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Abstract

Microbial communities in freshwater streams play an essential role in ecosystem

functioning via biogeochemical cycling. Yet, the impacts of treated wastewater influx

into stream ecosystems on microbial strain diversity remain mostly unexplored.

Here, we coupled full‐length 16S ribosomal RNA gene Nanopore sequencing and

strain‐resolved metagenomics to investigate the impact of treated wastewater on a

mesocosm system (AquaFlow) run with restored river water. Over 10 days,

community Bray–Curtis dissimilarities between treated and control mesocosm

decreased (0.57 ± 0.058 to 0.26 ± 0.046) based on ribosomal protein S3 gene

clustering, finally converging to nearly identical communities. Similarly, strain‐

resolved metagenomics revealed a high diversity of bacteria and viruses after the

introduction of treated wastewater; these microbes also decreased over time

resulting in the same strain clusters in control and treatment at the end of the

experiment. Specifically, 39.2% of viral strains detected in all samples were present

after the introduction of treated wastewater only. Although bacteria present at low

abundance in the treated wastewater introduced additional antibiotic resistance

genes, signals of naturally occurring ARG‐encoding organisms resembled the

resistome at the endpoint. Our results suggest that the previously stressed

freshwater stream and its microbial community are resilient to a substantial

introduction of treated wastewater.
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1 | INTRODUCTION

Freshwater stream ecosystems are characterized by high biodiversity.

Micro‐ and macroorganisms in these environments are responsible

for essential ecosystem services with a major impact on biogeo-

chemical cycling (Cardinale et al., 2012; Maavara et al., 2020; Ripl,

2003). These ecosystems have been exposed to environmental

fluctuations on a daily, seasonal, and interannual timescale for

centuries (Bucci et al., 2014; Burns et al., 1998; Hamid et al., 2020;

Portillo et al., 2012). Over time, organisms have adapted to these

natural disturbances (Crump et al., 2009; Lytle & Poff, 2004).

Especially starting from the 20th century, additional anthropogenic

stressors have been introduced to stream ecosystems such as water

pollution, flow modification, habitat degradation, and climate change‐

derived effects (Beattie et al., 2020; Dudgeon et al., 2006; Grill et al.,

2019; Reid et al., 2019). One major anthropogenic stressor in stream

ecosystems, particularly in urban areas, is the inflow of treated

wastewater from wastewater treatment plants. The percentage of

treated wastewater in the water body of an urban stream can reach

from up to 30% during normal conditions to over 50% during

low‐flow conditions, for example, during dry seasons (Drewes

et al., 2018).

Although microbial activity has been considered important for

ecosystem integrity (Cotner & Biddanda, 2002; Fasching et al., 2020),

most studies have not considered microbial communities when

studying the biome of streams (Gautam et al., 2022; Zeglin, 2015).

Typically, experiments on stressor effects in streams have focused

solely on higher organisms such as fish or invertebrates (Kim et al.,

2020; Wright & Ryan, 2016), thus neglecting a major part of

biodiversity, that is, prokaryotes and viruses. The latter are even

considered to be a “blank spot on the map” in stream research

(Peduzzi, 2016). Despite exceeding other microbes in diversity and

particle number, information on viral interaction with organisms for

example is missing so far (Bar‐On et al., 2018; Whitman et al., 1998).

Thus, how microbial and viral communities are influenced by treated

wastewater are a major gap of knowledge, which is nevertheless of

great importance as river water serves as a major source of potable

water in densely populated regions (Strathmann et al., 2016).

The AquaFlow mesocosm setup has previously been used to

study the effects of flooding events on microeukaryotic communities

(Graupner et al., 2017). In this study, the AquaFlow system was used

to simulate an inflow of treated wastewater to understand its effect

on microbial communities in river water. We studied prokaryotic and

viral communities in the water phase for 10 consecutive days and in

6 mesocosms in parallel (three control systems and three treatment

systems). The reference water used in our study was sourced from

the near‐natural stream Boye, which had been used as an open sewer

from the beginning of the last century until 2017. After a series of

renaturation procedures, it has been fully restored since 2021 (Prati

et al., 2022; Winking et al., 2014, 2016). In this study, we used a

combination of full‐length 16S ribosomal RNA (rRNA) genes

sequenced via Oxford Nanopore Technology (ONT) and genome‐

resolved metagenomics on an Illumina NovaSeq. 6000 platform to

conduct an in‐depth analysis of the prokaryotic community, ranging

from community changes over time to strain‐resolved bacterial and

viral analyses. Our results show that treated wastewater introduces a

new microbial community to the existing stream ecosystem. This

community differed not only at the bacterial phyla level but also

strain level of the near‐identical bacterial and viral metagenome‐

assembled genomes (MAGs) of cooccurring phyla. During an

incubation period of 10 days in the AquaFlow systems, both treated

and control experiments developed highly similar microbial commu-

nities after 10 days, suggesting the resilience of the river water

community used herein regarding a pulse disturbance by treated

wastewater.

