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1. Introduction

Modern deep learning networks are trained to detect image fea-
tures from datasets containing millions of images in thousands
of different classes.[1] After learning to detect such features and to
correlate them to classify or detect objects, they are able to per-
form these tasks better than humans.[2] Automated image analy-
sis via segmentation, object detection, and classification by
artificial intelligence (AI) and particularly by convolutional neural
networks (CNNs; deep learning) is a prominent issue today.[2–5]

However, such networks require a large number of manually
labeled examples for training which can be a challenging issue as
it requires considerable input and effort by human trainers. A
potential workaround is to use artificially created images as train-
ing data. Of course, their quality must be sufficient to permit the
subsequent analysis of real images. Generative adversarial net-
works (GANs) have emerged to generate image data, including

fake images of humans or animals.[6–8]

Such artificial images may then be used
as training data for neural networks.[4,9–11]

Scanning electron microscopy (SEM) is
one of themost prominent methods to deter-
mine the size and shape of particles.[12–14]

Deep learning by CNNs has been proposed
to analyze SEM images to segment and clas-
sify particles with a special emphasis on
materials science.[2,5,15–25] As with most deep
learning approaches, human-classified train-
ing data are required. The use of artificially
created SEM images by GANs was demon-
strated earlier.[11] The application of AI pro-
cedures has also entered the synthesis of

nanoparticles where many synthesis parameters can influence
the outcome with respect to particle size, shape, or particle size
distribution.[26–29] Here, AI can help to analyze data and to predict
suitable synthetic routes, taking experimental data (usually from
electron microscopy) into account.[30–33]

Here, we present a considerable enhancement of the GAN
procedure by introducing image depth information in the form
of simulated height maps. This gives the GAN additional infor-
mation on the particle positions and improves the simulation
quality. Particles of selected shape were designed as 3D
objects.[34] Several hundred particles were then arranged in a lev-
itated state and drop-cast on a flat surface (representing the SEM
sample holder) using the software package Blender.[34] After set-
tling of the particles, two kinds of images were obtained: one con-
taining the segmentation mask of the generated landscape, and a
second depicting a height map of the surface topography of the
particles on the sample holder. These height maps were used as
training data for a CycleGAN[9] as introduced by Rühle et al.[11]

The SEM images created by the GAN were then used to train a
CNN (UNetþþ) for SEM image segmentation and classifica-
tion.[4,9,10] We demonstrate here that the performance of
UNetþþ trained on artificial data is comparable to the same
model trained on real SEM images.[35] We also demonstrate
the limitations of this approach.

2. Results and Discussion

2.1. Simulation of Particle Assemblies by Blender

The creation of artificial particles by the program package
Blender[34] is a straightforward process. Blender offers a variety
of predefined shapes which can represent nanoparticles found in
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Particle assemblies created by software package Blender are converted into
artificial scanning electron micrographs (SEM) with a generative adversarial
network (GAN). The introduction of height maps (i.e., surface topography or relief
structure) considerably enhances the quality of the artificial SEM images by
providing 3D information on the input data. These artificial images serve as input
data to train a convolutional neural network (CNN) to identify and classify
nanoparticles. Although the performance of the CNN trained with artificial SEM
images is slightly inferior to the same CNN trained with real SEM images, this
offers a pathway to create training data for segmentation and classification
networks for SEM image analysis by deep learning algorithms.
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SEM images (Figure 1). Artificial particles with different shapes
were created with Blender, followed by simulated dropping onto
a planar surface. The particles were held in a levitated state before
letting them drop onto the sample holder. The particles were able
to interact with each other as well as the with sample holder, i.e.,
realistic particle assemblies were obtained (Figure 2). The
Blender module Freestyle was used to create an image of the
scenery showing all visible boundaries of objects. In principle,
all kinds and numbers of particles can be created and precipitated
by Blender. This process yielded height maps and noise-free par-
ticle annotation masks. The background was filled in black. The
Freestyle module gave each object a dark rim at its border which
helped the GAN to distinguish individual particles.

2.2. Introduction of Height Maps

Different particle assemblies were created by Blender with ran-
dom particle positions in levitation, different shapes, and differ-
ent particle numbers. Twenty-seven images containing spherical

objects, long and short rods, hexagonal and trigonal plates, cubes,
icosahedra, and tetrahedra were used for GAN training. Figure 3
shows a typical image of spherical particles on a planar surface
from Blender.

Blender was then used to create a height map of the depicted
scenery (Figure 4). Essentially, the height map is a parameter
assigned to each pixel that denotes the normalized height, i.e.,
the distance from the surface. This permits the system to distin-
guish between particles on the top and particles at the bottom.
Otherwise, spheres would be just treated as circles with the same
height. As SEM images are sensitive to the angle between a par-
ticle and the electron beam, this was an important extension to
enhance the GAN training process. In essence, this converts 2D
training data (annotation masks) to 3D data (height maps).

