
Software (In)Security of Smart Contracts and
Trusted Enclaves

Dissertation
zur Erlangung des Doktorgrades

„Dr. rer. nat.“

der Fakultät für Wirtschaftswissenschaften
der Universität Duisburg-Essen

vorgelegt von

Michael Rodler
aus

Salzburg, Österreich

Betreuer:
Prof. Dr.-Ing. Lucas Vincenzo Davi

Lehrstuhl für Systemsicherheit

Essen, März 2023

1. Gutachter:
Univ.-Prof. Dr.-Ing. Lucas Vincenzo Davi

Universität Duisburg-Essen
2. Gutachter:

Univ.-Prof. Dr. Ghassan Karame
Ruhr-Universität Bochum

Tag der mündlichen Prüfung: 27. Juni 2023

ii

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/81316
URN: urn:nbn:de:hbz:465-20240109-121727-7

Alle Rechte vorbehalten.

ABSTRACT

Secure execution environments promise developers a way to secure their software
even when running in untrusted environments. For example, the Intel software guard
extensions (SGX) technology strives to provide confidential computing on hardware
operated by an untrusted party. In Ethereum, software called smart contracts manages
a large number of funds and assets. As such, correct execution of smart contracts is
paramount. However, arbitrary network participants execute the smart contracts within
an open distributed system. Secure execution environments ensure with cryptographic
protocols that the integrity and confidentiality of both execution and data are preserved.
While these new execution environments offer many security guarantees, they cannot
automatically secure the software executing within the execution environment. This
dissertation challenges the security of the software developed for and running within
secure execution environments. More specifically, we tackle the (in)security of software
for the execution environments of the SGX trusted computing technology and the
Ethereum blockchain system. This dissertation develops methods for identification
and remediation of security vulnerabilities specific to the respective secure execution
environment.

Existing methods for automated vulnerability identification are not sufficient as
they are not tailored to the respective execution environments. In this dissertation,
we identify these shortcomings and develop new automated analysis methods. Here,
an analysis tool is developed that adapts generic symbolic execution to identify
vulnerabilities at the boundary between SGX enclave code and the untrusted, and as
such potentially attacker-controlled, host system. Furthermore, this work shows how
to use the fuzzing method to efficiently identify even complex vulnerability patterns,
such as reentrancy, in Ethereum smart contracts.

Identifying vulnerabilities alone is not sufficient to ensure the security of already
deployed software. As such, this dissertation also covers new methods for vulnerability
remediation. Due to the immutability of smart contracts in Ethereum, it is especially
hard to fix bugs and vulnerabilities. As such, we discuss a taint-tracking-based
detection of reentrancy attacks, which can be integrated directly into the blockchain
system. Furthermore, we also discuss an approach to automate large parts of the
patching process of a smart contract, allowing developers to securely operate a smart
contract on Ethereum.

iii

ZUSAMMENFASSUNG

Sichere Ausführungsumgebungen bieten Entwicklern die Möglichkeit, ihre Software
abzusichern, auch wenn sie in nicht vertrauenswürdigen Umgebungen ausgeführt wird.
Die SGX Technologie von Intel versucht, vertrauliche Datenverarbeitung (confidential
computing) auf Hardware zu ermöglichen, die von einer nicht vertrauenswürdigen
Partei betrieben wird. In Ethereum verwaltet Software, so genannte Smart Con-
tracts, Cryptocurrency und anderen Vermögenswerten. Deswegen ist die korrekte
Ausführung von Smart Contracts von größter Bedeutung. Da jeder dem Ethereum
Netzwerk beitreten kann, werden Smart Contracts durch beliebige Netzwerkteilnehmer
ausgeführt. Mithilfe von kryptografischen Protokollen sorgen sichere Ausführung-
sumgebungen dafür, dass die Integrität und Vertraulichkeit der Ausführung und der
Daten gewahrt wird. Diese neuen Ausführungsumgebungen bieten zwar viele Sicher-
heitsgarantien, aber sie können sie die darin ausgeführte Software nicht vollständig
vor Schwachstellen schützen. Diese Dissertation untersucht die Sicherheit der Soft-
ware, die für sichere Ausführungsumgebungen entwickelt wurde, genauer gesagt mit
der (Un-)Sicherheit von Software für die SGX Trusted Computing Technologie und
dem Ethereum Blockchain System. Dabei werden speziell angepasste Methoden zur
Identifizierung und Behebung von Sicherheitslücken erforscht.

Bestehende Methoden zum automatisierten Auffinden von Schwachstellen sind nicht
ausreichend, da sie nicht auf die jeweiligen Ausführungsumgebungen zugeschnitten
sind. In dieser Dissertation identifizieren wir diese Defizite und entwickeln neue
Analysemethoden. Dabei wird ein Analysewerkzeug vorgestellt, welches generische
symbolische Ausführung adaptiert, um Schwachstellen an der Grenze zwischen SGX
Enclave-Code und dem nicht vertrauenswürdigen Host-System aufzudecken. Darüber
hinaus zeigt diese Arbeit, wies sogenanntes Fuzzing eingesetzt werden kann, um selbst
komplexe Schwachstellen automatisiert zu finden, wie z.B. Reentrancy in Ethereum
Smart Contracts. Da das Auffinden von Schwachstellen allein jedoch nicht ausreicht,
um die Sicherheit von bestehender Software zu gewährleisten, werden in dieser Disser-
tation auch neue Methoden zur Behebung von Schwachstellen untersucht. Aufgrund
der Unveränderlichkeit von Smart Contracts in Ethereum ist es besonders schwierig
Softwarefehler zu beheben. Wir diskutieren daher eine auf Taint-Tracking basierende
Erkennung von Reentrancy-Angriffen, die in das Blockchain-System integriert wird
und Schwachstellen zur Laufzeit erkennt und blockiert. Außerdem diskutieren wir eine
Methode, um große Teile des Patching-Prozesses von Smart Contracts zu automa-
tisieren, wodurch es Entwicklern ermöglicht wird, einen Smart Contract auf Ethereum
sicher zu betreiben.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Lucas Davi for giving me the opportunity to pursue
a PhD, for teaching me how to put all my thoughts about software security together
into coherent and readable sentences, and for directing me to work on those problems
that turned out to be quite fruitful research directions. I would also like to thank
my colleagues, Sebastian, Tobias, Jens-Rene, David, Oussama, and Christian for the
inspiring and fun discussions during coffee and lunch breaks. Many thanks also go
out to the various people, with whom I collaborated over the years: Thorsten Holz,
Ghassan Karame, Wenting Li, and Lukas Bernhard. It was an honor and a pleasure
working with you!

On the more personal side, I am deeply grateful to my parents, Waltraud and
Hannes, who nurtured my curiosity and always supported me no matter what. Thank
you for this: without your support I would not be where I am today. Above all, I
would like to thank my partner Marion with all my heart. You supported me on my
academic journey, forced me to a somewhat reasonable work-life balance, and also
endured the occasional crunch-time right before deadlines. For all this and much more:
Thank you! <3

vii

CONTENTS

1 Introduction 1

2 Background on Software Vulnerabilities 9
2.1 Vulnerabilities in Software . 10

2.1.1 Memory Safety Violations . 10
2.1.2 Concurrency Bugs . 14
2.1.3 Logic Bugs . 16

2.2 Testing Software Interfaces (APIs) . 17
2.2.1 Symbolic Execution . 18
2.2.2 Fuzz Testing . 20

3 Background on Secure Execution Environments 25
3.1 Trusted Execution using Intel Software Guard Extensions 26

3.1.1 Enclave Lifecycle . 27
3.1.2 Threat Model and Attacks . 27
3.1.3 Enclave Programming Model 28
3.1.4 SGX Vulnerabilities . 31

3.2 The Ethereum Execution Environment 32
3.2.1 Ethereum Virtual Machine . 34
3.2.2 Programming Paradigms in Ethereum 36
3.2.3 Smart Contract Vulnerabilities 38
3.2.4 Identifying Basic Blocks in EVM Bytecode 43

3.3 Comparison of Secure Execution Environments 45

4 Symbolic Execution of SGX Enclaves 47
4.1 The Symbolic Enclave Executor TeeRex 49

4.1.1 Architecture . 50
4.1.2 Implementation Challenges . 52
4.1.3 Vulnerability Detection Components 54

4.2 Vulnerability Patterns . 56
4.2.1 Passing Data-Structures with Pointers 57
4.2.2 Using Pointers as Resource References 58

ix

4.2.3 Pointers to Overlapping Memory 60
4.2.4 NULL-Pointer Dereferences . 61
4.2.5 Time-of-Check Time-of-Use . 62
4.2.6 Minor Vulnerability Patterns 63

4.3 Enclave Analysis Results . 66
4.4 Performance and Accuracy . 77

4.4.1 Performance and Memory Usage 78
4.4.2 Accuracy and False Alarms . 79

4.5 Discussion and Conclusion . 81

5 Fuzzing of Smart Contracts 83
5.1 Challenges of Automated Smart Contract Analysis 84
5.2 Design of EF�CF . 89

5.2.1 Modelling Blockchain Interaction 89
5.2.2 Optimizing Test Case Throughput 92
5.2.3 Bug Oracles . 94

5.3 Implementation Details of EF�CF . 95
5.3.1 EVM to C++ Translation . 95
5.3.2 Fuzzing Harness . 97
5.3.3 Custom Mutator . 101

5.4 Performance Evaluation . 106
5.4.1 Scalability Benchmarks . 106
5.4.2 Scalability Ablation Study . 109
5.4.3 Throughput Ablation Study . 112
5.4.4 Multi-Core Performance . 113
5.4.5 Code Coverage Comparison . 114

5.5 Bug Detection Capabilities . 116
5.5.1 Access Control Vulnerabilities 116
5.5.2 Reentrancy Vulnerabilities . 118
5.5.3 Problems with Existing Datasets 121

5.6 Discussion and Related Work . 122
5.7 Conclusion . 125

6 Mitigation of Reentrancy Attacks 127
6.1 Problem Statement . 128
6.2 New Reentrancy Attack Patterns . 129
6.3 Design Overview . 134
6.4 Implementation Details . 139
6.5 Evaluation . 143

6.5.1 Identifying Attacks on Mainnet 143
6.5.2 Detection Capabilities . 146
6.5.3 Performance and Memory Overhead 148

6.6 Limitations . 149
6.6.1 Analysis of False Alarms . 149
6.6.2 Missed Reentrancy Patterns . 154

6.7 Related Work . 155

x

6.8 Conclusion . 157

7 Automatic Patching of Smart Contracts 159
7.1 Background on Patching Smart Contracts 161

7.1.1 Upgrading Ethereum Smart Contracts 161
7.1.2 Challenges of EVM Bytecode Rewriting 162

7.2 Design of EVMPatch . 164
7.2.1 Design Choices . 165
7.2.2 Framework Design . 166

7.3 Implementation of EVMPatch . 171
7.3.1 Trampoline-based Bytecode Rewriting 171
7.3.2 Patch Testing . 174
7.3.3 Deployment of Patched Contracts 175
7.3.4 Application to Vulnerability Classes 175

7.4 Evaluation . 179
7.5 Developer Study . 188
7.6 Related Work . 192
7.7 Discussion and Conclusion . 193

8 Conclusion 195

Bibliography 199
List of Publications . 199
References . 200

List of Acronyms 215

xi

CHAPTER 1
INTRODUCTION

Software security is paramount to today’s infrastructure, encompassing more than
traditional Information Technology (IT) domains. For example, the cyber-physical
system (CPS) domain encompasses a blend of the IT and Operational Technology
(OT) domains, where software components directly control physical processes. Since
the infamous Stuxnet incident, it has become clear that software is a primary attack
vector against highly critical systems. Similarly, the financial industry has become
increasingly automated, with extremes such as automated high-frequency trading or
the rise of the decentralized finance (DeFI) industry.

However, software security still poses a major problem for software vendors. Design
flaws and programming mistakes are common during software development, making
pieces of software vulnerable to attacks. For example, today, 34 years after the first
large-scale exploitation of a so-called buffer overflow issue [See] and 26 years after the
first public article by One [One96], large C/C++ software projects are still being actively
exploited using memory corruption exploits [Zer]. In spite of research on defenses
and mitigations both in industry and academia [Sze+13], memory corruption is still
a major issue. For example, Microsoft, arguably one of the largest software vendors,
still identifies memory corruption as the major source of security vulnerabilities in
their products [Tho19]. However, software security is not only a problem for the
systems software domain. A new set of vulnerability types accommodates every
new programming paradigm. For example, various forms of injection attacks plague
software running web applications. Most recently, smart contracts, software executed
as part of blockchain protocols, are targeted by attackers using software vulnerabilities.

Modern IT systems are designed to minimize the trusted computing base (TCB),
thereby reducing the potential impact of programming errors in critical components.
Anderson defines the TCB as follows [And20, p 320]:

More formally, the TCB is defined as the set of components (hardware,
software, human, . . .) whose correct functioning is sufficient to ensure that
the security policy is enforced, or, more vividly, whose failure could cause
a breach of the security policy.

1

Chapter 1 Introduction

Minimizing the TCB follows the intuition that smaller systems have fewer chances
to contain bugs that allow an attacker to break the system’s security policy, i.e.,
they have smaller attack surfaces. Furthermore, smaller systems are more amenable
to formal analysis, code review, and testing, thereby increasing the probability of
spotting security vulnerabilities upfront. As such, almost all current information
systems attempt to reduce their TCB.

However, several recent technologies attempt to make it possible to further minimize
the TCB. Traditionally, the TCB would consist of the hardware, the operating system
kernel, and several trusted system services. However, the trusted execution environ-
ments (TEEs) remove many of these traditional components from the TCB. The
operating system is no longer part of the TCB. Most TEEs remove even the human
operators of a device from the TCB. The only remaining trusted party is the hardware
vendor. The TCB is reduced to the central processing unit (CPU) and its directly
connected components. For example, in SGX, anything outside the physically sealed
CPU die, including main memory, is considered untrusted [CD16]. This scenario is
particularly appealing for the cloud setting, where a user wants to offload computation
to a remote system operated by a potentially untrusted party.

A second example of a highly reduced TCB is the smart contract as used in
blockchain ecosystems [Woo19]. A decentralized application (DApp) is backed by
a smart contract, which encodes the business logic of the application: essentially
reducing the TCB to the smart contract and the blockchain protocol. Any interaction
with the smart contract is cryptographically secured, and its execution is replicated
among the entire distributed blockchain system. The correct execution of the smart
contract is ensured using economic incentives inherent to the distributed system. For
example, an attacker would have to subvert at least 51 % of the computing power of a
classical Proof-of-Work blockchain system to manipulate ledger entries, i.e., results of
a smart contract’s execution [Nak08]. Furthermore, due to the decentralized nature
and diversity of participating nodes in the blockchain network, the software running
and executing the blockchain protocols is not necessarily part of the TCB. However,
due to the replicated nature—and in contrast to TEEs—this comes at the cost of
confidentiality. For example, in Ethereum, all smart contracts and their associated
data are public. As a consequence, one has to resort to more complex cryptographic
protocols to ensure data confidentiality.

This dissertation examines software systems, which are summarized under the
umbrella term secure execution environments in the context of this dissertation. We
define secure execution environments as execution environments that exhibit two main
properties: (1) Secure execution environments exhibit a significantly reduced TCB
compared to classical software systems. (2) Code and data integrity is protected by
the execution environment. However, to be useful, such secure execution environments
must allow untrusted—and potentially malicious—parties to interact with the software
inside the secure execution environment. While the secure execution environment
protects the software running inside TEEs from manipulation, there is still a remaining
attack surface accessible through the interface between trusted and untrusted software.
Software running inside a secure execution environment must exercise self-protection
against malicious inputs. This leads to the central research question of this dissertation:

2

How can we secure the software running inside secure execution environ-
ments?

To answer this central research question, this dissertation investigates two orthogo-
nal directions: identifying vulnerabilities and hardening software. This dissertation
describes novel methods to automatically identify vulnerabilities in software targeting
secure execution environments. Developers can utilize the methods and tools developed
as part of this dissertation to identify vulnerabilities before deployment. Similarly,
users can assess the security of deployed software before they decide to trust it with
their data. Applying these vulnerability detection techniques to current systems, we
demonstrate that software, which relies on secure execution environments, is not as
secure as previously assumed. Our analysis of the discovered issues shows that many
security vulnerabilities are due to programming mistakes that can be traced back
to misunderstandings of the constraints imposed by the underlying secure execution
environment. To improve the security of software, this dissertation shows approaches
to securing software within secure execution environments. We tackle both developing
a robust process for patching software in secure execution environments and hardening
the secure execution environment itself.

To study the security of software inside secure execution environments, we analyze
two highly relevant technologies implementing such an environment. Ethereum is the
first, most prominent, and most popular Blockchain platform natively supporting smart
contracts. As such, Ethereum has become the backbone of the upcoming DeFI industry.
In Ethereum and other blockchain systems, smart contracts can own and autonomously
transfer currency to other parties. As such, smart contracts must execute correctly and
satisfy the intention of all stakeholders. While the Ethereum system guarantees that
the smart contract code is executed correctly with the consensus protocol, it does not
protect smart contracts against attacks on a logical level, i.e., exploitable software bugs.
Over the last decade, the blockchain community has witnessed several major bugs and
vulnerabilities within smart contracts. In many cases, these vulnerabilities allowed
attackers to gain incredible amounts of cryptocurrency. In 2016 the infamous attack
on the “The DAO” smart contract resulted in a loss of Ether, worth over 50 million
US Dollars at the time the attack occurred [Pri16]. Still, in 2020 the community has
witnessed attacks against the Uniswap V2 and Lendf.me contracts [Tor+21b], where
the attackers gained Tokens worth roughly 25 million US Dollars. These attacks were
due to the same type of software bug: an exploitable reentrancy issue. This continuous
stream of incidents due to smart contract bugs demonstrates that practical software
security for smart contracts is still a highly relevant and open research area.

Intel introduced SGX as its most sophisticated incarnation of trusted computing
technology [Hoe+13; Intel4; McK+13] to date. SGX shields so-called enclaves, the
trusted code in the SGX model, from malicious access by the operator of the machine,
other applications, the underlying operating system, and the hypervisor. The only
trusted component in the SGX setting is the Intel CPU package. Additionally, SGX
features many well-known concepts from earlier trusted computing technology, such
as data binding, sealing, and remote attestation. Combined, all these features make
SGX a prime candidate for ensuring data confidentiality and integrity in the public
cloud [BPH14; Sch+15a]. The SGX technology ensures that the user can establish a

3

Chapter 1 Introduction

secure channel into the SGX enclave while simultaneously ensuring that the enclave
is in a trustworthy state. Using the secure channel, the user can safely transfer data
into the enclave executing on public cloud hardware. Similarly, SGX can be used to
protect, e.g., biometric data processing, on mobile endpoints such as laptops. For
example, the SGX technology is used in fingerprint sensor software (Section 4.3), DRM
protection [Cyb], and privacy-preserving applications like Signal [Mar17]. As such,
SGX is currently one of the most prominent trusted computing technologies.

Current development practices for software in—the still relatively new—secure
execution environments are significantly lacking. Software developers are not as familiar
with the constraints of the programming models of secure execution environments,
leading to fatal programming mistakes that can be abused by attackers [ABC17;
Luu+16; Van+19]. It is important to detect such attacks early in the development
lifecycle of software written for secure execution environments. We investigate offensive
methods to identify security issues automatically and before deployment. To this
end, we identify symbolic execution and fuzzing as two industry-standard methods for
automatically uncovering vulnerabilities in software. However, these methods need to
be adapted to the particularities of (secure) execution environments to become effective
tools in the hands of developers. Equally important, we also investigate defensive
methods as a second direction in this dissertation. We investigate the capability of
the secure execution environment to detect and block attacks as they are happening
as a second line of defense. Such built-in defensive methods allow the software to
remain secure even in the presence of a certain type of programming mistake that
would otherwise lead to a vulnerability. We also investigate patching software in secure
execution environments, which is highly challenging since the software vendor has only
limited control over the deployment of the software. For example, a software vendor of
a classical web service can take down the service until they finish developing a patch.
However, a software vendor for a secure execution environment usually cannot do this,
as the software is either already deployed to an untrusted client system (TEE) or is
replicated among a decentralized system (Blockchain).

4

This Dissertation

Vulnerability Detection Runtime Attack Detection

Patching

TeeRex
Symbolic Execution of SGX

Enclaves
[Usenix SEC'20; CORE A*]

EF/CF
Fuzzing of Smart Contracts

[EuroS&P'23; CORE NEW A]

Sereum
Mitigation of Reentrancy

Attacks
[NDSS'19; CORE A*]

EVMPatch
Automatic Patching of Smart

Contracts
[Usenix SEC'21; CORE A*]

Scadman
Anomaly Detection for Cyber-

Physical Systems
[ICCPS'20]

xTag
Efficient Software-Only Use-After-

Free Detection
[EuroS&P'22; CORE NEW A]

HCC
Compiler-based Hardening of

Smart Contracts
[Under Submission]

SENF
Statistically Sound Evaluation

of Fuzzers
[ESORICS'21; CORE A]

Figure 1.1: Overview on the four main publications of this dissertation and additional
publications grouped according to research direction.

Outline and Contributions

This dissertation is structured into three major parts: a discussion of the background
and literature (Chapters 2 and 3), followed by a discussion of two orthogonal aspects
of software security for secure execution environments: (1) identifying (Chapters 4
and 5) and (2) mitigating vulnerabilities (Chapters 6 and 7).

First, we give the necessary technical background on software vulnerabilities in
general and on techniques to automatically identify vulnerabilities using dynamic
analysis methods, such as symbolic execution and fuzzing, in Chapter 2. Then, we
discuss the technical details of the two secure execution environments covered by
this dissertation in Chapter 3: Consensus-enforced distributed computation with
Ethereum and hardware-secured confidential and trusted computation with SGX. Both
architectures and programming models allow untrusted users to interact with a trusted
software component using an interface similar to normal library code components.

Figure 1.1 shows an overview of the research topics and contributions to the field of
software security by the author. Concerning vulnerability detection, we present two
new approaches to automatically identifying security vulnerabilities using symbolic
execution of SGX enclaves (Chapter 4) and fuzzing of smart contracts (Chapter 5).
In the SENF project [Paa+21a], we develop a statistically sound way of comparing
fuzzers, which we utilize to evaluate our newly developed smart contract fuzzer EF�CF
in Chapter 5. In Chapter 6, we present the first taint-tracking-based dynamic analysis
for smart contracts, dubbed Sereum, to detect and mitigate reentrancy attacks at
runtime. The xTag project presents an efficient detection approach for use-after-free
exploit attempts on legacy x86 systems [Ber+22]. With Scadman, we develop an
approach to anomaly detection in CPSs using differential execution with a simulated
CPS. With EVMPatch in Chapter 7, we show how to streamline and automate the

5

Chapter 1 Introduction

patching process of smart contracts, an otherwise cumbersome and error-prone process.
HCC is a complementary patching approach that uses source-to-source compilation to
introduce hardening checks [Gie+22]. In the following, we give an outline of the main
chapters of this dissertation, their contributions, and prior publications of the author.

Finding Vulnerabilities in SGX Enclaves using Symbolic Execution In Chapter 4,
we describe an approach to identify vulnerabilities in SGX enclaves using symbolic
execution. In contrast to prior studies on SGX enclaves, we present a methodology
that allows us to systematically search for security vulnerabilities in real-world enclave
code. First, we show how to adapt symbolic execution to SGX enclave code, tackling
several challenges imposed by the SGX technology. Second, we focus on identifying
issues in the interface between the untrusted software components and the trusted
SGX enclave code. To achieve this, we show how to model this interface between
trusted and untrusted software in a symbolic execution engine. We perform a study
to assess the state of public SGX enclaves. Using our symbolic execution engine, we
identify several programming mistakes that are due to misconceptions with respect to
constraints imposed by SGX. We present a root-cause analysis and systematization
of the discovered bugs and deduce several secure programming guidelines for SGX
enclaves from our findings.

This chapter is based on the following publication, which has been nominated as a
finalist in the CSAW Applied Research competition and was awarded the 3rd place in
the 8. German IT-Security Price 2020:
“TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX
Enclaves”. 29th USENIX Security Symposium, 2020. Tobias Cloosters, Michael
Rodler, and Lucas Davi

Adapting and Improving Fuzzing for Smart Contracts Chapter 5 shows how to adapt
state-of-the-art fuzzing techniques to smart contracts and significantly improve the field
of automated smart contract analysis. In contrast to other prior fuzzing approaches,
the approach presented in this chapter emphasizes high test case throughput. This
allows our fuzzer to quickly search for potentially interesting inputs that are more likely
to trigger vulnerabilities. Our evaluation shows that our approach to fuzzing smart
contracts out-performs all current comparable smart contract analysis approaches,
i.e., it outperforms current fuzzers and symbolic executors. Furthermore, this chapter
describes how to accurately handle the complex interactions possible on the Ethereum
blockchain in a fuzzer: cross-contract interactions, multiple colluding attacker accounts,
and various types of reentrant calls. Our high-throughput fuzzer is paired with a very
precise bug oracle based on the native cryptocurrency of Ethereum. This means that
any issue identified by our fuzzer is very likely an exploitable bug. In fact, the fuzzer
presented in this chapter automatically generates exploits that can be used to verify
the presence of the vulnerability.

The contents of this chapter are based on the following paper:
“EF/CF: A High Performance Fuzzer for Ethereum Smart Contracts”. IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), 2023. Michael Rodler,
David Paaßen, Wenting Li, Lukas Bernhard, Thorsten Holz, Ghassan O. Karame, and
Lucas Davi

6

Exploit Mitigation for Smart Contracts using Taint Tracking Chapter 6 describes
a runtime exploit mitigation technique for smart contracts, which is called Sereum.
In this dissertation, we develop a novel dynamic analysis technique that is capable of
identifying reentrancy attacks, which are responsible for several high-profile attacks on
the Ethereum blockchain. In contrast to prior work, this approach focuses on detecting
attacks as they are executed. Sereum extends the Ethereum virtual machine (EVM)
with a taint tracking engine, allowing us to track information about data flows at
runtime. In turn, Sereum utilizes the taint tracking engine to implement an automatic
locking mechanism in the EVM runtime environment to detect abuses of reentrancy
bugs. An attempted attack can be mitigated based on Sereum’s accurate attack
detection: Our approach can be embedded into the EVM execution environment, such
that reentrancy attacks are blocked automatically. Alternatively, our approach can be
used by smart contract developers to monitor smart contract executions for reentrancy
attacks and quickly react to ongoing attacks.

This chapter is based on the following publication:
“Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks”. 26th
Annual Network and Distributed System Security Symposium (NDSS),
2019. Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi

Automatic Patching of Smart Contracts with Bytecode Rewriting Finally, this
dissertation discusses patching of smart contracts in Chapter 7. Due to the nature of
smart contracts, which are immutable after deployment and always available, patching
is highly challenging. Prior to the work presented in this chapter, patching smart
contracts relied on an error-prone manual process.

To reduce the potential for errors, Chapter 7 presents a framework for auto-
matic patching of smart contracts: EVMPatch. At the core of this framework
is a trampoline-based bytecode rewriting approach that rewrites and patches EVM
bytecode. To deploy the patched contract, EVMPatch utilizes a feature of the
EVM that allows the reuse of code from another smart contract to circumvent the
immutability. This chapter presents an evaluation of the feasibility of the EVMPatch
approach by integrating an existing vulnerability detection component to automatically
patch integer bugs in smart contracts. Developers can use our framework to quickly
react to smart contract vulnerabilities and deploy patched smart contracts.

In this chapter, methodology and results are presented that are based on the following
publication:
“EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts”. 30th
USENIX Security Symposium, 2021. Michael Rodler, Wenting Li, Ghassan O.
Karame, and Lucas Davi

The results of this dissertation enable software security improvements for TEEs and
smart contracts. TeeRex (Chapter 4) and EF�CF (Chapter 5) enable developers
to automatically identify security vulnerabilities before deployment of software into
secure execution environments. With Sereum (Chapter 6) this dissertation presents
an extension to the execution environment to detect attacks at runtime. Finally, with
EVMPatch (Chapter 7) this dissertation presents an approach to patching in always
online secure execution environments. Therefore, this dissertation covers security
across the full development lifecycle of software for secure execution environments.

7

Chapter 1 Introduction

Additional Publications
Apart from the main publications on which this dissertation is based on, the author of
this dissertation was involved in several research projects and co-authored the following
publications:

• “Control Behavior Integrity for Distributed Cyber-Physical Systems”. 11.
ACM/IEEE International Conference on Cyber-Physical Systems (IC-
CPS), 2020. Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler,
Lucas Davi, Ahmad-Reza Sadeghi, and Saman A. Zonouz

• “My Fuzzer Beats Them All! Developing a Framework for Fair Evaluation
and Comparison of Fuzzers”. 26th European Symposium on Research in
Computer Security (ESORICS), 2021. David Paaßen, Sebastian Surminski,
Michael Rodler, and Lucas Davi

• “xTag: Mitigating Use-After-Free Vulnerabilities via Software-Based Pointer
Tagging on Intel x86-64”. IEEE European Symposium on Security and
Privacy (EuroS&P), 2022. Lukas Bernhard, Michael Rodler, Thorsten Holz,
and Lucas Davi

• “Practical Mitigation of Smart Contract Bugs”. arXiv: 2203.00364, 2022,
(under submission). Jens-Rene Giesen, Sebastian Andreina, Michael Rodler,
Ghassan O. Karame, and Lucas Davi

• “Dissecting and Fuzzing Native Code on the Web” (under submission), 2023.
Oussama Draissi, Tobias Cloosters, David Klein, Marius Musch, Michael Rodler,
Lucas Davi, and Martin Johns

8

https://arxiv.org/abs/2203.00364

CHAPTER 2
BACKGROUND ON SOFTWARE VULNERABILITIES

Software vulnerabilities are a major threat to modern IT systems, as software defines
most of the general-purpose computing devices we use today. Furthermore, software
systems have become highly connected, which exposes the software to potential attacks.
In this chapter, we cover the necessary technical background on software vulnerabilities
and standard techniques to automatically identify vulnerabilities. Here this chapter
focuses on automatic testing.

Many vulnerabilities in software stem from programming mistakes that can be
categorized into various classes of bugs. For example, memory corruption exploits
are a major threat to systems software. Most systems software is written in the
memory-unsafe programming languages C/C++, which gives attackers the possibility
to launch especially devastating attacks once a memory-safety bug is discovered. We
introduce memory safety and memory errors in Section 2.1.1. However, memory safety
is far from being the only type of vulnerability. We also discuss other relevant classes
of vulnerabilities, such as concurrency bugs, in Section 2.1.2. Finally, we also discuss
security vulnerabilities due to mistakes in the program’s business logic Section 2.1.3.

Automatically identifying bugs in software, both from a quality and security view-
point, is a large field of research. Multiple analysis techniques have been proposed,
ranging from static analysis methods to automated dynamic testing of code. Like
software libraries, secure execution environments expose a public interface, colloquially
known as an application programming interface (API). We give an overview of the most
important related work in the area of automatic testing of APIs, as these works are
relevant also to automated testing of the APIs of secure execution environments, such
as enclaves or smart contracts. More specifically, Section 2.2 covers two state-of-the-art
techniques in automatically generating inputs for software APIs: symbolic execution
(Section 2.2.1) and fuzz testing (Section 2.2.2). We utilize symbolic execution to
analyze SGX enclaves in Chapter 4 and fuzz testing to generate smart contract exploits
in Chapters 4 and 5.

9

Chapter 2 Background on Software Vulnerabilities

2.1 Vulnerabilities in Software

This section reviews the most important classes of software vulnerabilities that are
relevant in later chapters. We describe the necessary background on memory safety
issues in Section 2.1.1, which have been a significant issue for large C/C++ code bases
for almost 30 years [Sze+13]. In Chapter 4, we describe memory corruption attacks
that exploit the lack of memory safety at the boundary between trusted SGX enclaves
and the untrusted host application. Furthermore, we discuss vulnerabilities that are
due to issues with concurrent execution in Section 2.1.2, which is relevant for some of
the exploits we describe in Chapter 4 and reentrancy attacks in smart contracts, as
discussed in Chapters 5 and 6. Finally, we also discuss security vulnerabilities due to
logic bugs in Section 2.1.3, which is highly relevant in the context of smart contracts
(Chapters 5 to 7).

2.1.1 Memory Safety Violations

Even after more than 20 years of research on memory corruption bugs [One96] and
defenses [Cow+98] in C/C++ applications, this problem has still not been completely
addressed [Sze+13]. While memory-safe systems programming languages, such as Rust
or Go, have become more popular, many legacy codebases are still written in unsafe
C/C++. One of the most critical and prominent examples is web browsers [Lim+21].
Today web browsers have become so feature-rich and ubiquitous that most computer
users will regularly use their web browser to safely execute code loaded from potentially
untrusted sources. Modern websites have evolved into web apps that consist of a
mixture of HTML, CSS, multimedia content, and most critically, JavaScript and
WebAssembly code. This gives an attacker a huge attack surface, while the user relies
on the web browser to securely execute the web app and restrict any illegitimate
data accesses [Jia+16; Lim+21]. While browser vendors employ significant effort to
identify and mitigate memory errors, web browsers are still regularly exploited using
security-relevant memory errors. Similarly, operating system components are still
mostly written in C/C++ and are critical to the overall system’s security. As such,
finding new techniques to protect legacy C/C++ code against memory corruption
attacks remains crucial.

While memory errors are still prevalent, they have become significantly harder
to exploit in practice. Multiple exploit mitigation techniques have been developed
and deployed to production systems. Hardware-enforced non-executable memory
essentially stopped code injection attacks [PaX], and stack canaries made exploitation
of stack-based buffer overflows less likely to succeed [Cow+98]. Control-flow integrity
(CFI) [Aba+09] is a well-researched mitigation that is now widely available in pro-
duction compilers [Mic14] and prevents return-oriented programming (ROP) [Sha07]
attacks. However, these mitigations have forced attackers to resort to more advanced
code-reuse or data-oriented attacks [Hu+16; Isp+18; PKH19; Sch+15b].

Memory safety can be roughly categorized into two dimensions: spatial and temporal
memory safety. Spatial memory safety concerns itself with indexing with respect to
a base pointer, i.e., there should be no out-of-bounds memory access due to pointer
arithmetic. The most prominent example of a spatial memory error is the buffer

10

2.1 Vulnerabilities in Software

overflow, where the program writes past the end of an allocated buffer. Temporal
memory safety is concerned with the lifetime of a memory object, i.e., there should be
no usage of a memory object before it was allocated or after it was deallocated again.
An example of a bug that violates spatial memory safety is the use after free bug. Here
a pointer to a deallocated object remains in memory and the program accesses the
already deallocated object through this dangling pointer. The memory model exposed
to a C/C++ programmer is very low-level. As a consequence, these languages provide
neither temporal nor spatial memory safety. Low-level access to memory is necessary
to implement software components that work directly with hardware or to develop
extremely efficient optimized software. Most bug classes can be classified as either a
spatial or temporal memory safety violation. However, orthogonal but also closely
related to the problem of memory safety is the weak type safety offered in C/C++.
We discuss the relationship between type safety and memory safety at the end of this
section.

Spatial Memory Safety To violate spatial memory safety, two conditions must be
met: 1) a pointer must be adjusted to point outside the bounds of the original object,
and 2) the pointer must be dereferenced. Here, the most common root cause of spatial
memory safety violations is pointer arithmetic and a lack of proper bounds checking.
The buffer overflow is the classic example, where due to lack of length checking, the
program accesses an array, or buffer, past the allocated length. However, also other
bugs can be classified as spatial memory errors. For example, if a program reads
dereferences an uninitialized pointer, then the program will attempt to access an
object somewhere in memory. In contrast to issues with pointer arithmetic, there is
no associated base pointer. However, the pointer may be partially under attacker
control, leading to a security vulnerability beyond a simple crash. Other bugs that
lead to spatial memory safety violations are type casts between incompatible types
(type-confusion) and dereferencing of invalid pointers, such as uninitialized or NULL
pointers.

Figure 2.1 shows an example of a spatial memory safety violation in the C program-
ming language. Here arrays are represented as pointers to the first object in the array.
In this case, the first byte of the char array. The array subscript operator is simply
syntactic sugar for pointer arithmetic: it is translated into a pointer addition and a
pointer dereference. The for loop in the example will execute the loop body nine times
due to the ≤ operator being used in the loop header. As a result, the buffer index i
will index the ninth element in the last iteration, resulting in a buffer overflow that
writes the bounds of the original array object.

Such buffer overflows easily occur when dealing with strings or byte buffers in the
C language. This is mostly due to the absence of automatic bounds checking and
the poorly designed string APIs of the C standard library [One96]. While string
handling in C++ is much less error-prone due to the STL std::string type, other
common container types still default to unchecked operations. For example, the
common std::vector container defaults to using unchecked access via the subscript
operator while providing bounds-checked access only via the at method. Memory-safe
languages, such as Java, go or rust, deal with the problem of spatial memory safety

11

Chapter 2 Background on Software Vulnerabilities

1 char array[8];
2 for (int i = 0; i <= 8; i++) { // off-by-one error
3 array[i] = '\0'; // last loop will set array[8]
4 }

Figure 2.1: Example of a spatial memory safety violation (buffer overflow) due to an
off-by-one error, where the last loop iteration executes with a buffer index
that is too big.

by automatically introducing bounds-checking code, disallowing arbitrary pointer
arithmetic, and preventing dereferencing of uninitialized pointers.

Temporal Memory Safety A program is temporal memory-safe if no objects are
accessed before or after they have been allocated. A program must first let a pointer
become dangling, i.e., a pointer that references an object that has been deallocated. If
this dangling pointer is dereferenced, temporal memory safety is violated. Temporal
memory safety violations become especially problematic if the memory area that the
dangling pointer is referencing contains another potentially attacker-controlled object
because memory is reused by the allocator. Temporal safety violations are often due to
the manual memory management in C/C++: the programmer has to explicitly allocate
and free memory. Even moderately large code bases, it is not easily possible to track
all references to an object and decide when it can be freed.

Figure 2.2 shows an example of a temporal safety violation. First, 8 byte of memory
are allocated using the standard malloc function in line 3. A reference into the
allocated memory is saved in the pointer q. Subsequently, the allocated memory is
again deallocated using the standard free function. Afterward, another 8 byte memory
object is allocated. To reduce memory usage, a typical implementation of a memory
allocator will attempt to reuse the previously freed memory block and immediately
return it to the caller. As a result, when the pointer q is dereferenced in the last line,
it would actually write to the u object instead. However, at this point, both pointers
alias each other, even though they should not.

1 uint32_t *p, *q;
2 char *u;
3 p = malloc(8); // allocate a uint32_t[2] array
4 q = p + 1; // q references the second uint32_t
5 // ...
6 free(p);
7 u = malloc(8); // likely(p == u)
8 // ...
9 *q = ... // Use-After-Free Bug: modifies u instead

Figure 2.2: Example of a temporal memory safety violation.

One can utilize automatic memory management, typically by employing garbage
collection or reference counting, to automatically and comprehensively ensure temporal

12

2.1 Vulnerabilities in Software

memory safety. This way, a memory location is only deallocated when no reference
exists anymore. Garbage collection has been popularized by languages such as Java or
C#, which feature tracing garbage collectors. However, C/C++ can also be retrofitted
with garbage collection [BD95], and most modern systems programming languages
also feature automatic memory management. For example, the go language has
implemented an efficient and lightweight garbage collector. The Rust programming
language features the borrow checker to prove temporal memory safety at compile time
at the expense of becoming more restrictive with respect to allocation and aliasing
behavior [Jun+20]. A Rust programmer can fall back to reference counted smart
pointers when the compiler cannot prove temporal memory safety at compile time.
The C++ STL has also introduced smart pointers, which automatically manage the
lifetime of the underlying object. However, due to backward compatibility, C++ smart
pointers are often turned into unmanaged legacy pointers, bypassing the guarantees of
the smart pointers. As such, temporal memory safety is still a big issue for large C++

code bases such as browsers, where use-after-free vulnerabilities are still the majority
of vulnerabilities [Zer].

Type Safety vs. Memory Safety Type systems are the foundation of many pro-
gramming languages. At the most basic level, types are used to ensure that the
programmer attempts to combine only compatible objects in operations, e.g., only
numbers are added and not a number and a string. However, type systems also
facilitate abstractions and interfaces, allowing the programmer to hide complexity,
reuse code, etc. If a compiler’s type checker cannot decide whether two types are
compatible, the decision can be postponed to the runtime of the program. This is
colloquially referred to as dynamic typing. However, the C language has no concept of
types during runtime. All type checking happens during compilation (static typing),
and at runtime, the programmer has to ensure that only compatible types are used.
However, type casting and the union data structure provide facilities to convert any
type to any other type, allowing the programmer to break any guarantees by the type
system.

Furthermore, in C and C++, type safety is also closely intertwined with memory
safety. The lack of type safety can be easily turned into a memory safety issue when a
type cast wrongly changes the meaning of an integer to a pointer, leading to out-of-
bounds access. Inversely, for type safety to hold during runtime, memory safety must
also hold. A memory safety violation can lead to breaking a type invariant, e.g., a
boolean value that is represented by neither 0 nor 1 in memory.

The weak type system can also lead to memory safety violations. Figure 2.3 shows
an example where the lack of proper type-checking results in an out-of-bounds access.
The class Bar inherits from Foo, so it has the members a and b. A pointer to a Foo is
cast in the code snippet to the Bar type without additional checks. However, in this
case, the pointer actually references a Foo object. This type of object does not feature
the b member, which is accessed later. This access leads to indexing out-of-bounds of
the original object, whose size is only 4 byte.

The C language features a notoriously weak type system, which causes many issues
and is often mitigated using ad-hoc object models. As such, the C++ object model

13

Chapter 2 Background on Software Vulnerabilities

1 struct Foo {
2 int a;
3 }; // sizeof(Foo) == 4
4 struct Bar : public Foo {
5 int b;
6 }; // sizeof(Bar) == 8
7 // ...
8 Foo* f = new Foo();
9 // ...

10 Bar* b = static_cast<Bar*>(f); // invalid downcast
11 b->a = ... // *(b + 0) ok
12 b->b = ... // *(b + 4) out-of-bounds

Figure 2.3: Weak type safety in C/C++ can cause memory safety issues.

requires that for certain classes, the type of an object can be acquired at runtime
using runtime type information (RTTI). This information can then be used to validate
type casts using the dynamic_cast operator. Unfortunately, this does not mitigate all
typing-related issues in C++. Furthermore, RTTI is often disabled for performance
reasons [Jeo+17].

2.1.2 Concurrency Bugs

Since current software systems typically run multiple tasks on one machine, they
need to support concurrent execution of programs. However, concurrency in software
systems complicates software design and implementation. There are several bugs that
are easy to introduce when writing concurrent software. We will now discuss the major
concepts of bugs in concurrent software systems.

Race Conditions Adve et al. [Adv+91] defines races conditions in the following way:

Informally, two memory operations in an execution form a data race if
at least one of them is a data operation (as opposed to a synchronization
operation), at least one of them is a write (as opposed to a read), both
access the same memory location, and they are not ordered by intervening
synchronization operations.

As such, race conditions often lead to problems, such as two threads operating on
different values, causing corruption of the values. In the broader sense, race conditions
are a problem for software robustness. However, race conditions can also become the
root cause of memory corruption bugs. For example, there have been multiple race
conditions in the Linux kernel that cause use-after-free (UAF) bugs [LML21].

Time-of-Check to Time-of-Use Issues The problem behind time-of-check time-of-
use (TOCTOU) issues is that there is a time window between a security check and
the use of a resource. For example, TOCTOU bugs are common when operating on
files. For example, a privileged program or service validates that an input file is not

14

2.1 Vulnerabilities in Software

1 // An argument marked as "__user *" is a pointer to the user space memory passed
2 // to the kernel by the user space code.
3 void tls_setsockopt_simplified(char __user *arg) {
4 struct tls_crypto_info header, *full = /* allocated before */ ;
5

6 // [FETCH]
7 ➀ if (copy_from_user(&header, arg, sizeof(struct tls_crypto_info)))
8 return -EFAULT;
9

10 // [CHECK]
11 ➁ if (header.version != TLS_1_2_VERSION)
12 return -ENOTSUPP;
13

14 // [FETCH]
15 ➁ if (copy_from_user(full, arg, sizeof(struct tls12_crypto_info_aes_gcm_128)))
16 return -EFAULT;
17

18 // [BUG] full->version might not be TLS_1_2_VERSION
19 // ...
20 // process(full)
21 // ...
22 }

Figure 2.4: Example for a double-fetch bug in the networking code of the Linux
kernel [Xu+18].

a symbolic link before accessing the file. This is to avoid confused deputy attacks,
where the attacker abuses a privileged program or service to access a file normally
out-of-scope for the attacker. However, the attacker can attempt to exploit the time
window between the check on the file, e.g., by replacing the file with a symbolic link
after the check has passed.

Double-Fetch Bugs This class of bugs has become infamous due to the prevalence
in operating system (OS) kernels with support for multi-threaded user space processes.
Here the kernel fetches the same user space memory location two times in a row with
the assumption that the value cannot change between the two reads. However, in a
multi-threaded system, this is not necessarily the case. A typical attack vector is the
execution of a system call. The kernel fetches a system call parameter from user space,
performs some validation, and then fetches the same parameter again from user space
memory. However, if the user space process has the capability of running multiple
threads, it can change the value between the first and second fetch. This often leads
to TOCTOU issues, where the user space can bypass kernel validation by changing
memory parameters after the validation is finished.

Figure 2.4 shows an example of a double-fetch bug that causes a potential TOCTOU
issue. Here the kernel attempts to validate whether the user space program passed the
right version of a TLS header to the kernel. It does so by checking the TLS version flag
in the header data structure. First, it fetches a general header from user space at ➀. It
then performs a check for the TLS version by comparing it with a predefined header

15

Chapter 2 Background on Software Vulnerabilities

(➁). The kernel then fetches the full-sized header from user space at ➂. However, in
between ➀ and ➂, the user space can change the value of the header to something else.

In general, the difficulty of exploiting race conditions varies depending on the
target system and is influenced by many factors, such as the number of running
processes, general system load, the microarchitecture of the CPU, etc. For example,
the window between the two memory fetches in Figure 2.4 seems very small: only a
single comparison and a conditional branch. However, an attacker often has various
ways to extend such race windows when attempting to exploit race conditions. For
example, the attacker can exploit microarchitectural features, such as caches or the
branch predictor, to stretch the race window [Sch+18]. Other techniques abuse some
kernel functionalities to extend a race window, such as moving threads between CPUs
or triggering interrupts [LML21].

2.1.3 Logic Bugs
In previous sections, we discuss security vulnerabilities that are due to shortcomings
of the used programming language or environment. For example, memory errors
are mostly due to the lack of built-in memory safety in systems languages such as
C/C++. However, most application languages, such as Java, offer memory safety using
automatic bounds checking and garbage collection. However, security vulnerabilities
can also arise due to programming mistakes in an application’s logic. These are
independent of the programming language and typically highly specific to the domain
of the application. For example, many systems have access control rules to enforce
integrity and confidentiality of the data on the system. However, a bug in the
enforcement logic of the access control check can result in a security hole that attackers
can exploit to work around the usual access control checks. However, the class of
logic bugs contains different application-specific issues going far beyond access control
issues. Broadly speaking, the class of logic bugs contains all vulnerabilities that allow
an attacker to manipulate and abuse the legitimate processing flow of an application
with a negative impact on the organization running the application or to other users
of the application.

Figure 2.5 shows an example for a logic bug. The depicted function is part of a larger
application that manages transactions that transfer some form of currency between
users, for example, the in-game currency in a multiplayer game. The function receives
two user IDs and the amount, represented as a signed integer, as parameters. The code
includes a check for whether the original user has enough currency in their account.
However, the code does not account for the fact that a malicious user could attempt to
transfer a negative amount. As a result, the malicious user can abuse the transfer of
negative amounts to force the system to transfer currency from other accounts without
any permission or checks. In this example, this violates the application’s intended
logic: no user should be able to steal currency from other accounts.

16

2.2 Testing Software Interfaces (APIs)

1 // ...
2 int get_user_balance(userid_t user);
3 void set_user_balance(userid_t user, int amount);
4

5 void transfer(userid_t from, userid_t to, int amount) {
6 if (get_user_balance(from) >= amount) {
7 int new_balance_from = get_user_balance(from) - amount;
8 set_user_balance(from, new_balance_from);
9 int new_balance_to = get_user_balance(to) + amount;

10 set_user_balance(to, new_balance_to);
11 }
12 }
13 // ...

Figure 2.5: The depicted function manages bank transfers, sending some amount from
one user to another. However, the application logic does not account for
negative amounts leading to a vulnerability, where anyone can steal money
from any other account.

2.2 Testing Software Interfaces (APIs)
Developers generally decompose Software into various independent pieces, which are
then combined to a full software product. For example, it is a common model to
encapsulate commonly useful functionality into software libraries. A single program
then consists of the main program code and associated libraries. This has the advantage
of allowing the re-use of library code, which increases maintainability of software,
allows for distributed development, and also increases the resource efficiency of software.
Similarly, distributed software systems are composed of multiple software services,
which interact with each other over the network. Every library or service exposes a
public interface, which users of the library or service can call to use the functionality
implemented in the library. This interface is commonly referred to as the API.

Generally, there is no trust boundary between a main program and the libraries it
utilizes. However, when considering services in distributed systems, we often observe
a trust boundary between services that potentially run on different machines. For
example, many web services offer public APIs for anyone to interact with. Such APIs
often include access control logic to authenticate and authorize the user of the API.
When considering secure execution environments, we also deal with a certain type of
API. For example, in the case of SGX, an enclave acts as an isolated software library
that can be utilized by an untrusted main program. Similarly, smart contracts act as
services, which can be called by everyone that takes part in the Blockchain network.
As such, similar to, e.g., web services, software in secure execution environments
must perform self-protection: it must ensure that the encapsulation is not violated
due to errors on the interface trust boundary, and it must perform access control
(authentication and authorization).

Since the API of any software component is the entry point to its functionality, it
must be well-tested. This is especially true for software where the API represents a
trust boundary, such as for software running in secure execution environments. Testing

17

Chapter 2 Background on Software Vulnerabilities

APIs is a highly challenging problem because most APIs are stateful. This means that
prior calls can influence the behavior of following calls. When testing stateful APIs,
one has two consider two dimensions: 1) The individual inputs to a single API call,
2) and the ordering of the call sequence, taking interdependencies into account. Both
dimensions already represent a considerable search space on their own. This makes
testing of stateful APIs a long-standing open research topic [Ait02; Bal+18; CH00;
KLT01; Man+21; Thu+11; Xie+05].

When it comes to automated test input generation, there are two major tech-
niques that have been developed over the years: symbolic execution [Bal+18] and
fuzzing [Man+21]. Both techniques received significant attention from the research
community and have had tremendous success in identifying bugs and security vulnera-
bilities [Cha+12; Zal]. In the remainder of this section, we discuss both techniques in
the context of automatically testing software APIs.

2.2.1 Symbolic Execution

Symbolic execution has become one of the standard techniques in software analysis,
including high coverage testing and vulnerability analysis [Bal+18; CDE08; Cha+12;
Sho+16]. While on in the 70s as a generalization of testing [BEL75; Kin76], it gained
traction only recently with advances in satisfiability modulo theories (SMT) solv-
ing [BT18; MB08] and high-performance SMT solvers being widely available [Bar+11;
Dut14; MB08]. The idea behind symbolic execution is to generalize testing by exe-
cuting the program within a symbolic domain instead of concrete values, e.g., the
program operates on symbols representing numbers instead of actual numbers. This
allows the symbolic execution to reason about classes of inputs at once instead of
executing tests one by one. In turn, the symbolic execution discovers complex edge
cases that often do not come up during normal testing.

In practice, this is done by replacing variable inputs with placeholders, fresh symbolic
values, at the start of the execution of a program. The program then executes with
the symbolic values as inputs. For example, a fresh symbolic value for a 32 bit
integer represents the set of all possible integer values. Assignments to other variables
propagate the symbolic values to other variables during symbolic execution. Arithmetic
expressions result in symbolic formulas over the involved symbolic values and constants.
Conditional expressions are especially challenging during symbolic execution. At every
branching point in the program, the symbolic execution engine must decide which
branch to take. It does so by checking the satisfiability of the path constraints π,
representing all constraints on the input symbols gathered. Taking a branch adds
another constraint to the set of path constraints. If both branches are feasible, the
symbolic execution engine must fork the execution and take both branches.

Figure 2.6 shows an example of the state tree spanned by the symbolic execution of
the depicted function foobar. In this example, the symbolic execution branches into
both directions at each of the if-conditions.

As we saw in the example in Figure 2.6, symbolic execution spans a tree over all
possible execution paths of the program. In small programs such as the example in
Figure 2.6, a full exploration of all paths is feasible. However, in large real-world
programs, the execution tree quickly becomes too large to explore fully. Several

18

2.2 Testing Software Interfaces (APIs)

1 void foobar(int a, int b)
2 {
3 int x = 1, y = 0;
4 if (a != 0) {
5 y = 3 + x;
6 if (b == 0) {
7 x = 2 * (a + b);
8 }
9 }

10 assert(x - y != 0);
11 }

if (a != 0)

assert(x-y != 0)y = 3+x

if (b == 0)

x = 2*(a+b) assert(x-y != 0)

assert(x-y != 0)

SAT with

UNSAT

UNSAT

Figure 2.6: Example for an execution tree spanned by the symbolic execution of the
depicted function foobar [Bal+18] with α and β being the symbols assigned
to the input variables a and b, respectively. Only in the left-most path
in the execution tree is it possible to violate the assert statement. The
symbolic execution produces a satisfying assignment, i.e., concrete values
that can be passed as inputs and violates the assertion.

common features of real-world code quickly introduce a path explosion problem: nested
loops, symbolic memory dereferences, input-dependent indirect jumps, etc. Because the
symbolic execution engine must keep both states in memory at every conditional jump,
symbolic execution quickly becomes memory-bound, making breadth-first traversal of
the execution tree infeasible. As such, modern symbolic execution engines feature a
combination of depth-first traversal and heuristics to guide the symbolic execution to
potentially interesting program locations. Dealing with the path explosion problem is
a major research direction in symbolic execution, which spawned new techniques such
as state merging, computing symbolic summaries, different memory models, and many
more techniques [Avg+14; Bal+18; Kuz+12].

Furthermore, to be practically useful in real-world software, symbolic execution must
accurately model side effects caused by the environment. For example, most software
expects a standard OS environment, where the symbolic execution engine must simulate
and support all OS system calls and manage a simulated file system [Bal+18]. To
avoid state explosion, many symbolic execution engines also hook and model common
library functions [Sho+16].

Concolic Execution The idea of concolic execution is to mix concrete and symbolic
program execution. As such, the name of this variant of symbolic execution is a
portmanteau of the words “concrete” and “symbolic”. Concolic execution is often
used synonymously with dynamic symbolic execution and usually acts as a test-case
generator [Cad+08; GKS05; GLM12]. In general, most concolic execution engines will
execute a concrete input that drives the symbolic analysis along a certain program
path. Symbolic values and path constraints are tracked alongside the concrete inputs

19

Chapter 2 Background on Software Vulnerabilities

as meta-data. The concolic execution engine can then utilize the gathered path
constraints to flip one or more branches along the concrete execution.

One of the major advantages of concolic execution is that the environment must not
be modeled explicitly. Instead, since the execution is driven by the concrete execution,
the calls into the environment simply execute normally. Of course, this comes at the
expense of not being able to determine faults that are due to unexpected data returned
by the environment.

The many scalability problems of symbolic execution make it harder to apply
standard static symbolic execution to modern software. As such, most symbolic
execution approaches trade soundness or completeness of the analysis for shorter
analysis times. Nevertheless, symbolic execution has been successfully applied to
identifying bugs and security vulnerabilities in a wide range of software [CDE08;
CKC11; Sho+16].

2.2.2 Fuzz Testing
Over the last years, fuzzing has become a huge research topic in both the software
engineering and security communities [Man+21]. Driven by the practical usefulness
and success in identifying a large number of impactful bugs, fuzzing has been adapted
to many types of software. Historically, there have been two major branches of
fuzzing approaches: generative and mutational. Generative approaches utilize an input
specification to probabilistically synthesize inputs that conform to the specification.
Mutational approaches start with a set of seed inputs and perform small mutations,
slightly changing the input.

Generative Fuzzing Generative fuzzing utilizes an input specification, sometimes
called a model, to generate new inputs from the specification. The most prominent
class of fuzzers in this area is grammar fuzzing. Grammar fuzzers are especially
well suited to test parsing code where a formal grammar is already available. A
formal grammar can be used to decide whether a sentence is valid, but it can also
produce a valid sentence in the language described by the grammar. As such, it is
only natural to turn the grammar used by a parser around and utilize them to test
the parser. A grammar fuzzer then performs random sampling on the grammar to
generate valid inputs. Typically, the grammar used by the fuzzer slightly deviates from
the grammar used by the parser to make the fuzzing more efficient and more likely to
trigger bugs [Asc+19a]. As such, grammar fuzzing has been successfully applied to a
wide range of software, such as programming language compilers [Asc+19a; HHZ12;
Yan+11], standardized serialization formats, or even testing a single function [CH00].
The biggest downside is that a precise specification of the input must be available.
While inferring input grammars from static and dynamic program features has been
researched in the past [Bas+17; GMZ20; HZ16; KLS21], a different approach to fuzzing
has proven more effective for scenarios where no input specification is available.

Mutational Fuzzing Mutational fuzzing has become the de-facto standard approach
to testing binary-format parsers. Here, the fuzzer takes a set of known valid input files,
the seed corpus, and performs small-scale mutations, such as bit-flips or character

20

2.2 Testing Software Interfaces (APIs)

replacements, to produce new inputs. Already a blind mutational approach can identify
a large set of bugs [RDMSA]. The results of a mutational fuzzer highly depend on the
quality of the seed corpus and on the capability of the fuzzer to quickly execute many
of the generated inputs. While mutational fuzzers are well suited to test the robustness
of parsers, they tend to uncover only shallow bugs, i.e., they mostly exercise the error
handling code of the parsing components.

However, mutational fuzzing becomes exceptionally effective when combined with
feedback on the execution of the target program. For example, the famous fuzzer
AFL [Zal] utilizes code coverage feedback to distinguish inputs. For every generated
test case, the fuzzer receives feedback about the code coverage that the test case
triggered in the target program. This allows the fuzzer to distinguish and classify
inputs according to the code reached in the target. Fuzzers, such as AFL or libfuzzer,
utilize this mechanism to incrementally extend the seed corpus with new interesting
inputs, i.e., those that trigger new code coverage. Furthermore, this allows the fuzzer
to shrink individual inputs to discard bytes that do not affect which code executes.
Similarly, the fuzzer can now shrink a whole corpus, removing unnecessary test cases
that trigger only code already covered by other test cases in the corpus. Since the
feedback-driven mutational fuzzer can now incrementally build a corpus of interesting
inputs, the fuzzer can now reach code paths using small-scale mutations. For example,
Zalewski [Zal14] demonstrated that AFL is capable of synthesizing complex file formats,
such as JPEG images, given only code-coverage information of a JPEG parsing library.

More recently, several fuzzers were proposed that combine aspects of mutational
and generative fuzzing. For one, many generational fuzzers adopted coverage feedback
to distinguish useful inputs. Furthermore, this allows one to extend the concept of
mutations to the grammar level: the fuzzer now parses, mutates, and emits the parse
tree of the target grammar as source code. This was shown to be more effective than
traditional purely generative grammar-based fuzzers [Asc+19a; Wan+19b]. On the
other hand, mutational fuzzers have also approached generational fuzzers by discovering
input specifications driven by the mutational fuzzing process [Bla+19].

Hybrid Fuzzing A hybrid fuzzer augments a coverage-guided fuzzing approach with
more involved program analysis techniques, such as symbolic execution or taint tracking.
This allows the analysis to explore large parts of the program using lightweight coverage-
guided fuzzing and only resort to heavy-weight analyses whenever the fuzzer fails to
make further progress.

Even though mutational fuzzers receive feedback about code coverage, they lack any
semantic understanding of the input bytes they mutate. For example, such a fuzzer
cannot determine which bytes need to be mutated to discover new code coverage.
Using taint analysis, one can determine the relationship between input data and
data processed in the program. For example, by performing taint analysis, a certain
comparison can be traced back to the respective bytes in the input bytes. The fuzzer
can then focus on mutating those bytes that influence a certain branching condition
instead of randomly choosing the input bytes to mutate [Bek+12; CC18; Raw+17].

While taint tracking gives the fuzzer the information on what part of the input to
mutate, it does not give information on how to mutate the input. In contrast, symbolic

21

Chapter 2 Background on Software Vulnerabilities

execution techniques gather path constraints and can generate inputs that satisfy
even complex constraints on the input. A notable example here is Driller [Ste+16],
which combines coverage-guided fuzzing based on AFL [Zal] with concolic execution
with the Angr framework [Sho+16]. Conceptually, Driller splits code into regions
called compartments. To determine a compartment, Driller first executes the fuzzing
component. A compartment is defined as the code that is exercised by the fuzzer
during the first phase. Once the fuzzer fails to make further progress in terms of code
coverage for a certain amount of analysis time, Driller invokes the concolic execution
engine to discover new compartments. It does so by solving complex path constraints
gathered along the paths already exercised by the fuzzer and then flips those branches
that lead to code outside of the current compartment, i.e., those that trigger new code
coverage in the fuzzer. Driller then repeatedly cycles between the fuzzing and concolic
execution components.

Somewhat counter-intuitively, in terms of identifying real bugs in complex code bases,
smarter mutation strategies such as those based on heavyweight program analysis
techniques [GLM12; Raw+17] are often outperformed by more lightweight approxima-
tive mutations that can be applied at a high throughput [Asc+19b; Cho+19; Fio+20].
However, most recently, advances in concolic execution have been proposed to speed up
hybrid fuzzing. For example, one can exploit the fact that a concolic executor is most
commonly used in conjunction with a coverage-guided fuzzer. This allows the concolic
executor to simplify the symbolic formulas in an unsound manner and offload the task of
verifying the input to the coverage-guided fuzzer [Yun+18]. Furthermore, the overhead
of running the program in a fully emulated interpreted symbolic environment [Sho+16]
can be reduced by instrumenting directly on the assembler level [Yun+18], instrument-
ing the program for concolic execution in the compiler [PF20], or in the just-in-time
(JIT) translation layer of dynamic binary translation tools [BCD21b; PF21]. As an
additional optimization, approximative solving optimized for constraints gathered
during concolic execution has been proposed [BCD21a; Che+22] to replace expensive
queries to SMT solvers.

Fuzzing Stateful APIs The goal of fuzzing is to generate a sequence of API calls,
where (1) the final call in the sequence will trigger a bug, (2) while the preceding
calls set up the state of the target such that the bug can be triggered. This results
in a very large search space for the analysis tool, as one must consider potentially
infinite call chains. Even if the length of a call chain is bounded to a reasonable
number during fuzzing, the fuzzer must still search along the two different directions of
individual function input and function ordering. However, coverage-guided mutational
fuzzing allows the fuzzer to effectively search this huge search space. Most of the
function sequences will be redundant and not lead to distinct code coverage, allowing
the fuzzer to quickly discard these generated call chains. However, code coverage is not
always sufficient to distinguish the inputs, as different interesting combinations often
do not lead to different coverage. As such, a fuzzer must carefully strike a balance
between incorporating additional coverage information, such as context-sensitive code
coverage [CC18; Fio+20], and unnecessarily increasing the size of the current corpus.

22

2.2 Testing Software Interfaces (APIs)

Additionally, the fuzzer often has to take interdependencies between the calls into
account: data dependencies from return values of prior calls to parameters of following
calls or control dependencies between calls. Data dependencies often occur when
the API uses special identifiers to refer to resources. For example, the Linux kernel
extensively uses file descriptors at the system call interface. Passing invalid file
descriptors is very likely when considering it as an integer. So the fuzzer must ensure
to use only those file descriptors, which the kernel has previously returned. Similarly,
control dependencies encode semantic relationships between calls. For example, in the
case of file descriptors, the fuzzer should avoid using file descriptors that have been
closed already. Similarly, when fuzzing an object-oriented API, the fuzzer should not
utilize objects that have not been constructed or initialized.

However, fuzzing APIs has several advantages in contrast to static analysis methods.
Fuzzing has the advantage that it features a very low rate of false alarms. Since the
fuzzer produces a call sequence that sets up a vulnerable state during fuzzing, it is
highly likely the same call sequence also moves a real deployment into a vulnerable
state. Furthermore, the generated API call sequence can be easily replayed and
debugged by an analyst or developer.

In the following we describe the taxonomy as introduced by Green et al. [GA22].
This taxonomy categorizes fuzzers into one of four different types of API fuzzing
approaches:

Manual Harness Coverage-guided fuzzing has been previously used to test interactive
APIs. To work around the fact that most fuzzers simply provide and mutate
one input byte buffer, a special fuzzing harness must be constructed. Usually,
the harness performs additional parsing of the fuzzer-provided byte buffer and
deserializes a sequence of API calls, i.e., the harness acts as an ad-hoc inter-
preter for the raw bytes provided by the fuzzer. Several libraries have been
created to easily implement structured fuzzing based on the mutated byte buffer
inputs provided by current fuzzers. Two examples for such libraries are the
FuzzedDataProvider of the libfuzzer project [LLV] and the arbitrary library for
rust projects [Dev22] The downside of this approach is that even though the
aforementioned libraries reduce the manual effort, it still requires significant
effort to create a well-working fuzzing harness. Additionally, some mutations on
call sequences or constraints between calls cannot be easily expressed with this
approach, as the fuzzer itself is usually unaware of the structure of the input.
This can result in the fuzzer unnecessarily and repeatedly exercising the same
error-handling branches.

Harness Generation Since manual harnessing requires significant effort, several re-
search projects proposed methods to automatically synthesize a fuzzing harness.
For example, FUDGE [Bab+19] and FuzzGen [Isp+20] mine large C/C++ code
bases to extract code patterns and API usages to automatically generate a fuzzing
harness. However, such learning approaches rely on the quality and availability
of the code that is mined. Other approaches use dynamic API tracing to detect
legitimate call sequences and automatically generate a fuzzing harness [HC17;
Jun+21]. However, all these approaches attempt to generate a traditional fuzzing
harness using a single fixed sequence of API calls. The fuzzer is then used to

23

Chapter 2 Background on Software Vulnerabilities

mutate the input data of the fuzzing harness. Such automated harness genera-
tion makes it significantly easier to apply fuzzing to existing software projects.
However, this type of generated harness is not capable of exposing bugs that
result due to unexpected combinations of API calls.

Code Generation Another approach to testing APIs is to directly synthesize the
source code that exercises the APIs. This approach is usually taken when fuzzing
interpreted language runtimes, where it is beneficial to test the interpreter and
standard library API in conjunction. This approach has been applied to many
interpreted languages [Asc+19a], with a special focus on sandboxed runtimes
such as JavaScript runtimes of web browsers [Gro18; HOC19; Rud07]. Usually,
such fuzzers follow a grammar-based fuzzing approach, sometimes enhanced
with semantic information to avoid generating invalid API call sequences. This
approach works well for interpreted languages, where the input is naturally
source code and is quickly executed. However, for compiled languages such as
C/C++ or rust, this approach would take too long as each test case would need to
go through the slow compilation and linking stages for every test case. While a
grammar-based generative approach has been used to test C compilers [Yan+11],
it is not practicable for testing API sequences as the low test case throughput
would decrease fuzzing effectiveness.

Dynamic One crucial observation about manual fuzzing harnesses is that they often
implement ad-hoc interpreters that turn raw input bytes into structures or
dispatch to the relevant API. This can be generalized to an interpreter-based
fuzzing harness, which has been implemented in various projects [SYZK; GA22;
Sch+21; Sch+22]. Essentially, the fuzzing harness now becomes an interpreter
for a bytecode format that specifies the call sequences as a sequence of opcodes
executed by the interpreter. The fuzzer now mutates the bytecode program for
the interpreter and its associated data. Having a well-defined generic format
means that the fuzzer can be enhanced with mutations that respect the structure
of the bytecode format. This avoids unnecessarily exercising error paths in the
fuzzing harness and allows for more effective mutations on the call sequence.
Additionally, the bytecode format can be treated as a graph of opcodes with
associated data. This allows modeling control- and data-flow constraints between
API calls. For example, a file must be opened before writing to it and should
not be written to after it is closed. This allows expressing semantic constraints
about the API usage and further increases fuzzing efficiency as fewer invalid test
cases are processed during fuzzing.

24

CHAPTER 3
BACKGROUND ON SECURE EXECUTION ENVIRONMENTS

In this dissertation, we focus on software security within secure execution environments:
limited, isolated, and secure environments that execute highly critical parts of a larger
software system.

Definition: A secure execution environment is an execution environment
that isolates and protects the integrity of both code and data of the
software running within the execution environment. Additionally, the secure
execution environment provides some form of attestation, facilitating secure
communication with software components inside of the secure execution
environment.

This definition does not include confidentiality. This distinguishes this definition
of secure execution environments from other concepts such as confidential/trusted
computing, which also provide some form of confidentiality. All modern trusted
computing technologies, such as TEEs, also provide integrity protection. Therefore,
secure execution environments are a superset, i.e., include all trusted computing
technologies. However, by excluding the confidentiality requirements, our definition of
secure execution environments also covers interesting secure execution environments,
such as those featured in distributed systems (e.g., blockchains with smart contracts).

