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Fully automated preoperative 
liver volumetry incorporating 
the anatomical location 
of the central hepatic vein
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Murat Dayangac4, René Hosch1,2, Johannes Haubold1, Nils Flaschel1,2, Felix Nensa1,2* & 
Eugen Malamutmann3

The precise preoperative calculation of functional liver volumes is essential prior major liver resections, 
as well as for the evaluation of a suitable donor for living donor liver transplantation. The aim of this 
study was to develop a fully automated, reproducible, and quantitative 3D volumetry of the liver 
from standard CT examinations of the abdomen as part of routine clinical imaging. Therefore, an 
in-house dataset of 100 venous phase CT examinations for training and 30 venous phase ex-house 
CT examinations with a slice thickness of 5 mm for testing and validating were fully annotated with 
right and left liver lobe. Multi-Resolution U-Net 3D neural networks were employed for segmenting 
these liver regions. The Sørensen-Dice coefficient was greater than 0.9726 ± 0.0058, 0.9639 ± 0.0088, 
and 0.9223 ± 0.0187 and a mean volume difference of 32.12 ± 19.40 ml, 22.68 ± 21.67 ml, and 
9.44 ± 27.08 ml compared to the standard of reference (SoR) liver, right lobe, and left lobe annotation 
was achieved. Our results show that fully automated 3D volumetry of the liver on routine CT imaging 
can provide reproducible, quantitative, fast and accurate results without needing any examiner in the 
preoperative work-up for hepatobiliary surgery and especially for living donor liver transplantation.

Abbreviations
2D  Two-dimensional
3D  Three-dimensional
CNN  Convolutional neural network
CT  Computer tomography
EDT  Euclidean distance transform
GPU  Graphics processing unit
OLS  Ordinary least squares
RVD  Relative volume difference
SoR  Standard of reference
t-SDF  Truncated signed distance field
VD  Volume difference

Accurate assessment of the liver volume is essential in the preoperative work-up for hepatobiliary surgery. Future 
remnant liver volume is a key factor for oncologic liver resections, as well as for optimal donor selection in living 
donor liver transplantation. The postoperative morbidity and mortality rate of living donor liver transplantation 
correlates significantly with functional liver volume for the recipient and the donor. The total liver volume has a 
known relation to the body weight, which is described to be around 2.5% in healthy  subjects1. In order to avoid 
liver dysfunction in the recipient, the graft weight to body weight ratio should be at least 1%. For non cirrhotic 
livers in healthy subjects, resections of up to 80% of the liver volume can be tolerated. The remnant volume in 
living donors should be at least 30% of the liver volume since donor safety has absolute priority. The generally 
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accepted tool for the estimation of the liver volume and its lobes is the contrast enhanced computed tomography 
or magnetic resonance imaging. The volumetry of the right and left liver lobes is extremely time-consuming 
and, depending on the experience of the examiner, afflicted with an estimation error of 5%-35%2–4. There are 
several new software tools for automated and accurate volumetry developed in the last few years. These tools are 
still very time-consuming and depend on the experience of the examiner. The aim of our study was to develop 
a convolutional neural network (CNN) based tool for fully automated preoperative assessment of right and left 
liver volumes with respect to the central hepatic vein from standard computed tomography scans of the liver, 
without the need of an experienced examiner, which is reproducible and fast.

Materials and methods
Ethics statement. The study was approved by the Institutional Review Board of the University Hospital 
Essen (approval number: 19–8804-BO). Written informed consent was waived by the ethics board due to the 
retrospective nature of the study. All methods and procedures were performed in accordance with the relevant 
guidelines and regulations.

Dataset. In this work, a dataset consisting of 100 abdominal/liver CT scans (53 female, 47 male) with a slice 
thickness of 5 mm was collected at the University Medicine Essen. For validation an external dataset consisting 
of 30 CT scans (12 female, 18 male) with a slice thickness of 1.5 mm was collected from the Medipol University 
Hospital in Istanbul, Turkey. The validation data was resampled to 5 mm slice thickness for a unified voxel spac-
ing. All CT scans were performed with multidetector-row CT systems, mainly with 16- or higher detector-row 
systems. Venous phase imaging was performed 70–80 s after intravenous administration of a contrast agent, 
with a median tube voltage of 100 kVp ranging from 90 to 120 kVp. Please refer to the supplement for detailed 
information about the scanner parameters. The training data set was annotated by a single reader with right and 
left lobe segments, whereas the test data set was annotated by three different readers. In addition, a standard of 
reference (SoR) was derived from all three readers by majority voting. Voxels without majority annotation were 
marked with an ignore label and thus ignored in subsequent analyses.