2 | MATERIALS AND METHODS

2.1 | Study design and mesocosm setup

The AquaFlow mesocosm system was used to investigate the effects of

treated wastewater on a natural stream ecosystem. The individual flow

mesocosm systems are described in detail by Graupner et al. (2017). In

short, one mesocosm system included three water tanks (~40, ~40, and

~270 L) connected by two steel channels (10 cm width and 4 and 2m

long) and a pump (10 L/min) to maintain a circular flow (shown as a

scheme in Figure A1). The channels were filled with 60 L sediment

taken from the river Boye (Germany; 51°33′19.7″ N and 6°56′38.3″ E,

used as an open sewer until 2017 and fully restored in 2021) and

homogenized in a concrete mixer before filling in. Per system, 350 L

stream water from the same location as the sediment was prefiltered

(200μm pore size) and filled into the system. Throughout the

experiment, the water temperature was kept at 19°C and natural

sunlight was used as a light source. All six systems, three controls, and

three treatments were run in parallel in February and March 2021.

Before the start of the experiment, an acclimatization phase of

14 days was performed, that is, running the systems as described and

interconnecting the mesocosms each day until approximately 700 L

were exchanged. Afterward, treated wastewater from the municipal

wastewater treatment plant Schwerte (North Rhine‐Westphalia,

Germany) was filled into three systems to reach a percentage of

33% treated wastewater (~120 L) per mesocosm after removing the

same volume of control water beforehand in treatment systems.

The wastewater treatment plant (WWTP) operated as explained in

Rothe et al. (2021) with the following measurements at the effluent

on the day of sampling: turbidity 3.4 NTU; chemical oxygen demand

16mg/L; total phosphorus 0.23mg/L; temperature 9.1°C; pH 6.81;

and conductivity 928 µS/cm.

Thus, three systems served as controls (“C”) and three systems as

treatments (“T”). Water samples were taken after 1 h, 12 h, 24 h,

2 days, 4 days, 7 days, and 10 days (samplings S1–S7). For each sample,

0.4 L water was filtered onside on 0.2 μm polycarbonate filters

(Nucleopore; Cytiva) in duplicates, air‐dried, submerged in 400 μl

DNA/RNA shield (Zymo Research), frozen in liquid nitrogen, and stored

at −80°C until DNA extraction. DNA extraction was done at room
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temperature using the Zymo Quick DNA/RNA microprep plus kit

(Zymo Research). Two filters with DNA/RNA shield solution were

transferred in a Zymo BashingBeads LysisTube and homogenized using

a FastPrep (MP Biomedical) with five steps at 5.5m/s for 30 s and a

resting step on the ice for 1min after each step. Bashing bead tubes

were centrifuged for 30 s, the supernatant was transferred to a 1.5mL

tube, and mixed with 400 μL lysis buffer. After transferring the samples

to a Zymo‐Spin IC‐XM column, steps were performed according to the

protocol until the addition of 30 μL RNAse/DNAse free water,

incubation for 5min, and centrifugation to elute the DNA. The latter

was stored at −20°C until further processing.

2.2 | DNA amplicon sequencing and processing

Full‐length 16S rRNA sequencing was performed for all 42 samples

(systems C1–C3 and T1–T3; samplings S1–S7 each) using the 16S

Barcoding kit (SQK‐RAB204; version RAB_9053_v1_rev-

M_14Aug2019; Oxford Nanopore). The protocol was followed at

each step if not mentioned otherwise using the LongAmp Taq 2×

Master Mix (NEB) for PCR setup and Agentcourt AMPure XP beads

(Beckman Coulter) for clean‐up. Instead of 10 ng genomic DNA,

15 ng was used as an input for the PCR. Sequencing was done on a

MinION Mk1B using an FLO‐MIN106D flow cell, controlled by

MinKNOW (v21.02.1). Per sample, at least 100,000 reads were

sequenced. Raw sequencing signals were base‐called and demulti-

plexed using guppy (v5.0.7; dna_r9.4.1_450bps_hac.cfg).