In this dissertation, we cover two specific secure execution environments. It is
necessary to understand the technical details of these two secure execution environments.
We discuss the technical details of the SGX, which offers a hardware-backed TEE
implementation. Section 3.1 gives details on the extension to the x86 instruction-set
architecture (ISA) that makes up SGX. SGX offers a confidential and integrity-
protected computing environment: in theory, an enclave developer can completely
shield the enclave from the host system. This covers all data used by the enclave,
which can be protected using cryptographic measures that seal and bind data to a
specific enclave. While this also extends to hiding the enclave’s code by providing the
actual enclave logic as encrypted code that is only decrypted inside the shielded enclave
environment, we later only tackle the more common use case of non-confidential code.

25

Chapter 3 Background on Secure Execution Environments

We continue with a discussion of the Ethereum execution environment in Section 3.2,
including the EVM architecture and the particularities of interactions with and between
smart contracts. In contrast to SGX, the Ethereum execution environment for smart
contracts exhibits many properties which result from the execution of code as part of
the consensus protocol of the underlying blockchain system. For example, Ethereum
has no notion of confidentiality, as everything on the blockchain is considered public.
However, the consensus protocol ensures a high degree of integrity, as the consensus
protocol will eventually ensure a unified view of the execution state of a smart contract
across the whole network. Additionally, a smart contract is uniquely identified using an
address that includes a hash of the code and is unique for every deployment. Using this
address it is trivial to perform remote attestation. Finally, we conclude the background
on secure execution environments by providing a comparison between the Ethereum
and SGX execution environments in Section 3.3.

3.1 Trusted Execution using Intel Software Guard Extensions

Intel introduced the SGX extensions [CD16; Hoe+13; Intel4; McK+13] for the Intel
x86 architecture as a new generation of trusted computing extensions, following prior
attempts at trusted computing like TPM and TXT. In contrast to prior solutions,
SGX provides an even further reduction of the TCB. Essentially, the TCB contains
the CPU, the firmware contained in the CPU, and the code running inside of the
enclave. Notably, the TCB does neither include the kernel nor the hypervisor running
on the CPU. In fact, the threat model of SGX explicitly states those to be untrusted.
Using secrets securely stored in Intel hardware as a root of trust and a special quoting
enclave released by Intel, each SGX enabled Intel CPU can measure SGX enclaves
and produce local and remote attestation reports. These attestation reports allow an
enclave to verify its own identity and integrity to remote parties.

One of the primary use cases of SGX is confidential computing in cloud scenarios. On
the one hand, organizations want to leverage the flexibility of cloud computing as part
of their IT systems. On the other hand, due to regulatory compliance or security risks,
sensitive data cannot be stored outside the organization’s infrastructure. Here, SGX
offers a possible solution: The cloud computing hardware utilizes the SGX extension
to load and measure an enclave provided by the data owner (i.e., the organization that
wants to confidentially use cloud computing). With remote attestation, the enclave
can prove to the data owner that it was correctly loaded. Furthermore, the data owner
can establish a cryptographically secured channel that directly terminates inside the
attested enclave. Since the enclave code is considered trustworthy, the data owner can
transfer the encrypted data to the enclave running on hardware operated by the cloud
provider. Even if the cloud provider, or its software stack, is compromised, the data
remains confidential as long as the SGX enclave operates correctly. Using the binding
and sealing mechanisms of SGX, the enclave can cryptographically ensure that data
can only be accessed on a certain CPU or by certain enclaves.

26

3.1 Trusted Execution using Intel Software Guard Extensions

3.1.1 Enclave Lifecycle

Loading and Initialization On a technical level, a SGX enclave is a memory region
embedded into an existing x86 virtual address space. More specifically, every SGX
enclave is attached to a host process, a normal user space process featuring a standard
x86 virtual address space. To load an enclave, the host process asks the kernel to set
up the address space for the enclave. This means that the kernel will allocate the
required number of pages from a special memory area reserved for SGX enclaves called
enclave page cache (EPC). The kernel updates the host process’ page tables to contain
the necessary mapping for the enclave. The kernel must leverage special instructions to
assign pages from the EPC to an enclave. These instructions initialize the enclave pages
given untrusted pages. The SGX enabled CPU will record additional metadata, such
as a mapping that associates physical pages with their enclaves. This allows the CPU
to ensure that no page is mapped twice into different enclaves. Contrary to normal
processes, the CPU must perform several sanity checks to prevent a malicious OS
kernel from attacking enclaves by abusing the paging mechanism. Once the enclave is
loaded, the CPU will perform the measurement of all enclave pages and their ordering.
This measurement is then later used for local and remote attestation.

Runtime Every SGX enclave features a fixed set of entry points. The host application
must utilize a special SGX instruction, EENTER, to transfer control to the enclave.
The other way around, the enclave must also utilize the special EEXIT instruction to
return control to the host application. The entry points are defined in the so-called
Thread Control Structure (TCS). However, when considering enclaves developed with
the Intel SGX SDK, most enclaves only define a single entry point that is provided by
the Intel SGX SDK. We defer a discussion of the particularities of the Intel SGX SDK
in Section 3.1.3.

The enclave can also be exited using the asynchronous enclave exit (AEX) mechanism.
This mechanism is triggered if a hardware exception occurs or an interrupt is triggered.
The AEX mechanism will save the current enclave state (i.e., registers) into dedicated
enclave memory before exiting the enclave mode of the CPU Afterward, and similar to
normal user-space software, the usual exception-handling mechanism of the operating
system is performed. However, in contrast to normal user space, the enclave’s execution
must be resumed with the ERESUME instruction.

Teardown Finally, after the enclave finishes computation, the OS can utilize the
dedicated EREMOVE instruction to deallocate the enclave-associated pages and also
delete the corresponding control structures. The corresponding pages can be reused
for a newly loaded enclave only after the enclave is destroyed.

3.1.2 Threat Model and Attacks

The threat model of SGX features a very strong attacker: the whole software stack
running on the CPU is considered untrusted. This means that throughout the SGX
threat model, we must assume that the attacker has all capabilities of the kernel
and hypervisor. At the same time, the enclave features no elevated privileges across

27

Chapter 3 Background on Secure Execution Environments

the system. More specifically, SGX enclaves are associated with a normal user-space
process. However, they lack the capability of interacting with the outside, i.e., enclaves
cannot perform system or hyper calls.

Furthermore, SGX also considers large parts of a system’s hardware as untrusted.
More specifically, the CPU die is considered trusted, but everything connected to the
CPU package is considered untrusted. For example, the CPU caches are considered
trusted, while the main DRAM memory is considered untrusted. As a consequence,
the SGX technology enforces confidentiality of enclave pages by encrypting data that
is written to main memory using an encryption key specific to the CPU. However,
to speed up execution, the internal caches of the CPU are not encrypted, and the
memory encryption engine is applied only to data written outside of the CPU package,
i.e., main memory.

However, data confidentiality is insufficient to secure SGX enclaves. Additionally,
SGX features several measures to ensure integrity for enclave pages. First, SGX uses
access control checks to prevent any writes to the EPC. Whenever the CPU is not in
enclave mode, any access to the EPC results in a hard CPU halt. Second, SGX also
features cryptographic protection of memory integrity using key-dependent hashing
and Merkle trees over enclave pages. This cryptographic protection also protects
enclave memory against physical tampering. Notably, the official SGX threat model
does not consider hardware attacks as in-scope. In that regard, cryptographic memory
protection is not strictly necessary to comply with the official threat model of SGX.
Interestingly, Intel introduced a variant of SGX called scalable SGX that lifts a hard
limit of 128 Mbyte of EPC memory. However, this comes at the cost of disabling the
cryptographic memory integrity protection [Sim].

Enclaves are as privileged as the host process in whose address space they are
loaded. This is important to allow the operating system to defend against malicious
enclaves. Since the operating system has limited introspection capabilities into SGX
enclaves, it is important for the operating system to have the capability to isolate
an enclave. However, the enclave itself does not have the capability to interact with
the operating system because enclaves are not allowed to issue system calls. Instead,
enclaves must rely on their associated host application to forward any data to the
relevant system calls. The SGX technology could also be abused by malware authors
to launch attacks [CD16; Sch+17]. However, due to the decision to associate enclaves
with normal user space processes, the operating system can apply standard process
isolation and sandboxing techniques to prevent the enclave from damaging the host
system.

3.1.3 Enclave Programming Model

With the launch of the SGX technology, Intel also provided the Intel SGX SDK as
the first development kit for SGX enclaves. The Intel SGX SDK has been established
as the de-facto standard and is often used to provide more high-level frameworks to
developers [Asy; TPV17].

The Intel SGX SDK features infrastructure to develop enclave code. The program-
ming model of the Intel SGX SDK exposes an enclave as a secure library. Similar
to other dynamic libraries, an enclave is loaded by a normal user space process and

28

3.1 Trusted Execution using Intel Software Guard Extensions

exposes a set of API endpoints (i.e., library functions) that can be called by the regular
untrusted user space process. In fact, the Intel SGX SDK automatically generates
code that makes the transition from the host application to the SGX enclave as easy
as a library call. Such a transition is dubbed ECALL by the Intel SGX SDK. However,
the Intel SGX SDK also supports calls in the other direction, i.e., calls from the
enclave to the host application. Such calls are typically used by the enclave to request
input/output (I/O) operations. The Intel SGX SDK refers to this type of call as an
OCALL.

To facilitate this programming model, the Intel SGX SDK adds standard support
code and generated code to both the host application and the enclave. Conceptually,
the support code is split into the trusted runtime (TRTS) in the enclave and the
untrusted runtime (URTS) in the host application. To generate the support code,
the build system relies on an interface specification, which is written by the enclave
developer in the enclave definition language (EDL) language. The enclave developer
specifies the public interface of the enclave code. The build system automatically
generates wrappers around these interface functions for the URTS. The host application
can call these wrapper functions like normal C functions. The wrappers of the URTS
then transparently pack the arguments according to the calling convention expected
by the TRTS. The URTS enters the enclave using the SGX specific instructions. Now
the TRTS takes over and performs unpacking and validation of the parameters of the
ECALL. In fact, the TRTS only supports a single entry point and multiplexes all logical
ECALLs. After unpacking and validation, the TRTS passes control to the ECALL
handler that is specified by the enclave developer. When the ECALL handler finishes
execution, control is passed back to the TRTS, which writes the returned data back to
untrusted memory, before exiting the enclave to continue execution in the URTS. To
perform an OCALL the flow is quite similar, except that now the TRTS begins by
packing the OCALL parameters to untrusted host application memory. Furthermore,
the TRTS unpacks and validates the returned data of an OCALL. Technically, a return
from an OCALL can be thought of as a special ECALL and reuses much of the same
mechanisms.

The EDL Interface Specifications The Intel SGX SDK uses the EDL, a custom
specification language, to define the ECALL and OCALL interface of an enclave. More
specifically, the EDL file is similar to a header file in the C language but with syntax
to represent SGX specific terminology. For example, it uses the trusted and untrusted
keywords to define ECALLs and OCALLs. Each ECALL or OCALL is defined by
the function prototype akin to a C function declaration. However, in addition to the
usual C parameter type definition, EDL features additional annotations. For example,
Figure 3.1 shows various ECALL and OCALL definitions.

Based on the provided EDL files, the Intel SGX SDK generates the wrapper code
to connect the ECALL stubs in the host application with the ECALL handler in
the enclave. When the host application calls an ECALL stub, the auto-generated
code packs the parameters of ECALLs into auto-generated data structures in the host
application memory. Control is then transferred to the TRTS and the auto-generated
code on the enclave side, which unpacks and validates the parameters from host

29

Chapter 3 Background on Secure Execution Environments

1 enclave {
2 struct foo_t {
3 uint32_t part1;
4 uint64_t part2;
5 };
6

7 trusted { // ECALLs
8 public void ecall_size1(// explicit size
9 [in, size=100] void* ptr);

10 public void ecall_size2(// variable size in len
11 [in, size=len] void* ptr, size_t len);
12 public void ecall_user(// dangerous user_check
13 [user_check] void* ptr);
14 // passing a struct by value
15 public int ecall_strct(struct foo_t foo);
16 };
17

18 untrusted { // OCALLs
19 void untrusted_print([in, string] const char *msg);
20 };
21 };

Figure 3.1: Example for the EDL syntax.

application memory and passes control to the ECALL handler. The enclave developer
can specify various types of parameters in EDL, including pointer parameters and
structures. Especially for pointer parameters, the Intel SGX SDK must be able to
determine the size of the underlying data to copy it to enclave memory before passing
it to the ECALL handler. Thus, every pointer parameter is also annotated with
how the size is to be determined. Figure 3.1 shows several of these size annotations,
e.g., constant size, C-style string length, and a second length parameter. Currently,
the Intel SGX SDK supports standard C data types, such as basic integers types,
composed data types (i.e., struct) without nested pointers, enumerations (i.e., enum),
null-terminated strings, and pointers to arrays of fixed length.

Figure 3.1 shows various features of the EDL language. For example, here, a
void* is passed to the enclave. The Intel SGX SDK requires a length annotation to
determine the underlying buffer size: [in, size=100]. This annotation specifies that
the underlying buffer is 100 byte. As such, the Intel SGX SDK will generate code that
copies this 100 byte buffer from the untrusted host application to enclave memory.
The ECALL handler is then passed a void*, that points to the corresponding buffer
in enclave memory.

However, there are many particularities that have to be considered when writing
EDL interface specifications. The most particular feature is the [user_check] features,
which completely disables any validation by the Intel SGX SDK. This annotation
is used to pass in raw pointer parameters to the ECALL handler. This leaves the
burden of validating this data to the enclave developer. In Chapter 4, we discuss
several memory corruption vulnerabilities that are due to missing validation of such
raw pointer ECALL parameters.

30

3.1 Trusted Execution using Intel Software Guard Extensions

Furthermore, the Intel SGX SDK does not perform deep copies of compound data
types. In fact, any struct is treated as a buffer of a fixed size. As a consequence, the
Intel SGX SDK also does not support passing container types, such as the containers
available in the C++ standard library (i.e., vector or map).

3.1.4 SGX Vulnerabilities

The security of SGX has been extensively studied. We have seen two orthogonal
research directions: (1) attacks against the SGX technology, and (2) attacks against
the software inside of SGX enclaves.

Numerous works study the security of the SGX technology itself. SGX is implemented
as an extension to the regular x86 ISA. In recent years a significant amount of work
has studied the security of the ISA implementations, i.e., the micro-architecture. As
such, there exist many attack vectors that exploit micro-architectural features, such
as caches, branch predictors, port contention, and so on [Can+19; Gru20]. Most
micro-architectural attacks require the attacker and victim to execute on the same
machine, which makes this type of attack typically hard to execute. However, the
threat model of SGX offers the perfect environment for micro-architectural attacks:
by design, the attacker, the untrusted host, executes on the same CPU as the victim,
the enclave. Furthermore, in SGX, the attacker has an incredible amount of control
over the enclave, which is executed as part of an unprivileged user space process.

We have seen multiple attacks that exploit micro-architectural features to leak
data from SGX enclaves, such as cache attacks [Bra+17] or transient execution
attacks [Che+19a; Van+18]. At least two of the attacks also targeted special enclaves
developed by Intel. As part of the remote attestation, a special SGX quoting enclave
issued and signed by Intel is used to obtain and sign a measurement of a local enclave.
Attacking these special enclaves with microarchitectural side-channel attacks allowed
researchers to dump the signing keys used by these enclaves [Sch+20a; Van+18],
which allows the attacker to subvert the whole remote attestation protocol. Intel
has continuously deployed new defenses against various micro-architectural attacks
against their CPUs and SGX in particular. Given the current state of attacks, it is
questionable whether the SGX technology can hold up to its threat model in practice.

A second line of research has assessed the security of the enclave code itself. The
code running inside a SGX enclave also faces a new threat model due to the limited
control over its own execution. Enclaves are prone to so-called controlled-channel
attacks [XCP15], a deterministic form of side-channel attack. For example, a SGX
enclave must assume that it can be interrupted by the host OS at every single
instruction [VPS17]. Furthermore, the enclave must assume that the host OS knows
exactly which memory pages are kept in main memory and which have been moved to
disk. This allows the attacker to deduce which parts of the code have been executed
and which of the data pages are accessed. Even worse, combined with side-channel
attacks, a controlled-channel attack can reconstruct the precise control flow of an SGX
enclave [Mog+20]. In turn, this means that secret-dependent branching can lead to an
enclave directly leaking the secret to the attacker.

However, the SGX environment poses further challenges for the enclave software:
the enclave needs to securely transition between the untrusted and trusted execution

31

Chapter 3 Background on Secure Execution Environments

domain. While the hardware enforces isolation, the security of the transition must be
secured in software. The transition between the two execution domains is defined by
two parts: the application binary interface (ABI) and the API. The ABI defines the
low-level calling conventions used to pass data via registers or memory between the
two domains. One abstraction level higher, the API defines a logical interface that
usually resembles a function call. Both have been targeted by prior work [Ald+20;
Van+19]. It was shown that lacking sanitization of status flag registers or the status
of the floating point unit could be abused to leak data from an enclave. Furthermore,
several enclave runtime environments lacked proper automatic sanitization of data
passed to the enclave or returned by calls to the untrusted world.

The first programming environment for SGX was the Intel SGX SDK, which targets
the C/C++ language. While this offers the greatest flexibility and compatibility, it also
means that memory safety is not automatically enforced in SGX enclaves. As such,
prior work has analyzed exploit techniques targeting memory corruption in the context
of SGX enclaves [Bio+18; Lee+17]. Similar to classical x86 software, SGX enclaves
are also prone to code-reuse attacks such as return-oriented programming (ROP).
However, there was no prior investigation into the prevalence of memory corruption
errors. In Chapter 4, we will discuss our results when analyzing several enclaves and
the new vulnerability pattern that we found.

3.2 The Ethereum Execution Environment

A blockchain commonly refers to a distributed ledger, which records transactions and
is replicated across all nodes participating in the network. Traditionally, transactions
involve transferral of the currency associated with the blockchain platform but can
also contain other arbitrary data. Typically, a transaction is defined to contain a
sender, a receiver, the amount to be transferred, optionally attached data, and a
digital signature over the prior transaction data created by the sender. Multiple
transactions are usually collected into a block. Multiple blocks are then chained using
cryptographic hash functions. Using a consensus mechanism, such as the Proof-of-Work
mechanism introduced by Bitcoin [Nak08], the network converges to the longest block
sequence as the active state of the ledger. This process is called mining and usually
involves rewarding the miner in terms of new cryptocurrency. As the first major
blockchain platform, Bitcoin has already added support for attaching arbitrary data to
transactions. Soon this was extended to attach program code to transactions: so-called
smart contracts. Smart contracts in Bitcoin are written in stack-based transaction
scripts. These scripts were initially intended only for basic functionality: defining
the eligible owner(s) and also transferring this ownership. However, combined with
Bitcoin’s time-lock feature, more complicated protocols can be implemented via the
Bitcoin scripts. While the restrictions of the bitcoin scripting language only allowed
very specific applications, the idea of executing code on top of a blockchain prevailed.

Ethereum [Woo19], a second-generation blockchain system, introduced a Turing-
complete programming environment for smart contracts alongside their cryptocurrency
Ether. Furthermore, smart contracts are designed to be first-class citizens in the
Ethereum blockchain: similar to normal user accounts, a smart contract is associated

32

3.2 The Ethereum Execution Environment

with an address, can manage its own currency balance, and can issue transactions to
other accounts (including smart contracts).

While, for the most part, smart contracts are first-class citizens in the Ethereum
blockchain, there are several differences between a smart contract and an externally-
owned account (EOA). Smart contracts are strictly reactive: any smart contract
execution is triggered by an initial transaction issued by an EOA, e.g., a normal
user. Although functionally equivalent, transactions created by a smart contracts are
treated a bit differently in the Ethereum protocol. They are usually called internal
transactions as they are not explicitly recorded in the blockchain but can only be
observed as sub-transactions when executing transactions issued by an EOA. The EOA
that issues a transaction also pays the gas fees for all internal transactions that might
be executed due to smart contracts reacting to the top-level transaction. Additionally,
smart contracts can store state directly on the blockchain, which is impossible for
EOA accounts.

Like traditional contracts, smart contracts are also considered immutable once they
have been created. All parties that interact with a smart contract commit implicitly
to the smart contract’s code. Similar to traditional contracts, changes to smart
contracts require creating a new contract. We discuss the problems of smart contract
immutability and upgrade strategies in detail in Chapter 7.

Due to the distributed nature of a blockchain platform, several restrictions have to
be imposed on the execution of Ethereum smart contracts:

1. Smart contract execution must be completely deterministic.

2. Smart contract execution must be bounded in space and time.

We will now discuss these two restrictions and how they are implemented in Ethereum.

Deterministic Execution In Ethereum, smart contracts must be completely determin-
istic. The current blockchain state is computed by applying all recorded transactions
in the same order to the initial blockchain state, typically called the genesis state.
Applying a transaction that involves a smart contract also implies that the smart
contract code is executed to obtain the next blockchain state. Since any full node
that joins the Ethereum network must compute the current blockchain state based on
the genesis state, the execution of a smart contract must be completely deterministic.
If, at any point in time, the execution of a transaction targeting a smart contract
leads to a different outcome, the whole protocol breaks down as this would violate
the cryptographic mechanism chaining the blocks based on their cryptographic hashes.
As a consequence, the Ethereum execution environment is carefully designed to only
allow deterministic behavior. Any inputs and outputs are well-defined and are part
of the blockchain state. Furthermore, common features in normal programming en-
vironments are impossible: there can be no source for random number generation
and no machine-specific behavior. For example, IEEE floating point arithmetic is not
supported, as floating point arithmetic can lead to different results depending on the
implementation in the CPU as small rounding errors are allowed. Instead, Ethereum
smart contracts use deterministic fixed-point arithmetic.

33

Chapter 3 Background on Secure Execution Environments

Bounding Execution with Gas Since the execution of a smart contract must be
replicated within the whole network, it is essential to limit the execution of smart
contracts in time and space. Otherwise, a simple endless loop of a single smart contract
would immediately take down the whole system. Similarly, since the blockchain is
an append-only data structure, care must be taken not to unnecessarily increase the
physical storage space required to store the blockchain. As such, the size of the smart
contract’s state must also be bounded. Ethereum tackles both problems using the gas
mechanism and the derived transaction costs. Whenever a transaction is committed
to the blockchain through mining, the EOA that originally sent the transaction must
pay for the cost of executing the transaction using their available cryptocurrency. The
cost of a transaction is computed using the gas mechanism. Each operation of a smart
contract has an associated gas consumption. The EOA origin of a transaction then
specifies an upper bound for total gas consumption and a gas price in Ether per gas
unit. The balance of the transaction sender is then reduced by the consumed gas times
the gas price and transferred to the miner of the block that contains the transaction.
As such, the increasing cost of the used gas naturally limits the resources used by
smart contracts. However, miners also impose a block gas limit, which limits the
number and execution complexity of transactions per block.

3.2.1 Ethereum Virtual Machine

Ethereum specifies a custom virtual machine and bytecode format: the EVM. The EVM
is a deterministic virtual machine without any source of randomness or behavior specific
to the CPU. Furthermore, the EVM was designed with simplicity in mind. For the
consensus layer it is essential that all nodes, which might run different implementations,
can replicate the exact same EVM executions. By designing the EVM ISA as simple
as possible, it is ensured that implementations are more likely to be correct.

The EVM is a stack-based architecture: every instruction pops arguments from the
stack and pushes the result back on top of the stack. The default word size for the
EVM is 256 bit. As such, all stack operands utilize this bit width. Instructions are
encoded as one-byte opcodes, except for the PUSH family of opcodes, which are used
to push constants. Figure 3.2 shows an example for parts of an execution trace of
a EVM smart contracts. It contains several notable instructions that show certain
particularities of the EVM. First, we have the JUMPDEST pseudo-instruction. While it is
technically a no-op instruction, it is used in the EVM to mark valid jump destinations.
The EVM enforces a form of very coarse-grained control-flow integrity (CFI) [Aba+05],
which allows jumps to target only to program locations that have been previously
marked with the JUMPDEST pseudo-instruction. While not generally considered a
security mechanism, this property also prevents code-reuse attack techniques such as
ROP [Sha07; Sze+13]. Second, we have the PUSH2 instruction, which places a 2-byte
constant on top of the stack. This instruction is encoded as 3 byte in the bytecode
format of the EVM. Interestingly, there is another restriction in the EVM when it
comes to jump targets. The EVM forbids jumps into the constants that are encoded
as part of PUSH instructions.

In contrast to many modern computer architectures, the EVM resembles a Harvard
architecture that separates code and data into isolated address spaces. Once the

34

3.2 The Ethereum Execution Environment

PC Bytecode Instruction Stack (before Instruction) Description

...
...

...

4 5b JUMPDEST
A top

C
. . .

Pseudo-instruction, which has no stack ef-
fects, but is used to mark allowed jump tar-
gets.

5 54 SLOAD
A top

C
. . .

Load a value V from storage address A and
push it to the top of the stack.

6 10 LT
V top

C
. . .

Perform the less-than comparison of the two
top stack value: V < C.

7 61 01 02 PUSH2 0x0102 b = V < C top

. . .

Push the constant 0x0102 to the stack. Note
that the PUSH2 instruction is encoded as a
three bytes: one for the opcode and two for
the constant data.

9 57 JUMPI
0x0102 top

b = V < C
. . .

Perform a conditional jump based on the
boolean b produced by the previous compar-
ison instruction. The jump target is 0x0102
in this case.

...
...

...

Figure 3.2: Example for a part of an EVM execution trace, including the program
counter (PC), the bytecode, the instruction mnemonic, a depiction of the
stack, and a description of the effects of the instruction.

contract is created, its code is immutable and cannot be written anymore. The only
exception is the final destruction of a contract, which removes the code of the contract.
In fact, the EVM not only separates code and data, it uses multiple isolated address
spaces for different types of memory for data. The EVM separates its memory into
the following memory sections:

• The stack.

• Memory, an area for dynamic memory allocation during execution.

• Storage, for persistent data that is part of the blockchain state.

• The call data, which contains the input attached to a transaction.

• The return data, which contains the data returned by the last call.

• The code, which is read-only but can be accessed to retrieve larger constants
such as fixed strings or constant binary data.

Most of the address spaces are byte-addressable in current versions of Ethereum.
Two notable exceptions are the stack and the storage. The stack is not directly
accessible except but can only be manipulated with instructions pushing and popping
and with the DUP and SWAP opcodes that duplicate and swap 256 bit stack slots relative
to the top of the stack. Addresses in the storage address space point to full 256 bit

35

Chapter 3 Background on Secure Execution Environments

words, i.e., it can be thought of as a map data structure that maps 256 bit keys to
256 bit values. In fact, hash maps in the storage area can be easily implemented in the
EVM with the help of the SHA3 opcode and are commonly used in smart contracts.

Lifecycle of a smart contracts Smart contracts are created by an EOA issuing a
transaction with an empty receiver. This prompts the Ethereum miners to execute a
creation transaction for the smart contract. First, the miner computes the new address
of the smart contract and then executes the constructor bytecode. In Ethereum, the
input attached to the creation transaction is treated as the constructor code. This
bytecode is executed once in the EVM environment to initialize a smart contract.
Notably, the constructor execution is performed in the exact same environment as the
regular smart contract execution. As such, the constructor is allowed to issue further
transactions, i.e., to call other smart contracts. However, from the point of view of
all other smart contracts, a smart contract that is currently being constructed has
no code attached. Incidentally, this makes it impossible to reliably distinguish smart
contracts from EOA in nested transactions, which has led to bugs in the past.

Once a smart contract has been created, it is essentially immutable: the code cannot
change anymore. Now anyone participating in the Ethereum network can interact
with the smart contract by issuing transactions, whose receiver field is the address
of the smart contract. As such, Ethereum smart contracts are always available to
anyone by design, including attackers. By default, there is no way to temporarily take
down a smart contract while a patch for a vulnerability is in development. This makes
patching highly challenging, which we will discuss in more detail in Chapter 7.

Finally, the life cycle of a smart contract ends when it is destroyed. While most smart
contracts do not use this feature, it is beneficial to deprecate and destroy old unused
smart contracts because this reduces the size of the current blockchain state at the
latest block. A contract must voluntarily destroy itself using a special SELFDESTRUCT
instruction. This instruction transfers all remaining Ether associated with the smart
contract to a given address and then deletes the code and data associated with the
smart contract.

3.2.2 Programming Paradigms in Ethereum

Ethereum smart contracts are primarily programmed in Solidity [Tea18], a program-
ming language that features a C-like syntax and the contract-oriented programming
paradigm. Contracts are treated similarly to objects in the common object-oriented
programming paradigm. Contracts have associated methods and variable members
and can inherit from other contracts. While Solidity is the prevalent smart contract
language, other languages like Vyper [Vyp] or Fe [Fou22] have been developed.

However, Solidity has been criticized for its non-intuitive syntax that easily allows
introducing security bugs into the smart contracts [Dai16b; Luu+16]. Major hacking
incidents like the DAO attack [Dai16a] or the Parity Wallet attack [Bre+17; Tec17b]
can be traced back to issues with the Solidity language. Even though the volume of
cryptocurrency managed by Solidity smart contracts is tremendous [Eth22], Solidity
has not yet reached a stable release version of 1.0 [Tea22b]. As such, the language is
still undergoing significant changes and has fixed many of the previous criticisms.

36

3.2 The Ethereum Execution Environment

Solidity, and most other smart contract programming languages, expose a set of
methods, which operate on the provided input parameters and the contract’s state.
However, on the EVM level, there is no notion of functions or methods: A smart
contract always starts executing at code address zero. Similarly, the input data
attached to the transaction does not distinguish between parameters. The EVM treats
the transaction input data simply as a sequence of bytes. However, the input to
most smart contracts must follow a certain structure, which is decoded by the smart
contract itself. Solidity has defined a custom ABI for source languages targeting the
EVM [Tea22a]. This ABI specifies how the transaction input must be formatted when
a certain function should be called. More specifically, the first four bytes of the EVM
input contain a function selector. In Solidity, this function selector is computed as a
hash over the type signature of the method. The Solidity compiler emits a dispatcher
at the start of the smart contract, which jumps to the right function based on the
function selector in the input. A programmer can also specify a fallback function that
is called when no, or no known, function selector is provided.

One important feature of Solidity smart contracts is the possibility to interact with
other smart contracts. In fact, smart contracts have multiple different ways to interact
with each other. On the EVM level, there are multiple instructions that are used to
issue calls between smart contracts. Most importantly, the normal CALL instruction
issues a new internal transaction that is used to a) transfer Ether to EOA and other
smart contracts, and b) call public methods of other smart contracts. However, there
are also multiple other types of calls. The DELEGATECALL instruction1 is used to call
other smart contracts as libraries, i.e., the library smart contract is executed with the
state of caller smart contract. The STATICCALL is like the normal call instruction but
prevents the callee from performing state updates. This is useful when the intention is
only to retrieve data from the other smart contract, e.g., a getter method. Furthermore,
smart contracts can utilize the CREATE family of instructions to deploy new smart
contracts.

Somewhat confusingly, on the EVM level, all the call instructions are concerned
with performing external calls, i.e., calls targeting other smart contracts. Even though
high-level languages like Solidity fully support this, there is no instruction to perform
internal function calls within a smart contract’s code like in traditional ISAs. While
there are proposals to add such instructions [Bro22], they are not yet in widespread use
at the time of writing. As a result, many compilers emulate internal calls by pushing
a return address to the stack and returning by using the normal JUMP instruction.
Note that this causes significant problems when statically analyzing EVM bytecode.
Since a normal jump cannot be distinguished from a return, it is highly challenging
to build an accurate control-flow graph (CFG) for even moderately complex EVM
bytecode. Several research projects have attempted to tackle this issue using various
static analysis methods [Alb+18; Bre+18; Con+21; Gre+19].

1and the similar but deprecated CALLCODE

37

Chapter 3 Background on Secure Execution Environments

1 function batchTransfer(address[] _receivers, uint256 _value)
2 public whenNotPaused returns (bool)
3 {
4 uint cnt = _receivers.length;
5 // OVERFLOW: 2 * ((INT_MAX / 2) + 1) == 0
6 uint256 amount = uint256(cnt) * _value;
7 require(cnt > 0 && cnt <= 20);
8 // BYPASSED CHECK: balances[msg.sender] >= 0
9 require(_value > 0 && balances[msg.sender] >= amount);

10 /* */
11 // RESULT: Transfer of ((INT_MAX / 2) + 1) tokens

Figure 3.3: Integer overflow bug reported by PeckShield [Peca].

3.2.3 Smart Contract Vulnerabilities

Over the history of the Ethereum blockchain platform, there have been various incidents
due to vulnerabilities in smart contracts [ABC17; Luu+16; SWC]. The attacks range
from denial-of-service (e.g., the King of the Ether Throne bug [KotET]), unavailable
Ether (e.g., the Parity multisig wallet [Tec17a]), to attackers being able to steal Ether
(e.g., the DAO attack [Jen16]). There are numerous potential pitfalls and various types
of bugs in Ethereum and Solidity. In the remainder of this section, we will discuss
the most important bug classes, which are tackled in the following chapters of this
dissertation.

Integer Bugs Due to performance reasons and engineering constraints, typical CPU
ISAs utilize fixed bit-width integers. In this respect, the EVM architecture is no
different, even though the EVM uses an unusually large bit-width of 256 bit. Essentially,
this means that the mathematical integer is only approximated by computers. This
can lead to bugs at the boundaries of the capabilities of fixed bit-width integers. When
considering smart contracts, which generally need to track cryptocurrency or token
balances, integer bugs can become quite critical vulnerabilities. For example, there
have been multiple reports on integer-related bugs in token contracts [FSS18; Peca].

In the Ethereum ecosystem, token contracts implement specialized sub-currencies.
Users can utilize exchanges to convert Ether, the native currency, into tokens. Once
the user possesses tokens, they can transfer them by calling the respective method
of the token smart contract. Figure 3.3 shows an example of an integer overflow
vulnerability in a token contract. The token features a batchTransfer function, which
allows transferring a certain number of tokens to multiple other accounts at once.
However, there is an integer overflow bug, which the attacker can exploit to overcome
a balance check. More specifically, the attacker can choose the parameters to the
vulnerable function, such that the total amount of needed tokens—stored as amount in
Figure 3.3—becomes 0. As a result, the attacker can trick the contract into transferring
a large number of tokens without owning a single token.

Besides, integer overflows Ferreira-Torres et al. [FSS18] identify three major types
of integer bugs that are also applicable to smart contracts:

38

3.2 The Ethereum Execution Environment

Arithmetic Bugs include integer over- and underflows, i.e., the fixed bit-width integer
causes a wrap-around because the result of an arithmetic computation would
exceed the capability of the fixed-width integer type.

Truncation Bugs happen when converting between a larger integer type to a smaller
one, discarding critical information in the process. For example, if a 256 bit
integer larger than 255 is converted to an 8 bit integer, the upper bits must be
discarded.

Signedness Bugs happen if an unsigned integer type is converted to a signed integer
type or the other way around. On the EVM level, signed integers are represented
using the common two’s complement approach. As a result, converting a small
signed integer will result in a very large unsigned integer.

Access Control Bugs To maintain a smart contract, many developers introduce the
Owned contract pattern. Here the contract maintains an address of a special owner
account. Access to specially privileged functions is then restricted to originate from the
owner. However, there is no architectural support or support from the language. As
such, any access control must be implemented manually by the developer. Especially
in early smart contracts, this often caused bugs if the access control checks were
only partially applied or became ineffective due to unrelated changes to the smart
contracts. This type of bug belongs to one of the most well-studied bug classes in the
smart contract literature [FAH20; KR18a; Luu+16; Nik+18; SHO21]. These studies
identified many vulnerable contracts that were deployed to the blockchain.

This type of vulnerability received special attention after the infamous parity wallet
incident, where many funds were vulnerable and finally frozen due to bugs in the code
and issues during deployment. Figure 3.4 shows an example of an access control bug.
Here the Wallet smart contract utilizes a library smart contract that introduces a
set of owners with special permissions. The library contract exposes the initWallet
function to initialize the owners array, which allows lazy initialization of the contract.
Normally, this function is supposed to be called once in the constructor of the contract
that uses the library. However, this initialization function is not properly protected by
access control checks. As such, anybody can call the initWallet function even after the
first initialization. This allows any participant of the Ethereum network to overtake
the Wallet contract by calling the initWallet with a custom set of owners.

Reentrancy Vulnerabilities Reentrancy vulnerabilities have been the root cause for
several high-profile attacks on the Ethereum blockchain. The most infamous TheDAO
incident [Dai16a], the SpankChain incident [Spa18], and the more recent Uniswap and
Lendf.Me incidents [Tor+21b]. In Ethereum, a reentrancy bug is a deterministic form
of a common concurrency problem where a contract calls another contract which calls
back into the calling contract. However, if the contract is not safe to be re-entered,
then reentrant calls operate on potentially invalid internal state of the smart contract,
i.e., state is only partially updated by the previous invocation. Such inconsistent state
can then be exploited by an attacker to bypass critical checks.

39

Chapter 3 Background on Secure Execution Environments

1 contract WalletLibrary {
2 address[16] owners;
3 mapping(bytes => uint256) approvals;
4

5 function confirm(bytes32 _op) internal returns(bool) {
6 /* logic for confirmation */
7 }
8 function initWallet(address[] memory _owners) public {
9 /* initialize the Wallet functionality */

10 }
11 function pay(address payable to, uint amount) public {
12 if (confirm(keccak256(msg.data))) {
13 to.transfer(amount);
14 }
15 }
16 // ...
17 }
18 contract Wallet {
19 // the Wallet contract utilizes the WalletLibrary contract
20 // deployed at a fixed address:
21 address walletLibrary = address(0x1234ABCDFEFEFE);
22 constructor(address[] memory _owners) {
23 // initialize the Wallet functionality
24 bytes memory data = abi.encodeWithSignature("initWallet(address[])",

_owners);↪→

25 walletLibrary.delegatecall(data);
26 // ...
27 }
28 // forward all unknown calls to the WalletLibrary
29 fallback() external payable {
30 walletLibrary.delegatecall(msg.data);
31 }
32 }

Figure 3.4: A simplified variant of an access control issue similar to the bug of the
parity multisig wallet.

However, reentrancy is also often occurring during normal contract execution. For
example, it is part of common and officially supported programming patterns for
Ethereum smart contracts [SolWd]. The common withdrawal code pattern [SolWd] is
shown in Figure 3.5 Here contract A withdraws 100 wei from contract B. In Figure 3.5,
contract A calls the public withdraw function of contract B. During this call B then
invokes the built-in call method on the sender (msg.sender in Solidity). This then
transfers the specified amount to A (i.e., msg.sender is representing the calling contract
A). In Ethereum, Ether is transferred by means of a call, e.g., contract B must call
back (re-enter) into contract A’s fallback or receive function to send the funds.

There are several ways to call other smart contracts in Solidity. First, there are the
low-level call mechanisms, like send, call, and transfer, which are part of the address
type in Solidity. Generally, the send and transfer functions are considered reentrancy
safe, as they only provide a limited amount of gas to the called contract, effectively

40

3.2 The Ethereum Execution Environment

1 contract A {
2 B b;
3 function f() public {
4 b.withdraw(100);
5 }
6 fallback() external payable { }
7 // ..
8 }
9

10 contract B {
11 function withdraw(uint amount) public {
12 msg.sender.call{value: amount}("");
13 }
14 }

A.f()

B.withdraw()

A.()

CALL

CALL

transfers amount Ether from B to A

Figure 3.5: Common withdrawal pattern in Solidity: the upper part shows the sample
Solidity code, whereas the lower part shows the call chain. In this example
contract A withdraws 100 wei from contract B.

preventing the callee contract from performing further calls. However, when an address
is cast to a smart contract (or its interface), then the smart contract is usually called
via the regular call mechanism that is not reentrancy safe. The exception is when a
method is called that is annotated as pure or view in Solidity. These types of methods
are called using the STATICCALL instruction, which prevents state updates and further
external calls. As such, these calls can be considered reentrancy safe.

A malicious reentrancy occurs when a contract is reentered unexpectedly and the
contract operates on inconsistent internal state, i.e., the contract accesses persistent
data in the storage area that is not consistent with a concurrent execution of the smart
contract. More specifically, we define a reentrancy bug to occur when the following
conditions are met:

1. The contract is called at call depth C1 and is reentered at call depth C2, where
C1 < C2.

2. The contract loads a value V from storage address AS .

3. The contract writes a value V ′ with V ′ ̸= V to storage address AS after the
reentrant execution at C2 returned.

41

Chapter 3 Background on Secure Execution Environments

1 function withdraw(uint amount) public {
2 ➀ if (credit[msg.sender] >= amount) {
3 ➁ msg.sender.call.value(amount)();
4 ➂ credit[msg.sender] -= amount;
5 }
6 }

Victim Attacker Victim Attacker State

1 c = N, a = N

2 a ≤ c X

A

1 a ≤ c X

2

A

3 c′ = c − a = 0

A

3 c′′ = c′ − a = −N ×

re-enter

transfer Ξ

transfer Ξ

state update

state update

Figure 3.6: Sample contract vulnerable to re-entrancy attacks: the upper parts shows
the Solidity code, whereas the lower part shows the call sequence between
the vulnerable contract Victim and the attacker contract, and the state of
the variable a (amount) and c (credit[msg.sender]). The amount a has
not been updated for the second invocation of Victim thereby allowing a
malicious re-entrancy.

4. There is data-dependency on V from a control-flow instruction, a storage write,
a RETURN instruction, or one of the parameters to one of the call instructions,
and one of these instructions is executed in the reentrant call at depth C2.

This implies that the reentered victim contract operated based on an inconsistent state
value, and thus the reentrancy was not expected by the contract developer.

From this definition, one can deduce a rather simple policy to prevent reentrancy
issues: disallowing state updateds after calls. Here, it is forbidden to write to storage
addresses after an external call happens, i.e., after potential reentrant executions. By
design, this ensures that a reentrant execution always operates on the latest state of
the contract. While this policy is implemented by several static and symbolic analysis
tools, such as Slither [FGG19], Securify [Tsa+18] or Mythril [Conc], this policy is also
overly restrictive and suffer from a significant number of false alarms (see Section 6.5).
In many cases, it is not possible to remove the state update after the call. For example,
whenever a state update depends on the return value of an external call, this policy
cannot be enforced.

42

3.2 The Ethereum Execution Environment

Figure 3.6 shows a simplified version of a contract (inspired by Atzei et al. [ABC17]),
called Victim, which suffers from a reentrancy vulnerability. Victim keeps track of an
amount (a) and features the withdraw function allowing other contracts to withdraw
Ether (c). The withdraw function must perform three steps: ➀ check whether the
calling contract is allowed to withdraw the requested amount of Ether, e.g., checking
whether a ≤ c, ➁ send the amount of Ether to the calling contract and ➂ update the
internal state to reflect the new amount, e.g., c− a. Note that step ➁ is performed
before the state is updated in ➂ . Hence, a malicious contract can re-enter the contract
and call withdraw based on the same conditions and amounts as for the first invocation.
As such, an attacker can repeatedly reenter into Victim to transfer large amounts of
Ether until the Victim is drained of Ether. A secure version of our simple example
requires swapping lines 3 and 4 to ensure that the second invocation of Victim operates
on a consistent state with updated amounts.

3.2.4 Identifying Basic Blocks in EVM Bytecode

A typical Ethereum client must be able to quickly load and execute many different
smart contracts. As such, the overhead of loading a smart contract must be small.
At the same time, the execution speed of the smart contract should be minimal. As
such, the EVM bytecode exhibits several properties that make it amendable for quick
analysis. For example, while it is notoriously difficult to properly build a CFG from
EVM bytecode [Alb+18], it is possible to identify basic block boundaries using a single
linear pass. This eases building faster interpreters or helps to reduce the latency of
just-in-time compilers. In Algorithm 1, we describe the algorithm to identify all basic
blocks, all legitimate jump targets, and all data constants within EVM bytecode.

The EVM bytecode format is quite simple, as every opcode is simply a single-byte
identifier. Since everything is stack-based, there is no encoding of register identifiers
or similar metadata into the opcode itself. However, there is one exception: EVM
implementations prevent jumps into the data constants that are embedded into PUSH
instructions. Here the EVM enforces a slight separation of code and data in the code
address space. The constant operands of the push instructions follow directly after
the byte of the push instruction opcode. Such a constant operand could include the
byte for the JUMPDEST instruction. Then, the constant would be a legitimate jump
target. As a consequence, a new unintended instruction sequence would occur. Since
such unintended instruction sequences can have a negative impact on security, as on
other native CPU architectures [Sha07], the EVM attempts to avoid them. To avoid
such unintended instruction sequences, EVM implementations must perform a linear
sweep as shown in Algorithm 1 over the code section to find all push instructions.
The constants that are part of those push instructions are then marked as data. They
become invalid jump targets, even if they contain a byte equivalent to the JUMPDEST
instruction.

However, push constants are not the only data inside the code address space. Many
smart contracts also embed constant strings or the constructor code of other sub-
contracts into their code segment. Both must be considered as data in the context of
the current contract bytecode. However, there is no explicit marker for distinguishing
such things as data within the code address space. Furthermore, due to performance

43

Chapter 3 Background on Secure Execution Environments

Algorithm 1 Identify all basic blocks in EVM bytecode.
Input: EVM Bytecode of length N
Output: BB, J, D

1: BB ← ∅ ▷ Set of basic blocks (pcstart, pcend)
2: D ← ∅ ▷ Data constants ranges (pcstart, pcend)
3: J ← ∅ ▷ Allowed jump destinations, set of pc offsets
4: pc← 0 ▷ Current offset into the bytecode
5: pc′ ← pc ▷ Start of current basic block
6: while pc < N do
7: if get_op(pc) = JUMPDEST then
8: J ← J ∪ {pc}
9: BB ← BB ∪ {(pc′, pc− 1)}

10: pc′ ← pc
11: else if get_op(pc) ∈ { JUMP, JUMPI } then
12: BB ← BB ∪ {(pc′, pc)}
13: pc′ ← pc + 1
14: else if get_op(pc) ∈ {PUSH1, . . . , PUSH32} then
15: s← get_push_size(pc)
16: if pc + 1 < N then
17: D ← D ∪ {(pc + 1, pc + 1 + s)}
18: pc← pc + s ▷ Skip constant data when scanning instructions
19: pc← pc + 1

reasons, EVM implementations ignore control-flow information when marking data,
i.e., they rely on a single linear sweep as shown in Algorithm 1. As such, the push
instructions opcode byte itself can be part of some data constant, such as a string
or other binary data, marking the following bytes in the bytecode as invalid jump
destinations. For this reason, current smart contract compilers accumulate all data
constants at addresses strictly larger than any reachable code, avoiding any conflicts
between the generated code and data encoded into the code address space. This also
means that any analysis that uses Algorithm 1 must be aware that the set of basic
blocks will contain invalid, incomplete, and generally garbage basic blocks at the end
of the contract bytecode and must handle this accordingly.

44

3.3 Comparison of Secure Execution Environments

3.3 Comparison of Secure Execution Environments
In this chapter, we discuss two new execution environments for software: SGX in
Section 3.1 and Ethereum in Section 3.2. Both execution environments promise a
form of secure execution to the developer. We give an overview of their features in
Table 3.1. While both execution environments feature quite distinct features, they
do essentially offer the same programming model for software inside of the secure
execution environment: a library-like API. A user, or client, of a trusted SGX enclave
or Ethereum smart contract interacts with the trusted software using an API. On the
logical level, this API features several function definitions along with their parameters.
However, in terms of delivery, both environments are quite different. A function call
in Ethereum entails creating, cryptographically signing, and finally broadcasting a
transaction to the Ethereum peer-to-peer network. After the mining process is finished,
the execution is done and can be inspected. In contrast, SGX enclaves are loaded as
part of a local environment, a normal user space process. This user space process then
utilizes the SGX hardware extensions to jump into the native enclave code.

The nature of the open and permission-less Ethereum blockchain leads to one
significant drawback: there is no confidentiality. In order for the blockchain protocol to
operate correctly, any smart contract code and state must be public. In contrast, SGX
is designed to allow for confidential computing, i.e., nobody should be able to observe
an enclave’s internal state or data. However, code and data integrity is required to
achieve confidentiality, or otherwise, an active attacker can subvert the enclave’s code
or inject faults to divert the enclave’s execution flow.

Table 3.1: Comparison of Secure Execution Environments

Ethereum SGX
Code Integrity Yes Yes
Code Confidentiality No Partial
Data Integrity Yes Yes
Data Confidentiality No Yes
Trusted Third Party No Yes (Intel)
Enforcement Consensus Hardware

45

CHAPTER 4
SYMBOLIC EXECUTION OF SGX ENCLAVES

In this chapter, we discuss analyzing SGX enclave code using symbolic execution. To
investigate the prevalence of memory corruption in SGX enclaves, we developed the
symbolic executor TeeRex (Section 4.1), which is capable of identifying exploitable
memory errors in SGX enclaves. We show how to apply TeeRex to real enclaves,
identifying multiple vulnerabilities. Furthermore, we perform root-cause analysis on
the discovered vulnerabilities and summarize common vulnerability patterns in enclave
code.

The design of SGX links enclaves to a corresponding untrusted host application (see
Section 3.1 for background on SGX). More specifically, the enclaves in the programming
model of the Intel SGX SDK can be used like a shared library. The Intel SGX SDK
offers a C-function-like interface allowing bidirectional communication between the host
application and the enclave. Effectively, SGX introduces two privilege levels into the
regular address space of a program: the privileged enclave and the unprivileged host
application. When software is partitioned into privilege levels, it is essential to secure
the interface between privilege levels [CS13; Hu+15]. More specifically, the interface
between enclave and host must employ careful validation of data that is passed over
the privilege boundary. To avoid becoming a victim of a privilege escalation attack,
the enclave must take special care to validate any input, particularly when the input
contains code or data pointers.

As most C/C++ software, SGX enclaves are also prone to memory errors, which are
the result of programming mistakes (as described in Section 2.1.1). However, in the
context of the SGX technology, they are especially critical, as they allow an attacker
to subvert all security guarantees provided by the hardware. For example, memory
errors such as buffer overflows often allow an attacker to perform code-reuse attacks
such as ROP [Sha07], or data-only attacks such as information leaks or data-oriented
programming (DOP) [Hu+16].

Prior work has already analyzed exploit techniques for memory errors in the context
of SGX enclaves. Lee et al. [Lee+17] presented DarkROP, a code-reuse attack
technique, which shows that the enclave code must not be known to an attacker to
successfully launch ROP attacks against the enclave. Biondo et al. [Bio+18] describes

47

Chapter 4 Symbolic Execution of SGX Enclaves

a powerful exploit technique that allows the attacker to launch a code-reuse attack
that abuses the particularities of the Intel SGX SDK. Furthermore, the code-reuse
attack by Biondo et al. [Bio+18] bypasses existing randomization-based defenses such
as SGX-Shield [Seo+17].

None of the prior works on SGX attacks has attempted to identify vulnerabilities
in enclave code. All prior work assumed the presence of a memory error that can
be abused by the attacker as a powerful memory corruption exploit primitive. Using
our automated symbolic executor TeeRex, we shed some light on the prevalence
of memory errors in enclave code. We gathered a set of seven enclaves, including
open-source Linux enclaves and proprietary Windows enclaves. We find that in this set
of seven enclaves, six contain critical vulnerabilities. Several of the enclaves, which we
analyzed, are legacy code bases that have been ported to SGX enclaves. However, the
software has not been updated to handle the particularities of the SGX environment.
We conclude that due to memory errors and a lack of parameter validation on the
host-enclave boundary, many SGX enclaves are vulnerable to privilege escalation
attacks, such as leaks of enclave memory or even arbitrary code execution inside the
enclave. To improve the security of SGX enclave code we 1) summarize common
pitfalls of SGX code as vulnerability patterns (Section 4.2) and 2) present our analysis
tool TeeRex to automatically vet enclave code for vulnerabilities (Section 4.1).

Contributions To summarize, the contributions of the work presented in this chapter
are:

• We show how to adapt symbolic execution to SGX enclaves and exploit the
parallelism inherent to the structure of the SGX APIs to speed up symbolic
execution.

• We show how to detect memory corruption attacks in SGX enclaves using our
adapted symbolic execution engine.

• We perform an in-depth analysis of several real-world enclaves using TeeRex.
We discover critical vulnerabilities in all but one of the analyzed enclaves. We
verify the vulnerabilities by constructing proof-of-concept (PoC) exploits based
on the output of TeeRex.

• We present several vulnerability patterns that are specific to the SGX technology
but common to many of the enclaves we analyzed. Along with the vulnerability
patterns, we present guidelines to avoid said vulnerabilities.

This chapter is based on the following publication:
“TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX
Enclaves”. 29th USENIX Security Symposium, 2020. Tobias Cloosters, Michael
Rodler, and Lucas Davi

48

4.1 The Symbolic Enclave Executor TeeRex

4.1 The Symbolic Enclave Executor TeeRex

Preprocessor
(Static Analysis)

Identify
ECALLs

Symbolic Hooks
for common
Functions

Enclave
Binary

Exploit

TEEREX

Vulnerability Report

Controlled Pointer

Symbolic
Execution Trace

Vuln. Instruction

Vulnerability Class

Analyst

Emulation
of Special

Instructions

Pointer
Tracking

Symbolic
Explorer

Enclave
Loader

Vulnerability Detection

Controlled Branches

Controlled Writes

NULL-Pointer Dereferences

Symbolic ExecutionTEEREX

Figure 4.1: Architecture of TeeRex [CRD20]

To analyze SGX enclave code, we developed a symbolic execution tool. We call
our symbolic executor TeeRex, an abbreviation of Trusted Enclave Ecall Runtime
EXploiter. We use this symbolic execution framework to implement vulnerability detec-
tors that automatically identify security-critical bugs in SGX enclave code. TeeRex
generates a detailed vulnerability report, which allows a security analyst to quickly
develop a proof-of-concept exploit that demonstrates the vulnerability. To facilitate
proof-of-concept exploit development, TeeRex also discovers useful exploit primitives,
i.e., code paths that are useful for constructing exploits.

TeeRex is built using the well-known Angr binary analysis toolkit [Sho+16]. By
building upon Angr, we can easily support the major platforms that are also supported
by SGX (more specifically the Intel SGX SDK): Windows (PE) and Linux (ELF)
binaries and both 32 and 64-bit enclaves. In contrast to other symbolic executors,
such as KLEE [CDE08], we apply symbolic execution to the binary level. This has
several advantages: First, this allows TeeRex to analyze closed-source, proprietary
enclaves where no source code is available. Second, the vulnerabilities we want to
discover often depend on the low-level details of the executed enclave code. As such,
binary-level symbolic execution is a natural choice. However, since we need to model
several low-level execution details in TeeRex, we currently only support enclaves that
utilize the official Intel SGX SDK. There are multiple other enclave frameworks that
offer different programming models and ABIs that are currently not supported, e.g.,
the Graphene framework [TPV17] or Google’s Asylo [Asy]. In principle, our approach
can be adapted to such alternative frameworks, which we leave as future work.

Some frameworks, including the Intel SGX SDK, include support for dynamically
loading and decrypting code into a running enclave. Fundamentally, any binary
analysis technique must have access to the complete binary code to perform analysis.
As such, TeeRex also supports only unencrypted enclave code.

In the remainder of this section, we describe the architecture of TeeRex (Sec-
tion 4.1.1), several implementation challenges (Section 4.1.2), and finally, the details
on the vulnerability detection components (Section 4.1.3).

49

Chapter 4 Symbolic Execution of SGX Enclaves

4.1.1 Architecture

Applying symbolic execution to real-world software systems faces several challenges,
including state explosion and interactions with other components. For example, dealing
with side effects caused by the OS is highly challenging. Continuing symbolic execution
into the OS kernel is possible [CKC11], but can easily lead to state explosion [Bal+18].
Realistically, to support symbolic system calls, a symbolic execution engine must
simulate the system calls and manage a simulated file system [Bal+18]. Fortunately,
many properties of SGX enclaves make it easier to perform symbolic execution for SGX
enclaves: enclave code is completely self-contained, and the enclave is isolated from
the rest of the system. In particular, SGX enclaves do not utilize dynamic libraries
and cannot perform any system calls. Consequently, any interaction with the OS must
be routed through the untrusted counterpart to the enclave. This is achieved by using
the OCALL mechanism to the untrusted host application.

Figure 4.1 shows the architecture of our symbolic analysis in TeeRex. With
TeeRex, we identify vulnerable program states while symbolically executing the
enclave code. TeeRex also gathers meta-data along the way to generate a detailed
vulnerability report. TeeRex symbolically executes each ECALL of the enclave and
checks every resulting state for various vulnerability types. TeeRex contains a pointer
tracking component used during vulnerability report generation. The pointer tracking
component tracks pointer dereferences and propagates labels that allow TeeRex
to distinguish data that originates from host and enclave memory. This is required
because TeeRex needs to identify vulnerable code paths that load data from outside
the protected enclave memory, i.e., untrusted host memory. Every load from untrusted
host memory introduces a fresh symbolic value, allowing TeeRex to model arbitrary,
and potentially malicious, host applications.

TeeRex is implemented based on the well-known Angr binary analysis frame-
work [Sho+16] and utilizes the symbolic execution engines of the Angr framework.
However, Angr itself does not fully support executing SGX enclaves out of the box
since it does not model the division of the address space into a trusted and untrusted
part. More specifically, (1) Angr cannot jump from the host application to the
enclave (2) the initial environment to directly execute ECALLs requires special state
setup, (3) some of the CPU instructions used by enclaves are not supported by Angr
out-of-the-box, (4) Angr is limited to one thread and CPU core, while TeeRex
is able to leverage enclave specifics (i.e., multiple ECALLs) to perform multi-core
analysis, and (5) the functions that implement the trusted memory allocator are not
directly supported by Angr. Furthermore, we extend Angr by adding vulnerability
analysis components specific to SGX enclaves. Note that Angr does not perform any
vulnerability analysis by default. It provides a robust framework to perform analysis
and symbolic execution of binary code. We show how to tackle these challenges in
TeeRex in Section 4.1.2.

TeeRex consists of several major components, as shown in Figure 4.1: the prepro-
cessor, enclave loader, symbolic explorer, vulnerability detection, and pointer tracking
component.

50

4.1 The Symbolic Enclave Executor TeeRex

Preprocessor First, TeeRex performs a pre-processing step on the enclave binary
to (1) identify instructions and functions that are not supported by the base symbolic
executor Angr, and (2) to identify the ECALL table and extract its contents: the
addresses of the ECALL functions. This first static analysis step is required to increase
the performance and coverage of the analysis. Identifying the various ECALLs allows
us to skip executing the initialization routines of the Intel SGX SDK. Furthermore,
this also allows for parallelization, as different ECALLs can be analyzed in parallel.

Enclave Loader Before starting symbolic execution, we must first load the enclave
code and set up an initial state inside of the symbolic execution engine. The enclave
loader loads the enclave code and then selects one of the ECALLs and sets up the
corresponding initial environment. Furthermore, it places hooks on several common
functions and special instructions, which the preprocessor identified, such that these
are emulated using Python code. Finally, it also creates the argument structure for
the ECALL, which contains unconstrained and traceable symbolic values.

Symbolic Explorer The symbolic explorer is the component that performs symbolic
execution utilizing the Angr framework. However, in contrast to plain symbolic
execution, the ECALL centric exploration of TeeRex can be distributed across
multiple cores and machines. The symbolic explorer analyzes each of the ECALLs
individually. The results of all explorations are merged in the final vulnerability report,
which is consumed by the analyst.

Vulnerability Detection During symbolic exploration, TeeRex’ vulnerability de-
tection components analyze the encountered program states. More specifically, the
vulnerability detection components analyze all memory accesses (loads and stores)
and all jumps. We describe the vulnerability detection components in greater detail in
Section 4.1.3.

Pointer Tracking With TeeRex, we attempt to detect vulnerabilities at the interface
boundary, which are caused by insecure pointer usage and lack of pointer validation.
As such, we need to precisely model and track pointers during symbolic execution. To
achieve this, we utilize a pointer tracking component that is hooked into the symbolic
execution engine. We analyze all pointer dereferences and propagate labels between
symbolic values. This is a taint-style analysis, where each value that is loaded from
memory is also annotated with its address. In terms of taint analysis, the taint tag is
equal to the concrete address where the value was loaded. We then propagate this
during symbolic execution in TeeRex, such that when the memory-loaded value is
used, we can determine the address where the value originated. With this information,
we can track back the logical origin of the value. For example, when a function pointer
is used as part of an indirect call, we can trace back whether the value was originally
loaded from enclave memory, host memory, or whether it was passed as an argument
to the ECALL function.

To further refine this distinction between trusted and untrusted memory, we place
hooks on certain Intel SGX SDK functions that validate addresses. For example, there

51

Chapter 4 Symbolic Execution of SGX Enclaves

are functions that validate whether an address is within or outside of enclave memory,
respectively. When the enclave code utilizes such a function, TeeRex introduces two
distinct follow-up states in the symbolic execution: one for within and one for outside
enclave memory. When the enclave properly validates the pointer, then one of the
two states will quickly lead to an error state, which is not further explored. This
information gained by hooking these functions from the Intel SGX SDK is also used
by TeeRex to check whether a bug is likely exploitable, which allows TeeRex to
refine the vulnerability report’s accuracy.

Vulnerability Report The final component of the analysis pipeline is the vulnerability
reporting component. TeeRex produces a vulnerability report, which contains all
findings ranked according to potential severity. For every finding, the report contains
(1) the type of vulnerability, (2) the location in the binary (i.e., code address), (3) which
pointer is controllable and the source of the controllable pointer, (4) and an execution
trace that shows how vulnerable instruction can be reached. Based on this vulnerability
report, an analyst can determine the severity of the findings, e.g., by constructing a
proof-of-concept exploit.

4.1.2 Implementation Challenges
In the following, we will discuss the challenges of applying symbolic execution to SGX
enclaves binaries and how we tackled these challenges with TeeRex.

Bypassing Initialization Code For enclaves built with the Intel SGX SDK, there is
typically only one or only a few entry points into the enclave. For a typical ECALL,
the enclave first executes setup routines from the TRTS, unpacks the parameters, and
finally jumps to the ECALL handler in the enclave code (see Section 3.1 for more
details). The setup routines in the TRTS are heavily dependent on the intrinsics and
calling conventions of the SGX instructions and the enclave’s internal metadata, which
are not present in our emulated environment. This introduces a major challenge for
a symbolic execution engine. First, the initialization routines contain many memory
accesses through symbolic addresses, which is a notoriously hard problem for symbolic
execution engines in general [Bal+18; Cha+12]. Second, due to the low-level nature of
the TRTS code, the symbolic execution loses semantic information about the execution
context when it finally reaches the ECALL handler. Due to this loss of semantic
information, it is not easily possible to map symbolic memory ranges to ECALL
parameters once the symbolic execution reaches the ECALL handler.

We are mostly interested in analyzing the ECALL handler code provided by the
enclave developer. Everything between the enclave entry and the ECALL handler is
code provided by the Intel SGX SDK. This code is unlikely to contain critical bugs, so
we skip SDK code analysis. We designed TeeRex to skip the symbolic execution of
the TRTS initialization and instead directly target developer-provided ECALL handler
functions. In the pre-processing step, TeeRex first locates and extracts the ECALL
table from the enclave binary, which maps an ECALL identifier to the ECALL handler
function. TeeRex then starts symbolic execution at the beginning of every ECALL
handler separately.

52

4.1 The Symbolic Enclave Executor TeeRex

This design has several advantages: first, it allows TeeRex to produce very accurate
vulnerability reports as it is now possible to map data that is used by the ECALL
handler to arguments passed to the ECALL function. Second, it simply skips executing
code that is not relevant for identifying vulnerabilities in enclave code, i.e., the TRTS
code. Finally, it allows for a certain degree of parallelization because we can start
the analysis for each ECALL function separately. This also allows us to deal with
restrictions of the Angr framework, which is restricted to one thread due to the
limitations of the Python implementation.

Standard Memory Functions Symbolically executing the binary code of standard
helper functions such as memcpy or malloc quickly leads to unnecessarily complex
symbolic program states and path constraints. This is because the symbolic execution
engine must analyze all of the—surprisingly complex—internals of these functions.
To avoid this unnecessary overhead, many symbolic execution engines hook such
functions and implement symbolic summaries. The Angr framework employs so-
called SimProcedures to implement such common functionality directly in the symbolic
execution engine. For example, Angr hooks into the execution of malloc, and
instead of symbolically executing the function in the binary or standard library, the
SimProcedure is called. In Angr, the SimProcedure is typically implemented in python
and updates the symbolic state in a similar way to the hooked function. However, in
contrast to the original function, the SimProcedure has significantly reduced potential
for state explosion. Typically, such helper functions are located in dynamically loaded
system libraries such as the standard library for C (libc). These are easy to intercept,
as they are identified by their name (e.g., the symbol in Executable and Linkable
Format (ELF) binaries). In contrast to regular applications, SGX enclaves are always
statically linked. Therefore, they ship with their own versions of these helper functions.
It is not easily possible to identify the right place hooks, as no symbols are available.
As such, TeeRex employs heuristics to search the enclave binary file for the statically
linked versions of helper functions and places hooks to invoke the corresponding
SimProcedure instead. Here we exploit the fact that most enclaves utilize the functions
that are provided by the Intel SGX SDK.

Unsupported CPU Instructions SGX is a relatively new CPU extension, and it
depends on several other newer extensions to the x86 ISA. Unfortunately, several
newer instructions are not supported by the version of the Angr framework on which
TeeRex is based. As such, we need to work around this issue by placing hooks, similar
to SimProcedures, on the unsupported instructions. We place hooks on the primary
SGX instruction enclu, which is used to enter and exit an enclave. Additionally,
we place hooks on the instructions rdrand, which is used in the enclave to generate
cryptographically secure random numbers, and xsave/xrstor, which are used during
OCALLs for saving and restoring the register state to/from memory when the execution
passes the host-enclave boundary. Since we directly start symbolic execution within the
ECALL, we do not need to support enclave entry. We stop analysis when we encounter
an instruction to perform an enclave exit. For the other unsupported instructions, we
simply implement their effects on the symbolic program state in the corresponding
Python hook.

53

Chapter 4 Symbolic Execution of SGX Enclaves

Global State of Enclaves and Chains of ECALLs A typical SGX enclave developed
with the Intel SGX SDK can have multiple entry points. An attacker, i.e., the untrusted
host application, can exercise the different ECALLs with different attacker-controlled
input data in different orderings, with each call affecting the internal global state of
the enclave (enclave heap, global variables, etc.). This is a typical API testing problem.
As we discussed earlier in Section 2.2, exhaustive exploration of APIs using symbolic
execution is often not feasible. Alternatively, an accurate symbolic exploration of an
ECALL requires exhaustive knowledge about the effects of all ECALLs. However,
obtaining the effects of an ECALL requires first knowing about the effects of other
ECALLs. Typically such problems in program analysis are solved using fixed-point
algorithms.

Instead of using a fixed-point iteration approach, we implemented TeeRex such
that we sacrifice completeness and soundness for increased analysis performance.
TeeRex analyzes each ECALL individually and treats all global state of an enclave
as initialized with unconstrained symbolic values. This includes all global variables
in the data and bss sections. Essentially, we treat the enclave’s initial state similar
to attacker input. While this makes TeeRex explore paths of an ECALL that are
not reachable with an enclave’s initial global state, it also produces false alarms. The
reason for the increased number of false alarms is that an unconstrained global state is
an over-approximation of the initial enclave’s global state. The global state is typically
not fully attacker-controlled, like ECALL inputs, but rather initialized to zero or set to
some specific value by a different ECALL, according to the implemented enclave logic.

For example, consider an enclave that utilizes a function pointer stored in the global
state. TeeRex assumes that this function pointer is unconstrained: allowing the
enclave to jump anywhere. However, in reality, the jump may only target a certain
small set of function pointers that are set by other ECALLs. Since TeeRex does
not detect this implicit relationship, it will identify a jump that is controlled by the
attacker. Nevertheless, the analysis results are still useful because they can lift limited
exploitation primitives (e.g., null-pointer dereference or write to an arbitrary address
with a fixed value) to full control-flow hijacking attacks. To increase usability, we
introduce a classification of findings into auxiliary primitives and exploit primitives,
where the former are not exploitable by themselves but are useful in constructing
proof-of-concept exploits.

4.1.3 Vulnerability Detection Components

We implemented three major vulnerability detection components in TeeRex: (1) attacker-
controlled branches (control-flow hijacking), (2) controlled writes, and (3) NULL-
pointer dereferences.

Control-Flow Hijacking In TeeRex, we define control-flow hijacking as a program
path where the symbolic execution engine encounters an unconstrained jump target.
During regular executions, jump targets are always constrained to a very limited set
of legitimate targets. However, suppose an untrusted attack-controlled pointer is used
to determine a jump target. In that case, the jump target becomes unconstrained, as
attacker-controlled input is set to unconstrained values in TeeRex.

