Evolutionary Analysis of a Singular
Minimal Surface Equation

Der Fakultédt fiir Mathematik der Universitdt Duisburg-Essen zur

Erlangung des akademischen Grades
Dr. rer. nat.
vorgelegte Dissertation von

Sebastian Holthausen

aus Duisburg

September 2023

Gutachter: Prof. Dr. Ulrich Dierkes
Prof. Dr. Steffen Frohlich
Vorsitzende des Priifungsausschusses: Prof. Dr. Petra Wittbold

Datum der miindlichen Priifung: 17.11.2023



o UNIVERSITAT
DEUS 1 SSEBNU RG
Offen im Denken

universitats

Duisburg-Essen Publications online Ub | bibliothek

Diese Dissertation wird via DUEPublico, dem Dokumenten- und Publikationsserver der
Universitét Duisburg-Essen, zur Verfiigung gestellt und liegt auch als Print-Version vor.

DOl 10.17185/duepublico/81288
URN: urn:nbn:de:hbz:465-20231130-074144-5

Alle Rechte vorbehal ten.



https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/81288
https://nbn-resolving.org/urn:nbn:de:hbz:465-20231130-074144-5

Abstract

Let D C R" be a domain, Q@ = D x (0,7) with 0 < T < oo and 0 < ¢g(z),up(x) €
C°(D). Our interest lies in the solvability of the initial boundary value problem

—0 + Au —

DuD,
S L g,
u

1+ |Duf2™"
(Plo o)

u(z,t) = ¢o(x) on 0D x (0,7T), ¢0,u0
u(z,0) = ug(x) on D x {0},

for v € R\ {0}. By application of a fixed point argument we prove, that (P;)EMPC)

is uniquely solvable, as long as ¢g, ug are chosen ,sufficently large* and the domain D

has nonnegative inward mean curvature Hp(y) > 0 for all y € 0D. Hence, we derive

the usual a prior: estimates, which are required for the applicability of a fixed point

argument.

Furthermore, we prove that in the case v < 0 there is a solution, even if the initial

and boundary values are chosen to be 0. Moreover we show, that if the solution u(z,t)

for any v € R is smooth enough, there is a subsequence of times t, for which u(x,t)

converges to a solution of the stationary problem
DiuDju y
1+ |Du| u
u(z) = ¢o(z) on dD,

Au on D,

for t;, — oo. Afterwards, we derive an a prior: interior gradient bound for the case
v < 0, unrelated to the existence theory.

Finally, we investigate the case of ,low initial and boundary values* for v > 0. We
prove, that a singularity must occur after finite time, which implies that there is no
classical solution for such initial and boundary values that exists for all times. However,
we are able to prove, that there is a maximum value T, such that the problem has a
unique solution for all times 0 < T' < T. Motivated by the elliptic case, we can prove
under additional assumptions about the regularity of the solution u(x,t) at time T,

that (-, T') remains :-Holder continuous.



Zusammenfassung

Seien D C R™ ein Gebiet, Q@ = D x (0,7) mit 0 < T < oo und 0 < ¢o(x), up(z) €
C°(D). Unser Interesse gilt dem Rand-Anfangswertproblem
DiuDju
w(x,t) = do(x) aut OD x (0,T), (
u(z,0) = ug(x) auf D x {0},

—u + Au —

IS

in €,

P(Z(] %) )

fir v € R\ {0}. Wir zeigen durch Anwendung eines Fixpunktarguments, dass das
Problem (P

$0,u0>c
nichtnegativer, nach innen gerichteter mittlerer Kriitmmung Hp(y) > 0 fiir alle y € 0D

) fiir geeignet gewdhlte Anfangs- und Randwerte und Gebiete D mit

stets eine eindeutige klassische Losung besitzt. Zur Anwendbarkeit des Fixpunktargu-
ments werden die iiblichen a priori Schranken hergeleitet.

Im weiteren Verlauf zeigen wir, dass fiir v < 0 auch dann noch eine Losung existiert,
wenn die Anfangs- und Randwerte auf 0 abfallen. Zudem wird bewiesen, dass es zu
einer geniigend glatten Losung fiir beliebiges 7 € R eine Teilfolge von Zeiten t; gibt,

fiir welche wu(z, t) bei t;, — 0o gegen eine Losung des stationéiren Problems
DiuDju ol
1+ |Dul2™" u
u(z) = ¢o(z) auf 0D,

Au in D

)

konvergiert. Anschlieffend leiten wir im Kontext der a priori Schranken eine a priori
innere Gradientenschranke fiir den Fall v < 0 her.

Schlussendlich untersuchen wir, was im Fall v > 0 fiir ,zu niedrig liegende Anfang- und
Randwerte* geschieht. Wir zeigen, dass nach endlicher Zeit eine Singularitit auftreten
muss, sodass fiir diese Rand- und Anfangswerte keine klassische Ldsung fiir alle Zeiten
existiert. Aufserdem beweisen wir, dass es in diesem Fall eine maximale Zeit T gibt,
sodass das Problem fiir alle Zeiten 0 < T' < T eine eindeutige Losung besitzt. Motiviert
durch den elliptischen Fall konnen wir unter zusétzlichen Annahmen an die Regularitét
der Losung zum Zeitpunkt T zeigen, dass sie beziiglich der z-Variablen %—Hélderstetig
bleibt.

il
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1 Introduction

In geometric analysis, equations containing the mean curvature H have been of par-
ticular interest for several decades. Given a domain D C R"™ and a smooth function

u: D — R,u € C*(D), we can express the graph’s mean curvature H(u) by

D;u _ div Du
Hlw) =D <—\/1+|Du|2>_d <\/1+|Du|2>’

where the graph of u is given by graph(u(x)) = (z,u(x)),z = (z1,...,x,) € R" and we
use the convention to sum over repeated indices. The best-known equation containing

the mean curvature is the minimal surface equation

which is usually paired with a boundary condition, forming the Dirichlet problem

H(u)=0 on D,
u = ¢y on dD.

Other well known and vastly studied equations related to the mean curvature are the

., Hanging Drop Problem*
H(u)+ru=0 onD,

u= ¢y on dD,

where k > 0 is a constant determined by the density of the liquid and the ,,Hanging
Roof Problem”

1

V14 |Dul?PH(u) ——=0 on D,
u
u= ¢y on dD.

Our interest lies in studying a generalization of the Hanging Roof Problem from an

evolutionary point of view. More precisely, let D C R™ be a domain, v € R and set

v:=y/14 |Dul?. Consider the equation
H(u)= L on D, (1.1)

uv

which is the Euler-Lagrange equation to the energy

/Dmu dz. (1.2)



Calculating the divergence in the definition of H(u) and multiplying by v yields

DiUDjU

g
A — ! Du=-L. 1.3
YT | Dul? M= (1.3)
Denoting @ = %u, the corresponding flow is then given by
D;uD;u v
U+ Au— ——ZL_Diu= - PDE
e ) M RA (PDE)

Our first goal is to prove existence and uniqueness of a classical solution
for any choice of v € R\ {0}, that attains prescribed boundary and initial values
¢o(x), uo(z) > 0, whose regularity will be specified later. Defining

Q:=Dx(0,T), SQ:=0D x(0,T), BQ:=D x{0}, CQ:=09D x {0},

where 0 < T < 00, this leads to the initial boundary value problem

DiyuDju v

1+ |Duf2™" u
u(, 1) = dolx) on S, (
u(z,0) = ug(x) on BAQ.

—u+ Au — on €2,

Poo )

By a classical solution we understand a function u = u(x,t): D x (0,7) — R, that is
twice differentiable in z, once in ¢ and continuous up to the boundary of the domain,
in short u € C>1(Q) N C°(Q). Note, that continuity up to the boundary can only be
achieved, if the two functions ¢g, ug coincide in the corner CS). This type of restriction
is called compatibility condition and for higher regularity up to the boundary, say
u € Hyyo(Q) (for a definition of the Holder spaces Hoyo(Q2) see Appendix, Sec 5.4),
additional compatibility conditions have to be presupposed [cf. Appendix, Sec. 5.5].
To prove existence and uniqueness of a classical solution for (P(ZWO) we apply
a fixed point theorem. To elaborate this topic further, let us discuss the general setting
we are working with. Therefore, let X = (z,t) € Q,z € R,p € R". Let further
(a);j=1..n = (a¥(X,z,p)) be a matrix-valued function and a = a(X,z,p) € R.

Denoting u;; := D;;u, we say that an operator P given by
Pu= —i+ Eu:= —1i+ a” (X, 2,p)ui; + a(X, z,p)
is parabolic in a subset A C 2 x R x R", if
0 < ANX,z,p)é]> < a’(X,z,p)&& < A(X, 2, p)|€* for every € € R™. (1.4)

The values A and A may be taken as the smallest and largest eigenvalue of the matrix



(a¥) respectively and we call E the elliptic operator associated with P. Furthermore,
we call P parabolic in u, if (1.4) holds for z = u(X) and p = Du(X).

Now assume the equation
Pu=—t+ a”?(X,u(X), Du(X))u; + a(X,u(X), Du(X)) = 0.
To find a solution to this equation, we study the linear problem
—1 4 a” (X, w(X), Dw(X))u; + a(X, w(X), Dw(X)) =0 (1.5)

for some given function w(X) and the unknown u(X). By defining an operator Q(w) =
w if and only if u is a solution to (1.5), we then have to prove existence of a fixed
point 4 of the operator ), that is the existence of a function that fulfills Q(u) = .
Approaching the problem with this idea has the advantage that we can use known
results about linear parabolic equations.

One well-known fixed point theorem is that of Leray-Schauder, see for ex-
ample the book by LADYZENSKAYA, SOLONNIKOV, URAL'CEVA | , p- 450] or
by GILBARG-TRUDINGER | , . 286-288| for an application in the parabolic and
elliptic case respectively. However, we will apply a different version, the Schauder fixed
point theorem, that can be found in LIEBERMAN | , p- 205-208]. It is used in
combination with the a priori estimates to establish the existence of a solution on a
domain Q. := D x [0, ¢€) that is possibly very small in time direction. If additionally
the a priori estimates hold on all of Q = D x (0,7),0 < T < oo, then Arzela-Ascoli’s
theorem can be used to establish long time existence.

Hence, the solvability of the initial boundary value problem (P(ZMO) is reduced
to the derivation of a priori bounds for any classical solution v € C?*(€2), which is split

into four parts.

i) Show that u(z,t) is bounded.

ii) Establish a bound for Du(z,t) on the boundary P := SQ U BQ U CS.
iii) Establish a bound for Du(z,t) on all of Q.

iv) Derive Holder-Norm bounds for Du(z,t) on €.

As it turns out, the derivation of a priori estimates for the case v > 0 is different from
the case v < 0. Therefore, we split (P,
by (P;WO) and (P,

studied extensively (see for example related papers from HUISKEN or the book by
ECKER | |). We derive a priori estimates for (P; ), (P, ) in chapter 2.

) into the categories v > 0 and v < 0 denoted
) respectively, neglecting the case v = 0, that has already been

If certain conditions for the domain €2 and the initial and boundary values

¢o(x), ug(x) are met, we are able to derive an existence and uniqueness theory that is



based on the aforementioned fixed point argument. For instance, it is crucial for long
time existence that the solution starts at a sufficient height and it will be necessary for
the derivation of a boundary gradient estimate, that the domain D in the definition of
2 = D x(0,T) has non-negative inward mean curvature. Once existence is established,
we prove, by using results from FRIEDMAN | , p. 71-75], that every classical
solution u € C*1(Q) N C°(Q) is already arbitrarily smooth in © with respect to all its
variables, denoted by u(z,t) € C*(Q) N C(Q). Existence, uniqueness and regularity
will be proven in chapter 3.

Compared to previously achieved results (see for example STONE | |) our
existence theory covers all cases v € R\ {0} as opposed to only 7 = 1 and we are also

able to relax the condition Hp(y) > ¢ for a positive constant ¢ > 0 to Hp(y) > 0.

Once we have shown existence of a solution to the problem (P, , ), we can
employ an approximation device to solve the problem (F;) given by
DyuD;
—u+ Au — MDUU = z on Q,
1+ [Dul? u (P7)
u(xz,t) =0 on PCQ.
We consider for some (small) € > 0 the problem
DyuD;
—u + Au — MDUU — 2 on Q,
1+ |Dul? u (Py..)

u(z,t) =€ on PQ,

which has a unique solution due to the existence theory derived in chapters 2 and 3. We

prove in chapter 4, that the solution u(x,t) to problem (F; ) converges uniformly to a
solution u(x,t) for (P, ), which moreover attains the regularity u(x,t) € C=(Q)NC(Q).
Another interesting question that will be addressed in chapter 4 regards the convergence

Y

of a solution u(z,t) of (P , ) ast — oo to a solution of the stationary boundary value
0,U0

problem
DiuDju v on D,

1+ |Dul2™" u (PS)
u(z) = ¢o(x) on OD.

Au

It will be proven, that whenever €2, ¢y, uy are smooth enough for the solution u(z,t) to
be in Hyyo(2), there is a subsequence t; of ¢ such that u(x,t;) converges uniformly to
a classical solution u(z) of the stationary boundary value problem (P} ).

Unrelated to the existence theory we prove in chapter 4 an a priori interior gradient
estimate by applying a method that is due to KOREVAAR | |-

Finally, we analyze the case of ,low initial and boundary values“, when v > 0. We
prove, that there cannot be a solution that exists for all times T > 0 and moreover,

that there is a ,largest time* T, so that the problem (P

po.ug<2) has a solution for all



times 0 < ¢ < 7. Under additional assumptions about the regularity of the solution
at time 7Ty we can prove, motivated by the elliptic case, that u(-, T) remains %—Hélder

continuous.

2 A priori Estimates

In this chapter we derive the a priori estimates necessary for the application of the

fixed point theorem, starting with

2.1 Upper and lower bounds for u(x,t)

While estimates for the gradient |Du| are independent of the choice of 7, the same
is not true for |u(z,t)|. However, the lower bounds for |u| are crucial for us to prove

the existence of a gradient bound. Thus, we will investigate the two cases (P )
and (P

¢>_0,uo>c)
as 0, whereas the constant c¢ for positive v has to be a larger value, depending on the

separately. As it turns out, the constant ¢ for negative v can be taken

diameter of D,~ and the dimension n.

We begin by analyzing the problem (P, , ), that is
_ DiuDju vy
—U‘f‘Au—m Z‘ju:a OHQ,

u(z,t) = ¢o(xz) >0 on SQ, (Poouo>0)

u(z,0) = ug(x) >0 on B,

with v < 0.

2.1.1 Boundedness of u(z,t) for (P, . ;)

To prove that any solution u € C%1(Q)NC(Q) to (P,

b0,u0>0
we apply the comparison principle [cf. Appendix, Sec. 5.3]. The comparison functions

) is uniformly bounded on €,

are obtained from the corresponding elliptic boundary value problem on ball shaped

domains, cf. DIERKES | |-

Lemma 2.1 (Foliation of R" x R™) | , Thm. 2.1] Letn > 2 and v < 0. There
exists a foliation of R™ xRY determined by concave rotational symmetric functions vy =
vx(x): BA(0) = RY A > 0 arbitrary, vx(0) = X - v1(0) and Dvy(0) = 0. Furthermore,



for each X\ > 0 the functions vy € C¥(B(0)) N C°(B,(0)), solve the Dirichlet problem

di Dox 7 B,(0)
v = on B,(0),
\/1+‘D’U>\|2 U)\\/1+‘DU>\|2 (21)

Uy = 0 on aB/\(O)

O
These solutions possess two important properties that make them ideal comparison

functions. On the one hand, every solution vy(z) to equation (2.1) is also a time

) on ball-shaped domains, since 9 = (. Hence, v,

independent solution to (P, =

$0,u0>0
solves the initial boundary value problem
D,L'UDJ'U B
1+ |Duf2™"
u(z,t) = on 9B,(0) x [0,T), (Pp)

u(z,0) = ug(x) = u(z) on By(0) x {0}.

—u + Au — on B,(0) x (0,7,

u =

S < S

On the other hand, the symmetry and concavity imply the estimates

ua(fx + (1 —0)y) > Oux(z) + (1 — O)ua(y), 6 € [0, 1],

y:—x,\y|:\x|,9:%
=

ux(0) > vp(z), 0 €10,1]
and

ua(Ox + (1 —0)y) > Oua(z) + (1 — O)up(y), 6 € [0,1],
UL (1= 0)y) > B0 (0), 0 e 0,1].

The first estimate implies 0 < vy(z) < v)(0) for every x € B,(0). If additionally
0 < |z| < 3, it is va(z) € [SvA(0),v,(0)]. Hence, by using the property vy(0) = Av;(0)
we can achieve, that the solution vy(x) of (2.1) becomes arbitrarily small on all of
B,(0) and arbitrarily large on B%(O) by adjusting the value for A\ accordingly. This

observation leads to

Proposition 2.2 (A priori estimates for wu(z,t)) Let Q@ = D x (0,7) and let
do(x),up(z) € C°(D) with ug(x) = ¢o(x) on C. Let further u € C*(Q) N C°(Q)

be a solution to (P, ). Then there ezist positive constants ¢; and C| with

¢0,u0>0
0< Cl_(u07¢07 Q,’%”) S U({E,t) S Cl_(u07 ¢079777n) < o0 (22)
for every (z,t) € Q. O



Proof. We use the solutions vy(z,t) = v\(x) for all £ € [0,T) as comparison function
to deduce the a priori estimates via the comparison principle. Starting with the upper
bound, we choose A > 0 big enough and use the scaling property of v)(x) to guarantee
that

ECB%(O)
uA(z) = do(x)  on S,
ux(z) > up(z) on BQ.

