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Biomarkers extracted by fully 
automated body composition 
analysis from chest CT correlate 
with SARS‑CoV‑2 outcome severity
René Hosch1,2*, Simone Kattner3, Marc Moritz Berger3, Thorsten Brenner3, 
Johannes Haubold1, Jens Kleesiek2, Sven Koitka1,2, Lennard Kroll1,2, Anisa Kureishi2, 
Nils Flaschel1,2 & Felix Nensa1,2

The complex process of manual biomarker extraction from body composition analysis (BCA) has far 
restricted the analysis of SARS‑CoV‑2 outcomes to small patient cohorts and a limited number of 
tissue types. We investigate the association of two BCA‑based biomarkers with the development 
of severe SARS‑CoV‑2 infections for 918 patients (354 female, 564 male) regarding disease severity 
and mortality (186 deceased). Multiple tissues, such as muscle, bone, or adipose tissue are used and 
acquired with a deep‑learning‑based, fully‑automated BCA from computed tomography images of 
the chest. The BCA features and markers were univariately analyzed with a Shapiro–Wilk and two‑
sided Mann–Whitney‑U test. In a multivariate approach, obtained markers were adjusted by a defined 
set of laboratory parameters promoted by other studies. Subsequently, the relationship between 
the markers and two endpoints, namely severity and mortality, was investigated with regard to 
statistical significance. The univariate approach showed that the muscle volume was significant for 
female (pseverity ≤ 0.001, pmortality ≤ 0.0001) and male patients (pseverity = 0.018, pmortality ≤ 0.0001) regarding 
the severity and mortality endpoints. For male patients, the intra‑ and intermuscular adipose tissue 
(IMAT) (p ≤ 0.0001), epicardial adipose tissue (EAT) (p ≤ 0.001) and pericardial adipose tissue (PAT) 
(p ≤ 0.0001) were significant regarding the severity outcome. With the mortality outcome, muscle 
(p ≤ 0.0001), IMAT (p ≤ 0.001), EAT (p = 0.011) and PAT (p = 0.003) remained significant. For female 
patients, bone (p ≤ 0.001), IMAT (p = 0.032) and PAT (p = 0.047) were significant in univariate analyses 
regarding the severity and bone (p = 0.005) regarding the mortality. Furthermore, the defined 
sarcopenia marker (p ≤ 0.0001, for female and male) was significant for both endpoints. The cardiac 
marker was significant for severity  (pfemale = 0.014,  pmale ≤ 0.0001) and for mortality  (pfemale ≤ 0.0001, 
 pmale ≤ 0.0001) endpoint for both genders. The multivariate logistic regression showed that the 
sarcopenia marker was significant (pseverity = 0.006, pmortality = 0.002) for both endpoints  (ORseverity = 0.42, 
95%  CIseverity: 0.23–0.78,  ORmortality = 0.34, 95%  CImortality: 0.17–0.67). The cardiac marker showed 
significance (p = 0.018) only for the severity endpoint (OR = 1.42, 95% CI 1.06–1.90). The association 
between BCA‑based sarcopenia and cardiac biomarkers and disease severity and mortality suggests 
that these biomarkers can contribute to the risk stratification of SARS‑CoV‑2 patients. Patients with a 
higher cardiac marker and a lower sarcopenia marker are at risk for a severe course or death. Whether 
those biomarkers hold similar importance for other pneumonia‑related diseases requires further 
investigation.

