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Abstract

The machinery and equipment manufacturing industry is decisive in achieving a
sustainable economy with a savings potential of 37 % of global CO2 emissions.
Machining production is a significant factor, accounting for over 15 % of global
product development costs. As a result of technological innovation in its ap-
plication areas, the demands on machining continue to increase, particularly in
terms of product quality, flexibility, and component complexity. Examples are
the aerospace or tool- and die-making industries, where computer-aided manu-
facturing of free-form components based on multi-axis machining is standard. At
the same time, manufacturing companies are facing the challenges of increasing
competition and cost pressure.

In order to manufacture at consistently high quality and minimal costs, pro-
cess and tool monitoring and the subsequent derivation of remaining tool life is
of interest. However, due to the increasing customization of production, the pre-
diction of remaining tool life is currently not applicable in the abovementioned
areas. Previous process and tool monitoring approaches are too rigid for flexible
manufacturing scenarios as they are mainly designed for series production. Ac-
cordingly, a methodology for small-batch and single-part production requirements
opens up optimization potentials that could not be used so far.

Process and tool monitoring methods generally consist of the four components
of sensor technology, signal processing and feature extraction, inference of tool
and process condition, and prediction of remaining tool life.

This work first analyzes the influence of small-batch and single-part produc-
tion conditions on process and tool monitoring. Mechanical vibration is identi-
fied as a particularly suitable monitoring variable. It allows a permanent and
process-independent sensor integration without being affected by tool or work-
piece adaptations. Based on a physical vibration source model of the machine
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tool, it is possible to demonstrate the machine independence of the acceleration
signals used for vibration sensing. The correlation of the machine-independent
signal information with the tool and process state is proven. Thus, the sensor
system architecture developed in this work can be used to determine the tool and
process state in arbitrary machine tools and flexible machining systems.

A limiting factor in previous process and tool monitoring methods is the low
adaptivity and explainability of tool and process state determination. Since the
methods are designed for series production, the underlying black box models
are manually developed once and cannot be adapted or transferred to other ap-
plications afterwards. In order to solve this problem, this thesis proposes an
explainable and automatically adaptable method for tool and process condition
determination. The method uses the automated machine learning approach to
enable modeling based on large multivariate sensor datasets without complex
feature engineering. An integrated feature evaluation mechanism visually rep-
resents the significant features. It is finally possible to determine the tool and
process state in a robust, transferable, and performance-optimized way. A 21 %
improvement in tool wear prediction error can be achieved.

In order to improve the remaining tool life prediction under the random vari-
ation of the process conditions in the context of small-batch and single-part pro-
duction, a new tool and process condition forecasting method was proposed. A
reduction of the prediction uncertainty due to the random process variations is
achieved by combining temporal machine learning-based models and informa-
tion about arbitrary future machining operations from process simulations. The
method reduces the remaining tool life prediction error by 22 % on average. The
remaining tool life prediction is performed with an accuracy of approximately 5
minutes. In relation to the average lifetime of the underlying tools of 85 minutes,
the relative error is 6 %.

The methods and models developed in this thesis comprehensively extend the
applicability of tool and process monitoring to small-batch and single-part pro-
duction. It is thus possible to perform remaining tool life prediction in flexible
manufacturing systems under variable process conditions. The knowledge of the
future tool and process conditions enables an optimized production sequence con-
trol and cognitive process control to ensure quality and increase productivity.
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Kurzzusammenfassung

Der Maschinen- und Anlagenbau ist mit einem Einsparungspotenzial von 37 %
der weltweiten CO2-Emissionen entscheidend für die Umsetzung einer nachhal-
tigen Gesamtwirtschaft. Die zerspanende Fertigung ist hierbei ein bedeutender
Faktor, da sie über 15 % der globalen Produktentwicklungskosten ausmacht. In-
folge der technologischen Innovation in ihren Anwendungsbereichen steigen die
Anforderungen an die spanende Fertigung kontinuierlich, insbesondere in Bezug
auf Produktqualität, Flexibilität und Komplexität der Bauteile. Beispiele hier-
für sind die Luft- und Raumfahrtindustrie oder der Werkzeug- und Formenbau,
wo die computergestützte Fertigung von Freiformteilen auf der Grundlage der
Mehrachsenbearbeitung zum Standard gehört. Gleichzeitig sehen sich die Ferti-
gungsunternehmen mit den Herausforderungen des zunehmenden Wettbewerbs
und Kostendrucks konfrontiert.

Um mit gleichbleibend hoher Qualität und minimalen Kosten zu fertigen, ist
die Prozess- und Werkzeugüberwachung sowie die anschließende Ableitung der
Werkzeugreststandzeit von Interesse. Aufgrund der zunehmenden Individualisie-
rung der Produktion ist die Vorhersage der Reststandzeit in den oben genannten
Bereichen jedoch derzeit nicht anwendbar. Bisherige Prozess- und Werkzeugüber-
wachungsansätze sind für flexible Fertigungsszenarien nicht adaptiv genug, da
sie hauptsächlich für die Serienfertigung ausgelegt sind. Eine Methodik für die
Anforderungen der Kleinserien- und Einzelteilfertigung eröffnet daher Optimie-
rungspotenziale, die bisher nicht genutzt werden konnten.

Prozess- und Werkzeugüberwachungsmethoden bestehen allgemein aus den vier
Komponenten der Sensorik, der Signalverarbeitung und Merkmalsextraktion, der
Inferenz von Werkzeug- und Prozesszustand und der Vorhersage der Werkzeugrest-
standzeit.

In dieser Arbeit wird zunächst der Einfluss von Kleinserien- und Einzelteil-
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fertigungsbedingungen auf die Prozess- und Werkzeugüberwachung analysiert.
Als eine besonders geeignete Überwachungsgröße wird die mechanische Schwin-
gung identifiziert. Sie ermöglicht eine permanente und prozessunabhängige Sen-
sorintegration ohne Beeinflussung durch Werkzeug- oder Werkstückanpassungen.
Basierend auf einem physikalischen Schwingungsquellenmodell der Werkzeugma-
schine kann die Maschinenunabhängigkeit der zur Schwingungserfassung verwen-
deten Beschleunigungssignale nachgewiesen werden. Außerdem wird die Korre-
lation der maschinenunabhängigen Signalinformation mit dem Werkzeug- und
Prozesszustand gezeigt. Somit kann die in dieser Arbeit entwickelte Sensorsyste-
marchitektur zur Bestimmung des Werkzeug- und Prozesszustandes in beliebigen
Werkzeugmaschinen und flexiblen Bearbeitungssystemen eingesetzt werden.

Ein limitierender Faktor bisheriger Prozess- und Werkzeugüberwachungsme-
thoden ist die geringe Adaptivität und Erklärbarkeit der Werkzeug- und Prozess-
zustandsbestimmung. Da die Methoden für die Serienfertigung konzipiert sind,
werden die zugrundeliegenden Black-Box-Modelle einmalig manuell entwickelt
und können anschließend nicht mehr angepasst oder auf andere Anwendungen
übertragen werden. Um dieses Problem zu lösen, wird in dieser Arbeit eine er-
klärbare und automatisch anpassbare Methode zur Werkzeug- und Prozesszu-
standsbestimmung vorgeschlagen. Die Methode nutzt den Ansatz des automati-
sierten maschinellen Lernens, um die Modellierung auf Basis großer multivaria-
ter Sensordatenmengen ohne komplexes Feature Engineering zu ermöglichen. Ein
integrierter Merkmalsbewertungsmechanismus stellt die signifikanten Merkmale
visuell dar. Damit ist es möglich, den Werkzeug- und Prozesszustand auf robuste,
übertragbare und performanceoptimierte Weise zu bestimmen. Der Fehler bei der
Vorhersage des Werkzeugverschleißes kann hierdurch um 21 % gesenkt werden.

Um die Vorhersage der verbleibenden Werkzeugstandzeit unter der zufälligen
Variation der Prozessbedingungen bei der Kleinserien- und Einzelteilfertigung zu
verbessern, wurde eine neue Methode zur Prognose der Werkzeug- und Prozessbe-
dingungen vorgeschlagen. Eine Reduzierung der Vorhersageunsicherheit aufgrund
der zufälligen Prozessvariationen wird durch die Kombination von temporalen, auf
maschinellem Lernen basierenden Modellen und Informationen über zukünftige
Bearbeitungsvorgänge aus Prozesssimulationen erreicht. Die Methode reduziert
den Fehler bei der Vorhersage der verbleibenden Werkzeugstandzeit im Durch-
schnitt um 22 %. Die Vorhersage der verbleibenden Werkzeugstandzeit erfolgt

viii



mit einer Genauigkeit von etwa 5 Minuten. Bezogen auf die durchschnittliche Le-
bensdauer der zugrunde liegenden Werkzeuge von 85 Minuten beträgt der relative
Fehler somit 6 %.

Die in dieser Arbeit entwickelten Methoden und Modelle erweitern die Anwend-
barkeit der Werkzeug- und Prozessüberwachung umfassend auf die Kleinserien-
und Einzelteilfertigung. Damit ist es möglich, eine Reststandzeitvorhersage von
Zerspanungswerkzeugen in flexiblen Fertigungssystemen unter variablen Prozess-
bedingungen durchzuführen. Die Kenntnis des Werkzeug- und Prozesszustandes,
auch in der Zukunft, ermöglicht eine optimierte Ablaufsteuerung der Produktion
und eine kognitive Prozessregelung zur Sicherung der Qualität und Steigerung
der Produktivität.
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1. Introduction

1.1 Motivation

The machinery and equipment manufacturing industry is critical to achieving a
sustainable economy. Through innovative technologies, there is a saving potential
of up to 37 % of global CO2 emissions [1]. Machining is essential to industrial
manufacturing due to its significant share in the value-creation process. At the
beginning of the 21st century, machining directly or indirectly accounted for more
than 15 % of all product creation costs [2]. This value is still rising today due to
constantly expanding fields of application, such as electromobility or renewable
energies [3]. The avoidance of material waste and rework in machining production
represents an elementary goal for increasing sustainability and, at the same time,
for securing the competitiveness of manufacturing companies. It goes hand in
hand with the optimal management and use of raw materials and machining
tools and the energy-efficient operation of machine tools.

The progress of technical systems requires the availability of high-quality com-
ponents, e.g., in the automotive, aerospace, tool- and die-making, or prosthetic
manufacturing industries. In this context, the dimensional accuracy and surface
quality requirements and the complexity of the manufactured workpiece shapes
constantly increase [4]. For example, even minor deviations from the dimensional
and roughness specifications of injection and die-casting molds for plastics produc-
tion can lead to defective end products. In addition, the increasing customiza-
tion of products is causing a higher proportion of small-batch and single-part
production [5, 6]. In order to cope with the increasing requirements, three main
pillars have developed in industrial practice: computer-aided design (CAD) and
computer-aided manufacturing (CAM) software systems for the automation and
optimization of machining process planning, flexible machine tools, such as five-
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Chapter 1. Introduction

axis machining centers, and process monitoring of quality-relevant and -related
parameters [7].

Machining process monitoring is crucial to ensuring high product quality as
problems can be detected directly during machining and corrected quickly. Its
establishment is favored by the development of Industry 4.0, with the objective
of digitizing production. Based on condition monitoring and predictive mainte-
nance, Industry 4.0 is a core driver of resource efficiency, lifecycle management,
and networking [8]. In addition to process monitoring using standard manu-
facturing metrology, methods usable during ongoing machining processes have
been developed. In-process monitoring is based on process-integrated sensors for
data acquisition and microelectronic components for the processing and trans-
mission of the data [9]. Sensors are retrofitted into the machine tool, e.g., force
or structure-borne sound transducers, or the digital drive-related signals used by
the machine tool controller are acquired.

Since the sensor data generated during the process contain only indirect in-
formation about the quality-relevant parameters of interest, their processing is
indispensable for information extraction. However, with the advancement of In-
dustry 4.0, the number of connected sensors in the production environment is
increasing, accumulating high volumes of multivariate data. Data-driven mod-
eling based on machine learning methods represents a suitable solution to the
resulting complication of information extraction [10, 11]. Concerning modeling
of quality-relevant parameters, two approaches are distinguished, which build on
each other: the prediction of parameters as a substitute for the direct measure-
ment of the workpiece or tool using manufacturing metrology and the prognosis
of future parameter values in case of temporal process changes, e.g., due to tool
wear. Together, the approaches form the basis for determining the remaining
tool life, which allows estimating when quality criteria are violated and process
adaptations become necessary [12].

Up to now, the determination of tool life in industrial practice is performed
by default before tool use based on empirical knowledge and is assumed to be
a constant value depending only on the tool type [13, 14, 15]. However, this
assumption is valid only for the case of series production, where the process
conditions do not change during tool life and are known beforehand. Data-driven
methods for predicting the remaining tool life, which currently receive attention
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1.2. Contributions

in research, have also been limited exclusively to considering series production
scenarios. Applying the approaches for the increasing proportion of small batch
and single-part production is impossible due to their low degree of flexibility from
a sensor and algorithm perspective. In addition to using flexible machine tools,
producing complex workpiece shapes as single parts or in small batches leads to
frequent changes in the process and machine tool configuration. Sensor-based
process monitoring approaches described in the state-of-the-art do not consider
this high degree of adaptivity or change of process components. So far, sensor
system concepts based on process-independent monitoring variables, which allow
permanent process monitoring of small-batch and single-part production, have
not yet been investigated. Furthermore, small-batch and single-part production
are characterized by the variation of workpiece shapes and cutting parameters
during the tool life, which leads to variable load on the tool. The variable load
significantly influences the tool life, but on the other hand also affects the sensor
signals, making pattern recognition for information extraction more difficult. The
prediction of quality-related parameters, such as tool wear, and the remaining tool
life prediction under the influence of the variable process conditions has not yet
been investigated in previous works.

Against the background of the above described, this work aims to extend
the state-of-the-art by presenting a machine learning-based method and machine
learning models that enable the sensor-driven prediction of the remaining tool life
based on quality-relevant parameters for the manufacturing of complex-shaped
single-part workpieces.

1.2 Contributions

The main contributions of this work are listed in the following:

1. First, a process-independent sensor system architecture is proposed,
enabling cutting process monitoring in flexible manufacturing systems such
as multi-axis machine tools under single-part manufacturing conditions.
The sensor system architecture is primarily based on the monitoring vari-
able of vibration, but also allows the acquisition of controller signals. Due to
the propagation property of vibration, permanent sensor integration is en-
abled, making it independent of process components that frequently change
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during single-part production, such as tool or workpiece clamping. The in-
tegrated signal processing method allows the local extraction of information
about the current process and tool state and local data reduction to reduce
transmission bandwidth for data provisioning. Its optimization for energy-
constrained systems is possible, further simplifying sensor integration.

2. Based on the sensor system architecture and the acquirable data, an au-
tomated and explainable method for regression of tool wear as a
tool life criterion is proposed. The method enables the investigation and
identification of relevant sensor-based and process-describing features for
modeling at reduced effort without the intervention of a human expert. In
previous works, process monitoring models were rigid due to the assumed
series production conditions. In contrast, automating the modeling process
allows a high degree of model adaptivity under the variable process condi-
tions of single-part production. At the same time, the explainability enables
the optimization of the predictive models, e.g., in terms of robustness and
transferability.

3. The regression of tool wear is the foundation of the remaining tool life
prediction method proposed in this work. The method is based on the
tool wear forecast. It thus maintains the relationship to the tool life cri-
terion at all times, which can, e.g., be fed back into process simulations.
The method extends the state-of-the-art by enabling the inclusion of fu-
ture, potentially varying influencing factors on tool life. This reduces the
prediction uncertainty for the variable process conditions of the single-part
production. Furthermore, more comprehensive data sources, such as the
CAD/CAM software systems or the process simulation, can be included in
modeling the remaining tool life.

1.3 Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 describes the relevant
foundations for this work, summarizes and discusses the state-of-the-art of the re-
maining tool life prediction, and details the research gap to be filled in this thesis.
Chapter 3 introduces this work’s objectives, core research questions, and general
approach. Chapter 4 then describes the sensor system architecture for flexible
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manufacturing systems, its implementation and evaluation. Chapter 5 presents
the method for residual life prediction based on the wear forecast and regression
and the evaluation results. Chapter 6 summarizes the thesis and identifies areas
of future work.
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2. Fundamentals and State of the
Art

Since this work covers an interdisciplinary subject area, a summary of the most
important fundamentals is required for the further course. The following presents
and discusses the relevant concepts, models, and functional principles. In addi-
tion, the current state of research on the remaining life prognosis of machining
tools using machine learning is presented, and the research gaps targeted by this
work are identified.

2.1 Modern Production Systems

Since its beginning, industrial manufacturing has been subject to constant change.
Automating manufacturing systems as part of the third industrial revolution has
led to a rapid increase in productivity. Driven by the networking of technical
systems, a fundamental change in the architecture of established automation sys-
tems is taking place as part of the fourth industrial revolution, summarized under
the term Industry 4.0 [16, 17]. The following sections introduce the underlying
concepts of Industry 4.0 and their significance for machining production.

2.1.1 Automation System Architecture

Networked mechatronic systems with a dedicated virtual representation form the
basis of Industry 4.0 with the overarching goal of digitized and self-organizing
value chains [18]. Networking and digitization enable the permanent availabil-
ity of real-time information about the systems and the modeling, prediction, and
optimization of their behavior and interaction. The two central concepts of Indus-
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Figure 2.1: Asset administration shell (AAS) and the reference architecture
model for Industry 4.0 (RAMI 4.0). The concepts form the foundation for the
networking and digitization of production in the context of Industry 4.0.

try 4.0 are the asset administration shell (AAS) [19, 20, 21, 22] and the reference
architecture model for Industry 4.0 (RAMI 4.0) [23] shown in Figures 2.1a and
2.1b, respectively.

An entity involved in the production is called an asset. Hence, physical objects
such as machines, drives or materials, and non-physical objects such as software
or manufacturing processes are assets. An asset is virtually represented by its
AAS, the digital interface to its features, capabilities, and operations. The AAS
serves as the basis for services that describe the externally provided functionality
of an asset. The combination of asset and AAS is referred to as an Industry 4.0
component. Figure 2.1a shows the AAS of a milling tool as an example, making
the milling tool an Industry 4.0 component. The AAS consists of a header and a
body. The header enables the unique identification of the Industry 4.0 component
by asset and AAS ID, and the body manages the submodels associated with the
asset. The submodels group functional aspects of an Industry 4.0 component and
contain data or references to databases (technical data, real-time usage data), the
operations and capabilities of the asset and references to virtual models of the as-
set and its functionalities (simulation or CAD models). Machine learning models
assigned to an Industry 4.0 component, as targeted in this work, are also refer-
enced in the AAS [25]. The component manager coordinates the local submodels
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and the communication between AASs. If Industry 4.0 components are part of
a higher-level system, the relationships between the Industry 4.0 components are
part of a submodel in the overall AAS [26].

With its three dimensions Layers, Life Cycle & Value Stream and Hierarchy
Levels, as shown in Figure 2.1b, RAMI 4.0 provides a framework for implementing
AAS of entities on all factory levels along their lifecycle [23, 24, 27]. In the
following, the dimensions are specified in detail:

• Layers: The Layers axis views the Industry 4.0 component from an infor-
mation technology perspective. The physical or virtual entity is described
on the Asset layer including all its components. The Integration layer repre-
sents the interface between the entity and its AAS. Typical interface compo-
nents of physical assets include software modules to read sensors or control
actuators. The Communication layer defines the information exchange with
other AAS and services, including the particular communication protocols.
The information required by services to provide the functionality of an as-
set is specified on the Information layer. The services are defined on the
Functional layer and embedded into their particular business model on the
Business layer.

• Life Cycle & Value Stream: The Life Cycle & Value Stream axis enables
to model the whole life cycle of production-related entities. The correspond-
ing standard IEC 62890 [28] includes the Type and Instance stages. The
Type stage describes the development process of the entity from the idea to
the first model or prototype. After development and availability of the pro-
totype, the entity is produced, entering the Instance stage. Both Type and
Instance stages include a usage and maintenance phase after the availability
of the prototype and the start of the component production, respectively.
During the lifecycle of an entity, it is always accompanied by an AAS.

• Hierarchy Levels: The Hierarchy Levels of RAMI 4.0 represent the levels
of functionality in a factory or plant. They extend the traditional automa-
tion pyramid defined in the standards IEC 62264 [29] and IEC 61512 [30] by
the levels Product to allow for their digital representation and Connected
World enabling services that span across multiple factories. The Hierar-
chy Levels account for the requirements of services concerning information
aggregation and functional separation. For example, collecting data from
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multiple machines may be necessary within a work cell, a production line
or a factory.

AAS and RAMI 4.0 form the basis for a service-oriented architecture (SOA) of
automation, whereby the functionalities of entities are provided to other entities
in the form of software-defined services [31, 32]. From a technical perspective,
specific requirements must be fulfilled for implementing a SOA: Besides the me-
chanical production systems and processes, sensors, actuators, computing and
communication capabilities must be available to implement connected services.
Systems meeting these requirements are referred to as cyber-physical production
system (CPPS) [33]. Industry 4.0 technologies based on RAMI 4.0 as well as the
AAS and the reference models themselves are subject of continuous standardiza-
tion [34, 35].

2.1.2 Edge Computing

Apart from RAMI 4.0, similar frameworks providing a basis for connected sys-
tems in the industry have been developed. Complementary to Industry 4.0, the
industrial internet reference architecture (IIRA) is most important [36]. It pro-
vides the foundation for the Industrial Internet of Things (IIoT) with the goal
of convergence between operational technology (OT) and information technol-
ogy (IT). OT includes the physical industrial systems as well as the hard- and
software used to control them, e.g., programmable logic controllers (PLCs). IT
comprises the hard- and software used to handle, i.e., input, process, transmit
and output, digital data, e.g., gateways or cloud servers. A difference between the
frameworks is the broad view of IIRA across all industrial sectors while RAMI 4.0
is specific to industrial production. The IIRA focuses on the data handling and
information flow within IIoT systems.

The edge computing paradigm is a central concept of the IIRA important to
CPPS and Industry 4.0 [37, 38]. Edge computing describes the migration of
computing capabilities and data processing from centralized locations like cloud
servers toward the network’s edge and, thus, the data sources. The IIRA views
the edge as a logical layer reflecting the continuum between the dispersed and
concentrated computational deployment patterns [39]. OT and IT in industrial
production are distributed across the factory by default, as reflected in the hierar-
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chy levels of RAMI 4.0. Furthermore, since the digital representation of an asset
in its AAS can only be implemented based on computing and communication
capabilities, edge computing forms a decisive basis for this.

Due to the significant overlap between RAMI 4.0 and the IIRA, especially con-
cerning the edge computing paradigm, aligning both architectures is an important
goal [40]. With respect to AAS, approaches have been developed to consider their
management in naturally distributed CPPS [41]. Asset- and repository-deployed
AAS are distinguished, depending on whether the asset has dedicated comput-
ing and communication capabilities [42]. Passive Industry 4.0 components, i.e.,
without computing and communication capabilities, cannot provide their AAS
by themselves. Hence, their AASs are managed in repositories, e.g., hosted on an
edge gateway. The reference architecture model edge computing (RAMEC) [43]
provides a formal basis for applying edge computing in Industry 4.0. It allows
specifying the application- and implementation-related aspects of edge comput-
ing systems on the hardware and software levels. At the same time, it retains the
relation to the hierarchy levels of the factory as considered in RAMI 4.0.

2.1.3 Autonomous Machining Systems

Machining forms a central part of manufacturing and is directly affected by the
change in automation system architecture due to Industry 4.0. While the produc-
tion of workpieces in machining is automated through Computerized numerical
control (CNC) technology, other steps in the process chain, such as process plan-
ning or quality control, are primarily performed manually [44]. Applying the
concepts according to the previous Sections 2.1.1 and 2.1.2 offers the potential
of quality- and resource-optimized production by networking along the process
chain and increasing autonomy. In the literature, many attempts have been made
to define autonomy in the context of technical systems [45]. The present work
shares the definition according to [46] as the ability of the system to successfully
perform a specific task without having been explicitly programmed or requiring
significant human intervention. Figure 2.2 shows the system components of a
general autonomous system [47].

In the production context, the components of autonomous systems can be rep-
resented using AAS and RAMI 4.0. The edge computing paradigm forms the
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Figure 2.2: Functional and technical components of a general autonomous sys-
tem [47, 46].

technical basis for their implementation, such that the desired characteristics of
autonomous production systems are supported by design [47, 48]. According to
Figure 2.2, sensors are used to collect data related to the specific application or
environment. The data is then processed to extract relevant information (Percep-
tion & Interpretation). In addition, contextual data from other systems or human
operators can be included via the machine-to-machine and human-machine in-
terfaces. The multiple data sources form the basis for learning the relationships
relevant to the system’s tasks (Learning & Reasoning). An essential technolog-
ical foundation for this is provided by machine learning methods, enabling the
generation of models from data without direct programming. Thus, the system
can adapt to changes in the application or to new tasks. After the task-related
information and knowledge about the current state of the system and its environ-
ment are available, the following steps are planned to accomplish the tasks (Plan
Generation & Selection). All relevant data, information, models, and plans are
stored in a knowledge base that is continuously adapted. Actuators finally exe-
cute the plans or messages are passed to other machines or human operators when
collaboration or transfer of control is required (Communication & Collaboration).

Figure 2.3 shows the structure of an autonomous machining system with its
information processing components. The CNC machine tool is the system’s core
and executes the machining processes. The execution is based on the control
loops defined by the CNC programming. The control loops are non-cognitive
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Figure 2.3: Architecture of an autonomous machining system, adapted from
[49, 50].

and executed under hard real-time requirements based on the machine-internal
sensors and actuators. The programming and configuration of the CNC machine
tool and the high-level sequential control of the processes are performed as part of
the process planning. Process planning represents the associative control. A pro-
cess planner can use experience from past machining operations and link them to
future ones for optimization. Process simulation and monitoring are the informa-
tion processing components necessary for the cognitive control [51] of machining
processes. These form the basis for complete virtual representations of the ma-
chining process and its components (CNC machine tool, cutting tool, workpiece),
so-called digital twins [52]. Process simulation and monitoring enable the identi-
fication of problems and optimization potentials of currently running and future
machining processes. Therefore, behavior and model-based self-optimization of
the machining processes can be performed.

Digital twins in manufacturing are specified in the standard ISO 23247 [53].
The provided framework covers all aspects of process simulation and monitoring
necessary for cognitive process control and can be implemented using AAS [25].
Digital twins of machining systems and their components are current research
topics [54, 55, 56]. Machining tool-centered approaches, e.g., based on the stan-
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dard ISO 13399 [57], are particularly important for tool life cycle management
and process productivity optimization [58, 59].

2.2 Machining Process

Machining processes and systems are essential for today’s value chains, leading
to high overall importance for production. Machining is used to manufacture end
products and components directly or to produce tools for other production tech-
nologies such as stamping, casting or forming. In order to manage high workpiece
complexities and the increasing individualization of production, flexible CNC ma-
chine tools are used in combination with advanced CAD and CAM software [60].
Therefore, the following sections describe the relationships that apply in today’s
machining systems, especially to understand the significance of the resulting load
on the cutting tools. The considerations are the basis for process monitoring and,
ultimately, the application of machine learning techniques in today’s machining
industry.