Basecalled and demultiplexed 16S rRNA gene sequences were

processed using the NanoCLUST pipeline (v1.0dev; UMAP settings ‐‐

cluster_sel_epsilon 0.5 –umap_set_size 100000) (Rodríguez‐Pérez et al.,

2021) based on the NCBI 16S rRNA database (v28.04.2021). Statistical

analysis of operational taxonomic unit counts was performed using the

R script MC_Stats (v1.2) as described in Weinmaier et al. (2015).

Rarefaction and calculation of the Bray–Curtis dissimilarities were

iterated 100 times and the average distance was calculated. Based on

these dissimilarities principal coordinate analysis, nonmetric multi-

dimensional scaling (NMDS), hierarchical clustering, rarefaction curve,

diversity index, and multiple response permutation procedure (MRPP)

were calculated using the R vegan package (Oksanen et al., 2013).

2.3 | Metagenomic DNA sequencing, assembly,
and annotation

Samples from the first and last sampling points (S1 and S7) were sent

for metagenomic sequencing to the West German Genome Center

(Cologne, Germany). Sequencing was done according to the Illumina

PCR‐Free Protocol for Thermal Cycler, Low Input with a sequencing

depth of 20 Gbp (Gigabase pair) (150 bp paired‐end reads) on a

NovaSeq. 6000 with an S4 FlowCell.

Metagenomic sequences were quality checked using BBduk

(Bushnell; https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-

guide/) and Sickle (Joshi & Fass, 2011) (quality score ≥ 20 and

minimum read length ≥ 20 bp). The microbial community coverage by

short‐read metagenomic sequences was estimated using Nonpareil3

(v3.4.1) (Rodriguez‐R et al., 2018).

Metagenomic paired‐end reads were individually assembled using

a combined approach of metaviralSPAdes (Antipov et al., 2020) and

metaSPAdes (Nurk et al., 2017) (SPAdes version 3.14.0). In short, reads

were first assembled using metaviralSPAdes, generating scaffolds of

viral origin. All metagenomic reads mapping (using Bowtie2; Langmead

& Salzberg, 2012) to these viral scaffolds were excluded from the

following assembly with metaSPAdes. Finally, both metaviralSPAdes

and metaSPAdes assemblies were combined. Prediction of open

reading frames was done for scaffolds equal or larger than 1 kbp using

Prodigal (Hyatt et al., 2010) in meta mode and annotated using

DIAMOND blast (Buchfink et al., 2015) (DIAMOND version 0.9.9;

blastp ‐e 0.00001 ‐k 1) against an in‐house database called FunTaxDB

based on UniRef100 (state February 2021; Bornemann et al., 2023;

Suzek et al., 2007). The taxonomy of each scaffold was assigned as

described in Bornemann et al. (2022). In brief, the scaffold taxonomy

was assigned based on all proteins detected on the scaffold and the

lowest taxonomic rank when more than 50% of the protein taxonomies

agree. To calculate the average scaffold coverage, quality‐checked

reads were mapped to scaffolds using Bowtie2 (Langmead & Salzberg,

2012). For all scaffolds, length, and GC content were calculated.

2.4 | Comparison of taxonomic classification based
on amplicon sequencing and metagenomics

Three approaches were compared to retrieve abundances of

prokaryotes in our samples, that is, 16S rRNA gene data from ONT

sequencing (described above), blasting of metagenomic reads to 16S

rRNA genes from ONT, and rpS3 (ribosomal protein S3) gene analysis

from metagenomic data. The rpS3 gene is a single‐copy gene

containing both conserved and discriminatory regions and has been

used for prokaryotic community analysis in metagenomic studies

(Finstad et al., 2017; Smith & Wrighton, 2019; Zhong et al., 2022).

For blasting the quality‐checked short metagenomic reads to the

results from 16S rRNA gene sequencing, the consensus sequence per

cluster from NanoCLUST was taken as a basis. Using USEARCH, the

short reads were blasted against the reference sequences (e value:

0.00001 and ‐top_hits_only), and all hits with more than three

mismatches were discarded. Then, the average number of hits per

cluster was calculated and the NCBI TaxID was added based on the

NanoCLUST output.

