
Fixpoint Checks and Computations for
Behavioural Metrics and Games

Von der Fakultät für Ingenieurswissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaften der

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von

Richard Otto Eggert
aus

Köln

1. Gutachter: Prof. Dr. Barbara König
2. Gutachter: Prof. Dr. Giorgio Bacci

Tag der mündlichen Prüfung: 28. November 2023







Abstract

Lattice theory is a well studied area of mathematics and finds many applications, for
example in system verification. By Knaster-Tarksi, any monotone function f ∶L→ L on
a complete lattice L admits a least and a greatest fixpoint. It often occurs that one is
specifically interested in such a least or greatest fixpoint.

This thesis provides a framework which can be used to verify if some fixpoint a ∈ L of f
is indeed the least/greatest fixpoint of f . Additionally, we are able to derive lower/upper
bounds for least/greatest fixpoints. This theory will be embedded into a (gs-)categorical
framework which allows us to create a tool for fixpoint verification.

Additionally, there is interest in computing these least/greatest fixpoints as no general
method exists which always yields an exact computation. To this end, we provide a
generalization of strategy iteration which allows one to compute least/greatest fixpoints.

Throughout this thesis we provide a wide range of applications where these methods
can be applied. These include a variety of state-based system - termination probability
of Markov chains, bisimilarity for transition systems and behavioural metrics for labeled
Markov chains, metric transition systems and probabilistic automata - and three two-
player-games - discounted mean-payoff games, simple stochastic games and energy games.



Zusammenfassung

Die Verbandstheorie ist ein gut untersuchtes Gebiet der Mathematik und findet viele
Anwendungen, beispielsweise in der Systemverifikation. Nach Knaster-Tarski hat jede
monotone Funktion f ∶L → L auf einem vollständigen Verband L einen kleinsten und
einen größten Fixpunkt. Oftmals ist man speziell an solch einem kleinsten oder größten
Fixpunkt interessiert.

Diese Arbeit stellt eine Theorie zur Verfügung, welche benutzt werden kann, um zu
ermitteln, ob ein gegebener Fixpunkt a ∈ L von f in der Tat der kleinste/größte Fix-
punkt von f ist. Zusätzlich kann man untere/obere Schranken für den kleinsten/größten
Fixpunkt ermitteln. Diese Theorie wird in ein (gs-)kategorisches Framework eingebettet,
welches es uns ermöglicht, ein Werkzeug für solche Fixpunktverifizierungen zu erstellen.

Darüber hinaus besteht Interesse an der Berechnung dieser kleinsten/größten Fixpunkte,
da es keine allgemeine Methode gibt, die immer eine exakte Berechnung liefert. Zu diesem
Zweck stellen wir eine Verallgemeinerung von Strategie-Iteration bereit, die es ermöglicht,
kleinste/größte Fixpunkte zu berechnen.

In dieser Arbeit stellen wir einige Anwendungen vor, für die diese Methoden angewendet
werden können. Dazu gehören verschiedene zustandsbasierte Systeme - Terminierungswahr-
scheinlichkeit für Markow-Ketten, Bisimularität für Transitionssysteme und Verhaltensab-
stände für beschriftete Markow-Ketten, metrische Transitionssysteme und probabilistische
Automaten - und drei Zwei-Spieler-Spiele - diskontierte Mean-Payoff-Spiele, einfache
stochastische Spiele und Energie-Spiele.
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1 Introduction

Fixpoints appear in almost every area of mathematics - algebra, analysis, numeric,
optimization, computer science, etc. To this end, many fixpoint theorems were discovered,
e.g. fixpoint theorems by Banach, Browder-Göhde-Kirk, Borel and Gödel, to name a few.
A handful of fixpoint iterations stemming from these discoveries can be used in different
settings, e.g. Newton’s method or more specifically the Bellman-Ford algorithm which
computes shortest paths can be seen as fixpoint iterations. In this thesis we are mainly
interested in fixpoints over complete lattices.

Lattices - a set L induced with a (partial) order that has all infima and suprema - first
showed up in the middle of the nineteenth century in algebraic logic and number theory.
Lattices resurfaced in the end of the 1920’s in the field of algebra, mainly studied by
Birkhoff [Bir40]. Knaster and Tarski added to this theory and provided a characterization
of least and greatest fixpoints for a monotone function f ∶L→ L over a complete lattice
L [KT, Tar55].

This thesis provides a method to verify if some given fixpoint a ∈ L of f is the
least/greatest fixpoint (i.e. a = µf/a = νf) as well as deriving lower/upper bounds for
a least/greatest fixpoint. Additionally, we present a generalization of strategy iteration
which exactly computes these extreme fixpoints.

In order to make these methods effective we require a non-expansive function f ∶MY →
MY where Y is some finite set and M a complete MV-chain. We remark that MY denotes
the set of functions mapping from Y to M. Complete MV-chains are complete lattices
enriched with a strong algebraic structure (e.g. the interval [0, 1] with truncated addition)
and non-expansiveness basically means that the distance between any two elements does
not increase after applying f .

Such fixpoints are ubiquitous in computer science; we are in particular interested in
applications in concurrency theory and games, such as bisimilarity [San11], behavioural
metrics [DGJP04, vB17, CvBW12, BBKK18] and two-player-games [Con90, BCD+11,
ZP96].

1.1. General Ideas
We are given a non-expansive function f ∶MY →MY and some fixpoint a∶Y →M of f .
How can we detect if this fixpoint a is the least fixpoint of f or not?

To this end, we will derive a function - called approximation - on the powerset of Y .
Any fixpoint of this function corresponds to what we call a "vicious cycle". Elements in
such a vicious cycle intuitively convince each other that their value is higher/lower than
it actually is.
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Now, given some fixpoint a ∈MY of a non-expansive function f ∶MY →MY , it holds
that a is the least fixpoint of f if and only if the system does not contain any vicious
cycle. Additionally, we provide an (incomplete) proof rule which allows one to derive
lower bounds for the least fixpoint. This theory is worked out in Chapter 3.

As we will see, non-expansive functions enjoy good closure properties which allows one
to assemble a more complicated function f ∶MY →MY from a few basic functions. This -
together with the fact that our approximation theory can be cast into a gs-categorical
framework - forms the basis for the tool UDEfix we will present in Chapter 4 which
performs fixpoint checks for user created functions.

Next, we are also interested in finding a general method to compute µf as no general
method exists which yields an exact computation. Therefore, we derive a generalization
of strategy iteration which progressively improves the strategy until an optimal one is
found. This optimal strategy corresponds to µf . This generalization of strategy iteration
is worked out in Chapter 5.

Dual methods for greatest fixpoints will be presented as well.

1.2. Related Literature

It is well-known that several computations in the context of system verification can
be performed by various forms of fixpoint iteration and it is worthwhile to study such
methods at a high level of abstraction, typically in the setting of complete lattices and
monotone functions. Going beyond the classical results by Tarski [Tar55], combination of
fixpoint iteration with approximations [CC00, BKP20] and with up-to techniques [Pou07]
has proven to be successful. Here we treat a more specific setting, where the carrier set
consists of functions from a finite set into an MV-chain and the fixpoint functions are non-
expansive (and monotone), and introduce a novel technique to perform fixpoint checks and
obtain upper bounds for greatest and lower bounds for least fixpoints. Such techniques
are applicable to a wide range of examples and so far they have been studied only in quite
specific scenarios, such as in [BBL+21, Fu12, KKKW18]. The paper [KUK+22] presents
somewhat related algorithms regarding reachability analysis.

We view gs-monoidal categories [CG99] as a means to compositionally build monotone
non-expansive functions on complete lattices, for which we are interested in the least (or
greatest) fixpoint.

Fixpoint equations also arise in the context of coalgebra [Rut00], a general framework
for investigating behavioural equivalences for systems that are parameterized – via a
functor – over their branching type (labelled, non-deterministic, probabilistic, etc.). Here
in particular we are concerned with coalgebraic behavioural metrics [BBKK18], based
on a generalization of the Wasserstein lifting [Vil09]. Such liftings require the notion of
predicate liftings, well-known in coalgebraic modal logics [Sch08b], lifted to a quantitative
setting [BKP18].
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Strategy iteration is used in many different application domains with fairly similar
underlying ideas and we believe that it is fruitful to provide a general definition of the
technique, clarifying and solving several issues on this level. We propose both a strategy
iteration approaching the least fixpoint from below as well as from above.

There is an extremely wide literature on strategy iteration, often also referred to as
policy iteration or strategy improvement (for an overview see [GTW02]). Several quasi-
polynomial algorithms have been recently devised for parity games [CJK+17, JL17, Leh18],
while the existence of a polynomial algorithm is still an important open problem. This
has been generalized to finite lattices by [HS21].

Various papers on strategy iteration focus on lower bounds [Fri11, Fea10]. This thesis,
rather than concentrating on complexity issues, provides a general framework captur-
ing strategy iteration in a general lattice theoretical setting. A work similar in spirit
is [ABdMS21] which proposes a meta-algorithm GSIA such that a number of strategy im-
provement algorithms for simple stochastic games arise as instances, along with a general
complexity bound. Differently from ours, this paper focuses on simple stochastic games
and iteration from below. However, it allows for the parametrisation of the algorithm on
a subset of edges of interest in the game graph, which is not possible in our approach,
and so it can provide interesting suggestions for further generalisations.

Given their generality, we believe that the algorithms proposed in this thesis have the
potential to be applicable to a variety of other settings.

We will discuss additional related literature in various chapters.

1.3. A Short Example
Imagine a game played on the following game graph:

ε max

The game starts by placing a pebble in one of the two states. The aim of the player -
called Max - is to maximize his payoff. When the pebble is in state ε, Max obtains payoff
ε ∈ (0, 1). Whenever the pebble is in state max the player can choose where to move the
pebble - either to state max or state ε. If the pebble never reaches state ε player Max
obtains a payoff of 0 and he can obtain a maximal payoff of 1.

As it often occurs the payoff player Max is able to obtain in any state can be derived
as the least fixpoint of the following function V ∶ [0, 1]{max,ε} → [0, 1]{max,ε}, defined as

V(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

ε if v = ε

max{a(max), a(ε)} if v =max

for a∶{max, ε} → [0, 1]. It is immediate that player Max is able to obtain payoff ε
whenever the pebble is in either state which corresponds to the least fixpoint µV of V,
i.e. µV(ε) = µV(max) = ε.
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We briefly remark that V is in fact non-expansive and the interval [0, 1] is a complete
MV-chain (with additional operators). Also, the above game is a simple stochastic game
which we will discuss throughout this thesis.

Now, the function V admits multiple fixpoints, e.g. the greatest fixpoint νV of V is
given by νV(ε) = ε and νV(max) = 1. In the case of νV, it is a fixpoint because state
max convinces itself that its payoff is 1, as

V(νV)(max) =max{νV(max), νV(ε)} =max{1, ε} = 1

which does not make sense since moving the pebble in a cycle yields a payoff of 0. This is
what we call a "vicious cycle" as states in this cycle (in this case only state max) convince
each other that their payoff is higher than it actually is. The theory in Chapter 3 enables
us to detect these vicious cycles.

In the above example, it is rather clear, that the optimal (positional) strategy (fixing
the successor of each state of player Max) for player Max is to move the pebble to state ε
whenever it is in state max. This strategy - called C - corresponds to the least fixpoint
µV of V in the sense that the strategy-induced function VC ∶ [0, 1]{max,ε} → [0, 1]{max,ε},
defined as

VC(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

ε if v = ε

a(ε) if v =max

for a∶{max, ε} → [0, 1], has as least fixpoint µVC = µV. In Chapter 5 we derive a
generalization of strategy iteration.

1.4. Applications

As we have discussed, our theories require a non-expansive function f ∶MY →MY . This
might seem rather restrictive but as we will see many applications can be cast into this
framework.

To this end, we will analyze the following applications in this thesis:

• Termination probability for Markov chains

• Bisimilarity for transition systems

• Behavioural distances for labeled Markov chains

• Behavioural distances for metric transition systems

• Behavioural distances for probabilistic automata

• Discounted mean-payoff games

• Simple stochastic games
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• Energy games

There exist applications that can not be cast into our framework, e.g. parity games or
mean-payoff games - as their solution does not correspond to a suitable fixpoint operator.

Quite interestingly, we were able to find an application in a seemingly completely
different area - weakest preexpectations for (probabilistic) programs [MMKK18]. Here,
given a postexpectation g and a (probabilistic) program C, we aim to derive the weakest
preexpectation wp⟦C⟧(g), i.e. what is the expected value of g after executing C. We are
able to embed this setting into our framework with some restrictions and show that the
function wp⟦C⟧ is non-expansive for standard programs C. It gets even more interesting
when the program C contains a while-loop. In this case, the weakest preexpectation
corresponds to a least fixpoint and there exists interest in obtaining lower bounds for this
warranted preexpectation. To this end, our theory provides an (incomplete) proof rule.

1.5. Structure

Most content presented in this thesis can be found in the original publications. A few
additional applications were added and some parts are worked out in more detail. Also,
we reorganized some contents to a more fitting position. For partial reading, see Figure 1.1
for a dependency graph for this thesis.

We build the mathematical foundation of the theories discussed earlier in Chapter 2.
We first introduce the notations and elementary definitions (Section 2.1) which are mostly
standard. Then we discuss the theory of linear programming (Section 2.2), complete
lattices and MV-chains (Section 2.3), category theory (Section 2.4) and coalgebraic
behavioural metrics (Section 2.5). Afterwards we introduce the applications we will
use to illustrate our theories: state-based systems (Section 2.6) and two-player games
(Section 2.7). There is very few original research within this chapter - all proofs that are
written out can be seen as such.

In Chapter 3 we discuss the theory from the paper "Fixpoint Theory - Upside
Down" [BEKP23b]. After discussing the theory for approximating the propagation of
increases (Section 3.2) we derive the main proof rules we derived for greatest fixpoints
(Section 3.3). After discussing the dual view for least fixpoints (Section 3.4) we tend to
the (de)composition of functions and their approximations (Section 3.5). Next, we will
discuss the approximations for the applications introduced in Chapter 2 (Section 3.6).
Here, one can find some extensions to the original paper as not all applications were
discussed in the original publications.

Chapter 4 tends to embedding the theory from Chapter 3 into a categorical setting based
on the paper "A Monoidal View on Fixpoint Checks" [BEK+23b]. We can (partially) extend
the theory to an infinite domain (Section 4.2) before describing the categories our functions
and their approximations live in (Section 4.3). This allows us to find approximations for
general predicate liftings (Section 4.4) and generalize the approximation of the Wasserstein
lifting (Section 4.5). Afterwards we show that our previously derived categories are gs-
monoidal (Section 4.6) which allowed us to create the tool UDEfix (Section 4.7) where
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the user can input his or her functions.
Lastly, in Chapter 5 we aim to generalize strategy iterations as in the paper "A Lattice-

Theoretical View of Strategy Iteration" [BEKP23a]. Here, we derive two generalized
strategy iterations - one approaching from above and one from below to compute
some least fixpoint (Section 5.2). We also discuss the dual view for greatest fixpoints
(Section 5.2.6) which was not present in the original publication. Afterwards, we instantiate
these strategy iterations to the applications from Chapter 2 (Section 5.3) and perform a
few runtime comparisons (Section 5.4). A handful of applications were not discussed in
the original paper and the runtime comparison for discounted mean-payoff games is new
as well.

We end with a conclusion and suggest future work (Chapter 6).
Proofs that were deemed too extensive and/or less central can be found in the appendix

(Chapter A).
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2 Preliminaries

In this chapter we give an overview of the preliminaries needed for the theories in later
chapters. After giving a short overview on elementary definitions and notations used
throughout this thesis in Section 2.1, we briefly explain linear programming in Section 2.2
as a handful of linear programs arise throughout this thesis. Next, we introduce complete
lattices and MV-chains in Section 2.3. These algebraic structures form the basis of the
later introduced "Upside-Down"-theory in Chapter 3. Afterwards we give a short overview
on the essential definitions of category theory in Section 2.4 which will be used to define
coalgebraic behavioural metrics in Section 2.5. These allow for a quantitive measurement
of the difference in behaviour of two states in a system. Lastly, we introduce a few
example systems used to illustrate and apply the later theories. These are state based
systems (Section 2.6) and two-player games (Section 2.7) which - due to their simplicity -
yield excellent illustrations of the later theories.

2.1. Notations and Elementary Definitions

We briefly introduce the elementary definitions and notations used throughout this thesis.
Most definitions are well-known and the notations are rather standard.

Sets. We use standard notations: N is the set of natural numbers (including 0), Z the
set of integers, Q is the set of rational numbers and R is the set of real numbers. We
denote R+ as the set of non-negative real numbers (including 0). Additionally, we write
N∞ = N ∪ {∞} and R∞ = R ∪ {−∞,∞}.

Furthermore, given sets X and Y , we write x ∈ X (x ∉ X) to denote that x is
(not) an element of X. A map or mapping or function f between two set X and Y ,
written as f ∶X → Y , assigns exactly one element f(x) ∈ Y to each element in x ∈ X.
XY = {f ∣ f ∶Y →X} denotes the set of all mappings from Y to X.

Given some set Y and a subset Y ′ ⊆ Y , the characteristic function χY ′ ∶Y → {0, 1} is
defined for y ∈ Y as follows:

χY ′(y) =
⎧⎪⎪⎨⎪⎪⎩

1 if y ∈ Y ′

0 otherwise
.

We use typical λ-calculus notation, i.e. λx.y describes the function which maps each x
to some constant y.
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The cross product X =X1 × ⋅ ⋅ ⋅ ×Xn between sets X1, . . . Xn is the set of tuples given
by

X = {(x1, . . . , xn) ∣ x1 ∈X1, . . . , xn ∈Xn}
We also define projection maps to the n-th component in the usual way, i.e. πi∶Xn →X
where Xn =X × ⋅ ⋅ ⋅ ×X (n-times) with πi(x1, . . . , xn) = xi for i = 1, . . . , n. ∣X ∣ denotes the
cardinality of the set X. In a similar fashion, for functions fi∶Xi → Yi, i = 1, 2, . . . , n, we
define f1 × . . . fn∶X1 × . . . Xn → Y1 × . . . Yn for (x1, . . . , xn) (xi ∈Xi) as

(f1 × . . . fn)(x1, . . . , xn) = (f1(x1), . . . fn(xn)).

Definition 2.1.1 (powerset). Given some set X, we denote by P(X) the powerset
of X. We define

Pf(X) ∶= {Y ∈ P(X) ∣ ∣Y ∣ <∞}

as the finite powerset of X. If X is finite it holds that P(X) = Pf(X).

Example 2.1.2. Let X = {x, y, z}. Then ∣X ∣ = 3 and

P(X) = Pf(X) = {∅,{x},{y},{z},{x, y},{x, z},{y, z},{x, y, z}}
where ∅ denotes the empty set.

We will frequently be working with probability distributions. To this end, it makes
sense to define the support of a function, since we will mostly be working with finitely
supported probability distributions.

Definition 2.1.3 (support). Given some set X and a function f ∶X → R. We
define the support supp(f) of f as

supp(f) = {x ∈X ∣ f(x) /= 0}.

Definition 2.1.4 (probability distribution). Given some set X, a probability
distribution over X is some map p∶X → [0, 1], such that ∑x∈X p(x) = 1. We write
D(X) for the set of probability distributions over X, i.e. D(X) = {p∶X →
[0, 1] ∣ ∑x∈X p(x) = 1}.
We denote Df (X) the set of probability distributions with finite support,
i.e.

Df (X) = {p∶X → [0, 1] ∣ ∑
x∈X

p(x) = 1 and supp(p) <∞}.

If X is finite D(X) = Df (X) holds.
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Example 2.1.5. Let X = {x, y, z}. Then p∶X → [0, 1] with p(x) = 0.5, p(y) = 0.5 and
p(z) = 0 is an element of D(X).

When describing a probability distribution we usually omit the elements outside the
support.

Relations. For a binary relation R ⊆X × Y , we might write xRy instead of (x, y) ∈ R
to indicate that x and y are related. We need a few equivalence relations in this thesis.

Definition 2.1.6 (equivalence relation). A relation R ⊆X ×X is an equivalence
relation if it is

• reflexive: for all x ∈X it holds that (x, x) ∈ R

• symmetrical: for all x, y ∈X it holds that if (x, y) ∈ R then (y, x) ∈ R

• transitive: for all x, y, z ∈ X it holds that if (x, y) ∈ R and (y, z) ∈ R then
(x, z) ∈ R

Given an equivalence relation R on some set X, the equivalence class of an element a ∈ S,
denoted by [a] is given by [a] = {x ∈X ∣ xRa}. The equivalence classes form a partition
of X and the set of equivalence classes is called the quotient set, denoted by X/R.

Example 2.1.7. Let X = {x, y, z} and R = {(x, x), (y, y), (z, z), (x, y), (y, x)}. Then
R ⊆X ×X is an equivalence relation and X/R = {{x, y},{z}} is the quotient set.

Metrics and Norms. We list the properties of a metric and a pseudometric.

Definition 2.1.8 (pseudometric, metric). Given some set X, a map d∶X ×X → R
is a pseudometric if the following axioms hold for all x, y, z ∈X:

1. Reflexivity: d(x, x) = 0

2. Symmetry: d(x, y) = d(y, x)

3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

A pseudometric d∶X ×X → R is a metric if additionally it holds for all x, y ∈X:

• Positiv definite: d(x, y) = 0 if and only if x = y

If d is a (pseudo)metric on X, we call (X, d) a (pseudo)metric space. If d has
codomain [0,⊺] for some ⊺ > 0, we call (X, d) a ⊺-(pseudo)metric space.
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Pseudometrics allow for differing elements to have distance 0 which will prove useful.
Note that any metric is a pseudometric. Throughout this thesis we will mostly be working
with 1-(pseudo)metric spaces. Most people are familiar with the euclidian and discrete
metric.

Example 2.1.9. ([0,⊺], de) is a ⊺-metric space where

de(a, b) = ∣a − b∣

for a, b ∈ [0,⊺]. We call de the euclidian metric.

([0,⊺], d′) is a ⊺-metric space where

d′(a, b) =
⎧⎪⎪⎨⎪⎪⎩

1 if a /= b

0 otherwise

for a, b ∈ [0,⊺]. We call d′ the discrete metric.

We can define non-expansive functions between metric spaces.

Definition 2.1.10 (non-expansive, isometry (metric spaces)). Let (X, dX) and
(Y, dY ) be ⊺-metric spaces for some ⊺ > 0. We call a function f ∶X → Y non-
expansive if dY ○ (f × f) ≤ dX . If equality holds, f is called an isometry.

Lastly, we define a norm:

Definition 2.1.11 (norm). Given some vector space1V over R. A mapping ∣∣⋅∣∣∶V →
R+, x ↦ ∣∣x∣∣ is a norm if it satisfies the following axioms for all x, y ∈ V and
α ∈ R:

1. Definite: If ∣∣x∣∣ = 0 then x = 0

2. Absolute Homegeneity: ∣∣α ⋅ x∣∣ = ∣α∣ ⋅ ∣∣x∣∣

3. Triangle inequality: ∣∣x + y∣∣ ≤ ∣∣x∣∣ + ∣∣y∣∣

We can interpret functions x∶Y → R for some finite set Y = {y1, . . . , yn} as vectors
(x(y1), . . . , x(yn)) ∈ Rn where we can define a norm on.

Example 2.1.12. Most mathematicians are familiar with the p-norm, defined for 1 ≤
p <∞ and x = (x1, . . . , xn) ∈ Rn as

∣∣x∣∣p = (
n

∑
i=1
∣xi∣p)

1/p
.

1See [Hal93] for the definition of a vector space.
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For p =∞ we obtain the norm
∣∣x∣∣∞ = max

1≤i≤n
∣xi∣.

2.2. Polytopes and Linear Programming

We will give a short overview on linear programming based on [KV12]. Linear programming
is not crucial for understanding the main theories this thesis provides but linear programs
frequently arise throughout. To this end, linear programming can be used to obtain an
exact computation of the least fixpoint of some functions. See [KV12] for a deeper look
into linear programming.

As it is standard, any vector x ∈ Rn is a column vector and xT ∈ Rn (the transposed
vector) a row vector. A matrix A ∈ Rm×n with m rows and n columns and can be written
as

A =
⎛
⎜
⎝

aT
1
⋮

aT
m

⎞
⎟
⎠

for vectors ai ∈ Rn (i = 1, . . . , m). The product yT x of two vectors x, y ∈ Rn is given by

yT x =
n

∑
i=1

yi ⋅ xi.

Definition 2.2.1 (halfspace/polyhedron). Let b ∈ R and a ∈ Rn with a /= 0. The
set

P (a, b) = {x ∈ Rn ∣ aT x ≤ b}

is an n-dimensional halfspace. A polyhedron is the intersection of finitely many
halfspaces, written as

P (A, b) = {x ∈ Rn ∣ Ax ≤ b}

for a vector b ∈ Rm and a matrix A ∈ Rm×n where n ≥m.

Without restriction, we assume rank(A) =m (otherwise one can just remove redundant
rows from A and b). We note that {x ∈ Rn ∣ Ax ≤ b, Aeqx = beq} (Aeq ∈ Rk×n, beq ∈ Rk) is
a polyhedron as well, precisely we obtain the polyhedron

P (
⎛
⎜
⎝

A
Aeq
−Aeq

⎞
⎟
⎠

,
⎛
⎜
⎝

b
beq
−beq

⎞
⎟
⎠
).

Any polyhedron is convex, i.e. for all x, y ∈ P (A, b) and λ ∈ [0, 1] it holds that λ ⋅ x + (1 −
λ) ⋅ y ∈ P (A, b). We now give a characterization of the vertices of a polyhedron.
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Definition 2.2.2 (basic solution/vertex). Given some polyhedron P (A, b), r ∈ N
and an index set I = {i1, . . . , ir} ⊆ {1, . . . , n} with i1 < i2 < ⋅ ⋅ ⋅ < ir. We define

xI ∶= (xi1 , . . . , xir)T and A[I] ∶=
⎛
⎜
⎝

a1,i1 . . . a1,ir

⋮ ⋮
am,i1 . . . am,ir

⎞
⎟
⎠

.

x ∈ Rn is a basic solution for the indices B = {b1, . . . , bm} ⊆ {1, . . . , n} if

1. Ax = b

2. xi = 0 for all i ∉ B

3. A[B] is a regular matrix2

x is a vertex of P (A, b) if x is a basic solution.

The vertices of some polyhedron P (A, b) are exactly the vertices of P (A, b) in a geometrical
sense - hence the name.

A bounded polyhedron is called a polytope which can be characterized via its finite
set of vertices.

Definition 2.2.3 (polytope). A polytope is a bounded polyhedron, i.e. there exists
some R > 0 such that for all x ∈ P (A, b) it holds

∣∣x∣∣ ≤ R.

Let {x1, . . . , xk} be the (finite) set of vertices of some polytope P (A, b). We have

P (A, b) = conv(x1, . . . , xn) = {α1 ⋅ x1 + ⋅ ⋅ ⋅ + αk ⋅ xk ∣ α1, . . . , αk ≥ 0 and
k

∑
i=1

αi = 1},

i.e. P (A, b) can be written as the convex combination (conv) of its vertices.

Definition 2.2.4 (linear program). A linear program (LP) is the following
optimization problem:

y∗ =min cT x

such that x ∈ P (A, b)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and P (A, b) is a polyhedron.

2A matrix A ∈ Rn×n is regular if rank(A) = n or, equivalently, if there exists some matrix B ∈ Rn×n with
A ⋅B = B ⋅A = In where In ∈ Rn×n denotes the unit matrix of size n.
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Now, exactly one of the following three cases holds for any LP:

1. The LP is unsolvable because P (A, b) = ∅. For example: A = (1,−1)T and b = (0, 1)T .

2. The LP is unbounded, i.e. there exist infinitely many solutions with arbitrary high
y∗. For example: A = −1, b = 0, c = 1.

3. The LP has an optimal solution y∗ = cT x∗ where x∗ is a vertex of P (A, b).

Whenever P (A, b) is a non-empty polytope we can find the optimal solution at one of
the finitely many vertices of P (A, b). We note that in any LP min can easily be replaced
by max since min cT x = −max(−c)T x.

Example 2.2.5. Let A =
⎛
⎜
⎝

1 2
−1 0
0 −1

⎞
⎟
⎠

, b = (10, 0, 0)T and c = (−3,−4)T . The polytope

P (A, b) has three vertices: x1 = (0, 5)T , x2 = (10, 0)T and x3 = (0, 0)T (see the picture
below). As one can see, the optimal solution y∗ = −30 is attained at vertex x2.

x

y

1 2 10
0
1

5

10

x + 2 ⋅ y ≤ 10

−x ≤ 0

−y ≤ 0
P (A, b)

Linear programs are widely studied and there exist a handful of methods which solve
linear programs. For example, the ellipsoid method [KV12] computes the solution of any
LP in polynomial time w.r.t. n and m.

The most common and practical method is the Simplex algorithm [KV12]. Here, we
start at some vertex of P (A, b) and if the optimal solution is not obtained we move to
some different vertex. Since any vertex can not be visited twice we will at some point
find an optimal vertex x∗ of P (A, b) and obtain the solution y∗. It has to be noted that
the Simplex algorithm has exponential runtime (as the number of vertices is exponential
w.r.t. n and m) in theory but proves very useful in practice. There exist a handful of
modifications to the Simplex algorithm.

We refer to [KV12] for more details on linear programming, algorithms for solving
linear programs and a handful of applications.
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2.3. Complete Lattices and MV-Chains

The functions we aim to analyse in later parts are mainly of the form f ∶L → L and
f ∶MY → MY , where Y is some finite set, L is a complete lattice and M a complete
MV-chain. In this section we introduce both algebraic structures.

2.3.1. Complete Lattices

We start with the more common lattice theory [DP02]. Lattice theory is a branch of
mathematics that studies partially ordered sets and their properties. They arise in many
areas of mathematics, including algebra, topology and computer science.

To begin, we define an order.

Definition 2.3.1 (order). A (partial) order over a set L is a binary relation
⊑⊆ L ×L, such that

• ⊑ is reflexive: for all l ∈ L it holds l ⊑ l

• ⊑ is transitive: for all l1, l2, l3 ∈ L; if l1 ⊑ l2 and l2 ⊑ l3 then l1 ⊑ l3 holds

• ⊑ is anti-symmetric: for all l1, l2 ∈ L; if l1 ⊑ l2 and l2 ⊑ l1 then l1 = l2 holds

An order is total, if for all l1, l2 ∈ L either l1 ⊑ l2 or l2 ⊑ l1 (or both) holds.

A (partially) ordered set (L,⊑) is often denoted simply as L, omitting the order relation.
The dual (partially) ordered set is given by (L,⊒), simply reversing the order.

Given x, y ∈ L, with x ⊑ y, we denote by [x, y] the interval {z ∈ P ∣ x ⊑ z ⊑ y}.

Definition 2.3.2 (upper/lower bound). Let L be a (partially) ordered set and
Y ⊆ L a subset of L.

• An upper bound of Y is some element ub ∈ L, such that y ⊑ ub for all y ∈ Y .
lub ∈ L is the least upper bound (or join) of Y if lub ⊑ ub for all upper
bounds ub of Y . A least upper bound may not exist. If it exists, we denote
⊔Y for the least upper bound of Y .

• A lower bound of Y is some element lb ∈ L, such that lb ⊑ y for all y ∈ Y .
glb ∈ L is the greatest lower bound (or meet) of Y if lb ⊑ glb for all lower
bounds lb of Y . A greatest lower bound may not exist. If it exists, we denote
⊓Y for the greatest lower bound of Y .

We write l1 ⊔ ⋅ ⋅ ⋅ ⊔ ln = ⊔{l1, . . . , ln} and l1 ⊓ ⋅ ⋅ ⋅ ⊔ ln = ⊓{l1, . . . , ln} for l1, . . . , ln ∈ L.
Next, we can already define complete lattices.
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∅

{x} {y} {z}

{x, y}{x, z}{y, z}

{x, y, z}

Fig. 2.1.: Hasse-Digramm for X = {x, y, z}, non-transitive elements in order relation are
connected.

Definition 2.3.3 (complete lattice). A (partially) ordered set L is a complete
lattice if every subset Y ⊆ L has a least upper bound ⊔Y and a greatest lower
bound ⊓Y . We denote � = ⊓L and ⊺ = ⊔L.

We will see that complete lattices have desirable properties and are fundamental for the
theories in later chapters.

Example 2.3.4. We name a few complete lattices used throughout this thesis. We denote
≤ to be the standard order on the reals.

1. ({0, 1, 2, . . . , k},≤) with k ∈ N is a complete lattice.

2. (N∞,≤) is a complete lattice.

3. ([k1, k2],≤) where k1, k2 ∈ R is a complete lattice.

4. (LY ,⊑) is a complete lattice whenever (L,⊑′) is a complete lattice and Y some
finite set. The (partial) order ⊑ is defined for a, b ∈ LY as: a ⊑ b iff a(y) ⊑′ b(y) for
all y ∈ Y .

5. Given some set X, (P(X),⊆) is a complete lattice. See Figure 2.1 for an example.

For a better understanding we name two counterexamples

• (N,≤) is not a complete lattice. We have ⊔N =∞ ∉ N.

• (Q,≤) is not a complete lattice. Let

Y = {x ∈ Q ∣ x2 < 2},

then ⊔Y =
√

2 on (R,≤), but
√

2 ∉ Q.
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Quantales. A quantale is a complete lattice equipped with a binary multiplication
operator.

Definition 2.3.5 (quantale). A quantale (L,∗) is a complete lattice L with an
associative binary operator ∗∶L × L → L called its multiplication satisfying the
following distributive property

l ∗ (⊔
i∈I

li) =⊔
i∈I
(l ∗ li) and (⊔

i∈I
li) ∗ l =⊔

i∈I
(li ∗ l)

for all l, li ∈ L where I is any index set. The quantale is unital if it has an identity
element e for its multiplication, i.e.

l ∗ e = l = e ∗ l

for all l ∈ L. A quantale (L,∗) is called commutative if the operator ∗ is
commutative, i.e. l1 ∗ l2 = l2 ∗ l1 for all l1, l2 ∈ L.

Complete Distributive Lattices. As we will be using this property later on, the
lattice ([0, 1],≤) is a complete distributive lattice.

Definition 2.3.6 (complete distributive lattice). A complete lattice L is com-
pletely distributive if, for any doubly indexed family {xj,k ∣ j ∈ J, k ∈Kj} ⊆ L we
have

⊔
j∈J
⊓

k∈Kj

xj,k = ⊓
f∈F
⊔
j∈J

xj,f(j)

where F = {f ∶J → ⋃j∈J Kj ∣ f(j) ∈ Kj}, also called the set of choice functions.
Complete distributivity is a self-dual property, i.e. dualizing the above statement
yields the same class of complete lattices.

2.3.2. Monotone Functions on Complete Lattices

We now consider endofunctions over complete lattices.
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Definition 2.3.7 (fixpoints). Let f ∶L → L be a function and (L,⊑) a complete
lattice. We define

• The set of fixpoints of f : Fix(f) = {l ∈ L ∣ f(l) = l}.

• The set of pre-fixpoints of f : Pre(f) = {l ∈ L ∣ f(l) ⊑ l}.

• The set of post-fixpoints of f : Pre(f) = {l ∈ L ∣ l ⊑ f(l)}.

Additionally, we denote

• The greatest fixpoint of f : gfp(f) = ⊔Fix(f) =∶ νf

• The least fixpoint of f : lfp(f) = ⊓Fix(f) =∶ µf

Fixpoints, especially least/greatest fixpoints, are an essential focus of this thesis. In the
following we provide a few fixpoint theorems. These hold for monotone functions.

Definition 2.3.8 (properties of functions). Let (L1,⊑1) and (L2,⊑2) be a (par-
tially) ordered sets. A function f ∶L1 → L2 is

• monotone if for all l1, l2 ∈ L1, whenever l1 ⊑1 l2 then f(l1) ⊑ f(l2) holds.

• additive if for all l1, l2 ∈ L1 it holds f(l1 ⊔ l2) = f(l1) ⊔ f(l2).

• multiplicative if for all l1, l2 ∈ L1 it holds f(l1 ⊓ l2) = f(l1) ⊓ f(l2).

Knaster-Tarski’s Theorem is at the heart of lattice theory providing a characterization
of the least and greatest fixpoint.

Theorem 2.3.9 (Knaster-Tarski [Tar55]). Let L be a complete lattice and f ∶L→ L
a monotone function. Then the following holds:

νf =⊔Post(f) and µf =⊓Pre(f).

In Figure 2.2 we see a schematical representation of a complete lattice L with the set
of fixpoints, pre-fixpoints and post-fixpoints of some monotone function f ∶L→ L. Note
that the intersection of the set of pre- and post-fixpoints is the set of fixpoints.

Now, to compute a least or greatest fixpoint of a function we can use Kleene iteration.
First we define:
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⊥

νf

μf

Post(f)

Fix(f)

T

Pre(f)

Fig. 2.2.: Complete Lattice L with pre-/post-/fixpoints of some function f ∶L→ L

Definition 2.3.10 (chains/Scott-(co)continuity). Let L be a (paritally) ordered
set.

• A descending chain is a finite or infinite sequence l0, l1, l2, . . . (denoted
by (ln)↓n) such that li+1 ⊑ li for all i ≥ 0. A function f ∶L → L is Scott-
continuous if for all descending chains (ln)↓n it holds f(⊓n ln) = ⊓n f(ln).

• An ascending chain is a finite or infinite sequence l0, l1, l2, . . . (denoted
by (ln)↑n) such that li ⊑ li+1 for all i ≥ 0. A function f ∶L → L is Scott-
cocontinuous i for all ascending chains (ln)↑n it holds f(⊔n ln) = ⊔n f(ln).

Now we present Kleene’s Theorem which gives the blueprint to a simple algorithm
capable of computing least and greatest fixpoints.

Theorem 2.3.11 (Kleene [NNH10]). Let L be a complete lattice and f ∶L→ L a
monotone function. If f is Scott-continuous, respectively Scott-cocontinuous, then

νf =
∞
⊓
i=0

f i(⊺), respectively µf =
∞
⊔
i=0

f i(�).

The above theorem gives rise to a simple iteration which approaches the least/greatest
fixpoint of some monotone function f ∶L → L. Given some f ∶L → L over a complete
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lattice L. We obtain the following iteration:

1. Initiate: f (0) = � or f (0) = ⊺, i = 0

2. Iterate: f (i+1) = f(f (i)), i > 0

According to Theorem 2.3.11 the above iteration converges towards µf or νf . In some
instances, if L satisfies the descending/ascending chain condition3, there exists some
i ∈ N with f (i)(�) = µf / f (i)(⊺) = νf . In general this may not be the case. Thus, when
implementing the above iteration, we need to terminate the iteration at some point. For
example, we stop if two successive iterations deviate by less than some small value ε (in
some norm). We obtain:

1. Initiate: f (0) = � or f (0) = ⊺, i = 0

2. Iterate:
a) f (i+1) = f(f (i)), i = i + 1
b) If ∣∣f (i) − f (i−1)∣∣ > ε: GOTO step 2(a),

Else: STOP - Output the approximation f (i) of µf or νf .

The above procedure will be referred to as Kleene iteration and we will frequently use it
to compute (approximate) least or greatest fixpoints. After terminating at iteration i it
holds ∣∣f (i) − µf ∣∣ < ε but it is unclear how many iteration this will take.

Example 2.3.12. We do a simple Kleene iteration on the complete lattice ([0, 1],≤). Let
f ∶ [0, 1]→ [0, 1] be given by f(x) = x+1

2 . Clearly, f is monotone on [0, 1] and we proceed
as follows:

• f (0) = � = 0

• f (1) = f(f (0)) = f(0) = 1
2

• f (2) = f(f (1)) = f(1
2) =

3
4

• f (3) = f(f (2)) = f(3
4) =

7
8

• ⋮

• f (i) = 2i−1
2i

The iteration converges towards µf = 1.

Almost all functions considered throughout this thesis are Scott-(co)continuous and
whenever we apply Kleene iteration the function of interest is Scott-continuous/-coconti-
nuous (see Remark 2.3.26).

3e.g. every descending/ascending chain in L becomes stationary



2.3. Complete Lattices and MV-Chains 25

Abstract Interpretation and Galois Connections. We briefly describe what
abstract interpretation entails and define a Galois connection which can be used to obtain
such an abstract interpretation. The main idea of abstract interpretation is to find a
sound approximation of computer programs. These are based on monotone functions
over complete lattices. Abstract interpretation can be viewed as a partial execution of a
computer program which gains information about its semantics without performing all
the calculations.

Definition 2.3.13 (Galois connection). Given two complete lattices (C,⊑1) and
(A,⊑2). A pair (α, γ) of monotone functions α∶C → A and γ∶A→ C is a Galois
connection if the following hold:

• for all c ∈ C it holds c ⊑1 γ(α(c)),

• for all a ∈ A it holds α(γ(a)) ⊑2 a.

We refer to α as the abstraction assigning some abstract value to each element in L and
γ as the conretization which assigns concrete values to each abstract element.

The following property holds for a Galois connection.

Lemma 2.3.14 ([CC77]). Given two complete lattices (C,⊑1) and (A,⊑2) and a
Galois-connection (α, γ) between them. For c ∈ C and a ∈ A it holds that

α(c) ⊑2 a⇔ c ⊑1 γ(a).

Galois connections are at the heart of abstract interpretation [CC77, CC00]. In partic-
ular, when ⟨α, γ⟩ is a Galois connection, given fC ∶ C → C and fA ∶ A → A, monotone
functions, if fC ○ γ ⊒ γ ○ fA, then νfC ⊒ γ(νfA) (pointwise extension of the order). If the
equality fC ○ γ = γ ○ fA holds, a condition sometimes referred to as γ-completeness, then
greatest fixpoints are preserved along the connection, i.e., νfC = γ(νfA) [BKP20].

In Section 3.2 we will define a Galois-connection which lies at the heart of the theory
in Chapter 3.

2.3.3. MV-Chains

The theories we will introduce later require a special kind of lattice enriched with a
strong algebraic structure. The properties of MV-algebras fit our needs as the theory
in Chapter 3 does not work on complete lattices. See [Mun07] for a nice tutorial on
MV-algebras.
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Definition 2.3.15 (MV-algebra). An MV-Algebra is a tuple M = (M,⊕, 0, (⋅))
where

• M is a set

• ⊕∶M ×M →M is a binary operator on M

• 0 ∈M is the neutral element in M

• (⋅)∶M →M maps each element to its complement

fulfilling the following properties:

1. (M,⊕, 0) is a commutative monoid, i.e. for all x, y, z ∈M it holds
a) Associativity: (x⊕ y)⊕ z = x⊕ (y ⊕ z)
b) Neutral element: x⊕ 0 = 0⊕ x = x

c) Commutativity: x⊕ y = y ⊕ x

2. x = x

3. x⊕ 0 = 0

4. (x⊕ y)⊕ y = (y ⊕ x)⊕ x

We denote 1 = 0, x ⊗ y = x⊕ y and x ⊖ y = x ⊗ y = x⊕ y. Thus we can reformulate
axioms 3 and 4:

3. x⊕ 1 = 1

4. (y ⊖ x)⊕ x = (x⊖ y)⊕ y

For an MV-algebra M = (M,⊕, 0, (⋅)), we define its dual MV-algebra as Mop = (M,⊗, 1, (⋅)).
MV-algebras are endowed with a natural order.

Definition 2.3.16 (natural order). Let M = (M,⊕, 0, (⋅)) be an MV-algebra. The
natural order on M is defined, for x, y ∈M , by x ⊑ y if x⊕ z = y for some z ∈M .
When ⊑ is total, M is called an MV-chain.

The natural order gives an MV-algebra a lattice structure where � = 0, ⊺ = 1, ⊔{x, y} =
x ⊔ y = (x ⊖ y) ⊕ y and ⊓{x, y} = x ⊓ y = x ⊔ y = x ⊗ (x ⊕ y). We call the MV-algebra
complete, if it is a complete lattice. This is not true in general, e.g. ([0, 1] ∩Q,⊕, 0, (⋅))
with natural order ≤.

Given an MV-chain M = (M,⊕, 0, (⋅)) with (total) natural order ⊑ then the reversed
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order ⊑op=⊒ is the (total) natural order in the dual MV-algebra Mop = (M,⊗, 1, (⋅)) as

x ⊑op y⇔ ∃z ∶ x⊗ z = y⇔ ∃z ∶ x⊕ z = y

⇔ ∃z ∶ y = x⊕ z⇔ ∃z′ ∶ y = x⊕ z′

⇔ x ⊑ y⇔ y ⊑ x

for all x, y ∈M .
Throughout later chapters we will exclusively work with complete MV-chains. We are

mainly interested in the following two complete MV-chains.
Example 2.3.17. M = (M,⊕, 0, (⋅)) are complete MV-chains for the following instances:

1. Let k ∈ R with k > 0. Set M = [0, k], x⊕ y =min{x + y, k} (truncated addition) and
x = k −x for x, y ∈M . We obtain x⊖ y =max{x− y, 0} (truncated substraction) and
x⊗ y =max{x + y − k, 0}.

2. Let k ∈ N with k > 0. Set M = {0, 1, 2, . . . , k}, x ⊕ y = min{x + y, k} (truncated
addition) and x = k − x for x, y ∈M . We obtain x ⊖ y = max{x − y, 0} (truncated
substraction) and x⊗ y =max{x + y − k, 0}.

We next review some properties of MV-algebras. They are taken from or easy conse-
quences of properties in [Mun07] and will be used sparingly throughout this thesis. The
proof is original research and a contribution made in this thesis.

Lemma 2.3.18 (properties of MV-algebras). Let M = (M,⊕, 0, (⋅)) be an MV-
algebra. For all x, y, z ∈M it holds

1. x⊕ x = 1

2. x ⊑ y iff x⊕ y = 1 iff x⊗ y = 0 iff y = x⊕ (y ⊖ x)

3. x ⊑ y iff y ⊑ x

4. ⊕, ⊗ are monotone in both arguments, ⊖ monotone in the first and antitone
in the second argument.

5. if x ⊏ y then 0 ⊏ y ⊖ x;

6. (x⊕ y)⊖ y ⊑ x

7. z ⊑ x⊕ y if and only if z ⊖ x ⊑ y.

8. if x ⊏ y and z ⊑ y then x⊕ z ⊏ y ⊕ z;

9. y ⊑ x if and only if (x⊕ y)⊖ y = x;

10. x⊖ (x⊖ y) ⊑ y and if y ⊑ x then x⊖ (x⊖ y) = y.

11. Whenever M is an MV-chain, x ⊏ y and 0 ⊏ z imply (x⊕ z)⊖ y ⊏ z
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Proof. See Appendix: Lemma A.1.1.

We are explicitly interested in sets of functions of the kind MY where M is a (complete)
MV-chain and Y is a finite set. We extend ⊕, ⊖ and ⊗ to MY pointwise, e.g. for a, b ∈MY ,
we write a⊕ b for the function defined by (a⊕ b)(y) = a(y)⊕ b(y) for all y ∈ Y .

We will also consider distributions over MV-chains.

Definition 2.3.19 (distributions over MV-chains). Given an MV-chain M =
(M,⊕, 0, (⋅)) with natural order ⊑ and some finite set Y , we call a function
p ∶ Y →M a distribution when for all y ∈ Y , it holds

p(y) = ⊕
y′∈Y /{y}

p(y′).

DM(Y ) denotes the set of distributions.

Assume that M is endowed with an additional operation ⊙ such that (M,⊙, 1) is a
commutative monoid, for x, y ∈ M, x ⊙ y ⊑ x, and x ⊙ y = 0 iff x = 0 or y = 0, and ⊙
weakly distributes over ⊕, i.e., for all x, y, z ∈M with y ⊑ z, x⊙ (y ⊕ z) = x⊙ y ⊕ x⊙ z.
For p ∈ DM(Y ) and a∶Y →M, the average sum is given by

⊕
y∈Y
(p(y)⊙ a(y)).

The usual probability distributions (see Definition 2.1.4) arise as a special case of DM(Y )
with M = [0, 1] where ⊙ is the standard multiplication.

Also note that in the characterization of the average sum, the operation ⊙ is necessarily
monotone. In fact, if y ⊑ y′ then, by Lemma 2.3.18(2), we have y′ = y⊕ (y′⊖y). Therefore
x ⊙ y ⊑ (x ⊙ y) ⊕ (x ⊙ (y′ ⊖ y)) = x ⊙ (y ⊕ (y′ ⊖ y)) = x ⊙ y′, where the second passage
holds by weak distributivity.

It must be remarked that every complete MV-algebra is a quantale with respect to ⊕
and the inverse of the natural order.

Lemma 2.3.20 (complete MV-algebras are quantales). Let M be a complete
MV-algebra. Then (M,⊕,⊒) is a unital and commutative quantale.

Proof. See Appendix: Lemma A.1.2.

2.3.4. Non-expansive Functions on MV-Chains

Next, for functions f ∶MY → MZ (Y and Z are finite sets) we aim to define non-
expansiveness. This is an essential property used throughout this thesis. For defining
non-expansiveness it is convenient to introduce a norm, which can be seen as an adaptation
of the standard ∞-norm.
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Definition 2.3.21 (norm). Let M be an MV-chain and let Y be a finite set. Given
a ∈MY we define its norm as ∣∣a∣∣ =max{a(y) ∣ y ∈ Y }.

∣∣⋅∣∣ is clearly monotone, i.e. if a ⊑ b then ∣∣a∣∣ ⊑ ∣∣b∣∣, and has the standard properties of a
norm:

Lemma 2.3.22. Let M be an MV-chain and let Y be a finite set. Then ∣∣⋅∣∣∶MY →M
satisfies, for all a, b ∈MY and δ ∈M

1. ∣∣a⊕ b∣∣ ⊑ ∣∣a∣∣⊕ ∣∣b∣∣

2. ∣∣δ ⊗ a∣∣ = δ ⊗ ∣∣a∣∣

3. ∣∣a∣∣ = 0 implies that a is the constant 0.

Proof. Concerning (1), let ∣∣a⊕ b∣∣ be realised on some element y ∈ Y , i.e., ∣∣a⊕ b∣∣ =
a(y) ⊕ b(y). Since a(y) ⊑ ∣∣a∣∣ and b(y) ⊑ ∣∣b∣∣, by monotonicity of ⊕ we deduce that
∣∣a⊕ b∣∣ ⊑ ∣∣a∣∣⊕ ∣∣b∣∣.

Concerning (2), note that

∣∣δ ⊗ a∣∣ =max{δ ⊕ a(y) ∣ y ∈ Y }

=min{δ ⊕ a(y) ∣ y ∈ Y }

= δ ⊕min{a(y) ∣ y ∈ Y }

= δ ⊕max{a(y) ∣ y ∈ Y }

= δ ⊕ ∣∣a∣∣
= δ ⊗ ∣∣a∣∣

Finally, point (3) is straightforward, since 0 is the bottom of M.

We now define non-expansiveness which is a crucial property we often require.

Definition 2.3.23 (non-expansive). Let f ∶MY →MZ be a function where M is
an MV-chain and Y, Z are finite sets. We say that f is non-expansive if for all
a, b ∈MY it holds that ∣∣f(b)⊖ f(a)∣∣ ⊑ ∣∣b⊖ a∣∣.

Note that (a, b) ↦ ∣∣a⊖ b∣∣ is the supremum lifting of a directed version of Chang’s
distance [Mun07]. Moreover, when M = {0, 1}, i.e., M is the two-point boolean algebra,
the two notions coincide.

We note that this definition of non-expansiveness is different from Definition 2.1.10
but we will exclusively refer to non-expansive functions as in the definition above (unless
stated otherwise).



30 2. Preliminaries

It is easy to see that all non-expansive functions on MV-chains are monotone

Lemma 2.3.24 (non-expansiveness implies monotonicity). Let M be an MV-chain
and let Y, Z be finite sets. Every non-expansive function f ∶MY →MZ is monotone.

Proof. Let a, b ∈MY be such that a ⊑ b. Therefore, by Lemma 2.3.18(2), a(y)⊖ b(y) = 0
for all y ∈ Y , hence a⊖ b = 0. Thus ∣∣f(a)⊖ f(b)∣∣ ⊑ ∣∣a⊖ b∣∣ = 0. In turn this implies that
for all z ∈ Z, f(a)(z) ⊖ f(b)(z) = 0. Hence Lemma 2.3.18(2), allows us to conclude
f(a)(z) ⊑ f(b)(z) for all z ∈ Z, i.e., f(a) ⊑ f(b), as desired.

The next lemma provides a useful equivalent characterisation of non-expansiveness.

Lemma 2.3.25 (characterization of non-expansiveness). Let f ∶MY →MZ be a
monotone function, where M is an MV-chain and Y, Z are finite sets. Then f is
non-expansive iff for all a ∈MY , θ ∈M and z ∈ Z it holds f(a⊕θ)(z)⊖f(a)(z) ⊑ θ.

Proof. See Appendix: Lemma A.1.3.

As we will show in Section 3.5, non-expansive functions enjoy good closure properties
(closure under composition and closure under disjoint union) which will prove very useful.

Remark 2.3.26. For a finite set Y it holds that any non-expansive function f ∶ [0, 1]Y →
[0, 1]Y is continuous, thus Scott-continuous/cocontinuous. Additionally, for a non-
expansive function f ∶{0, 1, . . . , k}Y → {0, 1, . . . , k}Y (k ∈ N) the set of functions {0, 1, . . . , k}Y
is finite which guarantees Scott-continuity/cocontinuity of f .

2.4. Category Theory

In this section we give a short overview on category theory. We will mainly list the
important definitions and examples we will use throughout this thesis. We start by
defining a category.
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Definition 2.4.1 (category). A category A consists of

• a collection ob(A) of objects

• for each A, B ∈ ob(A), a collection A(A, B) of arrows or maps or mor-
phisms from A to B

• for each A, B, C ∈ ob(A), a function

A(B, C) ×A(A, B)→ A(A, C)
(g, f) ↦ g ○ f

called composition

• for each A ∈ ob(A), an element idA of A(A, A), called the identity of A

satisfying the following axioms:

• associativity: for each f ∈ A(A, B), g ∈ A(B, C) and h ∈ A(C, D), we have

(h ○ g) ○ f = h ○ (g ○ f)

• identity laws: for each f ∈ A(A, B), we have

f ○ idA = f = idB ○ f

We provide a few categories used throughout this thesis.

Example 2.4.2. The following are well-defined categories:

1. Category Set:
• objects in Set are all sets
• arrows in Set between objects A, B ∈ ob(Set) are maps from A to B, i.e.

arr(A, B) = BA

• composition of arrows is the usual function composition
• identity idA for some A ∈ ob(A) is the usual identity, i.e. idA(a) = a for all

a ∈ A

2. Category PMet (see Definitions 2.1.8, 2.1.10):
• objects in PMet are ⊺-pseudometric spaces (X, d) for some fixed ⊺ > 0
• arrows are non-expansive functions (see Definition 2.1.10) between these spaces
• composition of arrows is the usual function composition
• identities are the (isometric) identity functions
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3. Product category A ×B of categories A and B:
• objects in A ×B are ordered pairs (A, B) with A ∈ ob(A) and B ∈ ob(B)

• arrows are ordered pairs (
f

(A→ A′),
g

(B → B′)) of arrows in A and B
• composition of arrows is defined componentwise by composition in A and B
• identities are the componentwise identities

At the heart of category theory lie maps between categories, named functors.

Definition 2.4.3 (functor). Let A and B be categories. A functor F ∶A → B
consists of:

• a map
ob(A)→ ob(B),

written as A↦ F (A); we might write FA for F (A)

• for each A, A′ ∈ A, a function

A(A, A′)→ B(F (A), F (A′)),

written as f ↦ F (f)

satisfying the following axioms:

• F (f ′ ○ f) = F (f ′) ○ F (f) whenever A
f→ A′

f ′→ A′′ are arrows in A

• F (idA) = idF (A) whenever A ∈ ob(A)

Again, we provide a handful of functors used throughout this thesis.

Example 2.4.4. The following are well-defined functors:

1. The powerset functor P ∶Set→ Set maps
• a set X ∈ ob(Set) to its powerset P(X) ∈ ob(Set)
• an arrow f ∈ Set(X, Y ) to Pf ∈ S≈(P(X),P(Y )) defined for U ∈ P(X) as
Pf(U) = {f(u) ∣ u ∈ U} ∈ P(Y )

2. The finite powerset functor Pf ∶Set→ Set maps
• a set X ∈ ob(Set) to its finite powerset Pf (X) ∈ ob(Set)
• an arrow f ∶X → Y to Pf f ∶Pf (X) → Pf (Y ) defined for U ∈ Pf (X) as
Pf f(U) = {f(u) ∣ u ∈ U} ∈ Pf (Y )

3. The distribution functor D∶Set→ Set maps
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• a set X ∈ ob(Set) to its set of probability distributions D(X) ∈ ob(Set)

• an arrow f ∶X → Y to Df ∶D(X) → D(Y ) defined for p ∈ D(X) and y ∈ Y as
Df(p)(y) = ∑x∈f−1({y}) p(x) ∈ D(Y )

4. The finitely supported distribution functor Df ∶Set→ Set maps

• a set X ∈ ob(Set) to its set of probability distributions Df (X) ∈ ob(Set) with
finite support

• an arrow f ∶X → Y to Df f ∶Df (X)→ Df (Y ) defined for p ∈ Df (X) and y ∈ Y
as Df f(p)(y) = ∑x∈f−1({y}) p(x) ∈ Df (Y )

5. The forgetful functor U ∶PMet→ Set maps

• a pseudometric space (X, d) ∈ ob(PMet) to its underlying set X ∈ Set

• an arrow f ∶ (X, dX)→ (Y, dY ) to itself (f ∶X → Y )

6. The swap functor X ∶A ×B→ B ×A (A and B are categories) maps

• (A, B) to (B, A) for objects A ∈ ob(A) and B ∈ ob(B)

• an arrow (
f

(A→ A′),
g

(B → B′)) to (
g

(B → B′),
f

(A→ A′))

7. The diagonal functor ∆∶A→ A ×A (A is a category) maps

• A to (A, A) for an object A ∈ ob(A)

• an arrow f ∶A→ A′ to (
f

(A→ A′),
f

(A→ A′))

We will sparingly use bifunctors which we spare to generalize further.

Definition 2.4.5 (bifunctor). Let A, A′ and B be categories. A bifunctor F is a
functor F ∶A ×A′ → B where A ×A′ is the product category.

Natural transformations can be seen as transformations between functors which respect
the internal structures.
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Definition 2.4.6 (natural transformation). Let A and B be categories and let
A F→ B and A G→ B be functors. A natural transformation is a family (F (A) αa→
G(A))

A∈ob(A) of arrows in B such that for every arrow A
f→ A′ in A, the square

F (A) F (A′)

G(A) G(A′)

F (f)

αA αA′

G(f)

commutes. The maps αA are called components of α.

2.4.1. GS-Monoidal Categories

For the compositional modelling of graphs and graph-like structures it has proven useful
to use the notion of monoidal categories [Mac71], i.e., categories equipped with a tensor
product.

Definition 2.4.7 (monoidal category). A strict monoidal category C is a
tuple (C0,⊗, e) where C0 is a category, e ∈ ob(C0) is a distinguished object and
⊗∶C0 ×C0 → C0 is a bifunctor, satisfying the following axioms:

• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) for all f, g, h ∈ arr(C0)

• f ⊗ ide = ide ⊗ f = f for all f ∈ arr(C0)

It has long been realized that monoidal categories can have additional structure such as
braiding or symmetries.

Definition 2.4.8 (symmetric monoidal category). A strict symmetric monoidal
category C is a tuple (C0,⊗, e, ρ) where (C0,⊗, e) is a strict monoidal category
and ρ∶ ⊗ ⇒ ⊗ ○ X ∶C0 × C0 → C0 is a natural transformation (where X is the
functor that swaps its two arguments - see Example 2.4.4) such that ρe,e = ide, and
satisfying the following axioms:

• ρa⊗b,c = (ρa,c ⊗ idb) ○ (ida ⊗ ρb,c) for all a, b, c ∈ ob(C0)

• ida ⊗ idb = ρb,a ○ ρa,b for all a, b ∈ ob(C0)
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We are mostly interested in so called gs-monoidal categories [CG99, GH97], called
s-monoidal in [Gad96]. These are symmetric monoidal categories, equipped with a
discharger and a duplicator. Note that “gs” originally stood for “graph substitution” and
such categories were first used for modelling term graph rewriting.

Definition 2.4.9 (gs-monoidal category). A strict gs-monoidal category C is
a tuple (C0,⊗, e, ρ,∇, !) where (C0,⊗, e, ρ) is a strict symmetric monoidal category
and !∶ IdC0 ⇒ e∶C0 → C0 (discharger), ∇∶ IdC0 ⇒ ⊗ ○∆∶C0 → C0 (duplicator) are
two tranformations (∆ is the diagonal functor, see Example 2.4.4), such that
!e = ∇e = e and satisfying the following axioms:

• Coherence Axioms:
– (ida ⊗∇a) ○ ∇a = (∇a ⊗ ida) ○ ∇a for all a ∈ ob(C0)
– ida = (ida⊗!a) ○ ∇a for all a ∈ ob(C0)
– ∇a = ρa,a ○ ∇a for all a ∈ ob(C0)

• Monoidality Axioms:
– ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ idb) ○ ∇a⊗b for all a, b ∈ ob(C0)
– !a⊗!b =!a⊗b ○ ide for all a, b ∈ ob(C0)

Gs-monoidal categories have been shown to be suitable for specifying term rewriting
(see e.g. [CG99, GH97]). In essence gs-monoidal categories describe graph-like structures
with dedicated input and output interfaces, operators for disjoint union (tensor), dupli-
cation and termination of wires, quotiented by the axioms satisfied by these operators.
Particularly useful are gs-monoidal functors that preserve such operators and hence
naturally describe compositional operations.

We will be able to derive two gs-monoidal categories and a gs-monoidal functor in
Chapter 4 which forms the basis for the tool we describe in Section 4.7.

For a better overview we assemble all axioms fulfilled of a gs-monoidal category C
below. All the non-obvious axioms are also depicted as string diagrams in Figure 2.3.

1. functoriality of tensor:
• (g ⊗ g′) ○ (f ⊗ f ′) = (g ○ f)⊗ (g′ ○ f ′)
• ida⊗b = ida ⊗ idb

2. monoidality:
• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)
• f ⊗ ide = f = ide ⊗ f

3. naturality:
• (f ′ ⊗ f) ○ ρa,a′ = ρb,b′ ○ (f ⊗ f ′)
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Fig. 2.3.: String diagrams of the axioms satisfied by GS-monoidal categories.

4. symmetry:
• ρe,e = ide

• ρb,a ○ ρa,b = ida⊗b

• ρa⊗b,c = (ρa,c ⊗ idb) ○ (ida ⊗ ρb,c)

5. gs-monoidality:
• !e = ∇e = ide

• coherence axioms:
– (ida ⊗∇a) ○ ∇a = (∇a ⊗ ida) ○ ∇a

– ida = (ida⊗!a) ○ ∇a

– ρa,a ○ ∇a = ∇a

• monoidality axioms:
– !a⊗b =!a⊗!b
– (ida ⊗ ρa,b ⊗ idb) ○ (∇a ⊗∇b) = ∇a⊗b

(or, equivalently, ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ idb) ○ ∇a⊗b)
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Additionally, we can define a gs-monoidal functor between gs-monoidal categories.

Definition 2.4.10 (gs-monoidal functor). A functor #∶C→ D is gs-monoidal if
the following holds:

1. C and D are gs-monoidal categories

2. monoidality:
• #(e) = e′

• #(a⊗ b) =#(a)⊗′#(b)

3. symmetry:
• #(ρa,b) = ρ′#(a),#(b)

4. gs-monoidality:
• #(!a) =!′#(a)
• #(∇a) = ∇′#(a)

where the dashed operators are from the category D, the others from C.

2.5. Coalgebraic Behavioural Metrics

The presentation of this section is based on [BBKK18]. We start with a quick motivation.

2.5.1. Motivation

Consider the labeled Markov chain in Figure 2.4. An intuitive understanding of such a
system is that in each state the system chooses a transition (indicated by the arrows) to
another state using the probabilistic information which is given by the numbers on the
arrows. Additionally we assign a label to each state (colors). We will formally introduce
labeled Markov chains in Section 2.6.3.

Probabilistic bisimilation is a well known concept [TvB17] and two states of a system
are bisimilar if their behaviour can not be differentiated by an outside observer of the
system. States with different labels (colors) are deemed to behave differently, e.g. the
behaviour of states u and z is different.

Assume we have ε = 0 in Figure 2.4, then any observer of the system could not
differentiate the behaviour of states x and y. Whenever we are in either state, a coin
is tossed to select the successor, either u or z. However, let ε > 0 be some very small
number then the behaviour of states x and y can be observed to be different. However,
since ε is very small, the behaviour of states x and y is very similar. This motivates
a quantification of the behavioural difference of two states instead of just saying they
behave the same or not.
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As one can see, states x and y have the same label and thus their behaviour can
just be differentiated by the probabilities with which they determine their successor.
Therefore, to measure the behavioural distance in this example, we need to compare the
probability distributions px and py on the set of states by which the successor is chosen
(for x, respectively y). Immediately, it is not clear at all, how to measure the behavioural
distance of two probability distributions. We approach the problem on a high-level: Given
a pseudometric on the set of states, we lift this pseudometric to the set of pseudometrics
on probability distributions.

ux y

z

1

1

1/2

1/2

1/2 + ε

1/2 − ε

Fig. 2.4.: Example of a labeled Markov chain, ε > 0 is some small value

2.5.2. Predicate Liftings

Let F ∶Set → Set be an endofunctor on the category Set (see Example 2.4.4). An
(F−)coalgebra is just a mapping α∶X → F (X) (written as FX). Note that FX might
be an infinite set even if X is finite. Intuitively, α specifies a transition system whose
branching type is given by F .

In general, we can lift a predicate a∶Y → [0, 1] to a predicate aF ∶FY → [0, 1] for some
set Y [LPSS12]. Predicate liftings ([Pat03, Sch08b]) for arbitrary quantales have been
studied, for instance, in [BKP18]. Since complete MV-algebras are quantales and we
aim to show non-expansiveness of some liftings, we define predicate liftings over some
complete MV-algebra M.

Definition 2.5.1 (predicate lifting). Given a functor F ∶Set→ Set, a predicate
lifting is a family of functions F̃Y ∶MY →MF Y (where Y is a set), such that for
g∶Z → Y , a∶Y →M it holds that (Fg)∗(F̃Y (a)) = F̃Z(g∗(a)).

That is, predicate liftings must commute with reindexings (see Definition 3.5.3). The
index Y will be omitted if clear from the context. Such predicate liftings are in one-to-one
correspondence to so called evaluation maps evF ∶FM→M.4

4This follows from the Yoneda lemma, see e.g. [Mac71].
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Definition 2.5.2 (evaluation function/evaluation functor). Let F be an endofunc-
tor on Set. An evaluation function evF for F is a function

evF ∶FM→M.

Given evF , we define the corresponding lifting to be F̃ (a) = evF ○ Fa∶FY →M, where
a∶Y →M.

We will exclusively consider well-behaved liftings [BBKK18, BKP18].

Definition 2.5.3 (well-behaved). A lifting F̃ ∶MY →MF Y is well-behaved if

• F̃ is monotone

• F̃ (0Y ) = 0F Y where 0 is the constant 0-function

• F̃ (a⊕ b) ⊑ F̃ (a)⊕ F̃ (b) for a, b∶Y →M

• F preserves weak pullbacks (see [BBKK18])

We aim to have not only monotone, but non-expansive liftings.

