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A B S T R A C T

Analyzing group dynamics is crucial to understand the behaviors of members
in groups. The analysis could help answer important questions: How does the re-
lationship between group members change over time? What is the effect of a member’s
action on others? How do group members coordinate their efforts to achieve a goal? What
are the overall changes in group behaviors over time? This thesis proposes novel tech-
niques for visually exploring group dynamics, thereby aiding in answering such
questions. The proposed techniques apply to diverse scenarios, as demonstrated
through application examples.

This work focuses on the two characteristic features of group dynamics. First,
since members can belong to multiple groups simultaneously, it results in over-
laps between groups. We propose two novel visualizations to analyze dynamic
memberships in overlapping groups. Their effectiveness is demonstrated by in-
sights from application examples, e.g., authors’ evolving research interests, clas-
sification models’ performance in their training process, and developer contribu-
tions in software repositories. Second, the interactions among group members. A
design and application space is proposed to explore user behaviors from mixed
reality sessions. Three visualizations are presented to investigate collaborative and
competitive interactions among members. The studied scenarios include humans
interacting in mixed reality and autonomous agents collaborating and competing
in simulated environments.

We propose an example of an integrated visual representation to show dynamic
memberships in overlapping groups and entity interactions. The thesis discusses
the future possibilities in encoding enriched interactions and describes a few
works in progress. Finally, the thesis summarizes the contributions, highlights the
limitations of the proposed visualizations, and presents a brief outlook toward the
future.
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“Group dynamics are the influential actions, processes, and changes that occur within
and between groups. Groups come in all shapes and sizes and their functions are many
and varied, but their influence is universal. The tendency to join with others in groups
is perhaps the single most important characteristic of humans, and the processes that

unfold within these groups leave an indelible imprint on their members and on society.
To understand people, one must understand groups and their dynamics.”

– Donelson R. Forsyth [6]





1
I N T R O D U C T I O N

Group dynamics broadly refers to the changes or processes that occur in a group.
It includes the actions performed by the members of a group and their reactions
under changing circumstances. For over a century, scholars from diverse disci-
plines have been intrigued by the complex human behavior in groups. They have
attempted to answer important questions, such as what is the influence of an indi-
vidual’s actions on the group? and how do members of a group coordinate their efforts
to achieve a goal? Thus, group dynamics has emerged as a research topic and is
defined as “the influential actions, processes, and changes that occur within and between
groups” [6]. Conventionally, the complexities in group dynamics have been scientif-
ically analyzed by watching or recording the group activities, quantifying the oc-
currences of behaviors, conducting self-reported surveys for group members, and
via qualitative or quantitative methods. However, there is a lack of exploratory
visual analysis approaches that can be used to understand group dynamics. The
thesis fills this gap and proposes visual exploration techniques that complement
the existing analysis methods of group dynamics.

Generally, a group is a collection of entities that have something in common.
However, the definition is a simplification that obscures the involved complexi-
ties. Groups can be defined based on different features. For the purpose of this
thesis, we consider a group as a collection of entities or members that belong in
the same category [7] (e.g., based on a categorical attribute), or “individuals who
stand in certain relations to each other ...” [8], or as “[entities] who work together inter-
dependently on an agreed-upon activity or goal” [9]. Groups have two characteristic
aspects. First, due to connections, similarities, or joint memberships of entities,
the groups exhibit a structure among members. This is captured through entity
attributes. Second, entities interact with each other, both within a group and be-
tween groups. Hence, group behavior can be formally defined as a function of the
entity attributes, the environment in which the entities act, and the interactions
with others.

Time impacts the state and situation of an entity, affecting entity relationships,
memberships in a group, or strategy of interacting with other entities. Hence, sce-
narios involving groups of entities can be considered complex systems with dy-
namic processes. To understand the group dynamics in specific scenarios, such
temporal changes are necessary to visualize and explore insights about the cumu-
lative outcomes, for instance, to understand the overall trend of entity interactions
(e.g., cooperation), identify important timespans (e.g., abnormalities), and infer
the patterns of evolving relationships among entities.
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2 Exploring Complex Group Dynamics

Figure 1.1: Research fields and application areas where the exploratory analysis of group
dynamics is valuable.

The inclusion of temporal attribute in the exploratory analysis of group dy-
namics is valuable and applicable in several areas of research and application,
as shown in Figure 1.1. For instance, analysis of group dynamics helps in un-
derstanding people’s decision-making behavior as an individual and in a society.
Hence, the analysis is valuable in psychology and sociology. Targeting a more
specific use case, understanding group dynamics is crucial in epidemiology to
study the spread of diseases due to interactions and physical contact. Similarly,
understanding the interactions and influence of one’s actions on others is helpful
in a learning environment. Finally, analysis of group dynamics is necessary for
training autonomous agents that can cooperate to achieve a common goal. Hence,
exploratory analysis of group dynamics plays a pivotal role in understanding the
current behavior of entities through their actions and interactions. However, the
analysis involves some challenges.

The challenges in the visual exploration of group dynamics stem from the two
aspects of group behavior. First, an entity may leave and join a different group
due to a change in the group behavior of entities in a scenario (e.g., humans in
social networks). Moreover, an entity may simultaneously be a member of multi-
ple groups, resulting in overlapping groups. Hence, embedding temporal changes
in memberships while showing the overlapping groups in an integrated visual
representation becomes challenging due to the overlap. Second, the interactions
between entities in the same or different groups. Since interactions potentially
influence other entities, it marks a concrete and vital aspect of behavioral anal-
ysis. The interactions have a cascading effect on other entities individually and
the groups as a whole. Hence, encoding entity interactions in visualization to effi-
ciently analyze their sequences and influence on other entities to understand the
group dynamics becomes a challenge.
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Addressing the challenges in visualizing group dynamics is valuable. Take an
academic research dataset as an example, where research fields are modeled as
groups, while researchers publishing articles in a field determines their group
membership. Analyzing the dynamics in this example could help understand the
inter-disciplinary research trends (e.g., between visualization and psychology sci-
ences) or between overlapping research fields (e.g., robotics, artificial intelligence,
and visualization in computer science). Likewise, exploratory analysis of inter-
actions in group dynamics is critical in scenarios, especially when the strategy
of individual entities is unknown or a goal of the analysis. For example, under-
standing collaborative interactions between groups of humans to perform a task.
Moreover, the value of an integrated analysis of the two aspects in understanding
group dynamics has been demonstrated in social sciences, for instance, to under-
stand how humans change their memberships in different social groups based on
their interactions [10].

The unique characteristics of temporal data need to be effectively handled to
address the challenges mentioned above. For instance, the temporal information
can be modeled as a discrete point in time or as an interval with duration (if
available) on a continuous scale. Moreover, focusing on the progression of time, the
information can be modeled and represented as a sequence on a linear timeline,
or treating it as a reoccurring cyclic phenomenon, time can be plotted on a radial
layout (e.g., to show periodic patterns). Such peculiarities of the temporal data
have been discussed, and several visual representations have been proposed for
different application domains (e.g., see a survey [11]). Since the visual design for
temporal data is heavily influenced by the goals and desired granularity level
in the analysis of specific scenarios, we need to carefully embed the temporal
information while designing visualizations to analyze group dynamics.

Apart from embedding time, to extract meaningful insights from the visualiza-
tion, we need to integrate the context of the environment in the representation.
While analyzing the temporal group memberships and interactions between enti-
ties, the spatial information may be critical to understanding and contextualizing
the group dynamics. For instance, analyzing the movement of autonomous robots
who need to cooperate and avoid damages (e.g., due to unplanned malfunctions).
Generally, several visualizations have been proposed to study movement patterns
(e.g., [12]). Taking an even broader perspective, many visual techniques have been
proposed (e.g., 3D space-time cube), and challenges have been identified in em-
bedding spatial information into temporal visualizations (e.g., [13, 14, 15]). How-
ever, directly applying these techniques to analyze complex group dynamics is
not feasible or straightforward. In this thesis, we take inspiration from the existing
spatio-temporal visualizations and modify them based on the specific needs of the
analysis in a scenario.

Apart from movement, the context regarding the sequence of actions, reactions,
and interactions of entities in a scenario must be provided to help understand
the exhibited group behavior. This can be done by analyzing the accompanying
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environmental events that happened within a short time window of the exhibited
behavior by an entity. For instance, first gaining the ability to move obstacles in
a game environment, followed by placing them at key locations to restrict the
movement of enemies. Also, some interactions may have a delayed effect on other
entities, indicating a strategic maneuver, e.g., pushing a bomb toward an enemy,
which explodes after a few timesteps and kills the enemy in a multi-agent virtual
game simulation. Several timeline visualizations with embedded events have been
proposed to understand and explore patterns in event sequence data (e.g., see a
survey [16]). Thus, to represent the progression of group behavior, in this thesis,
we encode the group dynamics as a sequence of actions on a timeline, together
with other related events of the studied environment.

The thesis proposes different visualization approaches with the following three
design principles to address the challenges and facilitate the visual exploration of
group dynamics.

Design Principle 1: Static Visual Encodings to Embed the Temporal Changes

In order to understand group behavior, we need to compare the dynamic
actions, interactions, and memberships of entities. The unique behavior ex-
hibited by an entity can be understood by comparing individual entities.
Likewise, since we expect a high number of temporal changes in group dy-
namics, the temporal shift in the exhibited behavior can be analyzed by com-
paring different timesteps. Hence, to avoid a high cognitive load, we plot
the temporal changes through static visual encodings instead of using other
approaches (e.g., animation-based techniques).

Design Principle 2: Sequential Analysis of Group Dynamics

An individual change may have a cascading effect on the group structure
(e.g., size), follow-up entity interactions, and, in general, the group behavior.
Hence, the encodings should facilitate the analysis of these sequential effects.
We use a timeline to show the dynamics and enrich it by embedding the rel-
evant information, e.g., the group structure, and differentiate between inter-
vs. intra-group interactions.

Design Principle 3: Preserve Context in the Visual Exploration of Group Dy-

namics

Different environments have specific rules that the entities have to obey.
This leads to various restrictions on their behavior (e.g., movement only on
fixed tracks). Moreover, environmental factors also influence the behavior of
entities (e.g., temporary disruption in the movement due to a random mal-
function environmental event). Hence, to contextualize the behavior exhib-
ited by entities, we integrate the relevant environment details and events in
the visual representation.
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We use the design principles and propose novel visualization approaches to
explore group dynamics in a diverse set of scenarios. For dynamic overlapping
groups, we explore the evolving research interests of authors, the performance of
classification models in their training process, and developer contributions in soft-
ware repositories. Regarding entity interactions, we analyze human interactions
in a mixed reality environment, competition and collaboration between artificial
intelligence agents in a virtual bomb laying game (Pommerman [17]), and a train
scheduling simulation environment (Flatland [18]). We also analyze an example
of an integrated visual representation of memberships in dynamic overlapping
groups and evolving entity interactions by extending a proposed approach. Fi-
nally, reflecting on the proposed approaches, we discuss a few works in progress,
the limitations of proposed approaches, and concrete ideas for future work.

1.1 research objectives

To address the challenges in visualizing group dynamics, the thesis focuses on
the two key aspects of group behavior: membership in overlapping groups and
interactions between entities.

The value in visualizing changing memberships in dynamic overlapping groups
(or sets) has been highlighted before [19], and the visual complexities have been
well understood and discussed [20]. However, only a few approaches have offered
solutions, as indicated by a recent survey [21]. Hence, the objective is to propose
novel visualizations for temporal analysis of memberships in overlapping groups.
The visualization should provide a temporal overview of changes in group mem-
berships of entities. Moreover, the design should support visual comparison be-
tween user-defined groups of entities or selected timesteps. In some scenarios,
entities can belong to a group with varying significance, e.g., a researcher pub-
lishing ten papers vs. another author contributing one article in the same research
field. Hence, the objective is to explore visual designs supporting the analysis of
membership details (e.g., weight) of each entity in a group.

Research Objective � RO 1: Dynamic Overlapping Groups

Novel visualization approaches for memberships in dynamic overlapping
groups to (1.1) provide a temporal overview, (1.2) support comparative anal-
ysis of different entity groups or timesteps, and (1.3) exploration of member-
ship details (e.g., weight) of an entity in a group.

We aim to analyze the sequences and cascading effects of entity interactions.
Hence, the next objective is to categorize the existing visualizations that facilitate
analysis of multi-user or multi-agent behaviors acting in a dynamic environment.
Then, we focus on embedding interactions in a visualization. The entities in a
team usually interact with each other to coordinate and achieve a shared goal. In
contrast, interactions between different teams are competitive. Thus, the objective
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is to explore novel visualization designs that facilitate a sequential analysis of such
collaborative and competitive group behaviors. Finally, since entities move in an
environment while acting and interacting with others, the spatial context is crucial
to understand group behavior. Hence, we aim to explore visual techniques for an
integrated analysis of evolving entity interactions along with their movement.

Research Objective � RO 2: Evolving Entity Interactions

(2.1) To categorize the existing visualizations and understand the encod-
ings for entity behaviors and interactions. Explore novel visualization de-
signs to (2.2) analyze the competitive and collaborative entity interactions,
and (2.3) integrate spatial context in the analysis of group dynamics.

Apart from the two aspects addressed in the thesis, other factors may influ-
ence group dynamics, e.g., individual characteristics of entities, diversity of group
members, social norms, and specific restrictions in the studied scenario, to name a
few. However, in this thesis, we do not explicitly consider such factors that are sub-
jective or applicable only in specific environments. The narrowed focus limits the
scope but is still generalizable to model several complex dynamic processes. For
instance, the included aspect of multiple group memberships can model a wide
variety of relations, e.g., based on a categorical attribute. Similarly, interactions
between entities can model a wide range of behaviors, for instance, communica-
tion and cooperation, tangible contact (e.g., lifting an object), online discourse, or
signing legal agreements (e.g., between companies).

1.2 thesis outline

The thesis has eight main chapters, structured in three parts: dynamic overlap-
ping groups, evolving entity interactions, and conclusion. Along with them, the
background chapter provides information on prior work.

part i – dynamic overlapping groups

Chapter 3 (RO 1.1 and 1.2) presents Set Streams, a novel visualization approach
to analyze dynamic and overlapping group memberships of entities. The parti-
tions of overlapping groups are represented in separate rows, while columns in the
horizontal axis show discrete timesteps. The streams between two timesteps rep-
resent the temporal changes in group memberships. Three application examples—
expertise of researchers, software evolution, and multi-label classification—together
with expert feedback showcase the effectiveness and applicability of the proposed
approach.

Focusing on membership details of an entity in a group, Chapter 4 (RO 1.1 and
1.3) proposes another visualization of dynamic overlapping groups using layered
set intersection graphs. Sets and their intersections are encoded as rectangular
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boxes in a layered layout. Entities are shown as individual circles inside rectan-
gles, with the circle size encoding the respective membership weight of an entity
in a group. The visualization design and rich interactions support the detailed ex-
ploration of an individual entity, a group, and changes between two timesteps.
Insights from two application examples—evolving interests of researchers and
software developer activities—show the capabilities and usefulness of the visu-
alization.

part ii – evolving entity interactions

Chapter 5 (RO 2.1) focuses on visualizing entity interactions and events from
user sessions of mixed reality environments. To do so, it derives a design and
application space with a set of seven categories that could be combined to build
visualization approaches addressing the analysis goals. A scenario of evaluating
user studies combines the visualizations from relevant categories and proposes a
visualization to analyze the collaborative interactions of remote users. The setup
involved two users in different locations sitting opposite to each other in a mixed
reality scene, who had to collaborate to correctly position the three real and virtual
pieces of a puzzle. The visualization encodes the interactions with puzzle pieces as
vertical lines, along with the waveform representation of a recorded conversation
between users in a timeline.

Chapter 6 (RO 2.2) presents a visualization approach for understanding the com-
petitive and collaborative behaviors of agents trained using artificial intelligence.
It uses a specific virtual game environment, Pommerman [17], where the objec-
tive of two opposing teams is to kill enemies by dropping bombs and strategic
maneuvers. The Pommerman community uses the environment as a testbed for
developing artificial intelligence techniques. The proposed timeline visualization
encodes each agent in a row, events as colored markers, and interactions with ver-
tical lines. We evaluate the approach in a study with community members and
visual analytics experts.

In Chapter 7 (RO 2.2 and 2.3), to explore the aspect of movement in entity in-
teractions, we focus on the Flatland [18] environment, a virtual simulation as a
testbed for scheduling trains on fixed tracks. Modeling it as a multi-agent system,
artificial intelligence techniques are used to explore novel and robust solutions for
scheduling trains. The environment has much larger map sizes and more agents
than Pommerman. Our visualization approach facilitates the analysis of collabo-
rative interactions exhibited by trains. The approach enables exploring the spatial
aspect of interactions by node-link representation of abstracted movements, as
well as linked analysis of time and space. Insights from winning solutions of com-
petition and feedback from experts provide a formal evaluation of the approach.
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part iii – conclusion : group dynamics

In Chapter 8 (RO 1.1, 1.2, and 2.2), we extend Set Streams and propose a visu-
alization for an integrated analysis of the two aspects in group dynamics: mem-
berships in overlapping groups and entity interactions. The visualization shows
insights from two application examples. The first example analyzes the evolving
business portfolio of companies along with the interactions between them, e.g.,
company acquisitions and licensing agreements. The second example shows the
dynamic collaborative interactions in scientific research fields.

Finally, in Chapter 9, we discuss a few works in progress on enriched analysis
of group dynamics (e.g., interactions with the environment and using multimodal
channels; RO 2.3). The thesis then summarizes the proposed approaches and con-
cludes with a discussion of their limitations and the future outlook.



2
B A C K G R O U N D

Scenarios involving multiple entities are difficult to understand. The complexi-
ties involved in the dynamic processes are reflected in the behavior exhibited by
the entities. For instance, entities change their group memberships, interact with
each other, and move around while performing other actions. Various visualiza-
tion techniques have been proposed to help understand individual aspects of such
behaviors. However, a joint visual analysis is often complex and not usually ad-
dressed by a single approach. Hence, we will discuss the related visualizations for
overlapping groups and evolving interactions.

2.1 visualizing entity groups

Entities in the same group share some commonalities. Several visualizations have
been proposed to represent the membership of entities in one or more groups.
Since most research focuses on showing static group structures, we first discuss
them to understand the challenges in representing temporal changes in overlap-
ping groups. Next, focusing on time, we discuss visualizations for dynamic com-
munities in graphs and timeline-based representations of entity groups. Finally,
we highlight the few proposed approaches for visualizing dynamic overlapping
sets.

2.1.1 Visualizing Static Group Structures

Connections between entities are often modeled as edges in a graph, which is
usually visualized through a node-link diagram, an adjacency matrix, or a hybrid
representation of both (e.g., NodeTrix [22]). Since entities may belong to multiple
groups simultaneously, the groups overlap. Vehlow et al. [23] surveyed visualiza-
tion techniques for group structures in static graphs. With a focus on explicitly
encoding the group membership of nodes, they structured the literature into four
types of representations: visual node attributes (coloring the nodes), juxtaposed
(separate or attached representation of groups with the graph), superimposed
(e.g., line and contour overlay), and embedded (in the graph layout: node-link
or hybrid).

Figure 2.1a shows an example where the group information is embedded as
colored pies in the individual nodes of a graph. Other techniques use lines and
contour overlays in a node-link diagram (e.g., [25, 26]). However, it becomes dif-
ficult to get an overview and compare the overlaps among groups (RO 1.1 and

9



10 Exploring Complex Group Dynamics
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Figure 2.1: Visualizing group membership in graphs through (a) colored pies in the nodes
of a node-link diagram, or (b) with duplicate nodes in hybrid graph representation, as sur-
veyed by Vehlow et al. [23]. Modeling the groups as sets (c) Venn diagram shows contained
elements in different intersections, while (d) UpSet [24] partitions the set intersections as
rows.

1.2). For instance, the size or number of nodes in specific group overlaps has to be
visually computed by counting the number of nodes with a particular combina-
tion of colors. In hybrid graph representations, as shown in Figure 2.1b, the graph
communities, based on group membership, could be shown as adjacency matrices.
However, the encoding duplicates the elements with multiple group memberships
in different matrices and marks them with dotted lines (e.g., node 3). The encoding
partly addresses the challenge of estimating the size of overlap among two groups
by judging the number of dotted lines between two matrices. However, analyzing
overlaps involving more than two groups has to be inferred by tracking individual
nodes and counting them.

On the contrary, set visualizations explicitly model the overlaps as intersections
and encode them in the design. Several static set visualizations have been pro-
posed, which have been organized in a survey by Alsallakh et al. [19]. For instance,
a Venn diagram in Figure 2.1c shows different set intersections (separated with
some gap between them for clarity) and the contained elements. Regarding scal-
ability, similar visualizations can show a high number of elements, e.g., through
aggregation in area-proportional Euler diagrams. However, explicitly showing the
set intersections as an overlapping region between different shapes does not scale
well beyond 4–5 sets. Hence, for better scalability, the representation of the group
structure needs to be redesigned. Using partitions to flatten the group structure,
UpSet visualization [24] in Figure 2.1d, shows each exclusive set intersection (each
region in the Venn diagram; connecting lines show the mapping), as a row. The
cardinality of each intersection is then encoded as a horizontal bar chart in the
respective row. Although analyzing a group as a single unit (all exclusive set inter-
sections involving a set) becomes challenging, the interactions partly help by, e.g.,
merging the corresponding rows on demand. However, since the designs already
result in a dense representation with some visual clutter or do not show time, ex-
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Figure 2.2: Timeline approaches to show: evolving graph communities as colored ribbons [27]
(left), or the temporal changes as colored flows (packages in Python code) of a river [28]
(right).

tending them to embed dynamic group memberships is not straightforward and
remains challenging (RO 1).

2.1.2 Visualizing Dynamic Communities in Graphs

Conventionally, group dynamics is analyzed by modeling the evolving relation-
ships of entities as a dynamic graph (edges represent relationships between enti-
ties modeled as nodes [29]). This already results in complex network structures,
which are then studied using statistical analysis on the identified clusters or com-
munities (e.g., [30, 31, 32, 33]). However, such analysis methods are limited as they
do not support exploratory analysis of the group dynamics. Since visualizations of-
fer the flexibility of exploratory analysis, e.g., through rich interactions and linked
views, the existing dynamic graph visualizations could be used to study group
dynamics.

Highlighting the representation of time as a major distinguishing feature, Beck
et al. [34] surveyed dynamic graph visualizations and focused on graph represen-
tations on a timeline. For instance, Vehlow et al. [27] use a matrix layout, as shown
in Figure 2.2 (left), visualizing the graph communities on a vertical axis and mark
the temporal changes as ribbons between adjacent columns. Animation-based tech-
niques have also been useful for temporal analysis. For instance, GraphDiaries [35]
proposed staged transitions in an animation of a node-link diagram, where node
color identifies its membership in a group. While animated approaches tend to
suit better for the analysis of adjacent timesteps [36], timeline-based approaches
might offer better support for tasks involving more than two timesteps, e.g., un-
derstanding changes across all or a small range of timesteps (RO 1.1 and 1.2).

Several graph layouts and embedding techniques have been explored. For in-
stance, a recent technique visualizes a timeline of the changing graph network
by focusing on the structure and graph communities via diachronic node embed-
dings [37]. Including spatial attributes in the analysis, Landesberger et al. [38]
propose an approach that visualizes dynamic categorical data along with the ge-
ographic context in linked views. However, in the examples presented above and
techniques included in the survey, a graph node may belong to only one group
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at a time. Generally, it is still difficult to embed the overlapping group member-
ship information through a visual attribute, as they are already used in the dense
design of the graphs to show its structure (connections) and temporal changes. Ab-
straction partly helps to free up a visual channel but usually comes at a cost (e.g.,
aggregation hiding the graph structure). Hence, the examples have limitations in
visualizing evolving overlapping groups in dynamic graphs (RO 1).

Finally, since dynamic graphs encode changes in only one behavioral aspect,
i.e., a specific relation among nodes modeled as edges, the dynamic graph data
model is not sufficient to capture the other aspects of group behavior, e.g., entity
interactions. Although multi-layer graph visualizations could represent multiple
aspects simultaneously as different layers of edges between nodes, as seen by
diverse approaches in a survey [39], embedding temporal changes in the already
dense visual design remains challenging.

2.1.3 Timeline-based Visualizations of Dynamic Groups

Timelines are an effective way to read and understand temporal data. Usually,
timelines use the horizontal or vertical axis to map time from left to right or top
to bottom in a linear layout. In the timeline, the changes in the groups are rep-
resented through diverse encodings, e.g., glyphs for discrete timesteps and flows
for a continuous timescale. In the context of representing dynamic groups, several
timeline-based visualizations have been proposed.

Using a river metaphor, ThemeRiver [40] proposed a technique to represent the
temporal changes as the flow of a river from left to right. Themes, which can
be considered as groups in our context, are represented as river currents, whose
vertical width denotes the number of contained entities at a specific time. The
technique inspired several other approaches, explicitly representing groups of en-
tities. For instance, as shown in Figure 2.2 (right), Developer Rivers [28] represents
changes in the contributions to modules (groups) of Python code by developers
(entities), as colored flows. Similarly, to show the evolution of software, a storyline-
like visualization was proposed, which clusters the individual lines representing
developers contributing to a module (group) of a code repository [41].

Other examples of flow-based techniques include CiteRivers [42], which repre-
sents the timeline of citing papers by grouping them (e.g., by conference tracks:
VAST, SciVis, and InfoVis) in colored currents of the river. The City on the River
(CotR) visualization [43] shows an individual contributor (group) as a colored
stream, while the collection of products on which the contributions were made
(entities) are encoded as the width of the streams on a horizontal timeline. Byron
and Wattenberg [44] proposed Streamgraphs, a design inspired by ThemeRiver,
but focusing on both legibility and aesthetics.

The approaches discussed above enable analyzing the evolution of groups over
time. Often the entities contained in a group are aggregated and not shown in-
dividually, but the details can be fetched when needed. However, these timeline-
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Figure 2.3: Timeline-based dynamic set visualizations encoding membership in a set through
background color [45] (left), and a set as a hyperedge connecting multiple entities in
rows [46] (right)

.

based designs assume a single group membership of entities and do not show the
overlap among groups. As a result, a temporal overview of entities with multiple
group memberships is not reflected in the timeline (RO 1.1).

2.1.4 Dynamic Set Visualizations

Since sets inherently focus on the overlap (set intersections), we look toward set vi-
sualization approaches. While several static set visualizations have been proposed,
as surveyed by Alsallakh et al. [19], only a few approaches exist for representing
dynamic sets. Bubble Sets [47] places the elements in a timeline, while colored
overlays represent their membership in a set. But an element belongs only to one
set at a time. Extending the idea further, TimeSets [45] (Figure 2.3 left), shows
color-coded sets as an overlay on the horizontal timeline and vertically positions
the elements (events) in set intersections at the boundaries of the respective sets.
However, it becomes difficult to provide a clear overview, especially of intersec-
tions involving three or more sets (RO 1.1).

Since a hyperedge can model the relation between two or more hypernodes,
it can be considered equivalent to a set. Hence, visualizations to represent dy-
namic hypergraphs become relevant for the discussion. A short survey on hyper-
graph visualizations compares a few relevant techniques [21]. For instance, Val-
divia et al. [46] proposed PAOHVis, a technique to visualize such dynamic hyper-
graphs. As shown in Figure 2.3 (right), people modeled as elements are placed
in individual rows, while columns represent timesteps. A hyperedge between el-
ements, representing co-authorship in a scientific article, encoded as a vertical
black line, can be considered as a set. Another example is HyperStorylines [48],
which combines PAOHVis and storyline visualizations to represent temporal hy-
pergraphs. The horizontal axis shows a storyline, while a hyperedge is encoded as
a vertical line connecting two or more entities. Although these visualizations are
useful for tracking the memberships of individual entities across time, gaining a
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Figure 2.4: MOSAIC Viewer by Bae et al. [52] shows communication interactions between
multiple robots in science expeditions (left). MRAT visualization by Nebeling et al. [53] en-
coding events from multiple participants involved in an augmented reality crisis simulation
exercise (right).

temporal overview of the specific overlaps and comparing different entity groups
remains challenging (RO 1.1 and 1.2).

2.2 analysis of entity interactions , event sequences , and move-
ment

Apart from the group memberships of entities, the dynamic behavior is also re-
flected through the interactions among entities. The sequence of important events
leading to or following the interactions provides context. Additionally, the move-
ment of entities is crucial in certain scenarios where the spatial context clarifies the
strategy behind entity interactions. Hence, we include the visualization of these as-
pects in the discussion.

2.2.1 Analyzing Entity Interactions

Jordan and Henderson [49] lays the foundation for research discussions on analyz-
ing interactions between people and their surroundings. They describe interaction
analysis as “an interdisciplinary method for the empirical investigation of the interac-
tion of human beings with each other and with objects in their environment.” Follow-up
works have tried to understand group behavior through the interactions between
involved entities. For instance, Jakobsen and Hornbaek [50] analyzed the collabo-
ration behavior between two people using a large wall-size display and explored
insights on proxemics and multimodal interactions. Similarly, Tang [51] has also
recorded the collaborative sessions and did the video analysis to get insights on
the usage of hand gestures, hand drawings, and spatial orientation in the drawing
space and how they affect the group collaboration. Although these studies high-
light the importance of analyzing interactions for understanding group behavior,
they relied on watching the recorded session videos. They did not leverage visual-
izations to analyze the entity interactions.
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An interaction among entities could take place in several forms, depending on
the scenario. For instance, Blascheck et al. analyzed the interactions of a user with
an interface together with the data from a think-aloud protocol [54]. Treating the
interactions and thinking-aloud actions as events, their visualization showed the
temporal sequence of the events along with the respective regions of the inter-
face for every participant. This helped them to compare the behavior of different
participants. Similar visualizations show the interactions of software developers
with the integrated development environment (IDE) [55, 56, 57]. These visualiza-
tions show time on a horizontal axis, whereas the vertical axis represents different
source code files and dialog boxes of the IDE. However, these approaches visualize
interactions of an individual entity.