2.2.1 Machining Fundamentals

Before considering complex machining processes, as they are state of the art today,
one must first understand the fundamentals of machining [13, 61, 62, 63]. The in-
teraction between the cutting tool and the workpiece through relative movements
characterizes machining. This work focuses on machining with a geometrically
defined cutting edge, to which all the following explanations refer. Geometrically
defined cutting edges of the tools lead to the formation of geometrically defined
chips during machining. Chip formation is a process of plastic deformation in-
duced by the cutting edge of the tool entering the workpiece material and exceed-
ing its maximum bearable shear stress. The chip slides over the rake face of the
cutting edge. The opposite flank or clearance face is oriented towards the newly
emerging surface of the workpiece as the chip runs off. The geometrical parame-
ters of the tool and the process parameters guide the chip formation. Figure 2.4
illustrates the chip formation and the relevant parameters during machining for
a general turning process.

Plastic deformation during the chip formation occurs in five areas. The primary
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Figure 2.4: Chip formation in a machining process using the example of turning
with geometric parameters, deformation zones and resulting forces, adapted from
[13, 62].

shear zone (I) is the central area of deformation. In the secondary shear zones at
the rake and flank faces (II, IV), plastic deformation occurs due to friction forces
resulting from the contact between the cutting edge faces and the workpiece
material. The friction in the secondary shear zones is the major source of heat
generated during the machining process. In the separation and stagnation zone
in front of the cutting edge (III), the actual separation of the material occurs.
As there is maximum pressure from all sides, built-up edges can occur due to
particles of the workpiece material being bonded onto the rake face of the cutting
edge. The preliminary deformation zone (V) is in immediate proximity to the
chip and the primary shear zone. The deformation results from significant stress,
as the material in the area will be split off next. The force required to exceed
the shear stress necessary to detach the chip from the workpiece and the friction
forces at the cutting edges result in the overall machining force F⃗ . F⃗ is a vector
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and can be split into its three spatial components: the cutting force Fc, the feed
force Ff and the passive force Fp. Section 2.2.3 will further detail the machining
force.

2.2.2 Free-Form Surface Machining

Manufacturing complex workpiece shapes, such as for mold- and die-making or
in the context of the aerospace industry, requires advanced methods of machining
process planning [60]. For this purpose, 3D computer modeling is used, enabling
the design of arbitrary objects and shapes through CAD technologies. The 3D
models form the basis for the subsequent generation of CNC machine instructions
using CAM technologies [64]. Arbitrarily shaped workpieces are generated during
3D computer modeling by employing free-form surfaces based on the non-uniform
rational basis spline (NURBS) functions [65]. A surface is described using NURBS
functions according to Equations 2.1a and 2.1b.

Spu, vq “

n
ÿ

i“0

m
ÿ

j“0
Ri,jpu, vqPi,j (2.1a)

Ri,jpu, vq “
Ni,ppuqNi,qpvqwi,j

řn
k“0

řm
l“0 Nk,ppuqNl,qpvqwk,l

(2.1b)

The central components of NURBS-based modeling are the control points
Pi,j and the rational basis functions Ri,jpu, vq. The rational basis functions are
weighted combinations of B-spline basis functions Ni,ppuq and Ni,qpvq, which are
polynomials of orders p and q, respectively. The weighting is based on the matrix
W containing the weights wi,j with i P r0, ns and j P r0, ms. A rational basis func-
tion is assigned a control point Pi,j and by combining the rational basis functions
into a series over the control points, a surface can be modeled using the function
Spu, vq. Spu, vq is parametric, i.e., it returns points for a specific pair of input
values u and v. By evaluating the function Spu, vq for u P ra, bs and v P rc, ds, the
points S constituting the surface are generated. Figure 2.5 shows an example of a
convex surface using the control points to illustrate the NURBS-based modeling.

The tensors Si,1 and S1,j represent the points when evaluating Spu, vq over the
intervals of u and v, assuming i and j fixed at a value of 1, respectively. Hence,
the points constitute the lines highlighted in blue and red in Figure 2.5.
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Figure 2.5: Concave surface illustrating the parameters and working principle
of NURBS-based surface modeling.

2.2.3 Multi-Axis Milling

Due to its high flexibility regarding the workpiece shapes to be produced, the
milling process is the core technology in free-form surface machining [60, 66].
Therefore, this work focuses primarily on free-form surface milling. The term free-
form surface machining will be used synonymously in the following. In addition
to the 3D computer modeling of workpieces described in the previous section,
the multi-axis capability of modern machine tools is an essential foundation for
free-form surface milling. Manufacturing complex sculptured surfaces requires the
movement of the cutting tool on at least the three spatial axes. However, machines
with more degrees of freedom are standard to avoid changing the workpiece setup
and thus increase the overall productivity. In particular, five-axis machine tools,
which allow the additional rotation and tilting of the machine table, are state-of-
the-art in manufacturing [67, 68]. Due to the arbitrary orientation of the milling
tool to the workpiece surface (working plane) during five-axis milling, the tool
engagement conditions and thus the mechanical load on the milling tool change
frequently. The kinematic and geometric principles and the cutting forces during
five-axis milling are considered in the following.

The standard DIN 8589-3 [69] defines milling according to its kinematic char-
acteristics as a circular movement of the tool cutting edges with the non-parallel
orientation of the feed direction with respect to the tool’s rotational axis. The
standard distinguishes multiple milling techniques, whereby the main category of
interest in this work is form milling. Form milling describes the manufacturing
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of arbitrary 3D surfaces that do not directly depend on the geometry of the used
milling tool. The form milling methodologies are further subdivided concerning
the applied process control. Today, the milling of free-form surfaces is exclusively
based on CNC machine tools [44, 67] due to the geometric complexity and the
required shape and surface accuracy.

The milling of free-form surfaces is an end milling process, as defined in DIN
8985-3. Surface milling is generally subdivided according to the orientation of
the tool’s rotational axis with respect to the working plane and the cutting edge
part generating new surface layers of the workpiece. During face milling, the
rotational axis of the tool is perpendicular to the working plane, while during
peripheral milling the orientation is horizontal. Face and peripheral milling have
the purpose of generating a single surface with the end or side cutting edges of the
tool, respectively. On the other hand, end milling allows to generate new surfaces
with both cutting edges. Especially in form milling operations, the rotational axis
of the end milling tool is arbitrarily oriented with respect to the working plan.

The two variants up- and down-milling [63] are distinguished depending on the
relationship between cutting direction and feed direction. Up- and down-milling
result in different loads on the tool’s cutting edges. The up-milling process is
characterized by opposite cutting and feed directions. Therefore, the cutting edge
enters the material at a chip thickness of h = 0 mm, followed by a continuous
increase. As long as the chip thickness is below the characteristic minimum chip
thickness hmin, i.e., h P r0, hmins, no shearing but only friction and squeezing
occurs, leading to high thermal stress on the cutting edges. In addition, the
feed and cutting forces act in opposite directions, resulting in increased vibration
excitation. Hence, up-milling is considered unfavorable. During down-milling,
characterized by the same cutting and feed direction, the cutting edge enters
the material abruptly and the cutting process terminates at a chip thickness of
h = 0 mm.

Figure 2.6 illustrates up- and down-milling and introduces the main cutting
parameters and geometric relationships relevant to milling. Different shapes of
tool bodies and cutting edges are used in milling based on the series of standards
DIN 11529 [70] and DIN 6581 [71]. Due to its importance for multi-axis milling,
toroidal tools with circular tool cutting edges are used in this work [72, 73]. All
the following explanations, equations and figures are based on them, but can be
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transferred to other tool types without loss of generality.
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Figure 2.6: Comparison between up- and down-milling with cutting parameters
of the milling process and geometric relationships for a toroidal tool with circular
cutting edges, adapted from [72, 73].

The cutting parameters vc and fz of the milling process and the tool parameters
zc and Reff define the rotational speed n of the spindle and the feed speed vf ,
which are calculated according to Equations 2.2a and 2.2b:

n “
vc ¨ 1000
π ¨ Reff

(2.2a)

vf “ fz ¨ n ¨ zc (2.2b)

Based on n and zc, the cutting edge engagement frequency Ωz is calculated
according to Equation 2.3:

Ωz “
zc ¨ n

60 (2.3)

The cutting edge angle κ and the effective tool radius Reff depend on the axial
cut depth ap for circular cutting edges, since the contact point of cutting edge
and workpiece changes with ap. The cross-sectional area of the cut A, i.e., the
area of the cutting edge in contact with the workpiece during its engagement, is
calculated according to Equation 2.4:
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Apφq “
fz ¨ ap ¨ sin φ

κ
(2.4)

As the tool rotates, A changes with time, depending on the instantaneous
engagement angle φptq passing through the interval rφmin, φmaxs per currently
engaged cutting edge. The length of the interval depends on the radial depth
of the cut ae and is denoted as tool engagement angle θ, defined according to
Equation 2.5:

θ “ φmax ´ φmin (2.5)

In addition to the movement along the three spatial axes, the tool can be in-
clined relative to the working plane in five-axis milling. The lead angle αL and
the tilt angle βT describe this geometrically. The lead angle specifies the tool
inclination in the feed direction, while the tilt angle describes the tool inclina-
tion orthogonally to the feed direction. Figure 2.7 illustrates both inclination
parameters.
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Figure 2.7: Engagement conditions during five-axis milling with lead and tilt
angle of the cutting tool’s axis with respect to the working plane normal vector,
adapted from [72, 73].

As shown on the right for βT , the tool inclination with respect to the working
plane affects the radial depth of the cut ae and, consequently, the engagement
angle θ [72, 73]. Furthermore, the illustration of αL shows that the displacement of
the contact point of the cutting edge as a result of the inclination varies Reff and
κ. The same variations occur when the relative position between the workpiece
and the working plane changes due to the curvature of the workpiece [74].

In addition to the geometric engagement conditions under lead and tilt angle,

20



2.2. Machining Process

Figure 2.7 shows the components of the cutting force that act during milling,
which causes the mechanical load on the tool. The force acting on the engaged
tool cutting edge consists of a tangential, radial and axial component. The force
components are represented relative to the tool cutting edge. According to the
empirical-geometric milling force model of Altintas et al. [75], the cutting force
F⃗ can be written as:

F⃗ pφq “

¨

˝

Ftpφq

Frpφq

Fapφq

˛

‚“ K⃗cApφq ` K⃗eb “

¨

˝

Ktc

Krc

Kac

˛

‚¨ Apφq

Cutting
Component

`

¨

˝

Kte

Kre

Kae

˛

‚¨ b

Edge Force
Component

(2.6)

As described in Section 2.2.1, shearing and friction processes occur at the tool
cutting edge during chip formation. Shearing in the shear zones and friction at
the rake face, represented by Apφq, is considered in the cutting force model by the
cutting component using the empirical constants Ktc, Krc and Kac. In addition,
the model considers ploughing and rubbing at the engaging cutting edge of length
b using the edge force component, which is derived from the empirical constants
Kte, Kre and Kae. The empirical constants are determined based on milling tests
[76]. However, it is known that the cutting constants Ktc, Krc and Kac depend
on the geometric parameters of the tool cutting edge described in Section 2.2.1
and this section. The wear of the tool cutting edges, changing their geometry
over time, is therefore indirectly represented in the cutting force model. The
tangential force component of F⃗ represents the cutting force Fc during milling:

Fcpφq “ Ftpφq (2.7)

Assuming αL = 0˝ and βT = 0˝, the cutting force can be mapped to the Carte-
sian coordinate system by multiplying the force vector F⃗ by a transformation
matrix dependent on φ and κ [77]:

¨

˝

Fxpφq

Fypφq

Fzpφq

˛

‚“

¨

˝

´ cos φ ´ sin φ sin κ ´ sin φ cos κ
sin φ ´ cos φ sin κ ´ cos φ cos κ

0 ´ cos κ ´ sin κ

˛

‚

¨

˝

Ftpφq

Frpφq

Fapφq

˛

‚ (2.8)

If αL and βT are set arbitrarily, Equation 2.8 transforms the cutting force into
the tool coordinate system, i.e., relative to the tool axis. The transformation into
the Cartesian coordinate system is then achieved by a second transformation
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matrix depending on αL and βT [78]. The mapping of the milling force into the
Cartesian coordinate system enables the derivation of the feed force Ff , given the
feed direction.

2.2.4 Milling Process Chain

3D computer modeling and multi-axis machining are primary enabling factors of
free-form surface machining. CNC machine tools are standard in today’s man-
ufacturing, due to their high productivity and the complexity of multi-axis ma-
chining. The previous Sections 2.2.2 and 2.2.3 do not yet address the required
steps between a 3D workpiece model and the finished workpiece. Therefore, the
steps of the so-called CAD/CAM process chain [79, 80] are shown in Figure 2.8.
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Figure 2.8: Structure of the CAD/CAM process chain and controlled machining
process-related components of a CNC tool machine, adapted from [80].

The starting point of the CAD/CAM process chain is the CAD model of the
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workpiece, as described in Section 2.2.2. Based on the model, the tool trajectories,
i.e., the tool paths and movement patterns (speed, acceleration, jerk) along them,
are defined to manufacture the desired surface. The tool trajectory planning
also includes determining the tool inclination (lead and tilt angle). The tool
trajectory generation in state-of-the-art CAM software tools uses curve- or vector
field-based algorithms [81]. During or after trajectory generation, the machining
process simulation can be performed to identify problems in the machining process
and optimize it. The simulation of the cutting force allows, for example, the
optimization of the process concerning its energy efficiency. The effective power
Pe to be applied by the drives for machining is based on the cutting and feed force
components Fc and Ff according to Equation 2.9 and can therefore be estimated
in advance through the force simulation [82].

Peptq “ Pcptq ` Pf ptq “ Fcptq ¨ vcptq ` Ff ptq ¨ vf ptq (2.9)

Furthermore, optimizing the material removal rate Q according to Equation 2.10,
which determines the productivity of the machining process, represents a central
simulation objective [83].

Q “
∆V

∆tc

(2.10)

For this purpose, the volume ∆V to be removed [84, 85] for a certain workpiece
and the cutting duration ∆tc required for the production have to be estimated
[86, 87]. Both estimation tasks can already be accomplished using state-of-the-art
CAM software tools.

The numerical control (NC) code is generated based on the tool trajectories
using the so-called post processor module [79]. The NC code is required to con-
trol the machine tool and specifies the relative movements between the tool and
workpiece. The NC code instructions as well as syntax and structure of NC pro-
grams are described in the standards DIN 66025 [88] and ISO 6983 [89]. The
machine tool controller interprets the NC program and executes it by instructing
the machine drives in a closed-loop manner. In particular, the main axes and
spindle drives are crucial for manufacturing the workpieces. Figure 2.8 shows the
components of typical axes and spindle drive trains in CNC machine tools [67].
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2.3 Machining Process Monitoring

Apart from the milling process simulation, process monitoring is the second major
possibility to optimize its execution. Process monitoring ensures process quality
and reliability as it enables problem identification based on measurement data
and it enables the calibration or optimization of simulation models. Further-
more, problems not representable by simulation can be detected. The following
highlights the foundations of process monitoring from a hardware and software
perspective.

2.3.1 Data Acquisition

The starting point of process monitoring is the acquisition of measurement data.
A distinction is made between online and offline as well as direct and indirect
strategies for measuring and quantifying tool- and process quality-related param-
eters [13]. Online techniques rely on data acquisition during the ongoing ma-
chining process, while offline techniques require its interruption or termination.
The classification into direct and indirect techniques refers to the measurement
of the target parameter. If the direct measurement is not possible, other related
variables must be acquired indirectly to infer information on the target parameter.

Quality Target Parameters

The target parameters in machining process monitoring are all related to the
workpiece quality. Especially its dimensional accuracy and surface quality are
decisive, as they determine and limit the performance of their final applications.
The wear of the cutting tools significantly influences both factors, which is why
tool wear is also a primary target parameter.

Tool wear includes all changes in the tool’s cutting edge geometry resulting from
friction processes between the cutting edges and the workpiece material and the
general mechanical and thermal stress on the tool material during machining [90].
The main wear mechanisms are abrasion, adhesion, tribo-oxidation, diffusion and
surface breakdown [13, 61]. Tool wear depends on the geometry and material of
the tool cutting edges, the material of the workpiece, cutting parameters, cutting
force and the use of cooling lubricant. The parameters for quantifying tool wear
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according to the ISO 3685 standard [91], as shown in Figure 2.9, refer to the
material removal at rake and flank faces. They measure the resulting geometric
deviation of the edge shape.

Crater

Wear

SVα

SVγ

KM

KB

KT

VBmax

SVγ

VBmax: Maximum Flank Wear Mark Width

SVα: Cutting Edge Displacement (Rake Face)

SVγ: Cutting Edge Displacement (Flank Face)

KM: Crater Center Distance

KB: Crater Width

KT: Cater Depth

Flank 

Wear

Figure 2.9: Tool wear measurement parameters according to DIN ISO 3685
shown for the cutting edge of a circular insert, adapted from [13, 61].

The formation of flank and crater wear is a gradual, progressive process. It may
be accompanied by plastic deformation, notch wear, cracking, chipping, material
breakout and built-up edge formation [60]. The gradual wear is to be distin-
guished from abrupt tool failure caused by the breakage of the tool or cutting
edge, which makes the tool unusable. Tool failure is favored by gradual wear, but
can also occur independently, e.g., due to mechanical overload. This work con-
siders gradual wear as it mainly causes changes in workpiece quality. The wear
mark on the flank face of the cutting edge, as shown in Figure 2.9, mainly influ-
ences the workpiece quality. Since it is in direct contact with the newly created
workpiece surface, it affects the surface quality. In addition, the formation of the
wear mark width is always accompanied by the dimensional change of the cutting
edge, i.e., SV γ, which affects the dimensional accuracy. Accordingly, measuring
and monitoring the wear mark width is particularly important and focused in
this work. Its maximum value VBmax is used for this purpose and is referred to
as VB in the following.
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Surface quality is determined by quantifying the characteristics of the surface
profile of a workpiece [13]. The surface profile (primary or P-profile) contains low-
and high-frequency components denoted as waviness (W-profile) and roughness
(R-profile), which can be extracted from the P-profile using low- and high-pass
filters. Several parameters describing the surface features are determined based
on the three profiles according to the standard ISO 21920 [92]. Especially for
components of technical applications, the roughness of the surface is of particular
importance since it determines their frictional properties [90]. In mold- and die-
making, the roughness of the surfaces also determines the quality of the final
products [60]. Therefore, the R-profile is mainly considered in this work. The
central parameters determined based on an R-profile are shown in Figure 2.10.

Rp: Height of the maximum profile peak

Rv: Depth of the maximum profile valley 
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Figure 2.10: Roughness measurement parameters according to ISO 21920 shown
for a measuring section of an exemplary roughness profile (R-profile) [13].

To determine the roughness parameters, a measuring section L of a roughness
profile is divided into N consecutive subsections of length Li. As shown in Fig-
ure 2.10, the parameters are then determined per subsegment and the average is
calculated. The ten-point height of irregularities Rz is particularly important. It
represents the mean of the values Ri

z over five consecutive measurement intervals
and thus summarizes information on the profile peaks and valleys.
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Direct Monitoring

The direct determination of tool wear and workpiece quality parameters is per-
formed using tactile and optical measuring systems [93]. Tactile systems include
load cells, probes and profilometers for determining the surface profiles. Opti-
cal solutions are microscopy-, laser- or image processing-based. The measuring
systems are either machine-integrated or external [44]. Most direct acquisition
systems perform measurements offline, i.e., between the manufacturing of work-
pieces. This is their main disadvantage, as the measurements extend the overall
duration of production. In addition, continuous monitoring is impossible and
problems cannot be detected immediately. Furthermore, if machining times are
long, the machining process must be interrupted for intermittent measurements.

Indirect Monitoring

Online measurement strategies offer a solution to this problem, as they utilize
sensors capturing data in-process that is indirectly related to the target param-
eters [13]. The basis for online measurement strategies are the process outputs
of the cutting process resulting from the application of cutting and feed forces
for chip removal. As shown in Section 2.2.3, the cutting force during milling is
sensitive to changes in the geometry of the cutting edges, as is the case for gradu-
ally progressing wear. Therefore, the acting forces or the power expended by the
machine tool drives according to Equation 2.9 are feasible monitoring variables.
Furthermore, power dissipation occurs during chip formation in the contact zone
between the tool and workpiece, generating mainly heat and mechanical vibra-
tion, making temperature and vibration also usable monitoring variables. In the
following, the monitoring variables suitable for online process monitoring and the
sensor principles used for this purpose are examined in detail:

Cutting Force: According to the milling force model of Altintas et al. [75],
the cutting force during milling comprises a cutting surface and an edge compo-
nent. These represent the deformation and friction processes taking place during
machining. The cutting force is time-dependent with periodic variation due to
the continuous cutting edge entry and exit. In the context of multi-axis milling,
the variable engagement conditions also lead to non-periodic force changes during
machining. The cutting force is measured using piezoelectric dynamometers and
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strain gauges [13]. Strain gauges are applied to the tool structure for this purpose.
They exploit the dependence of electrical resistances on their cross-section and
length. The resistance varies due to mechanical stretching of the tool structure
when the cutting forces act. However, the stiffness of the tool structure results
in the low sensitivity of this measurement method.

Through piezoelectric dynamometers, the cutting force can be measured more
precisely using the piezoelectric effect. The piezoelectric effect describes the gen-
eration of dipoles when the geometry of piezoelectric materials, such as silicon
dioxide (SiO2), changes, resulting in a measurable electrical voltage. The charge
shifts caused by elastic deformation can be differentiated according to the direc-
tion of the force acting on the piezoelectric crystal. The longitudinal, transversal
and shear sensitivity of the materials are differentiated. Static and rotating dy-
namometers are used for monitoring the cutting process [94]. Three piezoelectric
elements, each of longitudinal or transversal sensitivity orientation, are the ba-
sis for acquiring the cutting force components in both approaches. Additionally,
the torque can be determined in two ways: a fourth shear-sensitive piezoelectric
element is used, which allows direct measurement or the torque is calculated via
several fixed three-component sensors. In the former case, only the z-axis torque
can be determined, while the latter allows the derivation of all three torque com-
ponents.

Rotating and static dynamometers differ in their mounting location and spatial
orientation of the measured forces. Static dynamometers are mounted on the
machine tool table and workpieces are clamped directly on it for machining. They
allow the cutting force to be measured in the Cartesian coordinate system. Thus,
to calculate the forces acting on the tool cutting edges during milling according to
Equation 2.6, both the inclination between the tool axis and the working surface
normal vector as well as the actual position of the engaging cutting edges and their
geometry must be known as described in Section 2.2.3. Rotating dynamometers
serve as tool holders and are integrated into the tool clamping system of the
spindle. They allow direct measurement of the cutting forces on the tool cutting
edges.

Drive Active Power: The active power consumption of the axis and spindle
drives depends on the cutting and feed forces [13]. According to Equation 2.9, the
cutting force Fc and the feed force Ff have a proportional effect on the cutting
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power Pc and the feed power Pf via the cutting speed vc and the feed speed vf .
To perform the cutting process, the drives of the machine tool must apply the
resulting effective power Pe as active power, taking into account their efficiency
factor η. The drives are designed such that the torque generation considers the
friction of mechanical drive train components (ball screw, bearings), depicted in
Figure 2.8 and the effects of the weight force due to their suspension.

As already described above, process changes, e.g., due to tool wear, hence also
affect the active power through the force. However, if cutting and feed forces
are to be accurately reconstructed from the active power, the factors leading to
deviations in the measured values must be compensated [95]. The active power is
determined by measuring the voltage, current and phase difference. The external
voltage measurement is performed at the connection ports of the drives and the
current is acquired using Hall sensors. In addition, modern CNC machine tool
controllers also acquire the power consumption of their drives. If the controller
offers a communication interface, these digital signals can be used directly for
process monitoring.

Temperature: The effective power required for chip formation is dissipated
due to the friction and separation processes in the contact zone of the tool cutting
edge and the workpiece. A large proportion of the power is converted into heat,
of which approximately 75 % is dissipated into the chip, 18 % into the tool and
7 % into the workpiece during steel cutting [13]. As explained in Section 2.2.3,
the proportion of the cutting force, representing the friction and separation pro-
cesses during chip formation, changes due to tool wear. Thus, wear also affects
heat dissipation and enables the use of temperature as a process monitoring
variable. Thermoelectric or radiation sensors are primarily used for temperature
measurement. Thermoelectric sensors (thermocouples, single-wire thermocouples
and sheathed thermocouples) must be placed very close to the contact zone to
measure the heat streams reliably. This requires integration into or attachment
to the tool or workpiece. Radiation sensors (pyrometers, infrared thermome-
ters) are applied externally and do not require direct proximity to the process.
However, because an unobstructed view of the contact zone is required, complex
components and multi-axis machining can prevent the applicability of radiation
sensors.

Vibration: The effective power Pe of the cutting process is not only trans-
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formed into heat, but also into mechanical vibrations. The dissipated vibration
power leads to the excitation of mass-dependent vibrations of the machine compo-
nents (machine vibrations) and the deflection of particles of the machine structure
from their equilibrium position, resulting in the propagation of mechanical waves
within the machine structure (structure-borne sound) [96].

Machine vibrations are described by modeling the machine tool as a mass-
spring-damper system, where the machine tool components represent the masses.
The vibrations are divided into externally excited and self-excited [97]. The
most significant external excitation occurs during milling due to the periodic en-
gagement of the tool cutting edges. In addition, imbalances, defective machine
elements or bearing faults cause external excitation of the machine tool system
during drive rotation. Due to its mechanical compliance characteristics, the ma-
chine structure has natural frequencies at which it oscillates under impulsive
excitation. Self-excited vibrations are referred to as chatter and result from the
feedback of vibrations due to the machining process, leading to oscillations at the
natural frequencies. In today’s CNC machines, regenerative chatter is the pri-
mary form of self-excited vibrations [98]. It results from excitation due to abrupt
variations of the cutting force, leading to waviness and roughness of the surface.
If the milling tool reaches the respective area again, the cutting force also varies
again due to the modulation of the cutting depth, causing regenerative vibration
excitation.

In order to gain an understanding of the generation of structure-borne sound
during machining, it is necessary to highlight the fundamentals of structure-borne
sound in general [99, 100, 101]. When vibrational energy is introduced into a solid,
it propagates in waves through mutual conversion between potential and kinetic
energy, distributed in time and space. This results in changes in the shape and
volume of the solid in which the potential energy is stored. The resulting wave
types can be divided into the basic types of transverse and longitudinal waves,
assuming propagation in an isotropic medium. In the case of transverse waves, the
direction of particle oscillation and the direction of propagation are orthogonal
to each other. In the case of longitudinal waves, the oscillation and propagation
directions are the same. Ideally, transverse and longitudinal waves occur when
their wavelengths λL and λT are significantly smaller than the length of the solid.
In spatially limited bodies of real components with specific shapes, further types
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of waves occur (bending, stretching and surface waves). All types of waves can
be described using three fundamental changes in the shape of a surface element:
strain, shear deformation and rotation. From this, the general field equations of
structure-borne sound are derived:

G

ˆ

∆s⃗ `
1

1 ´ 2µ
grad divs⃗

˙

“ ρ
B2s⃗

Bt2 (2.11a)

G

ˆ

∆v⃗ `
1

1 ´ 2µ
grad divv⃗

˙

“ ρ
B2v⃗

Bt2 (2.11b)

The field equations contain the material-dependent constants of the shear mod-
ulus G, Poisson’s ratio µ, density ρ and the sound deflection s⃗ and sound velocity
v⃗, linked to each other via the partial derivative with respect to time. v⃗ describes
the speed of the particle oscillation in three-dimensional space. It can be shown
that the field equations can be decomposed into a source-free and a vortex-free
part, describing ideal longitudinal and transverse waves, respectively. The prop-
agation velocities of longitudinal and transverse waves are defined according to:

cL “

d

G

ρ

2p1 ´ µq

1 ´ 2µ
(2.12a)

cT “

d

G

ρ
(2.12b)

The above explanations illustrate that combinations of longitudinal and trans-
verse waves can express all other occurring waves. Furthermore, the Equa-
tions 2.11a, 2.11b, 2.12a and 2.12b show that the type and propagation of waves
are independent of the excitation and are determined only by the material.