Lemma 2.5.4. Let ev∶FM → M be an evaluation map and assume that its
corresponding lifting F̃ ∶MY →MF Y is well-behaved. Then F̃ is non-expansive iff
for all δ ∈M it holds that F̃ δY ⊑ δF Y , where δ is seen as the constant δ-predicate
on Y , respectively FY .

Proof. See Appendix: Lemma A.1.4.

2.5.3. Lifting to Pseudometric Spaces

As it was the original goal, given a functor F ∶Set → Set and some pseudometric
d∶X ×X →M(= [0, 1]) on X, we want to lift d to a pseudometric dF ∶FX × FX →M on
FX, i.e. we aim to find a functor F̄ ∶PMet→ PMet with F̄ (X, d) = (FX, dF ). It makes
much more sense to work with pseudometrics instead of metrics as they allows different
elements of X to have a distance of 0 whenever their behaviour is the same. We note
that it is possible to lift any ⊺−pseudometric (see [BBKK18]).
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Definition 2.5.5 (lifting to pseudometric spaces). Let U be the forgetful functor
from Example 2.4.4. A functor F̄ ∶PMet→ PMet is called a lifting of a functor
F ∶Set→ Set if the following diagram commutes.

PMet PMet

Set Set

F̄

U U

F

In this case, for any pseudometric space (X, d), we denote by dF the pseudometric
on FX which we obtain by applying F̄ to (X, d).

Now, the next step is to construct such a lifting F̄ , in particular the distance function
dF . We will exclusively work with the Wasserstein lifting which has rather desirable
properties.

2.5.4. The Wasserstein Lifting

We build on [BBKK18], where an approach is proposed for canonically defining a be-
havioural pseudometric for coalgebras of a functor F ∶Set→ Set, that is, for functions of
the form ξ∶X → FX where X is a set. Intuitively ξ specifies a transition system whose
branching type is given by F . Given such a coalgebra ξ, the idea is to endow X with
a pseudo-metric dξ ∶X ×X →M - called the behavioural distance - defined as the least
fixpoint of the map d ↦ dF ○ (ξ × ξ) where _F lifts a metric d∶X ×X →M to a metric
dF ∶FX × FX → M. Here we focus on the so-called Wasserstein lifting and show how
approximations of the functions involved in the definition of the pseudometric can be
determined.

To introduce the Wasserstein distance we require the definition of a coupling.

Definition 2.5.6 (coupling). Let F ∶Set → Set be a functor. Given a set X
and t1, t2 ∈ FX, we call an element t ∈ F (X2) such that Fπi(t) = ti, i = 1, 2, a
coupling of t1 and t2 (with respect to F ). We write ΓF (t1, t2) for the set of all
these couplings.

The main idea of the Wasserstein lifting is to couple two elements t1, t2 ∈ FX in an
’optimal’ way.
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Definition 2.5.7 (Wasserstein distance). Let F ∶Set → Set be a functor with
evaluation function evF . For every pseudometric space (X, d) the Wasserstein
distance on FX is the function d↓F ∶FX × FX → [0,⊺] given by

d↓F (t1, t2) ∶= inf{F̃ d(t) ∣ t ∈ ΓF (t1, t2)}

for all t1, t2 ∈ FX.

F̃ is a predicate lifting as in Section 2.5.2, i.e. F̃ (d) = evF ○ Fd∶F (X ×X)→M where
d∶X ×X →M.

If F̃ is well-behaved, it holds that that d↓F is a pseudometric on FX and the Wasserstein
lifting F̄ (X, d) = (FX, d↓F ) is a functor on PMet (see [BBKK18]).

In order to make the theories in later chapters effective we will need to restrict to a
subclass of liftings.

Definition 2.5.8 (finitely coupled lifting). We call a lifting F̃ finitely coupled if
for all X and t1, t2 ∈ FX there exists a Γ′F (t1, t2) ⊆fin ΓF (t1, t2)5, which can be
computed given t1, t2, such that inft∈ΓF (t1,t2) F̃ d(t) =mint∈Γ′F (t1,t2) F̃ d(t).

Observe that whenever the infimum above is a minimum, there is trivially a finite Γ′(t1, t2).
We however ask that there is an effective way to determine it. This last property holds
for the two liftings we will consider next. These aim to lift pseudometrics to the powerset
and the set of probability distributions, respectively.

Remark 2.5.9. Given some coalgebra ξ∶X → FX, the behavioural distance of the
Wasserstein lifting is given as the least fixpoint dξ of the map d ↦ d↓F ○ (ξ × ξ). This
map may omit multiple fixpoints. To fix this problem, one can introduce a discount factor
λ ∈ (0, 1) and thus the map d↦ λ ⋅ (d↓F ○ (ξ × ξ)) is a contraction which omits one unique
fixpoint dξ, i.e. for all x, y ∈X, we have

dξ(x, y) = λ ⋅ d↓Fξ (ξ(x), ξ(y)).

This is done sometimes in the literature (e.g. in [BBL+21, BBLM17]) to easy the compu-
tation of dξ. Throughout this thesis we will not be working with a discount factor.

2.5.5. The Hausdorff Lifting

Consider the functor Pf . A coalgebra α∶X → Pf (X) assigns a finite powerset α(x) to
each x ∈X. We now derive the Wasserstein Lifting.

C ∈ Pf (X ×X) is a coupling of A, B ∈ Pf (X), i.e. an element of ΓPf (A, B), if

• for all a ∈ A there exists some b ∈ B with (a, b) ∈ C

5It means ∣Γ′F (t1, t2)∣ <∞ and Γ′F (t1, t2) ⊆ ΓF (t1, t2)
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• for all b ∈ B there exists some a ∈ A with (a, b) ∈ C

• C ⊆ A ×B

Note that, whenever A = B = ∅ we obtain the valid coupling C = ∅ and thus ΓPf (A, B) /= ∅
but whenever A = ∅ /= B or A /= ∅ = B then ΓPf (A, B) = ∅.

Since A and B are finite, it is immediately clear, that C and ΓPf (A, B) are finite sets.
Example 2.5.10. Let X = {a, b, c} and A, B ∈ Pf (X) be given by

A = {a, b}, B = {b, c}.

We have seven valid couplings C1, C2, C3, C4, C5, C6, C7 ∈ Pf (X ×X) given by

C1 = {(a, c), (b, b)}, C2 = {(a, b), (b, c)},
C3 = {(a, c), (b, b), (a, b)}, C4 = {(a, c), (b, b), (b, c)},
C5 = {(a, c), (a, b), (b, c)}, C6 = {(b, b), (a, b), (b, c)},
C7 = {(a, c), (b, b), (a, b), (b, c)}

We define the evaluation map evPf ∶PfM→M for U ∈ PfM as

evPf (U) =max
u∈U

u, where max
u∈∅

u = 0,

which is well-behaved [BBKK18] and the corresponding predicate lifting is non-expansive.

Lemma 2.5.11. The predicate lifting P̃f ∶PfM→M is non-expansive.

Proof. Given some set Y and δ ∈ M. We have P̃f (δY ) = δPf (Y )∖{∅} ⊑ δPf (Y ). By
Lemma 2.5.4, P̃f is non-expansive.

We obtain the following lifting - called the Hausdorff distance (in the dual sense):

Definition 2.5.12 (Hausdorff distance (dual)). Given some coalgebra α∶X →
Pf (X) for a set X and the evaluation map evPf as defined above. Given a pseu-
dometric d on X and x, y ∈ X, we obtain the Wasserstein distance - named the
Hausdorff distance (in the dual sense)

H(d)(α(x), α(y)) ∶= d↓Pf (α(x), α(y))
= inf

C∈ΓPf (α(x),α(y))
max
(a,b)∈C

d(a, b)

= min
C∈ΓPf (α(x),α(y))

max
(a,b)∈C

d(a, b)

where minC∈∅max(a,b)∈C d(a, b) = 1.
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We can replace the inf with min since ΓPf (α(x), α(y)) is a finite set. We call a coupling
optimal if it attains the minimum.

Now, for any A, B ∈ Pf (X), one can construct the set ΓPf (A, B) or the set of minimal
couplings Γ′Pf

(A, B).

Definition 2.5.13 (minimal couplings for Pf ). A coupling C ∈ ΓPf (A, B) is
minimal if there exists no coupling C ′ ∈ ΓPf (A, B) with C ′ ⊂ C. We denote
Γ′Pf
(A, B) as the set of minimal couplings of A, B.

It is rather immediate that

min
C∈ΓPf (A,B))

max
(a,b)∈C

d(a, b) = min
C∈Γ′

Pf
(A,B)

max
(a,b)∈C

d(a, b)

since for any coupling C ∉ Γ′Pf
(A, B) it holds that there exists a coupling C ′ ∈ Γ′Pf

(A, B)
with C ⊂ C ′ and thus

max
(a,b)∈C

d(a, b) ≥ max
(a,b)∈C′

d(a, b).

Therefore the minimum is attained at some C ∈ Γ′Pf
(A, B)

There is a constructive way to obtain Γ′Pf
(A, B). Without loss of generality, let A =

{a1, . . . , an} and B = {b1, . . . bm} with n ≥m. Then any map ρ∶A→ B with ⋃a∈A ρ(a) = B
specifies a minimal coupling, i.e. Cρ = {(a1, ρ(a1)), . . . (an, ρ(an))}. Now, Γ′Pf

(A, B) =
{Cρ ∣ ρ∶A→ B ∶ ⋃a∈A ρ(a) = B}. From this, it is clear that ∣C ∣ = n(=max{n, m}) for any
minimal coupling.

Example 2.5.14. We revisit Example 2.5.10. One can see that C1 and C2 are the
only minimal couplings. Given the pseudometric d on X, given by d(a, b) = 1 and
d(a, c) = d(b, c) = 0 (all other distances are given since d is a pseudometric) then we
obtain

H(d)(A, B) = min
i=1,...,7

max
(x,y)∈Ci

d(x, y) =min{0, 1, 1, 0, 1, 1, 1} = 0

= min
i=1,2

max
(x,y)∈Ci

d(x, y) =min{0, 1} = 0

implying that C1 and C4 are optimal couplings and C1 is the only optimal and minimal
coupling.

The Hausdorff distance we derived is usually referred to as the dual characterization.
The function H has an equal primal characterization due to Mémoli [Mém11], also
observed in [BBKK18].
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Definition 2.5.15 (primal characterization of H). Given A, B ∈ Pf (X) and
some pseudometric d on X. The primal characterization of the Hausdorff
distance is given by

H(d)(A, B) =max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.

To clarify, it holds

H(d)(A, B) =max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)} = min
C∈ΓPf (A,B)

max
(a,b)∈C

d(a, b)

for any A, B ∈ Pf (X) and pseudometric d on X.

2.5.6. The Kantorovich Lifting

We note up front that the here defined Kantorovich lifting refers to the instantiation of
the Wasserstein lifting for the functor Df . The name is sometimes used in a different
setting (cf. [BBKK18]).

Consider the functor Df . A coalgebra α∶X → Df (X) assigns a probability distribution
α(x) with finite support to each x ∈X. We now derive the Wasserstein lifting.

A probability distribution ω ∈ Df (X ×X) is a coupling of p, q ∈ Df (X), i.e. an element
of ΓDf (p, q), if for all x ∈X:

p(x) = ∑
y∈X

ω(x, y) and q(x) = ∑
y∈X

ω(y, x).

Example 2.5.16. Let X = {x, y} and p, q ∈ Df (X) be given by

p(x) = p(y) = 0.5 and q(x) = 0.25, q(y) = 0.75.

A valid coupling ω ∈ Df (X ×X) is the following:

ω(x, x) = 0.25, ω(x, y) = 0.25, ω(y, y) = 0.5.

As one can see, there usually are infinitely many couplings as is the case in the above
example, i.e. all convex combinations of ω and ω′ (ω′(x, y) = 0.5, ω(y, x) = 0.25, ω′(y, y) =
0.25). However, given two probability distributions p, q ∈ Df (X) the set of couplings
ΓDf (p, q) forms a convex polytope Ω(p, q) ([TvB17, PC20]). We denote the finite set of
vertices of ΓDf (p, q) as ΩV (p, q) (cf. Section 2.2).

We define the evaluation map evDf ∶Df [0, 1]→ [0, 1] for u ∈ Df [0, 1] as

evDf (u) = ∑
x∈[0,1]

x ⋅ u(x) (expectation)
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which is well-behaved [BBKK18] and the corresponding predicate lifting is non-expansive.

Lemma 2.5.17. The predicate lifting D̃f ∶Df [0.1]→ [0, 1] is non-expansive.

Proof. Given some set Y and δ ∈ M. We immediately have D̃f (δY ) = δDf (Y ). By
Lemma 2.5.4, D̃f is non-expansive.

We obtain the following lifting:

Definition 2.5.18 (Kantorovich distance). Given some coalgebra α∶X → Df (X)
for a set X and the evaluation map evDf as defined above. Given a pseudometric d
on X and x, y ∈X, we obtain the Wasserstein distance - named the Kantorovich
distance

K(d)(α(x), α(y)) ∶= d↓Df (α(x), α(y))
= inf

ω∈ΓDf (α(x),α(y))
∑

x,y∈X
ω(x, y) ⋅ d(x, y)

= min
ω∈ΩV (α(x),α(y))

∑
x,y∈X

ω(x, y) ⋅ d(x, y).

We note that the infimum is attained at some vertex of ΓDf (α(x), α(y)) ([TvB17])
allowing us to replace the inf with min since any polytope only has finitely many vertices.
A coupling that attains the minimum is called optimal.

There exists a dual characterization of the Kantorovich distance [BBKK18] which does
not prove useful to us.

Example 2.5.19. We revisit the previous example. We have ΩV (p, q) = {ω1, ω2} where

ω1(x, x) = 0.25, ω1(x, y) = 0.25, ω1(y, y) = 0.5

and
ω2(x, y) = 0.5, ω2(y, x) = 0.25, ω2(y, y) = 0.25.

Given the pseudometric d on X, given by d(x, y) = 1 (all other distances are given since
d is a pseudometric), we obtain

K(d)(p, q) = min
i=1,2

∑
x,y∈X

ωi(x, y) ⋅ d(x, y) =min{0.25, 0.5} = 0.25

implying that ω1 is an optimal coupling.

In general, given two probability distributions p, q ∈ Df (X) and a pseudometric d on X,
the Kantorovich distance can be obtained as the solution of the following linear program:

K(d)(p, q) =min ∑
x,y∈X

d(x, y) ⋅ ωx,y
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Fig. 2.5.: Transportation plan

∑
y∈X

ωx,y = p(x) ∀x ∈X

∑
x∈X

ωx,y = q(y) ∀y ∈X

ωx,y ≥ 0 ∀x, y ∈X

There exists some ω∗ with K(d)(p, q) = ∑x,y∈X d(x, y) ⋅ ω∗x,y and ω∗ ∈ ΩV (p, q). Thus ω∗

is an optimal coupling and a vertex of ΓDf (p, q). Since ΓDf (p, q) is a convex polytope,
it is not surprising that linear programming can be used to compute the Kantorovich
distance.

One can construct ΩV (p, q) = Γ′Df
(p, q) as the set of basic solutions (vertices, see

Definition 2.2.2) of the polyhedron P (A, b) resulting from the linear program above.
Specifying A and b is too colloquial so we spare doing it.

From a practical point of view, to compute K(d)(p, q) (from Example 2.5.19) one has
to solve the transportation plan in Figure 2.5 [Vil09, PC20]: We have supply 0.5 for both
states x and y on the left (given by p) and need to transport the supply to fulfill the
demand of 0.25 for state x and 0.75 for state y on the right (given by q). The transport
of each unit from supplier to demander yields some cost. We aim to nurse supply and
demand with the cheapest transport.

As is clear in our example, one should avoid transporting goods from x to y and vice
versa. Thus 0.25 from supplier x should be transported to consumer x and 0.5 units from
supplier y should be transported to consumer y. The remaining 0.25 supply of x need to
be transported to consumer y with a cost of 1 per unit and distance, resulting in a total
cost of 0.25 ⋅ 0 + 0.5 ⋅ 0 + 0.25 ⋅ 1 = 0.25 for transporting the goods. One can see that we
had K(d)(p, q) = 0.25.

2.6. Application: State-based Systems

The theories we will introduce in later chapters can be applied to several of problems
found in the literature. State-based systems yield easy examples to this end. We will
introduce a handful of different systems and discuss the problems arising from them. In
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particular, the solution to these problems can be found by computing an extreme (least
or greatest) fixpoint of some underlying function. Thus, we will derive the approximations
to these functions in Chapter 3 and apply strategy iteration to compute the solutions in
Chapter 5.

In particular we aim to compute the termination probability of Markov chains (Sec-
tion 2.6.1), the bisimilarity for transition systems (Section 2.6.2), behavioural distances
for labeled Markov chains (Section 2.6.3), metric transition systems (Section 2.6.4) and
probabilistic automata (Section 2.6.5). We note up front that all systems are some sort
of probabilistic automata. For sake of simplicity and to ease the understanding we will
discuss them all on their own.

2.6.1. Termination Probability of Markov Chains

Markov chains, named after their ’inventor’ Andrey Andreyevich Markov, have been
studied for over 100 years [Beh14]. These systems are very common and frequently used
in practice to simulate probabilistic processes. They are rather simple in nature; we have
states which transition according to some probability distribution. We add a subset of
terminal states to the definition.

Definition 2.6.1 (Markov chain). A Markov chain is a tuple MC = (S, T, η)
consisting of a finite set of states S, a subset of terminal states T ⊆ S and a
transition function η∶S ∖ T → D(S).

Assume we are given some Markov chain MC = (S, T, η). Intuitively, η(s)(s′) denotes
the probability of transitioning from state s ∈ S∖T to state s′ ∈ S. Given some state s ∈ S,
we want to determine the termination probability of s, i.e. the probability of eventually
reaching any terminal state from s.

As a concrete example, take the Markov chain given in Figure 2.6. We have S =
{x, y, z, u} and T = {u}, i.e. u is the only terminal state. Additionally, the transitions
η(x), η(y), η(z) ∈ D(S) are given as follows (omitting elements outside the supports):

η(x)(x) = η(x)(y) = η(x)(u) = 1/3 and η(y)(z) = η(z)(y) = 1.

The termination probability of state u is 1 (as it is a terminal state) and the termination
probability of states y and z is 0 as they will just run in a cycle, thus never reaching the
only terminal state u. Now, when we are in state x, we will eventually leave state x and
either move to state y (thus never reaching a terminal state) or to the terminal state u.
Since η(x)(y) = η(x)(u) the termination probability of state x is 1/2.

The termination probability of a Markov chain arises as the least fixpoint of the
following operator [BK08].
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Fig. 2.6.: Example of a Markov chain, termination probabilities are given in green

Definition 2.6.2 (fixpoint operator - termination probability for Markov chains).
Given some Markov chain MC = (S, T, η), we define the function T ∶ [0, 1]S → [0, 1]S
for t ∈ [0, 1]S and s ∈ S as

T (t)(s) =
⎧⎪⎪⎨⎪⎪⎩

∑s′∈S η(s)(s′) ⋅ t(s′) if s ∈ S ∖ T

1 otherwise

It is easy to see that µT (y) = µT (z) = 0, µT (u) = 1 and µT (x) = 1/2 for the Markov
chain in Figure 2.6. Note however, that T usually omits more than one fixpoint, e.g.
νT (x) = νT (y) = νT (z) = νT (u) = 1 for the system in Figure 2.6 (in fact t ≡ 1 is always
a fixpoint for any Markov chain).

Computation of µT . Since [0, 1]S is a complete lattice (see Example 2.3.4) we can
use Kleene iteration (from below) to obtain an approximation of µT . Kleene iteration
usually does not yield an exact computation. An exact computation can be obtained by
solving the following linear program

min∑
s∈S

ts

ts = 1 ∀s ∈ T

ts = ∑
s′∈S

η(s)(s′) ⋅ ts′ ∀s ∈ S ∖ T

It is well-known that the function T can be tweaked in such a way that it has a unique
fixpoint, coinciding with µT , by determining all states which can not reach any terminal
state and setting their value to zero [BK08]. We denote this set of states by NT which
can easily be computed: To check if s ∈ S lies in NT , one can simply compute the set
of reachable states from s. If no terminal state is reachable it holds that s ∈ NT . By
computing NT beforehand, µT can be obtained by solving the following linear system of
equations

ts = 1 ∀s ∈ T

ts = 0 ∀s ∈ NT
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x y u

Fig. 2.7.: Example of a transition system

ts = ∑
s′∈S

η(s)(s′) ⋅ ts′ ∀s ∈ S ∖ (T ∪NT )

Kleene iteration from above can also be applied to compute the unique fixpoint we obtain
when tweaking T such that the values of states in NT are set to 0.

Termination probability is a special case of the considerably more complex simple
stochastic games that will be introduced in Section 2.7.3, where the trick of modifying
the function is not applicable.

Looking Ahead. Termination probability will serve as the running example for the
theory we will introduce in Chapter 3. In Section 3.6.1 we formally derive the approxi-
mation of T which allows us to detect whether some fixpoint of T is the least fixpoint
or not. Additionally, this will allow us to derive lower bounds for µT , which is useful in
proving that some state terminates with at least some given probability.

Strategy iteration (Chapter 5) is not applicable to compute µT - at least in a sensible
way.

2.6.2. Bisimilarity for Transition System

We now consider transition systems in their most basic form. Here, we only have states
and directed edges connecting these states.

Definition 2.6.3 (transition system). A transition system is a tuple TS = (S, η)
consisting of a finite set of states S and a transition function η∶S → P(S). We
write s→ s′ for s′ ∈ η(s).

The definition above can be expanded; we could assign labels to edges and/or states.
These systems could still be analyzed by the later theories but for simplicity we stick
with the definition above.

In Figure 2.7 we are given a very easy example of a transition system. We have
S = {x, y, u} and the transition function η(x) = {x, y}, η(y) = ∅ and η(u) = {u}.

Given some transistion system (S, η), we are interested in finding out whether two
states x, y ∈ S have the same observable behaviour, i.e. an outside observer can not
distinguish two states by their behaviour. For the transition system in Figure 2.7, it
is imminent that states x and y behave differently since x has a successor and y does
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not. The same holds for states y and u. Now, state x can transition to state y which
has no successors whereas u can never reach any state without successor. Thus their
behaviour differs from the viewpoint of an outside observer of the system. This motivates
the definition of a bisimulation.

Definition 2.6.4 (bisimulation (transition system)). Let TS = (S, η) be a transition
system. A relation R ⊆ S×S is a bisimulation if the following holds for all s, t ∈ S
with sRt:

• if s→s′ then there exists some t→t′ with s′Rt′

• if t→t′ then there exists some s→s′ with s′Rt′

Two states s, t ∈ S are bisimilar, written s ∼ t if they are related by some bisimulation.
The relation ∼ is the union of all bisimulations - called bisimilarity. It holds that ∼
is a bisimuation itself and an equivalence relation (i.e. reflexive, symmetric and tran-
sitive). Bisimilar states have the same observable behaviour. In Figure 2.7 we have
∼ = {(x, x), (y, y), (u, u)}.

Intuitively, two states are bisimilar if each transition from either state can be mirrored
by the other states, i.e. it has a transition to a bisimilar state.

The bisimulation ∼ of any transition system can be computed as the greatest fixpoint
of the following operator.

Definition 2.6.5 (fixpoint operator - bisimilarity for transition systems). Given a
transition system TS = (S, η). We define the function B∶{0, 1}S×S → {0, 1}S×S for
a ∈ {0, 1}S×S and s, t ∈ S as

B(a)(s, t) =min{ min
s′∈η(s)

max
t′∈η(t)

a(s′, t′), min
t′∈η(t)

max
s′∈η(s)

a(s′, t′)}.

with min∅ = 1 and max∅ = 0.

It holds that νB(s, t) = 1 if and only if s ∼ t6. Again, this fixpoint is not unique, i.e.
µB ≡ 0 for the transition system in Figure 2.7. One can exactly compute νB via Kleene
iteration (from above) since we only assign values in {0, 1} to states.

We quickly remark that B is very similar to the Hausdorff lifting H only that all min
and max are swapped. This similarity will prove useful later on.

Computation of µB. Bisimilarity for a transition system is usually obtained via
partitioning refinement [SR11]. Here, we start with the relation ∼0⊆ S × S containing
all pairs of states and then iteratively compute ∼k+1⊆ S × S as follows: Let s, t ∈ S then

6B(a)(s, t) = 1 iff ∀s→ s′ ∃t→ t′ ∶ a(s′, t′) = 1 and vice versa.
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s ∼k+1 t iff for s → s′ there exists t → t′ with s′ ∼k t′ and vice versa. Whenever ∼k=∼k+1
for some k ∈ N, we have s ∼ t iff s ∼k t.

Kannelakis and Smolka describe a more efficient way to split a partitioning ([SR11])
which Page and Tarjan improve on [PTB85, SR11].

The Ehrenfeucht-Fraisse game is a two-player game (players are called attacker and
defender) played on a transition system and two states are bisimilar iff there exists a
winning strategy for the defender (see [Bos92] for details).

Also, two states are bisimilar iff they satisfy the same modal formulas [GO07].

Looking Ahead. B has a dual representation that we will detail in Section 3.6.7. For
this dual representation we will derive the approximation of B which allows us to detect
whether some fixpoint of B is the greatest fixpoint or not. Additionally, we can find upper
bounds for νB which witnesses that two states are bisimilar without computing the whole
bisimulation relation.

Strategy iteration is applicable to compute νB and we will detail this procedure in
Section 5.3.6.

2.6.3. Behavioural Distances for Labeled Markov Chains

Labeled Markov chains are very similar to Markov chains. Instead of having terminating
states we assign a label to each state. This is the most basic definition of a labeled
Markov chain, e.g. see [BBLM17] where they additionally have terminating states and
exit probabilities.

Definition 2.6.6 (labeled Markov chain). A labeled Markov chain is a tuple
LMC = (S, η, L, ℓ) consisting of a finite set of states S, a transition function
η∶S → D(S), a set of labels L and a labeling function ℓ∶S → L.

Any labeled Markov chain can be seen as a Markov chain (with T = ∅) over some
metric space (L, dL). Throughout this thesis, we will simply have some finite set of labels
L and dL∶L × L → {0, 1} will be the discrete metric assigning a distance of one to any
two differing elements.

Consider the labeled Markov chain in Figure 2.8. Here, S = {x, y, z, u} and L =
{black, red}, where we have the discrete metric dL(black, red) = 1 on L. Now, ℓ(x) =
ℓ(y) = ℓ(z) = black, ℓ(u) = red; η(u)(u) = η(z)(z) = 1, η(x)(u) = η(x)(z) = 1/2 and
η(y)(u) = 1/2 + ε, η(y)(z) = 1/2 − ε (omitting elements outside the supports).

For labeled Markov chains we are interested in investigating the difference in behaviour
of its states (as motivated in Section 2.5.1). Now, as one can see, states z and u behave
differently since their labels differ. On the other hand, the behaviour of states x and y is
very similar, only differing by some small value ε. However, their behaviour is observably
different. As motivated in Section 2.5.1 we would like to measure this difference in
behaviour. In particular, we want states having the same observable behaviour to have a
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Fig. 2.8.: Example of a labeled Markov chain: labels are denoted by colours, ε > 0 is some
small value

behavioural distance of 0. Thus, similar to transition systems, we define a probabilistic
bisimulation.

Definition 2.6.7 (probabilistic bisimulation (labeled Markov chain)). Let LMC =
(S, η, L, ℓ) be a labeled Markov chain. An equivalence relation R ⊆ S × S is a
proabilistic bisimulation if the following holds for all s, t ∈ S with sRt:

• ℓ(s) = ℓ(t)

• for all equivalence classes C ∈ S/R, we have η(s)(C) = η(t)(C)

where η(s)(C) = ∑c∈C η(s)(c).

Two states s, t ∈ S are bisimilar, written s ∼ t if they are related by some probabilistic
bisimulation. The relation ∼ is the union of all bisimulations - called bisimilarity. It holds
that ∼ is a bisimulation itself and an equivalence relation. Bisimilar states have the same
observable behaviour.

To put the above notion into easy simple words, two states s and t are bisimilar if they
have the same label and they transition to any set (equivalence class) of bisimilar states
with the same probability. A probabilistic bisimulation can be computed via partitioning
refinement [GVdV18].

The following operator computes the behavioural distance between all states in a
labeled Markov chain.
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Definition 2.6.8 (fixpoint operator - behavioural distances for labeled Markov
chains). Given a LMC = (S, η, L, ℓ). We define the function ∆∶ [0, 1]S×S → [0, 1]S×S

for d ∈ [0, 1]S×S and s, t ∈ S as

∆(d)(s, t) =max{dL(ℓ(s), ℓ(t)),K(d)(η(s), η(t))}

which simplifies to

∆(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
K(d)(η(s), η(t)) otherwise

whenever dL is the discrete metric.

The least fixpoint of ∆ yields the behavioural distance for a labeled Markov chain. It
holds s ∼ t iff µ∆(s, t) = 0 [TvB17]. For example, in Figure 2.8 we obtain the pseudometric
µ∆(x, u) = µ∆(y, u) = µ∆(z, u) = 1, µ∆(x, y) = ε, µ∆(x, z) = 1/2 and µ∆(y, z) = 1/2 − ε
(all other distances are given since µ∆ is a pseudometric).

Remark 2.6.9. As it is the case for the other state based systems, we can directly derive
the behavioural distance via the Wasserstein lifting from Section 2.5.4 by setting M = [0, 1]
and using the functor FX = Λ ×Df (X), where Λ is a fixed set of labels7. We observe
that couplings of (a1, p1), (a2, p2) ∈ FX only exist if a1 = a2 and – if they do not exist –
the Wasserstein distance is the empty infimum, hence 1. If a1 = a2, couplings correspond
to the usual probabilistic couplings of p1, p2 from Section 2.5.6 and the least fixpoint of
W(d) = (ξ × ξ) ○ d↓F 8 equals the behavioural metric, as explained in Section 2.5.4, and
the least fixpoint of ∆.

Computation of µ∆. Once again, one can approximate µ∆ via Kleene iteration (from
below). We described how to compute the Kantorovich distance in Section 2.5.6.

The literature gives a handful of interesting algorithms which compute µ∆. The paper
[BBLM17] gives a linear program whose solution yields µ∆ directly. They also present an
on-the-fly algorithm which is similar to the strategy iterations we will describe in Chapter 5
but adds some problem specific optimizations. The paper [TvB17] adds on to this and
derives a (partial) policy (strategy) iteration. They also handle the problem that ∆ usually
does not have one unique fixpoint. They show that the function Λ∶ [0, 1]S×S → [0, 1]S×S

defined for d∶S × S → [0, 1] and s, t ∈ S as

Λ(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

0 if s ∼ t

∆(d)(s, t) otherwise

has a unique fixpoint which equals µ∆. Another approach which remedies this problem
7Liftings of multifunctors were analyzed in [BBKK18].
8ξ specifies the labeled Markov chain, i.e. ξ(x) = (a, p).
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is to introduce some discount factor λ ∈ (0, 1) and modify ∆ as follows:

∆λ(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
λ ⋅K(d)(η(s), η(t)) otherwise

This is sometimes done in the literature [BBLM17]. As a contraction, ∆λ has a unique
fixpoint. To the two functions above with a unique fixpoint Kleene iteration from above
is applicable as well.

Looking Ahead. In Section 2.6.5 we will discuss that any labeled Markov chain can
be seen as an instance of a probabilistic automata.

In Section 3.6.3 we derive the approximation of ∆.
In Section 5.3.4 we describe how strategy iteration can be applied to compute µ∆. We

will also show that the policy and paritial policy iterations in [TvB17] can be seen as
instances of our strategy iteration.

2.6.4. Behavioural Distances for Metric Transition Systems

Metric transition systems are transition systems (see Section 2.6.2) where we additionally
assign some weight to each state. These were first introduced and studied in [dAFS09].

Definition 2.6.10 (metric transition system). A metric transition system is a
tuple MTS = (S, η, L, ℓ) consisting of a finite set of states S, a transition function
η∶S → P(S) and a labeling function ℓ∶S → L for some set of labels L.

Metric transition systems are transition systems over some metric space (L, dL). We will
have L = [0, 1] and the metric dL∶L ×L→ [0, 1] is given as dL(x, y) = ∣x − y∣ for x, y ∈ L
(Euclidian metric). Thus, dL(ℓ(s), ℓ(t)) = ∣ℓ(s) − ℓ(t)∣ for states s, t ∈ S.

Bisimulation is defined very similar to transition systems without weights. We just
need to guarantee that bisimilar states have the same label/weight.

Definition 2.6.11 (bisimulation (metric transition system)). Let MTS =
(S, η, L, ℓ) be a metric transition system. An equivalence relation R ⊆ S × S is a
bisimulation if the following holds for all s, t ∈ S with sRt:

• ℓ(s) = ℓ(t) (iff dL(s, t) = 0)

• if s→ s′ then there exists some t→ t′ with s′Rt′

• if t→ t′ then there exists some s→ s′ with s′Rt′

Two states s, t ∈ S are bisimilar, written s ∼ t if they are related by some bisimulation. The
relation ∼ is the union of all bisimulations. ∼ is a bisimulation itself and an equivalence
relation. Bisimilar states have the same observable behaviour.
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The introduction of weights allows for a quantitative reasoning regarding the observable
behaviour of states. The following operator computes the behavioural distance between
states in a given metric transition system.

Definition 2.6.12 (fixpoint operator - behavioural distances for metric transition
systems). Given a metric transition system MTS = (S, η, L, ℓ), we define the
function J ∶ [0, 1]S×S → [0, 1]S×S for d ∈ [0, 1]S×S and s, t ∈ S as

J (d)(s, t) =max{dL(ℓ(s), ℓ(t)),H(d)(η(s), η(t))}

which simplifies to

J (d)(s, t) =max{∣ℓ(s) − ℓ(t)∣,H(d)(η(s), η(t))}

when dL is the euclidian metric.

The least fixpoint of J yields the behavioural distance function for a metric transition
system. We have s ∼ t iff µJ (s, t) = 0 ([BBL+21], as metric transition systems are special
probabilistic automata). Again, J usually does not have a unique fixpoint.

Computation of µJ can be done via Kleene iteration (from below) which in fact yields
an exact computation after a finite number of iterations since the number of values pairs
of states can take is bounded by the cardinality of {dL(ℓ(s), ℓ(t)) ∣ s, t ∈ S}, which is
finite. We discussed the computation of the Hausdorff-distance H(d) in Section 2.5.5.
The literature is rather scarce when it comes to computing behavioural distances for
metric transition systems directly. We will see that metric transition systems are a form
of probabilistic automata which are studied more frequently.
Example 2.6.13. We consider the metric transition system depicted below, where
the metric space of labels is the real interval L = [0, 1] with the Euclidean distance
dL(x, y) = ∣x − y∣.

x ∶ 0.1

y ∶ 0.6

z ∶ 0.3

Here, η(x) = {x, z}, η(y) = {x, y, z} and η(z) = {x}. Additionally we have ℓ(x) = 0.1,
ℓ(y) = 0.6 and ℓ(z) = 0.3 resulting in dL(ℓ(x), ℓ(y)) = 0.5, dL(ℓ(x), ℓ(z)) = 0.2 and
dL(ℓ(y), ℓ(z)) = 0.3. The least fixpoint of J is a pseudo-metric µJ given by µJ (x, y) =
µJ (y, z) = 0.5 and µJ (x, z) = 0.2. Since µJ is a pseudo-metric, the remaining entries
are fixed: µJ (u, u) = 0 and µJ (u, v) = µJ (v, u) for all u, v ∈ {x, y, z}.
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Fig. 2.9.: A probabilistic automaton.

Looking Ahead. In the next section on probailistic automata we will discuss that any
metric transistion system can be seen as an instance of a probabilistic automata.

In Section 3.6.5 we will derive the approximation of J .
In Section 5.3.5 we show how one can apply strategy iteration to compute µJ .

2.6.5. Behavioural Distances for Probabilistic Automata

When combining branching systems with probabilities we obtain probabilistic automata.

Definition 2.6.14 (probabilistic automaton). A probabilistic automaton is a
tuple PA = (S, η, L, ℓ) consisting of a finite set of states S, a transition function
η∶S → Pf (D(S)) and a labeling function ℓ∶S → L for a set of labels L.

Consider the probabilistic automaton in Fig. 2.9 with state space Y = {s, t, u}, labels
ℓ(s) = ℓ(t) = a and ℓ(u) = b and probability distributions β1, β2, β′1, β′2, β′′ as indicated.
For instance, from state s, there are two possible transitions β1 which with probability 1/2
goes to u and with probability 1/2 stays in s, and β2 which goes to t with probability 1.

Any probabilistic automaton can be seen as a branching Markov chain over some
metric space (L, dL). As we have for labeled Markov chains, dL∶L × L → {0, 1} will be
the discrete metric assigning a distance of one to any two differing elements (as it is in
[BBL+21]). In fact, any labeled Markov chain can be seen as an instance of a probabilistic
automata where for each state there is only one transition to some probability distribution
over S, i.e. η∶S → D(S).

On the other hand, any metric transition system can be seen as a special kind of
probabilistic automaton as well (with generic distances on labels). Given a state s ∈ S, let
βs denote the Dirac distribution, assigning probability 1 to s and 0 to all other states. Then
we can “transform” the transition relation η∶S → P(S) = Pf (S) into η′∶S → Pf (D(S)),
defining η′(s) = {βt ∣ t ∈ η(s)}.

Bisimilarity for probabilistic automata combines probabilistic bisimilarity with branch-
ing bisimilarity:
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Definition 2.6.15 (bisimulation (probabilistic automaton)). Let PA = (S, η, L, ℓ)
be a probabilistic automaton. An equivalence relation R ⊆ S × S is a probabilistic
bisimulation if the following holds for all s, t ∈ S with sRt:

• ℓ(s) = ℓ(t)

• if s → ps then for all equivalence classes C ∈ S/R there exists some t → pt

with ps(C) = pt(C)

• if t → pt then for all equivalence classes C ∈ S/R there exists some s → ps

with ps(C) = pt(C)

Again, we have p(C) = ∑c∈C p(c).

Two states s, t ∈ S are bisimilar, written s ∼ t if they are related by some bisimulation. The
relation ∼ is the union of all bisimulations. ∼ is a bisimulation itself and an equivalence
relation. Bisimilar states have the same observable behaviour.

Combining Hausdorff- and Kantorovich-liftings, we obtain the following operator which
yields the behavioural distance for probabilistic automata.

Definition 2.6.16 (fixpoint operator - behavioural distances for probabilistic
automata). Given a probabilistic automaton PA = (S, η, L, ℓ), we define the function
M∶ [0, 1]S×S → [0, 1]S×S for d ∈ [0, 1]S×S and s, t ∈ S as

M(d)(s, t) =max{dL(ℓ(s), ℓ(t)),H(K(d))(η(s), η(t))}

which simplifies whenever dL is the discrete metric to

M(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
H(K(d))(η(s), η(t)) otherwise

.

The least fixpoint of M yields the behavioural distance function. Again, this fixpoint
is usually not unique. It holds that µM(s, t) = 0 iff s ∼ t [BBL+21].

Example 2.6.17. Consider the probabilistic automaton in Figure 2.9 with state space Y =
{s, t, u}, labels ℓ(s) = ℓ(t) = a and ℓ(u) = b and probability distributions β1, β2, β′1, β′2, β′′

as indicated.
In order to explain how the function M, resulting from the combination of Hausdorff

and Kantorovich lifting, works, let us consider the pseudometric d(s, t) = 1/2, d(s, u) =
d(t, u) = 1. This is not the least fixpoint of M, since the distance of states s, t is clearly 0
as the two states exihibit the same behaviour.

We now illustrate how to compute M(d)(s, t). We obtain M(d)(s, u) =M(d)(t, u) = 1
and, since ℓ(s) = ℓ(t) = a, we have

M(d)(s, t) =H(K(d))(δ(s), δ(t)).
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where δ(s) = {β1, β2} and δ(t) = {β′1, β′2}.
It is not difficult to see that the vertices of the coupling polytope Ω(β1, β′1) are

ΩV (β1, β′1) = {ω1, ω2} with

ω1(s, t) = 1/2, ω1(u, u) = 1/2 and ω2(s, u) = 1/2, ω2(u, t) = 1/2

and ωi(x, y) = 0, i ∈ {1, 2}, for every other pair (x, y) ∈ S × S. Then the Kantorovich
lifting is determined as follows:

K(d)(β1, β′1) =min{ ∑
x,y∈S

d(x, y) ⋅ ω1(x, y), ∑
x,y∈S

d(x, y) ⋅ ω2(x, y)} =min{1/4, 1} = 1/4.

Similarly we can obtain K(d)(β1, β′2) = 1/2, K(d)(β2, β′1) = 1/2, K(d)(β2, β′2) = 1/4.
In order to conclude the computation via the Hausdorff lifting, note that the minimal

set-couplings of δ(s) = {β1, β2} and δ(t) = {β′1, β′2} are

R1 = {(β1, β′1), (β2, β′2)} R2 = {(β1, β′2), (β2, β′1)}

and any other set-coupling includes R1 or R2. Then we obtain

M(d)(s, t) =H(K(d))(δ(s), δ(t))
=min{ max

(x,x′)∈R1
K(d)(x, x′), max

(x,x′)∈R2
K(d)(x, x′)}

=min{max{K(d)(β1, β′1),K(d)(β2, β′2)}, max{K(d)(β1, β′2),K(d)(β2, β′1)}}
=min{max{1/4, 1/4}, max{1/2, 1/2}} =min{1/4, 1/2} = 1/4.

We observe that other kinds of probabilistic automata, e.g., those originally introduced
by Rabin [Rab63], where transitions rather than states are labelled and some states are
marked as final, i.e., the transition relation is of the kind η ∶ S → {0, 1} ×D(S)L, or their
non-deterministic variant, can be easily cast into our framework.

Computation of µM. µM can be computed via Kleene iteration (from below) to
obtain an approximation. The paper [BBL+21] presents an on-the-fly algorithm which
computes µM. They also show how to obtain the bisimilarity distance as the solution of
a simple stochastic game.

Looking Ahead. As we will see, this on-the-fly algorithm can be seen as an instance
of the strategy iterations we propose and we will show this relation in Section 5.3.7. This
algorithm encounters the problem that it gets stuck at any fixpoint of M. Similar to
what we will be doing, the authors compute a self-closed relation which gives the set
of states whose values can be reduced in a fixpoint that is not the least. We will derive
the approximation of M in Section 3.6.5 and show that this self-closed relation can be
seen as an instance of our theory. In fact, this paper gave us motivation to search for a
generalization.
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2.7. Application: Two-Player-Games

In this section we introduce a few games - in particular two-player-games - played
on directed graphs. These are discounted mean-payoff games (Section 2.7.2), simple
stochastic games (Section 2.7.3) and energy games (Section 2.7.4). These three games
are closely related and can in fact be reduced into one another (see [CF11] for a nice
overview). They are however different enough to illustrate different aspects of the theories
in later chapters. Due to their rather simple nature they prove very useful to this end.
Especially strategy iteration is most intuitive when it comes to playing a game.

2.7.1. General Definitions

In this first part we give the general framework and definitions which can be instantiated
to all three examples. We start by defining a graph.

Definition 2.7.1 (graph). A graph G = (V, E) consists of a finite set of vertices
V and a finite set of edges E ⊆ V × V . We denote n = ∣V ∣ to be the number of
vertices and m = ∣E∣ the number of edges.

We will exclusively consider directed graphs. succ(v) denotes the set of successors of
state v ∈ V , i.e. succ(v) = {v′ ∈ V ∣ (v, v′) ∈ E}.

The games we aim to analyze, begin by placing a pebble on some state v0 ∈ V . We
have two players - Max and Min - which both control a subset of states where they choose
where the pebble moves to. Some states are controlled by the environment where the
pebble moves out of control of either player. This motivates the following definition.

Definition 2.7.2 (two-player-graph). A two-player-graph is a directed graph
G = (V, E) where the set of vertices V is given as the union of disjoint sets
VMax, VMin, VEnv, i.e. V = VMax ∪VMin ∪VEnv. Additionally, it holds that succ(v) /= ∅
for all v ∈ VMax ∪ VMin.

States in VMax are controlled by player Max, states in VMin are controlled by player Min
and states in VEnv are controlled by the environment. The environment is non-biased and
can for example move the pebble according to some probability distribution.

A play on a graph is defined as follows.

Definition 2.7.3 (play). Given some directed graph G = (V, E). Any finite or
infinite sequence plv0 = v0, v1, v2, . . . of states where (vi, vi+1) ∈ E for all i ≥ 0, is
called a play in G starting from v0. Such a play might be finite or infinite. Plv

G

denotes the (possibly infinite) set of plays in G starting from v.

A play in G results in some payoff which player Max obtains from player Min. Thus, the
games we consider are zero-sum games (see [Mor94]). Player Max wants to play in a way



60 2. Preliminaries

which maximizes this payoff, whereas player Min wants to minimize it.

For each of the three games we will discuss, both players Max and Min have optimal
positional strategies, i.e. it is optimal for them to move the pebble to the same fixed
successor when in a state controlled by them and either player does not need to consider
the history of the game. This is at least the case as long as the other player plays optimally
which he has no benefit of deviating from.

Definition 2.7.4 (positional strategy). A positional strategy for player Max is
a mapping σ∶VMax → V where (v, σ(v)) ∈ E for all v ∈ VMax. Σ denotes the set of
all strategies of player Max.
A positional strategy for player Min is a mapping τ ∶VMin → V where (v, τ(v)) ∈ E
for all v ∈ VMin. Π denotes the set of all strategies of player Min.

Since ∣V ∣ and ∣E∣ are finite, the number of positional strategies for both players are finite
as well.

Strategies induce new graphs where edges not chosen in a strategy are removed. It
proves convenient to define them as follows.

Definition 2.7.5 (strategy-induced graph). Given a two-player-graph G = (V, E)
and strategies σ ∈ Σ and τ ∈ Π for players Max and Min. We define the following
strategy-induced graphs

• Gσ = (V, Eσ) where Eσ = E ∖ {(v, v′) ∣ v ∈ VMax, σ(v) /= v′}, i.e. we remove
all edges not chosen by the strategy σ.

• Gτ = (V, Eτ) where Eτ = E ∖ {(v, v′) ∣ v ∈ VMin, τ(v) /= v′}, i.e. we remove all
edges not chosen by the strategy τ .

• Gσ,τ = (V, Eσ,τ) where Eσ,τ = Eσ ∩Eτ , i.e. we remove all edges not chosen
by the strategies σ and τ .

Strategy-induced graphs are again two-player-graphs. Playing by a positional strategy
is like playing on the respective strategy-induced graph. A play on a strategy-induced
graph is defined as follows.
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Definition 2.7.6 (strategy-induced play). Given a two-player-graph G = (V, E)
and strategies σ ∈ Σ and τ ∈ Π for players Max and Min. A strategy-induced
play is a play

• plv
σ in Gσ starting from v ∈ V , i.e. plv

σ ∈ Plv
Gσ

,

• plv
τ in Gτ starting from v ∈ V , i.e. plv

τ ∈ Plv
Gτ

,

• plv
σ,τ in Gσ,τ starting from v ∈ V , i.e. plv

σ,τ ∈ Plv
Gσ,τ

.

It will prove convenient to assign a payoff to pairs of strategies and a given starting
vertex, instead of plays.

Definition 2.7.7 (payoff-function). Given some two-player-graph G = (V, E) and
strategies σ ∈ Σ and τ ∈ Π for players Max and Min. A payoff-function is a map
P ∶V ×Σ ×Π→ R∞, assigning some real payoff to each state and pair of strategies.

Such a payoff-function needs to be instantiated to the game at hand. Nevertheless, and
convenient for our purposes, it allows one to define optimal strategies.

Definition 2.7.8 (optimal strategies). Given some two-player-graph G = (V, E)
and a payoff-function P ∶V ×Σ ×Π→ R∞. Strategies σ∗ ∈ Σ and τ∗ ∈ Π for players
Max and Min are optimal (w.r.t. P ), if for all σ ∈ Σ, for all τ ∈ Π and for all
v ∈ V the following holds:

P (v, σ, τ∗) ≤ P (v, σ∗, τ∗) ≤ P (v, σ∗, τ).

For all three games we consider, optimal positional strategies exist for both players.
The payoff which is obtained when both players play optimally starting from state

v ∈ V is what we aim to compute. We interpret this as the solution of a game.

Definition 2.7.9 (solution). Given some two-player-graph G = (V, E), a payoff-
function P ∶V ×Σ ×Π→ R∞ and optimal strategies σ∗ ∈ Σ and τ∗ ∈ Π for players
Max and Min. The map v∗∶V → R∞ defined as

v∗(v) = P (v, σ∗, τ∗)

is called the solution of G (w.r.t. P ).

For all three games we can find the solution by computing the least fixpoint of an
endofunction over a complete lattice which allows us to apply the theories in later
chapters. This is sadly not the case for closely related two-player-games like parity games
or mean-payoff games.
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2.7.2. Discounted Mean-Payoff Games

We start by describing discounted mean-payoff games - first introduced in [ZP95]. These
are very similar to the better known mean-payoff games [ZP95] which sadly do not fit into
our framework as one can not obtain a solution as a fixpoint of some function. As we will
see the fixpoint function, which computes the solution of a discounted mean-payoff game,
has a unique fixpoint which is in general not the case for the other two-player-games we
will consider.

Definition 2.7.10 (discounted mean-payoff game). A discounted Mean-Payoff
Game is a tuple ΓM = (G, w, λ) where G = (V, E) is a two-player-graph with
VEnv = ∅. Additionally, we are given some discount factor λ ∈ (0, 1) and some map
w∶E → Z, assigning a weight w(e) to each edge e ∈ E. We define W =max{∣w(e)∣ ∣
e ∈ E}.

A discounted mean-payoff game is played as follows:

• A pebble is placed on some initial state v ∈ V .

• If the pebble is in some state v ∈ VMax, player Max moves the pebble to some state
v′ ∈ succ(v).

• If the pebble is in some state v ∈ VMin, player Min moves the pebble to some state
v′ ∈ succ(v).

Given positional strategies σ and τ for players Max and Min, (Gσ, wσ, λ), (Gτ , wτ , λ)
and (Gσ,τ , wσ,τ , λ) are discounted mean-payoff games as well. Here, wσ ∶Eσ → Z, wτ ∶Eτ →
Z and wσ,τ ∶Eσ,τ → Z are defined as w∶E → Z on existing edges.

There also exists a unique infinite play plv
σ,τ in Gσ,τ starting from v ∈ V (as each state

has only one successor). We obtain the following payoff-function.

Definition 2.7.11 (payoff-function of a discounted mean-payoff game). Given
some discounted mean-payoff game ΓM = (G, w, λ). We define the payoff-function
PM ∶V ×Σ ×Π→ [−W, W ] for strategies σ ∈ Σ, τ ∈ Π and v0 ∈ V as follows:

PM(v0, σ, τ) = (1 − λ) ⋅
∞
∑
i=0

λi ⋅w(vi, vi+1)

where plv0
σ,τ = v0, v1, v2, . . . is the unique play starting from v0 in Gσ,τ .

It is immediate that −W ≤ PM(v0, σ, τ) ≤W : For any play plv0
σ,τ = v0, v1, v2, . . . we have

−W = 1 − λ

1 − λ
⋅ (−W ) = (1 − λ) ⋅

∞
∑
i=0

λi ⋅ (−W )

≤ (1 − λ) ⋅
∞
∑
i=0

λi ⋅w(vi, vi+1) = PM(v0, σ, τ)



2.7. Application: Two-Player-Games 63

≤ (1 − λ) ⋅
∞
∑
i=0

λi ⋅W = 1 − λ

1 − λ
⋅W =W

by geometric series.
For discounted mean-payoff games optimal positional strategies exist for both players.

Lemma 2.7.12. For discounted mean-payoff games the following holds: There
exist optimal positional strategies σ∗ ∈ Σ and τ∗ ∈ Π for both players Max and Min.

Proof. See [ZP95].

The solution v∗M ∶V → R, v∗M(v) = PM(v, σ∗, τ∗), of some discounted mean-payoff game
ΓM is obtained as the unique fixpoint of the following function.

Definition 2.7.13 (fixpoint operator for discounted mean-payoff games). Given
some discounted mean-payoff game ΓM = (G, w, λ), we define the operator
L∶ [−W, W ]V → [−W, W ]V for v ∈ V and a∶V → [−W, W ] as follows:

L(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

max(v,u)∈E(1 − λ) ⋅w(v, u) + λ ⋅ a(u), v ∈ VMax

min(v,u)∈E(1 − λ) ⋅w(v, u) + λ ⋅ a(u), v ∈ VMin
.

[ZP95] show that L has a unique fixpoint.

Lemma 2.7.14. Given some discounted mean payoff game ΓM = (G, w, λ). We
have µL = v∗M , i.e. the least (and unique) fixpoint µL of L coincides with the
solution v∗M of ΓM .

Proof. See [ZP95].

Computation of µL. Note that [−W, W ]V is a complete lattice (see Example 2.3.4).
Thus we can compute µL = νL via Kleene iteration (from above and below). This yields
an approximation.

The literature is rather scarce when it comes to discounted mean-payoff games since
they arise from the more common and complex mean-payoff games.

Example 2.7.15. We are given the following discounted mean-payoff game ΓM =
(G, w, λ). Squares belong to player Max whereas circles belong to player Min.
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x

y z

u

−2
1 −1

−1 1

0

1

We have V = {x, y, z, u} and λ = 0.5. Edges and their weights are to be taken from the
picture (W = 2). The following table displays the computation of µL via Kleene iteration
(from below):

a(0) a(1) a(2) a(3) a(4) a(5) . . . µL
x -2 −1/2 −1/2 −1/8 −1/8 −1/32 . . . 0
y -2 -2 −5/4 −5/4 −17/16 −17/16 . . . -1
z -2 −1/2 0 1/4 3/8 7/16 . . . 1/2
u -2 -1 −1/2 −1/4 −1/8 −1/16 . . . 0

The iteration converges towards µL. To perform Kleene iteration from above, just replace
a(0) ≡W .

Looking Ahead. Since L has a unique fixpoint there is no need to derive an approxi-
mation.

We will show how to apply our strategy iterations to discounted mean-payoff games in
Section 5.3.1 and perform a short runtime comparison in Section 5.4.1.

2.7.3. Simple Stochastic Games

Simple stochastic games, first introduced in [Con92], are well known and studied. Here,
the game contains probabilistic transitions and sink states which yield some payoff.

Definition 2.7.16 (simple stochastic game). A simple stochastic game is a
tuple ΓS = (G, p, c) where G = (V, E) is a two-player-graph with VEnv = VAv ∪ VSink.
We have VAv ∩ VSink = ∅ and succ(v) /= ∅ for all v ∈ VAv. Additionally, we are
given some map p∶VAv → D(V ), assigning a probability distribution p(v) to each
state v ∈ VAv

9and some map c∶VSink → [0, 1], assigning some payoff to each state
v ∈ VSink.

A simple stochastic game is played as follows:
9We have p(v)(v′) > 0 iff v′ ∈ succ(v).
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• A pebble is placed on some initial state v ∈ V .

• If the pebble is in some state v ∈ VMax, player Max moves the pebble to some state
v′ ∈ succ(v).

• If the pebble is in some state v ∈ VMin, player Min moves the pebble to some state
v′ ∈ succ(v).

• If the pebble is in some state v ∈ VAv, the pebble moves to state v′ ∈ succ(v) with
probability p(v)(v′).

• If the pebble is in some state v ∈ VSink, the game ends and player Max obtains payoff
c(v) from player Min.

Note that the pebble may never reach a sink state and thus the game never ends. In that
case player Max obtains payoff 0 from player Min.

Given positional strategies σ and τ for players Max and Min, (Gσ, p, c), (Gτ , p, c) and
(Gσ,τ , p, c) are simple stochastic games as well. We can derive the expected payoff of a
game starting in v ∈ V :

Definition 2.7.17 ((expected) payoff-function of a simple stochastic game). Given
some simple stochastic game ΓS = (G, p, c). We define the (expected) payoff-function
PS ∶V ×Σ ×Π→ [0, 1] for strategies σ ∈ Σ, τ ∈ Π and v ∈ V as follows:

PS(v, σ, τ) = ∑
v′∈VSink

pv
σ,τ(v′) ⋅ c(v′).

where pv
σ,τ(v′) denotes the probability of reaching sink state v′ starting from v ∈ V

in Gσ,τ .

It is immediate that 0 ≤ PS(v, σ, τ) ≤ 1 since

0 ≤ ∑
v′∈VSink

pv
σ,τ(v′) ⋅ 0 ≤ ∑

v′∈VSink

pv
σ,τ(v′) ⋅ c(v′) ≤ ∑

v′∈VSink

pv
σ,τ(v′) ⋅ 1 ≤ 1

since ∑v′∈VSink pv
σ,τ(v′) ≤ 1 for all v ∈ V .

For simple stochastic games optimal positional strategies exist for both players.

Lemma 2.7.18. For simple stochastic games the following holds: There exist
optimal positional strategies σ∗ and τ∗ for both players Max and Min.

Proof. See [Con92].

The solution v∗S ∶V → [0, 1], v∗S(v) = PS(v, σ∗, τ∗) of a simple stochastic game ΓS

coincides with the least fixpoint of the following function.
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Definition 2.7.19 (fixpoint operator for simple stochastic games). Given some
simple stochastic game ΓS = (G, p, c), we define the operator V ∶ [0, 1]V → [0, 1]V
for a∶V → [0, 1] and v ∈ V as follows:

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv′∈succ(v) a(v′) if v ∈ VMax

minv′∈succ(v) a(v′) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

Lemma 2.7.20. Given some simple stochastic game ΓS = (G, q, p). We have
µV = v∗S, i.e. the least fixpoint µV of V coincides with the solution v∗S of ΓS.

Proof. See [KRSW20].

Note that [0, 1]V is a complete MV-chain (see Example 2.3.4) thus we can use Kleene
iteration (from below) to approximate µV (see Example 2.7.22). V may omit more than
one fixpoint thus Kleene iteration from above is not applicable.

Stopping Simple Stochastic Games. When it comes to algorithms which solve
simple stochastic games, the literature mainly considers stopping simple stochastic games.

Definition 2.7.21 (stopping). A simple stochastic game ΓS = (G, p, c) is called
stopping if for all strategies σ ∈ Σ and τ ∈ Π of players Max and Min and all v ∈ V
we have

∑
v′∈VSink

pv
σ,τ(v′) > 0.

In a stopping simple stochastic game, we will eventually reach a sink state and thus the
game will end. Neither player can prevent this from happening.

For stopping simple stochastic games, the operator V has one unique fixpoint which
makes them easier to analyze [KRSW20]. This is not a one-to-one corespondance, i.e.
the operator V may have only one fixpoint for a non-stopping simple stochastic games.
See the example below where state 1 ∈ VSink has payoff 1 and max ∈ VMax. The game is
clearly non-stopping but V has a unique fixpoint.

1max

This property of stopping is frequently used in the literature and most algorithms
have stopping simple stochastic games in mind. Any simple stochastic game can be
transformed into an equivalent stopping simple stochastic game [Con92]. The techniques
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we introduce in Chapters 3 and 5 allow us to analyze non-stopping simple stochastic
games - thus we do not care whether a simple stochastic game is stopping or not. We
note that recent research is done on general simple stochastic games [KMW23].

Example 2.7.22. Consider the following simple stochastic game.

1 min av max ε

1/21/2

We have VMax = {max}, VMin = {min}, VAv = {av} and VSink = {1, ε}. Transitions and
their probabilities are to be taken from the picture. The payoff of state 1 is 1 and of state
ε is ε. We assume ε is some small positive number.

We directly obtain v∗S(1) = 1 and v∗S(ε) = ε. It is rather imminent that player Max should
move to state ε, otherwise if he chooses to move to state av, player Min can just keep the
game in the cycle formed by states min, av, max. Here, Max would obtain a payoff of 0.
Thus σ∗(max) = ε and v∗S(max) = ε. Now, player Min does not benefit from moving to
state 1 obtaining a payoff of 1. Thus τ∗(min) = av, resulting in v∗S(min) = v∗S(av) = ε.

The following table shows how to compute µV via Kleene iteration (from below):

a(0) a(1) a(2) a(3) a(4) a(5) . . . µV
min 0 0 0 0 ε/2 ε/2 . . . ε

av 0 0 0 ε/2 ε/2 3ε/4 . . . ε

max 0 0 ε ε ε ε . . . ε

1 0 1 1 1 1 1 . . . 0
ε 0 ε ε ε ε ε . . . ε

This simple stochastic game is non-stopping. Thus, V may have more than one fixpoint,
e.g. νV(1) = νV(min) = νV(av) = νV(max) = 1 and νV(ε) = ε.

Computation of µV. As mentioned, the literature mainly considers stopping simple
stochastic games. For them, Kleene iteration from above is applicable since V omits only
one fixpoint. The Hoffmann-Karp algorithm is well known and is in fact an instance of
the strategy iterations we describe in Chapter 5. The paper [TVK11] improves on this
algorithm by adding randomization.

We can modify any simple stochastic game such that each state has exactly two
successors and sink states have a payoff in {0, 1}. Here, quadratic programming can be
used to directly compute µV [KRSW20].

The paper [ABdMS21] proposes a meta-algorithm GSIA such that a number of strategy
improvement algorithms for simple stochastic games arise as instances, along with a
general complexity bound. Differently from our strategy iterations (Chapter 5), this
paper focuses on simple stochastic games and iteration from below. However, it allows for
the parametrisation of the algorithm on a subset of edges of interest in the game graph,
which is not possible in our approach, and so it can provide interesting suggestions for
further generalisations.
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Looking Ahead. We compute the approximation of V in Section 3.6.8.
We can use strategy iteration to compute µV in Section 5.3.2 which is essentially

the Hoffmann-Karp algortihm with one extra step (since they consider stopping simple
stochastic games).

In Section 5.4.2 we perform a runtime comparison.

2.7.4. Energy Games

Energy games were first proposed in [BCD+11] and further explored in [DKZ19]. These
are similar to (discounted) mean-payoff games as they are played on the same graph.
Here however, we are interested if one player can keep the energy level positive forever.
The other player tries to make the system run out of energy.

Definition 2.7.23 (energy game). An energy game is a tuple ΓE = (G, w) where
G = (V, E) is a two-player-graph with VEnv = ∅. Additionally, we are given some
initial energy level c ∈ N∞ and some map w∶E → Z, assigning a weight w(e) to
each edge e ∈ E. We define W =max{∣w(e)∣ ∣ e ∈ E}.

For energy games, the literature refers to player Min as player 0 and to player Max as
player 1. We will stick to our naming convention.

Whenever an edge e ∈ E is traversed, we add w(e) to the current energy level. Thus, if
w(e) is positive, the energy level increases and decreases whenever w(e) is negative. An
energy game is played as follows:

• A pebble is placed on some initial state v ∈ V . The energy level is c.

• If the pebble is in some state v ∈ VMin, player Min moves the pebble to some state
v′ ∈ succ(v). The energy level increases/reduces by w(v, v′). If the energy level is
negative, the game ends.

• If the pebble is in some state v ∈ VMax, player Max moves the pebble to some state
v′ ∈ succ(v). The energy level increases/reduces by w(v, v′). If the energy level is
negative, the game ends.

Player Max wants the energy to run out whereas player Min wants the game to never end.
Given positional strategies σ and τ for players Max and Min, (Gσ, wσ), (Gτ , wτ) and
(Gσ,τ , wσ,τ) are energy games as well. Here, wσ ∶Eσ → Z, wτ ∶Eτ → Z and wσ,τ ∶Eσ,τ → Z
are defined as w∶E → Z on existing edges.

For energy games, we are interested in finding out how much initial credit player Min
requires to keep the game going forever. Player Min might require an inital credit of ∞ to
this end. It is rather imminent that whenever player Min requires an energy larger than
n ⋅W (there exist lower bounds) that he in fact requires an initial energy of ∞ [BCD+11].

This problem subsumes the problem of finding whether player Max can make the
system run out of energy thus ending the game when some initial credit is given. This
motivates the following definition.
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Definition 2.7.24 (feasible potential, solution of an energy game). Let ΓE = (G, w)
be an energy game. A function f ∶V → N∞ is a feasible potential iff for every
v ∈ V

• if v ∈ VMin, then f(v) +w(v, v′) ≥ f(v′) for some (v, v′) ∈ E.

• if v ∈ VMax, then f(v) +w(v, v′) ≥ f(v′) for all (v, v′) ∈ E.

We call the feasible potential g(v) =min{f(v) ∣ f is a feasible potential} the solu-
tion of the energy game ΓE.

g(v) equals the minimal required initial credit for player Min to keep the game going
forever starting from v ∈ V . To justify calling g the solution as in Definition 2.7.9, we
define a matching payoff-function.

Definition 2.7.25 (payoff-function of an energy game). Given some energy game
ΓE = (G, w). We define the payoff-function PE ∶V ×Σ×Π→ R∞ for strategies σ ∈ Σ,
τ ∈ Π and v ∈ V as follows:

PE(v, σ, τ) = gσ,τ(v)

where gσ,τ is the solution (according to Definition 2.7.24) of ΓE = (Gσ,τ , w).

Now, v∗E ∶V → N∞, v∗E(v) = PE(v, σ∗, τ∗) equals g.

Lemma 2.7.26. We have v∗E = g.

Proof. We have PE(v, σ∗, τ∗) = gσ∗,τ∗ . Since σ∗ and τ∗ are optimal strategies, it holds
g = gσ∗,τ∗ .

Optimal positional strategies exist for both players.

Lemma 2.7.27. For energy games the following holds: There exist optimal posi-
tional strategies σ∗ and τ∗ for both players 0 and 1.

Proof. See [DKZ19].

g equals the least fixpoint of the following operator.
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Definition 2.7.28 (fixpoint operator of energy games). Given some energy game
ΓE = (G, w), we define the operator Ē ∶ (N∞)V → (N∞)V for v ∈ V and a∶V → N∞
as

Ē(a)(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
v′∈succ(v)

max{a(v′) −w(v, v′), 0} if v ∈ VMin

max
v′∈succ(v)

max{a(v′) −w(v, v′), 0} if v ∈ VMax

Lemma 2.7.29. Given some energy game ΓE = (G, w). We have µĒ = g, i.e. the
least fixpoint µĒ of Ē coincides with the solution g of ΓE.

Proof. See [DKZ19].

Note that (N∞)V is a complete lattice (see Example 2.3.4) but not a complete MV-chain.
Still, Kleene iteration (from below) is applicable and even obtains exact computations as
we can set states to ∞ whenever they exceed n ⋅W . Note that Ē may have more than
one fixpoint.

Example 2.7.30. Consider the following energy game, where it is intended that circular
and rectangular states belong to player Min and player Max, respectively.

x

u

y

v

−12 16

−80 −2

−1

1

−98

The optimal strategy for player Min is to choose u as the successor to u and v. Thus
v requires an initial energy of 8 to keep going forever. For u an initial energy of 0 is
sufficient. On the other hand, the optimal strategy for player Max is to choose y as
successor to x and v as successor to y. This results in a required initial energy of 17 for
y and 18 for x.

Thus, we obtain as least fixpoint g(x) = 18, g(y) = 17, g(u) = 0, g(v) = 8 of Ē. Note
that, if from u player Min would choose x, player Max could keep the game in a negative
cycle.

