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Abstract

The present work aims at the investigation of residual stresses in a component on
several scales. For this purpose, a numerical simulation tool is developed using the Finite
Element Method. An essential aspect of this approach, besides the discretization of the
geometry to be investigated and the definition of the algebraic system of equations to be
solved, is the definition of a suitable material model. The microheterogeneous structure
of materials such as steel must be taken into account during the analysis. Since this work
focuses on the numerical investigation of the evolution of residual stresses in hot bulk
forming processes of steel components, a model for the representation of occurring phase
transformation on the microscale is additionally required. To this end, a single-scale fi-
nite element model in combination with its constitutive equations is introduced, which
is used to calculate effective material properties and resulting stresses especially during
cooling of a hot bulk forming component. Different cooling routes influence the stress
development in the component on all scales. Thus, multi-scale methods are a valuable
tool for the analysis of macroscopic and microscopic residual stresses. Subsequently, dif-
ferent representative volume elements are discussed, which are used to describe a phase
transformation in a microscopic boundary value problem within a multi-scale finite ele-
ment method. This approach enables to calculate stresses during the cooling process as
well as the final residual stress states at the different scales.

Zusammenfassung

Die vorliegende Arbeit verfolgt als Ziel die Untersuchung von Eigenspannungen in
einem Bauteil auf mehreren Skalen. Zu diesem Zweck wird ein numerisches Simulations-
modell unter Verwendung der Finiten Elemente Methode entwickelt. Ein wesentlicher
Aspekt dieses Ansatzes ist, neben der Diskretisierung der zu untersuchenden Geome-
trie und der Definition des zu lösenden algebraischen Gleichungssystems, die Fest-
legung eines geeigneten Materialmodells. Die mikroheterogene Struktur von Werkstof-
fen wie Stahl ist bei der Analyse zu berücksichtigen. Da in dieser Arbeit die nu-
merische Betrachtung der Eigenspannungsentwicklung bei der Warmummassivformung
von Stahlbauteilen im Vordergrund steht, ist zusätzlich ein Modell zur Darstellung
auftretender Phasenumwandlungen auf der Mikroskala unerlässlich. Aus diesem Grund
wird ein einskaliges Finite Elemente Modell in Kombination mit seinen konstitutiven
Gleichungen eingeführt, mit dem die effektiven Materialeigenschaften und die resul-
tierenden Spannungen insbesondere während der Abkühlung eines warmmassivumge-
formten Bauteils berechnet werden. Unterschiedliche Abkühlrouten beeinflussen dabei
die Spannungsentwicklung im Bauteil auf allen Skalen. Somit sind Multiskalenmetho-
den ein wertvolles Werkzeug für die Analyse makro- sowie mikroskopischer Eigenspan-
nungen. Anschließend werden verschiedene repräsentative Volumenelemente eingeführt,
die zur Beschreibung einer Phasenumwandlung in einem mikroskopischen Randwert-
problem innerhalb einer multiskalen Finite Elemente Methode verwendet werden. Mit
diesem Ansatz lassen sich sowohl die Spannungen während des Abkühlvorgangs als auch
die endgültigen Eigenspannungszustände auf den verschiedenen Skalen bestimmen.
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Introduction 1

1 Introduction

Residual stresses are of major importance in the production of components and their
application in the field of engineering. These internal stresses are superimposed with
external stresses, which are a consequence of external forces and moments. The ori-
gin of residual stresses are manifold, e.g. they can be evoked by temperature gradi-
ents or phase transformations or other influencing factors. For a long time, residual
stresses were considered to have a negative effect on various properties, such as ser-
vice life, durability and usability by a reduction of failure limits or higher brittleness.
As a consequence, the aim was to eliminate or at least minimize residual stresses in com-
ponents, for instance by subsequent heat treatment after the manufacturing process or
shot peening or laser peening as mechanical treatments, cf. Hall and Mudawar [66],
Michaleris et al. [117], Camilleri et al. [24] and Cloots et al. [29]. However,
this disregards the possibility that a change in properties can also have positive effects.
Recent publications show, that residual stresses can be inserted in a component during its
forming with improving its properties, see Kästner and Volk [88] and Volk [194; 195]
among others. For instance, residual stresses can increase the service life of a component
if they counteract the direction of the operational stress, i.e., compressive residual stresses
can reduce crack formation or crack propagation under tensile loading. Nevertheless, it
is important to note that residual stresses are always in equilibrium, i.e., if compressive
residual stresses are induced in one part of the component, tensile residual stresses will
result in another part. If possible, this last area should be selected in such a way that the
tensile residual stresses occur in a lightly loaded part of the component, since they have a
crack-opening effect. This targeted induction of residual stresses in the manufacturing pro-
cess with a view to improving properties is therefore part of current research. Exemplary
components in this context are crankshafts or connecting rodes, as shown in Figure 1.1.

Figure 1.1: Exemplary components, for which current research focuses on the induction
of targeted residual stress states: a crankshaft, a part of a wheel suspension and a connec-
ting rod.

Following the definition of Macherauch et al. [108], residual stresses are classified by
the scale, they act on. Residual stresses of first type are also called macroscopic stresses.
They are in equilibrium over the complete component or at least several grains. Residual
stresses of second and third type are referred to as microscopic stresses. They are dis-
tinguished in such a way that residual stresses of second type classify the fluctuations of
the residual stresses of first type with respect to the average of one grains, while residual
stresses of third type denote the difference between the true local stresses and the sum
of the residual stresses of first and second type. This definition of residual stresses on
multiple scales motivate the aim of this thesis: the multi-scale investigation of residual
stresses in hot bulk forming parts.



2 Introduction

These hot bulk forming processes offer the possibility to exploit different interactions,
such as interactions of thermal, metallurgical or mechanical kind. They are based on
the chemical composition of a material, are closely interlocked and influence each other
mutually, see Figure 1.2. In general, the different process steps of hot bulk forming are
heating, forming and cooling, each of them taking influence on the final residual stress
profile of the component made from steel. Aspects as the choice of the chemical consti-
tution, the heating temperature, the forming speed or the cooling route, among others,
effect the outcoming component’s properties. The initial heating leads to an austenization
of the material and thereby a kind of elimination of previously present residual stresses
due to manufacturing of the material and/or due to the forming of the initial geometry.
After the forming step especially the last process step, the cooling, has major influence
on the microstructural evolution. Depending on the cooling rate, the starting and target
temperature, different phases can evolve from the austenitic parent phase. The resul-
ting microstructures show varying properties, e.g. martensitic microstructures are known
for very high strength while bainitic microstructures possess good ductility. These phase
transformations are characterized by a change of the atomic lattice structure, often taken
into account as a volumetric expansion of the atomic unit cell, which can also be accom-
panied by a shearing. As a consequence, macro- and microscopic residual stresses arise in
the material.

Figure 1.2: In hot bulk forming processes, it is possible to exploit the interactions of ther-
mal, mechanical and metallurgical kind based on the chemical composition of the material
under consideration.

Experimental investigations are an important tool to understand the relation between
the manufacturing process and the final component’s properties, since small changes can
effect the properties immensely. In order to gain a profound knowledge of the connection
of the different aspects, such as microscopic phase transformation or thermal distortion, it
is inevitable to use numerical analysis tools. In general, the last decades proofed that the
utilization of numerical methods to analyze or design structures in several engineering ap-
plication are very useful. Such numerical investigation can provide information regarding
stress and strain distributions inside the material. These cannot or can only be accessed
with high efforts in experiments. Especially, the measurement of residual stresses are
very complex and not always exact, particularly with respect to in depth measurements,
see for instance Rohrbach [146], Kandil et al. [86] and Rossini et al. [148]. Many
methods to determine residual stresses in the depth of a component are destructive and
thereby, measurements cannot be taken twice. These include, among others, the deep hole
drilling or the contour method. Measurements using non-destructive methods such as X-
Ray diffraction, neutron diffraction or ultrasonic can be repeated, but they are only used
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to determine residual stresses in regions near the surface, i.e., up to a depth of a few mi-
crometers for steel. Moreover, in order to determine residual stresses, a phenomenological
theory is required. This means that the strains or displacements of a component are mea-
sured and then converted into stresses by means of suitable correlations, e.g. Hooke’s law.
This gives room for inaccuracies and hence, numerical simulations seem advantageous.

Such numerical methods to investigate residual stresses and/or to depict micro-
scopic phase transformations are numerous. One possibility is the application
of a phase field approach or a multi-phase field approach. First fundamental
work regarding multi-phase models was presented by Steinbach et al. [173],
Tiaden et al. [184] and Steinbach and Pezzolla [172]. These approaches
map the microscale with possible grains in a fine resolution and give information
about the growth of product phases in a parent phase. For example, the evolu-
tion of different martensitic variants in an initially austenitic microstructure can be
represented, see e.g. Wang and Khachaturyan [196; 197], Artemev et al. [2],
Levitas and Preston [104], Yeddu et al. [208], Mamivand et al. [114] or
Yeddu [207]. Another possibility is to use single-scale phenomenological material
models, which calculate the volume fractions of the individual phases and de-
termine effective material parameters or effective stresses and material tangents
thereon. In case of austenite-to-martensite phase transformation, early works to
describe the transformation strain of the atomic lattice have been proposed by
Bain and Dunkirk [7] and Bain and Griffiths [8]. Additionally, important de-
velopments for application of martensite formation as solid phase transformation
are presented in Wechsler [198], Roitburd [147], Leblond et al. [100; 101],
Fischer [46; 49; 50], Fischer et al. [47; 48], Petit-Grostabussiat et al. [142],
Hallberg et al. [67; 68], Wolff et al. [203; 204; 205] and Mahnken et al. [110].

For the computation of such a classical phenomenological description of the material be-
havior the Finite Element Method (FEM) provides a suitable tool, which has first been
established in the 1960’s. The idea of the FEM is to approximate or simplify the solution
of a problem, which would otherwise not be solvable or only with difficulty. Therefore, the
computational domain is discretized in smaller areas (2D problem) or volumes (3D pro-
blem) of simple geometry, which are called finite elements. On each finite element, the ma-
terial behavior is described in terms of continuum mechanical equations. As a consequence,
an assembled algebraic system of equations on the whole domain is solved using numeri-
cal techniques to obtain the unknown function, see e.g. Wriggers [206], Bathe [13] and
Zienkiewicz and Taylor [210]. The FEM is used in many different fields of engineering
application such as civil engineering or biomechanics, to name just two. Moreover, multi-
scale finite element simulations offer the possibility to get an insight on the different scales.
Therein, the macroscale refers to the component itself, while a subscale, the microscale,
resolves the heterogeneous microstructure. Fundamental works, but not limited to, can be
found in Smit [171], Suquet [175], Moulinec and Suquet [127], Smit et al. [170],
Miehe et al. [121; 122], Feyel [44], Michel et al. [118], Terada et al. [182],
Feyel and Chaboche [45], Geers et al. [57] and Schröder [161; 162] and from
then on the method has been well established in many research fields. The main idea
of the direct macro-micro transition approach or also called FE2 method is to combine a
macroscopic boundary value problem of the FEM with microscopic boundary value pro-
blems. Therefore, the macroscopic geometry is discretized with finite elements and in every
macroscopic integration point a microscopic boundary value problem is attached. The lat-
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ter describes microheterogeneous structures on a representative volume element (RVE).
The term RVE has been established by Hill [78] as a microstructure with a sufficient
number of inclusions, such that it describes the material response independent from surface
tractions or displacements. From there on, different definitions of the RVE has been given,
for instance by Hashin [70], Drugan and Willis [33], Ostoja-Starzewski [137] or
Stroeven et al. [174]. For a summary on RVEs, please refer to Zeman [209] and the
references noted therein. For upscaling, i.e., for passing information from the microscopic
boundary value problem to the macroscopic scale, homogenization techniques are required
to determine averaged macroscopic quantities.

In general, stresses at component (macroscopic) level are determined by homogenization,
i.e., by averaging the microscopic stress fluctuations. This means that possible tensile or
compressive stress peaks of these fluctuations, which exceed the macroscopically averaged
value in magnitude, cannot be measured. However, these are essential if the performance
or service life of a component is to be predicted, since microcracks can occur as a result,
which adversely affect the properties.

• In order to investigate residual stresses of different types in hot bulk forming pro-
cesses, this work is organized as follows. Section 2 summarizes the main aspects
of the theory of continuum mechanics, which is a phenomenological field theory to
describe field quantities for fluids or solids. The kinematics of a body, the concept of
stress, which occurs as a consequence of outer or inner forces and moments, balance
principles as well as the key aspects of material modeling are described.

• Afterwards in Section 3, the Finite Element Method is introduced starting with
the definition of a boundary value problem, for which a variational form has to
be set up. Furthermore, the linearization of the boundary value problem, which is
solved applying Newton’s method as well as the discretization with finite elements
is discussed. In case of a thermo-mechanical coupling the balance of energy has to
be taken into account and coupling terms to the mechanical part are required. In
a last step, surface elements are defined which are helpful in order to depict a flux,
e.g. a heat flux, over the boundary of the body.

• Section 4 introduces the theory of phase transformation in solids. During the
manufacturing process of components made of steels, phase transformations play
an important role, since they influence the component’s final properties. Several
approaches are outlined, that are available for representing these in numerics. It is
explained, what phases are, which one can occur and how their evolution can be mod-
eled numerically. Different equations to compute the actual volume fractions of the
phases are given, which are the well established Johnson-Mehl-Avrami-Kolmogorov
equation and the Koistinen-Marburger differential equation. Moreover, phase trans-
formations are one cause of residual stresses in the material, which also affect the
out coming properties decisively. Thus, in this Section, the three different type of
residual stresses are defined, based on the scale, they act on.

• A model to take into account phase transformations in a single-scale phenomenolog-
ical material description is proposed in Section 5. As the name suggests, the tem-
perature plays an important role in hot bulk forming processes. Thus, the model
bases on an additive split of the strain tensor into five parts, namely elastic, plastic,
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thermal, transformation volumetric and transformation induced plasticity (TRIP)
strains. Required material parameters for the individual phases present as well as
the constitutive equations are derived.

• In Section 6, different two-dimensional numerical examples are analyzed. The first
example serves for comparing different possibilities to compute the effective mate-
rial behavior, of which one is chosen for following up computations. In course of
numerically investigating the hot bulk forming process of a cylindrical specimen
with eccentric hole, first the experimental set-up is presented. Thereby, different
input parameters for the numerical analysis, such as the final volume fractions, are
obtained. A convergence study regarding the discretization in space and time is car-
ried out in a second step. Finally, the cooling step of the hot bulk forming process is
investigated. Therefore, various cooling routes are considered, since different cooling
paths result in different phase transformations which evoke different stress profiles.
Additionally, residual stresses are obtained in the material which are discussed. Fur-
thermore, phase-specific stress contributions as well as the influence of the TRIP
strains are in focus of an investigation.

• Complementary to the two-dimensional analysis, three-dimensional computations
are presented in Section 7. It is shown that it is inevitable to take into account the
third direction during the cooling of hot bulk forming parts, since in 2D the heat
can radiate over the outer boundary of the specimen but the heat dissipation over
the height of the component is neglected.

• Since the previous computations have only been single-scale, it is not possible to
distinguish the residual stresses into the three different types. Thus, in Section 8 a
two-scale Finite Element Method is derived, which is also known as FE2 approach.
This direct-micro-macro transition approach solves one boundary value problem on
the macroscale and in each macroscopic integration point a microscopic boundary
value problem is attached. In order to bridge the scales, a homogenization scheme
is used. On the minor scale, the material model of Section 5 is adapted and the
phase transformation is incorporated in order to analyze the influence of a micro-
scopic phase transformation and the evolving stresses on the macroscopic behavior
of the component. Therewith, the FE2 method provides a suitable tool to analyze
microscopic residual stresses as well as macroscopic residual stresses and to relate
in between.

• This FE2 approach shall be utilized in Section 10 to investigate the cooling of a
specimen with taking into account a microscopic phase transformation. Therefore,
at first, in Section 9 different possible representative volume elements are defined
and their advantages as well as disadvantages are discussed. In order to do so, macro-
scopic and microscopic quantities such as stress components, strain components or
the equivalent plastic strains are compared. Furthermore, the influence of the grain
orientation during a phase transformation is analyzed.

• Based thereon, suitable RVEs are chosen to carry out the two-scale analyses in
Section 10. Therein, a mesh density and time step size study is carried out and
the microscopic residual stress distribution is investigated. Quadratic measures of
the microscopic fluctuations are evaluated in order to assess the influence of the
microscopic residual stresses on the macroscopic residual stresses.
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• Section 11 gives a conclusion of the thesis and proposes different possibilities for
future work.

In this work, all computations are carried out with the Finite Element Analysis Pro-
gram (FEAP) in version 8.2, see Taylor [177], in combination with the Pardiso Solver,
see Schenk and Gärtner [151], provided by the Intel Math Kernel Library in ver-
sion 10.1.3.027.
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2 Fundamentals of continuum mechanics

Real, physical materials show highly complex discrete structures with microstructural
inhomogeneities on atomistic scale. Their behavior under external influences is determined
by the interactions of atoms and molecules. However, such a detailed resolution of ato-
mistic characteristics is often not necessary and far too costly for engineering application.
As a method, which is more efficient but at the same time accurate enough, the theory
of continuum mechanics as phenomenological field theory can be applied. It describes
the motion and deformation of a body, which is assumed to be a continuum, as well as
internal stresses resulting from that deformation. In order to do so, balance principles are
fundamental to describe the physical laws, for which the real material structure is replaced
by field quantities such as velocity or temperature for instance. The theory of continuum
mechanics can be applied for fluids or solids to describe e.g. thermal or electromagnetic
field quantities, such as temperature of magnetic flux. Details on the method of continuum
mechanics are given in Truesdell and Noll [186], Eringen [36], Ogden [132] and
Altenbach [1], among others. In the following, a summary on the kinematics, stresses
and balance principles is given.

2.1 Kinematics

The first part of continuum mechanics is kinematics, which is concerned with geome-
trical aspects of a body’s movement. It enables statements regarding local properties of
deformation in the undeformed or deformed state. Therefore, a body in the euclidean
space B ∈ IR3 is defined as a collection of material points P , which are each given by a
position vector, see Figure 2.1. In the undeformed or reference configuration B0 at initial
time t = t0 the position vector is given as X with respect to the origin of the space 0.
The boundary of the body is denoted by ∂B0.

Figure 2.1: Relation of reference and actual configuration.

In order to describe the motion and deformation of the body, an actual configuration has
to be defined at time t = t0 + ∆t, ∆t 6= 0, with corresponding position vector x with
respect to the origin 0. The actual and reference configuration are related by the motion
function ϕ, which describes the unique mapping of a material point from its position in
the reference configuration to its position in the actual placement. It holds that

ϕ : B0 → B , x = ϕ(X, t) and X = ϕ−1(x, t) . (2.1)
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The partial derivative of the mapping with respect to the reference position vector results
in the so-called deformation gradient

F (X, t) =
∂ϕ(X, t)

∂X
, (2.2)

which represents the local, kinematic properties as a consequence of the body’s defor-
mation. The deformation gradient describes the transformation of a line element from
reference to actual configuration, and hence can be interpreted as the length change of a
line element inside the body B, expressed as

dx = F (X, t) · dX . (2.3)

In order to ensure the deformation of a body is invertible, it is required that the defor-
mation gradient F is non-singular, i.e., detF > 0. Then, the inverse of Equation (2.3)
results in

dX = F−1(X, t) · dx , (2.4)

with F−1 as inverse tensor of the deformation gradient. Similar to line elements, the
following relations for area elements, da and dA, and volume elements, dv and dV , in
actual and reference configuration, respectively, can be formulated as well. The Jacobian
is defined as J := | detF |, such that it holds that

dv = JdV and da = JF−T · dA . (2.5)

The presented relations in Equations (2.3) and (2.5) are known as transport theorems,
which are also depicted in Figure 2.2.

Figure 2.2: Visualization of transport theorems for line element, area element and volume
element.

The Jacobian J represents a measure of the volume change during deformation. Thus,
J < 0 stands for a penetration of the body by itself which is highly non-physical and
permitted. For an alternative representation of the deformation gradient, the displacement
vector u can be used. It is defined as the difference of the position vector in actual and
reference configuration, i.e.,

u(X, t) := x(X, t)−X . (2.6)

For the purpose of computing the part of a body’s deformation which evokes internal
forces inside the body, the deformation gradient is multiplicatively decomposed into a
stretch and a rotational part. The polar decomposition reads

F = R ·U = V ·R , (2.7)
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with R as orthogonal rotation tensor, i.e., R · RT = I and detR = 1, that causes a
rigid body rotation. The symmetric and positive definite tensors U := (F T · F )

1
2 and

V := (F · F T)
1
2 , i.e., it holds U = UT and V = V T, are called right (material) and left

(spatial) stretch tensors, respectively. They describe a dilatation, meaning stretching or
compression, along their principal axis.

Taking into account line elements in actual and reference configuration, dx and dX, the
following relations can be derived with help of Equation (2.3)

dx · dx = dX · (F T · F )︸ ︷︷ ︸
:=C

· dX and dX · dX = dx · ((F−1)T · F−1)︸ ︷︷ ︸
:=B−1

· dx . (2.8)

Thereby, the right Cauchy-Green deformation tensor C and the left Cauchy-Green (Fin-
ger) deformation tensor B are defined in reference and actual configuration as

C := U 2 = F T · F and B := V 2 = F · F T . (2.9)

Since these deformation measures are based on the square of line elements in reference
configuration dX2 and in actual configuration dx2, they do not preserve information about
the rotation of the body B. The difference of such line elements gives strain tensors, which
are the Green-Lagrange strain tensor E in reference configuration and the Almansi strain
tensor A in actual placement, i.e.,

dx2 − dX2 = dx · (I −B−1) · dx ⇒ A =
1

2
(I −B−1) , (2.10)

dx2 − dX2 = dX · (C − I) · dX ⇒ E =
1

2
(C − I) , (2.11)

with I as second order unity tensor. They are symmetric, i.e., A = AT, E = ET, and
related by the deformation gradient by E = F T · A · F and A = (F T)−1 · E · F−1,
respectively. Their respective counterparts are the Lagrange-Karni-Rainer tensor KR and
the Eulerian-Karni-Rainer tensor K as

KR =
1

2
(I −C−1) and K =

1

2
(B − I) . (2.12)

In addition to the displacement given in Equation (2.6), the velocity and acceleration of a
material point can be defined in reference and actual configuration. In general, a velocity
or acceleration field is defined as partial derivative of the considered tensor field with
respect to time. Thus, it holds for the reference placement that

ẋ(X, t) =
∂ϕ(X, t)

∂t
= ϕ̇(X, t) , (2.13)

ẍ(X, t) =
∂2ϕ(X, t)

∂t2
= ϕ̈(X, t) , (2.14)

and for the actual placement that

v(x, t) = ẋ(X, t) = ẋ(ϕ−1(x, t), t) , (2.15)

a(x, t) = ẍ(X, t) = ẍ(ϕ−1(x, t), t) . (2.16)
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Analogously to the partial derivative of a tensor field with respect to time, a derivative with
respect to space of the quantities can be defined. Hence, the spatial velocity gradient L
as the partial derivative of the velocity v with respect to position vector x is given as

L = gradv(x, t) =
∂v(x, t)

∂x
. (2.17)

It can be additionally decomposed into a symmetric tensor D and a skew-symmetric spin
tensor W as

D =
1

2
(L+LT) and W =

1

2
(L−LT) . (2.18)

Therewith, the rate of the Green-Lagrange strain tensor Ė results in

Ė = F T ·D · F . (2.19)

The material velocity gradient Ḟ is defined as partial derivative of the deformation gra-
dient with respect to time

Ḟ (X, t) =
∂F (X, t)

∂t
=

∂

∂t

(∂ϕ(X, t)

∂X

)
=

∂

∂X

(∂ϕ(X, t)

∂t

)
=

∂

∂X

(
ẋ(X, t)

)
= Grad(ẋ(X, t)) . (2.20)

Therewith, the spatial deformation gradient can be reformulated to

L =
∂v(x, t)

∂x
=
∂ẋ(X, t)

∂x
=
∂ẋ(X, t)

∂X
· ∂X
∂x

= Ḟ (X, t) · F−1(X, t) , (2.21)

which is equivalent to Ḟ = L ·F . The volumetric strain εV and the associated logarithmic
strain εH are given as

εV =
dv − dV

dV
= detF − 1 and εH = ln(1 + εV ) . (2.22)

In the linearized theory, in which small strains are assumed, it holds that the strain is the
symmetric gradient of the displacement, i.e.,

ε =
1

2
(Gradu + GradT u) . (2.23)

2.2 The concept of stress

As a consequence of outer forces and moments, acting on the body and causing defor-
mation of the body, inner forces and stress fields occur inside the body. Since the mi-
crostructural characteristics are neglected, stresses can be interpreted as averaged value
of the measure of internal forces in one volume element. They can be computed by cutting
principle, see Figure 2.3.

Assuming an imaginary section through the body B at time t, the traction vector t(x,n, t)
on cutting surface da exists due to external forces. Such a cutting surface is defined by an
outward normal vector n orthogonal to the cut. The traction vector and normal vector
can be related by means of Cauchy’s theorem

t(x,n, t) = σ(x, t) · n , (2.24)
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with the symmetric Cauchy stress tensor σ. Analogously, the following applies to the
reference configuration with normal vector N , traction vector t0(X,N , t0) at time t0,
position vector X and cutting surface dA. Therefore, it holds with unsymmetric first
Piola-Kirchhoff stress tensor P

t0(X,N , t0) = P (X, t0) ·N . (2.25)

N n

dadA
F

B B′

tt0

Figure 2.3: Visualization of transport theorems for line element, area element and volume
element.

The Cauchy stress is also called true stress, since it refers to the actual configuration,
while the first Piola-Kirchhoff stress tensor, which is in reference configuration, is called
nominal stress tensor. Taking into account Equation (2.5)2 both can be related by

σ(x, t) · n da = P (X, t0) ·N dA

⇔ σ(x, t) · JF−T · dA = P (X, t0) · dA ⇒ σ · JF−T = P . (2.26)

The symmetric second Piola-Kirchhoff stress tensor S relates forces in reference configu-
ration to an area element in actual configuration

S = F−1 · P = JF−1 · σ · F−T (2.27)

and is thereby only of numerical interest. It does not give the opportunity for physical
interpretation. Moreover, for the symmetric Kirchhoff stress tensor τ it holds

τ = J σ ⇒ S = F−1 · τ · F−T . (2.28)

2.3 Balance principles

The fundamental relations of continuum mechanics are described by the balance principles
which are material independent and of axiomatic nature. The latter indicates that there
are no counterexamples and that they cannot be derived based on other laws. Instead,
they rely on observations and experiences. Balance principles are independent of the
continuum or its material. In the following, these principles, namely the balance of mass,
the balance of (linear) momentum, the balance of moment of momentum (balance of
angular momentum), the balance of energy (first law of thermodynamics) and the entropy
inequality (second law of thermodynamics) are introduced. First of all, integral forms are
derived which, as global statements, refer to the entire continuum. Subsequently, if the
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quantities to be balanced are sufficiently smooth, local formulations can also be derived
on parts of the body.

To formulate the balance equations, the divergence theorem is utilized, which reads for
vector quantity φ on body B with boundary ∂B and outer normal vector n∫

B
Divφ dV =

∫
∂B
φ · n dA . (2.29)

The Balance of mass ensures the conservation of mass in case that there is neither mass
transfer across the surface nor an internal increase or loss of mass. The total mass m of
body B with density ρ in actual configuration at time t is defined as

m =

∫
B
ρ(x, t) dv , (2.30)

while M stands for the mass of the body B0 with density ρ0 in reference configuration

M =

∫
B0
ρ0(X) dV . (2.31)

The balance principle states that

M = m = const. , (2.32)

which implies

ṁ = 0 . (2.33)

Starting with the transport theorem in Equation (2.5)1 it follows that ρ = ρ0J . Thus, the
time derivative can be computed to obtain the global statement of the balance of mass as

ṁ =
d

dt

∫
B
ρ dv =

d

dt

∫
B0
ρJ dV =

∫
B0
ρ̇J + ρJ̇ dV

=

∫
B0

(Jρ div ẋ+ ρ̇J) dV =

∫
B
(ρ div ẋ+ ρ̇) dv = 0 , (2.34)

with

J̇ =
∂ detF

∂t
=
∂ detF

∂F
:
∂F

∂t
= detF F−T : Ḟ = J div ẋ . (2.35)

Thus, the local form of the balance of mass results in

ρ̇+ ρ div ẋ = 0 . (2.36)

The Balance of (linear) momentum, also called Cauchy’s first equation of motion,
describes the behavior of the body B under any mechanical force. It states that the time
rate of change of the total momentum l, namely l̇, during the deformation of a body is
equal to the sum of all external surface and volume forces f acting on the body. The
definitions read

l =

∫
B
ρ ẋ dv and f =

∫
B
ρ b dv +

∫
∂B
t da , (2.37)
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with ρ b as body forces and t as traction vector on surface ∂B. Applying Cauchy’s theorem
and the divergence theorem given in Equations (2.24) and (2.29) one obtains

l̇ = f ⇔
∫
B
ρ ẍ dv =

∫
B
ρ b dv +

∫
∂B
t da

⇔
∫
B

(
divσ + ρ (b− ẍ)

)
dv = 0 . (2.38)

The local form of the balance of linear momentum in actual configuration results in

divσ + ρ (b− ẍ) = 0 , (2.39)

which can be transformed to the reference configuration with∫
B

divσ dv =

∫
∂B
σ · n da =

∫
∂B0
σ · JF−T dA =

∫
∂B0
P dA =

∫
B0

DivP dV (2.40)

as
DivP + ρ0 (b− ẍ) = 0 . (2.41)

The Balance of angular momentum or Cauchy’s second equation of motion states that
the time rate of change of the angular momentum h0̃ with respect to a certain reference
point, here named 0̃, is equal to the angular momentum resulting from the external forces
m0̃ during a deformation of body B, i.e.,

ḣ0̃ = m0̃ . (2.42)

Those two terms are defined as

h0̃ =

∫
B
ρx× ẋ dv and m0̃ =

∫
B
x× ρ b dv +

∫
∂B
x× t da . (2.43)

Therein, the lever arm is denoted by x. For the time derivative of the angular momentum
it holds with transport theorem, time derivative of Jacobian and local form of balance of
mass in Equations (2.5).1, (2.35) and (2.36)

ḣ0̃ =
d

dt

∫
B
ρx× ẋ dv =

∫
B
ρx× ẍ dv . (2.44)

Regarding the angular momentum, it holds that

m0̃ =

∫
B
x× ρ b dv +

∫
∂B
x× σ · n da =

∫
B

(
x× ρ b+ x× divσ + I × σ

)
dv , (2.45)

such that one obtains the global statement as

ḣ0̃ = m0 ⇔
∫
B
I × σ dv = 0 . (2.46)

The local form of the balance of angular momentum describes the symmetry of the Cauchy
stress tensor as

I × σ = 0 ⇔ σ = σT . (2.47)
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The Balance of energy or first law of thermodynamics postulates that the time rate of
change of the total energy in a continuum equals the external energy supply. Therefore,
the total energy is composed of internal energy E and kinetic energy K, while the external
energy supply is described by the heat supply Q and the power of the mechanical work P
by external surface and volume forces. In the general case, other non-thermo-mechanical
energies would have to be added as external energy supply. These include, e.g., chemical
or electrical terms. In the following, ε denotes the specific internal energy, q is the heat
flux vector and r stands for the external heat source, such that it holds

E =

∫
B
ρ ε dv , P =

∫
B
ẋ · ρ b dv +

∫
∂B
ẋ · t da ,

K =

∫
B

1

2
ρ ẋ · ẋ dv , Q =

∫
B
ρ r dv −

∫
∂B
q · n da . (2.48)

Thus, the first law of thermodynamics can be expressed as

d

dt
(E +K) = Q+ P ⇔ Ė + K̇ = Q+ P , (2.49)

with time derivatives

Ė =

∫
B
ρ ε̇ dv , K̇ =

∫
B
ρ ẋ · ẍ dv . (2.50)

The global statement of the balance of energy results in∫
B
ρ ε̇ dv +

∫
B
ρ ẋ · ẍ dv =

∫
B
ρ r dv −

∫
∂B
q · n da+

∫
B
ẋ · ρ b dv +

∫
∂B
ẋ · t da

⇔
∫
B
ρ ε̇ dv =

∫
B

(
ρ r − div q +D : σ

)
dv , (2.51)

whereas the local form reads

ρ ε̇ − σ : D − ρ r + div q = 0 . (2.52)

Introducing the free Helmholtz energy function ψ, the specific internal energy can be
related via temperature θ and the specific entropy η as

ε = ψ + θη with time derivative ε̇ = ψ̇ + θ̇η + θη̇ . (2.53)

In the linearized framework of small strains, the symmetric part of the spatial velocity
gradient D in Equation (2.52) is replaced by

ε̇ =
1

2

(
GradT u̇+ Grad u̇

)
, (2.54)

such that one obtains using Equation (2.53)

ρ (ψ̇ + θ̇η + θη̇)− σ : ε̇− ρ r + div q = 0 . (2.55)

The Entropy inequality or second law of thermodynamics states that the total energy
in a system cannot be increased or decreased, but that one form of energy can be con-
verted into another form of energy while maintaining a constant total energy. There is
no indication of the direction of the energy transformation or information whether the
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process is reversible or irreversible. Here, reversible means that energy can be made usable
again, i.e., it can be returned to mechanical work. For irreversible processes, where this
is not the case, the entropy H serves as a measure of the non-available energy, which is
defined as

H =

∫
B
ρ η dv with Ḣ =

∫
B
ρ η̇ dv . (2.56)

Therewith, the second law of thermodynamics can be formulated as

Ḣ ≥
∫
B

1

θ
ρ r dv −

∫
∂B

1

θ
q · n dv , (2.57)

which is also called Clausius-Duhem inequality. Since the entropy can only increase, it
states that its time derivative has to be greater or equal to the sum of the entropy,
which is supplied by heat production within the body and the heat flux over the surface.
Application of the divergence theorem results in the local form

ρ η̇ ≥ 1

θ
ρ r − div

(q
θ

)
⇔ −ρ (ε̇− θη̇) + σ : D − 1

θ
q · grad θ ≥ 0 . (2.58)

In the linearized framework of small strains it holds

− ρ (ψ̇ + θ̇η) + σ : ε̇− 1

θ
q · grad θ ≥ 0 . (2.59)

2.4 Fundamental aspects on material modeling

The previously defined balance principles are of axiomatic nature and therewith uni-
versal, independent of the chosen continuum and its material. In order to analyze such
characteristics of the body, additional relations are necessary to find additional equations
to solve for all unknown quantities. There are two possibilities to find such constitutive
equations, namely inductively, i.e., based on experiments, or deductively, i.e., almost fully
theoretically. For the latter, the balance principles serve as a valid and non-violable ba-
sis. Based on the balance laws, there are 14 equations: the scalar balance of mass (1),
the vectorial balance of momentum (3), the tensorial balance of angular momentum (9)
and in case of thermo-mechanical material behavior the scalar balance of energy (1). As-
suming the body forces ρb and external heat source r to be known, the 19 remaining
quantities therein are the density ρ, the motion ϕ, the stresses σ, the internal energy ε,
the temperature θ, the entropy η and the heat flux q. Thus, five additional equations are
to be defined to describes the continuum’s behavior as response to outer forces. For this
purpose, constitutive equations have to be given, which link all phenomenological vari-
ables with each other, that describe the macroscopic behavior. This is achieved by means
of algebraic equations or differential or integral equations, which can include stresses,
strains, temperature, heat flux, etc. In general, the choice of constitutive parameters and
quantities is completely subjective.

The constitutive equations are defined in such a way that the material behavior of a
material point is locally linked to the points in its immediate environment, i.e., it can be
uniquely described by a set of constitutive variables which depend on process variables.
The process is defined as the temporal change of the constitutive parameters in this
material point. Thus, for an arbitrary constitutive quantity a at time t the functional
relation results in

a = a[x(X, t), t]] . (2.60)
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In addition to the constitutive equations, material symmetries, such as forms of isotropy,
and kinematic constraints, e.g. the assumption of plastic incompressibility, are included
in the field of material theory. This theory bases on the following eight axioms: causality,
determinism, equipresence, local action, fading memory, physical consistency, material
objectivity and material symmetry.

• In case of a thermo-mechanical process, the principle of causality states that the
displacement u and the temperature θ are assumed to be measurable and indepen-
dent quantities. Further quantities, that depend on u and θ but cannot be directly
computed based on the second law of thermodynamics, are called dependent con-
stitutive variables, for instance stresses, heat flux, free energy or entropy.

• By the principle of determinism all those dependent constitutive quantities are
uniquely determined by the time history of the independent variables.

• The set of independent variables is the same for all constitutive equations according
to the principle of equipresence.

• Local action means that one material point P in an actual configuration is fully
determined by its direct environment and its material behavior is not influenced by
the motion of material points outside this environment.

• Furthermore, the principle of fading memory states that events or states further
in the past have a negligible influence on the instantaneous behavior of constitutive
function or quantity.

• Following the principle of consistency, constitutive equations must not violate the
balance equations.

• The principle of material objectivity postulates that material laws do not change
if the frame of the local observer differs by an arbitrary rigid body motion or if an
arbitrary rigid body motion is superimposed on the motion of the material section.
For material point P with position vector X in reference configuration at time t0,
there are two deformed states x(X, t) and x̂(X, t̂) given, which are related by a
rigid body motion and a time transformation. Then it holds

x̂(X, t̂) = Q(t) · x(X, t) + c(t) with t̂ = t− t0 . (2.61)

Therein, Q is an arbitrary, time dependent and orthogonal second order tensor
describing a rigid body motion, i.e., Q ∈ SO(3) := {S ∈ IR3×3|S · ST = I , detS =
1} also called special orthogonal group, and c is a vector describing a translation.
Deformed configurations that can be related in such a way are then called objectively
equivalent. For scalar a, vector a and second-order tensor A material objectivity
can be expressed with an arbitrary Q ∈ SO(3) as

a∗ = a , a∗ = Q · a , A∗ = Q ·A ·QT . (2.62)

• The principle of material symmetry states that constitutive equations are in-
dependent with respect to the transformations of the coordinate system by the
symmetry group G ∈ SO(3), which consists of all distance-preserving rotations that
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keep the material microstructure invariant in the Euclidean space. Considering a
mapping between two reference configurations B0 → B?0 with X 7→ X?, then it
holds for the position vector X in reference configuration

X? = Q ·X ∀Q ∈ G , (2.63)

and for the deformation gradient and the right Cauchy-Green deformation tensor

F ? =
∂x

∂X?
=

∂x

∂X
· ∂X
∂X?

= F ·QT , C? = Q ·C ·QT . (2.64)

In case the symmetry group is the whole group

O(3) := {S ∈ IR3×3|S · ST = I , detS = ±1} , (2.65)

the material is isotropic material, otherwise it is called anisotropic.
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3 Fundamentals on the Finite Element Method

Finite elements (FE) have been named first back in the beginnings of the sixties of the
20th century by researches in aerospace industry, to which terms such as the isoparametric
concept, shape functions or the patch test among others were introduced in this context.
Well known important scientists who have contributed to the fundamentals in Finite Ele-
ment Method (FEM) are e.g. Argyris, Clough, Zienkiewicz and Irons but one should not
forget about the contributions of Hrennikoff, Courant, Ritz and Galerkin, where it is to
mention that the list is definitely not exclusive. An interesting view on the history of the
FEM is given in Felippa [42]. Up to the 1980s, the FEM has been a well known concept
and commercially established in numerous application in civil engineering, statics, aero-
dynamics, hemodynamics and so on. Next to that, the main advantages are the generality
of the concept, the strong and provable mathematical formulation and the simplicity of
the approach.

In the last decades, the FEM has been established as an efficient strategy for the nu-
merical treatment of constructive problems in engineering. There is a wide range of
applications such as structural mechanics in civil engineering, aircraft or shipbuilding,
mechanical engineering, coupled problems of heat conduction or with electric or mag-
netic fields as well as fluid mechanics. Therein, nonlinearities of different origins can
occur, for instance geometric nonlinearities or large deformations, physical nonlineari-
ties, stability problems, nonlinear boundary conditions or coupled problems, which make
an analytical computation hardly possible or not possible at all. In that case the FEM
provides an efficient numerical tool to compute approximate solutions to such nonlin-
ear problems by solving a complex system of differential equation. This section gives an
overview of the main steps of a Finite Element Analysis. First, the boundary value pro-
blem is defined and a variational formulation of the balance laws is discussed. Afterwards,
the linearization and the discretization with elements of simple geometry is described.
For more details the reader is kindly referred to e.g. Wriggers [206], Bathe [13] and
Zienkiewicz and Taylor [210].