In practice, a material’s structure-borne sound transmission properties are
characterized by the sound wave impedance Zpfq [102]. It can be determined
metrologically by exciting a body with a force F⃗ and capturing the resulting
sound velocity v⃗. Zpfq is defined according to Equation 2.13, where F and v

describe the magnitudes of the vectors F⃗ and v⃗:

Zpfq “
F pfq

vpfq
(2.13)

Zpfq represents a frequency-dependent and, hence, complex transfer function
of a material. Since machine tools consist of multiple components of different ma-
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terials, the propagation of structure-borne sound in the machine tool structure is
influenced accordingly. Refraction and reflection of the waves occur at boundaries
of materials with different sound wave impedances and scattering occurs if the
size of an obstacle is approximately in the range of the wavelength. Furthermore,
the structure-borne sound waves attenuate as a result of energy dissipation.

The measurement of machine vibrations and structure-borne sound is based
on the physical vibration quantities of displacement, velocity and acceleration,
which are linked to each other via the derivative with respect to time [103]. The
displacement is determined through tactile probes and eddy current transduc-
ers, while the velocity is measured via inductive transducers or interferometers.
Inductive, piezoelectric, piezoresistive and capacitive transducers exist for mea-
suring acceleration. Due to the propagation property of vibrations in mechanical
systems and structures, their measurement in cutting process monitoring does not
require immediate proximity to the contact zone, as with force or temperature
measurement.

Control Signals: As explained in the above description of the active drive
power as a process monitoring variable, the digital signals of the machine tool
controller are also suitable as process monitoring variables [95, 104]. Axis drives
are usually operated via position, speed and current control circuits, while spindle
drives require rotation speed control [44]. Hence, the corresponding signals must
be available to the machine tool controller via sensors integrated into the machine
tool. In addition, the power consumption of the drives is acquired internally. The
disadvantage of using the control signals for process monitoring is the machine
tool and controller dependency of the interfacing.

2.3.2 Processing Hardware

For indirect process monitoring, information about the target parameters must
first be inferred from the sensor data introduced in the previous Section 2.3.1.
Information extraction requires processing of the sensor data, enabled by combin-
ing the sensors with information and communication technology hardware into
sensor systems. Two sensor system architectures for monitoring the machining
process exist and will be reviewed in the following. The architectures differ with
respect to their proximity to the machining process and resulting level of data
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aggregation, as described by the edge computing paradigm in Section 2.1.2.

Component-integrated sensor systems represent the first architecture category.
They include sensor systems integrated into the components required for ma-
chining, i.e., the cutting tool, the clamping system or the machine tool [105].
Sensor-integrated tools and tool holders are one of the main representatives of this
category [106]. Due to their close integration into the machining process and the
moving and rotating components of multi-axis machine tools, sensor-integrated
tools and tool holders are mostly wireless systems. The sensor systems are ei-
ther powered using wireless energy transmission [107], energy harvesting [108] or
batteries [109]. Due to the resulting restrictions concerning energy consumption,
state-of-the-art systems integrate ultra-low-power microcontroller units (MCUs)
with the primary tasks of sensor sampling and data transmission. The MCU
itself performs no or only limited data processing. The raw sensor signals are
transmitted to server systems [110] or mobile end devices [111, 112] like smart-
phones and tablets for further processing and visualization. Tool-, tool holder-
and clamping system-integrated sensor systems utilize vibration, force and tem-
perature as process monitoring variables. One tool-integrated sensor system for
monitoring free-form milling processes exists [113, 114]. The sensor system is
integrated into a long ball nose tool and monitors the tool vibrations, which
significantly affect the surface roughness. Further component-integrated sensor
systems are integrated into the machine tool spindle [115, 116] or utilize the digital
controller signals and the machine tool controller as a computing platform [117].
Component-integrated sensor systems are the subject of current research. How-
ever, commercial off-the-shelf (COTS) systems also already exist on the market
[118, 119, 120].

Gateway-level sensor systems form the second architecture category. Gateway-
level sensor systems are characterized by the availability of several sensor signals
of different monitoring variables and partially across several machine tools on a
central computing platform. Component-integrated and dedicated analog sensors
can be connected and the machine tool controller may be accessed. The main
difference to the component-integrated sensor systems is that sensor data pro-
cessing, e.g., signal analysis using fast Fourier transform (FFT)-based methods
[121, 122] or feature extraction [123], is performed locally to reduce the data vol-
ume and directly provide higher-level information. Therefore, the computational
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load increases, leading to more powerful computing systems than those used in
component-integrated sensor systems. Gateway-level sensor systems are based on
industrial PCs (IPCs) [124, 125] or single-board computers (SBCs) [126, 127, 128],
while research works also investigate the use of field-programmable gate ar-
rays (FPGAs) [129, 130] or multi-MCU-based gateway systems [131]. COTS
gateway-level sensor systems are IPC- or FPGA-based and target the local exe-
cution of signal-based monitoring, e.g., threshold-based tool wear detection and
the integration into cloud server systems [132, 133, 134, 135, 136, 137, 138].

As the application of machine learning methods increases in machining process
monitoring [139], the processing hardware forming the basis of the sensor systems
also adapts. As with sensor data processing, the sensor systems perform machine
learning tasks locally. The basic machine learning tasks are training and inference
of the models. To handle this additional workload alongside the other tasks of the
sensor systems, hardware architectures are specialized for machine learning. The
first type of specialized hardware architectures used in machining process moni-
toring are application-specific integrated circuits (ASICs) and tensor processing
units (TPUs) enabling in particular the inference of machine learning models
[140]. Their training is performed on server systems. First COTS gateway-level
sensor systems adopt this principle [137]. The next step is to locally train and infer
machine learning, which has been achieved by custom accelerators implemented
on FPGA [141]. In addition to ASIC- and FPGA-based acceleration, support for
machine learning tasks in embedded systems is added with specialized instruction
set architectures (ISAs) of central processing units (CPUs) and the miniaturiza-
tion of graphics processing units (GPUs), already used in server systems [142].
Another possibility is the distribution of machine learning tasks across multiple
sensor systems, leveraging their communication capability [143, 144].

2.3.3 Signal Processing

The sensor systems for cutting process monitoring described in the two previous
sections form the basis for processing the sensor signals on the hardware side.
Sensor signal processing algorithms are used to extract higher-level information
from the sensor signals, which allows the inference of the target parameters. Since
machining processes are dynamic, frequency domain analysis is particularly im-
portant for monitoring. Frequency domain analysis is used for all process mon-
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itoring variables introduced in Section 2.3.1, except for temperature monitoring
due to the inertia of heat flow.

The basis of frequency domain analysis is the Fourier transform, which allows
a continuous and infinite time domain signal xptq to be transformed into its
frequency domain representation Xpfq [145]. It is assumed in the following that
the time domain sensor signals are always real-valued.

Xpfq “

ż `8

´8

fptqe´j2πft dt (2.14)

In order to be processed using the hardware presented in Section 2.3.1, a sensor
signal must be digitized beforehand, i.e., sampled at equidistant time intervals
Ts “ 1

fs
with a sampling frequency of fs. The result is a discrete signal x̂pnq “

xpnTsq of finite length N whose Fourier transform can be determined using the
discrete Fourier transform (DFT):

X̂pmq “

N´1
ÿ

n“0
x̂pnqe´j2π nm

N , for m “ 0, . . . , N ´ 1 (2.15)

To reduce the computational complexity of the DFT according to Equation
2.15, in practice it is calculated using the FFT [146].

When analyzing a signal using the Fourier transform, its stationarity, i.e., time
invariance, is implicitly assumed. However, this assumption is generally invalid
for the machining process since it is dynamic and consists of multiple phases,
especially in multi-axis machining. The resulting signals are non-stationary. To
enable an analysis of non-stationary signals, the short-time Fourier transform
(STFT) is used:

Spτ, fq “

ż `8

´8

xptqwpτ ´ tqe´j2πft (2.16)

The STFT of a continuous signal xptq is based on the multiplication with a
moving window function wpτ ´ tq and subsequent frequency transform to obtain
the time-frequency spectrum Spτ, fq. As with the Fourier transform, the STFT
is also applicable to a finite, discrete signal x̂pnq:

Ŝpl, mq “

l
ÿ

n“l´pNw´1q

x̂pnqwpl ´ nqe´j2π nm
N (2.17)
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The discrete and finite window w is assumed to be non-zero between 0 and
Nw ´ 1. Due to its physical significance, the power spectral density (PSD) of
a signal, i.e., the distribution of the signal power over frequency, is a crucial
part of signal analysis. In addition to the distinction of the stationarity of a
signal, it is necessary to distinguish between deterministic and random signals
when considering the PSD. The values of a deterministic signal are known at
arbitrary time points, whereas this is not valid for random signals. Ideally, signals
generated by rotating machines such as machine tools are deterministic. However,
in reality, the signals have random components due to the cutting process and
the non-ideality of the machine and its components. The periodogram Pxxpfq

representing the PSD can be generally estimated for a random, discrete and
finite signal x̂pnq using the DFT-based frequency spectrum X̂pmq according to:

Pxxpmq “
1
N

ˇ

ˇ

ˇ
X̂pmq

ˇ

ˇ

ˇ

2
(2.18)

The quality of the PSD estimate using Equation 2.18 increases with the length
of the considered signal segment. In order to increase the quality of the estimate
for non-stationary and short signal sections, advanced algorithms are applied,
e.g., the Bartlett, Welch or Blackman-Tukey method [145]. In the following, the
PSD estimate Pxxpmq is denoted as a periodogram.

In addition to signal analysis, feature extraction methods are used to extract
condensed information from sensor signals and their frequency as well as time-
frequency domain representations [147, 148]. Their goal is to map the character-
istics and shape of the signal representations in a minimum possible number of
parameters.

2.3.4 Remaining Tool Life Prediction

After signal processing, inference with respect to the quality target parameters
of the machining process described in Section 2.3.1 is the final step of machining
process monitoring. Based on this, it is possible to estimate how long it will be
possible to manufacture further workpieces while complying with the required
threshold values of the quality target parameters. This period is referred to as
the remaining tool life tr. The tool life is determined by the cutting time of
the tool tc, indicating how long the tool has been in contact with the workpiece.
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The decisive target parameter for the determination of the tool life is denoted
as tool life criterion. Progressive tool wear is a common tool life criterion as it
significantly influences the quality-relevant parameters of dimensional accuracy
and surface quality of the workpieces. The decrease in process quality can be
estimated based on future tool wear. Figure 2.11 shows the remaining tool life
Tr based on the flank wear mark width VB at an instantaneous cutting time Tc.
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Figure 2.11: Illustration of the remaining tool life and related parameters based
on the flank wear mark width VB as a tool life criterion.

The basic method for estimating the total tool life T VBt
c according to the Taylor

formula [13] utilizing VB as a tool life criterion is given by:

T VBt
c “ CVBt

v ¨ vk
c , with k “ ´

log CVBt
v

log Ct

(2.19)

T VBt
c is the cutting time until the flank wear mark threshold VBt is reached.

The constant CVBT
v describes the tool life until VBt with a cutting speed of

vc “ 1 m
min

and the constant CT describes the cutting speed for a tool life of one
minute. Both constants are empirical values that must be determined separately
for every combination of cutting tool and workpiece in machining tests. Equa-
tion 2.19 is only based on the cutting speed vc. Extensions of the Taylor formula
include other cutting parameters such as feed per cutting edge fz and depth of
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cut ap, which also influence the tool life [60].

The Taylor formula represents a physics-based, empirical method for deter-
mining the remaining tool life. Further representatives of this variant are wear
rate models, which are based on the contact mechanics during the cutting pro-
cess [149, 150]. Furthermore, simulation-based, stochastic, statistical, machine
learning and hybrid approaches exist, as shown in Figure 2.12. Physics- and
simulation-based approaches model the tool life criterion, e.g., the wear mark
width shown in the upper part of Figure 2.11 and then derive T VBt

c . The other
approaches use past or in-process data from direct or indirect monitoring to model
the tool life criterion or directly the remaining tool life function, shown in the
lower part of Figure 2.11.

Remaining Tool Life Prediction Methods

Physics-/
Simulation-based

Stochastic/

Statistic

Machine 

Learning
Hybrid

Figure 2.12: Categories of remaining tool life prediction methodologies.

Simulation-based methods mainly utilize the finite element method (FEM) to
iteratively model the chip formation process and the resulting wear [151, 152,
153, 154, 155]. The preliminary determination of tool life using pure physics- and
simulation-based methods lacks several factors relevant in the machining pro-
cess, which cannot be described based on univariate parameters or mathematical
models. In particular, tool life is additionally influenced by the machine tool
and its condition, by production-related variations of the workpiece raw material
and the tool and by the workpiece geometry and shape as well as the resulting
tool load. Thus, to include real-time information about the process, direct and
indirect monitoring is used as the basis for remaining tool life prediction.

Stochastic and statistic methods are based on direct or indirect monitoring data
and assumptions on the functions to be modeled, requiring expert knowledge.
Examples are parametric regression [156] and forecasting models [157], Bayesian
inference [158, 159, 160, 161], Markov models [162, 163] or stochastic processes
[164]. Hybrid methods combine physical or simulation models with estimation
methods, e.g., particle filters, to optimally determine empirical parameters of
the physical models from indirect process monitoring data [165, 166, 167, 168].
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Machine learning models are solely monitoring data-based and non-parametric,
i.e., neither they neither assumptions on the functions to be modeled nor physics-
based models. They will be discussed in detail in the following section.

2.4 Machine Learning

Machine learning methodologies enable extracting information from data such as
the indirectly acquired signals of machining process-integrated sensors described
in Section 2.3. As a basis for remaining tool life prediction in this work, the
corresponding foundations of machine learning are introduced in the following.

2.4.1 Regression and Forecasting

Machine learning methods [169] are based on models whose parameters are adapted
during training to a dataset Dtrain, covering the target learning task. The learn-
ing tasks are divided into supervised and unsupervised, depending on Dtrain. In
supervised learning, a relationship between an input feature space X and a target
space Y is established. X consists of feature vectors x⃗i P Rd, where d denotes
their dimension, and targets yi P Y , resulting in Dtrain “ tpx⃗1, y1q, . . . , px⃗n, ynqu.
A dataset Dtest “ tpx⃗n`1, yn`1q, . . . , px⃗m, ymqu is used to evaluate the predic-
tion performance of a machine learning model. Depending on Y , classification
problems with discrete and regression problems with continuous targets yi are
distinguished. Unsupervised methods do not require information on the target
space Y and rely only on the feature vectors. They are used for clustering, di-
mension reduction and association learning tasks. Figure 2.13 summarizes the
differentiation of machine learning problems.

The remaining tool life prediction is generally a regression problem since its
target variables are continuous, as described in Section 2.3.4. Therefore, Fig-
ure 2.13 shows an overview of regression models focused on in the following.
Regression based on machine learning models enables the approximation of arbi-
trary functional relationships between the input and target spaces. The training
and inference, i.e., the application of the models based on sensor data is shown
in Figure 2.14.

Machine learning models are characterized by their parameters θp, adjusted
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Machine Learning
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Figure 2.13: Categorization of machine learning tasks and regression models.

during training, and hyperparameters θhp, fixed during training, parameterizing
the architecture and the training of the models. The training is performed by
minimizing a loss function L, measuring the error between model prediction and
target according to:

θ˚
p “ argmin

θp

n
ÿ

i“1
Lpyi, ŷiq (2.20)

θ˚
p denotes the adapted model parameters and ŷi denotes the model prediction.

Loss functions used for regression problems are the R2 loss, mean absolute er-
ror (MAE), mean absolute percentage error (MAPE), mean squared error (MSE)
or root-mean-square error (RMSE) [170]. A distinction is made between types of
models based on the input data. The models can be preceded by signal process-
ing components, as described in Section 4.1.4, to simplify model building based
on already condensed information. However, a selection of a feature subset is
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Figure 2.14: Steps of the machine learning pipeline for regression problems
based on sensor data.

necessary since the number of extracted features can be arbitrary. The feature
selection aims to balance the effect of overfitting, which significantly influences
the performance of machine learning models.

Overfitting the model parameters θp to the samples of the training dataset lim-
its its generalization capability, i.e., the transferability to samples not included in
the training dataset. Not all extracted features contribute equally to the predic-
tive quality of the model. Overfitting is favored if too many features unimportant
for approximating the functional target relationship are included in the model in-
put. In addition to the relevance of the features, their increasing number also
leads to overfitting, denoted as curse of dimensionality. Each input feature of
a machine learning model represents a dimension. The size of the input space
grows exponentially with the number of features. As the number of features
increases while the number of data points remains the same, searching for mean-
ingful patterns becomes more difficult. Thus, the probability that information
can be extracted decreases. Figure 2.15 provides an overview of feature selection
methodologies.

Feature Selection

Manual (Semi-)Automated

Signal 
Processing

Expert 
Knowledge

Filter Embedded Wrapper

Univariate

Multivariate

Figure 2.15: Overview of feature selection methodologies [171].

Manual and automated feature selection methods are distinguished. The man-
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ual methods are expert-driven and use either a priori known relationships in the
process or signal analysis to identify them. Automated methods are solely data-
driven and can be further divided into filter, wrapper, and embedded methods.
Filter methods use statistical parameters to quantify the relationships between
variables. Wrapper and embedded methods directly use machine learning models
for feature selection. Wrapper methods search the optimal feature subset based
on model performance. Embedded methods perform feature selection as part of
the model training. Model types like decision trees or support vector regression
shown in Figure 2.13 based on an internal feature ranking are used. Convolutional
neural networks (CNNs) represent a special type of machine learning models. Due
to the convolution-based structure, both the selection and extraction of features
are trained. Thus, raw data can be used as model input.

Forecasting describes a variant of regression for time series data, in which
past samples of a target variable are used to predict the future course of the
time series [172, 173]. Thus, the target data serves as both model input and
output. Standard regression models, shown in Figure 2.13, are frequently used
for forecasting. However, there are also models tailored to time series processing,
such as recurrent neural networks (RNNs) and long-short term memory (LSTM)
networks [174].

2.4.2 Automated Machine Learning

The optimal selection and configuration of the components of machine learning
pipelines to achieve the best performance is a complex task due to the large
search space. Automated machine learning aims to solve this optimization task
in a controlled, data-driven manner [175]. The main areas of automated machine
learning are hyperparameter optimization, meta-learning, and neural architecture
search.

Hyperparameter optimization targets the complete machine learning pipeline
shown in Figure 2.14 and not only the model hyperparameters θhp. A common
problem is the combined pipeline component selection (feature extraction, se-
lection, preprocessing and model) and optimization of model hyperparameters
θhp [176, 177]. Black-box optimization and multi-fidelity approaches are used
for hyperparameter optimization. Black-box optimization considers the machine
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learning pipeline as an arbitrary function. Hyperparameter search is based on its
inputs, outputs, and performance metrics. Therefore, model-free methods such
as grid or random search and population-based optimization (genetic, evolution-
ary or particle-swarm optimization) as well as Bayesian optimization methods
are used. Multi-fidelity approaches aim to enable hyperparameter optimization
despite the increasing time complexity of model training due to larger models and
datasets [178]. They use heuristics to find trade-offs between model performance
and the runtime of the hyperparameter search.

Meta-learning describes the learning from past training processes of machine
learning models and the optimization of future training processes using the know-
ledge. It is based on metadata describing the machine learning task, the training
process and the model or pipeline configurations.

Unlike other machine learning models, neural networks have hyperparameters
that significantly influence their architecture. Therefore, the optimal selection of
these hyperparameters is considered separately in the context of the neural archi-
tecture search (NAS). NAS is based on the general hyperparameter optimization
methods described above. Due to increasing model and dataset sizes in the con-
text of deep learning and thus increasing computational resource complexity of
training and inference, hardware-aware NAS is gaining importance. The goal is
a multi-objective optimization concerning model performance and computational
resource consumption [142].

2.4.3 Application to Machining

Machine learning methods for machining process monitoring are the subject of
current research. They offer the possibility to cope with challenges resulting
from the constantly increasing requirements of machining production. Increasing
quality requirements and resulting demand for process monitoring lead to more
connected sensors and process data sources. Machine learning methods enable
the extraction of information despite increasing process data volumes, especially
from signals of process-integrated sensors, which depict the process quality only
indirectly [179, 180]. Furthermore, as shown in Figure 2.13, most machine learn-
ing models are non-parametric, which enables their purely data-driven application
without physical or expert knowledge. This makes them adaptive, as underlying
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models do not need to be manually adjusted when processes change, and offers
the potential of automating the process monitoring model development [181]. In
the following, the related work is reviewed with a focus on machine learning-based
remaining tool life prediction of cutting and particularly milling tools.

As indicated in Section 2.3.4, the remaining tool life prediction methods differ
in their objective function. The objective function is to be approximated by the
machine learning models and is the foundation for estimating the remaining tool
life. The direct, criterion- and forecasting-based methods can be distinguished.

Direct methods approximate the linear remaining tool life function over the
cutting time determined based on the tool life criterion and the resulting total tool
life, as shown in the lower part of Figure 2.11. Direct methods are easy to apply
since a simple regression model is sufficient to perform the prognosis. Moreover,
they provide a purely temporal output independent of the tool life criterion,
which can be directly used. At the same time, the simple objective function of
the method type is its primary drawback. The only target parameter dependent
on the tool life criterion is the total tool life. Hence, the machine learning task is
the approximation of this parameter from the input data. The indirect reference
to the tool life criterion indicates that the generalizability to variable tool life
criterion functions, e.g., due to variable process conditions, cannot be guaranteed.
Since the total tool life describes only the end point of the tool life criterion, i.e.,
a single value, intermediate changes cannot be represented. In addition, the
explainability of the remaining tool life prediction is not given due to the missing
connection with the tool life criterion.

Criterion-based methods approximate the function of the tool life criterion,
e.g., the flank wear mark width VB, through a regression model or use criterion-
correlated sensor signal-based functions, denoted as health indicators [182]. Sub-
sequently, a simple empirical, non-data-driven model estimates the remaining
time until a criterion threshold is reached. For this purpose, linear, physics-based
or similarity-based models are used. The advantage of the criterion-based method
is the higher degree of explainability compared to the direct method by regressing
the tool life criterion. However, due to its empirical nature, the remaining tool
life model is bound to fixed process conditions. Adaptation to unknown process
conditions or analysis under variable process conditions is impossible.

Forecasting-based methods also use regression of the tool life criterion function
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or a related health indicator function. However, based on this, the future course
of the function is approximated using a forecasting model. Forecasting-based
methods are thus purely data-driven and tool life criterion-based. The disadvan-
tages of the direct and criterion-based methods in terms of the generalizability
and explainability of the remaining tool life prediction can thus be overcome.

Besides the objective function, the methods for remaining tool life prediction
described in the state of research differ in terms of the focused production sce-
narios and the datasets representing them. Production scenarios can be differ-
entiated according to the number of successively manufactured workpieces of the
same type into series and single-part production. The production scenario im-
pacts the remaining tool life prediction since it determines the frequency with
which the influencing factors of the cutting tools change. In series production,
the conditions (especially workpieces and cutting parameters) are mainly con-
stant over the life of a tool. The conditions may differ for different tools, denoted
as inter-tool life variability in the following. In single-part production, the work-
piece geometry and process conditions such as cutting parameters change during
the life of a tool, referred to as intra-tool life variability in the following. In addi-
tion, regardless of the production scenario, the tool load conditions may change
while manufacturing a workpiece, e.g., due to complex geometry and multi-axis
machining. This is referred to in the following as intra-workpiece variability of
the conditions. Methods for predicting the remaining tool life are based on pub-
licly available or custom-recorded datasets. Publicly available datasets and their
characteristics are summarized in Table 2.1.

Based on the distinction of objective functions and production scenarios of
remaining tool life prediction methods described above, Tables 2.2 and 2.3 provide
an overview of the current state of research. The tables include the applied
machine learning models of the approaches and, in the case of custom datasets,
the monitoring variables.

2.5 Research Gap

Based on the review of the related work, the research gap to be filled in this thesis
is formulated in the following. This work targets the sensor-driven and machine
learning-based prediction of remaining tool life. Therefore, the research gap is
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Table 2.1: Literature review of publicly available machining process monitoring
datasets that include a tool life criterion and can thus be used for developing
machine learning-based remaining tool life prediction methodologies.

Dataset Production Scenario Tool Life
Criterion

Monitoring
Variables

PHM 2010 [183] Milling series production with fixed
conditions

Flank wear mark
width

Force, Vibration

UC Berkeley [184]
Milling series production with

inter-tool life variation of workpiece
material, fz and ap

Flank wear mark
width

Drive current,
Vibration

SMART [185]
Milling series production with

inter-tool life variation of fz and
workpiece clamping force

Binary wear labels Control signals

Foxconn [186]
Milling series production with

inter-tool life variation of workpiece
geometry

Total tool life
Vibration, Drive
current, Control

signals

Table 2.2: Literature review of machine learning-based remaining tool life pre-
diction methodologies using publicly available datasets.

Ref. Dataset Objective Function Models

[187] Foxconn Direct CNN
[188] UC Berkeley, PHM 2010 Criterion CNN-LSTM
[189] Foxconn Direct Ensemble (CNN, LSTM)
[190] PHM 2010, Foxconn Criterion, Direct SVR, GPR, RFR, GBR
[191] PHM 2010 Forecasting LSTM
[192] PHM 2010 Criterion PCA
[182] PHM 2010 Criterion GRU
[193] PHM 2010 Criterion CNN-LSTM
[194] PHM 2010 Criterion LSTM
[195] SMART Criterion LSTM
[196] PHM 2010 Forecasting CNN-LSTM
[186] Foxconn Direct LSTM
[197] PHM 2010 Direct MLP
[198] PHM 2010 Criterion SVR

derived from the architectural concepts for process monitoring sensor systems
described in Section 2.3.2 and the machine learning-based remaining tool life
prediction methods described in Section 2.4.3. The state of research in these areas
is evaluated against the background of the growing proportion of customized and
single-part production in machining with simultaneously increasing workpiece
complexity [5].

As explained in Section 2.2.3, increasing workpiece complexity requires flexible
manufacturing systems enabling multi-axis machining. Due to changing work-
pieces and process conditions, single-part production requires a high degree of

46



2.5. Research Gap

Table 2.3: Literature review of machine learning-based remaining tool life pre-
diction methodologies using custom datasets.