Focusing on scenarios with multiple entities, VISTACO [58] shows collabora-
tive interactions on tabletop displays. It plots the participant interactions with
the tabletop display and shows the drag operation (on the tabletop) as paths in
the proposed visualization. Exploring the different collaboration styles, Isenberg
et al. [59] analyzed group collaboration around a tabletop display with a visual
analytics system to explore document collections. They propose eight different
collaboration styles, ranging from close to loose collaboration among entities. Al-
though they do not propose any visualizations for the analysis, the collaboration
styles are generalizable to other scenarios.

In some scenarios, communication between entities is a prominent indicator
of group dynamics, e.g., business meetings. Hence, communication can also be
considered as an interaction among entities. A timeline-based approach—the hori-
zontal axis shows time, while entities are positioned on the vertical axis—has been
proposed to analyze group dynamics of human interactions in meetings [60]. Sim-
ilarly, the MOSAIC Viewer [52] (Figure 2.4 left) technique shows a summary of
communication between autonomous robots as links in an aggregated node-link
diagram. However, we still lack research on exploring visual channels to encode
interactions that facilitate analysis of the group behaviors along with other contex-
tual attributes (e.g., movement; RO2).

2.2.2 Analyzing Group Dynamics through Event Sequences

Events could provide context in the immediate vicinity of the entity interactions.
Also, interactions among entities could be modeled as event sequences. A recent
survey by Guo et al. [16] organizes the visualizations for event sequence data along
four proposed dimensions: data scales, analysis techniques, visual representations,
and user interactions. Although all the dimensions are relevant to our discussion,
we cover most related works in the context of understanding group dynamics,
especially entity interactions.

Event sequences are often represented in a timeline. For instance, MOSAIC
Viewer [52] (Figure 2.4 left) shows a timeline view at the bottom, with each row en-
coding the important events and their timespan for individual autonomous robots.



16 Exploring Complex Group Dynamics

Marie and Pierre married

Pierre died

received Elliot Cresson Medal

Marie Curie

Pierre Curie

1 2

Figure 2.5: A timeline by Latif et al. [5] shows the sequence of shared events (both individual
and shared) in the connected lives of prominent personalities. A graph summarizes the
connections between them.

Together with an overview of communication interaction among the robots, the
visualization helps the robot operators investigate the status of robots in their
synchronized worldview. Another example of a different scenario shows an event-
centric visualization of a crisis simulation exercise in augmented reality involving
multiple participants. The technique MRAT [53] (Figure 2.4 right) encodes events
associated with each participant and a 2D projection of their location on the floor
plan. Similarly, ReLive by Hubenschmid et al. [61], bridging in-situ and ex-situ vi-
sual analysis of mixed reality user sessions, shows a timeline of events. However,
the examples mentioned above do not explicitly encode the group dynamics and
interactions among participants.

In games, players need to interact, strategize, and perform actions in a sequence.
Since game environments usually involve complex dynamic behaviors, we look at
game user research and find that event sequence visualizations have been used
to analyze the behavioral player data. A comprehensive overview of gameplay
visualizations can be found in a survey by Wallner and Kriglstein [62].

We look into specific examples of visualizations for multi-player games, espe-
cially because the players need to compete, collaborate, or both in these scenarios.
Understanding these behaviors requires a sequential analysis of their actions in
the game environment and related events. To analyze the competitive gameplay
behavior in racket-based sports involving two players, various systems (e.g., Tac-
ticFlow [63], RASIPAM [64], and RallyComparator [65]) have been proposed. They
model player actions in a rally as a multivariate event sequence and use pattern
mining to discover the tactics in the sequences. Then, the discovered tactics are vi-
sualized by either encoding the aligned aggregated multivariate event sequences
in a flow visualization ([63]) or by aggregating the tactics and showing them with
intuitive glyphs ([64, 65]). However, such techniques rely on pattern mining and
provide an overview of gameplay behavior by usually focusing on the frequently
occurring patterns, which may not necessarily be the most interesting ones as
certain patterns may naturally occur more frequently than others [66].

Beyond games, visualization of event sequences has also attracted attention
in Human-Computer Interaction and other domains. For example, in visualizing
event sequences of a student’s learning path (e.g., [67]), patient’s electronic health
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records, and personal histories (e.g., [68, 69]). These approaches, however, do not
explicitly show interactions with objects and link event sequences to each other to
help better understand temporal action-reaction relations among multiple entities.
However, some techniques model interactions as an event and represent them as a
sequence. For example, works concerned with visualizing dynamics between mul-
tiple entities, such as in conversations (e.g., [70]) or interactions and mobility in
interior spaces (e.g., [71]).

Focusing on the analysis of collaboration, VICPAM [72] proposes a timeline vi-
sualization with important events showing how people work in multiple display
environments. It contains a timeline and spatial view along with the raw videos.
Although, the interactions were not explicitly encoded and had to be inferred from
the events. Although encoding interactions in a 2D timeline visualization is chal-
lenging, few approaches have tried addressing them. For instance, Latif et al. [5]
propose a horizontal timeline with individual rows reserved for each entity (Fig-
ure 2.5 left). Each entity is assigned a color. Shared events are encoded in the rows
as horizontal lines with the respective color of an entity. They summarized the rela-
tionships between entities using an aggregated node-link diagram with additional
nodes for events, as shown in Figure 2.5 (right). Some of these approaches could be
adapted to provide a temporal summary of interactions between entities. However,
we lack a systematic understanding of the mapping between visual encodings and
relevant aspects of group behaviors to help design appropriate visualizations (RO
2.1 and 2.2).

2.2.3 Spatio-temporal Analysis of Group Behaviors

The movement of an entity is an important aspect to analyze while understanding
its behavior. A survey [73] classifies the visualizations for movement into four cat-
egories: (a) looking at individual trajectories (e.g., [74, 75, 76]), (b) segments of the
trajectories to explore local movement patterns (e.g., [77, 78, 79]), (c) aggregation
of multiple movement trajectories (e.g., [80, 81, 82]), and (d) investigating move-
ment in context (e.g., [83, 84]). We focus on spatio-temporal analysis in dynamic
scenarios involving multiple entities, where an entity’s movement is affected by
the behavior of others.

It has been found that the type of medium offering extended workspace (e.g.,
physical wall-sized displays or virtual reality) affects the spatial organization and
behavior of users [85]. Moreover, the scenario setup also affects the spatial behav-
ior. In a cooperative game of Miners on a large wall display [86], the behavior of
a human group of participants was visualized through linked views, including a
timeline of events, heatmaps for gaze points, touch interactions, and the usage of
physical space, along with a raw video of the recorded session. The visualizations
helped reveal useful insights, such as that participants often moved together, indi-
cating coordination among them. In contrast, in other scenarios, territoriality was
observed when the collaborative behavior of participants was visualized, indicat-
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Figure 2.6: MIRIA [89] visualizes the recorded spatial interactions with a large display using
augmented reality for in-situ analysis (left). MobilityGraphs [90], a scalable technique to
show aggregated movement as juxtaposed graphs (right).

ing the strategy to divide the area to achieve the common goal [58]. Exploring
the difference in scenario setup, a multi-player game Pac-Many [87] was proposed
to be played on a large wall display. In two scenarios, collaboration and competi-
tion between participants were observed by manually analyzing recorded session
videos. In the collaborative scenario, teammates focused on small regions and
not on the entire map of the game, indicating territoriality [88]. However, while
competing, players tried to look at all regions to be aware of the opponent and
sometimes physically blocked them.

Regarding mixed reality scenarios, Billinghurst et al. [91] discusses the different
collaboration setups (co-located and distant users) and the need to understand
group interaction behaviors. Kloiber et al. [92] visualized the motion data in vir-
tual reality while preserving the context during analysis. They represent the tra-
jectory data together with a timeline visualization and enrich it by adding the key
events or actions of the users. Extending the idea further, Büschel et al. [89] pro-
pose MIRIA, a mixed reality toolkit (for multimodal inputs) to support the in-situ
analysis of spatial interactions in multi-display and augmented reality environ-
ments, as shown in Figure 2.6 (left). The toolkit implements 3D trajectory plots,
3D trails, 2D heatmaps, 2D scatterplots, 2D point plots, media views, and a 2D
event timeline for visual analysis.

Visualizing the mass movement of entities has been helpful in understanding
their mobility behaviors. For instance, Guo [93] visualized the migration flow on
a map, preserving the spatial context with directed or undirected edges. Since
movement data may contain other related attributes, they may be plotted on paral-
lel coordinates for an integrated analysis. Extending the idea further with reduced
visual clutter, the MobilityGraphs [90] technique was proposed, as shown in Fig-
ure 2.6 (right). It aggregates the movement in nearby locations and represents a
region as a node, while movement between the regions is modeled as a weighted
directed link. The node-link graph is overlaid on a map to preserve the context.
The technique effectively shows patterns in longer time spans. Other recent ap-
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proaches also focused on scalability by sampling and abstracting the multivariate
movement data (e.g., [94]). We take inspiration from these examples to show entity
movement in visualizations for group dynamics.

Apart from encoding the movement, spatial queries have been proposed to un-
derstand the proxemics and interactions of entities in indoor spaces. For instance,
EXCITE [95] supports specifying spatial queries as events (e.g., the distance be-
tween person 1 and 2 is less than 2 meters) and shows the instances of its oc-
currences in a row of a horizontal timeline. The query also supports specifying
certain events (e.g., holding a tablet facing towards a large display) and adding a
row in the timeline. While some interactions can be considered as events, it does
not encode interactions explicitly. The idea was extended by enabling the visual
specification of compound queries to analyze group interactions, location, and
proximity in the EagleView technique [96]. These spatial query techniques can be
used to analyze specific situations in the behavior of entities acting in a group
while using a linked event timeline to integrate space and time (RO 2.3).
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D Y N A M I C E N T I T Y M E M B E R S H I P S I N O V E R L A P P I N G S E T S
A S S T R E A M S

A group of entities can be mathematically modeled as a set. In doing so, a group
overlap is represented by a set intersection. Hence, to understand the group behav-
ior, the challenge of visualizing dynamic overlapping groups can be formulated
as a dynamic set visualization problem. Such a visualization would be applica-
ble in several scenarios—e.g., developers (entities) contributing to multiple mod-
ules (sets) of a code repository— revealing insights about the behavior of entities
through their changing memberships (RO 1). For instance, specialist developers
who initially contributed to specific code modules later became generalists; or de-
velopers who consistently contributed to only a few modules.

In this chapter, we propose a novel dynamic set visualization approach, Set
Streams, that encodes the temporal changes of element-set memberships as streams
on a timeline going from left to right. We first explain the design considerations
that guided the development of the approach in Section 3.1. Next, we elaborate on
the design and visual encodings in the Set Streams approach (Section 3.2). To test
the applicability and effectiveness, we use the approach to investigate data from
three scenarios and analyze feedback from visualization experts in Section 3.3. Fi-
nally, we end with a short discussion on the advantages and limitations of the
approach in analyzing group behavior (Section 3.4).

3.1 design considerations

To guide the design of the approach, we derive three considerations that are spe-
cific to the dynamic set-typed data but relevant across different scenarios. They are
derived based on the existing literature (e.g., the visual analysis tasks for static set-
typed data [19]), generic visualization needs for temporal data, and our experience
in designing approaches for discrete data.

3.1.1 DC1: Get a Temporal Overview

Animations and timelines are the two broadly used approaches to visualize tempo-
ral data. Generally, animation-based approaches are easy to understand individual
temporal changes. However, it has non-trivial limitations, e.g., as highlighted by
Tversky et al. [97]: “Animations are often too complex or too fast to be accurately per-
ceived. Moreover, many continuous events are conceived of as sequences of discrete steps.”
Partly addressing the limitations, stepwise animation techniques for dynamic sets
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have been proposed, which aim to reduce the user’s gaze shift by optimizing the
grouping and sequence of the temporal changes [98]. However, the animation still
demands a high cognitive load to understand the overall changes across timesteps.

Timeline-based approaches have the potential to address the limitations, which
in the context of dynamic graph visualization is evident in the recent research shift
from animation to exploring timeline-based designs [34]. Specific to the dynamic
set-typed data, the design of the visualization should clearly represent the changes
in set structure, e.g., the evolving overlap among sets (RO 1.1). To represent tem-
poral changes, existing techniques have explored different encodings, e.g., color,
shape, and opacity. In our approach, we choose to provide a static overview of
changes on a linear timeline, where discrete timesteps are represented as columns.

3.1.2 DC2: Follow Elements across Time

At its core, the source of the temporal changes in the set structure (e.g., growing
or shrinking overlaps) is the dynamic memberships of individual elements in sets.
Hence, for an in-depth analysis, the design should support users in analyzing the
changing set memberships of an element or a group of elements over time. We use
the design from alluvial diagrams, which encodes the temporal changes in groups
of items as ribbons or bands. The diagrams are intuitive and flexible. Hence, they
have been adapted to visualize temporal information in diverse contexts, e.g., Ci-
teRivers [42], ThemeRiver [40], Developer Rivers [28], and AOI Rivers [99], among
others. However, we first need an efficient encoding to visually represent the set
structure, or the overlaps, while avoiding visual clutter on the timeline. Hence,
taking inspiration from the UpSet design [24], we flatten the set overlap and map
each non-empty overlapping region, or in other words, every non-empty exclusive
set intersection to a row in the timeline visualization. As a result, we can apply
flow-based encoding and represent the temporal changes as branching and merg-
ing streams from left to right on a timeline, enabling users to follow elements
across time (RO 1.1).

3.1.3 DC3: Compare Groups of Elements

Supporting analysis of temporal changes in a group of elements sharing some
commonality is important. A clearer understanding of the relative similarities and
differences in the temporal trend emerges when multiple groups (elements of
interest) are explicitly compared during the visual analysis. Since such comparison
is valuable to infer insights based on the changing set memberships, we design
the approach with an aim to enable the comparison of at least two groups of
elements. However, since streams do not explicitly show individual elements, we
need an alternate encoding to highlight the temporal changes in elements of a
group. Superposing [100] colored streams on top with the height proportional to
the number of elements in a selected group, we can compare the two selected
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groups of elements. Hence, we use two colors to identify elements exclusively in
the two groups, one for elements in both groups and another for the non-selected
elements. Additionally, the design needs an integrated, simple, and intuitive query
mechanism to specify the two groups of elements for comparison (RO 1.2).

3.2 set streams visualization approach

The design considerations already provide a rough sketch of visualization for dy-
namic overlapping sets. In this section, we describe the developed approach by
first formalizing the data model, elaborating the encodings used in the timeline vi-
sualization, integrated query-based selection interactions, and other linked views.
The full interface of the developed prototype is shown in Figure 3.1 and Figure 3.3.

3.2.1 Data Model

To get an intuitive understanding, if set A = {x,y} and B = {y, z}, then there
are three non-empty exclusive set intersections with elements: [only in A] = {x},
[only in B] = {z}, and [only in A ∩ B] = {y}. Formalizing the data model, let F =

{S1,S2, . . . ,Sn} be a family of n base sets, where each set Si ⊂ E contains elements
from a universe E. The power set of this family of base sets P(F) describes every
possible combination of these sets with |P(F)| = 2n. For each family of sets Fj ∈
P(F), we can compute a set intersection (or overlap) of the contained sets I(Fj) =⋂

S∈Fj
S. An element e ∈ E might belong in multiple intersections, for instance,

e ∈ S1,S2,S3 ⇒ e ∈ I({S1,S2}), I({S2,S3}). As we want to avoid repeated encoding
in different intersections for showing the flow of elements (DC2), we further define
an exclusive set intersection

IF(Fj) = {e ∈ E|(∀S ∈ Fj : e ∈ S)∧ (∀S ′ ∈ F \ Fj : e /∈ S ′)}

(i.e., each element included is not included in another base set that is not con-
sidered in the intersection). In the above example (e ∈ S1,S2,S3), e /∈ IF({S1,S2}),
I({S2,S3}), but e ∈ IF({S1,S2,S3}) if also e /∈ S4,S5, . . . ,Sn. Note that if an element
e ∈ E is not contained in any Si ∈ F, then e ∈ IF(∅). Hence, the set of all exclusive
intersections over F forms a partition of E. To model temporal changes with m

timesteps, we introduce a sequence of families of base sets F = (F1, F2, . . . , Fm)

over the same universe E, where each Fk = {Sk1 ,Sk2 , . . . ,Skn} consists of the same
number of n base sets. Through this, we can follow a set, which represents a
categorical attribute of the elements, across time.

3.2.2 Timeline Visualization

To provide a static overview of the temporal changes in set memberships (DC1),
we use a grid-like structure for the timeline view. The discrete timesteps are shown



26 Exploring Complex Group Dynamics

as columns, while each row represents a non-empty exclusive set intersection.
Moreover, to identify the sets involved in an exclusive intersection, IF(Fj), the
involved base sets (Si ∈ F), are encoded with a darker color and connected with
a horizontal line ( ), while others are shown via light-colored rectangles.
As shown in Figure 3.1, by default the rows are ordered based on the number of
sets contained in the respective exclusive intersection, and the group of rows is
labeled appropriately, e.g., Exclusive 1-set intersections, followed by Exclusive 2-set
intersections, etc. A rectangular box ( ) represents a cell of the grid structure,
encoding the number of elements in a non-empty exclusive set intersection (row)
as the height of the gray bar, for a specific timestep (column). While hovering a
cell, the corresponding row, participating base sets in the exclusive set intersection,
and the timestep label are highlighted (Figure 3.2). Also, the number of contained
elements is shown as a tooltip.

To represent the temporal changes in set memberships of an element, we draw
streams connecting the respective nodes in the adjacent timestep columns. For-
mally, two nodes representing the exclusive intersections IFk(Fj) and IFk+1(Fj′)

are connected if w := |IFk(Fj) ∩ IFk+1(Fj′)| > 0. The number of elements w un-
dergoing the same transition between the two timesteps is encoded as the width
of the stream. The elements that were added in a timestep or appeared for the
first time are shown by the stream originating from the top edge on the left of the
respective column. Likewise, elements that were deleted or do not belong to any
base set in the next timesteps are shown by downward streams ending on the right
of the respective column. Since elements may also skip belonging to any set for
some timesteps, they are encoded as upward-going streams until above the first
row and rejoining in the respective later timestep column. To avoid clutter while
drawing the streams entering or exiting a cell, we sort them based on the vertical
position of their destination. Therefore, streams going up are placed first, followed
by the horizontal streams connecting the cell in the same row, and finally, those
that are going down.

To convey the number of elements in set overlaps at each timestep, a cardinality
distribution is shown by a histogram above the respective column. Every cardi-
nality c of the family of sets involved in the respective exclusive intersections is
mapped to a bar in the histogram. The bar height shows the number of elements
in the respective exclusive intersections at timestep k that have cardinality c:

|
⋃

Fj∈P(Fk):|Fj|=c

IFk(Fj)|

To abstract the rows of individual exclusive set intersections having the same car-
dinality c, they can be interactively aggregated in the grid as a single row. The
approach also integrates sorting rows based on different parameters. For instance,
by the decreasing order of contained elements in a selected timestep k (|IFk(Fj)|)
or summed across all timesteps (

∑m
k=1 |IFk(Fj)|). Additionally, to prioritize the

stability—consistency of memberships in each exclusive intersection—the rows
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can be sorted based on the consistency of the contained elements (Figure 3.3). It
is computed as the ratio of elements that do not change their membership to all
elements contained in the intersection, and then the ratios are summed across all
timesteps. Moreover, to reduce clutter, rows with most membership transitions
(or streams) between them can be positioned closer together. To do this, we com-
pute the number of elements switching their membership between two exclusive
intersections across all timesteps and use a greedy approach: place the exclusive
intersection with the highest number of incoming elements first and then always
place the most similar one next. Finally, the rows can also be sorted by assigning
priority to a base set, which first lists all exclusive intersections in which the set is
involved and sorts them with increasing cardinality, followed by the remaining set
intersections in default order. Figure 3.2 demonstrates the aggregation and sort-
ing features where all rows with cardinality three are aggregated and then sorted
based on their stability.

3.2.3 Query-based Selection

To enable visual comparison of elements changing their memberships in different
groups (DC3), we first propose a simple query mechanism to select and specify
the element groups. Next, to avoid using new encodings to show the selected
element groups, we overlay the results on the timeline visualization as streams. We
experimented with different solutions and decided to use an intuitive approach by
embedding the query into one short sentence with different selectable parameters.
Hence, the query can be read as a natural language text, which makes it self-
explanatory while still providing enough flexibility to specify several queries. The
query includes the following parameters:

• Set Operation: Three types of set operations are available in the drop-down
selection field. It includes two types of set intersections: the non-exclusive
intersection I(Fj) and the exclusive intersection IF(Fj). Moreover, a set union
operation is also available, which is defined as U(Fj) =

⋃
S∈Fj

S.

• Base Sets: To mark a base set and apply it to the query, the respective check-
box can be selected. Any combination of the base sets can be activated to
specify Fj.

• Timestep: Finally, users choose the timestep k relevant to the query from a
drop-down selection field.

To restrict the visual clutter, we limit the comparison between two element
groups, allowing the specification of only two queries. The resulting groups of
elements—Group A and Group B—are encoded with a unique color (A: orange;
B: green). Some elements may belong to both groups. Hence, to discern these
shared elements, we use a third color (A+B: black). Next, the respective streams in
the timeline visualization are highlighted using the respective colors.



28 Exploring Complex Group Dynamics

Apart from using the parameterized sentence for query specification, the two
groups of elements can be selected by interacting with the visual elements. For
instance, clicking a cell in the grid structure automatically creates a query with
the respective exclusive intersection (row), IFk(Fkj ), involved base sets (Fkj ), and
the timestep k (column). The query is applied to specify Group A by default, or
Group B by toggling the respective radio button on the left of the query sentence.
Similarly, clicking on a stream selects the elements undergoing the transition be-
tween two timesteps. As an edge selection goes beyond what can be represented
in the query form described above, we switch to an alternative sentence describing
the selection.

3.2.4 Linked Views

Since the streams in the timeline visualization aggregate the elements, we integrate
a list of all elements as an additional linked view on the right. A search bar at
the top can be used to quickly search for a specific element, marking the search
results with a blue dot in the list (Figure 3.3). On the left of each element’s name,
colored bars indicate if the element belongs to any of the selected groups. The
list is ordered to first show the search results, followed by the elements in both
selected groups (Group A+B), then the ones only in Group A, only in Group B,
and finally listing all the remaining elements in the dataset (universe E). Within
each category, alphabetic order is the secondary sorting criterion.

3.3 application examples and expert feedback

To assess the usefulness of the proposed visualization approach, we analyze datasets
from three diverse scenarios. We derive insights about the temporal trends in the
expertise of researchers, software development, and changes during the training of
a machine learning classifier. To complement the assessment, we include feedback
from expert users, who evaluated the approach using the discussed examples. The
implemented prototype with application examples is available in the supplemen-
tal material [101] and hosted online1.

3.3.1 Expertise of Researchers

The meta-data of scientific publications includes, e.g., a list of authors, keywords
describing the contributions, publication venue, and year of publication. We model
the authors or researchers as elements, while the research themes (indicated by
keywords or publication venue) as sets. A publication by a researcher on particu-
lar theme(s) determines its membership in the respective set(s). Doing so, using
our approach, we can visually analyze the temporal trends, for instance, growing

1 (Accessed May 2023) https://s-agarwl.github.io/setstreams

https://s-agarwl.github.io/setstreams
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Figure 3.1: A screenshot of the Set Streams interface shows a grid structure for the main
visualization: exclusive set intersections are encoded rows, while timesteps are represented
as columns. The changes in set membership are visualized by streams from left to right. The
IEEE VIS dataset shows the most frequent authors (elements) contributing to the three con-
ference tracks (sets). Two groups have been selected for comparison: orange-colored streams
mark the group of SciVis/Vis contributors in 1990–1992, while green shows the authors who
have contributed to all three tracks in 2014–2015. The common elements of these two groups
of authors are shown in black; author van Wijk is additionally highlighted in yellow on user
selection.

interest in new topics or shifting research interest of the experts. Modeling sub-
communities in a research field as sets, we can understand how they evolved over
time. We discuss one example of the IEEE VIS conference series and its tracks, but
the tool includes two other examples, a keyword-based dataset of publications in
the visualization research and a broader computer science community.

Dataset. We use the Visualization Publication Data Collection [102], which contains
data of IEEE VIS between 1990–2015 and a total of 2752 publications. The different
tracks of the conference series represent the sets: SciVis/Vis (the original Vis confer-
ence is considered here as a predecessor of SciVis), InfoVis, and VAST. Authors of
publications become the elements. Focusing on established researchers, we filter
the authors with a minimum of 15 publications, resulting in 48 authors. Instead of
yearly trends, we aggregate publications over periods of three years each to one
timestep.

Findings. Analyzing the historical development of the IEEE VIS conference series,
as shown in Figure 3.1, we observe that it originated as the SciVis/Vis track, later
branching into the InfoVis track (1996–1998) and VAST track (2005–2007). Since
only a few streams from the top join in the exclusive intersections involving VAST
in the timestep 2005–2007, we infer that the established researchers included in
the dataset started publishing in the track from the beginning. But, they did not
start exclusively publishing in the VAST track. Several diagonal connections in the
later timesteps (from 2005) generally indicate the evolving interests of researchers
between the tracks. Also, the presence of all combinations of tracks indicates that
authors published exclusively in all combinations, which shows that the commu-
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nity is not segregated due to these tracks. However, the publications by the estab-
lished researchers are not balanced in the combinations. Next, we compare spe-
cific groups of researchers. As marked in Figure 3.1, we select the group of early
contributors in Group A (marked in orange) and recent generalists in Group B
(marked in green). Among the included researchers in the dataset, the two groups
share only one researcher (van Wijk, in black, but also highlighted in yellow). Ob-
serving the few orange edges ending at the bottom, we infer that many early
researchers are still active in the community. Looking at the green incoming edges
to the exclusive intersection of SciVis/Vis in early timesteps, we infer that the recent
generalists joined the community by contributing exclusively to SciVis/Vis.

3.3.2 Software Evolution

Applications of analyzing the evolution of a software project include keeping in-
volved people up-to-date with the development, easily identifying the specialists
or experts, or understanding the historical changes in code structure while board-
ing a new team. Such scenarios have been researched by others with stream-based
visualizations, for instance, focusing on code structure [103] or also discussing
developer contributions [28].

Dataset. We collect the data of commits by software developers into the five main
modules of the Linux code repository from 2008 to 2017. The code modules are
modeled as sets, and the developers who contributed to the module (committed
changes in the module files) are the elements of the respective set. Ignoring those
who rarely committed to the repository, we filtered those developers who made at
least 100 commits, resulting in 111 contributors. To focus our analysis, as shown in
Figure 3.2, we aggregate all exclusive 3-set intersections and sort the rows based
on consistent contributions or stability of the exclusive intersections.

Findings. In spite of analyzing a long timespan, from Figure 3.2 we observe that
many developers have consistently contributed to the code repository across ten
years (2008–2017). Specifically, there is a group of generalists who contributed to
all modules (the third row) throughout the whole period (Jiri Kosina, Greg Kroah-
Hartman, David S. Miller, Linus Torvalds, and Al Viro). The high number of elements
in the exclusive intersection of arch and drivers (the fourth row) indicates a sig-
nificant overlap of developers contributing to both modules simultaneously and
consistently. For comparison, we select the early contributors in the (non-exclusive)
intersection of the modules as Group A (marked in orange for 2008), while the late
contributors as Group B (marked in green for 2017). We can infer that 22 commit-
ters were common in the two groups. Most of these common committers (black)
are either generalists or contributed only in drivers and arch (thick black lines in re-
spective rows). The histogram above timestep columns consistently shows a spike
in the number of elements in 2-set intersections, which supports the gained insight.
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Among specialists who focus on fewer code modules, we see that most of them
contributed to drivers and fs modules.

3.3.3 Multi-label Classification

In machine learning, the task of assigning labels, e.g., to images, is usually done
by training models using supervised classification methods. In scenarios where mul-
tiple labels, modeled as sets, can be assigned to a data item (element), to show the
labeling results, the overlap among sets needs to be visualized. In addition, when
the machine learning developer wants to analyze the training process, a temporal
component needs to be included in the visualization. A visual approach address-
ing these challenges can be used to explore valuable insights, e.g., data items that
are hard to classify correctly by the model during training and the classes among
which the classifier is most confused.

Dataset. We include a dataset from an image-classification scenario where images
of food dishes need to be labeled in overlapping categories2, e.g., a dish can be
both junk food and a main dish. We model the labels as sets, while images are
the elements. The dataset contains 200 images and 6 labels along with the labels
predicted by a convolutional neural network at different training epochs. We focus
on the last epochs, after which the training was stopped. To provide a basis for
judging the correctness of predicted labels during each epoch, we add the com-
puted accuracy in each timestep at the top and include the ground truth as the
last column.

Findings. From Figure 3.3 we see that the accuracy of the model does not improve
consistently with more training, but fluctuates around 70%. We can also observe
the model’s confusion in identifying dishes as only mains or both mains and junk
across training epochs, which does not align with the change in accuracy since
they appear in different epochs. It shows that even when accuracy indicates a
quite stable transition, bigger changes might actually happen behind the scenes. To
explore further, we select a group of images in the exclusive intersection of junk
and mains in Epoch 29 (orange group in Figure 3.3). We observe: (i) the similarity
of the labeling results with respect to this intersection in Epoch 22 and 25, even
though they have different accuracy rates, (ii) only about half of the marked ele-
ments are correctly classified while the other images spread with respect to the
ground truth, (iii) before, in Epoch 28, many of the marked elements were (mostly
wrongly) classified as dessert. To highlight the predicted labels for an image across
training epochs, we can left-click the image names in the element list. By doing so,
we can find stable examples that are correctly classified in most epochs or other
cases of more interest to the developers, e.g., the unstable outliers that exhibit the
model’s confusion prominently. For instance, the highlighted picture of a cheese-
cake in Figure 3.3 (yellow) should be classified as dessert, but jumped around

2 (Accessed May 2023) https://github.com/thatbrguy/Multilabel-Classification

https://github.com/thatbrguy/Multilabel-Classification


Chapter 3 33

Fi
gu

re
3
.3

:T
ra

in
in

g
of

a
m

ul
ti

-l
ab

el
cl

as
si

fie
r

fo
r

im
ag

e
cl

as
si

fic
at

io
n:

Th
e

ti
m

el
in

e
sh

ow
s

th
e

pr
ed

ic
te

d
la

be
ls

fo
r

ea
ch

im
ag

e
ac

ro
ss

va
ri

ou
s

ep
oc

hs
(t

ra
in

in
g

st
ag

es
)

of
th

e
cl

as
si

fie
r.

