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Abstract

Let D ⊂ Rn be a domain, Ω = D × (0, T ) with 0 < T ≤ ∞ and 0 < ϕ0(x), u0(x) ∈
C0(D). Our interest lies in the solvability of the initial boundary value problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) on ∂D × (0, T ),

u(x, 0) = u0(x) on D × {0},

(P γ
ϕ0,u0

)

for γ ∈ R \ {0}. By application of a �xed point argument we prove, that (P±
ϕ0,u0>c

)

is uniquely solvable, as long as ϕ0, u0 are chosen �su�cently large� and the domain D

has nonnegative inward mean curvature HD(y) ≥ 0 for all y ∈ ∂D. Hence, we derive

the usual a priori estimates, which are required for the applicability of a �xed point

argument.

Furthermore, we prove that in the case γ < 0 there is a solution, even if the initial

and boundary values are chosen to be 0. Moreover we show, that if the solution u(x, t)

for any γ ∈ R is smooth enough, there is a subsequence of times tk, for which u(x, tk)

converges to a solution of the stationary problem

∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on D,

u(x) = ϕ0(x) on ∂D,

for tk → ∞. Afterwards, we derive an a priori interior gradient bound for the case

γ < 0, unrelated to the existence theory.

Finally, we investigate the case of �low initial and boundary values� for γ > 0. We

prove, that a singularity must occur after �nite time, which implies that there is no

classical solution for such initial and boundary values that exists for all times. However,

we are able to prove, that there is a maximum value T̂ , such that the problem has a

unique solution for all times 0 < T < T̂ . Motivated by the elliptic case, we can prove

under additional assumptions about the regularity of the solution u(x, t) at time T̂ ,

that u(·, T̂ ) remains 1
2
-Hölder continuous.
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Zusammenfassung

Seien D ⊂ Rn ein Gebiet, Ω = D × (0, T ) mit 0 < T ≤ ∞ und 0 < ϕ0(x), u0(x) ∈
C0(D). Unser Interesse gilt dem Rand-Anfangswertproblem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
in Ω,

u(x, t) = ϕ0(x) auf ∂D × (0, T ),

u(x, 0) = u0(x) auf D × {0},

(P γ
ϕ0,u0

)

für γ ∈ R \ {0}. Wir zeigen durch Anwendung eines Fixpunktarguments, dass das

Problem (P±
ϕ0,u0>c

) für geeignet gewählte Anfangs- und Randwerte und Gebiete D mit

nichtnegativer, nach innen gerichteter mittlerer Krümmung HD(y) ≥ 0 für alle y ∈ ∂D

stets eine eindeutige klassische Lösung besitzt. Zur Anwendbarkeit des Fixpunktargu-

ments werden die üblichen a priori Schranken hergeleitet.

Im weiteren Verlauf zeigen wir, dass für γ < 0 auch dann noch eine Lösung existiert,

wenn die Anfangs- und Randwerte auf 0 abfallen. Zudem wird bewiesen, dass es zu

einer genügend glatten Lösung für beliebiges γ ∈ R eine Teilfolge von Zeiten tk gibt,

für welche u(x, tk) bei tk → ∞ gegen eine Lösung des stationären Problems

∆u− DiuDju

1 + |Du|2
Diju =

γ

u
in D,

u(x) = ϕ0(x) auf ∂D,

konvergiert. Anschlieÿend leiten wir im Kontext der a priori Schranken eine a priori

innere Gradientenschranke für den Fall γ < 0 her.

Schlussendlich untersuchen wir, was im Fall γ > 0 für �zu niedrig liegende Anfang- und

Randwerte� geschieht. Wir zeigen, dass nach endlicher Zeit eine Singularität auftreten

muss, sodass für diese Rand- und Anfangswerte keine klassische Lösung für alle Zeiten

existiert. Auÿerdem beweisen wir, dass es in diesem Fall eine maximale Zeit T̂ gibt,

sodass das Problem für alle Zeiten 0 < T < T̂ eine eindeutige Lösung besitzt. Motiviert

durch den elliptischen Fall können wir unter zusätzlichen Annahmen an die Regularität

der Lösung zum Zeitpunkt T̂ zeigen, dass sie bezüglich der x-Variablen 1
2
-Hölderstetig

bleibt.
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1 Introduction

In geometric analysis, equations containing the mean curvature H have been of par-

ticular interest for several decades. Given a domain D ⊂ Rn and a smooth function

u : D → R, u ∈ C2(D), we can express the graph's mean curvature H(u) by

H(u) = Di

(
Diu√

1 + |Du|2

)
= div

(
Du√

1 + |Du|2

)
,

where the graph of u is given by graph(u(x)) = (x, u(x)), x = (x1, . . . , xn) ∈ Rn and we

use the convention to sum over repeated indices. The best-known equation containing

the mean curvature is the minimal surface equation

H(u) = 0,

which is usually paired with a boundary condition, forming the Dirichlet problem

H(u) = 0 on D,

u = ϕ0 on ∂D.

Other well known and vastly studied equations related to the mean curvature are the

�Hanging Drop Problem�

H(u) + κu = 0 on D,

u = ϕ0 on ∂D,

where κ > 0 is a constant determined by the density of the liquid and the �Hanging

Roof Problem� √
1 + |Du|2H(u)− 1

u
= 0 on D,

u = ϕ0 on ∂D.

Our interest lies in studying a generalization of the Hanging Roof Problem from an

evolutionary point of view. More precisely, let D ⊂ Rn be a domain, γ ∈ R and set

v :=
√

1 + |Du|2. Consider the equation

H(u) =
γ

uv
on D, (1.1)

which is the Euler-Lagrange equation to the energy∫
D

uγv dx. (1.2)
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Calculating the divergence in the de�nition of H(u) and multiplying by v yields

∆u− DiuDju

1 + |Du|2
Diju =

γ

u
. (1.3)

Denoting u̇ = d
dt
u, the corresponding �ow is then given by

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
. (PDE)

Our �rst goal is to prove existence and uniqueness of a classical solution

for any choice of γ ∈ R \ {0}, that attains prescribed boundary and initial values

ϕ0(x), u0(x) > 0, whose regularity will be speci�ed later. De�ning

Ω := D × (0, T ), SΩ := ∂D × (0, T ), BΩ := D × {0}, CΩ := ∂D × {0},

where 0 < T ≤ ∞, this leads to the initial boundary value problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) on SΩ,

u(x, 0) = u0(x) on BΩ.

(P γ
ϕ0,u0

)

By a classical solution we understand a function u = u(x, t) : D × (0, T ) → R, that is
twice di�erentiable in x, once in t and continuous up to the boundary of the domain,

in short u ∈ C2,1(Ω) ∩ C0(Ω). Note, that continuity up to the boundary can only be

achieved, if the two functions ϕ0, u0 coincide in the corner CΩ. This type of restriction
is called compatibility condition and for higher regularity up to the boundary, say

u ∈ H2+α(Ω) (for a de�nition of the Hölder spaces H2+α(Ω) see Appendix, Sec 5.4),

additional compatibility conditions have to be presupposed [cf. Appendix, Sec. 5.5].

To prove existence and uniqueness of a classical solution for (P γ
ϕ0,u0

) we apply

a �xed point theorem. To elaborate this topic further, let us discuss the general setting

we are working with. Therefore, let X = (x, t) ∈ Ω, z ∈ R, p ∈ Rn. Let further

(aij)i,j=1,...,n = (aij(X, z, p)) be a matrix-valued function and a = a(X, z, p) ∈ R.
Denoting uij := Diju, we say that an operator P given by

Pu = −u̇+ Eu := −u̇+ aij(X, z, p)uij + a(X, z, p)

is parabolic in a subset A ⊂ Ω× R× Rn, if

0 < λ(X, z, p)|ξ|2 ≤ aij(X, z, p)ξiξj ≤ Λ(X, z, p)|ξ|2 for every ξ ∈ Rn. (1.4)

The values λ and Λ may be taken as the smallest and largest eigenvalue of the matrix

2



(aij) respectively and we call E the elliptic operator associated with P . Furthermore,

we call P parabolic in u, if (1.4) holds for z = u(X) and p = Du(X).

Now assume the equation

Pu = −u̇+ aij(X, u(X), Du(X))uij + a(X, u(X), Du(X)) = 0.

To �nd a solution to this equation, we study the linear problem

−u̇+ aij(X,w(X), Dw(X))uij + a(X,w(X), Dw(X)) = 0 (1.5)

for some given function w(X) and the unknown u(X). By de�ning an operator Q(w) =

u if and only if u is a solution to (1.5), we then have to prove existence of a �xed

point û of the operator Q, that is the existence of a function that ful�lls Q(û) = û.

Approaching the problem with this idea has the advantage that we can use known

results about linear parabolic equations.

One well-known �xed point theorem is that of Leray-Schauder, see for ex-

ample the book by Ladyzenskaya, Solonnikov, Ural'ceva [LSU88, p. 450] or

by Gilbarg-Trudinger [GT01, p. 286-288] for an application in the parabolic and

elliptic case respectively. However, we will apply a di�erent version, the Schauder �xed

point theorem, that can be found in Lieberman [Lie96, p. 205-208]. It is used in

combination with the a priori estimates to establish the existence of a solution on a

domain Ωϵ := D × [0, ϵ) that is possibly very small in time direction. If additionally

the a priori estimates hold on all of Ω = D × (0, T ), 0 < T ≤ ∞, then Arzela-Ascoli's

theorem can be used to establish long time existence.

Hence, the solvability of the initial boundary value problem (P γ
ϕ0,u0

) is reduced

to the derivation of a priori bounds for any classical solution u ∈ C2,1(Ω), which is split

into four parts.

i) Show that u(x, t) is bounded.

ii) Establish a bound for Du(x, t) on the boundary PΩ := SΩ ∪ BΩ ∪ CΩ.

iii) Establish a bound for Du(x, t) on all of Ω.

iv) Derive Hölder-Norm bounds for Du(x, t) on Ω.

As it turns out, the derivation of a priori estimates for the case γ > 0 is di�erent from

the case γ < 0. Therefore, we split (P γ
ϕ0,u0

) into the categories γ > 0 and γ < 0 denoted

by (P+
ϕ0,u0

) and (P−
ϕ0,u0

) respectively, neglecting the case γ = 0, that has already been

studied extensively (see for example related papers from Huisken or the book by

Ecker [Eck04]). We derive a priori estimates for (P+
ϕ0,u0

), (P−
ϕ0,u0

) in chapter 2.

If certain conditions for the domain Ω and the initial and boundary values

ϕ0(x), u0(x) are met, we are able to derive an existence and uniqueness theory that is

3



based on the aforementioned �xed point argument. For instance, it is crucial for long

time existence that the solution starts at a su�cient height and it will be necessary for

the derivation of a boundary gradient estimate, that the domain D in the de�nition of

Ω = D×(0, T ) has non-negative inward mean curvature. Once existence is established,

we prove, by using results from Friedman [Fri83, p. 71-75], that every classical

solution u ∈ C2,1(Ω) ∩ C0(Ω) is already arbitrarily smooth in Ω with respect to all its

variables, denoted by u(x, t) ∈ C∞(Ω) ∩ C(Ω). Existence, uniqueness and regularity

will be proven in chapter 3.

Compared to previously achieved results (see for example Stone [Sto94]) our

existence theory covers all cases γ ∈ R \ {0} as opposed to only γ = 1 and we are also

able to relax the condition HD(y) ≥ c for a positive constant c > 0 to HD(y) ≥ 0.

Once we have shown existence of a solution to the problem (P−
ϕ0,u0>0), we can

employ an approximation device to solve the problem (P−
0 ) given by

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = 0 on PΩ.

(P−
0 )

We consider for some (small) ϵ > 0 the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϵ on PΩ,

(P−
0+ϵ)

which has a unique solution due to the existence theory derived in chapters 2 and 3. We

prove in chapter 4, that the solution uϵ(x, t) to problem (P−
0+ϵ) converges uniformly to a

solution u(x, t) for (P−
0 ), which moreover attains the regularity u(x, t) ∈ C∞(Ω)∩C(Ω).

Another interesting question that will be addressed in chapter 4 regards the convergence

of a solution u(x, t) of (P γ
ϕ0,u0

) as t→ ∞ to a solution of the stationary boundary value

problem

∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on D,

u(x) = ϕ0(x) on ∂D.

(P S
ϕ0
)

It will be proven, that whenever Ω, ϕ0, u0 are smooth enough for the solution u(x, t) to

be in H2+α(Ω), there is a subsequence tk of t such that u(x, tk) converges uniformly to

a classical solution u(x) of the stationary boundary value problem (P S
ϕ0
).

Unrelated to the existence theory we prove in chapter 4 an a priori interior gradient

estimate by applying a method that is due to Korevaar [Kor86].

Finally, we analyze the case of �low initial and boundary values�, when γ > 0. We

prove, that there cannot be a solution that exists for all times T > 0 and moreover,

that there is a �largest time� T̂ , so that the problem (P+
ϕ0,u0<ĉ

) has a solution for all

4



times 0 < t < T̂ . Under additional assumptions about the regularity of the solution

at time T0 we can prove, motivated by the elliptic case, that u(·, T̂ ) remains 1
2
-Hölder

continuous.

2 A priori Estimates

In this chapter we derive the a priori estimates necessary for the application of the

�xed point theorem, starting with

2.1 Upper and lower bounds for u(x, t)

While estimates for the gradient |Du| are independent of the choice of γ, the same

is not true for |u(x, t)|. However, the lower bounds for |u| are crucial for us to prove

the existence of a gradient bound. Thus, we will investigate the two cases (P+
ϕ0,u0>c

)

and (P−
ϕ0,u0>c

) separately. As it turns out, the constant c for negative γ can be taken

as 0, whereas the constant c for positive γ has to be a larger value, depending on the

diameter of D, γ and the dimension n.

We begin by analyzing the problem (P−
ϕ0,u0>0), that is

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) > 0 on SΩ,

u(x, 0) = u0(x) > 0 on BΩ,

(P−
ϕ0,u0>0)

with γ < 0.

2.1.1 Boundedness of u(x, t) for (P−
ϕ0,u0>0)

To prove that any solution u ∈ C2,1(Ω)∩C(Ω) to (P−
ϕ0,u0>0) is uniformly bounded on Ω,

we apply the comparison principle [cf. Appendix, Sec. 5.3]. The comparison functions

are obtained from the corresponding elliptic boundary value problem on ball shaped

domains, cf. Dierkes [Die19].

Lemma 2.1 (Foliation of Rn×R+) [Die19, Thm. 2.1] Let n ≥ 2 and γ < 0. There

exists a foliation of Rn×R+ determined by concave rotational symmetric functions vλ =

vλ(x) : Bλ(0) → R+, λ > 0 arbitrary, vλ(0) = λ · v1(0) and Dvλ(0) = 0. Furthermore,

5



for each λ > 0 the functions vλ ∈ Cω(Bλ(0)) ∩ C0(Bλ(0)), solve the Dirichlet problem

div

(
Dvλ√

1 + |Dvλ|2

)
=

γ

vλ
√

1 + |Dvλ|2
on Bλ(0),

vλ = 0 on ∂Bλ(0).

(2.1)

□

These solutions possess two important properties that make them ideal comparison

functions. On the one hand, every solution vλ(x) to equation (2.1) is also a time

independent solution to (P−
ϕ0,u0>0) on ball-shaped domains, since ∂vλ

∂t
≡ 0. Hence, vλ

solves the initial boundary value problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Bλ(0)× (0, T ),

u(x, t) = 0 on ∂Bλ(0)× [0, T ),

u(x, 0) = u0(x) = u(x) on Bλ(0)× {0}.

(PB)

On the other hand, the symmetry and concavity imply the estimates

vλ(θx+ (1− θ)y) ≥ θvλ(x) + (1− θ)vλ(y), θ ∈ [0, 1],

y=−x,|y|=|x|,θ= 1
2⇒ vλ(0) ≥ vλ(x), θ ∈ [0, 1]

and

vλ(θx+ (1− θ)y) ≥ θvλ(x) + (1− θ)vλ(y), θ ∈ [0, 1],

x=0,|y|=λ⇒ vλ((1− θ)y) ≥ θvλ(0), θ ∈ [0, 1].

The �rst estimate implies 0 ≤ vλ(x) ≤ vλ(0) for every x ∈ Bλ(0). If additionally

0 ≤ |x| < λ
2
, it is vλ(x) ∈

[
1
2
vλ(0), vλ(0)

]
. Hence, by using the property vλ(0) = λv1(0)

we can achieve, that the solution vλ(x) of (2.1) becomes arbitrarily small on all of

Bλ(0) and arbitrarily large on Bλ
2
(0) by adjusting the value for λ accordingly. This

observation leads to

Proposition 2.2 (A priori estimates for u(x, t)) Let Ω = D × (0, T ) and let

ϕ0(x), u0(x) ∈ C0(D) with u0(x) = ϕ0(x) on CΩ. Let further u ∈ C2,1(Ω) ∩ C0(Ω)

be a solution to (P−
ϕ0,u0>0). Then there exist positive constants c−1 and C−

1 with

0 < c−1 (u0, ϕ0,Ω, γ, n) ≤ u(x, t) ≤ C−
1 (u0, ϕ0,Ω, γ, n) <∞ (2.2)

for every (x, t) ∈ Ω. □

6



Proof. We use the solutions vλ(x, t) ≡ vλ(x) for all t ∈ [0, T ) as comparison function

to deduce the a priori estimates via the comparison principle. Starting with the upper

bound, we choose λ > 0 big enough and use the scaling property of vλ(x) to guarantee

that
D ⊂ Bλ

2
(0),

vλ(x) ≥ ϕ0(x) on SΩ,

vλ(x) ≥ u0(x) on BΩ.

This is always possible since u0, ϕ0 ∈ C0(D) paired with u0, ϕ0 > 0 implies the existence

of constants cmin, cmax with 0 < cmin ≤ u0, ϕ0 ≤ cmax < ∞ and vλ(x)
λ→∞→ ∞ for every

x ∈ D ⊂ Bλ
2
(0). Let λ be a λ that ful�lls these three properties. Let P be the parabolic

operator given by

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u
.

The function vλ then su�ces

Pvλ(x, t) = 0 = Pu(x, t) on Ω,

vλ(x, t) ≥ u(x, t) on PΩ.

Application of the comparison principle [cf. Appendix, Sec. 5.3] yields

u(x, t) ≤ vλ(x) ≤ vλ(0) = λv1(0) = C−
1 (u0, ϕ0,Ω, γ, n).

To obtain the lower a priori estimate we argue in a similar fashion by covering

the set D with balls Bλi
2

(xi), λi ∈ R+, xi ∈ D and using the comparison principle on

each ball. Since D is compact, we deduce the existence of a �nite subcover. From

this we can de�ne a function η(x) that is bounded below by a positive constant, which

simultaneously is a lower bound for u(x, t).

Therefore, let x0 ∈ D be an arbitrary point. Observe that the equation

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω (2.3)

does not explicitly depend on X = (x, t). Hence, we can translate the solution vλ(x),

which solves (2.1) on Bλ(0), by x0 to obtain a solution on Bλ(x0). In other words the

function vλ(x− x0) is a solution to

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Bλ(x0)× (0, T ),

u(x, t) = 0 on ∂Bλ(x0)× [0, T ),

u(x, 0) = u0(x) = u(x) on Bλ(x0)× {0},

(PBλ(x0))
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with the same scaling properties as vλ(x). Now consider the set D ∩ Bλ(x0) with

boundary parts ∂D ∩ Bλ(x0) and D ∩ ∂Bλ(x0). The scaling properties of vλ(x − x0)

combined with the estimates

0 < cmin ≤ ϕ0(x), u0(x) on D,

vλ(x− x0) = 0 < u(x, t) on (D ∩ ∂Bλ(x0))× [0, T ).

guarantee the existence of a (small) λ > 0 with

vλ(x− x0) ≤ u(x, t) on (D ∩ ∂Bλ(x0))× [0, T ),

vλ(x− x0) ≤ ϕ0(x) on (∂D ∩Bλ(x0))× [0, T ),

vλ(x− x0) ≤ u0(x) on (D ∩Bλ(x0))× {0}.

(2.4)

Let λ be a λ that ful�lls these conditions. Combining the estimates in (2.4) leads to

Pvλ(x− x0, t) = 0 = Pu(x, t) on (D ∩Bλ(x0))× [0, T ),

vλ(x− x0, t) ≤ u(x, t) on P((D ∩Bλ(x0))× [0, T )).

