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Chapter 1

General introduction

1.1 Relevance and problem

Individuals, households, companies and governments can act as investors and make invest-
ment decisions with regard to certain asset classes (e.g., stocks, bonds, real estate, cash)
and the amount to be invested in these asset classes. Decisions are made by considering
individual risk preferences and the risk-return relation of assets, which determines the
expected portfolio performance. Investors also consider diversification and hedging. The
aim of asset allocation is to improve the risk-return profile of the managed portfolio and
construct a portfolio whose characteristics satisfy the investor’s demand while achieving
a surplus of the invested wealth in form of a return. Due to historically low interest rates
and demographic change, asset allocation has become more relevant in the last years.
From a real interest rate point of view, it is no longer worthwhile to deposit wealth in a
risk-free manner in a bank account. Due to the low pension entitlement, private provision
can be necessary and underlines the importance of asset allocation in savings. To build
up retirement savings, wealth must be invested in the long term and a suitable portfolio
should be generated (cf. Brinson et al. (1991)).

Increasing globalization, internationalization, digitalization and technological change
are making interaction in the world (e.g., investment decisions) fast and more complex.
As a result, policymakers change the environment for investors more often. This type
of uncertainty can be referred to as regime uncertainty and has increased over time (cf.
Baker et al. (2014)). Due to global interconnectedness and the resulting correlation of
assets and associated risks, uncertainty in one country can have international implications.
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1 General introduction

On the one hand, decision-makers respond to crises by changing regulatory requirements.
In addition to the uncertain size, scope and content of a regulatory change, uncertainty
exists about the timing and specific design of future regulatory changes. On the other
hand, increasing political polarization and its impact on the political decision-making
process increases uncertainty. Nationalism and protectionism lead to uncertainties about
changes in regulatory and political discourse and thus to economic divergences. Insu�cient
knowledge of the impact of regime uncertainty on investors’ asset allocation may influence
the e�ectiveness of policy and regulatory measures. There may be unintended consequences
of new frameworks and policy targets may be missed (cf. Ranaldo et al. (2021)). Due
to global interconnectedness and the resulting correlation of assets and associated risks,
uncertainty in one country can have international implications. Spillover e�ects can also
work across markets (stock market, commodity market, and oil market) (cf. Tan et al.
(2020), Finta and Aboura (2020)).

Since the last financial crisis and the European sovereign debt crisis, the importance
of heightened regime uncertainty for economic development has been discussed more in-
tensively by researchers and the public. According to the International Monetary Fund,
uncertainty about regulatory policy contributed to a severe economic downturn in Europe
and the United States in 2008 & 2009 and influenced investor behavior to make invest-
ments in times of lower uncertainty and higher information (cf. Julio and Yook (2012),
Baker et al. (2016)). Regulatory decisions, such as changes in regulatory frameworks (e.g.,
Basel III, Solvency II), changes in guarantee levels in life insurance or changes in capital
requirements of financial institutions have an impact on investment decisions and influence
asset prices.

The global spread of COVID-19 shows how regime uncertainty can a�ect the world-
wide economy. The pandemic has a�ected both financial markets and the real economy
around the world and has led to extensive monetary and fiscal policy interventions.
Spillover e�ects have intensified during this period. Furthermore, the pandemic has in-
creased the systemic risk of banks in all countries (cf. Apostolakis et al. (2021), (Goldstein
et al. (2021)), Al-Thaqeb et al. (2022), Duan et al. (2021)). Huber et al. (2021) find that
extreme events like COVID-19 change investors’ risk preferences. Low investments during
crisis, when enhanced regime uncertainty prevails, is due to higher investors risk aversion.
Also, the Russia-Ukraine war and related policy actions a�ect asset prices and investor
behavior.

Another example of regime uncertainty is the current debate over climate policy.

2



1 General introduction

Country-specific emission programs are being developed to reduce greenhouse gases and
encourage the development of low-carbon technologies. Since investments in the energy
industry are long-term and tend to only pay o� after 15-20 years, regime uncertainty
poses major challenges for companies and investors in the energy industry when develop-
ing strategies. Stroebel and Wurgler (2021) surveyed economists, finance academics, and
regulators on climate finance challenges and conclude that regulatory risk is seen as the
greatest climate risk for firms and investors in the upcoming years.

News and announcements are also an important driver of regime uncertainty. Stock
return jumps are significantly related to the frequency and content of news. The e�ects
have increased in recent decades (cf. Jeon et al. (2022)). The level of information a�ects
the sentiment of market participants, which in turn a�ects the dynamics of asset prices.
Information is processed individually and individual errors in perception may occur (cf.
John and Li (2021)). Decisions have to be made in times of information gaps and un-
certainty, which makes risk assessment decisive. The impact of regime uncertainty at the
individual and macroeconomic level is crucial for long-term investment decisions. Due to
regime uncertainty, asset price dynamics can change significantly and over several peri-
ods. Therefore, it is essential to consider possible structural market changes and changing
economic conditions in asset allocation decisions (cf. Ang and Bekaert (2002), Ang and
Bekaert (2004), Guidolin and Timmermann (2008)).

Decisions under uncertainty, especially regime uncertainty, pose particular challenges
to the rationality of decision-makers. In economic decision theory, rationality is usually
associated with the transitivity of preferences, i.e., it requires consistency of decisions.
However, decision-making is often a�ected by time inconsistency – an anomaly in be-
havioral economics which violates the consistency assumption. Time inconsistency is a
phenomenon where decision-makers want to revise their initial decision at a later point
in time without any information having changed. A future action that is part of an opti-
mal plan today is no longer optimal later. A large number of empirical evidence suggest
time-inconsistent behavior in decision-making (cf. Thaler (1981), DellaVigna (2009)).

Time inconsistency leads to biased decisions that are in conflict with the long-term
interests of the decision-maker (cf. Strotz (1955)). It can lead to suboptimal decisions as
people deviate from initially set plans (e.g., under-saving, over-consumption, postpone-
ment). Long-term investment and consumption plans are inconsistent with short-term
investment and consumption preferences. To mitigate the negative e�ects from time-
inconsistent behavior, it is important to define long-term investment targets and create

3



1 General introduction

a plan for how to achieve them. Commitment instruments can help to avoid short-term
decisions that could compromise long-term investment targets.

The behavioral literature has extensively addressed the issue of time inconsistency
and proposed that this behavior can be modeled deterministically via the assumption of
specific discount functions. However, in theoretical work that attempts to model decision-
making, in particular, dynamic asset allocation problems under more real-world conditions
such as regime uncertainty, time inconsistency can arise naturally. The problem of time
inconsistency can be dealt with via a pre-commitment strategy. A pre-commitment strat-
egy is a deterministic approach and optimizes the objective function at the time when the
decision is made (t = 0). The investor does not change her strategy over time, thus pos-
sible changes in future preferences are simply not taken into account. A pre-commitment
strategy does not solve time-inconsistent behavior, but it is a realistic way to deal with
the problem of time inconsistency.

In particular, asset allocation decisions involving stock investments are based on es-
timates and assumptions about the distribution of financial market parameters (expected
return, volatility). Merkoulova and Veld (2022) find that more than half the US-population
is unable to make a return prediction in this complex world. Decisions are made not only
based on factual or estimated information, but also based on cognitive and emotional
aspects used to process the information. In the absence of full information, there is uncer-
tainty about the parameters to be used. It is therefore necessary to consider both regime
uncertainty and the problem of time inconsistency in decision-making in order to provide
appropriate decision support and build up wealth over the long term.

1.2 Aims and research questions

The dissertation aims to fill the research gap on the impact of time inconsistency on an
investor’s optimal asset allocation and expected utility. Thereby, the relevance of taking
regime uncertainty into account as a realistic assumption will be discussed in more detail.

Approaches that measure and model regime uncertainty are necessary to protect
investors from financial distress due to unprofitable investments. Investors can decide on
the amount of assets they would like to invest over time, whether risky or risk-free. We
introduce regime uncertainty as an additional uncertainty component, and use stylized
regime-switching models to account for regime uncertainty and assume that the current
regime (prevailing state of the capital market and its asset price dynamics) is unobservable
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1 General introduction

to the investor due to a lack of information. Thus, we extend previous asset allocation
approaches in continuous time that do not allow for large price movements and structural
breaks within a short period of time by considering multiple regimes.

Intertemporal models often make the unrealistic assumption that investors know the
predictive model and its parameters for the dynamics of asset returns and state variables.
We abstain from the assumption by considering that the investor does not know the true
state of the regime and therefore decides on a regime-independent strategy. Thereby, time
inconsistency arises naturally in our theoretical works by taking regime uncertainty into
account.

In the following chapters of this dissertation the subsequent research questions are in-
vestigated: What are the e�ects of time-inconsistent behavior on decision situations? What
are the results of the theoretical and empirical behavioral literature on time inconsistency?
Is there a preference in dealing with time inconsistency in optimal asset allocation prob-
lems? What are the implications of an investor’s time-inconsistent behavior implementing
a pre-commitment strategy for optimal asset allocation under regime uncertainty? How
does her willingness to pay for the resolution of regime uncertainty (value of information)
evolve in this context?

For a brief overview, short summaries of the individual essays are presented in the
following section. Chapter 2 discusses the notion of regime uncertainty and motivates
its relevance for consideration in asset allocation problems. In Chapter 3, the problem
of time inconsistency is examined in more detail from a behavioral perspective using a
comprehensive literature review. Further motivation for considering time inconsistency
in our setup is provided by evaluating the dealing of time inconsistency in research in
the context of asset allocation. Chapter 4 addresses the concrete implications of time
inconsistency in a specific optimal asset allocation problem. We consider a stylized setup
that can explain the e�ects of time inconsistency on optimal asset allocation. However, in
our study, time inconsistency arises from the assumption of an a priori lottery over two
possible regimes and the investor’s pre-commitment strategy, which leads to a non-constant
savings rate. Chapter 5 complements the research in Chapter 4 since it allows for regime
switches and addresses challenges when accounting for a regime-switching environment
for a time-inconsistent investor. Utility losses of a time-inconsistent investor implementing
a pre-commitment strategy and her willingness to pay for full information are studied.
Finally, Chapter 6 concludes and gives an outlook on further research.
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1 General introduction

1.3 Summary of essays

Essay 1: Time inconsistency and its consideration in asset allocation
problems – A literature review

The first essay (Chapter 3) presents a comprehensive literature review on time inconsis-
tency and considers time-inconsistent behavior in asset allocation problems: A well-known
anomaly in behavioral economics is the presence of time inconsistency in decision-making
of individuals. Time inconsistency describes the fact that individuals want to revise a de-
cision they already made at a later point in time without any change in information. It
leads to biased decisions that are in conflict with the long-term interests of the decision-
maker (cf. Strotz (1955)). Empirical research has come to the conclusion that this behavior
is a phenomenon that occurs in reality (e.g., in numerous consumption and investment
decisions), which leads to suboptimal decisions (e.g., overconsumption, excessive borrow-
ing, under-saving, unhealthy lifestyle). Commitment instruments are proposed to mitigate
the negative consequences of time inconsistency. However, the demand for commitment
instruments depends on the level of information of the time-inconsistent individual: Indi-
viduals who do not know that they behave in a time-inconsistent manner do not demand
commitment and are called naive. Individuals who are aware of their time inconsistency
and therefore demand commitment instruments to mitigate negative consequences of their
behavior can be called sophisticated (cf. DellaVigna (2009).

Time-inconsistent behavior is assumed in theoretical research via the assumption
of specific discounting functions. Besides the deterministic assumption of time inconsis-
tency, the problem is also considered in many stochastic decision problems where time
inconsistency arises through aggregation of non-linear functions. The dealing with this
anomaly, especially in the context of dynamic asset allocation, is mainly accomplished by
a game-theoretic solution of the problem or by implementing a pre-commitment strategy.
A pre-commitment strategy optimizes the objective function at the time the decision is
made and is therefore the optimal strategy for t = 0. Thus, changes in future preferences
are not taken into account. In the game-theoretic approach, the decision problem is inter-
preted as a game played by "multiple selves" of the same individual, where in each period
the investor chooses a strategy that maximizes her objective in that period, taking into
account the adjustments she will make in the future. The intrapersonal game is solved
by finding a point of subgame perfect Nash equilibrium, e.g., by backward induction (cf.
Laibson (1997), Zhao et al. (2016), Becker et al. (2022)).

6



1 General introduction

A preference in dealing with time inconsistency in theoretical research is not trivial.
Time consistency is seen as a basic requirement for rational decision-making. Therefore,
it seems attractive to find time-consistent strategies (e.g., by using the game-theoretic ap-
proach). However, time-consistent strategies are more di�cult to implement and specific
model assumptions have to be made for the implementation. For example, the game-
theoretic approach assumes that the decision-maker has full information about future out-
comes and correct beliefs about her future actions. The time-inconsistent pre-commitment
strategy is more e�cient than other approaches because it optimizes the objective func-
tion at the initial time when the decision is made. The strategy does not resolve time
inconsistency but is a realistic way to deal with time-inconsistent behavior.

Essay 2: On the impact of time inconsistency in optimal asset allocation
problems

The second essay (Chapter 4) investigates the impact of time inconsistency in an optimal
asset allocation problem.1 In the setup used, time inconsistency arises by considering
regime uncertainty via a double risk situation that serves as the decision basis of an asset
allocation problem: the external risk is given by a simple a priori lottery and the internal
risk by a regime that coincides with the classical Merton problem. In the a priori lottery,
two regimes with probabilities p and (1≠p) can occur, di�ering by their (µ, ‡)-tuples. The
second risk dimension implies an external expectation about the outcome of the lottery
and an internal expectation about the expected utility within the regimes. The a priori
lottery that yields our second risk dimension is a stylized version of a regime-switching
model. In particular, our special case of full information resembles a stylized version of a
regime-switching model with observable Markov chain (or regime).

The utility aggregation is highly non-linear, which naturally gives rise to time incon-
sistency in our setup. The time-inconsistent investor does not know the actual state of the
regime and follows a pre-commitment strategy which she has decided on at time t = 0 and
which cannot be revised until maturity. We show that the optimal pre-commitment strat-
egy is in between the regime-dependent Merton solutions and thus is a weighted average of
these solutions. In the myopic case, when either the investor has myopic logarithmic pref-

1 The contents of Chapter 4 are based on a joint work with Antje Mahayni, Nicole Branger and Sascha
O�ermann.
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1 General introduction

erences or the time horizon approaches zero, the weighting factors of the regimes depend
only on the regime probabilities and volatilities. Since the external risk situation increases
with the investment horizon, the investor’s optimal decision converges to the worst-case
strategy, i.e., the investor chooses the strategy that maximizes the minimum expected util-
ity across the two regimes. Furthermore, we provide a measure ” (normalized to [0, 1]) that
can be used to represent the impact of time inconsistency on the optimal pre-commitment
strategy. This measure increases with the length of the investment horizon and with the
probability of the good regime (the shift to the worst-case regime is more pronounced the
higher the probability of the good regime). However, the influence of the degree of risk
aversion on ” is not trivial (the measure increases in the risk aversion of the second risk
dimension “L and decreases in the risk aversion of the inner risk dimension “R).

Regarding the value of information2, we have the surprising result that the willing-
ness to pay for information about the regime approaches zero not only for an investment
horizon of zero, but also for an infinite horizon. Thus, the willingness to pay for the preser-
vation of information about the actual regime reaches a maximum for a finite investment
horizon but does not necessarily increase with the length of the time horizon.

Furthermore, a third risk dimension is considered by including ambiguity about the
probability of the lottery. Preferences with respect to risk and ambiguity are carried out
using the smooth ambiguity approach of Klibano� et al. (2005). Again, it is possible to
separate the e�ects of the two risk situations as well as the ambiguity aversion. We explain
why the impact of time-inconsistency gets more ambiguous since varying the ambiguity
situation may also change the risk situation. Although our stylized setup is artificial (in
the sense that we do not allow for gradual learning about the regimes), it fits to common
problem formulations but allows to separate the outer and inner risk situation.

Essay 3: Optimal asset allocation for a time-inconsistent investor in a
regime-switching environment

The third essay (Chapter 5) reviews literature on the consideration of regime-switching
models in asset allocation und asset pricing, which justifies our setup that analyzes the
value of information in a Markov modulated regime-switching model with two regimes. Our

2 For more information on the value of information from a decision-theoretical point of view, see Appendix
A.1.2.
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1 General introduction

overall objective is to analyze the e�ect of regime uncertainty and time inconsistency in
an asset allocation problem. We compare the expected utility under an observable Markov
chain between two types of investors with di�erent levels of information (full information
and no full information). The value of information is obtained as the di�erence in the
certainty equivalents of the investors’ strategies. If an investor has no full information
about the evolution of future asset price dynamics (e.g., point in time when a regime
switch takes place), the problem of time inconsistency arises naturally due to regime
uncertainty. In this context, we determine the optimal pre-commitment strategy, which is
obtained as a weighted average of the Merton solutions of the regimes.

The optimal pre-commitment strategy depends on the length of the investment
horizon. The importance of the first regime, driven by the intensity parameter ⁄, decreases
as the investment horizon increases, so that a time-inconsistent investor wants to adjust
her strategy towards the second regime (worst-case Regime). Thus, a long-term investor
places increasing weight on the state that will follow in the event of a possible regime
switch. However, the certainty equivalent return of the overall optimal strategy under full
information and the certainty equivalent return of the optimal pre-commitment strategy
are quite similar. Thus, the risk of regime-switching has minimal impact on the optimal
certainty equivalent return as long as the pre-commitment strategy is correct on average.
Furthermore, we investigate ⁄crit at which the value of information is highest for a time-
inconsistent investor who implements a pre-commitment strategy.

Already for moderate ⁄ the value of information increases scarcely in T . For very
small ⁄ the value of information increases with increasing T . We look at other pre-
commitment strategies. For other strategies, the loss in the certainty equivalents may be
quite substantial, especially for long-term investors. We show a reverse e�ect on the value
of information of a pre-commitment strategy when switching from Regime 2 to Regime 1.

The result shows that asset allocation processes involve complex decisions. Results
from models intended to guide investor decision-making depend heavily on the model
setup and assumptions. Results should therefore be interpreted cautiously. However, our
paper highlights that time inconsistency and regime-switching, as realistic assumptions,
should be taken into account in asset allocation decisions. A time-inconsistent investor
can mitigate potential utility losses by trying to maximize a pre-commitment strategy.
Overall, an investor’s investment horizon, the asset price dynamics in the given regimes, the
possibility and frequency of regime switches, and the level of information are determinants
of an investor’s investment and asset allocation decisions.
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Chapter 2

The significance of regime

uncertainty for decision-making

behavior

2.1 Introduction to decision theory and the notion of regime

uncertainty

We live in a constantly changing world in which future developments related to health,
social, technological, economic, regulatory, and political aspects are uncertain or hard to
predict. In the context of asset allocation, this leads to challenges for decision-makers, in
particular for long-term investors or for investors making irreversible investments. Due to
the longer investment horizon or the fact that the investment cannot be reversed investors’
exposure is higher. As part of portfolio optimization, investment decisions must be taken
with regard to certain asset classes (e.g., bonds, stocks, cash), their risk-return relation,
their proportion in the overall portfolio and investors’ risk preferences (cf. Brennan et al.
(1997), Guidolin and Timmermann (2007), Wachter (2010)). The expected evolution of
future asset prices has to be taken into account in order to assess the value of investment
alternatives. While in certain situations asset prices and their future developments are
fully determined and known, in reality, investment and portfolio decisions have to be
taken under uncertainty, as the financial market is driven by a changing environment.
Uncertainty implies a possible deviation from the expected development of the asset value.

The concept of uncertainty dates back to Knight (1921) who distinguishes between
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2 The significance of regime uncertainty for decision-making behavior

risk and ambiguity (often denoted as Knightian uncertainty). In the presence of risk
the decision-maker has beliefs expressed as probabilities for the occurrence of possible
outcomes (e.g., price developments). The risky asset can be defined as a random variable
via a probability function. The probability distribution can be estimated objectively by
empirical evidence or by subjective consideration. If the future development of the asset
is unknown, a rational investment decision is impossible. No probabilities can be deter-
mined about the future development of the asset. Ambiguity refers to situations where
probabilities are uncertain or unknown, such that the decision-maker is not able to assign
probabilities to possible outcomes. It is already prevalent when probabilities can only be
estimated subjectively (cf. Camerer and Weber (1992), Chen and Epstein (2002)). Arrow
(1951) already distinguishes between two types of uncertainty: risk describes the uncer-
tainty within a model about the outcome of a random variable that assigns a probability
to each possible outcome. Ambiguity exists between models and describes the uncertainty
about which probability model should be used. Uncertainty is thus determined by two
determinants: the extent of a possible outcome and the associated probability.1

Empirical research provides the following results regarding to the existence of am-
biguity: Ellsberg (1961) provided with the help of an urn experiment first evidence that
individuals are ambiguity averse, i.e., they prefer known probabilities over unknown prob-
abilities. This phenomenon is called the Ellsberg paradox. Mehra and Prescott (1985)
support the presence of ambiguity by the equity premium puzzle. Brenner and Izhakian
(2018) and Wang and Mu (2019) confirm that ambiguity is priced in the equity mar-
ket. The following empirical research papers measure ambiguity preferences using surveys
based on Ellsberg urn experiments.2 Dimmock et al. (2016a) find empirical evidence that
ambiguity aversion is negatively related to participation in the stock market. Guidolin and
Liu (2016) provide evidence that ambiguity-averse investors hold under-diversified portfo-
lios. Antoniou et al. (2015) also confirm, in the context of households, that an increase in
ambiguity reduces the probability that a household will invest in stocks. Dimmock et al.
(2016b) find that ambiguity aversion is negatively correlated with foreign stock ownership.

1 Due to the fact that in reality both risk and ambiguity play a role in decision making, we consider both
aspects in Chapter 4.

2 There are other measures of ambiguity. Ambiguity can be derived directly by the current state of
information and the quality of information. In addition, ambiguity can also be measured indirectly via
disagreement among experts regarding future macroeconomic developments (cf. Antoniou et al. (2015),
Anderson et al. (2009)).
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2 The significance of regime uncertainty for decision-making behavior

The results are stronger for participants who self-assess their knowledge of stock markets
as low. Poor and unstable environmental conditions (e.g., the financial crisis) lead market
participants with higher levels of ambiguity aversion to sell their stocks.3

Dohmen et al. (2011) identify determinants, such as age, gender, and family back-
ground, that have an impact on risk attitudes. Bossaerts et al. (2010) find that, as with risk
attitudes, attitudes towards ambiguity are heterogeneous. Furthermore, there is a positive
correlation between risk aversion and ambiguity aversion. In total, ambiguity, like risk,
leads to more cautious behavior and impacts asset allocation.

In model theory the expected utility approach has become the standard approach
for decision making under uncertainty, in which the Homo economicus as a rational agent
aims to maximize her expected utility. Expected utility is obtained as the utility weighted
by probabilities from possible outcomes (cf. Neumann and Morgenstern (1947)). The utility
function takes into account the subjective preferences of a decision-maker. She can be
risk-neutral, risk-seeking and risk-averse. In research, the standard assumption is that
the decision-maker behaves in a risk-averse manner.4 This behavior is often described by
a utility function with constant relative risk aversion (CRRA), where the risk aversion
parameter “ is constant. Chiappori and Paiella (2011) find that the change in the fraction
of risky assets relative to a change in wealth is small and not statistically significant,
confirming the assumption of a CRRA function to describe the utility of a risk averse
investor.5

Over time, asset allocation models have emerged in the context of portfolio selec-
tion under uncertainty. The construction of a portfolio to increase wealth is a fundamental

3 In this context Dlugosch and Wang (2020) and Dlugosch and Wang (2022) show that more ambiguity-
averse investors increase their foreign investment in contrast to less ambiguity-averse investors after an
increase in domestic ambiguity. If ambiguity for foreign investment increases after a shock, it leads to
the opposite e�ect.

4 A decision-maker is risk averse if she prefers a certain outcome b above a lottery with an expected value
of b. The utility function of a risk-averse decision-maker is strictly concave. Research papers that identify
risk-averse behavior in the financial market are Sharpe (1965) and Arrow (1951). The St. Petersburg
paradox describes a gamble in which the random variable has an infinite expected value and thus the
payo� for the gamble is also infinite. Decision-makers nevertheless pay only a small amount to participate
in the gamble, which shows that a rational individual does not only decide on the basis of the expected
value (cf. Bernoulli (1954)).

5 In our research papers, we will therefore assume a CRRA investor who wants to maximize her expected
utility to model choice under uncertainty.
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2 The significance of regime uncertainty for decision-making behavior

aspect in modern finance. Brinson et al. (1991) argues that asset allocation has a signifi-
cant impact on portfolio performance. The objective is to maximize portfolio performance
by investing a certain proportion of wealth in risky and risk-free assets. Markowitz (1952)
developed the mean-variance framework to solve a portfolio problem in a one-period de-
cision model without consideration of expected utility. The static approach results in the
shortcoming that it is unsuitable for an investor who wants to invest and shape her port-
folio over a long time period. An advanced intertemporal continuous-time model provides
Merton (1971). He solves the dynamic asset allocation problem by maximizing the ex-
pected utility of a CRRA investor in a Black-Scholes world. The optimal strategy is given
in terms of a constant investment fraction in the risky asset, whereas the price dynamics
of the risky asset follows a geometric Brownian motion with constant drift µ and volatility
‡ (cf. Black and Scholes (1973)).6

Accounting for ambiguity in model theory removes the assumption of standard mod-
els that the distribution of asset returns is objectively known. Epstein and Schneider (2008)
conclude that ambiguity-averse investors take a worst-case view. As a result, they respond
more strongly to bad information than to good information. Asset allocation models that
account for ambiguity allow for the possibility of multiple distributions for the evolution of
assets.7 Epstein and Schneider (2010), Guidolin and Rinaldi (2013) and Ilut and Schneider
(2022) provide an overview on models of ambiguity in asset pricing and asset allocation.

In reality, decision-making situations are complex. In addition to current economic
risks, the success of investments often depends on the uncertain environmental develop-
ment with regard to political and regulatory policies. This additional source of uncertainty
is called regime uncertainty. The term regime uncertainty (often referred to as policy
uncertainty in the literature) is not unified in its definition. Unpredictable exogenous
events, such as political and regulatory changes can a�ect environmental conditions and

6 For further literature using this model setup see e.g., Brennan et al. (1997), Kole et al. (2006), Branger
et al. (2010), Xia (2011). We will follow Merton’s expected utility approach in a Black Scholes economy,
as we consider a dynamic continuous-time asset allocation problem.

7 In theoretical papers ambiguity is considered via a second-order distribution of beliefs about the prob-
ability of an event. Ambiguity can be modeled via multiple priors or the smooth ambiguity approach.
For more information see Gilboa and Schmeidler (2004), Chen and Epstein (2002) and Garlappi et al.
(2007) in context of multiple priors and Klibano� et al. (2005), Klibano� et al. (2009), Guidolin and Liu
(2016) and Suzuki (2018) for smooth ambiguity. We will use the smooth ambiguity approach in Chapter
4. For portfolio selection problems in the mean-variance framework under ambiguity see Garlappi et al.
(2007), Boyle et al. (2012) and Maccheroni et al. (2013).
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2 The significance of regime uncertainty for decision-making behavior

lead to structural breaks in the economy and financial world (cf. Al-Thaqeb et al. (2022),
Welling et al. (2015)). Government and regulatory policies have wide-ranging impacts on
firms and markets. They set the rules for how firms operate and compete, determine how
firms are taxed and subsidized, and influence general macroeconomic conditions and price
dynamics of assets (e.g., stocks) in the long-term (cf. Kaviani et al. (2020)). Regime uncer-
tainty is also determined by the economic conditions that lead governments and authorities
to adopt new policies. Thus, it is rather an institutional uncertainty that has e�ects on
economic circumstances.

Policy makers respond to crises with new policies. The COVID-19 pandemic is an
example. On the one hand, there may be uncertainty about the direction and objective
of the change in the political or regulatory framework as well as about its specific design
and implementation. In addition, there may be uncertainty about the endurance of the
implementation process and its dependence on other rules and regulations. There is also
uncertainty about how long the new framework will last and when new changes will oc-
cur. Announcement e�ects also create uncertainty in the financial market. There may be
unintended consequences due to the new political or regulatory frameworks (cf. Bloom
(2009)).

Baker et al. (2014) notice two factors for the rise in regime uncertainty over time. The
first is increasing regulatory requirements due to the interconnected world.8 The second
is increasing political polarization.9 Due to increasing internationalization, correlations
between international stock markets increase, especially in times of crisis and high uncer-
tainty. So-called spillover e�ects can cause instability or uncertainty in one area or country
that spreads to others, leading to a global systemic crisis (cf. Ang and Bekaert (2002),
Kole et al. (2006), Yuan et al. (2022)). Indicators of a country’s economic uncertainty
that drives regime uncertainty are its creditworthiness, its public debt, interest rate levels,

8 This is particularly relevant for highly regulated industries such as the financial and energy sector.
There may be unexpected changes in regulatory requirements and laws issued by the government or
supervisory authorities. Minimum capital requirements in the financial industry are an example of a
regulatory framwork that changes over time (cf. Gatzert and Kosub (2017)).

9 There is no full information about the future state of the government and related government activities.
Governments and states can intervene in the financial market and trade policy. The political stability
can be a�ected by wars, terrorist attacks, riots, demonstrations and corruption. In addition, there is a
risk of ideological change in government leadership associated with policy changes, for example, during
elections. Laws can be implemented di�erently by each government.
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2 The significance of regime uncertainty for decision-making behavior

currency trends, and unemployment rates. Another determinant of regime uncertainty is
technological change, which leads, for example, to a reduction in subsidies for obsolete
technologies and an increase in subsidies for alternative technologies. Globalization, in-
ternationalization, technologization and digitalization generate new risks that need to be
regulated (cf. Ho�mann et al. (2009), Gatzert and Kosub (2017)).

Regime uncertainty can a�ect investor sentiment. Even if investors are not a�ected
by any policy change (e.g., investors in a di�erent industry or country), it is possible
that it may soon be relevant for them as well. There may be unknown interdependencies
between industries. Even if new policies intend to strengthen investment in one area,
the specific form of the policy may threaten certain investments in a di�erent area (cf.
Ranaldo et al. (2021)). Market participants form expectations about market states and
dynamics. Therefore, the quality of information, in addition to the risk attitude of market
participants, influences stock price movements (cf. Veronesi (2000), Lochstoer and Muir
(2022)). In total, regime uncertainty leads to a lack of information and weakens investors’
confidence in their ability to predict the extent to which future government or regulatory
actions will a�ect the financial market and its parameters. This has an impact on economic
and financial activity, and thus on the price dynamics of stock prices.10

To further clarify the concept of regime uncertainty and its relevance, the follow-
ing two sections will gather further research that deals with the measurement of regime
uncertainty and its impact on asset pricing and allocation.

2.2 Quantifiability of regime uncertainty

The quantifiability of regime uncertainty is not subject to a generally accepted measure.
There are several approaches to measuring regime uncertainty in the literature that di�er
in terms of their calculation methods and data basis.

10 Note that in our research papers the existence of regime uncertainty implies that there is uncertainty
regarding the price dynamics of the risky asset, which is defined by the parameters µ and ‡. Thus,
uncertainty about the current and future state of the regime has implications for the asset allocation
decision. Uncertainty with respect to the current state of the regime as well as to possible regime changes
can be taken into account in model theory via so-called regime-switching models. The theoretical research
in Chapters 4 and 5 deals with an asset allocation problem in this context. Note that only a stylized
regime-switching setup is used in Chapter 4.
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2 The significance of regime uncertainty for decision-making behavior

In one strand of the literature, regime uncertainty is implicitly assumed via ex-
ogenous events. Increased regime uncertainty is assumed, for instance, in times of politi-
cal elections. Upcoming elections trigger uncertainty regarding a new political discourse.
Newly elected politicians may hold di�erent views and may seek changes in government
and regulation (cf. Giavazzi and McMahon (2012), Julio and Yook (2012), Kelly et al.
(2016), Jens (2017)). In addition, there is research that assumes regime uncertainty about
exogenous shocks such as wars, attacks, or macroeconomic announcements (cf. Kim and
Kung (2017), Kurov and Stan (2018)).

Macroeconomic instability, a driver of regime uncertainty, can be measured by the
time-varying volatility of financial market variables, such as stocks and interest rates. The
volatility can either be derived from historical data or be estimated implicitly from prices
expected by the option market. It is hereby assumed that the risk perception of market
participants is reflected in option prices. A well-known volatility index is the VIX, that
contains the expected volatility of option prices on stocks of the 500 largest U.S. companies.
An increasing index suggests that market participants are becoming more uncertain about
future developments in the macroeconomic environment (cf. Bloom (2009), Fernández-
Villaverde et al. (2015)). The fluctuation of future expectations of macroeconomic variables
(e.g., GDP, production rate, consumer prices, dispersion of corporate profits) is also a proxy
for regime uncertainty. It is assumed that the variability of market participants’ (survey-
based) forecasts increases in times of higher uncertainty. A low degree of uncertainty
about future macroeconomic developments leads to more homogeneous expectations. The
measures are generated by estimating time series. Assuming that incorrect predictions
reflect uncertainty, an increase in ex post prediction errors indicates an increased degree
of regime uncertainty at the time the forecast was made (cf. Jurado et al. (2015), Girardi
and Reuter (2016)).

To measure specific climate policy uncertainty Boomsma and Linnerud (2015) use
the carbon price as a proxy. Other measures that capture regime uncertainty are specific
indicators that express, for example, the instability of a government and are formed on
the basis of expert views (cf. Julio and Yook (2012), Gatzert and Kosub (2017), Smimou
(2014)). Another method to measure regime uncertainty is the text analysis. Ho�mann
et al. (2009) and Colombo (2013) examine newspaper articles and company reports to
investigate investment behavior at times of heightened regime uncertainty. Baker et al.
(2016) develop an uncertainty index (Economic Policy Uncertainty, EPU) to measure
regime uncertainty in America. Articles from leading newspapers, which are screened for
key words, are used as the basis for determining the index. The EPU increases with the
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intensity of reporting on regime uncertainty.11 In addition, the EPU can be decomposed
into sub-indices to measure specific uncertainties and country-specific indices have been
developed. Thus, measuring uncertainty about national security, health policy, tax policy
or financial regulation is also possible.12

When comparing the di�erent approaches, it turns out that the measures correlate
with each other. Implied volatility increases in the period of exogenous events, such as
elections (cf. Goodell and Vähämaa (2013)). The VIX is correlated with the EPU (corre-
lation 0.6). The VIX only takes into account the uncertainty in the stock returns of listed
companies. If the EPU is also restricted to the stock market, the correlation of the two
rises to 0.7. The increased correlation confirms that there are market- and industry-specific
di�erences with regard to regime uncertainty. If the EPU increases by one unit, then the
uncertainty measure of Jurado et al. (2015) increases by about 0.4 units. The stock price
volatility and EPU are negatively correlated with GDP. Jeon et al. (2022) find that the
magnitude and frequency of stock return jumps are significantly related to the content
und frequency of news.

However, the various measures of regime uncertainty used in the literature also have
weaknesses. Exogenous shocks (e.g., elections) are indicators of increased uncertainty, but
do not reflect the degree of regime uncertainty. It is only indirectly implied regime uncer-
tainty. Increased volatility of market variables such as stock returns may be due to changes
in the general sentiment of market participants and not necessarily due to increased regime
uncertainty. Therefore, volatility-based measures are only an indicator of regime uncer-
tainty and are not suitable for quantifying regime uncertainty. Some uncertainty measures
(e.g., EPU) are ex-post in nature and can only measure uncertainty of past periods. Such
measures can help to analyze the impact of uncertainty on asset allocation. However,
they are less useful for investors who need to make long-term investment decisions due to
the lack of forecasting capabilities. Moreover, there are concerns in the measurement of
uncertainty regarding the reliability, accuracy, and bias of newspaper articles.13

11 The EPU follows an increasing trend over time. Thus, the consideration of regime uncertainty is nowa-
days even more important for decision making (cf. Baker et al. (2014)).

12 Due to the fact that the number of all published articles varies by newspaper and year, the EPU is
scaled to ensure comparability between di�erent newspapers over time.

13 However, Baker et al. (2016) are able to unravel the weaknesses of text analysis as a measurement tool
due to the strong relationship between EPU and the VIX. To show that the political orientation of
the newspaper does not bias the EPU, the development of the measure obtained only from politically
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It is di�cult to quantify and decompose regime uncertainty due to the fact that it
is an aggregate measure determined by many complex conditions and factors. Macroeco-
nomic, political and regulatory instability and changes are important drivers of regime
uncertainty. The volatility-based measures indicate only macroeconomic uncertainty and
do not separate political and regulatory uncertainty from it. The EPU is designed via
refined text analysis and can account only for uncertainty about political and regulatory
developments.

