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1 Introduction

For the purpose of maximizing customer satisfaction, performing more flexible and so-

phisticated tasks, and increasing the quality of industrial products in modern industrial

practices, large-scale and complex systems are becoming a pervasive component of modern

industrial processes over the past decades. Such systems can

• have digital operating units to gain robustness against external disturbance,

• be distributed over space,

• be decomposed into a series of subsystems, which are connected by physical links or

communication channels.

Given the aforementioned characteristics of large-scale systems, ensuring safety and

reliability is of paramount importance, as faults or failures in a single subsystem can have

a cascading effect, leading to potentially catastrophic outcomes for the entire system. For

example,

• Air France Flight 447 was a scheduled international passenger flight from Rio de

Janeiro, Brazil, to Paris, France. On 1 June 2009, the aircraft suffered temporary

inconsistencies between the airspeed measurements, which is likely influenced by ice

crystals obstructing the aircraft’s pilot tubes and caused the autopilot to disconnect.

After the inconsistencies, the crew reacted incorrectly and ultimately caused the

aircraft to enter an aerodynamic stall. Eventually, the aircraft crashed into the

Atlantic Ocean, which killed all 228 passengers and crew on board [38].

• On April 20, 2010, due to the defective cement on the well, high-pressure methane

gas from the well expanded into the marine riser and rose into the drilling rig, where

it ignited and exploded, engulfing the Deepwater Horizon oil platform. The accident

killed 11 workers, injured 17, released about 4.9 million barrels (210 million US gal;

780,000 m3) of crude oil into the ocean and is considered as the largest marine oil

spill. Both the spill and the clean-up efforts had effects on the environment [128].

Other examples can be found in [51, 100]. From the above examples, the traditional way

of enhancing the quality, reliability, and robustness of individual system components like

1



1 Introduction

sensors, actuators, controllers, and computers can’t guarantee that no fault would occur

during the entire lifetime operation of the processes. And if the fault is not detected and

handled promptly in time, it may not only affect the system operation but also result in

significant consequences (e.g., human safety, major economic effects, and environmental

impact). Motivated by these observations, automatized fault detection (FD) techniques

are becoming one of the indispensable parts of large-scale and complex systems and is the

essential step to ensuring reliable treatment of undesirable events. Over the past decades,

there is a growing body of literature that recognises the importance of FD techniques

both in the academic and engineering domains and the topics of FD are becoming an

active research area in the control community. This chapter reviews some of the major

developments and progresses in FD and then introduces the motivations and objectives of

this thesis.

1.1 Basic Concepts of Fault Detection

Consider a dynamic system as sketched in Figure 1.1. It consists of actuator, process, and

sensor. For given control signals, the actuator converts them into corresponding operations

Actuator Process Sensor
Control inputs Measurements

Unknown external inputs

Faults FaultsFaults

System

Figure 1.1: System configuration

such that the process can be controlled into desired operating conditions. The sensor is

the element to capture data, which provides information on the running conditions of

the process [41]. In real applications, all these elements are usually influenced by some

unknown external inputs, which can be random noises and/or deterministic disturbances

caused by the running environment around the system. Generally, a fault is an unpermitted

deviation of at least one characteristic property (feature) of the system from acceptable,

usual, and standard condition [59]. Faults can occur in almost all systems [52] and also in

each functional element. The essential task of an FD method is to detect the occurrence

of faults, which may lead to undesired or intolerable behaviour of the whole system, in the

functional elements of the process in time and to give a quick alarm under the influence of

unknown external inputs [24].
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1.1 Basic Concepts of Fault Detection

Motivated by the requirements of the safety, reliability, and economic efficiency on

modern industrial processes, over the past decade, there has been a significant increase

in the development of FD techniques across various fields. Also, this development has

become a crucial aspect of modern industrial processes and has been actively researched

in both academic and industrial areas. Most of the existing FD methods follow the

centralized strategy, where all measurements are collected in a central station to perform

the corresponding FD actions and can be roughly classified into categories [24, 25, 43, 44]

• FD based on signal processing: If specific process signals contain rich infor-

mation about the faults of interest, an appropriate signal processing can convey

this information in the form of characteristics or symptoms to monitor the process

[70, 80]. Time domain symptoms include things like magnitudes, limits, trends,

statistical moments of the amplitude distribution or envelope, and frequency domain

symptoms include things like spectrum power densities, frequency spectral lines,

spectrum, etc. The fundamental concept behind this kind of technique is to generate

symptoms from sensor measurements, separate fault information from symptoms and

make a judgement about a fault based on that. Traditional methods based on time-

and frequency-domain analysis are primarily used, including synchronous averaging

[50, 81, 124] and Fourier analysis [77, 82, 88]. Since the resolutions of time- and

frequency-domain need to be balanced under certain conditions, wavelet analysis

[11, 81] and empirical mode decomposition [69, 107, 108] are two recent studies that

concentrate on time-frequency analysis. The traditional signal processing-based tech-

niques are primarily applicable to linear stationary processes. For dynamic systems,

signal-processing-based approaches are mostly employed for those operations in the

steady state [24].

• FD based on hardware redundancy: Technically speaking, the so-called redun-

dancy is crucial to the successful detection of faults. One of the most common

methods of creating system redundancy is through hardware redundancy as shown

in Figure 1.2. It rebuilds the essential components of the monitored system by

direct hardware duplication with the goal of enhancing system reliability. If the

output of the process component differs from one of its identical redundancy, faults

in the process component are then discovered. In some circumstances, the defect

can also be immediately isolated. High reliability and direct fault isolation are

the main appealing features of this technique. However, the implementation of

hardware redundancy is only allowed in the case of a few important components in

safety-critical industries (e.g., nuclear, aviation, and aerospace systems [36, 85, 97])

due to their greater reconstruction costs.

3
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System
Control inputs Measurements

Unknown external inputs

Faults

Hardware
redundancy

= 𝟎, fault-free
≠ 𝟎, faulty−

Figure 1.2: Fault detection based on hardware redundancy

• Model-based FD: The basic concept behind model-based FD approaches is to

substitute a process model, which is based on prior knowledge about the mathematical

input-output relation or state space model of the systems and is implemented in

form of software, for expensive hardware redundancy [16, 83]. Similar to hardware

redundancy methods, the process model runs concurrently with the process and is

stimulated by the same process inputs. It is reasonable to anticipate that the outputs

of the model will closely match the measurements from the real process in a fault-free

operating state and will clearly deviate in the presence of a process fault. Hence the

residual generator is built to obtain the so-called residual, which is the discrepancy

between the measured real process variables and their estimates from the model,

for detecting fault as shown in Figure 1.3. The residual signal conveys the essential

information for faults and if the model is perfect, faults will be alarmed when the

residual signal doesn’t equal zero. However, it is almost impossible to build a perfect

model and thus the residual signal is often influenced by model uncertainties and

unknown inputs. Therefore, additional residual evaluation is required to extract

the information about fault from distorted residuals. Beard and Jones started

research on model-based methodologies in the early 1970s. The diagnostic observer

(DO) [33, 72, 74, 87, 111], parity space approaches (PSA) [35, 45, 46, 99] and fault

detection filter (FDF) [34, 63, 65, 91] are some of the popular model-based techniques

used today. Numerous sophisticated FD techniques are created on the basis of these

methodologies to address problems with robustness against unknown input and

model uncertainties, and optimal designs. Reviews and analyses of the basic and

advanced model-based fault diagnosis methodologies under development are provided

in [2, 31, 58, 105, 125].
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1.1 Basic Concepts of Fault Detection

System
Control inputs Measurements

Unknown external inputs

Faults

Software
redundancy

Residual 
processing−

Decision 
logic

Residual evaluation

Residual

Residual generator

Figure 1.3: Model-based fault detection

• Data-driven FD: Building the aforementioned process model is frequently imprac-

tical, time-consuming, and expensive in engineering for many large-scale industrial

applications, particularly in chemical processes, power grids, and high-speed trains.

This restricts the use of model-based FD techniques. Inspired by this trend, re-

searchers have shown an increased interest in data-driven strategies, which use a

substantial amount of process data as a priori knowledge instead of system mod-

els, to build FD approaches. These approaches first extract an FD system from

historical data sets in the training phase. Then the trained FD system processes

online measurement data to detect fault. Similar to methods based on signal pro-

cessing, this technique is mostly applied in static processes [25]. Since most of

the data-driven approaches assume that the process data have certain statistical

properties, generalized likelihood ratio (GLR) test and Neyman-Pearson Lemma are

applied to handle the issue for optimal data-driven FD [27, 84]. In addition, those

well-known multivariate analysis methods like principal component analysis (PCA)

[3, 15, 37, 115, 118] , partial least squares (PLS) [40, 47, 55, 78, 79] and canonical

correlation analysis (CCA) [14, 18, 20, 120] have been proposed to perform FD in

certain situations. Notice that PCA and CCA are special cases of the GLR-based

solution and PLS is a recursive realization of CCA [25, 27]. With strong capabilities

in function approximation and adaptive learning, some machine learning methods

play an important role in nonstatistical data-driven FD, e.g., support vector machine

(SVM) [96, 109, 116, 117] and neural network (NN) [5, 101, 103].

• Knowledge-based FD: The knowledge-based methods are also known as qualitative

model-based methods, they utilize the qualitative models as a priori to build FD

systems [104]. Those approaches performed based on the evaluation of online
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monitored data in terms of a set of logic rules, which is learned effectively by human

experts from their knowledge and experience, to mimic the cognitive behaviour of

human experts [1, 43, 102]. Compared with the above methods, knowledge-based

methods have advantages such as ease of development, transparent reasoning, and the

capability to explain the solutions. But they are system specific and thus have low

generality and low expandability [43]. Nowadays, the so-called task-based diagnosis

expert system has been proposed to provide a general and flexible solution for FD

systems [8, 67].

For large-scale systems, it is hard to use one sensor to monitor the entire process and thus

they are usually equipped with a bunch of sensors. Traditionally, each sensor monitors

only local and limited process information and then all measured process variables (process

data) are collected in a central station to perform the corresponding FD actions. Such

centralized handling and performing of FD tasks in large-scale systems will lead to

• excessive burdensome computational workload for the specific central computation

node and chaos throughout the entire system when the central node is affected,

• connection and transmission problems when some sensors are located far away from

the central computational node,

• scalability problems since the upper bound of the computation power is limited by

the capacity of the central server.

To overcome the drawbacks of centralized methods, decentralized computations are consid-

ered to apply for FD [22, 75]. However, for these methods, each sensor node only uses local

measurements to achieve FD and thus the performance of FD is limited when compared

with centralized methods.

1.2 Motivation and Objective

With the development in sensing hardware and communication techniques, a diversity of

high computational performance sensor networks are applied in modern industrial areas.

A sensor network is a group of sensors and each sensor monitors processes and collects

data in a different and limited location, and commutes the data with other sensors through

a communication network. This property provides a possibility to combine advanced

FD approaches and sensor networks for more effective, flexible, and scalable distributed

methods when compared with centralized and decentralized ones. In the last decades,

intensive attention has been paid to distributed FD strategies, where each sensor node can
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Figure 1.4: Centralized, decentralized and distributed methods

itself execute the FD algorithms based on the local measurement data as well as the data

received via networks from other sensors. One possibility is the local residual generator,

it allows each node to execute the FD algorithm based on the local measurement and

also the neighbours’ information; however, the design of distributed observer gain is a

challenging task in such a structure. Sufficient conditions and numerical solutions are

provided in [121, 122, 123] to reduce the design complexity. And applications of such

structure to handle distributed fault isolation are also provided in [10, 39, 126]. Besides

local residual generators, distributed average consensus algorithms [113], which compute

the global average of sensor data in a distributed fashion, are also applied to perform

distributed FD. Based on consensus and diffusion, distributed sensor FD is proposed in

[66, 73]. And consensus based distributed realization of Kalman-filter and H2 filter based

FD are introduced in [27] and [119]. They achieve a specified FD performance while

limiting the complexity of the algorithm. Another category of distributed algorithms is

based on multivariate analysis (MVA) methods. For example, methods based on CCA

[19, 61] aim at using correlation information from neighbours to reduce uncertainties and

improve the performance of FD. And methods based on PCA [62, 130] consider fault-

relevant variable selection and use Bayesian inference to propose efficient distributed FD.

Most recently, machine learning methods are also involved into distributed design of FD

methods, a distributed FD method based on deterministic learning is proposed in [17] and

7
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a combination of auto-encoder, SVM and fuzzy deep NN is applied in [60] to detect sensor

fault with limited computation, memory, and energy resources of the sensors. Despite

the existing distributed methods, many of them are limited to numerical and sufficient

conditions or specific to certain systems that require assumptions. Moreover, there remains

a significant challenge in designing optimal or suboptimal distributed FD systems that

address the convergence time, network transmission time, and cost-effectiveness.

Based on the aforementioned observations, this work focuses on implementing model-

based distributed FD algorithms for large-scale and interconnected systems. To be more

specific, the goals of this study are:

• to realize the optimal centralized FD method in a distributed manner based on

distributed average consensus;

• to propose a sub-optimal distributed FD method using distributed observer and

post-filter to achieve a certain performance index based on linear matrix inequality

(LMI);

• to provide an optimal distributed FD solution using one-step prediction, filtering,

and smoothing.

Also, the industrial application is the other goal in addition to the theoretical contributions.

In the benchmark examples, the effectiveness and applicability of the suggested methods

are shown.

1.3 Outline of the Thesis

This thesis consists of eight chapters, which are structured as shown in Figure 1.5. The

major objectives and contributions of each chapter are briefly summarized as follows.

Chapter 1: Introduction

This chapter presents the motivations, objectives, contributions, and organization of this

thesis.

Chapter 2: Useful Knowledge and Preliminaries

This chapter introduces the fundamental knowledge about least squares (LS) estimation,

graph theory, distributed average consensus, and LMI technologies. LS algorithm is widely

applied in estimation area and builds the fundamental for optimal FD both in static and

dynamic cases. Graph theory is used to describe the communication network to set the

logic of communication between subsystems for distributed computation, such as average
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1.3 Outline of the Thesis

consensus. The distributed average consensus technology is considered as a powerful tool

to handle the distributed coordination and network synchronization, and thus applied in

this study. And LMI technology emerges as a numerical method to approach complicated

design issues.

Chapter 3: The Basics of Fault Detection Technologies

This chapter is devoted to the overview of FD methodologies for static and dynamic

systems influenced by stochastic noise and deterministic disturbance. These fundamental

methodologies serve as the basis for the subsequent studies. First, the model of static

systems and FD methods for them are reviewed. Then the model of dynamic systems and

the study on model-based residual generation are introduced. Different types of residual

generator stand for an analytical redundancy of the system under monitoring and build a

link between static and dynamic models. The residual signals, which are the output of

residual generator, are then used to detect faults in dynamic systems. Finally, a type of

data-driven method is also introduced.

Chapter 4: Distributed Fault Detection in Large-Scale Systems Based on Dis-

tributed Average Consensus

The main objective of this chapter is to develop an optimal distributed FD approach for

large-scale systems in the presence of unknown deterministic disturbances using the mea-

surement of sensor networks. The design approach consists of two phases: the distributed

offline training phase and the online implementation phase. Both phases are realized based

on distributed iterative computation and average consensus algorithm. This approach is

considered as a distributed realization of the centralized optimal method, which is based

on H2 observer.

Chapter 5: Distributed Fault Detection in Interconnected Systems Based on

Linear Matrix Inequality

In this chapter, a distributed FD method is designed for large-scale and interconnected

systems. Each subsystem is equipped with a local observer-based residual generator. It

uses only its local and neighbours’ information to estimate their local states and then

produces residual signal to detect fault. Also, a post-filter is applied to enhance the

influence of fault to residual signal and meanwhile to reduce the influence of disturbance

to residual signal. The post-filter is designed using a combination of PSA and DO.

Chapter 6: Distributed Fault Detection in Interconnected Systems via Opti-

mal Estimation

This chapter presents distributed approaches to solve the problem of FD for intercon-

9



1 Introduction

nected systems by taking into account the influence of noise and transmission time of

information exchange. For static cases, it uses the correlation between different signals to

reduce the uncertainty for FD. For dynamic cases, firstly, the one-step prediction based on

the measured data is implemented in a distributed fashion, such that the corresponding

estimations and the innovation sequences of each node can be received in real-time manner.

Then the innovation sequences are applied to improve the estimation result delivered from

the one-step prediction by filtering and smoothing. Finally, the distributed approach uses

the estimation result to generate residual signals and detect faults.

Chapter 7: Benchmark Study

In this chapter, the methods proposed in this thesis are tested on benchmark processes. The

distributed realization of optimal FD proposed in Chapter 4 is applied for DC micro-grid.

And the FD methods based on the distributed state observer and post-filter introduced

in Chapter 5 is adopted for mass-spring system. Additionally, the effectiveness of the

distributed FD method shown in Chapter 6 is demonstrated using the six-tank system.

Chapter 8: Conclusions and Future Works

This chapter concludes the thesis and discusses future work.
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2 Useful Knowledge and

Preliminaries

This chapter provides a comprehensive overview of the basic concepts of LS estimation,

graph theory, distributed average consensus, and LMI technology. Together with Chapter

3, these two chapters provide the reader with a comprehensive understanding of the

distributed algorithms that will be discussed throughout the rest of the thesis.

2.1 Least Squares Estimation

The method of LS is about estimating variables by minimizing the squared discrepancies

between observed data and their expected values. We first introduce concepts for the

deterministic case.

Lemma 2.1. [64] Given

y = Hx+ d, (2.1)

where x ∈ Rn is the state variables, y ∈ Rm is measurement, d ∈ Rm is disturbance and

rank(H) = n. The linear estimation

x̂ = (HTWH)−1HTWy (2.2)

delivers the optimal estimation of x in the sense of

x̂ = arg min
x(y)
‖y −Hx(y)‖W , (2.3)

where W > 0 and x(y) stands for arbitrary estimation of x given y.

Set ŷ = Hx̂ and estimation error ey = y − ŷ. It is straightforward that

〈ey, H〉W = 0, (2.4)

where 〈a, b〉W = aTWb stands for the weighted inner product. Denoting the column space

of matrix H by R(H), equation (2.4) means that ŷ is realized by geometrically projecting
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2.1 Least Squares Estimation

y onto the space R(H) and the estimation error ey is orthogonal to the space R(H)

through weighted inner product with factor W . And for stochastic cases, we have a similar

formulation as shown in the following.

Lemma 2.2. [4] Given [
x

y

]
∼ N

([
0

0

]
,

[
Σx Σxy

Σyx Σy

])
(2.5)

and measurement y, then

x̂ = ΣxyΣ
−1
y y (2.6)

delivers the optimal estimation of x in the sense of

x̂ = arg min
x(y)

var(x− x(y)), (2.7)

where x(y) are any arbitrary estimation of x given y.

Set the estimation error ex = x− x̂. From (2.5) and (2.6),[
ex

y

]
∼ N

([
0

0

]
,

[
Σx − ΣxyΣ

−1
y Σyx 0

0 Σy

])
. (2.8)

From (2.8), it holds that

cov(ex, y) = E(exy
T ) = 0. (2.9)

With the property of the trace function [127] and (2.9), we have

E(〈ex, y〉) = tr(E(exy
T )) = 0. (2.10)

Set L(y) as the linear space spanned by y. From (2.10), estimation x̂ can be understood as

the orthogonal projection of x onto the linear subspace L(y) and the estimation error ex is

orthogonal to L(y). Since random variables x and y in (2.5) are zero-mean variables, the

orthogonality (2.10) also means ex and y are uncorrelated. For general random variables

with non-zero means [
x

y

]
∼ N

([
mx

my

]
,

[
Σx Σxy

Σyx Σy

])
, (2.11)

we remove means by xc = x−mx and yc = y −my to guarantee that xc and yc satisfy the

condition (2.5) and it holds that

x̂ = mx + ΣxyΣ
−1
y (y −my) (2.12)

is a direct extension to Lemma 2.2.

From the above observations, it can be seen that the applications of the LS method

in both deterministic and stochastic frameworks exhibit both differences and similarities.

These properties are summarized in table 2.1.
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2 Useful Knowledge and Preliminaries

Deterministic Framework Stochastic Framework

Model

y = Hx+ d

[
x

y

]
∼ N

([
0

0

]
,

[
Σx Σxy

Σyx Σy

])

Problem

min
x(y)
‖y −Hx(y)‖W min

x(y)
var(x− x(y))

Solution

x̂ = (HTWH)−1HTWy x̂ = ΣxyΣ
−1
y y

Geometric Explanation

R(H)

𝐇ෝx

𝐲 − 𝐇ෝx
𝐲

L(y)
ෝx

𝐱 − ෝx𝐱

Table 2.1: Deterministic and stochastic frameworks

2.2 Graph Theory

A graph is a representation of a set of nodes, the way how they are connected, and their

metrical properties. In this study, it is applied to configure the physical structure of

large-scale systems and the communication topology of sensor networks. Commonly, a

graph G consisted of N nodes is denoted by

G = (N , E). (2.13)

Set N = {1 · · · , N} is a finite nonempty node set. An edge (i, j) with i, j ∈ N is a link to

connect the nodes i and j. In directed graphs, all the edges are directed from one node

to another, i.e., (i, j) and (i, j) are different. In contrast, a graph where the edges are
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2.2 Graph Theory

bidirectional is called an undirected graph. And E ⊂ N ×N is the edge set. The set of

neighbours of node i in a graph, which is denoted by Ni = {j| (i, j) ∈ E}, is the set of

nodes that have an edge between node i and themselves. A path in a graph is a sequence

of edges and also can be considered as a sequence of nodes with the property that each

node in the sequence is connected to the node by an edge next to it. A path that does

not repeat nodes is called a simple path. The number of edges included in a path is the

length of the path. An undirected graph is connected if there is a simple path between

every pair of distinct nodes in this graph. A loop is an edge that connects a node to itself.

If a graph has more than one edge joining some pair of nodes then these edges are called

multiple edges. Figure 2.1 shows examples of loop and multiple edges. A simple graph

Node Node

Loop                      Multiple edges

Edge

Node

Figure 2.1: Loop and multiple edges

is a graph that does not have loops and multiple edges. In the rest of this thesis and

corresponding to our application, if no additional interpretation is mentioned, the graph is

undirected, connected, and simple, each edge in the graph is an unordered and ascending

pair of distinct nodes and each path is a simple path. An example of such graphs with

algebraic description

G = (N , E), N = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 3), (2, 4), (3, 5), (4, 5)}

is shown in Figure 2.2.

1 2

3

4

5

Figure 2.2: A simple, undirected and connected graph
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Given a simple and undirected graph G with N nodes, the degree matrix D = [dij] ∈
RN×N of G is a diagonal matrix with

dij =

{
di, i = j

0, i 6= j
, (2.14)

where di is the degree of node i, that is, the number of edges attached to node i. It is

obvious that di = card(Ni). The adjacency matrix A = [aij] ∈ RN×N of G is a symmetric

(0,1)-matrix with zeros on its diagonal, whose eigenvalues and eigenvectors are used to

analyse the graph in spectral graph theory. The off diagonal elements of the adjacency

matrix are defined by

aij =

{
1, (i, j) ∈ E
0, (i, j) /∈ E

, (2.15)

and used to indicate whether pairs of nodes are connected or not. With the definition

of degree matrix D and adjacency matrix A, the Laplacian matrix L = [lij] ∈ RN×N is

defined by

L = D − A.

For the graph in Figure 2.2, the corresponding matrices are

D =


1 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

 , A =


0 1 0 0 0

1 0 1 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 1 0

 , L =


1 −1 0 0 0

−1 3 −1 −1 0

0 −1 2 0 −1

0 −1 0 2 −1

0 0 −1 −1 2

 .