Application of the comparison principle yields

vλ(x− x0, t) ≤ u(x, t) on (D ∩Bλ(x0))× [0, T ), (2.5)

which implies that the same estimate is true on the set (D ∩Bλ/2(x0))× [0, T ). Note,

that we restrict our attention to balls with radius λ/2, since on this set the solution

vλ(x− x0, t) ful�lls the estimate

vλ(x− x0, t) ≥
1

2
vλ(0, t) = c(λ, v1(0)) > 0

for a �xed choice of λ. If we repeat this process for every point x ∈ D, we obtain

a cover of D with open balls, which, by compactness of D, has a �nite subcover

(Bλi
2

(xi))i∈{1,...,k}. On each ball there exists a function vλi(x− xi, t) with

1

2
vλi(0, t) ≤ vλi(x− xi, t) ≤ u(x, t) on (D ∩Bλi

2

(xi))× [0, T ).

We continue each function vλi(x−xi, t) by 0 on Ω \ ((D∩Bλi(xi))× [0, T )) and denote

this continuation by v̂λi . Now de�ne

η(x) ≡ η(x, t) := max
i∈{1,...,k}

v̂λi(x− xi, t) ≡ max
i∈{1,...,k}

v̂λi(x− xi)
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Then we set

min
x∈D

η(x) =: c−1 (u0, ϕ0,Ω, γ, n)

and by construction it is clear that

0 < c−1 (u0, ϕ0,Ω, γ, n) ≤ η(x, t) ≤ u(x, t) on Ω,

which is the desired lower a priori bound. □

In the upcoming section we study the case γ > 0, which is given by

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) > c on SΩ,

u(x, 0) = u0(x) > c on BΩ,

(P+
ϕ0,u0>c

)

with a constant c ≥ 0 that has to be further speci�ed.

2.1.2 Boundedness of u(x, t) for (P+
ϕ0,u0>c

)

If we compare the case (P+
ϕ0,u0>c

) with (P−
ϕ0,u0>0) we neither can use the same com-

parison principle because a(z) = −γ
z
is no longer non-increasing in z, nor do we have

the comparison functions from the foliation lemma. Nonetheless, it is possible to show

the existence of upper and lower bounds for solutions to (P+
ϕ0,u0>c

) by application of a

di�erent comparison principle, see also Stone [Sto94, p. 171, Lemma 4.1.].

Proposition 2.3 (A priori estimates for u(x, t)) Let Ω = D× (0, T ), d := diam(D)

and let ϕ0(x), u0(x) ∈ C0(D) with ϕ0(x) = u0(x) on CΩ. Let further u ∈ C2,1(Ω) ∩
C0(Ω) be a solution to (P+

ϕ0,u0>c
), where the constant c in (P+

ϕ0,u0>c
) is now chosen so

that

c > 2d

√
γ

2n− γ
, if γ ∈ (0, 1],

c >
2dγ√
2n− 1

, if γ > 1.

(2.6)

Then there exist positive constants c+1 and C+
1 with

0 < c+1 (d, γ, n) ≤ u(x, t) ≤ C+
1 (u0, ϕ0) <∞ (2.7)

for every (x, t) ∈ Ω. □

Proof. We begin with the upper bound for either choice of γ > 0. Let ϵ > 0 be

9



arbitrary and small, let P be the parabolic operator associated with (P+
ϕ0,u0>c

), that is

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u
= −u̇+ vH(u)− γ

u
,

and let v(x, t) be the constant function v(x, t) = cmax + ϵ, where as in the previous

proof cmax is a constant which su�ces u0, ϕ0 ≤ cmax <∞. Then for any γ > 0

Pv(x, t) = − γ

cmax + ϵ
< 0 = Pu(x, t) on Ω,

v(x, t) > u(x, t) on PΩ.

Hence, the requirements for the weak comparison principle [cf. Appendix, Sec. 5.3] are

ful�lled and its application yields u(x, t) < cmax + ϵ =: C+
1 , which is the desired upper

bound.

For the lower bound we �rst study the case γ ∈ (0, 1]. De�ne

r1 =
1

c

(
d2 +

( c
2

)2)
≥ d

as the radius of a spherical cap given below. Let x0 ∈ D be an arbitrary point and

de�ne the spherical cap θ1(x, t) ≡ θ1(x) by

θ1(x) := r1 +
c

2
−
√
r21 − |x− x0|2.

For the application of the weak comparison principle we have to calculate Pθ1. It is

well-known that the mean curvature of an n-dimensional sphere with radius r is given

by n
r
. However, since we also need the expression

√
1 + |Dθ1|2, we may as well calculate

H(θ1). Letting x0 = (x01, . . . , x
0
n) we have

Diθ1 =
xi − x0i√

r21 − |x− x0|2
, |Dθ1|2 =

|x− x0|2

r21 − |x− x0|2
, 1 + |Dθ1|2 =

r21
r21 − |x− x0|2

,

so that

H(θ1) = Di

(
xi − x0i√

r21 − |x− x0|2
·
√
r21 − |x− x0|

r1

)
= Di

(
xi − x0i
r1

)
=
n

r1
.

We must have

Pθ1 > Pu = 0 on Ω.
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Inserting the terms calculated above yields

Pθ1 = −θ̇1 +
√

1 + |Dθ1|2H(θ1)−
γ

θ1

=
r1√

r21 − |x− x0|2
· n
r1

− γ · 1

r1 +
c
2
−
√
r21 − |x− x0|2

,

thus, the requirement Pθ1 > 0 is equivalent to√
r21 − |x− x0|2 <

n

γ + n

(
r1 +

c

2

)
.

This in return is always ful�lled if

r1 <
n

γ + n

(
r1 +

c

2

)
⇔ r1 <

n

2γ
· c. (2.8)

At this point we use the de�nition of r1 =
1
c

(
d2 +

(
c
2

)2)
to conclude

c > 2d

√
γ

2n− γ
,

which is the restriction we have chosen for c in (2.6) for the case γ ∈ (0, 1]. Moreover,

we must have on the boundary

θ1(x, t) < u(x, t) on PΩ.

To achieve this we prove c
2
≤ θ1 ≤ c so that on the one hand θ1 is strictly positive

everywhere and on the other hand θ1(x, t) < u(x, t) on PΩ. The relation c
2
≤ θ1 is

obvious since 0 ≤
√
r21 − |x− x0|2 ≤ r1. The relation θ1 ≤ c is equivalent to

r1 −
c

2
−
√
r21 − |x− x0|2 ≤ 0,

so that we either need to require

r1 ≤
c

2
⇔ d2 +

c2

4
≤ c2

2
⇔ c ≥ 2d

or, in case 2d
√

γ
2n−γ ≤ c ≤ 2d

(
r1 −

c

2

)2
≤ r21 − |x− x0|2.

This inequality is always ful�lled if

r21 − r1c+
c2

4
≤ r21 − d2 ⇔ 1

c

(
d2 +

c2

4

)
≤ r1,
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which is obviously true from the de�nition of r1. Hence, we may apply the weak

comparison principle [cf. Appendix, Sec. 5.3], yielding the desired lower bound

c+1 :=
c

2
≤ θ1 < u(x, t) on Ω.

We see from this choice for c that we cannot simply use the same argument

for any γ > 0 because it does not yield any results for γ ≥ 2n and the results for γ close

to 2n become increasingly worse. Instead, we modify the radius of the spherical cap

de�ned above in a suitable way to obtain a lower bound for the case γ > 1. Therefore,

let ϵ ≥ 1 be a constant at our disposal and set

rϵ =
1

c

(
(dϵ)2 +

( c
2ϵ

)2)
≥ d.

We de�ne the spherical cap θϵ by

θϵ := rϵ +
c

2
−
√
r2ϵ − |x− x0|2

and observe that this time c
2
≤ θϵ ≤ c

2
+ c

2ϵ2
≤ c for ϵ ≥ 1. Obviously, c

2
≤ θϵ for the

same reason as in the �rst case. The inequality θϵ ≤ c
2
+ c

2ϵ2
is equivalent to

rϵ −
c

2ϵ2
−
√
r2ϵ − |x− x0|2 ≤ 0,

so that we either need to require

rϵ ≤
c

2ϵ2
⇔ d2ϵ2 +

c2

4ϵ2
≤ c2

2ϵ2
⇔ c ≥ 2dϵ2,

or, in case 2dγ√
2n−1

≤ c ≤ 2dϵ2

(
rϵ −

c

2ϵ2

)2
≤ r2ϵ − |x− x0|2.

This inequality is always ful�lled if

r2ϵ −
c

ϵ2
rϵ +

c2

4ϵ4
≤ r2ϵ − d2 ⇔ 1

c

(
d2ϵ2 +

c2

4ϵ2

)
≤ rϵ,

which is obviously true by the de�nition of rϵ. Thus, we have θϵ < u(x, t) on PΩ. To

show Pθϵ > Pu = 0 on Ω we can copy the steps from above until (2.8), where we now

have

rϵ <
n

2γ
· c.
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Inserting the de�nition of rϵ =
1
c

(
(dϵ)2 +

(
c
2ϵ

)2)
then yields

(
(dϵ)2 +

( c
2ϵ

)2)
<

n

2γ
· c2 ⇔ d2ϵ2 < c2 ·

(
n

2γ
− 1

4ϵ2

)
so that for the choice ϵ2 = γ > 1 we obtain

c >
2dγ√
2n− 1

,

which is the restriction we have chosen for c in (2.6) for the case γ > 1. Hence, for this

choice of c the weak comparison principle yields

c+1 =
c

2
≤ θϵ < u(x, t) on Ω,

which completes the proof. □

Remark. Note, that the bounds found in this chapter are not extendable for arbitrary

data ϕ0, u0. In fact, Dierkes and Huisken have shown [DH90] that in the elliptic

case for γ = 1 there is no (classical) solution to

∆u− uiuj
1 + |Du|2

uij =
1

u
on D,

u = ϕ0 on ∂D,

if we assume that

sup
∂D

|ϕ0| <
|D|

Hn−1(∂D)
,

where |D| denotes the Lebesgue measure of D and Hn denotes the n-dimensional

Hausdor� measure. In chapter 4 we will prove, that a similar result is true in the

parabolic case. Hence, we restrict our analysis to the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) > c on SΩ,

u(x, 0) = u0(x) > c on BΩ,

(P±
ϕ0,u0>c

)

where c is chosen large enough to ful�ll the conditions de�ned above.

13



2.2 Boundary gradient estimates

In this step we prove bounds for the gradient Du on the parabolic boundary PΩ of the

domain Ω. Since we have

u(x, 0) = u0(x) on BΩ,

we immediately obtain Du(x, 0) = Du0(x) so that |Du| is bounded on BΩ as long as

|Du0(x)| is bounded. Hence, it remains to prove the boundedness of |Du| on SΩ.
Since the operator P given by

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u

is not necessarily uniformly parabolic, we need to state structure conditions for the

domain Ω, namely that the spatial boundary SΩ is (inward) mean-convex and ex-

hibits at least C2-regularity to assure that the spatial distance function d(x) is twice

di�erentiable [cf. Appendix, Sec. 5.6].

To achieve a bound for |Du| on SΩ we use methods from Lieberman [Lie96,

chapter 10], which are tied closely to those in Gilbarg-Trudinger [GT01, chapter

14] for the elliptic case. The general idea is to show the boundedness of the expression

[u]′1 := sup
X∈SΩ,Y ∈Ω,s≤t

|u(X)− u(Y )|
|X − Y |

,

where X = (x, t), Y = (y, s), by using suitable comparison functions and applying the

comparison principle. Note that ifDu ∈ C0(Ω) (which implies the total di�erentiability

of Du), the relation |Du| ≤ [u]′1 holds, for if (Yn)n∈N with Yn = (yn, sn) is an arbitrary

sequence in Ω with lim
n→∞,sn≤t

Yn = X = (x, t), we have

|Du(X)| = lim
n→∞

|u(X)− u(Yn)|
|X − Yn|

≤ sup
X∈SΩ,Y ∈Ω,s≤t

|u(X)− u(Y )|
|X − Y |

= [u]′1.

For the application of the comparison principle we de�ne an auxiliary operator

P by

Pv := −v̇ + aij(X, v(X), Dv(X))vij + a(X, u(X), Du(X)),

where u ∈ C2,1(Ω) ∩ C0(Ω) is a solution to (P±
ϕ0,u0>c

) and v is an arbitrary function in

C2,1(Ω)∩C0(Ω). Obviously Pu ≡ Pu but this particular choice of P has an advantage

when estimating a. Next we look at a parabolic neighborhood N of an arbitrary point

X0 = (x0, t0) ∈ SΩ. Assume that there is a positive constant R0 for which

Q(X0, R0) := {(x, t) ∈ Rn+1 | |x− x0|2 ≤ R2
0, t0 −R2

0 ≤ t ≤ t0} ⊂ N.

14



Furthermore, set M := sup
X∈Ω

|u − ϕ0| where ϕ0(X) = ϕ0(x, t) ≡ ϕ0(x) ∀t ∈ [0, T [ is the

prescribed boundary data on SΩ.
Then we search for functions w± ∈ C0(N ∩ Ω) ∩ C2,1(N ∩ Ω) that ful�ll

±Pw± ≤ 0 on N ∩ Ω, (2.9a)

w+ ≥ ϕ0 = u ≥ w− on N ∩ PΩ, (2.9b)

w+ ≥ u ≥ w− on PN ∩ Ω, (2.9c)

w±(X0) = ϕ0(X0). (2.9d)

If such functions exist we can use the conditions a),b) and c) to apply the comparison

principle and deduce

w+ ≥ u ≥ w− on N ∩ Ω.

Making use of d) we obtain the inequalities

w−(Y )− w−(X0)

|Y −X0|
≤ u(Y )− u(X0)

|Y −X0|
≤ w+(Y )− w+(X0)

|Y −X0|
on N ∩ Ω.

If there are constants L± with

w+(Y )− w+(X0)

|Y −X0|
≤ L+,

w−(X0)− w−(Y )

|Y −X0|
≤ L−, (2.10)

for all Y ∈ Q(X0, R0) then we can use the bounds L± inside Q(X0, R0) and
M
R0

outside

of Q(X0, R0) respectively to deduce

[u]′1;X0
:= sup

Y ∈Ω,s≤t0

|u(X0)− u(Y )|
|X0 − Y |

≤ max

{
L+, L−,

M

R0

}
.

If L±, R0 can be chosen independently of X0, this estimate yields an a priori bound for

[u]′1. With this method we are able to prove the following

Proposition 2.4 (A priori estimate for |Du| on the boundary) Let Ω = D ×
(0, T ) be a domain with C2-boundary, where D has non-negative inward mean curvature

HD(y) ≥ 0 for every y ∈ ∂D. Assume further that u0, ϕ0 ∈ C2(D) with u0 = ϕ0 on CΩ
and let u ∈ C2,1(Ω) ∩ C0(Ω) with Du ∈ C0(Ω) be a solution to (P±

ϕ0,u0>c
). Then there

exists a constant C2, such that

|Du| ≤ C2 on PΩ, (2.11)

where C2 = C2(γ, u0, ϕ0, n, c
±
1 , HD), with c

±
1 being the lower bounds from chapter 2.1. □
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Remark. As explained before the proposition, we can still obtain a modulus of con-

tinuity estimate, if we merely assume u ∈ C2,1 ∩ C0(Ω). In this case we instead have

sup
X∈PΩ,Y ∈Ω,s≤t

|u(X)− u(Y )|
|X − Y |

≤ C2,

which can then be used in the upcoming a priori estimates for the gradient on Ω (see

also Gilbarg-Trudinger [GT01, p.353]).

Proof. Since the shape of D remains unchanged for any time t ∈ [0, T ), we can use

time-independent barrier functions of the form

w±(x) = ϕ0(x) + f(d(x)).

Here, ϕ0(x) are the boundary values on SΩ, d(x, t) ≡ d(x) is the distance to the spatial

boundary ∂D and f is a C2 function of one variable which is increasing (f ′ > 0) and

concave (f ′′ < 0). Since d(x) is independent of t and ∂D ∈ C2, the distance function

satis�es d ∈ C2,1(N ∩ Ω) with ḋ ≡ 0 [cf. Appendix, Sec. 5.6].

Moreover, we will make use of the Bernstein E function [cf. Appendix, Sec.

5.1], de�ned by

E(X, z, p) := aij(X, z, p)pipj.

Since aij is assumed to be the quadratic part of a parabolic di�erential operator, the

Bernstein function satis�es λ|p|2 ≤ E ≤ Λ|p|2, where λ and Λ can be taken as the

smallest and largest eigenvalue of aij respectively. For the speci�c choice aij(p) =

δij − pipj
1+|p|2 we obtain

E =
|p|2

1 + |p|2
= λ|p|2.

Let us begin with the construction of an upper barrier function w+(x) which, from now

on, will be denoted by w(x). Inserting the function w(x) = ϕ0(x) + f(d(x)) into the

parabolic operator P yields

Pw = aij(Dw)Dijϕ0 − ϕ̇0 + f ′′aij(Dw)DidDjd+ f ′[aij(Dw)Dijd− ḋ] + a(u).

Making use of ϕ̇0(x), ḋ(x) ≡ 0 and de�ning

Ed := aij(Dw)DidDjd,
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we are left with

Pw = aij(Dw)Dijϕ0 + f ′′Ed + f ′[aij(Dw)Dijd] + a(u). (2.12)

Out of the four conditions that need to be ful�lled by the barrier function

w(x), the �rst one (Pw ≤ 0) is the most di�cult one to prove. The �rst major step is

the estimation of (2.12) by an expression of the form

Pw ≤ [f ′′ + c(f ′)2]Ed (2.13)

with a positive constant c. Once obtained, we can choose the function f to ful�ll all

conditions that are required for w = f(d) + ϕ0 to be a barrier function.

All forthcoming calculations will be carried out in a principal coordinate sys-

tem [cf. Appendix, Sec. 5.6]. Denoting the principal curvatures by κi, i = 1, . . . , n− 1,

the distance function d su�ces

Dd(x) = Dd(y) = (0, ..., 0, 1) and D2d(x) = diag

[
−κi(y)

1− κi(y)d(x)
, 0

]
in these coordinates, where y ∈ ∂D and x ∈ D is close enough [in the sense of Appendix,

Sec. 5.6] to ∂D. This implies

n∑
i=1

Diid(x) =
n−1∑
i=1

−κi
1− κid(x)

≤
n−1∑
i=1

−κi =
n∑
i=1

Diid(y) (2.14)

for x ∈ D close enough to y ∈ ∂D, which is easily seen by distinguishing the cases

κi < 0 and κi ≥ 0.

Next, we point out some estimates that will be needed later on. If we assume

f ′ ≥ 2 sup |Dϕ0|, the gradient Dw satis�es

|Dw| = |f ′Dd+Dϕ0| ≤ f ′ + |Dϕ0| ≤ 2f ′,

|Dw| ≥ f ′ − |Dϕ0| ≥
1

2
f ′.

(2.15)

Moreover, the operator P has the largest eigenvalue Λ = 1. Hence, there exist a

constant c > 0 and a number p0 > 0 so that for any p ≥ p0

Λ = 1 ≤ c
|p|2

1 + |p|2
= cE(p). (2.16)

Note that it su�ces to discuss the case |Du| ≥ p0 because once we have found a bound

B > 0 for this case we obtain a bound for the general case by |Du| ≤ max{p0, B}.
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Another important estimate is given by

Ed(Dw) = aij(Dw)DidDjd = ann(Dw)

= 1− |Dnw|2

1 + |Dw|2
=

1 + |Dw|2 − |Dnw|2

1 + |Dw|2
≥ 1

1 + |Dw|2
,

where we made use of the fact that Dd = (0, . . . , 0, 1) in a principal coordinate system.

Applying (2.15) for f ′ ≥ 2 sup |Dϕ0| we obtain

E(Dw) = |Dw|2

1 + |Dw|2
≤ 4(f ′)2

1

1 + |Dw|2
≤ 4(f ′)2Ed(Dw). (2.17)

Next we estimate the components of (2.12) to achieve the form (2.13). Let

η = (1, ..., 1) be the n-dimensional vector consisting of only ones. Then by using (2.16)

and (2.17) we have

aij(Dw)Dijϕ0 ≤ aij(Dw)ηiηj|D2ϕ0| ≤ Λ(Dw)|η|2|D2ϕ0|

≤ cn|D2ϕ0|E(Dw) = c(n, ϕ0)E(Dw) ≤ c(n, ϕ0)(f
′)2Ed(Dw).