Transformation to Energy Games with Finite Values. Now, since (N∞)V is not
an MV-chain we can not apply the techniques in Chapters 3 and 5. As shown in [DKZ19]
any energy game ΓE = (G, w) can be transformed into an energy game Γ′E = (G′, w′)
with finite values.
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To this end, an additional state s is introduced. s has only one outgoing edge looping
to itself with weight w(s, s) = 0. Now, for every state v ∈ VMin we add an edge (v, s) with
weight −2nW . State s serves as an emergency exit for player Min whenever she realizes
that the energy she requires tends to infinity. Next, we have to detect all states by player
Max which are part of some negative cycle exclusively consisting of player Max states.
We remove all these states and all states of player Max which can reach such a negative
cycle along a path consisting exclusively of player Max states. All incoming and outgoing
edges of these removed states are removed as well. For these removed states it holds
that an initial energy of ∞ is required. We thus obtain a new graph G′ = (V ′, E′) and
according to [DKZ19] it holds for the solutions g of ΓE and g′ of Γ′E and all v ∈ V that

g(v) =
⎧⎪⎪⎨⎪⎪⎩

g′(v) if g′(v) < n ⋅W
∞ otherwise

thus we can reconstruct the solution g of ΓE from the solution g′ of ΓE′ .

Example 2.7.31. The energy game ΓE = (G, w) to the left is transformed to an energy
game with finite values Γ′E = (G′, w′) as follows:

u

v

xy

z

−1

4

2

−3
−4

2 →

us

v z

0 −1−20

−20

4

To clarify, states x and y are removed as they form a negative cycle consisting of states
belonging to player Max. State z is not removed - although the required initial energy is
∞ - since its only successor is v which belongs to player Min.

For an energy game with finite values it holds that the solution g(v) is bounded by
some natural number k ∈ N (e.g. 3 ⋅n ⋅W ) in each element v ∈ V . Let K = {0, . . . , k} which
is a complete MV-chain (see Example 2.3.17) and define the operator ⊖Z∶K ×Z→K by
x⊖Z y =min{max{x − y, 0}, k}. We define E ∶KV →KV for a∶V →K and v ∈ V as

E(a)(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMin

max
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMax

Lemma 2.7.32. Let ΓE = (G, w) be an energy game with finite values, bounded
by k. Then µE = g, i.e. the least fixpoint of E coincides with the solution of ΓE.

Proof. See Appendix: Lemma A.1.5.

Since K is a complete MV-chain we can derive an approximation for E .
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Computation of µE. The transformation to an energy game with finite values is not
required for the algorithms described in the literature. The paper [BCD+11] proposes an
easy value iteration which can be used to compute µĒ . In the paper [DKZ19] one can
find a more involved algorithm.

Looking Ahead. We will derive the approximation of E in Section 3.6.9.
We can apply our strategy iterations to compute µE (Section 5.3.3).
Lastly, we will perform a runtime comparison in Section 5.4.3 where we also briefly

review the value iteration in [BCD+11].





3 Fixpoint Theory – Upside Down

In this chapter we will introduce the "Upside-Down" theory which lies at the heart of
this thesis as later chapters heavily rely on the theory we will present here. First, we will
discuss what we aim to accomplish in the following introduction which also serves as
motivation.

3.1. Introduction

Fixpoints are ubiquitous in computer science as they provide a meaning to inductive and
coinductive definitions (see, e.g., [San11, NNH10]). A monotone function f ∶ L→ L over
a complete lattice (L,⊑), by Knaster-Tarski’s theorem [Tar55], admits a least fixpoint
µf and greatest fixpoint νf which are characterised as the least pre-fixpoint and the
greatest post-fixpoint, respectively. This immediately gives well-known proof principles
for showing that a lattice element l ∈ L is below νf or above µf (cf. Section 2.3)

l ⊑ f(l)
l ⊑ νf

f(l) ⊑ l

µf ⊑ l

On the other hand, showing that a given element l is above νf or below µf is more
difficult. One can think of using the characterisation of least and largest fixpoints via
Kleene iteration (Theorem 2.3.11). The largest fixpoint is the least element of the (possibly
transfinite) descending chain obtained by iterating f from ⊺. Then showing that f i(⊺) ⊑ l
for some i, one concludes that νf ⊑ l. This proof principle is related to the notion of
ranking functions. However, this is a less satisfying notion of witness since f has to be
applied i times, and this can be inefficient or unfeasible when i is an infinite ordinal.

The aim of this chapter is to present an alternative proof rule for this purpose for
functions over lattices of the form L =MY where Y is a finite set and M is an MV-chain,
i.e., a totally ordered complete lattice endowed with suitable operations of sum and
complement (cf. Section 2.3.3). This allows us to capture several examples, ranging
from ordinary relations for dealing with bisimilarity to behavioural metrics, termination
probabilities, simple stochastic games and energy games.

Assume f ∶ MY → MY monotone and consider the question of proving that some
fixpoint a ∶ Y →M is the largest fixpoint νf . The idea is to show that there is no “slack”
or “wiggle room” in the fixpoint a that would allow us to further increase it. This is done
by associating with every a ∶ Y →M a function f#

a on P(Y ) whose greatest fixpoint gives
us the elements of Y where we have a potential for increasing a by adding a constant. If
no such potential exists, i.e. νf#

a is empty, we conclude that a is νf . A similar function
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fa
# (specifying decrease instead of increase) exists for the case of least fixpoints. Note

that the premise is νfa
# = ∅, i.e. the witness remains coinductive. The proof rules are:

f(a) = a νf#
a = ∅

νf = a

f(a) = a νfa
# = ∅

µf = a

For applying the rule we compute a greatest fixpoint on P(Y ), which is finite, instead
of working on the potentially infinite MY . The rule does not work for all monotone
functions f ∶MY →MY , but we show that whenever f is non-expansive the rule is valid.
Actually, it is not only sound, but also reversible, i.e., if a = νf then νf#

a = ∅, providing
an if-and-only-if characterisation of whether a given fixpoint corresponds to the greatest
fixpoint.

Quite interestingly, under the same assumptions on f , using a restricted function f∗a ,
the rule can be used, more generally, when a is just a pre-fixpoint (f(a) ⊑ a) and it allows
us to conclude that νf ⊑ a. A dual result holds for post-fixpoints in the case of least
fixpoints.

f(a) ⊑ a νf∗a = ∅
νf ⊑ a

a ⊑ f(a) νfa
∗ = ∅

a ⊑ µf

The theory above applies to many interesting scenarios: witnesses for non-bisimilarity,
algorithms for simple stochastic games [Con92] and energy games [BCD+11], lower
bounds for termination probabilities and behavioural metrics in the setting of probabilis-
tic [BBLM17] and metric transition systems [dAFS09] and probabilistic automata [BBL+21].
In particular we were inspired by, and generalise, the self-closed relations of [Fu12], also
used in [BBL+21]. See Sections 2.6 and 2.7 for details on these applications.

Motivating Example. Consider a Markov chain (S, T, η) as introduced in Section 2.6.1.
S denotes the set of states, T ⊆ S the subset of terminal states and η∶S ∖ T → D(S) the
successor function. The termination probability arises as the least fixpoint of the function
T defined in Figure 3.1. The values of µT for the Markov chain on the right are indicated
in green (left value).

Now consider the function t assigning to each state the termination probability written
in red (right value). It is not difficult to see that t is another fixpoint of T , in which
states y and z convince each other incorrectly that they terminate with probability 1,
resulting in a vicious cycle that gives “wrong” results. We want to show that µT ≠ t
without knowing µT . Our idea is to compute the set of states that still has some “wiggle
room”, i.e., those states which could reduce their termination probability by δ if all their
successors did the same. This definition has a coinductive flavour and it can be computed
as a greatest fixpoint on the finite powerset P(S) of states, instead of on the infinite
lattice [0, 1]S .

We hence consider a function T t
# ∶ P([S]t) → P([S]t), dependent on t, defined as

follows. Let [S]t be the support of t, i.e., the set of all states s such that t(s) > 0, where
a reduction in value is in principle possible. Then a state s ∈ [S]t is in T t

#(S′) iff s /∈ T
and for all s′ for which η(s)(s′) > 0 it holds that s′ ∈ S′, i.e. all successors of s are in S′.
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T ∶ [0, 1]S → [0, 1]S

T (t)(s) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈ T

∑
s′∈S

η(s)(s′) ⋅ t(s′) otherwise

x

1/2/1

u

1/1

y

0/1

z

0/1

1/3
1/31/3

1

1

Fig. 3.1.: Function T (left) and a Markov chain with two fixpoints of T (right)

The greatest fixpoint of T t
# is {y, z} (also called a "vicious cycle"). The fact that it is not

empty means that there is some “wiggle room”, i.e., the value of t can be reduced on the
elements {y, z} and thus t cannot be the least fixpoint of f . Moreover, the intuition that
t can be improved on {y, z} can be made precise, leading to the possibility of performing
the improvement and search for the least fixpoint from there.

Structure of this Chapter. We next aim to formalise the theory outlined above
(Section 3.2), showing that the proof rules work for non-expansive monotone functions
f on lattices of the form MY , where Y is a finite set and M a (potentially infinite)
MV-algebra (Section 3.3). This is done for greatest fixpoints and we describe the dual
view for least fixpoints in Section 3.4 which we need for example to handle the motivating
example above.

Additionally, as non-expansive functions enjoy good closure properties, given a de-
composition of f into smaller sub-functions we show how to obtain the corresponding
approximation compositionally (Section 3.5). Then, in order to show that our approach
covers a wide range of examples and allows us to derive useful and original algorithms,
we discuss various applications in Section 3.6: termination probability, behavioural dis-
tances for labeled Markov chains, metric transition systems and probabilistic automata,
bisimilarity, simple stochastic games and energy games.

3.2. Approximating the Propagation of Increases

As mentioned in the introduction, our interest is for fixpoints of monotone functions
f ∶ MY → MY , where M is an MV-chain and Y is a finite set. We will see that for
non-expansive1 functions (cf. Definition 2.3.23) we can over-approximate the sets of
points in which a given a ∈ MY can be increased in a way that is preserved by the
application of f . This will be the core of the proof rules outlined earlier.

In this Section we will analyze the theory for greatest fixpoints, a dualization of the
theory for least fixpoints is done in Section 3.4.

As a reminder (cf. Section 2.3.4), a function f ∶MY → MZ - where Y, Z are finite
sets and M a complete MV-chain - is non-expansive if for all a, b ∈ MY it holds that

1Any non-expansive functions is monotone by Lemma 2.3.24.
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∣∣f(b)⊖ f(a)∣∣ ⊑ ∣∣b⊖ a∣∣. The norm of a ∈MY is defined as ∣∣a∣∣ =max{a(y) ∣ y ∈ Y }.
Let f ∶ MY → MZ be a monotone function and take a, b ∈ MY with a ⊑ b. We are

interested in the difference b(y)⊖ a(y) for some y ∈ Y and on how the application of f
“propagates” this difference. The reason is that, understanding that no increase can be
propagated will be crucial to establish when a fixpoint of a non-expansive function f
is actually the largest one, and, more generally, when a (pre-)fixpoint of f is above the
largest fixpoint.

In order to formalise the above intuition, we rely on tools from abstract interpretation.
In particular, the following pair of functions, which, under a suitable condition, form
a Galois connection (cf. Definition 2.3.13), will play a major role. For this purpose we
fix a ∈ MY , δ ∈ M. The left adjoint αa,δ takes as input a set Y ′ ⊆ Y and, for y ∈ Y ′, it
increases the values a(y) by δ, while the right adjoint γa,δ takes as input a function
b ∈MY , b ∈ [a, a⊕ δ] and checks for which parameters y ∈ Y the value b(y) exceeds a(y)
by δ.

We also define [Y ]a, the subset of elements in Y where a(y) is not 1 and thus there is
a potential to increase, and δa, which gives us the least of such increases (i.e., the largest
increase that can be used on all elements in [Y ]a without “overflowing”).

Definition 3.2.1 (functions to sets, and vice versa). Let M be an MV-algebra
and let Y be a finite set. Define the set [Y ]a = {y ∈ Y ∣ a(y) ≠ 1} (support of a)
and δa =min{a(y) ∣ y ∈ [Y ]a} with min∅ = 1. Additionally, for δ ∈M and Y ′ ⊆ Y ,
we define δY ′ ∶Y →M for y ∈ Y as

δY ′(y) =
⎧⎪⎪⎨⎪⎪⎩

δ if y ∈ Y ′

0 otherwise
.

For 0 ⊏ δ ∈ M we consider the functions αa,δ ∶ P([Y ]a) → [a, a⊕ δ] and γa,δ ∶
[a, a⊕ δ]→ P([Y ]a), defined, for Y ′ ∈ P([Y ]a) and b ∈ [a, a⊕ δ], by

αa,δ(Y ′) = a⊕ δY ′ γa,δ(b) = {y ∈ [Y ]a ∣ b(y)⊖ a(y) ⊒ δ}.

Lemma 3.2.2 (well-definedness). The functions αa,δ, γa,δ from Definition 3.2.1
are well-defined and monotone.

Proof. The involved functions αa,δ and γa,δ are well-defined. In fact, for Y ′ ⊆ [Y ]a, clearly
αa,δ = a ⊕ δY ′ ∈ [a, a⊕ δ]. Moreover, for b ∈ [a, a⊕ δ] we have γa,δ(b) ⊆ [Y ]a. In fact, if
y /∈ [Y ]a then a(y) = 1, hence b(y) = 1 and thus b(y)⊖ a(y) = 0 /⊒ δ, and thus y /∈ γa,δ(b).
Moreover, they are clearly monotone.

When δ is sufficiently small, the pair ⟨αa,δ, γa,δ⟩ is a Galois connection.
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Lemma 3.2.3 (Galois connection). Let M be an MV-algebra and Y be a finite set.
For 0 ≠ δ ⊑ δa, the pair ⟨αa,δ, γa,δ⟩ ∶ P([Y ]a)→ [a, a⊕ δ] is a Galois connection.

P([Y ]a) [a, a⊕ δ]

αa,δ

γa,δ

Proof. For all Y ′ ∈ P([Y ]a) it holds

γa,δ(αa,δ(Y ′)) = γa,δ(a⊕ δY ′) = Y ′.

In fact, for all y ∈ Y ′, (a⊕δY ′)(y) = a(y)⊕δ. Moreover, and by the choice of δ and definition
of [Y ]a, we have δ ⊑ δa ⊑ a(y), by Lemma 2.3.18(9), we have (a ⊕ δY ′)(y) ⊖ a(y) = δ
hence y ∈ γa,δ(αa,δ(Y ′)). Conversely, if y /∈ Y ′, then (a ⊕ δY ′)(y) = a(y), and thus
(a⊕ δY ′)(y)⊖ a(y) = 0 /⊒ δ.

Moreover, for all b ∈ [a, a⊕ δ] we have

αa,δ(γa,δ(b)) = a⊕ δγa,δ(b) ⊑ b

In fact, for all y ∈ Y , if y ∈ γa,δ(b), i.e., δ ⊑ b(y)⊖ a(y) then (a⊕ δγa,δ(b))(y) = a(y)⊕ δ ⊑
a(y) ⊕ (b(y) ⊖ a(y)) = b(y), by Lemma 2.3.18(2). If instead, y /∈ γa,δ(b), then (a ⊕
δγa,δ(b)(b))(y) = a(y) ⊑ b(y).

Observe that differently from what normally happens in abstract interpretation, the
component α of the Galois connection, i.e., the left adjoint, transforms abstract values
(sets) into concrete ones (functions) and thus it plays the role of a concretisation function.

Example 3.2.4. We illustrate the definitions with a small example whose sole purpose
is to get a better intuition. (See Figure 3.2 for a visual representation.) Consider the MV-
chain M = [0, 1], a set Y = {y1, y2, y3, y4} and a function a∶Y → [0, 1] with a(y1) = 0.2,
a(y2) = 0.4, a(y3) = 0.9, a(y4) = 1. In this case [Y ]a = {y1, y2, y3} and δa = 0.1.

Choose δ = 0.1 and Y ′ = {y1, y3}. Then αa,δ(Y ′) is a function that maps y1 ↦ 0.3,
y2 ↦ 0.4, y3 ↦ 1, y4 ↦ 1.

We keep δ = 0.1 and consider a function b∶Y → [0, 1] with b(y1) = 0.3, b(y2) = 0.45,
b(y3) = b(y4) = 1. Then γa,δ(b) = {y1, y3}.

Whenever f is non-expansive, it is easy to see that it restricts to a function f ∶
[a, a⊕ δ]→ [f(a), f(a)⊕ δ] for all δ ∈M.

Lemma 3.2.5 (restricting non-expansive functions to intervals). Let M be an
MV-chain, let Y, Z be finite sets f ∶MY →MZ be a non-expansive function. Then f
restricts to a function fa,δ ∶ [a, a⊕ δ]→ [f(a), f(a)⊕ δ], defined by fa,δ(b) = f(b).
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a =

y1 y2 y3 y4

δ =

αa,δ ∶ Y ′ = {y1, y3} ↦

y1 y2 y3 y4

γa,δ ∶ b =

y1 y2 y3 y4

↦ Y ′ = {y1, y3}

Fig. 3.2.: Visual representation of αa,δ and γa,δ

Proof. Given b ∈ [a, a⊕ δ], by monotonicity of f we have that f(a) ⊑ f(b). Moreover,
f(b) ⊑ f(a⊕ δ) ⊑ f(a)⊕ δ, where the last passage is motivated by Lemma 2.3.25.

In the following we will simply write f instead of fa,δ.
As mentioned before, a crucial result shows that for all non-expansive functions,

under the assumption that Y, Z are finite and the order on M is total, we can suitably
approximate the propagation of increases. In order to state this result, a useful tool is a
notion of approximation of a function.

Definition 3.2.6 ((δ, a)-approximation). Let M be an MV-chain, let Y , Z be
finite sets and let f ∶MY →MZ be a non-expansive function. For a ∈MY and any
δ ∈M we define f#

a,δ ∶ P([Y ]a)→ P([Z]f(a)) as f#
a,δ = γf(a),δ ○ f ○ αa,δ.

Given Y ′ ⊆ [Y ]a, its image f#
a,δ(Y

′) ⊆ [Z]f(a) is the set of points z ∈ [Z]f(a) such that
δ ⊑ f(a ⊕ δY ′)(z) ⊖ f(a)(z), i.e., the points to which f propagates an increase of the
function a with value δ on the subset Y ′.

Example 3.2.7. We continue with Example 3.2.4 and consider the function f ∶ [0, 1]Y →
[0, 1]Y with f(b) = b ⊖ 0.3 for every b ∈ [0, 1]Y , which is non-expansive (proven in
Proposition 3.5.4). We again consider a∶Y → [0, 1] and δ = 0.1 as in Example 3.2.4,
and Y ′ = {y1, y2, y3}. The maps a, αa,δ(Y ′), f(a) and f(αa,δ(Y ′)) are given in the table
below and we obtain f#

a,δ(Y
′) = γf(a),δ(f(αa,δ(Y ′))) = {y2, y3}, that is only the increase at

y2 and y3 can be propagated, while the value of y1 is too low and y4 is not even contained
in [Y ]a (the domain of f#

a,δ), since its value is already 1.0 and there is no slack left. That
is, we obtain those elements of Y for which the last two lines in the table below differ by
0.1.
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y1 y2 y3 y4
a 0.2 0.4 0.9 1.0
αa,δ(Y ′) 0.3 0.5 1.0 1.0
f(a) 0.0 0.1 0.6 0.7
f(αa,δ(Y ′)) 0.0 0.2 0.7 0.7

In general we have f#
a,δ(Y

′) = Y ′ ∩ {y2, y3} if δ ≤ δa = 0.1, f#
a,δ(Y

′) = Y ′ ∩ {y2} if
0.1 < δ ≤ 0.6 and f#

a,δ(Y
′) = ∅ if 0.6 < δ.

We now show that f#
a,δ is antitone in the parameter δ, a non-trivial result.

Lemma 3.2.8 (antitonicity). Let M be an MV-chain, let Y , Z be finite sets, let
f ∶MY →MZ be a non-expansive function and let a ∈MY . For θ, δ ∈M, if θ ⊑ δ
then f#

a,δ ⊆ f#
a,θ.

Proof. Let Y ′ ⊆ [Y ]a and let us prove that f#
a,δ(Y

′) ⊆ f#
a,θ(Y

′). Take z ∈ f#
a,δ(Y

′). This
means that δ ⊑ f(a⊕ δY ′)(z)⊖ f(a)(z).

We have

δ ⊑ f(a⊕ δY ′)(z)⊖ f(a)(z)
[by hypothesis]
= f(a⊕ θY ′ ⊕ (δ ⊖ θ)Y ′)(z)⊖ f(a)(z)
= f(a⊕ θY ′ ⊕ (δ ⊖ θ)Y ′)(z)⊖ f(a⊕ θY ′)(z)⊕ f(a⊕ θY ′)(z)⊖ f(a)(z)
⊑ ∣∣f(a⊕ θY ′ ⊕ (δ ⊖ θ)Y ′)⊖ f(a⊕ θY ′)∣∣⊕ f(a⊕ θY ′)(z)⊖ f(a)(z)

[by definition of norm and monotonicity of ⊕]
⊑ ∣∣a⊕ θY ′ ⊕ (δ ⊖ θ)Y ′ ⊖ (a⊕ θY ′)∣∣⊕ f(a⊕ θY ′)(z)⊖ f(a)(z)

[by non-expansiveness of f and monotonicity of ⊕]
⊑ ∣∣(δ ⊖ θ)Y ′ ∣∣⊕ f(a⊕ θY ′)(z)⊖ f(a)(z)
⊑ (δ ⊖ θ)⊕ f(a⊕ θY ′)(z)⊖ f(a)(z)

[by definition of norm]

If we subtract δ ⊖ θ on both sides, we get δ ⊖ (δ ⊖ θ) ⊑ f(a⊕ θY ′)(z)⊖ f(a)(z), and, as
above, since, by Lemma 2.3.18(10), δ ⊖ (δ ⊖ θ) = θ we conclude

θ ⊑ f(a⊕ θY ′)(z)⊖ f(a)(z)

which means z ∈ f#
a,θ(Y

′).

Since f#
a,δ increases when δ decreases and there are only finitely many such functions,

there must be a value ιf
a such that all functions f#

a,δ for 0 ⊏ δ ⊑ ιf
a are equal. The resulting

function will be the approximation of interest.
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We next show how ιf
a can be determined. We start by observing that for each z ∈ [Z]f(a)

and Y ′ ⊆ [Y ]a there is a largest increase θ such that z ∈ f#
a,θ(Y

′).

Lemma 3.2.9 (largest increase for a point). Let M be a complete MV-chain, let
Y , Z be finite sets, let f ∶MY →MZ be a non-expansive function and fix a ∈MY .
For all z ∈ [Z]f(a) and Y ′ ⊆ [Y ]a the set {θ ∈ M ∣ z ∈ f#

a,θ(Y
′)} has a maximum,

that we denote by ιf
a(Y ′, z).

Proof. Let V = {θ ∈M ∣ z ∈ f#
a,θ(Y

′)}. Expanding the definition we have that

V = {θ ∈M ∣ θ ⊑ f(a⊕ θY ′)(z)⊖ f(a)(z)}.

If we let η = sup V , for all θ ∈ V , since θY ′ ⊑ ηY ′ , clearly, by monotonicity

θ ⊑ f(a⊕ ηY ′)(z)⊖ f(a)(z)

and therefore, by definition of supremum, η ⊑ f(a ⊕ ηY ′)(z) ⊖ f(a)(z), i.e., η ∈ V is a
maximum, as desired.

We can then provide an explicit definition of ιf
a and of the approximation of a function.

Lemma 3.2.10 (a-approximation for a function). Let M be a complete MV-chain,
let Y, Z be finite sets and let f ∶MY →MZ be a non-expansive function. Let

ιf
a =min{ιf

a(Y ′, z) ∣ Y ′ ⊆ [Y ]a ∧ z ∈ [Z]f(a) ∧ ιf
a(Y ′, z) ≠ 0} ∪ {δa}.

Then for all 0 ≠ δ ⊑ ιf
a it holds that f#

a,δ = f#
a,ιf

a

.

The function f#
a,ιf

a

is called the a-approximation of f and it is denoted by f#
a .

We might refer to ιf
a as the ascent constant.

Proof. Since δ ⊑ ιf
a , by Lemma 3.2.8 we have f#

a,δ ⊇ f#
a,ιf

a

. For the other inclusion let
Y ′ ⊆ [Y ]a. We have

f#
a,δ(Y

′) = {z ∈ [Z]f(a) ∣ f(a⊕ δY ′)(z)⊖ f(a)(z) ⊒ δ}

by definition. Assume that there exists z ∈ f#
a,δ(Y

′) where f(a⊕(ιf
a)Y ′)(z)⊖f(a)(z) /⊒ ιf

a .
But this is a contradiction, since ιf

a is the minimum of all such non-zero values.

In the following, we show that indeed, for all non-expansive functions, the a-approximation
properly approximates the propagation of increases. Given an MV-chain M and a finite
set Y , we first observe that each function b ∈MY can be expressed as a suitable sum of
functions of the shape δY ′ .
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Lemma 3.2.11 (standard form). Let M be an MV-chain and let Y be a finite set.
Then for any b ∈MY there are Y1, . . . , Yn ⊆ Y with Yi+1 ⊆ Yi for i ∈ {1, . . . , n − 1}
and δi ∈M, 0 ≠ δi ⊑⊕i−1

j=1 δj for i ∈ {1, . . . , n} such that

b =⊕n
i=1 δi

Yi
and ∣∣b∣∣ =⊕n

i=1 δi.

where we assume that an empty sum evaluates to 0.

Proof. See Appendix: Lemma A.2.1.

The above characterisation allows us to show a technical property of the functions in
the interval [a, a⊕ δ] of interest.

Lemma 3.2.12. Let M be an MV-chain, let Y , Z be finite sets and let f ∶
MY →MZ be a non-expansive function. Let a ∈MY . For b ∈ [a, a⊕ δ], let b⊖ a =
⊕n

i=1 δi
Yi

be a standard form for b ⊖ a. If γf(a),δ(f(b)) ≠ ∅ then Yn = γa,δ(b) and
γf(a),δ(f(b)) ⊆ f#

a,δn(Yn).

Proof. See Appendix: Lemma A.2.2.

We can finally prove the main result about legitimacy of the approximation.

Theorem 3.2.13 (approximation of non-expansive functions). Let M be a complete
MV-chain, let Y, Z be finite sets and let f ∶MY →MZ be a non-expansive function.
Then for all 0 ⊏ δ ∈M:

a. γf(a),δ ○ f ⊆ f#
a ○ γa,δ

b. for δ ⊑ δa: δ ⊑ ιf
a iff γf(a),δ ○ f = f#

a ○ γa,δ

[a, a⊕ δ]
f
��

γa,δ //

⊑

P([Y ]a)
f#

a��
[f(a), f(a)⊕ δ] γf(a),δ

// P([Z]f(a))

Proof. a. Let b ∈ [a, a⊕ δ]. First, note that whenever γf(a),δ(f(b)) = ∅, the desired
inclusion obviously holds.
If instead γf(a),δ(f(b)) ≠ ∅, let b⊖ a =⊕n

i=1 δi
Yi

be a standard form with δn ≠ 0. First
observe that, by Lemma 3.2.12, we have Yn = γa,δn(b) and

γf(a),δ(f(b)) ⊆ f#
a,δn(Yn). (3.1)
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For all z ∈ f#
a,δn(Yn), by definition of ιf

a(Yn, z) we have that 0 ⊏ δn ⊑ ιf
a(Yn, z),

therefore ιf
a ⊑ ιf

a(Yn, z). Moreover, z ∈ f#
a,ιf

a(Yn,z)
(Yn) ⊆ f#

a,ιf
a

(Yn) = f#
a (Yn), where

the last inequality is motivated by Lemma 3.2.8 since ιf
a ⊑ ιf

a(Yn, z). Therefore,
f#

a,δn(Yn) ⊆ f#
a (γa,δ(b)), which combined with (3.1) gives the desired result.

b. For (b), we first show the direction from left to right. Assume that δ ⊑ ιf
a . By (a)

clearly, γf(a),δ ○ f(b) ⊆ f#
a ○ γa,δ(b). For the converse inclusion, note that:

f#
a (γa,δ(b)) [by definition of f#

a ]
= f#

a,ιf
a

(γa,δ(b)) [by Lemma 3.2.8, since δ ⊑ ιf
a ]

⊆ f#
a,δ(γa,δ(b)) [by definition of f#

a,δ]
= γf(a),δ(f(αa,δ(γa,δ(b)))) [since αa,δ ○ γa,δ(b) ⊑ b]
⊆ γf(a),δ(f(b))

as desired.
For the other direction, assume γf(a),δ ○ f(b) = f#

a ○ γa,δ(b) holds for all b ∈ [a, a⊕ δ].
Now, for every Y ′ ⊆ [Y ]a we have f#

a,δ(Y
′) = γf(a),δ ○ f ○αa,δ(Y ′) = f#

a ○γa,δ ○αa,δ(Y ′).
We also have γa,δ ○ αa,δ(Y ′) = Y ′ (see proof of Lemma 3.2.3), thus f#

a,δ(Y
′) = f#

a (Y ′).
For any δ with ιf

a ⊏ δ ⊑ δa there exists Y ′ ⊆ [Y ]a and z ∈ [Z]f(a) with z ∈ f#
a (Y ′) but

z ∉ f#
a,δ(Y

′), by definition of ιf
a . Therefore δ ⊑ ιf

a has to hold.

Note that if Y = Z and a is a fixpoint of f , i.e., a = f(a), then condition (a) above
corresponds exactly to soundness in the sense of abstract interpretation [CC77]. Moreover,
when δ ⊑ δa and thus ⟨αa,δ, γa,δ⟩ is a Galois connection, f#

a,δ = γa,δ ○ f ○ αa,δ is the best
correct approximation of f . In particular, when δ ⊑ ιf

a , such a best correct approximation
is f#

a , the a-approximation of f , i.e., it becomes independent from δ, and condition (b)
corresponds to (γ-)completeness [GRS00] (see also Section 2.3.2).

3.3. Proof Rules

In this section we formalise the proof technique outlined in the introduction for showing
that a fixpoint is the largest and, more generally, for checking over-approximations of
greatest fixpoints of non-expansive functions.

3.3.1. Proof Rules for Fixpoints

Consider a monotone function f ∶ MY → MY for some finite set Y . We first focus
on the problem of establishing whether some given fixpoint a of f coincides with νf
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(without explicitly knowing νf), and, in case it does not, finding an “improvement”, i.e.,
a post-fixpoint of f , larger than a. To this aim we need a technical lemma.

Lemma 3.3.1. Let M be a complete MV-chain, Y a finite set and f ∶MY →MY

a non-expansive function. Let a ∈ MY be a pre-fixpoint of f (i.e., f(a) ⊑ a), let
f#

a ∶ P([Y ]a) → P([Y ]f(a)) be the a-approximation of f . Assume νf /⊑ a and let
Y ′ = {y ∈ [Y ]a ∣ νf(y)⊖a(y) = ∣∣νf ⊖ a∣∣}. Then for all y ∈ Y ′ it holds a(y) = f(a)(y)
and Y ′ ⊆ f#

a (Y ′).

Proof. See Appendix: Lemma A.2.3.

Observe that, when a is a fixpoint, clearly [Y ]a = [Y ]f(a), and thus the a-approximation
of f (Lemma 3.2.10) is an endo-function f#

a ∶ [Y ]a → [Y ]a and Y ′ is its post-fixpoint as
in Lemma 3.3.1. Then, we have the following result, which relies on the fact that, due to
Theorem 3.2.13 and properties of Galois connections, γa,δ maps the greatest fixpoint of f

to the greatest fixpoint of f#
a .

Theorem 3.3.2 (soundness and completeness for fixpoints). Let M be a complete
MV-chain, Y a finite set and f ∶ MY → MY be a non-expansive function. Let
a ∈MY be a fixpoint of f . Then νf#

a = ∅ if and only if a = νf .

Proof. Let a be a fixpoint of f and assume that a = νf . For δ = ιf
a ⊑ δa, according to

Lemma 3.2.3, we have a Galois connection:

P([Y ]a) [a, a + δ]

αa,δ

γa,δ

f#
a fa,δ

Since a is a fixpoint, then [Y ]f(a) = [Y ]a and, by Theorem 3.2.13(b), γa,δ ○f = γf(a),δ ○f =
f#

a ○ γa,δ.
Therefore by [CC00, Proposition 14], νf#

a = γa,δ(νf). Recall that γa,δ(νf) = {y ∈ Y ∣
δ ⊑ νf(y)⊖ a(y)}. Since a = νf and δ ⊐ 0, we know that γa,δ(νf) = ∅ and we conclude
νf#

a = ∅, as desired.

Conversely, in order to prove that if νf#
a = ∅ then a = νf , we prove the contrapositive.

Assume that a ≠ νf . Since a is a fixpoint and νf is the largest, this means that a ⊏ νf and
thus ∣∣νf ⊖ a∣∣ ≠ 0. Consider Y ′ = {y ∈ [Y ]a ∣ νf(y)⊖a(y) = ∣∣νf ⊖ a∣∣} ≠ ∅. By Lemma 3.3.1,
Y ′ is a post-fixpoint of f#

a , i.e., Y ′ ⊆ f#
a (Y ′), and thus νf#

a ⊇ Y ′ which implies νf#
a ≠ ∅,

as desired.
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Whenever a is a fixpoint, but not yet the largest fixpoint of f , from the result above
νf#

a ≠ ∅. Intuitively, νf#
a is the set of points where a can still be “improved”. More

precisely, we can show that a can be increased on the points in νf#
a producing a post-

fixpoint of f . In order to determine how much a can be increased we proceed similarly
to what we have done for defining ιf

a (Lemma 3.2.10), but restricting the attention to
νf#

a instead of considering the full [Y ]a. While ιf
a could always be used, by restricting

to νf#
a we are able to find a potentially better, that is larger, value which is still correct.

Definition 3.3.3 (largest increase for a subset). Let M be a complete MV-
chain and let f ∶ MY → MY be a non-expansive function, where Y is a finite
set and let a ∈ MY . For Y ′ ⊆ Y , we define δa(Y ′) = min{a(y) ∣ y ∈ Y ′} and
ιf
a(Y ′) =min{ιf

a(Y ′, y) ∣ y ∈ Y ′}.

Example 3.3.4. We intuitively explain the computation of the values in the defini-
tion above. Let g∶ [0, 1]Y → [0, 1]Y with g(b) = b ⊕ 0.1, which is non-expansive (see
Proposition 3.5.4). The set Y and the function a ∈ [0, 1]Y are as in Example 3.2.4
(Y = {y1, y2, y3, y4} and a(y1) = 0.2, a(y2) = 0.4, a(y3) = 0.9, a(y4) = 1).

Let Y ′ = {y1, y2}. Then δa(Y ′) = 0.6 and ιg
a(Y ′) = 0.5, i.e., since g adds 0.1, we can

propagate an increase of at most 0.5.

We next prove that when a ∈MY is a fixpoint of f and Y ′ = νf#
a , the value ιf

a(Y ′) is
the largest increase δ below δa(Y ′) such that a⊕ δY ′ is a post-fixpoint of f .

Proposition 3.3.5 (from a fixpoint to larger post-fixpoint). Let M be a complete
MV-chain, f ∶ MY → MY a non-expansive function, a ∈ M a fixpoint of f , and
let Y ′ = νf#

a be the greatest fixpoint of the corresponding a-approximation. Then
ιf
a ⊑ ιf

a(Y ′) ⊑ δa(Y ′). Moreover, for all θ ⊑ ιf
a(Y ′) the function a ⊕ θY ′ is a

post-fixpoint of f , while for ιf
a(Y ′) ⊏ θ ⊑ δa(Y ′) it is not.

Proof. We first show that ιf
a ⊑ ιf

a(Y ′). By Lemma 3.2.10 and since a = f(a), we have that
ιf
a = min{ιf

a(Y ′′, y) ∣ Y ′′ ⊆ [Y ]a ∧ y ∈ [Y ]a ∧ ιf
a(Y ′′, y) ≠ 0} ∪ {δa}. Moreover, we have

Y ′ = νf#
a ⊆ [Y ]a and ιf

a(Y ′, y) ≠ 0, for every y ∈ Y ′, since ιf
a(Y ′, y) = max{δ ∈ M ∣ y ∈

f#
a,δ(Y

′)} and y ∈ Y ′ = νf#
a = f#

a (νf#
a ) = f#

a,ιf
a

(Y ′), hence ιf
a(Y ′, y) ⊒ ιf

a ⊐ 0. Therefore,

the minimum in ιf
a(Y ′) is computed on a subset of the values on which the one in ιf

a is,
and so the former must be larger or equal to the latter.

Next, we prove that ιf
a(Y ′) ⊑ δa(Y ′). Observe that for all y ∈ Y ′ and δ ∈ M, if

y ∈ f#
a,δ(Y

′), by definition of f#
a,δ, it holds that δ ⊑ f(a ⊕ δY ′)(y) ⊖ f(a)(y) = f(a ⊕

δY ′)(y)⊖ a(y) ⊑ 1⊖ a(y) = a(y), where the second equality is motivated by the fact that
a is a fixpoint. Therefore for all y ∈ Y ′ we have max{δ ∈M ∣ y ∈ f#

a,δ(Y
′)} ⊑ a(y) and thus

ιf
a(Y ′) =miny∈Y ′ max{δ ∈M ∣ y ∈ f#

a,δ(Y
′)} ⊑miny∈Y ′ a(y) = δa(Y ′), as desired.

Given θ ⊑ ιf
a(Y ′), let us prove that a⊕θY ′ is a post-fixpoint of f , i.e., a⊕θY ′ ⊑ f(a⊕θY ′).
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If y ∈ Y ′, since θ ⊑ ιf
a(Y ′), by definition of ιf

a(Y ′), we have θ ⊑max{δ ∈M ∣ y ∈ f#
a,δ(Y

′)}
and thus, by antitonicity of f#

a,δ with respect to δ, we have y ∈ f#
a,θ(Y

′). This means that
θ ⊑ f(a⊕ θY ′)(y)⊖ f(a)(y) = f(a⊕ θY ′)(y)⊖ a(y), where the last passage uses the fact
that a is a fixpoint. Adding a(y) on both sides and using Lemma 2.3.18(2), we obtain
a(y)⊕θ ⊑ (f(a⊕θY ′)(y)⊖a(y))⊕a(y) = f(a⊕θY ′)(y). Since y ∈ Y ′, (a⊕θY ′)(y) = a(y)⊕θ
and thus (a⊕ θY ′)(y) ⊑ f(a⊕ θY ′)(y), as desired.

If instead, y /∈ Y ′, clearly (a⊕θY ′)(y) = a(y) = f(a)(y) ⊑ f(a⊕θY ′)(y), where we again
use the fact that a is a fixpoint and monotonicity of f .

Lastly, we have to show that if ιf
a(Y ′) ⊏ θ ⊑ δa(Y ′), then a ⊕ θY ′ is not a post-

fixpoint of f . By definition of ιf
a(Y ′), from the fact that ιf

a(Y ′) ⊏ θ, we deduce that
max{δ ∈M ∣ y ∈ f#

a,δ(Y
′)} ⊏ θ for some y ∈ Y ′ and thus y /∈ f#

a,θ(Y
′).

By definition of f#
a,θ and totality of ⊑, the above means θ ⊐ f(a⊕ θY ′)(y)⊖ f(a)(y) =

f(a ⊕ θY ′)(y) ⊖ a(y), since a is a fixpoint of f . Since θ ⊑ δa(Y ′), we can add a(y) on
both sides and, by Lemma 2.3.18(8), we obtain a(y) ⊕ θ ⊐ f(a ⊕ θY ′)(y). Since y ∈ Y ′,
the left-hand side is (a⊕ θY ′)(y). Hence we conclude that indeed a⊕ θY ′ is not a post
fixpoint.

Using these results one can perform an alternative fixpoint iteration where we iterate
to the largest fixpoint from below: start with a post-fixpoint a0 ⊑ f(a0) (which is clearly
below νf) and obtain, by (possibly transfinite) iteration, an ascending chain that in
the order converges2 to a, the least fixpoint above a0. Now, letting Y ′ = νf#

a , check
whether Y ′ = ∅. If so, by Theorem 3.3.2 we know we have reached νf = a. If not,
α

a,ιf
a(Y ′)(Y

′) = a ⊕ (ιf
a(Y ′))Y ′ is again a post-fixpoint (cf. Proposition 3.3.5) and we

continue this procedure until – for some ordinal – we reach the largest fixpoint νf , for
which we have νf#

νf = ∅. We will encounter such a procedure in Chapter 5.
In order to make the above procedure as efficient as possible, one would like to consider,

whenever a fixpoint a is reached, the largest possible increase ι which is valid, i.e. such
that a⊕ ι is again a post-fixpoint of f . Thus the question naturally arises asking whether
ιf
a(Y ′) is such largest valid increase. From Proposition 3.3.5, it immediately follows that

ιf
a(Y ′) is the largest valid increase below δa(Y ′), but it can be seen that there can be

larger valid increases above δa(Y ′) (an explicit example is provided later in Example 3.6.5,
for the dual case of least fixpoints). However, while the set of valid increases below δa(Y ′)
is downward-closed, as proved in Proposition 3.3.5, this is not the case for those above
δa(Y ′). Hence, we believe that the most efficient approach would be to search for ιf

a(Y ′),
or some satisfying approximation, via a binary search bounded by δa(Y ′).

Remark 3.3.6. We note that for the strategy iterations we will present in Chapter 5 it
is less relevant what increase we choose as long as it is sufficiently small. This is the case
since any increase will lead to a new strategy. However, even in this instance, a larger
increase is to be preferred.

2Convergence in the natural order.
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3.3.2. Proof Rules for Pre-fixpoints

Interestingly, the soundness result in Theorem 3.3.2 can be generalised to the case in
which a is a pre-fixpoint instead of a fixpoint. In this case, the a-approximation for a
function f ∶MY →MY is a function f#

a ∶ [Y ]a → [Y ]f(a) where domain and codomain are
different, hence it would not be meaningful to look for fixpoints. However, as explained
below, it can be restricted to an endo-function.

Theorem 3.3.7 (soundness for pre-fixpoints). Let M be a complete MV-chain,
Y a finite set and f ∶ MY → MY be a non-expansive function. Given a pre-
fixpoint a ∈ MY of f , let [Y ]a=f(a) = {y ∈ [Y ]a ∣ a(y) = f(a)(y)}. Let us define
f∗a ∶ [Y ]a=f(a) → [Y ]a=f(a) as f∗a (Y ′) = f#

a (Y ′) ∩ [Y ]a=f(a), where f#
a ∶ P([Y ]a)→

P([Y ]f(a)) is the a-approximation of f . If νf∗a = ∅ then νf ⊑ a.

Proof. We prove the contrapositive, i.e., we show that νf /⊑ a allows us to derive that
νf∗a ≠ ∅.

Assume νf /⊑ a, i.e., there exists y ∈ Y such that νf(y) /⊑ a(y). Since the order is
total, this means that a(y) ⊏ νf(y). Hence, by Lemma 2.3.18(5), νf(y)⊖ a(y) ⊐ 0. Then
δ = ∣∣νf ⊖ a∣∣ ⊐ 0.

Consider Y ′ = {y ∈ Ya ∣ νf(y) ⊖ a(y) = ∣∣νf ⊖ a∣∣} ≠ ∅. By Lemma 3.3.1, Y ′ is a post-
fixpoint of f#

a , i.e., Y ′ ⊆ f#
a (Y ′), and thus Y ′ ⊆ νf#

a . Moreover, for all y ∈ Y ′, a(y) =
f(a)(y), i.e., Y ′ ⊆ [Y ]a=f(a). Therefore we conclude Y ′ ⊆ f#

a (Y ′) ∩ [Y ]a=f(a) = f∗a (Y ′),
i.e., Y ′ is a post-fixpoint also for f∗a , and thus νf∗a ⊇ Y ′ ≠ ∅, as desired.

The reason why we can limit our attention to the set of points where a(y) = f(a)(y) is
as follows. Observe that, since a is a pre-fixpoint and ⊖ is antitone in the second argument,
νf ⊖ a ⊑ νf ⊖ f(a). Thus ∣∣νf ⊖ a∣∣ ⊑ ∣∣νf ⊖ f(a)∣∣ = ∣∣f(νf)⊖ f(a)∣∣ ⊑ ∣∣νf ⊖ a∣∣, where the
last passage is motivated by non-expansiveness of f . Therefore ∣∣νf ⊖ a∣∣ = ∣∣νf ⊖ f(a)∣∣.
From this we can deduce that, if νf is strictly larger than a on some points, surely some
of these points are in [Y ]a=f(a). In particular, all points y0 such that νf(y0)⊖ a(y0) =
∣∣νf ⊖ a∣∣ are necessarily in [Y ]a=f(a). Otherwise, we would have f(a)(y0) ⊏ a(y0) and
thus ∣∣νf ⊖ a∣∣ = νf(y0)⊖ a(y0) ⊏ νf(y0)⊖ f(a)(y0) ⊑ ∣∣νf ⊖ f(a)∣∣ (cf. Lemma 3.3.1).

Remark 3.3.8. Completeness does not generalise to pre-fixpoints, i.e., it is not true that
if a is a pre-fixpoint of f and νf ⊑ a, then νf∗a = ∅. A pre-fixpoint might contain slack
even though it is above the greatest fixpoint. A counterexample is in Example 3.6.28.

3.4. The Dual View for Least Fixpoints

The theory developed so far can be easily dualised to check under-approximations of least
fixpoints. Given a complete MV-algebra M = (M,⊕, 0, (⋅)) and a non-expansive function
f ∶MY →MY , in order to show that a post-fixpoint a ∈MY is such that a ⊑ µf we can in
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fact simply work in the dual MV-algebra, Mop = (M,⊗, 1, (⋅)) where the natural order is
reversed, i.e. if ⊑ is the natural order on M then ⊒ is the natural order on Mop.

Since ⊕ could be the “standard” operation on M, it is convenient to formulate the
conditions using ⊕ and ⊖ and the original order. The notation for the dual case is
obtained from that of the original case, referred to as the primal case throughout the
paper, exchanging subscripts and superscripts.

The pair of functions ⟨αa,θ, γa,θ⟩ is as follows. Let a ∶ Y →M and 0 ⊏ θ ∈M. The set
[Y ]a = {y ∈ Y ∣ a(y) ≠ 0} and δa =min{a(y) ∣ y ∈ [Y ]a}

The target of the approximation is [a, a⊗ θ] in the reverse order, hence [a⊗ θ, a] in
the original order. Recall that a⊗ θ = a⊕ θ = a⊖ θ. Hence we obtain

P([Y ]a) [a⊖ θ, a]

αa,θ

γa,θ

For Y ′ ∈ P([Y ]a) we define

αa,θ(Y ′) = a⊗ θY ′ = a⊖ θY ′

Instead γa,θ(b) = {y ∈ Y ∣ θ ⊒ b(y) ⊖÷ a(y)} where ⊖÷ is the subtraction in the dual
MV-algebra. Observe that x ⊖÷ y = x⊗ y = x⊕ y = y ⊖ x. Hence θ ⊒ b(y) ⊖÷ a(y) iff
a(y)⊖ b(y) ⊒ θ. Thus for b ∈ [a⊖ θ, a] we have

γa,θ(b) = {y ∈ [Y ]a ∣ θ ⊒ b(y) ⊖÷ a(y)} = {y ∈ [Y ]a ∣ a(y)⊖ b(y) ⊒ θ}.

Let f ∶MY →MZ be a monotone function. The norm becomes ∣∣a∣∣ =min{a(y) ∣ y ∈ Y }.
Non-expansiveness in the dual MV-algebra becomes: for all a, b ∈ MY , ∣∣f(b) ⊖÷ f(a)∣∣ ⊒
∣∣b ⊖÷ a∣∣, which in turn is

min{f(a)⊖ f(b) ∣ y ∈ Y } ⊒min{a(y)⊖ b(y) ∣ y ∈ Y }

i.e., ∣∣f(a)⊖ f(b)∣∣ ⊑ ∣∣a⊖ b∣∣, which coincides with non-expansiveness in the original MV-
algebra.

Observe that, instead of taking a generic θ ⊏ 1 and then working with θ̄, we can directly
take 0 ⊏ θ and replace everywhere θ̄ with θ. Thus we obtain αa,θ ∶P([Y ]a) → [a ⊖ θ, a]
and γa,θ ∶ [a⊖ θ, a]→ P([Y ]a) as

αa,θ(Y ′) = a⊖ θY ′ and γa,θ(b) = {y ∈ [Y ]a ∣ a(y)⊖ b(y) ⊒ θ}.

While the approximation of a function in the primal case are denoted f#
a , the ap-

proximations in the dual case will be denoted by fa
# which we obtain by dualizing the

theory.
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Lemma 3.4.1 (a-approximation (dual) for a function). Let M be a complete
MV-chain, let Y, Z be finite sets and let f ∶MY →MZ be a non-expansive function.
Let a ∈ MY , then for all z ∈ [Z]f(a) and Y ′ ⊆ [Y ]a the set {θ ∈ M ∣ z ∈ fa,θ

# (Y ′)}
has a maximum, that we denote by ιa

f(Y ′, z). Let

ιa
f =min{ιa

f(Y ′, z) ∣ Y ′ ⊆ [Y ]a ∧ z ∈ [Z]f(a) ∧ ιa
f(Y ′, z) ≠ 0} ∪ {δa}.

Then for all 0 ≠ δ ⊑ ιa
f it holds that fa,δ

# = f
a,ιa

f

# .

The function f
a,ιa

f

# = γf(a),ιa
f ○ f ○ αa,ιa

f is called the a-approximation of f and it
is denoted by fa

#. We might call ιa
f the descent constant.

Proof. By dualization of the theory.

For Y ′ ⊆ Y , we define δa(Y ′) =min{a(y) ∣ y ∈ Y ′} and ιa
f(Y ′) =min{ιa

f(Y ′, y) ∣ y ∈ Y ′}.
We obtain the following proof rules:

Lemma 3.4.2 (proof rules (dual)). Let M be a complete MV-chain, Y a finite set
and f ∶MY →MY be a non-expansive function. Let a ∈MY be a fixpoint of f and
let νfa

# = Y ′ be the greatest fixpoint of the corresponding approximation. Then

1. νfa
# = ∅ if and only if a = µf .

2. ιa
f ⊑ ιa

f(Y ′) ⊑ δa(Y ′).

3. For all θ ⊑ ιa
f(Y ′) the function a ⊖ θY ′ is a pre-fixpoint of f while for

ιa
f(Y ′) ⊏ θ ⊑ δa(Y ′) it is not.

Let a ∈MY be a post-fixpoint of f and let [Y ]a=f(a) = {y ∈ [Y ]a ∣ a(y) = f(a)(y)}.
We define fa

∗ ∶ [Y ]a=f(a) → [Y ]a=f(a) as fa
∗ (Y ′) = fa

#(Y ′) ∩ [Y ]a=f(a), where
fa

#∶P([Y ]a)→ P([Y ]f(a)) is the a-approximation of f . If νfa
∗ = ∅ then µf ⊒ a.

Proof. By dualization of the theory.

3.5. (De)Composing Functions and Approximations

Given a non-expansive function f and a (pre/post-)fixpoint a, it is often non-trivial to
determine the corresponding approximations. However, non-expansive functions enjoy
good closure properties (closure under composition and closure under disjoint union) and
we will see that the same holds for the corresponding approximations. Furthermore, it
turns out that the functions needed in the applications can be obtained from just a few
templates. This gives us a toolbox for assembling approximations with relative ease.
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We first show that non-expansiveness is preserved by composition.

Lemma 3.5.1 (composing non-expansive functions). Let M be an MV-chain and
let Y, W, Z be finite sets. If g ∶ MY → MW and h ∶ MW → MZ are non-expansive
then h ○ g ∶MY →MZ is non-expansive.

Proof. Straightforward. We have for any a, b ∈MY that

∣∣h(g(b))⊖ h(g(a))∣∣ ⊑
⊑ ∣∣g(b)⊖ g(a)∣∣ [by non-expansiveness of h]
⊑ ∣∣b⊖ a∣∣ [by non-expansiveness of g]

Furthermore functions can be combined via disjoint union, preserving non-expansiveness,
as follows.

Proposition 3.5.2 (disjoint union of non-expansive functions). Let fi ∶ MYi →
MZi, for i ∈ I (I is some index set), be non-expansive and such that the sets
Zi are pairwise disjoint, i.e. Zi ∩ Zj = ∅ for all i, j ∈ I with i /= j. The function
⊎
i∈I

fi ∶M⋃i∈I Yi →M⊎i∈I Zi defined by

⊎
i∈I

fi(a)(z) = fi(a∣Yi)(z) if z ∈ Zi

is non-expansive.3

Proof. For all a, b ∈M⋃i∈I Yi we have

∣∣⊎
i∈I

fi(b)⊖⊎
i∈I

fi(a)∣∣

= max
z∈⊎i∈I Zi

(⊎
i∈I

fi(b)(z)⊖⊎
i∈I

fi(a)(z))

=max
i∈I

max
z∈Zi

(fi(b∣Yi)(z)⊖ fi(a∣Yi)(z)) [since all Zi are disjoint]

=max
i∈I
∣∣fi(b∣Yi)⊖ fi(a∣Yi)∣∣ [by definition of norm]

⊑max
i∈I
∣∣b∣Yi ⊖ a∣Yi ∣∣ [since all fi are non-expansive]

=max
i∈I

max
y∈Yi

(b(y)⊖ a(y))

= max
y∈⋃i∈I Yi

(b(y)⊖ a(y))

3⊎ is used when the involved sets are disjoint.
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= ∣∣b⊖ a∣∣ [by definition of norm]

We now introduce some basic functions, which will be used as the building blocks
for the functions needed in the applications. Note that below we consider distributions
on MV-chains of which the standard probability distributions introduced earlier are a
special case.

Definition 3.5.3 (basic functions). Let M be an MV-chain and let Y , Z be finite
sets.

1. Constant: For a fixed k ∈MZ , we define ck ∶MY →MZ by

ck(a) = k

2. Reindexing: For u ∶ Z → Y , we define u∗ ∶MY →MZ by

u∗(a) = a ○ u.

3. Min/Max: For R ⊆ Y ×Z, we define minR, maxR ∶MY →MZ by

minR(a)(z) =minyRz a(y) maxR(a)(z) =maxyRz a(y)

4. Average: For a finite set D ⊆ DM(Y ), we define avD ∶MY →MD by

avD(a)(p) =⊕
y∈Y

p(y)⊙ a(y)

(cf. Definition 2.3.19 and the surrounding text) where ⊙ is a binary operator
on M and has the properties described after Definition 2.3.19.

5. Addition/Substraction: For a fixed w∶Y →M, we define addw, subw∶MY →
MY by

addw(a)(y) = a(y)⊕w(y) subw(a)(y) = a(y)⊖w(y)

A particularly interesting subcase of (3) is when we take as relation the belongs to
relation ∈ ⊆ Y ×P(Y ). In this way we obtain functions for selecting the minimum and
the maximum, respectively, of an input function over a set Y ′ ⊆ Y , that is, the functions
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min∈, max∈ ∶MY →MP(Y ), defined as

min∈(a)(Y ′) =min
y∈Y ′

a(y) max∈(a)(Y ′) =max
y∈Y ′

a(y)

The basic functions can be shown to be non-expansive.

Proposition 3.5.4. The basic functions from Definition 3.5.3 are all non-
expansive.

Proof. See Appendix: Proposition A.2.4.

The next result determines the approximations associated with the basic functions.

Proposition 3.5.5 (approximations of basic functions). Let M be an MV-chain,
Y, Z be finite sets and let a ∈MY .

• Constant: for k ∶ MZ , the approximations (ck)#a ∶ P([Y ]a) → P([Z]ck(a)),
(ck)a# ∶ P([Y ]a)→ P([Z]ck(a)) are

(ck)#a (Y ′) = ∅ = (ck)a#(Y ′)

• Reindexing: for u ∶ Z → Y , the approximations (u∗)#a ∶ P([Y ]a) →
P([Z]u∗(a)), (u∗)a# ∶ P([Y ]a)→ P([Z]u∗(a)) are

(u∗)#a (Y ′) = (u∗)a#(Y ′) = u−1(Y ′) = {z ∈ [Z]u∗(a) ∣ u(z) ∈ Y ′}

• Min: for R ⊆ Y ×Z, the approximations (minR)#a ∶ P([Y ]a)→ P([Z]minR(a)),
(minR)a# ∶ P([Y ]a) → P([Z]minR(a)) are given below, where R−1(z) = {y ∈
Y ∣ yRz}:

(minR)#a (Y ′) = {z ∈ [Z]minR(a) ∣ arg min
y∈R−1(z)

a(y) ⊆ Y ′}

(minR)a#(Y ′) = {z ∈ [Z]minR(a) ∣ arg min
y∈R−1(z)

a(y) ∩ Y ′ ≠ ∅}

• Max: for R ⊆ Y × Z, the approximations (maxR)#a ∶ P([Y ]a) →
P([Z]maxR(a)), (maxR)a# ∶ P([Y ]a)→ P([Z]maxR(a)) are

(maxR)#a (Y ′) = {z ∈ [Z]maxR(a) ∣ arg max
y∈R−1(z)

a(y) ∩ Y ′ ≠ ∅}

(maxR)a#(Y ′) = {z ∈ [Z]maxR(a) ∣ arg max
y∈R−1(z)

a(y) ⊆ Y ′}
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• Average: for a finite D ⊆ DM(Y ), the approximations (avD)#a ∶ P([Y ]a) →
P([D]avD(a)), (avD)a#∶P([Y ]a)→ P([D]avD(a)) are

(avD)#a (Y ′) = {p ∈ [D]avD(a) ∣ supp(p) ⊆ Y ′}
(avD)a#(Y ′) = {p ∈ [D]avD(a) ∣ supp(p) ⊆ Y ′},

where supp(p) = {y ∈ Y ∣ p(y) > 0} for p ∈ D(Y ).

• Addition: for w ∈MY , the approximations (addw)#a ∶M[Y ]a →M[Y ]addw(a),
(addw)a#∶M[Y ]

a →M[Y ]addw(a) are

(addw)#a (Y ′) = {y ∈ Y ′ ∣ a(y)⊕w(y) ⊏ 1}
(addw)a#(Y ′) = {y ∈ Y ′ ∣ w(y) ⊑ a(y)}

• Substraction: for w ∈ MY , the approximations and (subw)#a ∶M[Y ]a →
M[Y ]subw(a), (subw)a#∶M[Y ]

a →M[Y ]subw(a) are

(subw)#a (Y ′) = {y ∈ Y ′ ∣ w(y) ⊑ a(y)} = Y ′

(subw)a#(Y ′) = {y ∈ Y ′ ∣ a(y)⊖w(y) ⊐ 0}

Proof. See Appendix: Proposition A.2.5.

When a non-expansive function arises as the composition of simpler ones (see Lemma 3.5.1)
we can obtain the corresponding approximation by just composing the approximations of
the simpler functions.

Proposition 3.5.6 (composing approximations). Let g ∶MY →MW and h ∶MW →
MZ be non-expansive functions. For all a ∈MY we have that (h ○ g)#a = h#

g(a) ○ g#
a .

Analogously (h ○ g)a# = h
g(a)
# ○ ga

# for the dual case.

Proof. Here we only consider the primal case, the dual case for (h ○ g)a# is analogous.
Let 0 ⊏ θ ⊑min{ιg

a, ιh
g(a)}. Then, by Theorem 3.2.13(b) we know that

g#
a = g#

a,θ = γg(a),θ ○ g ○ αa,θ

h#
g(a) = h#

g(a),θ = γh(g(a)),θ ○ h ○ αg(a),θ

Now we will prove that
(h ○ g)#a,θ = h#

g(a),θ ○ g#
a,θ
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First observe that g(αa,θ(Y ′)) ∈ [g(a), g(a⊕ θ)] ⊆ [g(a), g(a)⊕ θ] for all Y ′ ⊆ [Y ]a by
Lemma 2.3.25. Applying Theorem 3.2.13(b) on h we obtain

(h ○ g)#a,θ = γh(g(a)),θ ○ h ○ g ○ αa,θ(Y ′) = h#
g(a),θ ○ γg(a),θ ○ g ○ αa,θ(Y ′)

= h#
g(a),θ ○ g#

a,θ(Y
′) = h#

g(a) ○ g#
a (Y ′)

Hence all functions (h ○ g)#a,θ are equal and independent of θ and so it must hold that
(h ○ g)#a,θ = (h ○ g)#a . Then from Theorem 3.2.13 we can conclude min{ιg

a, ιh
g(a)} ⊑ ιh○g

a .

Also, the corresponding approximation of a disjoint union can be conveniently assembled
from the approximations of its components.

Proposition 3.5.7 (disjoint union and approximations). The approximations for
⊎
i∈I

fi, where fi ∶MYi →MZi are non-expansive and Zi are pairwise disjoint, have

the following form. For all a∶⋃i∈I Yi →M and Y ′ ⊆ ⋃i∈I Yi:

(⊎
i∈I

fi)
#
a
(Y ′) =⊎

i∈I
(fi)#a∣Yi

(Y ′ ∩ Yi) (⊎
i∈I

fi)
a

#(Y
′) =⊎

i∈I
(fi)

a∣Yi
# (Y ′ ∩ Yi)

Proof. We just show the statement for the primal case, the dual case is analogous. We
abbreviate Y = ⋃i∈I Yi.

Let 0 ⊏ θ ⊑ δa. According to the definition of a-approximation (Lemma 3.2.10) we have
for Y ′ ⊆ [Y ]a:

(⊎
i∈I

fi)
#
a,θ
(Y ′) = γ⊎

i∈I
fi(a),θ ○⊎

i∈I
fi ○ αa,θ

(fi)#a∣Yi
,θ
= γfi(a∣Yi

),θ ○ fi ○ αa∣Yi
,θ

for all i ∈ I. Our first step is to prove that

γ⊎
i∈I

fi(a),θ ○⊎
i∈I

fi ○ αa,θ(Y ′) =⊎
i∈I

γfi(a∣Yi
),θ ○ fi ○ αa∣Yi

,θ(Y ′ ∩ Yi)

By simply expanding the functions we obtain

γ⊎
i∈I

fi(a),θ ○⊎
i∈I

fi ○ αa,θ(Y ′) = {z ∈ Zi ∣ i ∈ I ∧ θ ⊑ fi((a⊕ θY ′)∣Yi)(z)⊖ fi(a∣Yi)(z)}

⊎
i∈I

γfi(a∣Yi
),θ ○ fi ○ αa∣Yi

,θ(Y ′ ∩ Yi) =⊎
i∈I
{z ∈ Zi ∣ θ ⊑ fi(a∣Yi ⊕ θY ′∩Yi)(z)⊖ fi(a∣Yi)(z)}

which are the same set, since for all i ∈ I clearly (a⊕ θY ′)∣Yi = a∣Yi ⊕ θY ′∩Yi .
This implies

(⊎
i∈I

fi)
#
a,θ
(Y ′) =⊎

i∈I
(fi)#a∣Yi

,θ
(Y ′ ∩ Yi).
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Whenever θ ⊑min
i∈I

ιfi
a , this can be rewritten to

(⊎
i∈I

fi)
#
a,θ
(Y ′) =⊎

i∈I
(fi)#a∣Yi

(Y ′ ∩ Yi).

All functions (⊎i∈I fi)
#
a,θ

are equal and independent of θ and so it must hold that

(⊎i∈I fi)
#
a,θ
= (⊎i∈I fi)

#
a

. Then with Theorem 3.2.13 we can also conclude min
i∈I

ιfi
a ⊑

ι⊎i∈I fi
a .

Table 3.1.: Basic functions f ∶MY → MZ (constant, reindexing, minimum, maximum,
average, addition, substraction), function composition, disjoint union and
the corresponding approximations f#

a ∶P([Y ]a)→ P([Z]f(a)), fa
#∶P([Y ]a)→

P([Z]f(a)).
Notation: R−1(z) = {y ∈ Y ∣ yRz}, supp(p) = {y ∈ Y ∣ p(y) > 0} for p ∈ D(Y ),

Mina = {y ∈ Y ∣ a(y) minimal}, Maxa = {y ∈ Y ∣ a(y) maximal},
d(a) =min{a(y)⊖ a(y′) ∣ a(y)⊖ a(y′) ⊐ 0, y, y′ ∈ Y }, a∶Y →M

function f definition of f f#
a (Y ′) (above), fa

#(Y ′) (below) ιf
a (above), ιa

f (below)
ck f(a) = k ∅ δa

(k ∈MZ) ∅ δa

u∗ f(a) = a ○ u u−1(Y ′) δa

(u∶Z → Y ) u−1(Y ′) δa

minR f(a)(z) =min
yRz

a(y) {z ∈ [Z]f(a) ∣Mina∣R−1(z) ⊆ Y ′} ⊒min{d(a), δa}

(R ⊆ Y ×Z) {z ∈ [Z]f(a) ∣Mina∣R−1(z) ∩ Y ′ ≠ ∅} δa

maxR f(a)(z) =max
yRz

a(y) {z ∈ [Z]f(a) ∣Maxa∣R−1(z) ∩ Y ′ ≠ ∅} δa

(R ⊆ Y ×Z) {z ∈ [Z]f(a) ∣Maxa∣R−1(z) ⊆ Y ′} ⊒min{d(a), δa}

avD f(a)(p) = ⊕
y∈Y

p(y)⊙ a(y) {p ∈ [D]f(a) ∣ supp(p) ⊆ Y ′} δa

(Z =D ⊆ D(Y )) {p ∈ [D]f(a) ∣ supp(p) ⊆ Y ′} δa

addw f(a)(y) = a(y)⊕w(y) [Y ′]addw(a) δaddw(a)

(Z = Y, w∶Y →M) {y ∈ Y ′ ∣ w(y) ⊑ a(y)} δa

subw f(a)(y) = a(y)⊖w(y) {y ∈ Y ′ ∣ w(y) ⊑ a(y) δa

(Z = Y, w∶Y →M) [Y ′]subw(a) δsubw(a)

h ○ g f(a) = h(g(a)) h#
g(a)

○ g#
a (Y ′) ⊒min{ιg

a, ιh
g(a)}

(g∶MY →MW , h
g(a)
# ○ ga

#(Y ′) ⊒min{ιa
g , ι

g(a)
h }

h∶MW →MZ)
⊎
i∈I

fi I finite f(a)(z) = fi(a∣Yi)(z) ⊎i∈I(fi)#a∣Yi

(Y ′ ∩ Yi)

(fi∶MYi →MZi , (z ∈ Zi) ⊎i∈I(fi)
a∣Yi

# (Y ′ ∩ Yi) mini∈I ιa
fi

Y = ⋃
i∈I

Yi, Z = ⊎
i∈I

Zi)
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We can summarize the desired results (non-expansiveness and approximation) for the
basic building blocks and their composition (all schematically reported in Table 3.1).

Corollary 3.5.8. All basic functions in Definition 3.5.3 are non-expansive. Fur-
thermore non-expansive functions are closed under composition and disjoint union.
The approximations are the ones listed in the third column of Table 3.1.

Proof. Follows directly from Propositions 3.5.4, 3.5.5, 3.5.6, 3.5.2, 3.5.7 and Lemma 3.5.1.

We can also specify the maximal decrease respectively increase that is propagated
(here we are using the notation of Lemma 3.2.10 and Lemma 3.4.1).

Corollary 3.5.9. We consider the basic functions from Definition 3.5.3, function
composition as in Lemma 3.5.1 and disjoint union as in Proposition 3.5.2 and give
the corresponding values for ιf

a and ιa
f .

