actuation side of
irrigation have been accompanied by corresponding developments in sensing and
control approaches.

The incorporation of spatial variability in the management of irrigation is a key
concept in distinguishing between traditional irrigation and precision irrigation
[SESC05,SB09]. In Smith et al. [SBM+10], a distinction is made between traditional
definitions of precision irrigation, which focus on maximizing efficiency through
precise determination of volume, location, and timing of irrigation, with uniform
application over the entire system, and an updated definition that incorporates
spatial and temporal variation in irrigation treatment. The focus is shifted from
field level to management zones within the field [Fer17,GDGZTF14], or to individual
plant level [KKMD+18,KHH+18]. Camp et al. describe precision irrigation as “site-
specific water management, specifically the application of water to a given site in a
volume and at a time needed for optimum crop production, profitability, or other
management objectives at that specific site” [CSE06]. In this work, implementation
of precision irrigation as a means of growth control is investigated with the help of
water use-based crop growth modeling. Supporting technologies are considered with
regard to their flexibility in allowing variable precision irrigation of individual plants,
rather than achieving efficiency through generation of uniform irrigation schedules.
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Integration of automation for achievement of specific goals related to monitoring
of plant physiological responses, efficient use of water, and maximization of crop
productivity is also described.

1.2 Motivation and research objectives

The aim of this thesis is to describe the development and testing of a model-
based plant growth control system based on precision deficit irrigation, allowing
simultaneous optimization of overall plant growth while minimizing total water
consumption. Development of the system requires modeling of plant growth paramet-
ers and physiological processes based on water status. This informs the first set of
research objectives, which are

• Validation and adaptation of a previously developed state machine-based leaf
growth model with a focus on identifying quantitative and chronological water
stress thresholds,

• Definition of water stress-related plant growth functions applicable to existing
experimental conditions,

• Development and validation of a model describing timing of new leaf appearance,
and

• Defining a water stress-based evapotranspiration model characterizing experime-
ntally observed relations.

Application of the growth and physiological models to achievement of specific goals
related to plant growth or water consumption forms the next significant part of the
research work. A closed-loop model-based control approach is developed, tested,
and implemented to produce optimal scheduling of irrigation and mild stress events.
A secondary task involves automation of the irrigation system to achieve automated
growth control. These tasks are defined by a second set of research objectives,
namely

• Development of a control system with desired total plant growth and cumulative
water consumption as control variables, and the required sequence of irrigation
and mild stress events as control signal, and

• Automation of sensing and actuation requirements for real-time determination
and supply of required irrigation quantity.



4 Chapter 1. Introduction

1.3 Thesis organization

Chapter 2 describes the current State-of-the-Art in modeling and prediction of
relevant plant growth parameters, with a focus on leaf-related variables as well as
overall plant growth. Models specifically characterizing maize growth are explored.
Comparative remarks are made and existing research gaps are highlighted. In
Chapter 3 the development of growth models used in this work are introduced.
Leaf elongation is represented using a state machine model adapted from previous
research work [Kög19], and a set of linear relationships characterizing individual
stress states is developed. Inspiration is taken from linear degradation models
to develop a linearized model to represent leaf appearance in maize plants as a
function of the growth trajectories of older leaves. A regression model based on
environmental variables, total leaf length and stress state is adopted for modeling of
evapotranspiration within the greenhouse. Section 4 details the control approach,
using a trellis-based representation to describe state trajectories required to achieve
desired target outputs. A trellis path finding algorithm is developed to extract
the optimal trajectory based on desired output and resource-based constraints,
integrated into a model predictive controller to achieve irrigation-based growth
control. Overall results and conclusions are summarized in Chapter 5. Major
parts of this thesis have been published or are awaiting publication. Texts originate
from [OS19a], [OS19b], [SKO19], [OS21a], [OS21b], [OS21c], [OS22a], [OS22b], and
[OS23].
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2 State-of-the-Art in modeling of plant growth

and evapotranspiration

To identify existing research gaps in modeling and control of plant growth based on
deficit irrigation strategies, it is important to examine existing approaches described
in literature. For this purpose, an examination of various strategies employed in
modeling and prediction of plant growth and evapotranspiration is presented in this
chapter. Emerging trends likely to influence further development in the research
field are discussed and evaluated.

2.1 Background

Overall growth and development of a plant involves incremental increase in the size
and number of cells forming individual plant organs, such as leaves, stems, roots,
fruit, and so on. This is dependent on a number of factors and processes influencing
the growth rate, including genetics, temperature, water, nutrient concentration, and
carbon dioxide. The plant can be considered to exist within a continuum in which it
interacts with atmospheric and soil-based factors. This is illustrated in Figure 2.1.

Plant growth models aim to define the incremental growth of an entire plant or
specific components as a function of relevant factors or processes.

Commonly modeled and measured plant growth parameters are classified into two
categories

i) Morphological parameters relate to the physical form, shape and/or structure
of a plant or its constituent organs. Common morphological parameters of
interest in plant growth modeling include

• Leaf length, width, area, number, angle, thickness

• Stem thickness/diameter

• Rooting depth, number of secondary roots, rooting area/density

• Fruit number, size, mass

• Plant height, elongation rate

ii) Physiological parameters relate to biological functions required for normal
growth and development of a plant or its constituent organs. Common physiolo-
gical parameters of interest in plant growth modeling include

• Photosynthesis

• Hormonal function
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Figure 2.1: Schematic representation of interactions within the atmosphere-plant-
soil continuum, based on [FZS+07]

• Respiration

• Evapotranspiration

• Dormancy

• Senescence

• Stress response

For optimal growth and development, it is important to ensure adequate and timely
provision of such resources as the plant may need based on the developmental
stages. In practice, assessment of growth stages is done by visual observation as well
as use of predictive models to estimate timing and duration of individual growth
phases. Common approaches for estimation and prediction of plant growth and
development rely on temperature-based approaches ( [JCR99], [DP03], [PO05]), as
well as respiration-rate-based methods ( [SLH93]). More recent predictive approaches
have been implemented using 2D and 3D image processing with application of
statistical methods ( [SSPG18]), machine learning techniques ( [NMW+19]), and
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neural networks ( [SUST19]). Fuzzy logic algorithms ( [SPA17]) have also been
employed in prediction of plant growth.

2.2 Leaf growth modeling approaches

The above-ground biomass of growing plants is partitioned betweeen leaves, stems/tr-
unks, branches, and reproductive organs. Plant leaves are integral to the accumulati-
on of biomass through photosynthetic processes, which convert carbon dioxide from
the atmosphere to carbohydrates, mainly sucrose and starch [HB07], in the presence
of solar energy and water. Leaves are also the main site of transpiration, which
facilitates thermoregulation and transport processes. Additional roles served by
leaves include rain interception and respiratory processes via the stomata. Modeling
of morphological and physiological characteristics of leaves is therefore a significant
aspect of plant growth modeling.

Leaf area index

Quantification of leaf material in a field is accomplished using a dimensionless ratio
referred to as leaf area index (LAI), and described as half the total leaf area per
unit ground surface area [JFN+04]. The ground surface area is specifically defined
as horizontal ground surface area to determine LAI on sloping surfaces [SCST07].
LAI defines the size of the plant-atmosphere interface, thus an accurate estimation
is key in modeling of key physiological processes such as evapotranspiration and
canopy photosynthesis.

Destructive measurement of leaf area index typically involves partial or complete
defoliation of plants within the selected sample area. Non-destructive approaches
include gap fraction-based methods [WBS+04], use of imaging devices [CC12,LZW+16],
and LiDAR-based approaches [TBZ+14].

Where direct or indirect measurement of LAI is impossible or impractical, modeling
approaches allow relatively accurate estimation. Allometric methods rely on the
derivaion of empirical relationships between LAI and other more easily measurable
variables.

An estimate of LAI based on rainfall and temperature data (expressed in Growing
Degree Days/GDD) is described by Davood et al. [DGBA17], where LAI is determined
based on equation 2.1 as

LAI = aP be
−(GDD−c)2

d , (2.1)

where
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a,b,c, and d are model parameters to be estimated via calibration,
P represents spatially interpolated rainfall / precipitation, and
GDD is a cumulative thermal-based measure of growing time
(growing degree days).

Using the thermal time, plant population, and canopy height as independent variables,
Colaizzi et al. developed an allometric model for LAI estimation of different row
crops (corn, sorghum, cotton and soybean) over multiple growing seasons [CEB+17].

LAI = f(P(x,crop), θ) = Y0 exp

[
−0.5(

ln(θ/θ0)
2

γ
)

]
, (2.2)

where

f(P(x,crop), θ) is a bell-shaped function,
Px is a set of parameters specific to the allometric model version (x) and crop,
θ is the normalized thermal time (CGDD),
γ is a shape parameter (0 < γ < 1), and
Y0 is the peak value of the function.

Allometric LAI models developed for forestry applications are described in various
research works [JMC05,TAMG00,PBD22]. A summary of recent allometric approach-
es is presented in Table 2.1.

Table 2.1: Allometric approaches for leaf area index (LAI) modeling

Authors Dependent variables Remarks

Davoodi et al. Rainfall, Basin-scale LAI simulation
[DGBA17] thermal time (GDD)
Colaizzi et al. GDD, plant population, Multi-season estimation
[CEB+17] canopy height for multiple row crops
Jonckheere et al. Diameter at breast height, Projected needle area estimate
[JMC05] basal trunk diameter at stand-level
Turner et al. Sapwood area at breast height, Sapwood area values derived
[TAMG00] sapwood area at crown base from diameter at breast height
Paramanik Diameter at breast height, Symbolic regression-based model
[PBD22] tree density, canopy height for mangrove forest LAI estimation

Leaf appearance

Plant growth during the vegetative phase can be quantitatively described using
the quantity of biomass produced or the rate of generation of biomass. Growth
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stages in the vegetative phase of several plants in the grass family are demarcated
by emergence of specific leaves ( [HI71], [ZCK74]). Tracking the appearance of
successive leaves can therefore be used to characterize plant development over time.
An integration of the leaf appearance rate over time allows estimation of canopy
size, biomass production, and prediction of yield.

In [KRJH91], the leaf appearance rate and duration of leaf expansion are modeled
based on incremental temperature during the growth period, expressed in Growing
Degree Days (GDD). The effects of drought stress, photoperiod, and solar radiation
are examined. The duration of leaf expansion is expressed as a function of leaf
numbers and daily mean temperatures. A modified approach developed by Jame et
al. introduces a non-linear temperature response function that allows the determinat-
ion of leaf appearance rate under a wider range of temperatures by accumulating leaf
appearance rates calculated hourly rather than daily [JCR99]. The equations are
based on the assumption that leaf appearance rate is constant through the growing
season and is fixed at the time of seedling emergence/germination.

The phyllochron concept is a commonly used approach in modeling leaf appearance.
Phyllochron is defined as ”the interval between similar growth stages of successive
leaves on the same calm”, and is assumed to be constant from emergence to flowering
[BVK+98]. The leaf appearance rate (LAR) can be directly obtained as the inverse
of phyllochron. In this approach, plant development is expressed as a function
of thermal time, with crop-specific base temperatures applied for evaluating the
accumulated thermal time (TT), as shown in equation 2.3 as

TT =


(T − Tmin) Tmin < T < Topt

− (Topt−Tmin)×(Tmax−T )

(Tmax−Topt)
Topt < T < Tmax,

0 otherwise

(2.3)

where

Tmin, Tmax and Topt are crop-specific minimum, maximum and optimal
growing temperatures, and
T is the actual temperature averaged hourly and accumulated daily.

A linear regression of total emerged leaves against accumulated thermal time is
generated, with phyllochron defined as the inverse of the slope of the regression
curve. A modification of the phyllochron model to account for photoperiod and
plant-specific temperature response results in the Wang and Engel (WE) model
[WE98], with the general form

LAR = LARmaxf(T )f(P ) (2.4)

where
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LAR is the daily leaf appearance rate, and
f(T ) and f(P ) are dimensionless temperature and photoperiod response functions.

The function f(T ) is defined in equation 2.5 as

f(T ) =
2(T − Tmin)

α(Topt − Tmin)
α − (t− tmin)

2α

(Topt − Tmin)2α
, (2.5)

with α defined as a shape factor that determines the skew direction of the function.

When the three base temperatures Tmax, Tmin and Topt are known, α can be calculated
as

α =
ln 2

ln[(Tmax − Tmin)/(Topt − Tmin)]
. (2.6)

The function f(P ) is defined in equation 2.7 as

f(P ) = 1− exp(−ω(P − Pc)), (2.7)

where

P is the actual photoperiod,
Pc is the critical photoperiod below which no development occurs, and
ω is a crop-specific photoperiod sensitivity coefficient.

Further modification of the WE model to account for nonlinear temperature and
age effects on the LAR introduces a chronology response function f(C), defined
in [Str03] as

f(C) =

{
1 if HS < 2 and

(HS
2
)b if HS ≥ 2,

(2.8)

where

HS is the Haun stage, which is a numerical designation for cereal growth staging
based on appearance of consecutive leaves on the main stem, and
b is a sensitivity coefficient.

Studies on effect of water stress on leaf appearance in maize indicate a delay in
appearance of new leaves resulting from periods of water deficit [SJH19, NR92,
TCPR00]. When periods of water deficit are followed by periods of full irrigation, the
growth of previously water stressed plants temporarily exhibits a recovery phenome-
non, with leaf appearance rates greater than control plants that have not experienced
water stress [MC89,KS18]. Further research is however needed to establish a causative
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link between the increased elongation rate experienced during recovery from water
stress and the accelerated leaf appearance observed in recovered plants, with the
possibility of introducing optimal water management strategies for control of biomass
production and timing of leaf appearance. Additionally, determination of the duration
of recovery is necessary to establish optimal timing of renewed exposure to stress
in order to reactivate the accelerated growth response without adversely affecting
overall yield.

The contribution of genotypic factors [BAF02,PO05], photoperiod sensitivity
[ZBZ+22], plant density [AHB06], and water stress [BLB+04] to the timing and
rate of leaf appearance have been additional areas of research focus, albeit with
the main focus primarily on the relationship between thermal time and maize
leaf development. Modification of thermal time calculations and use of bilinear
phyllochron functions [dAC+22], has allowed application of leaf appearance models
independent of crop variety and management practices, expressed in equation 2.9 as

GDD(Tave, C) =



0 Tave ≤ 0,
Tave

1.8
) 0 < Tave ≤ 18,

Tave − 8 18 < Tave ≤ 34,

26− [(Tave − 34)× 2.6] 34 < Tave ≤ 44, and

0 44 < Tave,

(2.9)

with Tave representing the average daily temperature.

Application of dynamic nonlinear functions in modeling leaf appearance has been
applied, with chronological coefficients integrated in the modifiedWEmodels accoun-
ting for the effect of seed reserves for initial leaves, and decrease in LAR as plants
progress towards maturity. Existing models perform well over a wide range of
meteorological conditions, for different crop management approaches, and with
different genotypes.

A summary of existing models is presented in Table 2.2. Two-stage phyllochron
models provide more reliable prediction of leaf appearance timing, but are less
accurate than WE and modified WE models, which integrate interaction of multiple
environmental and chronological factors that play a role in the rate of leaf appearance.

Limitations of existing leaf appearance models include variation in calculation of
thermal time, and a focus on field-grown crops, making them unreliable for approxim-
ation of crop development in indoor growth conditions. Additionally, variations due
to biotic and abiotic stress factors are not integrated, thus pointing to a need for
further modification if they are to be integrated into precision deficit irrigation-based
agriculture.
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Table 2.2: Comparative summary of leaf appearance models

Authors Findings Research gaps

Kiniry et al., Relationship between Limited consideration of
[KRJH91] phyllochron and thermal time non-thermal effects
Jame et al., Integration of Restricted to
[JCR99] temperature response function thermal factors
Bennouna et al., Internode elongation correlated Response during recovery
[BLB+04] to leaf collar emergence not evaluated

under water stress conditions
Padilla & Otegui, Genotypic variations in Restricted to
[PO05] leaf initiation and appearance well irrigated conditions

in response to temperature
Fournier et al., Causative link between Directionality of causal effect
[FDL+05] leaf elongation not considered

and collar emergence
Kögler & Söffker, Response of leaf appearance Link between elongation rate
[KS18] to water stress and recovery and leaf appearance
Song et al., Growth response during recovery Application to growth control
[SJH19]

2.3 Plant height modeling

During plant growth, significant energy reserves are invested towards increasing
total height. This allows the plant to compete for light. Correlations also exist
between plant height and life span, seed mass and time to maturity [MWW+09].
Plant height has also been shown to be directly linked to yield potential [AMM+19,
MN20], flowering [AMB+21] and above ground biomass [HYD+19], enabling early
intervention for optimal yield.

A study of the factors contributing to increase in plant height allows for modeling
using allometric functions. Relationships between plant height and stem diameter
have been found to produce reliable growth estimates [dSV+18,ZSC+20]. Existing
studies describe plant height models based on environmental factors such as light
intensity and temperature [RHT18, JLG+20, SKA+20], or physiological processes
such as evapotranspiration [WBB95] and sapwood-specific hydraulic conductivity
[LGH+19]. Crop management practices have also been found to play a role, with
correlations planting date, water content and nutrient application emerging as reliable
indicators of expected terminal height [LYL+22,LY21]. More generalized models for
predicting of expected final height exist, with growing latitude and altitude employed
as independent variables in a number of studies [MWW+09,XMJL17,MCZZ16].

Integration of measurements from unmanned aerial vehicles has allowed development
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of crop surface models (CSM), from which plant height can be accurately estimated
[VAP+17, WGA+17]. Early stage measurements are used to generate predictive
models from which terminal height can be estimated, allowing biomass and yield
prediction. Through the use of multitemporal imagery, three-dimensional models of
plant height can be generated, though accuracy is limited by change of reflectance
during successive developmental stages [MPM+18,AMC+20].