For the last term of (2.12), which is a(u), we make use of the boundedness of u(x, t) ≥
c±1 > 0 from the previous section and (2.17) to conclude that

a(u) =
γ

u
≤ |γ|

u
≤ |γ|
c±1

= c(γ, c±1 )Λ(Dw) ≤ c(γ, c±1 )(f
′)2Ed(Dw).

What remains of (2.12) to be estimated is the expression f ′[aij(Dw)Dijd]. Here we

use a decomposition from Lieberman [Lie96, p. 244]. It is easily veri�ed that we can

write aij(p) = aij∞

(
p
|p|

)
+ aij0 (p), where

aij∞

(
p

|p|

)
= δij − pipj

|p|2
, aij0 (p) =

pipj
|p|2(1 + |p|2)

.

Now, if ξ1, ξ2 ∈ Sn−1, where Sn−1 is the (n − 1)-dimensional unit-sphere, we have

Lipschitz continuity of aij∞, hence there is a constant L > 0 with

|aij∞(ξ1)− aij∞(ξ2)| ≤ L|ξ1 − ξ2|

for all ξ1, ξ2 ∈ Sn−1. Moreover, there is a value p0 > 0 such that for every p ≥ p0 we

have

|p|aij0 (p) =
pipj

|p|(1 + |p|2)
≤ c

|p|2

1 + |p|2
= cE(p),
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so that yet again we obtain by (2.17)

|Dw|aij0 (Dw) ≤ cE(Dw) ≤ c(f ′)2Ed(Dw).

Proceeding with aij∞ we need additional estimates. First observe Dd(x) = ν(y), where

ν(y) is the inward normal vector pointing from y ∈ ∂D towards x ∈ D close to ∂D.

This relation can be seen easily by calculating

x = y + ν(y)d ⇒ ν(y) =
x− y

d(x)
=

x− y

|x− y|

and di�erentiating d(x) = |x − y|, which yields Dd(x) = x−y
|x−y| as well. Therefore, we

can estimate

|Dw − |Dw|ν| = |Dw − f ′ν + f ′ν − |Dw|ν| ≤ |Dw − f ′ν|+ |ν| · |f ′ − |Dw||

= |f ′Dd+Dϕ0 − f ′ν|+ ||Dw| − f ′| = |Dϕ0|+ ||Dw| − f ′|.
(2.18)

Making use of the inverse triangular inequality

||a| − |b|| ≤ |a− b|, a, b ∈ Rn,

we also have, with a = Dw, b = f ′Dd,

||Dw| − f ′| = ||f ′Dd+Dϕ0| − |f ′Dd|| ≤ |f ′Dd+Dϕ0 − f ′Dd| = |Dϕ0|.

Inserting this estimate in (2.18) we obtain for f ′ ≥ 2 sup |Dϕ0|

|Dw − |Dw|ν| ≤ 2|Dϕ0| ⇒
∣∣∣∣ Dw|Dw|

− ν

∣∣∣∣ ≤ 2
|Dϕ0|
|Dw|

≤ 4
|Dϕ0|
f ′ , (2.19)

where we made use of (2.15) for the last inequality. The remaining condition that

needs to be met involves the inward mean curvature HD(y) at a point y ∈ ∂D. If ν

is the inward normal vector in a principal coordinate system, then ν = (0, ..., 0, 1) and

we can calculate

aii∞(ν) =

{
1, if i = 1, ..., n− 1

0, if i = n.

If we combine this with the properties of D2d(x) in a principal coordinate system and

(2.14), we obtain

aij∞(ν)Dijd(x) = aii∞(ν)Diid(x) =
n−1∑
i=1

−κi
1− κid(x)

≤
n−1∑
i=1

−κi = −HD(y),

where HD(y) =
∑n−1

i=1 κi is the inward mean curvature of ∂D at y ∈ ∂D.

If we now assume that HD(y) ≥ 0, the last inequality implies that we also
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have aij∞(ν)Dijd(x) ≤ 0 and we can use the decomposition and the previous estimates

(especially (2.19) in the third step) to conclude

f ′[aij(Dw)Dijd] = f ′
[
aij∞

(
Dw

|Dw|

)
Dijd(x) + aij0 (Dw)Dijd(x)

]
≤ f ′

[
aij∞

(
Dw

|Dw|

)
− aij∞(ν)

]
Dijd(x) + f ′aij0 (Dw)Dijd(x)

≤ 4|Dϕ0| sup
y∈∂D

HD(y) + 2|Dw|aij0 (Dw)Dijd(x)

≤ c(ϕ0, HD(y))Λ(Dw) + c(HD(y)), n)E(Dw)

≤ c(ϕ0, n,HD(y))(f
′)2Ed(Dw),

as long as |Dw| ≥ p0 and f
′ ≥ 2 sup |Dϕ0|.

Combining this estimate with the ones above, we have shown that there exists

a constant c = c(γ, n, ϕ0, c
±
1 , HD(y)) such that for |Dw| ≥ p0 and f

′ ≥ 2 sup |Dϕ0| the
estimate

Pw = aij(Dw)Dijϕ0 + f ′′Ed + f ′[aij(Dw)Dijd] + a(u)

≤ [f ′′ + c(f ′)2]Ed(Dw)

holds.

Now we can solve the ordinary di�erential equation

f ′′(d) + c(f ′)2(d) = 0,

which yields

f ′(d) =
1

cd(x) + k
,

f(d) =
1

c
ln
( c
k
d(x) + 1

)
,

with a constant k at our disposal. The second constant we obtained from integration

was chosen so that f(0) = 0. Note, that for small and positive k and x close enough

to ∂D, the function f ′(d) becomes arbitrarily large.

We have proven that if we choose f(d) as the function de�ned above and let

k be positive and small enough to guarantee f ′ ≥ 2 sup |Dϕ0|, then w(x) = ϕ0(x) +

f(d(x)) su�ces condition a) (Pw ≤ 0) from the beginning of this chapter. Having

proven that condition a) is ful�lled, we will now show that the other conditions, b), c)

and d) are also ful�lled, if we choose the set N in a speci�c way. Conditions b) and d)

are immediately ful�lled from the de�nition of w because f(d) ≥ 0 and f(0) = 0. To

meet condition c) we set N = Bα(x0) = {x | |x− x0| ≤ α}, then PN = {x | d(x) = α}
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so that c) becomes

w(x) = f(α) + ϕ0(x) ≥ u(x) on PN ∩ Ω.

WithM = sup
Ω
|u−ϕ0| this inequality is always ful�lled if we choose α so that f(α) =M .

Since we had

f(d) =
1

c
ln
( c
k
d(x) + 1

)
,

this leads to the choice

α =
k

c
(exp(Mc)− 1).

Note, that the smaller the value for k, the smaller the value for α so that by choosing

k su�ciently small we reduce the distance of x to ∂D, which increases the value for

f ′(d). Hence, the conditions a) to d) are ful�lled and thus w(x) = ϕ0(x) + f(d(x)) is

an upper barrier for u(x, t).

Let us now brie�y discuss why the function

w−(x) := ϕ0(x)− f(d(x)),

for the same choice of f(d), is a lower barrier for u(x, t). First, note that upon inserting

w− into the parabolic operator P we obtain

Pw− = aij(Dw)Dijϕ0 − f ′′Ed − f ′[aij(Dw)Dijd] + a(u)

with the same notation as before. (2.15) still holds and in accordance with (2.16),

(2.17) we obtain

−Λ ≥ −cE(p), −E(Dw) ≥ −4(f ′)2Ed(Dw).

We may estimate the �rst expression in (2.5) by

aij(Dw)Dijϕ0 ≥ −aij(Dw)ηiηj|D2ϕ0| ≥ −Λ(Dw)|η|2|D2ϕ0| ≥ −c(n, ϕ0)(f
′)2Ed(Dw)

and the last expression by

a(u) ≥ −|γ|
u

≥ −|γ|
c±1

≥ −c(γ, c±1 )(f ′)2Ed(Dw).

In addition it is clear from our previous calculations for f ′[aij(Dw)Dijd], that under
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the conditions HD(y) ≥ 0 and f ′ ≥ 2 sup |Dϕ0| we have

−f ′[aij(Dw)Dijd] ≥ −c(ϕ0, n,HD(y))(f
′)2Ed(Dw)

and thus we end up with the inequality

Pw− ≥ −[f ′′ + c(f ′)2]Ed

with a positive constant c. This leads to the di�erential equation

f ′′(d) + cf ′(d) = 0

as in the case for the upper barrier. Hence, if we choose f(d) the same way as before

we obtain a). b) and d) immediately follow from the de�nition of w−(x) and taking

N = Bα(x0), condition c) becomes

u(x) ≥ w(x) = ϕ0(x)− f(α) on PN ∩ Ω,

so that we may take f(α) = M again to also ful�ll c). This proves that w−(x) =

ϕ0(x) − f(d(x)) is a lower barrier for u. It is obvious that f(d) ∈ C∞ and from our

assumptions we have ϕ0(x), d(x) ∈ C2(D), hence w±(x) ∈ C2. Additionally f ′(d) is

bounded for d ≥ 0, which implies Lipschitz continuity for f(d) and hence there are

constants L± so that (2.10) is ful�lled. Moreover, ∂D is a compact subset of Rn so

there is a �nite cover of ∂D consisting of balls Bαi
(xi), xi ∈ ∂D, i = 1, . . . , k, where

αi is chosen accordingly to ful�ll condition c). Hence, we obtain an upper bound

independent of the choice of X0 ∈ PΩ, which completes the proof. □

2.3 Global gradient estimate

The classical approach for the derivation of global gradient estimates uses the fact that

Du solves a similar partial di�erential equation as u itself. Usually one di�erentiates the

equation with respect to xk and multiplies by uk afterwards. The resulting expression

is estimated in a way that allows for the application of the weak maximum principle

to show that |Du| is bounded over all of PΩ ∪ Ω by a constant that depends on the

bound for |Du| on PΩ. Lieberman [Lie96, p. 259-264] has done such a calculation

that is applicable in our case for any choice of γ ∈ R \ {0}. However, this approach

has the disadvantage that the bound depends on the time T and becomes unbounded

when T → ∞. Thus, this method can only be used for the case T < ∞ and we have

to make use of a di�erent method deployed by Ecker and Huisken [EH89] as well as

Stone [Sto94], to obtain a bound for T = ∞, which requires to work locally on the

surfaces graph(u(x, t)).

We begin with the canonical approach from Lieberman [Lie96]. To state his
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results we need to de�ne some new expressions �rst. Therefore, let

c±1 ≤ m = inf
Ω
u, M = sup

Ω
u ≤ C±

1 , ξ = |Du|2

and for (X, z, p) ∈ Ω× R× Rn de�ne the operators

δ := Dz + |p|−2p ·Dx, δ := p ·Dp,

where

Dxf(X, z, p) = (Dx1f(X, z, p), . . . , Dxnf(X, z, p)),

Dpf(X, z, p) = (Dp1f(X, z, p), . . . , Dpnf(X, z, p)).

Furthermore, assume that there are a matrix valued function (aij∗ ) with smallest eigen-

value λ∗ and largest eigenvalue Λ∗ respectively and a vector valued function (fj) such

that (aij) can be decomposed as

aij(X, z, p) = aij∗ (X, z, p) +
1

2
[pifj(X, z, p) + pjfi(X, z, p)].

Finally, we de�ne the quantities

A =
1

E

(
ξ

2λ∗

n∑
i,j=1

(δaij∗ )
2 + (δ − 1)E

)
,

B =
1

E
(
δE + (δ − 1)a

)
,

C =
1

E

(
ξ

2λ∗

n∑
i,j=1

(δaij∗ )
2 + δa

)

and

A∞, B∞, C∞ = lim
|p|→∞

sup
Ω×[m,M ]

A,B,C. (2.20)

Then we may use the following theorem from Lieberman [Lie96, p.263, Thm. 11.1].

Proposition 2.5 (Gradient estimate on Ω for T < ∞) Let u ∈ C2,1(Ω) ∩ C0(Ω)

with Du ∈ C0(Ω) and suppose that Pu = 0 on Ω. Suppose that P is parabolic at u and

that the quantities A∞, B∞ and C∞ are �nite. If

min{A∞, C∞, B∞ + 2|A∞C∞|
1
2} ≤ 0,
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then there are positive constants k, k1 with

sup
Ω

|Du| ≤ k1e
kT ,

where k1 is a constant determined only by sup
PΩ

|Du|, A∞, B∞, C∞, c
±
1 , C

±
1 and the limit

behavior of (2.20). □

Thus, the derivation of a gradient bound for T < ∞ over all of Ω can be

reduced to the calculation of the quantities A∞, B∞ and C∞. The parabolic operator

P was given by

Pu = −u̇+ aij(Du)uij + a(u) = −u̇+
(
δij − uiuj

1 + |Du|2

)
uij −

γ

u
,

so that for the choice

aij∗ := δij and fi := − pi
1 + |p|2

we have

aij∗ +
1

2
(pifj + pjfi) = δij +

1

2

(
− pipj
1 + |p|2

− pjpi
1 + |p|2

)
= δij − pipj

1 + |p|2
= aij(p).

Hence, we obtain

E(p) = aij(p)pipj =
|p|2

1 + |p|2
, λ∗ = Λ∗ = 1

and obviously any kind of di�erentiation of aij∗ yields the value 0 since the matrix is

constant, thus

n∑
i,j=1

(δaij∗ )
2 =

n∑
i,j=1

(δaij∗ )
2 = 0.

This simpli�es the quantities A,B,C to

A =
1

E
(δ − 1)E , B =

1

E
(δE + (δ − 1)a), C =

1

E
δa

24



and here we obtain

δE(p) = p ·Dp

(
|p|2

1 + |p|2

)
=

2|p|2(1 + |p|2)− |p|2 · 2|p|2

(1 + |p|2)2
=

2|p|2

(1 + |p|2)2
,

δE(p) = (Dz + |p|−2pDx)

(
|p|2

1 + |p|2

)
= 0,

δa(z) = p ·Dp

(
−γ
z

)
= 0,

δa(z) = (Dz + |p|−2pDx)
(
−γ
z

)
=

γ

z2
.

Therefore, it is

A =
1 + |p|2

|p|2
·
(

2|p|2

(1 + |p|2)2
− |p|2

1 + |p|2

)
=

2

1 + |p|2
− 1,

B =
1 + |p|2

|p|2
·
(
0 + 0−

(
−γ
z

))
=

1 + |p|2

|p|2
· γ
z
,

C =
1 + |p|2

|p|2
· γ
z2
,

and letting |p| → ∞ yields

A∞ = −1, B∞ = sup
z∈[m,M ]

γ

z
, C∞ = sup

z∈[m,M ]

γ

z2
,

which are all �nite since we have shown in the previous chapters, that there are con-

stants c±1 , C
±
1 with 0 < c±1 ≤ m ≤ u ≤ M ≤ C±

1 < ∞ for either choice of γ ∈ R \ {0}.
Moreover, it is A∞ = −1 < 0, so by using proposition 2.5 we conclude

Proposition 2.6 (Global gradient bound for T < ∞) Let Ω = D × (0, T ) with

T < ∞. Let u ∈ C2,1(Ω) ∩ C0(Ω) with Du ∈ C0(Ω) be a solution to (P±
ϕ0,u0>c

) and

assume further that u0, ϕ0 ∈ C2(D) with u0 = ϕ0 on CΩ. Then there are positive

constants k, C̃3 such that

|Du| ≤ C̃3e
kT on Ω, (2.21)

where C̃3 = C̃3

(
sup
PΩ

|Du|, c±1 , C±
1

)
, with the constants c±1 , C

±
1 from chapter 2.1 . □

For a gradient bound independent of T we proceed by working locally on the

surfaces Mt generated by graph(u(x, t)), see also [EH89] and [Sto94]. For a detailed

explanation of this procedure we refer to [Appendix, Sec. 5.7].

Proposition 2.7 (Global gradient bound) Let Ω = D× (0, T ), where T ≤ ∞. Let

u ∈ C2,1(Ω) ∩ C0(Ω) with Du ∈ C0(Ω) be a solution to (P±
ϕ0,u0>c

) and assume that
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u0, ϕ0 ∈ C2(D) with u0 = ϕ0 on CΩ. Then there is a positive constant C3 such that

|Du| ≤ C3 on Ω, (2.22)

where C3 = C3(c
±
1 , C

±
1 , C2), with c

±
1 , C

±
1 being the constants from chapter 2.1 and C2

the constant from chapter 2.2. □

Remark. If the solution is merely in C2,1(Ω) ∩ C0(Ω) we can still obtain a gradient

estimate by using the modulus of continuity estimate from chapter 2.2. In this case it

also su�ces, that u0, ϕ0 ∈ C0(Ω) with u0 = ϕ0 on CΩ.

Proof. Let us assume that the solution u(x, t) de�nes a graph Mt and set

F (x, t) := (x, u(x, t))

for every (x, t) ∈ Ω = D×(0, T ). We call F (x, t) the �ow of the surfaces graph(u(x, t)).

Let g : Ω → M0 ⊂ Rn, g(x, t) = p be the di�eomorphism from Lemma 5.14

in [Appendix, Sec. 5.7], where M0 is the initial surface given by M0 = graph(u(x, 0)).

Then there is another way to describe the �ow F̃ (p, t) = F (g(x, t), t) with images M̃t,

that su�ce M0 = graph(u(x, 0)) = graph(ũ(p, 0)) = M̃0. Additionally, the surfaces M̃t

generated by the graph of ũ(p, t) are equivalent to the surfaces Mt generated by the

graph of u(x, t) up to the tangential di�eomorphism g(x, t). Hence, it su�ces to bound

the gradient of the alternative �ow F̃ (p, t). F̃ (p, t) satis�es

˙̃F (p, t) = v−1
(
vH(ũ)− γ

ũ

)
ν(p, t) on M0 × [0,∞),

F̃ (p, t) = F̃ (p, 0) on ∂M0 × [0, T ),

F̃ (p, 0) = p on M0,

(PF )

where all quantities are now evaluated at the point (p, t) and understood as function

of ũ(p, t) = F̃ (p, t) · en+1. For this �ow the time derivative of the unit normal is given

by (see Stone [Sto94, p. 173] and Ecker [Eck04, p. 121])

∂tν = −∇

(
dF̃

dt
· ν

)
= −∇

((
H − γ

ũv

)
ν · ν

)
= −∇H − γ

ũ2v2
∇(ũv).

Since we also have the relation v = (ν · en+1)
−1, it follows for the time derivative of v

v̇ =
d

dt
((ν · en+1)

−1) = v2(∇H · en+1) +
γ

ũ2
(∇(ũv) · en+1). (2.23)
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Moreover, we obtain by the de�nition of ∆ = ∆Mt

∆v = gijDiDjv +HνiDiv (2.24)

with gij = δij − νiνj. Abbreviating ν · en+1 =: νn+1, the partial derivatives of v are

given by

Div = Di(ν
n+1)−1 = −v2Diν

n+1,

DjDiv = Dj(−v2Diν
n+1) = −Dj(v

2)Diν
n+1 − v2DiDjν

n+1.

Inserting this in (2.24) yields

∆v = −v2(gijDiDjν
n+1 +HνiDiν

n+1)− gijDj(v
2)Diν

n+1

= −v2∆νn+1 +
2

v
gijDivDjv

= −v2∆νn+1 + 2
|∇v|2

v
,

so that, after making use of the Jacobi �eld equation

∆ν = −ν|A|2 −∇H,

we end up with

∆v = v|A|2 + 2
|∇v|2

v
+ v2(∇H · en+1). (2.25)

Now we can subtract the two equations (2.23) and (2.25) to obtain

v̇ = ∆v − |A|2v − 2
|∇v|2

v
+

γ

ũ2
(∇(ũv) · en+1).