Graph theory has been applied in a wide range of fields, including communication networks,

data organization, and formation control schemes, among others. In the following, we

briefly introduce one useful property of the Laplacian matrix and based on it, a popular

application in the area of formation control.

Lemma 2.3. [48] Given a simple, undirected and connected graph G with N nodes, its

Laplacian matrix L = [lij] ∈ RN×N is positive semidefinite.

Lemma 2.4. [92] Given a simple, undirected and connected graph G with N nodes and

its Laplacian matrix L = [lij] ∈ RN×N . For

ẋ(t) = −Lx(t), x(0) =
[
x1 · · · xN

]T
, (2.16)

we have

lim
t→∞

x(t) =
[
x̄ · · · x̄

]T
, x̄ =

1

N

N∑
i=1

xi. (2.17)
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2.3 Distributed Average Consensus

Lemma 2.4 is the application of graph theory in the area of formation control, it is also

called distributed average consensus [92]. By applying (2.16), the states of all nodes will

converge to a common value, which is the average value of all initial states. A simulation

result of Lemma 2.4 applied in the graph described in Figure 2.2 is shown in Figure 2.3.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ta

te
s

Figure 2.3: Simulation of formation control

2.3 Distributed Average Consensus

Distributed average consensus, which is applied in load balancing [23], distributed formation

control [13] and distributed state estimation [86], is an important algorithm for large-scaled

and distributed computing. Lemma 2.4 provides an example of a consensus algorithm

in continuous case. In this section and the rest of this study, we mainly consider this

algorithm in discrete form. Given a graph G = (N , E) with N nodes, by distributed average

consensus algorithm, each node has initial values and updates its value with a weighted

average of local and its neighbors values. That is, the average consensus algorithm is

achieved by performing

xi(k + 1) = wiixi(k) +
∑
j∈Ni

wijxj(k), (2.18)
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where i ∈ N and xi(0) is the initial values. Equation (2.18) can be modified as

x(k + 1) = Wx(k), (2.19)

where xT =
[
xT1 · · · xTN

]T
and W = [wij] ∈ RN×N . By construction, the matrix W

satisfies

W ∈ S, S = {W |wij = 0 if i 6= j and (i, j) 6∈ E} . (2.20)

To achieve the average consensus, we must have

lim
k→∞

x(k) = lim
k→∞

W kx(0) =
1

n
11>x(0) (2.21)

for any initial condition x(0), where 1 is a vector with all element 1, or equivalently

lim
k→∞

W k =
1

n
11>. (2.22)

Lemma 2.5. [112] The equation (2.22) holds if and only if

W1 = 1,

1>W = 1>,

ρ

(
W − 1

n
11>

)
6 1.

Numerous methods have been proposed to solve W , which yield Lemma 2.5. For

example, the max-degree weights method [113] calculates W as

wij =


1

d
j ∈ Ni

0 j /∈ Ni and j 6= i

1− di
d+ 1

i = j

. (2.23)

We can also apply the Metropolis-Hastings weights method [113], which can be calculated

in a distributed manner as

wij =


1

max{di, dj}+ 1
j ∈ Ni

0 j /∈ Ni and j 6= i

1−
∑
q 6=i

wiq i = j

. (2.24)

For example, given graph in Figure 2.2, use max-degree weights to calculates W , we have

W =


0.7500 0.2500 0 0 0

0.2500 0.2500 0.2500 0.2500 0

0 0.2500 0.5000 0 0.2500

0 0.2500 0 0.5000 0.2500

0 0 0.2500 0.2500 0.5000

 . (2.25)

A simulation of (2.19) using W in (2.25) is shown in Figure 2.4.
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Figure 2.4: Simulation of distributed average consensus

2.4 Linear Matrix Inequality

LMIs are a regular occurrence in applications involving systems and control theory.

Numerous analytical and synthesis issues in these domains can be resolved as optimization

or feasibility problems using LMI technique. The LMIs have an expression of the form

F (x) = F0 +
m∑
i=1

xiFi < 0 (2.26)

where

• the real number xi is the decision variable and x = (x1, · · · , xm) is collection of all

decision variables,

• Fi ∈ Rn×n, i = 0, · · · ,m, are given symmetric matrices,

• < 0 stands for negative definite, i.e., the largest eigenvalue of F (x) is negative.

There are basically three kinds of problems that can be solved by the LMI technique.
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• Feasibility:

min
t,x

t

s.t. F (x) 6 tI

t 6 0

• Linear objective minimization:

min
x

cTx

s.t. F (x) 6 0

• Generalized eigenvalue minimization:

min
λ,x

λ

s.t. F1(x) < λF2(x)

0 < F2(x)

F3(x) < 0

In system and control theories, some design issues are transferred into these three LMI

problems. Then the problem can be numerically solved in MATLAB by using the LMI

Toolbox [42] or YALMIP [76]. In the following, we briefly introduce two useful properties,

which will be used later.

Lemma 2.6 (Schur Complement Lemma). [29] Given matrix

A =

[
A11 A12

A21 A22

]
where A12 = AT

21. Then A > 0 if and only if

A11 > 0 and A22 − A21A
−1
11 A12 > 0

or

A22 > 0 and A11 − A12A
−1
22 A21 > 0.

Similarly, A < 0 if and only if

A11 < 0 and A22 − A21A
−1
11 A12 < 0

or

A22 < 0 and A11 − A12A
−1
22 A21 < 0.

Lemma 2.7. [90] Matrix A is Schur matrix if and only if

ATPA− P < 0, P > 0. (2.27)

Or with an additional matrix variable X,[
−P ATX

XTA −X −XT + P

]
< 0, P > 0. (2.28)
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2.5 Concluding Remarks

2.5 Concluding Remarks

The basics of LS estimation, graph theory, distributed average consensus and LMI are

introduced in this chapter. Notice that we only introduce the corresponding parts of each

area which are related to our study. For more detailed properties of LS estimation, readers

are referred to [4, 64]. The book [110] gives a comprehensive introduction to graph theory.

Different concepts and schemes of designing a weighting matrix in (2.19) are proposed in

[112, 113, 114]. The application of distributed average consensus in formation control is

widely discussed in [92, 93]. A state of the art of theories, usages, and applications of LMI

in the broad field of systems and control are studied in [12, 98]. Also, applications of LMI

in FD are published in [75, 106].
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3 The Basics of Fault Detection

Technologies

In this chapter, an overview of the state of the art to topics of FD techniques [24, 25, 27]

is presented. The purpose of this chapter is to give the fundamental knowledge to topics of

FD and builds the foundation for further study. In the first section, optimal FD problems

are formulated both in probabilistic and deterministic frameworks. Then, the mathematical

descriptions of static systems as well as FD solutions for them are given. The third section

focuses on dynamic systems, including modelling methods and model-based residual

generator schemes for dynamic systems. Among different types of residual generators,

Kalman filter-based and H2 observer-based one are applied to perform optimal FD in

dynamic systems influenced by random noises and deterministic disturbances, respectively.

Finally, a data-driven scheme is introduced to identify essential parameters, which are

then used to construct DO for online FD.

3.1 Fault Detection Problems

A basic FD system is achieved by designing evaluation function J and threshold Jth to

detect possible faults with decision logic{
J < Jth , fault-free

J > Jth , faulty
. (3.1)

Assume that the signal vector f is used to model the fault to be detected and satisfies{
f = 0 , fault-free

f 6= 0 , faulty
.

The evaluation function J is a mapping from measurements of the system to the feature of

fault. Since the systems under consideration are influenced by unknown inputs, evaluation

function J and threshold Jth are designed to fulfill certain indices, which are used to assess

the performance of FD system.
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3.1.1 Fault Detection in the Probabilistic Framework

In the probabilistic framework, false alarm rate (FAR), missed detection rate (MDR), and

fault detection rate (FDR) are frequently used to assess FD performance in processes

influenced by unknown inputs. These definitions are given below [27].

Definition 3.1. Given the evaluation function J , threshold Jth and detection logic (3.1),

FAR is defined as the probability

FAR = Pr (J > Jth|f = 0) .

Definition 3.2. Given the evaluation function J , threshold Jth and detection logic (3.1),

MDR is defined as the probability

MDR = Pr (J < Jth|f 6= 0) .

Definition 3.3. Given the evaluation function J , threshold Jth and detection logic (3.1),

FDR is defined as the probability

FDR = Pr (J > Jth|f 6= 0) .

In hypothesis testing, false alarm is also called type I error and missed detection is

called type II error as shown by [84]. And notice that

FDR = 1−MDR,

we use only FAR and MDR to assess the performance of FD system and formulate the

optimal FD problem in the probabilistic framework as finding J and Jth such that

(J, Jth) = arg min
J,Jth

MDR, s.t. FAR 6 α, (3.2)

where α is the acceptable level of FAR.

3.1.2 Fault Detection in Deterministic Processes

Under deterministic cases, the problem is modelled by

y =Md(d) +Mf (f), (3.3)

whereMd is the mapping from D to Y andMf is the mapping from F to Y . Symbols D,

F and Y are domains of d, f and y, respectively. In deterministic processes, it is assumed

that the energy of d is bounded with the mathematical description

‖d‖2 6 δd. (3.4)
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Since the bounded norm condition (3.4) is not a statistic property, FAR and MDR are not

appropriate to evaluate FD performance in deterministic processes. This motivates us to

find alternative assessments for the performance of FD in deterministic processes. Define

two subspaces

Id = {yd ∈ Y | yd =Md(d), d ∈ D, ‖d‖p 6 δd} , (3.5)

Uf = {f ∈ F | yf =Mf (f) ∈ Id} (3.6)

and formulate the optimal FD problem in deterministic processes as finding J and Jth

such that

∀y ∈ Id, f = 0, J < Jth, (3.7)

∀f 6∈ Uf , d = 0, J > Jth. (3.8)

Subspace Uf is known as the set of undetectable faults since the influence of these faults

on y can’t be separated from Id, which represents the set of influence of all possible

norm-bounded d on y. If condition (3.7) is satisfied, FAR equals zero and (3.8) means all

faults, which are not undetectable, are detected when d equals zero.

3.2 Basic Methods for Fault Detection in Static

Processes

In this section, we will briefly discuss the FD problem of static processes influenced by

unknown external inputs, which are categorized into stochastic noises and deterministic

disturbances.

3.2.1 Fault Detection with Random Noises

We first address the statistical cases. Given the model of a static system as

y = Eff + ε, (3.9)

where y ∈ Rm represents the measurement vector, ε ∼ N (0,Σ) is the measurement noise

and it is assumed that Σ > 0, f ∈ Rkf is the fault vector and Ef is the distribution matrix

and satisfies

rank(Ef ) = kf 6 m. (3.10)

Condition (3.10) means that measurement y measures all information of f and can be

used to recover f .
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Theorem 3.1. [32] Given model (3.9),

J = yT
(
E−f
)T (

E−f Σ
(
E−f
)T)−1

E−f y ∼ χ2(kf ), Jth = χ2
α(kf ),

E−f =
(
ET
f Σ−1Ef

)−1
ET
f Σ−1

(3.11)

deliver the solution for optimal problem (3.2).

3.2.2 Fault Detection with Deterministic Disturbances

For the deterministic processes, given the model of a static system as

y = Eff + Edd, (3.12)

where y ∈ Rm represents the measurement vector, d ∈ Rkd is the deterministic disturbance

and it is assumed that ‖d‖ 6 δd. Distribution matrix Ef has the same assumption (3.10)

and

rank(Ed) = m, (3.13)

which means that d influences each dimension of y. We modify (3.5) and (3.6) as

Id =
{
yd ∈ Rm | yd = Edd, d ∈ Rkd , ‖d‖ 6 δd

}
, (3.14)

Uf =
{
f ∈ Rkf | yf = Eff ∈ Id

}
. (3.15)

for static model (3.12).

Theorem 3.2. [32] Given model (3.12),

J = yT
(
EdE

T
d

)−1
M
(
EdE

T
d

)−1
y, Jth = δd,

M = Ef

(
ET
f

(
EdE

T
d

)−1
Ef

)
ET
f ,

(3.16)

deliver the solution for optimal problem (3.7) and (3.8).

3.3 Basic Methods for Fault Detection in Dynamic

Processes

In this section, we address the FD problem of dynamic processes.
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3.3.1 Models of Nominal Dynamic Systems

We refer to nominal systems as systems that are fault-free and disturbance-free. In our

work, it is assumed that the nominal systems are discrete-time linear time invariant (LTI)

systems, which provide a simple solution to modelling dynamic systems and are extensively

utilized in research and application areas. There are numerous ways to characterize a

discrete-time LTI system.

One of them is the transfer function matrix, that is,

y(z) = G(z)u(z). (3.17)

In (3.17), transfer function matrix G(z) is a proper real-rational matrix and describes

the input−output relation of a dynamic system in the frequency domain, u ∈ Rl is input

vector, y ∈ Rm is output vector and z is the complex variable of z-transform, which

converts a discrete-time signal into a complex frequency-domain representation.

The next one is state space representation:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0

y(k) = Cx(k) +Du(k)
(3.18)

with x ∈ Rn, u ∈ Rl, and y ∈ Rm denoting the state vector, input vector and the output

vector of the system, respectively. Matrices A, B, C, and D are real constant matrices

with appropriate dimensions. State space models are also considered as a realization of

transfer function matrices with

G(z) = D + C(zI − A)−1B. (3.19)

For simplicity of notation, relationship (3.19) is denoted by

G(z) = (A,B,C,D) . (3.20)

We assume that (A,B,C,D) is minimal realization, which is controllable and observable,

has minimal order, and has the same response characteristics as the original model G(z).

Also, the factorization approach has been widely utilized in the area of control theory and

can be used to describe dynamic behaviours. In particular, doubly co-prime factorization

(DCF), which has tight connections with parametrization of stabilizing controllers and

plays an important role in dealing with robust control problems [129], is the other way to

present dynamical characters of systems.

Definition 3.4. Two transfer function matrices M(z), N(z) in RH∞ are said to be right

co-prime over RH∞ if there exist two transfer function matrices X(z), Y (z) in RH∞ such

that

Y (z)N(z) +X(z)M(z) =
[
X(z) Y (z)

] [ M(z)

N(z)

]
= I.
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Definition 3.5. Two transfer function matrices M̂(z), N̂(z) in RH∞ are said to be left

co-prime over RH∞ if there exist two transfer function matrices X̂(z), Ŷ (z) in RH∞ such

that

M̂(z)X̂(z) + N̂(z)Ŷ (z) =
[
M̂(z) N̂(z)

] [ X̂(z)

Ŷ (z)

]
= I.

For each proper real-rational transfer function matrix

G(z) = (A,B,C,D) ,

there exist eight transfer function matrices M(z), N(z), X(z), Y (z), M̂(z), N̂(z), X̂(z)

and Ŷ (z) ∈ RH∞ with the state space realization

M(z) = (A+BF,B, F, I), M̂(z) = (A− LC,−L,C, I),

N(z) = (A+BF,B,C +DF,D), N̂(z) = (A− LC,B − LD,C,D),

X(z) = (A− LC,−(B − LD), F, I), X̂(z) = (A+BF,L,C +DF, I),

Y (z) = (A− LC,−L, F, 0), Ŷ (z) = (A+BF,−L, F, 0),

(3.21)

where F and L are chosen such that A+BF and A− LC are Schur matrices. Moreover,

it holds that

G(z) = N(z)M(z)−1 = M̂(z)−1N̂(z), (3.22)[
X(z) Y (z)

−N̂(z) M̂(z)

][
M(z) −Ŷ (z)

N(z) X̂(z)

]
= I, (3.23)[

M(z) −Ŷ (z)

N(z) X̂(z)

][
X(z) Y (z)

−N̂(z) M̂(z)

]
= I. (3.24)

From (3.23) and (3.24), it is obvious that N(z) and M(z) are right co-prime over RH∞
and N̂(z) and M̂(z) are left co-prime over RH∞. And (3.22) is called DCF of G(z), since

a right co-prime factorization (RCF) of G(z) is

G(z) = N(z)M(z)−1, (3.25)

a left co-prime factorization (LCF) is defined by

G(z) = M̂(z)−1N̂(z) (3.26)

and RCF and LCF together constitute the DCF of G(z). If G(z) is stable, for simplicity,

we can set F = 0, L = 0 and

M(z) = M̂(z) = I, N(z) = N̂(z) = G(z), X(z) = X̂(z) = I, Y (z) = Ŷ (z) = 0.
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3.3.2 Model-Based Residual Generation Schemes

In this section, we introduce three common model-based residual generation strategies,

which are the realization of software redundancy and build the core of model-based FD.

In general, they either use input and output data of the considered system to build the

estimation of output and then generate residual signal r by comparing the real output

and its estimation or directly build residual signal using input, output data, and dynamic

relation between them as shown in Figure 3.1 . One important characteristic feature of

System
Input Output

Residual
generator

Residual

Figure 3.1: Residual generation

residual generator is

∀u, x(0), lim
k→∞

r(k) = 0, (3.27)

when the system has nominal behaviour.

3.3.2.1 Fault Detection Filter

One kind of observer-based residual generators is FDF, which was first proposed in [6] in

the early 1970s. The foundation of FDF is a state observer:

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k)),

ŷ(k) = Cx̂(k) +Du(k),
(3.28)

where x̂ ∈ Rn is the state vector of the observer and represents the estimation of x, ŷ ∈ Rm

is the estimation of y, and L is the observer gain matrix. We define the residual signal as

the difference between the real output and its estimation and can be simply written as

r(k) = y(k)− ŷ(k). (3.29)

Further, introduce estimation error as

e(k) = x(k)− x̂(k). (3.30)
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For a successful observation, it should hold that

∀u, x(0), lim
k→∞

e(k) = 0 (3.31)

in the fault-free and disturbance-free cases. It yields, by combing (3.18) and (3.28),

e(k + 1) = (A− LC)e(k),

ŷ(k) = Ce(k).
(3.32)

It is evident that choosing L such that (A−LC) is Schur matrix guarantees (3.31). Notice

that (3.31) is a sufficient condition for (3.27), then (3.27) is also guaranteed. From the

above observation, we discover that choosing matrix L to achieve the state observer is the

core part to design FDF. And in order to increase the degree of design freedom, we usually

introduce matrix V as post-filter and change the residual signal into

r(k) = V (y(k)− ŷ(k)) . (3.33)

The above FDF scheme is based on a full-order observer, however, state estimation is not

necessary for output estimation, which is required for FD. This motivates us to apply

Luenberger type residual generator, which is also known as DO.

3.3.2.2 Diagnostic Observer

In this section, DO is introduced. It is one of the most extensively researched model-

based residual generator forms because of its flexible structure and close relation with the

Luenberger type observer. A DO is defined by

z(k + 1) = Gz(k) +Hu(k) + Ly(k),

r(k) = V y(k)−Wz(k)−Qu(k),
(3.34)

where z ∈ Rs is the state of the observer and s is its order. The order s can be equal to,

smaller, or larger than the system order n. Given model (3.18) and (3.34), the matrices G,

H, L, V , W , Q together with T ∈ Rs×n have to satisfy the so-called Luenberger conditions

[87]:

I. G is Schur matrix (3.35)

II. TA−GT = LC, H = TB − LD (3.36)

III. V C −WT = 0, Q = V D (3.37)

Matrix T is used to define the estimation error

e(k) = Tx(k)− z(k). (3.38)
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If condition (3.35)−(3.37) are satisfied, it holds that

e(k + 1) = Ge(k),

r(k) = V e(k),
(3.39)

in the fault-free and disturbance-free case and

∀u, x(0), lim
k→∞

e(k) = 0. (3.40)

It is straightforward that condition (3.27) is also fulfilled. Compared with the FDF scheme,

it is clear that the DO scheme has a more flexible structure, which can lead to a reduced-

order residual generator and can benefit online implementation. However, different from

the FDF scheme, which has only two parameters L and V to be designed, the DO scheme

has more parameters to be calculated and thus more involved effort for design.

3.3.2.3 Parity Space Approach

In this section, detection based on PSA is introduced. The PSA is a general framework for

FD and was initiated by [21] in the early 1980s. Instead of using an observer, it constructs

the residual generator based on the so-called parity relation. Defining parameters ω(k) ∈ Rξ

and

ωs(k) =


ω(k − s)

...

ω(k)

 ∈ R(s+1)ξ, Γs =


C

CA
...

CAs

 ∈ R(s+1)m×n,

Hu,s =


D 0 · · · 0

CB
.. .

. . .
...

...
. . .

. . . 0

CAs−1B · · · CB D

 ∈ R(s+1)m×(s+1)l,

(3.41)

where ωs(k) is data structure to collecting data series from ω(k− s) to ω(k). Given model

(3.18), ω can be u and y and matrices Γs and Hu,s build the link between the original

state space model (3.18) and the following model:

ys(k) = Γsx(k − s) +Hu,sus(k). (3.42)

Model (3.42) represents the relationship between the temporal input and output data in

regard to the past state x(k− s). It is stated in a simple manner, where all the parameters

and matrices are known except x(k − s). This motivates us to build residual signal as

r(k) = vs (ys(k)−Hu,sus(k)) , (3.43)
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where vs ∈ R(s+1)m is called parity vector and if

vsΓs = 0, vs 6= 0, (3.44)

the dynamics of r(k) is governed by, in the fault-free and disturbance-free case,

r(k) = vs (ys(k)−Hu,sus(k)) = vsΓs = 0. (3.45)

Notice that the parity space is a space in which all elements are parity vectors [89], that is

Ps =
{
vs ∈ R(s+1)m | vsΓs = 0, vs 6= 0

}
. (3.46)

The simple solution to guarantee that space Ps is not empty is choosing s > n such that

rank(Γs) 6 n < (s+ 1)m. (3.47)

Since matrix Γs is not full row rank, space Ps is not empty.

3.3.3 Fault Detection in Linear Stochastic Processes

Consider the process model:

x(k + 1) = Ax(k) +Bu(k) + w(k), x(0) = x0

y(k) = Cx(k) +Du(k) + v(k),
(3.48)

where x ∈ Rn, u ∈ Rl, and y ∈ Rm are introduced in model (3.18) and w ∈ Rn and

v ∈ Rm denote the system and measurement noise, respectively. It is assumed that the

noise signals w(k) and v(k) are white Gaussian processes and uncorrelated with input u

and initial state vector x(0).

x(0) ∼ N (x0, P0) (3.49)

E


w(i)

v(i)

x(0)

[w>(j) v>(j) x>(0)
] =


[
Q S

S> R

]
δij 0

0 Π0

 . (3.50)

It is commonly known that a recursive Kalman filter with

x̂(k + 1) = Ax̂(k) +Bu(k) + L(k)(y(k)− ŷ(k)),

ŷ(k) = Cx̂(k) +Du(k),

r(k) = y(k)− ŷ(k),

Σr(k) = CP (k | k − 1)CT +R,

L(k) = (AP (k | k − 1)CT + S)Σ−1r (k),

P (k + 1 | k) = AP (k | k − 1)AT +Q− L(k)Σr(k)LT (k), P (0| − 1) = P0

(3.51)
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is a full-order observer (3.28) and delivers the best unbiased estimation of x in (3.48) since

it minimizes the matrix P , which stands for the variance matrix of estimation error (3.30),

and also matrix Σr, which is the variance matrix of white residual r . These properties

enable us to solve the FD problem in a linear stochastic process at each instant in a

manner that

r(k) = y(k)− ŷ(k) = f(k) + ε(k), ε(k) ∼ N (0,Σr(k)) , (3.52)

which is analogous to (3.9). And as introduced in Theorem 3.1,

J(k) = rT (k)Σ−1r (k)r(k), Jth = χ2
α(m) (3.53)

delivers the optimal FD solution since for a given FAR α with minimizing the MDR. In a

short summary, the Kalman filter based FDF (3.51) and residual evaluation (3.52) and

(3.53) are optimal FD for linear stochastic process (3.48) because

• whiteness of the residual is essential for FD,

• variance matrix Σr in (3.52) is minimized by Kalman gain L(k) ,

• for certain L(k), residual evaluation (3.53) ensures that, for a given FAR α, the

MDR is minimized.