3.1 Boundary value problem

A (nonlinear) boundary value problem is defined as combination of three things: a con-
tinuum body B0, a set of differential equations and suitable boundary conditions on the
boundary of the body ∂B0. For the set of differential equations for an isothermal and
quasi-static process, the local forms of the balance of linear and angular momentum, the
kinematics and the underlying material law are given by

linear momentum DivP + ρ0(b− ẍ) = 0 ,
angular momentum P · F T = F · P T ,
kinematics F (X, t) = Gradx ,
material law P = ∂Fψ

(3.1)

with free energy function ψ. In this context of a boundary value problem, the local form
of the balance of momentum is also called strong form of the equilibrium. The boundary
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conditions are split into two types, Neumann and Dirichlet boundary conditions, respec-
tively. The first defines the derivative of the restricted value while the second one sets the
value of the quantity itself, i.e.,

u = u0 on ∂B0u and P ·N = t0 on ∂B0t , (3.2)

which have to satisfy

∂B0u ∪ ∂B0t = ∂B0 and ∂B0u ∩ ∂B0t = ∅ . (3.3)

This means that the surface of the body is divided into disjunct parts, ∂B0u and ∂B0t,
which cannot overlap. At the same time, however, it is required that for every point of
the entire surface of the body either a Dirichlet or a Neumann boundary condition must
be described.

3.2 Variational formulation

In most cases, partial differential equations (PDEs) cannot be solved analytically at all,
or only with difficulties. Therefore, the idea is to determine an approximated solution
of a boundary value problem via the FEM. In order to do so, variational principles are
applied to the strong form of the equilibrium to obtain the weak form Gu. With the
help of this calculus of variations, stationary points of the equations under considera-
tion can be determined by taking into account small variations of these same functions
or functionals. Thereby, the boundary value problem can be formulated in terms of an
algebraic system of equation. The FEM then approximates the solution by minimizing
an associated error function. Thus, for the isothermal case, the presented local form or
strong from of the balance of momentum in Equation (3.1) is considered. For reasons of
simplification, the acceleration term ẍ is neglected. The unknown fields are the displace-
ments in every direction, i.e., it is solved for the vector u. In order to find the solution
of such a PDE, the Galerkin method is utilized, which transforms a continuous problem
to a discrete one. Therefore, the strong form of the equilibrium is multiplied with a test
function and integrated over the body, which is also referred to as domain. With the test
function δu ∈ {δu|δu = 0 on ∂B0} it yields

Gu(u, δu) := −
∫
B0

(
DivP + ρ0b

)
· δu dV = 0 , (3.4)

which can be reformulated with DivP ·δu = Div(P ·δu)−P : Grad δu and the divergence
theorem to

Gu(u, δu) :=

∫
B0
P : Grad δu dV︸ ︷︷ ︸

Gint
u

−
∫
B0
ρ0b · δu dV −

∫
∂B0
t0 · δu dA︸ ︷︷ ︸

Gext
u

= 0 . (3.5)

Therein, Gint
u and Gext

u denote the work of the internal and external forces, respectively.
The first term can also be rewritten in terms of the symmetric second Piola-Kirchhoff
stress tensor S and the Green-Lagrange strain tensor E, since it holds

P : Grad δu = (F · S) : Grad δu = S : (F T ·Grad δu)

= S :
1

2

(
F T ·Grad δu+ GradT δu · F

)
(3.6)

= S : δE =
1

2
S : δC
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with Grad δu = S : 1
2

(
F T · δF + δF T · F

)
, which leads to

Gu(u, δu) =

∫
B0
S : δE dV −

∫
B0
ρ0b · δu dV −

∫
∂B0
t0 · δu dA = 0 . (3.7)

With a push forward transformation, the weak form of equilibrium can also be formulated
in the actual configuration. Applying the symmetric Cauchy stress tensor σ = 1

J
P · F T

and the transport theorem given in Equation (2.5) one obtains

Gu(u, δu) :=

∫
B
σ : gradsym δu dv −

∫
B
ρb · δu dv −

∫
∂B
t · δu da = 0 , (3.8)

in which the symmetric gradient is defined as gradsym δu := 1
2
(grad δu+gradT δu). In the

linearized theory it then holds that δε = gradsym δu.

In case there is a total potential energy function Πtot to describe the body, the principle
of virtual work, which leads to Equation (3.5), is equivalent to find a stationary point
of Πtot, i.e.,

δΠtot = DΠ(u) · δu =
d

dα
Π(u+ αδu)|α=0 , Πtot = Πint + Πext −→ stat. (3.9)

with D as total derivative and

Πint =

∫
B0
ψ(F (u)) dB0 =

∫
B0

∂ψ

∂F
: δF dB0 =

∫
B0
P : Grad δu dV , (3.10)

Πext = −
∫
B0
ρ0b · u dV −

∫
∂B0
t0 · u dA . (3.11)

3.3 Linearization

The weak form of equilibrium Gu has to be linearized in order to apply a numerical scheme
to solve complex, nonlinear system of equations. In FEM an often used approach is the
Newton-Raphson iteration scheme to solve Gu = 0. A Taylor series expansion around
point u = uk gives the general linearization of the weak form of equilibrium as

LinGu(uk, δu,∆u) = G(uk, δu) + ∆G(uk, δu,∆u) . (3.12)

That means to compute the directional derivative in point uk in direction ∆u with in-

crement ∆u(uk, δu,∆u) = d
dε

[
G(uk + ε∆u, δu)

]
|ε=0 = DG(uk, δu) · ∆u. Considering

only conservative forces, i.e., the external part vanishes, one obtains from Equation (3.7)
together with Equation (3.6)

LinGu(uk, δu,∆u) =

∫
B0

1

2
S : δC dV −

∫
B0
ρ0b · δu dV −

∫
∂B0
t0 · δu dA

+

∫
B0

1

2
δC : C :

1

2
∆C dV +

∫
B0
S :

1

2
∆δC dV . (3.13)

This linearized form is solved with respect to ∆un+1 in each iteration step of the Newton-
Raphson scheme under the assumption that it holds LinG = 0. The update by incremental
displacement is then computed by un+1 = un + ∆un+1 in iteration step n + 1. The
termination criterion is given as |∆un+1| < tol.
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3.4 Discretization

In the FE theory, there are two kinds of approximations: The first one concerns the
approximation of the body by finite elements and the second one regards field quantities
such as displacements or stresses. The main idea of the FEM is to decompose the physical
body B0 into a certain number nele of finite elements Be of simple geometry, see Figure 3.1,

B0 ≈ Bh =

nele⋃
e=1

Be . (3.14)

Figure 3.1: The discretization of a physical body B with finite elements Be based on an
isoparametric element B�.

Therein and in the following, the index h indicates approximated quantities. The bound-
ary ∂B0 is thus approximated by ∂Bh0 . The isoparametric concept states that the same
ansatz functions are used to interpolate unknown field quantities as well as the geome-
try. Advantages are that only one set of ansatz functions has to be defined and that the
same integration points can be used in every element. Based on the position vectors in
reference and actual configuration, X and x, respectively, one defines the approximation
of the geometry in both configurations for one element as

X(ξ) =

nnode∑
I=1

NI(ξ)XI and x(ξ) =

nnode∑
I=1

NI(ξ)xI , (3.15)

with nnode as number of nodes per element and I as actual node with natural coordi-
nates ξ in the isoparametric element B�. The ansatz functions at node I are denoted
by NI , whereas XI and xI denote the nodal position vectors. Both can be related
by xI = XI + dI with the discrete nodal displacements dI . The transformation between
coordinates in actual configuration, reference configuration and isoparametric element is
illustrated in Figure 3.2. It is subject to the condition that the transformation has to be
uniquely determined, and that nodes, edges or faces are preserved.

Based on the ansatz functions, the physical, virtual and incremental displacements are
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given as

u ≈ uh =

nnode∑
I=1

NI(ξ)dI ,

δu ≈ δuh =

nnode∑
I=1

NI(ξ)δdI and ∆u ≈ ∆uh =

nnode∑
I=1

NI(ξ)∆dI . (3.16)

Figure 3.2: Based on the isoparametric concept, the parametric element can be mapped
onto an element in reference configuration or actual configuration, respectively.

In order to solve the linearized form in Equation (3.13), derivatives of the field quantities
are to be defined. Therefore, the Jacobian maps between the isoparametric element and
the actual or reference configuration, which is given as

J =
∂X

∂ξ
and j =

∂x

∂ξ
. (3.17)

It holds that the derivatives of the ansatz functions with respect to the reference placement
can be computed as

∂NI

∂X
=
∂NI

∂ξ

∂ξ

∂X
= J−T∂NI

∂ξ
. (3.18)

As abbreviation one writes NI,a := ∂NI

∂Xa
with a ∈ {1, 2} for the two-dimensional case and

a ∈ {1, 2, 3} for the three-dimensional case.

In the following, the so-called Voigt notation is used to represent symmetric tensors in
a reduced order, e.g. a fourth-order tensor is reduced to a second-order tensor and a
second-order tensor is reduced to a vector, see Appendix A. Thus, the discretization of
the virtual and incremental right Cauchy-Green tensor and the Green-Lagrange strain
tensor, respectively, are introduced as

1

2
δCh =

nnode∑
I=1

BIδdI ,
1

2
∆Ch =

nnode∑
I=1

BI∆dI , (3.19)

δEh =

nnode∑
I=1

BIδdI , ∆Eh =

nnode∑
I=1

BI∆dI , (3.20)
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with the BI-matrix

BI =


F11NI,1 F21NI,1 F31NI,1

F12NI,2 F22NI,2 F32NI,2

F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12NI,1 F21NI,2 + F22NI,1 F31NI,2 + F32NI,1

F12NI,3 + F13NI,2 F22NI,3 + F23NI,2 F32NI,3 + F33NI,2

F11NI,3 + F13NI,1 F21NI,3 + F23NI,1 F31NI,3 + F33NI,1

 . (3.21)

In the linearized theory, the the spatial derivative of the displacements and the approxi-
mation of the strain related quantities are given as

∂u

∂X
=

nnode∑
I=1

∂NI

∂X
dI ε ≈ εh =

nnode∑
I=1

Bu
I dI , (3.22)

δε ≈ δεh =

nnode∑
I=1

Bu
I δdI , ∆ε ≈ ∆εh =

nnode∑
I=1

Bu
I ∆dI , (3.23)

with the Bu
I -matrix for the displacement defined as

Bu
I =


NI,1

NI,2

NI,3

NI,2 NI,1

NI,3 NI,2

NI,3 NI,1

 . (3.24)

Based on these approximations, the weak form of the balance of linear momentum, which
is given in Equation (3.7), can be discretized in each finite element, denoted by e, as

Ge(de, δde) =

nnode∑
I=1

δdT
I

∫
Be
BT
I · S dV −

nnode∑
I=1

δdT
I

∫
Be
NIρ0b dV −

nnode∑
I=1

δdT
I

∫
∂Be

NIt0 dA .

(3.25)
The integral terms can be simplified by introduction of the nodal residual vector rI to

Ge(de, δde) =

nnode∑
I=1

δdT
I rI = (δde)Tre (3.26)

with rI =

∫
Be
BT
I · S dV − δdT

I

∫
Be
NIρ0b dV − δdT

I

∫
∂Be

NIt0 dA ,

in which δde and re stand for the virtual displacement vector and the residual vector of
one element with

δde =
[
(δd1)T, . . . , (δdnnode

)T
]T

and re =
[
(r1)T, . . . , (rnnode

)T
]T

. (3.27)

The remaining terms in the linearization, see Equation (3.13), can be divided into a
material ∆Gmat and a geometrical part ∆Ggeo given as

∆Gmat =

∫
B0

1

2
δC : C :

1

2
∆C dV and ∆Ggeo =

∫
B0
S :

1

2
∆δC dV . (3.28)
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For one element it holds that

∆Ge,mat(de, δde,∆de) =

nnode∑
I=1

nnode∑
J=1

δdT
I

∫
Be
BT
I : C : BJ dV∆dJ , (3.29)

∆Ge,geo(de, δde,∆de) =

nnode∑
I=1

nnode∑
J=1

δdaI

∫
Be

(NI,AδabNJ,B)SAB dV∆dbJ . (3.30)

In the last equation, an index notation is used to derive the linearized virtual Cauchy-
Green tensor with Kronecker delta δAB

1

2
∆δCAB =

1

2
(δF a

A δab ∆F b
B + ∆F a

A δab δF
b
B) =

nnode∑
I=1

nnode∑
J=1

NI,A δd
a
I δabNJ,B ∆dbJ (3.31)

with virtual and incremental deformation gradient

δF a
A =

nnode∑
I=1

NI,A δd
a
I and ∆F a

A =

nnode∑
I=1

NI,A ∆daI . (3.32)

An analogous abbreviation as before leads to

∆Ge,mat =

nnode∑
I=1

nnode∑
J=1

δdT
I k

e,mat
IJ ∆dJ with ke,mat

IJ =

∫
Be
BT
I : C : BJ dV , (3.33)

∆Ge,geo =

nnode∑
I=1

nnode∑
J=1

δdT
I k

e,geo
IJ ∆dJ with ke,geo

IJ =

∫
Be

(NI,ANJ,B)SAB dV , (3.34)

and thus one obtains

LinGe =

nnode∑
I=1

δdT
I r

e
I +

nnode∑
I=1

nnode∑
J=1

δdT
I k

e
IJ∆dJ with keIJ = ke,mat

IJ + ke,geo
IJ . (3.35)

The element stiffness matrices, which are defined as

ke =


k11 k12 . . . k1nnode

k21 k22 . . . k1nnode

...
...

...
knnode1 knnode2 . . . knnodennode

 , (3.36)

and the element residual vectors re are assembled over all elements nele to the global
stiffness matrix and global residual vector

K =
nele

A
e = 1

ke and R =
nele

A
e = 1

re . (3.37)

Together with the global form of the virtual and incremental displacement vectors δD
and ∆D, respectively,

δD =
[
(δd1)T . . . (δdnele)T

]T
, ∆D =

[
(∆d1)T . . . (∆dnele)T

]T
, (3.38)
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the linear system of equation, that has to be solved with, for instance, the Newton-
Raphson iteration scheme with respect to ∆D, can be described as

δDT (K∆D + R) = 0 (3.39)

The result
∆D = −K−1R , (3.40)

represents the update of the global nodal displacement vector D ⇐ D + ∆D which is
iterated until the global residual vector falls below a certain tolerance |R| < tol.

Due to the occurring nonlinearities the integrals cannot be solved analytically in most
cases. Thus, the Gauss integration procedure as a numerical integration scheme is utilized,
which leads to small inaccuracies of the method. It replaces the integrals with a sum over
the integrand, i.e., the function that has to be integrated, is evaluated at certain points,
the so-called Gauss or integration points, and related weighting factors, i.e.,∫

x

∫
y

∫
z

f(x, y, z) dz dy dx =

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

f(ξ, η, ζ) det(J) dζ dη dξ

≈
np∑
i

wif(ξi, ηi, ζi) det(J(ξi, ηi, ζi)) . (3.41)

Therein, f denotes the integrand and np stands for the number of Gauss points with
coordinates (ξi, ηi, ζi) in the isoparametric element. Moreover, one weighting factors wi
is associated to every Gauss point i. Details on the possible two- or three-dimensional
isoparametric elements with integration points and weights are given in Section 3.6.

3.5 Thermo-mechanical coupled problem

In the previous Sections 3.1 - 3.4, the FEM has been introduced for the simple case of
static, isothermal material behavior. In order to take into account the temperature evolu-
tion, the boundary value problem, given in Section 3.1, has to be extended by the balance
of energy, see Equation (2.52). Thus, it is also solved with respect to temperature as an
additional degree of freedom. The associated boundary conditions for the temperature θ
and the heat flux q over the boundary of the continuum are defined by

θ = θ0 on ∂B0θ and q ·N = q0 on ∂B0q , (3.42)

with ∂B0θ ∪ ∂B0q = ∂B0 and ∂B0θ ∩ ∂B0q = ∅ . (3.43)

In case of a thermo-mechanical coupled problem, Equations (3.2), (3.3), (3.42) and (3.43)
have to hold. Analogously to the isothermal case, the Galerkin method is applied in order
to derive the weak form of the balance of energy, i.e., the strong form is multiplied with
a scalar test function δθ ∈ {δθ|δθ = 0 on ∂B0}, such that one obtains

Gθ(u, θ, δθ) =

∫
B0

(ρ ε̇ − σ : D − ρ r + div q) δθ dV = 0 . (3.44)

Therein, r denotes a heat source or sink and ε is the specific internal energy. For the
discretization of the weak form of the balance of energy and the subsequent linearization,
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one approximates the temperature and its related quantities by

θ ≈ θh =

nnode∑
I=1

NIdI , δθ ≈ δθh =

nnode∑
I=1

NIδdI , ∆θ ≈ ∆θh =

nnode∑
I=1

NI∆dI , (3.45)

grad δθ ≈ grad δθh =

nnode∑
I=1

Bθ
I δdI , grad ∆θ ≈ grad ∆θh =

nnode∑
I=1

Bθ
I∆dI (3.46)

with the so called Bθ
I -matrix for the temperature defined as BθT

I =
[
N I
,1 N I

,2 N I
,3

]
.

Note that for a fully thermo-mechanically coupled problem, the weak form of balance
of linear momentum has to be linearized with respect to the displacement and also with
respect to the temperature. To this end, the weak form of the balance of linear momentum
in Equation (3.8) is extended to

Gu(u, θ, δu) :=

∫
B
σ : gradsym δu dv −

∫
B
ρb · δu dv −

∫
∂B
t · δu da = 0 . (3.47)

Details on the linearization of the weak forms in Equations (3.44) and (3.47) can be found
in Appendix B. The final element stiffness matrix ke is of the form keuu keuθ

keθu keθθ

 . (3.48)

Therein, the block matrix keuu and the column vector keuθ result from the linearization of
the weak form of balance of linear momentum Gu with respect to the displacement u and
the temperature θ, respectively, while the row vector keθu and the scalar entry keθθ result
from the the linearization of the weak form of balance of energy Gθ with respect to the
displacement u and the temperature θ, respectively.

3.6 Elements in 2D and 3D

In this work, two- and three-dimensional boundary value problems are analyzed. There-
fore, quadrilaterals and hexahedrons with linear or quadratic ansatz functions are chosen
to discretize the physical body, see Figure 3.3. In the following, the ansatz functions of
the four- and nine-noded two-dimensional quadrilaterals are presented as isoparametric
elements, for the three-dimensional case see Appendix C.

For the linear element, the four ansatz functions are given as

N1(ξ, η) =
1

2
(1− ξ)(1− η) , N2(ξ, η) =

1

2
(1 + ξ)(1− η) ,

N3(ξ, η) =
1

2
(1 + ξ)(1 + η) , N4(ξ, η) =

1

2
(1− ξ)(1 + η) . (3.49)

The ansatz functions for the corner nodes of a nine-noded quadratic element are given as

N1(ξ, η) =
1

4
(ξ2 − ξ)(η2 − η) , N2(ξ, η) =

1

4
(ξ2 + ξ)(η2 − η) ,

N3(ξ, η) =
1

4
(ξ2 + ξ)(η2 + η) , N4(ξ, η) =

1

4
(ξ2 − ξ)(η2 + η) , (3.50)
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Figure 3.3: Two-dimensional quadrilateral with four or nine nodes and three-dimensional
hexahedrons with eight or twenty nodes.

and the nodes on the edges of a quadratic element are

N5(ξ, η) =
1

2
(η2 − η)(1− ξ2) , N6(ξ, η) =

1

2
(ξ2 + ξ)(1− η2) ,

N7(ξ, η) =
1

2
(η2 + η)(1− ξ2) , N8(ξ, η) =

1

2
(ξ2 − ξ)(1− η2) , (3.51)

and for the center node
N9(ξ, η) = (1− ξ2)(1− η2) . (3.52)

For the numerical integration, the number of Gauss points np and their respective coor-
dinates depends on the chosen element, see Table 3.1 and Appendix C.

Table 3.1: Gauss points with weighting factors.

dimension nnode np i
coordinates of GP weighting
ξi ηi wi

2D 4 4

1 −1/
√

3 −1/
√

3 1

2 +1/
√

3 −1/
√

3 1

3 −1/
√

3 +1/
√

3 1

4 +1/
√

3 +1/
√

3 1

2D 9 9

1 −
√

3/5 −
√

3/5 25/81

2 0 −
√

3/5 40/81

3 +
√

3/5 −
√

3/5 25/81

4 −
√

3/5 0 40/81
5 0 0 64/81

6 +
√

3/5 0 40/81

7 −
√

3/5
√

3/5 25/81

8 0
√

3/5 40/81

9 +
√

3/5
√

3/5 25/81
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3.7 Surface elements for the heat flux

Depending on the boundary value problem that has to be solved, the description of hy-
drostatic pressure or heat transfer over the boundary of the body is inevitable to consider.
Therefore, the application of surface elements is a useful tool. As the name suggests, sur-
face elements (BeS) describe physical processes on the boundary of the body. Thus, their
dimension is always reduced by one with respect to the continuum, i.e., area elements
are defined for three-dimensional boundary value problems and line elements for two-
dimensional boundary value problems. The nodes and the degree of the ansatz functions
correspond to the underlying discretization of the body as shown in Figure 3.4a.

ξa) b)

Figure 3.4: a) Two-dimensional body B discretized with quadratic elements and application
of quadratic surface elements BeS on boundary ∂B and b) parametric element with node
numbering and origin of the coordinate system.

The heat flux over the boundary of the continuum is described by the integral term

Gext
θ = −

∫
∂B0
q ·N δθ da , (3.53)

in the weak form of the balance of energy, see Appendix B. Recalling the assumption
that q = −k grad θ with positive heat conduction coefficient k > 0, the heat transition at
the boundary is given by

qsurf = hTC(θ − θ∞)A , (3.54)

with hTC as heat transfer coefficient, which depends on θ as actual temperature, θ∞ as
ambient temperature of the medium and A as area of the element. For the numerical
implementation, a Robin type boundary condition or boundary condition of third kind is
utilized to describe the heat flux through the surface area of the component. Such a Robin
type boundary condition is defined as a linear combination of the value and its deriva-
tive at the surface, which, in this work, is considered to apply the temperature loss to
the surrounding medium, see e.g. Gustafson and Abe [65], Jung and Langer [85],
Knothe and Wessels [92] and Barrogqueiro et al. [9] for the application to a
thermal problem. In case of a two-dimensional boundary value problem for which nine-
noded quadrilaterals are chosen for the discretization, the quadratic ansatz functions for
the one-dimensional surface elements are defined as

N1(ξ) =
1

2
ξ(ξ − 1) , N2(ξ) =

1

2
ξ(ξ + 1) and N3(ξ) = (1− ξ2) . (3.55)
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The node numbering and the location of the origin of the coordinate system of the
parametric element can be found in Figure 3.4b. In Table 3.2, the location of the in-
tegration points and their respective weights are given, see Wriggers [206], Bathe [13]
or Zienkiewicz and Taylor [210]. The discretized form on element level is obtained as

Ge,ext
θ = −

nnode∑
I=1

δdT
I

∫
∂Be0

NI q · n dA . (3.56)

Table 3.2: Gauss points with weighting factors for surface elements.

dimension nnode np i
coordinates of GP weighting

ξi wi

1D 3 3
1 −

√
3/
√

5 5/9

2 +
√

3/
√

5 5/9
3 0 8/9
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4 Phase transformation and residual stresses

The manufacturing process of steel components consists of a large variety of processes.
Casting, forging, rolling and others methods are used not only to form the desired geome-
try but also to introduce specific component properties such as extended usability. Phase
transformations or residual stresses among others, which are explained in this section, are
of particular importance in this context.

4.1 Theory of phase transformation

In general, the term “phaseßtands for a spatial area within the body under consideration
which has the same material parameters. However, differences may occur caused by the
texture or the designated grain orientations, for instance. This means that within a phase,
for example, the density, the chemical composition or the mechanical material properties
are homogeneous. It is crucial that a phase does not have to be spatially coherent -
the assignment to a phase is made purely on the basis of the present material properties.
Different phases are consequently characterized on the basis of their individual properties.
In steel materials many different phases can be considered such as austenite, bainite,
cementite, ferrite, graphite, ledeburite, martensite, pearlite and spheroidite. Several can
be present simultaneously, but also only partially. The stability of a phase is usually based
on temperature or pressure, among other factors. Based on these dependencies, phase
diagrams can be created for a material. One very well known is the iron-carbon diagram,
as given in Figure 4.1a. Furthermore, time-temperature-transformation diagrams provide
indispensable information about the microstructural evolution of a material or alloy during
heat treatment, see Figure 4.1b.
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a) b)

Figure 4.1: Sketch of the iron-carbon phase diagram and b) exemplary time-temperature-
transformation (TTT) diagram, in which θMs denotes the temperature when martensite
starts to form in austenite during cooling. Furthermore, Ac1 stands for the temperature, at
which the formation of austenite begins during heating and Ac3 stands for the temperature,
at which the transformation from ferrite to austenite stops during heating.

Phase transformation processes can be roughly divided into two types: diffusion con-
trolled and diffusionless phase transformations. The first group of diffusion controlled
phase transformations is evoked by relatively slow cooling processes, regarding e.g. the
diffusion of iron, carbon or other alloying elements. One example is the growth of ferrite
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or pearlite in an austenitic parent phase. The second group describes fast cooling with
high cooling rates, so that no diffusion of e.g. iron or carbon takes place inside the mate-
rial. That is a main characteristic of a martensitic phase transformation in an austenitic
material. For the mathematical description of the evolution of phase fractions in dif-
fusion controlled phase transformations the Johnson-Mehl-Avrami-Kolmogorov (JMAK)
equation is classically utilized, see Section 4.1.1 and Kolmogorov [94], Avrami [3; 4; 5]
and Johnson and Mehl [84]. In case of fast phase transformations without diffusion,
Koistinen and Marburger proposed the Koistinen-Marburger differential equation, see
Section 4.1.2 and Koistinen and Marburger [93].

Moreover, the microstructures that are formed can be grouped on the basis of the phase
that is found most. If a component made from steel is cooled very slow, the microstruc-
ture is dominated by ferrite or spheroidized cementite. Otherwise, in case of not such slow
cooling, one can roughly subdivide the evolving microstructures into martensitic (diffu-
sionless), bainitic (partly diffusion controlled) or pearlitic (mainly diffusion controlled)
structures, cf. Hougardy [80]. More precisely, it is possible to differentiate within one
group of microstructures. For instance, martensite can be either plate-martensite or lath-
martensite in dependence of the carbon concentration present, see Nishiyama [130].
Similar it holds for bainite, which forms as upper or lower bainite, which happens
also based on the carbon concentration, see e.g. Bhadeshia and Christian [21] and
Takahashi and Bhadeshia [176].

In the 20th century, many investigations, numerically as well as experimentally, deal
with solid phase transformations. A good overview on the different methods is given
in Christian [28]. All approaches have in common that a phase transformation comes
along with a rearrangement of the atomic lattice accompanied by a volumetric change of
the unit cell. But, the approaches to numerically model the microstructural evolution or
phase transformation differ fundamentally from each other. One common method are phe-
nomenological material models on the macroscale, which effectively represent the micro-
scopic phase transformation and its characteristics. Therein, the term “macroscalerrefers
to the length-scale of the considered component, which is often measured in milimeter
or on an even greater scale. A smaller scale, referred to as the “microscalëıs not explic-
itly resolved. It would depict the microstructure with its heterogeneities, different phases,
grains or atoms. Thus, the length-scale would be micrometer, nanometer or even smaller.

Considering the austenite-to-martensite phase transformation, early examples are the
works of Bain and Dunkirk [7] and Bain and Griffiths [8], in which the so-called
Bain strains are proposed. They describe the transformation of an austenitic unit cell to a
martensitic unit cell considering only pure lattice strains as volumetric expansion, for in-
stance. Thereby, three different martensitic variants are obtained, which are schematically
illustrated in Figure 4.2. Further quite famous works regarding martensite formation as a
solid phase transformation have been presented by Wechsler [198] and Roitburd [147].
Other recent single-scale models have been proposed in Leblond et al. [100; 101],
Fischer [46; 49; 50], Fischer et al. [47; 48], Petit-Grostabussiat et al. [142],
Wolff et al. [203; 204; 205], Hallberg et al. [67; 68] and Mahnken et al. [110],
while Levitas [102], Fischer et al. [51] and Levitas et al. [105] focus on mi-
crostructural resolution with application of suitable homogenization schemes. A recent
review article concerning phase transformations and other characteristics of inelastic
materials can be found in Levitas [103]. Moreover, Farahani et al. [41] analyze the
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austenite-to-martensite phase transformation in carbon steel pipes, while the authors in
Tian et al. [185] contribute to the investigation of a quenching process resulting in
bainitic and martensitic product phase.

a0

a0

a0

a
a

b

a

a
b

a

b

a

Figure 4.2: The three Bain groups to depict different variants of martensite, cf.
Bhattacharya [22], with a0 as edge length of a face-centered cubic austenitic unit cell
and a, b as edge length of a body-centered tetragonal martensitic unit cell, adopted from
Behrens et al. [15].

In case of a diffusion controlled phase transformation from austenite to bainite, ferrit
or pearlite, the JMAK equation is utilized as stated above and further explained in
Section 4.1.1. In the last years, many investigations regarding this diffusion controlled
phase transformation in steels during heat treatment have been published. For instance
in Babu and Kumar [6] the quenching process of a cylindrical specimen in water has
been analyzed by comparison of different numerical approaches to model phase transition.
Time-temperature-transformation (TTT) diagrams have been found to offer accurate re-
sults. Similar approaches utilizing TTT diagrams in combination with the JMAK equa-
tion, comparisons to other approaches such as cellular automata, atomistic simulations or
phase field models can be found in Pietrzyk et al. [143] and Militzer et al. [123].
Mahnken et al. [111] and Hütter et al. [81] focus on bainite formation. Fur-
ther works regarding phase transformations from austenite to bainite, pearlite, fer-
rite and also martensite during heat treatment of steels are Pernach et al. [141],
Ilmola et al. [82], Esfahani et al. [37] and Chen et al. [27]. These works also
partly consider related residual stress distributions.

In contrast to the previously mentioned models, polycrystalline models provide the ability
to represent the crystalline structure and resolve the phases with grain accuracy, see for
example Roters et al. [149] and Mahnken et al. [112; 113]. Gierden et al. [61]
reviews on the FE-FFT-based method. The idea ot the latter is the combination of a Finite
Element Analysis on macroscopic level with a Fast Fourier transformation on microscopic
level to depict polycrystalline material behavior. It provides an alternative to the classical
micro-macro transition approach, which is introduced in detail in Section 8.

Furthermore, multi-scale simulation approaches describe a third possibility and form a
kind of middle level between the purely macroscopic view and the high resolution of
individual grains. In Turteltaub and Suiker [187] a multi-scale formulation for an
effective mesoscopic stiffness tensor taking into account the lattice and lower and upper
microscale are given. Therein, the mesoscale refers to a level, on which different phases
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are resolved. Martensitic phase transformations in terms of multi-scale analysis are given
in Sengupta et al. [164; 165]. Regarding shape memory alloys undergoing a marten-
sitic phase transformation a multi-scale model is proposed in Bartel and Hackl [11],
in which also a good overview summarizing recent works can be found. A single-phase
alloyed cylindrical specimen after quenching is examined in Fernández et al. [43],
while Han et al. [69] give a multi-scale approach to investigate thermal residual stresses
in a three-phase cylinder. In Barroqueiro et al. [10] a reduced multi-scale model for
heat treatment is proposed, which takes into account thermal effects, residual stresses
and phase transformation. Prüger et al. [144] study the influence of the microstruc-
ture morphology during the austenite-to-martensite phase transformation for TRIP-steels.
Therein, TRIP refers to transformation induced plasticity. In general, TRIP-steels are a
class of high-strength steels, which possess an outstanding combination of high strength
and good ductility. A fully coupled thermo-mechanical approach on two scales including
phase transformations is given in Schicchi et al. [152].

Not to be forgotten is also the large set of phase field or multi-phase field models,
which, following the name, are very well suited for the simulation of a phase trans-
formation on the microscale, see e.g. Steinbach et al. [173], Tiaden et al. [184]
and Steinbach and Pezzolla [172]. Multi-phase field models are used to calculate
elastic stresses and thermodynamic quantities that may occur due to phase transitions.
Such approaches are used to investigate phase transformations in the material during
the production process of a component, for instance. This last group is of high in-
terest and part of very current research but not in focus of this work. The interested
reader is kindly referred to e.g. Mamivand et al. [114], Schmitt et al. [154],
Schmitt [153], Schneider et al. [155; 156; 157], Schoof et al. [159; 160],
Basak and Levitas [12], Herrmann et al. [77], Esfahani et al. [38],
Paliwal et al. [140] and Schoof [158].

4.1.1 JMAK equation

In the late 1930’s and early 1940’s, respectively, an expression of the phase fractions
in dependence of time has been proposed in Kolmogorov [94], Avrami [3; 4; 5] and
Johnson and Mehl [84]. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation
describes the isothermal solid transformation from one phase to another phase, which
are called parent and product phase. The initial state of the material fully consists of the
parent phase, although the product phase is thermodynamically favorable. In its most
simplified form, for a final state with 100 % product phase, it is given as

c(t) = 1− exp(−KJMAK t
n) (4.1)

with phase fraction c of the product phase, time t, Avrami-exponent n and con-
stant KJMAK. The Avrami-exponent n depends on time, temperature and the transfor-
mation progress and describes the geometry of the nucleus as well as the evolution over
time. In contrast, constant KJMAK is only in dependence of temperature to describe the
migration speed and nucleation.

It is important to notice that there are crucial assumptions made for the derivation of
Equation (4.1). Avrami assumed that nucleation always occurs randomly and homoge-
neous, that the growth rate is independent of the state of transformation and that the
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phase growths with same rate in all directions. In case that the final state shows a mixture
of parent and product phase, Equation (4.1) can be adopted to

c(t) = ceq(1− exp(−KJMAK t
n)) (4.2)

with ceq denoting the final volume fraction of the product phase.

In general, both parameters, n and KJMAK, can be computed based on isothermal TTT
diagrams. Therefore, the curves specifying the beginning and the end of the transformation
must be known, see Figure 4.3. They are indicated by indices 01 and 99, respectively. Since
it holds that c(t01) = 0.01 ceq and c(t99) = 0.99 ceq, one can determine both unknowns, n
and KJMAK, for actual time t and actual temperature θ as

n =
ln
(
ln 1

0.01

)
− ln

(
ln 1

0.99

)
ln t99 − ln t01

and lnKJMAK = ln
(
ln

1

0.99

)
− n ln t01 . (4.3)

Details on the derivation of Equations (4.3) are presented in Appendix D.

Figure 4.3: Schematic representation of a time-temperature deformation diagram to deter-
mine the coefficients n and KJMAK in the JMAK equation. c01 and c99 specify the curves of
the product phase fraction at the beginning and end of phase transformation.

4.1.2 Koistinen-Marburger equation

In order to describe diffusionless phase transformations, Kostinen and Marburger pos-
tulated a numerical approach in Koistinen and Marburger [93]. It describes the
monotonous increase of the martensitic volume fraction in an initially austenitic phase
when the temperature θ falls below the martensitic start temperature θMs. Then the actual
martensitic volume fraction cM is defined as

cM(θ) = 1− exp
(
−θMs − θ

θM0

)
for θ ≤ θMs . (4.4)

Therein, θM0 denotes a temperature independent material parameter. As input for the
calibration of θM0 the final temperature, for instance room temperature, which is denoted
as θRT, as well as the final volume fraction of martensite cM

RT at that temperature are to
be known initially. Then, the following relation is valid

cM
RT = 1− exp

(
−θMs − θRT

θM0

)
⇔ θM0 = − θMs − θRT

ln(1− cM
RT)

. (4.5)
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It is to be noticed that this quite simple form of the Koistinen-Marburger equation is
only valid in case of monotonous cooling processes and thus it has to be a one-way phase
transformation form austenite to martensite, see e.g. Wolff et al. [203].

4.2 Residual stresses

In general, stresses are divided into inner and outer stresses, which are superimposed.
Therein, outer stresses are applied to a body from the outside, such as gravitational
forces or other loads and moments. Inner stresses occur within the material itself, they
are independent from outer forces or moments. At this point it has to be noticed that
total stress-free components do not exist. Both types are essential for evaluating the failure
limit of a component. Such inner stresses can improve but also decrease the component’s
properties, e.g. the strength. In a closed system, residual stresses are defined as stresses in
absence of outer forces or moments, which are in equilibrium. They are classified into three
types of residual stresses by the scale, they act on, following Macherauch et al. [108],
Kloos [91] and Withers and Bhadeshia [201]. Thus, residual stresses of first type
are homogeneous over or a part of the component containing multiple grains. The related
inner forces are in equilibrium concerning arbitrary cuts through the component. Changes
in this balance lead to macroscopic deformation of the component. Residual stresses of
second type refer to a grain or a smaller domain. The inner forces and moments are in
equilibrium with respect to a certain number of grains, which is sufficiently large. Changes
in balance do not lead to a macroscopic deformation. This also holds for residual stresses
of third type, which are defined in the range of the atomic lattice.

σRS
IIIσRS

x

grain 1 grain 2 grain 3

σRS
I

σRS
II

σRS
II

σRS
II

0

Figure 4.4: Classification of residual stresses into three types, σRS
I , σRS

II and σRS
III , based

on the scale they act on.

In general, observed residual stresses are always a mix of different types of residual stresses
which are superimposed. In this context, residual stresses of first type σRS

I describe an
averaged value over several grains, while residual stresses of second type σRS

II classify the
stress fluctuations of that average with respect to the average of the individual grain.
Residual stresses of third type σRS

III are the deviations of the true local stresses of the sum
of the residual stresses of first and second type, see Figure 4.4. This can be summarized
by following relation

σRS = σRS
I + σRS

II + σRS
III . (4.6)

Origins of residual stresses are numerous, see Kloos [91] and
Withers and Bhadeshia [202]. They can be differentiated into stress-induced,
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material-induced or production-induced. Stress-induced residual stresses are a conse-
quence of mechanical, thermal or chemical impact, while material-induced residual
stresses are due to heterogeneous materials such as different phases or atomic defects.
The third group, production-induced residual stresses result from forming, joining,
separating among others. In general, there are also thermal, mechanical and metallurgical
interactions to be considered, recall Figure 1.2. Residual stresses of first type can be
evoked by e.g. thermal processes such as quenching or by partially plastic deformation of
the material as a consequence of inhomogeneous stress distributions. Residual stresses of
second type result of heterogeneous microstructures and residual stresses of third type
are related to that atomic defects, which can be vacancies, interstitials or antisites for the
one-dimensional case. In higher dimension, it is distinguished between grain interfaces,
twinning defects or pores for instance.

Residual stresses in metal forming
One method to insert residual stresses in a component during its manufacturing process
is offered by hot bulk forming. Such processes roughly consist of three steps: heating,
forming and cooling. The latter two, forming and cooling, take most influence on the
final stress state inside the material. Especially the cooling step, which can occur fast or
slow, and thus evoke a diffusionless or diffusion controlled phase transformation in the
material, has to be analyzed in this context. Therein, one aspect of metal heat treatment
is the quenching from austenitization temperature to room temperature to achieve pre-
defined or adjust the component’s properties. Therefore, three different groups of cooling
media are distinguished, which are immersion cooling (e.g. water or oil), splash coo-
ling (e.g. with a spray) or film cooling (e.g. a liquid film applied on the component).
Macherauch and Vöhringer [107] discuss different aspects during quenching which
have influence on the stress evolution. In order to distinguish between for instance ther-
mal shrinking, material hardening and transformation stresses among many other fac-
tors acting on residual stresses, a cylindrical specimen is investigated under different
conditions, such that pure thermal shrinking or pure transformational stresses can be
observed individually. Further influence factors are investigated by Grum et al. [63].
The authors emphasize the impact if high mass or low mass specimen are considered.
In Nallathambi et al. [128], an isothermal staggered FEM scheme is proposed and
successfully applied to an L-profile made from Cr-alloyed steel 100Cr6. During quench-
ing simulation, the accuracy of heat transfer coefficients (HTC) plays an important role.
Medina-Juárez et al. [116] show that even accurate HTCs does not inherently lead
to a quantitatively fitting prediction of residual stresses, since often tensile stresses are
overestimated while compressive stresses are underestimated.





