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Abstract

This thesis deals with the prediction of the manoeuvrability of surface ships under real-
istic environmental conditions. For this purpose, numerical methods for predicting the
manoeuvrability of ships in shallow water and in waves were developed and validated.
An essential prerequisite for predicting the manoeuvrability of ships is the knowledge
of the hydrodynamic forces and moments acting on a ship. Therefore, efficient mathe-
matical models were developed in this work. First, a direct system identification method
for fully appended ships in shallow water was developed and validated. Second, a data-
driven system identification method (indirect system identification) based on trajectories
was developed and validated. Third, a procedure based on the Euler equations for calcu-
lating hydrodynamic added masses was co-developed and used. Finally, a model for the
calculation of hydrodynamic forces and moments was developed and validated consider-
ing second-order wave forces. The majority of this work has been published in several
papers in peer reviewed journals and conference proceedings.
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Zusammenfassung

Diese Arbeit befasst sich mit der Vorhersage der Manövrierbarkeit von Überwasserschif-
fen unter realistischen Umgebungsbedingungen. Zu diesem Zweck wurden numerische
Methoden zur Vorhersage derManövrierbarkeit von Schiffen im Flachwasser und inWellen
entwickelt und validiert. Einewesentliche Voraussetzung für die Prognose derManövrier-
barkeit von Schiffen ist die Kenntnis der auf ein Schiff wirkenden hydrodynamischen
Kräfte und Momente. Aus diesem Grund wurden in dieser Arbeit effiziente mathema-
tische Modelle entwickelt. Zunächst wurde eine direkte Systemidentifikationsmethode
für Schiffe mit Anhängen im Flachwasser entwickelt und validiert. Anschließend wurde
eine datenbasierte Systemidentifikationsmethode (indirekte Systemidentifikation) auf der
Grundlage von Trajektorien entwickelt und validiert. Darüber hinaus wurde eine Proze-
dur auf Grundlage der Euler-Gleichungen zur Berechnung von hydrodynamischenMassen
mitentwickelt und eingesetzt. Schließlich wurde ein Modell zur Berechnung der hydro-
dynamischen Kräfte undMomente unter Berücksichtigung derWellenkräfte zweiter Ord-
nung entwickelt und validiert. Der Großteil dieser Arbeit wurde in mehreren Publikatio-
nen in Fachzeitschriften und Konferenzbänden publiziert.
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1 Introduction

Two developments are currently revolutionizing the shipping industry. On the one hand,
the InternationalMaritimeOrganization (IMO) has committed itself to reducing the green-
house gas emissions of the international shipping industry. The introduction of the energy
efficiency design index (EEDI1) represents this effort and forces new ships to usemore effi-
cient equipment and engines. On the other hand, the economic, safety and environmental
benefits of autonomous shipping have led to increased research into autonomous ships.
This is particularly true for inlandwaterway ships, which operate inmore controlled areas
than seagoing vessels. Both developments require technological innovations of various
ship components, but even more important is a better understanding of ship behaviour
in realistic environmental conditions. This is because the environmental conditions con-
strain the operation of the ship and influence its motions. This thesis is part of the effort
to understand ship behaviour, especially manoeuvring, in real environmental conditions.

1.1 Statement of the problem

Following the introduction of the EEDI, a debate began about the performance of ships in
adverse environmental conditions. It was thought that reducing the installed power of a
ship could undermine its manoeuvrability in adverse environmental conditions, such as
in waves and wind. This risk is greater in coastal areas because, first, the shallow water
depths alter the hydrodynamic manoeuvring behaviour of ships and second, the volume
of ship traffic in the vicinity of ports or harbours is high. In response to these concerns,
the IMO’s Marine Environment Protection Committee has issued the “guidelines for de-
termining minimum propulsion power to maintain the manoeuvrability of ships in ad-
verse conditions.” This has opened up a more technical discussion on how to assess the
manoeuvrability of ships in realistic environmental conditions.

Predicting ship manoeuvring in realistic environmental conditions, such as manoeu-
vring simultaneously in shallow water and waves—manoeuvring in coastal areas—is not

1The Energy Efficiency Design Index (EEDI) was made mandatory for new ships with the adoption of
amendments to MARPOL Annex VI (resolution MEPC.203(62)).
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1 Introduction

yet possible. The hydrodynamic modelling of such a situation has multiple layers of com-
plexity that are difficult to handle. In the past, the study of ship dynamics was divided
into seakeeping and manoeuvring aspects to reduce the complexity of dealing with ma-
noeuvring in waves. Nowadays, the aim is to unify these two fields, but such a task is not
easy, even in deep water conditions. Shigunov et al. (2018) presented the results of the
“international benchmark study on numerical simulation methods for the prediction of
manoeuvrability of ships in waves” (deep water). The main outcome was that none of the
methods were able to predict the manoeuvrability of the ship in waves. This suggests that
a considerable effort in research is needed to improve the accuracy of such predictions.

The problem has been divided into manoeuvring in shallow water in calm water condi-
tions and manoeuvring in waves in deep water. Trying to solve separately this two-way
problem could bring a better understanding of its unification. However, even when these
two problems are treated separately, the hydrodynamic flows around the ship remain
highly complex, especially when the interaction between hull, propeller and rudder is
taken into account. For the manoeuvring in waves in deep water, a general theory of
ship dynamics is being developed based on the theories proposed in the fields of seakeep-
ing and manoeuvring. These theories are sometimes in conflict because the assumptions
made for one field cannot be applied to the other or because the assumption cannot be gen-
eralized. Knowing this, it is also reasonable to review the assumptions made in modelling
manoeuvring forces as well as the intermediate procedures used in calculating manoeu-
vring forces and evaluating them through the lens of generalized theory. Some potential
aspects to be reviewed are the frequency dependence of the hydrodynamic manoeuvring
coefficients, the validity of the mathematical model in shallow water, and the regression
procedure to obtain the hydrodynamic coefficients.

Additional motivation comes from the autonomous ship industry, which is driving for-
ward the study of manoeuvring in shallow water, in particular for inland waterway ships.
An autonomous ship should be able to manoeuvre without human intervention in a vari-
ety of environmental conditions (current, wind, water depth). The water depth of rivers is
of primary importance as it changes the manoeuvring characteristics of the ship. There-
fore, a clear understanding of shallow water manoeuvring is needed to provide the au-
tonomous ship with algorithms that can reliably predict the next dynamic state of the
ship.

To date, a general theory of manoeuvring under realistic environmental conditions—
considering wind, waves, currents and shallow water effects—is still under development.
The hydrodynamic effects of hull, propeller and rudder and their interaction due to re-
alistic environmental conditions are still unknown and much research is needed. In this

2



1.2 Aim and scope

respect, numerical prediction of the manoeuvring of fully appended inland waterway
ships in shallow water is missing, but it is essential for the progress of autonomous ship
research.

1.2 Aim and scope

The aim of the thesis is to contribute to the accurate modelling of manoeuvring forces,
leading to a better numerical prediction of manoeuvring under realistic environmental
conditions.

The scope of this work is limited to two main environmental conditions: water depth
and regular waves. Strictly speaking, regular waves are not a realistic condition, but
rather an idealized, non-trivial sea condition in which new numerical methods can be
tested. Shallow water manoeuvring is focused on inland waterway ships, and manoeu-
vring in waves is focused on seagoing ships in deep waters. No consideration is given
to seaway or wind. These limitations are necessary to deal with the complexity of the
problem. Among the various computational fluid dynamics methods, accuracy and com-
putational speed are equally important. Therefore, the use of Reynolds-averaged Navier-
Stokes (RANS) equations is preferred over more advanced methods, such as detached-
eddy simulation (DES) or large-eddy simulation (LES). In terms of hull geometries, only
two benchmark hull geometries were used: a modern seagoing containership and a rep-
resentative inland waterway ship typically operating on the Rhine River.

1.3 Significance of the study

An intended outcome at the theoretical level is the creation of a mathematical manoeu-
vring model for inland waterway ships in shallow water conditions. This model can be
used to train the algorithms for autonomous ships in virtual environments. A second
intended outcome, at a practical level, is the creation of methods that reduce the com-
putational time for calculating manoeuvring hydrodynamic forces, especially when the
interaction of hull, propeller and rudder is required. Furthermore, a third intended out-
come is the development of an alternative method to determine the hydrodynamic ma-
noeuvring coefficients. Such a method could benefit other fields of study dealing with
the control of autonomous vehicles. Finally, a mathematical model for manoeuvring in
regular waves is proposed as a contribution to the development of a general theory of
manoeuvring in realistic environmental conditions.

3



1 Introduction

1.4 State of the art in prediction of manoeuvring in
shallow water

Modern mathematical manoeuvring models are based on the contributions of Abkowitz
(1964) and Norrbin (1971), which are representative of the two main divisions within
mathematical models: formal mathematical models, also known as Abkowitz-type mod-
els, and modular models. Both mathematical models use hydrodynamic coefficients that
need to be determined. At the beginning, these could only be obtained through captive
model tests in specialized hydrodynamic laboratories. Among the important contribu-
tions of mathematical models are: the extended multivariable polynomial byWolff (1981),
the four-quadrant modelling by Oltmann and Sharma (1984), and the manoeuvring mod-
elling group, best known as MMG, by Yasukawa and Yoshimura (2015). All these studies
were performed for seagoing vessels manoeuvring in deep water.

There are fewer experimental fluid dynamic (EFD) studies of ship manoeuvring in shal-
low water than in deep water. Their results are used to experimentally study the phe-
nomena and to validate data for numerical methods. Eloot (2006) provided a thorough
review of mathematical manoeuvring models and an overview on the experimental fluid
dynamics techniques used to obtain the hydrodynamic coefficients in shallow water con-
ditions. Gronarz (1997) carried out systematic experiments to investigate the influence
of water depth on the manoeuvring behaviour. Gronarz explicitly showed how each hy-
drodynamic coefficient varies with the water depth to draft ratio h/T . More recently,
experimental captive model test data of a modern inland waterway vessel was published
for benchmarking of numerical methods (Mucha, Dettmann, et al. 2019; Mucha, el Moctar,
et al. 2017).

The introduction of the viscous flow computational fluid dynamics (CFD) opened up
new research possibilities, with the benefit of obtaining hydrodynamic coefficients by
numerical calculation. Initially, captive tests were reproduced by CFD using the double-
body approach (el Moctar 2001). Later, it became possible to obtain the complete set of
hydrodynamic coefficients (Cura-Hochbaum 2006; Toxopeus 2011). More recently, CFD
has been applied to the direct simulation of rudder manoeuvres, where the hull, the rud-
der and the propeller are modelled directly in the numerical domain. Examples of this
approach can be found in Carrica et al. (2013), el Moctar, Lantermann, et al. (2014), and
Jin et al. (2019). D. Kim et al. (2022) performed free running manoeuvres in shallow water
conditions for a containership.

The application of CFD in shallow water has encountered some challenges. Mucha
(2017) showed that significant interactions between ship and flow restriction affect the
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1.5 State of the art in prediction of manoeuvring in waves

calculation of the hydrodynamic forces. It has also been shown that shallow water cal-
culations require more computational time than deep water calculations. This increase
is mainly due to the reduced under keel clearance and the associated ship’s motions. A
similar experience was reported by He et al. (2016).

Numerical predictions of the hydrodynamic forces acting on inland waterway vessel
in shallow water are scarce. Despite the simplicity of the hull geometry, the propulsion
and rudder configuration is more complex than for seagoing vessels. Simplified shallow
water manoeuvring problems were studied. Liu (2017) studied in detail the forces of dif-
ferent rudder configurations in open water condition. Lu et al. (2022) added a layer of
complexity and simulated the propeller-rudder as a system in open water condition. The
authors demonstrated the ability of CFD to capture the hydrodynamic forces of single-
propeller/single-rudder and twin-propeller/twin-rudder systems. Furthermore, Kaidi et
al. (2018) numerically replicated the rudder captive test in straight ahead condition. The
hull, propeller and rudder were considered as a single system, and the inflow interaction
between them was captured. Zentari, el Moctar, et al. (2022) carried out resistance and
propulsion tests of pusher-barge convoys treated as a single rigid-body and argued that
the standard k-ω SST turbulence modelling is not adequate in some shallow water condi-
tions. To date, the CFD-based calculations of the captive tests of a fully appended inland
waterway vessel comprising hull, propeller and rudder in shallow water is still lacking.

1.5 State of the art in prediction of manoeuvring in waves

As mentioned above, ship manoeuvring in waves has received a considerable attention
since the introduction of the energy efficiency design index. The International Towing
Tank Conference (ITTC) formed a special committee on manoeuvring in waves to assess
the progress made in this topic. The committee’s final report includes a thorough litera-
ture review and an overview of the complexities associated with manoeuvring in waves
(ITTC 2021). The reports by Tello Ruiz et al. (2012) and Skejic (2013) provide an additional
perspective on the development of manoeuvring in waves and highlight the difficulties.

Experimental fluid dynamics (EFD) has been at the forefront of research. A pioneering
paper by Hirano et al. (1980) showed the early desire to study this complex phenomenon.
The addition of regular waves in the manoeuvring introduces three additional parame-
ters: wave height, wave period and propagation direction. Mapping all possible realistic
combinations of these three parameters is a tedious and laborious task. Nevertheless,
EFD provided insight into some relevant parameter combinations. The advantage of EFD
is that the ship models are self-propelled, i.e., the models are equipped with propeller and
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rudder, so that all interactions and complex flows are implicitly taken into account. The
manoeuvring of the ship model in waves follows a procedure similar to manoeuvring in
calm water. First, the model sails straight ahead at a constant speed, and then the rudder
is deflected, keeping the wave parameters constant at all times. Turning circle and zig-zag
manoeuvres were usually chosen for testing.

Yasukawa (2006) performed turning circle manoeuvres with the S-175 containership
model. Model tests were carried out in regular waves for wave lengths between 0.5L and
1.2L (0.5, 0.7, 1.0, 1.2) and a target wave height of H = 0.02L in head and beam waves.
The results in head waves showed that the smaller the wave length, the greater the drift of
the ship’s trajectory. Rudder deflection to port or starboard produces a quasi-symmetrical
behaviour. The results in beam waves showed a different pattern. When sailing in a
straight line, the waves propagate from starboard to port side. Therefore, when turning
to starboard, the ship is sailing against the waves, which means that the drift forces of the
ship are opposite to the ship’s sailing direction. In this condition, the ship turns faster than
when it starts the manoeuvre to port. Later, Yasukawa (2008) presented model test results
of zig-zag and crash astern manoeuvres in regular waves of the same containership and
under the same wave conditions. The two 10°/10° and 20°/20° zig-zag manoeuvres were
performed. The results in head waves showed that the smaller the wave length, the faster
the ship model reaches the test heading angle (yaw angle ψ = 10°, 20°). The results in
beam waves showed that, for the 10°/10° zig-zag case, the ship model has difficulties to
make the second turn for the wave length of 0.5L.

Sprenger et al. (2017) presented turning circle and zig-zag manoeuvres in waves for
the Duisburg test case (DTC) containership at the low speed of Fn = 0.052. For the
turning circle manoeuvre, four parameters were varied, namely, the initial heading, the
rudder direction, the wave period and the wave height. For the zig-zag manoeuvre, two
parameters were varied, namely, the wave period and the time of rudder execution rel-
ative to the wave crest/trough. The results of the turning circle manoeuvre showed that
the DTC containership drifts obliquely to the direction of wave propagation with a simi-
lar pattern as that of the S-175 ship of Yasukawa (2006). It was also found that the timing
of the rudder deflection has a negligible effect on the ship’s trajectories. Similar findings
were presented by D. J. Kim et al. (2019). Sanada et al. (2019) documented that the pre-
sentation of manoeuvring in waves in terms of mean advance and tactical diameter is not
appropriate, and they recommended a better definition for the analysis of manoeuvring
in waves.

The use of RANS equations to calculate hydrodynamic forces in the fields of seakeeping
and manoeuvring is well documented, and satisfactory results have been obtained. For
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1.5 State of the art in prediction of manoeuvring in waves

instance, Sigmund and el Moctar (2018) analysed the seakeeping behaviour of four ships
for different wavelengths and wave headings. Cura-Hochbaum (2006) proposed the use
of RANS to perform captive test simulations to obtain hydrodynamic coefficients.

Wang and Wan (2018) directly simulated turning circle and zig-zag manoeuvres in
waves. The overset mesh method was used to discretize the numerical domain and to
allow the ship and its appendages to move. A total of 7.13 million control volumes were
used with a time step of 0.5milliseconds, corresponding to 1.5° of propeller rotation per
time step. The results showed that the wave effect is visible in the heave, roll and pitch
motions. Comparison with experimental data showed that the turning circle manoeu-
vring parameters, such as advance, transfer and tactical diameter, are within 10% error.
This is a good result, considering the complexity of this phenomenon. However, the com-
puting time is enormous. For instance, the turning circle manoeuvre simulation took 1206
hours, which is about 50 days for just one complete turn.

The excessive time required by a RANS basedmethod to analyse manoeuvring in waves
motivated the development of practical approaches. In this regard, two main approaches
have been proposed to simulate manoeuvring in waves: the two-time scale method and
the unified method.

The two-time scale method splits the ship’s motion into seakeeping (usually 6DoF) and
manoeuvring motions (3DoF or 4DoF, accounting for surge, sway, yaw and roll), which
are solved separately. Basically, it solves twice the equations of motion, one for sea-
keeping and another for manoeuvring. The ship’s position, orientation and velocities
are taken from the manoeuvring solver and transferred to the seakeeping solver. Mean-
while, second order forces are calculated in the seakeeping solver and transferred to the
manoeuvring solver. This data exchange is maintained at each time step during the sim-
ulation. The latest development of the two-time scale method uses a seakeeping solver in
the time domain, and the solution of the boundary value problem includes the sway and
yaw velocities as shown by Zhang et al. (2017).

The unified method treats the seakeeping and the manoeuvring theories within a single
set of equations of motion. A conflict in the assumptions used in each independent theory
made the merge difficult. For instance, the assumption of “slow motion derivatives” used
in manoeuvring to obtain hydrodynamic coefficients has been questioned because, in
practice, they are obtained at high frequencies due to the physical limitations of towing
tanks (ITTC 2021). The inclusion of memory effects in the modelling of the forces is also
discussed. Fluid memory effects have been considered by Letki and Hudson (2005) and
Sutulo and Guedes Soares (2006). A common characteristic was the use of the strip theory
method to calculate the wave forces. It should be emphasized that the strip theorymethod
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does not account for surge motion although some approximation can be made. However,
these approaches did not include the second order wave forces.

Cura-Hochbaum and Uharek (2016) and Fournarakis et al. (2016) presented a method
for manoeuvring simulation in waves. The method is based on solving the 4DoF motion
equations in a hybrid coordinate system that follows the ship’s motions except for roll. In
both studies, the authors calculated the hydrodynamic manoeuvring coefficients in calm
water using a RANS solver. To compute the mean second wave forces, Cura-Hochbaum
and Uharek (2016) used a RANS solver, while Fournarakis et al. (2016) opted for a solver
based on potential theory. A common characteristic of these practical methods is the low
accuracy (Shigunov et al. 2018). Further work is needed to better assess the forces as well
as to revise the assumptions under which the forces are calculated.

In summary, the literature review showed that the theory of manoeuvring in waves is
being developed. The experimental studies showed that the drift characteristics in turning
circle manoeuvre and the associated drift direction and drift amplitude depend on wave
length, wave amplitude and propagation direction. Furthermore, the mean average wave
force was shown to be the dominant force during manoeuvres in waves. The addition of
the three new parameters wave height, wave period and propagation direction increases
the number of tests. RANS based simulations of manoeuvring in waves are limited due
to the excessive computational time required for a single case. Practical approaches pro-
vided qualitative predictions, but further research is needed to improve the quantitative
predictions.

1.6 Overview

Themajor challenge in predicting manoeuvring under realistic environmental conditions
is the accurate calculation of the hydrodynamic forces acting on the hull, propeller, and
rudder and their interaction. Two realistic environmental conditions are studied: ma-
noeuvring in shallow water and manoeuvring in waves. For manoeuvring in shallow
water, the focus is on inland waterway ships. Due to their complex propulsion system,
the flow interaction of hull, propeller and rudder is difficult to simulate, which affects
the reliable calculation of forces. For manoeuvring in waves, the focus is on a modern
containership sailing in deep water.

The literature review showed that the numerical prediction of the forces of a fully ap-
pended inland waterway ship has not yet been achieved, but is necessary for the devel-
opment of autonomous ships and for a better understanding of the shallow water effect
on ship manoeuvring. For manoeuvring in waves, the literature review highlighted the
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1.6 Overview

complexity of the problem and the need to explore new ways to improve the accuracy of
the fast methods.

This thesis consists of five further chapters. Chapters 2 and 3 present the fundamen-
tal state-of-the-art theory and the numerical methods used for the research. Chapter 2
presents the fundamental equations of ship dynamics and discusses the available mathe-
matical models. Chapter 3 briefly describes the numerical methods used to calculate the
hydrodynamic forces.

Chapters 4 and 5 present the main contributions of the thesis. Chapter 4 presents
research in the field of ship manoeuvring in shallow water. A mathematical model for
manoeuvring in shallow water is proposed and efficient numerical techniques are pre-
sented to calculate the manoeuvring hydrodynamic coefficients. Validation of forces and
ship trajectories are provided. Chapter 5 presents a mathematical model for manoeuvring
in regular waves. In contrast to previous studies, the equations of motion of the ship are
solved in the inertial coordinate system. Validation of the trajectories of turning circle
manoeuvres in waves is provided.

Chapter 6 provides a general discussion of the research results. It also provides a reflec-
tive evaluation of the study from which the final conclusions are drawn. Finally, possible
topics for further research are suggested.
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2 Ship dynamics and mathematical
manoeuvring models

Considering a ship as a rigid body, six principle motions are possible when sailing on
the open sea. The source of the forces causing the motion may be environmental, such
as waves, wind, or current, in which case the motion is defined as involuntary. Or the
motion may be a consequence of the ship changing its course—voluntary motion—by
means of forces produced by the control surfaces. A third possible type of motion, called
semi-voluntary, could occur as a side effect of a voluntary motion, for example the rolling
of a ship during a turning circle manoeuvre. The characteristics of these types of motion
have been embodied in the division of ship dynamics into two fields: seakeeping and
manoeuvring. Seakeeping studies the involuntary motion caused by wave forces and
manoeuvring studies the voluntary motion caused by the action of the control surfaces.
This division of ship dynamics was made in response to the need to reduce the complexity
of the general ship motion problem.

The fields of seakeeping and manoeuvring have developed independently and the con-
ventions for describing ship motions are specific to each field. However, the separate
studies made in each field have contributed to a better understanding of the nature of the
forces involved in each field. The purpose of the following chapter is to obtain the general
equations of motion of a ship, with particular emphasis on the nonlinear coupling terms
that link all the degrees of freedom.

