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Abstract 

Background  Application of radiomics proceeds by extracting and analysing imaging features based on generic 
morphological, textural, and statistical features defined by formulas. Recently, deep learning methods were applied. It 
is unclear whether deep models (DMs) can outperform generic models (GMs).

Methods  We identified publications on PubMed and Embase to determine differences between DMs and GMs in 
terms of receiver operating area under the curve (AUC).

Results  Of 1,229 records (between 2017 and 2021), 69 studies were included, 61 (88%) on tumours, 68 (99%) 
retrospective, and 39 (56%) single centre; 30 (43%) used an internal validation cohort; and 18 (26%) applied cross-
validation. Studies with independent internal cohort had a median training sample of 196 (range 41–1,455); those 
with cross-validation had only 133 (43–1,426). Median size of validation cohorts was 73 (18–535) for internal and 94 
(18–388) for external. Considering the internal validation, in 74% (49/66), the DMs performed better than the GMs, 
vice versa in 20% (13/66); no difference in 6% (4/66); and median difference in AUC​ 0.045. On the external validation, 
DMs were better in 65% (13/20), GMs in 20% (4/20) cases; no difference in 3 (15%); and median difference in AUC​ 
0.025. On internal validation, fused models outperformed GMs and DMs in 72% (20/28), while they were worse in 14% 
(4/28) and equal in 14% (4/28); median gain in AUC was + 0.02. On external validation, fused model performed better 
in 63% (5/8), worse in 25% (2/8), and equal in 13% (1/8); median gain in AUC was + 0.025.

Conclusions  Overall, DMs outperformed GMs but in 26% of the studies, DMs did not outperform GMs.

Keywords  Artificial intelligence, Deep learning, Machine learning, Radiology, Radiomics

Key Points

•	 Deep learning (DL) models outperform generic mod-
els often but only in 3 out of 4 studies.

•	 Fused models can improve over the generic and DL 
models.

•	 Data leakage, model selection and optimisation, and 
publication bias could affect the comparison between 
generic and DL models.

•	 It is worthwhile to explore both modelling strategies 
in practice.

Background
The application of machine learning (ML) to radiologi-
cal imaging is a fairly old idea and can be traced back at 
least to the 1970s [1]. There are many benefits to such an 
approach. First, it can be noninvasively applied to various 
tasks like diagnosis, classification, and prognosis [2–4]. 
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Second, because imaging potentially contains more infor-
mation than humans can process, ML can exploit it 
systematically, which could lead to superhuman per-
formance. Finally, it allows for automation of time-con-
suming tasks, saving human resources for other essential 
duties.

While this idea was explored in several studies in the 
1990s and 2000s under the heading of texture analysis 
[5–7], it prominently resurfaced only in 2012, when it 
was coined “radiomics” in a seminal paper by Lambin 
et al. [8]. A classic ML pipeline applied to radiomics con-
sists of several steps (Fig. 1) [9]. It was shown that radi-
omics can lead to accurate models [10–12].

Despite its benefits, there are also disadvantages to this 
approach. A key problem is the segmentation of patho-
logic findings, which is often tedious work. Even though 
some (semi)automated solutions exist [13], they are not 
always ready for diagnostic purposes. A second disad-
vantage is the set of features that are used to characterise 
the pathologies quantitatively; these are defined generi-
cally by the use of explicit formulas and are often derived 
from morphological, statistical, and textural properties 
[14]. We call such features “generic” since they are not 
specific to the problem at hand and could thus be una-
ble to capture all information present in the data. Hence, 
models based on generic features, i.e., “generic models” 
(GMs), could perform suboptimally. In contrast, models 
could learn features directly from datasets during train-
ing without requiring explicit formulas. This approach, 
however, requires different methods.

Deep learning (DL), which is a subarea of ML 
based on neural networks, could be able to solve the 

disadvantages of generic models. While the main idea 
dates back to the first ML concepts in the 1950s [15], 
and networks already have been applied to radiologi-
cal data in the 1990s [16], only recently, new techniques 
and increased computation power allowed these net-
works to solve many interesting problems that were 
previously thought to be hard.

