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Abstract
On a normal projective variety the locus of µ-stable vector bundles that remain
µ-stable on all Galois covers prime to the characteristic p ≥ 0 is open in the moduli
space of Gieseker semistable sheaves. On a smooth projective curve of genus at
least 2 this locus is big in the moduli space of stable vector bundles.

The moduli space of µ-stable vector bundles admits a canonical stratification
defined via the decomposition type of a vector bundle. We give mostly sharp
dimension estimates for these strata over a smooth projective curve of genus at
least 2.

As an application we obtain a mostly sharp estimate of the dimension of the
closure of prime to p trivializable stable vector bundles in the moduli space of
stable vector bundles over a smooth projective curve of genus at least 2. In rank 2
we give a description of its irreducible components.

Zusammenfassung
Der Ort der µ-stabilen Vektorbündel auf einer normalen projektiven Varietät X,
die µ-stabil auf allen étalen Galois Überlagerungen prim zur Charakteristik p ≥ 0
bleiben, sind offen im Modulraum der Gieseker semistabilen Garben. Falls X eine
glatte projektive Kurve von Geschlecht mindestens 2 ist, dann ist dieser Ort groß
im Modulraum der stabilen Vektorbündel.

Weiterhin können wir den Modulraum der µ-stabilen Vektorbündel mit einer
kanonischen Stratifizierung via des Zerfällungsverhalten von Vektorbündeln verse-
hen. Auf einer glatten projektiven Kurve von Geschlecht mindestens 2 finden wir -
meist scharfe - Abschätzungen für die Dimension dieser Strata.

Als Anwendung studieren wir den Abschluss der prim zu p trivialisierbaren
stabilen Vektorbündel im Modulraum der stabilen Vektorbündel über einer glatten
projektiven Kurve von Geschlecht mindestens 2. Im Rang 2 Fall beschreiben wir
die irreduziblen Komponenten dieses Abschlusses.
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Introduction

Statement of results
Consider the stack of vector bundles on a smooth projective curve C over an
algebraically closed field k of characteristic p ≥ 0. Semistability is a property
of vector bundles which is tailored to obtain a moduli space. Via the Harder-
Narasimhan-filtration (HN-filtration for short) it also reveals additional structure
of the category of vector bundles and immediately implies that semistability is
functorial under pullback by finite separable morphisms. Even more structure is
revealed via the Jordan-Hölder-filtration (JH-filtration for short). However, in
contrast to the HN-filtration the JH-filtration is not unique and thus functoriality
fails for stability.

Recently, those morphisms that preserve the stability of vector bundles have
been identified: for curves these are exactly the genuinely ramified morphisms, see
[3, Theorem 5.3]. In higher dimension, genuinely ramified morphisms also preserve
stability, see [2, Theorem 1.2].

The main goal of this thesis is to address a way to measure the failure of
stability to be functorial under all finite separable pullbacks. As an application we
obtain a very different behaviour of the étale fundamental group in positive versus
characteristic 0.

Representations of πét
1 (C) correspond to bundles of degree 0 which are trivialized

on some étale cover of C, see [15, 1.2 Proposition]. In positive characteristic
these étale trivializable bundles are dense in the moduli space M ss,r,0

C of semistable
bundles of rank r and degree 0, see [6, Corollary 5.1]. This no longer holds in
characteristic 0 as we show that the general bundle remains stable on all étale
covers (avoiding the characteristic). Put another way, the étale fundamental group
can recover the moduli space in positive characteristic but not in characteristic 0.

To make our results precise we need a definition. Call a vector bundle on C
prime to p stable if it remains stable after pullback by all finite Galois morphisms
D → C which have degree prime to p. The locus of prime to p stable vector bundles
is open, a direct consequence of the following theorem.

Theorem 1 (Theorem 3.2.7 for curves). Let r ≥ 2. There exists a prime to p
Galois cover π : Cr,good → C such that a vector bundle V of rank r is prime to p
stable iff π∗V is stable.
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Statement of results

An analogous statement holds for µ-stable vector bundles on a normal projective
variety, see Theorem 3.2.7. Having identified this locus as open one should also
address non-emptiness:

Theorem 2 (Corollary 4.2.6). Let r ≥ 2. If C has genus gC ≥ 2, then the prime
to p stable locus Mp′−s,r,d

C is big in the moduli space of stable vector bundles M s,r,d
C .

More precisely, we have

dim(M s,r,d
C \Mp′−s,r,d

C ) ≤ rr0(gC − 1) + 1,

where r0 denotes the largest proper divisor of r. If p is not the smallest proper
divisor of r, then equality holds.

By considering d = 0, we obtain the different behaviour of the étale fundamental
group, i.e., the non-density of the étale trivializable bundles in characteristic 0.

Corollary 3. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2.
Then the stable vector bundles of rank r that are trivialized on a prime to p cover
are not dense in M s,r,0

C .

In rank 2 and characteristic 0 such a non-density result has been independently
obtained by Ghiasabadi and Reppen, see [9, Corollary 4.16].

We also note that the density of the étale trivializable bundles in positive char-
acteristic means that we can not extend Theorem 2 to all covers; the characteristic
has to be avoided.

As the prime to p trivializable bundles are not dense in M ss,r,0
C it is natural to

ask what their closure is. We give mostly sharp dimension estimates:

Theorem 4 (Theorem 5.0.5). Let C be a smooth projective curve of genus gC ≥ 2.
Let r ≥ 2. Let Zs,r be the closure of the prime to p trivializable stable vector
bundles in M s,r,0

C and Zss,r be the closure of the prime to p trivializable bundles in
M ss,r,0

C . Then we have the following:

• dim(Zs,r) ≤ r′(gC − 1) + 1, where r′ is the prime to p part of r.

• dim(Zss,r) = rgC .

• If p ∤ r, then dim(Zs,r) = r(gC − 1) + 1.

In the cases r = 2 and r = pn we can also describe the irreducible components,
see Corollary 5.0.6 and Theorem 5.0.7.

The closure of prime to p trivializable bundles is closely related to a canonical
stratification of the moduli space of stable vector bundles: the prime to p decompo-
sition stratification, see Definition 4.2.1. This stratification is obtained by iterating
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Strategy of proof

the cover Cr,good to obtain a prime to p Galois cover Cr,split with the property that
a stable vector bundle V of rank r on X decomposes on Cr,split into a direct sum⊕
Wi of prime to p stable vector bundles. By the key lemma, Lemma 2.1.13, the

stable vector bundles Wi have the same rank m. This induces a stratification
Zs,r,d(m) of the moduli space of stable vector bundles M s,r,d

C of rank r and degree d
by fixing the rank m. This stratification also works on a normal projective variety.
We have mostly sharp dimension estimates:
Theorem 5 (Theorem 4.2.4). Let C be a smooth projective curve of genus gC ≥ 2.
Let r ≥ 2, d ∈ Z. Then for m | r we have the following:

• dim(Zs,r,d(m)) ≤ ( r
m

)′m2(gC − 1) + 1, where ( r
m

)′ is the prime to p part of r
m

.

• If p ∤ r
m

, then we have dim(Zs,r,d(m)) = rm(gC − 1) + 1.

Strategy of proof
The key observation to prove Theorem 1 is that, while stability is generally not
preserved under pullback by a Galois morphism D → C, polystability is preserved.
This leads to the key lemma, Lemma 2.1.13: A stable vector bundle V on C
decomposes on D into a direct sum ⊕n

i=1 W
⊕e
i of stable vector bundles Wi such

that the Galois group of D/C acts transitively on the isomorphism classes of the
Wi.

The construction of the cover Cr,good checking for prime to p stability is then
split into two parts: A cover Cr,large checking for the decomposition behaviour if
n ≥ 2 and a cover Cr,good including n = 1.

The cover Cr,large is easily constructed using the transitive action of the Galois
group. To include the case n = 1 a difficulty arises: while all the conjugates of
W = W1 by the Galois group are isomorphic, these isomorphisms might not be
compatible. We provide a workaround for descending simple invariant bundles.

Pretending that W descends for now allows for a comparison of the linearizations
of V on D and W⊕e. This gives rise to a GLe representation of the Galois group.
Finite subgroups prime to the characteristic of GLe are well-understood. By
Jordan’s theorem - which in positive characteristic is due Larsen and Pink - they
are close to being abelian. This allows us to find a cover that also checks for this
decomposition behaviour.

The same type of cover works in higher dimensions. However, the workaround
for descend only works for curves. To obtain Theorem 1 in higher dimensions, we
carefully set up the requirements for the workaround of descend and then use a
restriction theorem for stability to reduce to dimension 1.

Theorem 2 is obtained by a dimension estimate on the strata defined by the
decomposition behaviour of a stable vector bundle with respect to the cover Cr,good.
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Structure

The dimension estimate also uses the key lemma. Given a Galois cover D → C
and a stable vector bundle V on C, consider the decomposition of V on D into⊕n

i=1 W
⊕e
i of the key lemma. Using the transitive action of the Galois group, V

can essentially be recovered from one of the Wi. Furthermore, Wi behaves for the
dimension estimate as if it descends to a cover of degree n. This cover is D/H,
where H is the stabilizer of the isomorphism class of Wi under the Galois action.

To obtain the mostly sharp estimates of the prime to p decomposition strata one
needs to find a way to construct stable vector bundles with prescribed decomposition
behaviour. We do this for cyclic covers which suffices for our purpose.

The closure of prime to p trivializable stable vector bundles is contained in the
smallest prime to p decomposition stratum. The construction of stable vector
bundles using cyclic covers used in the dimension estimates of the prime to p
decomposition strata can be modified to yield prime to p trivializable stable vector
bundles. This yields similar mostly sharp dimension estimates as for the smallest
prime to p decomposition stratum.

Structure
The thesis is structured as follows:

In the first chapter, we collect some preliminaries regarding Gieseker-semistability,
semistability, the moduli space of Gieseker semistable sheaves, and Galois mor-
phisms. We advise the reader to skip this chapter and come back to it as needed.

In the second chapter, we collect properties of (semi)stable vector bundles under a
Galois pullback. We start with the proof of the key lemma regarding the behaviour
of stable vector bundles under a Galois pullback. Then we recall the notion of
genuinely ramified morphisms which recently have been shown to preserve stability
under pullback, see [2]. We also spell out the proof of this fact. Then we briefly
study pushforward and pullback and show that they induce finite morphisms on
the level of moduli spaces. For cyclic covers we describe the structure of the direct
image of the structure sheaf. Pushforward is closely related to a construction of
stable vector bundles given a Galois cover. The other construction is via irreducible
representations of the Galois group. We spell out both constructions. Finally, we
define the functorial notions of stability and study them for smooth projective
curves of genus at most 1.

In the third chapter, we construct the prime to p cover Xr,good that checks whether
a vector bundle of rank r on a normal projective variety X is prime to p stable.

In chapter 4, we investigate certain strata which arise from the decomposition
behaviour of a stable vector bundle on a Galois cover and estimate their dimension
if X = C is a smooth projective curve of genus gC ≥ 2. This stratification depends
on the choice of the cover. Iterating the cover Xr,good, we obtain a cover Xr,split on
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Notation

which a vector bundle of rank r on X decomposes into prime to p stable vector
bundles, i.e., for prime to p covers dominating Xr,split the decomposition behaviour
remains unchanged. This induces the prime to p decomposition stratification which
is independent of the cover Xr,split. If X = C is a smooth projective curve, the
dimension estimates obtained for arbitrary covers are sharp for the prime to p
decomposition if the characteristic is avoided. We obtain Theorem 2 as a direct
corollary as the prime to p stable locus is the open prime to p decomposition
stratum.

In chapter 5, we study the closure of the prime to p trivializable (semi)stable
vector bundles in the moduli space of (semi)stable vector bundles over a smooth
projective curve of genus at least 2. We obtain mostly sharp dimension estimates
in arbitrary rank. In rank 2 we can also describe the irreducible components.

We include two well-known results in the appendix to which the author could
not find a reference in the literature.

Notation
We work over an algebraically closed field k of characteristic p ≥ 0. A variety is a
separated integral scheme of finite type over k. A curve is a variety of dimension 1.

Let X be a variety. The function field of X is denoted by κ(X). We call an open
subset U of X big if X \ U has codimension at least 2.

If X is a projective variety we implicitly choose an ample bundle OX(1) on
X. Given a finite morphism π : Y → X we equip Y with the polarization
OY (1) = π∗OX(1). By (semi)stability we mean µ-(semi)stability with respect to
OX(1).

We denote the moduli space of (semi)stable vector bundles of rank r and degree
d on a smooth projective curve C by M s,r,d

C (resp. M ss,r,d
C ). On a projective variety

X the stable vector bundles with Hilbert polynomial P form an open M s,P
X in the

moduli space of Gieseker semistable sheaves MG−ss,P
X .

Given a morphism π : Y → X of varieties and a sheaf F on X we denote the
pullback π∗F also by F|Y .

By a Galois morphism Y → X of varieties we mean a finite surjective separable
morphism such that the extension of function fields κ(Y )/κ(X) is Galois. A (Galois)
cover is a finite étale (Galois) morphism Y → X. A cyclic Galois cover is a Galois
cover with cyclic Galois group.

We consider a finite abstract group G also as a finite étale group scheme over k.
For a natural number r > 1 the smallest proper divisor is the smallest divisor r′

of r such that r′ ̸= 1. The largest proper divisor is the largest divisor r′ of r such
that r′ ̸= r.
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1 Preliminaries
We collect the basic properties of (semi)stable reflexive sheaves on normal pro-
jective varieties. To define (semi)stability we recall the Hilbert polynomial and
its properties. Then we introduce the maximal destabilizing subsheaf and the
socle for slope (semi)stability. While the maximal destabilizing subsheaf makes
sense for torsion-free sheaves the socle requires that we work with reflexive sheaves
on normal projective varieties. In the last section we recall the moduli space
of Gieseker-semistable sheaves as well as some of its properties over a smooth
projective curve of genus at least 2.

1.1 Saturated and reflexive sheaves
Reflexive sheaves are the right candidates when considering slope-stability on a
normal projective variety. We begin by recalling their basic properties:

Lemma 1.1.1. Let X be a normal variety. Then a torsion-free coherent sheaf F
is reflexive iff the morphism induced by adjunction

F → j∗j
∗F

is an isomorphism for all big open subschemes j : U ⊆ X.

Proof. Let η be the generic point of X. Recall the characterization of reflexive, [31,
Tag 0AVB], which asserts that a torsion-free coherent sheaf F can be recovered
from its stalks Fx ⊆ Fη at codimension 1 points x iff it is reflexive. As a big
open j : U ⊆ X contains all codimension 1 points we find that F → j∗j

∗F is an
isomorphism if F is reflexive.

Conversely, note that ev : F → (F∨)∨ is an isomorphism at all codimension
1 points as there torsion-free is the same as locally free. Then ev is also an
isomorphism on a big open j : U ⊆ X. Using the commutativity of

F (F∨)∨

j∗j
∗F j∗((j∗F )∨)∨

ev

∼ ∼

j∗(ev)
∼

1

https://stacks.math.columbia.edu/tag/0AVB


1.1 Saturated and reflexive sheaves

and that three out of the four arrows are isomorphisms we conclude that F is
reflexive.

Lemma 1.1.2. Let X be a variety. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of coherent sheaves on X. If F2 is reflexive and F3 is torsion-free, then
F1 is reflexive.

Proof. This follows from the Snake lemma applied to

0 F1 F2 F3 0

0 (F∨
1 )∨ (F∨

2 )∨ (F∨
3 )∨ 0

ev ev ev

as for a torsion-free sheaf ev is injective, see also [31, Tag 0EB8].

Lemma 1.1.3. Let π : Y → X be a flat morphism of varieties. Then the pullback
of a torsion-free coherent sheaf by π is again torsion-free. The same holds for a
saturated subsheaf of a coherent sheaf.

Proof. The lemma is Zariski-local on X and we can assume that X = Spec(A) is
affine. Let F be a torsion-free coherent sheaf on X. To show that π∗F is torsion-free
it suffices to show this on an affine covering of Y . Thus, we may assume that
Y = Spec(B) is affine as well.

The torsion-free coherent sheaf F corresponds to a finite torsion-free A-module
M . As M is torsion-free and A is a domain, we have

M ⊆ M ⊗A Q(A) ∼= Q(A)⊕r

for r = dim(M ⊗A Q(A)). The morphism A → B is flat by assumption and we
obtain

M ⊗A B ⊆ Q(A)⊕r ⊗A B ⊆ Q(B)⊕r.

The claim follows.
Let F ⊆ G be a saturated subsheaf of a coherent sheaf G on X. By definition

Q := G/F is torsion-free. It is coherent as G is coherent. As π is flat the short
exact sequence

0 → F → G → Q → 0
induces a short exact sequence

0 → π∗F → π∗G → π∗Q → 0.

As we already know that π∗ preserves torsion-free, π∗F is saturated in π∗G.

2
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1.2 Numerical invariants of coherent sheaves

1.2 Numerical invariants of coherent sheaves
1.2.1 The Hilbert polynomial
Definition 1.2.1. Let X be a projective scheme of dimension d. Let OX(1) be an
ample line bundle on X. Let F ≠ 0 be a coherent sheaf on X. Then the Hilbert
polynomial PF of F with respect to OX(1) is

PF (n) := χ(F ⊗ OX(n)) =
d∑
i=0

(−1)ihi(X,F ⊗ OX(n)),

where hi(X,−) denotes the dimension of H i(X,−) over k. We usually suppress
the dependence on the choice of OX(1). If we want to emphasize the dependence,
then we write PF,OX(1) instead of PF .

We briefly give the reason for the name, i.e., PF is a numerical polynomial of
degree equal to the dimension of the support of F , see also [12, Proposition 1.2.1].

Recall that a map f : N → Z is a numerical polynomial with coefficients in
Z if there exists a polynomial P ∈ Q[x] such that P (n) = ∑r

i=0 ai
(
n
i

)
for some

ai ∈ Z and f(n) = P (n) for n ≫ 0, see [31, Tag 00JX]. Note that the condition
P (n) = ∑r

i=0 ai
(
n
i

)
determines the coefficients of P and P is of degree r.

Lemma 1.2.2. Let X be a projective scheme. Let F ̸= 0 be a coherent sheaf
on X. Then the Hilbert polynomial of F is a numerical polynomial of degree
d = dim(supp(F )). The leading coefficient of F is positive.

Proof. Observe that F = i∗i
∗F , where i : supp(F ) → X is the closed immersion.

As i∗ is exact, we have H i(X,F ) = H i(supp(F ), i∗F ) and we can assume that
X = supp(F ).

We prove the lemma by induction on the dimension of X. In dimension 0 the
Hilbert polynomial is constant. We assume dim(X) ≥ 1 in the following. As OX(1)
is ample some tensor power is very ample and globally generated. By Lemma [12,
Lemma 1.1.12], there exists a section sn of OX(n) and a section sn+1 of OX(n+ 1)
for some n ≫ 0 such that we have short exact sequences

0 → F ⊗ OX(−i) id⊗s−1
i−−−−→ F → F|Hi

→ 0,

where Hi is the closed subscheme cut out by s−1
i for i = n, n + 1. The Euler-

characteristic is additive and we obtain

PF (N) − PF (N − n) = PF|Hn
(N) and

PF (N) − PF (N − n− 1) = PF|Hn+1
(N)

3
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1.2 Numerical invariants of coherent sheaves

for N ≥ n+ 1, where the Hilbert polynomial of F|H is with respect to OX(1)|H for
H = Hn, Hn+1. Thus,

PF (N − n) − PF (N − n− 1) =
d−1∑
i=0

ai

(
N

i

)
, N ≫ 1,

is a numerical polynomial with coefficients in Z by induction.
Consider the polynomial P ′(N) := ∑d−1

i=0 ai
(
N+1
i+1

)
. Then as in [31, Tag 00JZ] we

find
P ′(N) − P ′(N − 1) =

d−1∑
i=0

ai
((N + 1

i+ 1

)
−
(
N

i+ 1

))
=

d−1∑
i=0

ai

(
N

i

)
.

We obtain

a−1 := P ′(N) − PF (N − n) = P ′(N − 1) − PF (N − n− 1)

and conclude
PF (N − n) = P ′(N) − a−1

for N ≫ 1. Thus, for N ≫ 1 we have

PF (N) = P ′(N + n) − a−1

=
d−1∑
i=0

ai

(
N + n+ 1
i+ 1

)
− a−1

=
d∑
i=0

bi

(
N

i

)
,

for some bi ∈ Z as
(
N+n+1
i+1

)
is a numerical polynomial with coefficients in Z.

As OX(1) is ample and F is coherent, we have H i(X,F (N)) = 0 for i > 0 and
N ≫ 0. Thus, we have PF (N) = H0(X,F (N)) for N ≫ 0. Furthermore, F (N) is
globally generated for N ≫ 0 and we find that H0(X,F (N)) ̸= 0 for N ≫ 0 since
F ̸= 0. Therefore, the leading coefficient of PF is positive.

Definition 1.2.3. Let X be a projective scheme. Let F ̸= 0 be a coherent sheaf
on X. The dimension of F is the dimension of supp(F ).

Let F be of dimension d on X. We write the coefficients of the Hilbert polynomial
as

PF (n) =
d∑
i=0

αi,F,OX(1)

i! ni, n ≫ 0,

where αi,F,OX(1) ∈ Q. If F and OX(1) are clear from the context we suppress the
index and just write αi.

The reduced Hilbert polynomial of F is pF := PF/αd.

4
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1.2 Numerical invariants of coherent sheaves

Definition 1.2.4. Let X be a projective variety of dimension d. Let F be a
coherent sheaf of dimension d on X. The rank of F is the rank of the κ(X) = OX,η

vector space Fη, where η denotes the generic point of X.

Lemma 1.2.5. Let X be a projective variety of dimension d. Let F ̸= 0 be a
coherent sheaf of dimension d. Then we have rk(F ) = αd,F/αd,OX

.

Proof. If the dimension of X is 0, then X = Spec(k) and F is a finite dimensional
k-vector space. Then the lemma is clear.

Assume that dim(X) ≥ 1. Replacing the ample line bundle OX(1) by a positive
tensor power OX(n) changes the coefficients αd of F and OX both by nd. Thus,
the quotient αd,F

αd,OX

is invariant under such a replacement and we can assume that
OX(1) is globally generated and very ample.

For the general s ∈ H0(X,OX(1)) we obtain a short exact sequence

(∗) 0 → F ⊗OX
OX(−1) = F (−H) s−1

−−→ F → F|H → 0,

where H is the closed subscheme cut out by s−1, see [12, Lemma 1.1.12].
Note that a coherent sheaf of dimension d is a vector bundle on a non-empty open

subset. If X has dimension 1, then the general such H lies in the open locus where
F is a vector bundle. As H has dimension 0, we find F|H ∼= Ork(F )

H . Comparing
coefficients of the Hilbert polynomial yields

α1,F = α0,F|H = rk(F )α0,OH
= rk(F )α1,OX

and the claim follows if the dimension is 1.
Assume in the following that dim(X) ≥ 2. By Bertini’s theorem, see [14,

Corollaire 6.11 (3)], the general s ∈ H0(X,OX(1)) also satisfies that H is a variety.
Furthermore, the general s ∈ H0(X,OX(1)) intersects the non-empty open locus
where F is a vector bundle non-trivially. Then F|H is of dimension dim(H) = d− 1.

By induction, we have
αd−1,F|H

αd−1,OH

= rk(F|H) = rk(F ).

Furthermore, we have αd−1,F|H = αd,F by comparing the coefficients of the Hilbert
polynomial using the short exact sequence (∗). Similarly, we can compute αd,OX

and the lemma follows.

1.2.2 Degree and slope
We are particularly interested in the invariants obtained from the first two highest
terms of the Hilbert polynomial of a torsion-free coherent sheaf F as these are used
to define slope-(semi)stability.

5



1.2 Numerical invariants of coherent sheaves

Definition 1.2.6. Let X be a projective variety of dimension d ≥ 1. Let F be a
coherent sheaf F of dimension d on X. The degree of F is defined as

deg(F ) := αd−1(F ) − rk(F )αd−1(OX).

The slope of F is defined as
µ(F ) := deg(F )

rk(F ) .

Note that on a smooth projective curve this definition of the degree agrees with
the definition of the degree via Riemann-Roch.

Remark 1.2.7. Let X be a projective variety and F ̸= 0 a coherent sheaf on X.
Replacing OX(1) by OX(N) for some N ≥ 1 changes the coefficients of the Hilbert
polynomial of F by

αi,F,OX(N) = N iαi,F,OX(1), 0 ≤ i ≤ dim(F ).

Thus, Nd−1µOX(1)(F ) = µOX(N)(F ) if F is of dimension dim(X) ≥ 1.

Definition 1.2.8. Let X be a projective variety. Let F be a coherent sheaf on X.
Then F is called torsion-free in codimension 1 if there exists a big open U ⊆ X
such F|U is torsion-free on U .