Ref. Production Scenario Objective
Function

Monitoring
Variables Models

[199] Milling series production with inter-tool life
variation of spindle speed Criterion Spindle power MLP

[200] Slotting series production with inter-tool life
variation of tool type Direct Vibration LSTM

[201]
Milling series production with inter-tool life

variation of tool path radii and cutting
parameters (vc, fz , ap)

Direct Vibration, Force MLP, DBN

[202] Milling series production with inter-tool life
variation of cutting parameters Direct

Vibration, Drive
current, Control

signals

CNN-
LSTM

[203] Milling series production with inter-tool life
variation of cutting parameters (vc, fz , ap) Direct Vibration, Force,

Drive current CNN

[204] Milling series production with fixed
conditions Direct Vibration, Force CNN

[205] Slotting series production with fixed
conditions Direct Vibration SVR

[206] Gear teeth series production with fixed
conditions Criterion

Vibration, Drive
power

CNN-
LSTM

[207,
208]

Milling series production with inter-tool life
variation of cutting parameters (vc, fz , ap) Direct Vibration, Force,

Drive current
CNN,
LSTM

[209] Milling series production with inter-tool life
variation of cutting parameters (vc, fz , ae) Criterion

Cutting edge
images

CNN-
LSTM

[210] Milling series production with fixed
conditions Direct Force MLP, SVR

[211] Milling series production with fixed
conditions

Forecasting Vibration RNNs

[212]
Hole milling series production with inter-

and intra-tool life variation of cutting
parameters (vc, fz , ap)

Criterion Control signals LSTM

adaptivity of the manufacturing systems. The previous work on the architectural
concepts of component-integrated and gateway-level sensor systems presented in
Section 4.1.3 does not yet include these considerations. Although first component-
integrated sensor systems for monitoring the production of complex single parts
exist [113, 179], there has been no systematic investigation of the impact of the
production scenario on sensor-based process monitoring. The requirement anal-
ysis of permanent process monitoring in adaptive, flexible machine tools and
manufacturing systems is still pending. Due to the resulting high degree of pro-
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cess variation, non-invasive and process-independent sensor system concepts are
required [5]. From a data processing perspective, the systems must be able to
manage the growing number of networked sensors and resulting data volumes and
explicitly support the increasing use of machine learning for process monitoring.

The variable production scenarios of single-part production require that not
only the manufacturing systems but also the process monitoring models are au-
tomatically adapted to the process conditions. Furthermore, for verifying the
models, the explainability of their decisions is of particular relevance. Thus, a
trade-off between the degree of automation and the explainability of the mod-
eling process is required in machining process monitoring. Despite their adap-
tivity, this trade-off is a challenge for machine learning methods. As described
in Section 2.4.2, automated modeling with machine learning requires not only
data-based training, but also the adjustment of model hyperparameters in order
to achieve optimal results. Furthermore, machine learning methods are based on
black-box models that do not allow direct explainability. So far, only a few auto-
mated [190, 213, 214, 181] or explainable modeling approaches [215, 216, 217, 218]
exist in the context of machine learning-based machining process monitoring.
Combined approaches enabling a trade-off have not been investigated at all. For
the remaining tool life prediction, the criterion- and forecasting-based methods
presented in Section 2.4.3 enable limited explainability concerning the final model
output. However, none of the state-of-the-art approaches listed in Tables 2.2 and
2.3 provide mechanisms for explanation at the sensor signal level. Thus, the re-
lation between sensor signals and tool life criterion is not explainable, making
statements regarding the transferability of the approaches, e.g., to other machine
tool types, impossible.

The main characteristic of single-part production is the inter-workpiece vari-
ability of process conditions introduced in Section 2.4.3. In particular, the change
of successive workpiece geometries, resulting tool paths, and cutting parameters
influence the cutting time and the load on the tool. In addition, complex work-
piece geometries in free-form machining characterized by single-part production
lead to intra-workpiece variability of the engagement conditions. The variations
in tool load affect the tool life and consequently the remaining tool life prediction.
Looking at Tables 2.1 and 2.3, it becomes clear that previous datasets and sensor-
based methods of remaining tool life prediction mainly consider fixed process con-
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ditions or inter-tool life variation of process conditions in series production. Four
series production datasets include intra-workpiece variability [186, 202, 201, 219],
and a single one includes changing cutting parameters between subsequently man-
ufactured workpieces [212]. Furthermore, a non-data-driven approach exists that
considers a single sequence of varying workpiece geometries [220]. However, the
approach requires direct tool wear measurement and linearly interpolates the
measurements. Therefore, it is only indirectly related to this work. So far, the
sensor-based remaining tool life prediction under variation of geometries of succes-
sive workpieces and inter-tool life variation of conditions has not been considered.
Hence, there exists no corresponding dataset representing single-part production
scenarios.
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3. Objectives and Solution
Approach

The overall objective of this work is the remaining tool life prediction of machin-
ing tools based on sensor-driven process monitoring. The focus is on machining
processes characterized by high variability of their influencing factors. They af-
fect the tool load and thus tool life and sensor signals, resulting in multivariate
dependencies. The variability of process influencing factors gains importance due
to the increasing proportion of small-batch and single-part production and the
increasing component complexity. The remaining tool life prediction aims to
make the production of components with high quality requirements more reliable
and at the same time optimizable. If the remaining time until declining process
quality is known, even under changing process conditions, measures can be taken
in time to avoid it. In addition, future process parameters can be selected to
minimize the overall processing time without the risk of violating quality criteria.
Figure 3.1 shows the solution approach followed in this work. The wear-induced
surface roughness determines the process quality, making the tool wear the pri-
mary tool life criterion. The remaining tool life prediction method developed in
this work is demonstrated using the milling of free-form surfaces under single-part
production conditions.

From the objective described above, the main research question of this work
can be derived: Is it possible to predict the tool life under variable process condi-
tions and can the prediction serve as a foundation for optimizing the productivity
of the cutting process while ensuring process reliability?

In order to answer the main research question, this work is structured based on
three clusters of sub-research questions. The areas of the solution approach
marked in Figure 3.1 provide the foundation for this:
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Figure 3.1: Solution approach of this work.

I. Which monitoring variables are suitable for providing machine-independent
information for process monitoring concerning surface quality and tool wear.
How can the monitoring variables be acquired in a process-independent
manner? Process independence refers to components frequently exchanged
or adapted in single-part production, such as tools or clamping systems.

II. Which information extractable from the sensor data is necessary for model-
ing the remaining tool life, and can context information, so-called covariates,
e.g., from process planning or simulation, contribute to an improvement?
How can the modeling based on the multivariate data be automated while
still being explainable?

III. Can the remaining tool life prediction be optimized by incorporating a priori
accessible information about future machining operations?

The selection of suitable process monitoring variables and the subsequent de-
velopment of algorithms for information extraction in the running process is the
subject of Section 4.1. Suitable process monitoring variables are first determined
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and evaluated, which forms the basis for the selection. The focus of the signal
processing algorithms lies on extracting high-level process information and wear-
as well as roughness-correlated features, which can be used for the subsequent
modeling of remaining tool life.

Section 4.2 covers the realization of an overall system based on the previ-
ously described methods and algorithms for process monitoring of flexible ma-
chine tools. In order to be able to evaluate the methods under variable, realistic
conditions, the system is implemented based on a five-axis milling center. Further-
more, the methods for extracting high-level process information are implemented
and verified.

Subsequently, the methodology validation for extracting the wear and rough-
ness correlated features is performed in Section 4.3. For this purpose, a tool life
experiment is conducted based on an exemplary milling process on the five-axis
milling center. The evaluation of the experimental results aims to investigate the
dependence of the sensor signals and extracted features on the machine to ensure
that the method is transferable.

Based on the information and features available according to Chapter 4, the
tool life prediction methodology is introduced in Section 5.1. For this purpose,
an analysis of the tool wear objective function and the multivariate dependencies
between process input variables, sensor data and tool wear is performed.

Section 5.2 describes the dataset generation, which is the prerequisite for mod-
eling the remaining tool life. For this purpose, the overall system implemented
in Chapter 4 is extended into a testbed, allowing continuous data availability
through all steps of the milling process chain. Furthermore, a reference process
based on free-form milling is developed, enabling tool life experiments under vari-
able process conditions. A software framework based on the automated machine
learning approach, also implemented in Section 5.2, provides the basis for the
automated training and evaluation of the machine learning models at the core of
the remaining tool life prediction method.

The evaluation of the prediction methodology based on the tool life dataset
generated under variable process conditions is presented in Section 5.3. The
goal of the evaluation is to answer sub-research questions II and III described
above and relate to the main research question of this work.
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4. Sensor Signals and
Information Extraction

Methods for monitoring the cutting process are generally composed of sensor
technology and signal processing. They thus aim to extract information about
the cutting process and thereby enable the evaluation of its condition as well
as the detection of problems and optimization potential. In the following, the
requirements resulting from the conditions of single-part production for process
monitoring are analyzed, and a corresponding sensor system architecture concept
is derived and investigated.

4.1 Process Monitoring Methodology

Single-part production is characterized by the continuous variation of the process
conditions, i.e., the workpieces and the cutting parameters. The variation of
the process conditions follows a random distribution, which strongly affects the
tool life. It is accompanied by flexible manufacturing systems and the frequent
adaptation of the process and machine configurations, e.g., the frequent change
of tool, tool holder, workpiece clamping, or the entire clamping system. In the
following, machining process monitoring is investigated against this background.

4.1.1 Comparison of Process Monitoring Variables

The main foundation for data-based modeling in the context of machining pro-
cess monitoring is the availability of suitable data sources. The provided data
represents the input to the models and is thus crucial for their performance. As
described in Section 2.3, process-integrated sensors enable the data acquisition
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during machining without the resource-intensive use of manufacturing metrology.
Hence, the sensor-based approach is used in this work as the basis for remaining
tool life prediction. The first step is to select suitable process monitoring vari-
ables as data sources. Initially, the sensor requirements defined by the single-part
production of complex free-form surface workpieces have to be analyzed:

• Process Independence of Sensor Integration: The application of sen-
sors for machining process monitoring in the context of single-part pro-
duction is subject to special boundary conditions. The frequent change of
products to be manufactured, e.g., of variable size, shape or material, ne-
cessitates that process-relevant components, especially the tool, tool holder
and workpiece clamping system, have to be adapted. Therefore, sensor inte-
gration has to be independent of these directly process-related components
to allow the arbitrary process reconfiguration without affecting the data
source.

• Permanence of Sensor Integration: Predicting the remaining life of
cutting tools aims to be a permanent part of tool life cycle management
and hence a foundation for overall production optimization. Therefore,
modeling the remaining tool life based on sensors as the model’s data source
requires permanent sensor integration to ensure continuous data availability
and consistent data quality. Furthermore, the process reliability must not
be compromised by the sensor integration.

• Generalizability of Information Extraction: Integrating sensors for
monitoring the machining process leads to additional installation and main-
tenance efforts, especially when retrofitting machines are already in opera-
tion. A non-invasive, flexible, and thus scalable integration of its underlying
sensors is necessary to ensure the generalizability and transferability of a
monitoring approach. Furthermore, machine independence of the informa-
tion extraction is required. It also prevents adaptations of signal processing
due to the frequent adaptation of the machine configuration in single-part
production.

Table 4.1 compares the common machining process monitoring variables ac-
cording to Section 2.3.1 based on the requirements of single-part production de-
rived above.

The comparison in Table 4.1 illustrates that not all sensor types are equally
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Table 4.1: Comparison between variables for the monitoring of machining pro-
cesses under single-part production conditions.
( : Not satisfied, : Partly satisfied, : Satisfied).

Monitoring
Variable

Process
Independence Permanence Generalizability

Force
Temperature

Vibration
Active Drive Power

NC Signals

D
is

ta
nc

e
to

P
ro

ce
ss

suitable for machining process monitoring under the requirements of single-part
production. The cutting force is measured according to Section 2.3.1 via sta-
tionary or rotating dynamometers. These require integration into the tool holder
or the workpiece clamping system and can only be used close to the process.
The sensor integration is thus process-dependent. They are directly affected by
process reconfigurations which prevents permanent process integration. The tem-
perature is measured either by thermoelectric or radiation-based sensors. Due to
the limited thermal conductivity of the machine tool structure, thermoelectric
sensors must also be integrated directly into the tool or workpiece close to the
process. Radiation-based sensors allow measurement from a greater distance and
thus a permanent application. However, they require an unrestricted view of
the contact zone, which is not always possible, especially for complex component
geometries and in multi-axis machining. With respect to generalizability and
machine independence, both cutting force and temperature are good indicators
of the tool and process condition.

Vibration sensors meet all the requirements specified in Table 4.1. Due to vibra-
tion propagation through the machine structure and components, direct sensor
integration into the directly process-related components is not required. Con-
sidering the sensors’ sufficient sensitivity and frequency range, their integration
based onto process-independent machine components such as the spindle housing
or the machine table represents a feasible trade-off between process proximity,
ease of integration and flexibility.

In addition, Table 4.1 evaluates the drive-related monitoring variables, includ-
ing the active drive power and the acquisition of digital controller signals, i.e.,
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drive torque, load or current signals, and axis position signals. The drive-related
variables allow effortless and permanent sensor integration since they can be ac-
quired non-invasively outside the machine tool. However, the specification of
the drives and, thus, the related signals are dependent on the design of the tool
machine. In addition, the acquisition of controller signals is complicated due to
manufacturer-dependent communication interfaces and availability of signals. In
conclusion, the generalizability of monitoring using drive-related process variables
is limited.

Based on the evaluation of sensor types shown in Table 4.1, vibration sensors
are used as the primary data source for further investigation in this work and as
the basis for remaining tool life modeling.

4.1.2 Vibration Sources in the Milling Process

In order to use mechanical vibrations as a basis for monitoring and modeling
in the context of machining, it is first necessary to characterize the vibrations
occurring during the machining process. In general, the causes of vibrations are
the deflection of bodies or particles from their equilibrium position. According
to Figure 4.1, this distinction is also applied to the vibrations occurring during
machining. The mass-dependent vibrations of the machine components (machine
vibrations) and the propagation of sound waves within the machine structure
(structure-borne sound, ultrasound) are differentiated.

Figure 4.1 shows the typical frequency range of the considered vibration types.
Mass-dependent machine vibrations range from particularly low frequencies (<
0.1 Hz) to the single-digit kHz range. The relevant sound wave-based vibrations
can be further differentiated into structure-borne sound in the audible frequency
range (16 Hz – 20 kHz) and ultrasound (> 20 kHz). In addition, Figure 4.1
illustrates the physical vibration quantities (displacement, velocity, acceleration).
The quantities are essential for detecting vibrations using sensors and thus for
the sensor selection. The vibration quantities can be transferred into each other
by the time derivative or integration and are thus quasi-equivalent. However,
the displacement and velocity amplitude decreases as a function of the vibration
frequency compared to the acceleration. Accordingly, acceleration is particularly
suitable for recording vibrations relevant to machining.
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Figure 4.1: Types of mechanical vibrations in the milling process and relation-
ship with physical vibration quantities.

The physical modeling of machine vibrations is based on mass-spring-damper
systems. It aims at the dynamic machine behavior under process-induced ex-
citations, i.e., forces generated by the machine drives and the cutting process.
An example are chatter models focusing on the dynamic relative displacement
between the cutting tool and workpiece during machining [98]. Furthermore, the
detection of machine faults is performed based on the measurement and evalua-
tion of machine vibrations. The standard series ISO 10816 [221] is particularly
decisive for the fault detection of machine tools. Structure-borne sound in ma-
chining is subject to the physical principles of wave generation and propagation in
solids, as presented in Section 2.3.1. According to this, the mechanical processes
in a system are always associated with losses, e.g., due to friction. The relevant
loss energy is mainly divided into thermal and acoustic energy. In machining, the
relevant sound sources are the cutting process, i.e., the contact between tool and
workpiece, and the mechanical components of the axis and spindle drive trains.

The information about the machine tool dynamics and the machining process
contained in the vibrations can serve as a foundation for data-based modeling.
However, the complexity of information extraction from resulting sensor signals is
high due to the large number of components involved in the machining process and

59



Chapter 4. Sensor Signals and Information Extraction

thus the vibration sources acting simultaneously. To account for this, Figure 4.2
introduces a phase model of the machining process based on logical units of
inseparable vibration sources.
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Figure 4.2: Phase model of the milling process in dependence of the vibration-
generating machine tool and process components.

The logical units included are the axis drive trains, the spindle drive train and
the machining process. Depending on their states, three phases can be derived.
The states of the logical units are differentiated into active and inactive. All
logical units are inactive during phase I except for the axis drive trains. The
movement of the axes does not require the continuous and simultaneous activity
of all drives. Therefore, the axis drive trains can also be temporarily inactive.
Machining processes typically start and end with phase I. During phase II, the
spindle drive is also active. Thus, phase II describes intervals during which there
is no contact between the tool and workpiece, but the spindle is still active. Phase
III describes the machining process during which all logical components are active.
The contact between the tool and the workpiece initiates the machining process.

To link with Figure 4.1, Figure 4.2 includes an exemplary acceleration signal
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and the derived amplitude spectrogram during a milling process. Section 4.2
provides detailed information on the used sensor. The described process phases
can be distinguished based on the spectrogram. In the case of simultaneous
activity of several logical units, i.e., phases II and III, separating the frequency
responses is possible. Therefore, the vibration can be a foundation for extracting
information about the machining process and the machine tool.

4.1.3 Process Information in Mechanical Vibrations

The previous section has shown that the differentiation of process phases during
machining based on mechanical vibrations is possible. However, the focus of
this work is on the modeling of the remaining tool life. Therefore, in addition
to the semantic process phase detection, the information extraction about the
process quality and the states of the primary process components, i.e., tool and
workpiece, must be possible. To understand the process information encoded in
the sensor signals, Figure 4.3 illustrates the generation of machine vibrations and
structure-borne sound due to machining for the milling process.
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Figure 4.3: Energy dissipation and resulting vibration excitation during milling.

The excitation of the machine tool structure originates from the contact zone.
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In the contact zone, the tool’s cutting edge engages the workpiece to separate the
chip from the material, resulting in a conversion of the effective energy introduced
by the feed and rotary motion of the tool and its contact with the workpiece dur-
ing the cut. The effective energy is divided into frictional energy at the flank
and rake faces of the cutting tool and deformation energy during the shearing
and separation processes for chip formation. The energy dissipated during chip
formation consists mainly of thermal and mechanical vibration energy. The dissi-
pated mechanical vibration energy is introduced into the machine structure and
propagates in the form of structure-borne sound as well as spindle and workpiece
vibrations. Other effects such as energy absorption or triboluminescence are neg-
ligible and irrelevant to this work. Equations 4.1a, 4.1b and 4.1c describe the
model shown in Figure 4.3 based on the effective cutting power Pe introduced in
Section 2.2.1 as milling is a dynamic, time-dependent process.

Peptq “ Pcptq ` Pf ptq “ Fcptq ¨ vc ` Ff ptq ¨ vf (4.1a)

Peptq “ Pdissptq “ Pthptq ` Pvibptq ` Pothersptq (4.1b)

Pvibptq “ P L
vibptq ` P T

vib (4.1c)

Pdiss is the dissipated power which splits into thermal power Pth, vibration
power Pvib and other forms Pothers. According to Equation 4.1c, Pvib splits into
two theoretical components when being measured: The power loss P L

vib due to
damping of the vibrations as well as the transmitted power P T

vib that is poten-
tially detectable by a sensor. The amplitudes of both components depend on the
transmission path.

Equation 4.1a shows that the cutting force components Fc and Ff define the
effective power Pe. Fc and Ff depend on the instantaneous engagement angle
φptq of the tool cutting edges according to the cutting force model [75] presented
in Section 2.2.3. The periodic cutting edge engagement with the tooth engage-
ment frequency Ωz according to Equation 2.3 thus forms the main part of the
frequency response of the cutting process. Due to the finite stiffness of the ma-
chine tool, its harmonics are also included in the response. In addition to the
process, the excitation of the machine tool structure by the spindle rotation also
leads to superimposed vibrations. The frequency response of the machine tool
structure is composed of a finite measurable number of natural frequencies fN
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and component-related frequencies fC , e.g., due to imbalances or bearing errors.
Equation 4.2 describes the ideally expected frequency response as the positive
amplitude spectrum |Xpfq| of a stationary milling process:

|Xpfq| “

L
ÿ

h“1
ah ¨ δpf ´ h ¨ Ωzq

Machining
Process

`

M
ÿ

i“1
bi ¨ δ

`

f ´ f i
N

˘

Machine
Structure

`

N
ÿ

j“1
cj ¨ δ

`

f ´ f j
C

˘

Machine
Components

(4.2)

ah, bi and cj are the amplitudes of the respective frequency responses ideally
represented as a series of Dirac delta functions.

Based on the general description of the frequency response during milling,
the connection with wear and quality-related variables can be established in the
following. Since the primary process components, i.e., cutting tool and workpiece,
form a tribological system, wear inevitably occurs during milling. As described in
Section 2.3.1, tool wear is a gradual process. The change in the tool’s cutting edge
geometry due to wear affects the resulting surface of the workpiece. Figure 4.4
illustrates the relationship between tool wear and the workpiece surface in the
tribological cutting system.

The surface of the workpiece is characterized by its roughness as described in
Section 2.3.1. Three roughness influences are associated with the machining pro-
cess: kinematic roughness, cutting surface roughness and chatter roughness. The
kinematic roughness results from the cutting edge’s geometry and the kinematic
process parameters (axial depth of cut ap, feed per tooth fz). The resulting ideal
surface profile P is therefore known a priori. Due to its dependence on the tool’s
cutting edge, the edge wear mainly influences the kinematic roughness.

The cutting surface roughness refers to the cutting surface facing the workpiece
surface, i.e., the flank face. Flank face friction and wear are directly related and
the wear profile of the flank face affects the surface of the workpiece. Cutting
edge and flank wear occur together and cannot be separated. According to Sec-
tion 2.3.1, the measurement is performed jointly using the flank wear mark width
VB. The tool’s rake face has only a minor influence on the surface roughness.

Chatter roughness occurs due to relative movements between the tool and
workpiece caused by spindle and workpiece vibrations. These mass-dependent
machine vibrations are based on the external excitation, which is mainly caused by
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Figure 4.4: Relationship between workpiece surface quality and tool wear in
the milling process.

the dynamic cutting forces and the process-induced self-excitation of the machine
structure. The chatter roughness is initially independent of wear and can be
caused solely by corresponding cutting parameters or workpiece shapes, due to
the process instability. However, since wear influences friction effects and cutting
forces, chatter roughness is also indirectly influenced.

Overall, the altered cutting edge geometry due to wear thus affects the sur-
face roughness of the workpieces. Furthermore, the cutting forces depend on
the cutting edge geometry according to the milling force model in Section 2.2.3.
Therefore, Equations 4.1a to 4.1c indicate that tool wear is also represented in
the vibration response during machining.

4.1.4 Signal Processing

According to the previous sections, the mechanical vibration generated during
the milling process represents a suitable process monitoring variable. The mass-
dependent machine vibrations and the structure-borne sound carry process and
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tool life information. In addition, the sensor technology for signal acquisition has
desirable properties for use in flexible and rapidly changing machining systems,
e.g., required for free-form surface milling and single-part production. However,
in order to make the information contained in the sensor signals usable, signal
processing is essential. The conditions of single-part production pose challenges
for signal processing. Due to the variability of workpieces and cutting parameters,
the processing time of individual workpieces also varies. In order to record the
duration a tool has been under load so far, the cutting time tc must therefore
be tracked. At the same time, this also provides the basis for the unambiguous
and process-independent quantification of the remaining tool life. Furthermore,
data reduction must occur to limit the volume of data that accumulates during
permanent process monitoring. Data reduction enables data to be stored under
constrained memory resources and information to be transferred via network with
reduced bandwidth requirements. Figure 4.5 shows this work’s overall approach
to sensor signal processing.
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Figure 4.5: Signal processing methodology for the analysis and extraction of
tool state and process context information.

According to Figure 4.5, sensor signal processing comprises two stages derived
from the specification of the autonomous system components (perception and
interpretation) presented in Section 2.1.1. In the signal acquisition stage, the
vibration acceleration acting on the sensor integrated into the milling process
is first converted into an electrical signal. A signal acquisition circuit performs
the analog preprocessing and digitization of the acceleration sensor signal, i.e.,
the sampling with a sampling frequency fs. Typically, signal acquisition circuits
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for acceleration signals consist of analog amplifiers, filters, and an analog-to-
digital converter (ADC). The ADC samples the continuous accelerometer signal
aptq equidistantly after every time period T “ 1

fs
to obtain the digital signal

âpnq “ apnT q.

After the signal acquisition stage, the digital signals are processed in real-
time for information retrieval and data reduction. Free-form surface milling is a
highly dynamic process, and the machine tool system comprises multiple vibra-
tion sources covering a wide frequency bandwidth. Hence, the resulting accelera-
tion sensor signals are non-stationary, necessitating their analysis in the time and
frequency domains. Time-frequency analysis enables the resolution and visual-
ization of frequency responses related to the respective vibration sources. Thus,
it is the foundation for extracting milling process-related spectral components,
considering the rapidly changing conditions of the free-form surface milling pro-
cess over time. The core of the time-frequency analysis is the FFT-based STFT
of the discrete acceleration signal âpnq. In addition to the non-stationarity of the
signals when milling free-form surfaces, workpiece variations caused by single-
part production lead to variable tool loads, randomly influencing the frequency
response and causing different signal lengths. Comparing the random accelera-
tion signals, which is essential for extracting information regarding the tool state
and development of tool life criteria over time, ultimately requires estimating the
PSD, as described in Section 4.1.4.

Only sensor signal segments are relevant for the tool life in which milling op-
erations occur. Based on the semantic process understanding, the decision about
which signal segments to pass on to the next stage of machine learning is made.
The automated generation of the semantic process understanding relies on basic
prior knowledge about the vibration sources of the machine tool system, accord-
ing to Section 4.1.2. Its core is a signal-based model to describe the states and
events during the operation of the machine tool. Based on the model, the dif-
ferent phases of the milling process can be identified and differentiated. Hence,
the tool state and process context information can be prefiltered to pass on only
the relevant data. The process understanding also includes the tracking of the
cutting time tc. For simplification, the cutting time per workpiece k is denoted
by ∆tk

c in the following. If this value is available for all preceding workpieces up
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to a workpiece N , the instantaneous cutting time Tc results to:

Tc “

N
ÿ

k“1
∆tk

c (4.3)

Equation 4.3 can also be applied independently of the notion of workpieces
using k to denote arbitrary contiguous machining operations.

4.2 Sensor System for Monitoring Flexible
Machining Systems

The following sections describe the implementation of a vibration sensor system
conforming to the requirements discussed in Section 4.1.1. The sensor system
aims to be integrable and retrofittable into arbitrary CNC machines ensuring
process-independent sensor integration while still applicable as close to the pro-
cess as possible. Based on these prerequisites, it should enable the milling process
analysis based on the approach introduced in Section 4.1.4, as well as the predic-
tion of the remaining milling tool life.

4.2.1 Acceleration Sensor Selection

The first step in designing a vibration sensor system is selecting the sensor to be
used. The two main types of acceleration sensors are piezoelectric and capacitive
sensors. Piezoelectric acceleration sensors can cover high bandwidths up to the
two-digit-MHz range. On the other hand, their suitability for embedded appli-
cations is restricted due to their size and power consumption [222]. Free-form
milling, performed using three- or five-axis CNC milling centers with multiple
moving components, requires the compact or even wireless design of a vibration
sensor system for process monitoring. Therefore, capacitive acceleration sensors
are more suitable, as they can be implemented as micro-electro-mechanical sys-
tem (MEMS). MEMS acceleration sensors offer a trade-off between compact
size, ease of installation, cost, energy efficiency and key specification parameters
compared to piezoelectric acceleration sensors.