54

4.1 The Symbolic Enclave Executor TeeRex

TeeRex’s symbolic execution engine sets anything that is potentially attacker-
controlled to an unconstrained symbolic value. For example, if the enclave attempts
to read memory outside of enclave memory, we return a fresh unconstrained symbolic
value. Similarly, all ECALL arguments are set to unconstrained symbolic values. As
such, if the enclave utilizes one of the ECALL arguments as a jump target, TeeRex
will observe a jump to an unconstrained value. The same mechanism is also used when
the enclave loads a function pointer from untrusted memory.

TeeRex also sets global variables inside the enclave to unconstrained symbolic value.
The idea behind this is to simulate prior ECALLs and also detect uninitialized reads.
However, this is an over-approximation, as not all global variables are necessarily
attacker-controlled. We utilize the same detection mechanism to detect if the enclave
attempts to use a value from uninitialized memory as a function pointer. However, we
have to treat this finding differently during post-processing and vulnerability report
generation.

If, on the other hand, the enclave includes validation code for the jump target
pointer, then the symbolic execution will gather constraints on the symbol representing
the jump target. The jump target is now constrained to be within a certain set of
allowed—assumed to be safe—values, which will not trigger an alarm. We adapt the
same convention as the underlying Angr framework and assume that a jump target
is unconstrained if the SMT solver can determine more than 256 different concrete
values for the jump target.

Controlled Write The second exploit primitive that TeeRex identifies are writes to
arbitrary unconstrained memory addresses. An unconstrained memory write allows
an attacker to overwrite critical memory, such as return address or function pointers,
in enclave memory. To detect an arbitrary write, we utilize the pointer tracking
component that tracks every pointer dereference and propagates labels similar to taint
analysis [CLO07b; Vee+17]. This is needed to connect a pointer to its input source,
including the level of pointer indirection and corresponding pointer offsets.

Whenever a pointer is utilized for a memory write, TeeRex checks whether the
address is related to attacker-controlled memory. TeeRex then checks how the address
is constrained. To make a useful exploit primitive, the memory write must be able
to write into nearly-arbitrary enclave memory. TeeRex leverages the solver of the
symbolic execution engine to solve the path constraints up to the memory write and
query whether the address can possibly point to an arbitrary memory location within
the enclave memory. If this is the case, then we report an arbitrary-write exploit
primitive.

When analyzing the memory write, we focus primarily on the address. We consider
it as an exploit primitive if the address is attacker-controlled. However, while we
analyze the value that is written, we report a vulnerability regardless of the value.
This is because any write, even of constant values, to an arbitrary address is very
likely also exploitable in the SGX scenario. For example, even a controlled write with
a fixed byte value is often sufficient to corrupt a pointer inside enclave memory. This
is because the attacker has almost arbitrary control of the address space layout of the
host application, including the enclave memory. As a result, it is often sufficient to

55

Chapter 4 Symbolic Execution of SGX Enclaves

partially corrupt a pointer to point somewhere into insecure memory and simply map
the resulting corrupted pointer into insecure memory. We describe one such exploit in
Section 4.3. As such, TeeRex reports any memory write to an attacker-controlled
address, regardless of the value written.

NULL-Pointer Dereference In the x86 virtual address space, the address valued 0
is a regular address and can be mapped. However, in C and C++, the null pointer is
used to represent invalid pointers. For example, pointers are typically zero-initialized
and, as such, point to the address 0 by default. Many libraries also utilize a null
pointer to signal an error to the caller when a pointer is returned. For example, when
a memory allocation with malloc fails, a null pointer is returned. As such, null pointer
dereference bugs are relatively common in C/C++ code bases. However, null pointer
dereferences are not considered especially critical in most settings. This is because
the null page is not mapped in a typical user space process. In fact, many operating
systems even prevent regular unprivileged processes from mapping the null page as they
were historically often used to exploit null pointer dereferences in the operating system
kernel. In stark contrast to other x86 software, in the SGX setting, a null pointer
dereference bug is extremely critical and most certainly exploitable. The problem
here is that the SGX enclave has nearly no control of the address space layout it is
executed within. In the SGX setting, the operating system is also untrusted, so there is
basically no way for an enclave to prevent a mapped null page. As such, TeeRex has
a special vulnerability detection component that identifies null pointer dereferences.
In TeeRex, we analyze every memory access (read or write) and check whether the
address is pointing to the zero page mapped at address 0 (typically < 0x1000). Often,
null pointer dereferences can also be captured by the other vulnerability detection
components. However, an explicit detection component results in a better and more
detailed vulnerability report.

4.2 Vulnerability Patterns

By design, SGX enclaves interface with untrusted code running in the same virtual
address space, introducing two privilege levels that can easily share data. The privileged
software, i.e., the SGX enclave code, can simply read the memory of the less-privileged
software, i.e., the host application’s memory. The hardware prohibits access in the
opposite direction. Special care has to be taken when data is passed to the SGX
enclave in the form of pointers, as any pointer passed to the enclave can naturally
point to the whole address space, that is, the untrusted host and enclave memory.
In this section, we discuss five major bug and vulnerability classes and several other
minor vulnerability classes. We distilled these vulnerability classes from the findings
that we presented in Section 4.3.

The common theme of all bugs we identified and discuss here is the insufficient
validation of pointers at the host-enclave boundary. In the remainder of this section,
we discuss the bug classes in detail and how they can be utilized during exploitation
of enclaves. For every bug class, we also provide recommendations on how to avoid
the vulnerability pattern.

56

4.2 Vulnerability Patterns

4.2.1 Passing Data-Structures with Pointers

Most complex data types in C/C++ use pointers as a primary mechanism to form
complex data structures like lists, trees, or maps. The Intel SGX SDK fully supports
complex data types, including pointer-based data structures. However, currently, the
Intel SGX SDK does not automatically perform a deep copy of pointer-heavy data
structures. Consequently, it becomes dangerous to pass data structures containing
pointers to an enclave. Especially when programming in C++, it is often unclear
which data structures contain pointers and which do not.

Figure 4.2 shows an example of this pattern, where the enclave receives a linked list
as an argument. Here each element of the linked list will point to the next element. The
enclave receives the first element of the list as a parameter. This element is passed by
value, which means that the Intel SGX SDK will automatically copy the first element
to enclave memory. However, since the Intel SGX SDK does not recursively copy the
list, only the first element of the list resides in enclave memory. The attacker can
pass a list head structure that contains a next pointer pointing to arbitrary memory,
including trusted enclave memory. When the enclave dereferences this pointer, the
attacker can potentially corrupt enclave memory.

1 // C Source
2 struct list_data;
3 struct list_head {
4 struct list_head* next;
5 struct list_data data;
6 // ...
7 }

1 // EDL
2 enclave {
3 trusted {
4 void ecall(struct list_head list_root);
5 };
6 };

Figure 4.2: Problematic EDL/C files which pass unsanitized pointers. The next
pointer is not automatically validated and can point to arbitrary memory
(including enclave memory).

Guideline: Any pointer passed to the enclave directly or as part of a data structure
must be validated to point exclusively to normal world memory taking possible overlaps
with enclave memory into account. Any data structure containing pointers must be
treated the same way as pointers annotated with the [user_check] attribute. This
means that in any entry point to the enclave (ECALL) the enclave must walk all
data-structures and validate all pointers before the enclave dereferences any of those
pointers. Due to possible TOCTOU issues, any data the enclave validates must
be copied into enclave memory before validation. Furthermore, the data must be
properly cleared if the validation fails to not retain untrusted data in enclave memory.
The checks generated by the Intel SGX SDK only validate pointers non-recursively.
Therefore, the generated checks are insufficient to validate complex data structures,
such as lists, trees, or maps.

57

Chapter 4 Symbolic Execution of SGX Enclaves

4.2.2 Using Pointers as Resource References
We observed the pattern that enclaves often provide the functionality to allocate some
resource, e.g., a TLS session or file object. To identify and distinguish multiple resources,
such as multiple TLS connections, the enclave returns a reference to this resource to
the host application, which is then passed to further calls to the enclave. If the normal
world code wants to use the newly allocated resource, then the corresponding function
of the enclave receives the corresponding reference as a parameter. In C/C++ code,
this is typically achieved by returning and passing a pointer to the object containing
the resource’s data. Especially ports of legacy code bases to SGX retrain this pattern
in the enclave code. However, in SGX enclaves, this is an extremely dangerous coding
pattern. It is not possible for an enclave to properly validate the pointer passed to the
enclave.

We observed that enclaves perform some input validation in this case. They will
typically perform a check to validate that (a) the pointer is not null, (b) and the
pointer is pointing to enclave memory. However, it is fundamentally impossible for the
enclave to validate whether the pointer is really pointing to an object with the right
type. As such, it is possible for the attacker to violate the type safety of the enclave
by passing a pointer to some enclave memory. In turn, this will very likely lead to
memory corruption, where the attacker abuses the regular processing of the enclave to
corrupt enclave memory.

As we show in Section 4.3, this pattern is typically exploitable. In many enclaves, it
is possible for an attacker to control some content of the enclave memory simply by
providing input to some enclave function. The trusted runtime part of the enclave
then copies the input (e.g., a simple string) into enclave memory.

Furthermore, it must be assumed that an attacker can break any information-hiding
defense, such as address or code randomization. As such, the attacker knows the
address of any attacker-controlled input in enclave memory [Lee+17]. This gives
the attacker all necessary prerequisites to inject a fake object into enclave memory.
Tricking the enclave into using this injected fake object will typically lead to memory
corruption.

Figure 4.3 shows a typical example of this problematic code pattern: A session
pointer is returned to the normal world in the new_session function and then supposed
to be passed to other ECALLs, such as the close_session function. However, the
enclave cannot easily validate the passed session pointer, leading to memory corruption
when an attacker passes a pointer to some other arbitrary enclave memory.

Guideline: Enclaves must never return pointers to enclave memory to the host
application and must never take a pointer, which may point to enclave memory, as
input from the host application. Due to a lack of type and memory safety on the
host-to-enclave boundary, an enclave cannot validate pointers passed to the enclave
based on the pointer alone. Whenever an enclave must return a reference to an object
in enclave memory to the host application, the enclave must protect the reference. We
suggest allocating an array of pointers to enclave objects inside of enclave memory
and returning array indices to the host application instead of pointers, as shown in
Figure 4.4. This approach is similar to the use of file descriptors on Unix-like systems.

58

4.2 Vulnerability Patterns

1 // EDL
2 enclave {
3 trusted {
4 struct Session*

new_session();↪→

5 void close_session(
6 [user_check] Session* s
7);
8 /* ... */
9 };

10 };

1 // C++ Source
2 struct Session { /* ... */ }
3 Session* new_session() {
4 // allocate new Session on enclave heap
5 return new Session();
6 }
7 /* ... */
8 void close_session(Session *s) {
9 // insufficient pointer validation

10 const size_t SZ = sizeof(Session);
11 if (!sgx_is_within_enclave(s, SZ))
12 {
13 return;
14 }
15 // possible memory corruption
16 delete s;
17 }

Figure 4.3: Example of enclave code passing a pointer to/from untrusted user space as
a resource reference, a session object in this case. The pointer validation
in the close_session function is insufficient and can lead to memory
corruption, when an attacker passes a bogus session pointer.

1 // EDL
2 enclave {
3 trusted {
4 uint32_t new_session();
5 void close_session(
6 uint32_t session
7);
8 /* ... */
9 };

10 };

1 // C++ Source
2 struct Session { /* ... */ }
3 uint32_t next_session = 0;
4 struct Session sessions[MAX_SESSIONS] =

{nullptr,};↪→

5 uint32_t new_session() {
6 if (next_session < MAX_SESSIONS) {
7 uint32_t r = next_session;
8 sessions[r] = new Session();
9 next_session++;

10 return r;
11 }
12 return -1;
13 }
14 /* ... */
15 void close_session(uint32_t session) {
16 if (session < next_session) {
17 if (sessions[session]) {
18 delete sessions[session];
19 sessions[session] = nullptr;
20 }
21 }
22 }

Figure 4.4: Using a session identifier instead of a pointer to avoid passing pointers
across privilege boundaries.

59

Chapter 4 Symbolic Execution of SGX Enclaves

Address Space

Enclave Memory

A

B

C

C

1 sgx_is_outside_enclave(A, sz) == true
2 sgx_is_within_enclave(A, sz) == false
3

4 sgx_is_outside_enclave(B, sz) == false
5 sgx_is_within_enclave(B, sz) == true
6

7 sgx_is_outside_enclave(C, sz) == false
8 sgx_is_within_enclave(C, sz) == false

Figure 4.5: Considering three different scenarios of buffer locations: Buffer A is lo-
cated strictly outside enclave memory, B strictly within and buffer C is
neither. When validating pointers the enclave must consider the scenario
of overlapping buffers.

4.2.3 Pointers to Overlapping Memory

We observed that when passing pointers between the enclave and the normal world,
the enclave often utilizes the functions provided by the Intel SGX SDK to validate the
given pointer. One important aspect of pointer validation is to check whether the object
behind the pointer is contained within the enclave memory or outside. The Intel SGX
SDK provides two functions to achieve such validation: sgx_is_within_enclave and
sgx_is_outside_enclave. Both functions receive a pointer and a length and return
a boolean flag, whether the given object, as defined by pointer and size, is strictly
outside or within enclave memory. However, there are three different scenarios that
must be covered by the pointer validation code: (1) stricly inside, (2) strictly outside,
(3) overlapping. Figure 4.5 shows a visualization of the three different scenarios and
corresponding calls and results of the validation functions from the Intel SGX SDK.

However, this API design can lead to unexpected results if the user is not aware of the
three scenarios. Figure 4.6 shows an example of a bug introduced by wrongly assuming
the negation of sgx_is_within_enclave is equal to calling sgx_is_outside_enclave.
The edge case of overlapping memory was not considered in this example. The
developer’s intention was to validate the pointer by checking whether the provided
memory area is inside of enclave memory and return an error if it is not. However,
the pointer validation with sgx_is_outside_enclave in Figure 4.6 can be bypassed
by an attacker. They pass a memory object starting inside of enclave memory but
extending into non-enclave memory.

We observed this pattern (see Section 4.3) in conjunction with a previous pattern
(see Section 4.2.1). As such, when following the guidelines of this section, an enclave
should never have to validate a pointer parameter to point inside enclave memory.
However, the same issue also applies to pointers passed to the enclave as output
parameters. For example, if the enclave decrypts some content on behalf of the host

60

4.2 Vulnerability Patterns

1 // buggy check
2 if (sgx_is_outside_enclave(addr,

size))↪→

3 {
4 return ERROR;
5 }
6 // now addr still may be partly

outside↪→

1 // correct check
2 if (!sgx_is_within_enclave(addr,

size))↪→

3 {
4 return ERROR;
5 }
6 // now addr is strictly within
7 // the enclave memory

Figure 4.6: Enclave code that tries to validate that a memory region is inside of enclave
memory, but fails to handle the edge-case of memory overlapping between
normal-world and enclave memory. A proper check would validate whether
the memory area is not within enclave memory.

program and writes the result back to host memory via a pointer received as an
argument. The enclave must validate that the output pointer does refer to a memory
area fully outside the enclave memory.

Guideline: The enclave must validate whether a pointer references normal or enclave
memory. We recommend to restrict pointer validation code to usage of the function
sgx_is_outside_enclave. This allows the enclave to validate that any buffer is
strictly outside. Usage of the function sgx_is_within_enclave should be unnecessary
when adhering to the guideline with respect to passing pointers as resource identifiers
(see Section 4.2.1).

4.2.4 NULL-Pointer Dereferences
C/C++ code commonly uses the special NULL (or nullptr) value to signal that a
pointer is not initialized or has been cleared. In reality, the pointer is simply set to
the numeric value 0. However, on a typical x86 system, which utilizes virtual memory,
the address 0 is a valid address. Typically, there is no valid memory located at the
address 0. As such, any accidental dereference of a null pointer results in a crash of
the process (i.e., a SEGFAULT).

However, in contrast to regular user space software, null pointer dereferences become
more dangerous in privileged software. For example, a common source of kernel
vulnerabilities in most major operating systems was null pointer dereferences. The
address 0 is part of user space memory in most major OS designs. Therefore, a null
pointer dereference can be exploited by a malicious process that maps valid memory
at address 0. In this case the null pointer dereference turns into a valid pointer
dereference. When the kernel attempts to load a value through a null pointer, the
attacker can then make the kernel load a bogus value from the page at address 0
instead of crashing. As mitigation for this type of attack, many modern OS kernels,
such as Linux or the Windows kernel, disallow mapping any memory at address 0.
Furthermore, many CPU architectures introduced special CPU modes that prevent
privileged kernel code from accidentally accessing user space memory.

Similarly to the kernel, null pointer dereferences in SGX are more dangerous than
in normal user space. In contrast to kernel code, there is no mitigation available for

61

Chapter 4 Symbolic Execution of SGX Enclaves

null pointer dereferences inside SGX enclaves. First, the enclaves are considered part
of the user space application. Second, the OS kernel is untrusted in the SGX threat
model. As such, it must be assumed that the OS kernel is under the control of the
attacker, and the attacker can freely map the page at address 0. Since SGX enclaves
cannot directly jump into normal world code, they cannot jump to address 0 mapped
into normal world user space. As such, a null pointer dereference while performing
a jump or call is not exploitable. However, other null pointer dereferences must be
considered an attack vector for data-oriented attacks [Hu+16] in the SGX enclave.
Especially problematic are null pointer dereferences that occur when loading code
pointers. These give the attacker control over the control flow of the enclave code,
facilitating code-reuse attacks.

Guideline: An enclave must never dereference a null pointer. Any pointer dereference
of a nullable reference must be guarded by a null pointer check. Furthermore, we
recommend utilizing C++ references, which are essentially non-nullable pointers. They
cannot result in a NULL pointer dereference since they are required to be initialized
with a non-null value.

4.2.5 Time-of-Check Time-of-Use

Enclaves in SGX run as part of a normal x86 user space process. As such, enclave
developers must ensure that the enclave code is also secure with respect to concurrency
bugs (see Section 2.1.2 for a general introduction to concurrency bugs). Intel already
included a method to limit concurrency for enclaves. The enclave developer can specify
how many concurrent threads may call into the enclave. This is done by setting the
number of TCS entries in the enclave’s metadata. As such, a thread-unsafe enclave
can be made accessible only to one host application thread at a time.

However, enclaves must also be aware of TOCTOU issues during input validation.
When an enclaves accesses host application memory, the enclave must assume that
a separate host application thread can change the content in the untrusted memory
area. This problem is amplified by the fact that a malicious host can interrupt and
pause enclave threads at any time, almost at the instruction granularity [VPS17].

Figure 4.7 shows an example of such a bug, where the enclave attempts to traverse
a single-linked list in host application memory. When the enclave utilizes the next
pointer to traverse to the next list entry, the enclave code validates that the next
pointer does not refer to an object in enclave memory. However, the depicted code
in Figure 4.7 is vulnerable to a TOCTOU issue due to a double-fetch bug. Here, the
next pointer is always fetched from normal world memory. First, the enclave validates
that it does not point to enclave memory with the sgx_is_outside_enclave function.
After the call to the validation function, the code fetches the next pointer again from
untrusted memory and assigns it to the head variable. However, a separate host
application thread can easily change the value of the pointer next between the call to
the validation function and the assignment to the next pointer. Effectively, this allows
an attacker to bypass the pointer validation.

62

4.2 Vulnerability Patterns

1 struct X {
2 struct X* next;
3 // ...
4 }
5 struct X* head = some_normal_world_memory; // FETCH
6

7 // TIME-OF-CHECK
8 if (sgx_is_outside_enclave(head->next), sizeof(struct X)) {
9 // TIME-OF-USE

10 head = head->next; // DOUBLE-FETCH
11 // ...
12 }

Figure 4.7: SGX pointer validation vulnerability due to a time-of-check time-of-use
problem, specifically due to a double-fetch from untrusted memory.

Guideline: Enclaves must not operate on data structures located in untrusted memory.
Enclaves must copy data structures into enclave memory before validation.

4.2.6 Minor Vulnerability Patterns

We identified several more potential vulnerability patterns during analysis of the attack
surface of the interfaces of enclave developed with the Intel SGX SDK. However, we
did not find any real-world enclave that exhibits the following code patterns. As such,
it is still an open question whether any of the following patterns are common in enclave
code. However, for the sake of completeness, we include a detailed description of the
patterns. As they are similar to bugs found in non-enclave code, we believe it is likely
that inexperienced enclave developers could introduce one of the following issues.

Use-After-Free of ECALL Parameters

Many of the previously discussed patterns are due to developers working around the
limitations of the Intel SGX SDK using data structures and user-checked pointers.
However, there are also pitfalls when dealing with the auto-generated code of the Intel
SGX SDK. More specifically, the SDK generates code for copying primitive data types
between host and enclave memory on entry or exit of ECALLs and OCALLs. For
example, the SDK fully supports the C string type, i.e., a zero-terminated array of
characters. Here the SDK will automatically include code in the enclave to determine
the string length in host memory, allocate memory in the enclave for the string, and
copy the contents of the string from host memory to enclave memory. The custom
ECALL handler of the enclave developer then simply receives a char pointer as an
argument like an ordinary C function. Similarly, any data structure of fixed size is
copied to enclave memory and passed by reference to the ECALL handler.

There is a potential pitfall with respect to the lifetime of ECALL parameters that
are passed by reference to the ECALL handler. Namely, the lifetime of the object is
the same as the duration of the ECALL. Essentially, the trusted runtime of the Intel
SGX SDK performs an allocation before calling the ECALL handler and frees the

63

Chapter 4 Symbolic Execution of SGX Enclaves

1 // EDL
2 int first_ecall([string,in] char* x);
3 void second_ecall([in] struct some_t* t);
4 /**/
5 // C Source Code
6 char* global;
7

8 int first_ecall(char* x) {
9 // keep reference in global variable (.data or heap)

10 global = x;
11 /* ... */
12 // after the return, global becomes a dangling pointer
13 }
14

15 void second_ecall(struct some_t* t) {
16 // use global in a second ECALL: UAF
17 // global -> now points to some other object
18 memcpy(global, /* ... */);
19 }

Figure 4.8: Use-After-Free (UAF) when the second ECALL uses a shared pointer
variable, set by the first ECALL to a parameter, which is not valid after
the first ECALL returns.

object after the ECALL returns. As such, the parameters must be basically treated
as local variables with automatic lifetime. However, as they are passed by reference,
it is easy to confuse these parameters with objects that have a global lifetime and
leak references into global variables or heap-allocated data structures. Effectively, if a
pointer to an ECALL parameter is stored in global enclave state, the pointer becomes
a dangling pointer at the end of the ECALL. A second ECALL, will then very likely
reuse the memory for the parameter, potentially giving the attacker access to a UAF
issue, where the dangling pointer now points to an attacker-controlled memory area.
Figure 4.8 shows an example that illustrates this issue. The first ECALL handler
assigns the string parameter to a global variable, while the second ECALL handler
then utilizes this global pointer.

Guideline: Any ECALL parameter must be treated as a local variable and must
never be stored in global enclave state, such as global variables or in heap-allocated
data structures. In general, such lifetime issues can often be detected using static
analysis tools. However, to detect this pattern, the analysis tool must be adapted
to the Intel SGX SDK generated enclave code, as the local lifetime of the ECALL
parameters is not directly visible to an analysis tool.

Explicit Length vs. 0-Termination

C-style strings are notorious for causing memory corruption bugs during string handling
due to the fact that their length is determined by appending a zero-byte termination.
Most string processing functions simply receive a pointer to the beginning of the string

64

4.2 Vulnerability Patterns

1 // EDL
2 int ecall_func([in,string] char* x, size_t len);
3 /***/
4 // Source
5 int ecall_func(char* x, size_t len) {
6 // ...
7 func(x, len);
8 // ...
9 }

10

11 int func(char* c, size_t len) {
12 //
13 }

Figure 4.9: Legacy C function ported to an SGX enclave.

without knowing whether the given string is heap-, stack- or statically allocated. As
such, string parameters cannot be grown automatically, leading to buffer overflows
if a function attempts to modify a string in a way that would require increasing the
length of the string. Similarly, enclaves that receive string parameters must be careful
to properly handle the string and not introduce buffer overflows.

To avoid trouble with the C-style strings, many C code bases utilize explicit length
parameters to determine the length of strings instead of relying only on the zero
termination. This allows functions to perform bounds-checking with respect to the
underlying allocation of the C string. However, if such a function is ported to an SGX
enclave, it is easy to introduce a problem as depicted in Figure 4.9. Here, a legacy C
code base was ported to an SGX enclave. The enclave exposes an ECALL that receives
a string parameter and a length parameter. The ECALL handler wraps an internal
function func that receives a buffer and its length. However, in this case, the wrapper
code generated by the Intel SGX SDK will handle the string parameter differently.
More specifically, the SDK will generate code to determine the string length using
zero termination and copy this length to enclave memory. However, the SDK will
not consider the len parameter as the actual length of the buffer. Instead, the len
parameter can be chosen arbitrarily by the attacker. For example, the attacker could
choose a length parameter that exceeds the size of the string buffer, which causes a
buffer overflow during processing.

We found short code excerpts containing this vulnerability in the official developer
reference documentation of the Intel SGX SDK for Linux. However, we did not
encounter functional enclaves that exhibit this issue.

Guideline: Enclaves must always rely on the Intel SGX SDK generated code to
determine the length of buffer and string parameters. Length parameters must always
be marked explicitly in the EDL file for the Intel SGX SDK to consider.

65

Chapter 4 Symbolic Execution of SGX Enclaves

1 // EDL
2 int ecall_strcat([string,in,out] char* dest,
3 [string,in] char* src);
4 /***/
5 // Source
6 int ecall_strcat(char* dest, char* src) {
7 // buffer overflow inside of enclave memory!
8 strcat(dest, src);
9 }

Figure 4.10: Vulnerable use of out-strings.

Reusing Input Strings as Output

The C language does not allow for larger return values. To work around this limitation
and to avoid needless copying, output parameters are used. The C function receives a
pointer as an argument that is then used to store the return value. Similarly, SGX
enclaves built with the Intel SGX SDK support output parameters for ECALL handlers.
More specifically, in the EDL file, the developer tags the pointer parameter with [out].

However, there is a problem if an enclave reuses a single parameter as an input
and output parameter. This problem is illustrated in Figure 4.10, where the example
enclave receives a string parameter that acts both as an input and output parameter.
The enclave then concatenates a second input string to the output parameter. However,
the Intel SGX SDK automatically determines the input string length and creates a
copy in enclave memory As a result, the length of the output parameter is implicitly
limited to the length of the input parameter. Appending data to the output parameter
results in a buffer overflow within enclave memory, even if the respective buffer in host
memory is large enough to store the output string.

Guideline: Enclaves should use dedicated separate arguments for the input and
output of strings.

4.3 Enclave Analysis Results
We gathered a set of 7 publicly available enclaves to evaluate the effectiveness of
TeeRex. We find that TeeRex is capable of identifying memory corruption vulnera-
bilities at the host enclave boundary in six out of the seven enclaves. Note that our
dataset consists of real-world enclaves, including open-source and proprietary enclaves.
This shows that memory corruption errors at the interface boundary are common in
current SGX enclaves.

We give an overview of the analyzed enclaves in Table 4.1. We gathered several
enclaves that are part of the official documentation of larger projects: the Intel GMP
Example [SGXGMP] developed by Intel as an official showcase for the Intel SGX
SDK, the Rust SGX SDK’s tlsclient [Dua+; Wan+19a] developed at Baidu as part
of their efforts in developing a Rust-based version of the Intel SGX SDK, and the
WolfSSL Example Enclave [WOLFex], which shows how to utilize WolfSSL in SGX.

66

4.3 Enclave Analysis Results

Furthermore, we include the academic project TaLoS [Aub+17; TaLoS]. We also
analyzed the SignalApp Contact Discovery [Mar17] that is part of the Signal messenger
ecosystem. All of the above enclaves have source code available. To demonstrate the
effectiveness of TeeRex on enclaves without available source code, we also analyze
two proprietary enclaves that are used by fingerprint drivers: Synaptics SynaTEE
Driver and Goodix Fingerprint Driver. These enclaves have been deployed to Dell and
Lenovo laptops.

To analyze the enclaves in our dataset, we first run TeeRex on the enclave. We
then analyze the vulnerability report produced by TeeRex. If source code is available,
we utilize the source code to perform root cause analysis and map the root cause
to one of the patterns described in Section 4.2. If no source code is available, we
cannot always map the results to one of the vulnerability patterns, as we have to
resort to reverse engineering. Based on the vulnerability report, we then construct
PoC exploits to verify whether the finding is truly exploitable. In our PoC exploits,
we typically aim to hijack the instruction pointer inside of the enclave. With control
over the instruction pointer, we can then rely on existing code reuse techniques, such
as ROP [Sha07], to further attack the enclave. For example, we applied the code-reuse
technique introduced by Biondo et al. [Bio+18], which targets enclaves built with the
Intel SGX SDK.

We assume the standard SGX threat model [CD16; McK+13] for our PoC: our PoC
exploits assume they have full control over the OS and the full user-space address
space. Some of our PoCs exploits need to map data at address 0 to exploit NULL
pointer dereferences. To achieve this, we configure the Linux systems, based on Ubuntu
18.04, to allow this. For the Windows enclaves, we had to resort to live patching the
Windows 10 kernel to allow mapping the NULL pointer. For the sake of simplicity of
our PoCs we disable address space layout randomization (ASLR), which is well within
the capabilities of the attacker.

Notably, the SignalApp Contact Discovery enclave is the only enclave where TeeRex
did not identify a vulnerability. We found that this enclave has a comparatively small
and simple ECALL interface. As such, there is less possibility for mistakes. We can
only speculate, but we assume that this is because the enclave was developed by

Table 4.1: Dataset of public enclaves and their susceptibility to exploitation.
* One ECALL immediately branches to 75 different actions, which we model as separate ecalls in

TeeRex.

Project Name Analyzed
Version

Exploit Patch
Available

Source
Code

Number of
ECALLs

SignalApp Contact Discovery 1.13 × - ✓ 7
Intel GMP Example 9533574f95b97 ✓ ✓ ✓ 6
Rust SGX SDK’s tlsclient 1.0.9 ✓ ✓ ✓ 8
TaLoS bb0b61925347b ✓ × ✓ 207
WolfSSL Example Enclave d330c53baff52 ✓ ✓ ✓ 22
Synaptics SynaTEE Driver 5.2.3535.26 ✓ ✓ × 2 (76)*

Goodix Fingerprint Driver 2.1.32.200 ✓ ✓ × 56

67

Chapter 4 Symbolic Execution of SGX Enclaves

the security and privacy specialists of the Signal Foundation. For all the identified
vulnerabilities, we performed responsible disclosure and worked with the vendors to
fix the discovered issues. In the remainder of this section, we discuss the technical
details of the findings.

Table 4.2: Overview of results of our analysis of public enclave code. Some of the pat-
terns are not applicable to some of the enclaves either, because the enclaves
does not use the relevant code constructs, or the source is unavailable and
thus we cannot determine the intention.

Bug Classes In
te

lG
M

P
Ex

am
pl

e

Ru
st

SG
X

SD
K

’s
tls

cl
ie

nt

Ta
Lo

S

W
ol

fS
SL

Ex
am

pl
e

En
cl

av
e

Sy
na

pt
ic

s
Sy

na
T

EE
D

riv
er

G
oo

di
x

Fi
ng

er
pr

in
t

D
riv

er

P1: Passing Data-Structures with Pointers • • • - • •
P2: Returning pointers to enclave memory • • • • - -
P3: Pointers to Overlapping Memory - • - - - -
P4: NULL-Pointer Dereferences - - • - • •
P5: Time-of-Check Time-of-Use - - • - - -
Exploit Primitive

Control-Flow Hijack - • • • • •
Controlled Write • - - - • •
NULL-pointer Dereference - - • - • •

68

4.3 Enclave Analysis Results

Intel GMP Example

As part of the documentation on SGX Intel provides a demo enclave that showcases
the support of the GNU Multiple Precision Arithmetic Library. The whole enclave
features a bad design and contains several insecure code patterns. Most notably the
enclave freely passes pointers between the enclave and host boundary. TeeRex also
identifies several arbitrary write exploit primitives. However, they all share the same
root cause. As such, we now only describe one vulnerability in more detail.

The enclave features an ECALL, which wraps the addition functionality of the
GMP big integer library. This ECALL receives three GMP big integers as parameters:
two input parameters for the addition and an output parameter. The enclave adds
both input parameters and then copies the result back to the output parameter. All
parameters are pointers that are annotated with the user_check attribute, which
means that the developer must validate these pointers.

TeeRex identified an arbitrary write exploit primitive in the enclave code, which
we then turned into arbitrary code execution as part of our PoC exploit. Note that
while the use of the user_check attributes already hints at a vulnerability, the actual
problem discovered by TeeRex is a pointer within the passed data structure. As
such, even if the data structure was changed to be fully copied to enclave memory,
the issue would persist. The problem is that the data structure behind the GMP big
integer internally utilizes a pointer to refer to an underlying buffer. The GMP big
integers consist of several limbs, or machine native words, which are stored in this
buffer. TeeRex identifies this pointer to the backing buffer as an attack vector. This
pointer is not sanitized, which means that during the mpz_set operation, a memory
write to an arbitrary location is possible. Interestingly, this vulnerability showcases
the danger of utilizing an opaque data structure coming from a software library at the
host-enclave boundary. It is easy to miss that such a data structure actually contains
a pointer that must be sanitized.

The big integer data structures utilize dynamically allocated storage internally. As
such, they must contain a pointer to the underlying buffer that stores the values of
the limb integers. Figure 4.11 shows part of the vulnerable code. Here, the mpz_set
function simply copies the output to the attacker-controlled underlying buffer of the
c_unsafe big integer. The problem is that the enclave uses functionality of the GMP
library that was not designed for SGX. It neglects the fact that the underlying buffer
of this big integer can actually point to arbitrary memory, including enclave memory.

This vulnerability allows an attacker to perform an arbitrary memory write with
controlled content and controlled size. In our PoC exploit, we abuse the e_mpz_add
ECALL. We utilize the input parameters to control the values that are written. We
set a_unsafe to the memory contents that we want to write. We set the big integer
b_unsafe to a big integer initialized as 0, ensuring that the actual computation of the
GMP library has no effect. We then manipulate the pointer to the underlying buffer
of the c_unsafe data structure to point to our target address for the arbitrary write.
We choose to directly write to the enclave stack, which allows us to directly write a
ROP payload to the enclave stack. Once the enclave returns, it will execute our ROP
payload.

69

Chapter 4 Symbolic Execution of SGX Enclaves

1 // EDL
2 public void e_mpz_add(
3 [user_check] mpz_t *c_unsafe,
4 [user_check] mpz_t *a_unsafe,
5 [user_check] mpz_t *b_unsafe
6);

1 void e_mpz_add(mpz_t *c_unsafe,
2 mpz_t *a_unsafe,
3 mpz_t *b_unsafe) {
4 mpz_t a, b, c;
5

6 // ...
7 /* The enclave now computes: */
8 /* c = a + b */
9 // ...

10

11 // mpz_set copies the underlying buffer
12 // of the biginteger "c" to the buffer pointer
13 // contained in the "c_unsafe" variable
14 mpz_set(*c_unsafe, c);
15 }

Figure 4.11: Excerpt of the vulnerable code in the Intel GMP Example enclave.

Intel acknowledged the problem, updated their documentation, and fixed the issue
by using serialization. Instead of passing pointers to GMP structures, the demo code
now serializes GMP big integer objects to strings. This avoids dangerous pointer
validation as strings are automatically validated by the Intel SGX SDK. Inside the
enclave, the input parameters are deserialized, the computation is performed, and then
serialized and returned to the host application. This completely avoids the problematic
pattern of passing pointers between host and enclave.

WolfSSL Example Enclave

The WolfSSL [WOLF] project develops a TLS library that is also fit for other use
cases, such as embedded devices and small and self-contained applications. As such,
the library comes without the need for external dependencies. This also makes the
WolfSSL library applicable to run in the SGX context. The library ships with an
example for utilizing the WolfSSL library code within a SGX enclave. This example
shows how to terminate TLS connections directly inside the SGX enclave, shielding
the cryptographic secrets required for running the TLS protocol from the OS. However,
to achieve this, the enclave exposes many APIs, which essentially wraps the original
WolfSSL API.

An analysis with TeeRex revealed a control-flow hijacking exploit primitive. Our
root-cause analysis showed that the enclave follows the dangerous pattern of passing
pointers and performs insufficient validation (see Section 4.2). More specifically, the

70

4.3 Enclave Analysis Results

1 /* ECALL Definition in EDL */
2 // a pointer to enclave memory returned
3 public WOLFSSL* enc_wolfSSL_new([user_check] WOLFSSL_CTX* ctx);
4 // pointer is passed to enclave
5 public int enc_wolfSSL_connect([user_check]WOLFSSL* ssl);
6 // ...

1 /* C Source Code */
2 typedef int (*CallbackIOSend)(WOLFSSL *ssl, char *buf,
3 int sz, void *ctx);
4 /* WolfSSL session type */
5 struct WOLFSSL {
6 WOLFSSL_CTX* ctx;
7 /* ... */
8 // attacker-controlled function pointer!
9 CallbackIOSend CBIOSend;

10 }
11 // ...
12 int enc_wolfSSL_connect(WOLFSSL* ssl) {
13 // insufficient validation
14 if(sgx_is_within_enclave(ssl, wolfSSL_GetObjectSize()) != 1)
15 abort();
16 /* ... */
17 }

Figure 4.12: Relevant parts of the EDL definition and C source code of the tlsclient
enclave.

enclave API requires the user to allocate a TLS session object in secure memory before
calling any other APIs. The session object is represented as a raw pointer and returned
by the enclave to the host application. The host application then passes the raw
pointer to the enclave in subsequent calls, e.g., when data is received over the network.
The enclave uses the same pattern also for other types, such as a context type or I/O
buffer objects. We discuss one of the exploit primitives discovered by TeeRex in more
detail.

Figure 4.12 depicts the vulnerable code of the enclave. To allocate a new TLS
session, the host application passes a WOLFSSL_CTX pointer type to the enclave.
The enclave returns a pointer to the WOLFSSL object that represents a TLS session.
TeeRex identifies a weak point in this design: the WOLFSSL data structure contains
a function pointer that the enclave uses to perform callbacks in the TLS library
(CBIOSend). The usage of this function pointer in the WOLFSSL data structure is
discovered by TeeRex as a control-flow hijack, as the pointer to the data structure is
fully attacker controlled.

However, the enclave does not accept fully arbitrary pointer parameters. The enclave
code validates that the pointer passed in the ECALL does in fact point to enclave
memory. However, this pointer validation is not sufficient to prevent the exploitation.
As discussed in Section 4.2, the enclave memory often contains attacker-controlled

71

Chapter 4 Symbolic Execution of SGX Enclaves

content. For example, if the enclave attempts to validate data passed by host memory
or if the enclave accepts string parameters. In our PoC exploit, we abused the function
enc_wolfSSL_CTX_use_PrivateKey_buffer to inject a fake WOLFSSL data structure
into enclave memory. However, there are multiple other suitable APIs. Our PoC
abuses the enc_wolfSSL_connect function, which retrieves the function pointer for
the callback from the injected data structure, giving the attacker full control over the
instruction pointer. Ultimately, this allow the attacker to perform code-reuse attacks
and exfiltrate any data that is supposedly protected.

We disclosed this issue to the authors of the WolfSSL project. Similar to our
recommendations in Section 4.2, they switched to using integer-based session identifiers
instead of passing pointers.

Rust SGX SDK’s tlsclient/server

The Rust SGX SDK, developed at Baidu and later moved to the Apache Project, is
an interesting analysis target. This project attempts to build a memory-safe wrapper
around the Intel SGX SDK, using the Rust language as a modern memory-safe
alternative to C/C++. As such, enclaves built using this SDK contain fewer memory
safety issues. However, our analysis revealed memory safety issues at the boundary
between the host and enclave: an interface that is not covered by Rust’s guarantees.
More specifically, the programmer has to resort to the C ABI to communicate between
host and enclave. In turn, this makes it necessary to use unsafe code in rust, code
where the compiler does not guarantee memory safety.

We analyze code shipped with the Rust SGX SDK that shows how to run a TLS
server and client inside an SGX enclave. In terms of functionality, this is quite similar
to some of the other enclaves we analyzed, e.g., the WolfSSL or TaLoS enclaves (see
Section 4.3 and Section 4.3 respectively). The Rust SGX SDK project ships with two
applications that represent a TLS client and server, which allows direct communication
between two enclaves. Since both applications are quite similar with respect to the
enclave interface, we only analyzed the tlsclient enclave.

Similar to the other TLS enclaves, the rust enclave exposes an enclave API that
exposes a function to create a new TLS session. This session object can then be used
to encrypt and decrypt data that is sent or received. TeeRex identifies a vulnerability
leading to instruction pointer control in the tls_client_write function. Here the
exploit primitive discovered by TeeRex abuses the session pointer parameter of
the ECALL. The enclave utilizes the common anti-pattern of passing a pointer as a
resource identifier. TeeRex then identifies a way to exploit this pattern.

Figure 4.13 shows the vulnerable part of the tlsclient enclave code. Here, a new
TLS session object is allocated with the tls_client_new function. Subsequently, the
returned pointer must be passed to further API calls, such as the tls_client_write
function depicted in Figure 4.13. The parameter must be marked as user_check for
the Intel SGX SDK to accept a raw pointer. This moves the burden of validating a
pointer to the enclave developer.

TeeRex identifies a nested object inside the TLSSession data structure, which
contains a virtual method table (vtable) pointer. This vtable pointer is used by
the compiler to implement dynamic dispatch, i.e., it associates a set of method

72

4.3 Enclave Analysis Results

1 /* ECALL Definition in EDL */
2 public void* tls_client_new()
3 public int tls_client_write(
4 [user_check] void* session,
5 [in, size=cnt] char* buf,
6 int cnt);

1 // Rust Source Code
2 pub extern "C" fn tls_client_write(session: *const c_void,
3 bu: * const c_char,
4 cnt: c_int) -> c_int {
5 ➀ if session.is_null() {
6 return -1;
7 }
8

9 ➁ if rsgx_raw_is_outside_enclave(session as * const u8,
10 mem::size_of::<TlsClient>()) {
11 return -1;
12 }
13 rsgx_lfence();
14

15 let session = unsafe { &mut *(session as *mut TlsClient) };
16 // [...]
17 }

Figure 4.13: Vulnerable Rust code: Check ➁ can be bypassed.

implementations with an object instance. Depending on the type of the object, the
compiler will jump to the right method implementation by using the indirection via
the vtable pointer. However, controlling the vtable pointer is typically equivalent to
controlling the instruction pointer. The attacker can make the vtable pointer refer to
attacker-controlled memory that contains a fake vtable. Subsequently, the victim code
dereferences the vtable pointer to look up the method in the fake vtable and perform
an indirect jump to the value from the fake vtable. As such, this attack vector has
also received significant attention from the research community, developing various
exploit mitigation technologies, such as multiple CFI variants [Sze+13; Tic+14].

However, the enclave performs some validation on the received pointer: it must not
be null (➀ in Figure 4.13) and must not be outside enclave memory (➁ in Figure 4.13).
Similar to the attack against the WolfSSL enclave (see Section 4.3), this could be
exploited by injecting the fake TLSSession object into the enclave memory using some
unrelated function. However, the enclave exhibits another anti-pattern that can be
exploited here. Namely, the pointer validation does not account for the possible three
states concerning a memory object (see Section 4.2.3). As such, the check at ➁ is not
sufficient to sanitize a pointer.

In our PoC exploit, we chose to bypass the pointer validation using overlapping
memory. We map the memory pages right before the first enclave page into the normal
user space of the host application. We then place a fake TLSSession object at the

73

Chapter 4 Symbolic Execution of SGX Enclaves

page boundary, such that only the last byte of the TLSSession object is within enclave
memory. This makes the pointer validation at ➁ in Figure 4.13 succeed, as the object
is not strictly outside enclave memory anymore. However, this gives us complete
control over anything interesting contained in this object, including the vtable pointer,
which now resides in host application memory. Now we simply let the vtable pointer
refer to a fake vtable, where we can place the start of our code-reuse attack. Note
that the last byte of the TLSSession object is not used during the ECALL that is
exploited in our PoC, so the value of the last byte does not have any side effects on
the execution of the enclave.

Even though this enclave uses a robust memory-safe language, TeeRex was able to
identify a vulnerability at the interface boundary between the host and the enclave.
Here the compiler-enforced memory safety guarantees of Rust do not hold anymore, as
the boundary is necessarily implemented using unsafe rust or C code. This highlights
the need to develop safe interface bindings for memory-safe languages, such as rust.
Low-level details should not be exposed to enclave developers.

We disclosed our findings to the developers of the Rust SGX SDK, who acknowledged
the issue and promptly developed a patch. Instead of using pointers as resource
identifiers, they switched to using integer identifiers, which are mapped to the objects
using a hashmap. As such, no pointers need to be passed over the host-to-enclave
boundary. The attack surface is drastically removed, and both anti-patterns regarding
pointer sanitization are removed from the enclave code.

TaLoS

The TaLoS project is an open-source enclave that was created as part of an academic
project. The idea of the enclave is to provide a shielded version of a TLS library,
essentially terminating the TLS-secured connection inside the enclave. However,
integrating a shielded TLS library into classical software is challenging due to the tight
integrating. For example, the Apache Webserver tries to directly call the API of the
TLS library libressl. As such, the TaLoS project provides a wrapper library for the
host that forwards all calls to the enclave. To make the transition to using the enclave
a TLS library easier, TaLoS exposes a one to one mapping of the libressl API. As such,
the enclave interface extensively exposes pointers that are marked as user_check in
the corresponding EDL file. However, the enclave does not perform sufficient checks
on the passed pointers. As such, TeeRex is able to identify various exploit primitives.

However, the enclave does not simply return a raw pointer as it is the case for the
other TLS enclaves (see Section 4.3, and Section 4.3). Interestingly, the TaLoS enclave
has a built-in shadowing mechanism: the enclave duplicates relevant data structures
in both host and enclave memory [Aub+17]. Primarily, the shadowing mechanism
is used to allow the host application to access fields of data structures used by the
TLS library. This allows unmodified host applications to load and use the enclave.
The enclave code contains manually written code to synchronize selected fields of
important data structures, such as the primary SSL data structure. In principle, the
shadowing mechanism would also allow the enclave to perform extensive validation
of the received pointer arguments. However, in the version of the enclave that we
analyzed, we found various issues with this shadowing mechanism due to the manual

74

4.3 Enclave Analysis Results

1 BIO* ecall_SSL_get_rbio(SSL *out_s) {
2 ➀ // out_s is not checked, can be in enclave memory
3 /** Shadowing Mechanism **/
4 hashmap* m = get_ssl_hardening();
5 // returns NULL for invalid out_s
6 ➁ SSL* in_s = hashmapGet(m, out_s);
7 // copy arbitrary enclave memory to the NULL page
8 ➂ SSL_copy_fields_to_in_struct(in_s, out_s);
9 ➃ /* [...] libressl logic */

10 // copy from the NULL page to arbitrary enclave memory
11 ➄ SSL_copy_fields_to_out_struct(in_s, out_s); // [...]

Figure 4.14: Relevant parts of the EDL definition and C source code of the TaLoS
enclave.

approach of shadowing the data structures. The exposed API is quite comprehensive.
TeeRex identified multiple exploit primitives in the enclave, including in the code
that performs the data structure shadowing.

Figure 4.14 shows the relevant parts of the enclave, which implements the shadowing
mechanism. Here, TeeRex discovered the NULL pointer dereference. However, the
code contains several other issues. For example, the parameter out_s is not validated
to lie outside of enclave memory (➀). To exploit the NULL pointer dereference,
the attacker must pass a bogus value for the out_s parameter. In turn, the call to
hashmapGet will fail and return NULL to indicate an error. However, this return value
is not further validated (➁), and as a result, in_s becomes NULL. This turns the
shadowing mechanism at ➂ into an arbitrary read exploit primitive. The attacker can
let out_s point to an arbitrary location inside the enclave memory. The shadowing
mechanism at ➂ will then copy the content from enclave memory to the page mapped
at address 0.

Furthermore, the same code can also be abused by an attacker to gain an arbitrary
write exploit primitive. After the logic of the libressl TLS library is done (➃ in
Figure 4.14), the synchronization code again synchronizes the enclave internal data
structure with the data structure in host memory. At ➄ the synchronization code
copies the fields of in_s structure to the out_s structure. However, the attacker
can make the out_s data structure point to enclave memory, and due to the failed
hashmap lookup, in_s points to the page at address 0. As such, the enclave will copy
arbitrary values from host memory to an arbitrary location within enclave memory.
Together, this gives an attacker a powerful arbitrary read/write exploit primitive.
However, the attacker has to win a race for effective exploitation, as the attacker
must inspect and change the value while the code at ➃ is executing. This can be
achieved by using a second thread in the user space of the malicious host application.
Alternatively, the attacker can reliably exploit this by interrupting the enclave using
at just the right time. Previously it was shown that the timer interrupts are precise
enough to essentially single-step enclave code, making it trivial to exploit such race
conditions [VPS17].

75

Chapter 4 Symbolic Execution of SGX Enclaves

Besides the arbitrary read/write exploit primitive TeeRex also discovered a control-
flow hijacking exploit primitive. Namely, similar to the other TLS enclaves, TeeRex
identifies a function pointer used for a callback in one of the primary data structures
(the SSL_CTX). In contrast to other data structures, there is no shadowing of this
pointer in the enclave. In fact, the enclave does not validate the pointer or the data
structure at all. As such, to exploit this issue, the attacker must simply craft a fake data
structure in host memory and call the vulnerable ECALL (ecall_SSL_CTX_ctrl).

Synaptics SynaTEE Driver

We identified several fingerprint drivers for Windows that utilize the SGX technology
to securely process biometric data. The first fingerprint driver we encountered was
introduced by Synaptics and is utilized on modern Lenovo laptops. The fingerprint
driver delegates parts of the fingerprint-based authentication to a user-space component
that utilizes a SGX enclave. In our evaluation, this is also the first closed-source enclave
designed to run on the Microsoft Windows OS. Here several of the pre-processing
modules of TeeRex are required to hook statically linked standard library functions
for more efficient symbolic execution. Furthermore, we noticed that the enclave only
utilizes two different ECALLs, a suspiciously low number given the size of the enclave.
This is because the enclave multiplexes several commands over one of the two ECALLs.
Using manual analysis, we noticed that while TeeRex was still able to analyze the
enclave, the analysis is much faster and is able to identify more findings if we change
the analysis entry point. Instead of starting at the actual ECALL entry points, we
start at the entry points of the several command handlers that handle the various
multiplexed ECALLs.

TeeRex discovered a control-flow hijacking primitive resulting from a NULL-pointer
dereference. In the enclave code, there is a global pointer variable, which points to
a data structure that is expected to be in enclave memory. However, this pointer
is initialized as a NULL pointer, and the enclave features an ECALL that allows
an attacker to trigger dereferencing the global pointer without initializing the global
pointer first. As such, the attacker can exploit the fact that the NULL pointer refers
to host memory.

However, exploiting a NULL pointer dereference on a modern Windows OS is
cumbersome, as the latest Windows versions disallow mapping the page at address 0.
The SGX threat model would allow an attacker to override this setting. While this
cannot be easily disabled, it is possible to patch the Windows kernel to disable the
check. We demonstrate the feasibility of this approach with our exploit for the Goodix
enclave in Section 4.3. To achieve a pure user-space exploit for the Synaptics enclave,
we chose a different route for exploitation.

In the vulnerability report, TeeRex also reports secondary findings, which are not
exploitable alone, but potentially ease writing full exploits (see Section 4.1). More
specifically, TeeRex identifies a limited write exploit primitive in the enclave due to an
improperly sanitized data structure that contains many pointers. This primitive allows
an attacker to write a single byte with a fixed value to an arbitrary address. While
this primitive is not enough to achieve, e.g., full control-flow hijacking, it still allows
an attacker to corrupt enclave memory and continue exploitation from there. As a first

76

4.4 Performance and Accuracy

step, we utilize this limited primitive to overwrite one byte of the NULL-initialized
global pointer, such that this pointer refers to a known location in host memory.
Corrupting the pointer first bypasses the need for mapping the page at address 0.

In our PoC exploit, we chain the limited write and the control-flow hijacking primitive.
First, we corrupt the global pointer with the fixed value. Second, we map the memory
referred to by the resulting pointer. Third, we prepare a fake data structure in the
freshly mapped memory. Finally, we trigger the ECALL that dereferences the—now
corrupted—global pointer and achieve a control-flow hijacking primitive.

Goodix Fingerprint Driver
The second fingerprint-reader driver we analyzed is shipped on recent laptops produced
by Dell and is developed by Goodix. Similar to the fingerprint-reader driver of
Synaptics, a user-space component with a SGX enclave is used. Again we performed
black-box binary analysis of the enclave with TeeRex. This analysis resulted in the
discovery of several limited write primitives, two of which we utilize in our PoC exploit.

The first primitive, which we denote as C16, is a NULL-pointer dereference that
copies a 16 bit value from the NULL pointer to an arbitrary address supplied by the
attacker. As we discussed earlier for the Synaptics SynaTEE Driver PoC exploit (see
Section 4.3), exploiting a NULL pointer dereference comes with significant effort on
modern Windows systems. To map the page at address 0 on Windows, we need to
first patch the kernel using an attached debugger. The patched kernel then simply
allows mapping the address 0 in a normal user space application. Note that the patch
guard of the Windows kernel periodically scans kernel code and attempts to detect
code corruption, which further complicates exploitation.

However, since we have discovered only a 16 bit write primitive, we cannot fully
overwrite pointer values to gain a stronger exploit primitive (e.g., a control-flow
hijack). While a partial overwrite is often already sufficient to launch a code-reuse
attack [Dur02], we opted to chain to primitives to achieve a full arbitrary write of
a 64 bit value. To do so, we introduce a second limited exploit primitive F64. The
primitive F64loads a value from a fixed address A within enclave memory but writes
this value to an arbitrary attack-controlled pointer. Since the value is within enclave
memory, the attacker cannot control it, and as such, this primitive is of limited use
alone. However, we can use the first primitive C16to set the value at address A. We
utilize four invocations to C16to write a full 64 bit integer. We then utilize F64to
copy this value to an arbitrary location inside enclave memory, effectively gaining
an arbitrary write. We can then overwrite, e.g., a return address on the enclave
stack to launch a code-reuse attack. This exploit shows that the auxiliary exploit
primitives discovered by TeeRex are useful to a human analyst, who can quickly
combine multiple limited exploit primitives to upgrade to a full arbitrary write exploit
primitive.

4.4 Performance and Accuracy
Previously, we primarily discussed the findings of TeeRex in several enclave projects.
With this, we demonstrate that TeeRex is a viable approach for enclave analysis.

77

Chapter 4 Symbolic Execution of SGX Enclaves

0 10 20 30 40 50 60 70

Less than 10s runtime Out of MemoryTimeout
Finished
within
limits

intel-fixed intel-vuln rust-fixed rust-vuln wolfssl-fixed wolfssl-vuln

0

200

400

600

800

1000

1200

R
un

tim
e

(s
)

0

5

10

15

20

M
em

or
y

us
ag

e
(G

B
)

Runtime
Memory usage

Figure 4.15: Runtime and memory usage of the benchmarked enclaves.

In this section, we discuss the efficiency and effectiveness of TeeRex as an analysis
tool. We focus our analysis on the three enclaves Intel GMP Example, Rust SGX
SDK’s tlsclient, and WolfSSL Example Enclave since for these (1) the source code
is available, and (2) a patched version is available to us. These properties allow us
to analyze TeeRex analyses in more detail, as we can compare the analysis on the
vulnerable and fixed enclaves. This allows us to reason about the occurrences of false
alarms. First, we verified the source-level patches for the three enclaves we use for
performance evaluation. Since source code is available, we can analyze the patched
code in detail and determine whether a newly reported finding is a false positive.
Second, we can obtain more realistic performance numbers on the patched enclaves.
Unfortunately, our dataset of enclaves consists of enclaves that contain multiple pointer
validation vulnerabilities. In fact the vulnerabilities are so prevalent that we cannot
properly assess the performance of TeeRex. As such, we measure performance on
patched enclaves to obtain measurements of TeeRex analyzing enclaves where pointer
validation bugs are not as prevalent as in our current dataset of unpatched enclaves.

4.4.1 Performance and Memory Usage

When running TeeRex, we analyze each ECALL using TeeRex for a maximum of
20 min using a single CPU core and a memory limit of 24 Gbyte. The analysis was
conducted on an AMD EPYC Processor with 3.7 GHz and 100 Gbyte RAM allowing
us to analyze up to 4 ECALLs in parallel. TeeRex utilizes angr version 8.20.1.7
running on CPython 3.6.9 and Ubuntu 18.04.4. All the exploitable primitives that we
utilized in our PoC exploits are discovered within our time window of 20 min.

For the three enclaves (Intel GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL
Example Enclave), we analyzed the 73 ECALLs in detail. The results are depicted
in Figure 4.15. Symbolic execution tends to be limited by the available memory due
to state explosion. The average memory usage overall ECALLs of those enclaves is

78

4.4 Performance and Accuracy

8.8 Gbyte, with a standard deviation σ = 9.8 Gbyte). The high standard deviation can
be explained by the high variability of code size and code complexity of the ECALLs.
40 % of the analyzed ECALLs finished within 10 s, Further 52 % finished within the
given limits. However, 48 % exceeded the resource limits. More specifically, 23 % by
time, also 23 % by memory, and 1 % by time and memory.

We chose the resource limits empirically, after performing several analysis runs. As
our findings show (see Section 4.3), these time and memory constraints allow TeeRex
to uncover problematic code patterns. In a more realistic setting, an analyst can invest
more time and memory for specific ECALLs. Nevertheless, symbolic execution is a
powerful but resource-hungry program analysis technique. There are many techniques
that allow improving the efficiency of symbolic execution [Avg+14; Bal+18; Cha+12],
which we did not yet integrate into our prototype.

4.4.2 Accuracy and False Alarms

We designed TeeRex with soundness in mind and typically sacrificed completeness
of the analysis, i.e., using our resource-constrained analysis strategy. As such, the
number of false alarms is generally relatively small. Note that we cannot provide a full
analysis of false alarms and missed bug rates, as we lack a dataset with ground truth.
All our findings were previously unknown zero-day vulnerabilities. Prior to TeeRex,
there were no other automated vulnerability analysis tools available that are capable
of identifying vulnerabilities specific to SGX enclaves. As such, we cannot compare
TeeRex to prior work.

We use the following strategy to assess the accuracy of TeeRex. First, we manually
confirm all findings by constructing PoC exploits. We also worked with the vendors
to confirm the vulnerabilities and obtain patched versions of the enclaves. Whenever
source code was available to us, we also verified, using TeeRex and manual analysis,
that the vendors correctly fixed the issues that we reported. As such, we can be
certain that the enclaves Intel GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL
Example Enclave do not contain any further vulnerabilities. We can then assume that
any finding of TeeRex on the patched enclave is a false alarm, giving us a limited
form of ground truth. Our analysis of the three vulnerable enclaves TeeRex produced
149 findings. The large number of findings can be explained by the vulnerable code
patterns that are present several times in the enclaves. By manual deduplication and
with our PoC exploits, we confirm that those findings are correctly reported alarms.
For each of the vulnerabilities, we selected gadgets in shallow program paths with the
smallest number of constraints on the initial state. This allows us to write simpler
PoC exploits.

Next, we analyzed the patched versions of the enclaves. First, we are able to confirm
with TeeRex that the vulnerabilities we originally exploited are no longer present in
the enclave code. However, the analysis of TeeRex still identified 56 major findings.
Analysis of those findings reveals a source of false alarms in TeeRex: global memory
is treated as unconstrained symbolic memory (see implementation details Section 4.1).

In TeeRex, we decided to mark all global enclave memory as unconstrained symbolic
memory. This allows TeeRex to analyze program paths that would require a sequence
of ECALLs without executing a sequence of ECALLs. We observed a common pattern

79

Chapter 4 Symbolic Execution of SGX Enclaves

in enclave code where certain ECALLs first require a preceding call to another initializer
ECALL. For example, we identified this pattern in the Intel GMP Example, which
utilizes a special ECALL that initializes a function pointer in a global function pointer.
By marking the global enclave memory as unconstrained values, TeeRex reports a
controlled jump. This is because TeeRex does not identify any further constraints
during the execution of the ECALLs. As such, TeeRex believes that the function
pointer is not checked before its use. However, in reality, the enclave offers only a
limited—and safe—number of ways to set the jump target. As such, this finding is
not exploitable on its own. We identified similar false positives in some of the other
patched enclaves. The Rust SGX SDK’s tlsclient and WolfSSL Example Enclave
enclaves show false alarms due to similar issues. However, it is not clear how to
handle such findings because the same finding can become useful as part of a longer
exploit chain. For example, it could be used to turn an arbitrary write primitive into
a control-flow hijacking primitive. As such, it would be detrimental to completely
filter such findings. In future work, it would be beneficial to extend TeeRex with
a post-processing analysis that ranks findings according to severity based on further
analysis (e.g., using the pointer tracking component).

80

4.5 Discussion and Conclusion

4.5 Discussion and Conclusion

SGX is a promising upcoming security technology that can be used to strongly isolate
sensitive code and data into enclaves. SGX greatly reduces the TCB. However, it also
creates a new attack surface: the host-to-enclave boundary becomes highly critical and
dangerous. By design, the enclave processes and operates on input originating from
untrusted memory space. Implementation errors in the code handling the boundary
are easy to introduce and quite fatal. Based on our real-world findings with TeeRex,
we describe several vulnerability patterns that are easy to introduce in code written
for the Intel SGX SDK. Our analysis shows that these patterns are especially common
when porting legacy code to SGX.

In this chapter, we present TeeRex, the first automated vulnerability analysis
tool explicitly tailored to SGX enclave binaries. We show that symbolic execution
is a fruitful and feasible approach to automatically vet enclave code for bugs on the
host/enclave interface. TeeRex uses symbolic execution to precisely reason about
program paths in the enclave interface and discover memory corruption vulnerabilities.
Going even further, TeeRex reports memory corruption vulnerabilities as exploit
primitives, such as arbitrary writes or control-flow hijacking. This allows an analyst
to quickly construct PoC exploits to determine the severity of the findings.

Limitations While symbolic execution is a powerful program analysis technique, it has
several drawbacks that TeeRex inherits. First, we attempt to mitigate state explosion
by implementing an ECALL centric analysis in TeeRex. This means we can analyze
available ECALLs in parallel, exploiting multi-core systems for analysis. However, we
noticed several cases where this ECALL centric analysis is not enough to mitigate
state explosion. For example, we identified one enclave that essentially multiplexes
several ECALLs over one ECALL. Running the default analysis of TeeRex would
result in a path explosion problem as TeeRex would not detect this multiplexing,
leading to a large number of analysis states. In the case of this enclave, we were able to
circumvent this issue by starting analysis at the handlers for the multiplexed ECALLs.
However, this approach requires manual analysis and is not applicable to all enclaves.

Furthermore, the symbolic environment that TeeRex uses to emulate the target
enclave does not precisely replicate the real enclave environment, which causes TeeRex
to miss certain bug classes. For example, TeeRex replaces the allocator of the enclave
with a simplified simulated allocator that is provided by the Angr framework if it can
identify the enclave’s allocator (e.g., using symbols). The emulated allocator always
returns a new memory address and never returns a memory address that is already in
use. This simplifies symbolic execution and avoids costly symbolic execution of the
memory allocator. However, the downside of this approach is that temporal memory
errors cannot be identified anymore. For example, because the emulated allocator does
not reuse memory, TeeRex will never encounter a use-after-free. However, in large C++

code bases, temporal vulnerabilities make up for the bulk of the vulnerabilities [Tho19;
Zer]. Detecting temporal vulnerabilities would require extending TeeRex with more
precise analysis and modeling of the enclave heap during analysis [Eck+18; Gri+22].
Alternatively, TeeRex could be used as the basis for a hybrid symbolic execution and

81

Chapter 4 Symbolic Execution of SGX Enclaves

fuzzing approach, where it is much easier to detect temporal vulnerabilities such as
use-after-free issues [Clo+22; Sho+16; Ste+16].

Finally, TeeRex also does not model the full set of interactions that are possible.
For example, TeeRex only approximates ECALL sequences by marking global memory
as unconstrained symbolic. This allows TeeRex to explore paths within an ECALL
that would normally only be reachable with multiple ECALLs. However, this is also
the single source of false alarms that we noticed during our evaluation of TeeRex
(see Section 4.4). Naturally, this approximation could be avoided by chaining multiple
ECALLs during analysis. However, this introduces a simple combinatorial path
explosion into the symbolic analysis process: after every ECALL, the attacker can
call every other ECALL. Practically speaking, chaining ECALLs would also entail
modeling the OCALL mechanism. Currently, TeeRex stops execution when it
encounters an enclave exit, whether the enclave exit is caused by an OCALL or
because of a regular enclave return. If the enclave has support, one would also need
to consider reentrant ECALLs that can happen during an ongoing OCALL. This
combinatorial path explosion is common to all secure execution environments that
expose a library-like interface. We discuss tackling analysis of full call chains, including
reentrancy, in Chapter 5 using Ethereum smart contracts as our targets.

Conclusion TeeRex uses symbolic execution to analyze the host/enclave interface.
Using TeeRex, we identified several vulnerabilities in public enclaves, including
two fingerprint drivers developed by Synaptics and by Goodix, three TLS libraries,
and a project published by Intel. We developed PoC exploits based on the exploit
primitives discovered by TeeRex. The report produced by TeeRex is detailed
enough to quickly construct such exploits. While TeeRex inherits the limitations of
symbolic execution, primarily dealing with path explosion, the results we present in
this chapter show that our analysis approach can be used to identify real vulnerabilities
in enclave code. Furthermore, it allowed us to perform the systematic analysis of
enclave code and discover several vulnerability patterns common to multiple enclaves.
Enclave developers or security analysts can now avoid these vulnerability patterns
before deploying enclave code. Furthermore, our work on TeeRex inspired further
investigation into automatic analysis of SGX enclave code using fuzzing techniques
that scale better to larger enclaves [Clo+22].

82

CHAPTER 5
FUZZING OF SMART CONTRACTS

Ethereum is the most prominent blockchain platform that supports smart contracts, i.e.,
programs that are stored and run as part of the blockchain protocol. Currently, smart
contracts form the backbone of the emerging decentralized finance (DeFi) industry.
We discuss the Ethereum execution environment in detail in Section 3.2.

Due to its widespread popularity, the security of Ethereum, particularly it’s smart
contract layer, has received considerable attention from the research community and
industry. Despite their popularity, current smart contract development practices and
tooling still lag significantly behind the state-of-the-art in software security. This
became evident after a series of high-profile attacks that targeted a number of popular
smart contracts in Ethereum, such as “the DAO” attack [Jen16], among others [PL21;
Tor+21b; Zho+20].

Analyzing smart contract code is highly challenging due to the stateful nature of
smart contract code. Each smart contract exposes a certain set of functions that can
be used to interact with the smart contract in the form of atomic transactions. Most
of these interactions change the internal state of the contract, and software faults
typically only manifest when the smart contract is in a particular state. Automatically
testing and analyzing stateful software is generally a highly challenging problem (see
Section 2.2). This is further exacerbated by the fact that many smart contracts
call into other smart contracts, which in turn can reenter the originally called smart
contract again. This is a form of deterministic concurrency attack (see Section 2.1.2),
which has as previously led to many high-profile vulnerabilities called as reentrancy
attacks [Jen16; Rod+19].

Previously, in Chapter 4, we explored symbolic execution as a technique to automati-
cally identify vulnerabilities in stateful software that exposes an API. However, we also
discussed several problems with symbolic execution, most importantly, the scalability
issues when analyzing sequences of API calls. This chapter presents a state-of-the-art
fuzzing framework for Ethereum smart contract called Extremely Fast Contract Fuzzer
(EF�CF). We show that in contrast to symbolic execution and prior Ethereum fuzzers,
EF�CF scales better to long and complex sequences of API calls. EF�CF faithfully
handles complex interactions, such as reentrant executions and cross-contract calls.

83

Chapter 5 Fuzzing of Smart Contracts

Contributions To summarize, the main contributions presented in this chapter are:

• We devise a novel transpilation approach to accelerate the fuzzing of bytecode
programs, such as the EVM. Our approach removes the interpreter by directly
translating bytecode into equivalent C++ code and, finally, native code (Sec-
tion 5.2). This allows us to reuse high-speed native fuzzing components for
coverage instrumentation.

• We design the first fuzzer that can efficiently and accurately generate complex
reentrancy attacks (Section 5.3). In contrast to prior analysis tools, we do not
over-approximate reentrancy attacks but generate and execute them directly.
We do this by letting the fuzzer choose the behavior of several simulated at-
tacker smart contracts. The fuzzing process explores the different behaviors
of the attacker’s smart contracts, guided by code coverage of the target smart
contract. The result can be translated to a set of attack contracts in the Solidity
programming language.

• We thoroughly evaluate the performance of EF�CF against a large number of
state-of-the-art analysis tools. We show that our approach scales better to
complex contracts (Section 5.4) without hampering its effectiveness (accuracy
and coverage) on other non-complex contracts (Section 5.5). Furthermore,
we show that EF�CF is capable of accurately identifying even complex real-
world compositional reentrancy issues, such as the Uniswap/IMBTC incident
(Section 5.5.2).