Network design. A popular network architecture choice for medical image segmentation is the U-Net5, 
especially promoted to be good for optimization with very few examples. Shortly after, a modified version for 3D 
imaging, namely U-Net3D6, was presented, in order to utilize the spatial context of volumetric data. However, 
U-Net and their simple variants suffer from some basic problems regarding the feature processing flow and 
therefore most recent formulations of those networks use more complex skip connections instead of simple 
identity skip connections between the encoder and decoder.

In this paper, we adopted the architecture of the Multi-Resolution U-Net7 from 2D to 3D imaging by replac-
ing all 2D convolutions and max-pooling layers with their respective 3D counterparts. Additionally, since GPU 
memory is the main limitation when working with 3D data, batch  normalization8 layers were replaced by instance 
 normalization9 layers in order to be able to use batches with only a single example. The complete architecture as 
well as all building blocks and utilized layers are visualized in Fig. 1.

In short, the network architecture involves two changes to the standard U-Net architecture. First, instead 
of two successive convolutional layers with normalization and activation like in VGG  networks10, multiple 
receptive fields are computed by factorizing a 7 × 7 × 7 convolution into three successive 3 × 3 × 3 convolutions 
and concatenating the intermediate results along the channels axis, followed by a normalization and activation 
layer. In addition to the factorized convolution, a simple 1 × 1 × 1 convolution is used as a residual path and both 
results are added as in residual networks (Res-Nets)11. The second modification concerns the skip connections 
between the encoder and decoder. Instead of a simple identity function, multiple residual blocks are used in 
order to close the so-called “semantic gap”.

For the final classification layer, the softmax activation function was chosen. Additionally, we introduced an 
auxiliary classifier to solve a truncated Signed Distance Field (t-SDF) regression task 12, which will be explained 
in more detail in the next section. The final loss function for optimization consists of a weighted combination of 
a categorical cross entropy loss and generalized soft dice  loss13,14, similar to Isensee et al. 13, as well as a L1 loss 
for the t-SDF regression.

Preprocessing. All CT images have a variable number of slices and were resampled to an axial resolution 
of 256 × 256 in order to reduce the computational load and amount of required GPU memory. CT images are by 
default stored as Hounsfield Units (HU), a standardized measurement of voxel density. For model input, the HU 
values were rescaled and clipped to [− 1, 1] using three different HU windows. A sample composite RGB image 
is shown in Fig. 2. Theoretically, a single HU window including all available information should be sufficient. 
However, it was empirically observed that using multiple windows led to better convergence, especially with 
mixed precision training.

During training, the CT images were further processed by employing a random data augmentation pipeline. 
Since the dataset at hand is rather small, augmentations can help to train better generalizing networks. First, 
random rotations within − 10° and 10° were applied, which mimics minor rotary patient movements. Second, 
axis independent scale augmentations in the range of 80–120% were applied. Third, the resampled CT images 
were randomly cropped to 32 × 128 × 128 voxels. This can be interpreted as loss sampling and also forces the 
network to learn more spatially-aware features.

For the t-SDF regression, the groundtruth multi-class labels need to be converted into distance maps. A 
fast Python implementation of the euclidean distance transform (EDT) can be found at https:// github. com/ 
seung- lab/ eucli dean- dista nce- trans form- 3d, which is even compatible with 3D data, multi-label annotations, and 