This is always possible since ug, ¢g € C°(D) paired with ug, ¢g > 0 1mphes the existence

of constants Cumin, Cmax With 0 < cpin < Ug, 9o < Cmax < 00 and vy (z) A2 6 for every

x € D C Bx(0). Let A be a X that fulfills these three properties. Let P be the parabolic
2

operator given by

, DiuDju o

The function vy then suffices

Puy(z,t) =0 = Pu(x,t) on (Q,
vy(x,t) > u(z,t) on PSL.

Application of the comparison principle [cf. Appendix, Sec. 5.3| yields
U(l’, t) S UX(LU) S UX(O) = XUI(O) = Cl_ (u07 ¢0a Qa Y, TL)

To obtain the lower a priori estimate we argue in a similar fashion by covering
the set D with balls By, (2;),\; € R, z; € D and using the comparison principle on
each ball. Since D is C2ompact, we deduce the existence of a finite subcover. From
this we can define a function n(z) that is bounded below by a positive constant, which
simultaneously is a lower bound for u(z,t).

Therefore, let 25 € D be an arbitrary point. Observe that the equation
D;ju= = on (2.3)
u

does not explicitly depend on X = (z,t). Hence, we can translate the solution v,(x),

which solves (2.1) on B,(0), by x¢ to obtain a solution on Bj(zg). In other words the

function vy (x — zg) is a solution to
DZ’UD]'U

-+ Au — ————=D;;u

Y

= B 0,7),

1+ [DuP 7" " u on Bx(20) x (0,T)
0

on 9By (x) x [0, T), (PB, (o)
u(z,0) = ug(x) = u(x) on By(zg) x {0},



with the same scaling properties as vy(z). Now consider the set D N By(xy) with
boundary parts 9D N By(xg) and D N 0By(x). The scaling properties of vy(x — o)
combined with the estimates
0< Cmin S ¢0<$>7UO<J;) on E?
un(r — ) =0 < u(z,t) on (D NOBy(xg)) x [0,T).

guarantee the existence of a (small) A > 0 with

un(r — o) < wu(z,t) on (DNIBx(zg)) x [0,T),
un(r — z9) < go(x) on (0D N By(zg)) x [0,7T), (2.4)
ux(x — x0) <wup(z) on (DN By(xg)) x {0}.

Let A be a A that fulfills these conditions. Combining the estimates in (2.4) leads to

Puy(x — zg,t) = 0= Pu(x,t) on (DN By(x)) x [0,7T),
(T — o, t) < u(x,t) on P((D N By(xg)) x [0,7)).

Application of the comparison principle yields
vy(r — x0,t) < ulz,t) on (DN By(xg)) x [0,7T), (2.5)

which implies that the same estimate is true on the set (D N Byz(wp)) x [0,T). Note,
that we restrict our attention to balls with radius A/2, since on this set the solution
vy(x — o, t) fulfills the estimate

va(r — o, t) > zvx(0,t) = c(A,v1(0)) >0

DN | —

for a fixed choice of \. If we repeat this process for every point z € D, we obtain

a cover of D with open balls, which, by compactness of D, has a finite subcover

77777

1 —
év,\i(O,t) <y (z—xt) <wu(x,t) on (DN By(x;)) x[0,T).
2

We continue each function vy, (x —z;,t) by 0 on Q\ ((D N By, (z;)) x [0, T)) and denote

this continuation by 0,,. Now define

r)=n(x,t) ;= max Uy (r—x;,t) = max 0y (r—x;
n(z) = n(z,1) nax xl( ) e el )



Then we set

mlg n(x) = CI(UO, ¢07 Q7 s TL)
xzeD

and by construction it is clear that
0< cl_(UOa ¢07 977771) S n(l’,t) S U(x,t) on 97

which is the desired lower a priori bound. 0]

In the upcoming section we study the case v > 0, which is given by
DiUDjU
— ) Dyu =
1+ [Dul? i
_ (PJr )
U(ZL‘, t) = ¢0($) > ¢ on Sf), $0,u0>c
u(z,0) = up(x) > ¢ on B,

—u+ Au —

IS

on (),

with a constant ¢ > 0 that has to be further specified.

2.1.2 Boundedness of u(z,t) for (P, _.)

0,Up>C

If we compare the case (P,  ..) with (P, g
o

parison principle because a(z) = —21 is no longer non-increasing in z, nor do we have

) we neither can use the same com-

the comparison functions from the foliation lemma. Nonetheless, it is possible to show

the existence of upper and lower bounds for solutions to (P ) by application of a

$o,u0>c
different comparison principle, see also STONE | , p. 171, Lemma 4.1.].

Proposition 2.3 (A priori estimates for u(z,t)) Let Q = D x (0,T), d := diam(D)
and let ¢o(z),uo(x) € CO(D) with ¢o(x) = ug(x) on CU. Let further u € C*1(Q) N
C°(Q) be a solution to (P}

), where the constant c in (P, ) is now chosen so

Po0,up>c b0, up>c
that
c>2d,/ 7 , if v € (0, 1],
2n — vy
(2.6)
2dy )
c> — if v > 1.

Von —1’

Then there exist positive constants ¢ and C; with
0< CT(d,’%TL) < U(ZL‘,t) < Cr<u0a ¢0) < (27)

for every (x,t) € Q. d

Proof. We begin with the upper bound for either choice of v > 0. Let ¢ > 0 be



arbitrary and small, let P be the parabolic operator associated with (P%7UO>C), that is
) DijuDju v ) vy

and let v(z,t) be the constant function v(x,t) = cpax + €, where as in the previous

proof .y is a constant which suffices ug, ¢y < Cpax < 00. Then for any v > 0

Po(z,t) = — T o= Pu(z,t) on £,
Cmax + €
v(z,t) > u(x,t) on PQ.

Hence, the requirements for the weak comparison principle [cf. Appendix, Sec. 5.3] are
fulfilled and its application yields u(x,t) < cpax + € =: C;, which is the desired upper
bound.

For the lower bound we first study the case v € (0, 1]. Define

1 2
7’1:—<d2+<2) ) Zd
c 2
as the radius of a spherical cap given below. Let x¢o € D be an arbitrary point and
define the spherical cap 0;(z,t) = 0;(x) by

c
01(x) :=11 + 5 \/1r3 — |x — xo)?.

For the application of the weak comparison principle we have to calculate P#,. It is
well-known that the mean curvature of an n-dimensional sphere with radius r is given
by *. However, since we also need the expression \/W , we may as well calculate
H(6,). Letting zo = (29,...,2%) we have

n

z; — ) |z — 20 r?
D6, = S Do, |? = 1+ |Do1? = — 1L
o r} =z — ol s rt — |z — xo[*’ D6, r? — |z — x]?’
so that
H(0,) = D; T — x) ' VT — |z — x0] D (xi—x?> _n
Z rt — |z — o|? 1 z 1 1

We must have
PO, > Pu=0 on .

10



Inserting the terms calculated above yields

PO, = —6, + /1 + | DO, 2H (6,) — 91
1
r1 n 1

-——’y.

thus, the requirement P#; > 0 is equivalent to

n ( +c>
4+ =].
v+n P

r? — |z —z0? <

This in return is always fulfilled if

n C n
< — | <= < —-cC. 2.8
n 7+n(“+2> =g e (28)

At this point we use the definition of r; = % <d2 + (%)2> to conclude

which is the restriction we have chosen for ¢ in (2.6) for the case v € (0, 1]. Moreover,

we must have on the boundary
01(x,t) < u(z,t) on PQ.

To achieve this we prove § < 0, < c so that on the one hand 60, is strictly positive
everywhere and on the other hand 6,(z,t) < u(x,t) on PQ. The relation § < 6, is
obvious since 0 < /r? — |z — 0|2 < 1. The relation 0; < c is equivalent to

Tl—g—\/r%—|x—x0|2§0,

so that we either need to require

This inequality is always fulfilled if

2 c P
7’1—7’10+Z§r1—d (i)g d+Z <y,

11



which is obviously true from the definition of r;. Hence, we may apply the weak

comparison principle [cf. Appendix, Sec. 5.3|, yielding the desired lower bound

+

o <6 <u(z,t) on

MIQ

We see from this choice for ¢ that we cannot simply use the same argument
for any v > 0 because it does not yield any results for v > 2n and the results for v close
to 2n become increasingly worse. Instead, we modify the radius of the spherical cap
defined above in a suitable way to obtain a lower bound for the case v > 1. Therefore,

let € > 1 be a constant at our disposal and set

1 c\?2
== (2 +(5) ) za
=t <( o+ 2e ) -
We define the spherical cap 6, by

06::r6+§_ 7062_|"E_‘r’(”0’2

and observe that this time § < 6. < 5 + 55 < ¢ for € > 1. Obviously, 5 < 0. for the

same reason as in the first case. The mequahty 0. < § + 55 is equivalent to

re — - V12— |z — )2 <0,

2¢2
so that we either need to require

2 2

r€§2€ & de +42§ﬁ(:)c>2de

or, in case \/ﬂ < ¢ < 2de?

(re— o) <72 —la—aof
re—— ) <ri—|r— x|
2¢? 0

This inequality is always fulfilled if

2 1 2

rf—£r6+c—§rf—d2<:>— d262+c— < 7,
c 4e?

which is obviously true by the definition of r.. Thus, we have 0, < u(z,t) on PQ. To

show PO, > Pu =0 on Q we can copy the steps from above until (2.8), where we now

have

12



Inserting the definition of r, = 1 <(d6)2 + (§)2> then yields

2 (N o pa e (Mo L
((de)—l—<2€>)<27 ccede<c (27 462)

so that for the choice €2 = v > 1 we obtain

2dry
Von—1’

which is the restriction we have chosen for ¢ in (2.6) for the case v > 1. Hence, for this

c>

choice of ¢ the weak comparison principle yields

cf == <0, <u(z,t) onQ,

N O

which completes the proof. 0

Remark. Note, that the bounds found in this chapter are not extendable for arbitrary
data ¢g,up. In fact, DIERKES and HUISKEN have shown | | that in the elliptic

case for v =1 there is no (classical) solution to

Au

U; Uy 1
—_——— U = — D)
1L+ | D " u "

u= ¢y on dD,

if we assume that

Dl

Sup |po| < H. (D)’

where |D| denotes the Lebesgue measure of D and H, denotes the n-dimensional
Hausdorff measure. In chapter 4 we will prove, that a similar result is true in the

parabolic case. Hence, we restrict our analysis to the problem
DZ‘UDJ‘U
T D2t =
1+ |Dul
_ (P:I: )
u(z,t) = ¢o(x) > ¢ on SQ, bo,u0>c
u(z,0) = uo(x) > ¢ on B,

—u+ Au —

IS

on {2,

where ¢ is chosen large enough to fulfill the conditions defined above.

13



2.2 Boundary gradient estimates

In this step we prove bounds for the gradient Du on the parabolic boundary P{2 of the

domain 2. Since we have
u(z,0) = ug(x) on B,

we immediately obtain Du(z,0) = Dug(z) so that |Du| is bounded on BS) as long as
| Dug(x)| is bounded. Hence, it remains to prove the boundedness of |Du| on SSQ.

Since the operator P given by

DiuDju y

Pu=—-u+Au— ———=D;ju— —
U u+ Au 1+ |Dup U "

is not necessarily uniformly parabolic, we need to state structure conditions for the
domain €, namely that the spatial boundary SQ is (inward) mean-convex and ex-
hibits at least C?-regularity to assure that the spatial distance function d(z) is twice
differentiable [cf. Appendix, Sec. 5.6].

To achieve a bound for | Du| on SQ2 we use methods from LIEBERMAN | ,
chapter 10], which are tied closely to those in GILBARG-TRUDINGER | , chapter
14] for the elliptic case. The general idea is to show the boundedness of the expression

|u(X) —u(Y)]

uly = su
il XESQ,YEQ,sgt X -Y]

where X = (x,t),Y = (y, s), by using suitable comparison functions and applying the
comparison principle. Note that if Du € C°(Q) (which implies the total differentiability
of Du), the relation |Du| < [u]] holds, for if (Y},),en with Y, = (yn, $,) is an arbitrary

sequence in Q with  lim Y, = X = (x,t), we have
n—00,5y, <t

(X)) = u(Yy)] u(X) — u(Y) /
Du(X)| = lim < su = -
| Du(X)] nsoo | X =Y, T XGSQ,YEQ,SSIS X —Y| h

For the application of the comparison principle we define an auxiliary operator

P by

Pv = -0+ a”(X,v(X), Dv(X))v;; + a(X, u(X), Du(X)),

where u € C>1(Q) N C°(Q) is a solution to (P

o, u0>c

C%1(Q)NC°(Q). Obviously Pu = Pu but this particular choice of P has an advantage

when estimating a. Next we look at a parabolic neighborhood N of an arbitrary point

) and v is an arbitrary function in

Xo = (z0,t9) € 8. Assume that there is a positive constant Ry for which

Q(Xo, Ro) :={(x,t) e R"™ | |2 — 2> < B3, tg — RS <t < ty} C N.

14



Furthermore, set M := sup|u — ¢o| where ¢o(X) = ¢o(z,t) = ¢o(x) Vt € [0, is the
XeQ

prescribed boundary data on Sf).

Then we search for functions w® € CO°(N N Q)N C*H(N N Q) that fulfill

+Puw* <0 on N NQ, (2.9a)
wr > ¢op=u>w" on NNPQ, (2.9b)
wt>u>wo on PN N, (2.9¢)
w*(Xo) = do(Xo)- (2.9d)

If such functions exist we can use the conditions a),b) and ¢) to apply the comparison

principle and deduce

Making use of d) we obtain the inequalities

w (V) —w (Xo) _ ulY) —u(Xo) _ wH(Y) —wt(Xo)

< on N NS,
Y — X Y =X — Y — X
If there are constants LT with
wt(Y) — wh(Xy) w (Xo) —w (V) i
<Lt <L, 2.10
VX - Y- X (210)

for all Y € Q(Xy, Ro) then we can use the bounds L* inside Q(Xy, Ry) and }% outside
of Q(Xy, Ro) respectively to deduce

Xo) —u(Y)| M
ul' v = su [u(Xo <max<{ LT . L~ —}%.
hix, YeQ,spgtO | Xo — Y] -

If L*, Ry can be chosen independently of X, this estimate yields an a priori bound for

[u]}. With this method we are able to prove the following

Proposition 2.4 (A priori estimate for |Du| on the boundary) Let Q = D X
(0,T) be a domain with C*-boundary, where D has non-negative inward mean curvature
Hp(y) >0 for every y € OD. Assume further that ug, ¢o € C*(D) with ug = ¢o on C
and let u € C*1(Q) N CO(Q) with Du € C°(Q) be a solution to (PQEE7UO>C). Then there
exists a constant Cy, such that

|Du| < Cy on P, (2.11)

where Cy = Cy(7y, ug, ¢o, n, cft, Hp), with cli being the lower bounds from chapter 2.1. [
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Remark. As explained before the proposition, we can still obtain a modulus of con-

tinuity estimate, if we merely assume u € C*' N C°(Q). In this case we instead have

) ()
p
xepayeas<t |X —Y|

S 027

which can then be used in the upcoming a priori estimates for the gradient on € (see
also GILBARG-TRUDINGER | , p-353]).

Proof. Since the shape of D remains unchanged for any time ¢ € [0,7), we can use

time-independent barrier functions of the form

w*(x) = do(x) + f(d(2)).

Here, ¢o(x) are the boundary values on S, d(z,t) = d(x) is the distance to the spatial
boundary 0D and f is a C? function of one variable which is increasing (f’ > 0) and
concave (f” < 0). Since d(z) is independent of ¢t and 9D € C?, the distance function
satisfies d € C*'(N N Q) with d = 0 [cf. Appendix, Sec. 5.6].

Moreover, we will make use of the Bernstein £ function [cf. Appendix, Sec.
5.1], defined by

8<X7Z7p) = az]<X7Z7p>pzp]

Since a¥ is assumed to be the quadratic part of a parabolic differential operator, the
Bernstein function satisfies A|p|> < & < A|p|?, where X and A can be taken as the

smallest and largest eigenvalue of a/ respectively. For the specific choice a(p) =
51’]‘ _ _Pipj

e Ve obtain

_ |p|2 =\ 2
= =l
1+ |p|

Let us begin with the construction of an upper barrier function w™(z) which, from now
on, will be denoted by w(z). Inserting the function w(z) = ¢o(z) + f(d(x)) into the

parabolic operator P yields
Pw = a”(Dw)Dyjpo — ¢o + f"a” (Dw)DydD;d + f'[a” (Dw)Dj;d — d] + alu).
Making use of ¢o(x),d(z) = 0 and defining

Sd = aij (DU})DldDjd,

16



we are left with
Pw = a’(Dw)Dypo + f"Eq+ f'[a” (Dw)Dyd] + a(u). (2.12)

Out of the four conditions that need to be fulfilled by the barrier function
w(x), the first one (Pw < 0) is the most difficult one to prove. The first major step is

the estimation of (2.12) by an expression of the form
Puw < [f"+c(f")?)€4 (2.13)

with a positive constant c. Once obtained, we can choose the function f to fulfill all
conditions that are required for w = f(d) + ¢ to be a barrier function.