Thermo-mechanical material modeling of phase transformation 39

5 Thermo-mechanical material modeling of phase
transformation

Various approaches can be used for thermo-mechanical modeling of material behav-
ior. A purely macroscopic phenomenological material model allows time and cost effi-
cient calculation of the stress response and deformation behavior. It is useful for the
investigation of macroscopic residual stresses (first type), see Sections 6 and 7. If the
material is microscopically heterogeneous, a homogenization model must be applied,
which is utilized to determine macroscopic field quantities and properties in terms of
microstructural parameters and local properties of the heterogeneous material. Several
homogenization methods have been developed to replace the partial different equations
(balance laws) by homogenized ones. Therefore, effective material properties are taken
into account, which describe the overall behavior of the considered material and can
be obtained by observation and experimental measurements. Another group of mate-
rial models, which do not resolve the microstructure, base on semi-analytical homoge-
nization methods, in which effective stresses and tangent moduli are computed by the
rule of mixture. Well known semi-analytical homogenization models have been defined
by Eshelby [39; 40], Hashin and Shtrikman [72; 73; 74], Hill [79], Budiansky [23],
Mori and Tanaka [126], Norris [131] and Hashin [71], see Section 8. In contrast, a
two-scale approach based on the direct mirco-macro transition allows to depict the mi-
croscale in detail. Thus, microscopic characteristics as well as the phase transformation
are explicitly represented by means of a multi-scale finite element analysis, see Section 8,
which is utilized in Sections 9 and 10. Microscopic fluctuations of the stresses and other
field quantities are taken into account fully resolved, which is one benefit of multi-scale
methods.

In this work, different thermo-mechanical material formulations are presented, which can
be roughly distinguished into

• “phenomenological“(PH) material models: effective material parameters are de-
termined in order to solve homogenized partial differential equations,

• “semi-analytical multi-phase“(SAMP) material models: stresses and tangent
moduli are computed for each phase individually; afterwards, effective stresses and
tangent moduli are determined by the rule of mixture,

• “multi-scale“ material methods: in contrast to these groups of single-scale ap-
proaches, the third group utilizes multi-scale formulations such as the FE2 method,
see Section 8; homogenization techniques are applied to compute the effective be-
havior.

This chapter is organized as follows. First, the equations for an elasto-plastic material
model taking into account an additive split of the strains into elastic and plastic parts
are derived. Second, this basic concept is extended such that the additive decomposi-
tion of the strain tensor consists of five components for single-scale modeling, which are
elastic, plastic, thermal and transformation volumetric strains as well as strains due to
transformation induced plasticity (TRIP). Then, phase-specific material parameters are
determined, taking into account austenite and martensite as phases occurring during
diffusionless cooling or austenite and pearlite for diffusion controlled cooling for the Cr-
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alloyed steel 100Cr6. Afterwards, the constitutive equations are provided and possibilities
to compute the effective material behavior are discussed.

5.1 Isothermal elasto-plastic material model

Ductile materials such as steel exhibit elastic material behavior up to a certain limit, the
yield stress, which is represented by Hook’s law. When this yield point is exceeded, plastic
deformations occur in the material, i.e., irreversible strains occur which do not influence
the stresses. Therefore, in the regime of small strains, an additive decomposition of the
total strains into elastic and plastic components is used

ε = εe + εp , (5.1)

cf. Lubliner [106]. Thereby, the elastic strains are computed by εe = ε − εp. They are
proportional to the occurring stresses σ, which are related by the fourth-order elasticity
tensor C by σ = C : εe. In general, the stress can be split into a deviatoric and an isochoric
part, i.e., σ = σdev +σvol with σdev = 2µ IP : εe and σvol = κ tr εeI. Therein, the fourth-
order projection tensor IP is defined as IP = II − 1

3
I ⊗ I and κ and µ denote bulk and

shear modulus, respectively.

In case of violating the threshold of elastic deformation, the occurring plastic strain is char-
acterized as an irreversible deformation of the considered continuum as a consequence of
outer forces. If the material behavior is elasto-plastic, the definition of the actual con-
figuration does not only depend on the position of a point in the continuum but also
on the loading path. In order to describe the material behavior a flow rule, a hardening
law and a yield criterion are required. For the computation of the plastic strain incre-
ment, a so-called radial return algorithm can be utilized. In the following, details on
the numerical formulation of an isothermal elasto-plastic material model without phase
transformation based on the linearized theory are given, see e.g. Ortiz and Popov [136]
and Ortiz and Martin [135]. For further reading, especially with respect to finite
deformation, it is referred to Simo [168], Simo and Miehe [167], Miehe [119] and
Simo and Hughes [166].

Constitutive model of associative elasto-plasticity
Assuming the additive split in Equation (5.1), the stresses σ are induced by the elastic
strain component. For the plastic strain increment, a constitutive equation is to be defined.
Therefore, a scalar-valued free energy function ψ is defined in dependence of an internal
variable α and the elastic strains εe, i.e.,

ψ = ψ(εe, α) = ψ̂e(εe) + ψ̂p(α) , (5.2)

which is split into an elastic ψ̂e and a plastic part ψ̂p. For the formulation of the consti-
tutive equation of the stresses, the Clausius-Duhem-Inequality is evaluated with the time
derivative ψ̇ = ∂εeψ : ε̇e + ∂αψ α̇ as

D = σ : ε̇− ψ̇ = σ : (ε̇e + ε̇p)− (∂εeψ : ε̇e + ∂αψ α̇)

= (σ − ∂εeψ) : ε̇e + σ : ε̇p − ∂αψ α̇ ≥ 0 . (5.3)

Thus, it holds for the stresses that σ = ∂εeψ and the reduced dissipation is given
as Dint = σ : ε̇p + β α̇ ≥ 0 with stress-like conjugated variable β = −∂αψ. A convex do-
main IE limited by the yield surface is defined based on yield criterion Φ as

IE = {σ ∈ IR3×3|Φ(σ, β) ≤ 0} . (5.4)
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On the boarder of that elastic domain, it holds that Φ = 0, inside the domain Φ < 0
is fulfilled. An associated flow rule is assumed, which means that the flow direction is
normal to the yield surface. Hence, the plastic strain increment is defined in terms of the
outer normal vector n on the yield surface, see Figure 5.1.

σ2

σ3

σ1

hydrostatic axis

σ1 = σ2 = σ3

n ε̇p
x2

x1

Φ

Figure 5.1: Schematic representation of the von Mises yield criterion with hydrostatic axis,
i.e., σ1 = σ2 = σ3, yield criterion Φ and flow direction of ε̇p as outer normal vector n.

The principle of maximum dissipation states that the dissipation reaches its maximum at
the border of the elastic domain. Thus, the equation Φ = 0 must be evaluated to find the
maximal stress state in comparison to all admissible stress states, which are given by IE.

Dint(σ, β) − Dint(σ
∗, β∗,Θ∗) ≥ 0 . (5.5)

The optimization problem using the method of Lagrange multipliers with λ ≥ 0 can be
formulated as

L(σ, β) = −Dint(σ, β) + λΦ(σ, β) → stat . (5.6)

The resulting equations are given as

∂σL = −ε̇p + λ ∂σΦ = 0 ,

∂βL = −α̇ + λ ∂βΦ = 0 , (5.7)

∂λL = Φ = 0

with the Kuhn-Tucker conditions

λ ≥ 0 , Φ ≤ 0 , λΦ = 0 . (5.8)

They describe the loading and unloading process as optimization conditions. The asso-
ciative flow rule and the evolution of the internal variable read

ε̇p = λ ∂σΦ = λn , and α̇ = λ ∂βΦ . (5.9)

All equations are summarized in Table 5.1. In case linear hardening occurs,
i.e., ψ̂p(α) = yα + 1

2
hα2, the yield criterion depends on a linear hardening parameter h

and yield stress y, see Simo and Hughes [166],

Φ = ‖ devσ‖ −
√

2

3
β with β = y + hα . (5.10)
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Table 5.1: Set of equations for associative elasto-plasticity, cf. Simo and Hughes [166].

stored energy ψ = ψ(εe, α) = ψ̂e(εe) + ψ̂p(α)

additive strain decomposition ε = εe + εp

stresses σ = ∂εeψ(εe, α)

conjugated internal variable β = −∂αψ(εe, α)

reduced internal dissipation Dint = σ : ε̇p + β α̇ ≥ 0

flow rule ε̇p = λ ∂σΦ(σ, β)

evolution of internal variable α̇ = λ ∂βΦ(σ, β)

Kuhn-Tucker conditions λ ≥ 0 , Φ ≤ 0 , λΦ = 0

5.2 Additive decomposition of strain tensor for a non-isothermal model

Hot bulk forming processes show complex interactions of thermal, mechanical and met-
allurgical characteristics. In order to distinguish between occurring phenomena, the
split of the total strains is extend to five different parts based on the formulation
in Mahnken et al. [110]. In addition to the elastic and plastic strains, the proposed
material model takes also into account thermal strains εθ, transformation induced plas-
ticity strains εtrip and transformation volumetric strains εtv, i.e.,

ε = εe + εθ + εp + εtrip + εtv . (5.11)

Furthermore, to incorporate occurring phase transformations, quantities are weighted by
the phase fractions present. For these phase fractions, denoted as ci with e.g. i ∈ {A,P,M}
as austenite, pearlite or martensite, respectively, it has to hold that

∑
i c
i = 1. In case of

more phases or different phases present, the relation can be adapted accordingly.

5.2.1 Elastic and plastic strains

Based on the assumption of the additive strain split in Equation (5.11), the elas-
tic strains εe are computed as εe = ε − εθ − εp − εtrip − εtv. The relation to the
stresses σ = C : εe, which has been presented in Section 5.1, is valid. Furthermore, the
derivations regarding the plastic flow rule utilizing a radial return algorithm, which have
been presented in Section 5.1, can be applied.

5.2.2 Transformation volumetric strains

As described in Section 4.1, phase transformations can be related to a lattice shearing
accompanied with a volumetric expansion of the unit cell, which has to be considered as
strain component. Thus, the transformation volumetric strains are defined as

εtv =
1

3
KtvI , (5.12)

with material constant Ktv, which gives the volumetric expansion of the atomic lattice and
depends on the chemical composition of the investigated material. It has to be noted that
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the transformation volumetric strains only apply for the product phases, here martensite
or pearlite, since it describes the relation of the unit cell with respect to the parent
phase, i.e., here the austenitic unit cell. Furthermore, it is assumed that the volumetric
expansion occurs homogeneously in each direction as simplification. The influence of a
non-homogeneous volumetric strain should not be forgotten and is hence subject of later
analysis.

5.2.3 Thermal strains

Phase transformations can be induced by fast cooling of the material, for instance by a
quenching process. In general, it is distinguished between diffusion controlled and diffu-
sionless cooling. Both have in common that with a change of temperature a contraction
or expansion of the materials is evoked, which can be described by a thermal strain, given
as volumetric strain

εθ = αT(θ − θ0)I . (5.13)

Therein, αT is the heat expansion coefficient, θ and θ0 are actual and initial temperature,
respectively. In the following, the notation εte = εθ + εe will be used. At this point it is to
be noticed that by using Equation (5.13) an isotropic change as a consequence of changes
in temperature is taken into account.

5.2.4 Transformation induced plasticity strains

Plastic strains do not only evolve, when the stress exceeds the yield stress but also in
case of a phase transformation. The TRIP effect is caused by microscopic changes of
atomic regions, which refers to e.g. lattice shearing as observed during an austenite-to-
martensite or austenite-to-pearlite phase transformation for instance. It occurs even in
martensitic or pearlitic regions with stress values far below the yield stress. First experi-
mental observations and explanations date back to the 1960’s. Two mechanisms, namely
the Greenwood-Johnson effect and the Magee effect, respectively, have been proposed in
order to explain transformation plasticity. In Greenwood and Johnson [62] it is pos-
tulated that the weaker phase, e.g. austenite in comparison to martensite, shows plastic
straining due to the volumetric expansion of the martensitic atomic lattice. The Magee
effect, proposed in Magee and Paxton [109], correlates external loading and the for-
mation of favorable martensitic variants, which differ by orientation. Based thereon, many
investigations have been done and numerical approaches have been proposed. For instance,
Olson and Azrin [134] describe the behavior of TRIP steels experimentally. Other ap-
plications can be found in Coret et al. [31] or Kim et al. [89], in which the authors
investigate phase transformation plasticity also experimentally.

A famous numerical approach is the formulation of Leblond’s transformation induced
plasticity model for martensite given in Leblond [99]. Here, the deviatoric part of
the phase transformation, i.e., shear components, are neglected which means that only
the Greenwood-Johnson effect is taken into account. In the work of Mitter [124],
a first analytical approach has been presented, which has been further developed in
Fischer [46; 49; 50] and Fischer et al. [48], to give a complete micromechanical
model which considers the Magee effect as well. The importance of that effect, mea-
ning the effect of the orientation of the martensitic variants, has already been shown
by Gautier et al. [56].
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More recently, Kang and Im [87] and Mahnken et al. [110] analyze the cooling pro-
cess, in particular quenching, resulting in martensite formation based on an additive
decompositions of the strains in the regime of small strains. Hallberg et al. [68]
present a thermo-mechanically coupled model for finite strain plasticity incorporating
martensitic transformation. Further approaches are given by Kubler et al. [95] or
Connolly et al. [30], who describe a mean field approach as self consistent method
and the integration of a model including TRIP into a Marciniak-Kuczyński model, cf.
Marciniak and Kuczyński [115].

Following the classical formulation for martensite of Leblond [99], the rate of the TRIP
strains is defined as

ε̇trip =
3

2
Ktrip devσf ′(cM)ċM (5.14)

with Ktrip as scalar TRIP coefficient, the deviatoric part of the stress tensor devσ, the
rate ċM of the martensitic volume fraction cM and the derivative f ′ of a saturation func-
tion f . This function, which depends on the martensitic volume fraction cM, has to
fulfill f(0) = 0 and f(1) = 1. In the following, f is chosen as f(cM) = (2 − cM)cM

with f ′(cM) = 2(1 − cM) as proposed by Denis et al. [32]. This can be formulated
analogously for the pearlitic phase.

5.3 Interpolation of material parameters

The used material parameters, such as bulk and shear modulus κ, µ, heat conduction co-
efficient k, product of density and specific heat capacity, abbreviated as cρ, thermal expan-
sion coefficient αT, TRIP-coefficient Ktrip, volumetric expansion of the atomic lattice Ktv,
linear hardening parameter h or yield stress y depend either on the temperature or on the
temperature and the accumulated plastic strains, as proposed in Uebing et al. [191].
Necessary data for the calibration of appropriate material parameters is provided by the
Institute of Forming Technology and Machines (IFUM), Leibniz University Hannover, by
thermodynamic simulations using the software JMatPro [83]. Based on the chemical
composition of the considered material, the named material parameters, among others,
are obtained for each phase individually, see e.g. Behrens et al. [15]. In case of Cr-
alloyed steel 100Cr6 (1.3505) which is of interest in later numerical investigations, the
chemical composition is given in Table 5.2.

Table 5.2: Chemical composition of the investigated steel alloy 100Cr6 used for material
data generation with JMatPro.

C Si Mn P S Cr Mo Fe
100Cr6 0.99 0.25 0.35 0.025 0.015 1.475 0.1 balance

Two interpolation schemes are utilized in order to compute the actual phase-specific va-
lues in every time step. A first data set gives information regarding the thermal and
elastic material behavior, i.e., κ in MPa, µ in MPa, k in J/(mm s K), cρ in N/(K mm2)
and αT in 1/K. Therefore, data are generated at 25 ◦C and ranging from 50 ◦C to 950 ◦C in
equidistant steps of 50 ◦C, cf. Behrens et al. [15]. In dependency of the temperature θ,
the value of each of those material parameters can be identified by piecewise linear inter-
polation between the sampling points. For temperatures below 50 ◦C and above 950 ◦C,
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the value of the according limiting sampling points is utilized. An illustration is given in
Figure 5.2.

trip

trip

a)

b)

c)

Figure 5.2: Piecewise linear interpolation of thermal and elastic material parameters exem-
plary for a) austenite, b) martensite and c) pearlite of material 100Cr6. The TRIP coefficients
are only necessary for the product phases, which are martensite and pearlite. Data generated
with JMatPro [83] by IFUM, LU Hannover.

Furthermore, a second data set is utilized to determine the yield stress y and the linear
hardening parameter h in case of plastic material behavior. This second data set gives
information of y and h in terms of the accumulated plastic strains (internal variable) in
range of α ∈ [0, 4] and for certain temperatures θ ∈ [25 ◦C, 1050 ◦C]. The provided data
are in tabular format as sketched in Table 5.3. In the following, the subscript n refers
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to the last time step, while the actual time step would be denoted by subscript n + 1.
Assuming for the values of temperature θn and accumulated plastic strains αn that it
holds that θi−1 ≤ θn < θi and αj−1 ≤ αn < αj, the following two-step interpolation scheme
described below is applied. At this point, it should be mentioned that values of e.g. α = 4
do not relate to theory of small strains, i.e., it has to be ensured that these values do not
occur.

Table 5.3: Tabular data provided for the interpolation of yield stress y and linear hardening
parameter h based on temperature θ and equivalent plastic strain α.

. . . θi−1 θi . . .
...

...
...

αj−1 . . . yj−1,i−1 yj−1,i . . .
αj . . . yj,i−1 yj,i . . .
...

...
...

A first interpolation step of the scheme sketched in Figure 5.3 is done row-wise with
respect to the temperature, which can be formulated as

y(αj−1, θ) = yj−1,i−1 +
yj−1,i − yj−1,i−1

θi − θi−1

(θ − θi−1) ,

y(αj, θ) = yj,i−1 +
yj,i − yj,i−1

θi − θi−1

(θ − θi−1) . (5.15)

Based on these new data points, a second interpolation step, which is done column-wise
with respect to the accumulated plastic strains, can be executed to obtain the sought-after
value of the yield stress y as

y(αn, θn) = y(αj−1, θn) +
y(αj, θn)− y(αj−1, θn)

αj − αj−1︸ ︷︷ ︸
=h

(αn − αj−1) . (5.16)

Moreover, the slope of the second linear interpolation can be considered as linear hardening
parameter h as highlighted in Figure 5.3.

Exemplary, the yield curves for different phases of material 100Cr6 are shown in Figure 5.4.
As can be seen, the yield stresses of martensite and pearlite are higher than that of
austenite. At 25 ◦C, for example, the yield stress of martensite is even more than twice as
high. Pearlite is only slightly stiffer than the parent phase austenite. For high temperatures
and high accumulated plastic strains, both austenite and pearlite show softening material
behavior. This must be specifically dealt with in the numerical investigation. For this
purpose, it is checked whether the current yield stress is lower than the stress of the
previous time step and, if this is the case, the current yield stress is corrected. That
means that the yield stress is set to the value of the previous time step.

5.4 Constitutive modeling

In addition to Table 5.1, a von Mises yield criterion with linear hardening is taken into

account Φ = ‖ devσ‖ −
√

2
3
β with stress-like conjugated variable β depending on yield
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Figure 5.3: Two-step interpolation scheme for yield stress y and linear hardening parame-
ter h based on the temperature θ and the accumulated plastic strains α.

stress y, linear hardening parameter h and strain-like internal variable α. Additionally,
the free energy function in case of a temperature dependent process is given as

ψ(εte, θ, α) =
1

2
κ (tr εte)2 + µ‖ dev εte‖2 − cρ(θ ln

θ

θ0

− θ + θ0)

− 3αTκ(θ − θ0) tr εte + f(α) (5.17)

Furthermore, the function f(α) is used to describe the hardening of the material. This
replaces the potential ψ̂P (α) = yα+ 1

2
hα2 for the classical description of linear hardening

by taking into account the piecewise linear interpolation of the material data described in
Section 5.3, and exemplary indicated in Figure 5.2. In order to ensure numerical stability,
the material subroutine is evaluated based on the temperature of the last time step.
Thereby, all material parameters are stepwise constant.

If the temperature falls below the martensitic start temperature and an austenite-to-
martensite phase transformation occurs, the atomic lattice shears from face-centered cubic
(fcc) to body-centered tetragonal (bct) unit cells. This can be interpreted as a consequence
of inner stresses in the lattice. Thus, the bct unit cells represent a kind of relaxed state and
hence, the strain-like variable α, also known as accumulated plastic strains, is reset to zero.
This is realized individually and uniquely for each integration point during the formation
of martensite. In case of an austenite-to-pearlite phase transformation this relaxation is
analogously considered.

As the simulative analysis of the cooling step of hot bulk forming processes is in focus
of this work, only a one-way coupling between temperature and mechanical displace-
ment is taken into account. That means, that the temperature influences the displace-
ment, but the influence of the displacement on the temperature is neglected, see e.g.
Uebing et al. [192].
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a)

b)

c)

Figure 5.4: Phase-specific data for isothermal yield curves, which is interpolated in a
two-step scheme for a) austenite, b) martensite and c) pearlite of material 100Cr6. Data
generated with JMatPro [83] by IFUM, LU Hannover.
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5.5 Different approaches to determine effective material behavior

Many materials show inhomogeneities and heterogeneities when resolving the microscale.
In the considered Cr-alloyed steel 100Cr6, different phases can be present dependent on
the manufacturing of a component or its treatment. Here, the focus is each time on
two phases, austenite (A) and martensite (M) as described in Section 4.1 for hot bulk
forming processes with diffusionless cooling and on austenite (A) and pearlite (P) in case
of diffusion controlled cooling. In the following, two “phenomenologicalmmaterial models
and one “semi-analytical multi-phasemmaterial model are derived.

5.5.1 Phenomenological material model with effective material parameters

In order to solve homogenized partial differential equations as part of a “phenomenologi-
cal“description, effective material parameters are required. Voigt [193] and Reuss [145]
proposed two possibilities, which are based on the volume fractions of the occurring phases.
In this work, the focus is on the three phases austenite, martensite and pearlite, of which
two phases are present during one computation, either austenite and martensite or auste-
nite and pearlite. Thus, the respective volume fraction is denoted by ci of phase i ∈ {A,M}
or i ∈ {A,P}. It always has to be fulfilled that∑

i

ci = 1 . (5.18)

Taking into account a Voigt average of the material parameters, i.e., an arithmetic mean,
one obtains for the effective material parameters (•)eff

ari

(•)eff
ari =

∑
i

ci(•)i , (5.19)

with (•)i as one material parameter of phase i and (•) ∈ {κ, µ, k, cρ, αT}. Analogously,
considering a Reuss average, which is an harmonic mean, leads to

(•)eff
har =

(∑
i

ci((•)i)−1
)−1

=
(∑

i

ci

(•)i
)−1

(5.20)

for (•) ∈ {κ, µ, k, cρ, αT}. Figure 5.5 illustrates these averages exemplary for the product
of the density and the specific heat capacity, abbreviated as cρ in case of an austenite-
to-martensite phase transformation. For high temperatures the microstructure is homo-
geneous and only austenite contributes to the effective material behavior. For lower tem-
peratures, the martensitic volume increases, so that both phases have an impact on the
effective quantities cρ

eff
ari and cρ

eff
har.

Since only two phases occur in each of the different hot bulk forming processes, it is
defined for the remaining two material parameters Ktv and Ktrip

Ktv
eff = cMKtv

M or Ktv
eff = cPKtv

P (5.21)

and Ktrip
eff = cMKtrip

M or Ktrip
eff = cPKtrip

P . (5.22)

This is a consequence ofKtv
A = Ktrip

A = 0. With this sets of effective material parameters,
the PDEs can be solved with respect to the overall stresses and tangent moduli of the
heterogeneous material. An exemplary algorithmic box is provided in Table 5.4 for fast
cooling with a diffusionless austenite-to-martensite phase transformation.
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Figure 5.5: Exemplary computation of the effective material parameters cρ
eff
ari and cρ

eff
har

according to the volume fractions present; for the product of the specific heat capacity and
the density, abbreviated as cρ.

5.5.2 Semi-analytical multi-phase single-scale approach

The previously described formulation based on effective material parameters cannot ac-
count for phase-specific effects. Large differences in material parameters such as yield
stress are no longer resolved in a phase-specific manner. It is also crucial that the accu-
mulated plastic strains are only considered in a smeared fashion. An atomic lattice relaxes
by shearing from face-centered cubic austenitic unit cells to body-centered tetragonal unit
cells of martensite, i.e., the accumulated plastic strains previously stored in the austenitic
phase are reset. This cannot be taken into account in effective material modeling. This
motivates a formulation referred to here as SAMP material modeling. Therein, stresses
and material tangent are computed for each phase individually and afterwards averaged
arithmetically by

Ceff = cACA + cMCM and σeff = cAσA + cMσM . (5.23)

This can be formulated analogously in case of a diffusion controlled austenite-to-pearlite
phase transformation during slower cooling.

Using the definitions above, the following algorithm can be implemented, see Table 5.5.
At first, the accumulated plastic strains induced by the forming step are initialized for
the austenitic phase. Secondly, the martensitic volume fraction is computed with the
Koistinen-Marburger differential equation, cf. Equation (4.4), or the pearlitic volume frac-
tion is determined with the JMAK equation, see Equation (4.2). Based on the tempera-
ture, material parameters for all present phases are computed. Therewith, the next step is
a classical radial return algorithm for each individual phase. Thus, the stress tensors σi as
well as the tangent moduli Ci are determined for each phase. To derive the effective quan-
tities, a simple arithmetic mean value is computed based on the actual volume fraction
of each phase, see Equation (5.23).
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Table 5.4: Material modeling at time step tn+1 using “phenomenologicallycomputed ef-
fective material parameters. Exemplary algorithm for a diffusionless phase transformation
from austenite to martensite.

t = 0 s initialize history of accumulated plastic strains resulting from hot bulk
forming if necessary, see Section 6.2.2

(I) Get temperature θn and total strains εn+1

(II) Compute martensitic volume fraction

cM
n+1(θn) =

{
1− exp

(
− θMs−θn

θM0

)
for θn ≤ θMs

0 else

and saturation function fn+1(cM
n+1) = (2− cM

n+1)cM
n+1 with f ′n+1(cM

n+1) = 2(1− cM
n+1)

(III) Get history values of accumulated plastic strains αn, plastic strains εp
n,

TRIP strains εtrip
n and martensitic volume fraction cM

n

(IV) Interpolate material parameters κ, µ, k, cρ, αT,Ktrip,Ktv for θn, see Section 5.3

(V) Compute thermal strains εtv
n+1 = 1

3KtvI

and transformation volumetric strains εθn+1 = αT(θn − θ0)I

(VI) Compute elastic trial strains εe,trial
n+1 = εn+1 − εp

n − εtrip
n − εtv

n+1 − εθn+1

and deviatoric trial stresses devσtrial
n+1 = 2µ dev εe,trial

n+1

and deviatoric trial tangent Ctrial
n+1 = 2µ

γ IP with IP = II− 1
3I ⊗ I

with γ = 1 + 3µKtripf
′(cM

n+1)∆cM
n+1 and ∆cM

n+1 = cM
n+1 − cM

n

(VII) Compute yield stress yn+1(θn, αn) by two-step interpolation scheme, see Section 5.3

(VIII) Compute yield criterion Φtrial
n+1 = ‖ devσtrial

n+1‖ −
√

2
3yn+1

if Φtrial
n+1 ≤ 0 then

αn+1 = αn, εp
n+1 = εp

n, εtrip
n+1 = εtrip

n

devσn+1 = devσtrial
n+1, Cn+1 = Ctrial

n+1

else radial return algorithm

(i) Solve residuum function

r(∆λ) =
‖ devσtrial

n+1‖−2µ∆λ

γ −
√

2
3yn+1 = 0

(ii) Update αn+1 = αn +
√

2
3∆λn+1 εp

n+1 = εp
n + ∆λn+1nn+1

(iii) Update deviatoric stresses devσn+1 = 1
γ

(
devσtrial

n+1 − 2µ∆λn+1nn+1

)
(iv) Compute tangent moduli with Jacobian J(∆λ) = ∂r(∆λ)/∂∆λ

Cn+1 = 2µ
γ IP−∆λ (2µ)2

γ
1

‖ devσtrial
n+1‖

(IP− nn+1 ⊗ nn+1) +
(

2µ
γ

)2
1
Jnn+1 ⊗ nn+1

(IX) Update TRIP strains εtrip
n+1 = εtrip

n + 3
2Ktrip devσn+1f

′
n+1(cM

n+1)∆cM
n+1

and elastic strains εe
n+1 = εn+1 − εp

n+1 − ε
trip
n+1 − εtv

n+1 − εθn+1

(X) Add volumetric stresses σeff
n+1 = devσn+1 + κ tr εe

n+1I

and volumetric tangent Ceff
n+1 = Cn+1 + κI ⊗ I



52 Thermo-mechanical material modeling of phase transformation

Table 5.5: Material modeling at time step tn+1 computing phase specific stresses and
material tangent, which are averaged for effective stresses and tangent moduli utilizing
the “semi-analytical multi-phaseäpproach. Exemplary algorithm for a diffusionless phase
transformation from austenite to martensite.

t = 0 s initialize history of accumulated plastic strains resulting from hot bulk
forming if necessary, see Section 6.2.2

(I) Get temperature θn and total strains εn+1

(II) Compute martensitic volume fraction

cM
n+1(θn) =

{
1− exp

(
− θMs−θn

θM0

)
for θn ≤ θMs

0 else

and saturation function fn+1(cM
n+1) = (2− cM

n+1)cM
n+1 with f ′n+1(cM

n+1) = 2(1− cM
n+1)

For all phases, here austenite (A) and martensite (M), do:

(III) Get history values of accumulated plastic strains αn, plastic strains εp
n,

TRIP strains εtrip
n and martensitic volume fraction cM

n

(IV) Interpolate material parameters κ, µ, k, cρ, αT,Ktrip,Ktv for θn, see Section 5.3

(V) Compute thermal strains εtv
n+1 = 1

3KtvI

and transformation volumetric strains εθn+1 = αT(θn − θ0)I

(VI) Compute elastic trial strains εe,trial
n+1 = εn+1 − εp

n − εtrip
n − εtv

n+1 − εθn+1

and deviatoric trial stresses devσtrial
n+1 = 2µdev εe,trial

n+1

and deviatoric trial tangent Ctrial
n+1 = 2µ

γ IP with IP = II− 1
3I ⊗ I

with γ = 1 + 3µKtripf
′(cM

n+1)∆cM
n+1 and ∆cM

n+1 = cM
n+1 − cM

n

(VII) Compute yield stress yn+1(θn, αn) by two-step interpolation scheme, see Section 5.3

(VIII) Compute yield criterion Φtrial
n+1 = ‖ devσtrial

n+1‖ −
√

2
3yn+1

if Φtrial
n+1 ≤ 0 then

αn+1 = αn, εp
n+1 = εp

n, εtrip
n+1 = εtrip

n

devσn+1 = devσtrial
n+1, Cn+1 = Ctrial

n+1

else radial return algorithm

(i) Solve residuum function

r(∆λ) =
‖devσtrial

n+1‖−2µ∆λ

γ −
√

2
3yn+1 = 0

(ii) Update αn+1 = αn +
√

2
3∆λn+1, εp

n+1 = εp
n + ∆λn+1nn+1

(iii) Update deviatoric stresses devσn+1 = 1
γ

(
devσtrial

n+1 − 2µ∆λn+1nn+1

)
(iv) Compute tangent moduli with Jacobian J(∆λ) = ∂r(∆λ)/∂∆λ

Cn+1 = 2µ
γ IP−∆λ (2µ)2

γ
1

‖ devσtrial
n+1‖

(IP− nn+1 ⊗ nn+1) +
(

2µ
γ

)2
1
Jnn+1 ⊗ nn+1

(IX) Update TRIP strains εtrip
n+1 = εtrip

n + 3
2Ktrip devσn+1f

′
n+1(cM

n+1)∆cM
n+1

and elastic strains εe
n+1 = εn+1 − εp

n+1 − ε
trip
n+1 − εtv

n+1 − εθn+1

(X) Add volumetric stresses σn+1 = devσn+1 + κ tr εe
n+1I

and volumetric tangent Cn+1 = Cn+1 + κI ⊗ I

(XI) Average stresses, tangent moduli and material parameters

(•)n+1 = (1− cM
n+1) (•)A

n+1 + cM
n+1 (•)M

n+1 for (•) ∈ {σ,C, κ, k, cρ, αT}
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6 Two-dimensional single-scale analysis of thermo-mechanically
coupled problems

Numerical analysis of hot bulk forming processes offers a cost-, time-, and resources ef-
ficient possibility compared to experimental production which is closely associated with
“trial and error“. In general, hot bulk forming is characterized by complex interaction
of thermal, mechanical and metallurgical fields. Their exploitation using numerical tools
enables the adaption of the manufacturing process to achieve predefined component’s
properties, which are beneficial with respect to e.g. lifetime, wear resistance or strength.
Auspicious manufacturing processes with desired component properties can be finally
produced and evaluated after the numerical design. Thereby, the close connection of nu-
merical investigations and experiments allows for an efficient process design and serves
for validation of the utilized material models.

Thus, it is inevitable to set up material models, wich can be used to reflect the experimen-
tal behavior on macroscopic level as a first step. Therefore, the first study compares the
different macroscopic material models, which have been proposed in Section 5 as “phe-
nomenological (PH)änd “semi-analytical multi-phase (SAMP)mmodel. A generalized ge-
ometry with different boundary conditions is defined for that purpose. Afterwards, a more
complex geometry is investigated which accounts as example for industrial application.
For the latter, a mesh density and time step size study is carried out as first step to
ensure the discretization’s quality. Based thereon, different cooling routes are considered
and compared with respect to the resulting (residual) stress distributions. Afterwards,
phase-specific contributions and the influence of the transformation induced plasticity
(TRIP) is emphasized.

6.1 How to compute effective material behavior

As proposed in Section 5.5, different approaches to determine the effective material behav-
ior are considered. The first two belong to the group of PH material models, i.e., the mate-
rial parameters are averaged by an arithmetic or a harmonic mean. The third one refers to
a description of a SAMP material, for which phase-specific stresses and tangent moduli are
determined and afterwards averaged based on the actual volume fractions of the occurring
phases. For the comparison of these three approaches for single-scale material modeling, a
two-dimensional rectangular geometry with dimensions 1 mm×10 mm made from the Cr-
alloyed steel 100Cr6 (1.3505) is taken into account and discretized with 6×30 nine-noded
quadrilateral elements. Different boundary conditions are combined, in order to compare
the thermal, mechanical and, last but not least, thermo-mechanical material behavior, see
Figure 6.1a-d. The initial temperature of the specimen is set to θ0 = 500 ◦C, so that the
material is fully austenitic. In the case of rapid cooling, which is applied, an diffusionless
austenite-to-martensite phase transformation takes place. Martensite starts to evolve at
temperatures below the martensitic start temperature, which is given as θMs = 185 ◦C for
the considered material. In the final state at room temperature θRT ≈ 20 ◦C, 87 % marten-
site and 13 % retained austenite are present. The actual temperature θ, the decrease of
the austenitic volume fraction cA and different stress components σ11, σ22 and σ12 are
compared for four different boundary value problems, cases a to d, in the marked point
near the upper edge, see the cross x in Figure 6.1.
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Figure 6.1: Two-dimensional rectangular geometry considered in cases a to d: a) solving
only the balance of energy, b) applying a cooling on the top edge, c) uniaxial tension and
d) combination of tension and cooling. The marker x indicates the point of investigation.

6.1.1 Case a - balance of energy

In case a, see Figure 6.1a, all nodal displacement degrees of freedom are fixed, so that
only the balance of energy is solved, i.e., u1 = 0 and u2 = 0 holds for all nodes. On the top
edge, a cooling Dirichlet boundary condition is applied, i.e., the nodes are cooled from
θ0 = 500 ◦C by ∆θ = −480 ◦C to room temperature in ten seconds. Subsequently, the
temperature is held constant at the top edge until the specimen is completely cooled, i.e.,
until the temperature gradient vanishes. For all other boundary nodes a zero Neumann
bound is defined with respect to the temperature. As shown for the examined integration
point x in Figure 6.2, the different single-scale homogenization approaches are in good
accordance for the linear cooling, which leads to a nearly linear stress increase in com-
ponents σ11 and σ22, respectively. Due to the phase transformation and the volumetric
expansion of the atomic lattice, these tensile stresses are reduced and as a final value
σ11 ≈ σ22 ≈ 1800 MPa is obtained. As expected, no shear stresses σ12 are present. The
temperature curves show no deviation between the three approaches at all. Moreover, a
good accordance regarding the degradation of the austenitic volume fraction is observed.
Taking a look at the stress evolution, no differences can be seen until the onset of the
phase transformation around seven seconds of cooling, since a homogeneous, austenitic
material is present up to this point. After that, only small deviations for the approach
with harmonic effective material parameters are observed, which results in lower tensile
stresses. Furthermore, the results of the SAMP approach and the arithmetic PH approach
are close to each other due to the same averaging method, that is applied. It is well known
that computing an arithmetic mean results in the most stiffest material response, often
referred to as an upper bound. A respective lower bound could be given by a material
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Figure 6.2: Case a - balance of energy. Stresses σ11, σ22 and σ12 as well as temperature θ
and austenitic phase cA evolution on integration point level at point x of investigation, cf.
Figure 6.1a.

model with full harmonic effective parameters. At this point, it should be emphasized
again that harmonic averaging is not chosen for all material parameters in this work,
because Ktv and Ktrip are weighted by the martensitic volume fraction instead.

6.1.2 Case b - cooling boundary condition

As boundary conditions for case b, the displacement of the bottom nodes is fixed in x2-
direction, i.e., u2 = 0, and the displacement of the left side is fixed in x1-direction, i.e.,
u1 = 0, see Figure 6.1b. On the top edge, the same linear cooling ∆θ of −480 ◦C is applied
in ten seconds, while on the other bounds no heat flux occurs. As before, the temperature
on the top edge is held constant until the temperature gradient vanishes in the specimen.
Figure 6.3 shows that all approaches computing the effective material response behave
similarly. The evolutions of the temperature and the austenitic phase fraction are the same
as in case a. With respect to the stress evolution, the stress components σ11 and σ22 show
the same qualitative behavior. Before the onset of the phase transformation, nearly no
stresses evolve since the geometry can contract freely. The onset of the phase transforma-
tion around seven seconds of cooling evokes compressive stresses in the investigated point
up to σ11 = −150 MPa and σ22 = −100 MPa. The highest values are computed with the
set of harmonic effective parameters, which exceed the previous values by roughly 33%.
When the phase transformation starts also in the neighboring material points, a tensile
stress peak appears which shows qualitatively the same differences between the three
approaches, arithmetic PH, harmonic PH or SAMP approach. These deviations regard-
ing the amplitude of tensile and compressive stresses balance out with ongoing cooling
process. If the temperature gradient vanishes, no stresses are present in the specimen in
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Figure 6.3: Case b - cooling boundary condition. Stresses σ11, σ22 and σ12 as well as
temperature θ and austenitic phase cA on integration point level at point x of investigation,
cf. Figure 6.1b.

the final state as expected. The latter holds also for the shear stress σ12, for which a
tensile stress peak is observed with the onset of phase transformation. When the cool-
ing progresses, the compressive shear stresses occur, opposite to stresses σ11 and σ22. In
general it is observed that the arithmetic PH and SAMP approach behave very similar.
Regarding σ11 and σ12, the final stress values for the arithmetic PH material modeling are
slightly higher or lower, respectively, that for the SAMP material model. Nevertheless,
these deviations are quite small.