Th
e

la
st

co
lu

m
n

re
pr

es
en

ts
th

e
gr

ou
nd

-t
ru

th
as

si
gn

m
en

t
of

la
be

ls
.

T
he

ex
cl

us
iv

e
in

te
rs

ec
ti

on
of

la
be

ls
ju

nk
an

d
m

ai
ns

is
se

le
ct

ed
in

Ep
oc

h
2

9
(o

ra
ng

e)
.



34 Exploring Complex Group Dynamics

different exclusive intersections until, in epochs 29 and 30, finally being classified
correctly.

3.3.4 Expert Feedback

To confirm the validity and usefulness of the findings described above, as well as
to receive general feedback, we invited different expert users to test the approach
as part of an online study. We used our professional network to recruit at least one
expert for each application example. In total, 5 expert users (E1–E5) participated,
E1 and E2 having significant experience in bibliographic analysis, E2 and E3 in
software evolution research, and E5 in training classifiers. We provided them with
the tool (including a tutorial) and a preliminary version of the text (including ev-
erything in the chapter except this section on expert feedback). As part of an online
questionnaire, we initially asked them to go through the tutorial and explore the
tool before starting the questionnaire, which all participants confirmed. The first
task was to reproduce the observations described in the result section of the respec-
tive application example (each participant was assigned the application example
fitting his/her expertise). Second, the experts were asked to extend the analysis
of the application example and report the insights found. Then, the experts were
invited to comment on (a) the sorting and aggregation and (b) the query-based
selection capabilities of Set Streams. The study concluded with options to provide
overall feedback on the most and least useful features, missing information or fea-
tures in the tool, additional analysis tasks that could be performed, and additional
remarks. The study was designed to take about 60 minutes. The questionnaire and
all responses are available in the supplementary material [101].

Reproduced and Extended Findings. All experts commented that they were able
to reproduce most of our findings, while some of them had problems due to clutter
(E1) or relating the findings with the figure (E4). The experts were able to extend
the analysis and discovered: the most common exclusive set intersections (InfoVis
and VAST – E1; arch, kernel, and module – E3), stability of element memberships
in at least one set across all timesteps (E2), uncommon exclusive set intersections
(kernel and drivers – E4; net and arch – E4), and unusual behavior of some elements
not belonging to any set in a few timesteps (E5). Although the experts found
additional insights, one expert (E3) commented that the analysis becomes difficult
without being closely associated with the dataset and without having a specific
question in mind.

Functionalities. All experts liked the functionality of sorting rows: based on a
timestep (E4), based on the ground truth to get an overview of the dataset (E5), and
based on the priority of specific sets (E1). The experts also liked the aggregation
functionality and commented that it helped to reduce the clutter (E1). However, E1

and E4 also mentioned that using dropdown lists for these features is not intuitive
and E3 suggested that it could be improved by providing more information on the
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sorting criteria via tooltip. All five experts liked the query-based selection feature:
it is self-explanatory and flexible (E1), formulating queries by selection is easy
(E5), and it is useful to compare two groups of elements (E1 and E4). However,
the experts also commented that differentiating gray and colored edges becomes
difficult (E3 and E5) and too many choices could confuse the users (E1 and E2).

Overall Feedback. Three experts (E1, E4, and E5) mentioned that they found the
query-based selection to be most useful. The experts suggested using natural lan-
guage to describe the selection (E4), tooltips to convey extra information (E1 and
E3), and integrating domain-specific information such as the classification accu-
racy of an element at a specific epoch (E5). Expert E2 commented that Set Streams
already supports too many tasks and could be limited to reduce visual complexity.
Experts E3 and E4 also mentioned that it is difficult to perform free-exploration
tasks in Set Streams. Expert E5 suggested stabilizing the ordering of names in
the element list and providing a search feature. We have already incorporated the
latter two suggestions for the final version.

3.4 discussion

The approach visualizes one aspect of the complex group behavior, namely, evolv-
ing memberships of elements in one or more sets. In this context, as evident from
the derived insights and expert feedback, the proposed approach helps to under-
stand the behavior due to the membership of entities in overlapping groups. The
insights demonstrate that the timeline design is effective in providing an overview
of the changing membership in sets (RO 1.1), e.g., the journey of researchers from
publishing in one theme to later contributing in multiple tracks or analyzing the
instability in groups of images which have been most confusing for a machine
learning classifier. Moreover, the design integrates a comparison between two se-
lected groups of entities revealing useful insights (RO 1.2), e.g., comparing groups
of software developers who were early and recent contributors in specific modules
(arch and drivers) of a code repository. Such comparative analysis helped identify
the consistent contributors (developers common in both groups) and understand
their code contribution behavior. In this section we reflect on the important charac-
teristics of the proposed generic design of the dynamic set visualization approach,
discussing the strengths, limitations, and ideas for future work.

3.4.1 Data Ordering and Aggregation

The implemented default order and grouping of the grid rows in our approach is
based on the cardinality of sets involved in an exclusive intersection. This provides
a contextual basis while interpreting the branching and merging streams (DC2).
For instance, the horizontal streams indicate unchanged memberships of elements,
while those taking additional set memberships are shown as streams connecting
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the rows below in the next timestep. Although crossing streams produce visual
clutter, the proposed sorting criteria reduced the number of crossings. Moreover,
other suggested reordering methods could also be implemented, e.g., for other al-
luvial diagrams [27]. Along with ordering, abstracting the details by aggregating
intersections could help focus on the specific aspects, as demonstrated by aggre-
gating Exclusive k−set intersections in the examples. Since the partition of elements
in rows is mutually exclusive, any combination of selected rows for aggregation
would be theoretically possible. However, designing an intuitive and easy-to-use
interface for such a versatile aggregation mechanism would be challenging.

3.4.2 Scalability and Generalizability

Although the approach can manage to show a few hundred elements, reading and
selecting the thin streams representing a small number of elements becomes diffi-
cult. The scalability with respect to time is similar to other Sankey-based diagrams
on a timeline (DC1), being able to show about a dozen timesteps. The scalability
gets affected with a higher number of base sets, due to the vertical scrolling to
accommodate the exponentially high number of combinations, especially when
they are non-empty. This is a typical challenge for set visualizations. Partly ad-
dressing the challenge, interactive filtering techniques can be explored to select
and focus on the important set intersections only. Regarding the generalizability
of the approach, except for the details panel, the proposed encodings are appli-
cable in diverse scenarios, as reflected in the application examples. However, the
full potential of the approach can be realized by tailoring it to the scenario, e.g.,
by integrating application-specific statistics.

3.4.3 Temporal Trends and Details of Entities

The evolving memberships of elements revealed insights about the sets and their
intersections, e.g., the growing or shrinking popularity trend of particular sets or
their combinations based on the number of contained elements. Apart from this,
to explicitly compare an arbitrary group of elements (DC3), a query and selection
mechanism was included. However, it is limited to comparing only two groups of
elements simultaneously. Additionally, the approach does not model the member-
ship weight of elements in a set. Consequently, the insights based on the differ-
ences between elements in the same sets cannot be perceived in the visualization,
e.g., researchers publishing prominently only in VAST vs. other contributors in
the same set. Hence, although the approach enables the exploration of patterns in
dynamic group memberships, handling membership strength or set membership
weight remains a challenge, which is addressed in the next chapter.



4
L AY E R E D S E T I N T E R S E C T I O N G R A P H S F O R E L E M E N T- S E T
M E M B E R S H I P S

Dynamic overlapping sets can be used to model many real-world scenarios. For in-
stance, evolving business portfolios of companies or changing expertise of experts
(e.g., researchers or software developers as elements) in diverse communities or
code repository modules (sets). Since the changing memberships reflect an impor-
tant aspect of the elements’ behavior, dynamic set visualizations can be used to
analyze the group dynamics (RO 1).

Focusing on scalability, most of the existing set visualizations aggregate the de-
tails of individual elements. For instance, as described in the previous chapter,
Set Streams [104] is a dynamic set visualization technique to provide a temporal
overview of element-set memberships as streams. The design aggregates the de-
tails of elements present in a set intersection at a given timestep by showing only
the cardinality. However, aggregation hides the element details and differences
among the elements do not get visualized. Analyzing such details and differences
is relevant in the scenarios where they characterize and give detailed information
about an element’s membership in one or multiple sets. For instance, the number
of contributions of an expert, modeled as the weight of its membership, indicate
the level of expertise and prominence of his/her role in a community (e.g., se-
nior researcher, repository moderator). However, we still lack techniques that (a)
represent temporal changes in element memberships (RO 1.1) and (b) support a
detailed comparison of changes between two timesteps (RO 1.2) while (c) encod-
ing the details of element memberships in a set (e.g., element-set membership
weight; RO 1.3).

This chapter describes a dynamic set visualization approach that visualizes the
membership weight of an element in a set. The design is based on the layered
set intersection graph, where each node represents a base set or an intersection
of base sets, and edges represent direct subset relationships. The data model and
the construction of a layered graph are described in Section 4.1, followed by the
explanation of visual encodings for a static set, aggregated set, and diff representa-
tions in Section 4.2. The two application examples use the proposed technique to
show the changes in researchers’ fields of interest and the evolution of developer
activities in a software project in Section 4.3. The chapter ends with a discussion
on the scalability and generalizability of the technique (Section 4.4).

37
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Aggregated

1990’s

2000’s

2010’s

(b) Diff view between timesteps 2000’s and 2010’s(a) Aggregated and static set intersection graphs

Gamin Console ∩ Search Engine
∩ Operating System
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Operating System
∩

L1
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L3 =
Search Engine  ∩
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Figure 4.1: The toy dataset being visualized is about evolving business portfolios of com-
panies (elements) across three types of products (sets). Each set is assigned a unique color;
the intersections are shown as rectangular nodes, while contained elements are encoded as
black circles in the node. The representation shows (a) aggregated or individual static set
intersection graphs and (b) differences in set intersection graphs between two timesteps.

4.1 a toy dataset, data model , and set intersection graphs

The proposed visualization is based on a layered set intersection graph, where
each node represents a base set or an intersection of base sets, while edges rep-
resent direct subset relationships. To understand it better, we first look at a toy
dataset, the data model, and the construction of layered set intersection graphs.

4.1.1 Visualizing a Toy Dataset

Let us take an example of a real-world scenario: understanding the business strat-
egy of companies by analyzing the temporal change of their product lines. The
toy dataset contains information of 13 companies that make products across three
categories over three decades (each decade is a timestep). Figure 4.1 visualizes
the dataset where product categories are modeled as sets, while companies are
elements. If a company makes a particular type of product, then it belongs to the
corresponding set. Sets are shown as rectangles with their elements (circles) in-
side them. Nodes in layer n represent the intersections of n base sets, e.g., Gaming
Console ∩ Search Engine ∩ Operating System is in layer L3 in Figure 4.1.

Elements in different sets are duplicated and represented in multiple nodes.
Clarifying the used terminology, the number of base sets to which an element
belongs in a timestep is called its degree. An element is exclusive to a base set
if it does not belong to any other set. Formally, an element is exclusive to an
intersection if its degree is the same as the number of base sets in an intersection,
i.e., if the element does not belong to any set besides those in the intersection. We
mark exclusive elements with a hat ( ). These elements do not appear in any layer
above.

Set intersection graphs are computed for each timestep. Aiming to provide dif-
ferent perspectives, the graphs are visualized individually or summarized by an
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Figure 4.2: The toy dataset for one timestep (2010s) with 3 types of products as sets (encoded
with colors) and companies as elements, based on the type of products they manufacture. (a)
The raw data. (b) Corresponding Venn diagram. (c) The constructed set intersection graph.
(d) The proposed visualization approach represents a layered set intersection graph. Element
Zeebo Inc is highlighted in all representations.

aggregated representation across all timesteps (Figure 4.1a). The exact changes be-
tween any two timesteps are shown by a diff view. For instance, in Figure 4.1b,
Google is highlighted, and a tapered directed edge shows that the strategy of the
company shifted in the 2010s from 2000s to producing both Search Engine and
Operating System.

Providing an intuitive understanding of our approach, Figure 4.2 shows its
equivalence with a Venn diagram. The figure shows one set intersection graph
for a single timestep (2010s) of the sample dataset. To explicitly represent all set
overlaps, a set intersection graph (Figure 4.2c) is constructed for each timestep. As
shown in Figure 4.2d, each set and intersection (graph node) is visualized by a
rectangle, and elements of that set are black circles inside the rectangle. The figure
highlights an element Zeebo Inc in different representations of the dataset.

The proposed set intersection graphs are inspired by concept lattices used in
FCA (e.g., [105, 106]). The top concept of the lattice (topmost node in the graph
shown in Figure 4.2c) has those elements that are present in all sets; the bot-
tom concept has those elements that do not belong to any set. For most realistic
datasets, the bottom concept is empty and thus not visualized in Figure 4.2c.

4.1.2 Data Model

The input for the proposed visualization approach is a non-empty set of m ele-
ments E = {e1, e2, . . . , em} and a family of n base sets F = {S1,S2, . . . ,Sn} such
that Si ⊆ E. Each element can belong to one or more base sets, which undergo
discrete temporal changes. The time dimension is represented as an ordered se-
quence of p timesteps T = ⟨t1, t2, . . . , tp⟩ (∀k < k ′ : tk < tk′ ). Depending on the
application, the timesteps can be interpreted as snapshots or time ranges.
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An m× n matrix Wk contains the data for timestep tk where rows represent
elements (|E| = m) and columns represent base sets (|F| = n). If cell wk

ij > 0, then
element ei is in the base set Sj. The value of the cell determines the element’s
weight of membership in that set. If there is no meaningful weight definition avail-
able for a certain application, a binary value is sufficient (e.g., wk

ij ∈ {0, 1}).

4.1.3 Set Intersection Graphs

A graph is constructed where every node represents a subset of F and contains
as elements the intersection of elements of those base sets, e.g., the node for X =

{S1,S3,S4} contains the elements in S1 ∩ S3 ∩ S4. All the nodes in the graph are
included that result in non-empty intersections (including a node for each base set
but excluding a node for ∅ ⊂ F). An edge is added between nodes Xi and Xj if the
former is a direct subset of the latter, i.e., Xi ∪ {Sk} = Xj with Sk ∈ F.

The membership weight of an element ei in node X = {Sj} at timestep tk is given
by wk

ij. For a set intersection, a weight has to be computed. We chose to sum up
the element’s weights of memberships across all the base sets in X. Formally, the
weight of an element ei in a vertex X at timestep tk is computed as:

W
′
(ei,X, tk) =

∑
wk

ij, ∀Sj ∈ X (Equation 1)

For instance, if an element is in base sets S2 and S4 with weights 1 and 2, then
the element will be in S2 ∩ S4 with weight 3. The process is repeated to get set
intersection graphs (G1,G2, ...,Gp), one per timestep.

4.1.4 Aggregated Set Intersection Graph

To compute the fixed layout across all timesteps, a super-graph [34] is built by
merging the set intersection graphs of all timesteps. The super-graph nodes are
formed by merging equivalent nodes across all set intersection graphs. Nodes
from the set intersection graphs for timesteps tk and tk′ are equivalent if they
represent the same subset of F, i.e., Xk

i = Xk′

i′ . Edges that connect equivalent nodes
at different timesteps are merged accordingly:

(Xk
i ,Xk

j ) ≡ (Xk′

i′ ,Xk′

j′ ) ⇔ Xk
i ≡ Xk′

i′ ∧Xk
j ≡ Xk′

j′

Hence, the resulting super-graph contains all nodes or edges that are present in
at least one timestep, with equivalent nodes and edges contained only once (no
replication).

4.2 the layered dynamic set visualization

In the approach, first, a layered layout of set intersection graphs is computed
(Section 4.2.1). The element memberships in individual timesteps are visualized
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through static set representation (Section 4.2.2). An aggregated representation pro-
vides an overview of the temporal changes (Section 4.2.3). Changes across any two
selected timesteps are visualized by a diff view (Section 4.2.4). Interactive filtering
and linked views (Section 4.2.5) enable an in-depth exploration of the set data.
Figure 4.3 shows the prototype’s interface.

4.2.1 Layered Layout of Set Intersection Graphs

Having a stable layout in the visualization of dynamic graphs helps users preserve
their mental map of the graph while flipping through its different versions [34].
Adopting this approach, the aggregated set intersection graph is used for a global
layout, as it contains all nodes and edges that appear in at least one timestep.
Hence, a fixed spatial position for each node in the graph is computed. This results
in a stable and global layout of the set intersection graphs for each timestep.

The position of nodes and links in the aggregated graph is computed using a
layered graph layout based on the Sugiyama algorithm [107]. Since a subset rela-
tion, as represented by edges, cannot form cycles, the cycle removal step of the
Sugiyama algorithm is skipped. Furthermore, the topology-based layer computa-
tion is replaced by placing the nodes (intersections) in layers based on the number
of participating sets in an intersection. Doing so gives semantics to the layers: a
layer Lk contains only k-set intersections. For instance, a node representing [Gam-
ing Console ∩ Search Engine ∩ Operating System] is assigned to L3 (Figure 4.2d
top). All nodes are ordered within layers according to the barycentric heuristic to
minimize edge crossings.

4.2.2 Static Set Representation

Studies have shown that it is easy to perceive a group of related objects when they
are drawn within a closed contour [108]. We use the design guideline to show
elements belonging to a set inside a closed curve. Hence, in the approach, nodes of
the set intersection graph are visualized as rectangles while contained elements as
circles inside the rectangle. A circular shape was chosen because it can be divided
into two distinguishable regions (semi-circles) required for the diff representation
(Section 4.2.4). The area of a circle encodes the corresponding element’s weight of
membership (Equation 1). Small colored boxes identify the participating sets in an
intersection ( = Search Engine ∩ Operating System).

Exclusive elements are marked with a hat ( ) on top of the corresponding cir-
cles, indicating the highest layer in which an element is present (as the element
does not have additional memberships). All circles inside a rectangle are ordered
by their type (exclusive and non-exclusive). Within each type, elements are sorted
by their decreasing membership weight. Such a representation enables us to see
the distribution of elements within a set. Other criteria provided include sorting
elements by their weight or name (Figure 4.3a bottom). Since for every circle, a
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fixed amount of space (maximum area) is allocated and the width of all rectangu-
lar boxes is the same, the number of circles in a line inside every rectangle is fixed.
Hence, the height of a node (rectangular box) indicates the cardinality of the cor-
responding intersection. The exact cardinality as a number is shown at the bottom
of the node. The number of exclusive and non-exclusive elements is visualized by
horizontal bars below the node (Figure 4.3a1).

4.2.3 Aggregated Set Representation

To show an overview of temporal changes in set memberships across all timesteps,
the approach integrates a time-aggregated set representation. The weight of each
individual element is averaged across all timesteps in individual sets and intersec-
tions, which is then encoded via the area of the corresponding circle (Figure 4.3a1).
The visual representation is kept similar to static sets to minimize the need for
memorizing additional visual encodings. The aggregated set representation (Fig-
ure 4.3a1) uses opacity to encode the percentage of timesteps a certain visual
element (i.e., a set, an element) is present; low opacity (gray) encodes a low per-
centage while high opacity (black) indicates that the visual element is present at
all timesteps. For elements, filled circles in the aggregated set have varying opacity.
Similarly, for a set, the left edge of the corresponding rectangular box is thickened
and filled with the computed opacity level. In Figure 4.3a1, the rectangle repre-
senting Graphics/Vis./HCI has a thick black left edge, which means the set was
present in every timestep (had at least one element in every timestep).

The percentage of timesteps and average weights can be retrieved interactively
on demand (on hovering), as shown in Figure 4.3a1. Elements can gain or lose
membership in sets over time. An element’s maximum degree over time is marked
with a hat marker in the rectangle(s) representing the corresponding set or their in-
tersection(s). For instance, in Figure 4.3a1, the highlighted circle shows researcher
M. Eduard Gröller published an average of 6.5 articles per timestep within the field
of Graphics/Vis./HCI in 80% of the timesteps. The hat marker shows that the re-
searcher never published in any other field, together with Graphics/Vis./HCI in
the same timestep.

4.2.4 Diff Representation

Explicitly pointing out differences between two timesteps of a dynamic graph
helps in analyzing changes [109, 110, 111, 112]. Likewise, a diff view is integrated
into the approach to represent exact changes in sets between any two timesteps.
The visual elements are vertically divided into two parts. The left half shows
data from the earlier timestep (tk), while the right half shows data from the later
timestep (tk′ where k < k ′). A circle (element) is split into two halves (left and
right semi-circles) to indicate its presence in two timesteps, as shown in Figure 4.4a.
Similarly, hat markers are also vertically separated into two arcs, showing the max-
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between t1 and t2

Only in t1 Only in t2In both t1 and t2
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Figure 4.4: Diff between t1 and t2 showing: (a) visual encodings for elements (circles) and
sets (rectangles), (b) a change in set membership by a tapered edge, (c) a group of elements
undergoing similar changes by summary edges, and (d) diff view of the set Search Engine
with annotations.

imum degree of an element in the two timesteps. Likewise, the set cardinalities at
two timesteps are shown near the bottom left and bottom right corners of the
corresponding rectangular box (Figure 4.4d). After experimenting with several de-
signs, we finally chose to display rectangular boxes in the diff view with different
stroke patterns to represent their existence only in tk with a dotted border, only
in tk′ with a dashed border, and in both timesteps with a continuous border (Fig-
ure 4.4a).

The tapered edges explicitly encode an element’s membership changes, which
are available on-demand to reduce clutter. As shown in Figure 4.4b, a tapered edge
highlights the shift in the element’s membership from Search Engine to Operating
System. The tapered edge shown in the figure is horizontal. If the element’s de-
gree (number of base sets it belongs to) changes across two timesteps, the tapered
edge is drawn between two layers. As shown in Figure 4.1b, the inter-layer tapered
edge shows that Google gained membership of the Operating System set at a later
timestep. Summary edges abstract tapered edges with the same source and desti-
nation layers and show the number of elements inside a circular base at the origin.
For instance, from Figure 4.4c we can infer that five elements with degree 1 (source
is L1) in t1 gained membership in two additional sets in t2 because their degree
became 3 (destination is L3).

Three cases arise based on the presence of elements and existence of sets in
two timesteps: (i) present only in the earlier timestep (tk), (ii) only in the later
timestep (tk′ ), and (iii) present in both timesteps. These cases are distinguishable
through our chosen encodings, as shown in Figure 4.4a. For each set, the number
of elements in the three cases is visualized by horizontal bars beneath the corre-
sponding rectangular boxes (Figure 4.4d). Inside a rectangular box, the elements
are primarily ordered by the three cases, while secondary ordering is on their
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weight of membership. The ordering helps to see the distribution of change in the
membership of elements inside each set and intersection.

4.2.5 Linked Views, Filters, and Interactions

Besides the set intersection view given by the layered graph, we integrate other
views to visualize details of set data and provide filters with interactions, support-
ing in-depth visual analysis. The video in supplemental material [113] shows the
working of linked views, filters, and interactions in action.

A Timeline shows all the labeled timesteps ordered chronologically and drawn
in a horizontal layout (Figure 4.3b). Small rectangles above each timestep label
contain colored vertical bars to indicate the cardinality of base sets. The ability to
select the timesteps allows easy navigation between different timesteps. Keyboard
navigation with arrow keys is also supported. Temporal aggregation can be done
by clicking the ‘Aggregate all’ button. The selection of two timesteps for diff view
requires clicking any two timesteps while holding the Ctrl key. Additionally, the
diff view between adjacent timesteps can be retrieved by selecting the rectangles
in the ‘Diffs’ row above. Each rectangle in the row contains three horizontal bars
showing the number of elements present: only in the left timestep, only in the
right timestep, and in both timesteps.

An Evolution Chart of an element is a series of rectangles in a row placed
below the timestep labels (Figure 4.3b1). Each rectangle shows an element’s weight
of membership in sets for one timestep, encoded as horizontal bars. With this
representation, the evolution chart enables a comparison between elements. It is
drawn on demand when an element is selected (Figure 4.8).

An Element List shows a list of elements as rows (after applying current filters)
on the right side of the interface (Figure 4.3d). Each row in the list represents one
element with additional details: the name of the element, the sum of its mem-
bership weights in all sets among selected timestep(s), and a timeline showing a
temporal variation of its cumulative membership weights ( ). The
vertical dashed line in the timeline marks the timestep when the element first ap-
peared. In the static view, colored boxes in each row indicate the membership of
an element in the corresponding sets ( ). In the diff view, each box is
subdivided vertically into two halves ( ) and filled according to the
presence of the element in the corresponding sets across two timesteps. Whereas
in the aggregated view, the opacity of color indicates the percentage of timesteps
the element is present in the corresponding base set ( ). Clicking on
a row selects the element, highlights it in the set intersection view, and draws its
evolution chart.

The Degree Distribution Chart shows a distribution of filtered elements in
terms of the degree of individual elements (Figure 4.3e). Existing visualizations
such as RadialSets [114] have shown the usefulness of degree distributions in the
analysis of set data. We extend the idea by showing degree distribution for any
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group of elements that fulfill the selection criteria. In the diff view, each degree bar
is vertically split into two bars, one for each timestep.

Filters: The ability to query and filter a group of elements based on visual selec-
tion is a powerful way to analyze sets. We integrate a mechanism where a user can
simultaneously select: (i) timesteps, (ii) sets and intersections, (iii) summary edges,
and (iv) degree of elements. Each selection acts as a filter that returns a group of
elements fulfilling the selected criteria. The applied filters are represented as tags
(e.g., , , , and ) above the set inter-
section view (Figure 4.3c). The resulting group of elements is linked to the element
list (Figure 4.3d) and degree distribution (Figure 4.3e) components of the interface
and updates them accordingly.

Other Interactions: The set intersection view (Figure 4.3a) supports panning and
zooming. Hovering over any element shows connecting edges between the related
sets and intersections. The element is selected when its circle or semi-circle is
clicked. The selection stays persistent when selecting another timestep or view
(static, aggregate, and diff ). With this feature, one can trace an element across differ-
ent timesteps when flipping through diff views. Left and right arrow keys enable
switching to previous or next timesteps respectively.

4.3 application examples

To demonstrate the applicability and effectiveness of our approach, we study two
realistic application examples. The prototype containing these examples is in the
supplementary material [113] and hosted online1.

4.3.1 Researchers’ Field of Interest

Publication venues (conferences, journals, etc.) can be mapped to fields of science,
fields can be modeled as sets, and researchers are elements. Publication by a re-
searcher in a field of science determines the set membership. The publication year
adds the temporal component. We collected publication data from conferences of
6 research fields (sets). We filtered those researchers who published at least 30

articles over all fields and timesteps, obtaining 498 researchers. Since researchers
can publish in multiple fields, they can appear in multiple sets. Hence, the six sets
overlap, with 32 different set intersections. The dataset covers publications from
1990 to 2019, divided into ten timesteps of three years each.

Overview of temporal changes. The aggregated view in the middle (Figure 4.3a)
shows that every set is present in all the timesteps (black left edge of rectangles in
the bottom layer). Vertical colored bars in the timeline (Figure 4.3b) and the line
chart below the nodes in L1 (Figure 4.3a) show that the number of researchers in
AI/ML has grown rapidly compared to other fields. While panning the aggregated

1 (Accessed May 2023) https://s-agarwl.github.io/dynamicsets

https://s-agarwl.github.io/dynamicsets
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a

a1

b

Figure 4.5: Cutouts from the prototype interface showing (a) set intersection view of the
timestep 2017-2019 from the computer science research dataset (Section 4.3.1) and (b) sum-
mary edges in the diff view between 2016 and 2017 timesteps from the Linux GitHub repos-
itory dataset (Section 4.3.2).

view, we observe that there are only four layers in the dataset. It indicates that no
researcher has published in more than four research fields at any timestep.

Most active researchers. To find the researchers with the highest number of pub-
lications and their field of research, we sort the element list by decreasing order
of the ‘Sum’ column (left-click on the column header), as shown in Figure 4.3d. To
know the researcher’s field of study, we look at the colored boxes in each row. The
colored boxes (orange and green) for the first researcher Wolfram Burgard ( )
show that he has published only in AI/ML and Robotics. A pattern can be seen
from the first five rows in the list. In each row, the green-colored box is very promi-
nent (less transparency), which indicates that the top five researchers have consis-
tently published in Robotics. The second row shows researcher Gerd Hirzinger
( ) with only a green colored box, indicating his specialization in Robotics.
These observations are confirmed by their evolution charts (Figure 4.3b1). As seen
from the timelines of the first five rows, the researchers are active except Gerd
Hirzinger, who stopped publishing in the last two timesteps. Additionally, the num-
ber of articles they publish per year has been declining except for Mayasuki Inaba
( ). For further exploration, the publication details of a researcher are available
by right-clicking the corresponding element.