All forthcoming calculations will be carried out in a principal coordinate sys-
tem [cf. Appendix, Sec. 5.6]. Denoting the principal curvatures by x;,i =1,...,n—1,

the distance function d suffices

. —ri(y)
Dd(z) = Dd(y) = (0,...,0,1) and D?%d(z) = diag {—,O}
() = Dd(y) = (0,...,0, 1) (z) " e
in these coordinates, where y € 9D and z € D is close enough [in the sense of Appendix,
Sec. 5.6] to 0D. This implies

n—1 n—1

D;d(z) = — < —K; = Dy;d 2.14
> Dule) = 3 s < Y = Y Dl .14
for x € D close enough to y € 0D, which is easily seen by distinguishing the cases
k; < 0 and x; > 0.

Next, we point out some estimates that will be needed later on. If we assume
f' > 2sup |Dgyo|, the gradient Dw satisfies

|Dw| = |f'Dd + Déyo| < [+ [Deo| < 2f",
: 1, (2.15)
|Dw| > f' = [Déo| > 5 f"

Moreover, the operator P has the largest eigenvalue A = 1. Hence, there exist a

constant ¢ > 0 and a number p, > 0 so that for any p > p,

[pl*
A=1< TT pE c€(p) (2.16)

Note that it suffices to discuss the case |Du| > py because once we have found a bound

B > 0 for this case we obtain a bound for the general case by |Du| < max{py, B}.
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Another important estimate is given by

E4(Dw) = a”(Dw)D;dD;d = a™(Dw)
|D,wl* 14 |Dw|* — |Dyw|? - 1
1+ |Dwl> 1+ |Dwl|? ~ 1+ |Dw|*

where we made use of the fact that Dd = (0,...,0,1) in a principal coordinate system.
Applying (2.15) for f' > 2sup|D¢g| we obtain
| Dwl?

E(Dw) = =0 < 4(f')?

= T DwE < 4(f")?Es(Dw). (2.17)

— <
1+ |[Dw|?> —

Next we estimate the components of (2.12) to achieve the form (2.13). Let
n = (1,...,1) be the n-dimensional vector consisting of only ones. Then by using (2.16)
and (2.17) we have

a”(Dw)Dij¢o < a” (Dw)nin| D*¢o| < A(Dw)[n]*|D?dol
< en|D*¢olE(Dw) = c(n, ¢o)E(Dw) < c(n, do)(f)*Ea(Dw).

For the last term of (2.12), which is a(u), we make use of the boundedness of u(x,t) >

cf > 0 from the previous section and (2.17) to conclude that

<Pl Bl caw) < e, ) 2EuDw).

alu) =
() uw S

g =2

What remains of (2.12) to be estimated is the expression f’[a"(Dw)D;;d]. Here we

use a decomposition from LIEBERMAN | , D- 244]. Tt is easily verified that we can
write a¥(p) = aid (%) + a (p), where

ii [P\ _ cij DPiPj ij . Dipj
al | — | =67 — , o ag(p) = v
<|p|> PR R T ey

Now, if &,& € S™!, where S"! is the (n — 1)-dimensional unit-sphere, we have

Lipschitz continuity of %, hence there is a constant L > 0 with

|a (&) — all(&)] < L& — &

for all &1,& € S™ 1. Moreover, there is a value py > 0 such that for every p > py we

have

D, 2
piv; ol _ E(p),

i
plag \pP) = ~C
Pl () = i oy < T+ P
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so that yet again we obtain by (2.17)
|Dw|af (Dw) < c&(Dw) < c(f)2E4(Dw).

Proceeding with @ we need additional estimates. First observe Dd(z) = v(y), where
v(y) is the inward normal vector pointing from y € 9D towards = € D close to dD.

This relation can be seen easily by calculating

rT—y r—y
dz) |z —yl

r=y+viy)d =vly) =

and differentiating d(z) = |z — y|, which yields Dd(z) = oy as well. Therefore, we

can estimate

|Dw — |Dwlv| = [Dw = f'v + f'v = |Dwly| < [Dw — f'v] + [v| - [f* = [Du]]

= |f'Dd+ Do — f'v] +[|Dw| — f'| = [Dgo| + [[Dw| = f']. 21
Making use of the inverse triangular inequality
lla| = ol < fa—0l, a,beR",
we also have, with « = Dw,b = f'Dd,
||1Dw| = f'| = [|f'"Dd + Déo| — | f'Dd|| < |f'Dd + Do — f'Dd| = [Deo|.
Inserting this estimate in (2.18) we obtain for f’ > 2sup|Dgy|
|Dw — |Dw|v| < 2|Déo| = ‘u%y - u‘ < 2‘@3' < 4‘Df‘?°‘, (2.19)

where we made use of (2.15) for the last inequality. The remaining condition that
needs to be met involves the inward mean curvature Hp(y) at a point y € 0D. If v

is the inward normal vector in a principal coordinate system, then v = (0,...,0,1) and

‘) 1, ifi=1,...,n—1
a (v) =
0, if i =n.

we can calculate

If we combine this with the properties of D?d(z) in a principal coordinate system and
(2.14), we obtain

n—1 n—1
ij i — R
() Dig(w) = o (v) Did() = D g s < D~ =~ Hp(y)
i=1 v i=1

n—1

where Hp(y) = )., k; is the inward mean curvature of 0D at y € 0D.

If we now assume that Hp(y) > 0, the last inequality implies that we also
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have a4 (v)D;;d(z) < 0 and we can use the decomposition and the previous estimates
(especially (2.19) in the third step) to conclude

Pl (Du)Dyd) = 1 [o (13 ) Duda) + a3 (Dw) Dy

< 7' (1) = 0200 Dudta) + a5 (D)D)

< 4| D¢y| sup Hp(y) + 2| Dwlaf (Dw)Dyjd(x)
yeoD

< ¢(¢o, Hp(y))AM(Dw) + c¢(Hp(y)),n)E(Dw)
< (g0, Hp(y))(f')*Ea( Dw),

as long as |[Dw| > pg and f" > 2sup |Dey)-
Combining this estimate with the ones above, we have shown that there exists
a constant ¢ = c(,n, ¢o, ¢, Hp(y)) such that for [Dw| > py and f’ > 2sup |Dgy| the

estimate

Pw = a”(Dw)D;j¢o + f"E4+ f'[a” (Dw)D;;d] + a(u)
< [f"+ c(f))€a(Dw)
holds.

Now we can solve the ordinary differential equation

F"(d) +e(f)*(d) = 0,

which yields

N 1
Jid) = cd(x) + k’

F(d) = %m (%d(m) + 1) ,

with a constant k at our disposal. The second constant we obtained from integration
was chosen so that f(0) = 0. Note, that for small and positive k£ and z close enough
to 0D, the function f’(d) becomes arbitrarily large.

We have proven that if we choose f(d) as the function defined above and let
k be positive and small enough to guarantee f > 2sup |De¢yg|, then w(z) = ¢o(x) +
f(d(x)) suffices condition a) (Pw < 0) from the beginning of this chapter. Having
proven that condition a) is fulfilled, we will now show that the other conditions, b), c)
and d) are also fulfilled, if we choose the set N in a specific way. Conditions b) and d)
are immediately fulfilled from the definition of w because f(d) > 0 and f(0) = 0. To
meet condition ¢) we set N = B, (z9) = {x | |z — 20| < a}, then PN = {z | d(z) = a}
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so that ¢) becomes
w(x) = f(a) + ¢o(x) > u(zr) on PN NQ.

With M = sup|u—¢y| this inequality is always fulfilled if we choose « so that f(a) = M.
Q

Since we had

F(d) = éln (%d(m) + 1) ,

this leads to the choice
k
a = —(exp(Mc) —1).
1

Note, that the smaller the value for k, the smaller the value for a so that by choosing
k sufficiently small we reduce the distance of x to 0D, which increases the value for
f'(d). Hence, the conditions a) to d) are fulfilled and thus w(z) = ¢o(z) + f(d(x)) is
an upper barrier for u(x,t).

Let us now briefly discuss why the function

w™(x) == o(x) — f(d(x)),

for the same choice of f(d), is a lower barrier for u(x,t). First, note that upon inserting

w™ into the parabolic operator P we obtain
Pw™ = a”’(Dw)D;jo — f"Es — f'[a” (Dw)D;;d] + a(u)

with the same notation as before. (2.15) still holds and in accordance with (2.16),

(2.17) we obtain
—A>—cf(p), —&E(Dw) = —4(f")*Ea(Dw).
We may estimate the first expression in (2.5) by
a"’(Dw)Dij¢g > —a (Dw)nin;| D*¢o| = —A(Dw)[n*| D*¢o| > —c(n, ¢o)(f")*Ea(Dw)

and the last expression by

a(wy > 1> s e pedvu)

u C

In addition it is clear from our previous calculations for f'[a”(Dw)D;;d], that under
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the conditions Hp(y) > 0 and f' > 2sup|D¢o| we have
—f'la"(Dw)Diyd] = —c(¢o, n, Hp(y))(f')*Ea(Dw)
and thus we end up with the inequality
Puw™ = =[f"+ ()€
with a positive constant c. This leads to the differential equation

f'(d) +cf'(d) =0

as in the case for the upper barrier. Hence, if we choose f(d) the same way as before
we obtain a). b) and d) immediately follow from the definition of w™(x) and taking

N = B,(xp), condition ¢) becomes
u(r) = w(xr) = ¢o(z) — f(e) on PNNQ,

so that we may take f(a) = M again to also fulfill ¢). This proves that w™(z) =
¢o(z) — f(d(x)) is a lower barrier for u. It is obvious that f(d) € C* and from our
assumptions we have ¢g(z),d(x) € C?(D), hence w*(z) € C?. Additionally f'(d) is
bounded for d > 0, which implies Lipschitz continuity for f(d) and hence there are
constants L* so that (2.10) is fulfilled. Moreover, 9D is a compact subset of R" so
there is a finite cover of D consisting of balls B,,(z;),x; € 0D,i = 1,... k, where
a; is chosen accordingly to fulfill condition ¢). Hence, we obtain an upper bound
independent of the choice of X, € PS2, which completes the proof. O

2.3 Global gradient estimate

The classical approach for the derivation of global gradient estimates uses the fact that
Du solves a similar partial differential equation as w itself. Usually one differentiates the
equation with respect to x, and multiplies by u; afterwards. The resulting expression
is estimated in a way that allows for the application of the weak maximum principle
to show that |Dul is bounded over all of PQ U by a constant that depends on the
bound for |[Du| on PQ). LIEBERMAN | , P. 259-264| has done such a calculation
that is applicable in our case for any choice of v € R\ {0}. However, this approach
has the disadvantage that the bound depends on the time 7" and becomes unbounded
when 7" — oo. Thus, this method can only be used for the case T' < oo and we have
to make use of a different method deployed by ECKER and HUISKEN | | as well as
STONE | |, to obtain a bound for T = oo, which requires to work locally on the
surfaces graph(u(zx,t)).

We begin with the canonical approach from LIEBERMAN | |. To state his
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results we need to define some new expressions first. Therefore, let
Cfgm:igfu, M:sgpugCli, ¢ = |Duf?
and for (X, z,p) € Q x R x R™ define the operators
§:=D,+|p|p-D,, §:=p-D,,
where

DSC.f(X7Z’p) = (DSle(X7 Z7p)77DInf(X7 Z7p))7
Dpf(X7 Z7p) = (Dp1f(X7Z7p)7' * '7Dpnf(X7 Z7p))'

Furthermore, assume that there are a matrix valued function (a) with smallest eigen-
value A, and largest eigenvalue A, respectively and a vector valued function (f;) such

that (a") can be decomposed as

alj<Xazup) = Clij<X,Z,p) + §[psz(X,Z7p) +p]fz(X7Z7p)]

Finally, we define the quantities

IR NERS — ij\2
A= (% i;(aa*) +(9 1)5) ,
1 _
B:E(éé'+(5—1)a),
1€ - ij\2
C= z (2)\* 2 (6ay) ~|—(5a>
1,j=1
and
Asos Boo, Coo = lim  sup A, B,C. (2.20)
Ipl—=00Q x [m, M]
Then we may use the following theorem from LIEBERMAN | , p-263, Thm. 11.1].

Proposition 2.5 (Gradient estimate on  for 7' < 00) Let u € C%(Q) N C°(Q)
with Du € C°(Q) and suppose that Pu = 0 on Q. Suppose that P is parabolic at u and
that the quantities Ay, Boo and Cs are finite. If

min{ Aoo, Coo, Boo + 2| AscCic|2} < 0,
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then there are positive constants k, ky with

sup |Du| < ke,
0

where ki is a constant determined only by sup|Dul|, Ax, Beo, COO,C{E,C’fE and the limait
PQ

behavior of (2.20). O

Thus, the derivation of a gradient bound for T < oo over all of €2 can be
reduced to the calculation of the quantities A, By and C.,. The parabolic operator

P was given by

Pu = —i+ a”(Du)u;; + a(u) = —u + (5] - TDJUP> g =

so that for the choice

a’ :=46Y and f;:=—
: AP
we have
T 1 PiD; P;ipi j_ _DiDj i
al +Sifj +pif) =07+ 5 |~ — =07 — = = a"(p).
2<pf] p]f) 2( 1+’p|2 1+|p‘2 1+|p‘2 (p>

Hence, we obtain

2
p| A =1

E(p) = a” (p)pipj = TW,

and obviously any kind of differentiation of a¥ yields the value 0 since the matrix is

constant, thus

S (el = Yo (0a) =0,
ij=1 ij=1

This simplifies the quantities A, B, C' to

1 _
A=2@-1DE B=(0E+(E-1a), C=zda

S
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and here we obtain

2 2 2 2 2 2
= P 2pI=(L+|p|7) — |p|” - 2|p 2lp
5E() = p- p(l!Q)_H( ||)2|2| pl* _ ||227

1+ |p| (14 [p?) (1+1p?)
2
5E(p) = (D, + |p|~2pD, L):o,
) = 0.+ 900 (12

Therefore, it is

1+ |pP? 2|p|? >y 2
A= 2 N2 2| — 2 1,
p| (1+1[pl?)? 1+ pl L+ |p|

1 2 1 2
p_ 1t (o+0-(-2)) - + Il o

p|? z p> 2
oLt P
p|2 2%

and letting |p| — oo yields

Y i
Asxw=-1, Bx= sup —, Cx= sup —,
z€[m,M] # z€[m,M] #
which are all finite since we have shown in the previous chapters, that there are con-
stants ¢, OF with 0 < ¢ <m < u < M < Cf < oo for either choice of v € R\ {0}.

Moreover, it is A,, = —1 < 0, so by using proposition 2.5 we conclude

Proposition 2.6 (Global gradient bound for 7" < o0) Let Q@ = D x (0,T) with
T < oo. Let u € C*1(Q)NCYQ) with Du € C°(Q) be a solution to (P, _.) and
assume further that ug, ¢y € C’Q(E) with ug = ¢ on CSY. Then there are positive

constants k, Cs such that

|Du| < Csef” on Q, (2.21)
where Cs = Cy (sup|Du|, ct, C’li), with the constants ¢, CY from chapter 2.1 . O
PO

For a gradient bound independent of T" we proceed by working locally on the
surfaces M, generated by graph(u(z,t)), see also | | and | |. For a detailed

explanation of this procedure we refer to [Appendix, Sec. 5.7].

Proposition 2.7 (Global gradient bound) Let Q = D x (0,T), where T < oo. Let
u € C*(Q) N CQ) with Du € C°(Q) be a solution to (PE

®o u()>c) and assume that
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Ug, Pg € CQ(ﬁ) with ug = ¢g on CSY. Then there is a positive constant C3 such that
|Du| < C5 on Q, (2.22)

where Cy = Cy(ct, CF, Cy), with ¢, CT being the constants from chapter 2.1 and C,
the constant from chapter 2.2. U

Remark. If the solution is merely in C%1(£2) N C°(2) we can still obtain a gradient
estimate by using the modulus of continuity estimate from chapter 2.2. In this case it
also suffices, that ug, ¢o € C°(Q) with ug = ¢o on CQ.

Proof. Let us assume that the solution u(x,t) defines a graph M, and set
F(o,t) i= (2, u(z, 1)

for every (z,t) € Q= D x (0,7). We call F(z,t) the flow of the surfaces graph(u(z,t)).