2.3. Training of a GAN on SEM Images

In the original GAN concept, two CNNs are trained. One network,
the “Generator”, tries to generate a realistic image, while a second
network, the “Discriminator”, evaluates the generator’s result. The
discriminator is trained on artificial and real images to assess the
image quality while the generator is trained to create images that
the discriminator will recognize as real. The GAN training is fin-
ished when the generator can produce images that the discriminator
cannot distinguish from real images. An extension of this concept is
the CycleGANwhich is a type of GAN that performs image-to-image
translation.[36] The CycleGAN is able to transfer an image from one
feature space to another without changing the image context. The
feature space comprises all features that occur in an image class,
i.e., the feature space is the general appearance of an image class
(e.g., the appearance of SEM images or their “true nature”). The con-
text of an image is its actual content, e.g., a tree, regardless whether it
is shown in a photograph or on a painting.

Figure 1. Simulated particles generated by Blender. Several hundred of
such objects were dropped on a planar surface to simulate natural particle
assemblies.

Figure 2. A) Simulation of particles created by Blender, dropping on a planar surface. B,C) The particles start in a layered levitation state and then drop on
the surface where they act as individual solid objects. D) Finally, they relax to their final position on the surface.
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The CycleGAN architecture is able to convert artificial binary
annotation masks (foreground and background) into photoreal-
istic SEM images.[11] This was used by Rühle et al. to create arti-
ficial SEM images of TiO2 nanoparticles from their error-free
annotation masks.[11] Annotation masks of particles contain only
2D information of the depicted objects. As the particle height has
considerable influence on the appearance in an SEM image, this
is an important additional parameter. The generator of a GAN
trained only on annotation maps has to guess the height of each

particle which is an error-prone process; therefore, we extended
earlier concepts by introducing height maps.

The CycleGAN learns to introduce the features of real SEM
particle images into the height maps, making them appear like
an SEM image without changing its content concerning particle
position and shape. For the training procedure, we adapted the
CycleGAN used by Rühle et al.[11] We did not change the training
method except for the training data and that now included the
height maps.

Figure 3. A) Top view of spherical particles settled on a planar surface. B) Top view of the Blender Freestyle map showing all particle borders.
C) Annotation mask retrieved from Blender Freestyle. D) Height map generated by Blender. The height map was normalized to [0,1].

Figure 4. Topographic landscape of a simulated particle assembly A) with height maps B); relief structure). These images were prepared only for
illustration and not used in the simulation.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300004 2300004 (3 of 9) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


In general, a CycleGAN consists of four neural networks[36]:
two generator networks and two discriminator networks. The
first generator attempts to create a convincing SEM image from
an artificial height map. The first discriminator learns to distin-
guish between artificial SEM images and real SEM images. The
artificial SEM image is then cycled back to a second generator
which aims to recreate the original height map. The second dis-
criminator learns to distinguish between cycled height maps and
artificial height maps. This can be considered as a min–max
game in which the generator tries to fool the discriminator that
attempts to distinguish artificial SEM images from real ones.[6]

The training ends when the generator creates images that the

discriminator denotes as realistic. The cycling process of height
map to SEM image and back to height map ensures that the SEM
image preserves its content. The content is preserved when par-
ticles that are present on the height map are present in the cre-
ated SEM image. Gaussian noise was added to the height maps
before conversion into artificial SEM images. After the completed
training procedure, the first generator can be used to create artifi-
cial SEM images from Blender input data. The other components
of the GAN are then not used anymore.

Twenty-seven images of artificial height maps from Blender
containing particles of different shape (spheres, plates, pyramids,
indented particles, octahedral, and pentagonal bipyramids) were

Figure 5. Full workflow depicting all stages of data creation and training to create artificial SEM images and to validate their quality for training. A) A
CycleGAN is trained with real SEM images and artificial height maps. The generator learns to create realistic SEM images from height maps while the
discriminator learns to distinguish them from real SEM images. The discriminator gives feedback to the generator whether the created image appears
realistic or not. After the artificial images are judged as realistic, the training is finished. Next, a UNetþþ segmentation model is trained on either artificial
SEM images B) or on real SEM images C) to segment and classify particles. Both segmentation networks are finally validated with real SEM data. The
example shows an image of silver nanoparticles, mostly cubes. The particles were recognized as rods (red), cubes (green), and sphere-like (blue). Note
the particles that were excluded from the analysis because they crossed the image border (shown in gray) and the artificial speckles introduced on larger
particles by the CNN trained on artificial data.
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used to train the GAN. Thirty real SEM images containing nano-
particles in different sizes, shapes (spheres, cubes, indented
spheres, and rods), and materials (Ag, Au, CaP, SiO2, TiO2) were
used to train the GAN. Interestingly, the results were not
improved by extending the training dataset with more training
images. The full workflow is depicted in Figure 5.