Dividing this equation by v and noting

∆(ln(v)) = gijDiDj(ln(v)) +HνiDi(ln(v)) = gijDi

(
Djv

v

)
+Hνi

Div

v

=
1

v
∆v − 1

v2
gijDivDjv =

1

v
∆v − |∇v|2

v2

leads to

d

dt
(ln(v)) = ∆(ln(v))− |A|2 − |∇v|2

v2
+

γ

ũ2
(∇ũ · en+1) +

γ

ũv
(∇v · en+1). (2.26)

Using the evolution equation in combination with the identity H = v∆ũ gives us

˙̃u =
dF̃

dt
· en+1 = ∆ũ− γ

ũv2
.
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Hence, by introducing the auxiliary function

χ := σ ln(v) + ũ

with a positive constant σ > 0 to be chosen later, we may multiply (2.26) with σ to

obtain the estimate

χ̇ ≤ ∆χ+ γ

(
σ

ũ2
(∇ũ · en+1) +

σ

ũv
(∇v · en+1)−

1

ũv2

)
. (2.27)

Next, observe that

∇χ =
σ

v
∇v +∇ũ,

so inequality (2.27) may be expressed as

χ̇ ≤ ∆χ+ γ

(
1

ũ
(∇χ · en+1)−

1

ũ
(∇ũ · en+1) +

σ

ũ2
(∇ũ · en+1)−

1

ũv2

)
.

Also, since v, ν are functions of ũ evaluated at p, we have

∇ũ · en+1 = ((Dũ, 0)−Diũν
iν) · en+1 = 0− 1

v
Diũν

i =
|Dũ|2

v2

and thus

χ̇ ≤ ∆χ+ γ

(
1

ũ
(∇χ · en+1) +

|Dũ|2

ũ2v2
σ − |Dũ|2

ũv2
− 1

ũv2

)
= ∆χ+ γ

(
1

ũ
(∇χ · en+1) +

|Dũ|2

ũ2v2
σ − 1

ũ

)
= ∆χ+

γ

ũ
(∇χ · en+1) +

γ

ũ2

(
|Dũ|2

v2
σ − ũ

)
.

(2.28)

At this point, we have to distinguish the cases γ > 0 and γ < 0. If γ > 0 we may

proceed as Stone [Sto94] by estimating |Dũ|2
v2

≤ 1 and choosing σ < c+1 ≤ ũ to obtain

χ̇ ≤ ∆χ+
γ

ũ
(∇χ · en+1). (2.29)

If γ < 0 we work on the set M1
t := {(p, t) ∈ M0 × [0, T ) | |Dũ| > 1}. If this set is

empty, then

sup
(p,t)∈M0×[0,T )

|Dũ| = sup
X∈Ω

|Du| ≤ 1

and the result follows. If M1
t is not empty, we have

|Dũ|2

v2
≥ 1

2
on M1

t .
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Hence, if we choose σ > 2C−
1 ≥ 2ũ, we obtain

|Dũ|2

v2
σ − ũ ≥ 0 on M1

t

and thus,

χ̇ ≤ ∆χ+
γ

ũ
(∇χ · en+1) on M1

t . (2.30)

For both equations (2.29), (2.30) the weak maximum principle on manifolds [cf. Ap-

pendix, Sec. 5.3] yields

max
M0×[0,T )

χ ≤ max

{
max
M0

χ(·, 0), max
∂M0×[0,T )

χ

}
. (2.31)

From the de�nition of χ we infer the existence of a constant C3 = C3(c
±
1 , C

±
1 , C2) with

sup
X∈Ω

|Du| = sup
(p,t)∈M0×[0,T )

|Dũ| ≤ C3 (2.32)

or in case γ < 0

sup
X∈Ω

|Du| = sup
(p,t)∈M0×[0,T )

|Dũ| ≤ max{1, C3}, (2.33)

which concludes the proof. □

2.4 Hölder gradient estimate

The estimates from the previous chapters imply that the parabolic operator P given

by

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u

is uniformly parabolic since the ratio Λ
λ
= 1+ |Du|2 is bounded. Hence, we have access

to results for uniformly parabolic operators which easily yield the remaining a priori

Hölder gradient estimates. For completeness sake, we cite the relevant propositions

from Lieberman [Lie96]. For the de�nition of time-dependent Hölder spaces Ha with

a ∈ R+ see [Appendix, Sec. 5.4]. Additionally, de�ne the function

ψ0(x) :=

{
u0(x), if x ∈ D,

ϕ0(x), if x ∈ ∂D,

that combines the initial and boundary values ϕ0, u0 [cf. Appendix, Sec. 5.5].

Proposition 2.8 (Interior Hölder gradient estimate) [Lie96, p. 305, Thm.
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12.3] Let P be a parabolic operator of the form

Pu = −u̇+ aij(X, u(X), Du(X))uij + a(X, u(X), Du(X))

and let u ∈ C2,1(Ω) satisfy Pu = 0 and |u|+ |Du| ≤ K in Ω for some positive constant

K ∈ R. Suppose further that the function aij(X, z, p) is di�erentiable with respect

to (X, z, p) and that aij and a are continuous. Let µK be a constant for which the

inequality

µK ≥ K(|aijx |+ |aijz ||p|) + |a|

holds and let λK ,ΛK be the smallest and largest eigenvalue of aij respectively. Then

there is a constant α > 0 such that for any Ω′ ⊂⊂ Ω we have

[Du]α;Ω′ ≤ C(n,K, λK ,ΛK , µK , diamΩ)δ−α,

where δ = dist(Ω′,PΩ). □

Proposition 2.9 (Global Hölder gradient estimate) [Lie96, p. 309, Thm.

12.10] Suppose that P is the operator de�ned in the previous proposition, let β ∈
(0, 1] and let Ω = D × (0, T ) su�ce PΩ ∈ H1+β. Suppose further that aij(X, z, p)

is continuously di�erentiable with respect to (X, z, p). If u ∈ C2,1(Ω) ∩ C(Ω) with

Du ∈ L∞ satis�es Pu = 0 on Ω, u = ψ0 on PΩ for some ψ0 ∈ H1+β ful�lling the

compatibility condition Pψ0 = 0, then there are positive constants α and C determined

only by n, β, λK ,ΛK , diam Ω and µK
K

such that

[Du]α ≤ C[K + |ϕ0|1+β + µK ],

where µK is de�ned as in the previous proposition. □

Both propositions are applicable to (P±
ϕ0,u0>c

) for either choice of γ ∈ R\{0},
since 0 < c±1 ≤ |u| ≤ C±

1 and |Du| ≤ C3 and thus aij(Du) and a(u) are continuously

di�erentiable for every (X, u(X), Du(X)) ∈ Ω×R×Rn. Hence, the application of the

last proposition yields the desired last a priori estimate, which concludes this chapter.

3 Existence, Uniqueness, Regularity

3.1 Existence and uniqueness

The a priori estimates allow for the application of a �xed point argument to prove the

existence of a solution to (P±
ϕ0,u0>c

). We have shown in the previous chapter, that there
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are constants δ ∈ (1, 2] and Mδ ∈ R+ only depending on values determined by the

operator P , the initial and boundary values u0(x), ϕ0(x) and the set Ω but not on u or

its derivatives, such that every solution u ∈ C2,1(Ω) ∩ C0(Ω) ful�lls the estimate

|u|δ ≤Mδ,

as long as the initial and boundary data and the set Ω ful�ll appropriate conditions.

Therefore, we can make use of the following two propositions from Lieberman [Lie96].

Proposition 3.1 (Short Time Existence) [Lie96, p. 206, Thm. 8.2.] Assume

that for any bounded subset K of Ω×R×Rn there is a positive constant λK such that

λK|ξ|2 ≤ aij(X, z, p)ξiξj

for any (X, z, p) ∈ K and any ξ ∈ Rn. Assume further that X → aij(X, u(X), Du(X))

and X → a(X, u(X), Du(X)) are Hölder continuous and de�ne Ωϵ := {X ∈ Ω | t < ϵ}.
Suppose PΩ ∈ Hδ and ψ0 ∈ Hδ(Ω) for some δ ∈ (1, 2), where ψ0 are the combined

initial and boundary values. Then there is a positive constant ϵ such that the problem

Pu = 0 on Ωϵ,

u = ψ0 on PΩϵ,
(3.1)

has a solution u ∈ H2+α(Ω
′) ∩ C0(Ωϵ), where α ∈ (0, 1] and Ω′ is any compact subset

of Ωϵ. If PΩ ∈ H2+α and ψ0 ∈ H2+α(Ω) ful�lls the compatibility condition Pψ0 = 0 on

CΩ, then u ∈ H2+α(Ωϵ). □

Proposition 3.2 (Long Time Existence) [Lie96, p. 207, Thm. 8.3.] Suppose

that Ω = D × [0, T ), T ≤ ∞, ψ0 and P are as in the proposition above. If there are

constants δ ∈ (1, 2] and Mδ ∈ R+ (independent of the ϵ from the previous proposition)

such that any solution u of (3.1) satis�es the estimate

|u|δ ≤Mδ on Ω,

then there is a solution of

Pu = 0 on Ω,

u = ψ0 on PΩ.
(3.2)

□

Combining these two propositions yields a solution u to problem (P±
ϕ0,u0>c

). For unique-

ness we make use of results for the linear theory, especially for uniformly parabolic linear

operators. Results are once again taken from Lieberman [Lie96].
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Proposition 3.3 (Uniqueness and regularity) [Lie96, p. 94, Thm. 5.14.]

Suppose we are given the initial boundary value problem

Lu = f on Ω,

u = ψ0 on PΩ,
(3.3)

where L is a parabolic operator given by

Lu = −u̇+ aijuij + biui + cu

and ψ0 are the combined initial and boundary values. Suppose further that there are

positive constants λ,Λ, A,B,C such that for every ξ ∈ Rn and some α ∈ (0, 1) we have

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2, |aij|α ≤ A, |bi|α ≤ B, |c|α ≤ C.

If PΩ ∈ H2+α, ψ0 ∈ H2+α(Ω) and f ∈ Hα(Ω) for some α ∈ (0, 1) then there is a unique

solution u ∈ C2,1(Ω) ∩ C(Ω) to (3.3). If also the compatibility condition Pψ0 = 0 on

CΩ is ful�lled, then u ∈ H2+α(Ω) and

|u|2+α ≤ C(A,B,C, n, α,Ω)(|f |α + |ψ0|2+α).

□

Remark ([Lie96, p. 93]). The condition |c|α ≤ C instead of |c|α ≤ 0 is su�cient for

the application of the maximum principle that is used to prove the previous proposition.

To see this, de�ne

Lkv := Lv − kv, fk(X) := e−ktf(X), (ψ0)k(X) := e−ktψ0(X).

If |c|α ≤ k for the operator L, then |ck|α ≤ 0 for the operator Lk. Hence, there is a

solution uk to

Lkuk = fk on Ω,

uk = (ψ0)k on PΩ.

Then, the function u(X) := ektuk(X) solves

Lu = −kektuk(X) + ektLuk = ektLkuk = ektfk = f

and thus u(X) is a solution to

Lu = f on Ω,

u = ψ0 on PΩ.

32



□

The application of these three propositions to (P±
ϕ0,u0>c

) leads to

Theorem 3.4 (Existence and uniqueness for (P±
ϕ0,u0>c

)) Let Ω = D×(0, T ), T ≤ ∞
be a domain with PΩ ∈ H2+α, let D ⊂ Rn be a domain with non-negative inward mean

curvature HD(y) ≥ 0 for every y ∈ ∂D and let ψ0(x) ≡ ψ0(x, t) ∈ H2+α(Ω) be given by

ψ0(x) =

{
u0(x), if x ∈ D,

ϕ0(x), if x ∈ ∂D.

Suppose for γ ∈ R \ {0} we are given the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) on SΩ,

u(x, 0) = u0(x) on BΩ,

(3.4)

where ϕ0(x), u0(x) are chosen so that

ϕ0(x), u0(x) > 0, if γ < 0,

ϕ0(x), u0(x) > 2d

√
γ

2n− γ
, if γ ∈ (0, 1],

ϕ0(x), u0(x) >
2γd√
2n− 1

, if γ > 1,

for d := diam(D). Then there is a unique solution u ∈ C2,1(Ω) ∩ C(Ω) to problem

(3.4), which is also in H2+α(Ω
′) for any Ω′ ⊂⊂ Ω, with α ∈ (0, 1).

If further ψ0(x) ful�lls the compatibility condition Pψ0 = 0 on CΩ then u ∈ H2+α(Ω)

and

|u|2+α ≤ C(c±1 , C
±
1 , C2, C3, |ψ0|2+α),

where c±1 , C
±
1 , C2, C3 are the constants from chapter 2. □

Proof. The a priori estimates from chapter 2 allow for the application of propositions

3.1 and 3.2, yielding a solution u to (3.4). Since the gradient is a priori bounded and

λ(Du) = 1
1+|Du|2 ,Λ = 1 are the smallest and largest eigenvalues of aij respectively,

there is a constant λ̂ > 0 such that λ̂|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for every ξ ∈ Rn. Moreover,

by setting bi, c = 0, f = γ
u
, the equation Pu = 0 with

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u
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is equivalent to Lu = f . Thus, to apply proposition 3.3, we have to prove that there is

a constant α ∈ (0, 1) so that |aij|α ≤ A and f ∈ Hα(Ω). But the Hölder continuity of

u and Du follows once again immediately from the a priori estimates and since

aij(p) = δij − pipj
1 + |p|2

, a(z) =
γ

z

are Hölder continuous functions on the set S := {(z, p) ∈ R×Rn | 0 < c±1 ≤ z, |p| ≤ C3}
with the constants c±1 , C3 from section 2, the compositions aij(Du), a(u) are Hölder con-

tinuous for some constant α ∈ (0, 1) as well. Hence, we may apply proposition 3.3,

which concludes the proof. □

3.2 Higher Regularity

In this section we make use of regularity results for parabolic equations found in Fried-

man [Fri83].

Proposition 3.5 (Local spatial Regularity) [Fri83, p. 72, Thm. 10] Let Ω =

D × (0, T ) ⊂ Rn+1 be a domain and L be a parabolic operator given by

Lu = −u̇+ aij(x, t)uij + bi(x, t)ui + c(x, t)u.

Assume that

Dm
x a

ij, Dm
x b

i, Dm
x c,D

m
x f (0 ≤ m ≤ p)

are Hölder continuous with α ∈ (0, 1) in Ω, where the operator Dm
x is to be understood

as any combination of partial derivatives with respect to xi, i = 1, . . . , n, whose order

adds up to m. If u is a solution to Lu = f on Ω, then

Dm
x u,DtD

k
xu (0 ≤ m ≤ p+ 2; 0 ≤ k ≤ p)

exist on every cylinder Q ⊂⊂ Ω and are Hölder continuous with exponent α on Q. □

Proposition 3.6 (Local Regularity in Time) [Fri83, p. 74, Thm. 11] Let L

and Ω be given as in the proposition above. Assume now that also

Dm
x D

k
t a

ij, Dm
x D

k
t b
i, Dm

x D
k
t c,D

m
x D

k
t f (0 ≤ m+ 2k ≤ p; 0 ≤ k ≤ q)

are Hölder continuous with α ∈ (0, 1) on Ω. If u is a solution to Lu = f on Ω, then

Dm
x D

k
t u (0 ≤ m+ 2k ≤ p+ 2; 0 ≤ k ≤ q + 1)
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exist on every cylinder Q ⊂⊂ Ω and are Hölder continuous with exponent α on Q. □

These properties can be extended to the whole domain, if Ω and the initial and bound-

ary values ψ0 are smooth enough and ψ0 ful�lls compatibility conditions.

Proposition 3.7 (Regularity on all of Ω) [Fri83, p.75, Thm. 12] Let L be a

parabolic operator in Ω. Assume that

Dm
x D

k
t aij, D

m
x D

k
t bi, D

m
x D

k
t c,D

m
x D

k
t f (0 ≤ m+ k ≤ p)

are uniformly Hölder continuous in Ω. Assume further that the functions ϕ from the

local representation of ∂D [cf. Appendix, Sec. 5.6] are such that

Dm+2
x Dk

t ϕ,D
m
x D

k+1
t ϕ (m ≥ −2, k ≥ −1,m+ k ≤ p)

are Hölder continuous, which implies PΩ ∈ Hp+α for some α ∈ (0, 1]. Assume �nally

that ψ0 ∈ H2+α, that Lψ0 = f on CΩ and that, as a function of the local parameters of

∂D, ψ0 is a function satisfying the condition that

Dm+2
x Dk

t ψ0, D
m
x D

k+1
t ψ0 (m ≥ −2, k ≥ −1,m+ k ≤ p)

are Hölder continuous, wheras on BΩ

Dm+2
x ψ0 (−2 ≤ m ≤ p)

are Hölder continuous. If u is the solution to

Lu = f on Ω,

u = ψ0 on PΩ,

then the functions

Dm+2
x Dk

t u,D
m
x D

k+1
t u (m ≥ −2, k ≥ −1,m+ 2k ≤ p)

are uniformly Hölder continuous on Ω. □

Hence, by invoking these three propositions we obtain

Proposition 3.8 (Higher regularity) Every classical solution u ∈ C2,1(Ω) ∩ C(Ω)
to problem (P γ

ϕ0,u0
) is in C∞(Ω) ∩ C(Ω) with locally Hölder continuous derivatives of

arbitrary order in space and time. If moreover the conditions from proposition 3.7 and

the compatibility conditions of order ⌊p
2
+ 1⌋ for p ∈ N are ful�lled [cf. Appendix, Sec:
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5.5], the functions

Dm+2
x Dk

t u,D
m
x D

k+1
t u (m ≥ −2, k ≥ −1,m+ 2k ≤ p)

are uniformly Hölder continuous on Ω. □

Proof. Setting bi = c = 0 and f = γ
u
the problem (P γ

ϕ0,u0
) is equivalent to

Lu = f on Ω,

u = ψ0 on PΩ,

where ψ0 is the function that combines the initial and boundary values

ψ0(x) =

{
u0(x), if x ∈ D,

ϕ0(x), if x ∈ ∂D.

The functions

f(z) =
γ

z
, aij(p) = δij − pipj

1 + |p|2

have bounded derivatives of arbitrary order on the set

S := {(z, p) ∈ R× Rn | 0 < c±1 ≤ z, |p| ≤ C3}

with the constants c±1 , C3 from section 2. This implies Lipschitz and thus Hölder con-

tinuity for any derivative of f(z), aij(p) on S. Since the composition of two Hölder

continuous functions with exponents α1, α2 is once again Hölder continuous with ex-

ponent α1 · α2, the Hölder continuity of Dm
x a

ij(Du) and Dm
x f(u) merely depends on

the continuity properties of Du and u. Thus, if we initially assume that u ∈ C2,1(Ω),

the a priori estimates imply that u and Du are locally Hölder continuous and hence

aij(Du) and f(u) are locally Hölder continuous as well. This enables the application

of proposition 3.5 for p = 0 from which follows that D2
xu and Dtu exist and are locally

Hölder continuous.

This in return yields that not only aij(Du) and f(u) but also Dxa
ij(Du) and

Dxf(u) are locally Hölder continuous. Using proposition 3.5 once again with p = 1

yields existence and local Hölder continuity of D3
xu and DtDxu. Hence, by repeating

this process arbitrarily often, we obtain existence and local Hölder continuity of Dm
x u

and DtD
k
xu for every m, k ∈ N.
Proceeding with the di�erentiability in time we see that once againDm

x D
k
t a

ij(Du)

andDm
x D

k
t f(u) are Hölder continuous if the respective functions u,Du and their deriva-

tives are. Since from proposition 3.5 we already know that DtD
l
xu is locally Hölder
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continuous for arbitrary values of l, we can apply proposition 3.6 with q = 1, which

yields local Hölder continuity of Dm
x D

2
t u. This guarantees that Dm

x D
2
t a

ij(Du) and

Dm
x D

2
t f(u) are locally Hölder continuous and another application of proposition 3.6

grants local Hölder continuity of Dm
x D

3
t u. Repeating this process, we achieve local

Hölder continuity of Dm
x D

k
t u for arbitrary values of m, k ∈ N.

Under the additional assumptions from proposition 3.7, we can prove global

Hölder continuity with the same reasoning. □

4 Further properties of solutions

4.1 Solution to the Problem (P−
0 )

In this chapter we will construct a unique solution to the problem (P−
0 )

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = 0 on PΩ.

(P−
0 )

Since lim
u→0

∣∣γ
u

∣∣ = ∞ poses a problem when reaching the boundary of Ω in (P−
0 ), we

make use of the approximating problems (P−
0+ϵ) which, according to the �xed point

theory deduced above, have a unique solution u ∈ C∞(Ω) ∩ C(Ω).