Compared to generic modelling, the DL pipeline 
involves fewer steps (Fig. 1), as deep networks can learn 
directly from images without the explicit need for any 
segmentations. Equally important, they can learn predic-
tive features independently during training, bypassing 
the need for explicit feature definitions. We will refer to 
models that use features learned implicitly from data by 
DL as “deep models” (DMs). Because deep models are 
adapted to data, it is reasonable to expect them to yield 
better results than GMs.

Yet, there are drawbacks to deep modelling. Since 
the networks are not given previously defined features, 
they usually need more data to find predictive patterns. 
However, larger sample sizes are often unavailable in 
a radiomic context. In addition, the reproducibility and 
generalizability of deep networks are unclear since they 
are known to be sensitive to the initial weights and might 
behave erratically [17–19]. Both might render any advan-
tage of deep modelling against generic modelling void.

Nonetheless, since DL methods have been applied suc-
cessfully in many fields, they are generally considered 
to be superior to generic modelling in radiomics, even 
though large-scale experiments that analyse this question 
in-depth are currently missing. Indeed, some radiomics 
studies using DL report higher predictive performance 

Fig. 1  Generic and deep modelling applied to radiomics
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than generic modelling [20, 21], but other studies report 
no improvements [22, 23].

This observation raises the question of whether deep 
modelling is truly superior. Therefore, in this review, we 
examined studies that directly compare deep and GMs 
to determine whether a difference in predictive perfor-
mance can be seen. We also discuss the influence of a few 
modelling decisions and potential biases for differences 
in performance between the two models.

Modelling strategies
Generic and deep modelling have many processing steps 
in common (Fig.  1). The main difference relates to the 
generation of features. While in generic modelling stand-
ardised features are extracted from the imaging data, 
deep modelling can employ a wide range of network 
architectures to find optimal features.

Generic modelling
The overall pipeline of generic modelling is rather stand-
ardised (Fig. 1) [3, 24]. Starting from image acquisition, a 
key step is to segment the pathologies. This is necessary 
to focus the computation of the features on the relevant 
area of the imaging. Features are then extracted from the 
volumes and are used to train a classifier.

In all these steps, certain choices have to be per-
formed. For example, the imaging data is first discretised 
to avoid that the extracted features depend too much 
on the inherent noise [25, 26]. This discretisation pro-
ceeds either by binning the data into bins of fixed widths 
or a predefined number of bins, and it is unclear which 
of the two approaches works better for a given dataset. 
From these discretised images, many features, like maxi-
mum, minimum, mean, and variance, are computed 
using explicit formulas, which characterise the image in 
a specific way. However, since it is not known before-
hand which features will be predictive, many irrelevant 
and redundant features will be present. Feature selection 
methods are applied to remove these, and the remaining 
features are then processed by a classifier [27].

While the choice of the feature selection method and 
classifier is central to obtaining a high-performing model, 
in our study, we took the GM as a baseline and there-
fore only considered decision choices regarding the deep 
modelling.

Deep modelling
Deep modelling can be more complex than generic mod-
elling, as neural networks can be built with many differ-
ent topologies and architectures. A description of deep 
networks is beyond the scope of this review; details can 
be found in the literature [28–30]. In a nutshell, a deep 
network can be described as a model with multiple layers 

of neurons connected by weights. These weights are used 
to transform input data into output data; for example, 
a scan depicting a tumour could be transformed into a 
prediction of its malignancy. The weights, therefore, are 
central since they determine the network’s output. Train-
ing of a network can then be understood as a process to 
optimise the weights so that input data is transformed to 
the corresponding label.

However, deep networks are parameterised by a vast 
number of weights, numbering in the millions. Thus, a 
sufficiently large number of training samples is required 
for successful training, making them unsuitable per se in 
areas such as radiomics, where only limited sample sizes 
are available. Pretraining is a commonly used trick to get 
around this problem, where the network is trained on 
data from another domain. The hope is that by pretrain-
ing, the weights will be in a near-optimal state so that for 
successful training of the problem at hand, fewer samples 
are necessary.