2.1 Reference frame

Two coordinate systems are used to describe the motions of the ship. The earthbound
inertial coordinate system (Oξηζ) used tomeasure the ship’s position and later to describe
the wave propagation. The body-fixed coordinate system (oxyz), describes the ship’s
kinematic quantities, the geometry of the hull, and the inertial properties of the ship. Its
origin ‘o’ could be located in any part of the ship, its x-axis pointing forward, its y-axis
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2 Ship dynamics and mathematical manoeuvring models

to port, and its z-axis upward. Figure 2.1 shows the coordinate systems and Table 2.1
describes these coordinate systems.

o

x
y

z

O

η

ξ

ζ

Figure 2.1: Coordinate systems

Table 2.1: Description of coordinate systems
Symbol Name Description Type
(Oξηζ) earth-fixed Used to track the ship’s positions and

define wave propagation
Inertial

(oxyz) body-fixed Used to define the ship kinematics, ge-
ometry and moment of inertia

Non inertial

2.1.1 Relation between coordinate systems

For a given point, a unique relation between the coordinate systems exists. For instance,
a point P can be expressed as ~xp = (xp, yp, zp)

ᵀ in the body-fixed coordinate system, or
as ~ξp = (ξp, ηp, ζp)

ᵀ in the inertial coordinate system, as shown in Figure 2.2. These two
representations of the point P are equivalent.

P

o

O

ζ

ξ

y

x
~ξP

~ξo

~xP

Figure 2.2: Relation between coordinate systems. For the same point two equivalent representa-
tions are possible, one in (Oξηζ) and one in (oxyz)
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2.1 Reference frame

In Figure 2.2, ~ξo represents the origin of the body-fixed coordinate system expressed in
the inertial coordinate system. The vector ~ξp can be expressed as a sum of vectors ~ξo and
~xp. Before making the sum, the vector ~xp must be transformed to the inertial coordinate
system. This can be done as follows:

~ξp = ~ξo + T(ϕ, θ, ψ)~xp (2.1)ξpηp
ζp

 =

ξoηo
ζo

+ T(ϕ, θ, ψ)

xpyp
zp

 (2.2)

Where T(ϕ, θ, ψ) is called a transformation matrix and is a function of three rotation
angles (Euler angles): roll angleϕ, pitch angle θ, and yaw angleψ. This matrix transforms
the unit vectors of vector ~xp into the unit vector of the ~ξo. Therefore, equation (2.2) con-
verts any position vector expressed in the body-fixed coordinate system into the inertial
coordinate system (~xp → ~ξp).

2.1.2 Transformation matrix

There are several methods for performing a transformation between two orthogonal co-
ordinate systems (quaternions, Euler angles, directional cosines). In marine dynamics,
Euler angles are commonly used, following the Tait-Bryans “ξ-η-ζ” rotation convention.

To obtain the transformation matrix T(ϕ, θ, ψ), a sequence of rotations from the iner-
tial frame to the body-fixed frame must be performed according to the sequence shown
in Figure 2.3. Where (ox1y1z1) and (ox2y2z2) are intermediate auxiliary coordinate sys-
tems. The sequence order from the inertial to the body-fixed coordinate system is defined
as follows: ψ → θ → ϕ.

ζ = z1 y1 = y2 x2 = x

η

ξ

y1

x1

ψ

x1

z1

x2

z2

θ

z2

y2

z

y

ϕ

Figure 2.3: Sequence of rotations from (Oξηζ) to (oxyz)
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The first rotation in the sequence is yaw. The transformation matrix Sψ relates the
newly rotated coordinate system (ox1y1z1) and the inertial coordinate system (Oξηζ).
The relation between the two coordinate systems reads:ξη

ζ

 =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


x1y1
z1

 (2.3)

The second rotation is pitch. The transformation matrix Sθ , which relates the auxiliary
coordinate systems (ox1y1z1) and (ox2y2z2) reads:x1y1

z1

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


x2y2
z2

 (2.4)

The third rotation is the roll. After this rotation, the coordinate system has landed in the
body-fixed coordinate system. The transformation matrix Sϕ, which relates the auxiliary
coordinate system (ox2y2z2) to the body-fixed coordinate system reads:x2y2

z2

 =

1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ


xy
z

 (2.5)

Therefore the transformation matrix T(ϕ, θ, ψ) that relates the inertial and body-fixed
coordinate systems can be obtained by multiplying the three above rotations in strict
order.

T(ϕ, θ, ψ) = Sψ · Sθ · Sϕ

=

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ



T =

cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ


(2.6)
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Notice that the matrix T is orthogonal i.e. that T−1 = Tᵀ. Thus, the inverse of the
transformation matrix is made by simply transposing the matrix. Therefore, transforma-
tion from inertial coordinate system to body-fixed coordinate system can be done easily.

2.2 Kinematics

A ship moving in three-dimensional space has 6 degrees of freedom (DoF), three transla-
tions that are measured by the position of the body-fixed origin (~ξo) and three rotations
that are measured by the Euler angles ~Θ = (ϕ, θ, ψ)ᵀ. These motions have special names
in naval architecture and are defined in the body-fixed coordinate system. Table 2.2 shows
the definitions and symbols used to describe the ship motions.

Table 2.2: Definition of ship motions
DoF name description velocities

1 surge translation in the x-axis direction u
2 sway translation in the y-axis direction v
3 heave translation in the z-axis direction w
4 roll rotation around x-axis p
5 pitch rotation around y-axis q
6 yaw rotation around z-axis r

2.2.1 Relation between velocities

The translation velocity or simple velocity is a free vector that can be expressed in any
coordinate system. Here, the ship’s velocity is represented in the body-fixed coordinate
system by ~vo = (u, v, w)ᵀ and in the inertial coordinate system by ~̇ξo = (ξ̇, η̇, ζ̇)ᵀ. Both
are related by the transformation matrix T(ϕ, θ, ψ).ξ̇η̇

ζ̇

 = T(ϕ, θ, ψ)

uv
w

 (2.7)

2.2.2 Relation between angular velocities

The body angular velocity is also a free vector and can therefore be represented in any co-
ordinate system. The angular velocity is represented in the body-fixed coordinates system
by ~ω = (p, q, r)ᵀ and in the inertial coordinate system by ~Ω = (ωx, ωy, ωz)

ᵀ. Analogous
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to translation velocities, the angular velocities are related by the transformation matrix
T(ϕ, θ, ψ).

~Ω = T(ϕ, θ, ψ)~ω (2.8)ωxωy
ωz

 = T(ϕ, θ, ψ)

pq
r



However, in order to describe the rotations, it is more advantageous to relate the rate
of change of the Euler angles ~̇Θ = (ϕ̇, θ̇, ψ̇)ᵀ to the body angular velocities ~ω or ~Ω. It
is therefore possible to assume that such a relation is given by a transformation matrix
S(ϕ, θ, ψ) and R(ϕ, θ, ψ) which satisfies the following conditions:

~ω = S(ϕ, θ, ψ)~̇Θ (2.9)

~Ω = R(ϕ, θ, ψ)~̇Θ (2.10)

The above relationship should not be interpreted as a coordinate transformation. It
simply expresses how the body-fixed coordinate system is oriented with respect to the
inertial frame. Furthermore, it can be shown that the matrices S and R do not satisfy the
orthogonal coordinate transformation property i.e. S−1 6= Sᵀ. The matrix S(ϕ, θ, ψ) can
be obtained following the Tait-Bryans ξ-η-ζ sequence rotation.pq

r

 =

ϕ̇0
0

+ Sϕ

0θ̇
0

+ SϕSθ

0

0

ψ̇

 (2.11)

pq
r

 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ


ϕ̇θ̇
ψ̇

 (2.12)

Therefore, by comparing the equations (2.9) and (2.12) gives the expression for the
matrix S(ϕ, θ, ψ). Furthermore, this matrix does not depend on the yaw angle ψ.

S(ϕ, θ, ψ) =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ

 (2.13)
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2.3 Rigid body dynamics

The matrix R(ϕ, θ, ψ) can be obtained from equation (2.8), from which the relation
R = TS stands and the transformation matrix R is defined.

~Ω = T~ω = TS~̇Θ → R = TS

R(ϕ, θ, ψ) =

cosψ cos θ − sinψ 0

sinψ cos θ cosψ 0

− sin θ 0 1

 (2.14)

If the rate of change of the Euler angles is needed, then the inverse matrix S−1(ϕ, θ, ψ)

can be used.

S−1(ϕ, θ, ψ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ

 (2.15)

Notice that S−1(ϕ, θ, ψ) is singular for a pitch angle θ = ±90°. However, no ship
experiences such large pitch motion.

2.3 Rigid body dynamics

Ship dynamics are described by the equations of motion of rigid bodies, first introduced
by Euler. These equations, known as the Newton-Euler equations, are valid only in an
inertial reference frame and are expressed with respect to the centre of gravity (COG).
The general forms can be written as:

~F =
d

dt
(m~UG) = m~̇UG (2.16)

~MG =
d

dt
( ~HG) = ~̇HG (2.17)

where
~F : Total external force
~MG : Total moment of external forces about the COG
m : Mass of rigid body
~UG : Velocity of the COG
m~UG : Linear momentum
~HG : Angular momentum about the COG

All the terms in the Newton-Euler equations must be expressed in the inertial coor-
dinate system. However, sometimes it is easier to calculate forces in the body-fixed co-

17



2 Ship dynamics and mathematical manoeuvring models

ordinate system and transform them later. All moments are about the COG, but can be
calculated at another convenient point (amidship) and then transferred to the COG.

2.3.1 Position and motions of the centre of gravity

For general simulation purpose it is convenient to express the Newton-Euler equations
on the origin of the body-fixed coordinate system, which not always coincide with the
centre of gravity. Therefore, the Newton-Euler equations will be expressed as a function
of the origin of the body-fixed coordinate system. The vector ~rG define the position of
the centre of gravity in the body-fixed coordinate system. Thus, following equation (2.1)
the position of the centre of gravity in the inertial coordinate system reads

~ξG = ~ξo + T~rG (2.18)

The corresponding velocity and acceleration are obtained by direct time derivation in
the earth-fixed frame. For instance, the velocity reads

~UG =
d

dt
~ξG =

d

dt
~ξo +

d

dt
T~rG (2.19)

~̇ξG = ~̇ξo + Ṫ~rG + T~̇rG (2.20)

~̇ξG = ~̇ξo + T(~ω × ~rG) (2.21)

In this equation the term ~̇ξG is the velocity of the ship’s centre of gravity and ~̇ξo is
the velocity of the origin of the body-fixed coordinate system. Both expressed in the
inertial coordinate system. ~ω is the angular velocity expressed in the body-fixed coordi-
nate system. Note that the position of the centre of gravity is constant on the body-fixed
coordinate system (rigid body assumption ~̇rG = 0).

The acceleration of the centre of gravity can be obtained as the time derivative of the
velocity.

~̇UG =
d

dt
~̇ξo +

d

dt
T(~ω × ~rG) (2.22)

~̇UG = ~̈ξG = ~̈ξo + T
[
~̇ω × ~rG + ~ω × (~ω × ~rG)

]
(2.23)
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2.3 Rigid body dynamics

2.3.2 Angular momentum at centre of gravity

The angular momentum ~HG in equation (2.17) can be described better in the body-fixed
coordinate system.

~HG = T~hG (2.24)

~hG = ~ho −m~rG × (~ω × ~rG) (2.25)

where ~hG is the angular momentum about the COG and ~ho about the origin of the
body-fixed coordinate system. This angular momentum is calculated as:

~ho =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


pq
r

 = Io~ω (2.26)

where Io is the moment of inertia tensor calculated with respect to the origin of the
body-fixed coordinate system. Note that Io is constant in the body-fixed coordinate sys-
tem and if all the masses mi belonging to the ship and its load are fixed to the ship, the
moment of inertia can be calculated as follows:

Io =


∑

imi(y
2
i + z2i ) −

∑
imixiyi −

∑
imixizi

−
∑

imiyixi
∑

imi(x
2
i + z2i ) −

∑
imiyizi

−
∑

imizixi −
∑

imiziyi
∑

imi(x
2
i + y2i )

 (2.27)

The time derivative of the angular momentum is needed in equation (2.17). This, is
computed as:

d

dt
( ~HG) =

d

dt
(T~hG) =

d

dt
T
[
~ho −m~rG × (~ω × ~rG)

]
(2.28)

=
d

dt
(T~ho)−m

d

dt
T
[
~rG × (~ω × ~rG)

]
(2.29)

= T(~̇ho + ~ω × ~ho)−mT
[
~rG × (~̇ω × ~rG)

]
(2.30)

2.3.3 Eqation of motion with respect to a generic point

The equations in (2.16) and (2.17) are written in relation to the ship’s centre of gravity.
However, it is more convenient to relate the equations to the origin of the body-fixed
coordinate system. This allows for example, a direct comparison with experimental mea-
surements. In experiments it is easier to measure forces and motions at amidship than at
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the COG. Transferring the force andmoment from the COG to the origin of the body-fixed
coordinate system gives the equations:

m
d

dt
(~UG) = ~F (2.31)

d

dt
( ~HG) = ~Mo − T~rG × ~F (2.32)

Replacing equation (2.23) into equation (2.31) gives:

m
[
~̈ξo + T(~̇ω × ~rG) + T

[
~ω × (~ω × ~rG)

]]
= ~F (2.33)

Similarly, replacing equations (2.30) and (2.33) into equation (2.32) the moment equa-
tion becomes:

T(~̇ho+~ω×~ho)−mT
[
~rG×(~̇ω×~rG)

]
= ~Mo−mT~rG×

[
~̈ξo + T(~̇ω × ~rG) + T

[
~ω × (~ω × ~rG)]

]
(2.34)

performing operations on the right-hand side of the above equation, it reduces to:

T(~̇ho+~ω×~ho)−mT
[
~rG× (~̇ω×~rG)

]
= ~Mo−mT~rG× ~̈ξo−mT

[
~rG× (~̇ω×~rG)

]
(2.35)

where the second term on the left-hand side and the last term on the right hand side
cancel each other out and the equation is simplified to:

T(~̇ho + ~ω × ~ho) +mT~rG × ~̈ξo = ~Mo (2.36)

Therefore, the ship dynamic equation generalized to a point that coincides with the
origin of the body-fixed coordinate system reads

m~̈ξo +mT(~̇ω × ~rG) +mT
[
~ω × (~ω × ~rG)

]
= ~F (2.37)

T~̇ho + T(~ω × ~ho) +mT~rG × ~̈ξo = ~Mo (2.38)

2.3.4 Eqations of motion in body-fixed coordinate system

The equations of motion can be expressed entirely using only vectors in the body-fixed
coordinate system. This form of representation is used extensively in the analysis of
manoeuvring in calm water. Thus, equations (2.37) and (2.38) will be transformed from
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2.3 Rigid body dynamics

the earth coordinate system into the body-fixed one. For that, the acceleration of the
origin of the body-fixed coordinate system is expressed as:

~̈ξo =
d

dt
(~Uo) = T(~̇vo + ~ω × ~vo) (2.39)

where ~vo = (u, v, w)ᵀ is the velocity and ~̇vo = (u̇, v̇, ẇ)ᵀ the acceleration of the origin
of the body-fixed coordinate system, both expressed in the body-fixed frame. Replacing
the above values into the equations (2.37) and (2.38) the equations yield

mT(~̇vo + ~ω × ~vo) +mT(~̇ω × ~rG) +mT
[
~ω × (~ω × ~rG)

]
= ~F (2.40)

T~̇ho + T(~ω × ~ho) +mT
[
~rG × (~̇vo + ~ω × ~vo)

]
= ~Mo (2.41)

Multiplying both equations by the inverse transformation matrix T−1, the equation
becomes

m(~̇vo + ~ω × ~vo) +m~̇ω × ~rG +m~ω × (~ω × ~rG) = ~f (2.42)

~̇ho + ~ω × ~ho +m~rG × (~̇vo + ~ω × ~vo) = ~mo (2.43)

where ~f = T−1 ~F and ~mo = T−1 ~Mo are respectively the force and moment expressed
in the body-fixed coordinate system. Regrouping terms the equation reads

m(~̇vo + ~̇ω × ~rG) +m~ω × ~vo +m~ω × (~ω × ~rG) = ~f (2.44)

(~̇ho +m~rG × ~̇vo) + ~ω × ~ho +m~rG × (~ω × ~vo) = ~mo (2.45)

The above equations represent the rigid body equations of motion expressed in the
body-fixed coordinate system. These equations are also found in classical mechanics of
rigid bodies (Lurie 2002). Equation (2.44) relates to the total external force ~f acting on the
body with the translatory acceleration ~̇vo, angular acceleration ~̇ω, translatory velocity
~vo, angular velocity ~ω, the position of the centre of gravity ~rG and the body mass m.
Similarly, equation (2.45) relates to the total external moment ~mo acting on the body with
the angular momentum ~̇ho and with the variables already described. Note that the sub-
index ‘o’ indicates that the quantity is measured at the origin of the body-fixed coordinate
system.

It is common to present the equations of motion in a decoupled form. Using vector
components ~f = (X,Y, Z)ᵀ, ~mo = (K,M,N)ᵀ, ~rG = (xG, yG, zG)

ᵀ and following
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2 Ship dynamics and mathematical manoeuvring models

vector algebraic analysis and rearrangement of terms of equations (2.44) and (2.45) , the
6DoF rigid body equation of motions reads

m[u̇− vr + wq − xG(q
2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = X (2.46)

m[v̇ − wp+ ur − yG(r
2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)] = Y (2.47)

m[ẇ − uq + vp− zG(p
2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Z (2.48)

Ixxṗ+ (Izz − Iyy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)] = K (2.49)

Iyy q̇ + (Ixx − Izz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz

+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = M (2.50)

Izz ṙ + (Iyy − Ixx)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+m[xG(v̇ − wp+ ur)− yG(u̇− vr + wq)] = N (2.51)

2.3.5 Eqations of motion in inertial coordinate system

The rigid body equations are expressed in vector form in equations (2.37) and (2.38) , with
some vectors expressed in the inertial coordinate system and others in the body-fixed
coordinate system. Seakeeping uses the linearized version of these equations expressed
in an inertial frame moving straight ahead at the ship’s average speed. However, the
seakeeping equations are not valid for general curvilinear ship motions. For this reason,
the nonlinear equation expressed in the inertial coordinate system is derived here. The
mainmotivation for deriving these equations is their use in manoeuvring in waves, where
wave propagation and spatial constraints can be described directly in this reference frame.

1. Momentum equation

Themomentum equation was presented in equation (2.37) and is rewritten below. Now
the equation should be written in matrix-vector formwith terms in the inertial coordinate
system only. For this task, the skew symmetric matrix (Sw) is used in order to convert the
cross vector product into a matrix-vector multiplication (details of the skew symmetric
matrix are given in Appendix A.

~F = m~̈ξo +mT(~̇ω × ~rG) +mT[~ω × (~ω × ~rG)]

= m~̈ξo +mTSwᵀ(~rG)~̇ω +mTSw(~ω)Sw(~ω)~rG (2.52)

= m~̈ξo +mT
{
Swᵀ(~rG)~̇ω + Sw(~ω)Sw(~ω)~rG

}
(2.53)
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2.3 Rigid body dynamics

where

(a) the matrix-vector multiplication Swᵀ(~rG)~̇ω is

Swᵀ(~rG)~̇ω =

 0 zG −yG
−zG 0 xG

yG −xG 0


︸ ︷︷ ︸

G1

ṗq̇
ṙ

 = G1~̇ω (2.54)

(b) the matrix-vector multiplication Sw(~ω)Sw(~ω)~rG is

Sw(~ω)Sw(~ω)~rG =

 0 −r q

r 0 −p
−q p 0


 0 −r q

r 0 −p
−q p 0


xGyG
zG

 (2.55)

=

−q
2 − r2 pq rp

pq −p2 − r2 rq

rp rq −p2 − q2


xGyG
zG

 (2.56)

=

 0 zG yG

zG 0 xG

yG xG 0


︸ ︷︷ ︸

G2

qrrp
pq


︸ ︷︷ ︸
~ω1

−

 0 xG xG

yG 0 yG

zG zG 0


︸ ︷︷ ︸

G3

p
2

q2

r2


︸ ︷︷ ︸
~ω2

(2.57)

= G2~ω1 − G3~ω2 (2.58)

Thus, the momentum equation yields

~F = m~̈ξo +mT
(
G1~̇ω + G2~ω1 − G3~ω2

)
(2.59)

Where matrices G1, G2 and G3 only depend on the ship centre of gravity.

2. Angular momentum equation

The angular momentum equation was presented in equation (2.38), which is rewritten
below. Again, the body acceleration should be expressed in the inertial coordinate sys-
tem. However, it is more advantageous to express the angular momentum in the body
coordinate system. This is done, because themoment of inertia of a given body is constant
in relation to the body-fixed coordinate system.