Proposition 4.1 (Unique solvability of (P−
0 )) Let Ω = D × (0, T ), T ≤ ∞ be a

domain with PΩ ∈ H2+α and let D ⊂ Rn have non-negative inward mean curvature

HD(y) ≥ 0 for every y ∈ ∂D. Then the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = 0 on PΩ,

(P−
0 )

has a unique solution u ∈ C∞(Ω) ∩ C(Ω). □

Proof. Let ϵ > 0 and consider the family of problems

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϵ on PΩ.

(P−
0+ϵ)

According to our previous results these problems have a unique solution uϵ(x, t) ∈
C∞(Ω) ∩ C0(Ω) for every ϵ > 0, which moreover su�ce uϵ(x, t) ∈ H2+α(Ω

′) for any

Ω′ ⊂⊂ Ω. We can use a method from Dierkes [Die19, p. 515, Proof of Thm. 1.6] to

show that uϵ(x, t) converges uniformly to a solution u(x, t) of (P−
0 ).
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We interpret uϵ = uϵ(x, t) as sequence in ϵ which, by the a priori estimates

obtained earlier, is bounded for every ϵ > 0. Moreover, it is monotonically increasing

in ϵ, which can be easily seen by application of the comparison principle [cf. Appendix,

Sec. 5.3]: If 0 < ϵ1 ≤ ϵ2 ≤ 1 we have

Puϵ1 = 0 = Puϵ2 on Ω,

uϵ1 = ϵ1 ≤ ϵ2 = uϵ2 on PΩ,

where

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u
,

so that by application of the comparison principle we obtain uϵ1 ≤ uϵ2 on Ω. Since uϵ

is a bounded and monotone sequence, the pointwise limes

lim
ϵ↓0

uϵ(x, t) = u(x, t)

exists everywhere on Ω. Furthermore, since uϵ(x, t) ∈ H2+α(Ω
′) for any Ω′ ⊂⊂ Ω, the

theorem of Arzela-Ascoli yields a subsequence ϵk for which all derivatives of uϵk(x, t)

that appear in the operator P converge uniformly to a function ũ(x, t) on any compact

subset Ω′ contained in Ω. Since uϵ(x, t) already has a pointwise limes, both limites have

to agree so that by inserting uϵ(x, t) into the initial boundary value problem (P−
0+ϵ) and

letting ϵ ↓ 0 we see, that u(x, t) is a solution to (P−
0 ) which also ful�lls the a priori

estimates. Hence, by the regularity theory we have u(x, t) ∈ C∞(Ω).

Next, we prove that u(x, t) is also continuous up to the boundary by showing

that the convergence is uniform on Ω. Observe, that the function uϵ1 + ϵ2 − ϵ1 ful�lls

P (uϵ1 + ϵ2 − ϵ1) = −u̇ϵ1 + aij(Duϵ1)Diju
ϵ1 − γ

uϵ1 + ϵ2 − ϵ1

= −u̇ϵ1 + aij(Duϵ1)Diju
ϵ1 − γ

uϵ1
+

γ

uϵ1
− γ

uϵ1 + ϵ2 − ϵ1

= Puϵ1 +
γ(ϵ2 − ϵ1)

uϵ1(uϵ1 + ϵ2 − ϵ1)
=

γ(ϵ2 − ϵ1)

uϵ1(uϵ1 + ϵ2 − ϵ1)

so comparing uϵ1 + ϵ2 − ϵ1 with u
ϵ2 yields for γ < 0

P (uϵ1 + ϵ2 − ϵ1) =
γ(ϵ2 − ϵ1)

uϵ1(uϵ1 + ϵ2 − ϵ1)
≤ 0 = Puϵ2 on Ω,

uϵ1 + ϵ2 − ϵ1 = ϵ2 = uϵ2 on PΩ,

which, by application of the comparison principle, gives us

uϵ2 ≤ uϵ1 + (ϵ2 − ϵ1) ⇔ uϵ2 − uϵ1 ≤ ϵ2 − ϵ1 on Ω.
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Hence, the convergence is uniform in ϵ on Ω and thus u(x, t) ∈ C∞(Ω) ∩ C(Ω).
Uniqueness also follows easily from the comparison principle: Assume û is

another (di�erent) solution to (P−
0 ). Then we immediately have

Pû = Pu = 0 on Ω,

û = u = 0 on PΩ,

so after application of the comparison principle in either direction we have û ≥ u and

û ≤ u on Ω which implies û = u on Ω and concludes the proof. □

Remark. The method presented above can also be used in cases where ψ0 ̸≡ 0 and

ψ0 = 0 on subsets S ⊂ PΩ. Thus, we can relax the restriction u0, ϕ0 > 0 in (P−
ϕ0,u0>0)

to ϕ0, u0 ≥ 0 instead.

4.2 Convergence to a stationary solution of (P±
ϕ0,u0>c)

In this section we prove, that a solution u(x, t) to (P±
ϕ0,u0>c

) has a subsequence of times

tk → ∞, for which u(x, tk) converges to a solution of the stationary problem

∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on D,

u(x) = ϕ0(x) on ∂D.

(P S
ϕ0
)

We achieve this by making use of the Arzela-Ascoli theorem as well as an idea from

Huisken [Hui89, p.375], which can also be found in Stone [Sto94, p.175], that consists

in di�erentiating the energy ∫
D

uγv dx

related to the (PDE).

Lemma 4.2 Assume Ω = D × (0,∞) and u(x, t) ∈ H2+α(Ω) for some α ∈ (0, 1]. If∫ ∞

0

∫
D

u̇2(x, t) dx dt <∞,

then

lim
t→∞

u̇(x, t) = 0,

for every x ∈ D. □
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Proof. We prove the claim by contradiction. Suppose it is not

lim
t→∞

u̇(x, t) = 0 for every x ∈ D.

Then there are numbers ϵ0 > 0, N0 ∈ N and a sequence of points Xk = (xk, tk) ∈ Ω

with lim
k→∞

tk = ∞, so that

|u̇(Xk)| ≥ ϵ0 for every k ≥ N0.

De�ne

K ϵ0
2
:=
{
(x, t) ∈ Ω | |u̇(X)| ≥ ϵ0

2

}
and observe that ∫ ∞

0

∫
D

u̇2(x, t) dx dt ≥ ϵ20
4
|K ϵ0

2
|,

which, by the property ∫ ∞

0

∫
D

u̇2(x, t) dx dt <∞,

implies that |K ϵ0
2
| < ∞. Since u̇ is assumed to be uniformly Hölder continuous on Ω,

there is a constant K ∈ R, so that

|u̇(X)− u̇(Xk)| ≤ K|X −Xk|α

for every X ∈ Ω and some α ∈ (0, 1]. If we choose δ > 0 to su�ce

δ ≤
( ϵ0
2K

) 1
α

and consider the sets

Nδ(Xk) := {X ∈ Ω | |X −Xk| < δ},

then by Hölder continuity of u̇(X) it follows

|u̇(X)− u̇(Xk)| ≤ K · |X −Xk|α ≤ Kδα ≤ ϵ0
2
,

for every X ∈ Nδ(Xk). Hence, for every X ∈ Nδ(Xk) with k ≥ N0 we have |u̇(X)| ≥ ϵ0
2
,

so that for every k ≥ N0

Nδ(Xk) ⊂ K ϵ0
2
.
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Furthermore, since tk → ∞, we can �nd a subsequence ki with k1 ≥ N0 and ki → ∞
as i→ ∞, for which Nδ(Xki) ∩Nδ(Xkj) = ∅. Then we have

|K ϵ0
2
| ≥ | ∪k≥N0 Nδ(Xk)| ≥ | ∪i∈N Nδ(Xki)| =

∞∑
i=1

|Nδ(Xki)| = ∞,

since obviously |Nδ(Xki)| ≥ c(ki) > 0 for every ki ∈ N. This is a contradiction to

|K ϵ0
2
| <∞ and the claim follows. □

Proposition 4.3 (Convergence to a stationary solution) Let Ω = D×(0, T ), T ≤
∞ be a domain with PΩ ∈ H2+α. Let D ⊂ Rn be a domain with non-negative inward

mean curvature HD(y) ≥ 0 for every y ∈ ∂D and let ψ0(x) ≡ ψ0(x, t) ∈ H2+α(Ω) be

given by

ψ0(x) =

{
u0(x), if x ∈ D

ϕ0(x), if x ∈ ∂D,

ful�lling the compatibility condition Pψ0 = 0 on CΩ. Then the unique solution u ∈
H2+α(Ω) ∩ C∞(Ω) to the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ψ0(x) on PΩ,

has a subsequence of times tk, for which u(x, tk) converges to a solution u∞(x) of the

stationary problem

∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on D,

u(x) = ϕ0(x) on ∂D.

(P S
ϕ0
)

If the solution to (P S
ϕ0
) is unique then not only a subsequence but the whole sequence

u(x, t) converges to u∞(x) for t→ ∞. □

Proof. Since u ∈ H2+α(Ω), the theorem of Arzela-Ascoli yields a subsequence of times

tk, for which

u(x, tk) → u∞(x), Du(x, tk) → Du∞(x), D2u(x, tk) → D2u∞(x), u̇(x, tk) → u̇∞(x)

uniformly on Ω, as tk → ∞. Our goal is to prove, that the function u∞(x) is a solution

to the stationary problem. To achieve this, we show that the relation∫ ∞

0

∫
D

u̇2(x, t) dx dt <∞ (4.1)

41



holds. If this integral is �nite, we must have

lim
tk→∞

u̇(x, tk) = 0

by Lemma 4.2. We obtain estimate (4.1) by di�erentiating the energy∫
D

uγv dx (4.2)

in time direction, where v =
√

1 + |Du|2, which yields

d

dt

∫
D

uγv dx =

∫
D

γuγ−1u̇v dx+

∫
D

uγ v̇ dx. (4.3)

For the upcoming calculations we use the notation

νi =
ui
v

and gij = δij − νiνj.

This results in the relation

gijuij = ∆u− uiuj
1 + |Du|2

uij = v · div

(
Du√

1 + |Du|2

)
= vDiν

i

and by the de�nition of v we also have

v̇ =
u̇iui
v

=
ui
v
Di(u̇) = νiDi(u̇).

If we now substitute νiDi(u̇) for v̇ in (4.3) and integrate by parts, where boundary

terms are zero because u̇ ≡ 0 on SΩ, we can continue the previous calculations

d

dt

∫
D

uγv dx =

∫
D

γuγ−1u̇v dx+

∫
D

uγ v̇ dx

=

∫
D

γuγ−1u̇v dx−
∫
D

Di(u
γνi)u̇ dx

=

∫
D

γuγ−1u̇v dx−
∫
D

γuγ−1ui
ui
v
u̇+ uγDi(ν

i)u̇ dx

=

∫
D

γuγ−1u̇v dx−
∫
D

γuγ−1 |Du|2

v
u̇+

1

v
uγgijuiju̇ dx

=

∫
D

γuγ−1u̇

(
1 + |Du|2 − |Du|2

v

)
− 1

v
uγgijuiju̇ dx

=

∫
D

1

v
uγu̇

(γ
u
− gijuij

)
dx.
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At this point we make use of the (PDE), that states

u̇ = gijuij −
γ

u
,

so we end up with

d

dt

∫
D

uγv dx = −
∫
D

uγ

v
u̇2 dx.

This equation remains valid for γ = 0, since here we have

d

dt

∫
D

v dx =

∫
D

v̇ dx = −
∫
D

Diν
iu̇ dx

= −
∫
D

1

v
gijuiju̇ dx = −

∫
D

1

v
u̇2 dx.

Now we may apply the a priori estimates |u| ≥ c±1 > 0 and |Du| ≤ C3 from the previous

chapters to obtain

d

dt

∫
D

uγv dx = −
∫
D

uγ

v
u̇2 dx ≤ −C(c±1 , C3)

∫
D

u̇2 dx,

so after integration from 0 to T it follows, that∫ T

0

∫
D

u̇2 dx dt ≤ 1

C(c±1 , C3)

(∫
D

uγ(x, 0)v(x, 0) dx−
∫
D

uγ(x, T )v(x, T ) dx

)
≤ 1

C(c±1 , C3)

∫
D

uγ0(x) ·
√

1 + |Du0(x)|2 dx = C(c±1 , C3, D, u0, Du0) <∞,

where we used that uγ, v ≥ 0. Since the bound is independent of T , we can let T → ∞
to deduce that ∫ ∞

0

∫
D

u̇2(x, t) dx dt <∞. (4.4)

Hence, if we insert u(x, tk) and its derivatives into the (PDE) and let tk → ∞, we see,

that u∞(x) is a solution to the stationary problem.

Now, consider the case of unique solvability of (P S
ϕ0
). Let us assume there is

another subsequence u(x, ti) that converges to a di�erent function û∞(x) for i → ∞.

Because of our foregoing calculations, û∞ is another stationary solution to the prob-

lem (P S
ϕ0
) but the solution to this problem is unique so that we have u∞(x) = û∞(x).

Hence, every subsequence of u(x, t) converges to the same function, which implies that

the whole sequence ful�lls lim
t→∞

u(x, t) = u∞(x). □

Remark. With further restrictions on the initial and boundary data we can show

as in Stone [Sto94], that the convergence is of exponential order and that the whole
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sequence u(x, t) converges to u∞(x) even if the solution to (P S
ϕ0
) is not unique. □

4.3 Interior gradient estimate for (P−
ϕ0,u0>0)

We prove an interior gradient estimate for the case γ < 0. The proof is based on a

variant of a method from Korevaar [Kor86]. We start by quoting the theorem from

Korevaar [Kor86] which yields an interior gradient estimate for a similar problem in

the elliptic case.

Lemma 4.4 (Interior Gradient Bound for Solutions to the Prescribed Mean

Curvature Equation) Let x ∈ Rn, B1 = {x | |x| < 1} and let u ∈ C3(B1) be a

negative solution to the equation

1

v
gijuij − h(x, u(x)) = 0,

∂h

∂u
≥ 0, |h|+ |Dxh| ≤M,

with v =
√

1 + |Du|2, uij = Diju, g
ij = δij−uiuj(1+|Du|2)−1. Then there is a constant

c with

|Du(0)| ≤ c,

where c only depends on M,n and u(0). □

For the applicability of this lemma we study the mirrored Problem to (P−
ϕ0,u0>0) which

is given by

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = −ϕ0(x) < 0 on SΩ,

u(x, 0) = −u0(x) < 0 on BΩ,

(P−
ϕ,u0>0)

where γ < 0 and ϕ0, u0 are the initial and boundary values of (P−
ϕ0,u0>0). Observe that

−u solves (P−
ϕ,u0>0) if and only if u solves (P−

ϕ0,u0>0). Hence, all bounds for |u| and |Du|
are also valid for −u and every bound for −u and its gradient will be valid for u.

Proposition 4.5 (Interior gradient estimate for the mirrored problem) Let

ϕ0, u0 ∈ C0(D) with ϕ0 = u0 on CΩ, let u ∈ C2,1(Ω) ∩ C0(Ω) be a negative solution

to (P−
ϕ,u0>0) and let δ = δ(x, t) = min

{
1
2
dist(x, ∂D), 1

2
t, 1
}
. Then there is a constant

C = C(c−1 , n, δ), with

|Du(X)| ≤ C on Ω (4.5)

for every X = (x, t) ∈ Ω, where c−1 is the constant from chapter 2.1. □
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Corollary 4.6 (Interior gradient estimate for (P−
ϕ0,u0>0)) Let ϕ0, u0 and δ be chosen

as in the previous proposition. If u ∈ C2,1(Ω)∩C0(Ω) is a positive solution to (P−
ϕ0,u0>0)

then there is a constant C = C(c−1 , n, δ), with

|Du(X)| ≤ C on Ω (4.6)

for every X = (x, t) ∈ Ω, where c−1 is the constant from chapter 2.1. □

The corollary is an immediate consequence of proposition 4.5.

Proof (of proposition 4.5). Once again set

νi =
ui
v

and gij = δij − νiνj.

Furthermore, we introduce the operator L given by

Lw := −ẇ + gijwij,

so that we may express the parabolic operator P with

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u
,

by

Pu = −u̇+ gijuij −
γ

u
= Lu− γ

u
.

We will also make use of a cuto� function. Therefore, let X0 = (x0, t0) be an arbitrary

point in Ω and observe, that we can assume Ω = D × (0,∞) since we have shown,

that every solution to (P−
ϕ0,u0>0) exists for all times. Set uX0 := −u(X0) > 0 and

for 0 < δ ≤ 1 let Qδ(X0) := Bδ(x0) × (0, 2t0) be a cylinder centered around X0,

where δ is always chosen small enough to guarantee that Qδ ⊂ Ω. Then we de�ne

η(x, t, z) := f ◦ µ(x, t, z) with f(µ) = ekµ − 1 and the cuto� function

µ : Bδ(x0)× (0, 2t0)× R− → R+, µ(x, t, z) =

(
δ2

2uX0

z +
t(2t0 − t)

t20
(δ2 − |x− x0|2)

)
+

,

where (g)+ := max{g, 0} denotes the positive part of g and k > 0 is a constant at our

disposal. Observe, that µ is zero on the boundary of Qδ(X0), non-negative in Qδ(X0)

and di�erentiable, whenever it is positive. De�ne the function

h(x, t) := η(x, t, u(x, t)) · v(x, t).
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Since h(x0, t0) = e
1
2
kδ2 − 1 ̸= 0, the set on which h(x, t) is positive is not empty.

Moreover, h(x, t) = 0 on the parabolic boundary of Qδ(X0) as well as h(x, 2t0) = 0 for

every x ∈ Bδ(x0). Hence, there must be a point P0 in the interior of Qδ(X0), at which

h(x, t) attains a positive maximum. At this point we have

i) hi = 0,

ii) hij ≤ 0 (negative semide�nite Hessian),

iii) ḣ = 0.

Now, write (η)i for
dη
dxi

and compute

Lh = gij(ηv)ij −
d

dt
(ηv)

= gij((η)ijv + (η)ivj + (η)jvi + ηvij)− η̇v − ηv̇

= vLη + ηLv + 2gij(η)ivj.

Since at P0 we have

0 = hi = (η)iv + ηvi ⇔ (η)i = −ηvi
v
,

we can insert this expression for (η)i to obtain

Lh = vLη + η

(
Lv − 2

v
gijvjvi

)
. (4.7)

In the next step we show that

Lv − 2

v
gijvivj ≥ 0. (4.8)

Calculating the derivatives of v yields

vi =
ukuki
v

= νkuki,

vij = νkukij + uki

(
ukjv − ukvj

v2

)
= νkukij +

1

v
(ukiukj − νluljukiν

k). (4.9)

Note, that if we interpret the expression

ukiukj − νluljukiν
k =:Mij

as matrix M = (Mij) ∈ Rn×n, then M is positive semi-de�nite as long as |ν| ≤ 1. To

see this, let U = (uij) ∈ Rn×n and ν = (ν1, . . . , νn) ∈ Rn. Further let ⊗ be the dyadic

product of two vectors so that for x, y ∈ Rn we have x ⊗ y = x · yT where the dot

now denotes the usual matrix multiplication and the scalar product is denoted by ⟨·, ·⟩.
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Since U is symmetric, we may express M by

M = UU − ((Uν)⊗ (Uν)) = UU − U(ν · νT )U = U(I − ννT )U,

where I is the unit matrix. Hence, we obtain with Ux = y ∈ Rn

xTMx = xTUT (I − ννT )Ux = yT (I − ννT )y = |y|2 − |⟨y, ν⟩|2 ≥ 0

if |ν| ≤ 1 and thus M is a positive semi-de�nite matrix. Multiplying (4.9) by gij yields

gijvij = gijuijkν
k +

1

v
gij(ukiukj − νkukiuljν

l) (4.10)

and by interpreting the last term as trace of a product of the two positive semi-de�nite

matrices G := gij and M =Mij we obtain [cf. Appendix, Sec. 5.2]

1

v
gij(ukiukj − νkukiuljν

l) =
1

v
tr(GM) ≥ 0.

Thus, the only expression from (4.10) that remains to be estimated is gijuijkν
k. We

use the (PDE) to continue

gijuijkν
k = (gijuij)kν

k − gijk uijν
k =

(
u̇+

γ

u

)
k
νk − gijk uijν

k.

Furthermore, we have

−gijk = (νiνj)k =
1

v
((uik − νiνlulk)ν

j + νi(ujk − νjνlukl))

=
2

v
(uik − νiνlulk)ν

j,

which leads to

−gijk uijν
k =

2

v
(uik − νiνlulk)ν

juijν
k

=
2

v
(vivi − vlν

lviν
i) =

2

v
(gijvivj).