Table 4.2 compares multiple state-of-the-art MEMS acceleration sensors avail-
able in the market as a foundation for the selection. The comparison is based on
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the frequency characteristic of the sensors defined by the 3 dB bandwidth, the
resonance frequency, the noise density, and the sensitivity. Furthermore, despite
the required process independence of the sensor integration, the installation in
minimal process proximity is a central goal. Therefore, sensor integration in-
side the CNC machine may be required, exposing it to harsh ambient conditions.
This results in further requirements regarding the permissible temperature and
acceleration range.

Table 4.2: Comparison of state-of-the-art MEMS acceleration sensors concern-
ing key specification parameters (parameters not provided in the documentation
are indicated with -).

Specification
Parameters

MEMS Acceleration Sensors
Spindle Monitoring Industrial Condition Monitoring

Marposs
VA-3D MEMS

[223]

Montronix
PulseNG

MEMS [224]

TE
Connectivity
830M1 [225]

Analog Devices
ADXL1002

[226]

Analog Devices
ADXL1005

[227]

3 dB
Bandwidth

(kHz)
2.2/2.8 1.6 15 11 23

Resonance
Frequency

(kHz)
5.5 - 30 21 41

Noise Density
´

µg
?

Hz

¯ 20 - 50/90 25 75

Sensitivity
´

mV
g

¯ 100 - 20/12.5 40 20

Temperature
Range p˝Cq

0 - 60 0 - 70 -40 - 125 -40 - 125 -40 - 125

Acceleration
Range (g) ˘8 ˘6 ˘50/˘100 ˘50 ˘100

Channels 3 3 3 1 1

The preselection shown in Table 4.2 includes acceleration sensors already ap-
plied in the context of CNC machine spindle monitoring and generally designed
for industrial condition monitoring. The MEMS acceleration sensors designed
for the spindle monitoring have 3 dB bandwidths below 3 kHz. A reason for
this is their primary purpose, the component and machine vibration acquisition
that indicate spindle problems such as bearing wear or imbalance. The other
sensors generally designed for industrial condition monitoring also cover the fre-
quency range of structure-borne sound above 3 kHz. According to Section 4.1.2,
the machining process is a major structure-borne sound source. With respect to
the noise density and sensitivity, the two sensors VA-3D MEMS for the spindle
monitoring category and the ADXL1002 by Analog Devices for the industrial
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condition monitoring category are particularly noteworthy. Both sensors have
the minimum noise density at maximum sensitivity in their respective category.

Overall, the ADXL1002 MEMS acceleration sensor is selected to implement
the sensor system in this work. Although the sensitivity of the VA-3D MEMS
is 2.5ˆ higher, the ADXL1002 offers a better trade-off between the three key
parameters bandwidth, noise density, and sensitivity. The high 3 dB bandwidth
covering the whole frequency range from component vibrations to structure-borne
sound and comparably low noise density at high sensitivity for sensing low-energy
vibrations offer a solid foundation for the milling process analysis. The specifi-
cation parameters of the ADXL1002 are comparable to common piezoelectric
acceleration sensors. Additionally, the maximum permissible temperature and
acceleration ranges of the ADXL1002 acceleration sensor minimize the risk of
sensor malfunctions due to the harsh ambient conditions in the CNC machine.

Besides the positive aspects, one disadvantage of the ADXL1002 is that it is a
single-channel sensor. This point will be addressed in Section 4.2.3, introducing
the mechanical sensor integration concept for the sensor system.

4.2.2 Sensor System Setup

After selecting an appropriate MEMS acceleration sensor, the next step is design-
ing the overall sensor system. Other required components of the sensor system
include the signal acquisition circuit for digitizing the analog sensor signal and
the signal processing hardware. For the ADXL1002 MEMS sensor, the rapid
prototyping platform CN-0549 is provided by Analog Devices [228]. The plat-
form will be used in this work to enable fast and robust integration into a CNC
machine, providing the foundation for the milling process analysis and remaining
tool life prediction. The two main components of the CN-0549 platforms are an
Integrated Electronics Piezo-Electric (IEPE)-compatible circuit (CN-0532 [229])
embedding the ADXL1002 acceleration sensor and the corresponding signal chain
(CN-0540 [230]) for the conditioning and digitization of signals from IEPE sen-
sors. Using the IEPE standard enables robust signal transmission from the sensor
to the signal chain under the harsh ambient conditions inside the CNC machine,
eliminating the influence of cable length on the signal quality. Further details on
the CN-0532 and CN-0540 systems are summarized in Appendix A.
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The ADC of the CN-0540 signal acquisition system can sample the acceleration
signal with a maximum sampling rate of 256 kS

s
and includes a serial peripheral

interface (SPI) for transmitting the digitized data. The third component of the
CN-0549 platform and counterpart to the SPI interface of the ADC is the Cora
Z7-07S FPGA-system-on-chip (SoC) [231]. The FPGA-SoC including a CPU and
an FPGA fabric on a single die allows the distribution of tasks among these two
main submodules. The CN-0549 platform offloads the SPI communication to the
FPGA module of the SoC, hence enabling the CPU to perform other tasks, such
as the transmission of the data over Ethernet. Figure 4.6 shows an overview of
the sensor system architecture developed in this work.
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Figure 4.6: Architecture of the acceleration sensor system as a foundation for
the milling process analysis and remaining tool life prediction.

The system architecture includes three single-axis CN-0549 subsystems cover-
ing the spatial axes. Capturing acceleration on the three spatial axes facilitates
the process state and event detection introduced in Section 4.1.4. All translational
movements can thus be detected. Furthermore, three-dimensional free-form ma-
chining processes using multi-axis milling machines can be arbitrarily supported.
The processing of the sensor signals has to be performed centrally to enable a
holistic overview of the milling process. Therefore, the CN-0549 subsystems are
connected to a central data processing unit. The CN-0549 subsystems with a
sampling rate of 256 kS

s
and a 24-bit ADC resolution generate a data stream of
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Figure 4.7: Overview of the Hermle C 30 U 5-axis CNC milling center [234] and
the mounting location of the three-axis acceleration sensors.

2.3 MB

s
. An Intel NUC8i5BEK SBC [232] is used as a data processing unit with

an Intel Core i5-8259U processor and 32 GB of random-access memory (RAM).
However, the data processing unit is exchangeable since the CN-0549 subsystems
are connected to it via Ethernet. The overall sensor system setup is modular.

For evaluation purposes, the data processing unit is additionally connected to
the CNC controller of the machine tool, which is a Heidenhain iTNC530 [233]. By
using a Raspberry 4B+ as a gateway, controller signals and data can be acquired.
Details on the accessible data can be found in Section 4.2.4.

4.2.3 CNC Machine Integration

In order to enable the use of the sensor system setup introduced in the previ-
ous section for the intended free-form milling process analysis, it is required to
integrate the system into a CNC machine. The selection of a state-of-the-art
CNC machine used in the field of free-form machining contributes to ensuring
the validity and significance of the evaluations performed in this work. There-
fore, the Hermle C 30 U 5-axis CNC milling center [234] shown in Figure 4.7a is
chosen. The Hermle C 30 U CNC milling center is well established in industrial
and scientific practice [235, 236].

Figure 4.7b shows the installation location of the CN-0532 IEPE circuits car-
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rying the MEMS acceleration sensors. The sensors are placed on the spindle
housing to acquire data in minimum process proximity while being independent
of the directly process-related components. Apart from the permanent mounting
and adaptability to arbitrary processes, this approach prevents that the sensor in-
tegration influences the process, e.g., by introducing an imbalance of the spindle.
According to Section 4.2.2, the sensors cover all three spatial axes. To ensure the
correct orientation of the CN-0532 subsystems and thus the single-axis ADXL1002
sensors, a mounting cube optimized for the vibration transmission from industrial
equipment provided by Analog Devices is used [237]. The mechanical coupling
between the spindle housing and the mounting block is established via a screw
connection based on threads provided in the spindle housing by default. The
vibration transmission capability of the developed mounting solution is evaluated
in Section 4.3.1. A sensor enclosure is installed to protect the sensors inside the
CNC machine against cooling lubricant as well as flying chips and ensure their
permanent operation.

The CN-0532 IEPE circuits are connected via coaxial cables to the CN-0540
signal acquisition systems and Cora Z7-07S boards placed underneath the spindle
cover. Power-over-ethernet (PoE)-capable cables are routed to the Cora Z7-07S
boards through the cable carrier of the machine to provide the sensor systems with
power and enable communication with the data processing unit. The data pro-
cessing unit is located outside the CNC machine. It represents the programming
and interaction interface of the sensor system. The system integration approach
requires only the explicit protection of the acceleration sensors and allows the
use of COTS systems. The mechanical integration of the subcomponents into the
Hermle C 30 U CNC milling center is detailed in Appendix C.

4.2.4 System Software

The acceleration sensor system introduced in the previous sections provides the
foundation for the software-defined machining process monitoring and analysis.
The following sections introduce the required algorithms and software modules
implemented using the data processing unit of the sensor system. The developed
software modules are consolidated into a library that can be used on embedded
and edge computing systems like the data processing unit and on general-purpose
computers or servers. Throughout this work, Python 3.8 is used. A summary
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and specification of all involved computing systems can be found in Appendix B.

Data Acquisition

The initial step required for the software-based sensor signal analysis is the cen-
tralized acquisition of the data from the three acceleration sensors by the data
processing unit. The implementation of the sensor data acquisition in this work
is based on LibIIO, a software library developed by Analog Devices for stan-
dardized communication with industrial I/O (IIO) devices [238]. IIO devices are
digital-to-analog converter (DAC)- or ADC-based systems such as the CN-0540
signal acquisition circuit used in the sensor system architecture of this work. The
data acquisition on the data processing unit is developed using the PyADI-IIO
library [239], mapping the high-level application programming interface (API) of
the C-based LibIIO library to Python. Appendix B provides a detailed overview
of the interaction between the hardware and software components of the acceler-
ation sensor system based on the LibIIO library. Figure 4.8 shows the structure
of the computational processes the data processing unit executes to perform the
parallel data acquisition from the CN-0549 subsystems.

Data Processing Unit

CPU Core C1

Sensor Data 

Acquisition 

Thread T1

Thread T2

Thread T3

CPU Core C2

Data Processing

Hard Drive

Accelerator

Shared 

Buffer B1

Shared 
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Dataset

Sensor 

Units

Axis A1

Axis A2

Axis A3

RAM

Figure 4.8: Computational process model for the parallel and real-time data
acquisition from the three-axis CN-0549 sensor systems.

PyADI-IIO represents IIO devices like the CN-0540 as Python objects. The
member functions and variables of the underlying class are based on the Python
bindings of LibIIO and enable communication with the IIO device. The sensor
data is continuously provided by the CN-0540 systems in memory buffers of ad-
justable size. However, the software must initially trigger the buffer transfer from
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the Cora Z7-07S to the data processing unit and continuously read out the data.
As the buffer transfer is a blocking process by default, multiple asynchronous
threads are required on the data processing unit to enable parallel data acquisi-
tion from all three sensors. The buffer sampling is performed by a sensor data
acquisition process executed by a CPU core C1, as shown in Figure 4.8. As core
C1 has to continue immediately with the data sampling from the next sensor,
it stores the already received data buffer in a shared memory area of the RAM.
Using inter-process communication, a second CPU core C2 is notified by core C1
when a shared buffer has been written. The process executed by core C2 directly
processes the raw data or stores it on a hard drive.

The alternating use of multiple shared buffers (B1 and B2 in Figure 4.8) pre-
vents data from being overwritten. This is essential for the real-time processing
of the incoming sensor data as sampling the next data buffer starts immediately
after the previous data has been stored in RAM. There are two fundamental
cases depending on the worst-case execution times (WCETs) T1 and T2 of the
two processes running on cores C1 and C2, respectively. Real-time data process-
ing based on the setup shown in Figure 4.8 with two CPU cores is possible if
the processing of the previously sampled buffer completes before the end of the
sampling of the next buffer, i.e., T1 ě T2.

The second case becomes relevant when the data processing of a particular
buffer takes longer than the sampling of the next buffer, i.e., T1 ă T2. In order to
perform the real-time processing in this case, the number of cores performing the
data processing and hence also the number of shared buffers has to be increased.
As for the first case, the real-time constraint requires that a shared buffer Bi

must not be overwritten until its processing has been completed. The number of
required cores and buffers n can be determined according Equation 4.4b which
was derived from Equation 4.4a:

n ¨ T1

T1 ` T2
ď 1 (4.4a)

n ě 1 `

Q

T2

T1

U

(4.4b)

Since Python is an interpreter-based programming language, the estimation of
the WCET of Python programs is difficult. Additionally, the underlying operating
system (OS) influences the program execution time as well. To trade off the
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required effort and dependability of the WCET estimation, a measurement-based
approach is combined with an additional safety margin in this work. Furthermore,
due to the modularity of the sensor system architecture, data processing units
with additional accelerators for signal processing, such as FPGAs or GPUs, can
be used. These enable the offloading of data processing and reduce the processing
time.

In addition to the acceleration data, the iTNC530 machine tool controller data
is acquired using the pyLSV2 software library. The data processing unit can read
the spindle speed, axis drive positions, and relative axis drive power divided by
the maximum power in percent with a sampling frequency of 110 Hz.

Data Processing

After the sensor data acquisition, the next step is data processing. For this pur-
pose, the signal processing concept introduced in Section 4.1.4 is implemented in
the following, which aims to extract tool condition and process context informa-
tion for the subsequent remaining tool life prediction. The gradual progression of
tool wear, which is a decisive tool state indicator, is a long-running process over
an operating time of up to several hours. Therefore, the data processing should
extract the long-term dependency between sensor data and tool wear as a basis
for subsequent modeling and limit the amount of generated data. Data reduction
allows local data caching or transferring to external systems for further process-
ing considering limited storage capacity and transmission bandwidth. Since this
work focuses on sequences of arbitrary milling processes (single-part production)
with possibly different effects on tool wear, their identification is necessary. Only
the contact phases between the milling tool and the workpiece affect the tool
wear.

The behavioral Petri net model of the milling process shown in Figure 4.9
serves as the basis for the automated identification of these process phases and
the mapping to interrelated, higher-level milling operations. The fundamentals
of Petri nets underlying the model can be found in the literature [240].

Figure 4.9 represents the behavior of the machine tool and the milling pro-
cess iusing the Petri nets NAD (axes drives), NSD (spindle drive) and NMP

(milling process), assigned to the vibration-generating components described in
Section 4.1.2. The Petri nets model the inherently parallel operation of the com-
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Figure 4.9: Behavioral Petri net model of the milling process based on the
machine tool components operating in parallel.

ponents. Each component-level Petri net NC P rNAD, NSD, NMP s is defined
as a 5-tuple NC “

`

PC , TC , FC , W F
C , M0

C

˘

with PC being a finite set of com-
ponent states (places), TC being a finite set of component events (transitions),
FC Ď pPC ˆ TCq Y pTC ˆ PCq being a set of arcs connecting the states and events,
W F

C : FC Ñ N being a weight function indicating the number of tokens required
to activate the events TC and M0

C being the initial marking of the states PC .

The Petri net NAD representing the behavior of the axes drives is furthermore
embedded into a triple N I

AD “ pNAD, IAD, W I
ADq with IAD Ď pPAD ˆ TADq being

a set of inhibitor arcs and W I
AD : FAD Ñ N being a weight function. An event t

connected to a state p by an inhibitor arc i is inactive as long as p holds at least
wipt, pq tokens. The inhibitor arcs enable the deterministic modeling of the axes
drives operating in parallel. For simplification, only the translational axes drives
covering the spatial axes are represented in the model. Other axes drives, e.g.,
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for tilting or rotating the machine table, can be added accordingly.

The overall model forms a triple N I “ pN, I, WIq with N “ pNAD, NSD, NMP q

being the set of component-level Petri nets, I Ď pP ˆ T q being a set of in-
hibitor arcs connecting states and events across the component-level Petri nets
and WI : F Ñ N being the corresponding weight function. The inhibitor arcs
I Ď pP ˆ T q connect the Idle states of the axes and spindle drives to the Contact
event of the milling process. The inhibitor arcs model that the milling process
can only be active when there is both a feed generated by the translational axes
drives and a rotational movement of the tool generated by the spindle.

In order to use the model shown in Figure 4.9 for process monitoring, an algo-
rithm is required to detect the depicted states and events. Therefore, Figure 4.10
shows the procedure for processing the acceleration sensor streams in real-time.
As already described in Section 4.1.4, the time-frequency analysis using the STFT
forms the basis of the signal processing algorithm.

Only the segments of the data streams during which the tool and workpiece
are in contact are relevant for wear and hence remaining tool life modeling. Seg-
mentation of the data streams is thus necessary to input relevant information
to the machine learning models. The basis for the segmentation is the event
and state detection, enabling the automated generation of a semantic process
understanding based on the sensor signals. The semantic process understanding
describes the assignment of patterns detectable in the sensor signals to opera-
tions of the vibration-generating components involved in the milling process. It
is thus possible to differentiate states and events of the axis drives, the spindle
drive, and the milling process itself. Furthermore, coherent signal segments can
be identified even for interrupted cutting processes. State and event detection
is performed separately for translational and rotational movements of the tool
machine. Figure 4.11 shows both procedures applied to a sensor signal in detail.

The spindle drive generates rotational movements. The spindle rotation is the
basis of the periodic engagement of the tool’s cutting edges and, thus, the milling
process. As shown in the spectrogram of the example process in Figure 4.10,
the spindle rotation and milling process affect a broad frequency range up to
approximately 6 kHz. The state change of the milling process results in significant
signal power variations. Therefore, the signal power in the relevant frequency
band is used as the state and event signal for the spindle drive and milling process.
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Figure 4.10: Procedure for the acceleration sensor signal-based analysis of the
milling process to extract tool state and process context information.

The frequency band power is estimated based on numerical integration of the
STFT spectrogram scaled to PSD. As shown in Figure 4.11a, the signal band
power is approximately step-shaped, allowing the state differentiation by applying
edge detection (green curve). The state of the milling process can then be used
to determine the cutting time ∆tk

c of contiguous milling operations. According to
Equation 4.3, ∆tk

c is the basis to determine the instantaneous cutting time Tcpkq.

The axis drives generate translational movements along the spatial axes. As
highlighted above, the algorithm does not consider the movements of additional
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Figure 4.11: State and event detection for rotational (spindle and milling pro-
cess) and translational (axes drives) movements of the machine tool components.

axis drives, e.g., for tilting or rotating the machine table. When acquired at the
moving spindle, the sensor signals inevitably include its acceleration. Low-pass
filtering of the broadband acceleration sensor signals enables the extraction of
the low-frequency acceleration events as shown in Figure 4.11b. Based on the
filtered acceleration signal, the velocity curve of the drives can be reconstructed,
assuming a given initial velocity of v0. Thus, it is also possible to detect the
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stopping of a drive. Figure 4.11b shows the position signal of the considered
drive from the machine tool controller to illustrate the feasibility.

Event sequences of the drives, the tool engagement patterns, or both combined
can be used as characteristic patterns for the automated detection of related
milling operations. Based on their differentiation in the sensor signal, the seg-
mentation and subsequent estimation of the PSD per segment k is performed,
as shown in Figure 4.10. The PSD-estimating periodogram per segment k and
sensor channel i P tx, y, zu is a vector P⃗ i,k

xx pnq with n being the frequency bins.

Optimization for Energy-constrained Systems

The sensor system for cutting process monitoring introduced in the previous
sections is based on the edge computing paradigm and targets integration into
machine tools. Through local signal processing, the approach enables the di-
rect availability of information on the cutting tool and process. Furthermore, an
inherent and real-time data reduction is performed, accounting for the limited
bandwidth when transmitting the information e.g. to server systems. Especially
for multi-axis machine tools, the wireless sensor system design allows easy instal-
lation on moving machine parts like the spindle. It increases the robustness by
avoiding cables inside the machine, which are prone to faults under stress. At
the same time, miniaturization of the system is fostered, simplifying retrofitta-
bility. However, since a wireless system design entails limited energy availability
as explained in the context of component-integrated sensor system architectures
in Section 2.3.2, optimizing the local signal processing with respect to energy
consumption is necessary.

The signal processing methodology for extracting information about the cutting
process and the tool condition as shown in Figure 4.10 relies on the time-frequency
analysis of the sensor signals. The core of the time-frequency analysis is the DFT
and particularly the FFT introduced in Section 4.1.4, which is continuously cal-
culated in permanent process monitoring. The investigation of the optimization
potential of the FFT concerning computational complexity and energy consump-
tion thus is the basis for applying the sensor system concept introduced in this
chapter using wireless embedded systems.

The derivation of the FFT is based on the representation of the DFT as the
matrix-vector product according to Equation 4.5a between the complex DFT
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matrix W and the input signal x⃗ represented as a vector with N samples:

y⃗ “ Wx⃗ (4.5a)

W “

´

`

e´j2π nm
N

˘

m,n

¯

(4.5b)

The Cooley-Tukey algorithm [145] divides the matrix-vector product into sub-
operations denoted as butterfly units. The resulting butterfly graph is composed
of multiple subsequent butterfly stages. The following derivations are based on
radix-2 butterfly units, but can be extended to arbitrary butterfly graphs without
loss of generality. The output b⃗ of a radix-2 butterfly is calculated according to
Equation 4.6 based on its input a⃗:

b⃗ “

ˆ

b1
b2

˙

“

ˆ

1 wm
N

1 ´wm
N

˙ ˆ

a1
a2

˙

(4.6)

The twiddle factors wm
N are complex constants determined according to:

wm
N “ e´j2π m

N “ wm
N,r ´ jwm

N,i “ cos
´

2π
m

N

¯

´ j sin
´

2π
m

N

¯

(4.7)

The complex butterfly calculations can be expanded using only real operations
according to Equation 4.8 where indices r and i denote the real and imaginary
components of the respective inputs and outputs:

¨

˚

˚

˝

b1,r

b1,i

b2,r

b2,i

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0 wm
N,r wm

N,i

0 1 ´wm
N,i wm

N,r

1 0 ´wm
N,r wm

N,i

0 1 ´wm
N,i ´wm

N,r

˛

‹

‹

‚

¨

˚

˚

˝

a1,r

a1,i

a2,r

a2,i

˛

‹

‹

‚

(4.8)

A butterfly unit requires four multiplications and six additions since the prod-
ucts of the real and imaginary parts of the input a2 and the twiddle factors
in Equation 4.8 occur twice each. For a complete butterfly graph calculating
the FFT of an input signal of length N , this results in 4N log N additions and
2N log N multiplications. The goal is to reduce this computational complexity
and thus minimize the energy requirements of the FFT. Approximate computing
has emerged as a feasible method to achieve this. Approximate computing is
based on reducing computational accuracy to reduce computational complexity
at the same time while maintaining a minimal computation error. In particular,
with computations using fixed parameters like the twiddle factors of the FFT
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quantizing them is the key to apply approximate computing [241]. In addition
to the reduced calculation complexity, the quantization leads to a lower memory
requirement of the parameters and an associated reduction of memory accesses.
Based on a ternary quantization scheme and an error reduction mechanism using
a correction factor α, the twiddle factors are approximated according to:

wm
N « αpwm

N qT

wm
N,r ´ jwm

N,i « α
´

`

wm
N,r

˘

T
´ j

`

wm
N,i

˘

¯ (4.9)

Due to the ternary quantization, the approximate twiddle factor components
pwqT P

!

`

wm
r,N

˘

T
,
`

wm
i,N

˘

T

)

can have the values t´1, 0, 1u. Generally, the cases
for α “ 1 with minimal computational complexity and α “ αopt with minimal
approximation error are distinguished. In the following, the ternary-quantized
(TQ) FFT variants with α “ 1 and α “ αopt are denoted as TQ-FFT and
α-TQ-FFT, respectively. The FFT in full precision (FP), without quantization,
is called FP-FFT. Appendix D includes the detailed derivation of the TQ-FFT
variants. Table 4.3 provides an overview of the resulting computational and
memory complexity. Since the quantized twiddle factors are represented using
three values, they require two bits for their digital representation.

Table 4.3: Theoretical computational and memory complexity of FP-, TQ-
and α-TQ-FFT for input signals with N samples. Computational complexity is
based on additions and multiplications and memory complexity is based on the
required storage for the twiddle factors assuming 32-bit floating point numbers
in full precision.

FFT Variant Additions Multiplications Memory (Bits)

FP-FFT 4N log N 2N log N N ¨ 32

TQ-FFT 4N log N 0 N ¨ 2

α-TQ-FFT 4N log N N log N N
2 ¨ 32 ` N ¨ 2

4.3 Evaluation

The objective of the evaluation described in the following is to validate the model
of process information encoded in the mechanical vibrations of the milling process
as introduced in the previous Sections 4.1.1 to 4.1.4. The evaluation results form
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the basis for modeling the remaining tool life using machine learning in the fol-
lowing Chapter 5. The acceleration sensor system for flexible manufacturing sys-
tems described in Section 4.2 is first characterized and examined in Section 4.3.1.
Next, the milling process analysis based on the sensor signals and an analysis
of the long-term dependency between the sensor signals and tool life criteria are
performed in Sections 4.3.2 and 4.3.3. Section 4.3.4 investigates the optimiza-
tion potential of the real-time data preprocessing introduced in Section 4.1.4 for
resource-constrained and ultra-low-power embedded systems.

4.3.1 System Characterization

The first step in evaluating the vibration-based sensor system is its character-
ization in conjunction with the machine tool regarding frequency response and
sensitivity. Since the interaction between the milling tool and the workpiece is
the primary source of structure-borne sound, an analysis of the transmission path
between the contact zone and the structure-borne sound transducer is necessary.
Despite the proximity of the accelerometers to the process due to their mounting
on the spindle housing, the properties of the machine structure along the trans-
mission path affect the structure-borne sound waves through attenuation and
refraction. Therefore, it has to be ensured that the sensitivity of the sensor sys-
tem is sufficient to detect excitations at the cutting edge of the tool. In addition,
the knowledge about the natural frequencies of the machine structure enables the
evaluation of the vibrations generated during excitation by the milling process.
The investigation of the natural frequencies of the system requires an impulse-like
excitation to generate free vibrations. Therefore, the breakage of a pencil lead
[242] is performed at the tool’s cutting edge, as shown in Figure 4.12. A pencil
lead with a diameter of 2.8 mm is used.

Figure 4.12b shows the vibration response of the system to the pencil lead
breakage in the time and frequency domain. With a maximum peak-to-peak
output voltage of 10 mV, the pencil lead breakage is clearly visible in the time-
domain signal. In the amplitude spectrum of the vibration response, the natural
frequencies of the machine structure under impulse-like excitation at the tool
cutting edge are visible. The dominant amplitudes occur up to 6 kHz with a
dominant peak at 2.8 kHz. Furthermore, several smaller peaks are visible around
15 kHz.
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Figure 4.12: Pencil lead breakage experiment at the tool cutting edge to inves-
tigate the transmission path of structure-borne sound.

In the following step, the vibration excitation of the machine tool system due
to spindle rotation is investigated. Since the spindle inevitably rotates during
the milling process, the resulting frequency components must be identified to
distinguish them from milling process-related components. Therefore, the spindle
is operated with the tool holder and tool installed in idle mode, i.e., without
cutting operation, at different speeds from 2710 rpm to 3175 rpm. Figure 4.13
visualizes the resulting Campbell diagram over increasing rotation speed.