Remark 1.2.9. If X is a normal projective variety of dimension d ≥ 2, then we
can compute the slope on a smooth projective curve C in X: By Bertini’s theorem
the general hyperplane section H defined by a global section in OX(N), N ≫ 0, is
a normal projective variety, see [14, Corollaire 6.11 (3)] and [27, Theorem 7]. As
replacing OX(1) by OX(N) changes the slope by a non-zero scalar, we can assume
in the following that N = 1.

Consider for a coherent sheaf F torsion-free in codimension 1 its reflexive hull
G := (F∨)∨. Then µ(G) = µ(F ) as ev : F → G is an isomorphism on the big open
where F is locally free. Furthermore, G|H is torsion-free in codimension 1 for the
general hyperplane section H as the general such H intersects the locus where G is
not a vector bundle transversally.

We claim that µ(G|H) = µ(G). Indeed, we have a short exact sequence

(∗) 0 → G(−H) → G → G|H → 0

as G(−H) is torsion-free and Tor1(G,OH) is torsion. Comparing the coefficients
of the Hilbert polynomial we obtain

αd−2,G|H = αd−1,G − αd,G
2 , and similarly
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1.3 (Semi)stability

αd−1,OH
= αd−1,OX

− αd,OX

2 .

Thus,

µ(G|H) =
αd−1,G − αd,G

2
rk(G) − αd−1,OX

+ αd,OX

2
= µ(G) − αd,OX

2 + αd,OX

2 = µ(G).

This can be used to study the behaviour of the slope under tensoring. Let F
and F ′ be torsion-free sheaves on X. Then we claim that

µ(F ⊗ F ′) = µ(F ) + µ(F ′).

First observe that we can replace all sheaves by their reflexive hull as this leaves
the slope invariant. Then the short exact sequence (∗) applied to the sheaves
(F∨)∨, (F ′∨)∨, and ((F ⊗ F ′)∨)∨, shows that we can reduce to the case where X
is a smooth projective curve. In this case F and F ′ are vector bundles and the
statement follows from

deg(F ⊗ F ′) = rk(F ′) deg(F ) + rk(F ) deg(F ′),

see [31, Tag 0AYX].
Similarly one can show that deg(V ) = deg(det(V )) for a vector bundle V on X.

1.3 (Semi)stability
1.3.1 Gieseker-(semi)stability
Gieseker-semistability is a property of torsion-free sheaves tailored to obtain a
moduli space. It also reveals more structure of the category of torsion-free sheaves
via the Harder-Narasimhan and Jordan-Hölder filtration.

Definition 1.3.1. Let X be a projective variety. A torsion-free sheaf F is a called
Gieseker semistable if for all subsheaves 0 ̸= G ⊆ F we have pG ≤ pF , where we
use the lexicographic order on the coefficients of the reduced Hilbert polynomials.
It is called Gieseker stable if the inequality is strict for 0 ̸= G ⊊ F .

The notion of Gieseker-(semi)stability depends in general on the choice of the
ample line bundle OX(1). For us OX(1) is fixed and we suppress the dependence
in the notation.

We recall the basic properties of Gieseker-(semi)stability.

7
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1.3 (Semi)stability

Lemma 1.3.2 ([12], Theorem 1.3.4. and Proposition 1.5.2). Let X be a projective
variety. Let F ̸= 0 be a coherent torsion-free sheaf on X.

Then F has a unique filtration

0 = F0 ⊊ F1 ⊊ · · · ⊊ Fn = F

such that the successive quotients Fi+1/Fi are Gieseker-semistable with reduced
Hilbert polynomial pi+1 such that pn < pn−1 < · · · < p1. This filtration is called the
Harder-Narasimhan-filtration or HN-filtration for short.

If F is Gieseker-semistable with reduced Hilbert polynomial p, then there exists a
filtration

0 = F0 ⊊ F1 ⊊ · · · ⊊ Fn

such that the successive quotients Fi+1/Fi are Gieseker-stable with reduced Hilbert
polynomial p. This filtration is called the Jordan-Hölder-filtration or JH-filtration
for short. Furthermore, the associated graded object ⊕n−1

i=0 (Fi+1/Fi) is independent
of the choice the JH-filtration of F .

Lemma 1.3.3 ([12], Proposition 1.2.7 and Corollary 1.2.8). Let X be a projective
variety. Let F and G be Gieseker-stable sheaves with the same reduced Hilbert
polynomial. Then a non-zero morphism F → G is an isomorphism.

In particular, Gieseker-stable vector bundles are simple.

Definition 1.3.4. Let X be a projective variety. A torsion-free coherent sheaf
F ̸= 0 with reduced Hilbert polynomial p is called Gieseker-polystable if F is a
direct sum of Gieseker-stable sheaves with reduced Hilbert polynomial p.

Two semistable sheaves F ̸= 0 and F ′ ̸= 0 are S-equivalent if the associated
graded objects of the JH-filtrations of F and F ′ are isomorphic. We denote this by
F ∼=S F

′.

1.3.2 Slope-(semi)stability
Slope-semistability coincides with Gieseker-semistability on a smooth projective
curve. It is the right candidate for our functorial approach as it is a property
in codimension 1 and a finite separable morphism of normal varieties is flat in
codimension 1. We recall the definition and spell out the proofs for the destabilizing
subsheaf as well as the socle as these are essential in studying (semi)stability from
a functorial perspective.

Definition 1.3.5. Let X be a projective variety. A coherent sheaf F ̸= 0 is called
slope-semistable (also µ-semistable) if it is torsion-free in codimension 1 and for all
G ⊆ F of rank 0 < rk(G) ≤ rk(F ) we have µ(G) ≤ µ(F ).
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1.3 (Semi)stability

Furthermore, F is called slope-stable (also µ-stable) if it is slope-semistable and
the inequality is strict for subsheaves G ⊆ F of rank 0 < rk(G) < rk(F ).

Note that we could have alternatively required that
αd−1,G

αd,G
≤ αd−1,F

αd,F

to define µ-semistability and similarly for µ-stability.
Slope-(semi)stability is our main interest and we abbreviate it to (semi)stability.

As for Gieseker-(semi)stability, the notion of (semi)stability depends in general
on the choice of the ample line bundle OX(1). We work with a fixed OX(1) and
usually suppress this dependence in the notation.

Note that neither (semi)stability nor Gieseker (semi)stability change under the
replacement of OX(1) with OX(N), N ≥ 1.

(Semi)stability is similarly behaved to Gieseker-(semi)stability. We spell out the
proofs of the existence of the maximal destabilizing subsheaf, the socle, and that
stable vector bundles are simple.

Let X be a projective variety of dimension d ≥ 1. (Semi)stability can be viewed as
a property in the category Cohd,d−1 of coherent sheaves torsion-free in codimension
1 up to inverting morphisms with kernel and cokernel supported in codimension 2
or higher, see also [12, Section 1.6]. We are interested in (semi)stability on normal
projective varieties. In this case, every coherent sheaf torsion-free in codimension
1 is isomorphic in Cohd,d−1 to its reflexive hull. Thus, instead of working in the
category Cohd,d−1 we work with reflexive sheaves.

Lemma 1.3.6. Let X be a projective variety of dimension d ≥ 1. Consider a short
exact sequence

0 → K → F → Q → 0
of coherent sheaves on X. If K,F, and Q are of dimension d, then the following
are equivalent:

(i) µ(K) < µ(F ),

(ii) µ(K) < µ(Q), and

(iii) µ(F ) < µ(Q).

Furthermore, if K and F are of dimension d and supp(Q) has codimension 1, then
µ(K) < µ(F ).

Proof. The equivalence of (i) - (iii) follows directly from

αd,F = αd,K + αd,Q and αd−1,F = αd−1,K + αd−1,Q.
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1.3 (Semi)stability

If K and F are of dimension d and supp(Q) has codimension 1, then we have

αd,F = αd,K and αd−1,F = αd−1,K + αd−1,Q.

As αd−1,Q is positive we conclude µ(K) < µ(F ).

Lemma 1.3.7. Let X be a projective variety of dimension d ≥ 1. Let V and W be
stable vector bundles on X with the same slope µ. Then every morphism V → W
is either trivial or an isomorphism.

In particular, stable vector bundles are simple.
If X is in addition normal, then the same holds for stable reflexive sheaves.

Proof. Let φ : V → W be a morphism. If φ is non-zero, then we claim that φ is
injective. Indeed, if the kernel K of φ were non-zero, then by stability of V the
torsion-free sheaf K has µ(K) < µ or the same rank as V . Thus, the image of φ
would have slope greater than µ or be torsion. Both cases are impossible as W is
stable of slope µ and torsion-free.

As φ is injective and V and W have the same slope, the stability of W implies
that V and W have the same rank. The support of the quotient Q := W/φ(V ) is
cut out by the ideal

det(φ) ⊗ det(W )−1 : det(V ) ⊗ det(W )−1 ↪→ OX .

If Q is non-zero, then Q is supported on the effective Cartier divisor defined by
det(φ) ⊗ det(W )−1. Thus, we find µ(V ) < µ(W ) - a contradiction.

The endomorphism algebra EndOX
(V ) of a stable vector bundle V is a skew field

by the above discussion. It is also a finite k-algebra as

EndOX
(V ) = H0(X, EndOX

(E))

and X is projective. Thus, the k-algebra generated by an endomorphism of V in
End(V ) is a finite field extension of k. As k is algebraically closed we conclude
End(V ) = k, i.e., V is simple. See also the proof of [12, Corollary 1.2.8].

Assume that X is in addition normal. Let φ : F → G be a non-zero morphism of
stable reflexive sheaves of the same slope on X. Analogous to the vector bundle case
we find that φ is injective and that F and G have the same rank. Let Q := G/F .
Then Q is torsion of dimension ≤ d− 2, as F and G have the same slope and rank.
Restricting to the big open U := X \ supp(Q) we find that φ|U is an isomorphism.
Using the reflexivity of F and G we conclude that φ is an isomorphism.

We find End(F ) = k by an analogous argument to the vector bundle case.

Remark 1.3.8. Note that Lemma 1.3.7 also holds for Gieseker-stable torsion-
free sheaves with the same reduced Hilbert polynomial, see Lemma 1.3.3. While
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1.3 (Semi)stability

stability implies Gieseker-stability this does not mean that the lemma also holds
for torsion-free stable sheaves. For example, the ideal sheaf Ix of a point x on a
projective variety X of dimension ≥ 2 is torsion-free and stable of slope 0, but
clearly Ix ⊊ OX .

Lemma 1.3.9. Let X be a projective variety. Let F, F ′ ⊆ G be subsheaves of a
torsion-free coherent sheaf G such that F ∩ F ′ ̸= 0.

If µ(F + F ′) ≤ µ(F ) < µ(F ′), then µ(F ′) < µ(F ∩ F ′).

Proof. Consider the short exact sequence of torsion-free sheaves

0 → F ∩ F ′ → F ⊕ F ′ → F + F ′ → 0.

As the degree is additive, we obtain

deg(F ⊕ F ′) − deg(F + F ′) = deg(F ∩ F ′).

In terms of slopes, we have

µ(F ) rk(F ) + µ(F ′) rk(F ′) − µ(F + F ′) rk(F + F ′)
rk(F ∩ F ′) = µ(F ∩ F ′).

Applying the assumptions we find

µ(F ∩ F ′) ≥ µ(F ) rk(F ) + µ(F ′) rk(F ′) − µ(F ) rk(F + F ′)
rk(F ∩ F ′)

= µ(F ′) rk(F ′) − µ(F )(rk(F ′) − rk(F ∩ F ′))
rk(F ∩ F ′)

> µ(F ′).

Lemma 1.3.10 (Analogue of Lemma 1.3.5, [12]). Let X be a projective variety.
Let F ̸= 0 be a torsion-free coherent sheaf on X. There exists a unique subsheaf
0 ̸= G ⊆ F such that µ(G) ≥ µ(G′) for all 0 ̸= G′ ⊆ F and if µ(G) = µ(G′) for
some 0 ̸= G′ ⊆ F , then G′ ⊆ G.

In particular, G is semi-stable and saturated.

Proof. As already stated in [12, Theorem 1.6.6] the proof [12, Lemma 1.3.5] carries
over to our situation. We spell this out in the following. Uniqueness is clear by the
defining properties of G.

We order the non-zero subsheaves of F by G ≤ G′ iff G ⊆ G′ and µ(G) ≤ µ(G′).
As F is coherent ascending chains of subsheaves are eventually constant. In
particular, every ascending chain with respect to ≤ has an upper bound. Also note
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1.3 (Semi)stability

that the set of non-zero subsheaves contains F and we can apply Zorn’s lemma to
find a maximal subsheaf of F with respect to ≤.

Observe that a maximal subsheaf G of F with respect to ≤ is saturated, as its
saturation Gsat has slope µ(G) ≤ µ(Gsat).

Let G be a maximal subsheaf with minimal rank among the maximal subsheaves.
We claim that G has the desired properties.

We first show that G is semi-stable. Assume that there exists a non-trivial
subsheaf H of G such that µ(G) < µ(H). Again by Zorn’s lemma there also exists
a maximal such H with respect to ≤ for subsheaves in G. Similarly, there exists a
maximal H ′ ⊆ F with respect to ≤ for subsheaves in F containing H.

Then µ(G) < µ(H) ≤ µ(H ′) by definition. The maximality of G implies
µ(G + H ′) ≤ µ(G). Note that H ′ is not contained in G as G has minimal rank
among maximal subsheaves and F/H ′ is torsion-free. Thus, we obtain a strict
inequality µ(G+H ′) < µ(G).

By Lemma 1.3.9, we obtain µ(H) ≤ µ(H ′) < µ(G ∩ H ′). This contradicts the
maximality of H as H ⊆ G ∩H ′ ⊆ G.

We now check that µ(G) has maximal slope among all non-trivial subsheaves
of F . Assume there was 0 ̸= H ⊆ F such that µ(G) < µ(H). Replacing H by a
maximal subsheaf with respect to ≤ in F , we can assume that H is maximal. Then
H is not contained in G as G has minimal rank among maximal subsheaves and
F/H is torsion-free.

Thus, G ⊊ H+G and by maximality of G we find µ(H+G) < µ(G). By Lemma
1.3.9, we obtain µ(G) < µ(H) < µ(H ∩G) if H ∩G ̸= 0. This is not possible as we
have already shown that G is semistable. If H ∩G = 0, then G+H = G⊕H and
by Lemma 1.3.6 we obtain µ(G⊕H) > µ(G) contradicting the maximality of G.

Let 0 ̸= G′ ⊆ F with µ(G′) = µ(G). As every subsheaf of G′ is also a subsheaf
of F , the maximality of µ(G) implies that G′ is semistable. Then G ⊕ G′ is
semistable with slope µ(G+G′) = µ(G) as well. As G⊕G′ ↠ G+G′ we find that
µ(G) ≤ µ(G + G′). By the maximality of G we conclude G = G + G′ and thus
G′ ⊆ G.

Definition 1.3.11. Let X be a projective variety. Let F be a non-trivial torsion-
free coherent sheaf on X. The subsheaf G of Lemma 1.3.10 is called the maximal
destabilizing subsheaf of F .

Definition 1.3.12. Let X be a projective variety. A reflexive sheaf F ̸= 0 on X is
called polystable if it is a direct sum of stable torsion-free sheaves of the same slope.

Remark 1.3.13. Note that, as a direct summand of a vector bundle is again a
vector bundle, a vector bundle is polystable iff it is a direct sum of stable vector
bundles of the same slope.
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1.3 (Semi)stability

Lemma 1.3.14. Let X be a normal projective variety. Let F ̸= 0 be coherent sheaf
torsion-free in codimension 1. Then F is (semi)stable if and only iff the reflexive
hull of F is (semi)stable.

Proof. As X is normal and F is torsion-free in codimension 1, the locus where F
is a vector bundle is a big open. Thus, ev : F → (F∨)∨ is an isomorphism on a
big open. Then for a subsheaf G ⊆ F torsion-free in codimension 1, the image
G′ := ev(G) is torsion-free and has the same slope as G. Similarly, for a subsheaf
G′ ⊆ (F∨)∨ the preimage ev−1(G′) is torsion-free in codimension 1 and has the
same slope as G′.

We conclude that F contains a subsheaf of larger (or equal) slope iff (F∨)∨

contains a subsheaf of larger (or equal) slope.

Our next goal is to show the existence of the socle, i.e., the maximal saturated
polystable subsheaf of a reflexive sheaf.

Lemma 1.3.15. Let X be a normal projective variety. Let F be a reflexive
semistable sheaf on X. Then there exists a polystable saturated subsheaf S ⊆ F
maximal among polystable subsheaves in F . In particular, S is unique and we call
it the socle of F .

Proof. Let G ⊆ F be a non-trivial subsheaf of the same slope µ as F and minimal
rank among such subsheaves. Clearly, G is semistable. We claim that G is stable.
Indeed, if G′ ⊆ G is a non-trivial subsheaf of the same slope, then by definition of
G they have the same rank.

As G is stable of slope µ(F ), so is its reflexive hull, see Lemma 1.3.14. The
reflexive hull coincides with the saturation Gsat ⊆ F as F is reflexive, see Lemma
1.1.1. Thus, there is a saturated stable subsheaf G ⊆ F of slope µ(F ).

Let G′ be a polystable saturated subsheaf of slope µ(F ) of F not containing G.
Then we claim that G+G′ is polystable and saturated.

Denote the stable direct summands of G′ by G′
1, . . . , G

′
n. As G′ is reflexive so

are the G′
i, i = 1, . . . , n.

If G ∩ G′
i ̸= 0 for some 1 ≤ i ≤ n, then using the stability of G and G′

i and
µ(G) = µ(F ) = µ(G′), we find that G∩G′

i has the same rank and slope as G as well
as G′

i. Furthermore, the quotients G/G ∩G′
i and G′

i/G ∩G′
i vanish on a big open

as µ(G) = µ(G′
i) = µ(G ∩G′

i). Thus, G′
i and G are both equal to G ∩G′ on some

big open. As G′
i and G are both reflexive, we conclude G′

i = G. By assumption
G′ does not contain G - a contradiction. This shows that G + G′ ∼= G ⊕ G′ is
polystable.

It remains to show that G + G′ is saturated. Let T be the torsion subsheaf
of F/(G + G′). As F and G + G′ have the same slope and F is semistable, the
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1.4 The moduli space of Gieseker-semistable sheaves

support of T has codimension at least 2. Let U = X \ supp(T ) and denote the
open immersion by j : U → X. Consider the commutative diagram

0 G⊕G′ F F/(G⊕G′) 0

0 j∗j
∗(G⊕G′) j∗j

∗F j∗j
∗(F/(G⊕G′)),

∼ ∼ adF/(G⊕G′)

where the rows are exact and the first two vertical arrows are isomorphisms as
F,G, and G′ are reflexive. By the snake lemma adF/G is injective. As U is disjoint
from the support, T lies in the kernel of adF/(G⊕G′). Thus, T vanishes showing that
G+G′ is saturated.

The process of adding a saturated stable subsheaf of slope µ(F ) to a saturated
polystable subsheaf of slope µ(F ) increases the rank and terminates after finitely
many steps. The constructed sheaf is polystable, saturated, and maximal among
such sheaves as otherwise we could add another saturated stable sheaf in the above
manner.

1.4 The moduli space of Gieseker-semistable sheaves
We briefly recall the definition of the moduli space of Gieseker-semistable sheaves
on a projective variety X.

Let (Sch/k) denote the category of schemes of finite type over k. Let S ∈ (Sch/k).
A family of Gieseker-semistable sheaves over S is a coherent sheaf F on X×k S flat
over S such that for a (not necessarily closed) point s ∈ S the fibre Fs := F|X×ks

is Gieseker-semistable.
Consider for families of Gieseker-semistable sheaves F ,F ′ on X ×k S the equiva-

lence relation F ∼ F ′ if there exists a line bundle L on S such that F ∼= F ′ ⊗pr∗
S L,

where prS : X ×k S → S is the projection.
Let P ∈ Q[t] be a polynomial. The moduli space of Gieseker-semistable sheaves

on X with Hilbert polynomial P is denoted by MG−ss,P
X and corepresents the

contravariant functor
MG−ss,P

X : (Sch/k) → Sets

mapping S to the set of families of Gieseker-semistable sheaves F on X ×k S
with Hilbert polynomial P up to equivalence by ∼, see [16, Theorem 0.2] and [12,
Theorem 4.3.4].

The moduli space MG−ss,P
X is a projective scheme over X and its closed points

correspond to S-equivalence classes of Gieseker semistable torsion-free sheaves on
X. In each S-equivalence class there is a unique Gieseker-polystable representative.
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Gieseker-stability is an open condition, see [12, Proposition 2.3.1], and the moduli
space MG−ss,P

X contains the open subscheme MG−s,P
X of Gieseker-stable torsion-free

sheaves with Hilbert polynomial P .
Similarly, slope-stability as well as being locally-free are open conditions and

MG−s,P
X contains the open subscheme M s,P

X of slope-stable vector bundles with
Hilbert polynomial P . The openness of slope-stability is not stated directly in [12,
Proposition 2.3.1], but an analogous argument works:

For an S-flat family F on X ×k S of torsion-free coherent sheaves the points
s ∈ S where Fs is slope-stable can be described by the non-existence of quotients
of Fs → Q with slope µ(Q) < µ(Fs) and rk(Q) < rk(Fs). The family of such
Q is bounded as they have bounded slope by definition, see Lemma [12, Lemma
1.7.9]. This can be expressed for s ∈ S to not lie in the image of a finite union of
QuotF ,P ′ → S for some polynomial P ′. As the quot-scheme is projective over S we
conclude the openness of slope-stability.

Let X be a normal projective variety. To define morphisms between moduli
spaces of Gieseker semistable sheaves it suffices to define a morphism of the functors
they corepresent. For example, if X = C is a smooth projective curve, then

MG−ss,P
X ×k Pic0

X → MG−ss,P
X , (F,L) 7→ F ⊗ L,

is short-hand for the morphism defined via the morphism of functors

MG−ss,P
X (S) × Pic0

X(S) → MG−ss,P
X (S), (F ,L) 7→ F ⊗ L.

To check that this defines a morphism of functors one has to check compatibility
with pullback along S ′ → S and that F ⊗ L is a family of Gieseker-semistable
sheaves of Hilbert polynomial P . Then we obtain the desired morphism of moduli
spaces by using that MG−ss,P

X ×k Pic0
X and MG−ss,P

X corepresent the corresponding
functor.

Similarly, we can define a morphism

MG−ss,r1P
X ×k M

G−ss,r2P
X → M

G−ss,(r1+r2)P
X , (F1,F2) 7→ F1 ⊕ F2,

as a direct sum of Gieseker-semistable sheaves with the same reduced Hilbert
polynomial p is Gieseker semistable with reduced Hilbert polynomial p.

If X = C is a smooth projective curve of genus gC ≥ 2 much more can be said, see
[28, Theoreme 17 and 18, p.22]: The moduli space M s,r,d

C of stable vector bundles
of rank r and degree d is dense in the moduli space M ss,r,d

C of semistable vector
bundles of rank r and degree d. Furthermore, M s,r,d

C is a smooth variety, whereas
M ss,r,d

C is a normal projective variety. The dimension of M s,r,d
C is r2(gC − 1) + 1.

Let L be a line bundle on C of degree d. Then moduli space M s,r,L
C (resp. M ss,r,L

C )
of stable (resp. semistable) bundles of rank r and determinant L are defined as the
fibre over L of

M s,r,d
C → PicdC , V 7→ det(V ), and resp. of
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M ss,r,d
C → PicdC , V 7→ det(V )

and have dimension (r2 − 1)(gC − 1). This can be found for characteristic 0 in [12,
Corollary 4.5.5]. In arbitrary characteristic, the dimension can be computed by
considering the finite surjective morphisms

M ss,r
L ×k Pic0

C/k → M ss,r,d
C , (V,M) 7→ V ⊗M, and

M s,r
L ×k Pic0

C/k → M s,r,d
C , (V,M) 7→ V ⊗M.

1.5 Actions and Covers
As our definition of a Galois cover with Galois group G is slightly nonstandard,
we show that it coincides with the notion of a connected G-torsor. We also collect
some preliminary results on Galois morphisms of normal varieties which are needed
to formulate a descend theory for such morphisms.

Lemma 1.5.1. Let π : Y → X be a Galois morphism of normal varieties with
Galois group G. Then the following hold:

(i) There is a canonical action of G on Y/X, i.e., an action of G on Y leaving
the morphism Y → X invariant.

(ii) X = Y/G is the quotient under the action obtained in (i), i.e., OX = (π∗OY )G
as subsheaves of π∗OY and on underlying topological spaces |X| = |Y |/G.

(iii) Aut(Y/X) = G.

(iv) An irreducible component of Y ×X Y equipped with the reduced subscheme
structure is isomorphic to Y .

(v) Equip G×k Y with the group action

G×k G×k Y → G×k Y, (τ, σ, y) 7→ (τσ, y)

and Y ×X Y with the group action

G×k Y ×X Y → Y ×X Y, (σ, (y, y′)) 7→ (y, σy′).