Pretraining, however, cannot be directly applied to 
radiomic data since many pretrained networks were 
trained on photographs and can, therefore, only process 
two-dimensional (2D) data, while radiomic data is often 
three-dimensional (3D). A solution would be to process 
the radiomic data slice by slice, but in this approach, the 
spatial context is lost, and the network’s performance 
will be suboptimal. On the other hand, employing a 3D 
network is also difficult because of the low sample sizes; 
pretrained 3D networks are also currently unavailable, 
further deepening the problem. Therefore, a critical 
choice in developing a DM is whether the network should 
be 2D or 3D and whether pretraining should be used.

Networks can also be trained in an end-to-end fash-
ion or used as feature extractors. In the end-to-end case, 
the network is trained and used as a whole. In contrast, 
when used as a feature extractor, features are extracted 
at an intermediate layer of the network and then pro-
cessed using classical machine learning methods. The 
advantage of this approach is that other techniques can 
be used for classification, possibly improving the overall 
performance.

Fused models (FMs)
Models that fuse generic and deep models are of particu-
lar interest, as they should be able to harness the advan-
tages of both modelling strategies and lead to yet higher 
predictive performance since fusing works similarly to a 
small ensemble [31]. The fusion can take place on multi-
ple levels; the most basic approach is to take the average 
of the output of both models. If the network is used as 
a feature extractor, another approach would be to merge 
generic and deep features and apply feature selection and 
classification methods to this merged feature set [32]. 
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Alternatively, the generic features can be added directly 
to the network, so it can utilise them during training [33]. 
More complicated fusion methods are also possible [34, 
35], but because generic features are rather fixed, the 
options mainly affect the neural network’s architecture.

Fusing does not come without disadvantages; the FM 
depends on the GM, which in turn usually depends on 
fine segmentation. Therefore, the key advantage of deep 
modelling is lost in FMs. In addition, since the FM will 
have more hyperparameters, the risk of overfitting is 
higher [36].

Literature review
We conducted a literature search to find studies compar-
ing the two modelling approaches to gather evidence on 
their relative performance.

Search protocol
We identified publications published before 2022 by que-
rying PubMed and Embase databases using the keywords 
“radiomics” and either “deep learning”, “deep neural”, or 
“deep network” (Supplementary material 1).

Study selection
Abstracts of the publications were first screened; all stud-
ies which were not original research were removed. Stud-
ies were excluded that either did not report on a binary 
outcome or were not using 3D data. Studies were not 
considered eligible if as follows: (a) no GM was trained 
or reported; (b) no DM was trained or reported; (c) only 
a FM was trained or reported; (d) deep learning was not 
used for modelling; (e) no area under the curve (AUC) 
was reported; and (f ) the validation scheme was unclear. 
In addition, AUCs from segmentation or survival tasks 
were not included in our study since these AUCs differ; 
for example, a segmentation is a low-dimensional prob-
lem, which has different statistical properties than the 
high-dimensional problems that usually occur in radi-
omic studies with a binary outcome.

Study questions
The main question of this study was whether models 
based on deep modelling perform better than GMs in 
terms of predictive performance, measured by AUC​. In 
addition, we aimed to answer the following questions: 
(a) Do DMs perform better on external data than GMs? 
(b) Do FMs perform better than either the GMs or DMs? 
(c) Do 3D network architectures outperform 2D net-
works? (d) Does pretraining help to improve predictive 
performance? (e) Does the use of deep networks as fea-
ture extractors increase the gain in AUC over end-to-end 
learning? These questions concern only deep modelling 
since we consider GMs as the baseline.

Data extraction
We listed the sample size and the validation scheme used 
for each study. We then extracted the predictive perfor-
mance of the generic, deep, and FMs in the internal and 
external cohorts. Internal data refers here to data col-
lected at the same hospital or centre; external data is 
those gathered at a different hospital or centre. Predictive 
performance was extracted as mean and 95%-confidence 
intervals or converted from standard deviation where 
possible [37]. The difference between the AUC of the 
generic, deep, and FMs was then computed and graphi-
cally displayed separately for models tested on internal 
and external data.

Statistics
Descriptive statistics results were reported as median. 
Statistics were computed using Python 3.10.4.