3.3.4 Fault Detection in LTI Systems with Unknown

Disturbance

Consider the process model:

x(k + 1) = Ax(k) +Bu(k) + Edd(k) + Eff(k), x(0) = x0

y(k) = Cx(k) +Du(k) + Fdd(k) + Fff(k),
(3.54)

where x ∈ Rn, u ∈ Rl, and y ∈ Rm are introduced in model (3.18) and d ∈ Rkd is

disturbance. It is assumed that

• ‖d‖22 6 δ2d

• rank(Gyf ) = m, Gyf = (A,Ef , C, Ff )

• ∀θ ∈ [0, 2π],

[
A− ejθI El

Cl Fl

]
has full row rank

32



3.3 Basic Methods for Fault Detection in Dynamic Processes

For purpose of optimal FD, we adopt the following H2 observer:

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k)),

ŷ(k) = Cx(k) +Du(k),

r(k) = V (y(k)− ŷ(k)),

where L and V are

R = CXCT + FdF
T
d , V = R−1/2,

L = (AXCT + EdF
T
d )R−1, X = AXAT − LRLT + EdE

T
d .

(3.55)

It is straightforward that the residual dynamics can be described by

r(z) = V (Gd(z)d(z) +Gf (z)f(z)),

Gd(z) = (A− LC,Ed − LFd, C, Fd) ,
Gf (z) = (A− LC,Ef − LFf , C, Ff ) .

(3.56)

The scheme (3.55) is optimal in the sense of

(L, V ) = arg max
K,R

σi
(
RNf (e

jθ)
)

‖RNd(z)‖∞
, ∀θ ∈ [0, 2π], i = 1, · · · ,m (3.57)

Nd(z) = (A−KC,Ed −KFd, C, Fd) , (3.58)

Nf (z) = (A−KC,Ef −KFf , C, Ff ) . (3.59)

The optimization problem means that L and V delivered by (3.55) can optimally balance the

trade-off between the robustness of residual signal against disturbance and its sensitivity to

fault [24]. Moreover, according to [129], the transfer function from disturbance to residual

is co-inner, which means

V GdG
T
d (z−1)V T = I, (3.60)

and it holds in the fault-free case

‖r(z)‖22 = ‖V Gd(z)d(z)‖22 6 ‖d(z)‖22. (3.61)

In sense of property (3.60) and (3.61), as shown in [32], designing

J(k) = ‖r‖2, Jth = δd (3.62)

delivers the solution to optimal FD problem (3.7) and (3.8). In practice, the root mean

square (RMS) value is often used instead of the L2 norm to form the evaluation function

and threshold in (3.62). It is a measure of the average energy of a signal over a time

interval and is defined as

J(k) = ‖r‖RMS =

√√√√ 1

N

k∑
j=k−N+1

rT (j)r(j), Jth =
δd√
N

(3.63)
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3.3.5 A Date-Driven Scheme

The above methods are model-based methods, which are based on the system model (3.18).

When a model is unknown or difficult to build, data-driven methods are applied to design

the residual generator. In this section, we introduce one type of data processing technique

to do FD. First, introduce new notations

Ωk = [ω(k) · · · ω(k +N − 1)] ∈ Rξ×N ,

Ωk,s = [ωs(k) · · · ωs(k +N − 1)] ∈ R(s+1)ξ×N ,

Hw,s =


0 0 · · · 0

C
.. .

. . .
...

...
. . .

. . . 0

CAs−1 · · · C 0

 ∈ R(s+1)m×(s+1)n,

(3.64)

where ω(k), ωs(k) is defined in (3.41) and N is a large integer, and rewrite model (3.48)

into the following I/O data model[
Uk,s

Yk,s

]
= Φs

[
Uk,s

Xk−s

]
+

[
0

Hw,sWk,s + Vk,s

]
, Φs =

[
I 0

Hu,s Γs

]
. (3.65)

Since Φs ∈ R(s+1)(m+l)×(n+(s+1)l) and for s > n, Φs is not full row rank and there exists

Φ⊥s such that

Φ⊥s Φs = 0,Φ⊥s ∈ R((s+1)m−n)×(s+1)(m+l),

Φ⊥s

[
Uk,s

Yk,s

]
= Φ⊥s

[
0

Hw,sWk,s + Vk,s

]
.

(3.66)

It is straightforward that

rs(k) = Φ⊥s

[
Uk,s

Yk,s

]
(3.67)

builds a residual generator since, in the fault-free and disturbance-free case, rs(k) = 0.

Next, we use a data-driven method to identify Φs. Let

Zp =

[
Uk−s−1,s

Yk−s−1,s

]
(3.68)

represents the past input and output data, which are uncorrelated with future noise Wk,s

and Vk,s, that is,
1

N − 1
Wk,sZ

T
p ≈ 0,

1

N − 1
Vk,sZ

T
p ≈ 0. (3.69)

Based on this observation, subspace identification methods (SIM) [30] are proposed to

identify Φ⊥s . In the following, we introduce a numerically reliable algorithm to identify Φ⊥s
in a data-driven manner and then realize it by DO for online computation.

34



3.4 Concluding Remarks

Algorithm 3.1. [25] Data-driven scheme

Offline Computation

Step 1 Select s, N and form Zp, Uk,s and Yk,s

Step 2 Do QR-decomposition ZpUk,s

Yk,s

 =

R11 0 0

R21 R22 0

R31 R32 R33


Q1

Q2

Q3


Step 3 Do singular value decomposition (SVD)[

R21 R22

R31 R32

]
=
[
U1 U2

] [Σ1 0

0 Σ2

][
V1

V2

]
, Σ2 ≈ 0

Step 4 Select φs = [βs αs] be any row of UT
2

αs = [αs,0 · · · αs,s] ∈ R1×(s+1)l, αs,i ∈ R1×l, i = 0, · · · , s
βs = [βs,0 · · · βs,s] ∈ R1×(s+1)m, βs,i ∈ R1×m, i = 0, · · · , s

Step 5 Construct parameters

G =


0 0 · · · 0

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

 ∈ Rs×s, H =


βs,0

βs,1
...

βs,s−1

, L =


αs,0

αs,1
...

αs,s−1


v = αs,s, w = [0 · · · 0 1],q = βs,s

Step 6 Construct DO

z(k + 1) = Gz(k) +Hu(k) + Ly(k)

r(k) = vy(k)− wz(k)− qu(k)

Step 7 Run DO offline and compute the variance δr of r(k)

Step 8 Set Jth = χ2
α(1) for given FAR α

Online Detection

Step 1 Run DO online and build J(k) = r2(k)/δr

Step 2 Detect fault using (3.1)

3.4 Concluding Remarks

This chapter presents the basics of FD technologies, including the preliminaries for both

stochastic and deterministic systems. Since it is only a short introduction, many details

are not involved. The first part focuses on the formulation of optimal FD problems for

both stochastic and deterministic systems. Then the solution of optimal FD problems

for static systems is introduced. A more detailed review of these parts is presented in

[27]. It is followed by FD issues in dynamic systems. For dynamic systems, we start

35



3 The Basics of Fault Detection Technologies

with different modelling methods, which are the basis of model-based FD. To realize the

software redundancy, FDF, DO, and PSA are introduced to build residual generator for

FD. Specifically, Kalman filter based and H2 observer based FDF are applied for dynamic

systems to perform optimal FD in stochastic and deterministic systems, respectively. Here,

Kalman filter and H2 observer are direct extensions of LS estimation introduced in Chapter

2, and the proof is shown in [64]. Other design procedures and detailed explanations about

the model-based methods are introduced in [24]. Finally, a data-driven method is briefly

introduced to identify an FD system and then transfer it into DO form. Interested readers

are referred to [25, 26, 28] for the reviews of common and advanced data-driven methods

of process monitoring and FD systems.
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4 Distributed Fault Detection in

Large-Scale Systems Based on

Distributed Average Consensus

The aim of this chapter is to create a distributed version of the centralized optimal FD

method for handling unknown deterministic disturbances in large-scale systems. We utilize

a sensor network where each local sensor communicates with its neighbours to exchange

information. The exchanged information is used for distributed offline training and also

during online implementation. Both phases apply distributed average consensus and use

iterative computation to guarantee the convergence of corresponding values to the same

value achievable in the centralized optimal manner. To demonstrate the effectiveness of

the proposed method, we present a simulation result and make a comparison between the

performances of the distributed realization and the centralized optimal solution.

4.1 Preliminaries and Problem Formulation

In this section, we present an overview of the models for the dynamic system and sen-

sor network, the centralized optimal FD scheme, and the problem formulation. These

components form the foundation for further study.

4.1.1 Models description

In this chapter, we focus on a class of large-scale LTI systems, which are defined as follows:

x(k + 1) = Ax(k) + Epdp(k) + Eff(k), (4.1)

where x(k) ∈ Rq denotes the state vector, f(k) ∈ Rf denotes the fault, dp(k) ∈ Rp denotes

the unknown deterministic disturbance in process, and A, Ep and Ef are known constant

matrices with appropriate dimensions. For the purpose of FD and process monitoring, the

system under consideration is equipped with a sensor network, which consists of n sensor
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4 Distributed Fault Detection in Large-Scale Systems Based on Distributed Average Consensus

nodes, and each sensor node is modelled by

yi(k) = Cix(k) + F̄idm(k), dm =
[
dT1 · · · dTn

]T
(4.2)

where i ∈ {1, · · · , n} denotes the index of sensor node, yi ∈ Rmi is the measurement of

sensor node i, and Ci and F̄i are known constant matrices with appropriate dimension,

and di is the local measurement disturbance and dm is the collection of measurement

disturbances. Since the monitored parts of different sensors can overlap, some local

measurement disturbances can influence more than one sensors. Thus, it is possible that

F̄iF̄
T
j 6= 0. (4.3)

The communication topology of the sensor network is described by a graph G = {N , E},
where N = {1, · · · , n} denotes the node set and E ⊆ {N × N} stands for the edge set.

Besides the notations introduced in Chapter 2, denote d(i, j) as the minimal length of the

paths connecting node i and j,

Dg = max
i,j∈N

d(i, j)

as the diameter of G, and ci = card(Ni) as the cardinality of Ni. Moreover, define matrix

Σ = F̄lF̄
T
l =


Σ11 · · · Σ1n

...
. . .

...

Σn1 · · · Σnn

 , F̄l =


F̄1

...

F̄n

 , Σij = F̄iF̄
T
j . (4.4)

In this chapter, the communication topology of the sensor network is first established

based on the relationship between Fi and Fj, i.e., for i, j ∈ {1, · · · , n},{
j ∈ Ni, Σij 6= 0 and i 6= j,

j /∈ Ni, Σij = 0
. (4.5)

Notice that (4.5) may not guarantee a connected graph. In this case, more links should be

built to make the communication topology a connected one.

4.1.2 An Optimal Fault Detection Scheme

Stacking all sensor nodes together, the global models are given by

x(k + 1) = Ax(k) + Eldl(k) + Eff(k), (4.6)

yl(k) = Clx(k) + Fldl(k), (4.7)
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where

yl =


y1
...

yn

 , dl =

[
dp

dm

]
, Cl =


C1

...

Cn

 , El =
[
Ep 0

]
, Fl =


F1

...

Fn

 , Fi =
[
0 F̄i

]

and

yl ∈ Rm, m =
n∑
i=1

mi.

Since the global model (4.6) and (4.7) are the same as the model (3.54) introduced in

Chapter 3, for detection purpose, we adopt the following observer-based residual generator

x̂(k + 1) = Ax̂(k) + L(yl(k)− Clx̂(k)), (4.8)

r(k) = V (yl(k)− Clx̂(k)), (4.9)

R = ClXC
T
l + FlF

T
l , (4.10)

V = R−1/2, (4.11)

L = (AXCT
l + ElF

T
l )R−1, (4.12)

X = AXAT − LRLT + ElE
T
l , (4.13)

where x̂(k) represents the state estimation and r(k) denotes the residual signal. Also, set

J(k) = ‖r‖RMS =

√√√√ 1

N

k∑
j=k−N+1

rT (j)r(j), Jth =
δd√
N

(4.14)

and use decision logic (3.1) {
J(k) < Jth, fault-free

J(k) > Jth, faulty
.

for optimal FD. Notice that solutions (4.8)−(4.13) are directly from the optimal solution

in Section 3.3.4. In order to ensure that discrete time algebraic Riccati equation (DARE)

(4.13) has stabilizing solution, we assume

• rank(Gyf ) = m, Gyf = (A,Ef , C, Ff )

• ∀θ ∈ [0, 2π],

[
A− ejθI El

Cl Fl

]
has full row rank

Moreover, assume that Fl has full row rank which means that each dimension of yl is

influenced by disturbance. Based on this assumption, we have

Σ = FlF
T
l

in (4.4) is a symmetric and positive definite matrix.
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4.1.3 Problem Formulation

It is worth mentioning that to achieve the optimal FD approach given in (4.8)-(4.14), all

the information about sensors and measurement data should be collected at one central

station to perform the FD actions, which requires significant communication efforts for

the central station. To deal with this issue, we investigate a distributed realization of the

proposed optimal FD scheme, which delivers exactly the same optimal FD performance at

each sensor node.

4.2 A Distributed Fault Detection Scheme

As mentioned above, in this section, a distributed realization of the proposed optimal FD

scheme is presented, which is achieved by performing the following two phases:

– distributed offline training;

– distributed online FD.

We assume that at sensor node i, only Al, El, Ci, Fi, and the local measurement yi are

available. Besides, the information can be transmitted between neighbours according to

the communication topology (4.5).

4.2.1 Distributed Offline Training

It is clear that the most important part of the computation of parameters in (4.10)−(4.13)

is to compute X in (4.13). For our purpose, (4.13) should be solved at each node in a

distributed way. To deal with this issue, we define

I1 = CT
l Σ−1Cl, I2 = F T

l Σ−1Cl, I3 = F T
l Σ−1Fl, Ω = (X−1 + I1), (4.15)

and apply the matrix identity

R−1 = Σ−1 − Σ−1ClΩ
−1CT

l Σ−1, (4.16)

to reformulate (4.13) into

X =AXAT − LRLT + ElE
T
l

=A
(
X −XCT

l (Σ−1 − Σ−1ClΩ
−1CT

l Σ−1)ClX
)
AT

− AXCT
l (Σ−1 − Σ−1ClΩ

−1CT
l Σ−1)FlE

T
l

− ElF T
l (Σ−1 − Σ−1ClΩ

−1CT
l Σ−1)ClXA

T

El
(
I − F T

l (Σ−1 − Σ−1ClΩ
−1CT

l Σ−1)Fl
)
ET
l .

(4.17)
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Further, we have

X −XCT
l (Σ−1 − Σ−1ClΩ

−1CT
l Σ−1)ClX

=X −X(I − I1(X−1 + I1)
−1)I1X

=X −X(I + I1X
−1)−1)I1X = Ω−1,

(4.18)

XCT
l (Σ−1 − Σ−1ClΩ

−1CT
l Σ−1)Fl = X(I − CT

l Σ−1ClΩ
−1)CT

l Σ−1Fl = Ω−1IT2 , (4.19)

I − F T
l (Σ−1 − Σ−1ClΩ

−1CT
l Σ−1)Fl = I − I3 + I2Ω

−1IT2 , (4.20)

For distributed computation of X, apply Riccati recursion [68] with

X(η + 1) = AX(η)AT − L(η)R(η)L(η)T + ElE
T
l , lim

η→∞
X(η) = X, (4.21)

R(η) = ClX(η)CT
l + FlF

T
l , L = (AX(η)CT

l + ElF
T
l )R(η)−1. (4.22)

Combining (4.17)−(4.22), it holds that

X(η + 1) = Ξ(η)−Ψ(η)−ΨT (η) + Π(η)

Ω(η) = (X−1(η) + I1)

Ξ(η) = AΩ−1(η)AT

Ψ(η) = AΩ−1(η)IT2 E
T
l

Π(η) = El(I − I3 + I2Ω
−1(η)IT2 )ET

l

(4.23)

provides a iterative way to compute X in (4.13) and

lim
η→∞

X(η) = X, lim
η→∞

Ω(η) = Ω = (X−1 + I1).

It follows from (4.23) that, for iterative computation of X, I1, I2, and I3 should be

calculated first. Since they have a similar structure, we construct them as the unified form

ΛTΣ−1Φ =
[
ΛT

1 · · · ΛT
n

]
Σ11 · · · Σ1n

...
. . .

...

Σn1 · · · Σnn


−1 

Φ1

...

Φn

 , (4.24)

where Λ and Φ can be Cl or Fl, and Σ is the same as introduced in (4.4). We now introduce

a new parameter Z as

ΛTΣ−1 = ZT =
[
ZT

1 · · · ZT
n

]
(4.25)

and divide the computation of ΛTΣ−1Φ into two phases: first ΛTΣ−1 = ZT and further

ZTΦ. After this partition, both parts can be calculated in a distributed way. Due to the

reason that the first phase includes matrix inverse, which can cause huge computational
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costs, we apply a distributed iterative computation to avoid this problem and to solve

the first computation. And for the second phase, the average consensus technique is

implemented to let each sensor node obtain a common ΛTΣ−1Φ. Finally, at the third

phase, X is solved based on the results from the first two phases and (4.23).

first phase︷ ︸︸ ︷
ΛTΣ−1 Φ︸ ︷︷ ︸

second phase

= ZTΦ

⇓ I1, I2, I3

X = AΩ−1AT − AΩ−1IT2 E
T
l − ElI2Ω−1AT + El(I − I3 + I2Ω

−1IT2 )ET
l︸ ︷︷ ︸

third phase

4.2.1.1 First Phase

For calculating (4.25) and avoiding the inverse computation, we adopt the iterative

computation method

Z(ζ + 1) = Z(ζ) + λ(Λ− ΣZ(ζ)). (4.26)

The computation (4.26) is based on Richardson iteration [53] with ζ as the iteration

number and λ being a constant factor, which is designed to guarantee the convergence

lim
ζ→∞

Z(ζ) = Z. (4.27)

It is evident that equation (4.25) leads to

Λ = ΣZ ⇐⇒


Λ1

...

Λn

 =


Σ11 · · · Σ1n

...
. . .

...

Σn1 · · · Σnn



Z1

...

Zn


Setting iteration error as e(ζ) = Z(ζ)− Z, the dynamic of e(ζ) is identified as

e(ζ + 1) = Z(ζ + 1)− Z
= Z(ζ) + λ(ΣZ − ΣZ(ζ))− Z
= (I − λΣ)e(ζ).

(4.28)

It is clear that when (I − λΣ) is a Schur matrix, which means all eigenvalues of (I − λΣ)

are located inside the unit disk,

lim
ζ→∞

e(ζ) = 0, (4.29)

which also implies (4.27). Thus, (I − λΣ) being Schur matrix is the requirement to

guarantee (4.27). In what follows, we introduce lemmas to provide the condition for λ to

ensure that (I − λΣ) is Schur matrix.
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Lemma 4.1. If matrix S is real and symmetric, then

‖S‖2 6 ‖S‖∞.

Proof. From [49], it holds that ‖S‖2 6
√
‖S‖1‖S‖∞. If S is real and symmetric, we have

‖S‖1 = ‖S‖∞, so ‖S‖2 6 ‖S‖∞.

Lemma 4.2. The condition

0 < λ <
2

‖Σ‖∞
(4.30)

can ensure that (I − λΣ) is Schur matrix when Σ is symmetric and positive definite matrix

with all elements being real numbers.

Proof. Since Σ is a symmetric and positive definite matrix with all elements real numbers,

we have λmax(Σ) = ‖Σ‖2. Doing eigen decomposition of Σ leads to

Σ = UΩUT ,

where U is an orthogonal matrix and U−1 = UT , and Ω is a diagonal matrix with diagonal

elements being the eigenvalues of Σ. Further, we have

I − λΣ = U(I − λΩ)UT = U


1− λλ1 0

1− λλ2
. . .

0 1− λλn

UT (4.31)

where λi denotes the eigenvalue of Σ. Since Σ is positive definite, we have λi > 0. In order

to ensure that I − λΣ is Schur matrix, from (4.31), it is clear that

0 < λ <
2

λmax(Σ)
. (4.32)

Moreover, according to Lemma 4.1,

λmax(Σ) = ‖Σ‖2 6 ‖Σ‖∞. (4.33)

If we combine (4.32) and (4.33), it is evident that Lemma 4.2 is proved.

Based on Lemma 4.2, we apply (4.30) to compute λ. First, ‖Σ‖∞ needs to be calculated

in a distributed manner. For this purpose, we partition Σ into n rows as

Σ =


Σ1

...

Σn

 =


F1F

T
1 · · · F1F

T
n

...
. . .

...

FnF
T
1 · · · FnF

T
n

 , Σi =
[
FiF

T
1 · · · FiF

T
n

]
.
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With the definition of ∞-norm, we have

‖Σ‖∞ = max
16i6n

‖Σi‖∞.

If node i knows ‖Σi‖∞ at start, then after Dg−th iteration, each node can obtain

max
16i6n

‖Σi‖∞.

Motivated by this observation, Algorithm 4.1 is proposed for the distributed computation

of λ in (4.26).

Algorithm 4.1. Distributed computation of λ

Step 1 Communicate Fj to node i for j ∈ Ni and compute FiF
T
1 , if j 6∈ Ni

Step 2 Calculate Qi = ‖
[
FiF

T
1 · · · FiF

T
n

]
‖∞ at node i

Step 3 Communicate Qj to node i for j ∈ Ni
Step 4 Update Qi = max{Qi, QNi} at node i with QNi = {Qj|j ∈ Ni}
Step 5 Repeat Step 3 and Step 4 Dg times

Step 6 Determine λ = λi =
α

Qi

at node i with 0 < α < 2

With the value of λ, the distributed realization of (4.26) is formulated as

Zi(ζ + 1) = Zi(ζ) + λ(Λi −
∑
j∈Si

ΣijZj(ζ)) (4.34)

where Si = {i}
⋃
Ni. It is clear that in (4.34), node i only uses its local and neighbors’

information. Moreover, according to relation (4.5), stacking all (4.34) together, we obtain

exactly the same equation as (4.26). Thus, (4.34) can be used as a distributed realization

of (4.26). For the training phase, the distributed iterative computation (4.34) can be

executed and terminate when

‖Zi(ζ + 1)− Zi(ζ)‖2 6 ε, (4.35)

where ε is a predefined tolerance, is fulfilled.

Define new notations

I4 = CT
l Σ−1 =

[
I4,1 · · · I4,n

]
, I5 = F T

l Σ−1 =
[
I5,1 · · · I5,n

]
. (4.36)

After executing (4.34) until (4.35) is fulfilled, Zi and ZT
i Φi are obtained at node i, where

Zi can be I4,i or I5,i and Φi can be Ci or Fi. Notice that, for special case when Σ is block

diagonal matrix with

Σ =


Σ1 0 0

0
. . . 0

0 0 Σn

 ,
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parameters I4,i = CT
i Σ−1i and I5,i = F T

i Σ−1i can be directly obtain at node i without

performing distributed iterative computation (4.34).

4.2.1.2 Second Phase

As a result of the distributed iterative computation, ZT
i Φi is obtained at node i, notice

that our aim is to compute

ZTΦ =
[
ZT

1 · · · ZT
n

]
Φ1

...

Φn

 =
n∑
j=1

ZT
j Φj (4.37)

at each node. To this end, recall the distributed average consensus algorithm introduced

in Chapter 2 by performing

ϑi(ξ + 1) = wiiϑi(ξ) +
∑
j∈Ni

wijϑj(ξ), (4.38)

where ξ is the iteration number and matrix

W =


w11 · · · w1n

...
. . .