For greatest fixpoints (primal case) we obtain:

• ιck
a = ιu∗

a = ιmaxR
a = ιavD

a = ιsubw
a = δa

• ιminR
a = min

z∈[Z]minR(a)
{a(y)⊖ a(ŷ) ∣

yRz, y ∉ arg miny∈R−1(z) a(y), ŷ ∈ arg miny∈R−1(z) a(y)} ∪ {δa}

• ιaddw
a =miny∈Y {a(y)⊕w(y) ∣ a(y)⊕w(y) ⊏ 1}

• ιg○f
a ⊒min{ιf

a , ιg
f(a)}

• ι⊎i∈I fi
a =mini∈I ιfi

a∣Yi

For least fixpoints (dual case) we obtain:

• ιa
ck
= ιa

u∗ = ιa
minR = ιa

avD
= ιa

addw
= δa

• ιa
maxR = min

z∈[Z]minR(a)
{a(ŷ)⊖ a(y) ∣

yRz, ŷ ∈ arg maxy∈R−1(z) a(y), y ∉ arg maxy∈R−1(z) a(y)} ∪ {δa}

• ιa
subw
=miny∈Y {a(y)⊖w(y) ∣ a(y)⊖w(y) ⊐ 0}

• ιa
g○f ⊒min{ιa

f , ι
f(a)
g }

• ιa
⊎i∈I fi

=mini∈I ι
a∣Yi

fi

Proof. See Appendix: Corollary A.2.6.
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3.6. Applications
We will now tend to the applications discussed in Chapter 2. As we will see, we can derive
(almost) all warranted functions as composition and disjoint union of the basic functions
from Definition 3.5.3. We will proceed as follows: First, we show non-expansiveness
of each function by disassembling them via these basic functions. Next, we derive the
approximation. We also give a lower bound for the ascent constant ιf

a/descent constant
ιa
f .

3.6.1. Deriving the Approximation for Termination Probability of
Markov Chains

We now want to revisit Section 2.6.1, thereby investigating the example in the introduction
in more detail. Termination probability of a Markov chain MC = (S, T, η) arises as the
least fixpoint of the function T ∶ [0, 1]S → [0, 1]S , defined for t ∈ [0, 1]S and s ∈ S as

T (t)(s) =
⎧⎪⎪⎨⎪⎪⎩

∑s′∈S η(s)(s′) ⋅ t(s′) if s ∈ S ∖ T

1 otherwise

The least fixpoint µT assigns to each state its termination probability. Here, we have
M = [0, 1]. We restrict the codomain of η∶S ∖ T → D(S) to D ⊆ D(S), where D is finite
(to ensure that all involved sets are finite), i.e. D = {η(s) ∣ s ∈ S ∖ T}.

Lemma 3.6.1 (decomposing T ). The function T can be written as T = (η∗ ○
avD) ⊎ ck where k∶T → [0, 1] is the constant function 1 defined only on terminal
states.

Proof. Let t∶S → [0, 1]. For s ∈ T we have

((η∗ ○ avD) ⊎ ck)(t)(s)
= ck(t)(s) [since s ∈ T ]
= k(s) = 1 [by definition of ck and k]
= T (t)(s) [since s ∈ T ]

For s ∉ T we have

((η∗ ○ avD) ⊎ ck)(t)(s)
= η∗ ○ avD(t)(s) [since s ∉ T ]
= avD(t)(η(s)) [by definition of reindexing]
= ∑

s′∈S
η(s)(s′) ⋅ t(s′) [by definition of avD]

= T (t)(s) [since s ∉ T ]
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ck

avD η∗

⊎

[0, 1]T

[0, 1]S∖T[0, 1]S [0, 1]D

[0, 1]S

Fig. 3.3.: Decomposition of T

From this representation and Theorem 3.5.8 it is obvious that T is non-expansive and
we can derive the approximation T t

# in the dual sense.

Lemma 3.6.2 (approximating T ). Given a function t∶S → [0, 1], the t-
approximation for T in the dual sense is T t

#∶P([S]t)→ P([S]T (t)) with

T t
#(S′) = {s ∈ [S]T (t) ∣ s ∉ T ∧ supp(η(s)) ⊆ S′}.

Proof. See Appendix: Lemma A.2.7.

Intuitively, states which form a cycle where there is no outgoing edge to any terminal
state can have their values reduced (as long as their values all are above 0).

Remark 3.6.3. The descent constant ιt
T is bounded as follows:

ιt
T ⊒ δt.

We can draw a nice string diagram to illustrate the decomposition of T , see Figure 3.3.
This can be seen as early motivation for Chapter 4 where we will obtain a categorical
view of our theory and show that we are operating in a gs-monoidal setting.

At this point we have all the ingredients needed to formalise the application presented
in the introduction (Section 3.1).

Example 3.6.4. Again, consider the following Markov chain, where we are given µT in
green and νT in red.

x

1/2/1

u

1/1

y

0/1

z

0/1

1/3
1/31/3

1

1

We now compute νT νT
# via Kleene iteration:

1. T νT
# (S) = {x, y, z} = S′ since u is a terminal state.
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2. T νT
# (S′) = {y, z} = S′′ since u ∉ S′ and thus supp(η(x)) /⊆ S′.

3. T νT
# (S′′) = {y, z} = S′′ since for both y, z it holds supp(η(y)) = z, supp(η(z)) ⊆ S′′.

Thus, we know that we can reduce values in S′′ = νT νT
# by 1 = δνT , i.e. νT ⊖ 1S′′ is a

prefixpoint of T .

We present a new example that allows us to illustrate the question of the largest
decrease for a fixpoint that still guarantees a pre-fixpoint (the dual problem is treated in
Proposition 3.3.5).

Example 3.6.5. Consider the following Markov chain where S = {x1, x2, x3} are non-
terminal states. The least fixpoint of the underlying fixpoint function T is clearly the
constant 0, since no state can reach a terminal state.

x1 x2 x31 1
1/2 1/2

Now consider the function t∶S → [0, 1] defined by t(x1) = 0.1, t(x2) = 0.5 and t(x3) = 0.9.
This is also a fixpoint of T .

Observe that T t
#(S) = S and thus, clearly, νT t

# = S. According to (the dual of) Defini-
tion 3.3.3 we have δt(S) = 0.1 and thus, by (the dual of) Proposition 3.3.5, the function
t′ = t ⊖ (0.1)S, with t′(x1) = 0, t′(x2) = 0.4, and t′(x3) = 0.8, is a pre-fixpoint. Indeed,
T (t′)(x1) = 0, T (t′)(x2) = 0.4 and T (t′)(x3) = 0.8.

This is not the largest decrease producing a pre-fixpoint. In fact, we can choose θ = 0.9,
greater than δt(S) and we have that t⊖ θS is the constant 0, i.e., the least fixpoint of T .
However, if we take θ′ = 0.5 ⊏ θ, then t⊖ θ′S is not a pre-fixpoint. In fact (t⊖ θ′S)(x2) = 0,
while T (t⊖ θ′S)(x2) = 0.2. This means that the set of decreases (beyond δt(S)) producing
a pre-fixpoint is not downward-closed and hence the largest decrease cannot be found by
binary search, while, as already mentioned, a binary search will work for decreases below
δt(S).

3.6.2. Deriving the Approximation for the Kantorovich Lifting

The Kantorovich lifting converts a metric on X to a metric on probability distributions
over X (see Section 2.5.6). In order to ensure finiteness of all the sets involved, we restrict
to D ⊆ D(X), some finite set of probability distributions over X. The Kantorovich lifting
was defined as K ∶ [0, 1]X×X → [0, 1]D×D where

K(d)(p, q) = min
ω∈Ω(p,q)

∑
(x1,x2)∈X×X

ω(x1, x2) ⋅ d(x1, x2).

for d ∈ [0, 1]X×X and p, q ∈ D ⊆ D(X). As it commonly happens, we define the lifting
for general distance functions on [0, 1], not restricting to (pseudo-)metrics. We have
M = [0, 1].



100 3. Fixpoint Theory – Upside Down

As a reminder (cf. Section 2.5.6), a coupling of p, q ∈D is a probability distribution ω ∈
D(X ×X) whose left and right marginals are p, q, i.e., p(x1) =mL

ω(x1) ∶= ∑x2∈X ω(x1, x2)
and q(x2) = mR

ω (x2) ∶= ∑x1∈X ω(x1, x2). The set of all couplings of p, q, denoted by
Ω(p, q), forms a polytope with finitely many vertices: ΩV (p, q). The set of all polytope
vertices that are obtained by coupling any p, q ∈ D is also finite and is denoted by
VPD ⊆ D(X ×X).

Below we provide an alternative characterisation of K, which shows non-expansiveness
of K and allows one to derive its approximations.

Lemma 3.6.6 (decomposing K). Let u ∶ VPD → D × D, u(ω) = (mL
ω , mR

ω ).
Then K = minu ○avVPD

, where avVPD
∶ [0, 1]X×X → [0, 1]VPD , minu∶ [0, 1]VPD →

[0, 1]D×D.

Proof. It holds that u−1(p, q) = Ω(p, q)∩VPD for p, q ∈D. Furthermore note it is sufficient
to consider as couplings the vertices, i.e., the elements of VPD, since the minimum is
always attained there [PC20].

Hence we obtain for d∶X ×X → [0, 1], p, q ∈D:

minu(avVPD
(d))(p, q) = min

ω∈Ω(p,q)∩VPD

avVPD
(d)(ω)

= min
ω∈Ω(p,q)∩VPD

∑
x1,x2∈X×X

ω(x1, x2) ⋅ d(x1, x2)

= min
ω∈Ω(p,q)

∑
x1,x2∈X×X

ω(x1, x2) ⋅ d(x1, x2)

= K(d)(p, q)

We next present the approximation of the Kantorovich lifting in the dual sense.
Intuitively, given a distance function d and a relation M on X, it characterises those
pairs (p, q) of distributions whose distance in the Kantorovich metric decreases by a
constant when we decrease the distance d for all pairs in M by the same constant.

Lemma 3.6.7 (approximating K). Let d∶X ×X → [0, 1]. The approximation for
the Kantorovich lifting K in the dual sense is Kd

#∶P([X ×X]d)→ P([D ×D]K(d))
with

Kd
#(M) = {(p, q) ∈ [D ×D]K(d) ∣ ∃ω ∈ Ω(p, q), supp(ω) ⊆M,

∑
u,v∈S

d(u, v) ⋅ ω(u, v) = K(d)(p, q)}.

Proof. See Appendix: Lemma A.2.8.
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Remark 3.6.8. The descent constant ιd
K has as lower bound:

ιd
K ⊒ δd.

3.6.3. Deriving the Approximation for Behavioural Distances of
Labeled Markov Chains

The results from the previous section allow us to derive the approximation of the
behavioural distance function for labeled Markov chains (cf. Section 2.6.3). ∆∶ [0, 1]S×S →
[0, 1]S×S (in its simplified form) was defined as

∆(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
K(d)(η(s), η(t)) otherwise

for d ∈ [0, 1]S×S and s, t ∈ S (M = [0, 1]). First, we prove non-expansiveness of ∆.

Lemma 3.6.9 (decomposing ∆). The function ∆ can be written as

∆ =maxρ ○((η × η)∗ ○K ⊎ ck)

where ρ∶ (S ×S)⊎ (S ×S)→ (S ×S) with ρ((s, t), i) = (s, t), i = 0, 1, and k∶S ×S →
[0, 1] is defined as

k(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
0 otherwise

.

Proof. Given d∶S × S → [0, 1] and s, t ∈ S. We have

maxρ ○((η × η)∗ ○K ⊎ ck)(d)(s, t) =max{(η × η)∗ ○K(d)(s, t), ck(d)(s, t)}
=max{K(d)(η(s), η(t)), ck(d)(s, t)}

=
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
K(d)(η(s), η(t)) otherwise

We quickly remark that both (η × η)∗ ○K and ck map to [0, 1]S×S . We artificially make
these sets disjoint by adding an index (0 and 1) which is required by the theory as ⊎ only
works on disjoint sets, i.e.

(η × η)∗ ○K∶ [0, 1]S×S → [0, 1]S×S×{0}, ck∶ [0, 1]S×S → [0, 1]S×S×{1}

and ρ∶ [0, 1](S×S×{0})⊎(S×S×{1}) → [0, 1]S×S .

We can draw an illustrating string diagram to illustrate the decomposition of ∆, see
Figure 3.4.
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ck

avVPD minu (η × η)∗
maxρ⊎

[0, 1]S×S(×{1})

[0, 1]S×S [0, 1]VPD [0, 1]D×D [0, 1]S×S(×{0})

[0, 1]S×S

Fig. 3.4.: Decomposition of the fixpoint function for computing behavioural metrics for
labeled Markov chains.

∆ is clearly non-expansive and we obtain the following approximation in the dual
sense.

Lemma 3.6.10 (approximating ∆). Let d∶S × S → [0, 1]. The approximation of
∆ in the dual sense is ∆d

#∶P([S × S]d)→ P([S × S]∆(d)) with

∆d
#(M) = {(s, t) ∈ [S × S]∆(d) ∣ ℓ(s) = ℓ(t) ∧ (η(s), η(t)) ∈ Kd

#(M)}.

Proof. See Appendix: Lemma A.2.9.

Remark 3.6.11. The descent constant ιd
∆ has the following lower bound:

ιd
∆ ⊒ δd.

Example 3.6.12. We are given the following labeled Markov chain where all states
except for state t have the same label.

x

s t

y

1/2 1/2

1 1

1/2 1/2

Assume we are given the following fixpoint of ∆: d(x, x) = d(y, y) = 0, d(x, v) = d(y, v) =
d(s, t) = 1, d(x, s) = d(y, s) = 3/4, d(t, t) = d(s, s) = 1/2 and d(x, y) = 1/4. Symmetrical
values are identical.
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We now show that M = {(s, s), (t, t), (x, y), (y, x)} is a fixpoint of ∆d
# (in fact it is the

largest one). Now, (u, u) ∈ ∆d
#(M) since the only viable coupling ω ∈ Ω(η(s), η(s)) is

given by ω(s, s) = 1 and

K(d)(η(s), η(s)) = ∑
u,v∈S

d(u, v) ⋅ ω(u, v) = 1/2.

Since (s, s) ∈M , we conclude (s, s) ∈∆d
#(M). For the same reasoning (t, t) ∈∆d

#(M).
We have two couplings ω1, ω2 ∈ ΩV (η(x), η(y)) given by ω1(s, s) = ω1(t, t) = ω2(s, t) =

ω2(t, s) = 1/2. We have

K(d)(η(x), η(y)) = ∑
u,v∈S

d(u, v) ⋅ ω1(u, v) = 1/4

and since (s, s), (t, t) ∈ ∆d
#(M) we conclude (x, y) ∈ ∆d

#(M). For the same reasoning
(y, x) ∈∆d

#(M).

3.6.4. Deriving the Approximation for the Hausdorff Lifting

Given a (pseudo-)metric d on a finite set X, the Hausdorff lifting of H(d) provides a
(pseudo-)metric on the powerset P(X) (see Section 2.5.5). As for the Kantorovich lifting,
we lift distance functions that are not necessarily (pseudo-)metrics. The Hausdorff lifting
(primal representation) was defined as H ∶ [0, 1]X×X → [0, 1]P(x)×P(X) where

H(d)(X1, X2) =max{max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)}.

for d ∈ [0, 1]X×X and X1, X2 ∈ P(X) (M = [0, 1]). The dual characterisation (cf. Sec-
tion 2.5.5) of the Hausdorff lifting due to Mémoli [Mém11], is more convenient for our
purposes. Let u ∶ P(X ×X)→ P(X)×P(X) be defined by u(C) = (π1[C], π2[C]), where
π1, π2 are the projections πi ∶ X ×X →X and πi[C] = {πi(c) ∣ c ∈ C}. Then

H(d)(X1, X2) =min{ max
(x1,x2)∈C

d(x1, x2) ∣ C ⊆X ×X ∧ u(C) = (X1, X2)}.

It is easy to see that C is a coupling for X1, X2 (as discussed in Section 2.5.5) iff
u(C) = (X1, X2). Relying on this characterisation, we can obtain the result below,
from which we deduce that H is non-expansive and construct its approximation as the
composition of the corresponding functions from Table 3.1.

Lemma 3.6.13 (decomposing H). It holds that H = minu ○max∈ where
max∈∶MX×X → MP(X×X), with ∈ ⊆ (X × X) × P(X ×X) the “is-element-of”-
relation on X ×X, and minu∶MP(X×X) →MP(X)×P(X).

Proof. Let for d ∶ X ×X →M, X1, X2 ⊆X. Then we have

minu(max∈(d))(X1, X2)
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= min
u(C)=(X1,X2)

(max∈(d))(C) = min
u(C)=(X1,X2)

max
(x1,x2)∈C

d(x1, x2)

which is exactly the definition of the Hausdorff lifting H(d)(X1, X2) via couplings, due
to Mémoli [Mém11].

We next determine the approximation of the Hausdorff lifting in the dual sense.
Intuitively, given a distance function d and a relation R on X, such function characterises
those pairs (X1, X2), X1, X2 ⊆X, whose distance in the Hausdorff metric decreases by a
constant when we decrease the distance d for all pairs in R by the same constant.

Lemma 3.6.14 (approximating H). The approximation for the Hausdorff lifting
H in the dual sense is as follows. Let d∶X × X → M, then Hd

#∶P([X ×X]d) →
P([P(X) ×P(X)]H(d)) with

Hd
#(R) = {(X1, X2) ∈ [P(X) ×P(X)]H(d) ∣

∀x1 ∈X1( min
x′2∈X2

d(x1, x′2) =H(d)(X1, X2) ⇒ ∃x2 ∈X2∶

(x1, x2) ∈ R ∧ d(x1, x2) =H(d)(X1, X2))∧
∀x2 ∈X2( min

x′1∈X1
d(x′1, x2) =H(d)(X1, X2) ⇒ ∃x1 ∈X1∶

(x1, x2) ∈ R ∧ d(x1, x2) =H(d)(X1, X2))}

Proof. See Appendix: Lemma A.2.10.

Remark 3.6.15. The descent constant ιd
H has as lower bound:

ιd
H ⊒min{{d(x1, x2) − d(y1, y2) ∣ d(x1, x2) − d(y1, y2) > 0, x1, x2, y1, y2 ∈X} ∪ {δd}}.

3.6.5. Deriving the Approximation for Behavioural Distances of
Probabilistic Automata

The probabilistic bisimilarity pseudo-metric of a probabilistic automaton is the least
fixpoint of the function M∶ [0, 1]S×S → [0, 1]S×S , defined for d∶S × S → [0, 1] and s, t ∈ S
as

M(d)(s, t) =max{dL(ℓ(s), ℓ(t)), H(K(d))(η(s), η(t))}

where H is the Hausdorff lifting and K is the Kantorovich lifting (M = [0, 1]), cf.
Section 2.6.5.

The fixpoint function M can be expressed as the composition of basic non-expansive
functions and thus, by Theorem 3.5.8, it is non-expansive itself.
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Lemma 3.6.16 (decomposing M). The fixpoint function M for probabilistic
bisimilarity pseudo-metrics can be written as:

M =maxρ ○(((η × η)∗ ○H ○K) ⊎ ((ℓ × ℓ)∗ ○ cdL
))

where ρ∶ (S × S) ⊎ (S × S)→ (S × S) with ρ((s, t), i) = (s, t).

Proof. In fact, given d∶S × S → [0, 1] and s, t ∈ S, we have

maxρ((((η × η)∗ ○H ○K) ⊎ ((ℓ × ℓ)∗ ○ cdL
))(d))(s, t)

= max{(η × η)∗ ○H ○K)(d)(s, t), ((ℓ × ℓ)∗ ○ dL)(s, t)}
= max{H(K(d)(η(s), η(t)), dL(ℓ(s), ℓ(t))}
= M(d)(s, t)

As discussed in Section 2.6.5, whenever dL is discrete, this specializes to the probabilistic
automata of [BBL+21] and whenever the probability distributions are Dirac distributions
we obtain metric transition systems [dAFS09].

The above decomposition also helps in determining the approximation of M.

Lemma 3.6.17 (approximating M). Let d∶S × S → [0, 1]. The approximation for
M in the dual sense is Md

#∶P([S × S]d)→ P([S × S]M(d)) with

Md
#(X) = {(s, t) ∈ [S × S]M(d) ∣ dL(ℓ(s), ℓ(t)) <H(K(d))(η(s), η(t))

∧ (η(s), η(t)) ∈HK(d)# ○Kd
#(X)}

Proof. See Appendix: Lemma A.2.11.

Remark 3.6.18. We can bound the descent constant ιd
M by:

ιd
M ⊒min{{d(x1, x2) − d(y1, y2) ∣ d(x1, x2) − d(y1, y2) > 0, x1, x2, y1, y2 ∈X} ∪ {δd}}.

Comparison with [BBL+21]. The paper [BBL+21] describes the first method for
computing behavioural distances over probabilistic automata. Although the behavioural
distance arises as a least fixpoint, it is in fact better, even the only known method, to
iterate from above, in order to reach this least fixpoint. This is done by guessing and
improving couplings, similarly to what happens for strategy iteration discussed later in
Chapter 5. A major complication, faced in [BBL+21], is that the procedure can get stuck
at a fixpoint which is not the least and one has to determine that this is the case and
decrease the current candidate. This is done by relying on an adaptation of the notion
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of self-closed relation from [Fu12], and next we argue that this is closely related to the
theory we developed in this chapter. In fact this was our inspiration to generalise this
technique to a more general setting.

We next establish a formal correspondence with our results. First, note that the
probabilistic automata considered in [BBL+21] are a special case of those defined above,
where the metric on the set of state labels is required to be discrete. Hence states with
different labels are necessarily at distance 1.

Let PA = (S, η, L, ℓ) be a fixed probabilistic automata and let us assume that, as
in [BBL+21], the metric space of labels (L, dL) is discrete.

Assume that d is a fixpoint of M, i.e., d = M(d). In order to check whether d =
µM, [BBL+21] adapts the notion of a self-closed relation from [Fu12].

Definition 3.6.19 ([BBL+21]). A relation M ⊆ S ×S is self-closed with respect to
d =M(d) if, whenever s M t, then

• ℓ(s) = ℓ(t) and d(s, t) > 0,

• if p ∈ η(s) and d(s, t) = minq′∈η(t)K(d)(p, q′), then there exists q ∈ η(t) and
c ∈ Ω(p, q) such that d(s, t) = ∑u,v∈S d(u, v) ⋅ c(u, v) and supp(c) ⊆M ,

• if q ∈ η(t) and d(s, t) = minp′∈η(s)K(d)(p′, q), then there exists p ∈ η(s) and
c ∈ Ω(p, q) such that d(s, t) = ∑u,v∈S d(u, v) ⋅ c(u, v) and supp(c) ⊆M .

The largest self-closed relation, denoted by ≈d, can be shown to be empty if and only
if d = µM [BBL+21]. This has an immediate correspondence with our results since we
can prove an intimate connection between self-closed relations and post-fixpoints of the
approximation of M.

Proposition 3.6.20. Let d∶S × S → [0, 1] where d = M(d). Then
Md

#∶P([S × S]d)→ P([S × S]d), where [S × S]d = {(s, t) ∈ S × S ∣ d(s, t) > 0}.
Then M is a self-closed relation with respect to d if and only if M ⊆ [S × S]d and
M is a post-fixpoint of Md

#.

Proof. See Appendix: Proposition A.2.12.

3.6.6. Deriving the Approximation for Behavioural Distances of Metric
Transition Systems

The least fixpoint of the function J ∶ [0, 1]S×S → [0, 1]S×S , defined as

J (d)(s, t) =max{dL(ℓ(s), ℓ(t)),H(d)(η(s), η(t))

for d ∈ [0, 1]S×S and s, t ∈ S (M = [0, 1]), specifies the behavioural distance in a metric
transition system. As discussed in Section 2.6.4, any metric transition system MTS =
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(S, η, ℓ, L) can be seen as a special probabilistic automata, i.e. we can “transform” the
transition relation η∶S → P(S) into η′∶S → P(D(S)), defining η′(s) = {βt ∣ t ∈ η(s)} (βt

denotes the Dirac distribution). Using this observation, Lemma 3.6.17 and the fact that
for a distance d ∶ S ×S → [0, 1] and a pair of states s, t ∈ S, it holds K(d)(βs, βt) = d(s, t),
we obtain the approximation:

J d
#(X) = {(s, t) ∈ [S × S]J (d) ∣ dL(ℓ(s), ℓ(t)) <H(d)(η(s), η(t))

∧ (η(s), η(t)) ∈Hd
#(X)}

Remark 3.6.21. The descent constant ιd
J is bounded as follows:

ιd
J ⊒min{{d(x1, x2) − d(y1, y2) ∣ d(x1, x2) − d(y1, y2) > 0, x1, x2, y1, y2 ∈X} ∪ {δd}}.

Example 3.6.22. We consider the metric transition system depicted below, where the
metric space of labels is the real interval [0, 1] with the Euclidean distance dL(x, y) = ∣x−y∣.

x ∶ 0.1

y ∶ 0.6

z ∶ 0.3

Here, η(x) = {x, z}, η(y) = {x, y, z} and η(z) = {x}. Additionally we have ℓ(x) = 0.1,
ℓ(y) = 0.6 and ℓ(z) = 0.3 resulting in dL(ℓ(x), ℓ(y)) = 0.5, dL(ℓ(x), ℓ(z)) = 0.2 and
dL(ℓ(y), ℓ(z)) = 0.3. The least fixpoint of J is a pseudo-metric µJ given by µJ (x, y) =
µJ (y, z) = 0.5 and µJ (x, z) = 0.3. (Since µJ is a pseudo-metric, the remaining entries
are fixed: µJ (u, u) = 0 and µJ (u, v) = µJ (v, u) for all u, v ∈ {x, y, z}.)

Now consider the pseudo-metric d with d(x, y) = d(x, z) = d(y, z) = 0.5. This is also a
fixpoint of J . Note that H(d)(η(x), η(y)) = H(d)(η(x), η(z)) = H(d)(η(y), η(z)) = 0.5.
Let us use our technique in order to verify that d is not the least fixpoint of J , by showing
that νJ d

# ≠ ∅.
We start the fixpoint iteration with the approximation J d

# from the top element [S × S]d,
which is given by the symmetric closure4 of {(x, y), (x, z), (y, z)} (since reflexive pairs
do not contain slack).

We first observe that the pairs (x, y), (y, x) ∉ J d
#(Sym({(x, y), (x, z), (y, z)})) since

dL(ℓ(x), ℓ(y)) = 0.5 /<H(d)(η(x), η(y)) = 0.5.
4We denote the symmetric closure of a relation R by Sym(R).
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Next, we have (y, z), (z, y) ∉ J d
#(Sym({(x, z), (y, z)})) since it holds (η(y), η(z)) /∈

Hd
#(Sym({(x, z), (y, z)})). In order to see this, consider the approximation of the Haus-

dorff lifting in Lemma 3.6.14 and note that for y ∈ η(y) we have minu∈η(z) d(y, u) =
0.5 =H(d)(η(y), η(z)), but (y, x) ∉ Sym({(x, z), (y, z)}) (where x is the only element in
η(z)).

The pairs (x, z), (z, x) on the other hand satisfy all conditions and hence

νJ d
# = Sym({(x, z)}) = J d

#(Sym({(x, z)})) ≠ ∅

Thus we conclude that d is not the least fixpoint, but, according to Proposition 3.3.5,
we can decrease the value of d in the positions (x, z), (z, x) and obtain a pre-fixpoint from
which we can continue the fixpoint iteration.

3.6.7. Deriving the Approximation for Bisimilarity of Transition
Systems

In order to define standard bisimilarity (see Section 2.6.2) we use a variant G of the
Hausdorff lifting H defined before, where max and min are swapped. More precisely,
G ∶ {0, 1}X×X → {0, 1}P(X)×P(X) is defined, for a ∈ {0, 1}X×X , by

G(a)(X1, X2) =maxu{min(x1,x2)∈C a(x1, x2) ∣ C ⊆X ×X ∧ u(C) = (X1, X2)}.

Lemma 3.6.23 (approximating G). The approximation for the adapted Haus-
dorff lifting G is as follows. Let a∶X × X → {0, 1}, then G#

a ∶P([X ×X]a) →
P([P(X) ×P(X)]G(a)) with

G#
a (R) = {(X1, X2) ∈ [P(X) ×P(X)]G(a) ∣

∀x1 ∈X1∃x2 ∈X2∶ ((x1, x2) /∈ [X ×X]a ∨ (x1, x2) ∈ R)
∧∀x2 ∈X2∃x1 ∈X1∶ ((x1, x2) /∈ [X ×X]a ∨ (x1, x2) ∈ R)}

Proof. See Appendix: Lemma A.2.13.

Now we can define the fixpoint function for bisimilarity and its corresponding ap-
proximation. The fixpoint function for bisimilarity B ∶ {0, 1}X×X → {0, 1}X×X 5 can be
expressed by using the Hausdorff lifting G with M = {0, 1}.

Lemma 3.6.24 (decomposing B). Bisimilarity for a transition system TS = (X, η)
is the greatest fixpoint of B = (η × η)∗ ○ G.

Proof. See Appendix: Lemma A.2.14.
5We change S to X in this section.
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Since we are interested in the greatest fixpoint, we are working in the primal sense.
Bisimulation relations are represented by their characteristic functions a∶X ×X → {0, 1},
in fact the corresponding relation can be obtained by taking the complement of [X ×X]a =
{(x1, x2) ∈X1 ×X2 ∣ a(x1, x2) = 0}.

Lemma 3.6.25 (approximating B). Let a∶X × X → {0, 1}. The approxima-
tion for the bisimilarity function B in the primal sense is B#

a ∶P([X ×X]a) →
P([X ×X]B(a)) with

B#
a (R) = {(x1, x2) ∈ [X ×X]B(a) ∣

∀y1 ∈ η(x1)∃y2 ∈ η(x2)((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R))
∧∀y2 ∈ η(x2)∃y1 ∈ η(x1)((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R)}

Proof. See Appendix: Lemma A.2.15.

Remark 3.6.26. Clearly, we have the ascent constant

ιBa = 1.

We conclude this section by discussing how this view on bisimilarity can be useful:
first, it again opens up the possibility to compute bisimilarity – a greatest fixpoint – by
iterating from below, through smaller fixpoints. This could potentially be useful if it is
easy to compute the least fixpoint of B inductively and continue from there.

Furthermore, we obtain a technique for witnessing non-bisimilarity of states. While
this can also be done by exhibiting a distinguishing modal formula [HM85, Cle90] or by
a winning strategy for the spoiler in the bisimulation game [Sti97], to our knowledge
there is no known method that does this directly, based on the definition of bisimilarity.

With our technique we can witness non-bisimilarity of two states x1, x2 ∈ X by
presenting a pre-fixpoint a (i.e., B(a) ≤ a) such that a(x1, x2) = 0 (equivalent to (x1, x2) ∈
[X ×X]a) and νB#

a = ∅, since this implies νB(x1, x2) ≤ a(x1, x2) = 0 by our proof rule.
There are two issues to discuss: first, how can we characterise a pre-fixpoint of B

(which is quite unusual, since bisimulations are post-fixpoints)? In fact, the condition
B(a) ≤ a can be rewritten to: for all (x1, x2) ∈ [X ×X]a there exists y1 ∈ η(x1) such that
for all y2 ∈ η(x2) we have (y1, y2) ∈ [X ×X]a (or vice versa). Second, at first sight it does
not seem as if we gained anything since we still have to do a fixpoint computation on
relations. However, the carrier set is [X ×X]a, i.e., a set of non-bisimilarity witnesses
and this set can be small even though X might be large, since a might have value 0 only
on a small subset of X ×X.

Example 3.6.27. We consider the transition system depicted below.

x y u
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Our aim is to construct a witness showing that x, u are not bisimilar. This witness is
a function a∶X ×X → {0, 1} with a(x, u) = 0 = a(y, u) and for all other pairs the value
is 1. Hence [X ×X]a=B(a) = [X ×X]a = {(x, u), (y, u)} and it is easy to check that a is
a pre-fixpoint of B and that νB∗a = ∅: we iterate over {(x, u), (y, u)} and first remove
(y, u) (since y has no successors) and then (x, u). This implies that νB ≤ a and hence
νB(x, u) = 0, which means that x, u are not bisimilar.

Example 3.6.28. We modify Example 3.6.27 and consider a function a where a(x, u) = 0
and all other values are 1. Again a is a pre-fixpoint of B and νB ≤ a (since only reflexive
pairs are in the bisimilarity). However νB∗a ≠ ∅, since {(x, u)} is a post-fixpoint. This is
a counterexample to completeness discussed after Theorem 3.3.7.

Intuitively speaking, the states y, u over-approximate and claim that they are bisimilar,
although they are not. (This is permissible for a pre-fixpoint.) This tricks x, u into thinking
that there is some wiggle room and that one can increase the value of (x, u). This is true,
but only because of the limited, local view, since the “true” value of (y, u) is 0.

3.6.8. Deriving the Approximation for Simple Stochastic Games

In this section we show that V ∶ [0, 1]V → [0, 1]V is non-expansive and derive the approxi-
mation Va

#. V was defined for a∶V → [0, 1] and v ∈ V as follows:

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv′∈succ(v) a(v′) if v ∈ VMax

minv′∈succ(v) a(v′) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

Here, M = [0, 1]. The least fixpoint of V yields the solution of the underlying simple
stochastic game (cf. Section 2.7.3). Before we disassemble V into smaller subfunctions we
need to disjoint the set of successors. Thus we rewrite µV as follows

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv′∈ηmax(v) a(v′) if v ∈ VMax

minv′∈ηmin(v) a(v′) if v ∈ VMin

∑v′∈V ηav(v)(v′) ⋅ a(v′) if v ∈ VAv

w(v) if v ∈ VSink

where ηmax∶VMax → P(V ), ηmin∶VMin → P(V ), η∶VAv → D(V ) and w∶VSink → [0, 1]
(renamed c to w in order to avoid confusion). In order to be able to determine the
approximation of V and to apply our techniques, we consider the following equivalent
definition.

Lemma 3.6.29 (decomposing V). V = (η∗min○min∈)⊎(η∗max○max∈)⊎(η∗av○avD)⊎cw,
where ∈ ⊆ V ×P(V ) is the “is-element-of”-relation on V .
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Proof. Let a∶V → [0, 1]. For v ∈ VMax we have

V(a)(v) = (η∗max ○max∈)(a)(v) =max∈(a)(ηmax(v)) = max
v′∈ηmax(v)

a(v′).

For v ∈ VMin we have

V(a)(v) = (η∗min ○min∈)(a)(v) =min∈(a)(ηmin(v)) = min
v′∈ηmin(v)

a(v′).

For v ∈ VAv we have

V(a)(v) = (η∗av ○ avD)(a)(v) = avD(a)(ηav(v)) = ∑
v′∈V

ηav(v)(v′) ⋅ a(v′).

For v ∈ VSink we have V(a)(v) = cw(a)(v) = w(v).

As a composition of non-expansive functions, V is non-expansive as well. Since we
are interested in the least fixpoint we work in the dual sense and obtain the following
approximation, which intuitively says: we can decrease a value at node v by a constant
only if, in the case of a Min node, we decrease the value of one successor where the
minimum is reached, in the case of a Max node, we decrease the values of all successors
where the maximum is reached, and in the case of an average node, we decrease the
values of all successors.

Lemma 3.6.30 (approximating V). Let a∶V → [0, 1]. The approximation for the
value iteration function V in the dual sense is Va

#∶P([V ]a)→ P([V ]V(a)) with

Va
#(V ′) = {v ∈ [V ]V(a) ∣ (v ∈ VMin ∧ arg min

v′∈ηmin(v)
a(v′) ∩ V ′ ≠ ∅)∨

(v ∈ VMax ∧ arg max
v′∈ηmax(v)

a(v′) ⊆ V ′) ∨ (v ∈ VAv ∧ supp(ηav(v)) ⊆ V ′)}

Proof. See Appendix: Lemma A.2.16.

Remark 3.6.31. A bound for the descent constant ιa
V is given by:

ιa
V ⊒min{{a(v) − a(v′) ∣ a(v) − a(v′) > 0, v, v′ ∈ V } ∪ {δa}}.

Example 3.6.32. We consider the game depicted below. Here min is a Min node with
ηmin(min) = {1, av}, max is a Max node with ηmax(max) = {ε, av}, 1 is a sink node
with payoff 1, ε is a sink node with some small payoff ε ∈ (0, 1) and av is an average
node which transitions to both min and max with probability 1/2. The least fixpoint µV is
given in blue (left value). This game is not stopping.

1

1/1

min

ε/1

av

ε/1

max

ε/1

ε

ε/ε
1/21/2
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Assume we are given the greatest fixpoint νV (in red, right value). One can easily detect
the vicious cycle formed by V ′ = {min, av, max} as av ∈ V ′ (av is a successor of min
attaining the minimum and the only successor of max attaining the maximum) and
supp(ηav) = {max, min} ⊆ V ′.

3.6.9. Deriving the Approximation for Energy Games

In this section we show that E ∶ KV →KV , defined as

E(a)(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMin

max
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMax

for a ∈KV and v ∈ V , is non-expansive and we derive the approximation Ea
#. The least

fixpoint of E yields the solution of an energy games with finite values (cf. Section 2.7.4).
It holds K = {0, 1, . . . , k} for some k ∈ N and the operator ⊖Z∶K ×Z→K was defined as
x⊖Z y =min{max{x − y, 0}, k}.

First, we disassemble E into smaller functions. We define

• E0 = {(v, v′) ∈ E ∣ v ∈ VMin} and E1 = {(v, v′) ∈ E ∣ v ∈ VMax}.
Immediately we conclude E0 ∪E1 = E and E0 ∩E1 = ∅.

• Projections: πi∶E → V , i = 1, 2, where, given e = (v, v′) ∈ E we have π1(e) = v and
π2(e) = v′.

• Restricted projections: We define πj
i ∶Ej → V where πj

i = (πi)∣Ej
for i ∈ {1, 2},

j ∈ {0, 1}.

• Subtraction of edge weights: Given w∶E → Z, define sub′w∶KE →KE via

sub′w(a)(e) = a(e)⊖Z w(e)

for a∶E →K and e ∈ E.

• Minimum and maximum functions: We use the functions minu, maxu from Table 3.1,
where u is one of the projections defined above.

Lemma 3.6.33 (decomposing E). The function E ∶KV →KV can be written as

E = (minπ0
1
⊎maxπ1

1
) ○ sub′w ○ π∗2

Proof. Given a∶V →K and v ∈ V , we get

((minπ0
1
⊎maxπ1

1
) ○ sub′w ○ π∗2)(a)(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
π0

1(e)=v
(sub′w ○ π∗2)(a)(e)

max
π1

1(e)=v
(sub′w ○ π∗2)(a)(e)



3.6. Applications 113

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
(v,v′)∈E

sub′w ○ π∗2(a)(v, v′), if v ∈ VMin

max
(v,v′)∈E

sub′w ○ π∗2(a)(v, v′), if v ∈ VMax

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
(v,v′)∈E

π∗2(a)(v, v′)⊖Z w(v, v′), if v ∈ VMin

max
(v,v′)∈E

π∗2(a)(v, v′)⊖Z w(v, v′), if v ∈ VMax

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
(v,v′)∈E

a(v′)⊖Z w(v, v′), if v ∈ VMin

max
(v,v′)∈E

a(v′)⊖Z w(v, v′), if v ∈ VMax

= E(a)(v)

Non-Expansiveness of sub′w and Approximation (sub′w)a#. We remark that sub′w
differs from the basic function subw from Definition 3.5.3 as w maps to Z and not to
M =K. Thus we show non-expansiveness and derive the approximation (sub′w)a#.

Lemma 3.6.34. The function sub′w∶KE →KE, defined via sub′w(a)(e) = a(e)⊖Z
w(e) for a∶E →K, e ∈ E and w∶E → Z, is non-expansive.

Proof. See Appendix: Lemma A.2.17.

Next we determine the approximation (sub′w)a#.

Lemma 3.6.35. Given w∶E → Z and a∶E → K the approximation
(sub′w)a#∶K[E]

a →K[E]
sub′w(a) of sub′w∶KE →KE, is given by

(sub′w)a#(E′) = {e ∈ E′ ∣ 0 < a(e) −w(e) ≤ k}

for E′ ⊆ [E]a.

Proof. See Appendix: Lemma A.2.18.

By above considerations, the function E ∶ KV →KV is clearly non-expansive and we
are able to derive the approximation Ea

#.
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Lemma 3.6.36 (approximating E). Let V ′ ⊆ [V ]a then v ∈ Ea
#(V ′) if v ∈ [V ]E(a)

and

• whenever v ∈ VMin there exists some (v, v′′) ∈ E with min
(v,v′)∈E

a(v′)⊖Zw(v, v′) =

a(v′′)⊖Z w(v, v′′), 0 < a(v′′) −w(v, v′′) ≤ k and v′′ ∈ V ′

• whenever v ∈ VMax: if (v, v′′) ∈ E with max
(v,v′)∈E

a(v′) ⊖Z w(v, v′) = a(v′′) ⊖Z

w(v, v′′) then 0 < a(v′′) −w(v, v′′) ≤ k and v′′ ∈ V ′

Proof. See Appendix: Lemma A.2.19.

Remark 3.6.37. We have the following lower bound for the descent constant ιa
E :

ιa
E ⊒ 1.

On fixpoints a = E(a) the above characterization simplifies to v ∈ Ea
#(V ′) if v ∈ [V ]a

and

• v ∈ VMin: there exists some (v, v′) ∈ E with a(v) = a(v′) ⊖Z w(v, v′), 0 < a(v′) −
w(v, v′) ≤ k and v′ ∈ V ′

• v ∈ VMax: if (v, v′) ∈ E with a(v) = a(v′) ⊖Z w(v, v′) then 0 < a(v′) − w(v, v′) ≤ k
and v′ ∈ V ′

Example 3.6.38. Consider the following energy game, where it is intended that cir-
cular and rectangular states belong to Player Min and Player Max, respectively. Rather
immediate, µE(x) = µE(y) = 0.

x y0 0

−3

3

We are given the fixpoint a(x) = 10 and a(y) = 7 of E. We have νEa
# = {x, y}. Additionally,

V ′ = {x} is also a fixpoint of Ea
# as a(x) = a(x)⊖Z w(x, x). On the other hand, V ′′ = {y}

is not a fixpoint of Ea
# since a(y) = a(x)⊖Z w(y, x) but x ∉ V ′′.

3.7. Summary and Outlook
In this chapter we developed a theory which allows us to detect whether some fixpoint
of an endo-function f is its greatest fixpoint or not. This is done by detecting "vicious
cycles" in the system, i.e. states that convince each other that their value is lower than it
should be. This works for non-expansive functions f ∶MY →MY , where M is a complete
MV-chain and Y some finite set. We derived the following proof rule: Let a ∈MY be a
fixpoint of f then it holds



3.7. Summary and Outlook 115

a = νf if and only if νf#
a = ∅.

The function f#
a ∶P([Y ]a)→ P([Y ]a) is given by

f#
a (Y ′) = {y ∈ [Y ]a ∣ f(a⊕ ιY ′)(y)⊖ a(y) ⊒ ι}

for some Y ′ ⊆ Y , some suitable small (and non-zero) constant ι ∈M and [Y ]a = {y ∈ Y ∣
a(y) /= 1}. Whenever a /= νf we are able to give some postfixpoint b ∈MY of f which lies
above a, i.e. a ⊏ b ⊑ νf . We derived a similar proof rule for pre-fixpoint and dualized the
whole theory for least fixpoints.

We will see in Chapter 5 that these results are very useful. In particular, the correctness
of the strategy iterations we will present can only be proven using the results from this
chapter.

Non-expansive functions enjoy good closure properties which allowed us to assemble a
handful of complex functions from a few basic functions. These closure properties are
extremely useful as we will present a tool UDEfix (see Section 4.7) where a user can
create his very own functions - based on these few basic functions - and do the fixpoint
checks described above. This allowed us to derive the approximations of rather involved
functions.

In Section 4.3 we will also derive a categorical framework for the theory developed in
this chapter.



4 A Monoidal View on Fixpoint Checks

This chapter can be seen as an extension of the previous one. We will embed the
approximation framework into a categorical setting and present a tool we developed
which can be used to perform fixpoint checks.

4.1. Introduction

We show that gs-monoidal categories (cf. Section 2.4.1) and the composition concepts that
come with them can be fruitfully used in a scenario that – at first sight – might seem quite
unrelated: methods for fixpoints checks. In particular, we build upon Chapter 3 where a
theory is proposed for checking whether a fixpoint of a given function is the least (greatest)
fixpoint. As we have seen, the theory applies to a variety of fairly diverse application
scenarios. We show that the approximation framework and its compositionality properties
can be naturally interpreted in categorical terms. This is done by introducing two gs-
monoidal categories in which the concrete functions respectively their approximations
live as arrows, together with a gs-monoidal functor, called #, mapping one to the other.
Besides shedding further light on the theoretical approximation framework of Chapter 3,
this view guided the realisation of a tool, called UDEfix that allows to build functions
(and their approximations) like a circuit out of basic building blocks and subsequently
perform the fixpoints checks.

We also show that the functor # can be extended to deal with functions f ∶MY →MY

where Y is not necessarily finite, becoming a lax functor. We prove some properties of
this functor that enables us to give a recipe for finding approximations for a special
type of functions: predicate liftings that have been introduced for coalgebraic modal
logic [Pat03, Sch08b]. This recipe allows us to include a new case study for the machinery
for fixpoint checking: coalgebraic behavioural metrics, based on Wasserstein liftings (cf.
Section 2.5).

The chapter is organized as follows: In Section 4.2 we define the approximation for func-
tions with an infinite domain. Subsequently in Section 4.3 we introduce two (gs-monoidal)
categories C, A (of concrete and abstract functions), show that the approximation # is a
(lax) functor between these categories and prove some of its properties, which are used
to handle predicate liftings (Section 4.4) and behavioural metrics (Section 4.5). Next, we
show that the categories C, A and the functor # are indeed gs-monoidal (Section 4.6)
and lastly discuss the tool UDEfix in Section 4.7. We end by giving a short conclusion
(Section 4.8).
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4.2. Defining the Appoximation for an Infinite Domain
We here aim to generalize the theory from Chapter 3 which provides the approximations
for functions with an infinite domain, i.e. we consider functions f ∶MY →MZ where Y
and Z are possibly infinite. For example, the set of probability distributions (with finite
support) Df (Y ) over some set Y is usually infinite and it might occur that intermediate
sets are infinite when disassembling the function of interest.

To this end, we only need to adjust the definition of the norm.

Definition 4.2.1 (norm with infinite domain). Let M be an MV-chain and let Y be
a possibly infinite set. Given a ∈MY we define its norm as ∣∣a∣∣ = sup{a(y) ∣ y ∈ Y }.

It is imminent that for a finite set Y , the above definition coincides with Definition 2.3.21.
A function f ∶MY →MZ is again non-expansive if for all a, b ∈MY it holds ∣∣f(b)⊖ f(a)∣∣ ⊑
∣∣b⊖ a∣∣.

For Y infinite and 0 ⊏ δ ∈M, we can analogously (cf. Section 3.4 as we will consider
the dual view in this chapter) define [Y ]a = {y ∈ Y ∣ a(y) ≠ 0} and the functions αa,δ ∶
P([Y ]a) → [a⊖ δ, a] and γa,δ ∶ [a⊖ δ, a] → P([Y ]a) for Y ′ ∈ P([Y ]a) and b ∈ [a⊖ δ, a]
as

αa,δ(Y ′) = a⊖ δY ′ and γa,δ(b) = {y ∈ [Y ]a ∣ a(y)⊖ b(y) ⊒ δ}

For a non-expansive function f ∶ MY → MZ and δ ∈ M, we define fa,δ
# ∶P([Y ]a) →

P([Z]f(a)) as fa,δ
# = γf(a),δ ○ f ○ αa,δ. The function fa,δ

# is antitone in the parameter δ
and we define the a-approximation of f as

fa
# = ⋃

δ⊐0
fa,δ

# .

As a reminder, for finite sets Y and Z there exists a suitable value ιa
f ⊐ 0, such that

all functions fa,δ
# for 0 ⊏ δ ⊑ ιa

f are equal. In this case, the a-approximation is given by

fa
# = f

a,ιa
f

# and it clearly holds

f
a,ιa

f

# = ⋃
δ⊐0

fa,δ
#

For the primal case, we have f#
a,δ ∶P([Y ]a)→ P([Z]f(a)) defined as

f#
a = ⋃

δ⊐0
f#

a,δ.

4.3. A Categorical View of the Approximation Framework
The framework from Chapter 3, is not based on category theory, but – as we shall
see – can be naturally reformulated in a categorical setting. In particular, casting the
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compositionality results into a monoidal structure (see Section 4.6) is a valuable basis for
our tool. But first, we will show how the operation # of taking the a-approximation of a
function can be seen as a (lax) functor between two categories: a concrete category C
whose arrows are the non-expansive functions for which we seek the least (or greatest)
fixpoint and an abstract category A whose arrows are the corresponding approximations.

More precisely, recall from Section 3.2 that given a non-expansive function f ∶MY →MZ ,
the approximation of f is relative to a fixed map a ∈ MY . Hence objects in C are
elements a ∈ MY and an arrow from a ∈ MY to b ∈ MZ is a non-expansive function
f ∶MY →MZ required to map a into b. The approximations instead live in A. Recall that
the approximation is fa

# ∶ P([Y ]a) → P([Z]b). Since their domains and codomains are
dependent again on a map a, we still employ elements of MY as objects, but functions
between powersets as arrows. We refer to Section 2.4 on the basic definitions of category
theory.

Definition 4.3.1 (concrete and abstract categories). The concrete category C
has as objects maps a ∈ MY where Y is a (possibly infinite) set. Given a ∈ MY ,
b ∈ MZ an arrow f ∶ a ⇢ b is a non-expansive function f ∶MY → MZ , such that
f(a) = b.
The abstract category A has again maps a ∈MY as objects. Given a ∈MY , b ∈MZ

an arrow f ∶ a⇢ b is a monotone (wrt. inclusion) function f ∶P([Y ]a)→ P([Z]b).
Arrow composition and identities are the obvious ones.
The lax functor #∶C → A is defined as follows: for an object a ∈ MY , we let
#(a) = a and, given an arrow f ∶ a⇢ b, we let #(f) = fa

#.

Note that abstract arrows are dashed (⇢), while the underlying functions are represented
by standard arrows (→).

Lemma 4.3.2 (well-definedness). The categories C and A are well-defined and
# is a lax functor, i.e., identities are preserved and #(f ○ g) ⊆ #(f) ○#(g) for
composable arrows f, g in C.

Proof.

1. C is a well-defined category: Given arrows f ∶a ⇢ b and g∶ b ⇢ c then g ○ f is
non-expansive (preserved by composition) and (g ○f)(a) = g(b) = c, thus g ○f ∶a⇢ c.
Associativity holds and the identities are the units of composition as for standard
function composition.

2. A is a well-defined category: Given arrows f ∶a ⇢ b and g∶ b ⇢ c then g ○ f is
monotone (preserved by composition) and hence g ○ f ∶a⇢ c.

Again associativity and the fact that the identities are units is standard.
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3. #∶C→ A is a lax functor: we first check that identities are preserved. Let U ⊆ [Y ]a,
then

#(ida)(U) = ⋃
δ⊐0
(ida)a,δ

# (U)

= ⋃
δ⊐0
{y ∈ [Y ]ida(a) ∣ ida(a)(y)⊖ ida(a⊖ δU)(y) ⊒ δ}

= ⋃
δ⊐0
{y ∈ [Y ]a ∣ a(y)⊖ (a⊖ δU)(y) ⊒ δ}

= U [U ⊆ [Y ]a]
= ida(U) = id#(a)(U).

Let a ∈MY , b ∈MZ , c ∈MV , f ∶a⇢ b, g∶ b⇢ c be arrows in C and Y ′ ⊆ [Y ]a. Then,
by definition,

#(g ○ f)(Y ′) = ⋃
δ⊐0
(g ○ f)a,δ

# (Y
′)

= ⋃
δ⊐0
(γg(f(a)),δ ○ g ○ f ○ αa,δ)(Y ′)

⊆ ⋃
δ⊐0
(γc,δ ○ g ○ αb,δ ○ γb,δ ○ f ○ αa,δ)(Y ′).

The latter holds since (f ○ αa,δ)(Y ′) = f(a ⊖ δY ′) ⊒ f(a) ⊖ δ = b ⊖ δ by non-
expansiveness and is hence contained in [b⊖ δ, b]. Then we can use the fact that
αb,δ, γb,δ is a Galois connection between [b⊖ δ, b] and [Z]b for δ small enough (see
Lemma 3.2.3) and obtain id[b⊖δ,b] ⊑ αb,δ ○ γb,δ and the inequality follows from the
monotonicity of the functions involved. Hence

⋃
δ⊐0

γc,δ ○ g ○ αb,δ ○ γb,δ ○ f ○ αa,δ(Y ′) = ⋃
δ⊐0

gb,δ
# (f

a,δ
# (Y

′))

⊆ ⋃
δ⊐0

gb,δ
# (⋃

δ′⊐0
fa,δ′

# (Y ′))

=#(g) ○#(f)(Y ′)

where the inequality stems from the monotonicity of gb,δ
# .

It will be convenient to restrict to the subcategory of C where arrows are reindexings
and to subcategories of C, A with maps on finite sets.

Definition 4.3.3 (reindexing subcategory). We denote by C∗ the lluf 1sub-category
of C where arrows are reindexing, i.e., given objects a ∈MY , b ∈MZ we consider
only arrows f ∶ a ⇢ b such that f = g∗ for some g∶Z → Y (hence, in particular,
b = g∗(a) = a ○ g). We denote E∶C∗ ↪ C the embedding functor.
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We prove the following auxiliary lemma:

Lemma 4.3.4. Given a ∈MY , g∶Z → Y and 0 ⊏ δ ∈M, then we have

1. αa○g,δ ○ g−1 = g∗ ○ αa,δ

2. γa○g,δ ○ g∗ = g−1 ○ γa,δ

This implies that for two C-arrows f ∶a ⇢ b, h∶ b ⇢ c, it holds that #(h ○ f) =
#(h) ○#(f) whenever f or h is a reindexing, i.e., is contained in C∗.

Proof. See Appendix: Lemma A.3.1.

We can easily define the finite subcategories.

Definition 4.3.5 (finite subcategories). We denote by Cf , Af the full sub-
categories of C,A where objects are of the kind a ∈MY for a finite set Y .

Lemma 4.3.6. The lax functor #∶C → A restricts to #∶Cf → Af , which is a
(proper) functor.

Proof. Clearly the restriction to categories based on finite sets is well-defined.
We show that # is a (proper) functor. Let a ∈MY , b ∈MZ , c ∈MV , f ∶a ⇢ b, g∶ b ⇢ c

and Y ′ ⊆ [Y ]a. Then, by Proposition 3.5.6

#(g ○ f) = (g ○ f)a# = g
f(a)
# ○ fa

# = gb
# ○ fa

# =#(g) ○#(f).

The rest follows from Lemma 4.3.2.

Remark 4.3.7. For the primal view we can easily adjust the category A in the sense
that an arrow f ∶ a ⇢ b between objects a ∈MY , b ∈MZ is a monotone (wrt. inclusion)
function f ∶P([Y ]a)→ P([Z]b).

This allows us to define #∶C → A as follows: for an object a ∈MY , we let #(a) = a
and, given an arrow f ∶ a⇢ b, we let #(f) = f#

a . Here, # is not a proper functor.
When working with the finite subcategories, # is again a proper functor.

4.4. Predicate Liftings as Functors

In this section we discuss how predicate liftings can be integrated into our theory (cf.
Section 2.5.2). As a reminder, given a functor F ∶Set → Set, a predicate lifting is a
family of functions F̃Y ∶MY →MF Y (where Y is a set), such that for g∶Z → Y , a∶Y →M

1A l luf sub-category a sub-category that contains all objects.
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it holds that (Fg)∗(F̃Y (a)) = F̃Z(g∗(a)). Thus predicate liftings must commute with
reindexings which proves very useful. Predicate liftings are in one-to-one correspondence
to evaluation maps ev∶FM→M and given ev, we define the corresponding lifting to be
F̃ (a) = ev ○ Fa∶FY →M, where a∶Y →M.

We quickly revisit the two main lifitings from Section 2.5.

Example 4.4.1. We consider the (finite) distribution functor Df that maps a set X to all
maps p∶X → [0, 1] that have finite support and satisfy ∑x∈X p(x) = 1. (Here M = [0, 1].)
One evaluation map is ev∶Df [0, 1] → [0, 1] with ev(p) = ∑r∈[0,1] r ⋅ p(r), where p is a
distribution on [0, 1] (expectation). D̃f is well-behaved and non-expansive.

Example 4.4.2. Another example is given by the finite powerset functor Pf . We are
given the evaluation map ev∶PfM → M, defined for S ⊆ M as ev(S) = max S, where
max∅ = 0. The lifting P̃f is well-behaved and non-expansive.

Non-expansive predicate liftings can be seen as functors F̃ ∶C∗ → C∗. To be more
precise, F̃ maps an object a ∈MY to F̃ (a) ∈MF Y and an arrow g∗ ∶ a ⇢ a ○ g, , where
g∶Z → Y , to (Fg)∗ ∶ F̃ a⇢ F̃ (a ○ g).

Proposition 4.4.3. Let F̃ be a (non-expansive) predicate lifting. There is a natural
transformation2β∶#E ⇒#EF̃ between (lax) functors #E, #EF̃ ∶C∗ → A, whose
components, for a ∈ MY , are βa∶a ⇢ F̃ (a) in A, defined by βa(U) = F̃ a

#(U) for
U ⊆ [Y ]a.
That is, the following diagrams commute for every g∶Z → Y (on the left the
diagram with formal arrows, omitting the embedding functor E, and on the right
the functions with corresponding domains). Note that #(g) = g−1.

#(a) #(a ○ g)

#(F̃ a) #(F̃ (a ○ g))

#(g∗)

βa βa○g
#(F̃ (g∗))

P([Y ]a) P([Z]a○g)

P([FY ]F̃ (a)) P([FZ]F̃ (a○g))

g−1

F̃ a
# F̃ a○g

#(Fg)−1

Proof. We first define a natural transformation η∶E ⇒ EF̃ with components ηa∶Ea =
a ⇢ EF̃ (a) = F̃ (a) (for a ∈ MY ) by defining ηa(b) = F̃ (b) for b ∈ MY . The ηa are non-
expansive by assumption. In addition, η is natural due to the definition of a predicate
lifting, i.e., (Fg)∗ ○ F̃ = F̃ ○ g∗ for g∶Z → Y .

Now we apply # and use the fact that # is functorial even for the full categories C, A
whenever one of the two arrows to which # is applied is a reindexing (see Lemma 4.3.4).
Furthermore we observe that β =#(η). This immediately gives us the diagram on the
left and the diagram on the right just displays the underlying functions.

2cf. Definition 2.4.6
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4.5. A Compositional Representation of the Wasserstein
Lifting and Behavioural Metrics

In this section we show how the framework for fixpoint checking from Chapter 3 can be
used to deal with coalgebraic behavioural metrics.

Given a functor F ∶Set→ Set and a coalgebra ξ∶X → FX where X is a set. The idea is
to endow X with a pseudo-metric dξ ∶X ×X →M defined as the least fixpoint of the map
d↦ dF ○ (ξ × ξ) where _F lifts a metric d∶X ×X →M to a metric dF ∶FX ×FX →M (cf.
Section 2.5). Here we again focus on the Wasserstein lifting and show how approximations
of the functions involved in the definition of the pseudometric can be determined.

The Wasserstein lifting3 _F ∶MX×X → MF X×F X was defined for d∶X × X → M and
t1, t2 ∈ FX as

dF (t1, t2) = inf
t∈Γ(t1,t2)

F̃ d(t).

We will be working with finitely coupled liftings F̃ (cf. Definition 2.5.8), i.e. we have

dF (t1, t2) = min
t∈Γ(t1,t2)

F̃ d(t).

For a coalgebra ξ∶X → FX the behavioural pseudometric d ∶ X ×X →M arises as the
least fixpoint of W = (ξ × ξ)∗ ○ (_F ) where (_F ) is the Wasserstein lifting. Note that we
do not use a discount factor to ensure contractivity and hence the fixpoint might not be
unique. Thus, given some fixpoint d, the d-approximation Wd

# can be used for checking
whether d = µW.

In the rest of the section we show how W can be decomposed into basic components
and study the corresponding approximation.

The Wasserstein lifting can be decomposed as _F = minu ○F̃ where F̃ ∶ MX×X →
MF (X×X) is the predicate lifting – which we require to be non-expansive (cf. Lemma 2.5.4)
– and minu is the minimum over the coupling function u∶F (X×X)→ FX×FX defined as
u(t) = (Fπ1(t), Fπ2(t)), which means that minu∶MF (X×X) →MF X×F X (see Table 3.1).

We can now derive the corresponding d-approximation.

Proposition 4.5.1. Assume that F̃ is finitely coupled. Let Y =X ×X, where X
is finite. For d ∈MY and Y ′ ⊆ [Y ]d we have

Wd
#(Y ′) = {(x, y) ∈ [Y ]d ∣ ∃t ∈ F̃ d

#(Y ′), u(t) = (ξ(x), ξ(y)),
F̃ d(t) =mint′∈Γ(ξ(x),ξ(y)) F̃ d(t′)}.

Proof. We first remark that since X is finite and F̃ is finitely coupled it is sufficient to
restrict to finite subsets of F (X ×X) and FX × FX (cf. Remark 4.5.7). In other words

3We write dF instead of d↓F here.
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W can be obtained as composition of functions living in Cf , hence # is a proper functor
and approximations can obtained compositionally. We exploit this fact in the following.

For d ∈MY and Y ′ ⊆ [Y ]d we have, using the results of Proposition 3.5.5,

Wd
#(Y ′) = {(x, y) ∈ [Y ]d ∣(ξ(x), ξ(y)) ∈ (minu)F̃ (d)# (F̃ d

#(Y ′))}
= {(x, y) ∈ [Y ]d ∣MinF̃ (d)∣u−1(ξ(x),ξ(y)) ∩ F̃ d

#(Y ′) /= ∅}
= {(x, y) ∈ [Y ]d ∣∃t ∈ F̃ d

#(Y ′), u(t) = (ξ(x), ξ(y)),
F̃ d(t) =mint′∈Γ(ξ(x),ξ(y)) F̃ d(t′)}

Intuitively the statement of Proposition 4.5.1 means that the minimum must be reached
in a coupling based on Y ′.

For using the above result we next characterize F̃ d
#. We rely on the fact that d can be

decomposed into d = π1 ○ d̄, where the projection π1 is independent of d, and exploit the
natural transformation in Proposition 4.4.3.

Proposition 4.5.2. Let π1∶M×{0, 1}→M be the projection to the first component
and d̄∶Y → M × {0, 1} with d̄(y) = (d(y), χY ′(y)) where χY ′ ∶Y → {0, 1} is the
characteristic function of Y ′ 4. Then F̃ d

#(Y ′) = (F d̄)−1(F̃ π1
# ((M/{0}) × {1})).

Proof. Let d ∈MY and Y ′ ⊆ [Y ]d. Note that d̄−1((M/{0})×{1}) = Y ′ and d = π1 ○ d̄, thus
by Proposition 4.4.3:

F̃ d
#(Y ′) = F̃ π1○d̄

# (d̄−1((M/{0}) × {1}))
= (F d̄)−1(F̃ π1

# ((M/{0}) × {1}))

Here F̃ π1
# ((M/{0})×{1}) ⊆ F (M×{0, 1}) is independent of d and has to be determined

only once for every predicate lifting F̃ . We will show how this set looks like for our
example functors.

Lemma 4.5.3. Consider the lifting of the distribution functor presented in Exam-
ple 4.4.1 and let Z = [0, 1] × {0, 1}. Then we have

(D̃f )π1
# ((0, 1] × {1}) = {p ∈ Df Z ∣ supp(p) ∈ (0, 1] × {1}}.

Proof. See Appendix: Lemma A.3.2.
4See Section 2.1 on the definition of χY ′
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This means intuitively that a decrease or “slack” can exactly be propagated for elements
whose probabilities are strictly larger than 0.

Example 4.5.4. Let X = {x, y, z} and the coalgebra ξ∶X → Df X be given by ξ(x)(x) = 1,
ξ(y)(y) = ξ(y)(z) = 1/2 and ξ(z)(z) = 1. The only valid (and thus optimal) coupling
t′ ∈ Df (X ×X) of ξ(x), ξ(y) is given by t(x, y) = t(x, z) = 1/2. Given the pseudometric
d∶X ×X → [0, 1] with d(x, y) = d(x, z) = 1 and d(y, z) = 0, which is a fixpoint of W and
Y ′ = {(x, y), (x, z)} ⊆X ×X, it holds that (x, y) ∈Wd

#(Y ′) as t′ attains the minimum:

W(d)(x, y) = dDf (ξ(x), ξ(y)) = min
t∈Γ(ξ(x),ξ(y))

D̃f d(t) = D̃f d(t′) = 1/2 ⋅ 1 + 1/2 ⋅ 1 = 1.

and t′ ∈ (D̃f )d#(Y ′): We have d̄(x, y) = d̄(x, z) = (1, 1) and

Df d̄(t′) = p ∈ [Df Z]D̃f π1 with p(1, 1) = 1/2 + 1/2 = 1.

Immediately, p ∈ (D̃f )π1
# ((0, 1] × {1}) and (Df d̄)−1(p) = t′ Thus t′ ∈ (D̃f )d#(Y ′) by

Lemma 4.5.3.

We now turn to the (finite) powerset functor.

Lemma 4.5.5. Consider the lifting of the powerset functor from Example 4.4.2
and let Z =M × {0, 1}. Then we have

(P̃f )π1
# ((M/{0}) × {1}) = {S ∈ [Pf Z]P̃f π1 ∣ ∃(s, 1) ∈ S, ∀(s′, 0) ∈ S ∶ s ⊐ s′}.

Proof. See Appendix: Lemma A.3.3.

The idea is that if we decrease the value of an element, then there should be no other
element with a value larger or equal which is not decreased.

Example 4.5.6. Let X = {x, y} and the coalgebra ξ∶X → Pf X be given by ξ(x) =
{x, y}, ξ(y) = {x}. The only valid (and thus optimal) coupling t′ ∈ Pf (X × X) of
ξ(x), ξ(y) is given by t′ = {(x, x), (y, x)}, i.e. u(t′) = (ξ(x), ξ(y)). Given d∶X×X → [0, 1]
with d(x, x) = d(y, y) = 0 and d(x, y) = d(y, x) = 1, which is a fixpoint of W and
Y ′ = {(x, y), (y, x)} ⊆X ×X. It holds that (x, y) ∈Wd

#(Y ′) as t′ attains the minimum:

W(d)(x, y) = dPf (ξ(x), ξ(y)) = min
t∈Γ(ξ(x),ξ(y))

P̃f d(t) = P̃f d(t′) =max{0, 1} = 1

and t′ ∈ (P̃f )d#(Y ′): We have d̄(x, x) = d̄(y, y) = (0, 0), d̄(x, y) = d̄(y, x) = (1, 1) and

Pf d̄(t′) = S = {(0, 0), (1, 1)} ∈ [Pf Z]P̃f π1

Immediately, S ∈ (P̃f )π1
# ((M/{0}) × {1}) and (Pf d̄)−1(S) = t′. Thus t′ ∈ (P̃f )d#(Y ′) by

Lemma 4.5.5.
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Remark 4.5.7. Note that # is a functor on the subcategory Cf , while some liftings (e.g.,
the one for the distribution functor) work with infinite sets. In this case, given a finite set
Y , we actually focus on a finite D ⊆ FY . (This is possible since we consider coalgebras
with finite state space and assume that all liftings are finitely coupled.) Then we consider
F̃Y ∶MY → MF Y and e∶D ↪ FY (the embedding of D into FY ). We set f = e∗ ○ F̃Y .
Given a∶Y →M, we view f as an arrow a ⇢ F̃ (a) ○ e in C. The approximation in this
subsection adapts to the “reduced” lifting, which can be seen as follows (cf. Lemma 4.3.4,
which shows that # preserves composition if one of the arrows is a reindexing):

fa
# =#(f) =#(e∗ ○ F̃Y ) =#(e∗) ○#(F̃Y ) = e−1 ○#(F̃Y ) =#(F̃Y ) ∩D.