Results
Literature research
Of 1229 records, 69 studies were included in the analy-
sis (Fig. 2, Supplementary material 2). An overview of all 
included studies is presented in Table 1. Publication dates 
ranged from 2017 to 2022, with most studies conducted 
in 2021 (Fig. 3); no relevant study was found before 2017, 
whereas a few studies were available in 2021 ahead of 
final publication and therefore had a publication date of 
2022.

Study characteristics
Except for one study [38], all were retrospective in nature. 
Studies varied greatly in their sample size (Table  2). In 
the studies that used an independent internal cohort, 
the median sample size of the training cohorts was 
196 (range 41–1,455). In contrast, in the studies that 
employed cross-validation only, without an independent 
internal cohort, the training sample size was even smaller 
(133, range 43–1,426). The validation cohorts were also 
smaller than the training cohorts; the internal cohorts 
had a median size of 73 samples (range 18–535), and the 
external cohorts had 94 samples (range 18–388).

Nearly all studies related to tumours (88%). More stud-
ies used computed tomography than magnetic resonance 
imaging (50% versus 40%) and were conducted on only 
one site (56%); accordingly, most studies either used an 
internal validation cohort (43%) or applied cross-valida-
tion (26%).

Predictive performance
Comparing the performance of generic and deep mod-
elling on the internal validation sets, in 74% (49/66), the 



Page 5 of 14Demircioğlu ﻿European Radiology Experimental            (2023) 7:11 	

DMs performed better than the GMs and vice versa in 
20% (13/66) of the cases (Fig. 4). In 6% (4/66), there was 
no difference. The median difference in AUC was 0.045.

On the external validation sets, the DMs were better in 
65% (13/20) of the cases and the GMs in 20% (4/20) cases 
(Fig. 5). In three cases (15%), no difference was seen. The 
median difference in AUC was 0.025.

A similar picture emerged when considering the FMs. 
On the internal validation sets, the FMs outperformed 
the better of GMs and the DMs in 72% (20/28), while it 
was worse in 14% (4/28) and equal in 14% (4/28) (Fig. 6). 
The median performance gain in AUC was + 0.02. On 
the external validation sets, the FM performed better 
in 63% of the cases (5/8), worse in 25% (2/8), and equal 
in a single case (13%) (Fig. 7). The median gain in AUC 
was + 0.025.

Characteristics of deep modelling
Nearly all DMs were based on convolutional neural net-
works (CNN) (96%, 66/69), with only three exceptions 
that used either a capsule network [39], a generative 

adversarial network [40], or a sparse autoencoder [41]. 
Note that two studies employed a U-Net, which is gen-
erative CNN [42, 43]. Most DMs used 2D architectures 
(58%, 40/69), while pretraining was performed less fre-
quently (45%, 31/69). In 78% (54/69) of all studies, the 
network was trained using the data; in the remaining 22% 
(15/69), no training was performed. The network pre-
dictions were used directly in 55% (38/69) of the cases, 
while in 45% (31/69), the network was used as a feature 
extractor.

Regarding the characteristics of the deep networks, 
2D networks performed better than 3D networks when 
comparing both to the GMs: the median performance 
gain in AUC in the internal cohorts for 2D networks 
was, on average, + 0.05 and for 3D networks + 0.02 
(Table  3). A slightly higher gain could be seen in the 
external cohorts (+ 0.08 versus + 0.0). Furthermore, 
pretraining yielded a higher performance gain (inter-
nal cohorts: median AUC + 0.07 versus + 0.02; external 
cohorts: + 0.09 versus + 0.01). Using the network in an 
end-to-end fashion or as a feature extractor did not 

Fig. 2  Inclusion and exclusion flowchart
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Table 1  Overview of the characteristics of all included studies

If multiple outcomes were analysed in a study, only the outcome with the highest area under the curve was reported. Note that Li (2020), Astaraki (2021), Caballo 
(2021), Chen + Lin (2021), Li (2021), Lin (2021), and Xuan (2021) used data from external sites; however, the data were merged and randomly split before modeling. 
Therefore, the results were considered to be internally validated, not externally.  yes,  no, 3D-BED Three-dimensional biologically effective dose, COVID-19 
Coronavirus disease 2019, CV Cross-validation, CT Computed tomography, DBT Digital breast tomosynthesis, LOO-CV Leave-on-out-cross-validation, MRI Magnetic 
resonance imaging, PET Positron emission tomography
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make a clear difference in the internal cohorts (median 
AUC + 0.05 for both). The situation was different in 
the external cohorts (+ 0.02 versus 0.09).