...

wn1 · · · wnn

 (4.39)

is selected such that (2.21) and Lemma 2.5 are fulfilled. In this chapter, we apply the

Metropolis-Hastings weights method (2.24) to compute W . From the computation (2.24), it

is evident that the Metropolis-Hastings weights method only requires local and neighbours’

information and thus can be realized in a distributed manner. Further, we have

lim
ξ→∞

W ξ =
1

n
11T , lim

ξ→∞


ϑ1(ξ)
...

ϑn(ξ)

 = 1⊗ (
1

n

n∑
i=1

ϑi(0)), (4.40)

where 1 ∈ Rn is a vector with all elements 1. It is clear that after running the distributed

average consensus algorithm with initial value ϑi(0) = ZT
i Φi at node i, each node can

obtain

n

(
lim
ξ→∞

ϑi(ξ)

)
=

n∑
i=1

ϑi(0) =
n∑
j=1

ZT
j Φj, (4.41)

which is the aim in (4.37). After executing the distributed iterative computation and

distributed average consensus, we obtain and save values of I1, I2 and I3 at each node.
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4.2.1.3 Third Phase

With I1, I2 and I3 at hand, we calculate (4.13) in a distributed manner by the proposed

iteration (4.23), 

X(η + 1) = Ξ(η)−Ψ(η)−ΨT (η) + Π(η)

Ω(η) = (X−1(η) + I1)

Ξ(η) = AΩ−1(η)AT

Ψ(η) = AΩ−1(η)IT2 E
T
l

Π(η) = El(I − I3 + I2Ω
−1(η)IT2 )ET

l

.

After executing (4.23), each node obtains

lim
η→∞

X(η) = X, lim
η→∞

Ω(η) = Ω = (X−1 + I1).

Finally, as a result of the offline training throughout the three phases, node i obtains

I1, I2, I3, I4,i, I5,i, X, Ω (4.42)

in (4.15), (4.23) and (4.36).

4.2.2 Distributed Online Fault Detection

To realize online FD in a distributed manner, we apply (4.16) to reformulate (4.12) as

L = (AXCT
l + ElF

T
l )R−1 = (AXCT

l + ElF
T
l )(Σ−1 − Σ−1ClΩ

−1CT
l Σ−1)

= (A− ElI2)Ω−1I4 + ElI5.
(4.43)

Define notation

Li = (A− ElI2)Ω−1I4,i + ElI5,i, (4.44)

it is clear that after distributed offline training, node i can obtain Li in (4.44) and

L =
[
L1 · · · Ln

]
. (4.45)

Also, define

r̄i(k) = yi(k)− Cix̂i(k), r̄(k) =


r̄1(k)
...

r̄n(k)

 =


y1(k)− C1x̂1(k)

...

yn(k)− Cnx̂n(k)

 . (4.46)

For purpose of detection, node i runs (4.8) to have estimation x̂i. Further, combine (4.44)

and (4.45) to modify state observer (4.8) in node i as

x̂i(k + 1) = Ax̂i(k) + Lr̄(k) = Ax̂i(k) +
n∑
i=1

Lir̄i(k). (4.47)
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Given x̂i(k) in time instant k, value Lir̄i(k) is obtain at node i, then

n∑
i=1

Lir̄i(k)

is identified by applying distributed average consensus (4.38) with ϑi = Lir̄i(k), finally,

x̂i(k + 1) can be obtained. Since all observers are identical, it holds that with the same

initial value x̂q(0) = x0 for q = 1, · · · , n,

x̂i(k) = x̂j(k) = x̂(k), i, j = 1, · · · , n.

Thus, (4.47) is a distributed realization of (4.8). After the estimation of xi(k), r̄i(k) is

also obtained and used for computing term rT (k)r(k), which forms the evaluation function

Ji(k) in (4.14). With (4.16), it holds that

ji(k) = rTi (k)ri(k) = r̄Ti (k)R−1r̄i(k) = r̄Ti (k)(Σ−1 − Σ−1ClΩ
−1CT

l Σ−1)r̄(k). (4.48)

Set notations

I6,i = r̄Ti Σ−1, I6 = r̄TΣ−1 =
[
I6,1 · · · I6,n

]
(4.49)

and transfer (4.48) into

ji(k) =
n∑
i=1

I6,ir̄i(k)−

(
n∑
i=1

I4,ir̄i(k)

)T

Ω−1

(
n∑
i=1

I4,ir̄i(k)

)
. (4.50)

It is clear that in (4.49), I6 has structure ΛTΣ−1 and I6,i can be obtained in node i by

applying (4.34) online with Λi = r̄i. For (4.50), node i has I6,ir̄i(k) and I4,ir̄i(k), values

n∑
i=1

I6,ir̄i(k),
n∑
i=1

I4,ir̄i(k)

are obtained by applying distributed average consensus (4.38) with ϑi = I6,ir̄i(k) and

ϑi = I4,ir̄i(k), respectively. With ji(k) in hand, evaluation function

Ji(k) =

(
1

m

m−1∑
l=0

ji(k + l)

)1/2

, (4.51)

is obtained, and it is clear that the combination of (4.50) and (4.51) is a distributed

realization for J(k) in (4.14).

Finally, we summarize the overall algorithm into Algorithm 4.2.

Algorithm 4.2. Distributed FD in large-scale systems based on distributed average con-

sensus
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Distributed Offline Training

For node i with i = 1, · · · , n
Step 1 Save Al, El, Ci, Fi, Jth and Dg

Step 2 Calculate λ using Algorithm 4.1

Step 3 Calculate W using Algorithm (2.24)

Step 4 Calculate I4,i and I5,i using distributed iterative computation (4.34)

Step 5 Calculate I1, I2 and I3 using distributed average consensus (4.38)

Step 6 Calculate X using (4.23)

Step 7 Calculate Ω in (4.15) and Li in (4.44)

Distributed Online FD

At time instant k, for node i with i = 1, · · · , n
Step 1 Measure yi(k) and compute r̄i(k)

Step 2 Calculate I6,i using distributed iterative computation (4.34)

Step 3 Calculate
∑n

i=1 Lir̄i(k),
∑n

i=1 I4,ir̄i(k) and
∑n

i=1 I6,ir̄i(k) using distributed

average consensus (4.38)

Step 4 Calculate Ji(k) using (4.50) and (4.51)

Step 5 Update x̂i(k) using (4.47) for time instant (k + 1)

Step 6 Make decision using (3.1)

4.3 Convergence Issue

Considering that the consensus should be achieved at each sampling interval during online

computation in algorithm 4.2 through online implementation, the feasibility of implement-

ing the proposed scheme in real-time could be questionable due to the convergence of

average consensus.

One potential approach is to select the value of W in (4.39) in order to maximize the

speed of convergence. Recall the objective of average consensus in (2.21),

x(k + 1) = Wx(k), lim
k→∞

x(k) = lim
k→∞

W kx(0) =
1

n
11>x(0).

Set

x∗ =
1

n
11>x(0)

and use per-step convergence factor

rstep(W ) = sup
x(k)6=x∗

‖x(k + 1)− x∗‖2
‖x(k)− x∗‖2

as index to measure the speed of convergence. To achieve the fastest convergence, it is im-

perative to minimize rstep(W ), a goal addressed through the subsequent norm minimization
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problem:

min ‖W − 1

n
11>‖2

s.t. W ∈ S, W1 = 1, 1>W = 1>

where set S is defined in (2.20). Since this problem is convex, it can be solved efficiently

and globally [112].

The other viable approach involves reducing the amount of information used for detection

in node i. This approach presents a trade-off between expediting decision-making with

limited information and waiting for extended computation times based on more information

to enhance decision accuracy. Opting for less information speeds up the convergence, but

this also impacts detection performance. In detection tasks, the goal is to amplify the

impact of faults on the residual while minimizing the influence of disturbances on the

residual signal. From this observation,

J(y∗) = max
L,V

‖Grf‖∞
‖Grd‖∞

, (4.52)

where L and V are solved by (3.57) for

x(k + 1) = Ax(k) + Eldl(k) + Eff(k), y∗(k) = C∗x(k) + F ∗dl(k),

Grd(z) = (A− LC∗, El − LF ∗, V C∗, V F ∗) , Grf (z) = (A− LC∗, Ef , V C∗, 0)

with the selected information y∗ and corresponding C∗ and F ∗ compared with (4.7), can

be used as performance index to measure the detection performance. And the problem of

information selection can be formulated as

Select the lest information y∗, s.t. J(y∗) > J∗,

where J∗ is a pre-defined lower bound for detection performance. In Chapter 5, we will

employ a comparable performance index compared with (4.52) for optimization purpose,

while in Chapter 6, a comprehensive exploration of the concept of information selection

will be discussed.

4.4 Example

Consider a dynamic model (4.1) with x(k) ∈ R10, dp ∈ R10, and dm ∈ R10. In the applied

sensor network, we have n = 10 sensors and yi ∈ R1 for i = 1, · · · , 10. The corresponding

matrices are

C1 =
[
2 3 0 0 0 0 0 0 0 0

]
, C2 =

[
1 2 1 0 0 0 0 0 0 0

]
,
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C3 =
[
0 2 3 1 0 0 0 0 0 0

]
, C4 =

[
0 0 1 1 1 0 0 0 0 0

]
,

C5 =
[
1 0 1 1 2 1 0 0 0 0

]
, C6 =

[
1 0 1 0 3 1 1 0 0 0

]
,

C7 =
[
1 0 1 0 0 1 1 5 0 0

]
, C8 =

[
1 0 1 0 0 0 6 1 1 0

]
,

C9 =
[
1 0 1 0 0 0 0 3 1 0

]
, C10 =

[
1 0 1 0 0 0 0 0 1 1

]
,

F1 =
[

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
]
,

F2 =
[

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
]
,

F3 =
[

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0
]
,

F4 =
[

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
]
,

F5 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
]
,

F6 =
[

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0
]
,

F7 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
]
,

F8 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
]
,

F9 =
[

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1
]
,

F10 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
]
,

A =



0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0

0.3 0.1 0.1 0.2 0.3 0.0 0.2 0.0 0.2 −0.1

0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.2

0.1 0.1 0.0 0.2 0.0 0.1 0.2 0.1 0.1 0.2

0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.1 0.0

0.0 0.0 0.1 0.1 0.2 0.0 0.2 0.0 0.2 0.1

0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1

0.1 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.2

0.1 0.0 0.0 0.0 0.1 0.2 0.0 0.3 0.1 0.0

0.2 0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.1 0.3



, Ef =



1

2

3

0

0

0

0

0

0

0
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El =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0



,

According to matrices Fi with i = 1, . . . , 10 and (4.5), the communication topology of the

sensor network is shown in Figure 4.1. Moreover, the diameter of the graph in Figure 4.1

1

2

3

4

5

6

7 8

9

10

Figure 4.1: Communication topology of sensor network

is Dg = 3, and the corresponding Laplacian matrix is shown in (4.4). The observer gain L

in (4.12) is

0.112 −0.063 −0.006 0.047 −0.032 −0.001 0.029 −0.001 −0.011 0.046

0.052 −0.029 0.003 0.020 0.100 0.012 −0.041 0.040 0.057 −0.007

−0.034 0.017 0.022 −0.036 0.016 0.053 0.040 −0.023 −0.038 0.101

−0.011 0.010 −0.019 0.004 0.020 0.027 0.057 0.005 −0.021 0.106

−0.035 0.040 −0.009 −0.030 0.049 −0.002 0.034 0.005 −0.008 0.027

−0.059 0.023 −0.005 0.007 0.011 0.053 0.001 0.020 0.012 0.098

−0.046 0.037 −0.024 −0.031 0.071 0.025 0.038 −0.012 −0.006 0.033

−0.018 0.011 −0.032 0.023 −0.016 0.047 0.038 0.006 −0.007 0.111

0.007 0.016 −0.056 0.018 0.051 0.002 0.055 0.001 0.018 0.019

−0.022 0.034 −0.019 −0.014 −0.012 0.048 0.070 −0.002 −0.045 0.163


Apply Algorithm 4.1 and select α = 1 to obtain λ = 0.0556. Apply the Metropolis-Hastings

weights method (2.24) to compute W matrix for distributed average consensus. The result

51



4 Distributed Fault Detection in Large-Scale Systems Based on Distributed Average Consensus

is

W =



0.497 0.167 0.100 0.000 0.000 0.111 0.000 0.000 0.125 0.000

0.167 0.331 0.100 0.167 0.000 0.111 0.000 0.000 0.125 0.000

0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

0.000 0.167 0.100 0.289 0.167 0.111 0.000 0.000 0.000 0.167

0.000 0.000 0.100 0.167 0.289 0.111 0.167 0.000 0.000 0.167

0.111 0.111 0.100 0.111 0.111 0.122 0.111 0.111 0.111 0.000

0.000 0.000 0.100 0.000 0.167 0.111 0.331 0.167 0.125 0.000

0.000 0.000 0.100 0.000 0.000 0.111 0.167 0.331 0.125 0.167

0.125 0.125 0.100 0.000 0.000 0.111 0.125 0.125 0.164 0.125

0.000 0.000 0.100 0.167 0.167 0.000 0.000 0.167 0.125 0.275


Given δd = 7.1929, we set

Ji(k) = (
1

6

5∑
l=0

ji(k + l))1/2, Jth =

√
1

6
δd = 2.9365,

sampling time T = 0.02s for online detection. With an additive step fault happening at 6s,

simulation results of the evaluation function of the centralized solution J and the evaluation

functions for sensor nodes 1−10 are shown as J1−J10 in Figure 4.2−4.6, respectively.

1 2 3 4 5 6 7 8
Time(seconds)

1.5

2

2.5

3

3.5

4

4.5 J
J1

J2

Jth

Figure 4.2: Simulation results for nodes 1 and 2
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1 2 3 4 5 6 7 8
Time(seconds)

1.5

2

2.5

3

3.5

4

4.5 J
J3

J4

Jth

Figure 4.3: Simulation results for nodes 3 and 4

1 2 3 4 5 6 7 8
Time(seconds)

1.5

2

2.5
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Figure 4.4: Simulation results for nodes 5 and 6
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1 2 3 4 5 6 7 8
Time(seconds)

1.5

2

2.5

3
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4

4.5 J
J7
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Jth

Figure 4.5: Simulation results for nodes 7 and 8

1 2 3 4 5 6 7 8
Time(seconds)

1.5
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2.5
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4.5 J
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Jth

Figure 4.6: Simulation results for nodes 9 and 10

The figures indicate that our proposed distributed FD scheme can achieve a similar

result when compared with the centralized approach, which is plotted as J in each figure.

However, with the limited online execution time, both distributed iterative computation

and distributed average consensus may not converge to the accuracy value, which may lead

to inaccuracy for the online implementation as shown in Figure 4.7, which is an enlarged

local figure of Figure. 4.2.
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6.2198 6.21985 6.2199 6.21995 6.22 6.22005 6.2201
Time(seconds)

4.45826

4.45828

4.4583

4.45832

4.45834

4.45836

4.45838

4.4584

J
J1

J2

Jth

Figure 4.7: Comparison of evaluation functions

4.5 Concluding Remarks

This chapter refers to a novel distributed FD scheme proposed for large-scale systems

that are affected by deterministic disturbances using sensor networks. The original model

(4.1) ignores the input signal since it is assumed in this case all sensors know the input

signal. Theoretical analysis, which is based on centralized optimal FD scheme, distributed

iterative computation and distributed average consensus, and the simulation results show

that the proposed scheme can detect fault effectively when compared with the centralized

approach. We would like to remark that, offline training and online implementation are

all realized in a distributed way, which means that the sensor node can only use its local

and neighbors’ information for data fusion and corresponding purpose. The pioneering

work of the distributed realization of optimal FD for stochastic processes is shown in [27],

and the related distributed Kalman filtering is proposed in [86].
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5 Distributed Fault Detection in

Interconnected Systems Based on

Linear Matrix Inequality

The distributed realization of optimal FD proposed in Chapter 4 is based on distributed

average consensus. During online implementation, the distributed computation of the

evaluation function needs time to converge since it is realized via distributed average

consensus and requires the information among the whole network. Such properties may

lead to a longer mean time to detection (MTTD). In this chapter, a distributed state

observer is applied for distributed FD. It has a simpler structure and online implementation

form when compared with the method based on average consensus. We first introduce the

design issue of observer parameters. Unlike the complicated methods in [94] to directly

meet restrictive requirements. LMI-based numerical methods are applied to guarantee

the convergence condition. Then, a post-filter is designed to satisfy our performance

requirement, that is, suppress the influence of deterministic disturbances on residual signal

and meanwhile enhance its sensibility to faults.

5.1 Distributed State Observer Design

The large-scale interconnected system under consideration consists of M subsystems with

the same sampling time T . Each subsystem Gi, where i = 1, · · · ,M , is modelled by

xi(k + 1) = Aiixi(k) +Biui(k) +
∑
j∈Ni

Aijxj(k) + Edidi(k) + Efifi(k),

yi(k) = Cixi(k) + Fdidi(k) + Ffifi(k).

(5.1)

where xi(k) ∈ Rni is the local state, ui(k) ∈ Rqi is the local input, yi(k) ∈ Rmi is the local

measurement, di(k) ∈ Rni denotes the disturbance.

For the purpose of FD, each subsystem is locally implemented with a distributed state

observer [9, 94] to estimate the local states using its local and neighbours’ information.
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5.1 Distributed State Observer Design

The distributed state observer has the following structure

x̂i(k + 1) = Aiix̂i(k) +Biui(k) + Lii(yi(k)− Cix̂i(k)) + Si,j(k)

Si,j(k) =
∑
j∈Ni

(Aijx̂j(k) + Lij(yj(k)− Cjx̂j(k)))

ŷi(k) = Cix̂i(k)

. (5.2)

From (5.2), the distributed state observer for the subsystem i depends only on local

measurement yi and its neighbors’ information x̂j, yj wtih j ∈ Ni. For further analysis,

define the local state estimation error as

ei(k) = xi(k)− x̂i(k).

Combine (5.1) and (5.2), it holds that

ei(k + 1) = (Aii − LiiCi)ei(k) + (Edi − LiiFdi)di(k) + (Efi − LiiFfi)fi(k) + S̄i,j(k),

S̄i,j(k) =
∑
j∈Ni

((Aij − LijCj)ej(k)− LijFdjdj(k)− LijFfjfj(k)) . (5.3)

Concatenate all ei together to model the overall error dynamic as

e(k + 1) = (A− LC)e(k) + (Ed − LFd)d(k) + (Ef − LFf )f(k), (5.4)

where

e(k) =


e1(k)
...

eM(k)

 , d(k) =


d1(k)
...

dM(k)

 , f(k) =


f1(k)
...

fM(k)

 ,

A =


A11 A12 · · · A1M

A21 A22 · · · A2M

...
...

. . .
...

AM1 AM2 · · · AMM

 , L =


L11 L12 · · · L1M

L21 L22 · · · L2M

...
...

. . .
...

LM1 LM2 · · · LMM

 , (5.5)

C = diag(C1, . . . , CM), Ed = diag(Ed1, · · · , EdM), Fd = diag(Fd1, · · · , FdM),

Ef = diag(Ef1, · · · , EfM), Ff = diag(Ff1, · · · , FfM).

Notation diag() stands for a block diagonal matrix with

diag(M1, . . . ,MM) =


M1 0 0

0
. . . 0

0 0 MM
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Define set

Sj = Nj
⋃
{j}. (5.6)

From (5.2) and (5.3), matrices Aij 6= 0 and Lij 6= 0 when j ∈ Si and it also means that Gi

and Gj are physically connected. Otherwise, Aij = 0 and Lij = 0 when j 6∈ Si and they

are disconnected. In nominal case, error dynamic (5.4) reduces to

e(k + 1) = (A− LC)e(k). (5.7)

In order to guarantee condition (3.31), matrix L should be designed such that A− LC is

Schur matrix. Different from the centralized solution of L, the additional restriction

Lij = 0 if j 6∈ Si

makes the design procedure a complex and challenging task. In the following, we introduce

LMI conditions for designing L to guarantee condition (3.31).

Theorem 5.1. Given system (5.1) and distributed observer (5.2), its nominal and global

error dynamic (5.7) guarantees the condition (3.31) if there exist symmetric positive

definite matrices P > 0, Q > 0 and a matrix X, where P = diag(P1, P2, . . . , PM),

Q = diag(Q1, Q2, . . . , QM ), Pi ∈ Rni×ni, Xij = 0 if j 6∈ Si, Qi ∈ Rni×ni and Xij ∈ Rni×pj ,

satisfy conditions [
−P ∗

QA−XC P − 2Q

]
< 0,

QA−XC =


Q1A11 −X11C1 Q1A12 −X12C2 · · · Q1A1M −X1MCM

Q2A21 −X21C1 Q2A22 −X22C2 · · · Q2A2M −X2MCM
...

...
. . .

...

QMAM1 −XM1C1 QMAM2 −XM2C2 · · · QMAMM −XMMCM

 .

And Lij = Q−1i Xij.

Proof. From Lemma 2.7, if there exist positive definite matrices P = diag(P1, P2, . . . , PM )

and Q = diag(Q1, Q2, . . . , QM) such that[
−P ∗

Q(A− LC) P − 2Q

]
< 0, (5.8)

matrix A−LC is Schur matrix. Set X = QL, nonlinear inequality (5.8) is transferred into

a linear one. Due to the diagonal structure of Q, it is straightforward that Xij = QiLij

and Lij = Q−1i Xij.
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5.1 Distributed State Observer Design

Since the method provided in Theorem 5.1 is only sufficient condition and conservative,

in the following, we will give the another method to calculate the observer gain matrices.

This method is inspired by an inequality which is expressed by the following lemma.

Lemma 5.1. [9] A matrix M is composed of block matrices Mij ∈ Rnixnj . If j /∈ Ni, then

Mij = 0. For i = 1, 2, . . . ,M , consider block-diagonal matrix H = diag(H1, H2, . . . , HM),

where Hi > 0, and block-diagonal matrix H+ = diag(H+
1 , H

+
2 with elements

H+
i =

∑
j∈Si

(
√
cjMij)Hj(

√
cjMij)

T , (5.9)

where cj = |Sj|. It holds that

H+ ≥MHMT (5.10)

Now, we apply Lemma 5.1 to the second design method.

Theorem 5.2. Given system (5.1), cj = |Sj|, and distributed observer (5.2), its nominal

and global error dynamic (5.7) guarantees the condition (3.31) if there exist Xi > 0 for

i = 1, 2, · · · ,M and Qij for j ∈ Si such that
−Xi

√
ci(XiAii −QiiCi) · · · √cini (XiAiini −Qiini

Cini )

∗ −Xi 0 0

∗ ∗
. . . 0

∗ ∗ ∗ −Xini

 < 0,

where set Ni is ordered as Ni = {i1, · · · , ini}. And Lij = (Xi)
−1Qij.

Proof. From Lemma 2.7, if there exist positive definite matrices P = diag(P1, P2, . . . , PM )

such that

(A− LC)P (A− LC)T − P < 0, (5.11)

matrix A− LC is Schur matrix. Set Mij = Aij − LijCj and from Lemma 5.1, if∑
j∈Si

(
√
cjMij)Pj(

√
cjMij)

T − Pi < 0, i = {1, · · · ,M}, (5.12)

inequality (5.11) holds. From (5.12) and Lemma 2.6, we have

−Pi
√
ciMii

√
ci1Mii1 · · ·

√
ciniMiini

∗ −P−1i 0 · · · 0

∗ ∗ −P−1i1

. . .
...

∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ −P−1ini


< 0, (5.13)
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Set Xi = P−1i and transfer matrix

T =

[
Xi 0

0 I

]

We do pre-multiplication and post-multiplication for both sides of (5.13) by T to obtain

−Xi
√
ciXiMii

√
ci1XiMii1 · · ·

√
ciniXiMiini

∗ −Xi 0 · · · 0

∗ ∗ −Xi1

. . .
...

∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ −Xini


< 0.

With Qij = XiLij, the theorem is proved.

Notice that the proposed two theorems are only sufficient LMI conditions to guarantee

the asymptotic stability. And the influences of disturbances and faults are not considered

in the computation of observer gain matrices. This motivates us to implement post-filter

for the local residual signal

ri(k) = yi(k)− Cix̂i(k). (5.14)

In the next section, the post-filter is designed to achieve the robustness of the residual

against disturbances and meanwhile increase its sensitivity to possible faults.

5.2 Post-Filter Design

In this section, we propose methods to design the post-filter. Recall (5.3) and (5.14), we

have, for i = 1, 2, . . . ,M ,

ei(k + 1) = (Aii − LiiCi)ei(k) + (Edi − LiiFdi)di(k) + (Efi − LiiFfi)fi(k) + S̄i,j(k),

S̄i,j(k) =
∑
j∈Ni

(Aij − LijCj)ej(k)− LijFdjdj(k)− LijFfjfj(k)) , (5.15)

ri(k) = Ciei(k) + Fdidi(k) + Ffifi(k).

For node i, consider the influence of fi and disturbance d. Besides the notations in (5.5),

set

Ã = A− LC, Ẽd = Ed − LFd, Ẽfi =
[
(−L1iFfi)

T · · · (Efi − LiiFfi)T · · · (−LMiFfi)
T
]T
,

C̃i =
[
0 · · · Ci · · · 0

]
, F̃di =

[
0 · · · Fdi · · · 0

]
,
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and modify (5.15) into the global form of error dynamic with local residual as

e(k + 1) = Ãe(k) + Ẽdd(k) + Ẽfifi(k), (5.16)

ri(k) = C̃ie(k) + F̃did(k) + Ffifi(k). (5.17)

In order to perform more accurate FD, it is desired that the residual signal is sensitive to

faults, meanwhile robust against disturbances. For our purpose, use notations

ri,s(k) =


ri(k − s)

ri(k − s+ 1)
...

ri(k)

 , ds(k) =


d(k − s)

d(k − s+ 1)
...

d(k)

 , fi,s(k) =


fi(k − s)

fi(k − s+ 1)
...

fi(k)


and

He,s =


C̃i

C̃iÃ
...

C̃iÃ
s

 , Hdi,s =


F̃di 0 · · · 0

C̃iẼd F̃di
. . .

...
...

. . .
. . . 0

C̃iÃ
s−1Ẽd C̃iÃ

s−2Ẽd · · · F̃di

 ,

Hfi,s =


Ffi 0 · · · 0

C̃iẼfi Ffi
. . .

...
...

. . .
. . . 0

C̃iÃ
s−1Ẽfi C̃iÃ

s−2Ẽfi · · · Ffi


to modify the original model (5.16) and (5.17) as lifted model

ri,s(k) = He,se(k − s) +Hdi,sds(k) +Hfi,sfi,s(k) (5.18)

Based on the equation (5.18), a post-filter vi,s is designed to cancel the influence of initial

state e(k − s), reduce the influence of the disturbance on residual, and increase the

sensitivity of residual to faults. Denote Qi as the base matrix of parity space with

QiHe,s = 0.

In order to cancel the influence of initial state e(k − s), it holds that

vi,s = ṽi,sQi,

where ṽi,s is a vector to be chosen later. Do pre-multiplication to both sides of (5.18) by

vi,s,

ṽi,sQiri,s(k) = ṽi,sQiHdi,sds(k) + ṽi,sQiHfi,sfi,s(k).
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Based on the above discussion, set the performance index for vi,s as

max
influence of the fault

influence of the disturbances

m

J = max
ṽi,s

ṽi,sQiHfi,sH
T
fi,sQ

T
i ṽ

T
i,s

ṽi,sQiHdi,sHT
di,sQ

T
i ṽ

T
i,s

, vi,s = ṽi,sQi (5.19)

We assume that

rank(QiHdi,s) = row number of (QiHdi,s). (5.20)

Otherwise, vector ṽi,s can be chosen such that ṽi,sQiHdi,s = 0 and we can directly decouple

disturbance from residual.

Theorem 5.3. Assume (QiHdi,s) has full column rank, do eigen decomposition

QiHdi,sH
T
di,sQ

T
i = UΣUT .

Denote the largest eigenvalue and corresponding eigenvector of

Σ−
1
2UTQiHfi,sH

T
fi,sQ

T
i UΣ−

1
2

as λ̄ and v̄i,s, we have

ṽ∗i,s = v̄i,sΣ
− 1

2UT ,J ∗ = λ̄ (5.21)

as the optimal solution to (5.19). And the post-filter vi,s is

vi,s = ṽ∗i,sQi.

Proof. See Theorem 2.5 in [54].

After the design of the post-filter vi,s, we have

r̄i,s(k) = vi,sri,s(k) = vi,s(He,se(k − s) +Hdi,sds(k) +Hfi,sfi,s(k)). (5.22)

Since the generation of r̄i,s(k) needs mean time (s+ 1), we use DO for online realization

of the proposed PSA. A one-to-one mapping between PSA and DO is introduced in the

following Theorem.

Theorem 5.4. [24] Given system model (5.16) and (5.17) and a parity vector

vi,s =
[
vi,s,0 vi,s,1 · · · vi,s,s

]
the dead-beat DO

zi(k + 1) = Gizi(k) + Liri(k)

εi(k) = viri(k)− wizi(k)
(5.23)
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5.3 Residual Evaluation and Threshold Setting

Gi =



0 0 · · · 0 0

1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · 1 0 0

0 · · · 0 1 0


, Li = −


vi,s,0

vi,s,1
...

vi,s,s−1

 , vi = vi,s,s, wi =
[
0 · · · 0 1

]

provides a realization for

r̄i,s(k) = vi,sri,s(k)

in (5.22).

5.3 Residual Evaluation and Threshold Setting

After applying the proposed methods to design distributed state estimator and post-filter,

from (5.16), (5.17), and (5.23), we have

e(k + 1) = Ãe(k) + Ẽdd(k) + Ẽfifi(k)

ri(k) = C̃ie(k) + F̃did(k) + Ffifi(k)

zi(k + 1) = Gizi(k) + Liri(k)

εi(k) = viri(k)− wizi(k)

. (5.24)

Notice that (5.24) stands for the transfer function from disturbances and faults to corre-

sponding local residual based on designed distributed observer and post-filter and εi is

finally utilised for FD. For threshold setting, modify (5.24) as[
e(k + 1)

zi(k + 1)

]
=

[
Ã 0

LiC̃i Gi

][
e(k)

zi(k)

]
+

[
Ẽd

LiF̃di

]
d(k) +

[
Ẽfi

LiFfi

]
fi(k)

εi(k) =
[
viC̃i −wi

] [ e(k)

zi(k)

]
+ viF̃did(k) + viFfifi(k)

. (5.25)

Based on (5.25) , compute the transfer function from d to εi as

Gεid =

([
Ã 0

LiC̃i Gi

]
,

[
Ẽd

LiF̃di

]
,
[
viC̃i −wi

]
, viF̃di

)
. (5.26)

In fault-free case, it holds that

‖εi(k)‖2 6 ‖Gεid‖∞‖d(k)‖2.
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5 Distributed Fault Detection in Interconnected Systems Based on Linear Matrix Inequality

Based on (3.63), in practice, set

Ji = ‖εi(k)‖RMS =

√√√√1

s

k∑
j=k−s+1

εTi (j)εi(j), Jth,i = γi‖d(k)‖RMS, ‖Gεid‖∞ = γi (5.27)

for FD. With given ‖d‖2 ≤ δd,

‖d(k)‖RMS 6

√
1

s
δd

5.3.1 Influence from other Faults

The above discussion is based on the assumption that no faults happen at a same time, so

the model (5.16) and (5.17) consider only the influence of local fault and all disturbances

on local residual. When there are faults happen at a same time, then the influence from

other faults should be considered for node i. For this purpose, set notations

d̄i(k) =
[
d(k)T f1(k)T · · · fi−1(k)T fi+1(k)T · · · fM(k)T

]T
, F̃ ∗di =

[
F̃di 0

]
.

and

Ẽf =



Ef1 − L11Ff1 · · · −L1(i−1)Ff(i−1) −L1(i+1)Ff(i+1) · · · −L1MFfM
...

. . .
...

...
. . .

...

−L(i−1)1Ff1 · · · Ef(i−1) − L(i−1)(i−1)Ff(i−1) −L(i−1)(i+1)Ff(i+1) · · · −L(i−1)MFfM
−Li1Ff1 · · · −Li(i−1)Ff(i−1) Efi − Li(i+1)Ff(i+1) · · · −LiMFfM

...
. . .

...
...

. . .
...

−LM1Ff1 · · · −LM(i−1)Ff(i−1) −LM(i+1)Ff(i+1) · · · EfM − LMMFfM


.

Substitute d with d̄i, Ẽd with
[
Ẽd Ẽf

]
, and F̃d with F̃ ∗d in (5.16) and (5.17), it holds

that

e(k + 1) = Ãe(k) +
[
Ẽd Ẽf

]
d̄i(k) + Ẽfifi(k)

ri(k) = C̃ie(k) + F̃ ∗d d̄i(k) + Ffifi(k)
. (5.28)

The dynamic relation in (5.28) considers the influence of all disturbance and and fault from

other subsystems on the local residual signal in node i. Applying the proposed methods

for post-filter based on model (5.28) is a directly extension for designing post-filter to

reduce the influence not only from all disturbances but also from faults of other systems

on local residual. For the threshold setting, in the fault-free case, we have

‖d(k)‖2 = ‖d̄i(k)‖2,

and the corresponding setting in (5.27) can still be adopted. In this case, although the

post-filter is designed to reduce influence of other faults, the happening of other faults
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5.4 Example

may also influence the local residual to cause alarm unless a perfect decoupling is achieved

by the designed post-filter.

The algorithms presented in this chapter are summarised in Algorithm 5.1.

Algorithm 5.1. Distributed FD in interconnected systems based on LMI

Offline Computation

For i,j = 1, · · · ,M
Step 1 Compute distributed observer gain Lij based on Theorem 5.2

Step 2 Design post-filter (5.23) based on Theorem 5.3 and 5.4

Step 3 Compute γi and Jth,i = γi

√
1
s
δd in (5.27)

Online Detection

At time instant k, for i,j = 1, · · · ,M
Step 1 Build Ji(k) = ‖εi(k)‖RMS based on (5.2), (5.23), and (5.27)

Step 2 Detect fault using (3.1)

5.4 Example

In this section, we provide simulation result to show the effectiveness of the proposed

methods. Consider a system model (5.1) consisting of 4 subsystems and the system

matrices are

A11 =

[
1 2

3 1

]
, A12 =

[
1 0

0 1

]
, A14 =

[
0 0

0 2

]
, C1 =

[
1 0

1 2

]
,

A21 =

[
3 0

0 0

]
, A22 =

[
2 1

0 3

]
, A23 =

[
1 0

2 0

]
, C2 =

[
2 0

0 3

]
,

A32 =

[
7 0

0 1

]
, A33 =

[
3 2

5 5

]
, A34 =

[
0 3

4 5

]
, C3 =

[
1 0

0 2

]
,

A41 =

[
4 7

0 5

]
, A43 =

[
1 3

0 2

]
, A44 =

[
1 3

4 5

]
, C4 =

[
1 0

0 1

]
,

Ed1 =

[
0 −0.1

−0.2 0

]
, Fd1 =

[
0.3 0.1

0.2 0.5

]
, Ed2 =

[
0.3 0.2

−0.2 0

]
, Fd2 =

[
0.1 0.1

0.3 0

]
,

Ed3 =

[
0.2 0.1

0.1 0

]
, Fd3 =

[
0.5 0

0.3 −0.1

]
, Ed4 =

[
0.1 0

0.2 0.5

]
, Fd4 =

[
0.2 0.1

0.3 0

]
.

The topology of the considered system is shown in Figure 5.1. Apply Theorem 5.1 to
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1

4

2

3

Figure 5.1: System topology

compute the distributed observer gains. The results are

L11 =

[
0.2 1

2.5 0.7

]
, L12 =

[
0.5 0

0 0.3333

]
, L14 =

[
0 0

0 2

]
,

L21 =

[
3 0

0 0

]
, L22 =

[
1 0.3333

0 1

]
, L23 =

[
1 0

2 0

]
,

L32 =

[
3.5 0

0 0.3333

]
, L33 =

[
3 1

5 2.5

]
, L34 =

[
0 3

4 5

]
,

L41 =

[
0.5 3.5

−2.5 2.5

]
, L43 =

[
1 1.5

0 1

]
, L44 =

[
1 3

4 5

]
.

The target for subsystem 1 is to detect local faults in itself with

Ef1 =

[
0.1 0

0 −0.3

]
, Ff1 =

[
0 0

0 0

]
.

For the post-filter design, we adopt Theorem 5.3 and 5.4. Set s = 2 for model (5.18). We

have

v1,2 =
[
0.7982 −1.1656 −0.3581 −1.6689 0.4804 3.1129

]
as the result for Theorem 5.3 and

G1 =

[
0 0

1 0

]
, L1 = −

[
0.7982 −1.1656

−0.3581 −1.6689

]
, v1 =

[
0.4804 3.1129

]
, w1 =

[
0 1

]
as the result for Theorem 5.4. Given δd = 0.45, further compute γ11 = 22.2491 in (5.26)

and set

J1 =

√√√√1

6

k∑
j=k−5

εT1 (j)ε1(j), Jth,1 = γ1

√
1

6
δd = 4.0874
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5.5 Concluding Remarks

in (5.27). With sampling time T = 0.01s, a step fault happens at 30s, simulation result is

shown in Figure 5.2. It can be seen that our proposed method can distributively detect

the occurrence of fault.

5 10 15 20 25 30 35
Time(seconds)

0

1

2

3

4

5

6

7
J1

Jth;1

Figure 5.2: Simulation result

5.5 Concluding Remarks

In this chapter, a distributed FD method is designed for large-scale and interconnected

systems. Our method is based on a distributed state observer. It uses only its local

and neighbours’ information to estimate their local states and based on the estimation

results to generate the residual signal, which is different between local measurement and

its estimation. After this, the residual signal passes through a post-filter to apply for

further local FD. The design of the post-filter considers the trade-off between robustness

to disturbance and faults form other subsystems, and the sensitivity to local fault. For the

design of the corresponding parameters, LMI techniques are implemented for the design of

distributed observer gains to guarantee the convergence of residual signals and also the

design of post-filter. A combination of PSA and DO is also proposed as an analytical

solution for post-filter design. Finally, how to reduce the influence of other fault on local

detection performance is also discussed in Section 5.3.1. Notice that although the LMI

technique offers a convenient approach to address complex design problems, it provides

only sufficient conditions for optimization. And although it is considered to reduce the

influence of other faults, the local residual may also be influenced by faults from other

systems unless the post-filter achieves a perfect decoupling.
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6 Distributed Fault Detection in

Interconnected Systems via

Optimal Estimation

The methods outlined in Chapters 4 and 5 apply distributed average consensus or dis-

tributed state observer techniques to achieve FD in large-scale and interconnected systems

through the use of sensor networks. To compute the residual signal at each time instant,

the former method utilizes, in fact, information from all nodes in the network, while the

latter method only uses local and neighbours’ information. This observation inspires us to

propose a novel approach for selecting pertinent information that is effective and efficient

in achieving FD in a given system. This thinking and its comparison with former methods

are shown in Figure 6.1.

ii i

Chapter 4 Chapter 5 Chapter 6

Figure 6.1: Information involved in different methods
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Based on the aforementioned discussion, the primary aim of this chapter is to establish

a distributed approach for FD in large-scale and interconnected systems through the

utilization of a sensor network. Initially, a criterion will be established to select which

information is important to FD. Subsequently, the distributed implementation of an online

FD strategy shall be introduced based on the chosen information. We apply the method

for both static and dynamic systems. Moreover, the proposed method also considers the

transmission time of information among sensor network and is applied to both static and

dynamic cases.

Notations: Besides the notations used in Chapter 2 for graph theory, denote di =

maxj∈N d(i, j) as the maximal distance of node i among the graph and Ni,ρ = {j| d(i, j) =

ρ} as the ρ−layer neighbours of node i. Especially, we have Ni,0 = {i} and Ni,1 = Ni.
For our purpose, each set is arranged in ascending order of the values with Ni,j =

{n1
i,j, n

2
i,j, · · · , n

ci,j
i,j }, where ci,j = card(Ni,j). When a signal yi is related to node i, define

yNi,j as the collection of signal from the j−layer neighbours, that is,

yNi,j =
[
yT
n1
i,j

yT
n2
i,j
· · · yT

n
ci,j
i,j

]T
. (6.1)

For example of the above notations in Figure 6.2, we have for node 1,

3

7

4

1

8

2

6

5

Figure 6.2: An example for new notations

d1 = 4,N1,0 = {1},N1,1 = {2, 8},N1,2 = {3, 7},N1,3 = {4, 6},N1,4 = {5},

yN1,0 =
[
y1

]
, yN1,1 =

[
y2

y8

]
, yN1,2 =

[
y3

y7

]
, yN1,3 =

[
y4

y6

]
, yN1,4 =

[
y5

]
.

For matrix representation, when matrix A is partitioned into m×m blocks, denote Aij as

the (i, j)−th block of matrix A and e[A]k,q as the submatrix of A by extracting the first

k× q blocks of A. Denote c(B)i,k =
[
0 · · · BT · · · 0

]T
as k-block-column matrix with

B located in the i-th row block and other elements 0. For example,

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , e[A]2,1 =

[
A11

A21

]
, c(B)1,2 =

[
B

0

]
, c(B)2,3 =

 0

B

0

 .
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6.1 Preliminaries and Problem Formulation for

Static Systems

First, we focus on the static case. This section provides an introduction to the model of a

sensor network, optimal FD algorithm, and problem formulation for static scenarios.

6.1.1 Model Description

For the purpose of monitoring large-scale industrial systems, the process is equipped with a

sensor network constituted of N nodes. Each node stands for a local sensor, has sampling

time T , and is modelled by

yi(k) = Aix+Bifi(k) + εi(k), (6.2)

where node index i ∈ {1, · · · , N}, yi ∈ Rmyi is the measurement of node i, Ai is the

measurement matrix, x ∈ Rn is the state vector of the large-scale system, Bi is the known

distribution matrix of fi with full column rank, fi ∈ Rmfi is the sensor fault at node i

which equals zero when in fault-free case otherwise doesn’t equal zero, and εi stands for

the local measurement noise with

ε ∼ N (0,Σ), ε =


ε1
...

εN

 , Σ =


Σ11 · · · Σ1N

...
. . .

...

ΣN1 · · · ΣNN

 .
It is assumed that node can only communicate with their neighbours (1−layer neighbours)

with a (unit) communication time T . From this assumption, the transmission of information

between nodes j ∈ Ni,k and node i is indirect and costs kT .

6.1.2 An Optimal Fault Detection Scheme

For model (6.2), define ri(k) = yi(k)− Aix, it holds that

ri(k) = Bifi(k) + εi(k). (6.3)

Assume that multiple faults do not occur simultaneously. Following the study in Section

3.2.1 and Theorem 3.1, the detection problem of fi on the assumption of the model (6.3)

can be brought into the following global form

r(k) = B̄ifi(k) + ε(k), (6.4)

where

r(k) =
[
rT1 (k) rT2 (k) · · · rTN(k)

]
, B̄i = c(Bi)i,N . (6.5)
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Since Bi is full column rank matrix, so is B̄i. And the solution is given by

Ji(k) = rT (k)Σ−1B̄i(B̄
T
i Σ−1B̄i)

−1B̄T
i Σ−1r(k), Ji,th = χ2

α(mfi) (6.6)

6.1.3 Problem Formulation

Since the transmission of measurements from node j ∈ Ni,ρ to node i costs the same time,

we rearrange the nodes according to the d(i, j) and separate it into di parts as

r̄i =
[
rTNi,0 rTNi,1 · · · rTNi,di

]T
, (6.7)

Notice that (6.7) rearranges the nodes by permuting the row partitions of r, and Ri is a

permutation matrix of node i and thus invertible. Due to the assumption of transmission

time, at time index k, rNi,0(k), rNi,1(k − 1), · · · , rNi,di (k − di) are obtained by node i.

Also, the computation of (6.6) can only be achieved at (k + di) and thus has MTTD di.

To reduce the MTTD of fi in node i and meanwhile maintain the performance of FD to a

certain level, we investigate a distributed FD scheme for static system (6.2) in the next

section.

6.2 A Distributed Fault Detection Scheme for Static

Systems

In this section, we propose a distributed FD scheme to realize the optimal solution (6.6)

in a distributed manner and meanwhile to make a trade-off between the FD performance

and its MTTD.

6.2.1 Node Selection

First, consider what node i can benefit from more information. Intuitively, more infor-

mation can improve the performance of FD by reducing uncertainty. In this section, the

improvement from more information is quantified. Rearrange and separate r in model

(6.4) into two parts ri and the rest residuals as

r̄ =
[
rTi rTR

]T
, rR =

[
rT1 · · · rTi−1 rTi+1 · · · rTN

]T
,

matrix B̄i is correspondingly changed to
[
BT
i 0

]T
to build (6.6) and

r̄ ∼ N
(
0, Σ̄

)
, Σ̄ =

[
Σii ΣiR

ΣRi ΣRR

]
.
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Set parameters

r̄i = ri − ΣiRΣ−1RRrR, Σ̄ii = Σii − ΣiRΣ−1RRΣRi. (6.8)

Based on (6.8) and the following identity[
I −ΣiRΣ−1RR
0 I

]
Σ̄

[
I 0

−Σ−1RRΣRi I

]
=

[
Σ̄ii 0

0 ΣRR

]
,

evaluation function in (6.6) is reformulated as

Ji(k) =r̄T (k)Σ̄−1

[
Bi

0

]
(

[
Bi

0

]T
Σ̄−1

[
Bi

0

]
)−1

[
Bi

0

]T
Σ̄−1r̄

=r̄Ti (k)Σ̄−1ii Bi(B
T
i Σ̄−1ii Bi)

−1BT
i Σ̄−1ii r̄i

. (6.9)

If only measurement from node i is used for detection, the optimal evaluation function is

J̄i(k) = rTi (k)Σ−1ii Bi(B
T
i Σ−1ii Bi)

−1BT
i Σ−1ii ri. (6.10)

According to Lemma 2.2, r̄i = ri − ΣiRΣ−1RRrR stands for the difference between ri and its

orthogonal projection-based estimation ΣiRΣ−1RRrR and Σ̄ii delivers the minimal variance

matrix of the estimation error r̄i. Compare (6.9) and (6.10), signal ri is transferred into r̄i

with extra measurement and the uncertainty, which is represented by variance matrix, is

minimized from Σii to Σ̄ii. For further analysis, we first introduce the following lemma.

Lemma 6.1. Given xy
z

 ∼ N

0

0

0

 ,
Σx Σxy Σxz

Σyx Σy Σyz

Σzx Σzy Σz


 ,

From Lemma 2.2, the optimal estimation of x given y and (y, z) are

x̂y = ΣxyΣ
−1
yy y, x̂y,z =

[
Σxy Σxz

] [Σy Σyz

Σzy Σz

]−1 [
y

z

]
,

respectively. It holds that

var(x− x̂y) > var(x− x̂y,z).