Abbreviations
ALAT  Alanine aminotransferase
BCA  Body composition analysis
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CNN  Convolutional neural network
CRP  C-reactive protein
CI  Confidence interval
EAT  Epicardial adipose tissue
IMAT  Intra- and intermuscular adipose tissue
IQR  Interquartile range
PAT  Pericardial adipose tissue
SAT  Subcutaneous adipose tissue
SD  Standard deviation
VAT  Visceral adipose tissue
OR  Odds ratio

After its emergence in late 2019, SARS-CoV-2 quickly developed into a global pandemic with nearly 450 mil-
lion infections and over 6 million deaths (03/2022)1,2. Whether an infection leads to a severe course of disease 
resulting in mechanical ventilation or death depends on numerous parameters and conditions. Several recent 
studies identified clinical parameters associated with a higher vulnerability to a severe clinical  outcome3–5. These 
studies used general characteristics like age, gender, and Body Mass Index (BMI) combined with different clini-
cal laboratory features to better understand the importance of such features when predicting the clinical course 
severity of individual SARS-CoV-2  patients3,6–10.

Recently published studies focused primarily on BMI as a predictive feature for clinical  outcomes3,6,7. Sattar 
et al. showed that younger SARS-CoV-2 patients with an increased BMI were at higher risk of hospitalization 
and ICU  transfer3. Within a systematic review, Huang et al. investigated studies that analyzed the impact of BMI 
on the clinical course and showed that multiple studies suggested BMI is a relevant predictive  feature11. One 
reason behind the frequent use of BMI is its convenient accessibility. However, a mentionable drawback is that 
the BMI can be understood as a very shallow approximation of body composition, as its interpretability can 
be negatively affected by physical anomalies or unusual body proportions regarding muscle and fat  volumes12.

Based on this knowledge, the focus of research has shifted to the usage of more detailed features describing the 
body composition of patients. Chandarana et al. extracted visceral, subcutaneous and total adipose tissue features 
based on L3 axial slices and investigated the impact of those features on the  severity13. Phan et al. investigated the 
impact of cardiac adipose tissues on the severity and mortality on diabetic  patients14. Yang et al. measured BCA 
features on L3 axial slices and showed that a high visceral to subcutaneous adipose tissue ratio, skeletal muscle 
attenuation and a high intramuscular fat are decisive features regarding the  severity15. These findings align with 
research results from other medical areas, such as oncology, in which body composition features are dominant 
predictors for clinical outcomes such as  mortality16–20.

The major disadvantage of body composition analysis (BCA) in clinical routine is the time-consuming and 
impracticable manual feature extraction  process21. Therefore, many common BCA methods are semi-automated 
and/or use only reference regions for assessment, like the lumbar vertebra (L3)13,15,20,22,23. However, a 2D reference 
image at the level of L3 is also known to be only a rough estimation of the tissue composition, which may differ 
throughout the  volume24. Furthermore, the L3 region is often not captured on a regular chest CT, rendering this 
method unsuitable for assessing patients with SARS-CoV-2 pneumonia in clinical routine.

We have leveraged a fully-automatic 3D semantic segmentation convolutional neural network (CNN) to 
overcome these limitations. This approach enables us to precisely quantify relevant body tissues like bone, muscle 
and multiple adipose tissues and combine them as potential predictive biomarkers to determine the clinical out-
come of SARS-CoV-2 patients. This study aims to characterize the relationship between different tissue volumes 
automatically extracted from CT-thorax scans and the clinical outcome for admitted SARS-CoV-2 patients. 
Additionally, other relevant BCA biomarkers that can help predict the severity of a SARS-CoV-2 infection will 
be uncovered.

Materials and methods
Ethics declarations. This study was conducted in compliance with the guidelines of the Institutional 
Review Board of the University Hospital Essen (approval number 21-10029-BO). Due to the study’s retrospec-
tive nature, the requirement of written informed consent was waived by the Institutional Review Board. The data 
were completely anonymized before being included in the study.

