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CT‑derived body composition 
analysis could possibly replace DXA 
and BIA to monitor NET‑patients
Lennard Kroll1,3,5*, Annie Mathew2,5, Giulia Baldini1,3, René Hosch1,3, Sven Koitka1,3, 
Jens Kleesiek3, Christoph Rischpler4, Johannes Haubold1,3, Dagmar Fuhrer2, Felix Nensa1,3,5 & 
Harald Lahner2,5

Patients with neuroendocrine tumors of gastro-entero-pancreatic origin (GEP-NET) experience 
changes in fat and muscle composition. Dual-energy X-ray absorptiometry (DXA) and bioelectrical 
impedance analysis (BIA) are currently used to analyze body composition. Changes thereof could 
indicate cancer progression or response to treatment. This study examines the correlation between 
CT-based (computed tomography) body composition analysis (BCA) and DXA or BIA measurement. 
74 GEP-NET-patients received whole-body [68Ga]-DOTATOC-PET/CT, BIA, and DXA-scans. BCA was 
performed based on the non-contrast-enhanced, 5 mm, whole-body-CT images. BCA from CT shows 
a strong correlation between body fat ratio with DXA (r = 0.95, ρC = 0.83) and BIA (r = 0.92, ρC = 0.76) 
and between skeletal muscle ratio with BIA: r = 0.81, ρC = 0.49. The deep learning-network achieves 
highly accurate results (mean Sørensen-Dice-score 0.93). Using BCA on routine Positron emission 
tomography/CT-scans to monitor patients’ body composition in the diagnostic workflow can reduce 
additional exams whilst substantially amplifying measurement in slower progressing cancers such as 
GEP-NET.

Monitoring the body composition of patients with slow proliferating cancers, such as well-differentiated neuroen-
docrine tumors (NET), is crucial for predicting the course of the disease and adapting therapy on an individual 
level1,2. Several methods for assessing body composition (BC) are currently used to assess nutritional status, such 
as dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA) and computed tomography 
(CT). BC measurements are used to visualize the distribution of different tissue types in the patient. Changes in 
an individual’s BC, whether abrupt or slow, can indicate tumor growth, metastatic spread or therapy response 
and tumor regression. It is therefore important to monitor BC throughout the disease process to detect these 
changes and treat the patient accordingly.

DXA has become the method of choice to monitor BC in patients with NET due to its reliable and quickly 
obtained results. The two low-energy levels used in DXA allow total body adipose tissue, muscle mass, bone 
mineral content and bone mineral density to be distinguished from each other3.

DXA is fast for the subject and the operator. A typical whole-body scan takes approximately 5 to 15 min and 
exposes the subject to 4–5 µSv of radiation. Mathematical algorithms allow the calculation of body composition 
using various physical and biological models4.

BIA uses electrical current rather than radiation. The analysis of body composition via BIA produces estimates 
of total body water (TBW), fat-free mass (FFM), skeletal muscle mass (SMM) and fat mass by measuring the 
body’s resistance as a conductor to an electrical current. Fat mass (FM) is measured by subtracting FFM from 
total mass5.

Computed tomography (CT) is one of the most used imaging techniques worldwide, with more than 70 mil-
lion scans in the US and over 12 million scans in Germany performed each year (2017)6,7 (http://​ec.​europa.​eu/​
euros​tat/​stati​stics-​expla​ined/​index.​php?​title=​Healt​hcare_​resou​rce_​stati​stics_-_​techn​ical_​resou​rces_​and_​medic​
al_​techn​ology, last accessed: 01/30/22). While CT scans offer an immense amount of image information, only 
a fraction is used for diagnostic purposes. Using deep learning networks, the CT data can be used to perform a 
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whole-body composition analysis (BCA) within the routine staging, which would otherwise require significantly 
more time if the segmentation were executed by a human reader.

Regular sectional imaging via SSTR-PET/CT-scans (somatostatin receptor positron emission tomography/
computed tomography) is recommended for diagnosis and during treatment, as well as follow-up-treatment of 
patients with advanced NET, according to international clinical guidelines8. SSTR-PET/CT-scans use radioli-
gands such as [68Ga]-DOTATOC to visualize increased SSTR-expression in the patient’s body as an indication 
of a NET9.

Thus, CT-imaging is a component of PET/CT-scans and is obtained in the routine process. Cutting out addi-
tional radiation dose and up to two additional examinations by employing BCA into the diagnostic algorithm 
would be an improvement to patient care due to its generalizable, time and resource-efficient workflow compared 
to non-automated BC software.