https://github.com/seung-lab/euclidean-distance-transform-3d
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anisotropic voxel spacing. As visualized in Fig. 3, the signed EDTs of both class labels are computed and in the 
last column, the difference between hard classification boundaries and t-SDF regression is visualized. Normally, 
an EDT only computes the distance inside a label to the closest border pixel. Using the above-mentioned library 
for multi-label distance computation, the binary class label mask is shifted up by one, so that the background 
pixels have value of 1 and foreground pixels have value 2. The signed EDT can then be efficiently computed using 
the masking operation for regions with value 1 and 2. Distances are by default unbounded, but unbounded value 
regression does not work well with the limited receptive field of CNNs. Hence, the distances are clipped to [− 25, 
25] mm to the closest border pixel and afterwards rescaled to [− 1, 1].
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Figure 1.  Architecture of the Multi-Resolution U-Net for liver lobe classification with auxiliary truncated 
Signed Distance Field (t-SDF) regression.
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Figure 2.  Visualization of the network inputs with multiple hounsfield windows applied. WC = Window Center, 
WW = Window Width. From left to right: all Hounsfield Units within 12-bit scanner data, abdominal soft tissue 
window, liver tissue window, and the composite RGB image.
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Optimization. As an optimizer,  Adam15 with a constant learning rate of 0.0001 and decoupled weight decay 
 regularization16 with 0.0001 was chosen. Model training was performed using a fivefold cross-validation scheme, 
thus yielding five estimates for each model configuration and the support for late fusion model ensemble. The 
networks were trained with a batch size of 1 for 500 epochs each (or 40.000 steps) and were evaluated every 
10 epochs (or 800 steps) to monitor the Sørensen-Dice coefficients on the respective validation splits. Model 
weights were saved if a better average Sørensen-Dice coefficient was found on the respective cross-validation 
fold.

As mentioned before, the CT images have a variable number of slices and during training a crop of 
32 × 128 × 128 voxels is sampled. However, for computing the complete segmentation on an variable-sized abdom-
inal CT scan a sliding window approach is utilized. The sliding window approach samples crops of 32 × 256 × 256 
voxels with 75% overlap along the z-axis. In order to stabilize the predictions at the edges of the crops, a weighting 
scheme is used for aggregation of the probability maps. Thus, full weight is given to the central 16 slices and an 
interpolated weight to nearly zero for 8 slices on each side.

Results
Evaluation was performed using commonly used metrics for medical semantic segmentation tasks: Sørensen-
Dice coefficient, precision, recall, relative volume difference (RVD), and volume difference (VD). First, the 
Sørensen-Dice coefficient, precision, and recall measure the overlap between the manual and automatic liver/lobe 
segmentations. Second, the VD metric measures the difference in milliliter (ml) and RVD additionally normal-
izes the difference by the manually measured volume, which are more relevant metrics for clinical treatment.

In Fig. 4, the model performance is evaluated on the test set and compared between all three readers as 
well as the derived standard of reference. Model performance is very high with a Sørensen-Dice coefficient 
of 0.9726 ± 0.0058, precision of 0.9623 ± 0.0101, recall of 0.9832 ± 0.0068, RVD of 2.19 ± 1.40%, and a VD of 
32.12 ± 19.40 ml compared to the SoR liver annotation. For the SoR right lobe and left lobe annotation, Sørensen-
Dice coefficient is 0.9639 ± 0.0088 and 0.9223 ± 0.0187, precision is 0.9537 ± 0.0128 and 0.9141 ± 0.0290, recall is 
0.9747 ± 0.0150 and 0.9319 ± 0.0311, RVD is 2.22 ± 2.30% and 2.07 ± 5.52%, and the VD is 22.68 ± 21.67 ml and 
9.44 ± 27.08 ml, respectively. Between annotators there is a clear variability visible, the largest deviations can be 
found in the annotation of the left lobe.

In Fig. 5, the VD between the model prediction and SoR annotation is further analysed using a Bland–Alt-
man diagram and scatter plots of the volumes including ordinary least squares (OLS) regression analysis. All 
three OLS regression models were verified with the F-Test (P < 0.0001) and the respective variables were tested 
on normal distribution using the Shapiro–Wilk test. The tool has a bias and over-predicts for all three evaluated 
labels with an acceptable margin. However, since the CT scans have a slice thickness of 5 mm, it is difficult for a 
human reader to annotate the correct decision boundary if it is somewhere in between two slices. After manual 
review of the model predictions, most of the segmentation differences come from mismatches between adjacent 
slices near the heart and less from in-plane inaccuracies.

For further inspection of the model errors, three outlier cases were identified by Fig. 5. Those cases were 
analysed and visualized in Fig. 6. In the top row, the ensemble over-segmented the right lobe and includes the 
diaphragm. In the middle, the left lobe is over-segmented into regions of the heart, however, due to partial volume 
effects the real decision boundary is partially unclear. Again, in this case the diaphragm is partially included in the 
right lobe as well. In the bottom row, the portal vein is excluded on multiple slices from the overall liver predic-
tion. Additionally, the separation line between the right and left lobe is shifted and under-segments the right lobe.