Recent developments in plant height modeling involve the implementation of machine
learning-based algorithms in prediction of plant height, allowing prediction of potent-
ial plant height based on genomic factors [VK22] and identification of the most
significant environmental factors contributing to plant height [LdO+22]. An addition-
al field of research interest lies in modeling the height of specific plant organs (such
as leaves, flowers or fruit) to facilitate automation of specific management processes,
as described in Wong et al. [WSA+20], where deep learning is applied for prediction
of corn ear height based on video input for automation of harvesting. Similar
approaches could be applied in future to enable automation of in-season site-specific
application of agricultural chemicals.

2.4 Evapotranspiration modeling

Water supplied to plants is lost either through evaporation from the soil surface
or transpiration from the stomatal interface. During the early stages of plant
development, water losses are primarily due to evaporation. As the plant develops
and forms a canopy, the exposes soil surface area decreases, leading to an increased
contribution of transpiration to overall water losses (Figure 2.2). Due to the difficulty
in distinguishing between the two processes, losses from evaporation and transpiration
are frequently combined as evapotranspiration (ET).

Approaches used in measurement of evapotranspiration are based on concepts from
hydrology, micrometeorology, and plant physiology. Micrometeorological approaches
involve instrumentation based on the Bowen ratio integrated into energy balance
functions, aerodynamic equations and eddy covariance-based methods. Hydrological
approaches include use of weighing lysimeters, which directly determine the amount
of water lost or gained over time in an enclosed mass of soil, and water balance
equations (equation 2.10), where incoming and outgoing water flux into the root
zone are assessed to calculate evapotranspiration as

ET = I + P −RO −DP + CR±∆SF ±∆SW, (2.10)

where
I represents irrigation,
P is the precipitation / rainfall,
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Figure 2.2: Partition of evapotranspiration over crop growth season, based on
[FAO98]

RO represents surface runoff,
DP is deep percolation, which goes towards recharging the water table,
CR is capillary rise from shallow water tables,
SF represents horizontal subsurface flow, and
SW is the soil water content.

Modeling of evapotranspiration is commonly based on combination models that
use equations based on aerodynamic theory and energy balance. A well-known
combination model for estimation of crop evapotranspiration is the Penman-Monteith
equation

λET =
∆(Rn −G) + ρacp

es−ea
ra

∆+ γ(1 + rs
ra
)

, (2.11)

where

Rn is the net radiation,
G is the soil heat flux,
es − ea represents the vapor pressure deficit,
ρa is the mean air density at constant pressure,
cp is the specific heat of the air,
∆ represents the slope of the saturation vapor pressure/temperature relationship,
γ is the psychrometric constant, and
rs and ra are the surface and aerodynamic resistances.

A modification of the Penman-Monteith equation is introduced in [FAO98] to account
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for crop-specific differences. A single crop coefficient approach combines the effects of
crop transpiration and evapotranspiration into a single constant Kc, and is typically
used for resource planning and long-term irrigation management. For real time
and/or high frequency irrigation scheduling applications, a dual crop coefficient
approach is employed, where a basal crop coefficientKcb describing plant transpiration
is added to a soil water evaporation coefficient Ke representing evaporation from
the soil surface to obtain the overall crop coefficient Kc [RPR+12]. The actual
evapotranspiration is then determined as

ET = KcET0 (2.12)

where ET0 is the maximum evapotranspiration evaluated either on a reference crop
or on free water in a pan.

Recent developments in evapotranspiration modeling based on the Penman-Monteith
equation integrate the effects of planting density [JKT+14], soil texture [AMER+21],
and water deficit [PSM+17,GQS+20]. Current research investigates estimation of
crop coefficients based on data from ground sensors or unmanned aerial vehicles,
with leaf area index, multispectral vegetation indices, fraction of ground cover and
canopy height as some of the reported variables of interest [SHZ+21, PPM+20,
ZKL+18, ZHNL19]. Greater accuracy could be achieved through implementation
of dynamic crop coefficients using daily calculations and historical thresholds to
modify predicted values of ET [HZZ+22].

A simpler approach for estimating evapotranspiration on large scale from well watered
vegetation was developed by Priestley and Taylor [PT72], focusing on radiation
variables to simplify estimation. The regional evaporation rate is expressed as

λET = αλETeq = α[εA/(ε+ 1)], (2.13)

where

λETeq is the equilibrium evaporation rate,
α is an empirical constant, and
ε is defined as the ratio of latent to sensible heat as air is warmed to saturation.

Recent developments applying the Priestley-Taylor approach include modifications
to integrate spatial distribution of soil moisture [XWS+21] and soil water index
measurements [HBC19]. For further simplification, the Hargreaves-Samani approach
has been developed as an evapotranspiration model requiring only temperature and
latitude as input variables [HS85]. Evapotranspiration is calculated as

ET0 = HCRa(∆T )HE(TC +HT ), (2.14)

where
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HC = 0.0023 is an empirical coefficient,
Ra is extraterrestrial radiation (in mm/day),
∆T = Tmax − Tmin,
HE = 0.5 is an empirical exponent,
TC is the average daily temperature, and
HT = 17.8 is a conversion factor from farenheit to celcius

For greater accuracy, spatio-temporal calibration is integrated to the Hargreaves-
Samani model to allow incorporation of wind speed [CCHK16,GEA+18] and long-
term site-specific meteorological data [KIWO20,OEE+21].

A summary of evapotranspiration modeling approaches is presented in Table 2.3,
describing major limitations inherent in each model. Significant gaps exist in model-
ing evapotranspiration under artificial lighting conditions, particularly accounting
for the distribution curve of incident radiation resulting from switching conditions
between day and night. Factors relating to air flow in enclosed conditions are also
neglected.

Table 2.3: Comparison of evapotranspiration models

Model Key features Limitations

Dalton Mass transfer equation based Requires assumption of
[Dal98] on saturation vapor pressure uniform leaf temperature

and wind speed and vapor-saturated air
Cummings Energy balance-based model Sensitive to advection
[CR27]
Thornthwaite Based on mean air temperature Underestimation of
[Tho48] incident solar radiation
Blaney-Criddle Based on mean daily temperature Monthly variations
[BC62] and daylength neglected
Penman Combination of energy balance Plant-specific variations
[Pen48] and mass transfer equations not incorporated
Penman-Monteith Expansion of Penman equation Complex model with
[Mon65] with canopy and atmospheric many input variables

resistance values
Priestley-Taylor Based on radiation parameters Sensitive to wind speed
[PT72] and saturation deficit
Hargreaves-Samani Temperature-based equation Requires calibration
[HS82] with minimal climatological data to local conditions
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2.5 Modeling of maize growth and development

Maize (Zea mays), is a cereal plant of the grass family grown both as a staple
food crop and as an energy crop. The plant possesses a simple stem of nodes and
internodes, with leaves developing in pairs on each internode, with leaf number
at maturity ranging between 8 and 21 leaves, based on genetic and environmental
factors.

Growth of maize is typically divided into three main phases, with subsidiary stages:

i) the vegetative phase, characterized by development of leaves, which facilitate
the conversion of sunlight and water into carbon reserves under the influence
of chlorophyll and in the presence of various nutrients.

ii) the reproductive phase, during which the focus is on production of carbohydrate
reserves, which eventually form the harvest. This phase is characterized by
development of tassels, silking, and kernel production.

iii) the maturity phase, during which the developed kernels experience conversion
of sugars into starches, accompanied by an overall loss of water weight as the
stalk and ears dry out.

Plant growth during the vegetative phase can be quantitatively described using the
quantity of biomass produced or the rate of generation of biomass. The growth
stages in the vegetative phase of maize plants are demarcated by emergence of
specific leaves ( [HI71], [ZCK74]).

Using existing models, leaf appearance, and rate of biomass accumulation can be
predicted. The reliance of thermal time as a predictor however neglects the physiolog-
ical responses exhibited by plants during water stress and recovery, expressed as
variations in growth rate. Implementation of deficit irrigation-based growth control
requires accurate modeling of maize growth during stress and recovery, integrating
the effects of severity and duration of water stress on the growth trajectory.

The program DSSAT-CERES, developed by the Decision Support System for Agritec-
hnology Transfer (DSSAT) models plant growth, focusing on the correlation between
dynamic conditions in the soil-plant-atmosphere continuum and plant growth, develo-
pment and yield [HPB+19]. Individually parametrized models exist, allowing crop-
specific modeling of plant growth with the integration of climatic variations, genomic
differences, irrigation management, and nutrient availability.The maize-specific vers-
ion CERES-Maize was developed for simulation of yield under different management
strategies, and provides a flexible platform that allows optimization of yield through
variation of farm inputs [JK86]. Responses to biotic stresses such as parasites and
disease can also be integrated, allowing an analysis of risk factors. Crops are
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evaluated as a complete unit, allowing a closer representation of field conditions,
where complementary and competitive effects arise from neighboring plants. CERES-
Maize is freely available from the developers. However simulation requires precise
formatting of a complex set of input variables, making it challenging to implement.

The WOFOST simulation model explains daily crop growth as a function of underly-
ing physiological processes such as photosynthesis and respiration, under the influence
of environmental variables [vWvR89]. Crop production, biomass accumulation, and
water consumption can be progressively modeled over the growth cycle with required
inputs including cultivar-specific values of thermal time, assimilate conversion coeffic-
ients, maximum rooting depth, daily root development rate, and shoot/root partition-
ing ratio. The model assumes uniform distribution of water within the root zone
and runoff values proportional to amount of precipitation. A key limitation of
WOFOST lies in the evaluation of stress effects on plant growth and development.
When nutrient stresses occur concurrently with water stress, the strongest factor
is selected to represent the overall stress experienced by the crop, which neglects
interactions between physiological responses to combined stresses as compared to
individual stress responses [dBF+19].

The ALMANAC model is a temperature-driven model which simulates crop growth
and development in a competitive environment, with integration of effects from water
stress, thermal stresses, and nutrient limitation [KWGD92]. Accurate simulation
of yield requires input of precipitation and runoff curves, and soil characteristics.
The model also exhibits sensitivity to variations in solar radiation, documented for
sorghum and maize [XKW03].

The SUCROS model [vGv97a] simulates dry matter accumulation in a crop both
under water-adequate and water-stressed conditions, with biomass partitioning depe-
ndent on thermal time. A light response curve is used for modeling leaf photosynthe-
sis, with photosynthetic activity over differing canopy depths integrated over the
day. Comparatively good results for prediction of leaf area index and above ground
biomass have been observed, with lower accuracy in prediction of soil moisture
content [XGF96].

The crop model STICS is comprised of seven submodules, modeling plant growth in
terms of development, shoot growth, yield components, root growth, water balance,
thermal environment, and nitrogen balance [BMR+98]. The model uses generic
parameters relevant for most crops relating to physiology and management, with
customization options allowing for calibration to particular species to improve perfor-
mance accuracy. A distinct feature of the STICS ecosystem is the continued evolution
of the platform through improvements integrated by users of the platform. Main
limitations of the model relate to environment/management combinations excluded
from the range of applications, for instance physiological responses to phosphorus
or potassium deficiencies.
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The simulation model Hybrid-Maize [YDL+04] was developed through a combination
of crop-specific modeling approaches employed in CERES-Maize for representation
of growth and development, and generic formulation of physiological processes as
employed in the WOFOST model. The simplified model displays greater responsive-
ness to environmental variations while requiring fewer genotype-related parameters.
Model limitations include in prediction of LAI, biomass partitioning, and plant
response under various abiotic stresses.

Aquacrop is a crop model developed by the FAO, focusing on modeling growth,
development, and yield formation under water deficit conditions [SRH+08]. Yield is
defined based on evapotranspiration as

Yx − Ya

Yx

= Ky ∗
ETx − ET

ETx

, (2.15)

where

Yx and Ya are maximum and actual yield respectively,
Ky is a proportionality factor representing the ratio between relative yield
reduction and relative decrease in evapotranspiration, and
ETx and ETa are the maximum and actual evapotranspiration.

The evapotranspiration is partitioned into evaporation from the soil, Es, and transpi-
ration Tr. Biomass accumulation is described in relation to transpiration as

B = WP ∗
∑

(Tr), (2.16)

where WP is a coefficient representing water productivity.

Key limitations of Aqua-crop lie in the complexity of partitioning evapotranspiration
values, and the exclusion of stress-mitigation responses exhibited by plants undergoing
repeated exposure to water stress.

The APSIM model presents a comprehensive framework for modeling biophysical
processes in agricultural systems, with species-based parametrization required to
configure it to specific plants or animals. The biophysical modules are supported
by a set of management modules that allow variation of scenarios under simulation,
allowing predictive optimization of resource management decisions [BHH+14]. Limit-
ations have however been observed in maize yield simulation at high latitudes,
attributed to variation in light interception efficiency, radiation use efficiency and
day length observed at higher latitudes [MPH+20].

A comparative summary of commonly used maize growth models is presented in
table 2.4. A common characteristic of the aforementioned plant growth models is a
focus on yield, making them unsuitable for projecting or tracking growth trajectories
during early vegetative growth stages. Application of static plant-related parameters
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Table 2.4: Common maize growth models

Model Authors Key features

Ceres Maize Kiniry et al., Cumulative leaf area, with appearance
[JK86] based on thermal time

WOFOST Van Diepen et al., Yield simulation for varying
[vWvR89] water availability

ALMANAC Kiniry et al., Based on thermal time, light interception,
[KWGD92] and competition

SUCROS van Laar et al., Based on irradiation, temperature,
[vGv97b] crop characteristics, and water supply

STICS Brisson et al., Thermal-driven growth integrating
[BMR+98] nitrogen and water stresses

Hybrid-Maize Yang et al., Adaptation of CERES-Maize integrating
[YDL+04] respiration and biomass partitioning

Aquacrop FAO, Growth and yield response under
[SRH+08] water stress conditions

APSIM Brown et al., Thermal driven model integrating
[BHH+14] phenology and architecture

to adapt the models to different crop varieties does not allow consideration of
dynamic phenological responses caused by abiotic stresses, such as are induced by
deficit irrigation. For the development of irrigation-based growth control applicable
from early vegetative stages, it is necessary to develop more suitable growth models.

State machine model overview

The dynamical behavior of plants under water deficit conditions has been explored in
various studies, with incorporation of yield reduction functions to integrate effects of
water stress [BWB06], or description of stress-related dynamical behavior [KPKS12,
LIS+16]. Plant water status can be related directly to growth factors, with plant
available water used to describe plant water status as ‘full irrigation’, ‘mild stress’,
and ‘high stress’. The distinction of different states is mainly defined by the under-
lying models and related parameters and thresholds. Most stress-related thresholds
for plant-based output variables described in literature refer to stress incipience,
i.e. transition from a ‘no stress’ state to initial observation of stress symptoms
[WA02, Jon07]. Plant-based thresholds for the transition of a ‘mild stress’ state to
a ‘high stress’ state, or a response-driven distinction between mild and high stress
states, are described in few cases as in [BKA+10].

A state machine model as established in [KS18,KS20] combines a set of different
parameterized equations describing plant growth. Each equation is related to different
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growth states linked by conditional transitions, described as combinations of specific
stress thresholds. Data-driven optimization is applied to define the stress thresholds
based on gravimetric water content and duration within specific states. This approach
is first described in [BS17] for application in machine wear processes. The use of a
state machine model allows the representation of the event-discrete nature of plant
growth, and enables integration of structural variability in the system description,
such as in the case of deficit irrigation-based crop management.

In Figure 2.3 the state machine model describing plant growth as a function of water
status over time is shown. Transition conditions govern the switching of the plant
from an initial state Si to a final state Sj. Transition conditions are defined as

L = Stress level with:
L = 0 (L0; no stress),
L = 1 (L1; mild stress),
L = 2 (L2; high stress),

tM = Memory retention time,
tD = Chronological damage threshold,
tL1 = Time duration of stress level L=1 (L1), and

tL1i−L1j
= Time between the successive stress levels L1i to L1j.

A response threshold is defined by the onset of observable physiological symptoms

Figure 2.3: State machine model of plant behavior due to water stress [KS20]

in response to a water deficit, in this case based on leaf elongation rate. The
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threshold is experimentally determined by comparing growth of plants subjected
to water deficit to a reference group maintained under continuous full irrigation.
Recuperation threshold is defined as point of no return, at which the progressed
water deficit leads to irreversible growth because of damage.

The thresholds divide the water content scale into three ranges, defined as stress level
L=0 (L0) for no stress, stress level L=1 (L1) for mild stress, and stress level L=2
(L2) for high stress. Identification of the described thresholds requires training of
the model using experimental data to determine the levels and durations associated
with onset of both mild stress and high stress conditions, or use of expert knowledge
relating to different water deficit levels associated with different crops.

Additional descriptors are included to represent memory due to stress exposure and
damage as a result of severe or prolonged water deficit. Hence, the plant states S
are described by the vector

S = [L,M,D]T , (2.17)

with

L = Stress level as a function of plant available water content,
M = Memory as a function of stress occurrence and duration of recovery, and
D = Damage as a function of high stress occurence and mild stress duration.

Within the state-machine-model context the states Si are denoted as

S1 : Vector [0/0/0]; reference growth behavior (full irrigation)
S2 : Vector [1/1/0]; reversibly reduced growth,
S3 : Vector [2/1/1]; irreversibly reduced growth,
S1a : Vector [0/1/0]; increased growth,
S1b : Vector [0/1/1]; irreversibly reduced growth,
S1c : Vector [0/0/1]; irreversibly reduced growth, and
S2a : Vector [1/1/1]; irreversibly reduced growth.

Here, the states S1, S2, and S1a are the desirable states for deficit irrigation purposes,
as growth is not irreversibly affected due to water stress.