Discussion
Generic and DL models are currently in use in radiom-
ics, but the difference in predictive performance has not 
yet been analysed across studies. Therefore, we reviewed 
studies that used both modelling strategies and identi-
fied 69 studies that provided a direct comparison.

Predictive performance
Overall, there was a significant advantage of deep 
over generic modelling, as evident by an increase in 
median AUC of + 0.045 in the internal cohorts. How-
ever, in 26% of the studies, no increase was visible. It 
is unclear whether this depended on the data or if the 
modelling was not performed as well as it could have 

been. A lower difference was found in external cohorts 
(AUC + 0.025), indicating that DMs perform on 
external data at least as good as GMs. Fusing the two 
modelling approaches had similar gains (AUC + 0.02 
and + 0.025). Since the overall number of studies with a 
FM was smaller, the effect must be read cautiously.

Characteristics of DL modelling
As expected, network architectures derived directly from 
CNN were used nearly exclusively, and other architec-
tures were vastly underexplored. Therefore, we consid-
ered three deep modelling choices that are relevant for 
CNNs: the dimensionality of the network, the use of pre-
trained weights, and end-to-end training. It turned out 
that on average, 2D networks performed better than 3D 
networks when compared to the GMs (AUC + 0.05 ver-
sus + 0.03); nonetheless, the median sample sizes of the 
training sets were higher for 3D networks (224 versus 
166 samples), showing that most studies preferred 3D 

Fig. 3  Characteristics of the included studies
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Table 2  Overview of the predictive performance reported in the included studies

If only a cross-validation was performed without an independent internal validation cohort, the number of training samples across all folds is reported the #CV 
column. Otherwise, if internal validation cohort was available, then the number of training and validation samples are reported in the #training and #test column. 
Note that Li (2020), Astaraki (2021), Caballo (2021), Chen + Lin (2021), Li (2021), Lin (2021), and Xuan (2021) used data from external sites; however, the data were 
merged and randomly split before modeling. Therefore, the results were considered to be internally validated, not externally. Note also that Hu + Gong (2021) and 
Song + Wang + Luo (2021) use a U-Net, which is a generative network.  yes,  no, 2D Two-dimensional, 3D Three-dimensional, CapsNet Capsule neural network, 
CNN Convolutional neural network, GAN Generative adversarial network, SAE Sparse autoencoder
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networks when sample sizes were higher. Pretraining did 
yield a higher performance gain (AUC 0.07 versus 0.02). 
Finally, using the network in an end-to-end fashion or as 
a feature extractor did not make a difference (AUC + 0.05 
versus + 0.05).

These observations must be taken with some caution 
since they only reflect an average tendency. For example, 
pretraining did not yield superior results in some studies 
[22, 44, 45]; similarly, 3D networks can perform better [46].

Sample size
The data sets used were relatively small on average, 
as reflected in the median sample sizes of the training 
cohorts (n = 196). However, the sample sizes of the test 
cohorts were even smaller (n = 73 and n = 94). Thus, cau-
tion should be exercised when using such small cohorts 
to demonstrate that one modelling approach is statisti-
cally better than another. Because a rule of thumb derived 
from simple statistical distributions requires at least 30 

Fig. 4  Graphical display of the performance differences between the generic and deep models on the internal validation sets. On the right, the 
difference in area under the curve together with the 95% confidence interval is given. A positive difference means that the deep model performed 
better than the generic model
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Fig. 5  Graphical display of the performance differences between the generic and deep models on the external validation sets. On the right, the 
difference in area under the curve together with the 95% confidence interval is given. A positive difference means that the deep model performed 
better than the generic model

Fig. 6  Graphical display of the performance differences between the fused and the better of generic and deep models on the internal validation 
sets. On the right, the difference in area under the curve together with the 95% confidence interval is given. A positive difference means that the 
fused model performed better than the deep and the generic models

Fig. 7  Graphical display of the performance differences between the fused and the better of generic and deep models on the external validation 
sets. On the right, the difference in area under the curve together with the 95% confidence interval is given. A positive difference means that the 
fused model performed better than the deep and the generic models
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samples per group to establish a statistical difference [47, 
48], the sample sizes of the studies appear to be too small.

