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Prediction of left lobe hypertrophy 
after right lobe radioembolization 
of the liver using a clinical data 
model with external validation
Jens M. Theysohn 1,11*, Aydin Demircioglu 1,11, Malte Kleditzsch 1, Johannes M. Ludwig 1,2, 
Manuel Weber 3, Lale Umutlu 1, Yan Li 1, Malte Kircher 4, Constantin Lapa 4, Andreas Buck 5, 
Michael Koehler 6, Moritz Wildgruber 7, Christian M. Lange 8, Xavier Palard 9, Etienne Garin 9, 
Ken Herrmann 3, Michael Forsting 1 & Felix Nensa 1,10

In cirrhotic patients with hepatocellular carcinoma (HCC), right-sided radioembolization (RE) with 
Yttrium-90-loaded microspheres is an established palliative therapy and can be considered a “curative 
intention” treatment when aiming for sequential tumor resection. To become surgical candidate, 
hypertrophy of the left liver lobe to > 40% (future liver remnant, FLR) is mandatory, which can develop 
after RE. The amount of radiation-induced shrinkage of the right lobe and compensatory hypertrophy 
of the left lobe is difficult for clinicians to predict. This study aimed to utilize machine learning to 
predict left lobe liver hypertrophy in patients with HCC and cirrhosis scheduled for right lobe RE, with 
external validation. The results revealed that machine learning can accurately predict relative and 
absolute volume changes of the left liver lobe after right lobe RE. This prediction algorithm could help 
to estimate the chances of conversion from palliative RE to curative major hepatectomy following 
significant FLR hypertrophy.

Abbreviations
BCLC  Barcelona clinic liver cancer
CI  Confidence interval
CT  Computed tomography
INR  International normalized ratio
FLR  Future liver remnant
HCC  Hepatocellular carcinoma
MAE  Mean absolute error
PVE  Portal vein embolization
RE  Radioembolization
RILD  Radiation induced liver damage
SD  Standard deviation
RBF-SVM  Radial basis function kernelized support-vector machines
90Y  Yttrium-90
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In patients with hepatocellular carcinoma (HCC) and compensated liver cirrhosis, partial hepatectomy is one of 
the most valuable curative treatment options  available1. However, when major hepatectomy is needed for com-
plete tumor resection, many patients are not suitable for this procedure due to small future liver remnant (FLR) 
carries the risk of post-hepatectomy liver failure. In these patients, homolateral portal vein embolization (PVE) 
can be performed to induce hypotrophy of the embolized and compensatory hypertrophy of the contralateral liver 
lobe, thereby increasing the liver remnant (FLR) prior to  resection2. However, as the tumor remains untreated, 
PVE imposes the risk of intermittent tumor progression leading to non-resectability in ~ 8% of  cases3. Adding 
sequential transarterial chemoembolization to PVE can reduce this  risk4.

Radioembolization (RE) using Yttrium-90 (90Y) microspheres is widely applied for safe and effective HCC 
therapy in intermediate and advanced Barcelona clinic liver cancer stages. RE can not only achieve tumor shrink-
age with detachment from vital structures, allowing margin free  resection5,6, but also bears the great potential 
to significantly induce liver hypertrophy of the untreated left liver lobe, with a maximal increases of 30–50% of 
the untreated liver being reported, substantially increasing  FLR5,7,8. To date, the minimal needed FLR for safe 
hepatectomy is still debated in the literature, but ranges from > 20% in otherwise healthy livers to > 40% in patients 
with impaired liver function due to liver cirrhosis or  cholestasis9. Liver function tests such as the Liver maximum 
capacity (MiMAx) test and hepatobiliary scintigraphy (HBS) further deepen the understanding of liver function 
before major hepatectomies potentially preventing liver  failure10–12. Radiation applied to the healthy liver tissue 
causes periportal fibrosis with the above-mentioned consecutive hypertrophy of the contralateral lobe (Fig. 1). 
Furthermore, a relation was noted between higher radiation dose to the non-tumorous liver tissue of the treated 
lobe and stronger hypertrophy of the contralateral  lobe13. PET/MR after RE uses positron emissions of 90Y to 
visualize tumor (diagnostic; Fig. 2A), targeting of tumor (therapy control; Fig. 2B), and intensity of irradiation 
of the surrounding liver tissue (Fig. 2C).The main challenge in aiming for curative intent RE is the difficulty in 
predicting volume response after RE, making it only a vague promise for both surgeons and patients.