Varying contributions in research fields. Investigating the timestep 2017–2019, we
observe that there is a high overlap among sets (Figure 4.5a). The set AI/ML is the
largest (height of the rectangle), while other intersections contain fewer elements.
Comparing two different set intersections: XA = { Graphics/Vis./HCI, Algorithms
} vs. XB = {Graphics/Vis./HCI, NLP, AI/ML, Robotics} (Figure 4.5a1), we find that
both contain only one element. Through different sizes of circles, the approach can
help spot the differences in the membership weights of elements. For instance, XA

has one element David R. Karger (small circle), who published three papers, while
XB has a researcher Sergey Levine (big circle), who published 48 papers.
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(a)

(b)

Greg Kroah-Hartman, David S. Miller, Linus Torvalds, Al Viro, and Jiri Kosina

Greg Kroah-Hartman, David S. Miller, Linus Torvalds, 
Al Viro, and Jiri Kosina

Figure 4.6: Consistent contributors in five modules (identified by colors) of the Linux GitHub
repository across all timesteps.

Higher individual publications in Robotics. Analyzing the details of specific
elements, we investigate the researchers who have published in both NLP and
Robotics during 2017–2019. In Figure 4.5a, the rectangular node representing the
intersection of the two sets contains five circles. None has a hat marker, indicating
that no researcher published in just these two fields. For the base sets NLP and
Robotics, in Figure 4.5a, we can see that the heights of corresponding rectangles
are similar, suggesting that their cardinalities are almost the same (112 and 128,
respectively). Our approach enables further analysis based on the circle size and
their distribution. Through the default sorting by the membership weight, we see
that the size of circles in Robotics is larger than in NLP (both exclusive and non-
exclusive elements). Hence, we can say that the number of publications by most
individual researchers in Robotics is higher than researchers in NLP. On hovering,
we find that the maximum number of publications in Robotics is 34 by Masayuki
Inaba, whereas in NLP it is 25 by Graham Neubig.

4.3.2 Evolution of Developer Activities in Software Projects

In this example, we analyze changes in software development activities. Analyses
like these can show staff churn, productivity differences, and modules requiring
more work, thus helping manage a software project [115]. We study 5 Linux mod-
ules from its GitHub repository. The modules (fs, drivers, arch, net, and kernel)
are the sets, and the elements are the committers (developers). The membership
weight is the number of commits done by a developer to a module. We divide
the repository evolution from 2008 to 2017 into ten yearly timesteps and filter
the developers who made at least 100 commits to these modules, obtaining 111

committers.

Consistent commits in all modules. We select the aggregate view by clicking the
‘Aggregate all’ button. Since presence across all timesteps is encoded via opacity, to
find the most consistent developers, we look for black circles. Hovering over them
reveals the developer names, average commits in every timestep, and percentage
of presence in all timesteps, as shown in Figure 4.6. These developers contributed
to all modules (the rectangle is in layer L5) in every timestep. The circle sizes
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Figure 4.7: Comparing stability of developer contributions among modules drivers and arch
in the diff view between 2016 and 2017.

show a large difference in the average number of commits, from 15267.60 for Greg
Kroah-Hartman (Figure 4.6) to 834.20 for Jiri Kosina.

Module stability. Investigating changes in developer activities in the last two
timesteps (2016 and 2017), we select the diff view between 2016 and 2017. In the
bottom layer, we focus on the two biggest rectangles representing the drivers and
arch modules (Figure 4.7). The arch module has the least change in terms of cardi-
nality (55 to 56). A change in cardinality alone is not a good indicator of stability.
On a closer look, we see that the module has many semi-circles. The horizontal
bars beneath the rectangle (arch) show that 11 previous committers did not con-
tribute in the later timestep. The cardinality remained stable because 12 new devel-
opers contributed to the module. In contrast, we see that the drivers module has
the most significant number of developers (64) who contributed in both timesteps.
Hence, across the two timesteps, the drivers module was the most stable in terms
of developer contributions.

Developers shifting their focus among modules. Still focused on analyzing changes
in developer contributions in the last two timesteps, we look at the corresponding
diff view. Zooming on the summary edges in the diff view, we see many inter-layer
tapered edges going up and down (Figure 4.5b). Upward edges indicate that de-
velopers contributed to more modules than before, and vice-versa for downward
edges. The summary edge from L2 to L1 indicates that five developers narrowed
their focus to only one module. Selecting the edge populates the element list with
their names.

Different patterns of contributions. To highlight the different patterns of con-
tributions among developers, we use evolution charts (Figure 4.8). We observe
stable and consistent contribution patterns to two modules by Felipe and to all five
modules by Greg. We also see an inconsistent contribution across timesteps (Paul).
Additionally, there is a developer who did not contribute to any module for some
years (Bartlomiej).
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Greg 
Kroah-Hartman:

Felipe Balbi:

Bartlomiej
Zolnierkiewicz:

Paul Gortmaker:

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 4.8: Evolution charts of four committers showing different contribution patterns
across five Linux modules (encoded in color).

4.4 discussion and future work

Unlike existing set visualization techniques, our approach can model and visu-
alize the membership weight of individual elements for each set they belong to,
together with the dynamic associations between elements and overlapping sets
over time (RO 1). The proposed technique allows in-depth visual analysis of how
sets and their overlaps grow and shrink and how elements ‘migrate’ through sets.
In the context of understanding group behavior, the approach provides a temporal
overview of individual entities in groups (RO 1.1), e.g., stable and consistent con-
tributions of experts in research fields or modules of a code repository. The design
enables analyzing exact changes in group memberships between two timesteps
(RO 1.2) while preserving the details of membership for each entity (RO 1.3). The
insights from two real datasets highlight the feasibility of such an analysis. In this
section, we reflect on the used visual encodings for dynamic set memberships,
discuss the possibility of extending existing static set visualization techniques and
scalability of the proposed approach.

4.4.1 Encodings for Dynamic Set Memberships

Depending on the scenario, some set intersections are more important than others.
Usually, intersections involving many sets are the most important but contain few
elements. We used a layered layout to provide context and aid the analysis by
specifically differentiating between the set intersections based on the number of
involved sets. Although the lattice structure in the layered layout takes some time
for an analyst to understand, it has been found useful by users, as demonstrated
in a user study [116]. However, the lattice diagrams in the user study were static
with minimal interactions. Hence, the usability of the proposed system cannot
be based on it. The future work could include performing further studies on the
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understandability of lattice diagrams in the context of analyzing overlapping set
data.

The proposed approach embeds the set membership details of each element
as the size of circles inside rectangular nodes. The ordering of elements within
a node and using opacity to encode the temporal information helps to see an
overview of the weighted set membership across all timesteps. The chosen shapes
(for elements and sets) worked well with tapered edges to help analyze the exact
changes between two timesteps. However, since the temporal changes are at differ-
ent granularity levels (e.g., membership weight of each element, overall changes
in a set intersection, number of gained or lost memberships in sets), remembering
the used visual encodings becomes difficult. The proposed filters and interactions
help to ease the analysis, but the system still involves a high cognitive load. Since
the used encodings are complex and not easy to remember, there might be scope
for simpler visual encodings in alternate designs, which can be explored by future
research in this direction.

4.4.2 Extending Existing Set Visualizations

Most of the research in set visualization has focused on analyzing a single timestep
(see a survey [19]). Theoretically, any static set visualization can be extended to
show temporal changes in the set membership of elements. The extension can
include linked views or usage of animation. However, since many techniques
do not show individual elements (e.g., [24, 114, 117, 118]), they will be unable
to show the temporal change in the element-set membership weights. Euler and
Venn diagram-based variants have limited scalability, whereas in matrix [119] and
node-link-based techniques [120, 121], the set intersections are not represented
explicitly. Aggregation-based techniques represent each set intersection and are
highly scalable, but they do not show individual set elements [24, 114, 117, 118].
As a result, these techniques are unable to show the details of set elements, such
as element-set membership weight. Interactions and additional linked views can
overcome some drawbacks in these techniques, but their design and integration
are not straightforward.

4.4.3 Scalability

Scalability for dynamic set visualization includes the number of sets and relevant
set intersections, the number of elements, the level of detail shown for set mem-
bership, and the number of timesteps that are represented. Like any approach that
explicitly models set overlaps, the number of relevant intersections can explode.
In the worst case, the set intersection graph has 2n nodes. But in practice, often,
a large majority is omitted as these correspond to empty set intersections. We ob-
served in the tested data that up to six significantly overlapping sets could be
represented without the visualization becoming too dense. Region-based or line-
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based overlay techniques [19, Section 4.2] does not scale any better if sets signifi-
cantly overlap with each other. Other approaches that show individual elements
(e.g., Bubble Sets [47], OnSet [122]) scale similarly to our technique with respect
to the number of elements. As demonstrated, our approach is scalable up to ten
timesteps. Since the changes in element memberships might not be interesting for
all timesteps or for all set intersections, future work would include using data
analysis techniques to highlight the most relevant timesteps and intersections.
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A N A LY Z I N G U S E R B E H AV I O R S F R O M M I X E D R E A L I T Y
S E S S I O N S

Analyzing the actions and interactions of entities in a dynamic environment helps
to understand their behaviors. This includes understanding their individual deci-
sions at a fine-grained level or their overall strategy of interacting with others to
accomplish a task. To gain such types of insights, visual exploratory analysis is
crucial. To build the relevant visualizations, we first systematically derive a design
space, mapping the relevant user behavior attributes to the appropriate visual en-
codings (RO 2.1). To achieve this goal, we focus on a specific type of dynamic
scenario: virtual and mixed reality sessions.

We are witnessing an increasing trend of including multiple users and phys-
ical objects in virtual and mixed reality environments. Some examples of such
scenarios include multi-player games, virtual spaces for customers and business
meetings, and collaborative training for emergency situations [53]. In such scenar-
ios, there are multiple users and objects, where both can be either virtual or real.
To blend reality and virtuality in a 3D virtual environment, avatars are usually
used to represent users, while virtual objects are mapped to real objects. Under-
standing the behavior of users in these dynamic scenarios is challenging because it
requires analysis of both spatial and temporal attributes from the data of recorded
sessions. To understand the behavior on a fine-grained level, it becomes necessary
to answer questions, such as, what actions were performed by the entities? which users
interacted with other entities? when? and how did the behavior of a user affect the others?
On the basis of this analysis, developers of virtual and mixed reality applications
and researchers in human-computer interaction can draw conclusions on, e.g., user
behavior or performance. The need to understand multiple attributes and streams
of actions in these scenarios, together with the blending of virtual and real spaces,
makes the challenges unique to the virtual and mixed reality environments.

Although not explicitly targeted at virtual or mixed reality environments, a few
visualizations (e.g., [123, 124]) have been proposed to gain insights into the naviga-
tion behavior in virtual game worlds. Similarly, the visualizations can be helpful
in understanding the behavior of users and their interactions from the recorded
data of virtual and mixed reality sessions. However, a holistic analysis approach
to investigate multiple aspects of the data from such sessions is still missing. This
chapter aims to present a systematically derived design space for ex-situ visualiza-
tions analyzing user behaviors and interactions from the recorded session data of
virtual and mixed reality sessions. To derive the design space, the existing visual-
ization approaches analyzing traditional user interactions, eye movements, phys-
ical motion, and stories are sampled in Section 5.1. The derived categories in the
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design space are explained in Section 5.2, along with their combinations for usage
in two possible scenarios. Using the design space, insights from the analysis of a
concrete remote collaboration mixed reality scenario are discussed in Section 5.3.
Finally, future research challenges based on the design space and insights from
the application example are discussed in Section 5.4.

5.1 related areas and visualizations

Recently, a few approaches have been proposed to visualize the user sessions of
virtual and mixed reality environments. For instance, Nebeling et al. [53] proposed
a toolkit to visualize the recorded data of mixed reality sessions. However, they
do not discuss alternate ways of encoding specific aspects of the data. Gruene-
feld et al. [125] propose a rapid prototyping approach that includes a state-based
replay of the recorded user sessions. Kloiber et al. [126] show in-situ trajectories
as visualizations to understand the movement of objects, helping to reflect on the
user performance in collaborative tasks inside a virtual reality environment. Since
these works are recent and rare in visualizing mixed reality session data (to the
best of our knowledge), we do not discuss it in a separate category and instead
reference it across the paper, where appropriate.

To derive the design space, we first look at the visualization examples from the
related fields: analyzing interactions, eye tracking, physical motion, and stories.
These four fields analyze the same aspects of the data as we intend to visualize
recorded sessions of virtual and mixed reality scenarios or are relevant for the
purpose (e.g., visual summary of the sessions). Although there is a vast number of
approaches for visual analysis of spatio-temporal data ( e.g., gesture recognition,
movement analysis, event classification, and event sequence mining), the focus is
on including techniques relevant to the design space capable of showing extracted
events, actions, and interactions from the user session data. Hence, instead of
following a qualitative sampling approach, a diverse set of examples are selected
with the goal of covering a broad range of approaches.

5.1.1 Interactions

There are a few visualizations for analyzing user interactions by extracting the rele-
vant information from the recorded session data. Blascheck et al. combine the data
generated in a user study through recordings of the user’s interactions with a vi-
sual analytics interface and a think-aloud protocol [54]. Interactions and thinking-
aloud actions are treated as events. A timeline-like visualization showed the event
sequences along with the respective regions of the interface for every participant.
The design helped them to compare the behavior of different participants. Re-
garding the interactions of software developers with the integrated development
environment (IDE), timeline visualizations have been proposed, marking relevant
interactions as events [55, 56, 57]. The vertical axis encodes different source code
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files and dialog boxes of the IDE, while time is depicted on the horizontal axis.
A similar visual design has been used to show interactions between people from
recorded videos of business meetings in a physical room [60].

5.1.2 Eye Tracking

Analyzing the gaze location of a user conveys context (e.g., during a collabora-
tive activity) and helps in understanding the interaction with other users or the
environment. Modeling the gaze as an event, eye tracking studies record eye move-
ments of a user watching or interacting with a static stimulus (picture) or dynamic
stimulus (video or interactive interface). The semantically meaningful regions in
the stimulus are called areas of interest (AOI). While investigating the individual
gaze events in detail is important to understand the user behavior, it is also nec-
essary to get a sequential overview of how users shift their gaze from one area of
interest to another. Space-time cubes are often used to visualize the shifting gaze
behavior by showing time in the z-axis and position in the x- and y-axes [127, 128].
Other techniques use 3D scanpaths, attention maps, and linked view visualiza-
tions, with the stimulus being an immersive video [129] or a virtual 3D scene [130].
Visual analytics approaches support the comparison of different users by repre-
senting their gaze behavior while abstracting the real stimulus [54]. Blascheck et al.
survey further visualization approaches [131]. For virtual and mixed reality user
sessions, eye movement data can also be recorded [129], but the topic is relevant
only if it is applied to combinations of an interactive stimulus and human body
movement.

5.1.3 Physical Motion

Apart from eye movements, there exist other visualizations of physical motion,
such as (a) individual trajectories [74, 75, 76], (b) segments of the trajectories to
explore local movement patterns [77, 78, 79], (c) aggregations of multiple move-
ment trajectories [80, 81, 82], and (d) the environment along with the movement to
preserve its context [83, 84]. These visualizations use different techniques, such as
static and animated maps, interactive space-time cubes, time lenses for trajectories
in small segments, or color for density fields. A survey report describes them in
detail [73]. Visualizations focusing particularly on motion capture data are used to
show clusters of human poses, encode them with a gradient color scale, and then
spatially position them in the order of their occurrence [132]. Some visualizations
already show the movement of entities from sessions captured in virtual reality
while abstracting details of the environment [123, 82, 124].
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5.1.4 Stories

Storyline visualization is an intuitive approach to provide a visual summary of
an event sequence involving different entities. An early implementation used a
storyline to summarize plots of movies [133] where each character of the movie is
shown as a separate horizontal line and the x-axis represents time. The lines can
bend and be grouped when the respective characters are in the same film location
(i.e., when they interact in a movie frame). Various layout algorithms have been
developed to enhance their effectiveness by reducing overlap, improving aesthet-
ics, and supporting on-the-fly layout computation for streaming data [134, 135,
136]. They enriched adaptations of the approach by encoding the related events
through icons and background colors. The idea has been adopted in different
fields; one such example is visualizing software evolution through storylines [41].
A time curves visualization shows the similarity of events through spatial prox-
imity while preserving their temporal sequence [137]. These visualizations can
be used to show data from virtual and mixed reality environments to convey a
coherent and comprehensive overview of the user sessions.

5.2 design and application space

Card and Mackinlay [138] state that the purpose of a visualization design space is “to
understand the differences among designs and to suggest new possibilities.” In the visual-
ization literature, a variety of general visualization design spaces and taxonomies
have been discussed [139, 138, 140]. In these theoretical frameworks, data models,
visualization categories, and tasks often form the key elements. To study visual-
ization options on a fine-grained level, some works tailor such design spaces to
specific types of data and visualization (e.g., dynamic graphs [34, 141], composite
visualizations [142], word-sized graphics [143, 144]) or applications (e.g., eye track-
ing visualization [131], software visualization [145], or games visualization [146]).
But despite the variety of such existing frameworks, we are not aware of any work
targeting such a tailored visualization design space for user sessions in virtual and
mixed reality environments.

To structure the design space, we first introduce the data that is recorded and
analyzed, then provide a categorization of visualizations. Since we also discuss
application scenarios, we call the suggested framework design and application space.
Unlike most other related frameworks, which structure the visualizations based
on examples from within the respective domain, we have to work with the exam-
ples from the related domains discussed above because there is not yet sufficient
coverage within the domain (i.e., the visualization of virtual and mixed reality
user sessions).
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5.2.1 Data

To experience virtual and mixed-reality environments, humans usually wear a
head-mounted display. The positions of the user’s head and controllers are tracked
by the sensors to synchronize the actions, movement, and orientation in the real
world with the entities in a virtual scene. Moreover, mixed reality environments
may also increase the complexity by adding entities in the real world (for tangible
feedback) mapped to a virtual entity.

Entities in mixed reality sessions can be active, such as users, virtual avatars, and
physical drones. Additionally, the entities can also be passive objects with which
active entities interact, e.g., controllers, virtual and real objects. We model these
entities as vertices v ∈ V . Tracking an entity includes recording its position in three-
dimensional space and orientation defined by three angles. Hence, at any given
time, each entity can be described with a function p : V × T → R3 for positions (or
including orientation: p : V × T → R6). A characteristic feature of mixed reality
sessions is that entity positions are described in two worlds. Hence, they can be
modeled as pR(v, t) for the real world and pV(v, t) for the virtual world. Physical
entities in the real world are traced by mounting optical trackers on the body (e.g.,
OptiTrack) or using image-based sensors (e.g., Kinect). Depending on the scenario,
tracking can be fine-grained, e.g., finger positions or palm orientation, which are
tracked and stored through sensors such as Leap Motion.

Entities may interact with each other and trigger events actively or passively.
We model them as events e ∈ E. Since events occur at a certain time and last for
a certain duration, we model time as a function t : E → T (or t : E → T2 for
time spans). Events and interactions involving multiple entities can be mapped as
V : E → 2V . Thus, from the entity–event relationships, we can derive the set of
events E(v, t) that involve an entity v ∈ V at point t ∈ T , as well as the involved
entities V(v, t) in an event e ∈ E at point t ∈ T . The events e ∈ E can further
be discerned by whether they are (global events) or have a location of occurrence
in reality or virtuality (local events). Local events, like objects, carry positions p :

E× T → R3 in reality (pR) or virtuality (pV). Events in virtuality, such as actions
of active virtual avatars or collisions of passive objects, can be easily recorded
as log files. For mixed reality objects, different data streams must be merged to
detect the respective events. Events can be triggered in the real world through
input and sensing devices, such as controllers. Additionally, more sophisticated
types of motion (e.g., gestures) can also be extracted from the recorded position
data of users.

The data recorded for virtual and mixed reality sessions may also involve a
holistic recording of the scene. A scene s ∈ S can either be a two-dimensional
image as recorded by a camera or a three-dimensional capture of the scene, which
can be interactively explored. It is possible to map each timestep to an image of
the real or virtual scene s : T → S.
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Table 5.1: Classification of existing visualizations into seven categories for analyzing user
behavior from mixed reality sessions.

Interactions Eye
tracking

Physical
motion

Stories

(A) Entity identifiers [55, 56] [54, 128, 127, 129] [132, 60, 74, 75, 78,
80, 84]

[136, 134, 135, 147]

(B) Event identifiers [55, 56, 124] [54, 128, 127, 129,
130]

[73, 60, 77, 81, 84] [136, 135, 137, 147]

(C) Entity timeline [55, 56] [54, 129] [60] [136, 134, 135, 147]

(D) Event timeline [55, 56] [127, 128] [132, 76, 81] [137]

(E) Event density fields [135, 124] [127, 128, 129, 130] [132, 75, 78, 81, 80,
124]

[137, 135]

(F) Trajectory view [54, 57] [148, 127, 128] [123, 74, 76, 75, 77,
78, 81, 82, 124]

(G) Scene view [133, 135] [127, 128, 129, 130,
54]

[132, 60, 74, 76] [133, 147]

5.2.2 Visualization Categories

To classify the related visualizations, we systematically explored them and as-
signed keywords. The keywords reflected concepts (e.g., time, event icon, summary)
that are useful for visual analysis of data recorded from mixed reality user sessions.
A keyword was assigned to a visualization if it represented the same reflected
concept. Based on the similarity of data property, we grouped the keywords. As
a result of the grouping, we generated seven categories. Table 5.1 shows these
categories along with references to the related publications. We describe each cate-
gory in the following paragraphs, applying them to the study of user behavior in
virtual and mixed reality.

(A) Entity Identifiers. An entity v ∈ V can be either a user or an object
in a virtual or mixed reality environment. Entity identifiers are used to
identify each user/object present in the environment uniquely. Differ-

ent visual encodings such as text, icons, colors [132, 129, 75, 78, 80, 84, 53], and
position [54, 136, 134, 135, 147] can be used to represent them. Moreover, the simi-
larity between entities can be shown by a dendrogram [132, 54, 128]. These identi-
fiers are often used in combination with visualizations from other categories, such
as entity timeline, trajectory view, and scene view.

(B) Event Identifiers. These identifiers are used to uniquely identify
each event e ∈ E that occurred in the session (or type of event, re-
spectively). Different visual encodings such as text [147], icons [129],

shapes [135, 84], colors [54, 137, 55, 56, 130, 60, 77, 81, 124, 53], and position [127,
77] are used to represent events. Their usage is most often in combination with
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visualizations from other categories, such as entity timelines [54, 55], event time-
lines [132], and trajectory views [77, 84].

(C) Entity Timeline. An entity represented by v ∈ V has features that
change over time, for instance, associated events E(v, t), interactions
with other entities V(v, t), or other attributes. The visualizations of en-

tities in this category show a temporal sequence of these features. Besides the
timeline, the dominating visual structure of the visualization is a set of entities
V ′ ⊂ V , for instance, encoded in lines or as rows of the linear timeline. It is com-
mon to represent time on the horizontal axis [55, 56, 54, 129, 60, 134, 135, 136, 147].
Entity timelines can be drawn for individual [127, 128, 76] or multiple entities [135,
54, 55, 56, 147].

(D) Event Timeline. Although they also show a timeline, visualizations
in this category focus on representing a set of events E ′ ⊂ E and their
temporal sequence of occurrence as primary visual glyphs. They are

often discerned by their event type, which provides a structure for the timeline.
An event timeline can be represented in linear [128, 127, 55, 56, 130, 53] and non-
linear [132, 137, 81] layouts. It is common to encode the time span of events by the
size/area of the glyph [135, 127, 128, 130, 55, 56], and also by the relative distance
between event identifiers [137].

(E) Event Density Fields. Groups of local events E ′ ⊂ E are associated
with positions p(e, t) (e ∈ E ′) and other attributes such as involved en-
tities V(e, t) (e ∈ E ′). An event density field shows information of event

sets E ′ aggregated across time t ∈ T through histograms [54, 78, 81], heatmaps in
a 2D spatial context [128, 127, 130, 129, 124], size/area of glyphs [135, 80], or 3D
surfaces [75]. These visualizations can be augmented with context to highlight ad-
ditional attributes, for instance, representing event density on the map juxtaposed
with another view showing linked static entities [124, Sect. 4.1]. A cluster of closely
placed event glyphs also represents the density of events in a timeline [137, 132,
53]. Different patterns of clusters [137] can be used to compare event timelines of
multiple mixed reality user sessions.

(F) Trajectory View. This category includes visualizations that show
movement p(v, t) of the entities v ∈ V across time t ∈ T . The move-
ment is usually shown by projecting position on two dimensions [53]

and representing time through either a gradient color scale [123, 73, 75, 81] or a
third dimension [127, 128, 148, 76]. The direction of movement is also shown by
glyphs [74, 77, 78, 53]. Details of the position can be abstracted by projecting it on
the y-axis while showing time on the x-axis [54, 57]. The trajectory can be enriched
by visualizing additional attributes of entities, for instance, showing trajectories of
entities with different colors to represent different types of objects carried by a
player in a virtual game [124, Sect. 3].
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Visualization approachesVisualization categories Scenarios

(i) Debugging
(developer)

(ii) Evaluation
(researcher)

…

(A) Entity 
identifiers

(B) Event 
identifiers

(C) Entity 
timeline

(D) Event 
timeline

(E) Event 
Density Field

(F) Trajectory
View

(G) Scene
View

Recorded 
sessions

Figure 5.1: Design and application space for visualizations of recorded virtual or mixed
reality sessions; the seven categories of visual encodings (A–G) provide the building blocks
of specific visualization approaches, which can be used in two scenarios: (i) debugging the
environment and (ii) analyzing data from user studies in a research context.

(G) Scene View. This category includes visualizations that show
scenes s(t) along time t ∈ T . The environment details can be abstracted
in these visualizations [123, 132, 133, 135, 147] where the level of ab-

straction depends on the data analysis task. Techniques used in these visualiza-
tions include using multiple images (as keyframes like in a comic strip) [127, 128]
and video/animation [127, 128, 129, 132, 76]. Scenes from both real [60, 54, 76, 53]
and virtual worlds [129, 130] can be included to provide a complete overview of
the user session.

The above categories of visualizations can occur independently. However, they
are often mixed with one another (see references that occur multiple times in
Table 5.1). Multiple views that are synchronized by brushing-and-linking interac-
tions provide a simple solution for this. But it is also possible to combine sev-
eral of these categories within an integrated representation. For instance, a three-
dimensional space-time cube of entities combines an entity timeline ( ; one axis)
with a trajectory view ( ; two remaining axes) [76, 127, 128]. Figure 5.1 illustrates
this combination as a selection of visualization categories that are connected to a
specific application approach.

5.2.3 Application Scenarios

Once we have the building blocks from the design space of visualizations, we can
apply them in different combinations for different scenarios. Instead of discussing
visual analysis tasks for a specific virtual or mixed reality application, we focus
on two general scenarios. However, the categories in the design space can be com-
bined and used for a custom scenario based on specific requirements.

(i) Debugging. Developers of virtual/mixed reality applications often face the
challenge of identifying errors and judging the effectiveness of the solution patches.
A common way to approach this is by executing the program, replicating events
in the environment, and then looking at a real-time rendering of the scene. For
example, it is cumbersome to fine-tune the coordinate systems of different sensors
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Location 1 Location 2

Virtual World

Figure 5.2: Remote collaboration application example – Two participants in different loca-
tions collaborate in virtual reality; together they figure out a certain arrangement of the
components in the virtual world to solve a puzzle.

in the scene and synchronize them. Recent works by Ashtari et al. [149] and Spe-
icher et al. [150] systematically derived and reported on such challenges in the
development of such applications. They include (a) facing too many unknowns in
development, testing, and debugging [149] and (b) the need to work with multiple
types of devices [150, Section 5]. The challenges are usually addressed by analyz-
ing the log files, system messages, and source code to identify errors. Visualizing
the session data, which consists of multiple streams from different devices, can be
helpful in addressing these challenges. Visualizations have been found to be useful
for supporting developers in debugging and designing several aspects of virtual
reality environments [147, Sect. 4]. However, the visualizations do not include spa-
tial information, and they are limited to specific environments. Hence, the visual-
izations that show multiple aspects of a mixed reality environment are important
for supporting developers in debugging and designing virtual and mixed reality
applications.

(ii) Evaluation. A challenge HCI researchers face while evaluating user studies is
understanding the complex movement and behavior patterns of multiple users in-
teracting in mixed reality. The user data has multiple degrees of freedom, and it is
challenging to map the data of multiple users or other entities in such a way that
patterns (e.g., two entities being in the same position at the same time) become vis-
ible. Without any alternate representation of the recorded data, it becomes difficult
to verify and evaluate the data itself. Ashtari et al. [149] also highlighted evalua-
tion challenges in understanding details of specific situations (e.g., a stimulus that
distracted the user). Additionally, researchers need to analyze data from multiple
sessions to evaluate the design of the proposed novel features for the environment.
Visualizations can help in addressing these challenges. Hence, they are important
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for supporting an initial analysis of user study data and for conducting qualitative
studies.

5.3 application example : remote collaboration

In the application example, two participants collaborate in one shared virtual en-
vironment. They interact with each other and various objects, although they are
not co-located in the same physical space. In the recorded scenario, the partici-
pants sit in different rooms (cf., Figure 5.2, Location 1 & Location 2). However, in
the virtual environment, they appear to be sitting at one table facing each other
(cf., Figure 5.2, Virtual World), allowing worldwide immersive collaboration. Voice
is recorded and streamed to the respective other location so that the participants
can hear each other. Both participants have tiles on their desks. The positions and
orientations of the tiles are tracked optically and synchronized with the virtual en-
vironment. Hence, every user can see a virtual representation of the other user’s
tiles. The objective of the collaboration scenario is to arrange all the tiles according
to a plan each collaborator has only a part of. The participants must collaborate to
complete the puzzle. With this application, we target a research scenario where a
visualization should support the qualitative evaluation of user sessions. The tool1

is shown in Figure 5.3 and is available in the supplemental material [151].