Proof. It is straightforward that

var(x− x̂y) = Σx − ΣxyΣ
−1
yy Σyx,

var(x− x̂y,z) = Σx −
[
Σxy Σxz

] [Σy Σyz

Σzy Σz

]−1 [
Σyx

Σzx

]
.
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Define notations

Σ̄yz = −Σ−1y Σyz, Σ̄z = Σz − ΣzyΣ
−1
y Σyz, Σ̄xz = Σxz + ΣxyΣ̄yz,

and apply [
Σy Σyz

Σzy Σz

]−1
=

[
I Σ̄yz

0 I

][
Σy 0

0 Σ̄z

]−1 [
I 0

Σ̄T
yz I

]
to modify var(x− x̂y,z) into

var(x− x̂y,z) = Σx − ΣxyΣ
−1
y Σyx − Σ̄xzΣ̄

−1
z Σ̄T

xz.

Since Σ̄xzΣ̄
−1
z Σ̄T

xz > 0, Lemma 6.1 is proved.

From Lemma 6.1, if more additional measurement is used for detection, the variance

matrix of the estimation error becomes even smaller, that is, the more measurement, the

stronger influence of uncertainty can be reduced. Since the transmission of information

from node j ∈ Ni,ρ to node i costs same time, we select nodes layer by layer, that is, given

the accepted level of uncertainty, if the information inside k-th layer is enough, then the

information from (k + 1)-th layer to di-th layer are not further considered for FD. For this

purpose, define variance matrix of r̄i in (6.7) as

Σi = var(r̄i) =


Σ0,0 · · · Σ0,di

...
. . .

...

Σdi,0 · · · Σdi,di

 , (6.11)

where Σm,n = cov(rNi,m , rNi,n). Define Σ̃i,ρ, ρ = 0, · · · , di, as the variance matrix of the

residual signals between ri and its optimal estimation by projecting itself into the subspace

spanned by {rNi,1 , · · · , rNi,ρ}. It holds that

Σ̃i,ρ = Σ0,0 −
[
Σ0,1 · · · Σ0,ρ

]
Σ1,1 · · · Σ1,ρ

...
. . .

...

Σρ,1 · · · Σρ,ρ


−1 

Σ1,0

...

Σρ,0

 .
And the problem of node selection for node i is formulated as

min
06ρ6di

ρ, s.t. tr(Σ̃i,ρ) 6 δ, (6.12)

where the matrix trace is used to measure the uncertainty with δ > 0 as its given bound.
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6.2.2 A Distributed Fault Detection Scheme

After selecting the ρi as the solution of (6.12) for node i, the centralized FD of fi(k) is

achieved at k + ρi. However, at time index k, the information about fi(k) is already

obtained, so the FD of fi(k) can be applied from k on. Motivated by this, the iterative

distributed realization of optimal detection is introduced in this section. First, the following

lemma about the diagonalization of the variance matrix is introduced.

Lemma 6.2. Given

x ∼ N (0,Σ), x =


x1
...

xN

 , Σ =


Σ11 · · · Σ1N

...
. . .

...

ΣN1 · · · ΣNN

 .
For k = 1, · · · , N − 1, define

Σ(1) = Σ, Σ(k + 1) = P (k)Σ(k)P>(k), (6.13)

P (k) with its (i, j)-th block as

Pij(k) =


I , i = j

−Σij(k)Σ−1jj (k) , i = k + 1, j < k + 1

0 , others

(6.14)

and P [k] =
1∏
i=k

P (i). Further, for 1 6 s 6 N ,

xs =


x1
...

xs

 ∼ N (0,Σs), Σs = e[Σ]s,s =


Σ11 · · · Σ1s

...
. . .

...

Σs1 · · · Σss

 .
For q = 1, · · · , s− 1, define

Σs(1) = Σs, Σs(q + 1) = Ps(q)Σs(q)P
T
s (q),

Ps(q) with its (i, j)-th block

Ps,ij(q) =


I , i = j

−Σs,ij(q)Σ
−1
s,jj(q) , i = q + 1, j < q + 1

0 , others
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and P
[q]
s =

1∏
i=q

Ps(i). It holds that

P [k]x ∼ N (0,Σ(k + 1)), P [q]
s xs ∼ N (0,Σs(q + 1)) (6.15)

Σ(k) =

[
ξ(k) ?

? ?

]
, ξ(k) =


Σ̄11 0 0

0
. . . 0

0 0 Σ̄kk

 (6.16)

e[P [k]]k+1,k+1 = e[P [N−1]]k+1,k+1 (6.17)

P [q]
s = e[P [q]]s,s (6.18)

Ps(q) = e[P (q)]s,s (6.19)

Σs(q + 1) = e[Σ(q + 1)]s,s (6.20)

Proof. The statement (6.15) is obvious. We apply mathematical induction to prove

statement (6.16). For 2 6 k 6 N − 1, set

x(1) = x, x(k) = P (k − 1)x(k − 1), Σ̄11 = Σ11(1),

D(k) =
[
Σ(k+1)k(k) · · · Σ(k+1)k(k)

]
, ξ(k) =


Σ̄11 0

. . .

0 Σ̄kk

 , Σ̄kk = Σkk(k),
(6.21)

where Σ(k) is as defined in (6.13). It holds that

var(x(k)) = Σ(k), var(x(1)) = Σ(1) = Σ.

For k = 2 and according to (6.14), construct

P (1) =

[
p(1) 0

0 I

]
, p(1) =

[
I 0

−Σ21(1)Σ−111 (1) I

]
.

It is straightforward that

Σ(2) = P (1)Σ(1)P (1)T =

[
ξ(2) ?

? ?

]
, ξ(2) =

[
Σ̄11 0

0 Σ̄22

]
,

where Σ̄11 is as shown in (6.21) and

Σ̄22 = Σ22(1)− Σ21(1)Σ̄−111 Σ12(1).

Assume at k = l, it holds that

Σ(l) =

 ξ(l) DT (l) ?

D(l) Σ(l+1)(l+1)(l) ?

? ? ?

 , ξ(l) =


Σ̄11 0

. . .

0 Σ̄ll
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Define C(l) = −D(l)ξ(l)−1. Compute P (l) using (6.14) and

Σ(l + 1) =

 I 0 0

C(l) I 0

0 0 I


 ξ(l) DT (l) ?

D(l) Σ(l+1)(l+1)(l) ?

? ? ?


I CT (l) 0

0 I 0

0 0 I

 =

[
ξ(l + 1) ?

? ?

]
,

where

ξ(l + 1) =

[
ξ(l) 0

0 Σ̄(l+1)(l+1)

]
, Σ̄(l+1)(l+1) = Σ(l+1)(l+1)(l)−D(l)ξ(l)−1DT (l).

Thus statement (6.16) is proved. For k + 1 6 q 6 N − 1,

e[P (q)]k+1,N =
[
I 0

]
. (6.22)

Since (6.22) and P = P (N−1) · · ·P (k+1)P [k], the first (k+1)× (k+1) block submatrices

of P [k] and P are the same, thus the statement (6.17) is proved. Define x̄1 = x1 and

x̄k = xk −
k−1∑
j=1

Σkj(k − 1)Σ̄−1jj x̄j. (6.23)

Combining (6.15), (6.16), (6.21), and (6.23), it holds that

x(k) =
[
x̄T1 · · · x̄Tk xTk+1 · · · xTN

]T
, (6.24)

where x(k) is defined in (6.21), and

var



x̄1
...

x̄k


 = ξ(k), cov

xk+1,


x̄1
...

x̄k


 = D(k).

Based on above properties, reformulate (6.23) into

x̄k = xk − x̂k, x̂k = D(k − 1)ξ(k − 1)−1


x̄1
...

x̄k−1

 (6.25)

From (6.21) and (6.24), matrix P (k−1) transfer xk into x̄k. This transformation, as shown

in (6.25) and according to Lemma 2.2, is achieved by building residual between xk and its

optimal estimation x̂k, which is obtained by projecting xk into the subspace spanned by

{x̄1, · · · , x̄k−1}. Moreover, since P is invertible, the subspace spanned by {x̄1, · · · , x̄k−1}
is the same one spanned by {x1, · · · , xk−1}. Because the generation of x̄k is based on

x1, · · · , xk−1 and the statistic properties among them, the variables xk+1, · · · , xN have no

influence on this diagonalization. Based on this, statement (6.18), (6.19), and (6.20) are

proved.
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Lemma 6.2 shows a way to diagonalize variance matrix Σ with P = P [N−1], a procedure

to diagonalize the submatrix variance matrix Σs with Ps = P
[s−1]
s and the relation between

them Ps = e[P ]s,s. A similar procedure is introduced in [64] and is known as canonical

covariance factorization.

Theorem 6.1. Given model (6.2), for node i, rearrange the sequence of nodes according

to (6.7) to obtain r̄i and corresponding variance matrix Σi as defined in (6.11). Compute

lower triangular block matrices

Pi(l) =


I 0 · · · 0

Pi,1,0(l) I
. . .

...
...

. . .
. . . 0

Pi,di,0(l) · · · Pi,di,di−1(l) I

 , Pi =
1∏

l=di

Pi(l) =


I 0 · · · 0

Pi,1,0 I
. . .

...
...

. . .
. . . 0

Pi,di,0 · · · Pi,di,di−1 I

 (6.26)

according to Lemma 6.2 to diagonalize Σi with

PiΣiP
T
i = Σ̄i =


Σ̄i,0 0

Σ̄i,1

0
. . .

Σ̄i,di

 (6.27)

Solve (6.12) to obtain ρi for node selection. For s = 1, · · · , ρi, run

Qi,0 = BT
i Σ̄−10 Bi (6.28)

Qi,s = Qi,s−1 +BT
i P

T
i,s,0Σ̄

−1
i,sPi,s,0Bi (6.29)

r̄i,0(k) = rNi,0(k) (6.30)

r̄i,s(k) = rNi,s(k) +
s−1∑
m=1

Pi,s,m(s)r̄i,m(k) (6.31)

r̃i,0(k) = BT
i Σ̄−1i,0 r̄i,0(k) (6.32)

r̃i,s(k) = r̃i,s−1(k) +BT
i P

T
i,s,0Σ̄

−1
i,s r̄i,s(k) (6.33)

And the evaluation functions

Ji,k(k) = r̃Ti,0(k)Q−1i,0 r̃i,0(k) (6.34)

Ji,k+s(k) = r̃Ti,s(k)Q−1i,s r̃i,s(k) (6.35)

Ji,th = χ2
α(mfi) (6.36)

deliver the distributed solution to (6.6).
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Proof. For 0 6 s 6 ρi, define Bi,s = c(Bi)1,s+1,

qi,s =


rNi,0
...

rNi,s

 , Σi,s =


Σ0,0 · · · Σ0,s

...
. . .

...

Σs,0 · · · Σs,s

 .
From (6.6), it holds that

Ji,k+s(k) = qTi,s(k)Σ−1i,sBi,s(B
T
i,sΣ

−1
i,sBi,s)

−1BT
i,sΣ

−1
i,s qi,s(k), Ji,th = χ2

α(mfi) (6.37)

deliver the optimal FD for fi(k) at time k + s. When s = 0, it is straightforward that

(6.28), (6.30), (6.32) and (6.34) hold. According to Lemma 6.2, we have

e[Σ̄i]s+1,s+1 = e[Pi]s+1,s+1(Σi,s)e[Pi]
T
s+1,s+1. (6.38)

From (6.38),it is straightforward that

Qi,s = BT
i,sΣ

−1
i,sBi,s = BT

i,se[Pi]
T
s+1,s+1(e[Σ̄i]s+1,s+1)

−1e[Pi]s+1,s+1Bi,s

=Qi,0 +
s∑

n=1

BT
i P

T
i,n,0Σ̄

−1
i,nPi,n,0Bi = Qi,s−1 +BT

i P
T
i,s,0Σ̄

−1
i,sPi,s,0Bi,

thus (6.29) holds. Further, with identity

[
r̄i,0(k)T · · · r̄i,s(k)T

]T
= e[Pi]s+1,s+1qi,s(k) =

1∏
i=s

e[Pi(i)]s+1,s+1qi,s(k),

equation (6.31) holds and based on this, we have

r̃i,s(k) = BT
i,sΣ

−1
i,s qi,s(k) = BT

i,se[Pi]
T
s+1,s+1(e[Σ̄i]s+1,s+1)

−1e[Pi]s+1,s+1qi,s(k)

=r̃i,0(k) +
s∑

n=1

BT
i P

T
i,n,0Σ̄

−1
i,n r̄i,n(k) = r̃i,s−1(k) +BT

i P
T
i,s,0Σ̄

−1
i,s r̄i,s(k),

equation (6.33) is proved. From (6.37), it is obvious that (6.35) hold. And the threshold

setting (6.36) is directly from Lemma 3.1.

Through the method proposed in Theorem 6.1, at k + s, r̄i,s(k) in (6.31) is the residual

signal between rNi,s(k) and its optimal estimation by projecting itself into the subspace

spanned by {r̄i,0(k), · · · , r̄i,s−1(k)} and this residual r̄i,s(k) is applied for improving the

accuracy of FD at k + s. In such a way, from k to k + ρi, the optimal detection of f(k)

is achieved in a distributed and recursive form. The overall algorithm is summarized in

Algorithm 6.1.

Algorithm 6.1. Distributed FD for static systems
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Offline Computation

For i = 1, · · · , N
Step 1 At node i, obtain fault-free offline data to train mean of Aix and variance Σ

Step 2 Solve (6.12) to obtain ρi

Step 3 Calculate Pi(m), Pi and Σ̄i in (6.26) and (6.27)

Step 4 Calculate Qi,0, Qi,1, · · · , Qi,ρi in (6.28) and (6.29)

Step 5 Choose α as FAR and calculate Ji,th in (6.36)

Online Detection

For i = 1, · · · , N and s = 1, · · · , ρi
Step 1 At k, obtain yi(k), build ri(k) = yi(k) − Aix, calculate r̄i,0(k) and r̃i,0(k) in

(6.30) and (6.32), build Ji,k(k) in (6.34) and apply (3.1) to make decision

Step 2 At (k + s), obtain rNi,s(k), calculate r̄i,s(k) and r̃i,s(k) using (6.31) and (6.34),

build Ji,k+s(k) in (6.35) and apply (3.1) to make decision

6.3 Preliminaries and Problem Formulation for

Dynamic Sytems

Now, we shift our focus to the dynamic case. This section aims to introduce the models of

the dynamic system, centralized FD algorithm, and problem formulation.

6.3.1 Model Description

The large-scale interconnected system under consideration consists of N subsystems with

the same sampling time T . Each subsystem Gi, i = 1, · · · , N , is modelled by

xi(k + 1) = Aiixi(k) +
∑
j∈Ni

Aijxj(k) + wi(k), yi(k) = Cixi(k) + vi(k), (6.39)

where xi(k) ∈ Rni is the local state, yi(k) ∈ Rpi is the local measurement, wi(k) ∈ Rni

and vi(k) ∈ Rpi denote the process and measurement noise, respectively. We assume that,

for i, j = 1, · · · , N and k, h > 0, wi(k) and vi(k) are Gaussian white noises, the initial

state xi(0) is random variables following a Gaussian distribution and is uncorrelated with

process and measurement noises.

xi(0) ∼ N (x̄i,0,Σi), cov
(
xi(0), xTj (0)

)
= Σiδij

cov

([
wi(k)

vi(k)

]
,
[
wTj (h) vTj (h)

])
=

[
Qi 0

0 Ri

]
δkhδij

(6.40)

Matrix Aij 6= 0, when j ∈ Ni, means that there is a physical link between Gi and Gj and

it is assumed that in this case there is a communication link as well. Otherwise, Aij = 0
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and they are disconnected. Each subsystem is monitored by local sensors. Each sensor

can only communicate with its neighbours and the transmission of information costs (unit)

sampling time T . The topologies of physical and communication links among subsystems

are the same.

6.3.2 An Optimal Fault Detection Scheme

Stack all subsystems to obtain the global model

x(k + 1) = Ax(k) + w(k), y(k) = Cx(k) + v(k), (6.41)

where

x =


x1
...

xN

 , A =


A11 · · · A1N

...
. . .

...

AN1 · · · ANN

 , C =


C1 0 0

0
. . . 0

0 0 CN

 ,
y, w and v have the same column structure with x, x ∈ Rn with n =

∑N
i=1 ni and y ∈ Rp

with p =
∑N

i=1 pi. Since assumption (6.40), x(0) is uncorrelated with w and v,

x(0) ∼ N (x̄0,Σ), cov

([
w(k)

v(k)

]
,
[
wT (h) vT (h)

])
=

[
Q 0

0 R

]
δkh,

where x̄0 has same column structure with x and Q, R and Σ have the same block

diagonal structure with C. Notice that the model (6.41) is the same as model (3.48), from

(3.51)−(3.53), we have the optimal FD scheme for (6.41) as

x̂(k + 1|k) =Ax̂(k|k − 1) + L(k)r(k) (6.42)

r(k) =y(k)− Cx̂(k|k − 1) (6.43)

Σ(k) =CP (k|k − 1)CT +R (6.44)

L(k) =AP (k|k − 1)CTΣ(k)−1 (6.45)

P (k + 1|k) =AP (k|k − 1)AT +Q− L(k)Σ(k)LT (k) (6.46)

J(k) =r(k)Σ−1(k)rT (k), Jth = χ2
α(p) (6.47)

The procedures (6.42)-(6.46) is standard one-step prediction. Define e(k) = x(k)−x̂(k|k−1)

as estimation error. As discussed in Chapter 3, the optimal FD is based on optimal state

estimation by minimizing P (k|k−1). Moreover, with fixed interval [0, h], for h > j > k > 0,

filtering and smoothing techniques [4] can be further applied to improve the estimation of
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x(k) by

x̂(k|j) = x̂(k|j − 1) +K(j)CTΣ−1(j)r(j) (6.48)

K(k) = P (k|k − 1) (6.49)

K(j + 1) = K(j)(A− L(j)C)T (6.50)

P (k|j) = P (k|j − 1)−K(j)CTΣ−1(j)CKT (j) (6.51)

with x̂(k|j − 1), P (k|k − 1), Σ(j), r(j) delivered from (6.42)-(6.46). From (6.51), the

variance of the estimation error is further reduced. Based on this observation, these

techniques are involved in further study.

6.3.3 Problem Formulation

In Section 6.3.2, the optimal solution to detect fault for system (6.39) under a centralized

manner is introduced. To compute J(k) in (6.47), all yj(k), j ∈ N , should be collected at

node i. Since the transmission of information costs time, the computation of J(k) can only

be achieved at (k + di) and thus needs MTTD di. Nevertheless, if a fault occurs in node i

at time instant k and affects yi(k), it can be detected from time k onwards. Motivated by

this observation, an iterative and distributed realization of optimal detection is considered

and introduced in the rest of this chapter.

6.4 A Distributed Fault Detection Scheme for

Dynamic Systems

In this section, we devote to propose a distributed FD scheme for model (6.39). For our

purpose, notation yNi,s , which has the same structure as (6.1), is defined as the collection

of information on the s−layer neighbours of node i and

yNi,s(k) = CNi,sx(k) + vNi,s(k).

Here, vNi,s has similar structure with yNi,s and with Ni,s = {n1
i,s, n

2
i,s, · · · , n

ci,s
i,s }, where

ci,s = card(Ni,s),

CNi,s =


Cn1

i,s
0 0

0
. . . 0

0 0 C
n
ci,s
i,s

 , Ri,s = var(vNi,s) =


Rn1

i,s
0 0

0
. . . 0

0 0 R
n
ci,s
i,s

 .
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Since the transmission of measurements from node j ∈ Ni,ρ to node i costs same time, we

rearrange the measurement according to d(i, j) and separate y into di parts as

ȳi =
[
yTNi,0 yTNi,1 · · · yTNi,di

]T
.

Note that ȳi is a permutation of the rows of y in (6.41). Since the communication happens

only between neighbours and costs unit sampling time, it spends ρ sampling time to

transfer yNi,ρ to node i, which also means that node i can receive yNi,ρ(k − ρ) at time

instant k. The optimal centralized method in Section 6.3.2 is achieved by the minimum

variance estimation. Intuitively speaking, if more measurements are used for FD in node i,

the uncertainty will be reduced and the accuracy of the FD will increase. However, the

MTTD will also increase. Similar to the static case, in this section, we first set a criterion

to decide how much information is needed for FD in node i, then achieve the distributed

FD based on the selected information.

6.4.1 Node Selection

The selection of node is also based on d(i, j) as in Section 6.2.1, it means that if the

measurements inside m−layer can not satisfy our condition, we continuously select more

measurements inside (m + 1)−layer to check the condition until it is fulfilled. First,

we quantify the improvement of more measurements for FD in Gi. Assume that the

measurements from 0−layer to m−layer neighbours are used to detect faults in Gi. Define

the collection of measurements inside m−layer as ȳi,m =
[
yNi,0 yNi,1 · · · yNi,m

]
with

ȳi,m ∈ Rpi,m and

ȳi,m(k) =
[
yNi,0(k) · · · yNi,m(k)

]
= C̄i,mx(k) + v̄i,m(k), (6.52)

where v̄i,m has similar structure with ȳi,m,

C̄i,m =


CNi,0 0 0

0
. . . 0

0 0 CNi,m

 , R̄i,m = var(vNi,s) =


Ri,0 0 0

0
. . . 0

0 0 Ri,m

 .
The model for Gi with measurements inside m− layer is

x(k + 1) = Ax(k) + w(k), ȳi,m(k) = C̄i,mx(k) + v̄i,m(k). (6.53)

Set Oi,m as the observable subspace of (6.53), dim(Oi,m) = ni,m, the orthonormal basis of

Oi,m as

bi,m =


b1
...

bni,m

 ∈ Rni,m×n, rank(bi,m) = ni,m, (6.54)
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and its orthogonal complement

b̄i,m =


bni,m+1

...

bn

 ∈ R(n−ni,m)×n, rank(b̄i,m) = n− ni,m. (6.55)

Set Ti,m =
[
bTi,m b̄Ti,m

]T
as coordinate transformation matrix for (6.53) according to pair

(C̄i,m, A) such that the linear transformation ξi,m = Ti,mx =
[
(ξoi,m)T (ξui,m)T

]T
, where

ξoi,m ∈ Rni,m and ξui,m ∈ Rn−ni,m stand for the observable and unobservable part respectively,

transforms the original state space representation (6.53) into the following observability

staircase form [129]

ξi,m(k + 1) =

[
Ai,m 0

∗ Āi,m

]
ξi,m(k) +

[
wi,m(k)

w̄i,m(k)

]
ȳi,m(k) =

[
Ci,m 0

]
ξi,m(k) + v̄i,m(k)

. (6.56)

Apply Kalman filter to estimate observable part ξoi,m,

ξ̂oi,m(k + 1|k) = Ai,mξ̂
o
i,m(k|k − 1) + Li,m(k)ri,m(k) (6.57)

ri,m(k) = ȳi,m(k)− Ci,mξ̂oi,m(k|k − 1), (6.58)

Σi,m(k) = Ci,mPi,m(k|k − 1)CT
i,m + R̄i,m, (6.59)

Li,m(k) = Ai,mPi,m(k|k − 1)CT
i,mΣ−1i,m(k), (6.60)

Pi,m(k + 1|k) = Ai,mPi,m(k|k − 1)ATi,m +Qi,m − Li,m(k)Σi,m(k)LTi,m(k), (6.61)

where Qi,m = var(wi,m) = bi,mQb
T
i,m. Since our aim is to estimate yi, variable ξoi,0, which is

the observable part of (Ci, A), need to be recovered from ξoi,m. It is directly achieved by

linear transformation

ξoi,0(k) = Gi,mξ
o
i,m(k), Gi,m =

Ii,0, Oi,0 = Oi,m[
Ii,0 0

]
, Oi,0 6= Oi,m

, (6.62)

where Ii,0 is the identity matrix and has the same dimension with Ai,0. And the estimation

variance is

var(ξoi,0(k)− ξ̂oi,0(k)) = Gi,mPi,m(k|k − 1)GT
i,m.