~Mo =
d

dt
T~ho +m(T~rG)× ~̈ξo
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2 Ship dynamics and mathematical manoeuvring models

where:

(a) the angular momentum ~ho in body-fixed coordinate system can be expressed as a
multiplication of the inertia tensor Io and the body angular velocity ~ω:

~ho =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


pq
r

 = Io~ω (2.60)

(b) the time derivative of the momentum d
dtT~ho is:

d

dt
T~ho = T

(
~̇ho + ~ω × ~ho

)
(2.61)

= T
(
Io~̇ω + ~ω × (Io~ω)

)
(2.62)

Expressing the vector cross product as a matrix-vector multiplication, the equation
reads:

d

dt
T~ho = T

(
Io~̇ω + Sw(~ω)Io~ω

)
(2.63)

(c) the term Sw(~ω)Io~ω can be written as:

Sw(~ω)Io~ω =

 0 −r q

r 0 −p
−q p 0


 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


pq
r

 (2.64)

=

(Izz − Iyy) Iyx −Izx
−Ixy (Ixx − Izz) Izy

Ixz −Iyz (Iyy − Ixx)


︸ ︷︷ ︸

I2

qrrp
pq


︸ ︷︷ ︸
~ω1

+

 0 −Izy Iyz

Izx 0 −Ixz
−Iyx Ixy 0


︸ ︷︷ ︸

I1

p
2

q2

r2


︸ ︷︷ ︸
~ω2

(2.65)

= I2~ω1 + I1~ω2 (2.66)
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2.3 Rigid body dynamics

(d) For the term (T~rG) × ~̈ξo: the position of the centre of gravity expressed in the
inertial coordinate system is given by T~rG = (Gξ, Gη, Gζ)

ᵀ and the cross product can be
written as:

(T~rG)× ~̈ξo = Sw(T~rG)~̈ξo =

 0 −Gζ Gη

Gζ 0 −Gξ
−Gη Gξ 0


︸ ︷︷ ︸

G

ξ̈oη̈o
ζ̈o

 = G~̈ξo (2.67)

Therefore the angular momentum can be written as

~Mo = T
(
Io~̇ω + I2~ω1 + I1~ω2

)
+mG~̈ξo (2.68)

where the matrices Io, I1 and I2 depend only on the components of the inertial tensor.
MatrixG depends on the position of the centre of gravity and the Euler angles. Therefore,
the translation and angular momentum equations are:

~F = m~̈ξo +mT
(
G1~̇ω + G2~ω1 − G3~ω2

)
(2.69)

~Mo = mG~̈ξo + T
(
Io~̇ω + I2~ω1 + I1~ω2

)
(2.70)

3. Equations with generalized variables

The equations of motion of a rigid body can be solved using six generalized variables
(~ξo, ~Θ)ᵀ = (ξo, ηo, ζo, ψ, θ, ϕ)

ᵀ. The first three variables correspond to the ship’s position
and the last three to its orientation. The angular acceleration ~ω = (ṗ, q̇, ṙ)ᵀ on equations
(2.69) and (2.70) is replaced by the generalised velocity ~̇Θ = (ψ̇, θ̇, ϕ̇)ᵀ. This can be done
using equation (2.12) which states

~ω = S−1(ϕ, θ, ψ)~̇Θpq
r

 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ


ϕ̇θ̇
ψ̇

 =

 ϕ̇− ψ̇ sin θ
θ̇ cosϕ+ ψ̇ cos θ sinϕ
−θ̇ sinϕ+ ψ̇ cos θ cosϕ

 (2.71)
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2 Ship dynamics and mathematical manoeuvring models

making a time derivative of the above expressionṗq̇
ṙ

 =

 ϕ̈− ψ̈ sin θ − ψ̇θ̇ cos θ
θ̈ cosϕ− θ̇ϕ̇ sinϕ+ ψ̈ cos θ sinϕ− ψ̇θ̇ sin θ sinϕ+ ψ̇ϕ̇ cos θ cosϕ
−θ̈ sinϕ− θ̇ϕ̇ cosϕ+ ψ̈ cos θ cosϕ− ψ̇θ̇ sin θ cosϕ− ψ̇ϕ̇ cos θ sinϕ

 (2.72)

which can be expressed as:ṗq̇
ṙ

 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ


︸ ︷︷ ︸

Q1

ϕ̈θ̈
ψ̈


︸︷︷︸
~̈Θ

+

 0 − cos θ 0

− sinϕ − sin θ sinϕ cos θ cosϕ
− cos θ − sin θ cosϕ − cos θ sinϕ


︸ ︷︷ ︸

Q2

ϕ̇θ̇θ̇ψ̇
ψ̇ϕ̇


︸ ︷︷ ︸
~̇Θ1

(2.73)

therefore:
~̇ω = Q1

~̈Θ+ Q2
~̇Θ1 (2.74)

Substituting the above expressions into equations (2.69) and (2.70) gives:

~F = m~̈ξo +mT
(
G1Q1

~̈Θ+ G1Q2
~̇Θ1 + G2~ω1 − G3~ω2

)
(2.75)

~Mo = mG~̈ξo + T
(
IoQ1

~̈Θ+ IoQ2
~̇Θ1 + I2~ω1 + I1~ω2

)
(2.76)

or better:

~F = m~̈ξo +mTG1Q1
~̈Θ+mT

(
G1Q2

~̇Θ1 + G2~ω1 − G3~ω2

)
(2.77)

~Mo = mG~̈ξo + TIoQ1
~̈Θ+ T

(
IoQ2

~̇Θ1 + I2~ω1 + I1~ω2

)
(2.78)
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2.4 External forces

Now it is possible to join equations (2.77) and (2.78) in one equation involving all the
generalised variables (~̈ξo, ~̈Θ)ᵀ = (ξ̈o, η̈o, ζ̈o, ϕ̈, θ̈, ψ̈)

ᵀ. The result is a matrix-vector equa-
tion involving all six degrees of freedom[
mI mTG1Q1

mG TIoQ1

][
~̈ξo

~̈Θ

]
+

[
mTG1Q2

TIoQ2

][
~̇Θ1

]
+

[
mTG2

TI2

][
~ω1

]
+

[
−mTG3

TI1

][
~ω2

]
=

[
~F

~Mo

]
(2.79)

2.4 External forces

The external forces expressed in equation (2.37) can be subdivided according to the nature
of the force, such as hydrodynamic Fh, hydrostatic Fs, gravitational Fg and other external
forces Fr such as wind. Here the force and moment are written together as a generalised
vector as follows:

F =

[
~F

~Mo

]
(2.80)

F = Fh + Fs + Fg + Fr (2.81)

In the present study, the hydrodynamic forces acting on the ship can be caused by
the disturbance of the flow created by a rudder deflection (manoeuvring forces) or by
the disturbance of the flow by waves (seakeeping forces). In both cases, the disturbances
change the flow velocity and pressure around the ship, creating hydrodynamic forces that
modify the dynamic state of the ship. From now on, unless otherwise stated, forces and
moments will be referred to simply as forces.

2.4.1 Gravitational forces

Adirect consequence of gravity is theweight of the ship. The direction of gravity is always
aligned with the vertical-axis of the inertial frame ζ , as shown in Figure 2.4. Furthermore,
theweight acts as a vector force through the centre of gravity of the ship and in the inertial
frame the force is written as shown in equation (2.82).

~Fg = mg

 0

0

−1

 (2.82)
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ζ

η

G

z

y

o
~Fg

Figure 2.4: Gravitational force calcualtion variables

wherem is the mass of the ship and g is the gravity acceleration. Note, that this force
does not produce a moment about the centre of gravity, but about the origin of the coor-
dinate system. Thus, the generalized gravitational force reads:

Fg =

[
~Fg

~rG × ~Fg

]
(2.83)

2.4.2 Hydrostatic forces

Hydrostatic forces and moments can be calculated directly if the hydrostatic pressure and
ship geometry are known. Typically, the ship is discretized into small panels in the body-
fixed coordinate system. A point on the hull surface is denoted by ~r and the vector normal
to the surface is ~n, as shown in Figure 2.5. The hydrostatic pressure is calculated directly
in the inertial coordinate system as p = ρgζr . Then the hydrostatic force and moment
can be calculated as:

~Fs =

∫∫
S
pT~n dS (2.84)

~Ms =

∫∫
S
pT[(~r − ~rG)× ~n] dS (2.85)

where S is the wetted ship surface below the free surface, T is the transformation ma-
trix and ~rG us the centre of gravity position. Note that the hydrostatic force and moment
are calculated in the inertial coordinate system. Thus the generalized hydrostatic force
reads:

Fs =

[
~Fs
~Ms

]
(2.86)
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Figure 2.5: Hydrostatic force calculation variables

2.4.3 Hydrodynamic forces

Hydrodynamic forces are of two types, shear force and pressure force. The shear force
acts tangential to the surface of a body, while the pressure force—which includes only the
contribution of the dynamic pressure—acts perpendicular to the surface. Hydrodynamic
forces are the most difficult of all forces to calculate because they require the fluid flow
around the ship to be resolved. The numerical methods used to resolve the fluid flow
around the ship are described in the next chapter.

2.5 Manoeuvring mathematical models

Manoeuvring mathematical models are a simplified expression of the forces acting on
the ship during rudder manoeuvres. Two main types of models can be found in the lit-
erature. The formal mathematical model, also known as Abkowitz-type model, inspired
by the multi-variable Taylor’s expansion and the modular model, based on physical ob-
servations (Clarke 2003; Sutulo and Guedes Soares 2011). Both types use hydrodynamic
coefficients, which are assumed to be constant, and ship dynamic parameters to calcu-
late the forces. The main difference between the two approaches is how they treat the
interaction between the hull, propeller and rudder.

Abkowitz-type manoeuvring models assume that the ship’s hull, propeller and rudder
are a single system. This means that interactions between its parts are internally balanced
and no description of their interactions is required. This allows high accuracy over a range
of manoeuvres. At the same time, it implies that no internal part of this system can be
modified or changed. Some examples of this model can be found in Abkowitz (1964),
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Mucha (2017), and Wolff (1981). The hydrodynamic force is expressed as a function of the
ship’s acceleration, velocity, rudder deflection δ, and propeller rotation rate n.

Fh = F(~̇v, ~̇ω,~v, ~ω, δ, δ̇, n, ṅ; t) (2.87)

Abkowitz-type model Modular model

Figure 2.6: Abkowitz based models (left) express the hydrodynamic forces of hull, propeller and
rudder together. Modular models (right) express the hull, propeller and rudder inde-
pendently and approxmate their interaction

Modular models separate the ship’s hull, propeller and rudder as independent modular
elements. Therefore, in addition to calculating the hydrodynamic forces of each modular
component, the relevant interaction effects between the modules should also be mod-
elled. This allows modular models to change the propeller or rudder without affecting
the other modules. Only their interaction needs to be corrected. This property is particu-
larly attractive in early ship design, where several prototypes need to be considered. The
flexibility of modular approaches is also used to perform more complex manoeuvres and
is commonly used in manoeuvring simulators. Some examples of this model can be found
in Norrbin (1960), Oltmann and Sharma (1984), and Yasukawa and Yoshimura (2015). The
hydrodynamic forces of modular models are expressed as the sum of their components.

Fh = Fhull + Fpropeller + Frudder (2.88)

Figure 2.6 sketches the Abkowitz-type model, where the propeller and rudder are fixed
to the ship and form a single system. In the modular model, the propeller and rudder are
separate modules that can be coupled to the hull. In the present study, the Abkowitz-type
model is preferred because higher accuracy for specific manoeuvring scenarios, such as
collision avoidance, is required for training autonomous ship algorithms.
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2.5 Manoeuvring mathematical models

2.5.1 Formal mathematical models

The formal mathematical models are based on Abkowitz (1964) and Abkowitz (1969), who
proposed a Taylor expansion of the hydrodynamic forces in terms of ship kinematic pa-
rameters and rudder deflection for the 3DoF planar motions. The expansion is made from
a reference forward speed u = U0 and v = r = δ = 0. Within the formal mathe-
matical models, relevant modifications of the original Abkowitz formulation have been
introduced by Wolff (1981) and Mucha (2017).

Note that the proposed mathematical models are not general, but rather depend on the
type of ship and the environmental conditions, such as deep or shallow water. Never-
theless, the mathematical expression can be adapted to new conditions by adding some
additional terms. The original model of Abkowitz reads:

X =Xu̇u̇+Xu∆u+Xuu∆u
2 +Xuuu∆u

3 +Xvvv
2 +Xrrr

2 +Xδδδ
2

+Xvrvr +Xvδvδ +Xrδrδ +Xvvuv
2∆u+Xrrur

2∆u+Xδδuδ
2∆u

+Xvruvr∆u+Xvδuvδ∆u+Xrδurδ∆u (2.89)

Y =Y0 + Yv̇v̇ + Yṙṙ + Yvv + Yrr + Yδδ + Yvuv∆u+ Yrur∆u+ Yδuδ∆u

+ Yvvvv
3 + Yrrrr

3 + Yδδδδ
3 + Yvrrvr

2 + Yrvvrv
2

+ Yvδδvδ
2 + Yrδδrδ

2 + Yvuuv∆u
2

+ Yruur∆u
2 + Yδvvδv

2 + Yδrrδr
2 + Yδuuδ∆u

2

+ Yrvδrvδ (2.90)

N =N0 +Nv̇v̇ +Nṙṙ +Nvv +Nrr +Nδδ +Nvuv∆u+Nrur∆u+Nδuδ∆u

+Nvvvv
3 +Nrrrr

3 +Nδδδδ
3 +Nvrrvr

2 +Nrvvrv
2

+Nvδδvδ
2 +Nrδδrδ

2 +Nvuuv∆u
2

+Nruur∆u
2 +Nδvvδv

2 +Nδrrδr
2 +Nδuuδ∆u

2

+Nrvδrvδ (2.91)

where ∆u = u−U0 is the variation of the surge velocity from the approach speed. In
the expansion, terms higher than third order are considered small and therefore negligible.
Here, a simplified notation is used to relate the force and the hydrodynamic coefficients.
For example, the simplified notation of equation (2.89) reads:

X : u̇, ∆u, ∆u2, ∆u3, v2, r2, δ2, vr, vδ, rδ,

v2∆u, r2∆u, δ2∆u, vr∆u, vδ∆u, rδ∆u (2.92)
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Table 2.3 shows the mathematical models proposed by Abkowitz, Wolff and Mucha us-
ing the simplified notation for a better comparison. In the Abkowitz-model, the hull port-
starboard symmetry of the hull is used to disregard odd components in the surge force
and even components in sway force and yawmoment. Ships with single-screw propellers
generate lateral forces, which are captured by the coefficients Y0 andN0. However, Wolff
has added the deleted coefficients, arguing that Y0 and N0 are insufficient to capture the
asymmetry of the forces. Furthermore, Wolff argues that a better representation of the
forces is possible by including more terms. For instance, rudder coefficients of fourth and
fifth order are used to better capture the rudder forces at large angles.

Mucha (2017) performed a sensitivity study of all the coefficients in the Wolff-model.
Mucha varied each coefficient by 20% and evaluated its effect on manoeuvring. The turn-
ing circle tactical diameter and zig-zag overshoot angle were evaluated. If the deviation
was less than 5%, the coefficient was dropped. As a result, Mucha proposed a reduced
model in which only the most relevant coefficients were retained.

Table 2.3: Formal mathematical models. The number 1 represents the constant coefficient Y0 or
N0. The Abkowitz-model contains 62 coefficients, Wolff-model 84 coefficients, and
Mucha-model 31 coefficients.

Model X Y & N

Abkowitz u̇, ∆u, ∆u2, ∆u3, 1, v̇, ṙ, v, r, δ,
v2, r2, δ2, vr, vδ, rδ, v3, r3, δ3, vr2, rv2, vδ2, rδ2,
v2∆u, r2∆u, δ2∆u, v∆u2, r∆u2, δv2, δr2, δ∆u2,
vr∆u, vδ∆u, rδ∆u v∆u, r∆u, δ∆u, rvδ

Wolff u̇, u̇u2, u, u2, v2, r2, δ2, 1, v̇, v̇v2, ṙ, ṙr2, ∆u, ∆u2,
v2∆u, r2∆u, vr, vδ, rδ, v, v2, v3, v∆u, v∆u2, vr2, vδ2,
vr∆u, vδ∆u, rδ∆u, r, r2, r3, r∆u, r∆u2, rv2, rδ2,
v, v∆u2, r, r∆u, r∆u2, δ, δ4, δ5, δv2, δr2

δ, v2δ, r2δ, v2r, vr2, δ4 v|v|, r|r|, δ|δ|
Mucha u̇, ∆u, ∆u2, 1, v̇, ṙ, v, r, δ, v3, r3, δ3,

v2, r2, δ2, vr vr2, rv2, δ∆u

Mucha’s reduced model is attractive because it provides a base model that captures the
essential manoeuvring features. It should be noted that these coefficients were obtained
using only three seagoing ships (tanker, mariner and ferry) with single-screw propellers
and cannot be generalized. Nevertheless, a more complex model can be built on the basis
of the Mucha-model.

Another important characteristic of the models is the number of coefficients, which
need to be determined. TheAbkowitz-model has a total of 62 coefficients, theWolff-model
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Figure 2.7: Drift test with constant speed U and constant drift angle β. All variables are positive

has 84 coefficients, and the Mucha-model has 31 coefficients. In general, the greater the
number of coefficients, the greater the number of tests required to identify them.

2.5.2 Hydrodynamic coefficient identification

There are twomainmethods for obtaining the hydrodynamic coefficients: direct and indi-
rect system identification. The direct system identification method uses forces measured
from captive model tests. Nowadays, these captive tests can be replaced by CFD calcula-
tions. The indirect system identification method uses kinematic measurements from free
running manoeuvring tests or ship trials to obtain the hydrodynamic coefficients.

For the direct system identification captive model tests are required. These model tests
are carried out in specialized hydrodynamic facilities where the environmental conditions
are controlled. The tests can be divided into two groups, the steady tests, which aim to
achieve a steady-state condition during the test, and the dynamic tests, which use the
planar motion mechanism (PMM) to impose a harmonic motion on the ship model. The
steady tests are used to obtain coefficients that depend on velocities, whereas the dynamic
tests are used to obtain coefficients that depend on both velocity and acceleration. The
steady tests are preferred because they provide frequency independent coefficients.

An example of a steady captive test is the oblique resistance test, also known as the drift
test, as shown in Figure 2.7. The ship is towed at a constant speed U and a constant drift
angle β. The process is repeated for different drift angles, and the forces and moments are
measured together with the sinkage and trim. Similarly, steady rudder tests are carried
out, but instead of the drift angle, the rudder angle is varied in each test.

Dynamic tests impose the ship model to move harmonically on the ξ-η plane. This
means that the position and velocities of themodel follow a harmonicmotion. Three types
of harmonic motion are often used: pure sway, pure yaw and yaw with drift motion. In
the pure sway test, the model sways harmonically while advancing with constant surge
speed, and the yaw motion is constrained to ψ = 0. Figure 2.8 shows a ship model
performing a pure sway motion around the centre-line of a towing tank. The carriage
moves at constant velocity U0 while the model is forced to oscillate in sway with an

33



2 Ship dynamics and mathematical manoeuvring models

amplitude y0. The oscillation is completed every 2πU0/ω. The sway velocity and sway
acceleration are also harmonic. The period of the oscillation T = 2π/ω characterizes the
movement.

ξ

η

ξ = 0 ξ = πU0
2ω ξ = πU0

ω ξ = 3πU0
2ω ξ = 2πU0

ω

y0 ψ = 0

x
y

t

v,v̇
v(t)

v̇(t)

t = 0 t = π
2ω t = π

ω t = 3π
2ω t = 2π

ω

Figure 2.8: Pure sway planar motion with period T = 2π/ω

Figure 2.9 shows the pure yaw test, where the ship model is forced to yaw harmonically
but it is not allowed to sway. This is achieved by forcing the ship’s model orientation to
follow the ship’s path tangentially, as shown in Figure 2.9. The drift angle is therefore
zero at all times (β = 0), which means there is no sway velocity.

Once the forces andmoments have been obtained from the captive tests, amultivariable
regression is performed to identify the hydrodynamic coefficients. A common procedure
is to obtain the coefficients step by step, where a test is used to find coefficients that
are directly dependent on the variable that was varied in the captive test, thus reducing
the number of coefficients to be identified in each step. Alternatively, a procedure based
on linear regression using all tests simultaneously may be more advantageous, as this
approach minimizes the global error of the system identification.
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Figure 2.9: Pure yaw planar motion with period T = 2π/ω
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3 Numerical methods

Accurate calculation of external forces is the key component in predicting ship dynam-
ics. Due to the different nature of the external forces, different numerical methods were
used to calculate these forces. Viscous related forces were calculated using the Reynolds-
averaged Navier-Stokes (RANS) equations. The added masses were calculated using the
Euler equations. The commercial solver STAR-CCM+ (Siemens Digital Industries Soft-
ware 2021) was used for both methods. Finally, the wave-induced forces were calculated
using potential flow theory by means of the GLRankine solver (von Graefe 2014). A brief
summary of these three numerical methods is given in this chapter.

3.1 Reynolds-averaged Navier-Stokes eqations

The Reynolds-averaged Navier-Stokes equations are one of the best practical methods for
modelling complex turbulent flows. A detailed derivation of the equations and description
of the method can be found in Ferziger et al. (2020). The RANS equations are derived from
the continuity equation (3.1) and the Navier-Stokes equation (3.2), which represent the
conservation ofmass andmomentum, respectively, of a control volume. Although solving
theNavier-Stokes equations, (3.1) and (3.2), should be sufficient to determine the turbulent
flow around the ship, the numerical solution of these equations formarine hydrodynamics
is still practically impossible. The Navier-Stokes equations for incompressible flows are
as follows:

∂

∂t

∫
V
ρdV +

∫
S
ρv · ndS = 0 (3.1)

∂

∂t

∫
V
ρvdV +

∫
S
ρvv · ndS =

∫
S
(τ − pI) · ndS +

∫
V
ρbdV (3.2)

where ρ is the fluid density, t is time, V is the volume of a control volume (CV), S is
the boundary surface of a control volume, n is an outward surface normal vector, v is a
velocity vector of the fluid, p is pressure, b is a body force per unit mass, I is the unit
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tensor, and τ is the viscous stress tensor defined in equation (3.3) , with µ being the fluid
dynamic viscosity, also known as molecular viscosity, and D the rate of strain tensor.

τ = µ
[
∇v+ (∇v)T

]
= 2µD, with D =

1

2

[
∇v+ (∇v)T

]
(3.3)

A direct numerical simulation (DNS), which is the numerical solution of the Navier-
Stokes equations, requires extremely fine discretizations in space and time to resolve all
turbulent vortex scales. It is well known that the size of turbulent vortices decreases with
increasing Reynolds number. This increases the difficulty of performing DNS, especially
in marine hydrodynamics, which is characterized by high Reynolds number flows.

In many marine applications, the variable of interest is an averaged value, such as ship
resistance. In these cases, the Reynolds-averaged Navier-Stokes (RANS) equations can be
used. In general, ensemble averaging of the Navier-Stokes equations is used to derive the
transient RANS equations and the time-averaging of the Navier-Stokes equations is used
to derive the steady state RANS equations. Their derivation is based on the assumption
that velocities and pressures are decomposed into mean values and turbulent fluctuations
as follows:

v = v+ v′ and p = p+ p′ (3.4)

where v and p are the time averages of velocity and pressure, respectively, and v′ and
p′ are their fluctuations. This time-averaging of the Navier-Stokes equations, introduced
by Reynolds, represents a statistical consideration of turbulence. This approach is appro-
priate for most engineering applications, where only the average flow quantities are of
interest. Inserting equation (3.4) into the Navier-Stokes equations and averaging them
(note that averages of fluctuating quantities are by definition zero) gives the Reynolds-
averaged Navier-Stokes equations:

∂

∂t

∫
V
ρdV +

∫
S
ρv · ndS = 0 (3.5)

∂

∂t

∫
V
ρvdV +

∫
S
ρv v · ndS =

∫
S
(τ − pI− ρv′v′) · ndS +

∫
V
ρbdV (3.6)

The averaging process of most terms produces only their mean value, but the averaging
of the convective term ρvv results in an additional term with six new unknowns of the
form ρv′v′. Analogous to the viscous stress tensor, τ , this term is called the Reynolds
stress tensor, although it describes a transport process and must be modelled to close the
system of equations.
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3.1 Reynolds-averaged Navier-Stokes equations

3.1.1 Turbulence modelling

The aim of the turbulence modelling is to provide a closure for the RANS equations. From
the literature, two main approaches appear to be appropriate for ship hydrodynamics:
eddy viscosity models and the Reynolds stress transport model. A detailed explanation
of turbulence modelling can be found in Wilcox (1993).

Eddy viscosity models are based on the Boussinesq approximation, which assumes that
the Reynolds stress is a linear function of the mean velocity gradients. For incompressible
flows, this reads as follows:

τR = −ρv′v′ = µt
[
∇v+ (∇v)T

]
− 2

3
ρkI (3.7)

where µt is the turbulent eddy viscosity, which is flow dependent, and k is the turbulent
kinetic energy defined as follows:

k =
1

2
v′ · v′ (3.8)

This model of the Reynolds stress is called the eddy viscosity model because of its
analogy to the viscous stress tensor and molecular viscosity. This model reduces the six
unknowns of the Reynolds stress tensor, ρv′v′, to the two unknowns µt and k. The k-ε
and the k-ω turbulence models are typical examples of eddy viscosity models. In this the-
sis, the k-ω shear-stress-transport (SST) variant of Menter (1994) was used. This method
combines the k-ε and k-ω models, taking advantage of the better prediction of the k-ε
model in the shear layers and the better prediction of the k-ω model in the boundary lay-
ers. It should be noted that this modelling approach considers only isotropic turbulence,
i.e. the turbulence properties are independent of direction. The turbulent kinetic energy
transport equations, k, and the specific dissipation rate transport equation, ω, are given
by:

∂ρk

∂t
+∇ · (ρvk) = ∇ ·

[(
µ+

µt
σk

)
∇k

]
+ Sk (3.9)

∂ρω

∂t
+∇ · (ρvω) = ∇ ·

[(
µ+

µt
σω

)
∇ω

]
+ Sω (3.10)

where σk and σω are constants, and Sk and Sω stand for auxiliary relations.

