
ON THE MARTINGALE PROPERTY

OF TIME-HOMOGENEOUS DIFFUSIONS

Peter Carr ∗ Alexander Cherny ∗∗ Mikhail Urusov ∗∗∗

∗Head of Quantitative Financial Research
Bloomberg L.P.

731 Lexington Avenue
New York, NY 10022

E-mail: pcarr4@bloomberg.com

∗∗Department of Probability Theory
Faculty of Mechanics and Mathematics

Moscow State University
119992 Moscow Russia

E-mail: alexander.cherny@gmail.com

∗∗∗Institute of Mathematics
Berlin University of Technology

and Quantitative Products Laboratory
Deutsche Bank, Alexanderstr. 5

10178 Berlin Germany
E-mail: urusov@math.tu-berlin.de

November 2007

Abstract. We study the martingale property of the positive diffusion

dXt = σ(Xt)dBt.

We prove that X is a true martingale (not only a local martingale) if and only if the
function x/σ2(x) is NOT integrable near infinity.
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1 Introduction

One of the models for the risk-neutral dynamics of an asset, which is popular both in academy
and in industry is the local volatility model proposed by Dupire [12]. In this model, the dis-
counted asset price process is the solution of the stochastic differential equation (SDE)

dXt = σ(t,Xt)dBt, X0 = x0 (1)

with a certain function σ(t, x). At least in the theory, this model is able to reproduce exactly
the prices of all European call options on any asset with all strikes and maturities.

However, the practical calibration of the local volatility model might be problematic espe-
cially for small maturities. In this respect one might be interested in dealing with more robust
models. One possibility is to consider the time-averaged variant of (1), i.e. to model the price
as the solution of the time-homogeneous SDE

dXt = σ(Xt)dBt, X0 = x0. (2)

An additional motivation for time-averaging is that it is already known that some models with
time-varying parameters can be approximated very accurately by the same models with time-
independent parameters; see Piterbarg [24], where this was discovered for the Heston model.

A particular case of (2) is the constant elasticity of variance (CEV ) model:

dXt = |Xt|αdBt, X0 = x0. (3)

Here α ∈ R and x0 > 0 (it is known that there exists a solution of (3) and it is unique among
positive solutions). This model was first considered by Cox [6] for α ≤ 1 and by Emanuel and
MacBeth [13] for α > 1. It is quite popular in mathematical finance because of its analytical
tractability: the prices of various options admit explicit analytic expressions in this model; see
Schroder [27], Davydov and Linetsky [7], Delbaen and Shirakawa [10], Carr and Linetsky [2].

Processes (1)–(3) are continuous local martingales. In typical models, they are positive.
A positive local martingale is a supermartingale but not necessarily a martingale. It is a
martingale if and only if EXt = x0 for any t ≥ 0. The latter property is clearly necessary for
any reasonable model since EXt means the model price of the contingent claim that pays out
the amount Xt at time t. Since this contingent claim is nothing but the underlying asset, its
model price should be x0.

Thus, an important problem is to know whether the process given by the above described
dynamics is a martingale. For CEV, the answer is known. Namely, the CEV process is a
martingale for α ≤ 1 and is a strict local martingale for α > 1. This was first noted by
Emanuel and MacBeth [13]. Their method is based on expressing the CEV process through a
Bessel process; for the latter one, the marginal densities are known explicitly, so one can simply
test the equality EXt = x0.

The goal of this paper is to study the martingale property for diffusions (2). We assume that

x0 > 0 and σ satisfies the conditions: σ 6= 0 on (0,∞), σ−2 ∈ L1
loc(0,∞) (i.e.

∫ b

a
σ−2(x)dx <

∞ for any [a, b] ⊂ (0,∞)), and σ = 0 on (−∞, 0] (the latter property indicates that we
are interested only in positive solutions). These assumptions guarantee the existence and
uniqueness of a weak solution (see [15]). It is clearly positive as it stops at the first time it hits
zero.

In what follows, we write formulas like
∫∞

f(x) dx < ∞ in the situations when the conver-
gence or divergence of the integral

∫∞
c

f(x) dx does not depend on c ∈ (0,∞).
The main result of our paper is
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Theorem 1.1. X is a martingale if and only if
∫∞

x/σ2(x) dx = ∞.

Remark 1.2. It is known that if
∫∞

x/σ2(x) dx = ∞, then ∞ is a natural boundary for X;
if

∫∞
x/σ2(x) dx < ∞, then ∞ is an entrance boundary for X (for example, this can be seen

from [26; Ch. V, Th. 51.2 (iv)]). Hence, X is a martingale if and only if ∞ is a natural boundary
for X.