Use of a state machine model allows integration of water status in modeling of plant
growth, allowing implementation of water stress-based approaches in plant growth
control [Kög19]. The stepwise incremental generation of growth variables allows
estimation of growth from very early stages of vegetative growth, allowing for timely
intervention and early planning of water use. Challenges exist in the establishment
of transition thresholds, leading to a reliance on expert knowledge and experimental
observation. Demarcation of thresholds based on plant physiological response would
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provide greater accuracy in water stress-based control, allowing a transition from a
deficit-based to a stress-based control paradigm. The static definition of thresholds
as presented does not take into account variation in the physiological responses
of plants as they acclimatize to stress conditions, or as increase in rooting depth
and density extends access to available water within the growth substrate. Further
work is required in development of dynamic thresholds, and consideration of the
effects of substrate depth and volume on the relationship between water deficit and
physiological responses to water stress.

2.6 Summary and discussion

A review of modeling approaches for various plant growth parameters of interest
and physiological processes is presented. A survey of existing research reveals a
significant focus on thermal time-based functions for description of plant growth,
characterized by leaf area, leaf length and plant height. Models describing progressive
development through different stages in the vegetative phase of maize growth are
examined, with current research indicating a shift from static leaf appearance models
to dual-phase models consisting of two static functions. The development of evapotra-
nspiration models over time is also described, with research focus moving towards
simplification and generalization of existing models to allow greater ease of implement-
ation and reduction of measurement requirements.

The evaluation of growth and evapotranspiration models addressed in this chapter
focuses on integration of plant physiological responses to water deficit, allowing an
insight into research gaps that need to be addressed for comprehensive modeling
of plant growth and development from a water status-based perspective. Based on
suitability for integration into precision irrigation-based growth control applications,
the described state machine-based growth model is selected for use in the development
of the control approach described in this work.
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3 Modeling and prediction of maize growth and

evapotranspiration

In this chapter a description of the key models used to characterize growth and
development of maize plants during the vegetative state is presented. Plant growth
and development is defined by leaf elongation, appearance of new leaves and biomass
accumulation. A data-driven evapotranspiration model configured for application
in an indoor greenhouse is also developed. All models described integrate plant
water status as an independent variable, allowing the inclusion of water stress-
related variations in plant response to environmental conditions. Leaf elongation
is modeled based on a reduced state machine model, operating entirely within
’mild stress’ and ’no stress’ regions. Individual linearized equations are generated
to represent different stress states, and a discussion of limitations encountered in
evaluation of threshold values is presented. Biomass accumulation is modeled using
allometric relationships relating total plant biomass to measured leaf dimensions. A
novel approach for prediction of new leaf appearance based on growth trajectories
of individual leaves is developed and tested, with a discussion of observed results.
A linear regression function relating evapotranspiration to environmental conditions
within the greenhouse, plant dimensions and water status is developed and validated.

Part of the material in this chapter has been published in various research publications
[OS19b,OHKS19,SKO19,OS22c].

3.1 Modeling and prediction of leaf elongation

With the steadily increasing world population, a sustained pressure to expand
agricultural production in the face of limited natural resources such as freshwater
can be observed. Incorporation of automation technologies in agricultural practice
is a logical next step if the world is to meet the needs of its expanding populace.
Optimization of irrigation practices has been identified as a significant area of
interest in exploration of agricultural automation ( [JDPS19]). A key element in
automation and optimization of irrigation is modeling of crop growth, with recent
research exploring a variety of methods to reliably estimate the growth trajectory
of plants.

Plant growth is dependent on availability of multiple resources such as light, heat,
water, and nutrients. For optimal growth and development, it is important to ensure
adequate and timely provision of such resources as the plant may need based on the
developmental stages. In practice, assessment of growth stages is done by visual
observation as well as use of predictive models to estimate timing and duration of
individual growth phases.
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Experimental setup

Experimental data for training and validation of the models described in this section
was obtained from an indoor greenhouse situated in the Chair of Dynamics and
Control at the University of Duisburg-Essen in 2019 (KW 44 to 50). The greenhouse
is located in a climate-controlled room with temperature maintained between 18° C
and 29° C. Artificial lighting was supplied by a set of eight 75W 9500K fluorescent
grow lights at each of four tables set up, with the illuminated area under each
lighting set covering approximately 0.5 m by 0.5 m (Figure 3.1). The height of
the lamps above the growing plants is manually adjustable, and was maintained as
close as possible to the leaf canopy without making contact with the leaves. The
windows in the room are blacked out and sealed with silicone for prevention of air
currents from outside, and there is a single point of entry into the room, which was
kept closed except for access to the plants for measurements. The maize seed used

Figure 3.1: Indoor greenhouse test rig with potted maize plants equipped with
artificial lighting, Chair SRS, University of Duisburg-Essen, Germany.

in the experiments was KWS Ronaldinio variant. The seed was sowed in 500 ml
PET tumblers filled with 175 g of Seramis® clay granulate as the growth substrate.
“Seramis Vitalnahrung” liquid fertilizer for green plants was mixed into the irrigation
water for fertigation. The plants received 14 hours of illumination daily.

Daily minimum and maximum temperature and relative humidity were recorded
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using a digital temperature and humidity sensor, and leaf length and width measure-
ments were performed using a flexible meter rule.

State machine description of maize growth

A state machine description of maize growth under different irrigation conditions has
been described in section 2.5, as developed in [KS20], with daily total leaf elongation
for each state described by the equations 3.1 as

∆LTHS = am0 +
am1

1 + eam2(TLL−am3)
+ am4TLL+ am5TLL

am6 +
am7

1 + eam8TLL
,

(3.1a)

∆LTMS = an0 +
an1

1 + ean2(TLL−an3)
+

an4
1 + ean5(TLL−an6)

+ an7e
an8(1−TLL), and

(3.1b)

∆LTFI = ap0 +
ap1

1 + eap2(TLL−ap3)
+

ap4
1 + eap5(TLL−ap6)

+
ap7

1 + eap8TLL
. (3.1c)

The result from the equations, ∆LT , defined in [Kög19] as lifetime increment,
represents an incremental projection of the time it would take the plants in the
test data set to achieve the measured increase in elongation. Parametrization of
the model requires determination of the coefficients axx for each of the three main
equations describing leaf elongation under high stress (HS), mild stress (MS) and
no stress / full irrigation (FI), with the total leaf length (TLL) defined as the sum
of the individual lengths of all visible leaves.

To obtain an elongation rate, the inverse of the calculated value was used, such that
the total leaf length computed daily was expressed as

TLLk+1 = TLL+
1

∆LT
. (3.2)

A visual representation of the state machine model is shown in Figure 2.3. Each
of the seven states defined in the state machine-based growth model is described
by one of the equations in 3.1, resulting in a system description with a total of
56 variables for optimization. The plant growth model is described by defining
three level-related thresholds, representing the initialization of plant response to
water deficit, transition into a mild stress state, and transition into a high stress
state. Two chronological thresholds are also defined, representing the maximum
duration under mild stress permissible before transition into a damaged state, and
the minimum duration under full irrigation levels required for a previously stressed
plant to lose its memory (and thus the physiological response related to priming),
transitioning out of the recovery state.
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Model parametrization using NSGA-II optimization

A non-denominated sorting genetic algorithm (NSGA-II) based on [BS17] and
[JKS19] is applied to historical growth data from growth experiments conducted in
May 2019, for determination of stress thresholds. As described in the state machine
model, five state thresholds are defined: three based on stress level and two based
on stress duration.

Experimental data from 14 plants were selected and evaluated over two successive
growth periods, each of 10-day duration. During the first 10-day growth period, two
irrigation strategies were employed, with six plants (individuals 1 and 2, and 11 to
14) being fully irrigated throughout and eight plants (individuals 3 to 10) cycling
through the entire range of stress levels, beginning at no stress, then progressing
naturally due to withholding of water to mild stress and high stress. For the
second 10-day cycle, additional variations of mild stress and high stress periods were
introduced, resulting in a total of seven unique treatments, covering six of the seven
states described in the state machine model, with the omitted state representing loss
of memory after continuous reirrigation of a previously mild-stressed individual.

The stress sequences are presented in Figure 3.2, with each header S n representing
the stress state on day n. Tuning of the data-driven NSGA-II algorithm is primarily

Figure 3.2: Sequence of stress states of sample plants for testing of state machine-
based maize growth model

through variation of population size and maximum number of generations, with the
total number of iterations obtained from the product of the two parameters. Default
values set in previously reported work [JKS19,Kög19], at 50 and 200 respectively, are
implemented for prediction of leaf growth trajectory and compared with measured
values. A set of 63 coefficients are obtained to describe the seven states of the plant
growth model as applied to the selected experimental data. The coefficients used
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are shown in Table 3.1.

Table 3.1: Model coefficients from NSGA-II optimization algorithm after training
using experimental growth data
State ax0 ax1 ax2 ax3 ax4 ax5 ax6 ax7 ax8

S1 0.01394 0.00814 0.01508 -0.00301 0.00889 -0.00655 0.01349 0.02418 -0.00488
S1a 0.00132 0.00949 -0.00051 0.00468 -0.00847 -0.01386 -0.00472 0.01076 -0.02129
S1b -0.02433 -0.01241 0.03178 0.02948 -0.03757 -0.02865 0.02521 0.00143 -0.03174
S1c -0.00479 -0.01316 -0.00644 0.04333 0.02035 -0.01131 -0.00561 0.03519 -0.01521
S2 0.00054 -0.00869 -0.00342 0.00237 0.01029 0.03020 0.00547 0.01617 -0.01018
S2a 0.02151 0.02334 0.00504 0.02087 -0.01591 0.01550 0.00628 -0.02567 0.00789
S3 0.02990 -0.03819 -0.00583 0.00764 -0.01612 0.01042 0.02003 -0.00565 -0.02562

Initial results using the coefficients generated by the NSGA-II optimization model
applied to prediction of leaf elongation over two success-ive growth periods, each
of 10-day duration. For each measurement, a set of ten predictions were made,
allowing for projection into the future. The actual leaf length was updated from
manual measurement at each step.

The prediction error observed for the first observation cycle is presented in Figure
3.3, with the shown results representing only the first order prediction (made from
the actual measurement of the previous day). Higher order predictions were not
considered at this point, due to the significant magnitude of the error values obtained
from the prediction model.

It can be observed in Figure 3.3 that a distinct separation into two categories occurs,
with prediction error from individuals subjected to full irrigation treatment showing
increasingly worsening performance when compared to measurement values. An
additional observation involving the individuals subjected to both mild and high
stress treatment during the initial 10 day cycle is the directiona-lity of error, with
all obtained predictions trending negative.

The obtained results suggest a significant modeling error possibly arising either
from the equation used to represent elongation under full irrigation, or from the
optimization algorithm, based on previous work by [BS17] and [Kög19]. Additional
plausible sources of the observed error could arise from differences in pre-processing
of growth data (as compared to the machine lifetime data used in the original model),
or a general unsuitability of the selected model for representation of plant growth
processes.

The same plant growth dataset was used to train a trust-region-reflexive least squares
algorithm from the MATLAB curve fitting toolbox, with the equations defining
the individual states in the growth model identical to those used for the NSGA-II
optimization, but applied to calculate a direct daily elongation rate instead of an
elongation time. Coefficients describing the new model are shown in Table 3.2.
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Figure 3.3: Percentage error in total leaf length estimates for first 10-day
experimental cycle based on state machine model with NSGA-II optimization-based
parameters for coefficient determination

Table 3.2: Model coefficients from trust-region-reflexive least squares optimization
algorithm

State ax0 ax1 ax2 ax3 ax4 ax5 ax6 ax7 ax8

S1 0.2523 0.3141 0.1876 36.33 -1.062 1.058 1.001 -4.806 1.806
S1a 0.1133 0.04677 29.71 160.3 0.4984 0.9597 0.3404 79.29 0.9889
S1b -0.1892 0.2806 -2.289 0.2638 25.34 0.2028 35.72 0.2435 0.9293
S1c
S2 0.0662 0.4524 0.2978 0.7997 1.266 0.02128 -64.33 2.352 1.405
S2a 0.08575 0.4733 0.3517 0.8308 0.5853 0.5497 0.9172 0.2858 0.7572
S3 0.01378 0.1109 0.2566 91.82 0.9572 0.4854 0.8003 0.1419 0.4218

The percentage error obtained is illustrated in Figure 3.4. An improvement in
prediction accuracy is observed as compared to the NSGA-II based growth model,
with individuals subjected to full irrigation throughout the experimental period
displaying marginally higher error values than individuals cycling through no stress,
mild stress and hih stress. Additionally, error values for individuals in the control
group (experiencing no stress) are predominantly positive after the initial prediction,
while individuals experiencing stress have varying levels of prediction error, both
positive and negative.
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Figure 3.4: Percentage error in total leaf length estimates for first 10-day
experimental cycle based on trust-region-reflexive least squares algorithm

An additional observation is related to appearance of new leaves, which register as
sudden steep reversals in directionality of observed error, as seen in the results for
days 3, 5 and 9. The daily measurement update however allows for rapid correction
of the error brought about by the new leaf appearances.

A direct comparison of the prediction results for the two approaches as at day 10 is
shown in Figure 3.5. An overall overestimation of total leaf length is observed for
both approaches in the test plants selected from the control group (plants 1, 2, and
11 to 14), however the estimates from the curve fitting toolbox-based approach are
closer to the measured values. Estimates involving mild stress and high stress states
show good agreement with measured values for both approaches.

The improved exponential model was then applied to prediction of total leaf length
for a second 10-day interval immediately following the first experimental cycle,
producing the results displayed in Figure 3.6. An analysis of the results reveals
three distinct groupings:

i) Two individuals with significantly larger prediction error, with an observable
rise in error percentage with time. These represent the fully irrigated control
group, and the obtained results imply that, even with application of an alternate
approach for determination of the coefficients related to the described state
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Figure 3.5: Comparison of total leaf length estimates using exponential growth
model with parametrization based on NSGA-II optimization and trust-region-
reflexive least squares algorithms

machine model, significant prediction errors arise in the implementation of
the equation representing significant change (here used to represent plants
under full irrigation and plants experiencing recovery after mild stress). This
indicates that a reevaluation of the representative equations is necessary, with
particular focus on the selected equation for no stress.

ii) Two individuals demonstrate some variation in observed error during the first
two days before finally settling at a terminal prediction error. These represent
high stress treatment without subsequent reirrigation, resulting in extended
damage and death. An adjustment of the prediction algorithm to recognize
terminal total leaf length during measurement update could possibly result
in the error value converging to zero, but this was not implemented in this
case because further research would not involve extended damage and death
of plants.

iii) The remaining ten individuals, subjected to varied stress sequences are closely
clustered together, with variations in error value observable upon appearance
of new leaves. An observable drift towards the negative with passage of time
is also observed, implying that the applied equations for modeling of leaf
elongation might require updating as total leaf length values increased.
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Figure 3.6: Percentage error in total leaf length estimates for second 10-day
experimental cycle based on trust-region-reflexive least squares algorithm with 1-
day prediction horizon

A comparison of results obtained from the two optimization approaches is presented
in Figure 3.7, with Plant 1 representing the control group and Plant 8 representing
the test group. An increasing divergence between measurement and prediction is
discernible for the plant under no stress, whereas the predicted trajectory of the
stressed plant consistently tracks the recorded observations over time.

Figure 3.7: Comparison of leaf length modeling results for NSGA-II and trust-region-
reflexive least squares optimization algorithms applied to state machine model of leaf
elongation.
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Linear regression-based parametrization of state machine model

A linear regression equation was selected to generate a model describing six of the
seven states for which experimental data was available. The growth data was pre-
processed by generating corresponding pairs of values of total leaf length based on
the membership rule

Xk ∈ Statem ⇐⇒ Sn−1(Xk) = Sn(Xk), (3.3)

where

Xk is a pair of total leaf length measurements for the same individual taken on
two consecutive days,
Statem refers to one of the seven defined states in the maize growth model, and
Sn−1 and Sn describe the stress states of the plant on the two days sampled.

The sizes of the training sets available for each state after pre-processing are shown
in Table 3.3.

Table 3.3: Linear regresssion model training dataset sizes

State Number of plants Data points

S1 60 783
S1a 100 270
S1b 60 270
S1c 0 0
S2 120 249
S2a 40 53
S3 80 206

The linear model is described by the coefficients shown in Table 3.4, with the total
leaf length being predicted, TLLk+1 related to the current total leaf length TLLk

as

TLLk+1 = TLLk + p1TLLk + p2, (3.4)

where p1 and p2 are coefficients obtained from training data, and are assumed to be
variety-specific.

Implementation of the linearized leaf length prediction model resulted in more
accurate projections with an RMSE value of 17.09 cm obtained over a prediction
period of 20 days with a test group of 14 individuals. The percentage error value
over the evaluated period remained within a stable range for all plants, as shown in
Figure 3.8.
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Table 3.4: Model coefficients used for linear model parametrization

State p1 p2

S1 1.02 8.915
S1a 1.051 10.01
S1b 1.067 1.175
S1c − −
S2 1.025 6.619
S2a 1.053 1.845
S3 0.9407 12.02

Figure 3.8: Prediction error distribution over time

The anomalous results observable on the first day of prediction are attributable to
the nonlinearity associated with the initial period of active leaf elongation immediately
after the appearance of new leaves, in this case leaf 3. Similar outliers are visible
throughout the experimental period whenever new leaf appearance occurs, for instance
on days 10, 13, and 16.

Based on existing predictions, the prediction horizon was expanded to three days,
based on the chronological thresholds previously observed in previous work [Kög19].
The error distribution for the three-day prediction horizon is presented in Figure
3.9. A larger range of values is obtained, with mean prediction error predominantly
negative for the initial predictions, then trending upwards over time. More outliers
are observed, indicating a need to perform periodic measurement updates (using
a one-step prediction) for any prediction scheme primarily employing a three-day
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Figure 3.9: Prediction error distribution for three-day prediction horizon

prediction horizon.