6.1.3 Case c - uniaxial tension

In a next step, the initial temperature of θ0 = 500 ◦C is fixed for all nodes in the geometry
of case c, see Figure 6.1c, to consider only the balance of momentum. The same displace-
ment boundary conditions as for case b are applied, i.e., the displacement of the bottom
nodes is fixed in x2-direction, i.e., u2 = 0, and the displacement of the left side is fixed
in x1-direction, i.e., u1 = 0. The thermal cooling of the top edge is replaced by an uniaxial
displacement ∆u2 = 0.1 mm, which represents an elongation of 1% of the initial length.
This displacement is applied in ten seconds, afterwards the specimen is maintained in its
configuration. Due to the temperature above the martensitic start temperature, no phase
transformation occurs and all material models, PH or SAMP, describe the same response
of the homogeneous austenitic material. The material can freely expand or contract due
to the set boundary conditions, so that the stresses σ11 and σ12 are zero except numerical
inaccuracies, see Figure 6.4. The stress distribution in second direction σ22 represents the
yield behavior of the austenitic phase as expected, thus the elastic deformation is followed
by plastification with prominent linear hardening. After the specimen is fully elongated,
the stresses remain constant during the last 55 seconds of the computation.
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Figure 6.4: Case c - uniaxial tension. Stresses σ11, σ22 and σ12 as well as temperature θ
and austenitic phase cA on integration point level at point x of investigation, cf. Figure 6.1c.

6.1.4 Case d - combination of cooling and uniaxial tension

Finally, the cooling and the uniaxial tension are combined, see Figure 6.1d. Regarding the
displacement boundary conditions, the bottom of the geometry is fixed in x2-direction,
i.e., u2 = 0, and the left side of the geometry is fixed in x1-direction, i.e., u1 = 0. On the
top edge, a displacement of ∆u2 = 0.1 mm in x2-direction is applied, which resembles 1%
elongation of the specimen. Furthermore, the top edge is exposed to a linear cooling from
the initial temperature of θ0 = 500 ◦C by ∆θ = −480 ◦C in ten seconds. On all other edges,
zero Neumann bounds are defined for the thermal degree of freedom. Subsequently, the
displacement ∆u2 and the applied temperature change ∆θ are held constant at the top
edge, until the temperature gradient vanishes in the geometry. Still, only small deviations
are found comparing the different single-scale approaches with each other, see Figure 6.5.

In comparison with previous boundary value problems, the results are qualitatively in
accordance with the stress evolution due to the cooling in case b superimposed with the
stresses following uniaxial tension in case c. In the beginning, before the phase trans-
formation starts, the linear increase of stress component σ22 resembles case c. Stress
components σ11 and σ12 show small tensile and compressive stress values due to the
cooling, cf. Figure 6.3. With the onset of the phase transformation, a compressive stress
peak is observed for stress components σ11 ≈ −150 MPa. The high tensile stress value of
σ22 ≈ 420 MPa is reduced to 270 MPa by the superimposed compressive stresses, since the
martensitic phase transformation comes along with a volumetric expansion of the atomic
lattice. With ongoing cooling and progression of the phase transformation in material
points below the examined one, small tensile stresses are found regarding the stress com-
ponent σ11. At the same time, it holds for σ22 that the tensile stresses of ≈ 420 MPa are
recovered. As before, in a final state the specimen shows zero stresses regarding σ11 and σ12.
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Figure 6.5: Case d - combination of cooling and uniaxial tension. Stresses σ11, σ22 and σ12

as well as temperature θ and austenitic phase cA on integration point level at point x of
investigation, cf. Figure 6.1d.

The comparison of the three single-scale approaches shows that the descriptions of the
macroscopic behavior are in good accordance. Summarizing, the harmonic material for-
mulation shows highest magnitude concerning the stress peaks. Using arithmetic mean
values for most parameters reduces the stress peaks compared to the calculation with har-
monic effective parameters. Similar applies for the SAMP material model, which shows
the same stress behavior in the beginning of the phase transformation, but at the end of
the computation, the absolute stress values are slightly reduced compared to both previ-
ously discussed formulations. These strong similarities between the SAMP computation
and the one with arithmetic parameters can be explained by the same averaging method,
which weights either the parameters or the phase-specific stresses and tangent moduli
by volume fractions. It can be concluded that the harmonic material formulation gener-
ally results in higher stresses than the other two approaches and, thus, in the following
analysis the SAMP material modeling, presented in Section 5.5.2, is in focus. Its advan-
tage compared to the arithmetic PH approach is that the phase-specific contributions are
preserved during each computational step and thus, these can be investigated further.

6.2 Hot bulk forming of a cylindrical component

The first numerical example emphasized that a SAMP material model is well suited
to carry out the investigation of cooling processes incorporating phase transformational
effects. In the following, as a more complex geometry, a cylindrical specimen with eccentric
hole is taken into account. The eccentricity is of special interest, since it evokes non-
homogeneous stress distributions inside the material as it is also the case for industrial
components, see Simsir and Gür [169]. After a short introduction to the set-up of the
experimental investigation, the boundary value problem is defined and a mesh density
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and time step size study is carried out. Afterwards, the numerical analysis of different
cooling routes to evoke a targeted (residual) stress state inside the material is shown and
the results regarding the stress distribution are discussed.

6.2.1 Experimental set-up of a hot bulk forming process

The experimental realization of a hot bulk forming process has been carried out
at the Institute of Forming Technologies and Machines, Leibniz-University Hannover,
see Behrens et al. [14; 15; 18; 19]. The process under consideration is the hot bulk
forming process of the mentioned cylindrical specimen with eccentric hole, see Figure 6.6.

upper tool

thermobox

specimen

opening for

thermocouples

lower tool

hot bulk forminginitial geometry

3.5

A A

[mm]
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A-A

O16

O35
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Figure 6.6: a) Dimension of the cylindrical specimen with eccentric hole and b) set-up of
hot bulk forming process with thermobox, adapted from Behrens et al. [18].

This simple geometry serves for the development and evaluation of the finite element
simulation tool. In a first process step, the specimen is heated to above 1000 ◦C in a
thermobox with a suitable holding time to relax previous stresses inside the material.
Thereby, a purely austenitic material is achieved which can be taken into account as
nearly stress-free. In a second step, the component is upset using the forming simulator
DYNSJ5590. The height is reduced from initially height of 50 mm to a height of 28 mm
with a rate of 200 mm/s. The third step of hot bulk forming is the subsequent cooling,
which is in focus of the following numerical analysis. Therefore, the specimen is removed
from the thermobox and either cooled in water, by air or with application of a spray. Mea-
suring points are defined on the surface of the specimen and connected to thermocouples,
such that the temperature evolution is evaluated throughout the cooling. The process is
schematically illustrated in Figure 6.7.

In case of spray cooling, a device with six circularly arranged independent nozzles is con-
sidered, which are two-substance nozzles of type XA PR 050 of Bete GmbH, cf. Figure 6.8.
Thus, the spray is a mixture of water and air applied with a pressure of 0.04 MPa, resul-
ting in a water flow rate of 0.2 l/s. For controlling the nozzles, solenoid valves are installed
in front of the nozzles, which are regulated by the digital I/O module NI-9375 from Na-
tional Instruments and programmed with the LabView software. The HTC (heat transfer
coefficient) values are obtained by experimental and numerical comparison. That means,
in a first step the cooling process is experimentally realized with a starting temperature
of 1000 ◦C for a cylindrical specimen of height 50 mm and diameter 40 mm with six nozzles.
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Figure 6.7: Schematic illustration of a hot bulk forming process of a cylindrical component
with eccentric hole, which is at first heated, then upset and subsequently cooled, either by
air, in water or with a spray, adapted from Uebing et al. [191].

During the cooling down to room temperature of 20 ◦C, the time-temperature-relation in
depth of 3 mm in the front face is measured. In a second step, a numerical model is im-
plemented in simufact.forming with varying HTC to fit the experimental data, until the
method of the least squares between the calculated and experimental temperature-time
curves achieves good agreement, see Behrens et al. [14; 15; 17; 18].

a) b)

Figure 6.8: a) Cylinderical specimen with eccentric hole exposed to a spray cooling in
experiments at IFUM and b) schematic representation of a spray cooling device with eight
nozzles. Therein, XD denotes the distance between the specimen and a nozzle and YD is the
distance between two nozzles.

6.2.2 Numerical investigation of the cooling step of hot bulk forming

The initial geometry for the hot bulk forming process, which is divided into heating,
forming and cooling step, is provided in Figure 6.6a. Heating to above 1000 ◦C with
a suitable holding time ensures a nearly stress-free, fully austenitic state of material
100Cr6, which is then upset. Thereby, the height is reduced by approximately 50%. In
the last step, the deformed specimen is cooled down to room temperature. Therefore,
different cooling media can be taken into account, for example cooling by air, cooling in
water or the application of a spray with a spray cooling device. Different cooling routes
can evoke different kinds of phase transformation and therewith decisive variations of the
resulting stress distributions, which are examined numerically in the following. In absence
of outer forces and moments and in case of an homogeneous temperature distribution
over the component, the resulting stresses can be interpreted as macroscopic residual



Two-dimensional single-scale analysis of thermo-mechanically coupled problems 61

stresses (first type). The following numerical analysis focuses on the cooling step of hot
bulk forming taking into account the SAMP material model presented in Section 5.5.2.
The idea is to find a cooling route, which induces a predefined residual stress state in the
material to positively influence the component’s properties, i.e., compressive stresses in
regions near the outer surface of the cylinder, which are able to prevent crack growth.

Boundary value problem
For the numerical analysis of the cooling of the considered cylindrical specimen with ec-
centricity, a two-dimensional slice, which is taken from the deformed cylindrical specimen
before the cooling step, is taken into account. Its dimensions and displacement boundary
conditions are provided in Figure 6.9 exploiting symmetry.
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Figure 6.9: Two-dimensional slice taken from a cylindrical specimen with eccentric hole
with its dimensions and displacement boundary conditions. The cooling is applied on the
lateral surface, which is marked in blue. The marked points P1 and P2 are in focus of the
investigation.

The cooling is applied on the lateral surface as Dirichlet type boundary conditions, marked
in blue. In order to consider different cooling routes, such as cooling in water, by air or
with a spray, the thermal boundary conditions are defined individually, see Section 6.2.4,
Section 6.2.5 and Section 6.2.6, respectively. As a consequence of the eccentricity, the left
side of the specimen as shown in Figure 6.9 is referred to as thick side while the right part
is named thin side.

Plastic strains from hot bulk forming
Due to the focus of this work on the cooling process step, the forming history of the
analyzed specimen has to be taken into account as a kind of initialization step. Based
on macroscopic simulations done at the IFUM, LU Hannover, information regarding the
accumulated plastic strains inside the cylindrical specimen is provided. The data can be
processed and applied to the considered geometry at time t = 0 s, see Figure 6.10. In the
following, this initialization step is referred to as offset.
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Figure 6.10: Exemplary accumulated plastic strains (offset) αhist after hot bulk forming
before the cooling for a two-dimensional slice taken from a cylindrical specimen.

6.2.3 Convergence study

The presented material model utilizes an adaptive split into five strain components, cf. Sec-
tion 5.2. Therein, the plastic strain component and TRIP-strain component require an
adequate time step size. Additionally, the rapid cooling applied on the lateral surface
implies a temperature gradient, which has to be resolved accurately. Thus, a time step
size and mesh density study has to be carried out. First, different discretizations are com-
pared for a constant chosen time step size. Afterwards, a time stepping scheme is found
that balances numerical costs and accuracy for the chosen mesh. The considered meshes
and time step sizes are summarized in Table 6.1. With regard to the discretization, the
different mesh sizes are sorted into three groups, namely “coarse“, “mediumänd “fine“.
Exemplary, the coarse discretization 30 × 40 with 30 elements in radial and 40 elements
in circumferential direction is plotted in Figure 6.11. For the purpose of comparison, the
first cooling route, namely cooling in water, which is in detail described in the following
Section 6.2.4, is utilized. For now, it is sufficient to know about the geometry, the consid-
ered SAMP material model, cf. Section 5.5.2, and that a cooling is applied on the lateral
surface to execute the study. This fast, exponential cooling from above 1000 ◦C to room
temperature of approximately 20 ◦C lasts for 80 seconds.

Table 6.1: Overview of the analyzed macroscopic discretizations (in radial and circumfe-
rential direction), which are sorted by size in groups “coarse“, “mediumänd “fine“, and the
time step sizes.

macroscopic mesh time step size
elements

radial circumferential name ∆t = 1s ∆t = 0.1s ∆t = 0.05s ∆t = 0.01s

20 40
coarse

� � X �
30 40 � X X �
20 60 � X X �

40 80
medium

� X X �
50 100 � X X X

70 140
fine

� X X X
100 200 � X X X

� : diverged computation X : converged computation
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Figure 6.11: Exemplary mesh density for the coarse discretization 30×40 with 30 elements
in radial and 40 elements in circumferential direction.

In a first attempt, the numerical computation is carried out for all defined meshes with
a constant time step size of ∆t = 1 s. The problems diverge directly during the first
computational steps. Thus, a second time step size, ∆t = 0.1 s is of interest. Here, the
coarsest mesh with 20× 40 elements once again does not converge and is thus not consid-
ered in the following comparison. All other discretizations converge, but show small yet
significant differences in numbers, as depicted in Figure 6.12 for σ11 and in Figure 6.13
for σ22 for times of t = 15 s, t = 30 s and t = 80 s. Additionally, Figure 6.14 displays the
respective stress components σ11 and σ22 along the x1-axis for times of t = 15 s, t = 30 s
and t = 80 s. Therefore, the finest discretization with 100 elements in radial and 200
elements in circumferential direction is taken into account.

As can be seen in both Figures 6.12 and 6.13, the results converge, i.e., the differences be-
tween the stress results decrease with increasing number of elements. In order to substan-
tiate this result with numbers, the σ11- and σ22-stress values at three points are compared
at the same times. These points are located at X1(−14|1), X2(−2|18) and X3(20|5), as
illustrated in Figure 6.15. The finest mesh with 100× 200 elements is used as a reference
solution to determine the relative error as

errm,i11 =
∣∣∣σm,i11 − σ

100×200,i
11

σ100×200,i
11

∣∣∣ and errm,i22 =
∣∣∣σm,i22 − σ

100×200,i
22

σ100×200,i
22

∣∣∣ (6.1)

with superscripts i ∈ {15 s, 30 s, 80 s} giving the time and m ∈ {20 × 60, 30 × 40, 40 ×
80, 50× 100, 70× 140} referring to the mesh density.

Figure 6.16a-c visualizes the results for errm,i11 and errm,i22 for all m and all i. Coarse meshes
(20 × 60 and 30× 40) show strong deviations from the reference solution with errors up
to nearly 300 %. For the first medium sized discretization with 40× 80 elements a smaller
error is computed, but it is still greater than 10 % as can be seen for e.g. σ11 after t = 80 s
in Figure 6.16c. The medium sized mesh with 50× 100 elements and the fine mesh with
70×140 elements show improved behavior. The error does not exceed approximately 6 %.
One can conclude that both discretizations are suitable for further analysis of the problem
at hand.

Another motivation to use sufficiently fine mesh densities is closely related to the definition
of the FEM. Here, the investigated quantities are calculated at the integration points of
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Figure 6.12: Comparison of different discretizations, namely with 30×40, 20×60, 40×80,
50 × 100, 70 × 140 and 100 × 200 elements, by means of stress component σ11 in MPa
computed with time step size ∆t = 0.1 s, after t = 15 s, t = 30 s and t = 80 s.
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Figure 6.13: Comparison of different discretizations, namely with 30×40, 20×60, 40×80,
50 × 100, 70 × 140 and 100 × 200 elements, by means of stress component σ22 in MPa
computed with time step size ∆t = 0.1 s, after t = 15 s, t = 30 s and t = 80 s.
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Figure 6.14: Stress components σ11 and σ22 along the x1-axis for the finest discretization
with 100× 200 elements after t = 15 s, t = 30 s and t = 80 s.

X2

X3

X1X4

Figure 6.15: Location of the three points X1, X2 and X3 used to evaluate the relative
error, given in Equation 6.1, between different mesh densities. The integration point near
the left corner, marked by X4, is used to compare the evolution of different quantities over
the cooling time.

an element and then the nodal values are extrapolated, in which context, the importance
of a good discretization becomes especially apparent. This extrapolation provides room
for inaccuracies and errors, which motivates a comparison of the calculations directly on
integration point level. Thus, to confirm the thesis that discretizations with 50 × 100 or
70 × 140 elements are suitable, the evolution of different quantities during the complete
cooling process on integration point level is investigated. To illustrate this, Figures 6.17
and 6.18 show the time evolution of the temperature θ, the martensitic volume fraction cM

and the stress components σ11 and σ22 in the integration point closest to the point X4

marked in Figure 6.9.

As can be seen, the temperature evolution θ does not rely on the chosen discretization
and shows only negligible minor to none deviations, since the point is very close to the
outer surface, on which the temperature is set as boundary condition, cf. Figure 6.17a.
As already mentioned during the motivation of the mesh density study, the tempera-
ture gradient must be resolved very adequately in the radial direction. It is found that
a discretization with 20 elements in radial direction, i.e., 20 × 60, is not sufficient. Even
30 elements in combination with a coarse number of 40 elements in circumferential di-
rection are not suitable, see the zoom in Figure 6.17b. Since the examined point is closer
to the outer edge or, more precisely, closer to the outer corner for finer discretizations
with many elements than for coarser meshes, these differences occur. In case of a high
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Figure 6.16: Relative error in σ11 and σ22 in relation to the finest mesh with 100 × 200
elements for three different points after a) t = 15 s, b) t = 30 s and c) t = 80 s for points X1,
X2 and X3, as marked in Figure 6.15.

number of elements in radial direction, the temperature in point X4 decreases faster than
for a less elements in radial direction, see Figure 6.17a. As a consequence, the onset of
the austenite-to-martensite phase transformation is offset, cf. Figure 6.17b.

This, of course, influences the stress evolution as well, cf. Figure 6.18a and b. Regarding
stress component σ11 in Figure 6.18a, oscillations are observed starting around t = 10 s.
It holds that the coarser the mesh, the larger the amplitudes of the oscillations. For a
coarse discretization the occurring zic-zac behavior is quite pronounced. Thus, mesh sizes
with more elements are inevitable to depict the phase transformation precisely. It is found
that the discretizations with 50 or more elements in radial direction show fitting stress
curves. Therefore, the previous statement to chose a discretization with 50×100 elements
or finer can be verified. Differences in stress component σ22 are quite small for these finer
discretization, hence, the drawn conclusion can be acknowledged, cf. Figure 6.18b and c.
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a)

b)

Figure 6.17: a) Evolution of temperature θ and martensitic volume fraction cM over cooling
time in the integration point nearest to the left corner, marked with X4 in Figure 6.15, for
different discretizations and b) with zoom in for t ∈ [8 s, 15 s]. Solid line depicts temperature,
dashed line is martensitic volume fraction.

b)

c)

a)

Figure 6.18: Evolution of stress components a) σ11 and b) σ22 over the cooling time in
the integration point nearest to the left corner, marked with X4 in Figure 6.15, for different
discretizations and c) with zoom in for time t ∈ [8 s, 25 s].

In addition to refine the discretization, the time step size could be adapted as well. As
can be found in Table 6.1, the four coarsest meshes do not converge for a time step
size of ∆t = 0.01 s, although they give results for a five times larger time step size
of ∆t = 0.05 s. Thus, in the following they are disregarded. For the remaining meshes
it holds that a finer time step size can improve the accuracy of the solution, e.g. for the
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medium mesh 50 × 100. At the same time, one observes that the reduced time step size
has only small to none impact for a very fine discretization, as it holds for 100× 200 ele-
ments, see Figure 6.19. As can be found, for a very good combination, balancing number
of degrees of freedom and number of time steps with regard to ensuring accurate results,
a mesh with 50× 100 elements seems to be a good choice.

Furthermore, all the previous graphs show nearly none deviation in the cooling time before
the onset of the phase transformation. Due to the speed of the diffusionless phase trans-
formation to martensite, the transition is nearly finished after the first half of the cooling
process. Thus, an adaptive time stepping scheme can be utilized, i.e., in the beginning
and end of the cooling process, here for time intervals of t ∈ [0 s, 8 s] and t ∈ [40 s, 80 s],
the time step size can be chosen as ∆t = 0.1 s. During the phase transformation, the time
step size is reduced to ∆t = 0.01 s. In order to investigate different cooling routes, i.e.,
the cooling in air or with a spray, this time stepping scheme can be adopted accordingly.
Considering spray cooling, that lasts for 500 seconds, the phase transformation mainly
takes place between 25 s and 100 s. In contrast to that, cooling by air takes much more
time, i.e., 5000 seconds. Therefore, a constant time step size is adequate, so that it holds

∆tair(t) = 1 s = const 0 s ≤ t ≤ 5000 s ,

∆twater(t) =


0.1 s 0 s ≤ t < 8 s

0.01 s 8 s ≤ t < 40 s

0.1 s 40 s ≤ t ≤ 80 s

, (6.2)

∆tspray(t) =


0.1 s 0 s ≤ t < 25 s

0.01 s 25 s ≤ t < 100 s

0.1 s 100 s ≤ t ≤ 500 s

.

zo
om

Figure 6.19: Influence of time step size ∆t ∈ {0.1 s, 0.05 s, 0.01 s} for meshes with 50×100,
70×140 and 100×200 elements, evaluated in the integration point nearest to the left corner,
marked with X4 in Figure 6.15.
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6.2.4 Diffusionless cooling in water

Quenching of the deformed cylindrical specimen in water, the geometry is given in
Figure 6.9, results in a diffusionless phase transformation from the initial purely austenitic
material to a martensitic dominated microstructure. For this purpose, one thermal boun-
dary condition is defined for each lateral surface, namely outer and inner lateral sur-
face, cf. Figure 6.20, which shows the evolution of the temperature and the related
martensitic volume fraction over time. Thus, for the final state at room temperature
of approximately 20 ◦C, 87 % martensite and 13 % retained austenite are present, follow-
ing Behrens et al. [15] and see the curve of cM in Figure 6.20. The martensitic start
temperature is considered for the Cr-alloyed steel as θMs = 185 ◦C, while the final tem-
perature is room temperature θRT = 20 ◦C. The complete cooling lasts for 80 seconds
until a homogeneous temperature distribution is obtained. Note that this is important to
achieve a separation of thermally evoked stresses from residual stresses.

Figure 6.20: Thermal Dirichlet boundary conditions for cooling in water on outer (point
P1, cf. Figure 6.9) and inner (point P2, cf. Figure 6.9) lateral surface with related martensitic
volume fraction.

The resulting stress evolutions of stress component σ22 in points P1 and P2 are depicted
over time in Figure 6.21 together with the evolution of temperature and martensitic
volume fraction. For comparison, simulative results and experimental stress measurement,
carried out at IFUM, see Behrens et al. [17], are given. Since the investigated points
are located on the x1-axis, the stress component σ22 can be interpreted as tangential
stress σtang. 1.) First, before the onset of the phase transformation, the cooling leads to
thermal contraction of the specimen and thus, tensile tangential stresses are present in
both points P1 and P2. If the temperature drops below the martensitic start temperature,
the volumetric expansion of the atomic lattice, which is taken as 1 %, cf. Olle [133], leads
to a superposition with high compressive stresses. Afterwards, when the phase transfor-

1.)In order to determine the tangential stresses in the component in a point x, the stress tensor σ is
rotated by rotation matrixR, which is defined based on the angle α. This angle α rotates x1-x2-coordinate
system to the x∗1-x∗2-coordinate system so that the x∗1-axis points in direction of the position vector x.
The tangential stresses σtang are identified as entry σ∗22 in the rotated stress tensor σ∗.

R̄ =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 , σ∗ = R · σ ·RT .
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mation starts in the bulk material, the sign of the stresses changes once more in the
regions near the lateral surface. In the final state, tensile stresses are present in regions
near the outer boundary. In comparison to the simulations carried out at IFUM using
simufact.forming, the stress evolution shows good accordance, especially qualitatively.
Furthermore, the experimentally measured stresses of about 216 MPa at P1 and 138 MPa
at P2 are satisfactorily matched.
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Figure 6.21: Water cooling - a) & c) Evolution of temperature θ in ◦C, martensitic volume
fraction cM and b) & d) tangential stresses σtang in MPa over cooling time in measuring
points P1 and P2, respectively, as marked in Figure 6.9a. Simulations and experimental
measurements carried out at IFUM are presented in Behrens et al. [17].

Figure 6.22 displays the temperature distribution θ, martensitic phase evolution cM and
tangential stress state σtang at different points in time. First, after eight seconds of time,
the temperature is still higher than the martensitic start temperature and thus, the phase
transformation has not started yet. The tangential stresses are nearly homogeneous, show-
ing tensile stress values in regions near the outer bound on the thick side due to thermal
contraction. The onset of the phase transformation in regions near the outer surface after
ten seconds leads to an increase of the martensitic volume fractions at the outer lateral
surface. This comes along with high compressive stress values, as already visualized in
Figure 6.21 for the two measuring points on that surface. A few seconds later, after 15
seconds of cooling time, the temperature is below the martensitic start temperature in
roughly 50 % of the cylindrical slice. Except of the bulk material on the left side of the
geometry, the phase transformation takes place in almost the whole domain. On the thick
side, high compressive stress values can be seen on the lateral surfaces, whereas the bulk
material shows tensile stress values.
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Figure 6.22: Water cooling - Evolution of temperature θ in ◦C, martensitic volume frac-
tion cM and tangential stresses σtang in MPa before a) t = 8 s, during b) t = 10 s & c) t = 15 s
and at the end of the phase transformation d) t = 80 s and with e) adapted scaling of the
color legend for the final stress state.
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In contrast to that, the bulk material already undergoes the phase transformation on the
thin side of the geometry. As a consequence, the compressive stresses in regions near the
surfaces are superimposed by tensile stresses, which arise as counterpart to compressive
stresses in the bulk due to the martensitic volumetric expansion. In the final state, after 80
seconds, room temperature has been reached in the component and a homogeneous phase
distribution with 13 % retained austenite and 87 % martensite has set. As emphasized by
Figure 6.22e tensile stresses are present in regions near the lateral surface and in the bulk
material opposed compressive stresses are observed.

6.2.5 Diffusion controlled cooling by air

Cooling by air takes much more time than quenching in water, i.e., 5000 seconds compared
to 80 seconds. Thereby, a diffusion controlled phase transformation takes place, which is
simulated with the JMAK equation, see Section 4.1.1. For the defined boundary value
problem with changed thermal boundary conditions, as depicted in Figure 6.23, the phase
transformation form austenite to pearlite has to be modeled as experimentally observed,
cf. Behrens et al. [15]. Microstructural investigation shows that in the final state an
almost complete transformation to pearlite has taken place. The volumetric expansion of
the atomic lattice during the austenite-to-pearlite phase transformation is set to 0.1 %.

Figure 6.23: Cooling Dirichlet boundary conditions for cooling by air on outer (point P1,
cf. Figure 6.9) and inner (point P2, cf. Figure 6.9) lateral surface.

In Figure 6.24 the phase, temperature and stress evolution are depicted for both points P1
and P2 in combination with experimental measurements and simulations carried out at
IFUM. The results show that the fast phase transformation takes place around t = 120 s.
As a consequence of this, the firstly occurring tensile stresses from thermal contraction are
superimposed with compressive stresses, resulting in the compressive stress peak. As the
cooling proceeds, a stress weakening is observed analogously to cooling in water. Thus,
in the final state, tensile stresses are computed. This does not fit with the experimental
measurements very well, which show compressive stresses in both points P1 and P2 at the
end of the cooling by air. But, it is to be noticed that all values are very low of magnitude
compared to the cooling in water. Thus, another cooling strategy should be tested to
obtain the targeted compressive residual stresses in regions near the outer surface, that
influence the component’s properties positively.



74 Two-dimensional single-scale analysis of thermo-mechanically coupled problems

0 1000 2000 3000 4000 5000

time in s

0

500

1000

1500

te
m
p
er
a
tu
re

a
t
P
1
in

◦
C

0

0.2

0.4

0.6

0.8

1

p
ea
rl
it
ic

v
o
lu
m
e
a
t
P
1

0 1000 2000 3000 4000 5000

time in s

0

500

1000

1500

te
m
p
er
a
tu
re

a
t
P
2
in

◦
C

0

0.2

0.4

0.6

0.8

1
p
ea
rl
it
ic

v
o
lu
m
e
a
t
P
2

0 1000 2000 3000 4000 5000

time in s

-150

-100

-50

0

50

100

st
re
ss

σ
2
2
a
t
P
1
in

M
P
a SAMP approach

IFUM simulation

IFUM experiment

0 1000 2000 3000 4000 5000

time in s

-60

-40

-20

0

20

40

st
re
ss

σ
2
2
a
t
P
2
in

M
P
a SAMP approach

IFUM simulation

IFUM experiment

a) b)

c) d)

Figure 6.24: Air cooling - a) & c) Evolution of temperature θ in ◦C, pearlitic volume frac-
tion cP and b) & d) tangential stresses σtang in MPa over cooling time in measuring points P1
and P2, respectively as marked in Figure 6.9a. Simulations and experimental measurements
carried out at IFUM are presented in Behrens et al. [17] and Behrens et al. [18].

In addition, Figure 6.25 displays the three quantities, cP, θ and σtang, for the cylindrical
slice for certain points in time, which are before t = 105 s and after t = 130 s the phase
transformation and at the end of the cooling process t = 5000 s. The shown stress evolution
is qualitatively in good accordance with the stresses resulting from cooling in water. Due
to the slower cooling, the temperature gradient in the slice is pronounced and as a direct
consequence, the phase transformation is accomplished in a shorter period of time and in
a more homogeneous manner, which results in lower stress values, cf. Figure 6.25d.

6.2.6 Diffusionless cooling using a spray cooling device

Instead of cooling in water or by air, which are two examples of immersion cooling, the
application of a spray as splash cooling is as third route taken into account. The utilization
of a spray cooling device with six independent nozzles as it is shown in Figure 6.26, enables
the temporal and spatial control of the cooling process, cf. Section 6.2.1. Here, a constant
spray as mixture of water and air is applied with one active nozzle for about 300 seconds
to the thick side of the geometry. Thus, the boundary conditions have to be adapted to
suit the experiments.

Utilizing the proposed material model of Section 5, the computing time has to be adapted
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Figure 6.25: Air cooling - Evolution of temperature θ in ◦C, pearlitic volume fraction cP

and tangential stresses σtang in MPa before a) t = 105 s, during b) t = 130 s and at the end
of the phase transformation c) t = 5000 s and with d) adapted scaling of the color legend
for the final stress state.

as well, so that in the final state, a constant temperature in the whole cylindrical slice
is obtained. Otherwise, it is not possible to distinguish, if either the temperature and/or
the phase transformation evokes the stresses, and hence no residual stress state could be
defined. Therefore, the computing time is extended to 500 seconds while the cooling still
last for 300 seconds, see Figure 6.27. In order to account for the different cooling paths in
dependence of the distance of the applied spray, the thermal boundary condition varies
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Figure 6.26: Spray cooling device with six independent nozzles, taken
from Behrens et al. [18].

approximately all 10◦, cf. Figure 6.28. The temperature evolution on the lateral surfaces
in points P1 and P2 are given in Figure 6.27. The observed tangential stresses in points
P1 and P2 are plotted in Figure 6.29 together with the simulative results obtained at
IFUM using simufact.forming. As a consequence of the spray, a fast cooling in point P1
and a slower cooling in point P2 can be observed. Due to the heat conduction through
the specimen’s geometry from left to right, point P2 is cooled slower but still fast enough
to undergo the austenite-to-martensite phase transformation until a homogeneous phase
distribution is gained.

Figure 6.27: Thermal Dirichlet boundary conditions for cooling with a spray for sprayed
region and on the opposite outer side

The resulting stress evolution in point P1 in Figure 6.29b shows that at first tensile
stresses due to thermal contraction occur, compare cooling in water in Section 6.2.4.
With heat conduction to the whole geometry and the onset of the phase transformation
in the spray exposed region, the stress sign changes, and compressive stresses occur. These
are weakened when the phase transformation starts in the bulk material of the thick side.

As the cooling proceeds, the stresses even change their sign again and tensile stresses occur,
see also Figures 6.30 and 6.31. In the final state, cf. Figure 6.31e, compressive stresses
are present in the region around P1, in which the spray cooling is applied. As depicted
in Figure 6.29b, the stresses behave slightly different in point P2. As a consequence of
the spray cooling applied to the thick side of the component, the right side undergoes
the phase transformation much later. For P2 it holds that the martensitic phase starts
to evolve after approximately 170 seconds of cooling time, see also Figure 6.27. The
phase transformation occurs slower compared to the spray exposed part of the geometry.
Influenced by the phase transformation of the bulk material, compressive stresses occur
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Figure 6.28: Two-dimensional slice taken from a cylindrical specimen with eccentric hole
with its dimensions and adapted boundary conditions for spray cooling. The cooling is
applied on the lateral surface, which is marked in dark and lighter blue. The marked points
P1 and P2 are in focus of the investigation.

which are weakened between 200 and 300 seconds of cooling time. In the final state,
compressive stresses are present. Therewith, the aimed for compressive stress state near
the outer lateral surface is obtained. Experimental measurements show that this targeted
residual stress state is a consequence of the changed cooling route. It has been proven
that e.g. the evolving microstructure is the same as for the cooling in water and thus, this
does not influence the out coming stress distribution.
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Figure 6.29: Spray cooling - a) & c) Evolution of temperature θ in ◦C, martensitic vol-
ume fraction cM and b) & d) tangential stresses σtang in MPa over cooling time in mea-
suring points P1 and P2, respectively as marked in Figure 6.28. Simulations and exper-
imental measurements carried out at IFUM are presented in Behrens et al. [17] and
Behrens et al. [18].
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Figure 6.30: Spray cooling - Evolution of temperature θ in ◦C, martensitic volume frac-
tion cM and tangential stresses σtang in MPa before a) t = 26 s and during b) t = 35 s the
phase transformation.
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Figure 6.31: Spray cooling - Evolution of temperature θ in ◦C, martensitic volume frac-
tion cM and tangential stresses σtang in MPa during a) t = 100 s, b) t = 200 s and c) t = 300 s
at the end d) t = 500 s of the phase transformation, with e) adapted scaling of the color
legend for the final stress state.
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6.2.7 Surface elements for cooling in water

In the previous numerical analysis of cooling a cylindrical slice with eccentricity, a Dirich-
let boundary condition has been utilized in order to apply the time-temperature relation
of the specific cooling route on the surface. Instead of doing so, surface elements can be
defined on the lateral surface, i.e., the cooled surface, to describe the heat flux over the
boundary. Required input are the ambient temperature and the heat transfer coefficient
(HTC) to the surrounding medium, water or air, which is highly dependent on the tem-
perature. For the realization of the spray cooling, the HTC is characterized experimentally
as described in Section 6.2.1. Exemplary, for the considered material 100Cr6, the HTC
for water at approximately 20 ◦C is presented in Figure 6.32. In Appendix E, more infor-
mation regarding the HTCs for the surrounding medium air or for application of a spray
cooling are given.

Figure 6.32: Heat transfer coefficient for cooling in water in W/m2K, cf.
Behrens et al. [17].

With this at hand, the numerical simulation of the boundary value problem defined in
Figure 6.9a with surface element, i.e., Robin boundary conditions, instead of thermal
Dirichlet boundary condition on the blue marked boundary ∂Bθ is carried out. For sim-
plicity, the different approaches are named “Dirichlet bc“2.), “Robin bcänd “IFUMı̈n the
following, of which the latter are simulations carried out at IFUM using simufact.forming.
In Figure 6.33, the stress evolution in the previously defined points P1 and P2 is depicted
over cooling time for all three cases. Since the deviations in comparison to the “Robin
bcßimulation are qualitatively different for both points, at first the focus lies on points
P1.

In the beginning of the cooling up to t = 5s, there is nearly no difference between the three
simulations. Afterwards, the temperature drops faster for approaches “IFUMänd thus also
“Dirichlet bccompared to the “Robin bcänalysis, see Figure 6.33a. Thus, the martensitic
phase transformation is also switched on earlier for these two cases, cf. Figure 6.33b.
As a consequence, the tensile stress peak due to the thermal contraction as well as the
compressive stresses due to the volumetric expansion of the atomic lattice during the phase

2.)bc = boundary condition



Two-dimensional single-scale analysis of thermo-mechanically coupled problems 81

transformation appear with a little offset for the “Robin bcäpproach, see Figure 6.33c.
Furthermore, the compressive stresses around t = 20 s are less in magnitude compared to
the “Dirichlet bcßimulation and thus, the final stress value is higher and therewith closer
to “IFUMßimulations as well as experimental measurements.

For point P2, all three simulations show nearly the same temperature evolution and
hence only small deviations for the evolution of the martensitic phase fraction, see
Figure 6.33b and d. Thus, the stress evolutions for “Dirichlet bcänd “Robin bcäre in very
good accordance until the phase transformation in the bulk material is set on. Thereby,
the “Robin bcßimulation results in much higher tensile stress values around t = 20 s,
which are only slightly weakened until the end of the computation. Thus, the final stress
value exceeds the two reference simulations as well as the experimental measurements
clearly.

As shown by e.g. Medina-Juárez et al. [116], many numerical investigations overesti-
mate tensile stresses and underestimate compressive stresses although the chosen HTCs fit
experimental measurements quite well. The differences in the previously described results
considering HTCs (“Robin bcänd “IFUM“) or Dirichlet boundary conditions (“Dirichlet
bc“) to define the heat loss at the boundary are quite obvious. While the final results
are close, the evolution over cooling time differs significantly. The red curve is at all
times exceeded by the simulations using the proposed material model, either for bound-
ary elements or thermal Dirichlet boundary conditions. The deviation in the temperature
evolution for all three approaches, although small, leads to an error assimilation, first in
the actual phase fractions and thereby also in the stresses.
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Robin bc Dirichlet bc IFUM simulat ion IFUM experiments
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Figure 6.33: Water cooling - Results of simulation with Robin type boundary conditions
(bc): temperature θ in ◦C in a) P1 and b) P2, martensitic phase cM in c) P1 and d) P2,
stress σ22 in MPa in e) P1 and f) P2 in comparison to the simulations carried out at
IFUM, cf. Behrens et al. [17], and simulations with Dirichlet boundary conditions, see
Section 6.2.4, as well as experimental measurements in the final state.
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Similar findings hold for the application of surface element to depict the cooling by air or
the application of a spray cooling device. Figure 6.34 displays the evolution of the temper-
ature θ, the pearlitic volume fraction cP and the stress component σ22 for the investigated
points P1 and P2 for cooling by air. The simulations carried out utilizing surface elements
are compared to previous computations, in which the temperature evolution on the lateral
surface was defined as a Dirichlet boundary condition, and simulative analysis performed
at IFUM. Moreover, the final values of experimental stress measurement are provided.
Analogously to the cooling in water, one observes, surface elements to describe the heat
flux over the boundary (“Robin bc“) lead to a slower cooling of the component. Thereby,
an offset in the evolution of the product phase is obtained. In both investigated points P1
and P2, the final stress values are quite higher than for the other two simulative exam-
inations, namely the simulations carried out at IFUM (“IFUM“) and the analysis with
thermal Dirichlet boundary conditions (“Dirichlet bc“).

In Figure 6.35, the different approaches (“Dirichlet bc“, “Robin bcänd “IFUM“) are
compared for the spray cooling regarding the temperature θ, the martensitic volume frac-
tion cM and the stress component σ22. Here, the deviations are quite pronounced. It seems
that with the utilization of surface elements, the stresses are quite overestimated, sup-
porting the thesis in Medina-Juárez et al. [116]. Even before the onset of the phase
transformation, the tensile stress peak due to the thermal contraction of the specimen is
higher than in the boundary value problem computed beforehand (“Dirichlet bc“). As a
consequence, the compressive stress peak, when the phase transformation starts, is less in
magnitude. When the bulk material transforms from austenite to martensite, the tangen-
tial stress shows high compressive stresses in point P1, which are not resolved until the
end of the cooling process. On the thin side, to the right of the eccentricity, a qualitatively
good agreement is shown for all three investigated quantities, θ, cM and σ22. However, the
temperature flow through the slice is much slower when surface elements are used, see
Figure 6.35a. As a result, the phase transformation starts later, around 340 seconds. Thus,
the compressive stresses at P2 are lower and also offset. In the final state, however, there
is again good agreement between all three simulations quantitatively.