A preceding study identified several clinical predictive factors, such as absence of ascites, lower Child Pugh 
Score, small spleen volume, and platelet count ≥ 100/nl, to be associated with increased left liver hypertrophy 
in patients with HCC treated with right lobe  RE14. Yet, based on these single values alone, reliable prediction of 
FLR to estimate the chances of conversion from unresectable to resectable HCC is limited.

Radiomics and clinomics are developments that use advanced machine learning methods to develop com-
puterized models, e.g., for disease prognosis or treatment response based on existing radiological, clinical, or 
laboratory  data15–17.

The aim of this study was to utilize machine learning for predicting left liver lobe hypertrophy in patients 
with HCC and cirrhosis scheduled for right sided RE, with external validation (Fig. 3).

Results
High correlations between predicted and measured volumes or FLR were seen during training and internal 
validation. External validation in the Rennes cohort was excellent (Fig. 4), while correlation in the mixed cohort 
was less impressive (Fig. 5).

Predicted liver volume changes in the validation set. In absolute volume prediction, the radial basis 
function kernelized support-vector machines (RBF-SVM) performed best, showing an absolute mean error of 
147.34 ml (95% CI 140.8–153.9 ml) (Supplemental Table 1). For the validation cohorts, the average absolute 
mean error of the model predictions for left lobar liver volume was 159.4  ml (95% CI 136.8–181.9  ml) and 
181.9 ml (95% CI 112.8–251.1 ml) for the cohort from Rennes and the mixed cohort, respectively (Table 1). The 
distribution of the deviations is visualized in a waterfall plot for both validation cohorts (Figs. 4 and 5).

For relative volume prediction of the FLR, the ridge regression showed the highest precision with an error of 
4.97% (95% CI 4.82–5.12%). The prediction of the FLR yielded an error of 6.08% (95% CI 5.15–7.82%) for the 
cohort from Rennes and similarly 7.62% (95% CI 4.96–10.29%) for the mixed cohort (Table 1); a waterfall plot 
was again used for visualization (Figs. 4 and 5).

A total of 110 measurements were observed from 49 patients in the Rennes cohort and 22 measurements 
from 22 patients in the mixed cohort. Eleven measurements from 11 patients in the Rennes cohort occurred 
later than 9 months after baseline and were therefore removed from the validation set, leaving 99 measurements 
in this cohort. The median follow-up times was 3.5 months (range, 1.0–9.0 months) and 2.5 months (range, 
1.2–8.1 months) for the Rennes and the mixed cohort, respectively.

When predictions were computed with a linear interpolation instead of a natural spline, the MAE of the left 
liver lobe volume for the Rennes cohort was 153.9 ml. Prediction of FLR yielded an error of 5.95%. Similarly, for 
the mixed cohort, the prediction error for left lobar volume was 171.4 ml, whereas prediction of FLR showed 
an error of 7.25%.

Feature importance in the training set. Logically, permutation importance indicated that all liver vol-
umes at baseline were most important for predictive accuracy (Supplemental Fig. 1). However, their importance 
diminishes with time. For the prediction of the left lobar volume, age, albumin value, spleen volume, and the 
presence of a portocaval shunt seem to gain increasing importance over the course of 6 months. Presence of 
ascites or cirrhosis, Child–Pugh score, thrombocyte count, INR, bilirubin, and sex were of insignificant impor-
tance.

Predicted liver volume changes in the training set. High correlations between predicted and meas-
ured volumes or FLR were already eminent during internal validation (Supplemental Table 2).
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Predicting the left lobar liver volume, the RBF-SVM performed best and yielded an overall MAE of 147.34 ml 
(95% CI 140.8–153.9 ml). At each follow-up, performance was worse at later follow-up: The observed MAEs 
were 87.64 ml (1 month), 132.1 ml (3 months), 169.0 ml (6 months) and 200.6 ml (9 months). The second 
best model class was XGBoost, which performed only slightly worse with an overall MAE of 151.1 ml (95% CI 
144.3–157.9 ml).