Consequently, the purpose of this study is to analyze if BCA can achieve comparable results as DXA or BIA-
based BC in the clinical treatment of NET patients.

Results
Seventy-four consecutive, unique patients treated between February 2019 and October 2021 with histologi-
cally confirmed, well-differentiated NET were identified in the in-house, prospective NET database. 36 subjects 
(48.65%) were female, 38 (51.35%) male (Table 1). The median age of subjects with different types of gastro-
entero-pancreatic (GEP)-NET at baseline was 63.7 ± 11.5 years. At the time of the data cut-off, 7 patients had died.

All 74 patients received regular PET/CT-scans for staging, out of which 67 patients received a subsequent 
DXA-scan. 52 of the total patients received BIA-scans. BIA-scanning was discontinued during the course of the 
study due to the high correlation between DXA and BIA-based BC (r = 0.92, ρC = 0.76 on overall analysis) in 
order to spare an additional examination for the partially immobile patients. One scan of each modality was 
used for the intermodal comparison, amounting to 52 patients who received all three exams and 15 patients who 
received only PET/CT and a DXA-scan. No patient received only a PET/CT in combination with a BIA-scan.

Deep learning‑network performance.  The in-house deep learning system produced highly accurate 
predictions of all segmented body regions on the independent test-dataset (“Deep learning architecture” sec-
tion). The Sørensen Dice Score for relevant semantic body regions calculated on the test set amounted to a mean 
score of 0.93 and the following results on the differentiated regions: thoracic cavity: 0.97, mediastinum: 0.86, 
pericardium: 0.96, subcutaneous tissue: 0.96, muscle: 0.94 and abdominal cavity: 0.97. Subsequently, a fully auto-
mated BCA was performed on the complete study cohort using the trained system (Fig. 1). The mean processing 
time amounted to 100.63 s per scan using the NVIDIA TITAN RTX.

Biomarker‑extraction.  As shown in Table  1, the two main parameters for cancer patient-related BC 
measurements, Skeletal muscle ratio (SMR) and body fat ration (BFR), were extracted using the three different 
methods (e.g., “Automated tissue-quantification” section). The correlation analysis showed a strong correlation 
between BCA and DXA with respect to the BFR (r = 0.95, ρC = 0.83) measured over all BMI-groups (body mass 
index).

The overall comparison between the BCA and BIA analyses showed equally strong results (r = 0.92, ρC = 0.76), 
and BIA vs. DXA showed a similar consistency in overall BFR: r = 0.93, ρC = 0.93.

The SMR can be compared between BCA and BIA. With all patients included, a strong correlation between 
these two methods can be observed: r = 0.81, ρC = 0.49.

Furthermore, the non-correlation test for Pearson’s r showed that the correlation between all groups is sig-
nificant (p < 0.001). The Shapiro–Wilk test confirmed that the BCA, DXA and BIA measurements grouped by 
BMI category look Gaussian (p-values between 0.17 and 1.0).

Table 1.   Patient characteristics and results of body composition measurement assessed by BCA, DXA and BIA 
(n = 74).

(Stated in mean ± standard deviation) Healthy weight (n = 22) Overweight (n = 35) Obesity (n = 17)

Male sex (n) 10 20 8

Female sex (n) 12 15 9

Age (years) 65 ± 10.59 66.11 ± 11.21 60.11 ± 12.87

Weight (kg) 64.92 ± 9.56 79.58 ± 11.28 99.11 ± 9.68

Height (cm) 171.31 ± 9.16 170.57 ± 10.72 173.58 ± 8.48

BMI (kg/m2) 22.04 ± 1.95 27.22 ± 1.42 32.96 ± 3.48

BCA: BFR (%) 32.43 ± 11.25 40.36 ± 7.04 49.79 ± 7.65

DXA: BFR (%) 29.27 ± 9.99 35.02 ± 7.38 41.36 ± 6.88

BIA: BFR (%) 28.85 ± 7.61 35.34 ± 7.91 39.83 ± 6.54

BCA: SMR (%) 27.84 ± 4.9 26.57 ± 4.19 23.65 ± 5.17

BIA: SMR (%) 34.11 ± 5.97 32.15 ± 5.05 30.82 ± 3.65
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Body fat ratio.  As shown in Fig. 2, BCA generally showed a strong correlation with DXA-scans with respect 
to BFR (r = 0.95, ρC = 0.83). However, there are differences in the subgroups.

Strong results were found for healthy weight patients and overweight patients (BMI-group 1: r = 0.97, 
ρC = 0.92; BMI-group 2: r = 0.95, ρC = 0.72), but slightly weaker results were found for obese patients (BMI-
group 3: r = 0.86, ρC = 0.55).