In addition, the annotations of all three readers and the prediction of the proposed tool were evaluated 
against each other in Table 1. The table shows the Sørensen-Dice coefficients in the upper triangular matrix 
and the  R2 coefficients of an OLS regression analysis in the lower triangular matrix. Strong correlation can be 
observed for all three labels, however, there are clear differences between individual readers as well as readers 
to the predicted volumes.

Discussion
In this study, we developed and evaluated a CNN-based tool for fully automated liver volumetry on preoperative 
CT scans considering the anatomical location of the central hepatic vein. This fully automated tool is reproduc-
ible, quantitative, fast and accurate and does not need an examiner, which means it is not dependent on the 

Input Slice Groundtruth t-SDF Right Lobe t-SDF Left Lobe Classification vs. Regression

Figure 3.  A multi-class segmentation converted to a truncated Signed Distance Field (t-SDF) for an auxiliary 
regression task. The right hand image shows the difference between the classification and regression boundary. 
For t-SDF regression, the network is forced to learn more about the spatial context.
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experience of the examiner. The separate volumetry of the right and left lobe is necessary for major oncologic 
liver resections and is absolutely essential for living donor liver transplantation.

The developed tool achieves Sørensen-Dice coefficients of 0.9726 ± 0.0058, 0.9639 ± 0.0088, and 0.9223 ± 0.0187 
for the whole liver, right lobe, and left lobe, respectively. Moreover, linear regression analyses show statistically 
significant correlations of the predicted volumes compared to the SoR annotation volumes with  R2 coefficients 
of 0.9916, 0.9817, and 0.9206.

The idea of automated volumetry, which is fast and especially examiner independent, is not new. There are 
several studies with the same goal.

The importance of an accurate liver volume assessment preoperatively for living donor liver transplantation 
is described by Goja et al. using their study cohort of 842 donors. The estimated graft weight was compared to 
the actual graft weight and overestimation of the left lobe weight and underestimation of the left lateral lobe was 
detected, which can mislead surgeons in their decision on living  donation17.

Meyer et al. calculated in their study the remnant liver volume using semi-automated volumetry software. 
There were 24 patients included in the study, scheduled for hemihepatectomy due to histologically proven pri-
mary or secondary hepatic malignancies. The intraoperative weights of the resected hemihepatectomy specimens 
were determined in the operating room and a conversion factor was determined based on that calculation. It 
has been shown that the preoperative prediction was more accurate using semi automated  software18. It is dif-
ficult to draw statistically significant conclusions with the relatively low number of 24 patients. However, due 
to the semi automated approach an experienced radiologist is still needed for preoperative volumetry. The time 
needed for the semi automated volumetry was not described in the study. In contrast, our study presents a fully 
automated tool to assess the right and left liver volume based on routine contrast enhanced CT-scans without 
the need of any annotation.

Another semi automated software to calculate liver volume is presented by Bozkurt et al. The right/left liver 
volumes of 41 living liver donors were calculated by the surgeon using the semi automated software tool. The 
same CT-scans of the donors were used for the manual volumetry of the right/left liver volumes done by an 
experienced radiologist. The results of the study demonstrated that there is no difference between the two meth-
ods of predicting liver volume. Both methods correlate with the intraoperative weight/volume of the explanted 
liver lobe. The conclusion of the study group was that the preoperative volumetry can be performed also by the 
transplant surgeons, using the software  tool19. It is possible that the semi-automatic method is faster than the 
manual method. However, the time required for the methods was not described in the study. Although this is 
essential for choosing the best method in everyday business. However, the fully automated tool presented in our 
study requires only seconds to generate a quantitative volume for the right and left lobes of the liver.

Figure 4.  Evaluation of the trained model ensemble on the test dataset. Each CT scan was annotated by three 
different readers and additionally a standard of reference was created by majority voting.
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Figure 5.  Analysis of the predicted volume versus the volume of the SoR groundtruth. (top) Bland–Altman 
diagrams (bottom) Scatter plots with OLS regression analysis.