For the prediction of FLR, the best performance was obtained by ridge regression, which yielded an overall 
FLR error of 4.97% (95% CI 4.82–5.12%), with a similar drop in performance over follow-up times (1 month: 
2.66%, 3 months: 4.14%, 6 months: 6.14%, 9 months: 6.93%). The RBF-SVM was close to this performance with 
an overall error of 5.1% (95% CI 4.94–5.26%).

The performance of each model class was tested by 5-fold cross-validation with 20 repetitions on the training 
set. The smallest mean absolute error in predicting absolute and relative left lobar liver volume was shown by 
the kernelized ridge regression model.

Figure 1.  Hypertrophy of the left liver lobe after right-sided radioembolization. Computed tomography images 
(A) pre, (B) 3, and (C) 6 months after radioembolization. Significant volume increase of the left liver lobe (*) can 
be observed post-therapy. Dotted line: border between left and right liver lobe.

Figure 2.  PET/MR after radioembolization for right-sided, multifocal HCC. MRI can visualize (A) tumor 
on T2-weighted image of liver with hyperintense HCC lesions (arrow), (B) targeting of tumor on PET/MR 
(arrows), and (C) intensity of irradiation of surrounding liver tissue on PET (*).

Figure 3.  Symbolic visualization of a liver with right sided HCC (left) after RE (right). While tumor necrosis 
and shrinkage are accompanied by volume reduction of the right lobe, the left lobe hypertrophies. The amount 
of volume gain of the left liver lobe should be predicted by a machine learning algorithm.
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Observed liver volume changes. After RE of the right liver lobe, a decrease in volume of the right liver 
lobe and an increase in volume of the left liver lobe were observed (Fig.  1, Supplemental Table  3). A mean 
increase of 51.7 ml per 30 days was observed in the training cohort, whereas the increase in the Rennes valida-
tion cohort was 49.8 ml per 30 days and similarly 47.3 ml per 30 days in the mixed cohort. A t test indicated no 
significant differences between these increases (all p > 0.10). There was no significant difference in FLR increases 
per 30 days (2.7% for the training cohort, 3.5% and 2.7% for the Rennes and mixed cohorts, respectively) between 
the training and the mixed cohort (p > 0.10) and between the mixed cohort and the Rennes cohort (p > 0.10), but 
there was a significant difference in FLR increases per 30 days between the training and the validation cohort.

Figure 4.  Scatter and waterfall plots illustrate the relative errors of left liver lobe volume predictions (in %) and 
the absolute errors of the FLR compared to the true liver volume and FLR utilizing the ridge regression model 
and the RBF-SVM, respectively. Left liver volume in the Rennes validation cohort (top) and FLR in the Rennes 
validation cohort (bottom).
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Figure 5.  Scatter and waterfall plots illustrate the relative errors of left liver lobe volume predictions (in %) and 
the absolute errors of the FLR compared to the true liver volume and FLR utilizing the ridge regression model 
and the RBF-SVM, respectively. Left liver volume in the mixed validation cohort (top) and FLR in the mixed 
validation cohort (bottom).

Table 1.  Absolute and relative prediction errors of left lobe liver volume predictions measured by computing 
the mean absolute error (MAE) for the two validation cohorts Rennes and mixed.

Rennes cohort Mixed cohort

MAE of the absolute left liver volume in ml (95% CI) RBF-SVM 159.4 (136.8–181.9) 181.9 (112.8–251.1)

MAE of the FLR in % (95% CI) Ridge regression 6.08 (5.15–7.82) 7.62 (4.96–10.29)
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Patient baseline characteristics. Patient characteristics of the different cohorts were compared (Table 1). 
A total of 146 patients were included in this analysis, contributing 531 volumetry sets for training and validation. 
Patients in the training cohort had a mean age of 67.3 ± 9.1 years (60 males, 15 females), and 67.9 ± 9.4 years 
(p = 0.73, 42 males, 7 females) and 63.9 ± 10.6 years (p = 0.18, 17 males, 5 females) in the Rennes and mixed 
cohort, respectively.