This trend continues when comparing BCA with BIA (Fig. 2): strong positive correlations were found for all 
patient groups, though the correlation for overweight and obese patients was slightly weaker than that of healthy 
patients (BMI-group 1: r = 0.94, ρC = 0.85.; BMI-group 2: r = 0.89, ρC = 0.70; BMI-group 3: r = 0.89, ρC = 0.48).

Figure 4 visualizes these relations as Bland–Altman plots and shows that the mean difference between each 
method and BCA is approximately 5% (5.29 ± 0.8% for BCA vs. DXA, 5.67 ± 1.12% for BCA vs. BIA). Obese 
patients tend to differ more in the intermodal comparisons of both DXA and BIA with BCA (Fig. 4a,b), while 
the plot for the healthy weight-cohort displays a smaller difference to the mean. To visualize potential sex-related 
differences in BFR, the study cohort was itemized into two sex-related groups. The three methods were com-
pared and show clearly positive correlations between BCA vs. DXA (males: r = 0.95, ρC = 0.78; female: r = 0.95, 
ρC = 0.81), BCA vs. BIA (males: r = 0.93, ρC = 0.64; females: r = 0.91, ρC = 0.77) and DXA vs. BIA (males: r = 0.92, 
ρC = 0.91; females: r = 0.91, ρC = 0.91) as shown in Supplementary Fig. 3.

Skeletal muscle ratio.  The SMR is compared between BCA and BIA and the results showed a clear trend 
among all BMI-groups, as presented in Fig. 3: r = 0.81, ρC = 0.49. The intermodal comparison between BCA 
and BIA shows a correlation between the modalities: BMI-group 1: r = 0.75, ρC = 0.49; BMI-group 2: r = 0.86, 
ρC = 0.49; BMI-group 3: r = 0.88, ρC = 0.39. Figure 5 shows the same relation, although weaker, as displayed in 
the Bland–Altman plots comparing BFR (Fig. 4). Obese patients tend to differ more from the mean-difference 
of − 5.68 ± 0.85% towards the lower standard deviation. For healthy weight patients, there is a smaller difference 
both between the various method results and when comparing BFR. Moreover, the boxplots-analysis of the 
subgroups show that the distribution of SMR shrinks with an increasing BMI.

Discussion
The purpose of this study was to quantify the agreement between the results across different BC evaluations 
obtained by DXA, BIA and CT-based BCA.

DXA vs BIA.  The analysis showed a strong correlation between DXA and BIA with respect to BFR and SMR 
measured across all BMI-groups.

Previous studies compared BIA and DXA to assess body composition in various populations and found simi-
lar results. Beeson et al.10 compared BIA with DXA in diabetes patients and found that FM, FM percentage, and 

a) A female patient with a BMI of 
23.1 kg/m² (healthy weight). 

b) A female patient with a BMI of 
29.66 kg/m² (overweight). 

c) A female patient with a BMI of 
33.02 kg/m² (obese). 

Figure 1.   Exemplary full tissue analysis segmentations generated by the BCA network, gathered from patients 
out of the three BMI-groups. The segmentation shows seven tissues: Muscle (beige), bone (pink), subcutaneous 
adipose tissue (red), visceral adipose tissue (green), intermuscular adipose tissue (teal), paracardial adipose 
tissue (light blue), epicardial adipose tissue (purple). The coronal views also illustrate the described patient 
positioning requested by the CT protocol.
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FFM were highly correlated (r = 0.96, r = 0.91, and r = 0.95). Furthermore, the Bland–Altman analysis comparing 
the difference (DXA–BIA) versus average of DXA and BIA results showed a general agreement between the two 
methods (Supplementary Fig. 1). It was concluded that BIA may provide valid measures of FM, percentage of FM, 
and FFM, and could be used as a practical tool for the assessment of body composition in diabetics. In addition, 
Fürstenberg and Davenport et al.11 analyzed BIA and DXA for the assessment of whole-body and segmental 
body composition in hemodialysis patients. Comparing the difference versus the average of DXA and BIA, it 
was found that the whole-body FM and LM (lean mass) measured by the two methods were highly correlated 
(r = 0.92 and r = 0.93 in Bland–Altman analysis). The results of previous studies are in agreement with our results, 
therefore indicating that the methods are interchangeable.