The topics discussed in this chapter have been previously presented in the following
publication:
“EF/CF: A High Performance Fuzzer for Ethereum Smart Contracts”. IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), 2023. Michael Rodler,
David Paaßen, Wenting Li, Lukas Bernhard, Thorsten Holz, Ghassan O. Karame, and
Lucas Davi

5.1 Challenges of Automated Smart Contract Analysis
When fuzzing smart contracts, the goal is to identify a sequence of transactions that
exposes a fault in the smart contract. The final transaction of the sequence triggers
a fault, while the preceding transactions set up the state of the contract such that
the fault can be triggered. As such, testing Ethereum smart contracts represents
a highly challenging problem: a variant of testing stateful software [Ait02; CH00;
KLT01; Thu+11; Xie+05]. In contrast to static analysis methods, generating complete
transaction sequences has the advantage that it features a very low rate of false
alarms. Furthermore, the result is easy to analyze: a developer or security analyst
can simply replay and debug the transaction sequence to determine the root cause
and assess whether the bug can be triggered in practice. However, determining such a
transaction sequence is challenging since the search space is extremely large. There
are two dimensions that must be explored in parallel to reach high code coverage:
(1) the input to individual transactions and (2) the ordering of the transactions. To

84

5.1 Challenges of Automated Smart Contract Analysis

250

500

llo
c

5
10
15

#
fu

nc

25

50
#

co
m

p

2017 2018 2019 2020 2021 2022
Time

0

200

#
br

an
ch

Figure 5.1: Increasing trend in smart contract complexity over time. We measure the
complexity of all unique contracts with verified source code that appear in
Ethereum until April 27, 2022, and report the average metrics across all
contracts deployed.

efficiently cover this large search space, we can exploit the fact that many of the possible
transaction sequences are redundant or simply pointless since they only exercise the
same error-handling paths repeatedly. Coverage-guided fuzzing can efficiently search
the input space of a given contract for inputs that trigger distinct code coverage, and
was popularized by the success of the American Fuzzy Lop (AFL) fuzzer [Zal] and
many follow-up works [Fio+20; Man+21].

In this context, test case throughput emerges as an important design aspect for an
effective fuzzer. Intuitively, the greater the number of test cases generated/executed,
the greater the likelihood that a fault will be triggered within a given time budget
during fuzz testing, an inherently probabilistic process. Most fuzz testing approaches
for Ethereum smart contracts develop new fuzzers from scratch [Gri+20; He+19;
Ngu+20; Tor+21a]. In doing so, existing smart contract fuzzers neglect years of
engineering effort that has been invested by the community into the development
of fast fuzzing strategies of native code (typically C or C++). For example, ILF
performs at a rate of 148 transactions per second [He+19], while native code fuzzing
with far more complex code regularly achieves 10 000 or more test case executions
per second [Xu+17]. Due to their low throughput, current smart contract fuzzers
(1) cannot scale well when testing complex contracts and (2) cannot accurately model
complex interactions with attacker-controlled smart contracts. Next, we discuss these
limitations in greater detail.

Increasing Complexity of Smart Contracts Smart contracts are being used to
implement increasingly complex business processes. As a consequence, also the
complexity of the smart contracts according to various common complexity metrics is
also increasing over time. Our measurements of various complexity metrics for smart

85

Chapter 5 Fuzzing of Smart Contracts

contracts as they evolved over time are depicted in Figure 5.1. More specifically, we
analyzed the source code of 120 556 unique contracts, which were deployed to the main
Ethereum blockchain until July 22, 2022. Note that this also includes all the contracts
from the smartbugs-wild dataset [Dur+20]. For each contract, we measure the number
of logical lines of code1, the number of state-changing public functions2, the number
of comparison operators, and the number of branches in the control flow of the smart
contract bytecode3. Our analysis confirms the anecdotal increase in smart contract
complexity across all complexity metrics we analyzed. The complexity problem is
further increased by an increasing trend of smart contracts being composed into systems
of multiple interacting smart contracts. While we do not know of any measurements
of contract coupling of modern smart contracts, multiple real-world compositional
security vulnerabilities act as anecdotal evidence of this problem [Cec+21].

Multiple consecutive transactions are required to exercise all code paths while testing
the ever-increasing complex smart contracts. To reach all code paths, one needs to
explore the internal states of a smart contract. However, most prior studies are only
limited to rather short transaction sequences of length 3 [FAH20; KR18a; Nik+18] or
do not assess the ability to work with longer transaction sequences [Gri+20; He+19;
Tor+21a; WC20]. Typically, more complex contracts also require longer transaction
sequences to cover different states of the contract during testing. To assess the ability
of prior analysis tools to cope with longer consecutive transaction sequences, we
conducted an experiment with a set of benchmark contracts with artificial bugs. Our
experiment, detailed in Section 5.4, shows that existing analysis tools are not sufficient
to analyze more complex contracts. In particular, current fuzzing-based analysis
tools [Gri+20; Tor+21a] were unable to identify the bugs that require a specifically
ordered sequence of six or more transactions. While symbolic execution tools [KR18a;
Mos+19; Nik+18] are capable of producing such sequences even up to ten transactions,
they fail to identify faults that require accumulation of internal state over multiple
transactions. Apart from this, none of the analysis tools we tested can identify all
bugs within a generous time budget of 48 hours.

Support for Complex Smart Contract Interactions Another challenge that we need to
tackle is the frequent interaction of smart contracts with each other. To precisely model
such an interaction, whenever a smart contract calls another (potentially untrusted)
smart contract, we must assume that the target smart contract can be reentered at
any function. Such so-called reentrancy attacks have had devastating consequences
in the past and even required a hard fork of the Ethereum blockchain. To faithfully
emulate the attacker’s capabilities with respect to reentrancy, we must simulate the
following scenarios: At each call to an untrusted, potentially attacker-controlled
contract, the target smart contract can be reentered (1) at the same call depth
multiple times, (2) at multiple functions, and (3) by a call originating from a different
smart contract. As such, accurately modeling an attacker capable of performing these
variants and combinations of reentrant transactions is highly challenging. Current

1lloc is counted with github.com/XAMPPRocky/tokei.
2#func is counted as the number of ABIs with non-constant attribute.
3counted using the EtherSolve [Con+21] static analyzer

86

https://github.com/XAMPPRocky/tokei

5.1 Challenges of Automated Smart Contract Analysis

analysis tools mostly refrain from modeling arbitrary reentrant transactions due to
state explosion [Kal+18]; instead, most tools utilize over-approximative detectors for
reentrancy bugs (e.g., no state updates after calls [FGG19; Tor+21a; Tsa+18]).

To better illustrate the challenge, consider the example in Figure 5.2, which depicts a
token-like contract with standard transfer and allowance mechanisms that is vulnerable
to a reentrancy attack. If using the checks-effects-interactions code pattern [SolCEI]
is not possible, the second best alternative to prevent reentrancy attacks is to use
locking mechanisms [SolRe]. However, many analysis tools, such as Slither [FGG19],
Securify [Tsa+18], and Confuzzius [Tor+21a], do not handle locking mechanisms
appropriately and simply report a potential reentrancy issue in the withdrawBalance
function, both due to the locking mechanism and the balance update. In the example
in Figure 5.2, the modifier withdrawAllowed prevents an attacker from calling the
withdrawBalance function in a reentrant manner. This gives the developer a false
sense of security, thinking that the userBalances variables are protected by the locking
mechanism and as such the contract must be secured against reentrancy attacks.
However, this only assumes that the attack follows the call chain A1 → B → A1 → B.
Since the attacker A1 has arbitrary control, they can transfer control to a different
colluding smart contract A2, which allows executing the call chain A1 → B → A1 →
A2 → B. As such, the second attacker contract A2 can call into the transferFrom
function to move away the balance of A1 before the call to withdrawBalance finishes
and resets the balance. With this attack, it is possible to bypass the reentrancy locking
mechanism and withdraw twice the balance that should be available to the attacker.

87

Chapter 5 Fuzzing of Smart Contracts

1 contract Bank {
2 mapping(address => uint256) balance;
3 mapping(address => bool) disableWithdraw;
4 mapping(address => mapping(address => uint256)) allow;
5
6 modifier withdrawAllowed { // reentrancy locking
7 require(disableWithdraw[msg.sender] == false); _; }
8
9 function addAllowance(address other, uint256 amnt) public

10 { allow[msg.sender][other] += amnt; }
11
12 function transferFrom(address from, uint256 amnt) withdrawAllowed public {
13 require(balance[from] >= amnt);
14 require(allow[from][msg.sender] >= amnt);
15 balance[from] -= amnt;
16 allow[from][msg.sender] -= amnt;
17 balance[msg.sender] += amnt; }
18
19 function withdrawBalance() withdrawAllowed public {
20 // set lock
21 disableWithdraw[msg.sender] = true;
22 // reentrant calls possible here
23 msg.sender.call{value: balance[msg.sender]}("");
24 // release lock
25 disableWithdraw[msg.sender] = false;
26 balance[msg.sender] = 0; }
27 /* ... */
28 }

A1

A2

B.withdrawBalances()

B.addAllowance(A2, N)

A1

B.transferFrom(A1, N)

B.deposit()

A2

B.withdrawBalances()

Figure 5.2: A contract, B, with bypassable reentrancy-locking using multiple collud-
ing attacker-contracts (A1 and A2). The reentrant transaction sequence
depicted below the code listings exploits the shown contract, bypassing
the reentrancy-locking.

88

5.2 Design of EF�CF

5.2 Design of EF�CF

evm2cpp

AFL++
Instrumentation

Native Smart
Contract

LLVM
Compiler

Smart Contract
Bytecode

Fuzz Target

Compile Time Run Time

AFL++
Fuzzer ethmutator

Fuzzing
Dictionary

Transaction
Sequences

eEVM

Bug Oracles EVM Runtime

Fuzzing Harness

Smart Contract
ABI

Figure 5.3: Architecture of EF�CF. Blue boxes are newly developed or modified com-
ponents.

The design of EF�CF is driven by two major features: optimizing test case throughput
and accurately modeling complex interactions with smart contracts. To achieve the
former, EF�CF uses two explicit phases, a compile and a run time phase (see Figure 5.3).
At compile time, the EVM bytecode of the smart contract is translated to C++ code
with our newly developed evm2cpp compiler and paired with a fuzzing-optimized EVM
runtime, facilitating fast smart contract execution. To accurately model interactions
with smart contracts, we devise an approach to allow the fuzzer to mutate the behavior
of multiple simulated attacker-controlled smart contracts. Each generated test case
specifies a sequence of transactions, which are executed by the fuzzing harness. However,
in contrast to prior work [FAH20; Gri+20; KR18a; Nik+18; Tor+21a], this transaction
sequence also specifies the behavior of callbacks to attacker accounts, including return
values and further reentrant transactions. To detect bugs, EF�CF features detectors
that are directly built into the EVM runtime and the fuzzing harness. Here EF�CF
supports a commonly featured Ether-based bug oracle that attempts to gain Ether,
but also custom bug oracles that are specified by a developer in Solidity code. In what
follows, we discuss and explain our design choices in more detail.

5.2.1 Modelling Blockchain Interaction

To faithfully model complex (possibly adversarial) interactions on the blockchain, we
define an input format for Ethereum transaction sequences that supports return data
and reentrant transactions. EF�CF runs the smart contract in a custom blockchain
environment, which contains several attacker-controlled accounts. A user of EF�CF
can also supply a custom initial blockchain state, e.g., to fuzz smart contracts which
rely on other smart contracts or expect to be deployed at a certain address. Given that
smart contracts can depend on various environmental data that is retrieved from the
Ethereum blockchain, EF�CF allows the fuzzer to choose and mutate these values at
will. For example, the fuzzer chooses the block number and timestamp at the beginning
of the transaction sequence and is allowed to advance both at every transaction. This
enables us to handle smart contracts that expect a certain timespan to pass between
two consecutive transactions. Furthermore, the fuzzer can increase the initial Ether
balance of the target contract to simulate prior Ether investment into the contract.

89

Chapter 5 Fuzzing of Smart Contracts

The blockchain state is reset before every executed test case, which ensures that each
generated transaction sequence can be deterministically executed. This is necessary to
obtain reliable coverage measurements and eases root-cause analysis since the developer
can reliably replay a transaction sequence. In many cases, the transaction sequence
can be directly utilized as an end-to-end exploit against the deployed version of the
contract.

Every test case in EF�CF consists of a header specifying the initial environment
followed by a sequence of transactions. Similar to regular Ethereum transactions, each
transaction consists of a sender, a receiver, a call value (i.e., transferred Ether), and
associated input data. However, for performance reasons, we restrict the senders and
receivers to a small set of accounts that are fixed when the fuzzer is launched. In a
typical single-contract fuzzing setup, the set of receivers will include only the target
smart contract. EF�CF simulates the behavior of arbitrary smart contracts at the
attacker-controlled accounts. Each transaction has additional associated data beyond
what a regular Ethereum transaction requires. This includes fields that specify what
to do if the target smart contract calls back to an attacker-controlled address. Each
transaction can have multiple associated return-headers, which specify (1) whether
the call succeeded, (2) what data to return, (3) and how many reentrant calls can
be performed. The fuzzer is then free to choose arbitrary values for any of these
parameters. This allows the fuzzing process to explore a large variety of behaviors of
attacker-controlled smart contracts.

Reentrant Transactions As described in Section 5.1, it is also important that we
model complex interactions with the target smart contract, including reentrant trans-
actions. Prior dynamic analysis tools [JLC18; KR18a; Tor+21a] focused on generating
lists of transactions that trigger an exploit. However, to also model reentrant trans-
actions, a simple list data structure is not sufficient: every top-level transaction can
have multiple associated reentrant transactions of which every transaction can have
again associated reentrant transactions (see Figure 5.2 for an example). As such, the
execution of a transaction spans a tree of calls to other contracts. To let the fuzzer
simulate the behavior of a reentrancy-capable attacker, we need to model this call-tree
in the input format for the fuzzer. Mutating the tree structure allows the fuzzer
to explore various shapes of the call-tree: reentering the same function repeatedly,
reentering the same function only once, reentering the same contract in a different
function, or reentering the same contract multiple times at the same call-depth.

However, in practice, not all shapes of the call-tree are possible. Some functions of a
contract allow for callbacks to the attacker, and therefore further reentrant transactions,
while others do not. In general, it is not possible to compute the shape of the call-tree
in advance. Whether an external call to an attacker is performed by the target smart
contract generally depends on the input and as such, cannot be determined before
executing the transaction.

Therefore, EF�CF’s fuzzing components operate on a list of transactions. However,
the fuzzing harness of EF�CF treats this list as a queue and dynamically builds a tree
of transactions, i.e., when an external call is encountered, it will reenter with the next
transaction in the queue. To mutate this ad-hoc tree structure, the fuzzer can mutate

90

5.2 Design of EF�CF

TX2
input: f2()
reenter: 0

TX1
input: f1()
reenter: 0

TX1

input: f1()
reenter: 1

Mutate

input: f2()
reenter: 0

TX3 input: f3()
reenter: 0

TX2 input: f3()
reenter: 0

TX1

input: f1()
reenter: 2

Mutate

input: f2()
reenter: 0

input: f3()
reenter: 0

TX1

input: f1()
reenter: 1

Mutate input: f2()
reenter: 1

input: f3()
reenter: 0

Figure 5.4: Mutating a flat transaction sequence to obtain reentrant transaction se-
quences with different shapes. The fuzzer modifies the reenter flag associ-
ated with the various transactions.

a single field in the return header that specifies how many reentrant transactions can
be executed when an external call is encountered. The fuzzing harness ignores this
field if the transaction does not trigger an external call. For example, Figure 5.4
shows the mutation EF�CF performs to create reentrant transaction sequences. We
start with a flat sequence of three transactions that target the functions f1, f2, and f3.
Both transactions have the reenter flag set to 0, if the function f1 attempts to call
back into the attacker, the call will fail. The fuzzer then probabilistically mutates the
reenter flag and sets it to 1 in the first transaction. Now the same callback will not
fail anymore but instead make the second transaction a reentrant transaction. The
third transaction remains a top-level transaction. With this simple mutation, EF�CF
has now generated a cross-function reentrancy attack. By changing the reenter flag in
different transactions EF�CF can generate different tree shapes. Figure 5.4 shows two
further mutations on this first mutated test case that results in two distinctly shaped
call trees.

Compositional Security Modern smart contracts are increasingly coupled with other
smart contracts. For example, token contracts are often tied to exchange contracts,
where the token can be traded for other tokens or Ether. Recently, several attacks
have been reported that were only possible due to composition of multiple smart
contracts that were independently developed [REVST; CREAM; Cec+21; Tor+21b].
For example, the Uniswap reentrancy attack was only possible, because the first version
of the Uniswap contract was combined with a new type of token contract that would
perform a callback to the attacker. The Uniswap contract did not expect reentrancy
to be possible on an external call and is indeed safe when paired with most token
contracts.

Compositional security is often associated with reentrancy, because the most promi-
nent examples of compositional security issues were also reentrancy attacks. However,
compositional attacks are not necessarily reentrancy attacks. Figure 5.5 shows four

91

Chapter 5 Fuzzing of Smart Contracts

A

A

V1

V1

(a) Single Contract.

A

A

V1

V1

(b) Single Contract Reentrancy.

A

A

V1

V2 V1

(c) Contract Composition.

A

A

V1

V2 V1

(d) Compositional Reentrancy.

Figure 5.5: Different settings illustrating the difference and similarities between reen-
trancy and compositional attacks.

different attack settings, where the last (sub-)transaction triggers a bug in contract V1.
Figure 5.5a depicts a flat sequence of transactions: two subsequent calls to contract
V1. Figure 5.5b shows a simple reentrancy attack, V1 call back into the attacker A,
which performs a reentrant call to V1. Figure 5.5c depicts a compositional attack,
where a composition of two contracts is vulnerable. The DoS attack against the Parity
Multisig Wallet is an example of such an attack [Tec17a]. The bug can be triggered
by setting up a vulnerable state and then forcing V2 to call V1. Figure 5.5d depicts
a compositional reentrancy attack, where the call from V2 to V1 is a reentrant call.
The Uniswap attack is an example of such a compositional reentrancy bug [Cec+21].

EF�CF’s design also allows for testing compositions of smart contracts. First, EF�CF
is designed such that it can import parts of the blockchain state to set up a realistic
environment for the target smart contracts. For example, developers could test the
security of their deployed contract compositions by setting up their initial state on a
local test chain and then running EF�CF to detect potential issues. Second, EF�CF
supports selecting the receiver of a transaction, including reentrant transactions. As
such, a developer or analyst just needs to configure the set of contracts to be analyzed
by EF�CF in composition.

5.2.2 Optimizing Test Case Throughput

Most state-of-the-art analysis tools [FAH20; Gri+20; KR18a; Mos+19; Nik+18;
Tor+21a] develop or utilize custom EVM implementations that offer the necessary
introspection and extension possibilities necessary to perform dynamic smart contract
analysis. Similarly, as part of our high throughput fuzzing framework, we develop an
execution environment for smart contracts that is optimized for the fuzzing use case.
Here, test case throughput, i.e., both fast mutation/generation and fast execution,
emerge as one of the most important properties of a fuzzer to achieve good results in
practice.

92

5.2 Design of EF�CF

Translating EVM to C++ Most widely used Ethereum clients implement an interpreter
to execute EVM smart contracts. Typically, Ethereum nodes execute a large number
of different smart contracts throughout their operation; in this case, it suffices to rely
on an interpreter. However, in a fuzzing setting, the same smart contract is repeatedly
executed. As a consequence, the overhead of the interpreter adds up over time and
causes significant overhead over longer fuzzing periods. To reduce the interpreter
overhead, we develop a custom translation layer from EVM bytecode to C++ and
pair this with a customized EVM runtime optimized for fuzzing. EF�CF’s compiler
evm2cpp reduces this overhead by translating the bytecode to optimized C++ code.
Translating bytecode targeting a virtual machine to C++ [Sch+16; il2cpp] or directly
to native code [GRAAL; Wim+19] has been previously applied in various academic
and industry settings to speed up execution time. In EF�CF, we apply this technique
for the first time to EVM bytecode.

Note that a typical interpreter is implemented as a loop that fetches the next opcode
and dispatches to the corresponding opcode handler. In evm2cpp, we eliminate the
overhead incurred by the interpreter loop by mapping the EVM basic blocks directly to
lexical C++ blocks. Within a basic block, the interpreter’s opcode handlers are invoked
sequentially. This avoids having to explicitly dispatch to each opcode handler for each
instruction. Additionally, we optimize each basic block by performing constant folding
and eliminating EVM stack operations to reduce memory accesses. The control-flow
transfers between EVM basic blocks are mapped to C++ goto statements. This leads
to a native version of the smart contract that can be further optimized by a standard
compiler and fuzzing toolchain.

Optimizing the EVM runtime The smart contract that is translated to C++ still
requires an EVM runtime that implements the opcode handlers and interaction with
the blockchain. As such, we pair the C++ code generated by evm2cpp with an EVM
runtime, which we adapted and optimized from the eEVM project [eEVM]. We chose
the eEVM project because of its relatively simple codebase that can be easily extended
and adapted for fuzzing. This includes omitting or simplifying several features required
by a full EVM implementation operating as part of an Ethereum node. For example,
our EVM runtime does not feature instruction-accurate gas tracking. We do not need
the gas mechanism to limit execution time since it is limited per test case by the fuzzer.
Detecting the majority of vulnerabilities, such as access control or reentrancy, does
not require instruction-accurate gas tracking. However, checking the gas budget is
necessary to accurately execute external calls.

Furthermore, we stop test case execution at the first failing transaction. Since the
failing transaction would be rolled-back, this has no effect on subsequent transaction
executions. Instead of performing roll-backs after every failing transaction, we stop
the execution of the current test case, reset the state of the Ethereum blockchain to
its initial state, and let the fuzzer generate a new test case. This approach nudges the
fuzzer to generate transaction sequences that only contain succeeding transactions.
The only exception is the last transaction in the sequence, which is allowed to explore
error-handling paths. Furthermore, this approach increases the effectiveness of test
case splicing: when EF�CF combines two previously generated test cases into one, it
will very likely generate a new test case containing only succeeding transactions.

93

Chapter 5 Fuzzing of Smart Contracts

Optimizing the Mutations At run time, the base fuzzer launches the target smart
contract with seed inputs, i.e., a seed with a single transaction without any input. The
fuzzing process is driven by a greybox fuzzing approach which involves mutating inputs,
executing the fuzz target, and measuring the code coverage to find new interesting
transaction sequences. Note that the base fuzzer is unaware of the structure that
is inherent to the test cases, i.e., the structure of the transaction sequence and the
structure of the individual transaction inputs. As such, the base fuzzer’s mutation
strategies are not efficient in mutating the structure of the input. Hence, we augment
the base fuzzer with a carefully engineered and optimized test case generator and
mutator that performs structure-aware mutations and generations. Our custom
mutator is called ethmutator and performs both (1) mutations on the transaction
inputs according to the smart contract’s ABI and (2) structural mutations on the
transaction sequence.

5.2.3 Bug Oracles

Prior work on smart contract fuzzing attempted to address two orthogonal problems at
the same time: triggering bugs and detecting bugs [Cho+21; He+19; JLC18; Ngu+20;
Tor+21a]. Bug oracles are dynamic analyses that signal the fuzzer that a fault was
triggered. In this paper, we focus primarily on the aspect of triggering faults by
developing a high throughput fuzzer to identify the right input to trigger a fault. We
opt to primarily use a simple—yet powerful—bug oracle: Ether gains. This is in line
with prior work on exploit generation for smart contracts [FAH20; KR18a; Nik+18].
However, we also support custom bug oracles defined in Solidity code by the smart
contract developer to cover contract-specific bug classes.

EF�CF defines an attack to satisfy one of the following conditions: (a) the attacker
is able to trigger a selfdestruct to an arbitrary address, thereby allowing the attacker
to drain the funds of the contract and create a Denial-of-Service scenario, (b) the
attacker can redirect the control flow to an arbitrary address (using the DELEGATECALL
instruction), which would give the attacker control over the target’s Ether, and (c) the
attacker is able to gain Ether by interacting with the contract, i.e., the sum of the
balances of the attacker-controlled contracts must exceed the initial sum of balances of
these contracts. In contrast to other bug oracles, this approach avoids a high number
of false alarms by design. For example, accurately detecting integer overflows [FSS18]
or reentrancy [Rod+19] without high-level type information is highly challenging.
However, it is comparably straightforward to detect if a fuzzer generates a transaction
sequence exploiting an integer overflow or reentrancy to gain Ether. Interestingly, we
found that this type of bug oracle is also more accurate than bug oracles implemented
in other analysis tools. For example, the contract depicted in Figure 5.6 is not identified
as vulnerable by neither of two state-of-the-art hybrid fuzzers, Confuzzius [Tor+21a]
and Smartian [Cho+21]. On the other hand, EF�CF’s Ether-gains bug oracle turns
out to cover more cases such as this example.

However, an Ether-based bug oracle often does not capture the semantics of some
smart contract applications, such as token contracts. As such, we also implemented
support for custom invariant checking or assertion checking. This approach is also used

94

5.3 Implementation Details of EF�CF

1 contract SimpleEtherDrainOther {
2 function withdraw(address payable to) public {
3 require(msg.sender != to);
4 to.transfer(address(this).balance);
5 }
6 function deposit() public payable {} }

Figure 5.6: Contract that is not considered as vulnerable by the leaking Ether bug
oracles of Confuzzius [Tor+21a] and Smartian [Cho+21], but detected by
EF�CF’s Ether gain bug oracle.

in commercially used fuzzers [Gri+20; Conc]. This allows smart contract developers
to manually specify invariants that the fuzzer tries to invalidate.

5.3 Implementation Details of EF�CF

We now present the description of our prototype implementation of EF�CF.

5.3.1 EVM to C++ Translation

The evm2cpp component is a custom compiler that translates EVM bytecode to C++

function calls, implemented in roughly 2500 lines of Rust code. First, we perform a
linear pass over the EVM bytecode to build the set of all basic blocks. We use the fact
that in EVM bytecode, all jump destinations are marked with JUMPDEST instructions.
As such, we can efficiently identify the boundaries of a basic block by looking for
branching instructions and jump destination markers. However, we do not construct
a full CFG, as this would require complex and error-prone analysis since all jumps
in the EVM are indirect jumps. Instead, to keep the required analysis feasible, we
perform local analysis and optimization at the EVM basic block level. We emulate
basic blocks in isolation using abstract values as placeholders for non-constants to
perform data-flow analysis and constant propagation concerning the EVM stack. Note
that, in contrast to abstract interpretation, we stop emulation at the end of a basic
block and, as such, do not need to handle control-flow instructions.

The code generation procedure translates each EVM basic block to a C++ lexical
block. If we can infer the jump target at the end of a basic block with our constant
propagation, we directly emit a goto statement to the target C++ lexical block.
Otherwise, we have to fall back to using a large jump table via the computed goto
feature to efficiently dispatch to the next basic block at runtime. In both cases, the
C++ gotos are translated into a jump instruction by the C++ compiler, which is then
instrumented by the coverage-instrumentation pass of the fuzzer. Effectively, this also
provides edge-coverage information without the need for explicit instrumentation of
the EVM code, which further improves the performance.

Within a basic block, each opcode is translated to a call to the respective opcode
handler function in the EVM runtime. However, we do not use the EVM stack within
basic blocks. Instead, we translate the stack-based EVM opcodes into a lightweight

95

Chapter 5 Fuzzing of Smart Contracts

1 JUMPDEST
2 CALLVALUE
3 DUP1
4 ISZERO
5 PUSH2 0x66
6 JUMPI

1 pc_5a : { /* JUMPDEST */
2 /* CALLVALUE */
3 const uint256_t v_1_0 = callvalue_v();
4 /* DUP1; ISZERO */
5 const uint256_t v_3_0 = iszero_v(v_1_0);
6 /* PUSH2 0x66; JUMPI */
7 if (v_3_0) {
8 ctxt->s.push(v_1_0);
9 goto pc_66;

10 }
11 ctxt->s.push(v_1_0);
12 goto pc_62; // fallthrough branch
13 }

Figure 5.7: Example for a basic block starting at address 0x5a and translated to C++

by evm2cpp. The original EVM basic block is on the left and the translated
basic block in C++ annotated with the respective EVM instructions is
depicted on the right. Some stack-related opcodes have no direct counter-
part in the emitted C++ code. For example, the DUP1 instruction has been
eliminated during translation.

register-based form, where each register is translated to a C++ local variable, and no
register is reused. This is similar to the single-static assignment form, albeit without
the need for PHI nodes. At the beginning and the end of each translated basic block,
we ensure that the stack effects of the register-based form and the original EVM
opcodes are the same. Essentially, we use the EVM stack only to pass parameters
between translated basic blocks. This enables us to eliminate a number of costly EVM
stack operations. Furthermore, we emit C++ code that can be well optimized by recent
clang versions (we tested clang ≥ 13).

Figure 5.7 shows an example of a translated basic block. Here, the DUP1 opcode is
eliminated, which duplicates a value on the EVM stack. Furthermore, we eliminate
the PUSH2 instruction, which pushes a constant to the stack. Owing to the constant
propagation pass we perform, we can infer that this constant is used as a jump target
later. Instead of dispatching the jump via the EVM stack, we emit a goto statement
that directly targets the desired block. Before the jump, we fix up the EVM stack
effects of the basic block by pushing the right values to the stack. With respect
to the EVM stack, the original bytecode performs three pushes, two pops, and one
replacement of the top element. In contrast, the generated C++ code uses only a single
stack push.

EVM-level Auto-dictionary To increase fuzzing efficiency, many fuzzers scan the
code for constants and create a dictionary of potentially interesting values (e.g., file
format header magic values). However, they typically scan for up to 64 bit constants
or null-terminated C strings and thus do not properly handle the 256 bit EVM words
or 160 bit Ethereum addresses. Hence, we generate a dictionary of values based on the
constants discovered during the constant propagation pass. This includes computed
quasi-constants that are often found in EVM bytecode.

96

5.3 Implementation Details of EF�CF

Dynamic Contract Creation Currently, EF�CF does not support fuzzing contracts
that create other contracts at runtime, as EF�CF would have to execute previously
unknown EVM bytecode, which is not possible in the current ahead-of-time compilation
model. When EF�CF encounters an instruction that creates a new contract, EF�CF
will stop executing the current transaction sequence. However, we only encountered
a single contract that created a new contract at runtime during our evaluation. As
such, we believe these to be sufficiently rare cases. There are multiple options to
handle dynamic contract creation. Currently, the ahead-of-time executed code is
separated from the interpreter. However, since both use the same data structure to
store EVM state, one could seamlessly switch between interpretation and compiled
smart contract code. This would reduce fuzzing throughput but would allow EF�CF
to handle dynamic contract creation. If the constructor code of the contract is known,
it can also be translated with evm2cpp, allowing the fuzzer to execute constructor
code at high throughput. Alternatively, one could switch to a cached just-in-time
compilation model of the EVM bytecode instead of using ahead-of-time compilation.
However, both with just-in-time and ahead-of-time compilation, one needs to handle
the fact that some contracts change constants within the constructor code before
executing it, which hampers efficient caching of translated code.

5.3.2 Fuzzing Harness

We opted for a lightweight EVM implementation as the base for our fuzzing-optimized
EVM runtime. To this end, we adapted the open-source eEVM project [eEVM] such
that it fits the code-generation of evm2cpp and added an implementation of several
newer EVM opcodes, missing features, and various minor fixes. Furthermore, we
replaced the usage of C++ exceptions with return values in hot code paths that deal
with exceptions thrown by the smart contract code. This results in considerably
better performance since fuzzing tends to frequently exercise the error handling
paths of the smart contract code. We also switch to a more optimized hashmap
implementation [Pop19] and use mimalloc [LZM19] as the default allocator.

Input Format Within the eEVM project, we created a standard libfuzzer-compatible
fuzzing harness. The bug oracles are directly integrated into the fuzzing harness and
runtime support code of the eEVM project. The fuzzing harness features a parser for
a custom input format we developed. This format can be quickly parsed without ever
failing, i.e., any unneeded data is discarded by the harness; for any missing data fields,
default values are assumed. This robust parsing approach allows the use of standard
bit-flipping mutations [Fio+20] that are unaware of the input structure. The input
format consists of an initial header defining the initial environment, followed by a
sequence of transactions. Each transaction is represented as a header and a field that
specifies the length of the transaction input. Mutating the header for a transaction
allows the fuzzer to select transaction-specific parameters, such as the sender account,
the call value, and the number of allowed reentrant transactions. For the input data,
the parser simply consumes bytes from the fuzzer-provided data according to the
length specified in the header until the end of the fuzzer-provided data. Figure 5.8
shows an example for a test case generated by EF�CF to exploit the contract depicted

97

Chapter 5 Fuzzing of Smart Contracts

in Figure 5.2. We designed the input format to enable high throughput fuzzing while
being expressive enough to model complex smart contract interactions. Furthermore,
we use the input format as a template to synthesize Solidity attack smart contracts
that exploit the target. For each attacker-controlled account, we synthesize a Solidity
contract that implements the behavior as specified by the generated test case. Note
that we perform a straightforward translation here, which means that the synthesized
contracts do not react to the victim contract, but simply perform the calls as they are
specified in the test case. The composition of attack contracts implements one big
state machine, with a central attack contract as an entry point that synchronizes the
state of all attack contracts.

98

5.3 Implementation Details of EF�CF

1 number: 0
2 difficulty: 0
3 gas_limit: 0
4 timestamp: 0
5 initial_ether: 14000000000000000000
6 txs:
7 - sender_select: 1
8 call_value: 9227875636482146304
9 input: "0xd0e30db0" # deposit()

10 returns: []
11 - sender_select: 1
12 call_value: 0
13 input: "0x5fd8c710" # withdrawBalance()
14 returns:
15 - value: 1
16 reenter: 2
17 data_length: 0
18 data: "0x"
19 - sender_select: 1
20 call_value: 0
21 # addAllowance(0xc3cf2af7ea37d6d9d0a23bdf84c71e8c099d03c2,
22 # 1117873197643827594651545771110674982630890210242)
23 input: "0xf3c40c4b0000000...."
24 returns: []
25 - sender_select: 2
26 call_value: 0
27 # transferFrom(0xc2018c3f08417e77b94fb541fed2bf1e09093edd,
28 # 295147905179352825856)
29 input: "0x01c6adc30000000...."
30 returns: []
31 - sender_select: 2
32 call_value: 0
33 input: "0x5fd8c710" # withdrawBalance()
34 returns:
35 - value: 1
36 reenter: 0
37 data_length: 0
38 data: "0x"

Figure 5.8: Textual representation of the transaction sequence generated by EF�CF to
exploit the contract from Figure 5.2 (some fields omitted and simplified.

99

Chapter 5 Fuzzing of Smart Contracts

Fuzzer and Harness Integration While the fuzzing harness itself is mostly oblivious
to the used fuzzer, we opted to rely on AFL++ [Fio+20] as one of the most advanced
general-purpose fuzzers. AFL++ supports various modern fuzzing techniques, such
as collision-free coverage bitmaps, a Redqueen [Asc+19b] implementation called
cmplog to bypass fuzzing roadblocks, and support for custom mutators. Due to
our transpilation approach, we are able to directly leverage the instrumentation of
AFL++ for smart contract code. We built the fuzzing harness with clang, with the
highest optimization setting and link-time optimization (LTO) enabled, instrumenting
the harness with AFL++’s LTO-based collision-free code coverage instrumentation.
Since we have translated the EVM bytecode to C++ code, we can utilize AFL++’s
coverage instrumentation to instrument the combination of the harness and all the
transpiled smart contracts.

However, we noticed several issues when using AFL++, most importantly regarding
the implementation of the Redqueen mutations [Asc+19b]. The problem is that by
default, the optimized big integer library used by eEVM uses branchless code when
comparing the four 64 bit words that make up a single 256 bit value. As a result,
AFL++’s cmplog cannot detect when only one of the four words matches, as no
new code coverage can be observed. As a consequence, it fails to incrementally solve
comparisons with large constants. However, this issue is only relevant for bypassing
comparisons and not during other arithmetic operations. As such, we opted to
manually adapt the relevant functions to provide explicit coverage feedback to AFL++.
This optimization allows AFL++’s cmplog to solve a considerable amount of fuzzing
roadblocks due to integer comparisons. To further increase fuzzing efficiency when
applying structural mutations in the custom mutator, we added a lightweight tracing
mode for certain opcodes (comparisons and returns) to the codebase. This enables us
to identify quasi-constants and add them to the dictionary of our mutator at runtime.

When fuzzing for reentrancy attacks, we found it beneficial to notify the fuzzer about
the call depth of the current execution. To this end, we introduce call-depth-sensitive
coverage reporting in the fuzzing harness. Whenever a new basic block is executed,
we record the current call depth in AFL++’s coverage map. This allows AFL++ to
distinguish executions of the same contract at different call depths. Since AFL++
receives a new coverage signal when a transaction is executed in a reentrant manner,
the test case will be stored in the queue. In turn, this increases the probability of
finding reentrancy attacks.

Multi Target Selection We have also implemented an experimental multi-target mode
in the fuzzing harness, which allows EF�CF to fuzz multiple contracts at once. This is
useful in case there are mutual interdependencies between two contracts. Essentially,
for each transaction, we allow the fuzzer to choose the target smart contract out of a
list of contracts, producing a transaction list that alternates between calling different
target contracts. However, we have not implemented support for multiple ABIs in the
custom mutator. As a workaround, we concatenate the ABIs of all involved contracts.
Nevertheless, the fuzzing efficiency of this mode is not as good as with full support
in the custom mutator. We leave optimizing the custom mutator for multi-target
ABI-based fuzzing as future work. While some known attacks require such a mode,
the vast majority of known vulnerabilities do not fall into this category.

100

5.3 Implementation Details of EF�CF

5.3.3 Custom Mutator

We implemented a mutator library, called ethmutator, in roughly 10 kloc of Rust to
efficiently generate and mutate: (1) the structured transaction input expected by the
smart contract code, and (2) the transaction sequence input format parsed by the
fuzzing harness. The mutator library features a parser and emitter for the binary
input format accepted by the harness code. Based on this library, we implement
several related tools, such as a structured test case minimizer and an AFL++ custom
mutator. The mutator is carefully engineered with high performance in mind. We
reduce the number of required allocations and copy operations by applying copy-on-
write semantics while performing mutations on a transaction sequence. We also use
mimalloc [LZM19] in the custom mutator, as this increases the performance of the
mutator by a factor of four.

In Ethereum, a transaction is associated with an input field, which is simply a
variable-length byte string. Smart contracts use a de-facto standardized ABI format,
which specifies how function calls with parameters of complex types are encoded. To
enhance the efficiency, we use the ABI information in the ethmutator to perform
mutations according to the ABI. Unlike existing general-purpose fuzzers, our custom
mutator can handle the complexity of the ABI format by acting as a grammar fuzzer
for the given ABI and generating structurally-valid inputs based on the ABI. When
choosing the values for primitive types, we rely on a fuzzing dictionary built into the
custom mutator. Recall that this dictionary is seeded with the constants that are
discovered during the analysis pass of evm2cpp. In addition, we extend the dictionary
with “interesting” values that are likely to trigger bugs (e.g., the dictionary contains
the maximum value for every integer type supported by Solidity to make it more
likely to trigger integer overflows). When no ABI is available, we exploit the fact that
ABI-encoded data is always similarly structured for efficient mutations. For example,
when appending a new transaction, we first select a 4 byte constant from the dictionary
as a prefix for the input. Since the basic unit of the ABI is a 256 bit EVM word, most
of the input mutations operate on this word size if no ABI is available.

The second main task of the custom mutator is to apply structured mutations to
the transaction sequence. We implemented several basic structured mutations, such as
adding, duplicating, or dropping transactions. Furthermore, we implemented more
involved mutators, such as structural test case splicing or value propagation between
transactions in a sequence. Whenever the base fuzzer adds a test case to its queue, the
custom mutator parses this test case and keeps the transaction sequence in memory.
The structured splicing mutation then replaces a randomly selected transaction sub-
sequence with a sub-sequence obtained from a previous test case. The intuition here is
that transaction sequences from prior test cases contain valid transaction combinations.
Combining two valid transaction sequences is more likely to result in a new valid
transaction sequence. We also propagate values from earlier transactions to later
transactions. Hence, with some probability, values in the transaction input will be
replaced with values that occurred as parameters in the input of earlier transactions.
Similarly, we set the value of address types in the ABI to the address of attacker-
controlled accounts that previously already sent a transaction. Similar to AFL [Zal],
the custom mutator has multiple stages and a fixed set of mutations applied to every

101

Chapter 5 Fuzzing of Smart Contracts

test case. Subsequently, random mutations are applied (i.e., similar to the havoc phase
in AFL). Finally, the custom mutator also uses stacked mutations, where different
random mutation operations are combined.

En/Decoding the ABI We use the ethabi Rust library to parse the JSON-based ABI
definition, which allows us to en- and decode the ABI format expected by the smart
contract. Sometimes the base fuzzer will break the ABI encoding, which results in the
custom mutator attempting to decode extremely large input data. In fact, during the
development of EF�CF, we uncovered and fixed two bugs in the ethabi library, s.t., it
would not panic when attempting to decode broken ABI-encoded data. However, we
still set an 8 kbyte limit to the number of bytes we attempt to decode. This prevents
EF�CF from spending too much time attempting to decode an unusually large input
byte-string of a transaction. Since it is unlikely a valid or useful input for the smart
contract under test, it is preferable to avoid the lengthy decoding process altogether.
In these pathological cases, we fall back to the random mutations provided by the
base fuzzer.

AFL++ Integration We patched AFL++ for optimal integration with our custom
mutator. Our patches make AFL++ report an internal performance score to our
custom mutator. The custom mutator can then adapt this score to select the number
of fuzzing rounds for a given test case. Depending on the size and complexity of the
test case, we apply different types of mutations and a different number of fuzzing
rounds in the custom mutator.

We ensure that AFL++ extensively uses the structured trimming provided by our
custom mutator. We found that structured trimming is beneficial to the fuzzing process
in EF�CF. Additionally, we also utilize the trimming step of AFL++ to update the
internal test case queue of our custom mutator. This allows us to only add test cases
to the internal queue, which are trimmed. In contrast to AFL++’s queue, we keep
the internal queue completely in memory and use it for efficient structural splicing
operations.

We also extend AFL++ with an additional manual feedback API with a function
that allows reserving a larger part of the AFL++’s coverage map for direct feedback.
This is used by our modifications to the eEVM runtime to provide explicit feedback
on two properties of the execution. First, we provide explicit feedback on the progress
of solving comparison operators. For example, for the EQ opcode, we provide explicit
coverage feedback to AFL++ for every 64 bit part of the 256 bit EVM-native integer
that is equal. This allows AFL++’s cmplog mode, which implements input-to-state
correspondence on the 64 bit comparison level, to effectively solve fuzzing roadblocks
on EVM-native 256 bit level. Similarly, we provide explicit coverage feedback to
AFL++ whenever a contract executes in a reentrant call. This allows the fuzzer
to distinguish a reentrant execution from a normal execution, i.e., a simple form of
context-sensitive coverage. We found this beneficial for AFL++ to keep both reentrant
and non-reentrant variants of the same transaction sequence in the queue.

When launching AFL++, we disable the byte-level auto-dict feature since it is
superseded by our replacement acting on the EVM bytecode level. Re-implementing

102

5.3 Implementation Details of EF�CF

the auto-dict feature in evm2cpp results in significantly smaller and more useful
dictionaries than relying on AFL++’s auto-dict mode, which scans the final binary
for constants and also picks up irrelevant data, such as strings internal to the eEVM
runtime.

Multi-Core Fuzzing While AFL++ has a single-threaded design, it is capable of
synchronizing with other instances of AFL++ (and even other fuzzers) via the filesys-
tem. EF�CF inherits the same technique, and the wrapper scripts we provide as
part of EF�CF can automatically launch multiple AFL++ instances. Generally, it is
recommended to launch AFL++ using multiple different configurations when using
multiple cores [Fio+20]. We adapt these recommendations to EF�CF. When running
on four or more cores, we launch the following configurations:

1. A main instance with AFL++’s deterministic mutation stages enabled.

2. A compare solver instance, with input-to-state [Asc+19b] and EVM-level compare
tracing enabled.

3. One instance fuzzes only with the custom mutator.

4. The remaining cores utilize AFL++’s lightweight havoc mutations and our
custom mutator.

Other Bug Oracles The standard bug oracles are implemented inside of the eEVM
runtime code. To implement a new bug oracle, one has to modify the C++ imple-
mentation of the runtime code. For performance reasons, EF�CF does not rely on
heavyweight program analysis techniques such as taint tracking to implement bug
oracles. As such, the bug oracles in EF�CF are limited to detecting bugs based on the
state of the simulated Ethereum blockchain. However, we believe that the existing
bug oracles supported by EF�CF already cover a large set of use cases. Furthermore,
developers can use custom properties or the event mechanism to implement custom
bug oracles directly in Solidity code.

Currently, EF�CF supports optional fuzzing modes, which are also used by industry
fuzzers such as Echidna [Gri+20] or Mythril [Conc; WC20]. For example, EF�CF
supports property-based fuzzing with an interface that is fully compatible with the
Echidna fuzzer. The developer specifies a property of the contract that must always
hold, i.e., an invariant of the contract code. Such properties are specified as a Solidity
function that returns whether the property is currently true or false. After every
executed transaction, EF�CF calls the configured property functions and checks
whether the return value signals a violated property. Similarly, EF�CF can utilize
the EVM event logging and error propagation mechanisms to detect bugs. The smart
contract developer emits a certain event whenever a bug is triggered. Whenever this
event is logged during fuzzing, EF�CF will consider the execution to trigger a bug and
report it. Similarly, Solidity versions 0.8 or above report special error messages to the
caller whenever an assertion is violated or an integer overflow happens. If configured,
EF�CF picks up these special error message return codes as a bug and reports it. This
way, EF�CF can be utilized to fuzz for more than Ether-based bugs and also uncover
contract-specific logic bugs.

103

Chapter 5 Fuzzing of Smart Contracts

Comparison of Bug Oracles Previous analysis tools often implement a wide variety
of bug oracles [Cho+21; Luu+16; Nik+18; Tor+21a] to detect security vulnerabilities,
code smells, and other potentially interesting properties of the code. However, the
definition of bug oracles and what oracles should be considered as a security vulnera-
bility differ across the literature. We identify the unprotected selfdestruct bug oracles
as one of the few oracles that are recognized in almost all analysis tools. As such, we
utilize this bug oracle in our benchmarks (see Section 5.4). In EF�CF, we focus on
Ether gains as our primary bug oracle, as it features the least number of false alarms
in practice. However, this single bug oracle in EF�CF actually maps to multiple bug
oracles in other tools. Furthermore, we implement several additional optional bug
oracles that can be used in EF�CF. We show a comparison of supported bug oracles
in Table 5.1. In the following, we discuss some of the bug oracles in more detail.

Locking Ether is fundamentally a liveness property. In general, liveness properties
are hard to show with a fuzzer. A standard fuzzing approach can only show that a
certain code path can be reached. However, to accurately report locked Ether, the
fuzzer would have to show that a certain code path cannot be reached. For this reason,
many fuzzers actually implement a static analysis approach to detecting locked Ether.
For example, ILF [He+19] and Confuzzius [Tor+21a] simply scan the contract for any
instruction that can—in theory—send Ether. However, they do not verify that this
instruction can be actually executed, i.e., the instruction could be inside of dead code.
As such, this approach will only detect simple cases of locked Ether.

Leaking Ether and Ether Gains are two very related bug oracles. Both attempt to
identify bugs where the contract can be used to send Ether to some unrelated address.
EF�CF supports detecting leaking Ether but disables the bug oracle by default. The
idea is that the attacker can trick the contract into sending Ether to some contract
that has no previous relationship with the contract. However, many contracts support
transferring Ether indirectly to another address as a feature. For example, all token
contracts must support transferring tokens to arbitrary addresses as a feature. In
contrast, EF�CF uses Ether gains as a bug oracle that covers more realistic cases.
EF�CF will report an Ether gain bug whenever the sum of the Ether balances of all
attacker-controlled accounts exceeds the initial sum of balances. This allows EF�CF
a wider and more realistic set of issues. For example, the vulnerability depicted
in Figure 5.6 is neither detected by Confuzzius [Tor+21a] nor Smartian [Cho+21].
However, since EF�CF simulates multiple attacker-controlled accounts, it will quickly
generate a transaction originating from the first account and leaking the Ether to a
second attacker-controlled address.

Most analysis tools feature explicit Reentrancy bug oracles. In contrast, EF�CF
does not feature an explicit detector for reentrancy but simply generates reentrant
transaction sequences that trigger other bug oracles, such as Ether gains. As such,
EF�CF detects reentrancy bugs, but only if they are actually exploitable. In contrast
to other analysis tools, this leads to fewer false alarms, e.g., when encountering manual
reentrancy locking [Rod+19].

By default, EF�CF reports unprotected selfdestruct only if the self-destruct will
transfer the remaining Ether of the target contract to the attacker, i.e., the address
parameter of the self-destruct is controlled by the attacker. Optionally, EF�CF can also
report DoS-style unprotected self-destructs, i.e., if the self-destruct can be triggered by

104

5.3 Implementation Details of EF�CF

anyone but always targets a trusted address such as the owner. This style of detection
is featured in most other analysis tools.

With Solidity version 0.8, contracts feature automatic integer overflow checking
and proper assertion violation reporting. EF�CF supports this new Solidity exception
mechanism to signal errors to the fuzzer. Previously, assert statements were imple-
mented with the INVALID opcode that also triggers a transaction revert. However,
earlier contracts (pre 0.4) also used this to implement the failure of input sanitization.
As such, it is hard to reliably distinguish between a regularly failing transaction and
an assertion violation across solidity versions. We expect developers to use the newer
Solidity versions for newly deployed contracts. As such, we opted to support only the
new Solidity exception mechanism, which allows us to reliably detect internal errors
in a smart contract. This includes memory allocation failure, integer overflows, and
internal assertions. Developers can utilize EF�CF for general robustness testing of
their newly deployed smart contracts.

Table 5.1: Comparison of bug oracles in various analysis tools with the bug oracles
available in EF�CF. ✓ fully supported. × not supported. ✓∗ supported
but not enabled by default. ✓† only supported for contract compiled with
Solidity version > 0.8. ×‡ only if it leads to triggering another bug oracle.

Bug Name EF�CF Confuzzius [Tor+21a] Smartian [Cho+21] Echidna [Gri+20]

Assertion Failure ✓† ✓ ✓ ✓∗

Arbitrary Write ×‡ × ✓ ×‡

Block State Dependency ×‡ ✓ ✓ ×‡

Control-flow Hijack (JUMP) ×‡ × ✓ ×‡

Custom Event Oracle ✓∗ × × ✓∗

Custom Property Checking ✓∗ × × ✓∗

Ether Gains ✓ × × ×
Integer Overflow ×‡/ ✓† ✓ ✓ ×‡

Leaking Ether ✓∗ ✓ ✓ ×
Locking Ether × ✓ ✓ ×
Multiple Send × × ✓ ×
Reentrancy ×‡ ✓ ✓ ×
Require Violation × × ✓∗ ×
Transaction Origin Use ×‡ × ✓ ×‡

Transaction Order Dependency × ✓ × ×
Unsafe Delegatecall ✓ ✓ ✓ ×
Unprotected Selfdestruct ✓∗ ✓ ✓ ✓∗

Un/Mishandled Exception ×‡ ✓ ✓ ×

Additional Tooling Based on our custom mutator code, we additionally implemented
several tools that proved to be useful for smart contract fuzzing. For instance, EF�CF
also features a test case minimizer that performs structural minimization on a test case,
allowing an analyst to reduce the size of a test case. Furthermore, EF�CF integrates
a translator between our binary test case format to a human-readable equivalent
yaml-based format, allowing for easy manual modification of test cases. EF�CF can
also convert a test case into a Solidity attack contract that can be deployed within a
blockchain environment to study the generated attack. These tools help an analyst in
performing root cause analysis given a test case that triggers a bug.

105

Chapter 5 Fuzzing of Smart Contracts

2 3 4 5 6 7 8 9 10
Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1
3
6

12
24
48

An
al

ys
is

Ti
m

e
(h

ou
rs

 u
nt

il
fir

st
 b

ug
, l

og
-s

ca
le

)

efcf
efcf.c4
confuzzius
teether

echidna2
maian
manticore

manticore.c4
smartian
verismart

Figure 5.9: Scalability experiment using the synthesized multi contract variant that
are scaled according to the number of required transactions.

5.4 Performance Evaluation

In this section, we evaluate various performance aspects of EF�CF and compare
EF�CF to the current state-of-the-art in fuzzing and symbolic execution. We evaluate
EF�CF concerning scalability to longer transaction sequences, the test case throughput,
scalability to multiple cores, and achieved code coverage. We also perform an ablation
study that shows how the various components of EF�CF improve the performance of
the overall fuzzer.

5.4.1 Scalability Benchmarks

We start with an evaluation of the effectiveness of analysis tools in dealing with an
increasing length of transaction sequences. To this end, we created a benchmark
consisting of three types of contracts (multi, complex, and justlen), which model
different code structures and roadblocks (that hinder analysis) typically found in smart
contracts. For each type of contract, we devise several variants (9 for multi, 3 for
complex, and 4 for justlen) that require an increasing number of transactions to reach
an exploitable state plus another transaction to trigger a vulnerability (see Table 5.2
for a summary). Each variant of multi and complex contracts is parameterized given
the number of transactions that are needed to trigger the bug. For instance, contract
multi10 requires 10 transactions (or sequential function calls) to reach an exploitable
state. Here, we chose to insert a vulnerability in a function that simply triggers
selfdestruct of the contract when the exploitable state is reached. This type of bug is
widely supported by analysis tools and allows us to compare various tools according
to the analysis time required to identify the bug.

The multi contracts are synthesized as follows: for each function, several equality or
in-equality constraints are enforced on up to six integer arguments before setting a

106

5.4 Performance Evaluation

5 7 9
Required TX Sequence Length

0.1

0.25
0.5

1
2
4
8

An
al

ys
is

Ti
m

e
(h

ou
rs

 u
nt

il
fir

st
 b

ug
, l

og
-s

ca
le

)

efcf
efcf.c4

teether
maian

verismart

Figure 5.10: Scalability experiment using the manually created complex contract vari-
ant, scaled according to the number of required transactions.

boolean internal state variable. As such, these benchmark contracts test the capability
of solving input constraints across multiple transactions. The functions of the contract
must be called in the right order, with the right inputs, to trigger a selfdestruct of the
contract. Note that these contracts favor symbolic execution tools, given that they do
not contain any control-flow statements except for error handling. As such, there is no
potential for path explosion within the functions. The three complex contracts consist
of a manual adaptation of the multi contracts with more varying constraints on the
input and the internal state of the smart contract (e.g., requiring an array input of
a certain length or requiring the sha3 hash of a fixed value as input). Finally, the
justlen example is adapted from Groce et al. [GG21] and is parameterized over the
length of an array that must be reached using push, pop, double, and halve operations.

We run the tools tEther [KR18a], MAIAN [Nik+18], EthBMC [FAH20], Manti-
core [Mos+19], Confuzzius [Tor+21a], and Echidna [Gri+20; GG21] using this setup
and measure the time until the bug is discovered with a global timeout of 48 h. We run
all analysis tools within Docker containers on an Intel Xeon Gold 6230 CPU clocked at
2.10 GHz with 188 Gbyte RAM. Due to time constraints, we run the tools in parallel,
keeping all physical CPU cores fully occupied. We do not utilize hyperthreaded cores,
as they are detrimental to CPU-bound tasks such as fuzzing. By default, all tools were
executed on a single core. We additionally ran those tools that support multi-core
analysis (EF�CF and Manticore) on 4 cores concurrently. To run this experiment, we
had to patch the tools tEther [KR18a], MAIAN [Nik+18], and ConFuzzius [Tor+21a]
such that they support longer transaction sequences. We excluded EthBMC [FAH20]
from most of our experiments since we were not able to identify the bug in EthBMC,
which causes it to not report any vulnerabilities with transaction sequences longer than
3. Moreover, we excluded ILF [He+19] because a machine learning-based fuzzer is
very unlikely to produce the 256 bit magic value constants required for the synthesized
contracts. When possible, we bound the number of transactions to consider by 32 for

107

Chapter 5 Fuzzing of Smart Contracts

8 64 128 256
Required Array Length

0.5
1
2
4

10
20
50

100

500

2000

An
al

ys
is

Ti
m

e
(m

in
ut

es
 u

nt
il

fir
st

 b
ug

, l
og

-s
ca

le
)

efcf
efcf.c4
echidna2

confuzzius
maian
ethbmc

verismart
smartian

Figure 5.11: Scalability experiment using the justlen contract by Groce et al. [GG21],
scaled according to the length of the array that must be created using
push, pop, halve and double operations.

all tools in order to ensure that they execute at a reasonable pace while leaving enough
room for failing/duplicated transactions within sequences. We run all Python-based
tools with CPython and the PyPy JIT-compiler. We report the numbers with PyPy
for MAIAN and teEther, where we observed a speed-up. We perform 3 trials for all
symbolic execution tools (where randomness does not play a big role) and at least 10
trials for all fuzzers. In total, we spent approximately 970 days of CPU time for this
experiment.

Our results are summarized in Table 5.2. EF�CF is the only analysis tool capable
of solving all of the contracts in this benchmark dataset. Figure 5.9 shows the
log-scaled time required to solve the multi contracts with an increasing number of
required transactions. We omit those tools/results from the plots where all runs
fail to identify a bug. Only three of the tools scale reasonably to a larger number
of transactions: Manticore, EF�CF, and MAIAN. Surprisingly, MAIAN performs
best in this benchmark and seems to scale very well. Manticore scales in a similar
manner as EF�CF, except for the longest transaction sequence, where Manticore
fails to identify the vulnerability. Surprisingly, Confuzzius, using hybrid fuzzing and
concolic execution, performs worse than most pure symbolic execution-based tools on
this benchmark. Similarly, the fuzzer Echidna does not perform well on the multi and
complex contracts—highlighting the limitations of Echidna in solving complex input
constraints on multiple transactions.

Notice that most analysis tools that we considered in this experiment are inherently
single-threaded. In contrast, it is straightforward to parallelize EF�CF. Running
EF�CF on 4 cores in parallel results in a significant speed improvement as can be seen
in Figure 5.9 and in more detail in Section 5.4.4.

With the increased complexity of the input constraints, symbolic execution tools
lose their edge, as can be seen in Figure 5.10. Here, EF�CF is the only tool that solves
all complex contracts within a reasonable time. The justlen benchmark contracts use
loops to push and pop values of an array and, as such, favor fuzzing-based tools when

108

5.4 Performance Evaluation

compared to symbolic execution tools that provide limited effectiveness due to path
explosion (see Figure 5.11). Note that EF�CF’s analysis time is almost constant for
this benchmark. This is due to the fact that EF�CF features a mutation operation that
duplicates transactions to become reentrant transactions. We designed this mutation
to quickly identify same-function reentrancy bugs, but incidentally, this is also the
reason why EF�CF can very quickly solve justlen contracts. At some point, EF�CF
will simply duplicate the transaction, which doubles the array size. As such, there is
nearly no difference in reaching an array size of 64 or 128.

Table 5.2: Capability of analysis tools to identify bugs with increasing transaction
sequence length. ✓ bug can be found, × bug never found within 48 h.

Tool multi complex justlen
2 3-7 8 9 10 5 7 9 8 64 128 256

teEther [KR18a] ✓ ✓ × × × ✓ × × × × × ×
MAIAN [Nik+18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ×
EthBMC [FAH20] ✓ × × × × × × × ✓ × × ×
Manticore [Mos+19] ✓ ✓ × × × × × × × × × ×
ConFuzzius [Tor+21a] ✓ ✓ × × × × × × ✓ ✓ ✓ ✓
Echidna [Gri+20] ✓ ✓ ✓ × × × × × ✓ ✓ ✓ ✓
VeriSmart [SHO21; So+20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ×
Smartian [Cho+21] ✓ ✓ × × × × × × ✓ ✓ ✓ ✓
EF�CF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5.4.2 Scalability Ablation Study

As part of our ablation study, we also compare the various configurations in terms of
scalability to longer and more complex transaction sequences. We utilize the same
scalability experiment as in Section 5.4.1. However, we bound the execution time to
a maximum of 8 h. We run EF�CF in four configurations: Full EF�CF with ABI,
full EF�CF without knowledge of the ABI, fuzzing with the custom mutator only
(EM), and fuzzing with AFL++’s mutations only (AFL). The results are shown
for the multi, complex, and justlen benchmarks in Figure 5.12, Figure 5.13, and
Figure 5.14, respectively. While the AFL configuration generally provides the highest
throughput (see Table 5.3), it lacks structured mutation operations, such as splicing
at the transaction level. As such, the fuzzing process becomes ineffective and fails to
reliably generate even short meaningful transaction sequences. Furthermore, the AFL
configuration fails to identify a bug in any of the complex variants. This shows that
the custom mutator in EF�CF is essential to good fuzzing performance. Furthermore,
we can see that in this benchmark that the EM configuration performs best. The
magic value comparisons are best solved using the dictionary-based sampling employed
by the custom mutator for integer types. As such, spending more fuzzing time on
dictionary sampling increases the probability that the right value is sampled from the
dictionary. However, since the custom mutator utilizes the dictionary probabilistically,
we also observe some extreme outliers in these experiments. As the custom mutator

109

Chapter 5 Fuzzing of Smart Contracts

2 3 4 5 6 7 8 9 10
Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1

3
6

An
al

ys
is

Ti
m

e
(h

ou
rs

 u
nt

il
fir

st
 b

ug
, l

og
-s

ca
le

)

Full
EM

AFL Full w/o ABI

Figure 5.12: Scalability experiments on various configurations of EF�CF with the multi
contact.

performs mostly structural mutations on the transaction sequences, we can see that it
also performs best on the justlen experiment.

While the EM configuration performs best on the benchmarks presented here, we
found that without AFL’s mutations, and especially the input-to-state correspon-
dence [Asc+19b] mutation, there are several fuzzing roadblocks in practice, which
cannot be solved by the EM configuration. Furthermore, the benchmarks focusing on
real-world smart contracts in Section 5.4.3 show that the standard EF�CF configuration
performs best.

Fuzzing without ABI When fuzzing without ABI information, EF�CF fully relies on
the coverage feedback to discover useful transaction inputs. Generally, EF�CF without
ABI information expectedly performs worse than fuzzing with ABI information. On
the multi and complex contracts fuzzing without ABI information identifies the bug in
a mean of 223 min (σ = 205). In comparison, fuzzing with ABI information requires a
mean of 87 min (σ = 127) to identify the bug. On the justlen benchmark, the difference
is much smaller: 3.9 min with ABI and 6.6 min without ABI. The fuzzer does not need
to identify correct input parameters to identify a bug in the justlen benchmark, as
most of the exposed functions simply do not require parameters. Performing structural
mutations on the transaction sequence does not require ABI information, and as such,
the performance difference is much smaller.

110

5.4 Performance Evaluation

5 7 9
Required TX Sequence Length

0.1

0.25
0.5

1
2
4

An
al

ys
is

Ti
m

e
(h

ou
rs

 u
nt

il
fir

st
 b

ug
, l

og
-s

ca
le

)

EM Full Full w/o ABI

Figure 5.13: Scalability experiments on various configurations of EF�CF with the
complex contact.

8 64 128 256
Required Array Length

0.5
1
2
4

10
20

50
100

An
al

ys
is

Ti
m

e
(m

in
ut

es
 u

nt
il

fir
st

 b
ug

, l
og

-s
ca

le
)

AFL
EM

Full Full w/o ABI

Figure 5.14: Scalability experiments on various configurations of EF�CF with the
justlen contact.

111

Chapter 5 Fuzzing of Smart Contracts

5.4.3 Throughput Ablation Study
We evaluate the various components of EF�CF and how they affect test case throughput
and achieved code coverage. We leverage a set of contracts consisting of a mix of real-
world and one of our benchmark contracts: the contracts Crowdsale [He+19] and the
synthetic multi10 are representative of simpler contracts, while the IMBTC [imBTC],
SpankChain [SpCLC], CryptoBets and PackSale contracts are more complex real-world
contracts. We run each fuzzing configuration 20 times for 10 minutes and record the
average test case executions per second along with the EVM basic block coverage. Our
evaluation results are summarized in Table 5.3. We provide further experiments with
the multi, complex, and justlen benchmark contracts in Section 5.4.2.

We observe a significant drop in test case throughput when we disable evm2cpp and
run the smart contract in the EVM interpreter (designated as Interp in Table 5.3).
This directly translates to achieving less code coverage with the fuzzer, highlighting
the importance of evm2cpp in our design.

For the AFL configuration, we disable the custom mutator. For the EM configuration,
we disable AFL’s mutations. While the lightweight mutations performed by AFL++
result in the highest throughput, they are not aware of the input structure and often
achieve worse code coverage given a certain time budget. Furthermore, we noticed that
AFL++ alone fails to create combinations of transactions (see Section 5.4.2). In this
respect, basic block coverage is not a good metric since it does not account for different
combinations of transactions. Similarly, the custom mutator alone sometimes does not
discover all code paths due to worse throughput and the lack of AFL++’s input-to-state
correspondence. Typically, a combination of both, i.e., running full EF�CF, results in
the best code coverage. Since fuzzing campaigns utilize multiple cores in practice, we
take inspiration from ensemble fuzzing [Che+19b] and automatically launch different
fuzzer configurations in parallel if multiple cores are available (see Section 5.3).

We compare the throughput of other fuzzers to that of EF�CF. Our measurements
show that the test case throughput of EF�CF is larger by one order of magnitude when
compared to other fuzzers. Within our benchmark set, EF�CF has a mean throughput
of 24 301 exec/s (σ = 7154). Echidna [Gri+20] achieves a throughput of 189 (σ = 183)
and a maximum throughput of 497 test cases per second. Confuzzius [Tor+21a] has a
mean throughput of 78 transactions per second (σ = 25). The transaction throughput
is always higher or equal to test-case throughput since test cases typically consist of
multiple transactions.

Table 5.3: Throughput measurements in average test case executions per second and
mean code coverage. Best coverage is underlined.

Interp AFL EM Full
Contract LOC exec/sec cov % exec/sec cov % exec/sec cov % exec/sec cov %

Crowdsale 41 13042 79.5 29688 76.1 19868 80.6 25858 87.3
multi9 150 12814 43.7 43053 40.8 20641 75.7 25817 52.5
IMBTC 664 6880 36.6 28372 52.6 18444 36.4 34510 52.9
PackSale 730 7146 65.0 32215 67.5 11952 60.2 24672 75.2
Spankchain 1048 6574 26.9 19837 47.0 17245 50.5 22698 41.7
CryptoBets 1142 3174 30.8 25122 35.0 10256 45.0 12246 40.5

112

5.4 Performance Evaluation

2 3 4 5 6 7 8 9 10
Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1
3
6

12
24
48

An
al

ys
is

Ti
m

e
(h

ou
rs

 u
nt

il
fir

st
 b

ug
, l

og
-s

ca
le

)

efcf
efcf.c4

echidna2
echidnaparade.p1_c4

manticore
manticore.c4

Figure 5.15: Results of running multiple analysis tools on a single core vs. running on
4 cores (marked with c4) in parallel on the multi dataset.

5.4.4 Multi-Core Performance
We also evaluate the multi-core performance of those analysis tools that support
it: EF�CF, Manticore, and Echidna. To parallelize Echidna, we utilize the echidna-
parade [GG21] tool to run multiple instances of Echidna in parallel. In contrast to the
normal mode of operation in echidna-parade, we always fuzz the full set of functions
by not excluding any function from the fuzzing runs. In our benchmarks, the default
mode of operation is detrimental to performance in terms of time-to-bug. Manticore
natively supports multi-threaded analysis to leverage multiple cores. For EF�CF, we
leverage the multi-core fuzzing approach of AFL++.

Figure 5.15 shows the multi-core performance of several analysis tools on the multi
contracts. We can see that with EF�CF, the performance significantly increases
between the single and multi-core versions. This is primarily because EF�CF utilizes
an approach similar to ensemble fuzzing that spawns EF�CF’s core fuzzer in multiple
different configurations. Similarly, parallelizing Echidna with the echidna-parade
tool shows significant improvements over the single-core Echidna. In a multi-core
setting, Echidna can find the transaction sequences up to 8 transactions and features a
significant speed-up for the transaction sequences with lengths 4 to 7. For both fuzzers,
we observe that some single-core runs are as fast or faster than other multi-core runs.
This is because of the probabilistic nature of fuzzing. However, the multi-core runs
reduce the variance between the runs, allowing the fuzzer to identify the bug in a
given time span more consistently. Interestingly, Manticore, the only other tool with
built-in multi-core support, does not gain a significant speedup in this experimental
setup. We suspect that the symbolic execution approach taken by manticore cannot
fully leverage multiple cores.

113

Chapter 5 Fuzzing of Smart Contracts

5.4.5 Code Coverage Comparison

We perform scalability experiments using our own set of benchmark contracts. In this
section, we analyze the performance of EF�CF with respect to code coverage. Note
that code coverage is a necessary, but not sufficient, condition to also trigger bugs.
We compare EF�CF to two of the current state-of-the-art fuzzers for smart contracts,
namely ILF [He+19] and Confuzzius [Tor+21a]. Instead of using synthetic contracts,
we assess the capabilities of these fuzzers on a wide variety of real-world smart contracts.
The goal of this experiment is to compare the quality of the fuzzer-generated inputs.