The mean baseline left liver volume in the training cohort was 631 ml (range, 176–1187 ml) with a mean FLR 
of the left liver lobe of 36% (SD ± 12%). However, these values were significantly higher in the Rennes validation 
cohort with a median left liver volume of 829 ml (range, 144–1682 ml, p < 0.001) and FLR of 46% (SD ± 15%, 
p < 0.001). In the mixed cohort, left liver volume was slightly higher compared to the training cohort (750 ml, 
range, 371–1213 ml, p = 0.042), while FLR was very similar at 36% (SD ± 8%, p = 0.857).

There were more cirrhotic patients in the Rennes cohort (96%, 47/49) than in the training cohort (73%, 55/75; 
p = 0.003), but none with ascites (p < 0.001). The Child–Pugh score showed a statistically significant difference 
between the training cohort and the cohort from Rennes (p = 0.045). The number of patients with a portocaval 
shunt was higher in the training cohort (N = 24) than in the two validation cohorts (N = 2 and N = 1, p < 0.001 and 
p = 0.021, respectively). Whereas the number of patients with a portal vein thrombosis was significantly higher 
in the Rennes cohort (N = 23, p < 0.001) than in the training (N = 8) and the mixed cohort (N = 3).

Discussion
Reliable prediction of left sided hypertrophy after right sided RE has shown to be possible utilizing machine 
learning algorithms. If the expected volume gain of the left liver is large enough, a sequential curative resection 
(i.e., major hepatectomy) can be attempted for from the beginning of HCC therapy. While this is one of the most 
valuable curative treatment options, it is only available to a small percentage of patients due to the risk of post 
major hepatectomy liver failure with a small  FLR1,5,18,19. Thus, RE may serve as a conversion therapy from initially 
unresectable to resectable HCC. The prediction showed a stronger correlation for the Rennes cohort than the 
mixed cohort. This could be due to a larger population size (49 vs. 22 patients), a higher homogeneity of patients 
from a single center rather than two separate centers, or the use of a different RE material (glass microspheres 
for the training and Rennes cohort vs. resin microspheres for the mixed cohort).

Feature importance analysis confirmed some of the features known to correlate with hypertrophy from several 
preceding studies as part of the machine learning  algorithm6,8,14. While liver volume at baseline, age, albumin 
level, spleen volume, and existence of a portocaval shunt had an impact on the prediction of absolute liver volume, 
these results should be taken with caution as only the univariable importance was analyzed and the interaction 
between the features were not taken into account.

Of the four different machine learning models evaluated, no single model class of model consistently per-
formed better or worse than the others, underlining the fact that the performance of machine learning models is 
highly dependent on the data set. In addition, when considering the difference in prediction of the left liver vol-
ume in the training cohort between the best and the worst model, a difference of 10.6 ml (147.4 ml vs. 157.9 ml) 
and 0.6% (4.97% vs. 5.57%) for absolute liver volume and FLR are both too small to be of real clinical importance.

Natural splines were chosen to interpolate the predictions for the validation cohorts as they model biological 
processes better than several other interpolation methods, since their first and second derivatives are continu-
ous. To understand the extent to which this choice affected the results, standard linear interpolation was also 
employed to the validation cohort. The only slightly better results for absolute predictions (decrease in error of 
5.54 ml (153.9 ml vs. 159.4 ml) and 10.5 ml (171.4 ml vs. 181.9 ml) for the prediction of absolute left lobar volume 
in the validation and mixed cohort) and relative predictions (FLR differences in favor of linear interpolation by 
0.13% and 0.37%, respectively) are not of clinical relevance and do not constitute an argument to dismiss the 
choice of natural splines.

Simultaneous tumor treatment and hypertrophy induction by RE is a relatively new idea and has to sustain 
in a world where surgeons have been accustomed to PVE as the standard for inducing liver hypertrophy for over 
30 years. It is known that PVE achieves faster growth of FLR and thus faster resectability. However, this is at the 
risk of tumor progression between PVE and planned resection, resulting in non-resectability in approximately 
8% of  patients3,8,20,21. This risk can be reduced by more accelerated hypertrophy, combining PVE and liver venous 
deprivation, or sequential TACE of the  HCC4. In the end, the question remains whether a longer time to possible 
resection after  RE8 might be beneficial. Considering that after major hepatectomy intrahepatic tumor recurrence 
occurs in around 25–41% within one year, it questions the benefit of resection in this population at  all22,23. Thus, 
it may be hypothesized that the prolonged time between RE and major hepatectomy may serve as a biological 
selection tool (“test-of-time”) sorting out patients who would experience early tumor recurrence limiting benefit 
from surgery. Taken together, if RE is likely to achieve hypertrophy of the untreated left liver lobe with sufficient 
FLR according to machine learning algorithms, RE may be preferred over PVE due to its direct treatment and 
potential benefit for conversion therapy.