4.6. GS-Monoidality

We will now show that the categories Cf and Af can be turned into gs-monoidal categories.
This will give us a way to assemble functions and their approximations compositionally
and this method will form the basis for the tool.

A strict gs-monoidal category is a strict symmetric monoidal category C – where ⊗
denotes the tensor product and e the unit – such that for every object a there exist
morphisms ∇a∶a⇢ a × a (duplicator) and !a∶a⇢ e (discharger) satisfying certain axioms.
We denote the symmetry by ρa,b∶a⊗b⇢ b⊗a for objects a, b. See Section 2.4.1 for detailed
definitions.

In fact, in order to obtain strict gs-monoidal categories with disjoint union, we will
work with the skeleton categories where every finite set Y is represented by an isomorphic
copy {1, . . . , ∣Y ∣}. This enables us to make disjoint union strict, i.e., associativity holds
on the nose and not just up to isomorphism. In particular for finite sets Y, Z, we define
disjoint union as Y +Z = {1, . . . , ∣Y ∣, ∣Y ∣ + 1, . . . , ∣Y ∣ + ∣Z ∣}.

Theorem 4.6.1. The category Cf with the following operators is gs-monoidal:

1. The tensor ⊗ on objects a ∈MY and b ∈MZ is defined as

a⊗ b = a + b ∈MY +Z

where for k ∈ Y + Z we have (a + b)(k) = a(k) if k ≤ ∣Y ∣ and (a + b)(k) =
b(k − ∣Y ∣) if ∣Y ∣ < k ≤ ∣Y ∣ + ∣Z ∣.
On arrows f ∶a⇢ b and g∶a′ ⇢ b′ (with a′ ∈MY ′ , b′ ∈MZ′) tensor is given by

f ⊗ g∶MY +Y ′ →MZ+Z′ , (f ⊗ g)(u) = f( ⃗uY ) + g(u⃗Y )

for u ∈ MY +Y ′ where ⃗uY ∈ MY and u⃗Y ∈ MY ′, defined as ⃗uY (k) = u(k)
(1 ≤ k ≤ ∣Y ∣) and u⃗Y (k) = u(∣Y ∣ + k) (1 ≤ k ≤ ∣Y ′∣).
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2. The symmetry ρa,b∶a⊗ b⇢ b⊗ a for a ∈MY , b ∈MZ is defined for u ∈MY +Z

as
ρa,b(u) = u⃗Y + ⃗uY .

3. The unit e is the unique mapping e∶ ∅→M.

4. The duplicator ∇a∶a⇢ a⊗ a for a ∈MY is defined for u ∈MY as

∇a(u) = u + u.

5. The discharger !a∶a⇢ e for a ∈MY is defined for u ∈MY as !a(u) = e.

Proof. See Appendix: Theorem A.3.4.

We now turn to the abstract category Af . Note that here functions have as parameters
sets of the form U ⊆ [Y ]a ⊆ Y . Hence, (the cardinality of) Y can not be determined
directly from U and we need extra care with the tensor.

Theorem 4.6.2. The category Af with the following operators is gs-monoidal:

1. The tensor ⊗ on objects a ∈MY and b ∈MZ is again defined as a⊗ b = a + b.
On arrows f ∶a⇢ b and g∶a′ ⇢ b′ (where a′ ∈MY ′ , b′ ∈MZ′ and f ∶P([Y ]a)→
P([Z]b′), g∶P([Y ′]a′)→ P([Z ′]b′) are the underlying functions), the tensor
is given by

f ⊗ g∶P([Y + Y ′]a+a′)→ P([Z +Z ′]b+b′), (f ⊗ g)(U) = f( ⃗UY )∪Z g(U⃗Y )

where ⃗UY = U ∩ {1, . . . , ∣Y ∣} and U⃗Y = {k ∣ ∣Y ∣ + k ∈ U}. Furthermore:

U ∪Y V = U ∪ {∣Y ∣ + k ∣ k ∈ V } (where U ⊆ Y )

2. The symmetry ρa,b∶a ⊗ b ⇢ b ⊗ a for a ∈ MY , b ∈ MZ is defined for U ⊆
[Y +Z]a+b as

ρa,b(U) = U⃗Y ∪Z
⃗UY ⊆ [Z + Y ]b+a

3. The unit e is again the unique mapping e∶ ∅→M.

4. The duplicator ∇a∶a⇢ a⊗ a for a ∈MY is defined for U ⊆ [Y ]a as

∇a(U) = U ∪Y U ⊆ [Y + Y ]a+a.

5. The discharger !a∶a⇢ e for a ∈MY is defined for U ⊆ [Y ]a as !a(U) = ∅.

Proof. See Appendix: Theorem A.3.5.
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Finally, the approximation # is indeed gs-monoidal, i.e., it preserves all the additional
structure (tensor, symmetry, unit, duplicator and discharger).

Theorem 4.6.3. #∶Cf → Af is a gs-monoidal functor.

Proof. See Appendix: Theorem A.3.6.

4.7. UDEfix: A Tool for Fixpoints Checks

We exploit gs-monoidality as discussed before and present a tool, called UDEfix, where
the user can compose his or her very own function f ∶MY → MY as a sort of circuit.
Exploiting the fact that the functor # is gs-monoidal, this circuit is then transformed
automatically and in a compositional way into the corresponding abstraction fa

#, for
some given a ∈MY . By computing the greatest fixpoint of fa

# and checking for emptiness,
UDEfix can check whether a = µf .

In fact, UDEfix can handle all basic functions presented in Section 3.5, in particular
the functions listed in Table 3.1. In addition to fixpoint checks, it is possible to perform
(non-complete) checks whether a given post-fixpoint a is below the least fixpoint µf (cf.
Lemma 3.4.2), i.e. if νfa

∗ = ∅ then a ⊑ µf but whenever νfa
∗ /= ∅ we can not conclude

anything. The dual checks (for greatest fixpoint and pre-fixpoints) are implemented as
well. Additionally, given some fixpoint a ∈MY which is not the least, respectively greatest
fixpoint, UDEfix provides a constant ι such that a⊖ ινfa

#
⊒ µf , respectively a⊕ ι

νf#
a
⊑ νf .

Building the desired function f ∶MY →MY requires three steps:

• Choosing the MV-algebra M in File → Settings. Currently the MV-chains [0, k]
(algebra 1) and {0, . . . , k} (algebra 2) for arbitrary k are supported (cf. Exam-
ple 2.3.17).

• Creating the required basic functions by specifying their parameters.

• Assembling f from these basic functions.

UDEfix is a Windows-Tool created in Python, which can be obtained from https:
//github.com/TimoMatt/UDEfix. The GUI of UDEfix is separated into three areas:
Content area (left), Building area (middle) and Basic-Functions area (right), see Figure 4.1.
Under File the user can save/load contents and set the MV-algebra in Settings (under
File). Functions built in the Building area can be saved and loaded.

Basic-Functions Area: The Basic-Functions area contains the basic functions, encom-
passing those listed in Table 3.1, the function sub′w from Section 3.6.9 and two additional
ones. Via drag-and-drop (or right-click) these basic functions can be added to the Building
area to create a Function box. Each such box requires three (in the case of avD two)

https://github.com/TimoMatt/UDEfix
https://github.com/TimoMatt/UDEfix
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Fig. 4.1.: Appearance of the tool, also see Figure 4.2 for Zoom of the left and right column

Basic Function ck u∗ minR /maxR addw/subw sub′w
Req. Parameter k ∈MZ u∶Z → Y R ⊆ Y ×Z w ∈MY w ∈ ZY

Table 4.1.: Additional parameters for the basic functions from Table 3.1

Contents: The Input set, the Output set and an additional parameters, see Table 4.1.
These Contents are to be created in the Content area.

Additionally the Basic-Functions area contains the auxiliary function Higher-Order
Function which can be used to compose two basic functions (which proves useful for
complicated functions) and Testing which we will discuss in the next paragraph.

Building Area: The user can connect the created Function boxes to obtain the function
of interest. Composing functions is as simple as connecting two Function boxes in the
correct order and disjoint union is achieved by connecting two boxes to the same box. We
note that Input and Output sets of connected Function boxes need to match, otherwise
the function is not built correctly. In Figure 4.3 we show how the function ∆ which
computes the behavioural distance for a labeled Markov chain can be assembled (also cf.
Figure 3.4). Here, the parameters are instantiated for the labeled Markov chain displayed
in Figure 4.4.

The special box Testing is always required at the end. Here, the user can enter some
mapping a∶Y →M, test if a is a fixpoint/pre-fixpoint/post-fixpoint of the built function
f and afterwards compute the greatest fixpoint of the approximation (νfa

# if we want
to check whether µf = a). If the result is not the empty set (νf#

a /= ∅) one can compute
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Fig. 4.2.: Zoom of Figure 4.1
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Fig. 4.3.: Assembling the function ∆ from Section 2.6.3.

1
A

3
B

4
C

2
A

1/2 1/2

1/3 2/3
1 1

Fig. 4.4.: Example of a labeled Markov chain, labels are denoted by big letters.

a suitable value for decreasing a, needed for iterating to the least fixpoint from above
(respectively increasing a for iterating to the greatest fixpoint from below). There is
additional support for comparison with pre- and post-fixpoints.

Example 4.7.1. In the system in Figure 4.4, the function d∶Y → [0, 1] with d(3, 3) =
0, d(1, 1) = 1/2, d(1, 2) = d(2, 1) = d(2, 2) = 2/3 and 1 for all other pairs (d is not a
pseudometric) is a fixpoint of ∆ from Section 2.6.3 whose least fixpoint corresponds to the
behavioural distances in a labeled Markov chain. By clicking Compute in the Testing-box,
UDEfix displays that d is a fixpoint and tells us that d is in fact not the least and not
the greatest fixpoint. It also computes the greatest fixpoints of the approximations step
by step (via Kleene iteration) and displays the results to the user, see Figure 4.5 where
νf#

a = {(3, 3)} and νfa
# = {(4, 4)}.

Content Area: Here the user can create sets, mappings and relations which are used
to specify the basic functions. Creating a set is done by entering a name for the new set
and clicking on the plus (“+”). The user can create a variety of different types of sets,
for example the basic set X = {1, 2, 3, 4} or the set D = {p1, p2, p3, p4} which is a set of
mappings resp. probability distributions.

Once, Input and Output sets are created we can define the required parameters (cf.
Table 4.1). Here, the created sets can be chosen as domain and co-domain. Relations can
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Fig. 4.5.: Displaying the computation of the greatest fixpoint of the approximations, see
Figure 4.6 for Zoom

Fig. 4.6.: Zoom of Figure 4.5
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Fig. 4.7.: Contents: Set Y , Mapping d, Relation ρ.

be handled in a similar fashion: Given the two sets one wants to relate, creating a relation
can be easily achieved by checking some boxes. Additionally the user has access to some
useful in-built relations: “is-element-of”-relation and projections to the i-th component.

To ease the use, by clicking on the “+” in a Function box a new matching content with
chosen Input and Output sets is created. The additional parameters (cf. Table 4.1) have
domains and co-domains which need to be created or are the chosen MV-algebra. The
Testing function d is a mapping as well.

See Figure 4.7 for examples on how to create the contents Y (set), d (distance function)
and ρ (relation).

An In-Depth Tutorial on Inserting an Example. To clarify the use of the tool
and to give some useful hints on how to optimize the use, we will insert the function
T ∶ [0, 1]S → [0, 1]S whose least fixpoint coincides with the termination probability of a
Markov chain (cf. Section 2.6.1). We consider the Markov chain in Figure 4.8. The least
fixpoint of T is given in green and the greatest fixpoint in red.

To start, we choose the correct MV-algebra under Settings:
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T ∶ [0, 1]S → [0, 1]S

T (t)(s) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈ T

∑
s′∈S

η(s)(s′) ⋅ t(s′) otherwise

x

1/2/1

u

1/1

y

0/1

z

0/1

1/21/2

1

1

Fig. 4.8.: Function T (left) and a Markov chain with two fixpoints of T (right)

The function T can be decomposed as follows (cf. Section 3.6.1):

T = (η∗ ○ avD) ⊎ ck

and for the transition system in Figure 4.8 we have
• ck∶ [0, 1]∅ → [0, 1]T , k∶T → [0, 1] with k(u) = 1

• avD ∶ [0, 1]S → [0, 1]D with D = {px, py, pz} ⊆ D(S) where
– px(y) = px(u) = 1/2
– py(z) = pz(y) = 1

• η∗∶ [0, 1]D → [0, 1]S∖T with η(j) = pj for j ∈ {x, y, z}
We first insert Input and Output sets. Thus we create the sets S, T, S ∖ T :
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The tool supports a few types of sets and operators on sets (such as complement in the
right picture) which eases the use. Next, we create the set D where we first need to create
the mappings px, py, pz:

Now we create the basic function boxes and connect them in the correct way:

The additional parameters according to Table 4.1 can be easily created by clicking the
"+" in the corresponding box:
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Now the function is successfully created and we only need to insert some test functions.
We test a1 = νT , a2 = µT and the post-fixpoints a3(x) = 0, a3(y) = a3(z) = 0.5, a3(u) = 1
and a4(x) = 0, a4(y) = a4(z) = 0, a4(u) = 1:

When testing a1 we obtain
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which tells us that a1 is indeed the greatest fixpoint but not the least fixpoint, i.e.
νT a1

# = {y, z} and a1 ⊖ 1νT a1
#
⊒ µT . For a2 we obtain

which means us that a2 is indeed the least fixpoint but not the greatest fixpoint, i.e.
νT #

a2 = {y, z} and a2 ⊕ 1
2 νT #

a2
⊑ νT .

For the post-fixpoint a3 the tool displays
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reinforcing that a3 is indeed a post-fixpoint and that T a3
∗ = {y, z}, i.e. we can not conclude

any relation between a3 and µT 5. Clearly, a3 ⊑ µT does not hold but a3 still contains a
vicious cycle. Lastly, for a4 we obtain

which tells us that a4 is indeed a post-fixpoint and that T a4
∗ = ∅, thus a4 ⊑ µT holds.

Examples: There are pre-defined functions, implementing examples, that are shipped
with the tool. These concern case studies on termination probability, bisimilarity, simple
stochastic games, energy games, behavioural metrics and Rabin automata.

4.8. Summary

We have shown how our framework from Chapter 3 can be cast into a gs-monoidal
setting, justifying the development of the tool UDEfix for a compositional view on fixpoint
checks. In addition we studied properties of the gs-monoidal functor #, mapping from
the concrete to the abstract universe and giving us a general procedure for approximating

5Remember that Lemma 3.4.2 does not provide a complete proof rule for post-fixpoints
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predicate liftings and the Wasserstein lifting. Here, we showed and used the fact that our
theory allows intermediate sets (of a decomposed function) to be infinite.





5 A Lattice-Theoretical View of
Strategy Iteration

As we have seen in Section 3 there are several applications to the theory we developed.
The theory enables us to check if some given fixpoint a ∈ MY of some non-expansive
function f ∶MY →MY is in fact the least or the greatest fixpoint. Additionally, if a is not
the least/greatest fixpoint, we can decrease/increase to some pre-/postfixpoint b ∈MY

which therefore lies above/below the least/greatest fixpoint.
The question remains unanswered how one can compute the least/greatest fixpoint

via an algorithm. Since M is a complete MV-chain and thus a complete lattice, we can
immediately apply Kleene iteration to iterate towards the least/greatest fixpoint. It
is however known that Kleene iteration usually only yields an approximation of the
least/greatest fixpoint and not exact computations.

However, the theory in Chapter 3 enables us to exactly compute the least/greatest
fxipoint via strategy iteration. We are positioned to detail strategy iteration algorithms in
a general framework which encompasses a handful of already existing strategy iterations
found in the literature.

5.1. Introduction

Strategy iteration (or policy iteration) is a well known technique in computer science.
It has been widely adopted for the solution of two-player games (cf. Section 2.7) where
the players, Max and Min, aim at maximising and minimising, respectively, some payoff.
In many cases there exists an optimal strategy for each player where no deviation is
advisable as long as the other player plays optimally. We here assume a scenario where
memoryless (or positional) strategies are sufficient. The general idea of strategy iteration
is to iteratively fix a strategy for one player, compute the optimal answering strategy for
the other player and then improve the strategy of the first player. As long as there are
only finitely many strategies, an optimal strategy is bound to be found at some point.
Such strategy iteration methods exist for Markov decision processes [How60] and for a
variety of games, such as simple stochastic games [Con92, KH66, ABdMS21], (discounted)
mean-payoff games [ZP96, BC10] and parity games [VJ00, Sch08a].

Similar ideas apply also to a wide range of different problems. For instance, the
computation of behavioural distances for systems (cf. Section 2.6) embodying quantitative
information, e.g., time, probability or cost, is often based on some form of lifting of
distances on states [BBLM17, BBKK18, BKP18]. In turn the lifting relies on couplings
which play the role of strategies and algorithms based on a progressive improvement of
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couplings have been devised [BBLM17, BBL+21].

Motivating Example. To help with the intuition, we will detail a strategy iteration
for simple stochastic games (cf. Section 2.7.3). When both players Min and Max play
optimally, the expected payoff at each state is given by the least fixpoint of the function
V ∶ [0, 1]V → [0, 1]V , defined for a∶V → [0, 1] and v ∈ V by

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv→v′ a(v′) v ∈ VMax

minv→v′ a(v′) v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) v ∈ VAv

c(v) v ∈ VSink

The idea of strategy iteration from below, instantiated to this context, is to compute
the least fixpoint µV via an iteration of the following kind:

1. Guess a strategy σ∶VMax → V for player Max, i.e., fix a successor for states in VMax.

2. Compute the least fixpoint of Vσ ∶ [0, 1]V → [0, 1]V , which is defined as V in all cases
apart from v ∈ VMax, where we set V(a)(v) = a(σ(v)). This fixpoint computation is
simpler than the original one and it can be done efficiently via linear programming.

3. Based on µVσ, try to improve the strategy for Max. If the strategy does not
change, we have computed a fixpoint of V and, since iteration is from below, this is
necessarily the least fixpoint. If the strategy changes, continue with step 2.

This procedure is well-known to work for stopping games [Con92], i.e., simple stochastic
games where each combination of strategies ensures termination with probability 1, since
for these games V has a unique fixpoint.

Example 5.1.1. Consider the following simple stochastic game where min ∈ VMin,
max ∈ VMax, av ∈ VAv and states 1, ε ∈ VSink have payoff 1 and ε ∈ (0, 1), respectively:

1 min av max ε

1/21/2

This simple stochastic game is clearly stopping and we have

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{a(ε), a(av) if v =max
min{a(1)} if v =min
1/2 ⋅ a(min) + 1/2 ⋅ a(max) if v = av

1 if v = 1
ε if v = ε

for a ∈ [0, 1]V . We demonstrate the sketched algorithm above to illustrate the basic ideas
of strategy iteration.
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First, Max guesses the strategy σ(max) = ε. We have

Vσ(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(σ(max)) = a(ε) if v =max
a(1) if v =min
1/2 ⋅ a(min) + 1/2 ⋅ a(max) if v = av

1 if v = 1
ε if v = ε

for a ∈ [0, 1]V and obtain the following expected payoff in red corresponding to µVσ (we
will discuss how to compute µVσ in Section 5.3.2):

1

1

min

1

av

ε+1
2

max

ε

ε

ε
1/21/2

Now, Max realizes that the expected payoff of his successor av is higher than the payoff
of state ε (i.e. µVσ(av) > µVσ(ε)) and thus Max switches his strategy to σ′(max) = av.
This results in the following expected payoffs in blue corresponding to µVσ′:

1

1

min

1

av

1

max

1

ε

ε1/21/2

σ′ is an optimal positional strategy for Max (cf. Lemma 2.7.18) and it holds µVσ′ = µV.

For general simple stochastic games, when iterating from below we rely on the theory
from Chapter 3 as finding an improving strategy for player Max is not as simple as the
example above suggests.

A similar approach can be used for converging to the least fixpoint from above. In
this case, it is now player Min who fixes a strategy which is progressively improved. This
procedure works fine for stopping simple stochastic games. However, for general simple
stochastic games, when iterating from above the procedure may get stuck at some fixpoint
which is not the least fixpoint of V, a problem which is solved by the theory developed
in Chapter 3 which can be used to “skip” this fixpoint and continue the iteration from
there.

While, as explained above, the general idea of strategy iteration is used in many
different settings, to the best of our knowledge a general definition of strategy iteration is
still missing. The goal of this chapter is to provide a general and abstract formulation of
an algorithm for strategy iteration, proved correct once and for all, which instantiates to
a variety of problems. The key observation is that optimal strategies very often arise from
some form of extremal (least or greatest) fixpoint of a suitable non-expansive function f
over a complete MV-chain, the paradigmatic example being the real interval [0, 1] with
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the usual order. We propose a framework where the operation of fixing a strategy for one
of the players is captured abstractly, in terms of so-called min- or max-decompositions of
the function of interest. Then, we devise strategy iteration approaches which converge
to the fixpoint of interest by successively improving the strategy for the chosen player.
We will assume that the interest is in least fixpoints, but the theory can be dualised.
We propose two strategy iteration algorithms that converge to the least fixpoint “from
below” and “from above”, respectively. As it happens for simple stochastic games, in the
latter case the iteration can reach a fixpoint which is not the least. Clearly, whenever
the function f of interest has a unique fixpoint this problem disappears. Moreover, in
some cases, even though f has multiple fixpoints, it can be “patched” in a way that the
modified function has the fixpoint of interest as its only fixpoint. Otherwise, we can rely
on the results from Chapter 3 to check whether the reached fixpoint is the least one and
whenever it is not, to get closer to the desired fixpoint and continue the iteration.

Strategy iteration approaches can be slow if compared to other algorithms, such as
value iteration. However, the benefit of strategy iteration algorithms is that they allow
an exact computation of the desired fixpoint, while other algorithms may never reach
the sought-after extreme fixpoint but only converge towards it. This is the case, e.g., for
simple stochastic games, where strategy iteration algorithms are the standard methods
to obtain exact results. Additionally, strategy iteration, besides determining the fixpoint
also singles out an optimal strategy which allows one to obtain it, an information which
is often of interest.

In summary, we propose the first, to the best of our knowledge, general definition
of strategy iteration providing a lattice-theoretic formalisation of this technique. This
requires to single out and solve in this general setting the fundamental challenges of
these approaches, which already show up in earlier work on simple stochastic games (see,
e.g., [BC10]). In the iteration from above, we may converge to a fixpoint that is not the
least, while from below it is not straightforward to show that improving the strategy of
Max leads to a larger fixpoint.

We will rediscover known algorithms for simple stochastic games, labeled Markov
chains [TvB17] and probabilistic automata [BBL+21]. Moreover new ones are obtained
for simple stochastic games, discounted mean-payoff games, energy games, bisimilarity
and metric transition systems. Given the number of different application domains where
strategy iteration is or can be used, we feel that a general framework can unveil unexplored
potentials.

The rest of this chapter is structured as follows. In Section 5.2 we devise two generalized
strategy iteration algorithms, from above and from below, using simple stochastic games as
a running example. In Section 5.3, we show how our technique applies to our applications,
while in Section 5.4 we perform a short runtime comparison which aims to justify the
use of strategy iteration.
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5.2. Generalized Strategy Iteration

In this section we develop two strategy iteration techniques for determining least fixpoints.
The first technique requires a so-called min-decomposition and approaches the least
fixpoint from above, while the second uses a max-decomposition to ascend to the least
fixpoint from below.

Hence fixpoint iteration from above is seen strictly from the point of view of the Min
player, while fixpoint iteration from below is from the view of the Max player, who want
to minimize respectively maximize the payoff. The player starts by guessing a strategy,
which in the case of the Min (Max) player over-approximates (under-approximates) the
true payoff. This strategy is then locally improved at each iteration based on the payoff
produced by the player following such a strategy. That is, we compute fixpoints for a
fixed strategy, which in a two-player game means that the opponent plays optimally.
When the set of strategies is finite (or, at least, the search can be restricted to a finite
set), an optimal strategy will be found at some point.

5.2.1. Function Decomposition

We next introduce the setting where the generalisations of strategy iteration will be
developed. We assume that the game we are interested in is played on a finite set of
positions Y and the payoff at each position is an element of a suitable complete MV-chain
M. This payoff is given by a function in MY that can be characterised as the least fixpoint
of a monotone function f ∶MY →MY . If we concentrate on the Min player, each position
y ∈ Y is assigned a set of functions Hmin(y) ⊆ (MY →M) where each function h ∈Hmin(y)
is one possible option that can be chosen by Min. Given a∶Y →M as the current estimate
of the payoff, h(a) is the resulting payoff at y. If the player does not have a choice, this
set is a singleton. Since it is the aim of Min to minimise he will choose an h such that
h(a) is minimal.

Definition 5.2.1 (min-decomposition). Let Y be a finite set and M be a complete
MV-chain. Given a function f ∶ MY → MY , a min-decomposition of f is a
function Hmin ∶ Y → Pf(MY →M)1such that for all y ∈ Y the set Hmin(y) consists
only of monotone functions and for all a ∈MY it holds

f(a)(y) =minh∈Hmin(y) h(a).

Max-decompositions, with analogous properties, are defined dually:

1i.e. we assign a function h∶MY →M to each state y ∈ Y
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Definition 5.2.2 (max-decomposition). Let Y be a finite set and M be a complete
MV-chain. Given a function f ∶ MY → MY , a max-decomposition of f is a
function Hmax ∶ Y → Pf(MY →M) such that for all y ∈ Y the set Hmax(y) consists
only of monotone functions and for all a ∈MY it holds

f(a)(y) =maxh∈Hmax(y) h(a).

Observe that any monotone function f ∶ MY → MY admits a trivial min/max-
decomposition I defined by I(y) = {hy} where hy(a) = f(a)(y) for all a ∈MY .

Example 5.2.3. As a running example for illustrating our theory and the resulting
algorithms we will use simple stochastic games (cf. Section 2.7.3). We analyze this
application in more detail in Section 5.3.2.

The fixpoint function V ∶ [0, 1]V → [0, 1]V which was defined for a∶V → [0, 1] and v ∈ V
as follows:

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv′∈succ(v) a(v′) if v ∈ VMax

minv′∈succ(v) a(v′) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

V admits a min-decomposition Hmin∶V → Pf(MV →M) defined for all a ∈MY as follows:

• for v ∈ VMin, Hmin(v) = {hv′ ∣ v′ ∈ succ(v)} with hv′(a) = a(v′);

• for v ∈ VMax, Hmin(v) = {h} with h(a) =maxv′∈succ(v) a(v′) = V(a)(v);

• for v ∈ VAv, Hmin(v) = {h} with h(a) = ∑v′∈V p(v)(v′) ⋅ a(v′) = V(a)(v);

• for v ∈ VSink, Hmin(v) = {h} with h(a) = c(v) = V(a)(v).

A max-decomposition can be defined dually, e.g. Hmax∶V → Pf(MV →M) is defined
for all a ∈MY as follows:

• for v ∈ VMax, Hmax(v) = {hv′ ∣ v′ ∈ succ(v)} with hv′(a) = a(v′);

• for v ∈ VMin, Hmax(v) = {h} with h(a) =minv′∈succ(v) a(v′) = V(a)(v);

• for v ∈ VAv, Hmax(v) = {h} with h(a) = ∑v′∈V p(v)(v′) ⋅ a(v′) = V(a)(v);

• for v ∈ VSink, Hmax(v) = {h} with h(a) = c(v) = V(a)(v).

For instance, consider the simple stochastic game in Fig. 5.1 where we have V =
{1, ε, av, max, min} with the obvious partitioning. The fixpoint function is V ∶ [0, 1]V →
[0, 1]V defined, for a ∈ [0, 1]V , by

V(a)(1) = 1 V(a)(ε) = ε V(a)(av) = 1
2

a(min) + 1
2

a(max)
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1 min av max ε

1/21/2

Fig. 5.1.: An example of a simple stochastic game. States 1, ε have payoff 1, ε > 0
respectively.

V(a)(max) =max{a(ε), a(av)} V(a)(min) =min{a(1), a(av)}.

The min-decomposition defined in general above, in this case is Hmin∶V → Pf(MV →M)
defined for all a ∈MY as follows:

• Hmin(v) = {h} with h(a) = V(a)(v) for all v ∈ V ∖ {min}

• Hmin(min) = {h1, hav} with h1(a) = a(1) and hav(a) = a(av).

Dually, a max-decomposition Hmax∶V → Pf(MV →M) is defined for all a ∈ MY as
follows:

• Hmax(v) = {h} with h(a) = V(a)(v) for all v ∈ V ∖ {max}

• Hmax(max) = {hε, hav} with hε(a) = a(ε) and hav(a) = a(av).

Whenever all h ∈Hmin(y)/Hmax(y) are not only monotone, but also non-expansive, it
can be shown easily that f is also non-expansive and we can obtain an approximation as
discussed in Chapter 3.

5.2.2. Derivation of the Approximations

In this section we show how a min-decomposition (analogously a max-decomposition)
of a mapping f ∶MY → MY can be assembled using the basic functions and operators
introduced in Section 3.5. This serves two purposes: in this way we show that f is
automatically non-expansive if obtained from non-expansive components. Second, this
gives us a recipe to obtain the approximation fa

#, required for checking whether a given
fixpoint is indeed the least.

Table 3.1 lists the basic non-expansive functions we require for the proof below and
operators for composing them. Note that all those functions are non-expansive and
the operators preserve non-expansiveness. In addition the table lists the corresponding
approximations.

We will now show how to obtain the approximation of a function f given its min-
decomposition and approximations for all the functions used in the min-decomposition.
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Proposition 5.2.4. Let Y be a finite set and M a complete MV-chain. Let
f ∶MY →MY be a function and Hmin∶Y → Pf(MY →M) a given min-decomposition
such that, for all y ∈ Y , all functions h ∈ Hmin(y) are non-expansive. Then f is
non-expansive and the approximation fa

#(Y ′)∶P([Y ]a)→ P([Y ]f(a)) is given by

fa
#(Y ′) = {y ∈ [Y ]f(a) ∣ ∃h (h = arg minh′∈Hmin(y)h

′(a) ∧ ha
#(Y ′) ≠ ∅)}

for a ∈MY and Y ′ ⊆ [Y ]a.

Proof. See Appendix: Proposition A.4.1.

In a similar fashion (same proof until the last step), for a max-decomposition Hmax of
f , the approximation fa

#∶P([Y ]a)→ P([Y ]f(a)) is given by

fa
#(Y ′) = {y ∈ [Y ]f(a) ∣ ∀h (h = arg maxh′∈Hmax(y)h

′(a) ⇒ ha
#(Y ′) ≠ ∅)}

for a ∈MY and Y ′ ⊆ [Y ]a.
We also obtain f#

a ∶P([Y ]a)→ P([Y ]f(a)) defined for a ∈MY , Y ⊆ [Y ]a and

• a min-decomposition of f (i.e. f(a)(y) =minh∈Hmin(y) h(a)):

f#
a (Y ′) = {y ∈ [Y ]f(a) ∣ ∀h (h = arg minh′∈Hmin(y)h

′(a) ⇒ h#
a (Y ′) ≠ ∅)}

• a min-decomposition of f (i.e. f(a)(y) =maxh∈Hmax(y) h(a)):

f#
a (Y ′) = {y ∈ [Y ]f(a) ∣ ∃h (h = arg maxh′∈Hmax(y)h

′(a) ∧ h#
a (Y ′) ≠ ∅)}.

5.2.3. Strategies

Fixing a strategy can be seen as fixing, for all y ∈ Y , some element in Hmin(y).

Definition 5.2.5 (strategy). Let Y be a finite set, M be a complete MV-chain,
f ∶ MY → MY and let Hmin ∶ Y → Pf(MY →M) be a min-decomposition of
f . A strategy in Hmin is a function C ∶ Y → (MY → M) such that for all
y ∈ Y it holds that C(y) ∈ Hmin(y). For a fixed C we define fC ∶ MY → MY as
fC(a)(y) = C(y)(a) for all a ∈MY and y ∈ Y .
Strategies in a max-decomposition are defined dually, i.e. C(y) ∈Hmax(y) for all
y ∈ Y .

The letter C stands for “choice” and typically µfC is easier to compute than µf .

Example 5.2.6. Reconsider the simple stochastic game in Fig. 5.1. As discussed in
Example 5.2.3, we obtain the following min-decomposition Hmin∶V → Pf(MV →M) for
all a ∈MY : For v ∈ V ∖ {min}, we have

Hmin(v) = {h} with h(a) = V(a)(v),
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while
Hmin(min) = {h1, hav} with h1(a) = a(1) and hav(a) = a(av).

All strategies in Hmin assign to every state v ∈ V ∖ {min} the only element in Hmin(v).
Hence they are determined by the value on state min: thus there are two strategies
Cmin

1 , Cmin
2 in Hmin with Cmin

1 (min) = h1 and Cmin
2 (min) = hav.

The max-decomposition Hmax∶V → Pf(MV →M) was defined for all a ∈MY as follows:

Hmax(v) = {h} with h(a) = V(a)(v)

for all v ∈ V ∖ {max} and

Hmax(max) = {hε, hav} with hε(a) = a(ε) and hav(a) = a(av).

Again, there are two strategies Cmax
1 and Cmax

2 in Hmax that differ for the value assigned
to max: Cmax

1 (max) = hε and Cmax
2 (max) = hav.

The following lemma reports two easy observations which will be used several times.

Lemma 5.2.7. Let Y be a finite set, M be a complete MV-chain and let Hmin ∶
Y → Pf(MY →M) be a min-decomposition of f ∶MY →MY .

1. For all strategies C in Hmin we have that f ⊑ fC , pointwise.

2. For all a ∈MY , there is a strategy Ca such that Ca(y)(a) = f(a)(y) for all
y ∈ Y .

Proof. (1) Just note that for all a ∈MY and y ∈ Y , we have

fC(a)(y) = C(y)(a)
⊒ min

h∈Hmin(y)
h(a) [since C(y) ∈Hmin(y)]

= f(a)(y) [by definition of min-decomposition]

(2) For all y ∈ Y , it holds f(a)(y) = minh∈Hmin(y) h(a) = hy(a) for some hy ∈ Hmin(y)
since the minimum is realised (Hmin is finite). And thus we can define Ca(y) = hy.

The above result can be easily adapted for a max-decomposition by reversing the order.

5.2.4. Strategy Iteration from Above

In this section we propose a generalized strategy iteration algorithm from above. It is
based on a min-decomposition of the function and, intuitively, at each iteration the
player Min improves her strategy. An issue here is that this iteration may get stuck at a
fixpoint strictly larger than the least one. Recognising and overcoming this problem, thus
continuing the iteration until the least fixpoint is reached, requires the theory described
in Chapter 3.
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The basic result that motivates strategy iteration from above is a characterisation of
the least fixpoint of a function in terms of a min-decomposition.

Proposition 5.2.8 (least fixpoint from min-decompositions). Let Y be a finite
set, M a complete MV-chain, f ∶MY →MY a monotone function and let Hmin ∶
Y → Pf(MY →M) be a min-decomposition of f . Then

µf =min{µfC ∣ C is a strategy in Hmin}.

Proof. By Lemma 5.2.7(1), for all strategies C in Hmin we have f ⊑ fC , whence µf ⊑ µfC .
Then µf ⊑min{µfC ∣ C is a strategy in Hmin} follows.

For the converse inequality, note that by Lemma 5.2.7(2) there exists some strategy C
in Hmin, such that fC(µf)(y) = C(y)(µf) = f(µf)(y) = µf(y) for all y ∈ Y . Thus µf is
a (pre-)fixpoint of fC and thus µfc ⊑ µf . Hence µf ⊒min{µfC ∣ C is a strategy in Hmin}.

Although we do not focus on complexity issues, we observe that – under suitable
assumptions – we can show that given a function f as a min-decomposition, the problem
of checking whether µf ⊑ b for some bound b ∈ MY is in NP. For each y ∈ Y we can
nondeterministically guess C(y) ∈Hmin(y) thus defining a strategy. Assuming that the
computation of µfC is polynomial, we can thus determine in non-deterministic polynomial
time (in the size of the representation of f) whether µf ⊑ µfC ⊑ b.

Now in order to compute the least fixpoint µf , the idea is to start from some (arbitrary)
strategy, say C0, in Hmin. At each iteration, if the current strategy is Ci one tries to
construct, on the basis of µfCi , a new strategy Ci+1 which improves Ci, in the sense that
µfCi+1 becomes smaller. This motivates the notion of improvement.

Definition 5.2.9 (min-improvement). Let f ∶ MY → MY be a monotone func-
tion, where Y is a finite set and M a complete MV-chain, and let Hmin be a
min-decomposition. Given strategies C, C ′ in Hmin, we say that C ′ is a min-
improvement of C if fC′(µfC) ⊏ µfC . It is called a stable min-improvement if
in addition C ′(y) = C(y) for all y ∈ Y such that fC′(µfC)(y) = µfC(y). We denote
by impmin(C) (respectively imps

min(C)) the set of (stable) min-improvements of
C.

The notion of stability will turn out to be useful later, for performing strategy iteration
from below (as explained in the next section). In a stable min-improvement, the player
is only allowed to switch the strategy in a state if this yields a strictly better payoff.
Interestingly, instances of this notion are adopted, more or less implicitly, in other strategy
improvement algorithms in the literature (cf. [ABdMS21, Definition 13] and the way
in which improvements are computed in [BC10]). Clearly imps

min(C) ⊆ impmin(C). In
addition, it can be easily seen that there exists a stable min-improvement as long as there
is any improvement.
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Remark 5.2.10 (obtaining min-improvements). For a strategy C, if impmin(C) ≠ ∅,
one can obtain a min-improvement of C by taking C ′ ≠ C defined as

C ′(y) = arg min
h∈Hmin(y)

h(µfC)

and a stable min-improvement as:

C ′(y) = { C(y) if f(µfC)(y) = µfC(y)
arg minh∈Hmin(y) h(µfC) otherwise

There could be several h ∈Hmin(y) where h(µfC) is minimal. Any such choice is valid.

We next show that, as suggested by the terminology, a min-improvement leads to a
smaller least fixpoint.

Lemma 5.2.11 (min-improvements reduce fixpoints). Let Y be a finite set, M
a complete MV-chain, f ∶ MY → MY a monotone function and Hmin a min-
decomposition of f . Given a strategy C in Hmin and a min-improvement C ′ ∈
impmin(C) it holds µfC′ ⊏ µfC .

Proof. By definition of improvement, we have that fC′(µfC) ⊏ µfC , i.e., µfC is a pre-
fixpoint of fC′ and it is not a fixpoint. Hence by Knaster-Tarski µfC′ ⊏ µfC follows.

Thus, once the strategy can be improved, we will get closer to the least fixpoint of f .
We next show that an improvement of the current strategy exists as long as we have not
encountered a fixpoint of f .

Lemma 5.2.12 (min-improvements exist for non-fixpoints). Let Y be a finite
set, M a complete MV-chain, f ∶ MY → MY a monotone function and Hmin a
min-decomposition. Given a strategy C in Hmin, the following are equivalent:

1. µfC /∈ Fix(f)

2. impmin(C) ≠ ∅

3. f(µfC) ⊏ µfC

Proof. (1 ⇒ 2): Assume µfC ∉ Fix(f). By Lemma 5.2.7(1) we know f ⊑ fC . Hence
µfC = fC(µfC) ⊒ f(µfC). Since µfC ∉ Fix(f), we deduce that the inequality is strict
µfC ⊐ f(µfC).

By Lemma 5.2.7(2) we can take a strategy C ′, s.t. for all y ∈ Y

f(µfC)(y) = C ′(y)(µfC) = fC′(µfC)(y)

Thus µfC ⊐ fC′(µfC) and a min-improvement exists by definition.
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1. Initialize: guess a strategy C0 for Player Min, i ∶= 0

2. iterate
a) determine µfCi

b) if impmin(Ci) ≠ ∅, let Ci+1 ∈ impmin(Ci); i ∶= i + 1; goto (a)
c) else if µfCi ≠ µf let a ⊏ µfCi be a pre-fixpoint of f and determine Ci+1

via
Ci+1(y) = arg min

h∈Hmin(y)
h(a)

i ∶= i + 1; goto 2.(a)
d) else stop: µfCi = µf

Fig. 5.2.: Computing the least fixpoint µf of f ∶MY →MY , from above

(2 ⇒ 1): Let C ′ ∈ impmin(C). By definition of improvement fC′(µfC) ⊏ µfC . By
Lemma 5.2.7(1) we know f ⊑ fC′ and thus f(µfC) ⊑ fC′(µfC). Joining the two, we
obtain f(µfC) ⊏ µfC and thus µfC ∉ Fix(f), as desired.

(1 ⇔ 3): By Lemma 5.2.7(1) we know that f(µfC) ⊑ fC(µfC) = µfC . Hence µfC ∉
Fix(f), i.e., f(µfC) ≠ µfC is equivalent to f(µfC) ⊏ µfC , as desired.

The above result suggests an algorithm for computing a fixpoint of a function f ∶
MY →MY on the basis of some min-decomposition. The idea is to guess some strategy C,
determine µfC and check impmin(C). If this set is empty we have reached some fixpoint,
otherwise choose C ′ ∈ impmin(C) for the next iteration. Note that for this algorithm it is
irrelevant whether we use min-improvements or restrict to stable min-improvements. We
also note that this procedure and the developed theory to this point work for monotone
functions f ∶LY → LY where L is a complete lattice. We will use this fact to apply our
strategy iterations to discounted mean-payoff games as the underlying fixpoint function
L has exactly one fixpoint (cf. Section 2.7.2).

When we are interested in the least fixpoint and the function admits many fixpoints, the
sketched algorithm determines a fixpoint which might not be the desired one. Exploiting
the theory from Chapter 3, we can refine the algorithm to ensure that it computes µf .
For this, we have to work with non-expansive functions f ∶MY →MY with M being a
complete MV-chain and Y a finite set. In fact, in this setting, given a fixpoint of f , say
a ∈MY , relying on Lemma 3.4.2, we can check whether it is the least fixpoint of f . In
case it is not, we can “improve” it obtaining a smaller pre-fixpoint of f in a way that we
can continue the iteration from there. The resulting algorithm is reported in Figure 5.2.
Observe that in step 2b we clearly do not need to compute all improvements. Rather, a
min-improvement, whenever it exists, can be determined, on the basis of Definition 5.2.9,
using µfCi computed in step 2a. Moreover step 2c relies on Lemma 3.4.2.
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Theorem 5.2.13 (least fixpoint, from above). Let Y be a finite set, M a complete
MV-chain, f ∶ MY → MY be a non-expansive function and let Hmin be a min-
decomposition of f . The algorithm in Figure 5.2 terminates and computes µf .

Proof. We first argue that in the iteration eventually impmin(Ci) = ∅, hence we will reach
step 2c, and this happens iff we have reached some fixpoint of f .

In fact, for any i, if impmin(Ci) ≠ ∅, then one considers Ci+1 ∈ impmin(Ci) and by
Lemma 5.2.11 µfCi+1 ⊏ µfCi . Thus the algorithm computes a strictly descending chain
µfCi . This means that we certainly generate a new strategy at each iteration. Since
there are only finitely many strategies, the iteration must stop at some point. When this
happens we will have impmin(Ci) = ∅ and thus, we will reach step 2c. By Lemma 5.2.12,
this happens if and only if µfCi is a fixpoint of f .

Now, by Theorem 3.4.2, we can determine whether µfCi = µf and thus the algorithm
only terminates when µf is computed.

Otherwise one considers a ⊏ µfCi , a (pre-)fixpoint of f , which is given by Lemma 3.4.2.
Due to Lemma 5.2.7(2) and the way the new strategy Ci+1 is defined we know that

fCi+1(a)(y) = Ci+1(y)(a) = f(a)(y) ⊑ a(y) for all y ∈ Y , we have that a is a (pre-)fixpoint
also of fCi+1 , and so µfCi+1 ⊑ a ⊏ µfCi .

Therefore, again we obtain a descending chain of least fixpoints. The number of
strategies is finite, since Y is finite and Hmin(y) is finite for all y ∈ Y . Thus we will at
some point compute µfCj = µf for some strategy Cj and terminate since by Lemma 3.4.2
we can determine when this is the case.

Termination easily follows from the fact that the number of strategies is finite (since
Y is finite and Hmin(y) is finite for all y ∈ Y ). Given that at any iteration the fixpoint
decreases, no strategy can be considered twice, and thus the number of iterations is
bounded by the number of strategies.

Example 5.2.14. Let us revisit Example 5.2.3 and the fixpoint function V defined there.
Its least fixpoint satisfies µV(1) = 1 and µV(v) = ε for any v ∈ V ∖ {1}.

The optimal strategy for Min is to choose av as its successor since this forces Max to
exit the cycle formed by min, av, max to ε, yielding a payoff of ε for these states. If
Max would behave in a way that the play keeps cycling he would obtain a payoff of 0,
which is suboptimal.

We now apply our algorithm. We start by guessing a strategy for Min, so we assume
C0(min) = h1, i.e. C0 = Cmin

1 (for the naming of the strategies we refer to Example 5.2.6).
The least fixpoint µVC0 can be found by solving the following linear program (details will
be discussed in Section 5.3.2):

min∑
v∈V

a(v) a(1) = 1 a(ε) = ε a(av) = 1
2

a(min) + 1
2

a(max)
a(max) ≥ a(ε) a(max) ≥ a(av) a(min) = a(1)

with 0 ≤ a(v) ≤ 1 for v ∈ V , which yields µVC0(ε) = ε and µVC0(v) = 1 for all v ∈ V ∖ {ε}.
Now µVC0 is a fixpoint of V – but not the least – and thus we find the vicious cycle formed
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by min, av, max, i.e. νVµVC0
# = {min, av, max} and decrease the values of those states

in a by δ, i.e. we obtain a = µVC0 ⊖ δ{min,av,max}. This results in a(1) = 1, a(ε) = ε and
a(v) = 1 − δ for all v ∈ V ∖ {1, ε}. Any δ ∈ (0, 1 − ε] is a valid choice.

Computing C1(y) = arg minh∈Hmin(y) h(a) yields the strategy C1 = Cmin
2 , i.e. C1(min) =

hav. By linear programming (replace a(min) = a(1) by a(min) = a(av)) we obtain
νVµfC1

# = ∅, thus µVC1 = µV and the algorithm terminates.

5.2.5. Strategy Iteration from Below

Here we present a different generalized strategy iteration algorithm approaching the least
fixpoint from below. Intuitively, now it is player Max who improves his strategy step by
step, creating an ascending chain of least fixpoints which reaches the least fixpoint of
the underlying function f . Despite the fact that in this case we cannot get stuck at a
fixpoint which is not the least, the correctness argument is more involved.

We will deal with max-decompositions of a function and we will need a notion of
(stable) max-improvement which is naturally defined as a dualisation of the notion of
(stable) min-improvement (Definition 5.2.9).

Definition 5.2.15 (max-improvement). Let Y be a finite set, M a complete MV-
chain, f ∶MY →MY a monotone function and Hmax a max-decomposition. Given
C, C ′ strategies in Hmax, we say that C ′ is a max-improvement of C if µfC ⊏
fC′(µfC). It is called a stable max-improvement if in addition C ′(y) = C(y) for
all y ∈ Y such that fC′(µfC)(y) = µfC(y). We denote by impmax(C) (respectively
imps

max(C)) the set of (stable) max-improvements of C.

Analogously to Remark 5.2.10 we can easily obtain (stable) max-improvements.

Remark 5.2.16 (obtaining max-improvements). For a strategy C, if impmax(C) ≠ ∅,
one can obtain a max-improvement of C by taking C ′ ≠ C defined as

C ′(y) = arg max
h∈Hmin(y)

h(µfC)

and a stable max-improvement as:

C ′(y) = { C(y) if f(µfC)(y) = µfC(y)
arg maxh∈Hmin(y) h(µfC) otherwise

There could be several h ∈Hmax(y) where h(µfC) is maximal. Any such choice is valid.

When iterating from above it was rather easy to show that given a strategy C and a
min-improvement C ′, the latter yields a smaller least fixpoint µfC′ ⊏ µfC (Lemma 5.2.11).
Observing that µfC is a pre-fixpoint of fC′ was enough to prove this.

Here, however, we cannot simply dualise the argument. If C ′ is a max-improvement
of C, we obtain that µfC is a post-fixpoint of fC′ which, in general, does not guarantee
µfC′ ⊐ µfC . We have to resort to stable max-improvements and, in order to show
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that such improvements in fact yield greater least fixpoints, we need, again, to use the
theory developed in Chapter 3. Hence, we have to work with non-expansive functions
f ∶MY →MY where M is a complete MV-chain.

In order to prove that a stable max-improvement leads to greater least fixpoint, we
require the soundness result in Lemma 3.4.2 to the case in which a is a post-fixpoint
instead of a fixpoint.

Lemma 5.2.17 (max-improvements increase fixpoints). Let Y be a finite set,
M a complete MV-chain, f ∶ MY → MY a non-expansive function and Hmax a
max-decomposition. Given a strategy C in Hmax and a stable max-improvement
C ′ ∈ imps

max(C), then µfC ⊏ µfC′.

Proof. We show that ν(fC′)µfC
∗ = ∅ and thus conclude that µfC ⊑ µfC′ by Lemma 3.4.2.

Recall that (fC′)µfC
∗ ∶ [Y ]µfC=fC′(µfC) → [Y ]µfC=fC′(µfC), i.e., it restricts to those elements

of µfC where µfC and fC′(µfC) coincide.
We proceed by showing that (fC)µfC

∗ and (fC′)µfC
∗ agree on [Y ]µfC=fC′(µfC), which,

by definition, is a subset of [Y ]µfC = [Y ]µfC=fC(µfC) (remember that µfC is a fixpoint of
fC). It holds that

(fC)µfC
∗ (Y ′) = γfC(µfC),δ(fC(αµfC ,δ(Y ′)))

(fC′)µfC
∗ (Y ′) = γfC′(µfC),δ(fC′(αµfC ,δ(Y ′))) ∩ [Y ]µfC=fC′(µfC)

for a suitable constant δ and if we choose δ small enough we can use the same constant
in both cases.

Now let y ∈ [Y ]µfC=fC′(µfC): by definition it holds that

y ∈ (fC)µfC
∗ (Y ′) = γfC(µfC),δ(fC(αµfC ,δ(Y ′)))

⇐⇒ fC(µfC)(y)⊖ fC(αµfC ,δ(Y ′))(y) ⊒ δ

⇐⇒ C(y)(µfC)⊖C(y)(αµfC ,δ(Y ′)) ⊒ δ

Now, since µfC(y) = fC′(µfC)(y), by definition of stable max-improvement (remember
that we require C ′ ∈ imps

max(C)) we have C(y) = C ′(y), and thus

C(y)(µfC)⊖C(y)(αµfC ,δ(Y ′)) ⊒ δ

⇐⇒ C ′(y)(µfC)⊖C ′(y)(αµfC ,δ(Y ′)) ⊒ δ

⇐⇒ y ∈ (fC′)µfC
∗ (Y ′)

Thus ν(fC′)µfC
∗ ⊆ ν(fC)µfC

∗ = ∅.
In conclusion, we have that µfC′ ⊒ µfC and since µfC is not a fixpoint of fC′ (because

C ′ is a max-improvement of C) we conclude µfC′ ⊐ µfC .

Example 5.2.18. We note that working with max-improvements which are stable is
essential for the validity of Lemma 5.2.17 above. In fact, consider the simple stochastic
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1 max1 max2

Fig. 5.3.: An example of a simple stochastic game where state 1 has payoff 1.

game in Figure 5.3 where max1, max2 ∈ VMax and 1 ∈ VSink, with reward 1. Let C be the
strategy for Max where max1 and max2 have as successors 1 and max2, respectively. It
is easy to see that µVC(1) = µVC(max1) = 1 and µVC(max2) = 0. Now, an improvement
in impmax(C) can be the strategy C ′ which chooses max1 as a successor for both max1
and max2. Then we have µVC′(max1) = µVC′(max2) = 0, hence µVC ⊐ µVC′. The
reason why this happens is that C ′ is not a stable improvement of C since it uselessly
changes the successor of max1 from 1 to max1, both mapped to 1 by µVC . A stable
improvement of C is C ′′ where max1 and max2 have as successors 1 and max1,
respectively. Then it can be seen that µVC′′(v) = 1 for all states v ∈ V .

Relying on Lemma 5.2.17, we can easily prove the dual of Lemma 5.2.12, showing that
a strategy admits a stable max-improvement as long as we have not reached a fixpoint of
f .

Lemma 5.2.19 (max-improvements exist for non-fixpoints). Let Y be a finite
set, M a complete MV-chain, f ∶ MY → MY a monotone function and Hmax a
max-decomposition. Given a strategy C in Hmax, the following are equivalent:

1. µfC /∈ Fix(f)

2. imps
max(C) ≠ ∅

3. µfC ⊏ f(µfC)

Proof. Adapt Lemma 5.2.12, observing that whenever there is a max-improvement, i.e.
impmax(C) ≠ ∅, then there exists one which is stable, i.e. imps

max(C) ≠ ∅, and, clearly,
vice versa. This holds since, given a strategy C ′ ∈ impmax(C), for all y ∈ Y , we can
define C ′′(y) = C ′(y) when µfC(y) ⊏ fC′(µfC)(y), and C ′′(y) = C(y) otherwise. Then
µfC ⊏ fC′′(µfC) and C ′′ ∈ imps

max(C).

To summarise, given a strategy C with µfC ∉ Fix(f) we can construct a strategy C ′

with µfC ⊏ µfC′ . This creates an ascending chain of least fixpoints and since there are
only finitely many strategies we will at some point find an optimal strategy C∗ with
µfC∗ = µf .
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1. Initialize: guess a strategy C0 for Player Max, i ∶= 0

2. iterate
a) determine µfCi

b) if imps
max(Ci) ≠ ∅, let Ci+1 ∈ imps

max(Ci); i ∶= i + 1; goto (a)
c) else stop: µfCi = µf

Fig. 5.4.: Computing the least fixpoint µf of f ∶MY →MY , from below

Proposition 5.2.20 (least fixpoint from max-decomposition). Let Y be a finite
set, M a complete MV-chain, f ∶ MY → MY a non-expansive function and let
Hmax ∶ Y → Pf(MY →M) be a max-decomposition of f . Then

µf =max{µfC ∣ C is a strategy in Hmax}.

Proof. By Lemma 5.2.7(1) (adapted to the max case) we have fC ⊑ f for any strategy C
in Hmax. Therefore, µfC ⊑ µf and thus

µf ⊒max{µfC ∣ C is a strategy in Hmax}.

Assume, by contradiction, that the inequality above is strict. Then for all strategies
C in Hmax we have µfC ⊏ µf . Then, by Lemma 5.2.19, each strategy admits a stable
max-improvement. Starting from any strategy C0 one could thus generates a sequence
of stable max-improvements C1, C2, . . . . Since by Lemma 5.2.17, µfCi ⊏ µfCi+1 , all
these improvements would be different, thus contradicting the finiteness of the max-
decomposition and hence the fact that there are finitely many strategies.

The above results lead us to a generalised strategy iteration algorithm which approaches
the least fixpoint from below.

Theorem 5.2.21 (least fixpoint, from below). Let Y be a finite set, M a complete
MV-chain, f ∶ MY → MY be a non-expansive function and let Hmax be a max-
decomposition of f . The algorithm in Figure 5.4 terminates and computes µf .

Proof. For any i, if µfCi is not a fixpoint of f , then, by Lemma 5.2.19, imps
max(Ci) ≠ ∅.

By Lemma 5.2.17 µfCi ⊏ µfCi+1 for any Ci+1 ∈ imps
max(Ci). Thus the algorithm computes

a strictly ascending chain µfCi . This means that we certainly generate a new strategy at
each iteration.

Since there are only finitely many strategies (as argued in the proof of Theorem 5.2.13),
the iteration must stop at some point. When this happens we will have imps

max(Ci) = ∅



5.2. Generalized Strategy Iteration 157

and thus, by Lemma 5.2.19, µfCi is a fixpoint of f . By Proposition 5.2.20 we conclude
that µfCi = µf .

The iteration from below may seem more appealing since it cannot get stuck at any
fixpoint of f . However, it has to be noted that the computation of µfC – for a chosen
strategy C - may be more difficult than before, which is illustrated by the following
example.

Example 5.2.22. Let us apply the algorithm from Figure 5.4 to the simple stochastic
game in Example 5.2.3. Recall that the least fixpoint is given by µV(1) = 1 and µV(v) = ε
for all v ∈ V ∖ {1}.

We start by guessing a strategy for Max, so we assume C0(max) = hav, i.e. C0 = Cmax
2 .

With this choice of strategy, Min is able to keep the game going infinitely in the cycle
formed by min, av, max and thus payoff 0 is obtained. Now µVC0 is given by µVC0(ε) = ε,
µVC0(1) = 1 and µVC0(v) = 0 for all v ∈ V ∖ {ε, 1}.

We note that µVC0 cannot immediately be computed via linear programming, but there
is a way to modify the fixpoint equation to have a unique fixpoint and hence linear
programming can be used again. This is done by precomputing states from which Min can
force a non-terminating play and assigning payoff value 0 to them. See Section 5.3.2 for
a detailed explanation.

Next, Max updates his strategy and we obtain C1 = Cmax
1 . As above we can compute

µVC1 – which, this time, equals µV – via linear programming.

Remark 5.2.23. Given µf (without the corresponding strategy) an interesting question
is how one can derive optimal strategies for Min or Max. Note that each presented strategy
iteration algorithm only produces an optimal strategy for one player, but not for the other.

It is rather easy to find an optimal strategy with respect to Hmin. We can simply compute
C∗(y) = arg minh∈Hmin(y) h(µf) which yields some optimal strategy C∗, i.e. µfC∗ = µf .
It is enough to choose some minimum, even if this is ambiguous and there are several
choices, each of which produces an optimal strategy. The strategy C∗ is optimal since µf
is a pre-fixpoint of fC∗ and µf = µfC∗ follows from Proposition 5.2.8.

On the other hand, given µf , we cannot easily obtain an optimal strategy in Hmax. We
will see in Example 5.3.4 that defining C∗(y) = arg maxh∈Hmax(y) h(µf) for an arbitrary
h where the value is maximal does not work in general.

One way to obtain an optimal strategy in Hmax given µf is to compute all strategies C
with fC(µf) = µf and check whether ν(fC)µf

# = ∅. If this holds for a strategy C∗ - and it
has to hold for at least one strategy C with fC(µf) = µf - then it is rather imminent that
C∗ is an optimal strategy. In cases where one has to check many strategies this procedure
might be inefficient.

5.2.6. Strategy Iterations to Compute Greatest Fixpoints

We can easily dualize the generalized strategy iteration algorithms presented in Figure 5.2
and Figure 5.4 to compute the greatest fixpoint νf of f ∶MY →MY . These procedures
are depicted in Figure 5.5 and Figure 5.6.
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1. Initialize: guess a strategy C0 for Player Max, i ∶= 0

2. iterate
a) determine νfCi

b) if impmax(Ci) ≠ ∅, let Ci+1 ∈ impmax(Ci); i ∶= i + 1; goto (a)
c) else if νfCi ≠ νf let a ⊐ νfCi be a post-fixpoint of f and determine

Ci+1 via
Ci+1(y) = arg max

h∈Hmax(y)
h(a)

i ∶= i + 1; goto 2.(a)
d) else stop: νfCi = νf

Fig. 5.5.: Computing the greatest fixpoint νf of f ∶MY →MY , from below

1. Initialize: guess a strategy C0 for Player Min, i ∶= 0

2. iterate
a) determine νfCi

b) if imps
min(Ci) ≠ ∅, let Ci+1 ∈ imps

min(Ci); i ∶= i + 1; goto (a)
c) else stop: νfCi = νf

Fig. 5.6.: Computing the greatest fixpoint νf of f ∶MY →MY , from above
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Dual min-/max-improvements are defined as one would think:

Definition 5.2.24 (min/max-improvement (dual)). Let f ∶ MY → MY be a
monotone function, where Y is a finite set and M a complete MV-chain, and let
Hmin/Hmax be a min/max-decomposition. Given strategies C, C ′ in Hmin/Hmax,
we say that C ′ is a (dual) min/max-improvement of C if fC′(νfC) ⊐ νfC

(fC′(νfC) ⊏ νfC). It is called a stable min/max-improvement if in addition
C ′(y) = C(y) for all y ∈ Y such that fC′(νfC)(y) = νfC(y). We denote by
impmin(C)/impmax(C) (respectively imps

min(C)/imps
max(C)) the set of (stable)

min/max-improvements of C.

Dual min/max-improvements can be obtained as in Remarks 5.2.10 and 5.2.16, i.e.
for a strategy C, if impmin(C) ≠ ∅, one can obtain a min-improvement of C by taking
C ′ ≠ C defined as C ′(y) = arg minh∈Hmin(y) h(νfC) and a stable min-improvement as:

C ′(y) = { C(y) if f(νfC)(y) = νfC(y)
arg minh∈Hmin(y) h(νfC) otherwise

And for a strategy C, if impmax(C) ≠ ∅, one can obtain a max-improvement of C by
taking C ′ ≠ C defined as C ′(y) = arg maxh∈Hmax(y) h(νfC) and a stable min-improvement
as:

C ′(y) = { C(y) if f(νfC)(y) = νfC(y)
arg maxh∈Hmax(y) h(νfC) otherwise

There could be several h ∈ Hmin(y)/Hmax(y) where h(νfC) is minimal/maximal. Any
such choice is valid.

Theorem 5.2.25. Let Y be a finite set, M a complete MV-chain, f ∶MY →MY

be a non-expansive function and let Hmax/Hmin be a max/min-decomposition of f .
The algorithms in Figure 5.5/Figure 5.6 terminate and compute νf .

Proof. By dualization of the theory from the previous sections.

Note that the algorithm in Figure 5.5 can be seen as the dual algorithm to the one in
Figure 5.4 and the one in Figure 5.6 as the dual algorithm to the one in Figure 5.2. I.e.
when doing strategy iteration for player Max (from below) we may encounter a fixpoint
which is not the greatest fixpoint whereas when doing strategy iteration for Player Min
(from above) we need to work with stable min-improvements. This also means, that
whenever f ∶LY → LY (where L is a complete lattice) is a monotone function and has a
unique fixpoint we can use strategy iteration for player Max to compute νf .
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5.3. Applications
We will now discuss how our strategy iterations can be utilized to solve the applications
we studied previously. For these applications we either already derived the approximations
in Section 3.6 or the fixpoint is unique, i.e. no approximation is needed. Thus, we only
need to derive the min-/max-decompositions of the problems at hand. Additionally, since
this is problem specific, we will discuss, how - given a function f and a fixed strategy C
for one player - one can compute the least/greatest fixpoint of the resulting function fC .

In some instances it is possible to compute µfC/νfC via strategy iteration (of the
other player). Such a procedure will be called strategy-in-strategy iteration.

To ease the reading, we put min-/max-decompositions of functions into blue boxes,
strategy induced functions (fC) into green boxes and linear programs/linear systems of
equations which compute least/greatest fixpoints of strategy induced functions into red
boxes.

We will start by discussing the two-player-games as strategy iterations are very intuitive
in these instances.

5.3.1. Strategy Iterations for Discounted Mean-Payoff Games

In this section we show how strategy iteration can be applied to compute the solution
of a discounted mean-payoff game ΓM = (G, w, λ) (cf. Section 2.7.2). The function
L∶ [−W, W ]V → [−W, W ]V is defined for v ∈ V and a∶V → [−W, W ] as

L(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

max(v,u)∈E(1 − λ) ⋅w(v, u) + λ ⋅ a(u) v ∈ VMax

min(v,u)∈E(1 − λ) ⋅w(v, u) + λ ⋅ a(u) v ∈ VMin

The unique fixpoint of L yields the solution of the underlying discounted mean-payoff
game.

Strategy iterations are applicable since [−W, W ] is a complete lattice and V a finite set.
This suffices since L admits exactly one fixpoint. For L we can give both a non-trivial
min- and max-decomposition. We are also able to perform strategy-in-strategy iteration
which appears promising in this instance.

Min-Decomposition of L. We have

Hmin(v) =
⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMin

{hv} otherwise

(a min-decomposition of L) where

hv(a) = L(a)(v) and hv
u(a) = (1 − λ) ⋅w(v, u) + λ ⋅ a(u).

A strategy for player Min fixes the successor of each state v ∈ VMin, i.e. it corresponds to
a positional strategy τ ∶VMin → V .
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Assume, we are given a strategy CMin for Player Min, i.e. CMin(v) ∈ Hmin(v) for all
v ∈ V , which corresponds to a positional strategy τCMin ∶VMin → V . We obtain the function
LCMin ∶ [−W, W ]V → [−W, W ]V , defined as

LCMin(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

max(v,u)∈E(1 − λ) ⋅w(v, u) + λ ⋅ a(u) v ∈ VMax

(1 − λ) ⋅w(v, τCMin(v)) + λ ⋅ a(τCMin(v)) v ∈ VMin

for a ∈ [−W, W ]V and v ∈ V . This function has one unique fixpoint (as (Gτ , wτ , λ) is a
discounted mean payoff game itself for any positional strategy τ ∶VMin → V ).

The following linear program computes µLCMin directly:

min∑
v∈V

a(v)

a(v) ≥ (1 − λ) ⋅w(v, u) + λ ⋅ a(u) ∀v ∈ VMax,∀(v, u) ∈ E

a(v) = (1 − λ) ⋅w(v, τCMin(v)) + λ ⋅ a(τCMin(v)) ∀v ∈ VMin

Max-Decomposition of L In a similar vein, we have

Hmax(v) =
⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMax

{hv} otherwise

(a max-decomposition of L) where

hv(a) = L(a)(v) and hv
u(a) = (1 − λ) ⋅w(v, u) + λ ⋅ a(u).

A strategy for player Max again fixes the successor of each state v ∈ VMax, i.e. it corresponds
to a positional strategy σ∶VMax → V .

We are given a strategy CMax for Player Max, i.e. CMax(v) ∈ Hmax(v) for all v ∈ V ,
which corresponds to a positional strategy σCMax ∶VMax → V . We obtain the function
LCMax ∶ [−W, W ]V → [−W, W ]V , defined as

LCMax(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

min(v,u)∈E(1 − λ) ⋅w(v, u) + λ ⋅ a(u) v ∈ VMin

(1 − λ) ⋅w(v, σCMax(v)) + λ ⋅ a(σCMax(v)) v ∈ VMax

for a ∈ [−W, W ]V and v ∈ V . This function has one unique fixpoint (as (Gσ, wσ, λ) is a
discounted mean payoff game itself for any positional strategy σ∶VMax → V ).