2.3 The e�ect of regime uncertainty on asset pricing and

asset allocation

The quantifiability of regime uncertainty is not trivial for decision-makers due to the lack
of direct observability and anticipation of future developments in a complex world. This
chapter discusses the impact of regime uncertainty on asset pricing and asset allocation.
First, results are presented from research whose data base was obtained using text analysis.
For example, regime uncertainty is presented via the EPU as an independent variable in
the regression model. This is followed by research that uses exogenous events, volatility
measures, and indicators to identify regime uncertainty.

Some researchers use the EPU developed by Baker et al. (2014) to analyze the
e�ects of regime uncertainty on asset prices and asset allocation. Gulen and Ion (2016)
use the EPU as an independent variable in their regression model and find that an increase
in EPU decreases the investment rate. Moreover, there is firm heterogeneity: firms that
are more dependent on government spending and irreversible investments show a larger
decline in the investment rate. For firms operating in industries that are strongly influenced
by political and regulatory changes, the e�ect of a falling investment activity is even
more pronounced (cf. Baker et al. (2016)). Delaying investments for too long leads to
the fact that foregone cash flows will exceed the benefits of waiting until uncertainty
decreases. Bonaime et al. (2018) conclude by developing a logit model that an increase
in regime uncertainty leads to a decrease in the probability that a company announces

left-leaning newspapers was compared to the measure developed only from politically right-leaning
newspapers. The researchers concluded that the EPU is valid and text analysis methods are particularly
suitable for measuring uncertainty in countries and industries for which few data are available because
newspapers are a public medium and accessible to everyone.
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a M&A transaction. Overall, regime uncertainty a�ects corporate transactions and can
therefore lead to an ine�cient and suboptimal allocation of capital to assets. Al-Thaqeb
et al. (2022) find that during the COVID-19 crisis period, EPU is high. The e�ects of
regime uncertainty extend to di�erent markets, causing households and firms to postpone
financial decisions and invest less. Baker et al. (2020) also use text analysis methods and
argue that government-imposed contact restrictions as a reaction to the COVID-19 crisis
were mainly responsible for the underperformance of stock prices. In the context of asset
pricing, Brogaard and Detzel (2015) find that an increase in EPU leads to a decline in
stock returns.

Jens (2017) conducts an analysis using a di�erence-in-di�erence model and an in-
strumental variable approach to identify the causal e�ect of regime uncertainty on the
investment behavior of U.S. firms. It is assumed that enhanced regime uncertainty exists
at times of elections. Investment expenditures decline by around 5% in the quarter before
a gubernatorial election. The volatility of returns is greatest for firms located in states
with an upcoming election. Julio and Yook (2012) come up with similar results. Brogaard
et al. (2020) study political uncertainty measured via U.S. elections and conclude that
the higher the degree of uncertainty about the outcome of the election, the stronger the
following e�ects: Political uncertainty leads to a decline in stock returns, an increase in
market volatility and an increase in government bonds. These results suggest that regime
uncertainty increases investors’ overall risk aversion, and leads to a shift from risky to safe
assets. The e�ects of regime uncertainty are further amplified when the probability of an
election winner changes (cf. Goodell et al. (2020)). Chan et al. (2020) find that invest-
ments decline in the period after a president is newly elected due to increased uncertainty
about new political discourses. In addition, risk aversion increases. Liu et al. (2017) use
an event as political shock to identify the impact of regime uncertainty on asset prices
and show a decline in stock prices. Hanke et al. (2020) build portfolios depending on the
expected winners and losers of political elections. A correctly anticipated election outcome
leads to high positive returns. The result shows that regime uncertainty and the forma-
tion of expectations about it based on information have a significant impact on portfolio
performance and asset allocation.

Bloom (2009) uses a vector-autoregression (VAR) to analyze the e�ect of macroeco-
nomic uncertainty shocks on economic activity.14 An uncertainty shock is represented by

14 VAR models are used to forecast economic time series in case of simultaneous influences and therefore
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a binary variable and takes the value 1 if stock price volatility is 1.65 standard deviations
above the mean of the observations. They conclude that uncertainty shocks have a nega-
tive e�ect on consumer prices, output, wages, interest rates, and employment. Fernández-
Villaverde et al. (2015) analyze the e�ect of unexpected changes in fiscal policy on economic
activity also via a VAR model and conclude that fiscal policy shocks have negative e�ects
on economic activity.

Julio and Yook (2012) use a country-specific stability indicator that acts as an
independent variable in their regression model. They conclude that in times of regime
uncertainty, investment decreases and the proportion in liquid assets increase. In times
of heightened uncertainty, assets are reallocated, and liquid assets are held as a safety
bu�er. Papadamou et al. (2020) can analyze direct e�ects of increased uncertainty due to
COVID-19 by constructing a Google-Trends based index. Empirical results suggest that
the increased uncertainty mapped by the increased search for the consequences of the
COVID-19 pandemic amplifies the negative relationship between stock market returns
and their implied volatility.

Many research papers carry out industry- and application-specific studies: Fabrizio
(2013) runs a regression in which the annual investment amount in renewable energy is the
dependent variable and the proxy for regime uncertainty is a binary variable that takes
the value 1 if a regulatory change was introduced first and revised thereafter. Firms are
less likely to invest in renewable energy in an unstable environment. The risk of a future
local regulatory change lowers the willingness to invest in long-term, regulation-supported
assets because, if a change in regulation occurs, the value of the asset may decrease.
Ramiah et al. (2013) study green policy announcement e�ects by using an event study
methodology and show that announcements induce uncertainty which results in negative
cumulative abnormal returns. Kaviani et al. (2020) use the EPU as a measure of regime
uncertainty and demonstrate via OLS panel regressions the e�ect of regime uncertainty
on credit spreads. Heightened regime uncertainty leads to an increase in credit spreads.
The e�ect of regime uncertainty is larger for firms that operate in regulation-intensive
industries. Guceri and Albinowski (2021) have conducted an experiment in which two
similar investment subsidies were introduced in the same country once in a period of

o�er the possibility of capturing the dynamics of macroeconomic variables. It is assumed that exogenous
shocks have a lagged e�ect on macroeconomic variables. One disadvantage of VAR models is that they
are not suitable for identifying causal relationships.
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economic stability and once in a period of high regime uncertainty. Subsidies have positive
e�ects in times of low uncertainty. In times of high uncertainty, however, some companies
reduce their investments. Thus, subsidies may miss their target or have a weaker e�ect in
times of high regime uncertainty. In the context of renewable energy subsidies, Ganhammar
(2021) shows that interventions in the market can lead to unintended e�ects, such as an
increase in price risk as well as inhibition of investment in renewable energy. Prices can
move contrary to the expectations of policy makers.

In addition to empirical research, theoretical research has focused on analyzing ef-
fects of regime uncertainty on asset allocation and asset pricing and is still under develop-
ment. Pastor and Veronesi (2012) analyze how regime uncertainty a�ects asset prices using
a general equilibrium model. They find that the greater the uncertainty about government
policy, the more asset prices fall. Policy changes increase volatility and correlations among
stocks. Croce et al. (2012) examine the impact of fiscal policy changes on asset prices when
agents are sensitive to regime uncertainty. They conclude that short-term oriented fiscal
policy can lead to welfare losses in the long run. Boutchkova et al. (2012) find that indus-
tries that are more dependent on trade, contract enforcement, and labor exhibit greater
return volatility when domestic political uncertainty is high. Political uncertainty in the
countries of the trading partners of trade-dependent industries also leads to higher return
volatility.

Regime uncertainty leads to the absence of full information about the future asset
performance. This leads to uncertainty about the financial market parameters to be used in
model theory and forecasting. Parameter uncertainty plays a significant role with respect
to the predictability of returns and asset allocation decisions (cf. Xia (2001)). Pettenuzzo
and Timmermann (2011) point out that the parameters of asset pricing and asset allocation
models are unstable and subject to structural breaks. Branger and Hansis (2012) argue
that the nature of the model has a significant impact on the optimal portfolio, and incorrect
model specification can lead to significant utility losses. This implies that model stability
is important for an investor’s asset allocation decision. We consider this problem in the
research presented in Chapters 4 and 5.
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Chapter 3

Time inconsistency and its

consideration in asset allocation

problems – A literature review

3.1 Introduction

This paper presents a comprehensive review of the literature on time inconsistency and
considers time-inconsistent behavior in asset allocation problems. The problem of time
inconsistency is mainly illuminated in behavioral finance research. Behavioral finance at-
tempts to explain real-world financial phenomena using models that depart from the as-
sumptions of homo economicus as a rationally acting decision-maker. In classical financial
market theory a decision-maker has complete information, acts in a utility-oriented man-
ner and makes her decisions free of emotions.1 However, it is now well known that in reality
decision-maker do not always act rational which has led to the publication of research that
criticizes the normative model. Researchers note cognitive biases that can cause decision-
makers to misjudge either the severity of a possible outcome or event or its probability. For
example, the reasons for this can be a lack of information. Emotional and cognitive aspects

1 For the investigation of intertemporal decisions, the discounted utility model is used as a standard
approach, which assumes time consistency. The normative standard for decision-making under uncer-
tainty is expected utility theory. The theory was designed as a model of an idealized decision-maker who
behaves in a time-consistent rational manner (cf. Neumann and Morgenstern (1947)).
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3 Time inconsistency and its consideration in asset allocation problems

should therefore be taken into account when analyzing the decision-making process (cf.
Kahneman and Tversky (1979), Fishburn (1988), Tversky and Kahneman (1989)).

A well-known anomaly in behavioral economics is time inconsistency in decision-
making of individuals. Its presence describes the fact that individuals want to revise a
decision they already made at a later point in time without any change in information. A
decision-maker’s preference for a future outcome A over another outcome B changes over
time. Intuitively, the optimal strategy (e.g., investment strategy) found by the decision-
maker at the initial time t0 is no longer optimal at a time t1 with t1 > t0 because the
decision-maker’s preferences change over time. Time inconsistency leads to biased decisions
that are in conflict with the long-term interests of the decision-maker (cf. Strotz (1955)).
A decision-maker’s preference between two payo�s that occur at di�erent times should not
change if time passes by but the absolute time interval between these payo�s remains the
same. However, experimental evidence suggests that preferences change simply because
the point in time in which the decision is made is a di�erent one (cf. Thaler (1981)).

A growing body of economic and financial literature emphasizes the significance of
time-inconsistent behavior. Time preferences are heterogeneous, di�ering from individual
to individual due to determinant factors such as age, mortality, wealth, and uncertainty.
In addition to heterogeneous time preferences among di�erent individuals, however, an
individual’s time preferences may also change: Changing time preferences induces time
inconsistency and matter for saving, consumption, and investment decisions, and have
an impact on asset prices and economic growth. Long-term investment and consumption
plans are incompatible with short-term investment and consumption preferences. The time
inconsistency problem is also referred to as the self-control problem because the decision-
maker must act in a self-controlled manner to resist current temptation and achieve better
performance in the long run (cf. Becker and Mulligan (1997), DellaVigna (2009)).

One way to prevent self-control problems and time-inconsistent behavior is the pos-
sibility of commitment. The level of information of individuals plays a decisive role: In-
dividuals are heterogeneous and therefore perceive and process information in di�erent
ways. Even when all potentially relevant information is available, individuals are not able
to process it e�ectively. Decisions are based not only on factual information, but also
on the mental and cognitive aspects used to process the information (cf. Barberis et al.
(1998), Brogaard et al. (2022)). There is a distinction between individuals based on their
demand for commitment: Individuals who are aware of their time-inconsistent behavior
and therefore demand commitment are called sophisticated. Individuals who are not aware
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3 Time inconsistency and its consideration in asset allocation problems

of their time-inconsistent behavior are called naive (cf. Gi�ord Jr (2002), Swem (2022)).

In theoretical works, time inconsistency is assumed deterministically via the assump-
tions of specific discount functions (cf. Laibson (1997)). The problem is also considered
in many stochastic decision problems, which intend to theoretically represent real-world
phenomena and provide decision support, especially in the context of dynamic asset al-
location. The dealing with time inconsistency is mainly accomplished by two approaches:
Time inconsistency can be solved via a game theoretic approach, or by the implementation
of a pre-commitment strategy (cf. Zhao et al. (2016), Becker et al. (2022)).

The following sections are based on empirical evidence of time inconsistency and
theoretical foundations that also take this behavioral anomaly into account. The aim of
Chapter 3 is to examine and evaluate the problem of time inconsistency and to highlight
its relevance for asset allocation. It is investigated whether there is a preference in dealing
with time inconsistency in theoretical work that considers asset allocation problems. The
remainder of Chapter 3 is organized as follows. Section 3.2 provides evidence of time-
inconsistent behavior in empirical settings. Furthermore, time inconsistency is examined
in more detail from a behavioral point of view. Research that assumes time inconsistency
deterministically in a model context is collected. In addition, commitment instruments
to mitigate time inconsistency and their demand are highlighted. We also address time
inconsistency in the context of collective decision-making. Uncertainty-based approaches
are gathered alongside preference-based approaches. The evaluation of dealing with time
inconsistency in the context of asset allocation is provided in Section 3.3. Section 3.4
concludes.

3.2 Behavioral research on time inconsistency

There is evidence in psychological and behavioral science that individual preferences are
often time-inconsistent. The problem of time inconsistency has been considered first in
research dealing with intertemporal choice, thus binary decisions that can be made at
di�erent points in time. An intertemporal choice reflects a conflict between a smaller
reward that is available immediately and a larger reward that can be obtained later. The
following example, based on Thaler (1981), will serve for clarification:
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3 Time inconsistency and its consideration in asset allocation problems

Choice 1: 1.1 100AC today

1.2 105AC tomorrow

Choice 2: 2.1 100AC in a year or

2.2 105AC in a year plus one day

The gray background highlights the predominantly chosen option. By asking indi-
viduals in choice 1 whether they would rather have 100AC today or 105AC tomorrow, the
majority chooses option 1.1 – 100AC today. The immediate prospect of 100AC suppresses
the distant prospect of a higher outcome. On the contrary, confronting individuals with
choice 2, most would choose 105AC in one year plus one day. Time inconsistency arises as
soon as individuals choose option 2.1 and change for option 1.1 in 364 days. Thus, pref-
erences of a decision-maker have only changed because the point in time or time horizon
is a di�erent one, even if the information situation does not change. The decision-maker’s
preference for a payo� at time t over a payo� at time t+1 is stronger as time t approaches.
A time-inconsistent decision-maker might reconsider her decision at a later point in time
and will prefer a di�erent choice when the remaining time horizon shortens.

If the decision-maker would act in a time-consistent manner, she would not change
her decision and choose the same amount of money (choice of 1.1 and 2.1). A time-
consistent preference order exists when a decision does not change just because time
passes, resp. the point in time when the decision is made changes. Thus, the decision-
maker holds on to her decision about a future action, regardless of how far in the future
it is, as long as she does not receive any new information. Of course, even if preferences
are consistent over time, a decision may change over time if the information base changes
and new information are available (e.g., information on wages, interest rates, regulations,
inflation).

Kirby and Herrnstein (1995) provide further empirical evidence on time-inconsistent
behavior by confronting students with intertemporal choices constructed similarly to the
example given above. They conclude that about 94% of participants reverse their prefer-
ence, from a larger, later reward to a smaller but earlier reward, when the time horizon
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3 Time inconsistency and its consideration in asset allocation problems

at which participants receive the rewards decreases the same for both rewards.2

Hardisty and Pfe�er (2017) examine the e�ects of uncertainty on individuals’ time
preferences in terms of monetary gains and losses. In general, individuals try to avoid
uncertainty in decision-making situations. Immediate gains and losses are preferred when
the future is uncertain. In contrast, future payo�s are preferred when there is present
uncertainty. This finding is inconsistent with standard models of intertemporal choice,
according to which people should always prefer gains now and losses later.

Several research papers examine time-inconsistent behavior in intertemporal deci-
sions under specific application areas. Read and Van Leeuwen (1998) find under considera-
tion of intertemporal consumption decisions that an individual’s current state of appetite
has a significant e�ect on choices that apply to the future. Participants in their study
behaved in a time-inconsistent manner as they choose to consume unhealthy food when
making a choice over an immediate consumption and announced their intention to eat
healthy food when making a choice for consumption at a later time. Gruber and Köszegi
(2001) provide evidence that time preferences are inconsistent with respect to smoking.
A further example for the fact that preference between two future outcomes may change
over time give Gneezy et al. (2014) in the context of negative emotions. Individuals who
make an immoral decision are more likely to donate to charity than individuals who do
not make an immoral decision. The increase in charitable behavior is the result of a tem-
porary increase in feelings of guilt triggered by past immoral actions. The feeling of guilt
decreases over time, resulting in decreasing donations. Schreiber and Weber (2016) show
in a survey that individuals are time-inconsistent about their annuity payments. Young
individuals prefer a monthly annuity while older people want to receive their annuity as
a lump sum payment. For an overview of empirical research on intertemporal decisions
regarding monetary payments, resp. financial flows and consumption see Cohen et al.
(2020).

Time-inconsistent behavior can generate a variety of consequences for a decision-
maker. Individuals with this anomaly can be present-biased. They tend to prefer a current
payo� in a trade-o� situation between two payo�s at di�erent points in time. Present-bias is

2 In contrast, Sayman and Öncüler (2009) find empirical evidence for reverse time inconsistency. They can
show that decision-makers prefer the smaller, earlier outcome when both options are in the future, but
choose the larger, later one when the smaller option becomes immediately available. Reverse temporal
inconsistency is more likely to be observed when the time to and between the two options is short.
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considered a specific dynamic inconsistency between an individual’s preferences for short-
term and long-term decisions. Immediate payo�s are overvalued, whereas later payo�s are
undervalued. In this context Meier and Sprenger (2010) find that present-biased individuals
are more likely to have credit card debt and have it at higher rates than time-consistent
individuals. The relationship persists when controlling for demographic characteristics,
credit constraints and di�erent interest rates. Moreover, present-biased decision-makers
make less optimal savings decisions (cf. Jones and Mahajan (2015)). Some research at-
tempts to explain time-inconsistent behavior via emotional and cognitive aspects. Time
inconsistency is seen as a cause of diminishing impatience and self-control problems.3 In
this context Gruber and Köszegi (2001) and Bradford et al. (2017) find that good intentions
(e.g., healthier lifestyles, better health care) are not kept by time-inconsistent individuals
when making consumption decisions. In addition, field experiments provide evidence that
time-inconsistent individuals procrastinate (cf. Ariely and Wertenbroch (2002), Bisin and
Hyndman (2020)). Procrastination occurs in the context of tasks that involve costs or
negative payo�s. In the financial context, investment decisions (e.g., investment in energy-
e�cient technologies) are postponed, especially when costs are immediate (cf. Bradford et
al. (2017)).

Present-bias can result in high credit card borrowing (cf. Meier and Sprenger (2010))
or less saving and overconsumption (cf. Ameriks et al. (2007), Caliendo and Findley (2013),
Jones and Mahajan (2015)). Gill et al. (2018) examine whether present-biased individuals
are more likely to make financial mistakes than their time-consistent counterpart. They
conclude that time-inconsistent individuals overdraw their bank accounts more often and
for longer periods of time, resulting in the payment of high interest rates. Present-biased
individuals are more likely to make decisions that trigger immediate benefits and delayed
costs. Kuchler and Pagel (2021) find empirical evidence that time-inconsistent individuals
fail to keep their self-established debt repayment plans. Thus, time inconsistency can lead
to welfare losses and biased non-optimal decisions that are in conflict with the long-run
interests of decision-makers.

3 Takahashi et al. (2012) define impatience as a strong preference for small immediate rewards over large
delayed rewards.
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Deterministic assumption of time inconsistency:

Time preferences are often expressed in terms of a discount rate, which is the rate at
which the value of the discount function declines. There is empirical research that identi-
fies time-inconsistent behavior by determining individual discount factors. Thaler (1981)
and Benhabib et al. (2010) try to estimate discount rates through experiments on money-
time pairs and find that they are high for close payo� dates and decrease as the time
horizon increases (the time until a payment is received is getting longer). Bradford et
al. (2017) implicitly determine individual discount factors from surveys of intertemporal
decisions. The monetary values between the later, larger payment and the earlier, smaller
payment are varied until the decision-maker is indi�erent between the two payments. The
e�ect of time inconsistency on specific consumption and investment decisions is studied
by regressions. The independent variable denotes the degree of time inconsistency and is
determined via the discount rates obtained in the experiments. The researchers conclude
that time inconsistency is more pronounced in consumption decisions than in investment
decisions. In total the findings suggest that a person’s discount rate from today to to-
morrow is higher than, for example, from in a year to a year and one day. People grow
increasingly impatient as the time horizon shortens, at some point regretting a decision
they have already made and want to revise it. Cognitive factors such as impatience but
also other factors such as distrust, temptation, inattention, confusion, and beliefs can be
an explanation why people change their time preferences (cf. Prelec (2004)). The higher
the degree of time inconsistency, the more severe the e�ects can be. Not only at the indi-
vidual but also at the firm level, savings may decline, making liquidation more likely (e.g.,
dividends are paid too early, equity issuance decreases (cf. Yang and Cao (2019)).

In model theory of intertemporal decisions, time preferences are represented by dis-
count functions. The prevailing model for comparing utility at di�erent points in time is
the discounted utility model of Samuelson (1937), which assumes that individuals maxi-
mize the present value of current and future utility of an outcome. Time preferences are
represented via an exponential discount function, which indicates time-consistent behavior
due to the fact that the discount rate is constant over time. The discounted utility model
follows the assumption of stationarity as a necessary axiom for a rational decision-maker
discounting her future utility. The axiom states that a preference for outcomes between
two time periods depends only on the absolute time interval between the two time pe-
riods, not on how far in the future the two time periods lie. Thus, preferences for two
outcomes should remain the same regardless of how far in the future the outcomes lie.
However, the model has little empirical support since there is evidence for anomalies like
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time-inconsistent behavior violating the assumption of stationarity in reality (cf. Kirby
and Herrnstein (1995)).

The problem of time inconsistency is therefore considered deterministically in fur-
ther theoretical research by assuming a non-exponential discount function. Two specific
discount functions have emerged: Hyperbolic and quasi-hyperbolic discount functions. A
brief overview of selected theoretical literature that assumes time inconsistency determin-
istically with the assumption of a hyperbolic or quasi-hyperbolic discount function is given
in Table 3.1.

Hyperbolic discounting is a functional form of discounting that generates present-
bias due to the assumption of a declining discount rate over time (declining rate of time
preference). The discount factor can be represented as

DHD(t) = 1
(1 + – · t)i/–

,

with i > 0, – Ø 0. The discount factor DHD(t) is a hyperbolic function of time. – is an
index of decreasing impatience and determines how much the function departs from con-
stant discounting. The limiting case (lim – æ 0) is the exponential discounting function.
An outcome in the near future is discounted at a higher discount rate than an outcome in
a distant future (cf. Laibson (1997)).

In contrast to hyperbolic-discounting, quasi-hyperbolic discounting accounts only
for a bias in t = 0 and assumes an otherwise constant discount rate when the present is
not considered (t ”= 0). Here, the discount factor can be represented as

DQHD(t) =

Y
]

[
1 t = 0
—”t t > 0

,

with — < 1 and ” œ]0, 1[. The case — = 1 corresponds to exponential discounting (”t is the
exponential discount factor). Thus, there is decresing impatience in t = 0 and constant
impatience thereafter. Only present outcomes are given a disproportionately higher weight
compared to all future outcomes (cf. Frederick et al. (2002), Attema et al. (2010) and
O’Donoghue and Rabin (2015)).
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Table 3.1: Selected papers incorporating time inconsistency via discount functions

Paper
Discount
function

Overview/Research topic

Loewenstein
and Prelec
(1992)

HD
propose a hyperbolic discount function model to account
for anomalies such as time-inconsistent decision behavior
and discuss implications for savings behavior.

Laibson (1997) QHD
analyzes consumption decisions of a time-inconsistent
individual and accounts for time-inconsistent behavior via
a quasi-hyperbolic discount function.

Azfar (1999) HD

considers a probability distribution over discount rates
and argues that discount rates should decrease
hyperbolically rather than exponentially with time if
individuals are uncertain about their discount rates.

Carrillo and
Mariotti (2000)

HD
show that hyperbolic discounting can lead to strategic
ignorance in which even free information is not acquired.

Frederick et al.
(2002)

HD
provide an overview of specific hyperbolic discount
functions proposed in the literature to model
time-inconsistent behavior.

Diamond and
Köszegi (2003)

QHD
use quasi-hyperbolic discounting in a model where a
consumer with CRRA utility function makes decisions
about retirement and saving.

Laibson et al.
(2007)

HD,
QHD

find that models that account for consumption and saving,
fit field data better when they include short-term discount
rates that exceed discount rates for later periods and thus
disapprove the restriction of a constant discount rate.

O’Donoghue
and Rabin
(2008)

HD

study procrastination in projects by representing people’s
time preferences via hyperbolic discount functions and
conclude that procrastination is more likely the greater
the cost of project completion.

Rohde (2010)
HD,
QHD

develops a hyperbolic factor from indi�erences in
intertemporal decisions to quantitatively determine the
degree of time inconsistency (HD if hyperbolic factor is
constant and positive, QHD if hyperbolic factor is is zero
for all future points in time except the present).
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Takeuchi (2011)
HD,
QHD

proposes, in contrast to HD or QHD, a discounting
function in the form of an inverse S-curve to consider also
reverse time inconsistency (future bias, overvaluation of
future payo�s).

Takahashi et al.
(2012)

HD

investigate the e�ect of non-linear time perception on
intertemporal choices and account for anomalies in
empirically observed intertemporal choice behavior such
as decreasing impatience and preference reversal via a
hyperbolic discount function.

Yılmaz (2013) QHD
considers a principal-agent model with moral hazard, in
which the agent’s time-inconsistent behavior is captured
via a quasi-hyperbolic discount function.

Tancheva
(2019)

HD

investigates the e�ect of time inconsistency, modeled by
hyperbolic discounting, in a general equilibrium model
and concludes that the risk premium in the economy
increases when the wealth share of time-inconsistent
agents increases.

Turan (2019) QHD
uses a quasi-hyperbolic discounting structure to represent
the consumption-saving decisions of an agent who has
time-inconsistent preferences with probability p.

Yang and Cao
(2019)

QHD
incorporate a manager’s time-inconsistent preferences to
study the implications for optimal external financing and
dividend payout strategies in a regime-switching economy.

Yoon (2020)
HD,
QHD

addresses the relationship between impatience and time
inconsistency and concludes that people with intermediate
levels of impatience act in a time-inconsistent manner.

HD= Hyperbolic discounting, QHD = Quasi-hyperbolic discounting

As shown in the Table 3.1, there are many di�erent application areas in which
specific decision problems are studied in which time-inconsistent behavior is modeled by
specific discount functions. However, there is also criticism concerning the use of such
discount functions. Read (2001) points out that inconsistent time preferences can also be
explained by subadditive discounting. This means that the discount rate for a time horizon
is higher as the horizon is divided into subintervals. Discount rates were calculated for a
two-year horizon divided into three eight-month intervals (an eight-month interval starting
at the same time, an eight-month interval starting eight months later, and an eight-month
interval starting sixteen months later). As a result, the discount rate for the two-year
horizon is lower than the average discount rate for the three subintervals. In addition,
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there is no evidence that the discount rates decreased over time since the discount rates for
the three eight-month intervals are about the same. This finding argues against hyperbolic
discounting.

For a more intensive illumination of the deterministic assumption of time inconsis-
tency, Fernández and Rambaud (2018) provide a suitable overview of specific discount
functions that have been used in the literature on intertemporal decisions. On top, they
summarize measures in model theory that quantify time inconsistency. Rohde (2019) com-
plements the model-theoretic measures by developing an index that captures the change in
discounting and can be used independently of models. Decreasing impatience or present-
bias corresponds to positive values of the index whereas reverse time inconsistency is
represented by negative values.

The importance of commitment for time-inconsistent decisions:

A frequently discussed approach to mitigate the negative consequences of a time-inconsistent
behavior is commitment – a decision instrument or device to constrain one’s future deci-
sions (cf. DellaVigna (2009)). To counter the problem of time inconsistency, a decision-
maker may be willing to engage self-control and has a demand for commitment. Commit-
ment can be attractive because it eliminates the incentive to deviate from a fixed plan.
The decision-maker has self-control when she resists the temptation of a choice reversal.
Already Strotz (1955) refers to the example of Odysseus, who gets himself tied to a mast
while passing the island of the Sirens. Literature in behavioral finance and economics
studies the form and the e�ectiveness of such self-control mechanisms.

However, individuals may also try to commit to the future by constraining their
future choices. In economic applications, commitment can be achieved by holding illiquid
assets or through regulatory action. Laibson (1997) analyzes consumption and saving
decisions of individuals that exhibit time inconsistency and can invest in an illiquid asset
(commitment instrument). He finds that liquid financial products lead to a decline in
savings rates because they displace the commitment possibilities of illiquid assets. In this
context, a retirement account in which withdrawals from the account are associated with
significant costs before retirement may represent a commitment against excessive spending
before retirement. If an individual invests a significant portion of her assets in illiquid form,
she will find it costly to increase her consumption in future periods by selling these illiquid
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assets such as real estate (cf. Green (2003)).4 Carrillo and Mariotti (2000) argue that a
time-inconsistent decision-maker may prefer to ignore available information, as action of
self-control, because she fears a change in her preferences and therefore wants to revise
her decision. DellaVigna and Malmendier (2004) note that individuals may also commit
to future actions by imposing a cost on the commitment (e.g., gym membership fee).

Using commitment strategies provides benefits: Strotz (1955) emphasizes the need
for commitment instruments to reduce the e�ects of time inconsistency and refers to these
as pre-commitment strategies. Ariely and Wertenbroch (2002) report that students who
rely on self-imposed deadlines achieve better grades than those who do not. Procrastination
is reduced and work/study performance is increased. Self-imposed deadlines and repeti-
tive tasks that become habits reduce procrastination (cf. Bisin and Hyndman (2020)). In
addition, commitment e�orts can increase savings: Savings programs counteract negative
consequences of time inconsistency by having people commit in advance to use a fraction
of their future salary increases to save for retirement. Thaler and Benartzi (2004) find a
higher savings rate among those who have signed up for a savings program compared to
those who have not. Ashraf et al. (2006) propose a commitment savings product and con-
clude that savings rates increased significantly for individuals who purchased the product.
Depositing the income tax refund into an illiquid account is also a commitment instru-
ment. Immediate incentives to save (e.g., setting up an illiquid account today rather than
being willing to do so in the future) can increase the probability of saving by about 2-3
times (cf. Jones and Mahajan (2015)).

Experimental studies show the popularity of commitment instrument to help indi-
viduals fulfill plans that would otherwise be di�cult to realize due to an existing lack of
self-control. There is evidence that people demand commitments and voluntarily impose
obligations on themselves that are costly to violate. Ariely and Wertenbroch (2002) deal,
in the context of procrastination, with a penalty that has to be paid when a person is
late with a task. A decision-maker can prefer to commit, provided she is aware of her self-
control problems (cf. Strotz (1955), O’Donoghue and Rabin (1999), Gul and Pesendorfer

4 Also in the financial context Lien and Yu (2014) study the interplay between a firm’s investment and
cash flow hedging decisions when the decision-maker has time-inconsistent preferences. In addition to
the risk-return relationship of the investment, liquidity risk, commitment e�ects of financial restrictions,
and intertemporal preferences play a role in determining optimal investment and hedging strategies.
Financial constraints are disciplining because, for example, firms are less likely to invest in projects with
negative net value than firms that are not financially constrained.
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(2001)). The demand for commitment instruments depends on the one hand, on individu-
als’ assessment of the extent of their time inconsistency and, on the other hand, on the cost
of the instrument. Chemarin and Orset (2011) identify the ignorance of information as a
form of commitment. It is intuitive that a decision-maker will acquire information unless
the cost of acquiring information exceeds the direct benefit she obtains from that informa-
tion. Nevertheless, a time-inconsistent decision-maker may remain strategically ignorant,
and if she acquires information, she will acquire less information than a time-consistent
decision-maker. Carrillo and Mariotti (2000) argues that decision-makers attempt to re-
duce the divergence between their long- and short-term preferences through cognitive
forms of precommitment, such as strategic ignorance. Augenblick et al. (2015) find that
present-biased students are more likely to demand commitment than others. Moreover,
contractual clauses help to pre-commit.

Commitment instruments di�er in terms of their degree of severity and e�ectiveness.
Exley and Naecker (2017) find that commitments made publicly have a better impact and
are less likely to be broken than those remaining private. The literature distincts between
soft and hard commitments. Bryan et al. (2010) refer to commitment devices that impose a
real economic penalty for revising a decision or rewards for success as hard commitments.
Soft commitment, on the other hand, is an instrument that has mainly psychological
consequences. A clear distinction between the two commitment types is not trivial as
some hard commitments also have psychological costs and most soft commitments also
have some economic costs. An example of a hard commitment is a savings account where
interest payments are cancelled if the monthly deposit remains unpaid. For the time-
inconsistent individual, however, there may be psychological costs to this as well, such
as loss of self-esteem if she misses a deposit. A soft commitment would be membership
fee in a sports club. The individual will incur costs that are primarily psychological, such
as disappointment or sense of failure when not attending sports but perhaps also small
economic costs, such as opportunity costs.

There is evidence that many people who have problems with self-control are aware
of it and demand commitment instruments. However, people tend to be uncertain about
the future and therefore demand instruments that also allow flexibility. Research that
sheds light on the trade-o� between flexibility and commitment are Hendel and Lizzeri
(2003) and Amador et al. (2006). The latter conclude that those who do not commit prefer
flexibility to be able to adjust plans. Those who do commit may value the certainty of
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having fixed plans.5

Di�erent types of time-inconsistent individuals and their demand for commitment:

O’Donoghue and Rabin (1999) make a distinction between two types of time-inconsistent
decision-makers based on the level of financial literacy: They divide decision-makers into
naive (unaware of how their preferences change over time) and sophisticated (aware of how
their preferences change over time) individuals and conclude that naive decision-makers
delay activities with immediate costs and perform activities with immediate rewards too
soon. Sophistication, however, can mitigate present-bias. Due to the fact that such individ-
uals are aware of their time inconsistency they demand commitment instruments. Liu et
al. (2016) find in this context that time-inconsistent preferences lead to underinvestment
and overconsumption. These behaviors are more pronounced for naive individuals than
for sophisticated. In particular, the sophisticated individual invests more and consumes
less than the naive, but invests less and consumes more than a time-consistent individual.
Time-consistent and time-inconsistent but naive decision-makers will not choose commit-
ment instruments. A time-consistent decision-maker cannot benefit from pre-commitments
that constrain her decision choices while a naive time-inconsistent decision-maker, believ-
ing that she will behave well in the future, does not feel that she needs pre-commitment.

Naive decision-makers do not take into account at any time t that their preferences
will change in the future and make optimal strategies based only on their preferences at
time t. They then constantly revise their decisions throughout the planning horizon. To
obtain the strategy for the naive decision-makers, one must solve a standard optimization
problem at each time point over the entire planning horizon. Sophisticated individuals
make their decisions considering that their preferences will change in the future and try to
obtain a time-consistent optimal strategy (cf. Wei et al. (2020)).6 Mahajan et al. (2020)

5 Lien and Yu (2014) finds that the optimal hedging strategy forms a trade-o� between flexibility and
commitment. Galperti (2015) investigate the optimal provision of commitment instruments for people
who value both commitment and flexibility and whose preferences di�er in the degree of time inconsis-
tency. They argue that the combination of unobservable time inconsistency among agents and preference
for flexibility can lead to an adverse selection problem. In the absence of informational asymmetry com-
mitment can solve decision-maker’s time inconsistency and avoid trade-o�s between commitment and
flexibility.

6 A closer illumination to the solution for the decision-maker in asset allocation problems is considered
in Section 3.3.
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estimate that time-inconsistent agents make up nearly 80% of their sample, with about 50%
of the sample exhibiting a naive form of time inconsistency. Moreover, the present-bias is
more pronounced (higher discount factor) for naive individuals than for the sophisticated.
Bénabou and Tirole (2004) develop a model of commitment where the degree of self-control
increases with the decision-maker’s self-confidence in her own willpower.