Liver function tests can evaluate liver function as a whole, i.e. using the LiMAx test, or projected onto ana-
tomical regions or liver segments, i.e. utilizing the  HBS10–12. The LiMAx test provides additional data on the 
overall enzymatic liver function by measuring the cytochrome P450 system directly. This proved advantageous 
over measuring secondary effects of liver function deterioration by means of reduced protein synthesis or reduced 
detoxification leading to hepatic encephalopathy. HBS on the other hand can precisely measure hepatobiliary 
excretion per defined liver volume and can thus reduce the risk of failure after major hepatectomies compared 
to volumetric assessment  alone12. While an addition of HBS data to our study would be of great value, these 
are not available since they are not routinely acquired in our institution. HBS has the potential to differentiate 
volume gain from function gain few days after patients had undergone the ALPPS (associating liver partition 
and portal vein ligation for staged hepatectomy) procedure, showing that volume gain precedes function  gain24. 
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A discrepancy between relative liver function and volume was reported by Guiu et al., with the potential to 
overestimate FLR based on volumetric data  alone25. We expect volume and function gain few months after RE 
to be of comparable growth. But neither this, nor the predictive value of baseline HBS of the FLR influencing its 
hypertrophy potential, have been analyzed so far.

Several machine learning models were explored during training to ensure that the best model was used for 
prediction since it is generally not known a priori which model will yield the best overall performance. Training 
proceeded, therefore, by nested cross-validation to identify the best-performing model. In general, extensive 
exploration of multiple models could lead to overfitting. However, it turned out that in our data, there is no large 
difference between the models on the training data. Also, no large drop in performance could be seen when 
considering the validation cohort from Rennes. Both indicate that the selected model does not overly overfit 
the data. Nonetheless, slightly larger differences were seen for the mixed validation cohort; this might show 
that the model depends strongly on baseline characteristics or possibly the device used for RE (resin vs. glass 
microspheres), which were different in that cohort. The applicability to other patient cohorts may thus be limited.

In addition, the sample sizes for the training and validation cohorts were rather small. In general, small sample 
sizes can potentially lead to false-positive findings, yet, our model was tested on two external validation sets with 
good results, demonstrating that the model can generalize. While larger sample sizes are warranted to improve 
accuracy and ideally allow for an application in clinical routine, the availability of such data sets is currently 
limited. Future studies with more patients included, ideally from different populations, must be conducted before 
such models are introduced in the clinical routine.

Additionally, data on radiation dose to the non-tumorous liver tissue was not taken into account, despite 
indications that hypertrophy of the untreated lobe depends on  this13. Dose data will be important to include 
in future studies. Importantly, the biological effects of the two devices used (glass and resin microspheres) will 
be different and must be considered: radiation activity per microsphere varies (glass microspheres higher than 
resin), and different distribution patterns due to varying numbers of particles (resin higher numbers than with 
glass) can be expected.

Furthermore, as the study population consisted of patients with HCC exclusively of the right liver lobe suitable 
for RE, transferability to patients with metastases of the liver (e.g., colorectal cancer), patients not eligible for 
RE, patients with worse liver function and tumors of the left liver lobe or both liver lobes only may be limited, 
potentially warranting specific further evaluation for these patient populations. Finally studies with a prospective 
nature should be performed to further validate such algorithms.

In conclusion, we proposed a machine learning algorithm to accurately predict relative and absolute volume 
changes of the left liver lobe after right-sided RE. External validation confirmed the functionality of the predic-
tion algorithm, which could help estimate the chances of conversion from palliative RE to curative hepatectomy 
following significant FLR hypertrophy.