The Reynolds stress model (RSM) calculates each component of the Reynolds-stress
tensor τR directly by solving its respective governing transport equation. The additional
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equations are obtained by multiplying the Navier-Stokes equation by a fluctuating prop-
erty and then time averaging the product, yielding:

∂τij
∂t

+ uk
∂τij
∂xk

= −
(
τik

∂uj
∂xk

+ τjk
∂ui
∂xk

)
+ εij −Πij +

∂

∂xk

(
ν
∂τij
∂xk

+ Cijk

)
(3.11)

where

Pressure-strain : Πij = p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
(3.12)

Disipation tensor : εij = 2µ
∂u′i
∂xk

∂u′j
∂xi

(3.13)

Turbulent diffusion : Cijk = ρu′iu
′
ju

′
k + p′u′iδjk + p′u′jδik (3.14)

The Reynolds stress model has the potential to predict complex flows. Some of its ad-
vantages are the ability to account for turbulence anisotropy, streamline curvature, swirl
rotation and high strain rates. At the same time, this modelling increases the computa-
tional time and makes the numerical solution stiffer.

3.1.2 Pressure eqation

Pressure is a state variable that must be determined in order to calculate the hydrody-
namic forces acting on the ship. For incompressible flows, there is no explicit equation
from which the pressure can be determined. It is therefore derived by taking the diver-
gence of the momentum equation, which yields:

∇2p = ∇ · (∇p) = −∇ ·
[
∂ρv
∂t

+∇ · (ρvv− τ )− ρg
]

(3.15)

This equation is further simplified if the density, viscosity and body force are constants.
Then the transient and viscous terms vanish by virtue of the continuity equation:

∇2p = −∇ · [∇ · (ρvv)] (3.16)

There are two approaches to obtaining the pressure, the first approach aims to compute
the pressure itself in the next iteration, while the second approach defines the pressure
as the sum of an older pressure value plus a pressure correction, p = pold + p′. In the
second approach, only p′ needs to be calculated in each iteration.

The pressure and momentum equations are solved using an iterative procedure. First,
the momentum equation is solved using previously known values of the pressure, result-
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3.1 Reynolds-averaged Navier-Stokes equations

ing in a new velocity estimate. Second, the pressure equation is solved using the new
velocity estimate. The updated pressure estimate is used in the momentum equation and
the cycle continues until the changes in the pressure field satisfy a convergence condition.
This iterative process is known as the semi-implicit method for pressure linked equations
(SIMPLE) algorithm.

3.1.3 Free surface flows

Ship hydrodynamics involves the interaction of two immiscible fluids: water and air. The
volume of fluid (VOF) method is used to capture the interface between air and water, i.e.
the free surface. This method uses an additional transport equation with the variable α
as shown in the equation (3.17). This variable is called the volume fraction and quantifies
the volume of water or air within a control volume, i.e. α = Vfluid/VCV . Here, the value
of α = 0.5 indicates the free surface, which corresponds to the interface between water
and air.

∂

∂t

∫
V
αdV +

∫
S
αv · ndS = 0 (3.17)

Although water and air are modelled, the fluid properties are treated as a single fluid,
whose properties vary in space according to the volume fraction of each phase.

ρ = ρwaterα+ ρair(1− α), µ = µwaterα+ µair(1− α), (3.18)

The VOF modelling requires a fine grid resolution around the free surface to resolve
accurately and avoid numerical diffusion. Furthermore, the high-resolution interface cap-
turing (HRIC) scheme, developed by Muzaferija and Peric (1999), is used to obtain a sharp
interface. This scheme mimics the convective transport of the two immiscible fluids.

3.1.4 Boundary conditions

The RANS equations are supplemented by a set of boundary conditions. Two types are
often used: the Dirichlet and the Neumann boundary conditions. The Dirichlet condition
specifies the value of the variable and the Neumann condition specifies its gradient.

Figure 3.1 shows typical boundary conditions used in ship hydrodynamics. At the hull
boundary, the no-slip wall condition is specified, i.e. the fluid particles in contact with
the hull stick to the surface and move at the same velocity as the surface—a Dirichlet
boundary condition. The flow velocity is specified at the velocity inlet. The hydrostatic
pressure is specified at the pressure outlet, which is far from the shipwave disturbance. At
the bottom boundary, the no-slip wall condition is specified with an additional tangential
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Figure 3.1: RANS boundary conditions

velocity. This velocity is equal to the relative velocity between the ship and the bottom.
At the top boundary, and at the sides of the numerical domain, the velocity is specified.

3.1.5 Numerical solution

Thenumerical solution of the RANS equations is performed using the finite volumemethod
(FVM). This method transforms the integral differential equations into discrete algebraic
equations over finite volumes. Therefore, the numerical domain is divided into a finite
number of small control volumes whose faces are shared by adjacent control volumes.
This discretized domain is referred to as the grid or mesh of the numerical domain. A
detailed description of the method can be found in Moukalled et al. (2016). Here, a brief
overview of the features of the method is presented on the generic conservation equation
of a scalar quantity φ. For simplicity, I consider only the steady-state problem. Therefore,
the transient term is dropped and the equation becomes:∫

S
ρφv · ndS︸ ︷︷ ︸

Convective term

=

∫
S
Γ∇φ · ndS︸ ︷︷ ︸

Diffusive term

+

∫
V
qdV︸ ︷︷ ︸

Source term

(3.19)

where Γ is the diffusivity for the quantity φ and q is the source or sink of φ. The
integrals in equation (3.19) are approximated using Gaussian quadrature. Usually only
one point is used, located at the centroid of the control volume or the centroid of the
surface. This approximation gives second order accuracy and is exact if the integrated
function is linear.
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3.1 Reynolds-averaged Navier-Stokes equations

Convective term The surface integral over a control volume is equal to the sum of the
fluxes through each face. Each surface flux is evaluated using Gaussian quadrature
with a point located at the centroid of the face.

∫
S
ρφv · ndS =

faces∑
f=1

∫
f
(ρφv) · ndS ≈

faces∑
f=1

(ρφv · n)fSf (3.20)

Diffusion term The procedure is similar to the convective term. The surface integral
over the control volume is equal to the sum of the fluxes in each face.

∫
S
Γ∇φ · ndS =

faces∑
f=1

∫
f
(Γ∇φ) · ndS ≈

faces∑
f=1

(Γ∇φ · n)fSf (3.21)

Source term Volume integration is approximated by Gaussian quadrature integration.
When using one point, it is located at the centroid of the control volume. Thus, qC
is the source evaluated at the centroid and V is the volume of the control volume.∫

V
qdV ≈ qCV (3.22)

The result of the discretized equation for one integration point, is shown in equation
(3.23). Where the flux terms are evaluated in the face centroid and the source term in the
control volume centroid. Further steps aim to express the face and volume fluxes in terms
of the neighbouring values and to linearize the equation.

faces∑
f=1

(ρφv− Γ∇φ)f · Sf = qCV (3.23)

3.1.6 Numerical error estimation

The calculation of forces by numerical methods contains errors. Quantifying the error is
an important aspect of the calculation, not only for accuracy purposes but also to know
how reliable the calculations are. For numerical calculations, three main sources of error
have been identified: modelling error, input error and numerical error. The modelling er-
ror can be large if the wrong set of equations is chosen. It is therefore necessary to rely on
previous studies to select the most appropriate model for a given physical phenomenon.
Input errors arise from the difference between the physical and numerical conditions,
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such as the domain size or initial conditions. The numerical error is the sum of all errors
introduced in the numerical solution of the equations.

The numerical error is defined as the difference between the exact (analytical) solution
of the equations and the calculated (discretized) solution. Four numerical errors are dis-
tinguished: round-off error, iterative error, statistical error and discretization error. The
latter is usually the largest error and its estimation is necessary to ensure the quality of
the simulations.

I used the approach of Oberhagemann and el Moctar (el Moctar, Schellin, et al. 2021;
Oberhagemann 2016) to calculate the discretization errors. This method considers a uni-
form refinement in all directions (space and time), which means that the Courant number
is kept constant. Time is considered as a fourth direction, which seems particularly useful
for free surface flows. The one dimensional Courant number (CFL) is defined as follows:

CFL =
u∆t

∆x
(3.24)

where u is the water particle velocity, ∆t is the time step, and ∆x is the grid spacing.
For an unstructured grid discretization, one option is to have the grid topology depend
on a base size and be maintained for each grid. This means that the entire discretization
of the domain is related to this unique base topology (Burmester et al. 2020; Mewes 2021).
In this method, the coarsest grid is the reference grid, and the refined grids are obtained
by systematic refinement using refinement factors rx, ry , rz , and rt. The rx factor is equal
to the grid spacing of the reference grid divided by the grid spacing of the refined grid.
The refinement factors read:

rx =
∆xi+1

∆xi
, ry =

∆yi+1

∆yi
, rz =

∆zi+1

∆zi
, rt =

∆ti+1

∆ti
, (3.25)

The index i is the level of refinement. rx, ry , rz , and rt are the refinement factors in
x, y, z directions and time respectively. Note that all this refinement factors are advised
to be the same. The spatial grid refinement ratio, Υ, determined from equation (3.26),
gives a normalized grid scale in which Υ = 1 represents the coarser grid, and Υ = 0
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represents the limit case in which the grid space ∆x, ∆y, ∆z and time step ∆t approach
zero. Hence, representing the grid-independent solution.

Υi =

√√√√1

4

[(
∆xi
∆x1

)2

+

(
∆yi
∆y1

)2

+

(
∆zi
∆z1

)2

+

(
∆ti
∆t1

)2
]

=

√√√√1

4

[(
1

rx

)2(i−1)

+

(
1

ry

)2(i−1)

+

(
1

rz

)2(i−1)

+

(
1

rt

)2(i−1)
] (3.26)

The associated discretization error, δD , is defined as follows:

δD = φi − φ0 = a1Υi + a2Υ
2
i + ... (3.27)

where, φ is the solution of interest, φi is the solution obtained on grid i, and φ0 is the
extrapolated (grid-independent) solution. Constants a1 and a2 correspond to the error
level, and their values are determined by the least squares method shown in equation
(3.28) with three refinement levels (ng = 3).

S2(φ0, a1, a2) =

√√√√ ng∑
i=1

(φi − (φ0 + a1Υi + a2Υ2
i ))

2 (3.28)

The associated uncertainty of the numerical calculation was calculated according to
equation (3.29) of Mewes (2021). The convergence ratio P represents the order of conver-
gence between the theoretical and the observed solutions. The safety factor of Fs = 1.25

is applied for monotonically converging solutions, where the order of convergence is in
a similar range to the theoretical order of convergence, i.e. the convergence ratio P is
close to unity. Otherwise, the safety factor would be Fs = 3.0.

U(φi) = FsδD(φi), with: Fs =

1.25 0.8 < P < 1.2 & Monotonic

3.0 otherwise
(3.29)

3.2 Euler method

In many practical hydrodynamic problems, the effects of viscosity are very small. For
instance, if the boundary layer is thin, the fluid can be considered to be inviscid. In such a
cases the viscosity can be neglected. Thus, the stress tensor is reduced only to its pressure
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component T = −pI. In other words the viscous stress tensor τ is set to zero. Replacing
it in the Navier-Stokes equations yields

d

dt

∫
V
ρdV +

∫
S
ρv · ndS = 0 (3.30)

d

dt

∫
V
ρvdV +

∫
S
ρvv · ndS = −

∫
S
pI · ndS +

∫
V
ρbdV (3.31)

An important physical consequence of using the Euler equations is the absence of the
boundary layer in the flow solution.

The numerical solution of the Euler equations is carried out using the finite volume
method. Therefore, the description given in the previous section is also valid for the
solution of the Euler equations.

3.3 Potential flow

Potential flow equations are a further simplification of the Euler equations. If the fluid is
assumed to be inviscid and the flow is irrotational ∇ × v = 0, then a velocity potential
φ(x, t) exists and, thus, the velocity can be expressed as: v = ∇φ. This description of the
velocity v as the gradient of a velocity potential φ, reduces the three velocity unknowns
to just one. As a result, the conservation of mass is reduced to the Laplace equation (3.32),
and the conservation of momentum is reduced to the integral Euler equation (3.33), better
known as Bernoulli’s equation. A detailed description of the method can be found in el
Moctar, Schellin, et al. (2021).

∇ · v = ∇2φ = 0 (3.32)

∂φ

∂t
+

1

2
(∇φ · ∇φ) + p

ρ
+ gz = C(t) (3.33)

Where g is the gravitational acceleration and C(t) is an arbitrary constant that may
depend on time but not on spatial variables. Furthermore, due to the large difference in the
density between air and water, hydrodynamic forces dominate and aerodynamic forces
can be neglected in seakeeping problems. Therefore, only the water flow is modelled.

The problem of a ship travelling straight ahead at constant speed U in waves is for-
mulated as a boundary value problem (BVP). The mathematical tool known as boundary
integral equations (BIE) is used to analyse the BVP. The numerical solution of the BIE
is called the boundary element method (BEM). This sequence is commonly used by sea-
keeping methods based on potential flow theory. Within the boundary value problem a
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Figure 3.2: Seakeeping boundary value problem

portion of the fluid surrounding the ship is chosen as the region of interest, together with
the boundary that encloses it, as shown in Figure 3.2. The governing differential equation
within the region and the boundary conditions read:

∇2φ = 0 within the fluid domain (3.34)
∂φ

∂t
− 1

2
|∇φ|2 + gζ − 1

2
U2 = 0 on the free surface (3.35)

∂φ

∂z
− ∂ζ

∂t
−∇φ · ∇ζ = 0 on the free surface (3.36)

∇φ · n = 0 on the body surface (3.37)

∇φ · n = 0 on the bottom (3.38)

Note, that in general the velocity potential φ(x, t) depends on space x and time t, and
is formulated in a coordinate system moving at the average ship forward speed U . The
potential φ is composed of five parts as shown in equation (3.39). The first two compo-
nents are steady in the body fixed coordinate system and the last three potentials oscillate
periodically with the encounter frequency ω.

φ(x, t) = −Ux+ φ0 + φw + φd +
6∑
j=1

φj (3.39)

where:

47



3 Numerical methods

−Ux : potential of the parallel inflow
φ0 : potential of the steady disturbance of the inflow due to the hull
φw : potential of the wave flow propagation
φd : potential of the diffracted flow due to wave
φj : potential of the radiated flow due to ship motion

The lateral boundary condition can have different expressions depending on the prob-
lem. For instance, when waves propagate in a large domain, the lateral boundary condi-
tions are periodic in space and time and can be expressed as a periodic condition depend-
ing on the wave length λ and the wave period T .

φ(x, t) = φ(x+ λ, t) (3.40)

φ(x, t) = φ(x, t+ T ) (3.41)

To solve the BVP, a fundamental solution of the Laplace equation (sources and sinks)
is distributed over the boundary surfaces. At the beginning, the sources and sinks were
placed on the boundary, requiring special integration methods to avoid the singularities.
A practical option is to place the fundamental solution shifted from the boundary out
of the fluid domain, which is known as desingularised boundary integral equation (Cao
et al. 1991). Two types of non-singular boundary integral formulations are available:
direct and indirect. The direct method uses the Green’s second identity to derive the
boundary integral equation. In the indirect method the velocity potential is expressed
as the integration of fundamental solution distributed over a surface shifted from the
boundary as shown in:

φ(x) =
∫
S
σ(xs)G(x,xs)ds (3.42)

whereG represents a fundamental solution of the Laplace equation and σ its strength.
xs is location of the fundamental solution outside the fluid region.

3.3.1 Numerical solution

Theboundary integral equations are solved numerically using a boundary elementmethod
developed by Söding, Shigunov, et al. (2014) and Söding, von Graefe, et al. (2013). The so-
lution of the velocity potential is performed sequentially as shown in Figure 3.3, where
each block corresponds to one sub-problem. Each sub-problem is solved with a similar
procedure and an example is given here for the steady potential. A detailed description
of the method can be found in von Graefe (2014).
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Solution Procedure of φ(x, t)

Steady φ0
ship sailing with constant speed
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ship sailing in waves, φw is
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φ(x, t) = −Ux+ φ0 + φw + φd +
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sinωtφj

Figure 3.3: Seakeeping BVP general solution.

The problem of a ship travelling straight ahead with constant velocity U = (U, 0, 0)ᵀ

is formulated. The boundary value problem is nonlinear in the free surface and an itera-
tive process is used to find the solution. The equations in the domain and the boundary
conditions that the steady potential φ0 must satisfy read:

∆φ0 = 0 within the fluid domain (3.43)

U · ∇φ0 −
1

2
|∇φ0|2 + gζ = 0 on the free surface (3.44)

(∇φ0 + U) · n = 0 on the free surface (3.45)

(∇φ0 + U) · n = 0 on the body surface (3.46)

∇φ0 · n = 0 on the bottom (3.47)

For the numerical solution, the boundary surface is discretized. An unstructured trian-
gular grid is used on the submerged ship surface and a block-structured quadrilateral grid
is employed on the free surface. Rankine sources are chosen as fundamental solution and
are located at points ξj outside of the fluid slightly above centre points of each panel. The
bottom condition is treated employing mirror image of the original sources with respect
to a flat bottom. Thus, the potential can be expressed as superposition of Rankine sources:

φ0(x) =
n∑
j=1

qjG(x, ξj) (3.48)
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3 Numerical methods

G(x, ξj) =
1

|x− ξj |
(3.49)

The patch method (Söding 1993) is used to satisfy the boundary conditions (3.45) to
(3.47). In this method, the boundary conditions are fulfilled in the average over each
panel τi and not at discrete collocation points. In order to fulfil boundary conditions on
the body and on the free surface, the residuum for a panel τj is introduced, equal to the
total flow through the panel.

ri =

∫
τi

(∇φ0 + U) · ndS =

n∑
j=1

qj

∫
τi

∇G(x, ξj) · n dS +

∫
τi

U · n dS = 0 (3.50)

ri =

n∑
j=1

qjaij +

∫
τi

·ndS with aij =

∫
τi

∇G(x, ξj) · n dS (3.51)

The variable aij is the solid angle of the triangular shaped panel τi seen from the source
point ξj . The integration over each panel leads to a system of equations with equal num-
ber of unknown source strengths qj . Once the solution is obtained the wave elevation
ζ is computed using (3.44). However, the potential φ0 depends on ζ . Thus, an iterative
process is carried out. Once the potential is known the total pressure is computed using
equation (3.52) and hydrodynamic forces and moments are calculated.

p =
ρ

2

(
|U|2 − |U+∇φ|2

)
− ρgz (3.52)

The position of the panel centroid is used in the computation of the hydrostatic pres-
sure.
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4 Manoeuvring in shallow water

This chapter presents my contributions to the field of manoeuvring in shallow water. A
mathematical manoeuvring model for inland waterway ship was developed taking into
account shallowwater conditions. In order to obtain a reliable and accurate mathematical
model, the intermediate procedures involved in the calculation of forces and the identifi-
cation of hydrodynamic coefficients were critically reviewed. As a result, efficient numer-
ical methods for calculating the hydrodynamic coefficients are presented. A new method
for calculating the added mass coefficients at zero frequency based on the Euler equations
is introduced. Furthermore, the viscous related hydrodynamic forces are calculated using
RANS based captive test on a fully appended ship, i.e. physical modelling of hull, pro-
pellers and rudders, which is beyond the state of the art. An alternative method to obtain
the hydrodynamic coefficients based on ship kinematics and rudder angle measurements
from free running tests is presented. Finally, the mathematical model is validated with
trajectories of free running manoeuvres of a typical inland waterway ship sailing the
Rhine River.

4.1 Mathematical model for manoeuvring in shallow water

I present an Abkowitz-type mathematical manoeuvring model for inland waterway ships,
which typically have complex stern geometries with ducted propellers and twin-rudders.
The method is intended to cover the manoeuvring in shallow water and extreme shallow
water conditions. The derivation of the model is described in detail.

4.1.1 Model derivation

The hydrodynamic manoeuvring forces are described by means of an Abkowitz-type
mathematical model. The hydrodynamic force is expressed as a function of the ship’s
acceleration, its velocity and its rudder deflection. It is assumed that this force is divided
as shown in equation (4.1), where the first term represents the forces induced by the ac-
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4 Manoeuvring in shallow water

celeration; a change in acceleration also produces a change in velocity. The second term
represents the forces induced by velocity and rudder deflection.

Fh(v̇, v, δ) = F(v̇, v) + F(v, δ) (4.1)

The influence of the acceleration on the hydrodynamic forces can be better seen if we
assume an ideal fluid—inviscid fluid and irrotational flow—in which forces depending on
velocity are zero. When a rigid body is accelerated in an ideal fluid, forces proportional
to acceleration appear, the proportionality coefficients being the so-called added mass
coefficients.

Imlay (1961) presented the complete expressions of the forces of a rigid-body acceler-
ating in any way in an ideal fluid. These forces are expressed in terms of the 21 added
masses, which is the maximum number that are independent for a Cartesian set of body
axes. Imlay’s expression included the so-called Munk moments. These moments are no
longer used because in real flows they are intrinsically coupled to the viscous forces and
it is not possible to separate them. Therefore, the Munk moments were dropped from the
expressions. Considering, three degrees of freedom and ship symmetry, only four inde-
pendent added masses are needed (Xu̇, Yv̇ , Nṙ , and Yṙ = Nv̇). The forces acting on the
body are calculated as follows:

Fx = Xu̇u̇− Yv̇vr − Yṙr
2 +X(u, v, r, δ) (4.2)

Fy = Yv̇v̇ + Yṙṙ +Xu̇ur + Y (u, v, r, δ) (4.3)

Mz = Nv̇v̇ +Nṙṙ +Nv̇ur +N(u, v, r, δ) (4.4)

WhereX , Y , andN are the forces and moment acting on the ship, excluding the added
mass components. These forces are modelled using an Abkowitz-type model and depend
only on the ship velocities and rudder deflection. Their mathematical expressions read:

X =Xu∆u+Xuu∆u
2 +Xvvv

2 +Xrrr
2 +Xδδδ

2

+Xvrvr +Xvvrrv
2r2 +Xvvvvv

4 +Xδδδδδ
4 +Xuδδ∆uδ

2 (4.5)

Y =Y0 + Yvv + Yrr + Yδδ + Yvvvv
3 + Yrrrr

3 + Yδδδδ
3

+ Yvvrv
2r + Yvrrvr

2 + Yuδ∆uδ + Yuδδδ∆uδ
3 (4.6)

N =N0 +Nvv +Nrr +Nδδ +Nvvvv
3 +Nrrrr

3 +Nδδδδ
3

+Nvvrv
2r +Nvrrvr

2 +Nuδ∆uδ +Nuδδδ∆uδ
3 (4.7)

52



4.1 Mathematical model for manoeuvring in shallow water

The higher order terms were introduced to model the forces in shallow water condi-
tions. Reports from model tests show that longitudinal forces change sign from negative
to positive in very shallow water. The term Xvvvv was therefore added to capture this
behaviour. Similar reasoning was used for the other higher order coefficients. If such
nonlinear behaviour is not present in the calculated forces, the regression analysis re-
turns zero values for these coefficients.

It should be noted that the model is only valid for a range close to the equilibrium
condition for which the coefficients were derived. Physically, this means that the hy-
drodynamic flow around the ship is close to that used to determine the hydrodynamic
coefficients. In practical terms, this means that the ship’s speed is at least 40% of the ref-
erence speed. If velocities fall below this range, errors start to arise. Another limitation is
that in Abkowitz-type models the propeller rotation rate cannot be changed. If a different
rotation rate is required, a new set of coefficients must be determined.