The Campbell diagram shows the machine spindle’s excitation- and resonance-
induced vibrations. The spindle drive is the source of excitation. The components
of the machine spindle, i.e., the shaft, the tool clamping system, the bearings,
the tool holder, and the tool, rotate and thus contribute to the vibration re-
sponse. The excitation-related components of the vibration response change with
the drive’s speed and result from imbalances of the rotating components (shaft,
clamping system, tool holder, tool) and wear of the bearings. The dominant
excitation-induced vibrations of the machine tool considered in Figure 4.13 are
between 1 and 6 kHz. Dominant resonance frequencies are found at 4, 4.7 and 5.3
kHz. The resonance-induced vibrations of the machine spindle are independent
of the rotation speed and depend only on the mechanical system design.

4.3.2 Analysis of the Milling Process

The previous section describes the analysis of the structure-borne sound transmis-
sion path between the tool cutting edge and the structure-borne sound transducer.
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Figure 4.13: Campbell diagram of the spindle rotation with installed tool holder
and tool in idle mode without cutting operation.

Furthermore, it presents the characterization of the system behavior under exci-
tation by the spindle rotation in idle mode. Based on this, the system behavior
under milling process excitation is investigated in the following. Figure 4.14a
shows the experimental conditions applied in this section and the following Sec-
tion 4.3.3.

The material of a workpiece is removed layer-wise based on the zig-zag face
milling strategy characterized by alternating up- and down-milling. A toroidal
milling tool with circular inserts and three cutting edges is used. The process
parameters of the feed per tooth fz, cutting speed vc, axial depth of cut ap, and
radial depth of cut ae can be varied. After removing a defined number of material
layers, the wear mark width of the tool cutting edges and the surface roughness
of the workpiece are measured. Details regarding the measurement are included
in Appendix C. The measurement step is relevant for investigating the tool life
criteria in the next Section 4.3.3. Figure 4.14b shows an example of the resulting
frequency response over time for four successive milling paths. In the range of up
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Figure 4.14: Face milling experiment as a foundation for the milling process
and tool life criteria analysis.

to 6 kHz, it can be seen that the vibration intensity is lower for down-milling than
for up-milling. The reason for this is the difference in the chip removal process.
Since feed and cutting forces act in opposite directions during up-milling, the
tool and workpiece repel each other during chip formation, leading to stronger
vibration excitation.

In order to analyze the influence of the milling process on the system’s vibration
response compared to the excitation due to spindle rotation in idle mode, the
Campbell diagram for individual milling paths is shown in Figure 4.13. The
spindle rotation speed n is increased from 2710 rpm to 3175 rpm as described in
the previous Section 4.3.1.

Figure 4.15 shows the excitation caused by the periodic engagement of the
cutting edges of the milling tool, especially in the range below 1.5 kHz. In com-
parison, in the case of the idle mode of the spindle shown in Figure 4.13, no major
vibration components are evident in this frequency range. Due to the milling tool
with three cutting edges, engagement frequencies Ωz are found at three times the
spindle rotation frequency fn “ 60

n
. Hence, engagement frequencies between 136

and 160 Hz are obtained for the used interval of spindle speeds. Due to the fi-
nite stiffness of the machine tool, the harmonics of the engagement frequencies

86



4.3. Evaluation

Figure 4.15: Campbell diagram of the active milling process.

Ωh
z “ h ¨ Ωz with h P N are visible as well.

Furthermore, the high signal power distributed over the frequency band be-
tween 2 and 4 kHz is noticeable compared to Figure 4.13. It overlays the excitation-
dependent vibration components influenced by the rotating machine components
in this range, but appears independent of the excitation. Compared with the fre-
quency response to the impulsive excitation of the pencil lead break in Figure 4.12,
it becomes clear that the increased signal power in the frequency band results from
the excitation of the dominant natural frequencies of the structure-borne sound
transmission path. Other excitation-dependent frequency components above 4
kHz influenced by the rotating machine components and resonance-dependent
frequency components influenced by the machine structure are the same as in the
idle mode of the spindle.

4.3.3 Analysis of Tool Life Criteria

The basis for predicting the remaining tool life is the correlation analysis between
the sensor signals and the tool life criteria. The correlation analysis aims to show
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the dependency between the variables usable for modeling. In this work, the tool
life criteria of wear and surface roughness are used, which influence each other
and primarily determine the quality of the workpieces according to Section 4.1.3.
In addition, the tool life criteria influence the vibration power dissipated into the
machine tool structure during milling and thus the acceleration sensor signals.

The wear and surface roughness analysis is performed using the experimental
setup shown in Figure 4.14a based on the face milling process. The static cutting
parameters fz = 0.7 mm, vc = 200 mm

min , ap = 0.8 mm, and ae = 10.4 mm are
selected. After removing 1 cm of material, the wear mark width VB of the three
tool cutting edges is measured with a video measuring microscope. The ten-
point height of irregularities Rz is measured with a roughness probe on three
down-milling paths of the workpiece at equally spaced intervals according to
Appendix C. The mean wear mark width V̄B is calculated for the three cutting
edges and the mean ten-point height of irregularities R̄z is determined for three
milling paths. Furthermore, the PSD-estimating periodograms Pxxpnq of the
sensor signals per milling path are determined. Figure 4.16 shows the correlation
analysis for the down-milling paths.

The linear Pearson correlation ρpV̄B, R̄zq between the mean tool wear and
the mean absolute workpiece surface roughness,

ˇ

ˇρpPxx, V̄Bq
ˇ

ˇ between the pe-
riodograms and the mean tool wear per frequency bin n and

ˇ

ˇρpPxx, R̄zq
ˇ

ˇ be-
tween the periodograms and the mean workpiece surface per frequency bin n

are displayed. There is a high correlation between V̄B and R̄z with a correla-
tion coefficient of 0.94. This confirms the assumption in Section 4.1.3 that tool
wear and surface roughness are directly related. It can be seen that initially
R̄z slightly decreases with a slight increase in wear. The images of the cutting
inserts taken with the video measuring microscope suggest that the initial mod-
erate wear sharpens the cutting edges, explaining the increasing surface quality.
From milling path 468, R̄z and V̄B increase sharply. The images of the cutting
edges show a pronounced wear mark from this point on. While the kinematic and
chatter roughness components were decisive before, the cutting surface roughness
now dominates, leading to a deterioration of the workpiece surface.

The PSD-based spectrogram in Figure 4.16 shows that the vibration intensity
increases with increasing wear and roughness in the frequency range between 2
and 4 kHz. This is the frequency range of the dominant natural frequencies of the
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Figure 4.16: Correlation analysis between the mean flank wear mark width V̄B,
the mean ten-point height of irregularities R̄z and the periodograms Pxxpnq for
PSD estimation acquired over the complete lifecycle of a tool.

spindle structure under impulsive excitation at the tool cutting edge as identified
based on the pencil lead breakage response according to Figure 4.12. The relation-
ship also becomes evident in the absolute correlation coefficients per frequency
bin, with maxima of 0.9 for V̄B and 0.93 for R̄z between 2 and 4 kHz. Between 0
and 1.5 kHz, correlation coefficients of similar magnitude occur with maxima of
0.91 for V̄B and 0.89 for R̄z. The frequency components of this frequency range
are, as identified in Section 4.1.3, purely due to the excitation by the periodic
engagement of the cutting edges and thus due to the milling process. Hence, the
sensor signals contain information on wear and surface roughness independent
of the machine structure. Modeling based on these frequency components thus
allows transferability to other machines with different mechanical designs. Fur-
thermore, frequency bins with correlations up to 0.87 for V̄B and 0.85 for R̄z

are found in the frequency range between 4 and 15 kHz. The comparison with
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Figure 4.17: Qualitative and quantitative accuracy evaluation of the TQ- and
α-TQ-FFT compared to the FP-FFT based on the PSD calculation using the
Welch method.

the Campbell diagrams in Figures 4.13 and 4.15 shows that these are excitation-
dependent frequency components affected by the rotating machine components
and resonance-dependent frequency components affected by the machine struc-
ture. Above 15 kHz, the correlation coefficients decrease for V̄B and R̄z, making
this frequency range less suitable for modeling.

4.3.4 Optimization for Energy-constrained Systems

In the previous sections, the working principle of the sensor system and signal
processing for machining process monitoring has been validated. In the last step,
the approximate computing method described in Section 4.2.4 to optimize the
FFT-based time-frequency signal analysis in terms of energy requirements has
to be investigated. It aims to enable signal analysis and process monitoring
using energy-constrained systems, e.g., wireless sensor nodes. In the following,
the influence of the TQ- and α-TQ-FFT on the accuracy of the PSD calculation
according to Figure 4.10 for determining the tool state is analyzed. The analysis
is based on acceleration sensor signal segments acquired during milling operations
as shown in Figure 4.14a. Figure 4.17a shows the PSD-estimating periodogram
for a stationary signal segment calculated using the Welch method, which is based
on the STFT.

Although TQ- and α-TQ-FFT introduce noise to the periodogram estimating
the PSD, its rough shape is preserved in both cases. The noise results in increased
total magnitudes of the periodogram, especially in the case of the TQ-FFT. It can
be shown that the correction factor used in case of the α-TQ FFT compensates
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the magnitude offset of the TQ-FFT. In addition to the qualitative analysis,
the accuracy reduction due to the quantized FFT is evaluated quantitatively
using the signal-to-quantization noise ratio (SQNR). The SQNR is calculated
between the PSDs based on the FP-FFT and the TQ-FFT as well as the α-TQ-
FFT, respectively. A total of 5670 segments of acceleration sensor signals from
milling operations are used and the mean and standard deviation of the resulting
SQNR values are evaluated. The FFT window size of the STFT as introduced in
Section 4.1.4, which is the basis for the PSD calculation, is varied between 512
and 8192 samples.

Figure 4.17b shows that both quantized FFT variants are sensitive to the signal
length. The SQNR of the α-TQ-FFT exceeds that of the TQ-FFT by a factor
of three on average. The error reduction is achieved due to the correction factor
α. In addition to the accuracy evaluation of the quantized FFT, the impact
on computational complexity and energy consumption is analyzed. FP-, TQ-,
and α-TQ-FFT are evaluated using the ARM Cortex-M4-based nRF52840 SoC
to show the suitability of the signal processing for use in energy-constrained
systems. The nRF52840 is a Bluetooth-enabled SoC based on an ultra-low power
microcontroller, which can thus serve as a foundation for wireless sensor nodes.
Computational complexity is determined by execution time using the Digilent
Discovery logic analyzer, and power consumption is measured using the Texas
Instruments INA219 power monitor. Table 4.4 compares execution time and
energy consumption with the FFT implementation of the state-of-the-art CMSIS
library version 5.9.0. All implementations use the floating-point data type. The
C code of the CMSIS-based FFT implementations is compiled using the GCC
compiler with optimization level -O3. Only the FFT functions for real-valued
input signals (arm_rfft_fast_f32) are used.

Table 4.4: Execution time and energy consumption per FFT using nRF52840
SoC

Input
Samples

Execution Time (µµµs) Energy Consumption (µµµJ)
TQ-FFT α-TQ-FFT FP-FFT CMSIS TQ-FFT α-TQ-FFT FP-FFT CMSIS

32 14.4 17.0 19.3 34.4 0.3 0.4 0.4 0.8
64 30.8 38.0 43.5 74.3 0.7 0.8 1.0 1.6
128 65.5 86.8 97.7 133.7 1.4 1.9 2.1 2.9
256 154.3 200.0 229.4 328.7 3.4 4.4 5.0 7.2
512 324.5 426.1 499.5 705.4 7.1 9.4 11.0 15.5
1024 675.1 899.5 1076.9 1271.9 14.8 19.8 23.7 28.0
2048 1513.7 2007.9 2411.6 3071.2 33.3 44.2 53.0 67.6
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Table 4.4 demonstrates that both TQ- and α-TQ-FFT described in Section 4.2.4
outperform the CMSIS FFT implementation for all the evaluated numbers of in-
put samples. The FP-FFT is 1.4ˆ faster than the CMSIS FFT on average. The
TQ-FFT enables a mean speed-up by a factor of 2.2 compared to the CMSIS
FFT and by a factor of 1.5 compared to the FP-FFT. The α-TQ-FFT enables a
mean speed-up by factors of 1.7 and 1.2 compared to the CMSIS FFT and the
FP-FFT, respectively.

4.4 Discussion

The main objective of this chapter is to investigate the monitoring of multi-axis
milling processes based on flexible machine tools in single-part manufacturing
scenarios using process-integrated sensors. It should be shown that machine-
transferable process monitoring of the target parameters tool wear and work-
piece surface roughness with process-independent, permanent sensor integration
is possible. The process monitoring should be the foundation for investigating
the machine learning-based prediction of the remaining tool life.

Based on a requirements analysis of the targeted manufacturing processes, me-
chanical vibrations within the machining process are first identified as a suitable
process monitoring variable. The main reason for this is their propagation char-
acteristic in terms of mass-dependent machine vibrations and structure-borne
sound, which makes it possible to capture machining process emissions at a certain
distance from the contact zone between the workpiece and the tool. Thus, per-
manent sensor integration is possible independent of the components frequently
changing during single-part production, i.e., tool, tool holder, workpiece, or work-
piece clamping. The digital signals of the machine tool controller also meet these
requirements. However, the accessibility of the signals depends on the specific
controller and the machine tool. This limitation does not affect the mechani-
cal vibrations acquired using external, retrofittable sensors that enable a higher
resolution of the cutting process at the same time. Nevertheless, digital control
signals can complement vibration-based process monitoring if accessible, since
they directly provide contextual information, such as the axis positions of the
machine tool.

The vibration-based process monitoring is subsequently investigated concerning
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its machine tool dependence. The results of vibration excitation tests on a five-
axis milling center in Sections 4.3.1 and 4.3.2 show that machine structure and
component-dependent vibrations are separable from milling process-dependent
vibrations and that the decisive frequency ranges can be identified. The cor-
relation analysis in Section 4.3.3 between the vibration signals and the target
parameters tool wear and surface roughness indicates a significant correlation in
the milling process-dependent frequency range. Consequently, the vibration sig-
nals contain information about the target parameters independent of the machine
tool structure, design or components. Hence, the transferability of the vibration-
based process monitoring method and the use of the sensor data for machine
learning-based remaining tool life prediction is plausible.

Finally, to further improve the transferability by simplified sensor integration
into machine tools, the FFT-based signal processing underlying the process mon-
itoring method is optimized concerning applicability in energy-constrained wire-
less systems. The investigation of the approximate ternary-quantized FFT in
Section 4.3.4 confirms that the reduction in computational accuracy is control-
lable and that the machining process monitoring is applicable using ultra-low
power microcontrollers. Compared to state-of-the-art implementations, the com-
putational complexity and energy consumption can be reduced by a factor of 2.2
on average using the approximate FFT.

Compared to previous sensor systems for monitoring the production of com-
plex single parts as summarized in Section 2.3.2, the approach investigated in this
chapter is not based on the component-integrated architecture concept. Thus, no
sensor integration into process-related components such as tools, tool holders, or
workpiece clamping systems is necessary. In contrast to the state-of-the-art, this
enables the application for process monitoring in flexible manufacturing systems
with multiple degrees of freedom and single-part production characterized by fre-
quent process adaptations. Previously, sensor systems and process monitoring
were only designed for one manufacturing system and process configuration. The
analysis results above prove the machine independence and hence the transfer-
ability of the vibration-based process monitoring approach.
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5. Machine Learning-based
Remaining Tool Life Prediction

In machining process monitoring, the tool life prediction is the basis for main-
taining the required process quality, ensuring process reliability and increasing
productivity. The objective is to provide information on the tool condition and
its effects on process quality and to estimate how the tool condition will develop
in the future. The information serves as input for predictive tasks of manufac-
turing automation, e.g., planning of future tool changes, optimization of cutting
parameters or feedback for continuous process simulations.

5.1 Prediction Methodology

The previous chapter shows that in the milling process under stable conditions,
the tool life criteria (wear of the tool cutting edge, surface roughness of the work-
piece) and the information contained in the mechanical vibrations are correlated.
However, already small changes of the load during milling lead to significant
influences on the mechanical vibrations. Even for allegedly simple engagement
conditions, like during face milling, process-related factors such as the milling
strategy can be decisive in analyzing tool life criteria. Especially in the context
of free-form surface milling of complex component shapes, the influences due to
varying engagement conditions are not negligible. The general increase in single-
part production in manufacturing and associated variability of the workpieces and
process conditions intensify this. In order to manage the resulting complexity in
modeling the remaining tool life, machine learning methodologies for prediction
are investigated in the following.
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5.1.1 Objective Function

The task of machine learning in the remaining tool life prediction is the ap-
proximation of a tool life function depending on information about the tool life
criterion from the sensor-based process monitoring. Figure 5.1 shows the overall
approach followed in this work.
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Figure 5.1: Overview of the methodology for remaining tool life modeling de-
veloped and investigated in this work.

Compared to the state-of-the-art, this work focuses on including contextual in-
formation about the specific milling process (covariates) in the remaining tool life
modeling. The covariates complement the in-process sensor data from accelera-
tion sensors, measuring machine vibrations and structure-borne sound, and the
digital signals of the machine tool controller, as investigated in Chapter 4. Con-
sidering process influencing factors in the remaining tool life prediction through
the covariates aims to increase the prediction accuracy and enable its applicabil-
ity even in the case of their variation, such as in free-form surface milling and
single-part production. The process influencing factors are critical since they
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affect both the tool life and the process monitoring variables. Five influencing
factors are distinguished:

• Cutting Tool: The tool influences the milling process through its shape
and the design of its cutting edges. The chip formation process and the
associated cutting forces (mechanical load) depend on this. In addition,
the coating of the cutting edges influences the tool life.

• Workpiece: The workpiece influences the milling process mainly by its
shape and material. Especially the workpiece shapes are not trivial in the
context of free-form surface milling, affecting the load on the tool in the
process.

• Machine: The machine influences the milling process through its finite
stiffness. The excitation of the machine structure due to the cutting process
generates vibrations affecting the process retroactively.

• Process: The process kinematics and the cutting parameters, mainly de-
rived from the shape of the workpiece, represent significant influencing fac-
tors of the milling process. Together, they define its engagement conditions,
varying during workpiece manufacturing due to its shape (free-form surface
milling) or between workpieces (single-part production).

• Environment: Environmental influences include all external factors af-
fecting the process. In addition to their effect on the tool life, they mainly
represent disturbance variables for the in-process sensors.

The variation of process influencing factors occurs between different tool in-
stances (inter-tool life) and during the life of individual tool instances (intra-tool
life). All influencing factors above can be subject to inter-tool life variation in any
production scenario, from series to single-part production. Intra-tool life variation
occurs primarily in single-part production and free-form surface machining, where
workpiece and process-related influencing factors can change abruptly. Therefore,
this work focuses on the investigation of varying workpieces, cutting parameters,
process kinematics, engagement conditions and thus tool load.

Since the remaining tool life as a target parameter and the associated tool life
criteria are continuous variables, machine learning-based modeling is performed
using regression. The prerequisite for regression is the derivation of the objective
function which the machine learning models approximate. As shown in Fig-
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ure 5.1, the remaining tool life objective function depends on the particular tool
life criterion and the criterion threshold. Since the workpiece surface roughness
is influenced by the flank wear of the tool as shown in Chapter 4, the wear mark
width VB is considered the primary tool life criterion in the following. Due to
the correlation of the tool life criteria, the methodology is transferable without
loss of generality.
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Figure 5.2: Objective function for predicting the remaining tool life, exemplarily
shown for multiple wear mark threshold values VBi.

Figure 5.2 illustrates the relationship between the remaining tool life and the
wear mark width VB. The wear threshold value VBt with t “ 1, . . . , K applied
to the wear curve fVBptcq depending on the cutting time tc is the core of the
remaining tool life determination. A wear threshold VBt is defined based on
the application requirements as well as expert and domain knowledge. Multiple
wear thresholds can also be set, while the maximum threshold VBK is denoted
as the end-of-life criterion. The contact duration T VBt

c associated with a wear
threshold value VBt is determined by evaluating the inverse wear curve f´1

VB at the
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wear threshold value. The remaining tool life function according to Equation 5.1
describes the remaining time tr until a wear threshold value VBt is reached:

tr

`

tc, T VBt
c

˘

“ T VBt
c ´ tc “ f´1

VBpVBtq ´ tc (5.1)

Therefore, Equation 5.1 is a linear function with a slope of 1 and the y-axis
intercept of T VBt

c over tc. Since the non-linear wear curve fVB inherently defines
the y-axis intercept, fVB has to be part of modeling tr.

The task of remaining tool life prediction at an instantaneous cutting time
tc “ Tc divides the time axis into a past and a future domain. At Tc, the
sensor data and covariates of the past cutting time are available. In the future
domain, covariates may already be known, e.g., due to known workpieces to be
subsequently produced. The past and future domain information available at
Tc is the foundation for predicting the remaining time tr

`

tc, T VBt
c

˘

until a wear
threshold VBt is reached. Since the wear measurement using manufacturing
metrology is to be replaced by the in-process sensor-based monitoring in this work,
the actual wear values are available only in the context of the model training.
During the inference time of the models, there is no permanent measurement and
feedback of the wear values, i.e., fVB up to Tc, according to Figure 5.2, is not
directly known.

5.1.2 Dataset Generation

The basis for machine learning-driven prediction is the availability of a represen-
tative dataset to train and validate the underlying models. The dataset must
reflect the application-specific characteristics and contain the desired input and
output variables for modeling. This work focuses on the application of free-form
surface milling under single-part production. Inter- and intra-tool life variation of
cutting parameters and engagement conditions characterize the single-part pro-
duction. The complexity of workpieces with free-form surfaces results in varying
engagement conditions along contiguous tool paths. Cutting parameters and en-
gagement conditions affect the tool load and thus the sensor data (model input)
and the tool life (model output). Therefore, workpiece- and process-related in-
fluencing factors are particularly relevant for modeling. A dataset incorporating
these application-specific characteristics does not yet exist as the literature review
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in Section 2.4.3 suggests. The dataset generation requires the analysis of the re-
spective influencing factors to investigate them in a controlled manner within the
machine learning-based modeling. Figure 5.3 shows the underlying relationships
along the milling process chain as a basis for the analysis under the assumption
of a general five-axis milling model and arbitrary free-form surfaces.
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Figure 5.3: Dependencies of the milling process from workpiece- and trajectory-
related covariates as a foundation for the dataset generation.

A sequence of customized free-form surface workpieces k with k “ 1, . . . , N

to be manufactured is considered. A free-form surface has several geometrical
parameters derived from its NURBS-based definition according to Section 2.2.2.
The geometric parameters defining the shape of the surface are the control point
tensor P, the orders p and q of the B-spline basis functions and the weight
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matrix W. For simplification, the geometric parameters of a workpiece k can
be vectorized into a general vector p⃗ k

g .

Based on the surface definition, the trajectory of the milling tool is derived
in the next step of the milling process chain, as described in Section 2.2.4. The
trajectory is a time-dependent function representing the position of the tool in
Cartesian coordinates, the inclination of the tool axis in the feed direction as lead
angle αL and orthogonally to it as tilt angle βT . The tool trajectory depends on p⃗ k

g

and the cutting parameters of the particular workpiece. The cutting parameters
can be expressed as a vector p⃗ k

c and consist of the cutting speed vc, the feed per
tooth fz, the axial depth of cut ap, and the radial depth of cut ae. They are
either set manually by the operator or process planner or automatically based on
process simulation.

On the execution of the tool trajectory, the spatiotemporal cutting force F⃗ ptq

according to Section 2.2.3 acts on the engaged cutting edges of the tool. The
cutting force consists of periodic and non-periodic components. According to
the milling force model by Altintas [75], the periodic cutting force components
result from the rotation of the tool (instantaneous engagement angle φptq) and
corresponding periodic variation of the cross-sectional area of cut Apφq. In the
case of free-form surface milling based on five-axis machine tools, it has been
shown that the inclination of the tool axis and the curvature of the machined
surface mainly influence the engagement angle θ [72, 73]. θ defines the duration
of the cutting edge engagement during tool rotation, affecting the course of the
cutting force. Hence, if the engagement angle θptq changes over time, it causes
non-periodic variations of the cutting force.

The machining of a tool trajectory of a workpiece k leads to a progression of the
cutting time by the value ∆tk

c . The mechanical load on the tool’s cutting edges
in this interval, influenced by the workpiece geometry, the cutting parameters,
and the tool trajectory, contributes to the increase in tool wear. Cutting time
progression and wear contribution vary depending on the current tool condition
and the parameters p⃗ k

g and p⃗ k
c .
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5.1.3 Machine Learning Model

Based on the procedure described in the previous Section 5.1.2, a dataset D can
be generated representing the tool wear under single-part production of free-form
surfaces. D can include the data of multiple tool instances up to their respective
end-of-life point T VBK

c . Modeling the remaining tool life based on tool wear is
thus a multi-series forecasting task [172], where the data over the lifetime of a tool
instance represents a series. As described in Section 2.4.3, the forecasting-based
remaining tool life prediction is advantageous over the direct and criterion-based
methods because it retains the relationship to the tool life criterion. Therefore,
it enables an overall explainable methodology. Figure 5.4 shows an overview of
the machine learning-based modeling approach of this work.
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Sensor Data Features

Past Covariates Future Covariates

Past Domain Future Domain
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Tc TVB t
c

VBt

tr(Tc, TVB )  t
c

Figure 5.4: Overview of the machine learning-based remaining tool life modeling
approach formulated as a combined regression and forecasting task. The approach
uses features extracted from the sensor data as well as covariates representing
contextual process information.

The dataset D containing N tool instance series is defined as D “ tDiu
N
i“1. The

samples of Di are defined as Di “

!

xppq

i,1:Tc
, xpfq

i,Tc`1:Tc`H , yi,1:Tc , yi,Tc`1:Tc`H

)

with
Tc being the instantaneous cutting time step beyond which the wear curve fVB is
to be forecasted and H being the forecasting horizon, i.e., the cutting time steps
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over which a model predicts fVB. A cutting time step is defined as the cutting
duration of a continuous tool trajectory during which the tool is not lifted from
the workpiece surface, i.e., moved along the normal vector perpendicular to the
workpiece surface. It is assumed that the manufacturing of a workpiece k accord-
ing to Figure 5.3 represents a cutting time step of length ∆tk

c . The tensors xppq

i,1:Tc
,

xpfq

i,Tc`1:Tc`H , yi,1:Tc and yi,Tc`1:Tc`H describe the past features, known future fea-
tures as well as past and future targets. The target tensors both contain a wear
mark width value per cutting time step. As shown in Figure 5.4, the past features
consist of the sensor-related features and the past covariates, whereas the known
future features are covariates only. Covariates represent process-describing con-
textual information and can be elements of the geometric and cutting parameter
vectors p⃗ k

g and p⃗ k
c or values derived from them, e.g., during simulation. Past

and future covariates may differ depending on the future parameters assumed
to be available before workpiece production. The general periodogram vectors
P⃗ k

xx estimating the PSD of a cutting time step, calculated for the acceleration
sensor signals of contiguous tool trajectories according to the procedure shown in
Figure 4.10, constitute the sensor-related features.