To observe the prediction error trend with variation in prediction horizon, the
deviation from measurements taken on day 10 were compared with predictions
obtained with prediction horizons varying from one-step to 10-step, with the measure-
ment update in each case occuring 10-n days earlier (where n is the length of the
prediction horizon). The results are presented in Figure 3.10.

A shorter prediction horizon is seen to lead to lower mean error values and fewer
outliers. A drift towards more negative error values is also observed over time,
beginning from a 7-step prediction horizon. An additional observation is a reduction
in the range of observed errors, accompanied by the presence of a few outliers as the
prediction horizon increases.

3.2 Prediction of above ground biomass

Biomass is one of the key indicators used by maize producers to assess the growth
and development of the growing crop throughout its growth stages. The growth
and development of maize had been described by a number of growth models, with
the most commonly used such as described in section 2.5, and their variants such
as APSIM [KCH+03], CSM-IXIM [LBJ+11] requiring comprehensive data on the
climate, soil, genotypes, and management to simulate crop growth during an entire
growth cycle. Further developments have seen rise to simplified models, primarily
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Figure 3.10: Variation of prediction error with length of prediction horizon

relying on characterization of maize growth and development as a function of thermal
time [YDL+04,KYT+12].

The effect of climatic variations on the reliability of maize growth models has also
been explored [BBD+14], with an emerging concern that changes in temperature
and CO2 levels have a significantly high impact on the performance of crop growth
models so as to necessitate further research in how to adapt the models to varying
conditions. Additionally, constraints to freshwater resources and the accompanying
extensive adoption of deficit irrigation require a shift in growth modeling approaches
to account for the effect of water stress and recovery on biomass accumulation in
C4 plants such as maize [MQS+17].

Estimation approaches based on imaging are also a key area of research interest,
with studies involving use of RGB and infrared photographs [SGW+11,CTM+19],
LIDAR [LNW+15,WNX+16, JSS+20]. Prediction of biomass on a larger scale is
achieved by use of satellite imagery [MF16,BAM+16]. While certainly advantageous
for extensive fields, application on small scale, and particularly indoors is at the
moment still an open area of study.

To exploit the advantages of precision irrigation and its potential for facilitating not
just the monitoring and management, but also the control of growth and development
in plants, it is necessary to explore growth models that give adequate weight to the
role of water consumption in the growth and development of maize. This plays an
even more pivotal role in the case of possibly fully controlled environments such as
smart greenhouses, or in environments where the dynamics of water availability play
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a more dominant role than thermal variations, which tend to be the most common
foundation for crop growth modeling.

In the course of this work, the potential of applying a state machine model with
optimized deficit irrigation parameters developed for the prediction of leaf length
[JKS19] to the estimation of leaf area and biomass in maize plants at the early
vegetative stage was examined. The obtained results were compared to the FAO
Aquacrop model [SRH+08], which is one of the most widely used crop growth
models focusing on the effect of water deficit on growth and development in plants.
Aquacrop was also selected because the model allows for stepwise calculation of
parameters of interest, thus allowing for comparison with values obtained in the
early vegetative stage as opposed to yield at harvest.

Experimental setup

Experiments were conducted within an indoor greenhouse setup as described in
section 3.1. Daily individual leaf length and width measurements were manually
performed using both flexible and rigid linear rules, as appropriate. Fresh above
ground biomass was determined at the end of the growth experiment through the
use of a precision weighing balance with a sensitivity of 0.01 g.

A control group of fully irrigated plants was maintained at the experimentally
predetermined full holding capacity of the substrate. Training of the state-machine
model was carried out using a sample of data from the two experiments for which leaf
width measurements (twenty plants in total) were available throughout the growth
period. Test data was sampled from the remaining 260 plants. To investigate
the accuracy of the proposed prediction model, data from two growth experiments
carried out from October to December 2019 was used.

For each experiment, plants were divided into four groups each containing 35 plants,
equally distributed on the four growing tables within the greenhouse. The control
group was supplied with enough irrigation water daily to replenish evapotranspiration
losses, bringing the substrate to full capacity, which was determined to be 145 g of
water. Mild stress and severe stress states were determined based on threshold values
obtained from an NSGA-II algorithm that was trained with data from previous
growth experiments under identical conditions. Plants were considered to be under
no stress (hence fully irrigated) for water content above 115 g and 113.42 g respectively
for the first and second set of experiments. The lower boundary for the mild stress
region for the two experiments was similarly determined to be 67 g and 62.97 g
respectively. Plants required to be maintained at mild stress were reirrigated to
achieve water content of 100 g.

Irrigation was manually performed once daily using syringes, with the total weight
of the potted plants (pot + substrate + water + plant) measured using a precision
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balance. During the later stages of the experiment where expanded leaf area resulted
in daily evapotranspiration values high enough to trigger initiation of mild stress in
the control group, or severe stress in the test groups, additional water was supplied
to the plants with the quantities calculated based on projected evaporation rate and
predetermined stress boundary values.

All plants were maintained under no stress until the appearance of the third leaf,
after which irrigation was carried out as per the predetermined sequences. For the
first growth experiment, the test duration started 10 days after planting and ran
for 12 days. During the second growth experiment, the testing phase began 6 days
after planting and ran for 16 days. The plants were harvested upon reaching the
maximum height achievable within the growing space.

The irrigation sequences for the two growth experiments are shown in Table 3.5, with
0 representing no stress and 1 representing mild stress. For the first experiment, each
digit represents three consecutive days, while for the second experiment each digit
represents a 2-day period.

Table 3.5: Irrigation sequences during maize growth experiments for biomass
prediction.

Group Experiment 1 Experiment 2

A 0 - 0 - 0 - 0 - 0 0 - 1 - 0 - 1 - 0 - 1 - 0
B 0 - 1 - 1 - 0 - 1 0 - 1 - 1 - 0 - 0 - 1 - 1
C 0 - 0 - 1 - 0 - 0 0 - 1 - 1 - 1 - 0 - 0 - 0
D 0 - 1 - 0 - 1 - 1 0 - 0 - 0 - 0 - 0 - 0 - 0

Aquacrop modeling parameters

The Aquacrop model [SRH+08] was developed to allow the modeling of plant growth
and yield with a focus on the relationships between supplied water and evapotranspira-
tion losses. Biomass calculations are accomplished stepwise, with the relationship
between biomass and water consumption expressed as

B = WP ∗
∑

Tr, (3.5)

where

B is the calculated plant biomass,
WP is the water productivity, and
Tr is the transpiration from the plant.

Due to the direct linking of biomass production to the water supplied to the plant,
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the model is able to effectively factor in effects of deficit irrigation strategies, allowing
for prediction of in-season plant growth, which provides a source of valuable informat-
ion for allocation and management of water supply to the crop.

For the configuration of the growth simulation using Aquacrop, the irrigation water
supplied was converted to irrigation depth by division of the supplied volume by
the cross-sectional area of the pots used in the greenhouse. The substrate was
represented as a clay-loam granulate, and groundwater level was set to zero, because
the only source of water to the growing plants was irrigation water supplied from
above.

State machine-based modeling of biomass

The growth of a maize plant was described using a state machine model as described
in [JKS19]. Optimization of the model parameters was carried out using an NSGA-II
algorithm, resulting in the determination of level and temporal thresholds describing
the stress condition of the growing plants. Level thresholds defined the demarcation
between the three different water stress levels described in the plant growth model-
no stress, mild stress and high (or severe) stress. The temporal thresholds consist
of a maximum mild stress duration threshold, which leads to a transition into high
stress, and a recovery threshold, which leads to loss of memory acquired during
previous periods of stress.

Biomass was estimated directly by training of the state machine model using intermed-
iate biomass values calculated from leaf length and width, expressed by [MTS+10]
as

ln(B) =
n∑
1

a+ b ln(L)n + c ln(W )n, (3.6)

where

B is the calculated plant biomass,
L is the leaf length,
W is the leaf width,
a, b, and c are crop-related constants, and
n is the leaf number.

The model was additionally applied for determination of total leaf area based on
the relationship developed by [Mon11] as

LA = kL ∗W, (3.7)

with a value of 0.79 used for k, following [BVK+98],

where
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LA is the leaf area,
k is a crop-specific constant,
L is the length of the leaf from the base to the tip, and
W is the width at the broadest part of the leaf.

Results and discussion

Leaf area estimation by the state machine was able to follow the trajectory of
observed leaf area for the test group. Absolute error and root mean squared error
values were calculated for the entire set of generated values, as reported in Table
3.6.

Table 3.6: Sample error metrics for leaf area estimation using a state-machine based
model (all values in cm2)

Parameter Test 1 Test 2 Test 3 Test 4 Test 5

Absolute error 6.543 2.685 2.977 0.325 1.158
RMSE 2.334 0.958 1.062 0.116 0.413

For the range of leaf areas represented, the error values are small enough to be
insignificant, indicating that this model can be applied in projection and estimation
of leaf area under deficit irrigation conditions, with minimal input requirements,
and at very early stages of vegetative growth. The growth trajectory of individual
leaves for a sample of the test individuals in the group is shown in Figure 3.11.

It has however to be noted that since the calculated leaf area is reliant on existing
theoretical models, the accuracy of the results is closely tied to the equation selected
for calculation of training values. Further improvement of the model could be
achieved by employing more accurate destructive or optical-based techniques for
generation of more reliable training data, which would improve the accuracy of the
prediction.

Biomass estimation

Estimation of biomass directly using the state machine model showed significant
deviations from measured values, with the time axis exhibiting a contraction of
up to 50 %, resulting in biomass estimates that were up to 100 % larger than
measured values (Figure 3.12). This result may be due to the limited number of
training values for which accurate biomass values were available, or could also be
an indication of systemic errors with the approach selected. For this reason, this
approach was abandoned, and an estimation approach based on the generated total
leaf length was applied instead. A linear model was trained using measured total
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Figure 3.11: Leaf area growth trajectories predicted by the modified state machine
model compared to leaf surface area calculated from direct length and width
measurements
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Figure 3.12: Direct biomass estimation using modified state machine model.

leaf length and biomass values obtained at the end of the two experiments. The
resultant equation took the form

B = k1TLL+ k2, (3.8)
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where k1 and k2 are constants obtained by fitting leaf length and biomass data.

The linear model was trained with two sets of data- one including samples from six
different sets of experiments conducted between 2017 and 2019, and a second set of
data restricted to the two experimental periods from which the test data was also
obtained. The model and associated error metrics are presented in Table 3.7.

Table 3.7: Linearized biomass prediction model based on total leaf length

Parameter k1 k2 R2 RMSE [cm2]

Dataset 1 (2017-2019) 0.09179 -8.311 0.8002 1.389
Dataset 2 (May 2019) 0.079 -5.38 0.9462 0.6026

The distribution of error values obtained is illustrated in Figure 3.13, with 5-I and
5-II using test data from the first experiment and training data from the expanded
and restricted sets respectively. The variables 6-I and 6-II similarly represent the
test data from the second experiment evaluated using parameters obtained from the
two respective sets of training data.

Figure 3.13: Error distribution for biomass estimation using linearized allometric
model

It can be observed that the median values of the estimated biomass are relatively
close to zero, and the distribution of the data between the 25th and the 75th
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percentile is uniform for all combinations of test and training data. Although
it can be seen estimates for test data from the first experiment tended towards
under-estimation while test data from the second experiment tends towards over-
estimation, the absolute error values in both cases are relatively small.

The next step involved applying the linearized estimation of biomass to total leaf
length values generated by the state machine model. In Figure 3.14 a comparison
between the obtained results and values obtained from the Aquacrop model is shown,
with both models displaying a tendency towards underestimation of the biomass
value, as seen by the position of the median line. The modified state-machine
generated for this set of data a median error value closer to zero as compared to
Aquacrop, but produced a larger number of outliers, suggesting a need for additional
refinement of the model to enable its application to plants in earlier growth stages,
where total biomass is relatively small. Values of above ground biomass were seen

Figure 3.14: Comparison between linearized allometric biomass model and Aquacrop

to vary even in plants grown from the same cultivar, under identical conditions,
during the same growth period. This leads to a reduced reliability of prediction
accuracy for models that rely on common variables such as temperature, day length
and available radiation, particularly in controlled environments or for purposes of
research.

The implemented state machine-based growth prediction model has been applied
to successfully predict leaf area by training the model using leaf length and width
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data. Significant drawbacks were however experienced in direct application of the
model for use in estimation of biomass, indicating a need to examine the underlying
equations used to generate incremental biomass values in response to plant water
status with a view to building a link between the leaf length, leaf area and above
ground biomass.

The simplicity of the linearized relationship between total leaf length and biomass
observed during the early vegetative stage in this case allows for accurate estimation
of biomass during the early stages of development with low computational demands,
and, coupled with a predictive algorithm, enables for forecasting of expected biomass
based on irrigation quantities and sequencing.

3.3 Prediction of leaf appearance

Growth of plants during the vegetative phase can be quantitatively described using
the quantity of biomass produced or the rate of generation of biomass.

The growth cycle of maize can be divided into two major phases- the vegetative stage,
covering the period from seedling emergence to tasselling, and the reproductive
stage, covering the development of kernels up to maturity. The growth stages in
the vegetative phase of maize plants are demarcated by emergence of specific leaves
( [HI71], [ZCK74]). Tracking the appearance of successive leaves can therefore be
used to track the successive progression of the plant through different growth stages.

Cereal plants have been observed to exhibit a distinct pattern during vegetative
growth, with resources concentrated on a fixed number of growing leaves at different
stages of development [Ett51, HWRZ88]. Studies on the timing and rate of leaf
appearance in maize plants have primarily focused on the influence of temperature,
with observations indicating that the duration between appearance of successive
leaf tips for a specific maize cultivar can be represented as a fixed thermal time,
referred to as phyllochron, with modifications to the determination of thermal time
to account for different temperatures during the growing period [KRJH91,GBB95,
BVK+98]. A causal link is suggested between the emergence of the collar in maize
leaves and the end of active elongation [FA00,FDL+05].

A link can be made between the decreasing rate of leaf elongation as the older
leaves approach maturity, and the appearance of new leaves, marked by the visual
observation of leaf tips. Experimental data is used to determine threshold values
of leaf elongation rate that serve as markers to predict appearance of new leaves.
The estimated values of leaf appearance time and duration of leaf elongation are
compared to experimentally observed values as well as to calculated values present
in literature [KRJH91].

Using existing models, leaf appearance and duration of elongation can be predicted.
However, due to the variation of elongation rate as the leaf progresses from initiation
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to maturity, the growth trajectory of the leaf is inadequately described based on
these two parameters. A different approach is therefore developed, tracking the
growth of the leaf over the duration of its active expansion cycle which combines the
forecast of leaf appearance and the prediction of the subsequent leaf elongation rate
of the leaf to maturity. By aggregating the results obtained for individual leaves,
the developed approach can be used to estimate the overall growth trajectory of the
plant and therefore allow forecasting of expected biomass at different stages of plant
growth.

Experimental setup

The data used in this work was obtained from maize plants grown in an indoor
greenhouse in the Chair of Dynamics and Control at the University of Duisburg-
Essen, whose setup is described in subsection 3.1. A total of 241 individual plants are
used to generate the data. Irrigation treatments used for generation of experimental
data were as follows:

1. 70 plants maintained under fully irrigated condition (FI), with gravimetric
moisture content maintained constantly above 0.65 g/g.

2. 93 plants exposed to at least one mild water stress (MS) period during the
growth period, with mild stress defined as occurring when the gravimetric
moisture content of the growth substrate was between 0.29 g/g and 0.65 g/g.
All plants exposed to mild stress were reirrigated after each mild stress episode
to moisture content levels equivalent to the fully irrigated group.

3. 78 plants exposed to at least one episode of high water stress (HS) during
the growth period, with high stress defined as occurring when the gravimetric
moisture content of the growth substrate was below 0.29 g/g.

Thermal time is used for result analysis, expressed in growing degree days (GDD),
using a base temperature of 10◦ C. Growth data from 241 individual plants are used
for training and testing the linear prediction models. Training and test data sets
are obtained by randomly splitting the data in a 4:1 ratio for 5-fold validation and
in a 9:1 ration for the 10-fold validation.

Comparative analysis of leaf appearance and individual leaf elongation

The timing between the appearance of successive leaf tips was calculated in growing
degree days using a base temperature of 10◦ C [KRJH91] for all data from seven
growth experiments conducted between February 2018 and November 2019 (Figure
3.15) and separately for data from an experiment in May 2019 (Figure 3.16).
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Figure 3.15: Distribution of phyllochron by leaf in test plants. All values are in GDD,
with each point representing the time difference between successive leaf appearances
on an individual plant.

Figure 3.16: Phyllochron values for May 2019 growth experiment (combined results
for control and test groups)
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Significant variation was observed in the duration of the interval between appearance
of successive leaves, despite the plants being grown under nearly identical environ-
mental and nutritional conditions as well as being the same cultivar. This illustrates
the challenge of using a statically calculated value of phyllochron based on thermal
time for prediction of leaf appearance, and is hypothesized that environmental
conditions other than temperature may play a more significant role in the appearance
of new leaves than proposed by existing research.

Segmentation of phyllochron data by stress treatment shows similar variations in leaf
appearance (Figure 3.17). Values of phyllochron in the control group are observed
to be comparable to values obtained in the mild stressed group, with more outliers
observed in the control group as compared to the mild stressed group. This confirms
observations in literature [MC89,KS18], indicating a catch-up phenomenon in leaf
growth and appearance rate during recovery periods after water stress, resulting
in a neutralization of the delay effects witnessed during the period of stress. The
recorded observations emphasize the need to integrate irrigation management data
in determination of leaf appearance, and suggesting the possibility of controlling
new leaf appearance by subjecting plants to targeted levels of water stress at a
predetermined time.