Wong (2008) examines results of a student midterm exam and recognizes that time-
inconsistent sophisticated students performed worse compared to time-consistent ones.
Naive students performed the worst. Casari (2009) finds that 60% of their sample are
sophisticated individuals and demanded commitment instruments. To avoid a choice re-
versal, those instruments should have a high commitment character. One has a willingness
to pay for commitment and the lower the cost of commitment, the more individuals choose
to commit. A minority in the sample was classified as naive and did not ask for any com-
mitment. Grenadier and Wang (2007) consider an investment problem in the real options
framework, where time-inconsistent preferences of sophisticated and naive individuals are
deterministically given. For a consideration of a principal-agent problem where the agent
is a sophisticated time-inconsistent decision-maker, see Yılmaz (2013). Kuchler and Pagel
(2021) study the behavior of time-inconsistent individuals in the credit card market. In-
tuitively, it is attractive for individuals with a present-bias to postpone debt repayment
from the current to the next period to avoid reducing consumption in the current period.
However, when they face the same decision in the next period, it again seems attractive
to postpone repayment to another period. Thus time-inconsistent individuals borrow ex-
cessively and often fail to repay later, even though they actually intended to reduce their
debt. The researchers find that borrowing and debt repayment depend significantly on the
extent to which individuals are aware (sophisticated or naive) of the di�erence in their
short- and long-term time preferences - even if they exhibit the same degree of time incon-
sistency. In contrast to naive individuals, sophisticated individuals behave more patiently
and stick better to their self-established plans to pay o� debt. Laibson (1997) already ar-
gues that sophisticated individuals are willing to pay money (commitment instrument) to
get rid of their credit cards immediately and not have access to them in the future. These
findings highlight the importance of distinguishing between the behavior of sophisticated
and naive time-inconsistent decision-makers.

Empirical evidence has shown that decision-makers have problems with self-control,
recognize them and try to manage them via commitment instruments. Sophisticated
decision-makers may anticipate their changing preferences but tend to underestimate the
magnitude of these changes – this anomaly is called projection bias. They may therefore
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make suboptimal commitment decisions.7 Ariely and Wertenbroch (2002) show that in
the context of procrastination and self-imposed deadlines, many decision-makers do not
set their deadlines optimally. Della Vigna and Malmendier (2006) find in the context that
consumers choose suboptimal gym commitment contracts that do not match their actual
frequency of attendance. 80% of gym members in their sample who pay a monthly fee
would have been better o� if they had chosen to pay per visit. Commitment instruments
also reduce flexibility and may be too constraining in some cases.

Time inconsistency in collective decisions:

Collective decisions are subject to the problem of time inconsistency since di�erent individ-
uals with heterogeneous preferences are forced to make a joint decision. Time preferences
cannot only change over time for the same person but also vary across individuals. Bad-
deley (2019) distinguishes therefore between inter- and intra-personal time inconsistency.
This intra-personal anomaly occurs naturally in collective investment decisions and can
lead to significant welfare losses.

Members of a household make joint consumption and saving decisions, and decision-
makers in the corporation for example make joint project, financing, and investment deci-
sions. Adams et al. (2014) argue that any aggregation of heterogeneous time preferences
leads to time inconsistency. Household members have di�erent discount factors, which are
influenced by factors such as age and the level of financial literacy. Even if all individuals
in the group are time-consistent and have an individual exponential discount function, a
collective decision is time-inconsistent (cf. Gollier and Zeckhauser (2005)). In this context,
Jackson and Yariv (2014) and Jackson and Yariv (2015) show that for any heterogeneity
in time preferences, any aggregation of utility functions must be time-inconsistent, even if
individuals within the group are perfectly time-consistent. Maximizing a weighted sum of
utility functions leads to present-bias and hyperbolic discounting. Hertzberg (2016) uses a
consumption and saving model for multi-member households to show that despite the fact
that individuals have an exponential discount function, households are time-inconsistent
and members spend too much on private consumption goods. The household remains time-
inconsistent even if members can save separately but there exists the possibility that one
member will transfer wealth to another member in the future.

7 Prelec (2004) and Gottlieb and Zhang (2021) refer to decision-makers who underestimate their time
inconsistency and break their commitments as partially naive.
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In the investment and asset allocation context, Garlappi et al. (2017) examine ef-
fects of group decisions where members have heterogeneous beliefs and conclude that time
inconsistencies can lead to underinvestment. Ebert et al. (2020) introduce weighted dis-
counting functions to study the decision behavior of groups that are uncertain about which
discount rate to use. They examine the impact of group diversity on investment in a real
options framework and find that greater group diversity leads to delayed investments. This
also applies to investments with interpersonal uncertainty about the discount rate to be
used: greater parameter uncertainty leads to delayed investments and higher risk taking.
Jackson and Yariv (2015) confirm this and find that in addition to heterogeneity in time
preferences in collective decisions, time inconsistency is also caused by heterogeneous risk
preferences or beliefs. The aggregation of utility functions of household members that have
time-consistent discount functions is similar to the aggregation of subjective preferences
over lotteries.8

Glätzle-Rützler et al. (2021) find in a laboratory experiment that small groups con-
sisting of three persons behave more patiently than time-inconsistent individuals. Depend-
ing on group composition, time inconsistency can be reduced. In the insurance context,
Chen et al. (2021a) and Chen et al. (2021b) find that in a collectively managed pension
fund, the welfare of individual investors does not decline, and individual optimal solutions
are attainable when a financially fair sharing rule is applied. Delegating an investment
decision to a fund manager or other experts who handle an individual’s portfolio man-
agement is as commitment tool that can counter time inconsistency and avoid investment
mistakes (cf. Malliaris and Malliaris (2021)).

Uncertainty-based view of time inconsistency:

While choice reversal over time may originate from inconsistent time preferences, it may
also be the result of uncertainty about future outcomes. According to an uncertainty-
based explanation, a decision-maker may revise her choice over time due to the fact that
future outcomes or events are associated with default risk. Some researchers have criti-
cized preference-based explanations and put forward uncertainty-based explanations that

8 Chapter 4 examines this fact in a dynamic asset allocation context. Parameter uncertainty is assumed
here via the assumption of an a priori lottery, where the investor is uncertain about the distribution
parameters of the currently prevailing regime. The utility aggregation is non-linear and leads to time
inconsistency.
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interpret time inconsistency as the rational choice of exponential discounters that decide
in the presence of uncertainty.9

Prelec and Loewenstein (1991) consider a number of parallels between risky and in-
tertemporal decisions. Andersen et al. (2008) argue that time and uncertainty are closely
related. Anything that is delayed and in the future is almost by definition uncertain.
They conduct experiments to jointly estimate risk and time preferences. Because indi-
viduals are generally risk averse, they find that the joint elicitation results in estimates
of discount rates that are significantly lower and more reasonable than those found in
previous research. Caplin and Leahy (2001) extend expected utility theory by consid-
ering psychological aspects, linking lotteries to mental states. They argue that as time
passes, anticipatory feelings about the future may change, resulting in time inconsistency.
Halevy (2004) distinguishes in a consumption decision between a certain present and a
risky future. The planned consumption path can be viewed as a lottery. Present-bias is
attributed to the certainty of the present as opposed to the risk associated with any future
path. Halevy (2008) shows that the presence of certainty plays a role in the generation of
time-inconsistent preferences. Hyperbolic discounting can be reformulated in terms of non-
expected utility probability weighting. If individuals prefer certainty, then present certain
consumption is preferred to future uncertain consumption. They conclude that discounted
expected utility is a good decision rule only in a pure risk situation. If a decision-maker
uses a non-expected utility function (non-linear in the continuation probability), then she
exhibits decreasing impatience and present-bias.10

Machina (1989) identifies as a feature of expected utility that it is linear in its prob-
abilities. This means that each outcome probability pair u(xi)pi is independent of the
other outcome probability pair. Any non-linear functional forms of individual preference
functions over lotteries no longer satisfy this criterion and dynamic inconsistencies oc-
cur.11 Epper et al. (2009) investigate the relationship between probability weighting and

9 Note that the expected utility model is used to evaluate risky decisions while the discounted utility
model is employed in the context of intertemporal decisions.

10 Allais (1953) and Kahneman and Tversky (1979) argue that when two options are far from certain,
individuals e�ectively act as maximizers of discounted expected utility, whereas when one option is
certain and another is uncertain, a disproportionate preference for certainty prevails. Due to the fact
that certainty is a feature of the present, a decision-maker will exhibit present-bias. Andreoni and
Sprenger (2012) also find that certainty is disproportionately preferred.

11 We refer to the research presented in Chapter 4 and Chapter 5, in which the utility aggregation is highly
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time discounting. They show that uncertainty generates hyperbolic discounting behavior
even when time preferences are exponential. Individuals tend to have non-linear proba-
bility weighting when making decisions under uncertainty. Larger deviations from linear
probability weighting lead to larger decreases in individual impatience. The valuation of
monetary outcomes in the expected utility theory should be extended by emotional and
cognitive aspects triggered by resolution of uncertainty. Walther (2010) introduces a non-
linear probability weighting function in this context. When probabilities are weighted in a
non-linear way, a behavior occurs that has already been described by hyperbolic discount-
ing. Ebert and Strack (2015) examine the predictions of cumulative prospect theory in a
dynamic context for a naive decision-maker who is unaware of her time inconsistency. The
time inconsistency induced by probability weighting causes investors to postpone their
investment decisions. Pennesi (2017) also studies the interaction between uncertainty and
time preferences in consumption decisions. He introduces a variant of the discounted sub-
jective expected utility model in which time preferences depend on the state. Thus, the
individual is uncertain about the discount factor to use. The present values of the states are
aggregated by the subjective probability p. The model is able to account for present-bias
and decreasing impatience even when the future is exponentially discounted.

Casari (2009) examines time preferences under commitment when the future is risky
and the present is known. He conducted an experimental study and argue that prefer-
ences for commitment or flexibility reveal whether time inconsistency is a preference-
based or uncertainty-based phenomenon. He concludes that time-inconsistent behavior is
preference-based for the majority in their sample due to the fact that there is a prefer-
ence for commitment to limit the amount of choices available in the future. In a scenario
without uncertainty, there would be no reason to strictly prefer flexibility. However, since
some individuals opted for flexibility and were willing to accept costs in order to have
more choice in the future, an uncertainty-based approach also seems to be relevant. Both
explanatory approaches are not mutually exclusive. Preference-based approaches gener-
ally allow for the possibility that a decision-maker prefers to commit when she is aware
of her time inconsistency. In uncertainty-based approaches, decision-makers usually have
exponential time preferences and the choice reversal explanation is based on uncertainty.
In all these models, commitment is never optimal.

In this section, the topic of time inconsistency was examined based on behavioral

non-linear, causing time inconsistency.
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research that identifies time-inconsistent behavior, attempts to model it and proposes
commitment instruments to mitigate time inconsistency. The evaluation of dealing with
time inconsistency in the context of asset allocation is provided in the following section.

3.3 Accounting for time inconsistency in optimal asset allo-

cation

There are three approaches to deal with time inconsistency in optimal asset allocation
problems in the literature. First, there is the option to pre-commit (cf. Strotz (1955)). A
pre-commitment strategy is a deterministic approach and is optimal only for time t = 0.
It optimizes the objective function at the initial time when the decision is being made. A
pre-commitment strategy does not resolve the time inconsistency but it is a realistic way to
deal with this problem. Only the optimal strategy identified at the initial time is derived,
regardless of the fact that it may not be optimal for the objective functionals in the future.
Thus, this strategy simply does not take the change of future preferences into account. A
pre-commitment strategy should be implemented only if it is e�ectively binding, i.e., that
the investor can make a convincing commitment to stick with her decisions and not revise
them at a later time. This can be achieved e.g., by investing in a product based on the
pre-commitment strategy. A large number of the literature follows this approach.

An second approach that tries to transform the originally time-inconsistent problem
into a time-consistent one is the strategy of consistent planning. Strotz (1955) initially
proposed the strategy and argues that it should be implemented when pre-commitment is
not possible. A decision-maker who is aware of her time inconsistency rejects the strategy
she will not follow. At each decision point t, her problem is then to find the best strategy
among all the strategies that she will actually follow. Thus, the decision-maker maximizes
dynamic utility under the condition that her future behavior is optimal. A recursive ap-
proach is used to solve the problem. The feasible set of options is generated recursively by
backward elimination of strictly dominated strategies (cf. Caplin and Leahy (2006)).

However, consistent planning is usually interpreted as a solution concept for a game
played by "multiple egos" of the same individual, in which the investor in each period
chooses a strategy that maximizes her objective in that period, taking into account the
adjustments she will make in the future. Each decision point is assigned to a di�erent self
(cf. Siniscalchi (2011)). The intrapersonal game is solved by finding a subgame perfect
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Nash equilibrium point, for example by backward induction.12 In this way, the concept of
optimality is replaced by that of Nash equilibrium. However, the approach assumes that
the decision-maker has complete information about future outcomes and correct beliefs
about her future actions. The goal is to reduce the di�erence between planned actions and
expected temptations in the future. Thus, time inconsistency is solved strategically using
a game theoretic approach (cf. Bjork and Murgoci (2010), Zhao et al. (2016)).

A third approach is the dynamically optimal strategy which is introduced in the
mean-variance (MV) portfolio selection problem. The intuition behind this approach is
the fact that individuals often prefer to use the optimal strategy based on the current
state without regard to the plans and goals set at the very beginning. At any time t, a
time-consistent investor can be viewed as the reincarnation of a pre-commitment investor
who implements the optimal pre-commitment strategy for that time t. She chooses a
di�erent optimal strategy that maximizes the objective functional at any time t. The
investor forgets about her past and ignores her future. The strategy is intuitive because it
takes into account the behavior of a naive decision-maker who constantly reevaluates her
position and solves infinitely many problems in an optimal way (cf. Karnam et al. (2017),
Vigna (2020)).

Optimal stochastic control problems are generally considered to be time-inconsistent.
The optimal strategy chosen at one point in time is then no longer optimal at another
point in time. The dynamic programming principle cannot be applied to solve the problem,
and Bellman’s principle does not hold (cf. Bjork and Murgoci (2010)).

For a further representation of time inconsistency in general stochastic control prob-
lems, see Björk and Murgoci (2014), for the discrete-time framework and Björk et al. (2017)
for the continuous-time framework. A specific problem that leads to time-inconsistent be-
havior is the investment-consumption problem with non-exponential discounting (cf. Strotz
(1955)). Another time-inconsistent problem is the dynamic MV selection problem, where
the time inconsistency is due to the fact that the objective criterion contains a non-linear
function of the expectation of the final wealth. The problem cannot be solved directly by
dynamic programming due to the non-separable structure of the variance minimization

12 In a Nash equilibrium, players play each other’s best strategies, maximizing their payo� while taking into
account each other’s decision. Each player chooses exactly one strategy from which it makes no sense
for any player to to deviate from. No player can improve her position by deviating from the strategy,
so there are no incentives to change behavior.
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problem. The conditional variance is a non-linear function of the expected value of the
terminal wealth (cf. Bayraktar et al. (2019)). Time inconsistency also arises in various
other asset allocation problems whenever an aggregation over non-linear functions (e.g.,
expected utilities, certainty equivalents) takes place (cf. Desmettre and Ste�ensen (2021),
Becker et al. (2022)). Table 3.2 provides an overview of research that implements the three
ways of dealing with time inconsistency in optimal asset allocation problems.

Table 3.2: Selected papers dealing with time inconsistency in optimal asset allocation

Paper Resolution Overview/Research topic

Basak and
Chabakauri
(2010)

PC, GT

solve the dynamic MV problem in an imperfect market
and derive a time-consistent solution via a recursive
approach. For short horizons, the pre-commitment
solution approximates the time-consistent solution. The
strategies coincide when the market price of risk is zero
since no assets are invested in risky stocks. The e�ect of
time inconsistency increases for longer time horizons. For
the case of a constant market price for risk, the expected
terminal value of the pre-commitment strategy is higher
for su�ciently long investment horizons than in the case
of the time-consistent strategy.

Wang and
Forsyth
(2011)

PC, GT

compare the optimal pre-commitment with the optimal
dynamically consistent strategy under constraints (e.g., no
bankruptcy, no short selling) in the dynamic MV
framework. Although the investment strategies are
di�erent, the e�cient frontiers of both strategies are quite
similar. The pre-commitment strategy is more e�cient
because it is a globally optimal strategy.

Cui et al.
(2012)

PC

extend a dynamic MV problem in which a
pre-commitment strategy is performed by relaxing
self-financing constraints. Money withdrawals from the
market are allowed, whereby in addition to the final
wealth achieved by the pre-commitment solution, the
investor can obtain a free cash flow stream during the
investment process.
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Czichowsky
(2013)

GT

extends the problem in Basak and Chabakauri (2010) by
considering a MV problem both in discrete time and in
continuous time and solves the problam with the
consistent planning approach.

Lioui (2013) PC, GT

also compares the dynamic time-consistent strategy with
the pre-commitment strategy in a multi-asset MV
framework. The pre-commitment strategy dominates the
time-consistent strategy with respect to the certainty
equivalent. However, these welfare gains can result from
huge and unrealistic positions in the risky assets.

Kronborg
and
Ste�ensen
(2015)

GT

investigate a time-inconsistent investment and
consumption problem for a MV investor where a capital
injection in form of a deterministic labor income is
considered. For a more realistic model, risk aversion is
time and state dependent. The optimal time-consistent
solution is derived.

Li et al.
(2015)

PC, GT

consider the time-inconsistent reinsurance investment
problem under the MV criterion. The pre-commitment
strategy is compared with the dynamic time-consistent
strategy: The time-consistent reinsurance strategy is
independent of current wealth while the pre-commitment
reinsurance strategy is a function of the current wealth.
The time-consistent investment strategy as well as the
pre-commitment investment strategy depend both on
current wealth.

Cong and
Oosterlee
(2016)

PC, GT

consider a MV optimal asset allocation problem and
establish a link between a time-consistent and a
pre-commitment investment strategy. The investment
target of a time-consistent investor varies over time while
a pre-commitment investor has a fixed target. A hybrid
strategy is defined by introducing a fixed target into the
time-consistent strategy and is solved by a numerical
algorithm. The hybrid strategy produces a better MV
e�cient frontier than the time-consistent strategy.
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Zhao et al.
(2016)

GT

consider an optimal investment and reinsurance problem
with a defaultable bond for an insurer under the MV
criterion in a jump-di�usion risk model. The optimal
time-consistent strategy to maximize the objective
function involving the expected value and variance of
terminal wealth is obtained via a game-theoretic
framework. Closed form solutions are set up via extended
Hamilton-Jacobi-Bellman system of equations.

Shi et al.
(2017)

PC

formulate a continuous-time MV problem in a
jump-di�usion market and derive the optimal
pre-commitment strategy. When the investor’s wealth
level exceeds a certain level, the pre-committed strategy
leads to irrational investment behavior. Therefore, a
semi-self-financing strategy in which the investor can
withdraw part of her wealth from the market is
established. The new strategy leads to a better investment
performance as it achieves the same mean-variance pair
and obtains a non-negative free cash flow stream.

Pun (2018) GT

considers an ambiguity-averse investor with
time-inconsistent preferences in a dynamic MV portfolio
problem. The investor is concerned about model
uncertainty in the sense that she does not fully trust the
reference model of the controlled Markov state process.
The problem is solved using a game theoretic framework
to characterize the robust dynamic optimal control of the
problem.

Van Staden
et al. (2018)

PC, GT

study the MV problem under di�erent types of investment
constraints (e.g., no trading under bankruptcy, leverage
constraints, and di�erent interest rates) where no
closed-form solution is known. The fraction invested in the
risky asset in the pre-commitment strategy is more
a�ected by the maximum leverage constraint than the
fraction in the time-consistent strategy.

Bayraktar et
al. (2019)

GT
formulate an infinite horizon MV stopping problem as a
subgame perfect Nash equilibrium and determine
time-consistent strategies.
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Bensoussan
et al. (2019)

PC, GT

consider a MV problem with the constraining option that
no short selling is allowed. With the addition of the
constraint, the payo� can improve within the
game-theoretic approach, whereas this is not the case with
the pre-commitment strategy.

Christensen
and
Lindensjö
(2020)

GT

develop a game-theoretic framework for time-inconsistent
stopping problems where time inconsistency arises due to
the consideration of a non-linear function of an expected
reward. A subgame perfect Nash equilibrium is found for
a MV problem.

Menoncin
and Vigna
(2020)

PC, DS

deal with the selection of a MV portfolio for a defined
contribution pension fund. Numerical results show that
the median of the proportion of risky assets is lower for
the pre-commitment strategy than for the dynamic
optimal strategy and the variance of wealth is lower in
case of implementing a pre-commitment strategy. The
dynamically optimal strategy may react better to extreme
scenarios of market returns due to the continuous
adjustment of the final objective.

Strub and Li
(2020)

DS

investigate portfolio optimization with reference point
updating. There is only one framework that predicts
realistic investment behavior: The decision-maker cannot
anticipate the reference point update and therefore faces a
time-inconsistent problem. A dynamically optimal
strategy is solved where the reference point is updated in
a non-recursive way.

Vigna (2020) PC, GT, DS

compares the three di�erent approaches in dealing with
time inconsistency for a MV portfolio problem. The
pre-commitment strategy beats the other two strategies,
while the consistent planning strategy dominates the
dynamically optimal strategy up to a time tú œ [t0, T ] and
is dominated by the dynamically optimal strategy from tú

onward.

Alia et al.
(2021)

GT

study the Merton portfolio management problem in the
context of non-exponential discounting and use a
game-theoretic approach to deal with time inconsistency.
An explicit representation of equilibrium policies is
provided for the special cases of power, logarithmic and
exponential utility functions.
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Balter and
Schweizer
(2021)

PC, GT

consider the collective investment decision of a planner
whose agents have heterogeneous risk preferences. The
planner applies a concave utility function to the
distribution of individual certainty equivalents to calculate
the welfare that results from di�erent decisions. The
pre-commitment strategy beats the dynamically consistent
strategy from the t0 perspective. However, there will
always be a point of regret where the investor wishes she
had not made a pre-commitment.

Bosserho�
and Stadje
(2021)

GT

consider a time-consistent MV portfolio selection problem
of an insurer and include basis risk (mortality). The
optimal solution is identified using a Nash subgame
perfect equilibrium.

Dai et al.
(2021)

GT

consider a dynamic portfolio choice model with a MV
criterion for the log returns of the portfolio. Using
backward stochastic di�erential equations, which can be
solved numerically, the optimal time-consistent strategy
can be found.

Desmettre
and
Ste�ensen
(2021)

GT

solve the problem of an investor who maximizes utility
but is uncertain about her preferences. Time inconsistency
arises from the aggregation of certainty equivalents. A
time-consistent strategy is formed by equilibrium theory
approach.

PC= Pre-commitment, GT = Game theoretic, DS= Dynamically strategy

The literature review reveals that many research papers compare the di�erent ap-
proaches of dealing with time inconsistency in asset allocation problems. The approach to
deal with time inconsistency should be chosen in an individual way and dependent on the
type of decision-maker and the nature of the considered optimization problem (cf. Vigna
(2020)).

Time consistency of strategies is a basic requirement for rational decision-making
in decision theory. Therefore, it seems attractive to find time-consistent strategies. The
dynamically optimal strategy may react better to extreme scenarios of market returns
due to the continuous adjustment of the final objective. The game theoretic approach
is di�cult to implement in the context of continuous time (since it is a game with an
infinite number of players) (cf. Karnam et al. (2017)). Furthermore, the decision-maker
must have full information about future outcomes and correct beliefs about her future
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actions. However, in reality there are many informational gaps (Zhao et al. (2016)).

The time-inconsistent pre-commitment strategy dominates the other strategies be-
cause it optimizes the objective function at the initial time (t = 0), that is, at the time
the decision is made. However, the decision-maker must be able to pre-commit. Never-
theless, the approach leads to the strategy remaining time-inconsistent (cf. Wang and
Forsyth (2011)). Depending on parameter constellations and model assumptions, the pre-
commitment strategy may lead to unrealistic positions in the risky asset (cf. Lioui (2013)).
The decision on which approach to use in asset allocation problems is therefore not trivial
and should depend on the individual setup and information situation (cf. Bensoussan et
al. (2019)).

3.4 Conclusion

The paper provides a comprehensive literature review on time inconsistency, in particular
how to deal with this anomaly in asset allocation problems. Time inconsistency describes
the fact that individuals want to revise a decision they already made at a later point in
time without any change in information. Behavioral research concludes that time incon-
sistency may lead to suboptimal decisions due to the deviation from plans (e.g., under-
saving, overconsumption, procrastination). Long-term investment and consumption plans
are incompatible with short-term investment and consumption preferences. Commitment
strategies can counteract self-control problems such as time inconsistency. The demand for
commitment instruments depends on the level of sophistication: Naive decision-makers do
not know that their preferences change over time and therefore do not demand commit-
ment instruments. Sophisticated individuals, on the other hand, are aware of their time-
inconsistent behavior over time and demand commitment instruments. Mitigating negative
e�ects of time inconsistency can be done through appropriate provision of commitment
instruments and reducing uncertainty via more transparent design of policy reforms and
should be further explored in research (cf. Baddeley (2019)).

In theoretical works, time inconsistency is assumed deterministically by the assump-
tions of hyperbolic or quasi-hyperbolic discount functions. In stochastic control problems,
the problem of time inconsistency arises naturally via the aggregation of non-linear func-
tions. The evaluation of dealing with time inconsistency in asset allocation research is
presented. In this case, time inconsistency is mostly solved by a game theoretic approach
or a pre-commitment strategy is implemented. Time consistency is considered as a ba-
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sic requirement for rational decision-making. Therefore, it seems attractive to find time-
consistent strategies (e.g., using the game-theoretic approach). However, time-consistent
strategies are more di�cult to implement and specific model assumptions have to be made
for the implementation.

The time-inconsistent pre-commitment strategy is more e�cient than other ap-
proaches because it optimizes the objective function at the initial time when the decision
is being made. A pre-commitment strategy does not resolve the time inconsistency, but it
is a realistic way to deal with time-inconsistent behavior and can mitigate the deviation
of decisions that leads to suboptimal outcomes (see behavioral literature on commitment
instruments). Thus, in an optimization problem that leads to time inconsistency, the an-
swer in dealing with it is not trivial and depends on model assumptions and subjective
factors such as the attitude towards time consistency and preference for commitment.
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Chapter 4

On the impact of time

inconsistency in optimal asset

allocation problems

4.1 Introduction

In this chapter we analyze the impact of time inconsistency on the optimal asset allocation
problem of a risk and ambiguity averse investor.1 It is well understood that the prob-
lem of time inconsistency naturally arises by aggregating utilities or certainty equivalents
(cf. Jackson and Yariv (2015), and Desmettre and Ste�ensen (2021)). Such an aggrega-
tion results when considering uncertainty about preferences or the welfare of a collective
of heterogeneous investors, where heterogeneity can prevail with respect to beliefs, time
preferences, and risk preference.

Classical financial market theory assumes that decision-makers act as time consistent
rational utility maximizers. Behavioral economics deals with non-rational human behavior
in economic situations and examines constellations in which decision-makers act in con-
tradiction to the model of the homo oeconomicus. It thus also accounts for anomalies like
time-inconsistent behavior.

1 Time inconsistency is commonly used to refer to the change of a decision-maker’s preference for a
particular future outcome over another with the passage of time.
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As a consequence of time inconsistency, the behavior of a decision-maker might
change depending on the timing of payo�s, and she thus might want to revise a decision
already made at a later point in time (cf. Strotz (1955), DellaVigna (2009)).2

We consider a stylized model setup which allows for the analysis of time inconsistency
in these situations caused by various kinds of utility aggregation. It builds on the Merton
problem where an investor with constant relative risk aversion maximizes her expected
utility by splitting her wealth between a risky and a risk-free asset. The risk-free asset
grows at a constant rate; the price dynamics of the risky asset are given by a geometric
Brownian motion with drift µ and volatility ‡. We introduce an a priori lottery (p, 1 ≠ p)
over two regimes which di�er in the (µ, ‡)-tupel. Thus, we introduce a second dimension
of risk which implies an outer expectation about the outcome of the lottery and an inner
expectation about the utility within the regimes.3

We assume that the investor deals with time inconsistency by following a pre-
commitment strategy4, and we show that the optimal pre-commitment strategy is de-
terministic in our setup. It is between the regime-dependent Merton solutions and thus
can be represented as a weighted average of these solutions. In the myopic case, when
either the investor has myopic logarithmic preferences or the planning horizon declines
to zero, the weighting factors of the regimes only depend on the regime probabilities and
volatilities. The longer the investment horizon, the more the optimal strategy converges
to the limiting worst-case strategy, i.e., the investor maximizes the worst-case savings rate
over the regimes and thus follows a maximin decision rule which no longer depends on the
regime probabilities.

The time inconsistency of the optimal pre-commitment strategy for a level of relative

2 Thaler (1981) provides first empirical evidence on time-inconsistent behavior. Further empirical research
papers that draw attention to the problem of time inconsistency in decision making are Kirby and Her-
rnstein (1995), Wong (2008) and Schreiber and Weber (2016). Time inconsistency can lead to biased
non-optimal decisions that are in conflict with the long-run interests of decision-makers (cf. Read and
Van Leeuwen (1998), Gruber and Köszegi (2001), Meier and Sprenger (2010), Ameriks et al. (2007),
Jones and Mahajan (2015)).
In theoretical papers, time inconsistency is often considered deterministically by assuming a non-
exponential discount function. Yılmaz (2013) examines heterogeneous time preferences in a principal-
agent-model. Further papers modeling time inconsistency via a non-exponential discount function are
Laibson (1997) , Azfar (1999), Benhabib et al. (2010) and Yoon (2020).

3 The outer expectation implies an aggregation of utilities.
4 For a general discussion of strategies in case of time inconsistency, see Strotz (1955).
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risk aversion “ > 1 and an investment horizon T > 0 can be traced back to the impact
of the investment horizon on the certainty equivalents in the two regimes. These certainty
equivalents determine the trade-o� between speculating on the better regime (and follow-
ing the optimal strategy for the good regime) and hedging against the worse regime (and
following the optimal strategy for the bad regime). The larger the di�erence between the
two regimes, the stronger the hedging motive, and the more the optimal strategy moves
towards the worst-case strategy.5

In line with this behavior of the optimal strategy, the optimal savings rate is given
by the expected savings rate over the regimes for T æ 0 and by the worst-case savings rate
over the regimes for T æ Œ. In both limiting cases (T æ 0, T æ Œ), the willingness to
pay for information about the regime is zero. This implies that the value of information6

is maximal for some finite investment horizon but does not necessarily increase in the
length of the time horizon over which a suboptimal pre-commitment strategy (instead of
the overall optimal strategy for known regimes under full information) is followed.

While our setup is stylized, it captures a variety of di�erent scenarios. As pointed
out, we describe a situation of risk with respect to the true regime. We show that our
setup also covers the case of state-dependent preferences, when risk preferences di�er
across regimes. In terms of an aggregation over investors who follow a common investment
strategy, our setup allows for heterogeneous beliefs and for heterogeneous preferences.

In our analysis, we abstract from the case of (gradual) learning of the true regime.
Note, however, that we include the case of ’maximal learning’ in which the investor is told
the true regime immediately; the gain in the certainty equivalent in this case goes to zero
for both T æ 0 and T æ Œ. Since this gain is an upper bound for the case of gradual
learning, we can conclude that the gain from learning is also zero for T æ 0 and T æ Œ
when the investor learns over time.

We add a third dimension to our decision problem by considering ambiguity w.r.t. the
regime probabilities (p, 1≠p).7 In dealing with ambiguity, we follow Klibano� et al. (2005)

5 If there is only a di�erence in µ but not in ‡, the myopic and long term behavior is the same as in the
case of gradual learning over time, cf. Bäuerle and Grether (2017).

6 For more information on the value of information from a decision-theoretical point of view, see Appendix
A.1.2.

7 Accounting for ambiguity dates back to Arrow (1951). There is strong empirical evidence for the existence
of ambiguity in decision making: Antoniou et al. (2015), Brenner and Izhakian (2018) and Dimmock
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and use the smooth model of ambiguity aversion. The impact of ambiguity preferences
over the regime probabilities (third dimension) can then be analyzed analogously to the
impact of risk preferences over the regimes (second dimension). Intuitively, the setup gives
rise to a trade-o� between the amount of ambiguity over probabilities and the amount of
risk over the regimes. To simplify the exposition, we assume that there are two possible
distributions (pa, 1 ≠ pa) and (pb, 1 ≠ pb). The amount of ambiguity is increasing in the
spread between the probabilities pa and pb. In the limit, pa = 1 and pb = 0, the regime
is known and the risk in the second dimension has vanished; we are left with risk about
the normally distributed return and ambiguity about the true regime. For pa = pb, on
the other hand, ambiguity w.r.t. the probability distribution has vanished, and we are left
with risk about the normally distributed return and risk about the true regime.

In summary, our main contribution is to explain the common impacts of aggregating
expected utilities of future wealth or certainty equivalents on optimal decisions and utili-
ties. We bring together various strands of the literature and identify the common drivers of
time inconsistency under risk and ambiguity. In addition, our analysis of the value of infor-
mation gives a simple explanation why gradually learning over time is not able to resolve
time inconsistency. While the results are presented in an asset allocation context, they
straightforwardly carry out to other decision problems which account for state-dependent
preferences, risk preferences which di�er across regimes, and/or the welfare of a collective
of heterogeneous decision-makers. One example are group decisions (of the management)
in corporate finance.

The first dimension of risk in our setup already dates back to Merton (1971). He
solves the problem of maximizing the expected utility of an investor with constant relevant
risk aversion (CRRA) in a Black-Scholes model setup. Our paper relates to the literature
on collective decision making and aggregation over (heterogeneous) investors. One way
to aggregate preferences is the utilitarian approach of aggregating utilities. Adams et al.
(2014) and Jackson and Yariv (2014) show that heterogeneity in time preferences results
in a present-bias even if individual preferences are time-consistent. Garlappi et al. (2017)
show that group decisions of decision-makers with heterogeneous beliefs are dynamically
inconsistent. Another way of accumulation is to aggregate certainty equivalents, as argued

et al. (2016b) find that ambiguity is priced in the equity market. An increase of ambiguity leads to
underinvestments (cf. Garlappi et al. (2017)). Ambiguity in portfolio choice is widely spread in the
literature (see the literature overview of Guidolin and Rinaldi (2013)).
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in Kryger and Ste�ensen (2010) for their titular problem of ’collective objectives’. Jensen
and Ste�ensen (2015) and Fahrenwaldt et al. (2020) aggregate certainty equivalents to
disentangle time and risk preferences. Desmettre and Ste�ensen (2021) and Balter and
Schweizer (2021) aggregate over certainty equivalents to deal with uncertain preferences,
while Balter et al. (2021) study the case of drift uncertainty.

Joint decisions for heterogeneous investors might entail utility losses. Alserda et al.
(2019) document heterogeneous risk aversion in the pension domain. Jensen and Nielsen
(2016) analyze the sub-optimality of linear sharing rules in case of collective investment.
Non-linear sharing rules are considered by Chen et al. (2021a) with heterogeneous risk
aversion under stochastic volatility and by Chen et al. (2021b) for the case of heterogeneous
guarantee levels. Pazdera et al. (2016) study the problem in an incomplete market.

Due to the assumption of a double risk situation our problem is similar to a setup in
which two investors with heterogeneous beliefs are restricted to follow the same strategy,
thus time inconsistency arises naturally. The strand of literature referring to time inconsis-
tency in optimal asset allocation problems can be traced back to Strotz (1955). He proposes
two strategies for dealing with time inconsistency – a strategy of pre-commitment and a
strategy of consistent planning. Balter et al. (2021) compare a pre-commitment strategy
with a dynamically consistent one in the context of ambiguity and learning and determine
a point of regret for a pre-commitment investor. Björk and Murgoci (2014) and Björk et al.
(2017) account for time inconsistency in stochastic control problems. They derive a game
theoretical solution within a discrete-time and a continuous-time framework. These two
papers build on the work of Basak and Chabakauri (2010) who study dynamic portfolio
choice under mean-variance preferences. They show that the optimal investment strategy is
time-inconsistent and find a distinction between pre-commitment, dynamically consistent,
and myopic strategies. Further literature in this context is given by Cong and Oosterlee
(2016), Pedersen and Peskir (2017), Dai et al. (2021) and the recent papers of Vigna (2020)
and Van Staden et al. (2021) who compare dynamically consistent and pre-commitment
strategies in a mean-variance setup.

Biagini and Pınar (2017) derive a robust solution of the Merton problem of an am-
biguity averse investor. Borgonovo and Marinacci (2015) give results for certainty equiv-
alents in a multi-event problem in the presence of risk and ambiguity aversion. Jin and
Zhou (2015) analyze a portfolio choice problem in an expected utility and mean-variance
framework by maximizing the worst Sharpe ratio. Further literature in the context of
ambiguity in a mean-variance framework is given by Maccheroni et al. (2013), Pflug and
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Wozabal (2007) and Pınar (2014).