Then the morphism

φ : G×k Y → Y ×X Y, (σ, y) 7→ (y, σy)

is surjective, G-invariant, and identifies the irreducible components of Y ×X Y
with elements of G.

16
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Proof. (i): The action of G on Y/X is obtained via thinking of Y as the normal
closure of X in κ(Y ). Then the Galois action of G on κ(Y )/κ(X) induces the
action of G on Y/X.

(ii): As X is a normal variety and Y is its normal closure in κ(Y ), we have that
G acts on the fibres over a (not necessarily closed) point x ∈ X transitively, see
[31, Tag 0BRK]. Furthermore, Y → X is finite and surjective. Thus, |X| = |Y |/G.
It remains to check

OX = (OY )G ⊆ π∗OY .

The inclusion OX ⊆ (OY )G is immediate. Let X = ⋃
i∈I Spec(Ai) be an affine

open covering. As Y → X is finite, Spec(Bi) := Y ×X Spec(Ai) is an affine open
cover of Y . Furthermore, G acts on Spec(Bi)/ Spec(Ai) and it suffices to prove the
statement in the affine case.

Let X = Spec(A) and Y = Spec(B). Consider b ∈ BG as an element of Q(B).
We find that b ∈ Q(A) as Q(B)/Q(A) is Galois with Galois group G and σb = b
for all σ ∈ G. By assumption A → B is finite. Thus, b is the root of some monic
polynomial f ∈ A[t]. As A is normal and b ∈ Q(A), we conclude b ∈ A.

(iii): By (i) we have a natural morphism G → Aut(Y/X). An automorphism Y/X
induces an automorphism of κ(Y )/κ(X). As G is the Galois group of κ(Y )/κ(X),
we obtain a morphism Aut(Y/X) → G. By construction of the action of G on
Y/X, we have that

G → Aut(Y/X) → G

is the identity. It remains to show that

Aut(Y/X) → G

is injective. As OY ⊆ κ(Y ), an automorphism of Y/X is trivial iff it is trivial on
κ(Y ) and the claim follows.

(iv) and (v): By (ii) we have Y/G = X and the surjectivity of φ is immediate
from the transitive action of G on the fibres. Since Y is a variety, the scheme
theoretic image Y σ of Y ∼= {σ} ×k Y in Y ×X Y is a variety. Furthermore, Y is
isomorphic to Y σ as the inverse of Y → Y σ is given by pr1 : Y ×X Y → Y . We
obtain (iv).

Alternatively, we can describe Y σ as the graph of σ considered as an automor-
phism of Y/X.

It remains to show that for σ ̸= τ ∈ G the components Y σ and Y τ are distinct.
If Y σ = Y τ , then σ = τ as automorphisms of Y over X. By (iii) we obtain σ = τ .

The G-invariance is clear from the definition of φ.
Remark 1.5.2. Let Y → X be a Galois morphism of normal projective varieties
with Galois group G. The action of G on Y induces an action of G on MG−ss,P

Y

as the Hilbert polynomial is computed with respect to OX(1)|Y which is invariant
under the action. The same holds for MG−s,P

Y and M s,P
Y .
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Our notion of a Galois cover agrees with the notion of a connected G-torsor:

Lemma 1.5.3. Let G be a finite group. Let Y → X be a finite separable morphism
of normal varieties. Then Y → X is a Galois cover with Galois group G iff Y → X
is a G-torsor.

Proof. If Y → X is a G-torsor, then so is Spec(κ(Y )) → Spec(κ(X)) and Y → X
is Galois with Galois group G. Furthermore, Y → X is étale as G is étale over k.

Assume that Y → X is a Galois cover with Galois group G. By Lemma 1.5.1
there is a canonical action of G on Y/X. Furthermore, the morphism

φ : G×k Y → Y ×X Y, (y, σ) 7→ (y, σy)

is surjective, G-invariant, and the irreducible components of Y ×X Y are identified
with the irreducible components of G×k Y under this morphism, see Lemma 1.5.1.

As normal is an ascending property under étale morphisms, the fibre product
Y ×X Y is normal, see [31, Tag 033C]. In particular, Y ×X Y is the disjoint union
of its irreducible components, i.e., φ : G×k Y → Y ×X Y is an isomorphism.

Lemma 1.5.4. Let Y → X be a Galois cover of a normal variety X with Ga-
lois group G. Then there is a 1 : 1-correspondence between subgroups of G and
intermediate covers Y → Y ′ → X, where Y ′ is a normal variety.

Under this correspondence normal subgroups N ⊆ G correspond to intermediate
Galois covers Y ′ → X.

Proof. This is a special case of [30, Proposition 5.3.8].
For a subgroup H ⊆ G the quotient Y/H exists in the sense of Lemma 1.5.1 (ii)

and Y/H → X is étale, see [30, Proposition 5.3.7]. Then then Galois correspondence
for the Galois extension κ(Y )/κ(X) induces the desired correspondence by taking
the integral closure of X in an intermediate field extension.

Lemma 1.5.5. Let π : Y → X be a cover of a normal variety X. Let Z → Y be
the normal closure of Y in the Galois hull of κ(Y )/κ(X). Then Z → X is a Galois
cover, we call it the Galois closure of Y/X.

Proof. Let Z ′ → X be a connected G′-torsor dominating Y → X for some finite
group G′, see [30, Proposition 5.3.9 and Proposition 5.3.16]. As Z ′ → X is Galois
it also dominates Z → X.

Let H be the Galois group of Z ′ → Z. Then H ⊆ G′ is a subgroup and Z = Z ′/H
is a cover of X by Lemma 1.5.4.
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2 Functoriality
In this chapter we collect several results related to (non-)functoriality of stability.

The starting observation is that, while stability is in general not preserved
under pullback by a Galois morphism, polystability is preserved, see Lemma 2.1.9.
We obtain the key lemma, Lemma 2.1.13: an action of the Galois group on the
isomorphism classes of the stable direct summands of the pullback.

Genuinely ramified morphisms behave very nicely from our functorial perspective:
they preserve stability under pullback, see [2, Theorem 2.5]. We spell out the
proof. As in the original proof we first prove an alternative description of genuinely
ramified morphisms. We give a shorter proof of this fact in the Galois case using
different techniques. Then we continue with the strategy of [3], as also stated in
the proof of [2, Theorem 2.5], to show that stability is preserved under pullback by
genuinely ramified morphisms.

Using that genuinely ramified morphisms preserve stability and basic properties
of finite étale morphisms, we show that pullback along a separable morphism
induces a finite morphism on the level of moduli spaces. This result is known
and can be deduced from [11, Theorem 4.2] which goes back to [7, Theorem I.4].
We do note that our proof is more direct and also gives an understanding of the
cardinality of the fibres at a stable vector bundle. Similarly, we can show that
pushforward along a finite étale morphism induces a finite morphism on the level
of moduli spaces.

We briefly describe the direct image of the structure sheaf of a cyclic cover.
We continue to construct stable vector bundles given a Galois cover. There are

two main constructions: via representations and via orbits. The orbit construction
is closely related to pushforward and we identify the open where pushforward
preserves stability.

Finally, we introduce functorial notions of stability and give a complete description
for smooth projective curves of genus ≤ 1.

2.1 The key lemma
In this section we make first observations on the behaviour of a stable vector bundle
after a Galois pullback. We recall that semi- and polystability are preserved under
such a pullback. This is essentially because the destabilizing subsheaf and the socle
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are unique and thus descend. Using that polystability is preserved under pullback,
we obtain an action of the Galois group on the stable direct summands of the
pullback.

To spell this out properly we first prove a descend lemma for Galois morphisms
(in codimension 1). While certainly well-known and used in the literature we could
not find a reference for this and so include the proof.

2.1.1 Descend of vector bundles
We recall the notions of G-invariance and G-linearization and prove a descend
lemma under Galois morphisms for the latter.

Definition 2.1.1. Let Y → X be a Galois morphism of normal varieties with
Galois group G. Thinking of Y as the normal closure of X in κ(Y ) we obtain an
action of G on Y/X, see Lemma 1.5.1. Let H ⊆ G be a subgroup.

A quasi-coherent sheaf V on Y is said to be H-invariant if for every σ ∈ H we
have an isomorphism φσ : V ∼−→ σ∗V .

A subsheaf W ⊆ V of an H-invariant quasi-coherent sheaf V is called H-invariant
if the isomorphisms φσ : V ∼−→ σ∗V induce isomorphisms W ∼−→ σ∗W of subsheaves.

A quasi-coherent sheaf V on Y is said to admit an H-linearization if for all
σ ∈ H there exists an isomorphism φσ : V ∼−→ σ∗V such that the following diagram

V τ ∗V τ ∗σ∗V

(στ)∗V

φτ

φστ

τ∗φσ

ασ,τ

commutes for σ, τ ∈ H, where ασ,τ denotes the unique isomorphism τ ∗σ∗ → (στ)∗

of functors induced by the fact that both are left adjoint to (στ)∗ = σ∗τ∗. We
suppress ασ,τ and write

τ ∗φσ ◦ φτ = φστ

instead of the commutativity of the above diagram. This is justified as ασ,τ satisfies
all sorts of compatibilities, for example, we have

αρ,στασ,τ = ασ,τρατ,ρ : ρ∗τ ∗σ∗ → (στρ)∗

for σ, τ, ρ ∈ H.

Remark 2.1.2. By definition, an H-invariant subsheaf W ⊆ V of a quasi-coherent
sheaf admitting an H-linearization admits an H-linearization as well.
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Remark 2.1.3. Let π : Y → X be a Galois cover of a normal variety X with Galois
group G. As Y → X is a G-torsor, see Lemma 1.5.3, the cocycle condition for the
étale cover Y → X translates to the notion of a G-linearization and we can descend
a (quasi-)coherent sheaf V on Y with a G-linearization to a (quasi-)coherent sheaf
W on X, i.e., π∗W ∼= V compatible with the linearization of V and the natural
one of π∗W induced by σ∗π∗ ∼= π∗ for σ ∈ G.

We give some natural examples of bundles admitting a linearization:

Example 2.1.4. Let π : Y → X be a Galois morphism of normal varieties with
Galois group G. Let H ⊆ G be a subgroup. Let V be a vector bundle on Y . Then⊕

ρ∈H ρ
∗V and ⊗ρ∈H ρ

∗V both admit a natural H-linearization. The isomorphisms
for σ ∈ H are given by

φ⊕
σ :

⊕
ρ∈H

ρ∗V
(vρ)ρ∈H 7→(vρσ)ρ∈H−−−−−−−−−−−→

⊕
ρ∈H

(ρσ)∗V ∼= σ∗ ⊕
ρ∈H

ρ∗V,

φ⊗
σ :

⊗
ρ∈H

ρ∗V
⊗ρ∈Hvρ 7→⊗ρ∈Hvρσ−−−−−−−−−−−→

⊗
ρ∈H

(ρσ)∗V ∼= σ∗ ⊗
ρ∈H

ρ∗V.

To prove descend along a Galois morphism of normal varieties we restrict our
attention to the generic point. There, descend is just descend under an étale Galois
cover. This can be extended to descend in codimension 1.

Lemma 2.1.5 ([18], Proposition 1). Let X be a variety. Let F be a torsion-free
sheaf on X. Denote the generic point of X by η. Then a subspace of W ⊆ Fη can
be uniquely extended to a saturated subsheaf G ⊆ F inducing the inclusion W ⊆ Fη.

Proof. The proof can be found in [18] with the superfluous assumption that X is
smooth and projective. We briefly give the argument.

We first show the existence of such a G. Define G(U) := F (U) ∩ W in Fη on
an affine open U . This is compatible with restrictions and extends uniquely to a
subsheaf G ⊆ F . By construction, we have Gη = W ⊆ Fη. It remains to show that
G ⊆ F is saturated. Let G ⊆ G′ ⊆ F be the saturation. Then Gη = G′

η ⊆ Fη as
torsion vanishes at the generic point. By definition of G, we obtain G′ ⊆ G and
thus equality.

To show uniqueness, let G′ ⊆ F be another saturated subsheaf inducing the
inclusion W = Gη ⊆ Fη. As above we obtain G′ ⊆ G. Note that T := G/G′ is
torsion. Let Q′ := F/G′ and Q = F/G. Applying the snake lemma to

0 G′ F Q′ 0

0 G F Q 0
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we obtain that T ⊆ Q′. As G′ ⊆ F is saturated, the quotient Q′ is torsion-free and
we find that T = 0. This shows the desired equality G′ = G.

Definition 2.1.6. Let π : Y → X be a Galois morphism of normal varieites. A
coherent sheaf F on Y descends in codimension 1 if there exists a big open U ⊆ X
and a coherent sheaf G on U such that G|π−1(U)

∼= F .

Lemma 2.1.7. Let Y → X be a Galois morphism of normal varieties with Galois
group G. Let V be a torsion-free sheaf on X. Then a G-invariant saturated subsheaf
W of V|Y in codimension 1 descends to a saturated subsheaf of V in codimension 1.

If Y → X is in addition to the other assumptions flat, then a G-invariant
saturated subsheaf W ⊆ V|Y descends to a saturated subsheaf of V .

Proof. Let ηY be the generic point of Y and ηX the generic point of X. A finite
separable morphism of normal varieties is flat at all codimension 1 points. Thus,
we can replace X by the flat locus and Y by the pre-image of the flat locus.

Consider a G-invariant saturated subsheaf W ⊆ V|Y . Restricting the inclusion to
ηY we obtain a G-invariant subspace W|ηY

⊆ (VηX
)|ηY

.
The field extension κ(Y )/κ(X) is a G-torsor and we can apply descent theory.

We obtain W ′
ηX

⊆ VηX
such that W ′

ηX
⊗κ(X) κ(Y ) = WηY

as subspaces of (VηX
)|ηY

.
By Lemma 2.1.5, there exists a unique saturated subsheaf W ′ ⊆ V inducing the

inclusion W ′
ηX

⊆ VηX
. Pulling back along the flat morphism Y → X we obtain a

saturated subsheaf W ′
|Y ⊆ V|Y , see Lemma 1.1.3, which agrees with the inclusion

WηY
⊆ (VηX

)|ηY
on the generic point. By another application of Lemma 2.1.5, we

conclude W ′
|Y = W .

We also observe that descending in codimension 1 is the same as descending for
Galois covers:

Lemma 2.1.8. Let π : Y → X be a Galois cover of a normal variety X with Galois
group G. Let W be a vector bundle on Y . If W descends to X in codimension 1,
then W descends to X.

Proof. Let U ⊆ X be a big open such that W|π−1(U) descends to U . Note that
U ′ := π−1(U) is a big open subset of Y . As Y is normal and U ′ is big we can apply
Hartog’s lemma to obtain

HomOY
(W,σ∗W ) ∼= HomOU′ (W|U ′ , σ∗(W|U ′))

for all σ ∈ G. In particular, any G-linearization of W|U ′ extends to a G-linearization
of W . For Galois covers a coherent sheaf admits a G-linearization if and only if it
descends. The lemma follows.
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2.1.2 Proof of the key lemma
Stability is in general not preserved under a Galois pullback. To study stability
from a functorial perspective, the key observation is that stable becomes polystable
after pullback. Furthermore, there is a transitive action of the Galois group on the
isomorphism classes of the stable direct summands.

We first recall the behaviour of the degree under pushforward and pullback as
well as the basic properties of semi- and polystability under pullback:

Lemma 2.1.9 (Lemma 3.2.1-3.2.3, [12]). Let π : Y → X be a finite separable
morphism of normal projective varieties of degree d. Let F ̸= 0 be coherent torsion
free in codimension 1 on X and G be coherent torsion free in codimension 1 on Y .
Then we have the following:

(i) µ(G) = d(µ(π∗G) − µ(π∗OY )).

(ii) F|Y is torsion-free in codimension 1.

(iii) µ(F|Y ) = dµ(F ).

(iv) If F is semistable iff F|Y is semistable.

Furthermore, if F is reflexive and F ′ := ((F|Y )∨)∨, then we have:

(v) If F is polystable and Y → X is Galois, then F ′ is polystable.

(vi) If π is prime to p, then F ′ is polystable iff F is polystable.

(vii) If F ′ is stable, then so is F .

Proof. (i) - (vi) are proven in [12], Lemma 3.2.1, Lemma 3.2.2, and Lemma 3.2.3
under the assumption that the characteristic is 0. The proofs don’t change except
for (vi), where the trace still is a section of OX ⊆ π∗OY if π is prime to p.

We spell out the proofs. Let OX(1) be an ample line bundle on X and let
OY (1) := π∗OX(1).

(i): By the projection formula we have

π∗(G⊗ OY (n)) ∼= π∗(G) ⊗ OX(n)

for n ≥ 1. As π is finite, G ⊗ OY (n) and π∗(G ⊗ OY (n)) have the same Euler
characteristic. Thus, G and π∗G have the same Hilbert polynomial. Furthermore,
we have d rk(G) = rk(π∗G) and (i) follows.

(ii): Note that F is a vector bundle on a big open as at a codimension 1 point of
X the notions of torsion-free and locally free agree. Thus, F|Y is a vector bundle
on a big open which implies the claim.
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(iii): Let n = dim(X). We have αn−1(G) = αn−1(π∗G) by the argument given in
(i). Applying the affine projection formula, we obtain

αn−1(π∗F ) = αn−1(π∗π
∗F )

= αn−1(F ⊗ π∗OY )
= µ(F ⊗ π∗OY ) rk(F ) deg(π) + αn−1(OX) rk(F ) deg(π).

By the behaviour of the slope under tensoring, see Remark 1.2.9, we find

µ(π∗F ) = (µ(F ) + µ(π∗OY )) deg(π) + αn−1(OX) deg(π) − αn−1(OY )
= deg(π)µ(F ) + (µ(π∗OY ) + αn−1(OX)) deg(π) − αn−1(OY )
= deg(π)µ(F ) + αn−1(π∗(OY )) − αn−1(OY )
= deg(π)µ(F ).

(iv): First assume that Y → X is Galois. If F is not semistable, consider
the maximal destabilizing subsheaf D ⊆ F , see Lemma 1.3.10. As π is flat in
codimension 1, D pulls back to a subsheaf D|Y of F|Y in codimension 1. Furthermore,
D|Y extends to a coherent subsheaf D′ of F ′ := (F∨

|Y )∨. The slope can be computed
on a large open and we obtain µ(D′) > µ(F ′). As F|Y is semistable iff its reflexive
hull F ′ is semistable, we conclude that F|Y is not semistable, see Lemma 1.3.14.

If F|Y is not semistable, consider the maximal destabilizing subsheaf D′ ⊆ F|Y ,
see Lemma 1.3.10. As the maximal destabilizing subsheaf D′ is unique, it is a
G-invariant subsheaf of F|Y . Furthermore, D′ ⊆ F ′ is saturated and we can apply
Lemma 2.1.7. Thus, D′ ⊆ F|Y descends to a subsheaf of F in codimension 1. This
can be extended to a subsheaf D ⊆ (F∨)∨. The slope can be computed on a big
open and we conclude that the reflexive hull of F is not semistable as µ(D) > µ(F )
by (ii). By Lemma 1.3.14, we obtain that F is not semistable.

If Y → X is not Galois, consider the normalization Z of Y in the Galois closure
of κ(Y )/κ(X). Then Z → Y and Z → X are Galois. Then F is semistable iff
F|Z is semistable and similarly F|Y is semistable iff (F|Y )|Z is semistable and we
conclude.

(v): Assume that Y → X is Galois. As a polystable reflexive sheaf is a direct
sum of stable reflexive sheaves by definition, it suffices to show (v) if F is stable. By
(iv) we already know that π∗F is semistable. Then the same holds for its reflexive
hull F ′, see Lemma 1.3.14. Note that the G-linearization of F|Y induced by F
induces a G-linearization of F ′.

Let S ′ be the socle of F ′. By Lemma 1.3.15, the socle is the maximal polystable
saturated subsheaf of F ′. Thus, it is a G-invariant subsheaf of F ′ and descends
to a subsheaf S of F in codimension 1, see Lemma 2.1.7. As F is reflexive,
S extends uniquely to a saturated subsheaf W of F of the same slope as S.
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By (ii), we have µ(W ) = µ(F ) and the stability of F implies W = F . Thus,
rk(W ) = rk(S ′) = rk(F ′) and we conclude S ′ = F ′.

(vi): Assume that π is prime to p. Denote by π′ : Y ′ → X the normalization
of X in the Galois closure of κ(Y )/κ(X). Then π′ is prime to p by definition.
Furthermore, Y ′ → Y and Y ′ → X are prime to p and Galois. Thus, if suffices to
show (vi) in the Galois case.

We already know by (v) that if F is polystable, then F ′ is polystable. For the
converse, assume that F ′ is polystable. Consider the trace map tr : π∗OY → OX .
The composition OX → π∗OY → OX is multiplication by deg(π) which is prime to
p. We find that tr / deg(π) is a section of the inclusion OX ⊆ π∗OY .

As F ′ is polystable, we find that F is semistable by (iv) and Lemma 1.3.14.
Let G ⊆ F be a saturated stable subsheaf of the same slope as F . Note that by
induction on the rank of F is suffices to find a section of G ⊆ F .

Note that Y → X is flat in codimension 1. Then the reflexive hull G′ := (G∨
|Y )∨

is polystable by (v) and a subsheaf of the polystable sheaf F ′. Furthermore, they
have the same slope by (iii).

Let Gi be a stable summand of G′ and let F ′ ∼=
⊕n

j=1 Fj be the decomposition
of F ′ into stable sheaves. Then there is a non-zero morphism Gi → Fj for some
j. As Gi (resp. Fj) is saturated and G′ (resp. F ′) is reflexive, Gi (resp. Fj) is
reflexive, see Lemma 1.1.1. Furthermore, µ(Gi) = µ(Fj) and we conclude Gi

∼= Fj
by Lemma 1.3.7. Thus, G′ ⊆ F ′ admits a section.

Let U be the big open where F and G are vector bundles and Y → X is flat.
Then on U ′ := π−1(U) we have that ev : G|U ′

∼−→ G′
|U ′ and ev : F|U ′

∼−→ F ′
|U ′ are

isomorphisms. Furthermore, G|U ′ ⊆ F|U ′ and the trace induces a section of the unit
F → π∗F|Y on U . Similarly, we have a section of the unit G → π∗G|Y on U .

We claim that the section of G′ ⊆ F ′ induces a section of G ⊆ F . First observe
that the section of G′ ⊆ F ′ induces a section of G|U ′ ⊆ F|U ′ . This in turn induces a
section of G|U ⊆ F|U via the commutative diagram

G|U F|U

(π∗G|Y )|U (π∗F|Y )|U

G|U F|U .

tr
deg(π)

tr
deg(π)

As G and F are reflexive, the section on the big open U induces a section on X
and we conclude.

(vii): A proper subsheaf in codimension 1 of F of slope ≥ µ(F ) pulls back to
a proper subsheaf in codimension 1 of π∗F of slope ≥ µ(π∗F ) by (ii). The claim
follows.
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Remark 2.1.10. The statement of Lemma 2.1.9 simplifies for vector bundles:

• A vector bundle is semistable iff it is semistable after a separable pullback.

• A vector bundle is polystable iff it is polystable after a prime to p separable
pullback.

• Polystablility of vector bundles is preserved under pullback by a Galois
morphism.

Remark 2.1.11. Let π : D → C be a finite separable morphism of smooth
projective curves of degree n. We claim that pullback by π induces a morphism

π∗ : M ss,r,d
C → M ss,r,dn

D , V 7→ V|D.

Indeed, pullback to D preserves semistability by Lemma 2.1.9 and is also well-
behaved in families. We show that this morphism is finite, see Theorem 2.3.2.

We provide examples which show that neither "saturated" nor "subsheaf of a
sheaf which descends" can be removed in Lemma 2.1.7.

Example 2.1.12. Let E be an elliptic curve and π : E → P1 be a 2 : 1 Galois
morphism ramified at 4 points. Denote the non-trivial element of the Galois group
G = Z/2 by σ.

Consider a line bundle L of degree 1 on E. Then L⊕σ∗L admits a G-linearization,
but does not descend to P1. Indeed, if there was a vector bundle V on P1 such that
V|E ∼= L⊕ σ∗L, then V is semistable of slope 1

2 by Lemma 2.1.9. Grothendieck’s
classification of vector bundles on P1 does not allow for such a bundle, see e.g. [10].

Consider a point e ∈ E at which π is ramified. Let OE(−e) be the effective
Cartier divisor cutting out e ∈ E. Then OE(−e) is a G-invariant subsheaf of OE

but does not descend to a subsheaf I ′ of OC . Indeed, by Lemma 2.1.9 such a
subsheaf I ′ would be a line bundle of slope 1

2 which is impossible.