Based on leaf length measurements, the elongation rate of the individual leaves is
calculated. The leaf elongation rate (LER) of maize exhibits an initial high growth
phase followed by a decline in growth rate to zero (Figure 3.18), as also described
in Muller et al. [MRT01]. As the elongation rate of previously appeared leaves
slows down and eventually stops, new leaves appear, suggesting a causal relationship
between emergence / appearance of new leaves and elongation of existing leaves
[FDL+05,EDB+15]. Monitoring of the growth rate of individual leaves can thus be
employed in the prediction of appearance of new leaves.

The individual leaves in the maize plant show a growth trajectory similar to the
lifetime evolution of the state of health of mechanical systems (as shown in Figure
3.18), and thus leads to the assumption that similar modeling techniques can be
applied here. Determination of cut-off thresholds signifying the end of the linear
elongation phase is required in order to implement prediction approaches similar to
those employed in estimating the useful life of mechanical systems.

The relationship between elongation rate of the earliest appearing leaves is compared
to the leaf lengths of newly appearing leaves as illustrated in Figure 3.19. The
progressive evolution of the elongation rate as successive leaves appear is illustrated
by the envelopes enclosing measured values. As it can be seen, the decrease in
elongation rate shrinks to an observable threshold for measurements taken during
the growth of leaf 4, and by the appearance of leaf 5, the elongation rate of leaf 1 is
reduced to zero. A similar pattern is observed for other leaves during the vegetative
growth phase. The trajectory of elongation rate of a leaf numbered N in order of
appearance is proposed for use as a signal to predict the appearance of leaf number
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Figure 3.18: Typical leaf growth trajectories. A significant section of the elongation
rate curve lends itself to a linear approximation.

N+3 based on identifying the time at which the elongation rate of the former crosses
a threshold defined using experimental data.

Figure 3.19: Comparison of growth of individual leaves



3.3 Prediction of leaf appearance 51

Modeling of leaf appearance using linear degradation-based approach

Degradation modeling is applied in industry for condition monitoring and prediction
of time to failure of machinery and components. A data-based linear degradation
model for residual lifetime prediction is described in [ZSG11] as applied to crack
growth data. The model is used to forecast the evolution of sensed damage indicative
signals over the lifetime of the system in operation. A linear degradation model for
prediction of remaining useful lifetime (RUL) has also been applied by [Zhe19] in
monitoring of the state of health of bearings based on vibration signals, providing
an effective monitoring tool for bearing degradation and predicting the RUL of
the machinery. Remaining lifetime modeling has also been applied in [BS17] in
estimating the state of health of systems with constant load but stochastically
occuring damage. A state machine model is used to describe the system behavior
under different operating conditions.

In agricultural applications, a state machine-based RUL estimation model has been
applied in [JKS19] and [KS20] in estimating the growth trajectory of entire maize
plants and estimating irrigation requirements, allowing the determination of irriga-
tion values to be used in application of different irrigation treatments (mild stress
and high stress), as well as estimating the growth trajectory of individual maize
plants based on the irrigation treatment received.

In this work, a linear MATLAB©-based degradation model, described by

S(t) = ϕ+ θ(t)t+ ϵ(t), (3.9)

with

S(t) : : Degradation signal,
ϕ : Model intercept,
θ : Model slope, a random variable with normal distribution with mean Θ

and variance Θvar, and
ϵ : Model additive noise, modeled as a normal distribution with zero mean

and variance ϵvar,

is used to perform the prediction of the end of the growth phase of the individual
plant leaves. Based on training data, the model estimates when the leaf elongation
rate of the selected leaf reduces below a set threshold, signaling appearance of a new
leaf.

The model parameters are obtained after training as

Θ : -0.0370,
Θvar : 9.964 e-05,
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ϵvar : 0.9298, and
ϕ : 6.8763.

For application to prediction beyond the 5th leaf, these parameters are assumed to
change. It can be assumed that for different growth phases suitable assumptions
(different constant parameters for different phases, as variables for the whole period
etc.) have to be made.

The linear degradation model was selected particularly due to its suitability for
applications in which the degradation signal is non-cumulative. Based on observation
of the behavioral trend of LER over time, thresholds of 0.5 cm/day and 1 cm/day
elongation rates were selected to indicate the termination of elongation for the first
and second leaves respectively.

Results

The linear model is used to generate a projection of the time until the LER of
the selected leaf would cross the set threshold. This is compared to the date of
appearance of leaves 4 and 5. The absolute error (ABE) and mean squared error
(MSE) are used to quantify the performance of the model against experimental
data. The upper and lower boundaries of the box represent the 75th and 25th
percentile values of the data respectively, with the median represented by a horizont-
al line within the box. The maximum and minimum values are also represented
by horizontal lines located above and below the box respectively, with outliers
appearing as crosses above or below the designated maximum and/or minimum.
For prediction based on a 10-fold cross validation, the test group comprises 6, 7,
and 11 representatives from the FI, MS, and HS treatments respectively. In the
5-fold cross validation, the test group comprises 13, 16, and 19 representatives from
the FI, MS, and HS treatments respectively.

From the linear estimation, the projected remaining leaf elongation time is calculated,
indicating when the LER crosses the thresholds for appearance of a new leaf (0.5
cm/day for leaf 1 and 1 cm/day for leaf 2). The ABE is plotted for the entire test
group, as well as differentiated by irrigation treatment, as shown in Figure 3.20.

The prediction accuracy evaluated using root mean squared error (RMSE) for the
prediction of end of active leaf elongation (corresponding to end of life in the model)
is given in Table 3.8.

The predicted end of elongation time values for leaves 1 and 2 are compared to the
appearance of leaf 4 and 5 respectively, as illustrated in Figure 3.21. Prediction
accuracy evaluated based on RMSE is presented in Table 3.9.

Application of the linear model to the prediction of appearance of leaf 4 and 5
results in prediction accuracies to within 2 calendar days, with prediction of leaf 5
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Figure 3.20: Performance of linear
degradation model for prediction of
end of active leaf elongation

Figure 3.21: Performance of linear
degradation model for prediction of
new leaf appearance
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Table 3.8: End of active leaf elongation prediction accuracy evaluated based on root
mean squared error (RMSE)

Leaf No. Plant group RMSE [GDD]

Leaf 1 All 44.00
Fully irrigated 43.85
Mild stress 45.68
High stress 41.28

Leaf 2 (K=10) All 58.47
Fully irrigated 61.81
Mild stress 45.68
High stress 57.60

Leaf 2 (K=5) All 51.28
Fully irrigated 47.46
Mild stress 52.97
High stress 52.35

Table 3.9: Accuracy of timing of leaf appearance evaluated based on RMSE

Leaf No. Plant group RMSE [GDD]

Leaf 4 All 37.38
Fully irrigated 35.13
Mild stress 37.43
High stress 38.53

Leaf 5 (K=10) All 33.35
Fully irrigated 48.38
Mild stress 27.51
High stress 25.85

Leaf 5 (K=5) All 40.46
Fully irrigated 71.50
Mild stress 23.97
High stress 21.53

appearance consistently yielding a closer result to observed times as compared to
predictions for appearance of leaf 4. Analysis of the observations by stress levels
shows greatest consistency in prediction of leaf 4 (Figure 3.22) appearance for plants
that were subjected to high (severe) stress, followed by reirrigation. The control
group shows the greatest variability, with predictions both lower and greater than
the observations occurring within the data set.
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Figure 3.22: Results of leaf appearance prediction model for leaf 4 appearance
estimation segmented by irrigation treatment, comparing estimated timing of leaf
appearance and actual (observed) timing of leaf appearance

A similar segmentation of leaf 5 appearance predictions by stress treatments shows
relatively good performance for all groups with the exception of a few outliers within
the data set (Figure 3.23). There is a tendency towards overestimation of the
appearance date of the new leaf. The improvement in accuracy is likely due to the
availability of more data for leaf 2 growth, as well as the relative ease in accurately
measuring the length (and hence determining the elongation rate) of the leaf, due
to the sharpness of the leaf tip, as opposed to the more rounded tip observed for
the first maize leaf.

Discussion

A linear modeling approach is developed to define suitable life growth parameters
based on measurements. Applying the assumed approach and the defined parameters
the approach is used to predict the timing of the end of the growth phase of the first
and second leaves of individual maize plants as well as the appearance of the fourth
and fifth leaves. Training and test data sets are generated using both 10-fold and
5-fold cross validation.
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Figure 3.23: Results of leaf appearance prediction model for leaf 5 appearance
estimation segmented by irrigation treatment, comparing estimated timing of leaf
appearance and actual (observed) timing of leaf appearance

Prediction of the end of the growth phase for leaf 1 and leaf 2 using the linear
model yielded results which are accurate to within 46 and 54 GDD respectively,
with better results obtained using 5-fold cross validation during training of the
model as compared to 10-fold cross validation. This has been presented in Table
3.8. Application of the results to leaf appearance prediction (presented in Table
2.2)is accurate to within 39 and 49 GDD for leaf 4 and 5 respectively, with outliers
observed in th efully irrigated sample for leaf 5.

Evaluation of the performance of the model across different irrigation treatments
based on absolute error revealed insignificant differences across irrigation treatments,
as can be seen in Figures 3.20 and 3.21, with the exception of a marginal improvement
in the prediction of leaf 5 appearance in one case. Comparison of the root square of
error and mean square of error however points to a better performance in prediction
of leaf appearance in plants exposed to either mild stress or high stress.

The estimates based on leaf 2 elongation rate values are more accurate than estimates
based on leaf 1 elongation rate values. The reason for the differences were not
established, and should be explored in future work. An initial hypothesis is that
measurement error could arise due to the rounded tip of the first leaf in maize
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plants, as compared to pointed tips in all later leaves, making manually measured
leaf length less reliable for the first leaf as compared to all other leaves.

3.4 Prediction of evapotranspiration

The quantity of water lost to evapotranspiration within the indoor greenhouse can be
modeled using multivariate least squares fitting, which is a multiple linear regression
model allowing determination of the relationship between a selected dependent
variable Y , and multiple predictors (independent variables) xi. The resultant equation
takes the form

Y = β0 +
∑

βixi, (3.10)

where βi are coefficients.

Evapotranspiration is affected by a variety of factors, such as temperature, light
intensity, daylength, humidity, wind, stomatal density, and stress level. To model
evapotranspiration under different water stress conditions, it is assumed that lighting,
day length, wind, and stomatal density are uniform for all plants, and can therefore
be excluded from the list of predictors. Daily maxima and minima for temperature
and relative humidity are measured, and the leaf length is used to represent the
exposed surface area of the leaf.

Linear regression model

A linear regression model was developed, expressing the evapotranspiration ET as a
function of the minimum and maximum daily temperature T and relative humidity
H, the leaf length L and the stress state, represented by an additional coefficient
βstress that corresponds to the water stress level.

ET = β0 + β1Tmax + β2Tmin + β3Hmax + β4Hmin+ β5L+ βstress (3.11)

The predicted response was graphically compared to the true response (Figure 3.24),
with the resultant coefficients and their p-values presented in Table 3.10. The p-
value indicates the probability that the given variable has a coefficient of zero,
with a boundary value of 0.05 (corresponding to a 5 % significance level) generally
considered as a critical threshold for determining relevance of variables included in a
linear regression model. An analysis of the p-values indicates that maximum daily
relative humidity is not statistically significant at a 5% significance level given the
other terms in the model, and may be eliminated without significantly altering the
prediction outcomes.
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Figure 3.24: Predicted evapotranspiration based on linear regression model with
5-fold cross-validation. Accuracy metrics: R2 = 0.71; RMSE = 5.551 g

3.5 Summary

The description of leaf elongation using a state machine model is confirmed to
allow for better projection of plant growth based on water status. Challenges
related to determination of stress thresholds are however observed, with the NSGA-II
optimization algorithm producing large estimation errors in the case of plants under
full irrigation. Implementation of a least squares optimization algorithm improves
prediction accuracy, however there are still significant errors for estimation of growth
under full irrigation. A linearized model trained using experimental data is employed
for estimation of leaf elongation, producing good prediction accuracy and reliable
estimations over a prediction horizon of up to ten steps.
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Table 3.10: Linear regression evapotranspiration model coefficients

Coefficient Associated variable Estimate Standard error p-value

β0 Constant 14.215 4.421 0.0014
β1 Tmax -2.388 0.380 5.681 e-10
β2 Tmin 2.294 0.282 1.738 e-15
β3 Hmin -0.527 0.0577 6.946 e-19
β4 Hmax -0.0145 0.0443 0.744
β5 L 0.1139 0.380 8.225 e-112
β6 (MS) Mild stress 3.3404 0.522 2.839 e-10
β6 (HS) High stress -9.325 0.581 1.717 e-49

Experimental observations of maize cultivated under controlled greenhouse conditi-
ons, both under well-watered and water stressed conditions indicate that the applica-
tion of static values of phyllochron based purely on thermal time (or on thermal
time and levels of illumination) are insufficient to accurately predict appearance of
leaves, with significant variations observed in plants grown under identical thermal
and lighting conditions. It is proposed that other environmental conditions, in
particular, exposure to water stress, may play a role in the appearance of new leaves
in growing plants, hence an approach that is applicable to a variety of different
growing conditions due to sole reliance on the growth characteristics of the plant
itself offers significant improvement in prediction of development of new leaves in
maize plants.

The link between growth of different leaves on the same plant has been conclusively
observed. Further exploration of effects of mild stress as well as severe stress
with and without recovery periods would be vital in determining the possibility
of realizing targeted leaf appearance through strategical sequencing of stress and
recovery periods. This would allow control of both the actual growth of maize plants
and the timing of developmental stages, resulting in a fully controllable plant growth
by precision deficit irrigation. Additionally, the simplicity of the linear prediction
function lends itself to ease of automation, which is one of the main goals of precision
irrigation approaches.
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4 Control of maize growth

Based on a state machine description, it is possible to model growth of maize plants
as a function of the water stress status. This section describes a model based control
algorithm developed for control and optimization of maize growth under indoor
greenhouse conditions, with maximization of total leaf elongation and minimization
of water consumption as control targets. The section begins with an overview of
automation tasks carried out to allow fully automated operation within the indoor
greenhouse setup. A brief introduction to the state of the art in precision irrigation
control follows, categorized based on the atmosphere-plant-soil continuum and with
an additional focus on application level: field, zone and individual plant level.
The development of a model predictive controller incorporating a trellis decoding
approach for generation of optimal precision deficit irrigation sequences is described,
and experimental results are presented.

A significant part of the material in this chapter has been published in various
research publications [OHKS19,OS19a,OS22a,OS22b,OS22c,OS23].

4.1 Greenhouse automation

Growing of plants in a greenhouse setup requires a replication of conditions necessary
for optimal plant growth within a controlled environment. In an indoor greenhouse,
factors requiring monitoring and control include lighting, temperature, relative hum-
idity, irrigation, supply of nutrients, among others. Special growth substrates may
also be required in the case of pot-grown plants to ensure adequate aeration and
moisture distribution within the rooting zone.

The experimental work described in this thesis took place in an indoor greenhouse
located within the Chair of Dynamics and Control at the University of Duisburg-
Essen, described in Section 3.1.

Automation tasks in the greenhouse were closely related to the variables that required
monitoring and control, with a focus on the following:

i) Soil moisture content, manually obtained using a precision weighing scale.

ii) Total leaf length, manually measured using a flexible rule.

iii) Number of appeared leaves, manually determined by visual observation.

iv) Above ground biomass, which was manually measured at the end of each
growth experiment using a precision weighing scale.
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v) Onset of water stress, which was determined via analysis of daily leaf elongation
rate in comparison with a control group.

vi) Irrigation amount, manually supplied using a syringe and measured using a
precision weighing scale.

Moisture measurement

Soil moisture plays an important role in plant physiological processes such as germi-
nation, transpiration, photosynthesis, and respiration. Soil moisture content can
be expressed volumetrically (based on water volume) or gravimetrically (based on
water mass), expressed as

WCx =
Xwater

Xsoil +Xwater

, (4.1)

where

WC is the soil moisture content,
x is the moisture content evaluation approach- volumetric or gravimetric, and
X is volume (for volumetric) or mass (for gravimetric).

Due to the presence of air pockets within any growth substrate, necessary to facilitate
physiological processes in plant roots, a gravimetric approach allows for more accurate
assessment of moisture content, given the low density of air.

Manual determination of gravimetric soil moisture content had previously been
achieved by daily measurements of pot mass using a precision weighing balance with
a resolution of 0.01 g. The main limitation of manual measurements is the absence
of real-time soil moisture values, necessary to enable monitoring and control of plant
water stress in real time. A continuous measurement of soil moisture was developed,
with two separate methodologies:

• based on continuous measurement of pot mass using electromechanical load
cells, and

• based on continuous measurement of soil moisture using a capacitive moisture
sensor.

Load cell-based soil moisture measurement

Electromechanical load cells transform mechanical force exerted due to application
of mass into electrical signals. Three main types of load cells are commonly used,
based on the nature of energy conversion:
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i) Strain gauge-based load cells are designed based on the mechanical deformation
experienced by an elastic material under tensile or compressive stress, based
on Hooke’s law. The resultant changes in dimension affect the electrical
conductivity of the material, which is converted into an electrical signal (voltage
or current) proportional to the applied force.

ii) Hydraulic load cells consist of a cylinder containing a liquid, whose pressure
is influenced by external force applied via a connected piston. The pressure
measurement can then be converted into an electric signal for further process
control applications.

iii) Piezoelectric load cells comprise specialized crystals which emit a voltage when
subjected to mechanical force. Amplification of the emitted signal allows
determination of the applied force.