Collecting terms, we have shown that

gijvij = gijuijkν
k +

1

v
gij(ukiukj − νkukiuljν

l)

≥ gijuijkν
k =

(
u̇+

γ

u

)
k
νk +

2

v
gijvivj.

(4.11)

Returning to the original task of showing (4.8), we also need the time-derivative of v,
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which is given by

v̇ = u̇k
uk
v

= u̇kν
k.

Thus, by using this relation and (4.11) we obtain

Lv − 2

v
gijvivj = −v̇ + gijvij −

2

v
gijvivj

≥ −v̇ +
(
u̇+

γ

u

)
k
νk +

2

v
gijvivj −

2

v
gijvivj

= −u̇kνk + u̇kν
k − γuk

u2
νk = −γ |Du|

2

vu2
> 0,

since −γ > 0.

Now that (4.8) is proven, we obtain from (4.7) together with ḣ = 0 in P0

Lh = gijhij − ḣ = gijhij ≥ vLη. (4.12)

Observe that, since hij is negative semi-de�nite at the point P0, its product with the

positive semi-de�nite matrix hij has a non-positive trace, that is

gijhij ≤ 0.

Thus, if the assumption of a large (unbound) gradient leads to the estimate Lη < 0,

we obtain a contradiction and the gradient must be bounded. Therefore, we continue

calculating the components of Lη = gij(η)ij − η̇. Since η = f ◦ µ(x, t, u(x, t)) with f
and µ de�ned as before, we have

η̇ = f ′(∂tµ+ µzu̇),

(η)i = f ′(µi + µzui),

(η)ij = f ′′(µi + µzui)(µj + µzuj) + f ′(µij + µizuj + µzjui + µzzuiuj + µzuij),

where f and its derivatives are evaluated at µ and ∂tµ stands for the derivative of

µ(x, t, z) in t-direction. We see from the de�nition of µ, that

0 ≤ µ ≤ δ2 ≤ 1, µz =
δ2

2uX0

≤ 1

2uX0

, µzz = µiz = 0, µij = −2δij,

which simpli�es the expression for (η)ij to

(η)ij = f ′′
(
µi +

δ2

2uX0

ui

)(
µj +

δ2

2uX0

uj

)
+ f ′

(
µij +

δ2

2uX0

uij

)
.
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Now, we calculate Lη

Lη = −η̇ + gij(η)ij

= f ′′gij
(
µiµj +

δ2

2uX0

µiuj +
δ2

2uX0

µjui +
δ4

4u2X0

uiuj

)
+ f ′

(
gijµij − ∂tµ+

δ2

2uX0

(gijuij − u̇)

)
.

(4.13)

Here, we have

gijµiµj ≥ λ|µ|2 ≥ 0,

gijuiuj =
∑
i

u2i −
∑
i,j

u2iu
2
j

1 + |Du|2
=
∑
i

u2i

(
1 + |Du|2 −

∑
j u

2
j

1 + |Du|2

)
=

|Du|2

1 + |Du|2
,

with λ being the smallest eigenvalue of gij and

gij(µiuj + µjui) = 2
∑
i

µiui −
1

1 + |Du|2
∑
i,j

µiuiu
2
j + µjuju

2
i

= 2
∑
i

µiui
1 + |Du|2 −

∑
j u

2
j

1 + |Du|2
=

2µiui
1 + |Du|2

.

Using the (PDE), we may also deduce

δ2

2uX0

(gijuij − u̇) =
γδ2

2uuX0

> 0,

because γ, u < 0 and uX0 > 0. Inserting these results into expression (4.13) for Lη we

are left with

Lη ≥ f ′′
(

δ2

2uX0

2µiui
1 + |Du|2

+
δ4

4u2X0

|Du|2

1 + |Du|2

)
+ f ′(gijµij − ∂tµ)

= f ′′ δ
4|Du|2 + 4δ2uX0µiui
4u2X0

(1 + |Du|2)
+ f ′(gijµij − ∂tµ).

From the properties of µ we infer

µij = −2δij ⇒ gijµij = −2gii = −2

(
δii − |Du|2

1 + |Du|2

)
≥ −2n

as well as

−∂tµ ≥ −4δ2

t0
,

so that the coe�cient of f ′ is bounded below by −(2n + 4δ2

t0
). By our choice of δ this

expression is always bounded below, no matter what we choose for t0. For instance if
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t0 is close to 0, then

δ ≤ t0
2
⇒ −4δ2

t0
≥ −t0

t0→0→ 0

and if t0 is large, then

δ ≤ 1 ⇒ −4δ2

t0
≥ − 4

t0

t0→∞→ 0.

For the coe�cient of f ′′ we estimate the enumerator of the fraction �rst. Whenever µ

is not zero it follows

|Dµ|2 =
n∑
i=1

µ2
i =

t2(2t0 − t)2

t40
(4|x− x0|2) ≤ 4δ2

and thus we can estimate

µi ≤ |Dµ| ≤ 2δ and also ui ≤ |Du|.

Hence, if we assume |Du| ≥ 16uX0

δ
, we obtain for the enumerator

δ4|Du|2 + 4δ2uX0uiµi ≥ δ4|Du|2 − 8δ3|Du|uX0 ≥
δ4

2
|Du|2.

If we further assume that |Du| > max
(
3,

16uX0

δ

)
, we can estimate the coe�cient of f ′′

by

δ4|Du|2 + 4δ2uX0uiµi
4u2X0

(1 + |Du|2)
≥ δ4

8u2X0

|Du|2

1 + |Du|2
>

δ4

10u2X0

.

Summarizing the calculations up to this point we see that Lη is bounded below by an

expression of the form c1f
′′ + c2f

′, where c1 > 0, c2 > −∞ and f(µ) = ekµ − 1. The

derivatives of f are f ′ = kekµ, f ′′ = k2ekµ so that by choosing k su�ciently large, we

can guarantee that Lη ≥ 0. Hence, under the assumption that |Du| > max
(
3,

16uX0

δ

)
,

we have shown the relation (cf. (4.12))

gijhij ≥ vLη > 0 in P0.

But since also gijhij ≤ 0 in P0 as we have shown earlier, the assumption |Du| >
max

(
3,

16uX0

δ

)
:= C̃ at P0 must be wrong. Hence,

|Du(P0)| ≤ C̃ ⇒ v(P0) ≤ 1 + C̃ =: Ĉ.

Thus, for every point X ∈ Qδ(X0) we have

η(x, t, u(x)) · v(x) ≤ η(P0) · v(P0) ≤ Ĉ · ekµ(P0) ≤ Ĉ · ekδ2 . (4.14)
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Especially for X = X0 we obtain(
e

1
2
kδ2 − 1

)
v(X0) ≤ Ĉ · ekδ2 , (4.15)

which yields the desired interior gradient bound. □

4.4 Existence of a Singularity after Finite Time for (P+
ϕ0,u0

)

We have proven earlier, that for su�ciently large initial and boundary values u0, ϕ0

there is always a solution for the case γ > 0 which exists for all times t > 0. Hence,

the question arises what happens if the boundary values are lower than the assumed

threshold. From the structure of the parabolic operator P with

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u

it is clear that if u→ 0, then u /∈ C2,1, since if we had u ∈ C2,1 then∣∣∣∣−u̇+∆u− DiuDju

1 + |Du|2
Diju

∣∣∣∣ <∞,

but also

lim
u→0

∣∣∣γ
u

∣∣∣ = ∞.

Thus, we must have some sort of irregularity whenever u = 0 so we may say that u has

a singularity if it reaches the value 0. By comparison with cone-shaped surfaces which

are slowly moving towards the {u = 0}-plane we will be able to demonstrate that there

cannot be a solution that exists for all times t > 0, if the initial and boundary values

ϕ0, u0 are too small.

Proposition 4.7 Let Ω = D × (0, T ) with T ≤ ∞. Consider the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ϕ0(x) on SΩ,

u(x, 0) = u0(x) on BΩ.

(P+
ϕ0,u0

)

Let x0 ∈ D be a point that ful�lls

dist(x0, ∂D) ≥ dist(x̃, ∂D), for every x̃ ∈ D,

which always exists since the distance function is continuous and D is a compact set.

Set r0 := dist(x0, ∂D) and let δ ∈ R+, 0 ≤ t0 < T be arbitrary values. If the initial and

51



boundary values su�ce

sup
x∈D

ϕ0 < r0

√
γ

n+ δ2

2t0

, sup
x∈D

u0 < δ

√
γ

n+ δ2

2t0

=

√
γ

n
δ2

+ 1
2t0

,

then there is no classical solution u ∈ C2,1(Ω) ∩ C(Ω) to problem (P+
ϕ0,u0

). □

Proof. We intend to apply the weak comparison principle [cf. Appendix, Sec. 5.3].

Recall that the parabolic operator P is given by

Pu = −u̇+ vH(u)− γ

u
= 0,

with v =
√
1 + |Du|2 and

H(u) = Di

(
Diu√

1 + |Du|2

)

being the mean curvature of graph(u). Let x0, t0 be as in the proposition and de�ne

Ωt0 := D × (0, t0). Now, consider the function

f(x, t) := a

√
δ2

t0
(t0 − t) + |x− x0|2,

with a, δ ∈ R+. Observe, that

f(x0, t0) = 0 and f(x, t) > 0 for (x, t) ∈ (Ωt0 ∩ PΩt0).

Let us assume, that u(x, t) is a classical solution to (P+
ϕ0,u0

) in every point (x, t) ∈ Ωt0 ,

which especially implies that there are no singularities up to that time. By using the

comparison principle we show that u is bounded above by f . Then, for (x, t) → (x0, t0)

we obtain 0 ≤ u ≤ f = 0 and thus u must have a singularity at the time t0.

We begin by calculating the derivatives of f

ḟ = −aδ
2

2t0

(√
δ2

t0
(t0 − t) + |x− x0|2

)−1
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and also, by abbreviating g(t) := δ2

t0
(t0 − t) with x0 = (x01, . . . , x

0
n),

Dif = a
xi − x0i√

g(t) + |x− x0|2
,

1 + |Df |2 = 1 + a2
|x− x0|2

g(t) + |x− x0|2
=
g(t) + (1 + a2)|x− x0|2

g(t) + |x− x0|2
,

H(f) = Di

(
a

xi − x0i√
g(t) + |x− x0|2

·
√
g(t) + |x− x0|2√

g(t) + (1 + a2)|x− x0|2

)

= aDi

(
xi − x0i√

g(t) + (1 + a2)|x− x0|2

)

= a
n∑
i=1

√
g(t) + (1 + a2)|x− x0|2 − (xi − x0i ) ·

(1+a2)(xi−x0i )√
g(t)+(1+a2)|x−x0|2

g(t) + (1 + a2)|x− x0|2

= a · n[g(t) + (1 + a2)|x− x0|2]− (1 + a2)|x− x0|2

[g(t) + (1 + a2)|x− x0|2]
3
2

.

Hence, we obtain for Pf

Pf = −ḟ +
√
1 + |Df |2H(f)− γ

f

=
aδ2

2t0
· 1√

g(t) + |x− x0|2

+

√
g(t) + (1 + a2)|x− x0|2√

g(t) + |x− x0|2
· a · n[g(t) + (1 + a2)|x− x0|2]− (1 + a2)|x− x0|2

[g(t) + (1 + a2)|x− x0|2]
3
2

− γ

a
√
g(t) + |x− x0|2

=
a√

g(t) + |x− x0|2
·
(
δ2

2t0
+ n− (1 + a2)|x− x0|2

g(t) + (1 + a2)|x− x0|2
− γ

a2

)
.

To show that f lies above the solution u, we need to achieve

Pf < Pu = 0 on Ωt0 ,

f > u on PΩt0 .

Since

a√
g(t) + |x− x0|2

> 0 and
(1 + a2)|x− x0|2

g(t) + (1 + a2)|x− x0|2
∈ [0, 1)

for every (x, t) ∈ Ωt0 , the inequality Pf < 0 is ful�lled if

δ2

2t0
+ n− γ

a2
< 0 ⇔ a <

√
γ

n+ δ2

2t0

.
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Set r0 := dist(x0, ∂D) and consider the cylinder Pr0(x0, t0) := Br0 × (0, t0). Note, that

Br0 is a �largest ball� contained in D (there might be more than one of these balls).

Then we obtain on PPr0

f(x, t) = a

√
δ2

t0
(t0 − t) + r20 ≥ ar0 on ∂Br0(x0)× (0, t0),

f(x, 0) = a
√
δ2 + |x− x0|2 ≥ aδ on Br0(x0)× {0}.

Since f(x, t) is increasing with greater distance to x0, we can use the same estimates

on D × {0} and ∂D × (0, t0) respectively. Assume now, that

sup
x∈D

ϕ0 < r0

√
γ

n+ δ2

2t0

, sup
x∈D

u0 < δ

√
γ

n+ δ2

2t0

.

Then there is an ϵ > 0, such that also

sup
x∈D

ϕ0 ≤ r0

√ γ

n+ δ2

2t0

− ϵ

 , sup
x∈D

u0 ≤ δ

√ γ

n+ δ2

2t0

− ϵ

 .

If we set

a :=

√
γ

n+ δ2

2t0

− ϵ

2

the claim follows. □

Remark. Observe, that by increasing δ, the bound for ϕ0 becomes smaller while the

one for u0 increases. Thus, there is no obvious choice for δ. However, we can choose

δ = r0, which maximizes the value of the minimum of both data, implying that there

is no solution, if

max

{
sup
x∈D

ϕ0, sup
x∈D

u0

}
≤
√

γ

n+
r20
2t0

r0 =

√
γ

n
r20

+ 1
2t0

.

□

Corollary. We can use the comparison principle the opposite way to improve the

lower bounds from chapter 2 for large γ > 1. The function

f(x, t) = a

√
δ2

t0
(t0 − t) + |x− x0|2
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lies beneath a solution u to (P+
ϕ0,u0>c

) on Ω = D × (0, T ) with 0 < T ≤ ∞, if

Pf > Pu = 0 on Ω,

f < u on PΩ.

Let x0 ∈ D be an arbitrary point and set t0 = T, d := diam(D). The condition Pf > 0

is ful�lled if
δ2

2T
+ n− 1− γ

a2
> 0 ⇔ a >

√
γ

n+ δ2

2T
− 1

.

Restricting the problem to the cylindrical domain Pd(x0) := Bd(x0)× (0, T ), we obtain

on its boundary

f(x, t) = a

√
δ2

T
(T − t) + d2 ≤ a

√
δ2 + d2 on ∂Bd(x0)× (0, T ),

f(x, 0) = a
√
δ2 + |x− x0|2 ≤ a

√
δ2 + d2 on Bd(x0)× {0}.

Now, observe that D ⊂⊂ Bd. Since f(x, t) is monotonically increasing with greater

distance to x0, the above conditions are especially ful�lled on PΩ. Thus, there is a

solution to (P+
ϕ0,u0>c

), if

min

{
inf
x∈D

ϕ0, inf
x∈D

u0

}
>

√
γ(δ2 + d2)

n+ δ2

2T
− 1

δ→0→
√

γ

n− 1
d.

□

4.5 Solutions to (P+
ϕ0,u0

) for low Initial and Boundary Values

Throughout this chapter let Ω = D × (0, T ) with 0 < T ≤ ∞ and HD(y) ≥ 0 for all

y ∈ ∂D, where HD(y) denotes the inward mean curvature of D at the point y. Consider

the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ψ0(x) on PΩ,

(P+
ψ0
)

where ψ0(x) ∈ H2+α(Ω), ψ0(x) > 0 with

ψ0(x) =

{
u0(x), if x ∈ D

ϕ0(x), if x ∈ ∂D

are the initial and boundary values that can now be chosen arbitrarily small.
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Proposition 4.8 (Lower bound for small times) Set

ψ0 := min
x∈D

ψ0(x), T0 :=
ψ0

2

2γ
, Ωt := D × (0, t).

For every τ ∈ (0, T0) there is a value δ > 0 independent of the solution u(x, t), so that

every classical solution u(x, t) to the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ωτ ,

u(x, t) = ψ0(x) on PΩτ ,

(Pτ )

is a priori bounded below by δ. □

Proof. We use the weak comparison principle to construct a lower bound [cf. Ap-

pendix, Sec. 5.3]. Let δ > 0 be a constant at our disposal. For t0 > 0 to be speci�ed

later consider the function

f : (0, t0) → R, f(t) =
√

2γ(t0 − t) + δ,

with derivative

f ′(t) = −
√
γ√

2(t0 − t)
.

Given the parabolic operator

Pu = −u̇+ vH(u)− γ

u
,

the function f(t) satis�es

Pf = −f ′(t)− γ

f
=

√
γ√

2(t0 − t)
−

√
γ√

2(t0 − t) + δ√
γ

> 0

for every t ∈ (0, t0), δ > 0 and thus Pf > Pu on Ωt0 . For the estimate on the boundary

let t0 ful�ll √
2γt0 + δ < ψ0, (4.16)

which means that for small ϵ > 0 we can take t0 as

√
2γt0 + δ = ψ0 − ϵ⇔ t0(ϵ, δ) =

(ψ0 − ϵ− δ)2

2γ
,

where now ϵ and δ are chosen to ful�ll ϵ + δ < ψ0. Then (4.16) implies, that f(0) <
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u(x, 0) and since f(t) is monotonically decreasing in t we also have f(t) < u(x, t) for

all (x, t) ∈ ∂D × (0, t0). Hence, it is

f(t) < u(x, t) on PΩt0 .

Since P is a parabolic operator, we can apply the weak comparison principle to obtain

f(t) < u(x, t) on Ωt0 .

By letting ϵ, δ → 0 this estimate proves, that for every τ ∈ (0, T0) there is a value

δ > 0, independent of the solution u(x, t), such that

0 < δ ≤ f(t) < u(x, t) for all (x, t) ∈ Ωτ ,

which concludes the proof. □

Corollary. The lower bound from proposition 4.8 together with the other a priori

estimates developed in chapter 2 allow us to conclude that for any boundary and

initial values ψ0(x) > 0 there is a (small) time T0 > 0 such that for every τ ∈ (0, T0)

the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ωτ ,

u(x, t) = ψ0(x) on PΩτ ,

(Pτ )

has a unique classical solution, which is regular in the interior and continuous up to

the boundary of Ωτ . □

Next we prove, that the unique classical solution which was obtained for small

times 0 < τ < T0 exists up to a time T̂ ≥ T0, at which for the �rst time

lim
t↑T̂

min
x∈D

u(x, t) = 0.

In other words, the solution exists as long as min
x∈D

u(x, t) > 0. For the proof we make

use of the following lemma.

Lemma 4.9 Let Ω = D × (0, T ) with 0 < T ≤ ∞ and HD(y) ≥ 0 for all y ∈ ∂D.

Assume, that u(x, t) is the unique classical solution to the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ψ0(x) on PΩ,

(P+
ψ0
)

for every τ ∈ (0, T0) with 0 < T0 ≤ T . Then exactly one of the two statements is
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correct.

i) lim
t↑T0

min
x∈D

u(x, t) = 0.

ii) u(x, T0) > 0 for all x ∈ D and there is a time T̄ > T0 so that (P+
ψ0
) has a unique

solution for all τ ∈ (0, T̄ ).

□

Proof. Denote by u(x, t) the unique solution for every τ ∈ (0, T0) and de�ne

u(t) := min
x∈D

u(x, t).

For ϵ, δ > 0 with ϵ+ δ < u(t) consider the function

g : (0, T0) → R, g(t) = t+
(u(t)− ϵ− δ)2

2γ
.

Then exactly one of the following two statements is correct.

i) There are numbers ϵ, δ > 0 with ϵ+ δ < u(t) and τ1 ∈ (0, T0), so that g(τ1) > T0.

ii) For every ϵ, δ > 0 with ϵ+ δ < u(t) and every t ∈ (0, T0) we have g(t) ≤ T0.

The second case implies

t+
(u(t)− ϵ− δ)2

2γ
≤ T0 ⇔ u(t) ≤

√
2γ(T0 − t) + ϵ+ δ

for every ϵ, δ > 0 with ϵ+ δ < u(t) and t ∈ (0, T0) and hence, by letting ϵ, δ → 0,

lim
t↑T0

min
x∈D

u(x, t) = 0.