The following linear program computes µLCMax directly:
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max∑
v∈V

a(v)

a(v) ≤ (1 − λ) ⋅w(v, u) + λ ⋅ a(u) ∀v ∈ VMin,∀(v, u) ∈ E

a(v) = (1 − λ) ⋅w(v, σ(v)) + λ ⋅ a(σ(v)) ∀v ∈ VMax

Strategy-in-Strategy Iteration. As one can see, LCMin admits a non-trivial max-
decomposition and LCMax a non-trivial min-decomposition. This allows for a computation
of µLCMin and µLCMax via strategy iteration - i.e. we can perform what we call strategy-
in-strategy iteration.

Given a fixed strategy CMin for Player Min, we have

HCMin
max (v) =

⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMax

{hv} otherwise

(a max-decomposition of LCMin) where

hv(a) = LCMin(a)(v) and hv
u(a) = (1 − λ) ⋅w(v, u) + λ ⋅ a(u)

and given a fixed strategy CMax for Player Max, we have

HCMax
min (v) =

⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMin

{hv} otherwise

(a min-decomposition of LCMax) where

hv(a) = LCMax(a)(v) and hv
u(a) = (1 − λ) ⋅w(v, u) + λ ⋅ a(u).

Now, given a strategy CMin for Player Min and a strategy CMax for Player Max
corresponding to positional strategies τCMin and σCMax , respectively, we obtain the functions
(LCMin)CMax , (LCMax)CMin ∶ [−W, W ]V → [−W, W ]V , defined as

(LCMin)CMax(a)(v) = (LCMax)CMin(a)(v)

=
⎧⎪⎪⎨⎪⎪⎩

(1 − λ) ⋅w(v, τCMin(v)) + λ ⋅ a(τCMin(v)) v ∈ VMin

(1 − λ) ⋅w(v, σCMax(v)) + λ ⋅ a(σCMax(v)) v ∈ VMax

for a ∈ [−W, W ]V and v ∈ V . Both functions have one unique fixpoint (as (Gσ,τ , wσ,τ , λ)
is a discounted mean payoff game itself for any positional strategies σ∶VMax → V and
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τ ∶VMin → V ). The solution to the following linear system of equations yields µ(LCMin)CMax =
µ(LCMax)CMin directly:

a(v) = (1 − λ) ⋅w(v, τ(v)) + λ ⋅ a(τ(v)) ∀v ∈ VMin

a(v) = (1 − λ) ⋅w(v, σ(v)) + λ ⋅ a(σ(v)) ∀v ∈ VMax.

This appears promising as solving a linear system of equation is rather simple and fast
compared to solving a linear program.

Example 5.3.1. We revisit the discounted mean payoff game from Example 2.7.15 with
λ = 0.5 (circles belong to Player Min, rectangles to Player Max). We have deduced µL
(values and optimal strategies in blue):

x

0

y-1 z 1/2

u 0

−2
1 −1

−1 1

0

1

We note up front that optimal strategies for both players can directly be deducted from
µL, i.e. σ∗(v) = arg maxu∈succ(v)(1 − λ) ⋅ w(v, u) + λ ⋅ µL(u) (v ∈ VMax) and τ∗(v) =
arg minu∈succ(v)(1 − λ) ⋅w(v, u) + λ ⋅ µL(u) (v ∈ VMin).

We begin with performing strategy iteration for player Max. Let σ
C
(0)
Max
(x) = z, then via

linear programming or strategy iteration for player Min we obtain µLC0
Max

(values and
optimal answering strategies in blue):
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x

−1/4

y−9/8 z 1/2

u 0

−2 −1

−1 1

0

1

Since

(1 − λ) ⋅w(x, y) + λ ⋅ µL
C
(0)
Max
(y) = −1/16 > −1/4 = (1 − λ) ⋅w(x, z) + λ ⋅ µL

C
(0)
Max
(z)

we obtain σ
C
(1)
Max
(x) = y. Via linear programming or strategy iteration for player Min, we

obtain µL
C
(1)
Max
= µL.

Next, we perform strategy iteration for player Min. Let τ
C
(0)
Min
(y) = u, τ

C
(0)
Min
(z) =

u, τ
C
(0)
Min
(u) = x. To compute µL

C
(0)
Min

we perform strategy iteration for player Max, i.e.
σ

C
(0)
Max
(x) = z. The solution of the resulting linear system of equation results in µ(L

C
(0)
Min
)

C
(0)
Max

(values in blue):

x

−1/7

y−2/7 z 5/7

u 3/7

−1

−1 1

1

Now, Max can improve his strategy w.r.t. µ(L
C
(0)
Min
)

C
(0)
Max

and we have σ
C
(1)
Max
(x) = y. We

attain µ(L
C
(0)
Min
)

C
(1)
Max
= µL

C
(0)
Min

(values in blue):
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x

3/7

y−1/7 z 6/7

u 5/7

1

−1 1

1

Now it is player Min who improves her strategy. We obtain τ
C
(1)
Min
(y) = x, τ

C
(1)
Min
(z) = u

and τ
C
(1)
Min(u)

= u. This is an optimal strategy and we obtain µL
C
(1)
Min
= µL (via linear

programming or strategy iteration for player Max).

Runtime Comparison. In Section 5.4.1 one can find a runtime comparison between
the displayed algorithms which compute the solution of a discounted mean-payoff game.

5.3.2. Strategy Iterations for Simple Stochastic Games

In this section we show how strategy iteration can be applied to compute the solution of a
simple stochastic game ΓS = (G, p, c) (cf. Section 2.7.3). The function V ∶ [0, 1]V → [0, 1]V
was defined for a∶V → [0, 1] and v ∈ V as follows:

V(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv′∈succ(v) a(v′) if v ∈ VMax

minv′∈succ(v) a(v′) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

The least fixpoint of V yields the solution of the underlying simple stochastic game. V
can admit more than one fixpoint.

Strategy iterations are applicable since V is a finite set and [0, 1] a complete MV-chain.
Strategy-in-strategy iteration is also applicable.

For V we can derive both a non-trivial min- and max-decomposition.

Min-Decomposition of V. We have
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Hmin(v) =
⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMin

{hv} otherwise

(a min-decomposition of V) where

hv(a) = V(a)(v) and hv
u(a) = a(u).

A strategy for player Min fixes the successor of each state v ∈ VMin, i.e. it corresponds to
a positional strategy τ ∶VMin → V .

Assume we are given a strategy CMin for player Min, i.e. CMin(v) ∈ Hmin(v) for all
v ∈ V , which corresponds to a positional strategy τCMin ∶VMin → V . We obtain the function
VCMin ∶ [0, 1]V → [0, 1]V , defined as

VCMin(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxv′∈succ(v) a(v′) if v ∈ VMax

a(τCMin(v)) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

for a ∈ [0, 1]V and v ∈ V . VCMin might again admit multiple fixpoints.
µVCMin can be computed via the following linear program

min∑
v∈V

a(v)

a(v) ≥ a(u) ∀v ∈ VMax,∀(v, u) ∈ E

a(v) = a(τCMin(v)) ∀v ∈ VMin

a(v) = ∑
v′∈V

p(v)(v′) ⋅ a(v′) ∀v ∈ VAv

a(v) = c(v) ∀v ∈ VSink

which yields an exact computation of µVCMin .

Max-Decomposition of V. In a similar vein, we have



5.3. Applications 167

Hmax(v) =
⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMax

{hv} otherwise

(a max-decomposition of V) where

hv(a) = V(a)(v) and hv
u(a) = a(u).

A strategy for player Max again fixes the successor of each state v ∈ VMax, i.e. it corresponds
to a positional strategy σ∶VMax → V .

Given a strategy CMax for player Max, i.e. CMax(v) ∈Hmax(v) for all v ∈ V , which corre-
sponds to a positional strategy σCMax ∶VMax → V . We obtain the function VCMax ∶ [0, 1]V →
[0, 1]V , defined as

VCMax(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(σCMax(v)) if v ∈ VMax

minv′∈succ(v) a(v′) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

for a ∈ [0, 1]V and v ∈ V . This function may again have multiple fixpoints.
µVCMax can again be computed via linear programming

max∑
v∈V

a(v)

a(v) = 0 ∀v ∈ QσCMax

a(v) = a(σCMax) ∀v ∈ VMax ∖QσCMax

a(v) ≤ a(u) ∀v ∈ VMin ∖QσCMax
,∀(v, u) ∈ E

a(v) = ∑
v′∈V

p(v)(v′) ⋅ a(v′) ∀v ∈ VAv ∖QσCMax

a(v) = c(v) ∀v ∈ VSink

where the set QσCMax
contains those nodes which will guarantee a non-terminating play if

Min plays optimally, given the fixed strategy σCMax (corresponding to CMax) of Max. This
yields an exact computation of µLCMax .

Lemma 5.3.2. The linear program above computes µVCMax.

Proof. See Appendix: Lemma A.4.2.
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Comparison to the Hoffmann-Karp Algorithm. The Hoffmann-Karp algorithm
[TVK11] can be seen as a direct instance of our strategy iteration. Since they consider
stopping simple stochastic games, V and VC have unique fixpoints. Thus, there are no
tricks required, i.e. skipping fixpoints when approaching from above or modifying the
linear program (by adding Qσ) when approaching from below.

Figure 5.7 displays both strategy iterations instantiated for simple stochastic games in
standard notation. Here, given a strategy τ for player Min, we define Vτ ∶ [0, 1]V → [0, 1]V
as

Vτ(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

a(τ(v)) if v ∈ VMin

V(a)(v) otherwise

and given a strategy σ for player Max, we define Vσ ∶ [0, 1]V → [0, 1]V as

Vσ(a)(v) =
⎧⎪⎪⎨⎪⎪⎩

a(σ(v)) if v ∈ VMax

V(a)(v) otherwise

for a ∈ [0, 1]V . Given a ∈ [0, 1]V and a strategy τ ∶VMin → V , a node v ∈ VMin is a switch
node if

min
v′∈succ(v)

a(v′) < a(τ(v))

and τ ′ = swmin(τ, a) gives a new strategy

τ ′(v) =
⎧⎪⎪⎨⎪⎪⎩

arg minv′∈succ(v) a(v′) if v ∈ VMin is a switch node
τ(v) otherwise

.

Dually, given a ∈ [0, 1]V and a strategy σ∶VMax → V , a node v ∈ VMax is a switch node if

max
v′∈succ(v)

a(v′) > a(σ(v))

and σ′ = swmax(τ, a) gives a new strategy

σ′(v) =
⎧⎪⎪⎨⎪⎪⎩

arg maxv′∈succ(v) a(v′) if v ∈ VMax is a switch node
σ(v) otherwise

.

Strategy-in-Strategy Iteration. As for discounted mean-payoff games we can com-
pute µVCMin and VCMin via strategy iteration - i.e. we can perform strategy-in-strategy
iteration.

Given a fixed strategy CMin for player Min, we have
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Determine µV (from above)

1. Guess a Min-strategy τ (0), i ∶= 0

2. a(i) ∶= µVτ(i)

3. τ (i+1) ∶= swmin(τ (i), a(i))
4. If τ (i+1) ≠ τ (i) then i ∶= i + 1 and goto 2

5. Compute V ′ = νVa
#, where a = a(i).

6. If V ′ = ∅ then stop and return a(i).
Otherwise a(i+1) ∶= a − (ιa

V
(V ′))V ′ ,

τ (i+2) ∶= swmin(τ (i), a(i+1)), i ∶= i + 2,
goto 2

(a) Strategy iteration from above

Determine µV (from below)

1. Guess a Max-strategy σ(0),
i ∶= 0

2. a(i) ∶= µVσ(i)

3. σ(i+1) ∶= swmax(σ(i), a(i))
4. If σ(i+1) ≠ σ(i) then

i ∶= i + 1 and goto 2
Otherwise stop and return a(i).

(b) Strategy iteration from below

Fig. 5.7.: Strategy iteration for simple stochastic games from above and below

HCMin
max (v) =

⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMax

{hv} otherwise

(a max-decomposition of VCMin) where

hv(a) = VCMin(a)(v) and hv
u(a) = a(u)

and given a fixed strategy CMax for player Max, we have

HCMax
min (v) =

⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMin

{hv} otherwise

(a min-decomposition of VCMax) where

hv(a) = VCMax(a)(v) and hv
u(a) = a(u).

Now, given a strategy CMin for player Min and a strategy CMax for player Max cor-
responding to positional strategies τCMin and σCMax , respectively. Then we obtain the
functions (VCMin)CMax , (VCMax)CMin ∶ [0, 1]V → [0, 1]V , defined as
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(VCMin)CMax(a)(v) = (VCMax)CMin(a)(v)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(σCMax(v)) if v ∈ VMax

a(τCMin(v)) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

for a ∈ [0, 1]V and v ∈ V . Both functions may admit multiple fixpoints.
The solution to the following linear system of equations directly yields µ(VCMin)CMax =

µ(VCMax)CMin :

a(v) = 0 v ∈ Q
τCMin
σCMax

a(v) = a(τCMin) v ∈ VMin, v /∈ Q
τCMin
σCMax

a(v) = a(σCMax(v)) v ∈ VMax, v /∈ Q
τCMin
σCMax

a(v) = ∑
v′∈V

a(v′) ⋅ p(v)(v′) v ∈ VAv, v /∈ Q
τCMin
σCMax

a(v) = c(v) v ∈ VSink

Here, Q
τCMin
σCMax

is the set of states that reach any sink state with probability 0 in GσCMax ,τCMin
which very easy to compute. This appears promising as solving a linear system of equation
is rather simple and fast compared to solving a linear program, see the runtime comparison
in Section 5.4.2.

Example 5.3.3. We revisit Example 2.7.22 (µV and optimal strategies in blue):

1

1

min

ε

av

ε

max

ε

ε

ε1/21/2

We note that an optimal strategies for player Min can directly be deduced from µV, i.e.
τ∗(v) = arg minu∈succ(v) µV(u). This is not the case for player Max as both successors of
max have the same value w.r.t. µV but only one successor (ε) is optimal.

We start with strategy iteration for player Max. Let σ
C
(0)
Max
(max) = av, then via linear

programming, we attain µV
C
(0)
Max

(values and optimal answering strategy in blue):

1

1

min

0

av

0

max

0

ε

ε1/21/2
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Note that Qσ
C
(0)
Max

= {min, av, max} is the set of states Min can force to never reach any

sink. Next, Max switches his strategy since µV
C
(0)
Max
(av) > µV

C
(0)
Max
(ε) and for σ

C
(1)
Max
(max) =

ε we attain µV
C
(1)
Max
= µV (e.g. via linear programming).

Next, we perform strategy iteration for player Min. Let τ
C
(0)
Min
(min) = 1. We compute

µV
C
(0)
Min

via strategy iteration for player Max. Max guesses σ
C
(0)
Max
(max) = ε which results

in µ(V
C
(0)
Min
)

C
(0)
Max

(values in blue):

1

1

min

1

av

1 + ε/2

max

ε

ε

ε
1/21/2

µ(V
C
(0)
Min
)

C
(0)
Max

can be computed by solving a linear system of equations (Q
τ

C
(0)
Min

σ
C
(0)
Max

= ∅). Max

now switches his strategy, i.e. σ
C
(1)
Max
(max) = av. This is rather interesting as moving

to state ε is an optimal strategy for player Max but moving to state av is an optimal
answering strategy to this fixed strategy for player Min. We attain µ(V

C
(0)
Min
)

C
(1)
Max
= µV

C
(0)
Min

(values in blue):

1

1

min

1

av

1

max

1

ε

ε1/21/2

µV
C
(0)
Min

is a fixpoint of µV but our approximation detects the vicious cycles formed by

states min, av, max, i.e. νV
µV

C
(0)
Min

# = {min, av, max}. We reduce these values which
leads Min to switch his strategy, i.e. τ

C
(1)
Min
(min) = av. Now, µV

C
(0)
Min
= µV which can be

computed via linear programming or strategy iteration for player Max.

Runtime Comparison. In Section 5.4.2 one can find a runtime comparison between
the displayed algorithms which compute the solution of a simple stochastic game.

5.3.3. Strategy Iterations for Energy Games

In this section we show how strategy iteration can be applied to compute the solution
of an Energy Game ΓE = (G, w) (cf. Section 2.7.4). We can only apply our strategy
iterations to energy games with finite values. Note that any energy game can easily be
transformed into an energy game with finite values (see Section 2.7.4). The function
E ∶KV →KV is defined for v ∈ V and a∶V →K as follows2

E(a)(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMin

max
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMax
.

2⊖Z∶K × Z→K, x⊖Z y =min{max{x − y, 0}, k}
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The least fixpoint of E yields the solution of the underlying energy game. Note that E
may have multiple fixpoints.

Strategy iterations are applicable since V is a a finite set and K = {0, . . . k} a complete
MV-chain. Stategy-in-strategy iteration is also applicable.

For E we can give a non-trivial min- and max-decomposition.

Min-Decomposition of E. We have

Hmin(v) =
⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMin

{hv} otherwise

(a min-decomposition of E) where

hv(a) = E(a)(v) and hv
u(a) = a(u)⊖Z w(v, u).

A strategy for player Min fixes the successor of each state v ∈ VMin, i.e. it corresponds to
a positional strategy τ ∶VMin → V .

Given a strategy CMin for player Min, i.e. CMin(v) ∈ Hmin(v) for all v ∈ V , which
corresponds to a positional strategy τCMin ∶VMin → V . We obtain the function ECMin ∶KV →
KV defined as

ECMin(a)(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(τCMin(v))⊖Z w(v, τCMin(v)) if v ∈ VMin

max
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMax

for a ∈KV and v ∈ V . This function may admit multiple fixpoints and can under certain
circumstances be computed via the following linear program

min∑
v∈V

a(v)

a(v) ≥ a(u) −w(v, u) ∀v ∈ VMax,∀(v, u) ∈ E

a(v) ≥ a(τCMin(v)) −w(v, τCMin(v)) ∀v ∈ VMin

a(v) ≥ 0 ∀v ∈ V

which yields an exact computation of µEC . We note that the above linear program
indeed yields an exact computation as long as the strategy by player Min does not create
a negative cycle3 which is possible in general. One can start the iteration by setting

3i.e. there exists no negative cycle in Gτ
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τ
C
(0)
Min
(v) = s for all states v ∈ VMin, i.e. we always choose the emergency exit (we can

always add an emergency exit similar to what is done when reducing to an energy game
with finite values in Section 2.7.4). When improving the strategy now, no negative cycle
can be formed as µEC(0) ⊐ µEC(1) .

However, other iterations like Kleene iteration which also obtain exact results seem
more appealing when it comes to computing µEC . Additionally, always choosing the
emergency exit does not appeal as a good starting strategy in general.

Max-Decomposition of E. In a similar vein, we have

Hmax(v) =
⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMax

{hv} otherwise

(a max-decomposition of E) where

hv(a) = E(a)(v) and hv
u(a) = a(u)⊖Z w(v, u).

A strategy for player Max again fixes the successor of each state v ∈ VMax, i.e. it corresponds
to a positional strategy σ∶VMax → V .

Given a strategy CMax for player Max, i.e. CMax(v) ∈ Hmax(v) for all v ∈ V , which
corresponds to a positional strategy σCMax ∶VMax → V . We obtain the function ECMax ∶KV →
KV defined as

ECMax(a)(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(σCMax(v))⊖Z w(v, σCMax(v)) if v ∈ VMax

min
v′∈succ(v)

a(v′)⊖Z w(v, v′) if v ∈ VMin

for a ∈KV and v ∈ V . This function may have multiple fixpoints. Here, linear programming
is not directly applicable and we spare the work to formulate a linear program (which
may not even be feasible) since other algorithms seem more appealing when it comes to
computing µECMax .

Strategy-in-Strategy Iteration. We can compute µECMin and ECMin via strategy
iteration - i.e. we can perform strategy-in-strategy iteration.

Given a fixed strategy CMin for player Min, we have
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HCMin
max (v) =

⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMax

{hv} otherwise

(a max-decomposition of ECMin) where

hv(a) = ECMin(a)(v) and hv
u(a) = a(u)⊖Z w(v, u)

and given a fixed strategy CMax for player Max, we have

HCMax
min (v) =

⎧⎪⎪⎨⎪⎪⎩

{hv
u ∣ (v, u) ∈ E} if v ∈ VMin

{hv} otherwise

(a min-decomposition of ECMax) where

hv(a) = ECMax(a)(v) and hv
u(a) = a(u)⊖Z w(v, u).

Now, given a strategy CMin for player Min and a strategy CMax for player Max cor-
responding to positional strategies τCMin and σCMax , respectively. Then we obtain the
functions (ECMin)CMax , (ECMax)CMin ∶KV →KV , defined as

(ECMin)CMax(a)(v) = (ECMax)CMin(a)(v)

=
⎧⎪⎪⎨⎪⎪⎩

a(τCMin(v))⊖Z w(v, τCMin(v)) if v ∈ VMin

a(σCMax(v))⊖Z w(v, σCMax(v)) if v ∈ VMax

for a ∈KV and v ∈ V . Both functions may admit multiple fixpoints. The least fixpoints
can be computed via the usual methods for energy games. Since every state in Gσ,τ has
exactly one successor one might think of checking the end components of Gσ,τ (i.e. cycles
in the graph) and determine the sum of values of these end components. From this it
is easy to derive the value of each state. This did not prove practical in our runtime
analysis (Section 5.4.3).

Example 5.3.4. We revisit the energy game from Example 5.3.4, where it is intended
that circular and rectangular states belong to player Min and player Max, respectively.
Values of g = µE and optimal strategies are given in blue:
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x

18

u

0

y

17

v

8

−12 16

−80 −2

−1

1

−98

We note that optimal strategies for player Min can directly be deducted from g, i.e.
τ∗(v) = arg minu∈succ(v) g(u)⊖Z w(v, u). This is not the case for player Max (in general).
Given only the least fixpoint g, the strategy of player Max is not deducible with a local
reasoning, since from y the choices x, v are indistinguishable (in fact g(y) = 17 = g(x)−1 =
g(v)− (−9)). However, if x is chosen as successor to y (and still y as successor to x), we
end up in a value vector where Min needs 0 initial energy in state y to keep going forever.

We perform strategy iteration for player Max, i.e. σ
C
(0)
Max
(x) = y and σ

C
(0)
Max
(y) = x. As

hinted at before, we obtain µE
C
(0)
Max

(values and optimal answering strategies in blue; state
u has two optimal successors):

x

1

u

0

y

0

v

0

16

−80 −2

−1

1

8

Now, player Max switches his strategy to σ
C
(1)
Max
(x) = u and σ

C
(1)
Max
(y) = v, resulting in

µE
C
(1)
Max

(values and optimal answering strategies in blue):

x

12

u

0

y

17

v

8

−12 16

−80 −2

−98

Again, player Max switches his strategy to σ
C
(2)
Max
(x) = y and σ

C
(1)
Max
(y) = v, resulting in

µE
C
(2)
Max
= g.
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KASI Algorithm. Another interesting setting of application is the lower-weak-upper-
bound problem in mean-payoff games [BFL+08], reminiscent of energy games. For this
problem, differently from the usual definition, the aim for one player is to maximise, never
going negative, some resource which cannot exceed a given bound, while the other player
has to minimise it. Also in this case, the solution can be computed as a least fixpoint.
Due to the upper bound imposed to the resource, the function is not non-expansive, thus
it is not captured by our theory. Still, the algorithm KASI proposed in [BC10], which
computes the solution via strategy iteration, shares many similarities with our approach
from below: at each iteration the algorithm computes a stable max-improvement of the
current strategy. Indeed, when applying KASI to the special case where there is no
upper bound to the accumulated resource, called lower-bound problem in [BFL+08] (also
studied under different names in [CdAHS03, LP06]), the algorithm comes out as an exact
instantiation of our general strategy iteration from below.

Runtime Comparison. In Section 5.4.3 one can find a runtime comparison between
the displayed algorithms which compute the solution of an energy game.

5.3.4. Strategy Iterations for Behavioural Distances of Labeled Markov
Chains

We consider the function ∆∶ [0, 1]S×S → [0, 1]S×S whose least fixpoint coincides with the
behavioural distance in a labeled Markov chain. ∆ can be written as

∆(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
K(η(s), η(t)) otherwise

=
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
minc∈ΩV (η(s),η(t))∑(u,v)∈S×S c(u, v) ⋅ d(u, v) otherwise

for d∶S × S → [0, 1] and s, t ∈ S (discrete metric on L), cf. Section 2.6.3.
Strategy iterations are applicable since S is a finite set and [0, 1] a complete MV-chain.

Min-Decomposition of ∆. For ∆ we can give a non-trivial min-decomposition. We
have

Hmin(s, t) =
⎧⎪⎪⎨⎪⎪⎩

h1 if ℓ(s) /= ℓ(t)
{hs,t

cs,t ∣ cs,t ∈ ΩV (η(s), η(t))} otherwise

(a min-decomposition of ∆) where

h1(d) = 1 and hs,t
cs,t
(d) = ∑

(u,v)∈S×S

cs,t(u, v) ⋅ d(u, v)
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A strategy CMin fixes a vertex of cCMin
s,t ∈ ΩV (η(s), η(t)) for each pair s, t ∈ S with the

same label.
Given a fixed strategy CMin for player Min, we attain the function ∆CMin ∶ [0, 1]S×S →
[0, 1]S×S , defined as

∆CMin(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
∑(u,v)∈S×S cCMin

s,t (u, v) ⋅ d(u, v) otherwise

for d ∈ [0, 1]S×S and s, t ∈ S.
µ∆CMin can be computed via the following linear program

min ∑
s,t∈S

d(s, t)

d(s, t) = 1 ∀s, t ∈ S, ℓ(s) /= ℓ(t)
d(s, t) = ∑

(u,v)∈S×S

cs,t(u, v) ⋅ d(u, v) ∀s, t ∈ S, ℓ(s) = ℓ(t)

d(s, t) ≥ 0 ∀s, t ∈ S

or the following linear system of equations

d(s, t) = 1 ∀s, t ∈ S, ℓ(s) /= ℓ(t)
d(s, t) = 0 ∀s, t ∈ S, s ∼ t

d(s, t) = ∑
(u,v)∈S×S

cs,t(u, v) ⋅ d(u, v) ∀s, t ∈ S, ℓ(s) = ℓ(t), s /∼ t

Comparison to the Policy Iterations in [TvB17]. We refer to [TvB17] on details
regarding the above strategy iteration since their policy iteration (first described in
[BBL+21]) is in fact an instance of our strategy iteration. They analyze the function Λ
where the distance of bisimilar states is set to 0 (which makes the fixpoint unique).

They also present a partial policy algorithm to compute µΛ which can be seen as an
instance of a strategy-in-strategy iteration. Λ has the trivial max-decomposition
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Hmax(s, t) = {h0, hs,t}

(a (trivial) max-decomposition of Λ) where

h0(a) = 0 and hs,t(a) = Λ(a)(s, t).

Now given a strategy CMax for player Max, i.e. CMax(s, t) ∈ Hmax(s, t), they perform
strategy iteration for player Min for the resulting function ΛCMax to compute µΛCMax . The
min-decomposition of ΛCMax is analogous to the one described before (for ∆) where some
states fix the strategy h0 (h0(a) = 0). They do this so they do not have to consider the
whole state space but only a subset of states. They also improve the strategy for player
Max only in some states which makes sense for their purposes (as they want to build
up the used state space as needed)4. Still, in each outer iteration, when improving the
strategy for player Max they inch closer to µΛ. The paper [TvB17] also gives a short
runtime comparison.

This direction might be fruitful for new research as our theory is able to capture this
partial policy algorithm.

5.3.5. Strategy Iterations for Behavioural Distances of Metric
Transition Systems

We aim to analyze the function J ∶ [0, 1]S×S → [0, 1]S×S which was defined as

J (d)(s, t) =max{dL(ℓ(s), ℓ(t)),H(d)(η(s), η(t))}
=max{∣ℓ(s) − ℓ(t)∣, max

u∈η(s)
min

v∈η(t)
d(u, v), max

v∈η(t)
min

u∈η(s)
d(v, u)}

for d ∈ [0, 1]S×S and s, t ∈ S (L = [0, 1], dL is the Euclidian metric), cf. Section 2.6.4. J
usually has multiple fixpoints.

Strategy iterations are applicable since S is a finite set and [0, 1] a complete MV-chain.

Max-Decomposition for J . J has a non-trivial max-decomposition. We have

Hmax(s, t) = {hs,t
L } ∪ {h

s,t
u ∣ u ∈ η(s)} ∪ {hs,t

v ∣ v ∈ η(t)}

(a max-decomposition of J ) where

hs,t
L (d) = ∣ℓ(s) − ℓ(t)∣, hs,t

us
(d) = min

v∈η(t)
d(u, v) and hs,t

ut
(d) = min

v∈η(s)
d(v, u).

A strategy for player Max fixes either the Euclidian distance between the labels or an
element in η(s) or η(t) for all states s, t ∈ S.

4This still comes out to be a stable max-improvement.
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Given a fixed strategy C for player Max, i.e. C(s, t) ∈ Hmax(s, t) for all s, t ∈ S, we
obtain the function JC ∶ [0, 1]S×S → [0, 1]S×S defined as

JC(d)(s, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣ℓ(s) − ℓ(t)∣ if C(s, t) = hs,t
L

minv∈η(t) d(u, v) if C(s, t) = hs,t
us

minv∈η(s) d(v, u) if C(s, t) = hs,t
ut

for d ∈ [0, 1]S×S and s, t ∈ S. We can compute JC via Kleene iteration (from below). JC

also admits a non-trivial min-decomposition which we will not detail here.

There exists another (rather trivial) max-decomposition of J . We have

Hmax(s, t) = {hs,t
L } ∪ {h

s,t
H }

(a second max-decomposition of J ) where

hs,t
L (d) = ∣ℓ(s) − ℓ(t)∣, hs,t

H =H(d)(η(s), η(t).

Here, a strategy for player Max fixes either the Euclidian distance between the labels or
the Hausdorff distance of the successors.

Given a fixed strategy C for player Max, i.e. C(s, t) ∈ Hmax(s, t) for all s, t ∈ S, we
obtain the function JC ∶ [0, 1]S×S → [0, 1]S×S defined as

JC(d)(s, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣ℓ(s) − ℓ(t)∣ C(s, t) = hs,t
L

min
W
{ max
(x,y)∈W

d(x, y) ∣W ⊆ S × S ∧ u(W ) = (η(s), η(t))} C(s, t) = hs,t
H

for d ∈ [0, 1]S×S and s, t ∈ S (cf. Section 3.6.4 for the dual characterization of H, renaming
couplings to W to avoid confusion). We can derive a min-decomposition for the function
JC (almost) dual to the max-decomposition of the function B we will analyze in the next
section (fixing the strategy hs,t

L for states with C(s, t) = hs,t
L ). We can even go further:

Fixing a strategy in this min-decomposition results in a function for which we can also
derive a min-decomposition (almost) dual to the max-decomposition we will derive in
the next section (strategy-in-strategy-in-strategy). Also, complete distributivity can be
used to obtain another function which omits a max-decomposition (almost dual to what
we are doing in the next section).



180 5. A Lattice-Theoretical View of Strategy Iteration

5.3.6. Strategy Iterations for Bisimilarity of Transition Systems

We consider the function B∶{0, 1}S×S → {0, 1}S×S whose greatest fixpoint coincides with
the bisimilarity of a transition system. B can be written as

B(a)(s, t) =max
W
{ min
(s′,t′)∈W

a(s′, t′) ∣W ⊆ S × S ∧ u(W ) = (η(s), η(t))}

for a ∈ {0, 1}S×S and s, t ∈ S (cf. Section 3.6.7). We write W for C to avoid confusion.
Strategy iterations are applicable since S is a a finite set and {0, 1} a complete MV-chain.

Stategy-in-strategy iteration is also applicable.
This instance is somewhat interesting as it is the only one where we aim to compute a

greatest fixpoint.
We note up front that we can derive a min-decomposition (almost) dual to the

max-decomposition described for J in the previous section when taking the primal
representation of B, see Definition 2.6.5.

Max-Decomposition of B. For B we can give a non-trivial max-decomposition. We
have

Hmax(s, t) =
⎧⎪⎪⎨⎪⎪⎩

{hs,t
Ws,t
∣Ws,t ⊆ S × S ∧ u(Ws,t) = (η(s), η(t))} η(s) = ∅⇔ η(t) = ∅

{h0} otherwise

(a max-decomposition of B) where

hs,t
Ws,t
(a) = min

(s′,t′)∈W
a(s′, t′) and h0(a) = 0.

A strategy for player Max fixes a coupling Ws,t of η(s), η(t) for each pair s, t ∈ S (as long
as one exists).

Given a fixed strategy CMax for player Max we attain the function BCMax ∶{0, 1}S →
{0, 1}S , defined as

BCMax(a)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

min(s′,t′)∈Ws,t
a(s′, t′) if η(s) = ∅⇔ η(t) = ∅

0 otherwise

for a ∈ {0, 1}S and s, t ∈ S.
The greatest fixpoint of BCMax can be computed via Kleene iteration (from above) or

by solving the following linear program
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max ∑
s,t∈S

a(s, t)

a(s, t) ≤ a(s′, t′) ∀s, t ∈ S, η(s) = ∅⇔ η(t) = ∅,∀(s′, t′) ∈Ws,t

a(s, t) = 0 ∀s, t ∈ S, η(s) = ∅⇔ η(t) /= ∅
a(s, t) ≤ 1 ∀s, t ∈ S

Strategy-in-Strategy Iteration. Now, given a fixed strategy CMax for player Max we
can define a min-decomposition

HCMax
min (s, t) =

⎧⎪⎪⎨⎪⎪⎩

{hs′,t′ ∣ (s′, t′) ∈Ws,t} if η(s) = ∅⇔ η(t) = ∅
{h0} otherwise

(a min-decomposition of BCMax) where

hs′,t′(a) = a(s′, t′)

A min-decomposition fixes an element of the coupling Ws,t of states s, t ∈ S. Given a
strategy CMin for player Min we have BCMax ∶{0, 1}S → {0, 1}S , defined as

(BCMax)CMin(a)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

a(s′, t′) if η(s) = ∅⇔ η(t) = ∅
h0 otherwise

for a ∈ {0, 1}S and s, t ∈ S. Here, CMax(s, t) = hs,t
Ws,t

and CMin(s, t) = hs,t
s′,t′ . It holds

(s′, t′) ∈W .
We can compute ν(BCMax))CMin via Kleene iteration (from above) or by solving the

following linear program:

max ∑
s,t∈S

a(s, t)

a(s, t) = a(s′, t′) ∀s, t ∈ S, η(s) = ∅⇔ η(t) = ∅, CMax(s, t) = hs,t
Ws,t

, CMin(s, t) = hs′,t′

a(s, t) = 0 ∀s, t ∈ S, η(s) = ∅⇔ η(t) /= ∅
a(s, t) ≤ 1 ∀s, t ∈ S

Example 5.3.5. Consider the following transition system.
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x y

The max-decomposition is given as follows:

• Hmax(x, x) = {h1, h2} with h1(a) =min{a(x, x), a(y, y)} and h2(a) =min{a(x, y),
a(y, x)} corresponding to the two possible (minimal) couplings of η(x) and η(x)

• Hmax(y, y) = {hy,y} with hy,y(a) =min(x′,y′)∈∅ a(x′, y′) = 1

• Hmax(x, y) =Hmax(y, x) = {h0} with h0(a) = 0 (the set of couplings is empty)

Assume, Max guesses the strategy C(0)(x, x) = h2 (all other strategies are unique). Now
νBC(0)(x, x) = 0 = νBC(0)(x, y) = νBC(0)(y, x) and νBC(0)(y, y) = 1. One can see that
νBC(0) = µB. Now, νB#

νB
C(0)
= {(x, x)} thus we continue the iteration with the post-

fixpoint a(x, x) = a(y, y) = 1 and a(x, y) = a(y, x) = 0. Now, Max switches his strat-
egy, i.e. C(1)(x, x) = h1 and obtains νBC(1)(x, x) = νBC(1)(y, y) = 1 and νBC(1)(x, y) =
νBC(1)(y, x) = 0. One can see that νBC(1) = νB(= a).

Rewriting B. Taking advantage of complete distributivity (Definition 2.3.6), we can
reformulate

B(a)(s, t) =max
W
{ min
(s′,t′)∈W

a(s′, t′) ∣W ⊆ S × S ∧ u(W ) = (η(s), η(t))}

=min
f∈F

max
W
{a(f(W )) ∣W ⊆ S × S ∧ u(W ) = (η(s), η(t))}

Now F = {f ∶W → S × S} where W is the set of all couplings of successors of all pairs of
states (s, t) ∈ S2.

A min-decomposition for this rewritten function is given by

Hmin(s, t) =
⎧⎪⎪⎨⎪⎪⎩

hs,t
f (a) if η(s) = ∅⇔ η(t) = ∅
{h0} otherwise

(a min-decomposition of B) where

hs,t
f (a) =max

W
{a(f(W )) ∣W ⊆ S × S ∧ u(W ) = (η(s), η(t))} and h0(a) = 0.

Here, a strategy fixes a pair of states in each coupling for all states s, t ∈ S.
One can also easily derive a max-decomposition for the resulting function BCMin where

CMin is a strategy for player Min. A strategy CMax for player Max would specify the
function (BCMax)CMin from before.



5.3. Applications 183

Example 5.3.6. Revisit the previous example. We can now perform strategy iteration from
above to compute νB. There are two ways to couple η(x) with η(x): W1 = {(x, x), (y, y)}
and W2 = {(x, y), (y, x)}. A strategy in Hmin(x, x) fixes an element in each coupling.
Thus the min-decomposition is given as follows:

• Hmin(x, x) = {h1, h2, h3, h4} with
– h1(a) =max{a(x, x), a(x, y)}
– h2(a) =max{a(x, x), a(y, x)}
– h3(a) =max{a(y, y), a(x, y)}
– h4(a) =max{a(y, y), a(y, x)}

• Hmin(y, y) = {hy,y} with hy,y(a) = 1 (we only have the coupling C = ∅)

• Hmin(x, y) =Hmin(y, x) = {h0} with h0(a) = 0 (the set of couplings is empty)

Here, in fact, any strategy is optimal since player Max would always choose coupling W1
for (x, x). I.e. let the four strategies be given by C1

Min, C2
Min, C3

Min, C4
Min (corresponding to

h1, h2, h3, h4) we obtain νB = νBC1
Min
= νBC2

Min
= νBC3

Min
= νBC4

Min
.

We discussed in Section 2.6.2 some algorithms from the literature which compute the
bisimilarity. It seems that our strategy iterations have not been considered before, thus a
comparison between known algorithms and our strategy iterations might be interesting.

5.3.7. Strategy Iterations for Behavioural Distances of Probabilistic
Automata

We aim to analyze the functionM∶ [0, 1]S×S → [0, 1]S×S which was defined in Section 2.6.5
as

M(d)(s, t) =
⎧⎪⎪⎨⎪⎪⎩

1 if ℓ(s) /= ℓ(t)
H(K(d))(η(s), η(t)) otherwise

for d ∈ [0, 1]S×S and s, t ∈ S (L = [0, 1], dL is the discrete metric).M usually has multiple
fixpoints.

In order to cast this problem in our framework, we identify a suitable min-decomposition
of M. Observe that, for d ∈ [0, 1]S×S and s, t ∈ S such that ℓ(s) = ℓ(t), expanding the
definitions of the liftings and taking advantage of complete distributivity (Definition 2.3.6),
we have

M(d)(s, t) =H(K(d))(η(s), η(t))
= min

R∈R(η(s),η(t))
max
(β,β′)∈R

min
ω∈ΩV (β,β′)

∑
u,v∈S

d(u, v) ⋅ ω(u, v)

= min
R∈R(η(s),η(t))

min
f∈FR

max
(β,β′)∈R

∑
u,v∈S

d(u, v) ⋅ f(β, β′)(u, v)

where FR = {f ∶R → D(S × S) ∣ f(β, β′) ∈ ΩV (β, β′) for (β, β′) ∈ R}, which is a finite set
and R(η(s), η(t)) = {R ∈ P(D(S) ×D(S)) ∣ π1(R) = η(s) ∧ π2(R) = η(t)} is the set of
set-couplings of η(s), η(t).
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Min-Decomposition of M. We denote by Hmin the min-decomposition ofM defined
as follows.

For s, t ∈ S such that ℓ(s) = ℓ(t), we let

Hmin(s, t) = {hR,f ∣ R ∈R(δ(s), δ(t)), f ∈ FR},

with hR,f ∶ [0, 1]S×S → [0, 1] defined as

hR,f(d) =max(β,β′)∈R ∑
u,v∈S

d(u, v) ⋅ f(β, β′)(u, v).

If instead ℓ(s) ≠ ℓ(t), we let Hmin(s, t) = {h1} where h1(d) = 1 for all d.

A strategy C in Hmin maps each pair of states s, t ∈ S to a function in Hmin(s, t), that is

• if ℓ(s) ≠ ℓ(t), to the unique element h1 ∈Hmin(s, t);

• if ℓ(s) = ℓ(t) to some hR,f ∈ Hmin(s, t), with R ∈ R(δ(s), δ(t)) set-coupling
and f ∈ FR.

We can instantiate the algorithm in Figure 5.2 to compute the least fixpoint from
above. The following lemma is helpful in the instantiation of the algorithm, when we
need to construct a new strategy.

Lemma 5.3.7. Let PA = (S, η, L, ℓ) be a probabilistic automaton and let Hmin be
the min-decomposition of M. Given a strategy C in Hmin and d ∶ Y × Y → [0, 1],
a strategy C ′(y) = arg minh∈Hmin(y) h(d) can be defined as follows: for (s, t) ∈ S ×S

• if ℓ(s) ≠ ℓ(t) then C ′(s, t) = C(s, t)

• if ℓ(s) = ℓ(t) then C ′(s, t) = hR′,f ′ where

R′ = arg minR∈R(δ(s),δ(t)) max
(β,β′)∈R

K(d)(β, β′)

and for (β, β′) ∈ R′:

f ′(β, β′) = arg min
ω∈ΩV (β,β′)

∑
u,v∈S

d(u, v) ⋅ ω(u, v).

Proof. See Appendix: Lemma A.4.3.

The algorithm starts by fixing a strategy C0 (item (1)). Then, at each iteration,
if impmin(Ci) ≠ ∅ (item (2b) which by Lemma 5.2.12, can be checked by verifying
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if M(µMCi) ⊏ µMCi), we consider a new strategy Ci+1 ∈ impmin(Ci). According to
Remark 5.2.10, this can be defined as follows: for (s, t) ∈ S × S

• if ℓ(s) ≠ ℓ(t) then Ci+1(s, t) = Ci(s, t)

• if ℓ(s) = ℓ(t) then Ci+1(s, t) = hR′,f ′ chosen in a way that minimises hR′,f ′(µMCi).
Concretely (see Lemma 5.3.7), one can define

R′ = arg minR∈R(δ(s),δ(t)) max
(β,β′)∈R

K(µMCi)(β, β′)

and for (β, β′) ∈ R′:

f ′(β, β′) = arg min
ω∈ΩV (β,β′)

∑
u,v∈S

µMCi(u, v) ⋅ ω(u, v).

If instead, impmin(Ci) = ∅ (item (2c)) and thus, by Lemma 5.2.12, µMCi is a fixpoint
ofM, we check whether it is the least fixpoint by verifying if νMµMCi

# = ∅ (Lemma 3.4.2),
and in case it is not, we use Lemma 3.4.2 to determine a pre-fixpoint a ⊏ µMCi , which
is then used to obtain Ci+1. The approximation Md

# is spelled out in Lemma 3.6.17.
Furthermore µMCi is again obtained by linear programming, similar to the case of simple
stochastic games (also see [BBL+21]).

Comparison to [BBL+21]. The resulting algorithm is quite similar to the one specifi-
cally developed for probabilistic automata in [BBL+21]. In particular, it can be seen that,
apart from the different presentation, a strategy C corresponds to what [BBL+21] refers to
as a coupling structure. In addition, the step in item (2c) of the algorithm (see Figure 5.2)
is analogous to that in [BBL+21]. In fact, in order to check whether the fixpoint obtained
with the current strategy Ci, i.e. µMCi , is the least fixpoint of M, one considers the
approximation MµMCi

# and checks whether its greatest fixpoint is empty. Recalling that
the post-fixpoints of MµMCi

# have been shown in Proposition 3.6.20 to be the self-closed
relations of [BBL+21], one derives that verifying the emptiness of the greatest fixpoint of
MµMCi

# corresponds exactly to checking whether the largest self-closed relation is empty.
More in detail, in our case, a strategy C in Hmin maps each pair of states s, t ∈ S with

ℓ(s) = ℓ(t) to some hR,f ∈Hmin(s, t), where R ∈R(δ(s), δ(t)) is a set-coupling and f ∈ FR

maps each (β, β′) ∈ R to a probabilistic coupling. Note that the choice of the probabilistic
couplings is “local”, i.e., we could have different pairs of states (s, t), (u, v) ∈ S × S
and C(s, t) = (R, f), C(u, v) = (R′, f ′), with (β, β′) ∈ R ∩ R′ and f(β, β′) ≠ f ′(β, β′).
However, it is easy to see that we can assume (and it is computationally convenient
to do so) that the choice of the probabilistic coupling is actually “global”, i.e., that
for a strategy C, there is a (partial) function F ∶ D(S) ×D(S) → D(S × S) such that
for each (s, t) ∈ S × S we have C(s, t) = (R, F∣R). In this view, a strategy C can be
identified with a pair (ρ, F ), where ρ gives the set-couplings, i.e., ρ(s, t) ∈R(δ(s), δ(t)),
and F ∶D(S) ×D(S)→ D(S × S) the probabilistic couplings. This exactly corresponds to
the notion of coupling structure in [BBL+21].
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A difference concerns how strategy updates are performed. While in the algorithm
derived above all set-couplings are updated at the same time (ρ-component), in [BBL+21]
the set-coupling is updated only for a single pair of states. Since the “local” update
produces a min-improvement, also the algorithm in [BBL+21] can be seen as an instance
of the algorithm in Figure 5.2. Updating all components can be more expensive, but it
might accelerate convergence. A more precise comparison should be carried out via an
experimental approach.

5.4. Runtime Comparison

From a theoretical point of view, the number of iterations of both strategy algorithms
is bounded by the number of strategies of the corresponding player p ∈ {min, max},
which is exponential in the input size (the number of strategies is ∏y∈Y ∣Hp(y)∣). This
suggests that, depending on the setting, the fastest algorithm is the one using the smaller
decomposition Hmin respectively Hmax. However, a deeper analysis is still needed, as a
smaller decomposition usually leads to a higher cost for computing µfC .

We will now perform a short runtime comparison for all three presented two player
games. These results aim to justify the need for strategy iteration and to answer the
question above.

Implementations were done in MATLAB.

5.4.1. Runtime Comparison for Discounted Mean-Payoff Games

We now compare runtimes of the algorithms for randomly generated discounted mean-
payoff games. We compare Kleene iteration (KI) with strategy iteration (SI) and strategy-
in-strategy iteration (SiSI) (ch. Section 5.3.1). It has to be noted, that Kleene iteration
from above and below produces extremely similar runtimes. This is not surprising since
discounted mean-payoff games are symmetric with regards to the players’ objectives and
the games were randomly created. The same holds for strategy iteration and strategy-in-
strategy iteration (we chose to always approach from below).

The analyzed games have n states which randomly belong to player Max or Min, we
chose W = n, λ = 1/2 and the probability of an edge existing is 1/2, i.e. for each state an
edge to some other state exists with probability 1/2 with some random weight in [−W, W ].
Cumulative runtimes (in seconds) are given for 1000 random runs in Figure 5.8. We also
give the number of iterations (inner iteration for strategy-in-strategy iteration as the
number of outer iterations is the same as for strategy iteration). The tolerance for Kleene
iteration is given by 10−13 in 2-norm.

It is rather obvious, that strategy-in-strategy iteration is more efficient than Kleene
iteration which also just yields an approximation and no exact result. We also note, that
Kleene iteration really struggles when λ is close to 1 (which frequently occurs when
reducing a mean-payoff game to a disounted mean-payoff game). The other algorithms
seemed unaffected.

We also did a second comparison with the same parameters except that we tweaked
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runtime (seconds) number of iterations
n KI SI SiSI KI SI SiSI
10 0.04 4.94 0.01 38452 2929 8426
20 0.08 5.88 0.12 40479 3718 13988
30 0.16 6.14 0.03 41375 4169 17502
40 0.27 6.62 0.05 41992 4476 19987
50 0.42 7.16 0.08 42727 4694 22240
60 0.75 8.20 0.10 42998 4906 24001
70 1.27 9.31 0.14 43048 5022 25345
80 2.04 10.88 0.18 43892 5204 26848
90 2.83 12.07 0.22 44021 5280 28007
100 3.92 15.88 0.27 44213 5373 28884

Fig. 5.8.: Runtime comparison for discounted mean-payoff games

the probability of a state belonging to player Max to be 1/4 and it belonging to player Min
with probability 3/4. Table 5.9 shows this comparison for strategy iteration from above
(SIA) and below (SIB) as we wanted to show that - although the number of iterations
are smaller in SIB, as there are less strategies to consider - the total runtime balances
out since the computation of µLC is more expansive in SIB.

As one can see, the number of iterations is clearly smaller for SIB but the runtime is
actually longer. This enforces the assumption that the total number of strategies may
not be in one-to-one correspondance to a lower the runtime.

Varying the other parameters did not yield interesting results.

5.4.2. Runtime Comparison for Simple Stochastic Games

We implemented strategy iteration from above and from below – in the following ab-
breviated by SIA and SIB – and classical Kleene iteration (KI). In Kleene iteration we
terminate with a tolerance of 10−14, i.e., we stop if the change from one iteration to the
next is below this value (in 2-norm). Additionally, we implemented strategy-in-strategy
iteration from above (SiSIA) and below (SiSIB).

In order to test the algorithms we created random stochastic games with n nodes,
where each Max, Min respectively average node has a maximal number of m successors.
For each node we choose randomly one of the four types of nodes. Sink nodes are given a
random weight uniformly in [0, 1]. Successors are randomly assigned to Max and Min
nodes and for an average node we assign a random number to each of its successors,
followed by normalisation to obtain a probability distribution.

We performed 1000 runs with different randomly created systems for each value of
n and m = n/2. In Figure 5.10 we display the cumulative runtimes (in seconds) for all
algorithms and the number of nodes with a value of 0 (to clarify what kind of systems
are created). In Figure 5.11 we display the number of iterations (inner iterations for the
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runtime (seconds) number of iterations
n SIA SIB SIA SIB
10 5.19 5.24 3228 2280
20 5.57 5.90 4103 3064
30 6.48 7.28 4573 3538
40 6.05 7.41 4836 3906
50 6.40 8.69 5073 4071
60 7.71 11.61 5285 4225
70 7.39 12.79 5394 4380
80 7.49 14.52 5562 4499
90 7.88 17.13 5645 4633
100 8.24 20.11 5761 4700

Fig. 5.9.: Second Runtime comparison for discounted mean-payoff games

strategy-in-strategy iteration) and the number of other fixpoints encountered on the way
(outer: strategy iteration from above, inner: strategy-in-strategy iteration from below).

Note that SIB usually performs slightly better than SIA. Moreover KI neatly beats
both of them. Here we need to remember that KI only converges to the solution and it is
known that the rate of convergence can be exponentially slow [Con92]. Also convergence
in 2-norm is rather fast when many states have a value of 0.

Note that the linear optimisation problems are quite costly to solve, especially for large
systems. Thus additional iterations are substantially more costly compared to KI.

The number of nodes with a payoff of 0 seems to grow linearly with the number of
nodes in the system. The number of times SIA/SiSIB gets stuck at a fixpoint different
from µV however seems comparatively small.

We note that we also varied the number of nodes which belong to player Max, respec-
tively player Min, i.e. there were substantially more nodes in VMax than in VMin or vice
versa. However, although the number of iterations varied, the total runtime of both SIA
and SIB did not change that much. This indicated that the extra cost in computing µVC

balances out with the number of iterations.
Strategy-in-strategy iteration performed rather well - in fact better than the usual

strategy iterations.
We also did a runtime comparison for randomly generated stopping simple stochastic

games in the same manner (see Figure 5.12). Here, each state has exactly two successors
and there exist exactly two sinks with payoff 0, respectively 1.

Here, it is rather obvious that strategy iteration is the way to go as Kleene iteration
struggles since it may take many iterations to reach a sink. The results are rather unclear
which strategy iteration is to be preferred. For example, SIA performed worst when it
came to the first comparison, but actually performed the best for 100 nodes in the second
comparison. There probably is some way to create systems where each of these four
strategy iterations is to be preferred.
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runtime (seconds) number of
n KI SIA SiSIA SIB SiSIB payoff 0
10 0.27 9.96 1.50 10.19 1.58 2439
20 0.56 13.75 1.84 14.09 1.94 4714
30 1.24 15.70 2.46 15.66 2.65 7268
40 2.61 16.04 3.08 14.82 3.32 9806
50 2.11 16.54 3.94 14.41 4.30 12573
60 1.77 17.93 4.88 14.07 5.43 15151
70 1.46 20.87 6.01 14.37 6.75 17473
80 1.85 26.47 7.44 14.72 8.56 20031
90 2.22 35.80 9.05 15.26 10.65 22390
100 2.69 48.03 10.93 15.86 13.17 25163

Fig. 5.10.: Runtime comparion for simple stochastic games

number of iterations number of other fp
n KI SIA SiSIA SIB SiSIB outer inner
10 19336 1523 2534 1626 2476 203 300
20 20118 2234 5280 2395 5100 206 386
30 21970 2317 5649 2506 5400 86 166
40 22375 2219 5083 2354 4839 60 97
50 18884 2067 4422 2208 4138 72 103
60 6479 1991 4110 2117 3830 39 50
70 4261 1977 4039 2094 3707 36 47
80 4171 1980 4002 2053 3755 26 34
90 4186 1983 3976 2042 3695 14 17
100 4230 1988 3963 2028 3696 9 13

Fig. 5.11.: Number of iterations
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runtime (seconds)
n KI SIA SiSIA SIB SiSIB
10 0.55 9.72 1.59 11.08 1.62
20 2.08 12.77 2.10 14.04 2.19
30 5.06 14.94 3.20 16.88 3.52
40 14.74 16.75 4.89 18.79 5.69
50 26.64 20.61 8.14 22.73 10.00
60 64.18 23.54 12.55 26.89 16.02
70 73.79 26.31 17.68 29.83 23.55
80 75.36 28.47 23.43 32.85 32.53
90 110.35 32.63 31.73 37.96 45.34
100 150.75 38.22 43.56 45.13 64.31

number of iteration
n KI SIA SiSIA SIB SiSIB
10 51845 1386 2293 1657 2207
20 60539 1842 3757 2047 3626
30 71433 2100 4983 2379 4813
40 122011 2354 6103 2602 5831
50 137387 2607 7211 2788 6956
60 225775 2715 7945 2957 7766
70 184569 2886 8865 3086 8508
80 156179 3027 9682 3227 9401
90 179107 3137 10351 3365 10082
100 192922 3252 11132 3490 10837

Fig. 5.12.: Runtime comparison for stopping simple stochastic games
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Lastly, we note that SIB, SiSIA and SiSIB provide an optimal strategy for player Max
which is otherwise rather hard to obtain (see Remark 5.2.23.

5.4.3. Runtime Comparison for Energy Games

In this section we compare runtimes of our strategy algorithms to known algorithms for
energy games.

Value Iteration. We briefly discuss a value iteration technique developed by [BCD+11]
that resembles a worklist algorithm used in the context of dataflow analysis. The algorithm
starts with a value function g = 0 and computes a list L of invalid states w.r.t. g, i.e.

• v ∈ V0 invalid iff w(v, v′) + g(v) − g(v′) < 0 for all (v, v′) ∈ E

• v ∈ V1 invalid iff w(v, v′) + g(v) − g(v′) < 0 for some (v, v′) ∈ E

Now, we iteratively pick any state v ∈ L and increase g(v) until v is valid. This may
produce new invalid states which need to be added to L. The algorithm terminates when
there are no more invalid states, i.e. L = ∅, and we obtain g = µĒ . We note that this
algorithm works for any energy game.

Example 5.4.1. Consider the follwing energy game (circles belong to player Min, rect-
angles to player Max):

us

v z

0 −1−5

−5

1

−3

Initially L = {u, v}. Now, we choose v ∈ L and make it valid, thus g(v) = 3. Now,
L = {u, z} since state z is now invalid. Next, we increase g(u) to 5 to make u valid and
L = {z} since no other state is added. We increase g(z) = 2 which makes v invalid again.
Next, we increase g(v) = 5 and finally g(z) = 4 (since z was made invalid again). The
iteration terminates since L = ∅. Thus µĒ(s) = 0, µĒ(u) = 5, µĒ(v) = 5, µĒ(z) = 4.

Runtime Results. We now compare runtimes for each algorithm by generating random
games. The number of states in our system is denoted by n, while p represents the
probability that any edge (u, v) exists, i.e. given states u and v, the probability that the
edge (u, v) exists is given by p. We guarantee at least one outgoing edge for each state.
If an edge exists, its weight is some uniformly random integer in [−W, W ] where W is
the maximum edge weight.

Our runtime-tables use the following abbreviations:
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• TF: transformation of Γ to Γ′

• KLE: Kleene iteration

• VI: Value iteration from [BCD+11]

• SIA: Strategy iteration for player Min (iteration from above)

• SIB: Strategy iteration for player Max (iteration from below)

We use value iteration to compute the µECi in both strategy iterations given any strategy
Ci. This is more efficient than using linear programming in SI0. Additionally, since the
value iteration is rather efficient, strategy-in-strategy iteration did not yield better results,
thus we omit these runtimes.

Cumulative runtimes (in seconds) are given for 1000 random runs for W = n and p = 2/n,
where each state randomly belongs to player Min or player Max. A deviation with respect
to W and p barely impacts the runtime comparison.

First, we examine random systems of exclusively finite values:

KLE VI SIB SIA
n = 20 0.04 0.02 0.07 0.27
n = 40 0.13 0.05 0.19 1.88
n = 80 0.59 0.17 0.74 14.79

It is rather clear that approaching from above (SIA) does not seem fruitful since values
are usually rather small. Note that VI performs the best.

Next, we examine random systems where infinite values are allowed. Hence, we need to
transform these systems to systems with finite values (TF) beforehand and then apply
our algorithms to these reduced system. We note that around every second state requires
an infinite initial energy in the original systems:

TF KLE VI SIB SIA
n = 20 0.05 0.33 0.19 0.48 0.1
n = 40 0.19 2.6 0.79 2.5 0.3
n = 80 1.07 26.7 4.96 19.41 0.98

It is not rare that a handful of states attain a value of around 2 ⋅ n ⋅W . Thus, SIA is
rather efficient in this instance when choosing the sink state s as the initial successor
for each state in VMin (this strategy also guarantees finite values). Here, SIA is very
competitive, even compared to VI. We however note that SIB is the only algorithm
which produces also an optimal strategy for player Max.
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5.5. Summary
We derived abstract algorithms for strategy iterations which compute least/greatest fix-
points. Here, we rely on the function of interest having a suitable min-/max-decomposition.
A strategy corresponds to an element of this min-/max-decomposition and our algorithms
successively improve the chosen strategy until an optimal one is found. This optimal
strategy C corresponds to µf in the sense that µfC = µf (or dually to νf).

We were successful in applying these strategy iterations to a handful of applications
and showed their usefulness in runtime comparisons.



6 Conclusion and Future Work

In this thesis we tackled the problem how - given a non-expansive function f ∶MY →MY

and a fixpoint a of f - we could verify that a is the least/greatest fixpoint of f . Additionally,
we were able to derive methods which yield an exact computation of µf/νf - generalized
strategy iterations. Both theories were used on a handful of applications, i.e. we derived
the corresponding approximations and instantiated our generalized strategy iterations to
the problems at hand.

We applied these theories to many applications: termination probability of Markov
chains, bisimilarity for transition systems, behavioural distances for labeled Markov
chains, behavioural distances for metric transition system, behavioural distances for
probabilistic automata, discounted mean-payoff games, simple stochastic games and
energy games. There exist a handful of other applications that were not discussed in
this thesis but can easily be handled by our theories, for example bisimilarity for labeled
transition systems and behavioural metrics for Rabin automata. Other applications like
probabilistic programs and incorrectness calculus might be interesting to investigate in
our framework [MMKK18].

We will briefly review the main results and suggest future work.

6.1. Fixpoint Theory - Upside Down

We devised a method that - given some non-expansive function f ∶MY →MY and some
fixpoint a of f - can be used to verify if a is the least/greatest fixpoint of f . To this end, we
derived the approximations fa

#∶P([Y ]a) → P([Y ]f(a)) and f#
a ∶P([Y ]a) → P([Y ]f(a)).

Any fixpoint of these approximations corresponds to a "vicious cycle" in which states
convince each other that their value is lower/higher than what it should be. Once such
a vicious cycle is detected, the theory provides a constant which can be used to scale
up/down the values in the vicious cycle to stay below/above the greatest/least fixpoint.
We were also able to derive an (incomplete) proof rules which provides upper/lower
bounds for greatest/least fixpoints.

We were able to cast a handful of applications into the desired framework and derived
the corresponding approximations. To this end, the (de)composition of non-expansive
functions into smaller sub-functions - as well as the corresponding approximations -
proved immensely useful.

Future Work Suggestions. In the future we suggest to lift some of the restrictions of
our approach. First, an extension to an infinite domain Y would of course be desirable,
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but since several of our results currently depend on finiteness, such a generalisation does
not seem to be easy. We partially tackle this problem in Chapter 4.

The restriction to total orders, instead, seems easier to lift: in particular, if the partially
ordered MV-algebra M̄ is of the form MI where I is a finite index set and M an MV-
chain. (E.g., finite Boolean algebras are of this type.) In this case, our function space is
M̄Y = (MI)Y ≅MY ×I and we have reduced to the setting presented in this paper. This
will allow us to handle featured transition systems [CCP+12] for compactly specifying
software product lines in a single transition system. There, transitions are equipped with
boolean formulas that specify for which products (or features) a transition can be taken.

Another suggestion is to investigate whether some examples can be handled with other
types of Galois connections: here we used an additive variant, but looking at multiplicative
variants (multiplication by a constant factor) might also be fruitful.

Lastly, as the proof rules for pre-/post-fixpoints is incomplete, it would be very desirable
to have a way of constructing lower/upper bounds for least/greatest fixpoints - via some
sort of algorithm.

6.2. A Monoidal View on Fixpoint Checks

We were able to embed the approximation framework into a categorical setting. The
resulting functor # was shown to be gs-monoidal which allowed us to construct the tool
UDEfix where the user can compose his/her very own functions and perform fixpoint
checks.

Additionally, we defined our approximation framework with infinite domains which we
used to handle general predicate liftings and the Wasserstein lifting.

Future Work Suggestions. One important question is still open: we defined a lax
functor #, relating the concrete category C of functions of type MY → MZ – where
Y, Z might be infinite – to their approximations, living in A. It is unclear whether # is
a proper functor, i.e., preserves composition. For finite sets functoriality derives from
a non-trivial result in Section 3.5 and it is unclear whether it can be extended to the
infinite case. If so, this would be a valuable step to extend the theory.

We illustrated the approximation for predicate liftings via the powerset and the
distribution functor. It would be interesting to study more functors and hence broaden
the applicability to other types of transition systems.

Concerning UDEfix, we suggest to extend the tool to compute fixpoints, either via
Kleene iteration or strategy iteration (strategy iteration from above and below), as
detailed in the next chapter. Furthermore for convenience it would be useful to have
support for generating fixpoint functions directly from a given coalgebra, respectively
transition system.
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6.3. A Lattice-Theoretical View of Strategy Iteration
We developed abstract algorithms for strategy iterations which allow to compute least
fixpoints (or, dually, greatest fixpoints) of non-expansive functions over MV-algebras.
The idea consists in expressing the function of interest as a minimum (or a maximum),
and view the process of computing the function as a game between players Min and Max
trying to minimise and maximise, respectively, the outcome. Then the algorithms proceed
via a sequence of steps which converge to the least fixpoint from above, progressively
improving the strategy of player Min, or from below, progressively improving the strategy
of the player Max, until an optimal strategy is found.

We instantiated these iterations to a handful of problems. Here, the main task was
to detect a min-/max-decomposition and explain how the computation of least/greatest
fixpoints stemming from a given strategy can be archived.

Future Work Suggestions. Our abstract strategy iteration algorithms rely on the
assumption that, once a strategy for one of the players is fixed, the optimal “answering”
strategy for the opponent can be computed efficiently. Identifying abstract settings where
a min- or max-decompositions of a function ensures that the answering strategy can
be indeed computed efficiently (e.g., via linear programming as it happens for simple
stochastic games), is an interesting direction of future research.

It might be interesting to consider functions where the min (or max) is nested, i.e.
functions of the kind f ∶MY →MY defined as

f(a)(y) = ιy( min
h∈Hmin(y)

h(a))

for a ∈MY , functions ιy ∶M→M and Hmin ⊆MY →M. Can we perform strategy iteration
for these kind of functions similar to what we are doing here?

6.4. Concluding Remarks
We were able to derive a framework and method for fixpoint checks of non-expansive
functions f ∶MY →MY and a generalization of strategy iteration to compute least/greatest
fixpoints. The generality of these methods and the various applications we found shows
the value of the contribution made in this thesis.





A Appendix

In this chapter one can find proofs which were deemed too extensive and/or less central
and were thus removed from the main part of this thesis.

A.1. Proofs of Chapter 2

Lemma A.1.1 (Lemma 2.3.18). Let M = (M,⊕, 0, (⋅)) be an MV-algebra. For all
x, y, z ∈M it holds

1. x⊕ x = 1

2. x ⊑ y iff x⊕ y = 1 iff x⊗ y = 0 iff y = x⊕ (y ⊖ x)

3. x ⊑ y iff y ⊑ x

4. ⊕, ⊗ are monotone in both arguments, ⊖ monotone in the first and antitone
in the second argument.

5. if x ⊏ y then 0 ⊏ y ⊖ x;

6. (x⊕ y)⊖ y ⊑ x

7. z ⊑ x⊕ y if and only if z ⊖ x ⊑ y.

8. if x ⊏ y and z ⊑ y then x⊕ z ⊏ y ⊕ z;

9. y ⊑ x if and only if (x⊕ y)⊖ y = x;

10. x⊖ (x⊖ y) ⊑ y and if y ⊑ x then x⊖ (x⊖ y) = y.

11. Whenever M is an MV-chain, x ⊏ y and 0 ⊏ z imply (x⊕ z)⊖ y ⊏ z

Proof. The proof of properties (1), (2), (3), (4) can be found directly in [Mun07]. For
the rest:

5. Immediate consequence of (2). In fact, given x ⊏ y, if we had y ⊖ x = 0 then by (2),
y = x⊕ (y ⊖ x) = x⊕ 0 = x, contradicting the hypothesis.

6. Observe that (x⊕ y)⊖ y = (x⊕ y)⊕ y = (x⊖ y)⊕ y = (y ⊖ x)⊕ x ⊑ x = x, where the
last inequality is motivated by the fact that x ⊑ (y ⊖ x)⊕ x and point (3).
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7. The direction from left to right is an immediate consequence of (6). In fact, if
z ⊑ x⊕ y then z ⊖ x ⊑ (x⊕ y)⊖ x ⊑ y.
The other direction goes as follows: if z ⊖ x ⊑ y, then – by monotonicity (4) –
(z ⊖ x)⊕ x ⊑ y ⊕ x = x⊕ y. The left hand side can be rewritten to (x⊖ z)⊕ z ⊒ z.