We do not compare the fuzzers according to their time-to-bug, since (1) there are
no good datasets available that feature both ground truth and realistically complex
contracts, and (2) these fuzzers utilize bug oracles that differ too much to be directly
comparable. As such, we restrict ourselves to comparing the quality of the fuzzer-
generated inputs according to the achieved code coverage.

To create a realistic and useful dataset for our evaluation, we analyze the smartbugs-
wild dataset [Dur+20] that consists only of real-world smart contracts. We rank the
contracts according to their peak Ether balance as reported by the etherscan.io
service. We then selected the top 1000 contracts according to this ranking such that
we get a realistic set of important smart contracts. We do not sample arbitrarily from
the Ethereum blockchain, as this would increase the risk of obtaining toy contracts.
However, not all of the contracts are suitable for our comparison. As such, we select a
subset of the acquired contracts that are supported by all fuzzers in our evaluation.
For example, the contract must not require constructor parameters, as this allows us to
easily deploy the contract in all fuzzers we evaluate. In the end, the resulting dataset
consists of a set of 253 contracts, which are selected from the top 1000 contracts of
the smartbugs-wild dataset.

We configure all the fuzzers in this experiment such that they behave reasonably
similarly and allow us to compare their results. For example, we noticed that Confuzzius
achieves substantially broader coverage whenever a smart contract contains hard-coded
addresses. The reason is that Confuzzius starts generating transactions originating from
those hard-coded addresses. This is something the other fuzzers do not support. While
this behavior does lead to good code coverage, the generated transaction sequences
cannot actually be performed on the blockchain, as an arbitrary address cannot be
impersonated. As such, we disabled marking the caller, i.e., the origin of a transaction,
as an unconstrained symbolic value in Confuzzius. Additionally, we had to patch
Confuzzius’s coverage reporting to take bytecode as input instead of source code.
For ILF, we patched ILF to improve the reporting of code coverage and transaction
inputs and replaced the existing threshold on the number of generated inputs with
a time-based limit. For EF�CF, we enabled an over-approximating mode, where all
external addresses are considered to be contracts under attacker control. Similar to
the other fuzzers, we allow EF�CF to emulate calls originating from the creator of the
contract (e.g., the owner of the contract with special permissions).

To compare our implementation to existing fuzzers, we follow state-of-the-art recom-
mendations for comparing different fuzzers using statistically sound methods [AB14;
Kle+18]. We repeat every experiment 30 times to account for the inherent randomness
in the fuzzing process. We limit the runtime to five minutes for each target. Due

114

etherscan.io

5.4 Performance Evaluation

to the limited complexity of smart contracts compared to traditional software, this
allows most fuzzers to reach a coverage plateau. To calculate the required statistical
evaluation metrics, we use SENF [Paa+21b], which allows us to easily assess how each
tested fuzzer performs and compare the fuzzers with each other.

The results of our experiments are summarized in Table 5.4a. Our results show that
EF�CF outperforms Confuzzius with statistical significance on 141 targets and on 120
targets when compared to ILF. Confuzzius and ILF perform better than EF�CF on 83
and 112 of the target contracts, respectively.

We also rank the contracts within our test set according to various complexity
metrics. We conduct an additional evaluation on the top 100 most complex targets
with respect to the number of logical lines of code, the number of contracts and
libraries, the number of comparisons, and the number of branches (see Section 5.1).
As shown in Table 5.4b, EF�CF performs better than Confuzzius as well as ILF on
the majority of contracts across all complexity properties. Thus, we conclude that
EF�CF can handle increasingly complex Ethereum smart contracts better than existing
fuzzers.

Table 5.4: Comparison of smart contract fuzzers based on code coverage and the
SENF [Paa+21a] statistical evaluation framework.

(a) Comparison of all fuzzers on the full
test set: the number of times fuzzer A
outperformed fuzzer B.

Fuzzer A
Fuzzer B EF�CF Confuzzius ILF

EF�CF - 141 120
ConFuzzius 83 - 105
ILF 112 136 -

(b) Number of targets, where EF�CF sta-
tistically significantly outperforms Con-
Fuzzius/ILF and vice versa on the top
100 targets in various complexity prop-
erties

EF�CF : ConFuzzius EF�CF : ILF

#LLOC 73 : 17 55 : 37
#funcs 66 : 22 46 : 42
#comp 60 : 28 66 : 26
#branch 77 : 15 54 : 37

115

Chapter 5 Fuzzing of Smart Contracts

5.5 Bug Detection Capabilities

To assess the bug detection capability of EF�CF, we compare EF�CF with real-world
contracts that we obtained from prior studies [Bos+22; Cec+21; FAH20; Rod+19;
Zho+20]. Note that after initial analysis, we concluded that existing benchmark
datasets with ground truth for Solidity/Ethereum analysis tools [Dur+20; GP20]
are not suitable for testing/comparing dynamic analysis tools such as fuzzers. Both
benchmark datasets consist mostly of rather simple and very similar contracts. For
example, the curated reentrancy dataset of Durieux et al. [Dur+20] features mostly
honeypot contracts that are designed to be easily analyzed [TSS19]. Similarly, the
reentrancy bugs injected by Ghaleb et al. [GP20] are too simplistic: many of the
injected bugs cannot be triggered by dynamic analysis tools (dead code) or are trivially
exploitable. We discuss these issues in more detail in Section 5.5.3. As such, we rely
on prior studies on real-world contracts for evaluating the bug detection capabilities
of EF�CF. In Section 5.5.1 we show that EF�CF is capable of identifying the vast
majority of access control bugs that have been identified in prior studies. Furthermore,
EF�CF is able to overcome the limitations of symbolic analyses and identify even
more vulnerabilities in those contracts, where the symbolic analyzer EthBMC timed
out. Furthermore, we assess the capability of EF�CF in discovering several reentrancy
attacks known from prior studies in Section 5.5.2. We compare with the symbolic
analyzer Sailfish and show that EF�CF identifies only those reentrancy issues that
pose real security threats. The study by Bose et al. [Bos+22] reports 26 contracts
with true reentrancy bugs in the dataset. However, we were able to confirm only 5 of
these contracts to be vulnerable to Ether stealing with EF�CF. Our (manual) analysis
of the remaining 21 contracts reveals that, while the contracts can be reentered in
theory, all but one cannot be exploited. Finally, we show that EF�CF is capable
of identifying compositional security issues by evaluating on the contracts used by
Cecchetti et al. [Cec+21] in the evaluation of their static analyzer. Furthermore, we
show that EF�CF can automatically generate an exploit for the Uniswap/IMBTC
compositional reentrancy attack given only a list of involved smart contracts.

5.5.1 Access Control Vulnerabilities

Access control bugs such as an unprotected selfdestruct have been widely investi-
gated [FAH20; KR18a; Nik+18]. Frank et al. [FAH20] (EthBMC) leverage bounded
model checking based on symbolic execution and blockchain state imports to iden-
tify this class of faults. When analyzing contracts deployed on the main Ethereum
blockchain, it is important to import their state into the analysis tool to avoid spurious
false alarms. To compare with EthBMC, we obtained a list of 2856 contracts vulnera-
ble according to EthBMC. Note that only 16 contracts of this set have public ABI
information available, making EF�CF rely solely on coverage-guided grey-box fuzzing
to identify valid transaction inputs for the remaining contracts. We export the internal
state of the contracts at block number 9 069 000 from a go-ethereum archive node and
import the state into EF�CF and fuzz all contracts until the bug is discovered or for a
maximum of 20 min. In total, EF�CF detects 2825 out of 2856 contracts as vulnerable
after fuzzing for an average of 28.5 s (σ = 111.4) until the first bug is discovered, which

116

5.5 Bug Detection Capabilities

demonstrates the high effectiveness of EF�CF. For 18 contracts, EF�CF detected no
bug in our first run. The remaining contracts had issues due to errors during state
export. In a second run with an earlier blockchain state, we find that EF�CF identifies
another 4 vulnerable contracts. After manual analysis, we concluded that 5 of the
contracts are only included in the EthBMC dataset due to errors in the EthBMC
evaluation. The remaining 12 contracts contain bugs missed by EF�CF. We argue
that this is due to inefficiency when fuzzing without ABI information.

We also applied EF�CF on 10 356 contracts which EthBMC was unable to analyze
due to a timeout after 30 min. This dataset represents contracts that cannot be
analyzed with bounded model checking, likely due to problems such as state explosion.
In contrast, EF�CF successfully processes all these contracts and achieves an average
code coverage of 72.4 % (σ = 17.9). Furthermore, EF�CF detected 85 vulnerable
contracts in this set, among which we manually checked 18 contracts with verified
source code and found 7 new vulnerabilities. For the remaining 11 contracts, EF�CF
correctly identifies a transaction sequence to gain Ether. However, after manual
analysis, we conclude that these transaction sequences allow for legitimate Ether gains
and, as such, are false alarms with EF�CF.

Common False Alarms with EF�CF During our evaluation of the EthBMC dataset,
we identified a number of patterns in smart contracts that lead to false alarms in
EF�CF.

• Gambling contracts: EF�CF identifies the right blockchain state and transactions,
such that the attacker always wins. In a real-world deployment, the attacker
only has limited control over the environment, such as the blockhash or block
number. As such, the attacks that EF�CF identifies are often not practical on
the live blockchain.

• Airdrops: Many token contracts implement a so-called Airdrop mechanism, where
the contract gives out a certain number of free Tokens while the Airdrop is active.
EF�CF deterministically triggers the airdrop to gain tokens. If EF�CF can sell
the tokens again, EF�CF will report a false alarm.

• Interest pay-out: We encountered multiple smart contracts that implement
interest payout. For example, the contract allows anyone to invest Ether and then
pays out a fixed percentage in interest. EF�CF will flags this as a vulnerability
since it results in Ether gain. These contracts assume that the value of Ether is
steadily increasing. However, EF�CF does not account for any potential changes
outside of the blockchain environment, such as the exchange rate between USD
and Ether.

We point out that in all these scenarios, there is a way to gain Ether from those
contracts, which EF/CF correctly reports. Fundamentally, these contracts violate
the basic assumption of EF�CF’s bug oracle that an unrelated third party should not
be able to gain Ether by interacting with a contract. Such contracts are a challenge
for all analysis tools that attempt to identify bugs in Ether handling (e.g., teEther,
EthBMC, etc.).

117

Chapter 5 Fuzzing of Smart Contracts

5.5.2 Reentrancy Vulnerabilities

We evaluated EF�CF using a set of contracts vulnerable to reentrancy according to
prior studies [Bos+22; Cec+21; Rod+19; Zho+20]. Furthermore, we also compare
EF�CF with Confuzzius [Tor+21a] and the static source code analyzer Slither [FGG19]
(see Table 5.5 for a summary). Confuzzius and Slither feature a more heuristic detection
of reentrancy issues than EF�CF. Slither defines any state update after an external
call as a potential reentrancy bug. Similarly, Confuzzius defines a reentrancy bug as an
external call where some state variable is read before the call and written after the call.
Note that Confuzzius does not actually generate any reentrant transaction sequence.
As many contracts in the set of prior studies [Rod+19; Zho+20] include false alarms,
we filter out wrongly detected reentrancy bugs by manually analyzing the reported
contracts. Furthermore, many cases are trivial reentrancy bugs, which we summarize
as Trivial-RE in Table 5.5, which includes reentrancy honeypot contracts [TSS19].

EF�CF is highly effective in discovering all known reentrancy issues. However, the
prototype implementation of EF�CF does not yet support contract creation at runtime.
We only noticed dynamic contract creation for “the DAO”, which is why we cannot
process this contract. The HODLWallet contract requires special attention: while this
contract is vulnerable to a reentrancy attack, it cannot be exploited to gain Ether.
According to our analysis, this contract allows users to invest Ether into the contract,
but the contract never returns all the invested Ether. However, when exploiting the
contract’s reentrancy bug, a user can withdraw all previously invested Ether, diverging
from the contract’s malicious—but intended—functionality. EF�CF’s bug oracle does
not identify this as a reentrancy bug since no Ether can actually be gained, although
EF�CF generates a test case containing the necessary reentrant transactions. For the
InstaDice contract, Confuzzius reports many additional reentrancy issues even when
the contract calls into other trusted contracts instead. EF�CF, on the other hand,
executes also trusted contracts exported from the Ethereum node and produces a full
working exploit for the reentrancy bug without reporting false alarms. Remarkably,
EF�CF is the only dynamic analysis tool that is able to accurately identify real-world
reentrancy issues, such as the reentrancy bugs in the SpankChain and DSEthToken
contracts.

Table 5.5: Results for reentrancy issues for various analysis tools: False Alarms (∼),
True Alarms (✓), not applicable/incompatible (N/A), or as Missed Bug
(×).

Contract EF�CF Confuzzius Slither

Example Figure 5.2 ✓ ∼ ∼
SpankChain [SpCLC] ✓ × ✓
DSEthToken [Rod+19] ✓ ✓ N/A
TheDAO [Rod+19] N/A ✓ N/A
HODLWallet [HODLW; Zho+20] × ✓ ✓
SysEscrow [SYES; Zho+20] ✓ × ✓
InstaDice [INSD; Zho+20] ✓ ∼ ✓
Trivial-RE [TSS19] ✓ ✓ ✓

118

5.5 Bug Detection Capabilities

Fuzzing Honeypot Reentrancy Torres et al. [TSS19] discussed the phenomenon of
honeypot contracts. These contracts are deployed with source code often available
on etherscan.io and appear to be vulnerable to, e.g., reentrancy attacks. However,
these contracts are, in fact, a scam that targets malicious actors searching for easily
exploitable contracts on the blockchain. They require the attacker first to invest a
certain amount of Ether to later exploit the seemingly vulnerable contract. However,
furtively, the code hides a mechanism that prevents exploitation, locking the previously
invested Ether of the attacker. Most of the known reentrancy honeypot contracts use
a call to an external library-like contract to revert attack transactions. The deception
works by suggesting the source code on etherscan also provides the source code for the
external contract when in fact, a different contract is used.

Many of the known honeypot contracts feature very obvious reentrancy vulner-
abilities, as these contracts are designed to be easily analyzable (i.e., to lure more
attackers). Many of those reentrancy honeypot contracts ended up in various datasets
of prior studies [Bos+22; Dur+20]. In the curated version of the smartbugs dataset, the
majority of the contracts identified as vulnerable to reentrancy are, in fact, honeypot
contracts. This dataset contains 19 reentrancy honeypots and 12 other contracts
vulnerable to reentrancy.

These honeypot contracts introduce significant bias into datasets. For example, a
tool that detects all honeypot contracts in the curated smartbugs dataset already seems
to detect the majority of reentrancy bugs. However, in reality, all these reentrancy
bugs follow the exact same code pattern. For this reason, we chose to summarize all
these cases as trivial reentrancy in Section 5.5.

The reentrancy honeypots can be analyzed in two ways: by relying on the source code
only and by importing code and state directly from the blockchain. It is important to
distinguish both cases since the contract is exploitable in the former, while in the latter,
it is not. We verified that EF�CF correctly identifies the reentrancy attacks in the first
case. Here we deploy a fresh instance of the contract, and the mechanism to prevent
exploitation does not work. As such, EF�CF can correctly identify the reentrancy
vulnerability. However, if we export the contract’s state from the blockchain—including
the external contract that is called—then the mechanism to prevent exploitation is
working. In this case, EF�CF also executes the second external contract, reverting
the transaction before the reentrancy takes place. As such, EF�CF correctly does not
report any false alarms here.

Comparison with Sailfish As part of the evaluation of the Sailfish tool, Bose et al.
released a list of contracts where reentrancy causes inconsistent state according to Sail-
fish. This list contains 1904 contracts, of which the Bose et al. verified 26 contracts to
be true positives4. Among the list of 1904 contracts, EF�CF identifies vulnerabilities in
only 67 contracts. However, in 8 of these 67 contracts, EF�CF discovers a vulnerability
unrelated to reentrancy, e.g., a controlled delegatecall vulnerability.

Furthermore, we analyzed the list of verified true positives in more detail. Among
the vulnerable contracts reported by the Sailfish tool, EF�CF correctly identifies
5 contracts that can be exploited with reentrancy to steal Ether. Among these five

4https://github.com/ucsb-seclab/sailfish

119

https://etherscan.io
https://github.com/ucsb-seclab/sailfish

Chapter 5 Fuzzing of Smart Contracts

contracts, one is a test contract, one is a known honeypot, and the remaining three
contracts are identical. Furthermore, EF�CF identifies one contract that can be
exploited due to an access control bug, not a reentrancy bug. As discussed previously,
EF�CF identifies the honeypot only as vulnerable when deploying from source code
but not when using exported state from the blockchain. We manually identified one
contract that seems to be vulnerable to reentrancy, but no Ether is at stake. The
remaining contracts exhibit reentrancy patterns, which are likely not exploitable.

For example, the CommonWallet contract, depicted in Figure 5.16, is affected by a
similar Token-related reentrancy bug, as the Uniswap-V2 contract [Tor+21b]. Here,
the attacker must supply a ERC777 Token where a ERC20 Token is expected. Most
(legitimate) ERC20 Token contracts do not perform callbacks to the attacker, and
as such, the attacker cannot trigger a reentrancy situation. However, this is different
for ERC777 contracts that feature callbacks by design. This allows the attacker to
reenter the CommonWallet contract and trigger a reentrancy bug. Currently, EF�CF
does not detect Token-related bugs since EF�CF has no concept of Tokens and, as
such, does not regard Token-gains as a bug.

However, in reality, this reentrancy bug cannot be used to cause damage. The
reason for this is that the attacker would have to cause an integer underflow, which
is prevented due to the integer checking leveraged by the contract. As such, EF�CF
would not identify a possible reentrancy attack, even if there were a bug oracle for
tokens, because there is no way to exploit the reentrancy attack. We verified this by
testing EF�CF with a contract that exhibits the same vulnerability but with Ether
instead of Tokens. We believe the reason for this false alarm is that Sailfish does not
accurately model the transaction-based execution model of the EVM. It will eagerly
report a bug without considering that the transaction will revert later, a flaw common
to many analysis tools [SSM20].

1 function safeSub(uint256 _x, uint256 _y) internal pure returns (uint256) {
2 assert(_x >= _y);
3 return _x - _y;
4 }
5 function sendTokenTo(address tokenAddr, address to_, uint256 amount) {
6 require(tokenBalance[tokenAddr][msg.sender] >= amount);
7 /* external call - might cause reentrancy */
8 if(ERC20Token(tokenAddr).transfer(to_, amount)) {
9 /* state update with underflow check in safeSub, which essentially checks the

10 balance again, i.e., */
11 //require(tokenBalance[tokenAddr][msg.sender] >= amount);
12 tokenBalance[tokenAddr][msg.sender] =
13 safeSub(tokenBalance[tokenAddr][msg.sender], amount);
14 }
15 }

Figure 5.16: CommonWallet reentrancy, which is not exploitable due to the integer
overflow check.

120

5.5 Bug Detection Capabilities

Compositional Security We follow the four examples used in the evaluation of
the Serif static analyzer [Cec+21] to show the feasibility of detecting compositional
security violations with EF�CF. We adapted the contracts from Serif’s evaluation set
to be deployable and exploitable in a realistic setting. Where Serif relies on manual
annotations to detect potential problems, we augment the contracts with assertions
that are picked up by EF�CF to detect a potential vulnerability beyond Ether-stealing.
EF�CF accurately generates an Ether-stealing reentrancy attack for the Uniswap and
Multi-DAO contracts in the Serif dataset. Furthermore, EF�CF generates transactions
that violate the assertions for the KV-Store and TownCrier contracts using reentrant
transactions.

To evaluate EF�CF’s capabilities on a real-world example, we also fuzz the composi-
tion of Uniswap V1 and IMBTC, which was attacked with reentrancy [Tor+21b]. We
supply EF�CF with the addresses of three contracts that should receive transactions
(Uniswap, IMBTC, and the ERC1820Registry) and export the state of these contracts
at block number 9 600 000 shortly before the first known attack. We then fuzz this
composition on 40 cores for a maximum of 48 h. On average over 10 independent runs
it takes EF�CF 1 h and 49 min (σ = 6 h55 min) to generate a reentrancy exploit that,
(1) registers an attacker contract in the ERC1820Registry contract with the right hash
to allow ERC777 callbacks, (2) buys IMBTC tokens via the Uniswap contract, and
(3) finally exploits the reentrancy to sell them again with a profit.

5.5.3 Problems with Existing Datasets

By now, there are multiple attempts to create standardized datasets to evaluate smart
contract analysis tools [Dur+20; GP20]. However, they lack diversity of bugs and
especially so with respect to reentrancy bugs. They often only contain the simple
same-function reentrancy pattern and contain many honeypot contracts [TSS19].

Ghaleb et al. [GP20] attempt to synthesize a benchmark dataset using bug injection.
Unfortunately, we find that they are not suitable to test reentrancy detection based
on fuzzing or symbolic execution. The injected reentrancy bugs focus on classical
same-function reentrancy and do not cover more complex reentrancy patterns, such as
cross-function reentrancy [Rod+19]. Furthermore, the injected patterns are themselves
suboptimal. For example, many of the injected reentrancy bugs do not require a
reentrant call to be exploitable. Figure 5.17 shows an injected bug that is prone
to reentrancy. However, the function can also be identified as vulnerable without
resorting to a reentrancy attack. For example, MAIAN [Nik+18] detects an Ether
leaking vulnerability in this function because the injected function will unconditionally
send Ether (line 4) the first time a caller calls the function. Reentrancy is only
necessary to repeatedly leak Ether. A second type of injected reentrancy bug is shown
in Figure 5.18. This reentrancy bug can never be triggered during fuzzing or symbolic
execution. The injected vulnerable function contains a guard, the require statement in
line 6, that cannot be satisfied. The require accesses a storage variable that is never
modified. As such, the reentrant call is essentially dead code, assuming the internal
state of the contract can be changed arbitrarily. Assuming this ability would be a
huge overapproximation and result in a lot of false alarms [FAH20; WC20]. As such,
we conclude that the reentrancy bugs injected as part of the SolidiFI project are

121

Chapter 5 Fuzzing of Smart Contracts

1 bool not_called_re_ent27 = true;
2 function bug_re_ent27() public {
3 require(not_called_re_ent27);
4 if(! (msg.sender.send(1 ether))){
5 revert();
6 }
7 not_called_re_ent27 = false;
8 }

Figure 5.17: An injected reentrancy bug, which is also detected by bug oracles that
only identify leaking ether without considering reentrancy.

1 // initialized with 0
2 mapping(address => uint) redeemableEther_re_ent25;
3 function claimReward_re_ent25() public {
4 /// since the balances mapping is never written anywhere else,
5 /// this require cannot be bypassed by a dynamic analysis tool.
6 require(redeemableEther_re_ent25[msg.sender] > 0);
7 /// unreachable code
8 uint transferValue_re_ent25 = redeemableEther_re_ent25[msg.sender];
9 msg.sender.transfer(transferValue_re_ent25); //bug

10 redeemableEther_re_ent25[msg.sender] = 0;
11 }

Figure 5.18: An injected reentrancy bug that cannot be triggered due a guarding
condition that cannot be satisfied.

not suitable to test dynamic analysis tools, i.e., fuzzers or symbolic execution-based
analyzers.

5.6 Discussion and Related Work

As already discussed in Section 5.1, analyzing smart contract code has been the
topic of a rather large body of recent research. Inspired by the success in identifying
vulnerabilities in classical software, symbolic execution [Bos+22; FAH20; KR18a;
Luu+16; Mos+19; Nik+18] and fuzzing [Cho+21; Gri+20; He+19; Ngu+20; Tor+21a;
WC20] have been applied to smart contracts. However, when applying fuzzing and
symbolic execution to smart contracts a number of peculiarities have to be considered.
Unfortunately, many of the existing fuzzers and symbolic executors do not properly
discuss many design decisions. In the remainder of this section, we discuss several
design choices of EF�CF and compare them to related work.

Fuzzing Structured Input On the protocol level, smart contracts take a variably-sized
byte string as input. However, this byte string is a highly structured input encoded
according to the ABI definition. If a contract receives wrongly structured input,
it will quickly stop execution. Symbolic execution tools handle this by providing

122

5.6 Discussion and Related Work

unconstrained symbolic input bytes and querying the SMT solver for solutions. Most
current smart contract fuzzers [Gri+20; He+19; Ngu+20] adapt an approach akin
to grammar-fuzzing [Bur67; Yan+11] to randomly generate structurally valid inputs
based on the ABI. While EF�CF also utilizes the ABI to efficiently mutate transaction
inputs, it does not solely rely on the ABI for mutations. EF�CF also features raw
input mutations and also leverages the lightweight mutations of its base fuzzer. Using
the coverage feedback, EF�CF can discover structurally valid inputs even without the
ABI. This approach has two advantages. First, it allows EF�CF to fuzz contracts
where no source code or ABI is available. For example, our evaluation of the EthBMC
dataset shows that EF�CF can also identify access control bugs without any ABI
definition. Second, EF�CF can also discover bugs in unusual settings, e.g., EF�CF
can identify bugs that can only be triggered with structurally invalid inputs. EF�CF
can also fuzz inputs that contain byte strings that are further decoded elsewhere (e.g.,
because the contract forwards all unknown calls to a library contract). Furthermore,
EF�CF can fuzz the return data of external calls, which is ABI-encoded but not part
of the ABI definition. However, fuzzing without ABI information is currently less well
optimized in EF�CF (see benchmarks in Section 5.4.2). To improve fuzzing efficiency,
static analyses can be used to recover the ABI [Che+21; Gre+19] from the bytecode.
Note that due to EF�CF’s probabilistic usage of the smart contract’s ABI, EF�CF does
not require a complete or accurate ABI definition. A partial ABI definition covering
most of the contract’s function would be enough to increase fuzzing efficiency. For
example, if the parameters of a function in the ABI cannot be recovered, a generic byte
string argument can be used instead, which is then mutated by the regular mutations
of EF�CF.

Bug Oracles Bug oracles are an essential part of an analysis tool. Contrary to
native code fuzzers, which feature de-facto standardized bug oracles [Ser+12], there
is a wide spectrum of bug oracles in smart contracts. All analysis tools define
their own bug oracles, sometimes with slightly different definitions of the same bug
classes, making it hard to compare analysis tools. Oyente [Luu+16], OSIRIS [FSS18],
Confuzzius [Tor+21a], ILF [He+19], and Sailfish [Bos+22] feature bug oracles that
indicate issues, but not necessarily a security vulnerability (or even a bug for that
matter). For example, detecting a dependency on the block timestamp might be a sign
of a bad attempt at using randomness, or it might be a legitimate use to implement a
time-limited sale. Naturally, such oracles also result in a larger number of alarms that
might not be security-critical. However, the advantage of such oracles is that they
can uncover a larger set of issues. Developers can use these findings to increase code
quality by avoiding dangerous code patterns. Another type of analysis tool utilizes
Ether loss as a bug oracle to implement exploit generation [FAH20; KR18a; Nik+18]
with a very low number of false alarms. EF�CF utilizes the same bug oracle strategy
but also covers reentrancy attacks and complex interactions. The disadvantage of
using an Ether-based bug oracle is that Token-related vulnerabilities cannot be easily
detected. However, similar to the industry fuzzer Echidna [Gri+20], EF�CF supports
using properties and assertions as bug oracles during fuzzing. This allows EF�CF to
identify various logic bugs, including Token-related vulnerabilities, with the help of
developer annotations.

123

Chapter 5 Fuzzing of Smart Contracts

Simulating Interactions All transaction-oriented analysis tools, such as fuzzers and
symbolic executors, simulate one or multiple attacker accounts interacting with the
target contract. However, not all tools can simulate the full spectrum of possible
interactions. More importantly, the majority of existing analysis tools [FAH20; Gri+20;
He+19; KR18a; Nik+18; Tor+21a] focus on generating a set of transactions originating
from an externally owned account (EOA), which does not allow reentrancy or external
calls that return data. Symbolic execution and hybrid fuzzing tools [FAH20; KR18a;
Nik+18; Tor+21a] simulate external calls to a certain degree by introducing fresh
symbolic values for the returned data. However, reentrancy is generally challenging for
symbolic execution tools since it might introduce path explosion [Kal+18]. Most fuzzers
refrain from simulating external calls with return values [Gri+20; He+19; Ngu+20].
To detect reentrancy, sFuzz introduces dedicated attacker contracts that can be called
during fuzzing [Ngu+20]. This allows sFuzz to detect certain trivial reentrancy patterns
but fails to adapt to contracts requiring more complex interactions (e.g., cross-function
reentrancy [Rod+19]). In contrast, in EF�CF, we assume that transactions originate
from an attacker smart contract, allowing more complex interactions such as callbacks
with arbitrary return data and reentrancy. This design decision allows EF�CF to
generate reentrancy attacks using a simple Ether-based bug oracle.

Simulating Benign Interactions An important property of a fuzzer is whether it
simulates the behavior of benign users, i.e., whether the fuzzer can generate transaction
sequences in the form (tu, ta, t′

u, t′
a, . . .), where tu and t′

u are from a benign user, and ta

and t′
a are from an attacker. For instance, many smart contracts implement the Owned

pattern: there is one Ethereum account that has special privileges in the contract.
This is often used to implement deprecating or upgrading a contract (see Chapter 7),
which entails being able to drain all funds from the contract. If the fuzzer aims to reach
optimal code coverage, then simulating arbitrary addresses is beneficial to also reach
code paths guarded by access control checks. As such, many existing fuzzers, such
as ILF [He+19] and Confuzzius [Tor+21a] adopt this behavior by default. However,
while this approach leads to good code coverage, it also entails a larger number of false
alarms. For example, in contracts with transferable ownership, the fuzzer will make
the simulated owner transfer the ownership to an attacker account. In turn, this would
allow the attacker to drain the funds of the contract. Obviously, this is a false alarm
since the real owner would never transfer ownership to an attacker. However, this
ownership concept is widespread in smart contracts, making existing fuzzers that adopt
this behavior produce many false alarms. For example, He et al. [He+19] describe
a case study of a vulnerability in the Grid contract. However, this is a false alarm
as it would require interaction with the contract by both the contract owner and a
benign user. Both need to set specific contract parameters such that the attacker is
able to gain Ether. From our analysis of this contract, we concluded that this is not
something that the owner would do. Note that EF�CF raises this exact same false
alarm when we enable simulating transactions originating from the owner. Ideally, one
would simulate only benign user interactions. Unfortunately, deciding which actions a
benign user would perform is, in general, not possible since this depends on the specific
semantics and intentions behind a smart contract. As such, we opted to disable the
simulation of any non-attacker-controlled accounts in EF�CF.

124

5.7 Conclusion

Testing Multi-Contract Setups Smart contracts increasingly feature dependencies on
third-party contracts. To support such contracts, EF�CF allows the contract under test
to call other trusted contracts. However, EF�CF, as almost all other analysis tools, will
only execute transactions that target the smart contract in question. Hence, EF�CF
will not discover bugs that can only be triggered by an unsuspected state change in the
trusted dependencies of the contract under test. For example, certain attacks require
the attacker to first acquire tokens before proceeding to attack another contract that
handles the token. Recently, Echidna [Gri+20] introduced a multi-abi mode, where the
fuzzer is allowed to call functions on multiple smart contracts. Recent incidents such
as the attacks against the CREAM Finance [CREAM] or the Revest [REVST] smart
contracts show that multi-contract analysis is required for the automatic analysis of
complex DeFI applications.

In this paper, we show that EF�CF can handle even complex inputs and dependencies
between transactions. We already extended EF�CF with an experimental mode that
shows that EF�CF can also be extended to multi-target fuzzing. This extension is
conceptually quite simple, as the input format just requires a selector field for the
target of a transaction that is then consumed by the harnessing code to select the target
contract for a transaction. However, this feature also requires careful performance
engineering to make multi-target fuzzing efficient while simultaneously avoiding a
decrease in single-target fuzzing performance. Additionally, when fuzzing targets
that are exported from the blockchain, such a mode requires additional analysis to
determine the set of contracts that are useful to receive fuzzed transactions. As such,
we leave extending EF�CF with such a mode as an interesting direction for future
work.

5.7 Conclusion
Due to their high popularity, smart contracts are increasingly used to encode complex
business logic in Ethereum and are becoming prominent features of other blockchain
platforms. Hence, there is a high demand for developing highly efficient and scalable
techniques to perform automated security analysis of smart contracts.

Unlike existing fuzz testing approaches for Ethereum smart contracts, our framework
EF�CF specializes in high-throughput fuzzing. This is achieved by employing two
techniques to speed up fuzzing: (a) a novel translation technique that translates
contract bytecode to native C++ code and (b) with efficient structural mutations on
transaction sequences and the associated transaction inputs. EF�CF offers a variety of
advantages compared to existing testing approaches, including increased code coverage,
reduced time to discover bugs, the capability to model complex interactions (e.g.,
reentrant transactions), and analysis capabilities for highly complex contracts. Given
the popularity of cryptocurrencies along with the steadily increasing value of assets
that smart contracts manage, it is important to improve the state of automated security
testing of smart contracts. As such, we will release EF�CF and the benchmarks that we
developed for our evaluation as open-source software. We hope this allows developers
to leverage efficient automated testing of contracts and fosters additional research in
smart contract security.

125

CHAPTER 6
MITIGATION OF REENTRANCY ATTACKS

In previous chapters, we discuss vulnerabilities in smart contracts (Section 3.2) and
how to automatically identify such vulnerabilities (Chapter 5). However, this still
leaves already deployed smart contracts at risk. We note that fixing discovered bugs in
smart contracts is particularly challenging due to three key challenges: (1) the code of a
smart contract immutable after deployment, (2) smart contract owners are anonymous,
i.e., responsible disclosure is usually infeasible, (3) existing approaches are mostly
performing offline analysis and are susceptible to missing unknown run-time attack
patterns. As a consequence of the immutability, approaches that prove correctness or
absence of a certain type of vulnerability [Kal+18; Luu+16; Sch+20b; Tsa+18] are only
important for the development of future smart contracts, but leave already deployed
(legacy) contracts vulnerable. More specifically, to deal with a vulnerable contract and
restore a safe state, the owner of the contract must deprecate the vulnerable contract,
move all funds out of the contract, deploy a new contract, and move the funds to the
new contract. This process is largely cumbersome since the address of the vulnerable
contract might be referenced by other contracts. We discuss how to streamline the
process of updating smart contracts in Chapter 7. Finally, offline analysis techniques
typically cannot fully cover the run-time behavior of a smart contract, thereby missing
new attack patterns exploiting code constructs that were believed to be not exploitable.

In this chapter, we show how to tackle these challenges and how to prevent legacy,
potentially vulnerable, smart contracts from being exploited (1) without changing the
smart contract code, and (2) without possessing any semantic knowledge of the smart
contract. We focus our analysis on reentrancy attacks, which are arguably the most
challenging vulnerability class. Reentrancy issues continue to be exploited in multiple
major incidents since the infamous “The DAO” incident [REVST; CREAM; Jen16;
Tor+21b].

Contributions In this chapter, we present the design and implementation of Sereum
(Secure Ethereum), which is able to protect existing, deployed contracts against
reentrancy attacks by performing run-time monitoring of smart contract execution.
Given our run-time monitoring technique, Sereum is able to cover the actual execution

127

Chapter 6 Mitigation of Reentrancy Attacks

flow of a smart contract to accurately detect and prevent attacks. As such, our approach
also sheds important light on the general problem of the incompleteness of any offline
static analysis tool. To underline this fact, we present new reentrancy attack patterns
(Section 6.2), which are not covered accurately in static analysis tools.

We present our prototype implementation of Sereum for the EVM, in which we
introduce a hardened EVM that leverages taint tracking to monitor the execution of
smart contracts. While taint tracking is a well-known technique to detect leakage of
private data [Enc+14] or memory corruption attacks [CLO07a], we apply it for the
first time to a smart contract execution platform. Specifically, we monitor data flows
from storage variables to control-flow decisions. Our main idea is to automatically
introduce write locks (i.e., mutexes), which prevent the contract from updating storage
variables in other invocations of the same contract in the same transaction. Sereum
prevents any write to variables, which would render the contract’s state inconsistent
with a different re-entered execution of the same contract. Sereum also rolls back
transactions that trigger an invalid write to variables—thereby effectively preventing
reentrancy attacks. Furthermore, Sereum can also be used as a passive detection tool,
where it does not perform rollbacks of attack transactions but only issues a warning
for detected attacks.

We perform an extensive evaluation of our approach by re-executing a large subset of
transactions of the Ethereum blockchain (Section 6.5). Our results show that Sereum
detects all malicious transactions related to the DAO attack and only incurs 9.6 %
run-time overhead. We further verify our findings by using existing vulnerability
detection tools and manual code analysis on selected contracts. Although Sereum
exhibits a false alarm rate of only 0.06 %, we provide a thorough investigation of false
alarms associated with our approach and other existing static analysis tools [Luu+16;
Tsa+18]. We thereby demonstrate that Sereum provides improved detection of
reentrancy attacks compared to existing approaches with negligible run-time overhead.

The basis for this chapter is the following publication:
“Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks”. 26th
Annual Network and Distributed System Security Symposium (NDSS),
2019. Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi

6.1 Problem Statement

In this chapter, we propose a defense that protects existing, deployed smart contracts
against reentrancy attacks in a backward-compatible way without requiring source
code or any modification of the contract code. As mentioned earlier, reentrancy
patterns are prevalent in smart contracts and require developers to carefully follow
the implementation guidelines [SolWd].

We observed in various incidents [REVST; CREAM; Jen16; Tor+21b] that contracts
that are vulnerable to reentrancy attacks often suffer from high losses of tokens or
Ether. Prior to our study, the only publicly documented reentrancy attack,was against
the “The DAO” contract [Pri16]. Our evaluation shows that reentrancy attacks have
not yet been launched against other contracts (except for some new minor incidents we
will describe in Section 6.5). However, since our original study, various incidents due

128

6.2 New Reentrancy Attack Patterns

to reentrancy attacks have been demonstrated [REVST; CREAM; Tor+21b]. These
findings demonstrate that a systematic defense against reentrancy attacks is required
to protect these contracts from being exploited.

As discussed in Chapter 5, the majority of defenses deploy static analysis and
symbolic execution techniques to identify reentrancy vulnerabilities. While these tools
surely help avoid reentrancy for new contracts, how to protect existing ones remains
open. That is, fixing smart contract vulnerabilities in deployed smart contracts using
existing analysis tools is highly challenging owing to the immutability of smart contract
code and the anonymity of smart contract owners. We discuss smart contract upgrade
strategies in more detail in Chapter 7.

Apart from these fundamental limitations, we also observe that existing detection
approaches fail to effectively detect all reentrancy vulnerabilities or suffer from a high
number of false positives. More specifically, we note that existing approaches can be
undermined by advanced reentrancy attacks. To this end, we systematize existing
reentrancy patterns and identify new reentrancy patterns. We show that existing
tools do not flag as reentrancy vulnerabilities but are nevertheless exploitable. We
classify reentrancy attacks into (1) cross-function reentrancy, (2) delegated reentrancy,
(3) create-based reentrancy, and (4) unconditional reentrancy. We describe the patterns
in detail in Section 6.2. While cross-function reentrancy vulnerabilities have been
partially discussed in the Ethereum community [Conb; Dai16b], we believe that our
study is the first presentation of delegated and create-based reentrancy attacks. All of
these attacks are either missed or imprecisely detected by the state-of-the-art detection
tools such as Oyente [Luu+16], Securify [Tsa+18], and ZEUS [Kal+18]. In what follows,
we present attacks that exploit these reentrancy patterns and discuss why existing
tools cannot accurately mark the contract code as vulnerable. As we show, these
attacks map to standard programming patterns and are highly likely to be included
in existing contracts. To re-produce our attacks and test them against the public
detection tools, the source code of the vulnerable contracts and the corresponding
attacks is available online [Rod].

6.2 New Reentrancy Attack Patterns

This section presents our systematization of reentrancy patterns. We base the system-
atization presented in this section on our previous publication [Rod+19], where we
described several reentrancy patterns for the first time in academic literature. Note
that we extended the original systematization by the unconditional reentrancy pattern.

Same-Function Reentrancy

Same-function reentrancy became publicly known due to the infamous “The DAO”
incident and is arguably the most widely known type of reentrancy. As a consequence,
many analysis tools are also designed to detect the same-function reentrancy pat-
tern [Kal+18; Luu+16; Tsa+18]. The same-function reentrancy pattern is arguably
rather simple: the attacker forces a call to the same function in a reentrant manner.
Since the function is not reentrancy-safe, the attacker can gain some advantage, e.g.,

129

Chapter 6 Mitigation of Reentrancy Attacks

stealing Ether. Figure 3.6 shows an example of a same-function reentrancy vulnerabil-
ity. Here the attacker can repeatedly call the withdraw function to bypass the balance
check.

Cross-Function Reentrancy

1 mapping (address => uint) tokenBalance;
2 mapping (address => uint) etherBalance;
3

4 function withdrawAll() public {
5 uint etherAmount = etherBalance[msg.sender];
6 uint tokenAmount = tokenBalance[msg.sender];
7 if (etherAmount > 0 && tokenAmount > 0) {
8 uint e = etherAmount + (tokenAmount * currentRate);
9 etherBalance[msg.sender] = 0;

10 // cannot re-enter withdrawAll()
11 // However, can re-enter transfer()
12 msg.sender.call.value(e)();
13 // state update causing inconsistent state
14 tokenBalance[msg.sender] = 0;
15 }
16 }
17 function transfer(address to, uint amount) public {
18 // uses inconsistent tokenBalance (>0) when re-entered
19 if (tokenBalance[msg.sender] >= amount) {
20 tokenBalance[to] += amount;
21 tokenBalance[msg.sender] -= amount;
22 }
23 }

Victim
withdrawAll()

Attacker

Victim
transfer(address, uint)

CALL

CALL

re-enter different function

Figure 6.1: The upper part shows the relevant code from a contract, which is modeled
after a typical ERC20 Token contract. This code contains a cross-function
reentrancy bug. The lower part shows the call chain during the attack.
The attacker first calls withdrawAll and then reenters the transferToken
function. For a successful attack, we assume the attacker is then able to
exchange the tokens for Ether.

The cross-function reentrancy attack pattern exploits the fact that a reentrancy
attack is not limited to a single function. Instead, the attack can also span over
multiple functions of the victim contract. This means that instead of calling the same

130

6.2 New Reentrancy Attack Patterns

function again, the attacker instead calls into another public function of the smart
contract. Cross-function reentrancy attacks apply to all functions that operate on
the same state variables. If two functions do not share access to a state variable,
they are independent. As such, the attacker cannot modify the behavior of the smart
contract using the reentrant invocation. Our results (see Section 6.5) show that such
cross-function reentrancy attacks are equally dangerous as traditional same-function
reentrancy. Moreover, more recent real-world incidents were due to cross-function
reentrancy attacks, such as the Uniswap V1 incident [Tor+21b].

Consider the short snippet from a contract, which resembles an ERC20 Token,
depicted in Figure 6.1. The function withdrawAll performs a state update on the
tokenBalance variable after an external call. Same-function reentrancy is thwarted in
this case because the etherAmount is set to zero before the external call. The condition
check in line 7 cannot evaluate to true anymore. This effectively prevents an attacker
from reentering the withdrawAll function. However, the attacker can still call other
functions in a reentrant manner. For example, the attacker can reenter the transfer
function. Note that this function also uses the—now inconsistent—tokenBalance
variable. As a result, the reentrant call to the transfer function allows the attacker
to transfer tokens to another address before the withdrawAll finishes execution. The
attacker utilizes this to move the tokens to another address while calling the withdrawAll
function, essentially creating new tokens out of thin air.

In general, detecting cross-function reentrancy is challenging for any static analysis
tool due to the potential state explosion in case every external call is checked to be safe
for every function of the contract. For this reason, many early academic analysis tools
do not accurately address cross-function reentrancy. Namely, ZEUS [Kal+18] omits
to verify cross-function reentrancy safety, and Oyente [Luu+16], an early symbolic
executor, does not flag the code depicted in Figure 6.1 as vulnerable to reentrancy. This
is because Oyente reports reentrancy only if the same instruction can be reached in a
reentrant call (i.e., by definition, same-function reentrancy). However, recent advances
in static analysis methods make it possible to identify cross-functions issues or even
prove their absence [Cec+21; Sch+20b]. Similarly, recent work in symbolic execution
tools also allows the detection of cross-function reentrancy vulnerabilities. For example,
Manticore [Mos+19] is able to detect cross-function reentrancy issues. To avoid
state explosion during analysis, many analysis tools utilize the over-approximating
no write after call policy, which we discussed earlier in Section 3.2.3. This also
captures cross-function reentrancy but is overly restrictive in general. In general,
ECFChecker [Gro+18] is able to detect cross-function reentrancy attacks. However,
during our evaluation, we were able to construct a contract that can be exploited
with a cross-function reentrancy attack without being detected by ECFChecker (see
Section 6.5).

Delegated Reentrancy

The key issue with the delegated reentrancy patterns is that the attack exploits the
fact that the reentrancy is hidden within a DELEGATECALL or CALLCODE instruction.
These EVM instructions are intended for implementing library contracts and allow
a contract to execute the code of another contract in its own execution context. In

131

Chapter 6 Mitigation of Reentrancy Attacks

1 library Lib { // Library contract
2 function send(address to, uint256 amount) public {
3 to.call.value(amount)(); // CALL
4 // ...
5 }
6 contract Victim {
7 mapping (address => uint) public credit;
8 Lib lib; // address of library contract
9 // ...

10 function withdraw(uint amount) public {
11 if (credit[msg.sender] >= amount) {
12 // DELEGATECALL into Library
13 address(lib).delegatecall(
14 abi.encodeWithSignature("send(address,uint256)", to, amount));
15 // state update after DELEGATECALL
16 credit[msg.sender] -= amount;
17 }
18 // ...

Victim

Library

Attacker

Victim

DELEGATECALL

CALL

CALL

Figure 6.2: The upper part shows the relevant solidity source code. The lower part
shows the call chain for a delegated reentrancy attack. Analyzed in isolation,
the Victim and the Library contract are not vulnerable to reentrancy.
However, when the Victim contract is combined with the Library contract,
it becomes vulnerable. In this simplified case the Library contract is simply
used for sending Ether.

Ethereum, library contracts are simply other contracts deployed on the blockchain.
When a contract invokes a library contract with one of the special call instructions, they
share the same execution context. As such, a library has full control over the calling
contract’s funds and internal state (storage region). As with traditional software,
libraries can be used to avoid duplicating code, as every library use re-uses the same
code, which is deployed only once on the blockchain. Furthermore, it also allows a
contract to update functionality by switching to a newer version of the library (see
Chapter 7 for a longer discussion).

The delegated reentrancy pattern always affects a combination of contract and
library contract. We consider such a pair to be vulnerable to a delegated reentrancy
if the state update takes place in one contract and the external call is issued in
the other. For example, the improper state update happens in the library after the
contract has already performed the external call. The problem is that when each one

132

6.2 New Reentrancy Attack Patterns

of the contracts is analyzed in isolation, none of the contracts exhibit a reentrancy
vulnerability. The reentrancy vulnerability emerges Only when both contracts are
considered in combination. Figure 6.2 depicts a simplified example of a contract
vulnerable to delegated reentrancy. The main contract uses a library contract for
issuing external calls, and as such, the external call is hidden from analysis tools.

Detecting delegated reentrancy attacks is a significant challenge for existing of-
fline analysis tools. The problem is that during analysis, the code of the library
contract is not available to the analysis tool. As such, offline analysis tools, such
as Oyente [Luu+16] or Securify [Tsa+18], fail to identify the delegated reentrancy
vulnerability due to under-approximation. However, other static analyzers are aware
of this pattern and do over-approximate and identify such issues [Gie+22]. Fuzzing
and symbolic execution techniques could potentially leverage the current blockchain
state to infer which library the contract calls. This allows the executor to fetch the
code of the library contract and continue symbolic execution. However, there is one
downside to this approach: it is not a future-proof solution, as an updated version
of the library contract might introduce a new vulnerability in the future. Dynamic
analysis tools that analyze transactions at runtime can easily detect such delegated
reentrancy issues. For example, dynamic analysis tools, such as Sereum (see Chapter 6)
or ECFChecker [Gro+18], are able to detect delegated reentrancy attacks, as they
analyze a combination of contracts and libraries.

Create-Based Reentrancy

Similar to the delegated reentrancy pattern, this pattern abuses the fact that a
contract’s constructor can issue further external calls. Recall that contracts can either
be created by accounts (with a special transaction) or by other contracts using the
CREATE family of opcodes. In solidity, a new contract can be created with the new
keyword, which translates to the CREATE instruction on the EVM level. Whenever a
new contract is created, the constructor of that contract will be executed immediately.
Usually, the newly created contract will be trusted and, as such, does not pose a
threat. However, the newly created contract can issue further calls in the constructor
to other—possibly malicious—contracts. To be affected by a create-based reentrancy
issue, the victim contract must first create a new contract and then update its own
internal state, resulting in a possible inconsistent state. The newly created contract
must also issue an external call to an attacker-controlled address. This allows the
attacker to reenter the victim contract and exploit the inconsistent state.

Create-based reentrancy is overlooked in many state-of-the-art analysis tools. For
example, Oyente, Manticore, and ECFChecker consider only CALL instructions when
checking for reentrancy vulnerabilities. Hence, they all fail to detect create-based
reentrancy attacks. Similar to delegated reentrancy, the create-based reentrancy
vulnerability emerges only when two contracts are combined. Thus, the contracts must
also be analyzed in combination.

Securify [Tsa+18] and Mythril [Conc] do not consider CREATE as an external call
and thus do not flag subsequent state updates. Due to their conservative policy of
flagging all state updates after external calls, they could simply include the CREATE
instruction into the list of external call instructions, allowing them to handle create-

133

Chapter 6 Mitigation of Reentrancy Attacks

based reentrancy. However, this will almost always result in a false alarm. The CREATE
instruction returns the address of the newly created contract. This address is needed
for further interactions with the newly created contract. As such, it is very likely that
this address is saved into the storage area of the caller, i.e., a write after an external
call.

Unconditional Reentrancy

1 contract Victim {
2 mapping (address => uint) private balance;
3

4 function withdrawAll() public {
5 msg.sender.call{value: balance[msg.sender]}("");
6 balance[msg.sender] = 0;
7 }
8 // ...
9 }

Figure 6.3: Unconditional reentrancy pattern, where a successful attack does not
bypass any condition.

Typically a reentrancy attack will try to subvert a business logic check of an
application. Every high-level check (e.g., an if statement, an assert statement, etc.) is
implemented as a conditional jump (JUMPI) on the EVM level. Essentially, here we
have a data-dependency of a conditional control-flow instruction, the JUMPI, to an
inconsistent value loaded from storage. Most real-world reentrancy attacks observed
and all reentrancy patterns discussed so far share this property. However, the root cause
of the reentrancy bug is not necessarily a data dependency on a control-flow instruction.
Similarly, a data-dependency of a state-changing instruction to an inconsistent storage
value can cause a reentrancy bug.

One very simple example is the implementation of a withdrawAll function depicted
in Figure 6.3, which will simply let the caller withdraw all previously invested Ether.
In this example, the contract VulnBank unconditionally sends ether to the sender
(msg.sender). It is not necessary to perform any additional checks. If the sender has
not invested any Ether, the amount of transferred ether is 0. Since the gas usage
must be paid for by the caller of the contract, such an invocation does not harm the
contract. However, an attacker can reenter this function and exploit the inconsistent
state to drain the contract of Ether.

6.3 Design Overview

In this section, we describe our approach to detect reentrancy attacks based on run-
time monitoring at the level of EVM bytecode instructions. Our approach, called
Sereum (Secure Ethereum), is based on extending an existing Ethereum client, which
we extend to perform run-time monitoring of contract execution.

134

6.3 Design Overview

Bytecode Interpreter

Transaction Manager Attack Detector

Taint Engine

Ethereum Virtual Machine
Sereum

Figure 6.4: Architecture of enhanced EVM with run-time monitoring.

Architecture Figure 6.4 shows an overview of the Sereum architecture. For a
standard Ethereum client, the EVM features a bytecode interpreter, which is responsible
for executing the code of the smart contracts. The transaction manager executes,
verifies, and commits new and old transactions. Every invocation of a smart contract
happens within a transaction in the Ethereum network. Transactions are then grouped
together in blocks. Every miner in the Ethereum network must execute all transactions
locally to generate the new state of the latest block on the blockchain. To verify the
blockchain’s current state, a node in the Ethereum network has to replay the execution
of all previous transactions.

Sereum extends the EVM by introducing two new components: (1) a taint engine,
and (2) an attack detector. The taint engine performs dynamic taint-tracking. Dynamic
taint-tracking, or dynamic data-flow analysis in general, assigns labels to data at pre-
defined sources and then observes how the labeled data affects the execution of the
program [SAB10]. To the best of our knowledge, Sereum is the first dynamic taint-
tracking solution for smart contracts. The attack detector utilizes the taint engine to
recognize suspicious states of program execution, indicating that a reentrancy attack
is happening in the current transaction. It interfaces with the transaction manager of
the EVM to abort transactions as soon as an attack is detected.

Detecting Inconsistent State To effectively reason about a malicious reentrance
into a contract, we need to detect whether a contract acts on inconsistent internal
state. Note that any persistent internal state is stored in the storage memory region
of the EVM. Variables that are shared between different invocations of a contract are
always stored in the storage region. As such, only the storage region is relevant for
reentrancy detection. Thus, Sereum applies taint tracking to storage variables as
these are the only internal state variables capable of affecting a contract’s control flow
in a subsequent (reentered) invocation of the contract. The intuition behind Sereum’s
approach is that if a control-flow decision is dependent on storage variables, an attacker
can manipulate the outcome of a conditional branch decision by reentering the contract.
In turn, manipulating a conditional branch allows the attacker to manipulate the
overall behavior of the contract. Hence, reentrancy attacks apply to contracts that
execute conditional branches dependent on persistent internal state, i.e., the storage
region.

135

Chapter 6 Mitigation of Reentrancy Attacks

The main idea behind Sereum is to detect state updates, i.e., altering of storage
variables, after a contract (denoted as Victim contract) calls into another contract
(denoted as Attacker contract). Notice that not all state updates resemble malicious
behavior, but only those where Victim is reentered and acts upon the updated state.
Typically, the goal of reentrancy attacks is to bypass validity checks in the business
logic of the Victim contract. As such, Sereum focuses only on conditional jumps and
the data that influences the conditional jumps. Notice that it is also possible for a
contract to transfer Ether without performing any validity check. Deploying such a
contract would be highly dangerous and inefficient due to the unnecessary consumption
of gas. The original version of Sereum did not explicitly capture such cases. However,
in an extended version of Sereum, we cover this kind of reentrancy attack by issuing
write-locks not only for behavior-changing variables but also for variables that are
passed to other contracts during external calls (such as Ether amount or call input).

Consider the example shown in Figure 6.5, Victim calls into the Attacker contract.
The Attacker then forces reentrancy into the Victim contract by calling into the Victim
again. The second reentered invocation of Victim reads from a storage variable and
takes a control-flow decision based on that variable. After the Attacker contract
eventually returns again to Victim, the Victim contract will update the state. However,
at this point, it is clear that the reentered Victim used a wrong value read from
inconsistent internal state for its conditional branch decision.

The key observation is that inconsistent state arises if (1) a contract executes an
external call to another contract, (2) the storage variable causing inconsistency is used
during the external call for a control-flow decision or as a parameter to an external
call, and (3) the variable is updated after the external call returns. Next, we describe
in more detail how the taint engine and the attack detector detect inconsistent state
at the EVM level.

The primary mechanism to detect reentrancy here is detecting the influence of an
inconsistent storage variable on a control-flow decision, i.e., a conditional jump, during
execution. However, while this captures a large variety of vulnerabilities, it does not
capture unconditional reentrancy. As such, we also track the usage of inconsistent
variables as parameters to external calls. More specifically, we analyze the call value,
i.e., the transferred cryptocurrency, and the input data provided to the called smart
contract.

Taint Engine and Attack Detector To detect state updates, which cause inconsis-
tency, we need to know which storage variables the contract used for control-flow
decisions. On the EVM bytecode level, a smart contract implements any control-flow
decision as a conditional jump instruction. Consequently, we leverage our taint engine
to detect any data flow from a storage load to the condition processed by a conditional
jump instruction. This ensures that we only monitor those conditional jumps which
are influenced by a storage variable. For every execution of a smart contract in a
transaction, Sereum records the set of storage variables, which were used for control-
flow decisions. Using this information, Sereum introduces a set of locks that prohibit
further updates for those storage variables. If a previous invocation of the contract

136

6.3 Design Overview

Victim Attacker Victim
(re-entered)

Call Attacker

Call Victim

Read Obsolete State
Conditional Branch

· · ·

Update State

CALL

CALL

RETURN

RETURN

Figure 6.5: reentrancy attack exploits inconsistent state among different invocations
of a contract.

attempts to update one of these variables, Sereum reports a reentrancy problem and
aborts the transaction to avoid exploitation of the reentrancy vulnerability.

In the simplest case, the attacker directly reenters the victim contract. However, the
attacker might try to obfuscate the re-entrant call by first calling an arbitrarily long
chain of nested calls to different attacker-controlled contracts. Furthermore, during
the external call, the attacker can reenter the victim contract several times, possibly
in different functions (as shown in the cross-function reentrancy attack described in
Section 6.2). This has to be taken into account when computing the set of locked
storage variables. To tackle these attacks, Sereum builds a dynamic call tree during
the execution of a transaction. Every node in the dynamic call tree represents a call
to a contract, and the depth of the node in the tree is equal to the depth of the
contract invocation in the call stack of the EVM. We store those storage variables
which influence control-flow decisions as set Di for every node i in the dynamic call
tree. The set of storage variables Li that are locked at node i is the union of Dj for
any node j of the same contract as i that belongs to the sub-tree spanning from node i.

Example of Dynamic Call Tree Figure 6.6 depicts an example for Sereum’s genera-
tion of a dynamic call tree for a given Ethereum transaction. A possibly malicious
contract A reenters a vulnerable contract C multiple times at different entry points
(functions). First, as shown on the left sub-tree, contract A calls C, C calls A, and A
finally reenters C. This sub-tree would be equivalent to a classical reentrancy attack,
as shown previously in Figure 3.6. The variables locked during the first execution of
contract C (node marked with 2) are impacted only by the lower nodes in the call
tree. The second execution of contract C (in node 4) uses the storage variable V1 for
deciding a conditional control flow. Hence, this variable must not be modified after
the call in the execution of node 2.

In contrast, the right side of the call tree contains a more diverse set of nodes. For
instance, the right part of the call tree could be part of a cross-function reentrancy
attack. We can observe that different functions were called in the various re-entrant

137

Chapter 6 Mitigation of Reentrancy Attacks

A

C

A

C

C

A

C C

A

C

D4 = {V1} D7 =
{V2, V3}

D8 =
{V4}

D10 =
{V2, V4}

L2 = D4

= {V1}
L5 = D7 ∪ D8 ∪ D10

= {V2, V3, V4}

1

2

3

4

5

6

7 8

9

10

Figure 6.6: Dynamic call tree of an Ethereum transaction. Contract A is reentered
several times. Vk are storage variables. Di is the set of storage variables,
which influence control-flow decisions in node i. Li is the set of storage
variables, which are locked at node i and cannot be updated anymore.

invocations of C because the variables used for conditional branches are different. Note
that none of the sets D5, D7, D8, and D10 are equal. Contract C performs two calls
into A in node 5. These calls reenter C in nodes 7, 8, and 10. For the execution of C
from node 5, we lock all variables from the subtree below node 5. Note that although
variable V1 is locked in node 2, it is not in the set of locked variables L5. This means
that no further calls starting from node 5 have used the variable V1 for a control-flow
decision; thus, V1 can be safely updated in node 5, which will not change the behavior
in any of the nodes 7, 8 and 10 unexpectedly.

A naive implementation of Sereum could just lock all variables which were used
for control-flow decisions. However, as we can see from Figure 6.6, this would result
in unnecessary locking of variables when complex transactions are executed. In turn,
this would also result in a high number of false alarms. For example, contract C can
safely update the state variables V2, V3, and V4 in node 2 because they were not used
for conditional branches during the execution of node 4. Similarly, node 5 can safely
update V1 even though it was used for a control-flow decision in a re-entrant call at
node 4.

The dynamic call tree allows Sereum to tackle the challenging new reentrancy
attacks we discuss in Section 6.2. Recall that detecting cross-function reentrancy is
challenging for static analysis tools due to potential state explosion. Since Sereum
performs dynamic analysis, it does not suffer from such kind of weakness; it only
analyzes those cross-function reentrant calls that actually occur at run-time. Similarly,
delegated reentrancy attacks are detected as Sereum, in contrast to existing tools,
does not inspect contracts in isolation but analyzes and monitors exactly the library
code which is invoked when a transaction executes. That is, as an extension to the

138

6.4 Implementation Details

Ethereum client, Sereum can access the entire blockchain state and hence retrieve
the code of every invoked library contract. Our taint engine simply propagates the
taints through the library code. This also naturally covers any future updates of the
library code. Next, we describe the implementation details of Sereum.

6.4 Implementation Details

We implemented Sereum based on the popular go-ethereum1 project, whose client for
the Ethereum network is called geth. In our implementation, we extended the existing
EVM implementation to include the taint engine and the reentrancy attack detector.

We faced one particular challenge in our implementation: variables stored in the
storage memory region are represented on the EVM bytecode level as load and store
instructions to specific addresses, i.e., any type information is lost during compilation.
Hence, only storage addresses are visible on the EVM level. Most storage variables, such
as integers, are associated with one address in the storage area. However, other types,
such as mapping of arrays, use multiple (not necessarily) adjacent storage addresses.
As such, Sereum tracks data-flows and sets the write-locks on the granularity of
storage addresses.

In the remainder of this section, we describe how Sereum tracks taints from storage
load instructions to conditional branches to detect storage addresses that reference
values that affect the contract’s control flow. Furthermore, we show how Sereum
performs attack detection by building the dynamic call tree and propagating the set
of write-locked storage addresses.

Taint Engine

Taint tracking is a popular technique for analyzing data-flows in programs [SAB10].
First, a taint is assigned to a value at a pre-defined program point, referred to as
the so-called taint source. The taint is propagated throughout the execution of the
program, along with the value it was assigned to. Taint sinks are pre-defined points in
the program, e.g., certain instructions or function calls. If a tainted value reaches a
taint sink, the Sereum taint engine will issue a report and invoke the attack detection
module. Taint analysis can be used for both static and dynamic data-flow analysis.
Given that we aim to achieve run-time monitoring of smart contracts, we leverage
dynamic taint tracking in Sereum.

To do so, we modified the bytecode interpreter of geth, ensuring that it is completely
transparent to the executed smart contract. Our modified bytecode interpreter main-
tains shadow memory to store taints separated from the actual data values, which is a
common approach for dynamic taint analysis. Sereum allocates shadow memory for
the different types of mutable memory in Ethereum smart contracts (see Section 3.2.1).
The stack region can be addressed at the granularity of 32-byte words. Thus, every
stack slot is associated with one or multiple taints. The storage address space is also
accessed at 32-byte word granularity, i.e., the storage can be considered as a large
array of 32-byte words, where the storage address is the index into that array. As a

1https://github.com/ethereum/go-ethereum

139

https://github.com/ethereum/go-ethereum

Chapter 6 Mitigation of Reentrancy Attacks

result, we treat the storage region similar to the stack and associate one or multiple
taints for every 32-byte word. However, unlike the stack and storage address space,
the memory region can be accessed at byte granularity. Hence, we associate every
byte in the memory address space with one or multiple taints. To reduce the memory
overhead incurred by the shadow memory for the memory region, we store taints for
ranges of the memory region. For example, if the same taint is assigned to memory
addresses 0 to 32, we only store one taint for the whole range. When only the byte at
address 16 is assigned a new taint, we split the range and assign the new taint only to
the modified byte.

We propagate taints through the computations of a smart contract. As a general
taint propagation rule for all instructions, we take the taints of the input parameters
and assign them to all output parameters. Since the EVM is a stack machine, all
instructions either use the stack to pass parameters or have constant parameters hard-
coded in the code of the contract. Hence, for all of the computational instructions,
such as arithmetic and logic instructions, the taint engine will pop the taints associated
with the instruction’s input parameters from the shadow stack, and the output of the
instruction is then tainted with the union of all input taints. In contrast, constant
parameters are always considered untainted. This ensures that we accurately capture
data flows within the computations of the contract. One exception to the general
tainting rule is the SWAP instruction family, which swaps two items on the stack. The
taint engine will also perform an equivalent swap on the shadow stack without changing
taint assignments. Similarly, whenever a value is copied from one of the memory
areas to another area, we also copy the taint between the different shadow areas. For
instance, when a value is copied from the stack to the memory area, i.e., the contract
executes a MSTORE instruction, the taint engine will pop one taint from the shadow
stack and store it in the shadow memory region. The EVM architecture is completely
deterministic; smart contracts in the EVM can only access the blockchain state using
dedicated instructions. That is, no other form of input or output is possible. This
allows us to completely model the data flows of the system by tracking data flows at
the EVM instruction level.

For reentrancy detection, as described in Section 6.3, we only need one type of taint
called DependsOnStorage. The taint source for this taint is the SLOAD instruction.
Upon encountering this instruction, the taint engine creates a taint, which consists of
the taint type and the address passed as an operand to the SLOAD instruction. The
conditional JUMPI instruction is used as a taint sink. Whenever such a conditional
jump is executed, the taint engine checks whether the condition value is tainted
with a DependsOnStorage taint. If this is the case, the taint engine will extract
the storage address from the taint and add it to the set of variables that influenced
control-flow decisions. Our implementation supports an arbitrary number of different
DependsOnStorage taints. This allows Sereum to support complex code constructs,
e.g., control-flow decisions that depend on multiple storage variables.

Example for Taint Assignment and Propagation Figure 6.7 shows an example for
taint propagation in Sereum. The figure depicts a snippet of Ethereum bytecode
instructions. In this snippet of instructions, a data flow exists from the SLOAD

140

6.4 Implementation Details

instruction in line 1 to the conditional jump instruction in line 4. The SLOAD instruction
will load a value from the storage memory region. The first and only parameter to
SLOAD is the address in the storage area. The JUMPI instruction takes two parameters:
the jump destination and the condition of whether the jump is to be performed. Recall
that all instruction operands except for the PUSH instruction are passed via the stack.

Figure 6.7 shows the state of the normal data stack and the corresponding shadow
stack below the snippet. SP denotes the stack pointer before the instruction is
executed. The SLOAD instruction will pop an address A from the stack, load the
value V (referenced by A) from storage, and then push it onto the stack. Since the
SLOAD instruction is defined as a taint source, the taint engine will create a new
DependsOnStorage taint, which we denote as τs. This taint is assigned to the value
V by pushing it onto the shadow stack. Note that in this case, V was not previously
assigned a taint.

The instruction LT (less-than) compares the value loaded from storage with the
value C that was previously pushed on the stack. This comparison decides whether
the conditional jump should be taken. Since the LT instruction takes two parameters
from the stack (V and C), the taint engine also pops two taints from the shadow stack
(τs and τ ′). The result of the comparison is then tainted with both taints (τs and τ ′),
so the taint engine pushes a merged taint (τs, τ ′) to the shadow stack.

The PUSH2 instruction then pushes a 2-byte constant to the stack, which is assigned
an empty taint τ∅. Finally, the JUMPI instruction takes a code pointer (dst) and a
boolean condition as parameters from the stack. Since JUMPI is a taint sink, the taint
engine will check the taints associated with the boolean condition. If this value is
tainted with the τS taint, it will compute the original storage address A based on
the taint. At this point, we know that the value at storage address A influenced the
control-flow decision. Hence, we add it to the set of control-flow influencing storage
addresses, which is passed to the attack detection component later on.

Using the taint engine, Sereum records the set of storage addresses that reference
values that influence control-flow decisions. This set of addresses is then forwarded to
the attack detection component once the contract finishes executing.

Attack Detection

We lock the write access to storage addresses that influence control-flow decisions to
detect reentrancy attacks. During the execution of a contract, the taint engine detects
and records storage addresses, which are loaded and then influence the outcome of
a control-flow decision. As described in Section 6.3, Sereum uses a dynamic call
tree to compute the set of variables that are locked for writing. Sereum builds a
so-called dynamic call tree during the execution of a transaction. This tree contains a
node for every invocation of a contract during the transaction. The dynamic call-tree
records how the call stack of the transaction evolves over time, i.e., it is essentially
a combination of all call stacks at any point in time combined into a single data
structure. The ordering of the child nodes in the dynamic call tree corresponds to
the order of execution during the transaction. The depth of the node in the tree
corresponds to the depth in the call stack, i.e., the time when a contract was invoked.
Sereum updates the dynamic call tree whenever a contract issues or returns from an

141

Chapter 6 Mitigation of Reentrancy Attacks

1 SLOAD
2 LT
3 PUSH2 $dst
4 JUMPI

PC Instruction Stack (before Instruction) Shadow Stack (Taints) Taint Engine

1 SLOAD

A top

C
. . .

τ∅ top

τ ′

. . .

Create new DependsOnStorage taint τS as-
sociated with address A and push it onto the
shadow stack.