4.1.2 Numerical captive tests

Two different types of calculations are required to obtain the hydrodynamic coefficients.
One for the added mass coefficients and another for the viscous related coefficients. A
new method, described in detail in the following section, is used to calculate the added
mass coefficients. This method uses an impulsive acceleration and as a result gives the
zero frequency added masses. Table 4.1 lists the impulsive tests required to obtain the
added mass coefficients.

For the viscous related coefficients, seven sets of numerically calculated captive tests
are required to obtain all the hydrodynamic coefficients of themathematical manoeuvring
model: propulsion tests, rudder tests, drift tests, rotating tests, coupled rotation with drift
tests, coupled drift with rudder tests, and coupled rotation with rudder tests. Table 4.2
lists the corresponding parameters used for these calculations and the associated state
variables.

Table 4.1: Required impulsive tests to obtain added mass coefficients
Type of captive test Kinematic parameters Related variables

1 Impulsive surge motion u̇ Xu̇

2 Impulsive sway motion v̇ Yv̇, Nv̇

3 Impulsive yaw motion ṙ Yṙ, Nṙ
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4 Manoeuvring in shallow water

Table 4.2: Required captive tests to obtain hydrodynamic manoeuvring coefficients
Type of captive test Kinematic parameters Related variables

1 Propulsion u/U0 = 0.4 : 0.2 : 1.1
rpm constant for U0 X = f(u)

2 Rudder δ = −50° : 10° : 50°
u/U0 = 0.6, 1.0 X,Y,N = f(u, δ)

3 Drift β = −20° : 5° : 20°
u/U0 = 0.6, 1.0 X,Y,N = f(u, v)

4 Rotatory arm r′ = −0.5 : 0.1 : 0.5 X,Y,N = f(r)

5 Rotation with drift β = −2°,−5°,−8°,−12°
r′ = 0.1 : 0.1 : 0.5 X,Y,N = f(v, r)

6 Drift with rudder β = 0°,±10°,±20° X,Y,N = f(v, δ)
δ = 0° : ±10° : ±40°

7 Rotation with rudder r′ = 0,±0.2,±0.4 X,Y,N = f(r, δ)
δ = 0° : ±10° : ±40°

4.2 Test cases

The manoeuvring simulations were carried out with two representative ships. The Duis-
burg test case (DTC) containership (el Moctar, Shigunov, et al. 2012) and the reference
inland waterway (RIW) ship test case (Mucha, el Moctar, et al. 2017), which is a general-
purpose cargo vessel typically sailing on the Rhine River.

Table 4.3 lists their principal particulars. Figure 4.1 shows the hull geometry of the
DTC, and Figure 4.2 the hull geometry of the RIW. As full-scale counterparts do not exist,
they represent reference ships for benchmarking numerical studies and for clarifying flow
physics. The associated model scale ratio λ corresponds to model tests carried out at
the Norwegian Marine Technology Research Institute (MARINTEK) and the Maritime
Research Institute Netherlands (MARIN), for DTC and RIW, respectively.
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4.2 Test cases

Table 4.3: Principal particulars of the DTC containership and the RIW ship
Principal particulars Symbol Units DTC RIW

ship model ship model
Scale λ - 1.0 63.65 1.0 16.0
Length between perp. Lpp m 355 5.58 135.0 8.4375
Breadth B m 51 0.80 11.45 0.7150
Draft T m 14.5 0.2278 3.5 0.2188
Block coefficient Cb - 0.66 0.66 0.92 0.92
Displacement ∆ t,m3 173468 0.6726 4992 1.2187
Wetted surface Sw m 22032 54.38 2376.1 9.2817
Longitudinal COG LCG m 174.1 2.721 -0.1718 -0.01074
Vertical COG VCG m 19.8 0.312 2.04 0.1275
Metacentric height GMt m 5.1 0.080 2.4 0.15
Mass M kg - 672.7 - 1216.9
Inertia radius y rxx m 20.3 0.339 0.4B 0.286
Inertia radius x ryy m 87.3 1.371 0.25Lpp 2.1094
Inertia radius z rzz m 87.4 1.387 0.25Lpp 2.1094
Reference speed U0 m/s 0.387 0.556
Water density ρ kg/m3 1000 1000

Figure 4.1: The Duisburg test case (DTC) containership

Figure 4.2: The reference inland waterway (RIW) ship

At first glance, the hull geometry of inland waterway ships appears simpler than that
of a seagoing ships. This impression changes when the focus is on the stern of the ship.
Complex stern geometries are common on inland waterway ships, mainly due to the
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4 Manoeuvring in shallow water

space constraints of the propulsion system. A typical inland waterway ship has tunnels
in front of the propeller to improve inflow, a ducted propeller and a twin-rudder behind
the propeller. Figure 4.3 shows the stern of both ships, the DTC and the RIW.

Figure 4.3: Stern view of the DTC containership (left) and the RIW ship (right)

4.3 Added mass at zero freqency in deep and shallow water

Manoeuvring simulations using mathematical models require the added mass coefficients
at zero frequency. To date, these coefficients have been calculated using potential flow
theory or unsteady RANS, replicating the planar motion mechanism (PMM) model tests.
From the theoretical point of view, the latter approach always gives frequency dependent
coefficients. Potential theory, in particular the three dimensional panel methods, is able
to compute added mass coefficients with frequency close to zero (ω = 0.04 rad/s), but its
convergence is difficult, even in deep water conditions. This is particularly true for the
coupling terms.

The above problemmotivated the development of the present method, which computes
the added mass coefficients for zero frequency. The method is robust in deep and shallow
water and the computation is fast.

4.3.1 Method procedure

Theaddedmass problem is solvedwith the Euler equation using the finite volumemethod.
The numerical domain discretization is similar to that used for RANS calculations. How-
ever, coarse control volumes can be used as there is no boundary layer or turbulence in
an inviscid flow.

1. Ship with zero forward speed

For a ship starting its motion from zero speed, the hull is impulsively accelerated
from zero to a given speed within a single time step (see Figure 4.4). This means

56



4.3 Added mass at zero frequency in deep and shallow water

that the entire domain is movedwithin one time step without deforming the control
volumes. As the Euler equations are solved, the speed-dependent forces and mo-
ments are zero, i.e., the forces and moments acting on the hull depend only on the
acceleration. When the calculation has reached convergence for each acceleration
mode, the added masses are obtained as follows:

surge acceleration: Xu̇ =
Fx
u̇

(4.8)

sway acceleration: Yv̇ =
Fy
v̇

Nv̇ =
Mz

v̇
(4.9)

yaw acceleration: Nṙ =
Mz

ṙ
Yṙ =

Fy
ṙ

(4.10)

Where Xu̇ is the surge added mass, Yv̇ the sway added mass, Nṙ the yaw added
moment of inertia. Nv̇ and Yṙ are the coupled added mass terms, Fx the hydrody-
namic surge force, Fy the hydrodynamic sway force, Mz the hydrodynamic yaw
moment, u̇ the surge acceleration, v̇ the sway acceleration, ṙ the yaw angular ac-
celeration. Due to the impulsive acceleration of the hull, the hydrodynamic forces
and moments acting on the hull are calculated at zero frequency, as required for
manoeuvring simulations.

x

y

t = 0

u̇

Fx

Fy

Mz

t = ∆t

Figure 4.4: Surge impulsive acceleration over one time step and measured forces and moment

To ensure convergence of the numerical solution, the normalized residuals of the
flow variables need to be reduced by several orders of magnitude. This requires
several outer iterations within the time step. Since this simulation over one-time
step for a numerical grid consisting of several million control volumes takes only a
few minutes on a common workstation, the method proves to be computationally
efficient.

2. Ship with forward speed

To calculate the added masses by taking into account the forward speed of the ship,
the method consisted of two steps. First, I determined the steady state flow around
the advancing ship. This took little time as the flow had to reach a steady state
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4 Manoeuvring in shallow water

condition. The flow calculated in this way was then used as a starting solution
for the accelerated flow around the hull to be calculated afterwards. The validity
of the method was tested at slow forward speeds, Fn < 0.1, in order to use the
double-body approach. Under this condition, it was found that the forward speed
only affects the added moment of inertia Nṙ within one percent. The first step
was therefore unnecessary. A similar conclusion can be reached by analysing the
formulations of the added mass coefficients based on potential theory. For a given
forward speed, the addedmass coefficient is related to the addedmass at zero-speed
as follows:

AU11 = A0
11 (4.11)

AU22 = A0
22 (4.12)

AU26 = A0
26 +

U

ω2
B0

22 (4.13)

AU62 = A0
62 −

U

ω2
B0

22 (4.14)

AU66 = A0
66 +

U2

ω2
A0

22 (4.15)

where symbolsAjk are the addedmass in j-mode due to acceleration in the k-mode,
and Bjk the potential damping (j, k = 1, 2, 6 are surge, sway and yaw, respec-
tively). Symbol U is the ship forward speed and ω is the frequency of oscillation.
From these equations, the forward speed only affects the added moment of inertia
A66, because at zero frequency the potential damping is zero. Therefore, the added
masses calculated for zero speed are a good approximation even for cases where
the forward speed is not zero.

3. Normalized added mass

I normalized the computed added masses coefficients against physical mass, mo-
ment of inertia and ship length between perpendiculars:

A11 =
Xu̇

m
, A22 =

Yv̇
m
, A66 =

Nṙ

Izz
, A26 =

Nv̇Lpp
Izz

, A62 =
YṙLpp
Izz

(4.16)

Where A11 is the non-dimensional surge added mass, A22 the non-dimensional
sway added mass, A66 the non-dimensional added moment of inertia,m the phys-
ical ship mass, Izz the physical moment of inertia about the z-axis, and Lpp the
length between perpendiculars.
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4.3 Added mass at zero frequency in deep and shallow water

4.3.2 Validation with the ellipsoid

To validate the computations, the surge and sway addedmass aswell as the addedmoment
of inertia of a fully submerged ellipsoid in infinite water were computed. Figure 4.5 shows
the geometry and presents its dimension and mass properties. The grid consisted of 2.2
million control volumes, see Figure 4.6.

a

b
c a = 3.0m

b = 1.5m
c = 1.5m

M = 28 274.30 kg
Izz = 63 617.25 kgm2

Figure 4.5: Geometry of investigated Ellipsoid with half-axes a, b, and c, massM and moment of
inertia about the vertical axis Izz

Figure 4.6: Top and frontal view of the Ellipsoid mesh topology

Figure 4.7 shows the longitudinal velocity and pressure field due to a surge acceleration.
The direction of acceleration is to the right and the force is in the opposite direction. In
the longitudinal axis the pressure gradient has the same direction as the acceleration, high
at the bow and low at the stern. However, the force direction is always the negative of
the pressure gradient, which means that the longitudinal force direction is opposite to the
acceleration.

Korotkin (2009) provided the analytical values of the addedmass and the addedmoment
of inertia in the case of the motion of an ellipsoid in infinite ideal fluid, Fig. 4.5. The non-
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Figure 4.7: Longitudinal speed and pressure due to a surge acceleration of the Ellipsoid

dimensional added masses of a three-axial ellipsoid with half-axes a, b, and c are given
by

A11 =
A0

2−A0

A22 =
B0

2−B0

A66 =
(a2 − b2)2(B0 −A0)

[2(a2 − b2) + (A0 −B0)(a2 + b2)](a2 + b2)

where

A0 = abc

∫ ∞

0

du

(a2 + u)
√
(a2 + u)(b2 + u)(c2 + u)

B0 = abc

∫ ∞

0

du

(b2 + u)
√

(a2 + u)(b2 + u)(c2 + u)

Table 4.4 lists comparative analytical and computed values of non-dimensional surge
added mass A11, sway added mass A22, and added moment of inertia A66 together with
the percentage deviations between the analytical and the extrapolated values. The nu-
merical results correlate well with the analytical solution. The computed surge added
mass deviated by 1.02 % from the analytical solution, the sway added mass by 0.43 % and
the added moment of inertia by 1.09 %.
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4.3 Added mass at zero frequency in deep and shallow water

Table 4.4: Analytical and computed non-dimensional surge added mass (A11), sway added mass
(A22), added moment of inertia (A66) and their deviations for the Ellipsoid. The devia-
tion is computed as the difference between the analytical solution and the extrapolated
value.

Added mass Analytical Grid 3 Grid 2 Grid 1 Extrapolated Deviation
Surge: A11 0.210015 0.21175 0.21200 0.21209 0.21215 −1.02 %
Sway: A22 0.704210 0.70661 0.70702 0.70717 0.70724 −0.43 %
Yaw: A66 0.239424 0.24132 0.24132 0.24182 0.24204 −1.09 %

4.3.3 Validation with the DTC containership

The added masses of the DTC containership calculated by the Euler method are compared
with the addedmasses obtained from a boundary elementmethod (BEM).The calculations
were performed with a Froude number Fn = 0.05 (6 knots full scale). The BEM was
calculated for a range of frequencies from ω = 0.04 rad/s to ω = 8 rad/s and the zero
frequency added masses were obtained by extrapolation. Figure 4.8 shows the DTC added
masses calculated by these two methods.
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Figure 4.8: DTC non-dimensional added mass coefficients for Fn = 0.05. Computations were
made with two methods: the presented Euler method and a boundary element method
(BEM)

As seen in Fig. 4.8, the surge and sway added masses calculated by the Euler and BEM
methods correlate well. Small deviations are observed in the BEM yaw added moment
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4 Manoeuvring in shallow water

of inertia due to difficulties of numerical convergence at small frequencies. Table 4.5
lists the zero frequency added mass values calculated by the Euler and BEM methods.
The Timman-Newman relation (Newman 2018; Timman and Newman 1963) states that
Yṙ = Nv̇ , which is true for cases where the ship has zero speed. However, for a ship with
forward speed, the Timman-Newman relation does not hold, but the magnitudes of the
added masses are still close to each other for the Euler method, as shown in Table 4.5.

Table 4.5: DTC added mass at zero frequency for Fn = 0.05

Added Mass EULER BEM
A11 0.03 0.03
A22 0.70 0.67
A26 0.34 0.43
A62 0.35 0.27
A66 0.67 0.88

4.3.4 Shallow water effects on added mass

Figure 4.9 shows the dimensionless added mass coefficients of the DTC containership and
the RIW ship. The general effect of decreasing water depth is to increase the magnitude
of the added mass coefficients. For instance, in deep water the DTC containership sway
added mass is about 70% of the ship’s mass, but at the h/T = 1.2 this value increases to
240% of the ship’s mass.

The difference in hull geometry is also reflected in the addedmass coefficients. TheDTC
containership has a block coefficient of Cb = 0.66 while the RIW ship has Cb = 0.92.
Bulky ships with high block coefficients have a higher moment of inertia about the z-
axis and therefore a higher added mass moment of inertia than their counterparts with
low coefficients. The midsection area of the RIW ship is extended over almost 80% of the
ship’s length, so the geometrical differences are only at the bow and stern, covering the
remaining 20%. This is the reason why the coupled added mass Nv̇ is small for the RIW
ship. For hull geometries with bow and stern symmetry this coefficient will be zero.

4.4 Efficient direct system identification

Currently, RANS-based simulations are widely used to reproduce captive model tests and
to obtain hydrodynamic manoeuvring coefficients. However, their use for inland water-
way ships in shallowwater condition presents some difficulties. First, due to the complex-
ity of their stern geometry, which usually includes a ducted propeller with twin-rudders.
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Figure 4.9: Added mass coefficients of the IRW and DTC ships dependency on water depth h/T

Second, due to the shallowwater constraints that affect the shipmodellingmotions. Here,
I present amethod to accurately compute themanoeuvring captive tests of fully-appended
ships in shallowwater conditions. The procedure is general and can be applied to any type
of ship.

The method was validated step by step. First, the forces on the bare hull DTC contain-
ership were calculated at two water depths: h/T = 1.2 and h/T = 2.0 and compared
with model test measurements. Then, the forces on the RIW ship, fully appended, were
compared with the available measurements.

4.4.1 Numerical domain and grid

Figure 4.10 shows a top view of one-half of the specified numerical fluid domain. As
seen, the side boundaries are placed 2.5Lpp away from the ship’s symmetry plane; the
inlet boundary, 2.5Lpp from amidship; and the outlet boundary, 3.0Lpp from amidship.
The top boundary was placed 0.5Lpp away from the free surface and the bottom of the
domain corresponded to the desired water depth. For validation with captive model tests,
the sides of the numerical domain were reduced to match the width of the towing tank.
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Figure 4.10: Top view of one-half of the numerical fluid domain.

The numerical domain was divided in two regions that are connected by a sliding in-
terface. One region contains the propeller and the other contains all remaining surfaces,
such as the hull, rudder, duct, and other fixed appendages to the hull. For ships with two
propellers, an additional region enclosing the second propeller was added.

Small control volumes discretized the numerical domain. For the propeller-regions an
unstructured grid was generated using polyhedral control volumes. The volume of the
cells grow smoothly from the propeller surface to the boundaries of the propeller region,
see Figure 4.11. Locally, the grid was refined at the leading edge, trailing edge, and hub of
the propeller. For the hull-region an unstructured grid was generated using hexahedral
control volumes, see Figure 4.12. The grid was locally refined near the bow, near the stern,
and between the hull underside and the domain’s bottom boundary to properly capture
the complex flow features around the ship’s hull. The grid was also refined at the free
surface and in the ship’s wake. Figure 4.13 shows an example of grid refinement in the
region of the ducted propeller.

To model the inner region of the boundary layer, I used the so-called all y+ wall treat-
ment, which emulates the low or the high y+ value treatment depending on the size of
the cells near the wall. Therefore, the grid typically contained eight or more prism layers
near the hull to model the boundary layer, and a y+ around the unity was aimed for.
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4.4 Efficient direct system identification

Figure 4.11: Numerical discretization example of the propeller

Figure 4.12: Numerical discretization example of the hull-region (black lines) and propeller regions
(red lines)
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4 Manoeuvring in shallow water

Figure 4.13: Grid refinement in the region of the ducted propeller and the twin-rudders

4.4.2 Numerical setup

The captive tests were solved in the auxiliary coordinate system, which is fixed to the
ship but does not heave or pitch. This coordinate system coincides with the body-fixed
coordinate system at the start of the simulation and is the same when the ship’s heave
and pitch are zero. The use of the auxiliary coordinate system allows to fix the ship
horizontally and to consider the fluid as moving at the relative velocity between the ship
and the fluid. Therefore, all flow properties, including boundary conditions, were defined
with respect to the auxiliary coordinate system.

1. Boundary conditions

The sides of the computational domain were considered as slip-walls. The relative
velocity was prescribed at the inlet boundary. The hydrostatic pressure determined
the pressure at the outlet boundary. At the top of the domain, the inlet condition
was specified and, thus, the relative velocity was prescribed. The bottom of the
domain was considered as a non-slip wall movingwith the relative velocity. Finally,
the hull surface was considered as a non-slip wall. To prevent wave reflection from
boundaries, the volume of fluid wave-damping method dampened the waves in
areas approaching the inlet, outlet, and side boundaries. The areas between the
dashed lines and the numerical domain boundaries in Fig. 4.10 mark these areas,
extending a length over 1.0Lpp beyond their boundaries.

When considering the wall of the towing tank in the simulation, the wall was
treated as a non-slip wall moving with the relative velocity, similar to the bottom.
In addition, wave damping was disable at these boundaries.
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2. Motions

The dynamic motion of the ship, sinkage and trim, and the rotation of the propeller
are all taken into account during the simulation. Ameshmorphing algorithmwith a
rigid motion solver deforms the numerical grid to allow the ship to heave and pitch.
Propeller rotation is modelled using the moving reference frame (MRF) approach.
This modelling approach does not change the position of the control volumes, but
rather converts the transient problem to a steady state problem in a moving ref-
erence frame that rotates at the same rate as the propeller. The solution produces
a time-averaged flow characteristic. The use of this approach is justified, first, be-
cause the desired solution is steady state. Second, it allows to use a relatively large
time step compared to a simulation including geometric rotation of the propeller.
Note that when simulating propeller rotation, the recommended time step is cho-
sen so that the propeller does not rotate more than 5° per time step. For example, if
a propeller rotates at 10.5 revolutions per second, then a time step of two millisec-
onds should be used, but using the reference frame approach a time step five times
higher can be used.

3. Solver setup

The numerical calculations involving the free surface were solved using the un-
steady RANS solver for 200 s with a time step of ∆t = 0.01 s. The equations were
solved sequentially using the segregated flow approach with 8 inner iterations for
each time step. Second order temporal and spatial discretization were used. For the
steady RANS solver, a total of 4000 iterations were used to ensure convergence of
the double-body calculations. If the steady-state simulation fails to convergence,
forces show oscillatory behaviour. The steady-state simulation is then switched to
unsteady simulation with a time step of∆t = 0.01 s. To speed up convergence, the
steady solution is used as the initial condition of the unsteady simulation.

4.4.3 Numerical techniqes to improve computation efficiency

Two numerical techniques are proposed to improve the convergence of the calculations
and increase their efficiency, while maintaining the same accuracy. The first technique
aims at improving the initial condition, and shows its effectiveness particularly in small
confined spaces. The second technique takes advantage of the fact that manymanoeuvres
in shallow water are performed at low speed, then simplifications are proposed in the
treatment of the free surface and sinkage.
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4 Manoeuvring in shallow water

1. Improving initial condition

When using RANS to reproduce towing tank captive model tests, a common ap-
proach is to solve the problem in the body-fixed coordinate system. This means
that the ship does not move and the fluid far from the ship flows at the relative
velocity—equal to the towing velocity but in the opposite direction. The numeri-
cal domain is then initialized with the relative velocity and hydrostatic pressure.
At the start of the simulation, large waves are generated in the bow and stern re-
gions and propagate through the numerical domain. These waves are caused by the
incorrect initialization conditions, but with a sufficiently large numerical domain
and damping methods their effects are reduced in the first quarter of the simulation
time. However, when the walls of the towing tank are included in the simulation,
these waves can remain in the simulation for a long time due to wave reflecting on
the walls, making it difficult to achieve convergence.