Figure 2.   Comparison of BFR between BCA (blue), DXA (red) and BIA (yellow). In the plots (a,b), BCA and 
DXA are compared separately because more patients received PET/CT- and DXA scans. Patients with all three 
measurements available are compared in plots (c,d). The boxplots represent the distribution of the patient’s BC 
measurements. The mean is indicated with a green triangle and the outliers are indicated with a rhombus. The 
samples are compared using Pearson’s r correlation coefficient (r) and Lin’s concordance correlation coefficient 
(ρC).
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DXA and BIA vs BCA.  As shown in Fig. 2, BCA showed a strong correlation with DXA and BIA regarding 
BFR. However, either BCA slightly overestimated BFR compared to DXA and BIA or DXA and BIA underesti-
mated BFR. A study by Bredella et al.12 stated that the level of hydration can alter the validity of DXA-derived 
estimates of body composition. The hydration status in tumor patients varies and the percentage of water may 
sink in overweight or obese patients12,13. Compared to healthy weight patients, the overweight cohort and obese 

Figure 3.   Comparison of SMR between BCA (blue) and BIA (yellow). The boxplots represent the distribution 
of the patient’s measurements. The mean is indicated with a green triangle and the outliers are indicated with 
a rhombus. The samples are compared using Pearson’s r correlation coefficient (r) and Lin’s concordance 
correlation coefficient (ρC).

Figure 4.   Comparison of BFR between BCA vs. DXA (left) and BCA vs. BIA (right) using Bland–Altman 
(or mean-difference) plots. Each data point has been colored according to the BMI category of the patient it 
represents. The mean difference and the limits of agreement are shown in blue and red, respectively, together 
with their 95% confidence intervals.
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cohort showed a weaker correlation between the techniques. This trend continues when comparing BCA with 
BIA, where the correlation is strong as well but decreased in subjects with increased BMI. Figure 2 visualizes this 
discrepancy well, as the data points representing BMI-group 1 patients show the smallest difference between 
the methods compared with BCA (i.e., closer to 0% difference) while patients of BMI-group 2 and, moreover, of 
group 3 display an increased difference between methods. Therefore, the Bland–Altman plots give an impres-
sion how BCA overestimated or how DXA and BIA underestimated BFR, respectively, and that this discrepancy 
grows with increased BMI.

The SMR compared between BCA and BIA showed a clear trend among all BMI-groups. Figure 3 shows that 
BIA tended to overestimate SMR compared to BCA or that BCA underestimated SMR compared to BIA. As 
described in “Crossing perspectives: the importance of time-efficiency for patients” section, the Bland–Altman 
plot outlines the disparities between the three BMI-groups and how these disparities grow with increasing BMI: 
although all data points range around a mean difference of − 5.68 ± 0.85%, the SMR-measurement for obese 
patients differs substantially more than it is the case for healthy weight-patients (Fig. 5).

According to the literature, moderate exercise before BIA measurements leads to an overestimation of FFM 
and an underestimation of body fat proportion due to reduced impedance14. It is advised not to perform BIA for 
several hours after moderately or highly intense exercise since a 90–120 min moderate intensity exercise before 
BIA measurement can lead to a significant overestimation of FFM of more than 10 kg, leading to a significant 
underestimation of body fat15,16.

Furthermore, in a Brazilian study, Pimentel et al.17 observed that in overweight women, BIA overestimated 
the percentage body fat but underestimated it in obese women. The overestimation of body fat in the over-
weight cohort and underestimation in the healthy weight and obese cohorts in BIA correlates with our findings. 
Interestingly, the correlation was the highest in the obese and healthy weight cohorts and the weakest in the 
overweight cohort.

Another aspect is that BCA exclusively captures the body regions scanned by CT. Extremities positioned 
outside the scanned area are not measured by BCA, and thus explain the lower SMR. On the other hand, the BFR 
increases because a large portion of the scan is made up of the pendulous abdomen, especially if the patient is 
overweight or obese. Since the BFR is computed as the percentage of fat voxels, and a smaller volume is scanned 
compared to DXA and BIA (caused by the CT protocol), the abdominal fat becomes of greater relevance. To 
further investigate this issue, we ran a test with BCA performed only on abdominal CT scans. Supplementary 
Fig. 2 shows that this effect becomes even more perspicuous when only abdominal CT-scans are used and sup-
ports this hypothesis. Figure 1 shows that below the thigh region, a smaller amount of fat can be assumed. This 
assumption is supported by Fig. 2b,c, where the fat overestimation is even stronger in overweight and obese 
patients. Physicians must therefore know about this technical factor in the BCA-method. However, this fact 
does not curtail the method compared to BIA or DXA. It can be further explained by the ultimately different 