2 LT

V top

C
. . .

τS top

τ ′

. . .

Take the taints of the two instruction operands,
τS and τ ′ and assign both to b by moving them
to the same stack slot.

3 PUSH2 dst b = V < C top

. . .

τS, τ
′ top

. . .

Push empty taint for constant dst.

4 JUMPI

dst top

b = V < C
. . .

τ∅ top

τS, τ
′

. . .

Check the taints of the jump condition: If it
is tainted with a DependsOnStorage taint (τS),
then compute original address A from taint and
record that the variable at storage address A
influenced control-flow.

Figure 6.7: Taint propagation example for an EVM snippet that implements a high-
level solidity if-statement with a conditional branch. The SLOAD Instruction
in line 1 indirectly influences the control-flow decision in the JUMPI in-
struction in line 4 as it is used as a parameter in the LT instruction. LT
performs a less-than comparison between the first and second operands on
the stack. The taint engine propagates the taints τ through the executed
instructions and stores them on a shadow stack. The condition for the
conditional jump b depends on the values C and the value V , which was
loaded from storage address A. SP is the current stack pointer, pointing
to the top of the data stack.

external call. When the called contract completes execution, the set of control-flow
influencing variables is retrieved from the taint engine and stored as associated data
in the corresponding node of the call tree.

Sereum locks only the set of variables used during an external call as part of a
control-flow decision or as a parameter to another call. We call this type of variable a
critical variable. To compute this set, Sereum traverses the dynamic call tree starting
from the node corresponding to the current execution. During traversal, Sereum
searches for nodes, which were part of executions of the same contract. When Sereum
finds such a node, it retrieves the set of critical variables previously recorded by the
taint engine. Sereum performs this traversal and an update of the set of locked critical
variables after every external call. Whenever a contract attempts to write to the
storage area, i.e., executes the SSTORE instruction, Sereum intercepts the write and
first checks whether the address is locked. If the variable is locked, Sereum reports a
reentrancy attack and then aborts the execution of the transaction. This results in
the EVM unwinding all state changes and Ether transfers.

142

6.5 Evaluation

6.5 Evaluation

In this section, we evaluate the effectiveness and performance of Sereum based on
existing Ethereum contracts deployed on the Ethereum mainnet. Since our run-time
analysis is transparently enabled for each execution of a contract, we re-execute the
transactions that are stored on the Ethereum blockchain. We compare our findings with
state-of-the-art academic analysis tools such as Oyente [Luu+16] and Securify [Tsa+18].
The version of Securify, which was available at the time the study was conducted,
was only available through a web interface and did not support submitting bytecode
contracts anymore. Therefore, we were not able to test all contracts with Securify.
Furthermore, we do not compare with Mythril [Conc] and Manticore [Mos+19] as
they follow the detection approach of Oyente (symbolic execution). We also conduct
experiments based on the three new reentrancy attack patterns we introduced in
Section 6.1—effectively demonstrating that only Sereum is able to detect them all.

6.5.1 Identifying Attacks on Mainnet

We first connect our Sereum client with the public Ethereum network to retrieve all
the existing blocks while keeping as many intermediate states in the cache as possible.
Transaction re-execution requires the state of the context block, which is saved as
nodes in the state Patricia tree of the Ethereum blockchain. We run the geth (Go
Ethereum) client with the options sync mode full, garbage collection mode archive, and
assign as much memory as possible for the cache. During the block synchronization
process, the taint tracking is disabled to ensure that the client preserves the original
state at each block height.

We then replay the execution of each transaction in the blockchain available to us.
We performed two evaluation runs of Sereum. The first initial evaluation re-executed
all blocks up to block number 4 500 000 (November, 6th 2017). However, this version
of Sereum did not yet support detection of unconditional reentrancy. In a second
run, we re-executed all blocks until block number 9 069 000 (December, 8th 2019). We
perform a more detailed analysis of the contracts discovered in the first run until block
number 4 500 000. Note that we skip those blocks which were targets of denial-of-
service attacks as they incur high execution times of transactions [Wil16]. We replay
the transactions using the debug module of the geth RPC API. This ensures that
our replay of transactions does not affect the public saved blockchain data. We also
retrieve an instruction-level trace of the executed instructions and the corresponding
storage values during the transaction execution. This allows us to step through the
contract’s execution at the granularity of instructions.

We enable the taint tracking option in Sereum during the transaction replay to
evaluate whether a transaction triggers a reentrancy attack pattern. If a reentrancy
attack is detected, an exception will be thrown, the execution of the transaction gets
invalidated, and an error will be reported via the API. Sereum will then return the
instruction trace up to the point where the reentrancy attack is detected.

All in all, we re-executed 597 629 235 transactions, out of which Sereum flags
312 617 (0.052 %) of them as reentrancy violation. These transactions target 368
different accounts. However, we identify only 250 hash-distinct contracts in this set.

143

Chapter 6 Mitigation of Reentrancy Attacks

1

10

100

1,000

10,000

100,000

#T
ra

ns
ac

tio
ns

(S
er

eu
m

)

False Positive (FP)
True Positive (TP)

CCRB
DAO

0x
74

84
a1

(p
ro

xy
CC)

DAC

(D
SEth

Tok
en

)

0x
69

5d
73

(E
ZC)

0x
98

D8A
6

(W
EI)

0x
bD

7C
eC

0x
F4e

e9
3

Alar
m

0x
77

15
00

Kiss
BTC

Lo
tte

ry
Gam

eL
og

ic

FP Type I I I II II IIIII IVV V V V U U

Oyente

Securify

Vulnerable Contracts

Figure 6.8: The top plot shows the number of detected transactions triggering the reen-
trancy vulnerability in the flagged contracts. Each contract is categorized
by its false positive type described in Section 6.6.1. Type I corresponds to
“lack of field-sensitivity”, Type II “storage deallocation”, Type III “con-
structor callbacks”, Type IV “tight contract coupling”, Type V “manual
reentrancy locking”, and U for Unknown. The contract name is shown
for those where source code is available. Contracts in parenthesis are
known token contracts at http://etherscan.io although source code is not
available. The bottom plot shows how the tools Oyente [Luu+16] and
Securify [Tsa+18] handle this subset of contracts. Since the last public
version of Securify requires source code, we depict a cross for those (byte-
code) contracts we were not able to evaluate.

Furthermore, the majority of transactions are caused by very few contracts. 77.38 %
of the transactions are due to 3 different contracts.

In the first part of the evaluation, which covers up to block number 4 500 000, we
discovered that many contracts that we flag as vulnerable are created by the same
account and share the same contract code but are only instantiated with different
parameters. We consider these contracts as being identical. More specifically, we
found three groups of identical contracts involving 21, 4, and 3 contracts, respectively.
Furthermore, we identify many contracts that are essentially duplicates but feature a
different code hash. These contracts execute the same sequence of instructions that
only differ in the storage addresses. We consider these contracts as alike contracts. In
total, we found two groups of similar contracts of size 10 and 3, respectively. As a
result, Sereum detected 16 identical or alike contracts that are invoked by transactions
matching the reentrancy attack pattern. For 6 out of these 16 contracts, the source code
is available on http://etherscan.io, thus allowing us to perform a detailed investigation
on why they have been flagged. In the remainder of this section, we present our manual
analysis of these contracts. We check whether a violating transaction resembles a

144

etherscan.io
etherscan.io

6.5 Evaluation

reentrancy attack pattern and whether the code of the concerned contract suffers from
reentrancy vulnerability that could potentially be exploited.

For contracts with Solidity source code, we perform source code reviews and check
the contract logic that is triggered by the transaction input to identify reentrancy
attacks manually. We use the transaction trace as a reference to follow the control flow
and observe external calls to other contracts or accounts. For contracts with no source
code, we cannot fully recover the semantics of the contract for detected inconsistent
state updates. In this case, we use the transaction trace and the ethersplay [Cry]
disassembler tool to partially reverse-engineer the contracts.

Based on our investigation up to block number 4 500 000, we can confirm that
two contracts were actually exploited by means of a reentrancy attack. One of
them is the known “The DAO” [DAO] attack attributing to 2294 attack transactions.
Note that we consider TheDarkDAO [dDAO] and “The DAO” [DAO] contract as
being identical. The second case involves a quite unknown reentrancy attack. It
occurred at contract address 0xd654bDD32FC99471455e86C2E7f7D7b6437e9179, and
we attributed 43 attack transactions to this incident. After reviewing blog posts and
GitHub repositories related to this contract [MKRh; MKRr], we discovered that this
contract is known as DSEthToken and is part of the maker-otc project. This series of
attack transactions were initiated by the contract developers after they discovered a
reentrancy vulnerability. Since the related funds were drained by (benign) developers,
the Ethereum community paid less attention to this incident. Based on our manual
analysis of the contracts up to block number 4 500 000, we can approximate the rate
of false alarms of Sereum. We compute a false alarm rate of 0.06 % across all the
re-run transactions up until block number 4 500 000. Figure 6.8 shows the number of
transactions that match the reentrancy attack pattern flagged by Sereum. Some of
the results reflect false positives, which we discuss in detail in Section 6.6.1.

We also observe that Oyente flagged 8 of these contracts as vulnerable to reentrancy
attacks. Some contracts were not detected by Oyente since Oyente does not consider
any of the advanced reentrancy attacks we discussed in Section 6.1. During our
analysis, we noticed that in some cases, Oyente warned about reentrancy problems,
which are only exploitable with a cross-function reentrancy attack. However, we believe
this is due to Oyente incorrectly detecting a same-function reentrancy vulnerability.
Apart from the six false alarms in our test set, the analysis performed by previous
work [GMS18; Tsa+18] demonstrated that reentrancy detection in Oyente is quite
imprecise and features a high number of false alarms and also missed bugs.

With respect to Securify, the latest version of Securify requires the source code of
a contract, thereby impeding us from evaluating all contracts. Therefore, we have
only examined the contracts whose source code is available. Securify defines a very
conservative violation pattern for reentrancy detection that forbids any state update
after an external call.

Detecting Further Attacks In our second evaluation run up to block number 9 069 000,
Sereum identifies several additional reentrancy attacks. For example, Sereum
detects the known attack against the SpankChain LedgerChannel contract [Spa18].
Furthermore, Sereum correctly identifies several attacks against test contracts that

145

Chapter 6 Mitigation of Reentrancy Attacks

are intentionally vulnerable to reentrancy but were deployed to the main Ethereum
blockchain nevertheless.

Torres et al. [TSS19] studied the phenomenon of honeypot contracts. These contracts
seem to be vulnerable according to the source code submitted to the etherscan service,
but their real deployments break exploitation. Such honeypot contracts are typically
a form of scam because they require an initial investment of Ether before attempting
exploitation. Essentially, the creator of the honeypot scams malicious actors that
attempt to exploit simple vulnerabilities. We identify several attempted attacks
against honeypot contracts with Sereum. Although the honeypot contracts thwart
exploitation themselves, Sereum’s reentrancy locking still identifies and flags the
attempted reentrant transaction.

6.5.2 Detection Capabilities
We evaluated our new reentrancy attack patterns (see Section 6.2). For each contract,
we crafted one attack transaction for Sereum to perform the check: Sereum success-
fully detects all attack transactions to the three vulnerable contracts. Table 6.1 shows
an overview of various tools tested against the vulnerable contracts for the new reen-
trancy attack patterns. As discussed earlier, neither Oyente, Securify, nor Manticore
can detect delegated and create-based reentrancy vulnerabilities. While Oyente does
not detect the cross-function reentrancy attack, Securify is able to detect it due to its
conservative policy. Similarly, Mythril detects cross-function and create-based reen-
trancy because it utilizes a similar policy to Securify, which is extremely conservative
and, therefore, also results in a high number of false positives. ECFChecker [Gro+18]
detects the cross-function reentrancy attack. However, during our evaluation, we
crafted another contract, which is vulnerable to cross-function reentrancy, but was
not detected by ECFChecker. Recall that the delegated reentrancy attack cannot be
detected by any existing static offline tool as it exploits a dynamic library that is
either not available at analysis time or might be updated in the future. However, a
dynamic tool, such as ECFChecker or Sereum, can detect the delegated reentrancy
attack. The create-based reentrancy attack is not detected by any of the existing
analysis tools, as the instruction CREATE is currently not considered as an external call
by none of the existing analysis tools.

In general, we argue that Sereum offers the advantage of detecting actual reentrancy
attacks and not just possible vulnerabilities. In contrast to previous work on static
analysis [Luu+16; Tsa+18], this makes it feasible for us to determine exactly whether
an alarm is a true or false alarm. Moreover, some of the contracts are not flagged by
Oyente and Securify as these do not cover the full space of reentrancy attacks. As
such, they naturally do not raise false alarms for contracts that violate reentrancy
patterns that are closely related to the delegated and create-based reentrancy (i.e.,
Type III and IV).

146

6.5 Evaluation

Table 6.1: Comparison of reentrancy detection tools subject to our test cases for
the advanced re-entrancy attack patterns. Tools marked with support
detecting this type of re-entrancy, while tools marked with # do not support
detecting this type of re-entrancy. Tools with an overly restrictive policy
are marked with G#.

Tool Version Cross-Function Delegated Create-based Unconditional
Oyente 0.2.7 # # #
Mythril 0.19.9 G# # G#
Securify 2018-08-01 G# # #
Manticore 0.2.2 # #
ECFChecker geth1.8port #
Sereum v1 #
Sereum v2

147

Chapter 6 Mitigation of Reentrancy Attacks

6.5.3 Performance and Memory Overhead
At the time of evaluation, there were no benchmarks, consisting of realistic contracts,
available for EVM implementations. As such, we measured the performance overhead
by timing the execution of a subset of blocks from the Ethereum blockchain. We
sampled blocks from the blockchain, starting from 4 600 000, 4 500 000, 4 400 000,
4 300 000, and 4 200 000, we use 10 consecutive blocks each. We re-execute those blocks
in batch while accounting only for the EVM’s execution time. We perform one run with
plain geth, on which Sereum is based, and one with Sereum with attack detection
enabled. For the performance evaluation, we do not consider those transactions, which
Sereum flags as a reentrancy attack. Sereum aborts those transactions early, which
can result in a much shorter execution time compared to the normal execution.

Table 6.2 shows the runtime measurements of geth and Sereum in comparison.
Sereum incurs an average runtime overhead of 9.6 %. We measured the performance
overhead of Sereum, compared with plain geth when running 50 blocks in batch. Here,
we average the runtime over 10 000 runs of the same 50 blocks. We benchmarked on
an 8-core Intel(R) Xeon(R) CPU E5-1630 v4 with 3.70GHz and 32 GB RAM. Sereum
incurred a mean overhead of 217.6 ms (σ = 100.9 ms) or 9.6 %. While measuring the
timing of the executed transactions, we additionally measured the memory usage of the
whole Ethereum client. We used Linux cgroups to capture and measure the memory
usage of Sereum and all subprocesses. We sample the memory usage every second
while performing the runtime benchmarks. During our benchmark, Sereum required
on average 9767 Mbyte of memory with active attack detection, while the plain geth
required 9252 Mbyte.

This shows that Sereum can effectively detect reentrancy attacks with negligible
overhead. In fact, the actual runtime overhead is not noticeable. The average time
until the next block is mined in 14.5 seconds and contains 130 transactions on average
(between Jan 1, 2018 and Aug 7, 2018). Given our benchmark results, a rough estimate
of EVM execution time per block is 0.05 seconds, with Sereum adding 0.005 seconds
overhead. Compared to the total block time, the runtime overhead of Sereum is
therefore not noticeable during normal usage.

Table 6.2: Performance overhead of Sereum version 1, compared with the plain go-
ethereum client when running 50 blocks in batch and averaged over 10000
repeated trials.

Average σ

go-ethereum Client 2277.0 ms 146.7 ms
Sereum 2494.5 ms 174.8 ms
Overhead 217.6 ms 100.9 ms

148

6.6 Limitations

6.6 Limitations

In this chapter, we discuss the limitations of Sereum. During our thorough evaluation,
we discovered several patterns that caused false alarms. We analyze those in detail
and discover several code patterns that tend to cause false alarms. We describe these
false alarm patterns in Section 6.6.1. Some of these false alarm patterns, such as
storage deallocation, can also be the cause of true reentrancy attacks. As such, some
patterns must be accepted as a source of false alarms. We suggest that smart contract
authors instead avoid such patterns as they hinder analysis. Other patterns, like the
lack of field sensitivity, are something that can be improved upon with better analysis,
e.g., taint tracking at byte granularity. Finally, we also discuss a recently discovered
reentrancy bug that is missed by Sereum in Section 6.6.2.

6.6.1 Analysis of False Alarms

While investigating the contracts that triggered the reentrancy detection of Sereum, we
discovered code patterns in deployed contracts (see Figure 6.8), which are challenging
to accurately handle for any off-line or run-time bytecode analysis tool. These patterns
are the root cause for the rare false alarms we encountered during our evaluation of
Sereum.

However, since these code patterns are not only challenging for Sereum but for other
existing analysis tools such as Oyente [Luu+16], Mythril [Conc], Securify [Tsa+18],
or any reverse-engineering tools operating at EVM bytecode level [Cry; Zho+18], we
believe that a detailed investigation of these cases is highly valuable for future research
in this area. Our investigation also reveals for the first time why existing tools suffer
from false alarms when searching for reentrancy vulnerabilities. In what follows, we
reflect on the investigation of the false positives that we encountered.

I. Lack of Field-Sensitivity on the EVM Level Some false positives are caused by a
lack of information on fields at the bytecode level for data structures. Solidity supports
the keyword struct to define a data structure that is composed of multiple types,
e.g., Figure 6.9 shows a sample definition of a struct S of size 32 bytes. Since the
whole type can be stored within one single word in the EVM storage area, accessing
either of the fields a or b ends up accessing the same storage address. In other words,
on the EVM bytecode level, the taint-tracking engine of Sereum cannot differentiate
the access to fields a and b. This leads to a problem called over-tainting, where
taints spread to unrelated values and, in turn, cause false positives. Notice that this
problem affects all analysis tools working on the EVM bytecode level. Some static
analysis tools [Gre+19; Sui17] use heuristics to detect the high-level types in Ethereum
bytecode. The same approach could be used to infer the types of different fields
of a packed data structure. However, for a run-time monitoring solution, heuristic
approaches often incur unacceptable runtime overhead without guaranteeing successful
identification. To address this type of false positive, one would either require the
source code of the contract or additional type information on the bytecode level.

149

Chapter 6 Mitigation of Reentrancy Attacks

1 struct S {
2 int128 a; // 16 bytes
3 int128 b; // 16 bytes
4 } // total: 32 bytes
5 // struct access in solidity, e.g.
6 S.a = 0x42;
7 // compiles down to code roughly equivalent to the following evm assembly code.
8 assembly {
9 // load b

10 b := and(sload(S), ((2 << 127) - 1))
11 // write new value for a and old value of b
12 sstore(S, or((0x42 << 128), b))
13 }

Figure 6.9: Solidity struct, where both a and b are at the same storage address.
Therefore, any update to a or b includes loading and writing also the other.

1 mapping (uint => uint) M; // a hash map
2 // delete entry from mapping
3 delete M[id];
4 // on the EVM level this is equivalent to
5 M[id] = 0;

Figure 6.10: Solidity storage delete is equivalent to storing zero.

II. Storage Deallocation The EVM storage area is basically a key-value store that
maps 256-bit words to 256-bit words. The EVM architecture guarantees that the whole
storage area is initialized with all-zero values and is always available upon request.
More specifically, no explicit memory allocation is required, while memory deallocation
simply resets the value to zero. This poses a problem at the bytecode level: a memory
deallocation is no different from a state update to value 0, though the semantics differ,
especially when applying the reentrancy detection logic. Consider the example of a
map M in Figure 6.10. When the contract deallocates the element indexed by id from
M (delete from a map), it basically has the same effect as setting the value of M [id] to
0 at the bytecode level. Here, the Solidity compiler will emit nearly identical bytecode
for both cases. We encountered a contract2 presenting this case which leads to a false
alarm.

However, this pattern does not necessarily always lead to false alarms. In fact,
the very same pattern can also lead to real reentrancy attacks. For example, the
SpankChain LedgerChannel [Spa18] was vulnerable to a reentrancy bug that was
because of this pattern. Figure 6.11 shows the vulnerable function. As such, we
conclude that while this is a common pattern for false alarms, it is important to cover
this case for accurate reentrancy detection. In fact, any false alarm due to this pattern
is a sign of bad coding practices and also potential reentrancy attacks.

2Contract address: 0x6777c314b412f0196aca852632969f63e7971340

150

6.6 Limitations

1 function LCOpenTimeout(bytes32 _lcID) public {
2 /* ... */
3 if (Channels[_lcID].initialDeposit[0] != 0) {
4 // ETHER TRANSFER
5 Channels[_lcID].partyAddresses[0].transfer(
6 Channels[_lcID].ethBalances[0]
7);
8 }
9 if (Channels[_lcID].initialDeposit[1] != 0) {

10 // EXTERNAL CALL
11 require(
12 Channels[_lcID].token.transfer(
13 Channels[_lcID].partyAddresses[0],
14 Channels[_lcID].erc20Balances[0]
15),
16 "CreateChannel: token transfer failure"
17);
18 }
19

20 /* ... */
21

22 // STATE UPDATE
23 delete Channels[_lcID];
24 }

Figure 6.11: Vulnerable function of the SpankChain LedgerChannel contract that
was exploited based on the fact that the delete is performed as the last
action. The function repeatedly transfers Ether when reentered because
the channel structure is not deleted before the external call.

III. Constructor Callbacks Sereum considers calls to the constructor of contracts to
be the same as calls to any other external contract. This allows Sereum to detect
create-based reentrancy attacks. However, detecting create-based reentrancy comes at
the cost of some false positives. During our evaluation3, we noticed that sub-contracts
created by other contracts, tend to call back into their parent contracts. Usually,
this is used to retrieve additional information from the parent contract: the parent
creates the sub-contract, the sub-contract re-enters the parent contract to retrieve
the value of a storage variable, and that same variable is then updated later by the
parent. Consider the example in Figure 6.12, where contract A creates a sub-contract
B. While the constructor executes, B re-enters the parent contract A, which performs
a control-flow decision on the funds variable. This results in Sereum locking the
variable funds. Since no call to another potentially malicious external contract is
involved, this example is not exploitable via reentrancy. However, Sereum detects
that the funds variable is possibly inconsistent due to the deferred state update. A
malicious contract B could have re-entered A and modified the funds variable in the
meantime.

3Contract address 0xFBe1C2a693746Ccfa2755bD408986da5281c689F

151

Chapter 6 Mitigation of Reentrancy Attacks

1 contract A {
2 mapping (address => uint) funds;
3 // ...
4 function hasFunds(address a) public returns(bool) {
5 // funds is used for control-flow decision
6 if (funds[a] >= 1) { return true; }
7 else { return false; }
8 }
9 function createB() {

10 B b = new B(this, msg.sender);
11 // ...
12 // update state (locked due to call to hasFunds)
13 funds[msg.sender] -= 1;
14 }
15 }
16 contract B {
17 constructor(A parent, address x) {
18 // call back into parent
19 if (parent.hasfunds(x)) { /* ... */ }
20 }
21 }

Figure 6.12: Constructor callback: The sub-contract B calls back (re-enters) into the
hasFunds function of the parent contract A. This type of false positive is
similar to the create-based reentrancy attack pattern.

We argue that this constructor callback pattern should be avoided by contract
developers. All necessary information should be passed to the sub-contract’s constructor
such that no reentrancy into the parent contract is needed. This not only avoids false
positives in Sereum but also decreases the gas costs. External calls are one of the
most expensive instructions in terms of gas requirements, which must be paid for in
Ether and, as such, should be avoided as much as possible.

IV. Tight Contract Coupling During our evaluation, we noticed a few cases where
multiple contracts are tightly coupled, resulting in overly complex transactions, i.e.,
transactions that cause the contracts to be re-entered multiple times into various
functions. This suggests that these contracts have a strong interdependency. Since
Sereum introduces locks for variables that can be potentially exploited for reentrancy
and is not aware of the underlying trust relations among contracts, it reports a false
alarm when a locked variable is updated. We consider these cases as an example of bad
contract development practice since performing external calls is relatively expensive in
terms of gas, and as such also Ether, and could be easily avoided in these contracts.
That is, if trusted contracts have an internal state that depends on the state of other
trusted contracts, we suggest developers keep the whole state in one contract and use
safe library calls instead.

152

6.6 Limitations

1 mapping (address => uint) private balances;
2 mapping (address => bool) private disableWithdraw;
3 // ...
4 function withdraw() public {
5 1 if (disableWithdraw[msg.sender] == true) {
6 // abort immediately and return error to caller
7 revert();
8 }
9 uint amountToWithdraw = balances[msg.sender];

10

11 2 disableWithdraw[msg.sender] = true;
12 3 msg.sender.call.value(amountToWithdraw)();
13 4 disableWithdraw[msg.sender] = false;
14 // state update after call
15 userBalances[msg.sender] = 0;
16 }
17 // ...

Figure 6.13: Manual locking to guard against reentrancy.

V. Manual reentrancy Locking To allow expected and safe reentrancy, a smart
contract can manually introduce lock variables (i.e., a mutex) to guard the entry of
the function. In Figure 6.13), disableWithdraw enables a lock at ➁ before making an
external call at ➂ . The lock is reset after the call at ➃ . This prevents any potential
re-entrance at ➀ . Hence, even though the balance is updated after the external call,
the contract is still safe from reentrancy attacks.

However, the access pattern to these lock variables during reentrant calls matches
an attack pattern, i.e., the internal state (the lock variable) that affects the control
flow in subsequent (reentered) invocation of the contract, is updated subsequently
(at ➃). Operating at the bytecode level, it is challenging to distinguish the benign
state updates of locks from those of critical variables such as balances. Note that
manual locking is an error-prone approach as it could allow an attacker to reenter
other functions of the same contract unless the entry of every function is guarded
by the lock. In contrast, Sereum automatically introduces locks for all possibly
dangerous variables (detected via taint tracking) across all functions, thereby removing
the burden from developers to manually determine all possible vulnerable functions
and critical variables.

VI. Bounds-Checking of Dynamic Arrays One of the largest sources of false alarms
we discovered during our extended evaluation was the bounds-checking code of variably-
sized arrays. Most notably, the popular BlockChainCuties contract was responsible for
many false alarms. These bounds-checks are generated by the Solidity compiler and
are not directly visible to the developer. Figure 6.14 shows the relevant code-snippets
from the BlockChainCuties contract. The contract is really split into two contracts,
similar to the tight contract coupling issue (issue IV.), and there are frequent callbacks
between the two contracts. Most importantly, the second contract will perform a call
that triggers a bounds check before accessing an array. On the level of the Solidity

153

Chapter 6 Mitigation of Reentrancy Attacks

1 // reentrant call to this functions sets a write-lock
2 function getGeneration(uint40 _id) public view
3 returns (uint16 generation)
4 {
5 // solidity generates a bounds-check here, which is
6 // implemented as an EVM-level jump.
7 Cutie storage cutie = cuties[_id];
8 generation = cutie.generation;
9 }

10 // [...]
11 // ...which is violated when the array is modified later
12 uint256 newCutieId256 = cuties.push(_cutie) - 1;
13 // [...]

Figure 6.14: Reentrant callback to the getGeneration function in the BlockChainCuties
contract, will set a write-lock that is later violated.

source code, there is no conditional branch visible. However, on the EVM level, Solidity
generates a conditional branch for the bounds-check. The generated code loads the
length of the array from the storage area, compares it to the index passed by the user,
and if it is out of bounds, the conditional branch will jump to the error reporting code.
On the EVM level, there is no difference between the length and a storage value with
the semantics of a user balance. As such, Sereum sets a write-lock on the length
of the dynamic array. However, if the array is later modified, Sereum will report a
potential reentrancy attack. This pattern is particularly tricky to assess because there
is no clear root cause for the write-lock on the source code level.

6.6.2 Missed Reentrancy Patterns

While most reentrancy attacks attempt to bypass a security check, i.e., something
represented as a conditional branch, we already discussed an outlier to this rule:
unconditional reentrancy. Sometimes, even critical functions are so small that they
can be implemented without any conditional branch at all. Similar to this pattern,
Bose et al. [Bos+22] identified a reentrancy pattern that is quite similar to traditional
double-fetch vulnerabilities [Wan+17]. Figure 6.15 show an example for such a vulner-
ability [Bos+22], which we accordingly call double-fetch reentrancy. Here, there are
two consecutive uses, i.e., read accesses, of a storage variable, and between both uses,
there is an external call. The implicit assumption is that the value obtained by the
storage reads is the same. During normal execution, this is a reasonable assumption
if there is no write to that storage address. However, since there is an external call
between both reads, this assumption can be violated.

In the example in Figure 6.15, the code of the victim fetches the variable twice,
assuming it has the same value. However, during the external call, the attacker
maliciously reenters the victim contract in the updateSplit function. Now the value of
the split changed, and the attacker is able to manipulate the following computation of
the splits to gain Ether.

154

6.7 Related Work

1 // [Step 1]: Set split of 'a' (id = 0) to 100(%)
2 // [Step 4]: Set split of 'a' (id = 0) to 0(%)
3 function updateSplit(uint id, uint split) public{
4 require(split <= 100);
5 splits[id] = split;
6 }
7

8 function splitFunds(uint id) public {
9 address payable a = payee1[id];

10 address payable b = payee2[id];
11 uint depo = deposits[id];
12 deposits[id] = 0;
13

14 // [Step 2]: Transfer 100% fund to 'a'
15 // [Step 3]: Reenter at updateSplit
16 // first load from storage
17 a.call.value(depo * splits[id] / 100)("");
18

19 // [Step 5]: Transfer 100% fund to 'b'
20 // second load from storage: DOUBLE-FETCH
21 b.transfer(depo * (100 - splits[id]) / 100);
22 }

Figure 6.15: Example for a double-fetch reentrancy vulnerability [Bos+22]

This attack remains undetected by Sereum. The problem is that Sereum utilizes a
different model of reentrancy: one that focuses on write access. Sereum assumes that
the reentrant call will set a write-lock due to a storage read, and the non-reentrant
call will violate the write-lock with a storage write operation. However, in this case,
the storage write operation is performed during a reentrant call, while the storage
read operation is in the non-reentrant call.

6.7 Related Work

Reentrancy has emerged as one of the major challenges for smart contract security.
Years after “The DAO” incident, we still observe major incidents and losses due to
reentrancy bugs [REVST; CREAM; Tor+21b]. Naturally, many different analysis
methods to identify reentrancy issues were proposed. The types of methods to tackle
the reentrancy problem range from formal verification, static analysis, bounded model
checking, symbolic execution, and fuzzing.

Zeus [Kal+18] translates Solidity contract into the LLVM intermediate language
and then utilizes a stock verification framework, in this case Seahorn. The verification
framework then identifies potential violations of the assertions inserted based on a
custom security policy. Zeus also identifies reentrancy attacks, but it only scales to the
same-function reentrancy pattern. The problem is that it does not explicitly model
reentrancy during the verification process but works around it by inserting spurious
calls into the analyzed LLVM bitcode for analysis purposes. This approach does not
scale to other reentrancy patterns due to combinatorial explosion. However, especially

155

Chapter 6 Mitigation of Reentrancy Attacks

newer reentrancy attacks are often due to cross-function attacks [REVST; CREAM;
Tor+21b]. In contrast, Schneidewind et al. [Sch+20b] provides a provably sound
static analysis framework tailored towards the EVM. This static analysis framework
allows to verify the single entrancy property for EVM smart contracts. Similarly,
KEVM [Hil+17] defines executable formal semantics for EVM bytecode in the K-
framework and presents an accompanying formal verification tool.

Securify [Tsa+18] is a static analysis tool that infers semantic facts about smart
contracts using a Datalog solver [Sch+16]. The Datalog solver then attempts to show
whether a predefined compliance pattern or violation pattern is satisfied, thereby
proving the absence or presence of certain vulnerabilities. To detect reentrancy,
Securify uses the no-write after-call analysis. Essentially, this type of analysis enforces
a variant of the checks-effects-interactions pattern. Securify will flag any state write
after an external call as potential reentrancy. Naturally, this will lead to many false
alarms in complex contracts, where this pattern is often impossible to avoid. For
example, it would not be practical to model create-based reentrancy with this security
policy. Typically, the parent contract must save the address of the newly created child
contract. Naturally, this is only possible after issuing the create instruction, and also
after the potential reentrant call, as the create instruction itself will return the address.
Even though the no write after call security policy exhibits a high number of false
alarms, this type of analysis is used in various analysis tools [FGG19; Conc].

Two hybrid fuzzing tools utilize dynamic analyses similar to Sereum’s policy to
determine potential reentrancy. Confuzzius identifies a sequence of instructions in an
execution trace: (1) a SLOAD, (2) an external call, and (3) a SSTORE to the same address
as the prior SLOAD. This detection method is more similar to Sereum than forbidding
all writes after calls. Similar to Sereum, Confuzzius attempts to detect writes that
could cause inconsistent state during reentrant executions. However, Confuzzius does
not track data dependencies as does Sereum. While this allows Confuzzius to naturally
cover unconditional reentrancy, it does so at the cost of a higher number of false alarms.
Very similar to Sereum, Smartian leverages a taint analysis during hybrid fuzzing
and concolic execution to identify reentrancy bugs [Cho+21]. Smartian tracks state
variables using taint analysis that affect ether transfers. If the state variable is updated
after the call, Smartian reports a reentrancy bug. However, Smartian’s reentrancy
detection must be seen as an extension to the one used by Confuzzius, as it does not
require an actual reentrant execution to trigger. In contrast, Sereum will only report
reentrancy if it actually observes a reentrant execution.

ECFChecker [Gro+18] is a dynamic analysis tool that does not detect reentrancy
vulnerabilities, but defines a new attribute, Effectively Callback Free (ECF). An
execution is ECF when there exists an equivalent execution without callbacks that
can achieve the same state transition. If all possible executions of a contract satisfy
ECF, the whole contract is considered as featuring ECF. Non-ECF contracts are thus
considered as vulnerable to reentrancy, as callbacks can affect the state transition
upon contract execution. Proving the ECF property with static analysis was shown
to be undecidable in general. However, Grossman et al. [Gro+18] also developed a
dynamic checker that can show whether a transaction violates the ECF property of a
contract. ECFChecker has been developed concurrently to Sereum and was, to the
best of our knowledge, the only other runtime monitoring tool at that time. Recently,

156

6.8 Conclusion

the ECF property was adapted by the same authors to a constructive version that can
be statically verified [Alb+20]. However, the ECF approach does not cover the full
space of reentrancy attacks and misses several reentrancy patterns. Furthermore, it is
not clear whether the ECF property also covers compositional reentrancy attacks that
chain across multiple contracts [Cec+21].

Bose et al. [Bos+22] introduce the symbolic execution tool Sailfish that is tailored
specifically to uncovering state inconsistency bugs. The Sailfish analyzer summarizes
both reentrancy and transaction-order dependence under state inconsistency. Sailfish
combines static data-dependency analysis, value-summary analysis, and symbolic
execution to identify state inconsistency.

6.8 Conclusion

Reentrancy attacks exploit the inconsistent internal state of smart contracts during
unsafe reentrant executions, allowing an attacker, in the worst case, to drain all
available assets from a smart contract. Previously it was thought that advanced
offline analysis tools could accurately detect these vulnerabilities. However, as we
show, these tools can only detect basic reentrancy attacks and fail to accurately detect
new reentrancy attack patterns, such as cross-function, delegated, and create-based
reentrancy. Furthermore, it remains an open research direction on how to protect
existing contracts as smart contract code is supposed to be immutable and contract
creators are anonymous, which impedes responsible disclosure and deployment of
patched contract. We discuss a direction forward in this area in Chapter 7.

To address the particular ecosystem of smart contracts, we introduce a novel run-
time smart contract security solution, called Sereum, which exploits dynamic taint
tracking to monitor data-flows during smart contract execution to automatically detect
and prevent inconsistent state and thereby effectively prevent basic and advanced
reentrancy attacks without requiring any semantic knowledge of the contract. By
running Sereum on more than 80 million Ethereum transactions involving more than
90 000 contracts, we show that Sereum can identify and prevent reentrancy attacks
in deployed contracts with negligible overhead.

Limitation and Future Work Sereum is designed to run in enforcement mode,
protecting existing contracts, when Sereum is integrated into the blockchain ecosystem.
However, Sereum can also be utilized by smart contract developers in order to identify
attacks against their contracts and patch them accordingly. Namely, Sereum can
also be executed locally by contract developers that are interested in ensuring the
security of their deployed contracts. In fact, this mode is most useful today, as it is
unlikely that a tool like Sereum will be integrated into the default Ethereum execution
environment. The problem here is that Sereum changes the semantics of the execution
environment in rather surprising ways, as we identify in our analysis of false alarms in
Section 6.6.1. The fuzzer EF�CF, which we describe in Chapter 5, is the first fuzzing
tool that generates and concretely executes reentrant transactions. However, EF�CF
does not feature explicit detection of reentrancy issues. Instead, it relies on other
bug oracles, such as Ether gains, to identify reentrancy vulnerabilities. While this

157

Chapter 6 Mitigation of Reentrancy Attacks

leads to very accurate results, it does not uncover code quality issues that currently
cannot be exploited but should be removed to follow the defense-in-depth principle. To
detect reentrancy, Sereum must observe concrete reentrant transactions, something
provided by EF�CF. As such, it would be an interesting future research direction to
pair the taint tracking featured in Sereum with the transaction generator of EF�CF
to also detect potential reentrancy bugs improving the code quality of smart contracts.
The taint tracking code in Sereum does not add significant overhead with respect
to the baseline interpreter. However, for usage in EF�CF, the taint-tracking engine
must be evaluated with respect to the overhead to the high throughput execution
approach featured in EF�CF. As such, it remains an open question on how to integrate
taint-tracking-based detection into a high-performance Ethereum fuzzer.

Recently it was found that Sereum does not identify all types of reentrancy. Bose
et al. [Bos+22] identify an example of a reentrancy bug that is not picked up by
Sereum, a pattern we call double-fetch reentrancy. Sereum’s model for automatically
performing locking does not match this reentrancy pattern. While the taint-tracking
approach of Sereum is potent enough to identify various reentrancy issues at runtime,
it is not clear how to extend Sereum to capture also this type of attack. Sereum’s
locking model could be extended to issue read-locks on reentrant write accesses, but
it is unclear that this will not impact regular executions even further. As with any
mitigation, the number of false alarms of such an extension to Sereum would need to
be investigated to assess the overall usefulness of the defense.

We believe that automatic source-level hardening of smart contracts is a viable
alternative approach to securing smart contracts against reentrancy attacks [Gie+22].
Source-level hardening is fully compatible with the existing Ethereum infrastructure
and tooling and can be deployed to the main Ethereum network. In contrast to tools
that operate on the bytecode level, source-level hardening can perform analysis on the
source code to obtain semantic information. Furthermore, a source-level hardening
approach can be inspected by a developer to remove the overhead of unnecessary
checks. As such, hardening at the source-code level could be a more practical solution
in the short term.

158

CHAPTER 7
AUTOMATIC PATCHING OF SMART CONTRACTS

A number of ongoing attacks have fueled interest in the community to enhance the
security of smart contracts. In this respect, a number of solutions ranging from
devising better development environments to using safer programming languages,
formal verification, symbolic execution, and dynamic runtime analysis have been
proposed in the last few years [Gro+18; Kal+18; Luu+16; Rod+19]. However, most
analysis tools focus on detecting vulnerabilities or proving the absence of a certain
type of bug [Gri+20; Kal+18; Luu+16; Mos+19; Tsa+18]. This includes the fuzzing
technique we describe in Chapter 5. Dynamic analysis techniques can be integrated
directly into the blockchain to mitigate attacks as they happen [Gro+18; Rod+19],
which we discuss in Chapter 6. However, it is unclear how to deal with false alarms
in these dynamic analyses when integrated directly into the blockchain platform.
Furthermore, a post hoc integration into current production blockchain systems is
unlikely due to the need for backward compatibility. As such, they cannot be used
to protect already deployed legacy contracts on, e.g., the main Ethereum blockchain
as it is used today. Since none of the prior method of securing smart contracts are
sufficient, a method to upgrade smart contracts that are being deployed to current
blockchain systems is needed.

However, the patching lifecycle of smart contracts on the Ethereum blockchain is
quite complex. By design, Ethereum smart contracts are immutable, which requires
more involved upgrading strategies to work around this. The naive approach, called
migration, requires the contract owner to deprecate the vulnerable contract, move all
funds out of the contract, deploy a new contract, and finally move the funds to the
new contract. This is a cumbersome and manual process, which is further exacerbated
when the address of the vulnerable contract is referenced by other contracts. Besides
the migration pattern, proxy contracts have emerged as the de-facto standard for
upgradable contracts. The idea is that a truly immutable proxy contract uses an
interchangeable and trusted logic contract to implement the actual business logic.

With EVMPatch, we address the problem of automated and timely patching
of smart contracts to aid developers in instantly taking action on reported smart
contract errors. We describe our patching framework EVMPatch that features

159

Chapter 7 Automatic Patching of Smart Contracts

a bytecode-rewriter for Ethereum smart contracts. Employing bytecode rewriting
makes our framework independent of the source programming language and allows
our framework to work on unmodified contract bytecode. EVMPatch utilizes the
bytecode-rewriting engine to ensure that patches are minimally intrusive and that the
newly patched contract is compatible with the original contract. In particular, our
framework automatically replays transactions on the patched contract to

1. test the functional correctness of the patched contract with respect to previous
transactions pertaining to the contract,

2. identify potential attacks, i.e., developers can determine whether their vulnerable
contract has been attacked in the past.

EVMPatch uses a best-effort approach to ensure the introduced patch does not
break functionality by testing with previously issued transactions to the contract
and optionally also developer-provided unit tests. While such a differential testing
approach cannot provide a formal proof of the correctness of the patched contract,
it works without requiring a formal specification. Our experiments (see Section 7.4)
show that this approach is sufficient in practice to identify broken patches.

Contributions We present the design of EVMPatch, an automated approach to
smart contract patching. We show how to implement such a highly automated patching
workflow using bytecode-level patches. By applying patches on the bytecode level,
EVMPatch is independent of the used programming language/compiler and compiler
version. That is, EVMPatch supports any off-the-shelf Ethereum smart contract
code. We employ bytecode writing to ensure minimally intrusive patches that are
compatible by design with the contract’s storage layout. However, as for any approach
working on either the binary or bytecode level, we had to tackle several technical
challenges (Section 7.3). EVMPatch not only patches a smart contract but also
automatically converts the original contract to use the delegatecall-proxy pattern.
As such, EVMPatch can automatically deploy newly patched contracts in a fully
automated way without requiring any developer intervention using this proxy pattern.

In principle, EVMPatch can support patching of different classes of vulnerabilities
(see Section 7.3.4). However, our proof-of-concept implementation targets two major
bug classes: access control and integer overflow bugs. The latter has been repeatedly
exploited in high-value ERC-20 contracts [Pecc], whereas the former has been abused
in the Parity wallet attack [Tec17b]. In our EVMPatch prototype, we fully automate
patching integer overflow bugs. To keep the overhead minimal and ensure contract
functionality, we selectively harden exactly those integer arithmetic instructions, which
are considered to be vulnerable by the existing symbolic execution tool Osiris [FSS18].
However, our automated patch generation tool does not depend on one specific analysis
tool. In fact, any static or dynamic analysis tool can be easily integrated. With access
control issues as an example, we discuss what it takes to integrate the capability to
patch a new type of vulnerability into the EVMPatch framework.

To evaluate EVMPatch in terms of performance, effectiveness, and functional
correctness, we apply EVMPatch to several real-world vulnerable contracts. To
this end, we used the patch testing component of the EVMPatch framework to
re-play all existing transactions to the original contract on the patched contract. This

160

7.1 Background on Patching Smart Contracts

allows us to provide an in-depth investigation of several actively exploited smart
contracts, e.g., token burning and history of attack transactions (before and after
public disclosure). For a number of contracts we investigated in our evaluation, we
found that EVMPatch would have blocked several attacks that happened after public
disclosure of the vulnerability. This shows that even though those contracts were
officially deprecated, they were still used by legitimate users and exploited by malicious
actors. As such, there is an immediate need for tooling, as provided by EVMPatch,
which allows the developers of smart contracts to efficiently patch their contracts.
Our evaluation also covers important practical aspects such as gas and performance
overhead (i.e., the costs for executing transactions in Ethereum). The gas overhead for
all our patched contracts was below 0.01 US$ per transaction. Overall, the performance
overhead was negligible.

The basis for this chapter is the following publication:
“EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts”. 30th
USENIX Security Symposium, 2021. Michael Rodler, Wenting Li, Ghassan O.
Karame, and Lucas Davi

7.1 Background on Patching Smart Contracts
In this section we review the necessary background on upgrading smart contracts in
Section 7.1.1 and the challenges and pitfalls of rewriting EVM bytecode in Section 7.1.2.

7.1.1 Upgrading Ethereum Smart Contracts
Ethereum treats the code of smart contracts as immutable once they are deployed
on the blockchain, with the exception of the selfdestruct mechanism that destroys a
smart contract. To remedy this, the community came up with strategies for upgrading
smart contracts [Cona; Nad; Tra18]. Currently, the two most common patterns are
the migration pattern and variations of the proxy pattern.

Superficially, the migration upgrade pattern is the most naive pattern and can be
applied to many smart contracts. The patched contract is deployed on the blockchain
at a separate new address with a fresh and clean state. The administrators of the
contract then need to inspect the state of the old contract and manually migrate all
stored values to the new contract. Because of this, state migration is specific to the
contract and must be manually implemented by the developers of the contract. It
requires the contract developers to have access to all the internal state of the old
contract and a procedure in the new contract to accept state transfers. To avoid state
migration, developers can also use a separate contract as a data storage contract,
which is sometimes referred to as the eternal storage pattern [EIP; Nad]. However, this
adds additional gas overhead since every time the logic contract needs to access data,
the contract must also perform a costly external call into the data storage contract.

A more common strategy is to write contracts with the proxy-pattern, with the
most favorable version being the delegatecall-proxy pattern. Here, one smart contract
is split into two different contracts, one for the code and one for data storage: i) an
immutable proxy contract, which holds all funds and all internal state but does not
implement any business logic; ii) a logic contract, which is completely stateless and

161

Chapter 7 Automatic Patching of Smart Contracts

implements all the actual business logic, i.e., this contract contains the actual code
that governs the actions of the contract. The proxy contract is the entry point of
all user transactions. It has immutable code, and its address remains constant over
the lifetime of the contract. The logic contract implements the rules that govern the
behavior of the smart contract. The proxy contract forwards all function calls to the
registered logic contract using the DELEGATECALL instruction. This instruction gives
the logic contract access to all internal state and funds stored in the proxy contract.
To upgrade the contract, a new logic contract is deployed, and its address is updated
in the proxy contract. The proxy contract then forwards all future transactions to the
patched logic contract. As a result, deploying upgraded contracts does not require any
data migration, as all data is stored in the immutable proxy contract. Moreover, the
upgrading process is also transparent to users, as the contract address remains the
same. Although existing blockchain platforms do not provide mechanisms to upgrade
smart contracts, the usage of this proxy pattern allows EVMPatch to quickly upgrade
a contract with negligible costs (in terms of gas consumption).

7.1.2 Challenges of EVM Bytecode Rewriting
There are several unique challenges that must be solved when rewriting EVM bytecode:
we need to handle static analysis of the original EVM bytecode and tackle several
particularities of Solidity contracts and the EVM.

Similar to traditional computer architectures, EVM bytecode uses addresses to
reference code and data constants in the code address space. For instance, when a
contract calls a function, it first pushes the address of that function onto the stack and
then exploits the EVM jump instruction to transfer control to that function. Hence,
when modifying the bytecode, the rewriter must ensure that address-based references
are correctly adjusted. In that sense, rewriting EVM bytecode is similar to rewriting
binary code for normal CPU ISAs, such as x86 or ARM. To do so, a rewriter typically
employs two static analysis techniques: CFG recovery and data-flow analysis. The
latter is necessary to determine which instructions are the sources of any address
constants utilized in the code. For the EVM bytecode, two classes of instructions are
relevant in this context: code jumps and constant data references.

Code Jumps The EVM features two branch instructions: JUMP and JUMPI. Both
take the destination address from the stack. Handling jumps in the EVM is more
challenging compared to traditional architectures, as the target address is not explicitly
encoded into the jump instruction. Note that function calls inside the same contract
also leverage the JUMP instruction. That said, currently, there is no explicit difference
between local jumps inside a function and calls to other functions. The EVM also
features dedicated call instructions, but these are only used to transfer control to a
completely separate contract. Hence, they do not require modification when rewriting
the bytecode.

Constant Data References The so-called CODECOPY instruction is leveraged to copy
data from the code address space into the memory address space. A common example
use-case is the embedding of large data constants such as strings. Similar to the jump

162

7.1 Background on Patching Smart Contracts

instructions, the address from which memory is loaded is passed to the CODECOPY
instruction via the stack.

Handling both types of instructions is challenging due to the stack-based architecture
of the EVM. For instance, the target addresses of jump instructions are always provided
on the stack. That is, every branch is indirect, i.e., the target address cannot be simply
looked up by inspecting the jump instruction. Instead, to resolve these indirect jumps,
one needs to deploy data-flow analysis techniques to determine where and which target
address is pushed on the stack. For the majority of these jumps, one can analyze the
surrounding basic block to trace back where the jump target is pushed on the stack.
For example, when observing the instructions PUSH2 0xdb1; JUMP, we can recover
the jump target by retrieving the address (0xdb1) from the push instruction.

However, many contracts contain more complicated code patterns, primarily because
the Solidity compiler also supports calling functions internally without utilizing a call
instruction. Recall that the EVM call instructions are more akin to remote-procedure
calls. For instance, when a contract would utilize a call instruction to call itself, the
called function cannot access the stack or the memory address space of the caller, as
every call in the EVM is considered as a new transaction and as such starts with a
clean stack and memory address space. Furthermore, the call instructions are also
rather expensive in terms of gas cost, and as such, compilers such as Solidity minimize
their use. The Solidity compiler introduced a concept where functions are marked
as internal to optimize code size and facilitate code reuse. These functions cannot
be called by other contracts (private to the contract) and follow a different calling
convention. Since there are no dedicated return and call instructions for internal
functions, Solidity utilizes the jump instruction to emulate both. As such, a function
return and a normal jump cannot be easily distinguished. This makes it challenging
to (1) identify internal functions and (2) build an accurate CFG of the contract.

Consider Figure 7.1, which depicts an excerpt of a typical CFG when Solidity
generates code utilizing internal function calls. There are two callers of the internal
function, named A and B. Each caller pushes a constant return address onto the stack:
A pushes the return address X ; B the constant Y. These constants are addresses of
basic blocks, where execution resumes once the internal function completes. In this
example, both callers push the address of the first basic block of the internal function,
dubbed F, onto the stack and utilize the jump instruction to call the internal function.

To emulate the return, an indirect jump instruction is leveraged at the end of the
internal function, where the target address is taken from the stack. Depending on
the calling context, the final jump of the internal function will either jump back into
A or B. Note that, for this example, the surrounding basic block does not contain
any corresponding push instruction of the jump target. Instead, the respective push
instruction issued at the call site has loaded the return address on the stack. Hence,
data-flow analysis is needed to determine push instructions that are leveraged for
function returns.

When rewriting an EVM smart contract, both the jump instructions and the code-
copy instruction need to be considered in the bytecode rewriter. The obvious strategy to
rewrite smart contracts is to fix-up all constant addresses in the code to reflect the new
addresses after inserting new instructions or removing old instructions. However, this
strategy is challenging because it requires accurate CFG recovery and data-flow analysis,

163

Chapter 7 Automatic Patching of Smart Contracts

...
PUSH1 X

...

...
PUSH1 F
JUMP

F

...
PUSH1 Y

...
PUSH1 F
JUMP

...
JUMP

X Y

Internal
Function

Caller A

Caller B

Caller A
(Continued)

Caller B
(Continued)

Figure 7.1: A typical control-flow graph, when Solidity utilizes internal function calls.

which needs to deal with particularities of EVM code, such as internal function calls.
In the research area of binary rewriting of traditional architectures, a more pragmatic
approach has been developed: the so-called trampoline concept [Dav+12; Lau+10].
We utilize this approach in our rewriter and avoid adjusting addresses. Whenever
our rewriter must perform changes to a basic block, e.g., inserting instructions, our
rewriter replaces the basic block with a trampoline that immediately jumps to the
patched copy. Hence, any jump target in the original code stays the same, and all
data constants are kept at their original addresses. This approach allows our rewriter
to avoid building a complete control-flow graph altogether. We describe this process
in more detail in the subsequent section.

7.2 Design of EVMPatch

In this section, we introduce the design of our automated patching EVMPatch
framework, which enables developers to patch and harden smart contracts in an
automated and timely manner. Our framework operates on unmodified smart contracts
and is independent of the source programming language, as it does not require source
code. At its core, our framework utilizes a bytecode rewriter to apply minimally
intrusive patches to EVM smart contracts. Combined with a proxy-based upgradable

164

7.2 Design of EVMPatch

EVMPatch

Bytecode
Rewriter

Patch Tester

Contract
Deployment

Vulnerable
Contract Bytecode

Patched Contract
Bytecode

Patch
Templates

Vulnerability
Detection

Automatic
Analysis Tools

Vulnerability
Disclosure

Transaction
History

Attack
Transactions

Upgradable
Contract

Developer
Vulnerability

Report

Deployment Intervention

Forensic Analysis
Contract Unit Tests

Start Analysis

Figure 7.2: Architecture of EVMPatch

smart contract, this bytecode rewriting approach allows the developer to automatically
introduce patches and deploy them on the blockchain. One major advantage of this
approach is that when new attack types are discovered or bug finding tools improve,
the contract can be automatically re-checked, patched, and re-deployed in a short
amount of time and with minimal developer intervention.

We envision a setting where EVMPatch is executed on a trusted machine operated
by the smart contract developer and is continuously running new and updated vulner-
ability detection tools. This can also include dynamic analysis tools, which analyze
transactions that are not yet included in a block, but are already available to the
Ethereum network. Whenever one of the analysis tools discovers a new vulnerability,
EVMPatch automatically patches the contract, tests the patched contract, and
deploys it.

7.2.1 Design Choices

The proxy pattern makes it possible to easily deploy a patched smart contract in
Ethereum. However, it neither generates a patched version nor features functional
tests of the patched contract. EVMPatch fills this gap by providing a comprehensive
framework that automates many steps in the patching process, such as testing the
effectiveness of the generated patch.

For generating patches, there is one fundamental design decision: applying the
patch on the source code level or the EVM bytecode level. At first glance, source-code
patching seems to be the option of choice as developers have access to source code,
are able to inspect the source code changes, and can even make adjustments if the
automated approach introduces undesired changes. However, when utilizing upgradable
contracts, there is one major challenge when applying source code rewriting: one needs
to carefully preserve the storage layout. Otherwise, the patched contract will corrupt
its memory and fail or (worse) introduce dangerous bugs. Namely, some changes in
the source code can break the contract compatibility, even though the changes do not
break the logic of the contract.

Statically-sized variables are laid out contiguously in storage starting from address
0. Contiguous variables with size less than 32 byte can be packed into a single 32 byte
storage slot [Sol]. As a result, any changes to re-order, add, or remove variables in
the source code may look harmless, but on the EVM level, such changes will lead to

165

Chapter 7 Automatic Patching of Smart Contracts

a mapping of variables to wrong and unexpected storage addresses. In other words,
changes in variable declaration corrupt the internal state of the contract, as the
legacy contract and the patched contract have different storage layouts. To mitigate
this issue, tools such as Slither [SliU] provide upgradeability checks. They assist a
developer in checking for contract compatibility, but they do not automatically generate
storage-compatible patched contracts.

In EVMPatch, we opted to utilize bytecode rewriting to introduce patches to smart
contracts. Using bytecode rewriting, we can introduce minimally intrusive patches
to the smart contracts. We can ensure that these minimally intrusive patches do not
change the storage layout by construction. At the same time, bytecode rewriting is
sufficiently powerful to patch many bug classes that only require changes on the level
of EVM instructions. Another reason to opt for bytecode rewriting are existing smart
contract vulnerability detection tools. As of now, the majority of them operate on the
EVM level [FSS18; KR18b; Luu+16; Mos+19] and also report their findings on the
EVM level. A bytecode rewriting approach can exploit the reports of these analysis
tools to directly generate an EVM bytecode-based patch. Finally, if source-code
rewriting is utilized, the developer has limited possibilities to perform thorough testing
on the effectiveness of the patched contract. In particular, checking the patched
contract against old transactions (including transactions that encapsulate attacks) is
easier with bytecode-level patches. Furthermore, analyzing transactions would still
require analysis on the bytecode level to reverse-engineer the attack transactions and
how they fail against the patched contract. Bytecode-rewriting allows developers to
directly match the rewritten bytecode instructions to the attack transactions making
forensic analysis feasible. Given all these reasons, we decided to opt for bytecode
rewriting.

7.2.2 Framework Design

Our framework depicted in Figure 7.2 consists of the following major components:
1. the vulnerability detection engine consisting of automatic analysis tools and

public vulnerability disclosures,
2. bytecode rewriter to apply the patch to the contract,
3. the patch testing mechanism to validate the patch on previous transactions, and
4. the contract deployment component to upload the patched version of the contract.
At first, the vulnerability detection adapter component identifies the location and

type of the vulnerability using external analysis tools, such as those described in
Chapter 5 or Chapter 6. This information is then passed to the bytecode rewriter,
which patches the contract according to previously defined patch templates. The
patched contract is thereafter forwarded to the patch tester, which replays all past
transactions to the contract. That said, we do not only patch the contract, but we
allow the developer to retrieve a list of transactions that exhibit different behavior
and outcome between the original and patched contract. These transactions serve
as an indicator of potential attacks on the original contract. If the list is empty, our
framework automatically deploys the patched contract instantly on the Ethereum
blockchain. Next, we will provide a more detailed description of the four major
components of our design.

166

7.2 Design of EVMPatch

Vulnerability Detection Before being able to apply patches, EVMPatch needs
to identify and detect vulnerabilities. EVMPatch leverages existing vulnerability
detection tools such as [FSS18; FAH20; Gro+18; KR18b; Luu+16; Nik+18; Rod+19;
Tsa+18]. For vulnerabilities that are not detected by any existing tool, we require
that a developer or a security consultant creates a vulnerability report. In our system,
the vulnerability detection component is responsible to identify the exact address
of the instruction, where the vulnerability is located, and the type of vulnerability.
This information is then passed to the bytecode rewriter, which patches the contract
accordingly.

Bytecode Rewriter At the core of our framework is the bytecode rewriter, which ap-
plies patches to the smart contract. Binary rewriting is a well-known technique to instru-
ment programs after compilation. Binary rewriting has also been applied to retrofit secu-
rity hardening techniques such as control-flow integrity, to compiled binaries [Dav+12],
but also to dynamically apply security patches to running programs [PBG+13]. Two
flavors of approaches have been developed for binary rewriting on traditional architec-
tures: static and dynamic rewriting. Dynamic approaches [Luk+05] rewrite code on
the fly, i.e., while the code is executing. This avoids imprecise static analysis on large
binaries. However, dynamic binary rewriting requires an intermediate layer, which
analyzes and rewrites code at runtime. Since the EVM does not support dynamic
code generation or modification, it is not possible to apply this approach efficiently in
Ethereum.

In contrast, static binary rewriting [BH00; Lau+10] is applicable to Ethereum as it
does not require any additional support code at runtime. It relies on static analysis
to recover enough program information to accurately rewrite the code. In general,
static binary rewriting techniques are well suited for applying patches in Ethereum
since smart contracts have comparably small code sizes: typically in the range of
about 10 kbyte. The Ethereum main network even enforces a hard limit of 24 kbyte
on contract size [But16]. Furthermore, EVM smart contracts are always statically
linked to all library code. It is not possible for a contract to dynamically introduce
new code into the code address space. This makes the reliance on binary rewriting
techniques simpler compared to traditional architectures. As such, smart contracts are
a good target for static binary rewriting as many problems of static binary rewriters
on classical architectures are avoided due to the nature of EVM smart contracts.

The stack-based architecture of the EVM requires special attention when imple-
menting a patch: all address-based references to any code or data in the code address
space of the smart contract must be either preserved or updated when new code
is inserted into the code address space. Such references cannot be easily recovered
from the bytecode. To tackle this challenge, EVMPatch utilizes a trampoline-based
approach for adding new EVM instructions into empty code areas. We describe this
trampoline-based approach in more detail in Section 7.3.

To implement a patch, the bytecode rewriter processes the bytecode of the vulnerable
contract as well as the vulnerability report. The rewriting is based on a so-called patch
template which is selected according to the vulnerability type and adjusted to work
with the given contract. Even though a template-based patching approach does not

167

Chapter 7 Automatic Patching of Smart Contracts

1 # load owner
2 PUSHN $owner_address
3 SLOAD
4 # mask loaded value, since addresses are 20 bytes long
5 PUSH20 0xff
6 AND
7 CALLER
8 EQ
9 # if (caller() == sload($owner_address))

10 PUSHL $CONTINUE
11 JUMPI
12 # revert(0, 0)
13 PUSH1 0x00
14 DUP1
15 REVERT
16 JUMPDEST CONTINUE

Figure 7.3: Patch template for the only owner patch template that implements an
access control check. EVMPatch specializes this template according to
the storage address of the owner variable. Furthermore, the assembler
built into EVMPatch can handle several pseudo-opcodes such as PUSHN
to push constants with unknown size and PUSHL, which pushes the address
of following JUMPDEST instruction. i.e., it performs relocation of the code
at the time of rewriting.

offer the same flexibility as source-level patching, it allows us to cover many common
types of vulnerabilities.

Patch Templates In EVMPatch, we utilize a template-based patching approach: for
every supported class of vulnerabilities, a patch template is integrated into EVMPatch.
This patch template is automatically adapted to the contract that is being patched.
We create generic patch templates such that they can be easily applied to all contracts.
EVMPatch automatically adapts the patch template to the contract at hand by
replacing contract-specific constants (i.e., code addresses, function identifiers, storage
addresses). Patch templates for common vulnerabilities, such as integer overflows, are
shipped as part of EVMPatch, and a typical user of EVMPatch will never interact
with the patch templates. However, optionally, a smart contract developer can also
inspect or adapt existing patch templates or even create additional patch templates
for vulnerabilities that are not yet supported by EVMPatch. EVMPatch supports
two formats for custom patch templates. The first is based on EVM instructions as
shown in Figure 7.3, which are assembled and relocated during bytecode rewriting.
EVMPatch also supports a yaml based configuration file that describes patches to a
contract. An example of this format is depicted in Figure 7.4. Here a developer can
utilize simple domain-specific expression language that resembles Python expressions to
describe patches that enforce pre-conditions on functions similar to Solidity modifiers.

168

7.2 Design of EVMPatch

Patch Tester As smart contracts directly handle assets (such as Ether or Tokens),
it is critical that any patching process does not impede the actual functionality of a
contract. As such, any patch must be tested thoroughly. To address this issue, we
introduce a patch-testing mechanism, which is based 1) on the transaction history
recorded on the blockchain and 2) optional developer-supplied unit tests. At this point,
we exploit the fact that any blockchain system records all previous executions of a
smart contract, i.e., transactions in Ethereum. In our case, the patch tester re-executes
all existing transactions and optionally any available unit test and verifies that all
transactions of the old legacy and the newly patched contract behave consistently.
The patch tester detects any behavioral discrepancy between the old legacy and the
newly patched contract and reports a list of transactions with differing behavior to
the developer. That said, as a by-product, our patch-testing mechanism can be used
as a forensic attack detection tool. Namely, while executing the patching process,
the developer will also be notified of any prior attacks that abuse any of the patched
vulnerabilities and can then act accordingly. In case both versions of the contract
behave the same way, the patched contract can be automatically deployed. Otherwise,
the developer must investigate the list of suspicious transactions and thereafter invoke
the contract deployment component to upload the patched contract. The list of
suspicious transactions may not only serve as an indicator of potential attacks but may
reveal that the patched contract is not functionally correct, i.e., the patched contract
shows a different behavior on benign transactions. In Section 7.4, we provide a thorough
investigation of real-world, vulnerable contracts to demonstrate that EVMPatch
successfully applies patches without breaking the original functionality of the contract.

Contract Deployment As discussed in Section 7.1.1, the delegatecall-proxy-based
upgrade scheme is the option of choice to enable almost instant contract patching.
Thus, EVMPatch integrates this deployment approach by utilizing a proxy contract
as the primary entry point for all transactions with a constant address. Before the first
deployment, EVMPatch transforms the original unmodified contract code to utilize
the delegatecall-proxy pattern. This is done by deploying a proxy contract, which
is immutable and assumed to be implemented correctly. For example, EVMPatch
comes with a default proxy contract that is only 80 lines of Solidity code. However, it
is trivial to integrate other proxy contracts, such as those with recent standardization
efforts [IA; MWM]. The original bytecode is then converted to a logic contract using
the bytecode rewriter with only minor changes to the original code. The logic contract
is then deployed alongside the proxy contract.

Patch Deployment Finally, when the contract is patched and after the patch is tested
by the patch tester component, EVMPatch can deploy the newly patched contract.
Our upgrade scheme deploys the newly patched contract code to a new address. It
then issues a dedicated transaction to the previously deployed proxy contract, which
switches the address of the logic contract from the old vulnerable version to the newly
patched version. The patched logic contract now handles any further transactions.

169

Chapter 7 Automatic Patching of Smart Contracts

1 add_require_patch:
2 deposit:
3 - "sload(owner) != 0"
4 withdraw: []
5 migrateTo:
6 - "sload(0) == caller()"

Figure 7.4: Patch configuration file that describes a patch to EVMPatch and is used
for manual patching assisted by EVMPatch. Here two patches are added
to the contract. The first adds a pre-condition check to the deposit function,
which prevents calling this function if no owner is set. The second patch
restricts access to the migrateTo to the owner, which is stored at storage
address 0.

Human Intervention We designed EVMPatch to be fully automated. However,
there are a few scenarios where developer intervention is required. Namely, if (1) the
vulnerability report relates to a bug class that is not yet supported by EVMPatch,
or (2) the patch tester reports at least one transaction that fails due to the newly
introduced patch and the failing transaction is not a known attack transaction, (3) the
patch tester reports that at least one known attack transaction is not prevented by
the newly introduced patch.

If a bug class is not supported, EVMPatch informs the developer about the
unsupported vulnerability class. Since EVMPatch is extensible, it easily allows
developers to provide custom patch templates thereby allowing quick adaption to new
attacks against smart contracts.

If the patch tester finds a new failing transaction, the developer has to analyze
whether a new attack transaction has been discovered or a legitimate transaction has
failed. For a newly discovered attack transaction, EVMPatch adds this transaction
to the list of attacks and proceeds. Otherwise, the developer investigates why the
legitimate transaction failed. As our evaluation in Section 7.4 shows, such cases typically
occur due to inaccurate vulnerability reports, i.e., wrongly reported vulnerabilities
rather than faulty patching. Thus, the developer can simply blacklist the wrongly
reported vulnerable code locations to avoid patching at these locations.

These manual interventions typically only need quick code reviews or debugging
sessions. We believe even moderately experienced Solidity developers can perform
these tasks as no detailed knowledge about the underlying bytecode rewriting system
is needed. As such, EVMPatch positions itself as a tool to enable more developers to
securely program and operate Ethereum smart contracts.

If the patch tester reports that the patch does not prevent a known attack transaction,
then the patch is not effective. In this case, EVMPatch notifies the developer and
must investigate whether the vulnerability report accurately describes the actual
exploitation attempt. Then the developer must manually refine the vulnerability
report to include the accurate vulnerability class and location such that EVMPatch
can apply the right patch template at the right place.

170

7.3 Implementation of EVMPatch

7.3 Implementation of EVMPatch
In this section, we describe the implementation of EVMPatch according to the archi-
tecture presented in Section 7.2. Previously, in Section 7.1.2, we discuss engineering
challenges for bytecode rewriting in Ethereum. In the following chapter, we describe
how we tackle these challenges in EVMPatch. We describe the implementation of
the bytecode rewriter (Section 7.3.1), the patch testing feature (Section 7.3.2), and
the contract deployment mechanism (Section 7.3.3).

7.3.1 Trampoline-based Bytecode Rewriting
We implement a trampoline-based rewriter in Python and utilize the pyevmasm1

library for disassembling and assembling raw EVM opcodes. Our trampoline-based
bytecode rewriter works on the basic block level and utilizes an algorithm similar to
the algorithm shown in Algorithm 1 to identify basic block boundaries. In contrast to
the algorithm described in Algorithm 1, we apply the analysis only to the relevant
parts of the code.

When an instruction needs to be instrumented, the whole basic block that contains
the instruction is copied to the end of the contract. The bytecode rewriter then applies
the patch to this new copy of the basic block. The original basic block is replaced
with a trampoline, i.e., a short instruction sequence that immediately jumps to the
copied basic block. Whenever the contract jumps to the basic block at its original
address, the trampoline is invoked, redirecting execution to the patched basic block
by means of a jump instruction. To resume execution, the final instruction of the
instrumented basic block issues a jump back into the original contract code. Figure 7.5
shows an example of the bytecode rewriting process. Here the basic block at 0xAB is
replaced by a trampoline, and the original basic block is moved to the address 0xFFB.
While the trampoline-based approach avoids fixing up any references, it introduces
additional jump instructions. However, as we will show, the gas cost associated with
these additional jumps is negligible in practice (see Section 7.4).