The results of all three cooling routes show that surface elements can depict the evolution
of the tangential stress in the specimen qualitatively but not quantitatively. In all three
cases, an offset in the temperature evolution on the boundary is found, which influences
the phase transformation and thereby also the stresses. Nevertheless, the application of
surface elements possesses certain advantages. The HTC depend on the material and the
cooling medium and have to be fitted by experimental measurements. After accomplishing
this task, surface elements provide a good tool to describe the temperature evolution over
the boundary quite more natural than it is done by Dirichlet boundary conditions. For
example, in the case of water or air cooling, only one temperature evolution is given for
the outer lateral surface and one for the inner lateral surface, while in the case of a spray,
the lateral surfaces are divided into sections with the same boundary condition. Using
surface elements, each boundary node in the finite element mesh can have a different
temperature evolution than its neighboring nodes. This is particularly advantageous for
larger geometries with complex boundary surfaces or for three-dimensional problems.
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Robin bc Dirichlet bc IFUM simulat ion IFUM experiments
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Figure 6.34: Air cooling - Results of simulation with Robin type boundary conditions
(bc): temperature θ in ◦C in a) P1 and b) P2, pearlitic phase cP in c) P1 and d) P2,
stress σ22 in MPa in e) P1 and f) P2 in comparison to the simulations carried out at
IFUM, cf. Behrens et al. [17], and simulations with Dirichlet boundary conditions, see
Section 6.2.5, as well as experimental measurements in the final state. figs pearlitic
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Robin bc Dirichlet bc IFUM simulat ion IFUM experiments
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Figure 6.35: Spray cooling - Results of simulation with Robin type boundary conditions
(bc): temperature θ in ◦C in a) P1 and b) P2, martensitic phase cM in c) P1 and d) P2,
stress σ22 in MPa in e) P1 and f) P2 in comparison to the simulations carried out at
IFUM, cf. Behrens et al. [17], and simulations with Dirichlet boundary conditions, see
Section 6.2.6, as well as experimental measurements in the final state.
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6.3 Phase-specific contributions and the influence of TRIP strains

Many materials show microscopically heterogeneities or consist generally of different con-
stituents, such as composite materials. These constituents, such as the phases austenite
and martensite, for instance, differ significantly with respect to their properties. Each
constituent possesses individual properties and contributes to the overall behavior, cf.
Section 5.3. Martensite has a much higher yield strength than austenite, for instance.
This motivates to investigate phase-specific stresses in austenite and martensite during
the diffusionless cooling in water. Therefore, a cylindrical slice is cut from the unde-
formed cylindrical specimen, that is defined in Figure 6.6a. Its dimensions, displacement
and thermal Dirichlet boundary conditions are defined in Figure 6.36.

∂Bθ, ∂Bt

∂Bθ, ∂Bt

∂Bu, ∂Bq ∂Bu, ∂Bq

13 mm 4.5 mm 11.5 mm 6 mm

x1

x2

a) b)

Figure 6.36: a) Geometry of the two-dimensional horizontal cross section of the unde-
formed cylindrical specimen with boundary definitions for finite element simulation. b)
Temperature θ of outer and inner lateral surface of the cylinder over cooling time t,
adapted from Uebing et al. [189].

The material model is based on the SAMP approach utilizing the additive split into the
five strain parts, namely elastic, plastic, thermal, transformation volumetric and TRIP
strains, see Table 5.5. One important difference is that the volumetric expansion of the
atomic lattice has been taken into account as KM

tv = 2%. Another difference is that
instead of the two-step linear interpolation scheme to determine the yield strength y
and the linear hardening parameter h, a one-step linear interpolation scheme is applied
to compute the material parameters y, Q0, δ and h, which all contribute to the actual
temperature dependent yield strength. Therefore the yield criterion is defined as

φ =

√
3

2
‖ devσ‖ − hα−Q0(1− exp(−δα))− y (6.3)

with the exponential hardening parameter δ and the material parameter Q0, cf.
Simo and Hughes [166], Mahnken et al. [110] and Uebing et al. [189]. The re-
quired parameters are fitted to phase-specific isothermal yield functions, provided
by IFUM, LU Hannover, see Figure 5.4. The resulting stress distributions are com-
pared to multi-scale investigations, that are in detail studied in Section 10.2 and in
Uebing et al. [192]. Tangential stresses are in focus of the analysis, since they are known
to be most relevant with respect to wear resistance or lifetime of the component.



Two-dimensional single-scale analysis of thermo-mechanically coupled problems 87

Figure 6.37 shows the distribution of the temperature, the total tangential stresses and the
phase-specific tangential stresses of austenite and martensite computed with the single-
scale approach and a multi-scale method at certain points in time, i.e., with the beginning
t = 9 s, in the middle t = 15 s and at the end t = 80 s of the phase transformation.
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Figure 6.37: Temperature distribution θ and tangential stress distribution σtang and
phase-specific tangential stresses in martensite and austenite for both computational ap-
proaches, σM

tang, σA
tang, in MPa after a) t = 9 s, b) t = 15 s and c) t = 80 s, adapted

from Uebing et al. [189].

Regions, in which the temperature is higher than the martensitic start temperature, are
blanked in the plot of the martensitic tangential stress σM

tang. Qualitatively, the single- and
the multi-scale approach are in very good accordance. The temperature distributions θ
and θFE2 as well as the total tangential stresses σtang and σFE2

tang coincide. First, the fast cool-
ing results in tensile tangential stresses in regions near the outer lateral surface. There, the
phase transformation occurs after t = 9 s, so that these tensile stresses are superimposed
with high compressive stresses due to the austenite-to-martensite phase transformation,
see Figure 6.37a. With ongoing cooling, tensile stresses arise inside the bulk material of
the thick side of the eccentricity to fulfill the equilibrium condition of residual stresses,
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see Figure 6.37b. If the phase transformation also starts in the bulk material, compressive
tangential stresses are observed, which lead to tensile stresses in regions near the outer
lateral surface in the final state, cf. Figure 6.37c.

In contrast to that, the phase-specific stress contributions show very different results for
the single-scale and the multi-scale analysis. Taking a closer look at the evolution of the
martensitic tangential stresses σM

tang compared to σM,FE2
tang compressive stresses arise in the

material with the onset of phase transformation. After t = 9 s, the only region that under-
goes phase transformation in the single-scale computation is on the outer lateral surface
on the thin side. Here, values of σM

tang ≈ −8000 MPa are found, which are multiple times

higher than the value of σM,FE2
tang ≈ −1200 MPa. Moreover, it is found that the phase trans-

formation in the multi-scale approach takes already place along the complete outer lateral
surface. With ongoing cooling and related increase of the martensitic volume fraction, it
is observed that the single-scale approach still computes much higher values for σM

tang

than the multi-scale model. In a final state, both computations result in nearly homoge-
neous values, but the single-scale computation still results in higher compressive stress
values in martensite. Considering the austenitic phase-specific tangential stresses σA

tang

vs. σA,FE2
tang , compressive stresses are observed as a consequence of the thermal expansion.

These fit quite well comparing the single-scale and the multi-scale approach. As more
and more martensite forms, tensile stresses arise in the austenitic phase. In a final state,
the distributions of σA

tang and σA,FE2
tang are nearly homogeneous. But analogously to the

findings for σM
tang and σM,FE2

tang , respectively, the single-scale approach shows much higher
stresses than the multi-scale analysis. It is concluded that the single-scale approach does
not lead to physical phase-specific stresses, since the values of σA

tang and σM
tang seem to

be strongly overestimated compared to the yield stresses in Figure 5.4. This motivates
to carry out further multi-scale analysis to investigate phase-specific stress contributions,
cf. Section 10.

Additionally to the phase-specific analysis, the influence of the TRIP has been studied in
Uebing et al. [189]. Therefore, the material parameter Ktrip has been set to zero for the
martensitic phase. Thereby, the decisive influence of the TRIP strains during austenite-to-
martensite phase transformation with respect to the resulting (residual) stresses is shown,
see Figure 6.38. In the middle of phase transformation, after t = 12 s, the computation
without TRIP shows much higher stresses than the computations with TRIP than the
multi-scale computation. Further analysis must consider a two-scale model including the
TRIP effect to evaluate these differences.
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Figure 6.38: Tangential stress distribution σtang computed with the SAMP model with
and without TRIP effects and tangential stresses computed with the two-scale approach,
σFE2

tang in MPa after t = 12 s, adapted from Uebing et al. [189].
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7 Three-dimensional single-scale analysis of a thermo-
mechanically coupled problem

The previous two-dimensional example of cooling a cylindrical specimen with eccentric
hole could clearly suffer regarding accuracy due to the restriction to 2D, see Section 6.2.
Although, the prescribed thermal Dirichlet boundary conditions applied on the lateral
surface resemble the cooling over the boundary quite well, they do not take into account
the cooling and heat flux, respectively, over the height of the component. Therefore, a
three-dimensional extension of the boundary value problem should be analyzed to gain
knowledge of the possible error by reduction to the two-dimensional case. For this pur-
pose, at first the two-dimensional slice taken from the deformed cylindrical specimen as
discussed in Section 6.2.2 is extended to 3D. Afterwards, an extruded three-dimensional
cylindrical specimen is object to examination.

7.1 Cylindrical slice

For the first three-dimensional boundary value problem, the two-dimensional geometry is
extruded to a height of 1 mm as shown in Figure 7.2a. In addition to the previously defined
boundary conditions for static bearing, symmetry exploitation and cooling of the lateral
surface, the bottom of the slice is fixed in third direction, i.e., u3 = 0. In order to obtain
comparable results to the two-dimensional case, the following analysis also evaluates the
stress evolution in measuring points P1 and P2, as marked in Figures 7.2b and c.
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Figure 7.1: a) Geometry with dimensions and boundary conditions for cooling b) in water
c) or with a spray.

Three-dimensional simulations of both cooling routes, namely in water or using a spray
cooling device, confirm the previous findings of the two-dimensional analysis, compare
Figures 7.2 and 7.3 with Figures 6.21 and 6.29. Looking closely at the tangential stress
evolution in point P1 in case of spray cooling, the results seem to be more reasonable.
Around 200 seconds of cooling time, the bulk material undergoes the phase transformation
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and the related volumetric expansion of the atomic lattice weakens the high compressive
stresses in regions near the outer surface. In the two-dimensional analysis, even tensile
stresses occurred. In contrast to that, the three-dimensional simulation is qualitatively
equivalent, but the stresses remain compressive. Thereby, it can be clearly shown that
the influence of the third direction during such cooling simulations is not negligible. Ad-
ditionally, Figure 7.4 shows the stress component σ22 for the complete cylindrical slice
after t = 75 s and at the end of the process for t = 500 s. It is observed that the phase
transformation passes through the geometry from the left to the right side. Thus, af-
ter t = 75 s, compressive stresses are present at the side, which is exposed to the spray.
In the final state, these compressive stresses are weakened but still measurable.
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Figure 7.2: Water cooling - Tangential stress evolution σ22 in MPa over cooling time in
measuring points a) P1 and b) P2 as marked in Figure 7.1b. The experimental measurements
carried out at IFUM are presented in Behrens et al. [17].
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Figure 7.3: Spray - Tangential stress evolution σ22 in MPa over cooling time in measuring
points a) P1 and b) P2 as marked in Figure 7.1c. The experimental measurements carried
out at IFUM are presented in Behrens et al. [17] and Behrens et al. [18].

7.2 Full three-dimensional cylindrical specimen

As observed, the third direction is not negligible in analysis of hot bulk forming parts.
Thus, the following analysis focuses on the influence of the heat flux over the component’s
height. Therefore, an extrusion of the previously considered geometry is taken into account
with a height of 10 mm. It is to be noticed that the meshing is very coarse (10× 20× 10
elements) contradicting the mesh density study in Section 6.2.3 and hence, does not
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a) b)

Figure 7.4: Spray cooling - Stresses σ22 in MPa after a) t = 75 s and b) at the end of
cooling after t = 500 s.

present the exact solution probably. An analogous study would be inevitable in case of
detailed investigations of the material behavior, the evolving stresses and the associated
change of the final component’s properties. Furthermore, a component, that has been
treated in hot bulk forming, i.e., here a reduction of height by approximately 50 %, should
show bulging, which is also not considered. Moreover, no offset describing the plastification
due to forming is taken into account. As thermal boundary condition representing the
cooling in water, the same time-temperature relation for all nodes on the lateral surface
is applied. Both assumptions serve as simplifications. Usually, one would expect that the
inner lateral surface cools slower than the outer one, cf. Figure 6.20.
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Figure 7.5: a) Extruded geometry with dimensions and b) boundary conditions for cooling
in water utilized to represent the influence of the third dimension. Points P1, P2 and P3 are
in focus of the investigation.

In Figure 7.6, the tangential stresses at times t = 15 s and t = 80 s are given. One
can clearly see that the stresses are not constant with respect to their position in x3-
direction. This effect in connection to the real bulged geometry due to the previous forming
step would even lead to more complex material behavior and stress profiles. Thus, it is
inevitable to incorporate the effect of the third dimension into numerical tools to predict
residual stresses and the component’s behavior.

Additionally, different integration points are analyzed regarding their stress evolution over
time. Therefore, three points are defined each, with x1- and x2-coordinate of points P1 and
P2, but with different heights. The points are referred to as P1k and P2k with k ∈ {t,m, b}
with t and b referring to top and bottom of the component, respectively, and m abbre-
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viating the middle height. Moreover, point P3 is located in the middle of the part of
the geometry left of the eccentricity, see Figure 7.5a. For comparing the results over the
component’s height, points P3k with k ∈ {t,m, b} are defined as previously described.
The results regarding stress component σ22 are given in Figure 7.7. Since all examined
points fulfill x2 = 0, these stresses can be interpreted as tangential stresses. While the
stress evolution at bottom and middle nodes are very similar for points P1 and P2, the
stresses evolving in top points vary clearly. For instance, the curve of P2t fits qualita-
tively to P2b and P2m but differs quantitatively, such that in the final state an offset of
approximately 150 MPa is observed. The stress evolution of P1t does not even behave in
accordance to P1b and P1m, its curve shows differences in quality and quantity. In point
P3, top and middle nodes P3t and P3m show similarities, while curve P3b shows an offset
of roughly 50 MPa.

a) b)

Figure 7.6: Water cooling - Tangential stress distribution in MPa after a) t = 15 s and
b) t = 80 s for the extruded three dimensional cylindrical component, which shows none
constant stress values in third direction (height).

Figure 7.7: Water cooling - Evolution of stresses σ22 in MPa in Gauss points located
at P1k, P2k and P3k with k ∈ {t,m, b}.
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8 Two-scale Finite Element Method: the FE2 approach

In recent decades, the requirements for components and their materials have continued
to increase. Materials such as conventional steel or aluminum do not meet the demands
of industry anymore. Instead, artificial materials, complex alloy compositions as found in
high-strength steels, composite materials or in general multiphase materials are to be con-
sidered. Current research focuses on different aspects to meet the various demands made
by industry, as for example: sustainable materials to reduce waste; smart materials with
the ability of self-healing or shape memory; nanomaterials to increase the component’s
strength e.g. in energy or mobility sectors; additive manufactured materials e.g. by 3D-
printing to create new polymer filaments; or in general lightweighting materials applied
e.g. in aerospace industry. One example of these materials are dual-phase steels, which
are commonly used in the automotive industry. They are characterized by high ductility
and stability at the same time. In those materials, the microscopic composition and its
heterogeneous properties play an important role, because every constituent has an impact
on the final material properties. In order to meet the increasing requirements of industrial
applications, numerical simulation techniques are a valuable tool. With these, the material
properties as well as the component’s performance under complex load conditions can be
tested efficiently. Due to the heterogeneity of the material’s microstructure, it is useful
to take into account its individual constituents in the model, for which purpose current
research focuses on multi-scale simulation techniques.

Such a numerical simulation tool is the FE2 method, which is also referred to as
the direct micro-macro transition approach. Therein, a part of the microstructure,
which is sufficiently large to reflect all microstrutural characteristics, is attached to
each macroscopic material point. By application of suitable mathematical homoge-
nization procedures, it is bridged between the scales. Thus, microscopic phenomena
such as phase transformation or residual stresses of second and third type can be ex-
plicitly captured, while their influence on the macroscopic properties is determined as
well. Fundamental works in the field of homogenization and multi-scale FE2 method
are e.g. Smit [171], Suquet [175], Moulinec and Suquet [127], Smit et al. [170],
Miehe et al. [121; 122], Feyel [44], Michel et al. [118], Terada et al. [182],
Feyel and Chaboche [45], Geers et al. [57] and Schröder [161; 162].

In case of thermo-mechanical coupled problems, it is infeasible to characterize the
thermo-mechanical behavior of the considered material. Most materials show microscopic
heterogeneities or consist generally of different phases, which must be taken into account
individually. Each of these constituents contributes to the overall component’s proper-
ties. Therefore, early works regard the mathematical homogenization of thermal pro-
perties of composite materials, see e.g. Germain et al. [59] or Ene [35]. Asymptotic
expansion methods are utilized to derive the macroscopic and microscopic equations by
Chatzigeorgioua et al. [26] in the regime of small strains, while in Temizer [178],
the author proposed the asymptotic expansion for the first-order computational ho-
mogenization method, that was presented in Temizer and Wriggers [179] for finite
thermo-elasticity. One important result of the asymptotic expansion is that the macro-
scopic temperature can be taken as constant in the material point. Thus, the micro-
scopic balance of linear momentum does not depend on the microscopic temperature
fluctuations. This finding coincides with early results of Willis [200] that a isother-
mal microscopic problem is not an assumption but a direct consequence of the first-
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order homogenization. More recent works in the context of thermo-mechanically coupled
multi-scale simulations are presented e.g. in Özdemir et al. [138; 139], where a nested
solution algorithm for heat conduction problems was given and extended to the full
thermo-mechanical coupling of heterogeneous materials. Barrogqueiro et al. [9] gave
a summary on the theory and the application of multi-scale approaches for heat treat-
ment in steels. Moreover, in Eden and Muntean [34] also the phase transformation
is taken into account. Wicht et al. [199] applied a Fast Fourier transformation to
solve for a fully coupled thermo-mechanical problem on two scales. Further recent publi-
cations on thermo-mechanically coupled multi-scale approaches and their applications
are Monteiro et al. [125], Terada et al. [183], Fleischhauer et al. [53; 54],
Sengupta et al. [164; 165] and Berthelsen and Menzel [20], among many others.

In the following, the basic principles of the homogenization theory and the definition
of representative volume elements are introduced. Afterwards, the direct micro-macro
transition approach consisting of a macroscopic and a microscopic boundary value problem
is described and its numerical implementation is discussed. Furthermore, a microstructural
material model based on the model presented in Section 5.5.2 is adapted for a multi-scale
formulation.

8.1 Basics on homogenization theory

In general, the previously described single-scale Finite Element Method, (FEM) see Sec-
tion 3, cannot resolve the microstructural heterogeneities or individual constituents of a
material. Thus, it motivates a consideration of multiple scales in the numerical investiga-
tion, of which two are taken into account in most multi-scale approaches. Those scales are
distinguished as macro-, meso-, micro- and nanoscale. Therein, the macroscale represents
the component or total system, at the mesoscale the material is distinguished into dif-
ferent phases such as e.g. matrix and inclusion, while the microscale refers to individual
grains and the nanoscale to single atoms. It should be noted that there are in general dif-
ferent definitions of these scales in literature. In this work, it is referred to an upper scale,
the macroscale, and a lower scale, the microscale, so that the macroscale refers to the
component’s size of a few centimeters and the microscale refers to the size of micrometers
to represent the grains in the microstructure.

A suitable homogenization scheme relates these two scales, as macroscopic quan-
tities are determined by averaging their microscopic counterparts. Early analytical
homogenization schemes for microstructures with discrete phases were proposed in
Voigt [193] and Reuss [145], which base on the assumption of a constant stress
or strain field throughout the material, respectively. These mean field approaches
compute macroscopic quantities based on the individual phase fractions and their
respective microscopic counterparts as an arithmetic or harmonic mean. One funda-
mental method has been given by Eshelby [39; 40] to determine an averaged strain
field for an ellipsoidal inclusion in an infinite matrix. Based thereon, many analy-
tical and semi-analytical approaches have been developed, such as the Mori-Tanaka
scheme, the self-consistent method, the dilute distribution approach and the differen-
tial method, see Hashin and Shtrikman [72; 73; 74], Hill [79], Budiansky [23],
Mori and Tanaka [126], Norris [131] and Hashin [71]. These methods are restricted
to simple geometries of the inclusion material and show inaccuracies, when the difference
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between the quantity of the individual phases, which is to be homogenized, is quite large.
Then, asymptotic expansion or fully numerical homogenization schemes are utilized, see
e.g. Sanchez-Palencia [150], Guedes and Kikuchi [64], Fish and Wagiman [52],
Ghosh et al. [60], Terada and Kikuchi [181], Temizer and Zohdi [180] or
Geers et al. [58]. In order to apply a first-order homogenization scheme, the concept
of the separation of scales has to be satisfied. It states that the typical length of
macroscale L and the typical length on microscale l have to be distinctly different,
i.e., l � L. As a consequence of the scale separation, the deformation gradient is
considered constant in one material point. Its variation in that point and its environment
is small and thus the gradient of the deformation is negligible. Different fundamental
assumptions are made for the computation of the overall macroscopic material behavior
by homogenization depending on microscopic quantities, which are summarized in the
following.

The concept of an ensemble is an approach to describe the macroscopic material behavior
of a micro-heterogeneous material. For a collection S of samples α of random microstruc-
ture and probability density p of a sample it has to hold for the considered material
response F that

F̄(x) =

∫
S
F(x, α) p(α) dα , (8.1)

in which F̄ is called the ensemble average. If the number of samples α ∈ S is sufficiently
large, the ensemble average approximates the effective overall material response well.

By replacing the ensemble average by a simple volume average over a sample or RVE B
with volume V one obtains

〈F(x, α)〉 =
1

|V |

∫
V

F(x+ y, α) dy , (8.2)

which does not depend on the sample α and equals the ensemble average for |V | → ∞.
Then, it is again fulfilled that the volume average 〈F(x, α)〉 is a good approximation of
the effective material response. This is summarized by the ergodic hypothesis which states
that every state which is available to the ensemble, is available to each sample in the
ensemble as well.

Further aspects are statistical homogeneity, which is fulfilled if the ensemble average of
material response F is invariant with respect to translation, and statistical isotropy, which
in addition requires the ensemble average to be not only independent of the position of
the coordinate system but also independent of its rotation.

One further important aspect in the framework of multi-scale analysis for the computa-
tion of the overall macroscopic behavior is the concept of a representative volume element
(RVE). Such an RVE enables the modeling of each microscopic constituent as an indi-
vidual continuum. In case of a periodic microstructure, a unit-cell serves as RVE, but
most microstructures in engineering materials are non-periodic. The term representative
volume element has been established in the 1960’s by Hill, who also gave a first definition.
Throughout the years, different statements regarding an RVE and its properties have been
made, see Zeman [209], for instance by

• Hill [78]: An RVE has to be large enough to represent the micro-heterogeneous
structure. It contains a sufficient number of inclusions to ensure that the effective
material response is independent of the surface values of traction and displacement.
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• Hashin [70]: An RVE is used as a model to determine effective properties on the
macroscopic level. It hast to be large enough to contain a sufficient amount of
information regarding the microscale but must be smaller than the macroscopic
dimensions.

• Drugan and Willis [33]: An RVE is the smallest microscopic volume element
possible to represent the macroscopic material response adequately.

• Ostoja-Starzewski [137]: An RVE is a unit cell in case of periodic microstruc-
tures or a volume element with a high number of microscopic characteristics to fulfill
statistical homogeneity and the ergodic hypothesis.

• Stroeven et al. [174]: The size of an RVE depends on the considered material
as well as on the structure sensitivity of the measured physical quantity.

The definition used here is that an RVE has to be large enough to reflect all micro-
heterogeneous properties and characteristics, but it has to be smaller than the macroscopic
dimensions, i.e., l� d� L with d as dimension of the RVE. Furthermore, it has to hold
that every choice of microstructure with same dimensions has to provide the same overall
material response to be considered as an RVE.

8.2 Direct micro-macro transition approach

In case of non-linear material behavior, semi-analytical homogenization schemes are not
considered a well suited option to determine the macroscopic material behavior. Instead,
the direct micro-macro transition approach serves as powerful tool, which distinguishes
between a macroscopic and a microscopic boundary value problem. On macroscopic level,
the complete component is taken into account while on microscopic level, the material
inhomogeneities, as e.g. inclusions, cracks or phases, are considered, so that the concept
of separation of scales is fulfilled. A sketch of the general idea of the two-scale approach
is depicted in Figure 8.1.

The macroscopic boundary value problem is discretized in terms of the classical FEM, but
a sufficient phenomenological law to describe the material behavior in each macroscopic
integration point is no longer required. Instead, a microscopic boundary value problem is
attached in each macroscopic integration point, which is solved in every computational
step. This means that it is no longer necessary to find a suitable macroscopic phenomeno-
logical material law, which is a significant advantage of the multi-scale computational
approach. At the same time, however, this is associated with high numerical costs.

The Hill-Mandel condition, which is also called macro-homogeneity condition, states the
energetic equivalence between the scales and is applied to bridge between micro- and
macroscale. It is furthermore used to define microscopic boundary conditions based on
macroscopic measures for the RVE. For the discussion of macroscopic and microscopic
boundary value problems the following notation is introduced: macroscopic quantities are
marked by ¯(•) while the microscopic counterpart remains unmarked as (•).
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∆θ

phenomenological
material law

RVE + bc

F̄

P̄ , Ā

single-scale approach

FE2 method

microscale

see Section 3

two-scale FEM

solve micro bvp

∆θ

macroscale

with θ = θ̄

Figure 8.1: Idea of FE2 method: Instead of considering a phenomenological material law
directly on the macroscale, a microscopic boundary value problem is attached in every macro-
scopic integration point, to which the macroscopic deformation gradient F̄ is communicated.
By homogenization, macroscopic stresses P̄ and tangent moduli Ā are passed back to the
macroscale after the microscopic boundary value problem (micro bvp) is solved. These are
computed as suitable averages over microscopic quantities.

8.3 Boundary value problems on macroscale and microscale

On macroscopic level, the body of interest in reference configuration is denoted
by B̄0 ∈ IR3. Each point is defined by its position vector X̄ ∈ B̄0, which is mapped onto the
actual configuration x̄ ∈ B̄ by the deformation map ϕ̄(X̄) : B̄0 → B̄ ∈ IR3 with X̄ 7→ x̄.
Neglecting acceleration terms, the balance of momentum reads

DivX̄ P̄ + ρ0 b̄ = 0 (8.3)

with macroscopic body forces ρ0 b̄ and first Piola-Kirchhoff stresses P̄ . Based on the
balance of angular momentum, the relation P̄ · F̄ T = F̄ · P̄ T has to be satisfied. The
boundary conditions on the macroscopic continuum are given by

ū = ū0 on ∂B̄0u and P̄ · N̄ = t̄0 on ∂B̄0t (8.4)

with ∂B̄0u ∪ ∂B̄0t = ∂B̄0 and ∂B̄0u ∩ ∂B̄0t = ∅ .
On microscopic level, the micro-continuum is referred to as B0 ∈ IR3 with position vec-
torX ∈ B0 in undeformed configuration. The deformation map to the actual configuration
is defined as ϕ(X) : B0 → B ∈ IR3 with X 7→ x, which relates X to the position vector
in actual placement x ∈ B. Neglecting acceleration terms and body forces, the balance of
momentum reads

DivX P = 0 (8.5)

with first Piola-Kirchhoff stresses P , for which P · F T = F · P T has to be fulfilled.
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8.4 Relation of macroscopic quantities and its microscopic counterparts

This section provides details on the derivation of the macroscopic quantities and their
respective microscopic counterparts. Therefore, an RVE B0 in reference configuration with
boundary ∂B0 and volume V is considered. A hole inside and its boundary are denoted
by L0 and ∂L0, respectively. In general, the volume average as measure of a microscopic
quantity (•) on the macroscale is defined as

〈(•)〉 =
1

V

∫
B0

(•) dV . (8.6)

Thus, for the Jacobian, i.e., the determinant of the macroscopic deformation gradient, it
holds

J̄ = 〈J〉 =
1

V

∫
B0
JdV =

1

V

∫
B

dv =
v

V
with v =

∫
B

dv . (8.7)

The volume average of the deformation gradient 〈F 〉 and the first Piola-Kirchhoff stress
tensor 〈P 〉 are defined in terms of surface integrals over the boundaries of the RVE ∂B0

including the boundaries ∂L0 of the holes

〈F 〉 =
1

V

∫
∂B0
x⊗N dA+

1

V

∫
∂L0
x⊗N dA ,

〈P 〉 =
1

V

∫
∂B0
t0 ⊗X dA+

1

V

∫
∂L0
t0 ⊗X dA . (8.8)

Thus, the macroscopic deformation gradient F̄ and the macroscopic first Piola-Kirchhoff
stress tensor P̄ can be expressed as the volume average of the associated quantity corrected
by the integral over the holes. By assuming that the RVE is a continuum without holes,
this correction vanishes and one obtains

F̄ =
1

V

∫
∂B0
x⊗N dA and P̄ =

1

V

∫
∂B0
t0 ⊗X dA , (8.9)

see for instance also Schröder [161] or Schröder [162] for more details. An additive
decomposition of the deformation gradient into a constant and a fluctuation part is in-
troduced, i.e.,

F = F̄ + F̃ . (8.10)

Inserting Equation (8.10) into the volume average in Equation (8.9)1 results in the re-
quirement for the volume average of the fluctuations to vanish. Since the macroscopic
part F̄ is constant over the RVE, one can reformulate

F̄ =
1

V

∫
B0
F dV =

1

V

∫
B0

(F̄ + F̃ ) dV = F̄ +
1

V

∫
B0
F̃ dV , (8.11)

which implies
1

V

∫
B0
F̃ dV = 0 . (8.12)

The fluctuation part of deformation gradient F̃ = GradX ũ can be expressed in terms of
the microscopic deformation field ũ = x− F̄ ·X. For the microscopic fluctuation part of
the deformation field it holds 1

V

∫
∂B0 ũ⊗N dA = 0 . Analogously, the first Piola-Kirchhoff
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stress tensor is decomposed into a constant and a fluctuation part by P = P̄ + P̃ , for
which 1

V

∫
B0 P̃ dV = 0 holds, since one can derive

P̄ =
1

V

∫
B0
P dV =

1

V

∫
B0

(P̄ + P̃ ) dV = P̄ +
1

V

∫
B0
P̃ dV . (8.13)

Thus, for the traction vector the decomposition results in the additive split
t0 = P ·N = (P̄ + P̃ ) ·N =: t̄0 + t̃0 with 1

V

∫
∂B0 t̃0 ⊗ X dA = 0. In case of linearized

strain theory, one can compute the macroscopic Cauchy stress by the volume ave-
rage σ̄ = 1

V

∫
B0 σ dV .

8.5 Macro-homogeneity condition

The Hill-Mandel condition or macro-homogeneity-condition is utilized to describe the lo-
calization and the boundary conditions on the microscale. As it sets the energetic equiva-
lence of the two scales, it states that the macroscopic stress power is equal to the volume
average of the microscopic stress power. Thereby, it can be used to translate quantities
from microscale to macroscale. For the regime of finite strains, it can be formulated as

P̄ : ˙̄F =
1

V

∫
∂B0
t0 · ẋ dA , (8.14)

which can also be reformulated to

P̄ : ˙̄F =
1

V

∫
B0
P : Ḟ dV . (8.15)

Hence, utilizing Equations (8.11) and (8.13) it is equivalent to

0 =
1

V

∫
B0
P : Ḟ dV − P̄ : ˙̄F =

∫
B0

(P − P̄ ) : (Ḟ − ˙̄F ) dV . (8.16)

This condition is directly fulfilled for the assumptions of Reuss and Voigt, i.e., in case of
constant stress over the RVE P = P̄ ∀X ∈ B0 or constant deformation gradient over the
RVE F = F̄ ∀X ∈ B0. Based on the definition of the rate of deformation gradient on
microscopic level Ḟ = GradX ẋ and the identity GradXX = I it follows that

0 =

∫
B0

(P − P̄ ) : (Ḟ − ˙̄F ) dV =

∫
B0

(P − P̄ ) : (GradX ẋ− ˙̄F ·GradXX) dV .

Further reformulations in index notations give

0 =

∫
B0

(Pij − P̄ij)(ẋi,j − ˙̄FikXk,j) dV

=

∫
B0

(
(Pij − P̄ij)(ẋi − ˙̄FikXk)

)
,j

dV −
∫
B0

(Pij − P̄ij),j︸ ︷︷ ︸
=0 for equilibrium

(ẋi − ˙̄FikXk) dV

=

∫
∂B0

(
(Pij − P̄ij)(ẋi − ˙̄FikXk)

)
Nj dA

⇒ 0 =

∫
∂B0

(t0 − P̄ ·N ) · (ẋ− ˙̄F ·X) dA . (8.17)
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The boundary integral in Equation (8.17) is considered to the definition of suitable micro-
scopic boundary conditions. In addition to the Reuss and Voigt condition, three types of
microscopic boundary conditions can be defined. Dirichlet type boundary conditions are
defined by x = F̄ ·X ∀X ∈ ∂B0 and, analogously, Neumann type boundary conditions
are given as t0 = P̄ ·N ∀X ∈ ∂B0. For the derivation of periodic boundary conditions,
the boundary is decomposed into two disjunct associated parts by ∂B0 = ∂B−0 ∪ ∂B+

0 .
For every point X+ ∈ ∂B+

0 an associated point X− ∈ ∂B−0 exists with outward nor-
mals N+ = −N−, respectively, see Figure 8.2.

x = F̄ ·X + ũ

F = F̄ + F̃

N+N−

+

+

−

−
X ∈ B0 x ∈ Bt

+

+

−

−

X+X−

Figure 8.2: Application of periodic boundary conditions on the microscale.

With the above presented definition of the microscopic fluctuation field ũ = x − F̄ ·X,
the macro-homogeneity condition appears as

0 =

∫
∂B0

(t0− P̄ ·N ) : ũ dA =

∫
∂B+0

(t+0 − P̄ ·N+) : ũ+ dA+

∫
∂B−0

(t−0 − P̄ ·N−) : ũ− dA ,

(8.18)
which is valid in case of

ũ+ = ũ− , t+0 = −t−0 , and N− = −N+ . (8.19)

Table 8.1 gives a summary on boundary conditions derived from Equation (8.14).

Table 8.1: Different types of microscopic boundary conditions (bc).

Reuss assumption P = P̄ ∀X ∈ B0

Voigt assumption Ḟ = ˙̄F ∀X ∈ B0

Dirichlet bc x = F̄ ·X ∀X ∈ ∂B0

Neumann bc t0 = P̄ ·N ∀X ∈ ∂B0

periodic bc
ũ = x− F̄ ·X
ũ+ = ũ− ∀X+ ∈ ∂B+

0 and X− ∈ ∂B−0
t+0 = −t−0

8.6 Numerical implementation

In this section, aspects on the numerical implementation of the macroscopic and mi-
croscopic boundary value problems are discussed. The basics of the utilized FEM are
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given in Section 3, such that the focus here lies on the algorithmic consistent tangent
moduli and the general variational formulation. The following remarks on the numeri-
cal implementation are based on Miehe et al. [121; 122], Miehe and Koch [120] and
Schröder [162].

8.6.1 Macroscale

On the macroscopic level, the weak form of the balance of momentum is given as

Ḡ = −
∫
B̄0
δx̄ · (DivX̄ P̄ + ρ0 b̄) dV = 0 , (8.20)

which has to be zero in case of equilibrium. With the Gauss integral theorem and the rela-
tion δx̄ ·DivX̄ P̄ = DivX̄ [δx̄ · P̄ ]−GradX̄ δx̄︸ ︷︷ ︸

δF̄

: P̄ the weak form can be reformulated to

Ḡ =

∫
B̄0
δF̄ : P̄ dV︸ ︷︷ ︸
Ḡint

−
(∫
B̄0
δx̄ · ρ0 b̄ dV +

∫
∂B̄0

δx̄ · t̄0 dA
)

︸ ︷︷ ︸
Ḡext

. (8.21)

The increment of the internal part Ḡint, which is inevitable to solve Ḡ = 0 by a Newton-
Raphson iteration scheme numerically, reads

∆Ḡint =

∫
B̄0
δF̄ T : Ā : ∆F̄ dV . (8.22)

Therein, Ā denotes the macroscopic overall algorithmic consistent tangent moduli. They
are defined as the partial derivative of the macroscopic first Piola-Kirchhoff stress tensor
with respect to the macroscopic deformation gradient, i.e.,

Ā =
∂P̄

∂F̄
. (8.23)

Thus, for the incremental formulation it holds that ∆P̄ = Ā : ∆F̄ . Since there is no
explicit expression for P̄ in terms of F̄ in P̄ = 1

V

∫
B0 P (F ) dV , a numerical computation

is to be derived. For now it is assumed to know the macroscopic moduli Ā, which is in
detail derived in Section 8.6.3.

For the numerical solution of Equation (8.20) via the classical finite element formulation,
see also Section 3, field quantities are approximated in one finite element with isopara-
metric ansatz functions N I . Thereby, the actual, virtual and incremental deformation
within one finite element is given as

x̄(ξ) =

nnode∑
I=1

NI(ξ)x̄I , δx̄(ξ) =

nnode∑
I=1

NI(ξ)δd̄I and ∆x̄(ξ) =

nnode∑
I=1

NI(ξ)∆d̄I , (8.24)

with x̄I = X̄I + d̄I , the natural coordinates ξ in the isoparametric space and d̄I , δd̄I
and ∆d̄I as actual, virtual and incremental nodal displacement vectors. The element
B-matrix Be consists of the partial derivatives of the ansatz functions with respect to
the reference configuration. Therewith, the discretizations of the virtual and incremental



102 Two-scale Finite Element Method: the FE2 approach

deformation gradient for element e with element virtual and incremental displacement
vector δd̄e and ∆d̄e, respectively, read

δF̄ = Beδd̄e and ∆F̄ = Be∆d̄e . (8.25)

As a consequence, the discrete counterpart to Equation (8.21) for one element B̄e0 is
formulated as 3.)

Ḡe = δd̄e,T
{∫
B̄e0
Be,TP̄ dV −

∫
B̄e0
N e,Tρ0 b̄ dV +

∫
∂B̄e0
N e,Tt̄0 dA

}
︸ ︷︷ ︸

=:r̄e

, (8.26)

with N e as matrix with the ansatz functions for the finite element. The vector r̄e is
referred to as element right-hand side vector, analogously to the single-scale FEM. In
parallel, the discrete counterpart of the increment ∆Ḡint in Equation (8.22) is given by

∆Ḡe,int = δd̄e,T
∫
B̄e0
Be,T ĀBe dV︸ ︷︷ ︸

=:k̄e

∆d̄e , (8.27)

with k̄e as element stiffness matrix. By summation over all elements, i.e.,

Ḡ =
∑
e

Ḡe and ∆Ḡ =
∑
e

∆Ḡe,int , (8.28)

and by utilizing classical assembling procedures the system of equation results in

Ḡ+ ∆Ḡ = δD̄T(K̄∆D̄ + R̄) = 0 , (8.29)

which is to be solved with respect to the global incremental displacement vec-
tor ∆D̄ = −K̄−1R̄. Therein, K̄ and R̄ denote the macroscopic global stiffness matrix
and the macroscopic global residual vector.