Data. The retrospective data used for this study were collected at the University Hospital Essen. All patients 
with a positive SARS-CoV-2 diagnosis and an admission within the central emergency department between 
March 1st, 2020, and March 13th, 2022 were initially included. Subsequently, only patients with a valid CT 
thorax scan were considered. In the context of this study, a valid CT is defined as a CT-thorax scan taken as 
close to the timestamp of the admission as possible with a max difference of ± 5 days. The clinical outcome is 
divided into two endpoints “severity” and “mortality”. The first endpoint, “severity”, consists of the classes “mild” 
and “severe”. The class severe contains all patients who required mechanical ventilation and/or did not survive. 
The class “mild” encompasses all patients who survived without mechanical ventilation. The second endpoint, 
“mortality”, consists of the classes “survived” and “deceased” patients during their hospital stay. In addition to 
the imaging data, the following clinical parameters were included: age, gender, c-reactive protein (CRP)(mg/
dl), leukocytes (/nl), hemoglobin (g/dl), and alanine aminotransferase (ALAT) (U/l). Furthermore, all CT scans 
were controlled manually, and scans with a low image quality or image artifacts were excluded. The final cohort 
contains all patients who meet the CT criteria and have all defined laboratory features available. The complete 
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selection process for the cohort is visualized in Fig. 1. For further cohort characterization, a list of all comorbidi-
ties of included patients was extracted and enclosed within the supplemental material (Table S3).

As depicted in the visualized selection process, a dataset with 918 patients was assembled. CT scans taken both 
before and closest to the hospital admission date were selected for each patient. This resulted in a mean difference 
of 1.05 ± 0.82 days between the initial diagnosis date and the selected chest CT scan. The mean difference in days 
between the collected laboratory values and the patient admission was 0.71 ± 3.38 days.

CT acquisition. The extracted 918 CT scans were examined with Siemens Somatom CT scanners which 
uses syngo CT VA50A (619), syngo CT VB20A (257), syngo VA48A (37) and syngo CT 2012B (5) software. 
All patients were scanned using the head-first-supine position and voxel spacings ranged from 0.54 to 0.97. In 
addition, 460 CT scans were performed using a pulmonary protocol. For the usage within the body composition 
network, all scans were resampled to a slice thickness of 5 mm.

Body composition analysis. The extraction of body composition features is based on a pre-trained con-
volutional neural network (CNN) published by Koitka et  al.21. For this study, an enhanced approach of the 
proposed network to cover more body regions was used to generate the BCA segmentations which contain the 
following classes: bone, muscle, subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), intra- and 
intermuscular adipose tissue (IMAT), epicardial adipose tissue (EAT) and pericardial adipose tissue (PAT). Adi-
pose tissues were derived using HU-based thresholding (− 190 to − 30 HU) from surrounding and detected body 
regions such as the dermis, abdomen, thorax, mediastinum, and pericardium. Muscle tissue was derived using 
a threshold of − 29 to 150  HU21. PAT and EAT, which are jointly referred to as pericardial fat, were subtracted 
from the latter two regions. Pericardial fat is located in the mediastinum adjacent to the parietal pericardium and 
surrounds the perivascular space of the coronary arteries. Epicardial fat is defined as a visceral fat deposit below 
the parietal pericardium. It directly surrounds and shares microcirculation with the myocardium. EAT and PAT, 
therefore, must be viewed separately and can also be distinguished  embryologically25–28. Figure 2 visualizes a 
collage of coronal visualized segmentation results for randomly selected CT scans from the proposed cohort.

The model divides CT-thorax scans into four anatomical subgroups: whole scan, thoracic cavity, mediastinum, 
and pericardium. The tissue volumes were calculated using the thoracic cavity region from the provided CT-
thorax scans. This enables overall comparability between all scans used for feature extraction. The BCA network 
defines the thoracic cavity as the chamber enclosed by the rib cage ranging from the superior thoracic aperture to 
the thoracic diaphragm and includes the trachea up to the cricoid cartilage. The raw BCA features were further 
normalized using the number of detected slices belonging to the thoracic cavity region to counteract differences 
in patient size or scan range. The normalized BCA features were further used to create two biomarkers: sarcopenia 
marker (SM) and Cardiac Marker (CM). The markers are defined as follows:

Figure 1.  The data flow based on all identified and collected SARS-CoV-2 patients until March 2022. Overall, 
3590 unique Patients were identified, but only 918 were used for further univariate and multivariate analysis as 
not all patients identified had a valid CT scan and/or the defined laboratory features available.
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The SM uses the raw quantification of muscle divided by IMAT plus bone. As such, regarding patients mortal-
ity, it reflects the important ratio of muscle mass to skeletal  volume29 and includes intramuscular adipose tissue 
as an additional risk  factor30. A low score corresponds to a low muscle volume in relation to the skeletal volume 
and the volume of IMAT. The CM uses the adipose tissues of the heart (EAT and PAT) divided by the muscle 
volume. EAT and PAT are important risk factors for cardiac  health31–33 and provide independent additional 
information to the calcium  score25. By normalizing EAT and PAT to the muscle volume, on the one hand, the 
inter-individual comparability is increased, and on the other hand, the muscular habitus is included as a positive 
determinant for cardiovascular  health34. For a visual interpretation of the markers, exemplary axial slices from 
patients with the highest and lowest marker values are visualized within the supplemental material (Fig. S3).

Statistical analysis. Initially, all relevant BCA raw features for the marker creation (muscle, bone, IMAT, 
EAT, and PAT) were analysed univariately. In addition, for all features, the normality assumption was checked 
using the Shapiro–Wilk-Test35. For general reporting, the median and interquartile range (IQR) were calculated 
for all non-normally distributed continuous variables (median [IQR]). Mean and standard deviation (SD) were 
used to report normal distributed continuous variables (mean ± SD). Categorical variables were also reported as 
total count and percentages. For univariate testing of the BCA features, markers, and laboratory values a two-
sided Mann–Whitney-U  test36 was conducted.

Furthermore, a binary logistic regression was performed to estimate the effect of selected features on the 
severity and mortality. In the beginning, the skewness of the BCA and laboratory features were calculated. 
Since all features were highly skewed, all features were log2 transformed to counteract a skewed distribution. 
In addition, the correlation between the resulting sarcopenia and cardiac marker was calculated using Pearson’s 
correlation index. Due to the high negative correlation of both markers, the logistic regression was conducted for 
each marker and adjusted to the following clinical features: CRP, leukocytes, hemoglobin, ALAT, age, and sex. It 
must be stated that the logistic regression was only used for statistical assessment of the defined BCA markers and 
not in a predictive way. The logistic regression results are described in adjusted odds ratios (OR), corresponding 
confidence intervals (95% CI), and resulting p-values. All calculated p-values within this study were rounded to 
three decimal points and values smaller than 0.001 or 0.0001 were reported as ≤ 0.001 and ≤ 0.0001.

The univariate and multivariate analysis was conducted based on the groups “mild” and “severe” for the sever-
ity and the classes “survived” and “deceased” for the mortality endpoint. The statistical analysis was performed 
using the python package  statsmodels37 (logistic regression) and  scipy38 (Shapiro–Wilk, Mann–Whitney-U).

Approval for human experiments. The experiments of the study were approved by the Institutional 
Review Board of the University Hospital Essen (approval number 21-10029-BO). The experiments were per-

Sarcopenia Marker =
Muscle

Intra− and Intermuscular Adipose Tissue + Bone

Cardiac Marker =
Epicardial Adipose Tissue + Pericardial Adipose Tissue

Muscle

Figure 2.  (A) Exemplary outputs of the BCA model in coronal view obtained from randomly selected patients. 
(B) Visualization of the BCA segmentations in the axial view for randomly selected patients. The tissue color 
codes are defined as follows: orange: subcutaneous adipose tissue, yellow: muscle tissue, cyan: intra- and 
intermuscular adipose tissue, pink: bone, light blue: pericardial adipose tissue, purple: epicardial adipose tissue, 
green: visceral adipose tissue.
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formed in accordance with the declaration of Helsinki and with all guidelines set forth by the approving insti-
tutional review board. Due to the study’s retrospective nature, the requirement of written informed consent was 
waived by the Institutional Review Board. The data were completely anonymized before being included in the 
study.