A

B

C

D

E

Figure 4.1: Load cell-based moisture measurement setup comprising
A: PET container with growth substrate; B: strain gauge-based load cell with 3D
printed mounting; C: A/D converter HX711; D: Arduino Mega 2560 microcontroller;
E: PC with MATLAB Software

Strain gauge-based load cells were applied for the automation of moisture content
measurement due to high accuracy, low cost, and lower sensitivity to temperature.
To determine the moisture content of the soil, initial dry mass of the pot and
substrate was taken as a reference. Any additional mass was assumed to represent
added water, with plant mass being neglected for the experiment duration.
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The setup for achievement of load cell-based soil moisture measurement is illustrated
in Figure 4.1.

Calibration of the strain gauges was performed, with measurements taken both
incrementally and decrementally to assess the hysteresis behavior of the setup. The
calibration curve is illustrated in Figure 4.2. An analysis of measurement accuracy
indicated a mean absolute error of 0.67 g, RMSE of 0.82 g and a standard deviation
of 0.53 g. The values obtained were considered acceptable for application within the
greenhouse setup. Temperature compensation is achieved using a dynamic thermal

Figure 4.2: Hysteresis curve obtained during calibration of strain gauge-based load
cell for real-time measurement of soil moisture content

coefficient αk included in the strain gauge specifications. The relationship between
changes in thermal coefficient and temperature changes is described by equation 4.2

∆k

k
= αk∆T, (4.2)
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where

k is a scaling factor,
αk is the thermal coefficient, and
∆T is change in temperature.

Thermal induced deviations and measurement drift were analyzed over eight days
using a known fixed mass subjected to periodic automatic measurements. Results
presented in Figure 4.3 show variation in diurnal and nocturnal measurements for a
sample of five load cells, with the magnitude of variation inconsistent across different
sensors. This suggested that any corrections for thermal variations would need to
be conducted independently for each load cell as part of the calibration procedure.

Figure 4.3: Load cell output without thermal compensation displaying variation in
measured mass during diurnal and nocturnal cycles. Displayed results represent
measurements taken at 30-minute intervals over an 8-day period.

Based on the thermal output characteristic (shown in Figure 4.4), an exponential
correction formula was derived for real-time temperature compensation, with the
adjusted thermal coefficient αk(adj) for each sensor determined as

αk(adj) = A1α
A2
k , (4.3)
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where A1 and A2 are constants evaluated based on experimental data obtained
during sensor calibration. The sensor output from the load cells after correction for

Figure 4.4: Typical thermal characteristic curve for load cell measurement output

thermal variation is represented in Figure 4.5, with output values relatively constant,
with the exception of brief outlier values during the switch between day and night
in the greenhouse.

Automated plant growth monitoring

Growth and development in plants results from the division, expansion, and different-
iation of cells, which are related to different physiological processes. Cell expansion is
primarily responsible for the production of above-ground biomass, which is expressed
during the vegetative stage of plant growth as an increase in plant height, leaf
length, and leaf area. Monitoring of growth characteristics expressed during the
vegetative stage can be used for yield prediction in maize, with previous work
reporting the application of plant height measurement for maize yield prediction
( [YMJ+11]; [AMM+19]).

Plant height measurement defines the shortest distance between the ground level
and the upper boundary of photosynthetic tissue (leaves, in the case of maize)
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Figure 4.5: Temperature-compensated load cell output from sensor data presented
in Figure 4.3

[PHDG+16]. For herbaceous plants, [PHDG+16] indicates that height-related devel-
opmental thresholds such as the cut-off between vegetative and reproductive stage
may alternatively be defined based on leaf length, especially in species with leaves
that bend as they elongate.

Image processing has been used to determine height of field-grown maize, with RGB
images combined with depth assessment sensors to generate three-dimensional point
clouds from data captured vertically above the maize plants. In [QZH22], the depth
measurements are provided by an integrated infrared transmitter/camera within
an RGBD camera, whereas [GZL+18] employs separately acquired LIDAR data for
depth perception. An alternative approach is presented by [CWX+20], where sets of
RGB images acquired at different oblique orientations are superimposed to generate
depth-related data.

In this work, the indoor greenhouse setup (described in section 2.5) allows for
acquisition of lateral images, allowing for direct determination of plant height via
image processing techniques. A description of the steps applied in obtaining plant
height and total leaf length estimates follows.

I) Image capture: an RGB camera mounted on a rotating platform equidistant
from each of four groups of five plants each was programmed to take images
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at intervals of 15 minutes per group. Infrared imaging was available, but due
to the slow dynamics of leaf elongation, it was considered adequate to base
data processing on the daytime images.

II) Image segmentation: Assessment of leaf height requires isolation of pixels
representing the plants from the background. Color thresholding based on the
location of green pixels was selected for purposes of segmentation, converting
the RGB image into a binary file with individual pixels designated a value
based on the presence or absence of green color. Determination of the specific
color range designated ”green” was achieved in a pre-processing stage, whereby
individual pixels in a sample of plant images were manually tagged, and the
resultant range of RGB values evaluated to specify the desired color range.

III) Height determination: A scaling factor is required to convert the pixel
coordinates registered in the segmented image to plant height. The top diameter
of the plant pot was used, with the total number of pixels in the x-direction
extracted from captured images and compared to the actual measurements. It
is assumed that no skewing of the camera during image capture occured. The
plant height was then estimated based on the pixel with the highest registered
y-coordinate.

IV) Total leaf length estimation: Regression analysis was carried out on historic-
al measurement data to obtain a correlation between plant height (obtained via
image processing performed on RGB images) and total leaf length (manually
measured using a flexible rule). The obtained linear regression was incorporated
into the image processing algorithm to estimate total leaf length in real time.

The linear regression model was evaluated to produce an R2 value of 76% and an
RMSE value of 9.17 cm during training with historical data. Application to test
data yielded an R2 value of 37% and an RMSE value of 27.45 cm, indicating that
the selected model was not sufficiently accurate to estimate total leaf length.

It is to be noted that despite the environmental control within the indoor greenhouse,
the plants nonetheless exhibited motion, both due to wind currents and the growth
process itself. Additionally, the lighting angle and bending characteristics served to
distort the registered color in some images, resulting in inaccurate and/or inconsistent
height measurement (with some plants even showing significant reductions in height
over subsequent daily measurements). These factors likely adversely affected the
fully automated evaluation of leaf length based on image processing techniques,
suggesting either application of alternative monitoring and measurement techniques,
or use of a different variable to represent plant growth.
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Thermal monitoring of plant water status

Plants exhibit a range of sophisticated responses to biotic and abiotic stresses,
including water deficit [CLL+09, Hsi73]. The concept of plant water stress can
be distinguished as either external or internal [Tar96]. External water stress is
defined by an imbalance between water supply and demand, taking into account
only the soil/atmospheric water content at the plant boundary. Internal water stress
is based on plant internal water status, which takes into account control mechanisms
employed by the plant to sustain physiological processes even under water deficit
conditions [Lar01].

In this work, the physiological response of interest with regard to water stress is
the reduction in stomatal conductance, which results in partial or complete closure
of stomatal apertures on the leaves. Due to the role of stomatal openings in
thermoregulation of the plant through evapotranspiration, the physiological response
to water stress can be observed as an increase in leaf surface temperature occasioned
by the reduction in evapotransporative cooling. Extended increase in leaf surface
temperature is visible observable as a wilting response. In the presence of reference
plants maintained in fully watered condition, measurement of leaf surface temperature
can serve as a reliable indicator of the onset and level of plant water stress due to
the direct correlation between plant water status and leaf surface temperature.

The thermographic measurement principle is illustrated in the schematic diagram
in figure 4.6, where 1 is the immediate surrounding of the measurement target, 2
is the target object, 3 is the atmosphere and 4 is the infrared (IR) camera. The
target object emits its own energy with an emissivity ε and reflects radiation from
its immediate surroundings with reflectivity ρ = 1 − ε. The energy received by
the thermal camera experiences transmission losses due to transmittance of air and
water vapor in the atmosphere. The final radiation energy received by the thermal
camera is thus expressed as

Wtot = ετWobj + (1− ε)τWrefl + (1− τ)Watm, (4.4)

where

Wtot is total energy received by the camera,
Wobj is the radiation energy of the target object,
Wrefl is the radiation energy from the surroundings,
Watm is the radiation energy in the atmosphere,
ε is the emissivity and
τ is transmittance of the atmosphere.

The results described in this work are obtained from an infrared camera FLIR a65sc
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Figure 4.6: IR camera measurement principle with 1: Surrounding; 2: Object; 3:
Atmosphere; 4: Camera

attached to an RGB camera. The setup rotates automatically through 90° steps,
with the interval of image capture per plant group set to 15 minutes. Previous work
reported in [Kög19] involved manual selection of individual pixels from previously
recorded infrared images, which were then used to represent the entire leaf surface
under consideration. In this work, isolation of plant-representative pixels allowed
extraction of all relevant temperature data from each captured image, with temperature
results comprising the mean value of all obtained values. The emissivity of the plant
leaves is assumed to be constant at 0.97. Thermal data is converted into a 14-bit
electrical signal based on the equation

p(x, y) =

(
R1

R2

· 1

e
B
T − F

)
−O, (4.5)

where

p(x, y) refers to the radiation signal from a pixel located at the coordinate (x,y),
T is the temperature in Kelvin, and
R1, R2, F , O, and B are camera calibration constants, accessible from
the camera settings.

The calibration constants and other relevant experimental parameters are presented
in table 4.1. Additional variables required in the determination of leaf surface
temperature are atmospheric temperature (taken to be equal to surrounding tempera-
ture) and relative humidity, which were measured in real time using a DHT22
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temperature and humidity sensor, and integrated into the extraction algorithm.

Table 4.1: Parameter settings for themographic measurement of maize water stress

Parameter Description Value [unit]

R1

R2

camera reflectance coefficient 375918 [-]

B camera calibration constant 1437.3 [-]
F camera calibration constant 1 [-]
O camera offset constant 483.266 [-]
εleaf leaf emissivity 0.97 [-]
D distance between target and camera 1 [m]

The image processing procedure followed a workflow described in the flowchart in
Figure 4.7. Pre-processing is performed on the raw captured images adjust the
contrast and intensity levels, resulting in a sharper image. The pre-processed
IR image is then segmented with the help of a corresponding RGB image, with
timestamp information used for matching. Color thresholding is applied to isolate
green pixels, with other pixels set to black. To enable overlaying of the thresholded
RGB image onto the IR image, a registration process involving translation, rotation
and scaling was performed with the center of rotation coinciding with the image
center of mass. This was done by generating an adjustment matrix obtained from
a comparison of similarities and features of the pre-processed IR image and the
RGB image. The adjustment matrix was then applied on the original IR image to
generate a registered IR image. Temperature extraction was then performed based
on equation 4.5, using the pixels on the registered IR image corresponding to the set
of pixels isolated during the segmentation step. Figure 4.8 presents a sample heat
map generated from processing the obtained IR images. An analysis of the sample
image indicates observable variations in surface temperature even in individual
plants. This underlines the importance of avoiding reliance on individually selected
pixels to represent the temperature of an entire leaf surface.

4.2 Precision irrigation control background

Control techniques are broadly classified as open or closed loop, defining the existence
of any kind of calculated or otherwise technically realized feedback (output to the
input of the system considered). Open loop precision irrigation control relies on
an accurate understanding (in the best case: a model) of plant water requirements,
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Figure 4.7: Flowchart representing image processing and temperature extraction
workflow

Figure 4.8: Sample heatmap representing pixel-specific temperature data generated
from IR image

while closed loop methods include sensing mechanisms to dynamically adjust the
control input to the irrigation system based on measured values.

The performance of precision irrigation control approaches depends on the definition
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of plant water requirements. The characterization of plant water demand and the
subsequent responses to the water application is described in Kögler [KS17] along
a soil-plant-atmosphere continuum. Precision irrigation control approaches can
thus be categorized into soil-based, plant-based, and atmosphere-based approaches.
Further distinction is made between approaches targeted at enhancing precise delivery
at field level, within irrigation management zones and at individual plant level.

Soil-based approaches

Growing plants obtain water required for their growth from the soil. The soil
moisture content has therefore been applied as a measure of the water status of
the plant, with a plant-specific lower limit describing the minimum moisture content
required to maintain the plant above wilting point [BS11] and a soil-specific maximum
water holding capacity, also referred to as the field capacity [VH31]. The main goal
of traditional irrigation methods is to maintain soil moisture content at field capacity
during the growth phases, with scheduling of irrigation events based on plant growth
models such as FAO Aquacrop [SRH+08] or multivariable models simulating soil
moisture, plant growth, and evapotranspiration such as DSSAT [HPB+19]. An
overview of the current state-of-the art in soil-based precision irrigation control is
presented in Table 4.2.

With regard to the current status of soil-based precision irrigation control approaches
described in literature, it can be stated that the maintenance of soil moisture level
between a user-defined lower boundary related to the wilting point and an upper
boundary defined by the soil water capacity has been employed as the basis for
control decisions. Challenges related to soil water dynamics arising from inherent
hydraulic characteristics or changes in the spatial envelope defining root-available
water have been solved.

Optimization of location and distribution of soil moisture sensors to allow accurate
mapping of soil moisture distribution while minimizing the required number of
sensors is a potential area for further work in the implementation of sensor-supported
soil-based precision irrigation control. Variations in the upper soil moisture boundary
during scheduling of irrigation quantity has not been considered in literature, signify-
ing a gap in the application of soil-based precision irrigation methods to deficit
irrigation strategies. Additionally, a significant gap exists in soil-based approaches
applied at individual plant level.

Advancements in the field of wireless sensor networks, remote sensing and machine
learning approaches are expected to drive future developments in soil-based precision
irrigation control, allowing for more localized decision support systems and greater
adaptability to individual plant water requirements.
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Atmosphere-based approaches

Atmosphere-based precision irrigation control approaches involve balancing the water
supplied to the plant with the water released to the atmosphere through evapo-
transpiration. Achievement of the high accuracy required in precision irrigation
is either accomplished by refining evapotranspiration models for use in open loop
control or by incorporation of sensor feedback in closed loop control. Common
models of evapotranspiration incorporated into precision irrigation include FAO’s
Penman-Monteith model [All98], the Hargreaves-Samani model [HS85] and the Sur-
face Energy Balance model (SEBAL) [BMFH98].

An alternative atmospheric-based approach relies on prediction of precipitation
rather than evapotranspiration [Roy14,TKP+16]. Irrigation scheduling is adjusted
based on predicted timing and quantities of precipitation.

Hybrid approaches combining ET estimation with soil moisture sensing [LMA+16,
NZB+19,BHB+20] or plant-based methods [TKP+16,GLM+19] have also been used
to achieve greater accuracy in precision irrigation control. These allow compensation
of weather-related disturbances to the evapotranspiration model by integrating the
dynamic behavior of soil moisture or of the plant. However the related reliability
depends on the accuracy of crop coefficients used in determination of actual evapo-
transpiration. An overview of the current state of research on atmosphere-based
precision irrigation control approaches is presented in Table 4.3.

A major challenge in atmospheric-based precision irrigation approaches arises from
the difficulty in differentiating between evaporation (from the soil surface) and
transpiration (from the plants), requiring dynamic adjustment of irrigation control
algorithms as plant cover increases during the growth season. A recent approach
described by Chen et al. [CHM20] involves the partitioning of evapotranspiration
values into its two components through machine learning techniques. This could
provide a key to achieving greater accuracy in precision irrigation control, allowing
the focusing of water delivery to meet actual plant demand rather than maintaining
constant soil moisture levels, including in areas where no plant growth is present.

A move towards simplification of evapotranspiration and weather forecasting models
to reduce sensing requirements and incorporation of machine learning and remote
measurement has been observed.

Atmosphere-based approaches however face the challenge of not taking into consider-
ation the plant response, and therefore have generally been integrated into control
approaches where feedback is obtained from plant-based or soil-based measurements.
Application at plant level is also not widespread. Advances in spatial and temporal
precision in modeling and measurement of atmospheric parameters are expected to
extend the application of atmosphere-based approaches to plant level.
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Plant-based approaches

To alleviate the gaps inherent in soil-based and atmospheric-based precision control
approaches, plant-based precision irrigation control has been widely seen as the best
approach in accurately determining and meeting plant water requirements [Jon04].

The timing and quantity of irrigation is based on the plant physiological response to
lack of water, which results in changes in leaf surface temperature, water potential,
or turgor [AP07]. Other emerging methods of assessing plant water status that could
provide useful feedback for precision irrigation control include measurement of leaf
thickness [SSL11], trunk diameter [CMO+11,MDC+17], leaf reflectance [KEF+16]
and various applications of image analysis [HM09,COLM18,MAGMRC+19,XQH+20].

A summary of emerging approaches in plant-based precision irrigation control is
presented in Table 4.4.

While plant-based approaches provide the closest match to plant water requirements,
there still exist open questions regarding the determination of appropriate irrigation
quantity, the distinguishing of physiological responses to water stress from other
stresses, and the dynamic adaptation of irrigation control to account for physiological
coping mechanisms employed by plants in response to water stress.

4.3 Precision deficit irrigation-based control and optimization
of maize growth

The incorporation of spatial variability in the management of irrigation is a key
concept in distinguishing between traditional irrigation and precision irrigation
[SESC05,SB09]. In Smith et al. [SBM+10], a distinction is made between traditional
definitions of precision irrigation, which focus on maximizing efficiency through
precise determination of volume, location and timing of irrigation, with uniform
application over the entire system, and an updated definition that incorporates
spatial and temporal variation in irrigation treatment. The focus is shifted from
field level to management zones within the field [Fer17,GDGZTF14], or to individual
plant level [KKMD+18, KHH+18]. Camp et al. describe precision irrigation as
“site-specific water management, specifically the application of water to a given site
in a volume and at a time needed for optimum crop production, profitability, or
other management objectives at that specific site” [CSE06]. In this section, the
supporting technologies are considered with regard to their flexibility in allowing
variable precision irrigation of individual plants or zones, rather than achieving
efficiency through generation of uniform irrigation schedules.