Theorem 6.2. Suppose Pi,m is the steady-state solution of (6.61). If more layers are

selected for estimation, we have

x(k + 1) = Ax(k) + w(k), ȳi,g(k) = C̄i,gx(k) + v̄i,g(k), g > m, (6.63)

then estimation variance of ξoi,0 is reduced with

Gi,gPi,gG
T
i,g 6 Gi,mPi,mG

T
i,m.
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Proof. Set Oi,g as the observable subspace according to pair (C̄i,g, A). It holds that

dim(Oi,g) = dim(Oi,m) or dim(Oi,g) > dim(Oi,m). For dim(Oi,g) = dim(Oi,m),we have

Ti,g = Ti,m and the corresponding staircase form is:[
ξoi,g(k + 1)

ξui,g(k + 1)

]
=

[
Ai,m 0

∗ Āi,m

][
ξoi,g(k)

ξui,g(k)

]
+

[
wi,m(k)

w̄i,m(k)

]

ȳi,g(k) =

[
Ci,m 0

Ci,m,g 0

][
ξoi,g(k)

ξui,g(k)

]
+ v̄i,g(k),

where Ci,g =
[
CT
i,m CT

i,m,g

]T
,

var(v̄i,g) = R̄i,g =

[
R̄i,m 0

0 R̄i,m,g

]
, R̄i,m,g =


Ri,m+1 0 0

0
. . . 0

0 0 Ri,g

 .
Apply Kalman filter to estimate observable part ξoi,g,

ξ̂oi,g(k + 1|k) = Ai,mξ̂
o
i,g(k|k − 1) + Li,g(k)ri,g(k), (6.64)

ri,g(k) = ȳi,g(k)− Ci,g ξ̂oi,g(k|k − 1), (6.65)

Σi,g(k) = Ci,gPi,g(k|k − 1)CT
i,g + R̄i,g, (6.66)

Li,g(k) = Ai,mPi,g(k|k − 1)CT
i,gΣ

−1
i,g (k), (6.67)

Pi,g(k + 1|k) = Ai,mPi,g(k|k − 1)ATi,m +Qi,m − Li,g(k)Σi,g(k)LTi,g(k). (6.68)

Modify (6.68) as

Pi,g(k + 1|k) = Ai,mPi,g(k|k − 1)ATi,m +Qi,m −H1 −H2H3H
T
2 , (6.69)

H2 = Ai,mPi,g(k|k − 1)CT
i,mH

−1
3 , H3 = Ci,mPi,g(k|k − 1)CT

i,m + R̄i,m,

H1 = H4(Σ2 − Σ21Σ
−1
1 Σ12)

−1HT
4 , H4 = Ai,mPi,g(k|k − 1)(CT

i,m,g − CT
i,mΣ−11 Σ12),

Σ1 = Ci,mPi,g(k|k − 1)CT
i,m + R̄i,m, Σ2 = Ci,m,gPi,g(k|k − 1)CT

i,m,g + R̄i,m,g,

Σ12 = Ci,mPi,g(k|k − 1)CT
i,m,g, Σ21 = ΣT

12.

Hence Σi,g(k) > 0 and Schur complement, it holds that

H1 > 0. (6.70)

With initial value Pi,g(0| − 1) = Pi,m(0| − 1), combine (6.61), (6.69) and (6.70), we have

Pi,g(1)− Pi,m(1) = −H1 6 0 ⇒ Pi,g(1) 6 Pi,m(1). (6.71)
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From [7], we have

Pi,g(k) 6 Pi,m(k)⇒ Pi,g(k + 1) 6 Pi,m(k + 1) (6.72)

and

Pi,g = lim
k→∞

Pi,g(k) 6 Pi,m = lim
k→∞

Pi,m(k). (6.73)

Hence bi,g = bi,m and (6.73), we have Gi,g = Gi,m and

Gi,gPi,gG
T
i,g 6 Gi,mPi,mG

T
i,m. (6.74)

When dim(Oi,g) > dim(Oi,m), set dim(Oi,g) = ni,g, the orthonormal basis of Oi,g as bi,g =[
bTi,m bTi,m,g

]T
, where bi,m,g stands for the orthonormal basis of new observable subspace,

b̄i,g as the orthogonal complement of bi,g and transformation matrix Ti,g =
[
bTi,g b̄Ti,g

]T
to

obtain the observability staircase form of (6.63). Apply state transformation ξi,g = Ti,gx

to obtain [
ξoi,g(k + 1)

ξui,g(k + 1)

]
=

[
Ai,g 0

∗ Āi,g

][
ξoi,g(k)

ξui,g(k)

]
+

[
wi,g(k)

w̄i,g(k)

]

ȳi,g(k) =
[
Ci,g 0

] [ξoi,g(k)

ξui,g(k)

]
+ v̄i,g(k),

(6.75)

where ξoi,g =
[
(ξoi,m)T (ξoi,m,g)

T
]T

, ξoi,m,g stands for the new observable state,

Ai,g =

[
Ai,m 0

Zi,m,g Ai,m,g

]
, Ci,g =

[
Ci,m 0

Xi,m,g Ci,m,g

]
, wi,g =

[
wi,m

bi,m,gw

]

var(wi,g(k)) = Qi,g =

[
Qi,m bi,mQb

T
i,m,g

bi,m,gQb
T
i,m bi,m,gQb

T
i,m,g

]
Use Kalman filter to estimate observable part ξoi,g,

ξ̂oi,g(k + 1|k) =Ai,g ξ̂
o
i,g(k|k − 1) + Li,g(k)ri,g(k), (6.76)

ri,g(k) =ȳi,g(k)− Ci,g ξ̂oi,g(k), (6.77)

Σi,g(k) =Ci,gPi,g(k|k − 1)CT
i,g + R̄i,g (6.78)

Li,g(k) =Ai,gPi,g(k|k − 1)CT
i,gΣ

−1
i,g (k) (6.79)

Pi,g(k + 1|k) =Ai,gPi,g(k|k − 1)ATi,g +Qi,g − Li,g(k)Σi,g(k)LTi,g(k), (6.80)

For further analysis, separate

Pi,g(k|k − 1) =

[
P g
i,m(k|k − 1) Si,m,g(k|k − 1)

STi,m,g(k|k − 1) Pi,m,g(k|k − 1)

]
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where P g
i,m, Pi,m,g and Si,m,g stand for the estimation variance of ξoi,m, ξoi,m,g and covariance

matrix between them, respectively. And the iteration of P g
i,m(k|k − 1) in (6.80) is

P g
i,m(k + 1|k) = Ai,mP

g
i,m(k|k − 1)ATi,m +Qi,m −H1 −H2H3H

T
2 ,

H2 = Ai,mP
g
i,m(k)CT

i,mH
−1
3 , H3 = Ci,mP

g
i,m(k|k − 1)CT

i,m + R̄i,m,

H1 = H4(Σ2 − Σ21Σ
−1
1 Σ12)

−1HT
4 , Σ1 = Ci,mP

g
i,m(k|k − 1)CT

i,m + R̄i,m,

H4 = Ai,m(P g
i,m(k)XT

i,m,g + Si,m,g(K)CT
i,m,g − P

g
i,m(k)CT

i,mΣ−11 Σ12),

Σ2 = Xi,m,gP
g
i,m(k|k − 1)XT

i,m,g + Ci,m,gPi,m,g(k|k − 1)CT
i,m,g + R̄i,m,g,

Σ12 = Ci,mP
g
i,m(k|k − 1)XT

i,m,g + Ci,mSi,m,g(k|k − 1)CT
i,m,g, Σ21 = ΣT

12.

(6.81)

With the similar steps from (6.70) to (6.73), it holds that

P g
i,m 6 Pi,m. (6.82)

Since bi,g =
[
bTi,m bTi,m,g

]T
, we have Gi,g =

[
Gi,m 0

]
and

Gi,gPi,gG
T
i,g = Gi,mP

g
i,mG

T
i,m 6 Gi,mPi,mG

T
i,m. (6.83)

Combine (6.74) and (6.83), Theorem 6.2 is proved.

Theorem 6.2 presents that if we use more measurements to do estimation, the stronger

influence of uncertainty on ξoi,0 can be reduced. Thus the estimation becomes more accurate

and the detection performance is also improved. For selecting node for Gi, since ξ̂oi,0 is the

minimal observable subspace to recover yi, set ηacc as an acceptable level for the accuracy

of its estimation and find ρi such that

ρi = arg min
m∈Z

m

s.t. tr(Gi,mPi,mG
T
i,m) 6 ηacc

. (6.84)

6.4.2 Distributed Estimation

Assume ρi is the solution of (6.84), it means that the measurements inside ρi-layer are

used for FD in Gi. With the assumption of transmission time, at time instant k, node i

receives new measurement data

yi,ρi(k) =
[
yTNi,0(k) · · · yTNi,ρi

(k − ρi)
]T
. (6.85)

Notice that (6.85) is modified from (6.52) when considering transmission time. If we apply

(6.57)−(6.61) for estimation and FD, at time instant k, ȳi,ρi(k − ρi) is obtained and used

for estimate ξoi,ρi(k − ρi + 1). But data

yNi,j(k − j), j = 0, · · · , ρi − 1,
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which are also received within k, are not involved in the above procedure, and can be used

to improve the estimation result. In the rest part of this section, we present a distributed

algorithm that makes use of all data inside time k. For simplicity, in the subsequent part

of this paper, the symbol (k|k − 1), which indicates the one-step prediction process, is

shortened to (k). We first introduce the following theorem and lemmas.

Theorem 6.3. Give yi,ρi(k) in (6.85), initial value ξ̂oi,ρi(k − ρi) and Pi,ρi(k − ρi) at time

instant k. For h = ρi, · · · , 1,

ξ̂oi,h(k − h+ 1) = Ai,hξ̂
o
i,h(k − h) + Li,h(k − h)ri,h(k − h), (6.86)

Pi,h(k − h+ 1) = Ai,hPi,h(k − h)ATi,h +Qi,h − Li,h(k − h)Σi,h(k − h)LTi,h(k − h), (6.87)

ξ̂oi,h−1(k − h+ 1) = Ni,hξ̂
o
i,h(k − h+ 1), (6.88)

Pi,h−1(k − h+ 1) = Ni,hPi,h(k − h+ 1)NT
i,h, (6.89)

Ni,h =

Ii,h−1, Oi,h = Oi,h−1[
Ii,h−1 0

]
, Oi,h 6= Oi,h−1

, (6.90)

for h = ρi, · · · , 0,

ri,h(k − h) = ȳi,h(k − h)− Ci,hξ̂oi,h(k − h), (6.91)

Σi,h(k − h) = Ci,hPi,h(k − h)CT
i,h + R̄i,h, (6.92)

Li,h(k − h) = Ai,hPi,h(k − h)CT
i,hΣ

−1
i,h(k − h), (6.93)

where Ii,h−1 is the identity matrix and has the same dimension with Ai,h−1, ξ̂oi,0(k) delivers

the minimal variance estimation for ξoi,0(k).

Proof. Select yNi,ρi (k − ρi) from yi,ρi(k) and obtain

ȳi,ρi(k − ρi) =


yNi,0(k − ρi)

...

yNi,ρi (k − ρi)

 ,
where yNi,0(k − ρi), . . . , yNi,ρi−1

(k − ρi + 1) are from the previous sampling interval.

With ȳi,ρi(k − ρi), ξ̂oi,ρi(k − ρi) and Pi,ρi(k − ρi), the minimal variance one-step prediction

ξ̂oi,ρi(k − ρi + 1) and variance matrix Pi,ρi(k − ρi + 1) can be obtained from

ri,ρi(k − ρi) = ȳi,ρi(k − ρi)− Ci,ρi ξ̂oi,ρi(k − ρi),
Σi,ρi(k − ρi) = Ci,ρiPi,ρi(k − ρi)CT

i,ρi
+ R̄i,ρi ,

Li,ρi(k − ρi) = Ai,ρiPi,ρi(k − ρi)CT
i,ρi

Σ−1i,ρi(k − ρi),
ξ̂oi,ρi(k − ρi + 1) = Ai,ρi ξ̂

o
i,ρi

(k − ρi) + Li,ρi(k − ρi)ri,ρi(k − ρi),
Pi,ρi(k − ρi + 1) = Ai,ρiPi,ρi(k − ρi)ATi,ρi +Qi,ρi − Li,ρi(k − ρi)Σi,ρi(k − ρi)LTi,ρi(k − ρi),
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which are standard Kalman filter procedures. Similar with (6.62), it holds that

ξ̂oi,ρi−1(k − ρi + 1) = Ni,ρi ξ̂
o
i,ρi

(k − ρi + 1), Pi,ρi−1(k − ρi + 1) = Ni,ρiPi,ρi(k − ρi + 1)NT
i,ρi

with Ni,ρi =

Ii,ρi−1, Oi,ρi = Oi,ρi−1[
Ii,ρi−1 0

]
, Oi,ρi 6= Oi,ρi−1

. Applying the same procedure to predict the

observable subspace from ξ̂oi, ρi− 1(k − ρi + 2) to ξ̂oi, 1(k + 1) yields the identical steps

as presented in Theorem 6.3. According to Theorem 6.2, for h = ρi, · · · , 1, the optimal

estimation with minimal variance is ξ̂oi,h−1(k − h + 1) when provided with ȳi,h(k − h).

By mathematical induction, it is evident that ξ̂oi,0(k) represents the minimal variance

estimation, given ξ̂oi,ρi(k − ρi), Pi,ρi(k − ρi) and the dataset yi,ρi(k).

Lemma 6.3. [64] Given the one-step prediction in Theorem 6.3 and set ei,h = ξoi,h − ξ̂oi,h
as the estimation error, the signals ri,ρi(k) are innovations and it holds that

cov (ri,ρi(j), ri,ρi(p)) = Σi,ρi(j)δjp (6.94)

ei,h(k − h+ 1) = Āi,h(k − h)ei,h(k − h) + wi,h(k − h)− Li,h(k − h)v̄i,h(k − h) (6.95)

Āi,h(k − h) = (Ai,h − Li,h(k − h)Ci,h)

ei,h−1(k − h+ 1) = Ni,hei,h(k − h+ 1) (6.96)

ri,h(k − h) = Ci,hei,h(k − h) + v̄i,h(k − h) (6.97)

ei,h(k − h+ 1) ∼ (0, Pi,h(k − h+ 1)) (6.98)

ei,h−1(k − h+ 1) ∼ (0, Ni,hPi,h(k − h+ 1)NT
i,h) (6.99)

ri,h(k − h) ∼ (0,Σi,h(k − h)) (6.100)

Lemma 6.4. Given the one-step prediction in Theorem 6.3, at time instant k, for j, p =

0, · · · , ρi and h = 0, · · · , k − ρi − 1, it holds that

cov(ri,j(k − j), ri,p(k − p)) = Σi,j(k − j)δjp (6.101)

cov(ri,j(k − j), ri,pi(h)) = 0. (6.102)

Proof. For j 6= p, without loss of general, assume j < p. From (6.95) and (6.96),

ri,j(k − j) = Ci,jei,j(k − j) + v̄i,j(k − j) (6.103)

= Ci,jΦ
p
i,jei,p(k − p) + fpi,j − Ci,jΦ

p−1
i,j Ni,pLi,pv̄i,p(k − p),

where

Φp
i,j =

p∏
q=j+1

Ni,q(Ai,q − Li,q(k − q)Ci,q) (6.104)
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and fpi,j is the linear combination of noise signals wi,p(k − p), · · · , wi,j+1(k − j − 1) and

v̄i,p−1(k− p+ 1), · · · , v̄i,j(k− j) with corresponding weighting matrices and is uncorrelated

with ri,p(k − p). Based on decomposition (6.103), it holds that

cov(ri,j(k − j), ri,p(k − p)) (6.105)

=cov(Ci,jΦ
p
i,jei,p(k − p)− Ci,jΦ

p−1
i,j NpLi,pv̄i,p(k − p) + fpi,j, Ci,pei,p(k − p) + v̄i,p(k − p))

=Ci,jΦ
p
i,jPi,p(k − p)CT

i,p − Ci,jΦ
p−1
i,j NpLi,pR̄i,p = 0.

Combining (6.100) and (6.105), (6.101) is proved. Since equation (6.86) is standard

one-step prediction, it holds that [64]

cov(ei,ρi(k − ρi), ri,ρi(h)) = 0. (6.106)

Based on (6.103) and (6.106), we have

cov(ri,j(k − j), ri,ρi(h))

=cov(Ci,jΦ
ρi
i,jei,ρi(k − ρi) + fρii,j − Ci,jΦ

ρi−
i,j Nρi v̄i,ρi(k − ρi), ri,ρi(h)) = 0.

Thus (6.102) is proved and the proof is done.

Theorem 6.3 provides a distributed realization of one-step prediction to estimate ob-

servable subspace. After computation, we obtain the one-step predictions

ξ̂oi,0(k), ξ̂oi,1(k − 1), · · · , ξ̂oi,ρi−1(k − ρi + 1), (6.107)

and also the sequence of residuals

ri,0(k), ri,1(k − 1), · · · , ri,ρi(k − ρi), (6.108)

which are innovations and mutually uncorrelated according to Lemma 6.4 and [64]. Also

notice that for h = 0, · · · , ρi − 1, signal ξ̂oi,h(k − h) is predicted based on

ri,h+1(k − h− 1), · · · , ri,ρi−1(k − ρi + 1), ri,ρi(k − ρi)

and other residuals

ri,0(k), · · · , ri,1(k − 1), ri,h(k − h),

which are generated after the computation of ξ̂oi,h(k−h), are not involved in the prediction

of ξoi,h(k−h) and thus can be further applied to improve the estimation result of ξoi,h(k−h)

by meanings of filtering and smoothing.
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Theorem 6.4. [64] Given (6.107) and (6.108), for h = 0, · · · , ρi,

ξ̂o,fsi,h (k − h) = ξ̂oi,h(k − h) +
h∑
z=0

L̄h(z)ri,z(k − z) (6.109)

L̄h(h) = Pi,h(k − h)CT
i,hΣ

−1
i,h(k − h), (6.110)

L̄h(z) = Pi,h(k − h)(Φh
i,z)

TCT
i,zΣ

−1
i,z (k − z), 0 6 z 6 h− 1

are the optimal filtering and smoothing steps to improve the estimation result by using all

residuals generated within time index k. Define eo,fsi,h (k − h) = ξoi,h(k − h)− ξ̂o,fsi,h (k − h), it

holds that eo,fsi,h (k − h) ∼ (0, P fs
i,h(k − h)) and

P fs
i,h(k − h) = Pi,h(k − h)−

∑h
z=0 L̄h(z)Σi,z(k − z)L̄Th (z). (6.111)

Notice that the estimation of ξoi,h(k − h) in Theorem 6.4 is improved by the innovations

ri(k), · · · , ri,h(k−h), which carries new information from present and future measurement.

Also from (6.111), it is obvious that P fs
i,h(k − h) 6 Pi,h(k − h), so the accuracy of our

estimation is improved by including filtering and smoothing.

6.4.3 Distributed Fault Detection

Since it needs time to achieve the filtering and smoothing steps, the estimation results

delivered by one-step prediction is first used for FD. Also, with a more accurate subspace

estimation, the results from filtering and smoothing is then applied to detect faults. For

this purpose, build residual signals between yi and its estimations and for h = 0, · · · , ρi,
compute residuals and their variance matrices

r̄i,h(k − h) =Si,h(ȳi,h(k − h)− Ci,hξ̂oi,h(k − h)), (6.112)

Σ̄i,h(k − h) =Si,hΣi,h(k − h)STi,h, (6.113)

r̄fsi,h(k − h) =Si,h(ȳi,h(k − h)− Ci,hξ̂o,fsi,h (k − h)), (6.114)

Σ̄fs
i,0(k) =R̄i,0Σ

−1
i,0 (k)R̄i,0, (6.115)

Σ̄fs
i,j(k − j) =Si,hR̄i,jΣ

−1
i,j (k − j)R̄i,jS

T
i,h (6.116)

+

j−1∑
z=0

Si,jCi,jL̄j(z)Σi,z(k − z)L̄j(z)TCT
i,jS

T
i,j, 1 6 j 6 ρi, ,

where Si,h =
[
Ipi 0

]
and Ipi is identity matrix with dimension pi. From (6.52), yi locates

at first pi rows of ȳi(k − h), so Si,h is applied as selecting matrix to build the residual for

yi. Since r̄i,h(k − h) ∼ N (0, Σ̄i,h(k − h)), r̄fsi,h(k − h) ∼ N (0, Σ̄fs
i,h(k − h)) and according to
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(6.47), set evaluation function and threshold as

Ji,h(k − h) = r̄Ti,h(k − h)Σ̄−1i,h(k − h)r̄i,h(k − h),

Jfsi,h(k − h) = (r̄fsi,h(k − h))T (Σ̄fs
i,h(k − h))−1r̄fsi,h(k − h),

Ji,th = χ2
α(pi)

(6.117)

with given α, then apply decision logic (3.1) to do FD.

The core part of the proposed distributed method is that we use prediction, filtering

and smoothing procedures to improve the accuracy of estimation by means of reducing the

variance matrix of the estimation error. The method makes full use of data, which node i

receives within time instant k, to do optimal estimation. As shown in Figure 6.3, we first

run one-step prediction based on the measured data, which node i received within time

instant k, to obtain the estimation and also the innovation sequences. Then the innovation

sequences are applied to improve the estimation delivered from one-step prediction by

filtering and smoothing. The overall algorithm is summarised in Algorithm 6.2.

Algorithm 6.2. Distributed FD for dynamic systems

Offline Computation

For i = 1, · · · , N
Step 1 Calculate di at node i

Step 2 Calculate bi,m, Ai,m and Ci,m using (6.52)−(6.56)

Step 3 Calculate Pi,m as steady state for (6.61)

Step 4 Set ηacc and select ρi according to (6.12)

For j = 0, · · · , ρi − 1, h = 0, · · · , ρi
Step 5 Calculate Pi,j(k − j) and Ni,j−1 in (6.89) and (6.90)

Step 6 Calculate Σi,h(k − h) and Li,h(k − h) in (6.92), (6.93)

Step 7 Calculate L̄h(z) in (6.110)

Step 8 Calculate Si,h, Σ̄i,h(k − h), Σ̄fs
i,h(k − h) in (6.113), (6.115)

Step 9 Set Jth in (6.117)

Online Detection

At time instant k, j = 0, · · · , ρi − 1, h = 0, · · · , ρi
Step 1 Calculate ξ̂oi,j(k − j) and ri,h(k − h) in Theorem 6.3

Step 2 Calculate ξ̂o,sfi,j (k − j) in Theorem 6.4

Step 3 Calculate r̄i,h(k − h) and r̄fsi,h(k − h) in (6.112), (6.114)

Step 4 Calculate Ji(k − h) and Jfsi (k − h) in (6.117)

Step 5 Make decision by (3.1)

Step 6 Save ξ̂oi,ρi(k − ρi + 1) for next k + 1

91



6 Distributed Fault Detection in Interconnected Systems via Optimal Estimation

One-Step Prediction

Filtering and SmoothingTime Instant k

…

Figure 6.3: Prediction, filtering and smoothing procedures

6.5 Examples

In this section we provide examples for proposed methods.

Static Case

Given a system modelled by (6.2) with 5 nodes and sampling time T = 0.02s, where

x =
[
1 2 3.2 2.3 5.4

]T
, A1 =

[
1 0 0 0 0

]
, A2 =

[
0 1 0 0 0

]
,

A3 =
[
0 0 1 0 0

]
, A4 =

[
0 0 0 1 0

]
, A5 =

[
0 0 0 0 1

]
,

B1 = B2 = B3 = B4 = B5 = 1.