Let g : Q@ — My C R", g(z,t) = p be the diffeomorphism from Lemma 5.14
in [Appendix, Sec. 5.7|, where M, is the initial surface given by M, = graph(u(z,0)).
Then there is another way to describe the flow F(p,t) = F(g(x,t),t) with images M,
that suffice My = graph(u(z,0)) = graph(i(p, 0)) = M. Additionally, the surfaces M,
generated by the graph of a(p,t) are equivalent to the surfaces M, generated by the
graph of u(z,t) up to the tangential diffecomorphism g(z,t). Hence, it suffices to bound
the gradient of the alternative flow F(p,t). F(p,t) satisfies

F(p,t) =v" (vH(&) - %) v(p,t) on My x [0, 00),
F(p,t) = F(p,0) on M, x [0,7), (PF)

where all quantities are now evaluated at the point (p,t) and understood as function
of @(p,t) = F(p,t) - enyq. For this flow the time derivative of the unit normal is given
by (see STONE | , p- 173] and ECKER | , p. 121])

O = — <g~u> :—V((H—l>y~u) — _VH— V().

v u2v?

Since we also have the relation v = (v - e,,,1) 7!, it follows for the time derivative of v

0= %((1/ ceni1) ) =0v3(VH -enq1) + %(V(fw) “€ni1)- (2.23)
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Moreover, we obtain by the definition of A = Ay,

Av = ¢”D;Djv + Hv' Dy (2.24)
with ¢ = §% — vivJ. Abbreviating v - e, =: V"1, the partial derivatives of v are
given by

DiU — D'(VnJrl)fl — _,UZDiVn+1

D;Dw = Dj(=v*Di"™") = —D;(v*) D"t — v*D; D"
Inserting this in (2.24) yields

Av = —v*(¢"D;Djv"t" + HY' D) — ¢ D;(v*) D™
2 ..
= —v A" 4 —g”D@Djv

!VUP
v

= v A n+1 _'_ 2
so that, after making use of the Jacobi field equation
Av = —v|A]? -

we end up with

\V °

= v|AP? + 25— + 03 (VH - epp1). (2.25)

Now we can subtract the two equations (2.23) and (2.25) to obtain

o Vo

= Av— |APv— + 7IQ(V(fw) “eni1)-

Dividing this equation by v and noting

A(In(v)) = ¢” D;D;(In(v)) + Hv' D;(In(v)) = ¢ D; ( ) + HizZo iV
v v
1 1 .. 1 2
=—-Av — —QQZ]DZ'UDJ-U = -Av — ‘V?j
v (% v v
leads to
d Vo|? .
dt(ln( v)) = A(ln(v)) — |A]* - | 2’ + %(VU tent1) + %(Vz} Ceny1)- (2.26)

Using the evolution equation in combination with the identity H = vAu gives us

. dF
U=—"+epr1 =AU — lz
v

27



Hence, by introducing the auxiliary function

X :=ocln(v)+a
with a positive constant ¢ > 0 to be chosen later, we may multiply (2.26) with ¢ to
obtain the estimate

. o, o 1
(S A+ (ST ) + (V0 ) — ) (2.27)

Next, observe that

o

Vx = —Vuv + Vu,
v

so inequality (2.27) may be expressed as

- o - 1
(Vi - enq1) + E(VU Ceni1) — W) )

| =

. 1
X < Ax+y <5(Vx “nt1) —

Also, since v, v are functions of @ evaluated at p, we have

Vii - enp1 = (D, 0) — Dyi'v) - engq = 0 — =Dy’ = =
(% (%

and thus

: 1 | Da? |Da> 1

< Z : _ _
X < Ax+7 (a(VX ent1) + =20 3 i
|Da? 1> (2.95)

1
=Ax+~ (E(VX'en+1)+ 327 T
Da)>
ZAx+z(Vx-en+1)+~lg<‘ QIG—U)'
u u (%

At this point, we have to distinguish the cases v > 0 and v < 0. If v > 0 we may
| by estimating ‘2%'2 < 1 and choosing o < ¢f < @ to obtain

proceed as STONE |
X < AX+ (VX - ens). (2.29)

w

If v < 0 we work on the set M} := {(p,t) € My x [0,T) | |Du| > 1}. If this set is

empty, then
sup  |Du| = sup|Du| <1
(pt)€Mox[0,T) Xen
and the result follows. If M} is not empty, we have

| Daf?
’U2

1
> 5 on M.
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Hence, if we choose o > 2C| > 2u, we obtain

Dii 2
| z:| c—u>0 Othl
v
and thus,
X < Ax + 7(VX “eny1) on M} (2.30)

it
For both equations (2.29), (2.30) the weak maximum principle on manifolds [cf. Ap-
pendix, Sec. 5.3] yields

< -0 . 2.31
jhax |y < max {%X x(+,0), pnax X} (2.31)

From the definition of y we infer the existence of a constant Cs = Cs(cf, C55, Cy) with

sup |Du| = sup |Du| < Cy (2.32)
XeQ (p,t)eMox[0,T))
or in case 7 < 0
sup |Du| = sup |Du| < max{1, Cs}, (2.33)
XeQ (p,t)EMox[0,T)
which concludes the proof. [l

2.4 Holder gradient estimate

The estimates from the previous chapters imply that the parabolic operator P given
by

DiuDju y

Pu= i+ Au— ————5Djju— —
u u+ Ay 1+ |Dup? ;U "

is uniformly parabolic since the ratio % = 1+ |Du|? is bounded. Hence, we have access
to results for uniformly parabolic operators which easily yield the remaining a priori
Holder gradient estimates. For completeness sake, we cite the relevant propositions
from LIEBERMAN | |. For the definition of time-dependent Holder spaces H, with
a € RT see [Appendix, Sec. 5.4]. Additionally, define the function

bolz) = uo(z), if x € D,
T bola), ifx € oD,

that combines the initial and boundary values ¢g, ug [cf. Appendix, Sec. 5.5].

Proposition 2.8 (Interior Hélder gradient estimate) | , p. 305, Thm.
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12.3] Let P be a parabolic operator of the form
Pu = —i+ a” (X, u(X), Du(X))uij + a(X,u(X), Du(X))

and let uw € C*1(Q) satisfy Pu= 0 and |u|+ |Du| < K in Q for some positive constant
K € R. Suppose further that the function a(X,z,p) is differentiable with respect
to (X,z,p) and that a” and a are continuous. Let ux be a constant for which the

nequality
pc = K(|ai| + |aZ ||pl) + |al

holds and let A\, Ai be the smallest and largest eigenvalue of a¥ respectively. Then

there is a constant o > 0 such that for any Q' CC 2 we have
{DU]Q;Q/ < C(n, K, >\K; AK, MK, diamQ)(S*a,
where § = dist(Q, PQ). O

Proposition 2.9 (Global Holder gradient estimate) | , p- 309, Thm.
12.10] Suppose that P is the operator defined in the previous proposition, let €
(0,1] and let @ = D x (0,T) suffice PQY € Hyy5. Suppose further that a”(X, z,p)
is continuously differentiable with respect to (X,z,p). If u € C*1(Q) N C(Q) with
Du € L* satisfies Pu = 0 on Q,u = ¢y on PQ for some vy € Hiipg fulfilling the
compatibility condition Py = 0, then there are positive constants o and C' determined
only by n, B, Mg, A, diam Q and EE such that

[Dulo < C[K + |¢ol145 + i),

where g 1s defined as in the previous proposition. [l

Both propositions are applicable to (P;fwox) for either choice of v € R\ {0},
since 0 < ¢ < |u| < Cf and |Du| < O3 and thus a”(Du) and a(u) are continuously
differentiable for every (X, u(X), Du(X)) € 2 x R x R™. Hence, the application of the

last proposition yields the desired last a priori estimate, which concludes this chapter.

3 Existence, Uniqueness, Regularity

3.1 Existence and uniqueness

The a priori estimates allow for the application of a fixed point argument to prove the

existence of a solution to (P~ ). We have shown in the previous chapter, that there

P0,up>c
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are constants 0 € (1,2] and M; € R" only depending on values determined by the
operator P, the initial and boundary values ug(x), ¢o(x) and the set Q but not on u or
its derivatives, such that every solution u € C%1(Q) N C°(Q) fulfills the estimate

luls < Ms,

as long as the initial and boundary data and the set €2 fulfill appropriate conditions.

Therefore, we can make use of the following two propositions from LIEBERMAN | |-

Proposition 3.1 (Short Time Existence) | , p- 206, Thm. 8.2.] Assume
that for any bounded subset IC of 2 x R x R™ there is a positive constant A\ such that

)‘K|§‘2 < aij(X7 Zap)ﬁifj

Jor any (X, z,p) € K and any & € R". Assume further that X — a™ (X, u(X), Du(X))
and X — a(X,u(X), Du(X)) are Hélder continuous and define Q. :=={X € Q |t < €}.

Suppose PQY € Hgs and 1y € Hg() for some § € (1,2), where 1by are the combined

miatial and boundary values. Then there is a positive constant € such that the problem

Pu=0 on (),

(3.1)
u =1y on P,

has a solution u € Hy, () N C°(Q.), where a € (0,1] and ' is any compact subset
of Qc. If PQ € Hoy(, and g € Hoy () fulfills the compatibility condition Py =0 on
CQ, then u € Hoyo(€)). O

Proposition 3.2 (Long Time Existence) [ , p. 207, Thm. 8.3.] Suppose
that Q = D x [0,T),T < oo,v¢ and P are as in the proposition above. If there are
constants § € (1,2] and Ms € Rt (independent of the € from the previous proposition)

such that any solution u of (3.1) satisfies the estimate
’u‘g < M;s on Qv

then there 1s a solution of
Pu=0 on(,

3.2
u =1y on PC. (3:2)

O

Combining these two propositions yields a solution u to problem (Pi ). For unique-

$0,u0>c
ness we make use of results for the linear theory, especially for uniformly parabolic linear

operators. Results are once again taken from LIEBERMAN | |-
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Proposition 3.3 (Uniqueness and regularity) | , p. 94, Thm. 5.14.]

Suppose we are given the initial boundary value problem

Lu=f on{),

(3.3)
u =1y on P,

where L is a parabolic operator given by
Lu=—u+ aijuij + biu; + cu

and 1y are the combined initial and boundary values. Suppose further that there are
positive constants X\, A, A, B, C' such that for every & € R" and some o € (0, 1) we have

MEP < ag&; < AEP, |aY|a <A, [Ba< B, |da<C.

If PQ € Hoyo,tho € Horo(Q) and f € Hy(QQ) for some o € (0,1) then there is a unique
solution u € C*1(Q) N C(Q) to (3.3). If also the compatibility condition Py = 0 on
CQ is fulfilled, then w € Hyyo(S2) and

|u|2+a S C<Aa B: Cvn7a7Q)(|f|O¢ + |77/}0|2+Oé>‘

O
Remark (] ,» P- 93]). The condition ||, < C instead of |¢|, < 0 is sufficient for
the application of the maximum principle that is used to prove the previous proposition.
To see this, define

Ly := Lo — kv, fi(X) := e ™ f(X), (o)r(X) := e Mo (X).

If |c|o < k for the operator L, then |cx|, < 0 for the operator L. Hence, there is a

solution uy to
Lyup = [ on (),

ur = (Yo)r on P

Then, the function u(X) := eFu,(X) solves
Lu = —keMuy(X) + e Luy, = " Lyu, = ¥ f, = f
and thus u(X) is a solution to

Lu=f on(,
u =1y on PQ.
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The application of these three propositions to (PE ) leads to

do,uo>c

Theorem 3.4 (Existence and uniqueness for (Pq:;,upc)) LetQ = Dx(0,7),T < o0

be a domain with PS) € Hyyy, let D C R™ be a domain with non-negative inward mean
curvature Hp(y) > 0 for every y € 0D and let o(x) = vo(x,t) € Hara(2) be given by

uo(z), if x € D,
Yo(r) = { ,
¢o(z), if x € OD.

Suppose for v € R\ {0} we are given the problem
DZ'UDJ'U
1+ |Dul?

u(, 1) = dofx) on S,

—U+ Au — Diju = Z on Q,
u

(3.4)

where ¢o(x), uo(x) are chosen so that

¢o(z), up(z) > 0, if v <0,

60(2), uo(z) > 2d 2n7_7, if y € (0,1],
2vd

oo(x), up(z) > B if v> 1,

Von—1’

for d := diam(D). Then there is a unique solution u € C**(Q) N C(Q) to problem
(3.4), which is also in Hyro(Y) for any Q' CC Q, with a € (0,1).
If further vo(x) fulfills the compatibility condition Pyg = 0 on CQ then u € Hayo(Q)

and
|u|2+06 S O(Ci‘:7 Ci‘:a OQa C’37 |w0|2+o¢)7

where ¢, C55, Cy, Cs are the constants from chapter 2. O

Proof. The a priori estimates from chapter 2 allow for the application of propositions
3.1 and 3.2, yielding a solution u to (3.4). Since the gradient is a priori bounded and
AN Du) = W,A = 1 are the smallest and largest eigenvalues of a% respectively,
there is a constant A > 0 such that A|£|* < a”¢,&; < A|€|* for every £ € R". Moreover,

by setting b, ¢ = 0, f = 1, the equation Pu = 0 with

DiuDju y

Pu=—-u+Au— ———=D;ju— —
U u+ Au 1+ [Dup U "
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is equivalent to Lu = f. Thus, to apply proposition 3.3, we have to prove that there is
a constant « € (0,1) so that |a¥|, < A and f € H,(Q). But the Holder continuity of

u and Du follows once again immediately from the a priori estimates and since

i i PiPj Y
o) =07 = P o) =

are Holder continuous functions on the set S := {(z,p) € RxR" | 0 < ¢f < z,|p| < Cs}
with the constants ci, C from section 2, the compositions @ (Du), a(u) are Holder con-
tinuous for some constant o € (0,1) as well. Hence, we may apply proposition 3.3,

which concludes the proof. 0]

3.2 Higher Regularity

In this section we make use of regularity results for parabolic equations found in FRIED-
MAN | |-

Proposition 3.5 (Local spatial Regularity) | , p- 72, Thm. 10] Let Q =
D x (0,T) C R be a domain and L be a parabolic operator given by

Lu = —i + a"” (2, t)uy; + b (z, t)u; + c(z, t)u.
Assume that
D™ D™, De, D' (0 < m < p)

are Héolder continuous with o € (0,1) in §2, where the operator D' is to be understood
as any combination of partial derivatives with respect to x;,1 = 1,...,n, whose order

adds up to m. If u is a solution to Lu = f on §2, then
D™u,D,D*u (0<m <p+2;0<k<p)
exist on every cylinder Q CC 2 and are Hélder continuous with exponent a on Q). [

Proposition 3.6 (Local Regularity in Time) | , p. 74, Thm. 11] Let L

and € be given as in the proposition above. Assume now that also
D™DFa", D™DV, D™ DEe, DP*DFf (0 <m +2k <p;0<k <q)
are Hélder continuous with o € (0,1) on Q. If u is a solution to Lu = f on €, then

DI'Dfu (0<m+2k<p+20<k<qg+1)
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exist on every cylinder Q CC Q and are Hélder continuous with exponent o on Q). [

These properties can be extended to the whole domain, if €2 and the initial and bound-

ary values 1)y are smooth enough and vy fulfills compatibility conditions.

Proposition 3.7 (Regularity on all of Q) | , .75, Thm. 12] Let L be a

parabolic operator in ). Assume that
Dy DFagj, DI DEb;, D De, DIDEf (0 < m +k < p)

are uniformly Holder continuous in 2. Assume further that the functions ¢ from the
local representation of 0D [cf. Appendiz, Sec. 5.6] are such that

DI DEG, DIDE G (m > ~2,k > ~1m+ k < p)

are Hélder continuous, which implies PS) € H,y, for some a € (0,1]. Assume finally
that 1y € Hoyy, that Ly = [ on CS) and that, as a function of the local parameters of
0D, g is a function satisfying the condition that

DI DEy, DDy g (m > =2,k > —1,m +k < p)
are Holder continuous, wheras on BS2
Dy (=2 <m < p)
are Holder continuous. If u is the solution to

Lu=f on{,
u =1y on P,

then the functions
D™ 2Dk, D" DM Yy (m > =2,k > —1,m + 2k < p)
are uniformly Hélder continuous on 2. O

Hence, by invoking these three propositions we obtain

Proposition 3.8 (Higher regularity) Every classical solution u € C*'(2) N C(Q)
to problem (P, ) is in C>(2) N C(Q) with locally Hélder continuous derivatives of
arbitrary order in space and time. If moreover the conditions from proposition 3.7 and

the compatibility conditions of order |5 + 1| for p € N are fulfilled [cf. Appendiz, Sec:
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5.5/, the functions
D™ 2Dk, D" DM Yy (m > =2,k > —1,m + 2k < p)
are uniformly Hélder continuous on 2. O

Proof. Setting b’ = ¢ =0 and f = 2 the problem (P}

o.uy) 1S equivalent to

Lu=f on(},
u =1y on P,

where 1 is the function that combines the initial and boundary values

uo(x), if x € D,
Yo(x) = { ,
¢o(z), if x € OD.