Methods
Patients. This multi-center retrospective study was conducted in accordance with the Declaration of Hel-
sinki and approved by the Ethics Commission of the Medical Faculty of the University of Duisburg-Essen (17-
7754_2-BO), and is a succeeding study of a patient cohort previously  reported14 used as training cohort in this 
study. Informed consent for all procedures was given by all patients. Ethics commissions of the three external 
sites also approved usage of the data (Münster: ethics approval 2018-638-f-S) or waived need for additional 
approval due to the retrospective nature of the study (University of Würzburg, Centre Eugène Marquis, Rennes). 
HCC patients treated with RE were collected from four different sites: 75 patients treated between January 2007 
and April 2015 from the University Hospital Essen, Germany were included, which comprised the training 
cohort. In addition, 49 patients treated between November 2009 and March 2016 from the University Hos-
pital Rennes, France were used as a first validation cohort, and 17 patients treated between August 2012 and 
December 2017 from the University Hospital Münster, Germany, as well as 5 patients treated between June 
2010 and December 2014 from the University Hospital Würzburg, Germany, which were used collectively in a 
second validation cohort. Overall, half of the patients underwent liver biopsy for diagnosis, while the remaining 
patients were diagnosed based on imaging alone. Treatment indications for most patients were unresectability, 
size (treatment alternative to TACE), and 10% bridge to liver transplantation.

Inclusion criteria were (a) RE only to the right liver lobe for unresectable unilateral HCC, (b) computed 
tomography (CT) imaging or magnetic resonance imaging (MRI) of the liver with a maximum of 6 weeks prior 
to RE and at least one follow-up imaging at least 1 month thereafter. Additional inclusion criteria for the Essen 
cohort was imaging follow-up at 3, 6 and 9 months. Exclusion criteria were (a) previous segmentectomy or surgi-
cal liver resection, and (b) previous transarterial chemoembolization procedure within 12 months prior to RE.

Patients in the training cohort from Essen and the validation cohort from Rennes were treated with glass 90Y 
microspheres, while the other two cohorts from Münster and Würzburg were treated with resin 90Y microspheres.

CT scans. Volumetric analysis was performed on baseline CT or MRI scans and on the corresponding fol-
low-up scans in the portal phase. The classification of hepatic segments followed the Couinaud segmentation, if 
required adjusted by SPECT information gathered during the planning  phase26. Volumetry was performed with 
site specific techniques, but all were performed on modern CT scanners with 3–5 mm thick reconstructed slices 
with manual summation of all slices or automatic calculation on a Syngo data-processing console display unit 
(Siemens Healthineers, Erlangen, Germany). Volumetry before and after treatment was performed by an identi-
cal radiologist or nuclear medicine physician with at least 5 years of experience. Three volumes were measured: 
Left lobe, right lobe and total volume (all in ml). From these, the FLR was computed as the ratio of left lobe 
volume to the total volume (in %). Additionally, the total splenic volume was measured at baseline.
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In the training cohort, imaging scans were taken at 3, 6 and 9 months after RE. A few patients (N = 14) were 
missing scans at 9 months after RE. For these, the liver volume at 9 months was estimated by computing the 
mean difference between the 6 month and the 9 month follow-up values over all other patients and adding this 
difference to the 6 month follow-up to obtain an estimate for the 9 month follow-up.

Imaging scans in the validation cohorts were taken at different follow-up time points (i.e., 4 or 7 months), 
and up to three follow-up measurements were available per patient.

Patient characteristics. Baseline characteristics of patients, including laboratory results were extracted 
from chart review (Supplemental Table 4). Laboratory features were prothrombin time (international normal-
ized ratio; INR), albumin, thrombocyte count and total bilirubin. Spleen volume was measured at baseline. Col-
lected clinical features were sex, etiology of cirrhosis, Child–Pugh score, ascites, portocaval shunting on initial 
cross-sectional imaging and portal vein thrombosis. If no cirrhosis was found, the Child–Pugh score was not 
defined and was set to zero. A summary of the characteristics of the features from the three cohorts is displayed 
(Supplemental Table 4). From the radiological imaging, liver volume (left lobe [ml], right lobe [ml], total liver 
[ml], FLR = left/total [%]) and total splenic volume (ml) before RE were used. Clinical characteristics were com-
plete for all patients. All features except for the baseline volumes were scaled to have a mean of 0 and a variance 
of 1. Baseline volumes were expressed in liters to ensure that all features have a similar range.