The task of modeling the wear curve fVB starting from Tc over a horizon H

into the future using a machine learning model can be expressed according to
Equation 5.2:

ŷTc`1:Tc`H “ f
´

xppq

1:Tc
, xpfq

Tc`1:Tc`H , θp

¯

(5.2)

ŷTc`1:Tc`H is the forecast of the model with parameters θp. Model inputs are
only the past and future features since this work aims to replace the wear mark
width measurement with process-integrated sensors. Hence, the measured wear
curves fVB and thus the target tensors are only included in the training data set
and are not available at inference time. The forecast requires the reconstruction
of the past targets from the available sensor data features and covariates. Ac-
cordingly, the model has to perform the tasks of wear curve regression (regressor)
and forecasting (forecaster), as shown in Figure 5.4. The regressor fR and the
forecaster fF are defined according to Equations 5.3a and 5.3b, with θR

p and θF
p

being the regressor and forecaster parameters.
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ŷ1:Tc “ fR

´

xppq

1:Tc
, θR

p

¯

(5.3a)

ŷTc`1:Tc`H “ fF

´

fR, xpfq

Tc`1:Tc`H , θF
p

¯

(5.3b)

The regressor thus replaces the input of past targets in the forecaster. It is
problematic when the forecasting horizon H of the forecaster is smaller than the
remaining interval until the end-of-life criterion T VBK

c ´ Tc. In this case, the
remaining tool life prediction is impossible as there is no forecasting value of
the wear curve fVB available at T VBK

c . The forecaster must be autoregressive to
predict the remaining tool life at any time independently of H. An autoregressive
forecaster allows predicting fVB for any number of future steps n ¨ H from Tc.

5.2 Implementation

In order to implement and evaluate the method for remaining tool life prediction
presented in the previous section, the sensor system setup used in Chapter 4 is
prepared for dataset generation in the following. Furthermore, from a software
perspective, the basis for the training and evaluation of the prediction models is
created.

5.2.1 Testbed for the Dataset Generation

The testbed developed in the following maps the milling process chain considering
the prerequisites of dataset generation for single-part production described in Sec-
tion 5.1. The testbed enables the consolidated collection of planning, in-process
and post-process measurement data. Therefore, the sensor system developed in
Chapter 4 for acquiring in-process data is extended by pre- and post-process
stages. The resulting end-to-end data availability forms the basis for a dataset
meeting the requirements of Section 5.1.1, particularly concerning available co-
variates and target variables for training machine learning models. Figure 5.5
provides an overview of the testbed.

In advance of the milling process, process planning is performed. As highlighted
in Section 5.1.2, a dataset representing single-part production scenarios has to
include the variation of geometric and process parameters. Hence, these parame-
ters must be externally adjustable. The geometric parameters are transferred via
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Figure 5.5: Overview of the testbed for execution of milling processes with
guaranteed data availability along the milling process chain. The testbed is the
basis for the dataset generation.

a software interface to the CAD software, which generates the 3D model of the
workpiece automatically. In this work, the CAD software OpenSCAD [243] is used
since it allows the programmatic generation of 3D models and thus the realization
of corresponding geometry generators. The following Section 5.2.2 presents the
parameterizable workpiece geometries used in this work in detail. From the CAD
software, the 3D model of the workpiece is transferred to the CAM software. The
CAM software converts the 3D model into NC code interpretable by the machine
tool controller considering the adjustable process parameters (cutting speed vc,
feed per tooth fz, axial depth of cut ap, radial depth of cut ae) and the geometric
parameters of the used milling tool. In this work, the CAM software SolidCAM
[244] is used for this purpose. The standard for the exchange of product model
data (STEP) ISO 10303 [245] is the basis for transferring the 3D workpiece models
from the CAD to the CAM software.

The machine tool performs the machining operation in the in-process stage
using the generated NC code. The Hermle C 30 U milling center already used in
the previous Chapter 4 with the installed sensor system according to Section 4.2
is used. Based on the milling tool under test monitored over its entire lifetime,
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a raw workpiece is brought into the shape defined by its 3D model. During
machining, the sensor system acquires both the acceleration sensor data and the
sensor data used by the machine tool controller, i.e., current spindle speed, axes
positions and drive loads.

After the machining of the workpiece, the measurement of the tool and work-
piece is performed in the post-process stage using manufacturing metrology de-
vices. The tool wear mark width of the cutting edges is measured using a micro-
scope, and the surface roughness of the workpiece is determined with a roughness
probe. The Garant MM1 [246] video measuring microscope and the MarSurf
PS 10 [247] roughness measuring device are used. Section 5.1.1 describes the
wear mark width as the primary tool life criterion considered in this work. The
roughness measurement is performed for reference only to ensure the correlation
between the surface roughness and the wear mark width.

5.2.2 Reference Process Design

The previously introduced testbed enables continuous collection of sensor, co-
variate and target data during milling. However, the testbed requires process
boundary conditions to generate representative datasets. The process bound-
ary conditions include the geometric parameters of the workpieces, the cutting
parameters, the geometric and material properties of the used tools, and the ma-
terial properties of the workpieces. The reference process is a process template for
the parameterizable generation of the process boundary conditions within spec-
ified limits. Based on the reference process, the process planning steps can be
performed according to Figure 5.5.

As described in Section 5.1.2, single-part production is characterized by the
intra-tool life variability of the geometric and cutting parameters. The geomet-
ric and cutting parameters primarily influence the engagement conditions, i.e.,
the relative orientation of tool and workpiece surface. Furthermore, the com-
plex shape of free-form workpieces leads to the intra-workpiece variability of the
engagement conditions along contiguous tool paths. Since the engagement condi-
tions directly influence the cutting force, they also affect the sensor signals. The
objective of the reference process is to map this relationship.

Section 5.1.2 derives the parameters influencing the cutting force from a general
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NURBS-based workpiece description and the five-axis milling model. The intra-
tool life variability of the engagement conditions results primarily from the tool
inclination and the surface curvature of the workpiece. Therefore, the engagement
angle θptq represents the varying engagement conditions. In order to constrain the
complexity of the reference process and facilitate the data analysis, a workpiece
shape produced by three-axis milling can be selected, given the variation of θptq

along contiguous tool trajectories.

Pocket geometry milling enables the abstraction from the five-axis to the three-
axis milling model while maintaining the engagement angle variation. The vari-
ation of θptq along a contiguous tool path occurs as the milling tool enters the
corners of a pocket. Figure 5.6 illustrates this based on a pocket geometry with
four corners.

... ... ......

Raw 

Workpiece

Engagement 

Angle θ

Pocket

Direction 

Change

Ⅰ Ⅱ Ⅲ

Figure 5.6: Engagement angle variation during pocket milling using the example
of a square pocket geometry.

The straight-line movement with a path stepover of 50 % corresponding to a
radial cut depth of ae “ R, with R being the tool radius, results in an engagement
angle of 90˝ (I). When the tool enters the corner of the pocket, the engagement
angle increases due to the corner angle of the geometry (II). The increased en-
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gagement angle increases the chip volume and causes an extended load on the
cutting edge. This is visible in the spectrogram of the acceleration sensor signal
by an increased intensity, approximately between 0.26 s and 0.36 s. Once the
cutter has reached the corner, the engagement angle approaches 180˝. Since the
movement direction changes in the corner, no feed motion and thus no cutting
process occurs for a short time interval, approximately between 0.36 s and 0.42
s, leading to a drop of the vibration intensity. Subsequently, the cutting process
continues in the new direction with an engagement angle of 90˝ (III). Adjusting
the number of corners of the pockets changes the corner angle, which simultane-
ously influences the course of θptq during milling. This relationship is exploited
in the following for the design of the reference process depicted in Figure 5.7.
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Figure 5.7: Experimental setup and procedure for the dataset generation using
the pocket geometry-based reference process.

The pocket geometries aim to generate variable load patterns of the tool and
thus simulate manufacturing of free-form surfaces. The cutting parameters of the
reference process are the same as those already used for face milling in Chap-
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ter 4. In addition, the reference process includes the geometric parameters of the
pockets. The geometric parameters are the number of corners cp varying the en-
gagement angle, the radius rp varying the pocket area, the depth dp, the position
of the pocket center point pxp, ypq, and the rotation angle αp. All parameters
have a predefined range of values and thus form a multivariate distribution from
which random combinations can be sampled to generate intra-tool life parameter
variations.

At the beginning of the reference process, a defined number Np of pockets are
parameterized and then manufactured. After the completion of the manufactur-
ing, the wear mark width VB of the tool cutting edges is measured. In addition,
the cutting parameter sampling for the following face milling is performed. The
face milling removes the pockets and resets the raw workpiece for the next process
iteration. The face milling has to be repeated until the maximum pocket depth is
reached. After face milling, the wear mark width and the surface roughness are
measured. The reference process is repeated until the maximum tool life criterion
VBK has been reached. Table 5.1 provides a detailed overview of the reference
process boundary conditions.

Table 5.1: Fixed and variable parameters of the reference milling process for
the dataset generation.

Category Parameter Unit Range / Value

Cutting Process

Feed per Tooth (fz) mm r0.4, 0.7s

Cutting Speed (vc) mm
s

r170, 200s

Axial Cut Depth (ap) mm r0.5, 0.8s

Radial Cut Depth (ae) mm R

Pocket Geometry

Corners (cp) - r3, 9s

Radius (rp) mm r30, 100s

Depth (dp) mm r1, 10s

Position pxp, ypq mm r50, 150s, r50, 150s

Rotation Angle (αp) ˝ r0, 360s

Milling Tool

Type - Indexable
Tool Shape - Toroidal
Edge Shape - Circular

Number of Teeth (zc) - 3
Max. Radius (R) mm 10
Edge Radius (r) mm 4

Max. Criterion (VBK) mm 0.8

Workpiece

Dimensions pl, w, hq mm 200, 200, 200
Material - X155CrVMo12-1 (DIN 1.2379)

Consecutive Pockets (Np) - 4

Since the workpiece shapes are assumed arbitrary in single-part production and
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can change randomly, sampling of the pocket geometry parameters has to be also
random. In order to optimally cover the space of cutting process parameters,
Latin hypercube sampling [248] is used. The varying cutting parameters must
be statistically independent of the wear. Since the wear curve is known to be
monotonically increasing, it is estimated in advance as a linear function with a
slope of 1. The Latin hypercube sampling is repeated until the magnitude of
the Pearson correlation coefficients between the points of the approximated wear
curve and the samples of all cutting process parameters is less than 0.1. The
number of samples and thus of reference process iterations is selected based on
expert knowledge such that the tool life criterion is exceeded. The radial cut
depth ae is fixed at a constant value since it changes automatically due to the
pocket geometries.

The used tool and workpiece material are motivated by the industrial practice
of mold and die manufacturing. Toroidal tools with circular cutting edges are
extensively used in multi-axis machining of free-form workpieces [72] for roughing
and finishing operations and are therefore of particular relevance. The maximum
tool life criterion is based on the manufacturer’s recommendation. The steel
X155CrVMo12-1 is characterized by moderate to poor machinability. Due to the
high temperatures of the tool cutting edges when machining the steel, no cooling
lubricant is used in practice. Omitting the cooling lubricant is adopted in the
reference process.

5.2.3 Remaining Tool Life Modeling Framework

The remaining tool life prediction according to Section 5.1.3 requires a regressor
and a forecaster model. Implementing these machine learning models requires a
software framework that enables their training and validation based on a dataset
representing the lifetime of multiple tool instances. A core objective of the ma-
chine learning-based method for remaining tool life prediction according to Sec-
tion 5.1 is the holistic explainability of the final model decision. As highlighted
in Section 2.5, previous sensor-driven approaches lack the explainability and in-
terpretability of the tool life criterion regression using sensor-related features.
However, this is crucial for flexible machine tools, which are subject to frequent
adaptations and for the general transferability of a prediction method based on
sensor-driven process monitoring. Without the explainability of the model deci-
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sions, it is impossible to ensure that the model is based purely on process-related
features that can be extracted in any machine configuration or across machines.
Thus, an explainable remaining tool life prediction methodology significantly in-
creases the robustness. In order to keep the effort for feature engineering low,
an automated machine learning-based methodology is developed in this work
according to Figure 5.8.
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Figure 5.8: Methodology for automated and explainable feature selection
from the sensor-based periodograms P⃗ k

xx and the past and future covariates
tC⃗k, C⃗k`1, . . . u embedded into the remaining tool life prediction.

A regressor based on a feature selection component and a machine learning
model is explicitly chosen. As described in Section 2.4.1, most feature selection
methods internally apply a mechanism to determine feature importance. The fea-
ture importance is exploited with the automated machine learning mechanism,
which performs a joint search for optimal hyperparameters and optimal pairing
of feature selection and model. A heatmap is generated from the feature weight-
ing for the best regressor, which visualizes the decisive features. Based on the
heatmap, an expert can evaluate the model’s transferability and robustness and
optimize it if necessary. The heatmap is particularly important for the peri-
odograms of the acceleration sensors P⃗ k

xx since the frequency ranges the model
relies on determine its machine dependence, as shown in Section 4.3. Based on
the wear regression and the future covariates, the forecaster model performs the
wear forecast and the prediction of the remaining tool life.

Sources of covariates are process simulations, CAD/CAM software tools, the
NC code, and the sensor system itself. In particular, the sensor system developed

111



Chapter 5. Machine Learning-based Remaining Tool Life Prediction

in this work can track the cutting time tc of the milling tool based on the acceler-
ation sensor signals, as described in Section 4.2.4. However, only past covariates
usable by the regressor can be provided by the sensor system as it only targets
the current process. If information about future machining operations is to be
generated for the forecaster, the other covariate sources must be used. Below, the
covariates used in the following sections for evaluation are listed and described.
They can all be potential past and future covariates.

• Cutting Time tc: The sensor system can track the cutting time per work-
piece ∆tk

c based on the acceleration sensor signals. The absolute cutting
time can then be calculated by accumulation of ∆tk

c according to Equa-
tion 4.3. In addition, state-of-the-art CAM software tools also offer the
possibility of estimating ∆tk

c as part of process simulations [87].

• Removed Material Volume V: Similar to the cutting time, the volume
of material removed contains information about the load on the tool during
machining. The determination of the removed volume is also part of state-
of-the-art CAM software tools [84].

• Material Removal Rate Q: The material removal rate is the quotient
of V and tc and is the measure of the productivity of a process. Since it
is a central optimization parameter, it is also part of state-of-the-art CAM
software tools [81].

• Cutting Process Parameters: The varying cutting parameters vc, fz

and ap according to Table 5.1 are used.

• Pocket Geometry Parameters: The varying pocket geometry parame-
ters cp, rp, dp, xp, yp and αp according to Table 5.1 are used.

Figure 5.9 shows the test strategy for the regressor and forecaster models aiming
to ensure the robustness of the models and their evaluation with a limited number
of available tools and their data.

The data from N tools is divided into training and testing regions for the train-
ing and evaluation of regressor and forecaster models. The data of a particular
tool is selected for testing and not used for model training. Each tool is used
once for testing to ensure that the prediction methodology is functional for ar-
bitrary permutations and that its performance is not just based on the random
selection of individual test tools. The procedure is referred to in the following as
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Figure 5.9: Test strategy of the remaining tool life prediction methodology
based on a dataset with a limited number of represented tools.

leave-one-tool-out (LOTO) testing.

Based on the training segment with N ´ 1 tools, the model architecture and
hyperparameter search are then performed. For this purpose, model architec-
ture and hyperparameter configurations are sampled from a model pool. When
searching for the best configuration, a search criterion is required, enabling the
evaluation of the configurations and their optimization. As with training, the
prediction error can be used for this purpose. However, an additional validation
tool has to be kept out of the training segment. The evaluation of a model using
the data of the validation tool guides the search.

Problematic is that selecting a single random validation tool can overfit the
models thus misleading the architecture and hyperparameter search. Hence, each
tool is used once for validation to generate an overall model robust to the test
tool data. The resulting models of the N ´ 1 validation folds are combined into
a voting ensemble. The outputs of the models are averaged to compensate for
overfitted models. The procedure is referred to as LOTO cross-validation.
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After the model architecture and hyperparameter search is complete, the voting
ensemble models are trained using the data from all training tools. Subsequently,
its evaluation is performed based on the data of the test tool. The stochastic
nature of parameter initialization and optimization of machine learning models
may lead to different model outputs for multiple training runs. To allow for a
reliable statement regarding the model quality, the training and testing step is
repeated n times.

The regressor and forecaster are models with different objectives, structures
and inputs. While the procedure for training and evaluating the models accord-
ing to Figure 5.9 is the same, the underlying implementation differs. The regres-
sor is implemented based on the Auto-sklearn [177] library since it supports the
methodology according to Figure 5.8. Auto-sklearn offers various importance-
based feature selection methods and is based on the joint optimization of feature
selection and machine learning model. The forecaster is implemented based on
the Darts library [173]. Since Darts does not natively support automated ma-
chine learning like Auto-sklearn, an additional wrapper based on the Tune library
[249] is implemented for automated architecture and hyperparameter search. In
combination with Bayesian optimization, the asynchronous successive halving al-
gorithm (ASHA) is used for the architecture and hyperparameter search of the
forecaster models [178].

5.3 Evaluation

The following sections present the evaluation of the components of the remaining
tool life prediction methodology developed in this work. The evaluation is based
on a dataset generated using the testbed and the reference process according to
Section 5.2. Besides the regressor and forecaster models, the explainability of the
methodology is analyzed.

5.3.1 Dataset Exploration

Before evaluating the machine learning models, the generated dataset has to be
examined. The dataset includes data from seven tools of the type specified in
Table 5.1 over their entire lifetime. Since a cutter head with indexable inserts
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is used, the term tool is synonymous with a set of three indexable inserts in the
following. The data was generated based on resampling the cutting process and
pocket geometry parameters, as shown in Figure 5.7. Figure 5.10 depicts the
mean, minimum and maximum values of the measured flank wear mark widths
VB and the time points of the parameter change over the cutting time tc.
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Figure 5.10: Tool wear mark width measurements and parameter resampling
points for the seven tools of the dataset generated for the analysis and verification
of the remaining tool life prediction methodology.

VB develops similarly for all tools up to a cutting time of approximately 60
minutes. From then on, wear progresses faster, and the scatter of the measured
VB values increases. The maximum difference in cutting time ∆tVB“0.8mm

c eval-
uated at the tool’s end-of-life criterion VBK of 0.8 mm is 16 minutes.

This chapter is based on the assumption that gradual tool wear leads to an
increase in workpiece surface roughness and thus to a reduction in workpiece
quality. Therefore, only the tool wear is considered for predicting the remaining
tool life. Since the assumption results from the investigation of the face milling
experiment according to Chapter 4, it must be ensured that it also applies to the
dataset. Table 5.2 shows the Pearson correlation coefficients ρpV̄B, R̄zq between
the mean wear mark width and the mean workpiece surface ten-point height of
irregularities for all tools in the dataset.

The tool wear and the workpiece surface roughness show an overall high cor-
relation. Therefore, the assumption justifying the flank wear mark width as the
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Table 5.2: Pearson correlation coefficients of the average workpiece surface ten-
point height of irregularities R̄z and the average tool wear mark width V̄B per
tool included in the dataset.

Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7
ρ

`

V̄B, R̄z
˘

0.51 0.81 0.99 0.99 0.99 0.90 0.71

primary tool life criterion can be confirmed.

In addition to process quality, the manufacturing time and hence the process
productivity are crucial factors. Process quality and productivity both influence
the economic efficiency of production. For the tools in the dataset, the average
material removal rate Q̄ is determined as a measure of process productivity on the
basis of the volume removed during machining and the cutting time. Table 5.3
shows Q̄ for all tools.

Table 5.3: Average material removal rate Q̄ and standard deviation over all
manufactured workpieces per tool included in the dataset.

Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7

Q̄ p mm3

min
q

367.7
(˘17.5)

343.7
(˘9.9)

328.8
(˘11.2)

350.1
(˘23.0)

375.27
˘(9.9)

343.5
(˘19.2)

401.9
(˘11.3)

Tool 7 has the highest material removal rate and Tool 3 has the lowest. Com-
paring the wear curves of the two tools, it becomes evident that Tool 7 reaches
the wear threshold VBK later than Tool 3 despite the higher material removal
rate. Tool 5 with the highest tool life has only the second-highest material re-
moval rate. A trade-off between productivity, wear progress, and product quality
must be found.

5.3.2 Analysis of the Feature Importance

The implementation of the remaining tool life prediction, according to Section 5.2.3,
has the goal of automated and explainable feature selection based on which the
tool life criterion VB and subsequently the remaining tool life is determined. In
this section, the methodology developed for this purpose, according to Figure 5.8,
is examined first. The focus is on the automated machine learning-based regres-
sor model and the integrated mechanism for explaining the feature selection. For
validating the methodology, a feature space is defined as a basis for the selec-
tion. It consists of the periodograms of the three-axis acceleration sensor system
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introduced in Chapter 4 and all process covariates according to Section 5.2.3.

The periodograms are determined according to Section 4.1.4 by applying the
Welch method to the signal segments of contiguous tool trajectories k per sensor
channel i. The STFT on which the Welch method is based is parameterized
with a window size of 8192 samples and a window overlap of 75 %. Hence, a
periodogram vector per sensor channel P⃗ i,k

xx has 4096 elements with i “ tx, y, zu.
The periodogram vectors of the three sensor channels constitute the tensor Pk

xx

and the global tensor Pxl
xx summarizes the acceleration sensor-based periodogram

tensors for all tool trajectories over the lifetime of a tool instance. The tensor C
summarizes the covariate vectors C⃗k over the lifetime of a tool instance.

Chapter 4 shows that the frequency range of 0 to 6 kHz contains a high de-
gree of process information. There are intervals in the frequency range that
can be assigned to the process, the machine (natural frequencies), and its state
(excitation-induced vibration response during idling). The signal power in all
frequency intervals may correlate with the tool life criteria, thus serving as a
basis for regression-based modeling. The evaluation in this section first aims to
show that the relevant intervals can be found automatically by the automated
machine learning-based regression methodology. Model optimization can subse-
quently be performed, applying the feature importance-based explanation of the
methodology, e.g., to obtain machine-independent models.

Before validation, the Auto-sklearn [177] environment is first configured for
the automated machine learning-based training. Both the meta-learning and
ensembling capabilities of Auto-sklearn are enabled. The maximum time budgets
are set to 10 minutes for the entire training and 30 seconds for training a single
model configuration with a memory limit of 20 GB. The R2 score function is
used as a metric for training. The training and testing are repeated five times
according to the LOTO strategy shown in Figure 5.9. An input feature vector
per contiguous tool trajectory based on the periodogram tensors Pk

xx between 0
and 6 kHz and the covariates C⃗k has 588 elements. Since the regression is only
required up to the end-of-life criterion VBK to enable the forecast, the range of
VB for prediction and evaluation is limited to 0.8 mm. Figure 5.11 shows the
regression results. For a comprehensive error analysis, the prediction errors in
terms of RMSE and MAE over the dataset are summarized in Table 5.4. The
error metrics are calculated for the mean prediction and the mean measurement
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values of VB.
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Figure 5.11: Prediction results of the automated machine learning-based tool
wear regression to investigate the feature importance. The input features of the
model are the acceleration sensor periodogram vectors Pxl

xx in a range of r0, 6000s

Hz and the past covariate vectors C with all covariates. The results for Tools 1
to 7 are shown from left to right.

Table 5.4: Prediction errors of the tool wear regression to investigate the fea-
ture importance. The input features of the model are the acceleration sensor
periodogram vectors Pxl

xx in a range of r0, 6000s Hz and the past covariate vectors
C with all covariates.

Metric Prediction Errors per Tool (mm)
Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 Mean

RMSE 0.038 0.068 0.107 0.026 0.066 0.065 0.041 0.059
(˘0.025)

MAE 0.031 0.046 0.070 0.021 0.055 0.045 0.028 0.042
(˘0.016)

Figure 5.11 and Table 5.4 show that the regression of the flank wear mark width
VB is possible for all tools using the sensor data-based features and covariates.
Overall, the mean RMSE across the dataset is 0.059 mm and the mean MAE is
0.042 mm.

Based on the regression, the feature importance is determined. For this pur-
pose, the feature scores and feature selection masks of the feature selection mod-
ules are extracted from all model configurations found by the Auto-sklearn en-
vironment. Per tool, i.e., per modeling run, the feature selection mask is su-
perimposed on the feature scores to set the scores of unselected features to 0.
Subsequently, the feature scores are normalized and averaged to derive the fea-
ture importance. Figure 5.12 shows the feature importance averaged over the
complete dataset and split by periodograms and covariates.
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Figure 5.12: Feature importance analysis of covariates and periodogram fre-
quency bins derived from the automated machine learning-based wear regression.
The mean feature scores and their standard deviation over all tools are shown.

Figure 5.12a shows three dominant frequency ranges with maximum feature
importance scores. The first frequency range is approximately between 0 Hz and
280 Hz. Based on the Campbell diagrams in Sections 4.3.1 and 4.3.2, depicting
the frequency response due to spindle rotation with and without machining, it
can be shown that the process-related tooth engagement frequency Ωz is located
here. Based on the parameters of the reference process according to Table 5.1 un-
derlying the dataset, the Ωz is between 135 Hz and 159 Hz. This corresponds to
the range of maximum feature scores. The second and third dominant frequency
ranges from 1440 Hz to 1940 Hz and from 3810 Hz to 5650 Hz, respectively, can
be assigned to the machine structure and components. They can be identified
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in the Campbell diagram showing the frequency response due to spindle rotation
without machining in Section 4.3.1. The response in these frequency intervals
results e.g. from imbalances or bearing errors, but also natural frequencies are
located here. In conclusion, the feature-importance-based method for explain-
ing the model decisions can automatically identify the relevant frequency ranges
related to the tool wear.

By looking at the feature importance scores of the covariates, it becomes clear
that these are weighted more strongly and thus contribute more to the model
output than the periodograms. In particular, the cutting time tc and the removed
material volume V have a significant influence with mean feature scores of 0.8
and 0.7 respectively. One possible reason for this is that, compared to the other
covariates, tc and V are accumulative variables and hence correlated with the
tool wear.

5.3.3 Optimization of the Tool Wear Regression

The results of the previous feature importance analysis are used in the following
to optimize the tool wear regression. This section has several objectives. First,
based on the relevant frequency ranges identified in the previous section, the per-
formance of a machine-independent model will be investigated. For this purpose,
the frequency range of the periodograms Pxl

xx is limited to the value range be-
tween 0 and 625 Hz to use only the tooth engagement frequencies Ωz and their
first harmonics. Thus, no machine-dependent vibration components are used for
modeling. In addition, the covariates C are restricted to the two accumulative
variables with the maximum feature scores tc and V . Besides enabling the ma-
chine independence, reducing the feature space size is expected to improve the
architecture and hyperparameter search of the automated machine learning-based
training and hence the model performance.

Furthermore, the significance of the covariates for modeling is verified by using
only the covariates or the periodograms as input features, respectively. Lastly,
the model performance is compared using the NC controller signals according to
Chapter 4 in addition to the acceleration sensor signals. Therefore, the PSD-
estimating periodograms Pnc

xx of the axis drive power signals are derived. As
described in Section 2.3.1, the drive power is directly related to the cutting force
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and thus also represents the tool wear. Table 5.5 shows the prediction errors of
the feature configurations being compared.