The key observation for the (non-)functoriality of stability is the following:
The Galois group acts transitively on the isomorphism classes of the stable direct
summands of the pullback. In particular, a stable vector bundle can only decompose
in a very special way after a Galois pullback. We note that the proof given in [12,
Lemma 3.2.3] uses the same construction to obtain a G-invariant subsheaf:

Lemma 2.1.13. Let π : Y → X be a finite Galois morphism of normal projective
varieties with Galois group G. Let V be a stable vector bundle on X of rank r.
Then V|Y ∼= (⊕n

i=1 Wi)⊕e for some pairwise non-isomorphic stable vector bundles Wi

on Y and G acts transitively on the set of isomorphism classes {Wi | i = 1, . . . , n}.
In particular, the Wi have the same rank m and mne = r.
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2.2 Genuinely Ramified Morphisms

Proof. By Lemma 2.1.9, the vector bundle V|Y is polystable and we find that there
is an isomorphism ψ : V|Y

∼−→ ⊕n
i=1 W

⊕ei
i for pairwise non-isomorphic stable vector

bundles Wi on Y .
Let ι : W → V|Y be the inclusion of one of the Wi. Denote the G-linearization of

V|Y associated to V by φσ : V|Y
∼−→ σ∗V|Y , σ ∈ G. We claim that the image E ′ of

⊕
σ∈G

σ∗W

∑
(φσ)−1σ∗ι

−−−−−−−→ V|Y

is a G-invariant subbundle. Indeed, using that φσ is a G-linearization we find that

τ ∗(
∑
σ∈G

(φσ)−1σ∗ι) = φτ
∑
σ∈G

φ−1
στ (στ)∗ι.

Thus, τ ∗E ′ = φτ (E ′) ⊆ τ ∗V|Y and E ′ ⊆ V|Y is G-invariant.
To see that E ′ ⊆ V|Y is subbundle note that σ∗W is a stable vector bundle of

the same slope as W . Projecting to a direct summand Wi we find that

σ∗W → E ′ ⊆ V|Y
ψ−→

n⊕
i=1

W⊕ei
i → Wi

is either an isomorphism or zero by Lemma 1.3.7. Thus, E ′ maps to to a direct
sum of some of the Wi under ψ.

By Lemma 2.1.7, the subbundle E ′ ⊆ V|Y descends to a saturated subsheaf E of
V in codimension 1. As V is reflexive, E extends to a saturated subsheaf of V . As
E ′ has the same slope as V|Y , the same is true for E ⊆ V , see Lemma 2.1.9. Then
the stability of V implies E = V . We obtain that ⊕σ∈G σ

∗W → V|Y is surjective.
As Wi and σ∗W are stable of the same slope the only morphisms between σ∗W

and Wi are 0 or isomorphisms, see Lemma 1.3.7. We find that the group G acts
transitively on the isomorphism classes of the Wi. Clearly, rk(σ∗W ) = rk(W ) for
all σ ∈ G.

Let e = ei0 be the smallest index among the ei and W = Wi0 . For each Wi there
is a σi ∈ G such that σ∗

iW
∼= Wi. The inclusion W⊕ei

i → V|Y induces an inclusion
W⊕ei → V|Y after pullback by σ−1

i . We obtain ei ≤ e. By definition of e we have
equality.

2.2 Genuinely Ramified Morphisms
Recently the finite separable morphisms of curves preserving stability have been
identified by Biswas and Parameswaran, [3, Theorem 5.3]. These morphisms are
the genuinely ramified ones and are - next to étale morphisms - a basic building
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2.2 Genuinely Ramified Morphisms

block of finite separable morphisms. In higher dimensions similar results hold as
shown by Biswas, Das, and Parameswaran in [2, Theorem 2.5].

In this subsection we give a short self-contained proof of this theorem. As
in [2], we first give an alternative description of genuinely ramified morphisms.
Our proof only works in the Galois case but has the advantage of being more
concise than the original. It also uses different methods. Then we deduce the main
theorem regarding genuinely ramified morphism from this description applying the
strategy of [3], as already stated in the proof of [2, Theorem 2.5], with some minor
adjustments.

We recall the definition of a genuinely ramified morphism:

Definition 2.2.1. Let f : Y → X be a morphism of varieties. We say that f is
genuinely ramified if it is finite separable and every factorization Y → Y ′ → X of
f such that Y ′ → X is an étale morphism of varieties satisfies that Y ′ → X is an
isomorphism.

For us the main result regarding genuinely ramified morphisms is the following:

Theorem 2.2.2 ([2], Theorem 2.5). Let Y → X be a finite genuinely ramified
morphism of normal projective varieties. Then the pullback of a stable vector bundle
on X to Y is stable.

We recall the proof following the strategy of [3]. To do so we need the following
alternative description of genuinely ramified morphisms:

Theorem 2.2.3 ([2], Theorem 2.4. (1) - (3) in the Galois case). Let π : Y → X be
a Galois morphism of normal varieties. Then the following are equivalent:

(i) π is genuinely ramified.

(ii) for every connected cover X ′ → X the fibre product Y ×X X ′ → Y is
connected.

(iii) Y ×X Y is connected.

Proof. The implications (i) ⇔ (ii) and (iii) ⇒ (i) are as in [2, Theorem 2.4] and
are included for the convenience of the reader. The implication (i) ⇒ (iii) uses
different techniques than the original.

(i) ⇒ (ii) : Note that (ii) is equivalent to πét
1 (Y ) → πét

1 (X) being surjective, by
general principles, see [31, Tag 0BN6].

The image of πét
1 (Y ) → πét

1 (X) is a closed subgroup and is the intersection of all
open normal subgroups N ⊆ πét

1 (X) containing it.
Let N be such an open normal subgroup and consider G := πét

1 (X)/N . Then
G corresponds to a connected Galois cover X ′ → X with Galois group G. As the
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2.2 Genuinely Ramified Morphisms

composition πét
1 (Y ) → G is trivial, we find that X ′ ×X Y ∼= G ×k Y . We obtain

a factorization Y → X ′ → X of Y → X. If Y → X is genuinely ramified, then
X ′ = X, i.e., N = πét

1 (X) for all normal open subgroups containing the image of
πét

1 (Y ) → πét
1 (X). Thus, π∗(Y ) → π∗(X) is surjective.

(ii) ⇒ (i): If Y → X is not genuinely ramified, then it factors over a non-trivial
étale cover. Then there is also a non-trivial étale Galois cover X ′ → X over which
Y → X factors as Y → X is Galois. As X ′ ×X X

′ is not connected, the same is
true for Y ×X X

′.
(iii) ⇒ (i) : If Y → X is not genuinely ramified, then as in (ii) ⇒ (i) we find

a non-trivial étale Galois cover X ′ → X over which Y → X factors. Clearly,
X ′ ×X X

′ is not connected and then neither is Y ×X Y .
(i) ⇒ (iii) : Assume that Y ×X Y is not connected. We show that Y → X has a

non-trivial étale part. Denote the Galois group of Y/X by G. Consider the action
of G on Y ×X Y given by σ(y, y′) = (y, σy′) for σ ∈ G.

Let Σ be the set of connected components of Y ×X Y . Observe that there is an
induced action of G on Σ as well as on the set of irreducible components. As G
acts transitive on the set of irreducible components, see Lemma 1.5.1, G also acts
transitive on Σ. Thus, there are #(G/H) many connected components, where H
denotes the stabilizer of the connected component containing the diagonal - call
this components (Y ×X Y )0.

We claim that H ⊂ G is normal and that Y/H → X is étale.
To see that H ⊂ G is normal, let τ ∈ H and σ ∈ G. Observe that for

(y, y) ∈ (Y ×X Y )0 we have that (σy, τσy) ∈ (Y ×X Y )0 as τ induces by definition
an automorphism of (Y ×X Y )0 and (σy, σy) still lies in (Y ×X Y )0. Applying the
automorphism

(Y ×X Y )0 → (Y ×X Y )0, (y, y′) 7→ (σ−1y, σ−1y′)

yields that (y, σ−1τσy) ∈ (Y ×X Y )0. Thus, σ−1τσ is restricts to an automorphism
of (Y ×X Y )0, i.e., σ−1τσ ∈ H.

To show that Y/H → X is étale, first observe that it is Galois with Galois group
G/H as H is normal in G. By Lemma 1.5.1,

G/H ×k Y/H → Y/H ×X Y/H, (σ, y) 7→ (y, σy)

is surjective and identifies irreducible components of Y/H ×X Y/H with G/H. We
obtain a surjection

φ : G/H ×k Y → Y ×X (Y/H) = Y ×Y/H (Y/H) ×X (Y/H)

via base change. Note that φ maps σ ×k Y onto an irreducible component. Thus,
one the one hand, Y ×k (Y/H) has at most #(G/H) many irreducible components.
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2.2 Genuinely Ramified Morphisms

On the other hand, Y ×X (Y/H) surjects onto Y/H ×X Y/H and we obtain that
Y ×X (Y/H) has #(G/H) many irreducible components. Furthermore, φ identifies
irreducible components of Y ×X Y/H with elements of G/H.

There is a natural morphism

(Y ×X Y )/H → Y ×X (Y/H)

which topologically is a homeomorphism, see [23, §12, p. 111, Theorem 1], where
the action of H on Y ×X Y is given by σ(y, y′) = (y, σy′). By construction of H, the
quotient (Y ×X Y )/H has the same number of connected components as Y ×X Y -
namely #(G/H) many. As (Y ×X Y )/H → Y ×X (Y/H) is a homeomorphism we
find that the irreducible components of Y ×X Y/H are disjoint.

Thus, φ : G/H ×k Y → Y ×X Y/H is topologically a homeomorphism. We find
that the fibre of Y/H → X at a point x ∈ X has cardinality #(G/H) and G/H
acts transitively on each fibre.

The orbit of a point y ∈ Y/H under G/H is contained in an affine open as
Y/H → X is finite and X = (Y/H)/(G/H), see Lemma 1.5.1. We conclude by [23,
§7, p.66, Theorem] that Y/H → X is étale.

Using the description of a genuinely ramified Galois morphism π : Y → X
obtained in Theorem 2.2.3 we implement to strategy of [3]. We can show that the
morphisms between stable vector bundles of the same slope remain the same under
such a pullback. To do so we first study the unit OY → π∗π∗OY .

Lemma 2.2.4 (Analogue of [3], Proposition 3.5). Let π : Y → X be a Galois
morphism of normal varieties. Consider the Cartesian diagram

Y ×X Y Y

Y X.

pr2

pr1 π

π

Then we have:

(i) π∗π∗OY = pr1,∗ OY×XY .

(ii) π∗π∗OY /T = pr1,∗ O(Y×XY )red
, where T denotes the torsion submodule of

π∗π∗OY .

If in addition Y → X is genuinely ramified of degree d, then

(iii) (π∗π∗OY )/(T + OY ) ⊆ ⊕d−1
i=1 Li, where for i = 1, . . . , d− 1 the Li ⊊ OY are

proper subsheaves.
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2.2 Genuinely Ramified Morphisms

Proof. (i): This is a direct consequence of affine base change.
(ii): Let G be the Galois group of Y → X. The irreducible components of

Y ×X Y are in one-to-one correspondence to elements of G and equipped with
the reduced subscheme structure they are all isomorphic to Y via pr1, see Lemma
1.5.1. As the intersection of the minimal primes of a ring is the nilpotent radical,
we have O(Y×XY )red

⊆ ⊕
i∗OZ , where the direct sum is taken over all irreducible

components i : Z → Y ×X Y equipped with the reduced subscheme structure.
We find that pr1,∗ O(Y×XY )red

is contained in ⊕
σ∈G OY . Thus, pr1,∗ O(Y×XY )red

is
torsion free over OY .

We obtain a natural surjective morphism

π∗π∗OY /T ↠ pr1,∗ O(Y×XY )red
.

Being an isomorphism is a Zariski-local property and we can assume that X (resp.
Y ) is the spectrum of a normal domain A (resp. B).

Then all that remains to show is that the nilradical η of B ⊗A B is torsion
considered as a module over B → B⊗AB, b 7→ b⊗ 1. We claim that η is contained
in the kernel K of

B ⊗A B → Q(B) ⊗Q(A) (Q(A) ⊗A B) ⊆ Q(B) ⊗Q(A) Q(B).

Indeed, Q(B) ⊗Q(A) Q(B) is reduced as Q(B)/Q(A) is Galois. Thus, η is torsion
as K is torsion.

(iii): Assume that π : Y → X is a genuinely ramified morphism of normal
varieties and denote the degree of π by d.

In (ii) we are labeling the irreducible components of Y ×X Y by

Y σ := {σ} ×k Y → Y ×X Y, (σ, y) 7→ (y, σy)

for σ ∈ G, see Lemma 1.5.1. We explain a different way to label them by {1, . . . , n},
where n = #G, together with an order preserving map η : {1, . . . n} → {0, . . . , n−1}
and such that Y i ∩Y η(i) is non-empty for 1 < i ≤ n, see also [3, Lemma 3.4]. Every
irreducible component has a shortest path to the diagonal Y eG setting the distance
of irreducible components to 1 if they are distinct and intersect. Then the labeling
and η are defined inductively as

• Y 1 is defined to be the diagonal, η(1) := 0,

• for 1 < i ≤ n we define Y i to be an unlabeled component of the shortest
distance among unlabeled components to Y 1 and choose η(i) such that Y η(i)

has distance 1 to Y i and shorter distance to Y 1.
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Using this labeling we obtain

(π∗π∗OY )/T ⊆
n⊕
i=1

OY i
∼=

n⊕
i=1

OY .

Consider the morphism

φ :
n⊕
i=1

OY →
n⊕
i=2

OY , (si) 7→ (si − sη(i)).

Clearly,
OY ⊆ (π∗π∗OY )/T ∼= pr1,∗ O(Y×XY )red

⊆
n⊕
i=1

OY

is the kernel of φ and thus

(π∗π∗OY )/(T + OY ) ⊆
n⊕
i=2

OY .

By construction there exists a closed point yi ∈ Y i ∩ Y η(i) for 1 < i ≤ n. Consider
yi as a point of Y via pr1 : Y ×X Y → Y . Projecting to i-th component we claim
that

(π∗π∗OY )/(T + OY ) →
n⊕
i=2

OY → OY → κ(yi)

is trivial, i.e.,
(π∗π∗OY )/(T + OY ) ⊆

n⊕
i=2

OY (−yi).

Indeed, a local section s of π∗π∗OY
∼= pr1,∗ OY×XY satisfies si = sη(i) at yi as

yi ∈ Y i ∩ Y η(i).
Remark 2.2.5. Note that in Lemma 2.2.4, in contrast to [3, Proposition 3.5], we
do not obtain the information that the slope of the Li is negative as they are the
ideal sheaves of a point.

Our next step is to show that the morphisms between stable vector bundles of the
same slope remain unchanged after a genuinely ramified pullback π : Y → X. In
the proof the quotient π∗OY /OX appears and we briefly recall that it is torsion-free:
Lemma 2.2.6. Let π : Y → X be a finite morphism of varieties. If X is normal,
then π∗OY /OX is torsion-free.

Proof. It suffices to show the lemma in case that X = Spec(A) is the spectrum of
an affine normal domain A. Then Y = Spec(B) for some domain finite over A. We
want to show that B/A is a torsion-free A-module. Let 0 ̸= a ∈ A and b ∈ B such
that ab = 0 ∈ B/A. Then ab ∈ A by definition. As a ̸= 0, we find b ∈ Q(A). As B
is finite over A and A is normal, we conclude b ∈ A. Thus, b = 0 ∈ B/A.
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Lemma 2.2.7 (Analogue of [3], Lemma 4.3). Let π : Y → X be a genuinely
ramified Galois morphism of normal projective varieties. Let V and W be stable
vector bundles on X of the same slope. Then pullback defines an isomorphism

HomOX
(V,W ) ∼−→ HomOY

(π∗V, π∗W ), φ 7→ π∗φ.

Proof. By adjunction we have

HomOY
(π∗V, π∗W ) ∼= HomOX

(V, π∗π
∗W ).

Applying HomOX
(V,−) to the short exact sequence

0 → W → π∗π
∗W → (π∗π

∗W )/W → 0,

it suffices to show the vanishing of

HomOX
(V, (π∗π

∗W )/W ) ∼= HomOX
(V,W ⊗ (π∗OY /OX)).

Let d be the degree of π and T ⊆ π∗π∗OY the torsion submodule. Applying
Lemma 2.2.4, we find subsheaves Li ⊊ OY , i = 1, . . . , d− 1, such that

(π∗π∗OY )/(T + OY ) ⊆
d−1⊕
i=1

Li.

By the affine projection formula, we have

π∗OY ⊗OX
(π∗OY /OX) ∼= π∗(π∗π∗OY /OY ).

Tensoring the short exact sequence

0 → OX → π∗OY → π∗OY /OX → 0

with the torsion-free module π∗OY /OX , see Lemma 2.2.6, we obtain

π∗OY /OX ⊆ π∗(π∗π∗OY /OY ),

since Tor1(π∗OY /OX , π∗OY /OX) is torsion. As π is a finite morphism of varieties,
π∗T ⊆ π∗π

∗π∗OY is the torsion submodule. By the torsion-freeness of π∗OY /OX ,
we obtain

π∗OY /OX ⊆ π∗(π∗π∗OY /(T + OY )) ⊆
d−1⊕
i=1

π∗Li.

For V ′,W ′ stable vector bundles on Y of same slope we have

HomOY
(V ′,W ′ ⊗ Li) = 0
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for i = 1, . . . , d − 1, as a direct consequence of Lemma 1.3.7. Then the same
vanishing holds for polystable vector bundles V ′ and W ′ of the same slope. The
pullback of V and W to Y is polystable by Lemma 2.1.13. Thus, we conclude

HomOX
(V,W ⊗ π∗Li) = HomOY

(π∗V, π∗W ⊗ Li) = 0

for i = 1, . . . , d− 1. This implies the desired vanishing

HomOX
(V,W ⊗ (π∗OY /OX)) = 0

as π∗OY /OX ⊆ ⊕d−1
i=1 π∗Li.

We are now in a position to complete the proof of Theorem 2.2.2.

Proof of Theorem 2.2.2. Let π : Y → X be a genuinely ramified morphism of
normal projective varieties. Consider a stable vector bundle V on X. We wish to
show that π∗V is stable.

If π is Galois, then we have k = HomOX
(V, V ) = HomOY

(π∗V, π∗V ) by Lemma
2.2.7 and Lemma 1.3.7. As we already know that π∗V is polystable, see Lemma
2.1.9, we conclude that π∗V is stable in the Galois case.

Let Z be the normal closure of X in the Galois closure κ(Z) := Gal(κ(Y )/κ(X))
and Z → Y → X be the associated morphism.

Consider the factorization of Z → X into a genuinely ramified morphism Z → X ′

and an étale morphism X ′ → X. Note that Z → X ′ is Galois and so is X ′ → X as
the maximal étale part of a Galois morphism. Denote the Galois group of X ′/X
by G.

Note that as Y → X is genuinely ramified, the fibre product Y ′ := Y ×X X
′ is a

Galois cover with Galois group G, see Theorem 2.2.3.
There is a morphism Z → Y ′ induced by Z → Y and Z → X ′ - in a picture

Z

Y ′ X ′

Y X.

Let V be a stable vector bundle on X. Then V|X′ is polystable by Lemma 2.1.9.
Consider the decomposition V|X′ ∼=

⊕
i∈I V

′
i into stable vector bundles on X ′. By

the Galois case V ′
i|Z is stable and then so is W ′

i := V ′
i|Y ′ .

Consider a saturated stable subsheaf W ⊂ V|Y of slope µ(W ) = µ(V|Y ) on Y .
Then W|Y ′ ⊂ V|Y ′ is saturated and polystable of slope µ(V|Y ′). Thus, there is some
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subset J ⊂ I such that W|Y ′ ∼=
⊕

j∈JW
′
j . Identifying V ′

i with its image in V|X′ we
find some W ′

i ⊂ V|Y ′ contained in W|Y ′ .
Then on the one hand, the pullback of the image E of

⊕
σ∈G

σ∗V ′
i

⊕φ−1
σ σ∗ι−−−−−→ V|X′

to Y ′ is contained in W|Y ′ , where ι : V ′
i → V|X′ denotes the inclusion and φσ the

G-linearization associated to V . On the other hand, E is a G-invariant saturated
subsheaf of V|X′ and descends to a saturated stable subsheaf of V of the same slope,
see also the proof of Lemma 2.1.13. Thus, E = V|X′ , as V is stable and therefore
W|Y ′ = V|Y ′ . We conclude W = V|Y , i.e., V|Y is stable.

2.3 Push and pull are finite
As semistable vector bundles remain semistable after a finite separable pullback
π : D → C, we obtain a morphism π∗ : M ss,r,d

C → M
ss,r,deg(π)d
D . The finiteness of

π∗ can be proven using the degree of the theta divisor. This can be found in [11,
Theorem 4.2] and goes back to [7, Theorem I.4].

Here we give a shorter proof only using [3, Lemma 4.3] and basic properties of
finite étale morphisms. We first observe that semistability is preserved under an
étale pushforward:

Lemma 2.3.1. Let π : Y → X be a cover of a normal projective variety X of
dimension ≥ 1. Then we have the following:

(i) π∗OY has slope 0.

(ii) The pushforward π∗W of a semistable vector bundle W on Y is semistable of
degree deg(W ).

(iii) Let V be a semistable vector bundle on X. Then π∗OY ⊗ V is semistable of
slope µ(V ).

Proof. (i): If X is a curve, then π∗OY has degree 0 by Riemann-Hurzwitz.
We claim that the general case reduces to the curve case. By Bertini’s theorem

the general complete intersection curve C on X is irreducible and the same holds
for D := Y ×X C, see [14, Corollaire 6.11 (3)]. Furthermore, the general such C is
normal, see [27, Theorem 7]. As the projection of π′ : D = Y ×X C → C is étale,
D is normal.

We can compute the degree of π∗OY on C, see Remark 1.2.9. As π is finite, we
have (π∗OY )|C ∼= π′

∗OD by affine base change and the result follows.
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(ii): This short argument can already be found in the proof of [3, Proposition
5.1] for line bundles of degree 1 on a smooth projective curve.

Let W be a semistable vector bundle of slope µ and rank r on Y . By (i) we
have deg π∗OY = 0. By Lemma 2.1.9, the pushforward π∗W has slope µ/ deg(π).
If π∗W was not semistable, consider the maximal destabilizing subsheaf V of π∗W .
By adjunction π∗V → W is a non-zero morphism of semistable torsion-free sheaves.
This is a contradiction as

µ(π∗V ) = deg(π)µ(V ) > deg(π)µ(π∗W ) = µ(W ).

(iii): Let V be a semistable vector bundle on X. Using (i) we obtain

µ(V ) = µ(π∗(OD)) + µ(V ) = µ(π∗(OD) ⊗ V ).

By the projection formula we have π∗OY ⊗ V ∼= π∗π
∗V which is semistable by (ii)

and Lemma 2.1.9 (iii).

Theorem 2.3.2. Let π : D → C be a finite separable morphism of smooth projective
curves. Let r ≥ 1 and d ∈ Z. Then the induced morphism

π∗ : M ss,r,d
C → M

ss,r,deg(π)d
D

is finite. If e denotes the degree of the étale part of π, then the fibre of π∗ at a
stable vector bundle W on D has cardinality at most e.

Proof. We first show the finiteness. As π∗ is a morphism of projective varieties
it suffices to show that it is quasi-finite. A finite separable morphism factors as
a finite étale and a genuinely ramified morphism. Thus, it suffices to show the
quasi-finiteness for these two types of morphisms separately.

The genuinely ramified case immediately follows from [3, Lemma 4.3] which
asserts that two semistable vector bundles of the same slope on C are isomorphic
iff they are isomorphic after pullback to D. In fact, this tells us that π∗ is injective
on points.

It remains to consider the case where π is a cover. As cover is dominated by a
Galois cover it suffices to prove the quasi-finiteness under the additional assumption
that π is Galois. Let V be a polystable vector bundle on C. Consider the polystable
vector bundle π∗V ∼=

⊕
Wi, where the Wi are stable on D, see Lemma 2.1.9. By

Lemma 2.3.1, the bundles π∗Wi are semistable of slope µ(V ). The projection
formula implies that π∗(OD) ⊗ V ∼= π∗π

∗V . Thus, V ⊆ π∗π
∗V appears in the

JH-filtration of ⊕ π∗Wi. As the graded object associated to the JH-filtration is
unique, there are only finitely many choices for V if we fix ⊕Wi.

We now estimate the cardinality of the fibre at a stable vector bundle. Let
D

π′
−→ C ′ → C a factorization of D → C in a genuinely ramified and étale
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morphism. As π′∗ is injective on points, it remains to estimate the cardinality of
the fibre if D → C is étale. Let W be a stable vector bundle on D. Let V be a
semistable vector bundle on C such that V|D ∼= W is stable on D. Then V is stable
by Lemma 2.1.9. Comparing the ranks of V ⊆ π∗W , we find that there can be at
most deg(π) many different such V .