The functions

Y ij ij PiDj
Z) = -, a :(5] —
f() =T aBp) =00 -

have bounded derivatives of arbitrary order on the set
S:={(z,p) ERXR" |0 < cf <z p| <3}

with the constants ¢, Cs from section 2. This implies Lipschitz and thus Hélder con-
tinuity for any derivative of f(z),a”(p) on S. Since the composition of two Holder
continuous functions with exponents «aq, s is once again Holder continuous with ex-
ponent a; - ay, the Hélder continuity of D™a"(Du) and D™ f(u) merely depends on
the continuity properties of Du and u. Thus, if we initially assume that u € C*1(Q),
the a priori estimates imply that v and Du are locally Hélder continuous and hence
a’(Du) and f(u) are locally Holder continuous as well. This enables the application
of proposition 3.5 for p = 0 from which follows that D?u and D,u exist and are locally
Hoélder continuous.

This in return yields that not only a” (Du) and f(u) but also D,a"”(Du) and
D, f(u) are locally Holder continuous. Using proposition 3.5 once again with p = 1
vields existence and local Holder continuity of D3u and D;D,u. Hence, by repeating
this process arbitrarily often, we obtain existence and local Holder continuity of D'u
and D;D*u for every m, k € N.

Proceeding with the differentiability in time we see that once again D™ DFa% (Du)
and D™ DF f(u) are Hélder continuous if the respective functions u, Du and their deriva-

tives are. Since from proposition 3.5 we already know that D;D!u is locally Holder
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continuous for arbitrary values of [, we can apply proposition 3.6 with ¢ = 1, which
vields local Hélder continuity of D™D?u. This guarantees that D™ D?a”(Du) and
D™ D2 f(u) are locally Holder continuous and another application of proposition 3.6
grants local Holder continuity of D™D3u. Repeating this process, we achieve local
Hélder continuity of D™ DFu for arbitrary values of m, k € N.

Under the additional assumptions from proposition 3.7, we can prove global

Holder continuity with the same reasoning. U

4 Further properties of solutions

4.1 Solution to the Problem (P;)

In this chapter we will construct a unique solution to the problem (P;)

DyuD;
—u+ Au — U—JUQDZJU = z on Q,
1+ |Du u (Py)
u(z,t) =0 on P
Since liH(l) ‘%‘ = oo poses a problem when reaching the boundary of  in (F; ), we
u—

make use of the approximating problems (P, ) which, according to the fixed point

theory deduced above, have a unique solution u € C*°(£2) N C(£2).

Proposition 4.1 (Unique solvability of (F;)) Let @ = D x (0,7),T < oo be a
domain with PS) € Hoy, and let D C R™ have non-negative inward mean curvature
Hp(y) > 0 for every y € OD. Then the problem

D;uD;
—U + Au — MDUU = 1 on Q,
1+ |Dul? u (Py)
u(z,t) =0 on PQ,
has a unique solution u € C=(Q) N C(N). O
Proof. Let € > 0 and consider the family of problems
D;uD;
—Q'L+AU—M iju:z on €,
1+ |Dul? u (Pyy.)

u(z,t) =€ on PQ.

According to our previous results these problems have a unique solution u(x,t) €
C>(Q) N C°(Q) for every e > 0, which moreover suffice u¢(z,t) € Hyyo()) for any
Y ccC Q. We can use a method from DIERKES | , p. 515, Proof of Thm. 1.6] to

show that u(z,t) converges uniformly to a solution u(z,t) of (B ).
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We interpret u¢ = u(x,t) as sequence in € which, by the a priori estimates
obtained earlier, is bounded for every e > 0. Moreover, it is monotonically increasing
in €, which can be easily seen by application of the comparison principle [cf. Appendix,
Sec. 5.3]: If 0 < ¢ < €3 <1 we have

Pu =0 = Pu® on €2,

ut =€ < ey =u? on P,

where

DZ'UDJ'U Y

Pu=—-u+Au— ————=D;ju— —,
U U+ Au 1+ Duf? U ”

so that by application of the comparison principle we obtain u* < u® on €. Since u¢

is a bounded and monotone sequence, the pointwise limes

lglirgl u(x,t) = u(x,t)

exists everywhere on Q. Furthermore, since u¢(z,t) € Hy,o(Q) for any ' CC €, the
theorem of Arzela-Ascoli yields a subsequence ¢, for which all derivatives of u(x,t)
that appear in the operator P converge uniformly to a function @(z,t) on any compact
subset 2 contained in €. Since u(x,t) already has a pointwise limes, both limites have
to agree so that by inserting u“(x, t) into the initial boundary value problem (7, ) and
letting € | 0 we see, that u(z,t) is a solution to (F, ) which also fulfills the a priori
estimates. Hence, by the regularity theory we have u(z,t) € C*(9).

Next, we prove that u(z,t) is also continuous up to the boundary by showing

that the convergence is uniform on Q. Observe, that the function u + e, — ¢; fulfills

. i 7 Y
P uel €0 — € — _uel azy Duq Di‘uel L
( + € 1) + ( ) J U + ey — €l
= —u" + a”(Du™)Djju — 7 + ST T
uet o out uf 4 ey — el
Y(e2 —€1) (€2 —€1)

= Pu,, + =
e ut(ut + €63 —€1)  ut (U + e — €)

so comparing u + €5 — €; with u yields for v < 0

Pt e —a)= 2" <o pur
(s (Uel + €9 — 61)
U + €69 — € = €9 = u? on PQ,

which, by application of the comparison principle, gives us

u? <ut4 (g —€) ©u?—ut <e—e€  on
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Hence, the convergence is uniform in € on Q and thus u(z,t) € C*(Q) N C(Q).
Uniqueness also follows easily from the comparison principle: Assume 4 is

another (different) solution to (P, ). Then we immediately have

so after application of the comparison principle in either direction we have @ > u and

@ < u on Q which implies & = v on Q and concludes the proof. O

Remark. The method presented above can also be used in cases where ¢y Z 0 and
o = 0 on subsets S C PQ. Thus, we can relax the restriction ug, ¢ > 0in (F; , o)
to ¢p, ug > 0 instead.

4.2 Convergence to a stationary solution of (P, )

In this section we prove, that a solution u(z,t) to (P35 ) has a subsequence of times

$o,u0>c
t — oo, for which u(x,t;) converges to a solution of the stationary problem

DuD;
_ DD Y op
1+ |Du|? u (P5)
@0
u(z) = ¢o(x) on 9D.

Au

We achieve this by making use of the Arzela-Ascoli theorem as well as an idea from

HUISKEN | , P-375], which can also be found in STONE | , p-175], that consists

/ uwvdz
D

in differentiating the energy

related to the (PDE).

Lemma 4.2 Assume Q = D x (0,00) and u(x,t) € Hyyo(2) for some a € (0,1]. If

/ /uQ(x,t)dxdt<oo,
o Jp

then
lim u(x,t) =0,

t—o00

for every x € D. O
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Proof. We prove the claim by contradiction. Suppose it is not

lim u(x,t) =0 for every x € D.

t—o00

Then there are numbers ¢y > 0, Ny € N and a sequence of points X, = (xy,t;) € Q

with lim ¢, = oo, so that

k—oo
|u(Xg)| > €0 for every k > Nj.
Define
Ky = {@ el a0 = 3}

and observe that

Y

00 2
/ / Wz, t)dedt > O Kq
o Jb 47z

/ /uz(:c,t)dxdt<oo,
o Jp

< 00. Since 1 is assumed to be uniformly Holder continuous on 2,

which, by the property

implies that [K«
there is a constant K € R, so that

[u(X) —u(Xp)| < K|X — X

for every X € 2 and some « € (0, 1]. If we choose 6 > 0 to suffice

1
= ()
and consider the sets
Ns(Xp) ={X € Q| |X — Xi| <},
then by Holder continuity of 4(X) it follows
(X)) — (X)) < K - |X — X,|* < K6* < %0

for every X € Ns(Xj). Hence, for every X € N3(X}) with k > Ny we have |u(X)| > ¢,
so that for every &k > Ny

Ng(Xk) C K«.

2

40



Furthermore, since t, — oo, we can find a subsequence k; with k; > Ny and k; — oo
as i — oo, for which Ns(X},) N Ns(Xy,) = 0. Then we have

| K <
2

> | Urzng Ns(Xi)| > | Usen Ns(Xy,)

= 0Q,

= Z | Ns(Xx,)

since obviously |Ns(Xy,)| > c(ki) > 0 for every k; € N. This is a contradiction to

‘K%o < 0o and the claim follows. O

Proposition 4.3 (Convergence to a stationary solution) Let 2 = Dx (0,7),T <
oo be a domain with P € Hoy (. Let D C R™ be a domain with non-negative inward
mean curvature Hp(y) > 0 for every y € 0D and let o(z) = Yo(x,t) € Hora(2) be

given by
uo(x), if x € D
Yo(z) = ,
¢o(x), if x € 0D,

fulfilling the compatibility condition Py = 0 on CS). Then the unique solution u €
Hy o (2) N C®(Q) to the problem

b = — on Q,
u(w,t) = do(z) on PL,

has a subsequence of times ty, for which u(x,ty) converges to a solution us(zx) of the

stationary problem
DiuDju y
= on D,

1+ |Dul2™" u (PS)
u(z) = ¢o(x) on OD.

A

If the solution to (quo) 18 unique then not only a subsequence but the whole sequence

u(z,t) converges to us(z) for t — oo. O

Proof. Since u € Hy. (), the theorem of Arzela-Ascoli yields a subsequence of times
ty, for which

u(z, 1) = Uoo (1), Du(m, ) — Duoe(x), D*u(z, 1) — D*tueo (), U(z, 1) — U ()

uniformly on Q, as t; — oco. Our goal is to prove, that the function u.(z) is a solution

to the stationary problem. To achieve this, we show that the relation

/OOO/Du2(x,t)dxdt<oo (4.1)
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holds. If this integral is finite, we must have

lim u(x,ty) =0

tr—00

by Lemma 4.2. We obtain estimate (4.1) by differentiating the energy

/D W da (4.2)

in time direction, where v = /1 + |Dul?, which yields

d

— u”vdx:/wﬂ_liwdx—i—/uvi)dx. (4.3)
dt Jp D D

For the upcoming calculations we use the notation
vi=2% and g9 =869 — v,
v
This results in the relation

) . , D |
g7 u; = Au — Uy = v - div <—u> = vDV*

1+ \DuP 1+ |Du|?

and by the definition of v we also have

N 'L:_zDi. _ lDZ' 3).
b= " = YDy(a) = v D)

If we now substitute v*D;(u) for © in (4.3) and integrate by parts, where boundary

terms are zero because 1 = 0 on S€2, we can continue the previous calculations

d

— u”vdx:/’yu71uvdx+/u71)dx
dt Jp D D

@\

yu)~ luvdx—/ D; (v ) dx
/'yu“* 1uvdx—/ vuv_lui%u+u7Di(ui)udx
D D v

D 1
VUV_IUde—/ vuv_lﬂu—l— uwg ;i1 da
D (%

1+ |Du|* — |Dul? 1 .
1u< + 1Dyl | Dul ) — —u'gYuude
v

v

1 -
D

I
S~

I
S
2
<

3
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At this point we make use of the (PDE), that states
U= g"uy; — X
u

so we end up with

d u”
— [ Wvdx = — — 42 dex.
dt D D v

This equation remains valid for v = 0, since here we have

d .
— vdx:/i;dx:—/Diuzudx
dt Jp D D

1 1
:—/ -q uz]udx——/ —4?dx.
DY DY

Now we may apply the a priori estimates |u| > ¢ > 0 and |Du| < Cs from the previous

chapters to obtain

d u’ + -2
— [ Wvdr=— | —i de < -C(c,Cs) | 4°dx,
dt D p U D

so after integration from 0 to 7' it follows, that

/ /u dedt < ———— 61703 (/Du“*x() xO)dm—Lu”(m,T}v(m,T}dm)

where we used that u”, v > 0. Since the bound is independent of T', we can let T" — oo

to deduce that
/ / u2(x, t)dzdt < oo. (4.4)
o JbD

Hence, if we insert u(x,t;) and its derivatives into the (PDE) and let ¢, — oo, we see,
that us () is a solution to the stationary problem.

Now, consider the case of unique solvability of (P} ). Let us assume there is
another subsequence u(zx,t;) that converges to a different function ., (z) for i — oo.
Because of our foregoing calculations, ., is another stationary solution to the prob-
lem (P; ) but the solution to this problem is unique so that we have uq () = oo ().
Hence, every subsequence of u(x,t) converges to the same function, which implies that

the whole sequence fulfills tlim u(x,t) = U (). O
—00

Remark. With further restrictions on the initial and boundary data we can show

as in STONE | |, that the convergence is of exponential order and that the whole
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sequence u(z,t) converges to uq(z) even if the solution to (PJ) is not unique. O

4.3 Interior gradient estimate for (P, )

We prove an interior gradient estimate for the case v < 0. The proof is based on a
variant of a method from KOREVAAR | ]. We start by quoting the theorem from
KOREVAAR | | which yields an interior gradient estimate for a similar problem in

the elliptic case.

Lemma 4.4 (Interior Gradient Bound for Solutions to the Prescribed Mean
Curvature Equation) Let z € R", B, = {z | |z| < 1} and let w € C3(B;) be a

negative solution to the equation

i oh
;g ]uij - h(l’,u(ﬂf)) = 07 % 2 07 |h’ + ’Dlh’| S Ma

with v = /1 + |Dul?, u;; = Djju, g = 6 —wui(14|Dul?)~t. Then there is a constant

c with

|Du(0)| <,
where ¢ only depends on M,n and u(0). O
For the applicability of this lemma we study the mirrored Problem to (P, .,) which
is given by
. DiuDju ~y
—u + AU — mDUU = a on Q,
u(z,t) = —¢go(x) <0 on S, (P uo>0)

u(z,0) = —ug(x) < 0 on B,

where v < 0 and ¢y, ug are the initial and boundary values of (P, , _,). Observe that

—u solves (P ). Hence, all bounds for |u| and | Du|

¢,uo>o) if and only if u solves (P,

b0,up>0
are also valid for —u and every bound for —u and its gradient will be valid for u.

Proposition 4.5 (Interior gradient estimate for the mirrored problem) Let
B0, ug € CO(D) with ¢o = ug on CL, let u € C*1(Q) N C°Q) be a negative solution

to (P, ,,~0) and let 6 = §(x,t) = min {{dist(z,dD), 3t,1}. Then there is a constant

C =C(cy,n,d), with
|[Du(X)| <C onQ (4.5)

for every X = (x,t) € Q, where ¢ is the constant from chapter 2.1. O

44



Corollary 4.6 (Interior gradient estimate for (P, , _)) Let ¢o, ug and d be chosen
as in the previous proposition. If u € C*1(Q)NC°(Q) is a positive solution to (P o0
then there is a constant C' = C(cy ,n,d), with

|[Du(X)| <C onQ (4.6)

for every X = (x,t) € Q, where ¢ is the constant from chapter 2.1. O
The corollary is an immediate consequence of proposition 4.5.

Proof (of proposition 4.5). Once again set
vV'=—" and g¢"“ =6 — v/,
v
Furthermore, we introduce the operator L given by
Lw = —1i + g7 w;j,

so that we may express the parabolic operator P with

DyuD;u y
Pu=—-u+Au— ——"2_D,u—~
U u+ Au 1+ Duf? U "
by
U U

We will also make use of a cutoff function. Therefore, let Xy = (x¢,to) be an arbitrary
point in 2 and observe, that we can assume Q = D X (0,00) since we have shown,
that every solution to (P, . .) exists for all times. Set ux, := —u(X,) > 0 and
for 0 < 6 < 1 let Qs(Xo) := Bs(zg) x (0,2ty) be a cylinder centered around X,
where ¢ is always chosen small enough to guarantee that Q5 C 2. Then we define
n(z,t,2) = fou(xr,t,z) with f(u) = e — 1 and the cutoff function

52 t(2tg — t)

e B(S(IO) X (072t0) xR™ — RJF,M(I»@Z) = zZ+ 2 (52 - ‘l’ - ZL’()|2> )

where (¢); := max{g, 0} denotes the positive part of g and k > 0 is a constant at our
disposal. Observe, that p is zero on the boundary of Qs(Xj), non-negative in Qs(Xy)

and differentiable, whenever it is positive. Define the function

h(z,t) == n(x, t,u(z,t)) - v(z,t).
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Since h(xg,ty) = ezkd® _ 1 # 0, the set on which h(z,t) is positive is not empty.

Moreover, h(z,t) = 0 on the parabolic boundary of Qs(Xy) as well as h(zx,2ty) = 0 for
every © € Bs(xg). Hence, there must be a point P, in the interior of Qs(Xj), at which

h(z,t) attains a positive maximum. At this point we have

ii) h;; <0 (negative semidefinite Hessian),
iit) =0.
Now, write (n); for S—Z and compute
Lh = g9 — ()
dt

= g7 ((n)igv + (Mivj + (m)vi + i) — v — 170
= vLn +nLv + 2¢” (n):v;.