Our analysis of the value of information is closely linked to the topic of learning. We
refer the interested reader to portfolio optimization problems with unknown drift process
(e.g., Karatzas and Zhao (2001)). Our limiting result concerning a long-term investor
resembles the findings of Bäuerle and Grether (2017) who consider a Bayesian financial
market.

The a priori lottery which gives our second risk dimension is a stylized version of
a regime-switching model. In particular, our special case of full information resembles a
stylized variant of a regime-switching model with observable Markov chain (regime, respec-
tively). While in our case, it is straightforward that the optimal strategy only depends on
the regime, this is also true in a (more sophisticated) dynamic setup. Sotomayor and Ca-
denillas (2009) and Ocejo (2018) solve the asset allocation problem for di�usion processes
in a regime-switching model, Capponi and Figueroa-López (2014) extend the analysis to
defaultable bonds. Zhou and Yin (2003) solve Markowitz mean-variance portfolio selection
in continuous-time.

The remainder of Chapter 4 is organized as follows. In Section 4.2, we give a brief
review of the basic Merton results (optimal strategy, corresponding utility, and savings
rate). Subsequently, we introduce our stylized setup with an a priori lottery which results
in one of two regimes (characterized by the drift and volatility of the risky asset). Along
the way, we comment on the links of our stylized setup to other sources for aggregating
utilities and on the link to behavioral biases. In Section 4.3, we derive the optimal pre-
commitment strategy. Comparing the case with observed regimes (full learning) to the
case with unobserved regimes gives us the value of information about the regime which we
analyze in more detail in Section 4.4. In Section 4.5, we additionally account for ambiguity
about the regime probabilities and show the analogies and di�erences stemming from risk
and ambiguity aversion. Section 4.6 concludes.

4.2 Model assumptions

We modify the classic Merton problem (cf. Merton (1971)) by introducing an a priori
lottery where the outcome is one of two regimes. Once the regime is known, the investment
problem boils down to the Merton problem. To simplify the exposition, we give a review
of the Merton problem as well as some basic results.
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4.2.1 Merton problem

Throughout the following, we consider an investor with constant relative risk aversion
(CRRA), i.e., her utility function is

u(x) =

Y
]

[

x1≠“

1≠“ “ > 1
ln x “ = 1

,

where “ denotes her relative risk aversion. The investor is equipped with an initial amount
of V0 which we can normalize to V0 = 1 because of the CRRA framework. We only consider
“ Ø 1 as the usual choice in asset allocation.

The investment decisions of the investor are given in terms of the fraction fi of her
portfolio wealth which she invests in a risky asset, the stock S. The remaining fraction is
invested in a risk-free asset growing with constant interest rate r. In the benchmark model
of Black-Scholes, the dynamics of the stock price are given by a geometric Brownian motion
with constant drift µ and volatility ‡, i.e.

dSt = µStdt + ‡StdWt where S0 = s0.

Wt is a Brownian motion under the probability measure P . If the investor with
investment horizon T (T Ø 0) chooses the weight fit for the risky investment in the stock
at time t (0 Æ t Æ T ), the dynamics of her wealth are given by

dVt = [r + fit(µ ≠ r)]Vtdt + fit‡VtdWt.

The optimal investment strategy fiú
t (which maximizes the expected utility of ter-

minal wealth VT ) is given by the well-known constant Merton fraction fiMer, i.e.8

fiú
t = fiMer = µ ≠ r

“‡2
. (4.1)

This strategy also maximizes the certainty equivalent CET and the savings rate yT

which are in general defined by

u(CET ) = E[u(VT )] and yT = 1
T

ln CET .

8 The optimal strategy implies a constant investment fraction. With no uncertainty about the future
dynamics, there are no state variables to condition on, and with CRRA, there is also no need to con-
dition on current wealth. Furthermore, a time-dependent strategy would increase the variance without
increasing the mean, and is thus dominated by a time-independent strategy. For more information on
the Merton problem in a Black Scholes setup, see the Appendix A.1.1.
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The savings rate y (we drop the index T since the savings rate in our setting is
independent of T ) for a constant portfolio weight fi is given by9

y(fi) = r + fi(µ ≠ r) ≠ 1
2“fi2‡2. (4.2)

For a positive portfolio weight, it is increasing in µ and decreasing in ‡. The maximal
savings rate is

y(fiMer) = r + 1
2“

· (µ ≠ r)2

‡2
= r + 1

2“
· ⁄2,

where ⁄ = µ≠r
‡ denotes the constant market price of risk. In view of the introduction of

two regimes, we also define the loss rate if a strategy fi instead of the optimal strategy
fiMer is used. It is given by

l(fi) = y(fiMer) ≠ y(fi) = 1
2“‡2

1
fi ≠ fiMer

22

. (4.3)

4.2.2 Lottery over regimes

Now, we consider two regimes which reflect di�erent dynamics of the stock price or di�erent
beliefs of the investor about these dynamics.10 In regime i (i œ {1, 2}), the drift and the
volatility of the stock are denoted by µi and ‡i. The risk-free rate is constant and equal
to r in all regimes. In particular, we now assume

dSt,i = µiSt,idt + ‡iSt,idWt,i for i = 1, 2,

where S0,1 = S0,2 = s0 and where Wt,i is a Brownian motion under the probability measure
Pi. We interpret the two regimes as a good (Regime 1) and a bad (Regime 2) one, and we
assume that the investor chooses (in the optimum within a regime) a higher stock weight
in the good than in the bad regime:

Assumption 1 (Regimes)
Throughout the paper, we make the following assumptions on the regimes:

9 Since we have assumed normally distributed log returns, the maximization of utility in the base case is
equivalent to a mean-variance portfolio selection problem.

10 Generalizing our results to n (n Ø 2) regimes is straightforward.
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1. Regime 1 is the good regime and Regime 2 is the bad regime, i.e., it holds that

⁄1 = µ1 ≠ r

‡1

> ⁄2 = µ2 ≠ r

‡2

.

2. The optimal portfolio weight in the good regime exceeds the optimal portfolio weight
in the bad regime, i.e., it holds that

fiMer
1 = µ1 ≠ r

“‡2
1

> fiMer
2 = µ2 ≠ r

“‡2
2

.

For expositional simplicity, we immediately restrict ourselves to constant weights fi.
Explanations why this is a reasonable simplification which accounts for common problems
stemming from utility aggregation are provided in Section 4.3 (cf. Remark 2). We use the
convention that y(fi, i) (i œ {1, 2}) denotes the savings rate within Regime i, and that
fiMer

i = µi≠r
“‡2

i

denotes the Merton strategy in Regime i. With Eqn. (4.2), it holds (for
i œ {1, 2})

y(fi, i) = r + fi(µi ≠ r) ≠ 1
2“fi2‡2

i .

The investment fraction fi ”= 0 for which y(fi, 1) = y(fi, 2) is denoted by fiequal.
Straightforward calculations give

y(fi, 1) ≠ y(fi, 2) =

Y
]

[

1

2
“(‡2

1 ≠ ‡2
2)fi(fiequal ≠ fi) ‡1 ”= ‡2

fi (µ1 ≠ µ2) ‡1 = ‡2

, (4.4)

where, for ‡1 ”= ‡2,

fiequal = µ1 ≠ µ2

1

2
“(‡2

1
≠ ‡2

2
)
. (4.5)

For ‡1 ”= ‡2, the two regimes thus result in the same savings rate for the trivial
choice fi = 0 (then, the savings rates coincide with the risk-free rate) and for fi = fiequal.
For ‡1 = ‡2, y(fi, 1) and y(fi, 2) only coincide for the trivial choice fi = 0.

Combining the results on fiequal and Assumption 1 allows us to single out the two
cases that are interesting for our analysis later. In the straightforward first case, Regime
1 comes with a higher expected return and a lower (or the same) volatility than Regime 2
– fiequal is negative (or does not exist). For positive portfolio weights, it then always holds
true that the savings rate is higher in Regime 1 than in Regime 2, i.e., Regime 2 is the
worse one for all fi > 0. In the second case, Regime 1 has a larger expected return and a
larger volatility (or a lower expected return and a lower volatility) than Regime 2. Then,
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Benchmark parameter
µ1 µ2 ‡1 ‡2 r

0.1316 0.0769 0.2080 0.2221 0.00

Table 4.1: Benchmark parameter constellation.

the di�erence of the savings rates switches sign for fi = fiequal > 0.11 fiequal is between
fiMer

1 and fiMer
2 for

‡1‡2

0.5(‡2
1

+ ‡2
2
) <

(µ1 ≠ r)/‡1

(µ2 ≠ r)/‡2

<
0.5(‡2

1 + ‡2
2)

‡1‡2

.

The fraction in the middle is the ratio ⁄1/⁄2 of the market prices of risk. Since the
first part of Assumption 1 implies ⁄1/⁄2 > 1, the left inequality always holds true. If
the right hand side inequality is met, too, then Regime 1 is the worse one for fi between
fiMer

2 and fiequal, and Regime 2 is the worse one for fi between fiequal and fiMer
1 . Figure 4.1

illustrates the savings rate y(fi, i) as a function of fi.12

Savings rate y(fi, i) depending on investment fraction fi
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Figure 4.1: The left figure displays the savings rate depending on the investment fraction fi. The right
figure displays the savings rate for a di�erent parameter constellation, where fiequal = 0.3776. In comparison
to the benchmark parameter setup, µ1 < µ2 (µ1 = 0.1316, µ2 = 0.2667) and ‡1 < ‡2 (‡1 = 0.2080, ‡2 =
0.4714). In both illustrations for “R = 4 the black graph pictures y(fi, 1) and the black dashed y(fi, 2).

11 For µ1 > µ2 and ‡1 > ‡2, y(fi, 1) exceeds y(fi, 2) when fi is between zero and fiequal. For µ1 < µ2 and
‡1 < ‡2, y(fi, 1) is smaller than y(fi, 2) when fi is between zero and fiequal.

12 Note, that we also run a robustness analysis regarding all illustrations with a second parameter
constellation. For more information, see the Appendix A.4.
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In our stylized modification of the Merton problem (”initial lottery”) the regime is
determined by the lottery L = (p, 1 ≠ p) at time 0 and then stays constant over time. The
lottery thus adds a second dimension to the risk situation. The expected utility (EU) of
terminal wealth VT (immediately before the lottery L takes place) is13

EUT,p = p EP1 [u(VT )] + (1 ≠ p)EP2 [u(VT )]. (4.6)

For the following analysis, we assume a more general case and distinguish between
the levels of relative risk aversion “R within a regime and “L when aggregating over the
regimes. The expected utility of the investor is then given by

EUT,p = p uL

1
u≠1

R (EP1 [uR(VT )])
2

+ (1 ≠ p)uL

1
u≠1

R (EP2 [uR(VT )])
2

, (4.7)

where uL (u≠1

R ) is a CRRA function with relative risk aversion “L (“R). Distinguishing
between these two risk aversions allows us to separately study the impact of uncertainty
within each regime and uncertainty about the regime. Setting “R = “L = “ gives Eqn.
(4.6) again.

EUT,p aggregates the savings rates (or certainty equivalents) over the regimes.14 It
holds that

EUT,p =

Y
]

[

1

1≠“L

Ë
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

È
“L > 1

[py(fi, 1) + (1 ≠ p)y(fi, 2)] T “L = 1
.

Instead of expected utility (4.7), one can also look at the certainty equivalent savings
rate yT,p which is defined as

yT,p(fi) := 1
T

ln
1
u≠1

L (EUT,p)
2

, (4.8)

i.e.

yT,p(fi) =

Y
]

[

1

(1≠“L)T ln
Ë
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

È
“L > 1

py(fi, 1) + (1 ≠ p)y(fi, 2) “L = 1
. (4.9)

13 While the utilities refer to the ones obtained in di�erent regimes, our setup is similar to the problem of
a social planner who aggregates the utilities of investors with di�erent beliefs or di�erent levels of risk
aversion (cf. literature given in the introduction of the paper).

14 Eqn. (4.7) emphasizes that we aggregate over certainty equivalents, not over utilities, similar to Desmet-
tre and Ste�ensen (2021) and the references given herein (cf. comment introduction) who also introduce
time inconsistency by aggregation of certainty equivalents.
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Due to the double risk situation, i.e., a lottery over two di�erent Merton problems,
risk aversion comes into play twice. First, the investor uses a CRRA-utility function with
relative risk aversion “R to determine the expected utility of a strategy conditional on the
regime, so that “R captures the aversion towards normally distributed return innovations.
The larger “R, the lower the savings rate, and the smaller the optimal portfolio weight.
Second, the investor uses a CRRA-utility function with risk aversion “L to aggregate
the certainty equivalents over the two regimes, i.e., to calculate EUT,p given the savings
rates y(fi, i) in the two regimes i = 1, 2. The larger “L, the lower the savings rate yT,p(fi)
resulting out of y(fi, 1) and y(fi, 2).

The setup is analogous to the smooth ambiguity aversion model of Klibano� et al.
(2005) in which uR and uL would describe risk preferences and ambiguity preferences,
respectively.15 Here, “R is the risk aversion within the regime, while “L ≠ “R can be inter-
preted as the additional aversion with respect to the lottery over the regimes. The setup
furthermore reflects the case of a collective investment. Here, a representative investor
aggregates over the individual certainty equivalents of investors with heterogeneous be-
liefs concerning the mean and the volatility of the risky asset. As the next remark shows,
our setup can also capture the case when di�erent risk preferences are used to judge the
payo�s in Regime 1 and Regime 2.16

Remark 1 (State dependent risk aversion) The problem with state dependent risk
aversion “R1 ”= “R2 is equivalent to a problem with state independent risk aversion “R =
“R1 and modified variance ‡̃2

2 = “R2
“R1

‡2
2 in Regime 2. In both cases, the regime-dependent

savings rates are

y(fi, 1) = r + fi(µ1 ≠ r) ≠ 1
2“R1fi2‡2

1

y(fi, 2) = r + fi(µ2 ≠ r) ≠ 1
2“R1fi2

“R2

“R1
‡2

2.

Notice that this remark motivates why we do not restrict our analysis to the case

15 In Section 4.5, we analyze ambiguity w.r.t. the probability distribution over the regimes.
16 Experimental evidence for regime dependent risk aversion includes Cohn et al. (2015) who find that

individuals act more risk averse in a bear regime in comparison to a bull regime. Berrada et al. (2018),
Gordon and St-Amour (2000), Gordon and St-Amour (2004) study asset pricing with state-dependent
risk aversion. Asset allocation problems with state-dependent risk aversion are studied by Wei et al.
(2013) and Wei et al. (2020). Björk et al. (2014) and Wang et al. (2021) deal with mean-variance asset
allocation and wealth-dependent risk aversion.
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‡1 = ‡2 (and place ourselves within a setup with pure drift uncertainty) but explicitly
allow for di�erent volatilities across the regimes.17

The aggregation (4.9) over the savings rates in the two regimes is highly non-linear
unless “L = 1. For T > 0, Jensen’s inequality implies

yT,p(fi)

Y
]

[
< p y(fi, 1) + (1 ≠ p)y(fi, 2) “L > 1
= p y(fi, 1) + (1 ≠ p)y(fi, 2) “L = 1

.

In the special case of log-utility, the savings rate for an initial lottery coincides with
the expected savings rate over the Merton problems in the two regimes. The strategy
that maximizes expected utility then simultaneously maximizes the expected savings rate.
This is not true for “L ”= 1 unless one considers the myopic case T æ 0 (cf. following
proposition). The savings rates for the limiting cases T æ 0 and T æ Œ are given in the
following proposition:

Proposition 1 (Limits of savings rate)
For “L > 1, the limiting values of the certainty equivalent savings rate yT,p(fi) are

lim
T æ0

yT,p(fi) = p y(fi, 1) + (1 ≠ p)y(fi, 2)

lim
T æŒ

yT,p(fi) = min{y(fi, 1), y(fi, 2)}.

The proof is given in Appendix A.5.

The left graph of Figure 4.2 illustrates that for “L > 1, the savings rate is decreasing
in the investment horizon T . It drops from the expected savings rate (implied by T æ 0)
to the worst case savings rate (implied by T æ Œ).18

4.3 Impact of time inconsistency

We subsequently consider the optimal asset allocation problem. With an aggregation of
certainty equivalents over regimes, this problem is in general time-inconsistent. Even if the

17 In Appendix A.3, a brief supplementary analysis for the case of state-dependent risk aversion “R1 < “R2

is given.
18 Notice that Assumption 1 only states that Regime 2 implies a lower savings rate than Regime 1 if one

compares the within regime optimal savings rates, i.e., the savings rates of Regime 1 and 2 corresponding
to the within regime optimal weights fiMer

1 and fiMer
2 . For a given portfolio weight fi, however, the worst

case savings rate over the regimes is given by min{y(fi, 1), y(fi, 2)}.
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Aggregated savings rate yT,p
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Figure 4.2: The left figure displays the savings rate depending on the investment horizon for “L = “R = 4
and fi = 0.6. The upper (lower) black line pictures p = 1 (p = 0). The gray (black) dashed graph refers
to p = 0.7 (p = 0.3). The right figure displays the savings rate depending on the probability for fi = 0.6,
T = 100 and “R = 4. The black graph refers to “L = 2, while the black (gray) dashed graph refers to
“L = 4 (“L = 8).

investor chooses the optimal strategy today (in the sense that it maximizes the expected
utility EUT,p), she will want to deviate from this strategy at a later point in time.19

The literature suggests several ways to deal with this problem. The investor can choose
the optimal strategy today by solving a game against her future selves (sophisticated
strategy), but she can also choose the optimal strategy today without taking the future
time inconsistency into account (naive strategy) or pre-commit to not deviating from this
strategy later on (pre-commitment strategy).20 In the following, we will study the optimal
pre-commitment strategy.

We limit the analysis to constant portfolio weights, that is to pre-commitment strate-
gies from which the investor is not allowed to (or cannot) deviate later on. The strategies
can thus only depend on the initial length of the investment horizon T . Such a pre-
commitment strategy is indeed the optimal choice in case of no state variables and CRRA
utility.21 From the perspective of time t = 0, changes in the portfolio weight later on would

19 See Strotz (1955) for a first discussion of time inconsistency. Further references are given in Section 4.1.
20 The pre-commitment strategy is the optimal decision if the investment decision is irreversible. This is

most likely the case for group decisions (of the management) in corporate finance (see e.g., Garlappi et
al. (2017)).

21 For a proof see Balter et al (2021).
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only lower the expected utility. Nevertheless, it can still be the case that the investor wants
to deviate from the strategy when she reconsiders her choice at a later point in time t > 0.

In this section, we refrain from classical learning, i.e., the investor can not gradually
update her subjective probabilities of the two regimes and learn the true regime in the long
run. In Section 4.4, we will consider the limiting case in which the investor learns about
the true regime immediately after the realization of the lottery and can then condition her
strategy on the true regime.

Remark 2 (Stylized setup) In summary, there are various justifications for the stylized
setup, and, in particular, the assumption that we do not allow for learning:
(i) In the special case ‡1 = ‡2, our model subsumes the problem posed by drift uncertainty.
Here, we do not account for the possibility to gradually learn about the drift coe�cient
over time. However, in Section 4.4, it turns out that in both limiting cases (T æ 0, (and
more importantly) T æ Œ), the willingness to pay for information about the regime is
zero. Thus, we show later on that learning is not able to resolve the problem of time
inconsistency.22

(ii) In our setup, the case ‡1 ”= ‡2 implies that an investor who is able to learn obtains
full information immediately (cf. (i) and Section 4.4). In addition, recall Remark 1 which
gives an additional reason why it is interesting to consider ‡1 ”= ‡2.
(iii) The optimization problem under pre-commitment can alternatively be explained by an
irreversible investment where the payo� is given in terms of the payo� corresponding to a
constant investment fraction fi.

To facilitate the exposition, we directly specify the optimal pre-commitment strategy
fiú,pre

T,p by maximizing the expected utility over a constant (regime independent) investment
fraction fi, i.e.

fiú,pre

T,p := arg max
fi

EUT,p = arg max
fi

yT,p(fi),

where EUT,p is given in Eqn. (4.7) and yT,p is given in Eqn. (4.9).

For the interpretation, we give the optimal pre-commitment strategy as a function of
the regime dependent Merton solutions. Since the highest possible savings rate in Regime

22 Nevertheless, the interested reader is e.g., referred to Bäuerle and Grether (2017) who consider a Bayesian
financial market.
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i is obtained by fiMer
i , it follows that

fiú,pre

T,p œ
Ë
fiMer

2 , fiMer

1

È
=: A. (4.10)

From the specification of the set A in Eqn. (4.10) it follows that we can write the
optimal pre-commitment strategy fiú,pre

T,p as a weighted average of the regime dependent
Merton solutions, i.e.

fiú,pre

T,p := –ú
T,pfiMer

1 + (1 ≠ –ú
T,p)fiMer

2 , (4.11)

where –ú
T,p gives the optimal weight of the Merton solution for Regime 1. We stress the

impact of the investment horizon and the regime probabilities by the notation –ú
T,p. In

addition, –ú
T,p may depend on all model and preference parameters. In the following propo-

sition, we give the implicit function for –ú
T,p which involves fiú,pre

T,p and which follows from
the first order condition for the optimal pre-commitment strategy.23

Proposition 2 (Optimal pre-commitment strategy)
Along the lines of Eqn. (5.6), the optimal pre-commitment strategy fiú,pre

T,p is given by the
weighting factor –ú

T,p = –T,p(fiú,pre
T,p ) where

–T,p(fi) = p‡2
1f1(fi, T )

p‡2
1
f1(fi, T ) + (1 ≠ p)‡2

2
f2(fi, T )

and fi(fi, T ) = ey(fi,i)(1≠“L)T , i = 1, 2.

The proof of the Proposition is given in Appendix A.6.

Di�erent from the optimal Merton strategy, the optimal pre-commitment strategy
depends on T for “L ”= 1 and is thus time-inconsistent (since the strategy which is optimal
today is no longer optimal later on when the remaining investment horizon has shortened).
The time inconsistency can be traced back to the dependence of the regime-dependent
certainty equivalents on the length of the investment horizon. These certainty equivalents
enter the optimal weights of the Merton strategies via f1 and f2. When the investor
considers the trade-o� between speculating on the better regime (and following the optimal
strategy for Regime 1) and hedging against the bad regime (and following the optimal
strategy for Regime 2), she takes the di�erence of the certainty equivalents in the two

23 The result can easily be generalized to more than two regimes.
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regimes into account. The larger this di�erence, the more she tends towards the hedging
motive. Since the di�erence depends on T , the optimal strategy will depend on T , too.

To get an intuition for the behavior of the optimal pre-commitment strategy, we
first look at the impact of time T :

Proposition 3 (Limiting values of optimal pre-commitment strategy)
For “L > 1, the limiting values for the optimal pre-commitment strategy are given by

lim
T æ0

–ú
T,p = p‡2

1

p‡2
1

+ (1 ≠ p)‡2
2

.

and

lim
T æŒ

fiú,pre
T,p =

Y
]

[
fiMer

2 y(fi, 2) < y(fi, 1) ’fi œ A
fiequal fiequal œ A

, (4.12)

where fiequal is defined in Eqn. (4.5).

For T æ 0 (and also for “L = 1), the savings rate equals the expected savings rate.
To get the intuition for the functional form of –ú

0,p, note that maximizing the expected
savings rate is equivalent to minimizing the expected loss rate. The loss rate in regime
i, given in Eq. (4.3), scales with the squared volatility ‡2

i . Consequently, the weighting
factor of the Merton-strategy fiMer

i in the optimal pre-commitment strategy scales with
the variance ‡2

i , too.24 It is thus the larger the more likely and the riskier a regime is, but
does not depend on the savings rate within the regime. The dependence on the volatilities
and the probability is also shown in the left graph of Figure 4.3, which plots the limiting
–ú

0,p as a function of ‡2 ≠ ‡1, and for di�erent values of p.

The other limiting case is given by T æ Œ. For an infinite investment horizon and
“L > 1, the savings rate of a strategy fi is the lower of the regime-dependent savings rates
y(fi, 1) and y(fi, 2) (cf. Proposition 1). The optimal pre-commitment strategy is thus given
by the strategy fi œ A that maximizes this worst-case savings rate. It is independent of
the regime probabilities as long as 0 < p < 1. The worst-case strategy can be the Merton-
strategy for Regime 2 (if Regime 2 is the worse regime for all fi œ A), or fiequal (if the

24 Plugging in shows that the optimal strategy can also be interpreted as the Merton strategy for the
average expected returns and average variance.
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worst regime switches in A).25

In the general case where 0 < T < Œ and “L > 1, the weighting factor – of a regime
i does not only depend on its probability and its volatility, but also on the function fi

which is the (negative) multiple of the utility of the certainty equivalent in this regime.
The function fi is the smaller the larger the savings rate in the regime and thus downplays
the weight of the good regime. Consequently, the optimal strategy is shifted towards the
worst-case strategy.

To aggregate the impact of the savings rates captured in the functions f1 and f2,
we define the function ” as26

”(fi, T ) := 1 ≠ f1(fi, T )
f2(fi, T ) = 1 ≠ e[y(fi,1)≠y(fi,2)](1≠“L)T . (4.13)

It describes the relative di�erence between expected utilities in the two regimes for
a given strategy fi. For y(fi, 1) > y(fi, 2) and “L > 1, we have ”(fi, T ) œ [0, 1). The lower
limit of ” = 0 is attained for T æ 0 while the upper limit of one is approached for T æ Œ.

With this definition of ”, we can rewrite the portfolio weight of the optimal pre-
commitment strategy as

–ú
T,p =

p‡2
1(1 ≠ ”(fiú,pre

T,p , T ))
p‡2

1
(1 ≠ ”(fiú,pre

T,p , T )) + (1 ≠ p)‡2
2

. (4.14)

The auxiliary functions f , ”, and – allow to study the impact of “R on the optimal
strategy. For the function fi(fi, T ) = fi(fi, T ; “R, “L), it holds that

fi(fi, T ; “R, “L) = e[fi(µi≠r)≠0.5“Rfi2‡2
i ](1≠“L)T

= fi(“Rfi, T/“R; 1, “L),

which implies an analogous relation for ”

”(fi, T ; “R, “L) = ”(“Rfi, T/“R; 1, “L).

25 An analogous reasoning can be found in Bäuerle and Grether (2017) who study the limiting investment
strategy under drift uncertainty and learning. They show that a risk averse (loving) investor bases her
decision on the worst (best) case drift. For ‡1 = ‡2 and T æ Œ, the optimal pre-commitment strategy
thus coincides with the limiting optimal learning strategy.

26 In case of n regimes, we cannot define one function ”, but would rather look at the ratios f(fi, i)/f(fi, n).
If n is the worst-case regime over all fi œ A, it holds that f(fi, i)/f(fi, n) goes to zero for i ”= n and to
one for i = n.
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An increase in “R can thus be treated like a (proportional) increase in the port-
folio weight and an (inversely proportional) decrease in the investment horizon. For the
weighting factor –, it follows that

–T,p(fi; “R, “L) = –T/“R,p(“Rfi; 1, “L).

In the implicit function (5.6) which gives the optimal pre-commitment strategy, the
weighting factor is applied to the Merton strategies, which inversely scale with “R. Overall,
this gives the impact of “R on the optimal portfolio:

Proposition 4 (Impact of “R on optimal strategies) The optimal Merton strategy
fiMer

i depends on “R and the optimal pre-commitment strategy fiú,pre
T,p depends on “R, “L,

p, and T . It holds that

fiMer
i (“R) = 1

“R
fiMer

i (1)

fiú,pre
T,p (“R, “L) = 1

“R
fiú,pre

T/“R,p(1, “L).

For T = 0 (and also for “L = 1), we have ” = 0, and the optimal strategy is the
myopic one. In the non-myopic case (T > 0 and “L > 1), first assume y(fi, 1) > y(fi, 2)
for all fi œ A. When T goes from zero to infinity, ” goes from 0 to 1. Hence, –ú

T,p goes
from the myopic weight to a weight of zero in the limit, and the pre-commitment strategy
approaches the worst-case strategy fiMer

2 . Second, assume that fiequal œ A. Then, the
optimal pre-commitment strategy converges from the myopic strategy (which depends on
p) to the worst-case strategy fiequal (which is independent of the probabilities). ” no longer
goes to one, but to the value which sets –fiMer

1 + (1 ≠ –)fiMer
2 equal to fiequal.

Thus, the function ” describes the convergence of the myopic strategy to the worst-
case strategy. For a given fi, ” increases in the di�erence of the savings rates y(fi, 1)≠y(fi, 2)
given in Eqn. (4.4). Intuitively, the force to the worst-case regime matters the more, the
higher the di�erence between the good and the bad regime is, which is illustrated in the
right hand side of Figure 4.3. Another figure in this context can be found in Appendix
A.2 (Figure A.2). Moreover, the optimal pre-commitment strategy fiú,pre

T,p is shown as a
function of T and p in Figure A.1.

” increases in the risk aversion “L and decreases in the risk aversion “R. This relation
is illustrated in Figure 4.4. Intuitively, a higher risk aversion “L w.r.t. regime uncertainty
causes a faster convergence of the optimal strategy towards the worst-case strategy, which
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Influence of di�erence between regimes on –ú
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Figure 4.3: The left picture displays the optimal weight on the Merton solution in Regime 1 at T = 0 for
“L = “R = 4 depending on the di�erences ‡2 ≠ ‡1 (where ‡2 = 0.2221). The black line pictures p = 0.4,
the black dashed p = 0.6 and the gray dashed p = 0.8. The right picture shows the optimal weight –ú

T,p

on the Merton solution in Regime 1 depending on the investment horizon T for p = 0.4, “L = “R = 4 and
‡2 = 0.2. The black line pictures ‡1 = ‡2. The black (gray) dashed line pictures ‡1 = 0.1 (‡1 = 0.05).

is reached for the limiting value ” = 1. The impact of “R is more involved. An increase
in “R is equivalent to inversely scaling the investment horizon with “R (and scaling the
investment strategy with “R). Since ” is an increasing function of the investment horizon,
this implies that ” is a decreasing function of “R. The convergence to the limiting worst-
case strategy thus takes longer.

Finally, it holds that ”(fiú,pre
T,p , T ) also depends on p via the dependence of the optimal

pre-commitment strategy on p. To get the intuition, note that time inconsistency shifts
the importance from the good regime towards the bad regime over time. This shift is the
more severe, the higher the myopic importance of the good regime is, i.e., the higher p is.
This relation is illustrated in Figure 4.4.

” is not only related to the weights of the optimal pre-commitment strategy but can
also be used to rewrite the savings rate. For “L > 1, it holds that

yT,p(fi) = y(fi, 2) + 1
(1 ≠ “L)T ln [1 ≠ p ”(fi, T )] . (4.15)

Since Regime 2 is the bad one, the second term is non-negative and measures the
additional contribution of the good regime to the savings rate. This contribution depends
on p as well as on ”. It increases with the probability p of the good regime. It also increases
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Impact of investment horizon T on time inconsistency
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Figure 4.4: The figure gives the time inconsistency measure ” as a function of the investment horizon.
The upper left figure refers to a level of risk aversion “R = “L = 4. The upper right figure refers to
“R = 4 and “L = 8. The lower figure refers to “R = 8 and “L = 4. The black graphs refer to the optimal
pre-commitment strategy fiú,pre

T,p
for p = 0.2. The dashed black (dashed gray) graphs refer to the optimal

pre-commitment strategy for p = 0.5 (p = 0.8).

with ”, which in turn increases with the di�erence between the savings rates in the good
and bad regime.

4.4 Value of information

We now compare the utility of the optimal pre-commitment strategy to the utility of the
optimal strategy under full information. In the latter case, the investor can condition her
strategy on the regime. The optimal strategy fiú under full information maximizes the
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expected utility when the outcome of the a priori lottery is known, i.e.,

fiú = (fiú
1, fiú

2)

:= arg max
(fi1,fi2)

Ó
p uL

1
u≠1

R (EP1 [uR(VT (fi1))])
2

+ (1 ≠ p)uL

1
u≠1

R (EP2 [uR(VT (fi2))])
2Ô

.

Note that the two terms in the weighted sum depend on either fi1 or fi2. With the
Merton result it immediately follows:27

Proposition 5 (Optimal strategy under full information)
In case of an initial lottery L over Regimes 1 and 2, the expected utility and the savings
rate of a CRRA investor who can condition the strategy on the true regime are maximized
for

fiú = (fiMer
1 , fiMer

2 ). (4.16)

The maximal savings rate yT,p(fiú) when we can condition on the regime is

yT,p(fiú) =

Y
]

[

1

(1≠“L)T ln
Ë
p ey(fiMer

1 ,1)(1≠“L)T + (1 ≠ p)ey(fiMer
2 ,2)(1≠“L)T

È
“L ”= 1

p y(fiMer
1 , 1) + (1 ≠ p)y(fiMer

2 , 2) “L = 1
.

The value of the regime information can be measured by the quotient of the certainty
equivalents associated with the optimal strategies with and without the regime informa-
tion, i.e., by the ratio CEú

T,p/CEú,pre

T,p of the certainty equivalents. This ratio minus one
gives the percentage of wealth that the investor gains if she learns about the regime imme-
diately after the initial lottery has taken place. Alternatively, one can measure the value of
information about the regime by the di�erence yT,p(fiú) ≠ yT,p(fiú,pre

T,p ) in the savings rates,
i.e., by the annual rate of return that the investor gains by this information.

Proposition 6 (Value of full information)

(i) The di�erence of the savings rates is given by

27 Intuitively, it is clear that the result can be generalized to a dynamic version of observable regime
switches. We refer the interested reader to Sotomayor and Cadenillas (2009) and the references given in
the introduction.
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yT,p(fiú) ≠ yT,p(fiú,pre
T,p )

=

Y
___]

___[

1

(1≠“L)T ln
#
—T,p(fiú,pre

T,p )el(fiú,pre
T,p

,1)(1≠“L)T “L ”= 1
+

1
1 ≠ —T,p(fiú,pre

T,p )
2

el(fiú,pre
T,p

,2)(1≠“L)T $

—T,p(fiú,pre
T,p ) l(fiú,pre

T,p , 1) + (1 ≠ —T,p(fiú,pre
T,p )) l(fiú,pre

T,p , 2) “L = 1

,

where

—T,p(fi) = p (1 ≠ ”(fi, T ))
p (1 ≠ ”(fi, T )) + 1 ≠ p

.

(ii) The ratio of the certainty equivalents is given by
CEú

T,p

CET,p(fiú,pre
T,p )

= e[yT,p(fiú)≠yT,p(fiú,pre
T,p )]T

=
Ë
—T,p(fiú,pre

T,p )el(fiú,pre
T,p ,1)(1≠“L)T +

1
1 ≠ —T,p(fiú,pre

T,p )
2

el(fiú,pre
T,p ,2)(1≠“L)T

È 1
1≠“L , “L > 1.

The proof is given in Appendix A.7.

The loss in the savings rate and in the certainty equivalent is equal to some weighted
average of the regime-specific loss rates, where the weights depend on the savings rates in
the two regimes under partial information.

The limiting behavior of the gains from full information is summarized in the fol-
lowing proposition:

Proposition 7 (Limits for value of full information)

(i) For “L > 1, the limits of the di�erence of the savings rates are

lim
T æ0

Ë
yT,p(fiú) ≠ yT,p(fiú,pre

T,p )
È

= 1
2“R p(1 ≠ p)

1
fiMer

1 ≠ fiMer
2

22 ‡2
1‡2

2

p‡2
1

+ (1 ≠ p)‡2
2

.

lim
T æŒ

Ë
yT,p(fiú) ≠ yT,p(fiú,pre

T,p )
È

=

Y
]

[
0 fiequal ”œ A
y(fiMer

2 , 2) ≠ y(fiequal, ·) fiequal œ A.

The limit for T æ 0 is also the loss for “L = 1, independent of T .

(ii) For “L > 1, the limits of the ratio of the certainty equivalents are

lim
T æ0

CEú
T,p

CET,p(fiú,pre
T,p )

= 1

lim
T æŒ

CEú
T,p

CET,p(fiú,pre
T,p )

=

Y
]

[
1 fiequal ”œ A
Œ fiequal œ A.

The limit for T æ 0 is also the ratio for “L = 1, independent of T .
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The proof is given in Appendix A.8.

For T æ 0, the gain in the savings rate goes to some finite number. It increases in
the di�erence between the optimal Merton strategies. The corresponding ratio of the cer-
tainty equivalents is one, reflecting that the certainty equivalent for a vanishing investment
planning horizon is just equal to the initial wealth.