8.6.2 Microscale

For the microscopic boundary value problem, the weak form of the balance of linear
momentum without acceleration or inertia terms is derived as

G = −
∫
B0
δx ·DivX P dV =

∫
B0
δF̃ : P dV = 0 . (8.30)

The fluctuation part of the displacement field on microscopic level ũ is expressed with the
microscopic displacement x = F̄ ·X + ũ. Thus, it holds for the virtual and incremental
fluctuation part of the deformation gradient that

δF̃ = GradX δũ and ∆F̃ = GradX ∆ũ . (8.31)

The linearized form of Equation (8.30) results in

∆G =

∫
B0
δF T : A : ∆F dV =

∫
B0
δF T : A : (∆F̄ + ∆F̃ ) dV , (8.32)

3.)For the discrete formulation of the problem tensorial quantities as the stress tenosr P̄ , for instance,
have to be replaced by matrices and vectors, respectively, which is not explicitly labeled.
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with A := ∂FP as the algorithmic consistent tangent moduli. Analogously to the macro-
scopic derivation, the actual, virtual and incremental fluctuations are discretized as

ũ(ξ) =

nnode∑
I=1

NI(ξ)d̃I , δũ(ξ) =

nnode∑
I=1

NI(ξ)δd̃I and ∆ũ(ξ) =

nnode∑
I=1

NI(ξ)∆d̃I , (8.33)

with the natural coordinates ξ in the isoparametric space and d̃I , δ̃dI and ∆̃dI as actual,
virtual and incremental nodal fluctuation vectors. Based on the element B-matrix Be,
which consists of the partial derivatives of the ansatz functions with respect to the refe-
rence configuration, the discretizations of the fluctuations of the virtual and incremental
deformation gradient for element e result in

δF̃ = Beδd̃e and ∆F̃ = Be∆d̃e . (8.34)

Therein, δd̃e and ∆d̃e denote the element’s virtual and incremental fluctuation vectors. As
a consequence, the discrete counterparts of Equations (8.30) and (8.32) for one element B̄e0
are derived as

Ge = δd̃e,T
∫
Be0
Be,TP dV ,

∆Ge = δd̃e,T
∫
Be0
Be,TA dV︸ ︷︷ ︸

=:le

∆F̄ + δd̃e,T
∫
Be0
Be,TABe dV︸ ︷︷ ︸

=:ke

. (8.35)

The first integral is identified as matrix le, that represents the sensivity of the tangent
moduli on the finite elements, and the second integral is defined as microscopic element
stiffness matrix ke. The summation overall elements

G =
∑
e

Ge and ∆G =
∑
e

∆Ge,int , (8.36)

in combination with assemblation

K =
nele

A
e = 1

∫
Be0
Be,TABe dV , L =

nele

A
e = 1

∫
Be0
Be,TA dV and R =

nele

A
e = 1

∫
Be0
BTP dV

(8.37)
results in the system of equations G + ∆G = 0, which is to be solved with an iterative
Newton-Raphson scheme

δD̃T(K∆D̃ +L∆F̄ +R) = 0 . (8.38)

Therein,K denotes the microscopic global stiffness matrix and L is the general right hand
side which takes into account the sensitivity of the moduli of the individual finite element.
Furthermore, R is the assembled residual vector. The system of equations is solved with
respect to the incremental fluctuation field as a consequence of an incremental macroscopic
deformation gradient

∆D̃ = −K−1L∆F̄ . (8.39)

During the solution of the microscopic boundary value problem, it holds that the in-
cremental macroscopic deformation gradient is zero, i.e., ∆F̄ = 0 which simplifies the
Equation (8.38) to δD̃T(K∆D̃ +R) = 0. If the microscopic boundary value problem is
solved and convergence is obtained, it holds that the residual vanishes, i.e., R = 0.
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8.6.3 Algorithmic consistent tangent moduli

The macroscopic algorithmic tangent moduli in Equation (8.23) cannot be derived ana-
lytical, as previously stated. For its numerical computation, the relation P = A : F and
the split of the deformation gradient into F = F̄ + F̃ is utilized, i.e.,

Ā =
∂
(

1
V

∫
B0 P dV

)
∂F̄

=
1

V

∫
B0

∂P

∂F̄
dV =

1

V

∫
B0

∂A : (F̄ + F̃ )

∂F̄
dV

=
1

V

∫
B0
A dV +

1

V

∫
B0
A :

∂F̃

∂F̄
dV . (8.40)

Considering the discretization in Equation (8.34)2 and a discrete formulation on element
level, the second term in Equation (8.40) can be reformulated to

1

V

∑
e

∫
Be0
ABe dV︸ ︷︷ ︸
=le,T

∂∆d̃e

∂F̄
. (8.41)

If A is symmetric, the transposed matrix le,T can be identified. With the solution of
the microscopic boundary value problem in Equation (8.39) and by application of an
assembling procedure, the macroscopic algorithmic tangent moduli is derived as

Ā =
1

V

∫
B0
A dV − 1

V
LTK−1L . (8.42)

The derivation of the multi-scale model has been carried out for finite strains. In this work,
analyses in the regimes of small strains are done, for which the fundamental equations
are summarized in Table 8.2.

Table 8.2: Important relations for the FE2 method in the linearized theory of small strains.

macroscopic balance
div σ̄ + ρ0b̄ = 0 with σ̄ = σ̄T

of linear momentum

microscopic balance
divσ = 0 with σ = σT

of linear momentum

macroscopic strain ε̄ = 1
V

∫
∂B0
u⊗ nda

macroscopic stress σ̄ = 1
V

∫
∂B0
t⊗ xda

Hill condition σ̄ : ˙̄ε = 1
V

∫
B0
σ : ε̇dv

microscopic periodic
boundary conditions

˙̃u = u̇− ˙̄ε · x
ũ+ = ũ− ∀x+ ∈ ∂B+

0 and x− ∈ ∂B−0
t+0 = −t−0

macroscopic consistent
tangent

C̄ = 1
V

∫
B0

C dv − 1
V L

TKL
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8.7 Two-scale thermo-mechanical material model

When a micromechanically driven approach in the framework of a finite element analysis is
aimed for, it is helpful to choose a multi-scale computational method. Therefore, material
models are required to describe the behavior of the individual phases or materials in the
heterogeneous microstructure. Here, a microscopic material model is defined, which bases
on the single-scale material description on the macroscale, for details see Section 5.5.2.
Therein, the linearized theory of small strains is taken into account for the formulation of
the macro- and microscopic boundary value problems.

In order to set up the macroscopic boundary value problem, a body B̄ ∈ IR3 and a
thermo-mechanical coupling are considered. That is, the balance of momentum in ab-
sence of outer forces div σ̄ = 0 and the balance of energy neglecting heat sources and
the heat flux ρ̄ ˙̄ε − σ̄ : ˙̄ε = 0 are solved analogously to the single-scale approach. The
balance of angular momentum is implicitly considered, i.e., the Cauchy stress tensor σ̄ is
symmetric, σ̄T = σ̄. Further quantities therein are the macroscopic density ρ̄, the rate of
the macroscopic specific internal energy ˙̄ε and the rate of the macroscopic strains ˙̄ε. More-
over, to complete the definition of the thermo-mechanically coupled macroscopic boun-
dary value problem, mechanical and thermal boundary conditions are required, which are
defined as

ū = ū0 on ∂B̄u , σ̄ · n̄ = t̄ on ∂B̄t ,
θ̄ = θ̄0 on ∂B̄θ and q̄ · n̄ = q̄0 on ∂B̄q . (8.43)

These have to satisfy

∂B̄u ∪ ∂B̄t = ∂B̄ , ∂B̄u ∩ ∂B̄t = ∅ ,
∂B̄θ ∪ ∂B̄q = ∂B̄ and ∂B̄θ ∩ ∂B̄q = ∅ . (8.44)

Instead of directly computing the tangent moduli and the stresses by means of a suitable
material model, a microscopic boundary value problem is associated with every macro-
scopic integration point. Therefore, an RVE is taken into account as microscopic con-
tinuum B ∈ IR3 following the given definition. Here, the domain is chosen in form of
a unit square. Assuming a constant temperature in each macroscopic integration point
for one computational time step, an isothermal material model is formulated solving the
microscopic balance of linear momentum divσ = 0. Therein, the microscopic balance of
angular momentum ensures the symmetry of the microscopic stress tensor, i.e., σT = σ.
On this minor scale, a material model to compute the microscopic stresses and tangent
moduli is required. Analogously to the single-scale material model, an additive split of the
total strains into elastic, plastic, thermal, transformation volumetric and transformation
induced plasticity (TRIP) strain is defined, see Equation (5.11). For the derivation of
the material model, the actual time step is denoted by tn+1 and the last time step as tn,
respectively.

As an initialization step, the accumulated plastic strains αhist (offset), which are taken
from the forming simulations, are applied to the macroscopic continuum at time t = 0 s
and passed to the microscale as a constant value in each integration point, cf. Section 6.2.2.
Then, the following steps, which are summarized in Table 8.3, are carried out at every
time step tn+1. In addition to the macroscopic total strains ε̄n+1, the macroscopically
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computed temperature is passed onto the microscale. In order to achieve numerical sta-
bility, the temperature of last time step θ̄n is considered as a state variable θn+1. Based
thereon, the actual volume fractions of the product phases are determined. Therefore, the
Koistinen-Marburger differential equation is utilized to compute the actual martensitic
volume fraction in case of a diffusionless austenite-to-martensite phase transformation, see
Section 4.1.2. If a diffusion controlled phase transformation from e.g. austenite to pearlite
occurs, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation is considered instead,
see Section 4.1.1. The remaining volume fraction of the parent phase can be defined by
balancing, since the sum of all phases present has to equal one, cf. Equation (5.18).

According to the computed volume fractions of austenite and martensite, or austenite
and pearlite, respectively, the phase transformation is depicted in the RVE. Initially at
time t = 0 s, all elements have been austenitic. Now, at time tn+1, a certain number of ele-
ments is switched from austenite to martensite or pearlite. As many elements are switched,
until their volume in relation to the RVE size reflects the calculated volume fraction of
the product phase. This means exemplary for the diffusionless phase transformation to
martensite that the ratio of the volume of the martensitically chosen elements VM to the
volume of the RVE V equals the total martensitic volume fraction cM, i.e., cM = VM

V
. Dif-

ferent possibilities to choose martensitic or pearlitic elements can be thought of, which are
in detail studied in Section 9. With the switch from austentite to martensite or pearlite,
the accumulated plastic strains are set to zero, since by undergoing a phase transformation
the shearing of the atomic lattice comes along with a relaxation.

Furthermore, the temperature θn+1 serves as an input parameter in the inter-
polation of thermal, elastic and phase transformational material parameters such
as κ, µ, k, cρ, αT, Ktrip and Ktv, see Section 5.3. These are the bulk and shear mo-
dulus κ and µ, the heat conduction coefficient k, the product of the density and specific
heat capacity abbreviated as cρ and the heat expansion coefficient αT. Furthermore, Ktrip

and Ktv are coefficients to compute the TRIP strains and the transformation volumetric
strains. The yield strength yn+1 and the linear hardening parameter hn+1 also depend
on the accumulated plastic strains of the last time step αn in addition to the tempera-
ture θn+1.

The respective single-scale formulas of the elastic, plastic, thermal and transformation
volumetric strain parts are adopted from the macroscopic formulation straightforwardly,
but with respect to the TRIP strains, small adaptions are inevitable. By definition follow-
ing Leblond [99] for a macroscopic material description, the TRIP strains base on the
deviatoric part of the stresses and the change in the volume fraction ∆cM

n+1 or ∆cP
n+1, re-

spectively, cf. Equation (5.14). The overall martensitic or pearlitic volume fraction in the
RVE increases from time step to time step, while in one microscopic integration point,
there is either 100 % austenite or 100 % martensite (pearlite). As a consequence, it is
inevitable to consider macroscopic quantities for the computation of the TRIP strains
such as the macroscopic deviatoric part of the stresses dev σ̄n. Applying a radial return
algorithm enables to determine the microscopic tangent moduli Cn+1 and stresses σn+1.

Based thereon, the macroscopic stresses σ̄ and the macroscopic algorithmic consistent
tangent moduli Ā are finally computed by homogenization following Equations (8.6)
and (8.42). For the formulation of the thermo-mechanical coupling terms on the
macroscale, κ as mechanical and k, cρ and αT as thermal material parameters have to be
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averaged as well, i.e.,

〈(•)〉 =
1

V

∫
V

(•) dV for (•) ∈ {κ, k, cρ, αT} . (8.45)
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Table 8.3: Material modeling at time step tn+1 computing phase specific stresses and
material tangent, which are averaged for effective stresses and tangent moduli. Exemplary
algorithm for the diffusionless phase transformation from austenite to martensite.

t = 0 s initialize history of accumulated plastic strains resulting from hot bulk
forming if necessary, see Section 6.2.2

(I) Get temperature θn+1 = θ̄n and total strains ε̄n+1 from macroscale

(II) Compute martensitic volume fraction

cM
n+1(θn+1) =

{
1− exp

(
− θMs−θ̄n

θM0

)
for θn+1 ≤ θMs

0 else

and saturation function fn+1(cM
n+1) = (2− cM

n+1)cM
n+1 with f ′n+1(cM

n+1) = 2(1− cM
n+1)

(III) Choose elements eM with volume VM to represent martensite

such that it holds VM
V = cM with V as volume of the RVE and VM =

∑
eM
VeM

(for different RVE definitions see Section 9)

(IV) Get history values of accumulated plastic strains αn, plastic strains εp
n,

TRIP strains εtrip
n and martensitic volume fraction cM

n

(V) Interpolate material parameters κ, µ, k, cρ, αT,Ktrip,Ktv for θn+1, see Section 5.3

(VI) Compute thermal strains εtv
n+1 = 1

3Ktv1

and transformation volumetric strains εθn+1 = αT(θn+1 − θ0)1

(VII) Compute elastic trial strains εe,trial
n+1 = εn+1 − εp

n − εtrip
n − εtv

n+1 − εθn+1

and deviatoric trial stresses devσtrial
n+1 = 2µdev εe,trial

n+1

and deviatoric trial tangent Ctrial
n+1 = 2µ

γ IP with IP = II− 1
31⊗ 1

with γ = 1 + 3µKtripf
′(cM

n+1)∆cM
n+1 and ∆cM

n+1 = cM
n+1 − cM

n

(VIII) Compute yield stress yn+1(θn+1, αn) by two-step interpolation scheme, see Section 5.3

(IX) Compute yield criterion Φtrial
n+1 = ‖ devσtrial

n+1‖ −
√

2
3yn+1

if Φtrial
n+1 ≤ 0 then

αn+1 = αn, εp
n+1 = εp

n, εtrip
n+1 = εtrip

n

devσn+1 = devσtrial
n+1, Cn+1 = Ctrial

n+1

else radial return algorithm

(i) Solve residuum function

r(∆λ) =
‖ devσtrial

n+1‖−2µ∆λ

γ −
√

2
3yn+1 = 0

(ii) Update αn+1 = αn +
√

2
3∆λn+1, εp

n+1 = εp
n + ∆λn+1nn+1

(iii) Update deviatoric stresses devσn+1 = 1
γ

(
devσtrial

n+1 − 2µ∆λn+1nn+1

)
(iv) Compute tangent moduli with Jacobian J(∆λ) = ∂r(∆λ)/∂∆λ

Cn+1 = 2µ
γ IP−∆λ (2µ)2

γ
1

‖ devσtrial
n+1‖

(IP− nn+1 ⊗ nn+1) +
(

2µ
γ

)2
1
Jnn+1 ⊗ nn+1

(X) Update TRIP strains εtrip
n+1 = εtrip

n + 3
2Ktrip dev σ̄nf

′
n+1(cM

n+1)∆cM
n+1

and elastic strains εe
n+1 = εn+1 − εp

n+1 − ε
trip
n+1 − εtv

n+1 − εθn+1

(XI) Add volumetric stresses σn+1 = devσn+1 + κ tr εe
n+11

and volumetric tangent Cn+1 = Cn+1 + κ1⊗ 1
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8.8 Quadratic measure of microscopic fluctuations

By definition it holds that the volume average of the microscopic fluctuations of the
stresses equals zero in FE2 methods, i.e.,

〈σ̃〉 = 0 with σ̃ = σ − σ̄ . (8.46)

However, it can be helpful to have a measure of the microscopic stress fluctuations on the
macroscopic scale. Therewith, the influence of the microscopic fluctuation on the macro-
scopic stresses can be displayed and evaluated on the macroscale. As a consequence, it
enables to analyze the impact of the microscopic fluctuations on the macroscopic prop-
erties of the component, such as strength or durability and provides an efficient tool to
assess engineering usability. Thereby, it is possible to resolve the origin of the evolving
macroscopic stresses, which are a consequence of cooling and a superimposed phase trans-
formation.

Hence, quadratic measures are defined for the stress components based on the proposal
in e.g. Uebing et al. [192]. In the following derivation, the position vector x̄ refers to
the macroscopic actual coordinates of the integration point, for which the measure is
to be determined. The RVE with volume V is attached to this integration point. The
macroscopic x̄1-x̄2-coordinate system is rotated around an angle α, so that the x̄∗1-axis
of the rotated x̄∗1-x̄∗2-coordinate system points in direction of the position vector x̄, see
Figure 8.3.

x̄

x̄1

x̄2

x̄∗1
x̄∗2

α

Figure 8.3: Considering the macroscopic position vector x̄, the x̄1-x̄2-coordinate system
is rotated around angle α. The x̄∗1-axis of the resulting x̄∗1-x̄∗2-coordinate system points in
direction x̄.

The related rotation matrix R̄ in the x̄1-x̄2-plane is given by

R̄ =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 . (8.47)

It is passed onto the microscale, where it is a constant quantity for the RVE. Given the
microscopic stress tensor σ, it can be rotated according to the macroscopic angle α by

σ∗ = R̄ · σ · R̄T . (8.48)

For the fluctuation part of the microscopic stresses one computes with σ̃ = σ − σ̄

σ̃∗ = R̄ · σ̃ · R̄T = R̄ · (σ − σ̄) · R̄T = R̄ · σ · R̄T − R̄ · σ̄ · R̄T . (8.49)
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Therein, the tangential part of the fluctuations of the stresses are identified as the stress
component σ̃tang = σ̃∗22. Its quadratic measure ‖σ̃tang‖VL2 is defined as

‖σ̃tang‖VL2 =
√
〈σ̃2

tang〉 with 〈σ̃2
tang〉 =

1

V

∫
σ̃2

tang dV . (8.50)

Therein, the L2-norm is defined as ‖(•)‖L2 =
(∫

(•)2 dV
) 1

2
and a modified version is given

by ‖(•)‖VL2 =
(

1
V

∫
(•)2 dV

) 1
2
, which takes into account the volume of the RVE.
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9 Microstructural analysis

As stated in Section 4.2, residual stresses can be classified by the scale, they act on,
cf. Macherauch et al. [108]. The differentiation into macroscopic (first type) and mi-
croscopic (second and third type) residual stresses motivates a two-scale analysis in order
to resolve microscopic phenomena such as the phase transformation directly on the lower
scale. Therefore, the two-scale direct micro-macro transition approach shall be utilized.
In a first step, different schemes to depict the austenite-to-martensite phase transfor-
mation on the microlevel during quenching are compared and evaluated with respect to
the macroscopic and microscopic stress evolution. Different aspects as the importance of
individual grain orientations or phase-specific stress contributions can be investigated.

9.1 Evolution schemes of martensite on the level of a representative volume
element (RVE)

In a two-scale Finite Element Method (FEM), a microscopic boundary value problem
is solved in every macroscopic integration point instead of direct computation of the
material behavior, as described in Section 8. The underlying microscopic boundary
value problem consists of a representative volume element (RVE) with a suitable
material model and appropriate boundary conditions, see Section 8.7. Here, periodic
boundary conditions on an isothermal problem are applied. Based on the temperature θ,
the martensitic volume fraction cM is determined utilizing the Koistinen-Marburger
differential equation, see Equation (4.4). In case of fast cooling, i.e., diffusionless phase
transformation, the initial purely austenitic RVE has to switch elements to martensite
to fulfill the computed phase distributions of austenite and martensite, respectively.
For this purpose, the here analyzed martensitic evolution strategies can be taken into
account as a selection of a large number of alternatives. A circular inclusion, a diagonal
structure, an arbitrary switch and a grain structure are considered. It holds that all
types of martensitic evolution are defined for an RVE with the same dimension and the
same discretization, i.e., a structured mesh with 4-noded linear quadrilaterals. Based on
experimental measurements, the final volume fractions are always set to 87 % martensite
and 13 % retained austenite. These RVEs with the respective evolution strategies are
to be evaluated in terms of the stress evolution on both scales. By comparison, the
advantages and disadvantages of the different representations are found.

Circular evolution One of the most intuitive evolution strategies is the growth of a
circular martensitic inclusion in an austenitic matrix, cf. Uebing et al. [188]. Therefore,
the computed martensitic volume fraction cM is related to the radius r of the centered
circular inclusion. For every finite element n, the distance |dn| = |Sn − S| between the
element’s midpoint Sn and the midpoint S of the RVE is computed. If that distance is
greater than the radius of the inclusion, i.e., |dn| > r, the element stays austenitic. If that
distance is smaller than or equal to the radius of the inclusion, i.e., |dn| ≤ r, the element
is switched to martensite. Therein, the radius r is determined based on the actual volume
fraction of martensite cM as r =

√
V cM/π, which is equivalent to π r2 = cMV ≈ VM

with VM as volume of all martensitic elements and V as total volume of the RVE. The
schematic representation of such a circular evolution strategy is given in Figure 9.1, which
also depicts the approximated martensitic volume VM. It is important to keep in mind
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that for high percentages of martensite, the circular inclusion exceeds the RVE bounds,
and thus, those volume fractions cannot be depicted accurately.

S
r

S1 d1

d2

S2

VM

|d1| ≤ r ⇒ martensite

|d2| > r ⇒ austenite

Figure 9.1: Schematic illustration of a circular inclusion for product phase in parent phase
matrix, here applied to the austenite-to-martensite phase transformation. Martensitic ele-
ments approximate the martensitic volume fraction by VM.

Diagonal structure A second pattern for representation of the austenite-to-martensite
phase transformation is a very technical one, inspired by the known formation of marten-
sitic as plate or lath martensite. The regular mesh is divided into subsections of 5 × 5
elements, which form a unit and are interpreted as a grain. Each of these grains is assigned
one main axis or orientation of {−45◦, 0◦, 45◦, 90◦} to determine the switching order of
the elements to martensite, cf. Figure 9.2. Accordingly, several of these subdivisions have
the central vertical or horizontal row of elements as their principal axis, while others are
oriented along one of the two diagonals.

a) b)

Figure 9.2: a) RVE with subunits, that depict grains, and the associated finite element
mesh. b) Schematic representation of the phase transformation using a diagonal structure
in one of those grains. At first, red elements switch to martensite, then the green ones and
latest the blue elements depending on the actual martensitic volume fraction.

Taking the partitioning of the RVE into grains or subunits into account, the choice of
orientation per subunit is done arbitrarily. Furthermore, the numbering of the grains in
the microstructure is also coincidental. The amount of grains to be set to martensite
depends on the martensitic volume fraction cM, which is determined with the Koistinen-
Marburger equation, see Equation (4.4). Thus, the transformation is implemented as given
in Figure 9.2b: in a first step, elements along the main axis, i.e., the middle element row
or the diagonal (red) of all grains switch to martensite according to the actual martensitic
volume fraction. Starting from this main axis, in a second step, martensitic needles are
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formed at an angle of 45◦ (green). In a last step, so many of the remaining elements (blue)
are switched until the computed volume fraction is reached. Since the RVE is discretized
by 30× 30 elements, 36 (6× 6) of these grain structures can be found.

This switching order red→green→blue holds for the complete RVE and is not interpreted
grain-wise. The later would mean that all 25 finite elements of one grain are switched
by the rule red→green→blue, before the red elements of a second grain are considered
to be martensite. Instead, all red marked elements in the complete RVE are switched
to martensite according to the actual martensitic volume fraction before the first green
element is set to martensite.

Arbitrary switch Another method to depict the austenite-to-martensite phase
transformation on microscopic level is an arbitrary element-wise switch, see
also Uebing et al. [190]. Therefore, so many elements are switched to martensite until
their volume VM related to the RVE size V approximates the computed actual martensitic
volume fraction cM closely. There is no recognizable pattern for the order of the element
switch, but this order is fixed so that all microstructures (in different integration points)
behave in the same way according to the temperature. In order to study the influence
of the randomness on the martensitic evolution, different permutations are considered,
which are referred to as cases 1 to 4. The final phase distributions consisting of 87%
martensite and 13% retained austenite are given in Figure 9.3 indicating martensite in
red and austenite in white.

1 2 3 4

Figure 9.3: Four different final microstructures - case 1 to case 4 - of marten-
site (red) and retained austenite (white) using an arbitrary switching scheme, adopted
from Uebing et al. [190].

Grain structure A fourth scheme relies on an experimental reconstruction of the initial
austenitic grains, see Figure 9.4. With the open source software Neper [129], which is
helpful for the polycrystal construction and its meshing, an equivalent microstructure
consisting of a given number of grains is built, see Figure 9.5. This number can randomly
be chosen, so that if the number of grains is equal to the number of elements in the mesh,
the arbitrary switch is restored. The phase transformation is described in such a way that
element by element and one grain after the other grain switches, whereby the grain order
is random and arbitrary. But again, this order is the same for every representative volume
element in each macroscopic integration point.

However, the prescribed RVEs built from Neper [129], which are shown in Figure 9.5,
do not possess periodic grains at the edges, although periodic displacement boundary
conditions are applied. Thus, a small C-code is used to obtain such grain structures, see
Figure 9.6. Input variables are the number of grains, the number of finite elements per
edge of the RVE as well as four key numbers, which are used to produce the Voronoi
tessellation, see Appendix F.
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Figure 9.4: Reconstruction of austenitic grains provided by IFUM.

c)b)a)

Figure 9.5: Different microstructures constructed with Neper [129] with a) 40 grains, b)
90 grains and c) 900 grains and discretized with 30 × 30 finite elements, such that the 900
grains reproduce the arbitrary switch.

Figure 9.6: RVE with periodic grain structure along the boundary, built up with a small
C-code, which is given in Appendix F. The number of grains equals 40, the mesh density is
30× 30 finite elements.

9.2 Two-scale boundary value problem

In order to compare the previously defined evolution strategies to depict the austenite-to-
martensite phase transformation on the microscale, the following two-dimensional bound-
ary value problem is taken into account. On the macroscale, a cut of a circular geom-
etry made from the Cr-alloyed steel 100Cr6 with eccentric hole is considered with an
angle α = 5◦. It is defined with an outer radius of r = 17.5 mm and a hole radius
of rh = 8 mm with an eccentricity of 3.5 mm, see Figure 9.7. It is evident that no ra-
dial symmetry exists, but it is assumed for simplification. Thus, in addition to static
support, displacement boundary conditions are applied along both cutting edges, i.e., it
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holds ūtang = 0 mm. Starting with the initial temperature of 1005 ◦C, the cooling following
the temperature evolution presented in Figure 6.20 is applied to the lateral surface. As
a consequence, a diffusionless phase transformation from austenite to martensite as dis-
cussed in previous sections and examples is evoked. The geometry is discretized with 304.)

elements in radial direction, following the suggestion in Uebing et al. [191], and one
element concerning the slice’s height. During the phase transformation, the initial time
step width of ∆t = 0.1 s is reduced to ∆t = 0.01 s or even to ∆t = 0.025 s, if necessary.

θ̄ = θ =const

σ̄, C̄

RVE

ε̄

∂B̄u, ∂B̄q

∂B̄u, ∂B̄q

∂
B̄ θ

,∂
B̄ t

∂B̄
θ ,∂B̄

tx̄1

x̄2

2α

11.5 mm

3.5 mm

6 mm

x1

x2

Figure 9.7: Two-scale boundary value problem for the comparison of different schemes for
the austenite-to-martensite phase transformation. The results are compared regarding the
violet marked integration point.

In order to compare the prescribed possibilities to depict the phase transformation on the
microscale, namely with a circular martensitic inclusion, a diagonal structure, an arbitrary
switch or a grain structure, the following set-up is chosen. The RVE is defined as a square
with the size of 0.01 mm×0.01 mm and discretized with a structured mesh of 30×30 linear
quadrilateral elements. A mesh density study is provided in Uebing et al. [191], see also
Section 10.1. Periodic boundary conditions are applied in all cases for the displacement.
Thereby, all four computations utilizing the given RVE types should show same behavior,
before the cooling evokes a martensitic phase transformation.

9.3 Macroscopic and microscopic analysis

In this section, the different strategies to depict the martensitic evolution on RVE level
are compared. Therefore, the evolution of macroscopic as well as microscopic stresses or
strains and phase fractions are in focus. For the evaluation of the results, pictographs are
introduced for the different kinds of RVEs, see Figure 9.8.

9.3.1 Circular inclusion

The advantage of simplicity for realization of the martensitic evolution as circular in-
clusion in an austenitic matrix clearly comes along with certain decisive disadvantages

4.)In order to distinguish between the macroscopic and microscopic discretizations, an overline (•)
marks macroscopic mesh sizes. The microscopic mesh densities remain unmarked.
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a) b) c) d) d)

Figure 9.8: Pictographs of the different types of RVEs, that are a) a circular inclusion,
b) the diagonal structure, c) the arbitrary switch and d) the grain structure, e) for which
grain orientations will be defined in Section 9.4.

as observed in Figures 9.9, 9.10 and 9.11. Therein, different macroscopic mesh densi-
ties are considered, which deviates from previous definition of 30 elements in radial and
one element in circumferential direction. For a first analysis, the number of elements in
radial direction is set to ten, but is later refined up to 50 elements. Each legend gives
further information regarding the macroscopic and microscopic discretization: the first
number refers to the macroscopic mesh density, e.g. 10 × 1, i.e., ten elements in radial
direction and one element in circumferential direction on macroscale; the second number
describes the microscopic discretization, e.g. 20 × 20, i.e., 20 elements in x1- and 20 ele-
ments in x2-direction in the RVE. Since the distance between the midpoint of an element
and the center of the RVE is evaluated, whether the element switches to martensite or
stays austenitic, the martensitic phase growth rotational symmetric. The evolution of the
martensitic volume fraction is not smooth but resembles a stair case function, since either
no elements or at least four elements or more are switched in one computational step,
see Figure 9.9. This inaccurate and coarse depiction of the phase fraction is also reflected
on the microscale. The coarsest microscopic mesh with 20× 20 elements leads more to a
diamond shaped martensitic nucleus than a circular one. Moreover, it is obvious that for
high percentages of martensite, which are experimentally observed, it is disadvantageous
that the radius of the circular inclusion exceeds the boundary of the RVE. Thus, high
martensitic phase fractions cannot be depicted precisely, independent of refinements of
the microscopic discretization.

The evolution of the macroscopic tangential stresses σ̄tang in the analyzed integration
point shows first tensile stresses due to thermal contraction, cf. Figure 9.10a. These tensile
stresses are superimposed with high compressive stresses by the increase of the martensitic
volume fraction, which is accompanied by the volumetric expansion of the atomic lattice.
The investigated integration point is located near the outer surface of the specimen and
hence, undergoes the phase transformation earlier than the bulk material. Thus, as the
cooling progresses and martensite starts to evolve in the bulk material, the region near
the outer surface of the material shows tensile stresses once more, which are not resolved
until the end of cooling. Figure 9.10b shows the stress component σ22 in relation to the
previously depicted phase evolution on microscopic level. The microscopic results are
evaluated for one integration point lying on the x̄1-axis, and thus, can be interpreted as
microscopic tangential stresses. One can see that with onset of the phase transformation
around t = 8.6 s, compressive stresses arise in the martensitic elements, which are due
to the volumetric expansion during the phase transformation. As a consequence, the
austenitic matrix undergoes tensile stresses to ensure equilibrium. As the phase transition
progresses, see t = 10 s, t = 15 s or t = 30 s, i.e., with the growth of the nucleus, the inner
part shows tensile stresses and the newly switched martensitic area near the boundary of
the nucleus shows compressive stresses.



Microstructural analysis 117

a) b)

20
×

2
0

30
×

30
50
×

50
10

0
×

10
0

t = 8.6 s t = 10 s t = 15 s t = 30 s t = 80 s

Figure 9.9: a) Evolution of martensitic phase fraction cM in one integration point, marked
in Figure 9.7, with b) zoom to compare different microscopic discretizations (20×20, 30×30,
50× 50 and 100× 100 elements) with a circular martensitic nucleus in an austenitic matrix.
In addition, c) microscopic results regarding the evolution of the martensitic nucleus for the
different discretizations at certain points in time.

As observed in Figure 9.11, the number of macroscopic elements in radial direction has no
influence on the stress evolution. For a fixed microscopic mesh density of 50×50 elements,
all four computations, either with 10×1, 20×1, 30×1 or 50×1 macroscopic elements, are
in good accordance with respect to the evolution of the macroscopic tangential stress σ̄tang

and show only small deviation.

The considered microscopic discretization results in strong oscillation, even if 50 × 50
microscopic elements are used, see Figure 9.10. In order to avoid these unwanted oscil-
lation as well as the stair-case phenomenon regarding the phase evolution and to obtain
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Figure 9.10: a) Evolution of macroscopic tangential stress σ̄tang in MPa to compare dif-
ferent microscopic discretizations (20× 20, 30× 30, 50× 50 and 100× 100 elements) with a
circular martensitic nucleus in an austenitic matrix and b) microscopic stress results showing
component σ22 in MPa for the different discretizations at certain points in time.

a smoother curve for cM or σ̄tang, a very fine microscopic discretization with at least 100
elements in each direction is inevitable. But thereby, the numerical costs of FE2 compu-
tations for more complex boundary value problems on macroscopic level get out of hand,
see Figure 9.12, which compares the computational time of one time step during the phase
transformation as well as the total computational time. The consumed time of the com-
putation with a fine discretization with 100× 100 elements compared to a microstructure
with 30 × 30 elements is 15 times as high. The additional time and numerical effort is
not reasonable.
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Figure 9.11: Evolution of macroscopic tangential stress σ̄tang to compare different macro-
scopic mesh refinements with 10, 20, 30 or 50 elements in radial direction taking into ac-
count an RVE discretized with 50 × 50 elements with a circular martensitic nucleus in an
austenitic matrix.

a) b)

Figure 9.12: Comparison of computational time in seconds for different microscopic dis-
cretizations (20×20, 30×30, 50×50 and 100×100 elements) for a macroscopic mesh density
of 10× 1 elements.

9.3.2 Diagonal structure and arbitrary switch

Applying the diagonal structure or an arbitrary switch to describe the phase transforma-
tion from austenite to martensite gives6 qualitatively and quantitatively the same results
regarding exemplary the martensitic volume fraction cM and the macroscopic tangential
stress evolution σ̄tang, cf. Figures 9.13 and 9.14. For the analyzed macroscopic integration
point near the outer surface of the specimen, the development of the martensitic phase is
modeled concordantly, cf. Figure 9.13a. On the minor scale, the complex switch pattern
following the principle of the diagonal structure, is observed, while the arbitrary switch
does not follow any design template, see Figure 9.13b. In relation, the microscopic stress
component σ22 deviates slightly comparing the diagonal structure to the arbitrary switch,
of which all four cases give very close results. The connected martensitic elements in the
RVE using a diagonal structure show more pronounced compressive stresses than the
RVEs with an arbitrary switching scheme, see Figure 9.14b. Moreover, that difference is
also found as small deviations in the macroscopic tangential stresses σ̄tang. For instance,
taking into account the stresses after a cooling time of ten seconds, σ̄tang in case of a
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diagonal structure does not reflect such a high compressive stress peak as it is true for
the four cases of the arbitrary switch. Taking a close look on the microscopic stress dis-
tribution in the RVEs, one finds small areas with prominent compressive stress values
surrounded by lower compressive stresses. It holds for the diagonally structured RVE that
these values are higher compared to the RVEs using an arbitrary switch. This results in
the given macroscopic material response, which is computed by the volume averaging over
the RVE, that the macroscopic tangential stresses σ̄tang are lower than for any case of an
arbitrary switch at t = 10 s.

As more and more of the elements are switched representing the increasing martensitic
volume fraction, complex phase and stress pattern form for both different evolution strate-
gies. Concerning the microscopic stress component σ22 at t = 10 s or t = 15 s, differences
between the RVEs become visible, although the macroscopic averages for σ̄tang are overall
in good accordance. At t = 15 s, the diagonally structured RVE shows more and higher
tensile stress peaks compared to the four cases of the arbitrary switch. For the latter,
clear differences between the RVEs are also observable. “Case 1änd “case 2ßeem to be
more similar to the diagonally structured RVE than “case 3ör “case 4“. But, overall, the
macroscopic tangential stress evolution for the four cases of arbitrary switch fits quite
well. Around t = 12 s, the macroscopic compressive stresses are reduced and finally result
in a tensile stress value around 120 MPa, which is in good fit with previous computations,
see Figure 9.11. In the final state, the microstructure with the diagonal pattern shows
complex interaction of tensile as well as compressive stress peaks, which are reduced in
an arbitrary switching scheme. In order to analyze the mutual influence of neighboring
elements during transformation, RVEs with grain structures are utilized in the following.
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Figure 9.13: a) Evolution of martensitic volume fraction cM in one integration point,
marked in Figure 9.7, to compare different arbitrary switching schemes and the diagonally
structured RVE and b) microscopic results regarding the evolution of martensite for the
different schemes at certain points in time.
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Figure 9.14: a) Evolution of macroscopic tangential stress σ̄tang in MPa in one integration
point, marked in Figure 9.7, to compare different arbitrary switching schemes and the dia-
gonally structured RVE and b) microscopic stress results showing component σ22 in MPa
for the different schemes at certain points in time.
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9.3.3 Grain structure

The resulting macroscopic tangential stress σ̄tang and martensitic volume fraction cM in
case of taking into account microstructures consisting of a different number of grains,
namely 40, 90 or 900, are shown in Figures 9.15 and 9.16.
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Figure 9.15: a) Evolution of martensitic phase fraction cM in one integration point, marked
in Figure 9.7, to compare different microscopic RVEs with 40, 90 or 900 grains and b) mi-
croscopic results regarding the martensitic evolution (red) in an austenitic matrix (white)
for the different microstructures at certain points in time.

The macroscopic tangential stress evolution qualitatively fits the previously analyzed
computations with RVEs based on a circular inclusion, a diagonal structure or an ar-
bitrary switch. If the number of grains equals the number of microscopic elements, i.e.,
900 grains and elements, the arbitrary switch is restored, as expected. Reducing the num-
ber of grains to a tenth, in this case 90 grains, effects the observed stress behavior during
the phase transformation process. The differences are even more prominent in case of a
microstructure with 40 grains, see Figure 9.16. Here, the final stress value exceeds the
computations with RVEs taking into account 90 or 900 grains by approximately 25 MPa,
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see Figure 9.16a. It is found that the grain size has impact on the evolving stresses,
i.e., if the phase transformation happens grain by grain, neighboring elements influence
their volumetric expansion mutually and as a consequence also the stress evolution. The
term grain by grain means that all elements of a first grain are switched before the first
element of a second grain is considered as martensite. The quotient of the volume of all
martensitic elements VM and the volume of the RVE V has to be in accordance with
the computed martensitic volume fraction cM, independent to which grain the individual
element belongs to.
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Figure 9.16: a) Evolution of macroscopic tangential stress σ̄tang in MPa in one integration
point, marked in Figure 9.7, to compare different RVEs with 40, 90 or 900 grains and
b) microscopic stress results showing component σ22 in MPa for the different microstructures
at certain points in time.
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If a microscopic element switches to martensite, compressive stresses occur inside due to
the volumetric expansion of the atomic lattice. This can be observed for time t = 8.6 s
or t = 10 s. With ongoing cooling and the related phase transformation, the microstructure
with 40 grains shows tensile stresses in regions of retained austenite and compressive
stresses in newly switched martensitic elements. This observation is not as clear in case
of microstructures with 90 grains anymore, for which mostly tensile stress peaks are
visible. But, these cannot be directly related to areas of retained austenite. Considering
the circular nucleus as an RVE with only one grain, this postulation can be verified that
the differences between the micro- and macroscopic results are caused by the refinement
or coarsening, respectively, of the grain structure. As shown in Figure 9.11, the final stress
value lies around 150 MPa and, hence, exceeds the computations with RVEs based on 40,
90 or 900 grains.

In a next step, the impact of the switching order of the grains and its influence on the
macroscopic stress component σ̄tang is in focus. Therefore, an RVE with 900 finite elements
and 40 grains is taken into account, which grain size resembles most the restored austenitic
grain structure in Figure 9.4. The microstructure with periodic grains is built up by
Voronoi tessellation, recall Appendix F and see Figures 9.6 and 9.17.

a) b)

c) d)

Figure 9.17: a) Periodic microstructure with b) & c) & d) three adapted switching orders
for one Voronoi tessellation indicated by color. The phase transformation starts in blue
grains and ends in red ones.

To apply the austenite-to-martensite phase transformation, the grains are randomly num-
bered, such that grain number 1 (blue) is the first to switch while grain number 40 (red) is
the last one. Once more it is emphasized that inside one grain, the calculated martensitic
volume fraction determines, if an element switches or not. The volume of all martensitic
elements VM in relation to the volume of the RVE V has to match cM, i.e., not all elements
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of one grain have to switch at the same time. One can summarize this description for the
phase transformation by an “element by element and grain by grainrrule. Naturally it is
to be noticed that in case of retained austenite, not all grains will be switched to marten-
site. In the following analysis, four switching orders are taken into account, to which it is
referred to as “random 1, “random 2, “random 3 and “random 4, respectively.