To avoid the initial creation of large waves, I set the initial inflow velocity to zero
and apply a horizontal gravitational acceleration in the direction of the flow within
the first 20 seconds. This horizontal gravitational acceleration smoothly accelerates
the flow from zero up to the desired speed U0. Figure 4.14 shows the mathematical
expression of the artificial horizontal gravity gx and the inflow velocity vx during
the ramp time period. As seen, the acceleration is constant during the ramp time
period (20 s), and becomes zero when the desired velocity is reached.

t

gx

gx = U0
tramp

gx = 0

0 tramp

t

vx

vx = U0

0 tramp

vx = U0t
tramp

Figure 4.14: Artificial horizontal gravity and inflow velocity
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Figure 4.15: Wave elevation (mm) of the RIW ship in captive drift test
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4 Manoeuvring in shallow water

The method was tested on captive drift tests of the RIW ship at h/T = 1.5. The
numerical domain has the same width as the towing tank. Figure 4.15 shows the
free surface elevation at the end of the simulation for three drift angles. The lateral
sides of the figures coincide with the walls of the towing tank. As seen, the free
surface elevation has been correctly resolved. Figure 4.16 shows the evolution of
the sway force during the captive drift test β = 16°. During the first 20 s when the
horizontal gravity was active, the magnitude of the force increased almost linearly.
By the 80 s simulation time point, the sinkage had converged and the sway force
also began to converge.
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Figure 4.16: RIW ship sway force time record during captive drift test β = 16°

2. Double-body with sinkage for low speed

Manoeuvres in realistic environmental conditions are usually conducted at slow
forward speeds. For instance, ships on the Rhine have an average speed below the
Froude number Fn < 0.1. For low speed manoeuvres, the influence of the free
surface is negligible, thus the numerical calculation can be performed by modelling
only the water and considering the free surface as a symmetry plane. This approach
is called double-body and it is regularly used for deepwater, low speedmanoeuvres.
Its use in shallowwater is questionable as it does not take into account the dynamic
vertical motion of the ship. For inland waterway ships at low speeds, it has been
found that the heave motion of the ship is more important than the trim, which is
around 0.1° and can therefore be neglected. In order to account for sinkage in the
double-body approach, I have developed an iterative re-meshing process algorithm.
First, the simulation is run for about 500 iterations to obtain the vertical hydrody-
namic forceFz acting on the ship. This force is used to solve equation (4.17), derived
from the equilibrium heave equation, which gives the next vertical displacement.
The ship is moved accordingly, re-meshed and run for another 500 iterations. The
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4.4 Efficient direct system identification

process continues until the vertical displacement is less than a threshold value. For
instance, a threshold of 0.5mm was used for model scale calculations. This method
speeds up the calculation by a factor of 20-25 times compared to the free surface
method with the deforming mesh algorithm, which solves for sinkage and trim.

zn+1 = zn + fk
Fz −Mg

ρgBLpp
(4.17)

where zn is the heave motion in the current iteration, zn+1 is the heave motion in
next iteration, the symbol fk is an under-relaxation factor, the value of 0.8 gives a
smooth convergence. Fz is the vertical hydrodynamic force acting on the ship,M
is the mass of the ship, and g the acceleration of gravity.

Figure 4.17 shows a comparison of the surge force, sway force and yaw moment
of the RIW ship during a captive rudder test at h/T = 3.0, carried out using the
free surface approach (blue squares) and the double-body re-meshing approach (red
circles). For this water depth the sinkage is small, less than 1mm at model scale,
and has no influence on the forces. Therefore, the forces are compared to show
that the free surface can be simplified as a slip wall. As seen in Fig. 4.17, the values
calculated with the double-body re-meshing approach are almost the same as those
calculated with the free surface approach for all rudder angles δ.
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Figure 4.17: Captive rudder test of the RIW ship at h/T = 3.0with two methods: free surface (FS)
and double-body with sinkage (DB sinkage)

Figure 4.18 shows a comparison of the sway force, yaw moment and amidships
sinkage of the RIW ship during a drift captive test at h/T = 1.5, performed using
the double-body re-meshing and free surface approaches. For this water depth, the
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4 Manoeuvring in shallow water

sinkage is large enough to change the magnitude of the forces. As seen, the forces
and moments are accurately calculated by the double-body re-meshing approach.
For drift angles below 12°, there is a difference in amidship sinkage zm of 0.3mm,
which is a value below the stopping criteria. For the largest drift angle of 20°, the
double-body simulation predicts a sinkage only 0.7mmhigher than the free surface.
This demonstrates the accuracy of the double-body re-meshing approach. Figure
4.19 shows an example of the flow velocity at the stern of the RIW ship during the
simulation of a captive test.
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Figure 4.18: Captive drift test of the RIW ship at h/T = 1.5 with two methods: free surface (FS)
and double-body with sinkage (DB sinkage)
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Figure 4.19: Nondimensional flow velocity magnitude v/U0 at the stern of the RIW ship during
captive drift test with β = 12°
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4.4.4 Validation of DTC containership forces

Experimental captive drift tests of the DTC containership in shallow water were carried
out by Flanders Hydraulics (Zwijnsvoorde et al. 2015). These drift tests were performed
at two water depths, h/T = 2.0 and h/T = 1.2, with a Froude number of Fn = 0.05,
corresponding to a speed of 6 knots at full scale. The ship model was bare hull, hence only
forces on the hull were measured. The validation of the RANS method was carried out by
a direct comparison of the forces between the calculated and measured values.

1. Discretization study

The discretization study of the DTC containership was performed at extreme shal-
low water, h/T = 1.2, and drift angle β = 10°. The calculations of the DTC con-
tainership were performed using steady RANS and following the approach of Ober-
hagemann and el Moctar (el Moctar, Schellin, et al. 2021) described in Section 3.1.6.

Table 4.6: Grid base size, number of control volumes (Ncells), refinement ratio (Υ), surge force
(Fx), sway force (Fy) and yaw moment (Mz) obtained on the coarse, the medium, and
the fine grid.

base size Ncells Υ Fx Fy Mz

(mm) (106) (-) (N) (N) (N)
Coarse 180 1.24 1.0 -0.5736 14.4738 14.1341
Medium 90 6.03 0.5 -0.6290 13.7981 14.4489
Fine 45 40.85 0.25 -0.6708 13.686 14.6782
Extrapolated - - 0.0 -0.7220 13.7313 14.9553
EFD mean - - 0.0 -0.6341 14.6627 14.3564
EFD std - - 0.0 0.7318 0.7211 0.5697

Following the procedure of Oberhagemann and el Moctar (el Moctar, Schellin, et
al. 2021), I performed simulation on three successively finer grids. Starting with
the coarse grid, I selected the refinement factor of rx = 2.0 to obtain a medium
and fine grid. Table 4.6 lists the number of cells in each grid and the associated
grid base size. It also lists the grid refinement ratio, Υ, determined from equation
(3.26). A value of one represents the coarsest grid and a value of zero represents
the grid independent solution. Table 4.6 also lists the surge force, sway force and
yaw moment obtained for these three grids.

Figure 4.20 plots the forces and moments obtained during the grid discretization
study. At Υ = 0, the mean measured values are plotted with uncertainty bars
corresponding to the standard deviation. The black squared symbol represent the
extrapolated values obtained from the discretazation study. Each of the parameter
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analysed present a monotonic convergence. As seen, the extrapolated surge forces
almost match the mean measured value. The extrapolated sway force differs from
the measured mean value in about 0.6N. Similarly, the extrapolated yaw moment
value differs in about 0.6Nm.
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Figure 4.20: Forces and moments obtained during the grid discretization analysis

2. Force validation

Figure 4.21 plots the non-dimensional measured and computed surge force, sway
force and yaw moment during the drift captive test at h/T = 2.0. The grey lines
represent the measured values and the blue lines represent the computed values.
The measured values were extracted from the force measurement time records. As
these time records shows an unsteady oscillatory behaviour, two quantities were
extracted, their mean value and their standard deviation. In Fig. 4.21, the squared
symbols represent the mean values and the uncertainty bars represent the stan-
dard deviation of the experimental values. The RANS simulations were carried out
with the double-body approach including sinkage and using the k-ω SST turbulence
modelling. As seen, the computed forces and moments are in good correlation with
the measured values.

Similar to Fig. 4.21, Figure 4.22 plots the forces and moments of the captive drift
tests at water depth h/T = 1.2. Again, the computed forces andmoments correlate
well with the measured ones. This indicates the reliability of the method even in
extreme shallow water conditions.
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Figure 4.21: DTC containership surge force, sway force, and yaw moment during captive drift test
at water depth ratio h/T = 2
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Figure 4.22: DTC containership surge force, sway force, and yaw moment during captive drift test
at water depth ratio h/T = 1.2

During the captive drift tests, the longitudinal forces are small. Usually, the surge
force is one magnitude smaller than the sway force, because ships are optimized
to ensure a minimum resistance. This creates a disparity in the magnitudes to be
measured during model test. Despite the impression of large standard deviation of
the surge force, the dimensional values are around 0.7N. Sway forces have similar
standard deviation values.
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4.4.5 Validation of RIW ship forces

1. Discretization study

The discretization of the RIW ship was performed at extreme shallowwater, h/T =

1.2, and drift angle β = 10°. This condition is rather extreme, as smaller drift angles
are expected for this water depth. The calculations were performed with the ship
fully appended, including propeller and rudders. Following the procedure of Ober-
hagemann and el Moctar (el Moctar, Schellin, et al. 2021), I performed simulations
on three successively finer grids. Starting with the coarse grid, I chose a refinement
factor of rx = 1.6 to obtain a medium and fine grid. Table 4.7 lists the number of
cells of each grid, the associated grid refinement ratio Υ, the ship forces and the
sinkage obtained from the three different grids. It also lists the linear and quadratic
extrapolation values.

Table 4.7: Number of control volumes (Ncells), refinement ratio (Υ), surge force (Fx), sway force
(Fy) and sinkage (zM ) obtained on the coarse, the medium, and the fine grid.

Ncells Υ Fx Fy zM
(106) (-) (N) (N) (mm)

Coarse 1.78 1.0 -1.965 -157.080 -6.8
Medium 5.67 0.625 1.846 -147.348 -7.3
Fine 14.76 0.391 3.855 -148.369 -7.9
Extrapolated Linear - 0 7.701 -140.600 -8.5
Extrapolated Quadratic - 0 6.565 -145.25 -9.5
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Figure 4.23: Surge force, sway force and amidship sinkage obtained during the grid discretization
analysis of the RIW ship at h/T = 1.2 and drift angle β = 10°

Figure 4.23 shows the ship forces and amidships sinkage obtained during the grid
discretization study. The longitudinal force and the sinkage show amonotonic con-
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vergence. The transversal force shows an oscillatory convergence. The linear and
quadratic extrapolation are plotted at Υ = 0. As no experimental values are avail-
able, it is not possible to validate the calculations. However, the obtained forces
and sinkage show a consistent convergence as the number of control volumes is
increased.

2. Captive drift

The Development Centre for Ship Technology and Transport System (DST) per-
formed captive drift tests with a fully appended model of the RIW ship at a water
depth ratio of h/T = 1.5. Only the mean values were available, without standard
deviation or uncertainty. Figure 4.24 shows the comparison of the measured and
computed nondimensional hydrodynamic sway force Y , yawmomentN and amid-
ships sinkage zM , during the drift tests. Two computational methods are shown,
the free surface (RANS-FS) and the double-body with sinkage (RANS-DB). Both
RANS calculations include all the appendages used during the model test, includ-
ing the propeller and twin-rudders, the only difference being the treatment of the
free surface. The propeller rotation wasmodelled using themoving reference frame
technique.
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Figure 4.24: Comparison of nondimensional sway force Y , yaw momentN and amidship sinkage
zM of the RIW ship during drift captive tests at h/T = 1.5.

As can be seen in Fig. 4.24, the computed forces and sinkage correlates well with
the experiments. For the largest drift angles, deviations of around 7% are observed
for the sway force and yaw moment. Note that realistic rudder manoeuvres show
that the smaller the water depth, the smaller the drift angle. For a water depth
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ratio of h/T = 1.5, drift angles of less than 10° are expected for normal rudder
manoeuvres. However, higher drift angles were calculated to test the capabilities
of the numerical method.

3. Captive circular motion

The Hamburg Ship Model Basin (HSVA) performed arc motions with their comput-
erized planar motion carriage and obtained the forces and moments induced by a
pure yaw rotation in deep water conditions. Only the mean values were available,
without standard deviation or uncertainty. The propeller rotation rate was chosen
to give the same propeller load as full-scale—the same number of revolutions per
ship length travelled. RANS based rotating-arm captive tests were performed using
the double-body with sinkage re-meshing approach. Figure 4.25 shows the com-
parison of measured and computed surge force, sway force and yaw moment for
different yaw rotation rates. In general, the computed forces correlate fairly well
with the measured forces.
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Figure 4.25: Comparison of nondimensional surge force X , sway force Y and yaw moment N
during circular motion test in deep water. Measured data from HSVA and computed
values using double-body approach including sinkage.

4.4.6 Turbulence modelling

Previous studies have highlighted the importance of turbulence modelling for shallow
water hydrodynamics. Reports by Zentari, Tödter, et al. (2023) suggests that the standard
k-ω SST fails to capture the complexity of the flow around for inland waterway ships in
very shallow waters. Two turbulence models were therefore tested, the k-ω SST and the
Reynolds stress model (RSM).
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Figure 4.26 plots the comparison of the surge force, sway force, yaw moment, port side
propeller thrust, starboard propeller thrust and amidship sinkage. The results show that
there are differences in the longitudinal force. The surge force calculated with the RSM
turbulence model appears to be shifted vertically. For the highest drift angles, β = ±10°,
the RSM turbulence model predicts 30% less force than the k-ω SST. For the sway force
and yaw moment the difference is about 2% and 3% respectively.
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Figure 4.26: Comparison of nondimensional surge force X , sway force Y , yaw moment N , port
side propeller thrust TPS , starboard propeller thrust TSB and sinkage zM of the RIW
ship during drift captive tests at h/T = 1.5

Similar to Fig. 4.26, Figure 4.27 plots the forces andmoments of the rotating arm captive
test. Again, the turbulence modelling has the greatest effect on the surge force. There
is also a clear difference in the thrust of the propellers, particularly for the starboard
propeller. For the highest rotation rate r′ = 0.5, the surge force calculated with the RSM
turbulence modelling is 50% higher than the surge force calculated with k-ω SST. For the
same rotation rate, the differences in sway force and yaw moment are less than 1%.

The lack of experimental data makes it difficult to judge which of the models is closer to
the real forces. On the one hand, the RSM is able to model asymmetric turbulence, which
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seems to occur in shallow water hydrodynamics. On the other hand, the change in the
turbulence model mainly affects the surge force, which is a small quantity compared to
the sway force, and therefore its effects are limited to the longitudinal equation of motion
and the loss of speed during rudder manoeuvres.
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Figure 4.27: Comparison of nondimensional surge force X , sway force Y , yaw moment N , port
side propeller thrust TPS , starboard propeller thrust TSB and sinkage zM of the RIW
ship during captive rotating arm tests at h/T = 1.5

4.5 Data-driven indirect system identification

I developed an alternative method to obtain the manoeuvring hydrodynamic coefficients
using measurements from free running model tests or full-scale trials—indirect system
identification method. The method uses an Abkowitz-type model and assumes that the
mathematical expressions of hydrodynamic forces are available. This assumption was
important because different models exist for various kinds of ships. Thus, here I reduced
the problem to the identification of the hydrodynamic coefficients of a well known ma-
noeuvring model.
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The method was formulated as a data-driven approach by solving the ship’s equations
of motion directly. Each data point in the measurement record provided an equation that
had to satisfy the equations of motion. In this way, the complexity of the equations used
in system identification was reduced to a linear system of equations for each degree of
freedom. In addition to minimizing the error, I focused more on obtaining a physically
realistic solution, for which I applied constraints on the hydrodynamic coefficients during
the minimization problem.

4.5.1 Methodology

The ship is considered to be moving in the horizontal plane in three degrees of freedom,
namely the two translational motions, surge and sway, and the one rotational motion,
yaw. For this reason, the equations of motion of the ship presented in Section 2.3.4 are
reduced to the 3DoF, which reads as follows:

mu̇−m(vr + xGr
2) = X(u̇, u, v, r, δ) (4.18)

mv̇ +mxGṙ +mur = Y (v̇, ṙ, u, v, r, δ) (4.19)

mxGv̇ + Izz ṙ +mxGur = N(v̇, ṙ, u, v, r, δ) (4.20)

Solving the ship motion equations (4.18) to (4.20) relied on measured input data ob-
tained from free running model tests. In principle, ship velocities and accelerations can
be measured directly during these tests. If these are not available, they can be derived
from the ship’s trajectory measurements.

1. Data

Table 4.8 lists the two data sets needed to carry out the indirect system identifica-
tion. The first set comprises ship parameters mass m, moment of inertia Izz , lon-
gitudinal centre of gravity xG, and reference speed U0. The second set, obtained
from free running model tests, consists of time records of the ship’s position (ξ, η),
its heading angle ψ, its velocities (u, v, r), its accelerations (u̇, v̇, ṙ), and its rudder
deflection δ. From these time records, the method only uses the velocities and ac-
celerations. The ship position and heading are used only in case the velocities or
acceleration were not measured.

I identified three scenarios of available measurement data to facilitate the genera-
tion of input data for system identification. In the first scenario, consisting only of
the ship’s trajectory and heading, the translational velocities must be derived from
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Table 4.8: Data sets for indirect system identification
Description Symbols Units
Reference forward speed U0 ms−1

Ship mass m kg
Long. centre of gravity xG m
Moment of inertia about z-axis Izz kgm2

Time t s
Ship position ξ, η m
Ship heading ψ °
Ship body velocity u, v ms−1

Ship body yaw velocity r ° s−1

Ship body accelerations u̇, v̇ ms−2

Ship body yaw acceleration ṙ ° s−2

Rudder deflection δ °

the ship’s trajectory measurements and the yaw rate from the heading measure-
ments. The accelerations are derived from last calculated velocities. In the second
scenario, consisting of additional measured velocities and yaw rate, only the ac-
celerations have to be derived from the measured velocities. In the third scenario,
comprisingmeasured velocities and accelerations, they can be used directly as input
data. In all cases, the rudder measurement is expected to be available. Figure 4.28
shows schematically these three scenarios of available measurement data, where
grey boxes indicate measured data and white boxes indicate calculated data.

ξ,η,ψ,δ u,v,r u̇,v̇,ṙ1

ξ,η,ψ,δ u,v,r u̇,v̇,ṙ2

ξ,η,ψ,δ u,v,r u̇,v̇,ṙ3

Input
Data

System
Identification

Hydrodynamic
Coefficients

Figure 4.28: Schematic representation of three system identification scenarios using measured
data (grey boxes) and/or computed data (white boxes), provided that ship’s path and
its heading are available

The numerical calculations of velocities and accelerations were performed using
the Savitzky-Golay numerical differentiation method (Ahnert and Abel 2007). This
method first fits a given number of points to a second order polynomial. The time
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4.5 Data-driven indirect system identification

derivative is then calculated using the polynomial coefficients, given the ship’s ve-
locity in the inertial coordinate system. Its projection onto the body-fixed coordi-
nate system is then obtained via the well known kinematic equation.

2. The method

I demonstrate the procedure of the method with the surge equation of motion us-
ing Mucha’s mathematical model (see Section 2.5.1). First, the surge equation of
motion (4.18) is expressed such that all known terms appear on the right hand side
as shown in equation (4.21). This includes the ship’s mass, its centre of gravity, and
the measured velocities and accelerations:

X(u̇, u, v, r, δ) = mu̇−m(vr + xGr
2) (4.21)

Force X(u, v, r, δ) on its left hand side is replaced by the expression of the mathe-
matical model:

Xu̇u̇+Xu∆u+Xuu∆u
2+Xvvv

2+Xrrr
2+Xvrvr+Xδδδ

2 = mu̇−m(vr+xGr
2)

(4.22)

According to Luo (2016), the indirect system identification technique is unable to
determine the added masses Xu̇, Yv̇ , Yṙ , Nṙ , and Nv̇ . Therefore, I computed all
added mass coefficients using the Euler equations based technique presented in
Section 4.3. As these added masses are now considered known, they can be moved
to the right hand side of equation (4.22) to yield the following equation:

Xu∆u+Xuu∆u
2+Xvvv

2+Xrrr
2+Xvrvr+Xδδδ

2 = (m−Xu̇)u̇−m(vr+xGr
2)

(4.23)

The left hand side contains only unknown coefficients. The equation (4.23) is valid
for every manoeuvring state of the ship and should therefore satisfy every mea-
surement point during the free running model tests. Applying the equation to each
measured point of the time record results in a system of equations consisting of
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vector and matrices, where each row corresponds to a measured point of a ma-
noeuvring state:


∆u ∆u2 v2 r2 δ2 vr

| | | | | |
...

...
...

...
...

...
| | | | | |





Xu

Xuu

Xvv

Xrr

Xδδ

Xvr


=


(m−Xu̇)u̇−m(vr + xGr

2)

|
...
|


(4.24)

Following the procedure for the sway and yaw equations, the following expressions
were obtained:


1 v r δ v3 r3 v2r vr2 δ3 ∆uδ

| | | | | | | | | |
...

...
...

...
...

...
...

...
...

...
| | | | | | | | | |





Y0

Yv

Yr

Yδ

Yvvv

Yrrr

Yvvr

Yvrr

Yδδδ

Yuδ



=


YRHS

|
...
|

 (4.25)


1 v r δ v3 r3 v2r vr2 δ3 ∆uδ

| | | | | | | | | |
...

...
...

...
...

...
...

...
...

...
| | | | | | | | | |





N0

Nv

Nr

Nδ

Nvvv

Nrrr

Nvvr

Nvrr

Nδδδ

Nuδ



=


NRHS

|
...
|

 (4.26)
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Each equation is reduced to a linear system of equations, now expressed as follows:

Ax = b (4.27)

were A is the velocity matrix, x is the hydrodynamic coefficient vector, and b is
the force vector. Several options are available to solve this system of equations
(4.27). Depending on the method chosen, the principle idea is to solve for vector x
by minimizing a loss function L(x):

argmin
x

L(x) (4.28)

Some standard methods and their loss functions are:

a) Least squares : L = ‖Ax− b‖2

b) Ridge : L = ‖Ax− b‖2+α‖x‖2

c) Lasso : L = ‖Ax− b‖2+λ‖x‖1

d) Elastic-Net : L = ‖Ax− b‖2+λ‖x‖1+α‖x‖2

whereα and λ are regulating factors that penalize the large variation of coefficients.
Symbols ‖·‖1 and ‖·‖2 represent the L1-norm and L-2 norm respectively.

The least squares method is a simple and appropriate technique to solve this system
of equations as it minimizes the functionL(x) = ‖Ax−b‖2. In the absence of noise
and uncertainties, which is the case for simulated data, the least squares method
yields satisfactory results. However, when noise and measurement uncertainties
are present, the least squares method performs poorly. Advanced methods such as
Ridge regression or Elastic-Net deal better with noise data, but do not guarantee a
physical coefficients.

To enforce obtaining physically realistic coefficients in the regression, I relied on
knowing the physical characteristics of some of the hydrodynamic coefficients. For
instance, knowing that Xu, Yv , and Nr are terms with a negative sign allow to
conveniently apply this constraint to the minimization problem as follows:

argmin
x

‖Ax− b‖2, subject to: xmin < x < xmax (4.29)

where xmin and xmax are the lower and upper bounds of x, respectively. Table 4.9
lists the coefficients for which the sign is known. For coefficients with a negative
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sign, such asXu, the lower and upper bounds are−1 and 0, i.e.,−1 < Xu < 0. For
coefficients of unknown sign, the lower and upper bounds vary between −1 and
+1. Recall that the system identification is performed with non-dimensional coef-
ficients. Therefore, these limits are appropriate. To solve equation (4.29), I use the
constrained least-squares algorithm available in the open source SciPy optimiza-
tion package. The algorithm first computes the unconstrained least-squares and
returns its solution as optimal if the coefficients are within the bounds. If not, the
algorithm starts an iterative process to find the solution based on the Trust Region
Reflective algorithm (Branch et al. 1999).

Table 4.9: Sign of coefficients based on physical knowledge of the hydrodynamic forces and based
on the definition of the body-fixed coordinate system

X-coefficient sign Y-coefficient Sign N-coefficients Sign
Xu − Yv − Nr −
Xvv − Yδ − Nδ +
Xδδ − Yvvv − Nrrr −

Yδδδ + Nδδδ −

∆u

X

Xu < 0

v

Y

Yv < 0
Yvvv < 0

δ

N

Nδ > 0
Nδδδ < 0

Figure 4.29: Characteristic behaviour of the forces and moment observed in conventional ships
with respect the body-fixed coordinate system.