RpS3 genes were identified using a phylosift HMM (Hidden

Markov Model) set (DNGNGWU00028; date: January 20, 2022)

(Darling et al., 2014) in combination with hmmsearch (v3.2) at an e

value cutoff of 1E−28. Additionally, annotation results using

UniRef100 (described above) were searched for rpS3 genes, and

the respective taxonomy was attached. For statistical analyses of

rpS3 genes, representative genes were determined by clustering

using USEARCH (‐cluster_fast ‐id 0.99). If the centroid of the cluster

could be extended by 1 kb in both directions the sequence was
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chosen as a representative for the cluster. Otherwise, a noncentroid

longest sequence that could be extended or just the longest

sequence was selected. Then, quality‐passed reads were mapped to

those representative rpS3 gene sequences. To compare all three

approaches, the TaxID and TaxString of the same NCBI database

(date: January 2020) was used for taxonomic classification.

2.5 | Screening for antibiotic resistance
genes (ARGs)

Detection of ARGs was done as described by Rahman et al. (2018). In

brief, ARGs were annotated to predicted genes using the Resfams

HMM database (Gibson et al., 2015) using hmmsearch (v3.3) with the

‐‐cut_ga flag. The latter was used to apply manually optimized profile‐

specific gathering thresholds for reporting and inclusion of results

(Gibson et al., 2015). Based on the Resfam output and scaffold

coverage, a sample resistance gene summary was normalized to the

number of sequenced reads. The Resfam metadata was used to

translate the Resfam IDs to resistance mechanisms. Taxonomic

annotation of scaffolds encoding for ARGs based on FunTaxDB

(described above) was extracted to infer the underlying community

harboring the resistome. For analysis of ARGs in MAGs, scaffolds

encoding for resistances were matched to binned scaffolds, and hits

of respective resistance mechanisms per MAGs were calculated.

2.6 | Virus detection and analysis

Viral scaffolds were identified using VirSorter2 (v2.2.3; ‐‐high‐

confidence‐only; Guo et al., 2021), deepvirfinder (v1.0.0; ‐l 1000) (Ren

et al., 2020), and VIBRANT (v1.2.1) (Kieft et al., 2020). All hits were

collected and checked using checkV (v0.7.0) (Nayfach et al., 2021). Only

those viral scaffolds with a completeness higher than 25%were used for

further analyses. All steps from raw reads until the detection of viral

sequences were run in a Snakemake pipeline (Mölder et al., 2021).

2.7 | Binning of assembled metagenomes and
analysis of MAGs

Scaffolds equal or larger than 1 kb were used to generate MAGs in all

12 metagenomic samples. In short, ABAWACA (Brown et al., 2016),

MaxBin2 (Wu et al., 2016), and MetaBAT2 (Kang et al., 2019) were

run on all samples and an optimized set of bins was produced using

DASTool (Sieber et al., 2018). For MaxBin2, both marker sets were

used and a cross‐mapping over all samples using Bowtie2 was

performed to use the differential coverage information as an input.

The listed tools were wrapped in a Snakemake pipeline and run under

Snakemake version 6.13.1 (Mölder et al., 2021).

All initial bins were manually curated using uBin (v0.9.14)

(Bornemann et al., 2023) based on GC, coverage, taxonomy, and

single‐copy core genes. After curation, all remaining non‐prophage

viral sequences identified by checkV were removed from the MAGs

as they likely represented contaminations. The resulting viral clean

MAGs from all samples were dereplicated using dRep (v3.0.0) (Olm

et al., 2017) using default settings and quality checked. In short,

quality metrics were calculated using checkM (Parks et al., 2015) and

Quast (Gurevich et al., 2013), transfer RNA (tRNA) genes were

detected using tRNAscan‐SE (v2.0.7) (Chan et al., 2021), and rRNA

genes were identified using RNAmmer (v1.2) (Lagesen et al., 2007).

All results were combined and the quality of the MAG was assessed

according to MIMAG standards by Bowers et al. (2017).

A standardized taxonomy assignment was done using GTDB‐Tk

(v2.0.0, database release R207) (Chaumeil et al., 2020). To retrieve

the taxonomy, the “classify_wf” pipeline was run, and an unrooted

tree was created using the “infer” workflow.