The variance matrix of measurement noise is given by

Σ =


16.7 17.5 5.25 7.2 11.2

17.5 25.824 14.51 9.62 17.36

5.25 14.51 26.805 7.07 23.45

7.2 9.62 7.07 6.4 6.4

11.2 17.36 23.45 6.4 25.9

 .

The task is to detect sensor fault in node 1 and the communication topology is shown in

Fig. 6.4.
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1 2 3 4 5

Figure 6.4: Communication topology for static case

Algebraic representations of Figure 6.4 for node 1 are d1 = 4, N1,0 = {1}, N1,1 =

{2}, N1,3 = {4}, N1,4 = {5}. Set δ = 3.5 and solve (6.12) to obtain ρ1 = 3. Set FAR

6 0.95, we have Jth = χ2
0.95(1) = 3.8415. A step fault happening at 10s. Simulation

results of the evaluation functions for J1,k(k), J1,k+1(k), J1,k+2(k) and J1,k+3(k) are shown

in in Figure 6.5. It verifies the effectiveness of the proposed method. Moreover, the

0 5 10 15 20

Time (Sec)

0

50

100

150

200

Figure 6.5: Simulation result for static case

result shows that better detection performance is obtained via more measurement data

since the different between evaluation function and threshold become larger when more

measurements are involved.

Dynamic Case

Give system model (6.39) with

A11 = 1, A12 = 2, C1 = 1, R1 = 2.4, Q1 = 0.4,

A21 = 1, A22 = 2, A23 = 5, C2 = 1, R2 = 2, Q2 = 0.6,

A32 = 7, A33 = 3, A34 = 2, C3 = 1, R3 = 1.6, Q3 = 0.8,

A43 = 2, A44 = 4, A45 = 3, C4 = 1, R4 = 1.2, Q4 = 0.6,

A54 = 3, A55 = 4, A56 = 5, C5 = 1, R5 = 0.8, Q5 = 0.2,

A65 = 4, A66 = 5, C6 = 1, R6 = 0.4, Q6 = 0.8.
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The topology of the physical links and sensor network is shown in Figure 6.6.

1 2 3 4 5 6

Figure 6.6: Topology of physical links and sensor network for dynamic case
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Figure 6.7: Simulation result for dynamic case
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6.6 Concluding Remarks

For node 1, set ηacc = 550, solve (6.84) to obtain ρ1 = 4, so the measurements from node 1,

2, 3, 4 and 5 are applied for distributed FD in node 1. With T = 0.02s, FAR = 0.95, and

an additive step fault happening at 4s in node 1, simulation results of residuals, evaluations

and thresholds are shown in Figure 6.7. We can see that the amplitude of r̄fs is smaller

than r̄ in fault-free case and the evaluations J cross the corresponding threshold Jth after

fault happens. These indicates that our proposed distributed FD scheme can satisfy the

need to detection faults in large-scale interconnected systems.

6.6 Concluding Remarks

In this chapter, a novel distributed FD scheme is proposed for large-scale interconnected

systems by taking into account the influence of noise and transmission time of information

exchange. With the layer structure and node selection, the approach uses local and other

sensors’ information to do optimal FD via optimal estimation. For static cases, it uses

the correlation between different signals to reduce the uncertainty for FD. For dynamic

cases, the observable subspace of local measurement is estimated by means of the one-step

prediction, and then the estimation is improved by filtering and smoothing techniques. In

this way, node i makes full use of data, which it receives within time k, delivers minimal

variance estimation of local observable subspace, and then applies it for performing FD.
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This chapter provides the applications of proposed FD methods in the previous chapters to

benchmark processes. We consider three benchmark processes, DC micro-grid, mass-spring

system, and six-tank system. To be specific, the proposed distributed realization of

optimal FD in Chapter 4 is applied for a DC micro-grid, the distributed state observer and

post-filter introduced in Chapters 5 are adopted for a mass-spring system, and a six-tank

system is used to show the effectiveness of the distributed FD method shown in Chapter 6.

7.1 Case Study on Micro-Grid Power Network

As a result of technological advancements, cost reductions, and proven success, micro-grids

are transitioning from experimental stages to commercial markets [56]. These self-contained

power systems are utilized to enhance the dependability and resilience of power grids,

manage the integration of clean energy resources like wind and solar photovoltaic generation

to reduce the use of fossil fuels, and provide electricity for certain purposes. A micro-grid

is an independent local electrical grid that can operate either connected to the main power

grid or in isolation, with defined electrical boundaries that make it a single and controllable

entity. The grid can provide electricity, and potentially heating and cooling, to nearby

customers using advanced software and control systems [57]. Micro-grids are able to

switch between grid-connected and island modes, providing emergency power to customers

even when the main grid is down. A micro-grid that is connected to the main power

grid operates in grid-connected mode. However, when technical or economic conditions

require, it can disconnect from the main grid and operate autonomously in island mode,

improving the security of power supply within the micro-grid. An islanded micro-grid is

an independent electricity system that has its own sources of power, including an energy

storage system. It is also utilized in situations where power transmission and distribution

from a centralized energy source are impractical due to distance and cost. For example,

it offers a solution for providing electricity to remote areas and smaller islands [71]. In

islanded operation mode, the energy management system monitors the power generation

and consumption of the entire micro-grid in real time. This management system can

also disconnect from the traditional grid and operate autonomously, making the islanded
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7.1 Case Study on Micro-Grid Power Network

micro-grid a local energy grid with control capability. Since the reliability of the micro-grid

system is important and meaningful, the implementation of FD scheme is reasonable to

be considered.

Generation

StorageUtility Grid Control Center

Load

Figure 7.1: Structure of micro-grid

In this section, the model of DC micro-grid from [95] is adopted. Figure 7.2 shows

1

3

2

4
𝑍12 𝑍24

𝑍34𝑍13

Figure 7.2: An islanded DC micro-grid consisting of 4 distributed generations

a topology for an islanded DC micro-grid composed of 4 distributed generations (DG)

connected via distributed line Zij. A sensor network is adopted to monitor the process

and the corresponding sate space representation is

ẋi = Aiixi +
∑
j∈Ni

Aijxj +Biui + Eiwi, yi = Cixi + F̄idi, i = 1, 2, 3, 4
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Aii =

−
∑

j∈Ni
1

CtiRij

1

Cti

− 1

Lti
−Rti

Lti

 , Aij =

 1

CtiRij

0

0 0



Bi =

 0
1

Lti

 , Ei =

− 1

Cti
0

 , Ci =
[
1 0

]
, F̄i =

[
1
]

where xi ∈ R2 is the state of DG i, ui ∈ R1 is input, wi ∈ R1 is unknown external input in

processes, di ∈ R1 is the measurement disturbance and yi ∈ R1 is measurement of sensor

i. Parameters Rij = Rji and the values of parameters are shown in Table 7.1.

DGs Rt(Ω) Lt(mH) Ct(mF ) Line impedance Zij Rij(Ω)

DG 1 0.2 1.8 2.2 Z12 0.05

DG 2 0.3 2.0 1.9 Z13 0.07

DG 3 0.1 2.2 1.7 Z24 0.04

DG 4 0.5 3.0 2.5 Z34 0.06

Table 7.1: Parameters of DC micro-grid

Stacking all nodes together, we have the centralized form

ẋ = Acx+Bu+ Ecdl, yl = Clx+ Fldl, (7.1)

x =


x1

x2

x3

x4

 , u =


u1

u2

u3

u4

 , y =


y1

y2

y3

y4

 , dl =

[
dp

dm

]
, dp =


w1

w2

w3

w4

 , dm =


d1

d2

d3

d4

 , (7.2)

Ac =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 , B =


B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4

 , Cl =


C1 0 0 0

0 C2 0 0

0 0 C3 0

0 0 0 C4

 , (7.3)

Ec =


E1 0 0 0 0 0 0 0

0 E2 0 0 0 0 0 0

0 0 E3 0 0 0 0 0

0 0 0 E4 0 0 0 0

 , Fl =


0 0 0 0 F̄1 0 0 0

0 0 0 0 0 F̄2 0 0

0 0 0 0 0 0 F̄3 0

0 0 0 0 0 0 0 F̄4

 . (7.4)

Discretize the process (7.1) with a sampling interval T = 0.01s leading to the discrete-time
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7.1 Case Study on Micro-Grid Power Network

model (4.6) and (4.7) with

A =



1.046 0.005 −0.096 −0.000 −0.068 −0.000 0.010 0.000

−0.006 0.999 0.000 0.000 0.000 0.000 −0.000 −0.000

−0.111 −0.000 1.072 0.005 0.008 0.000 −0.139 −0.000

0.000 0.000 −0.005 0.998 −0.000 −0.000 0.000 0.000

−0.088 −0.000 0.009 0.000 1.053 0.006 −0.103 −0.000

0.000 0.000 −0.000 −0.000 −0.005 1.000 0.000 0.000

0.008 0.000 −0.106 −0.000 −0.070 −0.000 1.051 0.004

−0.000 −0.000 0.000 0.000 0.000 0.000 −0.003 0.998


,

El =



−0.005 0.000 0.000 −0.000 0.000 0.000 0.000 0.000

0.000 −0.000 −0.000 0.000 0.000 0.000 0.000 0.000

0.000 −0.005 −0.000 0.000 0.000 0.000 0.000 0.000

−0.000 0.000 0.000 −0.000 0.000 0.000 0.000 0.000

0.000 −0.000 −0.006 0.000 0.000 0.000 0.000 0.000

−0.000 0.000 0.000 −0.000 0.000 0.000 0.000 0.000

−0.000 0.000 0.000 −0.004 0.000 0.000 0.000 0.000

0.000 −0.000 −0.000 0.000 0.000 0.000 0.000 0.000


,

F1 =
[
0 0 0 0 F̄1 0 0 0

]
, F2 =

[
0 0 0 0 0 F̄2 0 0

]
,

F3 =
[
0 0 0 0 0 0 F̄3 0

]
, F4 =

[
0 0 0 0 0 0 0 F̄4

]
,

Cl and Fl are the same as shown in (7.3) and (7.4). Notice that using (4.5) to build

communication topology of sensor network leads to an unconnected graph, thus we choose

the the same topology as shown in Figure 7.2. Apply Algorithm (4.2) to perform distributed

FD for the DC micro-grid. Given δd = 4.3415, we set

Ji(k) =

(
1

5

4∑
l=0

ji(k + l)

)1/2

, Jth =

√
1

5
δd = 1.9416.

With an actuator fault at 3s in DG 1, simulation results of residuals, evaluations and

thresholds are shown in Figures 7.3 and 7.4. They indicate that our proposed distributed

FD scheme can achieve a similar result when compared with the centralized approach,

which is plotted as J in each figure.
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Figure 7.3: Simulation result for sensor nodes 1 and 2 in DC micro-grid
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Figure 7.4: Simulation result for sensor nodes 3 and 4 in DC micro-grid
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7.2 Case Study on Mass-Spring System

In this section, we introduce the benchmark of the mass-spring system illustrated in Figure

7.5. The system is composed of three cars, which are connected by springs. The physical

𝑚3𝑚1 𝑚2
𝐹

𝑣1 𝑣2 𝑣3

𝑐 𝑐

𝑑2𝑑1 𝑑3
𝑠1
𝑠2
𝑠3

𝐹𝑤1
𝐹𝑤2

𝐹𝑤3

Figure 7.5: Mass-spring system

relations between subsystems are

v̇1 =
F

m1

− d1v1
m1

− Fw1
m1

− c

m1

(s1 − s2)

v̇2 = −d2v2
m2

− Fw2
m2

+
c

m2

(s1 − s2)−
c

m2

(s2 − s3) (7.5)

v̇3 = −d3v3
m3

− Fw3
m3

+
c

m3

(s2 − s3)

where vi is the velocity of car i, Fwi is unknown disturbance in car i, and si is the position

of subsystem i. Each car is equipped with sensor to measure its velocity and position with

yi =

[
vi

si

]
+

[
1 0

0 1

]
d̄i, i = 1, 2, 3 (7.6)

where d̄i is the measurement disturbance. Other parameters are shown in Table 7.2.

Discretize the process (7.5) and (7.6) with a sampling interval T = 0.01s leading to the

discrete-time model (5.1) with

A11 =

[
0.9999 −0.0075

0.0100 1.0000

]
, A12 =

[
0 0.0075

0 0

]
, A13 =

[
0 0

0 0

]
, C1 =

[
1 0

0 1

]
,
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Parameters Symbol Value Unit

mass of car 1 m1 10 kg

mass of car 2 m2 20 kg

mass of car 3 m3 10 kg

spring constant c 6.5 N/m

coeff. of friction of car 1 d1 0.1 kg/s

coeff. of friction of car 2 d2 0.1 kg/s

coeff. of friction of car 3 d3 0.1 kg/s

Table 7.2: Parameters of mass-spring system

A21 =

[
0 0.0037

0 0

]
, A22 =

[
0.9999 −0.0075

0.01 1

]
, A23 =

[
0 0.0037

0 0

]
, C2 =

[
1 0

0 1

]
,

A31 =

[
0 0

0 0

]
, A32 =

[
0 0.0075

0 0

]
, A33 =

[
0.9999 −0.0075

0.01 1

]
, C3 =

[
1 0

0 1

]
,

Ed1 =

[
−0.001 0 0

−0.000005 0 0

]
, Fd1 =

[
0 1 0

0 0 1

]
, Ed2 =

[
−0.0005 0 0

−0.0000025 0 0

]
, Fd2 =

[
0 1 0

0 0 1

]
,

Ed3 =

[
−0.0001 0 0

−0.000005 0 0

]
, Fd3 =

[
0 1 0

0 0 1

]
, xi =

[
vi

si

]
, di =

[
Fwi

d̄i

]
The communication topology of the considered system is the same as its physical links as

shown in Figure 7.6.

1 2 3

Figure 7.6: Communication topology in mass-spring system

Apply Theorem 5.1 to compute the distributed observer gains. The results are

L11 =

[
0.3 0

0 0.3

]
, L12 =

[
0 0.75

0 0

]
, L13 =

[
0 0

0 0

]
,

L21 =

[
0 0.0037

0 0

]
, L22 =

[
0.3 0

0 0.3

]
, L23 =

[
0 0.37

0 0

]
,

L31 =

[
0 0

0 0

]
, L32 =

[
0 0.75

0 0

]
, L33 =

[
0.3 0

0 0.3

]
.
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The target for subsystem 1 is to detect local actuator fault in itself with

Ef1 =

[
0.0001

0.000005

]
, Ff1 =

[
0

0

]
.

For the post-filter design, we only consider the actuator fault at node 1 and all disturbances.

Adopt Theorems 5.3 and 5.4 to design post-filter. Set s = 2 for model (5.18), we have

v1,2 =
[
−0.2311 −0.2129 0.6532 0.6365 −0.4609 −0.4747

]
as the result for Theorem 5.3 and

G1 =

[
0 0

1 0

]
, L1 = −

[
−0.2311 −0.2129

0.6532 0.6365

]
, v1 =

[
−0.4609 −0.4747

]
, w1 =

[
0 1

]
as the result for Theorem 5.4. Given δd = 1.5, further compute γ1 = 2.2204 in (5.26) and

set

J1(k) =

√√√√1

6

k∑
j=k−5

εT1 (j)ε1(j), Jth,1 = γ1

√
1

6
δd = 1.3597

in (5.27). With a step fault happens at 30s, simulation result is shown in Figure 7.7. It

can be seen that our proposed method can distributively detect the occurrence of fault.

5 10 15 20 25 30 35

Time(seconds)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
J1

Jth;1

Figure 7.7: Simulation result of subsystem 1 in mass-spring system

7.3 Case Study on Six-Tank System

Tank systems, commonly utilized in the chemical industry, serve as containers for various

chemicals and are available in various sizes and shapes. These tanks play a crucial role in
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both storing and transporting raw materials and finished chemical products, as well as

in the processing and mixing of chemicals. It is important to note that proper chemical

storage is vital to ensure the safety of individuals and the environment. Thus, it is

important to implement effective monitoring and detection systems that can alert the

occurrence of faults to further compensations.

Figure 7.8: An example of tank systems 1

In this section, we provide a case study on six-tank system to illustrate the effectiveness

of the proposed distributed FD technique for dynamic systems in Chapter 6. Consider the

six-tank system as sketched in Figure 7.9.

𝑄12 𝑄23 𝑄34 𝑄45 𝑄56 𝑄60

𝑢1 𝑢6

𝟏 𝟐 𝟔𝟓𝟒𝟑

Figure 7.9: Six-tank system

The dynamics of six-tank system is modelled by

Aḣ1 = u1 −Q12, Aḣ2 = Q12 −Q23, Aḣ3 = Q23 −Q34,

Aḣ4 = Q34 −Q45, Aḣ5 = Q45 −Q56, Aḣ6 = u6 +Q56 −Q60

Qij = sgn(hi − hj)ais0
√

2g|hi − hj|, Q60 = a6s0
√

2gh6

1The figure is from https://gpi-tanksxl.com/nen-en13445/
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7.3 Case Study on Six-Tank System

where hi is the water level (cm) of tank i, ui is the incoming mass flow (cm3/s), Qij is the

mass flow (cm3/s) from the i-th tank to the j-th tank. Parameters of six-tank system are

shown in Table 7.3. After linearization at given operating point h1 = 40, h2 = 30.77, h3 =

Parameters Symbol Value Unit

cross section area of tanks A 154 cm2

cross section area of pipes s0 0.5 cm2

coeff. of flow for pipe 1 a1 0.45

coeff. of flow for pipe 2 a2 0.60

coeff. of flow for pipe 3 a3 0.60

coeff. of flow for pipe 4 a4 0.60

coeff. of flow for pipe 5 a5 0.60

coeff. of flow for pipe 6 a6 0.45

Table 7.3: Parameters of six-tank system

25.58, h4 = 20.38, h5 = 15.19, h6 = 10 and discretization with sampling time T = 0.01s, we

have the model (6.39) with 6 subsystems, the system matrices are

A11 = 0.9999, A12 = 0.0001, C1 = 1,

A21 = 0.0001, A22 = 0.9997, A23 = 0.0002, C2 = 1,

A32 = 0.0003, A33 = 0.9996, A34 = 0.0002, C3 = 1,

A43 = 0.0002, A44 = 0.9996, A45 = 0.0002, C4 = 1,

A54 = 0.0002, A55 = 0.9996, A56 = 0.0002, C5 = 1,

A65 = 0.0002, A66 = 0.9997, C6 = 1.

And the parameters for process and measurement noises are

R1 = 1.2, Q1 = 1, R2 = 1.2, Q2 = 0.3, R3 = 1.2, Q3 = 0.4

R4 = 1.2, Q4 = 0.3, R5 = 1.2, Q5 = 0.1, R6 = 1.2, Q6 = 0.4

The topology of the physical links and sensor network is shown in Figure 7.10.

1 2 3 4 5 6

Figure 7.10: Topology of physical links and sensor network for six-tank system
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Figure 7.11: Simulation result
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For node 1, set ηacc = 550, solve (6.12) to obtain ρ1 = 4, so the measurements from node

1, 2, 3, 4 and 5 are applied for distributed FD in node 1. With FAR = 0.95, and a leakage

happening at 4s in tank 1, simulation results of residuals, evaluations and thresholds are

shown in Figure 7.11. We can see that the evaluations J cross the corresponding threshold

Jth after fault happens. These indicates the effectiveness of the proposed distributed FD

scheme.

7.4 Concluding Remarks

In this chapter, the proposed distributed FD approaches are applied in benchmark processes

to demonstrate their effectiveness. The distributed realization of the centralized optimal

FD method is used to detect faults in micro-grid systems. The results have shown that

the proposed method achieves a similar result as the centralized optimal one. In addition,

the mass-spring benchmark has been used to show the effectiveness of the combination

of distributed state observer and post-filter. The six-tank process, which is a nonlinear

system but linearized at a specific operating point, has been applied to demonstrate the

effectiveness of distributed FD method proposed in Chapter 6. The case study results

presented in this chapter satisfy the need for distributed detection of potential faults.
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The main focus of this thesis is to investigate distributed FD schemes for large-scale

and interconnected systems, which have physical links between subsystems, with sensor

networks. In this chapter, we summarise the main insights of this thesis and discuss future

scopes.

8.1 Conclusions

In Chapter 1, we briefly introduce the primary and basic concepts of large-scale and

interconnected systems, FD, and process monitoring. It has been emphasized that advanced

and efficient distributed FD methods shall be investigated for large-scale and interconnected

systems with the development of sensing hardware and communication techniques.

Definitions, fundamental knowledge, and mathematical preliminaries of LS estimation,

graph theory, average consensus, and LMI techniques are presented in Chapter 2. The

algorithm of LS estimation plays an essential role in optimal observer design, which is the

core of FD, for industrial processes. The graph theory describes the model of physical

links of interconnected systems and the communication topology of sensor networks.

Both average consensus and LMI techniques are the designing techniques for distributed

algorithms. Parallel to Chapter 2, Chapter 3 is devoted to the state of the art of

FD methodologies for static and dynamic systems influenced by stochastic noises and

deterministic disturbances. Besides the concepts of optimal FD problems and models of

static and dynamic systems, different types of residual generators are introduced. These

fundamental methodologies serve as the basis for subsequent studies.

Although the optimal FD methods have shown their effectiveness in wide industrial

applications, they are mainly centralized. The objective of Chapter 4 is to develop an

optimal distributed FD approach for large-scale systems in the presence of unknown

deterministic disturbances using the measurement of sensor networks. With the help of

the average consensus algorithm, the optimal FD method based on H2 observer is realized

in a distributed manner, and this distributed realization shows a similar result as the

original centralized one. In Chapter 5, a widely used form of the distributed observer is

applied for FD for large-scale and interconnected systems. In this framework, each local
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observer uses only its local and neighbours’ information to estimate its local state. The

LMI technique is applied to design the parameters of the distributed observer. It delivers

sufficient numerical solutions. Thereafter, a post-filter is applied to enhance the influence

of fault on the residual signal and reduce the influence of disturbance on the residual

signal. For the design of the post-filter, PSA and DO are applied.

Chapter 6 describes distributed approaches for FD in interconnected systems under the

influence of random noises. Firstly, a proposed criterion determines which information is

selected for online FD. Then, the selected information is employed to reduce corresponding

uncertainty and carry out effective FD. For static cases, the proposed distributed FD is

based on the correlation between different measurements. For dynamic cases, the core part

of the distributed method is that it uses prediction, filtering, and smoothing procedures to

improve the accuracy of FD by means of reducing the variance matrix of the estimation

error. Both methods make full use of data, which node i received within the present

time instant, to do minimal variance estimation and perform accurate FD. In Chapter 7,

benchmark studies are demonstrated to support the effectiveness of proposed methods in

achieving their operational and strategic goals.

8.2 Future Works

This thesis attempts to build advanced and efficient distributed FD methods for large-scale

and interconnected systems. The distributed FD methods are investigated based on

the accurate linear model of large-scale systems. In the future, the following topics are

considered as the generalization and extension of this study:

• The proposed methods are based on system models. However, modelling large-scale

systems may pose significant challenges. Based on this observation, a data-driven

realization of the proposed methods requires more research attentions.

• The results achieved in this thesis are based on the linear system descriptions.

And the proposed approaches are efficient if the real process is working around an

operating point. Therefore, extensions of the proposed methods to the nonlinear

processes are of practical importance. When the analytical solution for nonlinear

systems is hard to solve, numerical methods, such as partial filters and deep learning

methods, are considered.

• In interconnected systems, faults can be propagated from one subsystem to others

through the physical links and thus cause severe failures. In order to prevent this after

the faults have been detected, fault identification methods shall be applied to locate

109



8 Conclusions and Future Works

the faults. Then FTC systems are considered to increase plant availability, reduce

the risk of safety hazards, and prevent the faults from developing into catastrophes.
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