Lemma 2.3.3. Let π : D → C be a cover of degree n of a smooth projective curve
C of genus gC ≥ 2. Let r ≥ 1 and d ∈ Z. Then pushforward induces a finite
morphism

π∗ : M ss,r,d
D → M ss,rn,d

C ,W 7→ π∗W.

Proof. By Lemma 2.3.1, the pushforward of a semistable vector bundle on D
is semistable on C and of the same degree. As pushforward along a finite flat
morphism is well-behaved in families, we obtain the morphism on the level of
moduli spaces.

To show finiteness it suffices to show quasi-finiteness as π∗ is a morphism of
projective varieties. Consider V ∈ M ss,rn,d

C . For W semistable on D such that
π∗W ∼=S V we find that π∗π∗W ∼=S π

∗V . As π is affine, the counit π∗π∗W → W is
surjective. Furthermore, π∗π∗W is semistable of the same slope as W . We conclude
that W is S-equivalent to a direct sum of stable vector bundles appearing in the
JH-filtration of π∗V . As the associated graded of the JH-filtration is unique, there
are only finitely many possibilities for the S-equivalence class of W . We conclude
that π∗ is quasi-finite and thus finite.

2.4 Cyclic covers
In this section, we collect some basic properties of cyclic covers. They correspond
to line bundles and the pushforward of the structure sheaf is of a particularly nice
form:

Lemma 2.4.1. Let X be a variety. Let r ≥ 2 be prime to p. Then a line bundle
of order r on X is trivialized by a cyclic prime to p cover.

If X is in addition normal and projective, then cyclic covers π : Y → X of order
r of X correspond to line bundles of order r on X.

Let L be the corresponding line bundle to a cyclic cover π : Y → X of order r.
Then L is trivialized by Y → X and π∗OY

∼=
⊕r

i=1 L
⊗i.

Proof. As p ∤ r, there is an isomorphism µr ∼= Z/rZ of abelian sheaves on Xét. In
particular, cyclic covers of order r correspond to connected µr-torsors.

Let L be a line bundle on X of order r. The short exact sequence

0 → µr → Gm
λ 7→λr

−−−→ Gm → 0
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of abelian sheaves on Xét induces a long exact cohomology sequence

Ȟ0
ét(X,Gm) → Ȟ0

ét(X,Gm) → Ȟ1
ét(X,µr) → Ȟ1

ét(X,Gm) → Ȟ1
ét(X,Gm).

After identifying Ȟ1
ét(X,Gm) ∼= Pic(X), we find a µr-torsor Y → X mapping to L.

As a torsor trivializes itself, L is trivialized by Y → X.
Let Y0 be a connected component of Y . Then L is also trivialized by Y0 → X.

Consider the stabilizer H ⊆ µr of Y0. Then Y0 ∼= Y/H and Y0 → X is a connected
µr′-torsor for some r′ | r.

Assume that X is a normal projective variety. Then Ȟ0
ét(X,Gm) = k∗. Under

this identification the morphism Ȟ0
ét(X,Gm) → Ȟ0

ét(X,Gm) is given by the r-th
power map on k∗, which is surjective as k is algebraically closed. We obtain a
left-exact sequence

0 → Ȟ1
ét(X,µr) → Ȟ1

ét(X,Gm) → Ȟ1
ét(X,Gm).

After identifying Ȟ1
ét(X,Gm) ∼= Pic(X) we obtain a left-exact sequence

0 → Pic(X)[r] → Pic(X) L7→L⊗r

−−−−→→ Pic(X),

where Pic(X)[r] denotes the line bundles which have trivial r-th tensor-power.
This gives us an identification of µr-torsors with line bundles of order dividing r.
Furthermore, the µr-torsor associated to the line bundle trivializes the line bundle
as a torsor always trivializes itself.

It remains to show this correspondence sends a connected µr-torsor to a line
bundle of order r and vice versa as well as the description of the direct image of
the structure sheaf.

Let Y → X be the µr-torsor associated to a line bundle L of order r. Let Y0
be a connected component of Y . As above, we find that π : Y0 → X is a cyclic
cover of order r′ | r trivializing L. Then L⊗i is also trivialized by Y0 → X for
i ∈ Z. By adjunction we find L⊗i ⊆ π∗OY0 . As L⊗i, i = 0, . . . , r − 1 are pairwise
non-isomorphic and stable of degree 0 and π∗OY0 is a semistable vector bundle of
degree 0, see Lemma 2.3.1, we find that π∗OY0

∼=
⊕r−1

i=0 L
⊗i. As the rank of π∗OY0

is r′, we conclude r′ = r, i.e., Y = Y0.
Let Y → X be a connected µr-torsor. Let L be the line bundle of order r′ | r

associated to Y → X. Then there is also a µr′-torsor Y ′ → X associated to L. Via
Ȟ1

ét(X,µr′) → Ȟ1
ét(X,µr) the torsor Y ′ is mapped to Y . In particular, Y ′ → X

trivializes Y → X, i.e., Y ×X Y
′ ∼= µr ×k Y

′. We obtain a factorization of Y ′ → X
via Y → X. Thus, r ≤ r′ and we conclude r = r′.

This also shows the description of π∗OY for a cyclic cover π : Y → X.
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2.5 Constructing stable vector bundles

2.5 Constructing stable vector bundles
There are two ways to construct vector bundles given a Galois cover. One is via
representations of the Galois group and the other is via orbits under the Galois
action. We specialize these constructions to construct stable vector bundles as well.

2.5.1 Representations
Recall that étale trivializable bundles correspond to representations of the étale
fundamental group, see [15, 1.2 Proposition]. Our approach to descend is via
linearizations. This point of view allows for a more general correspondence:

Lemma 2.5.1. Let Y → X be a Galois cover of a normal variety X with Galois
group G. Let W be a vector bundle on X such that W|Y is simple. Then there is
a one-to-one correspondence of isomorphism classes of vector bundles on X that
become isomorphic to W⊕r

|Y after pullback to Y and representations G → GLr up to
conjugation.

Furthermore, if X and Y are projective and W|Y is stable, then the above
correspondence sends irreducible representations to stable vector bundles and vice
versa.

Proof. Consider a vector bundle V on X such that V|Y ∼= W⊕r
|Y . Denote the

G-linearization associated to W by φWσ : W|Y
∼−→ σ∗W|Y , σ ∈ G; similarly for

V . Consider for an isomorphism ψ : W⊕r
|Y

∼−→ V|Y and σ ∈ G the (possibly non-
commutative) diagram

W⊕r
|Y V|Y

σ∗W⊕r
|Y σ∗V|Y .

ψ

(φW
σ )⊕r φV

σ

σ∗ψ

As W|Y is simple, the composition

ρV (σ) := ((φWσ )−1)⊕r ◦ σ∗ψ−1 ◦ φVσ ◦ ψ

corresponds to a matrix ρ(σ) ∈ GLr. We claim that this gives rise to a representation
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2.5 Constructing stable vector bundles

ρV : G → GLr, σ 7→ ρ(σ). Indeed, for σ, τ ∈ G we have

ρV (τ)ρV (σ) =(
(φWτ )−1

)⊕r
τ ∗(ψ−1)φVτ ψ ◦

(
(φWσ )−1

)⊕r
σ∗(ψ−1)φVσ ψ =(

(φWσ )−1
)⊕r

σ∗
((

(φWτ )−1
)⊕r

τ ∗(ψ−1)φVτ ψ
)
σ∗(ψ−1)φVσ ψ =(

(φWσ )−1
)⊕r

σ∗
(
(φWτ )−1

)⊕r
σ∗τ ∗(ψ−1)σ∗(φVτ )φVσ ψ =(

(φWτσ)−1
)⊕r

(τσ)∗(ψ−1)φVτσψ =
ρV (τσ),

where only the second and fourth equality require an explanation. For the second
equality we use that (φWσ )⊕r commutes with matrices and for the fourth that φWσ
and φVσ are G-linearizations. Note that the conjugacy class of ρV does not depend
on ψ.

A representation ρ : G → GLr gives rise to a G-linearization via

W⊕r
|Y

ρ(σ)−−→ W⊕r
|Y

(φW
σ )⊕r

−−−−→ σ∗W⊕r
|Y .

This G-linearization corresponds to a vector bundle V (ρ) on X such that there
exists an isomorphism V (ρ)|Y ∼= W⊕r

|Y compatible with the natural G-linearization
of V (ρ)|Y and the one associated to ρ. Observe that the isomorphism class of V (ρ)
only depends on the conjugacy class of ρ.

We claim that these constructions are inverse to each other. Keep the notation of
the above constructions and choose an isomorphism ψ′ : W⊕r

|Y
∼−→ V (ρ)|Y compatible

with the natural G-linearization of V (ρ)|Y and the one associated to ρ. Using this
compatibility of ψ′, we obtain

ρV (ρ)(σ) = ((φWσ )−1)⊕r ◦ σ∗(ψ′)−1 ◦ φV (ρ)
σ ◦ ψ′

= (φWσ )−1)⊕r ◦ (φWσ )⊕r ◦ ρ(σ)
= ρ(σ).

Similarly, one can verify that V (ρV ) ∼= V .
Let Y → X be a Galois cover of a normal projective variety X. Let W be a

stable vector bundle on X such that W|Y is stable. We continue to show that
irreducible representations correspond to stable vector bundles.

First observe, that a vector bundle V on Y such that V|X ∼= W⊕r
|Y is semistable

by Lemma 2.1.9.
Let ρ : G → GLr be a representation. Denote the associated vector bundle

via the above construction for OX by V (ρ). Then V (ρ) is semistable. If V (ρ) is
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2.5 Constructing stable vector bundles

not stable, then there exists a stable saturated subsheaf V ′ ⊆ V (ρ) of the same
slope. The pullback V ′

|Y is polystable by Lemma 2.1.9. Furthermore, V ′
|Y ⊆ V|Y is

saturated and in particular reflexive as a saturated subsheaf of a reflexive sheaf.
Let W ′ be a stable direct summand of V ′

|Y . As V|Y ∼= W⊕r
|Y there is a non-zero

morphism W ′ → W . Both are reflexive, stable, and have the same slope. We
find that W ′ ∼= W , see Lemma 1.3.7. Thus, we have V ′

|Y
∼= W⊕r′

|Y for some r′ < r.
Denote the representation associated to V ′ by ρ′ : G → GLr. As V ′ ⊆ V the
G-linearizations induced by V ′ and V are compatible. Thus, ρ′ is a non-trivial
subrepresentation of ρ and ρ is reducible.

Conversely, if ρ is reducible, then any non-trivial subreprensentation ρ′ of ρ
defines a semistable vector bundle V (ρ′) of the same slope and smaller rank of V .
As ρ′ is a subrepresentation, the G-linearizations associated to V (ρ′) and V (ρ) are
compatible, i.e., V (ρ′) ⊊ V (ρ). Thus, V is not stable.

Remark 2.5.2. In the setting of Lemma 2.5.1 consider a representation ρ : G →
GLr and assume that X is proper. Then OY is simple and the lemma applies for
W = OX .

Denote by V (ρ) the associated bundle to ρ using W = OX and by V (ρ,W ) the
associated bundle for some W on X such that W|Y is simple. Then both vector
bundles recover ρ and thus V (ρ) ⊗W ∼= V (ρ,W ). We think of this as twisting the
representation ρ by W .

If X is projective and ρ is irreducible, then tensoring with V (ρ) preserves stability
of bundles that remain stable on Y .

2.5.2 Orbits
We construct (stable) vector bundles via orbits as follows:

Lemma 2.5.3. Let π : Y → X be a Galois cover of a normal projective variety X
with Galois group G. Let P ∈ Q[x]. Then for σ ∈ G \ {eG}

UP
σ := {W ∈ MG−ss,P

Y | σ∗W ≇S W} ⊆ MG−ss,P
Y

and UP := ⋂
σ∈G\{eG} Uσ ∩M s,P

X are open. We have the following:

(i) For W ∈ UP the direct image π∗W is a stable vector bundle on X.

(ii) W ∈ UP iff W ∈ M s,P
Y and W does not descend to a stable vector bundle W ′

on an intermediate cover Y → Y ′ → X such that Y ′ ≇ Y .

Furthermore, if π : D → C is a Galois cover of a smooth projective curve C of
genus ≥ 2, then the Hilbert polynomial P is determined by the rank r and degree d
and we use the notation U r,d instead of UP . We have the following:
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2.5 Constructing stable vector bundles

(iii) U r,d ⊆ M s,r,d
D is big.

(iv) If d and deg(π) are coprime, then U r,d = M s,r,d
D .

Note that Lemma 2.5.3 (i) is a generalization of [3, Proposition 5.1]. To obtain
the alternative description of UP given in (ii) we need that for cyclic covers the
notions of G-invariance and G-linearization coincide. We postpone the proof of
Lemma 2.5.3 and first describe descend for cyclic covers:

Lemma 2.5.4. Let Y → X be a cyclic cover of a variety X with Galois group G.
Let V be a simple sheaf on Y . Then V descends to X iff V is G-invariant.

Proof. The "only if" implication is trivial. For the "if" implication let σ be a
generator of G of order n. Fix an isomorphism φσ : V ∼−→ σ∗V . For 2 ≤ l < n
define φσl : V ∼−→ (σl)∗V inductively as the composition σ∗φσl−1 ◦ φσ. Further
define φeG

= idV , where eG denotes the neutral element of G.
Consider σ∗φσn−1 ◦ φσ. This is an automorphism of V . As V is simple it

corresponds to a scalar λ ∈ k∗. Since k is algebraically closed we can find an
n-th root λ1/n of λ. We claim that the automorphisms ψσl := λ−l/nφσl define a
G-linearization of V . Indeed, for 1 ≤ l, l′ such that l′ + l < n we have

(σl)∗ψσl′ ◦ ψσl = λ(−l−l′)/n · (σl+l′−1)∗φσ ◦ · · · ◦ σ∗φσ ◦ φσ = ψσl+l′

by definition. It remains to check this property for l + l′ = n. We have

(σl)∗ψσl′ ◦ ψσl = λ−1 · (σn−1)∗φσ ◦ · · · ◦ σ∗φσ ◦ φσ = λ−1λ = 1

by definition of λ.

We can now prove the orbit-construction for stable vector bundles:

Proof of Lemma 2.5.3. Let σ ∈ G. To see that Uσ is open, consider the pullback
square

Zσ MG−ss,P
Y

MG−ss,P
Y MG−ss,P

Y ×k M
G−ss,P .

(σ∗, id)

∆

As MG−ss,P
Y is projective, ∆ is a closed immersion and Zσ is closed. Clearly, Zσ is

the complement of Uσ and we find the openness.
Note that W ∈ UP iff W ∈ M s,P

Y and σ∗W ≇ W for σ ∈ G \ {eG} as for stable
vector bundles S-equivalence is the same as being isomorphic.

(i): Let W ∈ UP . Then V := π∗W is semistable of slope µ(W )/ deg(π) by
Lemma 2.3.1. Consider a stable saturated subsheaf V ′ ⊆ V . Then V ′

|Y is a
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saturated subsheaf of π∗π∗W ∼=
⊕

σ∈G σ
∗W and thus reflexive. Furthermore, V ′

|Y is
polystable of the same slope as W . By Lemma 1.3.7, we find that V ′

|Y
∼=
⊕

σ∈Σ σ
∗W

for some Σ ⊆ G. In particular, V ′ is a stable vector bundle. By Lemma 2.1.13, G
acts transitively on the isomorphism classes of the σ∗W,σ ∈ Σ. As σ∗W ≇ W for
σ ̸= eG, we conclude V ′

|Y = V|Y and thus V ′ = V .
(ii): Let W ∈ M s,P

Y such that W /∈ UP . Then there exists σ ∈ G \ {eG} such
that σ∗W ∼= W . Let G′ be the subgroup of G generated by σ. Then G′ is cyclic,
non-trivial, and Lemma 2.5.4 applies to Y → Y/G′. We conclude that W descends
to Y/G′.

Conversely, if W descends to some intermediate cover Y → Y ′ such that Y ≇ Y ′

with Galois group G′, then there exists W ′ on Y ′ such that W ′
|Y

∼= W . Thus,
σ′∗W ∼= W for σ′ ∈ G′. This concludes (ii).

(iii)-(iv): Let r ≥ 1, d ∈ Z and D → C be a Galois cover of smooth projective
curves of genus ≥ 2.

(iii): Then by the alternative description given in (ii), the open U r,d is obtained
by removing vector bundles that pullback from an intermediate cover, i.e.,

U r,d =
⋂

D
π′−→D′→C

(
M ss,r,d

D \ π′∗(M
ss,r, d

deg(π′)
D′ )

)
∩M s,r,d

D ,

where the intersection is taken over intermediate covers D′ → C such that D ̸= D′.
If M

ss,r, d
deg(π′)

D′ is non-empty, then it has dimension

r2(gD′ − 1) + 1 = r2

deg(π′)(gD − 1) + 1

by Riemann-Hurwitz. Thus, we find that U r,d is big.
(iv): If d and deg(π) are coprime, then the moduli spaces M

ss,r, d
deg(π′)

D′ considered
in (iii) are empty and we obtain (iv).
Lemma 2.5.5. Let π : D → C be a Galois cover of a smooth projective curve C
with Galois group G. Let r ≥ 1 and d be integers. For the open

U r,d = {V ∈ M s,r,d
D | σ∗V ≇ V, for all σ ∈ G \ {eG}} ⊆ M s,r,d

D

defined in Lemma 2.5.3 pushforward along π induces a Cartesian diagram

M ss,r,d
D M

ss,#(G)r,d
C

U r,d M
s,#(G)r,d
C .

π∗

π∗

In particular, the morphism π∗ : U r,d → M
s,#(G)r,d
C is finite.
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Proof. By Lemma 2.5.3, we have U r,d ⊆ π−1
∗ (M s,#(G)r,d

C ). For the other inclusion,
let V ∈ M ss,r,d

D such that π∗V is stable. Then V is stable, as a subsheaf W ⊆ V
of the same slope yields a subsheaf π∗(W ) ⊆ π∗V of the same slope. By the
description of U r,d given in Lemma 2.5.3 (ii), we find that it suffices to show that
V does not descend to an intermediate cover D → D′ → C such that D′ ≇ D.

Assume by way of contradiction that V ∼= V ′
|D for some vector bundle V ′ on D′,

where D π′
−→ D′ → C is an intermediate cover such that D ≇ D′. Then V ′ ⊆ π′

∗V
is a proper subsheaf of the same slope. Thus, π′

∗V is not stable and neither is π∗V .
Finiteness is preserved under base change and we conclude by Lemma 2.3.3.

2.6 Functorial notions of stability
In this section we define several functorial notions of stability and study them for
curves of small genus. The most prominent notion is prime to p stability. We define
the notion prime to p as follows:

Definition 2.6.1. A finite group G is called prime to p if p ∤ #(G). A finite
separable morphism (resp. cover) π : Y → X of varieties is prime to p if the Galois
hull of κ(Y )/κ(X) (resp. of Y/X) has Galois group prime to p.

Observe that prime to p morphisms are well-behaved under composition, i.e., the
composition of two such morphisms is again prime to p. This is a direct consequence
of the following lemma:

Lemma 2.6.2. Fix a prime q. Let M/L/K be a tower of field extensions. Assume
that M/L and L/K are Galois and q ∤ [M : K]. Then the Galois closure F of
M/K satisfies q ∤ [F : K].

Proof. As M/K is separable there exists an α ∈ M such that M = K(α), see [31,
Tag 030N]. Clearly, M = L(α). Let f be the minimal polynomial of α over K and
g the minimal polynomial of α over L. We have g | f as polynomials over L. For
σ ∈ Gal(L/K) we obtain σ∗g | σ∗f = f .

We claim that ∏σ∈Gal(L/K) σ
∗g = f is the prime factorization of f in L[x]. Indeed,

if g = σ∗g for some σ ∈ G, then the coefficients of g lie in LH , where H is the
subgroup of G generated by σ. In particular, [M : L] = [M : LH ] and we obtain
L = LH , i.e., σ must be trivial. Thus, the prime factorization of f is of desired
form up to a unit u ∈ L. However, all polynomials in question are monic and we
obtain u = 1.

Define Mσ := L[x]/σ∗g. The isomorphism σ : L → L induces an isomorphism
M = L[x]/g → Mσ. As M/L is Galois so is Mσ/L. The Galois closure F of M/K
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is the composite ∏σ∈Gal(L/K) Mσ. Inductively, we obtain q ∤ [Mσ1 . . .Mσk
: K] as

the Galois group is a subgroup

Gal
(
Mσ1 . . .Mσk

/K
)

⊆ Gal
(
Mσ2 . . .Mσk

/K
)

× Gal
(
Mσ1/K

)
.

We now introduce our functorial notions of stability.

Definition 2.6.3. Let X be a projective variety. A sheaf V on X is called separable-
stable, (resp. étale-stable, resp. prime to p stable) if for every finite separable, (resp.
finite étale, resp. finite étale prime to p) morphism π : Y → X of varieties the
pullback π∗V is stable with respect to π∗OX(1).

Example 2.6.4. Every line bundle is separable-stable. If p > 0, then a semistable
vector bundle of rank r = pn, n ≥ 1, and degree coprime to p is prime to p stable.

As a direct consequence of Theorem 2.2.2 we obtain the following:

Corollary 2.6.5. On a normal projective variety the notions of étale-stability and
separable-stability agree for vector bundles.

Remark 2.6.6. Being able to go back and forth between covers and separable
morphisms yields several advantages. On the one hand, it is easier to construct
Galois morphisms than Galois covers. On the other hand, descent theory is simpler
for Galois covers and there are - up to isomorphism - only finitely many covers
of fixed degree. This is a direct consequence of the étale fundamental group of a
normal projective variety being topologically finitely generated, see [26, Satz 13.1].
We spell this out in the next lemma.

Lemma 2.6.7. Let X be a normal projective variety. Up to isomorphism there
are only finitely many covers Y → X of fixed degree.

Proof. A cover Y → X corresponds to a finite continuous πét
1 (X)-set. A finite

continuous πét
1 (X)-set S ∼= {1, . . . , n} is - up to isomorphism - given by a mor-

phism πét
1 (X) → Sn of profinite groups, where Sn denotes the symmetric group of

{1, . . . , n} equipped with the discrete topology. As πét
1 (X) is topologically finitely

generated, see [26, Satz 13.1], there are only finitely many morphisms πét
1 (X) → Sn

and we conclude.

Étale-stability on a smooth projective curve C is only interesting if gC ≥ 2.

Lemma 2.6.8. Let C be a smooth projective curve of genus gC ≤ 1. Then we have:

(i) If gC = 0, then the only stable vector bundles are line bundles.
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(ii) If gC = 1, then a stable vector bundle of rank r and degree d is prime to p
stable iff (r, d) = (1) and r is a power of p.

(iii) If C is an ordinary elliptic curve, then the only étale stable vector bundles
are line bundles.

(iv) If C is supersingular, then the notions of prime to p stable and étale stable
agree.

Proof. If gC = 0, then (i) follows from Grothendieck’s classification of vector
bundles on P1, see e.g. [10].

In the following we use that semistability is preserved under pullback by a finite
separable morphism and the behaviour of the degree under pullback, see Lemma
2.1.9.

If gC = 1, we use [1, Theorem 5 and Theorem 7], which are both valid in arbitrary
characteristic. These theorems immediately imply that there are no stable vector
bundles of rank r > 1 and integral slope over an elliptic curve. In fact more can be
said: a semistable vector bundle of rank r and degree d is stable iff (r, d) = (1), a
direct consequence of [25, Corollary 2.5].

Consider a stable vector bundle V of rank r > 1 and degree d such that (r, d) = (1).
On a cover of degree non-coprime to r the pullback of V can not be stable by the
previous discussion. This proves the claim (iii) for ordinary elliptic curves as they
have covers of any square degree. Indeed, for d not divisible by p multiplication by
d is of degree d2. For d = p the dual of the Frobenius F∨ : E → E(p) is étale of
degree p, see [29, Theorem 3.1].

If r is a power of p and (r, d) = (1), then on all prime to p covers we still have
coprime rank and degree. This proves (ii).

If C is supersingular, then every cover is prime to p and we obtain (iv), see [29,
Theorem 3.1].
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3 Proof of Theorem 1
The idea to prove Theorem 1 is simple: There are two types of failure for a stable
bundle to remain stable after pullback. Both of these failures can be detected on a
single cover. We make this more precise on a smooth projective curve C.

The key observation is that a stable vector bundle V of rank r on C decomposes
on a Galois cover D → C as V|D ∼=

⊕n
i=1 W

⊕e
i for some pairwise non-isomorphic

stable vector bundles Wi on D such that the Galois group acts transitively on the
isomorphism classes of the Wi, see Lemma 2.1.13. This is somewhat similar to the
decomposition of a prime ideal in a Galois extension of number fields.

If n ≥ 2, this decomposition behaviour can already be detected on a Galois cover
Cr,large, a cover dominating all covers of degree dividing r, see Lemma 3.1.2.