8. Assume that x ⊏ y and z ⊑ y. We know, by property (4) that x⊕ z ⊑ y ⊕ z. Assume
by contradiction that x⊕ z = y ⊕ z. Then we have

x ⊑ (x⊕ z)⊖ z [by properties (3) and (6)]
⊑ (y ⊕ z)⊖ z [since x⊕ z = y ⊕ z]
= (y ⊖ z)⊕ z [definition of ⊖]
= y [since z ⊑ y and property (2)]

And with point (3) this is a contradiction.

9. Assume y ⊑ x. We know (x⊕y)⊖y ⊑ x. If it were (x⊕y)⊖y ⊏ x, then ((x⊕y)⊖y)⊕y ⊏
x⊕ y, with (8). Since the left-hand side is equal to (y ⊖ (x⊕ y))⊕ (x⊕ y) ⊒ x⊕ y,
this is a contradiction.
For the other direction assume that (x⊕ y)⊖ y = x. Hence we have x = (x⊕ y)⊖ y =
(x⊕ y)⊕ y. By complementing on both sides we obtain x = (x⊕ y)⊕y which implies
that y ⊑ x.

10. Observe that, by (7), we have y ⊑ x⊕ (y ⊖ x) = x⊕ (x⊖ y) = x⊖ (x⊖ y). Therefore,
by (3), x⊖ (x⊖ y) ⊑ y, as desired.
For the second part, assume y ⊑ x and thus, by (3), x ⊑ y. Using (2), we obtain
y = x⊕ (y ⊖ x) = x⊕ y ⊕ x = x⊕ (x⊖ y). Hence y = x⊕ (x⊖ y) = x⊖ (x⊖ y).

11. We first observe that, given u, v ∈M, u ⊑ v ⊕ (u⊖ v). This is a direct consequence
of axiom (3) of MV-algebras and the definition of natural order.
Second, in an MV-chain if u, v ⊐ 0, then u ⊖ v ⊏ u. In fact, if u ⊑ v and thus
u ⊖ v = 0 ⊏ u. If instead, v ⊏ u we have 0 ⊏ v and u ⊖ v ⊑ 1 ⊖ v = v, hence by
(8) it holds that 0 ⊕ (u ⊖ v) ⊏ v ⊕ (u ⊖ v). Recalling that v ⊏ u and thus by (2),
(u⊖ v)⊕ v = u, we conclude u⊖ v ⊏ u.
Now

(x⊕ z)⊖ y

⊑ (x⊕ (y ⊖ x)⊕ (z ⊖ (y ⊖ x)))⊖ y [by first obs. above]
= (y ⊕ (z ⊖ (y ⊖ x)))⊖ y [since x ⊑ y, by (2)]
⊑ z ⊖ (y ⊖ x) [by (6)]
⊏ z [by second obs. above, since z ⊐ 0

and y ⊖ x ⊐ 0 by (5)]
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Lemma A.1.2 (Lemma 2.3.20). Let M be a complete MV-algebra. Then (M,⊕,⊒)
is a unital and commutative quantale.

Proof. We know M is a complete lattice. Binary meets are given by

x ⊓ y = x⊕ y ⊕ y. (A.1)

Moreover ⊕ is associative and commutative, with 0 as neutral element.
It remains to be shown that ⊕ distributes with respect to ⊓ (note that ⊓ is the join for

the reverse order), i.e., that for all X ⊆M and a ∈M, it holds

a⊕⊓X =⊓{a⊕ x ∣ x ∈X}

Clearly, since ⊓X ≤ x for all x ∈X and ⊕ is monotone, we have a⊕⊓X ⊑ ⊓{a⊕x ∣ x ∈X}.
In order to show that a⊕⊓X is the greatest lower bound, let z be another lower bound
for {a⊕ x ∣ x ∈X}, i.e., z ⊑ a⊕ x for all x ∈X. Then observe that for x ∈X, using (A.1),
we get

x ⊒ x ⊓ a = (x⊕ a)⊕ a ⊒ z ⊕ a = z ⊖ a

Therefore ⊓X ⊒ z ⊖ a and thus

a⊕⊓X ⊒ a⊕ (z ⊖ a) ⊒ z

as desired.

Lemma A.1.3 (Lemma 2.3.25). Let f ∶MY →MZ be a monotone function, where
M is an MV-chain and Y, Z are finite sets. Then f is non-expansive iff for all
a ∈MY , θ ∈M and z ∈ Z it holds f(a⊕ θ)(z)⊖ f(a)(z) ⊑ θ.

Proof. Let f be non-expansive and let a ∈MY and θ ∈M. We have that for all z ∈ Z

f(a⊕ θ)(z)⊖ f(a)(z) ⊑
⊑ ∣∣f(a⊕ θ)⊖ f(a)∣∣ [by definition of norm]
⊑ ∣∣(a⊕ θ)⊖ a∣∣ [by hypothesis]
⊑ ∣∣λy.θ∣∣ [by Lemma 2.3.18(6) and monotonicity of norm]
= θ [by definition of norm]

Conversely, assume that for all a ∈MY , θ ∈M and z ∈ Z it holds f(a⊕θ)(z)⊖f(a)(z) ⊑ θ.
For a, b ∈MY , first observe that for all y ∈ Y it holds b(y)⊖ a(y) ⊑ ∣∣b⊖ a∣∣, hence, if we
let θ = ∣∣b⊖ a∣∣, we have b ⊑ a⊕ θ and thus, by monotonicity, f(b)⊖ f(a) ⊑ f(a⊕ θ)⊖ f(a).
Thus
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∣∣f(b)⊖ f(a)∣∣ ⊑
⊑ ∣∣f(a + θ)⊖ f(a)∣∣ =
[by the observation above and monotonicity of norm]
=max{f(a + θ)(z)⊖ f(a)(z)∣z ∈ Z} [by definition of norm]
⊑ θ [by hypothesis]
= ∣∣b⊖ a∣∣ [by the choice of θ]

Lemma A.1.4 (Lemma 2.5.4). Let ev∶FM → M be an evaluation map and
assume that its corresponding lifting F̃ ∶MY → MF Y is well-behaved. Then F̃ is
non-expansive iff for all δ ∈ M it holds that F̃ δY ⊑ δF Y , where δ is seen as the
constant δ-predicate on Y , respectively FY .

Proof. The proof is inspired by [WS22, Lemma 3.9] and uses the fact that a monotone
function f ∶MY →MZ is non-expansive iff f(a⊕ δ) ⊑ f(a)⊕ δ for all a, δ.

“⇒” Fix a set Y and assume that F̃ ∶MY →MF Y is non-expansive. Then

F̃ (δ) = F̃ (0⊕ δ) ⊑ F̃ (0)⊕ δ ⊑ 0⊕ δ = δ

“⇐” Now assume that F̃ (δ) ⊑ δ. Then, using the lemma referenced above,

F̃ (a⊕ δ) ⊑ F̃ (a)⊕ F̃ (δ) ⊑ F̃ (a)⊕ δ

In both cases we write δ for both δY , δF Y and both deductions rely on the fact that F̃ is
well-behaved.

Lemma A.1.5 (Lemma 2.7.32). Let ΓE = (G, w) be an energy game with finite
values, bounded by k. Then µE = g, i.e. the least fixpoint of E coincides with the
solution of ΓE.

Proof. From Lemma 2.7.29 we have g = µĒ .
The claim follows straightforwardly from the fact that, by distributivity, E(a) =

min{Ē(a), k}. Hence E ≤ Ē and so µE ≤ µĒ . For the other direction observe that by
assumption the solution g is bounded by k (g ≤ k). Hence Ē(µE) ≤ Ē(µĒ) = µĒ = g ≤ k.
Hence Ē(µE) =min{Ē(µE), k} = E(µE) = µE , which means that µE is some fixpoint of Ē ,
implying that µĒ ≤ µE .
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A.2. Proofs of Chapter 3

Lemma A.2.1 (Lemma 3.2.11). Let M be an MV-chain and let Y be a finite set.
Then for any b ∈MY there are Y1, . . . , Yn ⊆ Y with Yi+1 ⊆ Yi for i ∈ {1, . . . , n − 1}
and δi ∈M, 0 ≠ δi ⊑⊕i−1

j=1 δj for i ∈ {1, . . . , n} such that

b =⊕n
i=1 δi

Yi
and ∣∣b∣∣ =⊕n

i=1 δi.

where we assume that an empty sum evaluates to 0.

Proof. Given b ∈MY , consider V = {b(y) ∣ y ∈ Y }. If V is empty, then Y is empty and
thus b = 1Y , i.e., we can take n = 1, δ1 = 1 and Y1 = Y . Otherwise, if Y ≠ ∅, then V
is a finite non-empty set. Let V = {v1, . . . , vn}, with vi ⊑ vi+1 for i ∈ {1, . . . , n − 1}. For
i ∈ {1, . . . , n} define Yi = {y ∈ Y ∣ vi ⊑ b(y)}. Clearly, Y1 ⊇ Y2 ⊇ . . . ⊇ Yn. Moreover let
δ1 = v1 and δi+1 = vi+1 ⊖ vi for i ∈ {1, . . . , n − 1}.

Observe that for each i, we have vi = ⊕i
j=1 δi, as it can easily shown by induction.

Hence δi+1 = vi+1 ⊖ vi = vi+1 ⊖⊕i
j=1 δi ⊑ 1⊖⊕i

j=1 δi =⊕i
j=1 δi.

We now show that b =⊕n
i=1 δi

Yi
by induction on n.

• If n = 1 then V = {v1} and thus b is a constant function b(y) = v1 for all y ∈ Y .
Hence Y1 = Y and thus b = δ1

Y = δ1
Y1

, as desired.

• If n > 1, let b′ ∈ MY defined by b′(y) = b(y) for y ∈ Y /Yn and b′(y) = vn−1 for
y ∈ Yn. Note that {b′(y) ∣ y ∈ Y } = {v1, . . . , vn−1}. Hence, by inductive hypothesis,
b′ =⊕n−1

i=1 δi
Yi

. Moreover, b′(y) = b⊕ δn
Yn

, and thus we conclude.

Finally observe that the statement requires δi ≠ 0 for all i. We can enjoy this property
by just omitting the first summand when v1 = 0.

Lemma A.2.2 (Lemma 3.2.12). Let M be an MV-chain, let Y , Z be finite sets and
let f ∶ MY →MZ be a non-expansive function. Let a ∈MY . For b ∈ [a, a⊕ δ], let
b⊖ a =⊕n

i=1 δi
Yi

be a standard form for b⊖ a. If γf(a),δ(f(b)) ≠ ∅ then Yn = γa,δ(b)
and γf(a),δ(f(b)) ⊆ f#

a,δn(Yn).

Proof. By hypothesis γf(a),δ(f(b)) ≠ ∅. Let z ∈ γf(a),δ(f(b)). This means that δ ⊑
f(b)(z)⊖ f(a)(z). First observe that

δ ⊑ f(b)(z)⊖ f(a)(z) [by hypothesis]
⊑ ∣∣f(b)⊖ f(a)∣∣ [by definition of norm]
⊑ ∣∣b⊖ a∣∣ [by non-expansiveness of f ]
⊑ δ [since b ∈ [a, a⊕ δ]]

Hence
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∣∣f(b)⊖ f(a)∣∣ = δ = ∣∣b⊖ a∣∣ =⊕n
i=1 δi.

Also observe that, since δn ≠ 0, we have (b⊖ a)(z) = δ iff z ∈ Yn. In fact, if z ∈ Yn then
z ∈ Yi for all i ∈ {1, . . . , n} and thus (b ⊖ a)(z) = ⊕n

i=1 δi
Yi
(z) = ⊕n

i=1 δi = δ. Conversely,
if z /∈ Yn, then (b ⊖ a)(z) ⊑ ⊕n−1

i=1 δi ⊏ δ. In fact, 0 ⊏ δn and ⊕n−1
i=1 δi ⊑ δn. Thus by

Lemma 2.3.18(8), ⊕n−1
i=1 δi ⊏ δn ⊕⊕n−1

i=1 δi =⊕n
i=1 δi = δ. Hence Yn = γa,δ(b).

Let us now show that γf(a),δ(f(b)) ⊆ f#
a,δn(Yn). Given z ∈ γf(a),δ(f(b)), we show that

z ∈ f#
a,δn(Yn). Observe that

δ ⊑ f(b)(z)⊖ f(a)(z) =
[by hypothesis]
= f(a⊕ (b⊖ a))(z)⊖ f(a)(z) =

[by Lemma 2.3.18(2), since a ⊑ b]

= f(a⊕
n

⊕
i=1

δi
Yi
)(z)⊖ f(a)(z) =

[by construction]

= f(a⊕
n

⊕
i=1

δi
Yi
))(z)⊖ f(a⊕ δn

Yn
)(z)⊕ f(a⊕ δn

Yn
)(z)⊖ f(a)(z)

[by Lemma 2.3.18(2), since f(a⊕ δn
Yn
)(z) ⊑ f(a⊕⊕n

i=1 δi
Yi
)(z)]

⊑ ∣∣f(a⊕
n

⊕
i=1

δi
Yi
)⊖ f(a⊕ δn

Yn
)∣∣⊕ f(a⊕ δn

Yn
)(z)⊖ f(a)(z)

[by definition of norm and monotonicity of ⊕]

⊑ ∣∣a⊕
n

⊕
i=1

δi
Yi
⊖ (a⊕ δn

Yn
)∣∣⊕ f(a⊕ δn

Yn
)(z)⊖ f(a)(z)

[by non-expansiveness of f and monotonicity of ⊕]

= ∣∣a⊕ δn
Yn
⊕

n−1
⊕
i=1

δi
Yi
⊖ (a⊕ δn

Yn
)∣∣⊕ f(a⊕ δn

Yn
)(z)⊖ f(a)(z)

[by algebraic manipulation]

⊑ ∣∣
n−1
⊕
i=1

δi
Yi
∣∣⊕ f(a⊕ δn

Yn
)(z)⊖ f(a)(z)

[by Lemma 2.3.18(6) and monotonicity of norm]

⊑
n−1
⊕
i=1

δi ⊕ f(a⊕ δn
Yn
)(z)⊖ f(a)(z)

[by Lemma 2.3.22(1) and the fact that ∣∣δi
Yi
∣∣ = δi]

= (δ ⊖ δn)⊕ f(a⊕ δn
Yn
)(z)⊖ f(a)(z)

[by construction, since δn =⊕n−1
i=1 δi]
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If we subtract δ ⊖ δn on both sides, we get δ ⊖ (δ ⊖ δn) ⊑ f(a ⊕ δn
Yn
)(z) ⊖ f(a)(z), i.e.,

since, by Lemma 2.3.18(10), δ ⊖ (δ ⊖ δn) = δn we conclude

δn ⊑ f(a⊕ δn
Yn
)(z)⊖ f(a)(z).

Hence z ∈ γf(a),δn(f(αa,δn(Yn)) = f#
a,δn(Yn), which is the desired result.

Lemma A.2.3 (Lemma 3.3.1). Let M be a complete MV-chain, Y a finite set and
f ∶MY →MY be a non-expansive function. Let a ∈MY be a pre-fixpoint of f (i.e.,
f(a) ⊑ a), let f#

a ∶ P([Y ]a) → P([Y ]f(a)) be the a-approximation of f . Assume
νf /⊑ a and let Y ′ = {y ∈ [Y ]a ∣ νf(y) ⊖ a(y) = ∣∣νf ⊖ a∣∣}. Then for all y ∈ Y ′ it
holds a(y) = f(a)(y) and Y ′ ⊆ f#

a (Y ′).

Proof. Let δ = ∣∣νf ⊖ a∣∣. Assume νf /⊑ a, i.e., there exists y ∈ Y such that νf(y) /⊑ a(y).
Since the order is total, this means that a(y) ⊏ νf(y). Hence, by Lemma 2.3.18(5),
νf(y) ⊖ a(y) ⊐ 0. Then δ = ∣∣νf ⊖ a∣∣ ⊐ 0. Moreover, for all y ∈ Y ′, a(y) = 1 ⊖ a(y) ⊒
νf(y)⊖ a(y) = δ.

First, observe that
νf ⊑ a⊕ δ, (A.2)

since for all y ∈ Y νf(y) ⊖ a(y) ⊑ δ by definition of δ and then (A.2) follows from
Lemma 2.3.18(7).

Concerning the first part, let y ∈ Y ′. Since a is a pre-fixpoint, f(a)(y) ⊑ a(y). Assume
by contradiction that f(a)(y) ⊏ a(y). Then we have

f(a⊕ δ)(y) =
[by Lemma 2.3.18(2), since f is monotone and thus f(a) ⊑ f(a⊕ δ)]
= f(a)(y)⊕ (f(a⊕ δ)(y)⊖ f(a)(y))

[since f is non-expansive, by Lemma 2.3.25, hence f(a⊕ δ)(y)⊖ f(a)(y) ⊑ δ]
⊑ f(a)(y)⊕ δ

[by f(a)(y) ⊏ a(y), δ ⊑ a(y) and Lemma 2.3.18(6)]
⊏ a(y)⊕ δ

[by Lemma 2.3.18(2) since a(y) ⊑ νf(y) and δ = νf(y)⊖ a(y)]
= νf(y)
= f(νf)(y)

[since νf ⊑ a⊕ δ (A.2) and f monotone]
⊑ f(a⊕ δ)(y)

i.e., a contradiction. Hence it must be a(y) = f(a)(y).
For the second part, in order to show Y ′ ⊆ f#

a (Y ′), we let b = νf ⊔ a. By using (A.2)
we immediately have that b ∈ [a, a⊕ δ].

We next prove that
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Y ′ = γa,δ(b).

We show separately the two inclusions. If y ∈ Y ′ then a(y) ⊏ νf(y) and thus b(y) =
a(y)⊔νf(y) = νf(y) and thus b(y)⊖a(y) = νf(y)⊖a(y) = δ. Hence y ∈ γa,δ(b). Conversely,
if y ∈ γa,δ(b), then a(y) ⊏ νf(y). In fact, if it were a(y) ⊒ νf(y), then, by definition of
b we would have b(y) = a(y) and b(y)⊖ a(y) = 0 /⊒ δ. Therefore, b(y) = νf(y) and thus
νf(y)⊖ a(y) = b(y)⊖ a(y) ⊒ δ, whence y ∈ Y ′.

We can now conclude. In fact, since f is non-expansive, by Theorem 3.2.13(a), we have

γf(a),δ(f(b)) ⊆ f#
a (Y ′).

Moreover Y ′ ⊆ γf(a),δ(f(b)). In fact, let y ∈ Y ′, i.e., y ∈ [Y ]a and δ ⊑ b(y)⊖ a(y). Since
a(y) = f(a)(y), we have that y ∈ [Y ]f(a). In order to conclude that y ∈ γf(a),δ(f(b)) it is
left to show that δ ⊑ f(b)(y)⊖ f(a)(y). We have

f(b)(y)⊖ f(a)(y) = f(b)(y)⊖ a(y) [since y ∈ Y ′]
= f(νf ⊔ a)(y)⊖ a(y) [definition of b]
⊒ (f(νf)(y) ⊔ f(a)(y))⊖ a(y) [properties of ⊔]
= (νf(y) ⊔ a(y))⊖ a(y) [since νf fixpoint and y ∈ Y ′]
= b(y)⊖ a(y) [definition of b]
⊒ δ [since y ∈ Y ′]

Combining the two inclusions, we have Y ′ ⊆ f#
a (Y ′), as desired.

Proposition A.2.4 (Proposition 3.5.4). The basic functions from Definition 3.5.3
are all non-expansive.

Proof.

• Constant functions: immediate.

• Reindexing: Let u ∶ Z → Y . For all a, b ∈MY , we have

∣∣u∗(b)⊖ u∗(a)∣∣
=max

z∈Z
(b(u(z))⊖ a(u(z)))

⊑max
y∈Y
(b(y)⊖ a(y)) [since u(Z) ⊆ Y ]

= ∣∣b⊖ a∣∣ [by definition of norm]

• Minimum: Let R ⊆ Y ×Z be a relation. For all a, b ∈MY , we have

∣∣minR(b)⊖minR(a)∣∣ =max
z∈Z
(min

yRz
b(y)⊖min

yRz
a(y))
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Observe that

max
z∈Z
(min

yRz
b(y)⊖min

yRz
a(y)) =max

z∈Z′
(min

yRz
b(y)⊖min

yRz
a(y))

where Z ′ = {z ∈ Z ∣ ∃ y ∈ Y. yRz}, since on every other z ∈ Z/Z ′ the difference would
be 0. Now, for every z ∈ Z ′, take yz ∈ Y such that yzRz and a(yz) =min

yRz
a(y). Such

a yz is guaranteed to exist whenever Y is finite. Then, we have

max
z∈Z′
(min

yRz
b(y)⊖min

yRz
a(y))

⊑max
z∈Z′
(b(yz)⊖ a(yz)) [⊖ monotone in first arg.]

⊑max
z∈Z′
∣∣b⊖ a∣∣ [by definition of norm]

= ∣∣b⊖ a∣∣ [∣∣b⊖ a∣∣ is independent from z]

• Maximum: Let R ⊆ Y ×Z be a relation. For all a, b ∈MY we have

∣∣maxR(b)⊖maxR(a)∣∣
=max

z∈Z
(max

yRz
b(y)⊖max

yRz
a(y))

⊑max
z∈Z
(max

yRz
((b(y)⊖ a(y))⊕ a(y))⊖max

yRz
a(y))

[since (b(y)⊖ a(y))⊕ a(y) = a(y) ⊔ b(y) and ⊖ monotone in first arg.]

⊑max
z∈Z
((max

yRz
(b(y)⊖ a(y))⊕max

yRz
a(y))⊖max

yRz
a(y))

[by definition of max and monotonicity of ⊕]

⊑max
z∈Z

max
yRz
(b(y)⊖ a(y)) [by Lemma 2.3.18(6)]

⊑max
z∈Z

max
yRz
∣∣b⊖ a∣∣ [by definition of norm]

= ∣∣b⊖ a∣∣ [since ∣∣b⊖ a∣∣ is independent]

• Average: We first note that, when p ∶ Y →M, with Y finite, is a distribution, then
an inductive argument based on weak distributivity, allows one to show that for all
x ∈M, Y ′ ⊆ Y , x⊙⊕y∈Y ′ p(y) =⊕y∈Y ′ x⊙ p(y).
For all a, b ∈MY we have

∣∣avD(b)⊖ avD(a)∣∣
=max

p∈D
(⊕

y∈Y
p(y)⊙ b(y)⊖⊕

y∈Y
p(y)⊙ a(y))

⊑max
p∈D
(⊕

y∈Y
p(y)⊙ ((b(y)⊖ a(y))⊕ a(y))⊖⊕

y∈Y
p(y)⊙ a(y))

[by monotonicity of ⊙,⊕,⊖ and (b(y)⊖ a(y))⊕ a(y) = a(y) ⊔ b(y)]
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=max
p∈D
(⊕

y∈Y
(p(y)⊙ (b(y)⊖ a(y)))⊕ (p(y)⊙ a(y))⊖⊕

y∈Y
p(y)⊙ a(y))

[since b(y)⊖ a(y) ⊑ 1⊖ a(y) = a(y), and ⊙ weakly distributes over ⊕]
=max

p∈D
((⊕

y∈Y
p(y)⊙ (b(y)⊖ a(y))⊕⊕

y∈Y
p(y)⊙ a(y))⊖⊕

y∈Y
p(y)⊙ a(y))

⊑max
p∈D
⊕
y∈Y

p(y)⊙ (b(y)⊖ a(y)) [by Lemma 2.3.18(6)]

⊑max
p∈D
⊕
y∈Y

p(y)⊙ ∣∣b⊖ a∣∣ [by definition of norm and monotonicity of ⊙]

=max
p∈D
∣∣b⊖ a∣∣⊙⊕

y∈Y
p(y) [since p is a distr. and ⊙ weakly distributes over ⊕]

=max
p∈D
(∣∣b⊖ a∣∣⊙ 1) [since p is a distribution over Y ]

= ∣∣b⊖ a∣∣ [since ∣∣b⊖ a∣∣ is independent from p]

• Addition: Let w, a, b ∈MY . Without loss of generality, we have

∣∣addw(b)⊖ addw(a)∣∣ = addw(b)⊖ addw(a) = addw(b)(y)⊖ addw(a)(y)

for some y ∈ Y (otherwise swap a and b, the maximum is obtained at some y ∈ Y ).
Now,

∣∣addw(b)⊖ addw(a)∣∣ = addw(b)(y)⊖ addw(a)(y)
= (b(y)⊕w(y))⊖ (a(y)⊕w(y))

= (b(y)⊕w(y))⊕ (a(y)⊕w(y)) [Definition of ⊖]

= (b(y)⊕w(y))⊕ (w(y)⊕ a(y)) [Commutativity]

= ((b(y)⊕w(y))⊕w(y))⊕ a(y) [Associativity]

⊑ b(y)⊕ a(y) [see below]
= b(y)⊖ a(y) [Definition of ⊖]
⊑ ∣∣b⊖ a∣∣.

One inequality remains to be shown. For x, y ∈M, it holds

x ⊒ (x⊕ y)⊖ y [Lemma 2.3.18(6)]
⇔ x ⊑ (x⊕ y)⊖ y [Lemma 2.3.18(3)]

= (x⊕ y)⊕ y [Definition of ⊖]

Thus we have (x = b(y), y = w(y))

b(y) ⊑ (b(y)⊕w(y))⊕w(y)

which implies
b(y)⊕ a(y) ⊑ ((b(y)⊕w(y))⊕w(y))⊕ a(y)
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by Lemma 2.3.18(4). Thus, by 2.3.18(3),

((b(y)⊕w(y))⊕w(y))⊕ a(y) ⊑ b(y)⊕ a(y)

holds.

• Substraction: Let w, a, b ∈MY . Without loss of generality, we have

∣∣subw(b)⊖ subw(a)∣∣ = subw(b)⊖ subw(a) = subw(b)(y)⊖ subw(a)(y)

for some y ∈ Y (otherwise swap a and b, the maximum is obtained at some y ∈ Y ).
Now,

∣∣subw(b)⊖ subw(a)∣∣ = subw(b)(y)⊖ subw(a)(y)
= (b(y)⊖w(y))⊖ (a(y)⊖w(y))

= (b(y)⊖w(y))⊕ (a(y)⊖w(y)) [Definition of ⊖]

= (b(y)⊕w(y))⊕ (a(y)⊕w(y)) [Definition of ⊖]

= (a(y)⊕w(y))⊕ (w(y)⊕ b(y)) [Commutativity]

= ((a(y)⊕w(y))⊕w(y))⊕ b(y) [Associativity]

⊑ a(y)⊕ b(y) [see below]

= b(y)⊕ a(y) [Commutativity]
= b(y)⊖ a(y) [Definition of ⊖]
⊑ ∣∣b⊖ a∣∣.

By considerations in the proof for addition it holds

a(y) ⊑ (a(y)⊕w(y))⊕w(y)

(x = a(y), y = w(y)) and therefore by Lemma 2.3.18(4)

a(y)⊕ b(y) ⊑ ((a(y)⊕w(y))⊕w(y))⊕ b(y)

which implies

((a(y)⊕w(y))⊕w(y))⊕ b(y) ⊑ a(y)⊕ b(y)

by Lemma 2.3.18(3).



A.2. Proofs of Chapter 3 209

Proposition A.2.5 (Proposition 3.5.5). Let M be an MV-chain, Y, Z be finite
sets and let a ∈MY .

• Constant: for k ∶ MZ , the approximations (ck)#a ∶ P([Y ]a) → P([Z]ck(a)),
(ck)a# ∶ P([Y ]a)→ P([Z]ck(a)) are

(ck)#a (Y ′) = ∅ = (ck)a#(Y ′)

• Reindexing: for u ∶ Z → Y , the approximations (u∗)#a ∶ P([Y ]a) →
P([Z]u∗(a)), (u∗)a# ∶ P([Y ]a)→ P([Z]u∗(a)) are

(u∗)#a (Y ′) = (u∗)a#(Y ′) = u−1(Y ′) = {z ∈ [Z]u∗(a) ∣ u(z) ∈ Y ′}

• Min: for R ⊆ Y ×Z, the approximations (minR)#a ∶ P([Y ]a)→ P([Z]minR(a)),
(minR)a# ∶ P([Y ]a) → P([Z]minR(a)) are given below, where R−1(z) = {y ∈
Y ∣ yRz}:

(minR)#a (Y ′) = {z ∈ [Z]minR(a) ∣ arg min
y∈R−1(z)

a(y) ⊆ Y ′}

(minR)a#(Y ′) = {z ∈ [Z]minR(a) ∣ arg min
y∈R−1(z)

a(y) ∩ Y ′ ≠ ∅}

• Max: for R ⊆ Y × Z, the approximations (maxR)#a ∶ P([Y ]a) →
P([Z]maxR(a)), (maxR)a# ∶ P([Y ]a)→ P([Z]maxR(a)) are

(maxR)#a (Y ′) = {z ∈ [Z]maxR(a) ∣ arg max
y∈R−1(z)

a(y) ∩ Y ′ ≠ ∅}

(maxR)a#(Y ′) = {z ∈ [Z]maxR(a) ∣ arg max
y∈R−1(z)

a(y) ⊆ Y ′}

• Average: for a finite D ⊆ DM(Y ), the approximations (avD)#a ∶ P([Y ]a) →
P([D]avD(a)), (avD)a#∶P([Y ]a)→ P([D]avD(a)) are

(avD)#a (Y ′) = {p ∈ [D]avD(a) ∣ supp(p) ⊆ Y ′}
(avD)a#(Y ′) = {p ∈ [D]avD(a) ∣ supp(p) ⊆ Y ′},

where supp(p) = {y ∈ Y ∣ p(y) > 0} for p ∈ D(Y ).

• Addition: for w ∈MY , the approximations (addw)#a ∶M[Y ]a →M[Y ]addw(a),
(addw)a#∶M[Y ]

a →M[Y ]addw(a) are

(addw)#a (Y ′) = {y ∈ Y ′ ∣ a(y)⊕w(y) ⊏ 1}
(addw)a#(Y ′) = {y ∈ Y ′ ∣ w(y) ⊑ a(y)}

• Substraction: for w ∈ MY , the approximations and (subw)#a ∶M[Y ]a →
M[Y ]subw(a), (subw)a#∶M[Y ]

a →M[Y ]subw(a) are

(subw)#a (Y ′) = {y ∈ Y ′ ∣ w(y) ⊑ a(y)} = Y ′

(subw)a#(Y ′) = {y ∈ Y ′ ∣ a(y)⊖w(y) ⊐ 0}
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Proof. We only consider the primal cases, the dual ones are analogous (maximum is dual
to minimum, addition is dual to substraction).

Let a ∈MY .

• Constant: for all 0 ⊏ θ ⊑ δa and Y ′ ⊆ [Y ]a we have

(ck)#a,θ(Y
′) = γck(a),θ ○ ck ○ αa,θ(Y ′)
= {z ∈ [Z]ck(a) ∣ θ ⊑ ck(a⊕ θY ′)(z)⊖ ck(a)(z)}
= {z ∈ [Z]ck(a) ∣ θ ⊑ k ⊖ k} = {z ∈ Z ∣ θ ⊑ 0} = ∅

Hence all values ιf
a(Y ′, z) are equal to 0 and we have ιf

a = δa. Replacing θ by ιf
a we

obtain (ck)#a (Y ′) = ∅.

• Reindexing: for all 0 ⊏ θ ⊑ δa and Y ′ ⊆ [Y ]a we have

(u∗)#a,θ(Y
′) = γu∗(a),θ ○ u∗ ○ αa,θ(Y ′)
= {z ∈ [Z]u∗(a) ∣ θ ⊑ (a⊕ θY ′)(u(z))⊖ a(u(z))}.

We show that this corresponds to u−1(Y ′) = {z ∈ Z ∣ u(z) ∈ Y ′}. It is easy to see
that for all z ∈ u−1(Y ′), we have

(a⊕ θY ′)(u(z))⊖ a(u(z)) = θ = a(u(z))⊖ (a⊖ θY ′)(u(z))

since u(z) ∈ Y ′ and θ ⊑ δa. Since u(z) ∈ Y ′ ⊆ [Y ]a, we have u∗(a)(z) = a(u(z)) ≠ 1
and hence z ∈ [Z]u∗(a). On the other hand, for all z /∈ u−1(Y ′), we have

(a⊕ θY ′)(u(z)) = a(u(z)) = (a⊖ θY ′)(u(z))

since u(z) ∉ Y ′, and so

(a⊕ θY ′)(u(z))⊖ a(u(z)) = a(u(z))⊖ (a⊖ θY ′)(u(z)) = 0 ⊏ θ.

Therefore (u∗)#a,θ(Y
′) = u−1(Y ′).

We observe that for Y ′ ⊆ [Y ]a, z ∈ [Z]u∗(a) either u∗(a⊕ θY ′)(z)⊖u∗(a)(z) ⊏ θ for
all 0 ⊏ θ ⊑ δa – and in this case ιu∗

a (Y ′, z) = 0 – or u∗(a⊕ θY ′)(z)⊖ u∗(a)(z) = θ for
all 0 ⊏ θ ⊑ δa – and in this case ιu∗

a (Y ′, z) = δa. By taking the minimum over all
non-zero values, we get ιu∗

a = δa.
And finally we observe that (u∗)#a (Y ′) = (u∗)#a,ιu∗

a
(Y ′) = u−1(Y ′).

• Minimum: let 0 ⊏ θ ⊑ δa. For all Y ′ ⊆ [Y ]a we have

(minR)#a,θ(Y
′) = γminR(a),θ ○minR ○αa,θ(Y ′)
= {z ∈ [Z]minR(a) ∣ θ ⊑min

yRz
(a⊕ θY ′)(y)⊖min

yRz
a(y)}

We compute the value V = minyRz(a ⊕ θY ′)(y) ⊖ minyRz a(y) and consider the
following cases:
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– Assume that there exists ŷ ∈ arg miny∈R−1(z) a(y) where ŷ /∈ Y ′.

Then (a⊕θY ′)(ŷ) = a(ŷ) ⊑ a(y) ⊑ (a⊕θY ′)(y) for all y ∈R−1(z), which implies
that minyRz(a⊕ θY ′)(y) = a(ŷ). We also have minyRz a(y) = a(ŷ) and hence
V = 0.

– Assume that arg miny∈R−1(z) a(y) ⊆ Y ′ and θ ⊑ a(y)⊖ a(ŷ) in all cases where
ŷ ∈ arg miny∈R−1(z) a(y), y /∈ Y ′ and yRz.
Since arg miny∈R−1(z) a(y) ⊆ Y ′ we observe that

min
yRz
(a⊕ θY ′)(y) = min{ min

y∈arg miny∈R−1(z) a(y)
(a(y)⊕ θ), min

yRz,y/∈Y ′
a(y)}

We can omit the values of all y with yRz, y /∈ arg miny∈R−1(z) a(y), y ∈ Y ′,
since we will never attain the minimum there.
Now let ŷ ∈ arg miny∈R−1(z) a(y) and y with yRz and y /∈ Y ′. Then θ ⊑
a(y)⊖ a(ŷ) by assumption, which implies a(ŷ)⊕ θ ⊑ a(y), since a(ŷ) ⊑ a(y)
and Lemma 2.3.18(2) holds.
From this we can deduce minyRz(a ⊕ θY ′)(y) = a(ŷ) ⊕ θ. We also have
minyRz a(y) = a(ŷ) and hence – since a(ŷ) ⊑ θ (due to θ ⊑ δa ⊑ a(ŷ)) and
Lemma 2.3.18(9) holds – V = (a(ŷ)⊕ θ)⊖ a(ŷ) = θ.

– In the remaining case we have arg miny∈R−1(z) a(y) ⊆ Y ′ and there exist ŷ ∈
arg miny∈R−1(z) a(y), y /∈ Y ′, yRz such that a(y)⊖ a(ŷ) ⊏ θ.

This implies a(y) ⊑ (a(y)⊖ a(ŷ))⊕ a(ŷ) ⊏ θ ⊕ a(ŷ) since again a(ŷ) ⊑ θ and
Lemma 2.3.18(8) holds. Hence minyRz(a⊕ θY ′)(y) ⊑ a(y), which means that
V ⊑ a(y)⊖ a(ŷ) ⊏ θ.

Summarizing, for θ ⊑ δa we observe that V = θ if and only if arg miny∈R−1(z) a(y) ⊆ Y ′

and θ ⊑ a(y)⊖ a(ŷ) whenever ŷ ∈ arg miny∈R−1(z) a(y), y /∈ Y ′ and yRz.
Hence if arg miny∈R−1(z) a(y) ⊆ Y ′ we have

ιminR
a (Y ′, z) =min{a(y)⊖ a(ŷ) ∣ ŷ ∈ arg min

y∈R−1(z)
a(y), y /∈ Y ′, yRz} ∪ {δa}

otherwise ιminR
a (Y ′, z) = 0.

The values above are minimal whenever Y ′ = arg miny∈R−1(z) a(y) and thus we have:

ιminR
a = min

z∈[Z]minR(a)
{a(y)⊖ a(ŷ) ∣ yRz, ŷ ∈ arg min

y∈R−1(z)
a(y), y /∈ arg min

y∈R−1(z)
a(y)}

∪ {δa}.

Finally we deduce that

(minR)#a (Y ′) = (minR)#
a,ι

minR
a

(Y ′) = {z ∈ [Z]minR(a) ∣ arg min
y∈R−1(z)

a(y) ⊆ Y ′}.
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• Maximum: let 0 ⊏ θ ⊑ δa. For all Y ′ ⊆ [Y ]a we have

(maxR)#a,θ(Y
′) = γmaxR(a),θ ○maxR ○αa,θ(Y ′)
= {z ∈ [Z]maxR(a) ∣ θ ⊑max

yRz
(a⊕ θY ′)(y)⊖max

yRz
a(y)}

We observe that

max
yRz
(a⊕ θY ′)(y) =max{ max

y∈arg maxy∈R−1(z) a(y)
(a⊕ θY ′)(y),

max
yRz,y∈Y ′

y/∈arg maxy∈R−1(z) a(y)

(a(y)⊕ θ)}

We can omit the values of all y with yRz, y /∈ arg maxy∈R−1(z) a(y), y /∈ Y ′, since we
will never attain the maximum there.

We now compute the value V = maxyRz(a ⊕ θY ′)(y) ⊖maxyRz a(y) and consider
the following cases:

– Assume that there exists ŷ ∈ arg maxy∈R−1(z) a(y) where ŷ ∈ Y ′.

Then (a ⊕ θY ′)(ŷ) = a(ŷ) ⊕ θ ⊒ (a ⊕ θY ′)(y) ⊒ a(y) for all y ∈ R−1(z), which
implies that maxyRz(a⊕ θY ′)(y) = a(ŷ)⊕ θ. We also have maxyRz a(y) = a(ŷ)
and hence – since a(ŷ) ⊑ θ and Lemma 2.3.18(9) holds – V = (a(ŷ)⊕θ)⊖a(ŷ) =
θ.

– Assume that arg maxy∈R−1(z) a(y) ∩ Y ′ = ∅. Now let ŷ ∈ arg maxy∈R−1(z) a(y)
and y /∈ arg maxy∈R−1(z) a(y) with yRz and y ∈ Y ′. Then

max
y∈arg maxy∈R−1(z) a(y)

(a⊕ θY ′)(y) = a(ŷ)

max
yRz,y∈Y ′

y/∈arg maxy∈R−1(z) a(y)

(a(y)⊕ θ) = a(y′)⊕ θ

for some value y′ with y′Rz, y′ ∈ Y ′, y′ /∈ arg maxy∈R−1(z) a(y), that is a(y′) ⊏
a(ŷ).
So then either maxyRz(a ⊕ θY ′)(y) = a(ŷ) and V = a(ŷ) ⊖ a(ŷ) = 0. Or
maxyRz(a⊕θY ′)(y) = a(y′)⊕θ and by Lemma 2.3.18(11) V = (a(y′)⊕θ)⊖a(ŷ) ⊏
θ.

Summarizing, for θ ⊑ δa we observe that V = θ if and only if arg maxy∈R−1(z) a(y) ∩
Y ′ ≠ ∅, where the latter condition is independent of θ.

Hence, as in the case of reindexing, we have ιmaxR
a = δa. Finally we have

(maxR)#a (Y ′) = (maxR)#a,ι
maxR
a
(Y ′) = {z ∈ [Z]maxR(a) ∣ arg max

y∈R−1(z)
a(y) ∩ Y ′ ≠ ∅}.
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• Average: for all 0 ⊏ θ ⊑ δa and Y ′ ⊆ [Y ]a by definition

(avD)#a,θ(Y
′) = γavD(a),θ ○ avD ○ αa,θ(Y ′)
= {p ∈ [D]avD(a) ∣ θ ⊑⊕

y∈Y
p(y)⊙ (a⊕ θY ′)(y)⊖⊕

y∈Y
p(y)⊙ a(y)}

We show that this set corresponds to {p ∈ [D]avD(a) ∣ supp(p) ⊆ Y ′}.
Consider p ∈ [D]avD(a) such that supp(p) ⊆ Y ′. Note that clearly ⊕y∈Y ′ p(y) = 1.
Now we have

⊕
y∈Y

p(y)⊙ (a⊕ θY ′)(y)⊖⊕
y∈Y

p(y)⊙ a(y)

= ⊕
y∈Y ′

p(y)⊙ (a(y)⊕ θ)⊕ ⊕
y∈Y /Y ′

p(y)⊙ a(y)⊖⊕
y∈Y

p(y)⊙ a(y)

= ⊕
y∈Y ′
(p(y)⊙ a(y)⊕ p(y)⊙ θ)⊕ ⊕

y∈Y /Y ′
p(y)⊙ a(y)⊖⊕

y∈Y
p(y)⊙ a(y)

[by weak distributivity, since for y ∈ Y ′ ⊆ [Y ]a, a(y) ⊑ δa]
= ⊕

y∈Y ′
p(y)⊙ θ ⊕ ⊕

y∈Y ′
p(y)⊙ a(y)⊕ ⊕

y∈Y /Y ′
p(y)⊙ a(y)⊖⊕

y∈Y
p(y)⊙ a(y)

= ⊕
y∈Y ′

p(y)⊙ θ ⊕ ⊕
y∈Y ′

p(y)⊙ a(y)⊖ ⊕
y∈Y ′

p(y)⊙ a(y)

[since, for y /∈ Y ′ ⊇ supp(p), p(y) = 0 and thus p(y)⊙ a(y) = 0]
= (⊕

y∈Y ′
p(y))⊙ θ ⊕ ⊕

y∈Y ′
p(y)⊙ a(y)⊖ ⊕

y∈Y ′
p(y)⊙ a(y)

[by weak distributivity, since p is a distribution]
= 1⊙ θ ⊕ ⊕

y∈Y ′
p(y)⊙ a(y)⊖ ⊕

y∈Y ′
p(y)⊙ a(y)

[since p is a distribution]
= θ ⊕ ⊕

y∈Y ′
p(y)⊙ a(y)⊖ ⊕

y∈Y ′
p(y)⊙ a(y)

= θ

In order to motivate the last passage, observe that for all y ∈ Y ′ ⊆ [Y ]a, we have
a(y) ⊑ δa, and thus ⊕y∈Y ′ p(y)⊙a(y) ⊑⊕y∈Y ′ p(y)⊙δa = (⊕y∈Y ′ p(y))⊙δa = 1⊙δa =
δa, where the third last passage is motivated by weak distributivity. Since θ ⊑ δa,
by Lemma 2.3.18(3), we have δa ⊑ θ and thus ⊕y∈Y ′ p(y)⊙ a(y) ⊑ θ. In turn, using
this fact, Lemma 2.3.18(9) motivates the last equality in the chain above, i.e.,
θ ⊕⊕y∈Y ′ p(y)⊙ a(y)⊖⊕y∈Y ′ p(y)⊙ a(y) = θ.

On the other hand, for all p ∈ [D]avD(a) such that supp(p) /⊆ Y ′, there exists
y′ ∈ Y /Y ′ such that p(y′) ≠ 0. Then, we have

⊕
y∈Y

p(y)⊙ (a⊕ θY ′)(y)⊖⊕
y∈Y

p(y)⊙ a(y)
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= ⊕
y∈Y ′

p(y)⊙ (a(y)⊕ θ)⊕ ⊕
y∈Y /Y ′

p(y)⊙ a(y)⊖⊕
y∈Y

p(y)⊙ a(y)

= ⊕
y∈Y ′

p(y)⊙ θ ⊕ ⊕
y∈Y ′

p(y)⊙ a(y)⊕ ⊕
y∈Y /Y ′

p(y)⊙ a(y)⊖⊕
y∈Y

p(y)⊙ a(y)

[by weak distributivity, since for y ∈ Y ′ ⊆ [Y ]a, a(y) ⊑ δa]
= ⊕

y∈Y ′
p(y)⊙ θ ⊕⊕

y∈Y
p(y)⊙ a(y)⊖⊕

y∈Y
p(y)⊙ a(y)

⊑ ⊕
y∈Y ′

p(y)⊙ θ

[by Lemma 2.3.18(6)]
= θ ⊙ ⊕

y∈Y ′
p(y)

[by weak distributivity, since p is a distribution]
⊏ θ

In order to motivate the last inequality, we proceed as follows. We have that
supp(p) /⊆ Y ′. Let y0 ∈ supp(p)/Y ′. We know that p(y0) ⊑⊕y∈Y /{y} p(y) ⊑⊕y∈Y ′ p(y).
Therefore ⊕y∈Y ′ p(y) ⊑ p(y0) ≠ 0. Hence ⊕y∈Y ′ p(y) ⊏ 1.
The strict inequality above now follows, if we further show that given an x ∈ M,
x ≠ 1 then θ⊙x ⊏ θ. Note that x ≠ 0. Therefore θ = θ⊙1 = θ⊙ (x⊕x) = θ⊙x⊕ θ⊙x,
where the last equality follows by weak distributivity. Now θ ⊙ x ⊑ x ⊑ θ ⊙ x, and
thus, by Lemma 2.3.18(9), we obtain θ ⊙ x = θ ⊙ x⊕ θ ⊙ x⊖ θ ⊙ x = θ ⊖ θ ⊙ x ⊏ θ, as
desired. The last passage follows by the fact that θ, x ≠ 0 and thus θ ⊙ x ≠ 0.
Since these results hold for all θ ⊑ δa, we have ιavD

a = δa.
And finally (avD)#a,θ(Y

′) = (avD)a,θ
# (Y ′) = {p ∈ [D]avD(a) ∣ supp(p) ⊆ Y ′}.

• Addition: let 0 ⊏ θ ⊑ δa. For all Y ′ ⊆ [Y ]a we have

(addw)#a,θ(Y
′) = {y ∈ [Y ]addw(a) ∣ addw(a⊕ θY ′)(y)⊖ addw(a)(y) ⊒ θ}.

For y ∉ Y ′, we have

addw(a⊕ θY ′)(y)⊖ addw(a)(y) = 0 ⊏ θ

For y ∈ Y ′, we have

addw(a⊕ θY ′)(y)⊖ addw(a)(y) = (θ ⊕ (a(y)⊕w(y)))⊖ (a(y)⊕w(y)) = θ

if and only if (Lemma 2.3.18(9))

(a(y)⊕w(y)) ⊑ θ (⇔ (a(y)⊕w(y)) ⊒ θ).

Now y ∈ [Y ]addw(a) if and only if a(y)⊕w(y) ⊏ 1. Therefore, for sufficiently small
θ ⊐ 0,

(a(y)⊕w(y)) ⊑ θ
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holds for any y ∈ [Y ′]addw(a). To conclude

(addw)#a (Y ′) = [Y ′]addw(a) = {y ∈ Y ′ ∣ a(y)⊕w(y) ⊏ 1}

and

ιaddw
a =min

y∈Y
{a(y)⊕w(y) ∣ a(y)⊕w(y) ⊏ 1}.

• Substraction: let 0 ⊏ θ ⊑ δa. For all Y ′ ⊆ [Y ]a we have

(subw)#a,θ(Y
′) = {y ∈ [Y ]subw(a) ∣ subw(a⊕ θY ′)(y)⊖ subw(a)(y) ⊒ θ}.

For y ∉ Y ′, we have

subw(a⊕ θY ′)(y)⊖ subw(a)(y) = 0 ⊏ θ

For y ∈ Y ′, we have

subw(a⊕ θY ′)(y)⊖ subw(a)(y) = ((a(y)⊕ θ)⊖w(y))⊖ (a(y)⊖w(y))

= (a(y)⊕ θ)⊕ (w(y)⊕ (a(y)⊖w(y)))

Now,

(a(y)⊕ θ)⊕ (w(y)⊕ (a(y)⊖w(y))) = (a(y)⊕ θ)⊕ a(y)

if and only if w(y) ⊑ a(y) (Lemma 2.3.18(2)). We continue

(a(y)⊕ θ)⊕ a(y) = (a(y)⊕ θ)⊖ a(y) = θ

if and only if a(y) ⊑ θ (Lemma 2.3.18(9)). This immediately holds since θ ⊑ δa.

To summarize (note that [Y ]subw(a) ⊆ [Y ]a since w(y) ∈M for all y ∈ Y )

(subw)#a (Y ′) = {y ∈ Y ′ ∣ w(y) ⊑ a(y)}

and ιsubw
a = δa.
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Corollary A.2.6 (Corollary 3.5.9). We consider the basic functions from Def-
inition 3.5.3, function composition as in Lemma 3.5.1 and disjoint union as in
Proposition 3.5.2 and give the corresponding values for ιf

a and ιa
f .

For greatest fixpoints (primal case) we obtain:

• ιck
a = ιu∗

a = ιmaxR
a = ιavD

a = ιsubw
a = δa

• ιminR
a = min

z∈[Z]minR(a)
{a(y)⊖ a(ŷ) ∣

yRz, y ∉ arg miny∈R−1(z) a(y), ŷ ∈ arg miny∈R−1(z) a(y)} ∪ {δa}

• ιaddw
a =miny∈Y {a(y)⊕w(y) ∣ a(y)⊕w(y) ⊏ 1}

• ιg○f
a ⊒min{ιf

a , ιg
f(a)}

• ι⊎i∈I fi
a =mini∈I ιfi

a∣Yi

For least fixpoints (dual case) we obtain:

• ιa
ck
= ιa

u∗ = ιa
minR = ιa

avD
= ιa

addw
= δa

• ιa
maxR = min

z∈[Z]minR(a)
{a(ŷ)⊖ a(y) ∣

yRz, ŷ ∈ arg maxy∈R−1(z) a(y), y ∉ arg maxy∈R−1(z) a(y)} ∪ {δa}

• ιa
subw
=miny∈Y {a(y)⊖w(y) ∣ a(y)⊖w(y) ⊐ 0}

• ιa
g○f ⊒min{ιa

f , ι
f(a)
g }

• ιa
⊎i∈I fi

=mini∈I ι
a∣Yi

fi

Proof. The values ιf
a can be obtained by inspecting the proofs of Propositions 3.5.5, 3.5.6

and 3.5.2.
It only remains to show that ι ∶= ι⊎i∈I fi

a ⊑ mini∈I ιfi

a∣Yi

(cf. Proposition 3.5.2), which

means showing ι ⊑ ιfi

a∣Yi

for every i ∈ I. We abbreviate ιi ∶= ιfi

a∣Yi

.
If ι ⊐ ιi for some i ∈ I, we will find a z ∈ [Zi]fi(a) and Y ′ ⊆ [Y ]a, such that

z ∈ (fi)#a∣Yi
,ιi
(Y ′ ∩ Yi) = (fi)#a∣Yi

(Y ′ ∩ Yi) but z ∉ (fi)#a∣Yi
,ι
(Y ′ ∩ Yi) by definition (cf.

Lemma 3.2.9). This is a contradiction since

z ∈⊎
i∈I
(fi)#a∣Yi

(Y ′ ∩ Yi) = (⊎
i∈I

fi)
#
a
(Y ′) = (⊎

i∈I
fi)

#
a,ι
(Y ′) =⊎

i∈I
(fi)#a∣Yi

,ι
(Y ′ ∩ Yi)

and since z ∈ Zi, z /∈ (fi)#a∣Yi
,ι
(Y ′ ∩ Yi) and cannot be contained in the union.

The arguments for the values ιa
f in the dual case are analogous.
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Lemma A.2.7 (Lemma 3.6.2). Given a function t∶S → [0, 1], the t-approximation
for T in the dual sense is T t

#∶P([S]t)→ P([S]T (t)) with

T t
#(S′) = {s ∈ [S]T (t) ∣ s ∉ T ∧ supp(η(s)) ⊆ S′}.

Proof. In the following let t∶S → [0, 1] and S′ ⊆ [S]t. By Lemma 3.6.1 we know that
T = (η∗ ○ avD) ⊎ ck, then by Propositions 3.5.7, 3.5.6, and 3.5.5 we have

T t
#(S′) = ((η∗ ○ avD) ⊎ ck)t#(S′)

= (η∗ ○ avD)t#(S′) ∪ (ck)t#(S′)

= (η∗)avD(t)
# ○ (avD)t#(S′) ∪ (ck)t#(S′)

= {s ∈ [S/T ]η∗(avD(t)) ∣ η(s) ∈ {q ∈ [D]avD(t) ∣ supp(q) ⊆ S′}} ∪ ∅
= {s ∈ [S/T ]η∗(avD(t)) ∣ η(s) ∈ [D]avD(t) ∧ supp(η(s)) ⊆ S′}

Observe that actually for all s ∈ [S/T ]η∗(avD(t)) it always holds that η(s) ∈ [D]avD(t). In
fact, since s ∈ [S/T ]η∗(avD(t)) we must have that η∗(avD(t))(s) = avD(t)(η(s)) ≠ 0, and
thus η(s) ∈ {q ∈D ∣ avD(t)(q) ≠ 0} = [D]avD(t). Therefore, we have that

{s ∈ [S/T ]η∗(avD(t)) ∣ η(s) ∈ [D]avD(t) ∧ supp(η(s)) ⊆ S′}
= {s ∈ [S/T ]η∗(avD(t)) ∣ supp(η(s)) ⊆ S′}

Finally, the set above is the same as

{s ∈ [S]T (t) ∣ s ∉ T ∧ supp(η(s)) ⊆ S′} = {s ∈ [S/T ]T (t) ∣ supp(η(s)) ⊆ S′}

because, for all s ∈ S/T , hence s ∉ T , we have that T (t)(s) = ∑s′∈S η(s)(s′) ⋅ t(s′) =
η∗(avD(t))(s), and so [S/T ]T (t) = [S/T ]η∗(avD(t)).

Lemma A.2.8 (Lemma 3.6.7). Let d∶X × X → [0, 1]. The approximation for
the Kantorovich lifting K in the dual sense is Kd

#∶P([X ×X]d)→ P([D ×D]K(d))
with

Kd
#(M) = {(p, q) ∈ [D ×D]K(d) ∣ ∃ω ∈ Ω(p, q), supp(ω) ⊆M,

∑
u,v∈S

d(u, v) ⋅ ω(u, v) = K(d)(p, q)}.

Proof. Let d∶X ×X → [0, 1] and M ⊆ [X ×X]d. Then we have:

Kd
#(M) = (minu)

avVPD
(d)

# ((avVPD
)d#(M))

where

(avVPD
)d#∶P([X ×X]d)→ P([VPD]avVPD

(d))
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(minu)
avVPD

(d)
# ∶P([VPD]avVPD

(d))→ P([D ×D]K(d))

We are using the approximations associated to non-expansive functions, given in Proposi-
tion 3.5.5, and obtain:

Kd
#(M) = {(p, q) ∈ [D ×D]K(d) ∣ arg min

ω∈u−1(p,q)
avVPD

(d)(ω) ∩ (avVPD
)d#(M) ≠ ∅}

= {(p, q) ∈ [D ×D]K(d) ∣ ∃ω ∈ Ω(p, q), ω ∈ (avVPD
)d#(M),

avVPD
(d)(ω) = min

ω′∈Ω(p,q)
avVPD

(d)(ω′)}

= {(p, q) ∈ [D ×D]K(d) ∣ ∃ω ∈ Ω(p, q), ω ∈ (avVPD
)d#(M),

avVPD
(d)(ω) = K(d)(p, q)}

= {(p, q) ∈ [D ×D]K(d) ∣ ∃ω ∈ Ω(p, q), supp(ω) ⊆M,

∑
u,v∈S

d(u, v) ⋅ ω(u, v) = K(d)(p, q)}

Lemma A.2.9 (Lemma 3.6.10). Let d∶S × S → [0, 1]. The approximation of ∆ in
the dual sense is ∆d

#∶P([S × S]d)→ P([S × S]∆(d)) with

∆d
#(M) = {(s, t) ∈ [S × S]∆(d) ∣ ℓ(s) = ℓ(t) ∧ (η(s), η(t)) ∈ Kd

#(M)}.

Proof. First, (ck)d#(M) = ∅. Now, since (η × η)K(d)# = (η × η)−1, we have

(s, t) ∈ (η × η)K(d)# ○Kd
#(M)⇔ (η(s), η(t)) ∈ Kd

#(M).

Lastly,

∆d
#(M) = (maxρ)((η×η)∗○K⊎ck)(d)

# ○ ((η × η)∗ ○K ⊎ ck)d#(M)

= (maxρ)#((η×η)∗○K⊎ck)(d) ○ (((η × η)∗ ○K)d#(M) ⊎ (ck)d#(M))

= {(s, t) ∈ [S × S]∆(d) ∣ arg max
y∈ρ−1(s,t)

((η × η)∗ ○K ⊎ ck)(d)(y)

⊆ ((η × η)∗ ○K)d#(M) × {0}}

Recalling that ρ−1(s, t) = {((s, t), 0), ((s, t), 1)}, the inclusion

arg max
y∈ρ−1(s,t)

((η × η)∗ ○K ⊎ ck)(d)(y) ⊆ ((η × η)∗ ○K)d#(M) × {0}

can only hold if (η × η)∗ ○K(d)(s, t) > ck(d)(s, t) (and hence the maximum is achieved
by (η × η)∗ ○K(d) instead of ck(d)) which holds if and only if ℓ(s) /= ℓ(t) (for (s, t) ∈
[S × S]∆(d)) and additionally ((s, t), 0) ∈ ((η × η)∗ ○K)d#(M) × {0}. Thus

∆d
#(M) = {(s, t) ∈ [S × S]∆(d) ∣ ck(d)(s, t) < (η × η)∗ ○K(d)(s, t)
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∧ (s, t) ∈ ((η × η)∗ ○K)d#(M)}
= {(s, t) ∈ [S × S]∆(d) ∣ ℓ(s) = ℓ(t) ∧ (η(s), η(t)) ∈ Kd

#(M)}

Lemma A.2.10 (Lemma 3.6.14). The approximation for the Hausdorff lifting
H in the dual sense is as follows. Let d∶X × X → M, then Hd

#∶P([X ×X]d) →
P([P(X) ×P(X)]H(d)) with

Hd
#(R) = {(X1, X2) ∈ [P(X) ×P(X)]H(d) ∣

∀x1 ∈X1( min
x′2∈X2

d(x1, x′2) =H(d)(X1, X2) ⇒ ∃x2 ∈X2∶

(x1, x2) ∈ R ∧ d(x1, x2) =H(d)(X1, X2))∧
∀x2 ∈X2( min

x′1∈X1
d(x′1, x2) =H(d)(X1, X2) ⇒ ∃x1 ∈X1∶

(x1, x2) ∈ R ∧ d(x1, x2) =H(d)(X1, X2))}

Proof. Let d∶X ×X →M and R ⊆ [X ×X]d. Then we have:

Hd
#(R) = (minu)max∈(d)

# ((max∈)d#(R))

where

(max∈)d#∶P([X ×X]d)→ P([P(X ×X)]max∈(d))

(minu)max∈(d)
# ∶P([P(X ×X)]max∈(d))→ P([P(X) ×P(X)]H(d))

We are using the approximations associated to non-expansive functions, given in Proposi-
tion 3.5.5, and obtain:

Hd
#(R) = {(X1, X2) ∈ [P(X) ×P(X)]H(d) ∣ arg min

C∈u−1(X1,X2)
max∈(d)(C)

∩(max∈)d#(R) ≠ ∅}
= {(X1, X2) ∈ [P(X) ×P(X)]H(d) ∣ ∃C ⊆X ×X, u(C) = (X1, X2),

C ∈ (max∈)d#(R), max∈(d)(C) = min
u(C′)=(X1,X2)

max∈(d)(C ′)}

= {(X1, X2) ∈ [P(X) ×P(X)]H(d) ∣ ∃C ⊆X ×X, u(C) = (X1, X2),
C ∈ (max∈)d#(R), max d[C] = min

u(C′)=(X1,X2)
max d[C ′]}

= {(X1, X2) ∈ [P(X) ×P(X)]H(d) ∣ ∃C ⊆X ×X, u(C) = (X1, X2),
arg max

(y1,y2)∈C
d(y1, y2) ⊆ R, max d[C] =H(d)(X1, X2)}

We show that this is equivalent to the characterisation in the statement of the lemma.
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• Assume that for all x1 ∈ X1 such that minx′2∈X2 d(x1, x′2) = H(d)(X1, X2), there
exists x2 ∈X2 such that (x1, x2) ∈ R and d(x1, x2) =H(d)(X1, X2) (and vice versa).
We define a set Cm that contains all such pairs (x1, x2), obtained from this guarantee.
Now let x1 /∈ π1[Cm]. Then necessarily minx′2∈X2 d(x1, x′2) <H(d)(X1, X2) (because
the minimal distance to an element of X2 cannot exceed the Hausdorff distance of
the two sets). Construct another set C ′ that contains all such (x1, x2) where x2 is
an argument where the minimum is obtained. Also add elements x2 /∈ π2[Cm] and
their corresponding partners to C ′.
The C = Cm ∪ C ′ is a coupling for X1, X2, i.e., u(C) = (X1, X2). Furthermore
arg max(y1,y2)∈C d(y1, y2) = Cm ⊆ R and max d[C] =max d[Cm] =H(d)(X1, X2).

• Assume that there exists C ⊆X×X, u(C) = (X1, X2), arg max(y1,y2)∈C d(y1, y2) ⊆ R,
max d[C] =H(d)(X1, X2).
Now let x1 ∈X1 such that minx′2∈X2 d(x1, x′2) =H(d)(X1, X2). Since C is a coupling
of X1, X2, there exists x2 ∈ X2 such that (x1, x2) ∈ C ⊆ R. It is left to show that
d(x1, x2) =H(d)(X1, X2), which can be done as follows:

H(d)(X1, X2) = min
x′2∈X2

d(x1, x′2) ≤ d(x1, x2) ≤max d[C] =H(d)(X1, X2).

For an x2 ∈X2 such that minx′1∈X1 d(x′1, x2) =H(d)(X1, X2) the proof is analogous.

Lemma A.2.11 (Lemma 3.6.17). Let d∶S ×S → [0, 1]. The approximation for M
in the dual sense is Md

#∶P([S × S]d)→ P([S × S]M(d)) with

Md
#(X) = {(s, t) ∈ [S × S]M(d) ∣ dL(ℓ(s), ℓ(t)) <H(K(d))(η(s), η(t))

∧ (η(s), η(t)) ∈HK(d)# ○Kd
#(X)}

Proof. Let d∶S×S → [0, 1] and X ⊆ [S × S]d. We abbreviate g = (η×η)∗○H○K∶ [0, 1]S×S →
[0, 1]S×S and j = (ℓ × ℓ)∗ ○ cdL

∶ [0, 1]S×S → [0, 1]S×S , so that M =maxρ ○(g ⊎ j). Thus we
obtain

Md
#(X) = (maxρ)(g⊎j)(d)

# ○ (g ⊎ j)d#(X)

Since cdL
∶ [0, 1]S×S → [0, 1]L×L is a constant function and ((ℓ × ℓ)∗)cdL

(d)
# = (ℓ × ℓ)−1, we

deduce that

jd
#(X) = ((ℓ × ℓ)∗)cdL

(d)
# ○ (cdL

)d#(X) = (ℓ × ℓ)−1(∅) = ∅

On the other hand
gd

# = ((η × η)∗)H(K(d))# ○HK(d)# ○Kd
#

where

HK(d)# ○Kd
#∶P([S × S]d)→ P([P(S) ×P(S)]H(K(d)))
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((η × η)∗)H(K(d))# ∶P([P(S) ×P(S)]H(K(d)))→ P([S × S]g(d))

We recall that ((η × η)∗)H(K(d))# = (η × η)−1, and hence

(s, t) ∈ gd
#(X)⇔ (η(s), η(t)) ∈HK(d)# ○Kd

#(X)

Lastly, we obtain

Md
#(X) = (maxρ)(g⊎j)(d)

# ○ (g ⊎ j)d#(X)

= (maxρ)(g⊎j)(d)
# (gd

#(X) ⊎ jd
#(X))

= {(s, t) ∈ [S × S]M(d) ∣ arg max
y∈ρ−1(s,t)

(g ⊎ j)(d)(y) ⊆ gd
#(X) × {0}}

Recalling that ρ−1(s, t) = {((s, t), 0), ((s, t), 1)}, the inclusion

arg max
y∈ρ−1(s,t)

(g ⊎ j)(d)(y) ⊆ gd
#(X) × {0}

can only hold if g(d)(s, t) > j(d)(s, t) (and hence the maximum is achieved by g(d)
instead of j(d)) and additionally ((s, t), 0) ∈ gd

#(X) × {0}. Thus

Md
#(X) = {(s, t) ∈ [S × S]M(d) ∣ j(d)(s, t) < g(d)(s, t) ∧ (s, t) ∈ gd

#(X)}
= {(s, t) ∈ [S × S]M(d) ∣ dL(ℓ(s), ℓ(t)) <H(K(d))(η(s), η(t))

∧ (η(s), η(t)) ∈HK(d)# ○Kd
#(X)}

Proposition A.2.12 (Proposition 3.6.20). Let d∶S × S → [0, 1] where d =M(d).
Then Md

#∶P([S × S]d) → P([S × S]d), where [S × S]d = {(s, t) ∈ S × S ∣ d(s, t) >
0}.
Then M is a self-closed relation with respect to d if and only if M ⊆ [S × S]d and
M is a post-fixpoint of Md

#.

Proof. First note that whenever M is self-closed, it holds that d(s, t) > 0 for all (s, t) ∈M
and hence M ⊆ [S × S]d.

Observe that we would have dL(ℓ(s), ℓ(t)) = 1 ≥ H(K(d))(η(s), η(t)) whenever
ℓ(s) ≠ ℓ(t). On the other hand, when ℓ(s) = ℓ(t), instead, we have dL(ℓ(s), ℓ(t)) =
0 < H(K(d))(η(s), η(t)), since H(K(d))(η(s), η(t)) > 0 for all (s, t) ∈ [S × S]d. So, by
Lemma 3.6.17, we obtain that

Md
#(M) = {(s, t) ∈ [S × S]d ∣ dL(ℓ(s), ℓ(t)) <H(K(d))(η(s), η(t))

∧ (η(s), η(t)) ∈HK(d)# ○Kd
#(M)}

= {(s, t) ∈ [S × S]d ∣ ℓ(s) = ℓ(t) ∧ (η(s), η(t)) ∈HK(d)# ○Kd
#(M)}
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= {(s, t) ∈ S × S ∣ d(s, t) > 0 ∧ ℓ(s) = ℓ(t) ∧ (η(s), η(t)) ∈HK(d)# ○Kd
#(M)}

Using the characterisation of the associated approximation of the Hausdorff lifting in
Lemma 3.6.14, we obtain that this is equivalent to

for all p ∈ η(s), whenever minq′∈η(t)K(d)(p, q′) =H(K(d))(η(s), η(t)), then there exists
q ∈ η(t) such that (p, q) ∈ Kd

#(M) and K(d)(p, q) =H(K(d))(η(s), η(t)) (and vice
versa),

assuming that ℓ(s) = ℓ(t) (this is a requirement in the definition ofMd
#(M)), since then we

have H(K(d))(η(s), η(t)) = d(s, t) > 0 and hence (η(s), η(t)) ∈ [P(D) ×P(D)]H(K(d)).
Since also d =M(d), the condition above can be rewritten to

for all p ∈ η(s), whenever minq′∈η(t)K(d)(p, q′) = d(s, t), then there exists q ∈ η(t) such
that (p, q) ∈ Kd

#(M) and K(d)(p, q) = d(s, t) (and vice versa).