Since at P, we have

Nvi
0=h;=Mmw+n < 1n);=— _
we can insert this expression for (n); to obtain
2 ..
Lh=vLn+n (Lv - —g”vjvi) : (4.7)
v
In the next step we show that
2 ..
Lv — —g“vv; > 0. (4.8)
v
Calculating the derivatives of v yields
Ui = Tk Vkum‘,
v
Ui U — URV; 1
'Uij = ykukij + Ui (%) = l/kukij —|— ;(ukiukj — ululjukil/k). (49)

Note, that if we interpret the expression
! k_. 0\
Upi Uk — V UpjUR V- =0 M

as matrix M = (M;;) € R™*", then M is positive semi-definite as long as |v| < 1. To
see this, let U = (u;;) € R™™ and v = (v4,...,1,) € R". Further let ® be the dyadic
product of two vectors so that for z,y € R we have r ® y = - y7 where the dot

now denotes the usual matrix multiplication and the scalar product is denoted by (-, -).
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Since U is symmetric, we may express M by
M=UU— ((Uv)® (Uv))=UU -U(v-vHU =UI —w")U,
where [ is the unit matrix. Hence, we obtain with Uz =y € R"
o' Mz = 27U — v Uz =" (I — vl )y = [y)> — |(y,v)|* >0

if [v| <1 and thus M is a positive semi-definite matrix. Multiplying (4.9) by ¢% yields

gy = g”uijkyk + ;g”(ukiukj — uku;ﬂ-uljz/l) (4.10)

and by interpreting the last term as trace of a product of the two positive semi-definite
matrices G := ¢’ and M = M;; we obtain [cf. Appendix, Sec. 5.2]

1 .. 1
— " (ugiugj — ukukiuljul) = —tr(GM) > 0.
v v

Thus, the only expression from (4.10) that remains to be estimated is g"u;;/*. We
use the (PDE) to continue

ij k _  ij k ij E_ (-, 7 k ij k
97w = (97w " — g wi vt = <u+a>ky — g u v

Furthermore, we have

—g? = (W) = ;((uzk — Vi) + V(g — v )
2 . )
= ;(ulk - V’ylulk)l/],
which leads to
ij k 2 il j k
_gk 'LLZ']'V = ;(uzk — Vv 'Lblk)y uijl/
2 , 2 .
= E(Uivi —yrlot) = 5(9”%‘?}]‘)-

Collecting terms, we have shown that

. . 1 ..
7 7 k 7 k l
g7vij = g7 uprt + 59 I (i — Vi uriug V)

v

(4.11)
ij k . ko, 2 ij
> gy = (U-i‘a)kV +;9 VV;.

Returning to the original task of showing (4.8), we also need the time-derivative of v,

47



which is given by

V= Up— = Ul .
v

Thus, by using this relation and (4.11) we obtain
2 . . 2 ..
Lv — —g"viv; = =0 + g"vij — —g“ v,
v v
> =0+ (u + 1) v+ Z g — =g,
u/k v v

2
. . U Du
:—ukuk+ukl/k——72 Vk:—’)/l 2|

U VU

> 0,

since —vy > 0.
Now that (4.8) is proven, we obtain from (4.7) together with A = 0 in Py

Lh = gy — b = ghy, > ol (1.12)

Observe that, since h;; is negative semi-definite at the point F, its product with the

positive semi-definite matrix A% has a non-positive trace, that is
gijhij S 0.

Thus, if the assumption of a large (unbound) gradient leads to the estimate Ln < 0,
we obtain a contradiction and the gradient must be bounded. Therefore, we continue
calculating the components of Ly = ¢g(n);; — 1. Since n = f o u(x,t,u(z,t)) with f
and p defined as before, we have

77 = f/(at:u + /Lﬂl),
()i = f' (1 + pouy),
(77)1; - f”(:ui + ,LLZUZ)(,LL] + Mzu]) + f/(:uij + HizUj + HzjUs + Hzz U U + ,uzuij)u

where f and its derivatives are evaluated at p and O;u stands for the derivative of

p(x,t, z) in t-direction. We see from the definition of yu, that

52 1

0<pu<o®<l, pe=5—<
Ux, 2UX0

v ez = iz =0, = _26ij7

which simplifies the expression for (n);; to

Y 52 62 , 52
o =17 (g ) () 1 (4 )
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Now, we calculate Ln

Ly = =10+ g7 (n);

g7\ Hilk; QUXOMl J QuXOIu] ! 4u§(0 v (4.13)

2

2UX

+ f/ (gij,uij - at,u + (gijuij — u)) .

0

Here, we have
97 pipy > Apl® >0,

gt = 2L L+ [Duff ~ 2= 1+ [Dul? 1+ [Duf?’

.3

with A being the smallest eigenvalue of ¢* and

i 1
9" (piug + pyu;) = 2 Zﬂzuz - m ; uzuzui + pjugu

1+ [Dul? =Y. u? 21
S Lo VT S
1+ |Dul? 1+ |Dul?

Using the (PDE), we may also deduce

52 B 752
1] i — ) — > 0’
(g u] u) 2qu0

2u Xo

because v,u < 0 and uy, > 0. Inserting these results into expression (4.13) for Ln we
are left with

In> f" 62 2y 6t |Dul?
"= 2ux, 1+ |Duf>  4u3, 14 |Dul?
20 Dul? + 46%ux, i

4u§(0(1 + |Dul?)

) + (9" pij — Oups)

=f + (9" i — Ou).

From the properties of  we infer
pij = —20" = gY pi; = —2¢" = =2 <5“ - l) > —2n

as well as

so that the coefficient of f’ is bounded below by —(2n + %). By our choice of § this

expression is always bounded below, no matter what we choose for t5. For instance if
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to is close to 0, then

t 46*
§< Vs > g "0
2 to
and if ¢, is large, then
452 4 t—00
§<1l=——>—— "3,
to to

For the coefficient of f” we estimate the enumerator of the fraction first. Whenever p

is not zero it follows

n

t2(2tg — t)?
=302 = PO T gy ) < a2
i=1 0

and thus we can estimate

i < |Du| <20 and also wu; < |Dul.

. 16u .
Hence, if we assume |Du| > —*, we obtain for the enumerator

(54
§* Dul? + 46%ux,usp; > 6*|Dul* — 86%| Dulux, > E|Du|2.
If we further assume that |Du| > max (3, MTX“), we can estimate the coefficient of f”
by

64 Dul? + 46%ux, uip; S 6t |Dul? - o4
4ui, (1 +|Dul?) = 8uk, 1+ |Dul> = 10u%,

Summarizing the calculations up to this point we see that Ln is bounded below by an
expression of the form c; f” + cof’, where ¢; > 0,¢y > —o0 and f(u) = e — 1. The

derivatives of f are f' = ke**, f = k?e*" so that by choosing k sufficiently large, we

can guarantee that Ln > 0. Hence, under the assumption that |Du| > max (3, 16?(0 ),
we have shown the relation (cf. (4.12))

gijhij >ovln >0 1in F.

But since also g“h;; < 0 in Py as we have shown earlier, the assumption |Du| >
max (3,

16uX0
é

) := C at P, must be wrong. Hence,

|Du(Py)| < C = v(P) <1+C =:C.
Thus, for every point X € Qs(X) we have

~

n(z, t,u(z)) - v(x) < n(Py) - v(Py) < C - ) < (. ek, (4.14)
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Especially for X = X,y we obtain
(e%m“ - 1) v(Xg) < C - ek, (4.15)

which yields the desired interior gradient bound. U

4.4 Existence of a Singularity after Finite Time for (P(;; "

We have proven earlier, that for sufficiently large initial and boundary values ug, ¢
there is always a solution for the case v > 0 which exists for all times ¢t > 0. Hence,
the question arises what happens if the boundary values are lower than the assumed

threshold. From the structure of the parabolic operator P with

DiuDju ¥

Pu=—ii+ Au— 202 gy D
R > M ER A

it is clear that if uw — 0, then u ¢ C?*!, since if we had v € C*! then

DZ'UD]'U

D,
1+ [Dup 9"

‘—u—i—Au— < 00,

but also

. Yl
lim |=| = oo.
u—0 |u

Thus, we must have some sort of irregularity whenever v = 0 so we may say that u has
a singularity if it reaches the value 0. By comparison with cone-shaped surfaces which
are slowly moving towards the {u = 0}-plane we will be able to demonstrate that there
cannot be a solution that exists for all times ¢ > 0, if the initial and boundary values

®o, Uy are too small.

Proposition 4.7 Let Q = D x (0,T) with T < co. Consider the problem

DiuDju

1+ |Dul?
+

u(z, 1) = go(x) on S, (Poo.uo)

—u+ Au — Diju = z on Q,
u

Let xg € D be a point that fulfills
dist(z¢, 0D) > dist(%,0D), for every & € D,

which always exists since the distance function is continuous and D is a compact set.
Set rq := dist(xg,0D) and let § € RT, 0 <ty < T be arbitrary values. If the initial and
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boundary values suffice

i g i
sup ¢o < 7o, [—%5, SUp Uy <0, |—— = |,
zeD n—i-% zeD n+% 5—2‘1‘%

then there is no classical solution u € C*1(Q) N C(Q) to problem (P,

®0,u0

). O

Proof. We intend to apply the weak comparison principle [cf. Appendix, Sec. 5.3].
Recall that the parabolic operator P is given by

Pu=—a+vH@u) — L =0,
u

with v = /1 + |Du|? and

D;u
w0 -0 (7

being the mean curvature of graph(u). Let xg,ty be as in the proposition and define

Q, == D x (0,ty). Now, consider the function

f(z,t) = a\/(z—Q(to —t) + | — xo)?,

0

with a,d € R*. Observe, that
f(zo,to) =0 and f(z,t) >0 for (z,t) € (2 NPL).

Let us assume, that u(z,t) is a classical solution to (P, , ) in every point (z,t) € €,
which especially implies that there are no singularities up to that time. By using the
comparison principle we show that u is bounded above by f. Then, for (z,t) — (20, o)
we obtain 0 < u < f = 0 and thus v must have a singularity at the time .

We begin by calculating the derivatives of f

, ad? 52
27 O 2
- (\/to(to )+l m)

-1
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and also, by abbreviating g(t) := %(to —t) with zg = (29,...,29)

T, — )
a b
Vo(t) + |z — zof?
_ 2 1 2 . 2
P s Y B (R TEar
g(t) + [z — zo]? g(t) + |z — mo[?
- VORI

H<f>:Di a 3 5 5

Va(t) + |z — o] \/g + (14 a?)|z — x|

<\/g(t) + (1 +a?)r - 900|2>

Vo) + A+ ad)z — ol — (w; — a?) - — e L)

Dif =

Y

—u ) V9(0)+(1+a?)|z—ao|?
— g(t) + (1 + a?)[z — zo]?
nfg(t) + (1 +a?)[z — z0*] — (1 + a®)|z — x|

[9(t) + (1 + a2)|z — zo[2)2 ‘

Hence, we obtain for Pf

Pf=—j+V1+DfPH(f) -+
e
2o \/g(t) + |z — @o|?
L VI F A+ ez —wofP nlg(t) + (L+ a?)le — wof] = (1 + a)le — o
V(t) + |z — zol? [9(t) + (1 + a?)|w — zo?]2
. g
ar/g(t) + |z — xo[?
B a <5_2 . (1+ a®)|z — xo|? _l)
T —nE T @ Gk -mP @)

To show that f lies above the solution u, we need to achieve

Pf<Pu=0 on ),

f>u on PQy,.
Since
1 2 - 2
a 20 and —ArOl ol )
N OEATET 9 + (1L + e — 7

for every (x,t) € €y, the inequality Pf < 0 is fulfilled if

52
—+n—12<0(:>a< 7
2t0 a n—|—%
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Set r¢ := dist(xg, 0D) and consider the cylinder P, (zo,t) := B, X (0,%9). Note, that
B,, is a ,largest ball* contained in D (there might be more than one of these balls).

Then we obtain on PP,

2
f(z,t) = a\/(ts—(to —t)+ 712 >arg on OB, (xg) x (0,t),
0

f(z,0) =a\/0%2 + |x —x9|> > ad  on B, (xo) x {0}.

Since f(z,t) is increasing with greater distance to xy, we can use the same estimates

on D x {0} and 9D x (0, 1) respectively. Assume now, that

Y i
sup ¢g < ro ——z > Sup U <9 —z
zeD n+% zeD n + 2t

Then there is an € > 0, such that also

sup ¢9 < 19 752—6 . sup uy <90 752—6
z€D n+ 20 z€D n + T
If we set
vy €
a = S
62
n + % 2
the claim follows. OJ

Remark. Observe, that by increasing d, the bound for ¢y becomes smaller while the
one for ug increases. Thus, there is no obvious choice for §. However, we can choose
0 = 19, which maximizes the value of the minimum of both data, implying that there

is no solution, if

< B = 7
max < sup ¢g, sup ug ¢ < 2T = no, 1
xeD xeD n + ﬁ rg 2tg

O

Corollary. We can use the comparison principle the opposite way to improve the

lower bounds from chapter 2 for large v > 1. The function

52
flz,t) = a\/g(to —t) + |z — xo|?
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lies beneath a solution u to (P, Jon Q=D x (0,7) with 0 < T < o0, if

bo,up>c

Pf>Pu=0 on (),
f<u on PQ.

Let zg € D be an arbitrary point and set tg = T, d := diam(D). The condition Pf > 0

is fulfilled if
52
—+n—1—l>0(:)a> +
2T a n+§_T_

Restricting the problem to the cylindrical domain P,(x) := By(zo) X (0,7), we obtain

on its boundary

flz,t) = a\/(;(T —t)+d*> < avé?+d?> on 0By(xo) x (0,7,
f(2,0) = a\/0% + |xr — 2|2 < aVé? +d?> on By(zg) x {0}.

Now, observe that D CC By. Since f(x,t) is monotonically increasing with greater
distance to x(, the above conditions are especially fulfilled on P€2. Thus, there is a
solution to (P} ), if

bo,up>c

(62 + d?) | v
min { inf ¢g, inf uo} > + =0
zeD zeD n -+ ﬁ _

4.5 Solutions to (P, ) for low Initial and Boundary Values

Throughout this chapter let Q = D x (0,7) with 0 < T < oo and Hp(y) > 0 for all
y € 0D, where Hp(y) denotes the inward mean curvature of D at the point y. Consider

the problem
D;uD;
—u+ Au — MDUU . on €,
1+ |Du|? u (P})
0

u(z,t) = o(z) on PO,
where 1y(z) € Ha1(2),10(x) > 0 with

uo(z), ifx € D
Yo(z) = { .
¢o(x), if x € 0D

are the initial and boundary values that can now be chosen arbitrarily small.
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Proposition 4.8 (Lower bound for small times) Set

2
Yo :=min Yo(x), Tp:= Tﬂ__o’ Q=D x (0,).
- zeD 2'7

For every T € (0,Ty) there is a value § > 0 independent of the solution u(x,t), so that

every classical solution u(x,t) to the problem

DyuD;
—U—FAU—M ijU:l/ on QT,
1+ |Dul? u (P,)
u(z,t) = o(z) on PQ,,
s a priori bounded below by §. 0

Proof. We use the weak comparison principle to construct a lower bound [cf. Ap-
pendix, Sec. 5.3]. Let § > 0 be a constant at our disposal. For ¢y > 0 to be specified

later consider the function

f(0,t0) = R, f(t) = v2y(to — 1) + 9,

with derivative

Given the parabolic operator

the function f(t) satisfies

>0

ey T Vel _ VAl
Pr==) o V2lo—1) V2l + %

for every t € (0,%5),0 > 0 and thus Pf > Pu on €);,. For the estimate on the boundary
let to fulfill

V27t + 0 < v, (4.16)
which means that for small € > 0 we can take tq as

—e—10)?
\/2Vt0+5:%—6@t0(675):%,

where now € and ¢ are chosen to fulfill € + 6 < 1p. Then (4.16) implies, that f(0) <
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u(z,0) and since f(t) is monotonically decreasing in t we also have f(t) < u(x,t) for
all (z,t) € 0D x (0,ty). Hence, it is

f(t) <wu(z,t) on P,.
Since P is a parabolic operator, we can apply the weak comparison principle to obtain
f(t) <wu(z,t) on Q.

By letting €,6 — 0 this estimate proves, that for every 7 € (0,7p) there is a value
d > 0, independent of the solution u(x,t), such that

0<d<f(t)<u(xz,t) forall (z,t) € Q,,
which concludes the proof. [l

Corollary. The lower bound from proposition 4.8 together with the other a priori
estimates developed in chapter 2 allow us to conclude that for any boundary and
initial values ¢o(x) > 0 there is a (small) time Ty > 0 such that for every 7 € (0,Tp)
the problem Db

suDu
TD;PD@M = % on Q,, P)

u(z,t) = o(z) on PQ,,

—u+ Au —

has a unique classical solution, which is regular in the interior and continuous up to
the boundary of €. O

Next we prove, that the unique classical solution which was obtained for small

times 0 < 7 < Tj exists up to a time T > Ty, at which for the first time

lim min u(z,t) = 0.
“T x€D

In other words, the solution exists as long as min u(z,¢) > 0. For the proof we make
xzeD

use of the following lemma.

Lemma 4.9 Let Q@ = D x (0,T) with 0 < T < oo and Hp(y) > 0 for all y € OD.

Assume, that u(z,t) is the unique classical solution to the problem

DiuD;
Y ]U Diju = 2 on Q,

1+ [Dul? u (P)
u(z,t) = ¢o(z) on PQ,

—u+ Au —

for every 7 € (0,Ty) with 0 < Ty < T. Then ezxactly one of the two statements is
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correct.

i) lim min wu(z,t) = 0.
ttTo 2€D

i) u(xz, 7o) > 0 for all x € D and there is a time T > Ty so that (P}) has a unique
solution for all T € (0,T).