Traditional definitions of precision irrigation consider the ”precise amount” of water
to be applied to be the full amount of water required to meet the plant demand,
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which has commonly been determined based on the relationship between crop evapo-
transpiration and environmental factors [MMC+15, LMA+16]. Current irrigation
practices that explore the cultivation of irrigated crops under regulated water deficit
provide a new frontier for precision irrigation, where the required amount to be
delivered is determined with a goal of avoiding irreversible water stress damage,
without necessarily fully matching evapotranspiration-based plant demands. This
provides further avenues for improvement of water use efficiency. Deficit irrigation-
based applications of precision irrigation approaches have been employed in control
of both pre- and post-harvest yield quality [LMPSR+19,PPRSM+07,VMP+21].

Maize growth model description

The growth rate of maize plants during the vegetative phase has been found to have
a correlation with the quantity of soil available water as reported by [Çak04] with
respect to reductions in plant height and leaf area development in plants subjected to
short term water stress. Irrecoverable damage is however observed when the duration
and severity of water stress is prolonged, as reported in [SJH19]. When appropriate
deficit irrigation scheduling is applied, the growth rate and subsequent yield of plants
subjected to mild water stress during the vegetative phase are observed to match
fully irrigated maize plants, with the additional benefit of buffering the plant against
yield losses due to water stress in the flowering and maturation stages as reported
in [CTD+19].

This work is based on an initial state-machine model of maize growth described
in [SKO19]. Three primary stress levels are defined:

i) Plants whose water content is maintained above the upper stress level boundary
(mild stress boundary) by daily replenishment to the maximum holding capacity
of the growth substrate are described as experiencing no stress. This watering
scheme is also referred to in this work as full irrigation.

ii) Plants whose water content is maintained between the upper and lower level
boundaries, and whose stress duration does not exceed the chronological damage
boundary are described as experiencing mild stress

iii) Plants whose water content falls below the lower level boundary, or which
remain between the upper and lower level boundary for a time exceeding the
chronological damage boundary are described as experiencing high stress.

The stress level at step n (SLn) can thus be represented using the level boundaries
based on gravimetric water content (in this work, though the boundaries could
also be experimentally obtained for volumetric water content), LBMS representing
the transition point from an unstressed condition to mild stress, observable as a
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reversible reduction in growth rate, and LBHS representing the transition point
from mild stress to high stresss, observable as a irreversible reduction in growth
rate, also defined as damage. The additional temporal boundary CBHS represents
the maximum duration a plant can be subjected to water content levels characterised
as mild stress without showing irreversible growth retardation.

Hence

SLn =


0, if WC > LBMS

1, if LBMS ≥ WC > LBHS& CBHS = 0

2, otherwise.

(4.6)

It has been shown in previous research that plants subjected to abiotic stresses
retain a memory of the stress event for a certain duration, resulting in a catch-up
phenomenon when the stress is withdrawn [LB17,KS20]. Withdrawal of the stress
for an extended duration results in loss of memory. A chronological flag, CBMem is
used to represent the memory retention period, becoming activated when the plant
experiences stress, and deactivated when the duration of recovery after experiencing
stress crosses the experimentally determined memory retention threshold. The
memory of the plant can thus be represented as a binary state, with

Mn =

{
1, if (WC ≤ LBMS∥Mn−1 = 1)& CBMem = 1,

0, otherwise.
(4.7)

When a plant is exposed to high stress, it experiences damage, which is observed
as an irreversible retardation of growth rate even when the stress is later relieved
by reirrigating the plant. The damage level can thus also be expressed as a binary
state with

Dn =

{
1, if WC ≤ LBHS∥ Dn−1 = 1∥ CBHS = 1,

0, otherwise.
(4.8)

The concept of deficit irrigation-based growth control involves maintaining the test
plants within the two states where presence of memory and absence of damage
intersect, cycling the plants between periods of mild stress and subsequent recovery
through reirrigation. Reducing the complexity of the initial model, in this work
a truncated growth model is presented as illustrated in Figure 4.9, where dashed
arrows represent no stress and continuous arrows represent mild stress. The transit-
ions are described using a three-bit code, with the initial bit representing the
presence of memory Mn, the second bit representing the current stress level SLn

(with 0 as no stress and 1 as mild stress) and the third bit representing the next
state SLn+1.
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Figure 4.9: Modified state machine model of maize growth with Si denoting states
of the model and arrows representing transitions [OS22c]

Optimization of state level thresholds

A description of the NSGA-II optimization algorithm has been presented in sub-
section 3.1. In previous work [Kög19,JKS19], the optimization algorithm was applied
to experimental data with a fixed number of iterations, which is a function of the
population size and maximum number of generations. In this case the default values
were set to 50 and 200 respectively, resulting in an optimization cycle encompassing
1000 iterations.

A key observation made using the fixed number of iterations was that the threshold
values obtained were non-reproducible, resulting in overlaps between both level and
chronological thresholds. A statistical analysis of 10 consecutive runs yielded the
values presented in Table 4.5.
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Table 4.5: Analysis of state thresholds obtained from NSGA-II optimization
algorithm with default number of iterations (all values represent water content in g)

FI Threshold MS Threshold HS Threshold

Minimum 53.6323 12.5725 10.2949
Maximum 149.2605 87.8742 78.9513

Median 107.8239 66.6766 46.4354
Std. Deviation 29.5333 19.5941 22.7483

An algorithm was created to examine alternative population sizes and maximum
generations to identify if convergence was achievable in the optimization process.
With the population size fixed at 50, the maximum number of generations was varied
between 20 and 10,000 in increments of 20 steps. The absolute error and RMSE
values were found to converge within the first 500 generations. The process was
repeated with the maximum generations varied from 100 to 500 in increments of 2.
Convergence was found to occur at 200 generations. An evaluation of the threshold
values produced however, showed significant variations and overlaps between all
three stress levels. This is observable in Figure 4.10.

A further examination of the performance of the optimization algorithm with varying
population sizes was carried out, with the maximum number of generations set at
500. The population size was varied from 12 to 50. It was observed that population
sizes up to 30 produced similar, low RMSE values, with erratic behavior at higher
values.

An investigation varying population size between 2 and 38 in increments of 2, and
varying maximum number of generations between 200 and 5000 in intervals of 50
was carried out. A 3D plot representing the convergence behavior is presented in
Figure 4.11.

Rotation of the 3D plot suggested a minimum RMSE value which repeatedly occured
at different combinations of population size and maximum number of genera-tions.
Multiple iterations produced similar results, with the modal value of RMSE appearing
as either the best performance, or having a negligible difference from the best
performing error value (in the order of 1 × 10−5). The algorithm was modified
to identify and count the instances of each unique RMSE value, with the process
terminating as soon as any error value had been repeated 50 times.

A comparison of the stress thresholds produced using the parameters at convergence
however indicated great variations, therefore thresholds based on NSGA-II optimiza-
tion were not applied in any further experiments, and stress boundaries were set
based on expert knowledge obtained by observing variations in leaf elongation rate
in comparison with a fully irrigated control group.
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Figure 4.10: Variation of stress level thresholds with different settings of maximum
number of generations. Population size in this case remains constant at 50.

A machine learning-based approach involving clustering of leaf elongation rates
for determination of stress level boundaries was examined. Selected experimental
growth data was segmented according to the total number of visibly appeared leaves,
and clustering performed on the dataset, with the number of required groupings set
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Figure 4.11: Variation of prediction accuracy under varying NSGA-II parameter
settings

to two for data corresponding to plants with three leaves, and three clusters for
plants with four and five leaves. Results are presented in Figure 4.12.

From the obtained clusters, a clear downwards trend in the stress level boundaries
with time is observed, suggesting a need for dynamic stress level boundaries rather
than static water content values. It is hypothesized that the contribution of root
expansion to extending the range of available water within the growing pot is
responsible for the changes in stress boundaries, suggesting a need to decouple
the definition of plant water stress status from irrigation deficit levels, which are
generally expressed in relation to total soil water holding capacity rather than plant
physiological response.

Evaluation of clustering performance was done by classification of test data based
on the selected clusters. The achieved prediction accuracy is presented in Table 4.6.

Available experimental data shows relatively crisp boundaries between no stress and
high stress data, with fuzzier boundaries for the mild stress region, indicating a need
for improved approaches for identifying plants exhibiting mild stress responses.
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Figure 4.12: Evaluation of stress level thresholds using clustering approach
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Table 4.6: Classification accuracy for stress level threshold determination approaches

Prediction
accuracy [%]

No stress Mild stress High Stress

NSGA-II Clustered NSGA-II Clustered NSGA-II Clustered

Three leaves 57.6 85.1 37.2 44.8 − −
Four leaves 81.4 83.2 25.2 53.2 82.6 79.6
Five leaves 74.7 89.9 33.3 20 75.7 60

Trellis diagram approach

Trellis diagrams are used in telecommunications to represent coded sequences of
bits that are encoded stepwise, with transitions between different states recorded in
memory, and the output as a function of the current state and the input. Decoding
of trellis code involves identification of the intermediate states taken to arrive at
a given final output, given the initial conditions. Common decoding approaches
include the Viterbi algorithm, a maximum likelihood approach described in [Vit67],
which produces the shortest path through a trellis diagram by examining all possible
paths, and the sequential decoding algorithms, which use a sequential search for the
shortest path through a trellis, with new paths only being computed as extensions of
previously selected paths, and all other possible sequences systematically discarded
along the way, as described by [For74].

The initial progression of plant growth through the states is clearly represented in
the trellis diagram shown in Figure 4.13. The initial state of the plants involves
no stress and no memory, represented as S1. Subsequent transitions eventually
evolve into a repetitive cycle, represented by the section after step k3. Linear

Figure 4.13: Trellis diagram representation of state transitions

regression is applied on historical experimental data representing each state to obtain
distinct state equations to characterize the daily growth rate, expressed as total
leaf elongation rate, and the evapotranspiration rate, which is represented by a
function of minimum and maximum daily temperatures, minimum and maximum
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daily relative humidity, current total leaf length and stress state. A model predictive
controller, described in the next section, is developed to achieve closed loop growth
control.

Model-based predictive control

Model predictive control, as described by [CST61], utilizes a model of the controlled
system to generate a control variable based on predicted future error. A set of
predictions is made over a specified number of time steps, known as the prediction
horizon. A set of control variables is calculated based on the predicted error over a
specified number of steps, known as the control horizon. The controller applies the
calculated control variable for the next time step, after which system measurements
are used to update the error value. A new set of predictions and control variables,
and a possibly updated system model are then generated using the updated error, a
concept referred to as moving horizon. The basic procedure followed during model
predictive control is summarized in Figure 4.14.

Figure 4.14: Block diagram representing model predictive control

Control algorithm design

The control goal in this work is to achieve specific total leaf length within a fixed time
period, with a secondary goal of minimizing water consumption. The state-specific
elongation rate and evapotranspiration equations allow prediction of growth and
water consumption given a specific watering sequence and the representative water
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content for fully irrigated and mild stress conditions. To achieve growth control, it
is necessary to generate the closest matching irrigation sequence that would produce
the required growth within the specified time. For this purpose, a hybrid algorithm
combining elements of model predictive control and trellis diagram decoding was
developed. A block diagram representing the steps followed in designing the controller
algorithm is shown in figure 4.15. In the development of a plant growth controller,

Figure 4.15: Overview of plant growth control strategy based on precision deficit
irrigation

the system outputs are a sum of intermediate outputs generated from related growth
and evapotranspiration equations associated with each successive state the individual
goes through. Additionally, the goal of common decoding algorithms is to find the
fastest path out of the trellis code, whereas the goal in this work is to find the
closest matching result within a fixed duration. As a result, traditional maximum
likelihood or sequential decoding approaches cannot be directly applied.

The main characteristics of each approach were considered in creating a decoding
algorithm for determining the optimal path through the trellis for achieving targeted
plant growth. A maximum likelihood approach provides the advantage of greater
achievable accuracy, since all possible outcomes are generated before a path is
selected. Multiple optimization goals can be integrated in the control decision-
making, making it a more flexible approach. A sequential approach has the advantage
of lower memory and processing requirements because unpursued paths are discarded
at each step, allowing for longer possible prediction and control horizons.
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A simplified search algorithm following the maximum likelihood approach was devel-
oped for generation of optimal irrigation sequences for achievement of the desired
total leaf length. The choice was based on the relatively slow dynamics of maize
growth during the vegetative stage, and constraints on the optimal length of the
prediction horizon, brought about by the need to adjust the growth and evapotranspi-
ration equations upon the appearance of new leaves. For these reasons, the advantages
offered by a sequential approach are irrelevant to the application.

A description of the resultant model predictive algorithm integrating decoding of
the generated trellis diagram follows. The process is visually summarized in Figure
4.16.

Figure 4.16: Overview of plant growth control algorithm

(1) All possible irrigation sequences over a prediction horizon of duration n are
generated as binary codes, with 0 representing no stress and 1 representing
mild stress. The output of this step is 2n possible combinations.

(2) Chronological constraints related to damage under prolonged mild stress and
loss of memory due to an extended recovery period are applied to the search
space to eliminate undesired transitions. In this work, both parameters have
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been set to three days based on past experimental data. The elimination
process is achieved by searching the binary codes generated in the first step
for consecutively occurring 0s (representing loss of memory) and consecutively
occurring 1s (representing transition to damaged state).

(3) The total leaf length and cumulative water consumption for all acceptable
irrigation sequences is calculated based on the state-specific leaf elongation rate
and evapotranspiration equations. The calculation must be done in a stepwise
manner because the functions describing elongation rate and evapotranspiration
are both dependent on current total leaf length.

(4) The database is searched for the value closest to the desired total leaf length at
the end of the specified time period, and the corresponding sequence selected
as the output.

(5) The first bit of the generated sequence is used to calculate the required amount
of irrigation to achieve the prescribed state.

(6) The next set of measurements is taken.

(7) Step (1) to (5) are repeated using the new measurements to generate a new
set of predictions and control output.

(8) From the third iteration, the sum of the three most recently generated control
output bits is restricted to values of 1 or 2 (to prevent loss of memory or
damage due to prolonged mild stress).

An advantage of generating all possible output values is the possibility of determining
the acceptable range for growth targets, with the user prompted to enter a growth
target between a pre-calculated minimum and maximum. In addition, the algorithm
can readily be expanded to include optimization of water consumption by comparing
a specified range of closest results, and selecting based on minimum water consumption.
Conversely, a search can be made with minimization of water consumption as the
main goal, and the maximum achievable growth used as a secondary goal to search
the resultant subset of closest matches.

Experimental setup

Experimental work was carried out in an indoor greenhouse housed in the Chair of
Dynamics and Control at the University of Duisburg-Essen, Germany. Maize plants
(Zea mays, KWS Ronaldinio variety) were grown in 500 ml capacity PET tumblers
filled with SeramisTM clay granulate and positioned under artificial grow lamps
which were automatically switched on and off to maintain a day length of 14 hours.
Irrigation was applied once daily to levels determined by the required irrigation
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sequence. Fertigation was supplied using Seramis Vitalnährung für GrünpflanzenTM,
which provided adequate nutrition for the vegetative phase.

Four sets of five plants each were positioned in a square configuration with an infra-
red camera at the center. A single maize seed was sown in each pot, and the
plants were maintained under full irrigation until the third leaf tip was visible on
all plants, which occured eleven days after planting. One set was designated as the
control group, and received full irrigation for the entire duration of the experiment.
A second group was used for validation of the stress boundaries, with the plants
cycled through no stress, mild stress and high stress before being reirrigated. The
remaining two groups were irrigated based on sequences generated by the developed
control algorithm. The water content of the plants was monitored continously
through a load cell-based measurement system on which each plant was mounted.
Additional measurements taken included daily maximum and minimum temperature
and relative humidity values, total leaf length and number of appeared leaves.

The stress boundaries were initially set based on expert knowledge, with plants in
mild stress maintained at a water content approximately between 40 % and 70%
of the holding capacity of the growth substrate. The upper stress boundary was
confirmed during the course of the experiment by infrared imagery of leaf surface
temperatures, which confirmed an observable deviation between the control group
and the designated stress boundary validation group when the average water content
in the stressed group reached a value approximately 55 % of the average water
content in the control group.

Three sets of experiments were carried out as described:

Experiment 1: 60 plants were planted in the indoor greenhouse, with 20 individuals
selected as test subjects for growth control. The control goal was achievement of
a specified final total leaf length after the specified period, without optimization
of either plant growth or water consumption. Implementation of the irrigation
schedule commenced when all plants had at least three visibly appeared leaves. An
initial common goal of 95 cm total leaf length after 5 days was set, with each plant
receiving an individualized irrigation prescription to best match the target. Due to
appearance of the fourth leaf on the second day of treatment with the associated
rapid increase in total leaf length at the beginning of the active elongation phase, a
section of test plants were determined to have attained levels of growth that would
place their lowest possible growth target above the preset target. Based on the
obtained measurements, a revision of growth targets was made, with ten plants
receiving a new growth target of 105 cm, and ten plants retaining the original
growth target of 95 cm. The irrigation schedules for the evaluated plants are
shown in Figure 4.17. Full irrigation was performed by increasing the water content
to total holding capacity of the substrate, with the exception of days when the
next step involved mild stress. Irrigation was then applied to a level based on
the projected evapotranspiration, with an aim of just crossing the boundary from
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no stress into mild stress. On days requiring mild stress irrigation amount was
dependent on projected evapotranspiration based on achieved total leaf length with
a lower boundary set to prevent transition into high stress. Upon the appearance of

Figure 4.17: Irrigation schedule for uniform final total leaf length, with 0
representing no stress/full irrigation, and 1 representing mild stress.

leaf 5 on the sixth day of the irrigation sequence, the results were evaluated using
the expected attained growth for the individual plants by day 6, rather than the
day 7 targets.