2.8 | Strain analysis of MAGs and viral genomes

Quality‐checked reads of all samples were mapped to the set of

dereplicated MAGs using Bowtie2 and genes of MAGs were predicted

using prodigal in normal mode. The inStrain (v1.5.5) (Olm et al., 2021)

“profile” was run for each sample using the same set of dereplicated

genomes followed by “inStrain compare” in database mode.

Viral genomes equal or larger than 3 kb and with minimal

completeness of 25% were clustered using VIRIDIC (Moraru et al.,

2020) with default parameters. From the resulting clusters, the

centroid sequence was determined using USEARCH (v10.0.240) at an

identity of 0.99. If more than one sequence remained per cluster, the

longest sequence was selected for downstream analysis. These

representative virus genomes were prepared as described before to

run inStrain “profile” and “compare” over all samples.

2.9 | Data visualization and significance testing

Final data polishing and visualization were done in R (R Core Team,

2022) using the packages ggplot2 (Wickham, 2016), tidyverse

(Wickham et al., 2019), data.table (Dowle & Srinivasan, 2021), ggtree

(Yu, 2020), ape (Paradis & Schliep, 2019), ggtreeExtra (Xu et al.,

2021), nonpareil (Rodriguez‐R et al., 2018), and UpSetR (Gehlenborg,

2019). Paired t tests were performed to test for significant

differences between 16S rRNA and rpS3 gene analyses and AMR

hits using the R package stats (R Core Team, 2022).

3 | RESULTS

3.1 | Wastewater‐induced shift in microbial
community as revealed by full‐length 16S rRNA and
rpS3 gene analysis

To determine the effect of wastewater on the microbial communities,

we investigated 42 samples, that is, three controls and three treated

4 of 15 | STACH ET AL.



samples each across seven time points, via 16S rRNA Nanopore

sequencing. NMDS (Figure 1) revealed a change in the bacterial

community with time along NMDS axis 1 and a separation of control

and treatment along NDMS axis 2, indicating that time has a greater

effect on the community than the addition of wastewater. This was

confirmed via MRPP comparing the two sets of samples with a

chance corrected within‐group agreement of 0.0675 for the addition

of wastewater and 0.3775 for time, respectively (p = 0.001 for both

tests).

Based on these results the first and last sampling time points (12

samples in total, three for each time point with two time points for

treatment and control, respectively) were selected for an in‐depth

comparison via metagenomics. When comparing the 16S rRNA gene

analysis with the rpS3 gene analysis of these nine samples, we

observed a similar pattern in ordination analyses (Figure A2).

Although beta‐diversity analyses revealed a similar pattern when

using 16S rRNA and rpS3 gene, 16S rRNA Nanopore sequencing

results were further compared to the diversity detected via

metagenomics using two independent approaches. First, we used

USEARCH to assign short reads to the 16S rRNA genes from

Nanopore sequencing to determine their relative abundance in the

metagenomes. This approach enabled us to elucidate the amplifica-

tion bias during 16S rRNA gene PCR. Yet, the bias in 16S rRNA gene

analysis resulting from the possibility of multiple copies of the gene

per genome is not reduced. Therefore, we directly used the relative

abundances of rpS3 genes, present as single copies in prokaryotic

genomes, in assembled metagenomes and compared them to 16S

rRNA gene data at the taxonomic level to determine the effect of

primer bias combined with amplification bias in the analyses

(Figure 2). Proteobacteria was the dominant phylum in relative

abundance ranging from 59.04% based on rpS3 genes analysis, to an

average of 86.9% in abundance‐corrected 16S rRNA gene analysis up

to 98.20% when using 16S rRNA genes from Nanopore only.

Correction of relative abundance of Proteobacteria in 16S rRNA

gene analysis using short reads revealed a lower abundance

compared to Nanopore sequencing (p < 0.0001; paired t test),

indicating an amplification bias favoring Proteobacteria. For all

samples except C1_S1 and C3_S1, the detected relative abundance

of Proteobacteria was lowest for rpS3 gene analysis, highlighting a

combinatorial effect of primer bias and PCR bias (p < 0.01 compared

to 16S rRNA gene and p < 0.05 compared to abundance‐corrected

16S rRNA gene; both paired t test). Particularly the primer bias in 16S

rRNA gene analysis was supported by the fact that rpS3‐based

diversity analysis retrieved 44.4% more phyla (relative abundance ≥

0.1%) on average over all 12 samples compared to 16S rRNA gene

diversity, especially in the case of samples taken at the start of the

experiment (56.3%).