Figure 6.  Case studies of three outliers identified by the bland–altman plot. From left to right: original image, 
SoR annotation, prediction, and error maps for liver, right lobe and left lobe. Error maps show true positives in 
yellow, false positives in blue, false negatives in pink, and ignored voxels in cyan.
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CNN based liver segmentation with manual correction was described by Chelbus et al. MRI scans of 83 
patients with primary liver cancer or liver metastases scheduled for selective internal radiation therapy (SIRT) 
were used for the study, 62 for training and 21 for evaluation. The automated liver segmentation was corrected 
manually, with a mean Sørensen-Dice coefficient of 0.95. The mean interaction time was 2  min20. The main dif-
ference to our study is that we were able to generate fully automated volumetry of the right and left liver lobe 
separately, which is extremely dependent on the experience of the examiner, if performed manually.

Excellent results for fully automated liver segmentation are shown in the study of Winkler et al. The automated 
assessment of the volumetric analysis was accurate, robust and  fast21. This study also contained the volumetric 
analysis of the whole liver. The separate volumetric analysis of the right and left liver lobe is of greater interest 
in clinical use. The manual assessment requires experience. Consequently, fully automated, accurate and repro-
ducible volumetry of the right and left liver lobe separately improves the results of the volumetry analyses and 
saves time in clinical practice.

Another study proposed an automatic approach using a convolutional long short-term memory based U-Net 
for volumetric segmentation of the left lobe, right lobe, caudate lobe, and whole liver on abdominal  CTs22. The 
authors show a strong correlation between the manual annotations and the predictions of the tool on 28 patients 
from a single-center cohort. However, our tool achieves an overall better Sørensen-Dice coefficient for right lobe, 
left lobe, and whole liver. Small differences due to the additional caudate lobe label in their work might affect 
the interpretation of the left lobe coefficients. In addition, our automatic tool shows a better correlation with the 
manual annotations on a multi-center cohort, having less bias and with near identity slope.

In Park et al. a DeepLabV3 + network was employed using 2.5d input images to perform automatic liver and 
spleen  segmentation23. The tool achieves a Sørensen-Dice coefficient of 0.973 for the whole liver, which is com-
parable to the performance in this study. However, the separation between the right and left lobe was performed 
manually by a reader. Since the correct separation between the right and left lobe is labor-intensive and prone to 
inter-rater variability, a full automation of the volumetry process is preferable. The authors further correlated the 
semi-automatically derived volumes of 201 patients with actual graft weights and derived a conversion formula 
for pre-operative volumetric estimation of graft weight. An evaluation of this conversion formula was conducted 
on another 374 patients, which resulted in a cross-correlation coefficient of 0.834.

The main shortcoming of our study is that we have not correlated the automated assessed liver volume with 
the actual graft weight. However the main focus of the study was to develop fully automated volumetric analy-
ses of the right and left liver lobe which showed comparable results to the manual volumetry. The correlation 
with the actual graft weight in a prospective study will be the next step. Further, the tool could be extended to 
support right and left lobe donors. This would require small adjustments to the decision boundary along the 
central hepatic vein. Complementary to this would be the left lateral living donor liver transplantation, where 
an additional separation between segment I + IVa + IVb and segment II + III would be required.

In conclusion, our study demonstrates that fully automated 3D volumetry of the right and left liver lobe on 
routine CT imaging provides methodologically and technically reproducible, fast and accurate results without 
the need for human operators in the preoperative work-up for hepatobiliary surgery.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to data 
privacy and legal restrictions, but are available from the corresponding author on reasonable request.

Table 1.  Evaluation between the three readers (R1-R3) and the proposed tool (AI). The upper triangular 
matrix states Sørensen-Dice coefficients. The lower triangular matrix states R2 coefficients of the respective 
volumes.

R1 R2 R3 AI

Liver

R1 0.9616 ± 0.0156 0.9636 ± 0.0152 0.9613 ± 0.0144

R2 0.9771 0.9771 ± 0.0113 0.9652 ± 0.0072

R3 0.9915 0.9797 0.9731 ± 0.0069

AI 0.9838 0.9798 0.9936

Right lobe

R1 0.9478 ± 0.0255 0.9479 ± 0.0260 0.9457 ± 0.0245

R2 0.9252 0.9675 ± 0.0123 0.9551 ± 0.0119

R3 0.9481 0.9704 0.9634 ± 0.0104

AI 0.9375 0.9622 0.9846

Left lobe

R1 0.9028 ± 0.0472 0.8991 ± 0.0463 0.8931 ± 0.0380

R2 0.8870 0.9338 ± 0.0266 0.9085 ± 0.0231

R3 0.8969 0.8868 0.9191 ± 0.0247

AI 0.8865 0.8590 0.9330
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