The behavior of the gain for T æ Œ is more surprising. If y(fi, 1) > y(fi, 2) for all
fi œ A, the gain in the savings rate goes to zero, and the ratio of the certainty equivalents
goes to one. The gain thus vanishes for a long investment horizon, while, intuitively, one
would expect it to increase in the length of the time horizon over which the investor can
avoid following a suboptimal strategy. The reason is that both savings rates go to the
worst-case savings rate. In case of full information, this is due to the dominance of the
worst-case utility for T æ Œ. In case of no information, the optimal strategy goes to
the worst-case strategy, which again implies that the savings rate goes to the worst-case
savings rate. By a similar argument, the ratio of the certainty equivalents goes to one.
Thus, the losses first increase in T (in line with intuition) and then decrease in T (due to
the dominance of the worst-case utility in the long run). If fiequal œ A, the gain does not
vanish in the limit. The optimal pre-commitment strategy goes to fiequal. The gain in the
savings rates then goes to the di�erence between the worst-case savings rate y(fiMer,

2
, 2) and

y(fiequal, ·), which is larger than zero. Analogously, the ratio of the certainty equivalents
goes to infinity.
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Figure 4.5: Both figures give the value of information by the ratio of the certainty equivalents depending
on the investment horizon T. The left figure refers to p = 0.2 (black), p = 0.5 (black dashed), and p = 0.7
(gray dashed) where “L = “R = 4. The right figure to “L = “R = 4 (black), “L = “R = 6 (black dashed),
“L = “R = 8 (gray dashed) where p = 0.5
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Figure 4.5 gives the ratio of the certainty equivalents as a function of T . If y(fi, 1) >

y(fi, 2) for all fi œ A, then the ratio of the CEs goes to one for T æ 0 and for T æ Œ. There
is thus an investment horizon T̂ for which the value of information obtains its maximum.

To study the impact of risk aversion “R on the value of information and on T̂ , we
build on Proposition 4. With the results for the impact of “R on the optimal strategies,
we can derive the following proposition which gives the impact of “R on the certainty
equivalent and the value of information.

Proposition 8 (Impact of “R on value of information) For the certainty equivalent
of a strategy fi, it holds that

CET,p(fi, “R, “L) = CET/“R,p(“Rfi, 1, “L).

For the certainty equivalent of the optimal pre-commitment strategy, it holds that

CET,p(fiú,pre
T,p (“R, “L), “R, “L) = CET/“R,p(fiú,pre

T/“R,p(1, “L), 1, “L).

For the value of information, it then holds that

V oIT,p(“R, “L) = V oIT/“R,p(1, “L).

For the time horizon T̂ = T (“R, “L) which maximizes the value of information, it follows
that

T̂ (“R, “L) = “RT̂ (1, “L),

while the maximal value of information does not depend on “R:

V oIú(“R, “L) = V oIú(1, “L).

Table 4.2 confirms these results. It gives the maximizing point in time T̂ (panel A)
and the maximal value of information (panel B) for di�erent combinations of “R and “L.
The maximizing point in time T̂ is increasing in “R and the maximal value of information
is independent of “R. The optimal pre-commitment strategy (Panel C) is decreasing in “R

(as are the optimal Merton strategies). The table also shows the dependence on “L. Both
the maximizing point in time T̂ and the maximal value of information are decreasing in
“L. To get the intuition, note that a larger value of “L implies a faster convergence to the
worst-case solution (which lowers T̂ ) and a lower certainty equivalent. “L has almost no
e�ect on the optimal pre-commitment strategy for an investment horizon T = T̂ .
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4 On the impact of time inconsistency in optimal asset allocation problems

Panel A: Maximizing T̂ (“R, “L)
“R\“L 2 4 6 8 10 12
2 25.75 8.60 5.15 3.70 2.85 2.35
4 51.55 17.20 10.30 7.35 5.75 4.70
6 77.30 25.75 15.45 11.05 8.60 7.05
8 103.10 34.35 20.60 14.75 11.45 9.35
10 128.85 42.95 25.75 18.40 14.30 11.70
12 154.60 51.55 30.90 22.10 17.20 14.05

Panel B: Maximal value of information V oIú(“R, “L)
“R\“L 2 4 6 8 10 12
2 1.0914 1.0296 1.0176 1.0126 1.0098 1.0080
4 1.0914 1.0296 1.0176 1.0126 1.0098 1.0080
6 1.0914 1.0296 1.0176 1.0126 1.0098 1.0080
8 1.0914 1.0296 1.0176 1.0126 1.0098 1.0080
10 1.0914 1.0296 1.0176 1.0126 1.0098 1.0080
12 1.0914 1.0296 1.0176 1.0126 1.0098 1.0080

Panel C: Optimal pre-commitment strategy fiú,pre

T̂ (“R,“L),p
(“R, “L)

“R\“L 2 4 6 8 10 12
2 0.9106 0.9103 0.9106 0.9098 0.9111 0.9101
4 0.4552 0.4552 0.4553 0.4553 0.4550 0.4550
6 0.3035 0.3035 0.3035 0.3035 0.3034 0.3034
8 0.2276 0.2276 0.2276 0.2276 0.2276 0.228
10 0.1821 0.1821 0.1821 0.1821 0.1821 0.1821
12 0.1517 0.1517 0.1518 0.1517 0.1517 0.1518

Table 4.2: The table gives the maximizing time to maturity (Panel A) and the maximal value of in-
formation (Panel B) as a function of “R and “L. The probability p is set to 0.5. Moreover, the optimal
pre-commitment strategy is taken into account for T̂ (Panel C).
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4 On the impact of time inconsistency in optimal asset allocation problems

Finally, T̂ is increasing in p – the farer away the initial beliefs are from the worst-case
(Regime 2), the longer it takes for the solution to converge to the worst-case solution, and
the larger the investment horizon for which the value of information is largest.

The results also help to explain the dependence of the value of information for fixed
T on “R and “L. As Figure 4.6 shows, the value of information is a hump-shaped function
of “R and a decreasing or hump-shaped function of “L. To get the intuition for the impact
of “R, we rely on Proposition 8. It states that a larger risk aversion “R can alternatively be
written as a smaller time horizon. Furthermore, the value of information is a hump-shaped
function of T . If T < T̂ (“R, “L) = “RT̂ (1, “L), the value of information is increasing in T .
This implies that for “R > T

T̂ (1,“L)
, the value of information is decreasing in “R, while it is

increasing in “R for smaller values of “R.

Value of Information for varying risk aversion with di�erent probabilities
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Figure 4.6: The left illustration shows the value of information as a function of risk aversion “R for
“L = 12. The right illustration shows the value of information as a function of risk aversion “L for “R = 4.
The black graphs refer to p = 0.5, the black dashed to p = 0.7 and the gray dashed to p = 0.9. The time
horizon is 10 years for both illustrations.

Besides risk aversion, the value of information also depends on the probability p of
the good regime. V oI is zero for p = 0 and p = 1, when the second dimension of risk
vanishes, and the regime is known. For intermediate values of p, the value of information
is an inversely u-shaped function of p.
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yT,p(fiú) ≠ yT,p(fiú,pre) for varying p with di�erent investment horizons T
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Figure 4.7: The left figure refers to a risk aversion of “L = “R = 4, the right to “L = “R = 8. The black
lines picture T = 10, the black dashed T = 20 and the gray dashed T = 50.

Figure 4.7 shows the di�erence in the savings rates as a function of p. When T

approaches zero, the value of information is largest for p = ‡2/(‡1 + ‡2). For equal volatil-
ities, this simplifies to p = 0.5 for which uncertainty about the true regime is largest.
The dependence on p vanishes for T æ Œ when the savings rates are determined by the
worst-case values.

4.5 Accounting for ambiguity

In addition to risk within the regime (first dimension) and the lottery over the regimes
(second dimension), we now introduce ambiguity w.r.t. the lottery (third dimension), i.e.,
there is uncertainty about the probability distribution (p, 1 ≠ p) of the a priori lottery.
We use the smooth ambiguity approach of Klibano� et al. (2005) to model the investor’s
ambiguity aversion. We are interested in the impact of ambiguity on the optimal strategy
and on the savings rate.

The investor’s time t = 0 certainty equivalent of receiving VT is given by

u≠1

A

1
Ep

Ë
uA

1
u≠1

L (EUT,p)
2È2

(4.17)

uL(x) =

Y
]

[

x1≠“L

1≠“L
“L > 1

ln x “L = 1
and uA(x) =

Y
]

[

x1≠“A

1≠“A
“A > 1

ln x “A = 1
,
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for two increasing utility and ambiguity functions uL and uA, where “L and “A capture
the (constant) relative aversions towards regime uncertainty and ambiguity about the
probability distribution of the regimes. The corresponding savings rate is given by

yamb

T (fi) = 1
T

ln
1
u≠1

A

1
Ep

Ë
uA

1
u≠1

L (EUT,p)
2È22

.

The optimal pre-commitment strategy under ambiguity fiú,pre, amb

T,p̃ is defined by

fiú,pre, amb

T,p̃ := arg max
fi

yamb

T (fi).

For the sake of simplicity, we model ambiguity by a situation with two di�erent
probability distributions (pa, 1 ≠ pa) and (pb, 1 ≠ pb) over Regime 1 and Regime 2. The
investor assigns the probabilities p̃ and 1 ≠ p̃ to these two distributions. W.l.o.g., we make
the following assumption on pa and pb:

Assumption 2 (Probability distribution regimes)
The probability of the good Regime 1 is larger for the first probability distribution than for
the second one, i.e., it holds that pa Ø pb.

Throughout the following, we assume that uA is a CRRA utility function with
constant relative risk aversion parameter “A. Without ambiguity aversion, i.e., for “A = “L,
we are back in a decision problem under risk with a lottery (q, 1 ≠ q) where

q := p̃ pa + (1 ≠ p̃)pb. (4.18)

We will use the lottery (q, 1 ≠ q) as one benchmark later on.

For a given portfolio weight fi, the expected utility of the investor is

Ep

Ë
uA

1
u≠1

L (EUT,p)
2È

= 1
1 ≠ “A

Ë
p̃eyT,pa

(fi)(1≠“A)T + (1 ≠ p̃)eyT,pb
(fi)(1≠“A)T

È
, (4.19)

where yT,pa
(fi) is the savings rate in a risk situation described by the distribution (pa, 1≠pa)

and yT,pb
(fi) is the savings rate in a risk situation described by the distribution (pb, 1≠pb).

Note that the aggregation over the two probability distributions in case of ambiguity in
Eqn. (4.19) has the same functional form as the aggregation over the two regimes in case
of risk in Eqn. (4.7).

The savings rate in case of ambiguity is

yamb

T,p̃ (fi) := 1
(1 ≠ “A)T ln

Ë
p̃eyT,pa

(fi)(1≠“A)T + (1 ≠ p̃)eyT,pb
(fi)(1≠“A)T

È
.
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Plugging in the corresponding formulas for the savings rates in case of risk over the
regimes gives

yamb

T,p̃ (fi) =

Y
_______]

_______[

1

(1≠“A)T ln
C

p̃
Ë
paey(fi,1)(1≠“L)T + (1 ≠ pa)ey(fi,2)(1≠“L)T

È 1≠“A

1≠“L

+(1 ≠ p̃)
Ë
pbey(fi,1)(1≠“L)T + (1 ≠ pb)ey(fi,2)(1≠“L)T

È 1≠“A

1≠“L

D

“L ”= 1

1

(1≠“A)T ln
Ë
p̃eypa

(fi)(1≠“A)T + (1 ≠ p̃)eypb
(fi)(1≠“A)T

È
“L = 1,

where ȳp(fi) denotes the average savings rate when the probability of Regime 1 is p.

Proposition 9 (Limiting savings rates in case of ambiguity aversion)
For “A > 1, the savings rate for T æ 0 is given by

lim
T æ0

yamb
T,p̃ (fi) = q y(fi, 1) + (1 ≠ q) y(fi, 2),

and the savings rate for T æ Œ is given by

lim
T æŒ

yamb
T,p̃ (fi) =

Y
]

[
min{y(fi, 1), y(fi, 2)} fiequal ”œ A
y(fiequal, ·) fiequal œ A

.

In both limiting cases, the savings rate no longer depends on the risk aversion “L

over the regimes and the ambiguity aversion “A over the lotteries. It converges to the
expected savings rate in the myopic case T æ 0 and to the worst-case savings rate for
T æ Œ.

For T > 0 and “A > “L, Jensen’s inequality28 implies that

yamb

T,p̃ (fi) < p̃ yT,pa
(fi) + (1 ≠ p̃)yT,pb

(fi) Æ q y(fi, 1) + (1 ≠ q) y(fi, 2).

The first inequality captures the impact of ambiguity aversion, the second inequality
captures the impact of risk aversion when aggregating over the regimes. Similar to risk
aversion, ambiguity aversion thus also reduces the savings rate relative to the expected
savings rate under the lottery (q, 1 ≠ q).

The optimal pre-commitment strategy of the ambiguity-averse investor is given by

fiú,pre,amb

T,p̃ := arg max
fi

1
(1 ≠ “A)T ln

Ë
p̃eyT,pa

(fi)(1≠“A)T + (1 ≠ p̃)eyT,pb
(fi)(1≠“A)T

È
.

28 EU = 1
1≠“L

ey(fi,i)(1≠“L)T is a concave function of the portfolio weight, thus the expectation EUT,p over
the regimes is concave in the portfolio weights. Thus utility under ambiguity is for “A > “L concave in
the portfolio weights.
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The strategies that maximize the two savings rates in the above expression separately
from each other are fiú,pre

T,pa
and fiú,pre

T,pb
. Similar to the optimal pre-commitment strategy in

case of risk (which is between the optimal strategies fiMer
1 and fiMer

2 in the two regimes),
the optimal pre-commitment strategy in case of ambiguity is between fiú,pre

T,pa
and fiú,pre

T,pb
,

i.e., it holds that

fiú,pre, amb

T,p̃ œ
Ë
min

Ó
fiú,pre

T,pa
, fiú,pre

T,pb

Ô
, max

Ó
fiú,pre

T,pa
, fiú,pre

T,pb

ÔÈ
=: Aamb

T .

In analogy to the previous section, we again state the optimal pre-commitment
strategy fiú,pre,amb

T,p̃ under ambiguity as a weighted average of the two regime dependent
Merton fractions fiMer

1 and fiMer
2 .

Proposition 10 (Optimal pre-commitment strategy under ambiguity)
The optimal pre-commitment strategy fiú,pre,amb

T,p̃ under ambiguity aversion “A and risk
aversion “L (“A > “L) solves the equation

fi = –̃T,p̃(fi)
Ë
–T,pa

(fi)fiMer
1 + (1 ≠ –T,pa

(fi))fiMer
2

È

+ (1 ≠ –̃T,p̃(fi))
Ë
–T,pb

(fi)fiMer
1 + (1 ≠ –T,pb

(fi))fiMer
2

È
. (4.20)

The weight –̃T,p̃(fi) is given by

–̃T,p̃(fi) = p̃(1 ≠ ”amb
T (fi))

p̃(1 ≠ ”amb
T (fi)) + (1 ≠ p̃)

,

”amb
T (fi) = 1 ≠ pa‡2

1(1 ≠ ”(fi, T )) + (1 ≠ pa)‡2
2

pb‡2
1
(1 ≠ ”(fi, T )) + (1 ≠ pb)‡2

2

5
pa(1 ≠ ”(fi, T )) + (1 ≠ pa)
pb(1 ≠ ”(fi, T )) + (1 ≠ pb)

6 “A≠“L

“L≠1
,

the weights –T,pa
(fi) and –T,pb

(fi) are given by Eqn. (4.14), ”(fi, T ) is given in Eqn. (4.13).

The proof of Proposition 10 is given in Appendix A.9.

Again, we first look at the limiting values of the optimal pre-commitment strategies
under ambiguity.

Proposition 11 (Limiting optimal portfolio weights under ambiguity)
For “A > 1, the limiting strategy for T æ 0 is given by

lim
T æ0

fiú,pre, amb
T,p̃ = q‡2

1

q‡2
1

+ (1 ≠ q)‡2
2

fiMer
1 + (1 ≠ q)‡2

2

q‡2
1

+ (1 ≠ q)‡2
2

fiMer
2 = lim

T æ0

fiú,pre
T,q ,

and the limiting strategy for T æ Œ is given by

lim
T æŒ

fiú,pre, amb
T,p̃ =

Y
]

[
fiMer

2 y(fi, 2) < y(fi, 1) ’fi œ A
fiequal otherwise

= lim
T æŒ

fiú,pre
T,q .
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Impact of ambiguity on pre-commitment strategy
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Figure 4.8: The illustrations are plotted for “L = “R = 4. The gray lines display fiMer

2 = 0.39. The black
graphs refer to the optimal pre-commitment strategy under ambiguity aversion fiú,pre, amb

T,p̃
with p̃ = 0.5,

pa = 0.6 and pb = 0.2. The dashed black (dashed gray) graphs refer to the optimal pre-commitment
strategy without ambiguity fiú,pre

T,p
under the given probability distribution over the regimes with p = 0.6

(p = 0.2). The left (right) figure refers to a level of ambiguity “A = 4 (“A = 16).

For T æ 0, the optimal pre-commitment strategy under risk and ambiguity coincides
with the optimal pre-commitment strategy under risk with probability distribution (q, 1≠
q). For T æ Œ, it again holds true that the investor maximizes the worst-case savings
rate over the regimes (see Figure 4.8). In both cases the strategy depends on “R (via
the Merton fraction), but neither on the ambiguity aversion parameter “A nor on risk
aversion “L. Furthermore, the limiting optimal strategies coincide for all combinations p̃,
pa, pb that imply the same q (in case T æ 0) and for all combinations that assign positive
probabilities q, 1 ≠ q to both regimes (in case T æ Œ).

We now compare the optimal strategy fiú,pre, amb

T,p̃ under risk and ambiguity with the
optimal strategy fiú,pre

T,q under risk. For T æ 0, T æ Œ, and for an ambiguity-neutral
investor with “A = “L, the optimal pre-commitment strategy under ambiguity coincides
with the optimal pre-commitment strategy fiú,pre

T,q . For an ambiguity-averse investor with
“A > “L, it holds that fiú,pre, amb

T,p̃ (with risk and ambiguity aversion parameters “L and
“A > “L) is closer to the limiting worst-case strategy than fiú,pre

T,q (with risk aversion
parameter “L)(see Figure 4.9).

In general, the weights of the Merton strategies depend on risk aversion “L w.r.t.
lotteries and on ambiguity aversion “A. They also depend on the amount of risk about the
regimes and on the amount of ambiguity over the lotteries. We start with the analysis of
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Impact of probability p̃ on optimal strategies fiú,pre, amb
T,p̃ and fiú,pre

T,q
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Figure 4.9: The pictures are created for “L = “R = 4, “A = 16, pa = 0.6, pb = 0.2. In the left (right)
illustration T = 20 (T = 50) is assumed. The black graphs show the optimal pre-commitment strategy
under risk and ambiguity fiú,pre, amb

T,p̃
, the black dashed graphs show the optimal pre-commitment strategy

under risk fiú,pre
T,q

with probability q. The gray lines show the optimal pre-commitment strategy under risk
with probability pa and the gray dashed lines show the optimal pre-commitment strategy under risk with
probability pb.

two special cases in which one of these dimensions vanishes.

First, ambiguity (the third dimension) vanishes in the special case pa = pb. When
the lotteries (pa, 1 ≠ pa) and (pb, 1 ≠ pb) coincide, it does not matter whether the investor
faces lottery a or lottery b. Proposition 10 then gives

fiú,pre,amb
T,p̃ = fiú,pre

T,q = fiú,pre
T,pa

= fiú,pre
T,pb

.

In line with intuition, this is the optimal pre-commitment strategy of an investor
with risk aversion “L who faces the lottery (q, 1 ≠ q) = (pa, 1 ≠ pa) = (pb, 1 ≠ pb). Second,
uncertainty about the regime (second dimension) vanishes in the special case pa = 1, pb =
0. With –T,pa

(·) = 1 and –T,pb
(·) = 0, Proposition 10 simplifies to

fiú,pre,amb
T,p̃ = –̂ú

T,p̃fiMer
1 + (1 ≠ –̂ú

T,p̃)fiMer
2

where –̂ú
T,p̃(fi) = p̃‡2

1ey(fi,1)(1≠“A)T

p̃‡2
1
ey(fi,1)(1≠“A)T + (1 ≠ p̃)‡2

2
ey(fi,2)(1≠“A)T

.

This strategy coincides with the optimal pre-commitment strategy of an investor
with risk aversion “L = “A who faces the lottery (q, 1 ≠ q) = (p̃, 1 ≠ p̃).

82



4 On the impact of time inconsistency in optimal asset allocation problems

For a given q, i.e., a given probability of Regime 1 after a merge of the lotteries, there
is thus a trade-o� between ambiguity over the lottery and uncertainty over the regime. For
pa = pb, ambiguity over the lottery vanishes, and the investor is left with uncertainty over
the regime. The larger the di�erence between pa and pb, the higher the ambiguity about
the lottery, and the lower the uncertainty over the regimes. Finally, uncertainty w.r.t. the
regime vanishes and ambiguity is maximized when pa = 1 and pb = 0. For “A > “L, the
optimal portfolio weight moves closer to its limiting level when going from the case with
risk over lotteries only to the case with ambiguity over the regime only. Thus, there is
an opposing e�ect of the ambiguity situation over the probabilities and the risk situation
about the regimes.

fiú,pre,amb
T,p̃ , const. q for di�erent pa and pb combinations
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Figure 4.10: The left (right) hand side refers to “L = “R = 4, “A = 8 (“L = “R = 4, “A = 16).
Both illustrations are plotted with a constant q = p̃ = 0.6. The black graphs display fiú,pre,amb

T,p̃
for

pa = 0.7, pb = 0.45. For pa = pb = 0.6 it holds fiú,pre,amb

T,p̃
= fiú,pre

T,q
(gray and black dashed graphs). The

gray dashed graphs refer to pa = 1, pb = 0.

In addition, Proposition 10 sheds light on the importance of the levels of ambiguity
aversion “A and risk aversions “L and “R. Intuitively it is clear that the optimal pre-
commitment strategy fiú,pre,amb

T,p̃ is decreasing in the risk aversion “R, since a higher “R

leads to a reduction of the regime-dependent Merton fractions (first risk dimension). In
addition, a higher level of risk aversion “L over the regimes yields a faster convergence
towards the Merton fraction associated with the worst-case regime (second risk dimension).
Concerning the third dimension (ambiguity), the speed of convergence towards the worst-
case strategy (maximin strategy) is monotonically increasing in the di�erence between
“A and “L, i.e., the higher the di�erence between the two parameters, the faster the
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4 On the impact of time inconsistency in optimal asset allocation problems

convergence. An illustration of the convergence behaviour of the optimal pre-commitment
strategy under ambiguity and risk aversion to the worst-case strategy is given in Figure
4.10.

In addition to the value of information about the regime (full information), we
consider now the value of information about the lottery, i.e., the willingness to pay for
resolving the ambiguity and then knowing whether (pa, 1 ≠ pa) or (pb, 1 ≠ pb) applies. In
the latter case, the investor knows whether to use the strategy fiú,pre

T,pa
or fiú,pre

T,pb
. Under full

information, she knows whether to use fiMer
1 or fiMer

2 . We consider the following ratios of
certainty equivalents

VoILot(T ) =

Ë
p̃ CET,pa

(fiú,pre
T,pa

)1≠“A + (1 ≠ p̃)CET,pb
(fiú,pre

T,pb
)1≠“A

È 1
1≠“A

Ë
p̃ CET,pa

(fiú,pre,amb
T,p̃ )1≠“A + (1 ≠ p̃)CET,pb

(fiú,pre,amb
T,p̃ )1≠“A

È 1
1≠“A

and

VoIFull(T ) = q CET (fiMer
1 , 1) + (1 ≠ q)CET (fiMer

2 , 2)
Ë
p̃ CET,pa

(fiú,pre,amb
T,p̃ )1≠“A + (1 ≠ p̃)CET,pb

(fiú,pre,amb
T,p̃ )1≠“A

È 1
1≠“A

,

i.e., VoILot(T ) ≠ 1 denotes the willingness to pay for the knowledge of the lottery and
VoIFull(T ) ≠ 1 denotes the willingness to pay for the knowledge of the regime.

Value of information: fiú,pre
T,pa and fiú,pre

T,pb known, const. q
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Figure 4.11: The left illustration refers to “L = “R = 4, “A = 8, whereas the right illustration refers to
“L = “R = 4, “A = 16. Both illustrations are plotted with a constant q = p̃ = 0.6. The black graphs display
pa = pb = 0.6 (black dashed: pa = 0.8, pb = 0.3 and gray dashed: pa = 1, pb = 0).

An illustration of the value of information for resolving the ambiguity situation
(V oILot(T )), is given in Figure 4.11. For all combinations of pa and pb, the limits T æ 0
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and T æ Œ of V oILot(T ) are equal to 1, i.e., the willingness to pay is zero. Intuitively,
the same reasoning as for the second risk dimension (see Section 4.4) also applies to the
third dimension (ambiguity): the willingness to pay is again zero when the horizon is zero
and when the worst-case utility dominates for T æ Œ. In the special case pa = pb (no
ambiguity), it holds that V oILot(T ) = 1 for all T .

T̂ for varying pa, const. q and di�erent risk aversion parameter “R
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Figure 4.12: The figure shows T̂ under ambiguity with constant q = p̃ = 0.6, “L = 4 and “A = 8 for
varying pa (notice that this implies also varying pb). The black graph refers to “R = 8, the black dashed
to “R = 4 and the gray one to “R = 16.

Similar to Section 4.4, there is an investment horizon T̂ for which the value of
information achieves its maximum. The value of information is the highest for pa = 1 and
pb = 0 where the influence of ambiguity is the highest. However, beyond T̂ , the higher the
maximal value of information is, the faster is the convergence to the worst case (see Figure
4.11). Furthermore the value of information drops faster for a higher di�erence between “A

and “L since a higher di�erence implies a faster convergence to the worst case as already
mentioned before. Figure 4.12 illustrates T̂ as a function of pa. T̂ = 0 for pa = pb = 0.6,
since ambiguity over the lottery vanishes and V oILot(T ) = 1 for all T . With increasing
ambiguity (pa moves further away from 0.6) T̂ decreases. This means that the maximal
value of information is reached at smaller investment horizons.

4.6 Conclusion

We consider a stylized setup of an investment decision to shed light on the impacts of
time inconsistency. In the first instance, we introduce time inconsistency by means of a
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double risk situation and an aggregation over certainty equivalents. While the outer risk is
given by a simple a priori lottery over two regimes, the inner risk situation in each regime
coincides with the classic Merton problem. Although our stylized setup is artificial, it fits
many (dynamic) decision problems (cf. introduction), including heterogeneity w.r.t. risk
aversion and beliefs.

The double risk situation allows for an intuitive interpretation of the results. Tech-
nically, we can separate the outer and inner risk situation. Since the outer risk situation
increases in time (the investment horizon), the optimal decision of the investor converges
to the worst-case strategy, i.e., the investor chooses the strategy that maximizes the min-
imum of the savings rates over the two regimes.

For a finite investment horizon, the optimal investment decision can be written as a
weighted average of the optimal regime dependent (Merton) solutions. While in the myopic
case, the weights basically resemble the probabilities given by the lottery, the weight of
the good regime is reduced as the investment horizon increases, so that the worst case
regime gains importance.

We provide a measure ” (normalized to [0, 1]) for the impact of time inconsistency
on the optimal strategy. This measure is increasing in the level of risk aversion “L and
decreasing in “R. Furthermore, ” increases in the length of the investment horizon (the
longer the investment period, the more risk aversion and thus the shift to the worst-case
strategy matters) and in the probability of the good regime (the shift towards the worst-
case regime is the more pronounced the higher the probability of the good regime).

Concerning the willingness to pay for information about the current regime, we have
the surprising result that the willingness to pay for full information goes to zero not only
for an investment horizon of zero, but also for an infinite horizon, and is thus maximal
for some investment horizon in between. However, we show that the willingness to pay
obtains a maximum, i.e., first increases in the investment horizon and then decreases to
zero. Thus, there is an investment horizon T̂ where the willingness to pay is maximized.

In addition to the two dimensions of risk, we also introduce an additional dimension
stemming from ambiguity about the regime probabilities. Using the smooth ambiguity
model of Klibano� et al. (2005), this implies a further outer expectation (accounting for
the ambiguity aversion). Again, we are able to separate the e�ects of the two risk situations
as well as the ambiguity aversion. We explain that the impact of time-inconsistency gets
more ambiguous by showing that varying the ambiguity situation may also change the risk
situation.
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Chapter 5

Optimal asset allocation for a

time-inconsistent investor in a

regime-switching environment

5.1 Introduction

In this chapter, we analyze the value of information for a time-inconsistent investor who
aims to solve a dynamic asset allocation problem in a regime-switching environment.
Regime-switching models take into account the impact of exogenous shocks on assets and
the financial market. These shocks can lead to changes in market dynamics. In contrast to
standard models, the risk-return structure of an asset (e.g., a stock) is not assumed to be
deterministic, but modeled in a regime-dependent manner. Therefore, in addition to the
economic risk of assets, expressed in terms of its risk-return relation, uncertainty about
the current and future state of the environment, which may change as a result of events
and a�ect financial market parameters, is also taken into account.

The switching behavior of the states of the economy can be attributed to structural
changes in (macro-)economic conditions and political and regulatory frameworks (cf. Ang
and Timmermann (2012)). These changes are usually observable but can induce uncer-
tainty about their implications for future asset price dynamics. On the one hand, the
announcement of new policies and frameworks before their implementation induces uncer-
tainty. On the other hand, there is uncertainty after implementation with regard to the
specific design and impact of the change in policy. This additional uncertainty influences
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the economic environment, which is problematic since especially for long-term investors
there can be significant variations in economic variables over time (cf. Pastor and Veronesi
(2012)). The objective of this chapter is therefore to examine the impact of a lack of in-
formation about the e�ects of this uncertainty on asset price dynamics on an investor’s
optimal asset allocation.

A strand of the literature therefore deals with the examination of regime changes
and its e�ects on asset allocation: Following the pathbreaking papers of Merton (1969)
and Merton (1971), dynamic asset allocation has been investigated for a large variety of
assumptions on the assets’ dynamics including, among others, regime-switching models.1

Regime-switching models have their origin in the work of Hamilton (1989), who considers
the business cycle in two regimes (boom or recession). Since then, many empirical studies
have shown that regime-switching models help predict market dynamics of asset prices.
Ang and Bekaert (2002), Ang and Bekaert (2004) and Guidolin and Timmermann (2007)
conclude in this regard that accounting for regime-switching in the strategy improves asset
allocation. An overview of regime-switching models in asset allocation and asset pricing
is given in Ang and Timmermann (2012). Kole et al. (2006) draw attention to investor
diversification in international equity markets and find that accounting for systemic crises
via regime-switching models strongly influences asset allocation decisions. Taking regime
switches into account, especially when combining with the Merton approach, captures
the timing and intensity of crises much more e�ectively than standard models and thus
substantially influences optimal asset allocation decisions.2 Tu (2010) argues that ignoring
regime-switching leads to significant losses in the certainty-equivalent. Thus, by taking into
account state changes in markets, regime-switching models contribute to a more realistic
representation of financial markets and asset price dynamics. Therefore, it can provide a
better basis for decision making and improve an investor’s asset allocation.

Lu et al. (2021) examine the impact of shocks to oil prices on U.S. stock market

1 In the classical Merton investment model, return rates and volatilities of risky assets are assumed to
be constants. An optimal investment strategy is obtained by solving the problem of maximizing an
expected utility function from terminal wealth. However, in a regime-switching model the asset price
dynamics are modeled by di�usion processes with regime-dependent drift and di�usion coe�cients.

2 In the Merton problem, the dynamics of the risky asset follows a geometric Brownian motion that
implies normally distributed logarithmic returns. However, the assumption is not realistic since in reality
exogenous events cause stock returns to exhibit more extreme variations than the normal distribution
permits.
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volatility and find that oil shocks have time-varying performance, highlighting the im-
portance of accounting for regime-switching. Milidonis et al. (2011) deal with mortality
dynamics in the insurance context and find that mortality is characterized by di�erent
regimes. Alexander and Kaeck (2008) find evidence that credit default swap spreads ex-
hibit regime-specific behavior. Therefore, the consideration of regime-switching is also
important in other application problems.

We consider regime-switching by employing a Markov-modulated approach in a sim-
ple two-asset world, in which the decision consists of what fraction to invest in the stock
market or in a risk-free asset. Regime 1 embodies an economically good state where drift
µ1 is higher and the volatility ‡1 is lower compared to the second regime. Regime 2 thus
represents an unstable state resembling a poor economic condition. Therefore it applies
that µ1 > µ2 and ‡1 < ‡2. We model the two regimes via an observable Markov chain.3

Intertemporal models often make the unrealistic assumption that investors know
the parameters that determine asset dynamics and state variables. However, we live in a
constantly changing and connected world, making this assumption unrealistic. Therefore,
we consider regime uncertainty resp. parameter uncertainty about the determination of
the value of information in our model and quantify the value of information by comparing
the certainty equivalents of two types of investors di�ering in their level of information.

The investor who has full information – i.e., she knows the respective regimes, their
parameters and the point in time when the regime switch takes place – aims at maximizing
her expected utility. Assuming that regimes are observable and therefore the parameters of
the underlying process, the optimal allocation strategy under expected utility maximiza-
tion of a CRRA investor is given as the Merton solution of the respective regime (cf. Ocejo
(2018), Becker et al. (2022)). This solution is a time-independent constant mix strategy.4

3 Reasons for the use of an observable Markov chain are provided in Section 5.2. We consider two regimes
following the research of Hardy (2001), Guidolin and Timmermann (2005) and Ahmad et al. (2015).
On the one hand, they provide empirical evidence for the existence of two regimes. On the other hand,
they find through model calibration that adding an additional regime does not improve the model.
Nevertheless, our model can be extended by increasing the number of more than two regimes, adding
and removing regimes. However, it should be noted that the complexity of the calculation increases.

4 Note that in our setup full information denotes the case where the Markov chain is observable. Thus
the investor can condition her strategy on the optimal solution of the current regime which is defined
by the model parameters. When a regime switch occurs, she simply switches her optimal investment
strategy to the Merton solution of the new regime.
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The strategy of an investor who has no full information about the future asset price
dynamics turns out to be time-dependent. Time inconsistency arises for the investor due
to the regime uncertainty. The investor is uncertain if and when a regime switch will
take place. Policy changes a�ect asset price dynamics. Even if the future regime is known
through an policy announcement, investors may not know exactly when the changes will
be reflected in the price dynamics of stocks. We assume that the investor cannot learn
about it over time either. Therefore she wants to rely on a regime-independent strategy.
This implies a constant investment fraction as optimal deterministic strategy. We refer
to the maximizing strategy as the optimal pre-commitment strategy. A pre-commitment
strategy helps the investor to stick with her initial investment decision. We are interested
in such pre-commitment strategies, and the aim of this paper is to shed light on the impact
of time inconsistency on investment decisions.5

Time inconsistency arises naturally in many (dynamic) decision problems. One ex-
ample is heterogeneity in time preferences where every method of aggregating utility func-
tions is time-inconsistent (cf. Jackson and Yariv (2015)). Time inconsistency implies that
an investor who dynamically invests reconsiders her strategy at a later date. There is lim-
ited research so far that considers the presence and problem of time inconsistency as an
anomaly in behavioral finance when allocating assets in a regime-switching environment.
Yang et al. (2020) investigate a mean-variance portfolio optimization problem under a
game-theoretic framework. Liang and Song (2015) consider a similar problem in an insur-
ance economics context. Yang and Cao (2019) analyze optimal time-inconsistent financing
and dividend payout strategies in a regime-switching environment where the manager has
a hyperbolic discount function. Some papers examine an investment-consumption prob-
lem where the discount functions depend on the prevailing regime of the environment (cf.
Pirvu and Zhang (2011), Wei et al. (2020)). Thus, time inconsistency is deterministically
given via a discount function. Accounting for regime switches, the latter derive optimal
solutions for this time-inconsistent problem for di�erent utility functions.6

We show that, as in the paper by Becker et al. (2022), who do not consider regime-
switching, but assume an a priori lottery over two regimes, the optimal pre-commitment

5 Note that we do not account for learning in this setup.
6 Under a game-theoretic framework time-inconsistent control problems have also been studied where the

asset price dynamics depend on the regime-switching environment (cf. Bjork and Murgoci (2010), Wei
(2017), Pun (2018) and Mei and Yong (2019)).
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strategy is given as a weighted average of the Merton solutions of the two regimes. The
strategy depends on the length of the investment horizon, such that the optimal fraction
that a long-term investor invests in the risky asset di�ers significantly from the fraction
that a short-term investor invests. The regime uncertainty can be expressed by the intensity
parameter ⁄. As the investment horizon increases, a regime switch becomes more likely
and the importance of the first regime decreases, so a time-inconsistent investor biases her
strategy towards the second regime (worst-case strategy). We find that regime uncertainty
has only a slightly impact on the optimal certainty equivalent return as long as the pre-
commitment strategy is correct on average. Furthermore, we investigate ⁄crit at which
the value of information is highest for a time-inconsistent investor who implements a pre-
commitment strategy. Other (non-optimal) pre-commitment strategies will be discussed.