Proof. Denote by u(x,t) the unique solution for every 7 € (0, Tp) and define

u(t) := min u(z, t).
zeD

For €,0 > 0 with € + 6 < u(t) consider the function

g: (0,Tp) = R, g(t) =t + (u(®) _2; — 5)2.

Then exactly one of the following two statements is correct.
i) There are numbers €,0 > 0 with € + 6 < u(t) and 7, € (0,Tp), so that g(r) > Tp.
ii) For every €, > 0 with € +J < u(t) and every t € (0,7,) we have g(t) < Tp.

The second case implies

t+(g<t>_2€_5)2 <To s ult) < /29Ty —t) +e+6

g

for every €,0 > 0 with ¢ + 0 < u(t) and t € (0,7p) and hence, by letting €¢,0 — 0,

lim min u(x,t) = 0.
t1To zeD

If instead the first case is true, define

(w(n) — € —9)*

t1(e,0) == >

) T(675) =7+ t1(675) = g(Tl> > TO»

as well as for some small § > 0

fit): (r, 1+ 1) = R, fi(t) = V/2y(t, — (t — 7)) +0.

For 7 € (11, T) and €, , :== D x (71, 7) consider the problem

y
U= — on €1 -,
v

v(z,t) =u(x,m) on Py, ..
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As in the proof of proposition 4.8, we can use the weak comparison principle to show
that the function fi(¢) lies below every solution v(x,t) to the problem above for all
times t € (71, T). Thus, by the a priori estimates of section 2 there is a unique solution
v(x,t) which solves the problem for t € (7, T) and agrees with the unique solution

u(x,t) for the problem with times 0 < ¢ < Ty at time ¢t = 7. Hence, the function

Ule.t) = {u(x,t), if t €[0,7)

v(z,t), iften,T)

solves the problem

. D;uDju 04
_U+Au—m ijuza on QT,
u(z,t) = o(z) on PQ,,
for every 7 € (0,T) with T > Tj. O

By the application of Lemma 4.9 we obtain

Proposition 4.10 (Maximum Existence Time T') Let Q = D x (0,T) with 0 <
T < oo and Hp(y) > 0 for every y € 0D. The problem
D;uD;
—u 4+ Au — MD”U = 1 on Q,
1+ |Dul? u (PH)
Yo
u(z, 1) = tolz) on PO,

with Yo(x) € Hoypo(Q),vo(x) > 0 has a unique solution that exists up to a time T, at
which for the first time

lim min u(x,t) = 0.
T zeD

O

Proof. According to proposition 4.8 there is a time Ty > 0, such that there is a unique
solution for all 7 € (0,Ty). Now, distinguish the two cases from Lemma 4.9. If the first
case is true we are done. If the second case is true, then there is a unique solution u(x, t)

for all times 7 € (0,7) with T > Ty. Thus, we must have u(Tp) := min u(z, Ty) > 0.
zeD

Now define for small €, 6y > 0 with ¢y + dp < u(7p)

(w(To) — €0 — 0p)”
2y

2
T
) T1:T0+g(0)a
2y

tl(EQ, (50) =
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as well as for small §; > 0

fl(t)I (TQ,TO —|—t1> — R, fl(t> = \/Q’Y(tl — (t — To)) + (51.

For 7 € (1, T1) and Qg , :== D x (Tp, 7) consider the problem
D;vDjv vy
—1D),;;v = —
1+ |Dv2Y v

v(z,t) = u(x,To) on PQr, .

-0+ Av — on Qg -,

By the same argument as in proposition 4.8, the function f;(¢) can be used to show

the existence of a § > 0, independent of the solution u(x,t), such that
u(z,t) > 6 forallte (Ty, Ty +t),r €D.

This implies that there is a unique solution v(x,t) for every 7 € (Tp, Ty + t1) which,
for €, 09 — 0 can be extended to a unique solution for every 7 € (Ty, T1). Moreover, it

agrees at time t = Ty with the solution u(z,t) of the problem
DijuDju y
1+ [Dul? u

u(z,t) = YPo(z) on PQy,

—U+ Au — on 7,

with T > Ty. With the same reasoning as in Lemma 4.9, this implies the existence of

a function

Ul w(z,t), if t € (0,T)
oY= olx,b), ift € [Ty, Th),

which is the unique solution to the problem for every 7 € (0,77). Repeating this

process, we obtain a sequence of times, inductively defined by

that can only converge to a time 7' < oo, if lim u(T,) = 0. Since we have shown
n—oo
in section 4.4, that for low initial and boundary values a singularity must occur after

finite time, the claim follows. O

Now that we know that for low initial and boundary values there is a unique solution
that remains smooth as long as it is positive, we would like to study its behavior at the
time when the singularity occurs. Inspired by the elliptic case we have the following
result, which holds under the assumption that the solution exists at time T when the
singularity occurs and remains smooth in every point where it is positive. We then

obtain the statement by working locally on the surface (see also the work from KORE-
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VAAR and SIMON | | as well as TENNSTADT | )

Proposition 4.11 (A regularity result for solutions u to (P,

boundary and initial values) Let Q = D x (0,T) with 0 < T < oco. Assume that D

has mon-negative inward mean curvature Hp(y) > 0 for every y € 0D. Consider the

) with low

problem
DiuDju v

T+ Dup 7" Ty
u(x,t) = ¢o(r) on PG,

—U+ Au — on 2,

where ¢g and ugy are chosen ,,small enough® (cf. proposition 4.7) to force a singularity
after finite time. Assume that T is the first time at which

lim min u(zx,t) = 0.
“T weD

Define Q7 := D x (0,7) and the sets of singular points
S:={(x,T) |z € D,u(x,T) =0} cR"™, S, :={zeD|uxT)=0 cR"
Assume that at least u € C*1(Q;\ S) N C°(Q4) as well as

sup u(m,T) < (Ch < o0
zEK

for every K CC (D\'S,). Then u(-,T) is 3-Hélder continuous. O

Proof. We work locally on the surface graph(u) [cf. Appendix, Sec. 5.7|. First,
note that since u € C°(Q;) and wu(z,t) > 0 for all t € [0,T), there is a number
0 > 0, which in general depends on the solution u, such that for every Ty > T the set
{u <} cC (D x (0,Tp)). Thus, there is a function ¢ € C?(R™"!) with the properties

¢ =0 in{u <9}, ¢ =1 close to PQys, |[@|lczmntry < Cp = Cy(d,%0) < 00.

Now define n: R, — R,

1(s) = (K6 — 1)e20ek

with a constant K > 0 to be chosen later. If we set (u— ¢)* := max{u— ¢, 0}, we have
0 < n((u—¢)™) < 1, since the weak comparison principle implies, that u(z,t) < ¢(x)+€
for every € > 0, which yields u < Cy4. Let € > 0 and M be the maximum of

n((u—¢)")

prtl e

f(z,t) =

on Q. f(x,t) is continuous on Q, non-negative, f =0 on {u = 0} := S and positive

61



in {0 < u < d}, thus f attains its maximum M in a point (z7, tar) € {u > 0} := Q2\S.
At this point the function ¥ given by

U(z,t) =n((u—¢)") = M@ +€) <0
fulfills
‘IJ(I'M,tM) = O,\i’(l']\/[,tj\/j) 2 O,V@(%M,tM) = O,AW(%M,tM> S 0.

Calculate the gradient
VU =V(u—¢) — MVt

and the Laplace operator
AV = [V (u— ) + 7/ Au— 6) — MAV™, (4.17)

Since we are working locally on the surfaces, the identity Au = Hv"™! holds and from

the Jacobi field equation we obtain
Av™tt = "t APR — e, - VH.
Inserting both equations in (4.17) yields
AV =" |V(u—@)> + 7 Hv"" — ' Ag + M HAP + MV H - e (4.18)

Making use of the equation Pu = 0 with

Pu=—-u+vH — J
U
leads to
it vH =L e H=v (1), (4.19)
U U
which we can differentiate to obtain
VH = (VoL 1 Dva) 4 (90 v V) (4.20)
U U

Inserting (4.19) and (4.20) for H, VH in (4.18) and sorting by terms with and without

time derivative gives us

AV = {77"|V(u — o) + T]/Z(Vn+1)2 — ' A¢ + Mv"THAP? + M <Vl/"+lz — V”H%VU) : €n+1}
u U u
+ {0 e ) + M (V" + 0TIV e )
= {4} + {B}
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When dealing with part { A}, we can proceed exactly as in | |. Noting the identities

| Dul?

n+1 __ _
MVv =n'V(u—¢), Vu e, = m

= |Vul*, [Vul* + (") =1,

we may rewrite {A} to

V 2
(A} =01V = ) + 0L —of (80 + 196 e ) + v 4P — a1y Ve

u
Also, since W(xys,ty) =0, it is
nel M — Me 1 5

and moreover, by definition of the tangential derivative

2 |Du-D(u—¢)P

V(u—0) = 1D - ) ~ =5

|Du|* — 2|Du|*Du - D¢ + (Du - D¢)?

= |Du|? — 2Du - D¢ + | D¢|* —

1+ |Dul?
_|Duf’ — 2Du- Dg -+ DG + |Dul*| Dy — (Du - Dg)?
B 1+ [Dul?
|Du|* — 2C|Du| |Duj—o
— 1

~ 1+ |Duf?

Hence, there is a constant My, depending only on Cy, such that |V(u — ¢)]* > %, if
M > M. Let us assume that M > M. Then, since in (zp,t5) the identity

—~Mv" = —n+ Me > —n

holds, we can estimate

1
{4} = on"+ n’g - (Aqﬁ + quﬁ : en+1> - n%- (4.21)
When estimating {B} observe the relation

Vi enp1 = 0(Vu - eny) = 0(|Vul?) = —0,(v")? = =20 1pntt

and moreover, since W(z 7, ty,) > 0, suppressing the dependence of (a7, tar)

U =0'(0—¢) — Mi" >0 —Mo"™ > ¢ — '
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Hence, at (zpr,ty) it follows for {B}

{BY = ' u(v" ™) + aMVV e + MUV - €0
= nu("™? +un'Vu - ey — Vo - e — 2MMTH (2
> n'a(v" )+ 'd| Vul® = 20'a(v" ) + 20 9 — iV G - enin
(

= n'u(l = 2("™)?) + 27/ d(" T — UV - eyt

Combining the estimates for {A} and {B} and making use of AW (zys,ta) < 0, we

obtain

0 Z A\II(ZL’M,t]\/[) = {A} + {B}
1
277 "+ 77’7 (Aaﬁ + %Wﬁ : en+1) — n%

+ i1 = 2(0")?) + 0/ 20V ) — iV - ).

Let us now, additionally to M > My, assume, that (zp7, %) € {u < d}. In this set we
have ¢ = 0 and thus

gl g , 2
b2 =g 2 (1= s ) <0,
1+ 21 nst nU( 1+|Du|2)_

< 1. Additionally, there is a constant Cy, for which @(zpr, ) <

Clearly ‘1 — wa
Cp. To see this, assume first, that ty; < 7. Then there is a 7 € (twr, T) for which the
problem is uniquely solvable on €, = D x [0,7) and the solution lies in Hy (') for
every () CC Q.. Since also xp; ¢ 0D (else f(zar,tar) = 0, contradicting M > 0), we
can find a set ', for which (zp7,ty) € € and choose Cy as the Holder norm of u(z,t)

on Q. If instead t,; = 7' we make use of the assumption

sup u(m,T) < (Ch< oo
e

for every L CC (D \ S,). Since zp; ¢ 0D and u(xyy, ty) # 0, we can find a compact
subset K CC (D \ S,) with (zp,ta) € K. Thus, we obtain

0+ 2L — oL —2/Cy <0
u u
at (wyr,ty). Inserting the definition of n(s) = (eX* — 1)e 29X this is equivalent to

K2u?e™ 4 2Kuvye™™ — 2(ef* — 1)y — 2Ku*Cye™™ < 0
& (27 — 2Kuy — K*u? 4+ 2Ku*Cp)e™™ > 2.
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Setting Ku =: s, we obtain the inequailty

20
(27 — 257+ 5° <7° - 1)) > 27,

which, by taking K > 2CY, is only fulfilled for s < 0, a contradiction to u > 0. Hence,
it is either (zp7,tar) € {u >0} and M > M, or it is M < M,. Therefore, assume now
(xar,ta) € {u > 6} and M > M. In this case we have the estimates

\A<z> +190 - ennn

S 0(57 Y, CT? Cd))

and
’24'5(”7”1)2 — UV - €niq

S 0(007 037 C(f))?

where we used the same argument as above to estimate (s, ty) and ¢, C3 are the
constants from section 2. Thus, every coefficient of 7’ is bounded and they can be

combined to a new constant C' > 0 to obtain

77”—077’—77% <0,

which in return leads to
<K2 — KC — 2%) Kot < 21
Choosing K big enough to suffice

9
KQ—KC—%>O

leads to a contradiction. Hence, it must be M < M.

Let us briefly discuss, why a similar procedure can be applied to

n((¢—u)")

t) :=
g(z,t) T 1 ¢

)

resulting in the same bound M, as above. Note first, that (¢ — u)™ = 0 on {u < ¢},

thus we only have to consider the case {u > 0}. Defining
V(@ t) =n((¢—u)") = M@ +6) <0

and making use if its properties at the interior maximum (z,/, t5s) yields

A = {|V(6 = =y L0 4o A6+ My AR + M (VoL = LT e |

+ {—n,ﬂ(l/n—H)Q M (VVn+11l—}— I/n+1V’[L> _€n+1}
= {4} +{B}.
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Comparing this to the previous expression for AW, only a few signs have changed. We

can simplify this further to the estimate

1
> Sy =Ly <A¢ +1vg. en+1> - 7712
2 U u U
+ a2 = 1) — 1/ (26(v" T2 + 04V - eny1),
where once again only a few signs have changed. At this point in the proof every
estimate is made in regard to the absolute value of any of the coefficients. Hence, the

exact same estimates as in the first case can be used here to obtain the value M, as

the upper bound for g(x,t). Thus, we have proven

n(lu—9|)
Vn—H + € S MO

for every € > 0 and with € — 0 it follows

N(lu— @)1+ [Dul> < My

and also

u=6ID(u = 8)| < e nu = )(VIFIDUP + Do) < e (M + Cy).

As described in TENNSTADT | | the function |u— ¢| may be extended continuously
by 0 outside of {u > 0} and it follows, that (u — ¢)? is Lipschitz continuous, which
implies 3-Holder continuity for (u — ¢). Since ¢ € C?(Q2), we thus conclude, that

u(-, Tp) is 3-Holder continuous. O
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5 Appendix

5.1 Eigenvalues of (¢”/) and Bernstein £ function
The general form of a semilinear parabolic partial differential equation of second order
is given by

Pu = —u+ a” (X, u(X), Du(X))u;; + a(X,uw(X), Du(X)) = 0,
with v € C*1(Q) and X = (z,t) € Q C R" x (0,T), where T' < co and 2 is a domain.
For the operator P given by

DiuDju ¥
U— =,

Pu=—i+Au— ——"_p.
U u+ Au T+ [Dup " "

we obtain the values

a’ (X, u(X), Du(X)) = a” (Du(X)) = 67 — m,
a(X,u(X), Du(X)) = a(u(X)) =~

with §% being the Kronecker-Delta which is equal to 1 if i = j and 0 otherwise.
An important parameter in the analysis of semilinear partial differential equa-
tions are the smallest and largest eigenvalue of the matrix (a”/). We denote these values

by A and A for the smallest and largest eigenvalue respectively. The matrix (a”/) suffices
)‘(Xa va)|§|2 S aij(Xa va>§i€j S A(X’ va)|§|2

for every (X, z,p) € Q x R x R™ at which the operator P is parabolic. If, in addition,

the ratio 2 is uniformly bounded we say that P is uniformly parabolic in (X, z, p).

)
For the operator P defined above it is A = ﬁ and A = 1, which results in
2 =1+ |p]? P |cf. LIEBERMAN | , D204, eq. (8.4)]]. Hence, this operator

only becomes uniformly parabolic if we are able to derive a priori bounds for |u| and
| Du.
A useful tool for discussing semilinear (parabolic) partial differential equations

is the Bernstein £ function, defined by

g(Xv Z7p) = aij<X7 Zap>png

& always fulfills the estimates A|p|*> < & < A|p|? and for the choice of a”/ given above
it is [cf. LIEBERMAN | , p-204, eq. (8.4)]]

. |p‘2 _)\ 2
- 2 ‘ ’
1+ |p|
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5.2 Some linear algebra
Definitions 5.1 (Notation, Definiteness, Trace)

i) We denote by R™*" the space of all (n xn)-matrices. If A is an (n xn)-matriz with
components a¥ we write A = (a¥) € R"™™. Furthermore, the matriz A = (a") is

symmetric if a” = a’* for every 1,5 =1,...,n.

ii) We say a matriz A € R™" is positive semi-definite if 27 Az = azz; > 0 for all
r = (x1,....,x,) € R". We say the matrix A € R"" is negative semi-definite if
2T Az < 0 for all z € R™. Note that a parabolic operator P suffices 0 < \E[* <

a€&;€; which especially means that (a') is positive semi-definite.
iii) The trace of a matriz A € R™™ is given by trace(A) = tr(A) = a™. 0

For the proof of the comparison principle, we need to estimate the expression a”u,;.
If we interpret a” and w;; as the entries of two symmetric (n x n)-matrices A and U

then this sum can be expressed as au;; = tr(AU).