With the trampoline approach, all addresses that reference the original contracts
bytecode stay the same. This means our rewriter must not fix up any references and,
as such, avoids the need for complex and failure-prone data-flow analysis. However,
to ensure correct execution, we must still compute a partial CFG, starting from the
patched basic blocks. This is necessary to recover the boundaries of the basic blocks
that are patched and the following basic blocks that are connected by a so-called fall-
through edge. Not all basic blocks terminate with an explicit control-flow instruction:
Whenever a basic block ends with a conditional jump instruction (JUMPI) or simply
does not end with a control-flow instruction, there is an implicit edge (i.e., fall-through)
in the control-flow graph to the instruction at the following address.

Handling Fall-Through Edge Two cases must be considered when handling the
fall-through edge. When the basic block targeted by the fall-through edge starts with
a JUMPDEST instruction, the basic block is marked as a legitimate target for regular
jumps in the EVM. In this case, we can append an explicit jump to the rewritten basic

1github.com/crytic/pyevmasm

171

https://github.com/crytic/pyevmasm

Chapter 7 Automatic Patching of Smart Contracts

block at the end of the contract and ensure that execution continues at the beginning
of the following basic block in the original contract code. In case the following basic
block does not begin with a JUMPDEST instruction, the EVM forbids explicit jumps
to this address. In the CFG, this means that this basic block can only be reached
with a fall-through edge. To handle this case, our rewriter copies the basic block to
the end of the contract right behind the rewritten basic block constructing another
fall-through edge in the CFG of the rewritten code.

Figure 7.5 shows an example of how our rewriter changes the CFG of the original
contract. The ADD instruction is replaced with a checked add routine that additionally
performs integer overflow checks. We call the address of the ADD instruction the patch
point. The basic block, which contains the patch point, is replaced with a trampoline.
In this case, it immediately jumps to the basic block at 0xFFB. This basic block, which
is placed at the end of the original contract, is a copy of the original basic block at
0xAB, but with the patch applied. Since the basic block is now at the end of the
contract, the bytecode rewriter can insert, change, and remove instructions in the basic
block without changing any address in the code that is located at higher-numbered
addresses. We fill the rest of the original basic block with the INVALID instruction
to ensure the basic block has the exact same size as the original basic block. The
basic block at 0xCD is connected to the prior basic block by means of a fall-through
edge. However, this basic block starts with a JUMPDEST instruction and, as such, is a
legitimate jump target. Hence, the rewriter then appends a jump to the patched basic
block at 0xFFB, which ensures execution continues in the original contract’s code at
address 0xCD.

Adapting to Solidity Smart Contracts The EVM has some particularities that must
be considered when implementing a bytecode rewriter. As discussed in Section 3.2.4 the
EVM enforces some separation of code and data in the code address space. Namely, the
EVM disallows jumps into the data constants that are embedded into PUSH instructions.
However, such push instructions are often part of constant data, which is accumulated
at addresses strictly larger than any reachable code by smart contract compilers. This
avoids any conflicts between the generated code and data encoded into the code address
space. However, our trampoline-based rewriter does append code behind the data
constants of the smart contracts. When the rewriter appends code, it avoids that the
new code is accidentally marked as an invalid jump destination due to a preceding
push opcode byte. The rewriter avoids this by carefully inserting padding between
the data of the original contract and the newly appended code. To compute the
necessary length of the padding, we leverage the common EVM linear sweep algorithm,
as described in Section 3.2.4 to determine the first valid code address after the end of
the original contract.

Furthermore, most contracts contain additional meta-data at the end of the contract.
For instance, Solidity appends a special encoding of a hash value, called the swarm
hash, at the end of each contract [SolSH]. It is expected that a compiled Solidity
contract ends with the swarm hash. As such, our bytecode rewriter handles the swarm
hash in a special way. Instead of appending code after the swarm hash, the bytecode
rewriter inserts new code and data right before the original swarm hash. This ensures

172

7.3 Implementation of EVMPatch

Original Code Rewritten Code

...

PUSH1 0x01
ADD
POP

...

PUSH2 0x0FFB
JUMP

INVALID
INVALID

...

INVALID

JUMPDEST
...

⇒ JUMPDEST
...

JUMPDEST
...

PUSH1 0x01
[CHECKED_ADD]
POP

...
PUSH1 0xCD
JUMP

Patch Point

0xAB

0xCD

0xAB

0xCD

0xFFB

Figure 7.5: Control-flow graph of original and rewritten code. The end of the original
contract’s code is marked with a dashed line. The original basic block at
address 0xAB is replaced with trampoline code that jumps to the patched
version of the basic block, located at address 0xFFB. The patched basic
block is appended right after the end of the original contract at address
0xFFB. The patched basic block jumps back into the original code at
address 0xCD.

that the swarm hash is always at the end of the contract, even after rewriting. Normal
contracts will not reference the swarm hash in their code and as such, the address of
the swarm hash can be changed without impacting the original code.

Applicability of Trampoline Approach The trampoline-based approach to rewriting
requires only minimal code analysis and works for most use cases. However, this
approach faces two problems. First, instructions can only be patched in basic blocks
that are large enough (in terms of size in bytes) to also contain the trampoline code.
However, a typical trampoline requires 4 to 5 bytes, and typically, basic blocks that
perform some meaningful computation are large enough to contain the trampoline
code. Second, due to the copying of basic blocks, the code size increases depending
on the patched block, thereby increasing deployment cost. However, our experiments
show that the overhead during deployment is negligible (on average US$ 0.02 per
deployment, see Section 7.4).

173

Chapter 7 Automatic Patching of Smart Contracts

No reliance on accurate CFG Recovering an accurate CFG given only EVM bytecode
is a challenging problem. However, our trampoline-based approach does not require an
accurate and complete CFG. Instead, we only need to recover basic block boundaries
given the program counter of the instruction, where the patch needs to be applied.
In doing so, recovering the basic block boundaries is tractable since the EVM has an
explicit marker for basic block entries (see Section 3.2.4). Furthermore, our rewriter
only needs to recover the end of the basic block and any following basic blocks that
are connected via fall-through edges in the CFG.

7.3.2 Patch Testing

While the insertion of trampolines into the original code does not change the function-
ality of the contract, the patch template itself can perform arbitrary computations and
could potentially violate the semantics of the patched contract. To test the patched
contract, EVMPatch utilizes a differential testing approach. That is, we re-execute
all transactions of the contract to determine if the behavior of the original, vulnerable
code and the newly patched code differ. EVMPatch utilizes past transactions to the
contract retrieved directly from the blockchain. If the contract comes with unit tests,
EVMPatch can also utilize the unit tests to test the newly patched contract. While
this differential testing approach cannot guarantee formal correctness of the contract,
it raises confidence in the patched contract.

One potential problem for any testing-based approach is a low test coverage. In the
history-based testing, which we utilize in EVMPatch, contracts with a low number of
available transactions are also prone to low test coverage. However, our experiments
(see Section 7.4) show that the differential testing approach works well enough in
practice to show that the patches do not break functionality. Given the availability of
a formal specification of the contract’s functionality, EVMPatch could also leverage
a model checker to validate a patched contract more rigorously.

During differential testing, we first retrieve a list of transactions to the vulnerable
contract from the blockchain. Second, we re-execute all those transactions and
retrieve the execution trace for each transaction. Then, we then re-execute the same
transactions but replace the code of the vulnerable contract with the patched contract
code to obtain the second execution trace. We use a modified Ethereum client, based
on the popular go-ethereum client2 since the original client does not support this
functionality. Finally, we compare both execution traces, and the patch tester produces
a list of transactions where the behavior differs. If there are no such transactions,
then we assume that the patch does not inhibit the functionality of the contract and
proceed with deploying the patched contract.

The execution traces of the original and patched contracts are never equal since
patching changes control flow and inserts instructions. Hence, we examine only
potentially state-changing instructions, i.e., instructions that either write to the
storage area (i.e., a SSTORE) or transfer execution flow to another contract (e.g., a
CALL instruction). We then compare the order, parameters, and result of all state-
changing instructions and find the first instruction where the two execution traces

2We utilized version 1.8.27-stable-3e76a291

174

7.3 Implementation of EVMPatch

differ. Currently, we assume that the introduced patches do not result in any new
state-changing instructions. This assumption holds for patches that introduce input-
validation code and revert when invalid input is passed. However, the trace difference
computation can be adapted to become aware of potential state changes that a patch
introduces.Reported transactions that fail in the code, which is part of the patch,
are marked as potential attack transactions. If the reported transaction failed due
to out-of-gas in the patched code, we rerun the same transaction with an increased
gas budget. We issue a warning since users will have to account for additional gas
costs introduced by the patch. Finally, the developer must examine the reported
transactions to decide whether the given list of transactions is legitimate or malicious.
As a side-effect, this makes our patch tester an attack detection tool for the vulnerable
contract allowing developers to quickly find prior attack transactions.

7.3.3 Deployment of Patched Contracts

As described in Section 7.2, EVMPatch utilizes the delegatecall-proxy based upgrade
pattern to deploy the patched contract. To achieve this, EVMPatch splits the smart
contract to two contracts: a proxy contract and a logic contract. The proxy contract
is the primary entry point and stores all data. By default, EVMPatch utilizes a
proxy contract that is shipped with EVMPatch. However, EVMPatch can also
re-use existing upgradable contracts, such as contracts developed with the ZeppelinOS
framework [ZepOS]. Users interact with the proxy contract, which is located at a
fixed address. To facilitate the upgrade process, the proxy contract also implements
functionality to update the address of the logic contract. To prevent malicious upgrades,
the proxy contract also stores the address of an owner who is allowed to issue upgrades.
The upgrade then simply consists of sending one transaction to the proxy contract,
which will (1) check whether the caller is the owner and (2) update the address of the
logic contract.

The proxy contract retrieves the address of the new logic contract from storage and
simply forwards all calls to that contract. Internally, the proxy contract utilizes the
DELEGATECALL instruction to call into the logic contract. This allows the logic contract
to gain full access to the proxy’s storage memory area, thereby allowing access to the
persistent data without any additional overhead.

7.3.4 Application to Vulnerability Classes

The bytecode rewriter takes a patch template, which is specified as a short snippet
of EVM assembly language. This template is then specialized according to the
patched contract and relocated to the end of the patched contract. This template-
based approach to patch generation allows specifying multiple generic patches to
address whole classes of vulnerabilities, such as 1) mishandled exceptions [Luu+16],
2) reentrancy (see Section 3.2.3), 3) access control issues [KR18a; Nik+18], and
4) integer bugs [FSS18]. In the following, we discuss two vulnerability classes that can
immediately benefit from our framework.

175

Chapter 7 Automatic Patching of Smart Contracts

1 function initMultiowned(address[] _owners, uint _required)
2 ➀ internal {
3 // ...
4 function initDaylimit(uint _limit) ➀ internal {
5 // ...
6 // throw unless the contract is not yet initialized.
7 modifier only_uninitialized { if (m_numOwners > 0) throw; _;}
8

9 function initWallet(address[] _owners, uint _required,
10 uint _daylimit)
11 ➁ only_uninitialized {
12 // ...

Figure 7.6: Source code of patched Parity Multisig Wallet.

Improper access control

Improper access control to critical functions can be patched by just inserting a check at
the beginning of a function to verify that the caller is a certain fixed address or equal to
some address stored in the contract’s state. Prior work [KR18b; Nik+18] investigated
detection tools to handle this vulnerability. We can also utilize EF�CF, introduced in
Chapter 5, to identify access control issues, such as unprotected selfdestructs.

The Parity MultiSig Wallet is a prominent example of access control errors [Bre+17;
Tec17b]. This contract implements a wallet that is owned by multiple accounts.
Any action taken by the wallet contract must be authorized by at least one of the
owners. However, the contract suffered from a fatal bug that allowed anyone to become
the sole owner because the corresponding functions initWallet, initMultiowned, and
initDayLimit did not perform any access control checks.

Figure 7.6 shows the patched source code which adds the internal modifier to the
functions initMultiowned and initDayLimit (marked with ➀ in Figure 7.6). This
modifier makes these two functions inaccessible via the outside interface of the deployed
contract. Furthermore, the patch adds the custom modifier only_uninitialized, which
checks whether the contract was previously initialized (marked with ➁).

The developers originally introduced a new vulnerability while deploying the patched
contract, which was actively exploited [Tec17a]. In contrast, because EVMPatch
performs bytecode rewriting, it would have immediately generated a securely patched
version of the contract and would have deployed it automatically in a secure manner.

Consider Figure 7.7, which shows a customized patch in the domain-specific language
employed by EVMPatch to specify patches. As such, we insert a patch at the begin-
ning of the initWallet function that checks whether the condition sload(m_numOwners) == 0
holds, i.e., whether the contract is not yet initialized. If this does not hold, the contract
execution will abort with a REVERT instruction. Note that in the patch in Figure 7.7,
we require an explicit sload to load variables from storage. Further, the expression is
logically inverted compared to the source-level patch since this patch essentially inserts
a Solidity require statement. Furthermore, two other publicly accessible functions
need to be removed from the public function dispatcher. The patch shown in Figure 7.7
combines two existing patch templates provided by EVMPatch. First, the add require

176

7.3 Implementation of EVMPatch

1 add_require_patch:
2 initWallet:
3 - sload(m_numOwner) == 0
4

5 delete_public_function_patch:
6 - initDayLimit
7 - initMultiowned

Figure 7.7: Customized Patch for Partity Multsig Wallet.

patch template enforces a pre-condition before a function is entered. Second, the
delete public function patch template removes a public function from the dispatcher,
effectively marking the function as internal.

We verified that both the source-level and EVMPatch-ed contracts successfully
prevent an attack. This shows the potential of EVMPatch to patch a wide variety of
different bugs, including access control bugs. In this example, we manually constructed
the access control patch. Due to the application-specific nature of access control bugs,
it is highly challenging to deduce a correct patch for fixing access control bugs. The
information given by existing analysis tools [FAH20; KR18b; Nik+18] is not adequate
to automatically construct a patch, i.e., they only give a vulnerable execution trace and
not the root cause of the vulnerability. As such, we leave the fully automatic patching
of access control patches as future work. However, in the following, we describe how
to use a vulnerability detection component to fully automate the patching process
with EVMPatch.

Integer bugs

Integer bugs are highly likely to occur when dealing with integer arithmetic since
Solidity does not utilize checked arithmetic by default. This has resulted in many po-
tentially vulnerable contracts being deployed and some being actively attacked [FSS18;
Pecc]. Given the prevalence of these vulnerabilities, we discuss in the remainder of
this section how to automatically patch integer overflow bugs using EVMPatch.

Typical integer types are bounded by a minimum and/or maximum size due to
the fixed bit-width of the integer type. However, programmers often do not pay
sufficient attention to the size limitation of the actual integer type, potentially causing
integer bugs. Several high-level programming languages (Python, Scheme) are able
to avoid integer bugs since they leverage arbitrary precision integers with virtually
unlimited size. Other programming languages feature explicitly checked arithmetic
(e.g., Rust). Only recently, in version 0.8.0, Solidity started to switch to checked
integer arithmetic [Sol080] by default. However, many smart contracts still utilize
older Solidity versions, which did not feature any safeguard against integer bugs at all.
This left the burden of handling integer overflows completely on the developer, who
needs to either manually implement overflow checks or properly utilize the SafeMath
library to safely perform numeric operations [OZSM]. While common, the former is
error-prone, and the latter needs to be applied rigorously.

177

Chapter 7 Automatic Patching of Smart Contracts

1 function batchTransfer(address[] _receivers, uint256 _value)
2 public whenNotPaused returns (bool) {
3 uint cnt = _receivers.length;
4 // OVERFLOW: 2 * ((INT_MAX / 2) + 1) == 0
5 uint256 amount = uint256(cnt) * _value;
6 require(cnt > 0 && cnt <= 20);
7 // BYPASSED CHECK: balances[msg.sender] >= 0
8 require(_value > 0 && balances[msg.sender] >= amount);
9 // RESULT: Transfer of ((INT_MAX / 2) + 1) tokens

Figure 7.8: Integer overflow bug reported by PeckShield [Peca].

For instance, multiple vulnerabilities in ERC-20 token contracts were unveiled [Pec18;
Peca; Pecb]. These contracts manage subcurrencies, so-called tokens, on the Ethereum
blockchain. Such tokens can deal with large amounts of currency since they track the
token balance of every token owner and mediate the exchange of tokens and Ether.
Figure 7.8 shows an excerpt of the BEC token contract’s code as an example of such
an integer overflow vulnerability. When computing the total amount in Line 6, the
contract uses an unchecked integer multiplication. If an attacker provides a very large
_value, the overflow will be triggered, and as a consequence, the amount variable
will be set to a small amount. This effectively bypasses the balance check in Line 11,
which verifies that the balance of the attacker is high enough to transfer the requested
tokens as specified in the _value parameter. This allows the attacker to transfer many
tokens to an attacker-controlled account. Subsequently, the attacker can then attempt
to exchange the tokens for Ether or other currency.

We developed patch templates for detecting integer overflows and underflows for
the standard EVM integer width, i.e., unsigned 256 bit integers. For integer addition,
subtraction, and multiplication, these templates add checks inspired by secure coding
rules in the C programming language [Rob+] and the SafeMath [OZSM] Solidity
library. When a violation is detected, EVMPatch issues an exception to abort and
roll back the current call to the contract.

The patch templates replace a single arithmetic instruction, which is vulnerable
to integer overflows, with a checked variant. As such, our patches are optimized for
minimal gas overhead and minimal intrusiveness into the contract.

Call-Related Patches

In the following, we discuss the capability of EVMPatch in patching call-related
vulnerabilities: reentrancy and mishandled exceptions. We have not evaluated these
types of patches, but they are straightforward to implement as they focus on external
calls, which are all implemented with the CALL instruction in EVM. The patch point
naturally becomes the CALL instruction. Both types of patches can be combined. In
fact, both types of patches can also be applied without using any prior analysis tool
to harden any external call at the cost of higher runtime overhead.

178

7.4 Evaluation

Reentrancy To protect against reentrancy attacks, EVMPatch can utilize an
approach similar to the popular REGuard library provided by the OpenZeppelin
project [REGu]. Here there is a single reentrancy lock that protects all functions. To
adapt this, EVMPatch inserts an SSTORE instruction to set the global lock before
the CALL instruction and another SSTORE after the call to release the global lock. To
avoid an incompatible storage layout, the patch uses a random storage address for
the global lock, which is selected using a cryptographically secure random number
generator when preparing the patch. The chance of collisions with other storage
addresses is quite low due to the vast space of storage slots (2256 storage slots are
available). Finally, EVMPatch inserts a check that makes sure the global lock is not
set at the very beginning of the first basic block of the contract. This way, EVM-
Patch comprehensively protects all functions of the smart contract. Alternatively,
EVMPatch could insert this check only at the beginning of selected functions using
developer annotations or guidance by a vulnerability detection tool such as EF�CF
(see Chapter 5). The downside of this approach to patching reentrancy is that it does
not allow for more fine-grained protection of storage variables, which would require
more complex data-flow analysis as discussed in Chapter 6.

Mishandled Exceptions This type of bug is also quite easy to patch using EVMPatch.
Typically, the problem with mishandled exceptions is a lack of checking the return
value of external calls. Even if the external call fails and the whole sub-transaction
triggered by the external call is reverted, the buggy smart contract will continue with
execution. To patch this, EVMPatch inserts a generic check for the success of the
external call right after the CALL instruction. If the external call does not succeed, the
patch will trigger a revert of the current transaction. However, such a generic patch
has the downside that it does not allow a developer to intentionally ignore the state of
an external call. Furthermore, in current Solidity versions, the low-level call operations
that require manual exception handling have been discouraged. The Solidity compiler
now warns the developer if a call returning due to an exception is not handled. As
such, this type of vulnerability has become less relevant since the early discussions of
Solidity security issues [ABC17; Luu+16].

7.4 Evaluation

We perform an extensive evaluation using our EVMPatch prototype. First, we show
that EVMPatch is capable of patching access control bugs using manually written
patch specifications, based on an example from Section 7.3.4. In the remainder of the
evaluation we focus on our fully automated patching pipeline for integer bugs, which
we implemented with the help of the Osiris [FSS18] tool. We utilize our patch testing
component to evaluate (1) the correctness of the rewriter, (2) the gas overhead, (3) the
code size increase, and (4) the increased deployment costs. Furthermore, we take a
detailed look at the timeline of the attack transactions identified by EVMPatch on
several ERC-20 token contracts. We conclude with an analysis of false alarms and
missed bugs in the Osiris tool, which directly affect also EVMPatch’s precision.

179

Chapter 7 Automatic Patching of Smart Contracts

Running Example: Access Control

In Section 7.3.4 we discussed how to apply EVMPatch to semi-automatically patch
an access control bug in the prominent Parity Multisig Wallet contract. We compare
a manual source-level patch with the patch applied by EVMPatch. We verified
that both the EVMPatch’ed and the manually patched contracts are no longer
exploitable. We deploy the patched versions of the WalletLibrary contract and perform
the attack, which now fails due to the patches. We then compare both the manual
and the EVMPatch’ed versions in terms of their gas overhead and code size increase.
Table 7.1 shows an overview of the results.

EVMPatch only increases contract size by 25 byte. The additional gas cost of
the initWallet function is only 235 gas, i.e., 0.000 06 USD per transaction for 235.091
USD/ETH and a typical gas price of 1 Gwei. In practice, the gas increase induced by
EVMPatch is negligible. This demonstrates that EVMPatch can efficiently and
effectively insert patches for access control bugs. However, in contrast to bytecode
rewriting, the source-level patch removes public functions much more efficiently. As
such, they can also reduce the size of the final contract bytecode.

Rewriter Correctness

To verify the correctness of the patches generated by our bytecode rewriter, we utilized
the state-of-the-art integer detection tool Osiris [FSS18] for vulnerability detection.
After analyzing 50 535 unique contracts in the first 5 000 000 blocks of the Ethereum
blockchain, Osiris detects at least one integer overflow vulnerability in 14 107 contracts.
Using EVMPatch, we were able to successfully patch almost all of these contracts
automatically. More specifically, we could not patch 33 contracts amongst the 14 107
investigated contracts because the basic block, where the detected vulnerability was
located is too small for the trampoline code.

From those 14 107 contracts, around 8000 involve transactions on the Ethereum
network. We execute the patch tester over these contracts to detect potential attacks
and test the correctness of our patch. To generate a large and representative evaluation
data set, we extracted all transactions sent to these contracts up to block 7 755 100
(May 13th, 2019) from the Ethereum blockchain resulting in 26 385 532 transactions.

Replaying those transactions with our patch tester shows that for 95.5 % of all
vulnerable contracts, EVMPatch’s generated patch was compliant with all of the
prior transactions associated with those contracts. For the remaining 4.5 % of the
investigated contracts, our patch rejected transactions for one of the following reasons:

Table 7.1: Overhead of access control patch.

Version Code Size (byte) Size Increase Gas Increase
Original 8290 0 % 0

Source-Patched 8201 −1.07 % 226
EVMPatch’ed 8315 0.3 % 235

180

7.4 Evaluation

(1) we successfully stopped a malicious transaction, (2) the reported vulnerability was
a false positive and should not have been patched, or (3) we unintentionally changed
the contract’s functionality. Due to the high reverse engineering efforts required for
analyzing and debugging the bytecode of the remaining 4.5 %, we do not provide a
comprehensive analysis.

For close scrutiny, we selected five ERC-20 token contracts with confirmed integer
overflow/underflow vulnerabilities that have been successfully attacked (see Table 7.2).
We utilize these token contracts to compare EVMPatch with other patching methods,
notably manual source-level patching. For comparison purposes, we also manually
patch these contracts on the Solidity source code level by replacing the vulnerable
arithmetic operations with functions adapted from the SafeMath library [OZSM].
The manually patched source code is then compiled with the exact same Solidity
compiler version and optimization options used in the original contract (as reported
on etherscan.io). We provide the results of our comparison in Table 7.3.

We applied the EVMPatch patch tester to the generated patched contract versions
and validated the reported outcome. This allows us to verify whether both patching
approaches abort the same attack transactions. In addition, we can compare the
overhead in gas consumption and the increase in code size. Note that in the manual
patching method, we do not patch all potential vulnerabilities detected by Osiris. To
simulate realistic patching, we do not add checks on those arithmetic operations which
cannot be exploited by an attacker. More specifically, we do not patch vulnerable
arithmetic operations contained in functions that can only be called by the controller
or owner of the contract. We verified the correctness of our patches using a total
number of 506 607 real-world transactions associated with the ERC-20 token contracts
listed in Table 7.2.

Table 7.3 shows the transaction execution results of the patch tester. We verified
the aborted transactions and confirmed that all of them correspond to genuine attacks
except for one transaction3, which resembles a special case of token burning that we
discuss in detail below. Apart from the valid attack transactions, the execution traces
of the re-executed transactions match those of the original transactions, confirming
that our patch does not break the contract’s functionality.

Out of the transactions identified as attacks, we found one particular transaction
to the HXG token [HXG]. The transaction does indeed trigger an integer overflow.
However, the HXG contract burns some tokens by transferring them to a blackhole
address 0x0. The burned tokens cannot be recovered, and the balance of the blackhole
address does not influence the behavior of the contract. When analyzing the contract,
Osiris is not aware of the semantics of this blackhole address and reports a possible
integer overflow. EVMPatch then conservatively patches the integer overflow bugs
reported by Osiris, which leads to one legitimate transaction failing. We argue that
this pattern can be seen as bad coding practice as it wastes gas by unnecessarily
storing the balance of the blackhole address. We discuss this particular case along
with other false alarms in more detail in Section 7.4.

30x776da02ce8ce3cc882eb7f8104c31414f9fc756405745690bcf8df21e779e8a4

181

https://etherscan.io/

Chapter 7 Automatic Patching of Smart Contracts

Gas Overhead

The additional code introduced by the patching may potentially cause transactions to
fail with an out-of-gas error. While the patches generally do not significantly increase
gas consumption, such a behavior can nevertheless occur when the sender of the
transactions provides a very tight gas budget. When the re-execution of a transaction
with patched code fails early due to an out-of-gas exception, we could not accurately
compare the behavior of the patched contract with the original contract. To remedy
this, we disabled the gas accounting in the EVM. We report the amount of additional
gas consumption during transaction execution in Table 7.3. We excluded those
transactions that do not execute functions which contain the vulnerable code. They
are not affected by the patches and are, therefore, not relevant to our measurements.
As such, neither the bytecode rewriter nor the manual SafeMath patches have added
any gas overhead.

Our results show that for contracts BEC, SMT, and HXG, those patched with
EVMPatch incur less gas overhead at runtime (83 gas, 47 gas and 120 gas) when
compared to those patched on the source code level (164 gas, 108 gas and 541 gas). This
is due to the fact that the Solidity compiler generates non-optimal code when only very
few checks are added. In particular, Solidity utilizes internal function calls to invoke
the SafeMath integer overflow checks. While this reduces code size (in case the check
is needed at multiple places), it always requires executing additional instructions—
thereby increasing gas overhead—to invoke and return from the internal function. In
contrast, EVMPatch inlines the safe numeric operations, thereby introducing less
gas overhead. One would need to instruct the Solidity compiler to selectively enable
function inlining to yield similar gas costs as EVMPatch.

Note that the average gas overhead is 0 gas for the manually patched SCA token.
This is because only one transaction triggers the SafeMath integer overflow check.
However, this is an attack transaction, and it is aborted early, making gas overhead
calculation not possible.

For UET and SCA, we identify higher gas overhead than for the manually patched
version. In fact, UET requires, on average, 255 units of additional gas for every
transaction in the patched version. In contrast, only 21 gas is added by the manually
patched version. This is due to the fact that our bytecode rewriter conservatively
patches every potential vulnerability reported by Osiris in these two contracts (12
and 10, respectively). However, not all of them are exploitable; as such, we did not
instrument them during manual patching.

Code Size Increase

Deploying contracts in the Ethereum blockchain also incurs costs proportionally to the
size of the deployed contract. More specifically, Ethereum charges 200 gas per byte to
store the contract code on the blockchain [Woo19]. From Table 7.3, we recognize that
the amount of extra code added by our rewriter is comparable to that of the SafeMath
approach when a single vulnerability is patched. Since our approach duplicates the
original basic blocks, the code size overhead depends on the specific location of the
vulnerability. In the case of the BEC token contract, our rewriter increases the code

182

7.4 Evaluation

size less than the source-level patches. The Solidity compiler generates more code
for including the SafeMath library than is strictly necessary for the patch. Even
considering the overhead of bytecode rewriting, we observe that EVMPatch generates
a smaller patch than the manual patching method for this contract.

However, in case many vulnerabilities are patched, EVMPatch adds a slightly
higher overhead. Naturally, the size of the upgraded contracts increases with the
number of vulnerabilities to fix due to inlining. For instance, our bytecode rewriter
generates 12 patches for the UET contract and ten patches for the SCA contract
resulting in 1299 byte (18.2%) and 3811 byte (17.3%) increase in code size. In the worst-
case scenario in our dataset, this increase in code size induces negligible additional
cost of US$ 0.18 per deployment.

Our patch templates are currently optimized for patching a single vulnerable arith-
metic. It is straightforward to adopt an approach akin to Solidity’s internal function
calls when developing patch templates for our bytecode rewriter, which would reduce
the code size overhead when patching many integer overflows.

EVMPatch applies 3.9 patches on average to the contracts in our data set of 14 107
contracts. The average code size of the original contracts is 8142.7 byte (σ = 5327.8 byte
). The average size increase after applying patches with EVMPatch is 455.9 byte
(σ = 333.5 byte). This amounts to an average code size overhead of 5.6% after applying
the patches. Given that Ethereum charges 200 gas per byte to the contract creation
transaction, it incurs an average overhead of 91 180 gas or US$ 0.02 at the time of
writing4. In the worst case that we observed, EVMPatch incurs an overhead of
199 800 gas at deployment, which at the time of writing amounts to only about US$ 0.04
additional deployment cost. This shows that the overhead of applying patches with
bytecode rewriting is negligible for contract deployment, especially when compared to
the number of Ether possibly at stake.

Costs of Deployment

The deployment cost of a newly patched contract dominates the costs of operating a
smart contract with EVMPatch. Additionally, there is a transaction needed to switch
the address of the logic contract. Since the proxy pattern requires no state migration,
this transaction requires a constant amount of gas. The proxy contract we utilize in
EVMPatch consumes 43.167 gas during a switchover transaction, i.e., about US$ 0.01.
Currently, state migration is the most viable contract upgrade strategy besides the
proxy pattern. Prior work estimated that even with only 5000 ERC-20 holders, i.e.,
smart contract users, state migration will likely cost more than US$ 100.00 in the best
case [Tra18]. Hence, compared to the cost of migrating all data to a new contract, the
EVMPatch’s additional cost of US$ 0.01 is negligible.

4The calculation is based on 235.091 USD/ETH and a typical gas price of 1 Gwei

183

Chapter 7 Automatic Patching of Smart Contracts

Table 7.2: ERC-20 Token contracts investigated in depth with their respective CVE
number, the number of patches introduced by EVMPatch, and the number
of transactions replayed by EVMPatch’s patch tester and the number of
attack transactions identified while testing the patches.

Contract CVE # Patches # Transactions
Total Attacks

[BEC] 2018-10299 1 424 229 1
[SMT] 2018-10376 1 56 555 1
[UET] 2018-10468 55 24 034 12
[SCA] 2018-10706 1 292 10
[HXG] 2018-11239 9 1497 5

Table 7.3: Average amount of overhead in gas consumption over all replayed transac-
tions and overhead of contract size of the manual patched contracts (SM)
and rewriter-generated patches (RW) and the overhead of the rewriter
converted to US$ (with a gas price of 1 Gwei and 235 US$/Ether; For read-
ability we only show the exact US$ figures only if they are more than one
cent).

Contract Overhead (gas) Code Size Increase (B) Additional Cost RW (US$)
RW SM RW SM per TX per Upgrade

[BEC] 83 164 117 (1.0%) 133 (1.1%) < 0.01 0.01
[SMT] 47 108 191 (0.8%) 97 (0.4%) < 0.01 0.01
[UET] 225 21 1,299 (18.2%) 541 (7.6%) < 0.01 0.071
[SCA] 47 0 3,811 (17.3%) 361 (1.6%) < 0.01 0.189
[HXG] 120 541 997 (28.1%) 519 (14.6%) < 0.01 0.057

184

7.4 Evaluation

 1

 10

 100

 1000

 10000

 100000

0
7
/1

7

0
9
/1

7

1
1
/1

7

0
1
/1

8

0
3
/1

8

0
5
/1

8

0
7
/1

8

0
9
/1

8

1
1
/1

8

0
1
/1

9

0
3
/1

9

0
5
/1

9

#
T

ra
n

s
a

c
ti
o

n
s

Date

BEC

SMT

UET

SCA

HXG

BEC attack

SMT attack

UET attack

SCA attack

HXG attack

Figure 7.9: Activity timeline of each contract. The grey shadow indicates the time
window in which the vulnerabilities of these contracts are disclosed by
Peckshield [Pecc], and the big hollow points signify the occurrences of the
attacks.

Detecting Attacks

The patch tester of EVMPatch allows us to identify any prior attack transactions.
Figure 7.9 shows the timeline of the transactions we replayed and the attacks we
identified using the patcher tester. We observe that while the vulnerabilities of the
other token contracts have been reported within a fairly reasonable time after the first
attack, the token UET was exploited five months before the public bug disclosure. More
surprisingly, all contracts are still fairly active though they encountered a decrease
in transaction volume after public disclosure of the vulnerabilities. Despite the fact
that all of these vulnerabilities have been discovered around one year before the time
of writing, there are still 23 630 transactions (4.66 % of the evaluated transactions)
issued to these vulnerable contracts after the public disclosure of the vulnerabilities.
This includes further attacks that have been successfully executed even after public
disclosure. This means that the owners of those contracts did not properly migrate
to patched versions, and users were not adequately notified of the vulnerable state of
these contracts.

185

Chapter 7 Automatic Patching of Smart Contracts

Analysis of False Alarms and Missed Bugs

During our analysis of the vulnerable contracts, we identified false alarms and missed
bugs caused by the vulnerability reporting of Osiris [FSS18]. This demonstrates that
our patch testing is an important step in the process, as many analysis tools are
imprecise. We found that in the default configuration, Osiris often achieves limited
code coverage. To this end, we utilized different timeout settings for both the whole
analysis and for queries to the SMT solver [MB08] and combined the results of multiple
runs to achieve better code coverage. Furthermore, we found that—contrary to the
claims in the original Osiris paper [FSS18]—not all vulnerabilities are accurately
detected by Osiris in two particular cases.

Hexagon (HXG) Token This contract is vulnerable to an integer overflow, which
allows an attacker to transfer very large amounts of ERC-20 tokens [Pecb]. Osiris
reports two false positives, which are caused by EVM code that is generated by the
Solidity compiler. Even though all types are unsigned types in the Solidity source code,
the compiler generates a signed addition. Here, Osiris reports a possible integer overflow
when −2 is added to the balanceOf mapping variable. When performing signed integer
additions with negative values, the addition naturally overflows when the result moves
from the negative value range into the positive value range and vice versa. As such,
EVMPatch patches a checked addition for an unsigned arithmetic operation which
will always overflow. With our patch tester, we observe all the failing transactions
and perform manual analysis of the patched contract’s bytecode to determine that
the root cause is an issue in the Solidity compiler, i.e., the generated code requires an
additional instruction when compared to a simple unsigned subtraction.

The Hexagon Token contract is vulnerable to an integer overflow, which allows
an attacker to transfer very large amounts of ERC-20 Tokens [Pecb]. Osiris reports
two false positives, which are caused by EVM code that is generated by the Solidity
compiler. Figure 7.10 shows the Solidity and corresponding EVM code. In the Solidity
code in the upper listing of Figure 7.10, we can see that the variable _value is of
type unsigned (Line 6) and the variable burnPerTransaction is also unsigned (Line
1). Even though all types are unsigned types in the addition in Line 9, the compiler
generates a signed addition. The signed addition can be seen in lines 7 to 9 in the lower
listing, where a negative signed value is pushed onto the stack. Here, Osiris reports
a possible integer overflow when −2 is added to the balanceOf mapping variable.
When performing signed integer additions with negative values, the addition naturally
overflows when the result moves from the negative value range into the positive value
range and vice versa.

When patching the ADD on line 12 in the lower listing of Figure 7.10, with a checked
addition, we introduce a false positive. Replacing a signed addition with a checked
unsigned addition will always fail if negative numbers are involved since they naturally
trigger an overflow when switching between the positive and negative ranges due to
the two’s complement representation. The patch tester in our pipeline marked almost
all transactions as failing, which is a strong indicator of a failed patch.

186

7.4 Evaluation

1 uint8 public constant burnPerTransaction = 2;
2 mapping (address => uint256) public balanceOf;
3 // ...
4 function _transfer(address _from,
5 address _to,
6 uint _value) internal {
7 // ...
8 // Line 85 in the Hexagon contract
9 balanceOf[_from] -= _value + burnPerTransaction;

10 // ...

1 // ...
2 DUP1
3 SLOAD // load balanceOf[_from]
4 PUSH1 0x1
5 NOT // ~1 == 0xffffffff...ffffffffffe == -2
6 SWAP1 // balanceOf[_from] on top
7 DUP8 // the passed parameter `_value`
8 SWAP1 // stack = [_balanceOf[_from], _value, -2, ...]
9 SUB // x = _balanceOf[_from] - _value

10 DUP2 // stack = [-2, _balanceOf[_from] - _value, -2, ...]
11 ADD // -2 + (_balanceOf[_from] - _value)
12 // ...

Figure 7.10: Problematic Solidity line in the Hexagon contract (top listing). Solidity
generates the EVM code in the bottom listing. Instead of subtracting 2
from an unsigned integer, Solidity promotes this to a signed integer and
adds −2.

Social Chain (SCA) Our results also show a problem with Osiris when analyzing the
SCA token. While Osiris does detect a possible overflow during multiplication in the
problematic Solidity source code line, it does not detect the possible integer overflow
for an addition in the same source code line. However, in the actual attack transaction,
the integer overflow happens during the not-flagged addition operation. As such, this
constitutes a false negative problem of Osiris. Since the vulnerable addition is not
reported by Osiris, it is also not automatically patched by EVMPatch. In contrast,
for the manually patched version we took both arithmetic operations into account. The
related attack transaction was previously reported as an attack transaction [Pec18].

Summary of Evaluation To summarize, our evaluation on integer overflow detection
shows that EVMPatch can correctly apply patches to smart contracts preventing
any integer overflow attack. Furthermore, EVMPatch incurs only a negligible gas
overhead during deployment and runtime, especially compared to the Ether at stake.
Our analysis shows that the analyzed vulnerable smart contracts are still in active
use, even after being attacked and the vulnerabilities being publicly disclosed. This
motivates the need for a timely patching framework such as EVMPatch. Lastly,
based on an extensive and detailed analysis of 26 385 532 transactions, we demonstrate

187

Chapter 7 Automatic Patching of Smart Contracts

that EVMPatch always preserves the contract’s original functionality except for a
few cases, where the vulnerability report (generated by the third-party tool Osiris)
was not accurate or bad coding practices were used (blackhole address).

7.5 Developer Study

In this Section we show the results of a developer study we conducted to gain insights
into the usability of the EVMPatch framework. Using the developer study we assess
the difficulty of manually patching and upgrading smart contracts. With our study
we confirm that existing patching and deployment processes are too error-prone. For
example, none of the developers correctly converted a contract into an upgradable
contract. Furthermore, we show that EVMPatch can be easily used by developers to
semi-manually patch their smart contracts, for example in case an access control bug
is discovered.

Developer Background We conducted a study with 6 professional developers with
varying prior experience in using blockchain technologies and developing smart con-
tracts. Our developers consider themselves familiar with blockchain technologies but
not very familiar with developing Solidity code. None of the developers have developed
an upgradable contract before. As such, we can quantify the effort needed for a smart
contract developer to learn and apply an upgradable contract pattern.

Methodology Throughout our study, we asked the developers to perform multiple
tasks manually that are performed automatically by EVMPatch: (1) manually patch
three contracts vulnerable due to integer overflow bugs given the output of a static
analyzer (OSIRIS [FSS18]), (2) convert a contract to an upgradable contract manually
and with EVMPatch, and (3) patch an access control bug using EVMPatch by
writing a custom patch-template. The three tasks cover different scenarios, where
EVMPatch can be useful to a developer. The first two tasks cover the use of
EVMPatch to patch known bug classes with minimal human intervention. For these
two tasks we assume no prior knowledge on patching smart contracts (see Table 7.5
how developers rated their prior experience with smart contracts). In contrast, the

Table 7.4: Timing results for the tasks as reported by the developers given in minutes
and their reported confidence in the correctness of their results.

Task Time (Minutes) Confidence
Median Min Max Median (1-7)

Manual Integer Patches 47.50 35 78 6
Conversion 62.50 33 110 2.5
EVMPatch Conversion 1.50 1 3 -
Patch Template 4.00 2 15 7

188

7.5 Developer Study

third task consists of extending EVMPatch. This requires understanding a bug class
and perform root cause analysis to properly patch the vulnerability. This is surely
more challenging compared to the previous two tasks. Since the third task covers
a different bug class, we believe there is no significant bias in the data due to the
developers completing the other two tasks first.

For all tasks, we measured the time required by the developer to perform the
task (excluding the time required for reading the tasks’ description). We asked the
developers to rate their familiarity with relevant technologies, their confidence levels
in their patches, and the difficulty of performing the tasks on a 7-point Likert scale.
The full questionnaire and the answers of the developers are shown in Table 7.5, and
the recorded time measurements are shown in Table 7.4. We provide the supporting
files in a github repository.5

We then performed both a manual code review and a cross-check with EVMPatch to
analyze mistakes made by the developers. The results of our study show that significant
effort is needed to correctly patch smart contracts manually, whereas EVMPatch
enables simple, user-friendly, and efficient patching. The time measurements show that
the developers, who had no prior experience with EVMPatch, were able to perform
complex tasks utilizing EVMPatch within minutes.

Patching Integer Overflow Bugs We asked the developers to fix all integer overflow
vulnerabilities in three contracts: 1 [BEC] (CVE-2018-10299, 299 lines of code), and
2 [HXG] (CVE-2018-11239, 102 lines of code), and 3 [SCA] (CVE-2018-10706, 404
lines of code). To provide a representative set of contracts, we chose three ERC-20
contracts with varying complexity (in terms of lines of code) and where the static
analysis also includes missed bugs and false alarms (see Section 7.4). We ran OSIRIS
on all three contracts and provided the developers the analysis output as well as a
copy of the SafeMath Solidity library. This accurately resembles a real-world scenario,
where a blockchain developer quickly needs to patch a smart contract based on the
analysis results of recent state-of-the-art vulnerability analysis tools and can look-up
manual patching tutorials available online. All developers manually and correctly
patched the source code of all three contracts which demonstrates their expertise in
blockchain development. However, on the downside, it took the developers on average
51.8 min (σ = 16.6 min) to create patched version for the three contracts. In contrast,
EVMPatch fully automates the patching process and is able to generate patches for
the three contracts within a maximum of 10 s.

Converting to an Upgradable Contract The developers had to convert a given
smart contract into an upgradable smart contract. We provided the developers a
short description of the delegatecall-proxy pattern and asked them to convert the
given contract into two contracts: one proxy contract and a logic contract, which is
based on the original contract. We provided no further information on how to handle
the storage-layout problem, and we explicitly allowed using code found online. The
developers required an average of 66.3 min to convert a contract into an upgradable
contract, with σ = 31.3 min, the fastest taking 33 min, and the slowest developer taking

5github.com/uni-due-syssec/evmpatch-developer-study

189

https://github.com/uni-due-syssec/evmpatch-developer-study

Chapter 7 Automatic Patching of Smart Contracts

110 min. None of the developers performed a correct conversion into an upgradable
contract, which is also reflected in a median confidence of 2.5 in the correctness
reported by the developers. We observed two major mistakes: (a) The proxy contract
would only support a fixed set of functions, i.e., the proxy would not support adding
functions to the contract, and (b) more importantly, only one out of six developers
correctly handled storage collisions in the proxy and logic contract, i.e., five of the six
converted contracts were broken by design. Hence, it remains open how long it would
take developers to perform a correct conversion.

Next, we asked the developers to utilize EVMPatch to create and deploy an
upgradable contract. As EVMPatch does not require any prior knowledge about
upgradable contracts, the developers were able to deploy a correct upgradable contract
within at most 3 min. In addition, patching with EVMPatch inspires high confidence—
a median of 7, the best rating on our scale—in the correctness of the patch. This gives
a strong confirmation that deployment of a proxy with EVMPatch is indeed superior
to manual patching and upgrading.

Extending EVMPatch The developers had to write a custom patch template for
EVMPatch. We instructed the developers on how to use EVMPatch and how patch
templates are written with EVMPatch’s patch template language (see Figure 7.7
for an example). Furthermore, we presented the developers an extended bug report
that shows how an access control bug can be exploited. The developers leveraged
the full EVMPatch system, i.e., EVMPatch applies the patch and validates the
patch using the patch tester component which replays past transactions from the
blockchain and notifies the developer whether: (a) the patch prevents a known attack,
and (b) whether the patch broke functionality in other prior legitimate transactions.
As such, EVMPatch allowed the developers to create a fully functional and securely
patched upgradable contract within a few minutes. On average, the developers only
needed 5.5 min, and a maximum of 15 min, to create a custom patch template. As
expected, all developers correctly patched the given contract using EVMPatch,
because a faulty patch would have been reported by EVMPatch’s patch tester to
the developer. EVMPatch’s integrated patch tester gives the developers a high
confidence into their patch. On average, the developers reported a confidence level
of 6.6 (σ = 0.4), where 7 is the most confident. Furthermore, none of the developers
considered writing such a custom patch template as particularly difficult.

Summary Our study provides confirmation that EVMPatch offers a high degree
of automation, efficiency, and usability thereby freeing developers from manual and
error-prone tasks. In particular, none of the six developers were able to produce a
correct upgradable contract mainly due to the difficulty of preserving the storage-
layout. Our study also confirms that extending EVMPatch with custom patch
templates is a feasible task, even for developers that are unaware of the inner workings
of EVMPatch.

190

7.5 Developer Study

Table 7.5: Developer study questionnaire and answers by six developers (A-F).

Question Answers Scale

A B C D E F Median

Q1 Did you write Solidity code in the last
two weeks?

no no no no yes no (yes/no)

Q2 Have you previously worked on a
production-grade Solidity-based
Ethereum contract?

yes no no no no no (yes/no)

Q3 Have you previously worked on a
production-grade smart contract on
another Blockchain Platform?

no no yes no yes yes (yes/no)

Q4 How familiar are you with Blockchain
technologies in general?

6 5 7 6 6 6 6 (1 not familiar,
7 very

familiar)
Q5 How familiar are you with the Ethereum

Blockchain in particular?
6 5 4 2 6 2 4.5 (1 not familiar,

7 very
familiar)

Q6 How familiar are you with the Solidity
programming language?

6 3 2 1 5 1 2.5 (1 not familiar,
7 very

familiar)
Q7 How familiar are you with upgradable

contracts in Solidity?
5 3 1 1 4 1 2 (1 not familiar,

7 very
familiar)

Task 1

T1Q1 How confident are you in the
correctness of your patch to contract 1?

5 7 7 6 7 6 6.5 (1 least
confident, 7

most
confident)

T1Q2 How confident are you in the
correctness of your patch to contract 2?

6 7 7 4 7 6 6.5 (1 least
confident, 7

most
confident)

T1Q3 How confident are you in the
correctness of your patch to contract 3?

3 5 6 5 2 4 4.5 (1 least
confident, 7

most
confident)

T1Q4 How much time did you need to patch
all three contracts?

78 35 40 40 55 63 47.5 (Time in
Minutes)

Task 2

T2Q1 Have you previously used the
delegatecall-proxy pattern in a Solidity
contract?

no no no no no no (yes/no)

T2Q2 Have you previously used a different
pattern to make a Solidity contract
upgradable?

no no no no no no (yes/no)

T2Q3 Have you previously used a different
upgradable smart contract?

no no no no no no (yes/no)

T2Q4 How confident are you in the
correctness of your conversion?

5 3 1 1 5 2 2.5 (1 least
confident, 7

most
confident)

T2Q5 How difficult was the manual
conversion?

4 5 5 6 4 6 5 (1 easy, 7 most
difficult)

T2Q6 How difficult was the conversion using
the evmpatch tool?

1 1 1 1 1 1 1 (1 easy, 7 most
difficult)

T2Q8 How much time did you need to convert
the contract to an upgradable contract
(Step 1)?

110 80 45 90 40 33 62.5 (Time in
Minutes)

T2Q8 How much time did you need to convert
the contract using EVMPatch (Step 2)?

3 1 1 2 3 1 1.5 (Time in
Minutes)

Task 3

T3Q1 How confident are you in the
correctness of your patch?

6 7 7 7 7 6 7 (1 least
confident, 7

most
confident)

T3Q2 How difficult was the conversion using
the EVMPatch tool?

2 1 1 1 1 1 1 (1 easy, 7 most
difficult)

T3Q3 How much time did you need to create
and deploy the patch using EVMPatch?

15 2 5 2 6 3 4 (Time in
Minutes)

191

Chapter 7 Automatic Patching of Smart Contracts

7.6 Related Work

Bytecode rewriting for patching smart contracts has also been explored by Zhang
et al. [Zha+20]. SMARTSHIELD requires a complete CFG to update jump targets
and data references. As discussed in Section 7.1.2, generating a highly accurate
CFG is highly challenging due to the EVM’s bytecode format. We believe that
such a bytecode rewriting strategy does not scale to larger and more complicated
contracts. In contrast, EVMPatch’s trampoline-based rewriting strategy does not
require an accurate CFG and is much more resilient when rewriting complex con-
tracts. Furthermore, SMARTSHIELD implements custom bytecode analysis to detect
vulnerabilities, which may not be as accurate as specialized analyses. For example,
SMARTSHIELD’s analysis does not infer whether an integer type is signed, which is
important for accurate integer overflow detection [FSS18]. In contrast, EVMPatch
is a flexible framework that can integrate many static analysis tools for detecting
vulnerabilities and can leverage analysis tool improvements with minimal effort. Last
and most importantly, EVMPatch automates the whole lifecycle of deploying and
managing an upgradable contract, while SMARTSHIELD is designed to harden a
contract pre-deployment. With EVMPatch, a smart contract developer can also
patch vulnerabilities that are discovered after deployment of the contract.

Torres et al. [TJS22] introduces Elysium, a context-aware patch generation framework
for smart contracts that also utilizes bytecode rewriting. Similar to SMARTSHIELD,
Elysium requires a complete CFG to introduce patches, and as such, is less resilient
than EVMPatch’s trampoline-based approach. However, in contrast to EVMPatch,
Elysium features several static analysis passes to gather semantic context. For example,
Elysium recovers integer signedness before patching integer-related bugs. In contrast,
EVMPatch gathers this context from the underlying analysis tool Osiris [FSS18].
Furthermore, Elysium recovers the last used storage slot for smart contract global
variables to store reentrancy lock variables. Similar to the source-level ReentrancyGuard
patch, Elysium applies a single global reentrancy lock. EVMPatch is capable of
creating the same type of patch but does not require contextual analysis. Instead,
EVMPatch’s patch template simply utilizes a randomly selected arbitrary address for
lock variables. Essentially this ensures storage-layout compatibility in a probabilistic
manner, relying on the vast number of storage slots. More specifically, the EVM storage
area features 2256 different slots, and as such, it is highly unlikely to have colliding
storage addresses when choosing them at random. Similarly, the Solidity compiler
relies on the size of the storage address space to avoid collisions when implementing
hash maps (i.e., the mapping type in Solidity). Finally, Elysium automatically inserts
access control checks by introducing a special owner slot during contract construction
and then augments functions with access control checks. However, it is not clear
whether this approach to patching access control issues is always applicable. Elysium
does not infer any semantic knowledge about existing access control mechanisms.
As such, existing ownership transferral mechanisms would break due to the newly
introduced access control checks. Furthermore, there are also more complex ownership
mechanisms, such as so-called multi-owned contracts, which are owned by more than
one owner and often require majority votes from owners before performing an action
such as Ether transfer. Automatically introducing access control checks for a single

192

7.7 Discussion and Conclusion

owner would break the semantics of the contract and potentially even introduce a
vulnerability. To summarize, we conclude that Elysium does not properly utilize
contextual information for patching. Especially for access control bugs, Elysium does
not infer anything about existing access control mechanisms, potentially breaking smart
contracts. In contrast, EVMPatch uses fully automatic patching for vulnerabilities
like integer overflows and exposes an interface to allow manual specification of access
control patches.

The Ethereum community explored several design patterns to allow upgradable smart
contracts [Cona; Nad; Tra18; ZepOS] with manual migration to a new contract and the
proxy pattern being the most popular (see Section 7.1.1). The ZeppelinOS [ZepOS]
framework supports upgradable contracts by implementing the delegatecall-proxy
pattern. However, developers have to manually ensure compatibility of the legacy
and patched contract on the Solidity level. This can be achieved using static analysis
tools that perform “upgradeability” checks (e.g., Slither [SliU] checks for a compatible
storage layout), which relies on accurate knowledge of compiler behavior with respect
to storage allocations. On the other hand, EVMPatch combines existing analysis
tools and provides an automatic method to patch detected vulnerabilities while keeping
the storage layout consistent by design. Moreover, using bytecode rewriting prevents
potential problems caused by unexpected behaviors from compilers.

7.7 Discussion and Conclusion

Updating erroneous smart contracts constitutes one of the major challenges in the
field of blockchain technologies. The recent past has shown that attackers are fast in
successfully abusing smart contract errors due to the natural design of the underlying
technology: always online and available, one common and simple computing engine
without any subtle software and configuration dependencies, and often a high amount
of cryptocurrency at risk. While many proposals have introduced frameworks to aid
developers in finding bugs [FSS18; KR18a; Luu+16; Sch+20b; Tsa+18], it remains
open how developers and the community can quickly and automatically react to
vulnerabilities on already deployed contracts. In this chapter, we describe the design
and implementation of a framework that supports automated and nearly instant
patching of smart contract errors based on bytecode rewriting. We implement a fully
automated pipeline to identify and patch integer overflow bugs in smart contracts using
our EVMPatch framework and the Osiris analysis tool. Our evaluation shows that
EVMPatch is highly effective in patching bugs and also verifying patches. Beyond
integer overflows, discuss potential patching mechanisms for reentrancy bugs and
mishandled exceptions. We also show how to utilize EVMPatch for semi-manual
patching of smart contracts for access control bugs(Section 7.3.4). We believe that
already such a semi-manual approach is useful to developers, as they can quickly write
new patch specifications and benefit from EVMPatch’s patch testing infrastructure.
With our developer study, we show that developers are able to write new patch
specifications in mere minutes.

However, when dealing with access control bugs, EVMPatch’s limitation becomes
apparent: it relies on existing analysis tools to provide enough information to synthesize

193

Chapter 7 Automatic Patching of Smart Contracts

a patch. Several bug classes, such as integer bugs or unhandled exceptions, are easy to
patch as the patches require little semantic information about the contract. However,
when it comes to synthesizing patches for access control, the patch template requires
semantic knowledge about the contract, more specifically, how it implements access
control. Unfortunately, there is no standard implementation of access control for
Ethereum smart contracts and various different access control models are available.
Furthermore, no current analysis tool is capable of providing semantic knowledge
about the access control checks of smart contracts. As future work, existing analysis
tools must be expanded to acquire semantic knowledge, which in turn can feed into
EVMPatch to create patches for a more diverse set of smart contracts.

We were able to demonstrate that real-world integer overflow vulnerabilities can be
successfully patched without violating the functional correctness of the smart contract.
Our developer study shows that an automated patching approach greatly reduces the
time required for patching smart contracts and that our implementation, EVMPatch,
can be practically integrated into a smart contract developer’s workflow. We believe
that automated patching will increase the trustworthiness and acceptance of smart
contracts as it allows developers to react quickly to reported vulnerabilities.

194

CHAPTER 8
CONCLUSION

This dissertation advances the state-of-the-art in the field of software security of two new
secure execution environments: trusted enclaves and smart contracts. This dissertation
shows how to adapt well-known techniques, such as symbolic execution, fuzzing, taint
tracking, and binary rewriting, to new execution environments. The methods and tools
presented in this dissertation allow software system vendors to significantly improve
their products’ software security by (1) identifying security vulnerabilities early in the
development process and (2) hardening existing deployments.

Securely developing software for trusted execution environments, such as SGX
enclaves, is highly challenging due to the new and complex threat model that such
software faces. Current software analysis tools cannot identify security vulnerabilities
that arise on the boundary of the enclave code and the untrusted part of the software
system, as they only identify generic software security issues. They are unaware of the
enclave-specific threat model and therefore miss crucial security vulnerabilities. To
tackle this lack of analysis methods, Chapter 4 presents TeeRex, a methodology for
automated vulnerability detection based on symbolic execution tailored specifically to
trusted execution environments, such as SGX enclaves. We show how to adapt a general
symbolic execution framework to the particularities of SGX, making TeeRex the
first practical analysis tool that captures enclave-specific vulnerabilities. This chapter
shows how to overcome challenges in implementing efficient and practical symbolic
execution of SGX enclaves. Furthermore, we show how to exploit the particularities of
the SGX technology to speed up symbolic execution with multiple CPU cores. Using
this methodology, enclave developers can now automatically scan their SGX enclave
for vulnerabilities before deploying them.

To evaluate our symbolic execution tool TeeRex, we perform an analysis of several
publicly available enclaves. Out of 6 enclaves, we identify critical vulnerabilities in a
set of 5 enclaves. This includes widely deployed enclaves such as fingerprint reader
drivers used on Lenovo and Dell laptops. This demonstrates the practical usefulness
of TeeRex as an analysis tool. Furthermore, it shows that current enclaves often
disregard the complex threat model of the SGX technology, leading to vulnerabilities.

Based on the findings in these enclaves, we perform root-cause analysis of the
bugs that TeeRex identified. We systematize these root causes and develop a set

195

Chapter 8 Conclusion

of vulnerability patterns. For the first time, offering enclave developers a systematic
analysis of root causes and guidelines to avoid code anti-patterns in the first place. To
validate the security of existing enclaves, developers can utilize the analysis techniques
pioneered in the TeeRex tool.

With TeeRex, developers for enclaves already have a tool at hand to improve the
security of SGX enclaves by systematically vetting the interface of the enclave for SGX
specific security vulnerabilities. However, TeeRex is based on symbolic execution
and often fails to uncover vulnerabilities deep inside large code bases due to the state
explosion problem. As such, other analysis directions need to be explored in the future.
For example, coverage-guided fuzzing or hybrids of fuzzing and concolic execution are
prime candidates to adapt for analyzing trusted enclave code.

On the other hand, SGX is only one of many popular TEE technologies. In fact,
SGX is being deprecated in favor of other technologies, such as Intel’s Trusted Domain
Extensions (TDX), AMD’s Secure Encrypted Virtual machines (SEV), or ARM’s
Realm Management Extensions (RME). These extensions all provide the possibility of
launching full virtual machines inside enclaves. While this increases the familiarity of
developers with the TEE, it increases the size of the TCB to a full operating system.
It remains an interesting future research direction to assess whether these new TEEs
are easier to secure than SGX enclave code.

Continuing the line of work on vulnerability detection, Chapter 5 shows how to
improve the state-of-the-art in smart contract fuzzing. Chapter 5 presents an assessment
of the capabilities of existing analysis tools. Here a special focus is placed on the
capability to scale to long transaction sequences: an essential prerequisite to identify
bugs in complex smart contracts. Based on our experiments, we conclude that existing
smart contract analysis tools are not well equipped to handle the ever-increasing
complexity of smart contract code.

To counteract this tendency and provide smart contract developers with a practical
analysis tool, Chapter 5 presents EF�CF, a high-performance smart contract fuzzer.
With EF�CF, we show how to apply state-of-the-art fuzzing techniques to the area of
smart contract fuzzing. Using high-performance fuzzing techniques, EF�CF is able to
outperform existing fuzzers and, in practice, even the capabilities of symbolic analysis
tools.

Based on the high-performance fuzzing framework, we show how to adapt a fuzzer
to rigorously test Ethereum smart contracts in the face of the many-faceted and
complex interactions that are possible in Ethereum. More specifically, we show how to
accurately simulate malicious attacker-controlled smart contracts in a fuzzer. This
allows EF�CF to accurately detect reentrancy and compositional vulnerabilities in
smart contracts. In contrast to all prior analysis tools, EF�CF does not perform
any heuristic detection of reentrancy vulnerabilities. Instead, EF�CF utilizes a novel
probabilistic method to simulate arbitrary attacker-controlled smart contracts that
are part of a reentrancy attack against the target smart contract. This means that
EF�CF eradicates any false alarms caused by heuristic reentrancy detection and
generates inspectable and replayable transaction sequences that exploit a reentrancy
vulnerability. As such, EF�CF is the first purely fuzzing-based exploit generator for
smart contracts, facilitated by the groundwork on high-performance fuzzing of smart
contracts presented at the beginning of Chapter 5.

196

The EF�CF prototype is designed as a high-performance fuzzer for EVM smart con-
tracts. However, the general concepts and the architecture of EF�CF is independent of
the targeted blockchain system. For example, EF�CF’s design could be leveraged in an
implementation of a high throughput fuzzer for other popular smart contract execution
environments, such as the rBPF in the Solana blockchain or WebAssembly employed
by Web Browsers and other Blockchain systems. EF�CF demonstrates that analysis
tools must put significant effort into efficient input generation strategies. EF�CF
outperforms even symbolic execution and hybrid concolic fuzzing tools. However,
EF�CF essentially performs random search on the set of possible transaction sequences,
guided only by code coverage feedback. As our experiments show, this still achieves
very good results in practice because of EF�CF’s optimized throughput. However,
there are many techniques that attempt to prune the search space or perform more
directed mutations, allowing a fuzzer to analyze targets even with slow throughput. It
remains to be seen whether such techniques can be implemented efficiently, such that
high throughput fuzzers such EF�CF can also utilize those techniques, and whether
this actually improves the time-to-bug metric in practice.

However, all practical vulnerability detection approaches are prone to missing
bugs. As such, the security of software cannot rely solely on fuzzing and symbolic
execution to fix vulnerabilities before deployment. Developers require ways to deal
with security issues after deployment. This is especially true for smart contracts,
which are immutable by design, i.e., they are identified using a cryptographic hash of
their code and initial state. Chapter 6 presents Sereum, a runtime attack detection
approach tailored to reentrancy attacks on smart contracts. We show that Sereum is
capable of accurately identifying reentrancy attacks at runtime. By replaying large
parts of the transactions recorded on the Ethereum blockchain, we are able to show
that Sereum correctly identifies several real-world reentrancy attacks. Furthermore,
we uncovered new attacks that were not widely known in the community before our
evaluation.

While Sereum is an effective tool to mitigate attacks across a blockchain system, it
is highly challenging to integrate such a mitigation into an already deployed blockchain
system, as it would change the execution semantics of the execution environment. As
such, a more practical approach is required to react to newly discovered smart contract
vulnerabilities or attacks. In Chapter 7, we present EVMPatch, a streamlined and
automated approach to patching smart contracts using bytecode rewriting and the
so-called proxy pattern to work around the immutability of smart contracts and
facilitate upgrades. We show that EVMPatch can easily be used by developers to
set up upgradable contracts and patch a diverse set of vulnerabilities, both based
on manual patch specification and also using automated analysis tools. Both the
vulnerability identification with EF�CF in Chapter 5 and the attack detection of
Sereum in Chapter 6 can be utilized as input to EVMPatch’s automated patching
process. Thus, EVMPatch allows smart contract developers to bring the power of
existing analysis tools to already deployed contracts.

Overall, we conclude that secure execution environments give certain security guar-
antees to developers. However, these execution environments also pose new and
unfamiliar threat models, making them more likely to introduce security vulnera-
bilities. Given the abundance of vulnerabilities, which we and the community at

197

Chapter 8 Conclusion

large discovered, it is clear that there is a lack of awareness of these security issues
and, arguably even worse, existing tooling is not adequate to assist developers in
their efforts to secure critical code in enclaves and smart contracts. With TeeRex
and EF�CF, we show how to adapt vulnerability identification techniques to identify
security vulnerabilities specific to secure execution environments before deployment.
With Sereum and EVMPatch, we provide methods to securely operate software in
these new secure execution environments, overcoming the limitations of the execution
environments to facilitate mitigation of vulnerabilities.

198

BIBLIOGRAPHY

List of Publications
Complete list of publications with contributions of the author of this dissertation over
the course of his PhD studies.
[Ade+20] Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi, Ahmad-Reza

Sadeghi, and Saman A. Zonouz. “Control Behavior Integrity for Distributed Cyber-Physical
Systems”. In: 11. ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 2020. doi: 10.1109/ICCPS48487.2020.00011.

[Ber+22] Lukas Bernhard, Michael Rodler, Thorsten Holz, and Lucas Davi. “xTag: Mitigating Use-
After-Free Vulnerabilities via Software-Based Pointer Tagging on Intel x86-64”. In: IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2022. doi: 10.1109/
EuroSP53844.2022.00038.

[CRD20] Tobias Cloosters, Michael Rodler, and Lucas Davi. “TeeRex: Discovery and Exploitation of
Memory Corruption Vulnerabilities in SGX Enclaves”. In: 29th USENIX Security Symposium.
USENIX Association, 2020. url: https://www.usenix.org/conference/usenixsecurity20/
presentation/cloosters.

[Dra+23] Oussama Draissi, Tobias Cloosters, David Klein, Marius Musch, Michael Rodler, Lucas Davi,
and Martin Johns. “Dissecting and Fuzzing Native Code on the Web”. In: (2023). Under
submission.

[Gie+22] Jens-Rene Giesen, Sebastian Andreina, Michael Rodler, Ghassan O. Karame, and Lucas
Davi. “Practical Mitigation of Smart Contract Bugs”. In: CoRR abs/2203.00364 (2022). doi:
10.48550/arXiv.2203.00364. arXiv: 2203.00364. Under submission.

[Paa+21a] David Paaßen, Sebastian Surminski, Michael Rodler, and Lucas Davi. “My Fuzzer Beats
Them All! Developing a Framework for Fair Evaluation and Comparison of Fuzzers”. In:
26th European Symposium on Research in Computer Security (ESORICS). Lecture Notes in
Computer Science. Springer, 2021. doi: 10.1007/978-3-030-88418-5_9.

[Rod+19] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. “Sereum: Protecting
Existing Smart Contracts Against Re-Entrancy Attacks”. In: 26th Annual Network and
Distributed System Security Symposium (NDSS). The Internet Society, 2019. url: https:
//www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-
against-re-entrancy-attacks/.

[Rod+21] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. “EVMPatch: Timely and
Automated Patching of Ethereum Smart Contracts”. In: 30th USENIX Security Symposium.
USENIX Association, 2021. url: https://www.usenix.org/conference/usenixsecurity21/
presentation/rodler.

[Rod+23] Michael Rodler, David Paaßen, Wenting Li, Lukas Bernhard, Thorsten Holz, Ghassan
O. Karame, and Lucas Davi. “EF/CF: A High Performance Fuzzer for Ethereum Smart
Contracts”. In: IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2023.
doi: 10.1109/EuroSP57164.2023.00034.

199

https://doi.org/10.1109/ICCPS48487.2020.00011
https://doi.org/10.1109/EuroSP53844.2022.00038
https://doi.org/10.1109/EuroSP53844.2022.00038
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://doi.org/10.48550/arXiv.2203.00364
https://arxiv.org/abs/2203.00364
https://doi.org/10.1007/978-3-030-88418-5_9
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://doi.org/10.1109/EuroSP57164.2023.00034

Bibliography

References
[MKRh] url: https://github.com/nexusdev/hack-recovery (visited on 07/28/2018).
[Aba+05] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow Integrity”. In:

Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS).
2005. doi: 10.1145/1102120.1102165.

[Aba+09] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow integrity
principles, implementations, and applications”. In: ACM Trans. Inf. Syst. Secur. 13.1 (2009).
doi: 10.1145/1609956.1609960.

[Adv+91] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer. “Detecting
Data Races on Weak Memory Systems”. In: Proceedings of the 18th Annual International
Symposium on Computer Architecture. ACM, 1991, pp. 234–243. doi: 10.1145/115952.
115976.

[Ait02] Dave Aitel. The advantages of block-based protocol analysis for security testing. Tech. rep. 2002.
url: http://www.immunityinc.com/downloads/advantages_of_block_based_analysis.pdf.

[Alb+18] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya Sergey. “EthIR: A
Framework for High-Level Analysis of Ethereum Bytecode”. In: Lecture Notes in Computer
Science 11138 (2018), pp. 513–520. doi: 10.1007/978-3-030-01090-4_30.

[Alb+20] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and
Mooly Sagiv. “Taming callbacks for smart contract modularity”. In: Proc. ACM Program.
Lang. 4.OOPSLA (2020). doi: 10.1145/3428277.

[Ald+20] Fritz Alder, Jo Van Bulck, David F. Oswald, and Frank Piessens. “Faulty Point Unit: ABI
Poisoning Attacks on Intel SGX”. In: ACSAC ’20: Annual Computer Security Applications
Conference. ACM, 2020. doi: 10.1145/3427228.3427270.