Typical images created by the GAN are shown in Figure 6. The
GAN showed a high ability to create realistically appearing
images. Spherical (A1/A2) and indented globular objects
(C1/C2) led to the most convincing results. We were also able
to create good artificial SEM images of pentagonal bipyramids
(B1/B2), discs (D1/D2), and short rods (F1/F2). In contrast, long
rods were not content preservative, i.e., they were only partially
reproduced by the generator (E1/E2). They were split into a chain

of spheres. Assemblies of particles of different shape in one
image were also simulated, but with less convincing results
(not shown). We were not able to resolve these issues within
the presented workflow. Notably, the extension of the training
dataset for the GAN with more images did not enhance the
image quality.

A Gaussian statistical noise (μ= 0 and σ= 0.01) was added
before processing to the height maps to mimic surface irregular-
ities. The scattering of electrons leads to Gaussian noise in real
SEM images.[37] Low levels of noise led to realistic SEM images,
whereas a high noise levels (e.g., μ = 0 and σ> 0.1) led to noisy
and unrealistically appearing images. In contrast, the simulated
images appeared unrealistically smooth without the addition
of noise.

Figure 6. Different artificial SEM images generated by the GAN. Height maps are shown in a grayscale [0;1] with the sample holder a flat plane at the
bottom in black (height value 0) A1–F1). The artificial SEM images after conversion by the GAN are shown in A2–F2). The generator was capable to adapt
to most particle morphologies. The simulated SEM images have a realistic illumination, and visible areas of the sample holder appear blurred as they
often appear in real SEM images. The colored cutouts represent limits of the simulation process (see text and Figure 7).
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The training dataset of real SEM images for the GAN did not
contain discs or pentagonal bipyramids; nevertheless, the net-
work learnt to imitate the generic look of SEM images of such
particles in images and transferred this to the height map, indi-
cating its ability to emulate previously unknown particles shapes.
In some cases, the GAN created “new” particles or tried to fill the
background with some structure (Figure 7). It also tended to con-
vert long rods into chains of spheres. Furthermore, the GAN
tended to fill empty background areas with texture and even
newly created particles. This shows the limits of the GAN simu-
lation procedure. Clearly, feature space and image context are
diverging here.

2.4. CNNs (UNetþþ) Trained on Either Real or Artificial SEM
Images

The primary objective of this work was to use artificial SEM
images as training data for CNNs to segment and classify par-
ticles. In principle, the GAN yields artificial SEM images and
error-free segmentation masks without any human interaction,
although it tends to change the input context (Figure 7).

The UNetþþ architecture was trained on two different data-
sets, respectively.[9] The first CNN was trained on 62 real SEM
images and human labeled annotation masks. The training set
consisted of the images used to train the GAN as well as of SEM
images published by Rühle et al.[11] The second CNN was trained
on 27 artificial SEM images generated as described above by the
GAN. We adopted the methods of Ronneberger et al. for data
preparation and training.[4]

The CNNs were trained to segment the SEM images into
coherent areas of foreground and background and to identify
the individual particles (classification).

2.5. Segmentation and Analysis of SEM Images by the CNNs
Trained with Either Real or Artificial SEM Images

The performance of both networks was tested against human
labeled validation data, containing 14 real SEM images of differ-
ent materials and shapes, previously unknown to the CNNs. For

this, a previously described routine was used (see ref. [35] for
details). The performance of a network was defined by the
Intersection over Union (IoU), defined as

IoU ¼ 100 · TP
TPþ FPþ FN

½%� (1)

with TP: true positive, FP: false positive, TN: true negative, and
FN: false negative, ranging from 0 to 100. The IoU measures the
ability of a segmentation network to assign pixels to the classes
foreground (i.e., particle) and background.

Particles at the edges of the images were not considered as
they might be cut off by the image border.[17] Furthermore,
particles with a minimal diameter of the bounding box
below 10 pixels (i.e., below 88 nm) were excluded from the
analysis.[17]

The UNetþþ model trained on real data and human labeled
annotationmasks reached an IoU of 93.46%. It was clearly able to
segment most particles in the validation dataset. Particles that
were partially covered were also segmented as foreground. In
contrast, the UNetþþ model trained on artificial data reached
an IoU of 81.78%, i.e., significantly poorer, mainly due to the
inability to segment covered particles.

Figure 8 shows a typical analysis of a validation image of SiO2

microspheres, segmented and classified by both models. Despite
the poorer segmentation of the model trained on artificial data, it
was able to separate most particles. One major difference of both
networks was the gap that was generated in the segmentation
mask to separate two adjacent particles. This gap was wider
for the artificial data model. Partially covered particles were more
often ignored or poorly segmented by the artificial data model.