If V remains stable on Cr,large, then for any Galois cover D → C the decompo-
sition is V|D ∼= W⊕e. Pretending that W descends to a stable vector bundle M
on C (this is not clear at all but we provide a technical workaround, see Lemma
3.2.1) we can compare the descent data associated to M⊕e and V to obtain a
Gle-representation ρ of the Galois group Gal(D/C) = G. The descent data agree
on the kernel of ρ and we are reduced to G being a finite subgroup of Gle.

If G is prime to p, then Jordan’s theorem - which also has a positive characteristic
version due Larsen and Pink- has a particularly nice form:

Theorem 3.0.1 ([13] p.114 for characteristic 0, [19] Theorem 0.4 for positive
characteristic). Let r ≥ 1. There exists a constant J(r) such that for every finite
prime to p subgroup G ⊂ Glr there exists a normal abelian subgroup N ⊆ G of
index ≤ J(r).

Thus, there exists a normal abelian subgroup N ⊆ G of index ≤ J(e), where
J(e) denotes the constant from Jordan’s theorem. As a finite abelian subgroup
is simultaneously triagonalizable the decomposition V|D ∼= W⊕e can already be
detected on D/N . We obtain a prime to p Galois cover Cr,good which detects the
stability of V|D as a cover dominating all prime to p covers of degree ≤ rJ(r).

We split the construction of Cr,good into two parts. First, we construct Cr,large.
This construction can also be carried out over any normal projective variety.

Then we continue with the workaround for descending W and finally construct
Cr,good. The same type of cover works over a normal projective variety X. However,
the workaround for descent only works for curves. Thus, one has to complete the
descent setup on the level of X and then restrict the setup to a large curve.

47



3.1 A large cover

3.1 A large cover
There are two fundamentally different ways for a stable V bundle to decompose on
a Galois cover Y → X: in the decomposition V|Y ∼=

⊕n
i=1 W

⊕
i of Lemma 2.1.13 we

distinguish the cases n = 1 and n ≥ 2. We first find a cover that checks for n ≥ 2
using that this decomposition can already be seen on a cover of degree n.
Lemma 3.1.1. Let π : Y → X be a Galois cover of a normal projective variety X
with Galois group G. Further, let V be a stable vector bundle of rank r on X such
that the decomposition V|Y ∼=

⊕n
i=1 W

⊕e
i of Lemma 2.1.13 satisfies n ≥ 2. Then

there is a factorization of Y → X into Y → Y ′ π′
−→ X such that deg(π′) = n and

V|Y ′ is not stable.
Proof. By assumption there are at least two different Wi. Consider the stabilizer
H of W := W⊕e

i for some i and fix an inclusion ι : W → V|Y . Let φσ : V|Y → σ∗V|Y

be the G-linearization associated to V . The image E of ⊕σ∈H σ
∗W

⊕φ−1
σ σ∗ι−−−−−→ V|Y is

an H-invariant subsheaf, see also the proof of Lemma 2.1.13. Using the stability of
the Wj we find that E is isomorphic to W . Therefore, the direct summand W of
V|Y descends to a direct summand W ′ of V|Y ′ , where Y ′ = Y/H and Y → Y ′ π′

−→ X
are the induced morphisms. Note that π′ has degree #(G/H) = n and W ′ ⊊ V|Y ′ ,
i.e., V|Y ′ is not stable.

As a direct consequence we obtain the large cover checking for decomposition of
a stable vector bundle into at least two non-isomorphic stable vector bundles on
some cover:
Lemma 3.1.2. Let X be a normal projective variety and r ≥ 2. Then we have:

(i) There exists a Galois cover Xr,large → X satisfying the following:
If V is a vector bundle of rank r on X such that V|Xr,large

is stable, then for
all Galois covers Y → X we have V|Y ∼= W⊕e for some stable vector bundle
W on Y and e ≥ 1.

(ii) There is a prime to p Galois cover X ′
r,large → X satisfying the following:

If V is a vector bundle of rank r on X such that V|X′
r,large

is stable, then for
all prime to p Galois covers Y → X we have V|Y ∼= W⊕e for some stable
vector bundle W on Y and e ≥ 1.

Proof. (i): Decomposing into different stable vector bundles descends to some cover
of degree n such that n | r, see Lemma 3.1.1. There are only finitely many such
covers up to isomorphism, see Lemma 2.6.7. In particular, there is a Galois cover
Xr,large dominating all covers of degree dividing r. This is the desired cover.

(ii): Define X ′
r,large as a prime to p Galois cover dominating all prime to p covers

of degree dividing r. This is the desired cover.
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3.2 A good cover
To construct the cover Xr,good detecting prime to p stability it remains to deal with
decomposition behaviour of the form V|Y ∼= W⊕e, where Y → X is a Galois cover
of a normal projective variety X and V a stable vector bundle. We start with
the workaround for descent of G-invariant stable vector bundles. This requires
working on curves and the mild assumption that det(W ) already descends. The
determinant-descent can be set up on arbitrary varieties and we are then able to
derive the main theorem by reducing to the case of curves via a restriction theorem
for stability.

3.2.1 The workaround for descend
To prove the workaround for descent we use techniques from group cohomology. If
one is only interested in the case of curves, then there is an honest descent lemma
one could use instead, see Lemma 4.1.4.

Lemma 3.2.1 (Workaround for descend). Let D → C be a finite Galois morphism
of smooth projective curves with Galois group G. Let V be a simple G-invariant
vector bundle of rank r on D. Further, assume that det(V ) admits a G-linearization.

Then there exists a lift of the G-linearization of det(V ) to a system of isomor-
phisms ψσ : V ∼−→ σ∗V . Furthermore, there exists a finite cyclic Galois morphism
φ : D′ → D such that

(i) φ is prime to p of degree deg(φ) such that deg(φ) | r,

(ii) D′ → D → C is a Galois morphism,

(iii) Gal(D′/D) ⊆ Gal(D′/C) is central, and

(iv) there exists a 1-cocycle α : Gal(D′/C) → µr such that

φ∗
(
ψσ
)

· α(σ′)−1 : V|D′
∼−→ σ′∗V|D′

defines a Gal(D′/C)-linearization of V|D′, where σ denotes the image of σ′

under the natural morphism Gal(D′/C) → G.

Proof. We claim that for two simple isomorphic bundles V and W we have a
surjective morphism Hom(V,W ) det−→ Hom(det(V ), det(W )). Indeed, after iden-
tifying Hom(V, V ) with k the determinant corresponds to the r-th power map.
Thus, the G-linearization of det(V ) lifts to isomorphisms ψσ : V ∼−→ σ∗V such that
ψ−1
στ ◦ τ ∗ψσ ◦ ψτ = λσ,τ ∈ µr.
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3.2 A good cover

A computation shows that the family λσ,τ defines an inhomogeneous 2-cocycle:
For σ, τ, ρ ∈ G we have

λστ,ρλσ,τ =
ψ−1
στρ ◦ ρ∗(ψστ ) ◦ ψρ ◦ ψ−1

στ ◦ τ ∗(ψσ) ◦ ψτ =
ψ−1
στρ ◦ ρ∗(ψστ ) ◦ ρ∗

(
ψ−1
στ ◦ τ ∗(ψσ) ◦ ψτ

)
◦ ψρ =

ψ−1
στρ ◦ ρ∗τ ∗(ψσ) ◦ ρ∗(ψτ ) ◦ ψρ =

ψ−1
στρ ◦ (τρ)∗(ψσ) ◦ ψτρ ◦ ψ−1

τρ ◦ ρ∗(ψτ ) ◦ ψρ =
λσ,τρλτ,ρ,

see also [4, Proposition 2.8]. Let pnr′ = r with r′ coprime to p and λ′
σ,τ = λp

n

σ,τ . The
2-cocycle condition for λσ,τ implies the 2-cocycle condition for λ′

σ,τ . We obtain an
element λ′ = (λ′

σ,τ ) ∈ H2(G, µr′).
Let Gal be the absolute Galois group of κ(C). As C is a curve over an algebraically

closed field, κ(C) is a C1 field by Tsen’s Theorem, see [24, Corollary 6.5.5]. In
particular, H2(Gal, (κ(C)sep)∗) vanishes, see [24, Proposition 6.5.8]. By Hilbert 90
we also have vanishing of H1(Gal, (κ(C)sep)∗), see [24, Theorem 6.2.1]. Applying
these two vanishing results to the long exact cohomology sequence of the short
exact sequence

0 → µr′ → (κ(C)sep)∗ x 7→xr′

−−−→ (κ(C)sep)∗ → 0,

we obtain H2(Gal, µr′) = 0.
By Schreier’s theorem, see [24, Theorem 1.2.4], the element λ′ ∈ H2(G, µr′)

corresponds to an extension

0 → µr′ → G′ → G → 0

inducing the action of G on µr′ . As the action of G on µr′ is trivial, we find that µr′

is central in G′. Write G as a quotient of Gal. Since H2(Gal, µr′) = 0, we obtain
that the central extension

0 → µr′ → Gal ×G G
′ → Gal → 0,

is trivial, i.e., Gal ×G G
′ ∼= Gal × µr′ . In particular, there exists a surjection

Gal × µr′ → G′. Let H denote the image of Gal × 0 under this morphism. By
construction H → G′ → G is surjective. As H ⊆ G′ we find that

0 → µr′ → H ×G G
′ → H → 0

is a central split extension and thus trivial.

50



3.2 A good cover

The kernel K of H ↠ G is a subgroup of µr′ . In particular, K ⊆ H is central
and cyclic. Denote by κ(D′) the field extension of κ(C) corresponding to Gal ↠ H

and by D′ the associated curve. We obtain Galois morphisms D′ φ−→ D → C such
that Gal(D′/D) ⊆ Gal(D′/C) is central and cyclic. Furthermore, the obstruction
λ′ ∈ H2(G, µr′) vanishes in H2(H,µr′).

The triviality of the 2-cocycle φ∗λ′ ∈ H2(H,µr′) means that there is a 1-cocycle
α′ : H → µr′ such that ∂(α′)(σ, τ) = λ′

f(σ),f(τ), where f : H ↠ G denotes the
surjection constructed above.

Recall that in positive characteristic p-th roots are unique. Thus, there is
a 1-cocycle α : H → µr, σ 7→ α′(σ)1/pn such that ∂(α)(σ, τ) = λf(σ),f(τ). By
construction the isomorphisms φ∗ψf(σ) · α(σ)−1, σ ∈ H, define a linearization.
Indeed, we have(

φ∗ψf(στ) · α(στ)−1
)−1

◦ τ ∗φ∗ψf(σ) · α(σ)−1 ◦ φ∗ψf(τ) · α(τ)−1 =
λf(σ),f(τ) · (∂(α)(σ, τ))−1 = 1.

Remark 3.2.2. A shorter (but less precise) argument is the following: Recall that
H2(Gal, µr′) = colimH2(G′, µr′), see [24, Proposition 1.2.5], where the colimit is
taken over all finite Galois extensions of κ(C) and G′ denotes the Galois group.
We obtain Gal ↠ G′ ↠ G such that the obstruction λ vanishes on the associated
curve. However, this does not give us a way to control the kernel which is crucial.

Note that Lemma 3.2.1 only works for curves and requires the mild assumption
that the determinant descends. Given that the determinant descends we can detect
decomposition on a cover of degree bounded by the constant of Jordan’s theorem.
We do this in the following lemma. This would already allow us to deduce Theorem
1 for curves but we only give the general proof later.

Lemma 3.2.3. Let D → C be a prime to p Galois cover with Galois group G.
Let V be a vector bundle on C such that V|D ∼= W⊕e for some simple G-invariant
vector bundle W satisfying that det(W ) descends to C. Denote the constant from
Jordan’s theorem, see Theorem 3.0.1, by J(e).

Then there exists a normal subgroup N ⊆ G of index ≤ J(e) and W ′ ⊆ V|C′ such
that W ′

|D
∼= W , where D → C ′ := D/N → C are the natural morphisms.

Proof. Denote the rank of W by r. Let ψWσ : W ∼−→ σ∗W,σ ∈ G, be a system of
isomorphisms lifting the descent datum of det(W ), see Lemma 3.2.1. By the same
lemma there is a Galois morphism D′ φ−→ D with prime to p cyclic Galois group H
such that D′ → D → C is a Galois morphism with Galois group G′. Further, there
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3.2 A good cover

exists a 1-cocycle α : G′ → µr such that φ∗(ψWσ ) · α(σ′)−1 is a G′-linearization,
where σ denotes the image of σ′ in G. Furthermore, H ⊆ G′ is cyclic.

Our goal is to find a normal subgroup N ′ ⊆ G′ of index ≤ J(e) containing H and
an N ′-invariant subbundle W|D′ ⊆ V|D′ . By Lemma 2.1.7 the inclusion W|D′ ⊆ V|D′

descends to C ′, where C ′ denotes the normal closure of C in the fixed field κ(D′)N ′ .
Then the lemma follows as C ′ = C/N , where N is the image of N ′ in G.

Let ψVσ : V|D
∼−→ σ∗V|D be the descent datum associated to V . Choose an

isomorphism ψ : V|D
∼−→ W⊕e which exists by assumption. Define a map

ρ : G′ → Gle, σ′ 7→ diag(α(σ′))((ψWσ )−1)⊕e ◦ σ∗(ψ) ◦ ψVσ ◦ ψ−1,

where σ denotes the image of σ′ in G, i.e., ρ measures the failure of the following
diagram

W⊕e V|D

σ∗W⊕e σ∗V|D

ψV
σ

ψ

((ψW
σ )−1)⊕e

σ∗(ψ)

to commute twisted by diag(α(σ′)). Another way to put this is that ρ compares
the G′-linearizations (φ∗(ψWσ )−1)⊕ediag(α(σ′)) and φ∗(ψVσ ) on D′.

We claim that ρ defines a group morphism. Indeed, for σ′, τ ′ ∈ G′ mapping to σ
(resp. τ) in G we have

ρ(τ ′)ρ(σ′) =
diag(α(τ ′))((ψWτ )−1)⊕eτ ∗(ψ)ψVτ ψ−1diag(α(σ′))((ψWσ )−1)⊕eσ∗(ψ)ψVσ ψ−1 =

diag(α(τ ′)α(σ′))((ψWτ )−1)⊕eτ ∗(ψ)ψVτ ψ−1((ψWσ )−1)⊕eσ∗(ψ)ψVσ ψ−1 =

diag(α(τ ′)α(σ′))((ψWσ )−1)⊕eσ∗
(

((ψWτ )−1)⊕eτ ∗(ψ)ψVτ ψ−1
)
σ∗(ψ)ψVσ ψ−1 =

diag(α(τ ′)α(σ′))((ψWσ )−1)⊕eσ∗((ψWτ )−1)⊕eσ∗τ ∗(ψ)σ∗(ψVτ )ψVσ ψ−1 =
diag(α(τ ′σ′))((ψWτσ)−1)⊕e(τσ)∗(ψ)ψVτσψ−1 =

ρ(τ ′σ′),

where only the third and fifth equality require an explanation. We use that
((ψWσ )−1)⊕e commutes with matrices and that matrices with entries in k do not
change under pullback to obtain the third equality. To obtain the fifth equality
we note that by construction of α φ∗(ψWσ )α(σ′)−1 defines a G′-linearization, see
Lemma 3.2.1.

Replacing D′ by D′/ ker(ρ) we can assume that G′ is a subgroup of Gle. By
Jordan’s theorem, see Theorem 3.0.1, there is a normal abelian subgroup N ′ ⊆ G′

such that G′/N ′ has cardinality at most J(e). As H is central in G′ the subgroup
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3.2 A good cover

N ′ +H is normal, abelian, and contains H. As a finite abelian subgroup of Gle is
simultaneously triagonalizable, we find the desired (N ′ + H)-invariant inclusion
W|D′ ⊆ V|D′ .

3.2.2 Setting up determinant descend
To be able to apply Lemma 3.2.3 we need to find a way to descent the determinant
bundle. For such a construction we need to take roots of line bundles. If we avoid
the characteristic, then this is always possible up to a finite cyclic Galois morphism.

Lemma 3.2.4. Let X be a normal projective variety of dimension n. Let d be an
integer prime to p. Further, let L be a line bundle on X. Then there exists a finite
cyclic Galois morphism φ : X ′ → X such that deg(φ) | d and L|X′ admits a d-th
root on a big open.

Proof. Let OX(1) be an ample line bundle. Clearly, it suffices to find a morphism
X ′ → X as in the statement such that L|X′ ⊗ OX′(1)⊗nd has a d-th root for some
n. Thus, we can assume that L admits a non-zero global section, i.e., L = OX(D)
for some effective Cartier divisor D. Observe that it suffices to prove the Lemma
for OX(−D) instead of L.

Choose an affine open U containing the generic point of D in X such that
D|U = V (f) for some non-zero divisor f ∈ OU . Consider the field extension
K/κ(X) generated by a d-th root of f . As p ∤ d the extension K/κ(X) is cyclic
of order d′ | d. Let X ′ denote the normalization of X in K. Note that there is a
canonical finite morphism φ : X ′ → X of normal projective varieties. It is also
separable by construction. As we only want to find an a d-th root on a big open
and X ′ → X is flat at all codimension 1 points, we can assume that X ′ → X is
flat.

Consider U ′ := φ−1(U) ∪ φ−1(X \ D). By construction U ′ is big. We show
that OX(−D)|X′ admits a d-th root on U ′. Denote the d-th root of f on φ−1(U)
by t. Then t defines an effective Cartier divisor D′ on U ′. Thus, we conclude
OU ′(−D′)⊗d = OX(−D)|U ′ as td = f on φ−1(U) and by construction both are
trivial on φ−1(X \D).

Definition 3.2.5. A morphism π : Y → X of varieties is called quasi-étale if there
is some big open U ⊆ X such that π−1(U) → U is étale. If π−1(U) → U is a Galois
cover with Galois group G, then we also say that π : Y → X is a quasi-étale Galois
cover with Galois group G.

We can now set up the determinant descent needed to apply Lemma 3.2.3 on a
normal projective variety.
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Lemma 3.2.6. Let X be a normal projective variety. Let Y → X be a prime to p
Galois cover with Galois group G. Further, let V be a stable vector bundle of rank
r on X such that V is stable on X ′

r,large. Then there exists a commutative diagram
of normal projective varieties

Y ′ X ′

Y X

such that

(i) we have V|Y ′ ∼= W ′⊕e′ such that W ′ is stable and det(W ′) descends on some
big open,

(ii) Y ′ → X is a prime to p Galois morphism,

(iii) X ′ → X is cyclic of degree dividing r, and

(iv) Y ′ → X ′ is a quasi-étale Galois cover.
Proof. Consider the decomposition V|Y ∼= W⊕e of Lemma 2.1.13. Clearly, det(W )⊗e

and ⊗σ∈G σ
∗ det(W ) ∼= det(W )⊗#(G) descend to X. Therefore, det(W )⊗d descends

to X as well, where d = gcd(e,#(G)). Thus, there exists a line bundle L on X
such that L|Y ∼= det(W )⊗d. Note that p ∤ d since G is prime to p.

We can apply Lemma 3.2.4 to find a cyclic morphism X ′ → X of normal varieties
such that L|X′ has a d-th root L′ on a big open U ′ of X ′. Let Y ′′ be connected
component of the normalization of the reduced fibre product (Y ×X X

′)red such
that Y ′′ → X ′ is surjective. Note that the natural morphism ψ : Y ′′ → X ′ is prime
to p and Galois. Then

W ′′ := det(W )|ψ−1(U ′) ⊗ L′−1
|ψ−1(U ′)

is a line bundle of order dividing d. The cover U ′′ → ψ−1(U ′) associated to W ′′

trivializes W ′′, see Lemma 2.4.1.
Let Y ′ denote the normalization of Y ′′ in K, where K is the Galois hull of

κ(U ′′)/κ(X). As κ(U ′′)/κ(Y ′′), κ(Y ′′)/κ(X ′), and κ(X ′)/κ(X) are prime to p the
same holds for κ(Y ′)/κ(X). Then the commutative diagram

Y ′ X ′

Y X

satisfies the conditions (ii), (iii), and (iv) of the Lemma.
If W|Y ′ is stable, then V|Y ′ ∼= W⊕e

|Y ′ and we obtain (i) by construction. If W|Y ′ is
not stable, then we repeat the above construction replacing Y by the étale part of
Y ′/X. Then we have V|Y ∼= W ′⊕e′ for e′ > e and W ′ stable. As the integer e′ is at
most r, this process stops after finitely many iterations.
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3.2 A good cover

3.2.3 Proof of Theorem 1
We can now prove the main theorem.

Theorem 3.2.7. Let X be a normal projective variety of dimension at least 1. Let
r ≥ 2. Then there exists a prime to p Galois cover Xr,good → X such that a vector
bundle V of rank r on X is prime to p stable iff V|Xr,good

is stable.
In particular, prime to p stability is an open property in the moduli space of

Gieseker semistable sheaves on X.

Proof. Let Xr,good be a prime to p Galois cover dominating X ′
r,large from Lemma

3.1.2 and all prime to p covers of degree ≤ J(r)r, where J(r) is the bound from
Jordan’s theorem, see Theorem 3.0.1.

The "only if" part is trivial. For the "if" part let V be a vector bundle of rank r
on X such that V|Xr,good

is stable. Consider a prime to p Galois cover Y → X and
let V|Y ∼= W⊕e be the decomposition of Lemma 2.1.13. Applying Lemma 3.2.6 we
obtain a commutative diagram

Y ′ X ′

Y X

satisfying the properties (i) - (iv) of Lemma 3.2.6. In particular, we have an
isomorphism V|Y ′ ∼= W ′⊕e′ for some stable vector bundle W ′ such that det(W ′)
descends on some big open.

Observe that V ′ := V|X′ is stable as the degree of the étale part of φ is at most r.
By Bertini’s theorem the general complete intersection curve C ′ in X ′ is irre-

ducible and irreducible after pullback to Y ′, see [14, Corollaire 6.11 (3)]. Fur-
thermore, the general such C ′ is also normal by [27, Theorem 7]. The general
hyperplane section intersects the locus where Y ′ → X ′ is not étale properly. As
Y ′ → X ′ is quasi-étale we obtain that the pullback D′ of the general such C ′ is a
cover of C ′. We also note that D′ → C ′ is a Galois cover with the same Galois
group as Y ′ → X ′.

Observe that there are only finitely many intermediate quasi-étale Galois covers
Y ′ → Y ′′ → X ′, where Y ′′ is a normal projective variety. On Y ′′ the bundle V ′

decomposes as V ′
|Y ′′

∼= W ′′⊕e′′ for some stable vector bundle W ′′ on Y ′′. Iterating
the restriction theorem in arbitrary characteristic for normal projective varieties,
see [17, Theorem 0.1] for positive characteristic and [32, Theorem 7.17] for arbitrary
characteristic, we find that restricting W ′′ to D′′ := Y ′′ ×X′ C ′ is stable, where C ′

is a general complete intersection curve in c1(OX′(−N1)) . . . c1(OX′(−Nn−1)) for
Ni ≫ 0.

55



3.2 A good cover

Restricting the decomposition V ′
|Y ′

∼= W ′⊕e′ of V ′ on Y ′ to such a D′ := Y ′ ×X′ C ′

we obtain an isomorphism (V ′
|C′)|D′ ∼= (W ′

|D′)⊕e′ . Note that W ′
|D′ is stable and for

general C ′ its determinant det(W ′
|D′) descends to C ′ by property (i) of Lemma 3.2.6.

Hence, we are in a position to apply Lemma 3.2.3. Thus, there is an intermediate
cover D′ → D′′ → C ′ of degree ≤ J(e′) such that there is a stable subbundle
M ′′ ⊆ V ′

|D′′ pulling back to W ′
|D′ on D′.

We claim that the intermediate cover D′ → D′′ → C ′ can be lifted to a quasi-
étale factorization of Y ′ → Y ′′ → X ′. Indeed, let K be the kernel of the natural
morphism Gal(D′/C ′) → Gal(D′′/C ′). As Gal(Y ′/X ′) = Gal(D′/C ′) we can define
Y ′′ to be the normalization of X ′ in the field extension κ(Y ′)K/κ(X ′).

Note that Y ′′ → X is prime to p of degree at most rJ(e′) ≤ rJ(r). Consider the
factorization Y ′′ → Y ′′′ → X into its étale and genuinely ramified part. We find
that V|Y ′′′ is stable by assumption. By Theorem 2.2.2 genuinely ramified morphisms
preserve stability and the bundle V|Y ′′ = V ′

|Y ′′ is stable as well. Thus, V ′
|Y ′′

∼= W ′′

and we obtain the stability of V ′
|D′′ . Therefore, V ′

|D′′
∼= M ′′ and pulling back to

D′ we find V ′
|D′

∼= W ′
|D′ , i.e., e′ = 1. Clearly, e ≤ e′ and we conclude that V|Y is

stable.
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4 Strata
Using the decomposition behaviour of a stable vector bundle on a Galois cover,
see Lemma 2.1.13, we define a stratification of the moduli space of stable vector
bundles by decomposition type. On a smooth projective curve of genus at least
2 we estimate the dimension of these decomposition strata. This stratification
depends on the Galois cover.