Validation and generalisability
Many of the included studies used an internal test cohort 
instead of applying cross-validation. However, testing 
on a single split can be unreliable [49], and since cross-
validation can be understood as applying systematically 
repeated splits, it should be preferred. Most of the stud-
ies also did not test their model on external data, since 
setting up a large-scale multicentre study has a high 
organisational cost. Their generalisability, measured as 
performance on external data sets, is therefore unclear. 
In addition, since nearly all studies were retrospective in 
nature, their clinical applicability [10] was not tested.

Sources of bias
Several sources of bias exist which can impede a fair 
comparison. These include biases in modelling and study 
quality, interpretation, and publication.

Data leakage
In both modelling strategies, data leakage can occur; for 
generic modelling, a few studies seemed to apply the feature 
selection to all data before applying cross-validation and do 
not test their model on a fully independent cohort [50]; how-
ever, this can lead to a strong positive bias [51]. The same error 
can occur for DMs if they are used as feature extractors. For 
DMs, it is also conceivable that some studies misused the 
validation cohort for testing during training, which would also 
lead to a positive bias. These problems cannot be detected 
from the studies, adding complexity to a direct comparison.

Interpretability
In the literature, generic features are thought to be more 
interpretable by a human reader than deep features [14]. 

Therefore, a potential trade-off occurs when using deep 
features, since a gain in predictive performance would 
come with a loss in interpretability. This trade-off cannot 
be directly quantified since it is unclear how to measure 
“interpretable”. While some generic features like volume 
and mean intensity have a clear meaning, other features 
like “Wavelet-HLH_glrlm_RunVariance” are inherently 
obscure. Nevertheless, the characteristics of the generic 
features utilised by the model can potentially be used 
in further experiments to demonstrate a biological cor-
relation, which is not directly possible for deep features. 
It must be noted, however, that statistically equivalent 
models may select quite different features [52].

Bias in modelling
For both modelling strategies, there is a certain bias con-
cerning the used methods. In general, it is unknown a 
priori which methods will perform best; therefore, it is 
best practice to test multiple methods. For example, fea-
ture selection is crucial in higher dimensions, and dif-
ferent choices can lead to models with vastly different 
performance [27, 53, 54]. Yet, some of the included stud-
ies only consider a single feature selection and classifica-
tion method for generic modelling [55]; if this method 
is not adequate for the data, it can lead to an underper-
forming model and would introduce another bias. Other 
studies extract only a few features [56] which can also 
result in a potential loss in performance [57]. DMs can 
also suffer from such a bias since nearly all studies used 
a CNN architecture; it is conceivable that other network 
architectures could perform better [58].

In both modelling strategies, hyperparameters, which 
are parameters that are not learned during training, need 
to be selected. This is critical for many models; for exam-
ple, a network can only perform well if the learning rate 
is chosen properly. But since tuning hyperparameters is 

Table 3  Overview of the influence of network characteristics on the predictive performance relative to generic modelling

The median gain in area under the curve (AUC) was calculated as the difference in performance from the generic models across all studies that used a network with 
the corresponding feature. Similarly, the “better”, “equal”, and “worse” columns denote the number of studies that reported better, equal, or worse AUC of the deep 
model (with the corresponding feature) compared with the generic model

Internal validation cohorts External validation cohorts

Network characteristic Median 
gain in 
AUC​

Better Equal Worse Median 
gain in 
AUC​

Better Equal Worse

Dimension Two-dimensional  + 0.05 78% (31/40) 8% (3/40) 15% (6/40)  + 0.08 82% (9/11) 0% (0/11) 18% (2/11)