Results
The division within the gender groups resulted in a subcohort of 354 female patients encompassing 239 mild and 
115 severe cases (77 deceased) and 564 male patients encompassing 360 mild and 204 severe cases (109 deceased). 
Table 1 shows the baseline statistics of the demographic parameters and the laboratory features concerning the 
severity classes and mortality.

The first analysis univariately compares the normalized BCA features bone, muscle, IMAT, EAT, and PAT, 
which will be used to obtain markers for each gender using a Mann–Whitney-U test. The obtained results are 
depicted in Table 2.

As the results of the univariate raw BCA feature analysis indicate, the selected features are mainly significant 
in the male patient group (muscle, bone, IMAT, EAT, and PAT). In contrast to that, muscle, bone, and IMAT were 
also significant for the female group. In addition to the results presented in Table 1, the corresponding boxplot 
visualizations are enclosed within the supplemental material (Figs. S1, S2). Furthermore, the univariate setting 
was also conducted for the laboratory features and is enclosed within the supplemental material (Table S1). 
Subsequently, BCA features were combined to generate the sarcopenia and cardiac marker which were tested 
univariately as well. The resulting significance of the tests are depicted in Fig. 3.

Table 1.  Baseline patient characteristics, including the gender distribution and age statistics with respect to 
the severity and mortality endpoint within the cohort of 918 patients. The values for continuous variables are 
reported as median [IQR] and for categorical variables as total count and percentages.

Mild Severe Deceased

No. included n = 599 (65%) n = 319 (35%) n = 186 (20%)

Gender Female = 239 (40%)
Male = 360 (60%)

Female = 115 (36%)
Male = 204 (64%)

Female = 77 (41%)
Male = 109 (59%)

Age (in years) 63 [25] 71 [23] 78 [18.75]

CRP (mg/dl) 5.30 [8.05] 12.20 [11.70] 11.70 [12.15]

Leukocytes (/nl) 6.07 [3.53] 7.99 [5.21] 8.15 [5.59]

Hemoglobin (g/dl) 13.20 [2.35] 12.70 [2.85] 12.15 [2.77]

ALAT (U/l) 29 [27] 33 [35] 30 [29.75]

Table 2.  Overview of the median volume [IQR] and p-values of the normalized BCA-Features (per slice) 
within both endpoint categories severity and mortality. Only the male average bone volume per slice was 
normally distributed and thus is reported as mean and SD. The p-values were calculated using the Mann–
Whitney-U test IMAT: intra- and intermuscular adipose tissue, EAT: epicardial adipose tissue, PAT: pericardial 
adipose tissue.