Machine learning analysis. Machine learning can be considered as a subdomain of statistics, with the aim 
of finding predictive models that learn the underlying relationship in a given data set between the predictors and 
endpoints. Their advantage is that they learn this relationship in a data-driven way. Potentially, machine learning 
models are complex enough to memorize the data, which affects the model’s ability to generalize to new, unseen 
data. Therefore, validation methods must be used to estimate the performance of a model.

Several model classes were used to analyze the data: Linear and kernelized support-vector machines (SVM), 
kernelized ridge  regression27, which is a well-known non-linear variant of least square regression with an addi-
tional regularization term as well as  XGBoost28, an optimized variant of gradient boosting. For the non-linear 
models, the radial basis function kernel was employed. Prediction error was measured by computing the mean 
absolute error (MAE).

Training. Models were trained to predict FLR and absolute left lobar volumes using only baseline character-
istics, i.e., clinical features, laboratory features and spleen and liver volumes before RE.

Repeated double-cross validation was used to build and estimate the performance of the models as outlined 
in Supplemental Fig. 229. In the outer cross-validation step, the data was split randomly into five folds. Four of 
these were used in an inner 5-fold cross-validation step to find the best parameter of the corresponding model, 
and its performance was assessed on the remaining fold. This procedure was repeated twenty times and final 
estimates were obtained by averaging the resulting MAEs. In the inner cross-validation step, the data was split 
again in five folds and the hyper-parameters of the models were optimized. Both SVMs were optimized using 
the epsilon-insensitive loss, while for the XGBoost regression the mean squared loss was employed.

Independent models for each model class were trained in this fashion to predict the absolute left lobar volume 
and FLR at 1, 3, 6 and 9 months after baseline, respectively. The model class with the lowest average MAE was 
selected as the final model class and retrained over the whole training set. The hyper-parameters for the final 
model were selected by 5-fold cross-validation.

To understand the relative importance of the included features, their univariable importance was calculated 
during cross-validation using the permutation importance  method30. To this end, for all models trained during 
cross-validation, the evaluation on the corresponding test data was modified as follows: First, the accuracy of 
the model was determined on the test data. Then, for each feature, its values in the test data were permuted and 
the model was re-evaluated. The difference in accuracy between the base model (with all features) and the model 
with the permuted feature was calculated. This difference represents the loss in accuracy when permuting the 
corresponding feature and gives a rough estimation of its relative importance in the trained model. The overall 
importance of the features was then obtained by averaging. Because four different models were trained for 1, 
3, 6, and 9 months, this approach provides the feature importance for each model and shows how the relative 
importance of a feature changes through time.

Validation cohorts. Patients in the two validation cohorts were measured at different time points, e.g., 
at 2, 3.5 and 5 months after baseline and were thus not directly comparable to measurements of patients in 
the training set. Therefore, the following procedure was applied: First, as the training set did not contain any 
measurements beyond 9 months after RE, such measurements were removed from the validation set (N = 9). 
Then, the trained models were used to predict the liver volumes or FLR at 1, 3, 6 and 9 months after baseline. 
To obtain measurements at the times when measurements were available for the patients in the validation set, 
natural splines were used to interpolate the predicted  values31. This allowed prediction of the volume or FLR at 
any time after baseline up to 9 months (Fig. 6). Natural cubic splines were chosen for interpolation as they are 
smooth and model the underlying biological process better than simple linear interpolation, which introduces 
sharp changes. However, in order to understand how this choice affects the results, linear interpolation was also 
used strictly for reasons of comparison.

The overall error for the validation cohorts was obtained by averaging all absolute differences between the 
predicted and the true volume or FLR for each patient. In case multiple follow-up measurements were available 
for a patient, a volume or FLR was predicted for each time point and the resulting errors were then averaged to 
obtain a single error.
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Baseline clinical data is either stated in percentage or mean values with standard deviation (SD) if not stated 
otherwise. Machine learning modelling was performed by using the scikit-learn package of python 3.7. Two-
sided t tests and Chi-square tests were calculated using R 3.6.1.

Data availability
The datasets used and analyzed are available from the corresponding author on reasonable request due to data 
protection protocol of the institutions.
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