5.3.1 Visualization Design

Virtual reality designers and researchers needed to compare users based on their
actions, how they communicated with each other, and their interactions with en-
vironmental objects. To fulfill these requirements, we incorporate an entity timeline
( ) as shown in Figure 5.3a. We use colored glyphs to identify different types
of events (event identifier, ) shown as a legend in Figure 5.3b. Since several enti-
ties can be involved in an event, the event timeline should represent connections
between involved entities as well. We took inspiration from PAOHvis [152], and ex-
tended the design to show events together with entities. We chose a matrix layout
for the entity timeline where the horizontal axis represents time (from left to right),
and the vertical axis lists entities in individual rows (Figure 5.3c). The length of
each scene corresponds to the width of the visualization and is annotated below.
To visually represent the density of events, we integrate a histogram that shows
event density fields ( ), where the size of each bin is set by default to six seconds
(Figure 5.3d). Verbal communication can also be considered as an event; we show
the density of their conversation by a waveform visualization (Figure 5.3e). We
integrate a scene view ( ) component that plays the recording of a selected vir-
tual scene (Figure 5.3f). A red vertical line across all plots represents the current
position of the playback.

1 Hosted at (Accessed May 2023): https://s-agarwl.github.io/mrsessions

https://s-agarwl.github.io/mrsessions
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5.3.2 Insights

To evaluate the collaborative game, the visualization helps in analyzing the strate-
gies of the players and hints at the obstacles they face. We illustrate this with the
six scenes of three pairs of players shown in Figure 5.3.

Comparing Interaction Strategies. In Session 3 – Scene 2, the width of the col-
umn (participants P5 and P6) has the shortest duration compared to all other
scenes. Also, fewer Movement Actions related to objects indicate the high effective-
ness of the players. Further, a strategic pattern can be observed: First, the collab-
orator in Location 1 starts to interact three times with three different objects in
Location 2 (three consecutive green dots linked to the object Location1-Blank-2). Af-
terwards, the collaborator in Location 2 does the same but with Location2-Blank-1
and Location2-Blank-2. Both players communicate little (cf., Figure 5.3e), indicating
that verbal interaction was not as needed as in other scenes. In contrast, in Session
1 – Scene 2, which is the longest, we can derive a less efficient pattern. The first
interaction starts after some verbal exchange. Then, the collaborators begin slowly
using the objects to interact with the objects of the other location. In the middle,
we can observe a pair of consecutive dots in the same two rows, indicating that
there was a mistake in the interaction.

Exploring Collaboration Details. To further investigate this specific part of the
scene, we can listen to the audio and watch playback using the scene view to
gain insight into what went wrong. The last interaction between Location1-Blank-2
and Location2-OBJ-2 is interesting, as its finish event is not very close to its start
and further, Location2-OBJ-2 is moved again. At the same time, verbal exchange in-
creases, indicating that there was a discussion. In Session 2 – Scene 2, three objects
at both locations are moved at the beginning of each scene (the three consecutive
Movement actions). This indicates that each player can fulfill certain actions without
collaborating. This seems to be a common pattern: The inter-location interaction
in all scenes starts after these three actions.

5.4 discussion and future challenges

The application example shows that users adopt different collaborative strategies
to solve a task. Using the visualization, we were able to discover some of the
strategies and identify similar behavioral patterns. We considered entity interac-
tions and temporal aspects of the data. For other realistic applications, the spatial
aspect could play an important role as well and can be visualized using a trajectory
view.

The proposed design space to analyze user sessions of virtual and mixed re-
ality environments is only a first step towards understanding user behavior and
their interactions (RO 2.1). With the ease of recording the data from these sessions,
advances in virtual and mixed reality hardware, and the rise of dedicated appli-
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cations, the need and value of such analysis will become even more apparent. To
further facilitate such analysis in the future, further research is required to address
the following challenges in effectively visualizing such user sessions.

5.4.1 Dual Representations

Studies have shown the value of representing virtual objects in reality by using
drones as haptic devices (e.g., [153, 154]). This dual representation of some enti-
ties is a unique feature of mixed reality applications. To observe the user behavior
in such scenarios, especially in user studies by researchers, it might suffice to
fuse the two representations in the visual analysis. However, there are other use
cases where studying the divergences and occasional misalignment of the two rep-
resentations is necessary to ensure a smooth, immersive experience. For instance,
developers would need to calibrate the hardware for synchronized representations
of the same entity. Although there exist techniques and guidelines to help visually
compare two entities in general (e.g., [100, 155]), they do not assume nor exploit
the characteristic feature of dual representations.

5.4.2 Diverse Data and Dynamics

User sessions in virtual and mixed reality applications generate a rich and com-
plex dataset. It involves diverse data streams such as trajectories, events, video,
and audio. To facilitate an in-depth visual analysis, even the less–complex interac-
tive scenarios like using a desktop interface require advanced solutions that inte-
grate and provide a consistent view of several data streams [54, 55]. Adding to the
complexity, the inclusion of multiple users, their interactions, and movement in a
3D environment is beyond the current capabilities of the visualizations. Further re-
search is required on visual encodings for such complex scenarios, understanding
differences between in-situ and ex-situ analysis, and computational methods for
interactively processing the recorded data streams from virtual and mixed reality
sessions.

5.4.3 Comparison and Abstraction

Analyzing individual user sessions provides some insights but is limited in under-
standing the group dynamics. Only after considering several user sessions could
it reveal typical usage strategies, common obstacles, and relevant misalignment.
Visual comparison and aggregation of user sessions need to be supported. To com-
pare different interactive (i.e., individual) sessions, temporal alignment and detec-
tion of similar behavior and actions become important. However, the recorded data
reflects the users’ actions on a low-level granularity. For comparatively evaluating
the strategies employed by different users, we need to develop meaningful abstrac-
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tions that can be reliably detected in an automatic or semi-automatic process. This
process should be embedded in the visualization interface because analysts might
need to adapt the definition of certain high-level strategies during the analysis.

5.4.4 Beyond Mixed Reality Sessions

We did not include any fine-grained constraints (e.g., by special hardware) that are
applicable only in the case of mixed reality sessions to derive the design and appli-
cation space. Hence, the proposed visualization categories can also be applicable
to scenarios beyond such environments (RO 2.1). The categories could be helpful
while designing visualizations in other scenarios, as demonstrated in the next two
chapters. For instance, to visualize the cooperative and competitive interactions
in a multi-player game (Chapter 6) or to understand the collaborative scheduling
strategies for planning movement in a constrained environment (Chapter 7).



6
C O L L A B O R AT I V E A N D C O M P E T I T I V E M U LT I - A G E N T
I N T E R A C T I O N S

In a dynamic environment, entity behaviors are interdependent. To achieve their
goals, entities often need to make decisions based on their interactions with oth-
ers and actions performed by others. For instance, to collaborate on a task, enti-
ties need to interact with partners and perform actions in a specific sequence. In
contrast, competing entities usually counter the strategy of enemies through well-
timed reactive action sequences. In both cases, the necessity of interactions among
entities and dependency on the actions of others presents a unique challenge while
analyzing the exhibited behaviors (RO 2.2).

Conventionally, the interaction behavior is analyzed from a sequential perspec-
tive. For instance, Bakeman et al. [156] state that a “defining characteristic of inter-
action is that it unfolds in time.” In games, the sequential analysis has been helpful
in understanding the behavior of players through the chronology of their actions
(e.g., [157, 158, 66]). Modeling interactions as events, visualizations for tempo-
ral event data have been well studied (e.g. [159]). Recently, Guo et al. [16] pre-
sented a comprehensive survey of such visualization techniques. However, these
approaches assume the event sequences to be independent. Hence, they are not
feasible to extend and encode the interactions between two or more entities. As
a result, the context of understanding their actions in interdependent dynamic
scenarios is lost during the visual analysis.

In general, using computer games for Artificial Intelligence (AI) research is com-
mon and accounts for about 50% of all published work in the field [160]. Compe-
titions with simulated game-based environments (e.g., [161, 162, 163]) have be-
come a useful and harmless medium to test, train, and benchmark new AI algo-
rithms [164]. The goal of multi-agent game-based environments is to help advance
the research on training AI agents that can compete, cooperate, or do both to com-
plete their objectives. To improve the performance of such agents, developers need
to analyze the interdependent behaviors and strategies (i.e., the sequences of ac-
tions) learned by the AI agents. To this end, we propose a novel timeline-based
visualization for the exploration of strategies executed by the agents in a specific
game-based dynamic environment Pommerman [17]. The game environment was
specifically designed to assess competition and collaboration among agents and
features an active research community, thus serving as an ideal application to
demonstrate our visualization.

This chapter is organized into six sections. First, the Pommerman environment
is briefly described, along with the reliance on using playback for group dynam-
ics analysis (Section 6.1). Based on the derived design goals in Section 6.2, the
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Each agent can drop a bomb, move (up, down, left, and right), 

or do nothing

Bomb explodes in 10 timesteps:

vs.

The flames persists for 3 timesteps
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Increase range (+1)

Can kick 
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…

Figure 6.1: A snapshot of a game playback in Pommerman (left). The grid environment and
the game mechanics are illustrated on the right.

design of our approach is explained in Section 6.3. The visualization explicitly
encodes agent interactions with the in-game entities and marks important events
affecting the behavior of agents in the environment on a timeline. To assess the
usefulness of the approach, we analyzed the behavior of winning AI teams in a
competition (Section 6.4). In addition, we also collected feedback from members
of the Pommerman community and researchers from visualization and game ana-
lytics, describing the analysis results in Section 6.5. We end the chapter reflecting
on the limitations of the approach and listing concrete ideas for future work in
this research space (Section 6.6). An interactive web-based tool1 implements the
proposed approach. The supplementary material [165] includes the questionnaire
and responses of participants from the user study along with the tool.

6.1 the pommerman game

Pommerman [17] is a variant of the classic multiplayer game Bomberman [166]. A
game in Pommerman can have a maximum of four players. There are two modes:
(a) all players compete against each other or (b) two teams, consisting of two
players each, compete against each other. As shown in Figure 6.1, the map of the
game is a board with 11× 11 tiles where each tile can be a free navigable space, a
rigid block, or a wooden wall that collapses when a nearby bomb explodes. The
layout of the map is generated randomly for each game, but the starting positions
of the players remain the same. Each player can lay a bomb, which explodes after a
fixed duration (ten game steps). Flames from the bomb explosion persist for three
game steps. Each player has to wait for the previously laid bomb to explode before

1 Hosted at https://s-agarwl.github.io/bombalytics

https://s-agarwl.github.io/bombalytics
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laying another bomb. There also exist three types of power-ups limited in number
and hidden beneath wooden walls, which offer: (i) an increase in the number
of bombs a player can place simultaneously, (ii) an increase in the range of the
bombs laid by a player, and (iii) the ability to kick bombs. To win a game, players
(or teams in team mode) have to eliminate their opponents. In this work, we focus
on the team mode, where players compete and collaborate to win a game.

The Pommerman game was built to train agents to compete and collaborate in a
multi-agent environment [17]. A constraint on real-time decision-making (an agent
has only 100 milliseconds to decide) makes it even more challenging to develop
agents. But, the Pommerman community has already trained several agents via
different techniques and tested them against each other [167, 168, 169, 170, 163,
171, 172]. Pommerman competitions are organized to promote research in this
field, such as at the NeurIPS 2018 and 2019 conferences. Knowledge gained from
these competitions has led to a better understanding of the underlying techniques.
However, most commonly, performance analysis is done only on the number of
games won by the agent, which hides the qualitative aspects of the behavior. This
limits the ability of developers to investigate the learned strategies and further
improve the performance of the agents. Developers can only watch individual
games for a qualitative assessment, which includes checking for competition and
collaboration strategies. This was confirmed by a developer of a top performing
agent of the Pommerman NeurIPS 2018 competition, stating that: “We find these
[learned strategies] by running several battles and recognition by a human.”

6.2 design goals

For investigating agent behavior (collaborative and competitive) and comparing
the performance of two teams, we first considered the goals that we deemed cen-
tral for designing the visualization (RO 2.2). These design goals are based on in-
formal communication with Pommerman community members, our experience in
visualizing event sequences, and insights from related approaches. Beyond these
specific goals, we tried minimizing visual complexity, using expressive labels, and
building an intuitive visualization.

6.2.1 G1: Overview of Event Sequences in a Game

Currently, the developers of Pommerman agents use playback to analyze recorded
games. While playback is useful in general, developers need to watch an entire
animation to get an implicit overview of the event sequences in a game. However,
to reduce the time required for analysis, it becomes important to obtain an explicit
overview of the events that occurred in the game. The overview should display the
distribution of events across the entire game, which could also point out different
phases.
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Figure 6.2: The summary component shows multiple games in a competition between two
teams. For each game, it shows the game results through colored icons, the game duration
through the height of thin purple bars, and a selected game metric for each team through
dark gray bars.

6.2.2 G2: Local Patterns and Repetitions

Collaboration and competition strategies between agents are exhibited by inter-
actions between the agents and specific items, for instance, kicking a teammate’s
bomb. The design of the visualization should support finding such local patterns.
Since the same strategy might be executed several times in a game, the visual-
ization should also show these repetitions. The developers currently rely either
on summary game statistics or on playback to infer behavior patterns. However,
aggregated statistics only provide an incomplete picture as they neglect the in-
termediate processes. On the other hand, identifying multiple occurrences of the
same pattern of actions and movements in playback is tiring.

6.2.3 G3: Overview of Multiple Games

To compare two teams in a competition, usually 30–50 games are held. Hence,
the visualization should also support statistical comparisons between two teams
based on several metrics and provide a basis for selecting the most interesting
matches for closer analysis.

6.3 visualization approach

We propose Bombalytics, a novel visualization approach, and implement it in a
tool called PomVis. Figure 6.3 shows a screenshot of its interface, which consists
of four components. Next, we discuss the data required for the visualization, fol-
lowed by a description of each component in the interface.

6.3.1 Data

The Pommerman environment provides a command line option to record the state
of a game at each step. Developers of autonomous agents for Pommerman use this
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option to analyze, e.g., the number of wins, losses, and ties. To enable easy and
widespread use of our tool among the developers, we rely on this recorded data
without further instrumentation of the game. The game states recorded in the data
are used to generate a playback and a summary. We extract the actions performed
by the agents and identify bomb explosions.

We analyze sample data consisting of six competitions, which were held be-
tween three agents of the 2018 competition (in the top 10 final rankings): hakoza-
kijunctions, navocado, skynet955, and the simpleAgent, which is the default learning
agent provided in the Pommerman environment. The executable container images
of the agents were fetched from Docker Hub2. A team in our sample data consists
of two instances of the same agent. Each competition consists of 50 games between
the two respective teams.

6.3.2 The Summary Component

The summary component at the top of the interface (Figure 6.3a) provides a high-
level overview of all the games in a competition (G3). Individual games are rep-
resented along the horizontal axis in columns and are numbered, as visible from
the enlarged image in Figure 6.2. The two teams are shown as separate rows. The
result of a particular game is represented as icons: Win ( ), Lose ( ), or Tie ( ).
We compute seven different game metrics for each team in every game, specifically
the number of

1. moves (‘#Moves’),
2. bombs laid (‘#Bombs Laid’),
3. kicks to bombs (‘#Bomb Kicks’),
4. pick-ups for any power (‘#Power-ups: Any Power’),
5. pick-ups for ‘extra bomb’ power (‘#Power-up: Extra Bomb’),
6. pick-ups for ‘increase range’ power (‘#Power-up: Increase Range of Bomb’),

and
7. pick-ups for ‘can kick’ power (‘#Power-up: Kick’).

The values of one selected metric for individual games are visualized through
dark gray bars placed in the respective rows of each team. The game metric can be
changed by clicking the underlined label of the metric or the gear icon. The length
of a game in a competition is encoded by the height of a thin light purple bar.
The total number of wins and ties for each team are shown at the end of the rows
(Figure 6.3a). Clicking a particular game column draws the detailed visualization
of the corresponding game in the components below, as discussed next.

2 (Accessed May 2023): https://hub.docker.com/u/multiagentlearning

https://hub.docker.com/u/multiagentlearning
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6.3.3 The Timeline Visualization of a Pommerman Game

The static timeline visualization component (G1) is placed in the middle of the
interface, as shown in Figure 6.3b. The horizontal axis represents the temporal
progression of the game (timeline) and shows each step of the game in sequence
from left to right. Each entity (a player or a power-up) is shown as a separate row
in the visualization (entity identifiers and entity timeline ). Rows representing
players are split into two parts: the upper part shows actions performed by the
player, while the lower part shows bombs laid by the player. Separating the players
from the bombs reduces the clutter on the timeline and allows identifying the
lifespan of bombs, kicks, and blast duration more clearly, as explained later.

For a clear visual distinction between the two teams, rows of players belonging
to Team A are placed at the top, while those belonging to players of Team B are
placed at the bottom, as shown in Figure 6.3b. The rows of power-ups are added
in the middle, as they denote common resources that can be utilized by any player.
The separation between the rows of the two teams helps differentiate between
inter- vs. intra-team player interactions (G1 and G2).

Players may perform different actions in a game which we represent via the
color and shape of different glyphs (event identifiers ; G1 and G2). A player can
move ( ), lay a bomb ( ), kick a bomb ( ), and pick up a power-up ( ). Bomb
explosions are important in the game as they might trigger other events, such as
the death of a player ( ), the destruction of a wooden wall, etc. We represent each
bomb by a shape ( ) that has an unfilled circle at the head—indicating
that the bomb was laid—followed by a rectangular tail—denoting the explosion
of the bomb and its duration (i.e., three game steps). The head and tail of the
bomb glyph are connected by a dashed line. Since the lifespans of bombs laid
by a player can overlap (if a player has an ‘extra bomb’ power), we place them
at different vertical positions in the lower part of the row of the corresponding
player if necessary. Visually representing the lifespan of every bomb makes it easy
to identify actions and events related to each bomb individually (G2). Selecting a
checkbox of the legend items (placed above the timeline visualization) highlights
the corresponding actions, events, and game objects (bombs) in the visualization.

Each row of a power-up is divided into four sub-rows of equal height, each cor-
responding to a player, as shown in Figure 6.4. Although this introduces some re-
dundancy, doing so helps in quickly identifying the player associated with the cor-
responding power-up (G2). Also, it becomes easy to follow a sub-row and count
the number of dots to infer how many instances of the power-up were picked by
the corresponding player (G1).

Some events can be associated with multiple entities (players and power-ups)
and game objects (bombs). To visualize this association, a vertical line is drawn
between rows of the corresponding entities and/or game objects (G1 and G2).
Figure 6.4 shows interactions between Player 3 and different power-ups as well as
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Figure 6.4: Vertical lines between rows show associations of a player (here, Player 3) with
power-up rows when the player picks the powers and bombs when the player kicks them. In
the example, first, the player picks two ‘increase range’ power-ups, followed by a ‘can kick’
power-up. Then, the player kicks two bombs and later picks two more ‘can kick’ power-ups.

bombs kicked. The movement of bombs being kicked is shown using an orange
color in the timeline of the bombs (G2).

On the right side of the timeline visualization (Figure 6.3b), a few game metrics
are shown in the columns for each player summed over the entire duration of
the game (G1). The summed game metric values help in formulating hypotheses
about the behaviors of teams and individual players. However, the behavior of
players might not remain the same for the entire game. For instance, players pick
almost all power-ups at the beginning of the game. To visualize the temporal
distribution of the game metrics along the progression of a game (G1), we draw
histograms (two rows, one for each team) as shown in Figure 6.3c (event density
field ). The game metric can be changed through selection. The bin size (bar
width) in the histograms is ten game steps by default.

6.3.4 Playback Component

The components discussed before help identify the behavior of players and for-
mulate hypotheses about the strategies they execute. To verify the formulated hy-
potheses, it is still essential to watch the actual playback of the game at a specific
step of the game. To support this, we integrate a playback component on the top
right corner of the interface, as shown in Figure 6.3d (scene view ; G1). The com-
ponent includes standard playback controls. Navigation to a specific game step
can be done via dragging either the slider placed above the playback controls or
the red vertical status line in the timeline visualization (Figure 6.3b). The playback
speed can also be modified.

6.4 application example

Demonstrating the usage of the approach, we present a few strategies and unusual
agent behavior identified through visual analysis of the winning AI teams in Pom-
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Figure 6.5: An excerpt from Game #8 of a competition between hakozakijunctions and navocado
shows bold and suicidal moves by hakozakijunctions. The agent repeatedly lays a bomb, waits,
and then moves when the bomb is about to explode.

merman competitions. The implemented prototype with the data of winning AI
teams is hosted online3 and available in the supplementary material [165].

We analyze a competition between hakozakijunctions and navocado consisting of
a total of 50 games. The summary component (Figure 6.3a) reveals that hakozaki-
junctions outperformed the other by winning 27 games and losing only 6, while 17

games resulted in a tie. Looking further into the summary component, we select
the ‘# Bombs Laid’ game metric and see that hakozakijunctions laid significantly
more bombs in most of the games (dark gray bars, G3). However, on selecting the
‘# Power Ups’ game metric, we find that navocado picked more power-ups in al-
most all the games. We further look into game #15, which resulted in a tie ( ), to
explore details. Figure 6.3b reveals that both teams picked power-ups early in the
game, inferred from the green dots and vertical lines (G2). However, one agent
of the hakozakijunctions team did not pick any power-ups (Agent 1 in the first
row), while Agent 4 of the navocado team continued picking power-ups in the later
phase of the game, too (G2). The hakozakijunctions team moved less (few orange
lines) and laid bombs more frequently (G1), inferred from the histograms below
(Figure 6.3c) or from the last columns in the timeline visualization (Figure 6.3b).
The navocado agents picked a lot of extra bomb power-ups but laid fewer bombs
(columns at the end). The navocado agents moved a lot and seemed to explore the
board (orange lines), which was confirmed via playback (Figure 6.3d) (G1). Agents
2, 3, and 4 laid and kicked their own bombs (pink circles and vertical lines), trying
to kill the opponents (G2), but with no success. Eventually, the game timed out
and resulted in a tie (G1).

Next, we list the discovered strategies and unusual behavior. Some of these
strategies were also found by the participants of the user study (cf. Section 6.5.2).

Bold and suicidal move. The hakozakijunctions agents lay a bomb and stay on top
of it. The agents only move when the bomb is just about to explode (G2). Figure 6.5
shows that this behavior is repeated throughout the game. The agents manage to
eliminate opponents with this strategy, but in many games, they get killed by their
own bombs.

Learn to kick bombs. It seems that the power of kicking a bomb makes a differ-
ence. In the six games in which the hakozakijunctions team was defeated, it was not
able to collect ‘can kick’ power-ups, while navocado collected the power-up in these

3 (Accessed May 2023) https://s-agarwl.github.io/bombalytics

https://s-agarwl.github.io/bombalytics
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Figure 6.6: An agent in hakozakijunctions was stuck in a loop by constantly moving between
two tiles in game #28 against navocado, as indicated by the orange line in the middle of the
timeline. During this, the navocado agents stopped and did not do anything (white gap in
bottom two rows).

games (G3). In general, hakozakijunctions and navocado often kick bombs (‘#Bomb
Kicks’ game metric). In many games, they also kick bombs laid by the other team
(pink circles with lines to the other team rows) (G2). This behavior was especially
exhibited in competitions with the simpleAgent, which does not kick bombs, even
after collecting the ‘can kick’ power-up (G1).

Collecting redundant power-ups. The ‘can kick’ power-up is a binary property
that, once picked, persists throughout the game. The skynet955 agent has learned
to avoid the redundant collection of ‘can kick’ power-ups. This can be seen from
the summary component in competitions of skynet955 vs. other teams and select-
ing the ‘# Power-up: Kick’ metric (G3). However, as shown in Figure 6.4, hakoza-
kijunctions collect the power-up more than once; it could be a strategy to prevent
opponents from picking it up (G2).

Stuck in a loop. Sometimes, agents get stuck in a loop, repeatedly moving be-
tween two tiles. This is visible from long continuous orange lines in the timeline
visualization (G2). For instance, as shown in Figure 6.6, in Game #28, the hakozak-
ijunctions agent was stuck in a loop by repeatedly moving between the same two
tiles, while the navocado did not do anything in the same duration (white space in
the bottom two rows). The same behavior was observed in Game #14, where the
navocado agent was stuck in a loop while its opponent waited idly. It shows that
the agents have not learned to (a) avoid getting stuck in a loop and (b) exploit
such vulnerabilities in opponents.
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6.5 expert user study

To evaluate the proposed Bombalytics approach, we administered an online ques-
tionnaire to AI, visualization, and game analytics experts. The feedback from AI
experts verifies the capabilities and usefulness of the proposed technique. How-
ever, AI experts in the Pommerman community do not typically use visualizations
(such as ours) while training the agents. As such, responses of other experts, in
particular visualization and game data analysts being more experienced with such
interfaces and analysis of player activity in general, verify the visualization design.
The questionnaire and responses are provided as part of the supplementary mate-
rial [165].

6.5.1 Study Design

The study consisted of an online questionnaire and an online version of the tool.
Participants were asked to explore the tool and to go through the help page op-
tionally before starting the questionnaire. The participants confirmed this prepa-
ration at the start of the questionnaire. Participants were allowed and reminded to
switch back to the tool while filling out the questionnaire. The study was designed
to take about 25 minutes, was conducted online, and ran for a period of 10 days.
Participation was anonymous, and no identifying information was recorded.

Questionnaire. The online questionnaire consisted of seven parts. After explain-
ing the purpose of the study and acquiring consent from participants (Part I),
Part II asked participants to provide some background on their domain expertise
on a 5-point scale labeled with no knowledge, beginner, intermediate, advanced, and ex-
pert. We also asked about their experience with Pommerman, playing Bomberman
games, and whether they participated in Pommerman competitions by submitting
autonomous agents. Parts III and IV asked about the summary component and de-
tailed timeline visualization, respectively. Participants were presented with state-
ments in these parts expressing the usefulness of the tool and were asked to rate
them on a 5-point Likert-type scale anchored by strongly disagree to strongly agree.
Optionally, the participants could provide detailed comments regarding what they
liked and disliked about the above-mentioned aspects of the interface. Part V
asked participants to textually mention the competition and collaboration strate-
gies they were able to discover using the tool. It also asked to mention observed
differences in the gameplay behavior of teams. In Part VI, we assessed the usability
of the interface regarding four characteristics: efficiency, effectiveness, satisfaction,
and overall [173]. We presented four statements for each category, which partici-
pants answered by selecting Strongly disagree, Disagree, Neutral, Agree, or Strongly
agree. The participants could provide further comments on the usability of the tool.
Part VII allowed participants to give additional feedback on tasks for which they



80 Exploring Complex Group Dynamics

would use PomVis and missing or unnecessary information in the tool, as well as
to provide additional remarks.

Participants. The work presented in this paper aims to assist Pommerman AI
developers by building a visual tool using research from the fields of visualiza-
tion and game analytics. Consequently, we invited a diverse group of users to
participate in the study and provide their feedback. First, since the tool specifi-
cally visualizes the gameplay data of Pommerman, we invited users who (i) make
autonomous agents for the Pommerman environment, (ii) participated in the Pom-
merman competition, or (iii) have contributed to building the environment. Sec-
ond, we invited visualization experts (in Information Visualization and/or Visual
Analytics) who have research experience with event-timeline-based visualizations.
Third, we invited researchers who have expertise in gameplay analytics. Finally,
we strove for participants who also had considerable experience in either playing
computer games or in programming and have played Bomberman games before.
The invitations were sent via personal e-mail and through Pommerman’s official
Discord channel.

In total, 20 users participated in the study. We refer to these experts as E1 to
E20 in the remainder of the paper. All 20 participants marked their expertise level
as expert or advanced in at least one of the following five domains: Artificial Intel-
ligence, Playing Computer Games, Computer Programming, Information Visualization,
and Game Analytics. Expert E1 participated in both Pommerman competitions of
2018 and 2019, while four experts (E2–E5) participated only in the 2018 competi-
tion. Three other experts (E6, E7, and E8) also have experience in developing au-
tonomous agents for the Pommerman environment without having participated
in a competition. In addition, E6 contributed to Pommerman’s code repository.
Nine experts (E5, E9–E16) marked themselves as advanced or expert in Information
Visualization and/or Visual Analytics. Three out of them (E7, E11, and E13) also con-
sidered themselves to have similar expertise in the domain of Game Analytics. We
classify the experts into two groups based on their domain of expertise. Group A
consists of Pommerman developers and AI experts (as the core user group of the
tool, E1–E8), while Group B consists of visualization and game analytics experts
(providing feedback with respect to visualization design and analytics, E9–E20).

6.5.2 Results

An inductive thematic analysis was carried out to analyze participant’s responses
per question.

Summary Component. Pommerman and AI experts mentioned that essential in-
formation is visualized in the summary component (E3, E4, E5, and E7). E2 liked
the inclusion of data from multiple games in the tool as it helped to get an
overview of a competition. Visualization and computer game experts liked the
simplicity of the columns to the right of the timeline showing #wins and #ties (E9,
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Table 6.1: Quantitative expert feedback about the usefulness of interface components; scale
from ‘Strongly disagree’ (1) to ‘Strongly agree’ (5).

Summary Component Timeline Visualization
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E16, and E17) and the static design of the component (E15). Seven experts liked the
compact design of the component and highlighted that it gives a concise summary
(E1, E2, E6, E8, E10, E11, and E18). Ratings in Table 6.1, however, show differences
in opinions between the two groups of experts, with Pommerman and AI experts
being more critical. Two experts (E1 and E5) did not find that the tool provides a
good summary of all games in a competition. E1 noted in the comments the lack
of a statistical summary of the games, e.g., the average number of bombs. Two
experts (E3 and E6) mentioned that it took some time to understand the different
encodings used in the summary component. In addition, others reported difficul-
ties with interpreting the game length bars (E11 and E13) and differentiating them
from the gray game metric bars (E17). Feedback from an AI and computer game
expert (with experience in Pommerman), participant E6 summarizes this:

“It did take a bit to understand what was going on there, it’s not that intuitive,
in the sense that you need to see the legend to understand it. I also feel that
even though I know how to, it’s [a] bit hard to read them, some of this might
have to do with the lack of spacing between the match columns.” – E6

Experts offered suggestions on how to improve the design of the summary com-
ponent, such as showing details on demand (E12, E18, and E19) and additional
statistics (E1, E4, and E9).