3.2 | Control and treatment develop the same
strain clusters over time

Genome‐resolved metagenomics was used to investigate the

community structure on a deeper taxonomic level. Overall samples,

376 manually curated MAGs were recovered and were dereplicated

resulting in 100 reference MAGs (completeness ≥ 75%, contamina-

tion ≤ 25%) (Supporting Information: 2). Sixty‐six MAGs fulfilled the

MIMAG criteria (Bowers et al., 2017) to be at least medium quality

MAGs (e.g., selecting MAGs with contamination ≤ 10%) and were

present in at least two samples according to inStrain and thus

comparable at the strain level.

Similar to marker gene analyses (see above), Proteobacteria

represented the highest occurring phylum also among MAGs

(Figure 3). Of the 66 MAGs in total, 28 were only detected in the

initial sampling and 11 only in endpoint sampling (labeled with empty

and filled triangles, respectively). Seventeen MAGs were exclusively

detected in treatment samples and seven only in control samples. The

number of strain clusters per MAG reduced from 1.8 ± 0.90 (n = 40

MAG clusters) to 1.29 ± 0.63 (n = 34) for control and from 2.0 ± 0.91

(n = 49) to 1.27 ± 0.52 (n = 33) for treatment from S1 to S7. MAGs

belonging to lower abundant classes (Figure 3) were mostly found in

samples treated with wastewater, for example, Acidimicrobiia,

Nitrospiria, or Bacteroidia.

This strain analysis of bacteria was also performed on quasi‐

species of viruses detected in the metagenomes. Overall, 2336

representative viral scaffolds were identified, of which 1713 were

present in at least two samples and used for further analyses.

128 viral scaffolds were detected in control samples only, whereas

1164 viral scaffolds were exclusively detected in samples treated

with wastewater. InStrain detected 2434 subclusters of viral

scaffolds, that is, viral strains, across different samples (Figure 4).

F IGURE 1 Nonmetric multidimensional scaling (NMDS) of
full‐length 16S ribosomal RNA (rRNA) gene sequencing with curve
fitting on incubation time in hours revealing a separation dependent
on time and type. Sampling points refer to the time after the
introduction of wastewater (S1–S7: 1 h, 12 h, 24 h, 2 days, 4 days,
7 days, and 10 days).
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In treatment samples, 1767 (72.6%) viral strains were present either at

the start or end point or detected in both with the highest percentage

at the start (955; 39.2%). In contrast to treatment samples, viral strains

present in control samples only made up 9.7%, highlighting a high

diversity of viral strains introduced via treated wastewater.

3.3 | Stress response increase in control and
treatment samples

Assembled metagenomes were scanned for antimicrobial resistance

genes using the Resfams HMM database (Gibson et al., 2015),

resulting in ATP‐binding cassette transporter (ABC transporter),

acetyltransferase, major facilitator superfamily transporter

(MFS Transporter), and β‐lactamases with the highest counts per

million reads (Supporting Information: 1). Sums of counts were

significantly higher for endpoint samples compared to the start of the

experiment (p = 2.13 × 10−14; Figure 5a). The taxonomic profiles of

scaffolds carrying these resistance genes were determined using the

uBin package (Bornemann et al., 2023), and their distribution is

shown in Figure 5b. In wastewater‐treated samples, 57.98%–61.74%

of resistance gene hits were assigned to Proteobacteria at the initial

sampling, in contrast to 90.20%–94.92% in control samples. The

share of less abundant phyla encoding for resistance genes is reduced

from S1 to S7 in treatment samples, resulting in the same distribution

compared to the control samples. This is also supported by the ARG

analysis in MAGs (Figure 3). Genomes encoding for resistances were

introduced by treated wastewater contributing to a more diverse

resistome at the beginning, for example, MAG AF21_PE0_T1_S1_

Chloroflexi_54_10. At sampling point S7 however, mainly MAGs

belonging to the Proteobacteria remain in both control and

treatment, forming the resistome.