The signs of the coefficients presented in Table 4.9 were inferred from the patterns
found in the captive model tests (Wolff 1981). Some coefficients such as Xrr or
Yr depend on the characteristics of the hull geometry and may be positive or neg-
ative. The sign of the nonlinear coefficients was observed for conventional ships
such as tankers, containers and bulky cargo inland waterway ships. However, care
should be taken when applying the signs of Table 4.9 to new types of ships. Figure
4.29 shows an example of how the signs of the coefficients were deduced from the
characteristic behaviour of the forces and moments. Specifically, Fig. 4.29 plots the
surge force X against the surge speed variation ∆u, the sway force Y against the
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4.5 Data-driven indirect system identification

sway speed v, yaw moment N against rudder deflection δ. For the rudder angle I
use the convention that a positive rudder angle produces a positive rotation rate.
The signs of the rudder coefficients therefore follow this convention.

4.5.2 Verification and validation

The verification and validation of the method was carried out with the KVLCC2 tanker.
Table 4.10 lists its principal particulars. The associated model scale ratio λ corresponded
to the model tests carried out at MARIN (Quadvlieg and Brouwer 2011).

Table 4.10: Principal particulars of the KVLCC2 tanker
Principal particulars Symbol Unit Full-scale λ=45.7
Length between perp. Lpp m 320.0 7.0
Length at waterline Lwl m 325.5 7.1204
Breadth at waterline B m 58.0 1.1688
Draft T m 20.8 0.455
Displacement ∆ m3 312622 3.2724
Wetted surface Sw m2 27194.0 13.0129
Block coefficient Cb - 0.81 0.81
Long. COG LCG m 11.1 0.24
Metacentric height GM m 5.71 0.125
Inertia radius x rxx m 23.2 0.467
Inertia radius y ryy m 80.0 1.75
Inertia radius z rzz m 80.0 1.75

The verification of the method is first performed with a simulated zig-zag 35°/35° ma-
noeuvre of the KVLCC2 tanker. Then, the validation is carried out using measured data
from the KVLCC2 tanker’s free running tests. The experimental data provided include
trajectories and velocities, but not accelerations. They therefore correspond to the sec-
ond scenario in Fig. 4.28.

1. Verification with simulated data

Mucha (2017) made available the hydrodynamic coefficients of the KVLCC2 tanker
listed in Table 4.11. These coefficients were obtained from numerical captive tests
performed using Reynolds-averaged Navier-Stokes (RANS) equations. The aim
here is to demonstrate the validity of the method. Using these coefficients, I simu-
lated a zig-zag 35°/35° manoeuvre, as shown in Figure 4.30. The kinematic param-
eters and rudder deflections of the simulated manoeuvre were used as input data
to perform the indirect system identification. These coefficients are listed in Table
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4.11. For this simple case, where the mathematical model is known exactly and
there is no uncertainty, the constrained least squares algorithm did not activate the
iterative process. The simple least squares regression already provided a solution
within the bounds.

Table 4.11: KVLCC2 hydrodynamic manoeuvring coefficients (multiplied by 103) from RANS cap-
tive tests of Mucha (2017) and from the current indirect system identfication

Mucha Current method % difference
Xu -1.97 -2.00 1.5
Xuu 0.99 1.02 3.0
Xvv -5.00 -5.53 10.6
Xrr 0.48 0.54 12.5
Xvr 7.54 7.71 2.3
Xdd -1.82 -1.84 1.1
Y0 -0.15 -0.15 0.0
Yv -24.90 -25.44 2.2
Yr 4.76 4.94 3.8
Yd -3.77 -3.82 1.3
Yvvv -30.20 -30.92 2.4
Yrrr -1.22 -1.14 -6.6
Yvvr -9.90 -9.55 -3.5
Yvrr -40.30 -40.04 -0.6
Yddd 3.33 3.46 3.9
Ydu 4.56 4.58 0.4
N0 0.07 0.07 0.0
Nv -8.80 -8.86 0.7
Nr -3.25 -3.27 0.6
Nd 1.79 1.85 3.4
Nvvv 8.00 8.67 8.4
Nrrr -0.92 -0.93 1.1
Nvvr -7.10 -6.61 -6.9
Nvrr 7.00 7.27 3.9
Nddd -1.62 -1.72 6.2
Ndu -2.32 -2.36 1.7

The coefficients obtained by indirect system identification compared favourably
with Mucha’s coefficients, i.e., all coefficients were accurately predicted. Figure
4.31 plots the comparative trajectories of the KVLCC2 tanker performing a turning
circle manoeuvre for a rudder angle 35° to port. This almost identical turning cir-
cle trajectories presented in Figure 4.31 demonstrated that any kind of manoeuvre
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using our system identified coefficients were expected to closely match the ma-
noeuvres performed using Mucha’s coefficients.
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Figure 4.30: Ship trajectory (top), heading and rudder angle (bottom) of the KVLCC2 tanker during
zig-zag 35°/35° manoeuvre
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Figure 4.31: Comparative trajectories and velocities of the KVLCC2 tanker performing a turning
circle manoeuvre with rudder angle δ = 35° to port side.

The least-squares regression method performed well because, first, these coeffi-
cients are linear, i.e. they do not contain higher order terms, nor are they multiplied
by each other. Second, the data used were obtained from numerical simulations;
this is different when dealing with measurement data, that usually are noise and
contains instrumental uncertainties.
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2. Validation with free running model tests

The validation of the method is performed with free running manoeuvring data of
the KVLCC2 ship provided by theMaritime Research Institute Netherlands (MARIN)
(Quadvlieg and Brouwer 2011). These model tests were performed during the SIM-
MAN 2008 workshop. The Hamburg Ship Model Basin (HSVA) also carried out free
running tests with the KVLCC2 tanker (Stern et al. 2011). Table 4.12 lists the free
running tests. The first three tests were carried out at MARIN and the last two
at HSVA. I selected the tests from MARIN for system identification: the zig-zag
10°/10° SB, the zig-zag 20°/20° PS, and the turning circle 35° to starboard. Quadvlieg
and Brouwer (2011) also documented the uncertainty of the measurements carried
out at MARIN. For example, the first overshoot angle has an uncertainty of 1.6°,
while the time of the first overshoot angle has an uncertainty of 12 s. Figure 4.32
plots their measured trajectories and associated velocities and rudder angles. The
free running tests carried out at the HSVA were used exclusively to validate the
coefficients obtained by indirect system identification.

Table 4.12: Free running manoeuvres of the KVLCC2 at MARIN and HSVA.
Name Manoeuvre δ ψ Rudder start to

1 ZZ-10/10-SB zig-zag 10° 10° starboard
2 ZZ-20/20-PS zig-zag 20° 20° port
3 TC-35-SB turning circle 35° - starboard
4 ZZ-15/5 zig-zag 15° 5° starboard
5 ZZ-20/10 zig-zag 20° 10° starboard

The use of different free running tests allowed a wider range of variation in kine-
matic parameters and rudder deflections. The turning circle, for example, provided
the greatest variation in surge speed and acceleration. The coefficients obtained
from the indirect system identification were used to simulate the HSVA zig-zag
manoeuvres. Figure 4.33 plots the comparative computed and measured trajecto-
ries, rudder angles δ, heading angles ψ, surge speeds u, and sway speeds v, during
the zig-zag 15°/5° manoeuvre starting to starboard. Despite the small difference be-
tween computed and measured values, good correlation is found. The computed
first and second overshoot angles are 5.5° and 11.2°, respectively, while the mea-
sured ones are 6.6° and 12.8°, which represent a maximum under prediction of 1.6°.
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Figure 4.32: Measured trajectories, surge speed, sway speed, rudder angle, and yaw rotation rate
of the KVLCC2 ship during zig-zag 10°/10° SB, zig-zag 20°/20° PS, and turning circle
manoeuvre with 35° rudder deflection to starboard of MARIN

−2 0 2 4 6 8 10 12 14 16 18 20 22 24
−0.4
−0.2

0
0.2
0.4

ξ/L

η
/L

Measured Computed

−10

0

10

δ
(d
eg

)

6.5

7

7.5

8

u
(m

/s
)

0 10 20
−20
−10

0
10
20

tU0/L

ψ
(d
eg

)

0 10 20
−1

0

1

tU0/L

v
(m

/s
)

Figure 4.33: Measured and computed trajectories, rudder angle, heading, and velocities of the
KVLCC2 tanker during zig-zag 15°/5° manoeuvre starting to starboard 91
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Figure 4.34: Measured and computed trajectories, rudder angle, heading, and velocities of the
KVLCC2 tanker during zig-zag 20°/10° manoeuvre starting to starboard

Similar to Fig. 4.33, Figure 4.34 plots the comparative computed and measured
trajectory and kinematic parameters during the zig-zag manoeuvre 15°/5°. The
computed accuracy appears to be good for the non-dimensional time less than ten,
where the first and second overshoot angles are captured with good accuracy.

Table 4.13 provides a quantitative comparison of the measured and computed zig-
zag manoeuvres. The computed values in Fig. 4.34 were obtained using the hydro-
dynamic coefficients based on the measured velocities (scenario 2). As seen, the
computed first overshoot angle is 10.3°, which is only 1.4° less than the measured
overshoot angle. The computed first overshoot time is 51.7 s, which is only 3.7 s
less than the measured time. Even smaller comparative errors were obtained for
the computed second overshoot angle and the overshot time.

For the non-dimensional time greater than ten, the errors start to grow and the
computed values deviate from the measured ones. Recall that only three manoeu-
vres with short time records were used for the system identification. The more
data is available for system identification, the better is the prediction of the hydro-
dynamic coefficients. For this reason, it is recommended to use different types of
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Table 4.13: KVLCC2 zig-zag 20°/10° results from experiments and computations based on trajec-
tories (scenario 1) and based on velocities (scenario 2)

Description Unit Experiment Comp. scenario 1 Comp. scenario 2
Reach s 192.5 195.4 195.0
Period s 384.1 393.0 390.3
1st overshoot angle deg 11.7 10.0 10.3
2nd overshoot angle deg 15.6 16.4 16.0
1st overshoot time s 55.4 50.9 51.7
2nd overshoot time s 68.0 67.4 66.6

manoeuvres with a wide range of variation of the kinematic parameters and the
rudder deflection.
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Figure 4.35: Trajectories, rudder angle, heading, and velocities of the KVLCC2 tanker during zig-
zag 20°/20° manoeuvre starting to starboard. Scenarios 1 and 2 as described in Fig. 4.28

To asses the quality of the identification when only trajectories were available, we
emulate the scenario 1 from Fig. 4.28 by using only the trajectories of the mea-
surement data, i.e., velocities and accelerations were computed by numerical dif-
ferentiation. Figure 4.35 plots the zig-zag 20°/10° manoeuvre using hydrodynamic
coefficients obtained from trajectories (scenario 1) and velocities (scenario 2). As
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seen, rudder deflections, heading angles and velocities were nearly identical, i.e.,
differences between the ship’s trajectories were minor (see Table 4.13). This indi-
cates that the method was able to obtain reliable hydrodynamic coefficients based
on trajectories.

4.6 Ship trajectory validation

The mathematical model was validated using the RIW ship. Free running zig-zag ma-
noeuvres were carried out in MARIN and provided by Mucha, Dettmann, et al. (2019).
The zig-zag manoeuvres were performed for two water depths: a moderate water depth
with h/T = 3.0 and an extreme shallow water depth with h/T = 1.2. For each wa-
ter depth zig-zag 35°/5° manoeuvres were performed, one starting to starboard and one
starting to port. Eachmanoeuvre was repeated three times to assess its reliability. The hy-
drodynamic coefficients of the mathematical model were determined using the methods
presented in Sections 4.3 and 4.4.

Figure 4.36 plots the comparative computed and measured trajectories of the ship’s
free running manoeuvres for the moderate water depth condition h/T = 3.0. It also
shows plots the associated measured and computed rudder deflection δ, heading angle
ψ, surge speed u, sway speed v, and yaw rotation r. The grey coloured lines represent
the three repeated test runs, the red lines identify the computed values. The kinematic
parameters and the heading angle were captured with good accuracy. Deviations occur
in the prediction of the trajectory, first because the computed rudder deflection does not
exactly match the measured one. Second, due to the different initial conditions. Despite
this deviation, the maximum and minimum values of the kinematic parameters are well
captured, indicating that themanoeuvring forces have beenmodelled with good accuracy.

Similar to Fig. 4.36, Figure 4.37 plots the comparative computed and measured trajecto-
ries and associated kinematic parameters of the free running manoeuvres for the extreme
shallow water condition h/T = 1.2. Again, the grey coloured lines represent the three
repeated test runs and the red lines identifies the computed values. For this extreme con-
dition the experimental values are more scattered. The three measured repetitions have
slightly different initial conditions, each producing a different dynamic evolution. The
computed kinematic parameters and the heading angle are within the scatter range of
the measured data. In this case, the rudder angles are closer to one of the tests, which
also improves the prediction of the trajectory.
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Figure 4.36: Measured and computed trajectories, rudder angle, heading, and velocities of the Ref-
erence inland waterway ship during zig-zag manoeuvre with 35°/5° starting to star-
board at h/T = 3.0
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Figure 4.37: Measured and computed trajectories, rudder angle, heading, and velocities of the Ref-
erence inland waterway ship during zig-zag manoeuvre with 35°/5° starting to star-
board at h/T = 1.2
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5 Manoeuvring in waves

This chapter presents my contribution to the field of manoeuvring in waves. A numerical
method for manoeuvring in regular waves is presented. The method uses the nonlinear
6DoF equations of motion described in the inertial coordinate system. Thus, all nonlinear-
ities associated with the inertial rigid body motion are taken into account. It is assumed
that the forces can be separated into calm water manoeuvring forces and wave-induced
forces, allowing both forces to be calculated separately. Validation of the method was
performed using the DTC containership, for which experimental measurements of turn-
ing circle manoeuvres in regular waves with different wave propagation directions are
available.

5.1 Superposition of forces

The main assumption of the method is the superposition of forces. The hydrodynamic
force Fh in equation (5.1) is split into the calm water manoeuvring force FM and the
wave-induced force FW . This division implies that the manoeuvring forces and the wave
forces do not interact.

Fh = FM + FW (5.1)

The calm water manoeuvring force is calculated using the Abkowitz-type model. The
forces are first calculated in the body-fixed coordinate system and then transformed to the
inertial coordinate system. The wave-induced force is modelled by considering only the
second order wave forces (time-averaged wave-induced forces). This assumption is based
on the fact that first order wave forces have an average value of zero. Therefore, they
do not contribute to the ship’s drifting. In reality, wave-induced motion can alter the
wetted surface, the hydrodynamic characteristics or induce the emergence of propeller
and rudder. However, it is assumed that manoeuvring in waves takes place in coastal
areas where only moderate sea conditions are observed and therefore the interaction of
the manoeuvring and seakeeping forces may be neglected.
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5.2 Wave forces

Several numerical methods exist to calculate second order wave forces. Themost accurate
and reliable solvers in the whole wave length range seem to be those based on RANS.The
longitudinal drift force, which is called “added resistance”, was calculated by Sigmund
and el Moctar (2018) for different ship geometries and different waves lengths in head
waves. The authors showed that for short waves, λ/Lpp < 0.36, frictional forces have an
important impact on the added resistance, which may be higher than 20%. However, this
effect is less pronounced for full scale ships calculations.

Figure 5.1 shows the added resistance of the DTC containership for two speeds 6 kn
and 16 kn presented in Sigmund and el Moctar (2018). In this thesis, the Rankine source
boundary element method—GLRankine—was used to calculate the second order wave
forces. The BEM calculations were performed using two different approaches. In the
case of 6 kn ship speed (Fn = 0.052), a double body approach was used for the steady
potential, while in the case of 16 kn (Fn = 0.139), the nonlinear steady potential due to
ship speed was considered. For the 16 kn case, the wave forces calculated with the BEM
correlate better with the experimental forces and the computed RANS forces. For the 6 kn
speed, a consistent underestimation of added resistance around 9%was observed for wave
lengths λ/Lpp > 0.4. Therefore, to avoid inaccuracies, a correction of 9% is applied in the
BEM calculation of the second order wave forces is taken into account when using the
double-body steady potential approach. A validation study of the GLRankine for second
order forces and moments can be found in Lyu and el Moctar (2017) and Sigmund and el
Moctar (2018).
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Figure 5.1: DTC added resistance coefficient for speeds 6 kn (left) and 16 kn (right) in head waves
β = 180°. CFD data taken from Sigmund and el Moctar (2018)

98



5.2 Wave forces

Figure 5.2 shows the coordinate system and angles involved in the calculation of the
second order wave forces. The wave propagation direction is described with the angle
βwave in the inertial coordinate system and is assumed to be constant during the sim-
ulation time. The angle β∗ is the relative wave heading angle and is calculated as the
difference between the wave propagation direction βwave and ship heading angle ψ.

β∗ = βwave − ψ (5.2)
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Figure 5.2: Coordinate system and planar angles involved in the second order wave calculation.

The second order wave forces for a given wave length can be expressed as a function of
ship’s velocity U , relative wave heading angle β∗, wave amplitude ζw and time t. Linear
wave theory is assumed, thus, the calculated forces are valid for small wave steepness.
The second order wave forces can be written as follows:

F2ORD = f(U, β∗, ζw; t) (5.3)

The second order wave forces can be approximated as a continuous function. Further-
more, the ship velocity U can be approximated by the surge velocity u. This is done to
simplify the simulation variables and in order to use potential flow solvers, solutions of
which depend on the mean forward speed. On the other hand, the sway velocity v tends
to be small and then such approximation is acceptable. Thus, the second order wave force
reads:

F2ORD(t) = ρgLppζ
2
wF̂2ORD(u(t), β

∗(t)) (5.4)
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5 Manoeuvring in waves

where F̂2ORD represents the non-dimensional second order wave force, which can
be obtained from any solver. The variables u(t) and β∗(t) are time dependent, because
during a manoeuvre changes in surge velocity and relative wave heading are expected. In
order to cover all possible encountered angles between the ship and a wave, the angle β∗

must vary between 0° and 180°. The surge velocity u should cover the range in which the
velocity is expected to vary. Initial values are recommended between u = 0 and umax,
with umax equal to the initial velocity before the start of the manoeuvre. An example of
second order wave force in longitudinal direction and moment around z-axis is shown in
Figure 5.3 for a wave length λ = 0.5Lpp.
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Figure 5.3: Example of second order wave forces for wave lenth λ/Lpp = 0.5. The added resis-
tance F̂2ORD−x (left) and moment M̂2ORD−z (right)

5.3 Validation of manoeuvring in regular waves model

Free running manoeuvring tests in calm water and waves were carried out in the MAR-
INTEK ocean basin to collect data for a benchmark study. The DTC containership model
was constructed with a scale of λ = 63.65, see model’s main particulars in Table 4.3. The
tests were carried out at the design draft (T = 14.5m at full scale) and with an initial for-
ward speed of 0.387m/s (6 knots at full scale). The DTC model was equipped with single
screw propeller and twisted rudder. Details of the model tests can be found in Sprenger
et al. (2017). A subset of the experiments was used here to validate the manoeuvring in
waves model. Turning circle manoeuvres in calm water and regular waves with different
wave propagation directions were simulated and compared with experimental data.
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5.3 Validation of manoeuvring in regular waves model

Figure 5.4 plots the comparative computed and measured ship’s trajectory, surge ve-
locity, and sway velocity of the turning circle manoeuvre with 35° rudder deflection set
to starboard. In the transient part of the turning circle manoeuvre, the computed and
measured trajectories correlate favourably. However, in the steady part, computations
and measurements deviate. Theoretically, in the steady part, all forces are in equilibrium
and the acceleration is zero. Thus, surge u and sway v velocities are constant. Never-
theless, experimental data of these values are varying. Thus, small accelerations are still
occurring and forces are not in equilibrium. These forces induce the deviation from the
theoretical trajectory.

0 1 2 3 4 5

−3

−2

−1

0

ξ/Lpp

η
/
L
p
p

Measured
Computed

0.2

0.3

0.4

u
(m

/s
)

0 50 100 150 200 250 300 350

0

5 · 10−2

0.1

v
(m

/s
)

Figure 5.4: DTC turning circle manoeuvre in calm water with rudder angle of 35° set to starboard

Figure 5.5 plots the trajectories of the turning circle manoeuvres in regular waves of
λ/Lpp = 0.5 with wave headings of 0°, 90° and 180°. The numerical simulation follows
the experimental data at the beginning of the simulation and differences grow with time.
At the end of the simulation the difference between numerical and experimental data is
large. Nevertheless, the orientation of the drift is still captured.
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5 Manoeuvring in waves
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Figure 5.5: DTC turning circle manoeuvre in regular waves, λ/Lpp = 0.5 andH = 2m, for wave
heading angles of 0°, 90° and 180° with initial forward speed corresponding to 6 kn full
scale

The drift motion for the case of βwave = 180° correlates better with the experiments
than for the cases of βwave = 0° and βwave = 90°. This may be due to the lack of a propul-
sion model in the numerical simulations. The thrust was assumed to be constant for all
wave headings (βwave), which was not the case in the experiments. This assumption of
constant thrust in the simulations seems acceptable for calm water manoeuvres. How-
ever, in waves, the added resistance affects the ship’s speed and therefore the thrust of
the propeller varies with the wave heading.

Let’s analyse the case of βwave = 0°. At the initial condition the relative heading an-
gle was β∗ = 0°. Thus, the added resistance force is positive and acts like an additional
propulsion force (pushing effect). In order to keep a 6 kn forward speed, the initial pro-
peller thrust was reduced (by adjusting the initial propeller revolution) comparedwith the
calm water manoeuvre case. When the ship is turning and approaching a relative head-
ing of β∗ = 180°, the added resistance becomes negative and acts against the forward
ship motion resulting in a lower ship speed (by keeping the initial propeller revolution
constant). As the propeller thrust is smaller than in calm water, the model does not have
enough thrust to sail against the waves and it is expected to make a faster turn than in
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5.3 Validation of manoeuvring in regular waves model

calmwater. Such a behaviour is confirmed in Figure 5.5, where the turning for βwave = 0°
is faster than for βwave = 90°, which in turn is faster than βwave = 180°.

Figure 5.6 compares surge and sway velocities for the above cases. Again a good cor-
relation can be found between computations and measurements at the beginning of the
manoeuvre. However, the deviations become higher with increasing simulation time. The
computed and measured average picks and troughs values correlate favourably, but there
is a shift over time. In case of βwave = 0°, measured and computed minimum surge ve-
locities were around 0.1m/s and 0.15m/s, respectively. Such a difference indicates that
a higher longitudinal force was acting on the model. Thus, it is likely that the lack of
propeller dynamics in the simulation is the main reason for these deviations. At the time
t = 130 s the ship had a relative heading of β∗ = 180°. Thus, the added resistance act
against the forward ship motion, and a local minimum of surge velocity was observed in
both, measured and computed values.
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Figure 5.6: DTC velocities during turning circle manoeuvre in regular waves, λ/Lpp = 0.5 and
H = 2m. Surge velocities are presented on the left hand side and sway velocities on
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Figure 5.7 shows the computed and measured turning circle manoeuvres in a regular
wave, λ/LPP = 0.68, for two different wave heights. In both cases the direction of the
wave propagation is β = 180°. The turning circle manoeuvre of the ship in a wave of
H = 2m is plotted on the left and of H = 4m on the right side.
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Figure 5.7: DTC turning circle manoeuvre in regular waves, λ/Lpp = 0.68, for wave heading
angle of 180° and two wave heights 2m (left) and 4m (right).