For comparison, the evolution of different macroscopic quantities are taken into account
in the marked macroscopic integration point near the outer left surface, cf. Figure 9.7.
These quantities are stress components σ̄11, σ̄22, σ̄33 and σ̄12, the norm of the deviatoric
part of the stresses ‖ dev σ̄‖, the homogenized accumulated plastic strains 〈εeq〉 and the
strain components ε̄11, ε̄22, ε̄33 and ε̄12, cf. Figures 9.18 to 9.20.
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Figure 9.18: Comparison of cases “random 1, “random 2, “random 3 and “random 4, i.e.,
different switching orders for one grain structure obtained by Voronoi tessellation, regarding
stress components a) σ̄11, b) σ̄22, c) σ̄33 and d) σ̄12.

The axial stresses σ̄11 for all six computations are close to zero, except during start of
the phase transformation, see Figure 9.18a. Then, a compressive stress peak is present
as expected due to the volumetric expansion of the atomic lattice. Similar is true for
component σ̄12 in Figure 9.18d, which both can be taken as negligible due to the small
absolute values. As can bes seen in Figure 9.18b, the evolution of the tangential stresses σ̄22

varies quite distinctively for the different RVEs with start of the phase transformation.
Before, as long as the material is homogeneous, the results fit well. With increase of the
martensitic volume fraction, the evolution of stress component σ̄22 seems nearly arbitrary.
The final tangential stress value ranges from 80 MPa to 120 MPa. It is not possible to
establish a relation between the microscopic switching order and the resulting macroscopic
stress. One can only assume that with an increased number of microstructures, it is highly
likely that a Gaussian distribution of the final values will be obtained. Microstructural
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experimental analyses and final stress measurements could give an insight on the quality
of the computed data in order to assess the numerical simulation results. Similar findings
are also true for the out of plane stress σ̄33 in Figure 9.18c.

In Figure 9.19a, the norm of the deviatoric part of the macroscopic stress ‖ dev σ̄‖ is
depicted, which combines all previously considered stress components into one scalar
quantity. Initially, the material is stress-free due to the heating step of the hot bulk
forming, such that it holds ‖ dev σ̄‖ = 0 MPa at time t = 0 s. By cooling of the component
over the lateral surface, stresses evolve up to ‖ dev σ̄‖ ≈ 400 MPa at time t ≈ 18 s.
With onset of the phase transformation, the atomic lattice relaxes and the inner stresses
can be resolved, such that it holds ‖ dev σ̄‖ ≈ 150 MPa. In parallel, the homogenized
accumulated plastic strains 〈εeq〉 increase to a value around 0.025 until martensite starts
to form, cf. Figure 9.19b. At this point, the microscopic accumulated plastic strains are
set to zero in an element that switches to martensite. Further cooling does not result in
plastification of the martensitic material, since the yield stress is much higher compared
to the austenitic yield stress at same temperature and accumulated plastic strain state.
Thus, as the cooling time progresses, more and more microscopic elements switch to
martensite and the homogenized accumulated plastic strains 〈εeq〉 are overall reduced by
the homogenization scheme.
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Figure 9.19: Comparison of cases “random 1, “random 2, “random 3 and “random 4, i.e.,
different switching orders for one grain structure obtained by Voronoi tessellation, regarding
a) the norm of the deviatoric part of the stresses ‖ dev σ̄‖ in MPa and b) the homogenized
accumulated plastic strains 〈εeq〉.

In Figure 9.20a and b, the macroscopic strain components ε̄11 and ε̄22 are depicted over
cooling. Due to the defined displacement boundary conditions, thermal shrinking can be
observed before the phase transformation starts. With martensite formation, the compo-
nent ε̄11 is reduced in absolute values from ≈ −0.03 to ≈ −0.015 as a consequence of
the volumetric expansion of the atomic lattice while the strain component ε̄22 resembles
a constant value of ≈ −0.02 due to the defined displacement boundary conditions. As the
assumption of plane strain is made, it holds for the macroscopic strain component in third
direction ε̄33 = 0, cf. Figure 9.20c. Similar is true for the macroscopic shear strains ε̄12,
which is also equal to zero throughout the cooling process except numerical inaccuracies,
see Figure 9.20d.

In addition to the order of the grains, focus is now on different grain structures and
the influence on the resulting macroscopic quantities. Therefore, eight additional Voronoi
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Figure 9.20: Comparison of cases “random 1, “random 2, “random 3 and “random 4, i.e.,
different switching orders for one grain structure obtained by Voronoi tessellation, regarding
strain components a) ε̄11, b) ε̄22, c) ε̄33 and d) ε̄12.

tessellations are carried out with different initial seeding. Thereby, in total nine RVEs are
obtained with 900 finite elements and 40 grains, which are compared in the following. As
shown in Figure 9.21, the results for the RVEs based on different Voronoi tessellations are
in good accordance with previous findings regarding the macroscopic stress component σ̄22,
strain component ε̄22, the norm of the deviatoric part of the stresses ‖ dev σ̄‖ and the
homogenized accumulated plastic strains 〈εeq〉.
Analogously to the analysis with respect to the grain order, quantitative deviations are
visible but qualitative accordance is achieved. Taking a closer look at stress component σ̄22,
differences especially during the phase transformation are present, but they equal out until
a final value around 100 MPa ± 20 MPa. Thus, the different Voronoi tessellations do not
show a significant effect in addition to the switching order of the grains. The thesis, that
with a higher number of RVEs a Gaussian distribution of the final stress values is obtained,
is supported.

Figures 9.22 and 9.23 show the evolution of the microscopic stresses σ22 in comparison
to the martensitic volume fraction cM for all considered nine Voronoi tessellations. In
case, the temperature is lower than the martensitic start temperature, the austenite-to-
martensite phase transformation starts, i.e., at t = 8.6 s. Then, martensite starts to form
in the first element of the first grain of each RVE, or at maximum in two different grains,
if the first grain consists of only few finite elements. As observed before, the martensitic
islands are connected to compressive stresses as a consequence of the volumetric expansion
of the atomic lattice. This phenomenon is also observable after ten seconds of cooling.
Afterwards, when more and more grains in each RVE undergo the phase transformation,
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Figure 9.21: Comparison of different Voronoi tessellations regarding macroscopic quantities
a) σ̄22, b) ‖dev σ̄‖, c) ε̄22 and d) 〈εeq〉.

the stress pattern becomes much more complex. A high number of tensile as well as
compressive stress peaks can be found in each RVE. It is not possible to directly relate
such peaks to the phase present. In a final state, all nine RVEs show complex stress
patterns, which are similar to each other but at the same time also individually formed,
see Figure 9.23c.

At this point it can be summarized that an RVE with a circular inclusion describes the
stiffest material behavior of all approaches. Furthermore, the numerical and temporal
effort is relatively high in this case. The artificial grains, which were conceived as part
of the diagonal structure, do not show any differences compared to an arbitrary switch
of the elements, which does not justify the effort to create such an RVE. The arbitrary
switch is equivalent to providing the same number of grains as finite elements in the RVE.
In order to investigate the influence of this number of grains, as well as to include the
experimentally determined austenitic grains, RVEs with grain structures seem to give
good results. Depending on the number of grains, effects on the macroscopic stresses
in the component are shown, especially during the phase transformation. The order of
switching the grains as well as the choice of different grain structures of the same type
result in almost no changes. In general, however, it can be said that the macroscopic stress
curves agree very well with those of an arbitrary switch. Due to the fact that the grain
structure mostly resembles the austenitic grains and the RVE with an arbitrary switch
can be implemented with the small effort, even if it is not physically based, these two
microstructures are in focus for multi-scale analyses of hot bulk forming in the following
Section 10.
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132 Microstructural analysis

9.3.4 Phase specific analysis

The previously presented results regarding macroscopic stresses and strains are based on a
homogenization scheme, and hence, represent an effective material behavior of the phases
present. The posed boundary value problem of cooling the cut of a cylindrical speci-
men takes into account two phases, austenite and martensite, as stated in Section 6.2.4.
These phases have different material properties, for instance, martensite possesses higher
strength and lower ductility compared to austenite. Recalling back to Section 5.3, in which
phase-specific material parameters have been interpolated depending on the temperature
as well as the accumulated plastic strains, it is obvious that martensite has higher yield
strength than austenite, for instance. These and other phase-specific characteristics moti-
vate to distinguish into phase-specific contributions regarding e.g. the stress components.
Figure 9.24 shows the stress and strain evolution for the RVEs “random 1tto “random 4
divided into phase-specific components.
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Figure 9.24: Phase-specific contributions compared for cases “random 1, “random 2,
“random 3 and “random 4, i.e., different switching orders for one grain structure obtained
by Voronoi tessellation, regarding a) stress component σ̄22 and b) the norm of the deviatoric
part of the stresses ‖ dev σ̄‖.

At first, tensile stresses are observed in a homogeneous austenitic material as a conse-
quence of the thermal contraction. When the austenite-to-martensite phase transforma-
tion starts, the volumetric expansion of the unit cell leads to high compressive stress values
for σ̄22 in the martensitic phase, cf. Figure 9.24a. As can be observed in Figure 9.24b,
austenite possesses lower yield strength and hence, the norm of the deviatoric part of
the stresses is much smaller than for martensite. As more and more elements of an RVE
switch to martensite, the value of about 1700 MPa of the norm of the deviatoric part of
the stresses after eight seconds of cooling is reduced to finally 500 MPa. This can be ex-
plained by the reset of the accumulated plastic strains in case an element is first switched
to martensite. It follows the assumption that the atomic lattice relaxes by the phase
transformation.
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9.4 Non-uniform volumetric expansion in terms of Bain groups

As experimental observations prove, the shearing of the atomic lattice during the phase
transformation of face-centered cubic to body-centered tetragonal unit cells is complex.
The up to now considered homogeneous volumetric expansion in every principle direction
is a strong simplification, cf. Bhattacharya [22] or Schoof [158] among many others.
Thus, in order to study the influence of a non-uniform volumetric strain, an individual ori-
entation is set for each grain. These orientation functions are obtained utilizing a geodesic
dome, cf. Fuller [55]. The term comes from the science of measuring and understanding
the earth’s figure (geodesy), in which the subdivision into triangles plays a decisive role. In
general, such a dome is a convex irregular polyhedron which satisfies Euler’s polyhedron
theorem. This states that the sum of the number of vertices nv and the number of faces
nf minus the number of edges ne must equal two, i.e.,

nv + nf − ne = 2 . (9.1)

To construct a geodesic dome, one usually starts with a dodecahedron or an icosahedron as
a base. A dodecahedron consists of twelve congruent regular pentagons as faces, 30 edges of
equal length and 20 corners, in each of which three pentagons meet, while an icosahedron
consists of 20 congruent equilateral triangles as faces, which are connected with 30 edges of
equal length and twelve corners, in each of which five triangles meet. Such an icosahedron
already has an approximately spherical shape, which is due to the five meeting faces per
corner. However, to further approximate this construction of a sphere, the 20 triangles
are divided into smaller triangles, which in turn are congruent and equilateral. Based on
this subdivision, it is no longer true that five faces meet per corner. To enforce this would
violate the assumption of perfectly equal triangles. In connection with the subdivision
into smaller triangles one speaks of frequencies. For a geodesic dome of frequency 2, one
subdivides each triangular surface into 4 smaller triangles, see Figure 9.25. This results
in a dome with 80 faces and 42 corners. For a dome of frequency 3, each initial face is
divided into 9 smaller triangles, and for frequency 4, even into 16.

frequency 1 frequency 2 frequency 3 frequency 4

Figure 9.25: Subdivision of the triangles of a geodesic dome.

Based on these so formed spherical triangular grids, the required orientation distribution
functions are defined. The orientation direction is uniquely determined by a vector from
the center of the sphere to the corners. As a consequence, a geodesic dome of frequency 2
stands for 42 orientations, a dome of frequency 3 already stands for 92 orientations and
a dome of frequency 4 even features 162 different orientations. Two normal vectors are
assigned to each of these constructed vectors. These groups of three vectors each then
describe the spatial orientation of a grain uniquely. Figure 9.26 displays a geodesic dome
with its orientation distribution functions of frequency 2 and 3, respectively.
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a) b)

Figure 9.26: Geodesic dome a) with frequency 2 and b) frequency 3 and the respective
resulting orientation distribution functions, taken from Kurzhöfer [96].

Since the idea is to take 40 grains in the microscopic structure into account, a geodesic
dome of frequency 2 with 42 orientations satisfies the requirement of at least 40 unique
orientations. Based on a grain identifier, the orientation is set. The volumetric expansion
of the atomic lattice, which is taken as 1 % for the considered Cr-alloyed steel 100Cr6,
is in the following not homogeneously distributed in the three principle directions, but it
weights the volumetric expansion based on the specific orientation distribution function,
see also Kurzhöfer et al. [97], Schröder et al. [163] and Labusch et al. [98].
Therefore, the homogeneous transformation volumetric strain, see Equation (5.12), is
transformed to a Bain strain. Therein, the volumetric expansion of the unit cell is kept
as Ktv = 1 % but a preferred direction is defined. In this preferred direction, the cubic
unit cell elongates more than in the other two, so that a rectangular unit cell is obtained,
see Figure 9.27.

Figure 9.27: According to Bain and Dunkirk [7] and Bain and Griffiths [8], the
austenitic unit cell expands during phase transformation to martensite. The expansion shows
one preferred direction oriented along the principle axis, here schematically sketched for the
first variant in x1-direction.

The associated Bain strain is chosen as

εtv =

0.005
0.00248448

0.00248448

 . (9.2)

The triad of vectors gki with i = 1, 2, 3, which consists of the orientation direction and
the associated normal vectors, defines the spatial orientation of the grain k. Therefore,
the first normal vector gk2 associated to the orientation vector gk1 is freely chosen with the
restriction that gk2 is orthogonal to gk1 and normalized. Then, the second normal vector gk3
is computed as the crossproduct of the first two vectors, i.e., gk3 = gk1 × gk2 . These three
vectors are a dual base to the euclidean base system ei with i = 1, 2, 3. The dual base is
obtained as rotation by the euclidean base with the related rotation matrix Q given by

Qk =
3∑
i=1

gki ⊗ ei = gk1 ⊗ e1 + gk2 ⊗ e2 + gk3 ⊗ e3 . (9.3)
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This rotation matrix is applied to the Bain strain in Equation (9.2) to arrange the preferred
direction associated to the orientation direction gk1 as

εk,∗tv = Qk · εtv ·Qk,T . (9.4)

Evaluating the stress and strain evolution over the cooling time in comparison to previ-
ous results with a homogeneous transformation volumetric strain shows that a homoge-
neous volumetric strain overestimates the different quantities perceptibly, cf. Figure 9.28.
Therein, the results of Section 9.3.3 applying a homogeneous volumetric strain are re-
ferred to as “homogeneous“while the evolutions taking the decisive grain orientations
into account are named “Bain“. The number refers to the switching order, cf. Figure 9.17.

homogeneous 0

homogeneous 1

homogeneous 2

homogeneous 3
Bain 0

Bain 1

Bain 2

Bain 3

0 20 40 60 80

time in s

-300

-200

-100

0

100

200

s
t
r
e
s
s
σ̄
2
2
in

M
P
a

0 20 40 60 80

time in s

0

100

200

300

400

500

||
d
e
v
σ̄
||
in

M
P
a

0 20 40 60 80

time in s

0

0.005

0.01

0.015

0.02

0.025

0.03

h
o
m
o
g
.
a
cc
.
p
la
st
ic

st
ra
in

〈ε
eq

〉

0 20 40 60 80

time in s

-0.03

-0.02

-0.01

0

0.01

s
t
r
a
in

ε̄
2
2

a) b)

c) d)

Figure 9.28: Comparison of cases “homogeneous 0tto “homogeneous 3“without decisive
grain orientation to the same RVEs with a defined grain orientation “Bain 0tto “Bain 3
regarding the macroscopic quantities a) σ̄22, b) ‖ dev σ̄‖, c) 〈εeq〉 and d) ε̄22.
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10 Two-scale analysis of hot bulk forming process

As already found in Section 6.2, hot bulk forming processes evoke complex residual stress
distributions inside a component. These previously investigated macroscopic residual
stresses (of first type) are highly influenced by microscopic residual stresses (of second
and third type). However, microscopic quantities cannot be resolved explicitly in single-
scale simulations, which motivates to carry out a two-scale analysis of such a hot bulk
forming process. Therefore, focus lies on the cylindrical specimen, which was subject to
several experimental investigations to determine its microscopic characteristics such as
e.g. the volume fractions of the phases present, cf. Behrens et al. [14; 15; 17; 18; 19].
One advantage is the simplicity of the geometry; at the same time, the cylinder’s eccen-
tricity makes it a good substitute for a complex component in engineering applications.
For instance, gear wheels or crankshafts as hot bulk forming parts are subjected to high
tensile loadings at the teeth in tangential direction. As a consequence, the tangential
stresses are in focus of the following investigations. Therefore, thermo-mechanically coup-
led two-dimensional boundary value problems are defined to investigate the evolution of
the macroscopic and microscopic residual stress distributions inside the component, which
result from the cooling and the related phase transformation. The considered cooling
medium water evokes a diffusionless phase transformation from austenite to martensite,
which is taken into account in an isothermal microscopic material model. In order to
model the stresses accurately, the mesh density and the time step width must be chosen
thoughtfully, cf. Section 6.2.3. Thus, at first, a simplified material model is taken into
account, in which the transformation induced plasticity (TRIP) strains are neglected,
to compare different mesh discretizations on both scales. The results have already been
published in Uebing et al. [191]. Afterwards, the microscopic stress evolution and the
influence of the microscopic stress fluctuations on the macroscopic residual stress dis-
tribution are discussed as already presented in Uebing et al. [192]. In course of that
second analysis, transformation induced plasticity has also not been taken into account.
Additionally, since an undeformed geometry of the cylindrical specimen is subject of the
analysis, no accumulated plastic strains from the forming are applied as offset in the
initialization step. Finally, a two-scale boundary value problem with the material model
given in Section 8.7, i.e., considering TRIP strains and the accumulated plastic strains
of the forming history, is investigated with respect to the stress evolution on both scales.
The examined two-dimensional slice is therefore a cut out of the deformed cylinder.

10.1 Two-scale mesh density study

For an accurate description of the macro- and microscopic stress evolution in the hot bulk
forming component it is inevitable to carry out a mesh density and time step size study.
Therefore, the two-dimensional slice of the undeformed cylindrical specimen made from
Cr-alloyed steel 100Cr6 is taken into account, which dimensions are already depicted in
Figure 6.6. The heating and forming step of the hot bulk forming process prior to the
simulated cooling step are maintained. The outer radius equals 17.5 mm, the radius of the
hole, which is shifted by e = 3.5 mm in the positive direction of the x̄1-axis, equals 8 mm.
To reduce the complexity and as a consequence the computational effort, only two parts of
the axial section are considered on the macroscale, see Figure 10.1. The angle α is chosen
as 5 ◦, so that the dimensions are sufficiently large to achieve convergent results but still
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small enough to get overall short computation times. The two resulting sections, that are
taken into account on the macroscale, are referred to as thick and thin side, respectively,
based on thickness of the material between the eccentricity and the outer surface. At first,
the mesh density study on both scales is carried out, for which a constant time step size
of ∆t = 0.1 s is chosen.

4.5 mm

x̄1

x̄2

thick thin

8 mm

e = 3.5 mm

17.5 mm

2α

13 mm 11.5 mm 6 mm

Figure 10.1: Geometry to analyze the cooling of the lateral surface of a cylinder in-
ducing phase transformation and therewith resulting in residual stresses, adapted from
Uebing et al. [191].

Figure 10.2 displays the resulting geometries with their dimensions and boundary con-
ditions. Since these small sections are cut out from the cylindrical slice, displacement
boundary conditions are applied on both cutting edges, i.e., the nodes on ∂B̄u are fixed
in orthogonal direction to the cutting edge. Thereby, radial symmetry is ensured, which
serves as another simplification, since the cylinder does not possess radial symmetry due
to its eccentricity. Furthermore, Dirichlet boundary conditions are applied on ∂B̄θ to de-
scribe the temperature evolution on the lateral surface. It is assumed that the heat flux
through the cutting edges is negligible small and, thus, it is set q̄0 = 0 on ∂B̄q. Since
there are no outer forces or moments applied, it holds that the resulting stress distribu-
tion can be interpreted as residual stresses. Furthermore, due to the choice of the cut
geometries, they are symmetric around the x̄1-axis, along which the stress component in
x̄2-direction σ̄22 can be interpreted as tangential stress.

In terms of a two-scale finite element analysis, the material model in each macroscopic
integration point is replaced by a microscopic boundary value problem. As depicted in
Figure 10.2, a representative volume element (RVE) with a structured mesh is taken into
account. On the minor scale, the material model presented in Section 8.7 is considered
with neglecting TRIP strains and the offset, which initializes the accumulated plastic
strains due to the forming step of the hot bulk forming process. As a consequence, only
the subsequent cooling step from above 1000 ◦C to room temperature θRT ≈ 20 ◦C is mod-
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Figure 10.2: Two macroscopic boundary value problems are analyzed, depicting thick and
thin cylindrical section with shown Dirichlet boundary ∂B̄u, ∂B̄θ and Neumann bound-
ary ∂B̄t, ∂B̄q. Cooling over the lateral surface ∂B̄θ (blue), the microscopic mesh with fi-
nal phase distribution, martensite in red and austenite in white, are shown, adapted from
Uebing et al. [191].

eled. For the description of the austenite-to-martensite phase transformation in the RVE,
different evolution strategies are compared in Section 9. Here, the arbitrary switch is taken
into account with a final volume fractions of 87 % martensite and 13 % retained austenite
obtained by cooling in water. The martensitic start temperature equals θMs = 185 ◦C for
the considered material 100Cr6. For the following study, the volumetric expansion of the
face-centered cubic austenitic unit cell to the body-centered tetragonal martensitic unit
cell is chosen as Ktv = 2 %, which deviates from prior specification. For the numerical
investigation of both two-scale boundary value problems quadratic quadrilateral elements
with nine nodes are chosen as macroscopic finite element, while on the microscale linear
quadrilateral elements with four nodes are considered. In Table 10.1, the different macro-
scopic and microscopic discretizations are summarized, and abbreviations for compact
notation are introduced. Therein, the number of elements in tangential direction on the
macroscale is set to a constant value of 5, since a refinement does not alter the results, cf.
Uebing et al. [191]. On the microscale, the austenite-to-martensite phase transforma-
tion is depicted with an arbitrary switching scheme, as introduced in Section 9.

In order to evaluate the different mesh densities, the focus lies on the tangential stresses,
which are known to have a decisive influence on the final component’s properties. Due
to the choice of the geometry of the boundary value problems, the stress component σ̄22

is taken into account in the integration points located along the x̄1-axis. Macroscopically
coarse meshes 10 do not show adequate results. Independent of the microscopic mesh
size, unreasonable stress distributions are found, and thus, finer mesh sizes with 20 or 30
macroscopic elements, M and F, respectively, are taken into account. Figures10.3 and 10.4
display the tangential stress component σ̄22 after t = 20 s of cooling, that is in the mid-
dle of phase transformation. The stress curves for macroscopically medium and fine dis-
cretizations in combination with microscopically coarse, medium and fine mesh sizes are
examined. It is found, that an RVE with 100 elements does not lead to reasonable results,
since strong oscillations occur, see MC and FC. The thick side boundary value problem
shows less oscillations in case of the MM or FM discretizations, but that does not hold
for the thin side boundary value problem. To obtain sufficiently smooth stress behavior,
a microscopically fine discretization is inevitable to use. The computations with MF and
FF both lead to reasonable results regarding σ̄22, which are confirmed when considering
finer mesh sizes such as FF or IF on the macroscale, see Uebing et al. [191].
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Table 10.1: Overview of the analyzed combination of macroscopic and microscopic dis-
cretization and explanation of the used abbreviation, adapted from Uebing et al. [191].

macroscopic mesh microscopic mesh
notationelements abbreviation elements abbreviation

width height width height

10 5 coarse C
10 10 coarse C CC
20 20 medium M CM
30 30 fine F CF

20 5 medium M
10 10 coarse C MC
20 20 medium M MM
30 30 fine F MF

30 5 fine F
10 10 coarse C FC
20 20 medium M FM
30 30 fine F FF

40 5 FF 30 30 fine F FFF

50 5 IF 30 30 fine F IFF

22

2
2

1

Figure 10.3: Tangential stresses σ̄22 for the x̄1-axis at x̄2 = 0 and t = 20 s for macroscopi-
cally coarse discretization C and different microscopic meshes using time step size ∆t = 0.1 s,
adapted from Uebing et al. [191].

In addition, the refinement of the time step size ∆t is investigated. The previously utilized
time step size of ∆t = 0.1 s is reduced to ∆t = 0.05 s and ∆t = 0.01 s, respectively,
during phase transformation, which takes mostly place between t = 8 s and t = 40 s.
Figures 10.5 and 10.6 depict the stress component σ̄22 along the x̄1-axis after t = 20 s for
discretizations MF and FF, respectively. It is shown that a refinement of the time step
size improves the results in case of a medium sized mesh on both scales. For a macroscopic
discretization M and a microscopic fine mesh F, the stress curves fit very well for all time
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stepping schemes. Only small deviations can be seen for the refinement of the time step
size to ∆t = 0.5 s. Thus, overall it is seems most reasonable to chose the time step size
according to Equation (6.2) as

∆twater(t) =


0.1 s 0 s ≤ t < 8 s

0.01 s 8 s ≤ t < 40 s

0.1 s 40 s ≤ t ≤ 80 s

. (10.1)

22
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1

Figure 10.4: Tangential stresses σ̄22 for the x̄1-axis at x̄2 = 0 and t = 20 s for the dis-
cretization M and F of the macroscopic BVP and different microscopic meshes using time
step size ∆t = 0.1 s, adapted from Uebing et al. [191].

22

2
2

1

Figure 10.5: Tangential stresses σ̄22 for the x̄1-axis at x̄2 = 0 and t = 20 s for the dis-
cretization MF and different time step sizes of ∆t ∈ {0.1 s, 0.05 s, 0.01 s}, adapted from
Uebing et al. [191].
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1

2
2

22

Figure 10.6: Tangential stresses σ̄22 for the x̄1-axis at x̄2 = 0 and t = 20 s for the dis-
cretization MM and different time step sizes of ∆t ∈ {0.1 s, 0.05 s, 0.01 s}, adapted from
Uebing et al. [191].

10.2 Microscopic stress analysis

Based on the mesh density study, it is aimed at the microscopic stress analysis in the hot
bulk forming cylindrical specimen, which is treated in the same manufacturing process,
that has already been introduced in Section 6.2.1 and for which the mesh density and
time step size has been studied in the previous Section 10.1. Therefore, a two-dimensional
slice of the undeformed cylindrical specimen is taken into account, exploiting symmetry
conditions, see Figure 10.7. Therein, the dimension of the macroscopic geometry as well
as the displacement and temperature bound for the thermo-elasto-plastic modeling are
depicted. For the discretization, 20 quadrilateral elements with nine nodes in radial direc-
tion are chosen, according to the previously carried out study. The offset of the forming
history, which is applied in an initialization step, see Section 8.7, as well as the influence of
the TRIP are neglected. On the microscale, the RVE consists of 30× 30 four noded finite
elements, which corresponds to the discretization F. Moreover, a constant temperature
is considered in each RVE, since it is attached to one macroscopic material point. Here,
also an arbitrary switching scheme is applied to describe the phase transformation on the
microscopic level.

In focus of the analysis are three regions of the macroscopic geometry, which are marked as
I, II and III, and to which a local refinement of the macroscopic mesh is applied. Further-
more, three points of each of these regions are of special interest, which are marked with
the symbols �, 5 and 4, respectively. In a first study, the austenite-to-martensite phase
transformation is investigated on the microscopic scale and related to the macroscopic
temperature distribution in the cylindrical slice, see Figures 10.8 and 10.9. If the temper-
ature is higher than the martensitic start temperature of θMs = 185 ◦C, the material is
fully austenitic. The phase transformation takes place for temperatures lower than θMs as
seen in Section 6.2 for a similar geometry in a single-scale analysis. Then, the martensitic
volume fraction starts to increase in regions near the outer lateral surface in point 4 be-
fore t = 9 s in case of cooling in water, so that Figure 10.8a depicts a significant amount
of martensitic elements. In regions near the inner lateral surface as in point �, the onset
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Figure 10.7: Two-scale boundary value problem to numerically simulate the cooling
process. A two-dimensional slice of the cylindrical specimen in combination with two-
dimensional boundary value problems to depict the austenite-to-martensite transformation is
considered. On the macroscale, the boundary conditions u2 = 0 on ∂B̄u, q̄0 = 0 on ∂B̄q, t̄ = 0
on ∂B̄t and θ̄ on ∂B̄θ as given in Figure 6.20 are applied. The final phase distribution is given
on the microscale with austenite in gray and martensite in red. Regions I, II and III with
microscopic investigation points are marked in green, adapted from Uebing et al. [192].

of the phase transformation occurs later than at the outer lateral surface, since the inner
surface is cooled slower than the outer one. Thus, after t = 9 s, no martensite is present
in these regions, while after t = 12 s the austenite-to-martensite phase transformation has
already set in, cf. Figure 10.8b.

With ongoing cooling over the lateral surface, the temperature in the bulk material,
marked as point 5, also steps below the martensitic start temperature, so that the phase
transformations is initiated. Here, the bulk material at the thin side of the eccentricity, i.e.,
in region II, cools faster as a consequence of a faster heat conduction to the middle of the
region compared to the cuts I and III. But, after t = 20 s, the martensitic formation is far
advanced in every marked point �, 5 and 4 in each region I, II and III, cf. Figure 10.9a.
In a final state after t = 80 s, the cylindrical specimen is cooled down to room temperature
of approximately θRT = 20 ◦C, and in every investigated macroscopic integration point
87 % martensite and 13 % retained austenite are observed, see Figure 10.9b.

As already discussed in Sections 4.1 and 9, the austenite-to-martensite phase transfor-
mation comes along with a volumetric expansion of the atomic lattice, which is taken
as Ktm = 2 % in this examination. Thereby, newly switched martensitic elements are
known to show compressive stresses. For carrying out a first microscopic stress analysis,
the pressure term p = 1

3
tr σ̃ is taken into account. Figure 10.10 relates the distribution of

this pressure term to the martensitic volume fraction at certain times during the cooling
process for point4 in region III. With the onset of the phase transformation, compressive
stresses occur in the martensitic elements as found before, cf. Figure 10.10a. As more and
more martensite forms, these compressive stresses evoke tensile stresses in the austenitic
regions in between, which is a direct consequence of the interaction with neighboring ex-
panding finite elements see Figures 10.10b and 10.10c. In a final state, high compressive
pressure values up to p = −1500 MPa are observed in several martensitic elements, while
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Figure 10.8: Macroscopic temperature θ̄ in ◦C and microscopic phase fractions of
austenite (white) and martensite (red) after a) t = 9 s and b) t = 12 s, adapted from
Uebing et al. [192].
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Figure 10.9: Macroscopic temperature θ̄ in ◦C and microscopic phase fractions of austen-
ite (white) and martensite (red) after a) t = 20 s and b) t = 80 s, adapted from
Uebing et al. [192].
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the regions of retained austenite show tensile pressure values of up to p = 1500 MPa, cf
Figure 10.10d.

A M

phases

­1500 ­553 395 1342

pressure

time t = 8.8 s

temp θ = 182.2 ° C

A M

phases

­1500 ­553 395 1342

pressure

time t = 12 s

temp θ = 145.4 ° C

A M

phases

­1500 ­553 395 1342

pressure

time t = 20 s

temp θ = 100.1 ° C

A M

phases

­1500 ­553 395 1342

pressure

time t = 80 s

temp θ = 19.92 ° C

a) b)

c) d)

Figure 10.10: Evolution of microscopic phase transformation and relation to stress evolu-
tion in MPa on the RVE attached to region III point 4 after a) t = 8.8 s at the beginning
of the martensitic transformation, b) t = 12 s, c) t = 20 s and d) t = 80 s, adapted from
Uebing et al. [192].

In Section 8.8, quadratic measures are defined, which are utilized to investigate the in-
fluence of the microscopic fluctuations on the macroscale. Next to the previously defined
quadratic measure of the tangential stress fluctuations ‖σ̃tang‖VL2 , the quadratic measure
of the deviatoric part of the microscopic stress fluctuations, the quadratic measure of the
pressure term or the quadratic measure of single components of the microscopic stress fluc-
tuations are taken into account. These are defined in accordance with Equation (8.50) as

‖p‖VL2 =
√
〈p2〉 with 〈p2〉 =

1

V

∫
(
1

3
tr σ̃)2 dV ,

‖σ̃11‖VL2 =
√
〈σ̃2

11〉 with 〈σ̃2
11〉 =

1

V

∫
(σ11 − σ̄11)2 dV , (10.2)

‖(dev σ̃)11‖VL2 =

√
〈(dev σ̃)11

2〉 with 〈(dev σ̃)11
2〉 =

1

V

∫
(dev σ̃)11

2 dV .

Figure 10.11 displays the results for these four quadratic measures ‖p‖VL2 , ‖σ̃11‖VL2 ,
‖(dev σ̃)11‖VL2 and ‖σ̃tang‖VL2 at four different stages of phase transformation. Before the
phase transformation starts, all four measures are equal to zero, since no stresses are
evoked on microscopic level, because the temperature is a constant state variable in
every RVE. Shortly after the onset of phase transformation at t = 9 s, the first dif-
ferences between the four measures become obvious, which are even more accessible af-
ter t = 12 s. The quadratic measure of the pressure ‖p‖VL2 shows values of around 1500 MPa
in regions near the outer lateral surface, which is higher than the computed values
of 1200 − 1300 MPa for ‖σ̃11‖VL2 or ‖σ̃tang‖VL2 . The measure of the deviatoric part of the
fluctuations ‖(dev σ̃)11‖VL2 is the smallest with values around 500 MPa in regions near the
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outer lateral surface, since the austenite-to-martensite phase transformation is character-
ized only by the volumetric expansion. If more and more martensite forms, the different
quadratic measures show nearly homogeneous values after t = 20 s. This is also true at
the end of the cooling process after t = 80 s. At this point, it still holds that the values of
‖p‖VL2 exceed the values of ‖σ̃11‖VL2 and ‖σ̃tang‖VL2 , which are higher than ‖(dev σ̃)11‖VL2 . But
overall, it is found that all four quadratic measures show qualitatively the same behavior.
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Figure 10.11: Macroscopic measures, namely ‖p‖VL2 , ‖σ̃11‖VL2 , ‖(dev σ̃)11‖VL2 and ‖σ̃tang‖VL2

in MPa after a) t = 9 s, b) t = 12 s, c) t = 20 s and d) t = 80 s, adapted from
Uebing et al. [192].

These quadratic measures can be used to evaluate the amount of the microscopic stress
fluctuations on the macroscale. Nevertheless, they are still a smeared quantity by defi-
nition. Thus, it is of interest to investigate the microscopic stress evolution on the RVE
directly. As before, no outer forces or moments are present, so that the evolving stresses
can be interpreted as residual stress. It holds that the macroscopic stress represents the
residual stresses of first type, while the microscopic stress fluctuations resemble the sum of
the residual stresses of second and third type. Occurring stress peaks, either compressive
or tensile, can influence the component’s properties immensely, but, a purely macroscopic
analysis or evaluation could lead to absolutely lower macroscopic stress values. As a con-
sequence of the homogenization, these microscopic stress peaks would not be depicted
in the macroscopic result although they are quite important as they could lead to e.g.
microscopic crack initiation. For this reason it is inevitable to know of these stress peaks
to make profound statements regarding the component’s properties and its behavior.
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Hence, in the following analysis, the microscopic tangential stress fluctuations σ̃tang are
compared to their macroscopic quadratic measure ‖σ̃tang‖VL2 . As stated previously, micro-
scopic stresses occur with the onset of the austenite-to-martensite phase transformation.
As depicted in Figures 10.12, 10.13 and 10.14, the martensite formation, which is in details
analyzed in Figures 10.8 and 10.9, comes along with the evocation of microscopic stresses.
In martensitic elements compressive stresses arise, which are surrounded by regions show-
ing less compressive or tensile stress values. In the beginning of the phase transformation
in regions near the outer lateral surface in point4, the quadratic measure ‖σ̃tang‖VL2 differs
from zero, see Figure 10.12, so that it can be concluded that the macroscopic measure
displays the microscopic residual stresses (second and third type) on the component level.
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Figure 10.12: Tangential part of stress fluctuations σ̃tang in MPa on microscale and
their quadratic measure ‖σ̃tang‖VL2 in MPa on the macroscale after t = 9 s, adapted from
Uebing et al. [192].

With ongoing cooling after t = 12 s or t = 20 s, microscopically complex stress pat-
terns are found consisting of compressive as well as tensile stress peaks, cf. Figures 10.13
and 10.14a. In accordance, the value of the quadratic measure increases in regions un-
dergoing the phase transformation. As more and more elements switch from austenite
to martensite, the stress evolutions in all points �, 5 and 4 become more and more
alike and thus, the quadratic measure shows a nearly homogeneous stress distribution.
As expected, the final state after t = 80 s shows almost no deviations in the microscopic
tangential stress distribution σ̃tang and as a consequence, the quadratic measure ‖σ̃tang‖VL2
is also almost entirely homogeneous, see Figure 10.14b. This is observed as expected, since
the microstructure of the whole component is at room temperature and consists of the
same phase fractions of austenite and martensite in the final state.
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Figure 10.13: Tangential part of stress fluctuations σ̃tang in MPa on microscale and
their quadratic measure ‖σ̃tang‖VL2 in MPa on the macroscale after t = 12 s, adapted from
Uebing et al. [192].

In a last step, the quadratic measure ‖σ̃tang‖VL2 , which represents the microscopic resid-
ual stresses on the macroscale, is compared to the macroscopic residual stresses σ̄tang. As
shown in Figure 10.15a, the fast cooling evokes tensile stresses in regions near the lateral
surface for σ̄tang due to the thermal contraction. At this point t = 5 s, the phase transfor-
mation is not initiated and thus, the microscopic residual stresses, measured by ‖σ̃tang‖VL2 ,
is equal to zero.

When the austenite-to-martensite phase transformation starts, the stresses σ̄tang change
their sign in the regions near the outer lateral surface, cf. Figure 10.15b. There, compres-
sive stresses occur, which are a consequence of superposition of the tensile stresses due
to thermal contraction and high compressive stress fluctuations due to the volumetric
expansion of the unit cell during the lattice shearing. These high compressive microscopic
residual stress values are indicated by the high values of the quadratic measure ‖σ̃tang‖VL2 in
regions near the outer lateral surface, see also Figure 10.15c. In Figure 10.16 the macro-
scopic tangential residual stresses σ̄tang and the quadratic measure of the microscopic
tangential residual stresses ‖σ̃tang‖VL2 are compared with different color scaling in the final
state. Thereby, differences in the measure ‖σ̃tang‖VL2 are found, i.e., the residual stresses left
of the eccentricity are higher than on the right side. It is obvious, that the microscopic and
macroscopic residual stress plots do not fit qualitatively. On macroscale tensile stresses
are found in regions near the outer surface, while the bulk material shows compressive
stress values. This observations is in good accordance with previously carried out single-
scale computations of the cooling of a hot bulk formed part in water, see Section 6.2.4.
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Figure 10.14: Tangential part of stress fluctuations σ̃tang in MPa on microscale and their
quadratic measure ‖σ̃tang‖VL2 in MPa on the macroscale after a) t = 20 s and b) t = 80 s,
adapted from Uebing et al. [192].
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Figure 10.15: Tangential residual stresses of first type σ̄tang in MPa and macroscopic mea-
sure of microscopic tangential residual stresses ‖σ̃tang‖VL2 in MPa after a) t = 5 s, b) t = 9 s,
c) t = 12 s and d) t = 20 s, adapted from Uebing et al. [192].

In contrast to that, the microscopic (residual) stress fluctuations do not seem to relate
on their associated macroscopic position. At the end of the cooling, when the material
consists of the same amount of austenite and martensite in every macroscopic integration
point, a nearly homogeneous distribution of the quadratic measure is obtained.
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Figure 10.16: Tangential residual stresses of first type σ̄tang in MPa and macroscopic
measure of microscopic tangential residual stresses ‖σ̃tang‖VL2 in MPa after t = 80 s, adapted
from Uebing et al. [192].