Detailed Analysis of a Selected Game. Overall, experts appreciated the timeline
visualization (Figure 6.3b), which is also reflected in their ratings, as shown in
Table 6.1. The experts highlighted that it provides a good overview of the selected
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game (E6, E13, and E19) in one screen (E4 and E8) and is informative (E17) while
at the same time showing details of every action performed by the agents (E1, E3,
E9, and E18). They liked the timeline layout and visual encodings (E2, E13, and
E20) and commented that it is easy to read and understand (E1 and E6). Visual-
ization expert E20 liked the overall layout of the view, with power-up rows being
placed in the middle, separate rows showing the lifespan of bombs per agent, and
vertical lines connecting bombs and agents for kick events. Three experts (E2, E3,
and E20) appreciated the visualization of interactions through vertical lines. They
mentioned the usefulness of highlighting events by hovering over legend items
(E6, E11, E16, and E20). Experts were also fond of the playback component and
its linking with the timeline visualization (E10, E12, E13, and E16). The detailed
design and interactions were found useful in exploring the strategies of agents
(E1, E9, and E16). Feedback from Pommerman and AI expert E1 summarizes the
observations:

“[I liked the] extremely detailed but simple and easy to understand visualiza-
tion! I really like the detailed component. You can quickly identify patterns in
an agent’s behavior via the timeline visualization and watch them happen in
the visual playback.” – E1

While many experts appreciated the visual details, some mentioned that the
timeline visualization is not easily readable (E11) and needs some time to under-
stand (E2 and E19). The visualization contains too many circles (E12 and E15),
which overlap (E2, E13, and E20) and make it a bit hard to understand or noisy
(E2 and E20). The choice of colors, in combination with the transparency of the
circles, created confusion while reading the timeline (E12 and E16). Two Pommer-
man and AI experts (E2 and E6) highlighted the inability to zoom/scroll on the
timeline, which would have allowed them to focus better on a specific phase of
a selected game. Two experts (E9 and E10) commented on the prominent cen-
tral position of the power-up rows and instead suggested using symbols for each
power-up in the individual rows of agents. E16 mentioned to have solely relied
on the playback component to find strategies, whereas E4 used the playback to
uncover interactions between agents. Four visualization or game analytics experts
(E14, E15, E16, and E18) suggested that including spatial information in the time-
line visualization could be helpful in finding position-based strategies. E15 recom-
mended using heatmaps to show the most visited tiles over multiple games. It was
also pointed out that the histograms provide redundant information (E16) and are
difficult to understand (E17) as they lack legends and interactions. With respect to
additional features, E2 suggested including the option to select multiple actions
at once, while computer game expert E18 proposed showing the appearance of a
power-up in the timeline.

Competition Strategies. Almost all participants (19 out of 20) reported at least one
competition strategy they discovered. Three experts mentioned that picking more
power-ups in the early phase of a game gives the team an advantage (E9, E10,
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and E18). Seven experts (E1, E2, E5, E6, E10, E12, and E19) highlighted that the
strategy of kicking bombs helps a team win the game in general, while the three
Pommerman and AI experts among them (E1, E2, and E6) pointed out that kicking
a bomb that is about to explode seems to be more effective. Four experts (E10, E11,
E15, and E17) mentioned that laying more bombs helps a team to win more games.
Pommerman and AI expert E6 was able to discover the strategy to lay a bomb to
restrict the movement of opponents. In contrast, E3 observed that the navocado
team “places a lot fewer bombs, as bombs also constrain the safety of agents in contrast
to the Skynet agent, which places more bombs.” Two experts (E6 and E11) commented
that teams moved around a lot in order to avoid being killed. Pommerman and AI
expert E7 observed two priorities:

“This tool makes it easier to understand which agents are using different kinds
of reinforcement learning, either more focused on a safe agent or a more ag-
gressive strategy trying to win.” – E7

Sometimes, agents used their own bodies to block the movement of the enemy
(E2). One Pommerman and AI expert (E4) mentioned that it is hard to see com-
petition strategies speculating that hakozakijunctions might not have had sufficient
computational resources.

Collaboration Strategies. Experts mentioned that agents of hakozakijunctions first
engage in one-on-one combat with opponents (E2, E8, E14, E16, and E17) and, after
killing one enemy, the two teammates team up against the remaining opponent
by moving towards the enemy (E6, E8, E12, E16, E18, and E20). Five experts (E2,
E8, E10, E16, and E20) highlighted the collaboration strategy to drive an enemy
towards a corner of the board. Pommerman and AI experts observed that when
a teammate is near, agents move away (E5) or do not lay a bomb next to their
teammate (E6). Expert E15 observed that agents seem to kill themselves while
ensuring the death of an opponent. E1 also observed a similar behavior:

“The first hakozaki agent seems to be a lot less aggressive than the second
hakozaki agent. It seems like the first agent tries to survive while the second
tries to eliminate other agents.” – E1

Five experts (E3, E4, E9, E14, E19) highlighted that it is hard to find collaboration
strategies from the visualization. However, two Pommerman experts among them
(E3 and E4) reasoned that the agents might not have learned complex collaboration
strategies (“I think Pommerman agents are still at a reactive strategy level and far from
using more complex strategic behaviors.” – E3).

Differences between Behavior of Teams. The questionnaire asked participants to
list observed differences between the behavior of teams. An expert in games and
visualization (E15) provided detailed feedback that summarizes the characteristic
behaviors of different teams, which were observed by other experts too (specified
inside square brackets in the following). In particular, E15 mentioned (with other
experts added having similar findings):
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“Skynet:

- lay many bombs [E3 and E14] in the beginning [E1], if only one player is
still alive or all wooden boxes are cleared → just keep moving to escape bombs
(no own bombs are laid)

- defensive game play [E16]

- collecting power-ups is not a goal

- do not try to clear a path to the competing team or the own team mate [E12]

Hakozakijunctions:

- try to collect as many power-ups as fast as possible

- clearing a path just in one direction to one opponent

- lay many bombs throughout the game [E3, E10, E11, E17, and E19]

- use the kick power-up a lot [E3, E8, and E19]

Navocado:

- try to collect many power-ups [E10 and E17]

- clear a path to the opponent but not systematically [E18]

- lay few [E11 and E17] but targeted bombs [E6 and E11]” – E15

Other experts found additional behaviors but mentioned them without naming
the teams. These behaviors include: agents idly waiting long times without per-
forming any action or movement (E9), laying bombs on a regular interval (E19),
action sequence pattern of lay bomb → kick → move (E13), and taking control of
the diagonal field as a winning strategy (E2). Pommerman and AI expert E3 high-
lighted a behavior of the hakozakijunctions team—dropping many bombs followed
by kicking them away—and mentioned that this is expected as it is a search-based
agent.

Usability. The aggregated ratings on four characteristics of usability (self-explanatory,
meeting one’s requirements, usage being a satisfying experience, and ease of use)
for the two disjoint groups of experts are presented in Table 6.2. All eight Pom-
merman and AI experts agree or strongly agree that the implemented tool is easy
to use. Six of them agree or strongly agree that the tool is self-explanatory, meets
their requirements, and using it is a satisfying experience. Two of them (E3 and
E4) were neutral about the capabilities of the tool meeting their requirements. E3

wanted to see high level statistics, while feedback of E4 lacks details: “To check if
my agents are working as expected.” One expert (E2) disagreed with the statement
that the interface of the tool is self-explanatory, which can be explained by a bug
in the system he/she encountered and mentioned in the feedback—non-updating
team labels and breaking the video player when switching competitions during
video playback. The expert was among the first three participants of the study. It
was not a critical bug and did not significantly impact the participants’ answers,
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Table 6.2: Results from the expert study show the usability characteristics of the tool. A
response on each characteristic was recorded on a five-point scale [Strongly disagree (SD),
Disagree (D), Neutral (N), Agree (A), Strongly agree (SA)].
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but we fixed the bug to avoid a repetition of a similar experience for the remaining
participants.

The ratings of Pommerman and AI experts followed a similar trend largely as
those of other experts, as shown in Table 6.2. The majority of them found the
tool to be easy to use (#8), self-explanatory (#7), and to provide a satisfying ex-
perience (#10). However, two experts (E11 and E19) did not find the tool to be
self-explanatory because it is hard to establish the linking of the numbered im-
ages of players between the playback and timeline visualizations (E11). Also, the
comparison features are missing (E19). Expert E19 mentioned a bug with the game
lengths, but we were not able to reproduce it.

Three experts (E3, E13, and E15) mentioned that the interface contains too much
information, which, as remarked by E3, “is partly due to the nature of the game". All
three suggested showing details on demand or only higher-level statistics. Two ex-
perts (E13 and E16) found that the icon used to show the bomb blast duration was
unclear. Experts E17 and E19 mentioned that the help page of the tool was useful
to understand the encodings in the visualization. Additionally, experts suggested
using a permanent selection of an action (E7 and E19) which we implemented in
the follow-up version of the tool.

Additional Feedback. In terms of possible application scenarios, Pommerman and
AI experts mentioned that they intend to use the tool for analyzing (a) the behav-
ior of the agents they trained (E1, E2, E3, E5, E6, and E7), (b) improving their
agent’s performance (E1, E2, and E7), and (c) understanding the AI algorithm
used for training (E8). Most of the experts commented that the visualizations en-
coded important information required for analysis. Two experts (E10 and E19)
highlighted that they did not use the histograms, with visualization expert E16

commenting that only one game metric (‘# Power Ups’) was helpful while using
the histograms. Four experts (E14, E15, E16, and E18) emphasized the importance
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of spatial aspects in Pommerman, and one of them (E15) suggested visualizations
such as heatmaps to show the density of player positions and bomb explosions.
Experts also suggested incorporating additional features such as the ability to sort
the games in the summary component by any game metric or game length (E14),
highlight only associated actions and bombs on the selection of an agent (E14),
and perform queries based on the strategies/patterns found (E6 and E12). Two
experts (E8 and E14) proposed an interaction to jump to a particular game step by
clicking on the game timeline rather than dragging the red status line. Experts also
suggested to highlight when an agent was not able to make a decision within the
100 milliseconds time limit (E4), to provide explanations of the histograms (E17),
and to include messages shared between the agents of the same team (E20).

6.5.3 Validity and Limitations

We strove for participants with varying expertise to ensure evaluation from dif-
ferent perspectives. We also invited participants with high expertise to ensure the
quality of their feedback. It is, however, important to highlight that the authors had
no previous connections with participants from the Pommerman community, who
are the main target users of the tool. In contrast, the authors had a background
in visualization and game analytics. The questionnaire did not ask participants to
perform any specific task; rather, it asked users to explore the tool and describe
their observations. Given the exploratory and qualitative focus of our study, we
used a mixed-method analysis: qualitative analysis of the free-text responses com-
bined with quantitative indicators for usability and usefulness.

6.6 discussion

The insights from the application example and results of the user study show
that, in general, the approach is useful for understanding the dynamic behavior
of agents. To be specific, the encodings in the visualization help to understand the
collaborative and competitive entity interactions in the dynamic environment of
Pommerman (RO 2.2). But the dense representation may become complicated to
understand, especially for users who are less familiar with similar visual analytic
systems or dashboards. This is intriguing as certain details are required to under-
stand complex behavior, but at the same time, these details make the visualization
more difficult to read. The participants in the study were able to find many inter-
esting strategies of the three top-performing agents from the Pommerman 2018

competition. The study showed that by using the tool, they could identify com-
petition and collaboration strategies. Furthermore, they were also able to find the
characteristic behaviors of different teams. However, experts also highlighted the
drawbacks of the approach and provided valuable suggestions on how to address
them.
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6.6.1 Embedding Spatial Context in the Timeline

Many experts mentioned the lack of spatial features within the timeline visual-
ization. For simplicity, our design relies only on the playback to provide the spa-
tial context and does not embed the information in the timeline. However, the
collected feedback and existing literature in game user research (e.g., [174, 175])
highlight the need and value of spatial indicators during visual analysis. These
indicators could help identify several strategies exhibited by the agents (e.g., trap-
ping the enemy behind a narrow alley on three sides). Directly embedding the
abstracted spatial information on the timeline might help while avoiding clutter,
e.g., encoding an agent’s proximity to other agents or bombs.

6.6.2 Towards a Visual Analytics System

As reflected in the feedback, the experts requested advanced features, such as
querying, labeling the strategies, and finding occurrences of a pattern in multiple
games. They also suggested showing higher-level statistics first and then present-
ing details on demand. These features point towards extending the approach to a
visual analytics system. In doing so, the challenges of presenting dense informa-
tion could also be handled by incrementally providing the abstracted information
to the user, which is typical in a visual analytic system.

6.6.3 Communication between Entities

In addition to the survey responses, some participants and members of the Pom-
merman community also shared informal feedback through Discord. Being able to
communicate with a teammate is a new feature in the Pommerman 2019 competi-
tion. Community members suggested including this information in histograms to
reflect the temporal density of communication between teammates, which we im-
plemented for a follow-up version of the tool. Visualizing communication between
entities is also relevant and valuable for other environments beyond Pommerman.
However, in dynamic scenarios where the communication protocols support the
exchange of human-understandable words, only representing the temporal den-
sity will not provide sufficient details during the analysis. In that case, we need to
extend the approach, to include other visualizations, e.g., word clouds.

6.6.4 Alternate Uses of the Visualization

Apart from using the approach during the development of AI agents, the Pommer-
man community members also expressed interest in adapting the tool to illustrate
agents’ behavior as part of presentations. The creators of the Pommerman environ-
ment used our approach to analyze the behavior of winning agents in the Pommer-
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man 2019 competition and to present the final results4. Additionally, the approach
was awarded in the Pommerman 2019 competition5. The experience opens up a
research direction to further investigate alternate usage scenarios of visualizations
in AI-based multi-agent games (e.g., in enhancing the spectator experience during
live competitions).

6.6.5 Generalizability

The proposed approach is targeted at developers of agents for the Pommerman
environment. However, going beyond AI agents, the proposed approach could be
extended to the analysis of human players. Also, it would be applicable to an-
alyze the group behavior in other dynamic scenarios where agents (or players)
are split into two teams and the number of players is small. For instance, the
approach could visualize multiplayer online battle arena games such as League
of Legends [176], where team coordination is essential. However, the visualization
would not scale to many players. While other games may feature many more in-
game items than Pommerman, in many cases, these can be restricted to a small
number that is most important, for instance, capture points in League of Legends.
More generally, we envision parts of the approach applicable for diverse applica-
tions where analyzing interactions between entities (humans, robots, objects, etc.)
is vital to understand group dynamics.

4 (Accessed May 2023) https://bit.ly/3OT7Hbp

5 (Accessed May 2023) https://twitter.com/Pommerman/status/1206101858336395264

https://bit.ly/3OT7Hbp
https://twitter.com/Pommerman/status/1206101858336395264
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S PAT I O - T E M P O R A L A N A LY S I S O F A G E N T I N T E R A C T I O N S
I N PAT H P L A N N I N G

In the last chapter, we studied the event sequences and interactions between en-
tities in a small-sized multi-agent environment. In larger environments, there is
more space for movement and more entities to interact with. In these environ-
ments, an integrated analysis of the interactions and spatio-temporal analysis be-
comes essential to understand the exhibited group dynamics. The movement pat-
terns and analysis tasks vary based on the characteristic features of a scenario
(e.g., understanding movement on fixed paths) [177]. Thus, we focus on an envi-
ronment where agents coordinate their interdependent movements while handling
dynamic obstructions (RO 2.3), which are crucial to solving complex problems in
multi-agent systems [178, 179, 180].

As mentioned in a survey [180], the application areas of such cooperating agents
include usage in the city to anticipate future traffic behavior in simulated environ-
ments (e.g., [181, 182]) or to optimize scheduling (e.g., [183, 184]). To optimize the
behavior of agents, visual analysis of their spatio-temporal interactions could lead
to an understanding of their interdependence and coordination. Hence, a number
of visualizations have been proposed to analyze the spatio-temporal behavior in
a related scenario, i.e., traffic data analysis (see a survey [185]). However, in the
scenario, entities act independently and do not coordinate their actions. Hence, in-
ferring the performance of planning and coordination among the entities in such
conditions is not possible.

In this chapter, we focus on a multi-agent environment where a fixed-track net-
work constrains the agents and aims to analyze their coordinated movement be-
havior. Although we use a simulation environment to build our approach, in real-
ity, the fixed tracks can be a physical delimiter, such as a rail or a virtual track that
the agents must not leave (e.g., robots moving in a warehouse). More specifically,
the visualization approach is based on the Flatland environment [18], a testbed for
developing agents that act as trains that move on virtual rail networks. The goal is
to schedule trains to reach their target destinations within minimum travel time, as
explained in Section 7.1. As a first step, the analysis goals were formulated based
on the interviews with three domain experts (Section 7.2). Then, the visualization
approach, as explained in Section 7.3, was developed in two iterations. The first
version was used to gather feedback from experts with different backgrounds and
was later refined to analyze insights from the data of the Flatland 2020 NeurIPS
Competition. Feedback from the experts (Section 7.4) and insights from analyzing
winning submissions in the competition (Section 7.5) demonstrate the effective-
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Figure 7.1: A sample map of the Flatland environment. The virtual trains, modeled as agents,
move on the fixed tracks to reach their destination station.

ness of the approach. Finally, the chapter concludes with reflections on the lessons
learned and future work (Section 7.6).

7.1 the flatland environment

Flatland [18] is an open-source project that simulates train scheduling on different
maps of rail networks. Each map is a 2D grid consisting of railway tracks on
which the trains can travel and stations as destinations for the trains (Figure 7.1).
Different levels exist that vary in grid size, number of stations, and trains to be
scheduled. Within each level, different maps are produced that differ in the rail
network layout and rate of malfunctions among trains. On a map, each train has a
starting position on a track and a station as its destination. The trains do not have
intermediate stops on their journey. Trains travel at a constant speed of one tile per
timestep and cannot move backward. No two trains can be present on the same tile
of the grid at the same timestep. The challenge is to schedule and steer the trains
so that they reach their destination in minimum time. An episode in Flatland is
one run of a scheduling technique on a map. Each episode has a maximum time
limit, which scales with the size of the map and after which the episode ends, even
if some trains are still on track. Also, trains can randomly experience malfunctions
during the episode, which restricts their movement for some time.

In machine learning terminology, each train is modeled as an agent. Hence, it
becomes a multi-agent scheduling problem, where agents need to collaborate and
come up with an optimized schedule while handling malfunctions at runtime. The
Flatland environment supports customizing agent observations (i.e., what each
train sees in the rail network), which is crucial for agents to make decisions during
runtime. To advance machine learning research, two Flatland competitions have
been organized (in 2019 and 2020 at the AMLD and NeurIPS conferences).
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While developing a scheduling technique for Flatland, the experts need to ana-
lyze the paths followed by the trains and discover issues (e.g., situations leading
to a deadlock) to fine-tune the technique and improve its performance. Usually,
the experts rely on watching episode playbacks, which is inefficient or can be
inconclusive due to several key challenges. First, in Flatland, the effect of errors
or sub-optimal agent decisions is only often visible much later in the episode. Re-
membering and linking the decisions of each agent to their effect becomes difficult
in the playback. Second, understanding agent coordination behavior in Flatland is
crucial for further improvement of the scheduling technique, which, however, can
hardly be monitored in the playback. Currently, the experts rely on performance
statistics (e.g., the percentage of trains that reached their destination) as a proxy
for agent coordination behavior. However, it is insufficient, as they do not help the
experts to understand and improve the qualitative aspects of coordination behav-
ior in global and local areas of the network. Third, the experts need to identify
unusual agent behavior within the context of the network (e.g., the formation of a
long queue due to an agent waiting on a single track connecting distant stations).
While individual issues like these might surface when watching the playback, it
requires stepping back and forth to reconstruct their history, whereas other related
issues might stay unnoticed. Fourth, a detailed comparison of alternate schedul-
ing approaches, even on the same map, is impractical as two videos are difficult
to watch at the same time. Also, watching them one after the other requires high
cognitive effort to remember relevant details for comparison.

7.2 analysis goals

To understand the information needs of Flatland experts regarding the visualiza-
tion of single episodes, we conducted interviews with three experts (E1 to E3).
Each interview took about 30 minutes. E1 had a main role in organizing the
Flatland competitions and providing technical support for participants. E2 was
affiliated with the Swiss Federal Railways (SBB – Schweizerische Bundesbahnen,
a Flatland partner) and analyzed the scheduling behavior of trains in Flatland,
as well as substantially contributed to the code base of the environment. E3 is
an artificial intelligence professional affiliated with the German railway company
Deutsche Bahn (DB), also a Flatland partner, and explored agent-based scheduling
techniques in Flatland. Based on the interviews, we derived five specific analysis
goals (G1 to G5).

First, all experts wanted to obtain an overview of the schedules of individual
trains in an episode (E1, E2, and E3). Expert E1 highlighted the need to analyze
junctions crossed by a train (as they are crucial locations for making a decision),
the occurrence of malfunctions, and deadlock events. E1 and E3 also stressed the
importance of statistics (e.g., the number of trains that reached their destination).
E2 mentioned the need to focus on trains that did not reach their destination.
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G1 � Overview of Schedules: Get an overview of events and actions (e.g., de-
parture time, junctions crossed, movement, etc.) for each agent. Also, inspect
important statistics for an individual episode.

E2 highlighted the need to analyze the use of resources in the rail network,
for example, finding out the busiest routes in the network. E3 used specific en-
vironments to judge the scheduling behavior through resource utilization of a
scheduling technique where the best-case scenario is known beforehand. The ex-
pert mentioned relying on playback, focusing on a lower number of trains, and
observing the behavior by following individual trains.

G2 � Resource Utilization: Analyze the utilization of resources in the net-
work: tracks connecting distant places, critical junctions, and areas with a
high number of stations or unusual agent behavior.

E2 also mentioned the need to assess the efficiency of train schedules, for in-
stance, how delayed trains were in reaching their destination. Since this assess-
ment needs some reference, the expert usually compares the actual path of the
train with the shortest path, assuming there is no other train in the rail network.
E3 also mentioned that the shortest path plays an important role in deciding re-
wards, which is crucial for reinforcement-learning-based scheduling approaches.

G3 � Path E�ciency: Assess the efficiency of the actual paths taken by agents.

Understanding the cause of issues (e.g., deadlocks, malfunctions, and bottle-
necks) is important to improve a scheduling technique. E2 highlighted the need to
understand what has happened in the immediate past to investigate the reasons
leading to a deadlock. Adding further, E2 and E3 mentioned that it is important to
see how other trains reacted to these issues and to be able to observe which areas
in the rail network were affected.

G4 � Issues: Investigate the cause and effect of issues, e.g., deadlocks, mal-
functions, and bottlenecks.

Finally, E1 and E2 highlighted the need to explore scheduling strategies exhib-
ited by the collective and simultaneous movement behavior of a group of trains
globally and in local areas. Since Flatland promotes experimentation with different
scheduling techniques (e.g., reinforcement learning, operations research, hybrid
approaches), the exploration of scheduling strategies should be model-agnostic.
Such exploration is required to understand whether trains collaborate by reacting
to the actions taken by other trains or not. The experts gave two examples: (1) us-
ing parallel tracks for one-way traffic and (2) trains following each other with
minimal gaps.
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G5 � Scheduling Strategies: Explore the scheduling strategies through collec-
tive and simultaneous movement behavior of a group of agents.

An additional requirement resulted from later expert feedback (cf. Section 7.4)
and was taken into consideration for a revised version of the approach. Partici-
pants suggested a comparison between two episodes (different scheduling meth-
ods or variants of the same method) on the same network. Such comparison would
help developers experiment with new ideas and understand the differences be-
tween their approach and past top-performing solutions. It would also help or-
ganizers of the competition to explore and report qualitative differences in the
scheduling behavior of different submissions.

G6 � Comparing Schedules: Compare agent schedules, resource utilization,
efficiency, and strategies between two different episodes.

To better understand the interests of the Flatland community and observe the
setup of the Flatland 2020 NeurIPS Competition, one of the collaborators in the
project—who has a background in visualization research—regularly attended the
weekly community meetings held online for three months. Likewise, a person
from the Flatland community collaborated with us and attended our meetings.

7.3 our visualization approach

Based on the analysis goals, we propose a visualization approach to help analyze
the train movement behavior in Flatland episodes. The approach consists of three
linked views providing different perspectives on the train movement data. Fig-
ure 7.2 and Figure 7.3 show the full interface of the proposed approach.

The approach was developed in two iterations. We implemented the first version
during the Flatland 2020 NeurIPS Competition and collected feedback from a diverse
group of experts. Based on the results, the approach was further extended in the
second iteration after the competition ended.

7.3.1 The Episode Selection Panel

On top of the interface (Figure 7.2a), a line chart shows the percentage of trains
that reached their destination along various test levels for each scheduling tech-
nique. Since there are multiple maps of similar size for each level, the line chart
shows circles to mark performances on each map for all levels. A level, map, and
scheduling technique for an episode can be selected by clicking on the circles in
the line chart or via drop-down lists on the left. Once selected, we show statistics
about the number of trains in the episode that needed to be scheduled, the per-
centage of trains that reached their destination, and the number of trains based on
their end status ( that reached their destination, still on-track, and did not
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start) (G1). For comparing schedules from two episodes on the same map (G6),
we use two colors—blue ( ) and orange ( )—consistently across the interface to
identify the unique characteristics of the selected scheduling methods in episode
A and episode B, respectively (Figure 7.3).

7.3.2 The Timeline View

To provide an overview of an individual episode (G1) and compare two episodes
(G6), we integrate a timeline view (Figure 7.2b). Positioned at the left, the time-
line view visualizes the trains in different rows (entity identifiers ), with time
progressing from left to right (entity timeline ; Figure 7.2b1). The developers
usually analyze the trains based on their end status, for instance, assessing the
path efficiency of the group of trains that reached their destination ( ) vs. explor-
ing the reasons behind the group of trains that started and were still on-track ( )
until the end of the episode. Hence, in the timeline view, the trains are grouped
according to their end status. Within each group, trains are ordered based on their
starting time.

For each train, we show the important events that occurred during its jour-
ney (event identifiers ; G1). The departure of a train is encoded as a black ring
( ), while a filled gray circle ( ) denotes arrival. Since trains mainly make route
decisions at junctions, we also encode reaching a junction by a diamond shape
( ). Movement is depicted as a colored line ( , ). Malfunctions are rep-
resented by a colored cross with a tail ( , ), where the length of the tail
denotes the duration of the malfunction (G4). Aiming to visualize issues in the
movement of trains, we use the only direct agent interactions present in the data:
head-on collisions. We detect simple cases of deadlocks where trains on a track are
moving towards each other without having their destinations on tiles of the track
between them and no alternate routes to pursue. We represent detected deadlock
events (G4) as colored squares ( , ) for individual trains at the position when
the train was blocked and connect it to deadlock events of other trains involved
in the same deadlock via colored horizontal and vertical lines (cf. last five rows
in Figure 7.2b1).

At the right of the timeline, the destination station of each train is shown in a
column, together with statistics of the path taken (Figure 7.2b2). Since the origin
of trains in the Flatland environment is not a station but an unlabeled location on
a track, we do not specify the train origin in the timeline view. Furthermore, to
assess the efficiency of a train’s route (G3), we calculate the length of the actual
path taken and compare it with the shortest possible path between the origin and
destination, assuming that all tracks are available for movement. The actual path
length is shown by a horizontal bar in the color of the respective episode, while the
bars for the shortest path length are colored in green ( , ). For trains that
did not reach their destination at the end of the episode, the actual path length



96 Exploring Complex Group Dynamics

a

b

d

c

Fi
gu

re
7
.3

:
Sc

re
en

sh
ot

of
th

e
pr

op
os

ed
ap

pr
oa

ch
co

m
pa

ri
ng

th
e

tr
ai

n
sc

he
du

le
s

pr
od

uc
ed

by
an

op
er

at
io

ns
re

se
ar

ch
te

ch
ni

qu
e

by
te

am
o
l
d
_
d
r
i
v
e
r

an
d

a
re

in
fo

rc
em

en
t

le
ar

ni
ng

te
ch

ni
qu

e
by

te
am

j
b
r
_
h
s
e

on
a

se
le

ct
ed

Fl
at

la
nd

ep
is

od
e

(L
e
v
e
l
1
9
,
M
a
p
2

).



Chapter 7 97

might be less than the shortest path length. To avoid confusion, we show the actual
path length of trains on track by an unfilled bar ( , ).

To provide a temporal overview aggregated across all trains (G5), we include a
histogram at the bottom of the timeline view (event density field ; Figure 7.2b3).
The height of each bar in the histogram represents the summed value of a selected
metric aggregated across ten timesteps. In the case of comparison (G6), colored
bars extend in opposite vertical directions with a common horizontal axis ( ).
Available metrics, which can be selected by clicking on the gear icon ( ), are (i)
distance traveled (default selection), number of trains (ii) departing, (iii) arriving,
(iv) experienced malfunctions, and (v) the number of crossed junctions.

7.3.3 The Map View

Positioned at the top right of the interface (Figure 7.2c), the map view provides
a spatial perspective of train movement in the rail network. Instead of using the
original map representation, which contains a lot of graphical sugar (e.g., irrele-
vant elements such as trees, cf. Figure 7.1), we decided to design a more abstract
representation focusing on the rail tiles. The stations are labeled (e.g., S1), while
each train is represented by a numbered circle, with a white dot showing its direc-
tion of movement. Since the size of the rail networks in Flatland episodes can be
large, the map view supports zooming and panning interactions. The movement
of trains on the rail network is shown using animations, which can be enabled
through playback controls at the bottom of the view (scene view ). To highlight
the utilization of each rail tile (G2), we show on demand the occupancy time as
a heatmap (Figure 7.2c) on a reddish sequential scale ( ). When
comparing two episodes (G6), occupancy difference distribution is shown as a
heatmap on a sequential scale from blue to orange ( ).