In particular, we obtain the following corollary, which in turn implies the result of Emanuel
and MacBeth mentioned above.

Corollary 1.3. (i) If there exists c > 0 such that |σ(x)| ≤ cx for sufficiently large x, then
X is a martingale.

(ii) If there exist c > 0, α > 1 such that |σ(x)| ≥ cxα for sufficiently large x, then X is a
strict local martingale.

After writing this paper we found out that Theorem 1.1 was earlier proved by Delbaen and
Shirakawa [11] under a stronger assumption that the functions σ and 1/σ are locally bounded
on (0,∞). However, our proof is completely different.

2 Martingales Vs Local Martingales

In discrete time models, arbitrage theory suggests densities of equivalent martingale measures
as price deflators. In continuous time, however, there is no unanimity about the nature of
state price deflators as the two possible classes are local martingales and true martingales. The
nature of the price deflators is typically suggested by the fundamental theorem of asset pricing.
In continuous time, there exist different variants of this theorem. The papers by Harrison
and Kreps [17], Sin [28], Yan [30], and Cherny [3] link the absence of (appropriately defined)
arbitrage opportunities to the existence of an equivalent measure, under which the discounted
price process is a true martingale. In contrary, the papers by Delbaen and Schachermayer [8],
[9] link the absence of (appropriately defined) arbitrage opportunities to the existence of a local
martingale measure.1

Let us illustrate the difference between local martingale and true martingale measures by
two examples.

Example 2.1.2 Consider the discounted price process (St)t≤1 defined as follows

St =

{
ξ1 . . . ξn, t < 1,

0, t = 1,

where n is chosen such that 1− 2−n ≤ t < 1− 2−n−1. This process is a local martingale under
the original measure, but not a martingale. Moreover, there exists no equivalent martingale
measure since S0 = 1, while S1 = 0.

This model is not arbitrage free in the framework of [17], [28], [30], and [3]. The arbitrage in
those approaches consists in selling the underlying short at time 0 and buying it back at time 1.
However, the model is arbitrage-free within the framework of Delbaen and Schachermayer.
The above short-selling strategy is ruled out in their framework because its capital process
Wt = −St + S0 is not bounded below. It is termed non-admissible. But we would like to point
out several problems associated with the admissibility condition:

1To be more precise, in the most general case it links the absence of arbitrage to equivalent sigma-martingale
measures, but if the price process is positive, any sigma-martingale measure is necessarily a local martingale
measure.

2This example was proposed to us by Walter Schachermayer.
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• This condition prohibits the strategy of selling short the asset at time 0 and buying it
back at time 1 in virtually any model, in particular, in the Black-Scholes-Merton one.

• In the exponential Lévy model St = eLt , where L is a Lévy process, whose Lévy measure
has unbounded support, the admissibility condition would prohibit any short sales. In
particular, this is true in the Variance-Gamma model, the CGMY model, etc.

• In the linear Lévy model St = Lt, where L is a Lévy process, whose Lévy measure has
unbounded support, this condition would prohibit all the long and short operations.

• In the discrete-time conditionally Gaussian model (i.e. Law(ln Sn/Sn−1 | S0, . . . , Sn−1) is
Gaussian), the admissibility condition prohibits all the short sales. Moreover, we want
to stress that this condition is never employed in discrete time, which would not be the
case if it was really economically indispensable.

Let us mention that this example is very similar to the model, in which S is equal to the
process 1+

∫ t

0
(1−u)−1dBu (B is a Brownian motion) stopped at the first time it hits zero (this

example was considered in [18; Sect. 3.3]).

Example 2.2 (CEV). Consider the CEV model (3) with α > 1. The filtration (Ft) is
taken as the natural filtration of S. The process S is then a local martingale being a stochastic
integral with respect to Brownian motion. However, it is not a martingale because E[St] < S0

(see Emanuel and MacBeth [13]). Moreover, there exists no equivalent measure, under which

it is a martingale. Indeed, if such a measure P̃ existed, then under this measure S should have
quadratic variation 〈S〉t =

∫ t

0
S2α

u du, so that it should satisfy the SDE dSt = Sα
t dB̃t with a

P̃ -Brownian motion B̃. But the solution to this SDE is unique in law, so that the distributions
of S under P̃ and the original measure P should coincide. In particular EP̃ [S1] < S0, so that

S cannot be a P̃ -martingale.
Consider now the contract, which pays out at time 1 the discounted amount C = S1.