Figure 5.   Comparison of SMR between BCA and BIA (N = 52) using Bland–Altman (or mean-difference) plots. 
Each data point has been colored according to the BMI category of the patient it represents. The mean difference 
and the limits of agreement are shown in blue and red, respectively, together with their 95% confidence 
intervals.
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measuring methods: BCA, with CT-imaging as the underlying method, currently only captures the torso with 
truncated parts of the neck and the extremities. DXA is an actual whole-body imaging method and correlates 
best with BIA, which also uses all parts of the body. Still, BIA is a non-imaging method which relies on the altera-
tions of an electric current, with several potentially interfering factors. These factors can especially be prevalent 
in seriously ill patients. The ensuing overcoverage of the relative body fat and undercoverage of muscle tissue in 
relation to that explains the lower levels of correlation in Fig. 2d for example.

Surely, deep learning-based (DL) BCA performed on CT-scans is a novel method in clinical and experi-
mental medicine and reference curves should be used to check the derived measurements for plausibility or 
comparability18.

To approach that problem, single parameters like VAT could be compared between the two methods (BCA 
and DXA). These parameters were not releasable in the case of DXA-reports. Ultimately, CT-scans with full body 
protocols have to be employed for comparison. To test this, another study cohort has to be used since full body 
CT-scanning is not indicated for these patients.

Because sex has a considerable effect on BC, we itemized the cohort into sex-related groups which clearly 
illustrated the different distribution of BFR between men and women and confirmed the observed correlations 
between the methods regarding sex (e.g. “Body fat ratio” section and Supplementary Fig. 3).

Challenges in comparing BCA.  When comparing different technologies, accuracy can be rather difficult 
to compare for several reasons. First, there is no ground truth available. Using physical phantoms is one way 
to assess accuracy, but anatomical variations lead to different measurement errors. Second, not all methods 
measure the same thing, so even if two technologies show a strong correlation, there may be a risk of bias if they 
measure different physical objects. For example, BCA measures body fat volume, while DXA measures body fat 
mass. Using a constant density factor to convert the measurements may not always be accurate. For this reason, 
this study compares the ratios of body fat and skeletal muscle in order to avoid conversion factors and further 
calculations to compare different units.

As previously discussed, the analysis of different regions of the body yields over- and underestimations, 
making it hard to find a conversion factor between the methods. One way to obviate this problem is to compute 
BCA on head-to-toe whole body-CT-scans, and to estimate what amount of fat and muscle these accessorily 
scanned body regions would add to the total. Also, with the results generated from this study, a correction fac-
tor can be implemented to compare a patient’s BC results between the three methods in clinical practice rather 
than converting results between the three methods. This corrective factor must take into account the patient’s 
BMI-group, as results diverge more between methods with increasing BMI (e.g., “Body fat ratio”, “Skeletal muscle 
ratio”  sections).

DXA assumes that the hydration of fat-free tissue remains constant at 73%19. However, hydration status varies 
from 67 to 85%20. If a subject contains more than the average amount of water, e.g., due to ascites or oedema, 
some DXA scanners will overestimate the fat content. Although a ± 5% range of fat-free tissue hydration does 
not significantly alter the total percentage of fat, severe overhydration, may affect the resulting percentage of fat, 
which is especially relevant in cancer patients.

We compared the three analyzed methods (Table 2) underlining that, once a high correlation is given, the 
methods are interchangeable. However, the methods have their strengths and weaknesses in different areas. For 
our neuroendocrine tumor cohort, CT- based BCA bears several advantages compared to DXA and BIA since it 
is a “one-stop-shop solution” as part of the staging process. Furthermore, BCA shows high tissue differentiation 
and offers fast results independent of the patient’s condition. The BCA network is also trained and capable of 
computing contrast-enhanced as well as non-contrast enhanced CT-scans (e.g., “Deep learning architecture” 
section), which further reduces contraindications, e.g., for patients with contrast agent allergy.

Crossing perspectives: the importance of time‑efficiency for patients.  Physicians often tend to 
compare methods solely based on hard facts, such as radiation dosage, costs, or time consumption. These are 
indeed important factors; however, these factors are not sufficient when it comes to direct patient care and the 

Table 2.   Arguments for and against the methods for BC assessment are summarized and compared to 
DL-based BCA performed on routine staging CT-scans. The row highlighted in bold points out the intended 
integration of the method into the diagnostic process relating to the rows following underneath. The details 
written in square brackets state the respective information concerning the CT-scan, which is used for BCA.