In this chapter we proceed as follows: First, a literature review of theoretical papers
is provided, which use regime-switching in asset allocation and asset pricing and serves
as motivation for our setup. In Section 5.3 we will present the decision model in which
we want to analyze utilization e�ects. Section 5.4 gives an analysis of di�erent investment
strategies and the value of information in a regime-switching environment resulting from
the availability of di�erent levels of information. The value of information is given by
the di�erence of the certainty equivalents associated with the optimal strategies with and
without regime information. We conclude in Section 5.4.

5.2 Motivation for setup

5.2.1 Regime-switching in asset allocation and asset pricing

As mentioned before, the consideration of regime shifts in asset pricing and asset allocation
has significant implications for optimal investment strategies. Asset price dynamics, which
may be a�ected by regime switches, are critical factors in determining optimal investment
strategies. A regime-switching model can be used to extend the classical assumption of
Black and Scholes (1973) that the price process of the stock follows a geometric Brownian
motion. In the Black-Scholes world, the parameters of der underlying process are constants,
whereas in the regime-switching model the parameters take on di�erent values in di�erent
time periods. Regime-switching models are more realistic as they take into account the fact
that financial market parameters may change over time due to changing environmental
conditions triggered, for example, by political and regulatory events.
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With regard to the theoretical consideration, the dynamics of the risky stock, i.e., the
drift µ and the di�usion coe�cient/volatility ‡, are stochastically controlled via a Markov
chain. Thus, the asset price dynamics are driven by di�usion processes with regime de-
pendent drift µ and volatility ‡.7 A distinction can be made between an observable
Markov chain and a hidden Markov chain.8 In the following, the di�erence between the
two Markov chains will be briefly discussed from a theoretical perspective:

Observable Markov chain
Assuming that regime switches are independent of the underlying Brownian motion and
observable, there are closed form (or quasi closed form) solutions available. Let (Yt)tœ[0,T ]

be an observable Markov chain, i.e., the current state of the Markov chain Y0 = si at
time t = 0 is known. In the context of the financial market let (Wt)tœ[0,T ] be a Brownian
motion, (St)tœ[0,T ] the price of the risky asset and (Bt)tœ[0,T ] the risk free bond. S and B

should be adapted to the filtration FO = (FO
t )tØ0, where FO

t = ‡(Wi, Yi; 0 Æ i Æ t). This
means that FO

t is the sigma algebra generated by the Brownian motion and the Markov
chain. By using this filtration when evaluating the asset evolution, full information about
the Brownian motion and the Markov chain is available up to time t, so the current state
of the Markov chain is known. For the assumption that (Yt)tœ[0,T ] has two regimes, where
the states are s1 and s2, the unconditional probability at t = 0 of the Markov chain is
given by

P (Y0 = s1) = p, P (Y0 = s2) = 1 ≠ p,

i.e., the Markov chain starts in Regime 1 with probability p and in Regime 2 with 1 ≠ p.
With the transition probabilities qij(t, u) := P(Yu = sj |Yt = si), the generator A of the
continuous-time Markov chain is defined as follows:

At =

Q

a a11(t) a12(t)
a21(t) a22(t)

R

b , where

aij(t) := lim
hæ0

qij(t, t + h) ≠ ”ij

h
, where ”ij :=

Y
_]

_[

1, i = j

0, i ”= j.

7 There is also research that allows the price dynamics of the risk-free asset to depend on the current
regime at time t (see the literature given in Table 5.1). However, for simplicity and feasibility, we assume
that the risk-free interest rate r is constant and equal to 0.

8 In the literature, a synonymous term used for a hidden Markov chain is an unobservable Markov chain.
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The generator indicates the constant, instantaneous intensity of a transition from one
regime to another (cf. Capponi and Figueroa-López (2014)). Assuming that the financial
market model contains two assets, a risky asset S and a risk-free asset B, both have to
be adapted to the filtration FO = (FO

t )tØ0. Using this filtration by evaluating the asset
evolution, all information about the Brownian motion and the Markov chain up to time t

are known. This means the current state of the Markov chain is known, and the dynamics
of the risky asset (St)tœ[0,T ] can be defined by

dSt = Stµ(Yt)dt + St‡(Yt)dWt, (5.1)

where the drift µ and the volatility ‡ both depend on the observable Markov chain
(Yt)tœ[0,T ] .

Hidden Markov chain
Let (Y H

t )tœ[0,T ] be a hidden Markov chain. Due to the fact that the current state of the
chain at time t = 0 is unknown, the filtration has to be adjusted. In the analysis of the asset
evolution St or Bt, the filtration FH = (FH

t )tØ0 is used, where FH
t = ‡(Si; 0 Æ i Æ t).

In contrast to the filtration FO
t , where the information about the current state of the

Markov chain and the Brownian motion are included, the filtration FH
t is the sigma algebra

generated by the risky asset S. This means that at time t the investor can only observe the
asset price St, but neither information about the current regime of the Markov chain nor
information about the Brownian motion is known. To overcome this, filtered probabilities
have to be used. For the assumption of the existence of two regimes the filtered probabilities
are defined by

pt = P (Y H
t = s1|FH

t ) Markov Property= P (Y H
t = s1|St) (5.2)

1 ≠ pt = P (Y H
t = s2|FH

t ) Markov Property= P (Y H
t = s2|St), (5.3)

where p0 (resp. 1 ≠ p0) is the probability that at time t = 0 the hidden Markov
chain starts in Regime 1 (resp. Regime 2). Transition probabilities must be determined
to calculate the filtered probabilities. Honda (2003) uses the simplified assumption that
the transition probabilities are modeled via an exponential distribution with intensity
parameter ⁄. With this assumption the stochastic process of the filtered probabilities
evolves as follows:

dpt = ⁄(1 ≠ 2pt)dt + pt(1 ≠ pt)
µ(s2) ≠ µ(s1)

‡
dWt = µp(pt)dt + ‡p(pt)dWt, (5.4)
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where µp(pt) = ⁄(1 ≠ 2pt) and ‡p(pt) = pt(1 ≠ pt)µ(s2)≠µ(s1)

‡ . The price dynamics of the
risky stock can now be represented as

dSt = Stµp(pt)dt + St‡p(pt)dWt. (5.5)

Combining the risk free asset, the filtered probabilities given in (5.4) and the risky asset
given in (5.5) with the filtration (FH

t )tØ0 on the probability space (�, F , P ), a so-called
Markovian equivalent economy is constructed in which asset allocation problems can be
considered in a regime-switching environment with unknown regimes.

To shed light on the significance of regime-switching models, Table 5.1 collects some
research papers that use observable and hidden Markov chains in an asset pricing and asset
allocation context with di�erent application areas (Applic.). The literature is classified by
application area (general, default risk, option pricing, insurance and risk measures) and
type of Markov chain (hidden: HMC, observable: OMC):9

Table 5.1: Selected papers that incorporate RS via Markov chains

Applic. MC Paper Overview/Research topic

General HMC
Honda
(2003)

studies a dynamic optimal consumption and portfolio
selection of an investor with power utility for a situation
in which the drift of the risky asset follows a
regime-switching process. The optimal strategy of an
investor with a long time horizon may di�er significantly
from that of an investor with a short time horizon. This is
caused by an investor’s demand for hedging against
fluctuations in mean returns.

HMC
Taksar and
Zeng (2007)

provide an optimal strategy of a CRRA investor in a
multi-stock market where the drift and volatility of stock
price dynamics depend on regime states. They find an
approximation for the optimal strategy in a recursive way.

9 The literature presented uses as dynamic asset model choice, as we do, a Black Scholes world, where
the stock price follows a geometric Brownian motion with constant drift and constant volatility. There
are also other models (e.g., volatility models, jump di�usion models) that incorporate regime-switching
processes. For reasons of scope and due to the fact that the Black Scholes model is the most common
model, other models are not discussed. For further information see Naik (1993) and Liang and Bayraktar
(2014).
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OMC

Sotomayor
and

Cadenillas
(2009)

study a consumption and investment problem assuming
di�erent utility functions, where the prices of the risk-free
asset and n risky assets depend on the respective regime
of the financial market. They show that the optimal
investment fraction in the risky asset is greater in a bull
market than in a bear market. The optimal consumption
to wealth ratio depends not only on the regime, but also
on the investor’s risk attitude. Risk-averse investors
consume more in a bull market than in a bear market.

HMC
Luo and

Zeng (2014)

consider in a multi-stock-model an asset allocation
problem of investors with hyperbolic utility functions.
The market model is incomplete, and the returns and
volatilities of stocks are controlled by a hidden Markov
process. The researchers are able to determine the
approximate optimal strategy recursively.

OMC
Shen and
Siu (2012)

examine an optimal asset allocation problem in a financial
market that can take on two regime states with the
possibility of investing money risk-free in the bank
account, in a stock or a zero-coupon bond. For the
exponential utility case, numerical analyses are conducted
with the result that regime switches have significant
e�ects on the optimal investment strategies for stocks and
bonds. The market prices of risk are essential factors in
determining the optimal investment strategies.

OMC
Ocejo
(2018)

studies the utility maximization problem for the terminal
wealth of a CRRA investor who invests in a riskless bond
and a risky asset. She finds explicit solutions in a two and
three regime world. The optimal fraction of wealth
invested in the risky asset remains constant in each regime
and is the Merton solution of the regime.

HMC
Campani et
al. (2021)

analyze optimal portfolio and consumption strategies
under the assumption of four regimes in which a
decision-maker can invest in large and small stocks,
long-term government bonds, and a risk-free asset. They
develop analytical approximations and find that the
optimal strategy has a myopic and a hedging component
and also depends on the regime probability. The
consumption-to-wealth ratio is largely independent of the
state of the economy, unlike the asset allocation strategy.
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Default
Risk

OMC

Capponi
and

Figueroa-
López
(2014)

provide investment strategies where the price dynamics of
assets (defaultable bond, stock and bank account) are
governed by a regime switch. They obtain explicit
constructions of value functions by splitting the utility
maximization problem into a pre- and post-default
component. As the time of maturity approaches, the bond
prices in the di�erent regimes converge, so that the
expected return decreases. A logarithmic investor changes
her strategy from a long position to a short position
sooner than a power utility investor when risk is high.

HMC
Capponi et
al. (2015)

consider an investor with power utility who maximizes her
expected utility by allocating her wealth into a stock, a
defaultable security, and a bank account. Using a
numerical analysis, it can be shown that the investor
increases her stock holdings when the probability of being
in a economically good regime increases, and decreases her
credit risk exposure when the probability of being in
regimes with high default risk increases.

HMC
Choi et al.

(2015)

develop a model for the term structure of credit risk
spreads, where the borrower’s creditworthiness is
represented as a regime-switching process. The e�ciency
of the model-theoretic representation is demonstrated
using a callable bond.

HMC
Bo et al.
(2019)

examine asset allocation in a credit market under the
assumption that the contagion e�ect upon default may
depend on di�erent regimes. They provide an approximate
strategy via dynamic programming and provide
foundations for the numerical treatment of risk-sensitive
portfolio problems with defaults and stochastic factor
processes.

Option
Pricing

HMC
Bu�ngton
and Elliott

(2002)

deal with the valuation of European and American
options when the interest rate of the risk-free asset and
the drift and volatility of the underlying stock depend on
the state of the environment. They propose a valuation for
European options and obtain a Black-Scholes equation. In
addition, an approximate solution for American options is
found.
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HMC
Elliott et al.

(2005)

study an option pricing problem, where the drift and
volatility of the risky underlying asset and the market
interest rate follow a regime-switching process. They
develop a method for the valuation of options that can be
extended to the valuation of other options, interest rate
products, and credit derivatives.

HMC
Boyle and
Draviam
(2007)

evaluate European, Asian, and lookback options under the
assumption that the volatility of the underlying stock
follows regime switches. They perform numerical analyses
and conclude that the di�erence between option prices
with and without regime switches is substantial for
lookback options and more moderate for European and
Asian options.

HMC
Henriksen

(2011)

investigates the pricing of barrier options using a
regime-switching model. The regime-switching model can
reproduce Norwegian stock market index data better than
the traditional Black-Scholes model.

OMC
Fu et al.
(2014)

investigate an asset allocation problem to maximize the
expected utility of the terminal wealth of a decision-maker
who can invest in an option, an underlying stock, and a
risk-free bond in a regime-switching environment. The
optimal value function is a solution to a dynamic
programming equation, leading to explicit forms for the
optimal value function. They show that it is optimal for
an investor in a multi-regime-market to allocate her
wealth in the same way as in a single-regime-market as
long as the current state of the Markov chain is known.

HMC
Zhu et al.

(2019)

consider a pricing problem for a European call option in
which both the market interest rate and the volatility
process of the underlying stock price follow a
regime-switching process. Numerical analyses are
performed to evaluate the model. The consideration of
regime-switching in option evaluation is useful.
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Insurance HMC Siu (2005)

develops a model to value participating life insurance
policies with surrender options and interest rate
guarantees when the asset’s market value dynamics are
driven by a regime-switching process. A decomposition of
the value of the policy into the value of an identical
contract without surrender options and the premium of
the surrender options has been performed and an
approximate solution to the problem has been found.

OMC
Lin et al.

(2009)

develop a model for the valuation of equity-indexed and
variable annuities where the dynamics of the underlying
asset and the interest rate jointly follow a
regime-switching process. Numerical analyses illustrate
the importance of regime-switching in the context of
guarantee pricing.

HMC
Korn et al.

(2011)

consider an asset allocation problem in a regime-switching
environment of a member of a defined contribution
pension plan who wants to maximize the expected utility
of the terminal wealth. They develop a robust filter for the
hidden state of the economy and present an algorithm for
estimating the unknown parameters. Explicit investment
strategies for an investor with logarithmic utility are
derived.

OMC
Chen and

Delong
(2015)

investigate an asset allocation problem for a
contribution-based pension scheme. They identify an
investment strategy that maximizes expected exponential
utility of the discounted excess wealth over a target
payment (target lifetime annuity).

OMC
Fan et al.

(2015)

evaluate equity-linked annuities with mortality risk using
a regime-switching model. Via numerical analysis, it is
found that the proposed model beats
single-regime-switching models because they may
underestimate the prices of equity-linked products.

HMC
Jang and

Kim (2015)

study an asset allocation problem for an insurer that
purchases reinsurance and show via numerical analyses
that regime changes can a�ect the optimal reinsurance
strategy, asset allocation strategy, and insurance coverage
significantly. Insurers opt for a higher reinsurance ratio
and lower risky investment during a high volatile regime.
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Risk
mea-
sures

HMC
Billio and
Pelizzon
(2000)

use a regime-switching approach to predict the return
distribution and estimate the Value at Risk of individual
stocks as well as portfolios. Using back tests, they find
that the regime-switching approach is superior to other
methods of calculating Value at Risk values.

HMC
Elliott et al.

(2008)

provide an approach to evaluate risk measures for
derivative financial instruments on the basis of a
Markov-modulated Black-Scholes model. The approach
provides an e�ective way to value risk measures for
European options, barrier options, and American options.

OMC
Yiu et al.

(2010)

considers the optimal asset allocation of a utility
maximizer with a Value at Risk constraint when the price
dynamics of the risky asset follow a regime-switching
process. The maximum value of the portfolio’s Value at
Risk in a short period of time over di�erent states of the
chain is obtained. Numerical results can be provided for
the sensitivity analysis of the optimal portfolio and the
Value at Risk level with respect to the model parameters.

MC= Markov chain, OMC= observable Markov chain, HMC= hidden Markov chain

Furthermore, there are various strands of literature that deal with extensions in
the theoretical analysis (e.g., ambiguity, learning), other optimization problems (mean-
variance analysis) and empirical applications (time series).10 In the following the literature
strands are briefly discussed:

A research paper that deals with an investment problem under ambiguity in a
regime-switching environment is Kim et al. (2009). Liu (2011) examines a continuous-
time intertemporal consumption and portfolio choice problem under ambiguity, where the
drift of a risky asset follows a hidden Markov chain.

Literature dealing with regime-switching and learning in the context of asset alloca-
tion and pricing is extensive. Tu (2010) provides a framework for portfolio decision-making
that accounts for regime change and parameter uncertainty. Berrada et al. (2018) consider
regime-switching and learning in the context of asset pricing. Epstein and Schneider (2007),

10 For the sake of an comprehensive literature review, we briefly address each literature strand based on
selected research papers. We abstain from considering ambiguity and learning in our setup due to the
fact that we want to focus primarily on analyzing the value of information of a time-inconsistent investor
with CRRA-utility in a regime-switching environment.
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Ju and Miao (2012) and Liu and Zhang (2022) analyze portfolio choice and asset pricing
problems in a regime-switching environment considering ambiguity and learning.

In addition to Merton’s portfolio problem (see references for asset allocation in Table
5.1), Markowitz’s mean-variance approach is also frequently used in portfolio theory. In
this asset allocation setup, some research papers take into account a regime-switching
environment. Zhou and Yin (2003) solve a continuous-time version of the Markowitz mean-
variance portfolio selection model in which the market consists of a bank account and
several stocks that follow an observable Markov chain (for the case of a HMC see Elliott
et al. (2010)). Xie (2009) extends the approach by adding a stochastic liability to the
decision problem. Using a continuous-time and multi-period regime-switching model Chen
et al. (2008) and Chen and Yang (2011) study an asset-liability management problem
in the mean-variance framework. Chen and Yam (2013) consider an insurer’s optimal
investment reinsurance problem in which the claim variable follows a regime-switching
process. Frauendorfer et al. (2007) and Bae et al. (2014) develop a portfolio selection
problem of a pension fund and find that considering the possibility of regime changes
in the mean-variance framework improves portfolio performance, especially in times of a
crisis. Collin-Dufresne et al. (2020) solve a portfolio choice problem in a mean-variance
framework when expected returns, covariances, and trading costs follow a regime-switching
model.

Regime-switching models also find use in the estimation and forecasting of time se-
ries. They account for structural breaks and counter biased estimates (cf. Ang and Bekaert
(2002)). Some research papers find that regime-switching models can characterize time se-
ries behaviour of certain variables (e.g., stock returns) better than models accounting for
only one regime (cf. Hamilton and Susmel (1994), Schaller and Norden (1997)). Hamilton
(1989) and Erlwein et al. (2012) suggest for the prediction of macroeconomic variables, such
as GDP, to let the parameters of an autoregression depend on a Markov chain. Bollen et al.
(2000) capture exchange rate movements. Hardy (2001) finds that regime-switching models
provide a better fit to stock price data from a historical period than other commonly used
econometric models (e.g., GARCH models). Giesecke et al. (2011) use a regime-switching
model to forecast corporate bond default rates by financial and macroeconomic variables,
such as GDP and stock return volatility. Guidolin and Hyde (2012) compare VAR-models
with regime-switching models to make predictions about the future return evolution of
stocks and bonds in the context of long-term investments. A regime-switching model is
more complex but produces portfolios that better protect investors from possible future
changes and produce higher quality predictions.
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5.2.2 Challenges in considering regime switches

The consideration of regime-switching leads to challenges in model theory. Regime-switching
models with a hidden Markov chain take into account that in reality investors often do not
have full information about the price dynamics of future assets. However, the optimization
of the expected utility of the terminal wealth of the investor is not straight forward and
closed-form solutions are not available. The optimization problem and the determination
of an optimal strategy can only be solved numerically, e.g., using Monte Carlo simulations.
Explicit solutions for the optimal strategy are only obtained in special cases, e.g., when
the investor has a logarithmic utility function (cf. Honda (2003), Taksar and Zeng (2010),
Chen and Delong (2015)).11

Further, research papers dealing with regime-switching in asset allocation make var-
ious assumptions to avoid the problem of time inconsistency. The assumptions are very
specific and less likely to be encountered in real life portfolio decisions. For example, Korn
et al. (2011) assume an investor who has a logarithmic utility function. Siu (2012) finds a
solution for the optimal strategy, assuming risk-neutral asset dynamics. Kim et al. (2009)
also consider a risk-neutral entrepreneur. Welling et al. (2015) explicitly point out that
their results are a�ected by the assumption of risk neutrality. Also, by assuming myopic
investor behavior (time horizon of T approaching 0), the model setup simplifies, and time
inconsistency is avoided (cf. Becker et al. (2022)).

Without these assumptions the optimization problem becomes highly nonlinear due
to expected utility aggregation. The optimal strategy results from a non-linear function
of the portfolio weights, which is time dependent. This violates Bellman’s stochastic opti-
mality principle, which states that a control law that is optimal for the entire time interval
[0, T ] is also optimal for each subinterval [t, T ] (cf. Liang and Song (2015), Mei and Yong
(2019)).12

To demonstrate the di�erence between time-inconsistent and time-consistent strate-
gies that can be achieved by a small change in model assumptions, we compare the value

11 In our setup, we decide to model the regime-switching environment on the basis of an observable Markov
chain. However, we will still address the issue of parameter uncertainty by assuming an investor who
does not have full information about the Markov chain and therefore has to pre-commit.

12 The dynamic mean variance framework is also time-inconsistent in the sense that the Bellman optimality
principle does not hold. Therefore, the optimal strategy that maximizes the objective function at the
initial time does not necessarily optimize the objective function at a later time (cf. Yang et al. (2020)).
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of informationin of a CRRA investor obtained in the setup of Becker et al. (2022) with
the value of information of an investor with a logarithmic utility function under otherwise
identical assumptions.13 The assumption that the investor has a CRRA utility function
whose risk aversion parameter “ > 1 leads to a time-inconsistent pre-commitment strat-
egy for an investor who does not have full information about the regimes (see Chapter
4). Here, the optimal pre-commitment strategy fiú,pre

T,p is given by the weighting factor
–ú

T,p = –T,p(fiú,pre

T,p ) where

fiú,pre

T,p := –ú
T,pfiMer

1 + (1 ≠ –ú
T,p)fiMer

2 ,

–T,p(fi) = p‡2
1f1(fi, T )

p‡2
1
f1(fi, T ) + (1 ≠ p)‡2

2
f2(fi, T )

and fi(fi, T ) = ey(fi,i)(1≠“L)T , i = 1, 2.

However, by assuming a logarithmic utility function under the identical setup, we
show that the optimal pre-commitment strategy is independent of time and given by

ˆEP
Ë
u

1
VT

V0

2È

ˆfi
= p‡2

1fiMer
1 T + (1 ≠ p)‡2

2fiMer
2 T ≠ fiT (p‡2

1 + (1 ≠ p)‡2

2) != 0

… fiú,pre = p‡2
1fiMer

1 + (1 ≠ p)‡2
2fiMer

2

p‡2
1

+ (1 ≠ p)‡2
2

(5.6)

More detailed explanations and the calculation of the optimal pre-commitment strat-
egy that maximizes the expected utility for an investor with a logarithmic utility function
can be found in the Appendix B.2 (in particular Proposition 15). By means of the formula
(5.2.2) it can be seen that the optimal strategy does not depend on the investment horizon
T . For investors with logarithmic utility function, it turns out that the time horizon in
this setup does not play any role in determining the optimal portfolio and the investor
acts in a time-consistent manner. In Figure 5.1, we see that the value of information of
a time-inconsistent CRRA-investor di�ers significantly from the value of information of a
time-consistent investor with logarithmic utility. For a time-consistent investor with log-
arithmic utility, the value of information increases as the time horizon T increases. The

13 Note that the value of information is given by the quotient of the certainty equivalents from a strategy
under full information and a pre-commitment strategy under no information. In case of full information
the regime is observable and the investor can condition her strategy on the regime.
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value of information is greater the more uncertain the investor is about which regime
prevails in reality (p = 0.5). Comparing the absolute values in the images is not useful
because the certainty equivalents of time-consistent and time-inconsistent investor have a
di�erent scale due to di�erent utility functions. For the analysis of the time-inconsistent
strategy, see the content in Chapter 4.

Value of information depending on time-consistent and time-inconsistent
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Figure 5.1: On the left hand side of the illustration the value of information is created for a time-
inconsistent CRRA utility investor with a “R = “L = 4. On the right hand side of the illustration the
value of information is created for a time-consistent investor with a logarithmic utility function. We use
the benchmark parameter set of Chapter 4. The black graphs are plotted for p = 0.2, the black dashed for
p = 0.5 and the gray dashed for p = 0.7.

An easy intuition why the assumption of an investor with a logarithmic utility
function avoids time inconsistency is that logarithmic utility implies myopic behavior.
However, it is often the case that investors are neither myopic nor act risk neutral and
want to invest their money in the long run. Due to the fact that time inconsistency is a
problem that occurs in reality and influences asset allocation decisions, time inconsistency
should be considered in model-theoretic work and not be avoided via simple assumptions.
Therefore, we consider the problem of time inconsistency in the following analysis in a
regime-switching setup. Many research papers dealing with time inconsistency assume
time-inconsistent behavior via a hyperbolic discount function - time inconsistency is thus
given deterministically (cf. Wei et al. (2020)). In our approach, time inconsistency naturally
arises via the assumption that an investor does not have full information about future
market conditions, which may change over time.
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5.3 Model setup

The stylized setup is given by a regime-switching model which is represented by an ob-
servable Markov chain (Yt)tœ[0,T ] with two regimes and one regime switch can occur on
the interval [0, T ]. Moreover, we assume that the Markov chain starts in Regime 1, i.e.,
the unconditional probability at t = 0 of the Markov chain is p = 1.14 The point in time
of a regime switch which determines the transition probability from the first regime to the
second regime develops stochastically, modeled by an exponentially distributed random
variable · ≥ Exp(⁄), where ⁄ is the intensity parameter. The density and distribution
functions of · are given by

f⁄
· (x) =

Y
_]

_[

⁄e≠⁄x, x Ø 0

0, x < 0
, F ⁄

· (x) =

Y
_]

_[

1 ≠ e≠⁄x, x Ø 0

0, x < 0
. (5.7)

Thus the process (Yt)tœ[0,T ] starts with Regime 1 and remains there for an exponen-
tially distributed length of time, and then jumps at t = · to state s2. Our financial market
model contains two assets, a risky asset S and a risk-free asset B. The evolution of the
risk free asset (Bt)tœ[0,T ] is given by

dBt = Btrdt,

where r defines the risk-free interest rate. In Regime i with i œ {1, 2}, the drift and the
volatility of the stock are denoted by µi and ‡i.15 The dynamics of the risky asset (St)tœ[0,T ]

are defined by

dSt = St

1
µ11{tÆ·} + µ21{t>·}

2
dt +

1
‡11{tÆ·} + ‡21{t>·}

2
dWt, (5.8)

where S0 = s0. On each regime the asset price dynamics are log-normal distributed. We
assume that the drift and volatility depend on the Markov chain, but there are also other
possibilities to incorporate a regime switch (see Appendix B.1). In total the evolution of

14 We work on the filtered probability space (�, F , (FO

t )tœ[0,T ],P) with the filtration (FO

t )tœ[0,T ]. For further
information, see comments on observable Markov chain in Section 5.2.

15 For simplicity, we assume that the price dynamics of the risk-free asset remain unchanged by the regime
switch. Moreover, we assume that r = 0. When the current regime is given by the state s1, we write
µt = µ(Yt = 1) = µ1 and ‡t = ‡(Yt = 1) = ‡1 (resp. µ2 and ‡2 for state s2).
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the portfolio wealth of the Investor (Vt)tœ[0,T ] is given by the following dynamics:

dVt = Vt

3
fit

dSt

St
+ (1 ≠ fit)

dBt

Bt

4

= Vt (fitµ(Yt)dt + fit‡(Yt)dWt + (1 ≠ fit)rdt)

= Vt ({fit[µ(Yt) ≠ r] + r}dt + fit‡(Yt)dWt) , (5.9)

where fit is the investment fraction of the risky asset S. If the regime switches at the
random point in time · Æ T from Regime 1 to Regime 2 it holds:

X1 = VT

V0

= V·

V0

VT

V·

= e[fi(µ1≠r)+r≠ 1
2 fi2‡2

1 ]·+‡1fiW· e[fi(µ2≠r)+r≠ 1
2 fi2‡2

2 ](T ≠·)+‡2fi(WT ≠W· )

= e[fi(µ2≠r)+r≠ 1
2 fi2‡2

2 ]T e[fi(µ1≠µ2)≠ 1
2 fi2

(‡2
1≠‡2

2)]·+fi(‡1W· +‡2(WT ≠W· )). (5.10)

If the regime switches randomly at a point in time · with · > T the terminal wealth
can be stated as

X2 = VT

V0

= e[fi(µ1≠r)+r≠ 1
2 fi2‡2

1 ]T +‡1fiWT . (5.11)

The aim is to calculate and maximize the expected utility resp. the certainty equiv-
alent of an investor. Therefore, we have to determine how the investor’s preferences are
modeled in form of a utility function. We consider an investor with constant relative risk
aversion (CRRA), i.e., her utility function is given by

u(x) :=

Y
_]

_[

x1≠“

1≠“ , for “ > 1

ln x, for “ = 1
, (5.12)

where “ denotes her relative risk aversion. In the context of this research work, we will
only consider the case of “ > 1. We can state the expected utility optimization problem
of the investor’s terminal wealth by

max
fit

EP

5
u

1VT

V0

26
. (5.13)

The proof is given in Appendix 13

Assumption 3 (Regime 1 and Regime 2)
We consider two regimes, where µ1 > µ2 and ‡1 < ‡2. Thus, the financial market param-
eters in the first regime are more beneficial than in the second regime.

105



5 Optimal asset allocation for a time-inconsistent investor in a RS environment

1. Regime 1 is the good regime and Regime 2 is the bad regime, i.e., it holds that

⁄1 = µ1 ≠ r

‡1

> ⁄2 = µ2 ≠ r

‡2

.

2. The optimal portfolio weight in Regime 1 exceeds the optimal portfolio weight in
Regime 2, i.e., it holds that

fiMer
1 = µ1 ≠ r

“‡2
1

> fiMer
2 = µ2 ≠ r

“‡2
2

.

With regard to the level of information, there arise di�erent optimization problems.
If the investor has full information, she can choose the optimal strategy fiú

t in the
respective regime. Following Ocejo (2018) the optimal solution of problem (5.13) is then
given by

fiú
t = µ(Yt) ≠ r

“‡(Yt)2
.

where the parameters of the asset price dynamics are depending on the current regime at
time t and the optimal strategy results by adapting the investment fraction to the Merton
solution which fits the current parameters in the regime.16

Proposition 12
For the assumption that Regime 1 is present at time t = 0 and the regime switches from
state s1 to state s2 at time t = · , the optimal investment strategy of the investor with full
information is given by

fiú
t = 1{t<·}fiMer1 + 1{tØ·}fiMer2 (5.14)

= 1{t<·}
µ1 ≠ r

“‡2
1

+ 1{tØ·}
µ2 ≠ r

“‡2
2

,

while

fiú
t := arg max

fit

EP

5
u

1VT

V0

26
.

16 The result of Merton (1971) provides the optimal investment fraction fiú in the risky asset in a single-
regime-setting. The optimal strategy is given by fiú

t = fiú = fiMer = µ≠r

“‡2 , which means following a
constant mix strategy will maximize the investor’s expected utility. Any deviation from the optimal
Merton solution leads to a utility loss for the investor. fiú is larger in a market that represents good
economic conditions than in a crisis period. If a regime switch occurs, the Merton solution of the previous
regime of course cannot be optimal anymore because of the changing drift and volatility parameters.

106



5 Optimal asset allocation for a time-inconsistent investor in a RS environment

The savings rate y(fi, i) within Regime i (i œ {1, 2}) is given by

y(fi, i) = r + fi(µi ≠ r) ≠ 1
2“fi2‡2

i .

fiMer
i = µi≠r

“‡2
i

denotes the Merton strategy in Regime i. With Eqn. (5.14), it thus
holds

y
1
fiMer

i , i
2

= r + 1
2“

· (µi ≠ r)2

‡2
i

= r + 1
2“

· ⁄2

i .

Now, we consider an investor who must pre-commit herself to a constant investment
fraction fi due to the fact that she has no full information about future asset price
dynamics and the point in time when a regime switch occurs. We are able to calculate the
expected utility of the investor’s optimal strategy in closed-form:

Proposition 13
The optimal pre-commitment strategy maximizes expected utility when the investor has no
full information.

fiú,pre
T := arg max

fit

EP

5
u

1VT

V0

26
s.t. fit = fi.

Let u be the CRRA utility function with relative risk aversion parameter “, · the
exponentially distributed random point in time with intensity parameter ⁄ where the regime
switches from state s1 to state s2 and T the maturity of the investment. Then the expected
utility of the terminal wealth VT can be stated as

EP

5
u

3
VT

V0

46
= 1

1 ≠ “

5
⁄e›2T 1

‹ ≠ ⁄

Ë
e(‹≠⁄)T ≠ 1

È
+ e(›1≠⁄)T

6
, where

›1 =
5
fi(µ1 ≠ r) + r ≠ 1

2“‡2

1fi2

6
(1 ≠ “)

›2 =
5
fi(µ2 ≠ r) + r ≠ 1

2“‡2

2fi2

6
(1 ≠ “),

‹ =
5
fi(µ1 ≠ µ2) ≠ 1

2fi2(‡2

1“ ≠ ‡2

2“)
6

(1 ≠ “).

We can further simplify to

EP

5
u

3
VT

V0

46
= 1

1 ≠ “

Ë
a(fi, ⁄)ey(fi,1)(1≠“)T e≠⁄T + (1 ≠ a(fi, ⁄))ey(fi,2)(1≠“)T

È
, with

a(fi, ⁄) = ›1 ≠ ›2

›1 ≠ ›2 ≠ ⁄
= y(fi, 1)(1 ≠ “) ≠ y(fi, 2)(1 ≠ “)

y(fi, 1)(1 ≠ “) ≠ y(fi, 2)(1 ≠ “) ≠ ⁄
, and

›1 =
5
fi(µ1 ≠ r) + r ≠ 1

2“‡2

1fi2

6
(1 ≠ “) = y(fi, 1)(1 ≠ “)

›2 =
5
fi(µ2 ≠ r) + r ≠ 1

2“‡2

2fi2

6
(1 ≠ “) = y(fi, 2)(1 ≠ “).
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The proof is given in Appendix B.3.

Remark 3
(i)Notice that the parameter ›1 only depends on the first regime, ›2 only on the second
regime and ‹ is an interaction term between both regimes with ‹ = ›1 ≠ ›2.

(ii) Using the relation EP
Ë
u

1
VT

V0

2È
= u(CE) we can easily calculate the certainty equivalent

(CE) of the terminal wealth where

CE =
5

›1 ≠ ›2

›1 ≠ ›2 ≠ ⁄
e(›1≠⁄)T + ≠⁄

›1 ≠ ›2 ≠ ⁄
e›2T

6 1
1≠“

.

(iii) With “ = 0 we get the closed-form formula for the expected value of the terminal
wealth EP(VT ).
(iiii) Defining yT (fi) = 1

T ln(CE) as the certainty equivalent return we get for r = 0 and
“ > 1

yT (fi) = 1
(1 ≠ “)T ln[a(fi, ⁄)ey(fi,1)(1≠“)T e≠⁄T + (1 ≠ a(fi, ⁄))ey(fi,2)(1≠“)T ].

(iv) When the investor is well informed about the parameters that hold in the two possible
regimes she is able to invest the optimal investment fractions fiMer1 and fiMer2 in the risky
asset. The parameters ›1, ›2 and ‹ are then of the following form

›Mer
1 =

5
fiMer1(µ1 ≠ r) + r ≠ 1

2“‡2

1(fiMer1)2

6
(1 ≠ “)

›Mer
2 =

5
fiMer2(µ2 ≠ r) + r ≠ 1

2“‡2

2(fiMer2)2

6
(1 ≠ “)

‹Mer = ›Mer
1 ≠ ›Mer

2 .

5.4 Impact of time inconsistency on optimal asset allocation

and the value of information

We solve the optimization problems of investors which di�er in their information content
under a regime-switching environment. Problems stemming from time inconsistency are
illustrated and discussed via the value of information. We will analyze and compare the
strategies associated with the above-mentioned optimization problems. To perform our
analyses, we will use the benchmark parameter setup of Chapter 4.

As it turns out, the pre-commitment strategy fiú,pre

T gives rise to a time-inconsistent
strategy due to the fact that the strategy depends on the time horizon T . The lack of
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Benchmark parameter

µ1 µ2 ‡1 ‡2 r

0.1316 0.0769 0.2080 0.2221 0.00

Table 5.2: Benchmark parameter constellation.

information due to regime uncertainty leads to a time-inconsistent behavior of the investor.
The proof of Proposition 14 is given in the Appendix B.4.