4 | DISCUSSION

Stream ecosystems harbor a rich biodiversity, shape and connect

ecosystems, and serve humankind in many ways (Dudgeon et al.,

2006; Honey‐Rosés et al., 2013). Such ecosystem services are

dependent on healthy microbial communities, which can be stressed

by natural and anthropogenic influences (Lin et al., 2019). Effluents of

WWTPs represent a ubiquitous stressor for freshwater streams, a

general source of drinking water production. While the microbial

community of WWTP effluents has already been investigated directly

F IGURE 2 Phylum level relative abundance (≥0.1% abundance) of start and end point samples (“S1” and “S7”) of control (“C”) and treatment
(“T”) systems based on three methods, that is, whole‐length 16S rRNA gene sequencing (“ONT”), blasting of metagenomic reads against
reference sequences obtained by whole‐length 16S rRNA gene sequencing (“Met”), and rpS3 gene analysis based on metagenomics (“rpS3”).

6 of 15 | STACH ET AL.



at the outlet (Newton et al., 2022) as well as in an upstream/

downstream approach (Chaudhary et al., 2018), the temporal

development of the microbial community for a longer period after

addition of wastewater has not been investigated so far. Surveying

such a disturbance in real stream systems is challenging due to the

heterogeneous nature of fluvial ecosystems, for example, different

flow conditions, influence from the shore (e.g., leaf litter) or changing

weather conditions (Bastias et al., 2020; Beisel et al., 2000).

Mesocosm systems like the AquaFlow system, however, enable such

investigations with the trade‐off of studying a closed system

(Graupner et al., 2017; Röhl et al., 2018). In this study, we replaced

one‐third of the water in three AquaFlow systems with treated

wastewater from a municipal WWTP and investigated the micro-

biome for 10 days using 16S rRNA gene and shotgun sequencing. The

control system was only filled with water from the stream Boye, a

previous open sewer that has been wastewater free since 2017 and

restored since 2021.

As expected, the introduction of treated wastewater resulted in a

significant disturbance of the microbial community as revealed by

both marker genes used in this study, with commonly known phyla

introduced by treated wastewater (Newton et al., 2022). Yet, only

rpS3 gene analysis based on metagenomic sequencing was able to

detect also lower abundant phyla, which we attribute to primer biases

in amplicon analyses. Treated wastewater introduced not only new

phyla but also new strains of MAGs and viruses, highlighting its

impact on the microbial community composition. As presented,

counts of both bacterial and viral clusters introduced by treated

wastewater, but also those which were already present in the

F IGURE 3 Distribution of metagenome‐assembled genome (MAG) strain clusters in metagenomic samples faceted by start and endpoint
sampling. Strain cluster IDs are referring to the respective MAG only. For example, if the same strain of a certain MAG is present in all samples,
they are shown as strain cluster one and if a sample contains another strain of the same MAG, this sample is color coded as strain cluster two,
and so on. A genome is considered present if at least 50% of the genome is covered (breadth = 0.5). Only MAGs fulfilling MIMAG requirements
for medium‐quality MAGs present in at least two samples are considered (Bowers et al., 2017). MAGs that were only detected at the start and
endpoint sampling were labeled with empty and filled triangles, respectively. Antimicrobial resistance mechanisms were assigned to the MAGs
based on Resfams HMMs.
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near‐natural stream, were reduced over the incubation period of ten

days in the mesocosm system. This is also reflected by the decrease

of Nonpareil diversity (Figure A3) from start to endpoint for all

systems and the increase of estimated sequencing coverage at

comparable sequencing depth (22.4 ± 3.5 Gbp), suggesting that the

setup in combination with the factor time itself serves as a driver for

the microbial community.

A major public concern about WWTP effluents released into

streams is the introduction of antibiotic‐resistant bacteria and

ARGs along with their propagation in natural ecosystems (Araújo

et al., 2010; Ferreira da Silva et al., 2007; Sekizuka et al., 2022). Our

results showed that the added treated wastewater introduced new

phyla encoding for stress response systems including antimicrobial

resistances. The total count of stress response genes did not increase

compared to control systems, suggesting that the natural resistome

was only changed to a more diverse resistome originating from the

treated wastewater. After 10 days of incubation, the near‐natural

stream microbiome was solely responsible for the composition of the

resistome resulting in an increase of stress response genes. One

explanation could be that the control stream water originated from a

previously stressed ecosystem that was under influence of

wastewater for centuries and only freed from wastewater 4 years

before sampling and restored in the year of sampling. Thus, the

restored stream microbiome should still be adapted to the environ-

mental change that the mesocosm setup represents. However, the

increase of stress response systems over time along with the factor

time as the major driver of the microbial community in 16S rRNA

gene analyses, suggests that the community in the AquaFlow system

is under constant development. Nevertheless, the effect of stressors

like wastewater introduction could be elucidated and the introduc-

tion of strains of bacteria and viruses and stress response systems

could be detected.