Tissue Sex

Severity Mortality

Average volume per slice [mL], 
mild cases

Average volume per slice [mL], 
severe cases p-value

Average volume per slice [mL], 
survived cases

Average volume per slice [mL], 
deceased cases p-value

Bone

Female 28 [4.04] 29 [3.93]  ≤ 0.001 28 [4.28] 29 [4.68] 0.005

Male 36 ± 4.21 37 ± 4.38 0.013 36 ± 4.17 37 ± 4.70 0.014

Overall 33 [8.23] 34 [8.62]  ≤ 0.001 33 [8.07] 34 [9.32] 0.104

Muscle

Female 49 [13.12] 44 [15.81]  ≤ 0.001 49 [13.71] 40 [13.51]  ≤ 0.0001

Male 73 [26.37] 69 [25.59] 0.018 74 [27.16] 62 [21.74]  ≤ 0.0001

Overall 62 [29.24] 60 [29.85] 0.057 63 [30.30] 53 [25.27]  ≤ 0.0001

IMAT

Female 20 [9.59] 21 [11.09] 0.032 20 [9.57] 21 [11.24] 0.079

Male 18 [10.84] 22 [11.32]  ≤ 0.0001 19 [10.87] 22 [10.61]  ≤ 0.001

Overall 19 [10.39] 22 [11.40]  ≤ 0.0001 19 [10.53] 22 [10.80]  ≤ 0.001

EAT

Female 1 [1.29] 1 [1.50] 0.709 1 [1.22] 2 [1.65] 0.201

Male 2 [1.57] 2 [1.66]  ≤ 0.001 2 [1.48] 2 [1.70] 0.011

Overall 2 [1.46] 2 [1.55]  ≤ 0.001 2 [1.44] 2 [1.65] 0.008

PAT

Female 3 [3.0] 4 [2.95] 0.047 4 [2.87] 4 [3.45] 0.075

Male 6 [4.60] 7 [4.21]  ≤ 0.0001 6 [4.45] 7 [4.53] 0.003

Overall 5 [4.39] 6 [4.77]  ≤ 0.0001 5 [4.37] 6 [4.97] 0.006
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Based on the results of the Mann–Whitney-U Test, the SM (pfemale ≤ 0.0001, pmale ≤ 0.0001) as well as the CM 
(pfemale=0.014, pmale ≤ 0.0001) show significance within the univariate setting regarding the severity endpoint. Fur-
thermore, the SM (pfemale ≤ 0.0001, pmale ≤ 0.0001) and CM (pfemale ≤ 0.0001, pmale ≤ 0.0001) also showed significance 
regarding the mortality endpoint. In comparison to the BCA markers, the BMI was only available for 349 patients 
(122 female, 227 male) from which 64 were severe and 21 were deceased. Within the proposed univariate Setting 
it could be shown that the BMI was not significant within both groups. The complete results for the univariate 
analysis of the BMI are depicted in the supplemental material (Table S2).

Since the SM and CM are negatively correlated  (rseverity = − 0.76,  rmortality = − 0.79) and share the muscle vol-
ume per definition, both markers were adjusted to the following clinical parameters for each gender group: 
CRP, leukocytes, hemoglobin, ALAT, and age. The resulting adjusted ORs and the corresponding p-values of 

Figure 3.  A box plot visualization including Mann–Whitney-U tests of the sarcopenia and cardiac marker for 
the female patients (first row) and male patients in the cohort (second row). (A) Univariate analysis regarding 
severity (B) Univariate analysis regarding mortality.

Table 3.  Adjusted odds ratios including the 95% CI and the p-value for the severity and mortality endpoint 
for (A) sarcopenia marker and (B) cardiac marker.

(A) Severity Mortality

Features OR 95% CI p-value OR 95% CI p-value

Sarcopenia marker 0.42 [0.23, 0.78] 0.006 0.34 [0.17, 0.67] 0.002

CRP 2.15 [1.79, 2.59]  ≤ 0.0001 1.67 [1.36, 2.06]  ≤ 0.0001

Leukocytes 1.60 [1.20, 2.15]  ≤ 0.001 1.51 [1.08, 2.09] 0.015

Hemoglobin 0.19 [0.11, 0.30]  ≤ 0.0001 0.10 [0.05, 0.17]  ≤ 0.0001

ALAT 1.32 [1.05, 1.65] 0.016 1.14 [0.87, 1.47] 0.337

Age 1.01 [1.00, 1.01] 0.226 1.03 [1.02, 1.04]  ≤ 0.0001

Sex 0.69 [0.49, 0.96] 0.027 0.74 [0.50, 1.08] 0.121

(B) Severity Mortality

Features OR 95% CI p-value OR 95% CI p-value

Cardiac marker 1.42 [1.06, 1.89] 0.018 1.19 [0.85, 1.67] 0.311

CRP 2.16 [1.80, 2.59]  ≤ 0.0001 1.69 [1.37, 2.07]  ≤ 0.0001

Leukocytes 1.65 [1.22, 2.21]  ≤ 0.001 1.51 [1.08, 2.09] 0.015

Hemoglobin 0.20 [0.11, 0.34]  ≤ 0.0001 0.09 [0.04, 0.16]  ≤ 0.0001

ALAT 1.31 [1.04, 1.64] 0.019 1.08 [0.83, 1.40] 0.538

Age 1.01 [1.00, 1.02] 0.018 1.05 [1.03, 1.05]  ≤ 0.0001

Sex 0.85 [0.62, 1.17] 0.324 0.90 [0.62, 1.30] 0.577
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the logistic regression are presented in two sections within Table 3, with section A referring to SM and section 
B referring to CM.