Proposition 14
For “ > 1 the optimal pre-commitment strategy is given by the implicit function

fiú,pre
T = fiMer

1

–1(fiú,pre
T )

1 ≠ –3(fiú,pre
T )

+ fiMer
2

–2(fiú,pre
T )

1 ≠ –3(fiú,pre
T )

, with –1 + –2 + –3 = 1 where

–1(fiú,pre
T ) = [⁄‡2

1(e(›1≠⁄)T ≠ e›2T ) ≠ T (›1 ≠ ›2 ≠ ⁄)(›1 ≠ ›2)‡2
1e(›1≠⁄)T

T⁄e›2T ‡2
2
(›1 ≠ ›2 ≠ ⁄)

–2(fiú,pre
T ) = ⁄‡2

2(e›2T ≠ e(›1≠⁄)T ) + T⁄e›2T ‡2
2(›1 ≠ ›2 ≠ ⁄)

T⁄e›2T ‡2
2
(›1 ≠ ›2 ≠ ⁄)

–3(fiú,pre
T ) =

1
⁄e›2T ≠ ⁄e(›1≠⁄)T

2
(‡2

1 ≠ ‡2
2) + T (›1 ≠ ›2 ≠ ⁄)(›1 ≠ ›2)‡2

1e(›1≠⁄)T

T⁄e›2T ‡2
2
(›1 ≠ ›2 ≠ ⁄) .

We can further aggregate the weighting factor of the Merton solutions fiMer
1 and fiMer

2 :

fiú,pre
T = —fiMer

1 + (1 ≠ —)fiMer
2 , where

— = ‡2
1g1

‡2
1
g1 + ‡2

2
g2

, 1 ≠ — = ‡2
2g2

‡2
1
g1 + ‡2

2
g2

with

g1 =e≠⁄T ey(fiú,pre

T
,1)(1≠“L)T

3
T (›1 ≠ ›2)(›1 ≠ ›2 ≠ ⁄)

⁄
≠ 1

4
+ ey(fiú,pre

T
,2)(1≠“L)T

g2 =e≠⁄T ey(fiú,pre

T
,1)(1≠“L)T + ey(fiú,pre

T
,2)(1≠“L)T (T (⁄ ≠ ›1 + ›2) ≠ 1).

It Holds: P(· > T ) = e≠⁄T ; P(· Æ T ) = 1 ≠ e≠⁄T .

The proof is given in Appendix B.4. The intensity parameter ⁄ determines the
frequency of the regime switch and the point in time when the switch takes place.17

17 Note that we allow only for one possible regime switch.
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It a�ects the optimal pre-commitment strategy fiú,pre
T : For ⁄ æ 0 a regime switch is

less likely and obtains later in time. Only the first regime is relevant, thus the optimal
pre-commitment strategy fiú,pre

T converges to the Merton solution from the first regime
(fiMer

1 = 0.76 with “ = 4). The proportion of — that is invested in fiMer
1 decreases with

increasing ⁄. This means that for ⁄ æ +Œ the second regime becomes more relevant, such
that fiú,pre

T approaches fiMer
2 . The optimal ⁄ for the strategy is thus reached in the limiting

cases and depends on which regime is the stable, resp. good one in the initial state (in our
case Regime 1). As the time horizon T increases, the optimal pre-commitment strategy
approaches the Merton solution of the bad regime (fiMer

2 = 0.39 with “ = 4) at a faster rate.
This is intuitive, since the investor faces greater exposure as the time horizon increases,
and regime-switching becomes more likely. An illustration of this relationship is given on
the left side of Figure 5.2.

Impact of parameter ⁄ and time horizon T on optimal pre-commitment
strategy fiú,pre

T
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Figure 5.2: The illustrations are created for “ = 4. The left figure shows the optimal pre-commitment
strategy fiú,pre

T
depending on ⁄. The black graph shows the strategy for T = 5, the black dashed graph

for T = 20 and the gray dashed for T = 50. The right figure shows the optimal pre-commitment strategy
fiú,pre

T
depending on the investment horizon T . The black graph shows the strategy for ⁄ = 0.2, the black

dashed for ⁄ = 0.5 and the gray dashed for ⁄ = 0.9.

The optimal pre-commitment strategy fiú,pre
T is obtained as a mixture of the two

Merton solutions of the two possible regimes (see Proposition 14). The longer the invest-
ment horizon, the greater the influence of the second regime. Thus, a long-term investor
places increasing weight on the state that will follow in the event of a possible regime
switch. In our case, she puts more weight on the bad state. The optimal portfolio of an
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investor with a long-time horizon di�ers significantly from an investor’s portfolio with a
short-time horizon due to time inconsistency. The di�erence is due to the investor’s need
to hedge against fluctuations in the second regime, which represents bad economic con-
ditions. A higher ⁄ implies an earlier switch to the bad regime and thus an increase of
the percentage of time spent in the bad regime, which leads to an earlier approach to the
worst case strategy (see right side of Figure 5.2).

Optimal certainty equivalent return
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Figure 5.3: The illustrations are created for “ = 4. The left (right) figure shows the optimal certainty
equivalent return of the strategies for ⁄ = 0.2 (⁄ = 0.9). The black graphs show the certainty equivalent
return for fiú

t in case of full information (overall optimal strategy). The dashed black graphs show the
certainty equivalent return for the optimal pre-commitment strategy fiú,pre

T
. The dashed gray lines picture

the certainty equivalent return of the merton solutions in the respective regime.

The certainty equivalent return of the overall optimal strategy under full information
and the optimal pre-commitment strategy is given in Figure 5.3. For T æ Œ the certainty
equivalent return converges for both strategies towards the optimal certainty equivalent
return in the bad regime (y(fiMer2, 2) = r + fiMer2(µ2 ≠ r) ≠ 0.5“fiMer2‡2

2). The larger
T , the longer the investor will be in the bad second regime, and the smaller her overall
certainty equivalent return. It is straightforward to show that the optimal pre-commitment
strategy is between the two Merton solutions. Similarly, the optimal certainty equivalent
return is between the certainty equivalent returns in the economies with only Regime
1 and only Regime 2. The higher the intensity parameter ⁄, the faster converges the
certainty equivalent return to the certainty equivalent return of the bad regime. The
certainty equivalent return using the optimal pre-commitment strategy is only slightly
smaller than the certainty equivalent return using the optimal regime-dependent Merton
solutions under full information. Since the regime switch to the bad second regime also
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a�ects an investor with full information, the certainty equivalent return of the overall
strategy (regime-dependent Merton solutions) also converges to the certainty equivalent
return of the bad regime. Thus, the risk of regime-switching has minimal impact on the
optimal certainty equivalent return as long as the strategy is correct on average.

In a next step we analyze the certainty equivalent (CE) losses which occur from a
time-inconsistent pre-commitment strategy. Intuitively, one would assume that the longer
the horizon for which the information is relevant, the higher would be it’s value. A poor
investment decision by the investor due to lack of information would be more severe the
longer the investment horizon in which she cannot obtain information and therefore is not
able to adjust her decision on the basis of new information. However, we show that this is
not necessarily the case. The value of information is given by the di�erence in the certainty
equivalents associated with the optimal strategies under pre-commitment and under full
information about the regimes (point in time of the regime switch and the asset price
dynamics within the regimes). We want to identify ⁄crit at which the value of information
is highest, i.e.

⁄crit := arg max
⁄

CEMer ≠ CEfiú,pre

T .

The influence of ⁄ is not trivial. For a long-term investor (high value of T ), the
value of information seems to decrease with increasing ⁄. This insight can be taken from
Table 5.3. Since Regime 1 represents an economically good state, the smaller ⁄, the higher
the certainty equivalents of both optimal strategies (CEMer and CEfiú,pre

T ) should be. Thus
the certainty equivalents are monotonically decreasing in ⁄ for a fix T . Additionally, the
change in the di�erence between the two certainty equivalents gets smaller as ⁄ increases.
It is to be noted that an increasing ⁄ means that it is more likely that a regime switch
will occur and that the point in time of the regime switch will arrive sooner, i.e., for a
high T Regime 2 holds for a long time. For this reason, the optimal strategy of an investor
with full information, who can refer to the Merton solution of the prevailing regime at the
current time, also turns out to be smaller since in the second regime the investments do
not yield such high returns due to the worse price dynamics of the risky asset. Thus, both
strategies converge. For ⁄ æ 0 the value of information is highest as Regime 1 prevails
for a long time and a pre-commitment investor invests too little in stocks although good
environmental conditions prevail.

If the time horizon T is small, ⁄crit at which the value of information (di�erence in
certainty equivalents) is maximal, cannot be reached in the limiting case (⁄ æ 0). The
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results can be seen in Table 5.4. With a small T , the certainty equivalents are obviously
smaller due to the shorter investment horizon, which means that the absolute value of
information is also smaller. The value of information first increases with increasing ⁄.
At a certain ⁄ (for T = 2: ⁄crit = 0.336), the value of information is maximal, after
that the di�erence in the certainty equivalents decreases as ⁄ increases. The smaller the
investment horizon T , the larger ⁄crit tends to be. Figure 5.4 provides an illustration
that displays these relations. For long investment horizons, the value of information is
higher and monotonically decreasing with increasing ⁄. For small investment horizons, the
willingsness to pay for full information approaches 0 for ⁄ æ 0. This is quite intuitive
because a small investment horizon and a small ⁄ means that no regime switch will take
place and only Regime 1 is relevant. The investor knows the first regime and the pre-
commitment strategy converges to the Merton solution of the first regime. As ⁄ increases,
the value of information first increases and decreases after ⁄crit is reached. The maximal
value of information shifts for varying small T . The smaller T , the higher ⁄crit and the
smaller the value of information.

Value of information depending intensity parameter ⁄
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Figure 5.4: In this illustration we assume “ = 4. The black graph gives the value of information as
di�erence in the certainty equivalents for T = 4 and the black dashed for T = 6. Furthermore, the gray
(gray dashed) shows the value of information for T = 50 (T = 100).
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Value of information for varying ⁄ with fixed time horizon (1/2)

⁄ CEMer CEfiú,pre

T CEMer ≠ CEfiú,pre

T fiú,pre
T

0.001 8.70596 7.44088 1.26508 0.55798
0.1 2.68926 2.54161 0.147649 0.42731
0.2 2.43675 2.34479 0.0919615 0.41391
0.3 2.33973 2.27261 0.0671176 0.40754
0.4 2.28805 2.23515 0.0528969 0.40383
0.5 2.25588 2.21222 0.0436638 0.40141
0.6 2.23392 2.19674 0.0371803 0.39971
0.7 2.21796 2.18558 0.0323757 0.39845
0.8 2.20584 2.17717 0.0286719 0.39748
0.9 2.19632 2.17059 0.0257291 0.39671
1.0 2.18864 2.16531 0.0233345 0.39608

Table 5.3: The table is constructed for T = 50 and “ = 4. The loss in the certainty equivalent of a
pre-commitment investor, resp. the di�erence in the certainty equivalents of the two optimal strategies
under full information and under pre-commitment CEMer ≠ CEfi

ú,pre
T gives the value of information.

Value of information for varying ⁄ with fixed time horizon (2/2)

⁄ CEMer CEfiú,pre

T CEMer ≠ CEfiú,pre

T fiú,pre
T

0.001 1.0509 1.10505 0.00003 0.75949
0.1 1.09661 1.09469 0.00193 0.71454
0.2 1.0893 1.08637 0.00293 0.67793
0.3 1.08301 1.07964 0.00338 0.64790
0.4 1.07758 1.0741 0.00348 0.62276
0.5 1.07285 1.06948 0.00337 0.60142
0.6 1.06872 1.06559 0.00313 0.58311
0.7 1.06510 1.06229 0.00281 0.56727
0.8 1.06190 1.05945 0.00245 0.55346
0.9 1.05908 1.05700 0.00207 0.54135
1.0 1.05657 1.05488 0.00169 0.53065

Table 5.4: The table is constructed for T = 2 and “ = 4. The loss in the certainty equivalent of a pre-
commitment investor, resp. the di�erence in the certainty equivalents of the two optimal strategies under
full information and under pre-commitment CEMer ≠ CEfi

ú,pre
T gives the value of information.
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Value of information depending on time horizon T (1/2)
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Figure 5.5: The figure shows the value of information as the di�erence in the certainty equivalents of
the overall optimal strategy under full information and the pre-commitment strategy depending on the
investment horizon T . The image was created for “ = 4. The black graph has a ⁄ = 0.01, the black dashed
a ⁄ = 0.4 and the gray dashed a ⁄ = 0.9.

Thus, time horizon e�ects determine the significance of the intensity parameter ⁄

for the value of information of a time-inconsistent pre-commitment investor. When ⁄ is
high, the value of information approaches zero for both short and long investment periods.
The second regime, where worse economic conditions prevail, becomes more significant for
higher ⁄, so that the certainty equivalents of the two optimal strategies converge. When ⁄ is
small, i.e., a regime switch is unlikely in the investment horizon, the value of information is
high at long investment horizons, since the pre-commitment investor misses out on returns
by investing too little in stocks in a good economic environment. At short time horizons,
the value of information has to build up first since potential utility losses are not so high
at short investment horizons.

To better highlight the influence of the time component, we plot the evolution of
the value of information (CEMer ≠ CEfiú,pre

T ) as a function of the investment horizon T

in Figure 5.5. For already moderate ⁄ (e.g., ⁄ = 0.4), the value of information increases
scarcely with increasing T . Only for very small ⁄ (e.g., ⁄ = 0.01) the value of information
increases with increasing T . A low ⁄ means that a regime switch will occur at a later
point in time and thus becomes less likely. Staying longer in the economically good state
leads to higher utility losses for the pre-commitment investor whose strategy consists of
a mixture of the two Merton solutions. Overall, the optimal asset allocation of the pre-
commitment strategy, and thus the evolution of the value of information, depends on the
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interacting determinants of time and regime uncertainty (intensity parameter ⁄). Making
optimal decisions under more realistic, behavioral assumptions is not trivial.

We illustrate the value of information (certainty equivalent losses in contrast to
overall optimal strategy ) for an investor who can implement the optimal pre-commitment
strategy fiú,pre

T in the presence of regime uncertainty. This strategy is time-inconsistent. To
illustrate that this strategy is the best constant mix strategy, we discuss other constant
investment strategies. A rather unsophisticated investor who knows the current regime
may be unaware or ignorant of the existence of a second regime and thus does not antic-
ipate a regime switch. She invests over the entire investment horizon fiMer1 in the stock.
A di�erent investment strategy arises when the investor knows the parameters of the
regimes but does not know when the regime switch will take place and therefore invests
the average of the Merton solutions (fiMer1

+fiMer2
2

= 0.575). The value of information for
these strategies (di�erence in the certainty equivalent of the overall optimal strategy and
the certainty equivalents of the unsophisticated strategies) is illustrated in Figure 5.6. For
both non-optimal constant strategies, the value of information increases with increasing
investment horizon T . The value of information under the first strategy fi = fiMer1 is
higher for moderate and higher ⁄ than under strategy fi = 0.575, because the first strat-
egy di�ers significantly from the Merton solution in Regime 2 and leads to losses from
the moment when the regime switch takes place. For low ⁄, the first strategy is better for
short investment horizons (lower value of information), since Regime 1 is relevant, and the
strategy is similar to the Merton solution of Regime 1. At a certain point, however, the
value of the information rises sharply, indicating a regime switch.

In the presence of regime uncertainty, the optimal pre-commitment strategy is the
best strategy that an investor who does not have full information can implement. For
other strategies, the loss in the certainty equivalents may be quite substantial, especially
for long-term investors.

One might also consider an investor who pre-commits to switch at a deterministic
point in time s (0 Æ s Æ T ) from the optimal solution in Regime 1 to Regime 2. She thus
solves

fiú,pre, s

t := arg max
fit

EP

5
u

3
VT

V0

46
s.t. fit = fiMer

1 1{tÆs} + fiMer

2 1{t>s}.

This is a more sophisticated version of the originally pre-commitment strategy. While
the investor who pre-commits herself to a constant investment fraction basically mitigates
between the Merton solutions of the regimes (if no corner solution results, she is wrong
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Value of information depending on time horizon T (2/2)
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Figure 5.6: In both illustrations “ = 4. The left image shows the value of information for an investor with
a non-optimal investment fraction of fi = fiMer1 = 0.76. The right image shows the value of information
for an investor with a non-optimal investment fraction of fi = 0.575. The black graphs illustrate the value
of information for ⁄ = 0.01, the black dashed for ⁄ = 0.4 and the gray dashed for ⁄ = 0.9.

all the time), the investor who switches from fiMer1 to fiMer2 is only wrong if s < · (i.e.,
she uses the Merton solution of Regime 2 on [s, · ] instead of fiMer1) and for s > · (i.e.,
she uses the Merton solution of Regime 1 on [·, s] instead of fiMer2). The optimal time sú

to switch the strategy could be compared to a more naive strategy that assumes that a
regime switch occurs at the expected switch time s = 1

⁄ . Depending on the length of the
investment horizon and the size of ⁄, the answer as to which pre-commitment strategy is
better will vary. The strategy where the investor pre-commits to switch at a deterministic
point in time should dominate the originally pre-commitment strategy until time s if s Æ · .
After that point in time it depends on how well s is chosen. If · < s the originally pre-
commitment strategy should dominate for the time interval from s to · . The strategy of
switching at a deterministic point in time is not discussed in more detail in this research
work, but it might be interesting to investigate this strategy intensively in future research.

Now let us briefly consider the case where investors make their asset allocation
decisions at unstable times. Thus, the currently prevailing environmental state is given
by the parameters of Regime 2. The investor has no full information, so that regime
uncertainty exists regarding the exact switch from Regime 2 to Regime 1. Figure 5.7
shows the pre-commitment strategy fiú,pre

T and the value of the information for this case
as a function of T . With increasing intensity parameter ⁄, the pre-commitment strategy
for increasing time horizons approaches the Merton solution of Regime 1 faster. A high
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⁄ indicates that a regime switch to the good state (Regime 1) is likely. For very small ⁄,
the pre-commitment strategy behaves di�erently as a function of T . The strategy remains
around the low Merton solution of the first regime (Regime 2). By a very small ⁄, switching
to the good state is unlikely and Regime 1 becomes insignificant. The pre-commitment
strategy converges to the optimal Merton solution in Regime 2. The certainty equivalent
of the pre-commitment strategy thus converges to the certainty equivalent of the Merton
solution. In general, the certainty equivalents of the pre-commitment strategy and the
overall optimal strategy are lower if the unstable regime lasts for a long time due to the
low investment fraction in the risky stock, which decreases the di�erence in the certainty
equivalents and results in a value of the information close to zero.

There is a reverse e�ect on the value of information of a pre-commitment strategy
compared to the case when the investor starts in Regime 1 and the economy can switch to
Regime 2. The higher the probability of a regime switch to a good state and the sooner the
switch takes place (incorporated by moderate to high ⁄) the higher the value of information
for a time-inconsistent pre-commitment investor who primarily invests her wealth in the
long run. The impact on the value of information is more powerful for an investor who
starts in a bad regime than in a good regime if a regime switch is likely to occur in the
investment horizon.

Value of information and strategies depending on time horizon T when
switching from Regime 2 to Regime 1
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Figure 5.7: In both illustrations “ = 4. The left image shows the optimal pre-commitment strategy fiú,pre

T

depending on T . The right image shows the value of information depending on the investment horizon T .
For both illustrations the black graphs picture the case ⁄ = 0.01, the black dashed picture ⁄ = 0.4 and the
gray dashed picture ⁄ = 0.9.
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5.5 Conclusion

We give a literature review on the consideration of regime-switching models in asset al-
location und asset pricing, which justifies our model setup. An analysis of the optimal
asset allocation problem of a time-inconsistent investor in a regime-switching environment
is conducted. We compare the expected utility of optimal asset allocation under an ob-
servable Markov chain between two types of investors with di�erent levels of information.
The value of information is obtained as the di�erence in the certainty equivalents of the
investors’ strategies. If an investor has no full information about the regimes, the prob-
lem of time inconsistency arises naturally due to regime uncertainty. To deal with time
inconsistency we determine the optimal pre-commitment strategy, which is obtained as a
weighted average of the Merton solutions of the regimes.

The optimal pre-commitment strategy depends on the length of the investment hori-
zon and the intensity parameter ⁄. The optimal fraction invested in the risky asset by a
time-inconsistent long-term investor is significantly di�erent compared to the fraction in-
vested by a time-inconsistent short-term investor. The importance of the first regime,
driven by the intensity parameter ⁄, decreases as the investment horizon increases. With
increasing investment horizon the pre-commitment strategy converges to the Merton solu-
tion of the second regime (worst case strategy). While the pre-commitment strategy di�ers
from the overall optimal strategy under full information, altogether the risk of regime-
switching appears to have minimal impact on the optimal certainty-equivalent return as
long as the pre-commitment strategy is correct on average.

We examine ⁄crit, at which the value of information is highest for a time-inconsistent
investor implementing a precommitment strategy. For a long-term investor the value of
information seems to decrease with increasing ⁄, thus ⁄crit is reached in the limiting case
⁄ æ 0. The smaller the investment horizon T , the larger ⁄crit tends to be.

Other pre-commitment strategies are also considered. Here the loss in the certainty
equivalents can be quite significant, especially for investors aiming for a long-term optimal
asset allocation. We also investigate the reverse case, where the unstable Regime 2 prevails
and a switch to the stable Regime 1 is possible. The results show that asset allocation
decisions are complex and depend heavily on model assumptions. We show that time
inconsistency and regime-switching should be considered as realistic assumptions in asset
allocation decisions. A time-inconsistent investor can mitigate potential utility losses by
trying to maximize a pre-commitment strategy.
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Chapter 6

General conclusion

The main focus of this thesis is the investigation of regime uncertainty with the interplay
of time inconsistency in optimal asset allocation problems. Increasing global intercon-
nectedness, digitalization and technological change make worldwide interaction complex.
Policymakers change the environment for investors more often which leads to regime uncer-
tainty – uncertainty about future asset price dynamics. Decision-making under uncertainty
poses particular challenges to the rationality of decision-makers and is often a�ected by
time inconsistency which violates the consistency assumption in rational decision-making.
Time inconsistency is an behavioral phenomenon where decision-makers want to revise
their decision at a later point in time although the information basis has not changed.
This anomaly leads to biased decisions that are in conflict with the long-run interests of
decision-makers. In theoretical work that attempts to model decision-making, especially
dynamic asset allocation problems under more real-world conditions like regime uncer-
tainty, time inconsistency arises via the aggregation of non-linear functions. We focus on a
pre-commitment strategy as approach to deal with time inconsistency, since the strategy
optimizes the objective function at the initial time and it is a realistic way to deal with
time-inconsistent behavior.

Under the assumption of an a priori lottery over possible prevailing regimes we come
to the conclusion that the willingness to pay for full information approaches zero not only
for an investment horizon of zero but also for an infinite horizon. In the regime-switching
set-up we find that as long as the pre-commitment strategy is correct on "average", the cer-
tainty equivalent losses of a time-inconsistent investor exposed to regime uncertainty are
small. Other non-optimal strategies may lead to greater losses in the certainty equivalent.
Results depend very much on the model assumptions. Implementing an optimal strat-
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6 General conclusion

egy seems to mitigate extreme losses due to regime uncertainty and time inconsistency.
Overall, regime uncertainty and time-inconsistency exist in reality and should therefore
also be considered in theoretical approaches that study asset allocation decisions. Regu-
latory changes and announcements should be made as transparent as possible to mitigate
negative consequences of regime uncertainty.

We would like to give a brief research outlook. The research in Chapter 4 and
Chapter 5 could be extended by allowing for gradual learning. We only consider the case
where an investor with a lack of information is willing to pay for full information, i.e.,
the case of 100% learning. Under real-world conditions, at least sophisticated investors
are able to obtain information through a wide variety of channels. Referring to Chapter
5, potential future research could consider multiple regime states and recurrent regime
switches. This would consider the fact that policymakers introduce and change increasingly
new regulations and policies that a�ect asset price dynamics. Due to the current interest
rate levels it would be worthwhile to consider a risk-free interest rate not equal to zero.
Since in reality investments are often made in di�erent stocks to account for diversification,
the setup could be extended to include several stocks or funds and their correlations with
each other. It should also be noted that in reality any rebalancing of the portfolio will result
in transaction costs and taxes. An adjustment based on new information is therefore not
possible free of charge Furthermore, the intensity parameter ⁄ could be modeled in a
time-dependent manner, i.e., during periods of high regime uncertainty, ⁄ could increase.
It would also be interesting to intensively study an investor who commits to a deterministic
switching point. Since we live in uncertain times, the topic of ambiguity with respect to
the distribution of · could be explored.
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Appendix A

Appendix to Chapter 4

A.1 Supplementary comments

A.1.1 Black-Scholes set-up and Merton problem

The subsection serves as a general and more intensive illustration of the Merton problem
under assumptions of a Black-Scholes market model.1 Black and Scholes (1973) assume
a complete and arbitrage free financial market consisting of a risk-free bond and a risky
asset.2 The major assumption is that the stock price follows a geometric Brownian mo-
tion – the stock price St develops according to the following continuous-time stochastic
di�erential equation:

dSt = µStdt + ‡StdWt (A.1)

The parameter µ represents the expected rate of return resp. drift and ‡ the volatility
of the process. Both parameters are constant. Wt is a Wiener process – a continuous-time
stochastic process with independent and normally distributed increments, respectively
random variables. It expresses uncertainty about the change in the value of a variable

1 The Black-Scholes model is a financial mathematical model for the valuation of financial options. In the
analysis, any derivative that has a non-dividend paying stock as underlying is considered.

2 The following assumptions are made in the model: No taxes, no dividends or further transaction costs
are taken into account. The risk-free interest rate r is constant and known over time. All assets are
dividable without restriction. The option is exercisable only at maturity. There are no sanctions for
short selling. Trading activity is continuous.

148



Appendix A

over time. A Wiener process represents the motion of variables as a Brownian motion.
The value changes of a variable are normally distributed and according to the Markov
property, the probability distributions of value changes are independent of each other.

The stock price process in (A.1) is a process without memory, i.e., the stock price
history plays no role in the expectation about future price developments. The Markov
property states that the probability distribution for a future point in time does not depend
on the past price trend, but only on the current price. This confirms the hypothesis of
capital market e�ciency: The current stock price already prices in information about past
stock prices. Due to this property, the process is also called Markov-process. The unique
solution of the above SDE is given by:

St = S0e(µ≠ 1
2 ‡2)t+‡Wt , (A.2)

where S0 is the initial asset price and the exponential functional of the standard Brownian
motion is defined as a geometric Brownian motion. Furthermore, the Black-Scholes model
focuses on the stock price’s log-return. A positive random variable X is log-normally
distributed with the two parameters µ and ‡ if ln(X) is normal distributed with N(µ, ‡2).
It follows that St is lognormal distributed

ln(St) = ln(S0) +
3

µ ≠ 1
2‡2

4
t + ‡Wt ≥ N

3
ln(S0) +

3
µ ≠ 1

2‡2

4
t, ‡2t

4
,

with mean ln(S0) +
1
µ ≠ 1

2
‡2

2
t and variance ‡2t. Thus, the stock price’s log-return is

given by

ln
3

St

S0

4
≥ N

33
µ ≠ 1

2‡2

4
t, ‡2t

4
. (A.3)

The geometric Brownian motion and the corresponding log-normal distribution of
stock returns form the basis for the Black-Scholes market. In this context, Merton (1971)
solves the problem of maximizing the expected utility of the terminal portfolio wealth of
a CRRA-investor E(u(VT )) by identifying an optimal strategy for a dynamic investment
problem that implies a constant investment fraction. The evolution of the portfolio wealth,
denoted by the stochastic process (Vt)tœ[0,T ], is described by

dVt = Vt

3
fi

dSt

St
+ (1 ≠ fi)dBt

Bt

4
, V0 = 1. (A.4)

The investment fraction fi is restricted to values between zero and one (fi œ [0, 1]),
i.e., no short selling and borrowing is allowed. The remaining part (1 ≠ fi) is invested in a
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risk-free asset B. The solution of Equation (A.4) is again given by a geometric Brownian
motion. It holds under the real world measure P:

Vt = V0e(µA≠ 1
2 ‡2

A
)t+‡AWt ,

where the drift µA and volatility ‡A is given by

µA := fiµ + (1 ≠ fi)r = r + fi(µ ≠ r)

‡A := fi‡. (A.5)

The optimal investment strategy is called Merton solution fiMer. It is a constant-
mix strategy, where the investor allocates wealth in the risky asset S and maximizes the
expected utility of the investor’s terminal wealth E(u(VT )). It has the following form:

fiMer = µ ≠ r

“R‡2
. (A.6)

The Merton solution is given by the quotient of the excess return (µ ≠ r) and the
squared asset volatility ‡2 weighted by the level of relative risk aversion “. Since the
strategy is optimal, any deviation from the Merton solution results in a utility loss of the
investor. The utility loss is measured by the loss rate l2 which determines the loss in the
certainty equivalent due to the sub-optimal investment fraction. Due to the relationship
u(CET ) = E(u(VT )), the strategy also maximizes the certainty equivalent CET . The cer-
tainty equivalent of an uncertain or random wealth is the amount of certainty (in monetary
units) whose utility to the investor is equal to the expected utility of the uncertain wealth
(indi�erence of the investor). An analysis on the certainty equivalent is more common
because in contrast to utility this quantity is easier to interpret.

A.1.2 Value of information in decision theory

The following comments in this subsection are based on Laux et al. (2005). Decisions are
made on the basis of information, where the level of information can usually be improved. A
decision situation under risk exists when future outcomes are uncertain, but the decision-
maker can form a probability distribution about possible environmental states shaping
the outcomes. The quantification of probabilities depends on the level of information.
Information is the result of the examination and analysis of facts that serve as the basis
for forecasting data relevant to decision-making. If the decision-maker does not obtain
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further information, she forms probabilities about future states based on her previous
level of information – these probabilities are called a priori probabilities.

Information acquisition is a trade-o� between the cost of acquiring information and
the value of information. The value of information can also be expressed as the willingness
to pay for information, because it is the cost amount at which obtaining the information
has neither advantages nor disadvantages. If the costs are lower than the value of the
information, the acquisition of information is advantageous. It is important that the value
of information must be determined before the information outcome is known. The infor-
mation valuation thus takes place ex ante. After all, since it is a decision under risk the
decision whether to obtain certain information and what strategy to choose must also be
made before the information is made available, resp. must take place before knowledge of
the environmental state.

In the context of expected utility as a decision-making tool for decisions under un-
certainty, this means the following: If the decision-maker does not obtain the information,
she chooses the strategy or alternative that maximizes the expected utility on the basis
of her a priori probability distribution. In this case, the value of information corresponds
to the cost amount for which the expected utility with information and the expected util-
ity without information are identical. The maximum value of information results under
consideration of full information. With full information, the decision-maker knows with
certainty that a particular environmental state will occur.

The optimal decision under full information is made according to the principle of
flexible planning: The decision-maker has to determine for each possible result of informa-
tion acquisition (certain environmental state) which strategy she would choose afterwards
and which expected utility she would achieve thereby – for di�erent information results
di�erent conditional plans are obtained. Since with full information the strategy is chosen
with certainty that gives the highest profit or expected utility in the actually realized
environmental state, the decision-maker can condition herself on the possible states and
choose the optimal strategy in each state.

The value of information is subjective construct, as it depends on the decision-
maker’s goals, expectations, attitudes, and possible alternatives. It also depends on what
a priori expectations the decision-maker has about environmental states. The more precise
these expectations are, the lower the value of information. The expectations are most
precise when they are certain, i.e., the decision-maker can assign the probability p = 1 to
an environmental state. The information value is then equal to zero.
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The contents of Chapter 4 deal with an a priori lottery – a probability distribution
over possible regimes (environmental states). At the time when the decision is being made,
a decision-maker has no full information about the current regime that will occur in reality
and must therefore commit to a strategy.3

A.2 Supplementary figures

Impact of probability p and investment horizon T on optimal
pre-commitment strategy fiú,pre

T,p
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Figure A.1: Both illustrations are plotted for “L = “R = 8. The left illustration shows fiú,pre
T,p

depending
on the probability p. The black graph pictures T = 2, the black dashed T = 20 and the gray T = 100. The
right illustration shows fiú,pre

T,p
depending on the investment horizon T . The black graph pictures p = 0.2, the

black dashed p = 0.5 and the gray p = 0.8. With increasing probability p for the good regime, the optimal
pre-commitent strategy approaches the Merton solution of the first regime. The e�ects are mitigated the
larger the investment horizon is. For T æ Œ, the optimale pre-commitment strategy approaches the worst
case strategy (Merton solution of the second regime).

3 Of course, a decision-maker can update her probability judgement by obtaining new information at
a cost. However, we only consider the case of full information. Updating or gradual learning is not
discussed further in the dissertation. Hansen et al. (2002) conclude that the e�ect of learning is small.
Chen and Epstein (2002) argue that after a certain point, not much can be learned. in general, the
process of learning in an uncertain and changing environment is complex.

152



Appendix A

Impact of di�erence in the regimes and investment horizon T on –ú
T,p for

varying p
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Figure A.2: The upper left picture shows the optimal weight –ú
T,p on the Merton solution in Regime 1

depending on the investment horizon T for p = 0.4, “L = “R = 4 and ‡2 = 0.2. The black line pictures
‡1 = ‡2. The black (gray) dashed line pictures ‡1 = 0.1 (‡1 = 0.05). The upper right pictures shows the
relations for p = 0.6 and the lower picture for p = 0.8. The greater the di�erence between the regimes,
the faster the optimal solution converges to the worst case. The e�ects are also amplified by the regime
probability. If probability p for the good regime is high, –ú

T,p is higher for small T . However, as T increases,
–ú

T,p falls more sharply for higher than for lower p.

A.3 State-dependent risk aversion

This section shows the e�ects of state-dependent risk aversion in the optimal asset al-
location problem considered in Chapter 4. The justification for the assumption of state-
dependent risk aversion can be found in the literature: Cohn et al. (2015) and Guiso et
al. (2018) find empirical evidence that in times of uncertainty and distress, investors’ risk
appetite decreases. In the research papers, the degree of risk aversion is measured by sur-
veying risk-return combinations and decision behavior in lottery situations. In addition,
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risk behavior was measured by priming financial professionals with a boom or bust sce-
nario. Theoretical papers, such as Wei et al. (2013), Wei et al. (2020), Li et al. (2022),
also consider state-dependent risk aversion in the context of portfolio selection in the
regime-switching environment.

In the asset allocation problem of Chapter 4, the Merton solutions on the respective
regime under the assumption of state-dependent risk aversion are given as follows:

fiMer1 = µ(s1) ≠ r

“R1‡(s1)2
, resp.

fiMer2 = µ(s2) ≠ r

“R2‡(s2)2
.

The regime-dependent savings rates are

y(s1) = r + fiMer1(µ1 ≠ r) ≠ 1
2“R1(fiMer1)2‡2

1

y(s2) = r + fiMer2(µ2 ≠ r) ≠ 1
2“R2(fiMer2)2‡2

2.

“R1 and “R2 are the state-dependent risk aversion parameters within the current
regime. Due to the fact that the second regime describes a worse market condition com-
pared to the first regime, we assume that the investor acts more risk averse in this regime.
Thus, it holds that “R1 < “R2.

With state-dependent risk aversion the internal risk situation increases. The spread
between the Merton solutions increases as the Merton solution of the second regime gets
smaller. The assumption leads to the fact that the optimal pre-commitment strategy for
a given p converges faster towards the worst case (cf. Figure A.3 in contrast to Figure
A.1 without state-dependent risk aversion). The e�ects increase the higher the di�erence
between “R1 and “R2 (see upper right image in comparison to the lower image of Figure
A.3). The optimal pre-commitment strategy is lower in the case of state-dependent risk
aversion and thus closer to the worst case for a given T (see Figure A.4). The value of
information under state-dependent risk aversion as a function of T turns out to be even
higher (see right image of Figure A.5) and increases even faster for small investment hori-
zons and slower for longer horizons than in the case of constant risk aversion parameters.
The maximum value of the information is also reached at an earlier point in time. Thus,
concerning the willingness to pay for full information about the regimes, we have the re-
sult that the higher the inner risk aversion of the second regime is (resp. the higher the
di�erence in the state-dependent risk aversions), the higher is the willingness to pay for
information.
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lmpact of probability p on the optimal pre-commitment strategy fiú,pre
T,p under

state-dependent risk aversion
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Figure A.3: The upper left picture shows the optimal pre-commitment strategy fiú,pre
T,p

for “L = 8, “R1 = 4
and “R2 = 8. The upper right picture shows fiú,pre

T,p
for “L = 8, “R1 = 4 and “R2 = 16. The lower picture

shows fiú,pre
T,p

for “L = 8, “R1 = 8 and “R2 = 16. The black graphs picture the optimal pre-commitment
strategy for T = 2, the dashed black for T = 20 and the dashed gray for T = 50.
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lmpact of investment horizon T on the optimal pre-commitment strategy
fiú,pre

T,p under state-dependent risk aversion
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Figure A.4: The left image shows the optimal pre-commitment strategy fiú,pre
T,p

depending on T for “L = 8,
“R1 = 4 and “R2 = 4. The right image shows fiú,pre

T,p
depending on T for “L = 8, “R1 = 4 and “R2 = 8. The

black graphs refer to p = 0.2, the dashed black to p = 0.5 and the dashed gray to p = 1.