For analyzing the utilization of specific resources in the network (G2) and de-
tails of train movements (G5), it becomes important to focus on specific regions.
Since different regions can be of interest during the exploratory analysis, with
different strategies for defining regions, we opted for a flexible selection of the
regions of interest. We provide two modes of selection in the map view, which
can be activated by the two icon buttons at the left of the view. The first mode
is a rectangular selection through mouse drag ( ). With this, also, a single tile
can be selected as a region by left-clicking. The second mode selects a clicked rail
segment between two junctions ( ). The selected regions are assigned a label
and are highlighted by semi-transparent gray rectangles (Figure 7.2c). All selected
regions can be cleared by clicking the respective button ( ).
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7.3.4 The Graph View

To analyze the movement of agents between selected regions (G5), we integrate
a graph view in our approach. Positioned at the bottom right of the interface
(Figure 7.2d), it contains a directed node-link diagram, where a node represents
a selected region. Movement between regions is represented by the links between
the nodes (trajectory view ). The size of a node indicates the number of trains
that have been in the corresponding region at least once. A train can move between
two regions multiple times, and the width of a link represents the number of such
transitions across all trains. Regions not traversed by any train are represented
by unfilled circles. The node-link diagram is drawn using a force-directed layout,
where the initial position of the nodes is set to the position of the selected region
in the map view.

Two variants of the graph are selectable. First, the aggregated graph, as shown
in Figure 7.2d, provides an overview across all timesteps highlighting the collec-
tive movement of agents in a static visualization. In the comparison mode (G6),
as shown in Figure 7.3d, a pie chart is drawn inside each node of the aggregated
graph to compare the number of trains in the selected region among the two
episodes. Similarly, a pie chart for each link is added (positioned in the middle of
each link) in order to compare the number of trains moving between the regions.
Second, the animated graph, available in case only a single episode is selected for
analysis, shows the trains moving between regions for the current timestep. For in-
stance, an excerpt of an animated graph is shown in Figure 7.6a. The blue-colored
node R3 indicates that there are trains in the corresponding region, while a small
circle on the link from R4 to R3 indicates a train moving between the regions.

7.3.5 Interactively Linked Views

With the selection of a single episode, playback can be viewed with the controls be-
low the map view (G3, G4, and G5). This shows the train movement on the map
view and the graph view (if the animated graph is active), along with the syn-
chronized dark blue time-slider on the timeline view. Furthermore, we integrate
highlighting consistently across the views as illustrated in Figure 7.4. Hovering
over a train in any of the views highlights the corresponding row and circles with
a yellow background in all views. For example, in Figure 7.4a, the row of Train 009
was hovered in the timeline view, hence, the train was also highlighted in the map
and the animated graph. Accordingly, hovering over a region in the map or graph
view highlights all the trains that have visited the region. For instance, in Fig-
ure 7.4b, hovering over the rectangular region R1 reveals that nine trains visited
the region. Additionally, a semi-transparent gray rectangle in the timeline shows
the periods spent in the region by the corresponding train (G2). Hovering over
a station label in the timeline or map view highlights the trains heading to this
station (Figure 7.4c). A supplemental video [186] demonstrates these interactions.
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Figure 7.4: Linked interactions across the timeline, map, and graph view. Hovering highlights
(a) an individual train (e.g., Train 009), (b) trains that visited the selected region (e.g., R1),
and (c) trains with a common destination (e.g., S1) in all the three views.

7.3.6 Dataset

In the first version, we included the schedules generated by the two leading re-
inforcement learning and operations research approaches at the beginning of the
competition. The generated schedules were for four different maps of the Flatland
environment. Hence, we obtained data from eight episodes that can be selected
by a drop-down list in the episode selection panel (Figure 7.2a). The name of an
episode reflects the scheduling technique used: RL for reinforcement learning and
OR for operations research. In the second version, we included the data from the
top four winners of the competition across twenty test levels, each containing ten
maps [187]. Hence, we added the data of (4×20×10 =) 800 episodes.

7.4 expert feedback

We collected expert feedback on the first version of our approach in a question-
naire study providing the tool online. The first version did not contain the compar-
ison features (which were added as a result of the study), the additional dataset
from winning submissions, or the line chart showing summary statistics (Supple-
mentary Figure 1 [186]). The survey was advertised on the Flatland forum, through
social media and personal email, calling specifically for experts in artificial intelli-
gence and visualization. For this study, the tool contained data from eight sample
episodes from two scheduling techniques on four maps of the Flatland environ-
ment.
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7.4.1 Questionnaire

At the start of the questionnaire, demographic information of participants was
gathered, such as their self-rated expertise in artificial intelligence, information vi-
sualization, and operations research (on a 5-point scale anchored by 1 = no knowl-
edge and 5 = expert), and their background with the Flatland environment (cf. Fig-
ure 7.5b). Next, the participants were asked to explore and familiarize themselves
with the visualization freely. An optional video explaining the available features
and interactions was also provided to assist in getting familiar with the tool. This
was followed by questions regarding insights gained. Participants were invited
to name and describe up to three insights they found most interesting. Specifi-
cally, we also asked them to elaborate on if they found any differences between
reinforcement learning and operations research approaches. Then, for each of the
three views, participants were asked to rate how useful and complementary to
the other views it was on a 5-point scale anchored by 1 = strongly disagree and
5 = strongly agree as well as to provide feedback on what they liked and disliked
about it. Next, the survey inquired about the system as a whole, asking to rate its
helpfulness with respect to the analysis goals (cf. Section 7.2) using the same scale
as above and to reflect what they generally (dis)liked about it. Lastly, we obtained
general feedback for which tasks the visualization was deemed helpful and if any
important information or features were missing or unnecessary.

7.4.2 Participants

In total, 12 participants took part in the study. For analysis, we required partici-
pants to have good knowledge in at least one of the three fields (artificial intelli-
gence, information visualization, or operations research). Hence, we include only
responses from participants who rated themselves as 4 or higher on our expertise
scale in at least one of the areas, resulting in 10 participants referred to as P1 to
P10 in the following. As shown in Figure 7.5(a-b), seven participants (P1, P2, P3,
P4, P6, P9, and P10) were experienced in artificial intelligence (AI), three (P3, P4,
and P5) in operations research, and five (P6, P7, P8, P9, and P10) in information
visualization. Six participants had some background with the Flatland environ-
ment, such as helping in organizing the Flatland competitions (P1, P2, P4, P5, and
P6), participating in the competitions (P3, P5, and P6), or developing scheduling
techniques in the Flatland environment (P1, P2, P3, P4, and P5).

7.4.3 Feedback Analysis Results

A summary of the feedback results can be found in Figure 7.5 (c-k). In the follow-
ing, we report the results of the feedback analysis along with the structure of the
questionnaire.
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Figure 7.5: Experience of the experts in the three areas (a) and their background with the
Flatland environment (b). Expert ratings of the three views of the visualization (c-e), analysis
goals (f-j), and the overall system (k).

Insights Discovered. Four experts (P1, P2, P3, P6) reported observing the occur-
rence of deadlocks. Two of them (P1, P6) found it insightful to see the trains linked
to a deadlock, and P2 remarked to have been able to investigate situations in which
a deadlock occurred. P3 liked “that the moment of a deadlock is shown at the time it
becomes inevitable, rather than when the trains actually stop moving.” P7 used the his-
tograms at the bottom of the timeline view and observed that the occurrence of
malfunctions was spread over an entire episode’s length. Regarding the efficiency
of paths, P1 reported comparing the lengths of the actual path and the shortest
path of the trains. Furthermore, P7 observed that trains with a high number of
junctions in their timeline have a much longer actual path length than the shortest
path. P2 described using the visualization to “see the density of traffic over time.”

Strategies for Defining Regions. The experts reported selecting rectangular re-
gions (P2), single tiles of the grid (P7, P9), and individual rail segments in different
combinations (P7) for further in-depth exploration. The experts also mentioned
some of the important areas in the railway network that affect the scheduling.
These include individual stations (P7, P9), dense areas with many junctions (P3)
or nearby stations (P2), long single railway lines (P3), and single tracks at central
positions (P1). An expert (P9) elaborated on using the heatmap to identify the
most occupied parts of the network and selected them as regions.
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Differences in Scheduling Behavior. Four experts (P6, P7, P8, P9) reported that,
unlike the reinforcement learning solution, train schedules from the operations
research had no deadlocks. Hence, the latter approach is able to schedule all the
trains to their destination station (P6, P7, P8, P9). Highlighting a key difference
between the two approaches, two experts (P3, P6) mentioned that the operations
research approach shows a clear pre-planning of train paths until their destination.
In addition, four experts (P1, P7, P8, P9) mentioned that the starting times in
the train schedules of the reinforcement learning approach are spread across the
entire episode length. P9 also reported that trains cross fewer junctions in the
reinforcement learning approach.

Timeline View. Experts reported that they liked the timeline view as it provides
an overview (P7, P10) and contains necessary information such as start/end events
and duration of train movements (P8), deadlocks (P1, P6, P8), path lengths (P1, P4,
P8), and density (P1), along with the distribution of the trains over time (P2). Two
experts (P6 and P9) liked the linking of the timeline view with the other views,
and P9 appreciated the sorting of trains based on their starting times. Experts
disliked the inability to zoom in on a specific timespan (P1), reserved white space
for trains that did not even start (P7), and the lack of a multi-selection feature for
comparison (P8). P4 suggested extending the design to allow for the comparison
of schedules from two solutions in the same view, while P10 remarked that the
view contains too many details.

Map View. Nine experts (all except P5) rated the statement that the map view is
useful for analysis and complements well the other views as 4 or higher (Figure 7.5d).
The experts liked the heatmap (P5), the ability to follow individual trains exactly
(P2, P7), the capability to define regions of interest (P3, P6), and to see the hovered
region on the timeline of trains (P6). P1 stated to like the view because it “allows to
investigate in more detail situations like deadlocks identified in the timeline view”, which
was also mentioned by P8. One participant, P9, was fond of the abstraction of
railways, while P10 appreciated the simplicity of the map view. With respect to
shortcomings, two experts (P1, P8) thought that the view is too small to show big
rail networks. P3 suggested including a more flexible shape for defining regions
in addition to rectangles.

Graph View. Four experts agreed (rating of 4 or 5), five experts were undecided
(rating of 3), and one expert disagreed (rating of 2) with the statement that the
graph view (aggregated + animated) is useful for analysis and complements well the other
views (Figure 7.5e). Four of the neutral or negative replies (P2, P4, P5, P7) did not
contain further details to explain the rating. However, P3 mentioned that it was
unclear what was happening in the graph view, while P8 highlighted that deleting
one region is currently not possible in the tool. On the other hand, three experts
(P1, P2, P8) liked the abstract representation of train movement through graphs,
a feature that P3 considered innovative. In addition, P7 mentioned that “it was
good to get the flow and amount of traffic between any two or more regions of tracks.”
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Furthermore, the experts liked that the view can be used to investigate frequent
routes (P6) or situations in which trains visit regions multiple times (P4). P8 and
P9 appreciated the animation in the graph view. P9 reported the inability to select
a time range for the aggregated graph.

Analysis Goals. Except for one analysis goal (G3), ratings of the others reflect that
the experts tend to agree with the statements that the system helps to achieve the
respective analysis goals, as shown in Figure 7.5(f-j). Investigating the responses to
understand the relatively low ratings for analysis goal G3 (Figure 7.5h), P4, who
gave a rating of 2, did not provide any details. The experts commented about the
small size of the map view (P1, P9) and suggested including more linking between
the timeline and map views (P7).

Overall System. All but one expert agreed with the overall statement that the sys-
tem supports detailed analysis of train schedules (Figure 7.5k). Experts liked that the
system is intuitive (P3, P8), interactive (P8, P10), provides the ability to analyze
multiple aspects of the data (P2, P6, P9), and is useful for extracting insights (P1,
P4, P7). However, experts also mentioned that comparing different scheduling ap-
proaches is difficult (P9) and highlighted that the agent observations (what each
train saw; specific to reinforcement learning) are missing (P1, P3). Five experts (P1,
P2, P3, P4, P5) commented that the visualization is helpful in diagnosing specific
situations (e.g., deadlocks) and debugging scheduling solutions. Four experts (P4,
P8, P9, P10) reported the usefulness of the visualization in analyzing the schedul-
ing strategies and unexpected behaviors. In addition, P1 mentioned that the visu-
alization is useful for experimenting with new reinforcement learning solutions,
while P7 highlighted its usefulness for improving agent performance. The experts
also listed several missing features they would use, such as filtering capabilities
to analyze only specific trains (P1) and the ability to select a time range for anal-
ysis (P9). The experts also highlighted the need for an overview to select specific
episodes (P9) and especially the ability to compare two scheduling approaches
(P4, P6, P7, P8), which were implemented in the revised version of the prototype.

7.4.4 Limitations and Discussion

Due to the online setup of the feedback study, experts explored the tool freely
without being monitored by us. However, given the informed answers they pro-
vided to the qualitative questions, we do not have reasons to believe that they did
not sufficiently engage with the tool to make an informed judgment. Generally,
the recruitment through connections to the community and personal invitation
might have biased the results as experts potentially replied more positively and
compliant. However, we tried to counterbalance by asking directly for criticism
and options to improve.

The expert feedback indicates that the proposed visualization approach fulfills
the analysis goals while addressing the specific challenges of the Flatland environ-
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Step: 133

(a)

Step: 168 Step: 169 Step: 170 Step: 171

(b)

Figure 7.6: (a) The animated graph shows the movement of trains between the selected
regions in step 133, while the map view (b) shows the occurrence of a deadlock between two
trains (episode Level 11, Map 1 by team marmot).

ment. However, the experts also suggested valuable features to enrich the analysis
of scheduling techniques. Acting on the expert feedback, we extended our ap-
proach to include summary statistics and comparison features. Since the experts
requested a detailed simultaneous comparison among two scheduling techniques
(P4, P6, P8), we focused on enabling comparison between two episodes in the ex-
tension. Since the data logs in Flatland do not include agent observations, it was
not possible to add this feature.

7.5 application : flatland 2020 neurips competition

To illustrate one specific use case, we apply our approach to analyze the top sub-
missions in the Flatland NeurIPS 2020 Competition. We used the second version
of the tool, which includes comparison features. The competition was won by
an operations research (OR) technique by team old_driver. The next three ranks
were awarded to three reinforcement learning (RL) based solutions: 2

nd position:
jbr_hse, 3

rd: netcetera, and 4
th: marmot. For evaluation, the competition orga-

nizers used different levels with varying grid sizes. Within each level, ten maps
with different rail network layouts and rates of malfunctions were used. Each
team’s submission was evaluated and compared on the mean normalized score
to determine the final ranking. Generally, completing more levels with a higher
percentage of trains that reach their destination in lesser time leads to a higher
mean normalized score, among other variables that affect the score, such as local
rewards for each agent (see [18] for details). Next, we present the insights found
while analyzing the winning solutions with our approach. The tool is available in
the supplemental material [186] and has also been hosted on the web1.

Deadlock Propagation. Selecting an individual episode, Figure 7.2 shows the train
schedules by team marmot on Level 11, Map 1. Overall statistics at the top show
that ∼81% of trains (21 out of the total 26) reached their destination, with five
trains still on track until the end of the episode (G1). From the timeline view (Fig-

1 (Accessed May 2023) https://s-agarwl.github.io/fv

https://s-agarwl.github.io/fv
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ure 7.2b1), showing the group of trains on the track at the bottom, we can see
that all 5 trains were involved in a deadlock (blue square boxes connected with
blue lines). We also infer that the deadlock first occurred between trains 010 and
015, having different destinations (S2 and S5, respectively). Focusing on the two
trains, using the playback controls, we navigate to the time before the deadlock.
The two trains headed towards each other in opposite directions on a single track,
leading to a deadlock, as shown in Figure Figure 7.6b. Knowing about this ineffec-
tive coordination in a specific scenario, suitable techniques can be used to improve
the performance, e.g., better agent observations or communication among agents.
Later, the deadlock propagated and affected the trains 001, 017, and 013, all head-
ing towards station S2 (G4).

Inefficient Paths. Investigating the path efficiency between distant stations, we
select a single railway line between station S5 and stations S1 and S4 as region
R2, as shown in Figure 7.2c1 (G2). Assessing trains that reached their destination,
we focus on the first group of trains ( Reached) in the timeline view. From Fig-
ure 7.2b2, we observe that seven trains (008, 009, 019, 007, 011, 022, and 020) had a
much longer actual path length than the length of the shortest possible path (G3).
Then, analyzing the trains that did not reach their destination ( ), we see that
trains 010 and 001 have followed a much longer path than the shortest path length.
The inefficient movement can be explained as both experienced malfunctions that
could have altered their originally intended route twice.

Assessing Parallel Tracks Usage. Parallel tracks have several benefits that can
be utilized by scheduling techniques. For example, considering them as one-way
tracks avoids the possibility of a head-on collision, or they can be used as tem-
porary parking spots, giving priority to other trains. To assess the parallel track
usage, we need aggregated information on the direction and the movement of
trains on the parallel tracks. We select three regions: two tiles on each of the par-
allel tracks (R4 and R5) and a tile on a railway line common to trains using either
parallel tracks (R3), as shown in Figure 7.2c2. From the aggregated graph (Fig-
ure 7.2d), we observe that the reinforcement learning approach inefficiently used
only one of the two parallel tracks (one with region R4) to move trains in both
directions.

Comparing Usage of Parallel Tracks. To analyze the differences in parallel track
utilization among the two scheduling techniques, we select three single tile regions
on a parallel track in the map (Figure 7.3c). From the pie charts on the links
between regions R2, R3, and R4 in Figure 7.3d, we observe that OR strictly uses
the two parallel tracks to move trains in the two directions. The RL technique also
demonstrates this, but in a few instances, it used the left track from R3 to R2
(orange slice in the pie chart) to move trains in an upward direction rather than
the track on the right from R4 to R2 (G2 and G6). This was a specific way in which
the RL approaches improved towards the end of the competition. Observing the
data from the first iteration, the leading RL submission in the early phase of the
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Figure 7.7: Cutout of the proposed visualization comparing usage of the parallel track by
operations research technique and a reinforcement learning approach in the early phase of
the Flatland NeurIPS 2020 Competition.

competition shows both the parallel tracks being used for moving trains in both
directions (R1 ↔ R2 and R1 ↔ R3, as shown in the Figure 7.7; G5).

Frozen, Unable to Recover. Next, we compare the winning OR and RL scheduling
approaches of the competition. In episode A, we select the OR-based approach by
the team old_driver, as in episode B we select the RL solution by team jbr_hse,
and Level 19, Map 2. From the statistics at the top of Figure 7.3, we observe that
90 trains had to be scheduled. The OR approach was able to schedule all the trains
to their destination successfully. However, using the RL approach, only 69 trains
reached their destination, while 5 trains were still on-track and 16 trains were
still waiting to be scheduled before the episode timed out. Focusing on the group
of trains in the RL approach that was still on track ( ), we observe that five
trains (014, 039, 060, 054, and 016) were not blocked (absence of colored squares
and connecting lines), but stood still for a long period of time (white gaps) after
showing some movement (orange lines) (G1). Continuing the investigation in the
map view, from the occupancy difference heatmap, we observe (three) orange-
colored tiles ( ) on the top of the rail network, indicating that the trains from
episode B occupied these tiles for a much larger amount of time than trains in
episode A. Among them, to analyze the usage of a region in the rail network (G2),
we select a tile that had a junction ( ), resulting in a region-of-interest labeled R1.
Examining usage of the region for individual trains, we hover over the region and
observe that one of the five on-track trains (train 016) spent a lot of time staying
on top of the tile until the episode ended (Figure 7.3a). This is intriguing as more
trains in the OR passed through the tile than in the RL approach (pie chart inside
R1 in Figure 7.3d and tooltip in Figure 7.3b) (G2 and G6). In Figure 7.8, we see
that the trains got delayed (not blocked) because train 060 froze due to obstacles
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Step: 598 601 602 604 605597

Figure 7.8: Trains are stuck by waiting forever (not a deadlock) in Level 19, Map 2, scheduled
by the RL approach of the team jbr_hse.

on the two possible paths ahead, bringing three other trains (016, 039, and 054)
to a standstill (G4). The observations suggest that the RL approach is unable to
plan a conflict-free path for all the trains in certain scenarios, e.g., when there are
obstacles on all possible paths ahead (G5).

Recovering from Malfunctions. Analyzing an episode Level 19, Map 2, as shown
in Figure 7.3, the OR approach took much less time (colored lines in the episode
timeline tick at the top) (G1 and G6). Considering the fact that in the episode, the
OR approach witnessed more malfunctions in the beginning (histograms at the bot-
tom), it shows that the approach was able to deal with unplanned malfunctions
effectively. The actual path lengths of the trains that reached their destination in
both episodes seem to be similar (orange and blue bars on the right of the timeline
view), demonstrating a similar path efficiency of the two approaches (G3). How-
ever, for the OR approach, we observe huge differences between actual and shortest
possible path lengths in some trains with white gaps in their timeline, e.g., trains
014, 039, and 016 (longer blue bars than the green ones). This suggests that some
trains in OR had to wait long and had to move far to reach their destination (G5).

Failing Cases in RL. We investigated the failing cases of agent coordination among
winning RL approaches and documented our findings in Table 7.1. For analysis,
eight episodes were selected in which not all trains reached their destination. The
analysis revealed that jbr_hse occasionally runs out of time (due to episode time-
out), sometimes has indefinite waiting cases in areas with a high number of junc-
tions, and trains often just stay on top of junctions (G1 and G2). In contrast, trains
in netcetera often simply head toward another train from the opposite direction
without waiting for them (G5). Trains scheduled by marmot also exhibit a similar
behavior several times. In addition, sometimes, marmot moves the trains from their
origin towards another train coming from the opposite direction on the same track,
leading to a deadlock (G4).

7.6 discussion and lessons learned

The expert feedback and insights from the application example indicate the value
of spatio-temporal analysis to understand the interactions and behavior of mul-
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Table 7.1: Quantifying the reasons behind trains scheduled by RL approaches who did not
reach their destination. The evaluation was done on eight different episodes.

Episodes

Level number: 14 15 16 17

Map number: 1 5 7 9 9 1 2 1

Starting the train in origin

in opposite or wrong direction ................

jbr_hse

netcetera 1

marmot 1 1

Blocking a train from the

opposite direction without

waiting for them to pass through

jbr_hse

netcetera 2 1 1 2 2 1 1

marmot 1 1 1 2 1 1

Waiting indefinitely in areas

with a high number of junctions

or parking on junctions

jbr_hse 1 1 1

netcetera 1

marmot

Episode timeout
jbr_hse 1 1 1

netcetera

marmot

Frozen trains, unable to coordinate

when a viable solution is present

jbr_hse

netcetera 1

marmot 1

tiple agents (RO 2.3). More precisely, the visual analysis helped in understand-
ing the coordination among agents and specific situations in which their perfor-
mance could be improved. Based on our experience gained from designing the
approach and expert feedback, we discuss the scalability and generalizability of
the approach, along with the lessons learned that can be helpful for researchers
building visual analytics solutions for analyzing multi-agent movement behavior
in other related scenarios.

7.6.1 Scalability and Generalizability

Regarding scalability, the timeline view can accommodate ∼30 trains without scrolling
(a typical number in mid-size networks of Flatland). The approach is limited to
comparing two episodes only. One reason is that the timeline groups the trains
based on their end status ( , , ) and their combinations would grow expo-
nentially with the number of episodes to compare. Although the approach was
built specifically for Flatland, it could be potentially applied to other related en-
vironments. For instance, in analyzing coordination failures in multi-agent driv-
ing [188], e.g., identifying accident-prone areas, investigating deadlocks, etc. The
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approach can also be used to understand path planning efficiency, delays, and
coordination of airport surface operations (e.g., fuelling, passenger boarding, lug-
gage transit, etc.) through their movement on fixed paths connecting runways and
the airport [189].

7.6.2 Preserve a Static Map of Temporal Behaviors

Animations are easy to follow. However, when required to analyze interdependent
behaviors in detail, they demand a high cognitive load. Since the information
changes quickly, e.g., tracking the movement of a group of agents, the analyst
needs to remember a lot of information. Alternate techniques, e.g., 3D space-time
cubes, address the challenges and enable the users to change their point-of-view,
leading to new insights. However, a change in point-of-view challenges the mental
map of the analyst. Thus, remembering the spatio-temporal attributes of multiple
agents simultaneously becomes challenging. As a solution, the fixed timeline in
our approach shows the actions of each agent through a static view. We base the
layout on the context and analysis goals, e.g., grouping the rows based on the
agent status at the end of an episode and ordering them based on their starting
times within each group. This helped the users to construct a mental map about
multi-agent behavior (e.g., blocked agents early in the episode), while interactions
with the interface provided details without changing the overview of their actions.

7.6.3 Interactively Define Spatial Focus and Map it to Time

To understand the complex coordination behavior of agents, an in-depth analy-
sis of spatial and temporal information is required. A usual approach is to have
separate but linked views for each attribute. However, to study group behavior
in multi-agent scheduling scenarios, they are not enough. We learned two things.
First, domain-specific encodings and interactions help the analysts to focus on
specific regions, e.g., the selection of a railway line between two junctions. Second,
showing the effect of spatial selection on the temporal dimension helps reveal
unexpected insights. For instance, on hovering over the selection of a region of in-
terest in the map view, gray semi-transparent rectangular boxes are drawn in the
timeline view. This helps in discovering extended stays in a region (e.g., Train 016
in region R1 in Figure 7.3a) or leads to insights such as cyclic movement of agents
through a region-of-interest (e.g., Train 010 through region R2 in Figure 7.2).

7.6.4 Abstract Space and Aggregate Multi-Agent Movements

To understand coordinated behavior, experts rely on analyzing the collective move-
ment of agents over key regions in the environment. For instance, the usage of
parallel tracks. We learned that abstracting and aggregating the collective move-
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ment of agents over user-defined regions of interest helps to avoid details and
gain insights about the scheduling technique (Section 7.5). This lesson aligns with
the idea of spatial and temporal abstraction proposed by Andrienko et al. [190] to
analyze patterns in mass mobility data. Generally, the abstracted and aggregated
representations are put first in top-down exploration. However, in multi-agent
scheduling behavior analysis, we realized that a bottom-up exploration was first
necessary to identify specific agents and regions of interest. In a different context,
van den Elzen and van Wijk [191] describe a similar bottom-up approach as Detail
to Overview via Selections and Aggregations.
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8
V I S U A L I Z I N G E L E M E N T I N T E R A C T I O N S I N D Y N A M I C
O V E R L A P P I N G S E T S

In the previous chapters, we explained the individual visualization approaches
to explore complex group dynamics. The two important aspects of the group
behavior—the changing memberships in overlapping groups and interactions among
entities—were visually explored in individual prototypes for different scenarios.
However, the two aspects were not explored together in a relevant scenario. In this
chapter, we demonstrate through an example, how the proposed approaches could
be extended to analyze the group behavior with respect to the membership in
overlapping groups (RO 1.1) together with entity interactions (RO 2.2). Moreover,
the extension also ensures a focused analysis of an entity group or comparison
between two groups of entities (RO 1.2).

We model the multiple group memberships of entities as elements being mem-
bers in different sets. Now, since the elements may also interact with each other
over time, they mark an explicit connection between elements, which could also
affect their memberships in sets. Hence, a joint analysis of both aspects, although
challenging, could help to understand the temporal behavior better. For example,
a company (element) acquiring another company to diversify its portfolio of of-
fered products or services (sets), or collaborations between interacting members
(elements) of research communities (sets). There does not exist a dynamic set vi-
sualization technique that encodes the memberships in evolving overlapping sets
while showing the entity interactions.

In this chapter, we extend a proposed approach, Set Streams [104] (Chapter 3)
by embedding the interactions between elements while showing their changing
set memberships over time. We describe the proposed design in Section 8.1 and
demonstrate its effectiveness by insight from two application examples in Sec-
tion 8.2 (a) evolving business portfolio of interacting companies and (b) dynamic
collaborations among researchers. Finally, we discuss the limitations of the design
and ideas for future work (Section 8.3).

8.1 visualization approach

Set Streams [104] (Chapter 3), is a dynamic set visualization with a matrix layout
where rows represent partitions of overlapping set regions as exclusive set intersec-
tions and columns show the timesteps. Considering an example, if set A = {x,y}
and B = {y, z}, then there are three exclusive intersections with elements: [only in
A] = {x}, [only in B] = {z}, and [only in A ∩ B] = {y}. The layout of the technique
ensures low visual clutter, e.g., by partitioning the elements in exclusive intersec-

113
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tions and dedicating space for embedding temporal information on a static time-
line. Hence, the design suits our needs to embed the element interactions through
appropriate encodings without making the visualization complex.

The design of partitioning was initially proposed in UpSet [24], a static set visu-
alization, which avoids showing the multiple presences of an element in overlap-
ping regions, with each exclusive intersection in a row. For instance, a highlighted
row in Figure 8.1 shows the exclusive intersection of sets Search Engine, Social
Network, Gaming Console, Telecommunications, and Operating System. The streams
connecting adjacent columns encode the change in set memberships of elements,
while its width shows the number of elements. The streams coming from the top
at a particular timestep to a row represent the introduction of new elements in
sets, while downward streams to the bottom edge indicate the elements do not
belong to any set in further timesteps [104].

Embedding Interactions in the Timeline. We model an interaction as a hyper-
edge, which is a set of elements that are involved in an interaction at a specific
timestep. To show the element interactions, we modify the design of cells rep-
resenting an exclusive intersection at a specific timestep in the matrix layout. In
each cell, we put bars at the two ends to encode the number of contained elements

( ). Inside the empty region of a cell, we draw a vertical line connecting
rows (by small circles), showing aggregated interactions between elements in the
respective exclusive intersection rows. Interactions between elements within the
same exclusive intersection are aggregated and shown as a skewed rectangle on
the top right border of a node. The width of the skewed rectangles and vertical
lines encode the number of interactions within the same and between different
exclusive intersections, respectively.