Experiment 2: The set target for control was achievement of uniform cumulative
water consumption, with a target set to 350 ml over a period of seven days. Individual
plants with different total leaf lengths and initial values of cumulative water consump-
tion were subjected to irrigation sequences targeted at meeting the target within the
specified time. A total of 20 plants were involved in the experiment. Water content
levels for the different stress states were influenced both by the required stress state
for a specific day, and the next expected stress state based on the generated sequence.
This required continous prediction of evapotranspiration levels at each step, with
irrigation quantity set to prevent transition into an undesired stress state. A plant
expected to remain in a state of no stress for two consecutive days thus received
more water than one required to transition into mild stress the next day, with the
latter receiving just enough water to cross the mild stress threshold based on daily
evaporation rates.
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Experiment 3: Optimal values of plant growth and water consumption were
selected based on two different weighting ratios, with constraints obtained from
the database of prediction values generated by the controller algorithm. Ranking
of growth and water consumption values as ratios of the best case results (highest
growth or lowest water consumption) was performed, and weighting was allocated
with two separate optimization scenarios.

In the examined optimization scenario, equal weighting was attached to maximizing
growth and minimizing water consumption, thus the final ranking of irrigation
schedules was obtained by addition of the individual ranking obtained for each of the
two variables to be optimized. The irrigation sequences corresponding to the highest
ranked performance were then selected for implementation. Due to different initial
measurements and different final targets for each individual, irrigation sequences
were unique and could be considered to be random.

Results and Discussion

Results obtained relating to the control goal of attaining identical total leaf length at
the end of the selected growth period from plants with varying initial measurement
through imposition of appropriate irrigation sequences are presented in figure 4.18.
Total leaf length without addition of leaf 5 is also presented for comparison. The

Figure 4.18: Targeted growth control results

measured total leaf length at the end of the growth period closely matched the
projected total leaf length predicted for day 6 under the irrigation sequences applied
to the individual plants. The mean percentage error was obtained as -4.6 % of total
leaf length, with a standard deviation of 4.394 cm.
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Figure 4.19: Trajectory of control error over time for uniform final total leaf length

An overview of the behavior of the error value over the duration of the experiment is
captured in Figure 4.19. It can be observed that the range of error values increased
over time, with a tendency to overestimation of total leaf length with time. The
overall control error remained within 10 % of the total leaf length for all individuals
throughout the experiment, with the exception of two outliers.

Achievement of a fixed target with regards to water consumption was also achieved
for the test groups in Experiment 2. The results are presented in Figure 4.20. In this
experiment, the results tracked closely the targeted cumulative water consumption,
with error values within ±10 % for all individuals in the test group, with the
exception of one outlier. Deviations in water consumption tended in the negative,
that is, most of the observations were slightly lower than predicted cumulative
water consumption, which is preferable in an implementation scenario where water
availability is a major constraint, and the cost of overwatering is greater than the
associated penalty for underwatering.

A control goal attaching equal weights to the dual goals of minimizing total water
consumption and maximizing total leaf length was set for the test groups. The
projected total leaf lengths were calculated based on the optimal irrigation sequences
obtained from the algorithm. Measurements were taken on day 3 and day 7 of
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Figure 4.20: Controller performance for targeted cumulative water consumption

the experiments, with the irrigation sequence updated on day 4 based on obtained
measurements. In Figure 4.21 resultant total leaf lengths obtained on application of
the growth control algorithm after three and seven days of irrigation respectively are
shown. The measured total leaf length tracks the projections closely, with a mean
absolute percentage error of 4.24 % on day 3, and 8.39 % on day 7. The prediction
error distribution (as a percentage of measured total leaf length) is graphically
illustrated in Figure 4.22.

The upward drift in error is attributed to the development of the plant, with the fifth
leaf making an appearance on day 6 for most of the test group. To avoid distortion
of the output by the unaccounted-for new leaf, the length of leaf 5 was not included
in the analysis.

During the experiment, a dynamic shift of the level boundaries demarcating the
region of mild stress was observed. This is possibly due to the cultivation of the
maize plants in pots. As the plants develop, the threshold values for transition into
stressed state trends lower, suggesting that the developing root systems of the plants
are able to extract moisture from the substrate even at relatively low gravimetric
water content levels.

The effect of this shift in the state transition boundaries is not addressed in this work,
and will be explored in future, in addition to possible shifting in the chronological
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Figure 4.21: Targeted growth control results

Figure 4.22: Percentage error in total leaf length on days 3 and 7

memory and damage thresholds.
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4.4 Summary

Implementation of a state machine model for representation of growth of a maize
plant during the vegetative phase has been experimentally validated, with generation
of state-specific models of leaf elongation and evapotranspiration, which are then
employed in a model predictive control setup to achieve optimal plant growth while
minimizing water consumption.

The definition of the necessary thresholds required to describe the state machine
model presented has been attempted using an NSGA-II optimization algorithm,
with variation of parameters controlling the number of iterations performed. Despite
achievement of convergent error metrics for different combinations of population
size and maximum number of generations, the specific threshold values required to
define state boundaries exhibit large ranges with considerable overlap for all stress
levels. An additional challenge faced is non-reproducibility of threshold values, with
repeated runs of the optimization process producing vastly different outcomes. As
a result, for purposes of developing a control algorithm, both the chronological and
level-based stress boundaries have been set based on expert knowledge. For future
work, the employment of dynamic stress thresholds over the course of plant growth is
recommended, as observation of clustering results indicates that onset and severity
of stress varies over the duration of plant growth, probably due to root growth
dynamics which were not explored within this work.

Development of the control algorithm employed a hybrid approach combining a
decoding procedure intended to select an optimal path through a trellis diagram,
combined with a model predictive control algorithm with a variable prediction
horizon. Goals related to achieving specific growth and water consumption without
optimization, as well as achieving optimal growth and water consumption with equal
weighting assigned to the competing targets were experimentally achieved, with
control error for all experiments falling within a range of ±10 % for all values,
inclusive of a couple of outliers whose initial measurements resulted in less reliable
prediction of expected trajectory.
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5 Summary, conclusion, and outlook

This work describes the modeling, control and optimization of maize growth based
on precision deficit irrigation. The growth and development of maize plants is
modeled using state machine representation, allowing the definition of incremental
leaf extension, appearance of new leaves, generation of biomass and daily evapotrans-
piration depending on identified water stress levels. A model predictive controller
is developed capable of achieving specified growth or water consumption within a
fixed duration. Optimization is achievable by varying weighting of the two main
control variables of interest- the total leaf length and the total water consumption.
This enables meeting the twin goals of maximizing plant growth and minimizing
total irrigation water consumption.

5.1 Summary and conclusion

In the first part of the thesis (section 2), a detailed analysis of existing literature
in the modeling of various aspects related to plant growth and physiology are
considered. The focus is on parameters that serve as variables in the control of
plant growth based on irrigation. The section considers the applicability of existing
approaches to the envisioned test environment, which is an indoor greenhouse, and
emphasis is given to literature focusing on growth and development of maize. Key
conclusions from this chapter are as follows:

Modeling of plant growth:
Growth of maize during the vegetative phase can be described based on the elongation
rate, surface area, and rate of appearance of leaves. Existing literature assumes
static thermal functions for maize growth modeling, with exposure to water stress
integrated primarily as a factor causing retardation in growth. Studies related to the
catch-up effect exhibited by plants in the immediate period of recovery from applied
stress and the priming phenomenon that increases resilience to future stress events
suggest a need for modeling approaches that encompass variations in growth under
water deficit conditions. A modeling approach based on state machine description
and applied to leaf elongation is considered. Extension of state-based modeling
incorporating effects of water deficit to description of leaf appearance and biomass
modeling is considered necessary to fully describe the water status-related growth
of maize plants during the vegetative stage.

Evapotranspiration modeling:
The main driver of water loss in growing plants is evapotranspiration, making it a
key variable of interest in determining the timing and quantity of irrigation water
supply. As with morphological models of plant growth and development, existing
evapotranspiration modeling assumes a dependence on environmental factors, and
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neglects the effect of current and previous water stress events on plant physiological
response, in this case, rate of transpiration. Advances have been made in simplifying
the required variables for effective modeling of evapotranspiration, with the most
popularly applied approaches based on thermal factors and exposed surface area of
the plant. Integration of variations resulting from physiological response to ongoing
or previous exposure to water stress events is a key requirement for precision deficit
irrigation control, allowing for more accurate assessment of water requirements in
plants periodically subjected to water deficit.

The second part of this thesis (section 3) describes approaches developed for morpho-
logical and physiological modeling of plant growth and development, with a focus
to leaf elongation, leaf appearance, biomass estimation and evapotranspiration.

Leaf elongation model:
Working from an existing state machine model with seven distinct states related
to level and duration of exposure to water stress, with state thresholds initially
determined using an NSGA-II optimization algorithm, validation of model accuracy
was carried out using experimental growth data. Significant errors were found
to occur in the projection of plant growth, particularly in application to plants
under full irrigation conditions. Implementation of a trust-region-reflexive least
squares optimization algorithm produced greater prediction accuracy, however the
projections related to full irrigation conditions still exhibited rising inaccuracy with
time, implying a need to either adjust the growth-related equations or develop a
new model to describe leaf elongation.

An evaluation of model performance using the NSGA-II optimization model with
similar equations for all growth states produced greater prediction accuracy, but led
to level thresholds that contained significant overlaps between the mild stress and
high stress conditions, which made this approach unsuitable for use in this work,
as one of the goals of precision deficit irrigation in this case is to avoid subjecting
the plants to high stress to avoid damage. Reversing the two equations initially
used to represent large changes in observed values and minor changes resulted in
clearly distinguishable regions of high stress and mild stress, with some overlapping
observable in the regions of mild stress and no stress. The prediction accuracy
is significantly greater than the other examined cases (involving all three forms of
the growth equation as initially described, and only using one form of the growth
equation), making the overall rating of this approach inconclusive.

A data-driven linear regression model based on historical data was developed, result-
ing in a reduced set of equations representing six of the seven described states. The
undescribed state was as a result of insufficient experimental growth data. The
results from prediction using linear regression equations to describe each of the six
considered states produced RMSE values of 17.09 cm, with prediction accuracy
relatively robust even for a ten-step prediction horizon.
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Biomass estimation:
Using the presented state machine description, cumulative above ground biomass
is predicted by a direct application of the optimized state machine model for leaf
length prediction. This approach is not pursued further due to significantly large
error values attributed to inadequate training data for intermediate biomass values.

An allometric function is developed as a linear regression model based on leaf
area, with stepwise prediction of biomass accumulation. A prediction accuracy of
between 80 % and 95 % is achieved, and a comparison with the Aquacrop growth
model indicates close agreement of both intermediate and final biomass accumulation
predictions.

Leaf appearance model:
A modeling approach based on linear degradation models employed in continuous
health monitoring of mechanical systems is applied to prediction of leaf appearance,
with elongation trajectories of existing leaves used to predict new leaf appearance.
Based on analysis of existing experimental plant growth data, leaf elongation rate
thresholds are identified representing the transition of existing leaves from an active
elongation phase to a mature phase during which no further extension is experienced.
These thresholds demarcate the appearance of new leaves, with a three-leaf interval
identified as the optimal separation between the leaf under observation and the new
leaf whose appearance is to be predicted.

Prediction results for the fourth and fifth leaves in maize plants under different
irrigation treatments are presented, showing a close match to projected timing of
leaf appearance.

Data driven evapotranspiration model:
The third part of this thesis (section 4) focuses on the development of a growth
control approach based on precision deficit irrigation. A model predictive control
scheme based on the state machine model description of plant growth and evapotrans-
piration is combined with a trellis decoding approach to achieve targeted growth
control through generation of specific irrigation sequences. Optimization options
allow for variation of weighting of the twin goals of maximizing plant growth (defined
by the total leaf length) and minimizing water consumption.

Growth control results:
Implementation of a model predictive controller integrating a trellis decoding algori-
thm based on a brute force approach on control of plant growth and cumulative
water consumption was experimentally validated on a group of test plants. Fixed
growth and water consumption targets imposed on plants with different initial
measurements and levels of cumulative water consumption were achieved for the
plants within the test groups. Optimization of both water consumption and plant
growth was tested with equal weights for both targets, with results evaluated on the
basis of final achieved total leaf lengths. The performance of the control algorithm
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was found to be satisfactory for the selected duration. It was however noted that the
control error exhibited an upwards drift with time, implying the need to dynamically
adjust stress thresholds as the plants grow.

5.2 Outlook

Application of a state machine-based representation for maize growth during the
vegetative stage has been experimentally validated. However, the definition of stress
thresholds has remained a challenge, leading to a hypothesis that dynamic stress
thresholds for pot-grown plants may lead to greater modeling accuracy, particularly
as the plants grow beyond the 6-leaf stage. This is attributable to the extension of
plant roots with time, resulting in greater accessibility to water even at significantly
lower soil water content. This results in a seemingly delayed response to water deficit,
with reduced levels of stress not fully attributable to the priming effect developed
after an initial exposure to water stress. Exploration of the development of the
root system would be particularly useful in further refining the growth models with
respect to stress boundaries. An alternative would be to rely purely on sensing of
physiological response to identify and quantify water stress, which however requires
high precision, high resolution sensors, thereby implying increased costs.

Initial testing of irrigation-based growth control shows it to be feasible, with optimiz-
ation of both growth-related and water-related goals achievable. Exploration of the
effect of different optimization scenarios, involving adjusting the weighting of growth
and water consumption as targets needs to be experimentally verified to ascertain
the practical limits of achievable control goals.

The extent of experimental validation of different growth-related parameters has
been limited by the dimensions of the experimental space, with pot size limiting
root expansion and distance to internal lighting limiting the maximum achievable
plant height. Further experiments involving larger pots and more vertical room for
plant growth could be useful in evaluating the performance of the growth controller
over the entire vegetative stage, particulary because greater reliability in estimation
of final maize yield is achieved by considering later stages of vegetative growth.
Other plants exhibiting similar physiological responses to water stress but with
lower space requirements would also provide an ideal option to test the performance
of the growth controller, provided initial preparatory experiments are carried out to
obtain training data for model parametrization.
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Antonioletti, R. ; Dürr, C. ; Richard, G. ; Beaudoin, N. ;
Recous, S. ; Tayot, X. ; Plenet, D. ; Cellier, P. ; Machet,
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(2022), Nr. spe. http://dx.doi.org/10.1590/1809-4430-Eng.

Agric.v42nepe20210153/2022. – DOI 10.1590/1809–4430–
Eng.Agric.v42nepe20210153/2022

[LGH+19] Liu, H. ; Gleason, S. M. ; Hao, G. ; Hua, L. ; He, P.
; Goldstein, G. ; Ye, Q.: Hydraulic traits are coordinated
with maximum plant height at the global scale. In: Science
Advances 5 (2019), feb, Nr. 2. http://dx.doi.org/10.1126/

sciadv.aav1332. – DOI 10.1126/sciadv.aav1332

[LIS+16] Linker, R. ; Ioslovicha, I. ; Sylaiosb, G. ; Plauborgc,
F. ; Battilanid, A.: Optimal model-based deficit irrigation
scheduling using AquaCrop: A simulation study with cotton,
potato and tomato. In: Agric. Water Manag. 163 (2016), pp. 236–
243. http://dx.doi.org/10.1016/j.agwat.2015.09.011. – DOI
10.1016/j.agwat.2015.09.011

[LLT+19] Laxa, M. ; Liebthal, M. ; Telman, W. ; Chibani, K. ;
Dietz, K.: The Role of the Plant Antioxidant System in Drought
Tolerance. In: Antioxidants (2019), 04

[LMA+16] Lozoya, C. ; Mendoza, C. ; Aguilar, A. ; Román, A. ;
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[PHDG+16] Pérez-Harguindeguy, N. ; D́ıaz, S. ; Garnier, E. ; Lavorel,
S. ; Poorter, H. ; Jaureguiberry, P. ; Bret-Harte, M. S. ;
Cornwell, W. K. ; Craine, J. M. ; Gurvich, D. E. ; Urcelay,
C. ; Veneklaas, E. J. ; Reich, P. B. ; Poorter, L. ; Wright,
I. J. ; Ray, P. ; Enrico, L. ; Pausas, J. G. ; de Vos, A. C. ;

http://dx.doi.org/10.1016/j.ifacol.2022.11.136
http://dx.doi.org/10.3389/fcteg.2022.982463
http://dx.doi.org/10.3389/fcteg.2022.982463
http://dx.doi.org/10.1002/ieam.4314
http://dx.doi.org/10.1002/ieam.4314
http://dx.doi.org/10.1016/j.apgeog.2022.102649
http://dx.doi.org/10.1098/rspa.1948.0037


BIBLIOGRAPHY 121

Buchmann, N. ; Funes, G. ; Quétier, F. ; Hodgson, J. G. ;
Thompson, K. ; Morgan, H. D. ; ter Steege, H. ; Sack, L.
; Blonder, B. ; Poschlod, P. ; Vaieretti, M. V. ; Conti,
G. ; Staver, A. C. ; Aquino, S. ; Cornelissen, J. H. C.:
Corrigendum to: New handbook for standardised measurement of
plant functional traits worldwide. In: Australian Journal of Botany
64 (2016), Nr. 8, pp. 715. http://dx.doi.org/10.1071/BT12225.
– DOI 10.1071/BT12225

[PO05] Padilla, J. M. ; Otegui, M. E.: Co-ordination between Leaf
Initiation and Leaf Appearance in Field-grown Maize (Zea mays):
Genotypic Differences in Response of Rates to Temperature. In:
Annals of Botany 96 (2005), Nr. 6, pp. 997–1007. http://dx.doi.
org/10.1093/aob/mci251. – DOI 10.1093/aob/mci251

[PPM+20] Pereira, L. S. ; Paredes, P. ; Melton, F. ; Johnson, L.
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