From Lemma 3.6.7 we know that (p, q) ∈ Kd
#(M) iff K(d)(p, q) > 0 and there exists

c ∈ Ω(p, q) such that supp(c) ⊆M and ∑u,v∈S c(u, v) ⋅ d(u, v) = K(d)(p, q). We instantiate
the condition above accordingly and obtain

for all p ∈ η(s), whenever d(s, t) =minq′∈η(t)K(d)(p, q′), then there exists q ∈ η(t) such
that there exists c ∈ Ω(p, q) with supp(c) ⊆M , K(d)(p, q) = ∑u,v∈S c(u, v) ⋅ d(u, v) and

K(d)(p, q) = d(s, t) (and vice versa).

The two last equalities can be simplified to d(s, t) = ∑u,v∈S c(u, v) ⋅ d(u, v), since

K(d)(p, q) ≤ ∑
u,v∈S

c(u, v) ⋅ d(u, v) = d(s, t) = min
q′∈η(t)

K(d)(p, q′) ≤ K(d)(p, q)

and hence K(d)(p, q) = d(s, t) can be inferred from the remaining conditions.
We finally obtain the following equivalent characterisation:

for all p ∈ η(s), whenever d(s, t) =minq′∈η(t)K(d)(p, q′), then there exists q ∈ η(t) such
that there exists c ∈ Ω(p, q) with supp(c) ⊆M , d(s, t) = ∑u,v∈S c(u, v) ⋅ d(u, v) (and vice

versa).

Hence we obtain that (η(s), η(t)) ∈HK(d)# ○Kd
#(M) is equivalent to the the second and

third item of Definition 3.6.19 (under the assumption that ℓ(s) = ℓ(t)), while the first
item is covered by the other conditions (d(s, t) > 0 and ℓ(s) = ℓ(t)) in the characterisation
of Md

#(M).
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Lemma A.2.13 (Lemma 3.6.23). The approximation for the adapted Haus-
dorff lifting G is as follows. Let a∶X × X → {0, 1}, then G#

a ∶P([X ×X]a) →
P([P(X) ×P(X)]a) with

G#
a (R) = {(X1, X2) ∈ [P(X) ×P(X)]G(a) ∣

∀x1 ∈X1∃x2 ∈X2∶ ((x1, x2) /∈ [X ×X]a ∨ (x1, x2) ∈ R)
∧∀x2 ∈X2∃x1 ∈X1∶ ((x1, x2) /∈ [X ×X]a ∨ (x1, x2) ∈ R)}

Proof. We rely on the characterisation of Ha
# (dual case) of Lemma 3.6.14 and we examine

the case where M = {0, 1}. In this case, whenever we have (X1, X2) ∈ [P(X) ×P(X)]H(a)
it must necessarily hold that H(a)(X1, X2) = 1. Hence, the first part of the conjunction
simplifies to:

∀x1 ∈X1( min
x′2∈X2

a(x1, x′2) = 1 ⇒ ∃x2 ∈X2∶ (x1, x2) ∈ R ∧ a(x1, x2) = 1),

from which we can omit a(x1, x2) = 1 from the conclusion, since this holds automatically.
Furthermore minx′2∈X2 a(x1, x′2) = 1 can be rewritten to ∀x2 ∈X2∶a(x1, x2) = 1. This gives
us:

∀x1 ∈X1(¬∀x2 ∈X2∶a(x1, x2) = 1∨∃x2 ∈X2∶ (x1, x2) ∈ R)
≡ ∀x1 ∈X1(∃x2 ∈X2∶a(x1, x2) = 0∨∃x2 ∈X2∶ (x1, x2) ∈ R)
≡ ∀x1 ∈X1∃x2 ∈X2((x1, x2) /∈ [X ×X]a ∨(x1, x2) ∈ R).

Since this characterisation is independent of the order, we can replace [X ×X]a by
[X ×X]a and obtain a characterizing condition for G#

a (primal case).

Lemma A.2.14 (Lemma 3.6.24). Bisimilarity for a transition system TS = (X, η)
is the greatest fixpoint of B = (η × η)∗ ○ G.

Proof. Let for a ∶ X ×X → {0, 1}, x, y ∈X. Then we have

(η × η)∗ ○ G(a)(x, y) = G(a)(η(x), η(y))
= maxu(min∈(a))(η(x), η(y))
= max

u(C)=(η(x),η(y))
(minX×X

∈ (a))(C)

= max
u(C)=(η(x),η(y))

min
(x′,y′)∈C

a(x′, y′)

Now we prove that this, indeed, corresponds with the standard bisimulation function,
i.e. maxu(C)=(η(x),η(y))min(x′,y′)∈C a(x′, y′) = 1 if and only if for all x′ ∈ η(x) there exists
y′ ∈ η(y) such that a(x′, y′) = 1 and vice versa. For the first implication, assume that
maxu(C)=(η(x),η(y))min(x′,y′)∈C a(x′, y′) = 1. This means that there exists C ⊆X ×X such
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that u(C) = (π1(C), π2(C)) = (η(x), η(y)) and min(x′,y′)∈C a(x′, y′) = 1. Then we have
two cases. Either C = ∅, which means that η(x) = η(y) = ∅, that is, x and y have no
successors, and so the bisimulation property vacuously holds. Otherwise, C ≠ ∅, and
we must have a(x′, y′) = 1 for all (x′, y′) ∈ C. Then, since (π1(C), π2(C)) = (η(x), η(y)),
for all x′ ∈ η(x) there must exists y′ ∈ η(y) such that (x′, y′) ∈ C, and thus a(x′, y′) = 1.
Vice versa, for all y′ ∈ η(y) there must exists x′ ∈ η(x) such that (x′, y′) ∈ C, and thus
a(x′, y′) = 1. So the bisimulation property holds.

For the other implication, assume that for all x′ ∈ η(x) there exists y′ ∈ η(y) such
that a(x′, y′) = 1 and call c1(x′) such a y′. Vice versa, assume also that for all y′ ∈ η(y)
there exists x′ ∈ η(x) such that a(x′, y′) = 1 and call c2(y′) such a x′. This means that
for all x′ ∈ η(x) and y′ ∈ η(y), we have a(x′, c1(x′)) = a(c2(y′), y′) = 1. Now let C ′ =
{(x′, y′) ∈ η(x) × η(y) ∣ c1(x′) = y′ ∨ x′ = c2(y′)}. Since we assumed that for all x′ ∈ η(x)
there exists y′ ∈ η(y) such that c1(x′) = y′, we must have that π1(C ′) = η(x). The same
holds for all y′ ∈ η(y), thus π2(C ′) = η(y). Therefore, we know that u(C ′) = (η(x), η(y)),
and we can conclude by showing that a(x′, y′) = 1 for all (x′, y′) ∈ C ′, in which case
also maxu(C)=(η(x),η(y))min(x′,y′)∈C a(x′, y′) = 1. By definition of C ′ either c1(x′) = y′ or
x′ = c2(y′), or both, must hold. Assume the first one holds, the other case is similar.
Then, we can immediately conclude since by hypothesis we know that a(x′, c1(x′)) = 1.

Since we proved that the function B is the same of the standard bisimulation function,
then its greatest fixpoint νB is the bisimilarity on η.

Lemma A.2.15 (Lemma 3.6.25). Let a∶X×X → {0, 1}. The approximation for the
bisimilarity function B in the primal sense is B#

a ∶P([X ×X]a)→ P([X ×X]B(a))
with

B#
a (R) = {(x1, x2) ∈ [X ×X]B(a) ∣

∀y1 ∈ η(x1)∃y2 ∈ η(x2)((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R))
∧∀y2 ∈ η(x2)∃y1 ∈ η(x1)((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R)}

Proof. From Lemma 3.6.14 we know that

G#
a ∶ [X ×X]a → [P(X) ×P(X)]G(a)

G#
a (R) = {(X1, X2) ∈ [P(X) ×P(X)]G(a) ∣

∀x1 ∈X1∃x2 ∈X2∶ ((x1, x2) /∈ [X ×X]a ∨ (x1, x2) ∈ R)
∧∀x2 ∈X2∃x1 ∈X1∶ ((x1, x2) /∈ [X ×X]a ∨ (x1, x2) ∈ R)}.

Furthermore

((η × η)∗)#G(a)∶ [P(X) ×P(X)]G(a) → [X ×X]B(a)
((η × η)∗)#G(a)(Q) = (η × η)−1(Q)
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Composing these functions we obtain:

B#
a ∶ [X ×X]a → [X ×X]B(a)

B#
a (R) = (η × η)−1({(Y1, Y2) ∈ [P(X) ×P(X)]G(a) ∣

∀y1 ∈ Y1∃y2 ∈ Y2∶ ((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R)
∧∀y2 ∈ Y2∃y1 ∈ Y1∶ ((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R)})

= {(x1, x2) ∈ [X ×X]B(a) ∣
∀y1 ∈ η(x1)∃y2 ∈ η(x2)∶ ((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R)

∧∀y2 ∈ η(x2)∃y1 ∈ η(x1)∶ ((y1, y2) /∈ [X ×X]a ∨ (y1, y2) ∈ R)}.

Lemma A.2.16 (Lemma 3.6.30). Let a∶V → [0, 1]. The approximation for the
value iteration function V in the dual sense is Va

#∶P([V ]a)→ P([V ]V(a)) with

Va
#(V ′) = {v ∈ [V ]V(a) ∣ (v ∈ VMin ∧ arg min

v′∈ηmin(v)
a(v′) ∩ V ′ ≠ ∅)∨

(v ∈ VMax ∧ arg max
v′∈ηmax(v)

a(v′) ⊆ V ′) ∨ (v ∈ VAv ∧ supp(ηav(v)) ⊆ V ′)}

Proof. Let a∶V → [0, 1] and V ′ ⊆ [V ]a. By Proposition 3.5.7 we have:

Va
#(V ′) =(VMin ∩ (η∗min ○min∈)a#(V ′)) ∪ (VMax ∩ (η∗max ○max∈)a#(V ′))∪

(VAv ∩ (η∗av ○ avD)a#(V ′)) ∪ (VSink ∩ (cw)a#(V ′))

It holds that (η∗min)
min∈(v)
# = η−1

min, (η∗max)
max∈(v)
# = η−1

max and (η∗av)
avD(v)
# = η−1

av . Using
previous results (Proposition 3.5.5) we deduce

v ∈ (η∗min ○min∈)a#(V ′)⇔ ηmin(v) ∈ (min∈)a#(V ′)⇔ arg min
v′∈ηmin(v)

a(v′) ∩ V ′ ≠ ∅

v ∈ (η∗max ○max∈)a#(V ′)⇔ ηmax(v) ∈ (max∈)a#(V ′)⇔ arg max
v′∈ηmax(v)

a(v′) ⊆ V ′

v ∈ (η∗av ○ avD)a#(V ′)⇔ ηav(v) ∈ (avD)a#(V ′)⇔ supp(ηav(v)) ⊆ V ′

Lastly (cw)a#(V ′) = ∅ for any V ′ ⊆ V since cw is a constant function which concludes the
proof.

Lemma A.2.17 (Lemma 3.6.34). The function sub′w∶KE → KE, defined via
sub′w(a)(e) = a(e)⊖Z w(e) for a∶E →K, e ∈ E and w∶E → Z, is non-expansive.

Proof. Let w∶E → Z, a, b∶E →K. Without loss of generality, assume

∥ sub′w(b)⊖ sub′w(a) ∥= sub′w(b)(e)⊖ sub′w(a)(e) = (b(e)⊖Z w(e))⊖ (a(e)⊖Z w(e))
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for some e ∈ E. We omit the trivial case, i.e. we assume ∥ sub′w(b)⊖ sub′w(a) ∥> 0. Thus
b(e) > a(e) has to hold by monotonicity.

We make the following distinction of cases.

1. w(e) ≥ 0 ∧ a(e) ≥ w(e):

(b(e)⊖Z w(e))⊖ (a(e)⊖Z w(e))
= (b(e) −w(e)) − (a(e) −w(e)) [b(e) > a(e) ≥ w(e)]
= b(e) − a(e)
≤∥ b⊖ a ∥

2. w(e) ≥ 0 ∧ a(e) < w(e):

(b(e)⊖Z w(e))⊖ (a(e)⊖Z w(e))
= (b(e)⊖w(e))⊖ 0 [a(e) < w(e)]
≤ b(e) − a(e) [a(e) < w(e), a(e) < b(e)]
≤∥ b⊖ a ∥

3. w(e) < 0 ∧ b(e) −w(e) ≤ k:

(b(e)⊖Z w(e))⊖ (a(e)⊖Z w(e))
= (b(e) −w(e)) − (a(e) −w(e)) [b(e) > a(e)]
= b(e) − a(e)
≤∥ b⊖ a ∥

4. w(e) < 0 ∧ b(e) −w(e) > k:

(b(e)⊖Z w(e))⊖ (a(e)⊖Z w(e))
= k − (a(e)⊖Z w(e)) [a(e)⊖Z w(e) ∈K]
≤ k − (a(e)⊖Z (b(e) − k)) [w(e) < b(e) − k]
= k −min{max{a(e) − b(e) + k, 0}, k}
= k −min{a(e) − b(e) + k, k} [k ≥ b(e)]
= k − (a(e) − b(e) + k) [b(e) > a(e)]
= b(e) − a(e)
≤∥ b⊖ a ∥
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Lemma A.2.18 (Lemma 3.6.35). Given w∶E → Z and a∶E →K the approximation
(sub′w)a#∶K[E]

a →K[E]
sub′w(a) of sub′w∶KE →KE, is given by

(sub′w)a#(E′) = {e ∈ E′ ∣ 0 < a(e) −w(e) ≤ k}

for E′ ⊆ [E]a.

Proof. Note that here the minimal possible decrease is δ = 1 ≤ δa, which we will use in
the following

Now:

(sub′w)
a,δ
# (E

′) = {e ∈ [E]sub′w(a) ∣ sub′w(a)(e)⊖ sub′w(a⊖ δE′)(e) ≥ δ}

= {e ∈ [E]sub′w(a) ∣ (a(e)⊖Z w(e))⊖ ((a⊖ δE′)(e)⊖Z w(e)) ≥ δ}

First note, that whenever e ∉ E′ then

(a(e)⊖Z w(e))⊖ ((a⊖ δE′)(e)⊖Z w(e)) = (a(e)⊖Z w(e))⊖ (a(e)⊖Z w(e)) = 0 < δ.

Now let e ∈ [E′]sub′w(a), i.e. a(e) −w(e) > 0. Whenever a(e) −w(e) > k we obtain

(a(e)⊖Zw(e))⊖((a⊖δE′)(e)⊖Zw(e)) = k−min{a(e)−δ−w(e), k} < k−min{k−δ, k} ≤ δ.

If on the other hand e ∈ E′ with 0 < a(e) −w(e) ≤ k, we have:

(a(e)⊖Z w(e))⊖ ((a⊖ δE′)(e)⊖Z w(e)) = (a(e) −w(e)) − (a(e) − δ −w(e)) = δ,

since E′ ⊆ [E]a and by choice of δ, a(e) − δ −w(e) ≥ 0 holds.
To summarize we obtain

(sub′w)a#(E′) = {e ∈ [E′]sub′w(a) ∣ a(e) −w(e) ≤ k} = {e ∈ E′ ∣ 0 < a(e) −w(e) ≤ k}.

Lemma A.2.19 (Lemma 3.6.36). Let V ′ ⊆ [V ]a then v ∈ Ea
#(V ′) if v ∈ [V ]E(a)

and

• whenever v ∈ VMin there exists some (v, v′′) ∈ E with min
(v,v′)∈E

a(v′)⊖Zw(v, v′) =

a(v′′)⊖Z w(v, v′′), 0 < a(v′′) −w(v, v′′) ≤ k and v′′ ∈ V ′

• whenever v ∈ VMax: if (v, v′′) ∈ E with max
(v,v′)∈E

a(v′) ⊖Z w(v, v′) = a(v′′) ⊖Z

w(v, v′′) then 0 < a(v′′) −w(v, v′′) ≤ k and v′′ ∈ V ′
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Proof. We have

Ea
#(V ′) = {v ∈ [V ]E(a) ∣(v ∈ VMin ∧Minsub′w○π∗2(a)∣E0

∩ (sub′w)
π∗2(a)
# (π−1

2 (V ′)) ≠ ∅)

∨(v ∈ VMax ∧Maxsub′w○π∗2(a)∣E1
⊆ (sub′w)

π∗2(a)
# (π−1

2 (V ′)))}

= {v ∈ [V ]E(a) ∣(v ∈ VMin ∧Minsub′w○π∗2(a)∣E0

∩ {(v, v′) ∈ E ∣ 0 < a(v′) −w(v, v′) ≤ k, v′ ∈ V ′} ≠ ∅)
∨(v ∈ VMax ∧Maxsub′w○π∗2(a)∣E1

⊆ {(v, v′) ∈ E ∣ 0 < a(v′) −w(v, v′) ≤ k, v′ ∈ V ′}}
= {v ∈ [V ]E(a) ∣(v ∈ VMin ∧ there exists some (v, v′′) ∈ E with

min
(v,v′)∈E

a(v′)⊖Z w(v, v′) = a(v′′)⊖Z w(v, v′′),

0 < a(v′′) −w(v, v′′) ≤ k and v′′ ∈ V ′)
∨(v ∈ VMax ∧ if (v, v′′) ∈ E with

max
(v,v′)∈E

a(v′)⊖Z w(v, v′) = a(v′′)⊖Z w(v, v′′)

then 0 < a(v′′) −w(v, v′′) ≤ k and v′′ ∈ V ′)}

A.3. Proofs of Chapter 4

Lemma A.3.1 (Lemma 4.3.4). Given a ∈MY , g∶Z → Y and 0 ⊏ δ ∈M, then we
have

1. αa○g,δ ○ g−1 = g∗ ○ αa,δ

2. γa○g,δ ○ g∗ = g−1 ○ γa,δ

This implies that for two C-arrows f ∶a ⇢ b, h∶ b ⇢ c, it holds that #(h ○ f) =
#(h) ○#(f) whenever f or h is a reindexing, i.e., is contained in C∗.

Proof.

1. Let Y ′ ⊆ [Y ]a. Then

g∗(αa,δ(Y ′)) = g∗(a⊖ δY ′) = (a⊖ δY ′) ○ g = a ○ g ⊖ δY ′ ○ g

= a ○ g ⊖ δg−1(Y ′) = αa○g,δ(g−1(Y ′))

where we use that (δY ′ ○ g)(z) = δ if g(z) ∈ Y ′, equivalent to z ∈ g−1(Y ′), and 0
otherwise. Hence δY ′ ○ g = δg−1(Y ′).
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2. Let b ∈MY with a⊖ δ ⊑ b ⊑ a. Then

γa○g,δ ○ g∗(b) = {z ∈ Z ∣ a(g(z))⊖ b(g(z)) ⊒ δ} = {z ∈ Z ∣ g(z) ∈ γa,δ(b)}
= g−1(γa,δ(b))

It is left to show that #(h ○ f) = #(h) ○#(f) whenever f or h is a reindexing. Note that
on reindexings it holds that #(g∗) = g−1.

Let a ∈ MY , b ∈ MZ , c ∈ MW and assume first that f is a reindexing, i.e., f = g∗ for
some g∶Z → Y . Let Y ′ ⊆ [Y ]a, then

#(h ○ f) = (h ○ f)a# = ⋃
δ⊐0
(γh(f(a)),δ ○ h ○ f ○ αa,δ)(Y ′)

= ⋃
δ⊐0
(γh(f(a)),δ ○ h ○ g∗ ○ αa,δ)(Y ′)

= ⋃
δ⊐0
(γh(f(a)),δ ○ h ○ αa○g,δ)(g−1(Y ′)) [1.]

= ⋃
δ⊐0
(γh(f(a)),δ ○ h ○ αf(a),δ)(#(g∗)(Y ′))

=#(h)((#(f)(Y ′)))

Now we assume that h is a reindexing, i.e., h = g∗ for some g∶W → Z. Let again Y ′ ⊆ [Y ]a,
then:

#(h ○ f) = (h ○ f)a# = ⋃
δ⊐0
(γh(f(a)),δ ○ h ○ f ○ αa,δ)(Y ′)

= ⋃
δ⊐0
(γf(a)○g,δ ○ g∗ ○ f ○ αa,δ)(Y ′)

= ⋃
δ⊐0

g−1((γf(a),δ ○ f ○ αa,δ)(Y ′)) [2.]

= g−1(⋃
δ⊐0
(γf(a),δ ○ f ○ αa,δ)(Y ′)) [preimage preserves union]

=#(g∗)(⋃
δ⊐0
(γf(a),δ ○ f ○ αa,δ)(Y ′))

=#(h)((#(f)(Y ′)))

Lemma A.3.2 (Lemma 4.5.3). Consider the lifting of the distribution functor
presented in Example 4.4.1 and let Z = [0, 1] × {0, 1}. Then we have

(D̃f )π1
# ((0, 1] × {1}) = {p ∈ Df Z ∣ supp(p) ∈ (0, 1] × {1}}.

Proof. Let δ > 0. We define
π̃δ

1 ∶= απ1,δ((0, 1] × {1})



230 A. Appendix

where π̃δ
1(x, 0) = x, π̃δ

1(x, 1) = x ⊖ δ for x ∈ [0, 1]. Note that [Df Z]D̃f π1 = {p ∈ Df Z ∣
∃(x, b) ∈ supp(p) with x ≥ 0}. Now

(D̃f )π1,δ
# ((0, 1] × {1}) = {p ∈ [Df Z]D̃f π1 ∣ D̃f π1(p)⊖ D̃f (π̃δ

1)(p) ≥ δ}

= {p ∈ [Df Z]D̃f π1 ∣ ( ∑
x∈[0,1]

x ⋅ p(x, 0)⊕ ∑
x∈[0,1]

x ⋅ p(x, 1))

⊖ ( ∑
x∈[0,1]

x ⋅ p(x, 0)⊕ ∑
x∈[0,1]

(x⊖ δ) ⋅ p(x, 1)) ≥ δ}

= {p ∈ [Df Z]D̃f π1 ∣ ∑
x∈[0,δ)

x ⋅ p(x, 1) + ∑
x∈[δ,1]

δ ⋅ p(x, 1) ≥ δ}

= {p ∈ [Df Z]D̃f π1 ∣ supp(p) ∈ [δ, 1] × {1}}.

Where the second last equality uses the fact that x⊖ (x⊖ δ) = δ if x ≥ δ and x otherwise.
Now, we obtain

(D̃f )π1
# ((0, 1] × {1}) = ⋃

δ⊐0
(D̃f )π1,δ

# ((0, 1] × {1}) = {p ∈ Df Z ∣ supp(p) ∈ (0, 1] × {1}}.

Lemma A.3.3 (Lemma 4.5.5). Consider the lifting of the powerset functor from
Example 4.4.2 and let Z =M × {0, 1}. Then we have

(P̃f )π1
# ((M/{0}) × {1}) = {S ∈ [Pf Z]P̃f π1 ∣ ∃(s, 1) ∈ S, ∀(s′, 0) ∈ S ∶ s ⊐ s′}.

Proof. Let δ ⊐ 0 and define π̃δ
1 as in the proof of Lemma 4.5.3. Then

(P̃f )π1,δ
# ((M/{0}) × {1}) = {S ∈ [Pf Z]P̃f π1 ∣ P̃f π1(S)⊖ P̃f (π̃δ

1)(S) ⊒ δ}

= {S ∈ [Pf Z]P̃f π1 ∣ max
(s,s′)∈S

s⊖ ( max
(s,s′)∈S

s⊖ s′ ⋅ δ) ⊒ δ}

= {S ∈ [Pf Z]P̃f π1 ∣ ∃(s, 1) ∈ S, ∀(s′, 0) ∈ S ∶ s⊖ δ ⊒ s′}

For the last step we note that this condition ensures that the second maximum equates
to max(s,s′)∈S s⊖ δ which is required for the inequality to hold. Now, we obtain

(P̃f )π1
# ((M/{0}) × {1}) = ⋃

δ⊐0
(P̃f )π1,δ

# ((M/{0}) × {1})

= {S ∈ [Pf Z]P̃f π1 ∣ ∃(s, 1) ∈ S, ∀(s′, 0) ∈ S ∶ s ⊐ s′}.
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Theorem A.3.4 (Theorem 4.6.1). The category Cf with the following operators
is gs-monoidal:

1. The tensor ⊗ on objects a ∈MY and b ∈MZ is defined as

a⊗ b = a + b ∈MY +Z

where for k ∈ Y + Z we have (a + b)(k) = a(k) if k ≤ ∣Y ∣ and (a + b)(k) =
b(k − ∣Y ∣) if ∣Y ∣ < k ≤ ∣Y ∣ + ∣Z ∣.
On arrows f ∶a⇢ b and g∶a′ ⇢ b′ (with a′ ∈MY ′ , b′ ∈MZ′) tensor is given by

f ⊗ g∶MY +Y ′ →MZ+Z′ , (f ⊗ g)(u) = f( ⃗uY ) + g(u⃗Y )

for u ∈ MY +Y ′ where ⃗uY ∈ MY and u⃗Y ∈ MY ′, defined as ⃗uY (k) = u(k)
(1 ≤ k ≤ ∣Y ∣) and u⃗Y (k) = u(∣Y ∣ + k) (1 ≤ k ≤ ∣Y ′∣).

2. The symmetry ρa,b∶a⊗ b⇢ b⊗ a for a ∈MY , b ∈MZ is defined for u ∈MY +Z

as
ρa,b(u) = u⃗Y + ⃗uY .

3. The unit e is the unique mapping e∶ ∅→M.

4. The duplicator ∇a∶a⇢ a⊗ a for a ∈MY is defined for u ∈MY as

∇a(u) = u + u.

5. The discharger !a∶a⇢ e for a ∈MY is defined for u ∈MY as !a(u) = e.

Proof. In the following let a ∈ MY , a′ ∈ MY ′ , b ∈ MZ , b′ ∈ MZ′ , c ∈ MW , c′ ∈ MW ′ be
objects in Cf .

We know that Cf is a well-defined category from Lemma 4.3.2. We also note that
disjoint unions of non-expansive functions are non-expansive and given f ∶a ⇢ b and
g∶a′ ⇢ b′, that

(f ⊗ g)(a⊗ a′) = (f ⊗ g)(a + a′)

= f(
←ÐÐÐÐ
(a + a′)Y ) + g(

ÐÐÐÐ→
(a + a′)Y ) = f(a) + g(a′) = b + b′ = b⊗ b′.

Thus, we have a well-defined arrow f ⊗ g∶a⊗ a′ ⇢ b⊗ b′.
We now verify all the axioms of gs-monoidal categories given in Definition 2.4.9. In

general the calculations are straightforward, but we give them here for completeness.
We will in the following often use the fact that ⃗uY + u⃗Y = u whenever Y is a subset of

the domain of u.

1. functoriality of tensor:
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• ida⊗b = ida ⊗ idb:

Let u ∈MY +Z . Then

(ida ⊗ idb)(u) = ida( ⃗uY ) + idb(u⃗Y ) = ⃗uY + u⃗Y = u = ida⊗b(u)

• (g ⊗ g′) ○ (f ⊗ f ′) = (g ○ f)⊗ (g′ ○ f ′):

This equation is required to hold if both sides are defined. Hence let f ∶a⇢ b,
g∶ b⇢ c, f ′∶a′ ⇢ b′, g′∶ b′ ⇢ c′ and u ∈MY +Y ′ . We obtain:

(g ⊗ g′) ○ (f ⊗ f ′)(u) = (g ⊗ g′)(f( ⃗uY ) + f ′(u⃗Y ))
= g(f( ⃗uY )) + g′(f ′(u⃗Y )) = ((g ○ f)⊗ (g′ ○ f ′))( ⃗uY + u⃗Y )
= ((g ○ f)⊗ (g′ ○ f ′))(u)

2. monoidality:
• f ⊗ ide = f = ide ⊗ f :

Let f ∶a⇢ b and u ∈MY . It holds that:

(f ⊗ ide)(u) = (f ⊗ ide)(u + e) = f(u) + ide(e)
= f(u) + e = f(u) = e + f(u)
= ide(e) + f(u) = (ide ⊗ f)(e + u) = (ide ⊗ f)(u)

• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h):

Let f ∶a⇢ a′, g∶ b⇢ b′ and h∶ c⇢ c′ and u ∈MY +Z+W , then

((f ⊗ g)⊗ h)(u) = (f ⊗ g)( ⃗uY +Z) + h(u⃗Y +Z)
= (f(

←ÐÐÐÐ
( ⃗uY +Z)Y ) + g(

ÐÐÐÐ→
( ⃗uY +Z)Y )) + h(u⃗Y +Z)

= f( ⃗uY ) + (g(
←ÐÐ
(u⃗Y )Z) + h(

ÐÐ→
(u⃗Y )Z))

= f( ⃗uY ) + (g ⊗ h)(u⃗Y ) = (f ⊗ (g ⊗ h))(u)

where we use the fact that
ÐÐÐÐ→
( ⃗uY +Z)Y =

←ÐÐ
(u⃗Y )Z .

3. naturality:
• (f ′ ⊗ f) ○ ρa,a′ = ρb,b′ ○ (f ⊗ f ′):

Let f ∶a⇢ b and f ′∶a′ ⇢ b′. Then for u ∈MY +Y ′ :

(ρb,b′ ○ (f ⊗ f ′))(u) = ρb,b′(f( ⃗uY ) + f ′(u⃗Y ))
= f ′(u⃗Y ) + f( ⃗uY ) = (f ′ ⊗ f)(u⃗Y + ⃗uY ) = ((f ′ ⊗ f) ○ ρa,a′)(u)

4. symmetry:



A.3. Proofs of Chapter 4 233

• ρe,e = ide:

We note that e is the unique function from ∅ to M and furthermore e⊗ e =
e + e = e. Then

ρe,e(e) = ρe,e(e + e) = e + e = e = ide(e)

• ρb,a ○ ρa,b = ida⊗b:

Let u ∈MY +Z , then:

(ρb,a ○ ρa,b)(u) = ρb,a(u⃗Y + ⃗uY ) = ⃗uY + u⃗Y = u = ida⊗b(u)

• ρa⊗b,c = (ρa,c ⊗ idb) ○ (ida ⊗ ρb,c):

Let u ∈MY +Z+W , then:

((ρa,c ⊗ idb) ○ (ida ⊗ ρb,c))(u)
= (ρa,c ⊗ idb)(ida( ⃗uY ) + ρb,c(u⃗Y ))

= (ρa,c ⊗ idb)( ⃗uY +
ÐÐ→
(u⃗Y )Z +

←ÐÐ
(u⃗Y )Z)

= ρa,c( ⃗uY + u⃗Y +Z) + idb(
←ÐÐ
(u⃗Y )Z) = u⃗Y +Z + ⃗uY +

ÐÐÐÐ→
( ⃗uY +Z)Y

= u⃗Y +Z + ⃗uY +Z = ρa⊗b,c(u)

where we use the fact that
ÐÐ→
(u⃗Y )Z = u⃗Y +Z and

←ÐÐ
(u⃗Y )Z =

ÐÐÐÐ→
( ⃗uY +Z)Y .

5. gs-monoidality:
• !e = ∇e = ide:

Since e is the unique function of type ∅→M and e + e = e, we obtain:

!e(e) = e = ide(e) = e = e + e = ∇e(e)

• coherence axioms:

For u ∈MY , we note that
←ÐÐÐÐ
(u + u)Y =

ÐÐÐÐ→
(u + u)Y = u.

– (ida ⊗∇a) ○ ∇a = (∇a ⊗ ida) ○ ∇a:

Let u ∈MY , then:

((ida ⊗∇a) ○ ∇a)(u) = (ida ⊗∇a)(u + u)
= ida(u) +∇a(u) = u + u + u = ∇a(u) + ida(u)
= (∇a ⊗ ida)(u + u) = (∇a ⊗ ida)(∇a(u))
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– ida = (ida⊗!a) ○ ∇a:

Let u ∈MY , then:

((ida⊗!a) ○ ∇a)(u) = (ida⊗!a)(u + u)
= ida(u)+!a(u) = ida(u) + e = ida(u)

– ρa,a ○ ∇a = ∇a:

Let u ∈MY , then:

(ρa,a ○ ∇a)(u) = ρa,a(u + u) = u + u = ∇a(u)

• monoidality axioms:

– !a⊗b =!a⊗!b:

Let u ∈MY +Z , then:

!a⊗b(u) = e = e + e =!a( ⃗uY )+!b(u⃗Y ) = (!a⊗!b)(u)

– ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ idb) ○ ∇a⊗b:

Let u ∈MY +Z , then:

(ida ⊗ ρb,a ⊗ idb)(∇a⊗b(u)) = (ida ⊗ ρb,a ⊗ idb)(u + u)
= (ida ⊗ ρb,a ⊗ idb)( ⃗uY + u⃗Y + ⃗uY + u⃗Y )
= ⃗uY + ⃗uY + u⃗Y + u⃗Y = ∇a( ⃗uY ) +∇b(u⃗Y )
= (∇a ⊗∇b)( ⃗uY + u⃗Y ) = (∇a ⊗∇b)(u)
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Theorem A.3.5 (Theorem 4.6.2). The category Af with the following operators
is gs-monoidal:

1. The tensor ⊗ on objects a ∈MY and b ∈MZ is again defined as a⊗ b = a + b.
On arrows f ∶a⇢ b and g∶a′ ⇢ b′ (where a′ ∈MY ′ , b′ ∈MZ′ and f ∶P([Y ]a)→
P([Z]b′), g∶P([Y ′]a′)→ P([Z ′]b′) are the underlying functions), the tensor
is given by

f ⊗ g∶P([Y + Y ′]a+a′)→ P([Z +Z ′]b+b′), (f ⊗ g)(U) = f( ⃗UY )∪Z g(U⃗Y )

where ⃗UY = U ∩ {1, . . . , ∣Y ∣} and U⃗Y = {k ∣ ∣Y ∣ + k ∈ U}. Furthermore:

U ∪Y V = U ∪ {∣Y ∣ + k ∣ k ∈ V } (where U ⊆ Y )

2. The symmetry ρa,b∶a ⊗ b ⇢ b ⊗ a for a ∈ MY , b ∈ MZ is defined for U ⊆
[Y +Z]a+b as

ρa,b(U) = U⃗Y ∪Z
⃗UY ⊆ [Z + Y ]b+a

3. The unit e is again the unique mapping e∶ ∅→M.

4. The duplicator ∇a∶a⇢ a⊗ a for a ∈MY is defined for U ⊆ [Y ]a as

∇a(U) = U ∪Y U ⊆ [Y + Y ]a+a.

5. The discharger !a∶a⇢ e for a ∈MY is defined for U ⊆ [Y ]a as !a(U) = ∅.

Proof. Let a ∈MY , a′ ∈MY ′ , b ∈MZ , b′ ∈MZ′ , c ∈MW , c′ ∈MW ′ be objects in Af .
We know that Af is a well-defined category from Lemma 4.3.2. We note that, disjoint

unions of monotone functions are monotone, making the tensor well-defined.
We now verify the axioms of gs-monoidal categories (see Definition 2.4.9), the calcula-

tions are mostly straightforward.
We will in the following often use the fact that ⃗UY ∪Y U⃗Y = U whenever U ∈ P([Z]b)

and Y ⊆ Z.

1. functoriality of tensor:
• ida⊗b = ida ⊗ idb:

Let U ⊆ [Y +Z]a+b, then:

(ida ⊗ idb)(U) = (ida ⊗ idb)( ⃗UY ∪Y U⃗Y )
= ida( ⃗UY )∪Y idb(U⃗Y ) = ⃗UY ∪Y U⃗Y = U = ida⊗b(U)

• (g ⊗ g′) ○ (f ⊗ f ′) = (g ○ f)⊗ (g′ ○ f ′):
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Let f ∶a⇢ b, g∶ b⇢ c, f ′∶a′ ⇢ b′, g′∶ b′ ⇢ c′ and u ∈MY +Y ′ . We obtain:

((g ⊗ g′) ○ (f ⊗ f ′))(U) = (g ⊗ g′)(f( ⃗UY )∪Z f ′(U⃗Y ))
= g(f( ⃗UY ))∪W g′(f ′(U⃗Y )) = ((g ○ f)⊗ (g′ ○ f ′))( ⃗UY ∪Y U⃗Y )
= ((g ○ f)⊗ (g′ ○ f ′))(U)

2. monoidality:
• f ⊗ ide = f = ide ⊗ f :

Let f ∶a⇢ b and U ⊆ [Y ]a. It holds that:

(f ⊗ ide)(U) = f( ⃗UY )∪Z ide(U⃗Y ) = f(U)∪Z ide(∅) = f(U)∪Z ∅
= f(U) = ∅∪∅ f(U) = ide(∅)∪∅ f(U) = ide( ⃗U∅)∪∅ f(U⃗∅)
= (ide ⊗ f)(U)

where we use the fact that ⃗UY = U and U⃗Y = ∅, since U ⊆ Y , as well as ⃗U∅ = ∅
and U⃗∅ = U .

• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h):

Let f ∶a⇢ a′, g ∈∶ b⇢ b′ and h∶ c⇢ c′ and U ⊆ [Y +Z +W ]a+b+c. Then:

((f ⊗ g)⊗ h)(U) = (f ⊗ g)( ⃗UY +Z)∪Y ′+Z′ h(U⃗Y +Z)

= (f(
←ÐÐÐÐ
( ⃗UY +Z)Y )∪Y ′ g(

ÐÐÐÐ→
( ⃗UY +Z)Y ))∪Y ′+Z′ h(U⃗Y +Z)

= (f( ⃗UY )∪Y ′ g(
←ÐÐ
(U⃗Y )Z))∪Y ′+Z′ h(U⃗Y +Z)

= f( ⃗UY )∪Y ′ (g(
←ÐÐ
(U⃗Y )Z)∪Z′ h(

ÐÐ→
(U⃗Y )Z))

= f( ⃗UY )∪Y ′(g ⊗ h)(U⃗Y ) = (f ⊗ (g ⊗ h))(U)

where we use the fact that
←ÐÐÐÐ
( ⃗UY +Z)Y = ⃗UY ,

ÐÐÐÐ→
( ⃗UY +Z)Y =

←ÐÐ
(U⃗Y )Z and U⃗Y +Z =ÐÐ→

(U⃗Y )Z .

3. naturality:
• (f ′ ⊗ f) ○ ρa,a′ = ρb,b′ ○ (f ⊗ f ′):

Let f ∶a⇢ b and f ′∶a′ ⇢ b′. Then for U ⊆ [Y + Y ′]a+a′ it holds that:

(ρb,b′ ○ (f ⊗ f ′))(U)
= ρb,b′(f( ⃗UY )∪Z f ′(U⃗Y ))

=
ÐÐÐÐÐÐÐÐÐÐÐÐ→
(f( ⃗UY )∪Z f ′(U⃗Y ))Z ∪Z′

←ÐÐÐÐÐÐÐÐÐÐÐÐ
(f( ⃗UY )∪Z f ′(U⃗Y ))Z

= f ′(U⃗Y )∪Z′ f( ⃗UY )

= f ′(
←ÐÐÐÐÐÐÐÐ
(U⃗Y ∪Y ′

⃗UY )Y ′)∪Z′ f(
ÐÐÐÐÐÐÐÐ→
(U⃗Y ∪Y ′

⃗UY )Y ′)
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= (f ′ ⊗ f)(U⃗Y ∪Y ′
⃗UY ) = (f ′ ⊗ f)(ρa,a′(U))

where we use the fact that
←ÐÐÐÐÐ
(U ∪Y V )Y = U and

ÐÐÐÐÐ→
(U ∪Y V )Y = V .

4. symmetry:
• ρe,e = ide:

Note that the only possibly argument is ∅ and hence:

ρe,e(∅) = ∅⃗∅ ∪∅ ⃗∅∅ = ∅∪∅∅ = ∅ = ide(∅)

• ρb,a ○ ρa,b = ida⊗b:

Let U ⊆ [Y +Z]a+b, then:

(ρb,a ○ ρa,b)(U) = ρb,a(U⃗Y ∪Z
⃗UY )

=
ÐÐÐÐÐÐÐ→
(U⃗Y ∪Z

⃗UY )Z ∪Y

←ÐÐÐÐÐÐÐ
(U⃗Y ∪Z

⃗UY )Z = ⃗UY ∪Y U⃗Y = U

= ida⊗b(U)

• ρa⊗b,c = (ρa,c ⊗ idb) ○ (ida ⊗ ρb,c):

Let U ⊆ [Y +Z +W ]a+b+c, then:

((ρa,c ⊗ idb) ○ (ida ⊗ ρb,c))(U)
= (ρa,c ⊗ idb)(ida( ⃗UY )∪Y ρb,c(U⃗Y ))

= (ρa,c ⊗ idb)( ⃗UY ∪Y (
ÐÐ→
(U⃗Y )Z ∪W

←ÐÐ
(U⃗Y )Z))

= (ρa,c ⊗ idb)( ⃗UY ∪Y (U⃗Y +Z ∪W

←ÐÐ
(U⃗Y )Z))

= (ρa,c ⊗ idb)(( ⃗UY ∪Y U⃗Y +Z)∪Y +W

←ÐÐ
(U⃗Y )Z))

= ρa,c( ⃗UY ∪Y U⃗Y +Z)∪W+Y idb(
←ÐÐ
(U⃗Y )Z)

= (U⃗Y +Z ∪W
⃗UY )∪W+Y

←ÐÐ
(U⃗Y )Z

= U⃗Y +Z ∪W ( ⃗UY ∪Y

←ÐÐ
(U⃗Y )Z)

= U⃗Y +Z ∪W (
←ÐÐÐÐ
( ⃗UY +Z)Y ∪Y

ÐÐÐÐ→
( ⃗UY +Z)Y )

= U⃗Y +Z ∪W
⃗UY +Z = ρa⊗b,c(U)

where we use the fact that
ÐÐ→
(U⃗Y )Z = U⃗Y +Z , ⃗UY =

←ÐÐÐÐ
( ⃗UY +Z)Y and

←ÐÐ
(U⃗Y )Z =ÐÐÐÐ→

( ⃗UY +Z)Y .

5. gs-monoidality:
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• !e = ∇e = ide:

In this case ∅ is the only possible argument and we have:

!e(∅) = ∅ = ide(∅) = ∅ = ∅∪∅∅ = ∇e(∅)

• coherence axioms:

For U ⊆ [Y ]a, we note that
←ÐÐÐÐÐ
(U ∪Y U)Y =

ÐÐÐÐÐ→
(U ∪Y U)Y = U .

– (ida ⊗∇a) ○ ∇a = (∇a ⊗ ida) ○ ∇a:

Let U ⊆ [Y ]a, then:

((ida ⊗∇a) ○ ∇a)(U) = (ida ⊗∇a)(U ∪Y U) = ida(U)∪Y ∇a(U)
= U ∪Y (U ∪Y U) = (U ∪Y U)∪Y +Y U = ∇a(U)∪Y +Y ida(U)
= (∇a ⊗ ida)(U ∪Y U) = (∇a ⊗ ida)(∇a(U))

– ida = (ida⊗!a) ○ ∇a:

Let U ⊆ [Y ]a, then:

((ida⊗!a) ○ ∇a)(U) = (ida⊗!a)(U ∪Y U) = ida(U)∪Y !a(U)
= ida(U)∪Y ∅ = ida(U)

– ρa,a ○ ∇a = ∇a:

Let U ⊆ [Y ]a, then:

(ρa,a ○ ∇a)(U) = ρa,a(U ∪Y U) = U ∪Y U = ∇a(U)

• monoidality axioms:
– !a⊗b =!a⊗!b:

Let U ⊆ [Y +Z]a+b, then:

!a⊗b(U) = ∅ = ∅∪∅∅ =!a( ⃗UY )∪∅!b(U⃗Y )
= (!a⊗!b)( ⃗UY ∪Y U⃗Y ) = (!a⊗!b)(U)

– ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ idb) ○ ∇a⊗b:

Let U ⊆ [Y +Z]a+b, then:

(ida ⊗ ρb,a ⊗ idb)(∇a⊗b(U)) = (ida ⊗ (ρb,a ⊗ idb))(U ∪Y +Z U)

= ida(
←ÐÐÐÐÐÐÐ
(U ∪Y +Z U)Y )∪Y (ρb,a ⊗ idb)(

ÐÐÐÐÐÐÐ→
(U ∪Y +Z U)Y )

= ida( ⃗UY )∪Y (ρb,a ⊗ idb)(
ÐÐÐÐÐÐÐ→
(U ∪Y +Z U)Y )
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= ⃗UY ∪Y (ρb,a ⊗ idb)(
ÐÐÐÐÐÐÐ→
(U ∪Y +Z U)Y )

= ⃗UY ∪Y (ρb,a ⊗ idb)((U⃗Y ∪Z
⃗UY )∪Z+Y U⃗Y )

= ⃗UY ∪Y (( ⃗UY ∪Y U⃗Y )∪Y +Z U⃗Y ) = ( ⃗UY ∪Y
⃗UY )∪Y +Y (U⃗Y ∪Z U⃗Y )

= ∇a( ⃗UY )∪Y +Y ∇b(U⃗Y ) = (∇a ⊗∇b)( ⃗UY ∪Y U⃗Y ) = (∇a ⊗∇b)(U)

where we use the fact that
←ÐÐÐÐÐÐÐ
(U ∪Y +Z U)Y = ⃗UY and

ÐÐÐÐÐÐÐ→
(U ∪Y +Z U)Y =

(U⃗Y ∪Z
⃗UY )∪Z+Y U⃗Y .

Theorem A.3.6 (Theorem 4.6.3). #∶Cf → Af is a gs-monoidal functor.

Proof. We write e′,⊗′, !′,∇′, ρ′ for the corresponding operators in category Af . Note that
by definition e = e′ and ⊗, ⊗′ agree on objects.

First, categories Cf and Af are gs-monoidal categories by Theorem 4.6.1 and 4.6.2.
Furthermore we have to verify that (cf. Definition 2.4.10):

1. monoidality:

• #(e) = e′:

We have #(e) = e = e′

• #(a⊗ b) =#(a)⊗′#(b):

We have:
#(a⊗ b) = a⊗ b =#(a)⊗′#(b)

2. symmetry:

• #(ρa,b) = ρ′#(a),#(b):

Let U ⊆ [Y +Z]a+b, then for sufficiently small δ ⊐ 0 (note that such δ exists
due to finiteness):

#(ρa,b)(U)
= (ρa,b)a+b,δ

# (U)
= {w ∈ [Z + Y ]b+a ∣ ρa,b(a + b)(w)⊖ ρa,b((a + b)⊖ δU)(w) ⊒ δ}
= {w ∈ [Z + Y ]b+a ∣ (b + a)(w)⊖ ((b + a)⊖ δρ′

a,b
(U))(w) ⊒ δ}

= ρ′a,b(U) = ρ′#(a),#(b)(U)

since ρa,b distributes over componentwise subtraction and ρa,b(δU) = δρ′
a,b
(U).

The second-last equality holds since for all w in the set we have (b+ a)(w) ⊐ 0.
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3. gs-monoidality:

• #(!a) =!′#(a):

Let U ⊆ [Y ]a, then for some δ:

#(!a)(U) = (!a)a,δ
# (U) = ∅ =!

′
a(U) =!′#(a)(U)

since the codomain of (!a)a,δ
# (U) is P(∅) and hence the only possible value

for (!a)a,δ
# (U) is ∅.

• #(∇a) = ∇′#(a):

Let U ⊆ [Y ]a, then for sufficiently small δ ⊐ 0:

#(∇a)(U) = (∇a)a,δ
# (U)

= {w ∈ [Y + Y ]a+a ∣ ∇a(a)(w)⊖∇a(a⊖ δU)(w) ⊒ δ}
= {w ∈ [Y + Y ]a+a ∣ (a + a)(w)⊖ ((a + a)⊖ δ∇′a(U))(w) ⊒ δ}
= ∇′a(U) = ∇′#(a)(U)

since ∇a distributes over componentwise subtraction and ∇a(δU) = δ∇′a(U).
The second-last equality holds since for all w in the set we have (a+a)(w) ⊐ 0.

A.4. Proofs of Chapter 5

Proposition A.4.1 (Proposition 5.2.4). Let Y be a finite set and M a complete
MV-chain. Let f ∶MY → MY be a function and Hmin∶Y → Pf(MY →M) a given
min-decomposition such that, for all y ∈ Y , all functions h ∈ Hmin(y) are non-
expansive. Then f is non-expansive and the approximation fa

#(Y ′)∶P([Y ]a) →
P([Y ]f(a)) is given by

fa
#(Y ′) = {y ∈ [Y ]f(a) ∣ ∃h (h = arg minh′∈Hmin(y)h

′(a) ∧ ha
#(Y ′) ≠ ∅)}

for a ∈MY and Y ′ ⊆ [Y ]a.

Proof. We first show that f is non-expansive by proving that it can be expressed as a
composition of non-expansive functions. (Recall that function composition and disjoint
union preserve non-expansiveness.)

For all y ∈ Y , let Hmin(y) = {h1
y, . . . , h

ky
y } and let Iy = {1, . . . , ky} be the corresponding

index set. We have hi
y ∶MY →M for each i ∈ Iy, where – for convenience – we view each

function hi
y as being of type MY →M{i}, where {i} is the singleton set containing i.
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We introduce auxiliary functions gy ∶MY → MIy and g∶MY → MI (with I = ⊎y∈Y Iy)
defined as below, where a ∈MY and i ∈ Iy:

gy = ⊎
j∈Iy

hj
y gy(a)(i) = hi

y(a) g = ⊎
y∈Y

gy g(a)(i) = gy(a)(i)

Next we define u∶ I → Y where u(i) = y for all i ∈ Iy. This allows decomposition of f as

f =minu ○g

with minu∶MI →MY . More intuitively, given a ∈MY and y ∈ Y , we have

f(a)(y) = min
i,u(i)=y

gy(a)(i) =min
i∈Iy

hi
y(a)

and
f(a) =minu(g(a)) =minu(⊎

y∈Y
gy(a)) =minu(⊎

y∈Y
⊎

u(i)=y
hi

y(a)).

Next, we want to express the approximation fa
#∶P([Y ]a)→ P([Y ]f(a)) for a ∈MY in

terms of the approximations of the components (hi
y)a#∶P([Y ]a)→ P([{i}]h

i
y(a)).

In the following Y ′ ⊆ [Y ]a is some subset of [Y ]a. We note that (hi
y)a#(Y ′) is either

{i} or the empty set ∅.
First observe, that (gy)a#∶P([Y ]a)→ P([Iy]gy(a)), as recalled in Table 3.1, is given by

(gy)a#(Y ′) = ⋃
i∈Iy

((hi
y)a#(Y ′)).

Moreover ga
#∶P([Y ]a)→ P([I]g(a)) is given by

ga
#(Y ′) = ⋃

y∈Y
(gy)a# = ⋃

y∈Y
⋃
i∈Iy

((hi
y)a#(Y ′))

Hence we obtain for i ∈ Iy:

i ∈ ga
#(Y ′) iff i ∈ (gy)a#(Y ′) iff i ∈ (hi

y)a#(Y ′) iff (hi
y)a#(Y ′) ≠ ∅.

Finally, we can conclude

fa
#(Y ′) = {y ∈ [Y ]f(a) ∣Ming(a)∣u−1(y) ∩ ga

#(Y ′) ≠ ∅}
= {y ∈ [Y ]f(a) ∣ ∃i (i = arg minj∈Iy

g(a)(j) ∧ i ∈ ga
#(Y ′))}

= {y ∈ [Y ]f(a) ∣ ∃i(i = arg minj∈Iy
gy(a)(j) ∧ i ∈ (gy)a#(Y ′))}

= {y ∈ [Y ]f(a) ∣ ∃i (i = arg minj∈Iy
hj

y(a) ∧ i ∈ (hi
y)a#(Y ′))}

= {y ∈ [Y ]f(a) ∣ ∃h (h = arg minh′∈Hmin(y)h
′(a) ∧ ha

#(Y ′) ≠ ∅)}
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Lemma A.4.2 (Lemma 5.3.2). The linear program above computes µVCMax.

Proof. Given a strategy σ for Max (corresponding to CMax), we can determine a = µVσ

by solving the following linear program:

max∑
v∈V

a(v)

a(v) = 0 ∀v ∈ Qσ

a(v) = a(σCMax) ∀v ∈ VMax ∖Qσ

a(v) ≤ a(u) ∀v ∈ VMin ∖Qσ,∀(v, u) ∈ E

a(v) = ∑
v′∈V

p(v)(v′) ⋅ a(v′) ∀v ∈ VAv ∖Qσ

a(v) = c(v) ∀v ∈ VSink

The set Qσ contains those nodes which will guarantee a non-terminating play if Min
plays optimally, given the fixed max-strategy σ.

The set Qσ can again be computed via fixpoint-iteration by computing the greatest
fixpoint of qσ via Kleene iteration on P(V ) from above:

qσ ∶P(V ) → P(V )
qσ(V ′) = {v ∈ V ∣ (v ∈ VMin ∧ succ(v) ∩ V ′ ≠ ∅) ∨ (v ∈ VMax ∧ σ(v) ∈ V ′)

∨(v ∈ VAv ∧ supp(p(v)) ⊆ V ′)}
It is easy to see that Qσ = νqσ contains all those nodes from which Min can force a
non-terminating play and hence achieve payoff 0. (Note that there are further nodes that
guarantee payoff 0 – namely sinks with that payoff and nodes which can reach such sinks
– but those will obtain value 0 in any case.)

We now show that this linear program computes µVσ (= µVCMax where σ corresponds
to CMax), which is given by

Vσ(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(σ(v)) if v ∈ VMax

minv′∈succ(v) a(v′) if v ∈ VMin

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv

c(v) if v ∈ VSink

for a ∈ [0, 1]V and v ∈ V . First, by requiring a(v) ≤ a(u) for all v ∈ VMin, u ∈ succ(v),
we guarantee a(v) =minu∈succ(v) a(u) since we maximise. Hence we obtain the greatest
fixpoint of the following function V ′σ ∶ [0, 1]V → [0, 1]V :

V ′σ(a)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if v ∈ Qσ

a(σ(v)) if v ∈ VMax ∖Qσ

minv′∈succ(v) a(v′) if v ∈ VMin ∖Qσ

∑v′∈V p(v)(v′) ⋅ a(v′) if v ∈ VAv ∖Qσ

c(v) if v ∈ VSink
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It is easy to show that the least fixpoints of V ′σ and Vσ agree, i.e., µV ′σ and µVσ:

• µV ′σ ≤ µVσ can be shown by observing that V ′σ ≤ Vσ.

• µVσ ≤ µV ′σ can be shown by proving that µV ′σ is a pre-fixpoint of Vσ, which can be
done via a straightforward case analysis.

We have to show Vσ(µV ′σ)(v) ≤ µV ′σ(v) for all v ∈ V . We only spell out the case
where v ∈ VAv, the other cases are similar. In this case either v /∈ Qσ, which means
that

Vσ(µV ′σ)(v) = V ′σ(µV ′σ)(v) = µV ′σ(v).

If instead v ∈ Qσ, we have that supp(p(v)) ⊆ Qσ and so µV ′σ(v′) = 0 for all
v′ ∈ supp(p(v)). Hence

Vσ(µV ′σ)(v) = ∑
v′∈V

p(v)(v′) ⋅ µV ′σ(v′) = 0 = µV ′σ(v)

If we can now show that V ′σ has a unique fixpoint, we are done. The argument for
this goes as follows: assume that this function has another fixpoint a′ different from
µV ′σ. Clearly [V ]a′ ∩ Qσ = ∅, where [V ]a′ = {v ∈ V ∣ a′(v) ≠ 0}. Hence, if we compare
(V ′σ)a#∶P([V ]a)→ P([V ]V

′
σ(a)) (defined analogously to Lemma 3.6.30) and qσ above, we

observe that (V ′σ)a
′

# ⊆ qσ ∣P([V ]a′). (Both functions coincide, apart from their treatment of
nodes v ∈ VMin, where qσ(V ′) contains v whenever one of its successors is contained in
V ′, whereas (V ′σ)a

′

#(V ′) additionally requires that the value of this successor is minimal.)
Since a′ is not the least fixpoint we have by Lemma 3.4.2 that

∅ ≠ ν(V ′σ)a
′

# ⊆ ν(qσ ∣P([V ]a′)) ⊆ νqσ = Qσ.

This is a contradiction, since [V ]a′ ∩Qσ = ∅ as observed above.
This shows that V ′σ has a unique fixpoint and completes the proof. Note that if we do

not explicitly require that the values of all nodes in Qσ are 0, V ′σ will potentially have
several fixpoints and the linear program would not characterise the least fixpoint.
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Lemma A.4.3 (Lemma 5.3.7). Let PA = (S, η, L, ℓ) be a probabilistic automaton
and let Hmin be the min-decomposition of M. Given a strategy C in Hmin and
d ∶ Y ×Y → [0, 1], a strategy C ′(y) = arg minh∈Hmin(y) h(d) can be defined as follows:
for (s, t) ∈ S × S

• if ℓ(s) ≠ ℓ(t) then C ′(s, t) = C(s, t)

• if ℓ(s) = ℓ(t) then C ′(s, t) = hR′,f ′ where

R′ = arg minR∈R(δ(s),δ(t)) max
(β,β′)∈R

K(d)(β, β′)

and for (β, β′) ∈ R′:

f ′(β, β′) = arg min
ω∈ΩV (β,β′)

∑
u,v∈S

d(u, v) ⋅ ω(u, v).

Proof. Let (s, t) ∈ S × S. If ℓ(s) ≠ ℓ(t) then Hmin(s, t) = {h1}, hence the only possible
choice is C ′(s, t) = h1 = C(s, t).

If instead ℓ(s) = ℓ(t) then C ′(s, t) = hR′,f ′ is chosen in a way that minimises

hR′,f ′(d) = max
(β,β′)∈R′

∑
u,v∈S

d(u, v) ⋅ f ′(β, β′)(u, v) (A.3)

In order to minimise the value above, whatever R′ will be, for all (β, β′) ∈ R′ the
choice of f ′(β, β′) should minimise ∑u,v∈S d(u, v) ⋅ ω(u, v). Formally, we can define F ∶
D(S) ×D(S)→ D(S × S) as

F (β, β′) = arg min
ω∈ΩV (β,β′)

∑
u,v∈S

d(u, v) ⋅ ω(u, v).

Then the set-coupling R′ can be

R′ = arg minR∈R(δ(s),δ(t)) max
(β,β′)∈R

∑
u,v∈S

d(u, v) ⋅ F ′(β, β′)(u, v)

= arg minR∈R(δ(s),δ(t)) max
(β,β′)∈R

min
ω∈ΩV (β,β′)

∑
u,v∈S

d(u, v) ⋅ ω(u, v)

= arg minR∈R(δ(s),δ(t)) max
(β,β′)∈R

K(d)(β, β′)

and finally we can define f ′ = F∣R′ , i.e., explicitly, for all (β, β′) ∈ R′

f ′(β, β′) = arg min
ω∈ΩV (β,β′)

∑
u,v∈S

d(u, v) ⋅ ω(u, v).

as desired.
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Index

(partial) order, 19
(pseudo)metric, 14, 31, 33, 39

addition (basic function), 91, 127
approximation, 79, 81, 82, 87, 92, 98, 100,

102, 105, 107–109, 111, 113, 114,
117, 122, 124, 128, 146, 154

ascent/descant constant, 81, 89, 96, 98,
101, 102, 104, 105, 107, 109, 111,
114

average (basic function), 91, 98, 100, 110

bifunctor, 33, 34
bisimulation (labeled Markov chain), 52
bisimulation (metric transition system),

54
bisimulation (probabilistic automaton),

57
bisimulation (transition system), 50

category, 31, 118
complete distributive lattice, 21, 182, 183
complete lattice, 20, 151
constant (basic function), 91, 98, 101, 110,

127
coupling, 40, 41, 44

descanding/ascending chain, 23
discounted mean-payoff game, 62, 160
disjoint union, 91, 94, 96, 98, 101, 105,

110, 112
distribution over MV-chains, 28, 91

energy game, 68, 112, 171
equivalence relation, 14, 50, 52, 54, 57
evaluation map, 39, 41, 42, 44

finite powerset, 13, 41, 121

finitely coupled lifting, 41, 122
functor, 32, 120

Galois connection, 25, 78
gs-monoidal category, 35, 125
gs-monoidal functor, 37, 127

Hausdorff distance, 42, 44, 55, 57, 103

Kantorovich distance, 45, 53, 57, 99
Kleene iteration, 23, 55, 64, 67
Knaster-Tarski, 22, 74

labeled Markov chain, 37, 51, 101, 130,
176

linear program, 17, 45, 161, 162, 166, 167,
172, 177, 181

Markov chain, 47, 75, 97, 133
max-decomposition, 145, 161, 167, 173,

178, 180
max-improvement, 153, 159
maximum (basic function), 101, 103, 105,

108, 110, 112, 127
metric transition system, 54, 106, 178
min-decomposition, 144, 160, 166, 172,

176, 181, 182, 184
min-improvement, 149, 159, 184
minimum (basic function), 100, 103, 108,

110, 112, 122, 127
monoidal category, 34
monotone, 30
monotone function, 22
MV-algebra, 26, 38
MV-chain, 26, 76, 144

natural order, 26, 88
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natural transformation, 34, 121
non-expansive, 29, 30, 39, 42, 45, 77, 90,

92, 122, 146
norm, 15, 29, 117

polytope, 17, 44
post-fixpoint, 22, 85, 89
pre-fixpoint, 22, 84, 89
predicate lifting, 38, 120
probabilistic automaton, 56, 104, 183
probabilistic bisimulation (probabilistic

automata), 57

quantale, 21, 28

reindexing (basic function), 91, 98, 101,
105, 108, 110, 112, 127

Scott-(co)continuity, 23
set of probability distributions with finite

support, 13, 44, 121
sets of numbers, 12
simple stochastic game, 64, 110, 141, 145,

152, 154, 157, 165
stopping simple stochastic game, 66
strategy, 60, 147, 160–162, 166, 167, 169,

172–174, 177, 178, 180–182, 184
substraction (basic function), 91, 127
substraction’ (basic function), 113, 127
symmetric monoidal category, 34

transition system, 49, 108, 180

UDEfix, 127
uppers/lower bounds, 19

Wasserstein lifting, 41, 43, 45, 122
well-behaved lifting, 39, 42, 45
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Nomenclature

(αa,δ, γa,δ) Galois connection of the approximation framework (dual sense), page 88

(αa,δ, γa,δ) Galois connection of the approximation framework (primal sense), page 77

(L,⊑) (Partially) ordered set, page 19

(X, d) (Pseudo)metric Space, page 14

Ē Fixpoint operator of energy games, page 70

⊓Y Meet of Y ⊆ L, page 19

⊔Y Join of Y ⊆ L, page 19

� Bottom Element, page 20

χ Characteristic function, page 12

∆ Fixpoint operator for behavioural distances for labeled Markov chains, page 53

δa min{a(y) ∣ y ∈ [Y ]a}, page 88

δa min{a(y) ∣ y ∈ [Y ]a}, page 77

ΓE Instance of an energy game, page 68

ΓF (t1, t2) Set of coupling of t1, t2 ∈ FX, page 40

ΓM Instance of a discounted mean-payoff game, page 62

ΓS Instance of a simple stochastic game, page 64

ιf
a Sufficiently small constant, such that f#

a = f#
a,ιf

a

, page 81

ιa
f Sufficiently small constant, such that fa

# = f
a,ιa

f

# , page 89

LMC Instance of a labeled Markov chain, page 51

A(A, B) Collection of arrows between A, B ∈ ob(A), page 31

A ×B Product category of categories A and B, page 32

Set Category of sets, page 31
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B Fixpoint operator for bisimilarity for transition systems, page 50

D(X) Set of probability distributions over X, page 13

Df (X) Set of probability distributions with finite support over X, page 13

DM(Y ) Set of distributions p∶Y →M, page 28

E Fixpoint operator of energy games with finite values, page 71

H Hausdorff distance, page 43

J Fixpoint operator for behavioural distances for metric transition systems, page 55

K Kantorovich distance, page 45

L Fixpoint operator for discounted mean-payoff games, page 63

M Fixpoint operator for behavioural distances for probabilistic automata, page 57

P(X) Powerset of X, page 13

T Fixpoint operator for termination probability of Markov chains, page 48

V Fixpoint operator for simple stochastic games, page 66

addw Basic function: addition, page 91

evF Evaluation map evF ∶FM→M, page 39

Fix(f) Set of fixpoints of f , page 22

idA Identity of A ∈ ob(A), page 31

ob(A) Collection of objects of category A, page 31

Post(f) Set of post-fixpoints of f , page 22

Pre(f) Set of pre-fixpoints of f , page 22

subw Basic function: substraction, page 91

sub′w Basic function: substraction (whole numbers), page 113

supp(f) Support of the function f , page 13

avD Basic function: average, page 91

imps
max(C) Set of stable max-improvements of C, page 153

impmax(C) Set of max-improvements of C, page 153

MC Instance of a Markov chain, page 47
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imps
min(C) Set of stable min-improvements of C, page 149

impmin(C) Set of min-improvements of C, page 149

M MV-algebra, page 26

MTS Instance of a metric transition system, page 54

PA Instance of a probabilistic automaton, page 56

Π Set of all positional strategies in a two-player game for Min, page 60

Pf(X) Finite powerset of X, page 13

Σ Set of all positional strategies in a two-player game for Max, page 60

σ A positional strategy for Max in a two-player-game, page 60

σ∗ Optimal strategy for Max, page 61

τ A positional strategy for Min in a two-player-game, page 60

τ∗ Optimal strategy for Min, page 61

F̃ Predicate lifting of functor F ∶Set→ Set, page 38

⊺ Top Element, page 20

TS Instance of a transition system, page 49

[Y ]a Support of a, page 77

[Y ]a Support of a, page 88

ck Basic function: constant, page 91

dF Lifting of a pseudometric d, page 39

d↓F Wasserstein distance, page 41

fa
∗ Approximation of f corresponding to any a in the dual sense, page 89

fa
# Approximation of f corresponding to fixpoint a in the dual sense, page 89

f∗a Approximation of f corresponding to any a in the primal sense, page 87

f#
a Approximation of f corresponding to fixpoint a in the primal sense, page 79

FA/F (A) Functor F applied to object A, page 32

G = (V, E) Graph G, set of vertices V , set of edges E, page 59

Gσ/Gτ /Gστ Strategy-induced graphs, page 60
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Hmax Function of a min-decomposition, page 145

Hmin Function of a min-decomposition, page 144

u∗ Basic function: reindexing, page 91

X/R Quotient set for a relation R ⊆X ×X, page 14

XY Set of all mappings from Y to X, page 12

Max Player Max, page 59

Min Player Min, page 59

PMet Category of pseudometric spaces, page 31

UDEfix Tool UDEfix, page 127
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