Sorting the Rows and Interaction Edges. Set Streams has options to sort the rows,
e.g., by exclusive (k−) set intersections groups (default), decreasing order of car-
dinality in a timestep, etc. In addition, we implemented a row sort option by the
sum of the number of interactions across all timesteps. Within a timestep, the
interaction edges encoded as vertical lines are packed using first-fit greedy algo-
rithm [192]. Doing so reduces the required horizontal space within a node. Ad-
justing the column width for each timestep based on the number of interactions
would save even more space. However, we chose to have a fixed column width for
all timesteps to avoid confusion.

Linked Interactions. Hovering over an aggregated interaction hyperedge tem-
porarily shows the labels of participating elements in the first five interactions,
in the respective rows. For instance, the hovered vertical line in Figure 8.1 shows
an interaction between Microsoft and Nokia. To show details, e.g., the involved
elements in an intersection, we add a Show Details option as a radio button (Fig-
ure 8.2 top). Once checked, on the left-click of a hyperedge, the details are shown
in a panel on the top right (Figure 8.1). On selecting an element from the Element
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List, the yellow-colored streams and hyperedges are emphasized (by setting their
width as 5 pixels) to highlight its memberships and interactions. Hovering over
a row emphasizes the respective interaction hyperedges, as shown in Figure 8.2
for exclusive intersection [NLP, AI/ML]. Encoding the selection of two groups of
elements works as proposed in Set Streams: orange color shows elements in group
A, green for group B, and black for common elements. The element list is sorted
alphabetically by default, and on the selection of a group, the corresponding ele-
ments are reordered: first elements in both groups A and B, then those in group A,
then B, followed by the remaining elements. The visual query selection mechanism
of the groups is extended to include the interaction hyperedges.

8.2 application examples

Next, we discuss insights from two application examples. The implemented pro-
totype with the dataset of application examples is hosted online1.

8.2.1 Evolving Business and Interactions among Companies

Interactions (e.g., acquisitions and partnerships) between companies are common.
These interactions reflect business decisions and strategies that affect a company’s
portfolio. For this example, we manually collected a dataset of 23 companies (el-
ements) that offer products or services in six categories, namely, Search Engine,
eCommerce, Social Network, Gaming Console, Telecommunications, and Operating Sys-
tem. We collect the information from 1990 to 2023 and divide the duration into
seven timesteps, each representing a period of five years. It should be noted that
the dataset has been checked for its correctness, but it is not a complete record of
products or services or all interactions between the included companies.

Expanding Business Portfolio. Horizontal downward streams (in default sorting),
connecting rows from different k−set intersections, indicate the expanding port-
folio of companies. As shown in Figure 8.1, the expanding business of a selected
company Microsoft is visible through yellow colored edges going down with a
summary in the Details view. Until the last timestep, Microsoft offered products
and categories across all six categories, except eCommerce. Highlighted hyperedges
show the interactions of Microsoft with other companies. For instance, the hovered
line in the timestep 2010–2014 shows an interaction between Microsoft and Nokia.
The details of the interaction reveal that Nokia’s mobile and devices division was
acquired by Microsoft in 2014, which is how it ventured into the Telecommunications
business. Also, in the same timestep (2013), Microsoft acquired Yammer, an enter-
prise social network service, and started its business in the Social Network market
(as seen from the details in Figure 8.1 top right). Investigating interactions between
other companies in a similar way reveals similar insights, such as, EBay, an eCom-

1 (Accessed May 2023) https://s-agarwl.github.io/sets_interactions

https://s-agarwl.github.io/sets_interactions
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merce company that expanded its business by acquiring stakes in Skype (who made
Telecommunications software) in 2005. But later, EBay sold the shares to Microsoft
in 2011, and narrowed its focus back to the original business of eCommerce.

Early Companies in a Niche Market. Focusing on companies who initially made
Gaming Console, we specify a query in selection A to show the elements in the
union of the set at timestep 1990–1994 (Figure 8.1 top). The resulting three compa-
nies are shown in orange-colored streams. Sony, who made Gaming Console only,
expanded its business in the timestep 2000–2004 by making Operating System (Or-
bis OS, for PlayStation 4) and Telecommunications devices. Similarly, Nintendo started
making an Operating System for its gaming console in the timestep 2005–2009,
called Nintendo DSi system software, followed by Nintendo 3DS system software in
2011 and Nintendo Switch system software in 2017. An orange-colored vertical line
in 1995–1999 shows a partnership with IBM to make processors for Nintendo’s
consoles. On the other hand, Sega used to make only Gaming Console but stopped
doing so after 2014 and did not offer any products or services in the included cat-
egories. Changing its business strategy, Sega partnered with other companies that
made Gaming Console to make games for them. An interaction in 2000–2004 shows
its partnership to make games for XBox, a console by Microsoft.

8.2.2 Dynamic Collaborations among Researchers

We collect the dataset of scientific publications in five areas of computer science
and model them as sets: NLP, AI/ML, Graphics/Vis./HCI, Computer Architecture, and
Software Engineering. There are 380 experienced researchers in the filtered dataset,
with at least 30 publications between 1996 and 2019. The duration is divided into
six timesteps, each showing a range of four years. We model the co-authorship
in a publication as the interaction hyperedge between involved researchers in a
timestep.

Consistent Intra-group Interactions. In exclusive 1-set intersections across all
timesteps (the first five rows in Figure 8.2), we observe a steady presence of the
skewed rectangles on the top right of a node. It indicates that authors publishing
exclusively in one field have a stable record of co-authorship interactions within
the community. Additionally, we see a drastic rise in the number of interactions
between authors publishing exclusively in the fields of both NLP and AI/ML (in-
creasing width of skewed rectangles in the sixth row of Figure 8.2).

Early Cross-disciplinary Collaborations. Being interested in AI/ML and Graphic-
s/Vis./HCI, we wanted to explore who published early in both fields. Hovering
over the node of the first timestep in the exclusive intersection (the highlighted
row in Figure 8.2), we find there is only one such researcher, William T. Freeman.
We selected the author from the element list, which highlighted the author’s jour-
ney with yellow colored edges, as shown in the Figure 8.2. The horizontal yellow
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lines indicate that he consistently published in both research fields. The high-
lighted hyperedges mark his collaborations. Hovering over one such hyperedge
in the first timestep reveals the names of collaborating authors (blue annotations
in Figure 8.2). The interaction was between Hanspeter Pfister and Jessica K. Hod-
gins publishing exclusively in [Graphics/Vis.HCI] and William T. Freeman in the ex-
clusive intersection of [AI/ML, Graphics/Vis./HCI]. It indicates that the researchers
co-authored a paper that was published in the field of [Graphics/Vis.HCI]. Since
William T. Freeman is in the exclusive intersection of the two fields, it also means
that apart from this collaboration, in the same timestep: (a) he published at least
one paper in AI/ML venue not co-authored with either of the two researchers and
(b) the authors did not publish in any other research fields. Such interactions may
indicate the diverse expertise of individual researchers or that in interdisciplinary
projects, the required skill set in a different field of research is fulfilled by invit-
ing experts from other fields (e.g., William T. Freeman is an expert in AI/ML who
consistently contributed to the projects published in Graphics/Vis.HCI venue).

Growth in Collaborative Interactions. We observe that initially, there were no
exclusive high-order intersections, but later, some researchers started publishing
in multiple fields and interacted with others (Figure 8.2a). The width and the
number of vertical lines in each timestep indicate that the number of interactions
between researchers has been steadily increasing. Hovering over exclusive inter-
section [NLP, AI/ML] (Figure 8.2), we see the increasing width of emphasized
vertical lines with exclusive intersection [AI/ML], suggesting a steady growth of
collaborations between researchers publishing in the two fields. On the other hand,
there are only a few vertical lines connecting rows involving Computer Architecture,
suggesting minimal inter-disciplinary interactions with experienced researchers in
this field.

Interactions of Early Graphics/Vis./HCI Researchers. To explore the interactions
of early Graphics/Vis./HCI researchers, we specified a query to select all the ele-
ments that belonged to the set in the first timestep (Figure 8.2 top). The query
returned 41 such researchers, shown in orange color. The orange-colored area in
skewed rectangles on the nodes in the row and thin-colored vertical lines (e.g., Fig-
ure 8.2b) indicate that the researchers collaborated not only with others from the
same community but also with those from other communities.

8.3 limitations

The insights from the application examples indicate the value of analyzing ele-
ment interactions along with the changing memberships in overlapping sets. We
extended the design of Set Streams by embedding interactions of entities to show
the two aspects of group dynamics, namely, the evolving memberships in dynamic
overlapping groups and entity interactions (RO 1.1 and 2.2). However, the exten-
sion demonstrated only one possibility of a visualization design to show group
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behavior and did not systematically derive a design space for such extensions. In
this section, we discuss the limitations of the approach and ideas for future work.

8.3.1 Scalability

The scalability is almost similar to Set Streams (∼ 400 elements, ∼ 7 sets, 6-7
timesteps, and ∼120 interactions). Since the nodes are split and widened, fewer
timesteps could be shown. Horizontal scrolling could partly help. The compari-
son between selected groups is preserved, as proposed in Set Streams (RO 1.2),
but is limited to only two groups. Moreover, due to the increase in information
(specifically due to interactions), as compared to Set Streams, the visual analysis
becomes complex. The approach tackles this by abstracting and providing relevant
details on demand, but other solutions may be explored. For instance, providing a
visual summary of the interactions through short natural language text templates
and inline graphics, e.g., as proposed in VIS Author Profiles [193] for individual
researchers. Although the vertical lines do not overlap, the dense representation
affects the legibility. Also, the number of intersections grows exponentially with
more sets, affecting the approach’s scalability. Both could be partly addressed by
aggregation (e.g., one row for all 3-set intersections) or hiding the unimportant
intersections.

8.3.2 Generalizability

As indicated by the two application examples, the design is generalizable to differ-
ent scenarios where entities have dynamic multiple memberships in groups and
interact with each other. It can be argued that an integrated representation of the
two seemingly independent attributes makes the visualization complex. However,
such visualization supports a joint analysis, especially in scenarios where the two
behaviors are interdependent. Regarding limitations in terms of generalizability,
similar to Set Streams, the design does not show the membership weight of an
element in a set (RO 1.3). The limitation restricts the approach to do an in-depth
analysis in certain scenarios where membership weight in a group is central, e.g.,
the market share of a company’s product in a category or number of papers pub-
lished by a researcher [194].

8.3.3 Entity Interaction Attributes

Although the proposed extension to Set Streams encodes interactions between
entities, the design becomes complex, which leaves little room to accommodate
other relevant details. For instance, in some scenarios, the location provides the
spatial context to understand and interpret the interactions between entities (e.g.,
in Pommerman and Flatland environments). Embedding the spatial context while
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showing group membership has been found useful, e.g., in the static set visualiza-
tion technique LineSets [195]. Moreover, in some scenarios, there may be a need
to discern between the different types of entity interactions (e.g., acquisitions vs.
partnerships). Since the proposed design extension shows aggregated interactions,
it is unfeasible to differentiate between individual interactions. Additionally, the
design is limited to showing interactions occurring at a specific timestep. Still, it is
unable to encode those lasting several timesteps (e.g., signing partnership agree-
ments between companies that have a fixed duration).





9
D I S C U S S I O N A N D C O N C L U S I O N

In the previous chapters, we explored different visualizations to analyze the chang-
ing memberships of entities in groups (Chapter 3 and Chapter 4). Also, we sur-
veyed visualizations to encode user behaviors in a dynamic scenario (Chapter 5)
and proposed approaches to explore entity interactions in two dynamic environ-
ments (Chapter 6 and Chapter 7). Finally, we also presented an example to visu-
alize both aspects of the group behavior (Chapter 8). In this chapter, we discuss
other related challenges in visualizing the complex group dynamics and describe
a few works in the initial stages of research as ideas for potential solutions (Sec-
tion 9.1). Next, we summarize the work done, discuss limitations, and describe
ideas for future work (Section 9.2). Finally, the chapter ends with a brief outlook
on the topic (Section 9.3).

9.1 discussion

Interactions are a direct and explicit connection between the involved entities. Pre-
vious chapters proposed visualization approaches to encode such evolving interac-
tions between entities belonging to groups. However, specific to a scenario, entity
interactions may involve additional attributes, which present unique challenges
and opportunities to understand complex group dynamics. For instance, evolving
location-specific interactions between an entity and its environment or multimodal
interactions between entities. Additionally, when the number and type of interac-
tions increase, it becomes challenging to explore and convey the observed group
behaviors. We discuss possible solutions as works in progress to address such
challenges.

9.1.1 Spatial Interactions of an Entity with its Environment

In some scenarios, the location of an entity’s interaction with its environment plays
a crucial role in understanding its evolving behavior. It is particularly relevant in
situations where the environment may be unfamiliar to an entity. Hence, it relies
on exploring the environment through interactions, which affects its behavior over
time.

Let us consider an example of an autonomous agent in a game environment—
Sonic the Hedgehog 2 [196]. Sonic is the in-game character usually controlled by a
human player but, in our case, is an autonomous agent. The goal of each game
level is to finish it by making Sonic run from left to right while avoiding obstacles
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such as enemies or traps (which might kill Sonic). The action space in the game
is simple: At any point, Sonic can either run (left or right), roll, duck down, jump,
or perform a spin dash move (roll with high speed). Most of the enemies can be
killed by jumping on or rolling through them. While advancing through the level,
Sonic can collect different power-ups. Most notable are the rings that accumulate
and protect Sonic from dying.

In our work [197], we visualize the behavior of a trained autonomous agent that
uses the NeuroEvolution of Augmenting Topologies (NEAT) algorithm [198] to
train the agent for playing the unfamiliar game levels. The algorithm implements a
genetic approach to deep reinforcement learning where the structure of the neural
network evolves over several generations. Each generation consists of 30 agents
that play the game. The best-performing agents from a generation are selected
for crossovers to make the next generation. A reward function determines the
performance of each agent. Since the goal of the game is to reach the far right end
of the level, a simple reward function was used based on the Euclidean distance
between the position of the Sonic and the goal position.

Since the interactions with the environment affect the agent’s performance, it
becomes crucial to analyze them. As shown in Figure 9.1, the line chart at the
top encodes the minimum (—), average (—), and maximum (—) reward values
for the population of agents in each generation along the training process. Two
maps of the selected level [199] are shown below the line chart. For each map,
there is a dropdown menu to select a specific generation of agents. Showing many
individual trajectories of agents would create clutter due to overlap and make
it difficult to derive meaningful insights. Hence, trajectories are aggregated and
encoded on top of the map. Characteristic points are calculated by analyzing all
the trajectories of agents in the selected generation and shown as white circles. The
width of a black line between two circles denotes the travel frequency of agents
between the two points in either direction.

By examining generation 29 (Figure 9.1 b), we see that the agents were able to
overcome initial obstacles and travel far in the level. The thick black line near the
first waterfall (Figure 9.1 b1) indicates there was a lot of movement in this region.
On a closer look, we see that the waterfall has some enemies, and the preceding
black lines are thinner than the one placed above the waterfall. Knowing the game
mechanics, we can infer that near the waterfall, some agents of generation 29 got
hit by the enemy in the waterfall and got knocked back. The agents who learned
to overcome this obstacle did not face trouble in crossing the second waterfall (Fig-
ure 9.1 b2). However, the agents did not interact with the power-ups, i.e., collecting
the rings in the beginning, which could have avoided the agent’s death when hit
by the enemy.

In contrast to generation 29, some agents of generation 56 started to take the
upper route of the level (Figure 9.1 c). More agents in generation 56 discovered
the secret path in the level (Figure 9.1 c1). Although few agents in generation 29

learned to interact with the environment by performing the spin dash maneuver
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Figure 9.1: Visualizations showing (a) a line chart of reward values received by agents across
the training process (generations), the aggregated trajectories of agents from (b) genera-
tion 29, and (c) generation 56 in Emarald Hill Zone level of the game Sonic the Hedgehog 2.

and crossing the steep vertical wall (Figure 9.1 b3), many agents in generation 56

were not able to get past the obstacle, as shown by the thick black line before the
wall (Figure 9.1 c2).

9.1.2 Simultaneous Activities and Multimodal Interactions

Barthelmess et al. [200] highlight the complexity in analyzing collaborative human
interactions due to multimodality: “Participants of collaborative interactions speak,
write, sketch and express themselves via gestures, facial expressions, and other body mo-
tions.” Simultaneous investigation of modalities and analysis of a sequence of in-
teractions among entities together is challenging but essential to understanding
complex collaborative behavior. The insights from such analysis are valuable as
they might help to train the entities in scenarios where they need to collaborate in
critical situations.

Consider an example of triaging patients in a medical emergency. It is a process
through which the priority of treatment and transport to the hospital is deter-
mined in mass casualty incidents, e.g., road accidents involving multiple vehi-
cles. Teams of medical professionals performing the triage, usually consisting of
a leading doctor and a notetaking person, are usually trained in an environment
simulating the event to improve their collaboration. Data from such training ses-
sions are recorded for later analysis and contain metadata along with annotated
multimodal interactions between the team members, e.g., conversations, eye-gaze,
activities performed, documented decisions, etc. The timeline could be enriched
to encode the data for investigation of the collaboration between team members.

In our work [201], we proposed a timeline visualization for the scenario. Fig-
ure 9.2 shows a cutout of the timeline. The rows encode the multimodal interac-
tions as events and are grouped to represent actions relevant to the team (first
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Figure 9.2: Timeline visualization of a session (top) with (a) tier labels, (b) visually encoded
annotations on a vertical timescale with (c) annotation details inside a tooltip and a button
for alignment, and (d) a close-up of a section in the timeline.

four rows) and the individual members (Figure 9.2a). The horizontal axis repre-
sents time, and interaction events are displayed as rectangles in the respective row.
The start time and duration of the interaction are encoded through the rectangle’s
position and width (Figure 9.2b). Icons on the rows are used to discern between the
actions (e.g., examining, walking, writing). A row in the timeline shows a patient’s
ground truth classification (true triage category) in the patient-ID’s annotations with
respective triage colors . Directly below, the team’s triage decision is
indicated by colored rectangles in the decision row, which supports comparing a
triage decision to the ground truth.

Analyzing the figure, we infer that the notetaking person performed simulta-
neous activities, e.g., walking and documenting the decisions (Figure 9.2d). Since
the writing activity came after the leading doctor stopped speaking, it is likely
that the documentation did not influence the triage decision. The team exhibited
the behavior several times. We can infer that the notetaking person probably uses
the time between walking over to the patients in different vehicles to document
the observations. During the patient examination, the notetaking person looks at
the patient and the examining doctor, who is mainly responsible for the diagnosis.
Hence, the notetaking person’s behavior is unusual in collaborating with different
roles in the scenario.

9.1.3 Exploranable Visualizations for Complex Behaviors

With the increasing complexity and scale of interactions among entities, it becomes
increasingly challenging to enable visual analysis while simultaneously conveying
the observed behaviors in a simplified way. As a solution, exploranable approaches
are effective in striking a balance between the two aspects. For instance, Haris
et al. [202] proposed an exploranative approach, integrating dynamic natural lan-
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Figure 9.3: Visualizing behavior and game statistic metrics of a training: (a) An overview of
all metrics, (b) evolution of individual metrics, and (c) correlation among metrics.

guage text and interactive visualizations to analyze the code quality based on
various computed metrics (e.g., code coupling, cohesion). In our context, using
such approaches can enable users to explore complex behaviors and analyze dif-
ferent types of evolving interactions while explaining the observed behaviors with
simplified and integrated representations.

Let’s take an example of a team of two AI agents competing against another
team in Pommerman (Section 6.1), a bomb-laying game environment where op-
ponents battle in an 11×11 grid map. An agent can move, drop a bomb (which
explodes after 10 timesteps), and uncover hidden power-ups by blasting wooden
walls. Available power-ups allow agents to increase the blast radius, kick bombs,
and drop bombs without waiting for the previous one to explode. Bomb chains can
be formed if the blast flame engulfs other bombs, making them explode instantly.

In our work [203], we trained a team of two agents Skynet955 [204] (S955) from
scratch using neural network and reinforcement learning. After every 1000 train-
ing epochs, we recorded 50 matches against the top-performing team Hakozaki
Junctions [205] (HJ), through 12 intervals (until 12000 epochs). We defined and
quantified 13 behaviors and interactions from the recordings, e.g., Enemy Powerup
Pickups, which is defined as the number of times an agent grabbed a power-up
that was uncovered by an opponent. In each interval, the values of game results
per team (Wins, Losses, and Ties) and quantified behaviors are summed across all
50 matches.

To facilitate exploration of the behaviors, the approach was developed with
linked views with standard visualizations. At the top in Figure 9.3a, the paral-
lel coordinates plot provides an overview and compares the behaviors of the two
teams, S955 and HJ. It reveals clear differences between the teams in the frequency
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of some behaviors (e.g., Self-powerup Pickups, Bombs) or similar frequencies in other
behaviors (e.g., Suicides, Idle Spans).

The small-sized line charts (Figure 9.3b) offer a comparative view of teams’
evolving behavior frequencies along training epochs. Each small line chart can
be clicked to see an enlarged version below. Both agents of a team are shown as
different lines (dotted and solid). The adaptable caption of the plot summarizes
the frequency, explains the behavior that was highly correlated with the selected
behavior, and mentions the correlation with Wins. For instance, the selection of
Idle Spans shows that S995 exhibits this behavior almost three times more than
that of HJ, but with a much smaller difference in the middle of the training and
at the end. Also, the behavior was negatively correlated with dropping Bombs
(r = −0.812). And finally, a scatterplot matrix on the right (Figure 9.3c) reveals
statistical relationships between all behaviors and game results.

The approach integrates interactions in the linked visualizations, typically used
for exploration in visual analytics, with the dynamically generated text explaining
the observed insights based on the current selection. Although the example pro-
vides just a glimpse and has limited features, the direction can be pursued further
to propose exploranable visualizations for complex behaviors.

9.2 conclusion, limitations , and future work

Based on the insights from the application examples, feedback, and experience,
we discuss the limitations of the proposed approaches in (a) visualizing the dy-
namic memberships of entities in groups, (b) encoding enriched interactions, and
(c) exploring group dynamics at scale.

9.2.1 Dynamic Entity Memberships in Groups

The research on dynamic set visualizations is surprisingly rare. As a result, we
have a limited understanding of the analysis tasks in the specific context of ex-
ploring temporal set-typed data, which negatively impacts bench-marking a new
technique or supporting the design process of a novel approach. Moreover, pre-
vious chapters proposed a few techniques that can represent up to 7 sets, <500

elements, and 10 timesteps. Although challenging, to adequately model and vi-
sually analyze complex processes (e.g., training of multi-class classifiers to detect
multiple objects in an image), we need dynamic set visualizations with better scal-
ability in terms of representing more sets, elements, set overlaps, and timesteps.

To accommodate a high number of elements, several set visualizations use ag-
gregation to encode their quantity (e.g., UpSet [24], PowerSet [118]). However,
aggregation limits the capability to focus on the temporal analysis of individual
elements, which remains a challenge for dynamic set visualization. In our tech-
nique, we encoded each element with a circle and the set membership weight
with the size of the circle, which enabled deeper comparison with other elements
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(e.g., differences among the top contributors of all modules in a software reposi-
tory) [194] (Chapter 4). In Set Streams [104], the challenge was partially addressed
by highlighting the streams of the selected element (Chapter 3). However, further
research is required to represent the individual elements while reducing the clutter
and visual complexity in the encodings.

While graphs model a specific type of relationship between different vertices as
edges, multilayer graphs are used for multiple pairwise relations. Since visualiz-
ing such multilayer graphs is not a straightforward extension of the known single-
layer graphs, various novel techniques have been proposed (e.g., see survey [39,
206]). Similarly, we need to extend dynamic sets to better model the multiple re-
lations between entities other than the one defining the element-set memberships.
We proposed a technique that encodes the rare interactions, an alternate tempo-
rary relation between entities, as vertical lines [207] (Chapter 8). However, the
encoding is not scalable to represent scenarios with a high number of entity in-
teractions. Moreover, it is unable to discern between the different types of entity
interactions (e.g., company partnerships vs. acquisitions). A possible extension ad-
dressing these limitations can be used to model and visualize, e.g., the evolving
citations of a research article in different overlapping categories ([208]) together
with relations between the citing articles (e.g., similarity based on research themes,
keywords, citations, or co-authorship).

9.2.2 Visualizing Entity Interaction Details

In our work, we explored interactions of collaborating entities who were remotely
located but were placed in front of each other in a mixed reality environment [209]
(Chapter 5). While the interactions involved putting the virtual and real puzzle
pieces in the correct positions, the entities also communicated with each other
through an audio channel. Although we represented the communication through
a waveform visualization, the encoding was limited to showing the temporal den-
sity of the interaction. Furthermore, interactions could involve both audio and
video channels between entities, e.g., looking at objects of interest during conver-
sation. For such modalities, the details of the communication interaction could
be appropriately visualized. For instance, the content of the verbal communica-
tion through embedded word clouds in the timeline and glyphs to convey the
non-verbal visual features, such as gestures and facial expressions, etc. Similarly,
details of the tactile interactions, where entities touch the same objects simultane-
ously (e.g., while assembling parts of a machine), could be contextualized using
the relevant features of the object (e.g., orientation).

With efficient communication between AI agents, they are expected to perform
better in collaborative tasks. In Pommerman, the AI agents exhibited primitive
and unstructured communication between the teammates, which was encoded
as a histogram along the horizontal timeline [210] (Chapter 6). With further ad-
vances, the interactions between AI agents could include more details, e.g., they
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could communicate by first establishing mutually agreed protocols to exchange
messages, clarifying their intent, etc. The interaction may also require them to
share other details, such as the internal state of the agent, for mutual benefit, e.g.,
to synchronize their worldviews while exploring the environment [52]. Although
such interaction details are specific to an environment, their integration into the
appropriate visualizations or novel techniques could be explored in the future.

In Chapter 7, a visualization with linked views for spatio-temporal attributes
was proposed to represent the scheduling behavior of AI agents on fixed tracks.
The horizontal timeline encoded important actions and events of each agent in
a row, while the deadlock among agents was shown through lines connecting
the respective rows. Although the information density was high, the visualization
did not show other potentially relevant information, such as agent observations
conveying whether the tracks ahead of an agent are free or occupied. These details
could help understand the context of agent decisions. Hence, further research is
required to present such details during the visual analysis, maybe by abstracting
them in the default view of the visualization and presenting them on-demand or
through alternate representations that could better handle the information density.

9.2.3 Exploring Group Dynamics at Scale

Taking the field of multi-agent research as an example, we discuss the topic of
group dynamics at scale. The goal is to train autonomous agents that can collabo-
rate to perform multiple tasks in diverse environments. The trend is towards build-
ing virtual simulations where multiple agents train to interact with each other in
diverse environments. Contributing to the goal, we proposed a visualization to ex-
plore the collaborative and competitive group dynamics among four agents in the
Pommerman environment, a small grid-based world with 11×11 tiles (Chapter 6).
Later, we analyzed the collaborative scheduling behavior of up to 90 agents in a
larger environment, Flatland (Chapter 7). While these environments have helped
AI researchers to uncover exhibited behavior, even larger testbed environments
have been proposed to study the emergent group behavior at scale, e.g., Neural
MMO [211]. The proposed encodings for individual interactions, movements, and
actions of each entity would not be feasible to understand the group dynamics at
scale. Modeling interactions as events, we can take inspiration from aggregation-
based event sequence visualizations for solutions that can better handle the scale
(e.g., DecisionFlow [212]). Alternatively, some approaches have proposed group
tracking models with visual exploration for large datasets. For instance, Ozer
et al. [213] propose interactive clustering and isosurface visualization to study the
groups of features in time-varying 3D fluid-flow simulations. Unlike our approach,
they handle scale by not showing the individual entities but rather focusing on
clustering and visualizing the entity features that drive the group dynamics.

To understand the local behavior in group dynamics, analyzing the context
through short sequences of entity interactions, events, and actions is valuable.
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Searching and highlighting the occurrences of such sequences can help to un-
derstand the specific local behaviors involving multiple entities. To help discover
unknown sequences, pattern mining algorithms [214] can be used to identify com-
mon behaviors. With larger environments involving many entities, investigating
the context around all occurrences of a specific interaction becomes challenging,
e.g., analyzing the most common things that happened just before and after kick-
ing a bomb in Pommerman. To ease the analysis, an abstracted double tree repre-
sentation can be used, which positions the analyzed interaction in the center while
the sequence of other interactions, events, or actions are placed as connected links
on the left (preceding sequence) and on the right (succeeding sequence) [3].

Finally, while the proposed techniques showing the group dynamics encode the
exhibited interactions, they do not convey the reasoning of decisions. In the con-
text of human entities, the relevant data could be captured, e.g., via establishing
a think-aloud protocol in the scenario. Based on the data type, relevant represen-
tations could be embedded, e.g., word cloud for text. For autonomous agents, the
proposed techniques for explaining AI could be used to explain the agent’s deci-
sion (e.g., [215, 216, 217]). While integrating the relevant representation for deci-
sions of each agent would clutter the main view, they can be provided on-demand
to at least partly address the challenge of group dynamics at scale.

9.3 outlook

The core idea of the thesis is to explore group dynamics from two perspectives. The
first perspective aims to analyze the changes in memberships of entities in over-
lapping groups. And second, to understand the evolving interactions among enti-
ties, both within a group and between different groups. As demonstrated through
several examples, visualizations could be helpful in the exploration of entity be-
haviors, e.g., coordination between entities.

I believe that the exploratory analysis of group dynamics is crucial to under-
stand the dynamic processes in a complex system involving several entities. The
demonstrated examples show complex processes in scenarios involving multiple
humans (e.g., collaborative tasks, such as triaging patients) or autonomous agents
(e.g., runtime planning of path towards destination). However, other scenarios
beyond analyzing small-scale social interactions or a few hundred autonomous
agents would also benefit from such visual analysis. Due to the limited space, it
is generally challenging for visualizations to handle the scale and represent mul-
tiple attributes in the group behavior. However, the availability of datasets from
simulated environments (e.g., in AI) to study group dynamics has improved, and
visualization research has matured enough to tackle these challenges head-on.
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