BCA DXA BIA

Diagnostic effort As part of staging Additional examination Additional examination

Availability High Moderate Moderate

Cost savings Costs saved Additional costs Additional costs

Radiation exposure None [10–15 mSv] 4–5 µSv None

Time consumption 1.4 min [5–7 min] 5–15 min 1 min

Cooperation required by patients None None Safe foothold

(Adipose) tissue differentiation High: anatomic level differentiation Low: limited differentiation to 
extremities and torso None
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effects on the individual treated. Quality of Life (QoL) is considered an important clinical endpoint, especially 
for long-lasting diseases such as cancer21 and must be considered in this regard. For example, the time spent hos-
pitalized can be seen as a further reduction of the time the patient is able to spend with their family and friends, 
which is a major factor for improvement of cancer patients’ QoL22,23. Even with short examination times of the 
diagnostic method, the time until the patient arrives at the appropriate hospital facility and is examined can be 
substantially longer for the patient. Cutting out one to two whole exams, and nevertheless gathering the same 
information (together with further imaging information) via CT-based BCA, reduces the waiting time spent in 
hospital hallways and could improve the patient’s QoL.

Limitations.  Although our study demonstrates that CT-BCA can be used to efficiently assess the patient’s 
nutrition status, it is not free of limitations. In a well-regulated prospective setting, these factors could have been 
excluded and the efficiency could have been improved. However, we wanted our system to be tested in a realistic 
clinical setting and to provide reliable results even with slight variations that occur in daily clinical practice. 
Moreover, because of the CT protocol’s curtailment from the base of the skull to the mid thighs, SAT and muscle 
tissue was measured in a standardized manner but could not be measured in total. A whole body-scan “from 
head to toe” could solve this data deficit but lacks indication in clinical practice. Finally, we could only demon-
strate the overall efficacy in a circumscribed study population at a single center; multi-center follow-up studies 
with different diseases are needed to validate whether our approach can be generalized to other entities.

Future outlook.  Body composition analysis plays an important role especially in slowly proliferating cancer 
since the change in muscle and fat tissue during the course of the disease could be indicative of cancer progres-
sion or stability24. A higher BMI is associated with a higher risk of cancer. Paradoxically, Overweight and grade I 
obese patients often have a paradoxically lower risk of overall mortality after a cancer diagnosis, a phenomenon 
this is called the “obesity paradox” or rather “BMI paradox”25. Since BMI neither distinguishes muscle from 
adipose tissue nor describes adipose tissue distribution, the sensitivity in diagnosing obesity is weak leading to 
high misclassification rates. Therefore, body composition analysis should be used to detect an early increase in 
adipose tissue and reduction in muscle which can lead to a state of sarcopenic obesity26,27.

Other imaging methods might also be a valuable extension and improvement to BC measurement, such as 
magnetic resonance imaging (MRI) which would eradicate radiation uptake as a whole and offer even more 
imaging information, especially of soft tissues. Despite these advantages, MRI is a less available technique in 
most nations, especially in less developed countries7. Yet, developing DL-algorithms apt for MRI necessitates 
the integration of much more imaging data points.

Currently, CT and MRI are still considered the gold standard for research and diagnostic purposes with DXA 
as the preferred alternative for research and clinical use. BIA on the other hand is considered a portable alterna-
tive to DXA28. With an automated tool like the applied BCA at hand, the gold standard for BC measurement 
becomes increasingly applicable in a wide set of ambits.

The DL-based approach29 allows the BCA-network to process mostly unstructured CT-data and continu-
ously improve its calculations when it is being trained with an increasing amount of input-data compared to 
non-DL-based solutions.

Furthermore, the implementation of BCA in cancer patients and the evaluation of change in different tissues 
could be useful for the detection of cancer progression and disease control rate. This measurement-technique, 
i.e., BCA, is especially useful in NET-patients due to these tumors indolent course compared to entities such as 
pancreatic adenocarcinoma or hepatic cancer.

The emergence of automated techniques to quantify body composition will allow for rapid and early interven-
tion, especially of high-risk patients. The integration of body composition measurement into oncology offers a 
tremendous promise to help patients with cancer live longer and healthier lives and experience enhanced QoL. 
These factors should be focused on by future multicenter studies with larger cohorts and correlation to clinical 
endpoints.