Proposition 5.2 (Rules for the trace operator) Let A = (a”), B = (b"7) € R™"

be symmetric (n X n)-matrices. Then the following holds

i) If both matrices are positive semi-definite then tr(AB) > 0.

ii) If one matriz is positive semi-definite and the other is negative semi-definite then

tr(AB) < 0. O

Proof. It is well known that for a symmetric matrix A there is an orthogonal matrix
O with OTO = Ignxn so that A = ODOY,| where D is a diagonal matrix with entries
A1, ..., A, being the eigenvalues of A. Furthermore, it is well known that A is positive
semi-definite if and only if \; > 0 Vi € {1,...,n} and that the trace operator is invari-
ant under cyclic permutations, which means that tr(ABC) = tr(CAB) = tr(BCA) for
A, B,C € R™". Inserting the i-th basis vector e; in the expression z7 Az also yields
el Ae; = a; > 0 if A is positive semi-definite and a; < 0 if A is negative semi-definite
respectively.

To proof either claim, let B be the positive semi-definite matrix without loss of gener-

ality. We can write
tr(AB) = tr(ODO™ B) = tr(DO* BO),

where D is the diagonal matrix consisting of the eigenvalues of A which are all positive
in the first case and all negative in the second case. Defining y := Oz € R", we see

that the matrix O BO is positive semi-definite because

+TOT"BOz = (0O2)"BOxz = y" By > 0.
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This means that all diagonal entries of OT BO have to be non-negative so that both

claims follow by the definition of the trace operator. 0

5.3 Comparison and Maximum Principles
We begin with a slight modification of a comparison principle that can be found in

LIEBERMAN | , p- 219, Thm 9.1].

Proposition 5.3 (Comparison Principle) Let P be the quasilinear operator defined

by
Pu = —i+ a”(X,u, Du)Djju + a(X,u, Du).

Suppose that a* is independent of z and that a(X, z,p) is non-increasing in z for every
fized (X, p) € QxR™. If u and v are functions in C>1(Q)NC(Q) such that Pu > Pv on
Q andu < v onPQ and if P is parabolic with respect to u or v, then u < v on QUPQ.

Proof. We argue very similarly to | |. Therefore, set w = (u—wv)e for a constant
A at our disposal. Since u < v on P2, we have w < 0 on P. Let us assume there is a

point (zg,t) € Q at which w(x,t) attains a positive maximum. At this point we have
w(zo,t0) >0, Dw(xg,t) =0, wi(wo,te) =0, D*w(xg,t) <O0.
Furthermore, calculating w; yields
wy = (u—v)e™ + AMNu—v)eM =0 —(u—v), = Au— ).
Combining these properties we obtain

0 < Pu(Xy) — Pv(Xo)
= —(u —v); + a”(Xo, Du(Xo))Dij(u — v) + a(Xo, u(Xo), Du(Xo)) — a(Xo, v(Xo), Dv(Xo))
< —Mu(Xo) — v(Xo)),

which cannot be true if we choose A > 0. Hence, the assumption w > 0 was false and

we have w < 0, implying v < v on Q U PSQ. O

Remark. The comparison principle in LIEBERMAN | | appears to have a small
mistake, where he requires ,an increasing positive constant k& such that a(X, z,p) +
k(M)z is a decreasing function of z on Q x [—M, M| x R™. To the author’s under-
standing it should instead be a(X, z,p) — k(M)z, which would then be in accordance

with the modified version from above. O
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If v > 0, the requirements for the application of the comparison principle are no longer

fulfilled. However, a weaker version still holds.

Proposition 5.4 (Weak Comparison Principle) | , p- 220, Lemma 9.4.]
Suppose that u and v are in C*(Q) N C(Q) and that P is parabolic at u or at v. If
Pu > Pv on Q and if u < v on P, then u < v on QU PS. O

Proof. Define w = v — v and assume that w > 0 somewhere in ). Then there is
a first time ¢y = inf{t | w(z,t) > 0,2 € D} at which the function w(z,t) becomes
non-negative. Since w < 0 on P and w(z,t) is continuous, there must be a point
Xo = (g, tp) at which w(Xy) = 0. Since w(-,ty) attains its maximum at X, we have
Dw(Xy) = 0, thus Du(Xy) = Dv(Xy), and D*w(X,) < 0. Also w;(Xp) > 0 from the

choice of ty. These observations lead to
0 < Pu(Xo) — Pv(Xo) = —wi(Xo) + a”(Xo, u(Xo), Du(Xo))wi;(Xo) <0,

which is a contradiction. Hence, the assumption w > 0 on {2 was wrong and we obtain
u < v on (). O

When working locally on the surfaces graph(u(z,t)) we have the following
weak maximum principle (see ECKER | , p- 24, Prop. 3.1], with proof | ,
p. 122]), which has to be slightly modified since the manifold we study has a boundary.

Proposition 5.5 (Weak Maximum Principle on Manifolds) Let M" be a com-
pact n-dimensional manifold with boundary and F(-,t) = Fy: M™ — R"™ with M; =
F,(M™). Suppose h: M™ x [t1,t9) — R is sufficiently smooth for t > t1, continuous on
M™ X [ty,t0] and satisfies an inequality of the form

d
— — Ay, | h<a -VMh
(dt Mt) _aV 5

where Ay, and VMt are the laplace and nabla operator on the surfaces My respectively.
Then
max h < max {mMaX h(-,t1), max h} :

M7 X [t1,t0) OM™ X [t1,t0)

For the vector field a: M™ x [ti,ty) — R"™™ we only require that it is well-defined in a

neigbourhood of all maximum points of h. O

Proof. We can imitate the proof from ECKER, in which he shows, that the function

70



h(p,t) cannot have an interior maximum, if

d
— — Ay, | h<a VM.
(dt Mt) s a V

However, since the manifold has a boundary, we can only conclude from the absence

of an interior maximum, that

max h < max {max h(-,t1), max h} ,
M"X[t1,t0) M 8M"><[t1,t0)

as opposed to

max h < max h(-, t;),
M7 x[t1,t0) Mm

for manifolds without boundary. 0

5.4 Holder continuity
Definitions are taken from LIEBERMAN | , p. 46,47].
Definition 5.6 (Holder continuity for « € (0, 1]) We say that a function f defined

on @ C R*™ 4s Hélder continuous at Xy = (xg,to) with exponent o € (0,1] if the
quantity

_ |/ (X) — f(Xo)|
[flasxo = e T — Xl

18 finite. If the semi-norm

[f]a;ﬂ = sup [f]a;Xo
Xoe

18 finite, we say that f is uniformly Holder continuous in Q. If f is uniformly Holder

continuous on any Y CC Q we say that f is locally Héolder continuous in Q. 0

For Holder continuity of higher order let 5 € (0, 2] and set

(Floxo = Sup{f(x[ﬁt_) t_o|£/(2XU>’ (2o, 1) € 2\ {Xo}}7 (Fa:a = sup (f)ax,-

Xo€e

Definition 5.7 (H6lder continuity for a > 1) Leta > 1 witha =k+a,k € NJa €
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(0,1]. Then we define

(Nao =Y (DZD]fam,

|B|+2j=k—1
[flasa = Z [Dafngf]a;
1Bl+25=k
flaw =" sup|DIDIFI+ [fla+ (f)a
1Bl +25<k
We set Hy(Q2) :={f | | fla < o0} which is a Banach space with norm |- |,. O
Remarks
i) It is generally true that (f), <|flo + [f]a [cf. | , p. 46]].

ii) As we can see from the definition, the inclusion C?!(Q)) C Hy, () holds.

iii) For the applicability of the Schauder fixed point theorem we are particularly in-
terested in the Holder space H,(€2) with a € (1,2). Functions in this space fulfill

| flaso = sup | f| +sup [Df| + [D fla + (f)at1 < 00.

Together with the first remark this leads to the objective of showing boundedness
of sup |ul, sup |Du| and [Dul, for a > 0. O

5.5 Compatibility Conditions

It is desirable that a solution u(z,t) to (P, , ) is continuous up to the boundary. Since

we prescribe data in two different ways

u(z,0) = ¢o(z) on CQ,
u(z,0) = ug(x) on CSL

we may encounter a problem in the corner C€2. We avoid this by imposing compatibility
conditions. If we want to achieve higher regularity up to the boundary of the domain
Q, the (PDE) imposes additional restrictions that have to be fulfilled.

Definition 5.8 (Compatibility Conditions) | , P-318-320] The compatibil-

ity conditions consist in the fact that the derivatives %u(x, 0), which can be determined

for t =0 by means of the equation and initial condition ug(x,t) = ug(x), must satisfy
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for x € SQ the boundary conditions. Introducing the notation

u®) (z) = EU(Q«“’t)‘t:O’

dt
DZ‘UD]‘U

it is obvious, that on the set CQY the functions ™) (x) (k = 0,1) are determined by

while higher order derwatives are given by

u D () = %E(u(x,t))} -

We then say that the compatibility conditions of order m > 0 are fulfilled, if

dk
u(k)(x) = @qﬁo, k=0,...,m on CS.

O
Remark. For most existence and regularity results we only need the compatibility
condition of order 1 to be fulfilled, which allows for the solution u(x,t) to be in Hy1,(£2).

If we define
uo(x), if x € D,
() := .
¢o(x), if x € 0D,
these can be easily expressed by ¥y (z) € Hoyo with Piy(z) = 0, since 1y = bo = o =

0.

5.6 Boundary regularity types and the distance function

Boundary regularity is crucial for the existence of barrier functions on the spatial
boundary S of the domain 2. Furthermore, the regularity of the spatial distance

function is related closely to the boundary’s regularity.

Definition 5.9 (C*-boundary) We say a set D C R™ has a C*-boundary, written
dD € C*, if for every point x € 0D there is a neighborhood N of x such that 0D N N

can be represented in the form

Ty = ¢(ZE1, cey :L‘n—l)a

where ¢ is a function that is k times differentiable. We say that Q = D x (0,T) has
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a C*-boundary if D has a C* boundary and we write P € C*. Hélder continuous
boundaries PQY € H, with a = k + o,k € Ny« € (0,1] are defined in the same way,
where now ¢ € H,. O

Additionally, we note some useful properties for the distance function d(x) defined by

d(z) = inf |z —y
with D C R™. Proofs can be found in GILBARG-TRUDINGER | , p. 354-355] and
SERRIN | , p. 420-422, chapter 1.3.].

Definition 5.10 (Principal coordinate system) Let D C R™ be a bounded domain
and let yo € 0D be an arbitrary boundary point of D with 0D € C*,k > 2. Then
there is a neighborhood N(yo) of yo and a function ¢ = ¢(x') = ¢(x1,...,xn_1) Such
that N N 0D is given by the equation x, = ¢(z') with Do(y,) = 0. In this case the
curvature of D is described by the orthogonal invariants of the Hessian matriz [D*@)]
evaluated at yy. The eigenvalues Ky, ..., ko1 of [D*¢(yy)] are called the principal
curvatures of 0D at yo and the corresponding eigenvectors are called the principal
directions of 0D at yo. We call a coordinate system principal coordinate system if

the xq,...,T,_1 azes lie along principal directions corresponding to ki, ..., kn_1 at yo. U

Proposition 5.11 (Differentiability of d(x)) Let D C R" be bounded and 0D € C*
for k> 2. Define for u >0

T, :={ze€D|dx) < u}.
Then there exists a positive constant i depending on D such that d € C’“(F#). O

Proposition 5.12 (Properties of d;(x),d;;(x)) In a principal coordinate system with
azxes x;,t = 1,...,n — 1 lying along the principal directions and axis x,, lying along the

normal vector of the surface 0D pointing from the point yo € 0D towards xo € I, we

have at xg
Dd(zy) = (0,...,0,1)
and
K1 Kn—1
D?d(xg) = — 0
(33'0) <1—/€1d’ 71_1‘%”71(17 )diaga
where Ki, ..., kn_1 are the principal curvatures of 0D at yq. 0
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5.7 Geometry on the surface graph(u(z,t))

Let us assume that the solution u(z,t) defines a graph M, and set
F(z,t) == (z,u(z,t))

for every (x,t) € Q = D x [0,T). Since the solution u(x,t) is supposed to fulfill the

initial and boundary conditions

u(z,t) = ¢o(x) on SQ,
u(z,0) = ug(x) on BQ,

the corresponding graph at ¢ = 0 has to be given by the points
F(z,0) = (z,u(x,0)) = (z,up(x)) on D.

This graph (for the fixed time ¢ = 0) defines a hypersurface My of R™*! of which
the evolution in time is given by the hypersurfaces M;. In this setting we may now

understand the solution u(z,t) as the last component
u(z,t) = F(x,t) - €41

of the function F'(z,t), which allows to perform calculations directly on the surfaces
M.

Instead of discussing the hypersurfaces above a fixed point x € D C R"”, it
is sometimes more beneficial to fix a point p in the initial surface M, and analyze its
evolution in direction of the normal v relative to the graph of w(z,t). To make this

more precise we use a paragraph from ECKER | , D. 7-8].

Definition 5.13 (Surfaces moving in normal direction) Let M"™ be an n-dimensional
manifold. Consider the family of smooth embeddings Fy = F(-,t) : M™ — R"™ with
M; = F,(M™). We say the surfaces M; move in direction v with velocity H, if

dF

5 Pt = H(F(p.1)) = H(F(p,t))v (5.1)

forpe M™ and t € [0,T).
Lemma 5.14 (Normal Motion and Tangential Diffeomorphisms) Let F, =

F(-,t) : M™ — R with M, = Fy,(M™) be a family of embeddings satisfying the

equation

I6)



for x € M™. Here L denotes the projection onto the normal space of F,(M™). Let
9:(+) = g(-,t) be a family of diffeomorphisms on M™ satisfying

D Flgte0.0)- o) = = (G ote.000))

where DyF' denotes differentiation of F' with respect to its first n components. If we

set
Ft(p) = F(p, t) = F(g(I,t),t) = F(gt(x),t),

then M, = F,(M™) = F,(M"™) and

e 0.t) = H(F(p,1).

Let us apply this lemma to the parabolic operator P given by

Pu=—u+vH(u) 7
u

It is well known that the normal v of a graph (z,u(x,t)) is given by
B (—Du, 1) B (=Du, 1)

1+ [Dur v

with v = /1 + [Du[?. To obtain the projection (4 (z, t))L of 4€(z,t) onto the normal

t

space of M; we calculate

dF o (=Du1l) 4
E(w,t)-u—(O,u)-—v =

Since u(z,t) solves the equation

—u+vH(u) = 7 & =vH(u) — z,
u u
we may set
1 gl
in (5.1) to obtain
F o .
((Zl_t(x’t)) = %l/ =Hv=H

Now, according to lemma 5.14, there is a tangential diffeomorphism g : R — R" g(z,t) =
p satisfying

D,Flg(at).0)- te0) = - (g ate0.0))
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so that the new flow

Fy(p) = F(p,t) = F(g(p, 1), 1)
satisfies

) = H(E(.0) =+ (ol ()~ 1)

and also M, = M,, where M, are the surfaces generated by the graph

graph(a(z,t)) = {(g(z,t),u(g(z,t),t)) e R"™ | x € D, t € [0,T)}

with 4(z,t) = F(p,t) - €py1- O

For either flow F(z,t) and F(p,t) there is a set of useful identities that are
available to us when working locally on the surfaces. To introduce these identities we
first need to define a notion of tangential gradient and laplace operator on graph(u).

Given an arbitrary function f € C? these quantities are given by

VMtf::(Df,O)—DifyiV:<Df_ Df - Du Df-Du>

1+ |Dul” " 1+ | Duf?

and
An, f = gijDz'Djf + HV' D, f,

(—Du,1)

\/ 1+|Du|?

normal with respect to graph(u), ¢ = 6 — v'1/7 is the inverse of the first fundamental

where the operator D denotes the usual differentiation in R”, v = is the unit

form and H = H(u(z,t)) is the mean curvature of graph(u) at (x,t). Whenever it is
clear that we work locally on the surface graph(u), we will simply write V for V,, and

A for Ay, respectively. From the definition of V f we infer
(Df-Dup | (Df-Dup*,
L+ |Dul> (14 |Dul?)?

= |Df]* = (Df -v)* = IDf]* = (Difv')*

’2 (DfDu)2

2 _ 2
VP = DS -2 T DuPy

and for f = u we also obtain the identities

Du | Dul? ) | Du?
Vu = (1+ DulZ’ 1+ [Duf )’ \Vul|® = T+ [Duf? = ept1 - V.

Since H(u) is defined by

1 ..
H(U) = ;g”uij,

we obtain from the definition of the laplace operator

D 2
Au:vH—H-ﬂ:HV"“.
v
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Moreover, we have the Jacobi field equation
Av = —v|A]* - VH,

where | A| is the norm of the second fundamental form |[cf. | , p- 163, Prop. 2||. O
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