It can be seen from Figures 5.5 and 5.7 that the second order wave forces determine the
direction (twist) of the ship’s drift. The amplitude of the drift or the position of the ship
over time is determined by the accurate modelling of the forces, which allows an accurate
prediction of the ship’s velocities. In this sense, the modelling of the propeller and engine
dynamics becomes an important task for the simulation of manoeuvring in waves, as
the thrust force affects the ship differently at different relative headings. However, the
modelling of propeller forces should take into account the propeller thrust deduction and
the wake fraction in waves—curvilinear motion in waves.
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6 Discussion and conclusions

The study presented in this thesis is situated within two major transformations in the
shipping industry. On the one hand, the IMO is pushing for more efficient ships to reduce
carbon emissions of the shipping industry. On the other hand, the aim of developing
autonomous ships is driving the creation of new technologies and research. The former
is being promoted mainly for seagoing ships and the latter for inland waterway ships.
The convergence of these two transformations will create the ships of the future, which
aim to be autonomous and highly energy efficient to minimize the production of harmful
gases.

These two transformations require a better understanding of the behaviour of ships in
realistic environments. This is the task of ship dynamics, which, due to its complexity, has
been divided into the fields of seakeeping and manoeuvring. In recent years, however,
efforts have been made to unify these two fields. This is not easy, because of the many
complexities involved. However, with such a theory it would be possible, for example, to
simultaneously study the ship’s motions during manoeuvres in a seaway and in shallow
water, as is the case when manoeuvring in coastal areas. The aim of this thesis was to
contribute to this development by, first, developing a mathematical model for an inland
waterway vessel manoeuvring in shallow water and, second, developing a mathematical
model formanoeuvring inwaves. What follows is the general discussion of thework done
in the thesis to achieve this objective. This is followed by the conclusions and, finally, by
an outlook.

6.1 General discussion

The objective of the thesis was to contribute to an accurate modelling of manoeuvring
forces leading to a better numerical prediction of ship manoeuvring under realistic envi-
ronmental conditions. Two realistic conditions were considered: manoeuvring in shallow
water and manoeuvring in waves. However, the latter condition was limited to manoeu-
vring in regular waves, which, strictly speaking, is not a realistic condition, but serves as
a starting point for testing new theories and numerical methods.
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6 Discussion and conclusions

The thesis produced two mathematical models, one for manoeuvring in shallow water
and another for manoeuvring in regular waves. Thesemathematical manoeuvringmodels
depend on the accurate representation of hydrodynamic forces acting on the ship during
the rudder manoeuvre. These forces are represented as mathematical expressions depen-
dent on kinematic parameters and rudder angle. Note that such a strong simplification
of the hydrodynamic forces inherently introduces errors. However, the mathematical
modelling aims to capture the main features of the manoeuvring phenomena involved.

The research and developments presented in this thesis have been guided by three
factors: simple methods, accurate results and computational efficiency. These guiding
factors were usually expressed in terms of whether the forces could be calculated using
a simple method while maintaining good accuracy, or whether the calculations could be
made faster while maintaining the same accuracy.

The study started with a careful review of the literature on shallow water manoeuvring
and manoeuvring in waves, both summarized in Chapter 1. This review showed that ma-
noeuvring force calculations for inland waterway ships were behind current calculations
for seagoing ships, especiallywhen considering the interactions between hull, propeller(s)
and rudder(s). For the case of manoeuvring in waves, there are two main methods avail-
able: the two-time scale method and the unified method. I believe that the unified method
has more potential for generalizing the problem; however, the two-time scale method is
a good practical approach. The aim here was to critically review the assumptions made
in seakeeping and manoeuvring predictions, to identify incompatibilities in their unifica-
tion, and to develop a mathematical model for manoeuvring in regular waves based on
these findings.

Chapter 2 presents a detailed derivation of the equations of motion. Two coordinate
systems were chosen to describe the equations: an inertial earth fixed coordinate system
and a non-inertial body-fixed coordinate system. In manoeuvring, a representation of the
equations of motion in the body-fixed coordinate system is commonly used. Seakeeping,
however, uses an inertial coordinate system moving at the ship’s average speed. The
seakeeping coordinate system is only useful when the ship is travelling straight ahead.
It is, therefore, not useful for manoeuvring in waves. The equations of motion in the
body-fixed coordinate system for all degrees of freedom are presented in Section 2.3.4.
Alternatively, the equations of motion derived in the earth fixed coordinate system are
presented in Section 2.3.5. Both representations of the equations of motion are equivalent,
and both include all inertial nonlinear terms. The equations of motion in the body-fixed
coordinate system were used for the mathematical manoeuvring model in shallow water,
while, the equations of motion in the earth fixed coordinate system were used for the
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6.1 General discussion

manoeuvring model in waves. The reasons for this choice were based on the ability to
describe wave forces and environmental constraints directly in the earth fixed coordinate
system.

The external forces acting on the ship were divided into three components: hydrody-
namic, hydrostatic and gravitational forces. The focus was on the hydrodynamic forces, in
particular, the manoeuvring hydrodynamic forces. I reviewed the available mathematical
models and found that two distinct groups of models coexist: Abkowitz-type models and
modular models. Due to their flexibility, modular models can simulate a wider range of
manoeuvres, and they are widely used in manoeuvring simulators. Abkowitz-type mod-
els are only suitable for manoeuvres close to the equilibrium condition for which they
were derived, but they tend to be more accurate than modular models because the inter-
actions between hull, propeller, and rudder are implicitly taken into account. I have cho-
sen an Abkowitz-type model for this study because inland waterway ships have complex
propulsion systems with ducted propellers and twin-rudders, for which the flow inter-
actions must be accurately captured. The procedure for determining the hydrodynamic
coefficients of an Abkowitz-type model is well known. Experimentally, this consists of
captive steady tests and planar motion mechanism tests. Numerically, the captive and
the planar motion tests are reproduced using RANS-based simulations. I have followed
this procedure and improved some computational aspects of the method as well as the
method itself, which are discussed below. The coding of the equations of motion was
done for 6DoF. However, most of the calculations were done for 3DoF ship motions.

Chapter 3 briefly describes the numerical methods used in this research. Due to the dif-
ferent nature of the hydrodynamic forces, it is more convenient to use simplified methods
to exploit their particular characteristics. For instance, viscosity plays a negligible role in
wave forces and can, therefore, be calculated faster using potential flow methods. Nev-
ertheless, the main numerical method used was based on the numerical solution of the
Reynold-Averaged Navier-Stokes equations.

Chapters 4 and 5 present the main contributions of this thesis. Two mathematical
models were proposed: one for manoeuvring in shallow water (Chap. 4) and another
for manoeuvring in regular waves (Chap. 5). The accuracy of the models is related to
the accurate modelling of the manoeuvring forces and the wave forces. Two methods
were proposed to identify the hydrodynamic coefficients: a direct system identification
based on RANS captive tests and an indirect system identification based on the measured
free running manoeuvring tests. The latter model has the potential to be applied to full-
scale ships. In addition, a new method for calculating the added mass coefficients was
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presented. This method is accurate, fast and avoids the use of planar motion mechanism
tests. The main contributions presented in Chapters 4 and 5 are discussed in detail below.

6.1.1 Mathematical model for manoeuvring in shallow water

An Abkowitz-type mathematical model for shallow water manoeuvring of inland water-
way ships was developed and presented in Section 4.1. Themathematical model is capable
of predictingmanoeuvres inmoderate water depth and extreme shallowwaters. Differing
from previous models, the complete terms of added mass coefficients for 3DoF were con-
sidered. It was surprising that these terms were not present in the Abkowitz-type models,
but they are present in the modular models. The velocity dependent hydrodynamic co-
efficients were based on Mucha’s mathematical model. Additional nonlinear terms were
added by physical observation of experimental and numerical captive tests. The model
was tested with the RIW ship, which has two ducted propellers and twin-rudders behind
each propeller.

The validation of the mathematical model showed that the model is able to reproduce
the zig-zag manoeuvres even in extreme shallow waters of h/T = 1.2. The model has
all the limitations of an Abkowitz-type model, i.e., that only manoeuvres close to the
reference speed are accurate, and the propeller rotation rate is kept constant during the
manoeuvre. This is perhaps the main limitation of the Abkowitz methods and why their
use has been restricted to specific study cases. However, with new developments in au-
tonomous ship operation and collision avoidance, where high accuracy is required, the
use of this method is being revived.

6.1.2 Added mass at zero freqency

Currentmanoeuvring theory specifies that the addedmass coefficients should be obtained
at zero frequency. Numerically, the state-of-the-art methods for obtaining the addedmass
coefficients are based on virtually reproducing the planar motion mechanism tests with
unsteady RANS. Such calculations require the use of small oscillatory frequencies, on
the assumption that these added masses are close enough to the zero-frequency value—
which is a valid assumption. Despite advances in high-performance computing, numeri-
cal PMM tests based on solving the unsteady Reynolds-averaged Navier-Stokes equations
are time-consuming. The velocity-dependent hydrodynamic coefficients can be obtained
efficiently using steady RANS. However, the calculation of the added mass coefficients is
responsible for the disproportionately long computation times.
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In Section 4.1 a new method for calculating the added mass coefficients at zero fre-
quency was presented. Using Euler equations, the hull is impulsively accelerated over
a single time step. As the computation is performed over only one time step, the com-
putational time is about three orders of magnitude faster than virtual PMM approaches.
Furthermore, the method proved reliable in both deep and shallow water. This is par-
ticularly important as it has been reported that these coefficients are difficult to obtain
under shallow water conditions. The introduction of this method helps to avoid the com-
putations of numerical PMM tests based on the solution of unsteady Reynolds-averaged
Navier-Stokes equations. This change is huge, and in this thesis all the added mass coeffi-
cients were calculated using this approach. Furthermore, this method has been effectively
used and combined with the indirect system identification method.

The validity of the method was tested on ships with low Froude numbers (Fn ≤ 0.1),
for which the free surface has a negligible effect and can, therefore, be simplified as a
flat, non-deforming surface. At high Froude numbers, the free surface has an effect on
the added mass coefficients. I attempted to include the free surface effect, but the vol-
ume of fluid (VOF) technique, which is a capturing method, was not able to resolve the
free surface accurately. The reason may be that this method does not apply the kinetic
and dynamic boundary conditions directly to the free surface. It seems that a tracking
method will be more suitable for this purpose. In such a method, the dynamic and kinetic
boundary conditions can be imposed directly on the free surface. Nevertheless, the use
of this method is justified as ship masters perform manoeuvres at moderate speeds when
navigating in shallow water as well as in waves. For instance, both benchmark cases
presented have a reference speed below Fn ≤ 0.1.

6.1.3 Viscous flow computations

The accuracy of the mathematical models relies greatly on the accurate determination of
the hydrodynamic coefficients. In the previous section I discussed how accurately calcu-
late the added mass coefficients. In this section, the discussion focuses on the accurate
calculation of the coefficients that are proportional to the velocities.

The current state-of-the-art methods for calculating velocity dependent hydrodynamic
coefficients are based on steady RANS of captive manoeuvring tests, such as rudder, drift
or rotating arm tests. However, for inland waterway ships, the literature review showed
that they are mainly obtained from captive model tests. Numerical calculations of captive
tests with fully-appended inland waterway ships were not available in the literature. One
reason for this may be the complex stern geometries of these ships, which accommodate
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complex propulsion systems. For instance, the stern of the RIW ship has tunnels that
direct the flow to ducted propellers and fish tail twin-rudders behind each propeller.

I presented a method for the computation of captive tests of inland waterway ships,
including the interaction between hull, ducted propellers, and twin-rudders. The simu-
lation setup includes a physical representation of all parts, allowing the interaction be-
tween all geometric parts of the ship to be implicitly captured. The vertical motion of
the ship is accounted for by a mesh deformation algorithm known as morphing. For this
type of simulation, the computational time is significantly higher, and ways to improve
the convergence and reduce the computational time were investigated. First, I proposed
an artificial horizontal gravity as a way to ramp up the speed in the numerical domain.
This simple method allows a smooth transition from zero velocity to the desired velocity,
avoiding the generation of large waves. This method proved to be particularly useful in
constrained space, where an incorrect initial condition produces large waves that reflect
on walls.

For ship speeds below Fn ≤ 0.1 the effects of the free surface elevation can be ne-
glected. Only modelling the water speeds up the calculations. However, even at low
speeds in shallow water, the bottom causes the ship to sink and trim, but the trim magni-
tudes for inland waterway ships were negligible. An iterative re-meshing procedure for
the double-body simulation was developed to account for the sinkage effect. With this
procedure, the calculation of the forces of a single captive test takes less than one hour
(in a 48-core cluster). This re-meshing method achieves a similar level of accuracy as a
free surface modelling.

Another important aspect studied was the modelling of turbulence in shallow water.
Previous studies showed that, in shallow water, the flow around the ship’s hull is un-
steady, swirling and contains asymmetric eddies. In current practice, the k-ω SST tur-
bulence model is used to close the RANS system of equations. However, its validity for
shallow water hydrodynamics has been questioned, particularly for the prediction of the
longitudinal force, where the hull-propeller-rudder interaction appears to be more de-
pendent on viscous forces. The Reynolds stress model (RSM) was tested, and it was found
that only the longitudinal force showed a significant difference from the forces calculated
with the k-ω SST model. In the absence of experimental tests, it is difficult to judge which
turbulence model is closer to reality. One difficulty with the RSM is that the system of
equations becomes stiff, leading to convergence difficulties. In practice this means that a
high quality mesh with smooth transitions is required. For this reason, I could only use
the RSM turbulence model for the double-body re-meshing approach. For the free surface
simulation, the number of control volumes was excessive.
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6.1.4 Data-driven system identification

An alternative method to obtain the hydrodynamic coefficients was proposed in Section
4.5. The method was formulated as a data-driven approach using the equations of motion
directly. The method relies on free-running manoeuvring measurements of velocities and
accelerations. If direct measurements of these parameters are not available, they can be
calculated by numerical differentiation of the ship’s trajectory and heading angle. The
measured rudder angles are always required.

Most indirect system identificationmethods focused on improving the regression prob-
lem. Sophisticated algorithms were tested, but could not produce reliable, accurate hy-
drodynamic coefficients. My approach was different in that I wanted to introduce more
physical insight into the system identification procedure. A close analysis of the equations
used for the system identification showed that they were dependent on the accuracy of
the added mass coefficients. Furthermore, the physical knowledge of the hydrodynamic
forces was not used in the procedure. To overcome this problem, I proposed two modifi-
cations to the method. First, I calculated the added mass accurately using the new Euler
based method. Second, the physical knowledge of the hydrodynamic forces was added to
the regression in the form of constraints.

These two implementations ensured that the coefficients are physically plausible. The
method still depends on the quality of the data. I have found that the main requirement
to obtain reliable nonlinear coefficients is to have a large variation of the parameters in
the measurement records. One way to obtain this large variation is to perform different
kinds of manoeuvres with large rudder angles. The method was tested with free-running
manoeuvring tests conducted in environmentally controlled hydrodynamic laboratories.
Its validity has yet to be tested with full-scale trials, where additional environmental ex-
citation is always present.

6.1.5 Mathematical model for manoeuvring in regular waves

A mathematical model for manoeuvring in waves was presented in Chapter 5. The hy-
drodynamic forces were divided into wave contributions and calm water manoeuvring
contributions. The model considered only the second-order wave forces. The equations
of motion were solved in the inertial coordinate system rather than in the body-fixed co-
ordinate system as is usually done. The aim was to use a general coordinate system in
which the equations of motion are valid and the wave propagation can be described di-
rectly. The model gives adequate results for some manoeuvres, in particular for the ship
starting the manoeuvre in head waves. For others, the errors are large. The method only
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captures the main features of the manoeuvre, such as the drifting direction. In general,
the accuracy of the method seems to be similar to the state-of-the-art methods.

The inclusion of first-order forces could improve the results, but certainly not to the
extent of matching the experimental results. A deeper phenomenon is missing. A thor-
ough analysis of the validity of the equations should shed some light on the problem. For
instance, the added mass coefficients for manoeuvring are calculated at zero frequency,
but in seakeeping the added mass coefficients should be calculated at infinite frequency.
When using the added mass coefficients at infinite-frequency, the convolution integral
component should not be ignored.

The propeller thrust during ship manoeuvring in waves was found to be inconsistent
with the modelling assumption that the propeller rotation rate should be constant. The
experimental ship manoeuvring in waves was carried out at a constant initial speed of
6 knots, i.e., the propeller rpm was adjusted accordingly to achieve the same speed, re-
gardless of the wave direction. It is, therefore, advisable to introduce the propeller rpm
as a parameter in the mathematical model and to model the thrust separately from the
hull forces. At this stage, the model for manoeuvring in regular waves provides only a
qualitative analysis.

6.2 Conclusion

The current research aimed to accurately model the hydrodynamic forces duringmanoeu-
vring in shallow water and manoeuvring in regular waves.

A mathematical model for manoeuvring in shallow waters of inland waterway ships
was proposed. The complete added mass coefficients for 3DoF were considered. The
model was validated against experimental free running tests carried out at low speeds of
Fn ≤ 0.1. The mathematical model prediction of the ship’s trajectory and the kinematic
parameters correlates well with the corresponding measured values. The model was even
able to predict the zig-zag manoeuvre in extreme shallow waters. As the mathematical
model relies on accurate force calculation, twomethods were proposed for identifying the
hydrodynamic coefficients, namely, a direct system identification based on captive RANS
calculations and an indirect system identification based on free running tests.

The identification of the hydrodynamic coefficients was separated into velocity and
acceleration dependent coefficients. The added mass coefficients are only acceleration
dependent. A new method for calculating the added masses was developed and vali-
dated. The validation showed that the added mass coefficients can be obtained accurately
within 1% error with respect to the analytical solution. The method is fast and reliable in
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both deep and shallow water. It is, therefore, suitable for replacing the time-consuming
calculations based on the planar motion mechanism and saves time and computational
resources. The method was well suited for both direct and indirect system identification
methods.

RANS-based captive tests are challenging in shallow water, and even more so for ships
with complex propulsion systems, such as the inland waterway ships travelling on the
Rhine River. From a numerical point of view, shallow water flow calculations are compu-
tationally demanding. I have proposed two numerical techniques to reduce the computa-
tional time. First, by improving the initial condition using a horizontal artificial gravity,
thereby allowing a smooth increase in velocity from zero to the desired velocity. Second,
when the free surface is not deformed due to the slow speed, the sinkage and trim is
mainly induced by the shallow water bottom. Thus, a double-body simulation was pro-
posed, which iteratively solves the sinkage and re-meshes the numerical domain. This
method is computationally more efficient and gives an accuracy similar to that obtained
by modelling the free surface. It was also found that there is a significant difference in
the longitudinal force, depending on whether the k-ω SST or the RSM turbulence model
is chosen.

As an alternative to the direct system identification, an indirect system identification
approachwas developed to obtain themanoeuvring hydrodynamic coefficients frommea-
sured free running manoeuvring tests. Accurate hydrodynamic coefficients can be ob-
tained using measured ship kinematic parameters and rudder angle. Physical knowledge
of the hydrodynamic forces and accurate added mass coefficients are key components
in obtaining reliable plausible hydrodynamic coefficients. Incorporating these two key
components resulted in a simple robust method. The method requires large variations in
kinematic parameters to obtain accurate nonlinear coefficients.

Finally, a mathematical model for manoeuvring in regular waves was developed. The
ship dynamics were solved in the inertial coordinate system, where spatial constraints
and wave elevation can be directly described. The inclusion of waves in the manoeuvring
analysis introduces threemain parameters to be considered: wave frequency, wave ampli-
tude and wave propagation direction. The model presented here is able to provide a good
quantitative analysis for manoeuvring in head waves. For other initial wave propagation
directions, only a qualitative analysis is possible, e.g., prediction of the ship’s drift direc-
tion. For a general quantitative analysis, fundamental improvements in the equations of
motion and the propulsion modelling are required.
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6 Discussion and conclusions

6.3 Outlook

Based on the present study, three future research directions are recommended.
First, the calculation of the added masses can be further generalized by including the

boundary conditions directly on the free surface. When using the finite volume method
with Euler equations, the free surface was simplified as a flat plane. As the VOF capturing
method was inadequate to resolve the free surface, a tracking method seems to be more
appropriate. With this kind of method, the kinematic and dynamic boundary conditions
can be enforced directly on the free surface.

Second, the main limitation of an Abkowitz-type model is that the propeller rotation
rate cannot be changed once the coefficients were determined. One possibility to over-
come this limitation is to additionally model the thrust. This means having a model for
X , Y , N , and T . This division is only mathematical, i.e., the captive tests should still be
performed with the ship fully appended to account for the flow interaction between hull,
propeller and rudder.

Third, it is important to find consistent equations of motion for manoeuvring in waves.
For this, the behaviour of the added mass seems to be relevant. Added masses in manoeu-
vring are taken at zero frequency, but in seakeeping they are taken at infinite-frequency.
This seems to suggest that a generalized expression for the added mass is needed in such
a way that, when the ship is sailing in calm water, the added mass is reduced to a zero-
frequency added mass, and when there are waves, it takes the form of the infinite added
mass.
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A Skew symmetric matrix and vector
cross product

A vector cross product can be represented as a matrix-vector multiplication. For instance,
let’s have two vectors a, b ∈ R3, with components a = (a1, a2, a3)

ᵀ and b = (b1, b2, b3)
ᵀ.

The cross product a×b can be expressed as the skew symmetric matrix Sw(a) of the first
vector multiplied by the second vector

a× b = Sw(a)b (A.1)

where Sw(a) and b are

Sw(a) =

 0 −a3 a2

a3 0 −a1
−a2 a1 0

 and b =

b1b2
b3

 (A.2)

Proving the above equation is straightforward, making the matrix and vector multi-
plication we will find the same expression as the cross vector product. Some important
properties of the skew symmetric matrix are:

1. Sw(a) = −[Sw(a)]ᵀ

2. [Sw(a)]2 = Sw(a)Sw(a) = [Sw(a)][Sw(a)]ᵀ−|Sw(a)|2I

3. |Sw(a)|2 = trace[Sw(a)Sw(a)ᵀ] , where trace is the sum of the diagonal elements.
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B Nondimensionalization

Comparison of forces and other ship related parameter are commonly carried with non-
dimensional variables. The two conventions for non-dimensionalizing these variables
are known as Prime System I and Prime System II. Table B.1 lists these non-dimensional
variables and their associated parameters. Where the symbol U is the instantaneous ship
speed, L is the ship’s characteristic length, T is the ship’s draft, and ρ is the density of
the fluid. In the thesis I followed the Prime System I convention.

Table B.1: Normalized variables and parameters used for Prime System I and Prime System II

Variable Prime System I Prime System II
Length L L

Mass 0.5ρL3 0.5ρL2T

Inertia moment 0.5ρL5 0.5ρL4T

Time L/U L/U

Reference Area L2 LT

Position L L

Angle 1 1
Linear velocity U U

Angular velocity U/L U/L

Linear acceleration U2/L U2/L

Angular acceleration U2/L2 U2/L2

Force 0.5ρU2L2 0.5ρU2LT

Moment 0.5ρU2L3 0.5ρU2L2T
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