This contract is replicable at the price E[C]. Indeed, the process Mt = E[C | Ft] is an (Ft, P )-
martingale. Due to Ito’s theorem, S is a strong solution of (3) (as the function S 7→ Sα is locally
Lipschitz), i.e. (Ft) is included in the natural filtration (FB

t ) of B. On the other hand, the
reverse inclusion is true due to (3), so that Ft = FB

t . By the Brownian representation theorem,
M can be represented as Mt = M0 +

∫ t

0
HudBu with a certain process H. As S is strictly

positive (see [13]), this can be further rewritten as Mt = M0 +
∫ t

0
H̃udSu with H̃t = Ht/S

α
t .

Thus, the replication price of the contract is E[C].
On the other hand, the payoff of the contract is nothing but the time-1 value of the under-

lying, so that the common sense (accompanied with the Law of One Price) suggests the price
of the contract being equal to S0. However, as mentioned above, E[C] < S0. Again, in the
frameworks of [17], [28], [30], and [3], this “paradox” is resolved very simply: as there is no
equivalent martingale measure, this model admits arbitrage in those frameworks.

One possible look at the models of the above examples could be as to an economy with a
bubble. Bubbles have recently attracted attention in the mathematical finance literature; see
Cox and Hobson [5], Jarrow, Protter, and Shimbo [20], Heston, Loewenstein, and Willard [18].
Option pricing in such models becomes a very delicate task. Taking simply the conditional
expectation of the option’s payoff (termed the fair price or the fundamental price) might not
be reasonable because then, for example, the price of a call option at some intermediate dates
might be less than its intrinsic value, which is hardly possible in practice. Emanuel and Mac-
Beth [13], Cox and Hobson [5], Heston, Loewenstein and Willard [18], and Madan and Yor [23]
propose alternative ways to price call options in models with bubbles. However, then another
problem arises that the price of a call does not tend to zero as the strike approaches infinity.
Furthermore, as pointed out in [18], in this case American options have no optimal exercise
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time, while lookback options have infinite value. As the authors of [18] write, “these counter-
factual implications provide a persuasive rationale for avoiding bubbles in many models”. In
this language, the study we perform in this paper is the study of the absence of bubbles in
time-homogeneous diffusion models.

Let us mention that the same problem for stochastic volatility models was studied by Sin [29],
Andersen and Piterbarg [1]; see also the discussion in Lewis [22; Ch. 9]. The method of study
employed there is based on linking the martingale property of the original process to the non-
explosion property of another process. In our proof we also follow a similar path (although the
model we are considering is different).

3 Proof of Theorem 1.1

We assume without loss of generality that we work in the following canonical setting. Namely
Ω = C(R+) is the space of all continuous functions ω : R+ → R ∪ {+∞} with the following
property: there exists time ζ(ω) ∈ (0,∞] such that ω is continuous and R-valued on (0, ζ(ω)) as
well as ω = +∞ on [ζ(ω),∞) and limt↑ζ(ω) ω(t) = +∞ whenever ζ(ω) < ∞ (i.e. Ω is the space
of trajectories that may explode near +∞). Further, let X be the coordinate process on Ω (i.e.
Xt(ω) = ω(t)) and ζ be the explosion time of X. Consider the filtration Ft =

⋂
ε>0 σ(Xs; s ≤

t + ε) and the σ-field F =
∨

t≥0Ft. Finally, let the measure P be the (unique) solution of the
martingale problem associated with SDE (2). In other words, P is the distribution (on (Ω,F))
of a weak solution of (2). Let us note that X does not explode under P (however, it will be
convenient below that we work with C(R+) rather than with C(R+)). We need to prove that
X is an (Ft, P)-martingale if and only if

∫∞
x/σ2(x) dx = ∞.

For a ∈ [0,∞), we set
τa(X) = inf{t ≥ 0: Xt = a}

(as usual inf ∅ = ∞). The process

Yt =

∫ t

0

1

Xu

dXu

is well defined under the measure P on the stochastic interval [0, τ0(X)) and is a continuous
local martingale on it. We have

Xt = x0 exp

{
Yt −

1

2
〈Y 〉t

}
= x0 exp

{∫ t

0

κ(Xu) dBu −
1

2

∫ t

0

κ2(Xu) du

}
on [0, τ0(X)) (4)

with κ(x) = σ(x)/x. Let us note that Xt → 0 P-a.s. as t ↑ τ0(X) (on the set {τ0(X) = ∞}
this follows from the construction of solutions of (2); see [15]). Hence, we get from (4) by the
Dambis-Dubins-Schwartz theorem (see [25; Ch. V, (1.6) and (1.18)]) that

〈Y 〉τ0(X) =

∫ τ0(X)

0

κ2(Xu) du = ∞ P-a.s.