Materials and methods
Study design and study population.  Patients were identified from our prospective NET database at 
the European Neuroendocrine Tumor Society (ENETS) Center of Excellence, Department of Endocrinology, 
Diabetes and Metabolism at the University Hospital Essen. Eligible patients included those with histologically 
confirmed, well-differentiated NET who were treated at our Department between February 2019 and October 
2021, with all records located at our endocrine tumor center. All patients underwent contrast-enhanced [68Ga]-
DOTATOC-PET/CT at initial presentation and subsequent follow-up visits. Patients with incomplete data and 
with PET/CT-scans more than 15 days before or after DXA and BIA exams were excluded from further analy-
sis. To ensure consistency, scheduling of visits as well as indication for therapies was determined according to 
ESMO (European Society for Medical Oncology) guidelines8 by an experienced, multidisciplinary tumor board. 
All staging scans were performed in-house at our center. Whole-body PET/CT-scans were obtained as part of 
the staging process, and DL-based BCA was applied retrospectively. Additionally, DXA- and BIA-scans were 
obtained within 1–3 days during the same hospital stay before or after CT-imaging from which a BC-report was 
calculated. Patient characteristics are listed in detail in Table 1. For this study, patients who underwent a staging 
at our clinic via PET/CT received DXA and BIA at the same appointment for intermodal comparison. Patient 
data was analyzed retrospectively.
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Ethics statement.  Written informed patient consent and approval for anonymized data collection and 
analysis was obtained upon admission to our institution. The study was approved by the ethics committee of the 
University Hospital Essen (ID: 18-8367-BO).

[68Ga]‑DOTATOC PET/CT‑scan.  [68Ga]-DOTATOC PET/CT was performed as a whole body-protocol 
with a Biograph mCT 128 (Siemens Healthcare GmbH, Erlangen, Germany) 41 ± 18 min after intravenous injec-
tion of [68Ga]-DOTATOC radionuclide agents with a mean activity of 65 ± 11 MBq (Megabecquerel). The CT 
scan was acquired with an automatic dose modulation at 120 kV, 210 mAseff, collimation 128 × 0.6 mm, pitch 
0.8, slice thickness of 5.0 mm, and 5.0 mm increment, ranging from the skull base to the mid-thigh. Intravenous 
administration of an iodinated contrast agent (Xenetix 300; Guerbet GmbH, Sulzbach, Germany) was used and 
a whole body-scan obtained in the portal venous phase with a contrast medium administration delay of 70 s. 
Patients were examined in the supine position with elevated arms. Phase attenuation correction was based on 
the portal venous phase whole body-CT-scan. PET acquisition was performed in five to seven bed positions with 
an acquisition time of 2 min per bed position (FOV 21.8 cm, matrix size 256 × 256). An iterative ordered subsets 
expectation maximization (OSEM) algorithm with three iterations, 21 subsets and a Gaussian filter of 4 mm was 
used for reconstruction. PET attenuation correction was based on the portal venous phase of the whole-body 
CT-scan.

Only the CT-imaging data component with 5 mm reconstruction using the soft tissue kernel was utilized by 
the DL-network. The average PET/CT examination time was 18 ± 2 min.

DXA.  The Lunar Prodigy (GE Healthcare, USA), a narrow fan-beam densitometer, was used for BC measure-
ment via DXA. The Lunar Body Composition Software option applied on the Lunar DXA bone densitometer 
measured the regional and whole-body bone mineral density (BMD), lean and fat tissue mass (FM). Addition-
ally, it calculated derivative values of bone mineral content (BMC), soft tissue mass, regional soft tissue mass, 
total soft tissue mass, FFM (fat-free mass), regional/total soft tissue mass ratio, percentual fat mass, regional 
percentual fat mass, total body percentage fat mass, Android percentual fat mass, Gynoid percentual fat mass, 
Android/Gynoid fat mass ratio (A/G ratio) and BMI. Total fat mass was considered as the relevant output of this 
method and used for intermodal comparison.

BIA.  The medical BCA analyzer, seca-mBCA 515 (seca GmbH, Germany) used multi-frequency 8-point 
stand-on bioelectrical impedance analysis to measure total body water by applying an electrical current of 100 
µA to the body. The drop in voltage between sensor electrodes at the hands and feet was used to determine total 
body water. The software calculates fat mass, fat free mass, skeletal muscle mass and VAT (visceral adipose tis-
sue) volume from total body water, weight, height, age and gender. The BIA device measured at 20 frequencies, 
ranging from 1 to 1000 kHz. Patients were scanned once in the standing position, with four electrodes at the feet 
and four electrodes at the hands. The scan lasted 60 s. Total fat mass and skeletal muscle mass were considered 
as the relevant output of this method and used for intermodal comparison.