Given the results of logistic regression, the sarcopenia (OR = 0.42, p = 0.006, 95% CI 0.23–0.78) and the cardiac 
marker (OR = 1.42, p = 0.018, 95% CI 1.06–1.90) are both significant regarding the severity endpoint. However, 
only the sarcopenia marker (OR = 0.34, p = 0.002, 95% CI: 0.17–0.67) is significant for the mortality endpoint. 
The ORs and the corresponding confidence intervals are presented in Fig. 4.

Discussion
We investigated the significance of two defined markers, which were automatically extracted from tissues depicted 
in CT thoracic scans, for the clinical outcome of SARS CoV-2-patients. The main aim was to derive relevant 
BCA-based biomarkers that could be used as potential features for the risk stratification of SARS CoV-2 patients 
regarding two endpoints disease severity and mortality.

Our results indicate that BCA biomarkers are statistically related to the clinical course for SARS-CoV-2 
patients. As indicated by the p-values from the univariate statistical test, the raw BCA features muscle and bone 
were substantial for both gender groups and endpoints. In addition, IMAT, PAT, and EAT were considerable for 
male patients for both endpoints. Furthermore, for female patients, IMAT and PAT were substantial regarding 
the severity endpoint. The combination of those raw BCA features into the defined sarcopenia and cardiac marker 
showed that those markers were univariately significant for both genders and both endpoints. Furthermore, the 
multivariate logistic regression showed that the sarcopenia marker is statistically significant in addition to proven 
clinical laboratory features for both endpoints. The cardiac marker was only significant regarding the severity 
endpoint. Based on the ORs we delineate the interpretation of both markers as follows: Patients exhibiting a high 
sarcopenia marker have lower odds of developing a severe course of disease or death. In contrast, patients with a 
high cardiac marker are associated with higher odds of developing a severe course or death. In the development 
of a new risk score for outcome prediction in patients with SARS-CoV-2, these biomarkers should be taken into 
account since a CT of the thorax is a standard procedure for SARS-CoV-2 patients and the extraction of tissue 
volumes can be performed conveniently and fully automated within the clinical routine, as shown by Koitka 
et al.21. In addition, the presented method and associated BCA features provide a much more accurate and diverse 
analysis of the patient’s body than, for example, BMI. This was also shown by the univariate analysis performed 
(Supplemental Material Table S2).

These results tie well with other studies wherein the relation of different adipose tissues and/or the muscle 
volume with the clinical course of SARS-CoV-2 patients was shown. Chandarana et al. demonstrated that the 
VAT volume measured on an L3 region axial slice is a valuable feature for identifying SARS-CoV-2 patients in 
need of  hospitalization13. Grodecki et al. outlined that EAT volume and attenuation seem to be associated with 
the quantitative burden of SARS-CoV-2 pneumonia and a larger EAT volume or attenuation might independently 
predict clinical deterioration or  death39. Schiaffino et al. showed that patients with lower paravertebral muscle 
areas and attenuation have a higher risk of ICU  admission40. Chandarana et al. used BCA features aggregated 
from an L3 axial slice to calculate muscle adipose tissue and muscle mass ratio and VAT to total adipose tissue 
ratios and showed that those features have a predictive value for the identification of patients with a need for 
 hospitalization22.