The segmentation and particle identification were quantita-
tively expressed by computing the Feret diameters of all particles
in both segmentation maps, created by the artificial data model
and the real-data model (Figure 9). The CNN trained on artificial
images showed a poorer separation of single particles, especially
of partially covered particles. The particle size distribution was
therefore shifted toward smaller diameters. This model also
tended to assign some particles with larger Feret diameters in
the range of 600–1000 nm due to insufficient separation of

Figure 7. Limits of the GAN simulation, taken from Figure 6. Top row: Image from Blender height maps used as input for the GAN. Bottom row: Output of
the GAN. Images 1 and 2 show the generation of new particles between the original particles. Image 3 shows how sharp borders between particles led to a
blurred fusion. Image 4 shows how particles in the shadow almost vanished. Image 5 shows how the generator converted long rods into a straight chain of
spheres. Although the created images appear more realistic than the input data, the GAN changed the context of the original image in all these cases.
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adjacent particles. This is corroborated by the number of detected
particles: the CNN trained on artificial images found only 1312
particles whereas the CNN trained on real images found 1658
particles. The equivalent diameter for particles after training
with artificial images was 412� 85, and 383� 65 nm after
training with real data. An experienced human analyst manu-
ally determined the diameter of 100 particles in a section of the
same image and found 430� 60 nm. Within the error mar-
gins, both segmentation models and the human analyst found

the same average particle diameter. The same trends were found
for images that depicted other uniform particle shapes (data not
shown).

Finally, we asked 20 chemically experienced persons to distin-
guish between artificial and real SEM images. Twenty-eight
images were shown to them: 16 artificial and 12 real SEM
images. On average, 8 (50%) of the artificial images were wrongly
identified as real whereas 2 (17%) or the real images were
wrongly identified as artificial. This shows that the quality of

Figure 8. A) An SEM validation image depicting SiO2 microspheres, B) segmented either by a CNN trained on artificial data and C) a CNN trained on real data.
A notable difference between the segmentations is the width of the black gap between adjacent particles. The segmentation model trained on real data was
better to recognize partially covered particles in the background. The image depicted here is a cutout of the full image that was analyzed for particles (Figure 9).

Figure 9. Particle size distribution of the particles shown in Figure 8 from the segmentation mask created by UNetþþ models trained on real images
(top) and artificial images (bottom).
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the artificial images was in most cases high enough to fool even
humans who are used to analyze SEM images.

3. Conclusions

Artificial SEM images created by a GAN can be used as training
data for neural networks that segment SEM images. The simu-
lation of particles dropping onto a plane is a convenient method
to obtain naturally appearing particle assemblies on a sample
holder, together with height maps that give 3D information.
In principle, it is possible to create assemblies of any kind of par-
ticle shape, including a mixture of them, using the program pack-
age Blender. Noise must be added to some degree to the particle
height maps, to help the GAN to create realistic images. Too
much noise led to worse results.

After training with real SEM images, the GAN produced real-
istically appearing SEM images of particles of different shape.
However, it tended to add nonexisting particles to the back-
ground and to convert long rods into chains of spheres. Thus, it
changed the content of the image, thus constraining the use of
artificial images as training datasets that contain a predefined
number of particles with preset size and shape.

The artificially created SEM images were well suited to train a
CNN to segment and classify particles from real SEM images.
In sets of validation images, a CNN trained on artificial SEM
images performed slightly worse than a CNN trained on real
(human-classified) SEM images, but its performance was still
satisfactory. The extraction of particle size distribution data
was comparable for both CNNs and close to that of a human
analyst.

In conclusion, SEM images created by GANs are suitable to
train CNNs to extract particle properties from SEM images.
Although limitations remain, this is a promising way to create
large datasets for deep learning that require only little human
effort for training.

4. Experimental Section
SEM micrographs used for the training were recorded with two differ-

ent scanning electron microscopes (SEM): first, an Apreo S LoVac
(Thermo Fisher Scientific) instrument, and second, a FEI Quanta 400F
instrument. For electrically isolating materials, the particles were sputter-
coated with AuPd (80:20).

Neural network training was performed with an NVIDIA GeForce GTX
1660 on a Lenovo IdeaCetre T540—15ICK G Workstation. Images used in
final validation were not used in any training. Anaconda 4.10.3 with Python
3.9.7 and Tensorflow/Keras 2.8.0 were used to implement the neural net-
works. OpenCV Version 4.5.3 was used to calculate particle properties.

Additional material containing the training files and images to train
the GAN as well as the UNet model for image analysis are available at
www.github.com/Dajadan/SEMcycleGAN.
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