[And20] Ross J. Anderson. Security engineering - a guide to building dependable distributed systems
(3. ed.) Wiley, 2020. isbn: 978-111-964-2-7-8-7.

[AB14] Andrea Arcuri and Lionel Briand. “A Hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering”. In: Software Testing, Verification and
Reliability (2014).

[Asc+19a] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza
Sadeghi, and Daniel Teuchert. “NAUTILUS: Fishing for Deep Bugs with Grammars”. In:
NDSS. 2019. doi: 10.14722/ndss.2019.23. url: http://dx.doi.org/10.14722/ndss.2019.
23.

[Asc+19b] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and Thorsten Holz.
“REDQUEEN: Fuzzing with Input-to-State Correspondence”. In: Proceedings 2019 Network
and Distributed System Security Symposium. NDSS. Internet Society, 2019. doi: 10.14722/
ndss.2019.23371.

[Asy] Asylo Authors. Asylo - An open and flexible framework for enclave applications. url: https:
//asylo.dev/ (visited on 02/01/2022).

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A Survey of Attacks on Ethereum
Smart Contracts (SoK)”. In: International Conference on Principles of Security and Trust.
Springer. 2017.

[Aub+17] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Christian Priebe,
Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter Pietzuch. TaLoS: Secure
and Transparent TLS Termination inside SGX Enclaves. en. Tech. rep. 2017/5. Imperial
College London, Mar. 2017. url: https://www.doc.ic.ac.uk/research/technicalreports/
2017/DTRS17-5.pdf.

[Avg+14] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. “Enhancing sym-
bolic execution with veritesting”. In: 36th International Conference on Software Engineering.
ACM, 2014. doi: 10.1145/2568225.2568293.

[Bab+19] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo Ivancic, Tim King, Markus Kusano,
Caroline Lemieux, László Szekeres, and Wei Wang. “FUDGE: fuzz driver generation at scale”.
In: Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/SIGSOFT FSE. ACM,
2019. doi: 10.1145/3338906.3340456.

[Bal+18] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
“A Survey of Symbolic Execution Techniques”. In: ACM Comput. Surv. 51.3 (May 2018).
issn: 0360-0300. doi: 10.1145/3182657.

200

https://github.com/nexusdev/hack-recovery
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/115952.115976
https://doi.org/10.1145/115952.115976
http://www.immunityinc.com/downloads/advantages_of_block_based_analysis.pdf
https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1145/3428277
https://doi.org/10.1145/3427228.3427270
https://doi.org/10.14722/ndss.2019.23
http://dx.doi.org/10.14722/ndss.2019.23
http://dx.doi.org/10.14722/ndss.2019.23
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.14722/ndss.2019.23371
https://asylo.dev/
https://asylo.dev/
https://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3182657

References

[Bar+11] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Computer Aided Verification
- 23rd International Conference (CAV). Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 171–177. doi: 10.1007/978-
3-642-22110-1_14.

[BT18] Clark W. Barrett and Cesare Tinelli. “Satisfiability Modulo Theories”. In: Handbook of Model
Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem. Springer, 2018, pp. 305–343. doi: 10.1007/978-3-319-10575-8_11.

[Bas+17] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. “Synthesizing program in-
put grammars”. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI. ACM, 2017. doi: 10.1145/3062341.3062349.

[BPH14] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. “Shielding Applications from an
Untrusted Cloud with Haven”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI. 2014. url: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/baumann.

[BEC] BeautyChainToken. url: https://etherscan.io/address/0xc5d105e63711398af9bbff092d
4b6769c82f793d.

[Bek+12] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. “A Taint Based Approach
for Smart Fuzzing”. In: Fifth IEEE International Conference on Software Testing, Verification
and Validation. ICST. IEEE Computer Society, 2012. doi: 10.1109/ICST.2012.182.

[Bio+18] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
“The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX”. In: 27th USENIX
Security Symposium, USENIX Security. 2018. url: https://www.usenix.org/conference/
usenixsecurity18/presentation/biondo.

[Bla+19] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schumilo, Simon
Wörner, and Thorsten Holz. “GRIMOIRE: Synthesizing Structure while Fuzzing”. In: 28th
USENIX Security Symposium. USENIX Association, 2019. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/blazytko.

[REVST] BlockSec. Revest Finance Vulnerabilities: More than Re-entrancy. Mar. 2022. url: https:
//blocksecteam.medium.com/revest-finance-vulnerabilities-more-than-re-entrancy-
1609957b742f (visited on 06/07/2022).

[BD95] Hans-J. Boehm and Paul Dubois. “Dynamic memory allocation and garbage collection”. In:
Computers in Physics 9.3 (1995), pp. 297–303.

[BCD21a] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. “Fuzzing Symbolic Expressions”.
In: 43rd IEEE/ACM International Conference on Software Engineering. ICSE. IEEE, 2021.
doi: 10.1109/ICSE43902.2021.00071.

[BCD21b] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. “FUZZOLIC: Mixing fuzzing and
concolic execution”. In: Comput. Secur. 108 (2021), p. 102368. doi: 10.1016/j.cose.2021.
102368.

[Bos+22] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and Giovanni Vigna.
“SAILFISH: Vetting Smart Contract State-Inconsistency Bugs in Seconds”. In: 43rd IEEE
Symposium on Security and Privacy. S&P. IEEE, 2022. doi: 10.1109/SP46214.2022.9833721.

[BEL75] Robert S Boyer, Bernard Elspas, and Karl N Levitt. “SELECT—a formal system for testing
and debugging programs by symbolic execution”. In: ACM SigPlan Notices 10.6 (1975). url:
https://dl.acm.org/citation.cfm?id=808445.

[Bra+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and
Ahmad-Reza Sadeghi. “Software Grand Exposure: SGX Cache Attacks Are Practical”. In:
USENIX Workshop on Offensive Technologies. 2017.

[Bre+17] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. An In-Depth Look at the
Parity Multisig Bug. 2017. url: http://hackingdistributed.com/2017/07/22/deep-dive-
parity-bug/ (visited on 04/20/2018).

[Bre+18] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent Gramoli,
Ralph Holz, and Bernhard Scholz. “Vandal: A Scalable Security Analysis Framework for
Smart Contracts”. In: arXiv:1809.03981 (2018). arXiv: 1809.03981 [cs.PL]. url: http:
//arxiv.org/abs/1809.03981.

[Bro22] Martin Holst Swende Brooklyn Zelenka, Greg Colvin. EIP 2315 - Simple Subroutines for
the EVM. 2022. url: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2315.md
(visited on 01/14/2022).

201

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/3062341.3062349
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d
https://doi.org/10.1109/ICST.2012.182
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://blocksecteam.medium.com/revest-finance-vulnerabilities-more-than-re-entrancy-1609957b742f
https://blocksecteam.medium.com/revest-finance-vulnerabilities-more-than-re-entrancy-1609957b742f
https://blocksecteam.medium.com/revest-finance-vulnerabilities-more-than-re-entrancy-1609957b742f
https://doi.org/10.1109/ICSE43902.2021.00071
https://doi.org/10.1016/j.cose.2021.102368
https://doi.org/10.1016/j.cose.2021.102368
https://doi.org/10.1109/SP46214.2022.9833721
https://dl.acm.org/citation.cfm?id=808445
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1809.03981
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2315.md

Bibliography

[BH00] Bryan Buck and Jeffrey K Hollingsworth. “An API for Runtime Code Patching”. In:
Int. J. High Perform. Comput. Appl. 14.4 (Nov. 2000). issn: 1094-3420. doi: 10.1177/
109434200001400404.

[Bur67] W H Burkhardt. “Generating test programs from syntax”. In: (Mar. 1967). doi: 10.1007/
BF02235512.

[But16] Vitalik Buterin. EIP-170: Contract code size limit. 2016. url: https://eips.ethereum.org/
EIPS/eip-170 (visited on 02/17/2022).

[CREAM] C.R.E.A.M Finance. C.R.E.A.M. Finance Post Mortem: AMP Exploit. Sept. 2021. url:
https://medium.com/cream-finance/c-r-e-a-m-finance-post-mortem-amp-exploit-
6ceb20a630c5 (visited on 06/07/2022).

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs”. In: 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI. 2008. url: http:
//www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf.

[Cad+08] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
“EXE: Automatically Generating Inputs of Death”. In: ACM Trans. Inf. Syst. Secur. 12.2
(2008). doi: 10.1145/1455518.1455522.

[Can+19] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. “A Systematic Evaluation
of Transient Execution Attacks and Defenses”. In: 28th USENIX Security Symposium.
USENIX Association, 2019. url: https://www.usenix.org/conference/usenixsecurity19/
presentation/canella.

[Cec+21] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers. “Compositional Security for
Reentrant Applications”. In: 42nd IEEE Symposium on Security and Privacy (S&P). IEEE,
2021. doi: 10.1109/SP40001.2021.00084.

[Cha+12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. “Unleashing
Mayhem on Binary Code”. In: 2012 IEEE Symposium on Security and Privacy. IEEE, May
2012. doi: 10.1109/SP.2012.31.

[CS13] Stephen Checkoway and Hovav Shacham. “Iago attacks: why the system call API is a bad
untrusted RPC interface”. In: ASPLOS. Vol. 13. 2013. doi: 10.1145/2499368.2451145.

[Che+19a] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten-Hwang
Lai. “SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Speculative Execution”. In:
IEEE European Symposium on Security and Privacy. EuroS&P. IEEE, 2019. doi: 10.1109/
EuroSP.2019.00020.

[Che+22] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. “JIGSAW: Efficient and Scalable
Path Constraints Fuzzing”. In: 2022 IEEE Symposium on Security and Privacy. 2022. doi:
10.1109/SP46214.2022.00102.

[CC18] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by Principled Search”. In: 2018 IEEE
Symposium on Security and Privacy. S&P. IEEE Computer Society, 2018. doi: 10.1109/SP.
2018.00046.

[Che+21] Ting Chen, Zihao Li, Xiapu Luo, Xiaofeng Wang, Ting Wang, Zheyuan He, Kezhao Fang,
Yufei Zhang, Hang Zhu, Hongwei Li, Yan Cheng, and Xiao-Song Zhang. “SigRec: Automatic
Recovery of Function Signatures in Smart Contracts”. In: IEEE Trans. Software Eng. (2021).
issn: 1939-3520. doi: 10.1109/TSE.2021.3078342.

[Che+19b] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou, Xun Jiao,
and Zhuo Su. “EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers”.
In: 28th USENIX Security Symposium. 2019. url: https://www.usenix.org/conference/
usenixsecurity19/presentation/chen-yuanliang.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: a platform for in-vivo
multi-path analysis of software systems”. In: Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2011,
Newport Beach, CA, USA, March 5-11, 2011. Ed. by Rajiv Gupta and Todd C. Mowry.
ACM, 2011, pp. 265–278. doi: 10.1145/1950365.1950396.

[Cho+19] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. “Grey-box concolic testing
on binary code”. In: Proceedings of the 41st International Conference on Software Engineering.
ICSE. IEEE / ACM, 2019. doi: 10.1109/ICSE.2019.00082.

202

https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1007/BF02235512
https://doi.org/10.1007/BF02235512
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-170
https://medium.com/cream-finance/c-r-e-a-m-finance-post-mortem-amp-exploit-6ceb20a630c5
https://medium.com/cream-finance/c-r-e-a-m-finance-post-mortem-amp-exploit-6ceb20a630c5
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
https://doi.org/10.1145/1455518.1455522
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1109/SP40001.2021.00084
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/2499368.2451145
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1109/SP46214.2022.00102
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/TSE.2021.3078342
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1109/ICSE.2019.00082

References

[Cho+21] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and Sang Kil
Cha. “SMARTIAN: Enhancing Smart Contract Fuzzing with Static and Dynamic Data-
Flow Analyses”. In: 36th IEEE/ACM International Conference on Automated Software
Engineering. ASE. IEEE, 2021. doi: 10.1109/ASE51524.2021.9678888.

[CH00] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for random testing of
Haskell programs”. In: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming. ICFP. 2000. doi: 10.1145/351240.351266.

[CLO07a] James Clause, Wanchun Li, and Alessandro Orso. “Dytan: A Generic Dynamic Taint Analysis
Framework”. In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis. ACM, 2007. doi: 10.1145/1273463.1273490.

[CLO07b] James A. Clause, Wanchun Li, and Alessandro Orso. “Dytan: a generic dynamic taint analysis
framework”. In: Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA. 2007. doi: 10.1145/1273463.1273490.

[Clo+22] Tobias Cloosters, Johannes Willbold, Thorsten Holz, and Lucas Davi. “SGXFuzz: Efficiently
Synthesizing Nested Structures for SGX Enclave Fuzzing”. In: 31st USENIX Security Sym-
posium. USENIX Association, Aug. 2022. url: https://www.usenix.org/conference/
usenixsecurity22/presentation/cloosters.

[Cona] ConsenSys. Ethereum Smart Contract Best Practices: Upgradeability. url: https://co
nsensys.github.io/smart- contract- best- practices/development- recommendations/
precautions/upgradeability/ (visited on 02/17/2022).

[Conb] ConsenSys Diligence. Ethereum Smart Contract Best Practices. url: https://consensys.
github.io/smart-contract-best-practices/known_attacks/ (visited on 07/25/2018).

[Con+21] Filippo Contro, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda. “EtherSolve:
Computing an Accurate Control-Flow Graph from Ethereum Bytecode”. In: 29th IEEE/ACM
International Conference on Program Comprehension. ICPC. IEEE, 2021. doi: 10.1109/
ICPC52881.2021.00021.

[CD16] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR Cryptology ePrint
Archive (2016). url: http://eprint.iacr.org/2016/086.

[Cow+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. “StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow Attacks”. In: Proceedings of the 7th
USENIX Security Symposium, San Antonio, TX, USA, January 26-29, 1998. USENIX
Association, 1998. url: https://www.usenix.org/conference/7th- usenix- security-
symposium/stackguard-automatic-adaptive-detection-and-prevention.

[MKRr] Critical ether token wrapper vulnerability - ETH tokens salvaged from potential attacks.
June 2016. url: https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_
token_wrapper_vulnerability_eth/ (visited on 07/28/2018).

[Cry] Crytic / Trail of Bits. ethersplay: EVM disassembler and related analysis tools. url: https:
//github.com/crytic/ethersplay/.

[Cyb] CyberLink. PowerDVD Ultra Requirements. url: https://www.cyberlink.com/products/
powerdvd-ultra/spec_en_US.html (visited on 11/14/2019).

[Dai16a] Phil Daian. Analysis of the DAO exploit. 2016. url: http://hackingdistributed.com/2016/
06/18/analysis-of-the-dao-exploit/.

[Dai16b] Philip Daian. Chasing the DAO Attacker’s Wake. June 2016. url: https://pdaian.com/
blog/chasing-the-dao-attackers-wake/ (visited on 07/26/2017).

[Dav+12] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf
Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. “MoCFI: A Framework to Mitigate
Control-Flow Attacks on Smartphones”. In: Proceedings Network and Distributed System
Security Symposium (NDSS). 2012.

[Dev22] The Rust Fuzz Project Developers. Arbitrary - The trait for generating structured data
from arbitrary, unstructured input. Version v1.1.3. 2022. url: https://github.com/rust-
fuzz/arbitrary/ (visited on 06/03/2022).

[Dua+] Ran Duan, Long Li, Shi Jia, Yu Ding, Yulong Zhang, Yueqiang Cheng, Lenx Wei, and Tanghui
Chen. Apache Teaclave Rust-SGX SDK - Samplecode “tls/tlsclient”. url: https://github.
com / apache / incubator - teaclave - sgx - sdk / tree / master / samplecode / tls / tlsclient
(visited on 02/28/2020).

203

https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490
https://www.usenix.org/conference/usenixsecurity22/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity22/presentation/cloosters
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/upgradeability/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/upgradeability/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/upgradeability/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://doi.org/10.1109/ICPC52881.2021.00021
https://doi.org/10.1109/ICPC52881.2021.00021
http://eprint.iacr.org/2016/086
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://github.com/crytic/ethersplay/
https://github.com/crytic/ethersplay/
https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html
https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://pdaian.com/blog/chasing-the-dao-attackers-wake/
https://pdaian.com/blog/chasing-the-dao-attackers-wake/
https://github.com/rust-fuzz/arbitrary/
https://github.com/rust-fuzz/arbitrary/
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient

Bibliography

[Dur02] Tyler Durden. “Bypassing PaX ASLR protection”. In: Phrack Magazine 59.9 (2002). url:
http://phrack.org/issues/59/9.html.

[Dur+20] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. “Empirical review of automated
analysis tools on 47,587 Ethereum smart contracts”. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ICSE. 2020. doi: 10.1145/3377811.
3380364.

[Dut14] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Verification - 26th International Conference
(CAV). Ed. by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer
Science. Springer, 2014, pp. 737–744. doi: 10.1007/978-3-319-08867-9_49.

[Eck+18] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. “HeapHopper: Bringing Bounded Model Checking to Heap Implementation
Security”. In: 27th USENIX Security Symposium. USENIX Association, 2018. url: https:
//www.usenix.org/conference/usenixsecurity18/presentation/eckert.

[eEVM] Microsoft. Enclave EVM. url: https://github.com/microsoft/eEVM.

[TaLoS] Efficient TLS termination inside Intel SGX enclaves for existing applications: lsds/TaLoS.
Aug. 7, 2019. url: https://github.com/lsds/TaLoS (visited on 08/27/2019).

[EIP] Ethereum EIPs. ERC930 - Eternal Storage Standard. https://github.com/ethereum/EIPs/
issues/930. [Online; accessed 2019-11-08].

[Enc+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. “TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones”. In: ACM Transactions on
Computer Systems (TOCS) 32.2 (2014). doi: 10.1145/2619091.

[Eth22] Etherscan. Top Accounts by ETH Balance. 2022. url: https://etherscan.io/accounts
(visited on 01/14/2022).

[HODLW] etherscan.io: HODLWallet. url: https://etherscan.io/address/0x4a8d3a662e0fd6a8bd
39ed0f91e4c1b729c81a38 (visited on 12/12/2021).

[INSD] etherscan.io: InstaDice. url: https://etherscan.io/address/0xfe1b613f17f984e27239b0b
2dccfb1778888dfae (visited on 12/12/2021).

[SpCLC] etherscan.io: LedgerChannel (SpankChain). url: https : / / etherscan . io / address / 0xf
91546835f756da0c10cfa0cda95b15577b84aa7 (visited on 12/12/2021).

[SYES] etherscan.io: SysEscrow. url: https://etherscan.io/address/0x903643251af408a3c5269c
836b9a2a4a1f04d1cf (visited on 12/12/2021).

[DAO] etherscan.io: The DAO contract. url: https://etherscan.io/address/0xBB9bc244D798123f
De783fCc1C72d3Bb8C189413 (visited on 08/01/2018).

[imBTC] etherscan.io: The Tokenized Bitcoin (imBTC). url: https : / / etherscan . io / address /
0x3212b29E33587A00FB1C83346f5dBFA69A458923 (visited on 12/12/2021).

[FGG19] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: a static analysis framework for
smart contracts”. In: Proceedings of the 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain. WETSEB@ICSE. IEEE / ACM, 2019. doi: 10.1109/
WETSEB.2019.00008.

[FSS18] Christof Ferreira-Torres, Julian Schütte, and Radu State. “Osiris: Hunting for Integer Bugs
in Ethereum Smart Contracts”. In: Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC). 2018. doi: 10.1145/3274694.3274737.

[Fio+20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. “AFL++: Combining
incremental steps of fuzzing research”. In: 14th USENIX Workshop on Offensive Technologies.
WOOT. 2020. url: https://aflplus.plus//papers/aflpp-woot2020.pdf.

[Fou22] Ethereum Foundation. Fe - The next generation smart contract language for Ethereum. 2022.
url: https://fe-lang.org/ (visited on 01/14/2022).

[FAH20] Joel Frank, Cornelius Aschermann, and Thorsten Holz. “ETHBMC: A Bounded Model
Checker for Smart Contracts”. In: 29th USENIX Security Symposium. USENIX Association,
2020. url: https://www.usenix.org/conference/usenixsecurity20/presentation/frank.

[GP20] Asem Ghaleb and Karthik Pattabiraman. “How Effective Are Smart Contract Analysis Tools?
Evaluating Smart Contract Static Analysis Tools Using Bug Injection”. In: Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA.
2020.

204

http://phrack.org/issues/59/9.html
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1007/978-3-319-08867-9_49
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://github.com/microsoft/eEVM
https://github.com/lsds/TaLoS
https://github.com/ethereum/EIPs/issues/930
https://github.com/ethereum/EIPs/issues/930
https://doi.org/10.1145/2619091
https://etherscan.io/accounts
https://etherscan.io/address/0x4a8d3a662e0fd6a8bd39ed0f91e4c1b729c81a38
https://etherscan.io/address/0x4a8d3a662e0fd6a8bd39ed0f91e4c1b729c81a38
https://etherscan.io/address/0xfe1b613f17f984e27239b0b2dccfb1778888dfae
https://etherscan.io/address/0xfe1b613f17f984e27239b0b2dccfb1778888dfae
https://etherscan.io/address/0xf91546835f756da0c10cfa0cda95b15577b84aa7
https://etherscan.io/address/0xf91546835f756da0c10cfa0cda95b15577b84aa7
https://etherscan.io/address/0x903643251af408a3c5269c836b9a2a4a1f04d1cf
https://etherscan.io/address/0x903643251af408a3c5269c836b9a2a4a1f04d1cf
https://etherscan.io/address/0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413
https://etherscan.io/address/0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413
https://etherscan.io/address/0x3212b29E33587A00FB1C83346f5dBFA69A458923
https://etherscan.io/address/0x3212b29E33587A00FB1C83346f5dBFA69A458923
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/3274694.3274737
https://aflplus.plus//papers/aflpp-woot2020.pdf
https://fe-lang.org/
https://www.usenix.org/conference/usenixsecurity20/presentation/frank

References

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed automated random
testing”. In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation. Ed. by Vivek Sarkar and Mary W. Hall. PLDI. ACM, 2005. doi:
10.1145/1065010.1065036.

[GLM12] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. “SAGE: whitebox fuzzing for
security testing”. In: Commun. ACM 55.3 (2012). doi: 10.1145/2093548.2093564.

[SYZK] Google. syzkaller - syzkaller is an unsupervised coverage-guided kernel fuzzer. url: https:
//github.com/google/syzkaller (visited on 06/03/2022).

[GMZ20] Rahul Gopinath, Björn Mathis, and Andreas Zeller. “Mining input grammars from dynamic
control flow”. In: ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, 2020. doi: 10.1145/
3368089.3409679.

[GRAAL] GraalVM Reference Manual: Native Image. url: https://www.graalvm.org/reference-
manual/native-image/ (visited on 09/14/2021).

[Gre+19] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. “Gigahorse: thorough,
declarative decompilation of smart contracts”. In: Proceedings of the 41st International
Conference on Software Engineering. Ed. by Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle. ICSE. IEEE / ACM, 2019. doi: 10.1109/ICSE.2019.00120.

[GA22] Harrison Green and Thanassis Avgerinos. “GraphFuzz: Library API Fuzzing with Lifetime-
aware Dataflow Graphs”. In: 44th IEEE/ACM 44th International Conference on Software
Engineering. ICSE (2022). doi: 10.1145/3510003.3510228.

[Gri+20] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. “Echidna: effective,
usable, and fast fuzzing for smart contracts”. In: 29th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. ISSTA. ACM, 2020. doi: 10.1145/3395363.3404366.

[GMS18] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. “A Semantic Framework for the
Security Analysis of Ethereum Smart Contracts”. In: Proceedings of the 7th International
Conference on Principles of Security and Trust. 2018. doi: 10.1007/978-3-319-89722-6_10.

[Gri+22] Fabio Gritti, Fabio Pagani, Ilya Grishchenko, Lukas Dresel, Nilo Redini, Christopher Kruegel,
and Giovanni Vigna. “HEAPSTER: Analyzing the Security of Dynamic Allocators for
Monolithic Firmware Images”. In: 2022 IEEE Symposium on Security and Privacy. SP. Apr.
2022. doi: 10.1109/SP46214.2022.00130.

[GG21] Alex Groce and Gustavo Grieco. “echidna-parade: a tool for diverse multicore smart contract
fuzzing”. In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA. 2021. doi: 10.1145/3460319.3469076.

[Gro18] Samuel Groß. “FuzzIL: Coverage Guided Fuzzing for JavaScript Engines”. MA thesis. Karl-
sruhe Institute of Technology, 2018. url: https://saelo.github.io/papers/thesis.pdf.

[Gro+18] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky,
Mooly Sagiv, and Yoni Zohar. “Online detection of effectively callback free objects with
applications to smart contracts”. In: Proc. ACM Program. Lang. 2.POPL (2018), 48:1–48:28.
doi: 10.1145/3158136.

[Gru20] Daniel Gruss. “Transient-Execution Attacks and Defenses”. habilitation. Graz University of
Technology, June 2020. url: https://gruss.cc/files/habil.pdf.

[HC17] HyungSeok Han and Sang Kil Cha. “IMF: Inferred Model-based Fuzzer”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. Ed. by
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. CCS. ACM, 2017.
doi: 10.1145/3133956.3134103.

[HOC19] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. “CodeAlchemist: Semantics-Aware Code
Generation to Find Vulnerabilities in JavaScript Engines”. In: 26th Annual Network and
Distributed System Security Symposium. NDSS. The Internet Society, 2019. url: https://www.
ndss-symposium.org/ndss-paper/codealchemist-semantics-aware-code-generation-to-
find-vulnerabilities-in-javascript-engines/.

[He+19] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, and Martin T. Vechev.
“Learning to Fuzz from Symbolic Execution with Application to Smart Contracts”. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. CCS. ACM, 2019. doi: 10.1145/3319535.3363230.

[RDMSA] Aki Helin. radams: a general-purpose fuzzer. url: https://gitlab.com/akihe/radamsa
(visited on 05/23/2022).

205

https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2093548.2093564
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3368089.3409679
https://www.graalvm.org/reference-manual/native-image/
https://www.graalvm.org/reference-manual/native-image/
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1109/SP46214.2022.00130
https://doi.org/10.1145/3460319.3469076
https://saelo.github.io/papers/thesis.pdf
https://doi.org/10.1145/3158136
https://gruss.cc/files/habil.pdf
https://doi.org/10.1145/3133956.3134103
https://www.ndss-symposium.org/ndss-paper/codealchemist-semantics-aware-code-generation-to-find-vulnerabilities-in-javascript-engines/
https://www.ndss-symposium.org/ndss-paper/codealchemist-semantics-aware-code-generation-to-find-vulnerabilities-in-javascript-engines/
https://www.ndss-symposium.org/ndss-paper/codealchemist-semantics-aware-code-generation-to-find-vulnerabilities-in-javascript-engines/
https://doi.org/10.1145/3319535.3363230
https://gitlab.com/akihe/radamsa

Bibliography

[HXG] HexagonToken. url: https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238D
a1153cEBA.

[Hil+17] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,
Dwight Guth, and Grigore Rosu. KEVM: A complete semantics of the ethereum virtual
machine. Tech. rep. 2017.

[Hoe+13] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan del Cuvillo.
“Using innovative instructions to create trustworthy software solutions”. In: The Second
Workshop on Hardware and Architectural Support for Security and Privacy, HASP. 2013.
doi: 10.1145/2487726.2488370.

[HHZ12] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code Fragments”. In:
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10,
2012. Ed. by Tadayoshi Kohno. USENIX Association, 2012, pp. 445–458. url: https://www.
usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler.

[HZ16] Matthias Höschele and Andreas Zeller. “Mining input grammars from dynamic taints”.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. Ed. by David Lo, Sven Apel, and Sarfraz Khurshid. ASE. ACM, 2016. doi:
10.1145/2970276.2970321.

[Hu+15] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena. “Identifying Arbitrary
Memory Access Vulnerabilities in Privilege-Separated Software”. In: Computer Security - 20th
European Symposium on Research in Computer Security, Proceedings, Part II, ESORICS.
2015. doi: 10.1007/978-3-319-24177-7_16.

[Hu+16] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and Zhenkai
Liang. “Data-Oriented Programming: On the Expressiveness of Non-control Data Attacks”.
In: IEEE Symposium on Security and Privacy (S&P). 2016. doi: 10.1109/SP.2016.62.

[SGXGMP] Intel. Demo Programs for the GNU* Multiple Precision Arithmetic Library* for Intel®
Software Guard Extensions. url: https://github.com/intel/sgx-gmp-demo/ (visited on
10/10/2019).

[Intel4] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System Pro-
gramming Guide, Part 4. Order Number 332831-065US. Intel. Dec. 2017.

[Isp+18] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. “Block Oriented
Programming: Automating Data-Only Attacks”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2018. doi: 10.1145/3243734.
3243739.

[Isp+20] Kyriakos K. Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. “FuzzGen:
Automatic Fuzzer Generation”. In: 29th USENIX Security Symposium. USENIX Association,
2020. url: https://www.usenix.org/conference/usenixsecurity20/presentation/ispogl
ou.

[IA] Jorge Izquierdo and Manuel Araoz. EIP-897: DelegateProxy. url: https://eips.ethereum.
org/EIPS/eip-897 (visited on 04/20/2022).

[Jen16] Christoph Jentzsch. The History of the DAO and Lessons Learned. Aug. 2016. url: https:
//blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5 (visited
on 10/10/2017).

[Jeo+17] Yuseok Jeon, Priyam Biswas, Scott A. Carr, Byoungyoung Lee, and Mathias Payer. “HexType:
Efficient Detection of Type Confusion Errors for C++”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2017, pp. 2373–2387.
doi: 10.1145/3133956.3134062.

[Jia+16] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen, Prateek Saxena, and Zhenkai Liang.
“"The Web/Local" Boundary Is Fuzzy: A Security Study of Chrome’s Process-based Sand-
boxing”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 2016, pp. 791–804. doi: 10.1145/2976749.2978414.

[JLC18] Bo Jiang, Ye Liu, and W. K. Chan. “ContractFuzzer: fuzzing smart contracts for vulnerability
detection”. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. Ed. by Marianne Huchard, Christian Kästner, and Gordon Fraser.
ASE. ACM, 2018. doi: 10.1145/3238147.3238177.

[Jun+21] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo Kim. “WINNIE
: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning”. In: 28th Annual
Network and Distributed System Security Symposium. NDSS. The Internet Society, 2021. url:
https://www.ndss-symposium.org/ndss-paper/winnie-fuzzing-windows-applications-
with-harness-synthesis-and-fast-cloning/.

206

https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA
https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA
https://doi.org/10.1145/2487726.2488370
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1145/2970276.2970321
https://doi.org/10.1007/978-3-319-24177-7_16
https://doi.org/10.1109/SP.2016.62
https://github.com/intel/sgx-gmp-demo/
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1145/3243734.3243739
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://eips.ethereum.org/EIPS/eip-897
https://eips.ethereum.org/EIPS/eip-897
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5
https://doi.org/10.1145/3133956.3134062
https://doi.org/10.1145/2976749.2978414
https://doi.org/10.1145/3238147.3238177
https://www.ndss-symposium.org/ndss-paper/winnie-fuzzing-windows-applications-with-harness-synthesis-and-fast-cloning/
https://www.ndss-symposium.org/ndss-paper/winnie-fuzzing-windows-applications-with-harness-synthesis-and-fast-cloning/

References

[Jun+20] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. “Stacked borrows: an aliasing
model for Rust”. In: Proc. ACM Program. Lang. 4.POPL (2020), 41:1–41:32. doi: 10.1145/
3371109.

[KLT01] Rauli Kaksonen, Marko Laakso, and Ari Takanen. “Software Security Assessment through
Specification Mutations and Fault Injection”. In: Communications and Multimedia Security
Issues of the New Century: IFIP TC6 / TC11 Fifth Joint Working Conference on Commu-
nications and Multimedia Security (CMS’01). 2001. doi: 10.1007/978-0-387-35413-2_16.

[Kal+18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. “ZEUS: Analyzing Safety of
Smart Contracts”. In: Proceedings 2018 Network and Distributed System Security Symposium
(NDSS). 2018. doi: 10.14722/ndss.2018.23082.

[Kin76] James C King. “Symbolic execution and program testing”. In: Commun. ACM 19.7 (July
1976). issn: 0001-0782. doi: 10.1145/360248.360252.

[KotET] King of the Ether Throne - Post-Mortem Investigation (Feb 2016). 2016. url: https :
//www.kingoftheether.com/postmortem.html (visited on 01/14/2022).

[Kle+18] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. “Evaluating Fuzz
Testing”. In: ACM Conference on Computer and Communications Security (CCS). 2018.

[KR18a] Johannes Krupp and Christian Rossow. “teEther: Gnawing at Ethereum to Automatically
Exploit Smart Contracts”. In: 27th USENIX Security Symposium. USENIX Association,
2018. url: https://www.usenix.org/conference/usenixsecurity18/presentation/krupp.

[KR18b] Johannes Krupp and Christian Rossow. “teEther: Gnawing at Ethereum to Automatically
Exploit Smart Contracts”. In: 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, 2018. url: https://www.usenix.org/conference/usenixsecurity18/
presentation/krupp.

[KLS21] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. “Learning Highly Recursive Input Gram-
mars”. In: 36th IEEE/ACM International Conference on Automated Software Engineering.
ASE. IEEE, 2021, pp. 456–467. doi: 10.1109/ASE51524.2021.9678879.

[Kuz+12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. “Efficient state
merging in symbolic execution”. In: Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2012. doi: 10.1145/2254064.2254088.

[Lau+10] M A Laurenzano, M M Tikir, L Carrington, and A Snavely. “PEBIL: Efficient static binary
instrumentation for Linux”. In: 2010 IEEE International Symposium on Performance Analysis
of Systems Software (ISPASS). 2010. doi: 10.1109/ISPASS.2010.5452024.

[Lee+17] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi,
Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. “Hacking in Darkness: Return-
oriented Programming against Secure Enclaves”. In: 26th USENIX Security Symposium,
USENIX Security. 2017. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-jaehyuk.

[LML21] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. “ExpRace: Exploiting Kernel Races
through Raising Interrupts”. In: 30th USENIX Security Symposium. USENIX Association,
2021. url: https://www.usenix.org/conference/usenixsecurity21/presentation/lee-
yoochan.

[LZM19] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. “Mimalloc: Free List Sharding in
Action”. In: Programming Languages and Systems - 17th Asian Symposium. APLAS. 2019.
doi: 10.1007/978-3-030-34175-6_13.

[Lim+21] Jungwon Lim, Yonghwi Jin, Mansour Alharthi, Xiaokuan Zhang, Jinho Jung, Rajat Gupta,
Kuilin Li, Daehee Jang, and Taesoo Kim. “SOK: On the Analysis of Web Browser Security”.
In: CoRR abs/2112.15561 (2021). arXiv: 2112.15561.

[LLV] LLVM Project. FuzzedDataProvider.h - Utility header for fuzz targets. url: https://github.
com/llvm/llvm- project/blob/8b90b2539048a581052a4b0d7628ffba0cd582a9/compiler-
rt/include/fuzzer/FuzzedDataProvider.h (visited on 06/03/2022).

[Luk+05] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Geoffrey
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. “Pin: building
customized program analysis tools with dynamic instrumentation”. In: Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation.
PLDI. 2005. doi: 10.1145/1065010.1065034.

[Luu+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. “Making Smart
Contracts Smarter”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS. ACM, 2016. doi: 10.1145/2976749.2978309.

207

https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1007/978-0-387-35413-2_16
https://doi.org/10.14722/ndss.2018.23082
https://doi.org/10.1145/360248.360252
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1109/ISPASS.2010.5452024
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-yoochan
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-yoochan
https://doi.org/10.1007/978-3-030-34175-6_13
https://arxiv.org/abs/2112.15561
https://github.com/llvm/llvm-project/blob/8b90b2539048a581052a4b0d7628ffba0cd582a9/compiler-rt/include/fuzzer/FuzzedDataProvider.h
https://github.com/llvm/llvm-project/blob/8b90b2539048a581052a4b0d7628ffba0cd582a9/compiler-rt/include/fuzzer/FuzzedDataProvider.h
https://github.com/llvm/llvm-project/blob/8b90b2539048a581052a4b0d7628ffba0cd582a9/compiler-rt/include/fuzzer/FuzzedDataProvider.h
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2976749.2978309

Bibliography

[Man+21] Valentin J M Manes, Hyungseok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward
J Schwartz, and Maverick Woo. “The art, science, and engineering of fuzzing: A survey”. In:
IEEE Trans. Software Eng. 47.11 (Nov. 2021), pp. 2312–2331. issn: 0098-5589, 1939-3520.
doi: 10.1109/tse.2019.2946563.

[Mar17] Moxie Marlinspike. Technology preview: Private contact discovery for Signal. Sept. 26, 2017.
url: https://signal.org/blog/private-contact-discovery/ (visited on 10/10/2019).

[McK+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R. Savagaonkar. “Innovative instructions and software model for
isolated execution”. In: The Second Workshop on Hardware and Architectural Support for
Security and Privacy, HASP. 2013. doi: 10.1145/2487726.2488368.

[Mic14] Microsoft Corporation. Visual Studio 2015 Preview: Work-in-Progress Security Feature. 2014.
url: http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual- studio- 2015-
preview-work-in-progress-security-feature.aspx.

[Mog+20] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. “CopyCat:
Controlled Instruction-Level Attacks on Enclaves”. In: 29th USENIX Security Symposium.
USENIX Association, 2020. url: https://www.usenix.org/conference/usenixsecurity20/
presentation/moghimi-copycat.

[Mos+19] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin
Feist, Trent Brunson, and Artem Dinaburg. “Manticore: A User-Friendly Symbolic Execution
Framework for Binaries and Smart Contracts”. In: 34th IEEE/ACM International Conference
on Automated Software Engineering. ASE. IEEE, 2019. doi: 10.1109/ASE.2019.00133.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 14th International
Conference (TACAS). Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes
in Computer Science. Springer, 2008, pp. 337–340. doi: 10.1007/978-3-540-78800-3_24.

[MWM] Peter Murray, Nate Welch, and Joe Messerman. EIP-1167: Minimal Proxy Contract. url:
https://eips.ethereum.org/EIPS/eip-1167 (visited on 04/20/2022).

[Conc] ConsenSys. Mythril. url: https://github.com/ConsenSys/mythril.

[Nad] Facu Spagnuolo Elena Nadolinski. ZeppelinOS Blog: Proxy Patterns. url: https://blog.
zeppelinos.org/proxy-patterns/ (visited on 07/03/2020).

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008). url: http:
//www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf.

[Ngu+20] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. “sFuzz: an efficient
adaptive fuzzer for solidity smart contracts”. In: ICSE ’20: 42nd International Conference
on Software Engineering. Ed. by Gregg Rothermel and Doo-Hwan Bae. ACM, 2020. doi:
10.1145/3377811.3380334.

[Nik+18] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. “Finding
The Greedy, Prodigal, and Suicidal Contracts at Scale”. In: Proceedings of the 34th Annual
Computer Security Applications Conference. ACSAC. 2018. doi: 10.1145/3274694.3274743.

[One96] Aleph One. Smashing The Stack For Fun And Profit. Nov. 1996. url: http://phrack.org/
issues/49/14.html.

[REGu] OpenZeppelin Documentation: ReentrancyGuard. url: https://docs.openzeppelin.com/
contracts/4.x/api/security#ReentrancyGuard (visited on 08/15/2022).

[Paa+21b] David Paaßen, Sebastian Surminski, Michael Rodler, and Lucas Davi. “My Fuzzer Beats
Them All! Developing a Framework for Fair Evaluation and Comparison of Fuzzers”. In:
Proc. of European Symposium on Research in Computer Security (ESORICS). Springer
International Publishing, 2021.

[PaX] PaX Team. PaX: PAGEEXEC Design. url: https://pax.grsecurity.net/docs/pageexec.
txt (visited on 08/23/2019).

[PBG+13] Mathias Payer, Boris Bluntschli, Thomas R Gross, et al. “DynSec: On-the-fly Code Rewriting
and Repair”. In: HotSWUp. 2013. url: http : / / bitblaze . cs . berkeley . edu / papers /
payer13dynsec.pdf.

[Pec18] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-
2018-10706). 2018. url: https : / / blog . peckshield . com / 2018 / 05 / 10 / multiOverflow/
(visited on 05/27/2019).

208

https://doi.org/10.1109/tse.2019.2946563
https://signal.org/blog/private-contact-discovery/
https://doi.org/10.1145/2487726.2488368
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1007/978-3-540-78800-3_24
https://eips.ethereum.org/EIPS/eip-1167
https://github.com/ConsenSys/mythril
https://blog.zeppelinos.org/proxy-patterns/
https://blog.zeppelinos.org/proxy-patterns/
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3274694.3274743
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt
http://bitblaze.cs.berkeley.edu/papers/payer13dynsec.pdf
http://bitblaze.cs.berkeley.edu/papers/payer13dynsec.pdf
https://blog.peckshield.com/2018/05/10/multiOverflow/

References

[Peca] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-
2018-10299). url: https://blog.peckshield.com/2018/04/22/batchOverflow/ (visited on
05/27/2019).

[Pecb] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-
2018-11239). url: https://blog.peckshield.com/2018/05/18/burnOverflow/ (visited on
05/27/2019).

[Pecc] PeckShield. PeckShield advisories. url: https://blog.peckshield.com/advisories.html
(visited on 05/27/2019).

[PL21] Daniel Perez and Benjamin Livshits. “Smart Contract Vulnerabilities: Vulnerable Does Not
Imply Exploited”. In: 30th USENIX Security Symposium. USENIX Association, 2021. url:
https://www.usenix.org/conference/usenixsecurity21/presentation/perez.

[PKH19] Jannik Pewny, Philipp Koppe, and Thorsten Holz. “STEROIDS for DOPed Applications: A
Compiler for Automated Data-Oriented Programming”. In: IEEE European Symposium on
Security and Privacy (EuroS&P). 2019. doi: 10.1109/EuroSP.2019.00018.

[PF20] Sebastian Poeplau and Aurélien Francillon. “Symbolic execution with SymCC: Don’t interpret,
compile!” In: 29th USENIX Security Symposium. USENIX Association, 2020. url: https:
//www.usenix.org/conference/usenixsecurity20/presentation/poeplau.

[PF21] Sebastian Poeplau and Aurélien Francillon. “SymQEMU: Compilation-based symbolic ex-
ecution for binaries”. In: 28th Annual Network and Distributed System Security Sympo-
sium. NDSS. The Internet Society, 2021. url: https://www.ndss- symposium.org/ndss-
paper/symqemu-compilation-based-symbolic-execution-for-binaries/.

[Pop19] Gregory Popovitch. The Parallel Hashmap. Mar. 2019. url: https://greg7mdp.github.io/
parallel-hashmap/ (visited on 04/22/2022).

[Pri16] Rob Price. Digital currency Ethereum is cratering because of a $50 million hack. June 2016.
url: https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-
of-millions-allegedly-stolen-2016-6 (visited on 04/20/2018).

[Raw+17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert
Bos. “VUzzer: Application-aware Evolutionary Fuzzing”. In: 24th Annual Network and
Distributed System Security Symposium. NDSS. The Internet Society, 2017. url: https:
//www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-
evolutionary-fuzzing/.

[Rob+] Robert Seacord, Jill Britton et al. SEI CERT C Coding Standard: INT30-C. Ensure that
unsigned integer operations do not wrap. url: https://wiki.sei.cmu.edu/confluence/
display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap (visited on
08/16/2022).

[Rod] Michael Rodler. Re-Entrancy Attack Patterns. url: https://github.com/uni-due-syssec/
eth-reentrancy-attack-patterns (visited on 08/05/2022).

[Rud07] Jesse Ruderman. Introducing jsfunfuzz. 2007. url: https://www.squarefree.com/2007/08/
02/introducing-jsfunfuzz/ (visited on 06/03/2022).

[OZSM] SafeMath library - Wrappers over Solidity’s arithmetic operations with added overflow
checks. url: https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/
contracts/math/SafeMath.sol (visited on 06/03/2020).

[Sch+20a] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. SGAxe: How SGX
Fails in Practice. https://sgaxeattack.com/. 2020.

[Sch+20b] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. “eThor: Practical
and Provably Sound Static Analysis of Ethereum Smart Contracts”. In: ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2020. doi: 10.1145/3372297.
3417250.

[SSM20] Clara Schneidewind, Markus Scherer, and Matteo Maffei. “The Good, The Bad and The
Ugly: Pitfalls and Best Practices in Automated Sound Static Analysis of Ethereum Smart
Contracts”. In: Leveraging Applications of Formal Methods, Verification and Validation:
Applications. Springer International Publishing, 2020. doi: 10.1007/978-3-030-61467-6_14.

[Sch+16] Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. “On fast large-scale
program analysis in Datalog”. In: Proceedings of the 25th International Conference on
Compiler Construction. CC. 2016. doi: 10.1145/2892208.2892226.

209

https://blog.peckshield.com/2018/04/22/batchOverflow/
https://blog.peckshield.com/2018/05/18/burnOverflow/
https://blog.peckshield.com/advisories.html
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://doi.org/10.1109/EuroSP.2019.00018
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://greg7mdp.github.io/parallel-hashmap/
https://greg7mdp.github.io/parallel-hashmap/
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns
https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://sgaxeattack.com/
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1007/978-3-030-61467-6_14
https://doi.org/10.1145/2892208.2892226

Bibliography

[Sch+21] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and Thorsten Holz.
“Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine Types”. In: 30th USENIX
Security Symposium. USENIX Association, Aug. 2021. isbn: 978-193-913-3-24-3. url: https:
//www.usenix.org/conference/usenixsecurity21/presentation/schumilo.

[Sch+22] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and Thorsten Holz.
“Nyx-net: network fuzzing with incremental snapshots”. In: Proceedings of the Seventeenth
European Conference on Computer Systems. EuroSys. Association for Computing Machinery,
Mar. 2022. isbn: 978-145-039-1-6-2-7. doi: 10.1145/3492321.3519591.

[Sch+15a] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria
Mainar-Ruiz, and Mark Russinovich. “VC3: Trustworthy Data Analytics in the Cloud Using
SGX”. In: 2015 IEEE Symposium on Security and Privacy, S&P. 2015. doi: 10.1109/SP.
2015.10.

[Sch+15b] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Aymad-Reza Sadeghi, and
Thorsten Holz. “Counterfeit Object-oriented Programming: On the Difficulty of Preventing
Code Reuse Attacks in C++ Applications”. In: 2015 IEEE Symposium on Security and
Privacy (S&P). 2015. doi: 10.1109/SP.2015.51.

[SAB10] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask)”. In: 31st IEEE Symposium on Security and Privacy, S&P. 2010. doi:
10.1109/SP.2010.26.

[Sch+18] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schuster, Anders
Fogh, and Stefan Mangard. “Automated Detection, Exploitation, and Elimination of Double-
Fetch Bugs using Modern CPU Features”. In: Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. ACM, May 2018. doi: 10.1145/3196494.3196508.

[Sch+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
“Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: Detection of Intru-
sions and Malware, and Vulnerability Assessment - 14th International Conference. DIMVA.
Springer, 2017. doi: 10.1007/978-3-319-60876-1_1.

[See] Donn Seeley. A Tour of the Worm. url: https://web.archive.org/web/20070520233435/
http://world.std.com/~franl/worm.html (visited on 11/02/2007).

[Seo+17] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin, Dongsu Han,
and Taesoo Kim. “SGX-Shield: Enabling Address Space Layout Randomization for SGX
Programs”. In: 24th Annual Network and Distributed System Security Symposium, NDSS.
2017. doi: 10.14722/ndss.2017.23037.

[Ser+12] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. “Address-
Sanitizer: A Fast Address Sanity Checker”. In: USENIX Annual Technical Conference. 2012.
url: https://www.usenix.org/conference/atc12/technical- sessions/presentation/
serebryany.

[Sha07] Hovav Shacham. “The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86)”. In: ACM Conference on Computer and Communications Security (CCS).
2007. doi: 10.1145/1315245.1315313.

[Sho+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel, and Giovanni
Vigna. “SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis”. In: IEEE
Symposium on Security and Privacy, S&P. 2016. doi: 10.1109/SP.2016.17.

[Sim] Simon Johnson, Raghunandan Makaram, Amy Santoni, Vinnie Scarlata. Supporting Intel®
SGX on Multi-Socket Platforms. Tech. rep. Intel Corporation. url: https://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-
on-mulit-socket-platforms.pdf.

[SliU] Slither Wiki: Upgradeability Checks. url: https://github.com/crytic/slither/wiki/
Upgradeability-Checks (visited on 06/02/2019).

[SWC] Smart Contract Weakness Classification and Test Cases. 2022. url: https://swcregistry.
io/ (visited on 01/14/2022).

[SMT] SmartMeshICO. url: https://etherscan.io/address/0x55F93985431Fc9304077687a35A1B
A103dC1e081.

210

https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/3196494.3196508
https://doi.org/10.1007/978-3-319-60876-1_1
https://web.archive.org/web/20070520233435/http://world.std.com/~franl/worm.html
https://web.archive.org/web/20070520233435/http://world.std.com/~franl/worm.html
https://doi.org/10.14722/ndss.2017.23037
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2016.17
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://github.com/crytic/slither/wiki/Upgradeability-Checks
https://github.com/crytic/slither/wiki/Upgradeability-Checks
https://swcregistry.io/
https://swcregistry.io/
https://etherscan.io/address/0x55F93985431Fc9304077687a35A1BA103dC1e081
https://etherscan.io/address/0x55F93985431Fc9304077687a35A1BA103dC1e081

References

[SHO21] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. “SmarTest: Effectively Hunting Vulnerable
Transaction Sequences in Smart Contracts through Language Model-Guided Symbolic Execu-
tion”. In: 30th USENIX Security Symposium. Ed. by Michael Bailey and Rachel Greenstadt.
USENIX Association, 2021. url: https://www.usenix.org/conference/usenixsecurity21/
presentation/so.

[So+20] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. “VERISMART: A Highly
Precise Safety Verifier for Ethereum Smart Contracts”. In: 2020 IEEE Symposium on Security
and Privacy. SP. IEEE, 2020. doi: 10.1109/SP40000.2020.00032.

[SCA] Social Chain. url: https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a
0fd0fd773.

[SolRe] Solidity by Example: Re-Entrancy. url: https://solidity- by- example.org/hacks/re-
entrancy/ (visited on 12/12/2021).

[Sol080] Solidity Changelog 0.8.0. url: https://github.com/ethereum/solidity/blob/develop/
Changelog.md#080-2020-12-16 (visited on 04/20/2022).

[Sol] Solidity Developers. Solidity Documentation: Layout of State Variables in Storage. url: https:
//solidity.readthedocs.io/en/v0.5.10/miscellaneous.html (visited on 05/27/2019).

[SolSH] Solidity Documentation: Encoding of the Metadata Hash in the Bytecode. url: https :
//solidity.readthedocs.io/en/v0.5.8/metadata.html#encoding- of- the- metadata-
hash-in-the-bytecode (visited on 05/27/2018).

[SolWd] Solidity Withdrawal from Contracts. url: https://solidity.readthedocs.io/en/develop/
common-patterns.html#withdrawal-from-contracts (visited on 07/25/2018).

[SolCEI] Solidity: Security Considerations - Use the Checks-Effects-Interactions Pattern. url: https:
//docs.soliditylang.org/en/v0.8.7/security-considerations.html#use-the-checks-
effects-interactions-pattern (visited on 09/09/2021).

[Spa18] SpankChain. SpankChain: We Got Spanked: What We Know So Far. Oct. 2018. url: https:
//medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe (visited
on 01/14/2022).

[Ste+16] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo
Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution”. In: NDSS. Vol. 16. 2016.

[Sui17] Matt Suiche. Porosity: A Decompiler for Blockchain-Based Smart Contract Bytecode. 2017.
url: https://github.com/comaeio/porosity.

[Sze+13] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal War in Memory”.
In: 2013 IEEE Symposium on Security and Privacy, S&P. 2013. doi: 10.1109/SP.2013.13.

[Tea18] Solidity Team. Solidity Documentation. 2018. url: http://solidity.readthedocs.io/
(visited on 08/06/2018).

[Tea22a] Solidity Team. Solidity Documentation - Contract ABI Specification. 2022. url: https:
//docs.soliditylang.org/en/v0.8.11/abi-spec.html (visited on 01/14/2022).

[Tea22b] Solidity Team. Solidity Version 0.8.11. 2022. url: https://github.com/ethereum/solidity/
releases/tag/v0.8.11 (visited on 01/14/2022).

[Tec17a] Parity Technologies. A Postmortem on the Parity Multi-Sig Library Self-Destruct. http:
//paritytech.io/a- postmortem- on- the- parity- multi- sig- library- self- destruct/.
[Online; accessed Jun 3, 2020]. Nov. 2017.

[Tec17b] Parity Technologies. Security Alert - Parity Wallet. http://paritytech.io/security-alert.
[Online; accessed 6-April-2018]. Nov. 2017.

[dDAO] TheDarkDAO contract address. url: https://etherscan.io/address/0x304a554a310C7e
546dfe434669C62820b7D83490 (visited on 08/01/2018).

[Tho19] Gavin Thomas. July 2019. url: https : / / msrc - blog . microsoft . com / 2019 / 07 / 16 / a -
proactive-approach-to-more-secure-code/ (visited on 09/21/2020).

[Thu+11] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Zhendong Su.
“Synthesizing method sequences for high-coverage testing”. In: Proceedings of the 26th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA. 2011. doi: 10.1145/2048066.2048083.

[Tic+14] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson,
Luis Lozano, and Geoff Pike. “Enforcing Forward-Edge Control-Flow Integrity in GCC &
LLVM”. In: 23rd USENIX Security Symposium. USENIX Association, 2014. url: https://
www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice.

211

https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://doi.org/10.1109/SP40000.2020.00032
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773
https://solidity-by-example.org/hacks/re-entrancy/
https://solidity-by-example.org/hacks/re-entrancy/
https://github.com/ethereum/solidity/blob/develop/Changelog.md#080-2020-12-16
https://github.com/ethereum/solidity/blob/develop/Changelog.md#080-2020-12-16
https://solidity.readthedocs.io/en/v0.5.10/miscellaneous.html
https://solidity.readthedocs.io/en/v0.5.10/miscellaneous.html
https://solidity.readthedocs.io/en/v0.5.8/metadata.html#encoding-of-the-metadata-hash-in-the-bytecode
https://solidity.readthedocs.io/en/v0.5.8/metadata.html#encoding-of-the-metadata-hash-in-the-bytecode
https://solidity.readthedocs.io/en/v0.5.8/metadata.html#encoding-of-the-metadata-hash-in-the-bytecode
https://solidity.readthedocs.io/en/develop/common-patterns.html#withdrawal-from-contracts
https://solidity.readthedocs.io/en/develop/common-patterns.html#withdrawal-from-contracts
https://docs.soliditylang.org/en/v0.8.7/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/v0.8.7/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/v0.8.7/security-considerations.html#use-the-checks-effects-interactions-pattern
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://github.com/comaeio/porosity
https://doi.org/10.1109/SP.2013.13
http://solidity.readthedocs.io/
https://docs.soliditylang.org/en/v0.8.11/abi-spec.html
https://docs.soliditylang.org/en/v0.8.11/abi-spec.html
https://github.com/ethereum/solidity/releases/tag/v0.8.11
https://github.com/ethereum/solidity/releases/tag/v0.8.11
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
http://paritytech.io/security-alert
https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://doi.org/10.1145/2048066.2048083
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice

Bibliography

[Tor+21a] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State. “ConFuzzius:
A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts”. In: IEEE European Sympo-
sium on Security and Privacy. EuroS&P. IEEE, 2021. doi: 10.1109/EuroSP51992.2021.00018.

[Tor+21b] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State. “The Eye
of Horus: Spotting and Analyzing Attacks on Ethereum Smart Contracts”. In: Financial
Cryptography and Data Security - 25th International Conference. FC. Springer, 2021. doi:
10.1007/978-3-662-64322-8_2.

[TJS22] Christof Ferreira Torres, Hugo Jonker, and Radu State. “Elysium: Automagically Healing
Vulnerable Smart Contracts Using Context-Aware Patching”. In: (2022).

[TSS19] Christof Ferreira Torres, Mathis Steichen, and Radu State. “The Art of The Scam: Demystify-
ing Honeypots in Ethereum Smart Contracts”. In: 28th USENIX Security Symposium. 2019.
url: https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira.

[Tra18] Trail of Bits. Trail of Bits Blog: How contract migration works. 2018. url: https://blog.
trailofbits.com/2018/10/29/how-contract-migration-works/ (visited on 06/03/2020).

[TPV17] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX”. In: 2017 USENIX Annual Technical Conference, USENIX
ATC. 2017. url: https : / / www . usenix . org / conference / atc17 / technical - sessions /
presentation/tsai.

[Tsa+18] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli,
and Martin T. Vechev. “Securify: Practical security analysis of smart contracts”. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
CCS. ACM, 2018.

[il2cpp] Unity Documentation: IL2CPP Overview. url: https://docs.unity3d.com/Manual/IL2CPP.
html (visited on 09/14/2021).

[UET] UselessEthereumToken. url: https://etherscan.io/address/0x27f706edde3aD952EF647Dd
67E24e38CD0803DD6.

[Van+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. “Foreshadow: Extracting
the keys to the intel SGX kingdom with transient out-of-order execution”. In: 27th USENIX
Security Symposium. 2018. url: https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck.

[Van+19] Jo Van Bulck, David F. Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia, and Frank
Piessens. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. CCS. ACM, 2019. doi: 10.1145/3319535.3363206.

[VPS17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A Practical Attack Framework
for Precise Enclave Execution Control”. In: Proceedings of the 2Nd Workshop on System
Software for Trusted Execution, SysTEX. 2017. doi: 10.1145/3152701.3152706.

[Vee+17] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen, Herbert Bos,
and Cristiano Giuffrida. “The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten
Years Later”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS. 2017. doi: 10.1145/3133956.3134026.

[Vyp] Vyper. url: https://github.com/ethereum/vyper.

[Wan+19a] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long Li, Yu-
long Zhang, Tao Wei, and Zhiqiang Lin. “Towards Memory Safe Enclave Programming
with Rust-SGX”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS. 2019. doi: 10.1145/3319535.3354241.

[Wan+19b] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. “Superion: grammar-aware greybox
fuzzing”. In: Proceedings of the 41st International Conference on Software Engineering. IEEE
/ ACM, 2019. doi: 10.1109/ICSE.2019.00081.

[Wan+17] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. “How Double-Fetch
Situations turn into Double-Fetch Vulnerabilities: A Study of Double Fetches in the Linux
Kernel”. In: 26th USENIX Security Symposium. USENIX Association, Aug. 2017. isbn: 978-
193-197-1-40-9. url: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/wang-pengfei.

[Wil16] Jeffrey Wilcke. https://blog.ethereum.org/2016/09/22/ethereum-network-currently-
undergoing-dos-attack/. [Online; accessed Jul 28, 2018]. Sept. 2016.

212

https://doi.org/10.1109/EuroSP51992.2021.00018
https://doi.org/10.1007/978-3-662-64322-8_2
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://docs.unity3d.com/Manual/IL2CPP.html
https://docs.unity3d.com/Manual/IL2CPP.html
https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6
https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3133956.3134026
https://github.com/ethereum/vyper
https://doi.org/10.1145/3319535.3354241
https://doi.org/10.1109/ICSE.2019.00081
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/

References

[Wim+19] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter
B. Kessler, Oleg Pliss, and Thomas Würthinger. “Initialize once, start fast: application
initialization at build time”. In: Proc. ACM Program. Lang. 3.OOPSLA (2019). doi: 10.
1145/3360610.

[WOLFex] wolfSSL Linux Enclave Example. url: https://github.com/wolfSSL/wolfssl-examples/
tree/master/SGX_Linux (visited on 10/10/2019).

[WOLF] wolfSSL: a small, fast, portable implementation of TLS/SSL for embedded devices to the
cloud. Oct. 10, 2019. url: https://github.com/wolfSSL/wolfssl (visited on 08/27/2019).

[Woo19] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Specification.
Version BYZANTIUM VERSION 7e819ec - 2019-10-20. Ethereum Foundation, Oct. 20, 2019.
url: https://ethereum.github.io/yellowpaper/paper.pdf.

[WC20] Valentin Wüstholz and Maria Christakis. “Harvey: a greybox fuzzer for smart contracts”. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2020. ACM, Nov.
2020. doi: 10.1145/3368089.3417064.

[Xie+05] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. “Symstra: A Framework for
Generating Object-Oriented Unit Tests Using Symbolic Execution”. In: Tools and Algorithms
for the Construction and Analysis of Systems, 11th International Conference. TACAS. 2005.
doi: 10.1007/978-3-540-31980-1_24.

[Xu+18] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. “Precise and
Scalable Detection of Double-Fetch Bugs in OS Kernels”. In: 2018 IEEE Symposium on
Security and Privacy. SP. IEEE, May 2018. doi: 10.1109/SP.2018.00017.

[Xu+17] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. “Designing New Operating
Primitives to Improve Fuzzing Performance”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS. 2017. doi: 10.1145/3133956.
3134046.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems”. In: 2015 IEEE Symposium on
Security and Privacy. S&P. IEEE Computer Society, 2015. doi: 10.1109/SP.2015.45.

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and understanding bugs
in C compilers”. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). Association for Computing Machinery, June
2011. doi: 10.1145/1993498.1993532.

[Yun+18] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. “QSYM : A Practical Con-
colic Execution Engine Tailored for Hybrid Fuzzing”. In: 27th USENIX Security Symposium.
USENIX Association, 2018. url: https://www.usenix.org/conference/usenixsecurity18/
presentation/yun.

[Zal14] Michal Zalewski. Pulling JPEGs out of thin air. 2014. url: https://lcamtuf.blogspot.com/
2014/11/pulling-jpegs-out-of-thin-air.html (visited on 05/23/2022).

[Zal] Michal Zalewski. American Fuzzy Lop. url: https://lcamtuf.coredump.cx/afl/ (visited on
04/28/2022).

[ZepOS] ZeppelinOS Documentation. url: https://docs.zeppelinos.org/ (visited on 08/16/2022).

[Zer] Google Project Zero. 0-days In-the-Wild. url: https://googleprojectzero.github.io/
0days-in-the-wild/ (visited on 01/18/2022).

[Zha+20] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. “SMARTSHIELD:
Automatic Smart Contract Protection Made Easy”. In: 27th IEEE International Conference
on Software Analysis, Evolution and Reengineering, (SANER). 2020. doi: 10.1109/SANER
48275.2020.9054825.

[Zho+20] Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao, Min Yang, and Yuan Zhang. “An Ever-
evolving Game: Evaluation of Real-world Attacks and Defenses in Ethereum Ecosystem”. In:
29th USENIX Security Symposium. USENIX Association, 2020.

[Zho+18] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael Bailey.
“Erays: Reverse Engineering Ethereum’s Opaque Smart Contracts”. In: 27th USENIX Security
Symposium. USENIX Association, 2018. url: https : / / www . usenix . org / conference /
usenixsecurity18/presentation/zhou.

213

https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1007/978-3-540-31980-1_24
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/1993498.1993532
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.coredump.cx/afl/
https://docs.zeppelinos.org/
https://googleprojectzero.github.io/0days-in-the-wild/
https://googleprojectzero.github.io/0days-in-the-wild/
https://doi.org/10.1109/SANER48275.2020.9054825
https://doi.org/10.1109/SANER48275.2020.9054825
https://www.usenix.org/conference/usenixsecurity18/presentation/zhou
https://www.usenix.org/conference/usenixsecurity18/presentation/zhou

LIST OF ACRONYMS

ABI application binary interface. 32, 37, 49, 72, 100, 101, 110

API application programming interface. 9, 17, 18, 22–24, 29, 32, 45, 48, 70–72, 74, 75,
83

ASLR address space layout randomization. 67

CFG control-flow graph. 37, 43, 162, 163, 171, 172, 174, 192

CFI control-flow integrity. 34, 73

CPS cyber-physical system. 1, 5

CPU central processing unit. 2, 3, 16, 26–28, 31, 33, 34, 38, 50, 53, 162, 195

DApp decentralized application. 2

DeFI decentralized finance. 1, 3

DOP data-oriented programming. 47

EDL enclave definition language. 29, 30

ELF Executable and Linkable Format. 53

EOA externally-owned account. 33, 34, 36, 37

EPC enclave page cache. 27, 28

EVM Ethereum virtual machine. 7, 26, 34–39, 43, 44, 96, 97, 128, 131, 133–137, 139,
140, 142, 148–150, 154, 156, 161–167, 171, 172, 174, 175, 178, 182, 186, 187, 192,
197

I/O input/output. 29

ISA instruction-set architecture. 25, 31, 34, 37, 38, 53, 162

215

List of Acronyms

IT Information Technology. 1

JIT just-in-time. 22

OS operating system. 15, 19, 27, 31, 50, 61, 62, 67, 70, 76

OT Operational Technology. 1

PC program counter. 35

PoC proof-of-concept. 48, 67, 69, 72–74, 77, 79, 81, 82

ROP return-oriented programming. 32, 34, 47, 67, 69

SGX Intel software guard extensions. iii, v, 2–6, 9, 10, 17, 25–29, 31, 32, 45, 47–50,
52–56, 58, 61, 62, 65–67, 69, 70, 72, 76, 77, 79, 81, 82, 195, 196

SMT satisfiability modulo theories. 18

TCB trusted computing base. 1, 2, 26, 81, 196

TCS Thread Control Structure. 27, 62

TEE trusted execution environment. 2, 4, 7, 25, 196

TOCTOU time-of-check time-of-use. 14, 15, 57, 62

TRTS trusted runtime. 29, 52, 53

UAF use-after-free. 14, 64

URTS untrusted runtime. 29

vtable virtual method table. 72–74

216

Eidesstattliche Erklärung zu § 14 Abs. 1 Nr. 6 der
Promotionsordnung
Ich gebe folgende eidesstattliche Erklärung ab:
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig ohne unzulässige Hilfe
Dritter verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
und alle wörtlich oder inhaltlich übernommenen Stellen unter der Angabe der Quelle
als solche gekennzeichnet habe.
Die Grundsätze für die Sicherung guter wissenschaftlicher Praxis an der Universität
Duisburg-Essen sind beachtet worden.
Ich habe die Arbeit keiner anderen Stelle zu Prüfungszwecken vorgelegt.

Essen, December 5, 2023 Unterschrift

217

	Introduction
	Background on Software Vulnerabilities
	Vulnerabilities in Software
	Memory Safety Violations
	Concurrency Bugs
	Logic Bugs

	Testing Software Interfaces (APIs)
	Symbolic Execution
	Fuzz Testing

	Background on Secure Execution Environments
	Trusted Execution using Intel Software Guard Extensions
	Enclave Lifecycle
	Threat Model and Attacks
	Enclave Programming Model
	SGX Vulnerabilities

	The Ethereum Execution Environment
	Ethereum Virtual Machine
	Programming Paradigms in Ethereum
	Smart Contract Vulnerabilities
	Identifying Basic Blocks in EVM Bytecode

	Comparison of Secure Execution Environments

	Symbolic Execution of SGX Enclaves
	The Symbolic Enclave Executor TeeRex
	Architecture
	Implementation Challenges
	Vulnerability Detection Components

	Vulnerability Patterns
	Passing Data-Structures with Pointers
	Using Pointers as Resource References
	Pointers to Overlapping Memory
	NULL-Pointer Dereferences
	Time-of-Check Time-of-Use
	Minor Vulnerability Patterns

	Enclave Analysis Results
	Performance and Accuracy
	Performance and Memory Usage
	Accuracy and False Alarms

	Discussion and Conclusion

	Fuzzing of Smart Contracts
	Challenges of Automated Smart Contract Analysis
	Design of EF↯CF
	Modelling Blockchain Interaction
	Optimizing Test Case Throughput
	Bug Oracles

	Implementation Details of EF↯CF
	EVM to C++ Translation
	Fuzzing Harness
	Custom Mutator

	Performance Evaluation
	Scalability Benchmarks
	Scalability Ablation Study
	Throughput Ablation Study
	Multi-Core Performance
	Code Coverage Comparison

	Bug Detection Capabilities
	Access Control Vulnerabilities
	Reentrancy Vulnerabilities
	Problems with Existing Datasets

	Discussion and Related Work
	Conclusion

	Mitigation of Reentrancy Attacks
	Problem Statement
	New Reentrancy Attack Patterns
	Design Overview
	Implementation Details
	Evaluation
	Identifying Attacks on Mainnet
	Detection Capabilities
	Performance and Memory Overhead

	Limitations
	Analysis of False Alarms
	Missed Reentrancy Patterns

	Related Work
	Conclusion

	Automatic Patching of Smart Contracts
	Background on Patching Smart Contracts
	Upgrading Ethereum Smart Contracts
	Challenges of EVM Bytecode Rewriting

	Design of EVMPatch
	Design Choices
	Framework Design

	Implementation of EVMPatch
	Trampoline-based Bytecode Rewriting
	Patch Testing
	Deployment of Patched Contracts
	Application to Vulnerability Classes

	Evaluation
	Developer Study
	Related Work
	Discussion and Conclusion

	Conclusion
	Bibliography
	List of Publications
	References

	List of Acronyms