Deep learning architecture.  The CT-based BCA was provided by the in-house body composition analysis 
DL-network, which is an evolution from the system described in Koitka et al.29. The DL system utilized a multi-
resolution U-Net 3D network to segment the body into semantic regions. Technical details of the respective 
methodology are disclosed in Koitka et al.29. In this study, the previously developed body composition analysis 
system was employed, which was trained on 300 CT imaging studies in total (100 abdominal, 100 thoracic, 50 
head/neck, 50 whole body-scans) and tested on a separate test-dataset composed of 20 thoracic, 20 abdominal, 
10 head/neck and 10 whole body-CT-scans all annotated manually by eight experienced human readers. This 
dataset was divided into two equal sets, one consisting of non-contrast-enhanced scans and the other consisting 
of contrast-enhanced CT-scans that either excluded the head and neck or captured the whole body, according to 
the hospital’s common CT requests. The scans in both sets were randomly selected without any specific inclusion 
or exclusion criteria.

Automated tissue‑quantification.  Body composition was calculated automatically by the pre-trained 
DL-network on all 74 CT-scans. Seven volumes for different body compartments were examined. This approach 
allowed the volume of five different adipose tissue biomarkers to be quantified: Subcutaneous Adipose Tissue 
(SAT), VAT, Intermuscular Adipose Tissue (IMAT), Epicardial Adipose Tissue (EAT) and Paracardial Adipose 
Tissue (PAT). Additionally, muscular tissue and bone volumes were also computed. The applied DL-network 
calculates specific tissues by thresholding the HU to a specific intensity range in a given semantic body region. 
Adipose and muscular tissues were identified using known Hounsfield unit thresholds, namely − 190 to − 30 
HU for adipose tissue and − 29 to 150 HU for muscular tissue30, and then subclassified using the semantic body 
regions predicted by the DL system. Due to the scanning curtailment given by the CT protocol, IMAT and SAT 
could not be scanned to the full extent (see “[68Ga]-DOTATOC PET/CT-scan” section). Segmented regions like 
the pericardium can also be used directly to measure the total volume enclosed by the pericardial sac. Further 
detail about the anatomical differentiation in the segmentation process is given in Kroll et al.31 and Koitka et al.29. 
For this use case, BCA had two relevant outputs: a complete report showing the volumes of the above-mentioned 
biomarkers, and a tissue segmentation presenting their positions. Since DXA and BIA compute body fat percent-
ages according to the mass, and there is not a clear conversion between volume and mass for fat and muscle tis-
sue, these volumes were discarded, and the tissue segmentation was used instead. The Body Fat Ratio (BFR) was 
computed by considering the amount of voxels identified as adipose tissue (i.e., the union of the voxels belonging 
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to the SAT, VAT, IMAT, EAT and PAT classes) divided by the total amount of voxels present in the CT scan and 
stated as a percentage. The total amount of voxels was defined as the patient’s body’s voxels specifically excluding 
abdominal air (HU Threshold: − 1024 to − 800), to reduce inconsistencies. Similarly, the Skeletal Muscle Ratio 
(SMR) was computed by considering the amount of voxels identified as muscular tissue divided by the total 
amount of voxels and stated in percent as well.

Statistical analysis.  Statistical analysis was conducted using Python 3.8 and the SciPy packages (version 
1.6.1)32. Pearson rank correlations (r) were calculated to determine the relationships between the three com-
pared methods (BCA, DXA and BIA) regarding the relevant tissue types. The p-value for testing non-correlation 
for Pearson’s r was also computed, which relies on the assumption that each dataset is normally distributed, and 
a Shapiro–Wilk test was conducted to confirm a Gaussian distribution.

To further evaluate the reproducibility of this new method, and the agreement between BCA, DXA and BIA 
respectively, the concordance correlation coefficient of Lin (ρC) was used33, as well as Bland–Altman-plotting34 
for visual statistical comparison.

BMI grouping.  The patients were analyzed with respect to their age, gender, and BMI-group to establish 
comparability. BMI-grouping divided the patients into the three following groups based on the collectives’ 
given distribution: BMI-group 1, healthy weight: 18.5 to < 25.0 kg/m2, n = 22; BMI-group 2, overweight: 25.0 to 
< 30 kg/m2, n = 35; BMI-group 3, obese: ≥ 30 kg/m2, n = 17. Interestingly, none of the patients were underweight, 
i.e., BMI < 18.5 kg/m2.

Conclusion
CT-based BCA obtained from regular staging exams produces precise and stable results in patients suffering 
from GEP-NET comparable to those obtained via DXA and BIA. BCA implemented as a substitute for these 
modalities could substantially improve the quality of life for the individual patient alongside the reduction of 
costs, radiation dose and consumption of resources in general. Clinical correlation to changes in BCA and tumor 
reduction or progression is needed in multicenter studies.

Data availability
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Code availability
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