For n ∈ N, set

ρn(X) = inf

{
t ≥ 0:

∫ t

0

κ2(Xu) du ≥ n

}
.

We have ρn(X) ↑ τ0(X) P-a.s. and ρn(X) < τ0(X) P-a.s. for any n ∈ N. The Novikov criterion
and (4) yield that the stopped processes Xρn(X) = (Xt∧ρn(X)) are positive (Ft, P)-martingales.
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Let Qn denote the probability measure on (Ω,F) that has the density process Xρn(X)/x0 with
respect to P. This measure exists because we work in the canonical setting. By the Girsanov
theorem for local martingales (see [19; Ch. III, Th. 3.11]), the process

Mn
t = Xt −

∫ t∧ρn(X)

0

σ2(Xu)

Xu

du

is a continuous (Ft, Q
n)-local martingale starting from x0 with

〈Mn〉t =

∫ t

0

σ2(Xu) du.

Hence, Qn is a solution of the martingale problem associated with the SDE

dZt =
σ2(Zt)

Zt

I(t ≤ ρn(Z)) dt + σ(Zt) dBt, Z0 = x0. (5)

Now consider the SDE

dZt =
σ2(Zt)

Zt

dt + σ(Zt) dBt, Z0 = x0. (6)

Since the functions µ(x) = σ2(x)/x, x ∈ (0,∞), and σ satisfy the conditions σ 6= 0 on (0,∞)
and (1+ |µ|)/σ2 ∈ L1

loc(0,∞), equation (6) has a unique in law (0,∞)-valued weak solution that
may either stop at zero or explode at +∞ (see [14], [16] or [21; Ch. 5, Th. 5.15 and Sec. 5.C]).
A simple computation shows that the scale function of a solution of (6) equals −∞ at 0, hence,
it does not reach zero. Thus, SDE (6) has a unique in law strictly positive weak solution that
may explode at +∞. We denote by Q the probability measure on (Ω,F) which is the unique
solution of the martingale problem associated with (6).

For n ∈ N, set

ηn(X) = inf

{
t ≥ 0:

∫ t

0

(
I(0 < Xu < 1)

X2
u

+ I(Xu ≥ 1)

)
σ2(Xu) du ≥ n

}
.

Clearly, ηn(X) ≤ ρn(X) P, Q-a.s. One can easily see that

ηn(X) ↑ τ0(X) P-a.s. (7)

We have (see (6)) ∫ ζ

0

(
σ2(Xu)

Xu

+ σ2(Xu)

)
du = ∞ Q-a.s.

Since Xt →∞ Q-a.s. as t ↑ ζ, we get∫ ζ

0

σ2(Xu) du = ∞ Q-a.s.

and, consequently,

ηn(X) ↑ ζ Q-a.s. and ηn(X) < ζ Q-a.s. for any n ∈ N. (8)

It follows from (5) and (6) that the restrictions Qn|Fηn(X) and Q|Fηn(X) are solutions of (6) up
to ηn(X) in the sense of Definition 1.31 in [4] (note that ηn(X) < ζ Q, Qn-a.s. for any n ∈ N).
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Similarly to Theorem 2.11 in [4] one can prove that solution of (6) up to ηn(X) is unique.
Hence,

Qn|Fηn(X) = Q|Fηn(X).

Note that
dQn

dP

∣∣∣∣Ft∧ηn(X) =
1

x0

EP(Xt∧ρn(X)|Ft∧ηn(X)) =
1

x0

Xt∧ηn(X).

Applying (7) and (8) we get

EPXt = EPXtI(τ0(X) > t) = lim
n→∞

EPXtI(ηn(X) > t)

= x0 lim
n→∞

Qn(ηn(X) > t) = x0 lim
n→∞

Q(ηn(X) > t) = x0Q(ζ > t).

Thus, X is an (Ft, P)-martingale if and only if X is nonexplosive under the measure Q. Applying
to SDE (6) Feller’s test for explosions (see [4; Cor. 4.4] or [21; Ch. 5, Th. 5.29]) we obtain the
result.
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[23] D. Madan, M. Yor. Itô’s integrated formula for strict local martingales. In: M. Émery,
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