Our results suggest a limited temporal disturbance of microbial

communities by wastewater bacteria, viruses, and ARGs in restored

ecosystems. Yet, the persistence of biological entities was short,

arguably because fecal organisms, for example, have a limited survival

time in open water columns (Brooks et al., 2015). It has also been

shown previously that highly polluted urban rivers might have a

higher resilience to such a pulse disturbance than more natural rivers

(García‐Armisen et al., 2014). Our results suggest that despite

comprehensive measures the river Boye is likely still in a stressed

state and the microbial community is resilient to pulse disturbances

F IGURE 4 Counts of viral subclusters, that is, viral strains, present in treatment and control at start and endpoint sampling as detected by
inStrain (module compare). Connected samples indicate the count of shared viral strains of respective samples.
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of treated wastewater. Future studies including a pristine freshwater

stream should be able to verify this hypothesis. From a public health

perspective, the return to the equilibrium state of the control

counters concerns about the impacts of WWTP effluents, however, it

is unclear if the same holds true for rivers not previously stressed. In

addition, the duration of the temporary disturbance might impact the

microbiome resilience.

5 | CONCLUSIONS

In conclusion, investigation of long‐term effects caused by anthropo-

genic disturbances in stream systems is currently only possible using

mesocosm systems like the presented AquaFlow setup. Here, we

show that the introduction of treated wastewater resulted in a drastic

temporal disturbance of a restored freshwater stream microbiome by

introducing bacterial phyla, viruses, and a more diverse resistome.

Yet, the introduction showed no lasting effect on the microbial

community, and both control and treatment developed to a similar

endpoint community. This suggests that the microbiome of a

previously stressed river might be resilient to a drastic, but temporary

disturbance.
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APPENDIX

Scheme of an AquaFlow mesocosm system

Figure A1

Statistical analyses of start and end point samples based on rpS3

gene clustering

Figure A2

Coverage of shotgun metagenomic sequencing diversity

The diversity of start‐ and endpoint samples estimated by Nonpareil3

(Rodriguez‐R et al., 2018) ranged for initial treatment samples from

Nonpareil diversity (Nd) 21.39 to 21.56 (n = 3) and for initial control

samples from Nd 20.10 to 20.88 (n = 3). All endpoint samples ranged

from Nd 17.89 to 18.82 (n = 6). The sequencing coverage was

significantly higher for endpoint samples based on the redundancy

estimation from Nonpareil (n = 12, t test p = 3.008 × 10−8) with an

average of 0.69 ± 0.019 for start‐point and 0.86 ± 0.017 for end‐point

samples. Corresponding Nonpareil curves are shown in Figure A3.

Rarefaction curve and diversity of 16S rRNA gene analysis

Figure A4

Relative abundances of antimicrobial resistance mechanism

Figure A5
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F IGURE A1 Schematic representation of
the AquaFlow mesocosm setup as used in the
presented study. One mesocosm system
included three water tanks (~40, ~40, and
~270 L) connected by two steel channels (10 cm
width and 4 and 2m long) and a pump (10 L/
min) to maintain a circular flow.

F IGURE A2 Principal coordinate analysis (PCoA) (left) and nonmetric multidimensional scaling (NMDS) (right) based on clustering of rpS3
genes detected on metagenomic scaffolds. Samples are separated by treatment and time.
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F IGURE A3 Nonpareil curves for
metagenomic samples. Empty circles indicate
the actual sequencing effort and arrows
indicate the community diversity. Horizontal red
dashed lines represent 95% and 99% coverage.
All samples investigated had more than 60%
coverage in diversity.

F IGURE A4 Rarefaction curve (left) and Simpson diversity (right) based on 16S ribosomal RNA (rRNA) gene analysis. Especially for treatment
samples, diversity was highest at the start and reduced towards the end of the experiment. OTU, operational taxonomic unit.
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F IGURE A5 Stress response encoded on metagenomic scaffolds with relative abundances per mechanism and sample. ABC, ATP‐binding
cassette; MFS, major facilitator superfamily; rRNA, ribosomal RNA; RND, resistance nodulation division.
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