Value of information depending on investment horizon T under
state-dependent risk aversion
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Figure A.5: The left illustration shows the value of information depending on T for “L = 4, “R1 = 4 and
“R2 = 4. The right illustration shows the value of information depending on T for “L = 4, “R1 = 4 and
“R2 = 8. The black graphs refer to p = 0.2, the dashed black to p = 0.5 and the dashed gray to p = 0.7.
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A.4 Robustness analysis

This section contains a robustness analysis by using a new parameter constellation (Table
A.1) for all generated illustrations in Chapter 4. The originally used parameter constel-
lation (Table 4.1) yields for “R = 4 the Merton solutions fiMer1 = 0.76, fiMer2 = 0.39
(y(fiMer1, 1) = 0.05, y(fiMer2, 2) = 0.015). In the second benchmark parameter constella-
tion, on the contrary, the Merton solutions are also given by fiMer1 = 0.70, fiMer2 = 0.30
(y(fiMer1, 1) = 0.05, y(fiMer2, 2) = 0.02). Note that in the first benchmark parameter
constellation the di�erence in µ1 and µ2 is larger whereas the di�erence in ‡1 and ‡2 is
small. In the second benchmark parameter constellation, the opposite is true. The di�er-
ence in the volatilities is larger and the di�erence in the drift coe�cients is small. Due to
µ1 > µ2 and ‡1 < ‡2 the first regime remains the good one. Overall, the Merton solutions
are smaller for the second benchmark parameter constellation, but the di�erence between
fiMer1 and fiMer2 is larger.

Of course, the variation of the regime parameters leads to other absolute values in
the sensitivity analysis (e.g., the value of information is higher when using the second
parameter set), but the results do not change with respect to the impact of time incon-
sistency in the optimal asset allocation problem. The e�ects of individual variables, resp.
parameters, on the strategy and the value of information and their relations to each other
remain the same. This can be seen from the fact that the shape of the graphs in all figures
is similar. In total our results are robust to changes in regime parameters.

Benchmark parameter 2

µ1 µ2 ‡1 ‡2 r

0.1426 0.1333 0.2259 0.3333 0.00

Table A.1: Second benchmark parameter constellation.
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Savings rate y(fi, i) depending on investment fraction fi – 2

0.0 0.2 0.4 0.6 0.8 1.0

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

Investment fraction π

y(
π
,i)

0.0 0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0.00

0.05

Investment fraction π

y(
π
,i)

Figure A.6: The left figure displays the savings rate depending on the investment fraction fi. The right
figure displays the savings rate for a di�erent parameter constellation, where fiequal = 0.3776. In comparison
to the second benchmark parameter setup, µ1 < µ2 (µ1 = 0.1316, µ2 = 0.2667) and ‡1 < ‡2 (‡1 =
0.2080, ‡2 = 0.4714). In both illustrations for “R = 4 the black graph pictures y(fi, 1) and the black dashed
y(fi, 2).
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Figure A.7: The left figure displays the savings rate depending on the investment horizon for “L = “R = 4
and fi = 0.6. The upper (lower) black line pictures p = 1 (p = 0). The gray (black) dashed graph refers
to p = 0.7 (p = 0.3). The right figure displays the savings rate depending on the probability for fi = 0.6,
T = 100 and “R = 4. The black graph refers to “L = 2, while the black (gray) dashed graph refers to
“L = 4 (“L = 8).
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Influence of di�erence between regimes on –ú
0,p and –ú

T,p – 2
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Figure A.8: The left picture displays the optimal weight on the Merton solution in Regime 1 at T = 0
for “L = “R = 4 depending on the di�erences ‡2 ≠ ‡1 (where ‡2 = 0.3333). The black line pictures p = 0.4,
the black dashed p = 0.6 and the gray dashed p = 0.8. The right picture shows the optimal weight –ú

T,p

on the Merton solution in Regime 1 depending on the investment horizon T for p = 0.4, “L = “R = 4 and
‡2 = 0.3333. The black line pictures ‡1 = ‡2. The black (gray) dashed line pictures ‡1 = 0.25 (‡1 = 0.15).

Impact of investment horizon T on time inconsistency – 2
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Figure A.9: The figure gives the time inconsistency measure ” as a function of the investment horizon.
The left (right) figure refers to a level of risk aversion “L = “R = 4 (“L = “R = 16). The black graphs refer
to the optimal pre-commitment strategy fiú,pre

T,p
for p = 0.2. The dashed black (dashed gray) graphs refer

to the optimal pre-commitment strategy for p = 0.5 (p = 0.8).
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Value of information (CE) depending on investment horizon T – 2
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Figure A.10: Both figures give the value of information by the ratio of the certainty equivalents depending
on the investment horizon T. The left figure refers to p = 0.2 (black), p = 0.5 (black dashed), and p = 0.7
(gray dashed) where “L = “R = 4. The right figure to “L = “R = 4 (black), “L = “R = 6 (black dashed),
“L = “R = 8 (gray dashed) where p = 0.5

Value of Information for varying risk aversion with di�erent probabilities – 2
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Figure A.11: The left illustration shows the value of information as a function of risk aversion “R for
“L = 12. The right illustration shows the value of information as a function of risk aversion “L for “R = 4.
The black graphs refer to p = 0.5, the black dashed to p = 0.7 and the gray dashed to p = 0.9. The time
horizon is 10 years for both illustrations.

160



Appendix A

Panel A: Maximizing T̂ (“R, “L) – 2
“R\“L 2 4 6 8 10 12
2 32.70 10.90 6.55 4.65 3.65 2.95
4 65.40 21.80 13.10 9.35 7.25 5.95
6 98.10 32.70 19.60 14.00 10.9 8.90
8 130.80 43.60 26.15 18.70 14.55 11.90
10 163.50 54.50 32.70 23.35 18.15 14.85
12 196.20 65.40 39.25 28.05 21.80 17.85

Panel B: Maximal value of information V oIú(“R, “L) – 2
“R\“L 2 4 6 8 10 12
2 1.1883 1.0592 1.0351 1.0250 1.0194 1.0158
4 1.1883 1.0592 1.0351 1.0250 1.0194 1.0158
6 1.1883 1.0592 1.0351 1.0250 1.0194 1.0158
8 1.1883 1.0592 1.0351 1.0250 1.0194 1.0158
10 1.1883 1.0592 1.0351 1.0250 1.0194 1.0158
12 1.1883 1.0592 1.0351 1.0250 1.0194 1.0158

Panel C: Optimal pre-commitment strategy fiú,pre

T̂ (“R,“L),p
(“R, “L) – 2

“R\“L 2 4 6 8 10 12
2 0.6991 0.6991 0.6990 0.6994 0.6987 0.6997
4 0.3496 0.3496 0.3495 0.3495 0.3496 0.3495
6 0.2330 0.2330 0.2330 0.2330 0.2330 0.2331
8 0.1748 0.1748 0.1748 0.1748 0.1747 0.1748
10 0.1398 0.1398 0.1398 0.1398 0.1398 0.1398
12 0.1165 0.1165 0.1165 0.1165 0.1165 0.1165

Table A.2: The table gives the maximizing time to maturity (Panel A) and the maximal value of in-
formation (Panel B) as a function of “R and “L. The probability p is set to 0.5. Moreover the optimal
pre-commitment strategy is taken into account for T̂ (Panel C).
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yT,p(fiú) ≠ yT,p(fiú,pre) for varying p with di�erent investment horizons T – 2
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Figure A.12: The left figure refers to a risk aversion of “L = “R = 4, the right to “L = “R = 8. The
black lines picture T = 10, the black dashed T = 20 and the gray dashed T = 50.

Impact of ambiguity on pre-commitment strategy – 2
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Figure A.13: The illustrations are plotted for “L = “R = 4. The gray lines display fiMer

2 = 0.30. The black
graphs refer to the optimal pre-commitment strategy under ambiguity aversion fiú,pre, amb

T,p̃
with p̃ = 0.5,

pa = 0.6 and pb = 0.2. The dashed black (dashed gray) graphs refer to the optimal pre-commitment
strategy without ambiguity fiú,pre

T,p
under the given probability distribution over the regimes with p = 0.6

(p = 0.2). The left (right) figure refers to a level of ambiguity “A = 4 (“A = 16).
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Impact of probability p̃ on optimal strategies fiú,pre, amb
T,p̃ and fiú,pre

T,q – 2
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Figure A.14: The pictures are created for “L = “R = 4, “A = 16, pa = 0.6, pb = 0.2. In the left (right)
illustration T = 20 (T = 50) is assumed. The black graphs show the optimal pre-commitment strategy
under risk and ambiguity fiú,pre, amb

T,p̃
, the black dashed graphs show the optimal pre-commitment strategy

under risk fiú,pre
T,q

with probability q. The gray lines show the optimal pre-commitment strategy under risk
with probability pa and the gray dashed lines show the optimal pre-commitment strategy under risk with
probability pb.

fiú,pre,amb
T,p̃ , const. q for di�erent pa and pb combinations – 2
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Figure A.15: The left (right) hand side refers to “L = “R = 4, “A = 8 (“L = “R = 4, “A = 16).
Both illustrations are plotted with a constant q = p̃ = 0.6. The black graphs display fiú,pre,amb

T,p̃
for

pa = 0.7, pb = 0.45. For pa = pb = 0.6 it holds fiú,pre,amb

T,p̃
= fiú,pre

T,q
(gray and black dashed graphs). The

gray dashed graphs refer to pa = 1, pb = 0.
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Value of information: fiú,pre
T,pa and fiú,pre

T,pb known, const. q – 2
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Figure A.16: The left illustration refers to “L = “R = 4, “A = 8, whereas the right illustration refers
to “L = “R = 4, “A = 16. Both illustrations are plotted with a constant q = p̃ = 0.6. The black graphs
display pa = pb = 0.6 (black dashed: pa = 0.8, pb = 0.3 and gray dashed: pa = 1, pb = 0).

T̂ for varying pa, const. q and di�erent risk aversion parameter “R – 2
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Figure A.17: The figure shows T̂ under ambiguity with constant q = p̃ = 0.6, “L = 4 and “A = 8 for
varying pa (notice that this implies also varying pb). The black graph refers to “R = 8, the black dashed
to “R = 4 and the gray one to “R = 16.
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A.5 Proof of Proposition 1

For “L > 1, the certainty equivalent savings rate yT,p(fi) is given by

yT,p(fi) = 1
(1 ≠ “L)T ln

Ë
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

È
.

For the partial derivative with respect to T , it holds that

ˆyT,p(fi)
ˆT

= 1
T

pey(fi,1)(1≠“L)T y (fi, 1) + (1 ≠ p)ey(fi,2)(1≠“L)T y (fi, 2)
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

≠ 1
(1 ≠ “L)T 2

ln
Ë
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

È

= 1
(1 ≠ “L)T 2

pey(fi,1)(1≠“L)T y (fi, 1) (1 ≠ “L)T + (1 ≠ p)ey(fi,2)(1≠“L)T y (fi, 2) (1 ≠ “L)T
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

≠ 1
(1 ≠ “L)T 2

ln
Ë
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

È

= 1
(1 ≠ “L)T 2

pex1x1 + (1 ≠ p)ex2x2

pex1 + (1 ≠ p)ex2
≠ 1

(1 ≠ “L)T 2
ln [pex1 + (1 ≠ p)ex2 ] ,

where we define xi = y (fi, i) (1 ≠ “L)T . We can then write the derivative as a function of
the random variable X with realizations x1 (with probability p) and x2 (with probability
(1 ≠ p)):

ˆyT,p(fi)
ˆT

= 1
(1 ≠ “L)T 2

S

U
E

Ë
eXX

È

E [eX ] ≠ ln E
Ë
eX

È
T

V

= 1
(1 ≠ “L)T 2E [eX ]

Ó
E

Ë
eXX

È
≠ E

Ë
eX

È
ln E

Ë
eX

È

¸ ˚˙ ˝
>0 (z ln z is convex fct. for z > 0)

Ô

< 0.

Next, we turn to the certainty equivalent savings rate for the optimal pre-commitment
strategy, where we have to take into account that the optimal pre-commitment strategy
depends on T , too:

ˆyT,p(fiú,pre
T,p )

ˆT
= ˆyT,p(fi)

ˆT

---
fi=fiú,pre

T

+ ˆyT,p(fi)
ˆfi

---
fi=fiú,pre

T,p¸ ˚˙ ˝
=0 (FOC)

ˆfiú,pre
T,p

ˆT

< 0.
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A.6 Proof of Proposition 2

We need to show that fiú,pre
T,p = –ú

T,pfiMer
1 +(1≠–ú

T,p)fiMer
2 , where fiú,pre

T,p = argmax
fi

{yT,p(fi)}.
For “L > 1 the certainty equivalent savings rate yT,p(fi) is given by

yT,p(fi) = 1
(1 ≠ “L)T ln

1
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

2
.

Calculating the FOC we receive

ˆyT,p

ˆfi
= p“R‡2

1(fiMer
1 ≠ fi)ey(fi,1)(1≠“L)T + (1 ≠ p)“R‡2

2(fiMer
2 ≠ fi)ey(fi,2)(1≠“L)T

pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

!= 0

… fi
!= p‡2

1fiMer
1 ey(fi,1)(1≠“L)T + (1 ≠ p)‡2

2fiMer
2 ey(fi,2)(1≠“L)T

p‡2
1
ey(fi,1)(1≠“L)T + (1 ≠ p)‡2

2
ey(fi,2)(1≠“L)T

, (A.7)

i.e., the optimal pre-commitment strategy fiú,pre
T,p is implicitly defined as solution of (A.7).

Separating the fraction leads to

fiú,pre
T,p = p‡2

1ey(fiú,pre

T,p
,1)(1≠“L)T

p‡2
1
ey(fiú,pre

T,p
,1)(1≠“L)T + (1 ≠ p)‡2

2
ey(fiú,pre

T,p
,2)(1≠“L)T

fiMer
1 +

p‡2
1ey(fiú,pre

T,p
,1)(1≠“L)T

p‡2
1
ey(fiú,pre

T,p
,1)(1≠“L)T + (1 ≠ p)‡2

2
ey(fiú,pre

T,p
,2)(1≠“L)T

fiMer
2

… fiú,pre
T,p =–ú

T,pfiMer
1 + (1 ≠ –ú

T,p)fiMer
2 .

A.7 Proof of Proposition 6

The value of information is given by the di�erence of the certainty equivalent savings rates
yT,p(fiú) ≠ yT,p(fiú,pre). For “L > 1 it holds

yT,p(fiú) ≠ yT,p(fiú,pre) = 1
(1 ≠ “L)T ln

C
peyT,p(fiMer

1 ,1)(1≠“L)T + (1 ≠ p)eyT,p(fiMer

2 ,2)(1≠“L)T

peyT,p(fiú,pre

T,p
,1)(1≠“L)T + (1 ≠ p)eyT,p(fiú,pre

T,p
,2)(1≠“L)T

D

.

The inner part of the log function can be written as

peyT,p(fiú,pre

T,p
,1)(1≠“L)T

peyT,p(fiú,pre

T,p
,1)(1≠“L)T + (1 ≠ p)eyT,p(fiú,pre

T,p
,2)(1≠“L)T

peyT,p(fiMer

1 ,1)(1≠“L)T

peyT,p(fiú,pre

T,p
,1)(1≠“L)T

+

(1 ≠ p)eyT,p(fiú,pre

T,p
,2)(1≠“L)T

peyT,p(fiú,pre

T,p
,1)(1≠“L)T + (1 ≠ p)eyT,p(fiú,pre

T,p
,2)(1≠“L)T

(1 ≠ p)eyT,p(fiMer

2 ,2)(1≠“L)T

(1 ≠ p)eyT,p(fiú,pre

T,p
,2)(1≠“L)T

=—T,p(fiú,pre
T,p )el

!
fiú,pre

T,p
,1

"
(1≠“L)T + (1 ≠ —T,p(fiú,pre

T,p ))el
!

fiú,pre

T,p
,2

"
(1≠“L)T .
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For “L = 1 the value of information yT,p(fiú) ≠ yT,p(fiú,pre) is given by

yT,p(fiú) ≠ yT,p(fiú,pre) =p(yT,p(fiMer
1 , 1) ≠ yT,p(fiú,pre

T,p , 1))+

(1 ≠ p)(yT,p(fiMer
2 , 2) ≠ yT,p(fiú,pre

T,p , 2)).

Using the fact that —T,p(fi) = p for “L = 1 gives the claimed representation.

A.8 Proof of Proposition 7

For “L > 1 it holds

lim
T æ0

Ó
yT,p(fiú) ≠ yT,p(fiú,pre

T,p )
Ô

= lim
T æ0

yT,p(fiú) ≠ lim
T æ0

yT,p(fiú,pre
T,p ).

Notice that

lim
T æ0

yT,p(fiú,pre
T,p ) = lim

T æ0

Ó
py(fiú,pre

T,p , 1) + (1 ≠ p)y(fiú,pre
T,p , 2)

Ô

= py
3

lim
T æ0

fiú,pre
T,p , 1

4
+ (1 ≠ p)y

3
lim
T æ0

fiú,pre
T,p , 2

4

and

lim
T æ0

fiú,pre
T,p = lim

T æ0

–ú
T,pfiMer

1 + (1 ≠ lim
T æ0

–ú
T,p)fiMer

2 , where

lim
T æ0

–ú
T,p = p‡2

1

p‡2
1

+ (1 ≠ p)‡2
2

.

Using the results of Proposition 1 and the fact that

l(fiú,pre
T,p , i) = y(fiMer

i , i) ≠ y(fiú,pre
T,p , i) = 1

2“R‡2

i (fiú,pre
T,p ≠ fiMer

i )2,

we get

lim
T æ0

Ó
yT,p(fiú) ≠ yT,p(fiú,pre

T,p )
Ô

= pl( lim
T æ0

fiú,pre
T,p , 1) + (1 ≠ p)l( lim

T æ0

fiú,pre
T,p , 2). (A.8)

Calculating the two loss rates we receive with the above stated results

l( lim
T æ0

fiú,pre
T,p , 1) =1

2“R(1 ≠ p)2‡2

2

3
‡1‡2

p‡2
1

+ (1 ≠ p)‡2
2

42 1
fiMer

1 ≠ fiMer

2

22

(A.9)

l( lim
T æ0

fiú,pre
T,p , 2) =1

2“Rp2‡2

1

3
‡1‡2

p‡2
1

+ (1 ≠ p)‡2
2

42 1
fiMer

1 ≠ fiMer

2

22

. (A.10)
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Combining (A.8), (A.9) and (A.10) we finally get

lim
T æ0

Ó
yT,p(fiú) ≠ yT,p(fiú,pre

T,p )
Ô

=1
2“R

1
fiMer

1 ≠ fiMer

2

22 p2(1 ≠ p)‡2
1 + p(1 ≠ p)2‡2

2!
p‡2

1
+ (1 ≠ p)‡2

2

"2
‡2

1‡2

2

=1
2“Rp(1 ≠ p)

1
fiMer

1 ≠ fiMer

2

22 ‡2
1‡2

2

p‡2
1

+ (1 ≠ p)‡2
2

.

For “L = 1 we are immediately in the situation of equation (A.8), s.t. the same result holds.

For the case T æ Œ we distinguish between:

lim
T æŒ

fiú,pre
T,p ”= fiequal and lim

T æŒ
fiú,pre

T,p = fiequal.

For limT æŒ fiú,pre
T,p ”= fiequal it holds

lim
T æŒ

{yT,p(fiú) ≠ yT,p(fiú,pre)}

= lim
T æŒ

Y
]

[
1

(1 ≠ “L)T ln

S

Upe(y(fiMer

1 ,1)≠y(fiú,pre

T,p
,1))(1≠“L)T + (1 ≠ p)e(y(fiMer

2 ,2)≠y(fiú,pre

T,p
,2))(1≠“L)T

1 ≠ p”(fiú,pre
T,p , T )

T

V

Z
^

\

= lim
T æŒ

; 1
(1 ≠ “L)T

<
ln

5 1
1 ≠ p

6
= 0.

For fiú,pre
T,p = fiequal it holds that yT,p(fiú,pre

T,p , 1) = yT,p(fiú,pre
T,p , 2) (for this we write y(fiequal, ·)

because the regime i does not matter here), s.t. ”(fiú,pre
T,p , T ) = 0, for all T and thus it holds

lim
T æŒ

{yT,p(fiú) ≠ yT,p(fiú,pre)} = lim
T æŒ

Ó
yT,p(fiú) ≠ y(fiequal, ·)

Ô

= min
Ó

y(fiMer
1 , 1), y(fiMer

2 , 2)
Ô

≠ y(fiequal, ·).

A.9 Proof of Proposition 10

We want to show that fiú,pre,amb
T = argmax

fi

Ó
yamb

T,p̃ (fi)
Ô

is given by

–ú
T,p̃

1
–T,pa

fiMer
1 + (1 ≠ –T,pa

)fiMer
2

2
+ (1 ≠ –T,p̃)

1
–T,pb

fiMer
1 + (1 ≠ –T,pb

)fiMer
2

2
.

The certainty equivalent savings rate for “L > 1 with ambiguity yamb
T,p (fi) is given by

yamb

T,p̃ (fi) := 1
(1 ≠ “A)T ln

Ë
p̃eyT,pa

(fi)(1≠“A)T + (1 ≠ p̃)eyT,pb
(fi)(1≠“A)T

È
.

Calculating the FOC we receive

ˆyamb

T,p̃ (fi)
ˆfi

=
p̃

ˆyT,pa
(fi)

ˆfi eyT,pa
(fi)(1≠“A)T + (1 ≠ p̃)ˆyT,pb

(fi)

ˆfi eyT,pb
(fi)(1≠“A)T

p̃eyT,pa
(fi)(1≠“A)T + (1 ≠ p̃)eyT,pb

(fi)(1≠“A)T

!= 0. (A.11)
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Within the results in the proof of Proposition 2 it furthermore holds

ˆyT,pi(fi)
ˆfi

= pi“L‡2
1(fiMer

1 ≠ fi)ey(fi,1)(1≠“L)T + (1 ≠ pi)“L‡2
2(fiMer

2 ≠ fi)ey(fi,2)(1≠“L)T

piey(fi,1)(1≠“L)T + (1 ≠ pi)ey(fi,2)(1≠“L)T
, for i = a, b.

Using this result we can solve the FOC (A.11) for fi and can formulate that fiú,pre,amb
T has to fulfill

the equation

fi = p̃

1 ≠ p̃

3
paey(fi,1)(1≠“L)T + (1 ≠ pa)ey(fi,2)(1≠“L)T

pbey(fi,1)(1≠“L)T + (1 ≠ pb)ey(fi,2)(1≠“L)T

4 “A≠“L
“L≠1

◊

pa‡2
1ey(fi,1)(1≠“)T (fiMer

1 ≠ fi) + (1 ≠ pa)‡2
2 .6y(fi,2)(1≠“L)T (fiMer

2 ≠ fi)
pb‡2

1ey(fi,1)(1≠“L)T + (1 ≠ pb)‡2
2ey(fi,1)(1≠“L)T

+

pb‡2
1fiMer

1 ey(fi,1)(1≠“L)T + (1 ≠ pb)‡2
2fiMer

2 ey(fi,2)(1≠“L)T

pb‡2
1ey(fi,1)(1≠“L)T + (1 ≠ pb)‡2

2ey(fi,2)(1≠“L)T
.

Simplifying this equation we receive

fi = p̃›a

p̃›a + (1 ≠ p̃)›b

5
pa‡2

1ey(fi,1)(1≠“L)T fiMer
1 + (1 ≠ pa)‡2

2ey(fi,2)(1≠“L)T fiMer
2

pa‡2
1ey(fi,1)(1≠“L)T + (1 ≠ pa)‡2

2ey(fi,2)(1≠“L)T

6
+

3
1 ≠ p̃›a

p̃›a + (1 ≠ p̃)›b

4 5
pb‡2

1ey(fi,1)(1≠“L)T fiMer
1 + (1 ≠ pb)‡2

2ey(fi,2)(1≠“L)T fiMer
2

pb‡2
1ey(fi,1)(1≠“L)T + (1 ≠ pb)‡2

2ey(fi,2)(1≠“L)T

6
, where

›a =
1

pa‡2
1ey(fi,1)(1≠“L)T + (1 ≠ pa)‡2

2ey(fi,2)(1≠“L)T
2 Ë

paey(fi,1)(1≠“L)T + (1 ≠ pa)ey(fi,2)(1≠“L)T
È “A≠“L

“L≠1
,

›b =
1

pb‡2
1ey(fi,1)(1≠“L)T + (1 ≠ pb)‡2

2ey(fi,2)(1≠“L)T
2 Ë

pbey(fi,1)(1≠“L)T + (1 ≠ pb)ey(fi,2)(1≠“L)T
È “A≠“L

“L≠1
.

Recall that ”pre(fi, T ) = 1 ≠ e(y(fi,1)≠y(fi,2))(1≠“L)T and define ”amb(fi, T ) := 1 ≠ ›a

›b
, s.t. we can

finally write the equation as

fi = p̃(1 ≠ ”amb

T (fi))
p̃(1 ≠ ”amb

T
(fi)) + (1 ≠ p̃)

5
pa‡2

1(1 ≠ ”pre

T
(fi))fiMer

1
pa‡2

1(1 ≠ ”pre

T
(fi)) + (1 ≠ pa)‡2

2
+ (1 ≠ pa)‡2

2fiMer

2
pa‡2

1(1 ≠ ”pre

T
(fi)) + (1 ≠ pa)‡2

2

6
+

1 ≠ p̃

p̃(1 ≠ ”amb

T
(fi)) + (1 ≠ p̃)

5
pb‡2

1(1 ≠ ”pre

T
(fi))fiMer

1
pb‡2

1(1 ≠ ”pre

T
(fi)) + (1 ≠ pb)‡2

2
+ (1 ≠ pb)‡2

2fiMer

2
pb‡2

1(1 ≠ ”pre

T
(fi)) + (1 ≠ pb)‡2

2

6

=–ú
T,p̃

!
–T,pa fiMer

1 + (1 ≠ –T,pa )fiMer

2
"

+ (1 ≠ –T,p̃)
!
–T,pb fiMer

1 + (1 ≠ –T,pb )fiMer

2
"

.
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Appendix to Chapter 5

B.1 Possibilities to incorporate a regime switch

Regime-switching models are useful for several reasons: They are able to track and replicate behavioral pat-
terns found in stock market and macroeconomic time series data. They are analytically tractable: Despite
the fact that, asset allocation under regime uncertainty is a complex problem, regime-switching models
are able to capture nonlinear (stylized) dynamics. Appropriate mixing of conditional normal distributions
(or other types of distributions) can produce large amounts of nonlinear e�ects. Even if the true model is
unknown, regime-switching models can provide a good approximation of complicated real-world processes
that determine stock returns.

In the literature there are several ways to consider a regime switch. On the one hand, the interest
rate r of the risk-free asset (e.g., bond) may be subject to a regime change. The price dynamics of the
risk-free asset (Bt)tœ[0,T ] would then be given by:

dBt = Btrdt or with regime switch: dBt = Btr(Yt)dt

The price dynamics of the risky asset (e.g., stock) following the assumption of Black and Scholes
(1973) follows a geometric Brownian motion with drift µ and volatility ‡. Both parameters may depend on
a regime switch modeled via Markov chains. The stock price (St)tœ[0,T ] develops according to the following
continuous-time stochastic di�erential equation (SDE):

dSt = Stµdt + St‡dWt or with regime switch: dSt = Stµ(Yt)dt + St‡(Yt)dWt

The wealth process (Xt)tœ[0,T ] results as follows:

dXt = Xtfit

dSt

St

+ Xt(1 ≠ fit)
dBt

Bt

or with regime switch in r, µ and ‡:

dXt

Xt

= fit (µ(Yt)dt + ‡(Yt)dWt) + (1 ≠ fit)r(Yt)dt

Thus, an observable or hidden Markov chain can be modeled in the interest rate r and/or in the
drift µ and/or in the volatility ‡.
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B.2 Assumptions leading to time consistency

As already shown in the research work in Chapter 4, the utility aggregation is highly non-linear for a CRRA-
investor with risk aversion paramter “L > 1, which leads to time inconsistency. However, the assumption
of a logarithmic utility function (“L = 1) in this setup leads to the asset allocation problem becoming
time-consistent. The expected utility of the terminal wealth of the investor EUT,p aggregates over utilities
under assumption of an a priori lottery over two regimes. Thus with

EPi [u(VT )] =

I
1

1≠“L
ey(fi,i)(1≠“L)T “L > 1

y(fi, i)T “L = 1,

it follows

EUT,p =

I
1

1≠“L

#
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

$
“L > 1

[py(fi, 1) + (1 ≠ p)y(fi, 2)] T “L = 1
,

yT,p(fi) =

I
1

(1≠“L)T
ln

#
pey(fi,1)(1≠“L)T + (1 ≠ p)ey(fi,2)(1≠“L)T

$
“L ”= 1

py(fi, 1) + (1 ≠ p)y(fi, 2) “L = 1
. (B.1)

For logarithmic utility, the savings rate with an initial lottery coincides with the expected savings
rate of the Merton problems in the two regimes. Thus, maximizing expected utility of terminal wealth is
equivalent to maximizing the expected savings rate. The expected utility maximizing strategy also yields
the highest expected savings rate. However, this is not true for “L ”= 1.

Proposition 15 When p is the probability for Regime 1 and (1 ≠ p) the probability for Regime 2, the
expected utility of the terminal wealth VT for an investor with a logarithmic utility function and V0 = 1 can
be calculated in terms of

EP

Ë
u

1
VT

V0

2È
= p EP

Ë
ln

1
VT,1
V0

2È
+ (1 ≠ p) EP

Ë
ln

1
VT,2
V0

2È

= p
Ó

(‡2
1fifiMer

1 + r ≠ 1
2‡2

1fi2)T + ‡1fiEP [WT ]
Ô

+ (1 ≠ p)
Ó

(‡2
2fifiMer

2 + r ≠ 1
2‡2

2fi2)T + ‡2fiEP [WT ]
Ô

=
Ë
p‡2

1fifiMer

1 + (1 ≠ p)‡2
2fifiMer

2 ≠ 1
2fi2(p‡2

1 + (1 ≠ p)‡2
2) + r

È
T.

To calculate the optimal pre-commitment strategy that maximizes the expected utility of the investor we
have to calculate the first order condition:

ˆEP
#
u

!
VT
V0

"$

ˆfi
= p‡2

1fiMer

1 T + (1 ≠ p)‡2
2fiMer

2 T ≠ fiT (p‡2
1 + (1 ≠ p)‡2

2) != 0

… fipre,ú = p‡2
1fiMer

1 + (1 ≠ p)‡2
2fiMer

2
p‡2

1 + (1 ≠ p)‡2
2

(B.2)

… fipre,ú == p(µ1 ≠ r) + (1 ≠ p)(µ2 ≠ r)
“R(p‡2

1 + (1 ≠ p)‡2
2) .

The optimal pre-commitment strategy follows from the solution of an implicit function and is
independent of T . Thus, time consistency can be obtained by “L = 1 (log-investor). As soon as we deviate
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from the logarithmic utility case, the strategy is not time-consistent, i.e., an investor would want to switch
to the optimal pre-commitment strategy for a shortened investment horizon as time passes.

An easy intuition why the assumption of a logarithmic utility function avoids problems stemming
from time inconsistency is that logarithmic utility implies myopic behavior. Note that while considerung an
investor with “L > 1, myopia implies that the investor acts risk neutral, w.r.t. the regime dependent savings
rates (i.e., the decision can be formulated by means of the expected savings rate py(fi, 1) + (1 ≠ p)y(fi, 2).
The investor thus always chooses the stratgey that is optimal over the next instant and neither takes the
remaining investment horizon nor the continuation utility into account. Thus, also for a myopic investor
(T æ 0) the optimal strategy is time-consistent.

Moreover, for “L > 1 (and T > 0), the savings rate of a strategy fi equals the expected savings rate
over the regimes for the boundary cases p = 0 and p = 1, i.e., if the second dimension of the risk situation
vanishes. The di�erence between yT,p(fi) and p y(fi, 1) + (1 ≠ p)y(fi, 2) also depends on p and is largest for

pú
SR(fi, T ) = 1

1 ≠ e(y(fi,1)≠y(fi,2))(1≠“L)T
+ 1

(y(fi, 1) ≠ y(fi, 2))(1 ≠ “L)T . (B.3)

It holds that pú
SR(fi, T ) is increasing in T . With the savings rate yT,p(fi) approaching the lower of

the two savings rate, the di�erence to the higher expected savings rate is maximized when the latter has
more and more weight on the larger of the two savings rates.

B.3 Proof of Proposition 13

With the results of equations (5.10) and (5.11) we can state the expected utility of a CRRA investor in
terms of

EP

Ë
u

1
VT

V0

2È
= EP

#
u

!
1{·ÆT }X1 + 1{·>T }X2

"$

= 1
1 ≠ “

Ó
EP

Ë
1{·ÆT }X(1≠“)

1

È
+ EP

Ë
1{·>T }X(1≠“)

2

ÈÔ
. (B.4)

Let’s start with the calculation of E1 := EP

Ë
1{·ÆT }X(1≠“)

1

È
in (B.4):

E1 = EP[1{·ÆT }e[fi(µ2≠r)+r≠ 1
2 fi

2
‡

2
2 ]T (1≠“)

· e[fi(µ1≠µ2)≠ 1
2 fi

2(‡
2
1≠‡

2
2)]·(1≠“)+fi(‡1W· +‡2(WT ≠W· ))(1≠“)]

= e[fi(µ2≠r)+r≠ 1
2 fi

2
‡

2
2 ]T (1≠“)

· EP

Ë
1{·ÆT }e[fi(µ1≠µ2)≠ 1

2 fi
2(‡

2
1≠‡

2
2)]·(1≠“)EP

#
efi(‡1W· +‡2(WT ≠W· ))(1≠“)|·

$È
, (B.5)

where the last equation holds because of the basic properties of the conditional expectation. Furthermore
the Brownian motion W· is independent from WT ≠ W· . Together with the fact that E

#
eX

$
= eµ+ 1

2 ‡
2

for

172



Appendix B

X ≥ N(µ, ‡2), equation (B.5) can be written as

e[fi(µ2≠r)+r≠ 1
2 fi

2
‡

2
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· e
1
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2
‡

2
1(1≠“)2

·+ 1
2 fi

2
‡

2
2(1≠“)2(T ≠·)]

= e›2TEP
#
1{·ÆT }e‹·

$
. (B.6)

Now it holds that the function g(x) := 1{xÆT }e‹x is measurable, so the transformation g(·) is still a
random variable. Together with · ≥ Exp(⁄) and its absolute continuous density function f⁄

· (x)we get

EP [g(·)] =
⁄ Œ

≠Œ
g(x)f⁄

· (x)dx. (B.7)

Combining (B.6) and (B.7) we get

e›2TEP
#
1{·ÆT }e‹·

$
= e›2T

⁄ Œ

≠Œ
1{xÆT }e‹xf⁄

· (x)dx
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⁄
T

0
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#
e(‹≠⁄)T ≠ 1

$
. (B.8)

For the calculation of E2 := EP

Ë
1{·>T }X(1≠“)

2

È
in (B.4) it holds:

E2 = EP

Ë
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‡
2
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1 ≠ F ⁄

· (T )
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= e(›1≠⁄)T . (B.9)

Combining (B.8) and (B.9) gives the final result.

B.4 Proof of Proposition 14

To maximize the expected utility of a CRRA investor that follows a pre-commitment strategy we have to
minimize the expression

›1 ≠ ›2
›1 ≠ ›2 ≠ ⁄

e(›1≠⁄)T + ≠⁄
›1 ≠ ›2 ≠ ⁄

e›2T .

The first order condition is given by

ˆ
ˆfi

;
›1 ≠ ›2

›1 ≠ ›2 ≠ ⁄

<
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)
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*
+

ˆ
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<
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ˆ

ˆfi

)
e›2T

* != 0.

Let us calculate the corresponding derivatives first (r=0):
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