Our results generally support these findings, which indicate that the adipose tissues located in the cardiac 
region and muscle volume are decisive features that correlate with the clinical outcome. By contrast, the sarcope-
nia marker performs well for both endpoints but best in context of the patient mortality. Unlike Grodecki et al. 
and Schiaffino et al., we deliberately did not include tissue density in our analysis because it depends on many 
technical parameters, such as tube voltage, hardening artifacts, reconstructed slice thickness and also contrast 
administration. A very high degree of standardization in image acquisition is therefore required, which is often 

Figure 4.  Odds ratio plot for the multivariate logistic regression conducted for both endpoints. The horizontal 
line is set to an odds ratio of 1, and the odds ratios are displayed with circles. Additionally, the confidence 
intervals (CI 5%, CI 95%) are presented with the left bars (5%) and right bars (95%).
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not available in routine clinical practice and emergency examinations. In view of a practically applicable and 
robust method, we, therefore, restricted our study to tissue volumes as a foundation for the defined markers.

In contrast to the above-mentioned studies, our work presents a novel approach to quantify all body tissues 
within seconds, thus making BCA features readily available for use in clinical routine. To the best of our knowl-
edge, none of the presented studies could quantify all BCA features for the complete thoracic cavity. Instead, most 
studies used reference axial L3 slices for the feature aggregation which is not applicable within the clinical routine 
since this region is not present in a thoracic CT. Our study presents a novel approach to quantifying all relevant 
tissues and using them for BCA-based biomarker aggregation. The results of our study suggest that sarcopenia 
and cardiac marker can also be added to the list of significant parameters. To access these non-invasive features, 
only a suitable CT scan that the BCA algorithm can automatically process is needed. The presented approach is 
equally suitable for both standard and emergency cases. From the medical point of view, the clinical application 
of the approach presented here depends on the existence of a CT thorax scan. In contrast, from a technical point 
of view, the application requires integrating the BCA  network21. Consequently, only cases in which a CT scan is 
not performed cannot be assesed with this approach. These will most likely be mild cases rather than severe ones.

A notable limitation of this study is that within our dataset, information on SARS-CoV-2 mutations was 
unavailable at the time. Because the data underlying this study was collected from multiple SARS-CoV-2 waves 
(2020–2022), the effect of SARS-Cov-2 mutations could have influenced the likelihood of developing a severe 
disease course or mortality. Future studies should investigate the significance and importance of BCA features in 
the context of SARS-CoV-2 variants. A further limitation is the monocentric design of our study. Future studies 
would benefit from a multicentric approach, in which patients with diverse geographical regions of origin are 
included. This would strengthen the results and indicate the overall applicability of BCA feature extraction. It 
would also minimize potential biases and counteract the statistical influence of different SARS-CoV-2 mutations 
on the analysis.

In future studies, large patient cohorts should be used to investigate the applicability of BCA feature extrac-
tion in the determination of newly-admitted SARS-CoV-2 patients’ clinical courses. The applicability of BCA 
feature extraction to the clinical course predictions of other forms of pneumonia, influenza, and ARDS also 
warrants further investigation. For example, in the case of pneumonia, performing a fully automated BCA on 
hospitalized patients shortly after admission could potentially enable the early detection of severe disease courses. 
Implementing BCA in the clinical workflow could offer additional prognostic value by utilizing already gathered 
data (e.g., CT scans) without any additional expenditure of time or resources.

Conclusion
The results of the study show that BCA markers based on raw BCA parameters extracted automatically from 
CT scans have the potential to improve risk stratification in patients with acute SARS-Cov-2 infection. Due to 
the robust and fully automatable methodology, these parameters should be considered in developing new risk 
scores. Future studies should investigate the predictive value of these features in relation to different SARS-CoV-2 
mutation strands, as well as the applicability of BCA feature extraction in other acute respiratory conditions.

Data availability
The dataset is not publicly available. Reasonable requests should be directed to the corresponding author for 
consideration and can be provided pending appropriate institutional review board approvals.
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