If instead the �rst case is true, de�ne

t1(ϵ, δ) :=
(u(τ1)− ϵ− δ)2

2γ
, T̄ (ϵ, δ) = τ1 + t1(ϵ, δ) = g(τ1) > T0,

as well as for some small δ > 0

f1(t) : (τ1, τ1 + t1) → R, f1(t) =
√
2γ(t1 − (t− τ1)) + δ.

For τ ∈ (τ1, T̄ ) and Ωτ1,τ := D × (τ1, τ) consider the problem

−v̇ +∆v − DivDjv

1 + |Dv|2
Dijv =

γ

v
on Ωτ1,τ ,

v(x, t) = u(x, τ1) on PΩτ1,τ .
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As in the proof of proposition 4.8, we can use the weak comparison principle to show

that the function f1(t) lies below every solution v(x, t) to the problem above for all

times t ∈ (τ1, T̄ ). Thus, by the a priori estimates of section 2 there is a unique solution

v(x, t) which solves the problem for t ∈ (τ1, T̄ ) and agrees with the unique solution

u(x, t) for the problem with times 0 < t < T0 at time t = τ1. Hence, the function

U(x, t) =

{
u(x, t), if t ∈ [0, τ1)

v(x, t), if t ∈ [τ1, T̄ )

solves the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ωτ ,

u(x, t) = ψ0(x) on PΩτ ,

for every τ ∈ (0, T̄ ) with T̄ > T0. □

By the application of Lemma 4.9 we obtain

Proposition 4.10 (Maximum Existence Time T̂ ) Let Ω = D × (0, T ) with 0 <

T ≤ ∞ and HD(y) ≥ 0 for every y ∈ ∂D. The problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ψ0(x) on PΩ,

(P+
ψ0
)

with ψ0(x) ∈ H2+α(Ω), ψ0(x) > 0 has a unique solution that exists up to a time T̂ , at

which for the �rst time

lim
t↑T̂

min
x∈D

u(x, t) = 0.

□

Proof. According to proposition 4.8 there is a time T0 > 0, such that there is a unique

solution for all τ ∈ (0, T0). Now, distinguish the two cases from Lemma 4.9. If the �rst

case is true we are done. If the second case is true, then there is a unique solution u(x, t)

for all times τ ∈ (0, T̄ ) with T̄ > T0. Thus, we must have u(T0) := min
x∈D

u(x, T0) > 0.

Now de�ne for small ϵ0, δ0 > 0 with ϵ0 + δ0 < u(T0)

t1(ϵ0, δ0) :=
(u(T0)− ϵ0 − δ0)

2

2γ
, T1 = T0 +

u2(T0)

2γ
,
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as well as for small δ1 > 0

f1(t) : (T0, T0 + t1) → R, f1(t) =
√

2γ(t1 − (t− T0)) + δ1.

For τ ∈ (T0, T1) and ΩT0,τ := D × (T0, τ) consider the problem

−v̇ +∆v − DivDjv

1 + |Dv|2
Dijv =

γ

v
on ΩT0,τ ,

v(x, t) = u(x, T0) on PΩT0,τ .

By the same argument as in proposition 4.8, the function f1(t) can be used to show

the existence of a δ > 0, independent of the solution u(x, t), such that

u(x, t) > δ for all t ∈ (T0, T0 + t1), x ∈ D.

This implies that there is a unique solution v(x, t) for every τ ∈ (T0, T0 + t1) which,

for ϵ0, δ0 → 0 can be extended to a unique solution for every τ ∈ (T0, T1). Moreover, it

agrees at time t = T0 with the solution u(x, t) of the problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on ΩT̄ ,

u(x, t) = ψ0(x) on PΩT̄ ,

with T̄ > T0. With the same reasoning as in Lemma 4.9, this implies the existence of

a function

U(x, t) =

{
u(x, t), if t ∈ (0, T0)

v(x, t), if t ∈ [T0, T1),

which is the unique solution to the problem for every τ ∈ (0, T1). Repeating this

process, we obtain a sequence of times, inductively de�ned by

Tn+1 :=
u2(Tn)

2γ
+ Tn,

that can only converge to a time T̂ < ∞, if lim
n→∞

u(Tn) = 0. Since we have shown

in section 4.4, that for low initial and boundary values a singularity must occur after

�nite time, the claim follows. □

Now that we know that for low initial and boundary values there is a unique solution

that remains smooth as long as it is positive, we would like to study its behavior at the

time when the singularity occurs. Inspired by the elliptic case we have the following

result, which holds under the assumption that the solution exists at time T̂ when the

singularity occurs and remains smooth in every point where it is positive. We then

obtain the statement by working locally on the surface (see also the work from Kore-
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vaar and Simon [KS87] as well as Tennstädt [Ten17]).

Proposition 4.11 (A regularity result for solutions u to (P+
ϕ0,u0

) with low

boundary and initial values) Let Ω = D× (0, T ) with 0 < T ≤ ∞. Assume that D

has non-negative inward mean curvature HD(y) ≥ 0 for every y ∈ ∂D. Consider the

problem

−u̇+∆u− DiuDju

1 + |Du|2
Diju =

γ

u
on Ω,

u(x, t) = ψ0(x) on PΩ,

where ϕ0 and u0 are chosen �small enough� (cf. proposition 4.7) to force a singularity

after �nite time. Assume that T̂ is the �rst time at which

lim
t↑T̂

min
x∈D

u(x, t) = 0.

De�ne ΩT̂ := D × (0, T̂ ) and the sets of singular points

S := {(x, T̂ ) | x ∈ D, u(x, T̂ ) = 0} ⊂ Rn+1, Sx := {x ∈ D | u(x, T̂ ) = 0} ⊂ Rn.

Assume that at least u ∈ C3,1(ΩT̂ \ S) ∩ C0(ΩT̂ ) as well as

sup
x∈K

u̇(x, T̂ ) ≤ C0 <∞

for every K ⊂⊂ (D \ Sx). Then u(·, T̂ ) is 1
2
-Hölder continuous. □

Proof. We work locally on the surface graph(u) [cf. Appendix, Sec. 5.7]. First,

note that since u ∈ C0(ΩT̂ ) and u(x, t) > 0 for all t ∈ [0, T̂ ), there is a number

δ > 0, which in general depends on the solution u, such that for every T0 > T̂ the set

{u < δ} ⊂⊂ (D× (0, T0)). Thus, there is a function ϕ ∈ C2
c (Rn+1) with the properties

ϕ = 0 in {u < δ}, ϕ = ψ0 close to PΩT̂ , ∥ϕ∥C2(Rn+1) ≤ Cϕ = Cϕ(δ, ψ0) <∞.

Now de�ne η : R+ → R+,

η(s) := (eKs − 1)e−2CϕK

with a constant K > 0 to be chosen later. If we set (u−ϕ)+ := max{u−ϕ, 0}, we have
0 ≤ η((u−ϕ)+) ≤ 1, since the weak comparison principle implies, that u(x, t) < ϕ(x)+ϵ̂

for every ϵ̂ > 0, which yields u ≤ Cϕ. Let ϵ > 0 and M be the maximum of

f(x, t) :=
η((u− ϕ)+)

νn+1 + ϵ

on ΩT̂ . f(x, t) is continuous on ΩT̂ , non-negative, f = 0 on {u = 0} := S and positive
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in {0 < u < δ}, thus f attains its maximumM in a point (xM , tM) ∈ {u > 0} := ΩT̂ \S.
At this point the function Ψ given by

Ψ(x, t) := η((u− ϕ)+)−M(νn+1 + ϵ) ≤ 0

ful�lls

Ψ(xM , tM) = 0, Ψ̇(xM , tM) ≥ 0,∇Ψ(xM , tM) = 0,∆Ψ(xM , tM) ≤ 0.

Calculate the gradient

∇Ψ = η′∇(u− ϕ)−M∇νn+1

and the Laplace operator

∆Ψ = η′′|∇(u− ϕ)|2 + η′∆(u− ϕ)−M∆νn+1. (4.17)

Since we are working locally on the surfaces, the identity ∆u = Hνn+1 holds and from

the Jacobi �eld equation we obtain

∆νn+1 = −νn+1|A|2 − en+1 · ∇H.

Inserting both equations in (4.17) yields

∆Ψ = η′′|∇(u− ϕ)|2 + η′Hνn+1 − η′∆ϕ+Mνn+1|A|2 +M∇H · en+1. (4.18)

Making use of the equation Pu = 0 with

Pu = −u̇+ vH − γ

u

leads to

−u̇+ vH =
γ

u
⇔ H = νn+1

(γ
u
+ u̇
)
, (4.19)

which we can di�erentiate to obtain

∇H =
(
∇νn+1γ

u
− νn+1 γ

u2
∇u
)
+
(
∇νn+1u̇+ νn+1∇u̇

)
. (4.20)

Inserting (4.19) and (4.20) for H,∇H in (4.18) and sorting by terms with and without

time derivative gives us

∆Ψ =
{
η′′|∇(u− ϕ)|2 + η′

γ

u
(νn+1)2 − η′∆ϕ+Mνn+1|A|2 +M

(
∇νn+1γ

u
− νn+1 γ

u2
∇u
)
· en+1

}
+
{
η′u̇(νn+1)2 +M

(
∇νn+1u̇+ νn+1∇u̇

)
· en+1

}
= {A}+ {B}.
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When dealing with part {A}, we can proceed exactly as in [Ten17]. Noting the identities

M∇νn+1 = η′∇(u− ϕ), ∇u · en+1 =
|Du|2

1 + |Du|2
= |∇u|2, |∇u|2 + (νn+1)2 = 1,

we may rewrite {A} to

{A} = η′′|∇(u− ϕ)|2 + η′
γ

u
− η′

(
∆ϕ+

γ

u
∇ϕ · en+1

)
+Mνn+1|A|2 −Mνn+1γ

|∇u|2

u2
.

Also, since Ψ(xM , tM) = 0, it is

νn+1 =
η −Mϵ

M
≤ 1

M
⇔
√

1 + |Du|2 ≥M

and moreover, by de�nition of the tangential derivative

|∇(u− ϕ)|2 = |D(u− ϕ)|2 − |Du ·D(u− ϕ)|2

1 + |Du|2

= |Du|2 − 2Du ·Dϕ+ |Dϕ|2 − |Du|4 − 2|Du|2Du ·Dϕ+ (Du ·Dϕ)2

1 + |Du|2

=
|Du|2 − 2Du ·Dϕ+ |Dϕ|2 + |Du|2|Dϕ|2 − (Du ·Dϕ)2

1 + |Du|2

≥ |Du|2 − 2C|Du|
1 + |Du|2

|Du|→∞→ 1.

Hence, there is a constant M0, depending only on Cϕ, such that |∇(u − ϕ)|2 > 1
2
, if

M > M0. Let us assume that M > M0. Then, since in (xM , tM) the identity

−Mνn+1 = −η +Mϵ ≥ −η

holds, we can estimate

{A} ≥ 1

2
η′′ + η′

γ

u
− η′

(
∆ϕ+

γ

u
∇ϕ · en+1

)
− η

γ

u2
. (4.21)

When estimating {B} observe the relation

∇u̇ · en+1 = ∂t(∇u · en+1) = ∂t(|∇u|2) = −∂t(νn+1)2 = −2νn+1ν̇n+1

and moreover, since Ψ̇(xM , tM) ≥ 0, suppressing the dependence of (xM , tM)

Ψ̇ = η′(u̇− ϕ̇)−Mν̇n+1 ≥ 0 ⇔ −Mν̇n+1 ≥ η′ϕ̇− η′u̇.
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Hence, at (xM , tM) it follows for {B}

{B} = η′u̇(νn+1)2 + u̇M∇νn+1 · en+1 +Mνn+1∇u̇ · en+1

= η′u̇(νn+1)2 + u̇η′∇u · en+1 − u̇η′∇ϕ · en+1 − 2Mν̇n+1(νn+1)2

≥ η′u̇(νn+1)2 + η′u̇|∇u|2 − 2η′u̇(νn+1)2 + 2η′ϕ̇(νn+1)2 − η′u̇∇ϕ · en+1

= η′u̇(1− 2(νn+1)2) + 2η′ϕ̇(νn+1)2 − η′u̇∇ϕ · en+1.

Combining the estimates for {A} and {B} and making use of ∆Ψ(xM , tM) ≤ 0, we

obtain

0 ≥ ∆Ψ(xM , tM) = {A}+ {B}

≥ 1

2
η′′ + η′

γ

u
− η′

(
∆ϕ+

γ

u
∇ϕ · en+1

)
− η

γ

u2

+ η′u̇(1− 2(νn+1)2) + η′(2ϕ̇(νn+1)2 − u̇∇ϕ · en+1).

Let us now, additionally to M > M0, assume, that (xM , tM) ∈ {u < δ}. In this set we

have ϕ ≡ 0 and thus

η′′ + 2η′
γ

u
− 2η

γ

u2
+ 2η′u̇

(
1− 2

1 + |Du|2

)
≤ 0.

Clearly
∣∣∣1− 2

1+|Du|2

∣∣∣ ≤ 1. Additionally, there is a constant C0, for which u̇(xM , tM) ≤
C0. To see this, assume �rst, that tM < T̂ . Then there is a τ ∈ (tM , T̂ ) for which the

problem is uniquely solvable on Ωτ = D × [0, τ) and the solution lies in H2+α(Ω
′) for

every Ω′ ⊂⊂ Ωτ . Since also xM /∈ ∂D (else f(xM , tM) = 0, contradicting M > 0), we

can �nd a set Ω′, for which (xM , tM) ∈ Ω′ and choose C0 as the Hölder norm of u(x, t)

on Ω′. If instead tM = T̂ we make use of the assumption

sup
x∈K

u̇(x, T̂ ) ≤ C0 <∞

for every K ⊂⊂ (D \ Sx). Since xM /∈ ∂D and u(xM , tM) ̸= 0, we can �nd a compact

subset K ⊂⊂ (D \ Sx) with (xM , tM) ∈ K. Thus, we obtain

η′′ + 2η′
γ

u
− 2η

γ

u2
− 2η′C0 ≤ 0

at (xM , tM). Inserting the de�nition of η(s) = (eKs − 1)e−2CϕK this is equivalent to

K2u2eKu + 2KuγeKu − 2(eKu − 1)γ − 2Ku2C0e
Ku ≤ 0

⇔ (2γ − 2Kuγ −K2u2 + 2Ku2C0)e
Ku ≥ 2γ.
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Setting Ku =: s, we obtain the inequailty(
2γ − 2sγ + s2

(
2C0

K
− 1

))
≥ 2γ,

which, by taking K > 2C0, is only ful�lled for s ≤ 0, a contradiction to u > 0. Hence,

it is either (xM , tM) ∈ {u ≥ δ} and M > M0 or it is M ≤M0. Therefore, assume now

(xM , tM) ∈ {u ≥ δ} and M > M0. In this case we have the estimates∣∣∣∆ϕ+
γ

u
∇ϕ · en+1

∣∣∣ ≤ C(δ, γ, c+1 , Cϕ)

and ∣∣∣2ϕ̇(νn+1)2 − u̇∇ϕ · en+1

∣∣∣ ≤ C(C0, C3, Cϕ),

where we used the same argument as above to estimate u̇(xM , tM) and c+1 , C3 are the

constants from section 2. Thus, every coe�cient of η′ is bounded and they can be

combined to a new constant C > 0 to obtain

η′′ − Cη′ − η
γ

u2
≤ 0,

which in return leads to (
K2 −KC − 2γ

δ

)
eK(u−ϕ)+ ≤ −2γ

c+1
.

Choosing K big enough to su�ce

K2 −KC − 2γ

δ
> 0

leads to a contradiction. Hence, it must be M ≤M0.

Let us brie�y discuss, why a similar procedure can be applied to

g(x, t) :=
η((ϕ− u)+)

νn+1 + ϵ
,

resulting in the same bound M0 as above. Note �rst, that (ϕ − u)+ = 0 on {u < δ},
thus we only have to consider the case {u ≥ δ}. De�ning

Ψ(x, t) := η((ϕ− u)+)−M(νn+1 + ϵ) ≤ 0

and making use if its properties at the interior maximum (xM , tM) yields

∆Ψ =
{
η′′|∇(ϕ− u)|2 − η′

γ

u
(νn+1)2 + η′∆ϕ+Mνn+1|A|2 +M

(
∇νn+1γ

u
− νn+1 γ

u2
∇u
)
· en+1

}
+
{
−η′u̇(νn+1)2 +M

(
∇νn+1u̇+ νn+1∇u̇

)
· en+1

}
= {A}+ {B}.
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Comparing this to the previous expression for ∆Ψ, only a few signs have changed. We

can simplify this further to the estimate

0 ≥ ∆Ψ(xM , tM) = {A}+ {B}

≥ 1

2
η′′ − η′

γ

u
+ η′

(
∆ϕ+

γ

u
∇ϕ · en+1

)
− η

γ

u2

+ η′u̇(2(νn+1)2 − 1)− η′(2ϕ̇(νn+1)2 + u̇∇ϕ · en+1),

where once again only a few signs have changed. At this point in the proof every

estimate is made in regard to the absolute value of any of the coe�cients. Hence, the

exact same estimates as in the �rst case can be used here to obtain the value M0 as

the upper bound for g(x, t). Thus, we have proven

η(|u− ϕ|)
νn+1 + ϵ

≤M0

for every ϵ > 0 and with ϵ→ 0 it follows

η(|u− ϕ|)
√
1 + |Du|2 ≤M0

and also

|u− ϕ||D(u− ϕ)| ≤ 1

K
e2CϕKη(|u− ϕ|)(

√
1 + |Du|2 + |Dϕ|) ≤ 1

K
e2CϕK(M0 + Cϕ).

As described in Tennstädt [Ten17] the function |u−ϕ| may be extended continuously

by 0 outside of {u > 0} and it follows, that (u − ϕ)2 is Lipschitz continuous, which

implies 1
2
-Hölder continuity for (u − ϕ). Since ϕ ∈ C2(Ω), we thus conclude, that

u(·, T0) is 1
2
-Hölder continuous. □
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5 Appendix

5.1 Eigenvalues of (aij) and Bernstein E function

The general form of a semilinear parabolic partial di�erential equation of second order

is given by

Pu := −u̇+ aij(X, u(X), Du(X))uij + a(X, u(X), Du(X)) = 0,

with u ∈ C2,1(Ω) and X = (x, t) ∈ Ω ⊂ Rn × (0, T ), where T ≤ ∞ and Ω is a domain.

For the operator P given by

Pu = −u̇+∆u− DiuDju

1 + |Du|2
Diju−

γ

u
,

we obtain the values

aij(X, u(X), Du(X)) = aij(Du(X)) = δij − uiuj
1 + |Du|2

,

a(X, u(X), Du(X)) = a(u(X)) = −γ
u
,

with δij being the Kronecker-Delta which is equal to 1 if i = j and 0 otherwise.

An important parameter in the analysis of semilinear partial di�erential equa-

tions are the smallest and largest eigenvalue of the matrix (aij). We denote these values

by λ and Λ for the smallest and largest eigenvalue respectively. The matrix (aij) su�ces

λ(X, z, p)|ξ|2 ≤ aij(X, z, p)ξiξj ≤ Λ(X, z, p)|ξ|2

for every (X, z, p) ∈ Ω× R× Rn at which the operator P is parabolic. If, in addition,

the ratio Λ
λ
is uniformly bounded we say that P is uniformly parabolic in (X, z, p).

For the operator P de�ned above it is λ = 1
1+|p|2 and Λ = 1, which results in

Λ
λ
= 1 + |p|2 |p|→∞→ ∞ [cf. Lieberman [Lie96, p.204, eq. (8.4)]]. Hence, this operator

only becomes uniformly parabolic if we are able to derive a priori bounds for |u| and
|Du|.

A useful tool for discussing semilinear (parabolic) partial di�erential equations

is the Bernstein E function, de�ned by

E(X, z, p) := aij(X, z, p)pipj.

E always ful�lls the estimates λ|p|2 ≤ E ≤ Λ|p|2 and for the choice of aij given above

it is [cf. Lieberman [Lie96, p.204, eq. (8.4)]]

E =
|p|2

1 + |p|2
= λ|p|2.
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5.2 Some linear algebra

De�nitions 5.1 (Notation, De�niteness, Trace)

i) We denote by Rn×n the space of all (n×n)-matrices. If A is an (n×n)-matrix with

components aij we write A = (aij) ∈ Rn×n. Furthermore, the matrix A = (aij) is

symmetric if aij = aji for every i, j = 1, . . . , n.

ii) We say a matrix A ∈ Rn×n is positive semi-de�nite if xTAx = aijxixj ≥ 0 for all

x = (x1, ..., xn) ∈ Rn. We say the matrix A ∈ Rn×n is negative semi-de�nite if

xTAx ≤ 0 for all x ∈ Rn. Note that a parabolic operator P su�ces 0 < λ|ξ|2 ≤
aijξiξj which especially means that (aij) is positive semi-de�nite.

iii) The trace of a matrix A ∈ Rn×n is given by trace(A) = tr(A) = aii. □

For the proof of the comparison principle, we need to estimate the expression aijuij.