Three-dimensional  + 0.02 69% (18/26) 4% (1/26) 27% (7/26)  + 0.00 44% (4/9) 11% (1/9) 44% (4/9)

Weights Pretrained  + 0.07 86% (24/28) 7% (2/28) 7% (2/28)  + 0.09 67% (6/9) 22% (2/9) 11% (1/9)

Trained from scratch  + 0.02 66% (25/38) 5% (2/38) 29% (11/38)  + 0.01 64% (7/11) 9% (1/11) 27% (3/11)

Approach End-to-end  + 0.05 72% (26/36) 8% (3/36) 19% (7/36)  + 0.02 60% (6/10) 10% (1/10) 30% (3/10)

Feature extractor  + 0.05 77% (23/30) 3% (1/30) 20% (6/30)  + 0.09 70% (7/10) 20% (2/10) 10% (1/10)
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computationally expensive, hyperparameters are often 
left at their default values, which can lead to degraded 
performance. This can be problematic if tuning is only 
applied to one of both models; perceived improvements 
would be spurious since the comparisons could not be 
regarded as fair.

Such unfair comparisons might happen more often 
than expected because many papers aim to show that 
DMs can yield higher performances than GMs. There-
fore, it might happen unintentionally that most efforts 
will be put into developing the DM, whereas less effort is 
put into the GM. This is especially true if the DM initially 
performs worse than expected. In this case, deep model-
ling might be continued until a better-performing model 
is found.

Study quality
A well-known problem in radiomics concerns the qual-
ity of studies, which can lead to a lack of reproducibility. 
Although guidelines exist [59], and a quality score spe-
cific to radiomic papers has been introduced [9], many 
papers still need to adhere to this guideline [60]. Thus, 
the overall quality of studies may be another bias factor 
that needs to be considered.

Publication bias
On top, publishing negative results is still not common. 
Thus, if studies are undertaken with the hope that the 
DM improves over the GM, but fail to show this, the 
results might not be reported. Furthermore, a widely 
underperforming DM might also be not reported since 
there is a certain risk that training was performed incor-
rectly; this is true for the GMs to a far lesser extent since 
the training is less complex and there are more user-
friendly ML frameworks [61, 62].

Recommendations
Given these results, we recommend not limiting one-
self to a GM or a DM but computing both. Care should 
be taken that the GM is not neglected, but that the full 
range of methods and parameters is tested. Deep mod-
elling with pretrained 2D networks based on CNN 
architectures is advisable, although, if permissible, cus-
tom 3D network architectures should also be tested. 
Finally, it also seems to make sense to test a FM as it can 
improve the predictive performance even further.

Limitations
Our study has a few limitations. First, a direct compari-
son between GMs and DMs is influenced by many fac-
tors, for example the preprocessing and harmonisation 

of the images and the choice of segmentations, that is, 
whether they include tissue beyond the pathology. How-
ever, to keep things simple, we only considered a few fac-
tors for deep modelling and none for generic modelling, 
since we regarded these as a baseline. We also only con-
sidered AUCs, the most often used measurement, though 
other measures like sensitivity and specificity are often 
equally important. In addition, several papers report 
on multiple methods and outcomes. In these cases, we 
selected the model or outcome with the highest AUC 
(regardless whether it was obtained in the training or test 
cohort). These choices could have potentially introduced 
a bias into our study.

Conclusion and future directions
In this review, evidence has been found that deep model-
ling can outperform generic modelling. However, since 
this is not always the case, both generic and deep model-
ling should be considered in radiomics. Even though our 
results showed that DL outperforms generic modelling 
by some margin, the comparison was only indirect. A 
large benchmark study involving several datasets would 
lead to a better understanding of the modelling strate-
gies and yield more precise recommendations. This 
would include studies on the reproducibility of deep 
features since these were only performed for generic fea-
tures yet [63, 64]. DL also has many more applications in 
radiomics that need to be explored in detail. For exam-
ple, it can be used as an image-to-image transformer 
[65] and for automated segmentations [66]; these possi-
bilities are orthogonal to both modelling strategies and 
could improve both.
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