Table 5.5: Prediction errors of the tool wear regression with variable input
features. The covariate vectors C are reduced to tc and V and the frequency
range of Pxl

xx is r0, 625s Hz. The following feature configurations are evaluated:
I Ñ (Pxl

xx, C), II Ñ (Pxl
xx), III Ñ (C), IV Ñ (Pxl

xx, Pnc
xx, C), Ñ (Pnc

xx, C)

Tool
Prediction Errors per Input Feature Configuration (mm)

I II III IV V
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 0.034 0.029 0.169 0.133 0.035 0.029 0.049 0.038 0.046 0.036

2 0.052 0.038 0.140 0.102 0.046 0.035 0.045 0.036 0.046 0.035

3 0.070 0.047 0.189 0.155 0.062 0.042 0.086 0.059 0.074 0.053

4 0.028 0.022 0.131 0.097 0.031 0.025 0.032 0.026 0.030 0.025

5 0.056 0.044 0.199 0.147 0.053 0.042 0.063 0.052 0.055 0.045

6 0.054 0.035 0.182 0.143 0.057 0.036 0.075 0.051 0.069 0.043

7 0.025 0.019 0.162 0.132 0.029 0.021 0.031 0.025 0.047 0.039

Mean 0.045
(˘0.016)

0.033
(˘0.010)

0.167
(˘0.023)

0.130
(0.021)

0.045
(˘0.012)

0.033
(˘0.007)

0.054
(˘0.020)

0.041
(˘0.012)

0.052
(˘0.014)

0.039
(˘0.008)

The evaluation with reduced feature space (Configuration I) has a mean RMSE
of 0.045 mm and an MAE of 0.033 mm. Compared to the input feature configura-
tion in the previous section, this corresponds to an error reduction of 24 % for the
RMSE and 21 % for the MAE. Machine-independent modeling is thus possible,
and reducing the feature space allows a more efficient architecture and hyperpa-
rameter search while maintaining the same time budget for training. Using only
the periodograms (Configuration II) exhibits the maximum error with an RMSE
of 0.167 mm and an MAE of 0.130 mm. Figure 5.13 shows the prediction results
of Configuration II.

Figure 5.13 shows that modeling solely based on periodograms Pxl
xx is not pos-

sible. The variable process conditions affect the sensor signals such that without
additional process-describing information from the covariates no relationship to
VB can be learned. In comparison, using only the covariates exhibits the same
error as with Configuration I, with both RMSE and MAE being minimal for
configurations I and III. However, looking at the training runs per tool of con-
figuration 1 using Pxl

xx and the covariates, more minimal prediction errors occur
than for Configuration III. Overall, the significance of the covariates for the tool
wear regression can be confirmed.

Configurations IV and V using the drive power-based periodograms Pnc
xx have

RMSE values of 0.054 combined with Pxl
xx and the covariates and 0.052 mm
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Figure 5.13: Prediction results of the automated machine learning-based tool
wear regression using only the acceleration sensor periodograms Pxl

xx in a range
of r0, 625s Hz as inputs.

combined with the covariates only. The MAE values are 0.041 mm and 0.039
mm, respectively. The errors are 20 % and 16 % higher for the RMSE and 24 %
and 15 % higher for the MAE than for Configuration I. Thus, modeling based on
the control signals is generally possible, but with reduced performance compared
to the acceleration signals or covariates. A possible reason for this may be the
reduced sampling rate, which according to Chapter 4 is only 110 Hz for the control
signals. In addition, the inertia of the axis drive trains can negatively affect the
process information in the sensor signals.

5.3.4 Analysis of the Remaining Tool Life Prediction

Based on the feature analysis and investigation of the tool wear regression in the
previous sections, the remaining tool life prediction is analyzed in the following.
The remaining tool life prediction is performed using tool wear forecasting, as
described in Section 5.2.3. The main objective of this section is to show that re-
maining tool life prediction is possible under intra-tool life variability of process
conditions. Furthermore, it is investigated how the process-describing informa-
tion of future machining operations, i.e., future covariates e.g. from simulations,
CAD/CAM software tools, or NC code, affects the prediction. The forecaster
model is implemented using the Darts [173] and Tune [249] libraries. Before eval-
uation, the model type of the forecaster must be determined. The model type
must support the use of future covariates. Because of this property and its ability
to learn complex temporal relationships, the LSTM architecture, commonly used
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in forecasting problems, is chosen.

The forecaster model is first tuned and trained based on the LOTO mechanism
according to Section 5.2.3. The LSTM model is characterized by a single layer and
a hidden dimension, i.e. a number of hidden states, of 25. The length of the model
input sequences between 12 and 60 samples and the output sequences between 1
and 36 samples is subject to the model tuning. Furthermore, the hyperparameters
of batch size in the range of r4, 32s and learning rate in the range of r1e´5, 1e´2s

are tuned. The tuning is guided by the MAE and implemented using the tree-
structured Parzen estimator [250] as a search algorithm and the ASHA [178] as
a scheduler. An LSTM instance can train for a maximum of 30 epochs while
early stopping is employed. In total, the training and testing of the models are
repeated five times, as for the regressor model.

Model inputs and outputs during training are the respective tools’ past and
future VB sequences. The cutting time tc is investigated as a future covariate
since it has the highest significance for wear prediction according to Section 5.3.2.
The assumption that tc is available in advance for future workpieces is valid since
it can be estimated using state-of-the-art CAM and process simulation tools, as
described in Section 5.2.3. For comparison, the forecast without future covariates
is considered. During testing, the predictions of the tool wear regression are
provided to the LSTM model as input sequences. Figure 5.14 shows the tool
wear forecast at an instantaneous cutting time of Tc = 25 minutes.

The qualitative comparison of the forecasts in Figures 5.14a and 5.14b shows
that the mean forecasts at the end-of-life criterion VBK = 0.8 mm deviate further
from the measured values without future covariates. In addition, the 5th-to-
95th percentile range indicates that the dispersion of the predicted values can
be reduced by using future covariates. In order to evaluate the accuracy of the
remaining tool life prediction quantitatively for all instantaneous cutting times,
the remaining tool life over tc is determined from the forecasts in the following.
The remaining tool life is derived based on the time the end-of-life criterion
VBK = 0.8 mm is reached by the forecast. Figure 5.15 shows the actual and
estimated remaining tool life curves and the prediction errors are summarized in
Table 5.6.

The remaining tool life prediction without future covariates has an average
RMSE of 9.5 minutes and an MAE of 7.8 minutes. With tc as a future covari-
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(a) No future covariates.
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(b) Cutting time tc as future covariate.

Figure 5.14: Tool wear forecasting results at Tc = 25 minutes, comparing two
configurations of future covariates.

Table 5.6: Prediction errors of the remaining tool life derived from the tool wear
forecast without future covariates and with cutting time tc as future covariate.

Tool
Prediction Errors per Future Covariate Configuration (minutes)

None Cutting Time tc

RMSE MAE RMSE MAE
1 5.7 4.7 2.0 1.6
2 12.9 10.8 2.7 2.4
3 7.9 7.2 9.9 9.9
4 16.5 14.0 12.2 11.4
5 6.9 6.0 9.8 9.4
6 7.1 4.9 3.0 2.6
7 9.6 6.5 6.1 5.6

Mean 9.5 (˘ 3.6) 7.8 (˘ 3.2) 6.5 (˘ 3.8) 6.1 (˘ 3.8)

ate, the RMSE is reduced by 32 % to 6.5 minutes and the MAE by 22 % to
6.1 minutes. Determining the average RMSE and MAE from all minimum errors
per tool results in errors of 5.8 and 5.3 minutes, respectively. In Figure 5.15 the
difference in prediction accuracy becomes evident. Without future covariates, the
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(b) Cutting time tc as future covariate.

Figure 5.15: Remaining tool life prediction results based on the tool wear
forecasts comparing two configurations of future covariates.

prediction is inaccurate, especially in the early stages of tool life, up to approx-
imately 55 minutes for most of the tools (Tools 1, 2, 4, 6 and 7). Including the
future covariates allows a mostly accurate estimation of the remaining tool life
at arbitrary time points. Only Tools 3, 4, and 5 are characterized by a constant
offset error. A reason for this could be the fact that their tool wear curves are
the outermost, which causes that the value ranges are not represented evenly in
the dataset. For Tool 2, the maximum optimization of the prediction is achieved
by an error reduction of 79 % in RMSE and 78 % in MAE. In addition, the
dispersion of the predicted values over the entire tool life can be reduced using
future covariates, indicating a reduction in model uncertainty. Overall, it can
be confirmed that the remaining tool life prediction is possible under variable

125



Chapter 5. Machine Learning-based Remaining Tool Life Prediction

process conditions. In addition, an increase in accuracy and higher robustness of
the prediction can be achieved by including process-describing information about
future machining operations.

5.4 Discussion

The main objective of this chapter was to investigate the prediction of remaining
tool life in single-part production. Therefore, it should be shown that prediction
is possible under the intra-tool life variability of process conditions, i.e., cutting
parameters, workpiece geometry, and derived tool trajectories. Furthermore, it
should be investigated whether knowledge about future machining processes can
be used to improve the remaining tool life prediction.

The methodology for predicting the remaining tool life consists of the regression
of the tool life criterion, i.e., the flank wear mark width VB and its forecast. First,
the regression of tool wear was analyzed in Sections 5.3.2 and 5.3.3. It could
be shown that the automated and explainable regression approach was able to
identify relevant features. Using expert knowledge, the features were then used
to generate optimized and machine-independent wear regression models. Overall,
it was thus shown that wear regression for intra-tool life variability of process
conditions is possible. Furthermore, it was found that especially the covariates of
cutting time tc and removed material volume V are significant for the prediction
quality of the models. A prediction based only on the direct sensor data-related
features is not possible.

The regression methodology can automatically identify features that a human
expert can also find through experiments and domain knowledge. However, since
the regression method is automated machine learning-based and requires no in-
tervention by an expert, it can replace resource-intensive feature engineering and
enable the continuous adaptivity of the models. Its explainability enables tar-
geted model optimization and enhancement of their robustness, e.g., against en-
vironmental or application-related influences thus ensuring transferability and
generalizability. The high importance of the covariates, especially of the cutting
time tc and the removed material volume V , for the wear regression can be ex-
plained by the fact that the variables represent the history of the load on the
tools accumulatively. tc and V thus correlate with the tool wear but are at the
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same time directly dependent on the cutting parameters and the tool trajectories.
Accordingly, they allow the feasible wear prediction under the intra-tool life vari-
ation of the process parameters. On the other hand, the intra-tool life variation
of the process parameters influences purely sensor signal-based features such as
the periodograms, so that the dependencies on the process parameters cannot be
resolved. Therefore, tool wear regression is not possible using only signal-based
features. Since repetitive signal patterns occur in series production, the tool
wear can be inferred by signal-based pattern recognition and their course over
time. Previous methods for wear and remaining tool life prediction are limited
to this. In contrast, the method developed in this work is universally applicable,
independent of the production scenario. However, it becomes clear that tracking
the covariates and especially the cutting time tc, e.g., using the sensor system
introduced in Chapter 4, is inevitable.

The wear forecast based on the wear regression is the second step of the method-
ology for predicting the remaining tool life and was investigated in Section 5.3.4.
Overall, it was confirmed that the forecast and the remaining tool life predic-
tion are possible under the intra-tool life variability of the process conditions.
Furthermore, the investigation of future covariates showed that the accuracy of
the forecast could be increased and the uncertainty of the forecast could be re-
duced. Compared to the covariate-free forecast, the prediction can be improved
especially in the early stages of tool life with knowledge of the cutting time in
advance, e.g., based on process simulations of future machining operations.

The inaccuracy of the covariate-free forecast in the early stages of the tool life
can be explained by the fact that the course of the tool wear curves in this range
is still similar for all tools. Hence, the uncertainty concerning the time point
of reaching the end-of-life criterion is high, which only changes when the wear
curves drift apart. However, the future course of tool wear can be estimated
independently of this if the information on the future development of a wear-
correlated variable such as the cutting time tc is available. A drawback of the
methodology evaluated in Section 5.3.4 is that it is based on the assumption
of the availability of the optimal future cutting time. Therefore, the estimated
future cutting time equals the measured cutting time. However, inaccuracies
in the cutting time estimation, e.g., due to simulation errors, can influence the
performance of the remaining tool life prediction in practice. The inaccuracies
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can be compensated by continuously monitoring the cutting time and optimizing
the simulation and cutting time estimation models.
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6. Summary and Future Work

6.1 Summary and Conclusion

The main objective of this work was the investigation of the remaining tool life
prediction under the variable process conditions of single-part production. The
variable process conditions lead to variable tool load, affecting the tool life and
sensor signals used for monitoring. Therefore, the three sub-research questions
summarized below should be answered:

I. Which monitoring variables are suitable for permanent and transferable
indication of quality-related tool life criteria under frequent changes in ma-
chine and process configuration?

II. What information must be extracted from sensor data or collected from
other data sources to enable reliable remaining tool life prediction?

III. Can the remaining tool life prediction be optimized by incorporating a priori
accessible information about future machining operations?

In order to answer the first research questions, multiple process monitoring
variables were first assessed with respect to the requirements of single-part pro-
duction. The assessment showed that monitoring variables requiring tight sensor
integration into the process, such as force and temperature, are unsuitable be-
cause they must be adjusted with any change in the process configuration. The
process-independent sensor integration at a greater distance from the process,
as given for vibration or drive signals, enables permanent process monitoring.
However, drive signals are always dependent on the design of the respective ma-
chine and its drives. Only vibration offers the possibility of process-independent
sensor integration with simultaneous machine independence of the sensor signals.
Therefore, the vibration was selected as the primary monitoring variable.
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In order to confirm the machine independence of vibration as a monitoring
variable and simultaneously ensure that quality-related parameters can be repre-
sented, a test setup was implemented on a five-axis milling machine. The flank
wear mark width of the cutting edges was used as the primary quality-related
parameter in this work since it determines both the dimensional accuracy and
the surface roughness of the workpieces. A three-axis acceleration sensor sys-
tem was installed on the machine spindle to acquire the machine vibrations and
structure-borne sound. First, the machine tool was characterized by identify-
ing its natural frequencies and machine component-related frequency responses.
Then, face milling tests were performed. A clear correlation between tool wear,
workpiece surface roughness, and multiple frequency ranges of the acceleration
sensor signals could be shown. Comparing the results with the machine char-
acterization, machine-specific frequency ranges could be separated from purely
process-related vibrations. Hence, it was proven that the vibration signals con-
tain information on the target parameters independent of the machine and its
configuration.

The method proposed in this work for predicting the remaining tool life consists
of tool wear regression based on vibration sensor data and subsequent wear fore-
cast. The wear regression is based on an automated and explainable approach to
identify relevant input features without feature engineering by a human expert.
In order to evaluate the method, a dataset was first recorded based on the test
setup described above, representing single-part production by varying workpiece
geometries as well as cutting parameters and, thus, tool load throughout the tool
life. The results of the initial regression evaluation indicated an MAE of the flank
wear mark width of 0.042 mm with an end-of-life criterion of 0.8 mm. The signif-
icance analysis of the features showed that the variables of the cutting time and
the removed material volume are particularly relevant for the prediction quality
of the regression models. An explanation for this is that the variables accumu-
latively summarize the history of tool load. Thus, although they represent the
process conditions, they are at the same time strongly correlated with the tool
wear. Optimization of the regression models based on this knowledge enabled
a 21 % error reduction to an MAE of 0.033 mm. Thus, the feasibility of the
automated and explainable method for model optimization could be confirmed.

The cutting time can be extracted based on the vibration sensor data described
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above. Therefore, wear regression is possible using only process monitoring data
without additional data sources. On the other hand, cutting time and removed
material volume can be estimated in the context of process simulations. Hence, a
prediction based on data from CAM software systems also works in principle. In
particular, however, this can be exploited for the wear forecast since the estimates
are already available before the actual machining. The regression showed that
the cutting time had the highest significance. Furthermore, the cutting time
is available both based on process monitoring and through process simulations.
Therefore, it was investigated how it affects the remaining tool life prediction.
The remaining tool life was first predicted as a baseline using the wear forecast
without the future cutting time. This resulted in an MAE of 7.8 minutes, which
is an absolute error of 9.2 % in relation to the average lifetime of the underlying
tools of 85 minutes. By adding the future cutting time, the MAE could be reduced
by an average of 22 % to 6.1 minutes. The increase in accuracy and the reduction
in uncertainty could be achieved mainly in the early stages of the tool life up to
55 minutes. Overall, the average minimum MAE achieved was 5.3 minutes, and
the total minimum was 1.6 minutes.

In conclusion, this work shows that remaining tool life prediction is possible
under the variable process conditions of single-part production. In particular,
combining process simulation and monitoring is a promising way to provide robust
and reliable remaining tool life prediction. The developed method opens up the
possibility of process optimization and productivity increase with simultaneously
guaranteed process reliability in single-part production.

6.2 Future Work

The remaining tool life prediction method proposed in this work forms the basis
for application under single-part production conditions. It partly uses information
from process simulations. However, the next step is to fully integrate the method
into digital tool and process twins to ensure a comprehensive mutual exchange
of information between process simulation and monitoring. Especially the wear
forecast as feedback for process-parallel simulations offers potential for process
optimization. In addition, the remaining tool life information can be used in the
context of tool life-cycle management.
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On the sensor system level, the architectural concept implemented in this work
can also be explored in other flexible machining systems, such as industrial robots,
for process monitoring and optimization. Due to its retrofittable design, it offers
the possibility of easy integration. Likewise, the combined wear regression and
forecasting method can be investigated in other use cases, such as predictive
maintenance of machine tools, since it can be used for arbitrary target variables.

The developed sensor system focuses on local data processing even under re-
source constraints, e.g., by implementation using wireless sensor nodes. However,
only the optimization of signal analysis and not the machine learning models have
been considered so far. Since the remaining tool life prediction method is already
based on the automated machine learning approach, investigating hardware-aware
automated machine learning is a promising direction for further increase in re-
source efficiency.
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Appendix

A CN-0549 Hardware Specification

Figure A.1a depicts the schematic of the CN-0532 IEPE-comaptible accelera-
tion sensor circuit. The main components of the circuit besides the ADXL1002
include a low-pass filter (LPF), a zero-gain buffer amplifier and two shunt regu-
lators. The shunt regulator IC3 adds a voltage offset to the output voltage of the
ADXL1002 such that the final circuit output conforms the IEPE standard. The
shunt regulator IC4 provides the other components with a supply current. Fig-
ure A.1b shows the schematic of the CN-0540 signal acquisition circuit to which
the CN-0532 IEPE-compatible acceleration sensor is connected. As the IEPE
standard is based on the supply of acceleration sensors with a constant current,
one of the main components of the CN-0540 is a constant current source. Further-
more, the CN-0540 includes a programmable voltage level shifting unit capable
of compensating arbitrary IEPE-typical voltage offsets. The offset-compensated
voltage is then further processed by an anti-aliasing filter (AAF) with a cut-off
frequency of 54 kHz that determines the maximum input bandwidth of the cir-
cuit. The final stage of the signal acquisition circuit includes a fully-differential
amplifier (FDA), preparing the signal for the following digitization with the 24-bit
Σ-∆-ADC by transforming it from single-ended to differential and by increasing
its signal-to-noise ratio (SNR). Given the 24-bit resolution M of the ADC and
an ADC reference voltage of UREF “ 4.096 V, the least significant bit (LSB)
voltage ULSB can be derived according to Equation 1a. The sensitivity of the
final output of the ADC SADC in LSBs per acceleration can be derived according
to Equation 1b, based on ULSB, the peak-to-peak acceleration range aP ´P “ 100
g of the ADXL1002 and the knowledge that the FDA amplifies the input voltage
such that its output voltages match the range ˘UREF .
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(a) CN-0532 [229]

(b) CN-0540 [230]

Figure A.1: Schematics of CN-0532 sensor unit boards [229] and the CN-0540
signal acquisition units [230]. The two subsystems are the core components of
the CN-0549 platform.

ULSB “
2 ¨ UREF

2M “ 488 nV

LSB
(1a)

SADC “
2 ¨ UREF

aP ´P ¨ ULSB
“ 167868 LSB

g
(1b)

Although the ADXL1002 acceleration sensor has a ˘ 3 dB bandwidth of 11
kHz and a resonance frequency of 21 kHz, it still provides an output signal
pass band beyond the resonance frequency range. The output amplifier of the
ADXL1002 has a small signal bandwidth of 70 kHz. Therefore, it is recommended
by Analog Devices to apply measures avoiding aliasing of high frequency noise
beyond 70 kHz, when there are frequency bands of interest beyond 10 kHz. In this
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B. CN-0549 Software Specification

work, a filtering is achieved by choosing the sampling rate such that it exceeds
twice the equivalent noise bandwidth (ENBW) of a single-pole LPF according to
Equation 2 [229].

ENBW “
π

2 ¨ 70 kHz « 110 kHz (2)

Therefore, the sampling rate has to exceed 2 ¨ ENBW = 220 kHz which can
be achieved with the CN-0540 signal acquisition system by setting its maximum
sampling frequency of 256 kHz.

B CN-0549 Software Specification

Table B.1 gives an overview of the computing systems used throughout this work.

Table B.1: Specification of the computing systems used in this work.

Computing
System Part of Sensor

System
Purpose Operating System

Cora Z7-07S ✓ Single-axis signal aggregation Kuiper Linux (2019-R2)
Raspberry Pi 4B+ ✓ Control data aggregation Raspberry Pi OS (11)
Intel NUC8i5BEK ✓ Centralized data aggregation

and processing
Ubuntu (20.04.02 LTS)

Workstation PC ✗ Offline data analysis and
machine learning development

Ubuntu (20.04.02 LTS)

The LibIIO library is the foundation for the data acquisition in the sensor
system developed in this work. Therefore, its working principle on the computing
systems, especially the Cora Z7-07S and the Intel NUC8i5BEK, according to
Table B.1 is explained in the following. Figure B.2 visualizes the relationships of
the hardware-software system.

The core of the LibIIO library [238] are the local and the network backend. The
local backend implements the direct interfacing between the corresponding Linux-
running computing system and the connected IIO device. The local backend is
based on the IIO subsystem and device drivers that are part of the Linux kernel.
As shown in Figure B.2, the local backend on the Cora Z7-07S communicates with
the CN-0540 signal acquisition circuit via the SPI engine running on the FPGA
fabric. The required IIO subsystem and device drivers are part of the Kuiper
Linux by default. The network backend of LibIIO is required to stream data
from an IIO device over a locally connected computing system to a remote client
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Data Processing Unit (NUC8i5BEK)Signal Aggregation Unit (Cora Z7-07S)

CPU

Kuiper Linux

User Space

libiio

FPGA Fabric
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High-level API
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backend

Network 

backend

Kernel Space

IIO Subsystem and Device Drivers

IIOD Server

Signal Acquisition Circuit (CN-0540)

CPU

Ubuntu

User Space

libiio

High-level API

Network backend

Client Application

Figure B.2: Interaction between hard- and software components of the acceler-
ation sensor system for the data acquisition based on the LibIIO library.

connected via network. In this work, the remote client is the data processing
unit that also runs an instance of LibIIO. However, on the data processing unit
the local backend is not required, as the CN-0549 sensor systems are connected
via Ethernet. The network link between the NUC8i5BEK and the particular
Cora Z7-07S is managed by an IIO daemon server running on the Cora Z7-07S.
The IIO daemon server allows to remotely execute client applications developed
based on the LibIIO high-level API. In this work, the client applications on
the NUC8i5BEK are developed using the PyADI-IIO library [239], mapping the
high-level API of the C-based LibIIO library to Python.
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C Experimental Setup Details

The following Figures C.5a, C.5b and C.5c show the installation of the CN-0532
sensor boards on the spindle housing of the Hermle C 30 U CNC milling center.
The mounting cube by Analog Devices [237] is fixed on an adapter plate. The
installed adapter plate with the sensor housing is shown Figure C.5c.

(a) Front View (b) Sensor Mounting (c) Installed Sensor Box

Figure C.3: Installation of the CN-0532 sensor unit boards on the spindle
housing of the Hermle C 30 U CNC machining center.

(a) Pocket Geometries (b) Garant MM1 [246]

Figure C.4: Pocket geometries milled during dataset generation and Garant
MM1 video measuring microscope for determination of the tool wear.

During the dataset generation based on the sensor systems, the pocket ge-
ometries shown in Figure C.4a are manufactured. Intermediately, the tool wear
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(a) Position 1 (b) Position 2 (c) Position 3

Figure C.5: Measurement procedure of the workpiece surface roughness using
the MarSurf PS 10 roughness measuring device [247].

is measured using the Garant MM1 video measuring microscope shown in Fig-
ure C.4b. The flank wear mark width VB is determined for all tool cutting edges.

After each face milling process, the surface roughness is also determined at
three positions on the workpiece, according to Figure C.5. Since face milling is
performed using the zig-zag strategy, one up-milling and one down-milling path
are measured at each position.

D Ternary-Quantized Fast Fourier Transform

Looking at the value distribution of the FFT twiddle factors based on the sine and
cosine functions for arbitrary signal lengths N , it becomes clear that the decisive
proportion of the values lies around ˘1. Therefore, it is essential to take ˘1 into
account in the quantization to minimize the approximation error. Furthermore,
the twiddle factors with value 0 simplify the calculations of the butterfly units
since multiplications with the inputs are omitted. Based on these considerations,
a ternary quantization scheme is used in the following. The ternary quantization
is characterized by a mid-tread quantization function qT pw, ∆tq that assigns to
every value w P twm

N,r, wm
N,iu in the interval r´1, 1s a representative level according

to the decision thresholds ∆t P t´∆T
t , ∆T

t u such that qT pw, ∆tq P t´1, 0, 1u. The
quantization function qT pw, ∆tq is given by:
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qT pw, ∆tq “ pwqT “

$

’

’

’

&

’

’

’

%

´1, w ă ´∆T
t

0, |w| ď ∆T
t

1, w ą ∆T
t

(3)

For simplification, the ternary quantization of the complex twiddle factors wm
N

is further written as:

pwm
N qT “

`

wm
r,N

˘

T
´ j

`

wm
i,N

˘

T
(4)

Applying the quantization function to the twiddle factors omits the multipli-
cations with the inputs a2 P ta2,r, a2,iu of the butterfly units contained in Equa-
tion 4.8, as a conditional decision with pwqT P

!

`

wm
r,N

˘

T
,
`

wm
i,N

˘

T

)

can replace
them:

a2 ¨ pwqT “

$

’

’

’

&

’

’

’

%

´a2, pwqT “ ´1

0, pwqT “ 0

a2, pwqT “ 1

(5)

Since the ternary quantization of the twiddle factors is accompanied by calcu-
lation errors, it is necessary to minimize them. The minimization can be achieved
by optimal selection of the decision threshold ∆t of the quantization function and
by introducing a general correction factor α according to Equation 6:

wm
N « αpwm

N qT

wm
N,r ´ jwm

N,i « α
´

`

wm
N,r

˘

T
´ j

`

wm
N,i

˘

¯ (6)

The correction factor α reduces the error to the twiddle factors in full precision.
The optimal correction factor can be derived by solving the optimization problem
according to Equation 7:

Jpαq “ |wm
N ´ αpwm

N qT |

argmin
α

Jpαq
(7)

By taking the derivative of Jpαq with respect to α and setting it to 0, α can
be optimized:
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αopt “
wm

N,r ¨
`

wm
N,r

˘

T
` wm

N,i ¨
`

wm
N,i

˘

T
``

wm
N,r

˘

T

˘2
`

``

wm
N,i

˘

T

˘2 (8)

Equation 3 is a special case with α “ 1. For the TQ- and α-TQ-FFT it is
required to derive an optimal decision threshold ∆t by solving the optimization
problem:

Eαp∆tq “
2
N

N
2 ´1
ÿ

k“0
|wm

N ´ αpwm
N qT |

argmin
∆t

Eαptq

(9)

Since the optimal correction factors depend on the decision threshold, Equa-
tion 9 can only be solved iteratively.
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