If we interpret aij and uij as the entries of two symmetric (n × n)-matrices A and U

then this sum can be expressed as aijuij = tr(AU).

Proposition 5.2 (Rules for the trace operator) Let A = (aij), B = (bij) ∈ Rn×n

be symmetric (n× n)-matrices. Then the following holds

i) If both matrices are positive semi-de�nite then tr(AB) ≥ 0.

ii) If one matrix is positive semi-de�nite and the other is negative semi-de�nite then

tr(AB) ≤ 0. □

Proof. It is well known that for a symmetric matrix A there is an orthogonal matrix

O with OTO = IRn×n so that A = ODOT , where D is a diagonal matrix with entries

λ1, . . . , λn being the eigenvalues of A. Furthermore, it is well known that A is positive

semi-de�nite if and only if λi ≥ 0 ∀i ∈ {1, . . . , n} and that the trace operator is invari-

ant under cyclic permutations, which means that tr(ABC) = tr(CAB) = tr(BCA) for

A,B,C ∈ Rn×n. Inserting the i-th basis vector ei in the expression xTAx also yields

eTi Aei = aii ≥ 0 if A is positive semi-de�nite and aii ≤ 0 if A is negative semi-de�nite

respectively.

To proof either claim, let B be the positive semi-de�nite matrix without loss of gener-

ality. We can write

tr(AB) = tr(ODOTB) = tr(DOTBO),

where D is the diagonal matrix consisting of the eigenvalues of A which are all positive

in the �rst case and all negative in the second case. De�ning y := Ox ∈ Rn, we see

that the matrix OTBO is positive semi-de�nite because

xTOTBOx = (Ox)TBOx = yTBy ≥ 0.
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This means that all diagonal entries of OTBO have to be non-negative so that both

claims follow by the de�nition of the trace operator. □

5.3 Comparison and Maximum Principles

We begin with a slight modi�cation of a comparison principle that can be found in

Lieberman [Lie96, p. 219, Thm 9.1].

Proposition 5.3 (Comparison Principle) Let P be the quasilinear operator de�ned

by

Pu = −u̇+ aij(X, u,Du)Diju+ a(X, u,Du).

Suppose that aij is independent of z and that a(X, z, p) is non-increasing in z for every

�xed (X, p) ∈ Ω×Rn. If u and v are functions in C2,1(Ω)∩C(Ω) such that Pu ≥ Pv on

Ω and u ≤ v on PΩ and if P is parabolic with respect to u or v, then u ≤ v on Ω∪PΩ. □

Proof. We argue very similarly to [Lie96]. Therefore, set w = (u−v)eλt for a constant
λ at our disposal. Since u ≤ v on PΩ, we have w ≤ 0 on PΩ. Let us assume there is a

point (x0, t0) ∈ Ω at which w(x, t) attains a positive maximum. At this point we have

w(x0, t0) > 0, Dw(x0, t0) = 0, wt(x0, t0) = 0, D2w(x0, t0) ≤ 0.

Furthermore, calculating wt yields

wt = (u− v)te
λt + λ(u− v)eλt = 0 ⇔ −(u− v)t = λ(u− v).

Combining these properties we obtain

0 ≤ Pu(X0)− Pv(X0)

= −(u− v)t + aij(X0, Du(X0))Dij(u− v) + a(X0, u(X0), Du(X0))− a(X0, v(X0), Dv(X0))

≤ −λ(u(X0)− v(X0)),

which cannot be true if we choose λ > 0. Hence, the assumption w > 0 was false and

we have w ≤ 0, implying u ≤ v on Ω ∪ PΩ. □

Remark. The comparison principle in Lieberman [Lie96] appears to have a small

mistake, where he requires �an increasing positive constant k such that a(X, z, p) +

k(M)z is a decreasing function of z on Ω × [−M,M ] × Rn�. To the author's under-

standing it should instead be a(X, z, p) − k(M)z, which would then be in accordance

with the modi�ed version from above. □
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If γ > 0, the requirements for the application of the comparison principle are no longer

ful�lled. However, a weaker version still holds.

Proposition 5.4 (Weak Comparison Principle) [Lie96, p. 220, Lemma 9.4.]

Suppose that u and v are in C2,1(Ω) ∩ C(Ω) and that P is parabolic at u or at v. If

Pu > Pv on Ω and if u < v on PΩ, then u < v on Ω ∪ PΩ. □

Proof. De�ne w = u − v and assume that w ≥ 0 somewhere in Ω. Then there is

a �rst time t0 = inf{t | w(x, t) ≥ 0, x ∈ D} at which the function w(x, t) becomes

non-negative. Since w < 0 on PΩ and w(x, t) is continuous, there must be a point

X0 = (x0, t0) at which w(X0) = 0. Since w(·, t0) attains its maximum at X0, we have

Dw(X0) = 0, thus Du(X0) = Dv(X0), and D
2w(X0) ≤ 0. Also wt(X0) ≥ 0 from the

choice of t0. These observations lead to

0 < Pu(X0)− Pv(X0) = −wt(X0) + aij(X0, u(X0), Du(X0))wij(X0) ≤ 0,

which is a contradiction. Hence, the assumption w ≥ 0 on Ω was wrong and we obtain

u < v on Ω. □

When working locally on the surfaces graph(u(x, t)) we have the following

weak maximum principle (see Ecker [Eck04, p. 24, Prop. 3.1], with proof [Eck04,

p. 122]), which has to be slightly modi�ed since the manifold we study has a boundary.

Proposition 5.5 (Weak Maximum Principle on Manifolds) Let Mn be a com-

pact n-dimensional manifold with boundary and F (·, t) = Ft : M
n → Rn+1 with Mt =

Ft(M
n). Suppose h : Mn × [t1, t0) → R is su�ciently smooth for t > t1, continuous on

Mn × [t1, t0] and satis�es an inequality of the form(
d

dt
−∆Mt

)
h ≤ a · ∇Mth,

where ∆Mt and ∇Mt are the laplace and nabla operator on the surfaces Mt respectively.

Then

max
Mn×[t1,t0)

h ≤ max

{
max
Mn

h(·, t1), max
∂Mn×[t1,t0)

h

}
.

For the vector �eld a : Mn × [t1, t0) → Rn+1 we only require that it is well-de�ned in a

neigbourhood of all maximum points of h. □

Proof. We can imitate the proof from Ecker, in which he shows, that the function
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h(p, t) cannot have an interior maximum, if(
d

dt
−∆Mt

)
h ≤ a · ∇Mth.

However, since the manifold has a boundary, we can only conclude from the absence

of an interior maximum, that

max
Mn×[t1,t0)

h ≤ max

{
max
Mn

h(·, t1), max
∂Mn×[t1,t0)

h

}
,

as opposed to

max
Mn×[t1,t0)

h ≤ max
Mn

h(·, t1),

for manifolds without boundary. □

5.4 Hölder continuity

De�nitions are taken from Lieberman [Lie96, p. 46,47].

De�nition 5.6 (Hölder continuity for α ∈ (0, 1]) We say that a function f de�ned

on Ω ⊂ Rn+1 is Hölder continuous at X0 = (x0, t0) with exponent α ∈ (0, 1] if the

quantity

[f ]α;X0 = sup
X∈Ω\{X0}

|f(X)− f(X0)|
|X −X0|α

is �nite. If the semi-norm

[f ]α;Ω = sup
X0∈Ω

[f ]α;X0

is �nite, we say that f is uniformly Hölder continuous in Ω. If f is uniformly Hölder

continuous on any Ω′ ⊂⊂ Ω we say that f is locally Hölder continuous in Ω. □

For Hölder continuity of higher order let β ∈ (0, 2] and set

⟨f⟩β,X0 := sup

{
f(x0, t)− f(X0)|

|t− t0|β/2

∣∣∣∣ (x0, t) ∈ Ω \ {X0}
}
, ⟨f⟩β;Ω := sup

X0∈Ω
⟨f⟩β;X0 .

De�nition 5.7 (Hölder continuity for a > 1) Let a > 1 with a = k+α, k ∈ N, α ∈
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(0, 1]. Then we de�ne

⟨f⟩a;Ω :=
∑

|β|+2j=k−1

⟨Dβ
xD

j
tf⟩α+1,

[f ]a;Ω :=
∑

|β|+2j=k

[Dβ
xD

j
tf ]α,

|f |a;Ω :=
∑

|β|+2j≤k

sup |Dβ
xD

j
tf |+ [f ]a + ⟨f⟩a.

We set Ha(Ω) := {f | |f |a <∞} which is a Banach space with norm | · |a. □

Remarks

i) It is generally true that ⟨f⟩a ≤ |f |0 + [f ]a [cf. [Lie96, p. 46]].

ii) As we can see from the de�nition, the inclusion C2,1(Ω) ⊂ H2+α(Ω) holds.

iii) For the applicability of the Schauder �xed point theorem we are particularly in-

terested in the Hölder space Ha(Ω) with a ∈ (1, 2). Functions in this space ful�ll

|f |a;Ω = sup |f |+ sup |Df |+ [Df ]α + ⟨f⟩α+1 <∞.

Together with the �rst remark this leads to the objective of showing boundedness

of sup |u|, sup |Du| and [Du]α for α > 0. □

5.5 Compatibility Conditions

It is desirable that a solution u(x, t) to (P γ
ϕ0,u0

) is continuous up to the boundary. Since

we prescribe data in two di�erent ways

u(x, 0) = ϕ0(x) on CΩ,

u(x, 0) = u0(x) on CΩ.

we may encounter a problem in the corner CΩ. We avoid this by imposing compatibility

conditions. If we want to achieve higher regularity up to the boundary of the domain

Ω, the (PDE) imposes additional restrictions that have to be ful�lled.

De�nition 5.8 (Compatibility Conditions) [LSU88, p.318-320] The compatibil-

ity conditions consist in the fact that the derivatives d
dt
u(x, 0), which can be determined

for t = 0 by means of the equation and initial condition u0(x, t) ≡ u0(x), must satisfy
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for x ∈ SΩ the boundary conditions. Introducing the notation

u(k)(x) :=
d

dt
u(x, t)

∣∣
t=0
,

Pu = −u̇+ E(u) = −u̇+∆u− DiuDju

1 + |Du|2
Diju,

it is obvious, that on the set CΩ the functions u(k)(x) (k = 0, 1) are determined by

u(0)(x) = u0(x),

u(1)(x) = E(u0),

while higher order derivatives are given by

u(k+1)(x) =
dk

dtk
E(u(x, t))

∣∣
t=0
.

We then say that the compatibility conditions of order m ≥ 0 are ful�lled, if

u(k)(x) =
dk

dtk
ϕ0, k = 0, . . . ,m on CΩ.

□

Remark. For most existence and regularity results we only need the compatibility

condition of order 1 to be ful�lled, which allows for the solution u(x, t) to be inH2+α(Ω).

If we de�ne

ψ0(x) :=

{
u0(x), if x ∈ D,

ϕ0(x), if x ∈ ∂D,

these can be easily expressed by ψ0(x) ∈ H2+α with Pψ0(x) = 0, since u̇0 = ϕ̇0 = ψ̇0 =

0.

5.6 Boundary regularity types and the distance function

Boundary regularity is crucial for the existence of barrier functions on the spatial

boundary SΩ of the domain Ω. Furthermore, the regularity of the spatial distance

function is related closely to the boundary's regularity.

De�nition 5.9 (Ck-boundary) We say a set D ⊂ Rn has a Ck-boundary, written

∂D ∈ Ck, if for every point x ∈ ∂D there is a neighborhood N of x such that ∂D ∩N
can be represented in the form

xn = ϕ(x1, ..., xn−1),

where ϕ is a function that is k times di�erentiable. We say that Ω = D × (0, T ) has
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a Ck-boundary if D has a Ck boundary and we write PΩ ∈ Ck. Hölder continuous

boundaries PΩ ∈ Ha with a = k + α, k ∈ N, α ∈ (0, 1] are de�ned in the same way,

where now ϕ ∈ Ha. □

Additionally, we note some useful properties for the distance function d(x) de�ned by

d(x) := inf
y∈∂D

|x− y|

with D ⊂ Rn. Proofs can be found in Gilbarg-Trudinger [GT01, p. 354-355] and

Serrin [SH69, p. 420-422, chapter 1.3.].

De�nition 5.10 (Principal coordinate system) Let D ⊂ Rn be a bounded domain

and let y0 ∈ ∂D be an arbitrary boundary point of D with ∂D ∈ Ck, k ≥ 2. Then

there is a neighborhood N(y0) of y0 and a function ϕ = ϕ(x′) = ϕ(x1, ..., xn−1) such

that N ∩ ∂D is given by the equation xn = ϕ(x′) with Dϕ(y′0) = 0. In this case the

curvature of ∂D is described by the orthogonal invariants of the Hessian matrix [D2ϕ]

evaluated at y′0. The eigenvalues κ1, . . . , κn−1 of [D2ϕ(y′0)] are called the principal

curvatures of ∂D at y0 and the corresponding eigenvectors are called the principal

directions of ∂D at y0. We call a coordinate system principal coordinate system if

the x1, ..., xn−1 axes lie along principal directions corresponding to κ1, ..., κn−1 at y0. □

Proposition 5.11 (Di�erentiability of d(x)) Let D ⊂ Rn be bounded and ∂D ∈ Ck

for k ≥ 2. De�ne for µ > 0

Γµ := {x ∈ D | d(x) < µ}.

Then there exists a positive constant µ depending on D such that d ∈ Ck(Γµ). □

Proposition 5.12 (Properties of di(x), dij(x)) In a principal coordinate system with

axes xi, i = 1, ..., n− 1 lying along the principal directions and axis xn lying along the

normal vector of the surface ∂D pointing from the point y0 ∈ ∂D towards x0 ∈ Γµ we

have at x0

Dd(x0) = (0, ..., 0, 1)

and

D2d(x0) = −
(

κ1
1− κ1d

, ...,
κn−1

1− κn−1d
, 0

)
diag

,

where κ1, ..., κn−1 are the principal curvatures of ∂D at y0. □
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5.7 Geometry on the surface graph(u(x, t))

Let us assume that the solution u(x, t) de�nes a graph Mt and set

F (x, t) := (x, u(x, t))

for every (x, t) ∈ Ω = D × [0, T ). Since the solution u(x, t) is supposed to ful�ll the

initial and boundary conditions

u(x, t) = ϕ0(x) on SΩ,

u(x, 0) = u0(x) on BΩ,

the corresponding graph at t = 0 has to be given by the points

F (x, 0) = (x, u(x, 0)) = (x, u0(x)) on D.

This graph (for the �xed time t = 0) de�nes a hypersurface M0 of Rn+1 of which

the evolution in time is given by the hypersurfaces Mt. In this setting we may now

understand the solution u(x, t) as the last component

u(x, t) = F (x, t) · en+1

of the function F (x, t), which allows to perform calculations directly on the surfaces

Mt.

Instead of discussing the hypersurfaces above a �xed point x ∈ D ⊂ Rn, it

is sometimes more bene�cial to �x a point p in the initial surface M0 and analyze its

evolution in direction of the normal ν relative to the graph of u(x, t). To make this

more precise we use a paragraph from Ecker [Eck04, p. 7-8].

De�nition 5.13 (Surfaces moving in normal direction) LetMn be an n-dimensional

manifold. Consider the family of smooth embeddings Ft = F (·, t) : Mn → Rn+1 with

Mt = Ft(M
n). We say the surfaces Mt move in direction ν with velocity H, if

dF

dt
(p, t) = H⃗(F (p, t)) = H(F (p, t))ν (5.1)

for p ∈Mn and t ∈ [0, T ).

Lemma 5.14 (Normal Motion and Tangential Di�eomorphisms) Let Ft =

F (·, t) : Mn → Rn+1 with Mt = Ft(M
n) be a family of embeddings satisfying the

equation (
dF

dt
(x, t)

)⊥

= H⃗(F (x, t))
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for x ∈ Mn. Here ⊥ denotes the projection onto the normal space of Ft(M
n). Let

gt(·) = g(·, t) be a family of di�eomorphisms on Mn satisfying

DqF (g(x, t), t) ·
dg

dt
(x, t) = −

(
dF

dt
(g(x, t), t)

)T
,

where DqF denotes di�erentiation of F with respect to its �rst n components. If we

set

F̃t(p) = F̃ (p, t) = F (g(x, t), t) = F (gt(x), t),

then Mt = F̃t(M
n) = Ft(M

n) and

dF̃

dt
(p, t) = H(F̃ (p, t)).

□

Let us apply this lemma to the parabolic operator P given by

Pu = −u̇+ vH(u)− γ

u
.

It is well known that the normal ν of a graph (x, u(x, t)) is given by

ν =
(−Du, 1)√
1 + |Du|2

=
(−Du, 1)

v

with v =
√
1 + |Du|2. To obtain the projection

(
dF
dt
(x, t)

)⊥
of dF

dt
(x, t) onto the normal

space of Mt we calculate

dF

dt
(x, t) · ν = (0, u̇) · (−Du, 1)

v
=
u̇

v
.

Since u(x, t) solves the equation

−u̇+ vH(u) =
γ

u
⇔ u̇ = vH(u)− γ

u
,

we may set

H :=
1

v

(
vH(u)− γ

u

)
in (5.1) to obtain (

dF

dt
(x, t)

)⊥

=
u̇

v
ν = Hν = H⃗.

Now, according to lemma 5.14, there is a tangential di�eomorphism g : Rn → Rn, g(x, t) =

p satisfying

DqF (g(x, t), t) ·
dg

dt
(x, t) = −

(
dF

dt
(g(x, t), t)

)T
,
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so that the new �ow

F̃t(p) = F̃ (p, t) = F (g(p, t), t)

satis�es
dF̃

dt
(p, t) = H⃗(F̃ (p, t)) =

1

v

(
vH(u)− γ

u

)
ν

and also Mt = M̃t, where M̃t are the surfaces generated by the graph

graph(ũ(x, t)) = {(g(x, t), u(g(x, t), t)) ∈ Rn+1 | x ∈ D, t ∈ [0, T )}

with ũ(x, t) = F̃ (p, t) · en+1. □

For either �ow F (x, t) and F̃ (p, t) there is a set of useful identities that are

available to us when working locally on the surfaces. To introduce these identities we

�rst need to de�ne a notion of tangential gradient and laplace operator on graph(u).

Given an arbitrary function f ∈ C2 these quantities are given by

∇Mtf := (Df, 0)−Difν
iν =

(
Df − Df ·Du

1 + |Du|2
Du,

Df ·Du
1 + |Du|2

)
and

∆Mtf = gijDiDjf +HνiDif,

where the operator D denotes the usual di�erentiation in Rn, ν = (−Du,1)√
1+|Du|2

is the unit

normal with respect to graph(u), gij = δij− νiνj is the inverse of the �rst fundamental

form and H = H(u(x, t)) is the mean curvature of graph(u) at (x, t). Whenever it is

clear that we work locally on the surface graph(u), we will simply write ∇ for ∇Mt and

∆ for ∆Mt respectively. From the de�nition of ∇f we infer

|∇f |2 = |Df |2 − 2
(Df ·Du)2

1 + |Du|2
+

(Df ·Du)2

(1 + |Du|2)2
|Du|2 + (Df ·Du)2

(1 + |Du|2)2

= |Df |2 − (Df · ν)2 = |Df |2 − (Difν
i)2

and for f = u we also obtain the identities

∇u =

(
Du

1 + |Du|2
,

|Du|2

1 + |Du|2

)
, |∇u|2 = |Du|2

1 + |Du|2
= en+1 · ∇u.

Since H(u) is de�ned by

H(u) :=
1

v
gijuij,

we obtain from the de�nition of the laplace operator

∆u = vH −H · |Du|
2

v
= Hνn+1.
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Moreover, we have the Jacobi �eld equation

∆ν = −ν|A|2 −∇H,

where |A| is the norm of the second fundamental form [cf. [DHT10, p. 163, Prop. 2]]. □
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