Iterating the cover Xr,good obtained in Theorem 3.2.7, we obtain a prime to p
cover Xr,split checking for the decomposition behaviour for all large enough prime
to p covers. We obtain a canonical stratification independent of the choice of cover.
For these prime to p decomposition strata the dimension estimates over a smooth
projective curve of genus at least 2 are mostly sharp.

4.1 Stratifying by decomposition type
In this section we define a stratification associated to the decomposition type
of a stable vector bundle with respect to some fixed Galois cover Y → X of
normal projective varieties. Estimating the dimension of these strata, we obtain
the existence of prime to p stable vector bundles on a smooth projective curve of
genus at least 2, i.e., part of Theorem 2.

Definition 4.1.1. Let π : Y → X be a Galois cover of a normal projective variety
X. Let V be a stable vector bundle of rank r on X. The decomposition type of V
with respect to π is the rank m of the bundles Wi in the decomposition

V|Y ∼=
n⊕
i=1

W⊕e
i

of Lemma 2.1.13. The refined decomposition type of V with respect to π is the tuple
(n, e).

Note that the refined decomposition type recovers the decomposition type as
mne = r.

Let P ∈ Q[x] be a polynomial. Assume that the moduli space M s,P
X of stable

vector bundles with Hilbert polynomial P is non-empty. The Hilbert polynomial
determines the rank of the vector bundles in M s,P

X which we denote by r.
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For integers m,n, e,≥ 1 such that mne = r we define the refined decomposition
strata with respect to π

Zs,P (n, e, π) :=
{
V ∈ M s,P

X

∣∣∣∣∣ V has refined decomposition
type (n, e) with respect to π

}
, and

Zs,P (· | n, e | ·, π) :=
⊔

(n′,e′)
Zs,P (n′, e′, π),

where the union is taken over n′, e′ ≥ 1 such that n′e′ = ne and n′ | n. The
decomposition strata with respect to π are defined as

Zs,P (m,π) :=
{
V ∈ M s,P

X

∣∣∣∣∣ V has decomposition type m
with respect to π

}
, and

Zs,P (· | m,π) :=
⊔
m′|m

Zs,P (m′, π).

If X is a smooth projective curve, then the Hilbert polynomial is determined by
the rank r and degree d and we use the notations

Zs,r,d(m,π), Zs,r,d(· | m,π), Zs,r,d(n, e, π), and Zs,r,d(· | n, e | ·, π).

We show that the name is justified, i.e., that Zs,P (m,π) and Zs,P (n, e, π) form a
stratification.

Lemma 4.1.2. Let π : Y → X be a Galois cover of a normal variety X. Let
P ∈ Q[x] be a polynomial. Assume that M s,P

X is non-empty and denote by r the
rank of the vector bundles in M s,P

X . Then we have the following:

(i) Zs,P (· | m,π) ⊆ M s,P
X is closed for m | r.

(ii) Zs,P (· | n, e | ·, π) ⊆ Zs,P (m,π) is closed for m,n, e ≥ 1 such that mne = r.

Proof. As M s,P
X is quasi-projective, it has only finitely many connected components

C1, . . . , Cl. On each of these components the Hilbert polynomial Pj := P (V|Y ) of
V ∈ Cj is independent of V as the Euler characteristic is locally constant, see [23,
Corollary, p.50].

We claim that for V ∈ Cj the bundles Wi in the decomposition V|Y ∼=
⊕n

i=1 W
⊕e
i

of Lemma 2.1.13 have the same Hilbert-polynomial. Indeed, the Galois group G of
Y → X acts transitively on the isomorphism classes of the Wi. For σ ∈ G we have
P (σ∗Wi) = P (Wi) as the Hilbert-polynomial is computed with respect to π∗OX(1)
which is invariant under the action of G. Thus, for V ∈ Zs,P (m,π) ∩ Cj we have
P (Wi) = m

r
Pj.
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4.1 Stratifying by decomposition type

Pulling back along π defines a morphism π∗
j : Cj → M

G−ss,Pj

Y . In M
G−ss,Pj

Y the
set-theoretic image im(φn,e) of

φn,e :
n∏
i=1

M
G−ss,m

r
Pj

Y → M
G−ss,Pj

Y , (W1, . . . ,Wn) 7→
n⊕
i=1

W⊕e
i

is closed as it is a morphism of projective schemes, where m,n, e ≥ 1 such that
mne = r.

We claim that Zs,P (· | m,π) ∩ Cj is the preimage of im(φn,1) under π∗
j . Indeed,

V ∈ Zs,P (· | m,π) ∩ Cj clearly lies in the preimage. If V|Y ∈ im(φn,1) for some
V ∈ Cj and n such that mn = r, then V|Y is S-equivalent to ⊕n

i=1 Wi for some
Gieseker-semistable sheaves Wi of rank m. As V|Y is a direct sum of stable vector
bundles with the same Hilbert polynomial, it is Gieseker-polystable. The associated
graded object of the JH-filtration is unique and thus V has decomposition type m′

with respect to π for some m′ | m.
Then (i) follows from Zs,P (· | m,π) = ⊔l

j=1 Z
s,P (· | m,π) ∩ Cj.

Similarly, (ii) is obtained from

(π∗
j )−1(im(φn,e)) ∩ Zs,P (m,π) = Zs,P (· | n, e | ·, π) ∩ Cj.

Remark 4.1.3. Ordering Zs,P (m,π),m | r, via division, we obtain a stratification
of M s,P

X by Zs,P (m,π). Furthermore, the refined decomposition strata Zm,P (n, e, π)
stratify the decomposition stratum Zs,P (m,π) for mne = r if we order them via

Zs,P (n′, e′, π) ≤ Zs,P (n, e, π) :⇔ n′ | n.

4.1.1 Dimension estimates
Consider a Galois cover π : D → C of smooth projective curves with Galois group
G. To estimate the dimension of the (refined) decomposition strata with respect to
π we show that the decomposition V|D ∼=

⊕n
i=1 W

⊕e
i of Lemma 2.1.13 can essentially

be recovered from W1. Furthermore, W1 behaves for the dimension estimates as if
it descends to an intermediate cover D′ → C of degree n.

Consider the case n = 1. Then there is only one isomorphism class of the
conjugates of W1, i.e., W1 is G-invariant. This does not necessarily mean that W1
descends to C. However, it does up to a twist by a line bundle:

Lemma 4.1.4. Let π : D → C be a finite Galois cover of a smooth projective
curve C with Galois group G. Let W be a simple bundle of rank r on D which is
G-invariant. Then there exists a line bundle L on D such that W ⊗ L descends to
C.
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4.1 Stratifying by decomposition type

Proof. Note that for a smooth algebraic group G a G-torsor over C corresponds to
an element of Ȟ1

ét(C,G) as a smooth morphism admits étale locally a section. The
same holds for D.

We have H2
ét(C,Gm) = 0, see [31, Tag 03RM], similarly for D. By the 5-term

exact sequence of the Čech to cohomology spectral sequence, see [21, Corollary
2.10, p.101], we obtain the vanishing of Ȟ2

ét from the vanishing of H2
ét, i.e.,

Ȟ2
ét(C,Gm) = 0 = Ȟ2

ét(D,Gm).

Consider the short exact sequence of étale sheaves on Cét

0 → Gm → Glr → PGlr → 0.

Applying the functors Γ(D,−) and Γ(C,−) we obtain a commutative diagram of
exact sequences of pointed sets

Ȟ1
ét(D,Gm) Ȟ1

ét(D,Glr) Ȟ1
ét(D,PGlr) Ȟ2

ét(D,Gm) = 0

Ȟ1
ét(C,Gm) Ȟ1

ét(C,Glr) Ȟ1
ét(C,PGlr) Ȟ2

ét(C,Gm) = 0.

As Gm lies in the center of Glr this sequence extends to Ȟ2 and exactness at
Ȟ1

ét(Glr) is stronger than usual, see Lemma 6.0.1: If two Glr-torsors map to the
same PGlr-torsor they differ by a twist of a line bundle. In particular, we obtain
that a PGlr-torsor can be lifted to a Glr-torsor, which also can be found in [5,
Chapter III].

The bundle W is an element in Ȟ1
ét(D,Glr). By definition of G-invariance we

have isomorphisms ψσ : W ∼−→ σ∗W for all σ ∈ G. The obstruction for descent
λσ,τ := ψ−1

στ ◦ τ ∗ψσ ◦ ψτ is an isomorphism of W . By assumption W is simple and
λσ,τ lies in k∗, i.e., considered as a PGlr-torsor W descends to C, see [8, Theorem
1.4.46]. By the surjectivity of Ȟ1

ét(C,Glr) → Ȟ1
ét(C,PGlr) we find a vector bundle

N on C such that N|D ∼= W as PGlr-torsors. Thus, the vector bundles N|D and W
agree up to tensoring with a line bundle L on D.

We can now estimate the dimension of the (refined) decomposition strata. The
idea is simple: If a stable vector bundle V decomposes on a Galois cover D → C
of the form V|D ∼=

⊕n
i=1 W

⊕e
i , then one of the Wi carries enough information to

(essentially) determine V via the action of the Galois group.

Theorem 4.1.5. Let π : D → C be a Galois cover of a smooth projective curve
C of genus gC ≥ 2. Let r ≥ 2 and d ∈ Z. Let m,n, e ≥ 1 such that mne = r.
Let r = r′ (resp. m′) be the prime to p part of r (resp. m). Then we have the
following:
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4.1 Stratifying by decomposition type

(i) dim(Zs,r,d(n, e, π)) ≤ nm2(gC − 1) + 1.

(ii) dim(Zs,r,d(m,π)) ≤ rm(gC − 1) + 1.

(iii) If π is a prime to p cover, then

dim(Zs,r,d(m,π)) ≤ r′

m′m
2(gC − 1) + 1.

(iv) If π is a prime to p cover and r = pl, l ≥ 1, then Zs,r,d(n, e, π) is empty for
n ≥ 2.

Proof. Let G denote the Galois group of D → C. Note that the decomposition
strata are locally closed in M ss,r,d

C , see Lemma 4.1.2. Thus, the dimension of
Zs,r,d(n, e, π) is the same as the dimension of its closure in M ss,r,d

C .
(i): Consider V ∈ Zs,r,d(n, e, π). Then we have V|D ∼=

⊕n
i=1 W

⊕e
i for some pairwise

non-isomorphic stable vector bundles Wi of rank m. Let H be the stabilizer of W1.
Then D′ := D/H is an intermediate cover D → D′ π′

−→ C of degree n.
Fix an inclusion ι : W⊕e

1 → V|D. Let W be the image of

⊕
σ∈H

σ∗W⊕e
1

⊕φ−1
σ σ∗ι−−−−−→ V|D,

where φσ : V|D → σ∗V|D denotes the G-linearization associated to V . Then W
is an H-invariant saturated subsheaf of V|D isomorphic to W⊕e

1 . Thus, W ⊆ V|D
descends to a saturated subsheaf W ′ ⊆ V|D′ by Lemma 2.1.7.

Since the action of G on the isomorphism classes of the Wi is transitive, we
obtain that V|D is isomorphic to a direct sum of conjugates of W ′

|D. As W ′
|D is

semistable, so is W ′ by Lemma 2.1.9.
By Lemma 4.1.4, there exists a line bundle L on D and a vector bundle W ′

1 on
D′ such that (W ′

1)|D ∼= L ⊗ W1. Then W ′
1 is stable by Lemma 2.1.9. Note that

L⊗em descends to D′ as

det(W ′
1)|D ∼= L⊗m det(W1) and det(W1)⊗e ∼= det(W ′)|D.

Tensoring W ′
1 by a line bundle of degree 1 changes the degree of W ′

1 by m and
we can assume that W ′

1 has degree d′, 0 ≤ d′ < m. Fixing the degree of W ′
1 also

fixes the degree of L. Choose a line bundle L′ on D′ of degree d′, 0 ≤ d′ < m, and
denote the moduli space of semistable vector bundles of rank m and determinant
L′ on D′ by M ss,m

L′ . Denote by P (d′) the moduli space of line bundles on D of
degree f such that their me-th power descends to D′ and

rf = d deg(π) − e deg(π)d′.
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4.1 Stratifying by decomposition type

Note that if P (d′) ̸= ∅, then dim(P (d′)) = gD′ as raising a line bundle to its me-th
power is a finite morphism PicfD → PicmefD .

Consider for a finite subset Σ ⊆ G of cardinality n the morphism

φd′,Σ,D′ : P (d′) ×M ss,m
L′ → M

ss,r,ddeg(π)
D , (L,W ′

1) 7→
⊕
σ∈Σ

σ∗(L⊗ (W ′
1)|D)⊕e.

Observe that the image Zd′,Σ,D′ of φd′,Σ,D′ is closed as φd′,Σ,D′ is a morphism of
projective varieties.

The above discussion shows that

π∗(Zs,r,d(n, e, π)) ⊆
m−1⋃
d′=0

⋃
D′→C

⋃
Σ⊆G

Zd′,Σ,D′ ,

where the union is taken over intermediate covers D → D′ → C of degree n and
subsets Σ ⊆ G of cardinality n.

We can now estimate the dimension of the refined decomposition stratum. By
Theorem 2.3.2, pullback by π is a finite morphism π∗ and it suffices to estimate
dim(π∗(Zs,r,d(n, e, π))). We have

dim(Zd′,Σ,D′) ≤ dim(P (d′)) + dim(M ss,m
L′ ) = m2(gD′ − 1) + 1.

We obtain

dim(Zs,r,d(n, e, π)) = dim(π∗(Zs,r,d(n, e, π))) ≤ m2n(gC − 1) + 1

by Riemann-Hurwitz.
(ii): This is a direct consequence of (i) as

Zs,r,d(m,π) =
⊔

(n,e)
Zs,r,d(n, e, π),

where the union is taken over n, e ≥ 1 such that mne = r. Then

dim(Zs,r,d(m,π)) = maxn,e dim(Zs,r,d(n, e, π)) ≤ rm(gC − 1) + 1

as the maximum is obtained at e = 1, n = r
m

.
(iii): If π is prime to p and Zs,r,d(m,π) is non-empty, then we claim that n

is coprime to p as well. Indeed, we have seen in (i) that n | deg(π). Then the
maximum in the estimate of (ii) is obtained at e = rm′

r′m
, n = r′

m′ . Thus, we conclude

dim(Zs,r,d(m,π)) ≤ r′

m′m
2(gC − 1) + 1.

(iv): If Zs,r,d(n, e, π) is non-empty, then n | deg(π). This is impossible under the
assumptions of (iv).
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4.1 Stratifying by decomposition type

As a direct consequence of the dimension estimate for the decomposition strata
we obtain the existence of stable vector bundles that remain stable on a fixed cover.
Corollary 4.1.6. Let π : D → C be a cover of a smooth projective curve C of
genus gC ≥ 2. Let r ≥ 2 and d be integers. Let Z be the closed subset of stable
vector bundles in M s,r,d

C that are not stable after pullback to D. Then

dim(Z) ≤ rr0(gC − 1) + 1 and

codimMs,r,d
C

(Z) ≥ 2,
where r0 denotes the largest proper divisor of r.

In particular, there are stable vector bundles of rank r and degree d on C that
remain stable after pull back to D.
Proof. Observe that we can replace D → C by its Galois closure. Also note that
Z = ⋃

m|r,m ̸=r Z
s,r,d(m,π). By Theorem 4.1.5 (ii), we have

dim(Zs,r,d(m,π)) ≤ rm(gC − 1) + 1 ≤ rr0(gC − 1) + 1.
As

r2(gC − 1) + 1 = dim(M s,r,d
C ),

gC ≥ 2, and r ≥ 2, we conclude
codim(Z) ≥ r(r − r0)(gC − 1) ≥ 2.

4.1.2 Existence of prime to p stable vector bundles
Applying Corollary 4.1.6 to the cover Cr,good → C of a smooth projective curve
of genus ≥ 2, see Theorem 3.2.7, we obtain the non-emptiness of the prime to p
stable locus, i.e., part of Theorem 2. We state this separately:
Corollary 4.1.7. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2
and d ∈ Z. Then the prime to p stable locus

Mp′−s,r,d
C := {V ∈ M s,r,d

C | V prime to p stable} ⊆ M s,r,d
C

is a big open.
Extending a prime to p stable vector bundle from a large curve to a surrounding

smooth projective variety using Mathur’s extension theorem, [20, Theorem 1], we
obtain the existence of prime to p stable vector bundles in higher dimensions.
However, we can not control the numerical data, i.e., which components of the
stack of bundles admit prime to p stable vector bundles.
Corollary 4.1.8. Let X be a smooth projective variety of dimension n ≥ 2. There
are prime to p stable vector bundles of rank r ≥ n on X.
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4.2 Prime to p decomposition strata

4.2 Prime to p decomposition strata
Let C be a smooth projective curve of genus gC ≥ 2. The cover Cr,good → C
constructed in Theorem 3.2.7 can be iterated to obtain a cover Cr,split checking for
the eventual decomposition of a stable vector bundle of rank r on C. This gives
rise to the prime to p decomposition strata. Similarly to the decomposition strata
with respect to a cover, the dimension of the prime to p decomposition strata can
be estimated. The main difference is that these estimates are sharp as long as the
characteristic is avoided. To obtain sharp estimates we find a way to construct
vector bundles with prescribed prime to p decomposition using cyclic covers.

4.2.1 A split cover
We begin with the definition of the cover Cr,split. This still works on normal
projective varieties:

Definition 4.2.1. Let X be a normal projective variety. Let r ≥ 2. We define
a prime to p Galois cover πr,split : Xr,split → X inductively as follows: Set X1 as
Xr,good. Then define for 1 ≤ j < r − 1 the cover Xj+1 as a prime to p Galois cover
dominating (Xj)l,good for l ≤ r − j and l | r. We define Xr,split := Xr−1.

Let V be a stable vector bundle on X with Hilbert polynomial P . The prime to
p decomposition type (or just decomposition type) of V is the decomposition type
with respect to the cover Xr,split → X.

We call the stratification of M s,P
X with respect to πr,split the prime to p decompo-

sition stratification (or just decomposition stratification) and denote it for m | r
by

Zs,P (m) := Zs,P (m,πr,split).
If X is a smooth projective curve, the Hilbert polynomial is determined by the

rank r and the degree d and we use the notation Zs,r,d(m) instead.
The notations Xr,split and Zs,P (m) are justified as the decomposition type stays

the same on any prime to p cover dominating Xr,split as we show in the next lemma.

Lemma 4.2.2. Let X be a normal projective variety. Let r ≥ 2. Then a stable
vector bundle of rank r on X decomposes on Xr,split into a direct sum of prime to
p stable vector bundles.

In particular, the decomposition types with respect to a prime to p Galois cover
Y → X dominating Xr,split → X and with respect to Xr,split → X agree.

Proof. Let V be stable vector bundle of rank r on X. We follow the behaviour of
V|Xj

for j = 1, . . . , r − 1 of Definition 4.2.1. Let rj be the decomposition type of V
with respect to Xj → X. Then we have rj+1 ≤ rj for 1 ≤ j < r − 1 and equality
holds iff V|Xj

is a direct sum of stable vector bundles on Xj that remain stable on
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4.2 Prime to p decomposition strata

Xj+1. By construction of Xj+1 this is the case iff V|Xj
decomposes into a direct

sum of prime to p stable vector bundles on Xj.
As there are r − 1 covers Xr−1 → · · · → X1 → X, we find rr−1 = 1 or rr−1 = rj

for some j < r − 1. In both cases V|Xr−1 = V|Xr,split
decomposes into a direct sum

of prime to p stable vector bundles.
If Y → X is a prime to p Galois cover dominating Xr,split → X, consider

the decomposition of V|Xr,split
∼=
⊕n

i=1 V
⊕e
i into pairwise non-isomorphic stable

vector bundles of rank m. By the above discussion Vi is prime to p stable. Thus,
V|X ∼=

⊕n
i=1(Vi)⊕e

|Y is a decomposition into stable vector bundles of rank m.

Remark 4.2.3. Note that the refined decomposition type might still change and
is thus not independent of the cover. For example only finitely many prime to p
trivializable stable vector bundles of rank r become trivial on Xr,split. However,
there are infinitely many prime to p trivializable stable bundles of rank r if the
prime to p completion of the étale fundamental group is large enough; e.g. if X = C
is a smooth projective curve of genus at least 2.

4.2.2 Sharp dimension estimates
Theorem 4.2.4. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2
and d ∈ Z. Then for m | r we have the following:

(i) dim(Zs,r,d(m)) ≤ ( r
m

)′m2(gC − 1) + 1, where ( r
m

)′ denotes the prime to p part
of r

m
.

(ii) If p ∤ r
m

, then we have dim(Zs,r,d(m)) = rm(gC − 1) + 1.

Proof. (i): The estimate follows from Theorem 4.1.5 applied to Cr,split → C.
(ii): Let n = r

m
and assume that n is prime to p. Cyclic covers of degree n

correspond to line bundles of order n, see Lemma 2.4.1. Thus, there exist such
cyclic covers. Let π : D → C be cyclic of degree n. Denote the Galois group by G.

By Lemma 2.5.3 and Lemma 2.5.5, the locus U ⊆ M s,m,d
D of stable vector bundles

W on D such that π∗W is stable is open and non-empty. As M s,m,d
D is irreducible,

the intersection U ′ := U ∩Mp′−s,m,d
D is open and non-empty as well.

Pushforward induces a finite morphism U
π∗−→ M s,r,d

C , see Lemma 2.5.5. For
W ∈ U ′ the direct image π∗W has prime to p decomposition type m as by affine
base change π∗π∗W ∼=

⊕
σ∈G σ

∗W which is a direct sum of prime to p stable vector
bundles. We obtain

dim(M ss,m,d
D ) = dim(U ′) ≤ dim(Zs,r,d(m)).

By Riemann-Hurwitz and (i), we conclude dim(Zs,r,d(m)) = rm(gC − 1) + 1.
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Remark 4.2.5. Note that the dimension estimates can be far from being sharp if
p | r: If r = pn for some n ≥ 1 and d is prime to p, then every semistable vector
bundle of rank r and degree d is prime to p stable. In particular, the decomposition
strata Zs,r,d(m) are empty for m < r.

As a direct consequence of Theorem 4.2.4, we find a mostly sharp estimate on the
codimension of the complement of the prime to p stable locus. Thus, we complete
the proof of Theorem 2.
Corollary 4.2.6. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2
and d ∈ Z. Then the following hold:

(i) If k is uncountable, then there are separable-stable bundles of rank r and
degree d.

(ii) The prime to p stable vector bundles of rank r and degree d form a big open
subset Mp′−s,r,d

C ⊆ M s,r,d
C .

(iii) We have
dim(M s,r,d

C \Mp′−s,r,d
C ) ≤ rr0(gC − 1) + 1,

where r0 denotes the largest proper divisor of r. If p is not the smallest proper
divisor of r, then equality holds.

Proof. As already mentioned separable-stable and étale-stable coincide for curves,
see Corollary 2.6.5.

(i): By Corollary 4.1.6 the stable vector bundles that remain stable after pull back
to an étale cover form a non-empty open subset of M s,r,d

C . There are only countably
many étale covers of C up to isomorphism, see Lemma 2.6.7. The intersection
of countably many non-empty open subsets of a quasi-projective variety over an
uncountable algebraically closed field contains a closed point by Lemma 6.0.2.

(ii) is Corollary 4.1.7.
(iii) The estimate is a direct consequence of Theorem 4.2.4 (i). If p ∤ r

r0
, then

Zs,r,d(r0) ⊆ M s,r,d
C \ Mp′−s,r,d

C has dimension rr0(gC − 1) + 1 by Theorem 4.2.4
(ii).
Corollary 4.2.7. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2
and d ∈ Z. Then Pic(Mp′−s,r,d

C ) = Pic(M s,r,d
C ).

Proof. By Corollary 4.2.6 we have that Mp′−s,r,d
C ⊆ M s,r,d

C is a big open. As M s,r,d
C

is smooth, they have the same Picard group.

As the general bundle is prime to p stable, we obtain:
Corollary 4.2.8. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2.
Then the stable vector bundles of rank r that are trivialized on a prime to p cover
are not dense in M s,r,0

C .
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trivializable bundles

As an application of the theory developed we study the closure of the prime to p
trivializable stable vector bundles.

In positive characteristic the étale trivializable bundles are dense by a theorem
due Ducrohet and Mehta, see [6, Corollary 5.1]. This is no longer the case if we
only consider prime to p trivializable bundles as the general bundle remains stable
on all prime to p covers. It is natural to ask the question what the closure Z of the
prime to p trivializable bundles is. This is closely related to the Z(1)-stratum and
we can estimate the dimension of Z. This estimate is sharp if the characteristic is
avoided. In rank 2 and rank pl, l ≥ 1, we also describe the irreducible components.

We begin by recalling the definition of prime to p trivializable bundles and the
denseness of the prime to p trivializable bundles of rank 1 in Pic0. Then we prove
the main results.