10.3 Microscopic stress analysis including TRIP strains

Based on the previous results and the results of Section 9, a two-scale analysis of the hot
bulk forming of a cylindrical specimen with eccentric hole made from the Cr-alloyed steel
100Cr6 is carried out. In Section 6, the according two-dimensional single-scale bound-
ary value problem for cooling with different media has already been defined, cf. e.g.
Figures 6.9 and 6.20. In contrast to the mesh density study in Section 10.1 and the
microscopic stress analysis in Section 10.2, the cylindrical slice is cut from the deformed
cylindrical specimen. The geometry presented in Section 6.2 is now to be considered as the
macroscopic boundary value problem. Moreover, the displacement boundary conditions as
well as the thermal boundary conditions describing fast cooling in water over the lateral
surface of the specimen are adopted. Unfortunately, the mesh size study in Section 6.2.3
has shown that at least 5000 finite elements are necessary to obtain reasonable results
on the macroscopic level. This high number of degrees of freedom in combination with a
microscopic boundary value problem based on a representative volume element (RVE),
that also has a sufficient high number of microscopic elements, leads to high computa-
tional costs and very long computation times. Thus, it is inevitable to find a possibility
to reduce the numerical complexity of the macroscopic boundary value problem.

Therefore, the following procedure can be applied: In a first step, the single-scale ana-
lysis is carried out, see Section 6. During the calculation, the displacement in second
direction ū2,original is stored along the red dashed line for every computational step, see
Figure 10.17a. In a second step, the geometry is trimmed to the area beneath that dashed
line. The stored displacement ū2,original serves as an additional displacement boundary con-
dition, that provides information regarding the cut of material behavior in a single-scale
analysis of the cylindrical segment, see Figure 10.17b. In a final step, a two-scale analy-
sis on the reduced cylindrical segment is carried out, for which the two-scale boundary
value problem is defined in Figure 10.18. Thereby, the number of macroscopic elements



Two-scale analysis of hot bulk forming process 153

is reduced to 300 finite elements (50 radial × 6 tangential), which resembles only 6 % of
the initial mesh with 5000 finite elements that is 50 elements in radial direction and 100
elements in circumferential direction.
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Figure 10.17: Geometries of two boundary value problems: a) A cylindrical slice with the
given dimensions and boundary conditions is cooled over the lateral surface. During the
calculation the displacement in second direction ū2,original is stored along the red dashed
line for every computational step. b) A segment of the cylindrical specimen is considered
with an additional boundary condition along the red dashed line ū2,segment = ū2,original.

On the microscopic level, two types of evolution strategies to depict the phase transfor-
mation are taken into account. As stated before, the fast cooling in water over the lateral
surface results in a diffusionless phase transformation from austenite to martensite. This is
considered either with an arbitrary switch or with a grain structure on the microscale. For
the latter the different grain orientations are taken into account in terms of rotated Bain
groups, cf. Section 9.4, which lead to nonuniform volumetric expansions of the atomic
lattice.
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Figure 10.18: Two-scale boundary value problem with additional boundary condition along
the red dashed line on the macroscale. The RVE on microscopic level is chosen either as
RVE with an arbitrary switch or with a grain structure considering individual orientations
as defined in Figures 9.3 or 9.6.
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10.3.1 Macroscopic and microscopic stress analysis

At first, macroscopic results of the single-scale boundary value problem, the segmented
boundary value problem in a single-scale analysis and the two-scale boundary value prob-
lem of the cylindrical segment taking into account either an RVE with an arbitrary switch
or a grain structure with individual grain orientations are compared. Therefore, the stress
evolutions in different macroscopic integration points over the complete cooling time are
taken into account, which are marked in Figure 10.18 as points P1 and P2.

As shown in Figure 10.19, the different boundary value problems lead to small deviations
regarding the macroscopic tangential stresses σ̄22 = σ̄tang in both points P1 and P2.
The stress evolutions in both points for the full and the segmented single-scale boundary
value problems fit very well. Regarding point P1, the tensile and compressive stress peaks
of ≈ 750 MPa and −1350 MPa are nearly of the same level and the final stress value
of 100 MPa coincides. Hence, the way to obtain the segmentation is assumed to be a
simplified but good method. The segmented two-scale boundary value problem with the
RVE utilizing the arbitrary switch results in a slightly less pronounced compressive stress
peak of −1000 MPa around t = 18 s. Taking into account a grain structure with 40 grains
leads to the highest compressive stress around −800 MPa. This offset propagates in the
individual stress curves, so that the final values of both multi-scale calculations exceed
the single-scale results. At the end of the cooling at time t = 80 s, these respective stress
values are σ̄22 = 300 MPa in case of the arbitrary switch and σ̄22 = 400 MPa in case of
the grain structure.

a) b)

Figure 10.19: Comparison of the evolution of the stress component σ̄22 in MPa in two
different macroscopic integration points located near a) P1 and b) P2 for the full single-
scale boundary value problem, the segmented single-scale boundary value problem and the
segmented two-scale boundary value problem.

For point P2 a qualitatively similar stress evolution is observed. With the onset of the
phase transformation in regions near the lateral surface, where the points of interest
are located, macroscopic compressive stresses arise. Here, the compressive stress peak
is the smallest for the multi-scale approach utilizing the RVE with the grain structure,
σ̄22 = −800 MPa, and largest for the segmented single-scale model, σ̄22 = −1600 MPa.
Again, this difference remains throughout the cooling process. In the final state, both
single-scale approaches and the multi-scale approach with the arbitrary switch fit quite
well. The final stress value lies between σ̄22 = 100 MPa to 200 MPa. In case of the multi-
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scale investigation with the RVE utilizing the grain structure, these values are significantly
exceeded. Nevertheless, both single-scale approaches and the two-scale approach with the
RVE utilizing the arbitrary switch are qualitatively in good accordance with respect to
the macroscopic stress evolution. It can be concluded that the macroscopic quantities are
close enough for the purpose of carrying out a microscopic analysis in terms of a two-
scale approach. Therewith, information regarding the phase transformation and related
microscopic stresses are gained. Regarding the computation with individual grain orien-
tations, it is confirmed that the grain size impacts the final stresses. These findings are
in good agreement with previous investigations in Section 9.4. However, it is important
to examine other methods of obtaining the segment. In this approach, only the displace-
ment in x̄2-direction is applied along the red dashed-line and the temperature evolution
or the displacement in x̄1-direction is neglected. Taking into account both could lead to
improved results and should be considered in further studies.

Figures 10.20 and 10.21 depict the macroscopic tangential stress σ̄tang and the microscopic
stress component σ22 in relation to the phase evolution for the RVE evaluated in the in-
tegration point nearest the left lower corner, marked as P1 in Figure 10.19. The upper
plot always refers to an RVE with arbitrary switch while the lower one shows the results
of a microstructure consisting of 40 grains with respective grain orientation. Before the
onset of the phase transformation, both computations give the same results. On the left
lateral surface, which cools fastest, macroscopic tensile stresses of approximately 700 MPa
are observed as a consequence of thermal contraction. In both RVEs, the according ho-
mogeneous stress values for σ22 are found, cf. Figure 10.20a. With the onset of the phase
transformation, the stress distributions in both RVEs are not homogeneous any more, see
Figure 10.20b and c. In case of an arbitrary switch, elements considered to be martensite
show compressive stresses due to the volume change of the unit cell and in the austenitic
matrix, resultant tensile stresses are observed. In case of a grain structure, three prominent
martensitic grains start to form, which evoke tensile stresses in the surrounding austenitic
material. Since the macroscopic stresses are computed by homogenization of the micro-
scopic stresses, the region near the outer lateral surface shows compressive stress values
on the macrolevel for both boundary value problems.

After 15 seconds of cooling, in the middle of the phase transformation, stresses
of −750 MPa are observed in regions near the left and right lateral surface for the RVE
with the arbitrary switch, see Figure 10.21a. In case of the RVE with the grain structure,
that value at the right lateral surface, σ̄tang ≈ −400 MPa is clearly larger, what fits the
observation in Figure 10.19. When the phase transformation proceeds to the bulk ma-
terial, the macroscopic compressive stresses are weakened and tensile stresses in regions
near the lateral surface occur, see Figure 10.21b and c. For the computations utilizing
the arbitrary switch, theses stress values are less compared to the RVE with the grain
structure. On the microscale, both RVEs show complex stress states with compressive
and tensile stress peaks, which can roughly be mapped onto the occurring martensitic or
austenitic regions. At the end of the cooling process, the macroscopic tangential stress
distribution shows tensile stresses near the lateral surface and compressive stress values
in the bulk material, which is in accordance with the full single-scale computation, see
Section 6.2.4. The RVE with the grain structure evokes higher macroscopic tensile stress
values in the component than the RVE utilizing the arbitrary switch.
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Figure 10.20: Macroscopic tangential stress σ̄tang in MPa and microscopic stress σ22 in MPa
related to the phase evolution computed with two different RVEs, namely an arbitrary switch
or a grain structure with different grain orientations at certain points in time a) t = 7 s,
b) t = 8.6 s and c) t = 10 s.
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Figure 10.21: Macroscopic tangential stress σ̄tang in MPa and microscopic stress σ22 in MPa
related to the phase evolution computed with two different RVEs, namely an arbitrary switch
or a grain structure with different grain orientations at certain points in time a) t = 15 s,
b) t = 30 s and c) t = 80 s.
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The stress evolution on different scales has been object of the analysis. In absence of
outer forces and moments and since there is no temperature gradient in the final com-
ponent’s state, these stresses can be interpreted as residual stresses. With regard to the
color legend in Figure 10.21c, one finds prominent differences between macroscale and mi-
croscale. On the upper scale, the stresses σ̄tang are in a range from−750 MPa to +750 MPa.
On the lower scale, the color legend ranges from −2000 MPa to +1000 MPa. Thus, high
microscopic residual stress peaks, neither tensile nor compressive ones, are not predictable
in single-scale investigations, although they are eminently significant with respect to the
component’s properties. Such high microstresses can induce microscopic cracks or pro-
mote the crack growth, especially if tensile residual stresses are present. Thereby, the
component’s strength can be reduced and the service-life shortened. For that reason, the
targeted induction of predefined residual states is subject to current research, i.e., the
induction of compressive residual stresses in regions near the outer surface. Adopting the
cooling route, e.g. by application of a spray cooling, cf. Section 6.2.6, leads to compressive
stresses in regions near the outer lateral surface, which is known to influence the compo-
nent’s behavior positively. Moreover, the microscopic residual stress distribution is also
altered, see e.g. Hellebrand et al. [76].

10.3.2 Quadratic measure of microscopic fluctuations

Multi-scale methods enable the analysis of macroscopic and microscopic residual stresses
in the component and the RVE, respectively, see Section 10.3.1. In addition, a repre-
sentation of the microscopic stresses on the macroscale is of interest in the following.
Therefore, the quadratic measures of the microscopic stress fluctuations are taken into
account as defined in Section 8.8, which allow to study the influence of the microscopic
fluctuations on the macroscopic stresses. At this point it is emphasized once more that it
is unavoidable to define a quadratic measure, since the volume average of the microscopic
stress fluctuations σ̃ is zero by definition, i.e., 〈σ̃〉 = 0. However, a main disadvantage
of such a quadratic measure is that information concerning the stress sign is lost. That
means that due to the even exponent, it is no longer possible to deduce on the macroscale
whether tensile or compressive stresses are present on the microscale. Here, the quadratic
measure of the microscopic tangential part of the stress fluctuations ‖σ̃tang‖VL2 is evaluated
in the following, cf. Equation (8.50). The results at certain points in time are depicted in
Figure 10.22. Therein, the quadratic measure ‖σ̃tang‖VL2 is investigated for both the RVE
considering an arbitrary switch and the RVE with a grain structure.

Before the phase transformation starts, the fluctuations σ̃tang and their quadratic mea-
sure ‖σ̃tang‖VL2 are zero as expected, cf. Figure 10.22a. Observed macroscopic and micro-
scopic stresses, as depicted in Figure 10.20a, are hence of thermal nature. When the region
near the outer lateral surface is cooled below the martensitic start temperature, i.e., the
austenite-to-martensite phase transformation is switched on, this does not hold anymore.
On the microscale, one observes a non-homogeneous microstructure consisting of auste-
nite and martensite for both type of RVEs (arbitrary or grain structure), cf. Figures 9.13
and 9.15. The related microscopic tangential stress fluctuations show a combination of
tensile and compressive stress values. The latter are due to several elements switching to
martensite and the related volumetric expansion of the atomic lattice. For the RVE with
the grain structure, these regions are only few but larger and more pronounced as it is
the case for the RVE with an arbitrary switch, see Figure 10.22b. On the macroscale, first
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differences regarding the evolution of the quadratic measure ‖σ̃tang‖VL2 can be noticed at
time t = 8.6 s, comparing the two evolution strategies. For an arbitrary switch, a higher
maximum value of ‖σ̃tang‖VL2 ≈ 700 MPa is computed, while the grain structure results
in a reduced maximum value of ‖σ̃tang‖VL2 ≈ 375 MPa. Please note that each macroscopic
plot has its own, individual color legend. This difference on the macrolevel continues to
accumulate, so that after ten seconds of cooling maximum values of ‖σ̃tang‖VL2 ≈ 1300 MPa
and ‖σ̃tang‖VL2 ≈ 500 MPa, respectively, are found, cf. Figure 10.22c. At this time, both
RVEs show qualitatively the same behavior as in Figure 10.22b, resulting in a mix of
regions with tensile and regions with compressive stresses. The progress of the phase
transformation leads to increasing values for the quadratic measure in regions close to
the lateral surface in both computations. But, it can be observed that after 15 seconds of
cooling the RVE with the arbitrary switch yields values about twice as large as the RVE
with the grain structure, see Figure 10.22d. At a lateral state of cooling after t = 30 s,
the phase transformations also take place in the bulk of the component, so that the val-
ues of the quadratic measure for the RVEs differ by a factor of 1.5, approximately, cf.
Figure 10.22d. The macropscopic deviations, although slightly weakened, do not resolve
until end of cooling, see Figure 10.22e.

This study shows that the grain structure on the microscale has an influence on the
resulting microscopic stresses and microscopic residual stresses, respectively, which fur-
ther influence their macroscopic counterparts. While both martensitic evolution strategies
describe nearly the same macroscopic stress response for σ̄tang, significant discrepancies
are seen in the evaluation of the quadratic measure of the microscopic fluctuation of the
tangential stresses. To interpret this, it is best to look at the definition of the stress fluctu-
ations given in Section 8, i.e., σ̃ = σ− σ̄, which is equivalent to σ = σ̃+ σ̄. Accordingly,
the influence of the fluctuations on the stresses is larger for an RVE with the arbitrary
switch than for an RVE with the grain structure. Conversely, for the latter it must be true
that the influence of the homogeneous part is greater than for an RVE with the arbitrary
switch. Section 9.3.3 already showed that the number of grains in the microstructure has
an effect on the resulting macroscopic stresses. A higher number of grains is equivalent
to a finer grain size, as is the case for the RVE with the arbitrary switch. The RVE with
the grain structure is based on 40 grains, which is therefore interpreted as RVE with
coarse grain size. Thus, the almost double values of the quadratic measure for RVEs with
fine grain size compared to the coarse grain size proof the influence of the grain size on
the phase transformation and the associated stress development. Such an effect of the
initial austenitic grain size with respect to the phase transformation is also evident in
Heinze et al. [75], Klaproth and Vollertsen [90], Celada-Casero et al. [25]
and Behrens et al. [16].
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Figure 10.22: Macroscopic quadratic measures of tangential stress fluctuations ‖σ̃tang‖ in
MPa and microscopic tangential stress fluctuations σ̃tang in MPa computed with two different
RVEs, namely an arbitrary switch or a grain structure with different grain orientations at
certain points in time a) t = 7 s, b) t = 8.6 s, c) t = 10 s, d) t = 15 s, e) t = 30 s and
f) t = 80 s.
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11 Conclusion and Outlook

This doctoral thesis focused on the numerical investigation of the development of residual
stresses in hot bulk forming parts. Therefore, particularly the third process step of hot bulk
forming, which is the cooling of the heated and formed specimen, was of interest. Different
cooling routes were applied to insert varying residual stress profiles in a specimen. Thus,
targeted cooling led to predefined residual stress distributions in the component. In order
to carry out a numerical analysis of these cooling procedures, material models were set
up in terms of the Finite Element Method.

Thus, this work started with an introduction to the basic principles of continuum mechan-
ics, which are the kinematics, the concept of stress and the balance principles. Afterwards
the idea of the Finite Element Method was outlined, which was utilized in order to solve
a boundary value problem. In this context, the discretization of the geometry, the formu-
lation of the weak form as well as its linearization and the assemblation of the algebraic
set of equations were discussed. The later was solved with an iterative Newton-Raphson
scheme. In order to investigate thermo-mechanically coupled problems, surface finite ele-
ments, which can be used to describe the heat flux at the surface of the geometry, were
introduced. Based on the considered material and the temperature path, different phases
can occur, which show specific material properties. For the determination of these phase-
specific material properties, interpolation schemes were required, which depend either on
the temperature or on the temperature and the accumulated plastic strains. In a next
step, a thermo-mechanically coupled constitutive material model was derived taking into
account three different approaches to compute the effective material behavior. Here, ei-
ther the phase-specific material parameters were directly averaged or the phase-specific
stresses and moduli were determined, which were then averaged subsequently. This ave-
rage based on the individual volume fractions of the occurring phases and hence, it was
inevitable to depict these volume fractions accurately. Thus, for the numerical descrip-
tion of the actual volume fractions, the Johnson-Mehl-Avrami-Kolmogorov equation for
diffusion controlled (e.g. pearlite) and the Koistinen-Marburger differential equation for
a diffusionless (e.g. martensite) phase transformation were presented. Since phase trans-
formations are one origin to evoke residual stresses, these were defined and the three
different types of residual stresses were characterized based on the scale, they act on.
Furthermore, the microscopic phase transformations from an initially austenitic phase to
different product phases, here martensite or pearlite, depending on the cooling route, were
incorporated in the single-scale material model. Therefore, an additive split of the total
strains into five different parts, namely elastic, plastic, thermal, transformation volumetric
and transformation induced plasticity strains was taken into account.

A first numerical investigation compared the different effective material models. It is
found that the “semi-analytical multi-phasemmaterial model, which averages phase spe-
cific stresses and tangent moduli, differs from a material model utilizing harmonic effec-
tive parameters, but is in good accordance with that one using arithmetically averaged
parameters. However, these both approaches do not enable to distinguish into phase-
specific contributions, i.e., types of residual stresses, and thus, the “semi-analytical multi-
phasemmodel seems most suitable for the incorporation of phase transformational effects.
Therewith, the cooling of a cylindrical specimen with eccentricity was considered. A mesh
density and time step size study was carried out, so that it was possible to balance nu-
merical costs and accuracy. It is found that the temperature gradient as well as the phase
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transformation require a fine but not overdone discretization. Then, different cooling me-
dia, which are water or air or the application of a spray cooling, were considered and the
respective influence on the resulting macroscopic stress distribution was analyzed. While
cooling by air led to overall small residual stress values in the material, cooling in water
evoked tensile residual stresses in regions near the outer surface. This contradicted the
aim for compressive stresses in regions near the outer surface to improve the component’s
properties in case of tensile loading. The compressive residual stress in regions near the
outer surface was achieved by applying a spray cooling on the thick side of the specimen,
which resulted in the targeted compressive stress state in the spray exposed region. Both,
cooling in water and with the spray, led to the same amount of martensite in the austenitic
parent phase in the microstructure. Hence, it is evident that the residual stress state in
a hot bulk forming component is effected by the change of the cooling route and not by
direct microstructural modifications. Furthermore, the realization of surface elements to
describe the cooling over the component’s boundary serves as practical tool to describe
the cooling without having to know the exact temperature evolution initially. Once the
heat transfer coefficients have been determined for the material to be investigated and
the chosen ambient medium, various geometries can be analyzed. A previous experimental
realization and measurement of the temperature profile are then no longer required. This
provides a fast, cost-saving and efficient method to evaluate different cooling routes with
regard to the resulting stress distributions. It is shown that including TRIP effects is an
important factor to describe the stress evolution due to the austenite-to-martensite phase
transformation accurately. The extrusion of the cylindrical slice to a three-dimensional
boundary value problem showed the relevance of the third dimension, because it also
took into account the heat flow over the component’s height. It is found that thereby,
the cooling progresses slower to the bulk, which also effects the stress evolution in re-
gions near the outer surface with a delay compared to the two-dimensional results. As a
consequence, the analyzed stress curves fit experimental measurements and the predicted
behavior quite well. In connection with surface elements this three-dimensional realization
provides a great numerical tool to investigate the cooling of hot bulk forming parts with
highly complex geometries and divers cooling media in future work.

These single-scale finite element analyses provided information on stress developments at
the component level and could be evaluated as residual stresses in the final state. Macro-
scopic residual stresses (first type) are caused by microscopic phenomena and the resulting
microscopic residual stresses (second and third type). For the purpose of analyzing these
microscopic residual stresses, two-scale finite element computations were used to resolve
the microscale. In order to find a suitable RVE to represent the austenite-to-martensite
phase transformation, a simplified thermo-mechanical boundary value problem was de-
vised. Four different martensitic evolution strategies using either a circular nucleus, a
diagonal structure, an arbitrary switch, or a grain structure with or without individual
grain orientations were defined for this purpose. It was found that a circular inclusion
is not a feasible approach to depict the phase fractions accurately. For high fractions of
martensite, the nucleus exceeds the boundary of the RVE domain and thus, the volume
fractions do not match the computed percentages precisely. Moreover, a circular inclusion
requires a very fine mesh density of the RVE, which leads to high computational efforts
that are circumvented by the other possible RVE definitions. A diagonal structure does
not differ from an arbitrary switch with regard to the macroscopic quantities, but needs a
complex algorithm to define the RVE. Hence, both RVE types with a circular inclusion or
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a diagonal structure seem not reasonable and, instead, the focus is on the arbitrary switch
and the grain structure. However, with respect to the latter, further microscopic studies
and experimental measurements are essential. With these findings, last but not least, a
two-scale investigation of the previously considered cylindrical specimen with eccentric
hole was considered and analyzed with respect to the stress development on both scales.
It is found that the grain size influences the stress evolution, i.e., finer grain sizes result
in lower final residual stress values compared to coarser grain sizes. The resolution of mi-
croscopic residual stresses enabled the analysis of microscopic tensile stress peaks, which
could promote crack growth in the microstructure but are not visible in the macroscopic
stress results. It is open to analyze how adapted cooling leads to predefined stress distri-
butions in the material and impacts the component’s properties, initially as well as in the
long term. Moreover, due to the knowledge of the importance of the third dimension, an
extension of the boundary value problem on both scales is indispensable.

Thus, in this work, a material model was formulated to represent the austenite-to-
martensite as well as the austenite-to-pearlite phase transformation. Using a simple but
meaningful geometry, the accuracy of the material model could be proven. Single- and
multi-scale finite element analyses showed good agreement with experimental investiga-
tions. Therefore, this material model can be used as a fundamental basis for further
scientific investigations. On the one hand, the influence of these residual stresses on the
component’s properties should be quantitatively measured. On the other hand, there is
the question of the stability of the residual stresses in the component over time. Both
could be determined in an efficient and detailed way by means of an extension of the
existing material model. In particular, multi-scale analyses provide information on the
origin of the residual stresses, whether they are of thermal nature or related to occurring
phase transformations, for instance. All this knowledge could be applied in manufacturing
processes of components with complex geometries, which are exposed to challenging loa-
ding conditions. A numerical tool for predicting how residual stresses are effected by even
small changes in the manufacturing process, and thus can lead to improved performance
of the component in service, will save cost, time and material in industrial applications.
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A Tensor calculus

In this thesis, the following notation for tensor calculus are used. In general, small letters
refer to scalar quantities such as v. Vectors are represented by bold face normal letters, e.g.
u or x. Taking into account the Euclidean base e1, e2, e3, vectors, second order tensors
or fourth order tensors can be written as

vector a = aiei

2nd order tensor A = Aijei ⊗ ej (A.1)

4th order tensor A = Aijklei ⊗ ej ⊗ ek ⊗ el .

Utilized tensor operations and important tensors are summarized in Table A.1. Therein,
δij refers to the Kronecker-Delta, which is defined as

δij =

{
1 i = j

0 else
. (A.2)

Table A.1: Tensor operations.

single contraction (vectors) a · b = aiei · bjej = AiBi

single contraction (2nd and 2nd) A ·B = Aijei ⊗ ej ·Bklek ⊗ el = AijBjlei ⊗ el
double contraction A : B = Aijei ⊗ ej : Bklek ⊗ el = AijBij

double contraction (4th and 2nd) C : A = Cijklei ⊗ ej ⊗ ek ⊗ el : Amnem ⊗ en
= CijklAklei ⊗ ej

dyadic product A⊗B = Aijei ⊗ ej ⊗Bklek ⊗ el
= AijBklei ⊗ ej ⊗ ek ⊗ el

2nd order unity tensor I = δij

4th order unity tensor II = 1
2
(δikδjl + δilδjk)

projection tensor IP = II− 1
3
I ⊗ I

Voigt notation
For the implementation of the material model, it is useful to take advantage of the sym-
metry of the strain tensor ε and the stress tensor σ, respectively. Instead of writing the
full tensor

ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 or σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (A.3)

the following simplification in the Voigt notation is used

ε =


ε11

ε22

ε33

2ε12

2ε23

2ε13

 or σ =


σ11

σ22

σ33

σ12

σ23

σ13

 . (A.4)
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The material tangent C, which has dimensions 9× 9,

C =



C1111 C1122 C1133 C1112 C1123 C1113 C1121 C1132 C1131

C2211 C2222 C2233 C2212 C2223 C2213 C2221 C2232 C2231

C3311 C3322 C3333 C3312 C3323 C3313 C3321 C3332 C3331

C1211 C1222 C1233 C1212 C1223 C1213 C1221 C1232 C1231

C2311 C2322 C2333 C2312 C2323 C2313 C2321 C2332 C2331

C1311 C1322 C1333 C1312 C3123 C3113 C3121 C3132 C3131

C2111 C2122 C2133 C2112 C2123 C2113 C2121 C2132 C2131

C3211 C3222 C3233 C3212 C3223 C3213 C3221 C3232 C3231

C3111 C3122 C3133 C3112 C3123 C3113 C3121 C3132 C3131


(A.5)

can also be written in Voigt notation as 6× 6 matrix, which is defined as

C =



C1111 C1122 C1133

1
2
(C1112

1
2
(C1123

1
2
(C1113

+C1121) +C1132) +C1131)

C2211 C2222 C2233

1
2
(C2212

1
2
(C2223

1
2
(C2213

+C2221) +C2232) +C2231)

C3311 C3322 C3333

1
2
(C3312

1
2
(C3323

1
2
(C3313

+C3321) +C3332) +C3331)
1
4
(C1212

1
4
(C1223

1
4
(C1213

1
2
(C1211

1
2
(C1222

1
2
(C1233 +C2112 +C2123 +C2113

+C2111) +C2122) +C2133 +C1221 +C1232 +C1231

+C2121) +C2132) +C2131)
1
4
(C2312

1
4
(C2323

1
4
(C2313

1
2
(C2311

1
2
(C2322

1
2
(C2333 +C3212 +C3223 +C3213

+C3211) +C3222) +C3233 +C2321 +C2332) +C2331

+C3221) +C3232) +C3231)
1
4
(C1312

1
4
(C1323

1
4
(C1313

1
2
(C1311

1
2
(C1322

1
2
(C1333 +C3112 +C3123 +C3113

+C3111) +C3122) +C3133 +C1321 +C1332 +C1331

+C3121) +C3132) +C3131)



. (A.6)
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B Discretization and linearization of a thermo-mechanical coupled boundary
value problem

In addition to the presented discretization and linearization of a purely mechanical bound-
ary value problem, this section deals with the realization of a thermo-mechanical material
in FEM, taking into account small strain theory. Therefore, the balance of energy has to
be considered with its weak form given in Equation (3.44). It can be reformulated and
linearized to

Gθ =

∫
B
ρ θ
∂2ψ

∂θ2
θ̇ δθ dv +

∫
B
ρ θ

∂2ψ

∂θ∂ε
: ε̇ δθ dv (B.1)

−
∫
∂B
q ·n δθ da +

∫
B
q · grad δθ dv = 0 ,

and ∆Gθ =

∫
B
δθTρ

∂2ψ

∂θ2
θ̇∆θ dv +

∫
B
δθTρ θ

∂3ψ

∂θ3
θ̇∆θ dv +

∫
B
δθTρ θ

∂2ψ

∂θ2
∆θ̇ dv (B.2)

+

∫
B
δθTρ θ

∂3ψ

∂θ2∂ε
θ̇ : ∆εdv +

∫
B
δθTρ

∂2ψ

∂θ∂ε
: ε̇∆θ dv +

∫
B
δθTρ θ

∂3ψ

∂θ2∂ε
: ε̇∆θ dv

+

∫
B
δθTρ θ

∂2ψ

∂θ∂ε
: ∆ε̇dv +

∫
B
δθTρ θ

∂3ψ

∂θ∂ε2
: ε̇ : ∆εdv +

∫
B
(grad δθ)T ·∆q dv .

The linearization of the heat flux vector in the last term of Equation (B.2) can be com-
puted with the non-negative heat conduction coefficient k as

∆q =
∂q

∂(grad θ)
∆(grad θ) = −k∆(grad θ) = −k grad ∆θ . (B.3)

If outer forces and acceleration terms are neglected, the extension of the weak form of
the balance of linear momentum in Equation (3.47) is linearized with respect to the
displacement u and the temperature θ as

Gu =

∫
B
σ : δε dv = 0 ,

⇒∆Gu =

∫
B
δεT : ρ

∂2ψ

∂ε2
: ∆ε dv +

∫
B
δεT : ρ

∂2ψ

∂ε∂θ
∆θ dv , (B.4)

with δε = gradsym δu.

Time integration scheme
In order to derive expressions for the occurring time derivatives of the temperature and
strains, θ̇ and ε̇, respectively, an implicit time integration scheme is utilized. As the acce-
leration is not taken into account, a backward Euler computation method is considered.
Thereby, one obtains based on the value of the actual time step, indicated by n+1, and
the last time step, indicated by n, as well as the time step size ∆t = tn+1 − tn

•̇n+1 =
•n+1 − •n

∆t
with • ∈ {θ, ε} , (B.5)

which means that it holds

∆θ̇ =
1

∆t
∆θ and ∆ε̇ =

1

∆t
∆ε . (B.6)
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Inserting into Equation (B.2) yields for the linearization

∆Gθ =

∫
B
δθTρ

∂2ψ

∂θ2
θ̇∆θ dv +

∫
B
δθTρ θ

∂3ψ

∂θ3
θ̇∆θ dv +

∫
B
δθTρ θ

∂2ψ

∂θ2

1

∆t
∆θ dv (B.7)

+

∫
B
δθTρ θ

∂3ψ

∂θ2∂ε
θ̇ : ∆εdv +

∫
B
δθTρ

∂2ψ

∂θ∂ε
: ε̇∆θ dv +

∫
B
δθTρ θ

∂3ψ

∂θ2∂ε
: ε̇∆θ dv

+

∫
B
δθTρ θ

∂2ψ

∂θ∂ε
:

1

∆t
∆εdv +

∫
B
δθTρ θ

∂3ψ

∂θ∂ε2
: ε̇ : ∆εdv −

∫
B
(grad δθ)T · k grad ∆θ dv .
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C Three-dimensional finite elements

The three-dimensional ansatz functions for linear (8 nodes) hexahedral elements, see Fig-
ure 3.3, are given by

N1(ξ, η, ζ) =
1

8
(1− ξ)(1− η)(1− ζ) , N2(ξ, η, ζ) =

1

8
(1 + ξ)(1− η)(1− ζ) ,

N3(ξ, η, ζ) =
1

8
(1 + ξ)(1 + η)(1− ζ) , N4(ξ, η, ζ) =

1

8
(1− ξ)(1 + η)(1− ζ) ,

N5(ξ, η, ζ) =
1

8
(1− ξ)(1− η)(1 + ζ) , N6(ξ, η, ζ) =

1

8
(1 + ξ)(1− η)(1 + ζ) ,

N7(ξ, η, ζ) =
1

8
(1 + ξ)(1 + η)(1 + ζ) , N8(ξ, η, ζ) =

1

8
(1− ξ)(1 + η)(1 + ζ)

and for quadratic (20 nodes) hexahedral elements by

N1(ξ, η, ζ) =
1

8
(1− ξ)(1− η)(1− ζ)(−ξ − η − ζ − 2) , N11(ξ, η, ζ) =

1

8
(1− ξ2)(1 + η)(1− ζ)2 ,

N2(ξ, η, ζ) =
1

8
(1 + ξ)(1− η)(1− ζ)( ξ − η − ζ − 2) , N12(ξ, η, ζ) =

1

8
(1− ξ)(1− η2)(1− ζ)2 ,

N3(ξ, η, ζ) =
1

8
(1 + ξ)(1 + η)(1− ζ)( ξ + η − ζ − 2) , N13(ξ, η, ζ) =

1

8
(1− ξ2)(1− η)(1 + ζ)2 ,

N4(ξ, η, ζ) =
1

8
(1− ξ)(1 + η)(1− ζ)(−ξ + η − ζ − 2) , N14(ξ, η, ζ) =

1

8
(1 + ξ)(1− η2)(1 + ζ)2 ,

N5(ξ, η, ζ) =
1

8
(1− ξ)(1− η)(1 + ζ)(−ξ − η + ζ − 2) , N15(ξ, η, ζ) =

1

8
(1− ξ2)(1 + η)(1 + ζ)2 ,

N6(ξ, η, ζ) =
1

8
(1 + ξ)(1− η)(1 + ζ)( ξ − η + ζ − 2) , N16(ξ, η, ζ) =

1

8
(1− ξ)(1− η2)(1 + ζ)2 ,

N7(ξ, η, ζ) =
1

8
(1 + ξ)(1 + η)(1 + ζ)( ξ + η + ζ − 2) , N17(ξ, η, ζ) =

1

8
(1− ξ)(1− η)(1− ζ2)2 ,

N8(ξ, η, ζ) =
1

8
(1− ξ)(1 + η)(1 + ζ)(−ξ + η + ζ − 2) , N18(ξ, η, ζ) =

1

8
(1 + ξ)(1− η)(1− ζ2)2 ,

N9(ξ, η, ζ) =
1

8
(1− ξ2)(1− η)(1− ζ)2 , N19(ξ, η, ζ) =

1

8
(1 + ξ)(1 + η)(1− ζ2)2 ,

N10(ξ, η, ζ) =
1

8
(1 + ξ)(1− η2)(1− ζ)2 , N20(ξ, η, ζ) =

1

8
(1− ξ)(1 + η)(1− ζ2)2 .

In Table C.1 the used integration points and their respective weights are given for linear
and quadratic elements in three dimensions.



170 Appendix

Table C.1: Gauss points with weighting factors for the three-dimensional case

dimension nnode np i
coordinates of GP weighting

ξi ηi ζi wi

3D 8 8

1 1/
√

3 1/
√

3 1/
√

3 1

2 1/
√

3 1/
√

3 −1/
√

3 1

3 1/
√

3 −1/
√

3 1/
√

3 1

4 1/
√

3 −1/
√

3 −1/
√

3 1

5 −1/
√

3 1/
√

3 1/
√

3 1

6 −1/
√

3 1/
√

3 −1/
√

3 1

7 −1/
√

3 −1/
√

3 1/
√

3 1

8 −1/
√

3 −1/
√

3 −1/
√

3 1

3D 20 14

1
√

19/30 0 0 320/361

2 −
√

19/30 0 0 320/361

3 0
√

19/30 0 320/361

4 0 −
√

19/30 0 320/361

5 0 0
√

19/30 320/361

6 0 0 −
√

19/30 320/361

7
√

19/30
√

19/30
√

19/30 121/360

8 −
√

19/30
√

19/30
√

19/30 121/360

9
√

19/30 −
√

19/30
√

19/30 121/360

10 −
√

19/30 −
√

19/30
√

19/30 121/360

11
√

19/30
√

19/30 −
√

19/30 121/360

12
√

19/30 −
√

19/30 −
√

19/30 121/360

13 −
√

19/30 −
√

19/30 −
√

19/30 121/360

14 −
√

19/30
√

19/30 −
√

19/30 121/360
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D Derivation of Avrami exponent n and constant KJMAK for JMAK equation

The derivation of the expressions of the Avrami exponent n and the constant KJMAK

for the JMAK equation presented in Section 4.1.1 reads as follows. One start with the
relations c(t01) = 0.01 ceq and c(t99) = 0.99 ceq and derives with t0 = 1 s for standardization

c(t01) = 0.01ceq c(t99) = 0.99ceq

⇔ c01 =
c(t01)

ceq
= 0.01 =

(
1− exp(−KJMAK(

t01

t0
)n)
)

c99 =
c(t99)

ceq
= 0.99 =

(
1− exp(−KJMAK(

t99

t0
)n)
)

⇔ exp(−KJMAK(
t01

t0
)n) = 1− c01 exp(−KJMAK(

t99

t0
)n) = 1− c99

⇔ exp(KJMAK(
t01

t0
)n) =

1

1− c01
exp(KJMAK(

t99

t0
)n) =

1

1− c99

⇔ KJMAK =
ln( 1

1−c01 )

( t01t0 )n

ln( 1
1−c01 )

( t01t0 )n
(
t99

t0
)n = ln(

1

1− c99
)

⇔
( t99
t0
t01
t0

)n
=

ln( 1
1−c99 )

ln( 1
1−c01 )

⇔ n = lg t99
t0
t01
t0

ln( 1
1−c99 )

ln( 1
1−c01 )

⇔ lgKJMAK = lg
(

ln(
1

1− c01
)
)
− n lg(

t01

t0
) n =

lg
(

ln( 1
1−c99 )

)
− lg

(
ln( 1

1−c01 )
)

lg( t99t0 )− lg( t01t0 )

⇒ lnKJMAK = ln
(

ln(
1

c99
)
)
− n ln(t01) n =

ln
(

ln( 1
c01

)
)
− ln

(
ln( 1

c99
)
)

ln(t99)− ln(t01)
.

(D.1)
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E HTCs for air and spray

Experimental investigation and single-scale numerical analysis are combined in order to
determine the heat transfer coefficients for different cooling media. The data is required to
investigate the cooling step of hot bulk forming processes in case surface elements are taken
into account to describes the heat flux over the lateral surface. If the cylindrical specimen
is cooled by air, a much lower HTC is set than for cooling in water, see Figure E.1. For
the realization of cooling with a spray, the HTC applied in the spray exposed region is
given in Figure E.2 depending on the temperature of the specimen. The boundary nodes
which are not exposed to the spray are in contact with air and are thus provided with the
according HTCs.

Figure E.1: Heat transfer coefficient for cooling by air in W/m2K, cf. Behrens et al. [17].

Figure E.2: Heat transfer coefficient for cooling with a spray in W/m2K, cf.
Behrens et al. [17].
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F C-code for Voronoi tessellation

//∗∗∗∗∗∗∗∗∗∗∗ w r i t e number o f voronoi c e l l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

#inc lude <s t d l i b . h>
#inc lude <f loat . h>
#inc lude <s t d i o . h>
#inc lude <math . h>

#d e f i n e N 40
#d e f i n e M 29
#d e f i n e seed 1234

int main ( )
{

srand ( seed ) ;
double x [N] , y [N ] ;
// x , y in [ 0 , 1 )
for ( int i =0; i<N; i++)
{

x [ i ] = (double ) rand ( )/RAND MAX;
y [ i ] = (double ) rand ( )/RAND MAX;

}
double dX=1.0/M;
for (double X=0; X<1; X+=dX)

for (double Y=0; Y<1; Y+=dX)
{

int iMin=−1;
double dMin=DBL MAX;
// f i n d ( x , y ) wi th minimal p e r i o d i c d i s t a n c e
for ( int i =0; i<N; i++)
{

double dx = fabs (X−x [ i ] ) ;
i f (dx>0.5)

dx = 1−dx ;
double dy = fabs (Y−y [ i ] ) ;
i f (dy>0.5)

dy = 1−dy ;
double d=dx∗dx+dy∗dy ;
i f (d<dMin)
{

dMin = d ;
iMin = i ;

}
}
p r i n t f ( ”%d ” , iMin ) ;

}
// f l u s h
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p r i n t f ( ”\n” ) ;
return 0 ;

}

©Dr.-Ing. Rainer Niekamp
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