Definition 5.0.1. Let X be a normal projective variety. We call a vector bundle
V of rank r on X prime to p trivializable if there exists a prime to p cover Y → X
such that V|Y is the trivial bundle of rank r.

Note that as every prime to p cover is dominated by a prime to p Galois cover,
we could have alternatively required that prime to p trivializable bundles become
trivial on a prime to p Galois cover.

We specialize the correspondence of étale trivializable bundles to representations
of the étale fundamental group to a correspondence prime to p trivializable bundles:

Corollary 5.0.2. Let X be a normal projective variety. Then the prime to p
trivializable bundles (up to isomorphism) correspond to representations of the prime
to p completion πét,p′

1 (X) of πét
1 (X) (up to conjugation).

Under this correspondence irreducible representations correspond to stable vector
bundles.

Proof. As the étale fundamental group is profinite, a representation πét,p′

1 (X) → GLr
factors via a finite group πét,p′

1 (X) ↠ G ⊂ GLr. Furthermore, a prime to p Galois
cover Y → X with Galois group G corresponds to a surjection πét,p′

1 (X) ↠ G.
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Then we conclude by Lemma 2.5.1 which asserts that representations of G (up to
conjugation) correspond vector bundles (up to isomorphisms) that are trivialized
by Y → X.

The correspondence of irreducible representations of G and stable bundles trivial-
ized by Y → X also holds by Lemma 2.5.1. To conclude the same for representations
of πét,p′

1 (X) note that a representation of πét,p′

1 (X) → GLr is irreducible iff the
above factorization πét,p′

1 (X) ↠ G ⊂ GLr satisfies that G → GLr is irreducible.

Recall that denseness of prime to p trivializable bundles holds for the Picard
scheme Pic0

C of a smooth projective curve C as it is an abelian variety. This can
be found in [22] which is at time of writing not yet finished. For the convenience of
the reader we include the proof of the denseness theorem.

Theorem 5.0.3 ([22], Theorem 5.30). Let A be an abelian variety. Then ⋃n≥1 A[qn]
is set-theoretically dense in A, where q ̸= p is a prime and A[qn] denotes the finite
subgroup of closed points of order dividing qn.

Proof. We use that there are exactly q2 dim(A)n points of order dividing qn on an
abelian variety, see [23, Proposition, p.64]. Let B denote the closure of ⋃n≥1 A[qn]
equipped with the reduced subscheme structure. Denote the group law on A by
m : A × A → A. As A and A × A are proper, m is proper as well. The torsion
points ⋃n≥1 A[qn] form a subgroup of A(k) and we find that

B ×B → A× A
m−→ A

factors over B. The same holds for the connected component B0 of B containing
the neutral element. Similarly, the inversion i : A → A restricts to B0. Thus, B0 is
an abelian variety and has q2 dim(B0)n points of order dividing qn.

As B is a closed subscheme of A, it is Noetherian and has only finitely many
connected components. Let N be the number of connected components. Then the
number of points of B of order dividing qn is ≤ Nq2 dim(B0)n. By definition of B, it
contains all points of A of order dividing qn, i.e., we have

q2 dim(A)n ≤ Nq2 dim(B0)n

for all n ≥ 1. Considering n → ∞, we obtain dim(B0) = dim(A). Thus, we
conclude B0 = B = A.

Corollary 5.0.4. Let C be a smooth projective curve. Then the prime to p
trivializable bundles of rank 1 are set-theoretically dense in Pic0

C.

Proof. As Pic0
C is an abelian variety, the torsion points ⋃N≥1 Pic0

C [qN ] for p ̸= q
prime are dense by Theorem 5.0.3. A line bundle of order prime to p is trivialized
by its associated torsor, see Lemma 2.4.1, and we conclude.
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5 The closure of prime to p trivializable bundles

Theorem 5.0.5. Let C be a smooth projective curve of genus gC ≥ 2. Let r ≥ 2.
Let Zs,r be the closure of the prime to p trivializable stable vector bundles in M s,r,0

C

and Zss,r be the closure of the prime to p trivializable vector bundles in M ss,r,0
C .

Then we have the following:

(i) Zs,r ⊆ Zs,r,0(1).

(ii) dim(Zs,r) ≤ r′(gC − 1) + 1, where r′ is the prime to p part of r.

(iii) If p ∤ r, then dim(Zs,r) = dim(Zs,r,0(1)) = r(gC − 1) + 1.

(iv) dim(Zss,r) = rgC.

Proof. (i): The prime to p decomposition type of a prime to p trivializable bundle
is 1. Thus, we obtain Zs,r ⊆ Zs,r,0(1) using that Zs,r,0(1) is closed in M s,r,0

C , see
Lemma 4.1.2.

(ii): This is a direct consequence of (i) and the dimension estimate for the prime
to p decomposition strata, see Lemma 4.1.5 (ii).

(iii): Assume that p ∤ r. Let π : D → C be a cyclic cover of order r and Galois
group G ∼= Z/rZ. Consider the dense open subset U ⊆ Pic0

D defined as

U := {L ∈ Pic0
D | σ∗L ≇ L for all σ ∈ G \ {eG}},

see Lemma 2.5.3. By Lemma 2.5.5, pushforward induces a finite morphism

π∗ : U → M s,r,0
C , L 7→ π∗L.

As the prime to p trivializable line bundles are dense in Pic0
D, see Corollary

5.0.4, and Pic0
D is irreducible, we find that the prime to p trivializable line bundles

contained in U are still dense in Pic0
D.

Note that for a prime to p trivializable line bundle L its conjugates σ∗L, σ ∈ G,
are prime to p trivializable as well. Thus, the pushforward π∗L is prime to p
trivializable as π∗π∗L ∼=

⊕
σ∈G σ

∗L. Therefore, π∗ factors as U → Zs,r → M s,r,0
C

where we equip Zs,r with the reduced closed subscheme structure.
The image π∗(U) in Zs,r has dimension dim(U) = gD since π∗ is finite. By

Riemann-Hurwitz and (ii) we conclude

r(gC − 1) + 1 ≤ dim(Zs,r) ≤ dim(Zs,r,0(1)) ≤ r(gC − 1) + 1.

(iv): Observe that Zss,r contains the image of the finite morphism
r∏
i=1

Pic0
C → M ss,r,0

C , (L1, . . . , Lr) 7→
r⊕
i=1

Li.

Thus, we have dim(Zss,r) ≥ rgC .
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5 The closure of prime to p trivializable bundles

To obtain the other inequality, we claim that Zss,r is the union of the images of

φr1,...,rl
:

l∏
i=1

Zs,ri → M ss,r,0
C , (V1, . . . , Vl) 7→

l⊕
i=1

Vi

for all possible ways to write r = ∑l
i=1 ri and the closure of Zs,ri is taken in M ss,ri,0

C .
Indeed, the image of φr1,...,rl

is closed and so is the finite union ⋃∑l

i=1 ri=r
im(φr1,...,rl

).
Furthermore, the union contains all prime to p trivializable bundles of rank r.

By (ii) we have dim(φr1,...,rl
) ≤ r(gC − 1) + l ≤ rgC .

In the special cases r = pn and r = 2 more can be said:

Corollary 5.0.6. Let C be a smooth projective curve of genus gC ≥ 2. Let p ≠ 0
and n ≥ 1. Let Zs,pn be the closure of the prime to p trivializable stable vector
bundles in M s,pn,0

C . Then Zs,pn = Zs,pn,0(1).
The irreducible components of Zs,pn are disjoint and of the form Pic0

C ⊗V (ρ) for
some irreducible representations ρ : Gpn,split → GLpn, where Gpn,split denotes the
Galois group of Cpn,split → C, V (ρ) is the vector bundle associated to ρ, see Lemma
2.5.1, and Pic0

C ⊗V (ρ) denotes the image of Pic0
C → M s,pn,0

C , L 7→ L⊗ V (ρ).

Proof. We already have the inclusion Zs,pn ⊆ Zs,pn,0(1) by Theorem 5.0.5 (i). To
show the other inclusion consider V ∈ Zs,pn,0(1). As p is prime and V has prime
to p decomposition type 1, the only possible refined decomposition type of V with
respect to the prime to p Galois cover Cpn,split → C is (1, pn), i.e., V|Cpn,split

∼= L⊕pn

for some line bundle L on Cpn,split, see Theorem 4.1.5 (iv).
Let G = Gpn,split. Then L⊗pn ∼= det(V )|Cpn,split

and ⊗σ∈G σ
∗L ∼= L⊗#(G) descend

to C. As G is prime to p, we find that L descends to a line bundle L′ on C. We
obtain an irreducible representation ρ : G → GLpn using Lemma 2.5.1. Let V (ρ)
be the stable vector bundle trivialized by Cpn,split → C corresponding to ρ, see
Lemma 2.5.1. Then we have V ∼= V (ρ) ⊗L′ which lies in Zs,pn as tensoring induces
a morphism

⊗ : Pic0
C ×kZ

s,pn → Zs,pn

, (L′, V ) 7→ L′ ⊗ V.

Thus, we conclude that Zs,pn,0(1) ⊆ Zs,pn . The above argument also shows that

Zs,pn,0(1) =
⋃

ρ:G→GLpn

Pic0
C ⊗V (ρ),

where the union is taken over the irreducible representations.
If Pic0

C ⊗V (ρ) and Pic0
C ⊗V (ρ′) are not disjoint, then V (ρ) ⊗L ∼= V (ρ′) for some

line bundle L of degree 0 on C. Thus, Pic0
C ⊗V (ρ) = Pic0

C ⊗V (ρ′) and we obtain
the description of the irreducible components.
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5 The closure of prime to p trivializable bundles

Theorem 5.0.7. Let C be a smooth projective curve of genus gC ≥ 2. Let Zs,2 be
the closure of the prime to p trivializable stable vector bundles of rank 2 in M s,2,0

C .
If p ̸= 2, then Zs,2 = Zs,2,0(1) and the irreducible components are as follows:

• The irreducible components are pairwise disjoint and of dimension gC or
2(gC − 1) + 1.

• There are n = 4gC − 1 irreducible components of dimension 2(gC − 1) + 1.
Denote them by Z1, . . . , Zn. They correspond to the line bundles on C of
order 2.

• The closures Zi in M ss,2,0
C are pairwise disjoint and intersect the non-stable

locus Pic0
C ⊕ Pic0

C in ∆Mi
(Pic0

C), where

∆Mi
: Pic0

C → M ss,2,0
C , L 7→ L⊕ (L⊗Mi)

and Mi is the corresponding line bundle of order 2.

• The irreducible components of dimension gC are of the form Pic0
C ⊗Vj for some

stable prime to p trivializable bundles V1, . . . , Vm of rank 2, where Pic0
C ⊗Vj

denotes the image of Pic0
C → M s,2,0

C , L 7→ L⊗ Vj.

In a picture:

∆M1(Pic0
C) ∆Mn(Pic0

C) Pic0
C ⊕ Pic0

C

Pic0
C ⊗V1

. . . Pic0
C ⊗Vm

Z1

. . .

Zn

Proof. The inclusion Zs,2 ⊆ Zs,2,0(1) is clear by Theorem 5.0.5 (i).
To show the other inclusion, let V ∈ Zs,2,0(1). We study the two possibilities for

the refined decomposition type of V with respect to C2,split separately.
If the refined decomposition type of V with respect to C2,split is (1, 2), then

V|C2,split
∼= L⊕2. Let M be a line bundle on C such that M⊗2 ∼= det(V ). Then

L⊗M−1
|D has order ≤ 2 and is prime to p trivializable. We find that V ⊗M−1 is

prime to p trivializable as well. As tensoring with a line bundle of degree 0 defines
an automorphism of Zs,2, we find V ∈ Zs,2.
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5 The closure of prime to p trivializable bundles

Let D → C2,split be a prime to p cover dominating all connected µ2-torsors of
C2,split and such that D → C is Galois with Galois group G. Then V ⊗ M−1

becomes trivial on D and corresponds to an irreducible representation of G. As G
is finite there are only finitely many irreducible representation ρ1, . . . , ρl of G. We
obtain V ∈ ⋃l

j=1 Pic0
C ⊗V (ρj).

If the refined decomposition type of V with respect to C2,split is (2, 1), then there
exist non-isomorphic line bundles L1, L2 on C2,split such that V|C2,split

∼= L1 ⊕ L2.
Consider the stabilizer H of the isomorphism class of L1. Let G2,split be the Galois
group of C2,split → C. As G2,split acts transitively on the isomorphism classes of L1
and L2, the subgroup H ⊆ G2,split has index 2. Then π : C ′ := C/H → C is a cyclic
cover of order 2. By Lemma 3.1.1, we find that V still has refined decomposition
type (2, 1) with respect to C ′.

Let V|C′ ∼= L′
1 ⊕ L′

2 be the decomposition. Then σ∗L′
1 ≇ L′

1 for the generator σ
of G2,split/H. By Lemma 2.5.3, we have π∗(L′

i) ∼= V . In particular, V lies in the
image ZC′ of the finite morphism

π∗ : U → M s,2,0
C , L′ 7→ π∗L

′,

where U = U2,0 ⊆ Pic0
C′ was defined in Lemma 2.5.3. Note that ZC′ is irreducible

since U is irreducible. As the prime to p trivializable bundles are dense in U , we
conclude V ∈ ZC′ ⊂ Zs,2.

From the two cases regarding the refined decomposition type we obtain

Zs,2,0(1) ⊆
⋃

ρ:G→glr

Pic0
C ⊗V (ρ) ∪

⋃
C′→C

ZC′ ⊆ Zs,2,

where the union is taken over irreducible representations of G and connected
µ2-torsors C ′ → C. Thus, we have

Zs,2,0(1) = Zs,2 =
⋃

ρ:G→glr

Pic0
C ⊗V (ρ) ∪

⋃
C′→C

ZC′ .

In particular, all irreducible components are of the desired form.
By Riemann-Hurwitz and the finiteness of π∗, we obtain the dimension

dim(ZC′) = 2(gC − 1) + 1 = dim(Zs,2,0(1)).

Thus, ZC′ is an irreducible component of dimension 2(gC − 1) + 1.
We continue to show that the irreducible components ZC′ are disjoint. Let

V ∈ ZC′
1

∩ZC′
2

for non-isomorphic connected µ2-torsors πi : C ′
i → C, i = 1, 2. Then

V ∼= πi,∗L
′
i for some line bundle L′

i ∈ Pic0
C′

i
such that for the non-trivial element σi

in the Galois group of C ′
i → C we have σ∗

iL
′
i ≇ L′

i. Note that π∗
i V

∼= L′
i ⊕ σ∗L′

i.
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5 The closure of prime to p trivializable bundles

By construction C2,split dominates C ′
1 and C ′

2. Consider the decomposition

V|C2,split
∼= L′

i|C2,split
⊕ σ∗

iL
′
i|C2,split

, i = 1, 2

and the stabilizer Hi ⊆ G2,split of L′
i|C2,split

. Note that Hi coincides with the Galois
group of C2,split → C ′

i. As L′
1|C2,split

∼= L′
2|C2,split

or L′
1|C2,split

∼= σ∗
2L

′
2|C2,split

, we find
that H2 ⊆ H1 and vice versa. However, H1 = H2 implies that C ′

1
∼= C ′

2 which was
excluded by assumption.

To show that the closures ZC′ in M ss,2,0
C are disjoint observe that ZC′ = π∗(Pic0

C′)
and that ZC′ ∩ M s,2,0

C = ZC′ . Keep the notation for the disjointness of ZC′ and
consider V ∈ ZC′

1
∩ ZC′

2
. As we already know that ZC′

1
∩ ZC′

2
= ∅, it suffices to

consider the case where V is not stable. Then V ∼= π∗L
′
i for a line bundle L′

i of
degree 0 on C ′

i such that σ∗
iL

′
i

∼= L′
i for i = 1, 2. By Lemma 2.5.4, there exists a

line bundle Li on C such that L′
i

∼= Li|C′
i

for i = 1, 2.
Recall that πi,∗OC′

i

∼= OC ⊕Mi for a line bundle Mi of order 2, see Lemma 2.4.1.
As C ′

1 ≇ C ′
2, the line bundles M1 and M2 are non-isomorphic. By the projection

formula, we find

V ∼= πi,∗π
∗
iLi

∼= Li ⊕ (Li ⊗Mi), i = 1, 2.

As all the line bundles appearing are of degree 0, we conclude

L1 ∼= L2 and L1 ⊗M1 ∼= L2 ⊗M2 or

L1 ∼= L2 ⊗M2 and L2 ∼= L1 ⊗M1.

In both cases, we find M1 ∼= M2 using that M⊗2
i

∼= OC - a contradiction.
This also shows that

(Pic0
C ⊕ Pic0

C) ∩ ZC′ = ∆M ′(Pic0
C).

Line bundles of order 2 correspond on the one hand to elements in Pic0
C [2]\{OC}

and on the other hand to connected µ2-torsors over C. As Pic0
C [2] ∼= (Z/2Z)2gC we

conclude the description of the components of dimension 2(gC − 1) + 1.
It remains to show that if Pic0

C ⊗V has non-empty intersection with ZC′ or
Pic0

C ⊗V ′, then it is contained in ZC′ or Pic0
C ⊗V ′. Both assertions are clear as

tensoring with a line bundle of degree 0 induces an automorphism of ZC′ and of
Pic0

C ⊗V ′.
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6 Appendix
We spell out [21, Step 3, p.143]:

Lemma 6.0.1. Let C be a site and 1 → A → B
φ−→ C → 1 be a short exact sequence

of sheaves of (possibly non-commutative) groups. Then for U ∈ C we obtain a
truncated long exact sequence

1 Ȟ0(U,A) Ȟ0(U,B) Ȟ0(U,C)

Ȟ1(U,A) Ȟ1(U,B) Ȟ1(U,C),

where the 0-th cohomology groups are groups while the first cohomology groups are
pointed sets.

If A is central in B, then Ȟ1(B)(U) admits an Ȟ1(A)(U)-action and two elements
b, b′ ∈ Ȟ1(B)(U) map to the same element in Ȟ1(C)(U) if and only if there exists
an a ∈ Ȟ1(A)(U) such that ab = b′. Furthermore, the long exact sequence can be
extended to Ȟ2(A,U).

Proof. This is proven in [21, p.122, Proposition 4.5] except for the "A central in B"
part. Assume in the following that A is central in B.

Let U = (Ui → U)i∈I be a cover of U in C. For i, j in I define Uij := Ui ×U Uj,
similarly we define Uijk.

For a ∈ Ȟ1(A)(U) and b ∈ Ȟ1(B)(U) define a · b := (aijbij)ij , where (aij)ij (resp.
(bij)ij) is a representative of a resp. b. To see that this is well-defined note that for
(ai) ∈ ∏

iA(Ui) and (bi) ∈ ∏
iB(Ui) we have

aiaa
−1
j · bibb−1

j = aiaija
−1
j bibijb

−1
j = aibiaijbij(ajbj)−1

using that A lies central in B. Thus, we have defined an action of Ȟ1(A)(U) on
Ȟ1(B)(U) which clearly is compatible with restriction along a refinement. Taking
colimits we obtain an action of Ȟ1(A)(U) on Ȟ1(B)(U).

Let b, b′ ∈ Ȟ1(B)(U) map to the same element c ∈ Ȟ1(C)(U). Then there is a
cover U = (Ui → U) such that b (resp. b′) lift to elements b (resp. b′) in Ȟ1(B)(U)
which map to c ∈ Ȟ1(C)(U). Choose representatives b = (bij)ij, b′ = (b′

ij)ij, and
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c = (cij)ij. As b and b′ both map to c there exists (ci) ∈ ∏
iC(Ui) such that

ciφ(bij)c−1
j = φ(b′

ij). After refining the cover U we can assume that there is
(bi) ∈ ∏

B(Ui) mapping to (ci). We obtain φ(bibijb−1
j b′−1

ij ) = 1 ∈ C(Uij), i.e.,

aij := bibijb
−1
j b′−1

ij ∈ A(Uij).

As A is central, this defines an element a = (aij) ∈ Ȟ1(A)(U) and thus in
H1(A)(U). We claim a · b′ = b ∈ Ȟ1(B)(U). Indeed,

aijb
′
ij = bibijb

−1
j b′−1

ij b
′
ij = bibijb

−1
j ∼ bij.

Conversely, if a · b′ = b, then b and b′ map to the same c.
We define a map ∂ : Ȟ1(U,C) → Ȟ2(U,A). Let U = (Ui → U)i∈I be a cover

of U . An element c ∈ Ȟ1(U , C) is represented by (cij) ∈ ∏
i,j∈I C(Uij). After

possibly refining U we find lifts bij ∈ B(Uij) of cij ∈ C(Uij). Then the element
aijk := bijbjkb

−1
ik ∈ B(Uijk) maps to 1 ∈ C(Uijk) and defines an element in A(Uijk).

We show that (aijk) ∈ Ȟ2(U , A) by checking the 2-cocycle condition. For i, j, k, l ∈ I
we have

ajkla
−1
iklaijla

−1
ijk =

(bjkbklb−1
jl )(bikbklb−1

il )−1(bijbjlb−1
il )(bijbjkb−1

ik )−1 =
(bjkbklb−1

jl )(bilb−1
kl b

−1
ik )(bijbjlb−1

il )(bikb−1
jk b

−1
ij ) =

(bilb−1
kl b

−1
ik )(bikb−1

jk ((bjkbklb−1
jl ))b−1

ij )(bijbjlb−1
il ) = 1

using that A lies central in B. Observe that (aijk) ∈ Ȟ2(U , A) is independent of
the choice of lifts bij. Considering (aijk) as an element in Ȟ2(U,A) this is also
independent of the refinement of U . We obtain a map Ȟ1(U , C) → Ȟ2(U,A).
Passing to the colimit we obtain a the desired map ∂ : Ȟ1(U,C) → Ȟ2(U,A).

It remains to check exactness at Ȟ1(U,C). Consider c ∈ Ȟ1(U,C) mapping
to the trivial class in Ȟ2(U,A). We can represent c by (cij) ∈ ∏

i,j∈I C(Uij) on
some cover U = (Ui → U)i∈I such that there exist lifts bij ∈ B(Uij). Then (bij)
defines a class in Ȟ1(U , B). Indeed, (aijk) := ∂(c) = (bijbjkb−1

ik ) measures exactly
the failure of (bij) to be a 2-cocycle. By assumption (aijk) is trivial as a class
in Ȟ2(U,A), i.e., after possibly refining U there exists (a′

ij) ∈ ∏
i,j∈I A(Uij) such

that aijk = a′
ija

′
jk(a′

ik)−1 ∈ A(Uijk). Using the centrality of A in B we find that
((a′

ij)−1bij) defines a class in Ȟ1(U , B) mapping to (cij). Thus, we find b ∈ Ȟ1(U,B)
mapping to c and conclude.
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Lemma 6.0.2. Let X be a scheme of finite type over an algebraically closed field k
of cardinality κ. Assume that X has positive dimension. Then for a family (Zl)l∈λ
of closed subsets of X of codimension ≥ 1 we have that X \ ⋃l∈λ Zl contains a
closed point if λ < κ.

Proof. As a finite type scheme over k has only finitely many irreducible components,
we reduce to the case that X is a irreducible. The lemma is clear for finite λ and
we further assume that λ is infinite.

Any closed subset of an algebraic scheme only has finitely many irreducible
components and it suffices to show the lemma for a family of irreducible closed
subsets of codimension ≥ 1.

Let us first proof the result for An
k and n ≥ 1 by induction. For n = 1 we want

to show that a union of λ < κ many closed points does not contain all closed points
of A1

k. This is true as closed points are in bijection to elements of k which has
cardinality κ.

Induction step by contradiction: Assume the lemma for An
k and some n ≥ 1.

Further, assume that An+1
k \ ⋃l∈λ Zl contains no closed points, where the Zl are

closed irreducible subsets in An+1
k of codimension ≥ 1. Consider for a closed point

x ∈ A1
k the morphism

φx : An
k → An+1

k , (x1, . . . , xn) 7→ (x1, . . . , xn, x).

Then (φ−1
x (Zl))l∈λ is a family of closed subsets of cardinality λ < κ such that

An
k \ ⋃l∈λ φ−1

x (Zl) contains no closed points. By the induction hypothesis this
implies that φ−1

x (Zlx) = An
k for some lx ∈ λ. The irreducibility of Zlx and

codim(Zlx) ≥ 1 imply Zlx = An
k × {x}.

Mapping a closed point x ∈ A1
k to lx we obtain a map φ : κ → λ. As λ < κ

the map φ can not be injective. A contradiction to prn+1(Zlx) = {x}, where prn+1
denotes the n+ 1-th projection.

In the general case, let U be a non-empty affine open of X. Then U has the
same dimension d ≥ 1 as X. By the Noether normalization lemma there is a finite
morphism φ : U → Ad

k. We claim that φ is surjective. Indeed, the image of φ has
dimension d, is closed, and Ad

k is irreducible. Then the lemma for Ad
k implies the

lemma for U and thus for X.
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